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IP Telephony: Deploying Voice-over-IP Protocols is a companion
reference to Beyond VoIP Protocols: Understanding Voice Technology and
Networking Techniques for IP Telephony. More details of this companion
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SGCP Simple Gateway Control Protocol
simcap Simple Capability (SDP Declaration)
SIMPLE SIP for Instant Messaging and Presence Leveraging

Extensions
SIP Session Initiation Protocol
SIPS Session Initiation Protocol Secure
SMG Special Mobile Group (of ETSI)
SMS Short Message Service
SMTP Simple Mail Transfer Protocol
SP Single Space
SQCIF Sub-QCIF (128 × 96)
SR Sender Report
SRV Server DNS Record
SS Supplementary Service
SS-CD Supplementary Service: Call Deflection
SS-CFB Supplementary Service: Call Forwarding on Busy
SS-CFNR Supplementary Service: Call Forwarding on No Reply
SS-CFU Supplementary Service: Call Forwarding

Unconditional
SS-DIV All Diversion Supplementary Services
SS7 Signaling System 7
SSF Service Switching Function
SSL Secure Sockets Layer
SSW Softswitch
STP Signaling Transfer Point



xvi ABBREVIATIONS

STUN Simple Traversal of UDP Through Network Address
Translators

SUD Single Use Device
TAPI Microsoft Telephony API
TCAP SS-7 Transaction Capabilities
TCF Training Check Function
TCP Transport Control Protocol
TCS Terminal Capability Set
TCS=0 NullCapabilitySet Call Flow in H.323
TDM Time Division Multiplexing
TFTP Trivial File Transfer Protocol
TGW Terminating Gateway
TIA Telecommunications Industry Association (USA)
TIPHON Telephony and Internet Protocol Harmonization over

Networks (ETSI)
TLS Transport Layer Security
TLV Type, Length, Value format
TO Timeout
TPKT Transport Packet (RFC 1006)
TTL Time to Live
TTS Text to Speech
TURN Traversal Using Relay NAT
UCF Unregistration Confirm
UCS Universal Character Set
UDP User Datagram Protocol
UDPTL UDP Transport Layer
UII User Input Indication
UMTS Universal Mobile Telecommunication System
UPT Universal Personal Telephony
URI Uniform Resource Identifier
URJ Unregistration Reject
URL Uniform Resource Locator
URN Uniform Resource Name
URQ Unregistration Request
USH Université de Sherbrooke
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Glossary

Abstract Syntax Notation-1
(ASN-1)

Defined in ITU standard X.691.

Access Control List (ACL) A packet filter on a router.
Admission Confirm (ACF) A RAS message defined in H.225.0.
Admission Reject (ARJ) A RAS message defined in H.225.0.
Admission Request (ARQ) A RAS message defined in H.225.0.
Application Protocol Data

Units (APDUs)
See H.450.1.

Associate Session A related session. Two related sessions must by
synchronized (e.g., an audio session can specify
a video session as being related). The receiving
terminal must perform lip synchronization for
those sessions.

Backus–Naur Form (BNF) See RFC 2234.
Bandwidth Confirm (BCF) A RAS message defined in H.225.0.
Bandwidth Reject (BRJ) A RAS message defined in H.225.0.
Bandwidth Request (BRQ) A RAS message defined in H.225.0.
Basic Encoding Rule (BER) See ASN.1.
Call Identifier (Call-ID) A globally unique call identifier.
Call Reference Value (CRV) A 2-octet locally unique identifier copied in all

Q.931 messages concerning a particular call (see
also conference identifier).

Conference Identifier (CID) This is not the same as the Q.931 Call Reference
Value (CRV) or the call identifier (CID). The
CID refers to a conference which is the actual
communication existing between the
participants. In the case of a multiparty
conference, if a participant joins the conference,
leaves, and enters again, the CRV will change,
while the CID will remain the same.
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The Common Intermediary
Format (CIF)

A video format which has been chosen because it
can be sampled relatively easily from both the
525-line and 625-line video formats: 352 × 288
pixels

Contributing Source (CSRC) When an RTP stream is the result of a combination
put together by an RTP mixer of several
contributing streams, the list of the SSRCs of
each contributing stream is added in the RTP
header of the resulting stream as CSRCs. The
resulting stream has its own SSRC.

Disengage Confirm (DCF) A RAS message defined in H.225.0.
Disengage Reject (DRJ) A RAS message defined in H.225.0.
Disengage Request (DRQ) A RAS message defined in H.225.0.
Dual-Tone Multi-Frequency

(DTMF)
Tones composed of two well-defined frequencies

that represent digits 0–9, *, #. The combination
of frequencies has been selected to be almost
impossible to reproduce with the human voice.
DTMF tones are used to dial from analog
phones and to control IVR servers.

Dynamic Host Configuration
Protocol (DHCP)

Used by end points to acquire a temporary IP
address and important TCP/IP parameters (router
IP address, DNS IP address, etc.) from a server
in the network.

End of Line (EOL) The end of line sequence for group 3 fax (001H).
Energy For an image on a particular color, the sum of the

squared color values of the pixels is called the
energy.

ENUM An E.164 number resolution protocol defined in
RFC 2916.

Fast-Connect A procedure to eliminate media delays after the
connection of the call introduced in H.323v2.
Another name used for the same procedure is
Fast-Start.

Fast-Start See Fast-Connect.
Gatekeeper Confirm (GCF) A RAS message defined in H.225.0.
Gatekeeper Request (GRQ) A RAS message defined in H.225.0.
Gatekeeper Reject (GRJ) A RAS message defined in H.225.0.
Information Request (IRQ) A RAS message defined in H.225.0.
Information Request Response

(IRR)
A RAS message defined in H.225.0.

Initial Address Message (IAM) SS7 ISUP message initiating a call set-up.
Inter-mode Refers to a video-coding mode where compression

is achieved by reference to the previous, or
sometimes the next, frame.



GLOSSARY xxi

Interactive Voice Response
server (IVR)

A machine accepting DTMF or voice commands,
and executing some logic which interacts with
the user using pre-recorded prompts or synthetic
voice.

Internet Fax Transmission
(IFT)

A protocol, see ITU recommendation T.38.

Internet Relay Chat (IRC) The famous ‘chat’ service of the Internet, based on
a set of servers mirroring text-based
conversations in real time.

Intra-mode Refers to a video-coding mode where compression
is achieved locally (i.e., not relatively to the
previous frame).

IP-PBX Private phone switch with a VoIP wide area
network interface. Most IP-PBXs have an H.323
WAN interface. See also IPBX.

IPBX Same as IP-PBX. Some use the term IPBX for
private phone switches which use only VoIP
(i.e., the phones are also IP phones), whereas an
IP-PBX can be a traditional PBX with analog
phones and only uses a WAN VoIP interface.
See IP-PBX

Jitter Statistical variance of packet interarrival time. It is
the smoothed absolute value of the mean
deviation in packet-spacing change between the
sender and the receiver. The smoothing is
usually done by averaging on a sliding window
of 16 instantaneous measures.

jitter Varying delay.
Location Confirm (LCF) A RAS message defined in H.225.0.
Location Reject (LRJ) A RAS message defined in H.225.0.
Location Request (LRQ) A RAS message defined in H.225.0.
macroblock For the H.261 algorithm, a group of four 8∗8

blocks.
Maximum Transmission Unit

(MTU)
The largest datagram that can be sent over the

network without segmentation.
Multicast Backbone of the

Internet (mBone)
Capable of sending one packet to multiple

recipients.
Multipoint Control Unit

(MCU)
An H.323 callable end-point which consists of an

MC and optional MPs.
Multipoint Controller (MC) The H.323 which provides the control function for

multiparty conferences.
Multipoint Processor (MP) The H.323 entity which processes the media

streams of the conference and does all the
necessary switching, mixing, etc.
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Naming Authority Pointer
Resource of the DNS
(NAPTR)

Defined in RFC 2915 and used notably by ENUM,
see ENUM.

Network Facility Extension
(NFE)

Defined in H.450.1.

Network Time Protocol (NTP) This defines a standard way to format a timestamp,
by writing the number of seconds since 1/1/1900
with 32 bits for the integer part and 32 bits for
the decimal part expressed as number of 1/232

seconds (e.g., 0x800000000 is 0.5 s). A compact
format also exists with only 16 bits for the
integer part and 16 bits for the decimal part. The
first 16 digits of the integer part can usually be
derived from the current day, the fractional part
is simply truncated to the most significant 16
digits.

P-frame Prediction frame obtained by motion estimation or
otherwise, and representing only the difference
between this image and the previous one.

Packed Encoding Rules (PER) See ASN.1.
Payload Type (PT) As defined by RTP.
port An abstraction that allows the various destinations

of the packets to be distinguished on the same
machine (e.g., Transport Selectors, or TSELs, in
the OSI model, or IP ports). On the Internet,
many applications have been assigned
‘well-known ports’ (e.g., a machine receiving an
IP packet on port 80 using TCP will route it to
the web server).

Prediction frame (P-frame) Obtained by motion estimation or otherwise, and
representing only the difference between this
image and the previous one.

Private Branch Exchange
(PBX)

A private phone switch.

Proxy server An intermediary program that acts as both a server
and a client for the purpose of making requests
on behalf of other clients. Requests are serviced
internally or by passing them on, possibly after
translation, to other servers. A proxy interprets,
and, if necessary, rewrites a request message
before forwarding it.

Q-interface Signaling (QSIG) Protocol used at the Q-interface between two
switches in a private network. ECMA/ISO have
defined a set of QSIG standards.
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Real-Time Control Protocol
(RTCP)

See RFC 1889.

Real-time Transport Protocol
(RTP)

As specified by RFC 1889.

Registration Confirm (RCF) A RAS message defined in H.225.0.
Registration Reject (RRJ) A RAS message defined in H.225.0.
Registration Request (RRQ) A RAS message defined in H.225.0.
Registration, Admission, and

Status (RAS)
The name of the protocol used between the

gatekeeper and a terminal, and between
gatekeepers for registration, admission, and
status purposes. Defined in H.225.0.

Return To Command (RTC) Six consecutive EOLs instructing a G3 Fax to
return to command mode.

Sender Report (SR) Used in RTCP and RTP.
Session ID A unique RTP session identifier assigned by the

master. The convention is that the value of the
session ID is 1 for a primary audio session, 2 for
a primary video session, and 3 for a primary
data session. See Associate session.

Single Use Device (SUD) See H.323 annex F.
SIP dialog This was defined in RFC 3261 as a peer-to-peer

SIP relationship between two UAs which
persists for some time. A dialog is established
by SIP messages, such as a 2xx response to an
INVITE request. A dialog is identified by a call
identifier, a local tag, and a remote tag. A dialog
was formerly known as a call leg in RFC
2543.

SIP final response A SIP response that terminates a SIP transaction
(e.g., 2xx, 3xx, 4xx, 5xx, 6xx responses). See
SIP provisional response.

SIP provisional response A SIP response that does not terminate a SIP
transaction, as opposed to a SIP final response
(1xx responses are provisional).

SIP redirect server A redirect server is a server that accepts a SIP
request, maps the address into zero or more new
addresses, and returns these addresses to the
client. Unlike a proxy server, it does not initiate
its own SIP request. Unlike a user agent server,
it does not accept calls.

SIP registrar A registrar is a server that accepts REGISTER
requests. A registrar is typically co-located with
a proxy or redirect server and may offer location
services.



xxiv GLOSSARY

SIP server A server is an application program that accepts
requests in order to service requests and sends
back responses to those requests. Servers are
either proxy, redirect, or user agent servers or
registrars.

SIP transaction A SIP transaction occurs between a client and a
server, and comprises all messages from the first
request sent from the client to the server up to a
final (non-1xx) response sent from the server to
the client. A transaction is identified by the
CSeq sequence number within a single-call leg.
The ACK request has the same CSeq number as
the corresponding INVITE request, but
comprises a transaction of its own.

Stream Control Transport
Protocol (SCTP)

Defined in RFC 2960.

Supplementary Services
(SS-DIV)

Includes all diversion supplementary services, such
as SS-CFU, SS-CFB, SS-CFNR, SS-CD.

Switched Circuit Network
(SCN)

A generic term for the ‘classic’ phone network,
including PSTN, ISDN, and GSM.

Synchronization Source
(SSRC)

Source of an RTP stream, identified by 32 bits in
the RTP header. All the RTP packets with a
common SSRC have a common time and
sequencing reference.

Talkspurt A period during which a participant usually speaks,
as opposed to silence periods.

Time Division Multiplexing
(TDM)

The traditional voice transmission and switching
technique based on assigning each
communication a fixed “time slot” on a
communication line between central offices.

TPKT A TCP connection establishes a reliable data
stream between two hosts, but there is no
delimitation of individual messages within this
stream. RFC 1006 defines a simple TPKT packet
format to delimit such messages. It consists of a
version octet (‘3’), two reserved octets (‘00’),
and the total length of the message including the
previous headers (2 octets).

Transport address Combination of a network address (e.g., IP address
10.0.1.2) and port (e.g., IP port 1720) which
identifies a transport termination point.

Transport Control Protocol
(TCP)

The most widely used, reliable transport protocol
for IP networks.

Transport Layer Security (TLS) A secure protocol using TCP, defined in RFC 2246.
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Trivial File Transfer Protocol
(TFTP)

A very simple file transfer protocol over UDP,
frequently used by IP appliances to download
their initial configuration parameters.

Uniform Resource Identifier
(URI)

Defines a uniform syntax and semantic convention
for any resource. The URI is defined in RFC
2396. See also URL, URN.

Uniform Resource Locator
(URL)

A specific type of URI identifying a resource by its
primary network address. URLs are used by SIP
to indicate the originator, current destination,
and final recipient of a SIP request, and to
specify redirection addresses. See also URI.

Uniform Resource Name
(URN)

A specific type of URI required to be universally
unique and persistent even if the resource ceases
to exist. See also URI.

Unregistration Confirm (UCF) A RAS message defined in H.225.0.
Unregistration Reject (URJ) A RAS message defined in H.225.0.
Unregistration Request (URQ) A RAS message defined in H.225.0.
User Agent Client (UAC) Also known as a calling user agent. A user agent

client is a client application that initiates the SIP
request.

User Agent Server (UAS) Also known as a called user agent. A user agent
server is a server application which contacts the
user when a SIP request is received and returns
a response on behalf of the user. The response
accepts, rejects, or redirects the request.

User agent A SIP end system participating in a SIP
transaction. See UAC, UAS.

User Datagram Protocol (UDP) The most widely used unreliable transport protocol
for IP networks. UDP only guarantees data
integrity by using a checksum, but an
application using UDP has to take care of any
data recovery task.

Zone An H.323 zone is the set of all H.323 end points,
MCs, MCUs, and gateways managed by a single
gatekeeper.





Preface

VOIP 1998–2004, 6 YEARS FROM R&D LABS TO LARGE
SCALE DEPLOYMENTS

Since 1998 Voice over IP, in short VoIP, has been the favorite buzzword of the telecom
industry. In 1998, IP was not yet as established and dominant as it is today, and most
telecom engineers still believed that only ATM technology would be able to support
multimedia applications. Indeed at this time most of us experienced the Internet only
through dial-up modems and most ISPs, unable to keep-up with the exploding demand
for Internet connections, were providing a level of service that could hardly qualify even
for ‘best effort’.

But even in this context, the R&D teams that started to work on VoIP were not simply
taking a leap of faith. Their bet on VoIP was backed by the last developments of packet
networking theory, which proved that properly designed IP networks could provide an
appropriate support for applications requiring quality of service. Knowing this, most of
these teams felt confident that VoIP could be deployed on a wide scale in the future,
and in the mean time tried to evaluate what could be the impact of VoIP, compared to
previous technologies.

It took a relatively long time to understand the reasons that would lead a service provider
to deploy VoIP instead of traditional switched voice networks. Initially VoIP was presented
as a technology that could enable a service provider to transport voice ‘for free’ over the
Internet, because IP transport was ‘free’, and calls could be routed to local breakout trunks
on the far end. The first commercial applications of VoIP focused on prepaid telephony,
which was a reasonable target given that potential buyers of prepaid card systems do care
about costs, and they are much more tolerant to quality of service issues than any other
market segment. VoIP prepaid telephony systems did have a great success—today the
majority of international calling card services use VoIP—but not because of cheaper call
termination costs (which are regulated independently of the technology in most countries),
or cheaper transport costs (traditional voice compression systems are much more efficient
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than VoIP systems). The reason for the success was mainly because VoIP facilitates the
trading of minutes between multiple networks without the constraint of establishing leased
lines: on the Internet, virtually all VoIP service providers ‘see’ each other and can decide
to exchange traffic immediately, or to stop as soon as better arbitrage opportunities exist.
In addition the central switching system of a VoIP service provider does not process
voice streams, but only signaling messages: a call initiated from a gateway in Paris can
be routed to a gateway in London by a VoIP call controller located in New-York with very
few overhead costs. Only signaling messages make the round trip through the Atlantic,
voice packets only cross the Channel.

It is now clear that the key reasons for the success of VoIP are:

– location independence: because of the unique characteristics of VoIP call controllers, or
‘Softswitches’, many functions that previously required multiple distributed points of
presence can now be centralized, reducing administrative overheads and accelerating
deployments

– simplification of transport networks: in the example above, service providers no longer
need to establish leased lines dedicated to voice prior to exchanging traffic. But the
use of standard IP data networks—configured appropriately—is a major breakthrough
in many other circumstances: core transport networks no longer need to maintain the
dedicated network that was required by SS7 signaling, enterprises moving to new offices
can save the significant expenses required by dedicated telephony wiring and use virtual
LANs instead.

– Ability to establish and control multimedia communications, e.g. interactive audio and
video calls, data sharing sessions, etc.

Because of these unique characteristics, VoIP technology is a very good choice every
time a relatively complex call control function would require multiple points of presence
close to the end-users in traditional switched technology, and can be centralized with an
application softswitch:

– In residential telephony, new service providers can deploy centralized VoIP call control
servers and use any IP networking technology. For instance FastWeb, in Italy, serves
the Italian market from just two PoPs located in Milan and Rome. This is not possible
with traditional technology using traditional (TDM) switches (even with V5.2/GR303
ATM gateways used at the edge of the network), because the voice streams need to be
physically switched by the backplane of the TDM switch. In addition of course, VoIP
technology makes it possible to introduce additional media, like video communications,
which differentiate the service and help maintain the ARPU1.

– Informal, Distributed contact centers also become much easier and cheaper to operate
with VoIP: the centralized call distribution point no longer needs to switch the voice

1 Average Revenue Per User
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streams, and therefore tromboning2 through the VoIP call distribution server is com-
pletely eliminated, which reduces communications costs and minimizes the required
bandwidth for the connection of the call distribution platform.

– In general, all applications which previously required a complex intelligent network
architecture in order to minimize tromboning (call switching occurs at specific nodes
in the network, and the applications can be located elsewhere), can be significantly
simplified using a centralized call control server which controls voice signaling but
optimizes the voice path through the IP network.

Today more and more service providers and enterprises, as they have become confident
in the VoIP technology and quality of service of IP networks, deploy VoIP applications in
order to enjoy the location independence and greater flexibility of the technology. With
more successful deployments, VoIP is gaining in maturity, and the cost of VoIP gateways
and IP phones is quickly dropping with the increased volumes. This positive circle should
result in massive deployments of VoIP over the next 5 years.

SCOPE OF THIS BOOK

In “IP Telephony”, we will also assume, like the pioneers of VoIP, that it is possible
to carry multimedia data flows over an IP network with an appropriate quality (i.e. low
latency and low packet loss), and we will focus only on the functional aspects of VoIP.
Voice coding technology is also presented as a ‘black box’, with enough information for
an engineer who wants to use an existing coder in an application, but without describing
the technology in detail. “IP Telephony” will be useful mainly in the lab (development
platforms, validation platforms), when designing and troubleshooting new interactive mul-
timedia applications.

The companion book ‘Beyond VoIP Protocols’ becomes necessary when you deploy
these applications in the field, over a real network with limited capacity. ‘Beyond VoIP
protocols’ contains an overview of the techniques that can be used to provide custom
levels of quality of service for IP data flows, and guidelines to properly dimension an
IP network for voice. It also delves into the details of voice coding technology, and the
influence of the selected voice coder and the transmission channel parameters on perceived
voice quality.

In theory, it is sufficient to read the VoIP standards in order to become an efficient
VoIP engineer. Although reading the standards is always necessary at some point, these
documents were never written to be read from A to Z. Not only the mere volume is a
problem, hundreds of pages for each standard, but also the structure is inappropriate: all
VoIP standards are written as umbrella documents, which point explicitly or implicitly
to dozens of other more detailed documents. Sometimes, these documents are also mis-
leading, because some of the recommended methods were discussed in a specific context

2 “Tromboning” refers to a non-optimal media path through the network, compared to the shortest
path. It happens when the media streams have to “zigzag” across multiple nodes, reminding of the
shape of a bent trombone.
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in the standard bodies, but this context was lost or not clearly expressed in the written
recommendation (see for instance the issues presented in the advanced topics chapter for
call redirection). Last but not least most standards are the result of “diplomatic” agree-
ments between firms, which often results in multiple alternate ways of doing the same
thing, very long and cumbersome documents with many ‘options’ and unclear sentences
designed to preserve the agreed compromise, while in practice after a few years, the mar-
ket forces lead to a “de-facto” standard choice, in general adopted from the practice of
the dominant players.

We wrote “IP Telephony” because we believe it is much more efficient to gain first a
general overview on VoIP, and only then go into the details of the standard documents,
but only when needed and if clarification is required on a specific item. Initially this book
was designed as an internal training tool within France Telecom, and over the years it
developed by capturing the accumulated experience of the authors and their colleagues,
in over 50 voice over IP deployments, among which two of the largest residential VoIP
networks in the world: FastWeb for residential telephony (over 450,000 VoIP phone lines,
and 1000 new lines every day), and Equant for VoIP Multiservice VPNs (connects over
1,300 sites of 130 multinationals, with a growth rate of 85% per year).

“IP telephony” begins by giving an overview of the techniques that can be used to
encode media streams and transmit them over an IP network (chapter 1). If focuses on the
functional requirement of transmitting an isochronous data stream over an asynchronous
network which introduces delay variations (“jitter”). The media encoding methods them-
selves are presented very briefly, with just enough details for an engineer who wants
to use them and understand the main parameters required for the transmission of the
resulting data.

The most popular VoIP standards are presented in chapter 2 (H.323), chapter 3 (SIP)
and chapter 4 (MGCP). These chapters do not intend to fully replace the standards, but
provide a detailed overview that should be sufficient for most engineers and pointers to
relevant normative documents if further reference is required. The value of these chapters
comes also from the many discussions on aspects of the standards that are still immature,
and descriptions of calls flows or protocol extensions commonly used by vendors but not
described in standard documents.

The “advanced topics” chapters (chapter 5 and 6), discusses two issues faced by all
service providers when deploying public VoIP services (as opposed to custom services
designed for a single enterprise). The first issue comes from the incompatibility of current
VoIP protocols with Network Address Translation routers and firewalls, which change
the addresses of IP packets on the fly but without properly translating the IP addresses
contained in the VoIP messages carried by these packets. The second issue comes from
the widespread confusion between private telephony techniques and public telephony
techniques for call transfers. In both cases the chapter presents techniques that were
deployed successfully, and explains the pros and cons of each possible method.

WHICH PROTOCOLS FOR VOIP ?

As we were writing this book called “IP Telephony: DeployingVoice-over-IP Protocols”,
it was of course very difficult to ignore the ‘protocol wars’ which seem unavoidable
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each time the telecom industry invents a new application or technology. The exercise
was made especially difficult by the telecom bubble, during which it seems many manu-
facturers and many service providers forgot that telecommunications is a science, and
more and more strategic or even technical decisions have been made based on misleading
marketing campaigns.

In fact even today, almost 100% of what we read in telecom magazines or hear in tele-
com tradeshows is plain advertising, not only inexact technically, but too often presenting
conclusions that are the exact contrary of what any sound technical analysis would lead
to. For instance UMTS interactive multimedia applications are always presented as “all
IP based”, while in fact they are all circuit based3, and for fundamental technical reasons
that will last for years!

This is a very big problem for the telecom industry as a whole, because too many
manufacturers or service providers have started to digest and believe their own over-
inflated marketing, and this vicious circle leads to inordinate amounts of investment
money that will not survive the reality check of deployments. We have seen so many
‘concept companies’ grow with the bubble, and then fail. Even large companies are still
investing massively in programs that sometime seem a bit surrealist and are obviously
poised for failure.

As the CEO of one of the largest service providers put it in a recent press conference:
“it is high time for us to become a company of engineers again”.

There is little a book can do to help sanitize the world of VoIP, but we have tried to
discuss openly the pros and cons of each protocol, each time with specific arguments and
suggestions for improvements. Our opinion is that all of the protocols described have a
future, and each has some unique characteristics that make it unavoidable for the next
5 years:

– H.323 provides the optimal transparency with ISDN endpoints, and is today the only
connectivity protocol that can be used with virtually all PABXs of the market. In
addition, H.323 provides by far the best support for video communications today and
it is the protocol of choice of 3G multimedia applications (under the circuit version
3G-324M) probably for the next 5 years. All pending problems of the protocol have
been solved as the protocol matured. In short, it is the dominant protocol today, and it
has a brilliant future for PABX interconnect (business trunking), core VoIP networks,
and 3G. However it is weak for PC applications.

– SIP undoubtedly benefits from the biggest marketing momentum. However, as we
have seen above, it is important to distinguish between marketing and facts. SIP is an
excellent choice for PC centric applications: as a UDP based protocol it is relatively
easy to get it to work across Network Address Translation devices, which facilitates
the deployment of VoIP services independent of the underlying network provider. The
use of SIP SIMPLE as a Presence/Instant Messaging protocol, if it prevails over the
competitor Jabber, also opens the door for many synergies with PC applications. On

3 Using the 3G-324M protocol adopted by 3GPP UMTS, CDMA 2000, TD-SCDMA. IP based
protocols, which introduce an error multiplication effect because a single bit error kills the whole
packet, cannot be used on current radio links for interactive media.
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the other hand the major weakness of SIP today is its lack of maturity, and overall
a very slow convergence process towards a carrier grade version. The most efficient
work so far has been done by the 3GPP consortium, which is in fact almost redefining
its own version of SIP.

– MGCP has quietly become one of the most successful protocols, both in core networks
where it serves to control trunking gateways, and at the edge to control business IP
phones (where it has unparalleled features for screen and function key control), and
analogue lines (only MGCP allows full transparency with existing PSTN features).
MGCP, under the name ‘NCS’ is also used by the cable industry to deliver VoIP
over DOCSIS networks. The protocol had by far the best design quality upfront, and
there are very few things to fix in the latest version of MGCP. We believe there is in
absolute terms a need for a stimulus protocol like MGCP, at a lower level than SIP or
H.323. Therefore we think MGCP is here to stay regardless of the evolution of H.323
or SIP.

We often had the request to describe in details H.248. We decided to not cover it in this
edition, as we do not believe H.248 will have a significant market presence in the next
2–3 years, at least at the edge of the network. In the long term, MGCP may be displaced
by the ITU version, H.248, we see this happening in the next 2–3 years for the control
of core trunking gateway (the protocol used at this level is almost an internal interface
between the softswitch and the media gateways, and often what vendors call H.248 is in
fact proprietary at this level), but it will take more time in the CPE space where the H.248
offer is virtually inexistent and there is no strong motivations to evolve towards H.248.

Similarly, we did not cover SIGTRAN and SS7 in general. SIGTRAN allows the
transport of traditional telephony signaling messages over an IP network. The concept
of the protocol is simple: it is a form of tunneling. However a full understanding of
SIGTRAN requires a complete introduction to SS7 transport layers (MTP1/MTP2/MTP3)
and SS7 application protocols (e.g. SCCP/ISUP), which would be too detailed for most
VoIP engineers. In addition the new IP transport protocol introduced by SIGTRAN, SCTP,
is in itself a major technology improvement over TCP and UDP, but also much more
complex than TCP or UDP. Covering SIGTRAN in details would justify a separate book.
In practice, most VoIP engineers will never need to know in details what happens within
the “SIGTRAN tunnel”.

CONCLUSION

As this book is going to press, the momentum of VoIP seems to be growing every day.
VoIP now makes the front page of major economic newspapers that describe it as a
technology that will reshape the telecom industry. We hope that this momentum will
remain reasonable and will not end up in a new bubble. VoIP does have major advan-
tages and offers a potential for new disruptive business models, but this comes with the
challenges of any new, relatively immature, technology. We hope that “IP telephony” and
“Beyond VoIP Protocols” will give our readers a comprehensive understanding of VoIP
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technology and its potential, while keeping the expectations realistic and not forgetting
the potential issues.

If we have achieved our goal, our readers will be able to perform a thorough reality
check on any elaborate marketing story, and enjoy the benefits of VoIP while avoiding
the pitfalls.





1
Voice over Packet

1.1 TRANSPORTING VOICE, FAX, AND VIDEO OVER A
PACKET NETWORK

1.1.1 A Darwinian view of voice transport

1.1.1.1 The circuit switched network

The most common telephone system on the planet today is still analog, especially at the
edge of the network. Analog telephony (Figure 1.1) uses the modulation of electric signals
along a wire to transport voice.

Although it is a very old technology, analog transmission has many advantages: it is
simple and keeps the end-to-end delay of voice transmission very low because the signal
propagates along the wire almost at the speed of light.

It is also inexpensive when there are relatively few users talking at the same time and
when they are not too far apart. But the most basic analogue technology requires one
pair of wires per active conversation, which becomes rapidly unpractical, and expensive.
The first improvement to the basic “baseband” analog technology involved multiplexing
several conversations on the same wire, using a separate transport frequency for each
signal. But even with this hack, analog telephony has many drawbacks:

• Unless you use manual switchboards, analog switches require a lot of electromechanical
gear, which is expensive to buy and maintain.

• Parasitic noise adds up at all stages of the transmission because there is no way to
differentiate the signal from the noise and the signal cannot be cleaned.

IP Telephony O. Hersent, J.P. Petit, D. Gurle
 2005 John Wiley & Sons, Ltd ISBN: 0-470-02359-7
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Figure 1.1 Analog telephony, as old as the invention of the telephone, and still in use today
at the edge of the network.

For all these reasons, most countries today use digital technology for their core telephone
network and sometimes even at the edge (ISDN). In most cases the subscriber line remains
analogue, but the analogue signal is converted to a digital data stream in the first local
exchange. Usually, this signal has a bitrate of 64 kbit/s or 56 kbit/s (one sample every
125 µs).

With this digital technology, many voice channels can easily be multiplexed along the
same transmission line using a technology called time division multiplexing (TDM). In
this technology, the digital data stream which represents a single conversation is divided
into blocks (usually an octet), and blocks from several conversations are interleaved in a
round robin fashion in the time slots of the transmission line, as shown in Figure 1.2.

T
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��

�

Figure 1.2 TDM switching.
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Because of digital technology, the noise that is added in the backbone does not influence
the quality of the communication because digital ‘bits’ can be recognized exactly, even in
the presence of significant noise. Moreover, digital TDM makes digital switching possible.
The switch just needs to copy the contents of one time slot of the incoming transmission
line into another time slot in the outgoing transmission line. Therefore, this switching
function can be performed by computers.

However, a small delay is now introduced by each switch, because for each conversation
a time slot is only available every T µs, and in some cases in may be necessary to wait
up to T µs to copy the contents of one time slot into another. Since T equals 125 µs
in all digital telephony networks, this is usually negligible and the main delay factor is
simply the propagation time.

1.1.1.2 Asynchronous transmission and statistical multiplexing

Unless you really have a point to make, or you’re a politician, you will usually speak
only half of the time during a conversation. Since we all need to think a little before we
reply, each party usually talks only 35% of the time during an average conversation.

If you could press a button each time you talk, then you would send data over the
phone line only when you actually say something, not when you are silent. In fact, most
of the techniques used to transform your voice into data (known as codecs) now have the
ability to detect silence. With this technique, known as voice activity detection (VAD),
instead of transmitting a chunk of data, voice, or silence every 125 µs, as done today on
TDM networks, you only transmit data when you need to, asynchronously, as illustrated
in Figure 1.3.

Time

‘Hi!’

‘How are you?’

‘Me too!’

Figure 1.3 Transmitting voice asynchronously.



4 IP TELEPHONY

And when it comes to multiplexing several conversations on a single transmission line,
instead of occupying a fraction of bandwidth all the time, ‘your’ bandwidth can be used
by someone else while you are silent. This is known as ‘Statistical multiplexing’.

The main advantage of statistical multiplexing is that it allows the bandwidth to be
used more efficiently, especially when there are many conversations multiplexed on the
same line (see companion book, Beyond VoIP protocols Chapter 5 for more details). But
statistical multiplexing, as the name suggests, introduces uncertainty in the network. As
just mentioned, in the case of TDM a delay of up to 125 µs could be introduced at each
switch; this delay is constant throughout the conversation. The situation is totally different
with statistical multiplexing (Figure 1.4): if the transmission line is empty when you need
to send a chunk of data, it will go through immediately. If on the other hand the line is
full, you may have to wait until there is some spare capacity for you.

This varying delay is caller jitter, and needs to be corrected by the receiving side.
Otherwise, if the data chunks are played as soon as they are received, the original speech
can become unintelligible (see Figure 1.5).

The next generation telephone networks will use statistical multiplexing, and mix voice
and data along the same transmission lines. Several technologies are good candidates
(e.g., voice over frame relay, voice over ATM, and, of course, voice over IP).

�
Jitter and
delay

Statistical
multiplexer

Bandwidth
optimization

Figure 1.4 Statistical multiplexers optimize the use of bandwidth but introduce jitter.

“Hello, How     are     you    today?”

..w       are       you       today?”“Hello, ho..

Figure 1.5 Effects of uncompensated jitter.
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We believe voice over IP is the most flexible solution, because it does not require
setting up virtual channels between the sites that will communicate. VoIP networks scale
much better than ATM or frame relay networks, and VoIP also allows communications to
be established directly with VoIP endpoints: there is now a variety of IP-PBXs (private
switches with a VoIP wide-area network interface), or IP phones on the market today that
have no ATM or frame relay equivalent.

1.1.2 Voice and video over IP with RTP and RTCP

The Real-time Transport Protocol and Real Time Control Protocol, described in RFC
1889, are the protocols that have been used for the transport of media streams since the
first conferencing tools were made available on the Internet. The visual audio tool (VAT)
used RTP version 0. A description of version 1 is available at ftp://gaia.cs.umass.edu/pub/
hgschulz/rtp/draft-ietf-avt-rtp-04.txt

Since then, RTP has evolved into version 2. RTPv2 is not backward compatible with
version 1, and therefore all applications should be built to support RTPv2.

1.1.2.1 Why RTP/RTCP?

When a network using statistical multiplexing is used to transmit real-time data such as
voice, jitter has to be taken into account by the receiver. Routers are good examples of
such statistical multiplexing devices, and therefore voice and video over IP have to face
the issue of jitter.

RTP was designed to allow receivers to compensate for jitter and desequencing intro-
duced by IP networks. RTP can be used for any real-time (or more rigorously isochronous)
stream of data (e.g., voice and video). RTP defines a means of formatting the payload of
IP packets carrying real-time data. It includes:

• Information on the type of data transported (the ‘payload’).

• Timestamps.

• Sequence numbers.

Another protocol, RTCP, is very often used with RTP. RTCP carries some feedback on
the quality of the transmission (the amount of jitter, the average packet loss, etc.) and
some information on the identity of the participants as well.

RTP and RTCP do not have any influence on the behavior of the IP network and do not
control quality of service in any way. The network can drop, delay, or desequence an RTP
packet like any other IP packet. RTP must not be mixed up with protocols like RSVP
(Resource Reservation Protocol). RTP and RTCP simply allow receivers to recover from
network jitter and other problems by appropriate buffering and sequencing, and to have
more information on the network so that appropriate corrective measures can be adopted
(redundancy, lower rate codecs, etc.). However, some routers are actually able to parse
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IP packets, discover whether these packets have RTP headers, and give these packets a
greater priority, resulting in better QoS even without any external QoS mechanism, such
as RSVP for instance. Most Cisco routers support the IP RTP PRIORITY command.

RTP and RTCP are designed to be used on top of any transport protocol that provides
framing (i.e., defineates the beginning and end of the information transported), over any
network. However, RTP and RTCP are mostly used on top of UDP (User Datagram
Protocol).1 In this case RTP is traditionally assigned an even UDP port and RTCP the
next odd UDP port.2

1.1.2.2 RTP

RTP allows the transport of isochronous data across a packet network, which introduces
jitter and can desequence the packets. Isochronous data are data that need to be rendered
with exactly the same relative timing as when they were captured. Voice is the perfect
example of isochronous data, any difference in the timing of the playback will either
create holes or truncate some words. Video is also a good example, although tolerances
for video are a lot higher; delays will only result in some parts of the screen being updated
a little later, which is visible only if there has been a significant change.

RTP is typically used on top of UDP. UDP is the most widely used ‘unreliable’ transport
protocol for IP networks. UDP can only guarantee data integrity by using a checksum, but
an application using UDP has to take care of any data recovery task. UDP also provides
the notion of a ‘port’, which is a number between 0 and 65,535 (present in every packet as
part of the destination address) which allows up to 65,536 UDP targets to be distinguished
at the same destination IP address. A port is also attached to the source address and allows
up to 65,536 sources to be distinguished from the same IP address. For instance, an RTP
over UDP stream can be sent from 10.10.10.10:2100 to 10.10.10.20:3200:

Source IP address: Source port: Destination IP address: Destination port: RTP Data
10.10.10.10 2100 10.10.10.20 3200

When RTP is carried over UDP, it can be carried by multicast IP packets, i.e. packets
with a multicast destination address (e.g. 224.34.54.23): therefore an RTP stream gener-
ated by a single source can reach several destinations, it will be duplicated as necessary
by the IP network. (See companion book, Beyond VoIP Protocols, Chapter 6. IP multicast
routing)

1.1.2.2.1 A few definitions

• RTP session: an RTP session is an association of participants who communicate over
RTP. Each participant uses at least two transport addresses (e.g., two UDP ports on the

1 For streaming (e.g., RTSP), since there are is no real-time constraint on transmission delay, it can
be used over TCP.
2 But this is not mandatory, especially when RTP/RTCP ports are conveyed by an out-of-band
signaling mechanism.
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local machine) for each session: one for the RTP stream, one for the RTCP reports.
When a multicast transmission is used all the participants use the same pair of mul-
ticast transport addresses. Media streams in the same session should share a common
RTCP channel. Note that H.323 or SIP require applications to define explicitly a port
for each media channel. So, although most applications comply with the RTP require-
ments for RTP and RTCP port sharing, as well as the use of adjacent ports for RTP
and RTCP, an application should never make an assumption about the allocation of
RTP/RTCP ports, but rather use the explicit information provided by H.323 or SIP,
even if it does not follow the RTP RFC guidelines. This is one of the most common
bugs still found today in some H.323 or SIP applications.

• Synchronization source (SSRC): identifies the source of an RTP stream, identified by
32 bits in the RTP header. All RTP packets with a common SSRC have a common
time and sequencing reference. Each sender needs to have an SSRC, each receiver also
needs at least one SSRC as this information is used for receiver reports (RRs).

• Contributing source (CSRC): when an RTP stream is the result of a combination put
together by an RTP mixer from several contributing streams, the list of the SSRCs of
each contributing stream is added in the RTP header of the resulting stream as CSRCs.
The resulting stream has its own SSRC. This feature is not used in H.323 or SIP.

• NTP format: a standard way to format a timestamp, by writing the number of seconds
since 1/1/1900 at 0 h with 32 bits for the integer part and 32 bits for the decimal part
(expressed in 1

232 s (e.g., 0×800 000 00 is 0.5 s). A compact format also exists with only
16 bits for the integer part and 16 bits for the decimal part. The first 16 digits of the
integer part can usually be derived from the current day, the fractional part is simply
truncated to the most significant 16 digits.

1.1.2.2.2 The RTP packet
All fields up to the CSRC list are always present in an RTP packet (see Figure 1.6).
The CSRC list may only be present behind a mixer (a device that mixes RTP streams,
as defined in the RTP RFC). In practice most conferencing bridges that perform the
function of a mixer (H.323 calls them ‘multipoint processors’, or MPs) do not populate
the CSRC list.

Here is a short explanation of each RTP field:

• Two bits are reserved for the RTP version, which is now version 2 (10). Version 0
was used by VAT and version 1 was an earlier IETF draft.

• A padding bit P indicates whether the payload has been padded for alignment purposes.
If it has been padded (P = 1), then the last octet of the payload field indicates more
precisely how many padding octets have been appended to the original payload.

• An extension bit X indicates the presence of extensions after the eventual CSRCs of
the fixed header. Extensions use the format shown in Figure 1.7.

• The 4-bit CSRC count (CC) states how many CSRC identifiers follow the fixed header.
There is usually none.

• Marker (M): 1 bit. Its use is defined by the RTP profile. H.225.0 says that for audio
codings that support silence suppression, it must be set to 1 in the first packet of each
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Profile-dependent Size

Data

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Timestamp

Contributing source identifier (CSRC)
(not used in H.323 or SIP)

Synchronization source identifier (SSRC)

V=2 P X M Payload type Sequence numberCC

Figure 1.6 RTP packet format.

0 1 2 3
0  1  2  3  4  5 6  7  8  9  0  1  2  3  4  5  6  7  8  9  0  1  2  3  4  5  6  7  8  9  0  1

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + 
| defined by profile | length |

| header extension |
| .... |

+ − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + − + 

Figure 1.7 Optional extension header.

talkspurt after a silence period. This may allow some implementations to dynamically
reduce the jitter buffer size without running the risk of cutting important words (e.g.,
by trimming off some silence packets).

• Payload type (PT): 7 bits. The payload of each RTP packet is the real-time informa-
tion contained in the packet. Its format is completely free and must be defined by the
application or the profile of RTP in use. It enables applications to distinguish a partic-
ular format from another without having to analyse the content of the payload. Some
common identifiers are listed in Table 1.1; they are used by H.225 and SIP. These are
called static payload types and are assigned by IANA (Internet Assigned Numbers
Authority); a list can be found a at http://www.isi.edu/in-notes/iana/assignments/rtp-
parameters PT 96 to 127 are reserved for dynamic payload types. Dynamic payload
types are defined in the RTP audio-visual (A/V) profile and are not assigned in the
IANA list. The dynamic PT meaning is defined only for the duration of the session.
The exact meaning of the dynamic payload type is defined through some out-of-band
mechanism (e.g., though Session Description Protocol parameters for protocols like
SIP, H.245 OpenLogicalChannel parameters for H.323, or through some convention or
other mechanism defined by the application). The codec associated with a dynamic PT
is negotiated by the conference control protocol dynamically. Since RTP itself doesn’t
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Table 1.1 Common static payload types

Payload type Codec

0 PCM, µ-law Audio
8 PCM, A-law
9 G.722
4 G.723

15 G.728
18 G.729
34 H.263 Video
31 H.261

define the format of the payload section, each application must define or refer to a
profile. In the case of H.323, this work is done in annex B of H.225.

• A sequence number and timestamp. The 16-bit sequence number and timestamp start
on a random value and are incremented at each RTP packet. The 32-bit timestamp uses
a clock frequency that is defined for each payload type (e.g., H.261 payload uses a
90-kHz clock for the RTP timestamp). For narrow-band audio codecs (G.711, G.723.1,
G.729, etc.) the RTP clock frequency is set to 8,000 Hz. For video, the RTP timestamp
is the tick count of the display time of the first frame encoded in the packet payload. For
audio, the RTP timestamp is the tick count when the fist audio sample contained in the
payload was sampled. Each RTP packet carries a sequence number and a timestamp.
RTP timestamps do not have an absolute meaning (the initial timestamps of an RTP
stream can be selected at random); even timestamps of related media (e.g., audio and
video) in a single session will be unrelated. In order to map RTP packet timestamps to
absolute time, one must use the information held in RTCP sender reports, where RTP
timestamps are associated with the absolute NTP time. Depending on the application,
timestamps can be used in a number of ways. A video application, for instance, will use
it to synchronize audio and data. An audio application will use the sequence number
and timestamp to manage a reception buffer. For instance, an application can decide to
buffer 20 10-ms G.729 audio frames before commencing playback. Each time a new
RTP packet arrives, it is placed in the buffer in the appropriate position depending on
its sequence number. It is important to note that the protection against jitter allowed
by RTP comes with a price: a greater end-to-end delay in the transmission path. If a
packet doesn’t arrive on time and is still missing at playback time, the application can
decide to copy the last sample of the packet that has just been played and repeat it
long enough to catch up with the timestamp of the next received packet, or use some
interpolation scheme as defined by the particular audio codec in use. The sequence
number is used to detect packet loss.

1.1.2.3 RTCP

RTCP is used to transmit control packets to participants regarding a particular RTP session.
These control packets include various statistics, information about the participants (their
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names, email addresses, etc.) and information on the mapping of participants to individual
stream sources. The most useful information found in RTCP packets concerns the quality
of transmission in the network. All participants in the sessions send RTCP packets: senders
send ‘sender reports’ and receivers send ‘receiver reports’.

1.1.2.3.1 Bandwidth limitation

All participants must send RTCP packets. This causes a potential dimensioning problem
for large multicast conferences: RTCP traffic should grow linearly with the number of
participants. This problem does not exist with RTP streams in audio-only conferences
using silence suppression, for instance, since people generally don’t speak at the same
time (Figure 1.8).

Since the number of participants is known to all participants who listen to RTCP reports,
each of them can control the rate at which RTCP reports are sent. This is used to limit the
bandwidth used by RTCP to a reasonable amount, usually not more than 5% of the overall
session bandwidth (which is defined as the sum of all transmissions from all participants,
including the IP/UDP overhead).

This budget has to be shared by all participants. Active senders get one-quarter of
it because some of the information they send (e.g., CNAME information used for syn-
chronization) is very important to all receivers and RTCP sender reports need to be very
responsive. The remaining part is split between the receivers. The average sending rate is
derived by the participant from the size of the RTCP packets that he wants to send, and
from the number of senders and receivers that appear in the RTCP packets it receives.
This is clearly relevant for multicast sessions; in fact, many of the recommendations and
features present in the RTP RFC are useless for most VoIP applications, which have a
maximum of three participants in most cases. Even for small sessions, the fastest rate
at which a participant is allowed to send RTCP reports is one every 5 s. The sending
rate is randomized by a factor of 0.5 to 1.5 to avoid unwanted synchronization between
reports.

TIME

Hi, I’m Bill I’m Peter My name is
Claire

And mine
Oliver

And we are 
disciplined ...

Figure 1.8 Bitrate is self-limiting in audio conferences (at least among polite participants).



VOICE OVER PACKET 11

Most H.323 and SIP implementations actually use a simplified version of these guide-
lines, which is not a problem because there is no scaling issue. The RFC recommendations
remain applicable for larger conferences, however, such as the conferences using the
H.332 protocol to broadcast information to multiple receivers.

1.1.2.3.1.1 RTCP packet types

There are various types of RTCP messages defined for each type of information:

• SR: sender reports contain transmission and reception information for active senders.

• RR: receiver reports contain reception information for listeners who are not also
active senders.

• SDES: source description describes various parameters relating to the source, including
the name of the sender (CNAME).

• BYE: sent by a participant when he leaves the conference.

• APP: functions specific to an application.

Several RTCP messages can be packed in a single transport protocol packet. Each RTCP
message contains enough length information to be properly decoded if several of those
RTCP messages are packed in a single UDP packet. This packing can be useful to save
overhead bandwidth used by the transport protocol header.

1.1.2.3.1.2 Sender reports

Each SR contains three mandatory sections, as shown in Figure 1.9.

Additional RR data

Additional RR data

Length
Section 3

Section 2

Section 3

PT=SR=200

NTP timestamp (most significant word)

NTP timestamp (least significant word)

RTP timestamp

Sender’s packet count

Sender’s octet count

SSRC 1 (SSRC of first source)

Sender SSRC

SSRC n

RC

Figure 1.9 RTCP packet format.
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The first section contains:

• The 5-bit reception report count (RC), which is the number of report blocks included
in this SR.

• The packet type (PT) is 200 for an SR. In order to avoid mixing a regular RTP packet
with an SR, RTP packets should avoid payload types 72 and 73 which can be mistaken
for SRs and RRs when the marker bit is set. However, normally a UDP port is dedicated
to RTCP to eliminate this potential confusion.

• The 16 bit length of this SR including header and padding (the number of 32-bit words
minus 1).

• The SSRC of the originator of this SR. This SSRC can also be found in the RTP
packets that originate from this host.

The second section contains information on the RTP stream originated by this sender (this
SSRC):

• The NTP timestamp of the sending time of this report. A sender can set the high-order
bit to 0 if it can’t track the absolute NTP time; this NTP measurement only relates to
the beginning of this session (which is assumed to last less than 68 years!). If a sender
can’t track elapsed time at all it may set the timestamp to 0.

• The RTP timestamp, which represents the same time as above, but with the same units
and random offset as in the timestamps of RTP packets. Note that this association of an
absolute NTP timestamp and the RTP timestamps enables the receiver to compute the
absolute timestamp of each received RTP packet and, therefore, to synchronize related
media streams (e.g., audio and video) for playback.

• Sender’s packet count (32 bits) from the beginning of this session up to this SR. It is
reset if the SSRC has to change (this can happen in an H.323 multiparty conference
when the active MC assigns terminal numbers).

• Sender’s payload octet count (32 bits) since the beginning of this session. This is also
reset if the SSRC changes.

The third section contains a set of reception report blocks, one for each source the sender
knows about since the last RR or SR. Each has the format shown in Figure 1.10:

• SSRC n (source identifier)(32 bits): the SSRC of the source about which we are report-
ing.

• Fraction lost (8 bits): equal to Floor(received packets/expected packets ∗ 256).

• Cumulative number of packets lost (24 bits) since the beginning of reception. Late
packets are not counted as lost and duplicate packets count as received packets.

• Extended highest sequence number received (32 bits): the most significant 16 bits con-
tain the number of sequence number cycles, and the last 16 bits contain the highest
sequence number received in an RTP data packet from this source (same SSRC).
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Lost fraction Cumulated number of lost packets

Highest received sequence number

Last SR (LSR)

Delay since last SR

SSRC of the source

Interrarival jitter

Figure 1.10 Format of a reception report block.

• Interarrival jitter (32 bits): an estimation of the variance in interarrival time between
RTP packets, measured in the same units as the RTP timestamp. The calculation is
made by comparing the RTP timestamp of arriving packets with the local clock, and
averaging the results (as shown in Figure 1.11).

• The last SR timestamp (LSR) (32 bits): the middle 32 bits of the NTP timestamp of
the last SR received (this is the compact NTP form).

• The delay since the last SR arrived (DLSR) (32 bits): expressed in compact NTP form
(or, more simply, in multiples of 1/65536 s). Together with the last SR timestamp, the
sender of this last SR can use it to compute the round trip time.

1.1.2.3.1.3 Receiver reports

A receiver report looks like an SR, except that the PT field is now 201, and the second
section (concerning the sender) is absent.

1.1.2.3.1.4 SDES: source description RTCP packet

An SDES packet (Figure 1.12) has a PT of 202 and contains SC (source count) chunks.
Each chunk contains an SSRC or a CSRC and a list of information. Each element of
this list is coded using the type/length/value format. The following types exist but only
CNAME has to be present:

• CNAME (type 1), unique among all participants of the session, is of the form user@host,
where host is the IP address or domain name of the host.

• NAME (type 2): common name of the source.

• EMAIL (type 3).
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Original

RTP timestamp S

Local receiving

time R
D0 = 0 D1 = −80 D2 = +37 D2 = −39 D2 = +25

J0 = 0

J1 = J0 + (|D1| − J0)/16

= 0 + 80/16

= 5

J2 = 5 + (|37| − 5)/16

= 7

J3 = 7 + (|−39| − 7)/16

= 9

J4 = 9 + (|+25| − 9)/16

= 10

Figure 1.11 Jitter evaluation.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

|V=2|P| | PT=SDES=202 | |

|

| |
| |

|
|

|           

|
|

header

|

|

chunk
1

chunk
2

lengthSC

SSRC/CSRC_1

SDES items

SSRC/CSRC_2

SDES items

...

...

Figure 1.12 SDES message format.

• PHONE (type 4).

• LOC (type 5): location

1.1.2.3.1.5 BYE RTCP packet
The BYE RTCP packet (Figure 1.13) indicates that one or more sources (as indicated by
source count SC) are no longer active.

1.1.2.3.1.6 APP: application-defined RTCP packet
This can be used to convey additional proprietary information. The format is shown in
Figure 1.14. The PT field is set to 204.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|V=2|P| SC PT=BYE=203 | |

| SSRC/CSRC |

: ... :
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+ 
| length ... (opt)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

| reason for leaving

length|

Figure 1.13 BYE message format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|V=2|P| subtype PT=APP=204 | length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| SSRC/CSRC

|           

| ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

|

|

|

|

name (ASCII)

application-dependent data 

Figure 1.14 APP message format.

1.1.2.4 Security

Security can be achieved at the transport level (e.g., using IPSec) or at the RTP-level.
The RTP RFC presents a way to ensure RTP-level privacy using DES/CBC (data encryp-
tion standard, cipher block chaining) encryption. Since DES, like many other encryption
algorithms, is a block algorithm (for a more detailed description see Section 2.6.2 about
H.235), there needs to be some adaptation when the unencrypted payload is not a multiple
of 64 bits.

The most straightforward method, padding, is described in RTP (RFC 1889, sec. 5.1).
When this method is used the padding bit of the RTP header is set, and the last octet
of the RTP payload contains the number of padding bits to remove (Figure 1.15). The
last octet can be located because the underlying transport protocol must support framing.
There are other encryption methods that do not require padding (e.g., ciphertext stealing);
some of these alternative methods are described in Chapter 2 (on H.235).

Payload Padding L

M

L

1

RTP header 
P bit = 1 

Payload size M

Figure 1.15 RTP payload padding for encryption using block algorithms.
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Authentication and negotiation of a common secret is not within the scope or RTP.
For instance the negotiation of a common secret can be performed out of band using a
Diffie–Helmann scheme (see Section 2.6.2.1)

1.2 ENCODING MEDIA STREAMS

1.2.1 Codecs

We have seen already that isochronous (audio, video, etc.) data streams could be carried
over RTP. But these analogue signals first need to be transformed into data. This is
the purpose of codecs. This section provides a high-level overview of some of the most
popular voice and video coding technologies, sufficient in most cases to understand H.323,
SIP, or MGCP and to help in the recurring debates about the ‘best’ codec. The reader
wanting more detailed knowledge should read the voice-coding background chapter in
the companion book, Beyond VoIP Protocols .

1.2.1.1 What is a good codec?

When the International Multimedia Telecommunications Causatium (www.IMTC.org)
tried to choose a default low-bitrate codec, a sufficient to promote interoperability, they
faced a difficult issue because there wasn’t common agreement about what constituted a
good codec. The difficulty was so great that other bodies who are also trying to profile
VoIP applications are reticent to enter into the debate at all.

Let’s look at the criteria that must now be considered when evaluating a voice codec.

1.2.1.1.1 Bandwidth usage
The bitrate of available narrow-band codecs (approximately 300–3400 Hz) today ranges
from 1.2 kbit/s to 64 kbit/s. Of course there is a consequence on the quality of restituted
voice. This is usually measured by MOS (mean opinion score) marks. MOSs for a partic-
ular codec are the average mark given by a panel of auditors listening to several recorded
samples (voice samples, music samples, voice with background noise, etc.). These scores
range from 1 to 5:

• From 4 to 5 the quality is ‘high’ (i.e., similar to or better than the experience we have
when making an ISDN phone call).

• From 3.5 to 4 is the range of ‘toll quality’. This is more or less similar to what is
obtained with the G.726 codec (32 kbit/s ADPCM) which is commonly taken as the
reference for ‘toll quality’. This is what we experience on most phone calls. Mobile
phone calls are usually just below the ‘toll’ quality.

• From 3.0 to 3.5, communication is still good, but voice degradation is easily audible.

• From 2.5 to 3, communication is still possible, but requires much more attention. This
is the range of ‘military quality’ voice. In extreme cases the expression ‘synthetic’, or
‘robotic’, voice is used (i.e., when it becomes impossible to recognize the speaker).
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There is a trade-off between voice quality and bandwidth used. With current technology
toll quality cannot be obtained below 5 kbit/s.

1.2.1.1.2 Silence compression (VAD, DTX, CNG)
During a conversation, we only talk on average 35% of the time. Therefore, silence
compression or suppression is an important feature. In a point-to-point call it saves about
50% of the bandwidth, but in decentralized multicast conferences the activity rate of each
speaker drops and the savings are even greater. It wouldn’t make sense to undertake a
multicast conference where there are more than half a dozen participants without silence
suppression.

Silence compression includes three major components:

• VAD (voice activity Detector): this is responsible for determining when the user is
talking and when he is silent. It should be very responsive (otherwise the first word
may get lost and unwanted silence might occur at the end of sentences), without getting
triggered by background noise. VAD evaluates the energy and spectrum of incoming
samples and activates the media channel if this energy is above a minimum and the
spectrum corresponds to voice. Similarly, when the energy falls below a threshold for
some time, the media channel is muted. If the VAD module dropped all samples until
the mean energy of the incoming samples reaches the threshold, the beginning of the
active speech period would be clipped. Therefore, VAD implementations require some
lookahead (i.e., they retain in memory a few milliseconds worth of samples to start
media channel activation before the active speech period). This usually adds some delay
to the overall coding latency, except on some coders where this evaluation is coupled
with the coding algorithm itself and does not add to the algorithmic delay. The quality
of the implementation is important: good VAD should require minimal lookahead, avoid
voice clipping, and have a configurable hangover period (150 ms is usually fine, but
some languages, such as Chinese, require different settings).

• DTX, (discontinuous transmission): this is the ability of a codec to stop transmitting
frames when the VAD has detected a silence period. If the transmission is stopped
completely, then it should set the marker bit of the first RTP packet after the silence
period. Some advanced codecs will not stop transmission completely, but instead switch
to a silence mode in which they use much less bandwidth and send just the bare
minimum parameters (intensity, etc.) in order to allow the receiver to regenerate the
background noise.

• CNG, (comfort noise generator): it seems logical to believe that when the caller isn’t
talking, there is just silence on the line and, when the VAD detects a silence period,
it should be enough to switch off the loudspeaker completely. In fact, this approach
is completely wrong. Movie producers go to great lengths to recreate the proper back-
ground noise for ‘silent’ sequences. The same applies to phone calls. If the loudspeaker
is turned off completely, street traffic and other background noise that could be over-
heard while the caller was talking would stop abruptly. The called party would get
the impression that the line had been dropped and would ask the caller whether he is
still on the line. The CNG is here to avoid this and recreate some sort of background
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noise. With the most primitive codecs that simply stop transmission it will use some
random noise with a level deduced from the minimal levels recorded during active
speech periods. More advanced codecs such as G.723.1 (annex A) or G.729 (annex
B) have options to send enough information to allow the remote decoder to regenerate
ambient noise close to the original background noise.

1.2.1.1.3 Intellectual property

End-users don’t care about this, but manufacturers have to pay royalties to be allowed to
use some codecs in their products. For some hardware products where margins are very
low, this can be a major issue. Another common situation is that some manufacturers
want to sell some back-end server, while distributing software clients for free. If the
client includes a codec, then again intellectual property becomes a major choice factor.

1.2.1.1.4 Lookahead and frame size

Most low-bitrate codecs compress voice in chunks called frames and need to know a little
about the samples immediately following the samples they are currently encoding (this is
called lookahead).

There has been a lot of discussion (especially at the IMTC when they tried to choose
a low-bitrate codec) over the influence of frame size on the quality of the codec. This is
because the minimal delay introduced by a coding/decoding sequence is the frame length
plus the lookahead size. This is also called the algorithmic delay. Of course, in reality
DSPs do not have infinite power and most of the time a fair estimate is to consider the
real delay introduced as twice or three times the frame length plus the overhead (some
authors improperly call this the algorithmic delay, although this is just an estimate of
DSP power).

So, codecs with a small frame length are indeed better than codecs with a longer frame
length regarding delay, when if each frame is sent immediately on the network. This is
where it becomes tricky, because each RTP packet has an IP header of 20 octets, a UDP
header of 8 octets, and an RTP header of 12 octets! For instance, for a codec with a
frame length of 30 ms, sending each frame separately on the network would introduce a
10.6-kbit/s overhead. Much more than the actual bitrate of most narrow-band codecs!

Therefore, most implementations choose to send multiple frames per packet, and the
real frame length is in fact the sum of all frames stacked in a single IP packet. This is
limited by echo and interactivity issues (see companion book, Chapter 3 Beyond VoIP
Protocols). A maximum of 120 ms of encoded voice should be sent in each IP packet.

So, for most implementations, the smaller the frame size, the more frames in an IP
packet. This is all there is to it and there is no influence on delay. Overall, it is better to
use codecs that have been designed for the longest frame length (limited by the acceptable
delay), since this allows even more efficient coding techniques: the longer you observe a
phenomenon, the better you can model it!

We can conclude that in most cases frame size is not so important for IP videocon-
ferences when bandwidth is a concern. The exception is high-quality conferences where
interactivity is maximized at the expense of the required bitrate.
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1.2.1.1.5 Resilience to loss
Packet loss is a fact of life in IP networks and the short latency required by interactive
voice and video applications does not allow us to request retransmissions. Since packets
carry codec frames, this in turn causes codec frame loss. However, packet loss and frame
loss are not directly correlated; many techniques such as FEC (forward error correction)
can be used to lower the frame loss rate associated with a given packet loss rate. These
techniques spread redundant information over several packets so that frame information
can be recovered even if some packets are lost.

However, the use of redundancy to recover packet loss is a very tricky thing. It can
lead to unexpected issues and, can even make the problem worse. To understand this,
let’s look at what some manufacturers could do (and have done!):

• You prepare a demonstration to compare your product and that of a competitor. You
let it be known that you can resist a 50% packet loss without any consequence on
voice quality.

• You simulate packet loss by losing one packet out of two.

• You put frames N and N − 1 into your RTP packet.

Your product can recover all the frames despite one packet out of two being lost. Your
competitor is restricted to emitting a few cracks. Bingo! The customer is convinced.

Well, the only problem is that packet loss on the Internet in not so neat. Packet loss
occurs in a correlated way and you are much more likely to lose several packets in a
row, than exactly one packet out of two. So, this simple RTP redundancy scheme will be
close to useless under real conditions and still add a 50% overhead!

The effect of frame erasure on codecs should be considered on a case-by-case basis. If
you lose N samples from a G.711 codec (stateless coder) this will just result in a gap of
N ∗ 125 µs at the receiving end. If you lose just one frame from a very advanced codec
it may be audible for much more than the duration of this frame, because the decoder
will need some time to resynchronize with the coder. For a frame of 20 ms or so, this
may result in a very audible crack of 150 ms. Codecs such as G.723.1 are designed to
cope relatively well with an uncorrelated frame erasure of up to 3%, but beyond this
quality drops off very rapidly. The effect of correlated loss is not yet fully evaluated. It is
possible to reduce the occurrence of consecutive frame loss by interleaving codec frames
across multiple RTP packets: unfortunately, this adds a lot of delay to the transmission
and therefore can only be used in streaming media transmissions, not in the context of
real-time communications.

Apart from the built-in features of the codec itself, it is possible to reduce the frame
loss associated with packet loss by using a number of techniques.

FEC-style redundancy (Figure 1.16) can be used to recover from serious packet loss
conditions, but it has a significant impact on delay. For instance, if you choose to repeat
the same G.723.1 frame in four consecutive IP packets in order to recover from the loss of
three consecutive packets, then the decoder needs to maintain a buffer of four IP packets,
but this ruins the delay factor. More sophisticated FEC methods use XOR sums instead
of simple repetitions, but have the same impact on delay.
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Multiple send redundancy
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IP packet Frame

Figure 1.16 Using redundancy to reduce codec frame loss.

It is also possible to send several copies of each frame immediately. But if one packet
gets lost, probably all the copies will reach the same congested router at nearly the same
time and might get lost as well.

An understanding of the different types of congestion is also important in deciding
whether redundancy is useful and which type to use. The network can lose packets
because a link is congested or because a router has to route too many small packets
per second.

If a link is congested, then any type of redundancy will add to the congestion and
increase the overall loss percentage of IP packets. But the frame loss rate of communi-
cating devices that use FEC redundancy will still be reduced.

Some arithmetic proves this. Say we have congestion on a 2-Mbit/s line. It receives
2.2 Mbit/s and the average loss rate is 0.2/2.2 = 9%. Part of this is caused by someone
using a codec producing a 100 kbit/s stream. The software detects a high loss and decides
to use the FEC scheme described above. Now that same application produces a 400 kbit/s
stream (the influence of headers is not taken into account for simplicity). The 2-Mbit/s
line receives 2.5 Mbit/s and the packet loss rate is increased to 20% for all the users of
the link. However, if we assume the congested link never causes the loss of four packets
in a row (on average one packet in five is dropped), then the software will recover from
all loss. However, this would be unacceptable behaviour, because it would be unfair to
other users and could destabilize the network. Next-generation IP networks will probably
include advanced techniques, such as RED, that will detect the greedy user and drop most
of his packets.

If congestion is due to an overrun router (exceeding its packet/s limit), then FEC-
style redundancy is not such a bad thing. It increases the size of packets but does not
increase the average number of packets that the router has to forward per second. In this
case increasing the size of the packets wil not add to the congestion. The other type of
redundancy (multiple simultaneous sending) will increase the number of packets through
the router and would not work.
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1.2.1.1.6 Layered coding

There are several situations in which current codecs are not well suited. For instance, if
you want to broadcast the same event to several listeners (H.332 type of conference), some
will want high-quality reception (either because they have paid for it or because they have
large IP pipes) and others will only be able to receive lower quality. You could send a
customized data stream to each listener, but this is not practical for a large audience. The
answer is to multicast the data stream to all listeners (for more information on multicast,
refer to the multicast chapter of the companion book, Beyond VoIP Protocols). Current
codecs include complete information in one data stream. If it is multicast, all participants
will receive the same amount of data, so you usually have to limit the data rate to the
reception capability of the least capable receiver.

Some codecs (most are still at experimental stage) can produce several data streams
simultaneously, one with the core information needed for ‘military quality’ reception and
the other data streams with more information as needed to rebuild higher fidelity sound
or an image. A crude example for video would be to send black and white information
on one channel and colour (chrominance) information on another.

Each part of the data stream can be multicast using different group addresses, so that
listeners can choose to receive just the core level or the other layers as well. In a pay-
for-quality scheme, you would encrypt the higher layers (this way you have the option of
receiving a free low-quality preview and later of paying for the broadcast quality image).

Layered codecs are also very useful when it comes to redundancy: the sender can
choose to use a redundancy scheme or a quality of service level for the core layer, so that
the transmission remains understandable at all times for everyone, but leave other layers
without protection.

H.323v2 was approved with a specific annex on layered video coding (annex B: pro-
cedures for layered video codecs).

1.2.1.1.7 Fixed point or floating point

We first need to say a few words about digital signal processors (DSPs). These are
processors that have been optimized for operations frequently encountered in signal-
processing algorithms. One such operation is (a ∗ b) + previous result : one multiplication
and addition. In a conventional processor, this operation would require multiple proces-
sor instructions and would be executed in several clock cycles. A DSP will do it in
one instruction and a single clock cycle. Another example is the code book searches
frequently used by vocoders. Some conventional processors also have extensions to accel-
erate signal-processing algorithms (e.g., MMX processors can execute a single instruction
simultaneously on several operands as long as they can be contained in a 32-bit register and
video algorithms can be accelerated by processing 4 pixels (8 bits each) simultaneously).

There are two types of DSPs: floating point DSPs, which are capable of operating on
floating point numbers, and fixed point DSPs. Fixed point DSP operands are represented
as a mantissa n and a power p of 2 (e.g., 12345678 ∗ 25), but the DSP can operate
on two operands only if the power of 2 is the same for both operands. They are less
powerful, but also less expensive, and chosen by many designers for products sold in
large quantities. Some codecs have only been specified with fixed point C code. However,
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many implementations will run on processors or DSPs that are capable of floating point
operation, and developers must develop their own version of floating point C code for the
algorithm. This often results in interoperability problems between floating point versions.

Therefore, it makes sense for the codec to be specified in floating point C code as well,
especially if the code has to run on PCs.

1.2.1.2 Audio codecs

1.2.1.2.1 ITU audio codecs
1.2.1.2.1.1 Choosing a codec at ITU
The choice of a codec at ITU WP3 is typically a very long process. This is not a bureau-
cracy problem, but rather a problem due to the stringent requirements of ITU experts.

Before a codec is chosen, the ITU evaluates MOS scores and usually requires quality
that is equivalent to or better than G.726 (‘toll quality’). The ITU also checks that this
quality is constant for men and women, and in several languages. The ability to take into
account background noise and recreate it correctly is also evaluated. The ITU pays special
attention to the degradation of voice quality in tandem operation (several successive cod-
ing/decoding processes), since this a situation that is very likely to happen in international
phone calls. Last but not least, if the codec has to be used over a non-reliable medium
(a radio link, a frame relay virtual circuit, etc.), the ITU checks that the quality remains
acceptable if there is some frame loss.

After checking all these parameters, it frequently occurs that no single proposal passes
the test! Therefore, many ITU codecs are combinations of the most advanced technologies
found in several different proposals. This leads to state-of-the-art choices, but, as we will
see, this is a nightmare for anyone who needs to keep track of intellectual property.

1.2.1.2.1.2 Audio codecs commonly used in VoIP
The companion book, Beyond VoIP Protocols provides a detailed view on voice coder
technology and discrete time signal processing in general. This section’s purpose is to
provide a quick reference to common VoIP coders found in VoIP systems for engineers
uninterested in the details and theory of each coder.

(a) G.711 (approved in 1965)
G.711 is the grandfather of digital audio codecs. It is a very simple way of digitizing
analogue data by using a semi-logarithmic scale (this is called ‘companded PCM’, and
serves to increase the resolution of small signals, while treating large signals in the same
way as the human hear does). Two different types of scales are in use, the A-law scale
(Europe, international links) and the µ-law scale (USA, Japan). They differ only in the
choice of some constants of the logarithmic curve. G.711 is used in ISDN and on most
digital telephone backbones in operation today.

A G.711-encoded audio stream is a 64-kbit/s bitstream in which each sample is encoded
as an octet; therefore, the frame length is only 125 µs. Of course, all VoIP applications
will put more than one sample in every IP packet (about 10 ms typically, or 80 samples).

Most sound cards are able to record directly in G.711 format. However, in some cases it
is better to record using CD quality, which samples at 44.1 kHz (one 16-bit sample every
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23 µs), especially if echo cancelation algorithms are used, since the full performance
of some echo cancelation algorithms cannot be achieved with the quantification noise
introduced by G.711.

The typical MOS score of G.711 is usually taken as 4.2; it is used as an anchor for
other coder tests.

(b) G.722 (approved in 1988)

Although G.711 achieves very good quality, some of the voice spectrum (above 4 kHz)
is still cut. G.722 provides a higher quality digital coding of 7 kHz of audio spectrum
at only 48, 56, or 64 kbit/s, using about 10 DSP MIPS. This is an ‘embedded’ coder,
which means that the rate can freely switch between 48, 56, or 64 kbit/s without notifying
the decoder.

This coder is very good for all professional conversational voice applications (the algo-
rithmic delay is only 1.5 ms). G.722 is supported by some videoconferencing equipment
and some IP phones.

(c) G.722.1

This more recent wideband coder operates at 24 kbit/s or 32 kbit/s. It has been designed
by Picturetel, which also sells a 16-kbit/s version (Siren). The coder encodes frames
of 20 ms, with a lookahead of 20 ms. The 16-kbit/s version is supported by Windows
Messenger.

(d) G.723.1 (approved in 1995)

In the early days of VoIP, the VoIP Forum chose the G.723.1 codec as the baseline codec
for narrow-band H.323 communications. It is also used by the video cellphones of UMTS
99 (H.324M standard).

Technology

G.723.1 uses a frame length of 30 ms and needs a lookahead of 7.5 ms. It has two
modes of operation, one at 6.4 kbit/s and the other at 5.3 kbit/s. The mode of operation
can change dynamically at each frame. Both modes of operation are mandatory in any
implementation, although many VoIP systems have an incorrect implementation that works
on only one of the two modes.

G.723 is not designed for music and does not transmit DTMF tones reliably (they must
be transmitted out-of-band). Modem and fax signals cannot be carried by G.723.1.

G.723.1 achieves an MOS score of 3.7 in 5.3-kbit/s mode and 3.9 in 6.4-kbit/s mode.
Table 1.2 compares the performance of G.723.1 (6.4 kbps) and the ADPCM released by
Bell Labs in March 94.

Table 1.2 Impact of frame-erasure and tandeming quality

G.723.1, 6.4 kbit/s 32 kbit/s ADPCM

Clear channel, no errors or frame erasure 3.901 3.781
3% frame erasure 3.432 —
Tandeming of two codecs 3.409 3.491
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The main effect of frame erasures is to desynchronize the coder and the decoder (they
may need many more frames to resynchronize). In practice, networks should always have
a frame error rate below 3% (and below 1% ideally).

G.723.1 is specified in both fixed point (where it runs at 16 MIPS on a fixed point DSP)
and floating point C code (running on a Pentium 100, it takes 35% to 40% of the power
of the processor). The fixed point implementation runs on VoIP gateways, the floating
point version runs on all Windows PCs.

Beyond VoIP systems, G.723.1 is used in the H.324 recommendation (ITU recommen-
dation for narrow-band videoconferencing on PSTN lines) and will also be used in the new
3G-324M (3GPP, 3GPP2 organizations) standard for 3G wireless multimedia devices.

Silence compression

G.723.1 supports voice activity detection (VAD), discontinuous transmission (DTX), and
comfort noise generation (CNG) (defined in annex A of the recommendation).

Silence is coded in very small, 4-octet frames at a rate of 1.1 kbit/s. If silence infor-
mation doesn’t need to be updated, transmission stops completely.

Intellectual property

G.723.1 is one of the codecs that resulted from many contributions and, therefore, uses
technology patented from several sources. About 18 patents currently apply to G.732.1
(the precise number is hard to keep track of), from eight different companies.

The main licensing consortium, which is made up of AudioCodes, DSP Group,
FT/CNET, Université de Sherbrooke, and NTT, oversees the patents. The rights are
managed by the DSP Group and SiproLabs (www.sipro.com) for all members of
this consortium. Other patents are held by AT&T (1), Lucent (3), British Technology
Group (1, formerly held by VoiceCraft), Nokia Mobile Phone (1, formerly held by
VoiceCraft). Patent applications have also been made by Siemens, Robert Bosch,
and CSELT. The source code is copyrighted by four companies.

There are typically several licensing agreements for this codec (the details hinge, of
course, on the company involved), depending on whether the application is for a single
user or multiple users, whether it is going to be a paying or free application, and on the
volume licensed.

Of course, exact prices have to be negotiated with both patent owners and implementers,
but some data can be gathered from conferences and newsgroups, although they must be
taken cautiously. For instance, here are some price indications for acquisition of the
intellectual rights of G.723.1:

• A license for a single-user client is said to be worth an initial payment of around
$50,000 plus $0.8 per unit.

• A license for a server is said to be worth an initial payment of about $20,000 plus $5
per port.

• A license for unlimited distribution of a single-user application is said to be worth
about $120,000.
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Then, unless you do your own implementation (which is not recommended if you are
not an expert!), be prepared to approximately double the previous fees to license a well-
optimized implementation.

Here is a quote from a company trying to license these codecs, picked from a mailing
list:

We have been trying to negotiate licensing arrangements with the patent holders for more
than six months. As of today, we have received terms and conditions from six of the holders,
and little to no response from the rest. The costs proposed by the first six strongly imply a
substantial initial investment, and a per port cost in excess of $20.00.

Our concern, however, extends far beyond the cost. The Internet’s success is due to its read-
ily available standards and lack of non-essential rules and constraints. The time requirements
and logistics of establishing contact with 12 parties and negotiating licensing are signifi-
cant barriers to growth in the industry. The legal risks associated with not doing so are an
impediment to the rapid evolution of the industry.

The reality is not quite so bad, as many IPR rights are now managed by Sipro Labs
(www.sipro.com). The investments needed to produce the technology of standardized
coders such as G.723.1 indeed justify a fee. But the question is how much is reasonable?
When patented technology becomes a standard, the temptation is high to use this monopoly
situation to maintain high licence prices. This underlies the so-called ‘codec wars’ that
periodically break out in VoIP standard bodies.

(e) G.726 (approved in 1990)

G.726 uses an ADPCM technique to encode a G.711 bitstream in words of 2, 3, or 4 bits,
resulting in available bitrates of 16, 24, 32, or 40 kbit/s.

G.726 at 32 kbit/s achieves a MOS score of 4.3 and is often taken as the benchmark for
‘toll quality’. It requires about 10 DSP MIPs of processing power (full duplex) or 30% of
the processing power of a Pentium 100. This is a low-delay coder: ‘frames’ are 125 µs
long and there is no lookahead. There is also an embedded version known as G.727.

(f) G.728 (approved in 1992-94)

G.728 uses an LD-CELP (low-delay, code-excited linear prediction) coding technique and
achieves MOS scores similar to that obtained by G.726 at 32 kbit/s, but with a bitrate
of only 16 kbit/s. Compared with PCM or ADPCM techniques, which are waveform
coders (i.e., they ignore the nature of the signal), CELP is a coder optimized for voice
(vocoder). These coders specifically model voice sounds and work by comparing the
waveform to encode with a set of waveform models (linear predictive code book) and
find the best match. Then, only the index of this best match and parameters like voice
pitch are transmitted. As a result music does not transmit well on CELP coders, and it is
only at 2.4 kbit/s that fax or modem transmission can succeed with G.728 compression.
G.728 is used for H.320 videoconferencing and some H.323 videoconferencing systems.

G.728 needs almost all the power of a Pentium 100 and 2 Kb of RAM to implement.
It is a low-delay coder (between 625 µs and 2.5 ms).
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(g) G.729 (approved in 1995–1996)

(i) Technology

G.729 is very popular for voice over frame relay applications and V.70 voice and data
modems. Together with G.723, it has become the most popular voice coder for VoIP,
but is still not supported natively on the Windows platform. It uses a CS-ACELP
(conjugate structure, algebraic code-excited linear prediction) coding technique. G.729
is not designed for music and does not transmit DTMF tones reliably (they must be
transmitted out-of-band). Modem and fax signals cannot be carried by G.729.

G.729 produces 80-bit frames encoding 10 ms of speech at a rate of 8 kbit/s. It needs
a lookahead of 5 ms. It achieves MOS scores around 4.0. There are two versions:

• G.729 (approved in December 1996) requires about 20 MIPS for coding and 3 MIPS
for decoding.

• G.729A (approved in November 1995): annex A is a reduced complexity version of
the original G.729. It requires about 10.5 MIPS for coding and 2 MIPS for decoding
(about 30% less than G.723.1).

(ii) Silence compression

Annexes A and B of G.729 define VAD, CNG, and DTX schemes for G.729. The frames
sent to update background noise description are 15 bits long and are only sent if the
description of the background noise changes.

(iii) Licences

Both G.729 and G.729A are the result of about 20 patents belonging to six companies:
AT&T, France Telecom, Lucent, Université de Sherbrooke (USH, Canada), NTT, and
VoiceCraft. NTT, France Telecom, and USH have formed a licensing consortium managed
by SiproLabs, but not all patents (notably AT&T) are covered by this consortium. The
source code is copyrighted by five companies.

As with G.723, there are several ways of getting a several licence for this codec, but the
prices of the G.729 IPR pool managed by SiproLabs (www.sipro.com) are in the public
domain.

1.2.1.2.2 ETSI SMG audio codecs

The ETSI SMG11 (European Telecommunications Standardization Institute Special
Mobile Group) standardized the speech codecs given in Table 2.3. In addition the new
AMR coder has been standardized for use in UMTS, but is not used yet in VoIP systems.

1.2.1.2.2.1 GSM full rate (1987)

GSM full rate, also called GSM 06.10, is perhaps the most famous codec in use today
and runs daily in millions of GSM cellular phones. It provides good quality and operates
well in the presence of background noise. It uses an RPE-LTP technique to encode voice
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Table 1.3 Performance of GSM coders in various environmental
conditions

Codec MOS in clean
conditions

Vehicle
noise

Street
noise

GSM FR 3.71 3.83 3.92
GSM HR 3.85 3.45 3.56
GSM EFR 4.43 4.25 4.18
Reference with no coding 4.61 4.42 4.35

Source: TR 06.85 v2.0.0 (1998). Reproduced by Permission of the European
Telecommunications Standards Institute - ETSI.

in frames of 20 ms at a rate of 13 kbit/s. It needs no lookahead. GSM-FR achieves MOS
scores slightly below toll quality.

GSM-FR is not extremely complex and requires only about 4.5 MIPS and less than
1 Kb of RAM.

The GSM full-rate patent is held by Philips and the license is free for mobile phone
applications.

1.2.1.2.2.2 GSM half-rate (1994)
Also called GSM 06.20, this coder aims at using less bandwidth while preserving the
same or slightly lower speech quality as GSM-FR. This codec uses VSELP and encodes
speech at a rate of 5.6 kbit/s. The frames are 20 ms long and there is a lookahead of
4.4 ms. The GSM-HR algorithm requires approximately 30 MIPS and 4 Kb of RAM.
This coder has not been very successful, due to its high sensitivity to background noise.
The patent is also held by Philips; ATT patents on CELP and NTT patents on LSP may
also apply.

1.2.1.2.2.3 GSM enhanced full rate (1995)
This high-quality coder exceeds the G.726 ‘wireline reference’ in clear channel conditions
and in background noise. It is also called GSM 06.60. It was selected as the base coder for
the PCS 1900 cellular phone service in the US and was standardized by TIA in 1996. This
codec uses a CD-ACELP technique and encodes 20-ms frames at a rate of 12.2 kbit/s.
Optional VAD/DTX functions with comfort noise generation have been defined and there
is also an example implementation for error concealment.

AT&T patents for CELP and NTT patents for LSP may apply.

1.2.1.2.3 Other proprietary codecs
1.2.1.2.3.1 Lucent/Elemedia SX7003P
The SX7003P is another popular codec. Although used in Lucent hardware it is licensed
to other manufacturers as well. This codec has a frame size of 15 ms, which contains 4
control octets and 14 data octets. Silence frames have 2 octets of data.

In many VoIP implementations, two frames are packed in each IP packet (overhead of
40 bytes), leading to an IP bitrate of 20.3 kbit/s during voice activity periods and only
13.6 kbit/s during silence periods.
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1.2.1.2.3.2 RT24 (Voxware)

The RT24 is one of the ultra-low-bitrate coders. Unfortunately, it is spoiled by the
IP overhead. It has a bitrate of 2,400 bit/s and achieves an MOS of 3.2. It has a frame size
of 22.5 ms (54 bits) which results in a measured IP-level bitrate of 16.6/9.5/7.1/6 kbit/s
with 1/2/3/4 frames per IP packet.

1.2.1.2.4 Future coders
Both the AMR and AMR-WB (G.722.2) coders (described in detail in the companion
book, Beyond VoIP Protocols) will probably be implemented in VoIP systems. Their
ability to dynamically reduce the bitrate to adapt to the conditions of the transmission
channel is not as useful in VoIP as it is over radio links. Over radio links, there are
bit errors, but AMR makes it possible to add redundancy information dynamically to
the media stream without requiring more bandwidth when network conditions degrade.
Because of this, the AMR coder can offer better voice quality than any of the current
narrow-band coders, over a much wider range of transmission network quality.

Over IP transmission links, there are only frame erasure errors, because each IP packet
(containing one or more coder frame) is protected by a CRC code3. Redundancy can only
be added by repeating each frame in multiple packets (forward error correction and inter-
leaving). This has a significant, often unacceptable impact on end-to-end delay. Therefore,
AMR will mainly be used to avoid any transcoding (Tandeming) when communicating
with UMTS and CDMA2000 systems, thereby improving end-to-end voice quality.

Widespread use of both coders is not expected before 2005, because they are closely
associated with the deployment of UMTS and CDMA2000 3G systems. Both coders will
not only require more DSP processing power, they will require more powerful DSPs to
achieve the densities of current G.723.1/G.729 systems.

1.2.1.3 ITU video codecs

1.2.1.3.1 Representation of colours
The representation of colours is derived from the fact that any colour can be generated
from three primaries. From an artist’s point of view, the three primaries are red, yel-
low, and blue. These colours are called subtractive primaries, because any colour can be
generated from a white beam passed through a sequence of red, yellow, and blue filters.
When an artist puts a layer of yellow paint of a sheet of paper, this layer acts as a filter
that allows most of the yellow component of the white light to be reflected, but filters
out most other colours.

But, video monitors use additive primaries: red, green, and blue. By mixing three beams
of red, blue, and green light with various intensities, it is possible to generate any colour.
Therefore, any colour can be represented by its barycentric co-ordinates (representing the
intensity of each primary colour, not necessarily positive as illustrated in Figure 1.17!) in

3 Some VoIP networks have disabled the UDP checksum mechanisms in order to be more tolerant
to bit ends. This could open the way to a more efficient use of the capabilities of AMR
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Figure 1.17 Red–green–blue components of visible colours in the 400–700-nm wavelength
range.
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Figure 1.18 RGB to YUV conversion (JFIF).

a triangle with a primary colour at each edge: this is the RGB (red–green–blue) format.
The weight of each colour usually ranges from 0 to 255 in the RGB format: each pixel
is described using 8 bits for each colour weight, which leads to 24 bits per pixel.

Another common representation is to use luminance (brightness represented by Y ) and
chrominance (hue represented by U and V , or Cr and Cb). Several conventions exist for
this conversion (JFIF for JPEG, CCIR 601 for H.261, and MPEG). Figure 1.18 shows
how JFIF converts from an RGB format to a YUV format.

Y , U , and V cover the range from 0 to 255 (U and V are often shifted to take values
between −128 and +127). For CCIR this range is from 16 to 235.

Experiments have shown that the human eye is more sensitive to the luminance infor-
mation. Because of this U and V values can be sampled at reduced frequency without
inducing significant loss in the quality of the image. Typically, U and V are only sampled
for a group of 4 pixels. Coding an image in this way leads to a 2:1 compression (i.e.,
instead of 24 bits per pixel, we now have 8 bits for Y and (8 + 8)/4 pixels for U and V ).
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1.2.1.3.2 Image formats
Several image formats are commonly used by video codecs. CIF (common intermediary
format) defines a 352∗288 image. This size has been chosen because it can be sampled
relatively easily from both the 525- and 625-line video formats and approaches the popular
4/3 length/width ratio.

In addition to the resolution of CIF being below that for TV quality, it is still relatively
difficult to transmit over low-bandwidth lines, even with efficient coding schemes such
as H.261 and H.263. For this reason two other formats with lower resolutions have been
defined. At half the resolution in both dimensions, quarter CIF (QCIF) is for 176∗144
images, and SQCIF is only 128∗96.

For professional video application, CIF is clearly insufficient, and images need to be
coded using 4CIF (704∗576) or 16CIF (1,408∗1,152) resolution (see Table 1.4).

1.2.1.3.3 H.261
H.261 is a video codec used in H.320 videoconferencing to encode the image over several
64-kbit/s ISDN connections, but in video over IP applications the bitstream is encoded
in a single RTP logical channel. The H.261 codec is intended for compressed bitrates
between 40 kbit/s and 2 Mbit/s. The source image is normally 30 (29.97) frames per
second, but the bitrate can be reduced by transmitting only 1 frame out of 2, 3, or 4.
The image formats shown in Table 1.5 can be encoded by H.261. The 4CIF and 16CIF
formats are not supported by H.261.

The H.261 coding process involves several steps. After initial YUV coding of the
original image using CCIR parameters, as described above, the image is divided in 8∗8

Table 1.4 Uncompressed bitrate for various video formats

Uncompressed bitrate (Mbit/s)

Luminance 10 frames/s 30 frames/s

Picture format Pixels Lines Grey Colour Grey Colour

SQCIF 128 96 1.0 1.5 3.0 4.4
QCIF 176 144 2.0 3.0 6.1 9.1
CIF 352 288 8.1 12.2 24.3 36.5
4CIF 704 576 32.4 48.7 97.3 146.0
16CIF 1,408 1,152 129.8 194.6 389.3 583.9

Grey images are obtained by transmitting only the Y luminance component. Colour images are
obtained by also transmitting the U , V chrominance components sampled at half the resolution.

Table 1.5 Video image sizes sup-
ported by H.261

SQCIF 128∗96 Optional

QCIF 176∗144 Required
CIF 352∗288 Optional
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luminance pixels blocks for the luminance plane. The same surface is coded with only
4∗4 chrominance pixels for each chrominance plane. Four luminance blocks are grouped
with two chrominance blocks (one for U , one for V ) in a structure called a macroblock.

Each macroblock can be coded using the ‘intra’ method or the ‘inter’ method (Figure
1.19). The intra method codes by means of a local compression method (just using infor-
mation relative to macroblocks that have already been encoded in the same image), while
the inter method codes adjacent frames relatively in time. The coding method can be
defined for a macroblock, for a ‘group of blocks’ (GOB’s), or for a full frame. In general,
video coders use the same method within a frame; hence the name intraframe (I-frame)
or interframe (P-frame) frequently used when discussing video applications. The inter
method is much more efficient, but leads to error accumulation; therefore, it is necessary
to send intraframes intermittently.

Intraframes (I-frames) use a coding similar to the one used by JPEG, which involves
DCT (discrete cosine transform), quantization, run length encoding and entropy encoding
(Figure 1.20).

For interframes (P-frames), the algorithm follows these steps:

• Motion detection: comparison of the image to be coded with the last coded image
trying to find those parts of the image that have moved. This results in a representation
of the difference between the motion-compensated image and the real one.

• Coding of the difference image using DCT transform and run length encoding.

• Entropy encoding to further reduce the image size.

1.2.1.3.3.1 Motion detection

The second stage of the H.261 P-frame coding process uses the fact that most images
in a video sequence are strongly related. If the camera angle changes, many pixels will
simply shift from one image to another. If an object moves in the scene, most of the
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Figure 1.19 Intra and inter coding methods.
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Figure 1.20 JPEG-style encoding used for intra frames.

pixels representing the object in a frame can be copied from the preceding frame with a
shift. For each macroblock of the image to be encoded, the algorithm tries to discover
whether it is a translated macroblock of the previous image. The search is done in the
vicinity of ±15 pixels and only considers luminance. The difference between the original
macroblock of the n + 1 frame and each translated block of the n frame in the search
area is the absolute value of pixel-to-pixel luminance difference throughout the block.
The translation vector of the best match is considered the motion compensation vector
for that macroblock (Figure 1.21). The difference between the translated macroblock and
the original block is called the motion compensation macroblock.

If the image has changed completely (e.g., a new sequence in a movie), interframe
coding is not optimal. Further reason, the H.261 coding process must decide at each
frame which coding is better for the macroblock: intra or interframe. The decision
function is based on the energy and variance of the original macroblock and the motion-
compensated macroblock.

1.2.1.3.3.2 DCT transform
The pixel values of the image difference that we obtained at the previous step vary slowly
within a macroblock. Let’s take such a macroblock and repeat it in two dimensions so that
we obtain a periodic function (Figure 1.22). Such a function can be reproduced efficiently
using just a few coefficients from its Fourier transform.

This transformation is called a bidimensional DCT. The formula used by H.261 to
calculate the DCT of an 8∗8 block is:

F(u, v) = 1

4
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7∑
j=0
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16

)
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Figure 1.21 Motion prediction and compensation of residual error.

Figure 1.22 Construction of the periodic function used for the DCT transform from the
reference macroblock.

where C(0) = 1/
√

2 and C(x �= 0) = 1. The DCT is a ‘frequency’ representation of the
original image. The coefficient in the upper left corner is the mean pixel value of the
image. Values in higher row positions represent higher vertical frequencies and values in
higher column positions represent higher horizontal frequencies.

The DCT is very interesting because most high-frequency coefficients are usually near
0. At the decoder and, the inverse of the DCT is obtained with:

f (i, j) = 1
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1.2.1.3.3.3 Quantization

So far the representation of the image that we have is still exact. We could obtain the
original image by reversing the DCT and repeatedly adding the resulting block to the
shifted block of the previous frame.

Quantization is the lossy stage in H.261; it consists in expressing each frequency domain
F(u, v) value in coarser units, so that the absolute value to be coded decreases and the
number of zeros increases. This is done using standard quantization functions: one is used
for the constant component (DC) coefficient and another is selected for a macroblock.
Depending on the amount of loss that can be tolerated, the coder can choose fine or very
coarse functions.

1.2.1.3.3.4 Zigzag scanning and entropy coding

Once the DCT coefficients are quantized, they are rearranged in a chain with the DC
coefficient first and then they follow the sequence shown in Figure 1.23. This concentrates
most nonzero values at the beginning of the chain. Because there are long series of
consecutive zeros, the chain is then run length-encoded. This uses an escape code for
the most frequently occurring sequences of zeros followed by a nonzero coefficient and
variable escape codes for other less frequently occurring combinations.

This chain can be further compressed using entropy coding (similar to Huffmann cod-
ing), which creates smaller code words for frequently occurring symbols.

Huffmann coding first sorts the values to be encoded according to frequency of appear-
ance, then constructs a tree by aggregating the two least frequent values in a branch, then
repeating the process with the two values/branches that have the smallest occurrence val-
ues (counting the occurrence of a branch as the sum of the occurrences of its leaf nodes).
Once the tree is complete, a ‘1’ is assigned to each left side of any two branches and a ‘0’
to each right side. Any value can be identified by its position in the tree as described by
the sequence of digits encountered when progressing from the root of the tree to the value.
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The output of the H.261 encoder consists of entropy-encoded DCT values. This bit-
stream can be easily decoded once the decoder has received the Huffmann tree. In the
case of H.261, the tree calculation is not done in real time; the recommendation itself
provides codes for the most frequently occurring combinations.

1.2.1.3.3.5 Output format

The H.261 bitstream is organized in GOBs (a group of blocks) of 33 macroblocks (each
encoding 16∗16 luminance pixels and 8∗8 U and V pixels). A PAL CIF image has
12 GOBS, and a PAL QCIF image has 3 GOBS. A CIF picture cannot be larger than
256 kbits, and a QCIF picture cannot be larger than 64 kbits.

The output bitstream will consist of alternating inter-coded macroblocks and intra-coded
macroblocks. The receiver can force the use of intra coding to recover from cumulative
or transmission errors. Otherwise, a macroblock should be updated in intra mode at least
once every 132 transmissions to compensate for error accumulation.

1.2.1.3.3.6 Conclusion on H.261 video streams

The description of H.261 found in the previous sections is not complete, but it is enough
to allow a network expert to understand the nature of video traffic. The most important
conclusion is that video traffic using H.261-style coding (this is also valid for H.263 and
MPEG) is extremely bursty. A typical network load profile is represented in Figure 1.24.
For instance, Microsoft Netmeeting sends an intraframe every 15 seconds. A videocon-
ferencing MCU will send an intraframe for all macroblocks each time the speaker, and
therefore the image, changes (‘videoFastUpdate’). In other circumstances some implemen-
tations will not send all intra macroblocks simultaneously, in order to avoid the occurrence
of large traffic peaks in the network.

It is also important to remember that H.261 only specifies a decoder. In fact, a very
bad implementation could choose to use only intraframes if it was not capable of doing
motion vector searches for interframes and still be H.261-compliant. This explains why
not all video boards and not all video/conferencing software are equal, despite claiming

Intraframe

Interframe

Figure 1.24 Video traffic can be very bursty due to intraframes.
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Table 1.6 Image sizes supported by
H.263

SQCIF 128∗96 Required

QCIF 176∗144 Required
CIF 352∗288 Optional
4CIF 704∗576 Optional
16CIF 1,408∗1,152 Optional

they are using H.261 or H.263. A network engineer should always try to measure the
actual bandwidth used by these devices.

1.2.1.3.4 H.263

Table 1.6 lists the image formats that can be encoded with H.263. H.263 was designed
for low-bitrate communication, as low as 20 kbits/s. The coding algorithm of H.263 is
similar to that used by H.261, but involves some changes to improve performance and
error recovery. H.263 is more recent, more flexible, and about 50% more bitrate-effective
than H.261 for the same level of quality. It will replace H.261 in most applications. The
main differences between H.261 and H.263 are:

• Half-pixel precision is used by H.263 for motion compensation, whereas H.261 used
full-pixel precision and a loop filter. This accounts for much of the improved efficiency.

• Some parts of the hierarchical structure of the data stream are now optional, so the
codec can be configured for a lower data rate or better error recovery.

• There are now four negotiable options included to improve performance: unrestricted
motion vectors, syntax-based arithmetic coding, advance prediction, and forward and
backward frame prediction (similar to MPEG) called P-B frames. Backward frames
are added to allow motion vectors to refer not only to past frames, but also to future
frames (e.g., when a partly hidden object becomes visible in a future frame).

• H.263 supports five resolutions. In addition to QCIF and CIF, which were supported by
H.261, there is SQCIF, 4CIF, and 16CIF. SQCIF is approximately half the resolution
of QCIF. 4CIF and 16CIF are 4 and 16 times the resolution of CIF, respectively.
Support of 4CIF and 16CIF means the codec can now compete with other higher
bitrate video-coding standards, such as the MPEG standards.

With these improvements, H.263 is a good challenger to MPEG-1 and MPEG-2 for low
to medium resolutions and bitrates. They have comparable features (such as B frames in
MPEG and P-B frames in H.263) which are just as good for moderate movements. H.263
even has some options not found in MPEG, like motion vectors outside the picture and
syntax-based arithmetic coding. MPEG has more flexibility, but flexibility means over-
head. For videoconferencing applications, with little movement and a strong bandwidth
constraint, H.263 is a very good choice.



VOICE OVER PACKET 37

1.2.1.3.5 H.264
H.264 is the latest ITU-standardized video coder and the latest video compression profile
for MPEG-4 (part 10). Its production required more than 7 years of work. H.264, or
advanced video coding (AVC), requires only one-half to one-third of the video bandwidth
necessary for an equivalent MPEG-2 channel when using all the possible optimizations
of H.264 (Figure 1.25). Broadcast quality video becomes possible at a rate of 1.5 Mbit/s.
This is likely to trigger an accelerated development of on-demand video over IP, in the
same way that the “MP3” format made musical applications popular on the Internet. With
the traditional rate of 3.75 Mbit/s for MPEG2 movies, delivering video over ADSL is
restricted only to the shortest copper lines and densely populated areas. Below 2 Mbps it
is possible to add video streaming to many more ADSL lines. It also makes it easier to
provide video content over wireless links (H.264/AVC is one of the standard video coders
of 3GPPv6).

With H.263, it is possible to have a business quality videoconference at about 386 kbit/s.
With H.264, an equivalent conference can be achieved at about 192 kbit/s. The downside
of H.264 is that it requires much more CPU power for compression than H.263, and there-
fore will probably not be usable for interactive video before the end of 2005, leveraging
Moore’s law and the ever-increasing power of PC processing power. In addition, some
of the optimizations introduced by H.264 (e.g., the ability to encode interframes referring
to future frames) can only be used in non-real-time mode.

In line with the other MPEG standards, H.264 only describes the format of the encoded
bitstream and gives no indication of the algorithms that should be used to generate the
encoded data. Prediction, DCT, quantization, and entropy encoding are not fundamentally
different from the previous standard, but they have been enhanced.
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Figure 1.25 H.264/AVC encoding extends the reach of video over ADSL. Reproduced with
permission from Envivio, Inc.
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Each frame is processed in 16∗16-pixel macroblocks, each one being encoded in intra
or inter mode. In intra mode, the encoded macroblock contains interpolation data using
previously encoded macroblocks of the same frame. In inter mode, the encoded mac-
roblock contains motion compensation information based on previous or future frames
(up to two previous or subsequent frames).4 One of the improvements of H.264 over its
predecessors is that it allows intra or inter mode to be selected, not at each image, but in
groups within the image called ‘slices’.

In inter mode, the ability to refer to frames not immediately adjacent to the frame
currently encoded is one of the major optimizations of H.264 compared with the previous
generation of video coders. The difference between the predicted macroblock and the
macroblock to encode is then computed, block-transformed, quantized, and the reordered
coefficients are then entropy-encoded. The bitstream is formed from entropy-encoded
coefficients, the quantizer step size, and the information required to recreate the predicted
macroblock (motion-compensated vector, etc.).

In intra mode, prediction data describing a block can be built for either 4∗4 or 16∗16
luminance macroblocks, and for the corresponding 8∗8 chrominance macroblock. Predic-
tion block data are built from already-encoded pixels (light gray bands in Figure 1.26),
using one of eight extrapolation modes, each based on a characteristic extrapolation direc-
tion angle (Figure 1.26 shows mode 4, diagonal to the right of the P-frame, for a 4∗4
luminance macroblock). The mode resulting in the smallest sum of absolute errors com-
pared with the original macroblock is selected.

Both in intra and inter modes, H.264 uses a new ‘deblocking’ filter that considerably
reduces the differences between macroblocks in the reconstructed image, which were
clearly visible with coders of the previous generation. This filter operates on the recon-
structed image just before the differences between the reconstructed macroblocks and the

Prediction frame

Figure 1.26 Prediction in H.264’s intra mode (mode 4).

4 In the baseline profile, which is more suitable for interactive videoconferencing, only P-frames
and I-frames are supported (no backward prediction).
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original image are encoded: it smoothes the reconstructed image by reducing the dif-
ferences across adjacent macroblocks, thereby eliminating in the next phase the brutal
changes in difference compensation values between the original image and these adjacent
macroblocks.

1.2.2 DTMF

Strictly speaking, DTMF tones that are generated by a touchtone telephone when you
press a key are part of the media stream. They are just another sound transmitted by the
telephone. In the circuit-switched network this sound is digitized by the G.711 codec as
part of the media stream and played back at the receiving end of the line. This does not
cause any problem because G.711 does not assume that the signal is voice.

But, some narrow-band codecs that achieve much higher compression rates do use the
fact that the signal is voice. Others do not assume the signal is voice, but distort it in such
a way that the pure frequencies composing the DTMF tone cannot be correctly recognized
when the signal is regenerated. DTMF will not get through these codecs.

Whenever a communication involves an IVR system, it is very important to be able
to reliably transmit DTMF tones. In most cases the IVR system just asks a question and
waits for a DTMF response. It just cares about which key has been pressed, the exact
duration and timing of the tone is not so important. In other cases the IVR system will
need more accuracy in the timing (e.g., when the system reads a list and asks you to press
the star key when you hear something of interest).

In order to interwork properly with these IVR systems, it was necessary to develop
special procedures to handle DTMF:

• H.323 generally uses the signaling channel (H.245 UserInputIndication) to convey
DTMF tones (in fully decoded form). This method is sufficient in most cases and
works with application servers that need to implement switching functions (e.g., con-
tact centers), without accessing the media stream. Alternatively, since H.323v4 it is
also possible to use RFC 2833, which transmits the DTMF tone in fully decoded form,
but over the RTP channel. RFC 2833 mandates implementations to be able to handle
this telephony event channel as a separate channel (i.e., it should not necessarily be
sent to the destination address of other media streams). Unfortunately, most current
implementations cannot do this, thereby preventing the service provider from being
able to implement application servers in the network. The use of RFC 2833 should be
discouraged unless the implementation can correctly send the DTMF information to
the application server.

• SIP mainly uses two methods: a signaling method, based on the INFO message or the
NOTIFY message (see Chapter 3 for details), which is still not well standardized, or
RFC 2833. The same comments apply to RFC 2833. Most implementations do not
allow the sending of DTMF information to the application server. De facto it is very
difficult in current SIP networks to implement a standards-based application server that
is not accessing the media stream.
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• MGCP uses a sophisticated out-of-band mechanism that allows the transmission of most
telephony events to the call agent in the signaling stream, and implements filtering and
accumulation capabilities as well. The mechanism uses the request notification (RQNT)
and notify (NTFY) messages. See Chapter 4 for more detail.

1.2.3 Fax

1.2.3.1 A short primer on Group 3 fax technology

The purpose of facsimile transmission is to transmit one or several pages of a document
across the telephone network. The first fax systems used Group 1 or Group 2 technologies,
which scanned the document line by line and converted each line in black or white pixels.
The data were then transmitted without compression over the phone line at the rate of 3
lines per second for Group 1 and 6 lines per second for Group 3.

Because this took over 3 min for an A4 document (1,145 lines of 1,728 bits) even
in the best case, Group 3 technology was introduced. Group 3 faxes use a more effi-
cient image-coding mechanism known as modified Huffmann coding (MH). MH coding
uses the fact that each line is composed of large sequences of white pixels and large
sequences of black pixels. Instead of sending data for each pixel. MH coding just sends
a short code for the sequence. Now the transmission time depends on the document,
but is usually much shorter than 3 min: no wonder Group 3 faxes today rule the fax
market.

With the advent of ISDN, Group 4 faxes have been introduced. The main difference
from Group 3 is that ISDN can transmit raw data, so Group 4 technology need not care
about the many hacks that are needed to carry data over an analog line. However, Group
4 has not succeeded in gaining a significant market, and the probability of having a Group
4 fax talking to another Group 4 fax is so low that this case has not so far been considered
in the ITU’s SG16 which is in charge of H.323.

1.2.3.1.1 Transmitting a line (Group 3)
Most faxes are physically linked to a printer. Because of compression, it is now possible
to transmit a single line very quickly if the line is simple, so quickly that the receiving
fax may not have enough time to print it. Of course the fax could buffer it in memory, but
most faxes are very simple devices with very little memory. Therefore Group 3 supports
a minimum transmission time, as represented in Figure 1.27. If a line does not contain
enough compressed data to take more than the MTT to be transmitted, a filling sequence
of zeros will be added before the end of line sequence.

1.2.3.1.2 Transmitting a page
As Figure 1.28 shows, the transmission of a page is quite simple. Each line is transmitted
in sequence, separated by an EOL, and the whole page is terminated by six consecutive
EOLs, which means the fax has to return to command mode (RTC).
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Figure 1.27 Fax line transmission.
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Figure 1.28 Fax page transmission.

1.2.3.1.3 Complete fax transmission

The calling fax dials the destination number, then sends a special sequence called CNG
(CalliNG tone), which consists of a repetition of 1,100-Hz tones sent for 0.5 seconds
separated by 3 seconds of silence (Figure 1.29). Faxes manufactured before 1993 may
not send this tone.
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Figure 1.29 Overview of a fax transmission.

When an incoming connection arrives at the receiving fax, it first sends a special 2,100-
Hz tone called CED for 3 seconds. After a short pause, the receiving fax (1) begins to
send commands using V.21 modulation (quite slow at 300 bit/s), (2) to transmit synchro-
nizing flags for 1 second (called a preamble), (3) may transmit some non-standardized
data (NSF) and its local identity (CSI), and (4) must transmit its capabilities (DIS, or
digital identification signal). Each of these data elements is an HDLC frame that con-
sists of:

• A starting flag (7Eh).

• An address field (always set to FFh).
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• A command field which is set to C8h for a final frame and C0h otherwise.

• A fax control field (FCF): 02h for CSI, 01h for DIS, etc.

• A variable length fax information field (FIF).

• A checksum (FCS, or frame check sequence).

Transmitting NSF, CSI, and DIS may take up to 2.5 seconds.
The sending fax selects a mode of transmission (DCS) and replies by sending its own

capabilities and its identity (TSI). As soon as the receiving fax is ready the sending fax
begins the actual transmission phase and will use a faster modulation scheme, such as
V.27 (4,800 bits/s) or V.29 (9,600 bits/s). This requires a training phase which is used
by the receiving side to compensate for phase distortions and other issues. At the end of
the training phase the sending fax sends zeros for 1.5 seconds (called a training check,
or TCF). If the called fax receives this sequence correctly it considers the training phase
successful and sends a CFR (ConFirmation to Receive) command to let the transmitting
fax know it has succeeded. After another training sequence, the sending fax transmits the
actual page data as formatted above. This takes approximately 30 seconds in V.29 mode
and 1 minute in V.27 mode.

When this is finished, the modem can send an MPS (multi-page signaling) message to
send another page or an EOP (end of procedure message) when it has transmitted the last
page. The receiving fax acknowledges it with an MCF (Message ConFirmation) which
means that the image data have been correctly received, and the sending fax sends a
disconnection message DCN (DisCoNnect).

1.2.3.1.4 Detection of fax for VoIP gateways
It is important to reliably detect faxes on VoIP gateways, since fax modulation is not
reliably transmitted across low-bitrate voice codecs. On the originating gateway, the T.30
calling tone can be detected, but it is an optional signal. Therefore, detecting CNG is not
a reliable way to detect a fax signal. This can be resolved at the terminating gateway by
detecting the V.21 preamble flag sequence which follows the called station identification
tone (CED), when the CED is present. The CED itself cannot be used because it is also
used by modems (V.25 ANS modem tone).

As soon as the signal is detected as a fax, the gateway should stop using regular audio
encoding and switch to T.38 encoding.

1.2.3.1.5 Error conditions
If the training is not successful, the receiving fax can send an FTT command to ask for
another try at a lower speed.

If an error is present in a line, the receiving fax will find it by counting how many
pixels are present in the decoded line. If there are not exactly 1,728 (A4 format), the
line is ignored or copied from the previous line, depending on manufacturer prefer-
ence.

A fax can request the retransmission of a command at any time by sending a CRP
command.
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1.2.3.2 Fax transmission over IP (T.38 and T.37)

1.2.3.2.1 Store-and-forward fax and the challenge of real-time fax
Sending faxes over the Internet is not something new. Many companies have been offering
this service, called store-and-forward fax, for some time. The idea behind store-and-
forward fax is quite simple. When computer A receives a fax, the fax data are represented
as a set of bitmaps. This set of bitmaps is a file that can be transmitted to another computer
(B) closer to the destination. Once this computer has received the file, it just needs to
dial the receiving fax machine and emulate a fax machine to send the bitmap.

This technique is also used for bulk faxing, in which the original document is faxed once
to a computer, and the computer is then provided with a list of fax numbers and sends a
copy of this fax to each of them. Store-and-forward fax transmission is now standardized at
ITU in recommendation T.37. However, since this book focuses of real-time applications
we choose to put the emphasis on the real-time standard, T.38.

The problem with store-and-forward fax technology is that many faxes report back on
the transmission of the document. Usually, they keep the result code in memory and then
print it on demand. Many people tend to rely on these transmission reports: for fax-to-fax
transmission this is confirmation that the fax has been correctly received, with a timestamp
and the identity of the receiving fax machine.

When using store-and-forward, this report is only a confirmation that the fax has been
sent, because the receiving machine is in fact computer A.

When it receives the file containing the document, computer B will dial the number
indicated. But, the fax could be busy or, even worse, it could be a wrong number. So
any company providing a store-and-forward service needs to report back to the sender,
via email or fax. When receiving a negative acknowledgement the sender needs to know
whether it is a problem with the receiving fax or the provider. This leads to potential
conflicts and increases the cost of providing the service.

It is much easier for a service provider to be completely transparent in the transmission.
In other words, the success report that is received by the originating fax machine should
appear as a success report from the distant fax machine: such a service is real-time fax.

Real-time fax is much more complex than store-and-forward fax. There are many timers
in the T.30 protocol. Once computer A has picked up the line, computer B has only a
limited time budget to dial the other fax machine and get an answer. During the call, when
A’s fax machine has sent a command, it expects a reply within 3 seconds. So, during this
limited time budget A must send the command to B over the Internet, B must send it to
the receiving fax machine, receive the reply, and forward it to A.

Fortunately, the ITU had a human operator in mind when setting the value of
these timers; so, all are expressed in seconds. Moreover, as we saw in the preceding
section 1.2.3.1.5 there are many ways of recovering from error conditions, which can
be used to spoof the sending fax and get it to wait a little more if needed. These
techniques are quite difficult to implement reliably with all brands of faxes. However,
some manufacturers have built up a lot of experience and have announced they could
transmit real-time faxes over IP networks with a round trip latency of up to 2 seconds!

Lately, many carriers have been tempted to do IP trunking without telling their cus-
tomers. VoIP gateways make this quite simple. But, without support for real-time fax,
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whenever a subscriber tries to send a fax that is routed through this IP trunk, it will fail
miserably. Of course, it is possible to tell subscribers not to use their faxes or even to
dial a special prefix for faxes; but, this significantly complicates their lives. Real-time
fax is the only appropriate answer to these issues: all VoIP gateways should be able to
dynamically recognize a fax call and switch to T.38 transport mode.

1.2.3.2.2 T.38
1.2.3.2.2.1 IFP

T.38 is the approach of the ITU’s SG16 to the problem of real-time fax. Its title is
“Procedures for real-time Group 3 facsimile communication between terminals using IP
networks”. This recommendation is limited to Group 3 only and describes real-time fax
transmission using VoIP gateways over an IP network, between faxes and computers
connected on the Internet, or even between computers (the latter may not seem useful,
but in some cases the receiving computer will be identified by an H.323 alias or even a
phone number, and you may not know this is a computer). Usage of the T.38 protocol
within the framework of H.323 is defined in H.323 annex D and was included in H.323v3.

T.38 uses a special transport protocol called IFP. IFP packets can be carried over TCP
or UDP. Most gateways support UDP, but TCP transport has also been made mandatory
in H.323v4. UDP transport includes a forward error correction mechanism.

IFP packets contain a type field and a data field (Figure 1.30) both encoded using
ASN.1 syntax. The type field can have three values:

Type Data

HDLC
 control

HDLC
data

V.21 data 

V.21 data 

HDLC
data continued

Field
type:

FCS-OK

HDLC
control

HDLC
data

Field
type:

FCS-OK-
sig-end

V.21 data 

Field
type:
HDLC
data

Field
type:
HDLC
data

Field
type:
HDLC
data

HDLC
address

FFh

HDLC
address

FFh

Figure 1.30 IFP packet formats for the first, middle, and last HDLC frames.
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• T30 INDICATOR: the value of this indicator gives information on received CED and
CNG tones, V.21 preambles, and V.27, V.29, and V.17 modulation training.

• T30 DATA: the value of this indicator tells us over which transport (V.21, V.17, or
V.29) the data part of the message has been received.

• DISCONNECT: used to disconnect the session normally or after a failure, the value
describes the error code.

The DATA part of the IFP message contains T.30 control messages as well as the image
data. This DATA element is organized in fields that contain a field type and field data.
Examples of these fields are:

• Type HDLC data: the data part of the field contains one, or part of an HDLC data
frame, not including the checksum (FCS). This is coded as an ASN-1 octet.

• Type FCS OK: indicates that an HDLC frame is finished and the FCS has been checked.
There are sill other HDLC frames after an FCS OK.

• Type FCS OK-sig-end: same as FCS OK, except that this is the last HDLC frame.

• T4-non-ECM: the data part contains the actual image data including filling and RTC.

1.2.3.2.2.2 IFP over TCP or UDP

IFP messages can be carried as TCP payload or can be encapsulated in UDP, as shown
in Figure 1.31.

An additional redundancy mechanism has been defined on top of UDP in order to make
the delivery of IFP packets more reliable. As shown in Figure 1.31, the payload part
contains one or more IFP messages, and the sequence number that appears in the header
is the sequence number of the first IFP message in the payload, which is also called the
primary message. The first message sent by a gateway should have a sequence number

xx control

- - 0 - - - -

control

- - 1 0 0 1 1

IP header TCP header IFP packet as TCP payload

IP header UDP header UDPTL header IFP packet + redundancy/FEC

Redundancy mode FEC mode (optional)

Sequence number
= 43

No. of frames
= 3

Message 43

Redundant message 42

Redundant message 41

Message 43

FEC message

FEC message

Sequence number
=43

No. of frames
=3

Figure 1.31 IFP transport methods and error correction modes.
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of 0. After this primary message other messages are inserted for error/loss recovery
purposes; two modes can be used for this: redundancy mode and FEC (forward error
correction) mode.

The control header indicates whether the secondary messages are redundancy messages
(bit 3 set to 0) or FEC messages (bit 3 set to 1).

(a) Redundancy mode

In redundancy mode, copies of previous IFP messages are simply inserted after the primary
message (Figure 1.32). The number of copies is the number of frames minus one. By
adding n copies to the message, the transmission is protected against loss of up to n

consecutive packets.
A gateway is not required to transmit redundancy packets, and receiving gateways that

do not support them may simply ignore the presence of redundancy packets.

(b) FEC mode

FEC mode is more complex. Each FEC message is the result of a bit-per-bit exclusive-OR
performed on n primary IFP messages. Before performing the OR, shorter messages are

Message 43 (Primary)

Redundant message 42

Redundant message 41

x control Sequence number
= 43- - 0 - - - -

No.of frames
= 3

Figure 1.32 Redundancy mode.

x control Sequence number
= 43- - 10011

Message 43

FEC message (42,41,40)

x control

- - 10011

Message 43

FEC message (42,39,36) 

FEC message (41,38,35) 

No. of frames
= 4

Sequence number
= 43

No. of frames
= 2

FEC message (40,37,34) 

Figure 1.33 FEC mode.
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right-padded with zeros, so the resulting FEC message is as long as the longest n primary
message. The value of n is indicated in the four last digits of the control field, ‘3’ in
Figure 1.33.

When several FEC messages are added, as in the left part of our example, the primary
messages used for each FEC message are interleaved. When n FEC messages are added,
transmission is protected against the loss of n consecutive UDP packets.

1.2.3.2.2.3 T.38, H.323, and SIP

The use of T.38 by SIP is explained in T.38 annex D ‘SIP/SDP call establishment proce-
dures’. The use of T.38 with the H.323 protocol is described in H.323 annex D and T.38
annex B. H.323 annex D mandates the use of IFP transport over TCP, but transport over
UDP is still allowed as an optional mode. In reality, all vendors seem to use IFP over
UDP. These capabilities (T38-TCP and T38-UDP) have been added in the DataApplica-
tionCapability of DataProtocolCapability of H.245. IFP is transmitted over two logical
channels (sender to receiver and vice versa).



2
H.323: Packet-based
Multimedia Communications
Systems

2.1 INTRODUCTION

H.323 is now the dominant protocol for voice and multimedia communications over
IP, and carries well over 95% of VoIP minutes worldwide. Most VoIP equipment, from
gateways to IP phones (or IP-PBXs), now support H.323, and the interoperability between
vendors is excellent, with many multi-vendor networks in production all over the world.
It has taken, over 6 years to get there.

H.323v1 had little ambition. Noting the growing success of IP, IPX, and AppleTalk-
based local area networks in all kinds of companies, Study Group 16 of ITU-T decided
to create H.323, ‘Visual telephone systems and equipment for local area networks which
provide a non-guaranteed quality of service’, a LAN-only standard for audiovisual con-
ferences. SG16 leveraged the know-how of SG15, which had already acquired a lot of
experience during the development of H.320, ‘Multimedia conferencing for ISDN-based
networks’. This background led to many benefits for H.323, such as seamless inter-
working with H.320 and H.324 systems (videoconferencing over POTS lines) and, in
general, comprehensive support for interactive video, but it also led to some drawbacks
in certain areas.

H.323 did not attract major interest from the market until VocalTec and Cisco founded
the Voice over IP Forum to set the standards for VoIP products. At that time the focus in
the VoIP Forum was given to the specification of endpoints using non-H.323, UDP-based
signaling protocols. When major software and hardware firms realized the potential of
Internet telephony they pushed the VoIP Forum to become part of the IMTC (International

IP Telephony O. Hersent, J.P. Petit, D. Gurle
 2005 John Wiley & Sons, Ltd ISBN: 0-470-02359-7
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Multimedia Teleconferencing Consortium) and simultaneously changed the focus of the
VoIP activity group to profiling H.323 for use over the Internet, as opposed to creating a
new protocol. Indeed, with a few minor adaptations, H.323 appeared to be just as usable
over the Internet as on LANs.

Soon the ITU’s SG16 acknowledged that the success of H.323v1 called for a much
broader scope, and the title of H.323v2 was changed to ‘Packet-based multimedia com-
munications systems’.

2.1.1 Understanding H.323

H.323 is an umbrella specification that refers to many other ITU documents. It describes
the complete architecture and operation of a videoconferencing system over a packet
network. H.323 is not specific to IP. In fact, there are sections on the use of H.323 over
IPX/SPX or ATM. The framework of H.323 is complete and includes the specification of:

• Videoconferencing terminals.

• Gateways between a H.323 network and other voice and video networks (H.320 video-
conferencing, POTS, etc.).

• Gatekeepers, the control servers of the H.323 network, performing registration of ter-
minals, call admission, and much, much more.

• MCUs (multipoint control units), which are used for multiparty conferencing and
include a control unit called an MC (multipoint controller), and one or more media-
mixing units called MPs (multipoint processors).

2.1.1.1 Core specifications

In addition to the H.323 ITU recommendation itself, the H.323 standard references
several other ITU recommendations and IETF RFCs. The most important normative
documents are:

• IETF RTP/RTCP (Real Time Transport Protocol, Real Time Control Protocol) is
described in RFC 1889. RFC 1889 describes a general framework enabling the transport
of real-time (or, more precisely, isochronous) data over IP. RTP allows a level of
tolerance for packet jitter and detection of packet loss by using sequence numbers and
timestamps. Some profiling work is needed on top of RFC 1889 in order to build a
specific application, as RFC 1889 does not describe the transport of specific media
types within the RTP stream.

• ITU recommendation H.225.0 does this profiling work in the context of H.323 video-
conferencing applications (in fact, the entire specification of RTP/RTCP is annexed to
it, as the ITU wanted to guarantee some stability in its references to the IETF standard).
In particular, H.225.0 defines which identifiers are to be used for each type of codec
recognized by the ITU and discusses some conflicts and redundancies between RTCP
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and the H.245 media-control protocol that is used in H.323 to negotiate, open, and close
media channels. H.225.0 also describes the RAS (registration, admission, status) pro-
tocol, which is used between a terminal and a gatekeeper (see Section 2.2.2). The RAS
protocol is used mainly for the management of endpoint IP addresses and their map-
ping to aliases (e.g., telephone numbers—‘registration’), but can also be involved in
the call process, mainly for authorization and admission purposes. It can also be used
to query the endpoint about some local statistics. Last but not least, H.225.0 defines
the call-signaling channel protocol used in H.323. The call-signaling channel is used
during the establishment and break-off phases of the call (see Section 2.2.1) and will
look familiar to anyone used to ISDN networks. Like ISDN, it also uses ITU Q.931
call control messages, but these messages are extended in order to support multime-
dia communications. The extended information is packed into the Q.931 user-to-user
information element. It also describes how this information is to be transported over
TCP, and more recently UDP and event SCTP (H.225.0v5).

• ITU recommendation H.245 is mainly a library of ASN-1 messages (ASN.1 has a
formal syntax defined by the ITU for data structures and their serialization in messages)
used by the H.245 control channel, which is opened at the beginning of the call to
negotiate a common set of codecs and remains in use throughout the call to perform all
media-related control functions. H.245 also defines the protocol-state machines that are
used in H.323 and many other ITU standards for the management of media streams (in
particular, video). H.245 is also used by the H.320 ISDN videoconferencing standard,
the H.324 POTS videoconferencing standard, and the new videoconferencing standard
for 3G mobile phones H.324M.

2.1.1.2 Abstract Syntax Notation 1

Use of the ASN.1 syntax by H.323 is the reason for its reputation of being a ‘complex’
protocol. ASN stands for ‘abstract syntax notation’. ASN.1 is defined in ITU X.680
(‘Abstract Syntax Notation-1’), and its serialization—the actual bit-level representation
of the structured data for transport over a network used to code H.323 protocol data
units (PDUs)—is defined in ITU X.691 (‘ASN-1 encoding rules, specifications of packet
encoding rules’). A small summary can be found at the end of H.245 specification.

ASN.1 has a very similar syntax to XML and can be used to the describe almost any
data structure. Although it is less popular than XML these days, ASN.1 is much more
powerful than XML: it can describe a greater variety of types, has better support for
constraints, and is much less ambiguous when used to specify data types. It is also a bit
harder to learn than XML. Everything comes at a price!

ASN.1 also defines two ways of serializing data for transport over a network: BER
(basic encoding rules) and PER (packed encoding rules). BER is simple but not opti-
mized, PER is complex but very efficient (typically data can be stored using ten times less
space than data encoded in XML). The ASN.1 data description can be used by compilers
that produce highly optimized BER/PER encoders automatically from the ASN.1 defini-
tion of the message set. ASN.1 is used extensively in telecommunication applications,
as the use of ASN.1 automatic encoders greatly improves the robustness of applications,
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minimizing the sensitivity of telecom applications to malformed packets compared with
manually designed parsers. ASN.1 data structure specifications are also free from any
ambiguity, which facilitates interoperability across applications.

2.1.2 Development of the standard

2.1.2.1 H.323v1

Work on H.323v1 began in May 1995, and this version was approved in June 96. This
first version of H.323 still had a lot of issues; notably, the connection of audio streams
was very slow and for the first few seconds of each H.323v1 phone call it was almost
impossible to hear anything. Moreover, H.323v1, with its focus on LAN environments,
lacked any mechanism for security. Despite these issues, H.323v1 still enjoyed great
success due to the early introduction of NetMeeting by Microsoft, an H.323v1-capable
communication software. Unfortunately, too much flexibility was allowed for terminals
implementing H.323v1 leading to interoperability issues, notably when endpoints also
implemented the T.120 data-sharing protocol.

All these issues are still remembered today, and in many trade shows you can still hear
complaints about H.323 delay or interoperability issues. This is very misleading, as all
these issues have been solved by the more recent versions of H.323.

2.1.2.2 H.323v2

H.323v2 was approved in February 1998 and fixed the major issues of H.323v1. Post-
connect audio delay was completely eliminated using a new procedure known as ‘fast
connect’. H.323v2 was extended to enable the use of enhanced security procedures. These
procedures were defined in the new H.235 standard, addressing the need for authentica-
tion (making sure people in a conference really are who they pretend to be), integrity
(making sure the modification of the content of H.323 messages by a third party can-
not go unnoticed), non-repudiation (the ability to prove that someone participating in
a conference was there), and privacy (making sure that information exchanged between
individuals remains unaccessible to third parties). The early deployment of H.323v1 had
revealed other weaknesses that appeared in very specific call flows:

• In Germany and some other countries the size of phone numbers is not known in
advance and there is a need to send the dialing digits one by one to the network
until the network decides the number is complete. This requires a capability called
overlapped sending.

• When calling some announcement servers in a network you may have to stop playing
the ring-back tone to play specific announcements, without connecting the call first.
The announcement server uses the progress message to inform the network of coming
in-band prompts. The same interaction with interactive voice response servers required
a better means of transporting DTMF tones.
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• Even more fundamentally, people realized that the true benefit of VoIP was not so much
‘voice compression’, but the ability to control media channels from a server without
requiring the server to be on the path of media channels. For instance, in a prepaid
application, after the initial prompts to authenticate the user and ask for a destination,
once the calling party A half-call has been connected to the called party B, the prepaid
application server can cause media streams to be exchanged directly between endpoints
A and B, while remaining in the call control path so that it can cut off the communi-
cation once credit has expired. In traditional telephony, the same server needs to relay
these media streams for the entire duration of the communication. This key feature
required a new procedure called the ‘empty-capability-set’ (or third-party rerouting,
see Section (2.7.1.2.2)) and makes VoIP much more scalable and easier to deploy than
traditional TDM voice for services such as prepaid or hosted contact centers.

All these enhancements, and many more, were introduced in H.323v2, making it suitable
for widespread deployment. At that time the new H.450 standard series, providing supple-
mentary services for H.323, was also introduced. H.450 is based on the QSIG extensions
of ISDN for use by PBXs. H.450.1 defined the general framework for exchanging sup-
plementary service commands and responses for use by supplementary services, H.450.2
defined the call transfer procedure (blind call transfer and call transfer with consulta-
tion), and H.450.3 defined the call diversion procedures (call forwarding unconditional,
call forwarding on no answer, call forwarding on busy, and call deflection).

Even though new versions of H.323 have been approved, H.323v2 is still the protocol
powering the vast majority of voice over IP networks worldwide and serves this function
very well.

2.1.2.3 H.323v3

H.323v3 was approved in September 1999. Of all the enhancements introduced in
H.323v3, only one was really needed: the ability to support the CLIR (calling line identity
restriction) in the same way as the traditional PSTN network. This was a legal requirement
in most countries. Most of the other enhancements introduced in this version, such as the
ability to reuse signaling connections, the ability to use UDP for the transport layer (annex
E), an interdomain-routing protocol (annex G), have not really made it for commercial
products, following the well-known pragmatic approach of ‘if it works, don’t fix it’.

The H.450 standard series was also expanded to include call hold, call park, call pickup,
call waiting, and message-waiting indication (MWI). Out of these only MWI, H.450.7, is
widely supported today by IP phones and residential gateways.

2.1.2.4 H.323v4

H.323v4 was approved in November 2000. It includes some useful modifications, such
as the ability to start H.245 procedures in parallel was fast connect. Prior to this the fast-
connect procedure (described in Section 2.3.3) was used to accelerate the establishment of
media streams, but DTMF tones could not be transmitted before the call fully connected,
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which created interoperability issues in some call flows involving the PSTN intelligent
network. Another very useful addition is the description of how protocols that cannot be
fully mapped to H.323 can be transported in H.323. Annex M1 describes the encapsulation
of QSIG (a supplementary services protocol for ISDN PBXs), and annex M2 describes
the encapsulation of ISUP (the standard protocol for establishing calls in core telephone
networks). H.323v4 also introduces an official format for an H.323 URL, which took
almost 2 years to stabilize and be approved by all parties!1

Throughout the life of the H.323 standard, each addition of a new feature required
an edit of the ASN.1 description of control messages, as the new feature was explicitly
described in ASN.1. This was powerful, as interoperability was guaranteed at least for
the parsing of new features, but the growing ASN.1 syntax posed problems to develop-
ers wanting to support only a few of the features available. Since version 4, a generic
extensibility framework allows the indication of features that are supported, desired, or
required, without the need for further edits of ASN.1 syntax.

There were also a few more additions to the H.450 series (H.450.8: ‘Name identification
service’; H.450.9: ‘Call completion’; H.450.10: ‘Call offer’; H.450.11: ‘Call intrusion’).
As with the other members of the H.450 series, these additions have not received much
support from the industry. They are only being employed in some private networks of
IP-PBXs that use H.323 as a PBX-to-PBX protocol, where the H.450 series plays the role
of QSIG (which is used in private networks of PBXs connected through ISDN).

In fact, instead of attempting to precisely define a standard for each feature of a business
phone, the industry has now taken another approach: phones offer a stimulus-based control
protocol for all of their user interface components (screen, buttons, lamps) and media
streams. The network optimises use of these resources to provide value-added services.
H.323 proposes two approaches for this:

• Using an HTTP control channel, which provides an arbitrary user interface, and making
the network responsible for the execution of services.

• Annex L (stimulus control).

The industry has not adopted these methods and seems unlikely to do so in the medium
term. Instead MGCP has become the de facto standard for stimulus control of IP phones.
This will be covered in detail when we discuss the MGCP protocol in Chapter 4.

2.1.2.5 H.323v5

H.323v5 was approved in July 2003. This version does not introduce any major new
feature but does correct some remaining problems with the former H.323 specifications,
such as the missing ‘hop count’ parameter that prevents call loops, the much awaited
H.460.6 (extended fast connect), which makes it possible to redirect and renegotiate
media streams while in fast-connect mode. Another nice addition is the concept of digit
maps (H.460.7), borrowed from MGCP, which makes it possible to reduce the post-dial

1 For instance, see h323:someone@domaine.com
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delay of a call without using the overlapped sending procedure, when the digit pattern of
the expected number is known in advance (e.g., in virtual private networks).

Most of the new additions use the generic extensibility framework that was introduced
in H.323v4; this helps stabilize the ASN.1 files.

Although conversion of existing systems is likely to take some time, H.323v5 adds the
possibility of using SCTP as a transport protocol, in addition of TCP and UDP, providing
a very robust option with combined latency control and reliability.

2.1.3 Relation between H.323 and H.245 versions, H.323
annexes, and related specifications

Where are we today? Essentially, the core H.323 protocol is complete and only minor
additions are required from time to time to cover specific details required in the context of
a specific service. Since H.323v3, there has been a growing divide between the status of
the standard and the reality of its deployment. No one is in any hurry to implement every
detail of the newer standards. Rather, these documents are viewed by vendors as a pool
of standard approaches to certain issues and implemented as and when customers request
them. This book will cover in detail many of the H.323v2 and v3 features, and select
only the features of H.323v4 that really have something to offer for real-life deployment.

Each version of H.323 corresponds to a version of the H.225.0 call control protocol and
must be used with specific versions of the H.245 media control protocol (see Table 2.1).
The protocol version is indicated in the protocolIdentifier information element of the
messages (e.g., {itu-t (0) recommendation (0) h (8) 2250 version (0) 2}). The H.245
version can change dynamically during a call if third-party rerouting is used.

2.1.3.1 H.323 annexes

Multiple annexes to H.323 have been defined, each specifying additional details for spe-
cific needs (Table 2.2).

2.1.3.2 H.323-related specifications

Beyond the core set of specifications—H.225.0, H.245, and the annexes—many other
specifications exist which relate to specific applications or aspects of H.323:

Table 2.1 Relationships between
versions H.323, H.225, and H.245

H.323 H.225 H.245

v1 v1 v2
v2 v2 v3 or higher
v3 v3 v5 or higher
v4 v4 v7 or higher
v5 v5 v9 or higher
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Table 2.2 List of annexes to H.323

Annex A∗ H.245 messages used by H.323 endpoints
Annex B∗ Procedures for layered video codecs
Annex C∗ H.323 on ATM
Annex D∗ Real-time facsimile over H.323 systems
Annex E∗ Framework and wire protocol for multiplexed call-signaling support
Annex F∗ Simple endpoint types
Annex G∗ Text conversation and text set
Annex J∗ Security for H.323 annex F
Annex K∗ HTTP-based service control transport channel
Annex L∗ Stimulus control protocol
Annex M1∗ Tunelling of QSIG in H.323
Annex M2∗ Tunelling of ISUP in H.323
Annex M3 Tunelling of DSS1 through H.323
Annex N Quality of service
Annex O Use of DNS
Annex P Transfer of modem signals over H.323
Annex Q Far-end camera control
Annex R Robustness methods for H.323 entities

∗These annexes are now in the main H.323 document.

• H.235 specifies a secure mode of operation for H.323 terminals and refers to the SSL
(secure sockets layer) specification.

• H.246 describes in more detail the operation of H.323 gateways and specifies how to
map SS7 ISUP call-control messages onto H.323 messages to maximize transparency
of call flows initiated and terminated on a traditional SS7 network but traversing an
H.323 network.

• H.332 (loosely coupled conferencing) profiles H.323 and extends it for use in the
context of a large conference with few speakers but a large audience. H.332 is a bridge
between the world of conferencing and the world of broadcasting (see the companion
book, Beyond VoIP Protocols, chapter 6 on multicast technology).

• H.450 is a series of standards defining messages and call flows for supplementary
services, such as call transfers or how to set up the message-waiting indication on an
IP phone (Table 2.3). These supplementary services mimic the services of QSIG and
most are targeted for private telephony networks.

H.460 is a series of more recent recommendations, all of which use the generic extensi-
bility framework (GEF) introduced in H.323v4:

• H.460.1: ‘Overview of the generic extensibility framework and “author’s guide” ’.

• H.460.2: ‘Number portability (GEF)’.

• H.460.3: ‘Circuit status map (GEF)’.

• H.460.4: ‘Call priority designation (GEF)’.

• H.460.5: ‘Transport of duplicate Q.931 IEs (GEF)’.
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Table 2.3 List of H.450 specifications and services

H.450.1 02/1998 Generic functional protocol for the support of supplementary services
H.450.2 02/1998 Call transfer supplementary service
H.450.3 02/1998 Call diversion supplementary service
H.450.4 05/1999 Call hold supplementary service
H.450.5 05/1999 Call park and call pickup supplementary services
H.450.6 05/1999 Call-waiting supplementary service
H.450.7 05/1999 Message-waiting indication supplementary service
H.450.8 02/2000 Name identification service supplementary service
H.450.9 03/2001 Call completion supplementary service
H.450.10 03/2001 Call offer supplementary service
H.450.11 07/2001 Call intrusion supplementary service

• H.460.6: ‘Extended fast connect (GEF)’.

• H.460.7: ‘Digit maps (GEF)’.

• H.460.8: ‘Querying for alternate routes (GEF)’.

• H.460.9: ‘QoS monitoring and reporting (GEF)’.

2.1.4 Where to find the documentation

All ITU documents can be purchased on the ITU website (www.itu.int). However, H.323
is a living standard and the latest specifications only become available some time after
they have been approved. For those needing detailed and up-to-date technical information,
the best option is to read the working documents of SG16, together with the interesting
discussions of standard details and implementation guides at http://www.packetizer.com.
This excellent site is well maintained and really presents all the useful information a
developer needs to start an H.323 project. Another related site has a similar focus on
H.323: http://www.h323forum.org. It offers interesting discussions and forums on the
ongoing development of the H.323 standard.

It is also interesting to monitor the discussions of the TIPHON (Telephony and Inter-
net Protocol Harmonization over Networks) project of the European Telecommunica-
tions Standards Institute (ETSI). Originally, ETSI was a members-only, Europe-centric
organization, but TIPHON triggered a revolution. The focus of TIPHON is now truly
international, and its working documents and specifications are available on the Web
(http://www.etsi.org/tiphon).

Many more standard bodies are involved in VoIP; for a more comprehensive view of
the most active organizations on VoIP and voice quality of service over packet networks,
see Figure 2.1.

H.323 is a complex standard. Although it is well understood and very well defined,
there is still room for new interpretations. The live discussions held at SG16 and TIPHON
are invaluable for the expert who is trying to keep track of updates. Much of the mate-
rial presented in this chapter was gathered from these discussions and real-deployment
experience. It reflects the state of the art at the time of publishing, but the reader who
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Figure 2.1 Some of the many organizations involved in VoIP standardization.

wants a broader picture is encouraged to refer directly to ITU recommendations, TIPHON
specifications, and the various working documents available on the Web.

2.2 H.323 STEP BY STEP

H.323 did not invent videoconferencing over IP. Researchers and students did this for
years on the mBone network using RTP/RTCP (refer to the companion book, Beyond VoIP
Protocols) multicast chapter. However, RTP/RTCP has very basic signaling capabilities,
as we saw in Chapter 1, and cannot be used for common telephony.

H.323 mainly defines the signaling needed to set up calls and conferences, choose com-
mon codecs, etc. RTP/RTCP is still used to transport isochronous streams and get feedback
on the quality of the network, but fancy RTCP features like email alias distribution are
not normally used by H.323.

As H.323 tackles a very complex problem, it is consequently complex itself, as we
have already stated. The set of documents that an H.323 engineer needs as a reference
(Q.931, H.323, H.225, H.245, H.235, H.332, ETSI TIPHON and other profiles, etc.) is
extensive and takes a while to read. Therefore, we have chosen here not to paraphrase
H.323, but rather to illustrate the behaviour of H.323 entities in various configurations.

We did our best to track inaccuracies, and various engineers have checked these
lines. This new edition also benefits from the many emails I have received from
readers in the last 3 years. We appreciate any feedback that can help improve future
editions (mailto: book@netcentrex.net).
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2.2.1 The ‘hello world case’: simple voice call from
terminal A to terminal B

For our first example we assume that two users would like to establish a voice call,
both using IP endpoints with fixed and well-known IP addresses. This is an important
assumption, because most of the time IP addresses are dynamic and cannot be used
directly to reach a user. Calls can also be established with regular phones not directly
connected on IP: this more general situation will be studied in Section 2.2.2. We will be
using the basic H.323v1 connection sequence, without security and without any of the
optimizations of H.323v2, v3, or v4.

Establishment of a point-to-point H.323 call requires two TCP connections between the
two IP terminals: one for call set-up and the other for media control and capability exchange:

• Call set-up messages are sent during the initial TCP connection established between
the caller and a well-known port (defined by the standard, usually port 1720) at the
callee endpoint. This connection carries the call set-up messages defined in H.225.0
and is commonly called the Q.931 channel, or call-signaling channel.

Media-control messages are carried during a second TCP connection. On receipt of the
incoming call, the callee starts listening, during the second TCP connection to a dynamic
port, and waits for the media control connection to be established; the callee communicates
this port in the new-call acceptance message. The caller then establishes the second TCP
connection to that port. The second connection carries the control messages defined in
H.245 and is used by the terminals to exchange audio and video capabilities and to
perform a ‘master–slave’ determination; this is useful in very specific call flows (i.e., the
simultaneous opening of a bidirectional data-sharing channel) which require a notion of
priority of one endpoint over the other to resolve the race condition. It is then used to
signal the opening of ‘logical channels’ for audio and video streams (each corresponding
to an RTP session), fax data (the media is then exchanged using the IFP protocol described
by T.38), or even a data-sharing T.120 channel. The H.245 channel remains open for the
duration of the conference.

Once the H.245 channel is established, the first connection is no longer necessary and
may in theory be closed by either endpoint, and re-opened only for sending additional
call control messages (e.g., to bring the call to an end). In practice, though, since TCP
connections take significant resources and time to get established, we do not know of any
endpoint in the market that closes call control connections.

2.2.1.1 First phase: initializing the call

H.323 uses a subset of the Integrated Service Digital Network (ISDN) Q.931 user-to-
network interface that signals messages for call control. The following messages belong
to the core H.323 and must be supported by all terminals:

• SETUP.
• ALERTING.
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• CONNECT.

• RELEASE COMPLETE.

• STATUS FACILITY.

Other messages, such as CALL PROCEEDING, STATUS, STATUS ENQUIRY, are
optional. Support for the Q.931 PROGRESS message has been added in H.323v2 to
support the interworking of call flows with the PSTN, notably when the PSTN signals the
presence or absence of in-band media before making the connection. Regarding supple-
mentary services, only the FACILITY message is supported; all others, such as HOLD,
RETRIEVE, SUSPEND, are forbidden (they have been replaced by H.450 equivalents).
Moreover, the ISDN RELEASE and DISCONNECT messages are not supported in H.323.

As we will section 2.2.1.6, each time an ISDN message has been removed to make
H.323 simpler, it was subsequently found to be a mistake and the message was either
added later on (PROGRESS) or other messages were extended to support an equivalent
feature (e.g., DISCONNECT is in some cases replaced by a PROGRESS message).

In our example John, logged on terminal A, wants to make a call to Mark, knowing
Mark’s IP address (10.2.3.4). Terminal A sends to terminal B a SETUP message on the
well-known CallSignalingChannel port (port 1720 as defined by H.225.0 appendix D),
using a TCP connection (see Figure 2.2). This message is defined in H.225.0 and contains
the following fields, which have been borrowed from Q.931:

Terminal A: John
Alias:John@domain1.com.

Call-signaling channel
TCP 1720

H.245 control channel

Setup
Alerting

Terminal B: Mark
Alias:Mark@domain2.com

Call-signaling channel
TCP 1720

H.245 control channel

Connect

H.225: SETUP
Call reference: 10
Call identifier: 45442345
H.323 ID of A: John@domain1.com
Source type: PC
CallType: Point to point
DestinationAddress: Mark@domain2.com

H.225: CONNECT
Call reference: 10
Call identifier: 45442345
EndPointType: PC
H.245 address (Ex: 10.2.3.4:8741)

10.2.3.4

RAS channelRAS channel

Figure 2.2 Call set-up to a known IP address. The CONNECT message returns the transport
address for H.245 signaling.
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• A protocol discriminator field set to 08h (Q.931 defines this as a user network call-
control message).

• A 2-octet, locally unique call reference value (CRV) chosen by the originating side
which will be copied in each further message concerning this call. Here John’s terminal
has picked CRV = 10.

• A message type (05h for SETUP as specified in Q.931 table 4.2).

• A bearer capability, a complex field that can indicate, among other things, whether the
call is going to be audio-only or audio and video. ISDN gateways can place in this
field some elements copied from the ISDN SETUP message.

• A called party number and sub-address, which must be used when the address is a
telephone number. This field contains a numbering plan identification. When it is set
to 1001 (private numbering plan) it means that the called address will be found in the
user-to-user information element of the SETUP message (see below). If John knows
Mark by his transport address only (10.2.3.4:1720), the numbering plan will be set
to 1001.

• A calling party number and sub-address, which will be present if the caller has a
telephone number.

• A user-to-user H.323 PDU (H323-UU-PDU) which encapsulates most of the extended
information needed by H.323. In this case it is a SETUP information element that
contains:

• A protocol identifier (which indicates the version of H.225.0 in use).

• An optional H.245 address if the sender agrees to receiving H.245 messages before
connection. In the normal procedure, as used in the example, the callee allocates a
TCP port for H.245 and waits for a H.245 connection from the caller.

• A source address field listing the sender’s aliases (e.g., John@myhouse.uk) (as indi-
cated above, in case the sender only has an E.164 phone number then it should be
in the Q.931 calling party information element).

• A source information field can be used by the callee to determine the nature of the
calling equipment (MCU, gateway, . . .).

• A destination address which is the called alias address(es). Several types are defined
in H.323v2: E.164 which is a regular phone number using only characters in the set
�0123456789#∗,”; H323-ID which is a unicode string; url-ID (a URL like those
you can type on your browser, but this type in unused in practice); transport-ID
(e.g., 10.2.3.4:1720), and Email-ID (e.g., Mark@domain.org). H.323v4 renamed type
‘e164’ into ‘dialedDigits’, as E.164 refers to a precise number format (country code,
plus national number) which in general will not be used by end-users, who use their
national numbering conventions or private numbers. H.323v4 also added a specific
format for an H.323 URL, which must begin with “h323:” followed by a username
and hostname (e.g., h323:mark@mydomain.org).

• A unique Conference identifier (CID). This is not the same as the Q.931 CRV
described above or the call identifier described below. The CID refers to a conference
which is the actual communication existing between the participants. In the case of
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a multiparty conference, all participants use the same CID, and if a participant joins
the conference, leaves and enters again, the CRV and CallID will change, while the
CID will remain the same. Refer to Section 2.4 for more details.

• A conferenceGoal which indicates if the purpose of this SETUP message is to create a
conference, invite someone in an existing conference, or join an existing conference.
In this simple scenario, we simply want to create a conference.

• A call identifier (CallID) which is set by A, and should be the globally unique
identifier of the call, not only locally unique like the Q.931 CRV. It is also used
to associate the call-signaling messages with the RAS messages (RAS is used in
the next call scenario, see Section 2.2.2). In the gatekeeper scenario (also in the
next example), the call leg to the gatekeeper and from the gatekeeper to the called
endpoint should have the same CallID.

Note that TCP is a stream-oriented protocol and does not provide framing (delimitation
of individual messages). For this reason the Q931 messages are not transported directly
over TCP, but are first framed using a ‘length data’ type of structure known as TPKT
and defined in RFC1006 (ISO transport service on top of the TCP). This structure can be
see in the network capture of Figure 2.3, and in Figure 2.4.

Figure 2.3 Capture of a SETUP message (using Microsoft Network Monitor).
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Vrsn (8 bit) = 3 Reserved (8 bit) Packet length (16 bit) Data

Figure 2.4 RFC 1006 framing using TPKT structure.

Either CALL PROCEEDING, ALERTING, CONNECT, OR RELEASE COMPLETE
must be sent by Mark’s terminal immediately on receipt of a SETUP message. One of
these must be received by John terminal’s before its set-up timer expires (in general, 4 s).
After Alerting is sent, indicating that ‘the remote phone is ringing’, the user has up to 3
min to accept or refuse the call.

Finally, as Mark picks up the call, his terminal sends a CONNECT message with:

• The Q.931 protocol discriminator, the same call reference (10), and message type 07h.

• In the H323-UU-PDU there is now a CONNECT user-to-user information element with:

• The protocol identifier.

• The IP address and port that B wishes A to use to open the H.245 TCP connection.

• Destination information, which allows A to know if it is connected to a gateway
or not.

• A conference ID copied from the SETUP message.

• The call identifier copied from the SETUP message.

Note that, the procedure we just described is called the ‘en bloc’ procedure. The destina-
tion address information is sent at once. This method is always used when the destination
address is not a phone number (email alias, IP address, etc.). When the destination address
is a phone number the ‘en bloc method’ is also used by cellular phones that have a
‘send’ button. For a normal phone without a ‘send’ button, however, it is not obvious
to know when the number is complete and so it should be sent in the SETUP message.
Most IP phones use a timer, which fires a few seconds after the last digit key is pressed.
If this waiting time is inconvenient, or when the calling device is an existing PBX, a more
sophisticated procedure exists in ISDN and H.323: ‘overlapped sending’. With overlapped
sending, the calling endpoint sends partial numbering information in the SETUP message
(with a canOverlapSend flag), and if the number is incomplete the gatekeeper (see the next
example for more information on routing the signaling messages through the gatekeeper)
will respond with a SETUP ACKNOWLEDGE message instead of a CALL PROCEEDING
or ALERTING message. The calling device then continues to send digits in ‘INFO’ mes-
sages, until it receives a CALL PROCEEDING message, meaning that enough digits have
been accumulated.

Since H.323v5 (H.460.7), the ‘DigitMap’ function enables the gatekeeper to configure
the endpoint with a set of patterns that can trigger an ‘en bloc’ call immediately the pattern
is recognized, resolving the timer problem.
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2.2.1.2 Second phase: establishing the control channel

2.2.1.2.1 Capability negotiation
Media control and capability exchange messages are sent on the second TCP connection,
which the caller establishes to a dynamic port on the callee’s terminal. The messages are
defined in H.245.

The caller opens this H.245 control channel immediately after receiving the Alerting,
CALL PROCEEDING, or Connect message, whichever specifies the H.245 transport
address to use first. It uses a TCP connection which must be maintained throughout the
call. Alternatively, the callee could have set up this channel if the caller had indicated an
H.245 transport address in the SETUP message. The H.245 control channel is unique for
each call between two terminals, even if several media streams are involved for audio,
video, or data. This channel is also known as logical channel 0.

The first message sent over the control channel is the TerminalCapabilitySet
(Figure 2.5), which carries the following information elements:

• A sequence number.

• A capability table, which is an ordered list of codecs the terminal can support for
the reception of media streams, each codec being identified by an integer, the Capa-
bilityTableEntryNumber. Up to 256 codecs can be described. Not all combinations

Terminal A: John
Alias: John@domain1.com 

H.245 control channel
TCP

RAS channel 

TerminalCapabilitySet

TerminalCapabilitySetAck

Terminal B: Mark
Alias:
Mark@domain2.com
Data channel(s) 

H.245 control channel
TCP 8741

RAS channel 

TerminalCapabilitySet
TerminalCapabilitySetAck

10.2.3.4H.245: TerminalCapabilitySet
MultiplexCapability
capabilityTable:

H.261VideoCapability
g711Alaw64k,g729
t120

H.245: TerminalCapabilitySet
MultiplexCapability
capabilityTable:

H.261VideoCapability
g711Alaw64k
t120

Figure 2.5 Capability negotiation over the H.245 channel using TerminalCapabilitySet
messages.
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of codecs can be supported, and the CapabilityDescriptors structure describes which
combinations of codecs can be supported.

• CapabilityDescriptor. This is a rather complex structure (Figure 2.6) which describes
precisely the combinations of codecs a terminal can support. The CapabilityDescriptor
structure is a list of supported codec configurations. Each supported codec configuration
is of the form (Codec 1 or Codec 2 or Codec 3) and (Codec 4 or Codec 5) and . . . where
or is exclusive. The and structure is called a SimultaneousCapabilities block, and the
or substructures are called AlternativeCapabilitySets. Each codec is represented by
its number in the capability table.

For instance, a terminal could declare the following for its capability descriptors:

1 (G.723 or g729) and T.120.

2 G.711 and T.120 and (H.261 or H.263).

This would mean that the endpoint has a limited CPU and cannot support video com-
pression (H.261 or H.263) simultaneously with audio compression (G.723 and G.729). If
video is used, then only simple voice coders (G.711) can be used. In all cases, T.120 data
sharing can be used.

This structure is also very useful for simultaneous presence video applications, where
the capabilities structure can be used to indicate how many instances of the video decoder
can be used simultaneously: the video codec is repeated in a SimultaneousCapabilities
structure, (e.g., ‘H263 and H263 and H263’).

The terminals send this terminalCapabilitySet message to each other simultaneously (a
common bug in early H.323 endpoint implementations was to wait for the other endpoint
to send its capabilities before sending its own) and must acknowledge the reception of
the other endpoint capabilities with a terminalCapabilitySetAck message.

CapabilityDescriptors

Capability Descriptor
Capability Descriptor

CapabilityDescriptor

TerminalCapabilitySet

SimultaneousCapabilities

A lternativeCapability Set
A lternativeCapability Set

AlternativeCapabilitySet 1 or 2 or 3 

(1 or 2 or 3) and (2) and (5 or 6) 

Mode 1: (1 or 2 or 3) and (2) and (5 or 6) 

Mode 2: (4) and (5)

Figure 2.6 TerminalCapabilitySet structure.



66 IP TELEPHONY

When troubleshooting audio problems on an H.323 network, the terminalCapabilitySet
is one of the most useful messages to look at, in conjunction with the subsequent open-
LogicalChannel messages and the RTP streams. The problem is most likely a mismatch
between the codec parameters (codec type, frame size) advertised by the terminalCapa-
bilitySet, the parameters chosen by the OpenLogicalChannel, and the actual parameters
streamed in the RTP flow, caused by a wrong parsing or use of the H.245 messages.

2.2.1.2.2 Master/slave determination
The notion of master and slave is useful when the same function or action can be
performed by two terminals during a conversation and it is necessary to choose only
one (e.g., when choosing the active MC on the opening of bidirectional channels). In
H.235, the master is responsible for distributing the encryption keys for media channels
to other terminals.

The determination of who will be the master is done by exchanging masterSlaveDeter-
mination messages which contain a random number and a terminalType value reflecting
the terminal category: multipoint control units, the H.323 name for a multimedia confer-
encing bridge (MCU); gatekeeper; gateway; simple endpoint. The terminalType values
specified in H.323 prioritize MCUs over gatekeepers over gateways over terminals, and
multipoint control (MC, multipoint conference-signaling control features)+multipoint pro-
cessor (MP, media-mixing feature) capable units over MC-only units over units with no
MC or MP.

2.2.1.3 Third phase: opening media channels

Now terminal A and terminal B need to open media channels for voice, and possibly video
and data. The digitized media data for these media channels will be carried in several
‘logical channels’ which are unidirectional except in the case of T.120 data channels.

In order to open a voice-logical channel to B, A sends an H.245 OpenLogicalChan-
nel message which contains the number that will identify that logical channel, and other
parameters like the type of data that will be carried (audio G.711 in our example of
Figure 2.7). In the case of sound or video, which will be carried over RTP, the Open-
LogicalChannel message also mentions the UDP address and port where B should send
RTCP receiver reports, the type of RTP payload, and the capacity to stop sending data
during silences.

The codec type and configuration (number of frames per packet), must be selected from
one of the supported configurations advertised by the other endpoint in its terminalCapa-
bilitySet message. If prior channels have been opened, then the endpoint should check the
SimultaneousCapabilities of the other endpoint to verify that the new coder is supported
in conjunction with the other coders. Although this is not a requirement in the standard, it
appears that most implementations attempt to select configurations in the order in which
they appear in the CapabilitiesDescriptor structure, and if the other endpoint has already
opened channels to this endpoint it also attempts to use symmetrical coders. This is in no
way mandatory, and assymetrical communications were the A to B and B to A streams
use different coders are valid.



H.323 67

Terminal A: John

H.245 control channel
TCP

RAS channel

Alias:
John@domain1.com

OpenLogicalChannel
OpenLogicalChannel

Terminal B: Mark

H.245 control channel
TCP 8741

RAS channel

Alias:
Mark@domain2.com

OpenLogicalChannelAck
OpenLogicalChannelAck

H.245: OpenLogicalChannel
Logical channel 1, RTCP RR port 7771
g711Alaw64k
session number, RTP payload type
silence suppression

H.245: OpenLogicalChannelAck
Logical channel 1,

RTCP SR port 9345, RTP port 9344

Figure 2.7 Opening media channels using H.245 OpenMediaChannel messages.

B sends an OpenLogicalChannelAck for this logical channel as soon as it is ready to
receive data from A. This message contains the IP address and UDP port number where
A should send the RTP data and the UDP port where A should send RTCP sender reports.

Meanwhile, B also opens a logical channel to A following the same procedure.

2.2.1.4 Handling of DTMF tones

In H.323, there are several ways to transport DTMF tones:

• The special H.245 User Input Indication (UII) message, which must be supported by all
H.323 systems. It has the advantage of using a reliable TCP connection, and therefore
the message cannot be lost. But because TCP will try to retransmit the packet if it has
been lost in the network, information might get delayed and get to the receiver too late.
Two modes can be used: ‘alphanumeric’ and ‘signal’. The most widely used mode is
alphanumeric, this can be taken as the default in most gateways and H.323 phones.
The UII message in this mode can carry all numeric characters, ‘A’, ‘B’, ‘C’, ‘D’,
‘∗’ and ‘#’. In H.323v2, the UserInputIndication message was updated to also include
other information, such as the length and signal level of a tone, and synchronization
information with the RTP stream: this is the signal mode. Here is an extract of the
H.245 User Input Indication ASN.1 definition showing the added parameters:

UserInputIndication ::=CHOICE
{

nonStandard NonStandardParameter,
alphanumeric GeneralString,
...,
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userInputSupportIndication CHOICE
{

nonStandard NonStandardParameter,
basicString NULL,
iA5String NULL,
generalString NULL,

...
},
signal SEQUENCE
{

signalType IA5String (SIZE (1) ^ FROM
("0123456789#*ABCD!")),

duration INTEGER (1..65535) OPTIONAL, --
milliseconds

rtp SEQUENCE
{

timestamp INTEGER (0..4294967295)
OPTIONAL,

expirationTime INTEGER (0..4294967295)
OPTIONAL,

logicalChannelNumber LogicalChannelNumber,
...

} OPTIONAL,
...

},
signalUpdate SEQUENCE

{
duration INTEGER (1..65535), --

milliseconds
rtp SEQUENCE
{

logicalChannelNumber
LogicalChannelNumber,

...
} OPTIONAL,
...

}
}

• The ISDN ‘Keypad Facility’ Information Element, which can be included in the SETUP
or INFORMATION message. This is inherited from ISDN and used only in conjunction
with the overlapped sending call flow (see note in Section 2.2.1.1).

• More recently (i.e., since H.323v4), H.323 can also use RFC 2833 for DTMF signaling
(see Chapter 3 for details on RFC 2833); this requires H.245v7 and is an optional call
flow. RFC 2833 can be used in conjunction with UserInputIndication (in this case the
UserInputIndication message should have an rtpPayloadIndication flag). RFC 2833
also decodes the DTMF tone and includes it in a packet, but this time the packet is an
RTP packet, not a signaling link packet. RFC 2833 can encode many telephony events
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(e.g., ‘flash-hooks’), in addition to just DTMF tones. Note that RFC 2833 requires
implementations to be able to send the telephony events to a destination that may
not be the destination of the rest of the media streams. The inability to do so is
a serious bug, as it prevents any DTMF-driven application from being built with-
out accessing the media channel (e.g., a contact center). Unfortunately, this is a very
frequent bug.

• A special RTP logical channel can be opened to carry the RTP DTMF payload. This
payload is formatted as indicated in Figure 2.8. The unit used for the duration is the
same as the unit used for the timestamp. If a separate logical channel is opened the
sampling rate will be considered to be 8,000 Hz. For more details on RFC 2833, see
Chapter 3. This method had been proposed for H.323v2 by the VoIP Forum. This
was before H.245v7 was published. The original opening procedure was described
as follows: It is possible to insert a DTMF RTP packet in the same logical channel as
voice. In this case the payload type should be formed as follows to avoid confusion
with dynamic or fixed RTP PT (these should be less than 128): ‘chosen voice PT
(e.g., 8)’ ‘DTMF PT’ + 128. This PT should be used in the OpenLogicalChannel.
If the remote terminal doesn’t understand this meta-type, it means it doesn’t support
this method. This method should be scorned and replaced by the H.323v4 and H.245v7
procedure.

Overall, it seems that the User Input Indication method is preferred, since packet loss is
typically very small for signaling links on well-engineered networks, and very few IVRs
are sensitive to DTMF timing. In our various deployment experiences, this method always
worked correctly. However, for international calls with large round trip times and time-
sensitive IVR systems, it might prove necessary to use the second method. RFC 2833

Marker bit (beginning of a new event)

Timestamp of the beginning of the event

Event code

End bit

Reserved

Volume
(dBm0)

Duration
(timestamp unit)

RTP header RFC 2833 payload

Dynamic payload type

0 to 9 0 .. 9
* 10
# 11
A to D 12..15
Flash 16

Figure 2.8 RFC 2833 RTP packet format for DTMF transport.
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Terminal A: John

Audio channel(s)

Video channel(s)

Alias:John@domain1.com
Terminal B: Mark

Audio channel(s)

Video channel(s)

Alias:
Mark@domain2.com

RTP: UDP
RTCP: UDP 7771
RTCP: UDP

RTP: UDP 9344
RTCP: UDP
RTCP: UDP 9345

RTP flow from A to B

One or more flows in each direction!

RTCP SR

RTCP SRRTCP SRRTCP SRRTCP RR

Figure 2.9 RTP flows and associated RTCP receiver report and sender report messages.

implementations which are not capable of sending telephony events to an application
server should be avoided. In addition, gateways should be extremely careful to mute in-
band DTMF and convert it to an H.245 UserInputIndication or a special RTP payload
type, since simultaneous transmission of in-Band DTMF and the special H.245 or RTP
messages might cause the egress gateway to first render the RTP DTMF packet or H.245
UserInputIndication and then transmit the DTMF tone contained in the audio stream,
duplicating the original tone.

2.2.1.5 Fourth phase: dialogue

Now John and Mark can talk, and see each other if they have also opened video-
logical channels. The media data are sent in RTP packets as shown in Figure 2.9.

RTCP receiver reports (RRs) enable each endpoint to measure the quality of service
of the network: RTCP messages contain the fraction of packets that have been lost since
the last RR, the cumulative packet loss, the inter-arrival jitter and the highest sequence
number received. In theory, H.323 terminals should respond to increasing packet loss by
reducing the sending rate, possibly by changing the audio coder dynamically . . . but, in
practice, RTCP information is not used by most endpoints.

Note that H.323 mandates the use of only one RTP/RTCP port pair for each session.
There can be three main sessions between H.323 terminals: the audio session (session id
1), the video session (session id 2) and the data session (session id 3), but nothing in the
standard prevents a terminal from opening more sessions.

For each session there should be only one RTCP port used (i.e., if there are simulta-
neously RTP flows from A to B and from B to A, then the RTCP sender reports and
receiver reports for both flows will use the same UDP port).
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2.2.1.6 Clearing the call

How do we go about ending an H.323 call? Well, it is not that simple. If John hangs up,
terminal A must send an H.245 CloseLogicalChannel message for each logical channel
that A opened. B acknowledges those messages with a CloseLogicalChannelAck.

After all logical channels have been closed A sends an H.245 endSessionCommand,
waits until it has received the same message from B (B will also close all its media
channels before sending the endSessionCommand) and closes the H.245 control channel.

Finally, A and B must send an H.225 ReleaseComplete message over the call-signaling
channel if it is still opened, then close this H.225 channel. The call is now cleared.

Needless to say, many software endpoints are not so polite, and terminate rather than
close calls.

Note also that the call release sequence is different in ISDN. An ISDN endpoint releas-
ing a call would first send a DISCONNECT message, which would be acknowledged at
the other end by a RELEASE message, and the call would be over after the releasing
endpoint sends a RELEASE COMPLETE. H.323 takes a short cut approach and sends
only a RELEASE COMPLETE message.

In most cases this is fine, but this causes interoperability problems with the PSTN
when the PSTN, instead of just releasing the call, wants to send an audio message to
the caller first (this situation occurs frequently when calling mobile phones). An example
of such an announcement is ‘The party you are calling is currently not reachable on
the network’. In this case the ISDN DISCONNECT message may contain a ‘progress
indicator’ information element, with value 1 or 8 meaning that audio information is
being provided to the caller. After a timer value of about 30 s or if the calling party
hangs up before this timer, the calling party will send the RELEASE message to the
network. In H.323, in order to respect the standard, a possible solution is to convert
the DISCONNECT (progress indicator = 1 or 8) message into an H.323 PROGRESS
(same progress indicator value) message in the PSTN gateway, with a special indica-
tion that this is really a release indication and the call should not be maintained longer
than 30 s. This solution has been implemented in Cisco gateways, for instance (see
http://www.cisco.com/warp/public/788/voip/busytone.html for details). It is important to
signal in the PROGRESS message that this is really a DISCONNECT, in order to provide
the proper information to automated equipment that cannot interpret the in-band tone.

This progress indicator can also occur in other phases of the call, within the SETUP,
ALERTING, CALL PROCEEDING, PROGRESS, CONNECT messages, but for these
messages it does not cause problems because H.323 can transport it (these messages all
exist in H.323). The only caveat is to make sure, when testing H.323 gateways, that the
PI is properly supported. The PI can have the following values:

• Progress indicator = 1: the call is not end–end ISDN. Further call progress information
may be available in-band.

• Progress indicator = 2: destination address is non-ISDN. This may be found in PRO-
GRESS and CONNECT messages.

• Progress indicator = 3: origination address is non-ISDN. This is used in a SETUP
ISDN message to signal that the calling party device is expecting in-band messages.
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This is the case for most devices using analogue or CAS connections. A VoIP gateway
receiving an ISDN SETUP with PI = 3 should provide in-band ring-back, as the calling
device is unable to generate the ring-back locally.

• Progress indicator = 8: in-band information or an appropriate pattern is now available.

• No progress indicator in a message assumes that the originating device will provide
the appropriate tone signaling to the calling party.

The commonly used progress indicators are ‘1’ and ‘8’. A good test is to send a PRO-
GRESS message in state ‘alerting’ with the progress indicator = 8. The originating gate-
way should play the in-band audio and stop ringing. If a new PROGRESS message is
sent with no PI, since the state is ‘alerting’, local ring-back should be provided.

2.2.2 A more complex case: calling a public phone from
the Internet, using a gatekeeper

In the simple case described above, Mark called John directly on his current IP address
10.2.3.4. This situation is very convenient to show the basics of H.323, but very unlikely
to happen in reality. If nothing else, a plain IP address is very hard to remember. In many
cases it will even change—most ISPs allocate a dynamic IP address to their subscribers.

Our next example is more realistic: Mark now wants to call his grandmother, who only
owns a regular phone and doesn’t have the slightest idea of what an IP address is. This
example will show the need for a new H.323 entity, called the gatekeeper.

The gatekeeper is the most complex component of the H.323 framework. It was first
introduced in H.323v1, but at that time most people didn’t really understand how useful it
would be. At best, the gatekeeper was considered to be a sort of directory mapping friendly
names to IP addresses. Some companies found alternative ways of doing this: some now-
obsolete ‘H.323-compliant’ software and hardware used proprietary mechanisms ranging
from IRC servers to LDAP servers to find the transport address of another VoIP phone
or gateway.

H.323v2 has clarified the role of the gatekeeper, and now it is widely acknowledged
that the gatekeeper is responsible for most network-based services (i.e., services which
need to be performed independently of the terminal or when the terminal is turned off).
These services include registration (the ability to know that someone has logged on and
can be reached at a particular terminal, sometimes called ‘presence’), admission (checking
the right to access resources), and status (monitoring the availability of telephone-related
network resources, such as gateways and terminals). Finding the transport address to use
to reach a particular alias is naturally also part of the gatekeeper’s role, since this transport
address might depend on the status of the called party (e.g., if the person is not logged
on, the call should be redirected to an answering machine or a regular phone through a
gateway), the identity of the caller (not everybody might be allowed to call Mark, such as
in the case of a do-not-disturb service), or the status of a particular resource (if all ports
on a gateway are busy, then it might be necessary to use another gateway). Therefore,
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the gatekeeper is also in charge of routing all VoIP calls in the H.323 network, and the
implementation of services like call forward on no answer.

The set of all H.323 endpoints, conference servers (MCUs) or gateways managed by a
single gatekeeper is called a zone. In our example John’s terminal and the gateway belong
to the same zone.

In this section 2.2.2 we consider that the caller has access to a gatekeeper, and show
some of the gatekeeper features in action. The terminal and the gatekeeper use a specific
protocol for registration, admission, and status purposes, which has logically been named
RAS. This protocol is also defined in H.225.0.

2.2.2.1 Locating the gatekeeper

In simple configurations, the gatekeeper’s IP address might simply be configured man-
ually or automatically in the VoIP terminal. This is the most frequent case in real-life
H.323 networks. This IP address is usually acquired when the VoIP endpoint boots: it
first acquires an IP address and basic configuration parameters through the Dynamic Host
Configuration Protocol (DHCP), one of the configuration parameters is the name of a
TFTP server and a configuration file. The endpoint then downloads a configuration file
using the TFTP protocol, which specifies, among other parameters, the address of a gate-
keeper (and most of the time, a back-up gatekeeper). If such a configuration mechanism
cannot be used or is not suitable, H.323 has developed a mechanism to dynamically find a
gatekeeper on the network. This has a number of advantages (e.g., when someone has got
a laptop and roams between several office locations). This mechanism also provides a way
to introduce redundancy and load balancing between several gatekeepers in the network.

In order to find a gatekeeper, a H.323 terminal should send a multicast Gatekeeper
Request (GRQ) to the group address 224.0.1.41 on UDP port 1718 (for more information
on multicast, see companion book, Beyond VoIP Protocols). Within the GRQ message,
it can specify whether it is willing to contact a particular gatekeeper. The terminal also
mentions its aliases, allowing a gatekeeper to reply only to specific groups of terminals.
Eventually, a GRQ can also be sent in unicast to port 1718, or preferably 1719, this is the
default for unicast RAS messages, but obviously in this case the endpoint should know
the possible gatekeeper IP addresses in advance.

The GRQ message should be sent with a very low TTL (time to live) initially in order
to reach the gatekeepers on the local network first, and then use expanding ring search
(Figure 2.10). This GRQ message tells the GK on what address and port the terminal
expects to receive the answer, which type of terminal it is and what the terminal alias(es)
is (are).

Each gatekeeper should be a member of group 224.0.1.41 and listen on port 1718.
Therefore, one or more of these gatekeepers will reply on the address specified by the
terminal with a Gatekeeper Confirm (GCF) message which indicates the name of the
gatekeeper, and the unicast address and port that this gatekeeper uses for RAS messages.
It can also include the names and transport information of other back-up gatekeepers.

The use of multicast for gatekeeper discovery has raised much controversy. In fact, not
many IP networks support multicast today. Multicast routing is not activated by default on
routers, and many network administrators feel comfortable with static routes and are not
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GRQ will cross this router 
only if its TTL > 1

External GK

Local GK

GRQ sent using multicast

Figure 2.10 Locating the gatekeeper using multicast GRQ messages.

really willing to experiment with a dynamic multicast routing protocol, such as DVMRP
or PIM. Moreover, many of the Ethernet hubs and switches installed today still do not
support multicast—sometimes some of these devices turn multicast into broadcast traffic.
Ironically, if you are still using an old Ethernet coax network, multicast will work on your
LAN segment and you don’t have to do anything. Obviously, the most recent switches
support multicast too (see the multicast section of the companion book, Beyond VoIP
Protocols to see what it means exactly), so if you upgraded your network recently it
is very likely that multicast will work on your LAN too! Multicast capability is a key
requirement if you plan on buying a new switch for your organization LAN. In the near
future, all switches will support multicast, and if you plan to support videoconferencing
and video broadcasting efficiently across your IP network beyond the LAN, you will also
have to turn on some multicast protocol in your routers.

2.2.2.2 Registration

If it received more than one answer from a gatekeeper in the discovery process, the
terminal chooses one and registers this with the selected gatekeeper by sending a unicast
Registration Request (RRQ) message (usually on UDP port 1719). This message carries
an important additional piece of information compared with GRQ: the transport address
which is to be used for call signaling. The registration can be ‘soft state’ if the terminal so
desires, in which case it also specifies a time to live for the registration and will refresh
its registration periodically by sending more RRQs, also called lightweight RRQs or
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keep-alive RRQs. These RRQs have a special parameter ‘keepAlive’ set and do not
include the full registration information.

The gatekeeper replies with a Registration Confirm (RCF) message in which the gate-
keeper assigns a unique identifier to this terminal which must be copied in all subsequent
RAS messages. The GK can also assign an alias to the requesting endpoint in this RCF.
Whether or not the terminal chose to use the ‘keepAlive’ registration, the gatekeeper can
also request keepAlive RRQs by specifying a maximum time to live in its response.

Since the advent of H.323v4 it is also possible to use additive registrations, in order
to register many aliases which would not fit in a single RRQ message (this can be used
by IP-PBXs when registering many extensions to a core network). Such RRQs have a
specific ‘additiveRegistration’ flag. They are also acknowledged by an RCF.

2.2.2.3 Requesting permission to make a new call

Now that John’s terminal has found a gatekeeper and is registered, John still needs to
request a permission from the gatekeeper for each call he wants to make. In this case he
wants to reach his grandma at +33 123456789.

His terminal will first send an Admission Request (ARQ) message to its gatekeeper.
The ARQ message includes:

• A sequential number.

• The GK-assigned terminal identifier.

• The type of call (point to point).

• The call model that the terminal is willing to use (direct or gatekeeper-routed—see
Section 2.2.2.2).

• The destination information (in this case the E.164 address +33 123456789 of grandma,
but it could also have been Mark’s email alias). Note that we used ‘+’ to denote
the country code, but this character is not transported in the ARQ message. In real-
ity John would probably use the local dialing convention, and not a full number in
international format.

• A Call Reference Value (CRV), which should be copied in the SETUP message.

• A globally unique CallID.

• An estimation of the bidirectional bandwidth that will be used for this call for media
streams. This includes audio and video that will be sent from the called party and
is measured excluding network overhead. This is a very rough estimation in most
cases, since the codecs will be negotiated later. For instance, an audio-only terminal
might indicate 128 kbit/s as a worst case if the two terminals negotiate a G.711 codec
(64 kbit/s) for the incoming and outgoing audio logical channels. The endpoint may
use Bandwidth Request (BRQ) messages later to ask for additional bandwidth (e.g.,
if it needs to open video channels).

The two possible call models refer to the way the call-signaling channel (carrying Q.931
messages) and the H.245 channel are set up between the endpoints. The calling endpoint
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can establish these channels directly with the called endpoint (the direct mode), or it can
establish these channels with the gatekeeper which will relay the call-signaling and call
control information to the called endpoint (there might be several gatekeepers routing the
Q.931 and H.245 channels between the two endpoints). The later mode is the gatekeeper
routed mode.

In this example we will use the direct model; we will discuss the GK-routed mode
later. As we will see, the GK-routed mode is much more powerful and is the only model
that works in carrier-class deployments.

If it decides to accept the call, the gatekeeper replies with an AdmissionConfirm (ACF)
message which specifies:

• The call model to use (regardless of what was previously indicated by the calling
endpoint)

• The transport address and port to use for Q.931 call signaling. This address can be the
IP address of the called terminal directly (or the IP address of a gateway when calling
a regular phone number) in the direct model, or it might be the gatekeeper itself if it
decides to route the call. In our example the gatekeeper replies with the IP address of
a gateway.

• The allowed bandwidth for the call.

• The GK can also request the terminal to send IRR (Information Request) messages
from time to time to check whether the endpoint is still alive.

Note that this admission phase is really redundant if the gatekeeper wishes to use the routed
mode, because the gatekeeper keeps full control of the call in routed mode. In H.323v2,
the admission phase using ARQ/ACF messages can be skipped if the gatekeeper grants the
preGrantedARQ right to the endpoint during the registration phase (see Section 2.3.6).

2.2.2.4 Call signaling

The Admission Confirm message has provided John’s terminal with the information it
needed to complete the call (Figure 2.11). Now the terminal can establish a call-signaling
connection to the call-signaling address and port specified by the gatekeeper, in our case
a gateway to the phone network, and send a Q.931 SETUP message. Before proceeding,
the gateway may itself be required to ask the gatekeeper if it is authorized to place the
call using and ARQ/ACF sequence. The ARQ will mention both the calling endpoint
alias/call-signaling address and the called endpoint alias/call-signaling address, and a
field indicating that this is an ARQ related to the termination of a call. In this receive
side ARQ, the CRV (Call Reference Value) will be locally generated and, therefore, will
differ from the CRV of the calling side ARQ. But the CallID should be copied from the
SETUP message.

The gateway knows from the called party number information element of the H.323
SETUP message which phone number it must call. If it is connected to an ISDN phone
line, it will simply send an ISDN Q.931 SETUP message on the D channel to initiate
the connection on the ISDN. If it is connected to an analog line, it will go off-hook and
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GK GW
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+33 12345678, ...)
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SETUP (number = +33 12345678)

Figure 2.11 Direct mode call authorized by the gatekeeper.

dial the number using DTMF. If it is sending the call to an SS7 ISUP network, it will
convert the SETUP message to an ISUP Initial Address Message (IAM). Note that the
format of the phone number may need to be changed (e.g., the country code may need
to be removed). In the direct mode, this needs to be done by the gateway, whereas in the
routed mode this would typically be done by the gatekeeper, centralizing the numbering
plan and routing management.

The gateway will send an H.225 ALERTING message to the caller as soon as it has
received an indication from the phone network that Grandma’s phone is ringing, and send
the CONNECT message as soon as she has picked up the handset. If the gateway was
connected through an ISDN line, these events will be signaled by the phone network
using similar Q.931 ALERTING and CONNECT messages. If it is an analog line, the
gateway needs to detect the appropriate ring/busy/connect conditions.

The ALERTING or CONNECT message contains a transport address to allow John’s
terminal to establish an H.245 control channel on which it can negotiate codecs and
open media channels. This procedure is identical to the procedure used above when John
was calling Mark. The media channels are then opened between the gateway and John’s
terminal as in the previous example.

2.2.2.5 Termination phase

Whoever hangs up (e.g., the gateway in Figure 2.12) first needs to close its logical chan-
nels using the H.245 CloseLogicalChannel message. The gateway then sends an H.245
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Figure 2.12 Call released at H.245 and H.225 level (Q.931 and RAS).

endSessionCommand message to John’s terminal and waits to receive the same message
from John’s terminal. The gateway then closes the H.245 channel. If the Q.931 channel
is still open, each terminal must send a Q.931 ReleaseComplete message before closing
it, then the terminal and the gateway must send a Disengage Request (DRQ) message
to the gatekeeper, enabling the gatekeeper to know that the call and associated network
resources have been released. The gatekeeper replies to each with a Disengage Confirm
(DCF). At this stage, if the terminal or the gateway had been sending IRR messages to
the gatekeeper, they must stop.

If there is more than one gatekeeper and the gateway and the terminal are registered
to different gatekeepers, each one sends a DRQ to its own gatekeeper.

The terminal or the gateway have no reason to unregister (done by sending an Unre-
gistrationRequest or URQ to the gatekeeper), unless, for instance, John decides to close
his IP telephony software. A terminal should remain registered as long as it can make or
receive calls.

If during the communication the gatekeeper wants to clear the call it can also send a
DRQ to one or both endpoints. On receiving the DRQ the endpoint must send an H.245
endSessionCommand to the other endpoint, wait to receive an endSession command,
close the Q.931 channel with a release complete, and send a DCF to the gatekeeper. Of
course, this is dependent on the endpoint implementation and cannot be used reliably for
applications like prepaid calls if at least one side of the call is not a trusted device. For such
applications, if the endpoints are not fully trusted, the routed call model must be used.
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In order to prevent a terminal from pretending it is closing a connection with a gate-
way without sending an endSessionCommand/release complete to the gateway, when a
gatekeeper receives a DRQ from the terminal, it will wait until it has received a DRQ
from the gateway before replying with a DCF. If the gatekeeper receives a DRQ from the
gateway (as in our example), it will wait until it has received a DRQ from the terminal
before sending a DCF to the gateway. In case the gatekeeper doesn’t receive a DRQ
from the terminal within a few seconds, it will ask the terminal to disconnect by sending
a DRQ. The terminal is supposed to disconnect and send back a DCF, but if it doesn’t
within a few seconds (the PC might have crashed), the gatekeeper will send a DCF to the
gateway anyhow. This procedure minimizes fraud and unwanted operation due to unstable
or non-conformant terminals, but the routed mode is still more reliable.

In the direct mode, Call Detail Records must be generated by the gateways, the RAS
information available at the gatekeeper level is not accurate enough for most purposes.
For instance, it does not have access to the call release causes (a Q850 release code
is provided by the network for each released call, specifying the reason for dropping
the call: normal clearing, network congestion, user busy, switch failure, etc.). Also, the
timing information is loosely coupled with the timing of the actual call release, and the
start and stop information are available at different machines in the case of a network with
multiple gatekeepers. This makes gatekeeper-level accounting records approximate at best.
In real-life deployments with multi-gatekeeper networks, where unfortunately gateways
or routers sometimes crash or show unexpected behaviour, the direct mode also makes it
quite difficult to detect so-called ‘zombie calls’, calls that for some reason remain active
in the network, out of control, for days or months.

All these issues are resolved by using the more complex gatekeeper-routed mode.

2.2.3 The gatekeeper-routed model

Initially, virtually all gatekeeper implementations were using the direct call model. This
model, where the gatekeeper is used really only as a sort of directory, seems very attractive
at first glance:

• Very simple implementation, very few messages must be supported.

• The implementation can be made almost stateless if the accounting functions are exter-
nal.

• The established calls are not affected if the gatekeeper fails.

• And, more importantly for marketing purposes, since the gatekeeper really does not
do much, the manufacturer can claim the great performance figure of several hundred
calls per second!

The direct gatekeeper model is still very important today, not only because most vendors
still publish their performance in direct mode (without mentioning it most of the time),
but also because the majority of H.323 networks worldwide still use direct mode routing.
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The situation is changing rapidly, however, because in fact the direct model has many
shortcomings that do not allow VoIP networks to get to the same level of quality of
service as traditional TDM networks. In any case, direct mode remains acceptable for
enterprise networks.

2.2.3.1 Major issues of the direct mode

2.2.3.1.1 Poor termination rates
In direct mode, the calling endpoint and the called endpoint communicate directly with
one another, once the IP address of the called endpoint has been discovered. This is fine as
long as the call succeeds. But if the first attempt to terminate the call fails (Figure 2.13),
then the call is released.

A call attempt can fail for many reasons:

• Instability of gateways, resulting in their unavailability when the call arrives.

• Congestion of gateway resources.

• Congestion somewhere in the terminating PSTN network (as shown in Figure 2.13).

In the same situation, if a traditional TDM network had been used, then one of the
class 4 central offices of the service provider in the path of the call would have detected
the failure by analysing the Q.850 release cause included in the ISDN or SS7 release
message. It would not have released the call on the calling side, but would have rerouted
the terminating leg to other trunks. It is only in the unlikely situation where no trunk in
the network can terminate the call that the call would have been released; and, even then,
instead of just dropping the call, the call would have been routed to an announcement

Originating
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Direct mode
GK Terminating

gateway

Third-party
PSTN
network

PSTN CO
ARQ 123456789
ACF @TGW
SETUP 123456789

SETUP 123456789
RELEASE (congestion)
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The call is lost!
But other PSTN parners may have been able

to complete the call.
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Note that RAI message doesn't help 
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Figure 2.13 Direct mode gatekeeper cannot improve call termination rates.
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server explaining to the calling party that a temporary failure is occurring. Such a situation
would also generate alarms at the service provider supervision center, and someone would
verify the network dimensioning.

By comparison, the direct model in VoIP is not only very poor, it is in fact completely
unacceptable as soon as some real traffic is carried. Many VoIP networks started by just
providing low-quality prepaid termination, a market segment not particularly noted for its
quality of service. But, as soon as the traffic started to diversify, many service providers
were faced with complaints from users that the termination rate was poor. In fact, this poor
termination rate quickly become a show-stopper because it provided traffic termination
for professional users, one of the most profitable segments of the market.

2.2.3.1.2 Attempts to improve the direct model: Resource Availability
Indicators (RAIs)

Since the routed model is significantly more complex than the direct model, the initial
response of the H.323 developer community to the poor performance of the direct mode
was to attempt to avoid some of the causes for failed calls. For this purpose, the new RAI
(Resource Availability Indicator) was introduced. The goal of this message was to let the
gatekeeper know when a gateway was becoming congested. Above a certain threshold,
the gateway will indicate to the gatekeeper that it is ‘almost out of resources’, and the
direct mode gatekeeper is expected to divert traffic to other termination gateways.

This seems a good fix at first glance, but does it really solve the problem? Unfortunately,
it doesn’t:

• As we have just seen, most of the congestion situations occur in the PSTN, not locally
at the gateway. For some destinations where the telephone network is not well devel-
oped the congestion rate can be as high as 50%! Also, some niche service providers
specialized in low-cost termination have a poor quality of service. In order to save an
termination fees, it is nice to be able to route traffic to them, but only if failures can
be recovered by routing calls to alternative service providers in the event of a failure.
Obviously, the RAI message only monitors resources at the gateway level and does not
help for PSTN congestion.

• The RAI doesn’t really help either for gateway congestion. Let’s take two extreme
situations: if the gateway average usage level is very low, say 50%, the RAI threshold
level can be put very low (60%), despite obviously not needing the RAI to avoid gate-
way congestion. On the other hand, if the gateway usage rate is very high (a desirable
situation given the cost of gateways), say 95%, then RAI on–off thresholds will be
very high (e.g., 95% RAI ‘OK’ and 98% for RAI ‘out of resources’). Unfortunately,
a race situation occurs between RAI messages and the incoming calls from the PSTN.
As each gateway has few T1/E1 ports, there will be an average of about two new call
events and two call release events per second, when the difference between the two RAI
thresholds represents only about four calls. This means that the RAI will continually
change status, and the RAI status may be obsolete as soon as it is sent to the gatekeeper,
if new calls arrive. Therefore, the RAI improves the situation only in networks where
gateway usage is not above 80%, which is not very good from a capital utilization
perspective. If you have a low-cost service provider where you make a margin of a
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fraction of a cent a minute, and an alternative service provider where your margin may
be negative, you really want the gateway to the low-cost service provider to be used
at 100% capacity at all times!

• The RAI is an RAS message that is not routed if there are multiple gatekeepers;
therefore, it is only useful at the last hop (last gatekeeper). But in many situations you
would like rerouting to occur before the last hop.

• As a consequence of the previous limitation, the RAI doesn’t work across administrative
boundaries. If you are exchanging traffic with another VoIP service provider, it is almost
certain that the other service provider will have its own gatekeeper, and you will not
receive any RAI indication.

Less importantly, RAI is an H.323-only message with no SIP equivalent. If you deploy a
mixed H.323/SIP network you will end up with a management of resources that is different
between H.323 and SIP devices, which can quickly lead to some serious headaches; and,
if you plan to migrate from H.323 to SIP, you will have to completely redesign network
routing and congestion management.

If you have no other choice, you can use RAI when you can, but you should not expect
major improvements of your network quality. RAI only works in marginal cases. As we
will see in the coming paragraphs, the real solution to the issue is nothing new; it is the
same solution as used on current TDM networks: full routing of the signaling messages
by the switches (not the media streams in the case of VoIP), analysis of the Q.850 release
codes which are also present in H.323 (and have SIP equivalents), and dynamic rerouting
of calls.

2.2.3.1.3 Centralized routing
Although most gateways have some internal call-routing logic, using these capabilities
quickly becomes very hard to manage as the number of gateways increases. A network of
five gateways will need at least five routes to be configured on five gateways, a network
of 100 gateways will need 100 routes on 100 gateways. Entering these 10,000 routes is
a daunting task for a network manager.

Using a direct mode gatekeeper to control the routing of calls significantly simplifies
the management process, but is still not ideal:

• Most gateway internal routing engines can fall back from one destination gateway to
another in the case of congestion on other cause of call failure. This feature disappears
when using the direct mode gatekeeper, possibly resulting in a reduced perceived quality
of service by network users.

• Centralized routing really covers two tasks: selecting the proper destination, and chang-
ing the format of call aliases. A call initiated in San Jose, California to +1 212 xxx
xxxx must be rewritten as a call to xxx xxxx if the destination gateway is in New York.
Similar changes must be made to the calling party number. The direct mode gatekeeper
can manipulate the destination alias with the CanMapAlias feature of H.323, but very
few gateway vendors support it. In addition, the source alias cannot be changed. As
a consequence, it is fair to say that as soon as the service becomes complex, with
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multiple vendors, or requires manipulation of the calling party number (if the number
presentation service is required), with the direct model the alias format management
must remain distributed at gateway level (all gateways must convert local alias formats
to/from an agreed network-wide ‘pivot’ format).

2.2.3.1.4 Centralized accounting

Another frequent issue faced by service providers is the management of accounting infor-
mation. In first-generation VoIP networks, the accounting information was generated by
the edge gateways. It was either collected by batch processes by a central accounting
function, or sent in real time by gateways using protocols, such as Radius.

While this works well for closed VoIP networks built from a single vendor, it becomes
problematic if:

• The network is open to partners (clearing houses, termination partners, etc.) who do
not provide access to their gateways.

• The network is open to customers (IP-PBXs, ASPs, etc.), who obviously cannot be
trusted for billing information.

• The network uses multiple vendors, each having its own format for CDRs (Radius is
only the transport protocol, the actual accounting information is always proprietary to
each vendor).

A direct mode gatekeeper has only limited access to call information: it knows approxi-
mately the timing of the call start by using the ARQ messages and the timing of the call
stop through the DRQ message. It does not know the call release causes (Q.850). Obvi-
ously, if the network involves multiple direct mode gatekeepers, this model also becomes
complex because part of the RAS information is provided to different gatekeepers. It also
does not work if the edge devices cannot be trusted (they could potentially send DRQ
messages while continuing a conversation). These limitations do not allow the direct mode
gatekeeper to be a reliable device to generate accounting records centrally in a network.

2.2.3.1.5 Security issues

The last issue of the direct mode in an open network relates to security. Since the direct
mode gatekeeper lets endpoints exchange signaling directly, any endpoint on the network
can learn the IP addresses of other devices (this in itself is not a security problem), but
more importantly can send signaling at any moment to any endpoint. This makes denial-
of-service attacks trivial. Because of this, VoIP networks using direct mode gatekeepers
cannot be opened up to third parties. They cannot be used to connect IP-PBXs and cannot
send traffic directly to other VoIP networks. In fact, today, as routed mode gatekeepers
are still relatively new, the major VoIP clearing houses still interconnect their various
partners through traditional TDM central offices!
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2.2.3.2 The gatekeeper-routed model

A gatekeeper using the routed model handles all call-signaling information and does not
let endpoints establish calls directly. Some gatekeepers can be configured to use the routed
model or the direct model on a per-route basis.

The routed model is exactly identical to the way traditional TDM switches handle
phone calls, with one exception: when using the routed model, the media streams are still
exchanged directly by endpoints. The routed model provides all the advantages of full
class 4 routing (ability to analyse release causes, reroute calls, better security), while still
not requiring dedicated telecom hardware since no TDM switching matrix is required.
Because of this the density- and hardware-related cost of softswitches is far better than
their TDM counterparts.

All the issues described above for the direct mode are solved:

• Congestion, whether at the gateway level or anywhere in the PSTN network, is detected
by analysing the Q.850 release cause. The call can be dynamically rerouted to other
termination routes (Figure 2.14). This works regardless of the number of softswitches
and across administrative boundaries (clearing houses or terminating VoIP partners can
be used). Since the calls are rerouted dynamically in the event of congestion, the least
costly routes can be used at 100% capacity without affecting the perceived quality of
service of the network. With a routed mode gatekeeper, the failure rate perceived by
call sources is equal to the product of the failure rates of all termination routes for
a given destination. If the network has two partners each experiencing a 50% failure
rate to a country, the perceived failure rate seen by service provider customers is only
25% (compared with 50% in the direct model). This drops to a 13% perceived call
loss with three partners each losing half of the calls. If the routed mode gatekeeper has
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gateway 1... 2

PSTN CO

Third-party
PSTN
network

Now the call is properly completed.
True class IV resolves network congestion cases, both

in the VoIP network and in the PSTN.
This allows to peer with less reliable PSTN partners, but

still offer the best call completion rates
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50%

Perceived
network
failure
rate
25%
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SETUP 123456789
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Figure 2.14 The gatekeeper can interpret Q.850 release causes and redirect the call as
appropriate on the fly.
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the least costly routing features, a low-cost partner route losing 20% of the calls can
be used at 100% capacity, while a high-cost partner losing only one call in a thousand
can be used only in the event a call is dropped by the low-cost partner. This optimizes
costs, while still providing a perceived call failure rate of less than one in a thousand to
service provider customers. Note that with this model gateways do not need to support
the RAI feature. In fact, the RAI message becomes completely useless with a routed
mode gatekeeper.

• If calls cannot be completed due to congestion or any other reasons, they can be
routed to a network announcement server (simply defined as the last-resort route for
all destinations), terminating calls gracefully rather than just dropping them.

• Centralized routing now handles properly not only the selection of the proper destina-
tion, but also the conversion of alias formats. The gateways only need to support the
basic H.323 call flow, with no local logic for routing or the manipulation of call aliases.
Everything is provisioned centrally in the routed mode gatekeeper-routing engine. Since
both the source and the destination alias can be manipulated, the calling line ID fea-
tures can be provided. The routed mode gatekeeper has complete access to the alias
information, which also contains the caller ID blocking status (Q.931 octet 3A): it can
provide caller ID blocking for certain routes (e.g., international routes to ensure pri-
vacy), and caller ID forced delivery for emergency calls. The routed mode also enables
more sophisticated features (e.g., virtual private networks) if the gatekeeper can trans-
late between private and public numbering plans. This does not require any capability
at the endpoints besides support for an H.323 basic call and can be provided to any
endpoint, including IP phones or IP-PBXs.

• Centralized accounting information can be provided by the routed mode gatekeeper. The
gatekeeper now has access to all signaling information including call release causes.
Gateway-level accounting features can be disabled. The endpoints do not need to be
trusted, as the gatekeeper can provide reliable accounting for IP-PBXs or simple IP
phones. This enables service providers to provide VoIP business trunking services,
replacing traditional E1/T1 lines connected to PBXs with VoIP-enabled broadband
connections. With such a service, IP-PBXs do not need a local PSTN gateway in
the customer premises: the service provider routed mode gatekeeper is defined as the
default route and appears as a regular gateway to the IP-PBX. The only requirement is
that the IP-PBX should support H.323 connections toward the public network, but this
is the case of most IP-PBXs on the market today.

• Connectivity with third-party networks and customers is secured because the signaling
is relayed by the routed mode gatekeeper. It may be useful to use a dedicated gate-
keeper for connections with third parties. If it is attacked, the worst that can happen
is that connectivity with those partners may be lost, but the rest of the network is not
compromised. Note that media streams (RTP) can still flow directly between partners.
With proper access lists on edge routers (RTP filters, UDP ports above 1024 only,
anti-spoofing filters), this is secure. Some firewall vendors recommend relaying media
streams on dedicated devices in core networks; this is very costly, degrades quality of
service (added delays), and affects IP network design (tromboning is introduced). These
techniques should be reserved for very specific situations (e.g., clearing houses wanting



86 IP TELEPHONY

to hide the identity of their partners, or when there are incompatible IP-addressing plans
that need to be converted).

Besides resolving all the issues that cannot be addressed with direct mode gatekeepers,
routed mode gatekeepers offer many more possibilities. For instance, they can act as
multiprotocol softswitches acting both as an H.323 routed mode gatekeeper and as a SIP
proxy with access to enough information to convert between signaling protocols (e.g.,
H.323 and SIP). Note that this requires SIP to support true out-of-band DTMF signaling
though INFO or NOTIFY messages (major SIP gateway vendors already support these
messages, but support in IP phones is still scarce).

2.2.4 H.323 calls across multiple zones or administrative
domains

As the initial title of H.323 implied, the first version of H.323 did not consider issues that
would occur in a wide area environment. It was more or less assumed that the gatekeeper
would get a complete view of the network and would be controlling all endpoints and
gateways. In this context there was not much effort spent on defining the call flows to be
used if the network was controlled by multiple gatekeepers or if multiple VoIP networks
were connected. The VoIP industry had to solve this issue very quickly because real VoIP
networks required multiple gatekeepers to scale . . . and soon a de facto inter-gatekeeper
call flow emerged. Without much prior debates in standard bodies.

As we discussed in Section 2.2.3.2, most VoIP networks today still use direct mode
gatekeepers. In order to be compatible with direct mode gatekeepers, the de facto inter-
gatekeeper call flow uses the Location Request (LRQ) RAS message. It is probably not
the optimal choice: using the ARQ/DRQ message would have facilitated the correlation
between the RAS messages exchanged between direct mode gatekeepers and the Q.931
messages exchanged between endpoints (SETUP, CONNECT, etc.). But this call flow is
so widely deployed today that the usage of the LRQ message is not likely to change.
What is happening instead is that most vendors are adding (in a proprietary way, within
the H.323 extension tokens) the information that is missing in LRQ messages, notably
the call identifier: all messages used in H.323 can easily be extended.

Between routed mode gatekeepers, the most efficient call flow is to simply forward
Q.931 messages between gatekeepers. This is identical to the call flow used between
class 4 central offices in the TDM networks. RAS messages are unnecessary, but can be
used if desired: some routed mode gatekeepers will send a Q.931 SETUP message directly
to the next hop gatekeepers (this assumes the prior knowledge that the next hop gatekeeper
is also a routed mode gatekeeper), and some will begin by sending an LRQ message, in
case the next hop gatekeeper is using direct mode only and cannot handle Q.931.

2.2.4.1 Direct call model

2.2.4.1.1 Call set-up
In the direct call model, only RAS messages are routed by the gatekeepers. Now, John
wants to call his grandma using a gateway managed by a service provider, Cybercall. The
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service provider has its own gatekeepers. Therefore, John’s terminal and the gateway will
be located in different zones. John’s terminal will register to his own gatekeeper and the
gateway will be registered to the service provider’s gatekeeper.

When John became a customer of Cybercall, his gatekeeper IP address was configured in
the routing tables of Cybercall’s gatekeeper, and vice versa. Therefore, these gatekeepers
know about each other. Security is usually based on identifying the IP addresses of both
gatekeepers, but can be enhanced by adding security tokens in LRQ messages.

The admission request is sent by John’s terminal to the gatekeeper to which it has
registered (Figure 2.15). This gatekeeper knows that all calls to the PSTN are handled by
Cybercall. Therefore, it sends a Location Request (LRQ) to the gatekeeper of Cybercall,
the LRQ message queries the Cybercall gatekeeper for a next hop IP address where the
Q.931 signaling can be sent for a specific destination. Because the LRQ comes from a
gatekeeper that is known, and assuming John is authorized to make the call, Cybercall’s
gatekeeper will accept it and returns a Location Confirm (LCF) to John’s gatekeeper. The
LCF message contains the IP address of the gateway where John’s terminal should send
the SETUP message. John’s gatekeeper has still not replied to the initial ARQ, because
it did not have enough information to do so. Now, with the IP address contained in the
LCF, the gatekeeper knows where the call should be routed and sends this information
to John’s terminal in an ACF. If this is taking too long, the gatekeeper can send Request
In Progress (RIP) messages to John’s terminal to prevent any timeout that could cause
John’s terminal to reject the call or resend an ARQ.
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10.1.2.3

ARQ(number =
+33 12345678)

CONNECT

SETUP (number = +33 12345678, token)

ALERTING

LRQ(number =
+33 12345678)

GK

LCF(call. Sig. =
10.1.2.3:1720, token)

ACF(call. Sig. =
10.1.2.3:1720, token)

John’s zone Cybercall’s zone

ARQ(number =
+33 12345678, token)

ACF

Figure 2.15 Direct call model across two domains, using LRQ/LCF messages.
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Cybercall can also include a token in the LCF. A token is an optional parameter that
consists of a ‘bag of bits’. Unless it knows of this specific token, an H.323 entity should
simply pass it along transparently. Here, the token serves as a secret which will be copied
by John’s terminal in the SETUP message. Cybercall’s gatekeeper has put in this token
a digital signature of some important aspects of the call, such as the destination and
the current time. When it receives a SETUP message including this token, the gateway
can now verify that the call has been previously authorized by the gatekeeper. However,
Cybercall, in order to centralize security management, has not given the gateway enough
information to decode and verify the token locally. The gateway will simply pass this
token to the gatekeeper in the receive side ARQ, Cybercall’s gatekeeper will check it,
and return an ACF if the token is correct. Otherwise, the call would be rejected with an
ARJ (Admission Reject) message, and the gateway would release the call with a Q.931
RELEASE COMPLETE message.

When it receives the ACF, the gateway will set up the call on the PSTN side and send
a CONNECT message to John as soon as Grandma picks up the phone.

John then establishes the H.245 control channel to the gateway using the address and
port specified by the gateway in the CONNECT message. Then, logical channels are
established using OpenLogicalChannel messages, and John can talk.

2.2.4.1.2 Call tear-down
This time (Figure 2.16) if Grandma hangs up first, the gateway will send an EndSession-
Command and RELEASE COMPLETE message to John’s terminal, as described in the

GK GW

RELEASE COMPLETE

GK

John’s zone Cybercall’s zone

DRQ

DCF

DRQ

DCF

EndSessionCommand

EndSessionCommand

Figure 2.16 Call released end to end at H.245 and Q.931 level, locally at RAS level.
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first H.323 examples. Then, the gateway sends a DRQ message to Cybercall’s gatekeeper,
and John’s terminal sends a DRQ message to its own gatekeeper. Note that because the
LRQ message exchanged between the two direct mode gatekeepers is a stateless query
message, no message is exchanged between the direct mode gatekeepers when the call
is released. This illustrates the problem arising from the use of the LRQ message, as
opposed to the ARQ and DRQ, for inter-gatekeeper communications.

2.2.4.2 Gatekeeper-routed model

There are many reasons that Cybercall would like to have finer control over John’s
communication. With the direct model, Cybercall doesn’t know what occurs during the
call (e.g., if grandma’s phone is busy Cybercall’s gatekeeper will see it simply as a very
short call). This forces Cybercall to do all accounting at the gateway level, which may
be a pain if the Cybercall domain has several dozens of gateways. Cybercall may also
want to protect its domain and prevent John from potentially initiating denial-of-service
attacks on the gateways; signaling ports. This is impossible to do using the direct model.

These are just a few of the reasons the gatekeeper-routed model—or a mixture of direct
and gatekeeper-routed model—will be preferred in most situations where the network
involves several administrative domains.

2.2.4.2.1 Call set-up
In the example shown in Figure 2.17, Cybercall’s gatekeeper decides to route the call
by putting its own IP address (10.1.2.2) in the LCF call-signaling address (as we saw
in Section 2.2.2.3, this call flow can be optimized using the preGrantedARQ proce-
dure). John’s gatekeeper also decides to route the call by putting its own IP address
in the ACF call-signaling address. But John’s gatekeeper could also have used the
direct model by copying the call-signaling address provided in Cybercall’s LCF in its
own ACF: in this case John’s terminal would have sent the set-up message directly
to Cybercall’s gatekeeper, this would be a call using a mixed model. If John’s gate-
keeper knows in advance that Cybercall is always using the routed model, then the
LRQ is unnecessary and a direct SETUP can be sent to Cybercall’s gatekeeper IP
address.

You probably remember that one of the most important information elements of the
ALERTING or CONNECT message is the H.245 call control channel address that John’s
terminal must use to establish the call control channel. Here, the H.245 channel will
also be routed because both Cybercall’s and John’s gatekeepers have put their own IP
addresses in the call control transport address field of the ALERTING message. It is also
possible to route the Q.931 messages but let the H.245 control channel be established
directly between the endpoints.

What about the media channels? They could be routed too, but there would be very little
to gain from doing so, since all the significant events of the call are signaled using H.245
or Q.931 messages.2 But unless there is a very specific need to do so, media channels

2 An exception could be fax, because the entire T.30 protocol is encapsulated in a media channel;
therefore, the gatekeeper needs to have access to the media channel to know how many pages have
been transferred.
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Figure 2.17 Routed call model across two domains.

flow directly between the endpoints, even if the gatekeeper-routed model is used. Doing
otherwise and routing the media channels would remove most of the scalability benefits
of VoIP over TDM.

By letting media streams flow directly between endpoints, the media latency is opti-
mized, even if call-signaling has to go through many gatekeepers, because IP shortest
path routing protocols will be used to route RTP packets. This gives VoIP a very inter-
esting ‘location-independent’ property, which allows customers to be served from remote
gatekeepers, thereby reducing the number of points of presence required to offer the ser-
vice. The ‘Voice for IP VPN’ service from service provider Equant, which serves over
a hundred multinational companies over a VoIP network, operates from only two VoIP
gatekeepers, one located in the US, one in Europe.

Some service providers are concerned about security issues that could occur using the
RTP stream. Although most VoIP networks worldwide let RTP flow through transparently,
we have never heard of such problems. In order to secure such a VoIP network the
following protection should be configured:

• Access Control Lists (ACLs) on edge routers should allow VoIP signaling information
only toward the routed mode gatekeeper.
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• Other ACLs should allow only UDP RTP traffic to ports higher than 10243 (checking
the proper RTP patterns in UDP packets is possible on most routers) and only to VoIP
endpoints (the easiest is to allocate well-defined subnets to the gateways).

• The only possible attack is denial of service, because RTP doesn’t have much logic in
it! Gateways are expecting a lot of traffic on RTP ports, so bringing them down with
RTP traffic requires significant bandwidth, making the attack detectable. Furthermore,
gateways will accept the RTP traffic only if the logical channel has been opened properly
by the routed mode gatekeeper . . . in this case the identity of the attacker is known,
which acts as a determent to such attacks. The last remaining possibility is a DoS attack
on closed UDP ports, causing the gateway to reply with ICMP IP-level error messages.
Filtering these can give an early warning of the attack; once again, the attack would
require significant bandwidth as sending back an ICMP message is not CPU-intensive
on the gateway.

• As in any IP network, anti-spoofing (preventing anyone from injecting in the network
packets with the source IP address belonging to someone else) should be taken very
seriously, as it is the only real protection against DoS attacks.

• Finally, because we are only expecting RTP traffic and know what bandwidth to expect,
if per-flow traffic policing is available on the edge routers, it should be used. DoS attacks
will exceed the allowed bandwidth and be rejected by the edge routers.

If you still want to relay media streams, devices exist that do just this at the edge of a
network (‘border session controllers’). But, by forcing RTP packets to go through these
devices without care, you may significantly reduce the QoS of the VoIP network (e.g., if
the device is in New York, a San Francisco to San Jose call may have its streams relayed
through New York, instead of flowing directly between the two cities using IP shortest
path routes).

2.2.4.2.2 Call tear-down

The call tear-down is very similar to the direct model case, except of course that Q.931
messages and optionally H.245 messages are routed through the gatekeepers.

2.2.4.2.3 More LRQ usage scenarios

When a gatekeeper is used at the interface between two administrative domains, LRQ
call flows can be more complex. Gatekeepers at the edge of a domain need to manage:

• Multiple simultaneous LRQ targets.

• The sequencing of LRQ and Q.931 messages.

3 Blocking ports below 1024 makes unreachable most applicative ports that could potentially be
opened, and subject to attack. VoIP applications use ports higher than 1024.
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Figure 2.18 Call release scenario, under the routed model.

2.2.4.2.3.1 LRQ blast

If a call to a certain destination can be sent to multiple termination networks, each
with its own gatekeeper, it may be interesting to check the availability or willingness
to accept the call of all partners. In order to do this, multiple LRQ messages can be
sent (simultaneously, or in sequence), to all these potential termination networks. This is
sometimes called an LRQ blast. Among the LCFs received, one will be selected by the
source gatekeeper.

Note that it is tempting to do the same with SETUP messages (some SIP vendors do
this with the INVITE message4), but only the sending of multiple SETUPs in sequence
is allowed. A call establishment message should never be duplicated. This is because the
PSTN network can send announcements before CONNECT (200 OK in SIP). If multiple
calls receive network announcements, the softswitch would be unable to properly relay
them to the caller.

4 When using SIP, duplicating INVITE messages should be allowed only if the expected answer
is a redirect message or the expected media is not voice. Some vendors use it for a ‘simultaneous
ringing’ feature . . . although this is a cool demo, it simply does not work on real telephony networks.
For this reason the 3GPP Group defining the UTMS 3G standard has decided not to use SIP forking
for now.
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2.2.4.2.3.2 Proper LRQ sequencing

When an edge routed-mode gatekeeper at the interface between several administrative
domains receives an LRQ, it can choose between the following call flows:

(1) Reply immediately with an LCF, then receive the SETUP message from the calling
device, then send an LRQ message to the potential termination zones, then forward
the SETUP to the selected termination device.

(2) Forward the LRQ to the potential termination zones, wait for the LCF for the termi-
nation softswitches that will accept routing the call, and only then reply with an LCF
with its own IP address. When the edge gatekeeper receives the SETUP, it routes it
to the selected softswitch.

Both call flows seem equivalent, but they are not when all potential termination gate-
keepers reject the call.

In call flow (1), the SETUP has already been routed to the edge gatekeeper, so the
edge softswitch is responsible for finding a fallback route for the call.

In call flow (2), the edge gatekeeper can reject the call by sending back an LRJ (Loca-
tion Reject) to the calling party gatekeeper. This gives the possibility of rerouting the call
to the initiator.

Call flow (1) reduces call latency, but may not be appropriate if a service provider
connected to the edge gatekeeper wants to keep the possibility of rerouting calls. This is
the case with most clearing houses.

Call flow (2) solves this issue, but introduces more latency in the call.5

In any case, both call flows are useful, and a gatekeeper used as an edge device should
offer the possibility of choosing between the two modes for each route.

2.2.4.2.4 Some issues with the LRQ message
In the first edition of this book, the calls flows for interdomain calls were not stable, and it
was anticipated that the ARQ message, not the LRQ, would be used between gatekeepers.
Unfortunately, the first implementation of the call flow by Cisco Systems used the LRQ,
and then the whole industry followed. There are mainly two information elements which
are missing in the LRQ message that would really be useful: a call reference identifier
and a hop counter.

2.2.4.2.4.1 The missing call reference identifier

The LRQ misses a unique call reference identifier, typically the CallID. This is the main
difference between an LRQ and an ARQ. The absence of this unique call reference num-
ber makes it impossible to correlate the LRQ and the subsequent SETUP message. There
are many cases where this correlation would be useful. For instance, when a routed mode

5 In addition, because the LRQ/LCF is stateless (no resource is reserved when replying with an
LCF), it should also reinitiate an LRQ when the SETUP arrives. This doubles the number of LRQs.
LCFs could be cached for a short time, but this is a violation of the standard.
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gatekeeper is used as an edge element between multiple domains (clearing house func-
tion), then the owner of the clearing house would like to be able to easily identify each
connected domain in the CDRs generated by the gatekeeper. The CDRs generated from
the SETUP messages will include the source IP address of the device that initiated the
SETUP to the edge gatekeeper and destination IP addresses of the SETUP message sent
from the edge gatekeeper. If each connected domain also uses a routed mode gatekeeper,
then these IP addresses will be the IP addresses of each gatekeeper, and they allow easy
identification of the administrative domains. But many VoIP service providers still use
the direct model. In this case the IP addresses will be those of the PSTN gateways. It
is very time-consuming to keep track of all these IP addresses and correlate them to a
service provider. Since the direct mode gatekeeper of each service provider will send
an LRQ before each call, it would be nice to include the LRQ source IP address in
the CDRs. Unfortunately, because the LRQ cannot be correlated to the SETUP mes-
sage, this is impossible. Another case where the presence of a call identifier in an LRQ
would be useful was described in Section 2.2.4.2.3.2. If the edge gatekeeper is required
to completely proxy the LRQ message before accepting the SETUP message, then two
LRQ messages will be generated for each call, because the LRQ is stateless. Correlat-
ing the LRQ to a specific call would make it easier to keep the LCF response of edge
domains in cache, knowing that these edge domains can now reserve resources for the
coming call.

2.2.4.2.4.2 The missing hop counter. Discussion of call loops

The second element that would be useful in an LRQ message is a hop counter, to prevent
loops in the VoIP domain. Note, however, that this is nothing more than a useful tool,
because it would still be possible to loop calls using SETUP messages without RAS and
also because call loops can include a PSTN hop that would reset the counter. The only
way to completely prevent loops in VoIP networks is to not only include a counter in
LRQ but also SETUP messages, and to take into account the SS7 ISUP hop counter if
there is a PSTN hop. This is possible if the edge gateways support the H.246 encap-
sulation of ISUP information, or H.323 annex M2, or H.323v5, which adds such a hop
counter to standard SETUP messages. Cisco Systems also proposed a mechanism called
Global Transparency Descriptor (GTD), where ISUP national information elements are
passed and stored in a uniform way within a data structure in H.323 Q.931 messages.
GTD is much more powerful that H.246 (or its SIP equivalent SIP-T) because it pro-
poses a uniform coding of the ISUP information, as opposed to transporting national
ISUP ‘flavors’ as is. If the proposal becomes a standard it will certainly be the best
way to address the loop problem, among many other interworking issues. Even with
these improvements, call loops remain possible if edge devices connected through user
interfaces (analog, ISDN) are allowed to loop calls back to the network, because in this
case the hop counter is reset. This is one of the reasons the call forward of external
calls back to the PSTN is usually forbidden as part of the certification program of edge
devices.
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2.3 OPTIMIZING AND ENHANCING H.323

2.3.1 Issues in H.323v1

2.3.1.1 Call set-up time

One of the major weakness of H.323 in its version 1 was the time required to actu-
ally establish the media channels for a new call. Even in the simple cases, H.323v1
procedures involve:

• One message round trip for the ARQ/ACF sequence.

• One message round trip for the SETUP-CONNECT sequence.

• One message round trip for the H.245 capabilities exchange.

• One message round trip for the H.245 master slave procedure.

• One message round trip for the set-up of each logical channel.

This looks bad enough, but the real situation is even worse since the Q.931 and H.245
channels use TCP connections which must also be set up.

Each TCP connection needs an extra round trip to synchronize TCP window sequence
numbers (Figure 2.19). In a WAN environment where each round trip may take several
hundred milliseconds, this can lead to unacceptably long set-up delays, especially when
using the gatekeeper routed-call model where a TCP connection needs to be established
between each gatekeeper.

B

DATA

SYN

SYN-ACK

A

Figure 2.19 TCP connection three-way handshake.
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2.3.1.2 The TCP slow-start issue

The use of TCP causes at least one unnecessary round trip due to the SYN/ACK hand-
shake. In fact, the situation can be worse if the SETUP message is larger than the
maximum transmission unit (MTU) or if the first segment is lost.

If the SETUP message is larger than the MTU, the sender must send the SETUP in two
or more TCP segments. The problem is that most TCP implementations are designed to
be friendly to the network and follow RFC 2001, which mandates a slow-start procedure
(Figure 2.20). In our case, after sending the first segment, the sender must wait until it
has received an ACKNOWLEDGE before transmitting the next segment. Only then it can
increase the window size and send two segments at once.

Because of this, large SETUP messages may cause one additional round trip. A good
practice is to try to limit the size of the SETUP message below 576 octets, as this is the
minimal IPv4 MTU, or at least below 1,500 octets (the Ethernet MTU), but this may not
always be possible.

During an active TCP connection, the TCP stack dynamically estimates the round trip
time (RFC 793) and uses this value to detect lost packets. But, for the first segment,
TCP starts by using a worst case estimate. For the initial connection, the timeout value
is normally set to the average round trip time A (initialized to 0 seconds), plus twice the
deviation D (initialized to 3 s). If the first segment is lost, most TCP implementations

Window size

T
im

e

Figure 2.20 TCP slow-start and back-off after packet loss.
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will therefore wait for up to 6 s (retransmission timeout = A + 2D) before retransmitting
the first segment. Some operating systems (e.g., Microsoft Windows) only allow this
value to increase (this is used for satellite connections). Once the first segment has been
lost, things get even worse. The RTO (retransmission timeout) after the first segment is
calculated as A + 4D (12 s with the default values), and after each segment loss the RTO
is doubled. Therefore, if the first segment is lost and retransmitted, the timeout value for
this second segment will be 24 s! If the first two attempts fail, there will be 30 s between
the first of the call set-up attempts, and the third retransmission.

Gatekeepers, gateways, and IP phones should tune the TCP stack settings:

• To send signaling TCP packets on a higher quality of service (e.g., using DiffServ, see
the companion book, Beyond VoIP Protocols) in order to minimize packet loss.

• To aggressively retransmit TCP segments. This can be achieved by lowering the
initial setting for D for the connection establishment and lowering the 500-ms gran-
ularity of the RTO used on many operating systems. The maximum value of the
RTO before the connection is lost—64 s—should also be lowered. On Linux, the
number of retransmissions can be controlled with the/proc/sys/net/ipv4/tcp syn retries
and/proc/sys/net/ipv4/tcp synack retries parameters.

• To increase the initial window size of the TCP slow-start mechanism up to two to four
segments instead of one.

• To disable any buffering of information before packets are sent. This is Nagle’s algo-
rithm, which was designed to optimize transmissions for keyboard input; it delays
transmission of a packet until a sufficiently large transmission buffer is accumulated, or
200 ms have elapsed. This can be done by setting the TCP NODELAY socket option.

• To reduce the number of failures that are necessary to notify the application that ‘some-
thing is wrong’, or to clear the faulty socket. On Linux, this is configured by setting
the/proc/sys/net/ipv4/tcp retries1 and/proc/sys/net/ipv4/tcp retries2 parameters, respec-
tively.

• To reduce the time the gatekeeper waits for client confirmation when it closes a socket.
This avoids accumulating sockets in the half-closed state. Most operating systems will
wait up to 7 RTOs before closing the socket, which can exceed 15 min! On Linux, this is
the/proc/sys/net/ipv4/tcp orphan retries and/proc/sys/net/ipv4/tcp fin timeout parame-
ters. This setting is extremely important for VoIP networks with PC based softphones,
due to the number of occurrences of abrunt disconnections of PCs (crashes, physical
disconnections, loss of modem connections due to a call-waiting signal, etc.). Each
‘orphan’ connection also uses memory, which can lead to relatively simple denial-
of-service attacks (the number of orphan connections in Linux can be controlled by
the/proc/sys/net/ipv4/tcp max orphans parameter).

• To reduce the amount of time the gatekeeper waits for an acknowledgment of sent data if
the socket has been closed (typical problem when sending the RELEASE COMPLETE
message). This requires using the SO Linger option (disabling linger or using a small
linger timeout): after the timeout, if the ACK of the sent data has not been received
(graceful close), the socket is forcibly closed with a TCP RST packet.
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• Try to use the selective acknowledge feature of some TCP stacks. This option (SACK)
is negotiated during the three-way handshake. On Linux, this is the/proc/sys/net/ipv4/
tcp sack option. This helps to speed up recovery of lost fragments and avoids retrans-
mitting segments that have not been lost.6

This tuning makes the performance of TCP comparable with the performance of UDP-
based retransmission schemes on most VoIP networks.

If TCP tuning is not enough in specific cases, H.323v3 introduced a new transport mode
allowing the use of UDP signaling instead of (or simultaneously with) TCP signaling. This
is in annex E of the standard. In H.323v4, a new possibility was introduced of keeping
the TCP channel open and reusing it for the H.225 signaling of multiple calls. This option
was designed to facilitate the design of routed mode gatekeepers and large-scale gateways
on operating systems that have a low limit to the maximum number of TCP connections,
or have scalability problems on the ‘poll()’ function required to detect incoming events
on multiple sockets (this is a well-known issue with Linux, but it can be solved by using a
modified version of the poll function). This option is not widely implemented and should
be considered with great care because it causes head-of-line blocking (i.e., if one call is
blocked for any reason, no further event related to other calls will be transmitted). Overall,
the option of using multiple TCP sockets is much more robust and should be preferred.

The best solution is to use the new SCTP, which is optimized for telecom applications
and offers the best of UDP and TCP simultaneously . . . this option has just been introduced
in H.323v5!

2.3.1.3 Network-generated prompts

Another problem was discovered by network experts after H.323v1 had been standardized.
In the switched circuit network there are situations in which a message is played to the
caller before it receives a connect:

• When the SCN is congested and the call cannot be established, you can get a prompt
saying ‘Due to congestion, your call cannot be connected, please call later’. This prompt
is generated by the network itself at the local exchange, and, because it does not
originate from the called endpoint, no CONNECT message is ever sent.

• In some applications the Intelligent Network can also generate network messages (e.g.,
for televoting applications: you dial a phone number and you get back a message saying
‘Thank you for voting YES, the current status is 34% YES, 66% NO’). Similar pre-
connect prompts are also used in many countries to implement prepaid calling card
services in the network: the destination number and the PIN code are requested before
connect, and the Q.931 CONNECT message is sent only when the call connects to the
final destination.

6 the default TCP ACKNOWLEDGE is cumulative, which means all the packets since the last
acknowledged packet will be retransmitted even if only one segment has been lost.
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With H.323v1, it is impossible to send a voice message to the calling party before sending
a CONNECT message, because the media channels are not yet established.

2.3.2 The ‘early H.245’ procedure

The early H.245 procedure is used when the H.323 SETUP message contains an H.245
address, which is available to the called party if it wants to start connecting to the
H.245 channel immediately. Alternatively, if the calling party has not proposed an H.245
connection address, the called party can make its own proposal by including an H.245
address in the call control messages sent before the CONNECT message (CALL PRO-
CEEDING, ALERTING). The early H.245 helps the H.245 procedure to start as early
as possible in the call, sometimes even before it actually connects. In most cases, unless
the call connects right away, it makes the inherent delays due to the multiple message
exchanges required by H.245 invisible to the call participants. It also solves the network
prompt before connect issue explained in Section 2.3.1.3. All this while preserving full
compatibility with all H.323 features, including out-of-band DTMF transmission, third-
party call control using the TCS = 0 procedure (see more details see Section 2.7.1.2.2),
and sophisticated video and conference control procedures.

The early H.245 procedure is so useful that it is should be one of the most impor-
tant criteria for the selection of any H.323 equipment. This call flow should be used
whenever possible.

2.3.3 The ‘fast-connect’ procedure

The fast-connect procedure was introduced in H.323v2 to enable unidirectional or bidi-
rectional media channels to be established immediately after the Q.931 SETUP message
and eliminate any post-connect delay in the audio path.

The usefulness of the fast-connect procedure is questionable, as the early H.245 pro-
cedure (described in Section 2.3.2) also solves these issues. In the early days of H.323
there was still some confusion on which was the best method to solve the delay issue,
and all possible solutions were welcome. Fast connect has one little advantage over early
H.245: it removes any post-connect audio delays even in the case of an immediate call
connection. It also has major drawbacks compared with the early H.245 procedure: for
instance, it does not allow the out-of-band transmission of DTMF information7 and it does
not provide a third-party call control feature before H.323v5 (this version adds this possi-
bility in the H.460.6 extension). It is tempting to use both early H.245 and fastStart
(see next paragraph) at the same time, which in fact many vendors are currently doing.
Since H.323v4, this is officially possible, but the actual H.245 communication should not
transmit anything but the endpoint capabilities and master/slave information before the
completion of the initial fast-connect negotiation.

7 RFC 2833 may be used, but does not allow feature servers to act on DTMF commands without
also relaying the media stream.
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An endpoint which decides to use the fast-connect procedure will include a new param-
eter, called fastStart, in the SETUP user-to-user information element. This parameter
includes a description of all the media channels that the endpoint is prepared to receive
and all the media channels that the endpoint offers to send. This description includes the
codecs used, the receiving ports, etc.

If the called endpoint cannot or doesn’t want to use the fast-connect procedure, it will
not return the fastStart element in subsequent Q.931 messages. In this case the normal
procedure involving H.245 will take place.

If the called endpoint supports the fast-connect procedure, then it will return, in
the CALL PROCEEDING, PROGRESS, ALERTING or CONNECT Q.931 message, a
fastStart element that selects from among the media offered by the caller.

The fastStart element is always inserted in the H323-UU-PDU of the user-to-user
element (its use with the SETUP message is shown in bold):

• Protocol discriminator field (08H).

• Call Reference Value (CRV).

• A Message Type (SETUP).

• . . .

• Called party number and subaddress.

• Calling party number and subaddress.

• The H.323 user-to-user element which contains the SETUP user-to-user information
element in which we find:

• The protocol identifier.

• . . .

• The sender’s aliases.

• The destination address.

• The CID and CallID.

• fastStart: used only in the fast-connect procedure, fastStart is a sequence
of OpenLogicalChannel structures. Each OpenLogicalChannel structure (Figu-
res 2.21) describes One media channel that the caller wants to send (forward-
LogicalChannelParameters within the OpenLogicalChannel structure) or receive
(reverseLogicalChannelParameters). All proposed OpenLogicalChannels can be
selected simultaneously, unless they share a common sessionID value in the H2250-
LogicalChannelParameters of the OpenLogicalChannel structure, in which case
they are considered alternative options for the same channel.

• The mediaWaitForConnect boolean.

The calling terminal can select one or more acceptable OpenLogicalChannel structures
within the offered fastStart parameter and return them in a fastStart parame-
ter within an H.225 CALL PROCEEDING, PROGRESS, ALERTING, or CONNECT
message. The selected logical channels are considered open after this.
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OpenLogicalChannel ::=SEQUENCE
{

forwardLogicalChannelNumber LogicalChannelNumber,

...,
separateStack NetworkAccessParameters OPTIONAL,
encryptionSync EncryptionSync OPTIONAL -- used only by Master

}

forwardLogicalChannelParametersSEQUENCE
{

portNumber INTEGER (0..65535) OPTIONAL,
dataType DataType,
multiplexParameters CHOICE
{

h2250LogicalChannelParameters H2250LogicalChannelParameters,
none NULL

},
...,
forwardLogicalChannelDependency LogicalChannelNumber OPTIONAL,

},

reverseLogicalChannelParameters SEQUENCE
{

dataType DataType,
multiplexParameters CHOICE
{

h2250LogicalChannelParameters H2250LogicalChannelParameters
} OPTIONAL, -- Not present for H.222

reverseLogicalChannelDependency LogicalChannelNumber OPTIONAL,

} OPTIONAL, --Not present foruni-directional channel request

replacementFor LogicalChannelNumber OPTIONAL

replacementFor LogicalChannelNumber OPTIONAL

...,

Figure 2.21 OpenLogicalChannel ASN.1 structure.

Note that the network can send media to any of the receiving channels mentioned in
the SETUP message of the caller, immediately after the calling terminal has sent this
message, unless MediaWaitForConnect is true. Therefore, even if the calling terminal
plans to use only one of these channels for regular conversation, as indicated in the
fastStart response, it must be prepared to receive media on any one of these channels
(before the response). Although most H.323 vendors have implemented the fastStart
procedure, many of them actually do not support this requirement and are not able to
receive audio before the remote endpoint has selected a media channel proposal in its
own fastStart element. This is because most implementations do not have enough
memory to load multiple voice coders at the same time, and the vendor selects the right
coder to load when it receives the remote fastStart. In the best implementations that
fully support fastStart, the first RTP packet that is received can be used to load the
codec, without waiting for the remote fastStart element. An example of a case where
supporting the full fastStart requirement is important is network-based redirection
announcements: multiple announcement servers may have to send audio to the calling
endpoint, before it connects to the party redirected to. In this case the fastStart
element will be sent only by the last endpoint, but the announcement servers still need to
stream audio toward the calling party before this happens.8

8 Some vendors can receive multiple fastStart elements in sequence and always take into
account the last one received. This greater flexibility makes it possible to activate media reception
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Usually, in a normal ISDN call the called endpoint does not send media before the
CONNECT message has been sent. It is possible to force this behaviour with the fast-
Start procedure by setting the mediaWaitForConnect element of the Q.931 SETUP
to true.

As shown in Figure 2.22, the fast-connect procedure dramatically improves the num-
ber of round trips required to set up the conversation, and eliminates all post-connect
audio delays.

Since the fast-connect procedure solves a major flaw of H.323v1 regarding interworking
with the traditional TDM networks, it has been made a core feature in the H.323 profile
of the ETSI TIPHON project.

Fast-connect procedure usage becomes a bit subtle in certain circumstances (e.g., when
H.323 is used to provide class 5 services). The interactions between the call forward on no
answer service and the use of fastStart are extremely complex, and not well studied
by the standard (see Chapter 5). In addition the mediaWaitForConnectBoolean is
a bit too simple to fully account for the variety of call flows found in the PSTN. The
sending of audio information before connect is controlled by the in-band audio indicator
in Q.931 messages, including the PROGRESS message. Some call flows can become
extremely complex, as in the following example where ring-back tones alternate with
redirection prompts.

Such call flows today are possible (the previous scenario is currently used in Milan,
Italy), but need prior vendor agreement on the exact handling of in-band audio indicators.
Also, some call flows really would require the sending of multiple fastStart elements
to update the RTP logical channel information before CONNECT. H.460.6 has refined
the fastStart procedure and allow the refreshing of fastStart elements before
CONNECT.

TCP SYN

TCP SYN ACK

SETUP

CONNECT

RTP callee to caller

RTP caller to callee

2 R.T.

2.5 R.T.

Figure 2.22 Audio path delays with the fast-connect procedure.

only after having received a fastStart response, without restricting the feasible services. Unfor-
tunately, this way of interpreting the fastStart response, which creates a form of third-party
media control, is not yet taken into account in the standard.
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Using just the fast-connect procedure, DTMF transmission is not possible as H.245
UserInputIndication is not available (no H.245 channel is opened). Because of this lim-
itation, early H.245 (establishing the H.245 channel before CONNECT) should be used
in conjunction with fastStart in most cases, as it is officially allowed since H.323v4.
Many types of calls will require DTMF information before CONNECT. For instance,
this is what would happen typically when calling an IN-based card telephony service. An
IVR server requests the card code before sending a CONNECT Q.931 message because
the call is not yet charged. The CONNECT message is sent only after the code has been
checked and the destination party has answered the call (as shown in Figure 2.23).

Caveat: The addition of fast-connect mode to H.323 has made it possible to manufacture
a simpler, yet H.323-compliant terminal. In fact, this was one of the goals of the initial
fastStart proposal, at a time when SIP began to claim simplicity compared with H.323.
By supporting only H.323 in fast-connect mode, developers can avoid implementing H.245
in simple appliances like IP phones in this way. However, most of the potential of H.323
comes from the conferencing and third-party call control features which are enabled only
by H.245. Simple H.323 terminals without H.245 will not be able to participate in such
conferences. Moreover, DTMF is normally carried using H.245: simple terminals will
have to use in-band DTMF coding which does not work as soon as complex services like
prepaid servers or contact centres are implemented. Overall, such ‘simplified’ terminals
would not meet even the basic requirements for telephony and would make the design
of services on networks with such endpoints extremely challenging. Interestingly, facing
the same issues, SIP has become significantly more complex over time, notably adding
third-party call control and out-of-band DTMF capabilities to the basic call, and is now
virtually identical to the H.323 protocol, with fastStart and H.245 tunneling enabled.

OGW Gatekeeper

Announcement

server

TGW1 TGW2

Setup (FS_O ) Setup (FS_O)

Alerting (PI = 8) Alerting (PI = 8, FS_S)

Release complete

Setup (FS_O)

Alerting (no PI)Progress (no PI, no FS forwarded)

Setup (FS_O)

Alerting (PI = 8, FS_S)Progress (PI = 8)

Release complete

Release complete

Setup (FS_O)

AlertingProgress (no PI)

ConnectConnect (FS_2)

Call is in alert state, so stop playing
RTP and play local alert tone

Alert with in-band tones is received,

Call proceeding (FS_1)

Call proceeding ( FS_2)

Call proceeding Call proceeding

Call proceeding

Play 
local
ring-back

Timeout

Full Duplex Conversation

Redirect announcement

Pre connect announcement

so start receiving RTP and do not
play local alert tone

Figure 2.23 Complex call flow with pre-connect audio. Note: there is no DTMF capability
before connect.
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GWSETUP (number = +33 12345678, fastStart:
OpenLogicalChannel 1 -> receive G.711 RTP port
4432, RTCP port 4433,
OpenLogicalChannel 2 -> send G.711, RTCP port
3454)

CONNECT

Network messages (e.g., ‘dial
 your code and destination 

number’) can now be
 transmitted on logical channel 1 

SETUP

PROGRESS

CONNECT

PROGRESS (
fastStart : OpenLogicalChannel 1 -> send, RTCP port
6554
OpenLogicalChannel 2 -> receive, RTP port 5634
RTCP port 5635)

We can now answer on
 logical channel 2 

IN

The call has been transferred 
and answered, we start 

charging

Figure 2.24 Use of a PROGRESS message for pre-connect audio.

2.3.4 H.245 tunneling

Most H.323 devices today use two separate TCP connections for each call: one for the
Q.931 messages (SETUP, ALERTING, CONNECT, etc.), and one for the H.245 messages
(OpenLogicalChannel, TerminalCapabilitySet, etc.). This may become a problem for some
gatekeeper or gateway implementations that run on operating systems with low limits on
TCP connections and that do not use distributed designs. It also unnecessarily doubles
the issues associated with the use of TCP.

H.323v2 offers a way of using a single TCP connection by encapsulating H.245 mes-
sages in Q.931 messages: this is called H.245 tunneling.

An endpoint which wants to use H.245 tunneling must set the h245Tunneling element
of the SETUP message and all subsequent Q.931 messages to TRUE. A called endpoint
also indicates its willingness to accept H.245 tunneling by setting this same element to
TRUE in all Q.931 messages.

The calling endpoint simply encapsulates one or more H.245 messages in the
h245Control element of any Q.931 message. If the called endpoint is also capable of
receiving it, all H.245 messages can be exchanged in this way and there is no need to
open a separate TCP connection for the H.245 channel. Otherwise, if the called endpoint
has not set the h245Tunneling to TRUE in the first Q.931 message it sends back (it
could be CALL PROCEEDING, PROGRESS, ALERTING, or CONNECT), the calling
endpoint knows this is not supported and the normal procedure for opening an H.245
channel is followed. Q.931 messages are modified as shown in bold:
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• Protocol discriminator field (08H).

• Call Reference Value (CRV).

• A Message Type (SETUP, ALERTING, . . .).

• . . .

• The H.323 user-to-user element (H323-UU-PDU) now contains:

• The H245Tunneling boolean.

• H245Control: a sequence of ASN.1 octet strings representing ASN.1 PER-encoded
H.245 PDUs. The H323-UU-PDU type can be the usual SETUP, CALL PRO-
CEEDING, CONNECT, ALERTING, USER INFORMATION, RELEASE COM-
PLETE, FACILITY, or PROGRESS, or a new NULL value called empty, which is
explained later.

When using H.245 tunneling the Q.931 channel needs to remain open during the entire
duration of the call. If an H.245 message needs to be sent when no Q.931 message is
pending to be sent, then the H.245 message will be encapsulated in a Q.931 FACILITY
message. In this case the Q.931 FACILITY message is sent, but the H.323 user-to-
user element only contains the H245Tunneling boolean and the H.245 PDUs encoded in
H245Control: in the next paragraph the H323-UU-PDU type isn’t the usual FACILITY
type, but is set to the new ‘empty’ value. Such a need to use FACILITY messages may
also occur in the gatekeeper-routed model (Figure 2.25).

GK
10.1.1.2

GW
10.1.2.3SETUP (number = +33 12345678,

John’s terminal H245 capabilities)

ALERTING

CONNECT

SETUP (number = +33 12345678,
John’s H245 terminal capabilities)

CALL PROCEEDING

CALL  PROCEEDING (GW H.245 capabilities,
OpenLogicalChannel GW to Terminal) FACILITY (GW H.245 capabilities,

OpenLogicalChannel GW to Terminal) 

FACILITY (OpenLogicalChannelACK,
OpenLogicalChannel Terminal to GW) FACILITY (OpenLogicalChannelACK,

OpenLogicalChannel Terminal to GW) 

FACILITY (OpenLogicalChannel ACK)
FACILITY (OpenLogicalChannel ACK)

ALERTING

CONNECT

SETUP

Figure 2.25 Use of FACILITY messages for H.245 tunneling.
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A terminal can signal that it wants to use H.245 tunneling in a Q.931 message which
already contains a fastStart element with OpenLogicalChannels parameters by setting
H245Tunneling to TRUE. In H.323 prior to version 4, it was forbidden to encapsulate
H.245 messages in the same Q.931 messages as the fast-connect procedure (as they would
supersede the indications found in the OpenLogicalChannels parameter). This was clarified
in version 4, where capability messages and master/slave messages can be sent during
the fast-connect negotiation. All other H.245 messages must wait until the fast-connect
exchange has occurred.

2.3.5 Reverting to normal operation

In some cases a terminal using fast-connect and/or H.245 tunneling may need to use a
separate H.245 control channel in the middle of an established call (e.g., when a terminal
that has opened an audio connection in fast-connect mode needs to open a new media
channel). In this case the terminal can send a FACILITY message to the other terminal
indicating it wishes to establish a separate H.245 channel and proposing a transport
address for it. The terminal which receives the facility message must establish a new TCP
connection for the H.245 channel using this transport address. Once the new connection
is established, the terminals must stop using the H.245 tunnel.

2.3.6 Using RAS properly and only when required

Most tutorials on H.323 initially introduce the direct call model using RAS. This tends to
lead people to believe that RAS messages are a necessary overhead. This is not always
the case, especially when using routed mode gatekeepers. It is important to understand
the exact role of RAS messages and when they are redundant.

2.3.6.1 Uses of ARQ and LRQ messages

2.3.6.1.1 ARQ and LAN access permission
The ARQ is used to request an access to the network. Once the connection is open, the
terminal may use a BRQ to request more network resources when it opens new logical
channels. It does the same to accept new logical channels. H.225.0 states: ‘As part of the
process of opening the channel, before sending the open logical channel acknowledgment,
the endpoint uses the ARQ/ACF or BRQ/BCF sequence to ensure that sufficient bandwidth
is available for the new channel (unless sufficient bandwidth is available from a previous
ARQ/ACF or BRQ/BCF sequence).’

Since the ARQ is used to request access to the network, a calling endpoint, once it has
sent an ARQ, is expected to send a SETUP. The CRV parameter can be used to link the
two messages (e.g., within a gatekeeper routing the call). H.225.0 states for the SETUP
message: ‘If an ARQ was previously sent, the CRV used here shall be the same.’
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2.3.6.1.2 Address resolution
Both the ARQ and the LRQ messages can be used for the address resolution function
(i.e., obtaining a destination IP address from a destination). The name ‘location request’
seems to imply that the LRQ message is the right message to use, but when comparing the
semantics of the LRQ and the ARQ, it becomes obvious that the ARQ can also serve this
purpose. In fact, an ARQ is a superset of an LRQ, requesting not only an address transla-
tion but also LAN access. This is good because, otherwise, terminals might need to first
do an LRQ, then an ARQ, and finally a SETUP! Note that this address resolution can be:

• A pure alias to transport address resolution (e.g., from an email alias the gatekeeper
indicates the IP address to send the SETUP).

• An alias translation, if the terminal specifies it, can map aliases (canMapAlias parameter
of the ARQ); in this case the gatekeeper can also force the terminal to change the
destination alias in the SETUP.

2.3.6.1.3 Conclusion
Usually, a terminal needs to do an address resolution just before it sends a SETUP. In this
case the ARQ can be used to request LAN access as well as an address resolution, and
thus the LRQ is redundant. This is reflected by the fact that H.225 mandates the support
of ARQs by H.323 endpoints, whereas the support of LRQs is optional. Overall, the LRQ
message is not very useful, except that it is now the de facto standard for inter-gatekeeper
call flows (the ARQ would have been more appropriate here too). The most legitimate
use of the LRQ message is when a call control gatekeeper needs to query an access
gatekeeper for the current location of an endpoint. Such a ‘split gatekeeper’ architecture
is used in networks with hundreds of thousands of endpoints, in order to distribute the
registration function (see Section 2.3.6.1.1 for more details).

2.3.6.2 Disabling the ARQ/ACF sequence

If the gatekeeper is used in routed mode, it has the possibility of authorizing or blocking
the call when it receives the SETUP message, and, since it has access to all aspects of call
signaling, keeps complete control over the call for the entire duration of the conversation.
In this case, the ARQ message is really unnecessary and only adds an extra round trip to
the call SETUP delay. The gatekeeper can instruct an endpoint to send a SETUP directly,
without a prior ARQ/ACF, by using the preGrantedARQ parameter that is contained in
the RCF (registration confirm) message.

If preGrantedARQ is not configured, the terminal is required to send an ARQ to the
gatekeeper before each call SETUP.

If preGrantedARQ is configured in the RCF, the gatekeeper can give one or more of
the following privileges to the terminal:

• Initiate a call without first sending an ARQ.

• Initiate a call without first sending an ARQ, but only if it sends the SETUP to
the gatekeeper.
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• Answer a call without first requesting permission from the gatekeeper.

• Answer a call without first requesting permission from the gatekeeper only when the
SETUP message comes from the gatekeeper.

Using preGrantedARQ is an excellent way to optimize call SETUP time. In most end-
points, the ARQ can also be disabled manually using the configuration tool—sometimes
indirectly (e.g., on some endpoints the routed mode gatekeeper should be declared as a
‘gateway’).

2.4 CONFERENCING WITH H.323

2.4.1 The MCU conference bridge, MC and MP subsystems

There are two distinct functions that may be present in any conference. The first one is the
control function, which decides who is allowed to participate or not, how new participants
are introduced in existing conferences, how the participants synchronize on a common
mode of operation, who is allowed to broadcast media, etc. This role is assumed in H.323
by a functional entity called the multipoint controller (MC).

When many people talk in an audio conference, they might simply multicast their audio,
and all terminals can do the mixing of individual media streams themselves. In most cases,
however, individual terminals will have limited capabilities, or it might be impractical to
multicast all media streams (especially in the case of video). If multicast cannot be used,
an entity in the network needs to do the mixing or switching of incoming media streams,
and send only the resulting processed outgoing stream to each terminal. In the case of
video it can be the image from the last active speaker, in the case of audio each terminal
will receive a stream resulting from the addition of all streams from other speakers in
the conference (plus some of its own, but attenuated). In H.323, this functional entity is
called the multipoint processor (MP).

A dedicated callable endpoint, which contains an MC and optionally one or more
MPs, is called a multipoint control unit (MCU). It is not just MCUs that have the
MC functionality, however, a terminal or gatekeeper with sufficient resources can also
have the capability to act as an MC and may be able to do some media mixing locally.
However, the MC functional entity in a terminal or a gatekeeper cannot be called directly,
but will be included in the call when it becomes multiparty.

A conference is called a centralized conference when a central MP is used to mix or
switch all media streams for participating endpoints. When each terminal sends its media
streams to all other participating terminals (in multicast or multi-unicast), it is called a
decentralized conference.

2.4.2 Creating or joining a conference

2.4.2.1 Using an MCU directly

Most of the time, people will decide to create a conference and name it, for instance,
myconference@conferencerooms.com. So, the participants know from the beginning that
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it is going to be a conference call. The easiest way to create such a conference is simply
to call an MCU and send a SETUP message with the conferenceGoal parameter set
to Create and a globally unique CID. It may also include the alias of the conference
(myconference@conferencerooms.com). So far, nothing differs from a regular call.

If the MCU decides to accept the call (this can be based on previous reservation done
through a website), it replies with a CONNECT.

The endpoint and the MCU exchange their TerminalCapabilitySets. Then the mas-
ter–slave procedure begins, the MCU always wins and becomes the active MC of the
conference. The MCU indicates it is the active MC of the conference by sending a MCLo-
cationIndication message to the calling endpoint. It can also assign an 8-bit number to
the terminal with a terminalNumberAssign message (the terminal must copy those 8 bits
in the low 8 bits of the SSRC field of all its RTP datagrams).

2.4.2.1.1 Inviting new participants

Once a terminal is in a conference, it may invite others (e.g., terminal C) to participate
by sending a SETUP message to the active MC with a new CRV, the CID of the confer-
ence and the conferenceGoal parameter set to invite. The destination address and,
optionally, the destination call-signaling address of the SETUP message must be those of
terminal C.

When it receives this message (Figure 2.26), the MCU will send a SETUP message to
terminal C with the CID of the conference and conferenceGoal=invite. Terminal
C accepts by sending a CONNECT message. At this point the MCU sends a RELEASE
COMPLETE to the inviting terminal. The active MC establishes an H.245 control channel
with terminal C using the transport address provided in the connect. They exchange
their TerminalCapabilitySets. The MC signals during the master–slave procedure that
it is already the active MC and may send an MCLocationIndication message. When
this is done, the MC sends a multipointConference message to the inviting and
invited terminals. If there were already other terminals in the call, the MCU will send
them a terminalJoinedConference H.245 message to make them aware of the
new entrant.

Because the incoming terminal might have capabilities which are incompatible with
the existing media channels in place in the conference, the MCU must send a commu-
nicationModeCommand to all terminals specifying the new set of allowed transmit-
ting modes for each stream. All media channels that happen not to conform must be
closed.

At this point the MC can begin to send OpenLogicalChannel messages to the end-
points. The endpoints should also wait, when they have received a multipointCon-
ference message, until they receive a communicationModeCommand message to
open logical channels. All endpoints must send the openLogicalChannel messages to
the MC.

The MCU can also initiate the invitation (e.g., if the invitation is not done from an
H.323 terminal, but from a Web interface of the MCU). In current H.323 commercial
products, this is the most widely used model, because it does not require support for any
specific H.323 call flow on the participating endpoints.
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Figure 2.26 Inviting participants in an MCU-controlled conference.

2.4.2.1.2 Joining an existing conference
A terminal can easily join an existing conference by sending a SETUP message to the
MCU with the CID at the conference and conferenceGoal=join. If the terminal
only knows the Alias of the conference, it must provide it and leave the CID at 0.
Most commercial MCUs use this simpler model, where all participants calling the same
number are automatically bridged into the same conference. This model does not suppose
any support for the H.323 conferencing features at the endpoint. In order to secure the
conference and prevent any random user from calling the bridge directly, the call can
be routed though a routed mode gatekeeper, which decides on the fly if the participant
is allowed and may translate the initial called party number of the SETUP message
into a conference number (this is the solution used by the France Telecom eVisio IP



H.323 111

videoconferencing service). Other vendors have an embedded interactive voice response
server in the MCU, which authenticates users by prompting for a PIN code.

2.4.2.1.3 Browsing existing conferences
The MCU can in theory provide a list of existing conferences that a terminal could join
by sending a conferenceListChoice H.245 message to a terminal. This can be used, for
instance, when an alias that has been used in the SETUP message is in fact the name of
a group of conferences (e.g., H323support@conferences.com might be a group name for
Q931support, H245support, and RASsupport@conferences.com).

Again most commercial MCUs use a simpler Web-based administrator interface to
browse for ongoing conferences.

2.4.2.2 Ad hoc conferences

When two endpoints (John and Mark) have started a call as a point-to-point call, they
still might want to include someone else in the conversation. Someone might call one of
the two parties, or suddenly they might need to talk to someone else to solve a problem.
In these cases the call has not been set up directly using a MCU because John or Mark
had no idea, when first placing the call, that it would become a conference call. This type
of conference is called ad hoc.

2.4.2.2.1 John invites Mary
During the discussion, John and Mark decide to go to the cinema, but they need to talk
to John’s wife, Mary, so that she can choose the movie.

2.4.2.2.1.1 If John and Mark are using the direct call model

In this case, either John or Mark’s terminal needs to have an MC functionality and the MC
will basically behave as the MCU in Section 2.4.2.2.1. For instance, if Mark’s terminal has
a MC, John will send to Mark’s terminal a SETUP message with a new CRV (not the one
used for the point-to-point call between John and Mark), conferenceGoal=invite,
and the alias of Mary. The rest is exactly as in Section 2.4.2.2.1.

If neither John nor Mark have an MC-capable terminal, they must clear the call and
call Mary again via an MCU . . . not very user-friendly! Fortunately, many H.323 phones
now include three-way conferencing capabilities.

2.4.2.2.1.2 If John and Mark are using the gatekeeper-routed model

Now, with the gatekeeper-routed model, if no terminal has an MC, John and Mark can still
invite Mary if the gatekeeper has an MC capability. In this case the gatekeeper behaves
as a MCU in the INVITE example above. In some cases the gatekeeper will not have
an MC in the same box, but it can easily redirect all conference-related messages to an
external MC entity since it routes all Q.931 and H.245 messages.
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2.4.2.2.2 Mary calls John
When Mary calls John, she has no reason to know that he is already in a call, so she
sends a regular SETUP message.

2.4.2.2.2.1 If John and Mark are using the direct call mode

When John’s terminal receives this SETUP message, it will probably propose a menu to
John asking whether he wants to:

(1) Reject the call.

(2) Put the call with Mark on hold and talk with Mary.

(3) Include Mary in the call with Mark.

If either John’s or Mark’s terminals have an MC capability, John can choose (3). For our
example we consider that only Mark’s terminal has an MC capability.

Mary’s terminal will receive a FACILITY message indicating that the call should be
routed to John’s terminal (a parameter routeCallToMC will be present in the facility
message) which is the MC-capable terminal. This message also indicates the existing
CID of the call with Mark. Mary’s terminal releases the call with John (RELEASE
COMPLETE) and sets up a new call with Mark.

Now, the SETUP message sent by Mary’s terminal contains the same CID as the ongo-
ing call between Mark and John, and the parameter conferenceGoal=Join. Then, the
call flow continues as if Mark was the MCU in the JOIN example of Section 2.4.2.2.2.

This example, which follows the theory of H.323 conferences, is very unlikely to
occur in practice. First, most H.323 endpoints designed for use with a direct mode gate-
keeper have an internal MC function. Another reason is that source-based redirections
(initiated by a message sent to the terminal that should redirect his call) only work on
private networks: on public networks, the dialing convention of the redirecting terminal
and the redirected terminal may be different, and, therefore, the number given by John
to Mary in the FACILITY message may be unusable by Mary. There are many other
reasons that make such a redirection scenario impossible to use over public networks (see
Chapter 5).

2.4.2.2.2.2 If John and Mark are using the gatekeeper routed model

This is very similar to the direct call case, except that now the FACILITY message sent
by John’s terminal will contain the address of the gatekeeper, which will be responsible
for the MC function, directly or by invoking an external server. Since the call from
Mary arrived through the gatekeeper, the FACILITY message can be intercepted by the
gatekeeper and the gatekeeper can use the third-party rerouting procedure (see (2.7.1.2.2)),
instead of propagating the FACILITY message all the way to Mary’s endpoint. This
eliminates the problem of incompatible dialing conventions and all other issues associated
with public networks.
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2.4.2.3 Conferences and RASs

In most cases, terminals will only know the alias of the conference they want to join.
Therefore, the initial ARQ will contain only the conference alias in the destination-
Info parameter of the ARQ. The CID parameter will be set to 0, which means it is
unknown. The callIdentifier must be set by the caller as usual. The gatekeeper will return
the Q.931 transport address of the endpoint containing the MC (the MCU, or an endpoint
with MC capability) in the ACF.

In theory, as soon as the caller knows what is the exact value of the CID (after receiving
a connect from the MC), it must inform the gatekeeper using an IRR RAS message; but,
in practice, we don’t know of any endpoint doing this.

2.4.3 H.332

The conference model described in Section 2.4.2.3 is tightly coupled: all the participants
maintain a full H.245 control connection with the MCU. This is very resource-intensive
and this model breaks when the number of participants increases beyond a few dozen.

Conferences with a large number of participants tend to be organized with a panel of
several speakers (less than 10, typically) and a large audience that listens most of the
time and speaks only when requested by the moderator. H.332 describes the electronic
equivalent of a panel conference (Figure 2.27), called a loosely coupled conference,
and is designed to scale to thousands of participants. H.332 is a mix of a usual tightly
coupled conference (used by permanent speakers) and a multicast RTP/RTCP conference
(as known on the mBone) for passive listeners. The RTP/RTCP-only listeners must know
which codec is used and other details (UDP ports, . . .). H.332 uses the syntax of the
IETF Session Description Protocol (SDP) to encode the value of those parameters. A
new SDP type (a = type:H332) is defined to let the RTP listener know that this is an H.332
conference. The information can be conveyed using the IETF Session Announcement
Protocol (SAP) or a simple file on a webpage or sent by email.

Due to the large number of participants, the highly coupled conference among panel
members is subject to several constraints: the codecs used should remain stable. If a
new member forces a new capability negotiation and triggers a change of codecs, a new
SDP announcement must be created. Spreading this information using SAP or otherwise
takes time, and most RTP listeners are left out until they have been notified of the new
announcement.

The difficult part is to allow the panel to invite a listener to talk, to let listeners request
and be granted the right to ask a question. In order to join or be invited by the panel, the
RTP listener must also have some H.323 capabilities. Simple RTP/RTCP terminals can
only listen. In order to join the panel, a listener must use the regular H.323 conference
join and must know the address of the MC that is provided in the SDP.

Similarly, the panel needs to know the callable address of the terminals to be able to
invite them to the conference. This is possible because conference listeners periodically
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Figure 2.27 H.332 conference.

transmit information elements, such as their name on email address, as RTCP SDES
packets (see Chapter 1). A new information element, RTCP SDES item ‘H323-CADDR’,
conveys the H.323 callable address of the terminal. Since bandwidth reserved for RTCP
traffic is limited, it takes some time to build a complete list of listeners, and therefore a
listener may become callable only some time after he has joined the conference.

2.5 DIRECTORIES AND NUMBERING

2.5.1 Introduction

In the early days of IP telephony (this wasn’t so long ago!), one of the major problems
was to call someone using a dial-up connection, since the IP address of such users was
allocated dynamically. Early solutions all used the same scheme: when the IP telephony
software was started, it immediately contacted a central server on a preconfigured IP
address and sent a message with the name of the phone user and the current IP address.
There were many implementations, ranging from Microsoft ILS/ULS to solutions running
on top of IRC servers . . .

H.323 makes these solutions completely obsolete. A terminal implementing RAS prop-
erly has to register to a gatekeeper, and the RAS message contains all the necessary
information—in particular, the current IP address—needed to contact the terminal from
a known alias.
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2.5.2 Contacting an email alias with H.323 and the DNS

2.5.2.1 Resolution algorithm

The gatekeeper can be queried for the current network location (as a call-signaling trans-
port address) of the aliases within its zone, using an LRQ or an ARQ if a call follows
immediately. Therefore, when trying to reach an alias, the first step is to find the gate-
keeper responsible for this alias. A possibility in small environments is to multicast the
LRQ until someone answers, but this is obviously not scalable.

If the alias used is an email alias, like someone@domain.org, then a much better strategy
is described in the informational annex of H.225.0. Much information about a domain
name can be found by using the Internet Domain Name System (DNS).

The DNS was originally invented to help resolve names into IP addresses. When your
computer needs to communicate with another computer named othercomputer.domain.org,
it uses the DNS to find its IP address. This involves several steps:

• First, the computer asks a well-known master server which second-level DNS server
has the information about domains ending with. org. In fact, this information is likely
to be cached locally, and this step is probably skipped.

• Then, the computer queries the appropriate second-level DNS about domain.org, and
the reply tells it the IP address of the third-level DNS that stores the information about
all names within the domain.org name space.

• Finally, your computer queries this third-level DNS server and obtains the IP address
of othercomputer.domain.org. (There are more steps to resolve host names that have
more than three hierarchical levels.)

In fact, the DNS holds much more information about each domain, such as the name of
the administrator, the address of the mail server for this domain, etc. All this information
is stored in ‘DNS resource records (RRs)’. For instance, the DNS record:

Othercomputer IN A 10.0.1.1

means that the computer named ‘othercomputer’ can be reached at the IP address 10.0.1.1.
The DNS record:

Domain.org IN MX 10 10.0.1.2

means that the mail server (Mail eXchange) for domain.org can be reached at 10.0.1.2.
How can we use this? A special DNS record of type TXT can hold any text. So, we can

use it to store the location of the gatekeeper handling the alias resolution for the entire
domain. The syntax used is the following:

Domain.org IN TXT

ras[<gk id>@]<domain name>[: <portno>][<priority>]

<domain name> can be the DNS name of the host running the GK software or its
IP address. The other fields are optional, <portno> specifies a non-standard RAS port,
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<gk id> can be used if multiple logical GKs are running on the same host and, therefore,
the name of the host cannot be used as the GK ID. Priority can be used if there are multiple
gatekeepers in this domain, smaller numbers have precedence. For instance, valid strings
for gatekeeper TXT records could be:

ras 10.0.1.3

ras gatekeeper.mydomain.com : 1234 10

Now, when trying to call someone@domain.org, a computer can first locate the appropriate
DNS for domain ‘domain.org’ as explained above, and then retrieve all the TXT records
for domain.org. If a TXT record begins with ‘ras’, then the IP address or server name
that follows is the name of the gatekeeper for this domain. There can be several RAS
records; therefore, a zone can be served by several gatekeepers and a domain can be used
by several H.323 zones.

Once the gatekeeper has been found, the caller can learn the transport address to send the
SETUP by sending an LRQ or an ARQ. This call flow is supported by most commercial
gatekeepers, making it simple to organize the VoIP network routing for email aliases.

2.5.2.2 H.323 URL

In H.323v4, the syntax for an H.323 URL was added. The URL should begin with ‘h323:’
and be followed by a user name and optionally a server name, separated by the ‘@’ sign.
The server name can be an IP address, but in general it will be a DNS name. The procedure
described above will be used to locate the relevant gatekeeper.

The H.323 URL can be located within a web page to cause a browser to make a call to
the indicated address, if a properly configured H.323 VoIP softphone has been installed
on the PC. Note that NetMeeting does not support H.323v4 and will not react to such
an URL. Microsoft uses a proprietary URL scheme to trigger NetMeeting calls.

2.5.3 E164 numbers and IP telephony

2.5.3.1 A country code for the Internet

If IP telephony becomes a successful technology, more and more people will have an IP
phone or IP telephony software running on a computer. How can they be called from the
PSTN (Public Switched Telephone Network)? It is not possible to use email aliases.

Obviously, it is possible to call a gateway with an interactive voice response system
that will ask which person must be called on the IP network. For instance, it could ask
for a subscriber identifier and then place a VoIP call. This is not very practical. Many
VoIP service providers buy large blocks of numbers from traditional carriers and allocate
these numbers to VoIP subscribers.

The problem with all these solutions is that there is no way to know in advance that
these numbers are reachable over IP; therefore, incoming calls are routed over the PSTN
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all the way to the network owning these numbers, then to a VoIP gateway. This may
not be the optimal route, in many cases it would be much better to route the call sooner
over IP.

The problem is that no specific numbering resource has been allocated to IP telephony:
in 1997 discussions began within ETSI TIPHON about the numbering resource that would
be most appropriate for IP telephony. Many solutions were proposed:

• A special prefix to be chosen in each country (e.g., in Japan all numbers beginning
with 050 followed by 8 digits are allocated for IP telephony endpoints).

• A global service code for IP telephony. An example of such a global service code is
800 for free phone calls. From most countries in the world, it is possible to dial the
international access code, followed by 800 and the service number.

• A global network code. Providers offering services in several countries can request to
have a 5-digit network code allocated to them (e.g., a satellite phone company could
be allocated the network number 99999 and you would reach its subscribers by dialing
the international access code + 99999 + the subscriber number).

• A country code for IP telephony.

The first solution can be implemented very easily in each country if the local carrier
wishes to and if local regulations allow it. This solution, adopted in several countries
(e.g., Japan and Norway), may allow some countries to implement VoIP on a large scale
easily; but, it has several drawbacks:

• The chosen prefix will be different in each country, and make IP phone numbers less
easily recognizable.

• Although these IP phone numbers are now grouped under a single prefix, as opposed
to being allocated at random according to each specific VoIP carrier request, this is still
a large number of prefixes to manage on a global scale. It makes it difficult for telecom
carriers to detect whether these calls should be routed over IP as soon as possible: in
most cases the calls will still be routed to the user’s country via regular telephone lines.
If the call is not recognized as a VoIP call, which is very sensitive to media transcoding
(tandeming) and delays, it may also get routed through DCME equipment or satellite
links, thereby reducing call quality significantly.

The three last solutions are technically identical, the difference lies in the ITU rules for
allocating each type of global code. IP telephony falls between these rules:

• It is not a geographic country.

• It is not a private network.

• It is not a specific service.

There were even proposals to present the need for an ‘Internet country code’ as an
interworking requirement.
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Still, the need is there and a global code would present the advantage of enabling VoIP
users to connect anywhere in the world and always receive calls over the shortest IP path,
as opposed to receiving their calls through their home country. A global code for VoIP is
coherent with the global nature of the Internet. For instance, when receiving a call that
originated in France, a US citizen temporarily working in France would receive a call that
was routed over the French IP network, as opposed to a call routed first to the US over
PSTN, then back to France over IP. This would justify lower prices for communications
to IP phones behind such a country code. But, there are also some regulatory issues linked
with such a solution, such as number portability (is it possible to port a VoIP number
to PSTN and vice versa?) and legal interception (should the US CALEA apply to a US
citizen working in France . . . and therefore do we want all these calls routed through
the US?).

Although some political discussion is likely to prevent the introduction of a country code
for VoIP, many standard bodies have started to work on the issue. But, ITU Study Group 2
will make the final decision (ITU has a draft on the subject called E.IP, which is not very
advanced at the moment). Some countries have already started to allocate a special prefix
for IP telephony: on 14 December 1998, Norway allotted prefix 850 to Telenor Nextel
for its VoIP service ‘Interfon PC’ (http://www.totaltele.com/view.asp?ArticleID=20742),
and Japan allocated one million telephone numbers behind the ‘050’ prefix.

Meanwhile, several technical proposals have been made to support the address resolu-
tion of a telephone number to a call-signaling IP transport address.

All proposals use a database (flat or hierarchical) to find the home gatekeeper handling
the resolution of the phone number into a call-signaling address that can be used to send
the SETUP message.

The number is not resolved directly into the IP call-signaling address of the endpoint
because this IP address may change very often: for a dial-up user, a new address will be
dynamically allocated each time he connects to the Internet. In addition, supplementary
services based on the gatekeeper may redirect the call to different terminals based on
time-based or other rules.

2.5.3.2 UPT

The ITU already has a framework for a service called Universal Personal Telephony
(UPT). UPT is based on a special access code and presents many similarities to the
solutions presented above. UPT calls are routed to a ‘serving exchange’ which resolves
the original number into an E.164 number. UPT includes several models:

• Model 3a is a flat numbering scheme behind access code +878.

• Model 3b is a numbering scheme behind access code +878 that substructures the
numbering space with country codes.

In order to extend the scope of UPT beyond classical voice, the UPT model would only
need a modification enabling the UPT information to include not only the address of
one or more localization servers, but also the technology to use in order to reach them
(classical voice, VoIP, protocol information, etc.).
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The reader will not be surprised to learn that UPT 3a faces similar problems to the IP
country code requests. There is no agreement on how to administer the flat space, and
many political implications are far more complex to solve than all the technical problems
put together.

Some ongoing UPT VoIP trials use UPT numbers that are first routed to a national
switch of the operator owning the UPT number, then handed off to a VoIP system: the
calls are not routed to a VoIP network at the source.

2.5.3.3 DNS-based number resolution

2.5.3.3.1 History
This proposal was first presented to ETSI TIPHON. It uses the network part of the
IP address as the first part of the phone number. For instance, a user managed by a
gatekeeper having an IP address allocated from class C 192.190.132.xxx could have
+999192190132678 as a telephone number, where 999 is the country code allocated
to IP telephony (only one thing is certain for the moment: 999 cannot be allocated for
IP telephony!).

Readers familiar with IP addressing will probably be shocked by the last three digits,
which clearly are outside the 1–254 range. We chose these numbers on purpose, because
they do not need to respect the IP addressing rules.

According to this proposal, when a gatekeeper routes a call to +999192190132678, it
will decide by analysing the first digits whether the network part of the phone number is
class C (see Companion book, Beyond VoIP Protocols multicast chapter for more details
on IP addresses classes). Therefore, the part of the number that is an IP network identifier
is 192.190.132.

Then, the gatekeeper will locate the DNS that has information about this network by
doing an operation called a REVERSE LOOK-UP. During this operation, the network
address is mapped to the DNS name 132.190.192.in-addr.arpa.

Once the proper DNS is located using the regular hierarchical DNS procedure, the
gatekeeper queries the DNS server for information on 678.132.190.192.in-addr.arpa. At
this stage 678 is just a name for the local DNS server, so there is no need to follow
the rules for IP addresses. There should be an SRV record or a TXT record with the IP
address or DNS name of a ‘home gatekeeper’.

Once it has obtained this information, the gatekeeper can route the call to the home
gatekeeper, or query this gatekeeper using an LRQ.

At first glance, this proposal was attractive: it was simple and enabled the use of
distributed databases, solving the ‘who owns the database’ issue. However, it also had a
number of showstopper issues that made it impossible to adopt.

(1) It is a hierarchical dialing plan. It is impossible to assign blocks of numbers of
arbitrary sizes, which leads to rapid exhaustion of the numbering space.

(2) It is unfair. Some US universities have a class A of their own (255∗999∗999∗999
potential phone numbers) while entire countries have only a few class C networks
(999 numbers). This is the unfortunate result of careless IP address allocation in the
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past, but it is unlikely that people would accept this historical artifact to be replicated
for telephony.

Finally, although one of the key features of this proposal is the ability to distribute the
management of the database, considering features like number portability, and taking into
account the fact that the very concept of network classes is now obsolete (a single ‘class’
is distributed over many owners in most IP networks9), leads to the conclusion that the
whole database should be centrally managed.

2.5.3.3.2 ENUM
The key idea of the previous technique, using the DNS to resolve a telephone number
into a call control resource information, has been refined and expanded by the Telephone
Number Mapping working group of the IETF, resulting in RFC 2916bis. This procedure
is more commonly called ‘ENUM’.

ENUM decomposes any telephone number into a pseudo host name. The number is
first written in international format including the country code (e.g. +46-8-9761234 for
a number in Sweden), then all non-digit characters (− , .) are removed, and finally the
number is written in reverse order (to respect the right to left hierarchical nature of
the DNS system, to form a pseudo host name in the new domain name E164.arpa. For
instance, the previous number becomes:

4.3.2.1.6.7.9.8.6.4.e164.arpa

When a system needs to locate the appropriate resource to reach +46-8-9761234, it
must query the DNS for the Naming Authority Pointer Record (NAPTR, DNS-type
code 35, defined in RFC 2168 and RFC 2915) corresponding to the pseudo host name
4.3.2.1.6.7.9.8.6.4.e164.arpa.

The NAPTR record is used to attach a rewrite rule, based on a regular expression, to
the DNS domain name. Once rewritten, the resulting string can be interpreted as a new
domain name for further queries, or a URI (Uniform Resource Identifier) which can be
used to delegate the name look-up. The syntax of the NAPTR RR is as follows:

Domain TTL Class Type Order Preference Flags Service Regexp
Replacement

Domain, TTL, and Class are standard DNS fields; Type is set to 35 in the case of the
NAPTR. The order and preference field specifies the order in which records must be
processed when multiple NAPTR records are returned in response to a single query. The
ordering is lexicographic, order is used first, then preference.

The ‘S’, ‘A’, ‘P’, and ‘U’ flags indicate how the next query should be processed.
The next query should request SRV records for flag ‘S’, A records for flag ‘A’. Flag

9 IP addresses are now allocated in blocks of arbitrary size (as long as it a power of 2). The
mechanism of reverse DNS look-up can be adapted for classless IP addresses, but most DNS
servers do not support it and very few of those that do have been properly configured.
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‘P’ indicates a protocol-specific algorithm, in this case the ‘replacement’ field will be
used as the new name to fetch the corresponding resource record. If the flag is ‘U’, the
regular expression (an expression composed of a series of symbols each defining a specific
modification to a string, and defined in POSIX) specified in the RegExp field should be
applied to the domain name to get an absolute URI. This last option is used by ENUM.

The service field defines the protocol that will be used for the next step of the resolution
(H323, LDAP, SIP, TEL), and the type of service that will be provided (‘E2U’ in the
case of ENUM).

The input of the regular expression is the E.164-encoded telephone number (interna-
tional format), with a leading ‘+’ sign, and only digits (e.g., +4689761234).

For instance, the following record transforms +4689761234 into sip:info@company.se
and mailto:info@company.se, respectively. The preferred method is H.323, then SIP, then
the Simple Mail Transfer Protocol (SMTP):

$ORIGIN 4.3.2.1.6.7.9.8.6.4.e164.arpa.
IN NAPTR 100 10 "u" "h323+E2U" "!^.*$!h323:info@company.se!" .
IN NAPTR 100 20 "u" "sip+E2U" "!^.*$!sip:info@company.se!"
IN NAPTR 102 10 "u" "mailto+E2U" "!^.*$!mailto:info@company.se!" .

LDAP could also be used to continue the query:

$ORIGIN 6.4.e164.arpa.
*IN NAPTR 100 10 "u" "ldap+E2U" "!^+46(.*)$!ldap://ldap.se/cn=01!".

At present, ENUM is still very much theoretical, as it raises complex administrative and
technical issues. The delegation of the e164.arpa domain is a very sensitive issue, being
discussed between the Internet Architecture Board and the ITU Study Group 2 in charge
of numbering issues.

The technical issues are many, prominent among which is latency, as the DNS resolution
can be very low. This is a characteristic of any database relying on hierarchy to scale.
Another issue is the timing of record updates: the caching mechanism used by DNS
times cache records out after the time-to-live period, but this is not sufficiently precise
for telephony use, notably for number portability which would require resource record
updates simultaneously by all service providers.

Another major concern is security, because many denial-of-service attacks or, even
worse, phone number-hacking schemes are made possible in ENUM. DNSSEC (RFC
2535) solves some of the security issues, at the expense of a more complex administration
and possibly increased resolution delays.

In order to be used in operational networks, ENUM will probably require further work.
It seems likely that the question of which protocol to use to request a phone number
resolution and which back-end database to use will need to be more clearly separated.

2.5.3.4 Dialing plan distribution
The previous discussions apply mainly to the issue of reaching an IP terminal from
its phone number allocated from a E.164 numbering space. This is the problem of the
‘last hop’.
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But there will probably be several transit IP networks offered to reach a particular VoIP
alias, and similarly many IP telephony providers will offer outgoing gateways to call
regular phones. Therefore, another interesting problem is the distribution of reachability
information and any related data (prices, QoS levels, etc.) that may help a service provider
to choose among several possibilities when routing a call to a regular PSTN number or
an H.323/SIP alias.

In H.323v3, H.225 annex G (‘Communications between administrative domains’), was
introduced as a way to exchange reachability and pricing information between admin-
istrative domains. Essentially, the protocol is very similar to a simple routing protocol,
like RIP in IP networks, but distributes reachable phone numbers instead of reachable IP
networks. Annex G really takes a simplistic approach to exchanging reachability and cost
information, and shares many limitations and drawbacks also found on simpler IP routing
protocols. There is a big difference though, VoIP calls are charged and any error, even
temporary, can cost millions or ruin the reputation of a carrier. The potential issues that
can be introduced by annex G, from call loops to denial of service (by announcing low
prices on fake routes) have caused all carriers so far to back off. Therefore, there hasn’t
been any operational deployment of annex G by any significant VoIP carrier.

Exchange of route and price information between carriers is still done in the old-
fashioned fax-and-paper way, or using file transfers, in most cases, and routing information
is entered in the central routing systems under human supervision. Essentially, nothing
has changed from the days of traditional carriers.

2.5.3.5 Conclusion

The dream of many engineers who worked on DNS usage for phone number resolution
or automated phone-routing protocols was to make the phone network as informal as the
Internet is today, where a new service provider can get connected in minutes just by
listening to the routing protocol advertisements of neighbouring service providers. The
introduction of a country code also aimed at facilitating easy identification of calls to IP
phones and promoting lower prices to such destinations, justified by the fact that calls
would be routed over IP directly from the source.

It is likely that no global code will be allocated to VoIP, service providers will instead
negotiate bilateral agreements to exchange traffic over IP. This happens more and more
because many traditional carriers now exchange minutes over VoIP. When routing a call
to a VoIP service provider, a carrier with a VoIP-capable transit network will certainly
send the call directly over IP, and not through the PSTN. Therefore, calls will be routed
over IP straight from the source, but charged as regular telephone calls since the absence
of a global code identifies these calls as calls to IP phones.

The use of DNS-like mechanisms for telephone networks is also proving more difficult
than anticipated. The key difference between IP networks and telephone networks is
number portability. In most countries, it is no longer possible to know the service provider
owning a number from a prefix in the number. In fact, most telephone service providers
already have to carry out phone number resolution today, not to find a home gatekeeper,
but to find the carrier owning the destination phone number. Today, number resolution
schemes in the PSTN roughly fall in three categories:



H.323 123

• Onward routing: every service provider is responsible for resolving a block of numbers,
even if these numbers get ported out. Call routing in the network remains hierarchical,
calls are always routed first to the owner of the block identified by a well-known prefix
(e.g., 123xxxxxx is always routed to Acme Telecom). The technique used by each
service provider for number resolution of incoming calls is arbitrary, as no external
query protocol is used: the call is simply rerouted to the new owner based on a local
resolution. For instance, Acme Telecom finds that 123555555 has been ported out to
Competitor Telecom and reroutes the call to this carrier, usually using a special routing
prefix (e.g., D000991234555555). This technique can be used by VoIP ‘as is’; in fact, it
already works in several networks today (Italy, Germany, France). The major advantage
of VoIP is that media tromboning is avoided. This technique does not require ENUM
or anything else, since each service provider is free to choose its local resolution
mechanism (many use LDAP).

• All-call query: a central database is queried by all service providers for each call in
order to obtain a new routing number, identifying the new owner of the number. This
scheme can also be extended easily to include technology information (this call should
be H.323, SIP, . . .). All-call query is used in the US and several other countries.

• Synchronized databases: each service provider is required to have a locally synchronized
database of all numbers and their current owner. National authorities define the database
synchronization primitives, which are rather complex in order to take into account
number portability (numbers can have a portability request pending, be technically
ready to be ported out, technically ready to be ported in, etc.). This technique is used
in Denmark. The ‘synchronized database’ approach would require a protocol that has
nothing to do with the current DNS query protocol.

The DNS query protocol of ENUM could be used to replace the current ‘all-call query’
mechanism (based on SS7 TCAP), with the same or even better functionality, but this
will in many cases require a centralized database, as opposed to the distributed DNS
database foreseen by ENUM. This is because the DNS database is hierarchical, and
the DNS delegation model supposes that you delegate ‘blocks’ of numbers to a service
provider, which is no longer true with number portability. In order to use the DNS
delegation model, the original owner of a number would need to be required to manage
the associated resource record indefinitely, even if the number is ported out (this is the
equivalent of the onward routing method for DNS requests). If this is not acceptable, then
the DNS delegation model can be used only at the country code level, but all national
resolution servers would need to be owned and managed by a single entity. In addition,
ENUM would also need to clarify the use of caching mechanisms in the context of number
portability (DNS caching with a TTL value of T creates an interval of time of length T

where servers can respond to queries with the new or the old record) and would need
to take into account non-E164 numbers (e.g., national 800 numbers and short service
numbers that do not have an international form).

Overall, VoIP will not change much the way service providers work today:

• Network interconnections and call-routing decisions, including the choice of transport
technology and protocol, are negotiated on a bilateral basis, not via a routing protocol.
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• The number resolution mechanism will depend on the country. Number resolution
performed by onward routing may be enhanced by requiring all carriers to maintain
an ENUM database for their blocks of numbers. Alternatively, a national database can
be used, queried via SS7/TCAP (an IP-based query protocol), the ENUM DNS query
protocol, or anything else.

2.6 H.323 SECURITY

2.6.1 Typical deployment cases

Building a telephony trial based on IP technology is easy; it is much more difficult to
build a production-grade VoIP network, providing scalable and secure operations despite
the vast heterogeneity of connected devices and networks.

A security and authentication issue exists whenever the VoIP core network is connected
to untrusted IP networks or untrusted VoIP devices.

This section presents typical deployment cases, and the combination of softswitch and
network features that can be used to solve security and authentication issues.

2.6.1.1 Carrier-to-carrier connections

Interconnection between Internet Telephony Service Providers (ITSPs) is required in
order to:

• Send traffic to another ITSP for least cost routing application.

• Terminate traffic in the local VoIP network for another ITSP.

• Route traffic from ITSPs to other ITSPs according to a least cost routing policy (arbi-
trage, clearing house).

These call flows present multiple security challenges.

2.6.1.1.1 Third-party dependence for security
Many ITSPs currently run their internal call routing using direct mode softswitches (also
called light class 4). These softswitches are in fact used as simple directories, and reply to
VoIP gateway queries with the IP address of the target VoIP gateway used for each call.
In the direct call model, call-signaling is set up directly between gateways, in a peer-to-
peer model. This model presents a number of issues even in a closed VoIP network (e.g.,
no ability to reroute calls on PSTN congestion, no ability to connect untrusted devices
such as IP-PBXs, gateway-based billing, etc.), but presents an unacceptable security risk
when used across different VoIP domains. For each A to B call, the peer-to-peer model
supposes that gateways from domain A will be given (by the direct mode gatekeeper of
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domain B) the IP address of the gateway in domain B where the call SETUP message
should be sent.

This implies that any gateway in domain A should be able to reach the signaling ports
of any gateway in domain B. In H.323 this means opening TCP port 1720 (Q.931),
and even all TCP ports over 1024 if H.245 tunneling is not used, to all gateways in
network A. Since the IP addresses of gateways are not known or frequently changing,
this means opening access to all gateways in network B from the entire IP network A. If
network A security is compromised, network B security becomes compromised as well.
As the amount of network peering grows, the security of the overall network becomes
weaker.

The VoIP gateways that signal ports should always be protected from the outside. Most
VoIP gateways cannot sustain more than a few calls per second and, therefore, are very
easy to break using relatively light denial-of-service attacks. Even worse, some VoIP
gateways, which normally are required to be authorized by the direct mode gatekeeper
before placing an outbound call, have presented security leaks in the past which allowed
the placing of unauthorized outbound calls.

Whenever possible, the routed call model, which does not authorize call control mes-
sages to be exchanged directly between gateways, should be used. In router access control
lists (ACLs), only the call control communications between the gateways and the routed
mode softswitch (e.g., TCP port 1720 for H.323) should be opened. The softswitch sit-
ting between the ITSPs acts as a ‘fuse’ between networks: any attack may bring down
the edge softswitch, isolating the two networks, but will not compromise the protected
network.

2.6.1.1.2 Authentication

Arbitrage requires the ITSP to generate bills for each connected ITSP and, therefore,
to be able to determine which calls are coming from which ITSP. This authentication
must be done in a way that is as independent as possible from the IP telephony vendor
used in the connected networks, because ITSPs use a wide variety of gateways and
softswitches, many implementing a number of proprietary extensions. Some methods
using cryptography have been proposed (e.g., the Open Settlement Protocol on OSP
which uses SSL HTTP requests), but they cannot in general be deployed in real networks
due to the interoperability challenges caused by the cryptographic token formats used,
the variety of VoIP protocol flavours, and the performance issue of TCP-encrypted links.
The most efficient and flexible way of authenticating calls coming from a given ITSP
is to validate the source IP address of the signaling against the IP network allocated to
that ITSP. When the routed mode is used the IP address of the ITSP gatekeeper can be
preconfigured. IP address forging is impossible, since VoIP requires messages to be sent
to and received by each ITSP. Therefore, ITSPs that could forge their source IP addresses,
even if this wasn’t blocked by the router ACLs, would not be able to place calls. Having
a routed mode softswitch which supports source IP address validation and reports the
source IP address in its CDRs, combined with IP spoofing protection at the router level,
ensures that inter-carrier billing is both reliable and scalable, and can be deployed in a
multi-vendor, multi-protocol context.
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2.6.1.1.3 Confidentiality

ITSPs running an arbitrage or a clearing house business may not want to expose the IP
addresses of their partners’ VoIP gateways, for fear that third parties may discover the
names of their termination partners and establish direct business relationships bypassing
the clearing house. This issue is highly theoretical since termination tariffs are generally
negotiated by clearing houses based on the aggregate call volume of all their customers
and would not be accessible to individual customers anyway. Clearing houses are really
protected by their purchasing power more than anything else. Still, exposing termination
partners’ IP addresses is a concern for some clearing houses.

Most routed mode softswitches natively include IP address-hiding features in all the
messages that are relayed by the softswitch. If these options are activated, all signaling-
related IP addresses of the network hidden by the routed mode softswitch are replaced
by the IP address of the softswitch. However, the softswitch does not see the media
stream and, therefore, cannot by itself hide the IP addresses of media streams. In most
cases, hiding the IP address of signaling messages is deemed sufficient, as it will make
it impossible for the connected ITSP to see the hidden IP addresses in all of its common
reporting tools: CDRs and traffic reports will only indicate the IP address of the softswitch.
Learning media-level IP addresses would imply using network sniffers on a regular basis,
which is unlikely in any serious deployment environment. If media-level IP address hiding
is necessary, it will be necessary to use RTP relays, which have in some cases a significant
impact on network engineering, quality of service and scalability.

2.6.1.1.4 Scalability and quality of service

Considering the potential problems exposed above, some ITSPs have decided to peer
using only traditional TDM switches connected to gateways. Ignoring the cost, this poses
two issues: audio delays will be at least doubled, probably exceeding acceptable limits
for most users, because both gateways will have audio jitter delays and coding delays.
In addition, the gateways on both sides of the TDM switch may use different coders for
each portion of the call (e.g., GSM on one side and G723.1 on the other, converted to
G.711 in the middle because the TDM switch can only process this codec: this creates
codec-tandeming issues further degrading the audio quality). Another solution is to use an
IP/IP VoIP gateway, which terminates all signaling and RTP media flows, thereby hiding
the entire network behind its IP address. Such a solution significantly improves audio
quality compared with the previous technique, because the RTP stream does not need to
be decoded and recoded, but still it prevents the RTP stream from being routed along
the shortest path between the calling party and the called party, and obviously introduces
additional delay compared with solutions which route only the signaling data.

Note that it is generally a bad idea to use a general purpose firewall to relay RTP media
streams, because RTP packets are significantly smaller than average data packets, leading
to unusually high packet-per-second rates. Most firewalls will at least require hardware
add-ons to properly relay RTP streams without introducing packet loss or jitter on carrier
size links.
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2.6.1.2 Class 5 residential networks

Residential telephony services over an IP network are becoming increasingly popular.
Next-generation service providers want to provide bundled video data and telephony
services that can only be provided over IP, and consumers may also be willing to use the
software IP phones provided with the Microsoft Windows OS. One of the key challenges
posed by residential VoIP services is the heterogeneity of endpoints that can be used:

• Analogue telephone adaptors, with or without modems.

• Voice-enabled cable modems.

• Softphones.

• IP phones.

Most of the time these endpoints are registered to an access gatekeeper or SIP registrar
(using RAS messages in H.323, Register in SIP), while call-related signaling is handled
by a routed mode softswitch as shown in Figure 2.28.

Class 5 application adds the security requirements given in Sections 2.6.1.2.1–2.6.1.2.5.

2.6.1.2.1 Authentication
Residential phones or gateways need to be authenticated, and the authentication method
needs to be as independent as possible of the phone manufacturer.
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Figure 2.28 Large-scale residential network combining a set of access gatekeepers and
one or more routed mode call control gatekeepers.
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Unfortunately, strong authentication methods implemented in VoIP edge devices are
still mostly proprietary at this time. VoIP standards define frameworks for implementing
security (e.g., H.235 for H.323), but fail to describe the exact implementation of security
mechanism, or propose too many options. In order to implement strong security mecha-
nisms in a class 5 context, the separation of access functions and call control functions
in the class 5 architecture allows access gatekeepers or registrars from the same manu-
facturer as the CPEs to be used, while using a third-party softswitch for centralized call
control. This enables the use of multiple proprietary authentication schemes at the edge,
while maintaining a unique call control device.

In H.323 this can work as follows:

• If all the CPEs and trunk gateways are from the same manufacturer, then when the CPE
is cleared to make the call by the access gatekeeper, it receives in the ACF message
a cryptographic token which is copied in the SETUP message. The authentication and
authorization policy can be used by the access gatekeeper. The token is then carried
transparently by the class 5 call control switch, and when it arrives at the trunk gateway
the trunk gateway will validate this token again using a receive side ARQ sent to an
access gatekeeper. In the case the token is not present or valid, the call is rejected.

• If the CPEs and network gateways are from different manufacturers, then a hierarchical
authentication mechanism can be used. Once the access gatekeeper has validated the
call attempt from the CPE, it sends an LRQ message to the class 5 call control gate-
keeper. The class 5 gatekeeper signs the information contained in the LRQ and puts
this electronic signature in the LCF in a token. Then, the access gatekeeper returns this
token in the ACF to the CPE, which will include it in the SETUP sent to the class 5
gatekeeper. The call will be accepted by the class 5 gatekeeper only if there is a valid
security token. This scheme preserves the independence of each vendor to design their
own security mechanisms (or ‘flavors’ of H.235) at the access level, while keeping a
vendor-independent routing core and centralized access control.

Some other simple security mechanisms also work with all protocols and all vendors
(e.g., the endpoints can be registered, not with their phone number, but with a secure
ID containing a hash code). The security level of this method is identical to the level
provided by a static password.

2.6.1.2.2 Denial-of-service attacks

Denial-of-service attacks are perhaps the most serious threat in residential telephony
deployments. For all applications subject to denial-of-service attacks, the most efficient
prevention is to make IP address spoofing impossible in the residential network. If DHCP
dynamic address allocation is used, a trace should be kept of all IP address allocations to
subscribers in order to be able to trace the originator of any attack. A further prevention
made possible if the IP access layer supports it (e.g., if sophisticated IP-aware Ethernet
switches are used in Ethernet-to-the-building or ETTB deployment) is to configure token
bucket rate control at the edge on all signaling flows. For instance any data flow going to
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TCP port 1720 of the gatekeeper from a residential H.323 subscriber should be allocated
a very low average bitrate.

Any routed mode softswitch by definition routes all signaling, and therefore acts as a
fuse in case a DoS attack should occur. Therefore, an independent routed mode softswitch
should be placed at network boundaries potentially subject to DoS attacks, notably those
where anti-spoofing is not in place. When such an attack occurs, the CDRs provide
immediate information on the IP address of the calling party (except for the distributed
DoS attacks, against which there is no known prevention today for any application).
Some softswitches have built-in protection against DoS: preservation of a minimal level
of service, immediate detection of the attack, and automatic recovery as soon as the
attack stops.

2.6.1.2.3 Billing
Customer premises’ devices can never be trusted, therefore billing records should never
depend on them (e.g., Radius records generated from a CPE gateway cannot be trusted).
Again, the solution is to use a routed mode softswitch, which processes all H.323/SIP
call control signaling:

• No call can be made to the network unless the softswitch allows it.

• All call signaling events, including call establishment, call termination, abnormal abort,
are known to the softswitch and taken into account in the billing records.

Prepaid communications are a special case, as they require a dynamic call cut-off capabil-
ity. The routed mode softswitch may support this dynamic call cut-off feature by injecting
call release messages in the call-signaling path: the two half-calls (from the caller and to
the callee) are released by the softswitch, causing the network-side device (e.g., a VoIP
gateway) to close all signaling and media ports associated with the call. Even if the resi-
dential endpoint ignores the call release message and continues to send audio packets, the
device at the other end will not transmit these audio packets and will reply with ICMP
error packets.

This architecture ensures that no call lasts longer than actually measured by CDRs;
but, the opposite problem exists as well, some calls may be shorter than indicated in
the CDRs.

In all VoIP networks, but even more importantly when software IP phones or residential
devices are used, it is very difficult to get a reliable indication of call termination. Such
devices may suddenly stop responding without properly releasing calls, due to a failure
or a network connectivity problem. This can create very significant business issues if
customers get billed for minutes they did not use. The softswitch should implement a
dead endpoint detection algorithm ensuring that calls from/to any non-responding endpoint
will be cleared within seconds. The transport layers used by traditional network protocols
include a ‘keep-alive’ mechanism that has been forgotten in most VoIP protocols and
must be recreated. There are several ways of doing this, either at the transport level (e.g.,
in H.323 sending malformed TCP segments from time to time and checking that the other
end rejects them as expected, this is called ‘TCP keep-alive’), or at the protocol level
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by sending asynchrous queries from the softswitch to the endpoint (e.g., SIP OPTIONS
message or MGCP AUEP). The use of the new Stream Control Transmission Protocol
(SCTP, RFC 2960) protocol for VoIP would help solve this issue in a more systematic
way, because it includes a built-in keep-alive mechanism.

2.6.1.2.4 Regulatory features
National regulations require the availability of the following services for all IP to PSTN,
PSTN to IP, and IP to IP calls:

• Legal call interception.

• Malicious call identification.

• Calling Line Identity Presentation (CLIP).

• Calling Line Identity Restriction (CLIR).

Many VoIP networks today support these features only through PSTN switches: they
are supported only for IP to PSTN or PSTN to IP calls, not for IP to IP calls. This
is not acceptable for deployments, as regulatory agencies require these features for all
calls regardless of the technology used. The softswitch should implement all of these
features in the network and for all call flows, including IP to IP calls. The legal intercept
feature in particular is always a bit tricky to implement in VoIP networks, as it should
not introduce any noticeable delay in the audio path. It is impossible to use traditional
conference bridges (which add delays due to RTP decoding and jitter buffers): dedicated
devices must be designed which duplicate RTP packets on the fly without decoding them.

2.6.1.2.5 Is media encryption required?
Sometimes, the availability of technologies creates the need. This is what happened with
media encryption for telephony. It is often heard that IP telephony is not secure if media
streams are not encrypted. Such a statement is exaggerated. Indeed, in traditional residen-
tial or business networks the call can be intercepted at the following places:

• On the phone wire, simply by connecting a loudspeaker (or a passive sniffer for ISDN
and digital phones).

• On the link between the user site and the service provider, simply by connecting a
loudspeaker for analogue lines and T1/E1 network sniffers for digital lines.

• In the service provider network, where it is necessary to be on the path on the call
and to use the ISUP SS7 information to find the TDM time slots and circuits used to
transport the call voice stream. This is close to impossible without the collaboration of
the service provider.

So far this level of security has been sufficient for most uses. Standard VoIP offers a
similar or superior level of security:
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• If LAN switches (not hubs) are used in the customer premises, the call can be wiretapped
only by using a network sniffer with VoIP capabilities, and placing it on the Ethernet
wire directly connected to the IP phone. This is because switches do not broadcast pack-
ets, which therefore are routed only on the shortest wire path between the source and
the destination. The level of security is therefore comparable with that of standard home
or business telephony networks. There is no way you can listen to your neighbour’s
conversation; you do not even have access to the IP packets.

• On the link between the service provider and the company/user the call can be wire-
tapped by using a WAN network sniffer. If IPSec is used between the customer router
and the network router, this becomes impossible without government-level encryption-
cracking technology.

• In the carrier network the H.323/SIP signaling of the call must be correlated with the
IP addresses of the end-to-end media stream, then with the IP routing information,
to locate the path of call IP packets. This is a lot more complex than in traditional
TDM networks.

In short, standard unencrypted VoIP is more secure than traditional technology. Even
governments are having a hard time trying to break at down, even with softswitch ven-
dors and service providers’ active co-operation in implementing wiretapping. Media-level
encryption at the phone level should be reserved only for niche markets (e.g., for mil-
itary use—VoIP is very popular in the armed forces, as it significantly simplifies and
accelerates wiring in battlefields).

Even VoIP over wireless LAN will not require any specific development, as the air link
is already secured by layer 2 mechanisms.

2.6.2 H.235

H.235 aims at providing application-level privacy (no eavesdropping) and authentication
(assuring that people are really who they pretend to be) to H.323 communications and
more generally all protocols using H.245. Because H.323 can be used on the open Internet,
it inherits the reputation of the Internet; some say that it is less secure than regular
telephony. In fact, even without H.235, it is much more difficult to listen to an H.323 phone
call than to wiretap a phone line, because you need to implement not only sophisticated
network-sniffing tools, but you also need to be on the path of IP packets and to implement
the proper voice codec algorithm. Legal call interception, for instance, is much more
complex with voice over IP than traditional phone networks. With H.235, IP telephony
becomes much more secure than regular telephony. Security based on H.235 can be
implemented at several levels. With the strictest options, it becomes virtually impossible,
even for someone having free access to the IP network, to listen to any conversation that
has been secured by H.235 on even to know the number that is being called. In most cases
though, H.235 will be used only to make sure that users do not forge their identities. For
other aspects the security level provided by standard H.323, comparable with or better
than the security level of the TDM networks, is deemed sufficient.
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2.6.2.1 A short introduction to cryptography

This chapter has been written purposefully to avoid any reference to the complex notions
of algebra, but unfortunately we cannot avoid it altogether. It is possible to read H.235 by
considering each encryption function as a black box, but then many parameters, random
numbers here and there, remain obscure. We have chosen to describe the cryptographic
algorithms used by H.235 in a simple way, but it doesn’t mean that they are simple. The
real complexity of cryptography is in the detail: How do you choose a random number?
How do you calculate a large prime? And so on. So, this chapter will probably seem crude
to cryptography experts, but we hope it will help those just wanting to have an overview.

2.6.2.1.1 Common terms
Cryptography is a set of techniques and mathematical algorithms which address one or
several of the following needs:

• Privacy: the need to keep the content of a piece of information unknown to anybody
except a controlled set of individuals.

• Authentication: the need to check and verify identities.

• Non-repudiation: the ability to attribute with certainty a document, a call, or any piece
of information to an author.

• Integrity: the need to preserve the original content of a document from any modification
or falsification.

2.6.2.1.2 Cryptographic techniques
Two main techniques are in use today:

• The first one (called symmetric cryptography, shared key cryptography or secret key
cryptography) is probably as old as civilization. Caesar was already using it to send
messages to Rome.

• The second one (called asymmetric cryptography or public key cryptography) is much
more complex and is based on elaborate mathematical algorithms.

2.6.2.1.2.1 Secret key cryptography

(a) Simple algorithms

Secret key cryptography relies on a shared secret between the sender of a message and
the receiver. The shared secret can be the algorithm used to encode the message (e.g., a
given permutation of letters), or a ‘key’ used as a parameter in a well-known algorithm.

Simple algorithms, such as letter permutation, are very weak unless the permutation
changes frequently: a message can usually be cracked by examining only about 40 letters
of the cryptogram when a fixed permutation is used.

A refinement of this algorithm, called one time pad was described by Vernam in 1926:
if a message is encrypted by adding a completely random key of the same length (e.g.,
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doing an XOR with a random bitstream), then the cryptogram contains absolutely no
information for anyone not knowing the random key. Nothing can distinguish it from a
random message. In other words, the security of this system is perfect and mathematically
proven, provided of course the random string is really random and unknown to anyone
except the two parties exchanging information. A pseudo-random string can be used
instead, but then the security of the system then depends completely on the quality of the
pseudo-random generator.

One time pad has, however, a serious drawback: it needs to send an extremely long
random key in advance to the recipient of the messages in a secure way. The advent of
the CD-ROM has made this relatively easy, and this system is still used today for military
or diplomatic communications.

(b) DES and its successors

The most widely used secret key algorithm in use today is the Data Encryption Standard
(DES). DES is a consequence of a consultation by the US Commerce Department in
1971 asking for a secure, yet easily implementable encryption algorithm. They requested
a publishable algorithm (i.e., security could not rely on the fact that the algorithm
was unknown).

It was only in 1974 that an appropriate proposal was submitted: IBM’s Lucifer algo-
rithm. The proposed algorithm was modified and finally resulted in the algorithm that
was standardized in 1976 as DES. The current standard is Federal Information Processing
Standards Publication 46-2 (FIPS PUB 46-2) of 1993.

DES is a block algorithm that can code a message of 64 bits into a cryptogram of
64 bits using a 56-bit key (the actual key has 64 bits, but 8 are used just for error detec-
tion). Regarding patents, IBM grants under certain conditions free licenses for devices
using DES.

Coding 64 bits is not extremely useful, and an additional standard (FIPS PUB 81)
describes how to extend the use of DES to data of arbitrary size:

• Electronic code Book (ECB) is the direct application of DES on a message split into
64-bit chunks using the same key repeatedly. It is not very secure because similar
sequences in the initial message will also appear in the coded message, leading to
several potential attacks.

• Cipher Block Chaining (CBC) avoids this weakness of ECB by using the result of the
encryption of a block n to perform an XOR (eXclusive OR) with block n + 1 before
encrypting it. A transmission error on one block of a CBC-encoded file will prevent
the proper decoding of both this block and the next one.

• Cipher Feedback (CFB) is more appropriate for coding sequences of less than 64 bits.

• Output Feedback (OFB) uses DES to generate a pseudo random bit sequence that is
added (XOR) to the message to be encoded. OFB can in theory code small messages of
less than 64 bits but is considered more secure when coding messages over 64 bits. OFB
is not subject to error propagation and for this reason is quite appropriate for coding
audio or video. (The coding used in the GSM cellular standard is derived from OFB.)
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Because CBC, CFB, and OFB all use chaining, the sender and the receiver must be
provided with a common initialization vector, in addition to the key. When using H.235,
the key is carried in the EncryptionSync parameter. H.235 also describes how to construct
an initialization vector for CBC, CFB, and OFB.

With the power of computers ever increasing, the safety provided by DES has been
questioned. Triple DES simply chains three individual DES blocks using different keys,
which raises the complexity of the algorithm from a 257 equivalent codebook to 2112

(because of some theoretical reasons, the exponent is increased only by a factor 2, not
3). The justification for three stages instead of two is quite involved, but in short it has
been proven that using just two stages does not increase the security of basic DES.

There are many other efficient algorithms using a shared secret key:

• RC2 codes blocks of 64 bits with a key of 40, 56, or 128 bits.

• RC4 is flow-oriented and uses a 40- or 128-bit key.

• The brand new Rijdael algorithm, which will be the successor of DES.

The RC2 and RC4 algorithms have been implemented by many US companies, as they
once were easier to export than DES-based solutions.

2.6.2.1.2.2 Asymmetric cryptography

Asymmetric cryptography is based on a new pragmatic way to consider the security of
information: a piece of information is not secure only if you don’t know how to extract
the information; it is also secure when you do know how to extract the information but
you cannot practically do it because it would require too much time to run the extraction
algorithm even for the fastest computer.

(a) One-way functions, ‘hash’ functions

Assymetric cryptography uses many so-called ‘one-way’ functions. A function F is a
one-way function when it is extremely difficult to find x knowing F (x). The idea is that
if we have such a function mapping a set of messages M to another set of messages
C, it is possible to code a message m from M by using F(m) = c as a cryptogram. For
instance, the following function is ‘one way’:

Z/pZ → Z/pZ

x → qx mod p

where p is a very large prime number (typically with over 100 digits). It is possible to
demonstrate that in this case there is at least one number q that is ‘primitive’ (i.e., for
any element E of Z/pZ it is possible to find an element x such as qx = E. If q is chosen
to be primitive, there is a one-to-one mapping between the initial message m and the
cryptogram F (m). There are classic methods to find a primitive element of Z/pZ once p

has been fabricated to have some ‘good’ properties.
In theory, it is possible to find the initial message from the cryptogram by calculating

F (x) for each possible x and compare the result with the cryptogram. But, there are
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about 10100 possible values for x and each calculation is very costly—just imagine how
long it takes to calculate, say 12343323223654654654654! Even being smart and trying to
optimize the calculation (e.g., trying to calculate ((((((q2)2)2)2)2)2 . . .) there will still be
about log(654654654654) multiplications. But, why not ‘just use the inverse function’.
The fact is we don’t know how to invert this function efficiently. There is no other way
than to try each possible solution until a match is found!

A straightforward application of one-way functions is password storage. Instead of
storing the clear form of a password p, we store F (p) on the authentication server. This
way the password file cannot be used to find the original passwords. When a user logs on
with a password p′, the system can simply check the validity of the password by verifying
that F(p′) equals the stored value F (p). In this case the function does not need to provide
one-to-one mapping: we can tolerate having several passwords mapping to the same code,
if of course the number of possible codes remain very high; this is called a hash function.
Hash functions are also frequently used to ‘summarize’ and electronically sign information
(e.g., in H.323 the information contained in H.235 ClearTokens (Section 2.6.2.2.1.1) can
include a hash code parameter, which is the result of F (token information, secret)).
This prevents anyone from easily modifying the token information, because they cannot
recalculate the proper hash code without the secret.

(b) How to negotiate a shared secret with the Diffie and Hellman algorithm

This algorithm allows two persons, say Bob and Mary, to negotiate a common secret over
a public link. First, Bob and Mary need to agree on a large prime p and an integer q. It
is not a problem if other people know this choice as well. Then, Bob and Mary execute
the following steps:

(1) Bob secretly chooses an element of Z/pZ: a. Mary secretly chooses an element of
Z/pZ: b.

(2) Bob sends qa mod p to Mary. Mary sends qb mod p to Bob.

(3) Bob and Mary choose S = qab mod p as a common secret. They can calculate it
easily because S = (qa mod p)b = qab mod p = qba mod p = (qb mod p)a!

There is no known way to calculate S knowing only qa or qb! Bob and Mary have
managed to negotiate a common secret on a public link and can use any symmetric cryp-
tography method using this secret to exchange messages. The Diffie–Hellman algorithm
is in the public domain.

(c) Public key encryption with the El Gamal algorithm

The public key encryption system presented below was authored by El Gamal and derives
directly from the Diffie–Hellman method. Again, we use the discrete logarithm function
F : x− > qx mod p, in which q and p are known to both the sender B and the receiver A

and possibly other persons as well. In this system recipient A has a public key Pa = F(a)

built from his secret a.
B wants to send a secret message M to A, and of course B wants to be sure that only

A can decipher the message. For simplicity, let’s assume for a moment that the message
is a number in Z/pZ.
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B chooses a random number k and sends qk mod p and M ∗ P k
a mod p to A. Note

that in this system the cryptogram is twice as long as the original message.
Anyone intercepting the coded message needs to know the value P k

a to find M . Pa is
widely known, so all that is needed is k. But, as we have seen above, it would take an
enormous amount of calculations to find k from qk mod p if p is large enough. So, unless
a government agency with a large budget is really determined to discover M , B can be
pretty safe.

For A, it is very easy to find M from the information sent by B. First, we have to
remark that Pak = (qa)k = (qk)a . A knows qk and a, so can easily calculate the value
of Pak and deduce M immediately.

Public key encryption is very CPU-intensive, and should never be used when not strictly
necessary. It is much more efficient to use it until such a shared secret has been determined
and then use a secret key algorithm, such as DES.

(d) RSA
The RSA algorithm is based on the difficulty of decomposing a large number into its
prime factors when some of these factors are very large primes. The principle is to encrypt
a message m using me mod n as the cryptogram. e is a prime (e.g., e = 3). n, for instance
15, is the public key of the recipient of the message. The public key n is not just a random
number, it is also the product of two large primes p and q. In our oversimplified example
n = p ∗ q = 3 ∗ 5. Both p and q are kept secret.

For instance, if ‘7’ is the message to transmit securely, C(7) = 73 mod 15 = 343 mod
15 = 13. Therefore, ‘13’ is the corresponding cryptogram.

In order to decipher the message, the recipient seeks a number d with the property
med = m. This is equivalent to saying that m(ed−1) = 1 mod m.

If the greatest common denominator of m and n is 1 (gcd(m, n) = 1) we know from
Euler’s generalization of the Fermat theorem that mφ(n) = 1 mod m, where φ(n) is the
cardinal of the set of numbers having no common divisors with n. When n is a product of
primes it is easy to calculate φ(n) = (p − 1) ∗ (q − 1). Of course, there could be cases
where gcd(m, n) �= 1, but the probability (p + q − 1)/pq is negligible for large primes.
Calculating φ(n) is straightforward when you know p and q. But, if you know only the
public key n = pq, you cannot find p and q in a reasonable period of time.

So in our example the recipient is seeking d such that ed = 1 mod φ(n), with φ(n) =
(p − 1)(q − 1) = 8. The problem now reduces to finding d and k in 3d + k8 = 1. We
know that a solution can be found with the Euclide an algorithm because gcd(3, 8) = 1
since e = 3 is a prime. Here, the solution is d = 11(3 ∗ 11 − 8 ∗ 4 = 1). d = 11 is the
private key of the recipient and can be used to decipher the message. M = Cd mod
n = 1311 mod 15 = 1792160394037 mod 15 = 7.

Note that the roles of the private key d and the public key e are completely symmetric.
So, it is possible to encrypt a message using the private key and then decrypt it with the
public key. This is used for digital signatures.

(e) Digital signatures
There are many ways to cryptographically sign a document. In this section we present
only one of these methods, based on the ability to cipher with a private key and decipher
with a public key in the RSA algorithm.
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Figure 2.29 Principle of a digital signature.

First, a hash of the document to be signed is calculated (see Figure 2.29). A hash is
a function that takes a long document as input and produces a small string as output. If
the initial document changes slightly (e.g., only one bit changes), a good hash function
should lead to a completely different and unpredictable result. One of the most popular
hash algorithms is called MD5 (Message Digest 5).

Then, the result of the hash function is encrypted with the private key of the person
who signs the document; this becomes the signature.

It is easy to check whether a document is original (has not been modified since the
signature) and really comes from the alleged author:

• First, a hash of the document is calculated with the same algorithm.

• Then, the signature is deciphered using the public key of the alleged author. If the
alleged author is really the author of the document, we obtain the hash code of the
original document.

• Finally, both digests are compared, if the document has been modified in any way since
the signature they will differ.

2.6.2.1.2.3 Certificates

Digital signatures are very useful, but only if you are sure that the public keys used by
receivers to check the authenticity of the message are associated with the correct identity.
The public key can be distributed using a secure method, but this is not very practical.
Certificates are a much more efficient way of ensuring that a public key is not a fake.

Certificates usually contain the public key of the presenter, along with some identity
information (name and address, corporation name, etc.) and a validity period. In order to
avoid any falsification, all the information contained in the certificate is digitally signed
by an authority.

An authority is someone owning a widely known public key—so widely known that no
one can fake it (e.g., it can be included by default in the operating system, or configured
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by an administrator). When the authority signs a message with its private key, everyone
can verify the signature using the public key. If the authority is known to create certificates
only after adequate verification of the alleged identity of the certificate owner, then the
certificate is a secure association between a public key and an identity.

If there were only one root authority R, it would rapidly get difficult to handle the
workload associated with checking the identity of people or organizations requesting a
digital certificate. But, having many root authorities is also difficult because the new
authority needs to make its public key widely known (e.g., by approaching Microsoft and
asking that they include it in the default configuration of their Internet browser).

Fortunately, there is a solution enabling a root authority to delegate this certificate
creation task to intermediary authorized agencies. In order to do this, the root authority
creates certificates for each intermediary agency by signing a document containing their
public key, name and possibly other elements (see Figure 2.30). An intermediary authority
A, when requested to create a certificate C by signing a message which contains the name
of the customer, his public key, etc. can just sign this message with its public key Pa.

The new certificate C is returned to the client, with the certificate of the intermediary
authority A signed by R.

How does it work ? When someone needs to verify the validity of certificate C, he
first checks that the signature of the certificate document by A is valid. He can do this
because the public key of A is included in the certificate of the intermediary authority A

signed by R.
But the public key of A is not well known, it could just be an untrusted local agency.

So, it is also necessary to check that the certificate of the intermediary authority A has
been properly signed by R, certifying that A can be trusted. This is easy, because the
public key of R is well known.

It is relatively easy to check the identity of someone once you are in possession of
his certificate. You need to check that the person you are communicating with is the

Root authority

(well-known public key)

Intermediary authority A
Intermediary authority B

Public key A

Digital name A

MESSAGE

Signature

MESSAGE

Signature

A

B

R

R

R

Public key B

Digital name B

Figure 2.30 Delegation of authority using a hierarchy of certificates.
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legitimate owner of this certificate (i.e., is the person owning the private key corresponding
to the public key contained in the certificate). This is not trivial because the presenter
of the certificate cannot simply show his private key, as it would become compromised!
Fortunately, there are other ways to perform this verification without compromising the
secret key: for instance, one can encrypt a random string with the public key, send it to
the presenter of the certificate and ask him to decrypt it. If the presenter of the certificate
has managed to decrypt the string, then he has access to the private key and must be the
owner of the certificate.

2.6.2.2 Securing H.323 with H.235

During the ITU meetings that led to H.235, because of the general perception that the
Internet was not secure and that it would be easy to listen to calls, the initial focus was
on securing the media channels. The H.245 procedures were extended to support the
encryption of media channels by adding security parameters in the OpenLogicalChannel
message. If the H.245 channel itself is secure in the first place, then the parameters
within the OpenLogicalChannel message need no specific protection. This was the main
motivation for securing the H.245 channel, but other reasons are equally important (e.g.,
protecting the DTMF information carried in H.245 UserInputIndication messages which
may contain sensitive credit card data or passwords).

With a little more experience it became clear that on most IP networks the media
channels were hard to access, and therefore already secure enough for the average user.
The key requirement was in fact coming from service providers who need to avoid
charging the wrong account for a call and also need to be able to prove that someone placed
a call in case of a disrupted call. So, the call-signaling channel must be authenticated and
optionally encrypted. In the context of H.235, if signaling encryption is used, any server
in the network which needs to know the contents of the H.225.0 or H.245 messages
needs to be trusted by the communicating endpoints, because it will have access to all
confidential information elements: DTMF digits, encryption keys of the media channels,
etc. These servers include the gatekeepers in the gatekeeper routed model, the MCUs and
gateways otherwise.

Today, apart from of niche markets (military or financial applications), H.235 is only
used to make sure that access to public H.323 networks is restricted to subscribers and to
authenticate the calling party in order to prevent any misuse of network call-accounting
functions. In many networks, notably when customer premises equipment are owned and
managed by the service provider, these goals can be achieved without H.235, using data
layer security or source IP address validation. For instance, in a VoIP network providing
voice VPN capabilities between corporate PBXs, the VoIP gateway connected to the
PBX is probably already using some form of IP or transport-level security, and can be
considered a trusted element of the network even without H.235.

2.6.2.2.1 H.235 tools
2.6.2.2.1.1 Tokens
Tokens are parameters transmitted within H.323 messages that are opaque for H.323 itself
but can be used by higher level protocols. H.235 uses two types of tokens:
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• A ClearToken is an ASN-1 sequence of optional parameters, such as timestamp, pass-
word, Diffie–Helmann parameters, challenge, random number, certificate, . . . ClearTo-
kens are appropriate whenever the need is to ensure only the integrity of the transported
information.

• A CryptoToken contains an object identifier of the encrypted token, followed by a
cryptographic algorithm identifier, some parameters used by the algorithm (e.g., initial-
ization vector), and the cryptographic data itself. CryptoTokens can be used to convey
hidden tokens, signed token, or hash values. The cryptographic algorithm needs a key
of a specific size N . For symmetric key algorithms the key is derived from a secret
shared between the communicating parties. If the secret is shorter than the required
key, the secret is simply padded with zeros, if it is longer than the key then the secret
is split into blocks of size N octets (or less for the last chunk) which are XORed. The
resulting value is used as the key. When the shared secret is not configured in advance
a method to negotiate a common secret is required (Section 2.6.2.2.1.2).

As stated above, the most frequent requirement in real deployments is to make sure
the devices registering to the VoIP network cannot forge their identities. For this purpose,
it is possible to include in the SETUP message a ClearToken containing a call ID, a
timestamp, and a hash value (computed from the call ID and the timestamp—the letter
prevents replay attacks). This coupled with the calling and called party information is
usually enough.

2.6.2.2.1.2 Generating a shared secret with Diffie–Helmann

Many H.235 procedures require a shared secret. If the communicating endpoints do not
already share a secret, they must create one common secret, beginning with a communi-
cation that someone can potentially intercept.

The Diffie–Hellman key can be negotiated as described in 2.6.2.1.2.2 by using H.235
tokens.

In Figure 2.31, the DhA parameter contains p, q and qa , the DhB parameter contains
p, q, and qb. The random value passed in B’s reply is used for XORing parameters for
further exchanges to prevent replay attacks. The CryptoToken is optional and can be used
to digitally sign some parameters in order to prove the identity of the sender.

2.6.2.2.2 Securing RAS

RAS messages are exchanged between an endpoint and a gatekeeper prior to any other
communication. H.235 does not provide a way to ensure privacy on the RAS link, but
it does provide authentication and integrity. If the security mechanism to be used is not
known in advance, two parameters are present in the Gatekeeper Request (GRQ) message
that allow negotiation of the right mode and algorithms: authenticationcapability indi-
cates the authentication mechanism that can be used, and algorithmOIDs contains the list
of algorithms supported (DES CBC, DES ECB, RC2, . . .). Of course, in real networks
the service provider will usually preconfigure all equipment with the selected algorithm,
so this is a bit theoretical.
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ClearToken(DhA, time A, …), CryptoToken(generalID A, time A, DhA) sign A

ClearToken(DhB, random B, time B, …), CryptoToken(generalID A, time B, DhB) sign B

Optional signature elementsp, q, qa mod p p, q, qb mod p

Figure 2.31 Diffie–Helmann parameters encapsulated in ClearToken and CryptoToken
structures.

There are two modes of operation depending on whether the gatekeeper and the endpoint
share a secret or not.

If there has been no previous relationship and no shared secret between the gate-
keeper and the endpoint, they need to negotiate one. For this purpose a Diffie–Helmann
negotiation occurs during the GRQ, GCF phase using a ClearToken as described in
Section 2.6.2.2.1.2. After this, the gatekeeper and the endpoint share a common secret.
This secret can be used to authenticate any subsequent RAS message between the gate-
keeper and the endpoint, in particular the RRQ and URQ. This is done by includ-
ing in those messages a CryptoToken (encrypted using the DH secret) containing an
XORed combination of the GatekeeperIdentifier, the sequence number of the request, and
the last random value received from the gatekeeper (in the RCF or an xCF message).
The key used to code the CryptoToken is derived from the Diffie–Hellman secret as
described above. The gatekeeper provides new random values in each xCF in a ClearTo-
ken.

When the gatekeeper and the endpoint share a common secret, defined at subscription
time, then the easiest procedure is to include in each RAS message a ClearToken with a
timestamp and a hash code computed on the calling and called party numbers, the call
ID and the timestamp. But there are more complex options; for instance, the following
procedure can be used:

• The terminal sends a GRQ with authenticationcapability set to pwdSymEnc (other
modes can be used besides pwdSymEnc, such as hash-based or certificate-based
authentication, with a similar procedure) and a choice of algorithms in algorith-
mOIDs.
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• The GK replies with a GCF containing a ClearToken with a challenge string and
a timestamp to prevent replay attacks, authenticationmode set to pwdSymEnc and
algorithmOID set to the chosen algorithm (e.g., 56-bit DES in CBC mode).

• At this point, the endpoint may have received more than one answer from several
gatekeepers. It chooses one gatekeeper and registers it by sending an RRQ. This RRQ
should contain a CryptoToken (using the algorithm chosen by the GK, here 56-bit
DES CBC) with the encrypted challenge. The gatekeeper can check the validity of this
answer by encrypting the challenge locally with the key associated with the endpoint
alias (known from the GRQ), and comparing the result with the endpoint-provided
encrypted challenge.

• After this, other RAS messages can be authenticated by including a CryptoToken with
the XORed combination of the GatekeeperIdentifier, sequence number, and GK random
values provided in xCF messages.

Using one of these methods, the gatekeeper can authenticate the RAS messages of each
terminal in its zone.

2.6.2.2.3 Securing the call-signaling channel (H.225) and the call control
channel (H.245)

The call-signaling channel can be secured using transport-level mechanisms like TLS or
IPsec. An endpoint knows that it needs to secure a channel using TLS if it receives the
call on port 1300. This is the more advanced option of H.235, providing confidentiality
in addition of integrity and authentication. In practice, such complexity is not required,
because only integrity and authentication are required. Most commercial H.323 endpoints
implement one of the following methods:

• The SETUP message includes a token with a timestamp and a hash value computed
from the most important parameters of the call (at least the calling party number, called
party number, and callID). The gatekeeper, in routed mode, can verify this token with
the shared secret, ensuring integrity and authentication.

• The RAS Admission Request (ARQ) message includes a token with a timestamp and a
hash value computed from the most important parameters of the call (at least the calling
party number, called party number, and callID). The gatekeeper performing the RAS
function can verify this token from the shared secret. If the token is verified, it sends
back in the ACF a token that should be included in the subsequent SETUP message.
This token will have to be verified by the call control server receiving the SETUP
message. The usefulness of this hierarchical authentication is clearer when considering
the scalability of authentication in a large H.323 network (see Section 2.6.2.3.3).

In the SETUP, the caller will indicate which security schemes it supports for the H.245
channel in the h245SecurityCapability data structure. h245SecurityCapability includes
a specific object identifier for each cryptographic algorithm, 56-bit DES CBC, and 56-bit
DES OFB (e.g., each has its own identifier). The callee chooses one in the h245Security-
Mode data structure carried by one of the Q.931 response messages (e.g., CONNECT).



H.323 143

If no common security mode can be found, the callee can release the call with the reason
code set to SecurityDenied. The necessary messages needed to secure the H.245 channel
are exchanged before any other H.245 message.

Different methods can be used to initiate the secure channel, depending on whether
the communicating endpoints share a secret or not. These procedures are very similar
to those described for the RAS channel. Again, if a shared secret does not exist, it can
be created using a Diffie–Hellman procedure. To our knowledge there is no commercial
implementation of this yet; so, we will not detail the procedure further.

2.6.2.2.4 Encryption of media channels
Once the H.245 channel is secured, the terminals need to know which security modes can
be used for the media channels. This is part of the capabilities exchange (e.g., terminals
can signal that they support GSM capability, and/or encrypted GSM capability). A new
capability has to be defined for each combination of codec and encryption mode. Since
encryption algorithms can use a significant portion of the CPU, it is possible to signal
such capabilities as plain GSM + H.263 video or Triple DES-encrypted GSM. H.323 is
very powerful when it comes to expressing capabilities.

When a new logical channel is opened, selected security mode is specified (chosen by
the source) and the key that will be used for logical channel encryption is provided by
the master (as determined in the master–slave negotiation, see Section 2.2.1.2.2) either in
the OpenLogicalChannel or in the OpenLogicalChannelAck using the encryptionSync
field. The key is associated with a dynamic payload type, so a receiver which has just
received a new key in the encryptionSync field will know it must use it as soon as the
payload type of the RTP packets it receives matches the payload type associated with
the key. The key can be refreshed at any time using the dedicated H.245 commands,
EncryptionUpdateRequest and EncryptionUpdate. If the master decides to update the
key (using the H.245 EncryptionSync message), then the payload type of the RTP stream
must change for the RTP packets that use the new key.

Key negotiation can be made inherently secure using certificate exchange, or can be
secured by first securing the H.245 channel. If the H.245 channel is not encrypted for
some reason, then H.235 has provisions to open a separate specific LogicalChannel of
type h235Control to negotiate key parameters for the logical channels. Again, there is
no commercial implementation of this.

For multipoint communication, the secured H.245 channel is established with the MCU,
and therefore the MCU must be trusted. New endpoints arriving in the conference can
retrieve other endpoints’ certificates, through ConferenceRequest/ConferenceResponse
messages. However, they must trust the MCU to check whether the endpoints actually
own those certificates.

As already mentioned in Chapter 1, many popular algorithms, such as DES ECB or
CBC, are block-oriented. They are designed to code data aligned on the block size (64 bits
for DES). The most simple way to cope with this is the RTP padding method described in
RFC 1889 (see Chapter 1 for more details). When it is used, the P bit of the RTP header
is set. However, there are other techniques that can be used with DES. In addition, to
regular RTP padding, H.325 mandates that all implementations support ciphertext stealing
for ECB and CBC, and zero pad for CFB and OFB. These techniques are modifications of
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the regular ECB/CBC/CFB/OFB chain-coding process for the incomplete data block and
its predecessor, leading to a cryptogram exactly as long as the original message. When
payload length is not a multiple of block size and the P bit is not set, then the decoder
must assume that one of these methods is used.

In all cases, when an initialization vector is needed, it is constructed from picking as
many octets as needed from the concatenated sequence number and timestamp octets,
repeated if needed.

2.6.2.3 Scalable and secure H.323 deployments in a multi-vendor
environment

2.6.2.3.1 Split gatekeeper architecture
In very large deployments of H.323 networks, from 50,000 endpoints up to several hundred
thousand, the RAS and routed mode call control functions cannot be performed by the
same gatekeeper. A typical network of 100,000 endpoints will generate about 500,000
calls a day, but will generate at least 144,000,000 registration requests during the same
time (assuming one refresh registration request per minute per endpoint). This translates
to about 1,700 RRQ messages per second. Assuming a single computer were powerful
enough to handle this load in case of a temporary network failure, and assuming all
endpoints randomly send the first RRQ after failure over a period of 20 s, the average
load during network restarts may exceed 5,000 RRQs per second. A single softswitch
is unlikely to be able to reliably handle such a load, in addition to the call control
functions.

The right solution is to separate the access function, handled by regional ‘access gate-
keepers’, and the call control function, handled by a central call control gatekeeper
(Figure 2.32). There are typically several access gatekeepers for each call control gate-
keeper in the network. A router-based access gatekeeper can be expected to handle about
30 to 50 registrations per second, representing about 5,000 endpoints. Call control gate-
keepers see only active calls, and some scale up to about 15,000 simultaneous calls,
sufficient for 300,000 to 500,000 residential users. Note that most vendors publish the
calls-per-second limitation of the call control softswitch; this shows 500 active residential
calls translate to only about 5 calls per second (the average call duration is about 3 min,
and 30% of calls are dropped due to a busy or no answer condition). A softswitch with
15,000 active calls will receive only about 150 calls per second.

2.6.2.3.2 Securing the network edge
The security of the registration of an endpoint to its access gatekeeper uses one of the
H.235 methods explained above. Access gatekeepers may check the identity and pass-
word of endpoints (most of the time, the shared password methods of H.235 are used)
with Radius or LDAP interfaces to a central database. Only the first RRQ is checked, the
other keep-alive RRQs do not need an external password database access. A significant
advantage of the ‘split gatekeeper’ architecture described above, besides scalability, is
that it facilitates the deployment of multi-vendor solutions. Because of the number of
options in H.235, most vendors’ security implementations do not interoperate with one
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Figure 2.32 Split gatekeeper architecture.

another, because the exact information provided in each security token is slightly dif-
ferent, the hash code calculation method is different, etc. With the split architecture it
is possible to group endpoints of the same brand together and point them to an access
gatekeeper that can understand secure tokens from this brand while keeping call control
centralized.

Providing security for the call admission function is more complex. Even if the
ARQ/ACF RAS exchange with the access gatekeeper is secure, it is still necessary in most
cases to secure the Q.931 call control channel. There is one exception: if the network is
from a single vendor and if the PSTN access gateways support the same format of security
tokens as the edge endpoints; in this case, it becomes possible to secure the network at
the edge. There are several large-scale instances of such networks today.

In the simple case illustrated in Figure 2.33, a token is provided by the access gatekeeper
back to the edge endpoint in the admission confirm (ACF) message. The endpoint is
required to copy this token in the SETUP message. The call control gatekeeper ignores
this token and assumes this call can be forwarded to the destination. The destination is
located with a Location Request (LRQ) to the proper access gatekeeper, and the SETUP
is forwarded to the destination with its security token. The destination is required to get
an authorization from its own access gatekeeper before it can continue processing the call.
The token is passed to the access gatekeeper in the Admission Request, and the access
gatekeeper verifies it by controlling that the hash code is correct for the given timestamp,
callID, and call destination. If it is correct, the call is accepted with an ACF; otherwise,
the call is rejected (ARJ) and released by the gateway.
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Figure 2.33 Call secured at the edge by tokens.

This simple single-vendor case is completely secure for calls to the PSTN, because the
gateways are the property of the network provider and can be trusted. It is slightly less
secure for calls to endpoints, because potentially an endpoint could be hacked to not do
any admission request before it proceeds with a received call. However, this requires both
the calling and called endpoints to be hacked, a fairly limited probability.

2.6.2.3.3 Security at the access level and at the call control level

If the network involves multiple vendors, or if the PSTN gateways do not belong to
the same service provider as the calling endpoints (e.g., if a residential network sends
international calls to a clearing house), then the simple solution above is not sufficient
and the call control gatekeeper needs to enforce the security policy. The simplest way
to do this is to have the call control gatekeeper simply validate the token passed in the
SETUP message, which was copied from the ACF. But, even this is not trivial. Most
vendors simply send a hash code based on the endpoint password and call parameters.
This forces the call control gatekeeper to know the password of each endpoint to validate
the token, which is time- and memory-consuming for 500,000 users. A more scalable way
of doing this is to have the access gatekeeper return a new token, signed with the access
gatekeeper password, once the call has been authorized. This makes things much easier
for the call control gatekeeper, because now it only needs to know the password of the
access gatekeepers, not of the end users.
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The assumption for this solution to work is that the access gatekeeper and the call
control gatekeeper support the same format for security tokens. In a multi-vendor envi-
ronment, this is unlikely. A more involved call flow is necessary to implement call control
security in this environment.

The call flow of Figure 2.34 also leverages the idea of hierarchical authentication.
Once the access gatekeeper has authorized the call, it requests an authorization token
from the call control gatekeeper by sending a location request message (LRQ). The call
control gatekeeper does not need to perform any specific authentication work, as it only
accepts LRQ messages from access gatekeepers, as long as these access gatekeepers have
not sent an LRQ if edge authentication failed. For each LRQ received, the call control
gatekeeper returns an authorization token (tokenCC) in the LCF, which is copied by
the access gatekeeper in the Admission Confirm, and then by the edge device in the
SETUP message.

When it receives the SETUP message, the call control gatekeeper simply validates the
call control token (tokenCC); it does not even need to look at the access token (tokenA).
In fact, the access token is really unnecessary in this case.

This method works even with multiple vendors of CPEs and access gatekeepers, since
the call control gatekeeper is not even attempting to understand the format of the security
token of the edge device.
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Figure 2.34 Hierarchical security with token assigned by the call control GK.
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2.7 SUPPLEMENTARY SERVICES

2.7.1 Supplementary services using H.450

H.323v2 introduced the new H.450 standard series, supplementary services for H.323.
H.450 is based on the QSIG extensions of ISDN for use by PBXs, and therefore is
targeted at private installations. H.450 should be used with caution on public networks,
as only a few of the H.450 services (e.g., H.450.7 for message-waiting indication) can
be deployed safely in a public environment. H.450 caused a lot of confusion as many
perceived it as ‘the’ way of doing supplementary services in H.323. For clarification,
H.323v4 added the following note:

Within the H.323 environment, there are several different methods by which services can be
provided: the H.450 series of Recommendations, H.24812 in association with its packages,
stimulus signalling and Annex K. Although there is commonality of certain design goals for
each of these solutions, the emphasis varies and each is more appropriate for certain cir-
cumstances. [. . .] The H.450 series of Recommendations is designed for interoperability of
services at a functional level. Its derivation from QSIG ensures interworking with many private
networking systems. Services are defined for peer–peer relationships, with feature intelligence
typically resident in the endpoint. An H.450 based service must normally be explicitly sup-
ported by each affected endpoint in the system.

H.450.1 defines the general framework for exchanging supplementary service com-
mands and responses for use by supplementary services, H.450.2 defines a call transfer
procedure11 (blind call transfer and call transfer with consultation), and H.450.3 defines
the call diversion procedures (call forwarding unconditional, call forwarding on no
answer, call forwarding on busy and call deflection).

H.323v3 added a few services, notably call hold (H.450.4), call park and call pickup
(H.450.5), call waiting (H.450.6), and message waiting indication (MWI, H.450.7). Of
these, only the MWI, H.450.7, is widely supported today by IP phones and residen-
tial gateways.

H.323v4 further expanded the H.450 series with H.450.8: (Name Identification Service),
H.450.9: (call completion), H.450.10: (call offer), and H.450.11:(call intrusion).

2.7.1.1 H.450.1

H.450.1 defines the ‘generic functional protocol for the support of supplementary services
in H.323’. This recommendation is based on Application Protocol Data Units (APDUs)
carried in the call-signaling messages (ALERTING, CALL PROCEEDING, CONNECT,
SETUP, RELEASE COMPLETE, PROGRESS) or in FACILITY messages.

10 H.248 is a stimulus protocol very similar to MGCP.
11 Another possibility is the use of call control tromboning and redirection of media streams using
the Null Capability Set sequence, or TCS=0, as described in Section 2.7.1.2.2.
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H.450.1 can be used to convey call-related instructions (e.g., redirecting a call) or call-
independent instructions (e.g., program call screening). In the latter case, a special SETUP
message with specific bearer capability and conferenceGoal information elements is used
to transport the APDU. H.450.1 APDUs have the following structure:

• Optional Network Facility Extension (NFE) with the source entity type (endpoint or
anyEntity) and address, and the destination entity type and address.

• A description of what to do with unrecognized messages (discard, clear call, . . .).

• A structure with the actual operation invoked.

The NFE part of the APDU provides a way to route supplementary service messages.
The network entity receiving a SETUP message with an H.450.1 APDU may not be the
intended recipient of the instructions contained in the APDU. It may have to relay it,
or choose to intercept it in the case of a gatekeeper. All H.450 services are built on top
of H.450.1.

2.7.1.2 H.450.2 (call transfer)

This recommendation provides a way of transferring calls between H.323 endpoints once
the initial call is established (the callee has answered).

2.7.1.2.1 Call transfer between H.450.2-aware endpoints
The scenario shown in Figure 2.35 is an example of call transfer between endpoints. The
call could be routed through a gatekeeper, but the gatekeeper would simply relay all
H.450.2 APDUs:

• User B calls user A (the transferring user). This is the primary call.

• User A answers the call and uses H.450.2 to transfer the call to user C. Uses A
may previously establish a separate call (secondary call) with user C to announce the
transfer, for instance. If this secondary call exists, endpoint A notifies C of the pending
call transfer, C returns a temporary identifier I for this secondary call if it can participate
in the transfer. Otherwise, the attempt aborts here.

• Endpoint A sends an H.450.2 request to user B to call C (if there is an A–C secondary
call, the temporary identifier I is mentioned). The endpoint may handle this directly if
it is H.450.2-capable, or A’s gatekeeper may choose to do it.

• When the new call request initiated by B arrives at C, C releases the secondary call if
it existed. Then, if C answers the call the primary call is also released. B and C can
now talk.

In this scenario, A could have called B in the first place, or C could have called A. The
next steps of the call transfer would remain the same. The invoke and result APDUs are
carried in normal Q.931 messages whenever possible, in FACILITY messages otherwise,
as shown in Figure 2.36.
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Figure 2.35 Call transfer with consultation using H.450.2.

A note on FACILITY REDIRECT: H.323 mentions another simple way of supporting
call transfer. An endpoint can simply send to the transferred endpoint a FACILITY mes-
sage with the address of the endpoint transferred to. When it receives such a FACILITY
message, a terminal should release the current call and restart a new call to the address
specified in the FACILITY message. This is a simple way of transferring a call without
consultation, but to our knowledge only very few endpoints and gateways support it.

2.7.1.2.2 Transfer using the gatekeeper

H.450.2 is not very easy to implement, and is unusable end to end in public network
environments (see Chapter 5 for more details). The flow chart (Figure 2.36) describes
only the normal case, but it would get much more complex if it took into account the
many options of H.450.2 and the error conditions. Because of this complexity, many
H.323 endpoints, such as stand alone IP phones with stringent memory constraints, may
not implement H.450.2.

However, in Section 2.7.1.1 we emphasized the fact that all H.450 APDUs could be
routed (using the origin and destination addresses found in the NFE) or intercepted by
a gatekeeper. Therefore, if the terminals involved in the primary call were using the
gatekeeper routed model (all Q.931 and H.245 messages get relayed by a gatekeeper),
then the intermediary gatekeeper can intercept and act on H.450.2 APDUs on behalf of
endpoints B and C. This allows H.450.2 to be used even if only terminal A is H.450.2-
aware. Terminal A could be a sophisticated secretary terminal, while endpoints B and C
could be ordinary simple IP phones. If we go one step further, endpoint A itself could be
a simple IP phone, but the gatekeeper would have a web interface allowing the user of
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Figure 2.36 H.450.2 call flow.

terminal A to ask the gatekeeper to initiate the call transfer. This logic has been adopted
by stimulus mode endpoints (see chapter 4 for more details).

The task of the gatekeeper is more complex than what we have seen in the end-to-end
H.450.2 case. In the previous case endpoint B initiated a new call to terminal C, and the
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normal H.323 procedure was used. Now, the gatekeeper must find a way to cause endpoint
B (connected to A) to transfer the call to C without ever releasing the ongoing call.

Fortunately, this operation, called third-party rerouting, has been taken into account in
H.323. It is done as follows (case of a blind call transfer):

• As soon as it knows it needs to transfer the call to C, the gatekeeper calls endpoint C:
it send a SETUP and receives a CONNECT. If it receives a RELEASE COMPLETE
(busy terminal, . . .), then it aborts the operation.

• The gatekeeper sends an empty terminal capability set to endpoint B, endpoint A, and
endpoint C. This is possible because it relays the H.245 messages between A and B
and therefore can ‘insert’ messages. The empty capability sets indicate that the remote
terminal has no receive capabilities, and, logically, this causes terminals A and B to
close all active logical channels. Terminal C will also not attempt to open a logical
channel to the gatekeeper. Further, all endpoints reset their H.245 state machine and
go back to a state where they are waiting to receive capabilities.

• The gatekeeper can close the connection with A now (H.245 end session command and
Q.931 release complete), or wait until the transfer is completed.

• During H.245 channel establishment with C, the gatekeeper has received the capability
set of terminal C, and now forwards it to terminal B. This will cause terminal B to
restart the H.245 state machine just after the capability set exchange, and B will start
a master–slave determination exchange.

• Then B sends an openLogicalChannel command over the H.245 channel, the gatekeeper
relays it to terminal C. The openLogicalChannelAck contains the RTP/RTCP addresses
of terminal C, so B will now establish the logical channels with C.

• C also opens logical channels with B through the gatekeeper, and this completes the
transfer: B communicates with C.

If the endpoints are H.450.2-aware, the gatekeeper can still perform call redirection. In
this case H.450.2 APDUs are used to notify the endpoints of the progress of the call
transfer. For instance, a FACILITY message is sent with a CallTransferComplete invoke
APDU to endpoint B to inform endpoint B that it has been transferred to C.

2.7.1.2.3 Blind transfer, secure transfer, transfer with consultation

To sum up what we have learned in Section 2.7.1.2, here is how an H.450.2-aware terminal
can perform the classic types of call transfers:

• Blind transfer: in this type of transfer, A doesn’t want to check if C is available before
disconnecting from B. As A and B are still in an active call, A sends a FACILITY
message to B, the FacilityReason field is of type callTransfer and contains a Call-
TransfertInvoke (CallTransferInitiate) invoke APDU informing B of the address of C.
Then, A terminates its conversation with B using the regular H.323 procedure. When
it receives the FACILITY message, B initiates a call with C.
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• Secure transfer: now, if B cannot connect to C, A wants to remain in conversation with
B. A sends the CallTransferInvoke to B but does not disconnect from B immediately.
Instead, it waits until it receives the FACILITY message from B with the result of
the call transfer (CallTransferResult=success on failure). Depending on the result, A
releases the conversation with B (B might also send the RELEASE COMPLETE) or
keeps it active.

• Transfer with consultation: now, A might be a secretary who needs to check whether
C is available or in a meeting. In a regular private phone system, A can put B on
hold. But for some reason the Q.931 message HOLD is forbidden in H.323. So, A can
simply stop sending media to B (or send prerecorded music).

• Another solution would be to use the H.450.4 hold supplementary service. Now, A can
establish a new call with C. Once A has been allowed to perform the transfer, A can
use either the blind transfer or the secure transfer procedure. The procedure shown in
the flow chart (Figure 2.36) is a transfer with consultation using secure transfer after
the consultation.

2.7.1.3 H.450.3: call diversion. Introduction to H.323 annex K

Recommendation H.450.3 is focused on the redirection of calls between H.323 endpoints
before the call is established. This includes call forwarding on busy, call forwarding on no
reply, call forwarding unconditional and call deflection. The diversion might be performed
by a gatekeeper, or by the endpoint itself. H.450.3 allows the number of successive call
diversions to be controlled/limited.

When activating the call forwarding unconditional (CFU) supplementary service for a
particular address A, a user can still originate calls, but all calls to A will be redirected
to another address. The user can activate/deactivate this service directly on the endpoint
associated with A, or remotely on a gatekeeper. H.450.3 also provides ways to interrogate
an entity to ascertain whether the supplementary service is activated or not, and for
which addresses. The endpoint receiving the diverted call is notified that the call has
been diverted, and also where the last diversion point was. The calling endpoint may
also optionally be notified that the call has been diverted, with or without the new call
destination address.

When activating the call forwarding on busy service, the same operations as in CFU
will occur if the line of the user is busy. There might also be more specific conditions
(diversion if more than N calls are waiting, . . .).

The call forward on no reply is similar, but occurs if the called user using this supple-
mentary service has not answered after a programmable period of time.

The call deflection supplementary service can be invoked by a called user dynamically
before the user answers a call. It causes the call to be diverted to the address entered by
the called user.

Many types of call redirection can easily be performed by a routed mode gatekeeper. For
the call forwarding unconditional service it can simply change the called party information
element of the SETUP message and forward it to the new destination. For call forward
on busy it will first forward the SETUP to the original destination address, then if it
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receives a RELEASE COMPLETE (cause busy), send a new modified SETUP to the
next destination. Call forwarding on no answer is more involved, because the gatekeeper
needs to make sure that audio channels are not established before redirecting the call.
Chapter 5 gives more details and call flow examples on call redirections.

The activation of all these H.450.3 supplementary services is performed by exchanging
H.450.1 APDUs. For instance, the call deflection supplementary service needs to be
triggered by the called endpoint: this is done using the callRerouting invoke APDU. Even
this simple task requires many information elements:

• The reroutingReason, if needed.

• The new calledAddress to use for the redirected call.

• A diversionCounter that is useful to avoid loops.

• The lastReroutingNr with the address of the last endpoint that performed the
rerouting.

• subscriptionOptions: does the terminal want to inform the calling party?

• The original callingNumber (note that the ‘number’ here can be any H.323 address).

• More textual information in fields, such as callingInfo, redirectingInfo, . . .

At this stage the reader probably wonders whether it is necessary to introduce so much
complexity for such a simple feature. This is true of many supplementary services. In
fact, when the services are activated by a gatekeeper, a lot can already be done with the
ubiquitous web interface for user interaction if you have a web phone and you want to
program call forward on busy; this can be done by filling in an HTML form. With a little
imagination it is even possible to let the user customize his call control with much more
flexibility with a web interface: something like ‘if-my-boss-is-calling-then-ring-my-desk-
phone-and-try-my-cellular,-otherwise-go-to-the-answering machine,-or-if-it’s-my-banker-
calling-again-to-say-my-account-is-low-then-sound-as-if-I-wasn’t-here . . .’ H.323 annex
K describes how an IP phone with a proper Web-capable user interface can use it for the
control of supplementary services, which makes it possible to present any user interface
for any feature with no impact for the IP phone. But this annex has had no success so far,
probably because it provides a lot less functionality than its MGCP equivalent (business
phone package, see Section 4.2.2.2.3 for more details).

2.7.2 Proper use of H.450 supplementary services, future
directions for implementation of supplementary
services

H.450, the VoIP version of QSIG, is an appropriate way to convey supplementary services
in a private network of PBXs, but end-to-end call transfer supplementary services should
not be used in public networks. In Chapter 5 we will describe in more detail the specific
requirements of public networks (i.e., networks interconnecting multiple enterprises or
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residential users, where the service provider must bill for calls originated from each
connected device and cannot trust connected devices). Clearly, because of security, call-
routing, and accounting issues, only a handful of the H.450 standards can be reasonably
deployed in a public network. Just like QSIG is not used today on public networks, H.450
will probably remain only a PBX interconnection protocol.

H.450 can also be implemented to provide supplementary services on business phones,
but it has a serious competitor in MGCP. Today, virtually all PBXs use a stimulus protocol
to control PBX business phones (‘Unistim’ for Notel, ‘ABC’ for Alcatel, etc.). This
simplifies the phone design and gives a lot more control to the PBX. For instance, many
PBXs offer services as soon as the phone is off-hook, even without dialling any number:
you can have notification of voicemail, warnings if the line has been forwarded, etc. Such
services cannot be implemented with an H.323 or SIP phone, because these phones do
not send any notification to the network when they are off-hook. The rigidity of the H.323
and H.450 standardization process is also a great obstacle to its use in business systems,
where the race for new features and differentiation leaves no room for endless discussions
in standard bodies. Most PBXs today offer over a hundred features. H.450 took over two
years to sort out the first dozen!

MGCP, with its new extensions (business phone event package, BTXML from Cisco,
etc.), now has the ability to control virtually any device, see MGCP, section 4.2.4 chapter
including feature buttons, screens, loudspeaker modes, etc. For the first time a standard
protocol gives access to the same power as proprietary stimulus protocols. Many imple-
mentations of IP-PBX and Centrex services already exist for MGCP, which goes far
beyond the reach of H.450. Automatic off-hook, CTI calls, paging calls are already
available! Therefore the prospect of H.450 for business phones also seems very limited,
probably restricted to the same niche markets as ISDN business phones today.

2.8 FUTURE WORK ON H.323

H.323 is now carrying billions of VoIP minutes per year. Most networks are running
H.323v 2 with some version 3 and 4 extensions. The current version of the protocol
benefits from the experience accumulated by VoIP vendors in hundreds of VoIP networks.
However the telephone network is a lot more complex than anticipated in the early days of
voice over IP, and the H.323 protocol, despite its maturity, is still in need of improvement
and extensions to cover the very specific call flows found in PSTN networks. Among the
call flows that are still problematic today and require proprietary extensions or specific
vendor to vendor tuning, one can cite:

• Pre-connect announcements. Although the basic pre-connect announcement is covered
by early H.245 and Fast Connect, the H.323v4 protocol is still not flexible enough to
allow multiple media servers to stream media to the calling endpoint (dynamic update
of the Fast Connect media information). H.323v5 solves this problem with H.460.6.

• Call release scenarios using Q.931 messages ‘forgotten’ by the H.323 standard (e.g.,
the DISCONNECT message). In some instances media is being played while the call
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is still in a half-released state: one of the most common cases is in-band network
announcements played when dialing the wrong number. A consequence is that it is
relatively difficult to implement Advice of Charge (AOC) on H.323. In ISDN, AOC
is sent at the end of the call in one of the messages releasing the call. Since the
release messages use three messages, there is always one that is sent by the network
to the endpoint. In H.323, when the endpoint releases the call first with a RELEASE
COMPLETE message, the network has no chance of sending the AOC information to
the endpoint.

• Precise rules on how to transport and use the ‘progress indicator’, which specifies
whether in-band information is present or not (it should be ignored when present).
Some complex call flows can be found where locally generated ring-back tones alternate
with in-band tones. In H.323, vendors need to be careful to take the progress indicator
information into account, as opposed to blindly playing the media they receive from
the other party.

• Precise rules on how to interwork with the ISDN network, and in particular the handling
of media-type information (3.1-kHz audio, fax, . . .). Simply carrying this information
transparently causes errors in the ISDN network because it advertises capabilities not
yet present in the VoIP network.

• H.323v4 does not handle call loop detection in a robust way (i.e., with hop coun-
ters in every message and mapping rules with SS7 ISUP messages). H.323v5 solves
this problem.

• More experience and understanding of the implications of call redirection in VoIP
networks (see Chapter 5).

• In general, a much better way of mapping SS7 ISUP messages to H.323 messages
without loss of information, H.246 and H.323 annex M works only if the ISUP flavor
on both sides is the same, because the ISUP information is considered a ‘black box’
(SIP-T uses a similar approach, and has the same problem). The Global Transparency
Descriptor (GTD), a work in progress authored by Cisco Systems and based on a
complete decoding and mapping of the ISUP information to a network-independent
format, is a significant improvement for both H.323 and SIP. It is not yet standardized
though.

Despite all the improvements that are still required, H.323 is, with MGCP, the most
mature of VoIP protocols today. H.323 is not limited to trials, single-vendor networks, or
niche markets, such as PC to phone, any more. Most international traffic clearing houses
use H.323 to exchange calls, and even incumbent carriers increasingly make use of VoIP
and H.323 when terminating international traffic. There are H.323 class 4 transit networks
in production today that serve millions of end users, and even much more complex class
5 residential networks with multiple vendors, serving over 250,000 users (FastWeb, Italy),
and providing all regulatory features, such as emergency calls, local number portability,
lawful call interception, in addition of traditional class 5 services (call forward, call hold,
three-way conferencing, etc.).
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H.323 has also entered the 3G space: the H.324-M standard used for videoconferencing
of recent 3G handsets also uses H.245 for session control and, therefore, interworks
seamlessly with H.323. H.323, sometimes misrepresented as a ‘legacy’ protocol with no
future, does seem to keep a significant momentum not just for the size of the installed
base, but even in 3G!





3
The Session Initiation
Protocol (SIP)

3.1 THE ORIGIN AND PURPOSE OF SIP

The concept of a session was first introduced in RFC 2327 (the Session Description Pro-
tocol or SDP) as a set of data streams carrying multiple types of media between senders
and receivers. A session can be a phone call, a videoconference, a user taking remote
control of a PC, or two users sharing data, chatting, or exchanging instant messages.

The Session Initiation Protocol (SIP) was originally defined in RFC 2543 by the
MMUSIC (Multiparty Multimedia Session Control) working group of the IETF. The
MMUSIC working group is focused on loosely coupled conferences as they exist today
on the mBone (see the companion book, Beyond VoIP Protocols Chapter 6 for additional
details on the mBone) and is working on a complete multimedia framework based on the
following protocols:

• The Session Description Protocol (SDP, RFC 2327) and the Session Announcement
Protocol (SAP, RFC 2974).

• The Real-Time Stream Protocol (RTSP, RFC 2326) to control real-time data servers.
• SIP.

These protocols complement existing IETF protocols, such as Real-Time Transport Pro-
tocol (RTP, RFC 1889) from the AVT (Audio/Video transport) working group, used
for the transfer of isochronous data, or RSVP from the IntServ (Integrated Services)
working group for bandwidth allocation.

SIP now has its own working group within the IETF which maintains close co-
ordination with the MMUSIC group (mainly because the MMUSIC group is still working
on improving the Session Description Protocol which is used extensively in SIP).

IP Telephony O. Hersent, J.P. Petit, D. Gurle
 2005 John Wiley & Sons, Ltd ISBN: 0-470-02359-7
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One of the initial goals of SIP was to remain simple, and to this purpose ‘classic’ tele-
com protocol design principles, such as protocol layer isolation or complete separation of
functional blocks (e.g., message syntax, message encoding and serialization, retransmis-
sion), were initially left behind as unnecessary heaviness. The initial SIP RFC aimed at
defining in a single 150-page document all the technical details required for session man-
agement, covering message reliability, transport, security, and a set of generic primitives
for the following functions:

• User location: determination of the technical parameters (IP address, etc.) required to
reach an end system to be used for communication, and association of end users with
end systems.

• User availability: determination of the reachability of an end user, and the willingness
of the called party to communicate.

• Endpoint capabilities: determination of the media types, media parameters and end
system functions that can be used.

• Session set-up: ‘ringing’ a remote device, establishment of media session parameters
at both the called and calling parties.

• Session management: including transfer and termination of sessions, modifying ses-
sion parameters, and invoking services. The scope of SIP has been restricted to loose
multiparty conferences (i.e., functions such as chair control are out of the scope of the
current SIP specification). These conference control functions are left to extensions that
can be carried within SIP messages.

It took just about a year for SIP to become surprisingly popular for a telecom protocol,
but this can be understood from the context. Just like its contemporaries WAP or UMTS,
the development of the Session Initiation Protocol occurred at the peak of the Internet
bubble, and many start-up companies spent an inordinate amount of marketing resources to
promote SIP to omnipotent status. Just as the ‘new economy’ was being praised as a simple
new paradigm vastly superior to the ‘old economy’, burdened by obsolete conventions and
processes, the word began to spread that SIP was a new simple way of designing telecom
systems, and that the old public network was unnecessarily complex and inefficient.
Surprisingly, even the H.323 protocol, only a couple of years older than SIP, was caught
in this wave and began to be criticized for its heaviness and traditional telecom heritage.1

After the explosion of the Internet Bubble, the marketing clouds slowly began to dissi-
pate, and after a few years of experience the real strengths and weaknesses of SIP are now
easier to assess. One strength of the protocol is that the authors constantly try to abstract
it from any specific use. For instance, most of the time, SIP primitives will be used to
carry ‘opaque’ objects required for a specific application or media, and not understood

1 Indeed, H.323 is based on the Q.931 protocol used in current telecom networks, and uses the
most recent software modeling tool, the Specification and Description Language (SDL), capable
of automatic test case generation. H.323 defines and separates many functional software modules,
uses an abstract syntax (ASN.1) to build its messages, and automatic generation of parser/serializer
protocol data units from the abstract syntax.
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by the SIP protocol stack.2 This did stimulate the imagination of developers, and led to
interesting ideas (e.g., the use of SIP for instant messaging).

The simplicity of Figure 3.1 also explains much of the initial enthusiasm for SIP.3

From this simple example, we can see that SIP is very efficient: the callee to caller media
channel can be set in exactly one round trip, and the caller to callee media channel can
be set up in one and a half round trips. This is much better than the many round trips that
were required by the bootstrap nature of H.323v1. That being said, H.323v2 is as efficient
as SIP if ‘fast-connect’ call set-up is used; in fact, the call flow is almost identical.

But the weaknesses of the protocol are also many, and the SIP community is now
working hard to solve or improve them:

• Because SIP ‘can potentially’ be expanded, it is often believed and touted that SIP
‘does’ everything. This is the well-known ‘it’s just software’ syndrome. Year after year
there has been an accumulation of proprietary extensions of SIP, sometimes described
in draft documents, sometimes not even documented; but, the lack of a well-defined
standardization process has prevented convergence of implementations to occur. The
reality, despite claims of the contrary in ‘sponsored’ interoperability events, is that

INVITE
john@192.190.132.31
c = IN IP4 192.190.132.20
m = audio 49170 RTP/AVP 0

200 OK
c = IN IP4 192.190.132.31
m = audio 12345 RTP/AVP 3

John’s terminal rings

ACK

192.190.132.31

John

In this (over) simplified INVITE request,
Mary’s terminal says that it can receive

µ-law PCM data (RTP/AVP 0) at
192.190.132.20 on port 49170

Mary

The media can be sent
immediately after receiving
the INVITE request (e.g.,

ringback tones)

Port 49170

Port 12345

The response indicates that
John’s terminal can receive
GSM data on port 12345 

µ-law

GSM

192.190.132.20

Figure 3.1 Simple phone call scenario with SIP.

2 This ability to transport opaque parameters is also present in most other protocols, notably H.323
using the ‘non-standard parameters’ that can be freely defined within the framework of the standard.
Note also that in SIP the size of opaque parameters is restricted by the fact that no segmentation
mechanism has been defined for SIP over UDP.
3 This figure does not use the offer–answer model introduced later by RFC 3261, see Section 3.3.2.3.2.
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only the most trivial call flows work across vendors, and they are too trivial to be
used in any real-world application. Too often, SIP is still only a nice name hiding a
proprietary protocol. As a result, operational SIP networks today are built mostly with
infrastructure equipment from a single vendor.

• The PSTN appeared to be a lot more complex than originally anticipated, and therefore
SIP lacked many of the features required for proper interworking with the PSTN.
H.323v1 had also missed quite a few details, but its Q.931 heritage made it easier
to fix the issues quickly in a standard way across vendors. The result is that the vast
majority of VoIP networks interworking with the PSTN are today using H.323, not
SIP. The few SIP networks interworking with the PSTN required many proprietary
extensions to the protocol.

• The increased complexity of the protocol required by the PSTN interworking and other
fixes in the initial RFC is becoming hard to manage with the original ‘informal all-in-one
design’ approach. The ‘old’ way of layering protocols and defining clean functional
modules aimed at managing complexity and ensuring consistent quality as software
evolved. The latest SIP specifications clearly head back to this modular approach, but
the original design and the lack of formal methodology makes this very difficult, and the
latest RFCs are still burdened with exceptions and shortcuts between software layers
that make the protocol difficult to implement and test. SIP is certainly not ‘simple’
any more.

In November 2002, the VASA consortium (BellSouth, Chunghwa Telecom, Equant, France
Telecom, SBC, Sprint PCS, Telecom Italia Lab, VeriSign, Verizon, WorldCom) published
an independent study of ‘SIP in Carriers Networks’ which emphasized that ‘some net-
work operators have experienced significant difficulties in interworking different vendors’
products in laboratory trials of both SIP to SIP and SIP to legacy network element inter-
operability. In contrast with the initial objectives of SIP, operators are driven towards
single vendor solutions,’ and concluded: “For existing networks, the arguments against
immediate migration from TDM or H.323 to SIP outweigh the potential benefits.”

SIP is becoming more complex and implements traditional telephony features, while
H.323 is implementing some ideas originally from SIP (e.g., H.323 can be used for any
communication between named users—there is even a specification for instant messag-
ing4). The bottom line is that for use in interactive communications, SIP and H.323
are becoming virtually identical in features and complexity. This chapter will describe
the most common PSTN interworking scenarios, which work without extensions of SIP,
and will list the major cases where extensions are still required. When available, the
documented extensions of major SIP vendors will be discussed.

One of the applications that has emerged out of the multiple theoretical possibilities
of the protocol is instant messaging. With the adoption of SIP for instant messaging by
Microsoft, it is likely that all vendors will converge on the Microsoft implementation,
considered as a de facto standard (and formalized in draft-ietf-simple-presence—version

4 T.140.
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07 in November 2002). So, at least the major aspects of instant messaging will stabilize.5

This section will describe this implementation of instant messaging, which conforms
to the main guidelines of RFC 3265. Unfortunately, the details are still not thoroughly
documented and may evolve over time.

3.2 FROM RFC 2543 TO RFC 3261

SIP remained a draft document for a long time before if was first published as an RFC
in March 1999 (RFC 2543). The first published version of the protocol was SIP 2.0.
Unfortunately, this first version of the RFC was trying to embrace too much, contained
many errors, and was too vague and ambiguous to be a real specification document. It
was more a sort of technical brainstorming document, and was taken as such by the many
start-up companies that began to implement SIP products. The first trial SIP networks all
used their “flavor” of SIP, with their own corrections and expansions to the original SIP
specification, and used only the simplest call flows defined by the RFC.

As the first useful feedback was gathered from these trials, the RFC was updated with
nine ‘bis’ versions, and finally all changes were merged in June 2002 in a new RFC,
RFC 3261. Important aspects of the initial specification are now split in separate RFCs.
Although RFC 3261 does not update the SIP version number, which remains SIP 2.0,
it not only corrects errors and clarifies ambiguities, but really makes major changes to
RFC 2543. The protocol is now more robust and more clearly documented, although the
RFC is still a bit verbose and vague, with expressions like ‘modest level of backwards
compatibility’ or ‘almost identical’ that can be misleading. RFC 3261 is really a major
new version of SIP, and is not backwards-compatible with RFC 2543, although most
simple call flows will work across the two RFC versions.

In the process, the SIP protocol lost the apparent simplicity of its early days, and the
size of the main RFC nearly doubled with 270 pages. The new RFC is an umbrella
document that points to other RFCs for specific details or applications. The complete
documentation includes over 400 pages. Among the most important documents are:

• RFC 3262: Reliability of Provisional Responses in Session Initiation Protocol (SIP).
This RFC is required in all cases where SIP needs to interwork with a telephone
network.

• RFC 3263: Session Initiation Protocol (SIP): Locating SIP Servers. The location of SIP
servers is really an independent module in a SIP implementation and is now documented
separately from the main SIP RFC.

• RFC 3264: An Offer/Answer Model with Session Description Protocol (SDP). This
was one of the most necessary clarifications of the original SIP RFC, where the exact
use of the SDP syntax was ambiguous and led most vendors to implement a single

5 There is still one major competitor of SIP for instant messaging: the JABBER open-source pro-
tocol, used for instance, by France Telecom.
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codec or their own interpretation of codec negotiation. The new RFC is much clearer
and implements a mechanism that is almost identical to the H.323 FastStart and the
tunneled H.245 logical channel management.

• RFC 3265: Session Initiation Protocol (SIP)-specific Event Notification. This RFC
is used by some vendors to transport DTMF tones, but its main use is for instant
messaging. Only the main methods are specified, the content of events is still not
standardized.

• RFC 3266: Support for IPv6 in Session Description Protocol (SDP). While IPv6 was
taken into account since the beginning in H.323, it required some syntax extensions in
SIP, now covered by this new RFC. The use of IPv6 for IP telephony remains very
questionable, however, because VoIP is the most sensitive application to IP protocol
overheads, which are going from bad to worse in IPv6. In addition, the IP address
depletion issue which is the main motivation for the introduction of IPv6 can be over-
come by use of application-level proxies and intelligent use of private IP addresses
(see Chapter 6 for details. The handling of quality of service is also virtually identical
in IPv4 and IPv6.

3.3 OVERVIEW OF A SIMPLE SIP CALL

3.3.1 Basic call scenario

In this section we assume that the initiator of the call knows the IP address of the called
endpoint. For instance, the caller might be calling the following SIP address, also called
a Uniform Resource Locator (URL) or a Uniform Resource Identifier (URI):

sip:john@192.190.132.31

In Section 3.4.1.2 we will see that there are many other types of SIP addresses, this one
is just a simple case where the IP address of the called endpoint is directly specified. Note
that the syntax looks similar to web addresses (e.g., http://www.netcentrex.net). This is
because they both use the URI syntax, defined in RFC 2396, which begins with a scheme
portion, before the colon (‘:’). The scheme portion indicates how the rest of the string is
to be interpreted, and which syntax to expect. If the scheme is ‘http’, then the syntax for
an http resource is expected after the colon: a double slash (‘//’), then a host name, then
an optional path.

SIP uses two scheme names: ‘sip’ for communications over non-secure transport pro-
tocols, and ‘sips’ for communications over secure transport protocols. SIP can also be
used with the ‘tel’ URI scheme defined in RFC 2806. The minimal expected syntax after
‘sip:’ or ‘sips:’ is a host name. A host name can either be described directly by its IP
address in dotted form (e.g., 10.11.10.13), or using its name in the Domain Name System
(e.g., hostname.subdomainname.domainname.rootdomain). The DNS system
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was described in Section 2.5.3.3. Usually, a SIP call is to a specific person, and therefore
the SIP URL syntax allows more optional parameters to be used, the generic syntax is:

sip:user:password@host:port;uri-parameters?headers

Our example uses only the user and host portions.
SIP entities communicate using transactions. SIP calls a transaction a request requiring

a specific action (e.g., the INVITE request below) and the response(s) it triggers (200 OK
in our example) up to a final response (see the definition below, all 2xx, 3xx, 4xx, 5xx
and 6xx responses are final). The initiator of a SIP request is called a SIP client, and the
responding entity is called a SIP server for this transaction.

Most communications using SIP need several transactions. If the caller is Mark and
the callee is John, then the end systems used by Mark and John (the SIP RFC calls them
user agents) will play the role of the client or the server for each transaction, depending
on which user agent initiates each transaction (Figure 3.2).

SIP uses several types of request methods: REGISTER, INVITE, ACK, CANCEL,
BYE, OPTIONS (defined in the main RFC), PRACK (added in RFC 3262, and required for
interoperability with the PSTN), SUBSCRIBE, NOTIFY (both used for instant messaging,
these were added in RFC 3265).

The simple communication scenario in Figure 3.2 uses the INVITE, ACK, and BYE
request methods. A SIP client calls another SIP endpoint by sending an INVITE request
message. The INVITE message usually contains enough information to allow the called
terminal to immediately establish the requested media connection to the calling endpoint.
The called endpoint needs to indicate that it is accepting the request. This is the pur-
pose of the 200 OK response message. Since the request was an invitation, the 200 OK

Mark John

INVITE

200 OK

ACK

BYE

200 OK

Media session

Transaction
1

Transaction
2

Transaction
3

Request

Final
response

SIP
dialog

180 RINGING

Provisional
response

Figure 3.2 SIP dialog and SIP transactions.
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response usually also contains the media capabilities of the called endpoint, and where it
is expecting to receive the media data.

The other messages are explained in detail below, the ACK is a simple acknowledge
of the 200 OK final response, and BYE is the request to ‘drop the call’.

This exchange of SIP transactions between two user agents during a communication is
called a SIP dialog. The combination of the To tag, From tag, and Call-ID completely
defines a SIP dialog (these information elements are defined below).

3.3.1.1 Call initiation details

The messages exchanged by a SIP client and a SIP server are independent of the under-
lying transport protocol except for some details (e.g., the size of non-TCP messages is
limited). The original SIP RFC only required SIP systems to support the UDP transport
protocol. RFC 3261 now requires SIP systems to support both the UDP and TCP trans-
port protocols, but UDP is still the most widely used protocol, because it provides better
control on retransmission and latency. The only issue of UDP is that it cannot transport
large amounts of information without causing packet fragmentation (SIP does not define
any application-level fragmentation mechanism). RFC 3261 recommends using TCP or
any other reliable congestion-controlled protocol (defined in RFC 2914), if the request
size is within 200 bytes of the path MTU, or if it is larger than 1,300 bytes and the path
is unknown. All implementations must still be able to handle packets up to 65,535 bytes
(including IP and UDP headers).

Connections over UDP or TCP require a port number. If no port is specified in the
SIP URI, the connection is made to port 5060 for the transport protocols UDP, TCP, and
SCTP (Stream Control Transmission Protocol, RFC 2960). If the transport protocol
used is TLS (Transport Layer Security, a secure transport protocol using TCP, defined
in RFC 2246), the default port is 5061.

When using TCP, the same connection can be used for all SIP requests and responses
of a dialog, or a new TCP connection can be used for each transaction. If UDP is used
the address and port to use for the answers to SIP requests is contained in the Via
header parameter of the SIP request. Replies must not be sent to the IP address of the
client.

Since no protocol or port is specified in our sample SIP URI (sip:john@192.190.132.31),
Mark’s user agent defaults to UDP, and will send its first SIP INVITE message over
UDP to IP address 192.190.132.31, port 5060. When UDP is used, only one SIP mes-
sage per UDP datagram may be sent; when a stream-oriented protocol like TCP is used,
the message framing uses the Content-Length header to determine the end of the mes-
sage and the beginning of the next. Therefore, this header must be present when SIP is
used over stream-oriented protocol. This violation of the strict transport and presentation
protocol layering avoids specifying a separate transport layer-framing layer for stream
protocols.6

6 H.323 uses a stricter protocol layering and uses RFC 1006 for the purpose of transporting messages
over a stream-oriented protocol.
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The dialog is initiated by the following INVITE message:

INVITE sip:john@192.190.132.31 SIP/2.0
Via: SIP/2.0/UDP 10.11.12.13;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: ‘‘John’’ <sip:john@192.190.132.31>
From: :’’Mark’’ <sip:mark@10.11.12.13>;tag=1928301774
Call-ID: a84b4c76e66710@10.11.12.13
CSeq: 314159 INVITE
Content-Type: application/sdp
Content-Length: 228

v = 0
o = mark 114414141 12214 IN IP4 10.11.12.13
s = −
c = IN IP4 10.11.12.13
t = 0 0
m = audio 49170 RTP/AVP 0
a = rtpmap:0 PCMU/8000
m = video 51372 RTP/AVP 31
a = rtpmap:31 H261/90000
m = video 53000 RTP/AVP 32
a = rtpmap:32 MPV/90000

The last part of the message, after the blank line, is the media description using the Session
Description Protocol, which will be described in detail in section 3.3.2.3.2.1. We will
focus first on the Request start line and the most important headers which are mandatory
in any SIP request (in bold font). As noted above, SIP is not strictly independent of the
transport protocol, and the Content-Length header is mandatory only over stream transport
protocols, even if there is no payload in the SIP message.

3.3.1.1.1 Start line
The start line indicates the request method (INVITE), followed by the request-URI which
indicates the user or service to which this request is being addressed. For all requests
except REGISTER, it is set to the same value as the URI in the To header. This is no
longer true in the specific strict routing mode detailed in Section 3.4.2.3. The last element
of the start line is the SIP protocol version, which is SIP/2.0 for endpoints implementing
RFC 2543 or 3261.

3.3.1.1.2 Via
The only way to distinguish the two versions of SIP (RFC 2543 or RFC 3261) is by looking
at the Via header, which in RFC 3261 must contain a branch parameter beginning with
‘z9hG4bK’. The primary purpose of the Via header is of course different. If UDP is used
the address and port to use for the answers to SIP requests is contained in the Via header
parameter of the SIP request. Replies must not be sent to the IP address of the client.
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In our case the SIP call is established directly between the caller and the callee, but
when the call is routed through several SIP proxies, each proxy adds its own Via header
to the received request before forwarding it. This allows the route of the SIP request
to be traced, and is useful for several purposes, including loop detection. We will study
this more complex call flow in Section 3.4.2 when introducing SIP proxies. The strange
role of the z9hG4bK ‘magic cookie’ is an example of the few remaining violations of
functional block isolation within the design of the protocol in RFC 3261.

3.3.1.1.3 Max-Forwards
This mandatory header is used to prevent routing loops when the call is routed by proxies
in the network. Each proxy decrements the counter by one as it forwards the request, and
responds with an error if it receives a request with the counter set to 0. This is a very
useful feature, which has been added only in version 5 of H.323.

3.3.1.1.4 From
The From header identifies the caller. The syntax of the header places the display name
between double quotes, unless the character set used in the display is not creating parsing
issues, and the SIP URI of the caller between ‘<’ and ‘>’. This syntax is defined in RFC
2822 and already used for email applications. If the caller wishes to remain anonymous,
he can use the keyword ‘Anonymous’, without quotes, instead of a display name (e.g.,
From: Anonymous< . . . >).7 If no display name is used, no brackets are required for
the URI (e.g., From: sip:mark@10.11.12.13;tag=1928301774). In the new SIP RFC, the
tag parameter is mandatory; it is one of the key elements used to uniquely identify a
dialogue. This parameter was optional in RFC 2543; therefore, parsing and comparing
the URI fields in an incoming mid-dialog request message was necessary to identify a
relevant existing dialogue. The use of tags makes this identification more formal and
efficient. RFC 3261 considers the absence of a tag equivalent to tag = 0.

3.3.1.1.5 To
The To header identifies the target user or the target resource of the SIP request. It uses the
same syntax as the From header, except it lacks the tag parameter in the initial INVITE,
but this will be added by the callee in the response to complete the unique identification
of the dialog.

3.3.1.1.6 Call-ID
The Call-ID header contains a globally unique identifier for this call. The easiest way
to form one is to generate a locally unique identifier on the user agent, and concatenate

7 This method is not sufficient to comply with the requirements of the Calling Line Identity Restric-
tion service which is mandatory in public telephony applications. In ISDN and H.323, a specific
information element (octet 3a) is used to tell the network whether the number should be presented
to the called party or not. The number cannot simply be erased because it must be provided in the
case of emergency calls or for intercepted calls. In very simple SIP networks with a single proxy,
the proxy could restore the identity on the fly, but it would require two separate fields, as in ISDN,
to convey the identity information and the CLIR information in larger, multi-proxy networks.
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a globally unique identifier for the user agent (e.g., its public IP address8 or its DNS
host name).

The combination of the To tag, From tag, the Via branch parameter, and Call-ID
completely defines a SIP dialog.

3.3.1.1.7 CSeq
The CSeq header field is an identifier which serves to match the request and responses
of an active transaction. It is formed of a method name which must match that of the
request, and a sequence number which can start at an arbitrary value. The responses to a
request are required to have a CSeq header identical to the CSeq header of the request.

Each client is required to increase the CSeq number by one for each request they send
during a dialogue (except for ACK and CANCEL requests, where the sequence number
is used to identify the target of the action requested). Since provisional responses are not
transmitted reliably (see 3.3.1.1.8.3), it is still possible to receive non-consecutive Cseq
numbers from a server.

3.3.1.1.8 Dialog and transaction identifiers, message retransmission
The SIP dialogue is identified by the From tag, To tag, Call-ID, and Via branch combi-
nation (Figure 3.3). Once the dialogue is established, all requests and responses of the
dialogue must include these header values. This makes it easy for a user agent to identify
the relevant dialog on receiving a SIP message.

Each transaction is identified by the common value of its CSeq header field (both the
method name and sequence number must be identical). The value of the CSeq header must
be distinct for distinct transactions within the dialog. The only exceptions are the ACK
after a non-2xx response (see Section 3.3.1.1.8.1 for details) and CANCEL transactions.
The CANCEL transaction uses the same CSeq identifier as the transaction it is attempting
to cancel, but the method name is set to CANCEL. The ACK transaction is used only in
relation with a prior INVITE transaction, which uses a three-way handshake, while all
other types of transactions use only a two-way handshake.

3.3.1.1.8.1 Non-invite transactions

When used over unreliable transport protocols, the reliability of non-invite transactions
relies on message retransmission.

The sender of a request will first retransmit the message if it does not receive a provi-
sional or final response (see 3.3.2.2) within 500 ms9 (or a better estimation of the network
round trip time if the user agent calculates one using the timestamps in SIP messages). It
will keep retransmitting the request until it receives a response, doubling the retransmit
interval at each occurrence up to an interval of 4 s. If a provisional response is received,

8 The address used in our example (10.11.12.13) is private; so, in order to really generate a unique
Call-ID we should use a DNS name for the call ID, not this address. We kept it for simplicity.
9 The SIP specification specifies all times in multiples of a default timer T1. In order to simplify
reading, we calculated all timer values using the T1 default value of 500 ms recommended in
RFC 3261.
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Mark John

INVITE (CSeq1) (call-ID, From tag, Via branch*)

180 RINGING (CSeq1) (call-ID, From tag, To tag, Via branch)

200 OK (CSeq1) (call-ID, From tag, To tag, Via branch)

ACK (CSeq1) (call-ID, From tag, To tag, Via branch)

BYE (CSeq2) (call-ID, From tag, To tag, Via branch)

200 OK (CSeq2) (call-ID, From tag, To tag, Via branch)

SIP Dialog

Transaction 1

Transaction 2

Transaction 3

Figure 3.3 A dialog is identified by the Call-ID, From tag, To tag, and Via branch. ∗ If a
forking proxy is in the path, this branch parameter may be changed. For this reason the
branch value found in the response identifies the dialog.

then the retransmission still occurs until a final response is received, but the retransmis-
sion interval is immediately set to 4 s. The client will wait up to 64∗500 ms, or 32 s,
for a final response. After this delay it will consider the transaction has failed. In the
case the transport layer indicates a failure (e.g., an ICMP-unreachable IP packet has been
received), then the transaction fails immediately without trying any retransmission.

If the server response is lost, then the client will retransmit the request. For this reason
the server side of the transaction simply retransmits its last response each time it receives
a retransmitted request indicating the response has been lost. Note that because only
the last response is retransmitted, some provisional responses may be lost. SIP does
not guarantee delivery of provisional responses (this causes problems in certain cases,
but RFC 3262 has introduced the new PRACK request as an extension to SIP to solve
the issue).

Figure 3.4 is an example of retransmission of a BYE transaction. Even after it has sent
a final response, the server will keep the response in memory for 32 s (64∗500 ms) in
the case an incoming client request requires a retransmission after the server has sent the
final response. This happens if the final response is lost.

It is important to realize that this basic two-way handshake works only if the final
response to the request arrives quickly after the request has been sent. SIP expects and
requires non-invite transactions to complete within a couple of seconds. If this two-way
handshake was used for transactions that take a longer time to complete, then the request
would be resent multiple times, which would obviously be very inefficient. Because of
this, a different strategy is required for INVITE transactions.
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Mark John

180 RINGING

ACK

BYE

200 OK

INVITE

500 ms

1 s

2 s

200 OK

BYE

BYE

BYE

200 OK

Figure 3.4 Non-invite request retransmission.

3.3.1.1.8.2 Invite transactions

(a) A three-way handshake

The handling of the INVITE transaction in SIP is completely different from the handling
of other transactions. The handling of the INVITE is one of the most complex aspects
of SIP.

The two-way transaction used for non-invite transactions presents a number of issues:

• The initial transaction is resent every 4 s until the final response arrives. In a telephony
application, the 200 OK signaling that a user has picked up the phone can arrive up
to 3 min after the INVITE has been sent (this is the amount of time most telephone
networks let a phone ring before canceling the call). In some PSTN interworking
applications (prepaid calling card, network prompts), the 200 OK may never arrive. In
order to avoid unnecessary overhead the retransmission of the INVITE request stops
as soon as a provisional or final response arrives.

• If the 200 OK response is lost, it will be retransmitted 4 s later in the previously
described retransmission scheme. This is obviously unacceptable because no audio
path can be established during this delay between the caller and the callee. Instead,
if the caller has received a 180 RINGING provisional response, the status of his call
line would continue to appear as ‘ringing’. This situation is avoided in an INVITE
transaction, because the server expects to receive an immediate ACK after it sends a
200 OK. If the ACK is not received, then the response is retransmitted after 500 ms.
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INVITE

INVITE

INVITE

INVITE

180 RINGING

200 OK

ACK
BYE

200 OK

500 ms

1 s

4 s

JohnMark

Figure 3.5 INVITE request retransmission.

The three-way handshake works as follows for the client side:

• Over UDP the INVITE request is resent after 500 ms if no provisional or final response
is received. The INVITE retransmission continues, but with a retransmission interval
that doubles every time, until a provisional or final response arrives (Figure 3.5). The
transaction attempt aborts after seven retransmissions. Note that the server side is
required to send back a 100 TRYING provisional response within 100 ms, unless
it knows that it is going to send a final response within 200 ms. So, the INVITE
retransmission mechanism should normally trigger only if a message gets lost, not if
the server side is slow.

• Over TCP or a reliable transport the INVITE request in not retransmitted.

The server side of the INVITE transaction over UDP will retransmit the last provisional
response if it receives a retransmitted INVITE request (this means one or more provisional
responses have been lost). The handling of the final response is different:

• In RFC 2543 it is retransmitted after 500 ms if an ACK has not been received, then
continues to be retransmitted, with intervals that double every time until an ACK is
received. The retransmission of the final response is aborted after seven unsuccessful
retransmissions, or if a BYE request is received for this dialogue, or, in the case of 3xx,
4xx, and 5xx responses, if a CANCEL request is received. If the retransmission that
was aborted was for a 200 OK response, the server should generate a BYE request, in
case the 200 OK response did arrive to the client user agent.
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• RFC 3261, with its cleaner specification of the transaction layer, modified RFC 2543.
It does not require retransmissions over reliable transports for 3xx responses. The 200
OK response needs to be retransmitted even on reliable transports because it may be
routed through several proxies, which may forward it on UDP. Since UDP is unreliable
the 200 OK could get lost, but SIP does not allow proxies to participate in the 200 OK
reliability mechanism, which is ensured end to end only (see the following subsection
on the ACK request). Therefore if the user agent server did not retransmit the 200 OK
response, it could get lost in the network. RFC 2543 extended this behaviour to all final
responses, not just 200 OK, in order to avoid adding exceptions to the already complex
specification. In RFC 3261, which has a more formal definition of transactions, only
200 OK responses are retransmitted over reliable transports.

(b) The ACK request

The ACK request which completes the three-way handshake is formed as follows:

• Most of the headers are identical to the original INVITE headers—in the case of route
header fields they must be identical.

• The To header will probably contain a tag that was added by the server side in
its response.

• The CSeq header serial number is identical to the CSeq serial number of the INVITE
request, which is an exception to the general rule to increase sequentially the CSeq
header for new requests. This is so we can correlate the ACK to the INVITE transaction.
The CSeq method portion is ‘ACK’.

This is an example of an INVITE request and its ACK:

INVITE sip:john@192.190.132.31 SIP/2.0
Via: SIP/2.0/UDP 10.11.12.13;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: ‘‘John’’ <sip:john@192.190.132.31>
From: :’’Mark’’ <sip:mark@10.11.12.13>;tag=1928301774
Call-ID: a84b4c76e66710@10.11.12.13
CSeq: 314159 INVITE

ACK sip:john@192.190.132.31 SIP/2.0
Via: SIP/2.0/UDP 10.11.12.13;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: ‘‘John’’ <sip:john@192.190.132.31>;tag=12344235
From: :’’Mark’’ <sip:mark@10.11.12.13>;tag=1928301774
Call-ID: a84b4c76e66710@10.11.12.13
CSeq: 314159 ACK

The rules applying to the ACK request in a SIP network are also a bit complex. The
handling of 200 OK final responses and 3xx, 4xx, and 5xx final responses is different. If
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an INVITE transaction is routed through several proxies, then each proxy can acknowledge
3xx, 4xx, 5xx, and 6xx responses by sending their own ACK. This applies only to proxies
capable of acknowledging such requests locally (e.g., stateless proxies do not have this
intelligence and remain passive, acting as simple message routers). But 200 OK responses
are always acknowledged by the client user agent. This difference was made because the
SIP specification wants SIP clients to know all the servers that have accepted an INVITE
transaction. Because of forking proxies, more than one server may accept an INVITE,
if this INVITE has been duplicated in the networks and a single INVITE request can
generate more than one dialog.

In Figure 3.6, one INVITE generates two dialogs. The Figure also shows that, while
provisional responses are not transmitted reliably, the final 200 OK response is transmitted
reliably. Because multiple 200 OK responses can be received for a single INVITE, in
theory the client could continue to wait for 200 OK responses for ever after sending an
INVITE request. The SIP specification limits the waiting time to 32 s after the first 200
OK was received.

In Figure 3.7, a forking proxy generates an ACK for a 486 final response, while it
forwards the 200 OK response to the client user agent.

The ACK is a very special type of request:

• It is never acknowledged. If an ACK gets lost, the server will retransmit the final
response, and the client will retransmit the ACK when receiving the duplicate final
response. This mechanism is very similar to the two-way handshake of non-invite

100 TRYING

INVITE

182 QUEUED

ACK

INVITEMark Proxy Agent 1 Agent 2

200 OK

100 TRYING

182 QUEUED

INVITE

180 RINGING

200 OK

ACK

200 OK

200 OK

ACK

200 OK

ACK

Figure 3.6 Forking an INVITE request.
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Mark

100 TRYING

INVITE

ACK

INVITE

200 OK

100 TRYING

Proxy

INVITE

200 OK

ACK

Agent 1 Agent 2

ACK

486 BUSY HERE

180 RINGING

This response is not 
a 200 OK and can
be acknowledged  

locally

A 200 OK can only 
be acknowledged by 

the user agent

Figure 3.7 200 OK responses must be acknowledged end to end.

transactions, with the final response playing the role of the request, and ACK playing
the role of the response.

• Because the ACK is never acknowledged, proxies cannot signal any failure back to the
client. This requires a specific procedure for authentication: since the ACK cannot be
challenged, it must contain the same credentials as the INVITE (see Section 3.6.2 for
further details).

• If the response contains a Contact header with a URI, the ACK can be forwarded
directly to this URI.

3.3.1.1.8.3 Provisional responses
(a) Reliability

Provisional responses are not delivered reliably in SIP. Figure 3.8 gives two examples
of this. In the first example, a provisional response arrives soon enough to prevent the
INVITE retransmit timer from firing. The two previous provisional responses (RINGING
and QUEUED-1) are lost and never received by Mark user agent.

In the second example a forking proxy duplicates the INVITE of Mark and sends it to
two user agents. The 180 RINGING provisional response of Agent 2 is lost, and Mark
does not know that Agent 2 was contacted when the 200 OK from Agent 1 arrives.

(b) PRACK method

The new PRACK method was introduced in RFC 3262 (June 2002) to fix the issue
of reliability of provisional responses. This issue was in fact a showstopper for any real
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Mark

John

180 RINGING

ACK

INVITE

200 OK

100 TRYING

100 TRYING

182 QUEUED-1

182 QUEUED-2

<4 s

INVITE

182 QUEUED

ACK

INVITE

200 OK

100 TRYING 

182 QUEUED

Proxy

INVITE

180 RINGING

200 OK

ACK

Agent 1 Agent 2

Mark

Figure 3.8 Lack of reliability for provisional responses in baseline SIP.

deployment of SIP for telephony, as many interworking scenarios with the PSTN were not
supported. Mobile networks, for instance, make extensive use of pre-call announcements,
which could not be delivered reliably in SIP prior to RFC 3262.

The optional PRACK extension mimics the end-to-end reliability algorithm of the 200
OK response. Provisional responses are retransmitted periodically until the acknowledg-
ment (PRACK) arrives. The major difference is that PRACK, unlike ACK, is itself a
normal SIP method, acknowledged hop by hop by each stateful proxy, and requiring its
own response from the server. PRACK transmission reliability is ensured as for a normal
request by the expected 200 OK; this means that if the client receives a retransmitted pro-
visional response, it should not retransmit the PRACK, but rely on the PRACK response
to decide whether it should retransmit it or not.

Each provisional response contains a serial number in a RSeq header, mirrored in the
corresponding PRACK method RAck header (formatted as RAck: <response number>
<Cseq number> INVITE). There should be a PRACK for each provisional response,
unlike reliability mechanisms such as TCP, also based on serial numbers, which are
cumulative (the acknowledgment serial number validates all received messages with
lower values).

The sender of the INVITE should indicate that it supports the PRACK mechanism by
including a 100rel option tag in the Require header field. This option can be rejected by the
receiver with a 420 BAD EXTENSION response (unsupported header field with 100rel
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option tag). If it accepts the PRACK option, the receiver may send all 1xx responses
(except 100 TRYING) reliably. In reliable provisional responses, it needs to include
a Require header field with option tag 100rel, and a Rseq header (unique within the
transaction).

Unacknowledged provisional responses are simply retransmitted with an exponentially
increasing delay, with the same serial number. New provisional responses are sent with
the next higher serial number (see Figure 3.9).

If a media offer (see Section 3.3.2.3.2.3) appears in a reliable provisional response
(e.g., 183 SESSION PROGRESS), the PRACK should contain an answer to that offer. A
PRACK can also contain an offer, in which case the corresponding 200 OK must contain
an answer.

3.3.1.1.8.4 Managing the complexity

The exact procedure of the SIP reliable transmission mechanism therefore depends on
the transport protocol used (reliable or not), the method used (special handling of invite
requests), the type of response in the case of an invite request, and the existence of a
special optional mechanism for provisional responses (PRACK). This complexity is typ-
ical of a monolithic design, and unfortunately tends to lead to spaghetti code and subtle
bugs. RFC 3261 attempts to reintroduce functional layers more formally in the speci-
fication, and isolates a functional block responsible for retransmissions: which handles
transactions.

If the request is an INVITE, the transaction includes not only the provisional responses
and the final response, but also, if the final response was not a 2xx response, the ACK

INVITE (Cseq = 1, Require 100rel)

100 TRYING (Cseq = 1)

PRACK (Cseq = 2, Rack = 99)

PRACK (CSeq = 2, RSeq = 99)

200 OK (Cseq = 1)

183 SESSION PROGRESS (Cseq = 1, RSeq = 99)

183 SESSION PROGRESS (Cseq = 1, RSeq = 99)
Retransmission:
no PRACK
received on time

Retransmission:
no 200 OK
received on time

200 OK (Cseq = 2)

Figure 3.9 Reliability of provisional responses using the PRACK request. Example of a
gateway to a cellular network transmitting in-band announcements with a 183 SESSION
PROGRESS (ISDN Progress); one PRACK is lost.
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acknowledging the final response. The transaction layer of user agent clients (and some
types of proxies) handles ACKs of non-200 OK responses for invite requests. If the final
response is a 2xx, then the ACK is an independent transaction. This is because the SIP
specification requires the 200 OK response to be handled by the application, and not
by the transaction functional block. The transaction functional block is not allowed to
retransmit 200 OK responses; this task must be handled by the user agent application
(called the ‘user agent core’ in the specification).

For all other requests a new transaction is created, which includes all the responses to
that request, up to the final response (and its retransmissions if any). There is no ACK,
and retransmissions are handled completely by the transaction functional block.

This formalism improves the robustness of the specification, but there are still an
unusual number of exceptions to the protocol-layering principles in the current SIP speci-
fication. As SIP evolves, this will be an obstacle to managing specification complexity. A
possible way to simplify the SIP specification would be to drop direct support for UDP,
and use instead a reliable transport layer on top of UDP, but this would cause backward
compatibility problems to SIP implementations. Note that restricting SIP to TCP only
would be simpler, but TCP does not always have the right deterministic latency proper-
ties to support high-quality telephony applications. Dropping support for forking proxies
would also simplify SIP significantly;10 there is no significant application using forking
proxies yet, and most forking functions can be handled by ‘back to back user agents’.

3.3.1.2 Terminating a call

The above example is a simple and successful call set-up. Figure 3.10 is a more complete
example (in which Mary calls John) that includes the call termination by John. If Mary
had terminated the call, she would have sent the BYE request, and the From and To fields
would be reversed. The media flows are not shown, but the signaling messages include
all mandatory headers.

Some SIP headers have abbreviated forms that can help in keeping the total size of a
message below the MTU. In this example John’s terminal is using the abbreviated form.

3.3.1.3 Rejecting a call

There are occasions when John may be unable to receive a call from Mary. He may not
be at home, may not be willing to answer, or he may be already in another conversation.
Some of these situations can be expressed in the reply message. SIP provides codes for
the usual causes, but also defines more sophisticated replies, such as GONE, PAYMENT
REQUIRED, or FORBIDDEN.

Figure 3.11 is an example of a simple BUSY HERE reply. This reply tells Mary that
John cannot be reached at this location (but she might try to reach another location, such
as John’s mobile phone through a gateway, or via voicemail). Another reply, 600 BUSY

10 This restriction was adopted by 3GPP.



THE SESSION INITIATION PROTOCOL (SIP) 179

INVITE sip:john@192.190.132.31 SIP/2.0

Via:  SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778
Call-ID: a2e3a@192.190.132.20
From: sip: mary@192.190.132.20;tag = 1928 
To: sip: john@192.190.132.31
Cseq 1 INVITE
Content-type: application/sdp
Content-Length: 98

v = 0 
o = mary 3123 121231 IP IP4 192.190.132.20  
c = IN IP4 192.190.132.20 
m = audio 49170 RTP/AVP 0  

SIP/2.0 200 OK 

v:  SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778

i: a2e3a@192.190.132.20

f: sip: mary@192.190.132.20;tag = 1928

t: sip: john@192.190.132.31;tag = 7231

Cseq 1 INVITE

c: application/sdp

l: 98

v = 0
o = john 5664 456456 IP IP4 192.190.132.31
c = IN IP4 192.190.132.31
m = audio 23244 RTP/AVP 0  

ACK sip:john@192.190.132.31 SIP/2.0

Via:  SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778

Call-ID: a2e3a@192.190.132.20

From: sip: mary@192.190.132.20;tag = 1928

To: sip: john@192.190.132.31;tag = 7231

Cseq 1 ACK

SIP/2.0 200 OK 

Via:  SIP/2.0/UDP 192.190.132.31:3456;branch = z9hG4bK778

Call-ID: a2e3a@192.190.132.20

From: sip: john@192.190.132.20;tag = 1928

To: sip: mary@192.190.132.31;tag = 7231

Cseq 2 BYE

Mary

192.190.132.20 192.190.132.31

John

(active conversation)

BYE sip:mary@192.190.132.20 SIP/2.0

v:  SIP/2.0/UDP 192.190.132.31:3456;branch = z9hG4bK778

i: a2e3a@192.190.132.20

From: sip: john@192.190.132.31;tag = 1928

To: sip: mary@192.190.132.20;tag = 7231

Cseq 2 BYE

Figure 3.10 Complete call scenario using SIP.
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Mary

192.190.132.20

192.190.132.31

John

SIP/2.0 486 BUSY HERE

Via:SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778

Call-ID: a2e3a@192.190.132.20

From: sip: mary@192.190.132.20;tag = 1928

To: sip: john@192.190.132.31;tag = 7231

Cseq 1 INVITE

ACK sip:john@192.190.132.31 SIP/2.0

Via:SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778

Call-ID: a2e3a@192.190.132.20

From: sip: mary@192.190.132.20;tag = 1928

To: sip: john@192.190.132.31;tag = 7231

Cseq 1 ACK

INVITE sip:john@192.190.132.31 SIP/2.0

Via:  SIP/2.0/UDP 192.190.132.20:3456;branch = z9hG4bK778
Call-ID: a2e3a@192.190.132.20
From: sip: mary@192.190.132.20;tag = 1928
To: sip: john@192.190.132.31
Cseq 1 INVITE
Content-type: application/sdp
Content-Length: 98

v = 0
o = mary 3123 121231 IP IP4 192.190.132.20  
c = IN IP4 192.190.132.20
m = audio 49170 RTP/AVP 0  

Figure 3.11 Case of a busy call.

EVERYWHERE, can be used to let it be known that John cannot be reached at any
location at this moment.

3.3.2 Syntax of SIP messages

SIP messages are encoded using the HTTP/1.1 message syntax (RFC 2068). The character
set is ISO 10646 with UTF-8 encoding (RFC 2279, see Section 3.5.1.1.1 for more details).

Lines are terminated with CR+LF (Carriage Return, Line Feed), but receivers should
be able to handle CR or LF as well.

There are two types of SIP messages: REQUESTS and RESPONSES. They share a
common format as indicated in Figure 3.12.

Some header fields are present in both requests and answers; they are part of the
‘General Header’:
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aaa = bbb

ccc = ddd

eee = fff
Blank line

Headers

Message body
(clear SDP,

encrypted SDP, …)

SIP-version SP Status-Code SP Reason-Phrase CR + LF
for responses

Start-Line

Method SP Request-URI SP SIP-Version CR + LF
for requests

Figure 3.12 SIP message format: requests and responses (SP is an abbreviation for ‘single
space’).

• Call-ID (example: Call-ID: f81d4fae-7dec-11d0-a765-00a0c91e6bf6@foo.bar.com).
The Call-ID parameter serves many purposes. In REGISTER and OPTIONS requests
it serves to match requests with the corresponding responses. For INVITE and REG-
ISTRATION requests it also helps to detect duplicates (duplicate invite requests can
occur when there is a forking proxy in the path). Successive INVITE requests with the
same Call-ID but a different payload can be used to dynamically change parameters in
a conference. The first part of the Call-ID is meant to be unique within each host, and
the last part, a domain name or host IP address, makes it globally unique. In case an
IP address is used, it must be routable (i.e., private addresses such as 10.x.x.x cannot
be used). A new Call-ID must be generated for each call.

• Cseq (example: Cseq: 1234 INVITE). Every request has to have a Cseq header field,
which is composed of an unsigned sequence number and the method name. Within a
call, the sequence number is incremented at each new request (unless the request is a
retransmission of a strictly identical previous request, as shown in Figure 3.13), and
starts at a random value. The only exceptions are the ACK and CANCEL requests
which keep the Cseq number of the acknowledged reply (for ACK) or the cancelled
request (for CANCEL). The server must copy the Cseq value of the request in the
corresponding replies.

• From (example: From: “MyDisplayName”<sip:myaccount@company.com>

;tag=221411414). This field must be present in all requests and responses. It con-
tains an optional display name and the address of the originator of the request. Optional
tags can be appended. Note that the From field contained in SIP replies is simply copied
from the request and therefore does not designate the originator of the reply (the tag
became mandatory in RFC 3261).
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INVITE   Cseq : 23 INVITE

Example A: All responses to a
request share the same Cseq

Example B: Over UDP, the INVITE
request is secured by retransmission
Identical INVITEs  share the same Cseq

200 OK Cseq : 23 INVITE 

ACK   Cseq : 23 ACK

180 RINGING  Cseq : 23 INVITE

BYE   Cseq : 24 BYE

200 OK Cseq : 24 BYE

INVITE   Cseq : 23 INVITE

200 OK Cseq : 23 INVITE 

ACK   Cseq : 23 ACK

BYE   Cseq : 24 BYE

200 OK Cseq : 24 BYE

INVITE   Cseq : 23 INVITE

T
im

eo
ut

Figure 3.13 Usage of CSeq header.

• To (example: To: Helpdesk <sip:helpdesk@company.com>;tag = 287447). This field
must be present in all requests and responses and indicates the intended destination of
a request. It is simply copied in responses. The tag is used mainly when a single SIP
URI designates several possible endpoints (as in the case of a helpdesk). In this case
a random tag is appended in the replies to allow a client to distinguish replies from
individual endpoints (this tag became mandatory in RFC 3261).

• Via (example: Via: SIP/2.0/UDP PXY1.provider.com; received 10.0.0.3). The Via
field is used to record the route of a request, in order to allow intermediary SIP servers
to forward the replies along the same path.

In order to achieve this, each proxy adds a new Via field with its own address to the list of
existing Via fields. The request receiver can add optional parameters of the Via field (e.g.,
to indicate that it received the request from an address that is not the address contained
in the previous hop’s Via field it adds a ‘received’ parameter). Using this information, a
proxy can forward the replies to the original sender, even if there is a Network Address
Translation (NAT) device in the path.11 In Figure 3.14, the caller only uses private

11 This always works if the NAT device uses a permanent one-to-one mapping between internal and
external IP addresses. In the more frequent case of N-to-one mapping using the external source
port as an index to the internal address (Network Address and Port Translation NAPT), this works
only when using a fixed port forwarding, or when the NAT function opens a reverse forwarding
path for UDP packets arriving at the external port which lasts long enough for the SIP response to
arrive. In general, NAPT traversal is a very complex topic, see Chapter 5.
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The NAPT function changed the
source IP address to 192.9.10.10 and the
source port to 9876  

INVITE  sip:helpdesk@provider.com SIP/2.0
Via: SIP/2.0/UDP 10.0.0.6:1020; rport; branch
= z9hG4bKkjtbf3

10.0.0.6

PXY1@provider.com

(192.9.5.3)
NAPT

INVITE sip:helpdesk@provider.com SIP/2.0
Via: SIP/2.0/UDP PXY1@provider.com ;branch = z9hG4bKj4za
Via: SIP/2.0/UDP 192.9.4.3 :1020;received = 192.9.10.10;rport = 9876; 
branch = z9hG4bKkjtbf3

IP : SRC 10.0.0.6:1020
DEST 192.9.5.3:5060

SRC 192.9.10.10:9876,
DEST 192.9.5.3:5060

Response is now sent to
10.0.0.3, port 9876 

200 OK
Via: SIP/2.0/UDP 192.9.4.3 :1020;received =
192.9.10.10;rport = 9876; branch = z9hG4bKkjtbf3

SRC 192.9.5.3:5060
DEST 192.9 10.10:9876

SRC 192.9.5.3:5060
DEST 10.0.0.6:5060

The NAPT router
converts it back to
10.0.0.6, port 5060  

200 ok
Via: SIP/2.0/UDP PXY1@provider.com ;branch = z9hG4bKj4za
Via: SIP/2.0/UDP 192.9.4.3 :1020;
received = 192.9.10.10;rport = 9876; branch = z9hG4bKkjtbf3

Figure 3.14 Usage of Via header for messages exchanged though NAT.

addresses (10.x.x.x), and is connected to the Internet through a router doing NAT. When
PXY1 receives the INVITE request, the request’s source IP address is no longer 10.0.0.6,
but has been changed by the NAT device to 192.9.10.10. So, the destination proxy records
this information in a ‘received’ parameter. When it receives the reply for this request,
it will discard the topmost Via header, and parse the next one: from the value of the
‘received’ parameter, it knows that it must forward the request to 192.9.10.10.

In fact the mechanism just described only works for NAT functions which translate IP
addresses, not for NAPT functions which also translate the source port of the packet (see
Chapter 5 for more details). The default SIP behaviour as described in RFC 3261 is to
respond not to the apparent source IP address, but to the port contained in the Via header
(1020 in our example). Unfortunately, this port is changed by NAPT functions. In order
to fix this problem, RFC 3581 (August 2003) now specifies that when a client adds a
‘report’ parameter in the request, the proxy should store the apparent source port in this
parameter, then respond to this port. Figure 3.14 uses RFC 3581.

The Via header also takes into account multicast transmission of signaling messages (not
shown in the Figure): when a maddr parameter is present in a Via field, the reply is for-
warded in multicast using the maddr address (and the ttl value stored in the ttl parameter).

Since RFC 3261, it is also mandatory to add the parameter ‘branch=z9hG4bK. . .’,
which must begin with these letters, in order to identify an RFC 3261-compliant endpoint:
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• Encryption (example: Encryption: PGP version = 2.6.2,encoding = ascii). This
header field specifies that the message body, and possibly some message headers, have
been encrypted. For more details see Section 3.6 on security.

Some header fields apply directly to the message body; these are part of the Entity header:

• Content-Type (example: Content-Type: application/sdp). This describes the media
type of the content of the message body. In the example, of Figure 3.10 the message
body contains a session description using the IETF SDP protocol. Another example
is text/html.

• Content-Length: the number of octets of the message body. The CR+LF separating
the header part and the payload part is not counted. If the payload is SDP, the CR+LF
at the end of each SDP line is counted. Some vendors omit the last CR+LF in SDP.

3.3.2.1 SIP Requests

SIP requests are sent from the client terminal to the server terminal. The following meth-
ods exist:

• ACK: an ACK request is sent by a client to confirm that it has received a final
response from a server, such as 200 OK, to an INVITE request.

• BYE: a BYE request is sent either by the calling agent or by the caller agent to drop
a call.

• CANCEL: a CANCEL request can be sent to abort a request that was sent previously
as long as the server has not yet sent a final response.

• INFO: defined in RFC 2976, the INFO request is used to carry information which
does not change the call state. Some vendors use it for DTMF out-of-band transport
(see Section 3.3.2.3.1).

• INVITE: the INVITE request is used to initiate a call.

• MESSAGE: this request is defined in RFC 3428 and is used for instant messaging (see
Section 3.5.3).

• NOTIFY: this request is defined in RFC 3265 and is used to send event notifications
(see Section 3.5.2).

• OPTIONS: a client sends an OPTION request to a server to learn its capabilities.
The server will send back a list of the methods it supports. It may also in some cases
reply with the capability set of the user mentioned in the URL, and how it would have
responded to an invitation.

• PRACK: defined in RFC 3262, the PRACK request is used to implement reliable pro-
visional responses.

• REFER: this request is defined in RFC 3515 and can be used to redirect sessions (see
Chapter 5).
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• REGISTER: c lients can register their current location (one or more addresses) with
the REGISTER request. A SIP server that can accept a REGISTER message is called
a registrar.

• SUBSCRIBE: this request is defined in RFC 3265 and is used to request specific event
notifications (see Section 3.5.2).

• UPDATE: defined in RFC 3311, the UPDATE request is used to change media session
parameters in early dialogs (i.e., before the final response to the initial INVITE).

Figure 3.15 illustrates the SIP request message format.
In addition to the mandatory fields of the General header, requests can carry additional

fields in the Request header:

• Accept (example: Accept: application/sdp, text/html). This optional header indicates
what media types are acceptable in the response. The syntax is specified in RFC 1288.

• Accept-Language (example: Accept-Language: fr, en-gb;q = 0.8, en;q = 0.7). This
indicates the preferred languages of the caller. The syntax is specified in RFC 1288.

• Expires (INVITE and REGISTER) (example: Expires: Thu, 01 Dec 2000 16:00:00
GMT or Expires: 5 (in seconds)). For a REGISTER message, this header field indicates
for how long the registration will be valid. The registrar can shorten the desired value
in its reply. For an INVITE message, this can be used to limit the duration of searches.

Start line

SDP data

Blank line

General header

Request header

Entity header

Figure 3.15 SIP request message format.
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• Priority (example: Priority: emergency). The values are those of RFC 2076, plus
‘emergency’.

• Record-Route (also a response header field) (example: Record-Route: sip:acd.support.
com;maddr = 192.190.123.234,sip:billing.netcentrex.net;maddr = 192.194.126.23).
Some proxies (see Section 3.4.2) may add/update this header field if they want to
be on the path of all signaling messages. Some entities need to monitor the state of
calls in order to work properly (e.g., a billing server might control a firewall to enforce
the billing policy).

• Subject (example: Subject: ‘Conference call on the SIP chapter’). This is free text12

that should give some information on the nature of the call.

3.3.2.2 SIP responses

A SIP server responds to a SIP request with one or more SIP responses. Most responses
(2xx, 3xx, 4xx, 5xx and 6xx) are ‘final responses’ and terminate the SIP transaction.
The 1xx responses are ‘provisional’ and do not terminate the SIP transaction. The SIP
response format is illustrated in Figure 3.16.

The first line of a SIP response always contains a status code and a human-readable
reason phrase. Most of the header section is copied from the original REQUEST message.
Depending on the status code, there may also be additional header fields, and the response
data part may be empty, contain an SDP session description, or contain explanatory text.

So far, six categories of status codes have been defined, classified according to the first
digit. Common codes are listed in Table 3.1.

From: sip:charlie@caller.com
To: sip: alice@anywhere.com; tag = 2332462
Call-ID: 27182@caller.com
Location: sip:bob@anywhere.com
Expires: Wed, 29Jul 1998 9:00:00 GMT
CSeq :1 INVITE

Blank line

Headers

Response data
(clear SDP,

encrypted SDP, text/plain, or text/html)

SIP/2.0 302 MOVED TEMPORARILY

Status line

Figure 3.16 SIP response message format.

12 This text should not contain any character that could cause problems to the parsing of the
SIP request.
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Table 3.1 Common codes

1xx Informational Request received, continuing to process the request.

100 TRYING
180 RINGING
181 CALL IS BEING FORWARDED
182 QUEUED
183 SESSION PROGRESS (used to provide in-band network

announcements, equivalent to ISDN progress message)
2xx Success The action was successfully received, understood, and accepted

200 OK
3xx Redirection Further action must be taken in order to complete the request

300 Multiple choices: several possible locations in contact headers
301 MOVED PERMANENTLY: user can no longer be found at the

address specified. New address is in Contact header field
302 MOVED TEMPORARILY: alternative address in Contact

header, which may also specify duration of validity
305 USE PROXY: the specified destination must be reached

though a proxy
380 For future use: alternative service, described in the message

body
4xx Client error The request contains bad syntax or cannot be fulfilled at this

server
400 BAD REQUEST
401 UNAUTHORIZED
402 PAYMENT REQUIRED
403 FORBIDDEN
404 NOT FOUND
405 METHOD NOT ALLOWED
406 NOT ACCEPTABLE
407 PROXY AUTHENTICATION REQUIRED
408 REQUEST TIMEOUT
409 CONFLICT
410 GONE
411 LENGTH REQUIRED
413 REQUEST MESSAGE BODY TOO LARGE
414 REQUEST-URI TOO LARGE
415 UNSUPPORTED MEDIA TYPE
420 BAD EXTENSION
480 TEMPORARILY NOT AVAILABLE
481 CALL LEG/TRANSACTION DOES NOT EXIST
482 LOOP DETECTED
483 TOO MANY HOPS
484 ADDRESS INCOMPLETE
485 AMBIGUOUS
486 BUSY HERE
487 REQUEST TERMINATED (by a CANCEL request)
488 NOT ACCEPTABLE HERE: used if an unacceptable offer is

received in an UPDATE

(continued overleaf )
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Table 3.1 (continued)

491 Offer received in an UPDATE while an offer was already
pending

5xx Server error The request contains bad syntax or cannot be fulfilled at this
server

500 INTERNAL SERVER ERROR: also used when an UPDATE is
received before an answer has been generated to a previous
UPDATE

501 NOT IMPLEMENTED
502 BAD GATEWAY
503 SERVICE UNAVAILABLE
504 GATEWAY TIMEOUT: also used if an UPDATE request is

not acceptable because the user must be prompted; therefore,
no immediate response can be generated.

505 SIP VERSION NOT SUPPORTED
6xx Global failure The request is invalid at any server

600 BUSY EVERYWHERE
603 DECLINE
604 DOES NOT EXIST ANYWHERE
606 NOT ACCEPTABLE

The classification in Table 3.1 makes it easier to add new status codes: in case an old
terminal does not understand a new Cxx code, it should treat it as a C00 code. Therefore,
even old terminals will be able to react ‘intelligently’ when facing unknown status codes.
These terminals can also give some additional information to the user if a reason phrase
is present. RFC 3326 added a new header ‘Reason’ to facilitate interoperability with the
PSTN by encapsulating the cause codes defined by Q.850:

Reason: Q.850 ;cause = 16 ;text = “Terminated”

3.3.2.3 Mid-dialog requests

Once a dialog is established, many situations will require some control information to be
transmitted in the middle of the call. For a real-time communication application, the most
frequent uses of mid-dialog requests are:

• Transmission of DTMF information.

• Renegotiation of media streams.

• Redirection of media streams.

3.3.2.3.1 Transmission of DTMF and flash-hook information
Dual-Tone Multi-Frequency (DTMF) signals are those generated by modern analogue
phones when you press one of the keys. Older rotary phones generate a series of small
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interruptions in the current loop through the phone, corresponding to the digit dialing.
Such small interruptions are called flash-hook. They are also frequently used to control
some class 5 features of the phone line, such as three-way calling.

The original SIP specification was focused on PC-based IP telephony and had over-
simplified its specification for the transmission of DTMF and flash-hook signals for
complex real-world telephony applications. Of course, the problem emerged quickly:
without DTMF, you cannot call your answering machine, a prepaid telephony service,
and most call centers, as these information systems frequently use DTMF tones to get
information from you.

3.3.2.3.1.1 The issues
(a) Telephony signals and low-bitrate voice coders

Low-bitrate voice coders (in practice anything lower than 32 kbit/s) usually cannot reliably
transport DTMF tones. The reason is that these tones are composed of a mix of two pure
frequencies that are almost impossible to find in the human voice. Many low-bitrate voice
coders work by modeling a set of basic human speech components and transmitting only
the model parameters on the other side, making it impossible to reproduce exactly pure
frequencies. For this reason most of these coders also degrade music significantly, as they
are designed for voice only.

DTMF signals that have been encoded and decoded using such low-bitrate coders will
not be accurately recognized by DTMF-driven automatic systems (e.g., it will be almost
impossible to enter a credit card number using DTMF, since at least one of the 16 or
more digits will be misinterpreted).

Obviously, flash-hook, which is not a sound, is not transported using traditional voice-
coding systems.

(b) DTMF-driven call control services

The key advantage of VoIP over all other telephony techniques is the ability to control a
phone call without ever being in the voice path, allowing the building of softswitches, as
opposed to the traditional telephony systems which require a dedicated hardware-based
switching matrix to route the media stream.

As an example, a traditional prepaid card system would connect the call from caller A,
establish the media connection with A to get the PIN code and desired destination B for
the call, then it would call B and continue to relay the media stream for the entire duration
of the call (Figure 3.17). Some systems may optimize this slightly by using intelligent
network commands to instruct an intelligent network telephony switch in the path of the
call, the Service Switching Function (SSF), to make the call to B, but this SSF device will
also route the media streams between A and B for the entire duration of the call. In such
a traditional telephony system, two media streams of 64 kbit/s are established though the
call control function for the entire duration of the call.

A properly designed VoIP network-based prepaid telephony server would establish a
media stream with caller A only during the initial phase of the service, in order to get
the PIN code, and destination of the call. The server would then call B but instruct A
and B to exchange media streams directly over the IP network (see ‘Redirection of media
streams’ in Section 3.3.2.3.2.5). It is no longer in the media path of the call.
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Caller A Callee B Caller A Callee B

Caller A Callee B Caller A Callee B

Traditional TDM system VoIP system

Prepaid
server

Prepaid
server

Prepaid
server

Signalling
media stream

After call
connects

After call
connects

Prepaid
server

Figure 3.17 VoIP avoids media tromboning: example of a prepaid application.

The issue is that many such DTMF-driven call control services will still need to receive
DTMF information, even when the media stream is passing directly between caller A and
callee B. In most prepaid telephony services it is possible to stop the current call by
pressing the ‘#’ key, and get the opportunity to make another call to a new destination C
without having to re-enter the PIN code. This requires DTMF information to be available
on the call control link.

3.3.2.3.1.2 RFC 2833

A quick fix to the first issue (i.e., the transmission of DTMF and other events for com-
munications using low-bitrate coders) was presented in RFC 2833 (RTP Payload for
DTMF Digits, Telephony Tones and Telephony Signals), published in May 2000. RFC
2833 requires edge media devices to implement DTMF detection algorithms for all the
media streams they generate. It is trivial for an IP phone because it obviously receives
information about which keypad key is pressed, but for VoIP gateways connected to the
PSTN this requires the implementation of DTMF detection algorithms in the G.711 stream
received from the PSTN.

The idea is to send the DTMF information in the RTP stream as a named event,
not as an audio-encoded signal. If the resulting RTP stream is received at another PSTN
gateway, the PSTN gateway has enough information to regenerate the DTMF information
as a waveform. The transmission of DTMF events in the RTP stream, with the same
sequence number and timestamp reference as the rest of the RTP stream, allows perfect
synchronization of the DTMF and media information, and avoids the possible duplication
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of DTMF signals at a VoIP gateway (one received directly from the media stream, the
other received later in RFC 2833 encoded form).

Figure 3.18 shows the format of a telephony event encoded in an RTP packet. Such
events should be generated as soon as a tone of more than 50 ms is detected. Each
tone packet is sent three times for redundancy purposes, with the RTP sequence number
incremented, while all other fields remain identical. Very short tones can be encoded in a
single packet (by setting the ‘end’ bit). Longer tones can be sent either by continuously
sending tone packets with a shorter duration until the tone stops, or by forming two
packets: one signaling the beginning of the tone, one signaling the end of the tone. This
prevents the sender from having to wait until the end of the tone to send the tone packet,
which would obviously involve an unacceptable delay.

The volume is a value in negative dBm0 (e.g., the value 20 denotes a volume of
−20 dBm0). The possible range is between 0 dBm0 and −63 dBm0, but values lower
than −55 dBm0 should be rejected. The counter can encode durations up to 8 s if the
timestamp unit is 1/8000 s, which is more than enough for most uses. A DTMF tone should
always be longer than 40 ms in order to be properly recognized by in-band detectors.

As SIP uses the Session Description Protocol (SDP) to declare which type of media
encoding, it was necessary to add a SDP payload format to declare which types of events
a receiver can understand.

The following ‘m’ line can be used for receiving telephone events:

m=audio 44143 RTP/AVP 110
a=rtpmap:110 telephone-events/8000
a=recvonly

Marker bit (beginning of a new event)

Timestamp of the beginning of the event

Event code

End bit

Reserved

Volume
 (dBm0)

Duration
(timestamp unit)

RTP header RFC 2833 payload

Dynamic payload type

0 to 9 0 .. 9
∗ 10
# 11
A to D 12..15
Flash 16

Figure 3.18 RFC 2833 RTP packet format for DTMF transport.
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In addition the fmtp specifier can be used to detail which events can be received. The
format is:

a=fmtp:<format> <list of values>

For instance, a receiver understanding all the events in the Figure except A, B, C, D, with
dynamic payload type 100, would declare it using:

a=fmtp:100 0-11,16

In fact, all implementations are required to handle event 0 to 15, so the fmtp line
is optional.

RFC 2833 also describes another format where tones are sent as a series of frequency,
amplitude modulation, volume, and duration parameters.

One of the advantages of signaling DTMF information as an event is that all waveform
analysis would then be performed by edge devices, making IP-based interactive voice
response servers much easier to implement.

RFC 2833 is an interesting discussion of telephony signals in a VoIP network, which
does solve the problem of transmitting DTMF and other signals in simple class 4 VoIP
networks (these networks only route phone calls, without performing any complex ser-
vice). It is a comprehensive reference to all types of tones and signals found on current
networks, including DTMF, modem and fax tones, special information tones, etc.

RFC 2833 can also in principle solve the more complex problem of DTMF and call
control, because any intermediary proxy can add its own ‘m =’ line requesting receipt of
telephony events at a specific IP address, in which case a ‘c =’ line must be present in
the media section of the SDP right after the ‘m =’ line,13 while all other media streams
are directed to the target user agent. However, many SIP user agent implementations have
overlooked this requirement, and are unable to send media and telephony events to differ-
ent destinations, let alone duplicate the events for transmission to multiple destinations.
Right now in practice, it is not possible to implement a reliable prepaid system with RFC
2833 without routing the RTP stream.

RFC 2833 also caused some confusion as it leaves the implementer free to transmit
DTMF simultaneously through the media stream and in event-encoded form, or to mute
the media stream for the duration of the DTMF signal sent in event form. Only the latter
is safe, as in many complex call flows, where the synchronization information may be
lost, the simultaneous transmission of RTP in the regular media stream and using an event
may cause duplicates.

Note that in H.323 it is mandatory to transmit all DTMF information out-of-band using
the H.245 signaling channel. The audio signal is muted for the duration of the event
transmitted out of band. However, some vendors can disable this mechanism and use RFC
2833 instead. This was introduced to allow some interworking between H.323 networks
and SIP networks implementing RFC 2833 and lacking any signaling channel DTMF
transmission function. This is not a good solution, however, and the use of one of the

13 For servers which can handle multiple simultaneous calls, this also requires the allocation of a
specific destination port for each call, which is very cumbersome.



THE SESSION INITIATION PROTOCOL (SIP) 193

methods described in Section 3.3.2.3.1.3 for signaling channel DTMF tone transmission
in SIP networks is recommended.

The current weaknesses of RFC 2833 could be addressed by a more formal specifica-
tion of how SIP should handle telephony events in complex call control applications, how
events should be duplicated and sent to multiple destinations, and when the DTMF tones
should be removed from the audio stream. Another issue is feature overlap of SIP appli-
cation servers, as RFC 2833 possibly enables several call control devices on the signaling
path to request telephony events, which may cause several of them to take incompatible
actions simultaneously. This clarification work will probably be done in future revisions
of SIP, but for now most vendors who face these issues have decided to solve the problem
by using new SIP messages, as described below.

3.3.2.3.1.3 Alternatives to RFC 2833

VoIP is a technology breakthrough for the design of value-added services for telephone
networks. The possibility of controlling calls without routing the media stream greatly
enhances the density and scalability of application servers. It also decreases the cost of
such servers, as many functions now do not require specialized telephony hardware and
can run on standard computer platforms. Last but not least, the services are cheaper to
operate, because the application servers no longer need to be located close to end-users,
and therefore most services can be implemented using a single point of presence.

The implications of this paradigm shift are just beginning to be fully understood, and
as expected many VoIP devices have been designed with the old TDM model in mind,
assuming all servers that control the call are also controlling the media stream.

A properly designed VoIP edge device (gateway, IP phone) should be able to send all
information that is possibly of interest to an application server over the signaling link,
because only this link is guaranteed to reach all application servers. This is mandatory in
H.323, using the H.245 channel.

Unfortunately, at the time of writing, there was no agreed standard way of doing
this in SIP. Most network VoIP gateway vendors faced the problem and solved it using
their own methods, some of which are described below. Interestingly, most SIP phones
seem to be using only RFC 2833, most of the time without the ability to create separate
UDP connections for telephony events, or sometimes even send the DTMF tones in-
band without any form of coding. Unfortunately, this is a showstopper to any attempt to
implement large scale class 5 services using such SIP phones, as many services (interactive
voice response, prepaid, call centers, etc.) need access to the DTMF information and would
require the application servers to route the media streams.

The methods used by VoIP gateway vendors to send events on the signaling link in
SIP roughly fall in two categories:

• The use of the new INFO mid-dialog request defined in RFC 2976 to carry the telephone
event. Some vendors use one of the MIME types defined by RFC 2833 (audio/telephone
event and audio/tone MIME types), other vendors use encodings derived from H.323
or MGCP.

• The use of the new SUBSCRIBE/NOTIFY mechanism to carry the telephone event.
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Unfortunately, since there is no common agreement of the exact encodings, there is no
interoperability between the various SIP implementations, and most existing SIP networks
use a single gateway vendor to overcome this problem. Some proxies are capable of
understanding several formats and convert between them. The following sections describe
the encoding used by some popular SIP gateway vendors.

(a) Cisco

Cisco uses a combination of the general INFO message defined in RFC 2976 (other meth-
ods are available as well, e.g., RFC 2833), and the SUBSCRIBE/NOTIFY method. Cisco
implemented DTMF transport according to an Internet draft (draft-mahy-sip-signaled-
digits-00, ‘Signaled Digits in SIP’.

A SIP device can instruct a Cisco gateway to send a DTMF tone by sending it an INFO
message formatted as follows:

INFO sip:1978551212@192.168.20.10 SIP/2.0
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO
Content-Type: application/dtmf-relay
Content-Length: 22

Signal=9
Duration=250

The duration is in milliseconds. The gateway will confirm the receipt of this indication
by responding to the SIP INFO message with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO

In order to be notified of DTMF events from a Cisco gateway, a SIP application must first
request to receive the DTMF events using the SUBSCRIBE mechanism. The advantage
of using the SUBSCRIBE mechanism is that any SIP application server, in the case the
call is processed by a chain of proxies, can request DTMF notification at any time during
a call. The problem is that many application servers can react simultaneously and take
incompatible actions:

SUBSCRIBE sip:1010@192.168.110.239 SIP/2.0
Via: SIP/2.0/UDP 213.56.166.173:5060
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From: <sip:5500@213.56.166.173;user=phone>
To: <sip:1010@192.168.110.239>
Call-ID: 6CD8C67B-C0A011D3-806DB047-
B37E77AF@192.168.110.239
CSeq: 1 SUBSCRIBE
Contact: <sip:5500@213.56.166.173>
Expires: 3600
Events: telephone-event;duration=2000
User-Agent: NetCentrex IN Stack
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP 213.56.166.173:5060
From: <sip:5500@213.56.166.173;user=phone>
To: <sip:1010@192.168.110.239>;tag=A1E07C4-694
Date: Sun, 02 Jan 2000 23:08:57 GMT
Call-ID: 6CD8C67B-C0A011D3-806DB047-
B37E77AF@192.168.110.239
Server: Cisco-SIPGateway/IOS-12.x
Content-Length: 0
CSeq: 1 SUBSCRIBE
Expires: 3600
Contact:
<sip:1010@192.168.110.239:5060;user=phone>

If one of the requested events is received from the gateway, a SIP NOTIFY message with
a representation of the signaled digits is sent to the requesting application server. In the
following sample, the ‘9’ key is pressed:14

NOTIFY sip:5500@213.56.166.173:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.110.239:5060
From: <sip:1010@192.168.110.239>;tag=A1E07C4-694
To: <sip:5500@213.56.166.173;user=phone>
Date: Sun, 02 Jan 2000 23:08:57 GMT
Call-ID: 6CD8C67B-C0A011D3-806DB047-
B37E77AF@192.168.110.239
User-Agent: Cisco-SIPGateway/IOS-12.x
Max-Forwards: 6
Timestamp: 946854581
CSeq: 102 NOTIFY
Event: telephone-event;rate=1000
Contact:
<sip:1010@192.168.110.239:5060;user=phone>
Content-Length: 10

14 Expressed using the format defined by RFC 2833 (cf. Figure 3.18).
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Content-Type: audio/telephone-event

0x0980010E

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.110.239:5060
From: <sip:1010@192.168.110.239>;tag=A1E07C4-694
To: <sip:5500@213.56.166.173;user=phone>
Call-ID: 6CD8C67B-C0A011D3-806DB047-
B37E77AF@192.168.110.239
CSeq: 102 NOTIFY
Server: NetCentrex IN Stack
Content-Length: 0

(b) Nuera

Nuera also uses SIP INFO messages, encapsulating an MGCP-like syntax. A message
body containing MGCP event information will be formatted as follows:

Content-Type: application/mgcp-event
Content-Length: <length of payload>
<MGCP event information>

An application requiring DTMF out-of-band information must request it using an MGCP
notification request, embedded in an INFO message:

INFO sip:10.0.0.157 SIP/2.0
Via: SIP/2.0/UDP 10.0.0.168:5060
Route: NUERA-ID<sip:216.188.94.117>
From: 1003<sip:1003@10.0.0.157>
To:
NUERA-
ID<sip:216.188.94.117;user=phone>;tag=216.188.94.
117-eg101483118153
Call-ID:
tac12320020227093301525205-
54444D0000000DD8BC5E753C7D184D10@216.188.94.117
CSeq: 1 INFO
User-Agent: NetCentrex IN Stack
Content-Type: application/mgcp-event
Content-Length: 15

R: [0-9∗#](N)

SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.0.0.168:5060
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Record-Route: <sip:10.0.0.157;maddr=10.0.0.157>
From: 1003<sip:1003@10.0.0.157>
To:
NUERA-
ID<sip:216.188.94.117;user=phone>;tag=216.188.94.
117-eg101483118153
Call-ID:
tac12320020227093301525205-
54444D0000000DD8BC5E753C7D184D10@216.188.94.117
CSeq: 1 INFO
Content-Length: 0

If one of the requested events is received from the gateway, a SIP INFO message with
an MGCP event message body containing this observed event is sent to the application
server. In the following sample, the ‘∗’ key is pressed:

INFO sip:1003@10.0.0.157;maddr=10.0.0.157 SIP/2.0
Route: <sip:1003@10.0.0.168>
To: "1003" <sip:1003@10.0.0.157>
From: "NUERA-ID"
<sip:216.188.94.117;user=phone>;tag=216.188.94.
117-eg101483118153
Via: SIP/2.0/UDP 216.188.94.117:5060
Via: SIP/2.0/UDP 216.188.94.117:5061
Call-ID:
tac12320020227093301525205-
54444D0000000DD8BC5E753C7D184D10@216.188.94.117
CSeq: 2 INFO
Content-Type: application/mgcp-event; version=1.0
Content-Transfer-Encoding: text
Content-Length: 5

O:∗

SIP/2.0 200 OK
Via: SIP/2.0/UDP 216.188.94.117:5060
Via: SIP/2.0/UDP 216.188.94.117:5061
From:
NUERA-ID<sip:216.188.94.117;user=phone>;tag=216.188.94.
117-eg101483118153
To: 1003<sip:1003@10.0.0.157>
Call-ID:
tac12320020227093301525205-
54444D0000000DD8BC5E753C7D184D10@216.188.94.117
CSeq: 2 INFO
Server: NetCentrex IN Stack
Content-Length: 0
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(c) Sonus

Sonus offers two mechanisms: DTMF relay and DTMF trigger.
In DTMF relay, a mechanism similar to the signal and signal-update methods from

H.245 is used for precise control of DTMF detection and generation. The signal parame-
ter indicates the detected DTMF tone, the duration parameter indicates the total duration
of the tone if known or an initial estimate of the tone duration, and signal-update sub-
sequently updates the estimate of the total duration. The Content-Type header is set to
‘application/dtmf-relay’. In the following example a DTMF is pressed for 250 ms:

INFO sip:1978551212@192.168.20.10 SIP/2.0
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO
Content-Type: application/dtmf-relay
Content-Length: 22

Signal=9
Duration=250

The server is expected to confirm the receipt of this indication by responding to the SIP
INFO message with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO

The DTMF trigger mechanism is used for well-defined DTMF events not requiring tim-
ing information. The Content-Type header is set to ‘application/dtmf’. In the following
example the DTMF event ‘#’ is pressed:

INFO sip:1978551212@192.168.20.10 SIP/2.0
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO
Content-Type: application/dtmf
Content-Length: 1

#
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The server confirms the receipt of this indication by responding to the SIP INFO message
with a 200 OK response:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.0.1
From: 19785551234@192.168.0.1
To: 19785551212@192.168.20.10
Call-ID: 662606876@192.168.0.1
CSeq: 20 INFO

3.3.2.3.2 Negotiation of media streams
3.3.2.3.2.1 Session description syntax, SDP
SIP uses the Session Description Protocol (SDP) specified in RFC 2237. SDP is also
a product of the MMUSIC working group, and is mainly used today in the context of
the mBone, the multicast-enabled overlay network of the Internet. In order to be able to
receive an mBone session, a receiver needs to know:

• Which multicast address is going to be used by the session.

• What the UDP destination port will be.

• The audio and/or video coders that will be used (GSM, H.261, . . .).

• Some information on the session (name, short description).

• Contact information.

• Activity schedule.

The primary purpose of SDP is to define a standard syntax for this type of information.
The SDP session description can be conveyed with various transport methods, depending
on the context: the Session Announcement Protocol (SAP) on the mBone, the Real-Time
Streaming Protocol (RTSP) for streaming applications, SIP to set up point-to-point and
multipoint interactive communications.

SDP is a human-readable protocol, consisting of several <type> = <value> lines
terminated by CR + LF. The field names and attributes use US-ASCII characters, but free
text fields can be localized since SDP uses the complete ISO 10646 character set. This
philosophy, as opposed to a binary encoding like ASN-1 PER used in H.323, facilitates
manual programming and analysis of network traces at the expense of greater bandwidth
usage. However, bandwidth usage of a signaling protocol is negligible compared with the
actual media flows, so the trade-off is very good. The only major drawback of this method
is that the generation of the serialization and parsing code needs to be manual, which
is less reliable (and also slower) than the automatic generation allowed by more formal
specifications like ASN.1. Manual programming also leads to more interoperability issues.

The session description is structured in one section which applies to the whole session
(starting with ‘v = . . .’), and several media description sections (each starting with ‘m =
. . .’). Parameters in the media sections can override the default parameters of the session-
level section.

Table 3.2 describes the various field types described by RFC 2237 for each section.
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Table 3.2 SDP session description parameters

Session-level
field type

Sub-
section-level

field type

Usage Format and example

v = Protocol
version

v = 0 M

o = Owner/creator
and session
identifier

O=<username> <session id>
<version> <network type>
<address type> <address>

M

O=mhandley 2890844526
2890842807 IN IP4
126.16.64.4

s = Session name s = <session name> M
s = SDP Seminar

i = Session
information

i = <free text session description> O

i = A seminar on the session
description protocol

u = URI of
description

u = <Universal Resource Identifier> O

u =http://www.cs.ucl.ac.uk/
staff/M.Handley/sdp.03.ps

e = Email
address

e=<email address>
(Optional free Text)

O

or
e=<Optional free Text>
‘‘<’’email address’’>’’

e =mjh@isi.edu (Mark Handley)
e = Mark Handley <mjh@isi.edu>

p = Phone number p =< phone number > (Optional free
Text)

O

or
p = <Optional free Text> “<”phone

number”>”
p = +44-171-380-7777

c = Connection
information—not
required if
included in all
media

c = <network type> <address
type> <connection address>

O

TTL must be included for multicast
sessions.

c = IN IP4 224.2.17.12/127
c = IN IP4 224.2.1.1/127

b = Bandwidth
information

b = <modifier (CT Conference Total|
AS Application-Specific
Maximum>:<bandwidth-value in
kilobits/s>

O
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Table 3.2 (continued)

Session-level
field type

Sub-
section-level

field type

Usage Format and example

b = CT:120
One or

more
time
descrip-
tion
sections

t = Time the
session is
active

t = <start time> <stop time>, using
decimal NTP in seconds

M

t = 2873397496 2873404696
r = Zero or more

repeat times
r =< repeat interval > <active

duration> <list of offsets from
start-time>, by default in seconds

O

r = 604800 3600 0 90000
means that the repeat interval is 1

week (604,800 s), active for one
hour (3,600 s) after each offset
from the start time T . Offsets are
here 0 seconds and 90,000 s
(25 h). That is, if ∗∗∗ represents
active periods and—idle periods:

T ∗∗∗ T + 1 h—T + 25 h ∗∗∗
T + 26 h—T + 1 week ∗∗∗
T + 1 week + 1 h—−T +
1 week + 25 h ∗∗∗ . . .

The repetition is valid until the stop
time.

Unit modifiers can be used for
compactness, and the previous
record can also be written as
follows:

r = 7d 1h 0 25h
z = Time zone

adjustments
O

k = Encryption key k =< method >:< encryption key > O
or
k =< method >

a = Zero or more
session
attribute lines

a=<attribute> O

or
a=<attribute>:<value>
a = recvonly

(continued overleaf )
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Table 3.2 (continued)

Session-level
field type

Sub-
section-level

field type

Usage Format and example

Zero or
more
media
descriptions

m = Media name
and transport
address

m =< media > <port> <transport>
<format list>

M

m = audio 49170 RTP/AVP 0 3
means that the media is audio, can be

received on port 49170 (RTP only
uses even ports, the next odd port
being used by RTCP). The
transport is protocol RTP/AVT
(IETF’s Realtime Transport
Protocol using the audio/video
profile), and the format is media
payload types 0 or 1 of the AVT
profile (0 is µ-law PCM-coded
single-channel audio sampled at
8 KHz, 3 is GSM)

Other RTP profiles would be coded
after the slash, (e.g., a hypothetical
profile XXX would appear as
RTP/XXX).

i = Media title O
c = Connection

information—
optional if
included at
session level

b = Bandwidth
information

O

k = Encryption key O
a = Zero or more

media attribute
lines

O

(a) Dynamic and static payload types

Under a particular profile, some RTP payload types are static; in other words, their mean-
ing is fully defined in the profile (e.g., RTP/AVP 0 is a 64-kbit/s µ-law PCM). Other
RTP payload types only have a meaning in association with a particular session described
in SDP. These are dynamic payload types. The SDP RFC gives an example of a 16-bit
linear-encoded stereo audio sampled at 16 kHz. There is no static payload type defined
that would exactly correspond to this. Instead, we will be using an arbitrary unused num-
ber for the payload type, say 98 (m = audio 49232 RTP/AVP 98), and describe the format
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of the transported data in SDP:

a=rtpmap:98 L16/16000/2

The format is a = rtpmap : <payload type> <encoding name>/<clock rate>[/<enco-
ding parameters>], which in our case translates to 16 linear, 16,000-Hz sampling,
2 channels.

By extension, the term ‘dynamic payload type’ applies to any RTP format whose
media-encoding characteristics are by external signalling (e.g., through an H.245 Open-
LogicalChannel message).

3.3.2.3.2.2 SDP in the context of interactive communications

SDP was initially designed in the context of multicast media transmissions over the
mBone, the multicast overlay of the Internet. The problem it solved was simple: SDP
simply needed to convey to all potential listeners the multicast IP address and port of the
media transmission. This media session description using the SDP syntax was encapsu-
lated in the higher level SAP (Session Announcement Protocol), and sent in a multicast
packet to all potential listeners.

Simply replacing SAP by SIP does not make SDP a suitable protocol for interactive
communications:

• The multicast sessions were essentially one-way, with IP address and port selected by
the sender. An interactive communication uses two-way media streams, with IP address
and port selected by the receiver.

• Multicast sessions are fairly static, they are advertised in advance, and all session
changes do not have to occur in real time. In an interactive session, audio, video, and
other media streams can be established, stopped, or changed at any time.

• Multicast sessions, because of the number of participants, do not even attempt to nego-
tiate a common set of media encodings. The sender chooses one coder, and listeners
simply have to adapt or fail to join the session. In an interactive communication, such
as a phone call, the parties expect to be able to communicate, and this may require the
negotiation of a common set of media coders.

• Interactive communications may require intermediary servers to charge the communi-
cations, and therefore to be aware of the types of media used by each party, and when
media streams are established or stopped.

The initial version of SIP overlooked many of these issues. The sample SIP call flow
consisted of a very simple case where the interactive communication:

• Was established between terminals which were assumed to have the same coders avail-
able. The issue of which coder to use first, how to maximize the chance of using
symmetrical coders (the same coder for each direction of media stream), or how to
negotiate a new coder were not really specified.
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• Established the stream immediately after the stream has been proposed. In reality, an
endpoint may want to use a proposed media (e.g., video), only some time after it has
been proposed.

• Was not redirected, or re-established to a different endpoint in the middle of a com-
munication. This situation may happen in real communications (e.g., communications
to call centers, transferred calls, etc.).

The result was a situation where, despite marketing announcements, SIP interoperability
was limited to basic calls only. A clarification on the exact procedures to use to open a
media stream, close it, or renegotiate it was required. This was resolved in RFC 3264
under the umbrella of the new SIP RFC in June 2002.

3.3.2.3.2.3 The SDP offer/answer model for unicast streams
RFC 3264, “An Offer/Answer Model with the Session Description Protocol (SDP)”,
presents all the procedures that were in the previous SIP RFC, as well as new call
flow discussions and examples. This complex portion of the interactive communication
protocol is the equivalent of H.245 in the H.323 series.

RFC 3264 first defines the values of some mandatory SDP parameters that become
useless or redundant in the context of SIP, where a lot of information is exchanged in the
SIP message itself: the subject should be empty (s =< single space > or s = -), the time
of the session should be set to 0 (t = 0 0), ‘e’ and ‘p’ parameters are not used, etc. RFC
3264 also restricts the number of sessions to only one per SDP message.

The media control model is based on ‘offers’ and ‘answers’.
An ‘offer’ may contain zero, one or more media stream descriptions, each in a line

beginning with ‘m =’, followed by optional attributes. The order in which the media
formats appear in the ‘m’ line is the order of preference. The answerer should choose the
first one that is acceptable to it.

For instance, the following offer proposes the G.711 A-law and µ-law for the audio
media, with a preference for µ-law, and proposes H.261 and MPEG for video, with
no preference:

v = 0
o = john 4898446519 4898446519 IN IP4 johnendpoint.anywhere.com
s =
c = IN IP4 johnendpoint.anywhere.com
t = 0 0
m = audio 41732 RTP/AVP 0 1
a = rtpmap:0 PCMU/8000
a = rtpmap:1 PCMA/8000
m = video 43221 RTP/AVP 31
a = rtpmap:31 H261/90000
m = video 49222 RTP/AVP 32
a = rtpmap:32 MPV/90000

An offer can contain multiple ‘m =’ lines for the various media types (e.g., audio, video).
This means that the sender of the offer is willing to send or receive these media streams
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simultaneously. This is valid even if there are multiple ‘m =’ lines for the same media
type. For instance, this can be used in conjunction with RFC 2833 to transmit telephony
events to an application server, and regular audio to the destination user agent. (see
Section 3.3.2.3.1.2 for more details). The expression power of this structure is equivalent
to a single H.245 capabilityDescriptor, where each ‘m =’ line is an AlternativeCapabili-
tySet, and the union of all ‘m =’ lines is a SimultaneousCapabilitySet.

In this sample, all proposed media are bidirectional. A unicast stream offer will have
the attribute ‘a = sendonly’ if the endpoint only wishes to send media to its peer. If
it only wants to receive the indicated media, the attribute will be ‘a = recvonly’. If it
only wants to ‘warn’ the peer that it may establish a media stream at a later time, and
provide a hint on the parameters that will be used, it will use ‘a = inactive’. The default
is ‘a = sendrecv’, if the endpoint wishes to establish a media stream to and from its peer.

The usefulness of ‘sendrecv’ and ‘recvonly’ is obvious. The ‘inactive’ or ‘sendonly’
attributes can be useful in more complex situations: for instance, in a SIP-based call
center, when the call center application server wishes to ring an agent phone through
a gateway, but does not want the agent to stream back audio immediately, because the
call center application server is currently sending waiting music to the caller. Another
common use of the ‘inactive’ parameter is to allow an appliance which need to initialize a
DSP with some coder before using it to select the coder using an ‘inactive’ offer/answer,
and then activate it through a new offer (see Section 3.3.2.3.2.5). These parameters can
also be used to work around bugs in IP phone or media gateway implementations:

• Some endpoints do not support receiving SIP INVITE messages without SDP. Sending
an inactive SDP media stream offer may work around the bug with the same effect.

• Some high-density VoIP gateways use multiple LAN cards for RTP streams, and do
not support ‘looped back’ RTP streams sent and received on the same card. A way to
work around this bug is to give a hint to the VoIP gateway of which source IP address
may be used in the future with an inactive session, so it can avoid selecting the wrong
LAN card.

The port number indicated in the ‘m’ line is the UDP port the endpoint wishes the peer
to send media to (a = recvonly or a = sendrecv). For ‘a = sendonly’ and ‘a = inactive’
streams, the RTCP stream should be sent to the indicated port number plus one, unless a
more specific indication is present in the media description.

Depending on the value of the ‘a’ attribute, the list of media formats indicates the
media formats that can be sent (sendonly), are expected to be received (recvonly), or
both (sendrecv). The sendrecv offer therefore contains enough information to allow the
answerer to use symmetrical coders.

When RTP is used, the offer indicates the dynamic payload type that is expected to be
used for the media. In sendonly and sendrecv offers, however, the payload type may be
changed in the answer, in which case the answer value should be used instead of the one
originally proposed. This may be required if the answerer is only able to receive certain
payload types.

There may be fmtp parameters to include further information on media formats, such
as supported events for RFC 2833.
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In the case of RTP streams, all media descriptions should contain ‘a = rtpmap’ map-
pings from RTP payload types to encodings. If there is no ‘a = rtpmap’, the default
payload-type mapping, as defined by the current profile in use (e.g., RFC 1890), is to
be used.

The answer will usually be based on the offer, but change some elements: it may
include a reception IP address and port, remove some media formats, etc. In this case the
origin line (‘o =’) must be changed, and must contain a new version number. The time
(‘t =’) line must be identical to the one of the offer.

There must be an exact one-to-one mapping between the number of ‘m’ lines in the
offer and in the answer, which are matched based on the ordering. Rejected streams must
contain a port number of 0. Although SDP requires at least one media type to be present
in the ‘m’ line, it will be ignored. A stream must be rejected if there are no acceptable
media formats.

This is the answer of Mark to the offer of John, where he selected PCMA and H.261:

v = 0
o = mark 4898446720 4898446720 IN IP4 markendpoint.anywhere.com
s =
c = IN IP4 markendpoint.anywhere.com
t = 0 0
m = audio 51762 RTP/AVP 1
a = rtpmap:1 PCMA/8000
m = video 53221 RTP/AVP 31
a = rtpmap:31 H261/90000
m = video 0 RTP/AVP 32

If a media offer is accepted, the answer should contain a unicast address if the offer was
unicast, and should not change the media type. The answer should mark the direction of
the stream from its point of view (e.g., ‘recvonly’ if the offer was ‘sendonly’, and vice
versa). If the offer was ‘sendrecv’, the answer may choose to select only one of the send
or receive modes (e.g., ‘recvonly’ if the answerer is not going to generate any media). In
all cases, the answerer may want to mark the media as ‘inactive’ if it is not willing to
use it right away. This is the only option if the offer was ‘inactive’.

If a type of media has been accepted for a ‘recvonly’ or ‘sendrecv’ offer, it is still nec-
essary to select from the offered media formats the ones that are acceptable. A ‘recvonly’
response should contain at least one media format selected from those present in the offer.
When selecting a media format, it is important to remember that the ordering of the media
formats in the offer represents the preference of the offerer, and therefore the selected
format should be the first that is acceptable to the answerer. Note that once the answer
has been sent the answerer must be prepared to receive media in any of the formats listed.

Similarly, for ‘sendonly’ or ‘sendrecv’ answers, it is necessary to select from the pro-
posed media formats those that can be sent by the answerer (‘sendonly’), or sent and
received (‘sendrecv’). At least one of the proposed media formats must be in the offer.
In ‘sendrecv’ answers, changing the payload type should only affect the payload type of
the stream received by the answerer and the answerer should still use the offer payload
type to send media to the offerer.
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The order of media formats in the answer represents the preference of the answerer.
However, in order to maximize the chances to use the same coders in both directions, it
should in general be the same relative order as the order of the offer. In ‘sendonly’ or
‘sendrecv’ answers, the media stream sent to the offerer should be the preferred format
according to the offer from the formats listed in the answer.

Similarly, the offerer should use the first acceptable coder in the ‘recvonly’ or ‘sendrecv’
response. It may temporarily switch to another media type for special conditions (e.g.,
when it switches back to G711 for modem transmission, when it uses RFC 2833 for
DTMF transmission, or if based on RTCP receiver reports it decides to switch to a lower
bitrate coder).

In all cases, the IP address and port in the answer indicates where the answerer is
expecting to receive media. In the case of a ‘recvonly’ or ‘sendrecv’ answer, the IP
address and port will be the sink for the RTP stream. For all types of answers except
‘inactive’, the IP address and the port + 1 will be the sink for RTCP packets (i.e., RTCP
sender reports for ‘recvonly’ answers, RTCP receiver reports for ‘sendonly’ answers, or
both for ‘sendrecv’ answers).

3.3.2.3.2.4 The case of multicast streams

In the case of multicast stream offers, the meaning of the ‘sendonly’ or ‘recvonly’
attributes is no longer the direction of the media stream from the perspective of the
offerer. If the multicast stream is marked ‘recvonly’, it means that all participants are
only allowed to receive media on this multicast address and port, they cannot send to it.
If the multicast stream is marked ‘sendonly’, it means all participants can send to this
multicast address, but should not attempt to receive media from it.

The answer should be identical to the offer, except that some media formats may be
removed to indicate that the answerer does not support them.

3.3.2.3.2.5 Redirection or renegotiation of media streams

There are many circumstances in which it is necessary to redirect media streams dynam-
ically. A good example is a prepaid service: the caller initially needs to receive and send
media to the prepaid service server, but, as soon as the prepaid server has established the
communication with the desired called party, the server must redirect the media streams
to flow directly between the caller and the callee. Note that this cannot be done by using
call-level redirection, because the prepaid server must remain in the call-signalling path
in order to monitor the duration of the call and eventually dynamically cut the call if the
caller has exhausted his credit.

The reader may think that the server could simply serve as a relay for the media stream,
so that the caller would never need to dynamically redirect the media streams. This is
true . . . in fact, this is the way traditional TDM prepaid services work using ‘service
nodes’. But the single most important technological advantage of VoIP over TDM voice
is precisely this ability to do better than simply relaying media streams. A VoIP-optimized
prepaid server will be able to handle many more conversations than its TDM counterpart,
and it will also require a lot less bandwidth between the service platform and the rest
of the network. Of course one can choose not to take advantage of this, but in this case
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VoIP presents no advantage. In fact, TDM will work better, because media relaying adds
to voice path delay, and this delay will be far more noticeable in VoIP applications than
in TDM.

This ability of all VoIP endpoints to dynamically redirect media streams is a very
important requirement. Devices not supporting this feature should be dismissed. It is also
important to check that VoIP feature servers, such as prepaid servers or contact center
servers, do take advantage of this feature. Many engineers are still ‘thinking TDM’ when
they implement VoIP systems, and media relaying is one of the most frequent bugs found
on feature servers. Unfortunately, it does not affect the external functionality of a system,
which is only detectable in a lab by taking network traces. But, it is very important not
to deploy such systems, as in real networks the increased delay is likely to cause echo
perception problems, let alone scalability issues.

In H.323, the renegotiation of media streams is done by using the mandatory H.245
Null TerminalCapabilitySet procedure, or ‘TCS = 0’, (i.e., a procedure that has no impact
on the call control state). In SIP, the renegotiation of media streams, whether required
to change the target of a stream or to use an alternative media format, is done using the
offer/answer model. The new offer should be encapsulated in a new INVITE message
on the same Call-ID, often called a RE-INVITE. Soon after the release of RFC 3261, a
bug was found in this procedure: the INVITE message impacts the call state; therefore,
the use of a RE-INVITE does not allow media session changes before the first INVITE
completes with a final answer. To solve this, a new UPDATE method was introduced
in September 2002 in RFC 3311. The UPDATE method does not impact the state of
an existing dialog and therefore can be used in an early dialog before the first INVITE
completes (Figure 3.19). It should be used only in this context. Support for the UPDATE
method must be specified in the Allow header field.

Both the initial offerer or the answerer can initiate a new offer if they wish to change
anything in the existing situation: modify, add, or remove media streams. The ‘o =’ line
must be identical to the initial offer, except the version number which must be incremented
if anything in the SDP has changed. An ‘m’ line must be present for each ‘m’ line in the
previous offer, but new ‘m’ lines can be added. Media streams are removed by setting
the SDP port to zero.

In the following example, Mark resends an offer to change the port for the audio stream
to 51780 and indicates that he has stopped sending video but can still continue to receive
it (Mark has clicked the ‘stop video’ button):

v = 0
o = mark 4898446720 4898446721 IN IP4 markendpoint.anywhere.com
s =
c = IN IP4 markendpoint.anywhere.com
t = 0 0
m = audio 51780 RTP/AVP 1
a = rtpmap:1 PCMA/8000
m = video 53221 RTP/AVP 31
a = recvonly
a = rtpmap:31 H261/90000
m = video 0 RTP/AVP 32
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INVITE (offer 3)

200 OK for INVITE (answer 3)

INVITE (offer 1)

180 (answer 1)

PRACK

200 OK for PRACK

UPDATE (offer 2)

200 OK for  UPDATE (answer 2)

200 OK for INVITE

ACK

An answer is sent in a
reliable provisional
response, but no final
response is sent to the
invite

A user agent needs to
update the media
session. Since the first
INVITE request is still
pending, UPDATE must 
be used 

A user agent needs to
update the media
session. Now the first 
INVITE request is
completed, RE-INVITE is
used

Figure 3.19 Usage of the UPDATE method.

John accepts the change, and responds with:

v = 0
o = john 4898446519 4898446520 IN IP4 johnendpoint.anywhere.com
s =
c = IN IP4 johnendpoint.anywhere.com
t = 0 0
m = audio 51780 RTP/AVP 1
a = rtpmap:1 PCMA/8000
m = video 53221 RTP/AVP 31
a = sendvonly
a = rtpmap:31 H261/90000
m = video 0 RTP/AVP 32

This procedure is now to be used in all cases, even to put a stream on hold (e.g., by
changing a ‘sendrecv’ stream to ‘sendonly’). This is a change to the recommendation
of RFC 2543 which uses the ‘0.0.0.0’ IP address to hold a stream. This prevented the
continued receipt of RTCP receiver reports when the remote party was on hold, but
allowed the receipt of media to continue.

3.3.2.3.2.6 Fax

Just like H.323, SIP either transports the fax G.711 signal transparently (pass-through),
or uses the ITU T.38 fax relay protocol. While the use of T.38 has been thoroughly
documented in H.323, it has been left outside the main specification track in SIP. A
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draft was published in October 2000 (draft-mule-sip-t38callflows-02.txt) to document the
way the Clarent Corporation was using SIP to establish T.38 sessions. The call flow was
then added to a document listing sample call flows (draft-ietf-sipping-call-flows-00.txt)
and was further documented in draft-ietf-sipping-realtimefax-00.txt. T.38 annex D also
discusses SIP call establishment procedures for T.38.

(a) T.38

When a SIP gateway decides, after detecting the fax V.21 preamble flags, that it needs to
encode a fax signal using T.38, it should use the offer/answer model to include all the T.38
parameters in SDP format. T.38 transmission replaces the normal audio transmission over
RTP (only the CNG signal may be sent in-band if the originating gateway did not detect
it). Once the fax transmission is complete, the normal RTP audio transmission should
resume. During fax transmission, the normal audio transmission can either be stopped
completely, or be put on hold.

The call flow presented in Figure 3.20 is a simple case of a gateway with a dedicated
fax port; therefore, it knows that the media session is going to be T.38 in the first INVITE.

The response shown in Figure 3.21 also contains T.38 parameters, as well as the recep-
tion port for IFT packets. Note that the selected mode is ‘UDP redundancy’, not ‘FEC’,
because the parameter a = T38FaxUdpEC:t38UDPFEC has been removed in the answer.

If the fax communication is detected in the middle of a voice call, a SIP RE-INVITE
should be used with the T.38 parameters in the new SDP session. Once the fax communica-
tion terminates, another RE-INVITE is used to re-establish the normal RTP audio session.

Via: SIP/2.0/UDP pxy.domain.com:5060; branch = 2d007.1
From: sip:+1-303-555-1111@ifax.here.com;user = phone;tag = ab11
To: sip:+1-650-555-2222@iftgw.there.com;user = phone
Call-ID: 1717@ifax.here.com
CSeq: 17 INVITE
Content-Type: application/sdp
Content-Length: 320

v = 0
o = ifaxgw1 2890846527 2890846527 IN IP4 ifax.here.com
s = Session SDP
c = IN IP4 ifaxmg.here.com
t = 0 0
m = image 15002 udptl t38
a = T38FaxVersion:0
a = T38MaxBitRate:14400
a = T38FaxFillBitRemoval:0
a = T38FaxTranscodingMMR:0
a = T38FaxTranscodingJBIG:0
a = T38FaxRateManagement:transferredTCF
a = T38FaxMaxBuffer:72
a = T38FaxMaxDatagram:316
a = T38FaxUdpEC:t38UDPFEC
a = T38FaxUdpEC:t38UDPRedundancy

T.38 offer encoded in SDP

Receiving port for IFT over
UDP

INVITE sip:+1-650-555-2222@iftgw. there.com;user = phone SIP/2.0

Figure 3.20 INVITE from a dedicated fax port.
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SIP/2.0 200 OK
Via: SIP/2.0/UDP ifax.here.com:5060
From: sip:+1-303-555-1111@ifax.here.com;user = phone;tag = ab11
To: sip:+1-650-555-2222@iftgw.there.com;user = phone;tag = cde17
Call-ID: 1717@ifax.here.com
CSeq: 17 INVITE
Content-Type: application/sdp
Content-Length: 320

v = 0
o = faxgw1 2890844527 2890844527 IN IP4 iftgw.there.com
s = Session SDP
c = IN IP4 iftmg.there.com
t = 0 0
m = image 49172 udptl t38
a = T38FaxVersion:0
a = T38MaxBitRate:14400
a = T38FaxFillBitRemoval:0
a = T38FaxTranscodingMMR:0
a = T38FaxTranscodingJBIG:0
a = T38FaxRateManagement:transferredTCF
a = T38FaxMaxBuffer:72
a = T38FaxMaxDatagram:316
a = T38FaxUdpEC:t38UDPRedundancy

T.38 answer encoded in
SDP

Receiving port for IFT over
UDP

Figure 3.21 Receiver accepts T.38 fax call.

(b) Fax pass-through

Fax pass-through is simple, and is the fallback mode if T.38 is not supported by the
two gateways (488 NOT ACCEPTABLE HERE or 606 NOT ACCEPTABLE response).
If a gateway attempted to initiate a T.38 media session in a RE-INVITE and this was
rejected, it should initiate a new RE-INVITE with the pass-through session parameters.
Fax pass-through only requires to dynamically or change the RTP payload type to G.711
µ-law or A-law, to disable any silence suppression, and to keep echo cancelation active.
Specific SDP parameters have been defined in RFC 3108. For G.711 µ-law, the following
SDP description can be used in the RE-INVITE:

Content-Type: application/sdp
Content-Length: 181

v = 0
o = faxgw1 2890844527 171091 IN IP4 iftgw.there.com
s = Session SDP
c = IN IP4 iftmg.there.com
t = 0 0
m = audio 12322 RTP/AVP 0
a = rtpmap:0 PCMU/8000
a = ecan:fb on -
a = silenceSupp:off - - - -
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3.3.2.3.2.7 Exchange of capabilities using SDP

H.323 uses a specific set of messages to negotiate the capabilities of endpoints. These
capabilities are very flexible and can take into account processing or bandwidth constraints
which make only certain combinations of coders possible.

SIP does not have a specific syntax to express capabilities, and therefore also uses SDP
for this purpose, except that it may omit both ‘e =’ and ‘p =’ lines. The session ID must
be unique, the ports should be set to zero, and the connection address must be present
despite being ignored.

An ‘m’ line must be present for each supported media type (audio, video, image,
etc.), followed by the supported media formats. Each media format must also be further
specified with an ‘a’ line associating it to a dynamic payload type.

For instance, the following session description can be used for an endpoint that sup-
ports G.711 µ-law, G.711 A-law, and GSM as audio codecs, and H.261 and H.263 as
video codecs:

v = 0
o = sampleendpoint 465878951 465878951 IN IP4 192.0.0.1
s = −
t = 0 0
c = IN IP4 192.1.2.3
m = audio 0 RTP/AVP 0 1 3
a = rtpmap:0 PCMU/8000
a = rtpmap:1 PCMA/8000
a = rtpmap:3 GSM/8000
m = video 0 RTP/AVP 31 34
a = rtpmap:31 H261/90000
a = rtpmap:34 H263/90000

Unlike H.323, there is no way to specify that some coders of different media types cannot
be used simultaneously (e.g., that a processor-intensive coder such as G.729 cannot be
used with H.263). In H.323, it is possible to specify that the H.261 coder can be used
with either G.711 or G.729, but H.263 can only be used with G.711.

Similarly, it may be impossible, for bandwidth reasons, to use video coders and data-
sharing simultaneously, but this time a bandwidth constraint may be expressed in SIP by
using the SDP session level ‘b =’ parameter.

3.4 CALL-HANDLING SERVICES WITH SIP

SIP defines many functional names for call-handling features, such as:

• Proxy (stateless, stateful, forking . . .) server.

• Registrar server.

• Redirect server.
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• Location server.

• Back-to-back user agent.

In addition to these names, the industry frequently also uses terms like ‘application server’
or ‘feature server’.

Despite the fact that most of these functions are called ‘servers’, they really describe
functions, and do not necessarily refer to separate servers. In fact, most of the time, a
given SIP server will implement the features of many, if not all, of the entities listed
above. For instance, a server could:

• Register SIP user agents in a certain area (registrar behavior).

• Reply to other SIP server location requests (location server behavior).

• Handle outgoing calls of locally registered SIP devices (stateful proxy).

• Propagate simple instant-messaging messages without modification (stateless proxy).

• Implement certain complex applications such as contact center call distribution for calls
to certain numbers, using back-to-back user agent behavior.

The descriptions in the following sections refer to each of these behaviors and use SIP
‘server’ terminology for them, but the reader should keep in mind that all these functions
can coexist in a single box. Typically, it is only in very large deployments that call
control and registration features may be separated, requiring separate registrars and stateful
proxy boxes.

3.4.1 Location and registration

3.4.1.1 The registrar function

A registrar is a server that accepts REGISTER requests. The same server may also imple-
ment other SIP functions (e.g., serve as a proxy). Registrars are needed to keep track of
the current location of a user agent. The IP address of a user agent may change under
a number of situations: connection via an ISP providing dynamic addresses, connection
on a LAN that provides addresses via DHCP, or a roaming user. In order to be able
to reach this user from its SIP address, an entity in the SIP network needs to main-
tain the mapping between SIP addresses and IP addresses: this is the purpose of the
registrar.

In order to facilitate user mobility and avoid manual configuration as much as possible,
SIP defines a well-known ‘all SIP servers’ address (sip.mcast.net: 224.0.1.75). A client
can therefore in theory register his current IP address with a multicast register message
(Figure 3.22). For some unclear reason SIP restricts the TTL (time to live) of this mes-
sage to one, limiting the discovery method to the local subnet. This feature is roughly
equivalent to the gatekeeper discovery method described in H.323. However, in H.323
the gatekeepers that are willing to handle the request can reply, allowing the client to
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Multicast
registration

REGISTER sip:registrar.provider.com SIP/2.0

Via: SIP/2.0/UDP 192.190.12.13

From: sip:username@company.com

To: sip:username@company.com

Call-ID: 12345678@host.company.com

CSeq: 1 REGISTER

Contact: <sip:host.company.com:1234;transport = udp>
Expires: 3600

Username@company.com

192.190.12.13 (host.company.com)
192.190.12.2 (registrar.provider.com)

IP Src : 192.190.12.13, Dest 224.0.1.75, TTL 1

INVITE sip: Username@company.com SIP/2.0

From: sip:caller@domain.com

To: sip:Username@company.com

Call-ID: 12@host.company.com

CSeq: 1 INVITE

Content-Type : …

...

INVITE sip: Username@host.company.com SIP/2.0

From: sip:caller@domain.com

To: sip:Username@host.company.com

Call-ID: 12@host.company.com

CSeq: 1 INVITE

Content-Type : …

...

IP Src : ..., Dest 192.190.12.2
IP Src : 192.190.12.2, Dest 192.190.12.13

Figure 3.22 Proxy learns endpoint IP address through REGISTER message, and can route
incoming requests to it.

select the appropriate gatekeeper and contact it directly later on. Currently, SIP servers
cannot reply to a multicast REGISTER message; therefore, the client doesn’t have the
chance of learning the address of an appropriate SIP server, or even of knowing whether
there was a SIP server to accept the registration.

The registrar can also be contacted by unicast if the address of the registrar is known.
In this case the procedure is the same as for any other SIP request.

The registered state is not permanent. If not refreshed, it will time out after 1 h by
default (this default value can change as specified in the Expires header field). In order
to maintain its registration, a terminal needs to refresh it periodically.

If the terminal (or the user) moves and wants to modify the parameters of the regis-
tration, then it can cancel an existing registration by sending a contact value of ‘∗’, and
send a new registration, as shown in Figure 3.23.

3.4.1.2 Locating users from SIP addresses

SIP addresses are called URIs (Uniform Resource Identifiers). URIs are really names
(except those SIP addresses that use an IP host address, such as the address used in our
simple call example), they do not refer directly to the transport address to be called but
to an abstract entity that can reach the user directly or indirectly.
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Registration
change

REGISTER sip:registrar.provider.com SIP/2.0
Via: SIP/2.0/UDP 192.190.12.14
From: sip:username@company.com
To: sip:username@company.com
Call-ID: 87654321@host2.company.com
CSeq: 1 REGISTER

Contact: ∗
Expires: 0

Username@company.com

192.190.12.14(host2.company.com)
192.190.12.2 (registrar.provider.com)

IP Src : 192.190.12.14, Dest 224.0.1.75, TTL 1

INVITE sip: Username@company.com SIP/2.0

From: sip:caller@domain.com

To: sip:Username@company.com

Call-ID: 34@host.company.com

CSeq: 1 INVITE

Content-Type : …

...

INVITE sip: Username@host.company.com SIP/2.0

From: sip:caller@domain.com

To: sip:Username@host2.company.com

Call-ID: 34@host2.company.com

CSeq: 1 INVITE

Content-Type : …

IP Src: 192.190.12.2, Dest 192.190.12.14 port 4321

IP Src : ..., Dest 192.190.12.2

REGISTER sip:registrar.provider.com SIP/2.0

Via: SIP/2.0/UDP 192.190.12.14

From: sip:username@company.com

To: sip:username@company.com

Call-ID: 43454345@host2.company.com

CSeq: 1 REGISTER

Contact: <sip:host2@company.com:4321>

IP Src : 192.190.12.14, Dest 224.0.1.75, TTL 1

Figure 3.23 Updating registration information.

SIP URIs have two major forms, an email-like form, and a telephone number form:

• The general format of email-form SIP URIs is user@host, where host is usually a fully
qualified domain name that can be resolved to an IP address using the DNS system. In
many cases the SIP address of a user will be the same as his email address.

• The general format of a telephone number-form SIP is phone-number@host;
user=phone. Because SIP is still mainly used for telephone calls, this is one of the most
widely used formats in SIP networks. The host part is optional and may indicate a server
that can reach this phone number, which can be used to specify a preferred service
provider. Most telephony systems, however, can decide where to route the phone call
based on the phone number only (through prefix analysis or a local number portability
query); so, the domain name part is not present in most telephony applications.

There is also another type of URI which serves a different purpose; this is a sort
of command line requiring some action from the user agent, described by a method
attribute.
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Table 3.3 Common SIP URL formats

John@netcentrex.net:1234 Vanilla SIP URI . . .

Userdomain.com No user part, default port will
be 5060

support@company.fr:2345;transport=UDP Wants to be contacted using
UDP

192.190.234.3:8001 Contact the server at this IP
address

support@netcentrex.net;maddr=239.255.255.1;ttl=32 Override normal host name to
transport address
mechanism: use multicast to
239.255.255.1 with a TTL of
32 instead

+33-231759329@cybercall.com;user=phone Global phone number
0231759329;isub=10;postd=w11p11@cybercall.com;user=phone Local phone number with

ISDN subaddress, wait for
dial tone, then dial 11
(pause) 11 using DTMF

ACD@netcentrex.net?priority=hign&customercode=1234 Using proprietary extension
headers to control priority in
an ACD system . . .

Newcomer@reg.usergroup.com;METHOD=REGISTER Previous URIs would trigger a
SIP INVITE request, this
one initiates a registration to
the registrar of usergroup:
reg.usergroup.com

Optionally, a SIP URI may also specify a port number and a transport mode if the SIP
default transport (UDP) and port (5060) is not to be used. A list of example SIP URIs is
given in Table 3.3.
Most of the extensions (headers, maddr, etc.) are not allowed in the To, From parameters
of SIP requests and responses, but can be used in the contact parameters.

3.4.1.2.1 The original RFC 2543
RFC 2543 describes how to locate the physical endpoint using its SIP URI; this is done
in two stages:

• First, the SIP URI allows the calling endpoint to locate a SIP server. This SIP server
will be the destination of the initial INVITE message. The SIP server can be the final
destination of the call, and even if it is not it is supposed to know how to reach the
called endpoint.

• If the SIP server is not the final destination of the call, it will redirect the INVITE request
to the called endpoint. This can be done in two ways: either by instructing the calling
endpoint to send a new INVITE request to another location using the 302 MOVED
reply (redirect server behavior), or by transparently relaying the INVITE message to the
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appropriate transport address (proxy behavior). The first model is similar to the H.323
direct call model, and the second similar to the H.323 gatekeeper routed call model.

In order to locate the SIP server, a SIP terminal will use DNS. A SIP URI domain name
must have an SRV record, an MX record, a CNAME or an A record. The resolution
algorithm is represented in Figure 3.24.

First, the terminal will retrieve the SRV resource records for the considered domain
name. Then, it will only keep records of type sip.udp or sip.tcp (RFC 3263 seems
to consider that it should be sip. udp or sip. tcp). If there is a sip.udp record, the
terminal will contact the SIP server using UDP at the specified transport address. It will
use the port specified in the SIP URL or default to the port specified in the sip.udp
record. If there is a sip.tcp record, the same method will be used, but over TCP. If no
SRV record is found, the terminal will try to retrieve the IP address of a SIP server by
looking at the MX records first (normally used to point to a mail server), then CNAME
records (pointing to an alias name), and finally an A record (pointing to an IP address).

Pointing to a SIP server instead of the called endpoint directly allows the called endpoint
to move (the transport address changes), while enabling the use of DNS caching. If the
address of the called endpoint was stored directly in DNS, there could be a lot of trouble
with DNS caching. Normally, all DNS records can be cached by the DNS resolver. The
cached record expires after a certain period once it has been first retrieved by a DNS

Host part isIP address? Send INVITE to that address
Y

N

SRV records present?

N

Type sip.udp records present? 

N

Y
Port in URL?

Y

N

Send INVITE to lowest precedence
SRV record address and URL port using UDP 

Send INVITE to lowest precedence
SRV record address and port using UDP

Type sip.tcp records present? 

N

Y
Port in URL?

Y

N

Send INVITE to lowest precedence SRV
record address and URL port using TCP

Send INVITE to lowest precedence SRV
record address and port using TCP

MX records present?

N

Port in URL?
Y

N

Send INVITE to lowest precedence
MX record address and URL port using UDP first, then TCP

Send INVITE to lowest precedence
MX record address and default SIP port 5060 using UDP first, then TCP

DNS CNAME record present? 

N

Y
Restart procedure replacing the ‘host’ part of the URL with the new name contained in the CNAME record

A records present? 

N

Y
Port in URL?

Y

N

Send INVITE to IP address pointed by A record
and URL port using UDP first, then TCP, using URL port or port 5060

Send INVITE to IP address pointed by A record
and default SIP port using UDP first, then TCP, using URL port or port 5060

Proprietary method?

Y

Y

Figure 3.24 Location of a SIP server using DNS.
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query; this period is called the Time To Live (TTL, in seconds). The value of the TTL is
stored in the DNS record. Therefore, when the terminal moves, the caller could still have
a wrong address in the DNS resolver cache, and the call would fail. The only solution is
to set the TTL to zero and update the primary DNS record as the terminal moves; this is
neither very easy nor cache-friendly, and therefore not scalable.

On the other hand, a SIP proxy server is not likely to move very often, and storing
its address in a DNS SRV, MX, or A record does not cause any trouble. This SIP proxy
server needs to know the current location of the called terminal (e.g., by implementing SIP
registrar functionality), and can redirect the INVITE request to the appropriate location.

3.4.1.2.2 RFC 3263 and the use of NAPTR records

The newer RFC 3263 (‘Locating SIP Servers’) brings substantial changes to RFC 2543.
It first states (for ‘backward compatibility’) that if the URI contains a numeric IP address
(and optional port), but without a protocol specifier, the UDP should be used to reach
this IP address. Similarly, if the target is not a numeric IP address, but a port is provided
instead, then UDP should be preferred. This is because UDP was the preferred transport
in RFC 2543.

In all other cases (i.e., if the URI is not a numeric IP address and contains no protocol
specifier or explicit port), then the Naming Authority Pointer Record (NAPTR) DNS
mechanism defined in RFC 2915 should be used to resolve the URI into a next hop
address. NAPTR records are also used by ENUM (see Chapter 2).

When a SIP server needs to locate the appropriate resource to reach user@subdomain.
domain.org, it will query the DNS for the new NAPTR of the DNS (DNS type code 35,
defined in RFC 2168 and RFC 2915) for subdomain.domain.org.

The NAPTR record is used to attach a rewrite rule, based on a regular expression, to
the DNS domain name. Once rewritten, the resulting string can be interpreted as a new
domain name for further queries, or a URI (Uniform Resource Identifier) which can be
used to delegate the name lookup. The syntax of the NAPTR RR is as follows:

Domain TTL Class Type Order Preference Flags Service RegExp Replacement

Domain, TTL, and class are standard DNS fields. The type field is set to 35 in the case
of the NAPTR. The order and preference field specifies the order in which records must
be processed when multiple NAPTR records are returned in response to a single query.
The ordering is lexicographic, order is used first, then preference.

The ‘S’, ‘A’, and ‘U’ flags indicate that this NAPTR record is the last one and that
the next query should be made using SRV records (flag ‘S’), an A record (flag ‘A’), a
protocol-specific algorithm (flag ‘P’). In all these cases the ‘replacement’ field will be
used as the new name to fetch the corresponding resource record. If the flag is ‘U’, the
regular expression15 specified in the RegExp field should be applied to the domain name
in order to get a new URI.

15 An expression composed of a series of symbols each defining a specific modification to a string,
and defined in POSIX.
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The service field defines the protocol that should be used after this step of the resolution
(H323, LDAP, SIP, TEL, SIPS), and the type of service that will be provided: D2U (UDP
transport), D2T (TCP transport), or D2S (SCTP transport). For memory, ENUM uses E2U
as the type of service.

A SIP server looking for a next hop protocol for a SIP call will therefore look for
NAPTR resource records with the service field set to:

• SIP+D2U for a list of next hops that must be reached via SIP/UDP.

• SIP+D2T for a list of next hops that must be reached via SIP/TCP.

• SIP+D2S for a list of next hops that must be reached via SIP/SCTP.

• SIPS+D2T for a list of next hops that must be reached via SIPS/TCP.

All other service fields are discarded, as well as the options that are not supported by the
requesting server (e.g., SCTP), the responses are sorted according to the preference value
(lower values have a higher priority), and the server must try them out in the allotted order.

Resource records with the SIP+D2U, SIP+D2T, SIP+D2S, or SIPS+D2T service
codes also have the ‘S’ flag: full resolution requires a request for SRV resource records
for the resource indicated in the ‘replacement’. The regular expression field will be empty.
For instance, if we have the following NAPTR records for subdomain.domain.org:

; order pref flags service regexp replacement
IN NAPTR 50 50 "s" "SIPS+D2T" "" _sips._tcp.subdomain.domain.org.
IN NAPTR 90 50 "s" "SIP+D2T" "" _sip._tcp.subdomain.domain.org.
IN NAPTR 100 50 "s" "SIP+D2U" "" _sip._udp.subdomain.domain.org.

This indicates that the server supports TLS over TCP, TCP, and UDP, in that order of
preference. If the client supports TCP and UDP, TCP will be used, targeted to a host
determined by an SRV lookup of sip. tcp..subdomain.domain.org. The lookup will, for
instance, return this list of SRV records:

;; Priority Weight Port Target
IN SRV 0 1 5060 proxy1.domain.com
IN SRV 0 2 5060 proxy2.domain.com

In theory, the NAPTR record could change subdomain.domain.org into anything. RFC
3263 says that if this is the case then SRV records with the original name must also be
present, for backwards compatibility with RFC 2543.

The whole procedure requires at least three DNS queries for each transaction (one to
resolve the URI into NAPTR records, one to resolve the new resource name specified by
the NAPTR resource field into a set of SRV resource records, and at least one to resolve
the selected SRV record target into an IP address). In fact, most of the time, more requests
will be required if the URI contains many subdomain components, because in the more
general case, these domains will not all be in cache. For subdomain.domain.org, this is
five DNS requests, each request lasting about 100 ms!
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The procedure introduced by RFC 3263 requires one more DNS lookup than the previ-
ous RFC 2543 mechanism which looked for SRV records directly. However, it does not
bring anything new because it does not make use of any of the possibilities of NAPTR
records, which go beyond anything that can be achieved with SRV records. Overall, this
an overly complicated and verbose RFC (with many exceptions to the general rule) for a
very simple address resolution problem. It could evolve into something more interesting
if the full power of NAPTR records, with the use of regular expressions, was used. It
would then become very similar to ENUM. As it stands now, it seems to be chasing the
same concepts as ENUM, keeping the complexity and leaving important features out.

3.4.1.3 Redirect server

A redirect server responds to an INVITE request with a 3xx reply (or rejects the call with
a client error or server error):

• The 300 MULTIPLE CHOICES reply can be used when the SIP URL of the request
can be contacted at several alternative addresses. The choices are listed as Contact
fields. This can be used as a simple form of load balancing or, more interestingly, to
let a caller know all the available means or media that can be used to communicate
with the destination user. For instance, the returned Contact field could be:

Contact: sip:John gsm@company.com,sip:John home@family.org

• The 301 MOVED PERMANENTLY reply indicates that the SIP URL of the request
can no longer be contacted at this location. The client should try to contact the new
location given by the Contact header field of the reply. This change is permanent and
can be memorized by the client. The Contact header can also indicate several possible
destinations.

• The 302 MOVED TEMPORARILY reply redirects the client to a new location, as
above, but for a limited duration, as indicated by the Expires field.

• The 305 USE PROXY indicates that the specified location should be reached via the
indicated proxy.

• The 380 ALTERNATIVE SERVICE is really for future use; it is not fully defined in the
current SIP RFC. This reply is more complex, and may seem a bit redundant is light
of the previous replies: in addition to providing a new destination in the Contact field,
the reply can also contain a session description in the message body that represents the
sending capacities of the new destination. The caller is expected to send an INVITE
request to this new destination, and offer in its SDP session description the appropriate
capabilities (which can be a copy of the SDP parameters of the 380 reply, except for
receiving RTP ports).

Other replies (e.g., 303) were defined in early SIP drafts, but have become obsolete.
A redirect server can be used in conjunction with a registrar to redirect calls to the

current location(s) of the caller. It can also act as a basic form of call distribution system,
as shown in Figure 3.25.
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SIP redirectUser agent A User agent B

INVITE
support@netcentrex.net

INVITE
support2@net2.com

302 moved
Contact: support2@net2.com

ACK

Here the proxy determines
(through a database lookup or

any other means) that the
request to ‘support’ must be

routed to John

Same dialog identifier, Call-ID
as initial INVITE, and new

CSeq value

200 OK

ACK

Figure 3.25 SIP redirect server distributes calls, in a very basic contact center.

Redirect servers can be useful tools to improve the scalability of complex call manage-
ment systems. Inserted as a front end, it can distribute calls among a pool of secondary
servers, achieving load balancing. This is permitted by the maddr parameter of the Con-
tact field:

<sip:originaladdress@callcenter.com:9999;maddr = sophisticatedACD3.callcenter.com>

By returning this, the redirect server indicates that the caller should send an INVITE with
the same destination URI (originaladdress@callcenter.com), but send it to the third ACD
server of the pool (ACD3.callcenter.com). The maddr parameter instructs the caller to
bypass the normal procedure to find the appropriate SIP server from the domain part of
the URL, and to use the domain name provided instead.

One of the most interesting uses of the redirect server in conjunction with a registrar
is for the deployment of large-scale residential networks. A network serving hundreds of
thousands of SIP endpoints cannot be realistically realized with a single server. The reason
is that if N endpoints are sending a registration message every S seconds, the number of
messages per second that would need to be processed by the central server would be on
average N /S, and much worse when the network starts or restarts. With N = 300,000 and
S = 60, the central server should process over 5,000 registration messages per second.
Obviously, in this case it is necessary to use a number of separate registrar servers (e.g.,
one server per block of 6,000 users). The call control function can still be centralized
because there are a lot less calls than registration messages (if each user makes 1 call
every 5 hours, this is 300,000/(5∗3, 600) = 16 calls per second). But, in order to terminate
incoming calls to the right user agent, the central call control function will need to query
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the registrars, which can be done using an INVITE/REDIRECT transaction. This type of
strategy is currently used with success in residential networks with over 200,000 users.

Redirect server functionality is very similar to the role played by the H.323 gatekeeper
when using the direct call model.

3.4.2 The proxy function

3.4.2.1 Definition

A proxy server acts as a server on one side (receiving requests) and as a client on the
other side (possibly sending requests).

Strictly speaking, a proxy should be mostly transparent to user agent messages, simply
passing messages and changing them in very limited ways. A proxy can forward a request
without any change to its final destination, it can decide to validate requests, authenticate
users, fork requests, resolve addresses, and cancel pending calls, etc.

Depending on the level of control the proxy has over the SIP messages it processes it
can be a stateless proxy, a stateful proxy, or even a back-to-back user agent:

• A stateless proxy simply chooses the next hop destination for an incoming SIP message
using To header information; it keeps no state for the call or even the transaction (it
will not handle retransmissions, but simply pass them on transparently). For instance,
a stateless proxy will not carry out any local processing for a CANCEL request other
than forward it, and will not even acknowledge locally any response, but simply pass
it transparently to the original sender of the request. This behavior is made possible
because SIP allows a proxy to store some state in the messages (e.g., in the Via header).
This state is copied in the response, and therefore the stateless proxy server does not
need to keep in memory any call parameter to be able to forward a response, it simply
finds the information it needs in the response itself (e.g., the next hop is at the bottom
of the pile of Via headers, after discarding the Via header corresponding to the proxy
itself). Stateless proxies have often been presented as a technology breakthrough that
would make SIP networks considerably more scalable than any other network. The
reality is that a stateless proxy can serve only very limited purposes (e.g., it cannot
do billing), and therefore can be used only in simple infrastructure call flows, such
as performing load balancing or basic message routing in core networks. Even in this
role it cannot do very much, as even a simple load-balancing function usually needs
to keep in memory the number of calls it has sent to each destination and discard any
destination that appears to fail frequently.

• Stateful proxies are much more useful, as they can keep any state relative to the call and
all transactions involved in the call. Stateful proxies also manage locally some aspects
of the transactions (e.g., they will handle retransmissions locally and acknowledge the
final responses, except 200 OK and CANCEL requests). Stateful proxies can serve
most call control purposes required in a SIP network, such as choosing an egress route
for a phone call among multiple gateways by offering the call in sequence to multiple
gateways and analysing the responses to eventually try another gateway if the current
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attempt fails due to congestion or any other reason. Since a stateful proxy memorizes
when a call has begun, it can generate call detail records about the duration of the call
when the call ends.

• Some applications need so much control on the call that they cannot be implemented
within the restrictions set on proxies.16 For instance the requirement to transparently
forward any 200 OK response received from a destination may not be compatible with
applications which need to filter the responses for security or any other purpose. Many
of the most sophisticated applications, such as business telephony applications, contact
centers, need the complete range of possibilities of a user agent. Therefore they act as
a full user agent receiving a call and re-initiate a call as a user agent. Strictly speaking,
such servers are no longer proxies, but should be called back-to-back user agents.

The names feature server or application server that emerged in marketing presentations
are now widely used by the industry, but they have no precise meaning. A feature server
is any server that implements an application! It could be a stateful proxy, a back-to-back
user agent, or even an interactive voice response server that can receive, generate, and
bridge calls. The closest to a feature or application server in traditional telephony terms
would be a service node.

There is frequent confusion leading to the idea that a SIP application server can be used
to replace the old intelligent network model. In fact, the intelligent network model refers to
the ability of a Service Control Point (SCP) to use an abstract protocol-independent model
of a call to remote-control a Service Switching Function (SSF), which is the only one that
is part of the telephony network and implements telephony protocol stacks. The function
implemented by an SSF with SIP stacks and the SCP together can be described as an
application server. But, a simple, monolithic SIP-only application server does not replace
an IN architecture, which has been designed precisely to facilitate the programming of
protocol-independent application.

In Figure 3.26, the proxy is at least a stateful proxy because it locally sends a 100 reply
and generates ACKs (transaction awareness). Note that a stateful proxy is not allowed to
send ACKs locally to 200 OK responses (Figure 3.27). This message and its reliability
must be handled end to end, ensuring that the call is established and media can start
flowing only when the end-to-end handshake is complete. Only a back-to-back user agent
can send an ACK locally to a 200 OK response (and it must understand the consequences).

Most useful functions (e.g., the ability to drop a call from the proxy) go beyond the strict
definition of a ‘proxy’: most commercial server implementations are back-to-back user
agents, according to SIP terminology. In section 3.4.2.2 we do not restrict ourselves to the
strict ‘proxy’ terminology and describe the various functions of a server that has control
over SIP signaling during the call (i.e., these that encompass the proxy and back-to-back
user agent features).

16 These theoretical restrictions do not serve any useful purpose; in fact, they imply a very poor
feature set, and virtually all commercial products behave as back-to-back user agents.
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SIP proxyUser agent A User agent B 

INVITE
support@netcentrex.net

INVITE
John@netcentrex.net

3xx

3xx

ACK

ACK

Here the proxy determines (through a
database lookup or any other means)
that the request to ‘support’ must be

routed to John.
100 is sent to stop INVITE

retransmission

100

ACK is sent locally (transaction
awareness of a stateful proxy)

Figure 3.26 Simple call through a stateful proxy.

SIP proxyUser agent A User agent B 

INVITE
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John@netcentrex.net

200 OK

200 OK

ACK
ACK

Here the proxy determines (through a
database lookup or any other means)
that the request to ‘support’ must be

routed to John.
100 is sent to stop INVITE

retransmission

100

Figure 3.27 200 OK response is acknowledged end to end.
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3.4.2.2 Examples of proxies

3.4.2.2.1 Call agent function
A call agent is a service that handles incoming and/or outgoing calls on behalf of a user. In
traditional telephony this type of function is performed by the intelligent network infras-
tructure of the operator, or by the PBX of the company. The concept of ‘call agent’ was
introduced in the IP telephony area in Scott Petrack’s description of a Call Management
Agent (CMA). A call agent can perform the following tasks:

• Try to find the user by redirecting the call setup messages (SIP INVITE or H.323
SETUP) to the proper location or several possible locations simultaneously.

• Implement call redirection rules, such as call forward on busy, call forward on no
answer, call forward unconditional.

• Implement call filtering with origin/time-dependent rules.

• Record unsuccessful call attempts for future reference.

All these functions can be performed by the SIP proxy. Simple call redirection and
filtering features (call forward unconditional, origin/time-dependent filtering) can also be
implemented on a SIP redirect server. The SIP proxy server offers the most flexibility,
because it can choose to relay all the call signaling, and therefore monitor and control
all aspects of the call. In order to be able to use these services, the user must force all
incoming call attempts to go through the appropriate SIP proxy. One way of doing this
is to configure DNS records appropriately, as indicated in Section 3.4.1.2.

3.4.2.2.1.1 Sequential forking

Figure 3.28 shows a call forward on no answer (sequential forking). Note that if John is
not logged on at desk 1 and the proxy also acts as a registrar, redirection can be immediate
if John’s registration has timed out. The example also shows an example of use for the
CANCEL request, which is acknowledged with a 200 OK, and causes the initial INVITE
request to be answered immediately with a 487 REQUEST TERMINATED answer.

The call agent can also be a functionality of end-user software, but this is usually less
practical than using a separate centralized proxy server, because the end-user workstation
can be switched off at any time and may have a dynamic IP address.

By accessing the database of a registrar, a SIP proxy can solve most user mobil-
ity/address change issues of the end-user terminal. For instance, each time a user connects
to the Internet via an ISP, he gets a new IP address. But if his SIP software registers this
new IP address, the proxy will be able to relay all calls to the new IP address.

3.4.2.2.1.2 Parallel forking

Forking proxies can duplicate a request and send copies of it to several hosts, each with
a specific ‘branch’ parameter. This is called parallel-forking. Parallel-forking proxies are
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Figure 3.28 Sequential forking example.

not necessarily transparent to responses and may filter out some replies before forwarding
them back to the client. They may cause some hosts to receive duplicates of the same
request with the same Call-ID (but different branch parameters); but, SIP clients must
reply to each request.

Parallel-forking proxies can contact several endpoints belonging to the same person
simultaneously. Some manufacturers call this as the ‘simultaneous ringing’ function.
Although this call flow will work in a demo lab, it unfortunately cannot be implemented in
a real telephony network, because in a real network each INVITE can cause the network
to send back a one-way announcement (using a 183 SESSION PROGRESS response)
which can be an error message (‘network busy’), some information (‘please type a PIN
code’, ‘the cellphone you are calling is being located’), or sometimes even advertising
(‘welcome to the X network’). The forking proxy has no way of merging multiple audio
sources to provide feedback to the user in the unlikely, but possible, case of multiple
in-band messages, and therefore can only be used if such a possibility does not exist
(e.g., if all called numbers are private extensions directly controlled by the proxy).

There can be other potential applications of parallel-forking proxies. A possible use is
to handle NOTIFY messages when SIP is used for presence or alert applications (SUB-
SCRIBE/NOTIFY methods). The forking proxy is then acting as a concentration point
for notify messages. A forking proxy can also be used at the edge of a VoIP network to
try to send a call simultaneously to multiple VoIP peer networks, which are expected to
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reject the call or redirect it using a 302 MOVED response (this is identical to the LRQ
blast procedure used in H.323 networks).

3.4.2.3 The Via and Record Route headers. Strict routing and loose
routing

A request from A to B can be routed through several proxies. It many cases it is desirable
to force the response(s) to such a request to follow the exact same path as the request
(e.g., a proxy might be billing the call or controlling a firewall and needs to have access
to all the information regarding the call).

When a TCP connection is used for a SIP transaction, this is not generally an issue:
the reply to a request automatically gets back to the other end of the TCP ‘pipe’, because
TCP maintains a context throughout the connection.17 On the other hand, when UDP is
used some information must be present in the request datagram in order to allow the
receiver to know where to send the reply.

Since SIP is Transport protocol-independent, all SIP requests and replies contain Via
headers for exactly this purpose. This also helps avoiding routing loops (each proxy checks
whether it is already in the Via list). Each time a SIP proxy forwards a request, it appends
its name to the list of forwarding proxies recorded in the Via headers. When a proxy
forwards a reply, it reverses the process and removes its name from the list. Additional
details on the use of Via headers can be found in Sections 3.3.1.1.2 and 3.3.2.

If not only the requests and their associated replies (transactions), but also all requests
within a dialog (e.g., ACK, NOTIFY), must be routed along the same path, the Via
header is not sufficient and proxies must use the Record Route header. This is because
SIP endpoints can add a Contact header field that enables other endpoints to send them
requests (e.g., BYE requests) directly, and therefore proxies are not guaranteed to be on
the path of all requests in a SIP dialog. When proxies update the Record Route header,
they insert their SIP URL, with an optional maddr parameter, on the first line of the list.
Requests can be routed on a predefined path by using the Route header. The routing model
of RFC 3261 is called ‘loose routing’ because it allows proxies to route the message to
additional hops not indicated in the Route list (Figure 3.29). The only constraint is that
all proxies indicated in the Route list must be visited before the request is forwarded to
the target indicated in the original Request-URI.

The old specification of routing (RFC 2543 before bis 05) specified that proxies should
strictly route according to the Route list. In addition, the original Request-URI header was
overwritten and could not be recovered. These problems were fixed by ‘loose routing’, and
a work-around strategy was specified to enable loose routers to prevent loss of information
when a message is routed through an old ‘strict router’ (Figure 3.30).

When SIP proxies are configured to route signaling messages, the call model is very
similar to the H.323 gatekeeper routed call model.

17 For this reason many SIP stacks do not support loose routing with TCP transport, which makes
the ‘UDP falls back to TCP for large messages’ strategy impossible.
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Record-Route:<sip:p3.b.uk;lr>
Record-Route:<sip:p2.b.uk>
Record-Route:<sip:p1.b.uk;lr>

BYE sip:U1@a.org
Route:<sip:p3.b.uk;lr>
Route:<sip:p2.b.uk>
Route:<sip:p1.b.uk;lr>

BYE sip:U1@a.org BYE sip:U1@a.org
Route:<sip:p2.b.uk>
Route:<sip:p1.b.uk;lr>

BYE sip:U1@a.org
Route:<sip:p1.b.uk;lr> 

Top route header p3.b.uk matches 
current proxy: it is removed.

Figure 3.29 Loose routing using Route header information.

3.4.2.4 Loops and spirals

SIP implements the detection of loops via two mechanisms:

• Max-Forwards: this feature is mandatory in RFC 3261. The Max-Forwards header
contained in every request is decremented at each hop (requests are initially sent with
a default value of 70). If this counter reaches 0, the request should be rejected with a
483 TOO MANY HOPS response.

• Loop detection: proxies can detect that they have already processed a request by
analysing the Via header list. If the Request-URI, From or To header fields have
changed, this is a not a loop: it only indicates that the call has been processed by
an application that changed the header elements that influence routing (e.g., the desti-
nation) and that the new destination is also routed by this proxy. This normal situation
is called a spiral. On the other hand, if the headers listed above have not changed, this
is a loop and the request should be rejected with a 482 LOOP DETECTED response.

Note that the loop detection mechanism is more complex but detects loops sooner than the
Max-Forwards mechanism. Both mechanisms do not prevent loops involving a segment
of the PSTN (i.e., call to a PSTN user who redirects the call book to the caller on a VoIP
network).
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repairs the URI by moving the last
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Figure 3.30 Loose routing work-around for older strict routers that erase original Req-
uest-URI headers.

3.4.2.5 Billing for SIP calls

By definition, all participants invited by a common source for a given session are in the
same SIP ‘call’. This call is identified by a globally unique Call-ID. Within a call, each leg
can be identified by a unique combination of the To, From, and Call-ID fields. A proxy
performing the call-accounting function should be able to distinguish different legs and
create a CDR for each call leg. It should also be able to recognize RE-INVITE messages
that only change the media description (see Section 3.3.2.3.2.5), not the participants; in
this case it should not create a new call leg.

In the PSTN, a call is usually paid by the person who initiates it. A proxy relaying all
signaling from the terminal of a user can create appropriate accounting records by logging
the INVITE (RE-INVITE requests are ignored), CANCEL, and BYE requests, as well as
the replies (Figure 3.31). The duration of each leg can be derived from the first accepted
INVITE request (200 OK) up to the first BYE request.

In order to force the user to go through the proxy to make calls, one option is to control
a firewall in the network from the proxy, as illustrated in Figure 3.31. This prevents the
user from trying to bypass the call-accounting feature of the proxy. In the PacketCable
architecture for cable networks, the call management proxy dynamically sets ‘gates’ on
the cable end CMTS (a sort of router with cable-specific features) for media channels
using reserved quality of service.
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Call-ID From To Operation Time Stamp
4321@192.190.12.32 John@domain2 INVITE 11/11/1998 11:11:11
4321@192.190.12.32 Mary@domain1 John@domain2 200 11/11/1998 11:11:30
4321@192.190.12.32 Mary@domain1 John@domain2 BYE 11/11/1998 11:21:12
4321@192.190.12.32 Mary@domain1 Mark@domain3 INVITE 11/11/1998 11:14:13
4321@192.190.12.32 Mary@domain1 200 11/11/1998 11:14:40
4321@192:190:12:32 Mary@domain1 BYE 11/11/1998 11:21:13
4321@192.190.12.32 Mary@domain1 INVITE 11/11/1998 11:14:13
4321@192.190.12.32 Mary@domain1 486 11/11/1998 11:14:40
4444@192.190.12.32 Mary@domain1 INVITE 11/11/1998 15:25:25
4444@192.190.12.32 Mary@domain1 200 11/11/1998 15:25:40
4444@192:190:12:32 Mary@domain1 BYE 11/11/1998 15:31:43

Carrier’s proxy

INVITE, BYE, ... 200, 486, BYE, ...

Mark@domain3
Mark@domain3
July@domain3
July@domain3
Dilan@domain4
Dilan@domain4
Dilan@domain4

Mary@domain1

Figure 3.31 A proxy could control a firewall to ensure that all communications are logged.

In reality, many networks do not need this, as all VoIP devices in the network are
configured to accept calls only if the INVITE comes from the service provider proxy–this
can be done by simple access control lists (ACLs) restricting SIP signaling traffic on
the routers connected to these resources. This way, if a user tries to bypass the network
proxy, it will not be able to establish a call (e.g., to PSTN gateways). Without some
form of dynamic firewall control, direct VoIP user-to-user calls on the IP network will
be allowed on a best effort basis as long as user devices (e.g., softphones) are not under
the control of the service provider. This is usually not a problem, as there are virtually
countless ways of communicating without control in best effort mode.

3.4.3 Multiparty conferencing

SIP can be used to establish multipoint conferences, even in multicast mode (remember
this protocol comes from the MMUSIC Group!). However, SIP does not currently provide
any form of floor control.

3.4.3.1 Multicast conferencing

A multicast conference is a conference in which media streams are sent using multicast (for
more details on multicast, see the companion book, Beyond VoIP Protocols, Chapter 6).
The signaling related to this conference can be sent using multi-unicast or multicast
(Figure 3.32).
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Figure 3.32 Multi-unicast and multicast signaling.

In the case of multi-unicast signaling, there is no significant difference from the point-
to-point case, except that the SDP session descriptions indicate multicast addresses and
the offer/answer model is also a bit modified compared with the unicast media case (see
Section 3.3.2.3.2.4 for details).

When multicast signaling is used to establish multiparty conferences, SIP requests
are carried using UDP, since this is the only transport protocol that can be multicast
over IP. Multicast requests are expected to be used mostly to set up conference calls,
and therefore the destination URL will generally be a conference name rather than an
individual. However, the theory also allows usage of a multicast request with the URL
of an individual (e.g., for multicast searches). The replies to a SIP request are then sent
back to the sending UDP port on the same multicast address. In order to reduce network
traffic and avoid a possible storm of synchronized replies, there are some modifications
compared with the multi-unicast invitation procedure, including the following:

• 2xx replies are not sent.

• 6xx replies are sent only if the destination URL matches the name of a user on
the host (i.e., the request is a multicast search rather than an invitation to a multi-
party conference).

• Replies are sent after a 0–1-s random delay.

This form of multicast signaling was described in the first SIP RFC, but is not recom-
mended in RFC 3261. It works in simple cases, but becomes very complex to manage if
the full generality of SIP call flows is considered. Therefore, it seems SIP is headed more
toward the use of multi-unicast to control multicast media sessions.



232 IP TELEPHONY

As long as all INVITE messages are sent from a central entity in unicast, RFC 2543
describes a basic form of floor control by sending new INVITE messages with the ‘c’
SDP parameter set by convention to null ‘0.0.0.0’ to mute an endpoint, and re-invites the
endpoint later (non-null ‘c’ parameter) when it is allowed to take part in the conference.
Since the advent of RFC 3261 and its more formal description of media offers and
answers, it is now prohibited to use this convention—the use of ‘inactive’ or ‘recvonly’
SDP attributes should be used instead.

SIP natively supports layered encodings. This class of coders encode the media infor-
mation using several simultaneous data streams. One stream contains basic information
(just enough to render a low-quality signal), and the other streams include additional
information that can be used to reconstruct the signal with a higher quality (e.g., a video
coder could send intra frames on one channel, and delta frames on another). Therefore,
a receiver can choose the best bandwidth/quality trade-off by choosing to receive one,
two, or more data streams. This is particularly suited for multicast conferences, allow-
ing all receivers to tune the reception to their best settings, while preventing the sender
from having to send customized data streams for each receiver. SDP describes a layered
encoded stream as follows:

c = <base multicast address>/<ttl>/<number of addresses>

For instance:
c = IN IP4 224.2.1.1/127/3

Multicast addresses used need to be contiguous (224.2.1.1, 224.2.1.2, 224.2.1.3). Unfor-
tunately, there is no known commercial implementation yet using this facility.

3.4.3.2 Multi-unicast conferencing

The support of SIP for multi-unicast media conferences is limited. A central entity can
be set up to act as an MCU to either mix or switch incoming media streams. The central
bridge could implement very simple floor control by using RE-INVITES with the inactive,
recvonly, or sendrecv SDP attributes. In practice, this is sufficient as most conferencing
services use external, application-level user interfaces for floor control, and require the
VoIP protocol only to implement basic mute/active/redirect functions, which can be readily
provided by SIP and SDP.

However, SIP still lacks some messages for full support of video transmission control.
An example is the request for full frames, present in H.245. Most video coders, (e.g.,
H.261 or H.263) send full frames only from time to time and deltas in-between. Most of
the time, the instant at which a participant decides to speak will not coincide with the
sending of a full frame. Therefore, if the MCU simply copies the incoming video stream
to the output stream, the receivers will have to wait for the next full frame to get an image
(Figure 3.33). So, the MCU needs to completely recode the stream in order to be able to
send a full frame when the video switches. In a similar case, H.323 can mute the video
stream of non-active speakers and request a full frame when it switches to an active
speaker (VideoFastUpdate message). Such a message is also useful to quickly recover
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Figure 3.33 FullIntraRequest messages are helpful in all situations where the video source
changes.

from video packet loss. Some RTCP messages (FullIntraRequest) or new SIP messages
could be used for the same purpose, but video control is still not documented enough to
allow for seamless high-quality interoperability across vendors.18

3.4.3.3 Ad hoc conferencing

SIP provides a simple and elegant way to switch from an existing point-to-point unicast
call (A–B) to a multiparty multicast conference (A–B–C– . . .). The person (e.g., A)
who wants to invite a new participant to the conference sends an INVITE message to
the other party (B) and the new participant (C) with the parameters for the new session
(i.e., a multicast address and eventually new coders instead of a unicast address), but
keeps the old Call-ID. Keeping the same Call-ID tells B that this is not a new call, but
new parameters for the existing call. This method can also be used to change session
parameters in an existing call.

Ad hoc conferencing using unicast streams is also possible; in this case the new INVITE
message redirects all streams to a media-mixing function. Many SIP phones implement
such a mixing function locally for up to three media streams (three-way conferencing), in
which case it is not necessary to redirect the media streams, the phone simply activates
the mixing function for all the streams it receives. In fact, it is difficult in SIP to activate

18 The most advanced initiative is the IETF work in progress draft: draft-levin-mmusic-xml-schema-
media-control-03 ‘XML Schema for Media Control’.
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a network-based conferencing function from an IP phone, because no standard conference
activation message is defined to instruct the proxy to perform the required session changes.
This is a significant obstacle for the deployment of SIP endpoints at the edge of public
networks, because phone-embedded three-way functions are usually limited (G.711-only
in most cases) and use twice the bandwidth of normal calls.

3.4.4 Configuring network-based call handling

Unconditional call forward call-handling features can be installed on a proxy/registrar
simply by using REGISTER messages. For instance, a user who wishes to temporarily
redirect his phone line to another extension just needs to send a REGISTER request with
his name (or regular extension) in the To header field, and the new extension in the
Contact header field, with the appropriate Expires value. This is roughly equivalent to a
subset of the services offered by H.450.3 in H.323.

More sophisticated call-handling features (i.e., call agents) are outside the scope of SIP,
and will probably be configured using other protocols, such as HTTP when SIP endpoints
are multimedia PCs (the web browser is a perfect interface to customize the behavior of a
sophisticated proxy). However, the XML Call Processing Language (CPL) has emerged
as a very flexible way of expressing call-handling rules, and is supported by some SIP
proxies. Most of the time, the CPL script is configured through a non-SIP interface; but,
if the phone supports it, in certain cases it can be configured by using the REGISTER
message to carry simple CPL scripts as a payload. Unfortunately, there is no standard
way of doing this yet.

3.5 INSTANT MESSAGING AND PRESENCE

Instant messaging and presence (which has become a buzzword) are the most popular
applications of a more general use of SIP for the subscription and exchange of stateless
event messages. These capabilities have been added to SIP by RFC 3265 (SIP, ‘Specific
Event Notification’) in a very general way that wasn’t particularly targeted at instant
messaging. In fact, it was first used by some VoIP vendors to implement out-of-band
DTMF transmission during a call (as described in Section 3.3.2.3.1.3). With Windows
XP, Microsoft introduced a new version of its Messenger client, which included support
not only for voice and video, but also instant messages. The client works primarily with
proprietary protocols using a specific Microsoft central server as a message reflector, but
can be configured to use SIP as well. Microsoft chose to use the mechanism defined in RFC
3265 for the subscription of presence information and notification of state information.
This instantly made this extension of SIP a de facto standard. For users strongly in favor
of a convergence of unified messaging protocols, the use of RFC 3265 was a step in the
right direction, but still did not define the exact message content. The convergence of
message contents is a more difficult step, as it may depend on the capabilities of each
client, and has enormous implications for the large IM systems that currently ‘own’ their
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users. The convergence of the IM format is the main task of the IMPP Working Group
of the IETF.

3.5.1 Common Profile for Instant Messaging (CPIM)

This specification of the IMPP (Instant Messaging and Presence Protocol) Working Group
of the IETF defines a number of operations and features to be supported by instant-
messaging systems. The profile aims at facilitating the interworking between various
instant-messaging systems, by providing an intermediary canonical format which facil-
itates the design of transcoding gateways. Obviously, this format can also be used to
format instant messages, not just as a conversion intermediary format. Today, two popular
instant-messaging protocols follow the CPIM guidelines: XMPP (eXtensible Messaging
and Presence Protocol) used by the Jabber IM client, and SIMPLE (SIP for Instant Mes-
saging and Presence Leveraging Extensions).

3.5.1.1 Common Presence and Instant Messaging message format

The CPIM canonical message format specification is still a work in progress of the IMPP
working group (draft-ietf-impp-cpim-msgfmt-07.txt). The draft defines a new Multipur-
pose Internet Mail Extension (MIME) format ‘message/CPIM’, intended to be a common
format for CPIM-compliant messaging protocols. MIMEs are defined in RFC 2045, 2046,
and 2048.

One of the key reasons to encourage instant message systems to support the CPIM
message format natively is to allow a gateway between two instant-messaging systems to
preserve the electronic signatures that can be added to a CPIM message. Signatures are
lost if any transcoding has to occur.

Although the defined format complies with MIME, it does not allow for all the options
of MIME. This simplification aims at suppressing or restricting all the options of MIME
that can present an obstacle for interoperability or the verification of electronic signa-
tures (e.g., suppression or addition of headers, extensibility of header formats, weak
internationalization, etc.).

One of the key requirements for an instant-messaging system is to be able to support
all character sets. CPIM uses UTF-8 encoding.

3.5.1.1.1 The universal character set and the UTF-8 format
Computer science discovered very late that the world was not just using the well-known
US-ASCII characters, which are encoded using only 7 bits. In contrast, many operating
systems were handling 8-bit character sets, which led to a system where each language
required its own code page (Latin-1, Hebrew, Arabic, Greek) encoded on 8 bits, and
where a given character could have multiple encodings depending on the character page.
For instance, the Euro sign (¤) was 0 × A4 in Latin-9 (ISO 8859-15), 0 × 80 in Latin-2
(CP1250), and 0 × 88 in Cyrillic (CP1251). Any program that needed to use characters
from multiple pages simultaneously would have to be very cumbersome in design.
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The Universal Character Set, defined by ISO/IEC 10646-1, contains in a single character
set almost all the symbols used by all known writing systems on earth. This is a multi-
octet character set: UCS-2 contains the first 64,000 characters and is encoded on 2 octets
(it is also called the Basic Multilingual Plane or BMP), UCS-4 is encoded on 4 octets
and can contain potentially many more characters beyond the first 64,000 (although there
is currently no character defined beyond those already contained in the BMP). The UCS
character set is identical to the Unicode character set defined by the Unicode Consortium,
but Unicode defines more character properties, semantic conventions, and more character-
rendering options. UCS and Unicode co-operate closely with each other and have so far
used the same code points for each character.

Multi-byte character sets are not compatible with many current applications or systems
that are byte-oriented. Many systems are also only able to handle correctly 7-bit US-
ASCII characters. For instance, in any C program ‘\0’ means ‘end of the string’, but
this sequence can be found in the middle of a multi-byte character stream (e.g., resulting
in commands like ‘printf’ not being used with UCS-4 character streams). Even recent
systems that understand 2-octet characters cannot handle UCS-4 characters. In order to
facilitate the use of UCS in such systems, UCS Transformation Formats (UTFs) have
been defined:

• UTF-7 encodes all BMP characters using only octets with the first bit set to ‘0’, and
therefore is transparent even to older 7-bit mail systems.

• UTF-8, defined in RFC 2279, uses variable length (1–6 octets) encodings for UCS-2 or
UCS-4 characters, but preserves all 7-bit US-ASCII characters, which are encoded on
one single octet, with the usual 7-bit ASCII value. ASCII character values are encoded
in UCS-4 as 0000 0000 to 0000 007F, and are encoded in UTF-8 as 00 to 7F. Because
of this, UTF-8 is ‘file system safe’ (it was originally called UTF-FSS). For multi-octet
sequences, the first octet indicates the number n octets in the sequence with n high-
order bits set to ‘1’. All the following octets have the first two bits set to ‘10’, and 6
variable bits. The remaining (8-1-n) bits of the first octet and the 6∗(n-1) bits of the
following octets are used to encode the UCS character, as shown in Table 3.4.

Let’s give some examples:

• The copyright sign  (Unicode character U + 00A9 = 1010 1001) is encoded in UTF-
8 as 11000010 10101001 = 0 × C2 0 × A9.

Table 3.4 UTF-8 encoding of 4-octet characters preserves 7-bit ASCII values

UCS-4 range (hex.) UTF-8 octet sequence (binary)

0000 0000–0000 007F 0xxxxxxx
0000 0080–0000 07FF 110xxxxx 10xxxxxx
0000 0800–0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000–001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0020 0000–03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
0400 0000–7FFF FFFF 1111110x 10xxxxxx . . . 10xxxxxx
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• The euro (¤) sign (U+20AC) is encoded in UTF 8 as 0 × E2 0 × 82 0 × AC.

• A good list of Unicode fonts for the Microsoft Windows operating system can be
found at http://www.alanwood.net/unicode/fonts.html

3.5.1.1.2 Message format

The message/CPIM format is a multipart MIME format which encapsulates:

• Content and message-related metadata.

• The message itself in the form of any MIME content.

• Optionally, an electronic signature according to S/MIME, RFC 2633.

Figure 3.34 shows an example without an electronic signature. The end of the message
body in Figure 3.34 is defined by the framing mechanism of the transport protocol used.

3.5.1.1.2.1 MIME header part

In Figure 3.34 the MIME header part is composed only of the mandatory message/CPIM
Content-Type header, but other headers can be added before the blank line if necessary.
Each line is ended with CR+LF characters.

IM MIME header and blank line

Message
metadata headers 

and blank line

Encapsulated
MIME message

body

Encapsulated
MIME header and 

blank line

Message MIME
content

Content-Type: Message/CPIM

From: Mr Doe <im:doe@anydomain.com>
To: Dear IM user <im:imuser@otherdomain.com>
DateTime: 2002-12-20T18:29:00-08:00
Subject: the weather will be fine today
Subject:;lang = fr beau temps prevu pour aujourd'hui
NS: MyFeatures <mid:MessageFeatures@id.foo.com>
Require: MyFeatures.VitalMessageOption
MyFeatures.VitalMessageOption: Confirmation-requested
MyFeatures.WackyMessageOption: Use-the-special-font

Content-Type: text/xml; charset = utf-8
Content-ID: <1234567890@foo.com>

<body>
Here is the text of my message.
</body>

Figure 3.34 CPIM multipart MIME format.



238 IP TELEPHONY

3.5.1.1.2.2 Message header part

This part must remain intact end to end. The headers and their values must not be changed
in any way, or even reordered. Each line has a ‘key: value’ form (with a single space
after the “:”). The key must contain only US-ASCII characters (some control characters
like or ‘ ’ ’must be escaped), while any UTF-8 character (with the same escaped control
characters) is allowed in the value portion. A header can be tagged to indicate that it
contains a specific language by using the ‘;lang = tag’ after the header name and colon,
where ‘tag’ is a language-identifying token (defined in RFC 3066).

From, To, Subject, DateTime (RFC 3339: date/UTC time/time offset) are headers
defined in CPIM. Figure 3.34 also shows the extension mechanism for the CPIM for-
mat. A developer can define his own extension namespace (here MyFeatures), by using
the NS (namespace) header. New header keys beginning with ‘MyFeatures.’ can then be
used. They will be ignored if not understood. It is possible to indicate to the receiving
system that it needs to support an extended header in order to understand the message by
using the Require header followed by the header key that must be supported.

3.5.1.1.2.3 Encapsulated MIME object

This is the message itself, any MIME type can be encapsulated. Like any MIME-encoded
object, it is composed of a header part and a content part, separated by a blank line. For
simple, text-only IM systems, the text/XML MIME type using the UTF-8 encoding can
convey any written symbol from any language.

3.5.1.1.2.4 MIME security multipart message wrapper

The message can be secured and signed using multipart MIME, as shown in of Figure 3.35.

3.5.1.1.3 Common Presence and Instant Messaging (CPIM) Presence
Information Data Format (PIDF)

This work in progress of the IETF IMPP Working Group is attempting to define a standard
format for presence information sent from a presentity (the entity about which presence
information is generated) to a watcher. Note that multiple devices may send presence
information for a given presentity. Draft-ietf-impp-cpim-pidf-06.txt defines the new XML
MIME media type ‘application/cpim-pidf+xml’ and has an optional charset parameter.

The presence information of a presentity consists of one or more tuples (Figure 3.36)
with status, an optional communication URI, and other optional presence markup infor-
mation (relative priority, timestamp, human-readable comment). Status may contain one
or multiple values, the ‘open’ and ‘closed’ values mean the entity is ‘ready’/respectively,
‘not ready’ to receive instant messages, but does not imply anything for other communi-
cation means. Other status values may be defined in extensions (busy, off-line, away,
on the phone, etc.). There may be more than one tuple for a presentity if multiple
devices/applications can reach the presentity and each one creates a presence compo-
nent in the form of a tuple. For instance, in a SIP REGISTER message, the To header
field (address of record) would be considered the presentity, while each URI in the Con-
tact header would be a point of communication for that presentity, each one identified
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IM Multipart MIME
header

From: Mr Doe <im:doe@anydomain.com>
To: im user<im:user@otherdomain.com>
DateTime: 2002-12-21T19:45:00-08:00
Subject: the weather will be fine today

Content-Type: text/xml; charset = utf-8
Content-ID: <1234567890@foo.com>

<body>
Here is the text of my message.
</body>
--next
Content-Type: application/pkcs7-signature

(signature here...)
:

Multipart MIME
separator

Part 1, the CPIM
message

Multipart MIME
separator

Part 2, the 
signature

Content-Type: multipart/signed; boundary = next;
micalg = sha1;
protocol = application/pkcs7-signature

--next
Content-Type: Message/CPIM

x: --next--

Figure 3.35 CPIM message electronic signature using multipart MIME.

Status with basic mandatory
component ‘open’ , and

 optional extension im (away,
busy, off-line)

<?xml version = "1.0" encoding="UTF-8"?>
<impp:presence xmlns:impp = "urn:ietf:params:xml:ns:cpim-pidf"

entity = "pres:someone@example.com">
<impp:tupleid = "sg89ae">

<impp:status>
<impp:basic>open</impp:basic>
<im:im>busy</im:im>

</impp:status>
<impp:contact priority = "0.8">tel:09012345678</impp:contact>

</impp:tuple>
</impp:presence>

Presence tuple

Contact information and preference priority.
Other example: “im: user@anydomain.org”

Figure 3.36 PIDF presence information format.

in a separate tuple. The ‘q’ values from the Contact header field could be translated into
‘priority’ values for the tuple.

The CPIM-PIDF format includes mechanisms for integrity, confidentiality, and authen-
tication, independently of SIP.
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3.5.2 RFC 3265, ‘Specific Event Notification’

RFC 3265 specifies SIP-based transport mechanisms for watchers to subscribe to presence
information, and for ‘presentities’ (entities sending presence information) to send presence
information updates to watchers.

3.5.2.1 SUBSCRIBE and NOTIFY requests

RFC 3265 defines two new optional requests: SUBSCRIBE and NOTIFY. These requests
are generic in nature and must be further specified by event packages (the name was
taken from MGCP, but the events defined are different from MGCP events).

The SUBSCRIBE and NOTIFY requests are normal SIP requests, which can be routed
by proxies using From and To headers, and can be acknowledged by a 200 OK or a 202
response. 200 implies that the request has been accepted, while 202 only acknowledges
that the SUBSCRIBE message was received and the syntax was correct. The response to
a SUBSCRIBE request must be immediate, making it impossible to ask for any form of
user authorization before sending the response. 202 would be used, in the case of a buddy
list request to publish presence information, to respond immediately before the user has
accepted or rejected the request. All other responses defined for other SIP requests are
also valid, and imply that the subscription has not been accepted as is.

The SUBSCRIBE request can be sent by a SIP client willing to receive certain events
(the subscriber) to a SIP server generating these events or already receiving these events
(the notifier). The SUBSCRIBE request contains an Expires header limiting the duration
of the subscription, which can be shortened if the response contains a shorter period in its
own Expires header. In order to improve scalability for heavy load notifiers (e.g., voicemail
systems), longer periods can be requested by rejecting the SUBSCRIBE with a 423
INTERVAL TOO SMALL; however, by convention intervals above 1 h must be accepted.
With the Expires header, the subscription becomes ‘soft-state’, which is a very common
approach of Internet protocols, also used by RSVP. Soft-state subscriptions are more
tolerant of protocol errors or network instability, avoiding any undesired accumulation of
state in any network entity.

When a subscriber wishes to stop subscribing to a certain set of events, it can do so
by setting the Expires header value to 0.

The Event header in the SUBSCRIBE request specifies the category or set of events that
are requested. The exact syntax of the Event header is free and must be defined by specific
Event-Packages. Optionally, the body of the SUBSCRIBE request can also be used to
further specify the subscription, but again it must be specified by the Event-Package.

Both SUBSCRIBE and NOTIFY can create a SIP dialog, as defined above for INVITE
requests. Therefore, these requests do not require any prior INVITE request and can be
sent asynchronously at any time. Alternatively, they can be sent within an existing dialog:
in this case the Event header must contain an ‘id’ parameter to distinguish between the
various subscriptions. Sending multiple SUBSCRIBE requests with identical ‘id’ parame-
ters within an existing dialog can be used to refresh subscriptions (if it does not correspond
to an active subscription, it will be rejected with a 481 response).
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Because the SUBSCRIBE/NOTIFY mechanism was primarily defined to handle state
change notifications, the first SUBSCRIBE will trigger an immediate NOTIFY within the
same dialog, to synchronize the initial state status of the subscriber. This is also true even
if the Expires header has a value of 0. This allows simple state polling with SUBSCRIBE
requests having an Expires value of 0 to be carried out. Examples of commonly used
state information include voicemail box status, busy state of a user (for call completion
on busy), and buddy lists with presence status.

The notifier can decide to terminate a subscription at any time by sending a NOTIFY
message with a Subscription-State header with a value of ‘terminated’ and a reason param-
eter. One useful reason parameter is ‘rejected’, which can be used when a user has decided
not to accept a subscription. This mechanism is often used, as shown in Figure 3.37,
because the initial SUBSCRIBE request has been acknowledged by a 202 response.

3.5.2.2 Use of RFC 3265 for presence

The SIMPLE working group (SIP for Instant Messaging and Presence Leveraging Exten-
sions) is attempting to get the various instant messaging and presence implementations to
converge in an interoperable standard based on SIP. SIMPLE works in close co-operation
with the IMPP Working Group. At the time of writing all SIMPLE documents were still
in draft state.

Draft-ietf-simple-presence-09.txt specifies how to use RFC 3265 for presence. It defines
presence agents as SIP devices able to receive presence subscription requests and to send
presence information for a given presentity. Presence is handled by creating a specific
‘presence’ Event-Package. In the future other specific types of events may be created to

SUBSCRIBE

202

NOTIFY

NOTIFY

Terminated: rejected

Accept Reject

Figure 3.37 Case of a rejected subscription.
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handle the requirements for a buddy list (a party is typing a message, message delivery
confirmation, typical party states).

According to RFC 3265 the name of the Event-Package ‘presence’ must be in the Event
header field of SUBSCRIBE and NOTIFY requests. No SUBSCRIBE body is yet defined
and therefore should normally be empty (Figure 3.38).

In the example the subscription has been accepted immediately with a 200 OK. As
soon as the presence user agent receives the subscription, it must, according to RFC 3265,
immediately send back the current presence state in a NOTIFY message. The notification
data should use the CPIM body type defined by IMPP: application/cpim-pidf+xml. In
Figure 3.39 the presentity is closed and therefore not ready to receive instant messages.
A non-standard extension explains the cause: the user is busy.

As soon as the presence information changes, the presence user agent sends a new
NOTIFY message. In Figure 3.40 the presentity is now open and can receive instant
messages. The rate at which presence notification updates can be sent is limited to at
most one every 5 s.

3.5.2.2.1 Watcher information
Draft-ietf-simple-winfo-format-03.txt defines an XML format for the watcher informa-
tion, and defines a new payload type for it: application/watcherinfo+xml. The watcher

SUBSCRIBE sip:resource@anydomain.com SIP/2.0
Via: SIP/2.0/TCP watcherhost.otherdomain.com;branch = z9hG4bKd23
To: <sip:resource@anydomain.com>
From: <sip:user@otherdomain.com>;tag = 2z34
Call-ID: 1234@watcherhost.otherdomain.com
CSeq: 1987 SUBSCRIBE
Max-Forwards: 70
Event: presence
Accept: application/cpim-pidf+xml
Contact: <sip:user@watcherhost.otherdomain.com>
Expires: 600
Content-Length: 0

Presence
Event-Package

CPIM format
expected

NOTIFY requests must be sent here

SIP/2.0 200 OK
Via: SIP/2.0/TCP watcherhost.otherdomain.com;branch = z9hG4bKd23
To: <sip:resource@anydomain.com>;tag = 9s23
From: <sip:user@otherdomain.com>;tag = 2z34
Call-ID: 1234@watcherhost.otherdomain.com
CSeq: 1987 SUBSCRIBE
Event: presence
Expires: 600
Contact: sip:server.anydomain.com
Content-Length: 0

Monitored presentity

SUBSCRIPTION is valid for 600 seconds

Watcher Server

Figure 3.38 Subscribing to presence information with SIMPLE.
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Subscription is
 active, but must be

refreshed before
599 seconds

SIP/2.0 200 OK

Via: SIP/2.0/TCP watcherhost.otherdomain.com;branch = z9hG4bKf54s
From: <sip:resource@anydomain.com>;tag = 9s23
To: <sip:user@otherdomain.com>;tag = 2z34
Call-ID: 1234@watcherhost.otherdomain.com
CSeq: 9018 NOTIFY
Content-Length: 0

Contact URI specified by watcher

<?xml version = "1.0" encoding = "UTF-8"?>
<impp:presence xmlns:impp = "urn:ietf:params:xml:ns:cpim-pidf"

entity = "pres:resource@anydomain.com">
<impp:tupleid = "sg89ae">
<impp:status>
<impp:basic>closed</impp:basic>
<im:im>busy</im:im>

</impp:status>
<impp:contact

priority = "0.8">im:resource@anydomain.com</impp:contact>
</impp:tuple>
</impp:presence>

NOTIFY sip:user@watcherhost.otherdomain.com SIP/2.0

Via: SIP/2.0/TCP server.anydomain.com;branch = z9hG4bKf54s

From: <sip:resource@anydomain.com>;tag = 9s23

To: <sip:user@otherdomain.com>;tag = 2z34

Call-ID: 1234@watcherhost.otherdomain.com

Event: presence

Subscription-State: active;expires = 599

Max-Forwards: 70

CSeq: 9018 NOTIFY

Contact: sip:server.anydomain.com

Content-Type: application/cpim-pidf + xml

Content-Length: ..

[PIDF document]

Watcher Server

Figure 3.39 Notification of presence information using SIMPLE.

Subscription must 
now be refreshed

before 322 seconds

SIP/2.0 200 OK

Via: SIP/2.0/TCP watcherhost.otherdomain.com;branch = z9hG4bKf54t
From: <sip:resource@anydomain.com>;tag = 9s23
To: <sip:user@otherdomain.com>;tag = 2z34
Call-ID: 1234@watcherhost.otherdomain.com
CSeq: 9019 NOTIFY
Content-Length: 0

<?xml version = "1.0" encoding = "UTF-8"?>
<impp:presence xmlns:impp = "urn:ietf:params:xml:ns:cpim-pidf"

entity = "pres:resource@anydomain.com">
<impp:tuple id = "sg89ae">
<impp:status>
<impp:basic>open</impp:basic>

</impp:status>
<impp:contact

priority = "0.8">im:resource@anydomain.com</impp:contact>
</impp:tuple>

</impp:presence>

NOTIFY sip:user@watcherhost.otherdomain.comSIP/2.0

Via: SIP/2.0/TCP server.anydomain.com;branch = z9hG4bKf54t

From: <sip:resource@anydomain.com>;tag = 9s23

To: <sip:user@otherdomain.com>;tag=2z34

Call-ID: 1234@watcherhost.otherdomain.com

Event: presence

Subscription-State: active;expires = 322

Max-Forwards: 70

CSeq: 9019 NOTIFY

Contact: sip:server.anydomain.com

Content-Type: application/cpim-pidf+xml

Content-Length:...

[PIDF update document]

Watcher Server

Figure 3.40 Updated presence information sent in a new NOTIFY request.
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information is the list of all active and pending requests to receive event notifications
(subscriptions) for a specific resource. The watcher information (Figure 3.41) includes
the URIs of the watchers, an id, the current status of the subscription, the event that
caused transition to that status, and optionally other parameters, such as the duration of
the subscription.

In order to receive the watcher information, a normal SUBSCRIBE request can be sent
to the presence server, as illustrated on Figure 3.42. If the subscription is accepted, the
updates to the watcher information are reported in NOTIFY requests (Figure 3.43).

<?xml version = "1.0"?>
<watcherinfo xmlns = "urn:ietf:params:xml:ns:watcherinfo" version = "0" state = "full">

<watcher-list resource = "sip:nameofresource@anydomain.edu" package = "presence">
<watcher status = "active"

id = "4f2h34j567"
duration-subscribed = "3600"
event = "approved" >sip:subcriber1@anydomain.edu</watcher>

<watcher status = "pending"
id = "h345j35l35-a7"
display-name = "Mr. Subscriber"
event = "subscribe">sip:subcriber1@otherdomain.org</watcher>

</watcher-list>
</watcherinfo>

Resource

1st watcher

2nd watcher

Figure 3.41 Watcher information format.

SUBSCRIBE sip:user@anydomain.com SIP/2.0
Via: SIP/2.0/UDP host.anydomain.com;branch = z9hG4bKnadf45g
From: sip:user@anydomain.com;tag = z23a3
To: sip:user@anydomain.com
Call-ID: 1111@host.anydomain.com
Max-Forwards: 70
CSeq: 1234 SUBSCRIBE
Contact: sip:user@host.anydomain.com
Event: presence.winfo

Request watcher information
(.winfo) on presence Event-Package

Figure 3.42 A SUBSCRIBE request for watcher information.
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NOTIFY sip:user@host.anydomain.com SIP/2.0
Via: SIP/2.0/UDP server.anydomain.com;branch = z9hG4bKnf44z
From: sip:user@anydomain.com;tag = r34s3
To: sip:user@anydomain.com;tag = z23a3
Call-ID: 1111@host.anydomain.com
Max-Forwards: 70
CSeq: 1288 NOTIFY
Contact: sip:user@server.anydomain.com
Event: presence.winfo
Content-Type: application/watcherinfo + xml
Content-Length: ...

<?xml version = "1.0"?>
<watcherinfo xmlns = "urn:ietf:params:xml:ns:watcherinfo" version = "0" state = "full">

<watcher-list resource = "sip:user@anydomain.com" package = "presence">
<watcher id = "7234c7s" event = "subscribe"

status = "pending">sip:watcherA@foo.com</watcher>
</watcher-list>

</watcherinfo>

Requested watcher 
information, update at

each change

This is a new candidate
watcher

Figure 3.43 Watcher information update sent through a NOTIFY request.

3.5.2.2.2 Procedure for new subscriptions, presence authorization

Draft-ietf-simple-winfo-package-04.txt defines a framework for the authorization of pres-
ence subscriptions. When a request for presence information arrives at a presence server,
the presence server will usually require the user to authorize the new subscription. Of
course, this is only possible if the user is first made aware of the new subscription, which
is relatively easy if the presence server is the user agent of the user, but becomes more
complex if the presence server is a network-based device. The idea behind the draft is to
always allow a user to subscribe to any modification of the watcher information relative
to his own presence. In Figure 3.44 the presence server is the SIP proxy for domain
“anydomain.com”.

New subscriptions will update the watcher information, and therefore the user will
receive a NOTIFY with the update for watcher XML information, as shown in Figure 3.45.
Only the changes are included; therefore, the user needs to cumulate these changes to get
a complete up-to-date view of watcher information.

Part of this authorization framework relates to new subscriptions. Note that some
standard states have been defined for subscriptions. Most of the states are self-explanatory
(see Figure 3.46). The ‘waiting’ state has been added to allow a user to learn about sub-
scription requests even if they have expired; this enables the user to set a specific policy
on the presence server to accept any retry for that subscription.

This framework enables a user to know which subscriptions need to be authorized;
but, at this moment there is no standardized way to tell a presence server to authorize
a subscription. It could be a web page; but, obviously, a set of SIP messages to do this
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SUBSCRIBE sip:user@anydomain.com SIP/2.0
Via: SIP/2.0/UDP host.anydomain.com;branch = z9hG4bKnadf45g
From: sip:user@anydomain.com;tag = z23a3
To: sip:user@anydomain.com
Call-ID: 1111@host.anydomain.com
Max-Forwards: 70
CSeq: 1234 SUBSCRIBE
Contact: sip:user@host.anydomain.com
Event: presence.winfo

Request watcher information
(.winfo) on presence Event-Package

Figure 3.44 Subscribing to watcher information.

NOTIFY sip:user@host.anydomain.com SIP/2.0
Via: SIP/2.0/UDP server.anydomain.com;branch = z9hG4bKnf44z
From: sip:user@anydomain.com;tag = r34s3
To: sip:user@anydomain.com;tag = z23a3
Call-ID: 1111@host.anydomain.com
Max-Forwards: 70
CSeq: 1288 NOTIFY
Contact: sip:user@server.anydomain.com
Event: presence.winfo
Content-Type: application/watcherinfo + xml
Content-Length: ...

<?xml version = "1.0"?>
<watcherinfo xmlns = "urn:ietf:params:xml:ns:watcherinfo" version = "0" state = "full">

<watcher-list resource = "sip:user@anydomain.com" package = "presence">
<watcher id = "7234c7s" event = "subscribe"

status = "pending">sip:watcherA@foo.com</watcher>
</watcher-list>

</watcherinfo>

Requested watcher 
information, update at

each change

This is a new candidate
watcher

Figure 3.45 Watcher information update sent in a NOTIFY request.

would be a much better option. One idea is to use an XML policy syntax similar to the
Call Processing Language (CPL), embedded in REGISTER requests, to do this.

The consequence is that only distributed presence models work today in a standard way.
These models co-locate the user end-point and the presence agent so that authorizations
remain local. This is the model used by Microsoft in Messenger.

3.5.3 RFC 3428, ‘SIP Extensions for Instant Messaging’

RFC 3428 defines a new MESSAGE request which carries MIME body parts representing
the content of an instant message. The MESSAGE request is usually sent outside the
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Active

New SUBSCRIBE

A policy rule
exists to 
accept

subscription
automatically

Pending
(waiting for authorization)

User accepted 
subscription

Terminated

User rejected 
subscription

Subscription
expired

Waiting
(waiting for authorization

and expired)

No policy rule exists to
accept subscription

authomatically

Figure 3.46 Subscription states.

context of an existing dialog, but does not create its own dialog. It can also be sent as
part of an existing dialog in some circumstances (e.g., if an instant message is sent as
part of an existing voice call). The response can be a provisional or a final response;
usually, it will simply be 200 OK if the message has been received, or 202 if it has
been stored for presentation to the target user as soon as possible. Neither the MESSAGE
request nor the 200 OK reply are allowed to have a Contact header (they do not create
a dialog). A MESSAGE request can have an Expires field, which is a simple indication
of its validity for proxies that may try to store it if the target user is not immediately
available.

RFC 3428 defines an instant message URI, im:user@domain, which is independent
of the underlying instant message transport protocol. For all practical purposes, how-
ever, it is translated into a SIP URI immediately and placed in the Request-URI of the
message request before sending. An instant message can be sent to an instant message
URI (im:someone@domain.org), or to a SIP URI. If the IM URI is used the next hop
server and SIP transport method can be found by performing a SRV DNS request for
im. sip.domain.org which should return a resource record of SIP proxy that can route

the message (this is still an IETF draft: draft-ietf-impp-srv-01).
The size of the message payload is limited to 1,300 bytes or 200 bytes less than the path

MTU if known (this is usually not the case), in order to avoid the message segmentation
problems of SIP. A basic form of congestion control is ensured by requiring clients to
never send a MESSAGE until the previous MESSAGE request has been acknowledged
with a response. Figure 3.47 gives an example of the MESSAGE request. The text/plain
content type only allows US-ASCII characters. By using the ‘char/xml; charset = utf-8’
payload type it is possible to send any type of character:
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MESSAGE sip:user2@domain.com SIP/2.0
Via:SIP/2.0/TCP user1pc.domain.com;branch = z9hG4bKdfg45
Max-Forwards: 70
From: sip:user1@anydomain.com;tag = 4sd83
To: sip:user2@anydomain.com
Call-ID: ef4234@10.10.10.10
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 41

Hello. This is a sample instant message! 

Figure 3.47 Sample MESSAGE request.

Content-Type: char/xml; charset=utf-8
<body>
This is a utf-8 message, it can contain all non US-ASCII characters

like ¤ or !
<body>

RFC 3428 also requires the ‘message/CPIM’ content type to be supported, and therefore
instant messages can carry any type of MIME content.

The framework defined by RFC 3428 is still quite basic compared with GSM SMS
specifications (e.g., it does not cover confirmation of message receipt). However, RFC
3428, together with the CPIM format, provides a good foundation for sending instant
messages across SIP-based instant-messaging systems from various service providers. In
the future it will do so across non-SIP-based instant-messaging systems, like the popular
GSM short Message Service and Multimedia Message Service.

3.6 SIP SECURITY

3.6.1 Media security

Media encryption is specified by SDP. The ‘k’ parameter of SDP stores the security
algorithm in use as well as the key. The following formats are defined in RFC 2327 (SDP):

• k = clear : <encryption key> This format refers to the encryption algorithms described
in RFC 1890 (‘RTP Profile for Audio and Video Conferences with Minimal Control’,
January 1996). RFC 1890 first describes how to extract a key from a pass phrase in a
standard way. The pass phrase is put in canonical form (i.e., leading and trailing white
spaces removed, characters made lower case, etc.), then hashed into 16 octets by the
MD5 algorithm. Keys shorter than 128 bits are formed by truncating the MD5 digest.
The name of the algorithm in use is concatenated before the key and separated from
the key with a single slash. Standard identifiers for the most common algorithms can
be found in RFC 1423 (DES-CBC, DES-ECB, . . .), the default being DES-CBC. RFC
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1423 also describes how to store additional parameters needed for particular algorithms,
such as the 64-bit initialization vector of DES-CBC: for example the following line
can be used to initiate a DES-CBC-encrypted session:

k = clear:DES-CBC/aZ25rYg7/12eR5t6y

• k = base64 :< encoded encryption key > The format is the same as above, but base64-
encoded to hide characters not allowed by SDP.

• k = prompt This, prompts the user for a key. The default algorithm is DES-CBC.

3.6.2 Message exchange security

3.6.2.1 Authentication

Most vendors support the mechanisms defined by RFC 2617 (‘HTTP Authentication:
Basic and Digest Access Authentication’) for basic authentication (clear password) or
digest authentication (hash code derived from the message content and a challenge sent
by the server or proxy).

User agents, registrars, or redirect servers should use response code 401 to indicate that
they cannot accept the request without further authentication information. Proxies should
use response code 407.

3.6.2.1.1 Basic authentication
The use of basic authentication has been deprecated in RFC 3261, as the password is sent
in clear form over the network. An RFC 2543 server user agent willing to authenticate a
client user agent using the ‘basic’ method will respond with the following header:

WWW-Authenticate: Basic realm = “realm information here′′

The realm is simply context information that should be presented to the user in order
to allow him to select the proper username and password. SIP requires that it be glob-
ally unique.

The client must re-issue the request, sending back the user ID and password, separated
by a single colon and encoded as a base64 string, using the Authorization header:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

Note that since the ACK accepts no response, any authentication information that was
accepted for an INVITE must be accepted also for the corresponding ACK (same Autho-
rization and Proxy-Authorization headers). This is true of all authentication methods.

3.6.2.1.2 HTTP digest for user agent authentication, registrars, and
redirect servers

In order to avoid sending the password in clear form, many user agents support the HTTP
digest method. By default, the Authorization header field contains the MD5 digest of:
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• The Request-URI.

• The username.

• The nonce value.

• Optionally, the message body.

Use of the digest method is also specified in the WWW-Authenticate header of the 401
Unauthorized response:

WWW-Authenticate = Digest realm="realm_information_here",
qop="auth,auth-int",
nonce="Od1128f1806872deac4e01029b7c96b3",
stale=FALSE, algorithm=MD5,
opaque="5ccc069c403ebaf9f0171e9517f40e41"

The nonce should be generated randomly for each 401 response and must not contain
any double quote. If an ‘opaque’ string is included by the server, it should be passed
back by the client in the response. The stale flag, when set, indicates that the previous
Authentication data were correct, but were rejected because the nonce information was
stale. The ‘quality of protection’ parameter indicates that the server supports authentica-
tion only (auth) and authentication with integrity protection (auth-int), in which case the
message body can be included in the hash value calculation.

The client then re-issues the request (keeping the same Call-ID), including the requested
authentication information in the Authorization header. The MD5 hash value is in the
response parameter:

Authorization = Digest username="81@realm information here",
realm="realm information here",

nonce="0d1128f1806872deac4e01029b7c96b3",
uri="destination.test.org",
qop=auth,
response="2923fb70ddfdf57f7ffe5cc436ab4889"
opaque="5ccc069c403ebaf9f0171e9517f40e41"
algorithm=MD5

In response to the resubmitted request, the server can provide some feedback regarding
successful authentication in the Authentication-Info header. In addition, it may provide
a new nonce parameter (nextnonce), and may even include a hash value proving it also
knows the client secret (rspauth parameter):

Authentication-Info: nextnonce="47364c23432d2e131a5fb210812c",
rspauth="29364c52832d2e131a545211212c"

Note that another authentication method based on PGP, now deprecated, was defined
in RFC 2543. This semantic allowed some variable fields (such as the Via field) to be
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Call-ID: 187602141351@worcester.bell-telephone.com
Subject:Mr. Watson, come here.
Content-Type: application/sdp

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

INVITE sip:watson@boston.bell-telephone.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
Authorization: PGP version=5.0, signature=...
To: T. A. Watson <sip:watson@bell-telephone.com>
From: A. Bell <sip:a.g.bell@bell-telephone.com>
Encryption: PGP version=5.0
Content-Length: 224
CSeq: 488
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Information in bold is used to compute the signature

Encrypted data is signed after encryption

Figure 3.48 Scope of PGP signature in RFC 2543.

excluded from the signed data. Figure 3.48 shows that the PGP signature could protect
both the clear part and the encrypted part of the SIP message.

3.6.2.1.3 HTTP digest for proxy servers
A proxy may decide to authenticate a request by using the 407 PROXY AUTHENTI-
CATION REQUIRED response, which contains a Proxy-authenticate header that issues
a challenge. The client must then resend the request with a Proxy-authorization header
providing the credentials matching the challenge. The content of these headers is similar
to that of WWW-Authenticate and Authorization.

In order to avoid this round trip, the client can of course provide the credentials in the
first message, if the authentication replay protection mechanism allows it.

On subsequent responses, the server sends a Proxy-Authentication-Info header, with
the same parameters as those of the Authentication-Info header field.

Proxies must be completely transparent to the WWW-Authenticate, Authentication-Info,
and Authorization headers, and must forward them without any change.

3.6.2.2 Encryption of messages

If the media encryption key must be protected, then the SDP requests and replies must
be encrypted. There are many other reasons for protecting SIP messages (e.g., to hide the
origin or destination of calls and the related information fields such as Subject, etc.). In
general, however, SIP messages only need to be authenticated, which is useful not only
to prevent call spoofing, but also for accounting and billing.

SIP messages can be encrypted hop by hop (e.g., using IPsec). They can also be
transported over a secure transport layer such as TLS (in this case “sips:” URIs are used).
SIP also describes an end-to-end encryption strategy based either on a shared secret key
between the sender and the receiver or on a public key mechanism. If a common secret
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key is used, then the receiver of the message is able to decrypt a message encrypted by the
sender by using the shared password. If a public key scheme is used, the sender encrypts
the message using the public key of the receiver. This encryption can be performed by
the sender of the request or by an intermediary security proxy.

RFC 2543 also defined an encryption mechanism based on PGP, which has been depre-
cated. The request line and unencrypted headers were sent first, followed by an Encryption
header field, which indicates the encryption method in use; for instance:

Encryption: PGP version=2.6.2,encoding=ascii

The encrypted part began after the first empty line (CR + LF of the previous line imme-
diately followed by CR + LF). Figure 3.49 is taken from RFC 2543.

If just the message body has to be encrypted, an extra empty line had to be inserted
in the body before encryption to prevent the receiver from mixing up message body data
and encrypted headers. There are specific issues with the Via header, since it is used by
proxies to route the request back to the source.

3.7 SIP AND H.323

The SIP versus H.323 debate has been a very heated one among VoIP engineers. Behind
the technology facade of some arguments, the debate has been fueled and biased by
the interests of many telecom manufacturer companies who roughly fall in the follow-
ing categories:

• Early VoIP players, with a strategy based on standards, who have already captured
the largest VoIP market share and defend H.323. In this camp there is also the vast
majority of PBX manufacturers, who like the similarity between ISDN and H.323 and
offer H.323 WAN interfaces.

Call-ID: 187602141351@worcester.bell-telephone.com
Subject:Mr. Watson, come here.
Content-Type:application/sdp

v=0
o=bell 53655765 2353687637 IN IP4 128.3.4.5
c=IN IP4 135.180.144.94
m=audio 3456 RTP/AVP 0 3 4 5

INVITE sip:watson@boston.bell-telephone.com SIP/2.0
Via: SIP/2.0/UDP 169.130.12.5
To: T. A. Watson <sip:watson@bell-telephone.com>
From: A. Bell<sip:a.g.bell@bell-telephone com>.
Encryption: PGP version=5.0
Content-Length: 224
CSeq: 488
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Figure 3.49 SIP message encryption in RFC 2543, using PGP.
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• Early VoIP players, with proprietary products, who are trying to extend the life of their
existing products, by criticizing H.323 and announcing a leapfrog to future standards
in their roadmap. This is also the case of most traditional central office manufacturers,
who must pay lip service to VoIP but also wish to extend the life of their existing
systems and most of all the ‘closed model’ which ensures comfortable maintenance
fees. These manufacturers usually build mostly proprietary VoIP systems, but very
often label proprietary protocols with a reassuring ‘pre-XXX’, where XXX is a still-
immature protocol.

• Start-ups arriving too late to catch the first H.323 wave, who engaged all their marketing
resources to promote SIP and present H.323 as obsolete.

Let’s now turn to discuss some of the features of SIP and H.323 that are most frequently
used for or against them. The conclusion is that the ‘protocol war’ has been very beneficial
to both protocols, stimulating many improvements, to the point that SIP and H.323 are
now virtually identical protocols!

In 2004, H.323 still has the lion’s share of VoIP deployments, in telephony carrier
networks. It is also used by virtually all corporate IP-PBXs for the VoIP trunk interfaces.
(In 2002, over 2 million such H.323 PBX trunk ports were sold in the USA alone.) All
versions of Microsoft Windows still include the NetMeeting H.323 client, as well as
a TAPI H.323 implementation. NetMeeting is also used as a VoIP and collaboration com-
ponent in most other client-side and server-side programs of the company. However, SIP
has become more prevalent on the desktop since the XP version, which hides NetMeeting
and exposes Messenger, a general purpose instant-messaging and VoIP client, based on
proprietary protocols but where SIP can also be used.

SIP seems to be winning the battle for instant messaging, and this will probably drive
the adoption of SIP for multimedia user interaction on a PC desktop. One can only guess
what the future will be, but it is likely that SIP will become the de facto standard on PCs,
while H.323 will remain dominant inside carrier networks and for the interconnection of
IP-PBXs for some years, until SIP matures enough to include all the required features
for PSTN interworking. In time, H.323 and SIP will probably continue to coexist in the
market for carrier telephony over IP, but with a more balanced share.

The winner for IP phones and analog residential gateways is likely to be neither SIP nor
H.323 (today most IP phones implement a proprietary PBX stimulus protocol, but among
standard phones most support H.323, with a growing number offering SIP IP). IP phones
controlled by a PBX, a hosted PBX, or a virtual PBX share common requirements with
today’s PBX business phones. These requirements led the market to implement dumb
stimulus phones as opposed to smart phones, allowing the PBX to control any aspect of
the phone user interface, including lamps, buttons, screens, etc. A stimulus phone makes it
easier to implement any service without waiting for a standardized way of implementing
this standard on a smart phone. It also facilitates centralized management. In VoIP, the
leading stimulus phone protocol is MGCP, and it is likely that most IP phones will have
to support MGCP is the coming years. MGCP is also required to interwork completely
with analog gateways, as it supports services on- and off-hook. MGCP is the dominant
protocol in the cable market.
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3.7.1 Arguments in favor of SIP

3.7.1.1 Speed and simplicity

The simplicity of the basic SIP call is striking, compared with H.323v1 which required
four or five messages. This is a strong incentive for developers to choose SIP for new
products, as H.323 is a bit ‘scary’ to begin with and certainly requires a steeper learning
curve due to the use of advanced techniques, such as ASN.1. However, when looking at
the call flows more carefully, this initial conclusion becomes more balanced:

• H.323v2 implemented the Fast Connect method, which is nearly identical to the
offer–answer model of SIP and gives the same performance.

• The simple SIP call flow overlooks many aspects which are more thoroughly addressed
in H.323, such as codec negotiation. The new additions of SIP in the last RFC relative
to codec negotiation and the management of media streams make SIP a lot closer to
H.323 in terms of complexity. The offer/exchange model is very similar to the H.323
open logical channel procedure.

• Some of the simplicity of SIP came from real bugs in the initial standard. A good
example is the inclusion of media management data in the INVITE call control message
(instead of a separate message unrelated to the call state, as in H.245). SIP had to
introduce the UPDATE message to carry media changes without implying a call state
change (this is identical to the function of message FACILITY in H.323 when tunneling
H.245 information).

The new set of SIP RFCs is at least as complex as H.323v4. A specific problem of H.323
is the number of options not only allowed by the standard (Fast Start, Tunneling, Early
H.245, etc.) but introduced during the evolution of the standard. SIP was initially much
more homogeneous. However, the situation changed with the latest SIP RFCs, which
present many more options (four transport options, each with some impact on high-level
protocol procedures), and a number of backwards compatibility problems. Backwards
compatibility is much better documented and specified in H.323, partially due to the
design method using structured SDL state machines.

The use of UDP is another attractive aspect of SIP, because UDP makes it easier to
scale servers and also allows implementations to better control latency and facilitates the
traversal of NAT functions (see Chapter 5). Although H.323 can also be carried over
UDP, the vast majority of implementations use TCP. We would argue that UDP is still
not perfect, however. It has become clear recently with the new requirements on SIP (e.g.,
tunneling of SS7 ISUP messages) that using UDP was problematic for long messages with
the current SIP specification. RFC 3261 therefore recommends in some cases to use TCP
instead of UDP, depending on the MTU; but, this is obviously not a clean way of solving
the problem. The ‘ideal’ VoIP protocol should probably use neither TCP nor UDP, but a
newer protocol like SCTP (one of the transport options introduced for SIP in RFC 3261),
which offers a better compromise between reliability and flexibility for latency control.
We bet that most VoIP implementations in 10 years will use such a protocol, with better
latency control properties than TCP, and yet provide a strong, reliable transport layer.
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3.7.1.2 Multicast

The IETF has gained a lot of experience on multicast. There are thousands of regular users
of the mBone, and more and more multicast applications. SIP was originally designed
to work on a multicast-enabled backbone, not only for media streams, like H.323, but
also for signaling messages: for instance an INVITE message can be sent, in theory, to
a multicast group. H.323 needs to use multi-unicast for the same purpose. In practice,
however, multicast signaling is not very useful except for large conferences, and in such
applications the SAP protocol19 is an optimal choice, also recommended by H.332 for
H.323 conferences with large audiences. In fact, the set of requirements for large con-
ferences is not well covered simply by allowing SIP messages to become multicast. In
addition, some of the call flows required by SIP multicast become unnecessarily complex.

The recent SIP RFC concludes that SIP signaling should be used in multicast only
in very specific circumstances. Even the forking of messages is discouraged in 3GPP’s
current SIP profile. In fact, the best combination for large conferences is probably multi-
unicast signaling, combined with the use of SAP, as described in H.332. For this type of
application, SIP and H.323 offer the same level of support. Nevertheless, we still give
a slight advantage to SIP because SDP is used both in SIP and SAP, and the MMUSIC
Group has a lot of experience with multicast.

Multicast can also be used in media streams, but here SIP and H.323 have the same
level of support, both allowing the opening of multicast media channels and the use of
layered coders (useful for multicast transmissions where not all receivers have the same
capabilities).

3.7.1.3 URL usage

The usage of URLs as identifiers is powerful. At first sight there may seem to be
no big difference between an H.323 email alias (john@name.com) and a SIP URL
(sip:john@name.com). In fact, there is: an H.323 email alias assumes the protocol used
is H.323, whereas SIP actually specifies the protocol in the URL itself. Because of this,
a SIP server can redirect a call to non-SIP servers in a very flexible way: for instance, a
SIP terminal, when called by another SIP terminal, may redirect the call to a web page,
or to a mailto URL. This facilitates the integration of audio and video applications with
other multimedia applications.

This feature is now available in H.323 with the url-ID type of AliasAddress introduced
in H.225v2, and the H.323 URL introduced in H.323v4. However, H.323 does not clearly
explain how such URLs can be used to redirect a call to different media or protocols. We
believe this is the most significant advantage of SIP over H.323, one that may lead SIP
to eventually replace H.323 completely for desktop applications. Outside of this scope,
however, this feature is of little interest, as it is hard to imagine how an analog gateway
could be redirected to, say, an email address.

19 An IETF protocol, see companion book, Beyond VoIP Protocols multicast chapter.
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3.7.1.4 Loop control

Loop control was overlooked in early H.323 versions, while it has been thoroughly spec-
ified in SIP. Most H.323 vendors implement a form a loop control, but there is still not
good interoperability between these implementations. This will be improved over time,
but as of today remains one of the advantages of SIP.

3.7.1.5 Text encoding

Text encoding is a feature for some, and an issue for others. This is one of many,
seemingly endless ‘religious’ wars between programmers. Text encoding has a lot of
advantages: it is simple, can be debugged easily using simple network sniffers, and makes
interoperability problems detectable ‘visually’. This is very attractive for students and
programmers discovering telecom applications.

More experienced telecom programmers with a background in ASN.1 may have a dif-
ferent view. The biggest difficulty of telecom environment programming is that, unlike
PC software programming, reliability and bug-free implementations are a must. At the
same time, this is very challenging because protocols evolve quickly, and open telecom
environments cause various implementations from different programmers to interoperate.
As not all implementations and not all call flows can be tested in advance during develop-
ment, many such communications between different vendors will occur for the first time
in live networks.

After the telecom world put a lot of research into this problem, it decided that ‘free-
text’ specifications, manual encoding, and parsing were not optimal to maximize the
reliability of implementations. Instead, programs are specified using formal description
languages, such as SDL, and the protocol data unit (PDU) syntax can be expressed
formally using an unambiguous, abstract syntax notation,20 which can be automatically
compiled into serializers and parsers. Such automation avoids most of the opportunities
for bugs and frequently leads to faster implementations. It also becomes much easier to
add new parameters or options, because the generation of updated parsers is automatic.

There is no final argument to this debate: PC application developers and IP phone
vendors will probably prefer text encodings, but carrier-class proxy developers with expe-
rience in ASN.1 will feel more comfortable to ensure the quality of their code with ASN.1
and automatically generated code. Protocols specified in SDL can also be thoroughly tested
automatically, something that is impossible with a verbal specification.

3.7.1.6 Presence and instant messaging

SIP now supports presence and instant messaging applications with its SIMPLE exten-
sions. H.323v4 also has support for instant messaging by using the T.140 protocol and

20 Such as ASN.1, which is the most widely used syntax notation in the telecom world, allowing
powerful expression of data structures, constraints on data values, extensions, etc. Unfortunately,
ASN.1 is also complex to learn and optimized commercial ASN.1 tools are expensive. But,
once a developer is familiar with ASN.1, the productivity of ASN.1 for telecom applications
is phenomenal.
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RFC 2793, but offers fewer possibilities for presence (only registration is supported).
Clearly, the market has not selected H.323 for implementing presence and instant mes-
saging applications.

However, it is still unclear who the winner will ultimately be for presence and instant
messaging. SIMPLE and the open source JABBER protocol still compete; JABBER even
has a slightly larger marker share. In fact, SIMPLE and SIP are really loosely coupled
protocols (SIMPLE is implemented using only new messages that were not present in
initial specification of SIP). In principle, it wouldn’t cause any problem to use one protocol
for telephony (e.g., SIP or H.323), and a separate protocol for presence (e.g., JABBER
or SIMPLE). Any combination will work fine.

3.7.2 Arguments in favor of H.323

3.7.2.1 Logical channels

H.323 makes a clear distinction between the media types that can be sent or received
(capabilities), and the media types that are active and actually sent over the network
(logical channels). The first version of SIP did not have such a distinction, as SIP endpoints
only advertised the coders they could receive and there was no clear procedure to open a
media connection apart from actually sending the media.

This was improved with the new offer–answer model, which is now as powerful as
the H.245 logical channels. SIP and H.323 are now completely equivalent regarding
management of media channels, but SIP is still lacking a proper framework for the
announcement of capabilities, independently of the media channels that it immediately
wishes to send or receive, which causes problems (e.g., for fax transmission, see Section
7.2.3). There is still some work in progress in this direction.

3.7.2.2 Conference control, handling of video signals

H.323, alone or in combination with H.332, has powerful conference control features. SIP
was not designed to carry out conference control, and consequently many of the features
required to do so were not developed. In reality, however, this problem is minor, since con-
ference applications usually implement their own conference control tools, independently
of the underlying VoIP protocols.

H.245 also allows much more control of video signals (e.g., Video Fast Update requests),
because of the experience in H.320 ISDN videoconferencing. It is frequently heard that
‘SIP is the protocol of choice’ for video; this is clearly a misleading statement. In fact,
SIP still lacks many of the features already present in H.323 for comprehensive man-
agement of multiparty interactive video communications (e.g., H.323v4 describes how to
control a far-end camera). Another example is the more precise way of declaring capa-
bilities in H.323: an H.323 device that supports continuous presence video with several
images decoded simultaneously can advertise exactly how many images it can receive
and display, along with the audio coder used, not just the type of coder supported.
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3.7.2.3 Capabilities negotiation

H.245 capabilities negotiation is very sophisticated and can express constraints on the
simultaneous use of codecs. SDP was never designed to be used for capabilities negotia-
tion; in fact, work is in progress to define a new ‘SDP-ng’ for this purpose. The current use
of SDP by SIP for capabilities negotiation simply allows endpoints to state that they can
support multiple coders by listing them in the ‘m =’ line of the session description. But,
by doing so, the endpoints also indicate that they can support these coders simultaneously
(which may not be true) and that they are prepared to receive the media immediately.
This can create ambiguity and problems (e.g., for fax), as a gateway can support T.38
and G.711, for instance, but only be prepared to receive G.711 media at this moment.
Some limited extensions of SDP have been defined to help solve this problem (RFC
3407, ‘SDP Simple Capability Declaration’), but so far most implementations of SIP are
still weak regarding capabilities negotiation. A more complete capabilities-enabled SDP
would probably look like the existing H.245 CapabilitySet message!

3.7.2.4 Backwards compatibility, installed base

Newer versions of H.323 are fully backwards compatible, and interoperability in the H.323
world is now excellent. The millions of lines that have been installed allow manufacturers
to test their implementations and gradually agree on the procedures that were still unclear
and ambiguous in H.323. This was made quicker by the references to ISDN (Q.931) and
the dominance of a few H.323 players, who have been able to quickly impose their views
on the H.323 ITU Study Group, without endless discussions. This is also due to the fact
that many service providers are members of the ITU Study Group, which implies that
backwards compatibility issues are taken very seriously, as they create nightmares on
operational networks.

H.323 is well ahead of SIP in this regard, as the SIP market is still very small, mostly
limited to trials or single-vendor closed networks (i.e., class 4 telephony applications). In
addition, the standardization process of the IETF makes it possible to quickly publish an
RFC, without the lengthy consensus approach of ITU. This is good in most cases, but in
the middle of the Internet bubble this led to the publication of documents of insufficient
quality, which now causes many interoperability issues, ambiguity, and lack of backwards
compatibility. The situation is quickly improving as most telecom manufacturers recognize
that their priority is to deploy real networks with real customers on a massive scale, and
not to compete for sexy trials of ‘new applications’. The focus is now on fixing issues
first and then introducing new features.

3.7.2.5 Binary encoding

The argument of binary encoding generated from formal syntax descriptors versus text
formats has already been discussed in Section 3.7.1.5. We reuse this argument here in favor
of H.323 because 50% of developers consider the ASN.1 syntax and binary encoding more
suited for telecom applications.
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3.7.2.6 Use in telephony applications

This is the key argument in favor of H.323. SIP still lacks many essential features in order
to be deployed in a carrier-class telephony network (with the exception of pure class 4
applications requiring SIP only to tunnel SS7 ISUP messages). Many features, such as the
handling of ISDN information elements (e.g., CLIR information, type of number, number
verification, etc.), are not present in SIP and require proprietary extensions. These elements
are required whenever PBXs need to be connected to a VoIP backbone. Other extensions
of SIP required for telephony applications (e.g., progress messages with 183 responses,
reliability of provisional responses, etc.) have been added very recently and, therefore,
are still not implemented by many vendors.

DTMF transmission is one of the biggest issues in SIP. Many SIP VoIP networks
started by implementing class 4 networks, where DTMF transmission with RFC 2833 is
sufficient, but were stuck later as they tried to deploy more complex class 5 or contact
center applications. SIP proposes many solutions to this problem; but, what the industry
needs is one solution, not many. Until this happens, many applications will require single-
vendor networks.

H.323 starts with a significant advantage due to its Q.931 (ISDN) heritage and deploy-
ment experience, but in principle most of the issues could be fixed easily in SIP. One of
the possible fixes is to include all ISUP parameters in SIP (e.g., the Generic Transparency
Descriptors proposal from Cisco Systems) which would make SIP a superset of H.323.
One of the issues, however, is the maximum size of the payload that can be transmitted
over UDP.

It seems that it will be at least 2 years before SIP manufacturers agree on standard
ways to properly handle all telephony applications. It will probably also require more
market consolidation before some vendors have enough leverage to efficiently promote
their views.

3.7.3 H.323 to SIP gateways

H.323 and SIP are now so similar that protocol converters can easily be built for audio,
fax, and video calls. Even instant messages could easily be added to existing H.323
standards like H.450.7 (‘Message Waiting Indication’). Several commercial implementa-
tions exist, which are mainly used to connect SIP-based PC softphones to existing H.323
telephony networks.

An H.323 slow-start call flow (which has become very rare) must be mapped to a SIP
call flow where media streams can be established soon after the INVITE message. One
possible solution is to send an INVITE without SDP, wait for the offer in a provisional
or the final SIP response, then send the response in the ACK message. In the rare cases
where the H.245 channel would not be connected in time for the ACK response, the ACK
can put all media channels on hold, and a RE-INVITE would need to be sent as soon as
the H.245 channel is connected and the logical channels have been established.

An H.323 fast-connect call flow is identical to a SIP call flow (mapping is direct as
shown in Table 3.5).
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Table 3.5 H.323 fast-connect to SIP protocol conversion

No. H.323 side of proxy SIP side of proxy Comment

1 → Setup with
FastStart

Contains proposals
for backwards-logical channels

2 ← Call
proceeding

The proxy acknowledges the receipt
of the setup messages

3 INVITE → Contains proposals for
backwards-logical channels in SDP
format

4 180 RINGING ←
5 ← Alerting
6 200 OK ← User picked up, contains

forwards-logical channel info if not
sent before

7 ← Connect
with
FastStart

Forwards-logical channels copied in
H.323 CONNECT message

8 ACK →
H.245 can be

opened at
any time

N BYE ← On-hook
N + 1 ← Close

H.245 +
release complete

Call released on H.323 side

N + 2 200 OK →

The SIP offer–answer model has made it much easier to map the H.323 formal man-
agement of logical channels into SIP. If new logical channels are opened during the
conversation by the H.323 endpoint, the protocol converter would send a new INVITE
message to the SIP endpoint, as illustrated in Table 3.6.

If a new offer is received from the SIP side, it is best to reset the H.323 or H.245
negotiation using the Null Capability Set (TCS = 0) message, and then resend capabil-
ities corresponding to the codecs in the new offer, especially since it may contain new
coders that have not been negotiated before. The protocol converter can then send an
OpenLogicalChannel message with the codec selected during the negotiation.

The only remaining difficulty for an H.323–SIP proxy is DTMF handling. Since many
SIP endpoints still do not support out-of-band DTMF, but rather exchange DTMF infor-
mation end to end using RFC 2833 over the RTP channel, in many cases the protocol
converter is not aware of DTMF information from the SIP side. Most SIP gateway vendors,
however, implemented the INFO or NOTIFY message as described in Section 3.3.2.3.1.3,
and this message can be mapped to an H.323 UserInputIndication. In the case of RFC
2833, some H.323 gateways can be configured to also receive DTMF via direct RFC
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Table 3.6 The new offer–answer model is identical to the logical channel model of H.323

OpenLogicalChannel

INVITE → Same Call-ID as the previous INVITE (but
Cseq is incremented). The SDP payload
describes the new offer by modifying the
media channels list

200 OK ← Contains the SDP answer and confirms the
media channels list selected in the offer

← OpenLogicalChannelAck +
OpenLogicalChannel

The OpenLogicalChannelAck contains the
forward channels that have been
confirmed in the SDP answer. The
OpenLogicalChannel contains the
backwards channels that have been
selected in the answer

OpenLogicalChannelAck

2833 RTP packets, but it is impossible to add any DTMF-controlled service into such a
network in a scalable way (the service node must relay RTP packets, unless RFC 2833
is thoroughly implemented by all devices and they can separate the DTMF RTP stream
destination from the media destination).

3.7.4 Conclusion on the future of SIP, and its relation with
H.323

SIP has covered a lot of ground since the first SIP ‘bake-off’ meeting in April 1999. The
protocol, born as a result of the Internet bubble, grew with it and was constantly expanded
to absorb in just 4 years many of the ‘new applications’ that emerged during this period.
Besides videoconferencing, the most interesting application is obviously instant messag-
ing, which is one of the most popular applications on the Internet today. Unfortunately,
SIP, like other protocols that were born at the same time (e.g., WAP on cellular phones),
also inherited many of the typical problems of the Internet bubble era: it was frequently
‘oversold’ and presented as a telecom revolution, while in reality it mostly provided capa-
bilities that were already available with other protocols. SIP was also designed too quickly
to ensure a sufficient level of quality in protocol specifications, and this lack of method-
ology later forced the specifications to introduce awkward ‘patches’ and non-backwards
compatible extensions to the original protocol.

Another more fundamental issue of SIP is that, unlike other telecom protocols, its
design is driven only by very few manufacturers, with much less control from actual
users than ITU protocols (the ITU is mostly driven by telecom operators). This gave
unique characteristics to the protocol’s evolution, not all of which are necessarily good:
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• SIP quickly absorbs new applications and extensions (IETF drafts are a good way
of documenting most of these extensions before they actually get to the standard—if
indeed they do).

• There is no stability to the protocol: little or no attention is paid to actual deployment
and migration issues.

• Priority is given to the addition of features, as opposed to securing a robust design first
and then add features. The ITU approach is almost the exact opposite: ITU authored
many fundamental tools for telecom products designs, like the ASN.1 syntax or the
SDL state machine description language, and only then designed protocols to build on
this robust set of foundation tools. SIP has a very broad scope, but is still very fragile
as a protocol.

• Many ‘buzzword’ applications (e.g., presence) are getting much of the attention and
standardization effort, while more fundamental revenue-generating features, but more
boring, still have issues. This is the “99% complete” syndrome. SIP still has many open
issues for its application to basic telephony.

Controlled by start-up companies, SIP has been ‘demonstration’-oriented, with a lot of
marketing activities but few significant deployments. The end of the telecom bubble will
probably give a lot more importance to actual operational issues, slowing the development
of new features and focusing on stability, completeness, and interoperability. This will be
of benefit to SIP. If SIP begins to leverage the traditional design methods (formal state
machines, layering, etc.), and to integrate the latest advances of IP networking technology
(such as SCTP), while managing a smooth transition, the protocol truly has the potential
to become the dominant multimedia session control standard of IP network. But it is not
quite there yet.



4
The Media Gateway to Media
Controller Protocol (MGCP)

4.1 INTRODUCTION: WHY MGCP?

4.1.1 Stimulus protocols

SIP and H.323 are very similar session-based, stateful protocols. The similarity is hidden
behind all the cosmetic differences due to different ways of serializing essentially the
same information, but basically both protocols share the same characteristics:

• They are composed of a call control protocol (H.225.0, SIP) and a media control pro-
tocol (H.245, SDP offer–answer model), with the media control protocol encapsulated
in the call control protocol.

• The call control protocol is a slightly simplified version of ISDN Q.931 (H.225.0), with
a more basic way of closing connections (three messages in Q.931, only one message
in H.225.0 and SIP—although this is likely to change since the single-message closing
sequence causes some issues).

• Both the call control protocol and the media control protocol assume a stateful or
‘intelligent’ endpoint (i.e., an endpoint which implements its own call-state machine,
and its own logic, such as for the handling of call waiting, providing a ring-back tone
while off-hook, etc.)

From a marketing point of view, having an ‘intelligent’ client is always a good thing,
since it seems so obvious that an intelligent client will be able to do ‘more things’ than
a ‘dumb’ client.

IP Telephony O. Hersent, J.P. Petit, D. Gurle
 2005 John Wiley & Sons, Ltd ISBN: 0-470-02359-7
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The problem is that, when looking at the most sophisticated corporate phone installa-
tions today, none uses ISDN phones (the equivalent in traditional telephony of a smart
phone)! In fact, most, if not all, of the corporate PBXs use another class of protocols called
stimulus protocols, optimized for the control of dumb phones. It is easier to understand
why with an analogy. If SIP or H.323 were programming languages, they would be very
similar to the BASIC language. You can do a lot of things with BASIC as long as you do
things for which BASIC has the proper instructions, but you can do many more things
with the C language, or with an assembly language. If a stimulus protocol were a pro-
gramming language, it would be a low-level assembly language: certain things take longer
to code, but there is nothing you cannot do. For instance:

• When you pick up the handset of an H.323 or a SIP phone, you get ring-back. When
you pick up the handset of a PBX phone, sometimes you get a message like ‘you have
voicemail’.

• On an H.323 or a SIP phone, you have feature buttons or lamps, hard-coded by the
phone manufacturer, for hold, transfer, three-way calling, message-waiting indication,
etc. On a PBX phone, you may want to assign any feature to any button, to control
any lamp, exactly as you like.

• On an H.323 or a SIP phone (without proprietary extensions), you need to pick up
the handset or press the loudspeaker button to get a call. On a stimulus phone, the
loudspeaker can be remotely activated by the PBX.

A stimulus protocol carries lower level instructions than ISDN, H.323, and SIP. For an
incoming call, all these protocols simply send a ‘you have a new call’ message, and the
phone is expected to ring all by itself. It is also expected to send ring-back as soon as you
pick up the handset. A stimulus protocol would send a ‘ring with ring type X’ command,
then a ‘notify me if someone picks up the handset’ command (or it could send an ‘activate
loudspeaker’ command directly). For an outgoing call, once notified that the handset is
off-hook, the PBX would send a ‘play dial-tone command’, followed by a ‘notify me
of the digits that have been dialing’ command (but it could also send a ‘play this audio
message command’).

In general, stimulus-based protocols have the following attractive characteristics:

• They simplify the endpoint software design and therefore minimize the number of
endpoint bugs that can affect a PBX application: for instance, a common bug in
SIP or H.323 endpoints is the inability to alternate between normal ring-back and
network-generated prompts, because the programmers did not think of this unusual,
but nevertheless mandatory, transition. This is controlled by the PBX in a stimulus
protocol, and therefore cannot be an endpoint bug.

• They facilitate management of large numbers of endpoints, by minimizing the problems
caused by the diversity of software flavors deployed at endpoints.

• They facilitate the centralized deployment of new features or applications, even those
interacting with the endpoint. Usually, such deployments do not require any change
in endpoint capabilities. Once the possibilities of the hardware endpoint have been
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properly mapped to stimulus commands, all services can be designed without requiring
any addition to the device firmware.

• They make it easier to program applications or advanced services which require the
co-ordination of multiple endpoints, by centralizing the state of all endpoints at the
PBX. A typical example is the manager–secretary feature, where the manager screen
needs to show that a call is coming (but does not ring), while the secretary phone rings.
Such a service would require additions to the standard with H.323 or SIP endpoints.

The downside of stimulus protocols is that they absolutely require centralized resources:
two stimulus protocols cannot communicate without a PBX. In addition, since the gran-
ularity of communications with the call controller is at a very low level, services require
significantly more control messages than with more intelligent endpoints.

With only H.323 and SIP, VoIP would be lacking a stimulus-based protocol—MGCP
fills the gap.

4.1.2 Decomposed gateways

In the early days of VoIP, most VoIP gateways were based on PCs, with some hardware
boards handling media processing. Such gateways were already ‘decomposed’ in the
sense that call control processing and media control resources were running on different
modules, with some proprietary APIs between the telephony boards and the main PC-
based gateway software.

The early fully embedded gateways usually retained this architecture, with a central
processor handling call control, while dedicated Digital Signal Processor (DSP) boards
handled media processing. But when the size of gateways grew to handle hundreds, or
thousands, of channels, this architecture began to be problematic:

• Once the maximum number of DSP ‘daughter boards’ in a chassis was reached, another
chassis needed to be installed with not only DSP boards, but also a new instance of
the gateway call control software. This made it impossible to have centralized control
of all the channels, and forced the duplication of call control resources.

• In the PSTN, carrier interconnections with thousands of channels typically use dozens of
media-only trunks, and a single signaling-only channel (mostly SS7 ISUP) carrying the
call control information for all the media trunks. If on the VoIP side the required capacity
was big enough to require multiple gateway chassis, then with each gateway having its
own local call control software, there would be a need for one SS7 call control-signaling
link and ISUP stack per chassis (Figure 4.1), which is far too expensive.

One of the early proprietary protocols used to solve the problem was called Q.931+.
One master call control device took SS7 ISUP signaling and distributed call control to
each media gateway, in a Q.931-like form, over IP tunnels: this solution still required an
instance of call control in each media gateway.
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Figure 4.1 Which box should receive SS7 signaling in an SS7 configuration?

Some vendors quickly found the best solution, which was to have one master call control
module, and physically separate media-processing modules with only DSP resources, a
TDM media-only interface, and an IP interface; this is a bit like the PC-based architecture
with separate DSP boards and call control on the PC, except that since the modules are now
physically separate, they do not communicate though an API as in the early PC days, but
through a protocol (Figure 4.2). Since both the DSP modules and the call control module
have an IP interface, logically the media resources remote control protocol had to be over
IP as well.

In order to implement such a solution, there was a need for a standard protocol between
a call control function and a media gateway with no call control. The de facto standard
today is MGCP, logically named the ‘Media Gateway Control Protocol’.

It seems surprising that the same protocol could be used to control stimulus phones
and dense media gateways. In fact, a phone is a media gateway between a microphone +
speaker and the VoIP media stream, plus some user interface components (a handset with
a hook, a keypad, buttons, etc.). Therefore, an IP phone stimulus protocol should com-
prise a pure media gateway control portion, plus some user interface control optional
commands. This is exactly what MGCP is: a core set of commands for pure media
control (we will frequently use the term ‘MGCP trunk’, or MGCP/T, although this
is not strictly correct), plus a set of optional commands (we will frequently refer to
the MGCP protocol plus the extensions to control an IP phone as ‘MGCP line’, or
MGCP/L).
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Figure 4.2 Centralized ISUP control box, controlling remote media gateways via an IP
protocol.

4.1.3 Some history

The first proposal came from Bellcore (now Telcordia) and Cisco to address the needs of
cable operators that wanted to become competitive local exchange carriers (CLECs) by
using VoIP on top of their HFC infrastructure. The Simple Gateway Control Protocol
(SGCP) was introduced early May 1998 by Cisco during a PacketCable meeting (and
in other standards bodies, IETF, ITU-T SG 16 and ETSI TIPHON) as a cost-effective
alternative and better suited protocol to implement and deploy than the then-current H.323
implementations in the context of cable operators’ market.

The second proposal, the Internet Protocol Device Control (IPDC) was presented to
ITU-T SG 16, ETSI TIPHON and IETF a month later. IPDC addresses more or less the
same requirements as SGCP but with a different transport approach. While SGCP relied
solely on UDP, enhanced with application-level reliability features, IPDC proposed the
use of DIAMETER (an extension and replacement of RADIUS) to carry protocol data
units (PDUs) between respective entities.

It was not long before the forces behind these two protocols realized that by uni-
fying their efforts they could get bigger consensus and foster the adoption of their
position. Bellcore and Level3 played a key role in merging these two proposals into
one (Figure 4.3): MGCP. MGCP was proposed to all main standards groups: the IETF’s
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Figure 4.3 The Media Gateway Control Protocol family tree.

Media Gateway Controller (MEGACO) Working Group, ETSI TIPHON, and ITU-T SG
16. In addition, companies supporting this protocol created an industry forum, the Multi
Service Switching Forum (http://www.msforum.org) to develop complementary protocols
and services. In particular, MGCP was extended to also support ATM transport networks
and voice on AAL2.

MGCP is was originally published as informational RFC 2705, ‘Media Gateway Control
Protocol (MGCP)’ version 1.0; the specification was updated as RFC 3435 in January
2003. A variant of MGCP is also used by the PacketCable initiative under the name
Network Based Call Signaling Protocol (NCS), and the specification is available on the
PacketCable website (currently PKT-SP-EC-MGCP-I06-021 127).

Later the ITU began to work on a new generation of stimulus protocols, called H.248.
However, so far this protocol has not gained significant market acceptance. It is frequently
mentioned in white papers or architecture documents, but most vendors still use MGCP.
The reason is simple:

• The biggest user groups for stimulus-controlled media gateways, the Cable Televi-
sion Laboratories (www.cablelabs.com) and their VoIP initiative PacketCable (www.
packetcable.com) still use MGCP, and therefore virtually all media gateways and IP
phones implement MGCP.

• H.248 doesn’t add any significant capability to the MGCP protocol, and since MGCP
satisfies the needs of stimulus phones and remote media gateways, the telecom manu-
facturer community doesn’t feel there is a need to change something that isn’t broken.

Like most IETF media protocols, MGCP uses the SDP syntax to express the format,
source, and destination of media streams.

Overall, the quality of the MGCP specification was way better than the quality of
the initial specifications of H.323 and SIP. The protocol is simple, focused on a clear
scope, well-structured, with a cleanly separate transport layer, a well-defined connection
model, and very few bugs in the standard. Without much marketing buzz, MGCP has
made its way into the world of VoIP protocols and it is today one of the most widely
implemented protocols in all of its original target markets: residential gateways, IP phones,
and large-scale trunk gateways.
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4.2 MGCP 1.0

The Media Gateway Control Protocol was first specified in draft-huitema-MGCP-v0r1-
00.txt and was finally published as MGCP 1.0 in RFC 2705. In January 2003 an updated
version, which corrected some ambiguities and inconsistencies in RFC 2705, was pub-
lished as RFC 3435. RFC 3435 is also known as MGCP 1.0bis; however, it is still MGCP
version 1.0 and is fully compatible with RFC 2705 (except for error fixes).

MGCP is designed to interface a media gateway controller and media gateway and sup-
ports a centralized call control model. The protocol is text-based, offering a set of simple
primitives. The media gateway controller is called the call agent in MGCP terminology
and the media gateways can be of different types:

• VoIP gateways. Residential gateways are designed to be customer premises equipment,
usually connected to a couple of analog phone lines. These gateways, besides their
pure media-processing capabilities, are also able, when connected to analog phones or
PBXs, to generate ring voltages, to send specific signals required to set message-waiting
indication lamps or to send caller ID information to a phone. Trunking gateways are
high-density gateways interconnecting TDM media trunks and a VoIP network, with
media-processing capabilities only.

• Network Access Servers (NASs). The MGCP protocol includes some extensions which
allow a call agent to control modem banks. The protocol is also capable of driving
universal port gateways, which can behave as a voice gateway if the detected signal
is voice, and can also locally terminate modem connections if they detect a modem
signal. NAS extensions are no longer part of the base protocol in RFC 3435; instead,
they are provided as a separate package.

• Voice over ATM gateways.

Unlike H.323 or SIP, MGCP is a master–slave protocol. As shown in Figure 4.4, the
call agent is a central controller, and the media gateways are slave devices that can only
report events requested by the call agent and execute the commands of the call agent.

There is often some confusion between H.323/SIP and MGCP. ‘I don’t want to use
MGCP in my network’ is a frequently heard sentence. With SIP or H.323, which are call
control protocols, it is natural to select only one of these protocols in the core network.
Although SIP/H.323 gateways exist, very few service providers have both protocols run-
ning in their core network. Many network engineers assume MGCP is the same kind of
protocol, and if you begin to implement MGCP somewhere in the network, you must
have MGCP everywhere in your network. But MGCP is not a peer-to-peer protocol: two
MGCP call agents cannot communicate using MGCP. MGCP call agents can only be at
the edge of a network and must communicate between one another using a call control
protocol (e.g., H.323 or SIP). Therefore, MGCP should be seen:

• At the customer access edge of the network, as the stimulus-mode option to drive IP
phones and IP residential gateways. SIP and H.323 being the call-stateful, ISDN-like
alternative.



270 IP TELEPHONY

= Media stream

Switched circuit network (or
other technologies) 

MGCP/UDP

RTP/UDP

IP or ATM
network 

MGCP/UDP

Optional
signaling
gateway

or AAL2
Gateway

Call agent 

Optional
call agent to call
agent protocol 

(H.323/SIP)

Gateway
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Figure 4.5 MGCP is an edge protocol, while SIP or H.323 must be used in the core network.

• At the PSTN interface edge of the network, as an internal protocol of large-scale
decomposed trunk-side gateways.

MGCP is not an option for a core network call control protocol. It is an edge protocol as
illustrated in Figure 4.5.
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4.2.1 The MGCP connection model

The core component of a traditional telephony switch is a TDM bus. Each interface
channel is connected to a time slot on the bus. If a channel A on an interface sends
a media signal on time slot 231 of the TDM bus (let’s call it channel 231), then any
channel B on any interface listening to time slot 231 will receive a copy of this media
signal. A full duplex connection for a phone call between channels 231 and 308 is
established if channel 231 listens to time slot 308 and channel 308 listens to time slot
231. The traditional switch can perform all the media-switching functions it needs only
by transmitting ‘send’ and ‘listen’ commands to interface channel ‘objects’ identified only
by a time slot number.

A packet-based switch is more complex because, instead of using a TDM bus as a
switching matrix, it uses a packet network. Destinations on a packet network are identified
by an address and some parameters, not by a simple integer. Also, the media type for
a TDM switch is always 64 K G.711 encoded speech or clear data, whereas it can be
anything for a packet-based switch.

The MGCP connection model is built on two objects:

• Endpoints, which can originate (media-source) and/or terminate (media-sink) a media
flow. A circuit which can receive RTP packets, decode them, and send the result-
ing G.711 data to a time slot on a TDM trunk is an endpoint. An entity which can
receive RTP packets and relay them to another destination is an endpoint. An IP-based
media mixer (MP in H.323 terminology) which can receive RTP streams, mix them,
and send back the resulting streams to other RTP sinks is an endpoint. Similarly, on
ATM networks any entity which can receive or originate AAL2 media streams is an
endpoint.

• Connections (Figure 4.6). Each endpoint can have one or multiple connections, each
of which can be inactive, send media, receive media or both. Of course, a connection
is useful only if it collects media from an endpoint and sends it to another endpoint
(in MGCP, connections are each attached to a named endpoint, but send media to an
SDP-defined address, so it is possible to build connections from an MGCP endpoint
to an IP address that is not necessarily a declared MGCP endpoint). Connections can
be point-to-point or point-to-multipoint. A point-to-multipoint connection will typically
send to a multicast IP address.

This model is generally much more powerful and scalable than the TDM time slot model.
However, MGCP (like all other VoIP protocols) has one weakness compared with the
TDM model: in TDM, point-to-multipoint connections are native, very easy to establish
(each destination ‘listens’ to the source time slot), and invisible from the source. In VoIP,
they require endpoints to support multicast or need to be emulated through a special-
purpose endpoint that receives media from the source, then duplicates and sends media
to all the destinations. Because of this, features like silent monitoring in contact centers,
or lawful interception in residential telephony, are much more difficult to build than in
the TDM world.
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Figure 4.6 MGCP endpoints and connections (the call agent controls connections on
gateway endpoints).

MGCP uses a simple syntax for endpoint identifiers, with two components separated
by the ‘@’ character:

• A prefix which should be a unique identifier of the endpoint within the gateway. The
prefix structure can be hierarchical (interface, channel on interface), with each compo-
nent of the hierarchy separated by a slash (‘/’). Local endpoint identifier components
can be composed of any visible character except a space, ‘@’, ‘/’, ‘*’, or ‘$’. ‘*’ has
the special meaning of ‘all defined values of this component’, and ‘$’ means ‘any of
the values defined for this component’.

• The DNS domain name of the gateway. If the gateway is not registered in the DNS
and the call agent expects non-DNS names, then the name should be any string com-
posed of letters, numbers, and ‘.’ or ‘-’, as long as it is unique on the network. Some
vendors also use the numeric IP address of the gateway, between square brackets
(e.g., [10.10.10.10]).

A two-port analog gateway typically uses:

• aaln/1@analog-gateway.anydomain.org

• aaln/2@analog-gateway.anydomain.org

On a TDM trunk interface, where each interface handles multiple trunks and each trunk
has multiple circuits, each with its circuit identifier (referenced by the ISUP CIC), vendor
may use:
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• IF3/2/1@large-trunk-gateway.anydomain.org for circuit 1 on trunk 2 of interface IF3.

• IF5/4/$@large-trunk-gateway.anydomain.org for any circuit on trunk 4 of interface IF5.

In practice, each vendor uses its own convention for local endpoint names; but, as long
as sequences are identified by consecutive integers, it is very easy to configure the corre-
sponding masks on a call agent.

4.2.2 The protocol

4.2.2.1 Overview

MGCP call agents and gateways exchange ‘transactions’, composed of one command,
optional provisional responses, and a final response (Figure 4.7).

Commands and responses use a simple text format. MGCP 1.0 is composed of nine
commands exchanged between the call agent and a media gateway or a NAS (generically
called ‘gateway’ from now on). Each command is composed of a header, optionally
followed by an empty line, and a session description. The header is composed of multiple
lines (separated by a CR, an LF, or a CR + LF):

• A command line, composed of the command code, the transaction identifier, the target
endpoint name (optionally with local endpoint identifier wildcards ‘*’ or ‘$’), and
the MGCP protocol version, separated by the ASCII space (0×20) or tab (0×09)
character (e.g., the following is a valid command line ‘RQNT 1207 endpoint/1@rgw-
2567.anydomain.net MGCP 1.0’). Some MGCP gateways still use MGCP 0.1 (the
MGCP version immediately after the merger of IPDC and SGCP), but the differences
from MGCP 1.0 are minimal.

• A set of parameter lines, each using the ‘name:value’ format. Parameter names consist
of one or two letters, followed by a colon (e.g., B:e:mu). The most common parameters
are listed in Table 4.1.

Call agent 
Gateway

Command
Response

Command
Response

Call agent initiates transactions to manage/configure endpoints.

Gateway transactions are notifications requested by the call
agent or restart messages 

Call agent Gateway

Figure 4.7 MGCP commands and responses (each transaction refers to one or more
gateway endpoints).
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Table 4.1 Common MGCP parameters

K ResponseAck
B BearerInformation
C CallId
I ConnectionId
N NotifiedEntity
X RequestIdentifier
L LocalConnectionOptions
M ConnectionMode
R RequestedEvents
S SignalRequests
D DigitMap
O ObservedEvents
P ConnectionParameters
E ReasonCode
Z SpecificEndpointID
Z2 SecondEndpointID
I2 SecondConnectionID
F RequestedInfo
Q QuarantineHandling
T DetectEvents
RM RestartMethod
RD RestartDelay
A Capabilities
ES EventStates
MD MaxMGCPDatagram

Command lines and parameter lines are case-insensitive. A sample command is shown
in Figure 4.8. Each command targets one or more endpoints. Table 4.2 lists the verbs for
each of the nine MGCP commands. Experimental verbs can also be added, whose names
should start with an ‘X’.

RFC 2705 also described the verb ‘Move’ for ‘MoveConnection’ in an appendix. This
command disappeared in RFC 3435; it is now provided in a separate package (draft-
andreasen-mgcp-moveconnection-00.txt). Also, RFC 3435 defines the ‘Mesg’
verb for the ‘Message’ command defined in RFC 3435, appendix B.

Each of these commands triggers a response, including a 3-digit response code. Com-
mands and responses are associated by a TransactionID. The most common codes are
listed in Table 4.3 for reference.

4.2.2.2 Events and signal Packages

4.2.2.2.1 Definitions and syntax
A call agent that only manipulates media connections on endpoints cannot easily interact
with media information (e.g., in order to send back a dial tone to an analog gate-
way, the call agent would need to connect the gateway endpoint with an IP-based
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RQNT 1207 endpoint/1@rgw-2567.anydomain.net MGCP 0.1
X: 0123456789
R: hu
S: v

The call agent sends a NotificationRequest to the gateway:

• The NotificationRequest verb is RQNT.

• The TransactionId is 1207.

• The target endpointName is endpoint/1.

• The gateway domainName is @rgw-2567.anydomain.net.

• MGCP protocol version is 0.1.

• The requestIdentifier is 0123456789.

• The gateway will need to notify the call agent when it detects hang-up ‘hu’.

• The gateway must immediately generate an alerting tone ‘v’. 

Figure 4.8 A sample MGCP command.

Table 4.2 MGCP command verbs

Verb Code Direction: Call agent (→) Gateway (←)

EndpointConfiguration EPCF →
NotificationRequest RQNT →
Notify NTFY ←
CreateConnection CRCX →
ModifyConnection MDCX →
DeleteConnection DLCX → and ←
AuditEndpoint AUEP →
AuditConnection AUCX →
RestartInProgress RSIP ←

dial tone generator). MGCP uses signals to provide a simpler way to allow a call
agent to give instructions to endpoints that have some local signal generation capa-
bilities. A signal is simply an identifier known to the gateway which corresponds to
some action on the media bearer (e.g., playing the dial tone). Many applications also
require the call agent to be aware of certain events that are present in-band (e.g., DTMF
signals), or through some means accessible only to the gateway (e.g., an off-hook tran-
sition). The gateway can report this type of information to the call agent using MGCP
events.

Various types of gateways can report different events and generate different signals.
Some signals and events, however, are very common and most gateways support them.
In order to give some flexibility and extensibility for MGCP to support new types of
gateways that require specific events or signals, without interfering with already-defined
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Table 4.3 Common MGCP response codes

Code Description

100 The transaction is currently being executed. An actual completion message will follow
later (provisional response)

200 The requested transaction was executed normally
250 The connection was deleted
400 The transaction could not be executed, due to a transient error
401 The phone is already off-hook
402 The phone is already on-hook
403 The transaction could not be processed, because the endpoint does not have sufficient

resources at this time
404 Insufficient bandwidth at this time
500 The transaction could not be executed, because the endpoint is unknown
501 The transaction could not be executed, because the endpoint is not ready
502 The transaction could not be executed, because the endpoint does not have sufficient

resources
510 The transaction could not be executed, because a protocol error was detected
511 The transaction could not be executed, because the command contained an unrecognized

extension
512 The transaction could not be executed, because the gateway is not equipped to detect

one of the requested events
513 The transaction could not be executed, because the gateway is not equipped to generate

one of the requested signals
514 The transaction could not be executed, because the gateway cannot send the specified

announcement
515 The transaction refers to an incorrect connection-id
516 The transaction refers to an unknown call-id
517 Unsupported or invalid mode
518 Unsupported or unknown package
519 Endpoint does not have a digit map
520 The transaction could not be executed, because the endpoint is ‘restarting’
521 Endpoint redirected to another call agent
522 No such event or signal
523 Unknown action or illegal combination of actions
524 Internal inconsistency in LocalConnectionOptions
525 Unknown extension in LocalConnectionOptions
526 Insufficient bandwidth
527 Missing RemoteConnectionDescriptor
528 Incompatible protocol version
529 Internal hardware failure
530 CAS signaling protocol error
531 Failure of a grouping of trunks (facility failure)
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names, MGCP introduced the notion of ‘packages’. A package is simply a namespace,
identified by one or more letters. Events and signals can be defined within this namespace
without risk of ambiguity with other namespaces. An event or signal name must be
prefixed by its package name, separated by a slash (e.g., ‘L/HU’ refers to event ‘HU’
within package line ‘L’). Package names and events are not case-sensitive (i.e., ‘L/HU’
is equivalent to ‘L/hu’ or ‘l/hu’).

There are some special cases in which the package prefix can be omitted:

• A call agent can omit the prefix for events and signals that are part of the default
package, when sending commands to an endpoint that is known to support a default
package (e.g., if the package line is the default package for an analog gateway, then dl
and L/dl are equivalent signals).

• Digit events can be sent without a prefix, although it is recommended to send them
with the appropriate prefix (e.g., L/8 for digit 8). Package names are not allowed to
contain digits in order to prevent any ambiguity.

These exceptions are provided mainly to allow MGCP to remain tolerant of older imple-
mentations, but it is recommended to always include the package name prefix.

Events and signals are detected/applied by default on the bearer channels connected to
the endpoints. It is also possible to request the event/signal to apply to a connection; in
this case, the connection identifier is added after the event name, separated by an ‘@’
sign (e.g., G/rt@234A2).

MGCP packages is an area where RFC 3435 expanded significantly on RFC 2705;
many things (reason codes, actions, etc.) can be expanded in a package now, not just
events and signals (see Section 6 in RFC 3435).

4.2.2.2.2 Categories of signals
There are three signal categories depending on the way they persist or not after being
applied:

• On–off (OO) signals last until they are explicitly turned off by a NotificationRequest
with an empty Signals line (or the endpoint restarts). These signals can be turned
‘on’ (resp. ‘off’) repeatedly, they simply remain ‘on’ (resp. ‘off’). A message-waiting
indication is a typical example.

• Timeout (TO) signals last until they are explicitly canceled or after a timer. An ‘oper-
ation complete’ event is generated when such a signal expires (e.g., the ring-back tone
provided when a handset goes off-hook will typically expire after 3 min). Once applied,
ring-back will stop (1) if canceled (new NotificationRequest without ring-back in the
Signals line), (2) if an event requested by the NotificationRequest occurs (this is the
default behavior, although it is possible to override it), or (3) if it times out. The timeout
value must be defined by the package.
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• Brief (BR) signals. These very short signals always complete once the endpoint has
begun to execute them, regardless of subsequent events or Notification requests.

4.2.2.2.3 Common packages

Many packages have been defined. Here is a list of some of the reference documents:

• RFC 3064 (CAS)

• RFC 3149 (Business Phone)

• RFC 3441 (ATM)

• draft-foster-mgcp-basic-packages-10.txt

• draft-foster-mgcp-bulkaudits-08.txt

• draft-andreasen-mgcp-fax-01.txt

• draft-foster-mgcp-lockstep-00.txt

• draft-andreasen-mgcp-moveconnection-00.txt

• draft-aoun-mgcp-nat-package-02.txt

• draft-foster-mgcp-redirect-01.txt

There are still more on the way. The most common packages are listed in Table 4.4.
The following sections list the contents of some commonly used packages, defined

in RFC 3660 (Basic MGCP packages). An X in the ‘R’ column denotes an event that
can be requested by the call agent. The S column specifies the type of signal (on–off,
Timeout, Brief).

4.2.2.2.3.1 Generic media package

As of RFC 3435, packages now have a version number, the original version is zero.
The original version of the generic media package was version 0, the current version is
version 1.

Table 4.4 Main MGCP packages

Generic media package G
DTMF package D
MF package M
Trunk package T
Line package L
Handset package H
RTP package R
Network access server package N
Announcement server package A
Script package S
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Symbol Definition R S

cf Confirm tone or ‘positive indication tone’ of ITU
E.182

BR

cg Network congestion tone of ITU E.180/E.182 TO
ft Fax tone detected (V.21 fax preamble and T.30 CNG

tone)
X

It Intercept tone (ITU-T E.180 supplement 2) TO
ld Long-duration connection (>1 hour) X
mt Modem detected (V.25 ANSwer tone, V.8 modified

answer tone)
X

oc Operation complete X
of Report failure X
pat(###) Pattern ### detected (answering machine, tone, etc.).

To be defined administratively on the gateway
X OO

pt Pre-emption tone (ITU-T E.180 supplement 2) TO
rbk(###) Ring-back on connection TO (180 s)
rt Ring-back tone or ‘ringing tone’ (ITU E.180 and

E.182)
TO (180 s)

4.2.2.2.3.2 DTMF package

Symbol Definition R S

# DTMF # X BR
∗ DTMF ∗ X BR
. . . . . . X BR
0 DTMF 0 X BR
9 DTMF 9 X BR
A DTMF A X BR
B DTMF B X BR
C DTMF C X BR
D DTMF D X BR
DD DTMF tone duration exceeded, or generate DTMF in

TO mode
X TO

DO DTMF signal generated in OO mode OO
L Long-duration indicator (over 2 s) X
oc Operation complete
of Report operation failure X
T Interdigit timer: 4 s (T critical) if it causes a final

match of the digitmap rule; 16 s (T partial) if there
is still ambiguity and multiple rules still apply

X Wildcard DTMF 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 X
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4.2.2.2.3.3 Trunk package

Symbol Definition R S

as Answer supervision X BR
bl Blocking: bl(+) to block the circuit; bl(−) to

unblock it
BR

bz Busy as defined in ITU E.180 TO
co1 Continuity tone: 2,010 Hz (±30). When sending

this tone during a continuity test, it is expected
to receive this same frequency back

X TO

co2 Continuity test: 1,780 Hz (±30). When sending
this tone during a continuity test, it is expected
to receive the co1 frequency back

X TO

lb Loop-back OO
nm New milliwatt tone (1,004 Hz) X TO
oc Operation complete X
of Report operation failure X
om Old milliwatt tone (1,000 Hz) X TO
ro Reorder tone (ITU E.182 congestion tone) X TO
tl Test line 2,225 Hz (±25) X TO
zz No circuit tri-tone X TO

4.2.2.2.3.4 Line package

The exact frequencies corresponding to some signals of the line package may vary in
each country. Vendors usually provide localization of these signals through the gateway-
provisioning interface.

Symbol Definition R S

adsi(string) adsi display BR
aw Answer tone X OO
bz Busy tone (ITU E.180) TO (30 s)
ci(ti, nu, na) Caller ID (time, calling number, calling

name). If quoted, the string can be
UTF-8 encoded

BR

dl Dial tone (ITU E.180) TO (16 s)
e Error tone X BR
hd Off-hook transition X
hf Flash-hook X
hu On-hook transition X
mwi Message-waiting indication tone TO (16 s)
nbz Network busy (fast cycle busy) X OO
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Symbol Definition R S

oc Report on completion, may contain
completed signal as a parameter

X

of Report failure X
osi Network disconnect TO
ot Off-hook warning tone (when phone has

been left off-hook for too long, and
there is no active call)

OO (∞)

p Prompt tone X BR
r0 . . . r7 Distinctive ringing TO (30 s)
rg Ringing TO (30 s)
ro Reorder tone (congestion tone ITU E.182) TO (30 s)
rs Ring-splash (reminder short ring for

call-forwarded lines when a call is
redirected)

BR

s(###) Distinctive tone pattern, to be defined on
the gateway

X BR

sit Special information tone (ITU E.180)
sl Stutter dial tone used to confirm an action

and require additional input
TO (16 s)

v Alerting tone OO
vmwi Visual message-waiting indicator OO
wt Call-waiting tone (ITU E.180) TO (30 s)
wt1 . . . wt4 Alternative call-waiting tones (ITU E.180) TO (30 s)
y Recorder warning tone (ITU E.180) TO
z Calling card service tone BR

4.2.2.2.3.5 Handset emulation package

This handset emulation package is the same as line package, but some handset-related
events like ‘off-hook’ and ‘on-hook’ can be signaled as well as detected. This is useful
to provide the automatic off-hook feature (activation of a speaker phone), for phones
controlled via CTI (Computer Telephony Integration). This also allows providing features
like paging or remote baby monitoring.

4.2.2.2.3.6 RTP package

These events can be used by a call agent to get a more dynamic view of gateway media
processing: for instance, some gateways can automatically change their coders from a
compressed low-bitrate coder to G.711 for fax; the UC event can be used to learn that
this occurred.
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Symbol Definition R S

UC Used codec changed (e.g., UC(15) indicates the codec
has changed to µ-law). Codec numbers are
according to RFC 1890.

X

SR(###) Sampling rate changed (e.g., SR(20) for 20 ms) X
JI(###) Jitter buffer changed (e.g., JI(20) for 20 ms) X
PL(###) Packet loss exceeded (e.g., PL(20) for 20 lost in

100,000)
X

qa Quality alert X
co1 Continuity tone X TO
co2 Continuity tone X TO
of Report failure X

4.2.2.3 The MGCP transport layer over UDP

MGCP commands and responses are sent over UDP. The call agent MGCP default receive
port is 2727 and the gateway default receive port is 2427.

UDP has many advantages, because it allows the call agent and gateways to control the
retransmission of lost packets themselves, and therefore avoid the uncontrolled latency and
head-of-line blocking issues associated with TCP. A call agent can be implemented using
a single socket for multiple gateways and is not subject to operating system limitations
on the number of sockets, which are unavoidable with TCP.

An MGCP stack must handle packet loss detection and retransmission, and must also
detect the loss of a connection. The mechanism of MGCP is very sophisticated. It is based
on retransmissions, but ensures that a given command cannot be executed twice (‘at most
once’).

Each command may receive one or more provisional responses (1xx), and at most one
final response. The command, provisional responses, and final response constitute a trans-
action. Each command contains a transaction identifier between 1 and 999,999,999 (both
included), which is copied in all responses related to that command. Each MGCP entity
maintains a list of recent commands in process of execution locally, and of recently
sent responses. The processing of commands and responses is global for all the end-
points managed by the MGCP device (i.e., there is no separate transaction space or
retransmission buffer for each endpoint: typically transactions are managed per MGCP
gateway—identified by its gateway name).

New received commands, which are not in the ‘command in process’ list or which do
not have any response in the pile of recent responses, are sent to the MGCP execution
engine, which generates a response. The transaction identifier remains in the pile of
commands in process until a final response has been generated. Once a final response has
been sent, it remains in the ‘recent responses’ pile until it expires (see p 285 for details
on the expiration). This command processing cycle is illustrated in Figure 4.9.

If a command is repeated by a call agent after it has been fully executed, the corre-
sponding response is already in the pile of recent responses. The command is not executed
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MG

...

12347

Commands in process

...

12345

12346

Recent responses

200 OK

200 OK

12347 100

MGCP
execution

engine

New command 12348

Response: 200 12348 OK 

MGCP entity

...

Figure 4.9 Handling of a new command by MGCP.

again, instead the stored response is sent as shown in Figure 4.10. If, on the other hand,
the execution engine has not generated a response to the first command yet, the command
is still in the commands in process pile, and a 100 PENDING provisional response is
generated automatically (or 101 in the case of overload). As shown in Figure 4.11, the
duplicate command is not sent to the execution engine.

A command in the commands in process pile expires as soon as the MGCP execution
engine has generated a final response. An entry in the recent responses pile should not
expire if there is still any chance that a duplicate command will be received. The expiration
timer (T-HIST) should be greater than the maximum duration of a transaction which
takes into account the maximum number of retransmissions, the delay between each
retransmission, and the maximum propagation delay of a packet in the network. A typical
value used is typically about 30 s; however, other values can be used as well, as long as
the sender and receiver agree on the actual value.

MGCP also provides a way for the sender of a command to acknowledge previous
responses: the response acknowledgment attribute contains a range of confirmed transac-
tionIDs. In this case the corresponding response strings can be deleted immediately from
the recent responses pile (there will never be a need to resend them), but the transactionID
should still stay in the ‘long-timer’ pile in the unlikely case that some network element
duplicates the UDP packet of the original command. This allows the MGCP entity to
ignore the duplicate. No response at all is sent.

MGCP entities are required to evaluate dynamically the network round trip time from
the time elapsed between the sending of a command and reception of a response: for



284 IP TELEPHONY

MG

...

12347

Commands in process

...

12345

12346

Recent responses
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200 OK

12346 200
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Response: 200 12348 OK 

MGCP entity

...
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Figure 4.10 Handling of a duplicate command already executed by MGCP.
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Figure 4.11 Handling of a duplicate command already in execution.
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instance, they can evaluate the average acknowledgement delay (AAD) and the aver-
age delay deviation (ADEV). The first command retransmission timer can then be set to
AAD + N * ADEV. Subsequent kth retransmission timers for the same command should
be set to AAD * 2k + N * ADEV + random component (between 0 and ADEV), ensur-
ing exponential back-off in case of network congestion, with an upper bound B set to
4 s typically. Once the upper bound for the retransmission timer has been reached, the
implementation should also limit the number R of retransmissions. The recommended
practice is to limit the total cumulated time during which the implementation attempts to
resend. A complete retransmission scenario is shown in Figure 4.12.

In some special cases (e.g., transmission over satellite), the algorithm can also be
modified to force a retransmission timer smaller than the round trip delay in order to
ensure that the time to recover from packet loss is very small despite the link delay
(but this uses more bandwidth). The sophisticated MGCP transport layer can therefore
be tuned to show very network-friendly behavior, like TCP, but in a more application-
controlled fashion, or to have a more aggressive behavior (very similar to the behavior
of the SS7 transport layer MTP behavior over satellite links, called pre-emptive cyclic
retransmission).

R2 = 2∗2 + 1 + 0.1 = 5.7

R3 = 6 < (2∗4 + 1 + 0.3) = 9.5

R1 = 2 + 1 = 3

Command C first sent.
No response received.
At this time:
AAD = 2, ADEV = 1
R = 2 + 1 = 3

Command 0

Response 0

Command 2

Response 2

T

cmd transmission
or retransmission
/response

Response 1

Command 1

Ack delay 2

Max retransmission
time = 6

R4 = 6

Max retransmission time

Last retransmission

Figure 4.12 MGCP command retransmission.
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4.2.2.4 MGCP commands from the call agent to the gateway

4.2.2.4.1 Endpoint configuration command (EPCF)
This command is sent by the call agent to the gateway to configure the type of bearer
encoding (‘B:’) to expect and send on the line side (i.e., not on the VoIP side) of one
endpoint or a range of endpoints. The two values defined so far are the G.711 A-law
(‘e:A’; e.g., Europe) or µ-law (‘e:mu’; e.g., in the US). The gateway simply responds
with a return code (Figure 4.13).

4.2.2.4.2 Notification request command (RQNT)
This very elaborate command requests the media gateway to watch for specific telephony
events. These events can be detected in-band, such as fax tones, DTMF, continuity tones,
or analog line status signals like off-hook, on-hook, flash-hook. An example of a RQNT
command is given in Figure 4.14.

EndpointId and RequestIdentifier are mandatory parameters, RequestIdentifier is used
to correlate the request and the notifications it triggers. In addition, the RQNT command
will usually contain some of the following parameters:

• N parameter (notified entity): by default the response is sent to the originator of the
request (same IP address and UDP port), and gateway-initiated commands are sent to
the IP addresses of the call agent resolved from the call agent name. The NotifiedEntity
parameter affects where notifications and other gateway-initiated commands are sent
(e.g., DLCX and RSIP), until the gateway restarts.

• R parameter: the comma-separated list of requested events. Event names are defined
in the MGCP event packages (e.g., ‘hd’ for the off-hook transition), digits are also
considered events ([0–9#T] means digits 0 to 9, or # or a timeout of 4 s. The symbol L
(long duration) can also be used to detect long DTMF signals. In this case the detected
DTMF signal is sent in a first notification and a subsequent notification is sent after 2 s
if the DTMF signal persists. Each event can be associated with one or more actions
listed between brackets immediately after the event name. The actions can be N for
immediate notification (the default if no action is specified), A for accumulate, D to

EPCF 1207 endpoint/∗@rgw-2567.anydomain.net MGCP 1.0
B : e : mu

200 1207 OK

PSTN

G.711
m law

CA GW

Figure 4.13 EPCF command example.



THE MEDIA GATEWAY TO MEDIA CONTROLLER PROTOCOL (MGCP) 287

RQNT 441087 aaln/0@[132.147.160.88]  MGCP 1.0
X:12369848
R:L/HU(N),D/[0−9#*](N), L/OC(N)
S:L/DL

NTFY 17 aaln/0@[132.147.160.88] MGCP 1.0
X: 12369848
O: D/4
K: 16

200 441087 OK

CA GW

Send dial tone signal (DL),
from package line (L/) 

Detect hang-up event (HU),
from package line (L/), and 

report immediately (N) 

Detect digits or ∗ or #, from package DTMF
(D/), and report immediately (N)

Detect operation complete
events (e.g.,ring-back timeout) 

Observed event: digit 4 
from package DTMF (D)

Request identifier

Request identifier

Figure 4.14 RQNT/NOTIFY command example.

R: hd(E(R(hu(N)),S(dl),D(57xxx|002x.T)))

E: EmbeddedRequest

R: NotificationRequest

Notify immediately S: Signal request

D: Digit map

Figure 4.15 Embedded signal request and digit map example.

accumulate according to the digit map (see Figure 4.15), S to swap the active media
connection to the next one if there is any, I to ignore the event, K to keep the signal
active (normally, the signals present in the S line of a NotificationRequest stop at
the first detected requested event, see below), and E to enable (execute) an embedded
notification request. An embedded notification request (Figure 4.15) applies to the same
endpoint as the NotificationRequest and consists of:

• An optional embedded RequestedEvents parameter: R(embedded RequestedEvents
line). For instance, R([0–9#T] (D), hu (N)).

• An optional embedded SignalRequests parameter: S(signal requests). For instance,
S(dl).

• An optional embedded DigitMap: D(digit map). For instance, D([0–9]. [#T]).If
an embedded digit map is absent, the current value is used.
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All MGCP implementations are required to support at least one level of embedding.
Most commercial implementations support exactly one. In many situations, an event will
be received by a gateway immediately before it receives a notification request. Without
proper handling, this would result in a ‘race situation’ where, depending on the exact
timing, the event may or may not be reported to the call agent. The ‘quarantine list’,
explained below, is designed to avoid this type of race situation. In addition, sometimes
a call agent will request to be notified of an event corresponding to a condition that is
already true, or becomes true before the gateway sends a response to the RQNT command
(glare condition): for instance, a call agent requests a notification for the off-hook event
(L/hd), but the handset is already off-hook. In this case the gateway responds with an
error that indicates the current state (e.g., 401 Phone Already Off-hook, as shown in
Figure 4.16).

• D parameter (digit map): a digit map is a set of rules telling the gateway when to
accumulate or notify digits detected on the target endpoint bearer: for instance, ‘00T’ is
a digit string with a single rule and ‘(0T|00T|[1–7]xxx|8xxxxxxx|#xxxxxxx|
*xx|91xxxxxxxxxx|9011x.T)’ is a digit string with multiple rules. The syntax
of each rule is derived from the Unix ‘egrep’ command:

• ‘[1–4]’ matches any digit between 1 and 4, including 1 and 4.

• ‘[1–79BT]’ matches any digit between 1 and 7, or 9, or B, or a timeout.

• ‘x’ matches any single digit (equivalent to [0–9]).

RQNT 170726 aaln/0@[132.147.160.88] MGCP 1.0
X:12369848
R:L/HD(N), L/HU(N)

402 170726 already on hook

CA GW

Detect hang-up event (HU) and
off-hook event (HD) from package
line (L/), and report immediately (N)  

Now the call agent knows that the 
phone is already on hook

RQNT 170726 aaln/0@132.147.160.88 MGCP 1.0
X:12369848
R:L/HD(N)

200 170727 OK

Detect off-hook event (HD) only

Now the RQNT command is accepted 

Figure 4.16 Handling of a glare condition with MGCP.
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• ‘x.’ (the dot operator) matches any positive number of occurrences of the previously
specified symbol. Therefore, ‘x.’ or ‘[0–9].’ means ‘any positive number of
digits’.

If the timer (T) symbol is the last event required to match a rule, the timeout event is
triggered if the last detected tone occurred more than 4 s ago (critical timer). If there
are more digits to match after the timeout event, or when at least one more digit is
required to match any of the digit map rules, the timeout event is triggered after only
16 s (partial timer). A digit string is accumulated until it matches one of the rules,
or if it can no longer match any of the rules (overqualification). The accumulation
mechanism is illustrated in Figure 4.17.

• S parameter: a request to apply a signal to the endpoint (e.g., ringing or a ring-back
tone). By default timeout signals stop as soon as one of the events in the list of
requested events is detected (unless the event explicitly states through the K action that
it should be kept active).

• Q parameter (quarantine handling): this describes how signals received just before the
notification request (quarantine list, see Figure 4.18) should be handled. The default is
to process them, but the call agent can specify that they should be ignored. The param-
eter also specifies whether only one notification should be sent or whether multiple
notifications should be sent. As soon as a gateway has sent a NOTIFY, it transitions
to the ‘notification pending’ state and begins to accumulate events in the quarantine
list, a sort of buffer of events not yet processed. The gateway continues to accumulate
events in the quarantine list until the response to the NOTIFY command is received
(success or failure). If the call agent specified in the Q parameter that it wanted only
one NOTIFY in response to a RQNT, then the gateway continues accumulating events
until the next RQNT. On the other hand, if the gateway can send multiple successive
NOTIFY commands, then it processes the list of quarantined events (Figure 4.19). The

Current
dial string

Observed
events

Accumulate
according to digit map

RequestedEvents

Match digit map
2xx

Trigger event
L/hu(N)

Flush FIFO up
to triggering event

Send NOTIFY
Switch to

notification state
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nt
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Figure 4.17 MGCP event accumulation. (normal state)



290 IP TELEPHONY

Quarantine list

E
ve

nt

E
ve

nt
E

ve
nt

E
ve

nt
E

ve
nt

E
ve

nt

RequestedEvents+
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Normal state

Last notification-
pending state (no

response yet)  

Current
dial string

Observed
events
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according to digit map

(Accumulate+accumulate
according to digit map)

RequestedEvents

Match digit map
2xx

Trigger event
L/hu(N)

Flush FIFO up 
to triggering event

Send NOTIFY
Switch to 

notification state

Figure 4.18 Accumulation of events in the quarantine list. If CA expects no more than one
notification, continue accumulating until the next RQNT. If multiple NOTIFY commands are
allowed, process quarantined events and, if a triggering condition is met, send a NOTIFY and
either leave unprocessed events in the quarantine list or empty the quarantine list. Then send
NOTIFY with multiple Events and dial strings.
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Figure 4.19 Processing the quarantine list.

gateway can then process events from the quarantine list normally as if they had just
been received, using the same list of requested events, and the same digit map (the
corresponding FIFOs are empty). If a triggering condition is met, the gateway goes to
notification state again. Optionally, the gateway can attempt to empty the quarantine list
and transmit a single NOTIFY command with multiple events, up to the last triggering
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Figure 4.20 RQNT processing according to current endpoint state.

event. The gateway goes back to normal state if the complete quarantine buffer is
processed without encountering a triggering event. When a new RQNT is received fol-
lowing a notification, if the Q parameter states that the quarantine list should be ignored,
then the quarantine list, dial string and observed event FIFOs are reset. Otherwise, the
quarantine list must be processed (Figure 4.20):

• If the endpoint is in notification pending state, the dial string and observed event
FIFOs are reset and the quarantine list is processed.

• If the endpoint is in normal state, the dial string is reset, the observed events list
(remaining events accumulated that have not yet triggered a notification) is transferred
to the quarantined FIFO, and the Quarantined FIFO is processed.

If a triggering condition is reached with the new RQNT, the gateway must ensure
that any previous NOTIFY has been received by the call agent before sending a new
NOTIFY. The easiest way to do so is simply to wait in notification state until an
ACKNOWLEDGE of the previous NOTIFY has been received. Another way is to
immediately resend the pending NOTIFY with the new NOTIFY piggybacked.

• T parameter (detect events): this adds some events that should be detected in the
quarantine list extra to the events specified in the list of requested events.
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• An encapsulated EndpointConfiguration command, which is executed after the RQNT
if it succeeds. When this command is present, the parameters of the EndpointConfigura-
tion command are included with the normal parameters of the NotificationRequest, with
the exception of the EndpointId, which is not replicated.

The RQNT command enables MGCP to offer the fine granularity of control typical of
stimulus protocols (any event can be requested by the call agent), while allowing the call
agent to optimize the exchanges if it does not need to be aware of all events, or if it knows
already what to do if a certain event occurs. This is made possible by the combined action
of the digit map (accumulation of digits), and the embedded RequestNotification. Both
offer a sort of mini look-ahead program: ‘Look for this event pattern, if pattern x occurs,
then look for this other set of events, and apply this new signal.’

The call agent and the gateway form a distributed system that can potentially become
desynchronized due to failures or, simply, race conditions. The execution of the RQNT
command eliminates all desynchronizations that are due to race conditions. The fact that
digit maps and requested events lists are completely replaced at each RQNT ensures
that any desynchronization will last only as long as the currently accumulated events. In
addition, the error messages sent when the call agent requires notification of an event
which is already active (e.g., off-hook) ensures that synchronization is achieved quickly
after the reboot of a gateway.

4.2.2.4.3 Create connection command (CRCX)

This command is sent by the call agent to the media gateway to create a connection on
an endpoint. Several types of connections can be created.

4.2.2.4.3.1 Connections to an external media source or sink described by SDP

This is the most common case. The command (illustrated in Figure 4.21) contains the
following parameters:

• A CallId: the call identifier is composed of up to 32 hexadecimal characters. It is unique
to the call agent/gateway and identical on all connections that pertain to the same call.
For the gateway, it is an opaque parameter that serves no operational purpose, but can
be included in statistics and to facilitate troubleshooting.

• The target EndpointId. If the ‘any of’ wildcard is used by the call agent, the selected
endpoint name will be included by the gateway in the SpecificEndpoint parameter of
the response.

• Optionally, a new Notified Entity for the endpoint (where notifications and other
gateway-initiated commands should be sent from now on).

• Optionally, LocalConnectionOptions which specify: the desired codecs (e.g., ‘a:
PCMU;PCMA;G726-32’) in preference order; the MIME formats that are allowed (e.g.,
‘a:image/t38’); the desired packetization period in milliseconds (e.g., ‘p:20–40’); the
maximum bandwidth in kbps including IP/UDP/RTP overhead (‘b:100–200’); the type
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CRCX 450069 aaln/0@[132.147.160.88] MGCP 1.0
C:308493a0580
L:p:20,a:PCMU
M:inactive

200 450069 OK
I: 0 

v = 0^M
c = IN IP4 132.147.160.88
m = audio 16384 RTP/AVP 0 

Request for 20-ms packets/G.711
m-law

ConnectionId = 0

CA GW

Call-Id

Initial mode of the
 connection

SDP local parameters.
Send packets to

132.147.160.88:16384

Figure 4.21 CRCX command example.

of service (‘t:a2’, corresponding to the DiffServ1 code point to use—the default is 0);
the activation of the echo canceler (e.g., ‘e:off’—the default is active); the activation
silence suppression (e.g., ‘s:on’—the default is active); gain control
(e.g., ‘gc:auto’—the default is no gain control); the security key for RTP encryp-
tion (e.g., ‘k:clear:mysecret’, by default there is no encryption of RTP); the network
type (e.g., ‘nt:IN’, most gateways support a single network type); resource reservation
(e.g., ‘r:g’ for guaranteed service, ‘r:cl’ for controlled load2).

• The mode of the connection. The defined modes are ‘sendonly’, ‘recvonly’ (receive
only), ‘sendrecv’ (send and receive), ‘confrnce’ (conference), ‘inactive’, ‘loopback’,
‘conttest’ (continuity test), ‘netwloop’ (network loop-back), and ‘netwtest’ (network
continuity test). Figure 4.22 illustrates the relations between the media streams of each
type of connection and the corresponding endpoint. The

∑
symbol means that sig-

nals are mixed before transmission. Signals received from ‘conference’ connections
are sent to all other connections that are also in ‘conference’ mode, and are mixed
before transmission. ‘sendonly’, ‘sendreceive’, and ‘conference’ connections require
a RemoteConnectionDescriptor (or another endpoint identifier), otherwise the media
cannot be sent. A loop-back connection returns any media that are received from the
endpoint back to the same endpoint (standard ITU continuity test). A continuity test
connection returns a 2,010-Hz signal if a 1,780-Hz signal is received from the end-
point (used in the US). A network loop-back connection returns media received from

1 See companion book, Beyond VoIP Protocols
2 See companion book, Beyond VoIP Protocols, for a detailed description of the RSVP resource
reservation protocol.
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Bearer
facilityIP

network

sendonly

receiveonly

conference

conference

sendreceive Endpoint

Figure 4.22 MGCP connection types.

the network back to the network. The network continuity test mode is obsolete. These
connection modes are illustrated in Figure 4.23.

• Optionally, a remote connection descriptor that specifies using SDP where the media
stream should be sent and the options for the codec to use.

• Optionally, an encapsulated NotificationRequest command. The parameters of the
encapsulated command are simply added, apart from the EndpointID which is not
duplicated.

• Optionally, an encapsulated EndpointConfiguration command. The parameters of
the encapsulated command are simply added, apart from the endpointID which is not
duplicated.

By sending an encapsulated NotificationRequest command the call agent has the ability
to request the gateway to execute simultaneous actions. For example:

• Ask the residential gateway to prepare a connection, in order to be sure that the user
can start speaking as soon as the phone goes off-hook.

• Ask the residential gateway to start ringing.

• Ask the residential gateway to notify the call agent when the phone goes off-hook.

This can be accomplished in a single CreateConnection command, by also transmitting
the RequestedEvent parameters for the off-hook event and the SignalRequest parameter
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Endpoint

Loop-back

Continuity test

(2,010 Hz)

(1,780 Hz)

Network loop-back

GATEWAY ENDPOINT AND CONNECTIONS

Figure 4.23 Loop-back and continuity test connection modes.

for the ringing signal. This combination dramatically reduces the number of round trips
necessary to establish a connection between two endpoints and provides more scalability
options for the call agent.

After processing the CRCX command, the gateway returns:

• A ConnectionID.

• A LocalConnectionDescriptor specifying the local parameters of the connection using
SDP.

• Optionally, a specific EndpointID if the endpoint was not specified in the command.

4.2.2.4.3.2 Connections to another endpoint on the same gateway

Connections to another endpoint on the same gateway occur frequently. Many manufac-
turers do not support any optimization for this type of connection and some events do
not support it properly (this is one of the most common bugs in gateway implementations
across all VoIP protocols), in which case the call agent uses the normal procedure, giving
a local gateway IP address and port as the RemoteConnectionDescriptor.

But, some gateways allow endpoints to communicate locally without requiring pack-
etization and switching through the IP network. This type of connection is similar to
the previous type of connection, except that the call agent specifies a SecondEndpointID
instead of a RemoteConnectionDescriptor. Such a command really creates two connections
(one on each endpoint), the response provides the ConnectionIDs of both connections.
The second connection is by default in sendrect mode.
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MDCX 450070 aaln/0@[132.147.160.88] MGCP 1.0
C:308493a0580
I:0
L:p:20,a:PCMU
M:sendrecv

v = 0
o = - 0 0 IN IP4 132.147.160.87
s = -
c = IN IP4 132.147.160.87
t = 0 0 
m = audio 26664 RTP/AVP 0 
200 450070 OK

200 450070 OK

CA GW

Call-Id

New mode of the
connection

SDP remote parameters.
Send packets to

132.147.160.87:26664

Connection Id

Figure 4.24 MDCX command example.

4.2.2.4.4 Modify connection command (MDCX)
This command (illustrated in Figure 4.24) enables a call agent to modify a connection
that has already been set up by the gateway. The parameters are the same as in the
CreateConnection command, with the addition of the ConnectionID that serves to identify
the target connection.

The ModifyConnection command can change all parameters of a connection: activation
mode, codec, packetization period, etc.

4.2.2.4.5 Delete connection command (DLCX)
This command enables the call agent to terminate a given connection. It should be noted
that if there is more than one gateway involved in a call, the call agent sends the Delete-
Connection command to each of the media gateways in order to fully tear down both
ends of the call.

As shown in Figure 4.25, a nice functionality provided by MGCP is that the media
gateway, on termination of a connection, has to send to the call agent the following
information:

• Number of packets (RTP) sent.

• Number of octets sent.

• Number of packets (RTP) received.

• Number of octets received.

• Number of packets lost.
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DLCX 450071 aaln/0@[132.147.160.88] MGCP 1.0
C:308493a0580
I:0

CA GW

Call-Id

Connection-Id
(if omitted, all connections
releated to the Call-Id will be 
deleted on that endpoint)

200 450071 OK

P: PS = 1245, OS = 62345, PR = 780, OR = 45123, PL = 10, JI = 27, LA = 48

Packets sent

Octets sent

Packets received

Octets received

Packets lost

Jitter
Average one-way 

latency

Figure 4.25 DLCX command example.

• Interarrival jitter.

• Average transmission delay.

These parameters are calculated as for RTCP (see Chapter 1).
MGCP also allows a media gateway to clear a connection on its own (e.g., in the event of

connection loss or a failure). In this context the media gateway sends a DeleteConnection
command to the call agent including all the connection statistics.

It is also possible for a call agent to delete all the connections of a call at the same time
by omitting the ConnectionID. Note that this command does not return any individual
connection statistics or call parameters.

4.2.2.4.6 Audit endpoint command (AUEP)
The call agent can use this command in order to check whether an endpoint is up and run-
ning, and to learn dynamically its capabilities (Figure 4.26). Using the ‘all off’ wildcard,
the call agent can also learn the number of endpoints present on a given gateway.

4.2.2.4.7 Audit connection command (AUCX)
This command enables the call agent to retrieve all the parameters attached to a connection
identified by a ConnectionID on an endpoint identified by its EndpointID (Figure 4.27).
This can be used by a call agent to check that a connection is still active: if no information
is requested, the gateway simply responds with 200 OK if the connection exists.
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AUEP 170725 aaln/0@[132.147.160.88] MGCP 1.0
F:A

CA GW

Call-Id

Requested info: capabilities (A)

A: v:L;G;D, p:10-60, a:PCMU;PCMA;G723, b:64, e:on, s:on,
t:00-FF, m:sendonly;recvonly;sendrecv;inactive;confrnce

Supported connection
modes

Codecs
Packetization

range Echo
cancelation

Silence
suppression

Diffserv
codepoint

Supported
packages

200 170725

Figure 4.26 AUEP command example.

AUCX 2003 aaln/0@[132.147.160.88]MGCP 1.0 
I: 0 
F: C,N,L,M,LC,P

CA GW

Connection- Id

Requested info: CallID, NotifiedEntity, 
LocalConnectionOptions,Connection mode,
LocalConnectionDescriptor, and connection 
parameters:

200 2003 OK
C: 308493a0580
N:ca@ca.anydomain.net 
L: p:20, a:PCMU
M:sendrecv
P: PS=395, OS=22850, PR=615, OR=30937, PL=7, JI=26, LA=47

v=0
o=-4723891 7428910 IN IP4 132.147.160.88 
s=-
c=INIP4 132.147.160.88
t=0 0
m=audio 16384 RTP/AVP 0 

Local ConnectionDescriptor

Connection
Mode

NotifiedEntity

Connection
Parameters

LocalConnectionOptions

Call Id

Figure 4.27 AUCX command example.
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4.2.2.5 MGCP commands from the gateway to the call agent

4.2.2.5.1 Notify command (NTFY)
This command enables the media gateway to send back events that were requested by the
media gateway controller. The media gateway can send one or several events in a NOTIFY
command. Each notification reports events from a given endpoint (possibly a connection
on an endpoint), listed in the endpoint part of the command header. The correlation
between the request and the corresponding notification is provided by the RequestIdentifier
(X parameter). The list of notified events is specified in the ObservedEvents (O) parameter,
which is a comma-separated list of events. Events appear in the order in which they have
been detected. The form of events can be:

• The event name, only if it is part of the default package (not recommended), such
as hd.

• The package name and the event name: L/HD.

• The package name, event name, and ConnectionID for events detected on a connec-
tion: L/HD@134a23b.

When booting, some endpoints send without solicitation their current state (e.g., off-hook)
with special request ID 0.

The NOTIFY command is acknowledged by a return code from the call agent.

4.2.2.5.2 Restart in progress command (RSIP)
This command allows a gateway to make a call agent aware of an endpoint or a group
of endpoints that are going to be taken out of service. In this case the restart method can
be graceful (RM:graceful), can specify a delay (RD), or can be forced (connections are
lost immediately).

The message is also sent by gateways when they boot, to make the call agent aware
of their presence (Figure 4.28). In this case the restart method is ‘restart’, and a delay
can be specified until the endpoints are operational (0 is the default value if nothing is
specified). Restart method ‘disconnected’ can also be used to alert the call agent about
potential state mismatch.

For gateways that acquire an address dynamically through DHCP, the call agent has
three ways to learn the IP address of the gateway:

• By looking at the source IP address of the RSIP message. This is not always reliable
if the RSIP message is relayed.

• If Dynamic DNS (DDNS) is used in conjunction with the DHCP server, the DNS
name of the gateway as advertised in the RSIP message will resolve to the current
IP address of the gateway. This is a robust method and also provides the ability to
recontact the gateway immediately if the call agent reboots. On reboot, the call agent,
if it knows about the gateway, queries the DNS and can send an AUEP to the current
IP of the gateway.
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RSIP 1204 ∗@[132.147.160.88] MGCP 1.0
RM: restart
RD: 0 

CA GW

Restarting...

Null delay: endpoints are active already

521 1204 OK
N: CA-1@whatever.net

This call agent does not
want to handle the endpoint,

 redirects to CA1

RSIP 1204 ∗@[132.147.160.88] MGCP 1.0
RM: restart
RD: 0 

200 1204 OK
N: CA-1@whatever.net

CA-1

Figure 4.28 RSIP and change of call agent.

• The gateway can include its current IP address as the gateway name. This works, but
makes it difficult to keep track of the gateway since the name changes with the IP
address. In addition, if the call agent reboots, it will be unable to reach the gateway
unless it has saved the current IP address in persistent storage.

4.2.3 Handling of fax

A new package ‘fxr’ for fax is being defined (draft-andreasen-mgcp-fax-xx.html). The
fxr package also uses extensions of SDP for negotiation (defined in RFC 3407, ‘Session
Description Protocol (SDP) Simple Capability Declaration’, or simcap). The fxr package
defines new local connection options:

• ‘fxr/fx:t38’ for strict handling of T.38. The gateway notifies the call agent that a T.30
fax preamble is detected (‘fxr/t38(start)’ event) and mutes the media channel. Before
starting the T.38 procedure, the gateway will check that the remote party also sup-
ports the same variant of fax transport by checking its capabilities, expressed in an
extension to SDP (see below for details). The call agent is responsible for switching
the connection to T.38 fax mode by sending an MDCX with ‘a:image/faxt38’ in the
LocalConnectionOptions (L:) and providing a RemoteConnectionDescriptor with the
‘m = t38’ media line. Should a failure occur during the fax call, it is indicated by the
‘fxr/t38(failure)’ event. The end of the fax is indicated by the ‘fxr/t38(stop)’ event.

• ‘fxr/fx:t38-loose’ for loose handling of T.38. The difference from strict handling is
that no confirmation of common capabilities is required from the remote end. The fax
transmission attempt starts as soon as a RemoteConnectionDescriptor with a media line
indicating T.38 is received.
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• ‘fxr/fx:off’ if there is no special handling of fax.

• ‘fxr/fx:gw’ if the handling of fax (not necessarily T.38) is left to the gateway. This
is the default mode. The gateway will send a ‘fxr/gwfax(start)’ event if it begins a
specific fax procedure, or ‘fxr/nopfax(start)’ if the gateway detected a fax but decided
to take no action on it. In the case of ‘fxr/gwfax(start)’, the call agent should remain
passive until it receives a ‘fxr/gwfax(stop)’ event.

In the following example (Figure 4.29) the call agent configures the gateway to use
strict T.38 handling on line ‘aaln/0’. The gateway returns local connection parameters, as
well as ‘a =’ elements listing its capabilities. It was necessary to extend SDP to express
capabilities (RFC 3407), because the normal way of expressing support for multiple codecs
in SDP also implies that media can be received immediately on these coders. Here t.38
is supported, but still cannot be received. The capability set according to RFC 3407 is
identified by a serial number, incremented each time the endpoint sends a new capability
set (a = sqn:<serial number>). This attribute is immediately followed by capability lines
(a = cdsc:<capability number><media type> <transport> <format list>).

Note that in Figure 4.29 the call agent still does not know the capabilities of the remote
endpoint (not mentioned in CRCX). If a fax was received at this point, the t38 procedure
would be delayed until a proper capability descriptor for the remote endpoint is received
from the call agent.

Once the call agent knows the capabilities of the remote end, it sends these capabilities
in the RemoteConnectionDescriptor of a MDCX command (Figure 4.30). Now that the

CRCX 450075 aaln/0@[132.147.160.88] MGCP 1.0
C: 308493a0580
L: p:20, a:PCMU, fxr/fx:t38
M: recvonly
R: fxr/t38
X:  1

200 450075 OK
I:1

v = 0
o = −25678 753849 IN IP4 132.147.160.88
s = −
c = IN IP4 132.147.160.88
t = 0 0
m = audio 3456 RTP/AVP 0
a = sqn: 0
a = cdsc: 1 audio RTP/AVP 0 18
a = cdsc: 3 image udptl t38 

Require strict t38 procedure

ConnectionId = 1

CA GW

Call-Id

Embedded not ification requestfor
fax events

SDP local parameters

Capabilities

Figure 4.29 CRCX command requiring usage of the strict T.38 procedure.
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MDCX 450076 aaln/0@[132.147.160.88] MGCP 1.0
C: 308493a0580
I: 1
M: sendrecv 

v=0
o=-25678 753849 IN IP4 128.96.41.2
s=-
c=IN IP4 128.96.41.2 
t=0 0
m=audio 1296 RTP/AVP 0
a=sqn: 0
a=cdsc: 1 audio RTP/AVP 0 18
a=cdsc: 3 image udptl t38 

200 450076 OK

Activate connection in sendrecv
mode

CA GW

Call-Id

Confirmation of remote-side fax  
capabilities

PCMU media flowGW X

Figure 4.30 Confirmation that the remote end supports T.38 fax.

local gateway knows that the remote endpoint also supports strict T.38 over UDP and,
therefore, can also use that procedure. Note that for this connection the media specified
in the SDP ‘m =’ line was G.711 and that, therefore, the media stream is activated with
G.711 (we have not received a fax signal yet).

If the gateway detects a T.30 preamble characteristic of fax at any time, it reports
the event to the call agent (Figure 4.31), because the call agent has requested to be
notified of fxr package events. At this point the gateway mutes the audio signal and
stops sending G.711 to the remote GW. The call agent immediately instructs the gate-
way to switch to strict T.38 mode using an MDCX command. This command does not
contain a RemoteConnectionDescriptor; therefore, the previous RemoteConnectionDe-
scriptor is still valid. Since the previous descriptor requested G.711 media (SDP ‘m =’
line), the GW cannot yet send T.38 data, but is prepared to receive it. Note that the
reception port has not changed although the media have changed, which is the recom-
mended behavior.

Once the call agent has obtained a RemoteConnectionDescriptor from the other gateway
(Figure 4.32), it modifies the SDP media line to use T.38 (the UDP port has not changed).
The local gateway begins to send T.38 datagrams to the port indicated.

The ‘fxr’ package also defines new statistics parameters that can be reported in response
to AUCX or DLCX:

• PGS: number of fax pages sent.

• PGR: number of fax pages received.
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NTFY 2500 aaln/0@[132.147.160.88] MGCP 1.0
O: fxr/t38(start)  
X: 1 

200 2500 OK

NotificationRequestID

CA GW

T.30 preamble detected

MDCX 450077 aaln/0@[132.147.160.88] MGCP 1.0
C: 308493a0580
I: 1 
L: a:image/t38 
R: fxr/t38  
X: 2

200 2002 OK

v=0
o=-25678 753850 IN IP4 132.147.160.88 
s=-
c=IN IP4 132.147.160.88 
t=0 0 
m=image 3456 udptl t38 
a=sqn: 0 
a=cdsc: 1 audio RTP/AVP 0 18 
a=cdsc: 3 image udptl t38

Start using T.38

Continue sending T.38 events (embedded RQNT)

The gateway is ready to 
receive T.38 on UDP port 

3456, but does not send T.38 
data as the remote descriptor 

does not list image/t38

Figure 4.31 Preparing the gateway to receive T.38 media data.

MDCX 450079 aaln/0@[132.147.160.88] MGCP 1.0
C: 308493a0580
I: 2

v=0
o=-25678 753850 IN IP4 128.96.41.2 
s=-
c=IN IP4 128.96.41.2
t=0 0 
m=image 1296 udptl t38 
a=sqn: 0 
a=cdsc: 1 audio RTP/AVP 0 18 
a=cdsc: 3 image udptl t38 

200 450079 OK

CA GW

Call-Id

Now the gateway knows that it can 
send T 38 data to 128.96.41.1:3456 

using UDP

T.38/UDP media flowGW X

Figure 4.32 The local gateway is instructed to send T.38 data.
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4.2.4 Extensions for phone user interface control

Many business phones provide multiple feature buttons (hold, retrieve, conference, mute,
quick-dial, messages, etc.) and a sophisticated user interface with lamps, a large screen
with symbols for activated features and call-related information, etc. Until MGCP these
phones were all proprietary, controlled by the manufacturer’s stimulus protocol. The
standard MGCP package line provides only a limited set of capabilities to control a
business phone user interface: activation of a visual message-waiting indicator, caller ID,
distinctive ringing. With this package, call agent manufacturers can provide business-grade
features only by heavily using audio notifications and audio menus. The MGCP handset
package adds the capability to remotely activate the phone loudspeaker, thereby enabling
CTI-controlled telephony applications (click to dial from the PC, operator consoles, etc.),
but advanced business features remain unaddressed.

The problem of standardizing a control interface for business phones is indeed complex,
because the creativity of vendors should be preserved. A good compromise can be reached
by making the following assumptions (Figure 4.33):

• The phone is able to render a screen that can be described using a text syntax (e.g.,
XML). The screen may be built from predefined templates (cards) stored in the phone
by the phone manufacturer, with replaceable parameters provided by the call agent.

• The phone has a number of named function keys, which can be associated with
an endpoint-generated MGCP event sent to the call agent. No assumption is made
on the function of the key. Optionally, some keys can have their function dynam-
ically described to the user by descriptive areas on the screen or dedicated LCD
labels (softkeys).

CallLogs VMail Retrieve More

12h50P 02/12/02    650 778 8125

Your current options

3301
3302
HlpDsk
Home
John
VMail

5 missed call(s)
You have 3 msg(s) 

softkey1 softkey2 softkey3 softkey4

softkey5

softkey6

softkey7

softkey8

softkey9

softkey10

OK

Figure 4.33 Typical IP phone LCD screen with softkeys.



THE MEDIA GATEWAY TO MEDIA CONTROLLER PROTOCOL (MGCP) 305

• Optionally, the phone can also provide a capability to navigate through menus and
select an option, or can offer numeric or alphanumeric input fields.

To date, several vendors have implemented business phone control MGCP packages based
on these assumptions:

• Cisco with the BTXML2 markup language.

• Polycom with the MGCP business phone packages documented in RFC 3149.

• Swiss voice with the MGCP business phone packages documented in RFC 3149.

RFC 3149 defines:

• A feature key package (KY) which describes signals to set the key label (‘KY/
ls(<KeyId,Label>)’) and key activation state (‘KY/ks(<keyId>,<KeyState>)’). The
following states have been defined: en(enabled), db(disabled), id(idle), dt(dial tone),
cn(connected), dc(disconnected), rg(ringing), rb(ring-back), ho(holding), he(held). ‘S:
KY/ks(5,en)’ in a RQNT sets key fk5 to enabled state. MGCP events are used to report
the key press events (KY/fk1 to KY/fk99). These events can be requested by sending
a NotificationRequest with ‘R:KY/fk’.

• A business phone package (BP) in which signals are used to force speaker phone
activation (‘BP/hd’ for off-hook, ‘BP/hu’ for on-hook) or play a beep (‘BP/beep’)

• A display XML package (XML). An XML-format signal is used to render the screen.
Events are used for user input or selection. Both are prefixed ‘XML/xml’. The screen
control feature of the display XML package uses a special endpoint name, derived from
the phone endpoint name. If the phone is called ph1@anydomain.net, the screen end-
point name will be disp/ph1@anydomain.net. This separation avoids possible problems
since events deactivate signals by default, which is not the desired behavior for screen
navigation. In order to request events resulting from the selection of items on screen
menus, the RQNT targeted at the display endpoint must contain ‘R: XML/xml’.

The XML screen description syntax of RFC 3149 defines the following widgets: input
box, enumerated list box, text box, and echo box. The XML screen template can contain
replaceable parameters, or tags corresponding to dynamic content (e.g., time/date or call
timer). The XML format also describes the event string to send back to the call agent
for each possible selection. If the main phone keypad is used to select a choice on the
screen menu, the event is reported to the call agent through the XML package on the
screen endpoint: the screen has precedence and only passes unused key press events to
the phone endpoint subsystem (the only exception is the echo widget, which displays
events but does not consume them, and can be used to echo on the screen a dialing
number).

The format of the XML/xml screen signal is as follows:

S: XML/xml
(<url>?<card>?$<variable1>=<value$<variableN>=<value>)
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The <url> can be http://screenserver.anydomain.net/deck1 if the set of screen templates
(called a deck) must be fetched on an HTTP server, or any name if it is local to the phone
(provisioned). The <card> component specifies the template to select within the deck.
Usually, each phone state is associated with a specific card. The variables are replaceable
parameters within the card template. For instance, if deck1 is:

<xml>
<card id="one">

<p>$line1</p>
<timer value="2"/>
<do type="ontimer">
<go href="#two"/>
</do>

</card>

<card id="two">
<p>$line2</p>

</card>

<card id="home">
<p mode="nowrap">$dn <time align="right"></time>
<select type="item" name="Menu" iname="StrMenu">
<option value="1"

onpick="post?%deck?%id?%name=%value">MENU</option>
</select>
</p>

</card>

</xml>

If the applied signal is S: XML/xml(deck1?one?$line1=abc$line2=xyz), the phone would
render:

<card id="one">
<p>abc</p>

</card>

Then, after the timer:

<card id="two">
<p>xyz</p>

</card>

<xml>
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MENU

Your current options

2344
softkey5

softkey6

softkey7

softkey8

softkey9

softkey10

OKsoftkey1 softkey2 softkey3 softkey4

08:27

Figure 4.34 IP phone screen appearance showing the ‘home’ card.

If the applied signal is S: XML/xml(deck?home?$dn=2344), the screen would be
rendered by our sample phone as shown in Figure 4.34.

If softkey 1 is pressed, the following event would be reported in the NOTIFY:

O: XML/xml(post?basic?home?Menu=1)

In addition to the functions described above, some functions must be implemented locally
on the phone, such as mute, volume control, contrast control, audio path control (hand-
set/loudspeaker/headset). RFC 3149 assumes these functions come with their own screens
defined by the phone manufacturer.

Cisco BTXML2 syntax was defined after RFC 3149 and is available in conjunction with
the MGCP protocol on their IP phones. It is very similar to RFC 3149 (e.g., it likewise
uses a separate endpoint for screen control prefixed by ‘disp/’). The main difference is
that the XML description also includes feature key event mappings (Cisco phones do not
have separate LCDs for each button) and provides many more widgets than those defined
in RFC 3149. The display is divided in zones (similar to HTML frames), which can be
described separately (Figure 4.35).

Even though the industry has not yet agreed on a common XML description format,
these open control interfaces are similar enough to make it relatively easy for call agent
manufacturers to support business phones. In fact, the call agent does not need to be
aware of the exact XML syntax used by the phone; it interacts with the phone only by
calling predefined cards with replaceable parameters, and receives named events that it
needs to map to call control actions. The customization of a call agent for a specific type
of phone becomes straightforward. MGCP really invented the ‘open business phone’!
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Soft Keys

Top Bar 

Line Keys 

Status Line 

BackGround

Browser window (Narrow or Wide Size) 

32 characters 

Figure 4.35 Screen structure of Cisco BTXML2-capable phones (the 7960 is shown).

4.3 SAMPLE MGCP CALL FLOWS

4.3.1 Call set-up

In Section 4.1, we described the two main applications of MGCP (both at the edge of
the network):

• Control of analog gateways or MGCP phones in customer premises.

• Control of trunking gateways in the service provider network.

The following call flow illustrates both cases. A call is received from an SS7 network
signaling transfer point (STP) by an SS7 call agent (SS7 CA); the SS7 call agent sends
the call to the core VoIP network using the H.323 protocol (it could also be SIP); the
core network routes the call to a residential service call agent (R CA), and the residential
service call agent rings an analog phone on a residential gateway (R GW).

SS7 ISUP messages are always associated with a circuit identification code (CIC),
which relates call signaling to a specific media time slot on a given trunk (this relation is
configured statically as part of the provisioning of TDM switches). The CIC enables the
SS7 call agent to locate the proper media gateway and the endpoint on this gateway that
terminates the specified trunk and time slot.

The first part of the call scenario is illustrated in Figure 4.36. The CRCX command
instructs the endpoint to prepare for receiving G.711 µ-law media from the IP network,
with a 10-ms frame size. The gateway responds by giving an IP address and port where
the RTP stream should be sent. With this information, the SS7 call agent can now send
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TGW  SS7_STP SS7_CA Class4_GK

ISUPIAM
CgPN=1010101
CDPN+2020202
CIC=12

CRCX 1204 tg1/33@tgw.trunk.net MGCP 1.0
C: A3C47F21456789F0
L: p:10, a:PCMU
M:recvonly

200 1204 OK
I:FDE234C8

v=0
c=IN IP4 128.96.41.1
m=audio 3456 RTP/AVP 0

SETUP
CgPN=1010101
CDPN+2020202
FastStart:
Receive G.711 µ-law 10 ms
on 128.96.41.1:3456

CALL PROCEEDING

Figure 4.36 New call received from SS7 network and transmitted to the VoIP core.
IAM = initial address message.

an H.323 SETUP message to the VoIP network core-routing softswitch, in this case an
H.323 gatekeeper. This core-routing softswitch is responsible for finding the proper egress
route, or eventually for rerouting the call to back-up routes in case of congestion or any
other problem. It will also translate the calling and called party numbers if necessary,
as appropriate for the destination. The SETUP message contains the RTP IP address and
port in the Fast Start element, in order to expedite the media connection.

The CALL PROCEEDING message indicates that the SETUP message has been re-
ceived properly and that the dialing number is complete. If the number is not complete,
the core softswitch would have sent a SETUP ACKNOWLEDGE message instead, to
initiate a procedure known as overlap sending, in order to accumulate more digits.

The call flow is simple because there is only one voice coder in the VoIP network
and codec negotiation is not required. Variants of this call flow are needed to use the
negotiation capabilities of H.323: multiple ‘inactive’ connections could be set up on the
media gateway for each voice coder, which would provide the list of proposed logical
channels for the H.323 SETUP fast Start element. If the MGCP trunk gateway cannot
open the multiple inactive connections of various coders, then AUEP codec information
could be used to construct an H.245 CapabilitySet, and the codec would be negotiated
through a normal H.245 exchange.

In our example (Figure 4.37) the called party is managed by a residential call agent. It
immediately acknowledges the SETUP message with a CALL PROCEEDING, and also
establishes the H.245 dialog either with the core softswitch, or directly with the source
call agent (this is not shown in the diagram). The residential gateway (RGW) is instructed
to ring (‘L/R0’ signal) and to notify the off-hook event to the call agent. As soon as the
residential gateway confirms that it is ringing, R CA sends back the ALERTING message
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RGWR_CAClass4_GK

RQNT 450064 aaln/0@132.147.160.88 MGCP 1.0
X:12369848
R:L/HD(N)
S:L/R0

200 450064 OK

SETUP
CgPN = 1010101
CDPN + 2020202
FastStart :
Receive G.711 m-law 10 ms
on 128.96.41.1:3456

CALLPROCEEDING

ALERTING

Figure 4.37 The class 4 gatekeeper routes the call to the appropriate residential call agent.

to the core softswitch. Note that within a national telephone network the actual ringing
tone is never sent over the RTP media connection, it will be generated by the calling party
switch when it receives the ALERTING message. However, it is still necessary to provide
a receive-only media connection as soon as possible (if this can be done in the SETUP
message), because in the case of a phone call to an international number the ring-back
will be provided in-band through the RTP connection. In this case (not represented) the
H.323 ALERTING message will contain a progress indicator (PI = 8), which instructs
the originating switch not to play a local ring-back, but the remote ring-back instead.

The ALERTING message is relayed by the core softswitch to the originating SS7 CA,
which sends back an address complete (ACM) ISUP message on the SS7 signaling link.
In fact, the SS7 CA may also have sent the ACM immediately on receiving the CALL
PROCEEDING message from the core softswitch: in SS7 ISUP the ACM means both
that the number is complete and implicitly that the remote party phone is ringing. On SS7
networks the calling party may hear ring-back before the called party phone actually rings!

When calling an international network, the distant ring-back tone is sometimes pro-
vided (this also allows remote in-band error messages to be heard). In such a situation
a PROGRESS or ALERTING message with a specific progress indicator (indicating that
in-band audio information is being sent) would be received from the H.323 side, and
the SS7 call agent should then set an equivalent indicator in the ACM or send a call
progress (CPG) ISUP message. In modern telephony networks, this is normally the only
situation where the ring-back tone is provided by the remote end. Figure 4.38 represents
the normal case, with ringback provided by the calling party exchange. There is still no
media exchanged on the VoIP network.
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TGW SS7_CASS7_STP Class4_GK

ISUP ACM ALERTING

Figure 4.38 ALERTING message converted to an ISUP ACM. ACM = address complete
message.

At this moment the called party answers the call. The residential gateway sends a
NOTIFY back to the call agent (Figure 4.39). The call agent immediately creates a con-
nection on the endpoint. Since the call agent already has received the voice coder settings,
IP address, and port required to send media to the calling-side endpoint, this information
is provided in the CRCX SDP. The residential gateway can immediately begin to send
audio. In the answer to the CRCX, the residential gateway also provides an IP address
and port where it will receive audio from the calling-side endpoint. This information is
included in the FastStart element of the CONNECT message sent by the call agent to the
class 4 gatekeeper.

The CRCX message also uses an embedded NotificationRequest instructing the resi-
dential gateway to immediately notify the call agent of any digit detected on the endpoint
and, of course, if the user hangs up.

As soon as the SS7 call agent receives the CONNECT message, it relays the media
information of the FastStart element to the trunk gateway, using a ModifyConnection
message (Figure 4.40).

4.3.2 DTMF tones

The call flow described in Figures 4.41 and 4.42 illustrates the fact that DTMF tones are
sent as signaling information, not as part of the media stream. If the user presses the ‘5’
key of the phone, generating a DTMF tone, the gateway—as instructed—immediately
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RGWR_CAClass4_GK

NTFY 2 0@132.147.160.88 MGCP 1.0
X: 12369848
O: L/hd 

200 2 OK

CONNECT
FastStart:
Receive G711 µ-law 10 ms
on 132.147.160.88:16384

CRCX 450065 aaln/0@132.147.160.88 MGCP 1.0
C:308493a0580
L:p:10,a:PCMU
M:sendrecv
X:12369848
R:L/HU(N),D/[0-9#*](N)
S:

v=0
c=IN IP4 128.96.41.1
m=audio 3456 RTP/AVP 0

200 450065 OK
I:0

v=0^M
c=IN IP4 132.147.160.88
m=audio 16384 RTP/AVP 0

RTP to TGW

Figure 4.39 The called user picks up the handset.

SS7_CASS7_STP Class4_GK

ISUP ANM 

MDCX 1205 tg1/33@tgw.trunk.net MGCP 1.0
C: A3C47F21456789F0
I:FDE234C8
M: sendrecv

v = 0
c = IN IP4 132.147.160.88
m = audio 16384 RTP/AVP 0

200 1205 OK

CONNECT
FastStart:
Receive G711 m-law 10 ms
on 132.147.160.88:16384

RTP to RGW

TGW

Figure 4.40 The CONNECT message is converted to an ISUP ANM message. ANM =
answer message.
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RGWR_CAClass4_GK

NTFY 3 0@132.147.160.88 MGCP 1.0
X: 12369848
O: L/5

200 3 OK

H.245 UII
Digit ‘5’

Figure 4.41 Out-of-band DTMF handling. VII = user input indication.

SS7_CASS7_STP Class4_GK

RQNT 1206 tg1/33@tgw.trunk.net MGCP 1.0
S: L/5

200 1206 OK

H.245 UII
Digit '5'

TGW

Figure 4.42 DTMF regenerated by trunk gateway. VII = user input indication.
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notifies this to the residential call agent. The call agent relays this information by using
an H.245 UserInputIndication message. In order to avoid having the gateway send the
DTMF in-band as well, a new DD (su = false) event has been defined in the DTMF
package (version 1 RFC 3660). Once the H.245 UserInputIndication has been received
by the SS7 call agent, it needs to be converted back to a DTMF tone on the bearer
channel. The call agent sends a RQNT to the endpoint requesting it to generate signal
‘L/5’ (Figure 4.42).

4.3.3 Call release

When the called user hangs up, the event is notified to the residential call agent, which
sends a RELEASE COMPLETE message to the core VoIP network (note that in H.323
the media control H.245 session is released first, then the call control link). The call
agent also reinitializes the gateway for the next call, by looking for the off-hook event,
and then enabling an embedded NotificationRequest which applies a dial tone and waits
for digits (Figure 4.43). The syntax of the requested events line means: ‘accumulate all
digits, *, #, and timer event according to the digit map.’ The digit map is configured for
a phone restricted to local service in San Jose, CA: it can only dial 6-digit numbers or an
emergency number. Any other event not matching the digit map will trigger an immediate
NOTIFY (e.g., ‘8’ or ‘0’). A timeout of 16 s while still accumulating digits in a digit
map will also trigger a NOTIFY (e.g., ‘123<16seconds>’).

RGWR_CAClass4_GK

NTFY 4 aaln/0@132.147.160.88 MGCP 1.0
X: 12369848
O: L/hd 

200 4 OK

RELEASE COMPLETE

H.245 EndSession

DLCX 450066 aaln/0@132.147.160.88 MGCP 1.0
I:0
X:12369849
R:L/HD(E(R(hu(N),[0-9#*T](D)),S(L/dl),D([1-7]xxxxx,911))
S:

200 450066 OK

Figure 4.43 An, end-user on the MGCP residential gateway hangs up the call.
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TGW SS7_CASS7_STP Class4_GK

DLCX 1207 tg1/33@tgw.trunk.net MGCP 1.0

I:FDE234C8

200 1207 OK

RELEASE COMPLETE

ISUP REL

ISUP RLC

H.245 EndSession

Figure 4.44 RELEASE COMPLETE (RLC) message converted to an ISUP RELEASE (REL)
message.

The ISUP disconnection sequence is more complex than the H.323 or SIP disconnection
sequence, and typically requires at least two messages: REL (RELEASE) indicates that
the called party hung up, while RLC (RELEASE COMPLETE) indicates that the calling
party also hung up (Figure 4.44). This more complex sequence is used because some
networks use in-band announcements at the end of certain calls (e.g., calling cards). The
RLC message instructs the device sending the in-band information to stop sending it; this
message also causes the release of all circuits.

4.4 THE FUTURE OF MGCP

The PacketCable NCS specification has been standardized as IPCableCom in ITU-T SG9.
This specification is also an ANSI standard (via the Society of Cable Telecommunications
Engineers). The IETF MEGACO or ITU are not actively working on MGCP since the
IETF MEGACO Working Group decided to work jointly with the ITU on H.248.

Despite this, MGCP is still alive and well. The reason is easy to understand: the
authors of MGCP defined the scope of the protocol extremely well and, within this
scope, managed to fulfill all the requirements. Manufacturers wanting to provide stimulus-
controlled phones, or media gateways, cannot ask for more than MGCP provides.

In the midst of the heated debates about the best VoIP protocols with the accompany-
ing tendency to greatly oversell or misrepresent the capabilities of each protocol, MGCP



316 IP TELEPHONY

managed to stay aloof from this mixture of marketing and engineering characteristics
that typified the telecom bubble era and jeopardized the quality of many specifications.
Since the beginning, the development of MGCP has been driven by immediate cus-
tomer requirements, while other standards were more driven by manufacturers. As a
consequence, the quality of the MGCP specification is much better than that of the SIP
specification or the early H.323 specifications. MGCP has been adopted by the cable
industry and many manufacturers, and is currently deployed in many VoIP networks all
over the world.

Although the quality of MGCP is a solid foundation for H.248, at the same time there
is no great incentive for the industry to migrate to H.248, because there are very few
features that the latter can provide beyond the MGCP capabilities available today. Even
though RFC 3435 has introduced new extension capabilities, the few missing features
can readily be added to MGCP as well. Initially, video was presented as the key feature
added by H.248, with MGCP perceived as an audio-only protocol. This dates back to an
early version of the RFC which stated that the protocol was not intended for video. In
fact, since MGCP uses SDP, it can establish connections using any media that SDP can
describe, including video. The latest versions of the MGCP RFC now acknowledge that
MGCP can be used for both audio and video. There are several MGCP videophones on
the market today.

MGCP is implemented on hundreds of devices from various manufacturers, from high-
density voice media gateways and modem banks to two-port analog gateways, IP phones,
or call agents. The flexibility of MGCP has also made possible the first comprehensive
implementations of residential or Centrex features for business telephony. The good news
for the future is that MGCP and H.248 are so similar that it will be very easy for all
manufacturers to eventually migrate these products to H.248. In the meantime, there is
no hurry to do so—if it is not broken, there’s no need to fix it!



5
Advanced Topics: Call
Redirection

5.1 CALL REDIRECTION IN VOIP NETWORKS

5.1.1 Call transfer, call forward, call deflection

Call transfer, as opposed to call forward, is characterized by the timing of call redirec-
tion. Call transfer redirects the call after an initial connection with the called party. Call
forward redirects the call before the call is connected to the initial called party. Two
flavors of call transfers exist: in consultation call transfer the redirecting party talks to the
redirected-to party before transferring the call; whereas in blind call transfer the transfer-
ring party transfers the call directly without verifying whether the redirected-to party is
willing to/can accept the call.

Call deflection redirects the call after the call has been presented to the called party,
but before the call connects: the initial called party never enters in a conversation with
the caller.

Figure 5.1 illustrates the various types of call redirection.
The call forward service is relatively simple to provide over traditional or voice over

IP (VoIP) networks. Call defection and call transfer services are much more complex to
provide in any network technology, but they are even more difficult to provide in VoIP
networks. They raise the following issues:

• Translation of the redirected to phone number from the redirecting party format into
the format appropriate for the element performing call redirection.

• Dynamic redirection of the media streams from the initial called party to the redirected-
to party.

IP Telephony O. Hersent, J.P. Petit, D. Gurle
 2005 John Wiley & Sons, Ltd ISBN: 0-470-02359-7
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Call Presented A → B
Call Connected

Conversation

Call Presented A → C redirected by B
Call Released

Conversation

Call Presented A → B

Call Presented A → C redirected by B

Call Connected

Call Released

Conversation

Call Presented A → C redirected by B

Call Connected

Conversation

Call transfer

Call deflection

Call forward

Call Connected

Initial called party
B

Redirected-to party
C

Figure 5.1 Call redirection types.

• Correlation of the initial call and the redirected call in order to generate appropriate
call detail records.

This section discusses in detail the various implementation choices for call redirection
services, the difficulties that appear in the context of public networks, and how these
challenges can be addressed.

5.1.2 Summary of major issues

5.1.2.1 Numbering formats

Any phone call usually involves three distinct formats for calling and called party aliases:

• The originating format: this is the format of phone numbers that are familiar to the
caller. For instance, the number of a phone in San Jose, CA will be known as 5217000
by a resident of San Jose, while the same phone will be known as 14085217000 by
someone living in New York.

• The pivot format: this is the format used by the phone network billing system, and
manipulated by the phone network administrators (e.g., when defining routes). A US
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network may decide to use the full number including the area code, for instance, and
may also include the country code.

• The terminating format: this is the format of phone numbers that are familiar to the
called party.

Let’s take an example to clarify: John, in San Jose, CA (+1 4085217000) calls Mark in
Paris (+33158713333):

• The originating formats are: John 5217000, Mark 01133158713333.

• The pivot formats are (assuming the international format is used within the network):
John 14085217000, Mark 33158713333.

• The terminating formats are : John 0014085217000, Mark 0158713333.

The issue as far as call redirection is concerned is the following: if John instructs the
network to reroute the call to Mark, the network should properly understand the redirected-
to phone number.

But, doesn’t this seem trivial?
Look at the following example, using H.323, H.450, or SIP REFER. With these meth-

ods, a message (let’s generically call it REDIRECT) is sent to the calling party, instructing
him to make a new call to the supplied number.

Let’s say Mark wants to redirect John to another phone number in Paris
(+33158713300). For Mark, living in Paris, this phone number originating format is
0158713300, so Mark sends back to John’s terminal a message REDIRECT 0158713300.
John’s terminal assumes this is an originating format for San Jose, CA and makes a new
call to 0158713300, when it should have dialing 01133158713300. The call transfer fails
. . . or, worse, succeeds, but to the wrong destination.

5.1.2.2 Billing

Let’s take the example of a call from A to B, with a duration of T1 seconds, redirected
after the T1 seconds to C, for a duration of T2 seconds. In the case of call forward or
call deflection obviously T1 = 0. How should we bill for this call?

One possibility is to bill the call as a call from A to B for T1 seconds, and a call from
A to C for T2 seconds. This is the simplest choice for voice over IP where redirected
calls frequently appear as two calls: A to B and A to C. Unfortunately, things are not
so simple.

The reason is that such a way of billing gives B the opportunity of making a lot
of money at other people’s expense: he just needs to create a company that manages
premium numbers C, and redirect all calls to B to this premium number C. Premium
numbers are charged at a special rate, much more expensive than a traditional phone
call, and the carrier shares revenues with the owner of the premium phone number. Now,
anyone calling B, a ‘normal’ phone number, is redirected to C and actually pays for a
much more expensive A to C communication! If you are not convinced of the magnitude
of the potential fraud, just consider that many countries in the world get over half their
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state revenue from revenue sharing on international phone calls by replacing C with an
international phone number. . .

In the previous scenario, all phone companies charge the redirected call as follows:

• An A to B call lasting T1 + T2 seconds.

• A B to C call lasting T2 seconds.

In other words, B pays for the redirection, and A pays as if B had never redirected the call.
In the case of multiple redirections, the same procedure applies. If the call is redirected
to D for T3 seconds, it is charged as three separate calls:

• An A to B call lasting T1 + T2 + T3 seconds.

• A B to C call lasting T2+T3 seconds.

• A C to D call lasting T3 seconds.

This requires the telephone switches to always be able to correlate all legs of a redirected
call to compute the right sums. This is not always simple, especially with voice over
IP protocols.

5.1.2.3 Call loops

Call loops are a problem in any telephone network, because they can completely jam
some trunks in a matter of seconds. Usually, the prevention of call loops uses machine-
generated routes with automatic loop detection and a hop counter that is decremented
by each telephone switch. SS7 ISUP messages have such a hop counter. In VoIP, some
vendors (e.g., Cisco Systems), have added a proprietary hop counter to the H.323 LRQ
message, making it possible to avoid loops between direct-mode gatekeepers. H.323v5
adds such a counter in SETUP messages. Counters are also included in SIP INVITE
messages. Finally, a switch that may redirect calls must not authorize a redirection to a
number, if it knows that the call has already been redirected by that number: in H.323,
the number of the last redirecting party is stored in the Redirecting Number information
field of the SETUP message.

Even with these improvements, call loops remain possible:

• Calls can be looped back into the VoIP network by the TDM network through SS7
gateways, in which case the counter can be lost (depending on SS7 gateway imple-
mentation).

• Edge devices connected through user interfaces (analog, ISDN) may loop calls back to
the network, in which case the hop counter is always reset. This is one of the reasons
the call forward service of external calls to external extensions is usually forbidden
as part of the certification program of edge devices (call forward of internal calls to
external extensions does not create a call loop problem).
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Manual call transfer/divert does not present the same issues because it requires human
intervention for each loop.

5.1.3 Reference network configurations in the PSTN

5.1.3.1 Residential services: call forward only

5.1.3.1.1 Call forward
PSTN residential services frequently provide the call forward service. The service is
implemented in the last-hop class 5 switch. Most PSTN networks cannot optimize call
forwards and, therefore, the last-hop switch reinitiates a new call for the redirected call
and trombones the media stream.

With this configuration the issue of numbering formats is irrelevant since the redirected-
to number is interpreted by the last-hop switch, using the same numbering conventions
as the redirecting party.

Note that it is important to have the call forward service provided by the switch, not by
the edge device, because of the call loop issue described above. If the call forward service
is performed by the switch, the call hop information is not affected. It would be reset if
the call forward was performed by the edge device, leading to potential call loops.1

5.1.3.1.2 Call transfer/divert
Residential services typically never provide the call transfer or call divert feature without
strong restrictions. This is because residential users associate billing with ‘my phone is
off-hook’. But, as we have described above, in order to prevent fraud, when a call is
transferred from a phone this phone is still charged for the transferred portion of the call,
even if it is on-hook. And now the call is under control of the calling party, and can
potentially last for hours or days (note that call forward is different, because it is assumed
that you forward your line to yourself while away from your home, and therefore you
remain in control of call duration). It is possible to imagine restricted versions of the call
transfer service for residential users (e.g., to the mobile phone, fax number, or voicemail
number of the served user only).

Call transfer/divert is the key feature that differentiates Centrex from residential ser-
vices. Centrex users are not charged for internal calls and, therefore, are allowed to
transfer calls to other internal extensions. This remains compatible with the perception, ‘I
don’t pay if my phone is on-hook,’ since the redirected portion of the call charged to the
on-hook phone is a free call. Many countries required PBXs to block the transfer of calls
to external numbers to get their type approval, but this is no longer strictly enforced.

Note that you can emulate a call transfer by creating a three- way A–B–C conference if
the communication remains active when conference initiator B hangs up. For this reason

1 Of course, the call forward service would also stop working when the phone is unplugged! Despite
these problems, some badly engineered VoIP networks still use end point-based redirection today.
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residential networks always require the conference to be dropped if the initiator of the
conference drops the call.

5.1.3.2 Isolated PBX: forward/transfer by the PBX

5.1.3.2.1 Call forward
Because of the loop problem described above, many countries restrict the ability for
PBXs to forward external calls back toward the PSTN network. Call forward to internal
extensions is usually performed by the PBX itself.

5.1.3.2.2 Call transfer
When a call transfer is performed by an isolated enterprise PBX, the call transfer is always
performed locally by the PBX (Transfer by join).

The billing principles described above are still valid. For instance, if a call from random
user A on the phone network is received by B in the enterprise (the communication lasts
T1 seconds), and then redirected to random user C on the external phone network (this
redirected communication lasts an additional T2 seconds), the phone network will see a
call from A to B lasting T1 + T2 seconds (since the PBX does not notify the network in
any way that a call redirection has occurred), and the network sees a call from B to C
initiated by the PBX lasting T2 seconds. Therefore, the billing records generated by the
public network are correct:

• Call A to B for T1 + T2 seconds.

• Call B to C for T2 seconds.

Note that if the PBX hides the real extension B, the network will use the PBX main
number as the calling party number for the billing record of the redirected portion of
the call. This does not create any potential for fraud, as the bill still goes to the same
pocket.

Private network (leased lines)

PBX1 PBX2

PBX3

A B

C

Figure 5.2 Transfer performed by the transferring PBX. (Transfer by join)
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5.1.3.3 Networked PBXs: network-optimized call transfer

Many heterogeneous PBX networks use that call transfer by the PBX method that has
been described in Section 5.1.3.2.2 (Figures 5.2). However, this method is not optimal as
call media are ‘tromboned’ through the redirecting PBX, and this uses more bandwidth
on the corporate inter-site communications lines. If all PBXs are from the same brand,
or if they support the QSIG extensions of ISDN (about one-third of PBXs are QSIG-
capable), there is a possibility to optimize the call flow. The redirecting PBX will send
a redirection message to the source PBX, and the source PBX is expected to re-establish
the call directly to the redirected-to party (Figure 5.3). Now, the usage of transmission
resources is optimized, but we must solve:

• The numbering format issue: all PBXs must operate under the same numbering format
or be able to convert the redirection messages to the appropriate formats.

• The billing issue: if all internal calls are on a private network (leased lines), the service
provider has no billing to do if redirected calls are restricted to internal extensions (call
detail record’s or CDRs, for internal calls are generated directly by each PBX). If calls
are redirected to the public network, the PBX will stop using QSIG and trombone the
redirected call to the public network, returning us to the case of the previous paragraph
(5.1.3.2, Transfer by join). If leased lines are not used, the public network may be unable
to correlate the initial call and the redirected call, and the CDRs may be generated as
A–B (T1 seconds), B–C (T2 seconds), instead of A–B (T1+T2 seconds), B–C (T2
seconds). This is not always a problem if the company is billed as a single entity and
does not care whether A or B is billed for the redirected call. Note also that, if private
accounting systems are used at each location, their records will be inaccurate, as the
B to C leg of the call should be charged to site B. But, this leg of the call is now
re-originated from site A and, therefore, site B has no information on it.

Private network (leased lines)

PBX1 PBX2

PBX3

A B

C

Redirect to C

Figure 5.3 Optimized transfer.
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5.1.3.4 Voice resources connected to a QSIG-capable PBX: locally
optimized call transfer at the edge

In some cases (e.g., in call centers) a private installation routes calls first to a voice
resource, such as an interactive voice response (IVR) server, and then the call must be
redirected to another extension by the IVR. It would be a waste of resources to force the
IVR to make a call to the extension and then bridge the incoming call with the new call
to the extension. This would use two ports on the PBX.

Instead, most corporate IVRs are capable of sending the proper QSIG commands to the
PBX, in order to ask the PBX to perform call transfer to the new extension. On analog
connections, the IVR can alternatively use a DTMF command to perform call transfer.
The call transfer is always performed locally by the PBX.

5.1.3.5 Network intelligent peripherals: locally optimized call transfer
in the network

This is exactly the same situation as before, but within the phone service provider network.
Such large-scale IVRs are called service nodes. When these service nodes need to redirect
a call, sometimes they trombone the call, but some central offices also accept call transfer
commands on the signaling link to the service node.

Note that there is an alternative architecture used by carriers, where carriers’ central
offices make use of intelligent network (IN) features and call transfer is controlled from an
external intelligent network application protocol (INAP) link. In this case an external
application, residing on a service control point (SCP), synchronizes call transfer and the
IVR function. In this case the IVR function is called an intelligent peripheral (IP).

The IN architecture comes with a certain complexity, but this is the price to pay
when using TDM technology to avoid tromboning as much as possible for high-volume
applications, such as hosted contact centers.

5.1.4 Reference network configurations with VoIP

5.1.4.1 Residential services: call forward only

The implementation is derived from the traditional implementation in the PSTN. The
edge softswitch that manages the redirecting end point (SSW 2 and end point B in
Figure 5.4) is responsible for managing the call forward, and does so by initiating a new
call to the redirected-to party, in this case C, managed by softswitch SSW 3. Since the
softswitch is responsible for the call forward, the call loop issue is properly addressed.
Figure 5.4 is an example of the multi-softswitch case where each end point is managed
by a different softswitch.

Note that, although the call flow in Figure 5.4 is derived directly from the PSTN call
flow, it is much more efficient: media flows are established directly between calling party
A and redirected-to party C. Softswitch SSW 2 is only involved in the signaling path,
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SSW_1 SSW_2 SSW_3

Calling party
A

Called party
B

Redirected-to party
C

SETUP A→B
SETUP A→B

SETUP A→C
Redirected by B SETUP A→C

Redirected by B

Media flows

Figure 5.4 VoIP call forward scenario.

it does not handle the media stream. If SSW 2 had been a PSTN switch, the redirected
call would permanently use 128 kbit/s of transmission capacity to the switch point of
presence, as opposed to exactly zero in the VoIP case.

At this point it is also interesting to examine how billing should be organized. Each
softswitch will probably generate its own billing records (Table 5.1).

We see that we have duplicates, and also CDRs that, depending on the softswitch
support of the redirecting number information (a field in H.323 indicating the identity of
the redirecting party), may be correct or not. There is a simple way to extract the correct
information for these CDRs, following this simple rule:

For billing purposes, on softswitch SSW i, keep only CDRs where the calling party belongs
to the SSW i zone.

Table 5.1 CDRs generated by a call forward in a
multi softswitch environment

Softswitch CDRs

SSW 1 A to B (T2 seconds)
SSW 2 A to B (T2 seconds)

B to C (T2 seconds)
SSW 3 A to C, redirected by B (T2 seconds)
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Table 5.2 CDRs relevant for billing

Softswitch CDRs

SSW 1 A to B (T2 seconds)
SSW 2 B to C (T2 seconds)
SSW 3 None

Following this rule results in considering only the CDRs: given in Table 5.2, which are
obviously correct. Since each softswitch has the complete information necessary to bill
the subscribers in its zone, the accounting processing, in very large networks, can be split
into zones corresponding to each softswitch.

The enormous scalability advantage of VoIP over TDM voice in this case comes with
a few caveats. A frequent issue occurs in this type of call flow for the call forward on no
answer service. Because post-connect audio delays were the most important issue of early
VoIP implementations, all VoIP protocols now implement ways to accelerate the set-up
of media streams, and media streams can even be established before the call connects.
In H.323 this can be done by inserting Fast Start information in the SETUP message
(which proposes reception RTP addresses and accepted codecs), or beginning the H.245
procedure before connect (early H.245). In SIP, this is the default call flow and a SIP
INVITE message is generally expected to include SDP information specifying reception
RTP addresses and accepted codecs.

If this type of optimized call flow is used in the case of call forward on no answer,
then A and B will establish media streams before B picks up the phone (B can be an IP
phone or a PSTN number behind a gateway). But after the no answer timeout, the call
will be redirected to C, and C will also start streaming audio toward A. This produces
a variety of results, ranging from A crashing to A playing audio toward B instead of C.
If the softswitch does not control the beginning of media streams, call forward on no
answer will not work properly. Note that IP phones are usually smart enough not to start
streaming audio until someone picks up the handset; so, the issue is really only with end
points behind analog gateways and for audio streams from A to B instead of C.

What is the correct approach? The softswitch should delay all pre-connect media infor-
mation from phones that have the switch-based call forward on no answer service activated
until the phone actually connects. In H.323 this means the softswitch will capture the Fast
Start information inserted by B in the CALL PROCEEDING or ALERTING message,
and forward it to A only if B sends back a CONNECT message. Otherwise, if B does
not answer, the softswitch will redirect the call to end point C and do the same with end
point C. In SIP this means delaying SDP information until the 200 OK message. Some
phones do this properly anyway, but it is a lot safer if the softswitch plans ahead and
is prepared to delay any pre-connect information it receives; in particular, if B is behind
a PSTN gateway. There is still the possibility of B starting to stream audio toward A
before CONNECT (bad IP phone implementation, or a gateway which does not know
that it is connecting a call to an end-user and has no support for the in-band audio indi-
cators of the PROGRESS message in ISUP/ISDN). In H.323 the softswitch can explicitly
request the gateways not to start streaming audio before CONNECT by positioning the
MediaWaitUntilConnect parameter of the H.323 SETUP message.
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Figure 5.5 VoIP call forward on no answer scenario.

This procedure now works correctly with the call forward on no answer service, and
does not create any delay in post-connect audio (Figure 5.5):

• End point B has received the RTP transport addresses that can be used to stream audio
toward A in the SETUP/INVITE message. So, as soon as B picks up the handset,
‘Hello’ can be transmitted toward A.

• End point A will stop playing ring-back tones as soon as it receives the CONNECT/200
OK message from B. In the same message it receives the ports to start talking with B,
and therefore can answer B immediately.

The softswitch should therefore use the following rules to handle pre-connect media
information:

• If it does not implement the call forward on no answer service for the destination,
forward the media information ‘as is’.

• If it implements the call forward on no answer service for the destination, delay the
media information from the destination end point until CONNECT. In H.323 also
position the MediaWaitUntilConnect parameter in the SETUP message.

These rules correctly enable the forwarding of pre-connect audio when calling PSTN
destinations (congestion messages, some prepaid calling card services that send back a
CONNECT only after the final destination connects, etc.), but prevents any issues when
calling end points that have activated the call forward on no answer service.
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5.1.4.2 Isolated IP-PBX: forward/transfer by the IP-PBX

This is one of the call flows that has generated the most confusion in VoIP, because many
people think of H.450 as the way to do call forwards and transfers in H.323, and REFER
(or the deprecated BYE/ALSO method) as the way to do call transfers in SIP.

This is not the case at all. In fact, the situation is no different than that in the PSTN:
there is QSIG (H.450 and REFER are QSIG equivalents in VoIP), targeted at private
networks, and there is end point-controlled transfer. End point-controlled transfer also
exists in VoIP, but it is a lot better than in traditional telephony, because there is no
media tromboning.

5.1.4.2.1 Call forward
The call forward service is usually provided by the IP-PBX. Because of the call loop
issue, call forward of external calls should be limited to internal PBX extensions. In any
case the PBX must prevent calls from being forwarded to a destination if this destination
already appears in the ‘redirecting party number’ field of the incoming call.

In principle, VoIP can work around this limitation by having the PBX and the softswitch
collaborate for the call forward service to external extensions. If the softswitch to which
the PBX is connected supports the call forward service (e.g., if it supports the Call Pro-
cessing Language), in principle the forward service of external calls can also be provided
by the edge softswitch, as in the residential case, without creating a call loop issue. This
softswitch-based call forward will not work for calls coming from internal extensions;
so, the PBX should also forward internal calls to the external extensions, which does not
create call loop issues.

5.1.4.2.2 End point-controlled transfer with media optimization in H.323:
NullCapabilitySet

In H.323 the call flow of Figure 5.6 can be used by any end point to control a call
transfer and optimize the media path. In our example, A is the calling party, SSW 1 is
the softswitch controlling end point A, B is the redirecting party (an IP-PBX in our case),
and C is the redirected-to party. B is managed by SSW 2 and C is managed by SSW 3.

The call flow employs the third-party media control procedure, using a call flow known
as third-party-initiated pause and rerouting or NullTerminalCapabilitySet (in short,
TCS = 0), described in paragraph 8.4.6 of H.323v4. All H.323v2 (and above) end points
are required to support receiving TCS = 0 and correctly redirecting media streams as they
are given a new CapabilitySet from the remote party. This is one of the most important
tests to do on implementations that claim to be H.323-compliant. Not supporting this call
flow is a major bug which does not allow the equipment to be connected on any H.323
network that implements transfer services (even if it is just other end points that need to
do call transfers).

In the call flows in Figure 5.6 we have not represented the individual phones; the phone
and the IP-PBX are represented as a single entity. Therefore, A (respectively, B and C)
represents both the A (respectively, B and C) phone and the PBX-handling phone A
(respectively, B and C). The method that is used by the phone to signal to the PBX that
it is willing to perform a call transfer is not shown (it will be discussed in Section 5.1.5).
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Figure 5.6 H.323 third-party-initiated pause and rerouting (controlled transfer with consul-
tation). Most ACK PDUs are not shown and all messages are in sequence for clarity.
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5.1.4.2.3 End point-controlled transfer with media optimization in SIP
RE-INVITE

The call flow (Figure 5.7) is almost identical to that of H.323, except that since SIP has
no formal negotiation of capabilities, H.245 capability messages disappear. The NullCa-
pabilitySet sequence is replaced by a single RE-INVITE (a new INVITE for the same
call, with new SDP information).

5.1.4.2.4 Analysis of end point-controlled transfer call flow
As already emphasized, the only real drawback to having the transfer performed by
the PBX in the traditional TDM network was that the PBX permanently had to relay
(trombone) the media flow during the call, using 128 kbit/s of bandwidth. With VoIP, this
problem disappears! No bandwidth is used after the call has been transferred and very
few processing resources (limited to copying, unchanged, the few call control messages
that occur during the call and when the call terminates).

Note that some IP-PBX vendors only did a very superficial ‘IP make-up’ on top of
a traditional TDM PBX core, by simply adding VoIP to the TDM board on their PBX
chassis. These poor implementations are very hard to detect—only the transfer call flow
will really differentiate ‘true’ VoIP implementations from quick tactical marketing adap-
tations of old products. These poor implementations will actually relay media streams for
the entire duration of the call because the switching itself still occurs on the old TDM
switching matrix! Some IP-PBXs are optimized for IP phone to IP phone calls, but not for
calls transferred from one PBX to another PBX. Such obsolete implementations should
be avoided.

Having removed the tromboning issue, the NullCapabilitySet/RE-INVITE call flow
becomes almost ideal for a service provider:

• Billing records are correct (the second call appears to be coming from B to C, the first
call is from A to B and remains established for the entire duration of the call). In the
context of multiple softswitches, the same rule applies: at each softswitch, only CDRs
where the calling party belongs to the softswitch zone are considered.

• Media optimization (anti-tromboning) does not require any optionality in the standards
and is supported by all end points (as it is mandatory in the H.323v2 and SIP baseline
standard). In fact, this is well supported by most vendors in current implementations.
Even if a vendor does not comply with this call flow, it is fairly easy to get the vendor
to support it because it is nothing less than a bug that needs fixing, not an enhancement
to the standard.

• The PBX remains in control of transfer service implementation, leaving a lot of flex-
ibility for PBX vendors to offer enhancements to the transfer service (e.g., personal
music on hold).

• The PBX keeps control of the B to C call for which it is charged. If the PBX is
equipped with an accounting system, the accounting system will correctly keep track
of the duration of the redirected call. If the PBX crashes or becomes disconnected, all
transferred calls are released. This is in fact desirable as the PBX (B) is paying for the
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Figure 5.7 Third-Party-controlled transfer with consultation using SIP RE-INVITE. Most ACK
PDUs are not shown and all messages are in sequence for clarity.
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B to C call, so the call should be torn down if the control element is unable to keep
track of and account for it.

• The numbering format issue is also solved, because the edge PBX is responsible for
understanding the format of the redirected-to number from the redirecting party (which
happens to be its local format).

This call flow is already supported by the major IP-PBX vendors. Because it leaves a lot
of room for vendor added value, it has also been used by some vendors to enhance their
PBX-based call center implementations to allow a centralized ACD to distribute calls
across multiple sites, with no impact on network usage!

This call flow also works fine for VPNs and multi-site implementations, and does not
require having all sites using PBXs from the same manufacturer: you can combine some
sites with PBX-based implementations and some sites with Centrex implementations,
where the call is controlled from the network. In fact, the ease of deployment of advanced
services in a VoIP network, without tromboning, is probably the single most important
reason that should convince multi-site companies to replace their TDM PBXs with IP-
based PBXs or Centrex.

5.1.4.3 Networked PBXs: network-optimized call transfer

In the TDM world the key driver for implementing optimized procedures based on QSIG
was to optimize the bandwidth usage on each link for closed user groups spread over
multiple sites. With VoIP, this is no longer an issue, as we saw in Section 5.1.4.2.

So, there really are only two reasons for using something equivalent to QSIG transfer
in VoIP (such as H.450 or SIP REFER):

• To solve the tromboning issues of poor IP-PBX implementations which still trombone
media streams. The best solution is not to use them in the first place!

• To avoid relaying signaling streams through the redirecting PBX. At first glance, this
seems to be a good idea, but, as we will see, sometimes it can backfire: this attempt to
get the PBX to handle a couple sewer signaling messages triggers a whole lot of much
more serious issues.

That being said, there is still a use for H.450/SIP REFER: this is to allow IP phones using
the H.323 or SIP protocol to signal to the PBX that they are willing to perform a call
transfer. This will be discussed in Section 5.1.5.

Let us describe the H.450/SIP REFER source-based call transfer call flows anyway.

5.1.4.3.1 Call flow with H.450.2
The H.450.2 implementation of call transfer, because of the QSIG heritage, is well defined
and there is a reasonable level of interoperability between vendors. Call flow is explained
in detail in Section 5.1.4.3.3 and summarized in Figure 5.8. H.450.2 explicitly notifies
transferred-to end point C that a call transfer service is being requested. In response,
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Figure 5.8 H.450.2 consultation call transfer call flow.

transferred-to end point C gives transferring end point A a reference for the call to be
transferred, which is passed to transferred-to end point B. The call reference is explicitly
included by transferred-to end point B in the new call generated to transferred-to end
point C.

5.1.4.3.2 Call flow with SIP REFER
The SIP implementation is almost identical to the H.450.2 implementation. The REFER
message tells the calling end point to make a new call to C. The exact implementation is
still, at the time of writing (Q2 2003), in a state of flux, and really only works after some
vendor-to-vendor tuning. Details such as which phone releases the transferred call and
when, how the transferred call notifies the transferred-to party that this is a replacement
for the previous call, how the transferring phone is notified of the successful transfer, etc.
are still not stable. A sample call flow between Cisco SIP phones is given in the Annex.

5.1.4.3.3 Analysis of the H.323/H.450/SIP REFER call flow in public
networks

As already discussed, there is really no fundamental advantage to using this procedure
in the core network. It does not even save signaling messages as the H.450 activation
itself requires a significant set of new messages and adds a lot of complexity to end point
implementation (e.g., when implementing the second call presentation service, the end
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point should be careful not to accept any call if it is expecting a transferred call for which
it has already given a call reference).

But there are a number of major issues raised by this call flow regarding public net-
works:

• It requires, obviously, all end points to support H.450.2/REFER and to have inter-
operable implementations. This may not be an issue in closed user groups (VPNs or
networks of IP-PBXs), but this becomes a critical issue for a service provider: all VoIP
devices in the network need to support the H.450.2/REFER feature, including SS7
call agents, IVRs, application softswitches, any customer equipment connected to the
VoIP network, and even third-party VoIP networks interconnected to the network using
H.450.2. This is obviously a challenge, as these features are options in the standards,
likely not to be available by default in most products, and requiring an upgrade fee
if they can be added. The consequence is that the introduction of the H.450.2/REFER
optimization is likely to take significant time for deployment, as there is a need to wait
for all network components to be ready before the service can be made available.

• This is a typical case for the numbering format issue explained in Section 5.1.2.1. If
the redirection message, H.450.2 or REFER, is sent from device B, the redirected-to
number is expressed relative to B. If B is in San Francisco and the redirected-to number
C is also in San Francisco, it will not use the area code. When it reaches calling party
device A in New York, A will try to dial the C number using its San Francisco format,
and obviously the call will fail because it originated in New York and the softswitch
handling New York does not understand the San Francisco format. The issue is likely
to occur even in closed user groups (e.g., VPNs), when each site uses a different escape
code to dial other sites using short numbers (e.g., 1–1010, for extension 1010 on site
1, where prefix ‘1’ may have a different meaning at each site).

• If the redirected call is to another PBX C, the redirecting PBX B loses control of the
redirected call, while it is still charged for the redirected portion of the call. The billing
records generated by the local billing system of B will be inaccurate.

• On this call flow the redirected call naturally appears to the network elements as an A
to C call. If nothing is done, the billing problem explained in Section 5.1.2.2 occurs.
Instead of billing the call as an A to B call for T1 + T2 seconds and a B to C call for
T2 seconds, the network will bill the call as an A to B call for T1 seconds, then a B to
C call for T2 seconds, which is wrong. The network therefore needs to have some form
of correlation between the A to B and A to C calls which indicates it to be a redirected
call. Unfortunately, the first versions of H.450.2 overlooked this issue and the problem
is now present in many implementations of H.450.2. In 2000 the H.323 implementer
guides started introducing and documenting the usage of a new feature called ‘call
linkage’ (using a new identifier called ‘ThreadID’), which is used to associate one call
with another and must be used in H.323v4. Unfortunately, this adds to the difficulty of
introducing this feature in a multi-vendor network, as not only H.450, but the correct
version of it, must be implemented everywhere. Most carriers’ business plans require
integration with as many PBX brands as possible, which makes this issue a critical one.

• If multiple softswitches control the network, the initial A to B call and the subsequent
A to C call after redirection will be routed through a different set of softswitches.
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Figure 5.9 Routing dilemma in a multi-softswitch network with source-based rerouting.

There are two possible routing choices, the simplest (choice 1 in Figure 5.9) is to
route the A to C redirected portion of the call as if it was a normal call. In this case
the problem is that the CDRs required to charge B, instead of being generated only by
SSW 2 which is managing end point B, will be potentially generated by all softswitches
in the network, requiring complex CDR reconciliation across all softswitches. This
prevents any possibility to scale the billing system by isolating independent regions
in the network corresponding to each softswitch. A further issue is that some services
(e.g., legal call interception) are likely to be located in each regional softswitch for the
subscribers in its zone; so, they would require complex inter-softswitch synchronization
in order to be implemented in such a network. The second choice is to always reroute
the redirected portion of the call along the same path as the initial A to B call, but then
to send it back to the first softswitch for optimization of the routing. This call flow
allows the generation of billing records to be segmented properly and facilitates legal
interception. But, it also requires three times as many ports as other implementations,
and really gets ugly if a call is transferred multiple times. Another issue is that B may
be allowed to call (and therefore transfer) calls to destinations unreachable from A. In
order to fix this, SSW 1 would need to be aware of all the restrictions applicable to B!

• A last issue, probably the most serious issue in the context of public networks, relates
to the reliability of billing. For proper billing, it is important to be able to correlate
the A to B and the redirected A to C calls. Resolution of this issue using end-to-end
H.450.2 depends on the redirected end point properly implementing the correlation
field in the second SETUP message. This is the classical security issue known as
‘third-party dependence’. In short, if you want your billing system to work properly,
you need everyone in the network, all your customers, all your network peers, not just
your own equipment, to include linkage information correctly. Obviously, whether the
intent is malicious or just derives from unwanted situations (imagine a new firewall
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installed by a customer sitting between the IP-PBX and the network which does not
properly reconstruct H.323 or SIP messages with all enhancements, such as call linkage
information), anyone in the network can cause the network to generate wrong CDRs. All
service providers have had some experience of conflicts and trust issues with customers
related to billing, and will want to stay as far as possible from this situation.

Overall, having so little to gain from the H.450/REFER implementation in a public net-
work and so much to lose, except in very specific situations, we discourage the use of
H.450.2 or SIP REFER in the core network, and reserve it for very specific cases only.
Obviously, H.450.2 and SIP REFER can still be used by an IP phone to signal the inten-
tion to make a call transfer to an IP-PBX; issues only occur with the use of H.450.2 or
SIP REFER between customer devices and the network.

If the situation of having edge devices, using H.450/REFER redirection toward the
network, cannot be avoided in an open environment, then the network softswitch should
intercept the H.450/REFER message and execute the transfer locally using the NullCapa-
bilitySet/RE-INVITE method. This works fine, but is a very intricate task for a core
softswitch, actually requiring Centrex-type capabilities on the softswitch (Centrex is pri-
marily defined by the availability of call transfer in the feature set of the switch).

5.1.4.4 Voice resources connected to a H.450/SIP REFER-capable
PBX: locally optimized call transfer at the edge

This is the same as the previously described case on TDM PBXs. It works fine and does
not create any of the issues discussed in Section 5.1.4.3, because this is only a local
call flow.

However, since this type of call flow was primarily intended to avoid media tromboning,
and there is no media tromboning in VoIP if it is properly implemented, using this
optimized call flow is a lot less useful than in the TDM world, unless the voice resource
or the IP-PBX are not truly native VoIP implementations (e.g., those built on TDM cores
using VoIP to TDM boards to connect to IP-PBXs). In most cases, the simple call flow,
where the IVR bridges the two half-calls and uses TCS = 0 or RE-INVITE to optimize
the media path, is just as good and will cause fewer interoperability issues.

5.1.4.5 Network intelligent peripherals: locally optimized call transfer
in the network

This is the same situation as above, but transposed into the public network. Again, the
call flow works fine and does not create any of the numerous issues it creates when used
between a user space device and a network device, but all this added complexity brings
little benefit to VoIP networks.

It is expected that the service node model in VoIP networks (with the voice resource
doing the call switching internally) will prevail over the intelligent network model (where
the intelligent peripheral never switches the call, and only streams voice prompts). This
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would reverse the current situation on TDM networks, where the intelligent peripheral
model dominates.

5.1.5 How to signal call transfer?

In the previous sections we have discussed in detail how to execute a call transfer. Of
course, before executing a call transfer, some convention must be in place to signal to
the switch executing the call transfer that the user is willing to transfer a call.

5.1.5.1 H.323 or SIP phones and residential gateways

Any device connected to a public network (IP phone, CPE gateway, etc.), if it is capable
of transferring calls, must use the TCS = 0/RE-INVITE method and remain in control
of the entire call during the transfer (this is the equivalent of multi-line high-end analog
phones sold to small professionals). As explained in Section 5.1.3.1.1 this is because
the call transfer function is never offered by the residential service provider (to avoid
fraud). Therefore, transfer must be performed under the responsibility of the end point;
obviously, the user interface to control this is entirely up to the end point. Note that in
many countries it is even illegal to implement this service in a phone, and transfer is
never offered by a public network to non-Centrex users.

When an H.323 or SIP phone is connected to an IP-PBX, the best solution is to use
H.450/REFER messages to signal the transfer to the switch. Note that the switch itself
can use the TCS = 0/RE-INVITE call flow toward the public network to EXECUTE the
call transfer, or simply forward the H.450/REFER message to another PBX in a closed
user group. The way the end point asks for a call transfer and the way the switch executes
it are completely independent.

An alternative way of asking for a call transfer would be via DTMF tones (star key type
of transfer code). In this case the switch would need to locally accumulate and analyse
DTMF sequences. Although this is possible in theory, most SIP and H.323 IP phones
have specific ‘transfer’ keys and use the H.450.2/REFER message to ask the switch to
perform the transfer, in order to avoid having to make the appropriate transfer DTMF
sequences for a given switch available in the phone. Note that choosing DTMF activation
also necessitates having a specific escape sequence when transparent DTMF is required
(e.g., when entering information into an interactive voice response server).

For H.323 or SIP residential gateways, the situation is a bit different and some vendors
choose to let the IP-PBX perform the call transfer by analysing the DTMF digits, while
other vendors analyse the DTMF digits locally and send the transfer requests to the
IP-PBX using H.450/REFER.

5.1.5.2 MGCP phones and residential gateways

In a public network the transfer service is typical of Centrex offerings. In many ways,
MGCP phones and CPE gateways are better suited than SIP or H.323 at offering a Centrex
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type of service. MGCP makes fewer assumptions on the specific logic implemented in
the phone and, therefore, is more manageable in a multi-vendor environment, making it
straightforward to implement new services in a homogeneous way. In addition, MGCP
offers more possibilities by signaling phone-related events even before the call is active
(e.g., the off-hook event), enabling such features as the announcement of the number of
pending voicemail messages as soon as the handset is picked up. Finally, MGCP is now a
very mature protocol, with dozens of vendors and the endorsement of large organizations,
such as PacketCable (the organization that also drives the DOCSIS standard).

The most natural way of using MGCP (with an event package line) to signal call
transfers is to use DTMF activation sequences, using MGCP digit maps. This works well
across all vendors of IP phones and residential gateways.

Most IP phone vendors also offer shortcut keys for the most common call actions
(three-way, hold, transfer, etc.). These phone vendors allow the call agent to associate an
MGCP event with each phone key. This event can be parsed by the call agent and trigger
a specific action (e.g., transfer). Because of this, seen from the user’s perspective, the
phone behavior is identical to an H.323 or SIP phone, except that it offers more services
while off-hook and can be managed much more easily by the service provider.

Once the MGCP call agent has been notified that the phone is ready to perform a call
transfer (if the transferred party is not controlled by the same call agent) the call agent will
use the appropriate call flow on the network side (TCS = 0 or SIP REFER), depending
on the inter-softswitch protocol it uses (H.323 or SIP). The call agent may use MGCP
or H.323/SIP to establish the call to the transferred-to party, depending on whether the
transferred-to party is on the same MGCP call agent or not.

The call flow illustrated in Figure 5.10 is an example showing end point B managed
by an MGCP call agent, using H.323 as an inter-call agent protocol. The calling party,
as well as the redirected-to party, are on separate switches in the example. In Figure 5.10
the music on hold is played by the call agent (it could also be streamed by an external
announcement server controlled by the call agent).

5.1.6 VoIP call redirection and call routing

5.1.6.1 Call redirection and routing in traditional voice

A TDM switch routes calls according to a route table. Most switches are able to route
calls not only according to the call destination, but also according to the source of the
call. In case there are multiple route tables, if a call from A to B is redirected to C, then
the route table attached to call originator B will be used to route the redirected call to C.

5.1.6.2 Call redirection and routing in VoIP

What was obvious in traditional voice now becomes very tricky in VoIP. The softswitch
is now very likely to have multiple route tables according to the source of the call. This is
because a softswitch can potentially control end points located anywhere on the planet and
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Figure 5.10 Transfer triggered by an MGCP end point, executed using the H.323 NullCapa-
bilitySet (MGCP PDUs not detailed). Most ACK PDUs are not shown and all messages are in
sequence for clarity.
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in real-life deployments most softswitches control the end points of an entire country. The
best route (e.g., a next-hop VoIP gateway) to New York may be very different whether you
are located in San Francisco on the west coast or in New York! The criteria for selecting
a route may be linked to the topology of the IP network, availability of resources in each
region, quality of service considerations, etc. This becomes a problem when considering
the case of call redirections. Two choices are possible for a call from A to B redirected
to C:

• The call to C can be routed exactly as in the PSTN, using the route table attached to
B. In this case the issue is that the media streams will in fact go directly between A
and C and, therefore, the best route, if B is the source of media streams, may not be
the best route if A is the source of media streams.

• The call to C can be routed using the route table attached to A. In this case the
softswitch must carefully execute all the features, such as call restriction, that must be
linked to B, the real owner of this call from an administrative point of view. Now,
the next hop selected is likely to be the optimum choice because A is the real source
of the media streams. Nevertheless, this is not always a perfect solution as B may be
allowed to reach destinations that A cannot reach. For instance, most countries have
premium numbers that cannot be reached from abroad. If A calls from abroad and is
redirected by B to a premium number the call should work because B can call the
premium number, but the softswitch is likely to have no route to the premium number
attached to source A.

There is no ideal solution. In any complex deployment, involving routes spanning across
countries, virtual private networks, or with strict constraints related to quality of service
and the underlying IP network topology, one of the two approaches described above
must be selected, and the related issues need to be addressed on a case-by-case basis.
In the majority of cases we nevertheless recommend using whenever possible traditional
networks, which are simpler to manage.

5.1.7 Conclusion

There is no question that the ability of VoIP to redirect calls without tromboning media is
the major breakthrough of the technology. Many issues that justified the development of
complex call flows in the TDM world have now been solved with much more elegance
by more simple and robust VoIP call flows. This advantage alone is a big incentive to
migrate TDM networks to VoIP technology: the redirect service has been presented in
a Centrex or corporate telephony context above, but in many countries VoIP will be an
interesting solution to the issue of local number portability (LNP), which often uses the
call forward service (‘onward routing’ technique).

As we have seen, various call flows and technologies can potentially be used both
to request a call transfer and to execute a call transfer. The complex, source-based call
transfer protocols, such as SIP REFER or H.450.2, are really useful only in the corporate
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space to allow IP phones to request a transfer to the switch, but in the network they create
many more issues than they solve when also used to execute the transfer. With VoIP, the
simplest transfer call flow (using TCS = 0, or SIP RE-INVITE) is also the best, because
tromboning has been removed.

Most of the call flows discussed above also demonstrate the similarity of H.323 and SIP,
both protocols are identical in design and performance when deployed as a core network
protocol. H.323 and SIP also present the same issues when it comes to the deployment of
Centrex-type services or the control of IP phones. As already demonstrated in the TDM
world where all PBXs use a stimulus protocol to control IP phones, a protocol that does
not need to make assumptions about the built-in logic of a phone or a CPE is much
easier to deploy and operate. In VoIP the same advantages are obtained by using MGCP
(a stimulus protocol) as the protocol for controlling Centrex end points at the edge of the
network. Putting all these remarks together, we can summarize as follows:

• In core service provider networks, using SIP or H.323, support of the mandatory options
of the standards that cover the for dynamic redirection of media streams (TCS = 0,
RE-INVITE) is sufficient to support all the redirection services already deployed in the
TDM world, but much more efficiently.

• Regarding phones managed directly by a public infrastructure, H.323 or SIP are fine
at the edge for IP phones or gateways providing residential telephony. But if Centrex
features, among which is mid-call transfer, are also to be provided, the MGCP package
line is a better choice at the edge to control IP phones and residential gateways. Of
course, both solutions can be implemented at the same time on a network, and in all
cases H.323/SIP remains the core protocol.

• If corporate PBXs are to be connected to the core public network, using the same call
flows as the current TDM network (local transfer by the PBX) is the only practical
solution because of the third-party dependence issue. H.450 or REFER can only be
used in closed user groups, and even then do not bring any significant advantage when
IP-PBXs are implemented properly and are capable of media anti-tromboning.





6
Advanced Topics: NAT
Traversal

6.1 INTRODUCTION TO NETWORK ADDRESS
TRANSLATION

6.1.1 One-to-one NAT

Network Address Translation (NAT) was initially used to protect corporate networks
from people attempting to access internal networks from the Internet. Many corporations
decided to use private addresses internally (e.g., addresses in the 10.X.X.X range): such
addresses cannot be routed on the public Internet and therefore it is impossible to send
a packet to a private address through the Internet. Of course certain computers still need
to be able to receive packets from the Internet (e.g., email servers). Such computers are
given a public (also called routable) address on the Internet, and the site router or firewall
has to translate this public address to the private address of the server on the fly.

For instance, in Figure 6.1 the computer with internal IP address 10.3.0.4 is a mail
server and needs to receive traffic from the Internet. Its private IP address is mapped
to the public address 162.167.3.14 on the Internet, and therefore any packet sent to this
address on the Internet will reach the site access router, which will translate the destination
address to 10.3.0.4.

Computers that need to send information to the Internet with a protocol that needs to
receive an acknowledge that the packets have been properly received (e.g., TCP) also
need to have a mapping to a public address, otherwise the acknowledge message cannot
reach the sender from the Internet. This is the case for computer 10.3.0.2. In Figure 6.1
it is sending a packet to a computer at 1.2.3.4. The source address of this packet is
translated from 10.3.0.2 to 162.167.3.12 by the router, so that if the receiving computer
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NAT router

Internal network

10.3.x.x

10.3.0.2

10.3.0.3

10.3.0.4

Router NAT table

10.3.0.2←→162.167.3.12

10.3.0.4←→162.167.3.14
10.3.0.2:x→1.2.3.4:y

10.3.0.4:z←4.3.2.1:t

162.167.3.12:x→1.2.3.4:y

162.167.3.14:z←1.2.3.4:t

Figure 6.1 One-to-one NAT.

needs to send an acknowledge message, it will be able to do so by sending it to IP
address 162.167.3.12. The computer 10.3.0.3 has not been given any mapping to a public
address, and therefore cannot be reached from the Internet. This also saves public IP
addresses since only servers and computers reaching the Internet need them.

One-to-one NAT (in short, NAT; though NAT is commonly mistaken for NAPT) essen-
tially gives to a set of computers a ‘shadow’ image on the Internet with a public address.
NAT works with any protocol. In Figure 6.1 we inserted port numbers x, y, z, t in the IP
packets, but NAT works just as well for protocols that do not have port numbers.

6.1.2 NAPT

With one-to-one NAT, each computer accessing the Internet needs to have one public
address. With the advent of the WWW, this quickly became inconvenient as virtually
anyone can browse the Internet, and this would require either an HTTP proxy that relays all
queries to the Internet on behalf of the users, or a public IP address mapping for everyone.

The Network Address and Port Translation (NAPT) technique makes it possible for
multiple users to access the Internet without an application-level proxy, for all applications
that use transport protocols that have a port information to characterize a connection in
addition to the IP address (e.g., UDP and TCP).

6.1.2.1 Full-cone NAPT

Full-cone NAPT is the most common implementation. In this implementation each out-
going stream of UDP or TCP data from a given IP address and port, irrespective of
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its final destination, is allocated a port on the router’s public address. In Figure 6.2
the router public address in 162.167.3.1, and the router has allocated port 2002 for
HTTP/TCP communication which sends packets from computer 10.3.0.2, port 3210. The
router has allocated port 2004 for SMTP/TCP communication which sends packets from
host 10.3.0.4, port 5678. The port (2002, 2004) is used as an index in the NAPT table
by the router when it receives IP packets at IP address 162.167.3.1 and needs to forward
them to the appropriate internal IP address and port. Each NAPT entry creates a pinhole
through the router for incoming packets from the Internet and forwards these packets to
the proper host.

In the case of TCP the NAPT entry is created in the router when the first TCP segment
is sent from the internal host to the Internet, and deleted when the TCP communication
is closed (FIN, FIN ACK packets), or after a very long timeout (if one of the two
computers crashes).

NAPT also works with UDP-based communications if the communication protocol
responds to UDP packets received from a given IP address and port by sending response
packets back to the exact same IP address and port. The NAPT entry in the router is then
created when the first UDP packet is sent out by the internal host to the Internet, and
remains for a relatively short period (about 30 s, typically). This period is extended each
time a packet is sent or received corresponding to this NAPT entry.

As already mentioned, a mapping entry in the NAPT table is created for each source
IP and port, irrespective of the destination. This means that if host 10.3.0.2 reuses port
3210 to communicate with port 7000 on host 1.2.3.4, or even to another computer alto-
gether, the same entry will be used. Therefore, the NAPT entry maps to a ‘full cone’ of
connections, which all originate at the same internal IP address and port. This property is

Internal network

NAT router

Router NAPT table
10.3.x.x

10.3.0.2

10.3.0.2:3210→1.2.3.4:80

10.3.0.2:3210 ←→162.167.3.1:2002

162.167.3.1:2002→1.2.3.4:80

162.167.3.1:2004→4.3.2.1:25

162.167.3.1:2002←1.2.3.4:80

162.167.3.1:2004←4.3.2.1:25

10.3.0.4:5678 ←→162.167.3.1:2004

10.3.0.4:5678→4.3.2.1:25

10.3.0.4:5678←4.3.2.1:25

10.3.0.3

10.3.0.4

Figure 6.2 Full-cone NAPT.
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very important for some NAT workaround methods, such as Simple Traversal of UDP
Through Network Address Translators (STUN).

6.1.2.2 Strict NAPT

Strict NAPT is used by some firewalls to prevent hosts on the internet from using the
pinhole opened by NAPT entries, which could be used by a malicious user to send IP
packets to internal computers. Let’s assume that someone discovers a ‘killer TCP segment
or UDP packet’ that crashes a computer or allows someone to take control of it. In the
case of full-cone NAT, a malicious user knows that, since many people are browsing the
Internet, many NAPT entries are active in the router. It is relatively easy to discover the
public IP address of the router (e.g., looking at DNS entries): the attacker will then send
the malicious packet to all ports at that address. At each port that corresponds to an active
NAPT entry, the router will forward the packet to the internal host, leading to a successful
attack. This works because full-cone NAPT does not check that the source IP address and
port of the packet is indeed a server in active communication with an internal host.

Now, this is not as bad as it seems: there are random serial numbers in TCP that are
very hard to guess, and a full-cone implementation, which would check these numbers, is
not subject to such an attack. On UDP, however, unless the NAPT function is aware of
the higher level protocol properties, the attack will work. There are few applications that
succumb to potentially malicious instructions over UDP, but they do exist (e.g., in 2003 a
virus successfully exploited a hole in the UDP-based communication ports of Microsoft’s
SQL server).

Strict NAPT creates one NAPT entry for each destination IP address (or even port);
therefore, the pinhole is only opened for packets coming from this IP address on port.
Figure 6.3 shows the entries created in the case of two communication channels opened
from the same port on host 10.3.0.2.

The terminology ‘partial/restricted cone’ is sometimes used to refer to NAPT imple-
mentations which check only the source IP address of packets sent to the private domain,
while ‘symmetric cone’ applies to NAPT implementations which check both the IP address
and port of received packets.

6.1.3 Issues with NAT and NAPT

NAT and NAPT both break protocols that use multiple communication channels and
transmit the IP addresses of these communication channels in applicative messages. For
instance, SIP, H.323, and MGCP all use one communication channel for call control
and several RTP communication channels for the media. The IP addresses of the RTP
communication channels are transmitted on the call control communication channel.

In the example network of Figure 6.3, if computer 10.3.0.2 opens a VoIP communication
with a computer on the Internet using a SIP INVITE or an H.323 SETUP with ‘Fast-
Connect’, it will advertise one or more RTP reception ports on IP address 10.3.0.2. If
the remote computer attempts to send RTP packets to this address, these packets will be
dropped by the first router on the path, because they correspond to private addresses and
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Figure 6.3 Strict NAPT.

cannot be routed on the Internet. The RTP packets in the other direction (from 10.3.0.2)
will get through if the remote computer is on the Internet, and therefore we end up with
a half-duplex conversation.

NAPT presents another problem: it cannot work with servers on a private network. A
server is a computer that receives connections from clients’ machines (e.g., a web server).
Since NAPT creates forwarding entries only when packets are sent from the internal
network to the Internet, there will be no active entry in the case of a new incoming
connection, and it will fail. The router would need to know where to route these new
incoming connections.

One limited workaround is called port forwarding in which incoming connections use
the TCP or UDP protocol to the router IP address and a given port are forwarded by the
router to a given internal host. Since most servers use a well-known port, this enables the
use of exactly one instance of each type of server on the internal network.

Unfortunately, an IP phone is a server, since it receives phone calls. Even worse, if
there are multiple IP phones in the internal LAN, we have a situation of multiple servers
of the same type, and port forwarding will not work.

6.2 WORKAROUNDS FOR VOIP WHEN THE NETWORK
CANNOT BE CONTROLLED

6.2.1 Ringing the proper phone

Reaching an IP phone behind a one to one NAT function is not a problem if each IP
phone has a public IP address mapping and the call setup message can be forwarded to the
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corresponding internal IP address. If the phone registers dynamically, either the phone
must be capable of advertising the external IP address or the gatekeeper/registrar/call
agent must be provided with a translation table.

The problem is more difficult in the case of NAPT. If there is a single IP phone behind
a NAPT function, then port forwarding can be used to route incoming call setup messages
to that phone (in the case or H.323, TCP port 1720 should be mapped to the IP phone,
whereas. In the case of SIP over UDP, UDP port 5060 should be mapped to the IP
phone). This solves the problem of being able to ‘ring’ the phone even when it is behind
a NAPT function. This solution immediately extends to the case of an analog gateway
with multiple telephone lines, since a single IP address is used for all the lines.

The case of multiple IP phones can be supported if the IP phones have configurable
non-standard call-signaling ports (this is rarely possible), in which case each port can be
mapped to a given phone.

The problem can be solved with another approach (using the pinhole maintained by
the NAPT function) if the phone can maintain a permanent connection to the call control
server. This can be done easily with MGCP or SIP, which are both UDP-based protocols,
if the messages used for their registration function (REGISTER message in SIP, RSIP
in MGCP) use the same source port as the one used to receive call control messages.
This first registration message will reach the call control server, and by looking at the
source IP address and port the server can learn the external IP address and port used for
the NAPT mapping entry for each phone. In order to ‘ring’ this phone, the call server
simply needs to send a call setup message (SIP INVITE, MGCP CRCX) to that self-same
port (the pinhole for that phone), and the router will forward it to the correct phone. This
behavior is standard in MGCP, but wasn’t correctly specified in SIP RFC 3261; this was
fixed in August 2003 in RFC 3581 by using a new ‘rport’ parameter of the Via header
to force responses to the exact apparent receive port (see Section 3.2 for more details).
The only issue is to keep the pinhole open, which requires having some traffic on the
signaling connection every couple of minutes. Some phones can be configured to do so
(e.g., REGISTER refresh), otherwise the call server can periodically send a message to
the phone that should cause the phone to respond (MGCP AUEP, SIP OPTIONS, or even
malformed messages that should trigger an error response).

6.2.2 Using port forwarding to solve the wrong media
address problem

These methods alone do not solve the problem of internal network IP phones advertising
private IP addresses for the media stream. There are also several possible solutions to
this problem:

• Some IP phones have a configurable field for the “external IP address” of the NAT
function (the address that will be used by the NAT function when replacing the source
IP address). These phones will open a reception RTP port on the local host (e.g.,
10.3.0.2:2345), but will advertise it in the call control messages with the public external
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address instead (e.g., 162.167.3.1:2345, note that the port is the same). This works only
if the NAPT router is configured with a default port forwarding to the IP phone (i.e.,
all packets to 162.167.3.1 that do not correspond to an existing active connection are
routed to the IP phone). In order to avoid conflicts with existing mappings, these IP
phones can usually also be configured with a restricted set of ports to use for inbound
RTP connections. This also allows this solution to extend to the case of several IP
phones if the NAPT router can map a specific range of ports to each IP phone.

• Some IP phones will automatically detect that the source of the RTP packets they
receive from the internal host is not the same as the IP address advertised for the RTP
reception port. In such a case they will assume that NAPT is in place and will ignore
the IP address provided, sending their own RTP packets to the source IP address present
in the packets received from the IP phone on the internal network. This works because
most phones use the same sending and reception RTP ports, but, unfortunately, this is
not a standards-compliant implementation (see Section 6.2.4). Obviously, both phones
should not be behind distinct NAPT functions.

All these solutions were used in the first PC-to-phone implementations, with only one or
a couple IP software phones in a residential environment, and work well with ‘techies’
and early adopters who are not scared of reconfiguring their NAT router. Unfortunately,
these methods cannot be used for the general public, or for such services as VoIP-based
Centrex, which need to reach many phones behind a NAT function.

6.2.3 STUN

Many proposals have been made to facilitate or ideally automate the configuration of VoIP
networks to successfully work even across NAT functions. The IETF Midcom Working
Group is defining the specifications for a ‘middlebox’ access control device and a ‘Mid-
com’ control protocol. Most of these proposals work in an ideal world where all routers
could be upgraded overnight, but are of little practical interest in current networks, given
the size of the installed base of low-end cable or DSL NAT routers.

The STUN approach however stands out as it does not require any configuration or
change of existing NAT/NAPT routers or existing call control servers. STUN is defined in
RFC 3489 (Simple Traversal of User Datagram Protocol Through Network Address Trans-
lators), and is a simple query response protocol encapsulated over UDP (some security
primitives also use TCP connections).

STUN is available in more and more phones, and there are several public STUN servers
on the Internet. STUN provides a way for the phone to dynamically learn the external
IP address and port that will be used for each communication through the NAT function.
STUN also allows a host to discover the type of NAT implementation (full-cone or strict).

Each time the IP phone knows it is about to advertise an address and port that cannot
be reached through the NAT/NAPT function, it first sends a STUN query from that exact
IP address and port to the STUN server on the public Internet (1.2.3.4:3478 in Figure 6.4,
3478 is the well-known port of STUN servers). The response packet of the STUN server
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Figure 6.4 Softphone using a STUN server to learn the external IP port used by a full-cone
NAPT router for VoIP signaling or media flow.

simply indicates what is the apparent source address and port of the query (i.e., the external
IP address and port allocated dynamically by the NAT function for this communication).

The IP phone is now ready to advertise the correct external address and port in the call
control messages to the remote host (SIP INVITE or 200 OK response, MGCP 200 OK
response to a CRCX or MDCX command, H.323 OLC or OLC ACK).

Note that this works only if the NAPT function is full-cone; otherwise, the external port
allocated by the router for the STUN query will differ from the external port allocated for
the RTP stream to the remote host, since they have different IP addresses. Most residential
NAT functions are full-cone. In a bullet-proof implementation that works even with strict
NAPT, a service provider can co-locate the STUN server with a call server that also
serves as an RTP proxy. In this situation the RTP packets, and STUN queries go to the
same destination and will be allocated the same external port by the router’s strict NAT
function. The only downside of this approach is that the RTP proxy will add some delay
to the conversation and will impact the density of the call server (RTP processing is very
CPU-intensive, a typical Linux kernel-mode implementation will route a maximum of
about 500 media streams of 20-ms packets per GHz on a Pentium).

Another problem with STUN is that if there are multiple IP phones behind the NAPT
function, these phones will advertise a public address for media streams even if one phone
calls the other in the private network. This will force the router to relay media streams that
could otherwise have been transported directly by the LAN. Usually, this will not create
significant QoS problems as there are relatively few internal calls on small sites and the
connections to the router are 10/100 Mbit/s Ethernet. However, this may create issues on
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large sites. This problem could easily be fixed by getting the IP phone to advertise two
reception ports (one private, one public) and having the call server select the correct one
on the fly (the call server knows which IP phones are behind the same NAT function);
but, this would require small changes to the existing VoIP standards.

STUN will also introduce non-optimal media paths in some networks, as media are
forced to flow through the routers closer to the STUN server, which are not necessarily in
the shortest possible path for media streams. The same problem may happen for signaling
(Figure 6.5), although this is much less critical as signaling does not have strong latency
constraints.

6.2.4 Other proposals: COMEDIA and TURN

Connection-Oriented Media Transport in SDP (COMEDIA) is described in draft-ietf-
mmusic-sdp-comedia-05.txt; it enables traversal of symmetric NAT by allowing VoIP
gateways to dynamically update their destination RTP port according to the source IP
and RTP port detected in the received RTP packets, instead of continuing to use the port
advertised in the remote SDP. COMEDIA uses a new SDP attribute ‘a = direction:role’,
where role can take the following values:

• ‘Active’, which indicates that the end point will initiate a connection to the port number
on the ‘m =’ line of the session description from the other end point. The port number
on its own ‘m =’ line is irrelevant, and the opposite end point must not attempt to
initiate a connection to the port number specified there; instead, it is prepared to receive

STUN server

The STUN request for media obtains the optimal
PATH to the STUN server.  The RTP path must
follow the STUN path.  STUN servers must be
located optimally for the media path (STUN route 
from a phone closest to nearest edge router).

Call controller Signaling path

Media path

Figure 6.5 STUN may force utilization of non-optimal paths for media and/or signaling.
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media on the ports from which it sends. These end points should also immediately send
some media to the ports indicated in the ‘m =’ line of the remote end point.

• ‘Passive’, which indicates that the end point will accept a connection to the port number
indicated on its ‘m =’ line of the session description. The end point will not send any
media (including control packets such as RTCP) from their passive ports until they
receive a packet on these ports and record the source address and port of the sender.
The passive end point then assumes that the first packet received corresponds to its
active peer. From this point onward, passive end points must send UDP or RTP media
from the same port as the port indicated in their ‘m =’ line (receive port). They must
also send RTCP media from the port on which they expect to receive it (typically, the
RTP port number plus 1).

• ‘Both’, the default value, indicates that the end point will both accept an incoming
connection on the port indicated on its own ‘m =’ SDP line and initiate an outgoing
connection to the port number on the ‘m =’ line of the session description from the
other end point. When receiving an SDP in active mode, the end point should behave
as passive, and vice versa. If the end points are in both mode, then they should send
data on the ‘m =’ line destination, and there may be two active connections if both
succeed. End points should accept media both on the ‘m =’ line port as well as back
to the sending port (in most cases end points will be designed so that this is the same).

With the COMEDIA proposal, the end point in passive mode can send media to an end
point behind a symmetric NAT function, because a UDP pinhole will be opened by the
media sent out from the end point behind the NAT function, and the end point in passive
mode will send back audio data through this pinhole. There are still many issues in
COMEDIA, notably when both end points are behind separate NAT functions.

Traversal Using Relay NAT (TURN) is another NAT traversal approach that uses the
TCP/UDP pinhole opened through the NAT function to establish a bidirectional commu-
nication tunnel with a TURN server in the public network. The device D located in the
private network which requires to establish a communication with the public Internet first
communicates with the TURN server using the TURN protocol. As a first step D requests
an IP address and port for his own use on the turn server. The TURN server allocates an
IP address and port (IP t:port t). Device D can then advertise this IP address and port to
external IP devices that need to send packets to it. When the TURN server receives pack-
ets on IP t:port t, it simply forwards these packets to device D using the TURN protocol.
The TURN protocol can traverse the NAT function because it is based on a permanent
TCP connection between device D and the TURN server, or it uses symmetric UDP.

TURN can be seen as a way to obtain a ‘remote network interface’ outside the NAT
domain. Although there is continued interest in TURN, there is not sufficient consensus
yet to formally publish it as an IETF RFC.

6.2.4.1 VoIP NAT traversal using an RTP relay

When the network cannot be controlled, when end points do not implement any NAT
traversal algorithm, and when NAT functions may be any combination of full-cone or
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strict NAT without any specific support for VoIP, the only possibility that remains to
enable VoIP calls is to attempt to use the pinholes opened by all NAT functions when
sending traffic to the public network.

As indicated in Section 6.1.2.2, even strict NAPT functions will accept, once a UDP
packet from the internal network has been sent to a server, a response packet from that
server to the exact port that was allocated by the NAPT function as a source port for the
UDP packet initially forwarded.

This property can be used by a network-based entity E in order to get UDP-based VoIP
protocols to work across the NAT function (Figure 6.6):

• Server E will receive all VoIP signaling from the end points (EP internal) behind the
firewall, and send all responses to the apparent source port of the UDP packets it
receives. All protocol-level indications to send the responses to a different IP address
are ignored. In addition, in order to keep the pinhole open, server E or the end point
need to exchange a packet at least every 30 s. When the protocol is MGCP, this can be
achieved by the server independently of the end point, using AUEP commands. When
the protocol is SIP, this can be client-based (e.g., REGISTER messages) or server-based
(e.g., OPTION messages).

• For media streams, server E needs to intercept all VoIP signaling commands where
the end point advertises the RTP reception ports where it expects to receive media,
and forward these commands to EP external, indicating itself as the reception device.
E will also put itself forward to receive all media streams sent by EP internal, in
order to analyse their apparent source address, as translated by the NAT function. As
soon as the apparent source address and port S NAT:p NAT of a media stream sent

NAT traversal
sever

Internal network

EP_internal

Router NAPT table

S:p/E:e1←→S_NAT:p_NAT/E:e1

RTP S:p→E:e1

RTP S:p→E:e1

RTP S_NAT:p_NAT→E:e1

RTP E:e1→S_NAT:p_NAT RTP→E:e2

EP_external

NAT router

E

VoIP signaling
Send media to S:p

VoIP signaling
Send media to E:e2

Figure 6.6 NAT traversal using an RTP relay.
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by EP internal is known, server E will be able to forward media streams sent by
EP external to the self-same address and port S NAT:p NAT. The NAT function will
forward these packets to the original source address and port S:p used by EP internal
to send its RTP packets; this works because virtually all end points send and receive
RTP streams for each media on the same port.

Such a NAT traversal server can be implemented on any network link where VoIP
signaling can be intercepted. There are obviously two natural locations:

• At the IP point of presence concentrating the traffic from the customer. The NAT traver-
sal servers that are implemented there are sometimes called ‘border session controllers’
because they should be located at the edge of the network.

• Close to the call controller, or co-located with the call controller.

Because it needs to learn the apparent source IP address of media streams sent by the
internal end point, the NAT traversal server needs to relay media streams. In applications
where there is a high probability of calls coming from internal end points that are rerouted
by the call controller to another internal end point behind the same NAT, the NAT traversal
server should either optimize the RTP path by deactivating RTP relaying or be located
very close to the customer site in order to minimize RTP tromboning in the IP network.
RTP path optimization is not trivial, when all the call flows possible over a VoIP network
are taken into account.

6.3 RECOMMENDED NETWORK DESIGN FOR SERVICE
PROVIDERS

The previous sections have made it clear that NAT/NAPT problems should be avoided at
all costs for large-scale deployments, as they can become a maintenance and troubleshoot-
ing nightmare (this amounts to knowing in detail and sometimes debugging many different
sorts of NAT and firewall implementations). It is likely that enterprise routers, and obvi-
ously residential routers, will be unable to provide adequate support for VoIP protocols
before 2005. Even when such methods work, it is likely that they will not be optimal in
some networks, because most NAT routers will need to route both signaling and media,
as illustrated in Figure 6.7.

All the traversal methods described above will work, but they are really workarounds
and hardly capable of sustaining robust network deployment. However, it would obviously
be very costly to allocate a routable, public IP address for every IP phone.

The strategies we describe below are what we believe to be the best engineering options
for a service provider wanting to implement business-grade VoIP on a large-scale net-
work.
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The RTP path must follow the non-optimal
signaling path, which is the short-path route to
the call controller.

Call controller

Signaling path

Media path

Figure 6.7 VoIP NAT routers may lead to non-optimal media paths.

6.3.1 Avoid NAT in the customer premises for VoIP

6.3.1.1 Business trunking and connection to PBXs and IP-PBXs

Most large corporate sites have an existing PBX and do not wish to switch to a pure
internal VoIP network before the PBX has been fully depreciated. Nevertheless, such
sites can benefit from a VoIP network to carry communications between corporate sites
(voice VPN), or to the PSTN (arbitrage, least cost routing). In most cases the easiest
way is to connect the PBX to a CAS or 5ESS (in the US) or PRI (most of Europe)
VoIP gateway. More and more PBXs also have optional VoIP trunk boards that can be
purchased and will packetize voice without a need for an external VoIP gateway.

Regardless of the solution that is adopted, the VoIP interface requires a single IP address
to operate. Obviously, there would be no point in using NAT for this single address, and
therefore the IP address of the gateway should be reachable directly from the core network.
Let’s call this type of address IP GW.

6.3.1.2 IP phones

A VoIP-based Centrex site can have dozens of IP phones. The easiest way to avoid using
the Centrex site NAT function is to allocate IP addresses from the network that have been
reserved for VoIP usage. Let’s call this type of IP address IP PH. All communications
between the VoIP network and IP PH addresses should be routed normally by the Centrex



356 IP TELEPHONY

site router, without any translation. The media path is optimized between phones as part
of the same IP PH address pool, as illustrated in Figure 6.8.

Obviously, the allocation of addresses selected by the service provider for use by IP
phones should not interfere with the other IP addresses used by the existing corporate
information system (PCs, printers, servers, etc.). There are several methods that can be
used to meet this requirement:

• The most trivial way is to allocate IP PH addresses in a private address pool (such
as 10.X.X.X, 192.168.X.X, or 172.X.X.X). However, the customer may also be using
private addresses, and therefore the service provider should select IP addresses in the
private address pool that do not conflict with the network currently in place. Depending
on the service provider, this may be easy or very difficult. Some service providers have
a fully packaged SME IP connectivity offer where the corporate NAT router is always
configured to allocate private IP addresses to internal PCs in the same address pool (say,
10.1.X.X). On such networks, all other blocks of IP addresses, (i.e., 10.2.X.X, 10.3.X.X,
. . ., 192.168.X.X, and 172.X.X.X can be used safely without creating conflicts). Unfor-
tunately, many service providers didn’t plan ahead for this type of problem and allow
their customers to use any set of private IP addresses they like. It can then become
cumbersome to ask each customer to select IP addresses that do not conflict with the
network in place. For these service providers the following two alternative approaches
will work.

• Instead of allocating the IP PH addresses in a private pool, one sure way to avoid
any conflict is to allocate these IP addresses in a pool of public IP addresses. For
the example let’s select 162.168.X.X. This block is large enough for about 65,000

All streams use direct IP routing. All paths are
optimized.

Call controller

Signaling path

Media path

Figure 6.8 Optimized media path between IP phones as part of the same address pool.
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phones. Apparently, this defeats the object of not using one public address per IP phone.
Fortunately, this is not the case as we will see below, as this pool of IP addresses can
be reused in the network as many times as necessary, providing unlimited scalability
with just one class B address block.

• Another option is to put all IP phones on a VLAN. The router is then instructed to
route all incoming packets from the VoIP backbone (e.g., arriving in an IP tunnel), to
that VLAN, resolving de facto any addressing ambiguity. Similarly, any packet sent
from the VLAN of IP phones should be sent to the VoIP backbone without translation.
All other data flows from other VLANs should be routed to the router NAT func-
tion and undergo normal processing. Unfortunately, this is only possible on relatively
sophisticated routers.

A summary of the optimal-routing configuration for a site is given in Figure 6.9.
We have already mentioned that the pool of IP addresses allocated to IP phones could

be reused many times. In fact, there is no magic in this solution, it has simply pushed
the requirement for a NAT function away from customer premises equipment (which is
of variable quality) into the backbone. Figure 6.10 shows an example network where the
service provider only wants to use class B block 162.168.X.X and yet provide service to
more than 65,000 phones.

The first customers are served from the first VoIP access pool. The IP routing domain
between all the IP addresses of this first access pool must be closed; this can be achieved
by using an MPLS virtual network, IP tunnels, source-based routing, router subinterfaces
on specific layer 2 links (e.g., ATM permanent circuits). This is to ensure that all routing
within this access domain does not interfere with any other routing table.

IP_PH addresses for IP phones

Existing data network

VoIP backboneNormal data backbone

No NAT or NAPT, direct routingNormal NAT/NAPT

Figure 6.9 Separation of VoIP and other data flows.
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<65K phones <65K phones

VoIP access pool 1
162.168.X.X

162.168.0.1
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165.163.0.2

VoIP core
165.163.X.X

VoIP access pool 2
162.168.X.X

162.168.0.1

VoIP IP/IP gateway VoIP IP/IP gateway

Figure 6.10 Reusing access pool IP addresses.

When the IP addresses from access pool 1 have been exhausted (this will probably be
much before 65,000 IP phones have been connected because complete subnets need to
be allocated to each end site set routing efficiency), a second access pool is created in its
own isolated routing domain.

Since each access domain is isolated from a routing point of view, they cannot com-
municate. This problem is solved by the VoIP IP/IP gateway. Any phone call from a
phone in access domain 1 to a phone that is not in access domain 1 will reach the VoIP
IP/IP gateway, which will terminate it locally using an IP address in the access pool (e.g.,
162.168.0.1), then re-originate the call using a single public IP address. In essence, the
VoIP IP/IP gateway summarizes the complete access pool in a single public IP address.
If the call needs to reach a phone in the second access zone, it will be routed by the VoIP
core to the VoIP IP/IP gateway of access pool 2, which will re-originate the call within
the access 2 domain using IP address 162.168.0.1.

This hierarchical access network scales indefinitely to arbitrarily large VoIP networks,
by just adding more access pools. The VoIP IP/IP gateway is not a trivial function (we
will discuss it in Section 6.3.2).

The method also has the advantage of cleanly separating the VoIP network and the
regular data network, which helps delineate the respective responsibilities of the enterprise
and the service provider in terms of security (this will be described in Section 6.3.3).
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6.3.1.3 Software IP phones and PC-based videoconferencing devices

Unfortunately, the case of PC-based VoIP equipment cannot be solved by the previous
method. If an IP address of type IP PH is allocated to the PC, then any data application
also running on the PC may stop working because the VoIP network isn’t designed for
it and will probably block non-VoIP communications. Even if it worked, this would still
allow the VoIP network to reach corporate PCs, which would make the service provider
responsible for possible breaches of security on corporate MIS equipment.

Therefore, PCs should be allocated IP addresses normally by the corporation, without
any specific restriction for VoIP. The NAPT problem cannot be avoided. The solutions
described in Section 6.2 must be used. If the corporation uses full-cone NAPT, then
STUN is the best solution. It is supported by a number of VoIP software manufacturers
(e.g., EyePmedia at www.eyePmedia.com). If the corporation uses strict NAT, either the
company must implement a VoIP IP/IP gateway in the premises (more and more firewalls
provide this feature) or the service provider must implement an RTP relay.

All solutions will end up in the same final situation; the audio or video calls originated
from PCs will be mapped to VoIP calls that appear to originate from routable, public IP
addresses. Similarly, it will be possible to reach all PCs by placing a VoIP call to a routable
IP address (either the call control server with an RTP relay, or a public address and port
on the corporate site router selected by the router NAT function—the STUN case).

Communications between PCs and IP phones can occur by routing the call to the
appropriate VoIP IP/IP gateway (the gatekeeper or SIP proxy required to do this is not
shown), which relays the call to the proper IP phone (as shown in Figure 6.11).

Note that the customer access router in Figure 6.11, is shown as having one link to
the VoIP access pool domain and one link to the normal Internet backbone of the service
provider; this was done for clarity. It can be done with a single link either using IP tunnels

VoIP access pool 2
162.168.X.X

VoIP access pool 1
162.168.X.X

VoIP IP/IP gateway VoIP IP/IP gateway

VoIP core
165.163.X.X

165.163.0.2165.163.0.1

162.168.0.1162.168.0.1

Internet backbone
Normal
internet routing

Figure 6.11 Mixed call scenario: STUN softphone to IP phone in a dedicated address pool.
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or more simply by carefully configuring service provider concentration routers to route
all packets with source IP addresses of type IP PH to the VoIP access pool domain (e.g.,
an MPLS domain), and all other addresses according to normal internet routing tables.

As the destination of voice IP packets is to a private address (in fact, the change to
existing concentration router configurations is quite minimal), a path to 162.186.x.x is
added which routes by default all these packets to the closed routing domain (e.g., an
MPLS domain), instead of the default Internet route. For each VoIP customer connected
to this concentration router and using, for instance, 162.168.Z.x, a static route must be
added to the subnet 162.168.Z.8 with the customer access router as the next hop.

6.3.1.4 The case of data VPNs

Large multi-site corporations using a data VPN pose a specific problem, because in most
cases all corporate sites communicate on an isolated routing domain (e.g., an MPLS
domain), which usually has a couple of controlled access points to the Internet, though
a firewall.

From a VoIP perspective, the entire data VPN can be seen as a large site, with the
access routers as the data VPN-controlled access points to the Internet.

Deploying a VoIP service in such networks (e.g., to provide a VoIP short-numbering
service between sites, or least cost routing) requires some configuration:

• The service provider softswitch must be located in a specific ‘resource domain’, which
can be reached from all VPN sites and can reach all VPN sites. Most service providers
already have such a domain for their DNS and email servers. Note that the resource
domain cannot be used to communicate across data VPNs, only communications to and
from the shared resource domain and each data VPN is allowed. An MPLS domain
can be used for this purpose.

• All VoIP gateways connected to sites’ PBXs must be able to communicate with the
service provider softswitch. This can be achieved simply by allocating each VoIP gate-
way an IP address from the resource domain. There are relatively few gateways, but
this does not pose an IP address depletion problem.

• All IP phones must be provided with IP addresses in the IP PH pool, allocated as
described above. The IP PH addresses allocated to the data VPN must be routed within
this data VPN. All controlled Internet access points of this data VPN must route packets
from these IP PH addresses to the appropriate IP VoIP access pool domain (e.g., this
can be a separate MPLS domain).

Figure 6.12 shows the routes that need to be enabled between the various MPLS
domains typically found in a VPN environment:

• One MPLS domain per VPN customer.

• One shared resource MPLS domain.

• One MPLS domain for each VoIP access domain (shared across multiple customers).



ADVANCED TOPICS: NAT TRAVERSAL 361

Normal data routing
through Internet-
controlled access
point

Direct routing
to resource
domain

Direct routing
Access pool 1

Service provider
router capable
of VPN-to-VPN
routing

Site 3Site 2Site 1
Customer A data VPN (MPLS 1)

Shared resource domain
 (MPLS 2)

Core
softswitch

VOIP access pool 1 (MPLS 3)

VOIP IP/IP GW

Intra-VPN
routing

Figure 6.12 Usage of shared resource domain and VoIP access IP address pool in a VPN
service context.

VPN-to-VPN phone calls over IP can also be enabled using the VoIP IP/IP gateway:
since IP communications cannot occur between each customer’s data VPN, the VoIP call
is first terminated to the VoIP IP/IP GW (communications to the access/shared resource
domains are allowed), then the VoIP IP/IP gateway re-originates the call and routes it
to the destination data VPN (communications from the access/shared resource domain to
any data VPN are allowed).

If the service provider wants to provide PSTN connectivity through shared VoIP gate-
ways, these VoIP gateways must also be part of the shared resource domain. If the calls
need to be routed to a third-party VoIP network, this needs to occur through a VoIP
IP/IP GW (the shared resource domain cannot communicate directly with the internet For
obvious security reasons).

Providing managed VoIP services on top of data VPN services does involve strong
expertise in security and IP routing in the context of isolated routing domains; but, it
is one of the most successful service bundles provided by service providers to large
corporate customers.

6.3.1.5 The case of residential networks

The case of residential networks is usually much simpler. Most residential networks
seem to be providing at least one public address to the customer router. In most cases
service providers wanting to offer residential voice will use an Integrated Access Device
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(IAD) with a embedded gateway to a couple of POTS lines. In this case the VoIP gateway
subsystem uses the public IP address, and there is no NAT issue. Obviously, this works just
as well if the service provider only wants to allocate private IP addresses to each router;
but, some VoIP IP/IP gateways may need to be deployed in the network to communicate
with third-party VoIP service providers or network VoIP gateways if they use public
IP addresses.

Many service providers will want to be able to offer VoIP and video services to PC
users as well. In this case the STUN approach works well and has very few drawbacks,
as it is highly unlikely that two PC phones behind the same residential NAT router will
want to communicate. Some IAD devices also include a VoIP-friendly NAT function. In
this case using STUN is obviously no longer necessary.

6.3.1.6 Smooth deployment scenario

At first it may seem scary to implement the full approach of VoIP access domains for
an initial trial. This approach was introduced only to enable the reuse of one pool of IP
addresses indefinitely, in order to scale the network. For small trials, however, there is
no need to reuse IP addresses, and the VoIP access domain can be merged with the IP
core domain. In other words, VoIP core domain components (such as a central gatekeeper
or SIP proxy) can be located in the first VoIP access domain, no VoIP IP/IP gateway is
initially required.

The expansion to a larger network will require the formal creation of a VoIP core
domain (the core softswitch will need to be relocated) and the introduction of additional
VoIP access domains. All of this can be done without having to change the IP addresses
already allocated to existing IP phones, by substituting the core softswitch by an IP/IP
gateway. This method enables smooth expansion of the network.

6.3.2 Media proxies

Today, many service providers still use two VoIP gateways connected back to back to
provide the media proxy function. Indeed, every VoIP call will terminate at the VoIP
address of the first gateway and be re-originated from the second VoIP gateway. However,
this crude design is not a viable solution:

• VoIP gateways always decode the media stream to the G.711 format. If voice was
originally encoded, the decoding and re-encoding of voice (known as ‘tandeming’)
will significantly reduce the quality of voice (typically, 0.5 MOS points).

• VoIP gateways have a jitter buffer in order to prevent any gap in the TDM media
stream. This jitter buffer adds a significant delay (typically, 50 ms) to the media path
and adds to jitter buffer delay at the destination.

• In some call scenarios, a call may be routed from one IP domain to the other, then
routed back to the original IP domain (call forward, local number portability, call
transfer, etc.). The back-to-back gateway in such circumstances will continue to ‘route’
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the media stream, although this is clearly not the optimal path through the IP network!
Again this adds unnecessary delays and jitter to the VoIP network.

• VoIP gateways only support voice (actually, H.320 video gateways do exist, but they
are expensive and would degrade the video quality that can be achieved on IP networks)

• Last but not least, every call through the back-to-back gateway uses two gateway ports,
which is expensive.

There are many providers of dedicated media proxies (VoIP IP/IP gateways, RTP proxies,
etc.). Ideally they should support the following features:

• Support the relaying of media streams without requiring decoding and re-encoding in
order to minimize delays.

• They should not have jitter buffer.

• They should add a minimal delay overhead for media processing. This does not nec-
essarily require dedicated hardware implementations (actually, kernel implementations
on operating systems, such as Linux, and high-performance network interfaces now
have a performance comparable with most router).

• They should support many types of media streams (audio, T.38 fax, T.120, video).

• They should support all the call flows found in the network, not just basic calls. This
includes dynamic media redirection (H.323 NullCapabilitySet, SIP RE-INVITE)

• They should automatically detect calls that are looped back to the originating IP domain
and optimize the media path to stop using the proxy. This is not trivial and requires
relatively sophisticated algorithms.

• They should support multiple network interfaces in order to facilitate connectivity
to multiple separate networks. These interfaces can be physical or virtual (VLANs,
IP tunnels).

Other nice-to-have features include some denial-of-service protection (call rate limiters,
checking of media streams’ token bucket profiles, mapping of DiffServ codepoints, etc.).

The media proxy function does not need to be a stand-alone product; in fact, this func-
tion works even better when combined with a call controller, because the call controller
can know many more properties of the end points, such as which end points are on the
same site and need to have an optimized RTP path, or which end points need to have the
RTP stream fully relayed through the proxy.

Figure 6.13 shows a sample network with two enterprises A and B. Enterprise A has
two sites A1 and A2. An MGCP call agent provides the IP Centrex service and includes
an RTP proxy function. The call agent controls IP phones using MGCP and, when calls
need to be transferred to the backbone, uses the H.323 or SIP protocols.

Since all IP phones are located on the same IP address plane (access pool 1), in theory
any call from an IP phone in this domain to another IP phone in this domain can use
direct RTP routing. This can be seen when a phone on site A1 calls a phone on site A2:
the MGCP call controller provides each IP phone with the address of the other IP phone,
so the media can be routed directly by the IP network.
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Figure 6.13 Optimization of RTP proxy usage when the softswitch has access to adminis-
trative data.

However, for security reasons, enterprise B does not want to receive media streams
directly from any other enterprise, it only wants to receive media streams from the service
provider (only packets from IP address 162.168.0.1 are allowed). In this case the MGCP
call agent will also act as an RTP proxy and terminate, then re-originate the media
stream. This is shown in the case of a call between a phone on site A2 and a phone on
site B.

The example shows that the association of a call controller and a media proxy can be
powerful. A separate media proxy does not have enough application-level information
and would have optimized the media streams in all cases, routing RTP packets directly
between enterprise B and site A1.

6.3.3 Security considerations

The allocation of controlled IP addresses to IP phones not only helps to solve the NAT
issue, it also clarifies the potential security responsibility issues that can arise in a man-
aged telephony deployment inside the enterprise. By definition, a managed VoIP service
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must be able to initiate IP communications to servers (IP phones) inside the corporate
private network.

Our experience with initial deployments of IP Centrex show that some corporate
MIS managers may be tempted, if they find that their corporate network has been
compromised, to blame the managed telephony service provider. Therefore, it is very
important for a service provider to be able to propose some mutually acceptable, sim-
ple to understand, security rules that completely isolate IP phones from the PCs on the
internal network.

This is very difficult if IP phones are allocated IP addresses at random inside the
corporation, but becomes much simpler if the IP addresses of all IP phones can be
identified easily, as proposed.

The corporate firewall/access router should be configured to:

• Accept VoIP signaling only from the IP address of the service provider call controller.

• Accept media traffic only from IP addresses of the IP PH pool and only to the IP
addresses allocated to the IP phones (with an RTP filter if available in the router/firewall,
otherwise a UDP filter on ports higher than 1024 should be used). This rule can be
made stricter if the call controller is capable of enabling an RTP proxy for media calls
coming from third-party sites, in which case the source IP address of the media streams
can be restricted to just the IP address of the media proxy (or proxies).

• If the IP phones are located on a VLAN or only accessible through a specific router
interface, all inbound media traffic should only be routed to this interface.

IP phones should not be allowed to communicate with any IP address that is not part of
the IP PH pool. This can be achieved by placing the phones on a separate LAN or VLAN.
This prevents the unlikely but potential threat of having an IP phone compromised and
serving as a relay to other machines on the LAN.

These rules are relatively simple and make it impossible for any potential attacker on
the VoIP backbone to reach the computers of the enterprise by using the VoIP NAT bypass
route through the corporate router. Any attack must come through the regular router NAT
function (or other security policy set for calls coming from the public IP network), and
therefore is not under the responsibility of the service provider. Our recommendation to
service providers is to include a detailed description of the security policy and have all IP
Centrex customers signing acceptance of this security policy, thereby clearing the service
provider from potential future accusations.

6.4 CONCLUSION

It is frequently heard that, until IPv6 is adopted, VoIP cannot be deployed due to the lack
of IP addresses. This is clearly wrong. The sophistication of the current tools allowed by
IPv4 routing and the use of application-level IP/IP gateways make it possible to use only
a restricted set of addresses and yet provide a service to a virtually unlimited number of
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users. Due to the smaller size of IPv4 packets, latency on such networks, especially on
access links, will be better than on an equivalent IPv6 network and the IP overhead is
also much better. Given the fact that all the tools required to provide quality of service
(DiffServ, RSVP) perform just as well on IPv4 or IPv6 networks, there is really no reason
today for a service provider to wait for the deployment of large-scale VoIP networks on
currently deployed IP networks.



Annex

Here is the call flow between Cisco SIP phones (Cisco SIP phones reply with a “try-
ing” message after each request for clarity these have been removed), showing which
implementation choices have been made between Cisco phones:

Phone A (5559000) calls phone B (5555000)

INVITE sip:5555000@172.18.192.230 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone” <sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>

Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:46 GMT
CSeq: 101 INVITE
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5559000@172.18.192.218:5060
Expires: 180
Content-Type: application/sdp
Content-Length: 271
Accept: application/sdp

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 18338 11953 IN IP4 172.18.192.218
s=SIP Call c=IN IP4 172.18.192.218
t=0 0
m=audio 29304 RTP/AVP 0 8 18 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
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a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:36 GMT
CSeq: 101 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5555000@172.18.192.221:5060
Record-Route: <sip:5555000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:39 GMT
CSeq: 101 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5555000@172.18.192.221:5060
Record-Route: <sip:5555000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Type: application/sdp
Content-Length: 220

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 11411 26110 IN IP4 172.18.192.221
s=SIP Call c=IN IP4 172.18.192.221
t=0 0
m=audio 24396 RTP/AVP 0 97
a=rtpmap:0 PCMU/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

ACK sip:5555000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “Kazoo-9 Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:50 GMT
CSeq: 101 ACK
User-Agent: Cisco-SIP-IP-Phone/3
Route: <sip:5555000@172.18.192.221:5060>

Content-Length: 0
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A puts B on hold:

INVITE sip:5555000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:53 GMT
CSeq: 102 INVITE
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5559000@172.18.192.218:5060
Route: <sip:5555000@172.18.192.221:5060>

Content-Type: application/sdp
Content-Length: 263

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 15014 5663 IN IP4 172.18.192.218
s=SIP Call c=IN IP4 0.0.0.0
t=0 0
m=audio 29304 RTP/AVP 0 8 18 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:44 GMT
CSeq: 102 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5555000@172.18.192.221:5060
Record-Route: <sip:5555000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Type: application/sdp
Content-Length: 213

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 11411 26110 IN IP4 172.18.192.221
s=SIP Call c=IN IP4 0.0.0.0
t=0 0
m=audio 24396 RTP/AVP 0 97
a=rtpmap:0 PCMU/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

ACK sip:5555000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
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From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:54 GMT
CSeq: 102 ACK
User-Agent: Cisco-SIP-IP-Phone/3
Route: <sip:5555000@172.18.192.221:5060>

Content-Length: 0

A calls C:

INVITE sip:5551000@172.18.192.230 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>

Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:59 GMT
CSeq: 101 INVITE
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5559000@172.18.192.218:5060
Expires: 180
Content-Type: application/sdp
Content-Length: 271
Accept: application/sdp

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 27275 16432 IN IP4 172.18.192.218
s=SIP Call c=IN IP4 172.18.192.218
t=0 0
m=audio 29306 RTP/AVP 0 8 18 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

SIP/2.0 180 Ringing
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:57 GMT
CSeq: 101 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5551000@172.18.192.220:6062
Record-Route: <sip:5551000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.218:5060
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From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:00 GMT
CSeq: 101 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5551000@172.18.192.220:6062
Record-Route: <sip:5551000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Type: application/sdp
Content-Length: 221

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 5685 4962 IN IP4 172.18.192.220
s=SIP Call c=IN IP4 172.18.192.220
t=0 0
m=audio 16394 RTP/AVP 18 97
a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

ACK sip:5551000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:02 GMT
CSeq: 101 ACK
User-Agent: Cisco-SIP-IP-Phone/3
Route: <sip:5551000@172.18.192.220:6062>

Content-Length: 0

A puts C on hold

INVITE sip:5551000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:06 GMT
CSeq: 102 INVITE
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5559000@172.18.192.218:5060
Route: <sip:5551000@172.18.192.220:6062>

Content-Type: application/sdp
Content-Length: 263

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 22866 2538 IN IP4 172.18.192.218
s=SIP Call c=IN IP4 0.0.0.0
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t=0 0
m=audio 29306 RTP/AVP 0 8 18 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:04 GMT
CSeq: 102 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5551000@172.18.192.220:6062
Record-Route: <sip:5551000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Type: application/sdp
Content-Length: 214

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 5685 4962 IN IP4 172.18.192.220
s=SIP Call c=IN IP4 0.0.0.0
t=0 0
m=audio 16394 RTP/AVP 18 97
a=rtpmap:18 G729a/8000
a=rtpmap:97 telephone-event/8000
a=fmtp:97 0–15

ACK sip:5551000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
To: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:06 GMT
CSeq: 102 ACK
User-Agent: Cisco-SIP-IP-Phone/3
Route: <sip:5551000@172.18.192.220:6062>

Content-Length: 0

A transfers B to C:

REFER sip:5555000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
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Date: Thu, 13 Jun 2002 16:05:06 GMT
CSeq: 103 REFER
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5559000@172.18.192.218:5060
Route: <sip:5555000@172.18.192.221:5060>

Content-Length: 0
Refer-To:
sip:5551000@172.18.192.230?Replaces=00070e8b-577708ef-746a6bfe-6c96b214%40172.18.192.218
%3Bto-tag%3D003094c25d94001039653a76-0c6588ad%3Bfrom-tag%3D00070e8b577700045e92261b-
204bc3c6
Referred-By: “A Phone” <sip:5559000@172.18.192.230>

SIP/2.0 202 Accepted
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:56 GMT
CSeq: 103 REFER
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5555000@172.18.192.221:5060
Record-Route: <sip:5555000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Length: 0

Phone B calls C

NIVITE sip:5551000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.221:5060
From: “5555000”<sip:5555000@172.18.192.230>;tag=003094c2e69100040d6ba94e-5f32d799
To: <sip:5551000@172.18.192.230:5060>

Call-ID: 003094c2-e69100af-66c9e3b4-04b3f0e8@172.18.192.221
Date: Thu, 13 Jun 2002 16:04:56 GMT
CSeq: 101 INVITE
User-Agent: Cisco-SIP-IP-Phone/3
Contact: sip:5555000@172.18.192.221:5060
Referred-By: “Kazoo-9 Phone” <sip:5559000@172.18.192.230>

Replaces:
00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218;to-tag=003094c25d94001039653a76-
0c6588ad;from-tag=00070e8b577700045e92261b-204bc3c6
Expires: 180
Content-Type: application/sdp
Content-Length: 270
Accept: application/sdp

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 19502 5249 IN IP4 172.18.192.221
s=SIP Call c=IN IP4 172.18.192.221
t=0 0
m=audio 24398 RTP/AVP 0 8 18 96
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a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:18 G729a/8000
a=rtpmap:96 telephone-event/8000
a=fmtp:96 0–15

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.221:5060
From: “5555000”<sip:5555000@172.18.192.230>;tag=003094c2e69100040d6ba94e-5f32d799
To: <sip:5551000@172.18.192.230:5060>;tag=003094c25d9400111fc7caba-03f8330a
Call-ID: 003094c2-e69100af-66c9e3b4-04b3f0e8@172.18.192.221
Date: Thu, 13 Jun 2002 16:05:05 GMT
CSeq: 101 INVITE
Server: Cisco-SIP-IP-Phone/3
Contact: sip:5551000@172.18.192.220:6062
Record-Route: <sip:5551000@172.18.192.230:5060;maddr=172.18.192.230>

Content-Type: application/sdp
Content-Length: 223

v=0
o=CiscoSystemsSIP-IPPhone-UserAgent 18795 10818 IN IP4 172.18.192.220
s=SIP Call c=IN IP4 172.18.192.220
t=0 0
m=audio 16396 RTP/AVP 18 96
a=rtpmap:18 G729a/8000
a=rtpmap:96 telephone-event/8000
a=fmtp:96 0–15

ACK sip:5551000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.221:5060
From: “5555000”<sip:5555000@172.18.192.230>;tag=003094c2e69100040d6ba94e-5f32d799
To: <sip:5551000@172.18.192.230:5060>;tag=003094c25d9400111fc7caba-03f8330a
Call-ID: 003094c2-e69100af-66c9e3b4-04b3f0e8@172.18.192.221
Date: Thu, 13 Jun 2002 16:04:57 GMT
CSeq: 101 ACK
User-Agent: Cisco-SIP-IP-Phone/3
Route: <sip:5551000@172.18.192.220:6062>

Content-Length: 0

B notifies A that communication with C is active:

NOTIFY sip:5559000@172.18.192.218:5060 SIP/2.0
Record-Route: <sip:5555000@172.18.192.230:5060;maddr=172.18.192.230>

Via: SIP/2.0/UDP
172.18.192.230:5060;branch=855cf819-524d09ad-dbaea7b3-dc1ce9c9-1
Via: SIP/2.0/UDP 172.18.192.221:5060
From: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
To: “A Phone” <sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
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Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:57 GMT
CSeq: 101 NOTIFY
User-Agent: Cisco-SIP-IP-Phone/3
Event: refer
Content-Type: message/sipfrag
Content-Length: 14

SIP/2.0 200 OK

SIP/2.0 200 OK
Via: SIP/2.0/UDP
172.18.192.230:5060;branch=855cf819-524d09ad-dbaea7b3-dc1ce9c9-1,SIP/2.0/UDP
172.18.192.221:5060
From: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
To: “A Phone” <sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:07 GMT
CSeq: 101 NOTIFY
Content-Length: 0

C releases the call from A:

BYE sip:5559000@172.18.192.218:5060 SIP/2.0
Record-Route: <sip:5551000@172.18.192.230:5060;maddr=172.18.192.230>

Via: SIP/2.0/UDP
172.18.192.230:5060;branch=fd11b5e1-aee38059-c54b46b5-f5f62a06-1
Via: SIP/2.0/UDP 172.18.192.220:6062
From: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
To: “A Phone” <sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:05 GMT
CSeq: 101 BYE
User-Agent: Cisco-SIP-IP-Phone/3
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP
172.18.192.230:5060;branch=fd11b5e1-aee38059-c54b46b5-f5f62a06-1,SIP/2.0/UDP
172.18.192.220:6062
From: <sip:5551000@172.18.192.230>;tag=003094c25d94001039653a76-0c6588ad
To: “A Phone” <sip:5559000@172.18.192.230>;tag=00070e8b577700045e92261b-204bc3c6
Call-ID: 00070e8b-577708ef-746a6bfe-6c96b214@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:07 GMT
CSeq: 101 BYE
Server: Cisco-SIP-IP-Phone/3
Content-Length: 0
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A releases the call to B:

BYE sip:5555000@172.18.192.230:5060 SIP/2.0
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:05:07 GMT
CSeq: 104 BYE
User-Agent: Cisco-SIP-IP-Phone/3
Content-Length: 0
Route: <sip:5555000@172.18.192.221:5060>

SIP/2.0 200 OK
Via: SIP/2.0/UDP 172.18.192.218:5060
From: “A Phone”<sip:5559000@172.18.192.230>;tag=00070e8b5777000339a3170e-74ee1c83
To: <sip:5555000@172.18.192.230>;tag=003094c2e691000357031309-41c9de44
Call-ID: 00070e8b-577708ee-5fbe5e66-7f70fecd@172.18.192.218
Date: Thu, 13 Jun 2002 16:04:58 GMT
CSeq: 104 BYE
Server: Cisco-SIP-IP-Phone/3
Content-Length: 0
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G.728 25
G.729 26
GSM 26
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codec (continued )
intellectual property

18, 24, 26
layered 21
lookahead 18
overhead 18
video 28

COMEDIA 351
comfort noise 17
conferencing with SIP 233
Contributing source 7
CPIM 235, 238
CRCX 292
cryptography

DES 133
hash function 134
introduction 132
RSA 136

CSRC 7

DCT transform 32
Decomposed gateway 265
delay

algorithmic 18
end to end 1
analogue telephony 1
jitter 4

DES 133
Digital signature 136
Directory 114
DLCX 296
DNS

description 115
locating SIP resource 219
use by ENUM 120
use in H.323 115

DTMF 39, 67, 86
and Fast Connect 103
Cisco 194
general VoIP issues 189
INFO 193
Nuera 196
RFC 2833 69, 190
Sonus 198
SUBSCRIBE/NOTIFY 193

transmission over SIP 188
DTX 17
dynamic payload type 8

early-H.245 99
encryption RTP 15
ENUM 120, 219
EPCF 286

Facility Redirect 150
Fast-Connect 53, 99
FastStart 99
Fax 40, 209

IFP 46
Pass-through 211
T.37 44
T.38 45, 210

feature server 223
FEC see Forward Error Correction
Forward Error Correction

19, 47
frame

erasure 19
size 18

frame relay voice over 5

G.711 22
G.722 23
G.722.1 23
G.723.1 23
G.726 16, 25
G.728 25
G.729 26
Gatekeeper 72

direct mode 76
routed mode 76, 79, 84, 89
split G. architecture 144

Global Transparency Descriptors
94

GSM 26

H.225.0 50
H.235 56, 131, 139
H.245 51, 55

capability descriptor 65
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early H.245 99
master/slave determination 66
session establishment 64
tunneling 104

H.246 56
H.248 268
H.261 30
H.263 36
H.264 37
H.320 49
H.323

Admission 75
and SIP 252
annexes 55
call clearing 71
conferencing 108
CONNECT message 63
conversion to SIP 259
DTMF 67
DTMF transmission 39
gatekeeper 72
overlapped sending 63
registration 74
security 124
SETUP message 60
URL 116
version 1 49, 52
version 2 52
version 3 53
version 4 53
version 5 54

H.324 49
H.332 11, 56, 113
H.450 53, 56, 148
H.450.1 53, 56, 148
H.450.2 53, 56, 149, 332
H.450.3 53, 56
H.450.4 57
H.450.5 57
H.450.6 54, 57
H.450.7 53, 54, 57
H.450.8 54, 57
H.450.9 54, 57
H.450.10 54, 57
H.450.11 54, 57

H.460 56
hash functions 134
HTTP digest 249

IANA assignments 8
IFP see Internet Fax Protocol
I-frame 31
ILS 114
INAP 324
INFO 184, 193
Instant Messaging 234
Intelligent Peripheral 324
Internet Fax Protocol 46
INVITE 167, 184
IPDC 267
IP-PBX 5
isochronous data 6

jitter 4, 13, 14
JPEG algorithm 32

Layered codecs 21
lookahead 18
loop detection 228
LRQ 86

blast 92
sequential 93

luminance 29

MC see Multipoint Controller
MDCX 296
Mean Opinion Score 16, 23,

25–27
Media redirection 208
MEGACO 268
MESSAGE 184, 246
MGCP 263

BTXML 305
commands 273, 286
connection 271
connection mode 293
DTMF transmission 39
endpoint 271
events 274
Fax 300
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MGCP (continued )
NCS 268
package 277–282
parameters 274
quarantine list 290
response 273
response codes 276
RFC 2705 268
RFC 3064 278
RFC 3149 278, 305
RFC 3435 268
RFC 3441 278
RFC 3660 278
signals 275, 277
transaction 273
transport layer 282
user interface control 304
versions 269

MGCP/L 266
MGCP/T 266
MMUSIC 159
MOS 16, see Mean Opinion Score
MP see Multipoint Processor
MPEG 4, 37
Multicast 6
multiplexing

frequency based 1
statistical 4
TDM 2
time division 2

Multipoint Controller 108
Multipoint Processor 108

NAPT 344
full cone 344
strict 346

NAS 269
NAT 182, 344

RFC 3581 183
SIP rport 183
traversal 351, 352

NCS 268
Network Access Servers 269
Network Address Translation see

NAT

NOTIFY 184, 193, 240
NTFY 299
NTP 7
Null Capability Set see TCS=0
Null Terminal Capability Set see

TCS=0
number formats 318
number portability 123

offer/answer model 200, 204
OPTIONS 184
overhead 18
overlapped sending 63

packet loss 19
padding RTP 15
payload

dynamic type 8
static type 8
type 8, 202

P-Frame 31
Port forwarding 348
port UDP 6
PRACK 175, 184
Presence 234

authorization 245
presentity 238
RFC 3265 241
watcher 238, 242

Progress Indicator 71
Proxy 222

stateful 222
stateless 222

Q.850 80, 188
QCIF 30
quality voice 16

Random Early Detection 20
Real Time Control Protocol (RTCP)

5
Real Time Transport Protocol (RTP)

5
Receiver reports 7
RED see Random Early Detection
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Redirect server 220
Redundancy 19
REFER 184, 333
REGISTER 185
Registrar 213
Re-Invite 208, 318
Reports receiver 7
response

final 186
provisional 170, 175

RFC 1006 62
RFC 2076 186
RFC 2327 159
RFC 2543 216
RFC 2705 268
RFC 2833 69, 190
RFC 3064 278
RFC 3149 278, 305
RFC 3261 163
RFC 3262 163, 184
RFC 3263 163, 218
RFC 3264 163
RFC 3265 164, 240
RFC 3266 164
RFC 3311 185
RFC 3326 188
RFC 3428 184, 246
RFC 3435 268
RFC 3441 278
RFC 3515 184
RFC 3581 183
RFC 3660 278, 316
RGB 29
RQNT 286
RSA 136
RSIP 299
RSVP 5
RTCP 5

APP packet 14
bandwidth limitation 10
BYE packet 14
packet format 11
reception report 12, 13
reports 7
role 10

SDES packet 13
sender report 11

RTP 5, 159
A/V profile 8
H.323 profile 50
market bit 7
packet format 7
padding 7
payload type 8
security 15
sequence number 9
SSRC 7
timestamp 9
version 7, 5
session 6

SAP see Session Announcement
Protocol

SCP 324
SDP 159, 167

capabilities negotiation 212
offer/answer model 199
Silence suppression 211
syntax 200
see Session Description Protocol

security RTP 15
sequence number 9
Service Control Point see SCP
Session Announcement Protocol

113
Session Description Protocol 113
SGCP 267
silence compression 17
Silence suppression 211
SIP 159, 164

addresses 214
and H.323 252
and NAT 183
client 165
complete call scenario 179
conferencing 233
conversion to H.323 259
dialog 165
DTMF transmission 39
Fax 209
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SIP (continued )
headers 167, 180, 186
history 159
INFO 86
instant messaging 246
loose routing 227
message retransmission 169
message syntax 180
offer/answer model 200, 204
proxy 222
requests 165, 184
responses 186
security 248
server 165
strict routing 227
tag 168
transaction 165, 171, 177
transport protocol 165
URI 164
user agent 165

SQCIF 30
SS7 call flows with MGCP 308
SSRC 7
static payload type 8
Stimulus protocol 263
STUN 349
SUBSCRIBE 185, 193, 240
Synchronization Source 7

T.37 44
T.38 45, 300
TCP

slow-start 96
tuning 97

TCS=0 208, 328
Third Party Initiated Pause and

rerouting see TCS=0
Time Division Multiplexing (TDM)

2
timestamp 9
TLS 165
toll quality 16

TPKT 62
transaction MGCP 273
Transfer by join 322
transmission

asynchronous 3
baseband 1
delay 3
digital 2
TDM 2

Tromboning 328, 332
TURN 351

UCS 236
UCS-2 236
UCS-4 236
Ulaw 22
ULS 114
Universal Personal Telephony 118
UPDATE 185, 208
UPT see Universal Personal

Telephony
user agent 165
UTF-8 235

VAD 17
VAT 5
video

CIF 30
4CIF 30
16CIF 30
color representation 28
H.261 30
H.263 36
H.264 37
inter coding 31
intra coding 31
QCIF 30
SQCIF 30

Visual Audio Tool 5
voice quality 16

YUV 29
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