![]() |
Сервер Информационных Технологий содержит море(!) аналитической информации | Сервер поддерживается |
---|
Технология Fiber Distributed Data Interface - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.
Попытки применения света в качестве среды, несущей информацию, предпринимались давно - еще в 1880 году Александр Белл запатентовал устройство, которое передавало речь на расстояние до 200 метров с помощью зеркала, вибрировавшего синхронно со звуковыми вол нами и модулировавшего отраженный свет.
Работы по использованию света для передачи информации активизировались в 1960-е годы в связи с изобретением лазера, который мог обеспечить модуляцию света на очень высоких частотах, то есть создать широкополосный канал для передачи большого количества инф ормации с высокой скоростью. Примерно в то же время появились оптические волокна, которые могли передавать свет в кабельных системах, подобно тому как медные провода передают электрические сигналы в традиционных кабелях. Однако потери света в этих волокна х были слишком велики, чтобы они могли быть использованы как альтернатива медным жилам. Недорогие оптические волокна, обеспечивающие низкие потери мощности светового сигнала и широкую полосу пропускания (до нескольких ГГц) появились только в 1970-е годы. В начале 1980-х годов началось промышленная установка и эксплуатация оптоволоконных каналов связи для территориальных телекоммуникационных систем.
В 1980-е годы начались также работы по созданию стандартных технологий и устройств для использования оптоволокнных каналов в локальных сетях. Работы по обобщению опыта и разработке первого оптоволоконного стандарта для локальных сетей были сосредоточены в Американском Национальном Институте по Стандартизации - ANSI, в рамках созданного для этой цели комитета X3T9.5.
Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.
В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и уст оялись, так что оборудование различных производителей показывает хорошую степень совместимости.
Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:
Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им восполь зоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным&qu ot;. Вторичное кольцо (Secondary) в этом режиме не используется.
В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рисунок 2.1), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.
В стандартах FDDI отводится много внимания различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов. При множественных отказах сеть распадается на несколько не связанных сетей.
Рис. 2.1. Реконфигурация колец FDDI при отказе
Кольца в сетях FDDI рассматриваются как общая разделяемая среда передачи данных, поэтому для нее определен специальный метод доступа. Этот метод очень близок к методу доступа сетей Token Ring и также называется методом маркерного (или токенного) кольца - token ring (рисунок 2.2, а).
Станция может начать передачу своих собственных кадров данных только в том случае, если она получила от предыдущей станции специальный кадр - токен доступа (рисунок 2.2, б). После этого она может передавать свои кадры, если они у нее имеются, в течение вр емени, называемого временем удержания токена - Token Holding Time (THT). После истечения времени THT станция обязана завершить передачу своего очередного кадра и передать токен доступа следующей станции. Если же в момент принятия токена у станции н ет кадров для передачи по сети, то она немедленно транслирует токен следующей станции. В сети FDDI у каждой станции есть предшествующий сосед (upstream neighbor) и последующий сосед (downstream neighbor), определяемые ее физическими связями и направлением передачи информации.
Рис. 2.2. Обработка кадров станциями кольца FDDI
Каждая станция в сети постоянно принимает передаваемые ей предшествующим соседом кадры и анализирует их адрес назначения. Если адрес назначения не совпадает с ее собственным, то она транслирует кадр своему последующему соседу. Этот случай приведен на рису нке (рисунок 2.2, в). Нужно отметить, что, если станция захватила токен и передает свои собственные кадры, то на протяжении этого периода времени она не транслирует приходящие кадры, а удаляет их из сети.
Если же адрес кадра совпадает с адресом станции, то она копирует кадр в свой внутренний буфер, проверяет его корректность (в основном по контрольной сумме), передает его поле данных для последующей обработки протоколу лежащего выше над FDDI уровня (наприм ер, IP), а затем передает исходный кадр по сети последующей станции (рисунок 2.2, г). В передаваемом в сеть кадре станция назначения отмечает три признака: распознавания адреса, копирования кадра и отсутствия или наличия в нем ошибок.
После этого кадр продолжает путешествовать по сети, транслируясь каждым узлом. Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее (рисунок 2.2, д). При этом исходная станция проверяет признаки кадра, дошел ли он до станции назначения и не был ли при этом поврежден. Процесс восстановления информационных кадров не входит в обязанности протокола FDDI, этим должны заниматься протоколы более высоких уров ней.
На рисунке 2.3 приведена структура протоколов технологии FDDI в сравнении с семиуровневой моделью OSI. FDDI определяет протокол физического уровня и протокол подуровня доступа к среде (MAC) канального уровня. Как и многие другие технологии локальных сетей , технология FDDI использует протокол 802.2 подуровня управления каналом данных (LLC), определенный в стандартах IEEE 802.2 и ISO 8802.2. FDDI использует первый тип процедур LLC, при котором узлы работают в дейтаграммном режиме - без установления соединен ий и без восстановления потерянных или поврежденных кадров.
Рис. 2.3. Структура протоколов технологии FDDI
Физический уровень разделен на два подуровня: независимый от среды подуровень PHY (Physical), и зависящий от среды подуровень PMD (Physical Media Dependent). Работу всех уровней контролирует протокол управления станцией SMT (Station Manag ement).
Уровень PMD обеспечивает необходимые средства для передачи данных от одной станции к другой по оптоволокну. В его спецификации определяются:
Спецификация TP-PMD определяет возможность передачи данных между станциями по витой паре в соответствии с методом MLT-3. Спецификации уровней PMD и TP-PMD уже были рассмотрены в разделах, посвященных технологии Fast Ethernet.
Уровень PHY выполняет кодирование и декодирование данных, циркулирующих между MAC-уровнем и уровнем PMD, а также обеспечивает тактирование информационных сигналов. В его спецификации определяются:
Уровень MAC ответственен за управление доступом к сети, а также за прием и обработку кадров данных. В нем определены следующие параметры:
Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:
Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, по теря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.
В следующей таблице представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.
Характеристика | FDDI | Ethernet | Token Ring | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Битовая скорость | 100 Мб/с | 10 Мб/с | 16 Мб/c | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Топология | Двойное кольцо деревьев | Шина/звезда | Звезда/кольцо | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Метод доступа | Доля от времени оборота токена | CSMA/CD | Приоритетная система резервировани | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Среда передачи данных | Многомодовое оптоволокно, неэкранированная витая пара | Толстый коаксиал, тонкий коаксиал, витая пара, оптоволокно | Экранированная и неэкранированная витая пара, оптоволокно | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальная длина сети (без мостов) | 200 км (100 км на кольцо) | 2500 м | 1000 м | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальное расстояние между узлами | 2 км (-11 dB потерь между узлами) | 2500 м | 100 м | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальное количество узлов | 500 (1000 соединений) | 1024 | 260 для экранированной витой пары, 72 для неэкранированной витой пары | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Тактирование и восстановление после отказов | Распределенная реализация тактирования и восстановления после отказов | Не определены | Активный мо нитор |
Все станции в сети FDDI делятся на несколько типов по следующим признакам:
Если станция присоединена только к первичному кольцу, то такой вариант называется одиночным присоединением - Single Attachment, SA (рисунок 2.4, а). Если же станция присоединена и к первичному, и ко вторичному кольцам, то такой вариант называется д войным присоединением - Dual Attachment, DA (рисунок 2.4, б).
Рис. 2.4. Одиночное (SA) и двойное (DA) подключение станций
Очевидно, что станция может использовать свойства отказоустойчивости, обеспечиваемые наличием двух колец FDDI, только при ее двойном подключении.
Рис. 2.5. Реконфигурация станций с двойным подключением при обрыве кабел
Как видно из рисунка 2.5, реакция станций на обрыв кабеля заключается в изменении внутренних путей передачи информации между отдельными компонентами станции.
Для того, чтобы иметь возможность передавать собственные данные в кольцо (а не просто ретранслировать данные соседних станций), станция должна иметь в своем составе хотя бы один MAC-узел, который имеет свой уникальный MAC-адрес. Станции могут не иметь ни одного узла MAC, и, значит, участвовать только в ретрансляции чужих кадров. Но обычно все станции сети FDDI, даже концентраторы, имеют хотя бы один MAC. Концентраторы используют MAC-узел для захвата и генерации служебных кадров, например, кадров инициализ ации кольца, кадров поиска неисправности в кольце и т.п.
Станции, которые имеют один MAC-узел, называются SM (Single MAC) станциями, а станции, которые имеют два MAC-узла, называются DM (Dual MAC) станциями.
Возможны следующие комбинации типов присоединения и количества MAC-узлов:
SM/SA | Станция имеет один MAC-узел и присоединяется только к первичному кольцу. Станция не может принимать участие в образовании общего кольца из двух. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SM/DA | Станция имеет один MAC-узел и присоединяется сразу к первичному и вторичному кольцам. В нормальном режиме она может принимать данные только по первичному кольцу, используя второе для отказоустойчивой рабо ты. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DM/DA | Станция имеет два MAC-узла и присоединена к двум кольцам. Может (потенциально) принимать данные одновременно по двум кольцам (полнодуплексный режим), а при отказах участвовать в реконфигурации колец. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DM/SA | Станция имеет два MAC-узла, но присоединена только к первичному кольцу. Запрещенная комбинация для конечной станции, специальный случай работы концентратора. |
В зависимости от того, является ли станция концентратором или конечной станцией, приняты следующие обозначения в зависимости от типа их подключения:
SAS (Single Attachment Station) - конечная станция с одиночным подключением,
DAS (Dual Attachment Station) - конечная станция с двойным подключением,
SAC (Single Attachment Concentrator) - концентратор с одиночным подключением,
DAC (Dual Attachment Concentrator) - концентратор с двойным подключением.
В стандарте FDDI описаны четыре типа портов, которые отличаются своим назначением и возможностями соединения друг с другом для образования корректных конфигураций сетей.
Тип порта | Подключение | Назначение | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A | PI/SO - (Primary In/Secondary Out) Вход первичного кольца/ Выход вторичного кольца | Соединяет устройства с двойным подключением с магистральными кольцам и | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
B | PO/SI - (Primary Out/Secondary In) Выход первичного кольца/Вход вторичного кольца | Соединяет устройства с двойным подключением с магистральными кольцами | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
M | Master - PI/PO Вход первичного кольца/Выход первичного кольца | Порт концентратора, который соединяет его с устройствами с одиночным подключением; использ ует только первичное кольцо | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S | Slave - PI/PO Вход первичного кольца/Выход первичного кольца | Соединяет устройство с одиночным подключением к концентратору; использует только первичное кол ьцо |
На рисунке 2.6 показано типичное использование портов разных типов для подключения станций SAS и DAS к концентратору DAC.
Рис. 2.6. Использование портов различных типов
Соединение портов S - S является допустимым, так как создает изолированное первичное кольцо, соединяющее только две станции, но обычно неиспользуемым.
Соединение портов M - M является запрещенным, а соединения A-A, B-B, A-S, S-A, B-S, S-B - нежелательными, так как создают неэффективные комбинации колец.
Соединения типа A-M и B-M соответствуют случаю, так называемого, Dual Homing подключения, когда устройство с возможностью двойного подключения, то есть с портами A и B, использует их для двух подключений к первичному кольцу через порты M другого ус тройства.
Такое подключение показано на рисунке 2.7.
На нем два концентратора, DAC4 и DAC5, подключены к концентраторам DAC1, DAC2 и DAC3 по схеме Dual Homing.
Концентраторы DAC1, DAC2 и DAC3 подключены обычным способом к обеим кольцам, образуя корневую магистраль сети FDDI. Обычно такие концентраторы называют в англоязычной литературе rooted concentrators.
Концентраторы DAC4 и DAC5 подключены по древовидной схеме. Ее можно было бы образовать и с помощью концентраторов SAC4 и SAC5, которые бы в этом случае подключались бы к М-порту корневых концентраторов с помощью порта S.
Подключение DAC-концентраторов по древовидной схеме, но с использованием Dual Homing, позволяет повысить отказоустойчивость сети, и сохранить преимущества древовидной многоуровневой структуры.
Рис. 2.7. Соединение Dual Homing
Концентратор DAC4 подключен по классической схеме Dual Homing. Эта схема рассчитана на наличие у такого концентратора только одного MAC-узла. При подключении портов A и B концентратора DAC4 к портам М концентратора DAC1 между этими портами устанавливаетс физическое соединение, которое постоянно контролируется физическим уровнем PHY. Однако, в активное состояние по отношению к потоку кадров по сети переводится только порт B, а порт A остается в резервном логическом состоянии. Предпочтение, отдаваемое по у молчанию порту В, определено в стандарте FDDI.
При некорректной работе физического соединения по порту B концентратор DAC4 переводит его в резервное состояние, а активным становится порт А. После этого порт В постоянно проверяет физическое состояние его линии связи, и, если оно восстановилось, то он с нова становится активным.
Концентратор DAC5 также включен в есть по схеме Dual Homing, но с более полными функциональными возможностями по контролю соединения резервного порта А. Концентратор DAC5 имеет два узла MAC, поэтому не только порт В работает в активном режиме в первичном кольце, передавая кадры первичному MAC-узлу от порта М концентратора DAC3, но и порт А также находится в активном состоянии, принимая кадры от того же первичного кольца, но от порта М концентратора DAC2. Это позволяет вторичному MAC-узлу постоянно отслежи вать логическое состояние резервной связи.
Необходимо заметить, что устройства, поддерживающие режим Dual Homing, могут быть реализованы несколькими различными способами, поэтому может наблюдаться несовместимость этих режимов у различных производителей.
Когда новая станция включается в сеть FDDI, то сеть на время приостанавливает свою работу, проходя через процесс инициализации кольца, в течение которого между всеми станциями согласуются основные параметры кольца, самым важным из которых является номинал ьное время оборота токена по кольцу. Этой процедуры в некоторых случаях можно избежать. Примером такого случая является подключение новой станции SAS к порту М концентратора с так называемым "блуждающим" узлом MAC (Roving MAC), который та кже называют локальным MAC-узлом.
Пример такого подключения показан на рисунке 2.8.
Рис. 2.8. Присоединение станции к "блуждающему" MAC-узлу
Концентратор DM/DAC1 имеет два MAC-узла: один участвует в нормальной работе первичного кольца, а второй, локальный, присоединен к пути, соединяющему порт M со станцией SAS3. Этот путь образует изолированное кольцо и используется для локальной проверки раб отоспособности и параметров станции SAS3. Если он работоспособен и его параметры не требуют реинициализации основной сети, то станция SAS3 включается в работу первичного кольца "плавно" (smooth-insertion).
Факт отключения питания станции с одиночным подключением будет сразу же замечен средствами физического уровня, обслуживающими соответствующий М-порт концентратора, и этот порт по команде уровня SMT концентратора будет обойден по внутреннему пути прохожден ия данных через концентратор. На дальнейшую отказоустойчивость сети этот факт никакого влияния не окажет (рисунок 2.9).
Рис. 2.9. Оптический обходной переключатель (Optical Bypass Switch)
Если же отключить питание у станции DAS или концентратора DAC, то сеть, хотя и продолжит работу, перейдя в состояние Wrap, но запас отказоустойчивости будет утерян, что нежелательно. Поэтому для устройств с двойным подключением рекомендуется использовать оптические обходные переключатели - Optical Bypass Switch, которые позволяют закоротить входные и выходные оптические волокна и обойти станцию в случае ее выключения. Оптический обходной переключатель питается от станции и состоит в простейшем случае из о тражающих зеркал или подвижного оптоволокна. При отключенном питании такой переключатель обходит станцию, а при включении ее питания соединяет входы портов А и В с внутренними схемами PHY станции.
Рассмотрим физический подуровень PMD (Physical Media Dependent layer), определенный в стандарте FDDI для оптоволокна - Fiber PMD.
Эта спецификация определяет аппаратные компоненты для создания физических соединений между станциями: оптические передатчики, оптические приемники, параметры кабеля, оптические разъемы. Для каждого из этих элементов указываются конструктивные и оптические параметры, позволяющие станциям устойчиво взаимодействовать на определенных расстояниях.
Физическое соединение - основной строительный блок сети FDDI. Типичная структура физического соединения представлена на рисунке 2.10.
Рис. 2.10. Физическое соединение сети FDDI
Каждое физическое соединение состоит из двух физических связей - первичной и вторичной. Эти связи являются односторонними - данные передаются от передатчика одного устройства PHY к приемнику другого устройства PHY.
В стандарте Fiber PMD в явном виде не определены предельные расстояния между парой взаимодействующих устройств по одному физическому соединению.
Вместо этого в стандарте определен максимальный уровень потерь мощности оптического сигнала между двумя станциями, взаимодействующими по одной физической связи. Этот уровень равен -11 dB, где
dB = 10 log P2/P1,
причем P1 - это мощность сигнала на станции-передатчике, а P2 - мощность сигнала на входе станции-приемника. Так как мощность по мере передачи сигнала по кабелю уменьшается, то затухание получается отрицательным.
В соответствии с принятыми в стандарте Fiber PMD параметрами затухания кабеля и выпускаемыми промышленностью соединителями, считается, что для обеспечения затухания -11 dB длина оптического кабеля между соседними узлами не должна превышать 2 км.
Более точно можно рассчитать корректность физического соединения между узлами, если принять во внимание точные характеристики затухания, вносимые кабелем, разъемами, спайками кабеля, а также мощность передатчика и чувствительность приемника.
Стандарт Fiber PMD определяет следующие предельные значения параметров элементов физического соединения (называемые FDDI Power Budget):
Категория элемента | Значение | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальная мощность передатчика | - 14 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Минимальная мощность передатчика | - 20 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальная принимаемая мощность | - 14 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Минимальная принимаемая мощность | - 31 dBm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальные потери между станциями | - 11dB | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Максимальные потери на км кабеля | - 2.5 dB |
Абсолютные значения мощности оптических сигналов (для выхода передатчика и для входа приемника) измеряются в децибелах по отношению к стандартной мощности в 1 милливатт (mW) и обозначаются как dBm:
dBm = 10 log P/1,
где мощность Р также измерена в милливаттах.
Из значений таблицы видно, что максимальные потери между станциями в -11 dB соответствуют наихудшему сочетанию предельных значений мощности передатчика (- 20 dBm) и приемника (- 31 dBm).
Основной вид кабеля для стандарта Fiber PMD - многомодовый кабель с диаметром сердечника 62.5 мкм и диаметром отражающей оболочки 125 мкм. Спецификация Fiber PMD не определяет требования к затуханию кабеля в dB на км, а только требует соблюдения требовани я по общему затуханию в -11 dB между станциями, соединенными кабелем и разъемами. Полоса пропускания кабеля должна быть не хуже чем 500 МГц на км.
Кроме основного вида кабеля, спецификация Fiber PMD допускает использование многомодовых кабелей с диаметром сердечника в 50 мкм, 85 мкм и 100 мкм.
В качестве разъемов стандарт Fiber PMD определяет оптические разъемы MIC (Media Interface Connector). Разъем MIC обеспечивает подключение 2-х волокон кабеля, соединенных с вилкой MIC, к 2-м волокнам порта станции, соединенными с розеткой MIC. Станд артизованы только конструктивные параметры розетки MIC, а любые вилки MIC, подходящие к стандартным розеткам MIC, считаются пригодными к использованию.
Спецификация Fiber PMD не определяет уровень потерь в разъеме MIC. Этот уровень - дело производителя, главное, чтобы выдерживался допустимый уровень потерь -11 dB во всем физическом соединении.
Разъемы MIC должны иметь ключ, обозначающий тип порта, что должно предотвратить неверное соединение разъемов. Определено четыре различных типа ключа:
Виды ключа для этих типов разъемов приведены на рисунке 2.11.
Рис. 2.11. Ключи разъемов MIC
Кроме разъемов MIC, допускается использовать разъемы ST и SC, выпускаемые промышленностью.
В качестве источника света допускается использование светодиодов (LED) или лазерных диодов с длиной волны 1.3 мкм.
Кроме многомодового кабеля, допускается использование более качественного одномодового кабеля (Single Mode Fiber, SMF) и разъемов SMF-MIC для этого кабеля. В этом случае дальность физического соединения между соседними узлами может увеличиться до 4 0 км - 60 км, в зависимости от качества кабеля, разъемов и соединений. Требования, определенные в спецификации SMF-PMD, для мощности на выходе передатчика и входе приемника, те же, что и для одномодового кабеля.
Спецификация на Fiber PMD требует от этого уровня выполнения функции Signal_Detect по определению факта наличия оптических сигналов на входе физического соединения станции. Этот сигнал передается на уровень PHY, где используется функцией определения стату са линии Line State Detect (рисунок 2.12).
Уровень PMD генерирует для PHY признак присутствия оптического сигнала Signal_Detect, если мощность входного сигнала превышает -43.5 dBm, а снимает его при уменьшении этой мощности до -45 dBm и ниже. Таким образом, имеется гистерезис в 1.5 dBm для предотв ращения частых изменений статуса линии при колебании входной мощности сигнала около -45 dBm.
Рис. 2.12. Функция определения сигнала на входе PMD
Если в задачи подуровня PMD входит формирование качественных оптических импульсов на выходе и входе каждого физического соединения, то подуровень PHY имеет дело с передачей с помощью импульсов PMD логических единиц и нулей, приходящих с подуровня MAC. Бол ее точно, подуровень PHY занимается следующими задачами:
Принципы логического кодирования с использованием кодов 4В/5В, а также физического кодирования с помощью методов NRZI (для оптоволокна) и MLT-3 (для витой пары) уже были рассмотрены в разделах 1.4.3 - 1.4.4, так как технология Fast Ethernet позаимствовала их у технологии FDDI.
Кроме 16 кодов, отведенных для 16 кодовых комбинаций исходных 4-х байтовых символов, физический и МАС-уровни оперируют нескольким служебными символами:
Эти символы позволяют соседям по физическому соединению определить его состояние в процессе его инициализации и поддержани
Начало кадра отмечает встретившиеся подряд два символа Start Delimiter 1 и Start Delimiter 2, называемых также символами J и K (по аналогии со стандартом Token Ring)
Эти символы используются для указания логических значений признаков распознавания адреса, ошибки и копирования кадра, имеющих в кадре FDDI назначение, аналогичное назначению соответствующих признаков кадра Token Ring.
В обязанности физического уровня входит фильтрация символов, передаваемых на выходную линию порта. Если среди символов кадра встречаются запрещенные символы, то они заменяются на 4 символа Halt, которые далее сопровождаются символами Idle до передачи след ующего кадра. Последующий сосед, получив кадр с 4-мя символами Halt, должен изъять поврежденный кадр из кольца. Функция фильтрации не обязательна, когда кадр проходит через МАС-блок станции, но это происходит не всегда, например, вторичное кольцо может пр оходить только через блоки физического уровня, не заходя в МАС-блок, если это станция с двойным подключением.
Рассмотрим подробней, каким образом происходит синхронизация приемника с передатчиком в сети FDDI при приеме кодов 4B/5В.
Сеть FDDI использует распределенную схему тактирования информации, при которой каждая станция работает со своим независимым локальным тактовым генератором. Это отличает ее от сетей Token Ring, в которых одна станция поддерживает тактирование информации дл я всей сети, управляя главным тактовым генератором сети, называемым Master Clock.
В сети FDDI тактовые частоты синхронизируются в каждом физическом соединении соседних станций (рисунок 2.13).
Рис. 2.13. Согласование тактовых генераторов в сети FDDI
Каждая станция имеет два тактовых генератора - локальный, который управляет тактированием передаваемой информации, и восстанавливающим, который синхронизируется с тактовой частотой данных, приходящих от соседней станции. Локальный тактовый генератор работ ает на тактовой частоте 125 Мгц ± 0.005%. Восстанавливающий тактовый генератор, называемый RCRCLK (Receive Recovery Clock) подстраивается под тактовую частоту, извлекаемую из NRZI или MLT-3 сигналов при поступлении кодов Idle в промежутке между передачей кадров данных. Коды Idle, имеющие значение 111111, создают последовательность импульсов типа "меандр" с равными длительностями высокого и низкого потенциала, удобных для подстройки тактового генератора RCRCLK, так как сигнал изм еняется два раза за период.
Поступающие символы записываются в соответствии с обнаруженной в импульсах кодов Idle частотой в эластичный буфер (Elasticity Buffer). Из эластичного буфера символы извлекаются уже с частотой локального генератора. В результате, рассогласование частот ста нций в кольце постоянно сглаживается, не превышая 0.01%. Принимающая станция поддерживает заполнение эластичного буфера наполовину, извлекая очередной символ только при превышении этой границы.
Блоки PMD и PHY, реализующие физический уровень технологии FDDI для каждого порта, участвуют в процедуре инициализации физического соединения каждого порта станции с портом предшествующей или последующей станций. Эта процедура проводится при непосредствен ном участии блока управления станцией - SMT (Station Management). Блок управления станцией выполняет большое количество функций, получая информацию и управляя всеми остальными блоками станции - PMD, PHY и MAC. Рассмотрим группу функций SMT, управл ющих физическими соединениями портов и конфигурацией внутреннего пути данных. Эта группа функций получила название Connection Management (CMT).
На рисунке 2.14 показан состав функций CMT и связь их с блоками PMD, PHY, MAC и некоторыми другими элементами станции.
Рис. 2.14. Структура блока управления конфигурацией CMT
Станция, имеющая несколько портов, обеспечивает для каждого из них блоки PMD, PHY и элемент управления конфигурацией CCE (Control Configuration Element). ССЕ - это переключатель, который соединяет входы и выходы первичного и вторичного колец, подкл юченных к порту извне, с внутренними путями данных станции, в результате данные могут передаваться из порта элементу MAC станции, а могут непосредственно переправляться на другой порт. Реконфигурация станции при ее реакции на отказы производится именно пе реключателем CCE.
Блок управления конфигурацией имеет в своем составе несколько элементов PCM (Physical Connection Management), по одному на каждый порт. Элемент PCM управляет физическим состоянием линии своего порта, анализируя символы, приходящие от PHY, и передав ая PHY свои команды. Если элемент PCM обнаруживает изменение состояния линии, то он оповещает об этом элемент CFM (Configuration Management), который отвечает за конфигурацию внутреннего пути данных. Элемент CFM производит конфигурирование внутренн его пути, управляя переключателями портов CCE. Делает он это с помощью элементов CEM (Configuration Element Management), каждый из которых управляет одним переключателем CCE. Блок ECM (Entity Coordination Management) координирует работу всех блоков и элементов блока управления конфигурацией CMT.
Установление физического соединения - основная задача блока PCM. Блок PCM каждого порта начинает эту процедуру по команде PC_Start, получаемой от координирующего элемента ECM (рисунок 2.15).
Рис. 2.15. Управление физическим соединением портов
При получении этой команды блок PCM локального порта начинает обмениваться символами кодов 4B/5B по миникольцу, образуемому двумя соседними портами. Процедура инициализации физического соединения - это распределенная процедура, в ней участвуют два РСM сос едних портов.
Во время этой процедуры для обмена информацией соседние порты используют не отдельные символы, а достаточно длинные последовательности символов, что повышает надежность взаимодействия. Эти последовательности называются состоянием линии. Всего используетс 4 состояния линии:
Первый этап инициализации заключается в передаче портом - инициатором соединения - состояния QLS соседнему порту. Тот должен при этом перейти в состояние BREAK - разрыва связи, независимо от того, в каком состоянии связь находилась до получения символов Q LS. Соседний порт, перейдя в состояние BREAK, также посылает символы QLS, обозначая свой переход.
После того, как порт-инициатор убедился, что первый этап инициализации выполнен, он выполняет следующий этап - переход в состояние CONNECT (соединение). Делает он это посылкой символов HLS, на что соседний порт также должен ответить символами HLS.
Если состояние CONNECT установлено, то порт-инициатор начинает наиболее содержательный этап инициализации - NEXT, включающий обмен информацией о типе портов, проведение тестирования качества линии и проведение тестового обмена МАС-кадрами. Этап NEXT состо ит в обмене между соседними портами 10-ю сообщениями, которые передаются по очереди. Порт передает одно свое сообщение, затем получает и анализирует сообщение от соседа и так далее. Каждое сообщение несет один бит информации и кодируется последовательност ями MLS - логический ноль, или HLS - логическая единица.
Первые два сообщения несут информацию о типе своего порта. Для кодирования нужны два бита, так как существует четыре типа портов - А, В, М или S. Третье сообщение говорит соседнему порту, приемлемо ли для данного порта соединение с указанным в принятых со общениях типом порта. Если да, то следующие сообщения оговаривают длительность процедуры тестирования качества линии, а затем передают информацию о результатах тестирования. Тест состоит в передаче в течение определенного времени символов Idle и подсчете искаженных символов. Если качество линии приемлемо, то выполняется тестовый обмен кадрами данных с участием блоков MAC станций.
Если все этапы инициализации прошли успешно, то физическое соединение считается установленным и активным. По нему начинают передаваться символы простоя и кадры данных. Однако, до тех пор, пока станция не выполнит процедуру логического вхождения станции в кольцо, эти кадры могут нести только служебную информацию.
После установления физического соединения станция должна включить порт во внутренний путь, по которому проходят кадры данных и маркер.
Средством, с помощью которого выполняется это включение, является переключатель CCE. Он может подключить вход и выход порта к любому из трех внутренних путей станции (рисунок 2.16) по командам от элемента CEM блока управления конфигурацией CMT.
Рис. 2.16. Подключение порта к внутренним путям станции
Внутренние пути станции не следует путать с внешними первичным и вторичным кольцами сети. Внутренние пути могут соединяться с любым из колец, в зависимости от состояния порта.
Первичный внутренний путь обязательно должен присутствовать у любой станции. Вторичный внутренний путь является необязательным, но желательным в некоторых конфигурациях станций с двойным подключением, как это будет видно из примеров. Локальный путь исполь зуется для тестирования станции на МАС-уровне перед ее логическим включением в кольцо.
Переключатель CCE может находиться в одном из 5 состояний (рисунок 2.17):
Рис. 2.17. Состояния переключателя внутренних путей
С помощью перевода переключателей портов станции в нужное состояние блок управления конфигурацией может обеспечить передачу кадров и маркера по тому внутреннему пути, который соответствует текущему состоянию сети. На рисунке 2.18 приведены примеры поддерж ки состояний THRU_A ( а) и WRAP_A (б) для станции с двойным подключением.
Состояние THRU_A соответствует нормальному режиму работы колец сети. В этом режиме первичное кольцо проходит через порты А и В, а также MAC-узел станции, а вторичное кольцо проходит только через блоки PMD и PHY каждого из портов. Состояние WRAP_A соответс твует реакции сети на нарушение целостности сети, при котором порт В теряет физическое соединение с соседним по сети портом. При этом на линии устанавливается состояние Quiet Line State, так как отсутствие сигналов на входе порта соответствует получению с имволов Quiet (00000). Получив информацию о том, что на входе порта В установилось состояние QLS, блок PCM этого порта пытается начать процесс реинициализации физического соединения. При отсутствии физической связи между портами эта попытка называется уда чной, поэтому порт переводится в состояние INSERT_X, а порт В - в состояние ISOLATED.
Рис. 2.18. Работа переключателя пути CCE в станции с двойным подключением
В соответствии со стандартами IEEE 802 канальный уровень в локальных сетях состоит из двух подуровней - LLC и МАС. Стандарт FDDI не вводит свое определение подуровня LLC, а использует его сервисы, описанные в документе IEEE 802.2 LLC.
Подуровень МАС выполняет в технологии FDDI следующие функции:
В данном разделе для иллюстрации работы МАС-уровня будет использоваться в качестве иллюстрации станция с двойным подключением и одним блоком МАС, то есть станция DA/SM. Ее внутренняя структура показана на рисунке 2.19.
Рис. 2.19. Внутренняя структура станции с двойным подключением и одним блоком МАС
В каждом блоке МАС параллельно работают два процесса: процесс передачи символов - MAC Transmit и процесс приема символов - MAC Receive. За счет этого МАС может одновременно передавать символы одного кадра и принимать символы другого кадра.
По сети FDDI информация передается в форме двух блоков данных: кадра и токена. Формат кадра FDDI представлен на рисунке 2.20.
Рис. 2.20. Формат кадра FDDI
Рассмотрим назначение полей кадра.
На рисунке 2.21 показан формат токена.
Рис. 2.21. Формат токена
Токен состоит по существу из одного значащего поля - поля управления, которое содержит в этом случае 1 в поле С и 0000 в поле ZZZZ.
С помощью операций МАС-уровня станции получают доступ к кольцу и передают свои кадры данных. Цикл передачи кадра от одной станции к другой состоит из нескольких этапов: захвата токена станцией, которой необходимо передать кадр, передачей одного или нескол ьких кадров данных, освобождением токена передающей станцией, ретрансляцией кадра промежуточными станциями, распознаванием и копированием кадра станцией-получателем и удалением кадра из сети станцией-отправителем.
Рассмотрим эти операции.
Захват токена. Если станция имеет право захватить токен, то она после ретрансляции на выходной порт символов PA и SD токена, удаляет из кольца символ FC, по которому она распознала токен, а также конечный ограничитель ED. Затем она передает вслед з а уже переданным символом SD символы своего кадра, таким образом, формируя его из начальных символов токена (рисунок 2.22).
Рис. 2.22. Захват токена
Передача кадра. После удаления полей FC и ED токена станция начинает передавать символы кадров, которые ей предоставил для передачи уровень LLC. Станция может передавать кадры до тех пор, пока не истечет время удержания токена.
Для сетей FDDI предусмотрена передача кадров двух типов трафика - синхронного и асинхронного.
Синхронный трафик предназначен для приложений, которые требуют предоставления им гарантированной пропускной способности для передачи голоса, видеоизображений, управления процессами и других случаев работы в реальном времени. Для такого трафика кажд ой станции предоставляется фиксированная часть пропускной способности кольца FDDI, поэтому станция имеет право передавать кадры синхронного трафика всегда, когда она получает токен от предыдущей станции.
Асинхронный трафик - это обычный трафик локальных сетей, не предъявляющий высоких требований к задержкам обслуживания. Станция может передавать асинхронные кадры только в том случае, если при последнем обороте токена по кольцу для этого осталась ка кая-либо часть неизрасходованной пропускной способности. Интервал времени, в течение которого станция может передавать асинхронные кадры, называется временем удержания токена (Token Holding Time, THT). Каждая станция самостоятельно вычисляет текуще е значение этого параметра по алгоритму, рассмотренному ниже.
Рисунок 2.23 иллюстрирует процесс передачи кадра.
Рис. 2.23. Передача кадра
В ходе передачи символов собственного кадра станция удаляет из кольца все поступающие от предыдущей станции символы. Такой процесс называется МАС-заменой (MAC Overwriting). Первоначальный источник удаляемого из сети кадра не имеет значения - это может быт ь и данный МАС-узел, который ранее поместил этот кадр в кольцо, либо другой МАС-узел. Процесс удаления кадров во время передачи никогда не приводит к удалению еще необработанных кадров: если сеть работает корректно, то удаляются только усеченные кадры, ко торые образуются либо при захвате токена (этот вариант уже рассмотрен), либо при удалении своего кадра станцией-источником (этот вариант будет рассмотрен ниже). В любом случае, усеченный кадр (remnant frame) - это кадр, у которого есть начальный ограничит ель, но отсутствует конечный ограничитель, а вместо него и, может быть, еще некоторых полей вставлены символы простоя Idle.
В случае, если удаляемые символы принадлежат кадру, ранее сгенерированному данным МАС-узлом, то одновременно с удалением кадра из кольца проверяются признаки статуса кадра из поля FS - распознавания адреса, копирования и ошибки. Если признак ошибки устано влен, то МАС-уровень не занимается повторной передачей кадра, оставляя это уровню LLC или другим верхним уровням коммуникационного стека протоколов.
Станция прекращает передачу кадров в двух случаях: либо при истечении времени удержания токена THT, либо при передаче всех имеющихся у нее кадров до истечения этого срока. После передачи последнего своего кадра станция формирует токен и передает его следу ющей станции.
Повторение кадра. Если кадр не адресуется данному МАС-узлу, то последний должен просто повторить каждый символ кадра на выходном порту. Каждый МАС-узел должен подсчитывать количество полученных им полных кадров (усеченные не включаются в подсчет). Каждая станция проверяет повторяемый кадр на наличие ошибок с помощью контрольной последовательности. Если ошибка обнаружена, а признак ошибки в поле FS не установлен, то МАС-узел устанавливает этот признак в кадре, а также наращивает счетчик ошибочных ка дров, распознанных данным МАС-узлом.
Обработка кадра станцией назначения. Станция назначения, распознав свой адрес в поле DA, начинает копировать символы кадра во внутренний буфер одновременно с повторением их на выходном порту. При этом станция назначения устанавливает признак распоз навания адреса. Если же кадр скопирован во внутренний буфер, то устанавливается и признак копирования (невыполнение копирования может произойти, например, из-за переполнения внутреннего буфера). Устанавливается также и признак ошибки, если ее обнаружила п роверка по контрольной последовательности.
Удаление кадра из кольца. Каждый МАС-узел ответственен за удаление из кольца кадров, которые он ранее в него поместил. Этот процесс известен под названием Frame Stripping. Если МАС-узел при получении своего кадра занят передачей следующих ка дров, то он удаляет все символы вернувшегося по кольцу кадра. Если же он уже освободил токен, то он повторяет на выходе несколько полей этого кадра прежде, чем распознает свой адрес в поле SA. В этом случае в кольце возникает усеченный кадр, у которого по сле поля SA следуют символы Idle и отсутствует конечный ограничитель. Этот усеченный кадр будет удален из кольца какой-нибудь станцией, принявшей его в состоянии собственной передачи.
Процедура инициализации кольца, известная под названием Claim Token (это название в свободном переводе можно может интерпретироваться как "соревнование претендентов на генерацию токена"), выполняется для того, чтобы все станции кольца убедились в е го потенциальной работоспособности, а также пришли к соглашению о значении параметра T_Opr - максимально допустимому времени оборота токена по кольцу, на основании которого все станции вычисляют время удержания токена THT.
Процедура Claim Token выполняется в нескольких ситуациях:
Для выполнения процедуры инициализации каждая станция сети должна знать о своих требованиях к максимальному времени оборота токена по кольцу. Эти требования содержатся в параметре, называемом "требуемое время оборота токена" - TTRT (Target Token Rotati on Time). Параметр TTRT отражает степень потребности станции в пропускной способности кольца - чем меньше время TTRT, тем чаще станция желает получать токен для передачи своих кадров. Процедура инициализации позволяет станциям узнать о требованиях ко времени оборота токена других станций и выбрать минимальное время в качестве общего параметра T_Opr, на основании которого в дальнейшем будет распределяться пропускная способность кольца. Параметр TTRT должен находиться в пределах от 4 мс до 165 мс и може т изменяться администратором сети.
Для проведения процедуры инициализации станции обмениваются служебными кадрами МАС-уровня - кадрами Claim. Эти кадры имеют в поле управления значение 1L00 0011, поле адреса назначения содержит адрес источника (DA = SA), а в поле информации содержится 4-х байтовое значение запрашиваемого времени оборота токена T_Req.
Если какая-либо станция решает начать процесс инициализации кольца по своей инициативе, то она формирует кадр Claim Token со своим значением требуемого времени оборота токена TTRT, то есть присваивает полю T_Req свое значение TTRT. Захвата токена для отпр авки кадра Claim не требуется. Любая другая станция, получив кадр Claim Token, начинает выполнять процесс Claim Token. При этом станции устанавливают признак нахождения кольца в работоспособном состоянии Ring_Operational в состояние False, что означает от мену нормальных операций по передаче токена и кадров данных. В этом состоянии станции обмениваются только служебными кадрами Claim.
Для выполнения процедуры инициализации каждая станция поддерживает таймер текущего времени оборота токена TRT (Token Rotation Timer), который используется также и в дальнейшем при работе кольца в нормальном режиме. Для упрощения изложения будем считать, ч то этот таймер, как и другие таймеры станции, инициализируется нулевым значением и затем наращивает свое значение до определенной величины, называемой порогом истечения таймера. (В реальном кольце FDDI все таймеры работают в двоичном дополнительном коде).
Таймер TRT запускается каждой станцией при обнаружении момента начала процедуры Claim Token. В качестве предельного значения таймера выбирается максимально допустимое время оборота токена, то есть 165 мс. Истечение таймера TRT до завершения процедуры озна чает ее неудачное окончание - кольцо не удалось инициализировать. В случае неудачи процесса Claim Token запускается процессы Beacon и Trace, с помощью которых станции кольца пытаются выявить некорректно работающую часть кольца и отключить ее от сети.
Во время выполнения процесса Claim Token каждая станция сначала может отправить по кольцу кадр Claim со значением T_Req, равным значению ее параметра TTRT. При этом она устанавливает значение T_Opr, равное значению TTRT. Рассмотрим пример инициализируемог о кольца, приведенный на рисунке 2.24.
Рис. 2.24. Процесс инициализации кольца
В некоторый момент времени все станции передали по кольцу свои предложения о значении максимального времени оборота токена: 72 мс, 37 мс, 51 мс и 65 мс. Станция, приняв кадр Claim от предыдущей станции, обязана сравнить значение T_Req, указанное в кадре с о значением TTRT своего предложения. Если другая станция просит установить время оборота токена меньше, чем данная (то есть T_Req < TTRT), то данная станция перестает генерировать собственные кадры Claim и начинает повторять чужие кадры Claim, так как видит, что в кольце есть более требовательные станции. Одновременно станция фиксирует в своей переменной T_Opr минимальное значение T_Req, которое ей встретилось в чужих кадрах Claim. Если же пришедший кадр имеет значение T_Req больше, чем собственное зна чение TTRT, то он удаляется из кольца.
Процесс Claim завершается для станции в том случае, если она получает кадр Claim со своим адресом назначения. Это означает, что данная станция является победителем состязательного процесса и ее значение TTRT оказалось минимальным. В рассматриваемом пример е это станция B со значением TTRT, равным 37 мс. Другие станции кольца не смогут получить свой кадр Claim, так как он не сможет пройти через станцию B. При равных значениях параметра TTRT преимущество отдается станции с большим значением МАС-адреса.
После того, как станция обнаруживает, что она оказалась победителем процесса Claim Token, она должна сформировать токен и отправить его по кольцу. Первый оборот токена - служебный, так как за время этого оборота станции кольца узнают, что процесс Claim To
ken успешно завершился. При этом они устанавливают признак Ring_Ope-
rational в состояние True, означающее начало нормальной работы кольца. При следующем проходе токена его можно будет использовать для захвата и передачи кадров данных.
Если же у какой-либо станции во время выполнения процедур инициализации таймер TRT истек, а токен так и не появился на входе станции, то станция начинает процесс Beacon.
После нормального завершения процесса инициализации у всех станций кольца устанавливается одинаковое значение переменной T_Opr.
Управление доступом к кольцу FDDI распределено между его станциями. Каждая станция при прохождении через нее токена самостоятельно решает, может она его захватить или нет, а если да, то на какое время.
Если у станции имеются для передачи синхронные кадры, то она всегда может захватить токен на фиксированное время, выделенное ей администратором.
Если же у станции имеются для передачи асинхронные кадры, то условия захвата определяются следующим образом.
Станция ведет уже упомянутый таймер текущего времени оборота токена TRT, а также счетчик количества опозданий токена Late_Ct. Время истечения таймера TRT равно значению максимального времени оборота токена T_Opr, выбранному станциями при инициализации кол ьца.
Счетчик Late_Ct всегда сбрасывается в нуль, когда токен проходит через станцию. Если же токен опаздывает, то таймер достигает значения T_Opr раньше очередного прибытия токена. При этом таймер обнуляется и начинает отсчет времени заново, а счетчик Late_Ct наращивается на единицу, фиксируя факт опоздания токена. При прибытии опоздавшего токена (при этом Late_Ct = 1) таймер TRT не сбрасывается в нуль, а продолжает считать, накапливая время опоздания токена. Если же токен прибыл раньше, чем истек интервал T_O pr у таймера TRT, то таймер сбрасывается в момент прибытия токена.
На рисунке 2.25 приведены различные случаи прибытия токена. Значение максимального времени оборота токена для примера, приведенного на этом рисунке, равно 30 мс.
Рис. 2.25. Поведение таймера времени текущего оборота токена TRT
и счетчика опозданий токена Late_Ct
Приведенный пример иллюстрирует следующие события:
Момент А: | Токен прибыл вовремя, так как таймер TRT не достиг порога T_Opr. Таймер TRT перезапускается и начинает считать заново. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент В: | Токен прибыл вовремя. Таймер перезапускается. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент С: | Таймер истек раньше, чем токен прибыл на станцию. Таймер TRT перезапускается, а счетчик Late_Ct наращивается на единицу. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент D: | Токен наконец прибыл, но он опоздал - это отмечает счетчик Late_Ct, равный 1. Счетчик сбрасывается в нуль, но таймер не перезапускается, так как при приходе токена счетчик не был равен нулю. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент Е: | Токен прибыл на станцию. Так как он прибыл до истечения таймера и при нулевом значении счетчика Late_Ct, то считается, что он прибыл вовремя. Таймер перезапускается. |
Теперь рассмотрим, каким образом значения таймера TRT и счетчика Late_Ct используются при выяснении возможности захвата токена и времени его удержания.
Станция может захватывать токен только в том случае, когда он прибывает вовремя - то есть в момент его прибытия счетчик Late_Ct равен нулю.
Время удержания токена управляется таймером удержания токена THT (Token Holding Timer). Если станция имеет в буфере кадры для передачи в момент прибытия токена и токен прибыл вовремя, то станция захватывает его и удерживает в течение периода (T_Opr - TRT), где TRT - значение таймера TRT в момент прихода токена. Для отслеживания разрешенного времени удержания токена в момент захвата токена значение TRT присваивается таймеру THT, а затем таймер TRT обнуляется и перезапускается. Таймер THT считает до границы T_Opr, после чего считается, что время удержания токена исчерпано. Станция перестает передавать кадры данных и передает токен.
Описанный алгоритм позволяет адаптивно распределять пропускную способность кольца между станциями, а точнее - ту ее часть, которая осталась после распределения между синхронным трафиком станций.
Пример работы алгоритма выделения времени для передачи асинхронного трафика приведен на рисунке 2.26. как и в предыдущем примере, время максимального оборота токена равно 30 мс.
Рис. 2.26. Выделение времени для асинхронного трафика
Рассмотрим события, иллюстрируемые примером:
Момент А: | Токен прибыл вовремя, так как таймер TRT не достиг порога T_Opr. Таймер TRT перезапускается и начинает считать заново. Станция не имеет в это время асинхронных кадров, поэтому просто передае т токен соседу. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент В: | Токен прибыл вовремя. Станция имеет к этому моменту асинхронные кадры для передачи. Таймеру THT присваивается значение таймера TRT (16), и он начинает считать до значения T_Opr (30). Таймер TRT перезапускается. Станция начинает передавать кадры. Она может это делать в течение 14 мс. Если она закончит передачу имеющихся кадров раньше, то она обязана немедленно освободить токен. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент С: | Таймер THT истек, и станция должна прекратить передачу асинхронных кадров. Станция завершает передачу текущего кадра и передает токен соседней станции. Счетчик TRT при этом продолжает работа ть. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент D: | Таймер TRT истекает раньше очередного прибытия токена. Таймер перезапускается, а счетчик Late_Ct наращивается на 1. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент Е: | Токен прибывает, но он опоздал, так как Late_Ct имеет значение 1. Станция не может захватить токен при значении Late_Ct, отличном от нуля. Токен передается соседней станции. Счетчик Late_ Ct обнуляется, а таймер TRT не перезапускается. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент F: | Токен прибывает на станцию. Так как таймер TRT еще не истек, а значение Late_Ct равно 0, то токен прибыл вовремя. Таймер THT инициализируется значением таймера TRT (22) и начинает считать д
о границы T_Opr. TRT перезапускается. Станция может передавать кадры в течение 8 мс. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Момент G: | Таймер THT истекает, и передача асинхронных кадров прекращается. Станция передает токен соседней станции. |
В стандарте FDDI определено также еще два механизма управления доступом к кольцу. Во-первых, в токене можно задавать уровень приоритета токена, а для каждого уровня приоритета задается свое время порога, до которого считает таймер удержания токена THT. Во -вторых, определена особая форма токена - сдерживающий токен (restricted token), с помощью которого две станции могут монопольно некоторое время обмениваться данными по кольцу.
Если таймер TRT истечет при значении Late_Ct, равном 1, то такое событие считается потерей токена и порождает выполнение процесса реинициализации кольца Claim Token.
Кроме спецификаций уровней PHY, PMD и МАС, стандарт FDDI определяет также спецификацию уровня управления станцией Station Management (SMT). В настоящее время действует версия 7.3 SMT.
Эта спецификация определяет функции, которые должен выполнять каждый узел в сети FDDI. SMT контролирует и управляет всеми процессами канального и физического уровней, протекающими в отдельной станции. Кроме того, процесс SMT каждой станции взаимодействует с аналогичными процессами других станций для того, чтобы следить и координировать все операции в кольце FDDI. В этом случае SMT принимает участие в распределенном одноранговом управлении кольцом.
SMT включает три группы функций (рисунок 2.27):
Рис. 2.27. Состав функций управления SMT
Функции управления соединениями CMT уже были рассмотрены в разделах 2.5.2 и 2.5.3 в связи с тем, что их основным назначением является контроль и управление физическими соединениями, организуемыми физическим уровнем.
Функции управления кольцом RMT заключаются в управлении локальными узлами МАС и кольцами, к которым они присоединены. Функции RMT ответственны за обнаружение дублированных адресов, а также за запуск процедуры инициации кольца Claim Token и п роцедур обработки аварийных ситуаций Beacon и Trace.
Функции управления, основанного на кадрах FBM позволяют узлу получать от других узлов сети информацию о их состоянии и статистике о прошедшем через них трафике. Эта информация хранится в базе данных управляющей информации MIB (Management Informatio n Base).
Для выполнения своих функций узел RMT взаимодействует с локальным узлом МАС, узлом управления соединениями CMT, а также другими узлами SMT станции. Узел RMT выполняет следующие функции:
Уведомление о статусе и наличии локального МАС-узла. RMT несет ответственность за уведомление других узлов SMT о:
Процесс Beacon и выход из него. Процесс Beacon (процесс сигнализации) используется для изоляции серьезных повреждений кольца. Узел МАС начинает процесс Beacon в следующих ситуациях:
Если узел входит в процесс Beacon, то он начинает передавать последующему в кольце узлу кадры Beacon, в которых в качестве адреса назначения указывается либо 0, либо адрес предшествующей станции, полученный в этом случае от SMT. В поле данных пересылаетс один байт причины начала процесса Beacon (0 - неудачное завершение процесса Claim Token, остальные значения зарезервированы на будущее).
Если же узел получает кадр Beacon от другой станции, то она прекращает передавать свои кадры Beacon и переходит в режим повторения кадров.
Через некоторое время после возникновения аварийной ситуации в кольце все станции прекращает генерировать кадры Beacon, кроме одной, той, которая находится в кольце непосредственно за станцией или участком кабеля, являющимися причиной аварийной ситуации в кольце. Станция, продолжающая генерировать кадры Beacon, попадает в состояние Stuck Beacon - "постоянной сигнализации" (рисунок 2.28).
Рис. 2.28. Станция в состоянии Stuck Beacon
Процесс RMT каждой станции при входе станции в процесс Beacon запускает таймер TRM (Ring Management), который измеряет период времени, в течение которого данная станция генерирует кадры Beacon. При превышении им границы T_Stuck процесс RMT считает, что станция попала в состояние постоянной сигнализации Stuck Beacon и что узел управления конфигурацией не смог справиться с возникшей в кольце проблемой.
В этой ситуации узел RMT посылает по кольцу так называемый направленный сигнальный кадр - Directed Beacon - станции управления кольца (подразумевается, что на одной из станций кольца выполняется специальное программное обеспечение управления сетью, например, Sun NetManager, не входящее в компетенцию стандарта FDDI). В качестве адреса назначения в кадре Directed Beacon указывается специальный групповой адрес, который станция управления должна распознать. Поле информации должно содержать адрес предше ствующей станции - потенциального виновника проблемы.
После передачи нескольких кадров Directed Beacon (для надежности) процесс RMT инициирует процесс Trace.
Процесс Trace используется для обнаружения домена неисправности - то есть группы станций, которые работают некорректно.
Станция, которая инициирует процесс Trace, посылает об этом сигнал станции, непосредственно предшествующей ей в кольце - то есть предыдущему соседу. Сигнал Trace передается в форме последовательности символов Halt и Quiet.
Станция, которая получила сигнал Trace, и станция, которая передала сигнал Trace, на некоторое время отключаются от кольца и выполняют тест проверки внутреннего пути, так называемый Path Test. Детали теста Path Test не определены спецификацией SMT. Ее общее назначение состоит в том, что станция должна автономно проверить передачу символов и кадров между всеми своими внутренними узлами, чтобы убедиться в том, что не она является причиной отказа кольца.
Если тест внутреннего пути Path Test выполнен успешно, то процесс SMT посылает блокам управления конфигурацией сигнал PC_Start, по которому они начинают восстановление физических соединений портов. Если же Path Test не выполняется, то станция остается отс оединенной от кольца.
Эта часть функций SMT, называемая FBM (Frame Based Management) является наиболее высокоуровневой, так как для ее работы требуется, чтобы кольцо находилось в работоспособном состоянии и могло передавать между станциями кадры. Спецификация FBM опреде ляет большое количество типов кадров, которыми обмениваются станции:
Кадр SMT имеет собственный заголовок достаточно сложного формата, который вкладывается в информационное поле MAC кадра. За заголовком следует информационное поле SMT, которое содержит данные о нескольких параметрах станции. Каждый параметр описывается тре мя полями - полем типа параметра, полем длины параметра и полем значения параметра.
С помощью кадров PMF управляющая станция может получить доступ к значению параметров, хранящихся в базе данных управляющей информации станции - Management Information Base, MIB.
Спецификация SMT определяет состав объектов SMT MIB и их структуризацию. База SMT MIB состоит из 6 поддеревьев (рисунок 2.29). Поддерево 5 зарезервировано на будущее.
Рис. 2.29. Структура базы управляющей информации SMT MIB
Сообщество Internet разработало стандарт на базу управляющей информации MIB для сетей FDDI. Стандарт RFC 1285 определяет объекты, которые нужны для управления станциями FDDI по протоколу SNMP. База Internet FDDI MIB является поддеревом ветви Transmission базы MIB-II.
Объекты, определенные в RFC 1285, идентичны объектам SMT MIB. Однако, имена объектов и их синтаксис отличаются от спецификации SMT MIB. Эти отличия должны учитываться производителями оборудования и программного обеспечения управления. Обычно совместимость этих двух спецификаций достигается за счет встроенных в оборудование агентов-посредников FDDI/SNMP, а также за счет функций трансляции спецификаций в системах управления сетями.
На рисунке 2.30 приведена структура базы FDDI MIB по спецификации RFC 1285.
Рис. 2.30. Структура базы FDDI MIB по спецификации RFC 1285
Особенностью технологии FDDI является сочетание нескольких очень важных для локальных сетей свойств:
Пока FDDI - это единственная технология, которой удалось объединить все перечисленные свойства. В других технологиях эти свойства также встречаются, но не в совокупности. Так, технология Fast Ethernet также обладает скоростью передачи данных 100 Мб/с, но она не позволяет восстанавливать работу сети после однократного обрыва кабеля и не дает возможности работать при большом коэффициенте загрузки сети.
За уникальное сочетание свойств приходится платить - технология FDDI является сегодня самой дорогой 100 Мб технологией. Поэтому ее основные области применения - это магистрали кампусов и зданий, а также подключение корпоративных серверов. В этих случаях з атраты оказываются обоснованными - магистраль сети должна быть отказоустойчивой и быстрой, то же относится к серверу, построенному на базе дорогой мультипроцессорной платформы и обслуживающему сотни пользователей. Проект перевода сети университетского кам пуса на технологию Fast Ethernet, разработанный компанией 3Com и приведенный в разделе 1.9, очень характерен. Специалисты 3Com не предлагают отказываться от технологии FDDI на магистрали кампуса, во всяком случае они говорят о возможности перехода от FDDI к АТМ только на завершающих стадиях проекта модернизации, лет через 5 - 8.
Многие современные корпоративные сети построены с использованием технологии FDDI на магистрали в сочетании с технологиями Ethernet, Fast Ethernet и Token Ring в сетях этажей и отделов. Группа центральных серверов также обычно подключается к магистральному кольцу FDDI напрямую, с помощью сетевых адаптеров FDDI.
В связи с появлением более дешевых, чем FDDI 100 Мб технологий, таких как Fast Ethernet и 100VG-AnyLAN, технология FDDI, очевидно, не найдет широкого применения при подключении рабочих станций и создании небольших локальных сетей, даже при увеличении быст родействия этих станций и наличии в сетях мультимедийной информации.
В связи с тем, что технология FDDI уже давно утвердилась на рынке, существует большой выбор продуктов от различных производителей для каждого типа коммуникационного оборудования, используемого для построения локальных сетей - сетевых адаптеров, концентрат оров, коммутаторов и маршрутизаторов.
Сетевые адаптеры FDDI отличаются типом подключения - двойное или одиночное, а также поддерживаемой средой передачи данных - оптволокно или неэкранированная витая пара категории 5. Стоимость сетевых адаптеров с двойным подключением, рассчитанных на оптовол окно колеблется в районе $1500 долларов, а сетевые адаптеры с одиночным подключением для витой пары стоят около $1000.
Концентраторы FDDI выпускаются как в отдельных конструктивах с фиксированным количеством портов, так и в виде модулей для корпоративных концентраторов на основе шасси, таких как System 5000 компании Bay Networks или LANplex 6000 компании 3Com.
Средняя стоимость за порт концентратора FDDI составляла в 1996 году по данным Dell'Oro Group $835.
Концентратор FDDI 2914-04 компании Bay Networks
Модель 2914-04 - это концентратор FDDI, выполненный в отдельном корпусе и имеющий 14 портов. Все порты поддерживают многомодовый оптоволоконный кабель 50/125 или 62.5/125 мкм.
12 портов сконфигурированы как порты типа M для соединения со станциями с одиночным подключением, а два порта являются портами А и В для подключения концентратора к двойному кольцу. Порты А и В могут быть также сконфигурированы как М-порты, тогда концентр атор может объединять до 14 станций типа SAS.
Концентратор имеет два МАС-узла - первичный и локальный. Локальный используется для поддержки процедуры плавного включения станций в кольцо, не требующей его реинициализации.
Модуль концентратора FDDI для коммутатора LANplex 6000 компании 3Com
Данный модуль устанавливается в любой слот шасси LANplex 6000. Модуль выпускается в двух исполнениях - на 6 портов для многомодового оптоволоконного кабеля, или на 12 портов неэкранированной витой пары категории 5. Каждый порт может быть сконфигурирован к ак порт М для поддержки станций SAS или как порт А или В для поддержки станций DAS.
Модуль поддерживает спецификацию SMT 7.3 управление станцией, а также позволяет управлять им по протоколу SNMP, так как в него встроен агент SNMP/SMT proxy.
Коммутаторы FDDI делятся на два класса - коммутаторы с одним коммутируемым портом FDDI (или одним внутренним сегментом FDDI) и коммутаторы с несколькими коммутируемыми портами FDDI.
Коммутаторы первого типа появились гораздо раньше коммутаторов второго типа. В этих коммутаторах имеется несколько коммутируемых портов Ethernet, трафик которых может также направляться в магистральное кольцо FDDI, которое является либо внешним, либо внут ренним кольцом коммутатора. Передача кадров между сетями Ethernet и FDDI требует выполнения операции трансляции форматов кадров, что несколько замедляет работу такого коммутатора по сравнению с коммутатором, у которого один высокоскоростной порт - это пор т Fast Ethernet. Задержка коммутации Ethernet-FDDI может составлять 150 - 170 мкс, в то время как коммутаторы Ethernet - Fast Ethernet обеспечивают передачу кадров с задержкой в 10 - 40 мкс. Стоимость за порт коммутаторов Ethernet - FDDI с одним портом FD DI не очень отличается от стоимости за порт коммутаторов Ethernet, особенно при большом количестве портов Ethernet. Это происходит потому, что стоимость самого скоростного порта не слишком увеличивает общую стоимость, а требуемая общая производительность коммутатора при добавлении одного скоростного порта также возрастает не значительно, так как в этом случае нет коммутации между скоростными портами.
Коммутаторы второго типа, которые имеют несколько коммутируемых портов FDDI и, соответственно, выполняют коммутацию FDDI-FDDI, стоят существенно дороже. Средняя стоимость такого коммутатора за один порт составила в 1996 году по данным Dell'Oro Group около $4000. Коммутаторы этого типа появились недавно, так как потребность в коммутации высокоскоростных сегментов не была достаточно острой еще несколько лет назад, и большинство предприятий удовлетворялись подключением всех сегментов рабочих групп, отделов и ли этажей к единственному кольцу FDDI.
Коммутатор DECswitch 900EF компании Digital Equipment является типичным представителем коммутатора Ethernet-FDDI. Он выпускается как автономное устройство, либо как модуль для устройства DEChub 900 Multiswitch. Модель с 6 коммутируемыми портами Eth ernet и одним портом FDDI стоит $8000.
Модуль FDDI Switching Module (FSM) коммутатора LANplex 6000 представляет собой коммутатор FDDI-FDDI с двумя портами для подключения по схеме DAS. Модуль FSM подключается к внутренней протокольно-независимой высокоскоростной шине HSI (High Speed Int erface) коммутатора LANplex 6000, производительность которой в 13 Гб/с достаточна для коммутации 22 портов FDDI.
В качестве примера рассмотрим проект корпоративной сети АО "ЛУКойл-Кога-
лымнефтегаз" и "Нефтекомбанка", выполненный интеграционной российской компанией IBS Network Solutions (рисунок 2.31).
Рис. 2.31. Сеть АО "ЛУКойл-Когалымнефтегаз", построенная с использованием технологии FDDI
АО "ЛУКойл-Когалымнефтегаз" представляет собой одно из крупнейших в России объединений, действующих на рынке нефтегазодобычи. В структуру объединения входит "Нефтекомбанк". Подавляющее число административных зданий объединения расположены на относительно небольшой территории (диаметром порядка 7 км) города Когалым.
К моменту начала осуществления проекта в некоторых зданиях работали локальные сети с общим числом компьютеров около 700, но соединения между сетями зданий отсутствовали.
В предложенном проекте семь зданий АО на территории города Когалым объединяются на основе оптоволоконного кабеля и технологии FDDI. В каждом здании установлен центральный для сети здания коммутатор LANplex 2500, позволяющий осуществлять коммутацию двух се тей FDDI или коммутацию одной сети FDDI с 8-ю сегментами Ethernet. При подключении к кольцу FDDI используется подключение типа DAС на многомодовом или одномодовом оптоволоконном кабеле.
В предложенном проекте используется два магистральных кольца FDDI, объединенные коммутатором LANplex.
К каждому из магистральных колец подключается несколько сетей зданий с помощью своих коммутаторов LANplex. Подключение по схеме DAC обеспечивает надежное функционирование магистральных колец, изоляция сетей зданий на физическом уровне осуществляется с пом ощью оптических обходных переключателей Optical Bypass Switch.
Сети этажей и функциональных подразделений зданий используют технологию Ethernet. Сегменты Ethernet подключаются к коммутатору LANplex через порты его коммутирующего модуля Ethernet. Некоторые удаленные небольшие сети подключаются к магистральной сети не по технологии FDDI, а по технологии 10Base-FL, используя оптоволоконные повторители FMS Optical Repeater.
Все коммуникационное оборудование сети управляется с помощью системы управления Transcend Enterprise Manager компании 3Сом.
![]() |
![]() |
![]() |
---|
Copyright © CIT