

Networking and Internetworking
with Microcontrollers

By Fred Eady

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department
in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining
Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books
on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

 (Application submitted.)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 0-7506-7698-1

For information on all Newnes publications
visit our website at www.newnespress.com

03 04 05 06 07 08 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Contents

v

Preface ... ix

A Quick Look at the Microcontrollers .. x
Atmel’s AVR ... x
Microchip’s PIC ... xii

What’s on the CD-ROM? .. xvi

Chapter 1: The Essence of Microcontroller Networking—RS-232 1

Some History .. 3
RS-232 Standard Operating Procedure .. 5
RS-232 Voltage Conversion Considerations ... 8

Chapter 2: Implementing RS-232 with a Microcontroller 11

Basic RS-232 Hardware .. 11
Building a Simple Microcontroller RS-232 Transceiver .. 14

RS-232 Interface Hardware .. 15
A Microcontroller DCE Device .. 16
Microchip’s PICkit 1 FLASH Starter Kit .. 16
Writing Some Simple RS-232 Firmware .. 20
A Bit of RS-232 Transmit Code ... 27
Some RS-232 Receive Code ... 32

Chapter 3: Writing RS-232 Microcontroller Routines in BASIC 37

BASIC RS-232 .. 37

Chapter 4: Building Some RS-232 Communications Hardware 43

A Few More BASIC RS-232 Instructions .. 43

vi

Contents

Chapter 5: Using Microcontroller USARTs ... 47

Some Interrupt-Driven USART Code ... 50
Applying What We Know about RS-232 to the Atmel AVR ... 70

Coding the AVR RS-232 Routines ... 73

Chapter 6: I2C…The Other Serial Protocol ... 81

Why use I²C? ... 83
The I²C bus .. 83

I²C ACKS and NAKS .. 86
More on Arbitration and Clock Synchronization ... 87
I²C Addressing ... 91
Some I²C Firmware .. 91
The AVR Master I²C Code .. 92
The AVR I²C Master-Receiver Mode Code .. 97
The PIC I²C Slave-Transmitter Mode Code .. 99
The AVR-to-PIC I²C Communications Ball ... 105

Chapter 7: Ethernet ... 121

What is Ethernet? .. 121
The CS8900A-CQ .. 122

CS8900A-CQ Reset Overview .. 123
CS8900A-CQ Media Interface Overview .. 123
CS8900A-CQ Transmit Process Overview ... 123
CS8900A-CQ Receive Process Overview ... 124
CS8900A-CQ External Storage Overview ... 125
CS8900A-CQ Status Indicators ... 126
The CS8900A-CQ MAC Engine .. 126

Easy Ethernet CS8900A Hardware .. 130
The PIC16F877 Microcontroller .. 130
The Microchip PIC18F452 .. 131

The CS8900A-CQ Ethernet Engine ... 131
Powering the CS8900A-CQ .. 132
The CS8900A-CQ Ethernet Magnetics .. 132
Designing in the Easy Ethernet CS8900A’s PIC16F877 Microcontroller 135
The ICSP (In-Circuit Serial Programming) Interface .. 136
Developing the Easy Ethernet CS8900A Firmware .. 139
Setting up the PIC16F877 Microcontroller ... 141
Carving up the PIC16F877’s Memory Resources .. 143

Function Prototypes ... 143
Defining the Variables .. 144

The Easy Ethernet CS8900A Macros ... 151
Defining the CS8900A-CQ PacketPage Register Set .. 156

CS8900A-CQ Bus Interface Registers ... 158
Product Identification Code .. 158

vii

Contents

CS8900A-CQ Status and Control Registers ... 159
Did It Register? .. 172

Chapter 8: Writing the CS8900A-CQ Firmware .. 173

The First Step ... 174
Reset the CS8900A-CQ .. 175
Load the CS8900A-CQ Basic Parameters .. 176
Load the CS8900A-CQ Individual Address Register Set ... 178
Enable the CS8900A-CQ Transmitter and Receiver .. 179
The Main Service Loop ... 180
A Frame Under the Microscope .. 182
The Art of ARP ... 189

Chapter 9: PINGing the Easy Ethernet CS8900A... 203

Chapter 10: UDP and the Easy Ethernet CS8900A.. 221

A UDP Internet Test Panel ... 223

Chapter 11: TCP and the Easy Ethernet CS8900A... 239

The Physical Layer .. 241
The Data Link Layer .. 241
The Network Layer ... 242
The Transport Layer .. 242
The Application Layer ... 242
Coding TCP/IP for the Easy Ethernet CS8900A ... 244

Chapter 12: Let’s Do It Again.. 293

Easy Ethernet Whacked??? What the…? ... 293
The Realtek RTL8019AS ... 294
The Easy Ethernet W Hardware .. 302
The Easy Ethernet W Firmware ... 304
Initializing the Realtek RTL8019AS .. 307
Online with the Easy Ethernet W .. 324
Sending a Frame using the Easy Ethernet W ... 327
Tools for Work and Play .. 331

Chapter 13: Putting the Easy Ethernet AVR Online ... 337

Chapter 14: Finale ... 347

Obtaining Easy Ethernet Devices ... 348

About the Author .. 349
Index ... 351

Preface

ix

There are lots of philosophical things I could say here. However, I don’t claim to be a phi-
losopher or a poet. My days are spent designing microcontroller hardware, writing code to
drive that hardware and then writing about my adventures.

This book is a mean-business document designed to give you the knowledge needed to
network microcontroller-based devices successfully. Before you turn the last page of this
book, you’ll know how to integrate RS-232, I²C and Ethernet into a network device that can
be used to communicate via LAN, WAN or Internet. In addition to the knowledge you will
gain building the network devices, you’ll also walk away with in-depth knowledge of how the
code within those network devices works.

Our microcontroller-based network devices will be fabricated using microcontrollers from
Atmel and Microchip. To maintain consistency at the coding level, I’ll use ImageCraft’s
ICCAVR Pro C Compiler for the Atmel parts and Custom Computer Service’s CCS PIC C
Compiler for the PIC parts. Both of these C compilers are moderately priced and easily
obtainable via the Internet. You should be able to easily port the C source code from any
project in this book to other variants of C.

Our networking adventure will begin with RS-232. We’ll build on what we learn in the
RS-232 sections and ultimately implement both an I²C-bus and an Ethernet interface. No bit
will be left unturned. What you don’t see in the pages of this book can be found on the
companion CD-ROM. There’s also a support web site (http://www.edtp.com) where you can
get technical support and purchase parts, kits and assembled units that are discussed in this
book.

Both Atmel and Microchip provide a free IDE that you can get for a download from their
respective web sites. I’ll use Atmel’s AVR Studio and Microchip’s MPLAB exclusively when
working with these microcontrollers. To provide an extra layer of visibility into the
microcontrollers, I’ll employ the services of a Microchip MPLAB ICE 2000, a Microchip
MPLAB ICD 2 and an Atmel AVR JTAG ICE. On the networking side, I’ll use a Network
Associates Sniffer to show you what’s inside the Ethernet packets.

x

Preface

OK…now that you know what this book is about, let’s go build some microcontroller-
based network devices.

A Quick Look at the Microcontrollers
Atmel’s AVR
The Atmel AVR is a very capable and highly networkable microcontroller. There are a
number of AVR families, which include the standard AVR line, a low-power AVR
microcontroller set, the tinyAVR family and the ATmega AVR microcontrollers. I’ve chosen
to concentrate on networking the ATmega AVR microcontrollers for a number of reasons.
Many of the legacy AVRs are being replaced by faster and more powerful ATmega AVRs. For
instance, the ATmega16 has replaced the ATmega163 and the ATmega32 has shoved the
ATmega323 out. In addition to added functionality, the AVR upgrades fix bugs found in the
older silicon they are replacing.

I’m not going to get into internal differences found in the AVR versus other
microcontrollers that could be called AVR peers. That’s what datasheets are for. However, I
will give you my reasons for employing the ATmega AVRs as microcontrollers in network
devices. The ATmega AVRs that I will network all have a maximum clock speed of 16 MHz.
That may not sound “fast,” but the ATmega AVRs execute most instructions in a single cycle
and thus are capable of producing 16 MIPS with a 16MHz clock. Basically, the number in
the name of a ATmega AVR represents the amount of program Flash in kilobytes. The
ATmega16 contains 16K of program Flash while an ATmega32 has 32K words of program
flash. The largest ATmega AVR, the ATmega128, contains 128K of program Flash memory.
The large portions of program memory are supplemented by big slices of SRAM. The
ATmega16 is loaded with 1K of SRAM and the ATmega32 SRAM area doubles the
ATmega16 SRAM capacity. Even the ATmega8, the smallest of the ATmega AVRs, has 1K of
SRAM. Applying the logic to the rest of the ATmega AVR family reveals the ATmega64,
ATmega128 and ATmega8 with 64K, 128K and 8K of program Flash memory, respectively. I
think you can see why I’ve decided to go with Atmel’s ATmega AVR line as far as network-
ing is concerned. The high speed and large program Flash memory areas coupled with ample
SRAM and EEPROM memory make the ATmega AVR microcontroller a good choice for
networking projects.

Atmel’s AVR can be obtained from many of the mail order electronic part distributors.
AVRs are reasonably priced and come with a tub full of goodies just right for networking.
Two 8-bit timers and a 16-bit timer allow the creation of precision delays while an on-chip
USART (Universal Synchronous Asynchronous Receiver Transmitter) takes care of the
housekeeping chores needed to effect the RS-232 serial protocol. Twenty-one interrupt
vectors cover all of the AVR’s networking components including the two-wire interface
(Atmel’s name for I2C), the SPI subsystem and the USART.

xi

Preface

The AVR USART

The ATmega AVR USART is capable of full duplex operation. Like most every other USART
in existence, the ATmega AVRs USART supports 5, 6, 7, 8 or 9 data bits plus the standard 1
or 2 stop bits. The USART baud rate generator for the Atmel ATmega AVR is an integral part
of the USART hardware. A typical Atmel USART is depicted in the block diagram you see
inside Figure 1. All ATmega AVRs contain a USART and the ATmega128 is equipped with a
pair of USARTs.

UBRR[H:L]

BAUD RATE GENERATOR

PIN
CONTROL

TX CONTROL

PARITY
GENERATOR

CLOCK RECOVERY

DATA RECOVERY

PARITY CHECKER

RX CONTROL

PIN
CONTROL

XCK

TXD

RXD

UCSRA UCSRB USCRC

SYNC LOGIC

OSC

UDR (TRANSMIT)

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER

UDR (RECEIVE)

PIN
CONTROL

D
A

T
A

 B
U

S

Clock Generator

Transmitter

Receiver

AVR USART

Figure 1

Atmel USARTs allow the ATmega AVRs to enter MPCM (Multi-processor Communica-
tion Mode). This mode of operation uses addressing to allow multiple processors to
communicate over the same serial bus. MPCM uses the 9-bit character frame format in
conjunction with the master/slave paradigm.

The Two-wire Serial Interface

In the Atmel world, I2C is known as TWI, or Two-wire Interface. Other than a name change,
TWI looks like and smells like I2C. 128 devices can hang on the two-wire bus and are
addressed using the standard I2C 7-bit addressing scheme. Master and slave operation is
supported at speeds of up to 400 kHz. To help fight false triggering due to noise, the Atmel
TWI module includes noise suppression circuitry. You can even wake up the AVR from sleep
with a TWI.

Programming the ATmega AVR

Loading code into an ATmega AVR device is a breeze. There are many ways to accomplish
this. There’s the AVR ISP (In-System Programmer) programming module that costs less than
$40 and hooks up to a personal computer’s serial port. Or, AVR programming can be done
with the STK500 development board. ATmega AVRs with 16K or more of program memory
also support a JTAG interface, which can be used for programming the ATmega AVR pro-
gram Flash. No matter how you decide to load the code into your ATmega AVR, AVR Studio
supports all of the programming devices I’ve mentioned. AVR Studio is Atmel’s front-end
IDE software that runs on a personal computer.

I’ll complement AVR Studio with ImageCraft’s ICCAVR Pro C Compiler. ICCAVR Pro
is a true ANSI-based C compiler for the ATmega AVR. I particularly like the code generator
and the AVR calculator features of ICCAVR Pro.

Emulating the ATmega AVR

At the helm of emulation for AVRs is AVR Studio. AVR Studio interfaces to the many AVR
emulation devices. In this text, the emulation device of choice is the AVR JTAG ICE. The
AVR JTAG ICE communicates with an on-chip debug module embedded within the target
AVR. The OCD (On-Chip Debugger) module in the ATmega AVRs eliminates the need for a
special bondout emulation device.

Microchip’s PIC
Most PIC microcontrollers have everything one would need to effect a network application.
Larger PICs have on-chip UARTS and USARTS for synchronous and asynchronous commu-
nications using the RS-232 protocol. A software UART function can also be implemented for
the smaller PICs that don’t have the sophistication of a built-in UART or USART module.

In networking, timing is everything. Up to three internal timers can be had on larger PIC
devices. Even the tiny 8-pin PIC12F675 has an 8-bit and a 16-bit timer. The timers can be
used for generating precision millisecond and microsecond delays or the time of day.

Fortunately, the CCS C Compiler for PIC and its native PIC peripheral routines makes it very
easy to assemble a working RS-232 PIC application. In fact, CCS C also has hooks for I2C. The
Microchip PIC family complements the CCS C peripheral routines by providing ample Flash
memory for program code, scratch pad SRAM and user data storage. The more SRAM the
better when it comes to creating buffer areas for interrupt-driven communications applications.

xii

Preface

All of our network coding and hardware design and fabrication time will be spent dealing
with the Flash-based series of the Microchip PIC family. I’ve chosen to work with the Flash-
based parts because they’re inexpensive and easily obtained and don’t require the support
hardware a standard windowed PIC needs. For instance, using Flash devices eliminates the
need for an ultraviolet EPROM eraser. And, since Flash parts can be programmed and
reprogrammed in-circuit using ICSP (In-Circuit Serial Programming), fewer microcontroller
parts are needed in the development cycle since there is no need to rotate a number of parts
through the ultraviolet eraser while you’re debugging your code.

For the purposes of networking, I’ve selected the largest part in the PIC16F87X crew, the
PIC16F877. The PIC16F877 can operate with a 20 MHz clock, which gives an instruction
cycle of 200 nsec. There are 8K words of program Flash and 368 bytes of SRAM or data
memory inside a PIC16F877. Should we decide it’s necessary, there is also a block of 256
bytes of EEPROM available for storing constants or whatever else we decide is important to
keep even after the power is removed from the part. As we move into putting an RS-232
serial port together on a PIC, you’ll see how important interrupts are when it comes to
microcontrollers like the PIC. The PIC16F877 can be interrupted in 15 different ways.

I/O pins are also very important in a networking application. Not only do we need enough I/O
to perform tasks like monitoring a voltage or turning an external device on or off, there have
to be some I/O pins dedicated to the networking task. For instance, a simple micro- controller
Ethernet driver application requires at least 16 I/O pins alone. The PIC16F877 has 33 I/O lines
we can put to work, which leaves some I/O for things that microcontroller do best—control.

The PIC16F877 offers quite a bit of functionality for things other than effecting networking.
However, I’m primarily concerned with giving you the ability to network the PIC16F877.
With that, let’s start with a look at one of my favorite networking modules, the PIC16F877
USART.

The PIC16F877 USART

USART is short for Universal Synchronous/Asynchronous Receiver/Transmitter. On the
PIC, the USART is also called the SCI or Serial Communications Interface. You probably
have heard the word UART (Universal Asynchronous Receiver/Transmitter) as for many
years that was the only IC used by serial ports in personal computers. Some of today’s
microcontrollers sport UARTs instead of USARTs.

The PIC16F877 USART takes much of the pain away when it’s required to communicate
with other serial-based devices. Instead of writing timing routines to produce a specific baud
rate, the PIC16F877 USART baud rate is generated by an internal baud rate generator. With a
USART or UART, it’s not necessary to code routines to look for incoming start bits or time
the inter-bit distances to pick up the incoming data. All of that work is done within the USART
itself. A USART makes it possible to communicate with other serial devices in full-duplex or
half-duplex mode. Full-duplex mode allows communications to flow in both receive and
transmit directions simultaneously between two serial devices. Half-duplex mode only allows
one device to transmit at a time while the other device listens.

xiii

Preface

The PIC16F877 MSSP Module

MSSP, or Master Synchronous Serial Port, is yet another PIC16F877 communications
subsystem. The MSSP is a serial interface used to bring I2C applications to life. Like the
USART, the MSSP is a register and status bit-oriented module.

I2C uses six MSSP registers for control, status and buffering. Two PIC16F877 I/O pins
are dedicated to I2C, RC3 for SCL (clock) and RC4 for SDA (data). Like the USART’s
synchronous function, I2C is a master/slave communications configuration. Figure 4 is a
graphic example of how the MSSP allocates the registers, I/O pins and buffers for I2C
operation.

I2C is a Philips invention that was designed as a clever way to allow integrated circuits in
television sets and stereo rigs to talk to each other. We’ll cover I2C as it pertains to PIC
microcontrollers thoroughly in this book. Thanks to Philips, there are hundreds of I2C-
capable devices for us to play with from various manufacturers.

The PIC16F877 lends itself to oddball networking solutions. Using the PIC16F877
precision timers, we can put together a homebrew protocol and bit bang between devices. For
instance, in the past I once coded a PIC application that required the PIC to clock data to and
from a personal computer’s parallel port pin. In addition, in the early days of PIC there were
no UARTs or USARTs on the 18-pin PIC16C5X microcontrollers. Therefore, I had to code a
“software” UART to emulate the task that today’s hardware USARTs perform. You’ll find
that the software UART is still a good thing to have in your coding toolbox when designing
networking and communications applications with the tiny USART-less 8-pin PICs.

The PIC18F452

Another PIC device I’ll base networking code on in this book is the PIC18F452. The
PIC18F452 is pin-compatible with the PIC16F877. The PIC18F452 is loaded with 16K of
on-chip program memory backed up by 1.5K of SRAM. This makes the PIC18F452 a
candidate for Ethernet LAN applications. In addition to the increased internal memory area,
the PIC18F452 can run twice as fast as the PIC16F877 (40 MHz). All of the PIC16F877
communications peripherals we talked about earlier operate in the same manner on the
PIC18F452 and the CCS PIC C Compiler has the capability to generate code for them as
well.

The PIC12F675

Sometimes it’s more fun to push an economy car to its limits and not drive that performance
hot rod with all of the bells and whistles. That’s how I feel about the little 8-pin PIC12F675.
In comparison, it’s as tiny physically as it is logically. The PIC12F675 only has 1K words of
program Flash and 64 bytes of SRAM. There are only six I/O pins but inside the PIC12F675
you’ll find a couple of timers, an A/D (Analog to Digital) converter and a comparator. Like
the big guys, there is on-chip EEPROM but only 128 bytes of it. With some tricky coding,
we’ll make the tiny PIC do RS-232 with the best of them.

xiv

Preface

xv

Programming the PIC

The Flash-based PICs that will be featured in this book are all programmed using the ICSP
(In-Circuit Serial Programming) method. As this book is focused on microcontroller commu-
nications and networking, I won’t offer up any made-in-the-garage PIC programming
hardware or software. I’m going to stick to the Microchip factory programmers and software.
You can use the Microchip MPLAB ICD 2 (In-Circuit Debugger) or the Microchip PRO
MATE II for programming the PIC Flash parts.

Emulating the PIC

The Microchip MPLAB ICD 2 and the MPLAB ICE 2000 will be used to debug and display
the inner-workings of the PIC code that will be presented in this book. I’ll be able to show
you all of the code, internal registers and memory areas using the Microchip MPLAB ICE
2000 PIC emulator system. Like the CCS C Compiler and the Microchip PRO MATE II
device programmer, the MPLAB ICE 2000 and Microchip MPLAB ICD 2 are natively
supported by Microchip’s MPLAB. The merger of the Microchip PRO MATE II, the Micro-
chip MPLAB ICE 2000, the Microchip MPLAB ICD 2 and the CCS PIC C Compiler will
allow me to show you how things are done inside and outside the PIC using only a single
MPLAB IDE screen.

Preface

What’s on the CD-ROM?

All of the source code and the executable code discussed in this book are on the companion
CD-ROM. In addition, all of the Easy Ethernet device schematics are provided in PDF format.
Printed circuit board layouts are also part of the CD-ROM package and are included for those
readers who wish to build the Easy Ethernet devices from scratch.

xvi

1

C H A P T E R 1

Let’s begin by exploring the RS-232 protocol. Knowing how to manipulate data with RS-232
will help you master more complex communications protocols. You’ll also find RS-232
techniques to be invaluable in the development phase of your projects.

Figure 1.1: Effecting RS-232 communications with a microcontroller is a snap. As you
continue reading this book, you will find that knowing how to implement simple
RS-232 with a microcontroller can assist you in building and debugging more complex
microcontroller projects.

The information you see in the terminal emulator window in Figure 1.1 was generated by
some very simple firmware and a not-so-complicated off-the-shelf, two-buck microcontroller.
I used a tiny 8-bit microcontroller that does not contain a built-in hardware USART (Univer-
sal Synchronous/Asynchronous Receiver/Transmitter), to transfer the ASCII characters you
see in Figure 1.1 from one of its I/O pins to an RS-232 converter IC. A serial cable connected
between the microcontroller/RS-232 converter IC circuitry and my personal computer’s serial
port allowed the ASCII characters to flow from the little microcontroller’s firmware out of the
microcontroller’s I/O pin, through the RS-232 converter IC, across the serial cable to the
personal computer’s USART/RS-232 circuitry and finally end up in the terminal emulator
window you see in Figure 1.1.

The Essence of Microcontroller
Networking—RS-232

Chapter 1

2

What I’ve just described is one of the simplest forms of microcontroller networking. It is
commonly known as serial or RS-232 communications. As you can see in Figure 1.2, RS-232
was designed to tie DTE (Data Terminal Equipment) and DCE (Data Communications
Equipment) devices together electronically to effect bidirectional data communications
between the devices.

An example of a DTE device is the serial port on your personal computer. Under normal
conditions, the DTE interface on your personal computer asserts DTR (Data Terminal Ready)
and RTS (Request To Send). DTR and RTS are called modem control signals. A typical DCE
device interface responds to the assertion of DTR by activating a signal called DSR (Data Set
Ready). The DTE RTS signal is answered by CTS (Clear To Send) from the DCE device. A
standard external modem that you would connect to your personal computer serial port is a
perfect example of a DCE device.

Figure 1.2: The DTE and DCE interfaces usually consist of some sort of voltage-conversion
circuitry to translate RS-232 voltage levels to voltage levels that are compatible with
the computing equipment on each end of the communications link. The simplest form
of an RS-232 link uses only the TXD and RXD signals with a common ground.

The Essence of Microcontroller Networking—RS-232

3

Some History
In May of 1960, it was evident that a standard was needed to identify the electrical interface
between computers and modems. It was decided to establish a standard voltage with standard
signal parameters and a standard nomenclature to identify the conductors in the cable that
connected computers and data sets. Even today, you will sometimes hear the term data set
applied to modems and DCE equipment.

To compete as well as exist in the current communications environment, telecommunica-
tions vendors needed common ground to assure that each vendor’s equipment set could talk
to any other vendor’s telecommunications equipment set. In other words, the industry needed
a working standard. Without a standard, the whole teleprocessing industry could come to a
grinding, nonstandardized halt.

To help establish some harmony, a committee named the Electronic Industries Associa-
tion was formed. The EIA drafted a standard known as EIA RS-232(X). Though it was a
great idea, the original specification was broad in meaning and didn’t guarantee compatibil-
ity. The new RS-232 specification also had a competitor outside the United States, known as
the CCITT, or Consultative Committee on International Telegraphy and Telephony, recom-
mendation V.24.

The RS-232 proposal defined a logical and physical interface between DTE equipment
and DCE equipment. The computer’s DTE serial port presents both a physical and a logical
interface to a modem or data set’s DCE port and consists of several conductors for control-
ling, transmitting and receiving data. Timing and clocking signals are also intermixed within
the RS-232 interface. The logical and physical attributes of the RS-232 proposal eventually
became a set of standards known today as the EIA RS-232 interface.

Once the signals reach the DCE device, a second interface provides a physical path to the
communication channel (RF link, telephone line, fiber-optic link, satellite link, and so forth).
For most of you, that second interface is a standard two-conductor analog telephone line,
which is terminated inside your modem.

The EIA standard originally identified seven interface conductors and no specific connec-
tor. Signal voltages were defined as at least 3 volts but not greater than 20 volts with respect
to ground.

In October 1963, RS-232 became RS-232-A and was modified to include a 25-pin
connector with a maximum cable length of 50 feet. This revision established fixed relation-
ships between a circuit and specific pin numbers on the 25-pin connector. Also, an alphabetic
coding system for each type of interface circuit was presented. The first character of the
coding system designated A for ground, B for data, C for control and D for clocking. Table
1.1 lays out the pinout and various names for each RS-232 signal.

Chapter 1

4

There are a couple of confusion points. Note the total lack of logic when associating DB-25
pins with DB-9 pins. And, this table is based on the DTE side of the circuit. To get things to
work, you must switch the TD and RD pins on the DCE side of the circuit. When you do the
switch that puts the DTE TD pin’s data into the DCE RD pin and the DCE’s TD pin’s data
into the DTE RD pin. If you’re using the modem signals, you have to tie them together
properly between the DTE and DCE as well.

The original seven basic circuits and the signal-level definition of –3 volts for mark and
+3 volts for space were retained intact, adding ten additional optional circuit definitions. The
maximum permissible open-circuit voltage was changed to 25 volts, and a current maximum
between any two conductors, including ground, was set at 0.5 ampere. Conductors that
permit auto-answer capability were first introduced in this revision.

October 1965 brought about RS232-B, which defined terminating impedances that
permitted circuit designers to build hardware with greater reliability. Open-circuit signal
levels remained unchanged at –3 to –25 volts as mark and +3 to +25 volts as space, but
revision B added an important voltage specification. By specifying that signal ground on
pin 7 be tied to frame ground on pin 1 in the DCE equipment, a definite signal reference is
established between DTE and DCE devices.

Table 1.1: Specifications list for RS-232 interface.

Pin Line
Label

Line Name Signal
Direction

Level

1 AA Positive Ground N.A. A,B C
2 BA Transmitted Data To DCE A B,C
3 BB Received Data To DTE A,B,C
4 CA Request To Send To DCE A B,C
5 CB Clear To Send To DTE A B,C
6 CC Data Set Ready To DTE A B,C
7 AB Signal Ground N.A. A B C
8 CF Received Line Signal Detector (RS-232);

Data Carrier Detect (RS-232A/B)
To DTE A,B,C

11 N.A. Select Standby To DCE C
12 SCF Secondary Receive Line Signal Detector To DTE C

13 SCB Secondary Clear To Send To DTE C
14 SBA Secondary Transmitted Data To DCE

14 N.A. New Sync To DCE A,B,C
15 DB Transmitter Signal Element Timing To DTE A B C
16 SBB Secondary Received Data To DTE C
17 DD Receiver Signal Element Timing To DTE A,B,C
18 N.A. Test To DCE C
19 SCA Secondary Request To Send To DCE C
20 CD Data Terminal Read To DCE A,B,C
21 CG Signal Quality Detector . To DTE C
22 CE Indicate

Ring/Calling
To DTE A,B,C

C

The Essence of Microcontroller Networking—RS-232

5

The Interface Between Data Terminal Equipment and Data Communication Equipment
Employing Serial Binary Data Interchange specification was released in August 1969. It
further clarified conductor definitions and stated that properly terminated RS-232 circuits
shall not exceed ±15 volts.

RS-232-C came along later and defined the interface between Data Terminal Equipment
(DTE) and Data Circuit terminating Equipment (DCE). In the early days, a piece of DTE
hardware was usually a dumb terminal. DEC’s (Digital Equipment Corporation in those days;
Hewlett-Packard/COMPAQ these days) VT100 was and is the most well-known dumb
terminal and is still emulated today.

As you would imagine, a standard DTE device should be capable of emitting and receiving
a serial data stream. As you have already seen, that includes microcontrollers and personal
computers in the “could be a DTE” category. Although DCE equipment can also transmit and
receive a serial data stream, the primary purpose of DCE equipment is to receive the DTE-
generated bit stream over an RS-232 interface and convert it to a form that’s suitable for
transmission over a telecommunication medium. In the case of a personal computer modem,
that telecommunications medium is most likely a voice-grade telephone line.

Ever noticed that every serial port interface on your personal computer is male and every
modem serial port interface you’ve ever seen is female? There’s a reason for that. The RS-232-C
standard states that physical DTE port connectors will be male and physical DCE port
connectors will be female.

Older personal computers and modems used a 25-pin connector. Today’s 9-pin serial
connectors aren’t really standards although they have become so by proxy. The 9-pin inter-
face first appeared commercially on AT-class PCs in the early 1980s.

RS-232 Standard Operating Procedure
Today, the majority of commercially available equipment is based on the RS-232-C or
RS-232-D standard. (The CCITT V.24 and V.28 standards are also common and widely-
used.) There are 25 circuits defined in the RS-232 standard. The good news is that most of
the 25 RS-232 circuits don’t have to be used to effect an asynchronous communications
session between a DTE and DCE device. Things could be different for synchronous commu-
nications sessions that employ complex communications protocols and that’s why the timing
and clocking signals are defined in the RS-232 standard. There’s a good reason that a 9-pin
connector is on your personal computer instead of the standard appointed 25-pin connector.
You only need nine RS-232 signal lines to communicate asynchronously using a standard
asynchronous modem. Let’s look at them from a “commented” standards point of view.

■ Pin 1 (Protective Ground Circuit, AA). This conductor is bonded to the equipment
frame and can be connected to external grounds if other regulations or applications
require it.

Comment: Normally, this is either left open or connected to the signal ground. This
signal is not found in the DTE 9-pin serial connector.

Chapter 1

6

■ Pin 2 (Transmitted Data Circuit BA, TD). This is the data signal generated by the
DTE. The serial bit stream from this pin is the data that’s ultimately processed by a
DCE device.

Comment: This is pin 3 on the DTE 9-pin serial connector. This is one of the three
minimum signals required to effect an RS-232 asynchronous communications
session.

■ Pin 3 (Received Data Circuit BB, RD). Signals on this circuit are generated by the
DCE. The serial bit stream originates at a remote DTE device and is a product of the
receive circuitry of the local DCE device. This is usually digital data that’s produced
by an intelligent DCE or modem demodulator circuitry.

Comment: This is pin 2 on the DTE 9-pin serial connector. This is another of the
three minimum signals required to effect an RS-232 asynchronous communications
session.

■ Pin 4 (Request To Send Circuit CA, RTS). This signal prepares the DCE device for a
transmit operation. The RTS ON condition puts the DCE in transmit mode, while the
OFF condition places the DCE in receive mode. The DCE should respond to an RTS
ON by turning ON Clear to Send (CTS). Once RTS is turned OFF, it shouldn’t be
turned ON again until CTS has been turned OFF. This signal is used in conjunction
with DTR, DSR and DCD. RTS is used extensively in flow control.

Comment: This is pin 7 on the DTE 9-pin serial connector. In simple 3-wire imple-
mentations this signal is left disconnected. Sometimes you will see this signal tied to
the CTS signal to satisfy a need for RTS and CTS to be active signals in the commu-
nications session. You will also see RTS feed CTS in a null modem arrangement.

■ Pin 5 (Clear To Send Circuit CB, CTS). This signal acknowledges the DTE when
RTS has been sensed by the DCE device and usually signals the DTE that the DCE is
ready to accept data to be transmitted. Data is transmitted across the communications
medium only when this signal is active. This signal is used in conjunction with DTR,
DSR and DCD. CTS is used in conjunction with RTS for flow control.

Comment: This is pin 8 on the DTE 9-pin serial connector. In simple 3-wire imple-
mentations this signal is left disconnected. Otherwise, you’ll see it tied to RTS in
null modem arrangements or where CTS has to be an active participant in the com-
munications session.

■ Pin 6 (Data Set Ready Circuit CC, DSR). DSR indicates to the DTE device that the
DCE equipment is connected to a valid communication medium and, in some cases,
indicates that the line is in the OFF HOOK condition. OFF HOOK is an indication
that the DCE is either in dialing mode or in session with another remote DCE. When
this signal is OFF, the DTE should be instructed to ignore all other DCE signals. If
this signal is turned off before DTR, the DTE is to assume an aborted communica-
tion session.

The Essence of Microcontroller Networking—RS-232

7

Comment: This is pin 6 on the DTE 9-pin serial connector. DSR is sometimes used
in a flow control arrangement with DTR. Some modems assert DSR when power to
the modem is applied regardless of the condition of the communications medium.

■ Pin 7 (Signal Common Circuit, AB). This conductor establishes the common-ground
reference for all interchange circuits, except Circuit AA, protective ground. The
RS-232-B specification permits this circuit to be optionally connected to protective
ground within the DCE device as necessary.

Comment: This is pin 5 on the DTE 9-pin serial connector and is the only ground
connection. This is the third wire of the minimal 3-wire configuration. Thus, an RS-
232 asynchronous communications session can be effected with only three signals:
TX (Transmit Data), RX (Receive Data) and signal ground.

■ Pin 8 (Data Carrier Detect Circuit CF, DCD). This pin is also known as Received
Line Signal Detect (RSLD) or Carrier Detect (CD). This signal is active when a
suitable carrier is established between the local and remote DCE devices. When this
signal is OFF, RD should be clamped to the mark state (binary 1).

Comment: This is pin 1 on the DTE 9-pin serial connector. Normally in use only if a
modem is in the communications signal path. You will also see this signal tied active
in a null modem arrangement.

■ Pin 20 (Data Terminal Ready Circuit CD, DTR). DTR signals are used to control
switching of the DCE to the communication medium. DTR ON indicates to the DCE
that connections in progress shall remain in progress, and if no sessions are in
progress, new connections can be made. DTR is normally turned off to initiate ON
HOOK (hang-up) conditions. The normal DCE response to activating DTR is to
activate DSR.

Comment: This is pin 4 on the DTE 9-pin serial connector. Unless you specify
differently or run a program that controls DTR, usually it is present on the personal
computer serial port as long as the personal computer is powered on. Occasionally
you will see this signal used in flow control.

■ Pin 22 (Ring Indicator Circuit CE, RI). The ON condition of this signal indicates
that a ring signal is being received from the communication medium (telephone line).
It’s normally up to the control program to act on the presence of this signal.

Comment: This is pin 9 on the DTE 9-pin serial connector. This signal follows the
incoming ring to an extent. Normally, this signal is used by DCE auto-answer
algorithms.

That is all that’s needed RS-232 signal-wise to establish a session between a DTE and a
DCE device. Now that you have a feeling for what each RS-232 signal does, let’s review how
they react to each other with respect to the transfer of data between a DTE and DCE device.

Chapter 1

8

■ Local DTE (personal computer, microcontroller, etc.) is powered up and DTR is
asserted.

■ Local DCE (modem, data set, microcontroller, etc.) is powered up and senses the
DTR from the local DTE.

■ Local DCE asserts DSR. If the DCE device is a modem, it goes off-hook (picks up
the line). If a dial-up session is to be established, the DTE sends a dial instruction
and phone number to the modem.

■ If the line is good and the other end (remote DCE) is ready or answers the dial-up
from the local DCE, a carrier is generated/detected and the local and remote DCE
devices assert DCD. The session is established.

■ The transmitting DTE raises RTS.

■ The transmitting DCE responds with CTS.

■ The control program transmits or receives data.

In our historical review, the DTE or personal computer and DCE or modem took care of
converting the RS-232 signal levels to appropriate personal computer circuitry levels. To
perform RS-232 asynchronous communications with microcontrollers, we must employ a
voltage translation scheme of our own. Fortunately, there are many ways to do this and all of
them are easy to implement.

RS-232 Voltage Conversion Considerations
RS-232 converter ICs like those made by Maxim and Sipex convert the negative RS-232
voltages to positive logic voltage levels that microcontroller circuits can understand. The
positive RS-232 voltages are converted to a microcontroller’s logical 0 (zero) voltage level. If
the microcontroller circuitry is powered by +5 VDC, then an RS-232 ‘1’ or mark is converted
to a TTL (Transistor Transistor Logic) high or ‘1’ and an RS-232 ‘0’ or space is translated
into a TTL low or ‘0’. With the advent of 3-volt logic, special RS-232 converter ICs that can
operate at the 3-volt power supply levels have been introduced. The bottom line is that the
RS-232 marks and spaces must be converted to voltage levels the microcontroller can under-
stand before any communications and data transfer can be realized between devices.

In reality, the full-positive and negative voltage swing called out by the RS-232 standard
doesn’t have to be employed to effect RS-232 communications links. With the right cable an
RS-232 voltage of –3 volts is sufficient to generate a ‘1’ or mark while +3 volts will produce
a ‘0’ or space. The area between –3 volts and +3 volts (shown in Figure 1.3) is a transition
zone and is where most of the nasty line noise can and should be found. By defining this
±3-volt threshold, the signal-to-noise ratio of the RS-232 physical link is improved. If a
high-quality serial cable is used and the distance between stations is relatively short, RS-232
voltages that resemble microcontroller logic voltages can be used to transfer information

The Essence of Microcontroller Networking—RS-232

9

between a DTE and DCE device. In addition, using a high-quality cable could extend the 50-
foot maximum cable length specified by the RS-232 specification. Reducing the speed of the
data transmission can also extend the maximum cable length between a wired set of DTE and
DCE devices as well.

The good news is that you don’t have to know the nitty-gritty details of the RS-232
specification to use RS-232 as a means of communicating with a microcontroller. In fact, I’ve
already given you more RS-232 history and theory than you really need to know to make a
microcontroller talk asynchronously. In this book, we’re all about the practical application of
RS-232 as it pertains to microcontrollers. So, let’s look at some RS-232 hardware and the
firmware behind it.

Figure 1.3: Cheap RS-232 implementations dare to use the 0 VDC to +5 VDC region for
marks and spaces with 0 VDC being a mark and anything over +3 VDC representing a
space. The “NOISE ZONE” I’ve marked is actually called the transition zone.

[This is a blank page.]

11

C H A P T E R 2
Implementing RS-232 with a Microcontroller

Now that you’ve completed RS-232 history 101, this chapter will deal with implementing
RS-232 on a microcontroller. We’ll use the Microchip® PIC12F675 as our RS-232 engine and
we’ll power our RS-232 engine with code written with the Custom Computer Services C
Compiler.

You can build the circuits in this chapter from scratch. I’ve chosen to use the Microchip
PICkit™ 1 as my “breadboard” as it contains circuitry to program the PIC12F675 and an
experimenter area that is perfectly suited for additional RS-232 circuitry.

Basic RS-232 Hardware
Let’s begin by looking at a simple microcontroller implementation. In its most basic form, an
operational microcontroller-based circuit consists of the microcontroller, a simple power
supply and a clock source. For this project, I’m going to use the most basic of
microcontrollers, an 8-pin Microchip PIC12F675.

The PIC12F675 has an internal clock source but does not contain a USART. That means
we will have to implement the functionality of a hardware USART in the PIC12F675’s
firmware. To do that, we need to know just a bit more about RS-232 signaling. Let’s begin by
designating the desired RS-232 signaling speed, or baud rate. A common baud rate is 9600 bps
(bits per second) and most everything RS-232 can operate at this speed. So, 9600 bps it is.

At 9600 bps, our data packet bit width is the reciprocal of the baud rate, which is 104 µS
(104 microseconds). The idea is to try to see if the incoming RS-232 bit is a ‘1’ or ‘0’ by
having the PIC12F675 microcontroller USART program check the incoming bit in the dead
center of the 104 µS bit width. Since our baud rate is 9600 bps and our bit width for 9600bps
is 104 µS, that means we must have the microcontroller check the incoming bit stream every
104 µS.

There are still other things to consider. For instance, how does the microcontroller know
when to start and stop the 104µS bit check intervals? For the answer, let’s draw again from
the RS-232 specification. We assigned a speed of 9600 bps for our data stream. However, we
must also specify how many data bits will be transmitted and received in a data packet and
how many stop bits will indicate the end of the data packet. We do have a choice as to the
number of data bits we can stash into a data packet. The data packet bit length choices are 5
bits, 7 bits, 8 bits and 9 bits. Since the PIC12F675 is an 8-bit device, let’s designate a data

Chapter 2

12

packet as 8 bits in length. Designating an 8-bit data packet allows the transfer of all readable
ASCII characters plus control codes and hexadecimal or BCD (Binary Coded Decimal) data.
We could have chosen 7 bits for ASCII transmission as well, but 8 bit data packets are more
common and choosing a 7-bit packet inhibits sending a byte of miscellaneous information in
a single-data packet.

The PIC12F675’s built-in oscillator operates at 4 MHz, which equates to an instruction
execution time of 1 µS. That means the PIC12F675 can theoretically execute 104 instructions
during a stop-bit width, which is the same as the data-bit width of 104 µS. That time could be
used to do some other processing if necessary—104 µS is a long time in microcontroller-
land, so for us a single-stop bit will be sufficient.

There’s another RS-232 component that can also be defined called parity. To keep things
easy, we will not assign a parity bit. Parity bits are used to check the integrity of the data
packet by inserting an extra bit to make the number of data packet marks even or odd depend-
ing on how the user has set up the communications equipment.

Now we have an asynchronous data stream consisting of a start bit, 8 data bits, no parity
bit and 1 stop bit. The word asynchronous here means that the data packet can begin at any
time without regard to any predetermined timings. If receiving, the presence of a start bit
signals the PIC12F675 that a data packet is starting. So far, so good as we haven’t done or
defined anything out of the RS-232 ordinary.

Let’s walk through the voltages that are generated when an RS-232 data packet is sent
containing the ASCII representation of the number ‘2’. A ‘2’ is represented in ASCII by
hexadecimal 0x32 or binary 00110010. An idle RS-232 signal is defined as having the
voltage on the transmit pin maintain a marking condition for a time that exceeds one data
packet bit width. For 9600 bps, the steady marking condition must be greater than 104 µS
in length. As you already know, a mark is a negative voltage between –3 and –25 volts and
represents a ‘1’ in RS-232 lingo.

To signal the start of a data packet, the transmitting device will drive the RS-232 transmit
pin positive into the space voltage region of +3 to +25 volts. This transition from a steady
marking state that is greater than or equal to one data packet bit width to a spacing state is
called a start bit. Since we are running at 9600 bps, our start bit width is 104 µS, which is
equal to our data packet bit width for a baud rate of 9600 bps.

Now here’s where things get a bit tricky. Remember that the idea is to sample the incom-
ing bits as closely to their center as possible to determine if the bit is a ‘1’ or a ‘0’. Under
ideal conditions, the start bit is recognized immediately by the receiving microcontroller. If
the 104 µS interval begins at the same instant that the start bit is sensed, the microcontroller
will sample at the end of the start bit time, which is 104 µS. The first data bit in the incoming
data packet will be lost and so will the rest of the data bits, as the microcontroller will be
sampling the bits on their leading edges instead of in their centers.

Implementing RS-232 with a Microcontroller

13

A valid marking condition must exist before a start bit is initiated. So, with that we have
a very good idea as to when a start bit should occur. We also know from the RS-232 specifi-
cation that every valid RS-232 data packet starts with a start bit and ends with at least one
stop bit. So, to sync-up with the incoming data bits within the incoming RS-232 data packet,
the receiving microcontroller is instructed to wait 1.5 RS-232 data packet bit width times
after sensing a valid start bit. This allows the receiving microcontroller to begin the bit
sampling in the center of the first incoming data bit. From there all the microcontroller has to
do is sample every 104 µS seven more times to get the full 8-bits contained within the
incoming RS-232 data packet.

A stop condition is indicated by the transmitting device when the RS-232 voltage being
transmitted is returned to the marking state for at least one data bit width time, which is 104 µS
for 9600 bps, after the correct number of RS-232 data packet bits are generated. This stop
condition, or marking state is actually the stop bit. Everything I just described down to the
microsecond is summed up in Figure 2.1

Figure 2.1: This is a graph of a 9600 bps asynchronous RS-232
transmission versus time. The time between each vertical double-dotted
line represents 104 µS. Since we are only sampling for each bit one
time, the idea is to try to sample as close to the center time of each
bit as possible.

Chapter 2

14

Let’s run through it again. The transmitting microcontroller is holding it’s RS-232
transmit pin in a marking condition. We know that this marking condition must be at least
104 µS in length to satisfy our bit timing for a 9600 bps baud rate. In fact, the marking
condition can exist for hours, days or forever as the receiving microcontroller is continually
looking for a valid start condition.

The transmitting device drives its transmit pin to a space condition for one data bit time
(104 µS for 9600 bps) to indicate the start of an RS-232 data packet. The receiving
microcontroller senses the start bit on its receive pin and waits for 156 µS (1.5 × 104 µS). At
the 156 µS interval, the receiving microcontroller samples what should be the center of the
least significant bit of the incoming RS-232 data packet, bit 0. The microcontroller samples
the second bit of the incoming RS-232 data packet 104 microseconds later. The receiving
microcontroller samples every 104 µS until the most significant bit of the RS-232 data packet
is sampled (bit 7 since we are sending 8-bit data packets).

The receiving microcontroller has 8 bits of data and expects to see its receive line go to a
marking condition indicating a stop condition or stop bit. Note that the receiving
microcontroller and the sending microcontroller sync-up on every RS-232 data packet using
the start bit. From there, every bit inside the RS-232 data packet is expected to be sent and
arrive on time according to the baud rate. Later, you’ll see that microcontrollers with internal
USARTs will perform all of the start bit and receive/transmit timing tasks automatically for
you. For now, let’s do it caveman style.

Building a Simple Microcontroller RS-232 Transceiver
To convert the RS-232 theory I’ve presented into real-world events, let’s assemble some
hardware and implement a simple 3-wire RS-232 session between our PIC12F675
microcontroller and a personal computer.

A personal computer is most always configured as a DTE device. Recalling what we
already know about the RS-232 specification, that implies that the personal computer’s serial
port uses a male 9-pin or male 25-pin connector. From here on out, unless I say otherwise,
we’ll use the 9-pin connector and pinout for both DTE and DCE devices. So, with that, pin 3
is the DTE transmit pin and pin 2 is the DTE receive pin. For the record, on a 25-pin male
serial connector, pin 2 is the DTE transmit pin and pin 3 is the DTE receive pin. The third
wire in our 3-wire RS-232 connection is the common ground connection. For a 9-pin male
serial connector, the ground pin is pin 5 for both DTE and DCE devices and is designated
signal ground in the RS-232 specification. From your history lesson, you know that the 25-
pin DTE serial connector’s signal ground is found on pin 7.

Applying logic (and your knowledge of the RS-232 specification) to the gender of the
personal computer’s serial connector would lead one to believe that since a DTE device is
represented by a male connector then a DCE device would most likely support a matching
female connector. Once again, logic prevails, as that is the real world case. Again, using

Implementing RS-232 with a Microcontroller

15

common sense logic, one would be led to conclude that since the personal computer is a DTE
device, our PIC12F675 would be the center of attention in a DCE device. If that is also true,
which it is, then that means I can literally plug the personal computer’s male DTE serial
interface directly into the PIC12F675’s female DCE interface and pass data between the
personal computer and the PIC12F675. What makes this possible is the DCE serial connector
pinout versus the DTE connector pinout. Basically, the DCE device’s transmit pin is con-
nected directly to the DTE device’s receive pin and the DTE device’s transmit pin is wired
directly to the DCE device’s receive pin with signal ground being common between the DTE
and DCE interfaces. Don’t confuse this with a “null modem” arrangement as a null modem
circuit is intended to attach a DTE device directly to another DTE device by tying comple-
mentary modem signals to each other. Therefore, that makes pin 3 on the DCE side the
receive pin and pin 2 the DCE transmit pin. Using the standard DTE and DCE pinouts on my
connectors means that I can now communicate PIC to personal computer without the need for
any special “crossed over” cables. In fact, all I need is three wires.

RS-232 Interface Hardware
As true RS-232 signals are not TTL compatible, the incoming RS-232 voltage levels must be
converted to voltage levels compatible with the circuitry behind the serial connector. On the
other side of that, the outgoing TTL voltage levels must be shifted to RS-232 signal levels for
transmission between the DTE and DCE devices. The easiest way to effect the RS-232
voltage translation process and stay within the RS-232 specification’s guidelines is to use a
special RS-232 converter IC. One such IC is the industry standard Maxim MAX232CPE.

In the past, if you really wanted to adhere to the RS-232 specification you designed in a
±12-volt or ±15-volt power supply to drive the MC1488 (now called the DS1488) quad line
driver. The negative supply voltage coupled with the MC1488 made the marks possible,
while the positive 12 volts provided the voltage level necessary to produce a space. On the
receiving side, an MC1489 (these days it’s called a DS1489) picked up the marks and spaces,
converted them to TTL levels and fed them to the device’s UART (Universal Asynchronous
Receiver/Transmitter).

The DS1488 and DS1489 are still in production and are great choices for low-cost
RS-232 interfaces if the power supply voltages are already in the design anyway. However,
to really keep it simple and within specification, using a MAX232CPE or similar IC at each
end of the RS-232 link is the way to go. The MAX232CPE requires a single +5 VDC and
with the help of four common 1 µF capacitors, the MAX232CPE internally generates the
voltages necessary to effect marks and spaces on the transmit pin using an internal charge
pump. Not only does the MAX232CPE perform the TTL-to-RS-232 conversion duties, it is
the “other side” also converting the incoming RS-232 signals into TTL voltages. The
MAX232CPE charge pump is capable of producing ±10 VDC when no significant load is
present.

Chapter 2

16

A Microcontroller DCE Device

Schematic 2.1: This is the “formal” way to do it. Capacitors C2-C5 help the Sipex SP232ACP’s
internal charge pump provide the RS-232 voltages that adhere to the RS-232 specification. The
PICkit 1 uses this formal approach.

+
C3

1uF

+5VDC

+

C2

1uF

PIN 1 = +5VDC
PIN 2 = GND

+
C1

1uF

+5VDC

R1 1K

C6

.1uF

U1 PIN 1

R2 1K

U1 PIN 2

P1

DB9 FEMALE

5
9
4
8
3
7
2
6
1

U2 PIN 16

U2 PIN 15

PIC12F675 RS-232
TRANSCEIVER

U1

PIC12F675

4

7

6
5
3
2

GP3

GP0

GP1
GP2
GP4
GP5

+5VDC

+

C4

1uF

PIN 16 = +5VDC
PIN 15 = GND

+
C5

1uF

U2

SP232

13
8

11
10

1
3
4
5
2
6

12
9
14
7

R1IN
R2IN
T1IN
T2IN

C+
C1-
C2+
C2-
V+
V-

R1OUT
R2OUT
T1OUT
T2OUT

You can build the PIC12F675-based RS-232 transceiver from scratch or you can take a
value-added and easier way out by using the Microchip PICkit™ 1 FLASH Starter Kit.
Before we move on, let’s stop and talk a little about the PICkit 1.

Microchip’s PICkit 1 FLASH Starter Kit

Figure 2.2: Intended for beginners, the PICkit 1 is simple to understand
and operate. An 8-pin PIC12F675 is mounted in the evaluation socket. All
of the USB circuitry is to the far left of U1, a PIC16C745.

Implementing RS-232 with a Microcontroller

17

The PICkit 1 FLASH Starter Kit is designed to allow easy and inexpensive evaluation of
Microchip’s new 14-pin flash-based PICs and some of the legacy 8-pin flash parts like our
PIC12F675. The PICkit 1 FLASH Starter Kit programming hardware is centered on the
PIC16C745, which contains a USB engine in addition to the normal stuff you would find in a
PIC microcontroller.

Along with the hardware and firmware contained in a USB microcontroller, the magic of
USB is performed within the Windows operating system. Special programs and drivers
running under Microsoft Windows form an alliance between the microcontroller’s I/O ports,
the microcontroller’s USB interface and the application that is running under the Microsoft
Windows operating system. In effect, all of the work is done up front and all of the pent up
USB programming in the microcontroller and on the personal computer is unleashed when
the user plugs a USB device into a personal computer’s USB port.

A really neat feature of the PICkit 1 FLASH Starter Kit is that after you have initially
downloaded a hex file you can compile the file again and as long as you tell the compiler to
always replace the old hex file after a compile, the PICkit 1 will automatically bring in the
newly compiled hex file for programming when you click on the Write Device command
button. The PICkit 1 FLASH Starter Kit programming interface does this by checking the
timestamp of the loaded hex file and loading in the latest time-stamped hex file of the same name.

The target PIC’s power is controlled (on or off) by clicking on the Device Power button
in the Board Controls box. I used this feature extensively to turn off the PIC12F675 after
programming it so I could move it over to the snap-off board socket to run the spin of code I
had just compiled and programmed.

The PICkit 1 FLASH Starter Kit hardware communicates with the PICkit 1 FLASH
Starter Kit programming interface (Figure 2.3) that runs under Microsoft® Windows®. The
PICkit 1 programming interface allows the user/programmer (that’s us) to view PIC Program
Memory and EEDATA Memory in hexadecimal format. The Program Memory and EEDATA
Memory windows contain the contents of a standard Intel hex file the user/programmer loads
into the programming interface that has been generated by either a compiler like PicBasic™
Pro Compiler or Custom Computer Services C Compiler or an assembler like PicBasic Pro’s
PM or Microchip’s MPASM™.

The idea is to generate an Intel hex file, load it into the PICkit 1 FLASH Starter Kit
programming interface and “burn” or program the binary code into the physical PIC device in
the PICkit 1’s evaluation socket. A compiled program file (Intel hex file generated by the
compiler or assembler) is downloaded into the PICkit 1 FLASH Starter Kit programming
interface by using the Import HEX menu item. When the file download is complete, the data
contained within the downloaded hex file will appear in the Program Memory and EEDATA
windows. At this point, the user/programmer can click on the Write Device button and burn
the downloaded code into the target PIC. If all goes well, a green banner will be displayed at
the bottom of the PICkit 1 FLASH Starter Kit programming interface window. A red banner
signifies that something went wrong in the program cycle.

Chapter 2

18

Providing that the target PIC has not been code protected, the user/programmer can read the
contents of the target PIC and save the data as a hex file using the Export Hex menu item. Two
other command buttons allow the user/programmer to verify existing code in a PIC mounted in
the PICkit 1 program socket with the contents of a hex file and to erase the target PIC part.

The PICkit 1 FLASH Starter Kit shown in Figure 2.2 is a preassembled PIC development
board with an unpopulated snap-off experimenter board. The PICkit 1 FLASH Starter Kit is
unique in that it doubles as a PIC programmer, but not just any old PIC programmer. A
special Visual Basic program that runs on a host personal computer controls the PICkit 1
FLASH Starter Kit. The personal computer is attached to the PICkit 1 FLASH Starter Kit via
USB. The bonus is that all of the source code for both the Visual Basic personal computer
program and the USB interface is included, in addition to the PIC tutorial and project source

Figure 2.3: Once you load a hex file for programming, each time
you issue a Write Device command, the PICkit 1 program finds
and reloads the latest version of the hex file you originally specified
before programming the PIC.

Implementing RS-232 with a Microcontroller

19

code. So, if you’re curious about how PIC programmers work and have an interest in how
USB works, the PICkit 1 FLASH Starter Kit is a must have device.

I left the snap-off experimenter board attached to the PICkit 1 FLASH Starter Kit and
rigged a standard personal computer’s diskette drive power connector to get +5 VDC and
ground to the snap-off board. These days, personal computer’s power supplies are cheap and
using a personal computer power supply gave me a power switch and keyed power receptacle
for the experimenter board side of the PICkit 1 FLASH Starter Kit while eliminating the need
to solder in a 7805 +5 VDC regulator and its supporting circuitry.

I also substituted a pin-for-pin compatible Sipex SP232ACP for the MAX232CPE, as I
don’t have a through-hole MAX232CPE in my parts inventory. I completed the assembly of
my PICkit 1 FLASH Starter Kit experimenter board by installing the TX (transmit) and RX
(receive) header pins and the 14 header pins around the PIC socket. Installing the headers
will allow easy connections between the Sipex SP232ACP and the PIC12F675.

Even though the pins of the 14-pin socket on the programmer side of the PICkit 1 are
connected directly to LEDs, you can still use the pins to run our RS-232 transceiver project.
Just solder in the J3 header and use a jumper wire to connect the programmer side TX and
RX pins to the snap-off board’s TX and RX pins. This allows you to program and execute the
programs without having to move the PIC12F675 from the programming socket to the snap-
off test socket.

Although the PICkit 1 is nice to have, if you already have a PIC programmer that will
burn the PIC12F675 you can build up the “formal” circuit shown in Schematic 2.1 or you can
get down and dirty with the “dirty” RS-232 implementation shown in Schematic 2.2.

R5
10K

PIC12F675 RS-232
TRANSCEIVER
"DIRTY VERSION"

P1

DB9 FEMALE

5
9
4
8
3
7
2
6
1

U1 PIN 1R2
2.2K

Q2
PN2222A

R1 1K
Q1
PN2222A

R3
10K

C1

.1uF

U1

PIC12F675

4

7

6
5
3
2

GP3

GP0

GP1
GP2
GP4
GP5

+5VDC
PIN 1 = +5VDC
PIN 2 = GND

U1 PIN 2

+5VDC

R41K

Schematic 2.2: If you don’t have a MAX232 or Sipex SP232ACP on hand, or if you want to save
some bucks and have some fun at the same time, lash up this “dirty” RS-232 transceiver.

Chapter 2

20

In the “dirty” version, Q1, Q2 and the five resistors perform the RS-232 voltage conver-
sion. Any positive voltage coming in on P1’s pin 3 that is capable of turning on Q1 will be
considered “RS-232 OK” and will pass as a binary 0, or space, to the PIC12F675’s GP3
receive pin. If the incoming RS-232 voltages are up to specification and the RS-232 cable is
of good quality, this receiver circuit formed by Q1, R1 and R2 will work very well in most
instances. The same is true for the transmit circuit, which is driven using Q2, R4 and R5. If
the RS-232 cable is not too long and is of a high quality, Q2 will send a “dirty” mark (0 VDC
instead of –3 VDC or better) when it is turned on by the PIC12F675’s transmit pin, GP2. A
clean space will be transmitted when Q2 is off. If your project can tolerate possible RS-232
bit errors, the “dirty” RS-232 circuitry shown in Schematic 2.2 is a cheap and easy way to
implement an RS-232 link.

Writing Some Simple RS-232 Firmware
No matter which direction you took, “dirty” PICkit 1 or homebrew “formal,” I’m sure you’ll
agree that the RS-232 hardware was easy to obtain and assemble. The RS-232 code for our
minimal RS-232 system is just as easy to write.

There are a variety of C compilers on the market that target the Microchip PIC® family of
microcontrollers. I’ve chosen to use the Custom Computer Services C Compiler for Micro-
chip PIC microcontrollers to write the code for the PICkit 1 FLASH Starter Kit RS-232
circuit I’ve assembled. The inexpensive Custom Computer Services C Compiler is easy to
use and has features that take the pain out of writing code for PICs. I’ve written a couple of
programs that simply send the ASCII character ‘A’ to a HyperTerminal™ or Tera Term Pro™
terminal emulator program.

For those of you that don’t do C, I’ve selected the PicBasic Pro Compiler from
microEngineering Labs to represent the RS-232 firmware on the BASIC side of the house.
Like Custom Computer Services C Compiler, the PicBasic Pro Compiler from
microEngineering Labs is dedicated to producing clean and tight code for Microchip PIC
microcontrollers.

Before I describe the code, let’s make sure you have your terminal emulator set up
correctly. HyperTerminal is included as an accessory communications program with the
Microsoft Windows operating system. It’s fairly easy to prepare HyperTerminal to receive our
RS-232 data. Once you open HyperTerminal, the first thing you want to do is name your
session. In Figure 2.4, I named my HyperTerminal session “Simple PIC RS-232.”

Implementing RS-232 with a Microcontroller

21

After you name your session, another window like the one in Figure 2.5 will appear
asking which COM port you wish to use. That all depends on what’s available on your
machine. In my case, I had both COM ports 1 and 2 open and chose COM 1.

Figure 2.4: Doing this allows you to save the HyperTerminal session with a name for later use.

Figure 2.5: Select an open COM port on your personal computer here.

The final step in setting up your HyperTerminal session is the definition of the communi-
cations parameters. We defined those earlier as 9600 bps, no parity bit, 8 data bits and 1 stop
bit. Set up your serial port as it is shown in Figure 2.6.

Chapter 2

22

Figure 2.6: No modem control or software signals (flow
control) are needed in a simple 3-wire RS-232
connection.

Flow control hasn’t been covered yet, and for this project we’ll assume there isn’t any.
Flow control comes in a multitude of flavors. Normally, flow control is implemented by
using the modem control signals CTS and RTS. Flow control can also be initiated using
software commands like those used to implement XON/XOFF flow control. One could also
use a logic signal from a standard I/O pin to effect an unofficial flow control. Flow control
excepted, the goal is to end up with a blank terminal emulator window and a blinking cursor
in the upper left corner of the terminal emulator window.

Unless you purchase some upgraded HyperTerminal software, you won’t be able to do
much more than open a HyperTerminal emulator session and send or receive data with the
version that is bundled with Windows. Another terminal emulator called Tera Term Pro
provides a bit more functionality and flexibility than HyperTerminal and it costs nothing but
your time to download it from the Internet. Tera Term Pro setup is similar to that of
HyperTerminal, and as you will see in the pull-down menus, there are some things Tera Term
Pro can do that the stock HyperTerminal can’t. Tera Term Pro’s most useful feature is the
scripting language that is built into it. Using Tera Term Pro’s script commands provides a
means of automating the process of transferring and receiving files. We won’t need any Tera
Term Pro scripting for our simple RS-232 project.

Implementing RS-232 with a Microcontroller

23

Editing the TERATERM.INI file, which resides inside the Tera Term Pro directory, can
be used to set up all of Tera Term Pro’s communications parameters. Here, I’ll show you how
to get a basic Tera Term Pro emulation session to work on your personal computer manually.
The first thing you want to do is tell Tera Term Pro that you will be using a serial interface.
As you can see in Figure 2.7, Tera Term Pro is capable of doing many other things on differ-
ing interfaces.

Figure 2.7: I’ll show you how to use the TCP/IP part of Tera Term in a later
chapter. Right now, use the Serial side and enter a COM port number that’s
open on your personal computer.

Under the SETUP pull-down menu, you will find an entry for Serial Port. Selecting the
Serial Port menu item will bring up a window like the one depicted in Figure 2.8 and allow
you to manually set the communications parameters, which are identical to the communica-
tions parameters we set in HyperTerminal (9600 bps, 8 data bits, no parity, 1 stop bit).

And again, just like HyperTerminal, you should end up with a blank terminal emulation
window with a flashing cursor in the upper left corner. To complete the personal computer
and terminal emulator setup, all that’s left to do is to attach a pin-for-pin (pin 1 to pin1, pin 2
to pin 2, etc.) 9-pin male-to-female cable between the personal computer’s serial (COM port
you selected in the setup) port and the PICkit 1 FLASH Starter Kit’s 9-pin serial connector
on the PICkit 1’s snap-off experimenter board. Now, let’s pick apart the RS-232 C code.

Chapter 2

24

I’m not going to assume you know every nuance of C, so this time I’ll take us through
line by line. The #include lines at the top of the listing tell the compiler about the physical
attributes of the PIC12F675. The “physical attributes” of a microcontroller device may
include the number of I/O pins or the types of special purpose modules that reside inside the
microcontroller like analog-to-digital converters or timers. The include files also define
associations. For instance, operations that need to express a TRUE or FALSE condition, it’s
much easier to remember TRUE for 1 and FALSE for 0. Using real words also makes the
code easier to read and follow. Another example of what include files do would be equating
I/O port names. Instead of having to remember that PORTA is actually address 0x005, the
#include allow you to simply type in “PORTA” when you are performing tasks against
address 0x005. The C include files are readable and you can examine them as you would any
other text file. Perusing a microcontroller’s datasheet and include files are a good way to
learn about what the microcontroller can really do for you. The Custom Computer Services C
Compiler comes with an include file for each PIC microcontroller it supports. If there are
physical attributes you need to access and they aren’t already included in the stock include file
there’s nothing to stop you from putting together your own include file. I used the PIC12F675
datasheet to build the f675.h include file, which includes definitions and associations from
the PIC12F675 datasheet that were not included in the canned PIC12F675 include file.

#include <12F675.h>

#include <f675.h>

Figure 2.8: The Transmit delay is used to pace the characters.
For instance, changing the msec/char field to a 1 would send a
character wait 1 ms and then send another character and so on.

Implementing RS-232 with a Microcontroller

25

The datasheet is the most important tool when working with any microcontroller device.
Checking the PIC12F675 datasheet tells us that the PIC12F675 is equipped with an on-chip
oscillator that does not require an external crystal or resonator. Another look at the
PIC12F675 datasheet tells us the internal clock speed of the internal oscillator is a nominal 4
MHz. Another plus in using the Custom Computer Services C Compiler is that once the
clock speed is defined to the compiler, things like delays and baud rates are automatically
calculated and applied inside the compiler routines that rely on the microcontroller’s clock
speed. So, the line #use delay (clock = 4000000) sets the PIC12F675 clock rate at 4 MHz
and tells the compiler to use 4 MHz for its delay and baud rate calculations.

#use delay(clock=4000000)

Bits inside fuse words are used to turn on or turn off certain special purpose modules,
functions or features that the PIC12F675 offers to the programmer. Again, checking the
PIC12F675 datasheet, we know that the PIC12F675 can be instructed to use the internal
oscillator or depend on an external crystal arrangement. The INTRC_I/O fuse instruction sets
a fuse bit that activates the PIC12F675’s internal 4 MHz oscillator. In addition to selecting
the clock type, the INTRC_I/O bit deactivates the clock signal from being accessible via a
PIC12F675 I/O line.

#fuses INTRC_IO,NOWDT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT

The next fuse instruction, NOWDT, deactivates the PIC12F675 watchdog function.
Watchdog timers are commonly used to monitor the microcontroller’s execution of instruc-
tions. If the microcontroller “hangs” or “loops” and the watchdog timer doesn’t get reset, the
microcontroller is forced to reset itself and restart the application that is programmed into it.
For simple programs like this one, the watchdog timer function is not necessary.

As you’ve probably already figured out, the “NO” in front of the rest of the fuse instructions
turns off a particular PIC12F675 function. NOMCLR saves an I/O line on the PIC12F675 by
not requiring the MCLR reset pin to be offered to the programmer externally. Instead, the
MCLR pin function is performed internal to the PIC12F675.

Activating code protection makes reading the PIC12F675’s program memory with a PIC
programmer impossible. Since I haven’t written any code that would stop an alien attack,
NOPROTECT and NOCPD allow the code loaded into the PIC12F675 program memory to
be accessed by the standard methods.

I’m also not anticipating my personal computer power’s supply voltages to dip or
“brownout” under load, so there is no need for brownout protection, and NOBROWNOUT is
pretty obvious as to how I feel about that.

While we’re on the fuse bit subject, the Custom Computer Services C Compiler has a
really nice pull-down View menu feature that describes and lists the valid fuses for the
microcontroller you’re writing code for. In that same pull-down View menu, the compiler also
gives you access to the microcontroller datasheets, which are stored in a directory as standard
PDF files. The scope of this book isn’t really about teaching you C or tutoring you on how to

Chapter 2

26

use the Custom Computer Services C Compiler. However, as we continue on this networking
hop, I’ll point out goodies inside the compiler packages that will help you write the best code
with the least effort. If you’re not a C person, who knows, you may pick up enough C to
become proficient with the language.

The Custom Computer Services C Compiler does many things behind the scenes to assist
you but sometimes it comes at the expense of extra code that is generated by the compiler. If
you’re a control freak like I am, I want to be in command as much as possible. So, the #use
fast_io(A) code line tells the Custom Computer Services C Compiler to allow me and not the
compiler to determine the direction (input or output) of each PIC I/O line.

#use fast_io(A)

Our simple RS-232 C program actually consists of three subprograms: TX_program_1,
TX_program_2 and TX_program_3. Each program does the same thing—transmits the
ASCII character 0x41 or ‘A’. By simply placing each subprogram between a set of #ifdef and
#endif preprocessor statements, I can compile one of the subprograms at a time by “defining”
which program is active during the compilation time. The subprogram to compile is chosen
by “commenting out” the other subprograms I don’t want to be compiled. For instance, to
select TX_program_1 in Code Snippet 2.1, I comment out #define TX_program_2 and
#define TX_program_3. When I run the Custom Computer Services C Compiler, all that will
be included in the final output file will be the common code plus all of the code between
#ifdef TX_program_1 and its corresponding #endif preprocessor statement. I’ve used the
Custom Computer Services C Compiler to write more complex programs and you’ll get a
taste of that as we progress.

//**
// COMMENT OUT THE PROGRAMS YOU DON’T WANT TO RUN
//**
#define TX_program_1 //this program will be compiled
//#define TX_program_2 //this program will not be compiled
//#define TX_program_3 //this program will not be compiled

Code Snippet 2.1: When you begin to write larger C microcontroller programs, you’ll use
the // to comment out parts of code instead of deleting them.

All C programs have a main function like the one shown in Code Snippet 2.2. The main
microcontroller application program actually flows inside the main function braces. In our
RS-232 code, any code that is not fenced in by #ifdef TX_program_x and a related #endif is
always compiled and can react with the selected TX_program_x code segment.

Implementing RS-232 with a Microcontroller

27

//**
// MAIN PROGRAM STARTS HERE
//**
// This code fragment will always be compiled
void main() {

setup_adc_ports(0);
setup_adc(ADC_OFF);
setup_timer_1(T1_DISABLED);
setup_comparator(NC_NC_NC_NC);
setup_vref(FALSE);

//PORTA pin 2 = TX line
SET_TRIS_A(0b00001000); //PORTA pin 3 = RX line

Code Snippet 2.2: The Custom Computer Services C Compiler program wizard generated
all of the setup statements.

In addition to the on-chip analog-to-digital converter, the PIC12F675 also contains an
analog comparator, a voltage reference and some timers. Since we won’t be using any
services provided by these modules, the setup_xxxxx lines of code are there to turn off
TIMER_1, the analog-to-digital converter, the comparator and the voltage reference. Execut-
ing the “setup” lines will also free up any I/O pins that the service modules may have wanted
to use.

All of the subprograms have a few things in common; each subprogram transmits the
letter ‘A’ and each subprogram uses the same PIC12F675 I/O pins for transmitting and
receiving. That means that I can set the I/O direction of the PIC12F675’s receive and transmit
pins in the common code. The SET_TRIS_A(0b00001000) code line completes the manual I/
O direction task and feeds my control freak animal as I, not the compiler, set the
PIC12F675’s I/O pin direction.

A Bit of RS-232 Transmit Code
Earlier I talked about how each of the data bits inside a data packet must be 104 µS in
duration to be recognized as a 9600 bps bit stream. The first program, TX_program_1, is a
crude 9600 bps algorithm that uses delays and bit voltage levels to transmit the ASCII
character ‘A’. To make things a bit easier to read in the TX_program_1 main code, I’ve
defined the TX (transmit) pin, PIN_A2, and the RX (receive) pin, PIN_A3, in the PIN
DEFINITIONS area before the main program code as seen in Code Snippet 2.3.

Chapter 2

28

//**
// TX_PROGRAM_1 PIN DEFINITIONS
//**
#ifdef TX_program_1
#define TX PIN_A2
#define RX PIN_A3
#endif

Code Snippet 2.3: It’s best to keep the C code human readable.

TX_program_1 begins by placing the TX line in a marking state for 1 ms. The
output_high(TX) instructs the PIC12F675 to present a TTL high (binary 1) to the Sipex
SP232ACP’s TTL input. The Sipex SP232ACP inverts that to present a RS-232 mark on pin
2 (DCE transmit pin) of the communications cable. The while(1) statement says that while
the tested condition is 1 or while the tested condition is TRUE, the code between the braces
({}) will run. Since 1 never changes value and 1 represents TRUE, the code will run in this
loop inside the braces forever. This is one way of creating a continuous loop. I could have
also used for(;;) to accomplish the same thing. I’ve included both statements in the source
code and Code Snippet 2.4 for you to try.

//**
// TRANSMIT PROGRAM 1
//**
#ifdef TX_program_1

output_high(TX); //mark for more than 104uS
delay_ms(1);

while(1)
//for(;;)
{

output_low(TX); //send 0 START BIT
delay_us(104);
output_high(TX); //send 1 LSB of ‘A’
delay_us(104);
output_low(TX); //send 0
delay_us(104);
output_low(TX); //send 0
delay_us(104);
output_low(TX); //send 0
delay_us(104);
output_low(TX); //send 0
delay_us(104);
output_low(TX); //send 0
delay_us(104);

Implementing RS-232 with a Microcontroller

29

output_high(TX); //send 1
delay_us(104);
output_low(TX); //send 0 MSB of ‘A’
delay_us(104);
output_high(TX); //send 1 STOP BIT
delay_us(104);

delay_ms(1000); //pace the transmission
}

#endif

Code Snippet 2.4: As you’ll see in the code in the upcoming chapters, I like to use while(1).

The first output_low(TX) is a start bit. The TTL low (binary 0) from the PIC12F675 I/O
pin is inverted by the Sipex SP232ACP and comes out as a space on the RS-232 side. Note
that the ASCII ‘A’ is transmitted to the personal computer’s least significant bit first. Eight
bits and eight output_XXX/delay_us (104) sequences later, Tera Term Pro displays the ‘A’ it
received in the terminal emulator window I’ve captured in Figure 2.9.

Figure 2.9: Notice I “paced” the transmission in Code Snippet 2.4. After the first ‘A’ was sent, each
‘A’ thereafter was sent one per second (delay_ms(1000)).

I’ve put a pacing statement at the end of the loop. This will allow you to see the charac-
ters as they appear in 1-second (1000 milliseconds = 1 second) intervals in the Tera Term Pro
emulator window. You can comment this statement out to see the ‘A’s zip by.

Chapter 2

30

Let’s comment out #define TX_program_1 and #define TX_program_3 to select
TX_program_2. Note the #use rs232 statement. This is Custom Computer Services’ way of
having the compiler set the baud rate and assign the RS-232 I/O pins for you without having
to consult the datasheet to make the adjustments manually on a bit-by-bit basis. Remember,
the baud rate here is calculated based on the microcontroller’s clock speed which is defined at
the beginning of the program using the #use delay(clock=4000000) statement. Since the
PIC12F675 has no internal USART, we can choose almost any pair of I/O pins to be TX and
RX. Note that I said that “almost” any pair of PIC12F675 I/O pins could be chosen. The
PIC12F675 has an input only pin (GP3) and since this is an input only pin, it can’t be used as
an output and thus can’t be used as a transmit pin. You’re probably also wondering where I’m
getting these PORTA definitions when the PIC12F675 datasheet states that GPIO is used to
define the PIC12F675 I/O port names. That’s a Custom Computer Services C compiler thing.
It uses PORTA designations instead of GPIO names. GPIO and PORTA are both located in
their respective data memory maps at location 0x05. So, it’s only a name difference. The
whole of TX_program_2 is shown in Code Snippet 2.5.

//**
// TRANSMIT PROGRAM 2
//**
#ifdef TX_program_2

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)

while(1)
{

printf(”A”);
//printf(“Your first name here”);
delay_ms(1000);

}
#endif

Code Snippet 2.5: Wow! Consider doing this in PIC assembler. Are you beginning
to like C?

TX_program_1 consists of 23 lines of C statements (25 if you include the defines for the
TX and RX lines). TX_program_2 is comprised of only three C statements and does the exact
same thing as TX_program_1. What gives? The trick is the plenty powerful printf statement.
I’m not going to explain the coding in detail, but you can see for yourself that using printf
has more advantages than drawbacks. Replace the ‘A’ with your first name and compile and
run the program again. Cool, huh? That’s what the C compiler printf services buys you. Of
course, in the embedded world nothing is free. So, to gain the ease of use of the printf
function, you pay in the increased amount of code the function generates and the additional
amount of program memory that is consumed. To get an idea of how much extra code is
generated, the Custom Computer Services C Compiler allows you to view the assembler

Implementing RS-232 with a Microcontroller

31

code it generates. Compile TX_program_2 yourself and take a look at the list file to get an
idea of what I’m talking about. Even though more code is generated, it’s only generated once
and placed in memory for use by other calls to the printf code. So in the long run, for the price
of a little additional code, you get increased functionality with a minimum of coding effort.

The TX_program_3 in Code Snippet 2.6 is a simplified version of TX_program_1.
However, it is very similar to TX_program_2 as it is short and sweet and it sends a single ‘A’
to the Tera Term Pro emulator window. Compile and run TX_program_3 to see the ‘A’s
sequence through. Then comment out the putc (put character) line and try to compile and run
with the You can’t put but 1 character here line. The compiler will choke and tell you that
you can’t do this. Why? Because putc is an abbreviation for put character. That means a
single character and not a string of characters.

//**
// TRANSMIT PROGRAM 3
//**
#ifdef TX_program_3

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
while(1)
{

putc(‘A’);
//putc(‘You can’t put but 1 character here’);
delay_ms(1000);

}
#endif

Code Snippet 2.6: Use putc when you want to conserve program memory and
have small canned messages or single characters to send.

As you can see from the example code, using C for RS-232 work removes most of the
housekeeping hassles associated with setting up RS-232 hardware and let’s you concentrate
on getting your data transferred from point A to point B. If I haven’t convinced you that C is
the easier road to RS-232 happiness, and if you just really have to write some assembler to
transmit a byte, Code Snippet 2.7 is a working example of C-less assembler RS-232 transmit
routine:

;*********** RS-232 TRANSMIT SUBROUTINE
;
SENDIT

MOVWF XMTREG ;LOAD BYTE TO TRANSMIT
XMTR

MOVLW 8 ;LOAD NUMBER OF BITS TO SEND
MOVWF COUNT
BCF RS232,TX ;WRITE 0 TO SERIAL PORT

Chapter 2

32

CALL DELAY1 ;WAIT 1 BIT PERIOD
XNEXT

BCF STATUS,C ;CLEAR CARRY
RRF XMTREG,F ;ROTATE TRANSMIT REGISTER RIGHT THRU CARRY
BTFSC STATUS,C ;CHECK CARRY STATUS AFTER THE ROTATE
BSF RS232,TX ;IF CARRY IS SET, WRITE A 1 TO SERIAL PORT
BTFSS STATUS,C ;CHECK CARRY STATUS AFTER THE ROTATE
BCF RS232,TX ;IF CARRY IS CLEAR, WRITE A 0 TO SERIAL PORT
CALL DELAY1
DECFSZ COUNT,F ;DECREMENT THE COUNT REGISTER
GOTO XNEXT ;NOT DONE, GO GET NEXT BIT AND SEND IT
BSF RS232,TX ;Send Stop Bit
CALL DELAY1 ;WAIT ONE BIT PERIOD
RETLW 0 ;DONE, RETURN TO CALLER

DELAY1
MOVLW BAUD ;104uS for 9600 BAUD

STARTUP
MOVWF DLYCNT

REDO1
NOP
NOP
NOP
DECFSZ DLYCNT,F
GOTO REDO1
RETLW 0

Code Snippet 2.7: This homegrown code was all I had when I started writing microcontroller
RS-232 communications functions.

To make the assembler transmit routine work, all you have to do is calculate the bit delay
time (number of cycles to expend) versus the clock frequency your project is using and plug
your results into the BAUD variable. Remember, if you choose to do this as a C program, the
C compiler and its related RS-232 libraries perform the automagic RS-232 setup work.

Now that you have an idea of the hows and whys of sending data with a minimal
microcontroller like the PIC12F675, let’s figure out how to make that PIC12F675 receive
RS-232 data.

Some RS-232 Receive Code
One would believe that we could take what we know about data packet timing and write a
few lines of C code akin to TX_program_1 to receive some characters from our Tera Term
Pro session. That cannot easily be done, however, even though your RS-232 receive C code
will consist of mostly C statements, you’ll probably still end up writing the time critical
routines in assembler. We actually got lucky in TX_program_1, as our delay loop overhead
was small enough to not disrupt our data packet bit timing. Why reinvent the wheel by

Implementing RS-232 with a Microcontroller

33

writing RS-232 receive code from scratch? Let the C compiler and RS-232 libraries do the
work. Code Snippet 2.8 is an example of writing a receive routine in Microchip assembler for
our PIC12F675.

;*********** RS-232 RECEIVE SUBROUTINE
;
GETBYTE

CLRF RCVREG
BTFSC RS232,RD ;LOOK FOR A START BIT
GOTO GETBYTE

CALL STARTBIT ;go do start bit delay
RCVR

MOVLW 8 ;load W with 8
MOVWF COUNT ;load w to count

R_NEXT
BCF STATUS,C ;clear the carry bit
BTFSC RS232,RD ;look for data bit
BSF STATUS,C ;if 0..skip this instruction
RRF RCVREG,F ;ROTATE BIT FROM CARRY INTO RECREG
CALL DELAY1 ;go wait 104 uS
DECFSZ COUNT,F ;decrement COUNT..skip if 0
GOTO R_NEXT ;skip this instruction if COUNT=0

RETLW 0

STARTBIT

MOVLW STARTDLY ;DELAY FOR 156uS
GOTO STARTUP

DELAY1
MOVLW BAUD ;104uS for 9600 BAUD

STARTUP
MOVWF DLYCNT

REDO1
NOP
NOP
NOP
DECFSZ DLYCNT,F
GOTO REDO1
RETLW 0

Code Snippet 2.8: Timing is very critical in this code and the faster the baud rate, the more
critical the timing becomes.

Chapter 2

34

Again, to make this code return a character you have to calculate the value of the BAUD
variable, which depends on the microcontroller’s clock frequency and the amount of loop
overhead in the code. In short, you have to count instruction cycles and translate them to
elapsed time to set the BAUD value correctly. This is how I used to do it before the introduc-
tion of C for PIC microcontrollers. I can tell you that if you don’t have a way to view the
register values in the debugging process, you will be forced to use time-consuming, trial-and-
error coding techniques.

What if you wanted to transmit a random character and not just the character ‘A’? I ask
this question because if we are to continue with our building of simple RS-232 routines, we
must be able to view the results of our receive algorithms. Assuming we would want to test
the assembler RS-232 receive code you were just introduced to, how would we transmit the
received character to our Tera Term Pro emulator session?

What if we chose to use TX_program_1 to echo the character received by our RS-232
receive assembler program? TX_program_1 would need some heavy-duty modifications to
scan the received character’s bits and translate them to output_low or output_high states used
in the TX_program_1 algorithm. The overhead of the code needed for the TX_program_1
modification would most likely interfere with the RS-232 data packet bit timing and cause
the RS-232 transmit character code to fail or operate erratically. In that case, incorporating
the assembler transmit routine would be a better choice than modifying the TX_program_1
code.

Although there is nothing wrong with either the assembler transmit code or the assembler
receive code, a couple of simple C statements can eliminate a truckload of RS-232 coding
grief. Those little C statements are putc and getc. The getc instruction performs the same task
as our RS-232 assembler receive routine. Code Snippet 2.9 an example of how the getc
function is written in a C program.

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
int8 character_in;
//Receive a character
character_in = getc();

Code Snippet 2.9: This simple concept will take you far when writing your
own microcontroller RS-232 communications programs.

The variable character_in is a byte, which is defined by the int8 (8-bit integer) data type
descriptor. The getc function returns a character, which in this code snippet’s case is placed in
the character_in memory location.

Let’s write a C program called RX_program_1 that receives a keyboarded character from
our Tera Term Pro session and echoes it back to the same Tera Term Pro session. Don’t blink
or you’ll miss it. The whole program consumes three lines of actual code in Code Snippet
2.10.

Implementing RS-232 with a Microcontroller

35

//**
// RECEIVE PROGRAM 1
//**
#ifdef RX_program_1

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)

while(1){
putc(getc());
}

#endif

Code Snippet 2.10: The getc function is called first and as soon as a character is received, the putc
part of the statement pushes the character out of the microcontroller’s serial port.

Ah—the beauty of C! In RX_program_1, the getc function is executed first and returns an
8-bit character. The putc function sends the results of the getc function, which is the key-
boarded and received ASCII character, out to the Tera Term Pro session. The while(1)
statement assures that this get and put operation will continue until power is removed from
the PIC12F675.

You are trained and can now write and execute a basic RS-232 routine in either C or
assembler using the smallest of microcontrollers. It’s also evident (I hope) that C is the easier
choice. Notice I used the word “easier” and not the word “better” because there may be
situations where C is “too big” for your application. In those cases, assembler can be more
efficient and more compact. What if neither programming C nor assembler is comfortable for
you? Keep reading. Most of you will be in for a pleasant surprise.

[This is a blank page.]

37

C H A P T E R 3
Writing RS-232 Microcontroller Routines

in BASIC
In the preceding chapter, I’ve attempted to convert those of you that are still writing your
microcontroller code in assembler to writing your microcontroller code using the C program-
ming language. However, I learned personal computer assembler first, and then as the
personal computer BASIC language evolved I moved to that as my primary personal com-
puter programming language. After getting a grip on just what programming was, I finally
ended up using C for most of my personal computer programming needs. Note that I said
“most of,” not “all of.” If the personal computer application fits, I will revert to using some
form of the BASIC programming language as BASIC is still a viable and powerful program-
ming tool. This chapter will prove to you that the BASIC language is just as meaningful and
just as powerful in the microcontroller programming world as it still is today in the personal
computer programming environment.

At first, this wasn’t as “BASIC” as I would have liked. It took some effort to understand
the PicBasic Pro system, but once I had a grasp of what was going on, things got better in a
hurry.

BASIC RS-232
Like the Custom Computer Services C Compiler, microEngineering Labs’ PicBasic Pro has
very good intentions about making things easy for the PIC programmer. For instance, in
PicBasic Pro the watchdog timer is enabled by default and the PicBasic Pro compiler auto-
matically inserts clear watchdog timer commands into the code at the appropriate locations.
Akin to Custom Computer Services C Compiler, some PicBasic Pro instructions actually
change the PIC port pin to an input pin or output pin automatically to effect their function.
The PicBasic Pro built-in functions SerIn and SerOut are examples of PicBasic Pro instruc-
tions that automatically set the I/O pin direction (input for SerIn and output for SerOut) when
called.

PicBasic Pro comes with its own special IDE, CodeDesigner Lite, and also melds
seamlessly with the latest version of MPLAB IDE. Let’s put together a simple PicBasic Pro
program using CodeDesigner Lite™ that receives a character from Tera Term Pro and then
echoes that character back to Tera Term Pro.

Just like before, the first thing we must do is provide a means of defining the RS-232
baud rate, parity setting, stop bit setting and bit inversion setting. In PicBasic Pro, the bit
inversion setting is used to emulate an RS-232 converter IC when connecting the serial I/O

Chapter 3

38

pins directly to another serial device like your personal computer’s serial port. Remember
that the TTL bits in the data packet are inverted and voltage-shifted after passing through the
Sipex SP232ACP RS-232 converter on our PICkit 1. A binary 1 becomes a mark or negative
voltage and a binary 0 becomes a positive voltage space. If you look at the voltage levels of
an RS-232 signal, you’ll see that it is possible to fool a serial interface using the PIC’s TTL I/
O levels. Most serial ports will sense a TTL low (1.8 volts or below) as a mark and a TTL
high (3 volts and above) as a space. If we use a PIC microcontroller to send an ‘A’ without
using an RS-232 converter IC, the TTL binary sequence LSB (least significant bit) to MSB
(most significant bit) would look like this:

START BIT (0) 10000010 (1) STOP BIT

If an RS-232 converter IC is used, we know that a binary 1 becomes a mark and a binary
0 translates to a space on the RS-232 side of the converter IC. In this case, we don’t have the
inversion (and voltage conversion) at the sending serial port because the RS-232 converter IC
is not in the circuit. If the receiving side of our serial link uses an RS-232 converter IC, the
incoming data will be presented to the receiving device’s application inverted. So, after its
RS-232 converter at the receiver does its thing, the receiving device would actually see:

START BIT (1) 01111101 (0) STOP BIT

What a mess. First of all, the start bit will not be recognized and will be seen as the first
data bit. Second, the binary pattern is an inverse of the character ‘A’ and because the start bit
was detected one bit too late, the data bit are shifted as a result. Finally, the stop bit is wrong
and if this bit pattern gets through to the application at all, the stop bit will be incorrectly
recognized as a data bit. The receiving application will most likely throw this RS-232 data
packet (and any similar to this that follow) in the trash. PicBasic Pro’s bit inversion option is
used to avoid situations like the one we just discussed that stem from not having an RS-232
converter IC at one end of the link. As you can see, the bit inversion takes the place of an RS-
232 converter IC and allows direct connection to a “true” serial port. Although you can hook
raw microcontroller port I/O pins directly to an RS-232 port, be careful as the RS-232
voltages will damage your microcontroller.

PicBasic Pro’s SerIn and SerOut functions use predefined modes to set up the baud rate.
The modes are defined in an include file that comes with the PicBasic Pro Compiler package
called modedefs.bas. For the SerIn and SerOut functions, 8N1 (8 data bits, no parity and
1 stop bit) is the default setting for an RS-232 data packet and can’t be changed. We’ll choose
9600 bps as our baud rate and since we do have a Sipex SP232ACP RS-232 converter IC in
our PICkit 1 circuit there is no need to specify bit inversion. Thus, our mode will be specified
as T9600, where the “T” stands for True. If inversion were required, our mode specification
would change to N9600, with “N” signifying that the TTL data will be inverted.

Another automatic feature of PicBasic Pro is its assumption that the target PIC is running
a 4 MHz clock. Although other clock speeds can be defined, the 4 MHz clock default is a
good thing for us since our PIC12F675 is running on its internal 4 MHz clock. To maintain
as accurate an internal clock as possible, the PIC12F675 uses an oscillator calibration value

Writing RS-232 Microcontroller Routines in BASIC

39

called OSCCAL. The OSCCAL value is kept in program memory space. The PicBasic Pro
“DEFINE OSCCAL_1K” definition automatically moves the OSCCAL value that resides in
program memory to the OSCCAL register every time the program is run. If you’re not
careful, you can erase the OSCCAL value. No worries. The PICkit 1 host program has an
option that will rebuild the OSCCAL value for you.

There’s another way to generate serial I/O using PicBasic Pro. The DEBUG and
“DEBUGIN” functions allow most any I/O pin to become a serial transmitter or serial
receiver. As you may ascertain from their names, the DEBUG functions are primarily in-
tended to help you debug your code by allowing you to insert the DEBUG statements at
various points inside your code to send variable values to a Tera Term Pro or HyperTerminal
session. To use the DEBUG functions the I/O port, the I/O pin, the baud rate and the bit
inversion mode must be specified. I’ll stick with the PIC12F675 RS-232 port, pin, baud and
bit inversion values we’ve used throughout our discussion, which makes GPIO our DEBUG
and DEBUGIN port with GP2 acting as the transmit pin and GP3 doing the receiver duty.
Our selected baud rate is 9600 bps and there is no bit inversion. Like the “SerIn” and
“SerOut” functions, the number of bits in the RS-232 data packet, the parity and the number
of stop bits is set at 8N1 and cannot be altered by the programmer. Code Snippet 3.1 is our
PicBasic Pro BASIC code up to this point:

INCLUDE “modedefs.bas”
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2
DEFINE DEBUGIN_BIT 3
DEFINE DEBUG_BAUD 9600
DEFINE DEBUG_MODE 0
DEFINE DEBUGIN_MODE 0
DEFINE NO_CLRWDT 1

Code Snippet 3.1: Hmmm…Looks kind of like C.

I went ahead and threw in the last DEFINE line as it’s important if you want to change
one of PicBasic Pro’s automatic features such as whether the watchdog timer runs or not.

How a PicBasic Pro source file is compiled depends on the assembler and some configu-
ration fuse settings found in the PicBasic Pro PIC12F675 include file. The code snippet
below is the PicBasic Pro PIC12F675 include file that determines what microcontroller fuses
are active, versus which assembler is invoked. CodeDesigner Lite uses the native PicBasic
Pro assembler, PM. Notice that I have modified the original code turning the watchdog timer
off (wdt_off) and internalizing the PIC12F675 MCLR function freeing the GP2 pin for I/O
use with mclr_off. The last DEFINE statement, DEFINE NO_CLRWDT 1, instructs the
PicBasic Pro Compiler not to insert the clear watchdog statements into the final code.

Chapter 3

40

MPLAB IDE allows the use of either the PicBasic Pro’s PM or Microchip’s MPASM
assembler. The code we generate with CodeDesigner Lite will compile without modification
under the MPLAB IDE. Notice that I have made the same configuration fuse adjustments in
the MPASM header code in Code Snippet 3.2.

;**
;* 12F675.INC
*
;*
*
;* By : Leonard Zerman, Jeff Schmoyer
*
;* Notice : Copyright (c) 2002 microEngineering Labs, Inc.
*
;* All Rights Reserved
*
;* Date : 09/27/02
*
;* Version : 2.43
*
;* Notes :
*
;**

NOLIST
ifdef PM_USED

LIST
INCLUDE ‘M12F675.INC’ ; PM header
device pic12F675, intrc_osc_noclkout,bod_off, wdt_off,

pwrt_on, mclr_off, protect_off
XALL
NOLIST

Else
LIST
LIST p = 12F675, r = DEC, w = -302
INCLUDE “P12F675.INC” ; MPASM Header
__config _INTRC_OSC_NOCLKOUT & BODEN_OFF & _WDT_OFF & _PWRTE_ON

& _MCLRE_OFF & _CP_OFF
NOLIST

EndIF
LIST

Code Snippet 3.2: The trick is to recognize that both the PM and MPASM configuration code is
included in this file.

Writing RS-232 Microcontroller Routines in BASIC

41

Unlike the Custom Computer Services C Compiler, the PicBasic Pro Compiler does not
have preprocessor directives like #ifdef. So, I’ll sacrifice a byte to simulate the C preproces-
sor directives and add some PIC12F675 setup information to our PicBasic Pro code. Two bits
are assigned to debug_prog and serio_prog and I’ve allocated a byte, chr, to hold the ASCII
character our program will send and receive. Equating a ‘1’ to a bit allows the program
represented by that bit to be compiled. Conversely, a ‘0’ assigned to a bit effectively turns
that program off to the compiler. Normally, this kind of code would not be something you’d
want to include in a professional project. I’m incorporating it here to make the PicBasic Pro
Compiler serial communications example easier for you to understand and compile by
stuffing two programs into one as we did with the Custom Computer Services C Compiler C
source.

Recall that we had to generate some C code to turn off the analog section of the
PIC12F675 so we could use those dual-purpose pins for digital I/O. Well, we’re using the
same microcontroller hardware, a PIC12F675, and we must perform the same analog deacti-
vation process using PicBasic Pro code (adcon0 = 0). Our C code example also included a
“TRIS” statement to setup the input or output status of the PIC transmit and receive I/O lines.
We don’t need to code any BASIC “TRIS” statements here as the DEBUG/DEBUGIN and
“SerIn/SerOut” functions automatically set the selected PIC’s I/O pin for input or output
depending on the function call. The conveniences provided by the PicBasic Pro Compiler
make for a very tidy set of RS-232 echo routines as shown in Code Snippet 3.3 below.

INCLUDE “modedefs.bas”
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2
DEFINE DEBUGIN_BIT 3
DEFINE DEBUG_BAUD 9600
DEFINE DEBUG_MODE 0
DEFINE DEBUGIN_MODE 0
DEFINE NO_CLRWDT 1

debug_prog VAR BIT
serio_prog VAR BIT
chr VAR BYTE

adcon0 = 0

;PROGRAM TO RUN = 1
debug_prog = 1
serio_prog = 0

Chapter 3

42

loop:
;CHARACTER ECHO USING DEBUG FUNCTIONS
IF debug_prog Then
DebugIn [chr]
Debug chr
EndIF

;CHARACTER ECHO USING SER_IO FUNCTIONS
IF serio_prog Then
SerIn GPIO.3,T9600,chr
SerOut GPIO.2,T9600,[chr]
EndIF

GoTo loop

End

Code Snippet 3.3: A bit wordier than its C counterpart, but that’s BASIC
no matter where you encounter it. The bottom line is that it works just
like the C code.

To me, writing code in BASIC is fun. The neat thing about BASIC is that it’s easy to
learn no matter what microcontroller or personal computer you’re writing an application for.
The microEngineering Labs PicBasic Pro package is easy to use and powerful in function.
No matter which programming language you choose to write your RS-232 code with, you’ll
need some hardware that is capable of turning your typing into reality. Let’s round up some
RS-232 components, a PIC microcontroller and turn on the soldering iron.

43

C H A P T E R 4
Building Some RS-232

Communications Hardware
Enough theory and coding already—let’s solder some stuff. Before we can start connecting
components together to form our physical hardware, there are a few more things you need to
know about microcontrollers and RS-232.

Up to now we’ve been sending and receiving under the guidance of the RS-232 standard
with a microcontroller that doesn’t contain any internal serial communications circuitry. The
PicBasic Pro Compiler and the Custom Computer Services C Compiler compensate for this
lack of circuitry and allow us to emulate the missing serial hardware using the compiler’s
firmware. The firmware implementation of a serial port works fine until you have to do other
things and look for incoming serial data simultaneously.

A Few More BASIC RS-232 Instructions
When other tasks are being serviced by the microcontroller, it may be possible to miss an
incoming RS-232 message. PicBasic Pro handles this situation by allowing the user/program-
mer to “time out” after checking for incoming serial data. Let’s add another module to our
PicBasic Pro source code to demonstrate how that would work.

INCLUDE “modedefs.bas” ;get mode defs
DEFINE OSCCAL_1K 1
DEFINE DEBUG_REG GPIO
DEFINE DEBUGIN_REG GPIO
DEFINE DEBUG_BIT 2 ;serial out GP2
DEFINE DEBUGIN_BIT 3 ;serial in GP3
DEFINE DEBUG_BAUD 9600 ;9600,N,8,1
DEFINE DEBUG_MODE 0 ;no inversion
DEFINE DEBUGIN_MODE 0 ;no inversion
DEFINE NO_CLRWDT 1 ;don’t add clrwdt

debug_prog VAR BIT
serio_prog VAR BIT
serio_wait_prog VAR BIT

chr VAR BYTE ;for ASCII character

adcon0 = 0 ;turn off analog I/O

Chapter 4

44

;PROGRAM TO RUN = 1
debug_prog = 0
serio_prog = 0
serio_wait_prog = 1

loop:
;CHARACTER ECHO USING DEBUG FUNCTIONS
IF debug_prog Then
DebugIn [chr]
Debug chr
EndIF

;CHARACTER ECHO USING SER_IO FUNCTIONS
IF serio_prog Then
SerIn GPIO.3,T9600,chr
SerOut GPIO.2,T9600,[chr]
EndIF

;CHECK FOR A CHARACTER EVERY SECOND
IF serio_wait_prog Then
SerIn GPIO.3,T9600,1000,no_data,chr
SerOut GPIO.2,T9600,[chr,13,10]
GoTo loop

no_data:
SerOut GPIO.2,T9600,[“no character”,13,10]
EndIF

GoTo loop

End

Code Snippet 4.1: The microEngineering Labs PicBasic Pro Compiler has as many built-in
tricks up its sleeve as the Custom Computer Services C Compiler does.

As you can see in Code Snippet 4.1, I’ve added a third module and a corresponding third
bit, serio_wait_prog. The serio_wait_prog code looks for an incoming character for 1000 ms
(1 second). If no character is received after waiting for 1 second, the program jumps to the
“no_data” label and prints “no character” followed by a carriage return (decimal 13) and a
linefeed (decimal 10). If a character is detected within the 1-second window, the received
character is sent followed by a CRLF (carriage return/linefeed) sequence.

Things are a bit different on the C side in Code Snippet 4.2, but the results are the same.

Building Some RS-232 Communications Hardware

45

#include <12F675.h>
#include <f675.h>
#use delay(clock=4000000)
#fuses INTRC_IO,NOWDT,NOMCLR,NOPROTECT,NOCPD,NOBROWNOUT

#use fast_io(A)

int32 timeout;

//**
// COMMENT OUT THE PROGRAMS YOU DON’T WANT TO RUN
//**
//#define TX_program_1
//#define TX_program_2
//#define TX_program_3
//#define RX_program_1
#define SERIO_program

//
//**
// SERIO WAIT PROGRAM
//**
#ifdef SERIO_program

#use rs232(BAUD=9600, XMIT=PIN_A2, RCV=PIN_A3)
while(1)
{
timeout=0;
while(!kbhit()&&(++timeout<50000))

delay_us(10);
if(kbhit())

printf(“%c\r\n”,(getc()));
else

printf(“no character\r\n”);
}

#endif

Code Snippet 4.2: This C code is a bit more complicated than the BASIC version.

I added int32 timeout to allocate a 32-bit area of PIC memory to hold a timeout value and
another #define statement to point at our new C source module, SERIO_program. Instead of
having the PicBasic Pro luxury of inserting a timeout value in the function call, our C source
code uses the kbhit function to signal the presence of a character. Since we have no “real”
serial hardware functionality inside our PIC12F675, the kbhit function returns a TRUE after
detecting a valid start bit on the PIC12F675’s GPIO receive line. So, every 10 µs our C

Chapter 4

46

program looks for a start bit and increments the timeout value. After about a second or so, if
no character has been detected, our C program sends “no character” followed by a carriage
return/line feed sequence (\r\n). If a valid start bit is detected and followed by a valid charac-
ter, the character is retrieved using the getc function and sent to the Tera Term Pro terminal
emulator using the printf function, which also appends the sent character with a CRLF
sequence.

If you’re working with a microcontroller like the PIC12F675, the serial I/O routines I’ve
just described will work well for you. The only drawback is that you have to continually run
the routines in conjunction with your main application to “poll” for an incoming character.
There will be times when you won’t have enough processing time or processor resources to
do the polling. That’s when you call in some bigger guns.

47

C H A P T E R 5
Using Microcontroller USARTs

Before we move on and delve into microcontroller USARTs, the very first thing we must do
is set our PICkit 1 FLASH Starter Kit aside and move to another development platform that
will support our USART-laden microcontroller. We’ll develop our PIC USART code using a
device you will come to know in later chapters as the Easy Ethernet CS8900A. The partially
assembled Easy Ethernet CS8900A you see in Photo 5.1 is based on 40-pin PIC microcontrollers
that adhere to the pinouts used by the PIC6F87X and PIC18FXX2 families.

Photo 5.1: Don’t worry; you’ll get a full play-by-play on the components
you see in the photo that aren’t yet mounted. Right now, we want to
concentrate on the RS-232 portion of the Easy Ethernet CS8900A.

The microcontroller we will be working with in this part of the RS-232 project is the
PIC18F452. The PIC18F452 is full of goodies but we’re only interested in its USART
hardware at this point. As you already know, we will use the RS-232 circuitry of the Easy
Ethernet CS8900A for the RS-232 engine that will be driven by the code we write in this
section. Schematic 5.1 is a representation of the Easy Ethernet CS8900A’s RS-232 circuitry.

Chapter 5

48

From segments of our previous discussion, you already have a basic idea of what a
USART can do. So, let’s take a close-up look of what’s inside a typical microcontroller
USART.

If you consult the Microchip PIC datasheets, you’ll find that some of the PICs contain
internal USART circuitry, which in the datasheet is also referred to as the SCI, or Serial
Communications Interface. Although there are numerous ways to use the PIC USART, as you
already know, the most common application of the PIC USART is to communicate to a
personal computer’s serial port using the RS-232 protocol.

A microcontroller USART is a collection of special purpose registers. For instance, the
USART complex inside our PIC18F452 is made up of status registers, data registers, and
interrupt registers. Rather than try to educate you on every bit in every register, I’ll cover only
the registers and bits that we will need to be concerned with in the writing of our code.

Schematic 5.1: This is a portion of the full Easy Ethernet CS8900A, which you’ll learn more about
later. We have just enough hardware here to program and power a microcontroller-based RS-232
engine.

TXD

TXOUT

+9VDC

BYPASS CAPACITORS FOR
PIC18F452 AND SP233

PGD
U1

PIC18F452

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1 RD2

RD3
RC4
RC5
RC6
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

+5VDC

LED3

+5VDC

D1

1N5819

TXD

XTAL2
2OMHz

R6
10K

+5VDC

C14

.1uF

+5VDC

RXIN

R7

470

RXD

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

TXOUT

C16
.1uF

MCLR

PGC

RESET

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

D2

1N5819

C9

.1uF

C10

.1uF

C11

.1uF

+5VDCC13

20pF

RXD

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

PGC

C12

20pF

JR3

1

2

+5VDC

MCLR

RXIN

PGD

+C15

47uF

+5VDC

JR1

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

Using Microcontroller USARTs

49

TXSTA REGISTER

7 6 5 4 3 2 1 0
CSRC TX9 TXEN SYNC – BRGH TRMT TX9D

– 0 1 0 0 0 1 0

Figure 5.1: For standard 8-bit operations, TXSTA would contain X0100010. CSRC is a “don’t care”
bit for asynchronous mode. 8-bit transmission is selected by clearing bit TX9. Setting TXEN enables
the asynchronous transmitter and a 0 in the SYNC bit position selects asynchronous mode. BRGH
is set for low speed and TRMT indicates that at this moment the Transmit Shift Register is empty.
Since we’re not using 9-bit transmission, TX9D is a “don’t care” and is arbitrarily clear in our example.

Many of the C and BASIC serial communications functions use the USART registers
behind the scenes to do their magic. The Transmit Status and Control Register depicted in
Figure 5.1, TXSTA, is used to select asynchronous or synchronous mode, enable the transmit
function, provide transmit shift register status and perform some 9-bit tasks that have to do
with address bits, data bits or parity bits. Right now, we’re not concerned with 9-bit transmis-
sions or synchronous data sessions, which leaves the transmit enable and transmit shift
register functions as those of possible interest to us.

RCSTA REGISTER

7 6 5 4 3 2 1 0
SPEN RX9 SREN CREN ADDEN FERR OERR RX9D

Figure 5.2: Setting SPEN and CREN while clearing RX9 enables an 8-bit serial port. SREN is a “don’t
care” bit in asynchronous mode. The level of bit ADDEN decides whether RX9D is used as an
address bit or parity bit in 9-bit receive mode. FERR and OERR are the framing and overrun error bits.

To complement the TXSTA, the PIC USART complex houses yet another status register
component, the Receive Status and Control Register, or RCSTA, which is shown in Figure
5.2. In addition to the 9-bit receive duties, the RCSTA contains bits that provide status for
framing and overrun errors. We’ve already seen an example of an “inverted” data packet that
could generate a framing error. A framing error occurs when the STOP bit is detected as a
zero. The USART is counting the incoming bits and knows that a STOP bit should always be
a one (a mark).

Overrun errors have to do with the FIFO (First In, First Out) buffer within the USART.
The typical PIC USART can buffer two characters in its FIFO. When the third byte is re-
ceived and there are still two bytes in the FIFO (the FIFO is full), the FIFO is “overrun” and
the overrun error is signaled. To avoid overrun errors, we must read the USART FIFO as
quickly as possible once a character has entered it. In addition to signaling framing and
overrun errors, the RCSTA is in control of the microcontroller serial port and has bits to
enable or disable the receiver and microcontroller serial port.

The TXREG and RCREG are the transmit and receive data registers. TXREG and
RCREG hold the actual data being transported on the link. Most of the time, C and BASIC
compilers shield the user/programmer from having to deal directly with these registers.

Chapter 5

50

However, despite the cloaking done by the compilers, these registers are easily accessible to
the programmer.

Baud rate is set in a PIC USART by loading a value into the SPBRG register. There is a
formula for calculating the SPBRG value and the PIC datasheets contain a table in the
USART area listing many of the common baud rate settings for a particular microcontroller
clock speed. The Custom Computer Services C Compiler uses the “#use RS232” directive to
set the baud rate while PicBasic Pro provides preset modes for setting the baud rate.

Until now, we have only studied “polled” serial I/O routines. Polling in this sense means
that we must have our program periodically check for incoming serial data. If the time
between polling cycles is too long, there is a possibility that incoming characters could be
lost if there isn’t any code that is performing receive buffering. To improve our chances of
receiving every character that comes in, the USART employs the services of interrupt regis-
ters. The interrupt mechanism is also used by the USART to transmit data as well. Using
serial I/O interrupts, the main program can be running continuously without having to poll
for characters on a regular basis. Using interrupt routines also greatly reduces the chance of
getting overrun errors as the character is serviced as soon as it hits the USART’s FIFO.
Another advantage of using serial I/O interrupts is that we can now transmit and receive at
the same time. This is called “full duplex” operation. Half-duplex sessions are only allowed
to receive or transmit in one direction at any time. All of my examples thus far run as half-
duplex.

By using the TX9 bit in the TXSTA register, our PIC USART can be forced to transmit
nine data bits. This is accomplished by placing the ninth bit in the TX9D bit location of the
TXSTA register before writing an 8-bit data packet to the TXREG register. The ninth bit
could be a parity bit or an address bit. Our application doesn’t require parity or addressing.
So, we will use the PIC USART to send 8-bit data packets in normal asynchronous mode.
Once data has been written to TXREG, the eight (or nine) bits are moved into the Transmit
Shift Register. From there, they are clocked out onto the TX pin preceded by a START bit
and followed by a STOP bit.

Some Interrupt-Driven USART Code
Our goal here is to generate some C code that will interrupt the microcontroller when a
character is received so it can be processed as quickly as possible. Also, we want our inter-
rupt code to handle the housekeeping associated with transmitting a character as well.

The beginning of our USART C code looks much like the starting portion of our polled
serial I/O code. Don’t get all wound up about the fuses. I’ve simply opened up the
PIC18F452 memory areas for unrestricted reading and writing. I’m sure you’ve noticed that
there is one unfamiliar option in our header code. The “#device ICD=TRUE” is a Custom
Computer Services C Compiler directive that instructs the C compiler to generate code that is
compatible with Microchip’s MPLAB ICD 2 debugging hardware. An NOP (no operation)

Using Microcontroller USARTs

51

assembler instruction must reside at program memory location 0 to allow proper operation of
the MPLAB ICD 2 hardware, and the “#device ICD=TRUE” makes that possible too. In our
polling code using the PIC12F675, we arbitrarily chose our transmit and receive I/O pins as
there was no hardware USART involved. This time around, we will not be emulating a
USART in software. So, we must use the hardware USART pinout for our transmit and
receive pins that is dictated by the microcontroller. Pins C6 and C7 are the dedicated USART
transmit and receive pins on the PIC18F452. The USART pins are specifically called out in
Code Snippet 5.1.

#include <18F452.h>
#device ICD=TRUE
#use delay(clock=20000000)
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8)
#fuses HS,PUT,NOWRTB,NOEBTR,NOWRT,NOWDT,NOLVP,NOPROTECT

Code Snippet 5.1: The MPLAB ICD 2 will allow us to see into the PIC18F452. The ICSP connector on
the Easy Ethernet CS8900A is the link between the MPLAB ICD 2 and the PIC18F452 microcontroller.

Our interrupt routines (Code Snippet 5.2) will be responsible for actually handling the
raw incoming and outgoing data. Once the data is processed, we will need some routines to
manipulate it. The recvchar function removes a byte of data from the receive buffer and
adjusts the receive buffer pointer to point to the next character in the queue. The sendchar
function inserts a character to be transmitted into the transmit buffer, adjusts the transmit
buffer pointer and enables the transmit interrupt. Even though we will build a very efficient
interrupt-driven and buffered serial I/O engine, we will still need to know if there are charac-
ters in the receive buffer that need our attention. The CharInQueue function returns a TRUE
if there is a character in the buffer and a FALSE if the receive buffer is empty.

int8 recvchar(void);
int8 sendchar(int8 data);
int8 CharInQueue(void);

Code Snippet 5.2: These routines are used in conjunction with the RS-232 interrupt structure of the
PIC18F452.

Before we take a look at each of the serial I/O functions, I want to show you how the
transmit and receive buffers work. I’ll use the PIC18F452 microcontroller and serial circuitry
found on the Easy Ethernet CS8900A and the MPLAB ICD 2 in debugger mode to illustrate
the receive and transmit buffer structure and functionality.

Our Easy Ethernet CS8900A is equipped with a Sipex SP233ACT RS-232 converter, and
I have mounted a PIC18F452 in the Easy Ethernet CS8900A’s 40-pin target socket. The
PIC18F452 is being clocked at 20 MHz.

Chapter 5

52

I’ve setup the MPLAB ICD 2 within the MPLAB IDE as a programmer and debugger for
the PIC18F452. The MPLAB ICD 2 is affectionately known as the “hockey puck” and I’ve
attached the puck to my personal computer and the MPLAB IDE using the puck’s USB
interface. The Easy Ethernet CS8900A has an ICSP™ (In-Circuit Serial Programming™)
socket that allows the puck to be connected to it as a programmer/debugger device via a 6-pin
flat cable. The puck is equipped with a wall wart power jack and can also be configured to
provide power to the circuit it is attached to. Since the Easy Ethernet CS8900A has the wall
wart power interface and circuitry required to power itself and the MPLAB ICD 2, I’ve
configured the puck to obtain its power from the Easy Ethernet CS8900A.

#define USART_RX_BUFFER_SIZE 16 // 1,2,4,8,16,32,64,128 or 256 bytes
#define USART_RX_BUFFER_MASK (USART_RX_BUFFER_SIZE - 1)
//#if (USART_RX_BUFFER_SIZE & USART_RX_BUFFER_MASK)
//#error RX buffer size is not a power of 2
//#endif

Code Snippet 5.3: Things will really be busy if the buffer has to actually buffer 16 incoming bytes.

Let’s start by defining the receive buffer area. As you can see in Code Snippet 5.3, the
receive buffer is 16 bytes in length (#define USART_RX_BUFFER_SIZE 16), and can be as
long as 256 bytes. The USART_RX_BUFFER_MASK is used to calculate an index into the
buffer and is set to a value of one less than the receive buffer size. Let’s stop and think
logically about the relationship between the receive buffer size and the receive buffer mask. If
the receive buffer is 16 bytes long and begins with an index of zero (0), then the number of
bits it would take to go from 0 to 15 (actually 16 byte locations) is 4. Here is the 16-byte
progression of the 4 bits in a binary representation starting at index 0 and ending at index 15:

Photo 5.2: This is the MPLAB ICD 2; otherwise
known as the hockey puck. The MPLAB ICD 2 uses
debug facilities built into the PIC18F452 to give us
a marvelous view of the PIC18F452’s internals.

Using Microcontroller USARTs

53

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10 or hexadecimal A

1011 11 or hexadecimal B

1100 12 or hexadecimal C

1101 13 or hexadecimal D

1110 14 or hexadecimal E

1111 15 or hexadecimal F

Thus, our 4-bit receive mask can address 16 bytes of data. Let’s check our theory using
the mask table and a lower receive buffer count. Let’s say our receive buffer size was 8 bytes
in length instead of 16 bytes in length. That means our receive buffer mask would only have
to use 3 bits to index 8 bytes of data (index 0 through index 7, which is actually 8 bytes
including the index 0 value). If you were to check all of the valid receive buffer sizes, you
would notice that every time the receive buffer size increases it doubles, and every time the
receive buffer size doubles, you add an extra bit to the left of your receive buffer mask. For
instance, for a buffer size of 256 bytes, the receiver mask value would be one less than the
receive buffer size, 255, which equates to 8 receive mask bits. Note in the commented out
area that the receive buffer size must be a power of 2. With that, 2 to the 8th power (28) is
equal to 256 or 100000000 in binary. Subtracting 1 from 28 to account for index 0 is equal to
011111111 or 11111111 in binary notation, which is our 8 bits needed to cover 256 byte
indexes.

Just for grins, I selected a transmit buffer size of 128 bytes in Code Snippet 5.4. The idea
of the mask helping to determine an index is the same for both the receive and transmit
buffers. Doing the math tells us that we will need enough bits to represent 128 minus 1, or
127 in binary (01111111 or 1111111). I’ve commented out the power of 2 check in both the
receive and transmit definitions, but left them as a reminder as to how the receive and trans-
mit buffer sizes should be selected.

Chapter 5

54

#define USART_TX_BUFFER_SIZE 128 // 1,2,4,8,16,32,64,128 or 256 bytes
#define USART_TX_BUFFER_MASK (USART_TX_BUFFER_SIZE - 1)
//#if (USART_TX_BUFFER_SIZE & USART_TX_BUFFER_MASK)
//#error TX buffer size is not a power of 2
//#endif

Code Snippet 5.4: Again, things inside the PIC18F452 would be steaming if it had to buffer 128
outgoing RS-232 bytes. The PIC18F452 is fast enough to keep both the transmit and receive
buffers near empty at all times under normal loads with high baud rates.

Now that we’ve defined our transmit and receive buffer sizes and mask values, let’s
allocate some memory for the actual transmit and receive buffers in Code Snippet 5.5.

int8 USART_RxBuf[USART_RX_BUFFER_SIZE];
int8 USART_TxBuf[USART_TX_BUFFER_SIZE];
int8 USART_TxHead,USART_TxTail,USART_RxHead,USART_RxTail;

Code Snippet 5.5: These are simple memory arrays with their associated array pointers.

Both the receive and transmit buffers use a head and tail scheme to indicate whether or
not there is any data inside the buffer structure that needs attention. The easiest way for me to
explain this is to reference the CharInQueue function. Let’s assume both the
USART_RxHead and USART_RxTail variables are both initialized to zero and no data has
entered the receive buffer. When CharInQueue is called, the USART_RxHead and
USART_RxTail values will be equal at zero, and a FALSE will be returned by the
CharInQueue function. A FALSE means the receive buffer is empty. Thus, if the buffer head
and tail are equal, there is no data between them, which equates to an empty buffer. Let’s
walk through the USART receive interrupt processing an incoming character.

We begin by making sure our receive and transmit buffer heads and tails are all at the
index 0 point. This is done in the C main function with the code shown in Code Snippet 5.6.

USART_RxTail = 0x00;
USART_RxHead = 0x00;
USART_TxTail = 0x00;
USART_TxHead = 0x00;

Code Snippet 5.6: Never assume a register or memory location is clear.

Once all of the microcontroller hardware is initialized, we can use the code in Code
Snippet 5.7 to enable the receive interrupt.

Using Microcontroller USARTs

55

 enable_interrupts(INT_RDA);
 enable_interrupts(global);

Code Snippet 5.7: The global parameter can enable or disable the entire set of PIC18F452
microcontroller interrupts with a single statement.

Earlier, I mentioned that the C and BASIC compilers usually hide their access of the real
receive and transmit data registers. Here, we will actually access them directly in our inter-
rupt routines. So, if we want to use them, we must define them and their locations in the PIC
microcontroller memory map as shown in Code Snippet 5.8.

#byte RCREG = 0x0FAE
#byte TXREG = 0x0FAD

Code Snippet 5.8: These values could also be stuffed into an include file or header file and referenced
in the RS-232 source code. I’ve included them in the main source code for clarity.

OK…Our USART has been enabled and is actively looking for a start bit and a following
character. Before we start our simulation, I’m going to take some poetic license here and add
a few lines of code to put a spotlight on our transmit and receive buffer areas. The MPLAB
ICD 2 allows me a single hardware breakpoint, and I’ll place it immediately following the
unofficial code snippet, Code Snippet 5.9.

for(x=0;x<USART_RX_BUFFER_SIZE;++x)
USART_RxBuf[x] = ‘R’;

for(x=0;x<USART_TX_BUFFER_SIZE;++x)
USART_TxBuf[x] = ‘T’;

//breakpoint is inserted here

Code Snippet 5.9: Writing and debugging code without the right tools is like driving a car with no
gauges.

In Figure 5.3, the R’s denote the bytes in the receive buffer, and the T’s do the same for
the transmit buffer. If you count carefully, you’ll see that there are exactly 16 contiguous R’s
and 128 contiguous T’s. We’ll be keeping up with the data using the head and tail index
pointer values. So, we can keep the R and T designators in the transmit and receive buffers as
we run the program. What you will see is characters coming in to replace the pre-positioned
T and R markers.

Chapter 5

56

To get a complete view of what’s going on in the buffer areas, we’ll also need to keep up
with the transmit and receive buffer head and tail values. Since the head and tail values reside
in and change in the same memory location throughout the program, it’s easier to add them
to a “watch” list for observation. I’ve brought the watch list to the front in Figure 5.4.

Figure 5.3: Count em’…There are 16 receive buffer bytes and 128 transmit buffer bytes.

Using Microcontroller USARTs

57

The receive and transmit buffer head and tail memory locations will be cleared to 0x00
(the “x” means hexadecimal) just before the USART receive interrupt is enabled. Note that
the watch window gives us the address of the head and tail variables so we can find them
easily in the File Register window if we want to.

Since the MPLAB ICD 2 only allows me a single breakpoint, I’ll move that breakpoint to
a point just inside the receive interrupt routine after I manually step through the instructions
to clear the receive and transmit buffer heads and tails. After setting the new breakpoint, I’ll
run the program using the MPLAB ICD 2 debugger inside of MPLAB IDE and send an
ASCII ‘1’ from my Tera Term Pro session.

After entering an ASCII ‘1’ in the Tera Term Pro session, the breakpoint stopped the
execution of our program after the data = RCREG statement in Code Snippet 5.10.

Figure 5.4: You can also see the USART buffer pointer values in the File Register window just
beyond the last T.

Chapter 5

58

#int_RDA
void USART_RX_interrupt(void)
{

int8 data;
int8 tmphead;

data = RCREG; /* read the received data */

Code Snippet 5.10: This is the entry point for the RDA (Received Data Available) interrupt service
routine. Note that the very first thing we do is grab that incoming RS-232 data byte.

Figure 5.5: You can figure out the baud rate using the SPBRG value. At 20 MHz with the BRGH bit
set (BRGH is bit 2 of the TXSTA register), 129 in the SPBRG equates to 9600 bps. You can also easily
find this correlation in the PIC datasheet’s USART section.

Using Microcontroller USARTs

59

I’ve added the SFR (Special Function Registers) window to our set of MPLAB ICD 2
debugger windows in Figure 5.5 to show you the transmit and receive data registers, TXREG
and RCREG. The last line of RS-232 interrupt C code that was executed picked up the
contents of the RCREG and put them in the data variable. An ASCII ‘1’ (0x31 or 00110001)
is not the same as a binary ‘1’ (00000001), as you can see in the RCREG value inside the
SFR window in Figure 5.5. You can also check out the USART receive status by interpreting
the bits within the RCSTA (Receive Status and Control Register), which is also located in the
SFR window. I’ll save you some datasheet time and tell you the seventh bit of the 0x90 value
(1XXXXXXX) is the SPEN bit, which enables the serial port and configures the RX and TX
pins of the PIC18F452 as serial port pins that are dedicated to the internal USART. The
fourth bit that completes the 0x90 value (XXX1XXXX) is the CREN bit. CREN is short for
Continuous Receive Enable bit and enables the USART’s receiver. If an overrun error occurs,
it can be cleared by clearing and setting the CREN bit. This doesn’t recover any of the
corrupted data but you may be able to read the USART’s FIFO to retrieve and salvage what
you can. What you do with framing and overrun errors depends on how you code your serial
application to handle the possible error situations.

So far, thanks to our PIC18F452 microcontroller’s USART, we have an ASCII ‘1’ in the
RCREG and the ‘1’ has been transferred to a variable called data. In Figure 5.6 I’ve added
data to our watch window for a positive confirmation of the contents of the data memory
location. Notice also that I’ve changed the size of the watch values from 16 bits to 8 bits to
make it easier to read as sometimes the 16-bit value includes another adjacent and unrelated
value. When you are using the MPLAB IDE and you don’t like the way something “looks,”
click on it to see if you can alter the item by tweaking its properties. A “right click” on the
“31” in Figure 5.6 provided me with the ability to change the format of the Value display
(hex, binary, and so forth), and gave me the power to change the number of bits that display
in the Value column.

We’ve got to move the contents of the data variable to our receive buffer as fast as we can
to avoid a possible USART FIFO overrun condition. However, we can’t just stuff the data
variable’s contents into any buffer location. There’s got to be some order to this and that’s
why the head and tail index calculations are incorporated. Let’s work through calculating the
index for our ‘1’.

We know that this is our first incoming character and our watch window tells us that
USART_RxHead, or receive buffer head value, is set to 0x00. Since our USART_RxTail is
also at 0x00, we would need to put a byte of distance between the buffer head and tail to
cause it not to be “empty.” That’s easy. We simply increment our head value by 1.

Now, we only have 16 bytes of buffer space and if we run over that, we’re into our transmit
buffer space. That wouldn’t be good as you’d have to learn to smoke and drink while trying to
figure out who’s doing what to whom in the buffer space. To keep you sober and our received
characters within their allocated receive buffer memory, we will always bounce our receive
buffer head index value off of our receive buffer mask value (USART_RX_BUFFER_MASK).

Chapter 5

60

Code Snippet 5.11 shows us how the receive buffer mask and the receive buffer head
value work together to store the received byte data:

// calculate buffer index
tmphead = (USART_RxHead + 1) & USART_RX_BUFFER_MASK;

tmphead = (0x00 +1) & 0x0F;
or tmphead = 0x01 & 0x0F;
performing the bitwise AND (&) operation: 00000001 AND 00001111
results in tmphead resolving to: 00000001 or 0x01

Code Snippet 5.11: Math can be fun, even if it’s binary math.

Figure 5.6: I’ve pulled in just enough File Register data to show you the data variable memory
location at 0x00B1.

Using Microcontroller USARTs

61

The results of our calculations are confirmed in Figure 5.7.

Figure 5.7: Once the incoming byte is seized, it is put into a buffer slot as quickly as possible.

Once the new receive head index value is calculated, we can store it as such by executing
the next line of C source in Code Snippet 5.12.

// store new index
USART_RxHead = tmphead;

Code Snippet 5.12: The first byte of incoming RS-232 data will be stored in the buffer at the index
location we just calculated.

Chapter 5

62

Figure 5.8 confirms the store operation.

Figure 5.8: Our ASCII ‘1’ takes up residence in the second slot of receive buffer memory.

Bad things can happen if we inadvertently stash our current head value into our current
tail location. You can’t type fast enough to do that in our application. And, the watch window
tells us that the next C if statement will certainly fail and bypass the buffer overflow error
code between the braces in Code Snippet 5.13.

if (tmphead == USART_RxTail)
{

/* ERROR! Receive buffer overflow */
}

Code Snippet 5.13: We could put some code here to attempt to reset the buffer pointers or we
could simply issue a return and do nothing. The code between the braces would have to be tailored
to your application.

Using Microcontroller USARTs

63

Instead, as shown in Figure 5.8, our incoming ASCII ‘1’ is stored at index position 1
inside the receive buffer memory area.

 USART_RxBuf[tmphead] = data; /* store received data in buffer */

Meanwhile, our C main function in Code Snippet 5.14 is constantly executing the
CharInQueue function on what was up until now an empty receive queue.

while(1){
while(!(CharInQueue()));
sendchar(recvchar());

}

Code Snippet 5.14: The CharInQueue function returns a TRUE when our ASCII ‘1’ is received and
kicks off the next C statement, sendchar(recvchar()).

Now that we have a character in the receive buffer, the CharInQueue function will return
a TRUE when it is called. The TRUE condition kicks off the recvchar function inside the
sendchar call.

The recvchar function in Code Snippet 5.15 is not an interrupt handler and can be called
from within the application at any time. So, an internal line of CharInQueue emulation code
is included within the recvchar function.

int8 recvchar(void)
{

int8 tmptail;
/* wait for incoming data */

while (USART_RxHead == USART_RxTail);

Code Snippet 5.15: If the recvchar function is called, there had better be some data in the receive
queue.

If the USART_RxHead value is equal to the USART_RxTail, the receive buffer is empty
and there’s nothing for the recvchar function to do. The downside to this is that the program
will stay here until a character is received by the USART and put into the receive buffer.
Using the interrupt routine assures us that we won’t get stuck here.

Data is inserted into the receive buffer at the head index location and removed from the
receive buffer at the tail index location. We have to keep the tail inside the receive buffer area
too, and the wrangler is once again the receive buffer mask value.

Chapter 5

64

// calculate buffer index
tmptail = (USART_RxTail + 1) & USART_RX_BUFFER_MASK;
USART_RxTail = tmptail; // store new index

return USART_RxBuf[tmptail]; // return data

Code Snippet 5.16: The tail index is calculated exactly like the head index.

This code works in Code Snippet 5.16 just like the interrupt code, except instead of using
the current head index value to determine the new head index, the current tail index value is
used to find a new tail index value. If all goes as coded, the tmptail value will resolve to 0x01
and point to our ASCII ‘1’ residing at index location 1 inside our receive buffer.

Figure 5.9: The recvchar function removes data from the receive buffer’s tail.

I added tmptail to our watch window list in Figure 5.9. Note that USART_RxTail is now
our new receive buffer official tail index value now that the data at receive buffer index
location 1 has been processed. At this point, the receive buffer is once again empty as the
USART_RxHead and USART_RxTail occupy the same positions in the receive buffer memory
space.

Using Microcontroller USARTs

65

With the recvchar function returning the ASCII ‘1’ from the receive buffer, the sendchar
function now has a value to act upon. The sendchar function’s job is to insert a character into
the transmit buffer, adjust the transmit buffer index value and enable the transmit interrupt
mechanism. The code within the sendchar function is very similar to the receive code we’ve
already examined.

Like the recvchar function, the sendchar function in Code Snippet 5.17 is not an interrupt
handler and can be called at will. If by chance the transmit buffer is full when the sendchar
function is called, the code while (tmphead == USART_TxTail); will stall the sendchar
function until a character is removed from the transmit buffer. If the transmit interrupt
mechanism is operating correctly, the byte would eventually be removed from the transmit
buffer allowing the sendchar function to continue.

int8 sendchar(int8 data)
{

int8 tmphead;
/* calculate buffer index */

tmphead = (USART_TxHead + 1) & USART_TX_BUFFER_MASK;
/* wait for free space in buffer */

while (tmphead == USART_TxTail);
/* store data in buffer */

USART_TxBuf[tmphead] = (int8)data;
USART_TxHead = tmphead; /* store new index */

enable_interrupts(INT_TBE);

return data;
}

Code Snippet 5.17: Sending the received character is like firing an artillery piece. Once an expended
cartridge is removed from the gun, a new shell is pushed into its place, the breech is closed and the
gunner waits for the fire order. In our RS-232 transmit routine, we wait for a free buffer location,
throw the data into that location and wait for the transmit interrupt to come along and fire off the
data byte.

Here’s how everything looks just before the code enables the transmit interrupt.

Our roving ASCII ‘1’ is now positioned in the index 1 position of the 128-byte transmit
buffer. Now that our transmit buffer head value doesn’t match the transmit buffer tail value,
the transmit buffer is no longer considered empty. I’ve added the sendchar function’s
tmphead and data variables to the watch window list in Figure 5.10 so we can keep up with
them.

Chapter 5

66

A peek at the TXSTA (Transmit Status and Control Register) bits in Figure 5.10 tells us
that the TXEN (Transmit Enable) bit (XX1XXXXX) is active, and thus, so is the USART
transmitter. The BRGH (High Baud Rate Selector; more logically Baud Rate Generator High
(Speed)) bit (XXXXX1XX) indicates that the USART is set for high-speed asynchronous
mode, and the TRMT (Transmit Shift Register Status) bit (XXXXXX1X) is set telling us that
the transmit shift register (TSR) is empty.

Figure 5.10: We’ve aimed our gun and slapped in the shell (our ASCII ‘1’). Enabling the transmit
interrupt mechanism will close the breech.

Looks like the USART transmitter is just waitin’ on a friend. In reality, it’s a shark that’s
always hungry. I’m willing to bet my book royalties that every tooth is in place on the jaws
of the transmit interrupt mechanism and they’re ready to bite.

Using Microcontroller USARTs

67

Once the USART transmit interrupt is enabled, a simple feed to the TXREG is all that’s
necessary to get the byte out of the TX pin. As soon as the last STOP bit is transmitted and if
there’s any data to send, the TSR is loaded with new data to send from TXREG. When the
data transfer from TXREG to TSR is complete, TXREG is considered to be empty and the
TXIF ((USART) Transmit Interrupt Flag) bit in the PIR1 (Peripheral Interrupt Request (Flag)
Register 1) register is set. If the transmit interrupt is enabled and the TXIF flag is set, the
shark is in the water. Let’s take a dip and find out if the shark is on patrol.

Figure 5.11: Guns and sharks…What a way to describe a software routine. Everything is poised for
a transmission in this figure. All we need is some blood in the water or the order to fire.

There she is swimming around in Figure 5.11. Bit 4 of the PIR1 register is the TXIF bit.
Bit 4 and 5 of the PIE1 (Peripheral Interrupt Enable Register 1) register tell us that the
transmit and receive interrupts are enabled respectively.

We already know that there is data to be transmitted inside the transmit buffer. So, our if (
USART_TxHead != USART_TxTail) statement will evaluate as TRUE, and the code between
the braces will be executed. The Watch window in Figure 5.11 confirms this as well.

Chapter 5

68

Just like the receive routines, the transmit routines in Code Snippet 5.18 feed the transmit
buffer area with the head and feed the microcontroller application from the tail of the buffer.
The data pointed to by the transmit buffer’s tail index value is loaded into TXREG. From the
TXREG register, the ASCII ‘1’ makes its way to the TSR and out the USART’s TX pin.

#int_TBE
void USART_TX_interrupt(void)
{

int8 tmptail;
/* check if all data is transmitted */

if (USART_TxHead != USART_TxTail)
{

/* calculate buffer index */
tmptail = (USART_TxTail + 1) & USART_TX_BUFFER_MASK;
USART_TxTail = tmptail; /* store new index */

TXREG = USART_TxBuf[tmptail]; /* start transmission */
}
else
{

disable_interrupts(INT_TBE);
}

}

Code Snippet 5.18: The gun is fired and the breech is opened, then the disable_interrupts(INT_TBE)
statement is executed. If you’re following the marine analogy, the shark bites and swallows your
leg when the disable_interrupts(INT_TBE) statement is executed.

Figure 5.12 tells us many things. According to the USART_TxHead and USART_TxTail
values, the transmit buffer is empty as is the receive buffer. Bit 1 of the TXSTA has cleared
indicating that the TSR is full. The TSR is full because an ASCII ‘1’ (0x31) was loaded into
the TXREG register. After allowing the program to resume normally, that ASCII ‘1’ we just
followed through the receive and transmit buffers appeared in my Tera Term Pro terminal
emulator window.

Using Microcontroller USARTs

69

You’re probably wondering when and how the very first index position in the buffers,
zero (0), is used. Actually, index 0 is the last to be accessed. Let’s assume that we have 15
characters in our 16-byte receive buffer, and a new 16th character is ready to be inserted into
the receive buffer memory area. Code Snippet 5.19 tells us how it would go:

// calculate buffer index
tmphead = (USART_RxHead + 1) & USART_RX_BUFFER_MASK;

tmphead = (0x0F +1) & 0x0F;
or tmphead = 0x10 & 0x0F;
performing the bitwise AND (&) operation: 00010000 AND 00001111
results in tmphead resolving to: 00000000 or 0x00

Code Snippet 5.19: You can use this logic on any microcontroller you come into contact with.

Figure 5.12: You can write and debug all of the code we’ve discussed without using an MPLAB ICD
2, but it wouldn’t be as much fun.

Chapter 5

70

As you can see, the receive buffer mask will never let the index go out-of-bounds and
wraps the index around to zero to accommodate the 16th received character. I’ll leave the PIC
portion of our RS-232 discussion with a view of an actual Tera Term Pro session and the
contents of the PIC18F452’s receive and transmit buffers, courtesy of the MPLAB ICD 2 and
the RS-232 portion of the Easy Ethernet CS8900A in Figure 5.13.

Figure 5.13: In reality, all of this seemingly complex code is really simple once you break it down
into digestible pieces. You can’t make it simple if you don’t have the tools. The MPLAB ICD 2 is a
must if you want to get down to the bit and byte level of your PIC18FXXX-based programs.

Applying What We Know about RS-232 to the Atmel AVR
The RS-232 engine you see in Photo 5.3 is based on what you will come to know as the Easy
Ethernet AVR and is powered by an Atmel® ATmega16 AVR. In this chapter, I’ll show you
how to get an AVR RS-232 engine running using virtually the same RS-232 code as that used
by the Microchip PIC.

Using Microcontroller USARTs

71

Everything you know about the PIC18F452 USART applies logically to the ATmega16
USART. Of course, Microchip and Atmel do things differently inside the bowels of their
respective USARTs, but in the end, both the Atmel and Microchip USARTs do the same
thing and that’s send and receive asynchronous data frames. Also, everything you already
know about RS-232 as it relates to the PIC18F452 applies to the ATmega16. If it didn’t, the
Microchip and Atmel parts wouldn’t be able to communicate using the RS-232 standard.

The RS-232 converter and power supply circuitry for the Easy Ethernet AVR and Easy
Ethernet CS8900A are identical. The difference in hardware between the two platforms lies
in the ATmega16 and its supporting circuitry. The ATmega16 uses a different programming
interface and is supported by a bevy of Atmel programming tools. The serial circuitry for the
partially assembled Easy Ethernet AVR is shown in Schematic 5.2.

We’ll be using a different C compiler to write the code for the AVR device. The AVR C
compiler is produced by ImageCraft™ and is called ICCAVR. The Easy Ethernet AVR
RS-232 firmware was written with the professional version of ICCAVR. The ImageCraft
AVR C compiler has its own IDE. We’ll use AVR Studio as our debugging platform and
write the C code inside the ImageCraft IDE.

Photo 5.3: The same “don’t worry, you’ll see this again” goes for the
obviously partless area of this device. In later chapters, you’ll come to
know the device in this photo as the Easy Ethernet AVR.

Chapter 5

72

You can download AVR Studio free from the Atmel web site. AVR Studio is very similar
to Microchip’s MPLAB IDE, which is also a free download. AVR Studio is an IDE (Inte-
grated Development Environment) that consists of an editor, a project manager, an assembler
and compiler interface, a simulator and a debugger. The AVR Studio editor is capable of
being coupled with almost any AVR compiler and C or assembler source code can be edited
in the AVR Studio debugger source window.

ImageCraft’s ICCAVR comes complete with an integrated project manager, C editor,
ANSI Terminal emulator and an Application Builder to generate peripheral initialization
code. ICCAVR also supports symbolic debugging in the AVR Studio IDE. That means we
can write our code in the ICCAVR project environment and debug it C statements and all in
the AVR Studio IDE. It gets better. We can also use ICCAVR to generate a debug file that is
used by AVR Studio to drive a piece of debugging/programming hardware called JTAG ICE.

Schematic 5.2: We could run the ATmega16 much faster but there’s no need to here. The AVR
JTAG ICE will use the AVR’s PORTC pins while we’re examining the AVR RS-232 code.

RESET

RXD

C12

18pF

SCK

RXD

XTAL2
7.37MHz

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

RXIN

MOSI

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

TXD

+5VDC

SCK

C13

.1uF

BYPASS CAPACITORS FOR
ATMEGA16 AND SP233

MISO

RESET

+5VDC

+5VDC

+5VDC

MISO

JR3

1

2

+5VDC

+9VDC

C11

18pF

C10

.1uF

D1

1N5819

TXD

C15
.1uF

TXOUT

RXIN

U1

ATMEGA16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
RESET
VCC
GND
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6 PD7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

AVCC
GND

AREF
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

MOSI

R7

470
+C14

47uF

TXOUT

LED3

+5VDC

RESET

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

J1

AVR ISP

1
3
5
7
9

2
4
6
8

10

R6
100K

C9

.1uF

Using Microcontroller USARTs

73

The AVR JTAG ICE allows a programmer’s eye view of the ATmega16 internals. The
ability to “look inside” of an AVR microcontroller makes the AVR JTAG ICE very similar
logically to the MPLAB ICD 2 that I used to show you what was going on inside the Micro-
chip PIC18F452 microcontroller. You can use the AVR JTAG ICE to debug your code using
ImageCraft’s ICCAVR C source or the AVR assembler generated by the ImageCraft AVR C
Compiler.

Atmel’s AVR JTAG ICE is based on a concept called On-chip Debugging or OCD. A
majority of the microcontroller emulators you can buy today use a specialized “bond out”
integrated circuit that contains the CPU and I/O cores of the microcontroller it is emulating.
Thus, the code is actually running on the “bond out” device and the supporting emulator
hardware and software have the ability to reach into the “bond out” and pull out the
microcontroller internals for inspection and debugging. The Microchip MPLAB ICE 2000
uses “bond out” technology. Instead of depending on a “bond out” device, the AVR JTAG
ICE interfaces with the target AVR’s internal OCD system via a JTAG IEEE 1149.1 compli-
ant interface.

Every Atmel AVR microcontroller that pins out a JTAG pin set houses OCD logic. That
includes the Atmel ATmega16, which I’ve chosen to be the command microcontroller for our
AVR RS-232 project. The AVR JTAG ICE takes control of the ATmega16 and controls the
execution of the AVR firmware using the ATmega16’s OCD logic by way of the ATmega16’s
JTAG interface pin set. I purposely left the Easy Ethernet AVR’s JTAG pins open to allow the
use of the AVR JTAG ICE in this project and the AVR Easy Ethernet AVR project.

Coding the AVR RS-232 Routines
I’ll begin by telling you the AVR RS-232 code is logically identical to the Microchip
PIC18F452 RS-232 code. In fact, the only differences in the physical code lie in the way the
interrupt handler definition code is structured and some USART register naming conventions.
The best way to convey the similarities and differences is to put the AVR code side by side
with the PIC code.

A #pragma directive controls the actions of the ImageCraft ICCAVR C Compiler. In
Code Snippet 5.20 the #pragma interrupt_handler declares functions as interrupt handlers so
that the compiler will generate a reti (return from interrupt) instead of a standard ret (return)
instruction. The other neat thing the #pragma directive does is to make sure that all the
registers that the interrupt handler functions use are automatically saved and restored. Also,
the #pragma directive instructs the compiler to generate the interrupt vectors based on the
vector numbers. For all of this magic to work, the #pragma directive must precede the
interrupt handler function definitions.

Chapter 5

74

//**
//* PIC
//**
#include <18F452.h>
#device ICD=TRUE
#use delay(clock=20000000)
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8)
#fuses HS,PUT,NOWRTB,NOEBTR,NOWRT,NOWDT,NOLVP,NOPROTECT

#int_RDA
void USART_RX_interrupt(void)
#int_TBE
void USART_TX_interrupt(void)

//**
//* AVR
//**
#include <iom16v.h>
#include <macros.h>

#pragma interrupt_handler USART_RX_interrupt:iv_USART_RX
#pragma interrupt_handler USART_TX_interrupt:iv_USART_UDRE

Code Snippet 5.20: You’re already familiar with #include statements. The #pragma directives
immediately follow the #include statements, which are at the top of the AVR RS-232 source code.

All of the additional #device, #use and #fuses information that is in the PIC header code
is entered into the AVR mix in different ways and different places. The #device ICD=TRUE
statement does many things to prepare the PIC for use with the MPLAB ICD 2 including
setting up debugger activation bits within the PIC18F452. In a similar fashion, fuses within
the ATmega16 determine if an AVR JTAG ICE can be attached to the ATmega16’s JTAG I/O
pins. There are no AVR counterparts for the PIC’s #use delay(clock=20000000) and #use
rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7,bits=8) directives. So, we must
calculate and code the AVR baud rate and delay routine values manually.

Minor differences in syntax exist when the AVR and PIC function prototypes are declared
in Code Snippet 5.21. The AVR init_USART(unsigned int baud) function takes the place of
the #use rs232 directive used by the Custom Computer Services C Compiler.

Using Microcontroller USARTs

75

//**
//* PIC FUNCTION PROTOTYPES
//**
int8 recvchar(void);
int8 sendchar(int8 data);
int8 CharInQueue(void);

//**
//* AVR FUNCTION PROTOTYPES
//**
int recvchar(void);
int sendchar(int);
unsigned char CharInQueue(void);
void init_USART(unsigned int baud);

Code Snippet 5.21: The Custom Computer Services C Compiler uses the int8 naming convention.
This allows an integer to be defined with specific bit lengths. For instance, using the built-in
functionality that the Custom Computer Services C Compiler provides allows you to define a 16-bit
integer using the int16 directive. ICCAVR follows the ANSI standards, and an int is 16-bits in length
no matter what.

//**
//* BAUD RATE NUMBERS FOR UBRR
//**
#define b9600 47 // 7.3728MHz clock
#define b19200 23
#define b38400 11
#define b57600 7

Code Snippet 5.22: These baud rates came directly from the baud rate table in the ATmega16
datasheet. Later in this book, I’ll introduce you to a program that is bundled with ICCAVR that
calculates baud rate and delay register values.

The Custom Computer Services C Compiler #use rs232 directive also uses a parameter
within the body of the directive to set the baud rate. Since 7.3728 MHz is a common
microcontroller oscillator frequency, I was able to use a table in the ATmega16 datasheet to
extract the baud rates in Code Snippet 5.22.

ICCAVR has some built-in tricks up its sleeve as well. The ICCAVR Project Wizard
generated the bulk of the code in Code Snippet 5.23.

Chapter 5

76

//**
//* USART Function
//**
void init_USART(unsigned int baud)
{

UCSRB = 0x00; //disable while setting baud rate
UCSRA = 0x00;
UCSRC = 0x86;
UBRRL = baud; //set baud rate lo
UBRRH = 0x00; //set baud rate hi
UCSRB = 0x98;

}

Code Snippet 5.23: I added the baud variable. I also answered some simple questions and the
ICCAVR Project Wizard did the rest.

None of the AVR USART register names look like anything we used in the PIC USART
code. So, to gain a perspective as to what’s going on here, let’s take a closer look at these
ATmega16’s USART registers. We’ll begin with the UCSRB in Figure 5.14.

USART CONTROL AND STATUS REGISTER B

7 6 5 4 3 2 1 0
RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

1 0 0 1 1 0 0 0

Figure 5.14: We use the heck out of this register in the AVR USART code. The UCSZ2 bit participates
in the determination of the asynchronous frame length. RXB8 and TXB8 are used in 9-bit RS-232
sessions.

The USCRB is the AVR USART register we will use to enable and disable the USART
transmitter and receiver and enable and disable the AVR transmit and receive interrupts. The
USCRB is initially cleared and after the baud rate registers are loaded, its value is set to
0x98. Setting the USCRB to 0x98 enables both the AVR USART transmitter and receiver and
enables the USART’S receive complete interrupt.

Some of the flag bits associated with the transmit and receive interrupt bits in UCSRB
are located in the UCSRA, which is shown graphically in Figure 5.15. You’ll also find the
framing (FE), parity (PE) and overrun (DOR) error flags in the UCSRA. The AVR USART is
able to run at 2X speed by setting the U2X bit of the UCSRA and multiprocessor mode by
setting the MPCM bit of the UCSRA.

Using Microcontroller USARTs

77

USART CONTROL AND STATUS REGISTER A

7 6 5 4 3 2 1 0
RXC TXC UDRE FE DOR PE U2X MPCM

0 0 0 0 0 0 0 0

Figure 5.15: When the AVR USART is running in asynchronous mode, the 2X mode halves the baud
rate divisor value and doubles the baud rate.

The UDRE bit of the UCSRA is set after a reset to indicate that the USART transmitter is
ready. We’re using transmit interrupts and don’t want any vectors to the transmit interrupt
handler to occur while we’re setting up the USART. So, the UCSRA is cleared to indicate
that the transmitter is not ready.

The UCSRC in Figure 5.16 shares the same I/O location as the UBRRH. The URSEL bit
must be set to access the bits in the UCSRC. Looking at our baud rate value, we’ll never have
to access the UBRRH. You don’t see the URSEL bit toggled in the AVR RS-232 code be-
cause we take advantage of the fact that the UBRRH is cleared at reset.

USART CONTROL AND STATUS REGISTER C

7 6 5 4 3 2 1 0
URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

1 0 0 0 0 1 1 0

Figure 5.16: This AVR USART register shares I/O space with the UBRRH register. If your application
uses a baud rate value that is larger than 8 bits, be sure to toggle URSEL clear before writing to the
UBRRH register. An example of a baud rate that would require the UBRRH is 2400 bps with the
U2X bit set and a clock of 7.3728 MHz.

The UMSEL bit of the UCSRC selects asynchronous mode when it is cleared. The ‘S’ in
USART stands for synchronous, and a set UMSEL bit puts the AVR USART in synchronous
mode.

I like the AVR USART register naming conventions as you can almost guess what each
bit does by its name. You’ve probably already figured out that the ‘U’ in each bit name is
short for USART. Can you deduce the nature of the UPM bit set? Let’s give it a whirl;
U = USART – P = parity – M = mode. The UPM bit defines the parity setting. With both of
the UPM bits cleared, parity is disabled. A clear USBS (USART Stop Bit Select) bit instructs
the USART logic to recognize the end of an asynchronous frame using a single stop bit.

The UCSZ2 bit in the UCSRB is cleared and plays along with the UCSZ1 and UCSZ0
bits of the UCSRC to set the asynchronous frame data length to 8 bits. The UCPOL bit is
used in synchronous mode and is a “don’t care” bit to us right now.

The only things left that are different are just a few lines of code. I’ve highlighted them in
Code Snippet 5.24.

Chapter 5

78

//**
//* USART Receive Interrupt Handler
//**
// AVR

data = UDR; /* read the received data */
// PIC

data = RCREG; /* read the received data */

//**
//* USART Transmit Interrupt Handler
//**
// AVR

else
{

UCSRB &= ~(1<<UDRIE); /* disable UDRE interrupt */
}

// PIC
else
{

disable_interrupts(INT_TBE);
}

//**
//* USART Transmit Character Function
//**
// AVR

UCSRB |= (1<<UDRIE); /* enable UDRE interrupt */
// PIC

enable_interrupts(INT_TBE);

//**
//* MAIN FUNCTION
//**
// AVR

CLI(); //disable all interrupts
SEI(); //re-enable interrupts

// PIC
enable_interrupts(GLOBAL);
disable_interrupts(GLOBAL); //not used in our code

Code Snippet 5.24: This is just a difference in the underlying design of each C compiler. ImageCraft
C tends to lean more toward the ANSI standards, while the Custom Computer Services C Compiler
favors the PIC.

Using Microcontroller USARTs

79

The Custom Computer Services C Compiler PIC statements in Code Snippet 5.24 are
pretty simple to understand. Some of you may be lost in what seems to be extra dribble of
the AVR code. Actually, it’s easy to figure out if you break it down. Let’s decipher the line
UCSRB &= ~(1<<UDRIE).

Do the stuff inside the parentheses first:

1. UDRIE = 5 (value kept in iom16v.h)
2. Shift binary 00000001 left UDRIE (5) times
3. Shift results in binary result in 00100000

Then apply the ‘~’ complement operator. Complementing binary 00100000 results in
11011111.

Finally, AND (&) the shifted and complemented binary number with the contents of
UCSRB. UCSRB would have a value of 0xB8 at this point.

UCSRB 10111000
Binary number 11011111
Result 10011000

The idea was to clear the UDRIE bit and disable the USART Data Register Empty
interrupt and that’s just what we did. The same logic applies for setting the UDRIE bit except
an OR (|) is used instead of the AND (&), and the shifted binary value representing UDRIE is
not complemented.

Photo 5.4: I added standard .1-inch center header posts to allow
the inclusion of the AVR JTAG ICE into the AVR Studio RS-232
debugging mix.

Chapter 5

80

I modified the partially assembled Easy Ethernet AVR by adding a pin here and there to
allow easy hookup of my AVR JTAG ICE (Photo 5.4). After lashing in the AVR JTAG ICE, I
compiled our AVR RS-232 code using ICCAVR and loaded the debug file into AVR Studio
and the AVR JTAG ICE. I then opened up a 9600 bps Tera Term Pro terminal emulator
window, started the AVR JTAG ICE debug session and typed some ASCII text into the Tera
Term Pro session. The ASCII text was echoed back to the Tera Term Pro session, and I
stopped the AVR Studio debug session so I could show you Figure 5.17.

Figure 5.17: Now that’s one famous quote!

The ability to build and code an RS-232 interface gives you, the microcontroller program-
mer, a leg up when it comes to debugging most any microcontroller-based project. Having
the ability to send data from the microcontroller’s serial port allows you to add checkpoints
in your code to assist in debugging. Once you’ve learned the way of RS-232 for one
microcontroller, you can use that knowledge to assist you when you move to a project on a
different manufacturer’s microcontroller. The rudiments of RS-232 do not change from
microcontroller to microcontroller. The basic tenets of RS-232 ring true throughout the
vastness of microcontroller-dom.

Porky has said goodbye for us from RS-232 land. So, let’s explore yet another popular
microcontroller serial protocol in the next chapter.

81

C H A P T E R 6
I2C…The Other Serial Protocol

RS-232 is a great point-to-point protocol when communicating between two distinct and
sometimes distant pieces of equipment. However, there are times that you’ll need to be able
to talk to multiple electronic modules across a communications link that only spans the
distance of a single printed circuit board. It would be possible to “network” the board-sharing
modules using the RS-232 9-bit addressing protocol but there are lots of caveats in that
approach. Even though you could eliminate the RS-232 voltage conversion circuitry, you
would find yourself doing a tremendous amount of USART transmit and receive line house-
keeping. For instance, you would have to generate an algorithm to handle collisions between
modules attempting to transmit at the same time, or collisions that occur in the middle of a
message another module is already transmitting. The USART transmit and receive lines are
not automatically passive or tristated when inactive. Thus, you would also have to write some
code to make sure the transmit and receive lines are inactive when they’re supposed to be. If
you want an RS-232 LAN, it can be done but there is a better way.

Initially designed for use in commercial audio and video systems, the inter-IC or I2C bus
is a Philips Semiconductor creation. Just as its name implies, the I²C bus is a bidirectional
2-wire bus that is used to transport data between ICs (integrated circuits). Unlike RS-232,
the I²C bus doesn’t need any voltage converters or special interface parts. If an IC is I²C-bus
compatible, everything needed to operate on the I²C bus is incorporated on-chip within the IC.

If you take another look at our RS-232 schematic (Schematic 6.1), you’ll see that there
are two bus lines integral to the PIC18F452: a serial data line (SDA) and a serial clock line
(SCL). The SDA and SCL bus lines make up the I²C interface, and since these lines are
designated as an integral part of the PIC18F452 that makes the PIC18F452 an I²C-compatible
device. Being I²C-compatible, the PIC18F452 has provisions for a unique I²C bus address.
Using the built-in I²C functionality, the PIC18F452 can act as either the master or slave on an
I²C network. If the PIC18F452 is configured as an I²C master, it can act as a master-transmit-
ter or master-receiver. Conversely, if the PIC18F452 is chosen to be a slave on the I²C bus, its
internal I²C electronics can act in either slave-receiver or slave-transmitter mode. Remember
one of my RS-232 “LAN” caveats and collisions? I²C is a true multimaster bus that includes
arbitration safeguards against data collisions, which prevents data corruption on the I²C bus.
Like RS-232, I²C is an 8-bit bidirectional serial communications method. That’s where the
similarity ends. I²C operates at a speed of 100 kbs in standard-mode, 400 kbs in fast-mode
and up to 3.4 Mbps in high-speed mode. The only limitation as to how many devices can
exist on a single I²C bus is the total capacitance the devices place on the bus.

Chapter 6

82

Advantages of using I²C are numerous, and there are a multitude of various I²C building
blocks to choose from. By employing I²C in a design, we can eliminate much of the auxiliary
support circuitry such as address decoders and standard logic gates needed for other commu-
nications methods.

In this chapter, we’re going to use I²C to network our partially-assembled Easy Ethernet
CS8900A to our partially-assembled Easy Ethernet AVR. Since each microcontroller in the
network has on-chip I²C resources, we already have a solid basis for an I²C microcontroller
network, but before we start slinging solder, let’s take a course in I²C.

Schematic 6.1: This is a schematic of our partially assembled Easy Ethernet CS8900A. Resistors R9
and R10, plus the PIC18F452’s internal I²C engine is all that’s needed to effect an I²C network.
Notice we’ve added a new component.

C13

20pF

+5VDC

U1

PIC18F452

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1 RD2

RD3
RC4
RC5
RC6
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

SD4

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

OUT3

SD7

OUT6SD6

U3

74HCT573D

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

C
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

SD1

+5VDC

SD3

OUT1

SD2

+C15

47uF

SD3

PGD

SDA

SD5

D2

1N5819

C14

.1uF

RXIN

SD0XTAL2
2OMHz

R7

470

+5VDC

SD7 OUT7

C9

.1uF

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

OUT0

RXD

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

LE

JR3

1

2

+5VDC

C18

.1uF

TXOUT

MCLR

SCL

BYPASS CAPACITORS FOR
PIC18F452 AND SP233

SD1

PGC

+5VDC

OUT2

MCLR

OUT5

+5VDC

SD6

RXD

OUT4

R9
10K

TXD

PGC

TXOUT

D1

1N5819

R6
10K

R10
10K

74HCT573 PIN 20 = +5VDC
74HCT573 PIN 10 = GND

C12

20pF

+5VDC

C16
.1uF

TXD

RXIN

LED3

SD2

RESET

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

C11

.1uF

SD5

SDA

+5VDC

SD4

SCL

LE

+9VDC

SD0

PGD

JR1

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

C10

.1uF

I2C...The Other Serial Protocol

83

Why use I²C?
For folks that make their living designing the neat gadgets we buy at department stores and
over the Internet, putting out a product at the least possible cost is paramount. Chances are
your television and stereo both contain an I²C bus. Using I²C is cheap because you don’t have
to do anything special to setup the physical communications link. Two wires or two traces are
all that’s needed for the physical I²C-bus signal path. Although I²C can operate at a very high
speed, most of the time that’s not a factor in the design. So, the serial nature of I²C is well-
suited for low-speed control type applications. I²C also solves a majority of the design
problems one would encounter when connecting dissimilar devices on a network. Slow
devices must be able to talk to higher speed devices and vice versa, and everyone on the
network must be able to speak the same language. Most importantly, somebody has to be the
network boss and like the real world, there may be more than one boss on the bus. I²C has an
answer for all of these potential problems.

The I²C bus
As you already know, I²C is built around a two-wire serial bus, SDA (serial data) and SCL
(serial clock). Each device on the I²C bus is identified by a unique address. An I²C device can
be a microcontroller such as our PIC18F452, a memory device such as a standard I²C
EEPROM, or a special purpose device like an LED display driver. Some I²C devices are
capable of transmitting and receiving on the I²C-bus while other I²C devices may only be able
to receive. In any case, a master-slave environment always exists on the I²C bus. The I²C
master device always initiates an I²C-bus data transfer and generates the clock signals to
make the data transfer happen. The I²C device that responds to the master’s calling is consid-
ered the slave device.

Microcontrollers are normally defined as masters on a typical I²C bus with other special-
purpose I²C devices acting as their slaves. In our application, even though all of the I²C
devices are microcontrollers capable of being an I²C master, only one of the microcontrollers
will be granted master status.

If more than one master exists on a single I²C-bus, there will be conflict when one of the
multiple masters attempts to transmit in unison with another peer master device on the I²C
bus. The I²C specification solves this problem with a thing called arbitration. Arbitration is
the process of allowing only one master to control the I²C-bus at any time. Before I can really
explain arbitration to you, there are some basic I²C rules you need to know.

In an ideal world, if the master wanted to communicate with slave, the master would
address the slave. The master is now in master-transmitter mode, and the slave is in slave-
receiver mode. The master would clock-out data to the slave and terminate the data transfer
after all of the desired bytes were transmitted.

Chapter 6

84

On the other side of that, let’s say that the master wanted to receive some data from the
slave. Again, the master would clock-out an address aimed at the slave. Instead of assuming
master-transmitter mode, this time the master would become the master-receiver with the
slave acting as slave-transmitter. Data would be clocked-in by the master, which would
terminate the transfer after receiving the desired bytes. For every bit of data moved, one clock
pulse is generated and the data on the SDA line must be stable during the HIGH period of
SCL. The logic level of the data line can only change when the SCL line is LOW.

Note that in either of the aforementioned cases, the master did all of the clocking and
controlled the initiation and termination of the I²C session. The I²C master is always respon-
sible for generating the clock on the I²C bus. For an I²C bus with multiple masters, each
master generates its own specific clock. The only things that can alter a master’s clock are a
slower slave device holding down the clock line or another master I²C device during arbitration.

As you can see in both Schematic 6.2 and Schematic 6.3, the I²C bus SDA and SCL lines
are pulled high by a pair of pull-up resistors. To participate on the I²C bus, an I²C device
must present an open collector interface to the bidirectional SDA and SCL I²C-bus lines. This
type of open collector interface performs a wired-AND function. As long as the 400 pF I²C-
bus capacitance limit is not exceeded, any number of I²C devices can coexist on a single I²C
bus.

Schematic 6.2: For the sake of simplicity, I’ve left out all of the standard microcontroller connections
to help us focus on the I²C bus. I flipped a coin to choose the master microcontroller.

SCL

SDA

R1
10K

SLAVE

PIC18F452

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1 RD2

RD3
RC4
RC5
RC6
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

+5VDC

R2
10k

MASTER

ATMEGA16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
RESET
VCC
GND
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6 PD7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

AVCC
GND

AREF
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

I2C...The Other Serial Protocol

85

Schematic 6.3: This is a representation of how an I²C device
connects to the I²C bus. Note that the type of transistors and
associated circuitry would depend on the technology (CMOS,
NMOS, bipolar) of the I²C device.

CLOCK IN

VCC

SDA

PULL-UP RESISTORS

DATA OUT

DATA IN

CLOCK OUT

SCL

Figure 6.1: I²C itself is an abbreviation. So, why not abbreviate START and STOP with an S and a P.

Chapter 6

86

The wired-AND configuration used in I²C could really cause lots of confusion on the bus
if it were not for the strict protocol that makes up the logical side of the I²C bus. Remember
the START and STOP bits you were exposed to in RS-232? Well, I²C has START and STOP
bits too, but instead of bits they are technically known as I²C START and STOP conditions.
The I²C START and STOP logic levels can be seen in Figure 6.1. The SCL line must be in a
HIGH state for either a START or a STOP condition to occur. An I²C START condition is
defined as a HIGH to LOW transition of the SDA line while the SCL line is HIGH. An I²C
STOP condition occurs when the SDA line toggles from LOW to HIGH while the SCL line
is HIGH. The I²C master always generates the S and P conditions. Once the I²C master
initiates a START condition, the I²C bus is considered to be in a busy state.

I know what you’re thinking. I²C has STOP and START bits like RS-232 does, and I²C
transfers 8-bits of data in a data packet just like RS-232 does. That means that an I²C data
packet is just like an RS-232 data packet with 8 bits of data sandwiched between a START
and STOP bit. Not exactly…

It is true that I²C requires that the data be transferred in bytes. It is also true that I²C starts
a transmission with a START condition and ends the transmission with a STOP condition.
The difference between an RS-232 transmission and an I²C transmission is that an unre-
stricted number of data bytes can flow between an I²C START and STOP condition while
only a single byte of information can be transferred between the START and STOP bits of an
RS-232 data packet. Another major difference in I²C and RS-232 is that the data is trans-
ferred most significant bit first in an I²C data packet instead of least significant bit first as it is
in RS-232. Regardless of the order in which the bits are transmitted, the real enabler for I²C
multibyte transfers is the I²C acknowledge bit. Every byte that flows on the I²C bus must be
followed by an acknowledge bit. Since the acknowledge bit is very important for I²C commu-
nications, let’s get a better understanding of how it works.

I²C ACKS and NAKS
The acknowledge bit (ACK) rides on the master-generated clock pulse train. During an
acknowledge, the transmitting device releases the SDA line and uses the wired-AND func-
tionality of the I²C bus to pull the SDA line to a HIGH state. The I²C master generates an
acknowledge clock pulse and during the acknowledge bit time (HIGH SCL), the receiving
I²C device must pull the SDA line down to a LOW state for the time that SCL is in the
acknowledge clock pulse HIGH state. Standard I²C protocol expects the receiving I²C device
to acknowledge every byte that is received.

There may be times when the slave can’t acknowledge the master. For instance, the slave
is busy taking analog readings and “can’t come to the I²C phone.” In this case, the slave
leaves the SDA line in a HIGH state. The I²C master senses this negative acknowledge
(NAK) and can choose to either end the transaction with a STOP condition or begin a new
transfer by issuing a repeated START condition. The repeated START condition allows the
current I²C-bus master to keep control of the I²C-bus to issue another START bit instead of
relinquishing the bus and attempting to recapture it to issue another START condition.

I2C...The Other Serial Protocol

87

What if the slave “answers the I²C phone” in slave-receiver mode, but later gets called by
a process that doesn’t allow the slave to receive any more bytes? When the slave can’t
continue, it allows the SDA line to go HIGH during the acknowledge bit time, which in-turn
sends a NAK to the I²C master. At this point, the I²C master can either abort the transfer or
attempt a restart.

A NAK condition isn’t always a bad thing. When the I²C master is in master-receiver
mode, it signals the end of the data transfer from the slave-transmitter by generating a NAK
on the last byte it clocked out of the slave-transmitter. The slave-transmitter senses the NAK
and releases the SDA line so the I²C master can either generate a STOP condition or a
repeated START condition. Logical examples of ACKs and NAKs are depicted in Figure 6.2.

Figure 6.2: The receiver data output is shown twice here to illustrate the difference between an
ACK and a NAK.

More on Arbitration and Clock Synchronization
Now that you’re up to your ankles in I²C theory, let’s talk a bit more about arbitration. I²C
depends heavily on accurate clocking from each master on the I²C bus, and the wired-AND-
based I²C bus connections have a hand in the clock synchronization process as well.

Chapter 6

88

Data on the I²C bus is only valid when the SCL line is in the HIGH portion of a clock
pulse. Let’s use our example I²C bus with two microcontrollers attached as shown in Sche-
matic 6.2. If each microcontroller can clock the I²C bus at a specific speed, that means that
the internal master I²C engine of each microcontroller on the I²C bus has a means of counting
to effect the elapsed times needed to swing the I²C bus HIGH and LOW at a specific rate.

The AVR being the master of the I²C bus wants to communicate with the PIC slave. The
AVR generates the clock on the SCL line and sends a byte of data. The PIC acknowledges the
data and then has to go off to service an external interrupt. If the AVR continues to try to
communicate with PIC, the AVR will soon miss the acknowledgement it is expecting from
the slave PIC, and the transmission would have to be aborted or restarted by the AVR. This is
where the I²C-bus wired-AND logic comes into play to help avoid such a situation.

Think of the I²C bus as a simple AND gate. The truth table for a 2-input AND gate is
shown graphically in Figure 6.3.

Figure 6.3: This is plain-old everyday logic. Any presence of a
LOW on either of the inputs results in a LOW on the AND gate
output.

HIGH

2-INPUT AND LOGIC

HIGH

2
HIGH

LOW

LOW

3

HIGH

LOW

LOW

LOW

4

1

LOW

LOW

HIGH

Now, in Figure 6.4 let’s substitute the AVR’s and the PIC’s SCL line states for the inputs
with the AND gate outputs representing the resultant state of the I²C bus SCL line.

I2C...The Other Serial Protocol

89

When the PIC is able to service the AVR’s requests immediately, the PIC leaves the SCL
line alone by driving its SCL interface HIGH. You can see this in states 1 and 3 of our
substituted AND gate example in Figure 6.4. If the PIC needs more time to respond to AVR’s
requests, it can pull the SCL line down to a LOW state. The act of the PIC pulling down the
SCL line is called clock stretching. As you can see in states 2 and 4, the AVR is unable to
change the state of the SCL line when the PIC is holding the SCL line LOW. So, the AVR
goes into a HIGH wait state and sits there until the PIC releases the SCL line and allows it to
return to a HIGH state. The bottom line is that the SCL line will be held LOW by the I²C
device with the longest LOW period. The I²C device with the shortest HIGH period deter-
mines how long the SCL line will remain in a HIGH state during clocking. This is how the
I²C bus is synchronized.

It is possible for two or more I²C masters to initiate a start condition at the same time.
When that occurs, the masters requesting the use of the I²C bus must utilize the I²C arbitra-
tion process. I²C arbitration is performed using the SDA line while the SCL line is at a HIGH
level. Both the SCL and SDA lines are wired-AND configurations. So, we can apply the
same logic to the arbitration process as we did to the I²C bus clock synchronization.

We must assume that both the AVR and the PIC in Schematic 6.2 are masters on the I²C
bus. Figure 6.5 shows us that when any master on the I²C bus takes the SDA line LOW, the
other masters on the I²C bus are unable to drive the SDA line high. Thus, the I²C-bus arbitra-
tion loser is the master that attempts to transmit a HIGH, while another master is transmitting
a LOW on the SDA line. The master transmitting a HIGH when the SDA line is LOW senses
that the SDA line is not at the same level as it is transmitting and switches off its data output

Figure 6.4: The I²C bus is a wired-AND configuration.

3

AVR SCL HIGH

SCL LOW
AVR SCL LOW

SCL LOW

PIC SCL LOW

AVR SCL LOW

2

4

SCL HIGH

PIC SCL LOW

PIC SCL HIGH

SCL LOW

AVR SCL HIGH

1
PIC SCL HIGH

Chapter 6

90

stage. The losing master applies a HIGH to the SDA line and reverts to slave mode if it is
configured to perform the slave function. By presenting a HIGH to the SDA line, the losing
master releases the SDA line to the winning master. Let’s say the AVR is the winning master,
and the PIC is the losing master. In Figure 6.5, states 1 and 3 define the state of the SDA line
while the AVR was in charge of the I²C bus. If the PIC was declared the winner and the AVR
the loser, states 1 and 2 would go into effect while the PIC was in control of the I²C bus.

Arbitration can be performed for a number of bits into the transaction. For instance, the
masters may all be addressing the same slave in the same manner. In that case, the address
bits from each master would be identical. The good news is that the winning master’s address
and data are the only valid items on the I²C bus and nothing in terms of address and data
information is lost in the arbitration process.

Clock synchronization is always going on in the SCL domain while arbitration may be
occurring at the SDA level. A slave I²C device can throttle the speed in which it accepts data
bytes by dragging the SCL line LOW. In standard mode, any smart device on the I²C bus that
can extend the LOW period of the clock can control the speed of other devices on the I²C bus
because the device with the longest LOW period determines the top speed of every other
master device on the I²C bus.

As long as we follow the rules and use a device with built-in I²C capability, I²C is dead-
easy to implement. Before we write some I²C code to go along with our AVR and PIC
RS-232 code modules, let’s take a look at how data flows across an I²C bus.

Figure 6.5: The wired-AND logic also applies to the I²C SDA line.

3

AVR SDA HIGH

AVR SDA LOW

SDA LOW

4

PIC SDA HIGH

PIC SDA HIGH

PIC SDA LOW

AVR SDA HIGH

SDA LOW2

PIC SDA LOW
SDA LOW

AVR SDA LOW

1 SDA HIGH

I2C...The Other Serial Protocol

91

I²C Addressing
You already know that a START condition begins the I²C data transfer process. Since mul-
tiple devices can coexist on the I²C bus, there must be a way to differentiate them. This is
done with I²C addressing. I²C devices can be addressed using a 7-bit or 10-bit format. I²C 10-
bit addressing isn’t difficult to grasp once you understand 7-bit addressing. So, instead of
trying to school you on 10-bit addressing, I’ll concentrate on showing you how 7-bit address-
ing works as we’ll only be using 7-bit addressing in our project.

The first byte sent on the I²C bus after the start is usually an address byte. One exception
involves sending a “general call” address following the start condition. The “general call”
addresses everyone on the I²C bus. Our project doesn’t use the “general call.” So, let’s move
on with picking apart the I²C 7-bit address mechanism.

ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 R/W
MSB LSB

Figure 6.6: Think of this as subtracting 1 from the real I²C address to write and adding 1 to the I²C
address to read. The ADDRX bits make up the actual slave address.

The seven ADDRX bits in the 7-bit address scheme shown in Figure 6.6 are taken from
the first seven bits of the address byte that follows the start condition. Remember, in I²C-
land, the most significant bit is transmitted first. So, bits 7 through 1 of the address byte
actually carry the I²C address information. The least significant bit, bit 0, determines if the
I²C operation will be a read or write. A binary zero in bit 0 of the address byte tells the slave
that the master will be writing data to the slave device. Conversely, a binary 1 in the LSB
(least significant bit) position will allow the master to read information from the slave. Each
device on the I²C bus sees the address byte. Only the device that contains the match for the
first seven bits of the address byte will ultimately respond to the I²C master’s call. If the I²C
operation is a write from the master, the slave device enters slave-receiver mode. An I²C-bus
read operation will put the addressed slave device into slave-transmitter mode. Let’s write
some I²C code.

Some I²C Firmware
Custom Computer Services PIC Compiler easily handles the I2C master chores. Custom
Computer Services C for PICs provides built-in code for the standard I2C functions such as:
i2c_start, i2c_read, i2c_write and i2c_stop. In this section, we’re also going to be producing
AVR I²C code in parallel with the PIC C code using ICCAVR. The ImageCraft C compiler
doesn’t have built-in AVR I²C functions but we can easily write our own. Reading and
writing in I2C master mode is straightforward. The real coding work comes in when exercis-
ing the slave side of these common I2C functions.

You’ve already seen Schematic 6.1, which contains the PIC18F452 I²C circuitry. Sche-
matic 6.4 shows the AVR I²C circuitry, which is very similar to the PIC I²C circuitry.

Chapter 6

92

The AVR Master I²C Code
Atmel’s term for I²C is TWI (Two-Wire Interface). For I²C master operation, there are only
four AVR registers we will be dealing with: the TWDR (Two-Wire Interface Data Register),
the TWCR (Two-Wire Interface Control Register), the TWBR (Two-Wire Interface Bit Rate
Register) and the TWSR (Two-Wire Interface Status Register). The TWBR is set and forget.
So, we’ll only be exercising the contents of three AVR I²C registers.

You can read datasheets as well as I can, so let’s examine the AVR TWI subsystem as we
write some code to drive it. To make this easier to digest, we want to write our AVR TWI
code to look as much like our PIC I²C code as we can. So, I’ll use the Custom Computer
Services C Compiler nomenclature for I²C in the TWI AVR ICCAVR C source code.

The first thing we want to do is initialize the AVR’s TWI module. The TWCR, which is
used rather heavily, is shown in Figure 6.7.

Schematic 6.4: This is the partially assembled Easy Ethernet AVR circuitry with an added 74HCT573D
octal transparent latch. For both the PIC and the AVR, the only parts I’ve added that are really
required are the I²C pull-up resistors. In some instances, the AVR doesn’t require pull-up resistors as
it can pull up the I²C port pins internally. You only need one set of pull-up resistors on the I²C bus.

RXIN

PC4

SD4

SDA

+9VDC

SCK

XTAL2
7.37MHz

SD1

SD2

OUT3
OUT2

TXOUTTXD

LE

C11

18pF

INT0

SCK
MISO

SA4

SD3

+5VDC

R6
100K

C9

.1uF

SA2

D1

1N5819

RXD

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

SCL

JR3

1

2

PC2

C15
.1uF

SDA

SD5

OUT7

MISO
RESET

IOWB

C10

.1uF

U3

74HCT573D

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

C
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

MOSI

C13

.1uF

R8
10KSD0

OUT0

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

+5VDC

EEDO

C12

18pF

TXD

+5VDC

+5VDC

OUT5

IORB

74HCT573 PIN 20 = +5VDC
74HCT573 PIN 10 = GND

OUT1

SD7

SD0

SA0

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

+5VDC

SD4

SCL

+5VDC

J1

AVR ISP

1
3
5
7
9

2
4
6
8

10

SA1

OUT4

PC7

SA3

PC3

+5VDC

LED3

RESET

MOSI

C17

.1uF

+C14

47uF

R7

470

R9
10K

SD6

LE

BYPASS CAPACITORS FOR
ATMEGA16, 74HCT573
AND SP233

U1

ATMEGA16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
RESET
VCC
GND
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6 PD7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

AVCC
GND

AREF
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0 SD1

SD3

OUT6

RESET

TXOUT

RSTDRV

SD7

PC5

RXD

SD2
VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

PC6

SD6

SD5

RXIN

I2C...The Other Serial Protocol

93

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE

TWCR

Figure 6.7: You’ve already figured out that TW stands for Two-Wire Interface. Bits 7:4 are the
busiest bits in this register.

Clearing the TWEN bit of the TWCR disables the AVR’s TWI module, and stuffing 0x1E
into the TWBR bit puts our I²C bus on the I²C SLOW train. There’s a formula for calculating
the I²C-bus bit rate in the datasheet, but there’s an easier application to do the bit rate calcula-
tion included with ICCAVR (Figure 6.8).

Figure 6.8: Hmmm…which method do you think I used to get the value for
the I²C SLOW bit rate?

Chapter 6

94

unsigned char flags;
//**
//* INITIALIZE THE TWI
//**
void twi_init(void)
{

flags = 0x00;
TWCR= 0x00; //disable twi
TWBR= 0x1E; //set bit rate
TWSR= 0x00; //set prescale
TWAR= 0x00; //set slave address
TWCR= 0x04; //enable twi

}

Code Snippet 6.1: Since the AVR will be the master on the I²C bus, we’ll leave the slave address at
0x00 for now.

Once the I²C bit rate is set, we can enable the AVR’s TWI module. Our application will
be simple enough to preclude the use of interrupts, and our AVR master will not be config-
ured to also act as a slave. Therefore, the TWIE bit will remain clear for now. I’ve coded the
TWI registers in Code Snippet 6.1 to reflect that. The flags variable is used to identify certain
states of operation in our I²C code.

Like its PIC counterpart, our AVR I²C master will need some code to implement the basic
elements of I²C that allow it to participate on an I²C bus. Since a START condition is the
beginning of every I²C transfer, let’s begin by writing the AVR I²C start routine. The Custom
Computer Services C Compiler provides a built-in I²C start routine called i2c_start.

#define START_i2c 0x08
//**
//* AVR i2c START
//**
void i2c_start(void)
{

TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != START_i2c)

printf(“i2c Start Error\r\n”);
}

Code Snippet 6.2: Note that the 0xF8 masks out the prescale bits in the TWSR. The status codes
specified in the AVR datasheet do not include the prescale bit values.

Writing a 1 to the TWINT bit of the TWCR clears the TWINT bit. Everything revolves
around the state of the TWINT bit, as when it is set the TWI has finished an operation and is
waiting for the application to respond. Normally an interrupt is generated every time the

I2C...The Other Serial Protocol

95

TWINT goes from a low to high state. Since we’re not using I²C interrupts, we must poll the
TWINT bit after we reset it and look for it to return to a high state.

An I²C START is issued when the TWINT, TWSTA and TWEN bits are set. When the
TWINT bit returns to a set state, the I²C START has completed. A successful I²C START
condition is signaled by 0x08 in the TWSR. I’ve added some diagnostic printf code to flag an
I²C START condition error.

We must also be able to stop the I²C transfer. That is done within the Custom Computer
Services C Compiler with a built-in i2c_stop function. Guess what we will call our AVR stop
function? Our AVR stop code is shown in Code Snippet 6.3

//**
//* AVR i2c STOP
//**
void i2c_stop(void)
{

TWCR = (1<<TWINT)|(1<<TWEN) | (1<<TWSTO);
}

Code Snippet 6.3: In slave mode, the STOP condition can be used to recover from an error condition
by forcing the slave to release the SCL and SDA lines.

A STOP condition is generated by setting TWINT, TWEN and TWSTO. The TWSTO bit is
automatically cleared once the STOP condition has executed on the I²C bus.

Once a START condition is generated, the next thing that happens in a normal I²C data
transfer is the transmission of the slave address and mode bit. The slave address and mode bit
are transmitted using an I²C write command. We’ll name our AVR code in Code Snippet 6.4
after the Custom Computer Services C Compiler I²C function called i2c_write.

#define addrflag 0x01 //00000001
#define clr_modeSLA flags &= ~addrflag
#define set_modeSLA flags |= addrflag
#define MODE_SLA (flags & addrflag)

#define modeMRflag 0x02 //00000010
#define clr_modeMR flags &= ~modeMRflag
#define set_modeMR flags |= modeMRflag
#define MODE_MR (flags & modeMRflag)

#define modeMTflag 0x04 //00000100
#define clr_modeMT flags &= ~modeMTflag
#define set_modeMT flags |= modeMTflag
#define MODE_MT (flags & modeMTflag)

Chapter 6

96

//**
//* MASTER TRANSMITTER MODE STATUS CODES
//**
#define MT_SLA_ACK 0x18 //Master Transmitter Slave Addr ACK
#define MT_DATA_ACK 0x28 //Master Transmitter Data ACK
//**
//* MASTER RECEIVER MODE STATUS CODES
//**
#define MR_SLA_ACK 0x40 //Master Receiver Slave Addr ACK

//**
//* AVR i2c WRITE
//**
void i2c_write(unsigned char datum)
{

TWDR = datum;
TWCR = (1<<TWINT)|(1<<TWEN);
while (!(TWCR & (1<<TWINT)));
if(MODE_SLA && MODE_MT)
{

if ((TWSR & 0xF8) != MT_DATA_ACK)
printf(“i2c Data Transfer Error MT Mode %x\r\n”,(TWSR & 0xF8));
else
{

clr_modeSLA;
clr_modeMT;

}
}
else if (MODE_SLA && MODE_MR)
{

if ((TWSR & 0xF8) != MR_DATA_ACK)
printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));
else
{

clr_modeSLA;
clr_modeMR;

}
}
else
{

if ((TWSR & 0xF8) == MT_SLA_ACK)
{

set_modeMT;
set_modeSLA;

}

I2C...The Other Serial Protocol

97

else if ((TWSR & 0xF8) == MR_SLA_ACK)
{

set_modeMR;
set_modeSLA;

}
else
{

printf(“i2c Start Error %x\r\n”,(TWSR & 0xF8));
clr_modeSLA;
clr_modeMR;
clr_modeMT;

}
}

}

Code Snippet 6.4: Everything in this snippet flows on status codes.

Before initiating the I²C transmission, the slave address and mode bit are loaded into the
TWDR. Toggling the TWINT bit in the TWCR kicks off the slave address and mode bit write
process. The TWEN bit is set to ensure that the AVR’s I²C interface is activated.

When the slave address and mode bit write has completed without error, status codes of
0x18 (MT_SLA_ACK) or 0x40 (MR_SLA_ACK) will appear within the TWSR. If the mode
bit is set, an I²C slave read operation will be performed and flags will be set to denote this
state (MODE_SLA and MODE_MR for a read operation/MODE_SLA and MODE_MT for a
write operation).

If the mode is set for the AVR to become a Master Transmitter (MODE_MT), the next I²C
operation will perform the writing of the data. Our application will only send one byte per
transmission, and again we will call upon the services of the AVR i2c_write function we just
wrote. This time the slave address and mode bit are replaced by the actual data we want to
send to the slave. At this point, the AVR is considered a Master Transmitter and the slave is in
slave-receiver mode. Our AVR I²C code has set the MODE_SLA and MODE_MT flags
indicating that the AVR is in Master Transmitter mode and that the slave has been success-
fully addressed. A clearing of the TWINT bit sends the data onto the I²C bus. If everything
goes as planned, the TWSR will contain 0x28, which says that the slave acknowledged the
data transfer. The AVR Master Transmitter then issues a STOP condition to end the I²C
session.

The AVR I²C Master-Receiver Mode Code
There will be times with the AVR master must retrieve some information from the PIC slave.
That’s when we deploy the AVR i2c_read function in Code Snippet 6.5.

Chapter 6

98

//**
//* MASTER RECEIVER MODE STATUS CODES
//**
#define MR_DATA_ACK 0x50 //Master Receiver Data ACK
#define MR_DATA_NAK 0x58 //Master Receiver Data NAK

#define ACK_i2c 0x01
#define NAK_i2c 0x00
//**
//* AVR i2c READ
//**
unsigned char i2c_read(unsigned char acknak)
{

if(acknak == ACK_i2c)
{

TWCR = 0xC4;
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != MR_DATA_ACK)
printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

}
else //acknak == NAK_i2c
{

TWCR = 0x84;
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != MR_DATA_NAK)
printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

clr_modeSLA;
clr_modeMR;

}
return(TWDR);

}

Code Snippet 6.5: The important thing to do here is to always send a NAK when reading the last
byte from the slave.

Figure 6.9 lays out the bit pattern written to the TWCR after the START condition and
slave addressing has successfully completed. The AVR is in master-receiver mode, and the
slave is in slave-transmitter mode when the AVR i2c_read function is entered.

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

1 1 0 0 0 1 0 0

TWCR

Figure 6.9: The TWEA (TWI Enable Acknowledge Bit) is a “don’t care” bit until we enter master-
receiver mode.

I2C...The Other Serial Protocol

99

Notice that we purposely set the TWEA bit, which we have been ignoring up until this
time. Setting the TWEA bit generates an ACK on the I²C bus when a data byte is received by
the AVR master receiver. When things go right, the TWSR will hold the value of the
MR_DATA_ACK (0x50) after each byte received by the AVR in Master Receiver mode. Our
I²C application is setup to read four bytes from the slave device.

The last byte we receive from the slave transmitter must be NAKed. That’s where the
TWEA bit in Figure 6.10 gets the other 7.5 minutes of its 15 minutes of fame. By writing a 0
(zero) to the TWEA bit, a NAK is generated, which results in termination of the I²C read
session between the master receiver and the slave transmitter. The TWSR will contain a 0x58
(MR_DATA_NAK) if all goes well with the NAK operation.

7 6 5 4 3 2 1 0
TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

1 0 0 0 0 1 0 0

TWCR

Figure 6.10: Writing a 0 to the TWEA bit temporarily disconnects the AVR from the I²C bus.

I have a project in mind. Let’s combine our AVR RS-232 skills with our newfound AVR
I²C skills to transfer data between the partially assembled Easy Ethernet AVR and the Easy
Ethernet CS8900A boards. Before we put the whole of the AVR code together, let’s write
some PIC I²C slave code first.

The PIC I²C Slave-Transmitter Mode Code
To implement I²C on the Microchip PIC, there are only three PIC registers we need to be
concerned with: SSPCON, SSPSTAT and SSPBUF. SSPCON is used to determine whether
or not a collision has occurred (WCOL) and to ensure we are not stretching the clock when
we shouldn’t be (CKP = 1). Clock-stretching is legal for an I²C slave device when it can’t
respond in a timely manner. SSPSTAT gives us the status of the data transfer, while SSPBUF
is the register that actually transfers the data to and from the I²C bus.

The PIC’s MSSP (Master Synchronous Serial Port) does several other things for us
including double-buffering our received I2C data using the SSPSR/SSPBUF register combi-
nation, providing a holding register for the slave address and generating I2C interrupts on
START and STOP conditions. Double buffering is the act of holding or collecting data in an
input or output buffer while operating on a totally separate input or output buffer. In short,
double buffering allows data to be assembled for transmission while previously accumulated
data is being transmitted. Receive double-buffering occurs when the microcontroller is
working on pulling previously received data from an input buffer, while yet another input
buffer is taking in new data and holding it until the microcontroller can start processing it.

As simple as the I²C concept is, if you’re not careful, you can get your I²C code wrapped
around the axel. To make I²C coding more manageable, the I2C transmission and reception
process can be broken down into five states. Everything that’s normal in I²C begins with a
START condition. The START condition must be detected (S = 1) no matter what, and
nothing begins until a valid START condition is sensed. Once we have detected a valid

Chapter 6

100

START bit, we can use the other bits inside the SSPSTAT register to determine which state
the I2C transaction is currently in. We used the TWSR for this in the AVR I²C code. The
MSSP issues an interrupt on every byte transfer. This allows us to write I²C code, such as the
code presented in Code Snippet 6.6, using the five states to take advantage of the MSSP
module’s interrupt generation.

//**
//* SLAVE RAM DEFINITIONS
//**
int1 update_latch;
int8 index,digit;
int8 numbers[] = {0,1,2,3,4,};
//**
//* I2C SLAVE RECEIVE
//**
#INT_SSP

ssp_interrupt ()
{
//#bit SMP = SSPSTAT.7
//#bit CKE = SSPSTAT.6
//#bit D_A = SSPSTAT.5
//#bit P = SSPSTAT.4
//#bit S = SSPSTAT.3
//#bit R_W = SSPSTAT.2
//#bit UA = SSPSTAT.1
//#bit BF = SSPSTAT.0

int8 dummy;
//--
// The I2C code below checks for 5 states:
//--
// State 1: I2C write operation, last byte was an address byte.
//
// SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
//
// State 2: I2C write operation, last byte was a data byte.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
//
// State 3: I2C read operation, last byte was an address byte.
//
// SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
//
// State 4: I2C read operation, last byte was a data byte.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0

I2C...The Other Serial Protocol

101

//
// State 5: Slave I2C logic reset by NACK from master.
//
// SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
//
//--

//State 1
if(S && !D_A && !R_W && BF)

dummy = SSPBUF;
//State 2

else if(S && D_A && !R_W && BF)
{

digit = SSPBUF;
update_latch = TRUE;

}
//State 3

else if(S && !D_A && R_W && !BF)
{

index = 0x00;
while(BF);
do{
WCOL = 0;
SSPBUF = numbers[index];
}while(WCOL);
++index;
CKP = 1;

}
//State 4

else if(S && D_A && R_W && !BF)
{

while(BF);
do{
WCOL = 0;
SSPBUF = numbers[index];
}while(WCOL);
if(++index > 0x04)
index = 0x00;
CKP = 1;

}
//State 5

else if(S && D_A && !R_W && !BF)
index = 0;

}

Code Snippet 6.6: The update_latch variable and numbers[] array will be used by in our AVR-to-PIC
grand I²C ball.

Chapter 6

102

The I²C SLAVE RECEIVE routine is the PIC18F452 I²C interrupt handler code that
responds to every interrupt issued by the PIC18F452’s microcontroller’s MSSP module. I’ve
moved the bit definitions of the SSPSTAT register into the routine’s air space for clarity.

Notice that in each of the five defined states that S = 1 is common. The bit S is defined as
the third bit of the SSPSTAT register. If a valid START condition is detected, this bit will be
set.

The slave address byte immediately follows the START bit. Since the slave
microcontroller’s MSSP will always generate an interrupt if the incoming address byte
matches the slave’s internally stored address (in SPPADD), the matching address byte just
received triggers our first interrupt and its subsequent response. The MSSP module will also
automatically issue an acknowledge (ACK) pulse upon detecting an address match.

The D_A bit signals if the last byte received was data or address. In this case, we know
that a START bit was generated and was indeed followed by a 7-bit address. Therefore, D_A
is cleared to zero indicating the last byte received was an address byte.

The R/W bit of the address is cleared for a write operation and set for a read operation.
The R_W bit of the SSPSTAT registers reflects the level of the R/W bit in the address byte.
Note that if the operation is a write operation, the BF (Buffer Full) bit is always set indicating
data is in the buffer. The State 1 code runs following the reception of the address byte. The
address byte is read and discarded as the slave MSSP module has already digested the
address byte’s contents. The act of reading SSPBUF also clears the BF bit. If the BF bit is
not cleared at this point, the next incoming byte would cause an overflow condition. Let’s
follow the entire state-by-state chain of events involved with sending some data from the
AVR master I²C microcontroller to the PIC slave I²C microcontroller.

Suppose that the AVR master I²C microcontroller needs to send a message via I²C to the
PIC I²C slave microcontroller that tells the slave microcontroller to write 0x55 to its onboard
74HCT573 latch. The basic AVR TWI code would consist of what you see in Code Snippet 6.7.

i2c_start();
i2c_write(0x18);
i2c_write(0x55);
i2c_stop();

Code Snippet 6.7: The Easy Ethernet CS8900A’s I²C address is 0x18.

After initiating a START condition, the master microcontroller clocks out the slave
microcontroller’s I²C address, hexadecimal 18 (0x18). The code i2c_write(unsigned char
datum) indicates an I²C write operation has been requested as the R/W bit in the I²C address
byte is cleared. At this point in time, every slave microcontroller on the I²C bus is listening
on the I2C link looking to match its address against the incoming address byte. Our PIC I²C
slave microcontroller compares the incoming address with the address stored in its SSPADD

I2C...The Other Serial Protocol

103

register and detects a match. The slave’s BF bit is set, an ACK (acknowledge) pulse is
generated by the slave microcontroller’s MSSP hardware and an SSP interrupt is generated.
The PIC I²C slave microcontroller enters the I²C SSP interrupt routine and using the
SSPSTAT bits determines that the I2C transaction is in State 1, which tells us that the last
byte received was an address byte. The BF bit is set, which means the contents of the SSPSR
register have been transferred to the SSPBUF register. To avoid an overflow condition, the
PIC’s SSPBUF register must be read even though we don’t have any further use for the
address data.

It’s the slave microcontroller’s duty to translate the incoming I²C datastream.

#define le_pin PORTC,1

#define latchdata bit_set(le_pin); \
delay_us(1); \
bit_clear(le_pin);

//**
//* SLAVE MAIN
//**

do{
{

if(update_latch)
{

output_d(digit);
latchdata;

update_latch = FALSE;
}

}
}while(1);

}

Code Snippet 6.8: Now you know what the update_latch variable you saw in Code Snippet 6.6
is for.

The data that was sent from the I²C master that is to be output to the slave’s 74HCT573
latch was collected into the digit variable in the PIC’s I²C interrupt handler routine. In the
same stroke, the PIC I²C interrupt handler updated the update_latch flag to TRUE.

The code in Code Snippet 6.8 is the main routine that runs continuously inside the Easy
Ethernet CS8900A’s PIC18F452. The PIC I²C slave’s code picks up the state of the
update_latch variable. If the update_latch variable is TRUE, the data within the digit variable
is output to the 74HCT573 latch by the latchdata macro and the update_latch variable is
cleared to a FALSE condition. Each time a value is received by the slave via the I²C bus, it is
transferred to the latch.

Chapter 6

104

If the master microcontroller wants data from the slave microcontroller, State 3 starts
things off and the slave microcontroller is coaxed into slave-transmitter mode while the
master microcontroller becomes a master-receiver. In Code Snippet 6.9, the master micro-
controller initiates a START condition and follows it with a “read” address byte. Since the
R/W bit is the least significant bit in the address byte, the write address is simply the base
address incremented by 1 (0x19 in our case). Incrementing the address byte has the effect of
setting the R_W bit inside the I2C address byte. In this mode the master microcontroller, not
the slave microcontroller, generates the I2C ACKs and NAKs on the I²C bus.

#define ACK_i2c 0x01
#define NAK_i2c 0x00

i2c_start();
i2c_write(0x19);
for(x=0;x<3;++x)
{

datum = i2c_read(ACK_i2c);
printf(“datum = 0x%x\r\n”,datum);

}
datum = i2c_read(NAK_i2c);
i2c_stop();
printf(“datum = 0x%x\r\n”,datum);

Code Snippet 6.9: No worries…we read every byte except the last within the for loop.

Things on the I²C bus are a bit busier when a master is reading from a slave. We already
know that the slave microcontroller has four bytes of information the master can access
stored in the numbers[] array. Let’s use the AVR and the I²C bus to retrieve the four bytes
from the slave’s numbers[] array and print them out to a master Tera Term Pro session.

The slave microcontroller must be ready to send the first byte of data after the ACK
following the address byte. The State 3 code attempts to load the SSPBUF with that first byte
of data while looking out to make sure the SSPBUF is clear and ready for the byte to be
loaded. In our code, the first byte of the array numbers[] (0x00) is loaded and sent following
the reception of the address byte. The index variable is incremented to point to the next
element of the numbers[] array. Setting the CKP (SCK release control) bit assures that the
slave microcontroller is not holding the clock line low, and thus “stretching” the clock.

The master microcontroller is coded to collect a total of four bytes. Since the last byte
read was not the address byte, we can move on to State 4 in the PIC interrupt handler code.
The remainder of the four bytes of data required by the master microcontroller are clocked
out of the slave-transmitter microcontroller in State 4. To halt the I²C read operation, the
master generates a NAK after the last byte is read. The NAK_i2c in the i2c_read(NAK_i2c)
tells the AVR I²C read function to send the NAK. That brings us to State 5 and the end of the
I²C read operation.

I2C...The Other Serial Protocol

105

The AVR-to-PIC I²C Communications Ball
Let’s put everything we’ve written for RS-232 and I²C for the AVR together with everything
we’ve written for RS-232 and I²C for the PIC and move some data. The source code PIC
slave application and the AVR master I²C application is contained within Code Snippet 6.10
and Code Snippet 6.11, respectively.

//
// PIC I2C SLAVE DRIVER
// EASY ETHERNET CS8900A BOARD
// Author: Fred Eady
// Version: 1.0
// Date: 08/25/03
// Description: I2C SLAVE FUNCTION WITH 74HCT573 CODE
//
#include <18F452.h>
#include <f452.h>
#device ICD=TRUE
#fuses
DEBUG,HS,NOWRT,NOWDT,NOPUT,NOPROTECT,NOBROWNOUT,NOLVP,NOCPD,NOEBTR
#id 0x0812

#use fast_io(A)
#use fast_io(B)
#use fast_io(C)
#use fast_io(D)
#use fast_io(E)

#define esc 0x1B

//**
//* I2C SLAVE ADDRESS
//**
// LANE ADDRESS IS UPPER NIBBLE
#define i2c_addr 0x18
//**
//* RS232 AND I2C DEFINITIONS
//**
#use delay(clock=20000000)
#use i2c(Slave,Slow,sda=PIN_C4,scl=PIN_C3,force_hw,address=i2c_addr)
#use rs232(baud=9600,parity=N,xmit=PIN_C6,rcv=PIN_C7)
//**
//* SLAVE FUNCTION PROTOTYPES
//**
void cls(void);

Chapter 6

106

//**
//* SLAVE RAM DEFINITIONS
//**
int1 update_latch;
int8 index,digit;
int8 numbers[] = {0,1,2,3,4,};

#define le_pin PORTC,1

#define latchdata bit_set(le_pin); \
delay_us(1); \

bit_clear(le_pin);

//**
//* I2C SLAVE RECEIVE
//**
#INT_SSP

ssp_interrupt ()
{
//#bit SMP = SSPSTAT.7
//#bit CKE = SSPSTAT.6
//#bit D_A = SSPSTAT.5
//#bit P = SSPSTAT.4
//#bit S = SSPSTAT.3
//#bit R_W = SSPSTAT.2
//#bit UA = SSPSTAT.1
//#bit BF = SSPSTAT.0

int8 dummy;
//;--
//; The I2C code below checks for 5 states:
//;--
//; State 1: I2C write operation, last byte was an address byte.
//;
//; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
//;
//; State 2: I2C write operation, last byte was a data byte.
//;
//; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
//;
//; State 3: I2C read operation, last byte was an address byte.
//;
//; SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
//;
//; State 4: I2C read operation, last byte was a data byte.
//;

I2C...The Other Serial Protocol

107

//; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
//;
//; State 5: Slave I2C logic reset by NACK from master.
//;
//; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
//;
//;--

//State 1
if(S && !D_A && !R_W && BF)

dummy = SSPBUF;
//State 2

else if(S && D_A && !R_W && BF)
{

digit = SSPBUF;
update_latch = TRUE;

}
//State 3

else if(S && !D_A && R_W && !BF)
{

index = 0x00;
while(BF);
do{
WCOL = 0;
SSPBUF = numbers[index];
}while(WCOL);
++index;
CKP = 1;

}
//State 4

else if(S && D_A && R_W && !BF)
{

while(BF);
do{
WCOL = 0;
SSPBUF = numbers[index];
}while(WCOL);
if(++index > 0x04)
index = 0x00;
CKP = 1;

}
//State 5

else if(S && D_A && !R_W && !BF)
index = 0;

}

Chapter 6

108

void main() {

int8 x;
SET_TRIS_A(0b11111111);
SET_TRIS_B(0b11111111);
SET_TRIS_C(0b11111101);
SET_TRIS_D(0b00000000);
ADCON1 = 0x06; //00000110 all ports set for digital
ADCON0 = 0;
update_latch = FALSE;

//**
//* INITIALIZE COMMON VARIABLES
//**

SSPSTAT = 0x80;
SSPCON2 = 0x00;

//**
//* ENABLE SLAVE INTERRUPTS
//**

enable_interrupts(INT_SSP);
enable_interrupts(GLOBAL);

//**
//* SLAVE MAIN
//**

do{
{

if(update_latch)
{
output_d(digit);

latchdata;
update_latch = FALSE;
}

}
}while(1);

}

Code Snippet 6.10: Don’t worry; I’ve included the code on the CDROM so you won’t have to burn
up your fingers typing code.

You already have a good handle on the innerworkings of the PIC I²C slave code in Code
Snippet 6.10. However, I’ve thrown in the kitchen sink in the AVR master code coming up in
Code Snippet 6.11. So, I’ll break it up and discuss the code parts as they are encountered.
Consider the rest of the code in this chapter as part of Code Snippet 6.11.

I2C...The Other Serial Protocol

109

//
// AVR I2C MASTER DRIVER
// EASY ETHERNET AVR BOARD
// Author: Fred Eady
// Version: 1.0
// Date: 08/26/03
// Description: RS232 FUNCTIONS AND I2C MASTER FUNCTIONS
//

#include <iom16v.h>
#include <stdio.h>
#include <macros.h>

#pragma interrupt_handler USART_RX_interrupt:iv_USART_RX
#pragma interrupt_handler USART_TX_interrupt:iv_USART_UDRE

Code Snippet 6.11a: There’s nothing here you can’t talk about intelligently.

It looks like we’re going to include some interrupt driven RS-232
on the AVR side. The #pragma statements in Code Snippet 6.11a are a
dead giveaway. The confirmation of an
RS-232 resurrection is confirmed in Code Snippet 6.11b.

//**
//* FUNCTION PROTOTYPES
//**
int recvchar(void);
int sendchar(int);
unsigned char CharInQueue(void);
void init_USART(unsigned int baud);

void twi_init(void);
void i2c_start(void);
void i2c_write(unsigned char datum);
unsigned char i2c_read(unsigned char acknak);
void i2c_stop(void);

Code Snippet 6.11b: These declarations are a preview of what’s to come.

Chapter 6

110

The code in Code Snippet 6.11c should look familiar as well. All of the USART-related
code is contained in this snippet.

//**
//* BAUD RATE NUMBERS FOR UBRR
//**
#define b9600 47 // 7.3728MHz clock
#define b19200 23
#define b38400 11
#define b57600 7

#define USART_RX_BUFFER_SIZE 16 /* 1,2,4,8,16,32,64,128 or 256
bytes */
#define USART_RX_BUFFER_MASK (USART_RX_BUFFER_SIZE - 1)
//#if (USART_RX_BUFFER_SIZE & USART_RX_BUFFER_MASK)
//#error RX buffer size is not a power of 2
//#endif
#define USART_TX_BUFFER_SIZE 128 /* 1,2,4,8,16,32,64,128 or 256
bytes */
#define USART_TX_BUFFER_MASK (USART_TX_BUFFER_SIZE - 1)
//#if (USART_TX_BUFFER_SIZE & USART_TX_BUFFER_MASK)
//#error TX buffer size is not a power of 2
//#endif
//**
//* AVR RAM Definitions
//**
unsigned char
USART_RxBuf[USART_RX_BUFFER_SIZE],USART_TxBuf[USART_TX_BUFFER_SIZE];
unsigned char USART_TxHead,USART_TxTail,USART_RxHead,USART_RxTail;
unsigned char flags,datum,byteout,cntr;
//**
//* Init USART Function
//**
void init_USART(unsigned int baud)
{

UCSRB = 0x00; //disable while setting baud rate
UCSRA = 0x00;
UCSRC = 0x86;
UBRRL = baud; //set baud rate lo
UBRRH = 0x00; //set baud rate hi
UCSRB = 0x98;

}
//**
//* USART Receive Interrupt Handler
//**

I2C...The Other Serial Protocol

111

void USART_RX_interrupt(void)
{

unsigned char data;
unsigned char tmphead;

data = UDR; /* read the received data */
/* calculate buffer index */

tmphead = (USART_RxHead + 1) & USART_RX_BUFFER_MASK;
USART_RxHead = tmphead; /* store new index */

if (tmphead == USART_RxTail)
{

/* ERROR! Receive buffer overflow */
}

 USART_RxBuf[tmphead] = data; /* store received data in buffer */
}
//**
//* USART Receive Character Function
//**
int recvchar(void)
{

unsigned char tmptail;
/* wait for incoming data */

while (USART_RxHead == USART_RxTail);
/* calculate buffer index */

tmptail = (USART_RxTail + 1) & USART_RX_BUFFER_MASK;
USART_RxTail = tmptail; /* store new index */

return USART_RxBuf[tmptail]; /* return data */
}
//**
//* USART Transmit Interrupt Handler
//**
//interrupt [iv_USART_UDRE]
void USART_TX_interrupt(void)
{

unsigned char tmptail;
/* check if all data is transmitted */

if (USART_TxHead != USART_TxTail)
{

/* calculate buffer index */
 tmptail = (USART_TxTail + 1) & USART_TX_BUFFER_MASK;
 USART_TxTail = tmptail; /* store new index */

 UDR = USART_TxBuf[tmptail]; /* start transmission */

Chapter 6

112

}
else
{

UCSRB &= ~(1<<UDRIE); /* disable UDRE interrupt */
}

}
//**
//* USART Transmit Character Function
//**
int sendchar(int data)
{

unsigned char tmphead;
/* calculate buffer index */

tmphead = (USART_TxHead + 1) & USART_TX_BUFFER_MASK;
/* wait for free space in buffer */

while (tmphead == USART_TxTail);
/* store data in buffer */

USART_TxBuf[tmphead] = (unsigned char)data;
USART_TxHead = tmphead; /* store new index */

UCSRB |= (1<<UDRIE); /* enable UDRE interrupt */

return data;
}
//**
//* USART Character Waiting Function
//**
unsigned char CharInQueue(void)
{

return(USART_RxHead != USART_RxTail);
}

Code Snippet 6.11c: We’ve already examined this code down to the bit level using emulators and
in-circuit debuggers.

The code in Code Snippet 6.11d is the full complement of AVR I²C routines we cloned to
match the built-in I²C functions provided by the Custom Computer Services C Compiler.

#define addrflag 0x01 //00000001
#define clr_modeSLA flags &= ~addrflag
#define set_modeSLA flags |= addrflag
#define MODE_SLA (flags & addrflag)

I2C...The Other Serial Protocol

113

#define modeMRflag 0x02 //00000010
#define clr_modeMR flags &= ~modeMRflag
#define set_modeMR flags |= modeMRflag
#define MODE_MR (flags & modeMRflag)

#define modeMTflag 0x04 //00000100
#define clr_modeMT flags &= ~modeMTflag
#define set_modeMT flags |= modeMTflag
#define MODE_MT (flags & modeMTflag)

#define hexflagbit 0x08 //00001000
#define clr_hex flags &= ~hexflagbit
#define set_hex flags |= hexflagbit
#define hexflag (flags & hexflagbit)

#define iorwport PORTD
#define LE_pin 0x08 //PORTD3 00001000
#define set_le_pin iorwport |= LE_pin
#define clr_le_pin iorwport &= ~LE_pin

#define latchdata set_le_pin; \
delay_us(1); \
clr_le_pin;

#define START_i2c 0x08
#define ACK_i2c 0x01
#define NAK_i2c 0x00
//**
//* MASTER TRANSMITTER MODE STATUS CODES
//**
#define MT_SLA_ACK 0x18 //Master Transmitter Slave Addr ACK

#define MT_DATA_ACK 0x28 //Master Transmitter Data ACK
//**
//* MASTER RECEIVER MODE STATUS CODES
//**
#define MR_SLA_ACK 0x40 //Master Receiver Slave Addr ACK
#define MR_DATA_ACK 0x50 //Master Receiver Data ACK
#define MR_DATA_NAK 0x58 //Master Receiver Data NAK
//**
//* INITIALIZE THE TWI
//**
void twi_init(void)
{

flags = 0x00;
TWCR= 0x00; //disable twi

Chapter 6

114

TWBR= 0x1E; //set bit rate
TWSR= 0x00; //set prescale
TWAR= 0x00; //set slave address
TWCR= 0x04; //enable twi

}
//**
//* AVR i2c START
//**
void i2c_start(void)
{

TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != START_i2c)

printf(“i2c Start Error\r\n”);
}
//**
//* AVR i2c WRITE
//**
void i2c_write(unsigned char datum)
{

TWDR = datum;
TWCR = (1<<TWINT)|(1<<TWEN);
while (!(TWCR & (1<<TWINT)));
if(MODE_SLA && MODE_MT)
{

if ((TWSR & 0xF8) != MT_DATA_ACK)
printf(“i2c Data Transfer Error MT Mode %x\r\n”,(TWSR & 0xF8));

 else
{

clr_modeSLA;
clr_modeMT;

}
}
else if (MODE_SLA && MODE_MR)
{

if ((TWSR & 0xF8) != MR_DATA_ACK)
printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

 else
{

clr_modeSLA;
clr_modeMR;

}
}
else
{

I2C...The Other Serial Protocol

115

if ((TWSR & 0xF8) == MT_SLA_ACK)
{

set_modeMT;
set_modeSLA;

}
else if ((TWSR & 0xF8) == MR_SLA_ACK)

{
set_modeMR;
set_modeSLA;

}
else

{
printf(“i2c Start Error %x\r\n”,(TWSR & 0xF8));
clr_modeSLA;
clr_modeMR;
clr_modeMT;

}
}

}
//**
//* AVR i2c READ
//**
unsigned char i2c_read(unsigned char acknak)
{

if(acknak == ACK_i2c)
{

TWCR = 0xC4;
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != MR_DATA_ACK)
printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

}
else
{

TWCR = 0x84;
while (!(TWCR & (1<<TWINT)));
if ((TWSR & 0xF8) != MR_DATA_NAK)

printf(“i2c Data Transfer Error MR Mode %x\r\n”,(TWSR & 0xF8));

clr_modeSLA;
clr_modeMR;

}
return(TWDR);

}

Chapter 6

116

//**
//* AVR i2c STOP
//**
void i2c_stop(void)
{

TWCR = (1<<TWINT)|(1<<TWEN) | (1<<TWSTO);
}

Code Snippet 6.11d: Nothing to it so far. You haven’t seen anything new unless you “chapter
hopped” to this point.

Here’s where all of our RS-232 and I²C work comes to fruition. I attached an MPLAB
ICD 2 to the Easy Ethernet CS8900A and an AVR JTAG ICE to the Easy Ethernet AVR. The
PIC slave code will run under control of MPLAB and the MPLAB ICD 2, and the AVR
master code will run on the Easy Ethernet AVR under control of the AVR JTAG ICE and
AVR Studio.

I also connected the PIC’s I²C interface (SDA, SCL and ground) to the AVR’s TWI. The
Easy Ethernet CS8900A has an I²C “port,” while the Easy Ethernet AVR’s TWI is bundled in
with the AVR’s PORTC pins. The RS-232 communications will be handled by the AVR I²C
master, and I’ve attached the Easy Ethernet AVR’s serial port to a personal computer Tera
Term Pro serial session. All of the in-circuit debuggers are attached to a single personal
computer, and Tera Term Pro, MPLAB and AVR Studio are running on that same personal
computer. I attached the Microchip MPLAB ICD 2 using USB, and the Atmel AVR JTAG
ICE is communicating with AVR Studio using the COM1 serial port. The Easy Ethernet
AVR’s serial port is attached to the personal computer’s COM2 serial port, which is under the
control of Tera Term Pro.

OK...here’s how it all works!

The slave Easy Ethernet CS8900A is started and is listening on the I²C bus. Once the
Easy Ethernet AVR master’s USART and TWI are initialized, the Easy Ethernet throws up
the “Networking with Microcontrollers is dead easy...” banner in the Tera Term Pro window
and waits for a character to be received by the Easy Ethernet AVR’s serial port.

If the incoming character is a ‘*’ (0x2A), the hexflag flag bit is set and the byte counter
variable cntr is cleared. The ‘*’ sets up the Easy Ethernet AVR to take the next two ASCII
bytes following the ‘*’ from the Easy Ethernet AVR’s serial port and convert them into a
single hexadecimal digit. Once the hexadecimal digit is assembled, the hex digit is sent via
I²C to the slave, Easy Ethernet CS8900A, where it is latched out to the Easy Ethernet
CS8900A’s 74HCT573 latch. The Easy Ethernet AVR sends a message to the Tera Term Pro
session informing you what was sent over the I²C bus.

Entering a ‘$’ symbol from the Tera Term Pro session puts the Easy Ethernet AVR into
master-receiver mode, and the four bytes stored in the slave’s number[] array are read into the
AVR’s memory and displayed in the Tera Term Pro session.

I2C...The Other Serial Protocol

117

If you don’t enter a ‘*’ or a ‘$’ character, everything you type is echoed back to the Tera
Term Pro session. I’ve got “film at 11” of the Tera Term Pro session in Figure 6.11.

//**
//* MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN
//**
void C_task main(void)
{

unsigned char x;
CLI(); //disable all interrupts
PORTA = 0xFF;
DDRA = 0x00;
PORTB = 0xFF;
DDRB = 0x00;
PORTD = 0xFF;
DDRD = 0x00;

for(x=0;x<USART_RX_BUFFER_SIZE;++x)
USART_RxBuf[x] = ‘R’;

for(x=0;x<USART_TX_BUFFER_SIZE;++x)
USART_TxBuf[x] = ‘T’;

USART_RxTail = 0x00;
USART_RxHead = 0x00;
USART_TxTail = 0x00;
USART_TxHead = 0x00;

MCUCR = 0x00; //disable sleep modes
GICR = 0x00; //set interrupt vectors at start of flash
TIMSK = 0x00; //disable timer interrupt sources
init_USART(47);
twi_init();
SEI(); //re-enable interrupts
printf(“Networking with Microcontrollers is dead easy...\r\n”);

while(1){
++cntr;

while(!(CharInQueue()));
datum = recvchar();

if(hexflag)
{

if(datum >= ‘0’ && datum <= ‘9’)
datum -= 0x30;

else if(datum >= ‘A’ && datum <= ‘F’)
datum -= 0x37;

else if(datum >= ‘a’ && datum <= ‘f’)

Chapter 6

118

datum -= 0x67;
else
{

cntr = 0x00;
clr_hex;

}

if(cntr == 1)
byteout = datum << 4;

if(cntr == 2)
{

byteout |= datum & 0x0F;
i2c_start();

i2c_write(0x18);
i2c_write(byteout);
i2c_stop();

clr_hex;
printf(“\r\nByte Sent Via i2c = 0x%x\r\n”,byteout);

}
}
if(datum == ‘*’)
{

set_hex;
cntr=0;
}
else if(datum == ‘$’)
{

printf(“\r\n”);
i2c_start();
i2c_write(0x19);
for(x=0;x<3;++x)
{

datum = i2c_read(1);
printf(“datum = 0x%x\r\n”,datum);

}
datum = i2c_read(0);
i2c_stop();
printf(“datum = 0x%x\r\n”,datum);

}
else

sendchar(datum);

}
}

Code Snippet 6.11e: This little application shows just how easy it is to move data between multiple
devices using RS-232 and I²C.

I2C...The Other Serial Protocol

119

You’ve succeeded in building the RS-232 and I²C hardware for both a PIC and an AVR
microcontroller. Along the way, you’ve also written some pretty nifty code to drive that
hardware.

It’s time to fill those empty component areas on the Easy Ethernet CS8900A and Easy
Ethernet AVR, and in the process we’ll spawn yet another device, the Easy Ethernet W.

Figure 6.11: Everything you see in this shot was entered via the Tera Term Pro session
into the Easy Ethernet AVR’s serial port.

[This is a blank page.]

121

C H A P T E R 7
Ethernet

As Mario Andretti would say, “If everything seems under control, you’re just not going fast
enough.”

You’ve conquered RS-232 and I²C. Now it’s time to go really fast. Let’s put on our fire
suits and drive the Ethernet.

What is Ethernet?
Ethernet is a faster, more powerful yet easy-to-implement alternative to RS-232 and I²C. If
you’re into designing and building microcontroller-based devices that interface serially to the
outside world using RS-232, I’m going to show you how to add an Ethernet interface to your
microcontroller-based device. You will find that you can do the same things you do with a
serial port faster and better with Ethernet. You will also find that you can do some things with
the Ethernet interface you can’t do with the RS-232 hardware.

The proof to the Ethernet versus RS-232 pudding is the inclusion of Ethernet interfaces as
standard equipment on new personal computers along side the “old standard” serial ports.
Think about this: In the “olden” days, the only way to get on the Internet was using a serial
port and a dial-up modem connected to the POTS (Plain Old Telephone System). These days,
if you really want to zip around on the Internet you’re doing it via an Ethernet interface on
your personal computer connected to a high-speed Internet service provider. And, by the way,
Ethernet is the most widely used LAN technology in the world today.

All of this Ethernet stuff started in late 1972. I had graduated from high school, and Bob
Metcalfe and some of his Xerox PARC pals were working on the first experimental Ethernet
system. The idea at the time was to interconnect the Xerox Alto, a personal workstation with
a graphical user interface. Bob and his buddies used the experimental Ethernet to link Xerox
Alto computers to one another. In the heat of the moment, the experimental ether was also
employed as a communications link to servers and laser printers. The original signal clock for
the experimental Ethernet interface was derived from the Alto’s system clock. The resultant
data transmission rate on the experimental Ethernet, called the Alto Aloha Network, ended up
being 2.94 Mbps. Later, Bob changed the name to Ethernet. His intention was to let everyone
know that this new communications method could support any computer, not just the Xerox
Alto. The name “Ethernet” was chosen because of the way the data was transmitted and
received via a cable or through the “ether.” In days of old, luminiferous ether was believed to
propagate electromagnetic waves through space. So, just like this luminiferous substance was

Chapter 7

122

thought to carry electromagnetic waves, Ethernet could be thought of to do the same for
computer-oriented data. Thus, Bob dubbed it Ethernet.

Ethernet is a multifaceted communications method that comes in a variety of “flavors.” In
this book, we’ll cover a single flavor of 10-MB Ethernet that is based on the IEEE 802.3
standard with Ethernet engine ICs offered by two popular vendors:

■ CS8900CQ – Cirrus Logic

■ RTL8019AS – Realtek

The CS8900A-CQ will be the first Ethernet engine we will talk about. It’s easy to con-
fuse the CS8900A-CQ registers and their functionality. For the sake of clarity, I’ve assembled
all of the definitions and code that sets up the prerequisite parameters needed to put the Easy
Ethernet CS8900A board on a LAN. I’ve also provided register layouts so you can easily
reference and assimilate the functionality of the code with the technical drawl of the
CS8900A-CQ datasheet.

On the CD-ROM, I’ve included all of the datasheets and application notes that I used
when developing the firmware and hardware for the Ethernet devices you’re about to read
about and possibly build for yourself. Although I’ll be using plenty of visual aids to reinforce
the concepts, I suggest having the datasheets and application notes handy to reference as
you’re reading about the Ethernet hardware and following the flow of the source code.

The CS8900A-CQ
The CS8900A-CQ is a full-function Ethernet IC capable of singlehandedly encoding and
decoding standard Ethernet frames. Originally, the CS8900A-CQ was designed to operate on
elaborate ISA-bus, personal-computer-based Ethernet adapters. However, the CS8900A-CQ
lends itself well to smaller 8-bit microcontrollers as well. Unlike some of the cheaper
NE2000 clone Ethernet ICs, the CS8900A-CQ comes equipped with plenty of on-chip RAM,
and an internal analog module that includes integral 10Base-T transmit and receive filters. If
you don’t have a clue as to what NE2000 is, don’t worry, as we’ll walk that trail later. For
now, all you really need to know is that the CS8900A-CQ is not natively NE2000 register
compatible.

The 4 Kbytes of on-chip RAM contained within the CS8900A-CQ IC eliminate the need
for a separate external static RAM IC, and since much of the necessary information needed to
build an Ethernet session can be stored in the controlling microcontroller’s program or data
memory, there’s really no need to add an external EEPROM either. In fact, the CS8900A-CQ
datasheet explicitly says that when the CS8900A-CQ is used in 8-bit mode, an external
EEPROM cannot be supported. Whether or not to use an EEPROM is one decision we won’t
have to make in our hardware design.

For the CS8900A-CQ, all of the analog circuitry necessary to process Ethernet frames is
located on-chip with a single 4.99K 1% precision resistor being all it takes to awaken the
CS8900A-CQ’s analog functionality. The CS8900A-CQ contains everything necessary to

Ethernet

123

assemble, disassemble and propagate Ethernet packets. Even with the sophisticated internal
analog circuitry, the CS8900A-CQ is designed to function properly using a relatively inex-
pensive double-sided printed circuit board. That feature makes the CS8900A-CQ a prime
candidate for homebrew Ethernet projects. My early CS8900A-CQ projects used a discreet
isolation transformer and a separate RJ-45 jack to interface the CS8900A-CQ to the LAN
segment. I’ve since then discovered an integrated interface magnetics package that houses the
transmit and receive isolation transformers, the decoupling capacitors and the activity LEDs.
I’ll use the integrated magnetics packages for the projects presented in this book as using
them makes the CS8900A-CQ easier to design into a small microcontroller environment.

Before you can feed meaningful data into the CS8900A-CQ for transmission onto the
LAN or receive the same, the CS8900A-CQ must be powered up, reset and configured for
Ethernet packet reception and transmission. The configuration parameters are written into the
CS8900A-CQ’s internal Control and Configuration Registers using routines drawn from the
controlling microcontroller’s firmware. The CS8900A-CQ Control and Configuration Regis-
ters hold information that determines things like the CS8900A-CQ memory base address, the
Ethernet physical address (MAC address) and what types of Ethernet packets to receive.

CS8900A-CQ Reset Overview
The CS8900A-CQ’s internal circuitry and operating registers are reset by taking the
CS8900A-CQ RESET pin to a high logic level for more than 400 nS. In addition, if the
power to the CS8900A-CQ’s VDD pins falls below 2.5 volts, the CS8900A-CQ will enter a
reset mode exiting only when the power supply voltage has risen above 2.5 volts and the
CS8900A-CQ’s oscillator has stabilized. A third and purely logical way of resetting the
CS8900A-CQ is to set the RESET bit via a routine from a controlling microcontroller’s
firmware. In the case of any of the three reset methods, once a CS8900A-CQ reset is initi-
ated, the CS8900A-CQ needs at least 10 ms to recalibrate its internal analog circuitry and
initialize its internal registers. A CS8900A-CQ bit called INITD is set when the internal
calibration and initialization has completed.

CS8900A-CQ Media Interface Overview
The CS8900A-CQ supports more than one media interface, and the desired media interface
must also be selected during the configuration process. We’ll be using 10Base-T over twisted
pair, exclusively. The CS8900A-CQ has the ability to automatically detect the physical
interface (10Base-T or AUI or Attachment Unit Interface), but we will override the auto-
detect function and instruct the CS8900A-CQ to only operate using a 10Base-T interface.
Using 10Base-T allows us to interface to our CS8900A-CQ-based device using ordinary
Category 5 cabling that can be purchased most anywhere personal computer cables are sold.

CS8900A-CQ Transmit Process Overview
The transmission of an Ethernet packet using a CS8900A-CQ can be broken down into two
distinct phases. Suppose that a microcontroller wants to transmit data to another station, or
host, on the LAN. To begin Phase 1, the sending microcontroller must first issue a CS8900A-CQ

Chapter 7

124

transmit command and after permission is given by the CS8900A-CQ, load the Ethernet
frame into the CS8900A-CQ’s transmit buffer. The CS8900A-CQ transmit command tells the
CS8900A-CQ that the controlling microcontroller has asked for a frame to be transmitted that
it is holding in its buffer. In addition, the CS8900A-CQ transmit command issued by the
controlling microcontroller tells the CS8900A-CQ when to start transmitting the data it receives
from the controlling microcontroller. The bytes that follow the CS8900A-CQ transmit
command tell the CS8900A-CQ how much of its internal buffer space will be needed to hold
the frame to be transmitted. The frame passed from the controlling microcontroller normally
includes destination and source address information, the type of data the frame is carrying,
the data itself, and a checksum to help ensure the integrity of the data within the Ethernet
packet.

When sufficient buffer memory is available within the CS8900A-CQ, the controlling
microcontroller writes the frame into the CS8900A-CQ transmit buffer memory. Phase 1 of
the transmit process ends here, and Phase 2 of the transmit process (and the CS8900A-CQ
magic) begins.

In Phase 2, the CS8900A-CQ converts the frame data fed to it from the microcontroller
into an Ethernet packet and puts the packet out onto the network. As soon as all of the
designated data has been loaded into the CS8900A-CQ transmit buffer, the CS8900A-CQ
generates a preamble, which consists of alternating binary “1’s” and binary “0’s” followed by
a start of frame delimiter (SFD), which has a unique bit pattern. Then the rest of that frame
stuff I mentioned earlier is transferred into the CS8900A-CQ transmit queue. If instructed to
do so, the CS8900A-CQ is smart enough to “pad” the frame if the total length of the frame is
less than the minimum 64 bytes. The last act the CS8900A-CQ performs before shooting the
bits out onto the communications medium is to calculate and add the FCS value to the end of
the outgoing bit stream.

The preamble is generated to allow the receiving Ethernet devices to sync-up their
receiver circuits. An Ethernet device can afford to lose preamble bits, but the idea is not to
lose any important data bits. Once an Ethernet device has adjusted to the preamble signal, the
receiving Ethernet device regards any bits that follow the SFD as frame data. Figure 7.1 is a
graphic representation of the types of Ethernet packets the CS8900A-CQ will handle in
projects presented in this book.

CS8900A-CQ Receive Process Overview
Receiving an Ethernet packet with the CS8900A-CQ is also done in two phases. In Phase 1,
the CS8900A-CQ’s analog circuitry pulls an Ethernet packet into a portion of its 4-kilobyte
memory area that it has reserved as the receive buffer. The incoming encoded data is decoded
by a Manchester ENDEC (Encoder/Decoder) and converted for use by the CS8900A-CQ’s
802.3 MAC Engine. The incoming preamble and start of frame delimiter bits are discarded
by the CS8900A-CQ converting the incoming packet to an incoming frame. The incoming
frame is then processed by the CS8900A-CQ’s address filter. The CS8900A-CQ address filter
is programmable, which allows various addressing schemes to be employed. If the incoming

Ethernet

125

frame’s destination address (DA) passes the CS8900A-CQ address filter’s test, the rest of the
incoming frame information is stored in the CS8900A-CQ’s on-chip memory. The integrity
of the stored frame is checked using the CRC (FCS) bytes, and if everything is OK, the
CS8900A-CQ can signal the controlling microcontroller that its receive buffer contains a
valid frame that is ready to be transferred and processed. The microcontroller then initiates
Phase 2 and transfers the data from the CS8900A-CQ receive buffer memory into its buffer
for processing.

During Phase 2 of the receive process, the controlling microcontroller transfers the data
from the CS8900A-CQ receive buffer via an I/O portal. The portal that allows the controlling
microcontroller to access the CS8900A-CQ’s internal registers and data is called PacketPage.

CS8900A-CQ External Storage Overview
CS8900A-CQ configuration data can be loaded using firmware routines executed by the
controlling microcontroller or from an external EEPROM. In our case, there’s no need to
store any configuration data in an external EEPROM, as we can integrate all of our configura-
tion parameters into our operating code. Once the proper configuration values have been
stored in the CS8900A-CQ’s register banks, we can then turn the CS8900A-CQ loose on a
LAN (Local Area Network) or the Internet.

Although we won’t be incorporating an external EEPROM into our design, the
CS8900A-CQ always checks for the presence of an external EEPROM after each reset. If the
EEDI (EEDataIn) pin is at a high logic level, the presence of an external EEPROM is as-
sumed and the CS8900A-CQ automatically loads configuration data that is stored in the
EEPROM. So, in our firmware, we must make sure the EEDI is low after a reset. When the
CS8900A-CQ reads a low logic level on the EEDI pin, the CS8900A-CQ enters a default
configuration mode, which sets the base address to 0x0300 and initializes the CS8900A-CQ’s
internal registers to predetermined values. Besides, the EEPROM is not a valid option when
running the CS8900A-CQ in 8-bit mode.

Figure 7.1: The minimum of 64 bytes inside the Ethernet frame includes the 4 bytes of the checksum
(FCS or Frame Check Sequence). The FCS is analogous to a CRC (Cyclic Redundancy Check) value.

Chapter 7

126

CS8900A-CQ Status Indicators
Most commercial Ethernet cards have LED indicators to provide a visual status of what’s
happening on the Ethernet communications medium. These LED indicators are optional, as
the CS8900A-CQ and any other Ethernet engine IC will operate just fine without them.
However, we will incorporate them into our design simply because we can. Having the
blinking LEDs also helps in troubleshooting when things just aren’t working right. The
CS8900A-CQ has two indicator LED drivers and one logic level output pin: the LANLED,
the LINKLED and HC1. The LANLED blinks whenever a frame is transmitted or received
by the CS8900A-CQ. It also winks when a collision occurs. A valid 10Base-T link pulse
excites the LINKLED. Very little additional circuitry (two LED current limiting resistors) is
needed to use the CS8900A-CQ’s LED indicators.

In addition to driving LEDs, the LANLED and LINKLED pins can also be programmed
to simply output a logic level just as the HC1 pin does. When the CS8900A-CQ is instructed
to put the LED driver pins in logic output mode, the logic output pins are controlled by
setting and clearing bits associated with the CS8900A-CQ logic output pins. The logic levels
on these output pins can then be used to trigger other circuitry or indicate status to an exter-
nal device.

The CS8900A-CQ MAC Engine
The magic of Ethernet connectivity that emanates from the CS8900A-CQ is partially made
possible by the CS8900A-CQ’s Ethernet Media Access Control, or MAC, engine. The
CS8900A-CQ’s MAC engine is responsible for Ethernet frame transmission and reception,
which includes collision detection, preamble generation and detection and CRC generation.
The MAC is also the entity that pads the outgoing frames when they’re discovered to be too
short.

You’ve probably heard the term “802.3” thrown about when folks that claim they know
what they’re talking about are discussing Ethernet LANs. The “802.3” they’re speaking of
refers to an IEEE Ethernet standard upon which the CS8900A-CQ MAC and many other
Ethernet IC MAC engines are built.

As you can see in Figure 7.2, the CS8900A-CQ MAC engine sits between the CS8900A-
CQ’s internal bus and the CS8900A-CQ’s on-chip Manchester encoder/decoder, or ENDEC.
The ENDEC encodes (EN) and decodes (DEC) the bits passed to it by the 10Base-T inter-
face. The other side of the 10Base-T interface is where the action is as far as the
CS8900A-CQ is concerned. In a lab environment like mine, the 10Base-T interface may draw
data from a small LAN (Local Area Network) environment. The other side of the 10Base-T
interface could just as well be connected to a full-blown Internet router or tied directly to
another Ethernet device using a crossover cable. The bottom line is that the CS8900A-CQ
802.3 MAC engine automatically assembles and disassembles Ethernet packets passing
between the CS8900A-CQ’s internal bus and the ENDEC.

Ethernet

127

The CS8900A-CQ’s 802.3 MAC engine is just like the engine in your car. Unless you’re
a bona fide mechanic, you can’t fix your car’s motor when it breaks or soup it up to make it
go faster. All you know about your car’s engine is how to put gas in the tank, how to start it
and how to stop it. When the car’s engine is running, you press the accelerator pedal to give
the engine gas and make the car move or hit the brake pedal to make the car stop. The same
thought applies to what you need to know about the CS8900A-CQ’s MAC engine. In this
case, the car is analogous to an Ethernet packet and gas is data. All you need to know about
the CS8900A-CQ MAC engine is how to put gas in it, start it, drive it and stop it. The
Ethernet packet will move accordingly.

We already know that an Ethernet packet transmission originating from a CS8900A-CQ
begins with the 802.3 MAC engine generating and transmitting a 7-byte preamble. We also
know that the preamble consists of alternating binary ‘1’s and ‘0’s (10101010) and is used to
allow other Ethernet devices listening on the wire to sync-up for the upcoming data bits.
We’re also aware that immediately following the preamble is the SFD, which is coded in
binary as “10101011” and as far as the Ethernet devices receiving the bits are concerned,
everything following the SFD had better be valid frame data. At this point in the transmission
process, the CS8900A-CQ’s 802.3 MAC engine has done most of its job by providing the
wake-up call for the devices listening on the Ethernet network the CS8900A-CQ’s transmis-
sion is addressing.

The controlling microcontroller or whatever is in charge of the data must provide the
destination address (DA), the source address (SA), the length or type of transmission and the
data. If programmed to do so, the CS8900A-CQ MAC engine performs the padding and
generates the FCS checksum after the controlling microcontroller has filled in the frame
components it is responsible for. The responsibilities of the CS8900A-CQ MAC engine and
the controlling microcontroller are clarified in Figure 7.3.

Figure 7.2: The primary function of the MAC are frame encapsulation/
decapsulation, error detection/handling and media access management.

Chapter 7

128

The Manchester decoder provides a stream of NRZ (Non-Return to Zero) data to the
CS8900A-CQ’s MAC engine. The best way to explain Manchester and NRZ encoding is to
show them to you side by side as I’ve done in Figure 7.4.

Figure 7.3: The CS8900A-CQ MAC engine supplies the contents of the fields in yellow (white area).
The red fields (gray area) represent physical addressing, logical addressing and data information. If
the protocol carried inside the LLC Data area requires any special logical addressing schemes, the
special logical addressing data is woven into the initial bytes of the data contained in the Type and
LLC Data fields.

Figure 7.4: I could talk all day about this and still not make any sense. It’s a pretty simple concept
now that you can see it, huh? Manchester encoding is also sometimes called Biphase Coding
because each of the Manchester encoded bits can be defined as a positive or negative 90-degree
phase transition.

NRZ data is just that, Non-Return to Zero data. Simply stated, NRZ does not encode the
data. An NRZ logical ‘1’ is represented by positive voltage, and an NRZ logical ‘0’ is repre-
sented by zero voltage. There are no in-between voltages to specify logic levels in NRZ
encoding. Put in another way, NRZ data doesn’t have a resting voltage. The voltage level of
the data is either positive or zero, with positive being the voltage level that represents a
logical ‘1’, and zero being the voltage level that represents a logical ‘0’.

Ethernet

129

Bit timing for NRZ data is provided by an NRZ clock. As you can see in Figure 7.4, the
logic level of the NRZ data is valid at every rising edge of the NRZ clock. I’ve enhanced the
rising edges of the NRZ clock with vertical dotted lines in Figure 4. In the Manchester
encoding example I’ve drawn for us here, a logic ‘1’ is a high-to-low transition at the center
of the bit time. The center of the bit time occurs at the rising edge of the NRZ clock. Con-
versely, a Manchester encoded logic ‘0’ is a low-to-high transition in the center of the bit
time. In our example, the bit boundaries are denoted by falling edges of the NRZ clock.
Notice that the Manchester encoded data may or may not transition on a bit boundary but it
always transitions at the center of each NRZ bit. Simply stated, each NRZ bit is converted to
a Manchester bit using a transition. Figure 7.5 is what the Ethernet preamble looks like in
both the NRZ and Manchester domains.

Figure 7.5: What do you think? That “101010” NRZ-bit pattern looks like a square wave to me and
so does the Manchester bit pattern. So, using some simple math and knowing the CS8900A-CQ
clocks the LAN at 10 Mbps, I figure a bit time is equal to .1µS bit for a 10-Mbps LAN speed
(1/10,000,000). It takes 2 bit times (.2µS) to complete a full cycle (also known as the period). Just
a little more math (frequency = 1/period) tells me the preamble square wave has a frequency of 5 MHz.

The inherent nature of Manchester encoding ensures that there are enough of the center-
of-the-bit transitions to allow the CS8900A-CQ receiver’s Phase-Locked Loop circuitry to
extract the clock signal from the incoming Manchester-encoded bit stream and correctly
decode the incoming Manchester-encoded bits to NRZ data.

Assuming the receiver has synced on the preamble signal, the MAC engine checks for a
valid SFD and if the SFD checks out, the DA is read to determine if the address matches
what the CS8900A-CQ’s address filter wants to see. Once the DA is determined to be “ours,”
the rest of the incoming frame data is loaded into the CS8900A-CQ buffer. The CS8900A-
CQ can be programmed to ignore the incoming FCS bytes or load the FCS bytes and have
them checked for validity by the MAC engine.

Chapter 7

130

There are lots of CS8900A-CQ buttons and knobs we can twist and turn using firmware
that determine how the incoming and outgoing data is handled. The goal here is to get some
data moving on a LAN using the services of a microcontroller and the CS8900A-CQ. So,
instead of trying to describe every little nuance of every feature in detail, I’ll concentrate on
what we need to get the job done. You’ve had enough theory to last a while, and you’ve
already built the power supply and microcontroller circuitry (we used it in the RS-232 and
I²C chapters). So, let’s finish designing and building the CS8900A-CQ Ethernet hardware.
By the time you’ve finished reading the text and assembling your own CS8900A-CQ-based
Ethernet device, you’ll see just how easy working with the CS8900A-CQ is.

Easy Ethernet CS8900A Hardware
Because of the unique PacketPage I/O port access scheme, we can use the CS8900A-CQ with
most any of the commonly available 8-bit or 16-bit microcontrollers. To that end, I’ve chosen
the Microchip PIC16F877 as the primary microcontroller for this project.

The PIC16F877 Microcontroller
The PIC16F877 is an easy-to-understand part with ample and easily accessible resources.
Being flash based and available in the standard 40-pin DIP package, the PIC16F877 is easy
to incorporate into designs, and is capable of being programmed in-circuit using the Micro-
chip ICSP (In-Circuit Serial Programming) programming algorithm. The PIC16F877
microcontroller can be programmed hundreds of times, and the Easy Ethernet CS8900A’s
onboard ICSP circuitry allows you to program the PIC16F877 without removing it from its
socket. Another advantage to using the PIC16F877 is that we can simply drop in a Microchip
PIC18F452 and gain additional computing resources as well as speed without having to
significantly change the PIC16F877 source code.

I’ve chosen to design the Easy Ethernet CS8900A using the Microchip flash-based
microcontrollers because Microchip’s line of flash microcontrollers are inexpensive and
easily obtained. In addition, the flash-based PICs don’t require the support hardware a
standard-windowed PIC needs. For instance, using flash devices eliminates the need for an
ultraviolet EPROM eraser. And, since flash parts can be programmed and reprogrammed in-
circuit using ICSP, the development and debug cycle time is reduced significantly as fewer
microcontroller parts are needed in the development cycle. Using flash-based
microcontrollers means that there is no need to rotate a number of the same type of
microcontrollers through the ultraviolet eraser to save time between runs while you’re debug-
ging your code.

When it comes to on-chip resources, the PIC16F877 is the largest part in the PIC16F87X
crew. The PIC16F877 can operate with a 20 MHz clock, which gives an instruction cycle
time of 200 nS. There are 8K words of program flash and 368 bytes of SRAM or data
memory crammed inside a PIC16F877. Should our design require it, there is also a block
of 256 bytes of EEPROM (Electrically Erasable Programmable Read Only Memory) data
memory available for storing constants or whatever else we decide is important to keep in

Ethernet

131

on-chip memory. The PIC16F877 microcontroller’s EEPROM is nonvolatile memory and
retains any information we place there even after the power is removed from the part.

Having ample microcontroller I/O is very important in a networking design like the Easy
Ethernet CS8900A. Not only do we need enough I/O to perform tasks like monitoring a
voltage or turning an external device on or off, there have to be some I/O pins dedicated to
the CS8900A-CQ. For instance, the Easy Ethernet CS8900A microcontroller Ethernet design
requires at least 16 dedicated microcontroller I/O pins. The PIC16F877 has 33 I/O lines we
can put to work, which leaves some I/O for things that microcontrollers do best…control.

The Microchip PIC18F452
The PIC18F452 is pin for pin compatible with the PIC16F877. That’s where most of the
familiarity stops. The PIC18F452 comes with 16K on on-chip program memory backed-up
by 1.5K of RAM. The PIC16F877 is equipped with 368 bytes of SRAM. The PIC18F452’s
abundance of RAM makes the PIC18F452 a viable candidate for Ethernet LAN applications
like our Easy Ethernet CS8900A. In addition to the increased internal memory area, the
PIC18F452 can run twice as fast as the PIC16F877 at 40 MHz. All of the PIC16F877 com-
munications peripherals operate in the same manner on the PIC18F452.

The CS8900A-CQ Ethernet Engine
To facilitate the movement of data back and forth between the PIC16F877 microcontroller
and the CS8900A-CQ, the CS8900A-CQ employs a unique I/O port scheme that is called
PacketPage. The CS8900A-CQ’s PacketPage architecture is supported by 4 Kbytes of
CS8900A-CQ on-chip memory called PacketPage memory. CS8900A-CQ PacketPage
memory is used for both CS8900A-CQ internal registers and for the storage of Ethernet
transmit and receive frame data. PacketPage technology consists of a set of eight 16-bit I/O
ports that are mapped into the CS8900A-CQ I/O space. The PacketPage ports are located
between offsets 0x0000 and 0x000F and allow the PIC16F877 to access the CS8900A-CQ’s
internal registers and select portions of the CS8900A-CQ’s 4-Kbyte chunk of on-chip
memory.

To access the PacketPage I/O ports, the Ethernet adapter base address is added to the
offsets laid out in Table 7.1. In our design, the base adapter address, or I/O Base Address, is
hard-wired for 0x0300. The “adapter” referenced in the base adapter address, in this case, is
actually the entire complement of the Easy Ethernet CS8900A circuitry. Setting the
CS8900A-CQ base address is done by forcing (hard wiring) the external CS8900A-CQ
address lines SA4 through SA15 into a permanent 0x0300 pattern, with only the lower 4 bits
capable of being altered by the Easy Ethernet CS8900A’s PIC16F877 microcontroller.

Since there will be no external EEPROM in our Easy Ethernet CS8900A design, the
CS8900A-CQ internal I/O Base Address register defaults to 0x0300 on power up. The I/O
Base Address is kept at PacketPage Address 0x20 in the format shown in Figure 7.6.

Chapter 7

132

Address 0x21 Address 0x20
Most significant byte of I/O Base Address Least significant byte of I/O Base Address

Figure 7.6: The binary reset value of the I/O Base Address is 0000 0011 0000 0000.

The combination of the CS8900A-CQ default I/O Base Address register contents and external
hardwiring of the CS8900A-CQ address lines results in our PacketPage I/O port addresses
being defined between offsets 0x0300 to 0x030F. All of the necessary configuration data will
be supplied by the PIC16F877 microcontroller, and its firmware and the need for a dedicated
boot EEPROM is eliminated.

Powering the CS8900A-CQ
Some of the CS8900A-CQ power pins are designated strictly for the powering of the analog
circuitry found within the CS8900A-CQ. To properly bias these internal analog modules, R1
(a 4.99K 1% resistor), is installed as close as possible to the CS8900A-CQ RES pin (93) and
a neighboring ground pin (94). Resistor R2 (4.75K 1%) is used to pull up the CS8900A-CQ
SLEEP line at pin 77. Although the CS8900A-CQ SLEEP input has its own internal weak
pull-up, it is recommended to add the external pull-up resistor. The active low CS8900A-CQ
SLEEP pin enables the Hardware Suspend and Hardware Standby sleep modes. The Easy
Ethernet CS8900A design never activates the CS8900A-CQ sleep modes.

The CS8900A-CQ Ethernet Magnetics
The receive magnetics (isolation transformers) are integrated into a single unit with the
transmit magnetics and the indicator LEDs. The receiver magnetics have a primary-to-
secondary turns ratio of 1:1. Thus, for optimal transfer characteristics, the termination resistor
value follows the communications cable’s impedance. R5, a 100 Ohm 1% part, provides
receive-side impedance matching for 100 Ohm Category 5 communications cable.

Table 7.1: Even though the PIC16F877 is an 8-bit
microcontroller, the CS8900A-CQ requires that data be
transferred to and from the PacketPage portal using 16-bit
transfers.

PacketPage Port Layout

Offset Type Description
0000h Read/Write Receive/Transmit Data (Port 0)
0002h Read/Write Receive/Transmit Data (Port 1)
0004h Write-only TxCMD (Transmit Command)
0006h Write-only TxLength (Transmit Length)
0008h Read-only Interrupt Status Queue
000Ah Read/Write PacketPage Pointer
000Ch Read/Write PacketPage Data (Port 0)
000Eh Read/Write PacketPage Data (Port 1)

Ethernet

133

The transmit side impedance matching is performed by resistors R3 and R4, with some
help from C1 and the windings ratio of the isolation transformer. On the transmit side, the
ratio of primary to secondary windings is 1:1.414. If you’re wondering what’s inside the can,
a schematic representation of the NU1S114-XXX can be seen in Schematic 7.1. Lots of
soldering is avoided by using the NU1S114-XXX in the Easy Ethernet CS8900A design.
Without the NU1S114-XXX, the isolation transformer, the RJ-45 jack and the indicator
LEDs are all be separate components that would have to be soldered onto the Easy Ethernet
CS8900A printed circuit board separately.

R
J-

45
 F

R
O

N
T

 V
IE

W

1
2
3
4
5
6
7
8

P5

P7

P2

SHIELD

P9

750

750

NU1S114-XXX

TX = 1CT : 1.414CT

P3

P8

LED

LED

P4

P13

P12

750

P14

RX = 1CT : 1CT

750

P10

P11

P6

P1

1000pF

LED

Schematic 7.1: The XXX in the magnetics assembly part number designates the color of the in-can
LED indicators. The Easy Ethernet CS8900A uses a NU1S114-434, which sports green and yellow
LED indicators.

The Link Good LED indicator on the NU1S114-434 is driven by the LINKLED pin, (pin 99),
of the CS8900A-CQ. The HCE0 bit of the Self Control Register is set to force the pin low
when valid link pulses are detected on the communications segment. The PIC16F877
microcontroller controls the logic level of this pin if the HCE0 bit is clear. Link pulses are
generated by transmitters on the Ethernet segment if no Ethernet packet activity is detected.
Transmitted link pulses are 1-bit wide positive pulses that are generated by an Ethernet
transmitter every 16 ms. At the completion of an EOF (End of Frame) sequence, a 16 ms
timer kicks-off. If no other packets appear on the Ethernet segment before the 16 ms EOF
timer times out, a link pulse is generated.

Chapter 7

134

Pin 100 of the CS8900A-CQ is called the LANLED pin and is the driving force behind
the transmit/receive/collision indicator LED, which is also an integral part of the Ethernet
magnetics assembly. The LANLED pin is driven low for 6ms whenever a collision, transmit
or receive operation occurs. Unlike the LINKLED, the LANLED pin doesn’t do dual duty as
a microcontroller-controlled I/O pin.

I didn’t incorporate the services of the third status output pin, HC1, into the design of the
Easy Ethernet CS8900A. To use the HC1 output, a PacketPage I/O transaction must be
performed by the PIC16F877 microcontroller. Since the Easy Ethernet CS8900A’s
microcontroller is driving the state of the HC1 line anyway, it’s much easier and faster to use
a PIC16F877 microcontroller I/O line instead of the HC1 line. On the other side of that, the
HC1 is a “free” output line in that it doesn’t take a physical I/O pin from the microcontroller
attached to the CS8900A-CQ.

The schematic view of the CS8900A-CQ portion of our design (Schematic 7.2), shows
you that a minimal number of external components are needed to support the CS8900A-CQ
running in 8-bit mode. Easy Ethernet indeed.

SD6

SA3

+5VDC

A
E

N

SD1

SD5

C5
.1uF

R5
100

+5VDC

C4
.1uF

R4 24.3

R2 4.75K

SA2

IO
R

XTAL1

20MHz

SD0

R3 24.3

C1

68pf

R
E

S
E

T

C10
.1uF

C8
.1uF

L1

NU1S114-434

1
2
3
4

6
7
8
9

10
11
12
13
14

1
2
3
4
5
6
7
8

5

TXD+
TXD-
RXD+
P4/RX_CT

RXD-
P7/TX_CT
P8
P9/C1
P10/A1
P11/C2
P12/A2
P13/C1
P14/A1

TX+
TX-

RX+
J4
J5

RX-
J7
J8

P5

SD4

C9
.1uF

C7
.1uF

R1 4.99K

+5VDC

C3

.1uF

R1 680

C2

.1uf

C6
.1uF

R2 680

SA1

SD3

U4

CS8900A-CQ

37
38
39
40
41
42
43
44
45
46
47
48
50
51
52
53
54
58
59
60
65
66
67
68
71
72
73
74
27
26
25
24
21
20
19
18

28 29 62 61 49 63 75 34 33 64 32 31 30 35 15 13 11 16 14 12 3654

9 22 56 6990 85 958 10 23 55 57 70 189 86 94 96

77 76 93

84
83

80
79

82
81

92
91
88
87

78
99
100
17

97

98

2 7 36

SA0
SA1
SA2
SA3
SA4
SA5
SA6
SA7
SA8
SA9
SA10
SA11
SA12
SA13
SA14
SA15
SA16
SA17
SA18
SA19
SD0
SD1
SD2
SD3
SD4
SD5
SD6
SD7
SD8
SD9
SD10
SD11
SD12
SD13
SD14
SD15 M

E
M

W
M

E
M

R
IO

W
IO

R
R

E
F

R
E

S
H

A
E

N
R

E
S

E
T

M
E

M
C

S
16

IO
C

S
16

IO
C

H
R

D
Y

IN
T

R
Q

0
IN

T
R

Q
1

IN
T

R
Q

2
IN

T
R

Q
3

D
M

A
R

Q
0

D
M

A
R

Q
1

D
M

A
R

Q
2

D
M

A
C

K
0

D
M

A
C

K
1

D
M

A
C

K
2

E
E

C
S

E
E

D
A

T
A

IN
E

E
D

A
T

A
O

U
T

E
E

S
K

D
V

D
D

1

D
V

D
D

2

D
V

D
D

3

D
V

D
D

4

A
V

D
D

1

A
V

D
D

2

A
V

D
D

3

D
V

S
S

1

D
V

S
S

1A

D
V

S
S

2

D
V

S
S

3

D
V

S
S

3A

D
V

S
S

4

A
V

S
S

0

A
V

S
S

1

A
V

S
S

2

A
V

S
S

3

A
V

S
S

4

H
W

S
LE

E
P

T
E

S
T

S
E

L

R
E

S

DO-
DO+

DI-
DI+

CI-
CI+

RXD-
RXD+
TXD-
TXD+

BSTATUS/HC1
LINKLED/HC0

LANLED
CSOUT

XTAL1

XTAL2

E
LC

S
C

H
IP

S
E

L
S

B
H

E

+5VDC

SD7

IO
W

SA0

IN
T

R
Q

0

SD2

+5VDC

Schematic 7.2: The SA0:SA15 0x0300 base address pattern is apparent in the schematic view of
the CS8900A-CQ Ethernet module. By the way, you’ll see a colon used a lot in this text between
address and data line descriptions. Just read the colon as the word “through.” For instance, SA0:SA15
translates as: “SA0 through SA15.”

Ethernet

135

Designing in the Easy Ethernet CS8900A’s PIC16F877
Microcontroller
There are a total of twenty CS8900A-CQ address lines (SA0:SA19), but only the lower
sixteen (SA0:SA15), are used for I/O read and write operations. To navigate the entire
PacketPage port structure, it is only necessary to manipulate the least significant nibble
(SA0:SA3) of the 0x0300 address configuration. Thus, we only need four of the
microcontroller’s I/O lines to serve as the PacketPage address lines. In this design, I’ve
assigned pins RB0:RB3 of the PIC16F877 microcontroller to address line duty.

In addition to the four CS8900A-CQ address lines provided by PORTB, the PIC16F877
microcontroller will provide 8 bits of CS8900A-CQ bidirectional data bus from its PORTD I/
O pins. In a preliminary design, I used the PIC16F877’s PORTC as the data bus. I went
ahead with writing the PIC16F877 microcontroller firmware with the PORTC data bus
configuration and everything worked as expected. After deciding that I was wasting a per-
fectly good RS-232 port and I²C interface, I decided to move the data bus to PORTD of the
PIC16F877.

An interesting thing happened during the initial phases of testing the CS8900A-CQ/
PIC16F877 microcontroller union. I noticed that I could run without pull-up resistors on
PORTC or PORTD when I used a “real” PIC16F877 microcontroller. When I emulated the
PIC16F877 microcontroller with the Microchip ICE 2000, I found that I had to install the
PORTD pull-up resistors for proper operation. Resistors are cheap and easy to install. So, I
kept the PORTD pull-up resistors in the final design. This bug kept me scratching my head
for at least a week.

To access the CS8900A-CQ’s PacketPage memory, we must employ the services of the
CS8900A-CQ AEN, IOR and IOW pins in concert with the CS8900A-CQ data and address
busses that are tied to the PIC16F877 microcontroller’s PORTB and PORTD. The
PIC16F877 microcontroller’s I/O pin RB4 has been tapped to handle the CS8900A-CQ AEN
pin, and two bits of the PIC16F877’s PORTE I/O port, RE0 and RE1, will control the logic
levels of the CS8900A-CQ IOR and IOW lines, respectively. The CS8900A-CQ AEN input
serves as a pseudo-chip select in our design. Asserting IOR with a valid address puts the
contents of the selected CS8900A-CQ 16-bit I/O register on the data bus. Conversely, a valid
address coupled with the active low IOW signal writes the contents of the data bus into the
selected CS8900A-CQ 16-bit I/O register.

Even though the PIC16F877 microcontroller can use the CS8900A-CQ’s PacketPage
architecture to see into the CS8900A-CQ, we still must have a way to sense that a good
packet is sitting in the CS8900A-CQ receive queue. Since the CS8900A-CQ cannot reliably
support interrupts in 8-bit mode, the status of incoming packets is obtained by having the
Easy Ethernet CS8900A’s onboard PIC16F877 poll the CS8900A-CQ RxOK bit inside the
CS8900A-CQ Receiver Event Register. If the CS8900A-CQ’s RxOK bit is set, the length of
the valid received frame is loaded into PacketPage Address 0x0402.

Chapter 7

136

Even though the CS8900A-CQ can be reset using microcontroller control using bit 6 of the
CS8900A-CQ Self Control Register, I’ve also elected to externally control the CS8900A-CQ
RESET line using the remaining PORTE I/O pin, RE2.

My PIC16F877 pin assignments intentionally leave the entire PIC PORTA I/O bank
open. With the PIC16F877 I/O pin assignments I have made, PORTA can now be used as
general purpose I/O, A/D (analog-to-digital) inputs or a combination of both A/D and I/O.
Since I went out of my way to preserve the I²C and RS-232 ports, I’ve provided hardware and
component pads on the Easy Ethernet CS8900A printed circuit board for the optional use of
I²C and RS-232 by way of PORTC of the PIC16F877 microcontroller. Otherwise, most of the
I/O pins of PORTC are available as only one other PORTC pin is assigned as the latch enable
signal for the 74HCT573 transparent latch. Speaking of latches, since there is not a full 8-bit
output port available, I decided to add a 74HCT573 transparent latch to PORTD. Using a pin
from PORTC (RC1) as the 74HCT573 latch enable enables an 8-bit output port that is
multiplexed with the CS8900A-CQ data bus. The inclusion of the 74HCT573 provides 6 bits
of analog or digital input or general purpose I/O via PORTA and 8 bits of digital output
complements of the 74HCT573.

The ICSP (In-Circuit Serial Programming) Interface
The ICSP header is wired in the Microchip suggested standard manner and can be used with
the Microchip MPLAB® ICD, MPLAB ICD 2 or PRO MATE® II. A 6-pin RJ-11 connection
is the ICSP connection method used by the MPLAB ICD and MPLAB ICD 2. The PRO
MATE II uses a more elaborate 15-pin ICSP interface. If you have access to a PRO MATE II
and the PRO MATE II ICSP module, a simple 15-pin to RJ-11 adapter cable can be easily
fabricated to allow the PRO MATE II’s ICSP module to service the Easy Ethernet CS8900A’s
ICSP interface. The RJ-11 interface cable comes as standard equipment when you purchase
either of the ICD modules.

No matter what type of PIC programmer you use on the PIC16F877 microcontroller,
PORTB pins RB6 and RB7 are used to receive program clock and program data, respectively.
The ICSP algorithm uses the signals driving RB6 and RB7 to program the PIC16F877’s
internal flash memory. The PIC programmer supplies the programming voltage (usually +13
VDC) through the MCLR line. At +13 VDC, the programming voltage applied to the MCLR
pin is high enough to possibly destroy other components on the Easy Ethernet CS8900A. So,
blocking diode D2 is used to isolate the potentially damaging programming voltage from the
rest of the Easy Ethernet CS8900A’s circuitry.

The PIC16F877 microcontroller section of the Easy Ethernet CS8900A is shown sche-
matically in Schematic 7.3. All of the Easy Ethernet CS8900A IC components are powered
with +5 VDC. The LM340S-based power supply circuit gets its power from a standard 9V-
center positive wall wart. Diode D1 protects against accidental polarity reversal at the power
supply input. The capacitors surrounding the LM340S voltage regulator provide filtering to
provide a clean +5 VDC output voltage for the Easy Ethernet CS8900A.

Ethernet

137

Pin RA4 of the PIC16F877 microcontroller’s PORTA is an open collector pin. If you
decide to use RA4 as an I/O pin, the open collector must be pulled to VCC for proper opera-
tion of the pin. Pads for a pull-up resistor, (R8), are designed into the printed circuit board
layout just in case you require the use of this pin.

I²C is activated by turning on the PIC16F877’s MSSP module’s functionality via firm-
ware and by installing SCL and SDA pull-up resistors R9 and R10. The I²C interface code is
not included as part of the Easy Ethernet CS8900A source code. However, you can use the
source code found in the I²C section of this book to implement I²C on the Easy Ethernet
CS8900A.

A standard implementation of the SP233ACT results in a two-component (the SP233ACT
and its power supply bypass capacitor) serial interface for the Easy Ethernet CS8900A. The
SP233ACT is tied directly to the PIC16F877’s USART pins RC6 and RC7. I used the Easy

Schematic 7.3: There’s no rocket science here. The Easy Ethernet CS8900A’s PIC16F877
microcontroller module is just as simple as the CS8900A-CQ Ethernet engine module. Don’t let the
simplicity of the physical circuitry fool you. Despite the simple nature of the hardware, the Easy
Ethernet CS8900A is a very powerful embedded device.

+5VDC

SD5

I/O5

SD7

R9
10K

RXIN

I/O0

R6
10K

OUT7

RESET

C18

.1uF

I/O1

LE

+C15

47uF

I/O2

OUT1

BYPASS CAPACITORS FOR
PIC16F877 AND SP233

PGC
R8
10K

JR3

1

2

SD3

SD3

LED3

+5VDC

+5VDC

+5VDC

TXD

SD3

TXOUT

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

MCLR

C14

.1uF

SD2

SDA

R11-R18

PGD

+5VDC

SD6

SD2

IOR

+5VDC

SD6

10K

+9VDC

RESET

OUT5

SCL

TXD

OUT4

PGC

SCL

RXIN

SD4

IOW

R10
10K

PGD

SD0

XTAL2
2OMHz

+5VDC

SA3

C10

.1uF

D2

1N5819C11

.1uF

TXOUT

C16
.1uF

SD5

U3

74HCT573D

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

C
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

OUT2

D1

1N5819

SD4

SA2

SD1

SA1
I/O4

RXD

+5VDC

MCLR

SD1

R7

470

+5VDC

OUT3

SD1

SD2

+C17

47uF

U1

PIC16F877

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1 RD2

RD3
RC4
RC5
RC6
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

C12

20pF

74HCT573 PIN 20 = +5VDC
74HCT573 PIN 10 = GND

C13

20pF

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

JR1

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

SD0

SD4

SDA

OUT0

INTRQ0
AEN

I/O3

SD7

SD6

+5VDC

C9

.1uF

SA0 RXD

OUT6

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

LE

SD5

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

SD0

SD7

Chapter 7

138

Ethernet CS8900A serial interface to send test and debug messages to a terminal emulator
program that was running on a personal computer. The C printf statement drives the mes-
sages I placed in various areas of the Easy Ethernet CS8900A source code. There is no
RS-232 interrupt code in the current Easy Ethernet CS8900A firmware. Should you need to
add a serious serial interface, the interrupt-driven RS-232 I/O code described in the RS-232
section of this book will work just fine with the Easy Ethernet CS8900A RS-232 hardware.

The 74HCT573 inputs sit on the data bus along with the CS8900A-CQ data bus pins
SD0:SD7. The contents of the CS8900A-CQ data bus pins are only visible to the data bus
when the AEN pin is low along with either the IOR pin or IOW pin being low as well. A
write to PORTD with the CS8900A-CQ AEN, IOR and IOW lines high allows a pulse from
RC1 (LE or Latch Enable) to latch the contents of PORTD into the 74HCT573. The output
pins of the 74HCT573 latch are always active and the incoming latched data is always
represented on the 74HCT573 output pins.

All of the componentry you see in the Easy Ethernet CS8900A schematics in Figures 7.2
and 7.3 fits on a 2.7 x 4.3 inch double-sided printed circuit board. The printed circuit board
layout for the Easy Ethernet CS8900A is included on the CDROM that accompanies this
book. The production version of the Easy Ethernet CS8900A is displayed in Photo 7.1.

Photo 7.1: We assembled most of the Easy Ethernet CS8900A in the
RS-232 and I²C chapters.

Ethernet

139

Developing the Easy Ethernet CS8900A Firmware
Now that the hardware design is nailed down, the next step in the design of the Easy Ethernet
CS8900A is to produce a group of C routines that will enable the Easy Ethernet CS8900A to
speak and listen on a LAN or WAN (Wide Area Network) using some of the standard Internet
protocols.

In this section, we will examine the firmware that will ultimately be programmed into the
Easy Ethernet CS8900A’s PIC16F877 microcontroller. There’s a fair amount of C source
code involved with activating the Easy Ethernet CS8900A. So, to make the job of under-
standing the Easy Ethernet CS8900A source code easier, the Easy Ethernet CS8900A
firmware will be broken down into smaller and more manageable modules:

■ The PIC16F877 microcontroller setup module

■ The function prototypes

■ The global variable, constant and global array definitions

■ The macros

■ The PacketPage Register Set definitions

■ The Ethernet frame layout and definitions

■ The core firmware functions

■ The protocol functions (ICMP, UDP, ARP, IP, TCP)

We’ll examine the code within each module line by line. I’ll break the source code down
into chewable snippets and then explain each line of the snippet. All hexadecimal values in
the Easy Ethernet CS8900A source code are denoted with a leading “0x.” There are no binary
representations of numbers in the actual code that is used as a variable or argument, but you
may see a binary equivalent of a hexadecimal number displayed in the comments area of the
Easy Ethernet CS8900A code for clarity.

There will be times in this text that all of the code in a module will not be shown. Com-
plete or not I’ll identify the code by preceding the snippet with the banner from the module
the piece of code belongs to. That should make it a bit easier to run down a line of code I’m
talking about in the overall Easy Ethernet CS8900A source code listing.

If a set of definitions relates to the code snippet, I’ll pull those from their actual locations
in the source code and include them with the code snippet. I’ll put the associated definition
statements right above the code module’s banner. Putting the definitions in the same area as
the code snippet eliminates you from having to search through the full listing of source code
to relate the definition to the code snippet. The full source code listing does have a purpose as
once all of the snippets of a module have been analyzed, you can then reference the full
version of the Easy Ethernet CS8900A C source code to correlate what you’ve learned about
that specific module with the rest of the Easy Ethernet CS8900A code. A full version of the
Easy Ethernet CS8900A C source code is supplied on the CD-ROM.

Chapter 7

140

Here’s an example:

int8 aux_data[16]; //tcp application received data area
int8 const telnet_banner[] = “\r\nEDTP Telnet Server>”;
int8 packet[96]; //50 bytes of UDP data available
int16 tcpdatalen_out;
//**
//* Application Code
//* Your application code goes here.
//* Following a * this module writes the hex value that follows
//* the * to the 74HCT573 latch..
//* Use Telnet to connect.
//* Example: *55 writes 01010101 to the 74HCT573 latch
//**

int8 i,j;
if (aux_data[0] == 0x0D)

{
j = sizeof(telnet_banner);

for(i=0;i<j;++i)
 packet[TCP_data+i] = telnet_banner[i];
tcpdatalen_out = j;

}

Code Snippet Example: I’ll put some additional comments here.

The four global variable definition statements that are involved with the Code Snippet
Example are placed before the banner identifying the location of the code snippet in the full
listing. If any local variables are associated with the code snippet, I’ll place them just above
the code snippet and below the banner (int8 i,j;). Having everything that relates to the code
snippet in a standardized location keeps you from having to search the full listing for the
code snippet’s parent code module and supporting variables.

The Easy Ethernet CS8900A firmware was written using the Custom Computer Services
C Compiler. The Custom Computer Services C Compiler is totally tilted towards the PIC
microcontroller; therefore, some of the built-in functions may not be available in other C
compiler packages. The Custom Computer Services C Compiler built-in functions are added
as a convenience for PIC C programmers and can easily be ported to native C code for use
with other microcontroller C compilers.

To enhance your understanding of how the Easy Ethernet CS8900A firmware actually
works, I’ll include personal computer screen shots of actual MPLAB ICE 2000 PIC16F877
emulation sessions. The MPLAB ICE 2000 screen shots sometimes show a bit too much
information, some of which is not related to the idea we’re pursuing at the time. So, where it
is appropriate, I will extract data from an MPLAB ICE 2000 PIC16F877 emulation session
and show it to you in text format. You’ll see me do this most often when displaying the data
within a PIC16F877 hexadecimal memory dump.

Ethernet

141

During our discussions of the Easy Ethernet CS8900A code, I’ll also employ the services of
Network Associate’s Sniffer. The Sniffer personal computer screen shots provide a detailed look
at the contents of an Ethernet frame. I used the Sniffer to verify the Easy Ethernet CS8900A
firmware as it was developed. One good example of the usefulness of the Sniffer during the
code development process was the Sniffer’s ability to certify the validity of the checksum
routines I had written. The Sniffer was also instrumental in the debugging process. While I was
in the process of porting the Easy Ethernet CS8900A code from the original assembler version I
had written, the Easy Ethernet CS8900A seemed to be dead on the network. An inspection of
the frames I trapped with the Sniffer showed that the Easy Ethernet CS8900A was answering
ARP requests but doing nothing else. Using that information, I looked at a memory dump I
captured with the MPLAB ICE 2000 and eventually found a bug in the new C code that was
not transferring frames from the CS8900A-CQ’s frame buffer to the PIC16F877’s buffer
correctly. For those of you that might be interested in how this was done in assembler, I’ve also
included the full version of the MPLAB assembler source code on the CD-ROM.

One more debugging tactic I employed was the use of messages sent from the Easy
Ethernet CS8900A’s RS-232 port. You’ll see commented out (preceded by //) printf state-
ments announcing the start or completion of an event in parts of the source code. You may
uncomment these if they help you better understand what and where things are happening in
the flow of the Easy Ethernet CS8900A code.

Setting up the PIC16F877 Microcontroller
One of the advantages of using the Custom Computer Services C Compiler is the abundance
of built-in functionality aimed towards the resources inside the PIC microcontroller. The
Custom Computer Services C Compiler allows the use of a “wizard” to preconfigure some of
the internal resources of the selected PIC. If you’re an old-hand at using PICs, you can also
write the C declarations in yourself to tailor the PIC manually.

#include <16f877.h>
#device *=16
#include <f877.h>
#use delay(clock=20000000)
#fuses HS,WRT,NOWDT,NOPUT,NOPROTECT,NOBROWNOUT,NOLVP,NOCPD
//#use i2c(Master,Slow,sda=PIN_C4,scl=PIN_C3,force_hw)
#use rs232(baud=57600, xmit=PIN_C6,rcv=PIN_C7)
#id 0x0802

#use fast_io(A)
#use fast_io(B)
#use fast_io(C)
#use fast_io(D)
#use fast_io(E)

Code Snippet 7.1: The PIC16F877’s I²C can be activated by simply removing the comment characters
(//) from the beginning of the #use I²C statement.

Chapter 7

142

The snippet of code you see in Code Snippet 7.1 was partially generated with the Custom
Computer Services C Compiler project wizard. The #include <16f877.h> statement brings in
definitions that refer to the physical architecture of the PIC16F877 microcontroller from a file
that is included with Custom Computer Services C Compiler. The PIC microcontroller
include files that come with the Custom Computer Services C Compiler normally contain
information that relates a human name to a number or Boolean function that can be used to
control the actions of a PIC16F877 internal resource. For instance, to turn off all analog
inputs, a 0x86 must be written to the PIC16F877’s ADCON1 register. The 16f877.h file
includes a definition called NO_ANALOGS. Code Snippet 7.2 is a look into the Easy
Ethernet CS8900A’s main C function that shows the NO_ANALOGS definition found in the
include file, and it shows what was coded into the Easy Ethernet CS8900A source code when
I told the Custom Computer Services C Compiler project wizard to disable the analog inputs
and configure them as standard I/O pins.

#define NO_ANALOGS 0x86 // None
//**
//* Absolute Start Point
//**
void main() {

int16 scratch16;

setup_adc_ports(NO_ANALOGS);

Code Snippet 7.2: The setup_adc_ports function is one of many built-in Custom Computer Services
C Compiler functions. The A/D setup statement was generated entirely by the Custom Computer
Services C Compiler project wizard.

The f877.h include file is a homegrown include file that I assembled by using parts of the
original Microchip MPLAB assembler PIC16F877 include file that comes with MPLAB. The
f877.h include file augments the Custom Computer Services C Compiler 16f877.h include
file and contains some PIC16F877 definitions not found in the Custom Computer Services C
Compiler include file that I needed for the Easy Ethernet CS8900A.

Yet another feature of the Custom Computer Services C Compiler is its ability to relieve
the C programmer from having to keep up with what’s where in PIC memory. The device
#device *=16 turns on full 16-bit PIC RAM pointers. Note that as you travel through the
Easy Ethernet CS8900A code, I never specify a memory location to hold a value.

There are many built-in functions that rely on the microcontroller clock speed. My
favorite built-in Custom Computer Services C Compiler functions are the delay_ms,
delay_us and delay_cycles functions. I absolutely hate writing timing and delay routines
because if you want your timing to be precise you are compelled to count the microcontroller
instruction cycles inside of each and every timing loop instruction. With the Custom Com-
puter Services C Compiler, once the compiler is informed as to what the clock speed is with
the #use delay(clock=20000000) statement, all of the delay routines I just mentioned are

Ethernet

143

automatically calculated using the PIC microcontroller cycle time for a 20 MHz
microcontroller clock. For instance, to delay for 1 ms, the C statement is delay_ms(1). Want
to delay for exactly 1 second? Then all that you have to enter is: delay_ms(1000) (1000 ms =
1 second). If you’re familiar with PIC assembler, you know that an NOP is a do nothing
instruction that kills time for one PIC microcontroller instruction cycle. An NOP in Custom
Computer Services C Compiler lingo is delay_cycles(1).

The baud rate register value for the PIC serial port is also calculated using the
microcontroller clock speed as a reference. The C statement #use rs232(baud=57600,
xmit=PIN_C6,rcv=PIN_C7) sets the USART up for asynchronous operation with a speed of
57600 bps. In addition, the #use rs232 statement allocates the serial port’s transmit and
receive pins. In the Easy Ethernet CS8900A design, the serial port pins match the USART
transmit and receive pins. Using the Custom Computer Services C Compiler, it is possible to
allocate almost any pin for serial port duty even if the PIC being used doesn’t have a USART.

The I²C statement that activates the PIC’s I²C engine (#use
i2c(Master,Slow,sda=PIN_C4,scl=PIN_C3,force_hw) is commented out as there is no I²C
code incorporated into this version of the Easy Ethernet CS8900A firmware. Like the #use
rs232 statement, the #use i2c statement also uses the microcontroller’s clock speed to time
the I²C data stream.

Most of the PIC16F877’s I/O pins are bidirectional and that is true for any other PIC
microcontroller. For each of a PIC’s bidirectional I/O pins, a hardware mechanism is in place
that allows the PIC programmer to determine which direction the PIC I/O pin will operate in,
input or output. If you choose to ignore the PIC’s I/O direction mechanism and code accord-
ingly (#use standard_I/O(X) where X is a port A, B, C, and so forth), the Custom Computer
Services C Compiler will automatically adjust the pin your C statement is addressing for
input or output operation depending on the C statement you are using. I’ve chosen to pay
attention to the PIC I/O pin direction mechanism. However, I’ve also chosen to turn the PIC
I/O pin direction wheel myself with the #use fast_I/O(X) statements. I’ve written the macros
dataport_in and dataport_out to instruct the PIC16F877 as to how to program the direction of
a particular I/O port’s pins.

When I first began to write PIC code for the public, I used to enter a date code into the
PIC’s ID words. I used this date code to determine which revision of firmware was in the
customer’s PIC and I still use that identification method today. The #id 0x0802 means that I
touched the Easy Ethernet CS8900A code last on August 2nd.

Carving up the PIC16F877’s Memory Resources
Function Prototypes
In C, all of the identifiers including functions and variables must be declared before they are
used. That’s what the function prototype area is all about. Using a function prototype allows
the C compiler to check for the correct number and type of arguments within each function
that will be called in the course of the program flow.

Chapter 7

144

//**
//* FUNCTION PROTOTYPES
//**
void application_code();
void tcp();
void assemble_ack();
void get_frame();
void setipaddrs();
void cksum();
void echo_packet();
void send_tcp_packet();
void arp();
void icmp();
void udp();

Code Snippet 7.3: There’s not much to say right now about what you see in this code snippet.
However, you will see each of the functions again.

The function prototypes in Code Snippet 7.3 give you a feel for what is to come. To keep
things as simple as possible, I purposely don’t have any functions that return values. I chose
to allow each function to stand alone as much as possible, and use global variables if data had
to flow from one function to another.

Defining the Variables
If you study the original assembler version of this code, you’ll see that every variable had to
be assigned to a particular memory location in the PIC16F877 memory map. Yes, I could
have used each memory location for more than one variable, but that would have made the
assembler code hard to read, hard to follow and hard to maintain. Using C, all I have to do is
allocate each variable I want to use by name and by type. Bits are identified as int1. Bytes are
tagged as int8, and word and double words are identified as int16 and int32, respectively. The
byte, word and double word identifiers can also be used to build arrays. For BASIC program-
mers out there, an array in C is exactly like an array in BASIC as far as the human
programmer is concerned. As you can see in Code Snippet 7.4, I’ve tried to name the vari-
ables so they will have some meaning when you see them in their code modules.

//**
//* PIC16F87X Global Variable Definitions
//**
int8 ppoffsetH,ppoffsetL,cntr,byteout;
int8 aux_data[16]; //received data area
int8 *addr;
int8 data_H,data_L;
int16 i,txlen,rxlen,chksum16,hdrlen,tcplen,tcpdatalen_in;
int16 tcpdatalen_out,ISN,portaddr,ip_packet_len;

Ethernet

145

int32 hdr_chksum,my_seqnum,client_seqnum,incoming_ack,expected_ack;
int1 synflag,finflag,hexflag;

Code Snippet 7.4: The “*” is an indirection symbol. Adding the “*” to the variable *addr defines
addr as a pointer.

The variables defined in the code you see in Code Snippet 7.4 reside in the PIC16F877
RAM. It is also possible to place data into the flash program memory area by defining the
data as constant.

//**
//* TELNET SERVER BANNER STATEMENT CONSTANT
//**
int8 const telnet_banner[] = “\r\nEDTP Telnet Server>”;

//**
//* Receive a Frame
//**
void get_frame()

 printf(“trashed\r\n”);

Code Snippet 7.5: I exercised editorial privilege and threw in the printf tidbit. I’ve actually run out
of PIC program memory because of having too many printf statements in a program.

Hex Dump 7.1 is a PIC16F877 program memory capture of the statements shown in
Code Snippet 7.5. The telnet_banner constant array elements are stored as a lookup table in
PIC16F877 program memory. The 0x34 preceding each ASCII character is a PIC assembler
RETLW instruction, and that usually is a good indicator that the data is in a standard PIC
lookup table format. If you pick through the dump you’ll eek out “EDTP Telnet Server>.”

I included the printf statement found in the get_frame function to show how printf data
was stored in the PIC16F877’s program memory area. Can you see “trashed” followed by a
carriage return and line feed in Hex Dump 7.1?

 Address ASCII

0008 340D 340A 3445 3444 3454 3450 3420 3454 .4.4E4D4 T4P4 4T4
0010 3465 346C 346E 3465 3474 3420 3453 3465 e4l4n4e4 t4 4S4e4
0018 3472 3476 3465 3472 343E 3400 100A 108A r4v4e4r4 >4.4....
0020 110A 0782 3474 3472 3461 3473 3468 3465t4r4 a4s4h4e4
0028 3464 340D 340A 3400 3000 1683 0088 30FA d4.4.4.4 .0.....0

Hex Dump 7.1: Carriage return and line feed (/r/n) begin the Telnet banner message. The 0x34
preceding each character is a PIC RETLW assembler instruction.

Chapter 7

146

Without writing a single line of C, we already know that we’ll need to establish an IP
address and a hardware (MAC) address for the Easy Ethernet CS8900A. Any valid IP address
will work, and your choice of IP addresses depends upon the network on which the Easy
Ethernet CS8900A will participate. If you don’t plan to have your Ethernet packets leave
your home LAN, 192.168.XXX.XXX is a good choice as it is one of the addresses reserved
for private networks.

//**
//* IP ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID IP ADDRESS
//**
int8 MYIP[4] = { 192,168,0,150 };

Code Snippet 7.6: The array MYIP contains the logical or protocol address, which isn’t written in
stone and can identify any number of hosts on a network.

The IP address of the Easy Ethernet CS8900A, 192.168.0.150, is specified in the IP
ADDRESS DEFINITION area of the code. Hexadecimal notation could have been used in
the definition, but it’s not as easy to read and remember as dotted decimal notation. The Easy
Ethernet CS8900A IP address is held in a byte array called MYIP. Placing the IP in an array
within the operating firmware allows easy access to the IP address’s individual components
and makes changing the IP address simple.

Dotted decimal notation of the IP address is for human consumption. The PIC16F877
wants to see the IP address as a series of binary values as shown in the PIC16F877 RAM
dump in Hex Dump 7.2.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0010 00 00 00 00 00 00 00 00 90 00 00 00 00 00 00 00
 0020 01 12 02 AA FA 0A 00 00 00 00 00 00 00 00 00 00
 0030 00 00 00 00 5A 01 00 00 00 D3 4A 00 4A 00 4A 00Z... ..J.J.J.
 0040 5B B3 00 00 15 00 00 00 01 00 06 00 98 1F 29 00 [.......).
 0050 9D 4C 07 00 1E 00 07 00 1E 23 22 BB 1F 00 07 5F .L...... .#”...._
 0060 1F 00 07 00 00 C0 A8 00 96 00 00 45 44 54 50 05EDTP.

Hex Dump 7.2: The Easy Ethernet CS8900A’s IP address of 192.168.0.150 begins at offset 0x0065,
while the Easy Ethernet CS8900A’s MAC address (00EDTP) is found beginning at offset 0x0069.

The Easy Ethernet CS8900A’s IP address is assigned according to the needs and require-
ments of the network the Easy Ethernet CS8900A will attach to. Other devices on the network
will need to know the hardware address of the Easy Ethernet CS8900A to communicate with
it. So, the next order of business is to assign a hardware or MAC (Media Access Control)
address to the Easy Ethernet CS8900A. The hardware address is normally a purchased item
that is regulated by the IEEE. If you plan to use the Easy Ethernet CS8900A in a commercial
environment, you will need to purchase a unique hardware identifier. There’s a blurb in the
CS8900A-CQ datasheet that tells you who to contact to purchase an OUI, or Organizationally

Ethernet

147

Unique Identifier. The OUI forms a basis, that when mixed with data of your choice, be-
comes your equipment’s assigned hardware address. Basically, you mix your OUI with each
piece of hardware’s serial number or such to create a unique hardware address for every piece
of equipment branded with your OUI combination. The idea is to not have any identical NIC
(Network Interface Card) hardware addresses. You can normally find this OUI, printed on a
paper tag glued to most commercial Ethernet NICs. Issuing ARP –a in a command window
of a network enabled Windows operating system will also show you the OUI if the NIC has
registered itself in the ARP cache. Another common way to see the NIC’s MAC address is to
issue the IPCONFIG /ALL command. As we progress and view some network dumps, you’ll
notice that the personal computer Ethernet NIC I’m using has a common set of digits that
identify it as an SMC NIC. I’m not allowing my Easy Ethernet CS8900A to interface to the
Internet directly just yet, so a homebrewed MAC address of ‘00EDTP’ is assigned to the
Easy Ethernet CS8900A in the CS8900A-CQ driver firmware included with this book.

//**
//* HARDWARE (MAC) ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID MAC ADDRESS
//**
int8 MYMAC[6] = { 0,0,’E’,’D’,’T’,’P’ };

Code Snippet 7.7: You can see the MYMAC array beginning at memory location 0x0069 in the
PIC16F877 RAM hex dump shown in Hex Dump 7.2.

Once again, I’ve chosen a byte array to store the six bytes of the Easy Ethernet CS8900A’s
MAC address. However, unlike the IP address, the MAC address is stored within the
CS8900A-CQ register set. The CS8900A-CQ doesn’t store the MAC internally as you think
it would, and having each MAC address component in its own individual array “container”
will help make the process of placing the MAC address inside the CS8900A-CQ a bit easier.

The MAC address is stored in the CS8900A-CQ in the Individual Address (IA) register set
beginning at PacketPage address 0x0158 as shown in Figure 7.7. The layout of the IA register set
makes it necessary to place the most significant octet of the MAC address (MYMAC[0]) into the
least significant octet of the IA register set, and so on. I used the Custom Computer Services C
Compiler’s built-in make16 function and a 16-bit scratch register to put the MAC octets in the
right order before loading them into the CS8900A-CQ’s IA register set. The make16 function
takes two bytes and combines them into a 16-bit word (make16(0x12,0x34) = 0x1234).

Figure 7.7: There is really a great deal of order in this. The MAC address will be transmitted
beginning with the octet (byte) at IA location 0x0158, and then 0x0159 will be transmitted, and so
forth.

 MYMAC[5] MYMAC[4] MYMAC[3] MYMAC[2] MYMAC[1] MYMAC[0]
REGISTER 0x015D 0x015C 0x015B 0x015A 0x0159 0x0158

MAC DATA P T D E 0 0

INDIVIDUAL ADDRESS (IEEE ADDRESS)

Chapter 7

148

In a personal computer environment, the NIC’s EEPROM would hold the MAC address
and other information that on the Easy Ethernet CS8900A will be loaded from the bowels of
the PIC16F877 microcontroller. Code Snippet 7.8 details the code that performs the loading
of the CS8900A-CQ IA register set with the MAC address.

A temporary 16-bit memory location (scratch16) is used to assemble two octets of the
MAC address into a single 16-bit word. The reasons for doing this include packing the MAC
octets in the correct order, and the WPP function is written to accept only 16-bit arguments.

//**
//* PacketPage Internal Register Definitions
//**
#define ppageIA 0x0158 //Individual Address
int16 scratch16;
//**
//* Load the CS8900 IA
//* INDIVIDUAL ADDRESS LAYOUT IN CS8900
//**

scratch16 = make16(MYMAC[1],MYMAC[0]);
WPP(ppageIA,scratch16);
scratch16 = make16(MYMAC[3],MYMAC[2]);
WPP(ppageIA+2,scratch16);
scratch16 = make16(MYMAC[5],MYMAC[4]);
WPP(ppageIA+4,scratch16);

//uncomment this code to see the MAC address as it has been entered
//RPP(ppageIA);
//printf(“%x%x \r\n”,data_H,data_L);
//RPP(ppageIA+2);
//printf(“%x%x \r\n”,data_H,data_L);
//RPP(ppageIA+4);
//printf(“%x%x \r\n”,data_H,data_L);

//end commented code
//printf(“CS8900A-CQ MAC Address LOADED.\r\n”);

Code Snippet 7.8: You can use the extra debug code to verify that the MYMAC array elements
were loaded into the CS8900A-CQ’s IA register set in the correct order.

After ordering the IA register bytes, the WPP (Write PacketPage) function writes the
newly created 16-bit MAC address fragment into the proper slots in the IA register set. As
you will see throughout the CS8900A-CQ code, all CS8900A-CQ register accesses are word
(16-bit) accesses.

The WPP function uses the Custom Computer Services C Compiler function “make8,”
which breaks down a 16-bit or 32-bit variable into a byte. You can choose which byte of the
word/double word variable you want to keep. For instance, the first line of code inside the

Ethernet

149

WPP function breaks out and keeps the least significant byte of the 16-bit ppoffset value. The
second line of WPP retains the upper byte of ppoffset. The function argument ppoffset in this
case is the 16-bit address of an octet in the PacketPage IA register set. PPWrite uses the
resulting high-order and low-order bytes sorted out by WPP to call the WpppL and WpppH
macros that actually write the data into the designated CS8900A-CQ registers.

Note that in Code Snippet 7.9, the Custom Computer Services C Compiler make8
function is used to break the 16-bit arguments ppoffset and datum into octets (bytes) that are
passed to the PPWrite function via global variables ppoffsetL, ppoffsetH, data_L and data_H.

int8 ppoffsetH,ppoffsetL;
int8 data_H,data_L;
//**
//* WPP (Write PacketPage)
//* Writes Data (datum) at PacketPage Offset
//* PPoffset = PacketPage Data Offset
//**
void WPP(int16 ppoffset, int16 datum)
{

ppoffsetL = make8(ppoffset,0);
ppoffsetH = make8(ppoffset,1);
data_L = make8(datum,0);
data_H = make8(datum,1);
PPWrite();

}
#define pageport_Ptr 0x0A //PacketPage Pointer
//**
//* PPWrite (PacketPage Write)
//* Writes Data to ppoffsetH/L
//**
void PPWrite()
{

dataport_out;
WpppL(pageport_Ptr,ppoffsetL);
WpppH(pageport_Ptr,ppoffsetH);
WpppL(pageport_Data0,data_L);
WpppH(pageport_Data0,data_H);

}

Code Snippet 7.9: The arguments for the WPP function, ppoffsetL, ppoffsetH, data_L and data_H,
are previously defined in the PIC16F877 global variable definitions in Code Snippet 7.4.

The PPWrite function makes sure that the PIC16F877 data bus I/O pins are configured as
output pins before invoking a series of macros to write the data to the CS8900A-CQ’s
PacketPage memory. We haven’t discussed the Easy Ethernet CS8900A macros yet but you
can easily use substitution to move the PacketPage Addresses and data from the PPWrite
function to the macros in Code Snippet 7.10.

Chapter 7

150

//**
//* WpppL (Write packetpage port Low)
//* Writes low byte to specified PacketPage Port
//* pp_port = PacketPage Port - datum = data to write
//**
#define WpppL(pp_port,datum) writeaddrport(pp_port); \

writedataport(datum); \
clr_aen; \
clr_iow; \
delay_cycles(1); \
set_iow; \
set_aen;

//**
//* WpppH (Write packetpage port High)
//* Writes high byte to specified PacketPage Port
//* pp_port = PacketPage Port - datum = data to write
//**
#define WpppH(pp_port,datum) writeaddrport(pp_port+1); \

writedataport(datum) ; \
clr_aen; \
clr_iow; \
delay_cycles(1); \
set_iow; \
set_aen;

Code Snippet 7.10: You can already see how easy it is to follow the C source code when the
abstract machine terms are manipulated as human language.

I inserted some extra “commented out” code (code preceded by //) that uses the Easy
Ethernet CS8900A’s onboard RS-232 circuitry to show you what is really inside the IA
register set. Set your personal computer terminal emulator (HyperTerminal, Tera Term Pro,
and so forth) for no flow control, 57600 bps, 8 data bits, no parity and 1 stop bit to get a
human readable look at what was inserted into the IA register set.

The port address definition you see in Code Snippet 7.11 will be used by code in our
TCP/IP module. It is an arbitrary address and there’s nothing significant about it except that
it is not in what is called the well-known port list. You can find MY_PORT_ADDRESS at
memory locations 0x004C and 0x004D in the PIC16F877 RAM hex dump shown in Hex Dump 7.2.

//**
//* PORT ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID PORT ADDRESS
//**
#define MY_PORT_ADDRESS 0x1F98 // 8088 DECIMAL

Code Snippet 7.11: Depending upon how much you already know about TCP/IP, this definition may
or may not mean much to you right now. If you’re in the dark about it, I’ll show you the light when
we discuss TCP/IP.

Ethernet

151

The Easy Ethernet CS8900A Macros
There are lots of port I/O operations performed in the Easy Ethernet CS8900A firmware.
Rather than try to remember which port is data and which port is address, I wrote macros
with descriptive names that performed the desired I/O functions using the datasheet names
and associated built-in Custom Computer Services C Compiler functions.

For the programmer, the idea behind creating macros is to ease the firmware design and
coding process by providing easy-to-remember labels for often-used functions. Writing code
rich with macros gives the user/analyst/project builder studying the source code listing an
easier-to-read description of the flow of the firmware. Another big advantage to using macros
is that if something needs to be changed like a port or a pin location and the information
resides within a macro it need only be changed at one point in the program, which is inside
the macro.

I like writing macros. I know that as I’m writing them they will in the end save me lots of
physical typing and programming think time as I build code around them. I like to include as
many microcontroller port and pin definitions as I can in the macro area as the macros
depend heavily on these base definitions. The advantage to having the microcontroller port
and pin definitions handy in the macro area is that a port or pin change in the code only
requires changing the port or pin definition in one place, the macro area. Another advantage
to listing port and pin connections in the macro area is that one could look at the pin descrip-
tions and pinouts in the macro area and not have to consult a schematic for connection points
in the actual circuitry. Knowing the microcontroller is a PIC16F877 and it is connected in a
standard manner to a CS8900A-CQ, you can tell a great deal about the Easy Ethernet
CS8900A circuitry using only what you see in Code Snippet 7.12.

Lots of times, folks that are recreating my projects ask for a “corrected” schematic when
they can’t get the project to work. I learned long ago that the schematic is only part of the
documentation needed to assemble hardware. So, every time I design something that depends
on a microcontroller, I always provide a list of the microcontroller port and pin definitions
within the source code. Listing the hardware connections within the source code allows the
user/builder to verify the schematic connections against the logical operations of the
microcontroller firmware.

//DEFINITIONS FROM f877.h
#byte PORTA =0x005
#byte PORTB =0x006
#byte PORTC =0x007
#byte PORTD =0x008
#byte PORTE =0x009
//DEFINITONS FROM 16f877.h
#define PIN_B4 52
#define PIN_B5 53
#define PIN_C1 57

Chapter 7

152

#define PIN_E0 72
#define PIN_E1 73
#define PIN_E2 74
//**
// MACROS AND PORT/PIN DEFINITIONS
//**
#define dataport PORTD
#define addrport PORTB
#define cntlport PORTE

#define IOR PIN_E0
#define IOW PIN_E1
#define RESET PIN_E2
#define AEN PIN_B4
#define LE PIN_C1

Code Snippet 7.12: The names in the definitions are all homebrewed. The port and pin equates are
drawn from the 16f877.h and f877.h include files.

The reason the PIC16F877 port definitions use a #byte X = Y statement instead of a
#define statement is that the numbers being equated to the port names are the actual port
locations in the PIC16F877 memory map. The PIN_XX definitions are native to the Custom
Computer Services C Compiler. In my years of writing code and building microcontroller-
based gadgets, I’ve found that a bit of sanity is kept by keeping the names of the ports and
pins in the source code identical to their associated names in the schematics.

The port and pin definitions establish a base for the rest of the macros. To keep with the
human readable idea, I take function names and equate them to more meaningful names. For
instance, in Code Snippet 7.13 I’ve taken common built-in Custom Computer Services C
Compiler functions and simply renamed them.

//**
// MACROS AND PORT/PIN DEFINITIONS
//**
#define writedataport(datum) output_d(datum);
#define writeaddrport(datum) output_b(datum | 0xF0);
#define readdataport input_d()
#define dataport_out set_tris_d(0x00)
#define dataport_in set_tris_d(0xFF)

Code Snippet 7.13: Since the PIC16F877’s PORTD has been defined previously as the data port,
writedataport makes a bit more sense than output_d when you’re trying to read through the Easy
Ethernet CS8900A source code.

Ethernet

153

Sometimes a simple renamed macro definition like the ones in Code Snippet 7.13 can be
structured to reap an additional benefit over the stock function it is emulating. Using an
inclusive OR (|) I took the liberty of setting the upper nibble of the output data to 1111 in the
writeaddrport(datum) macro as the upper four bits of PORTB should remain high when the
address information is written to the lower nibble of the PIC16F877’s PORTB. If you check
this against the PIC16F877 module of the Easy Ethernet CS8900A schematic you’ll find that
AEN occupies the RB4 bit position and its output logic level should not be changed by the
address information entered for output on PORTB. So, instead of having to remember to OR
the PORTB data with 0xF0 every time data is written to PORTB, I simply included the rule
in the macro definition.

If it’s good for ports, it’s usually just as good for pins. The aforementioned axiom of
wisdom is proven in the pin macro set of Code Snippet 7.14. Every time data is transferred
between the microcontroller and the CS8900A-CQ the IOR, IOW and AEN lines of the
CS8900A-CQ are used. I used macros named for their functionality to clear and set these
control lines.

//**
// MACROS AND PORT/PIN DEFINITIONS
//**
#define clr_reset output_low(RESET)
#define clr_ior output_low(IOR)
#define clr_iow output_low(IOW)
#define clr_aen output_low(AEN)
#define set_reset output_high(RESET)
#define set_ior output_high(IOR)
#define set_iow output_high(IOW)
#define set_aen output_high(AEN)
#define latchdata output_high(LE); \

delay_us(1); \
output_low(LE);

Code Snippet 7.14: I was just reading a magazine answer to a question of which programming
language to use to program small microcontrollers like the PIC. I was amazed to read the “expert”
tell the reader that C was difficult to learn. It doesn’t get any easier than this. And, if you don’t
believe that, compare the work it takes to write an assembler routine that only a single line of C
source code performs. In many cases the C compiler writes better code behind the C than a human
can using assembler.

Built-in functions and macros make life easy on the C ranch. I’ve left more than enough
latch-enable time between the pin toggle statements in the latchdata macro you see at the
bottom of Code Snippet 7.14.

Chapter 7

154

Macros are also useful when an often-used function consists of multiple lines of code.
For instance, the LE (Latch Enable) control line connecting the microcontroller to the
74HCT573 transparent latch must be toggled every time the latch is accessed. It’s a trivial
three lines of C source code but it’s worth placing into a macro. Now instead of three lines of
nondescript code, the word “latchdata” is all that’s needed to manipulate the LE control line.

Remember the bit definitions in the global variable definitions (int1, synflag, finflag,
hexflag)? Well, macros work for them too. There is a flag bit that needs to be set and cleared
in the UDP application code. It’s easy enough to set and clear the hexflag using C constructs,
but it’s better reading when you mean what you say. Check out the flag raising and lowering
macro code in Code Snippet 7.15.

int1 hexflag;
//**
// MACROS AND PORT/PIN DEFINITIONS
//**
#define set_hex hexflag=1
#define clr_hex hexflag=0

Code Snippet 7.15: Which one would you rather use?

Even with the superb built-in functions offered up by the Custom Computer Services C
Compiler, sometimes you still have to roll your own. When we visit TCP/IP land you’ll find
that TCP/IP likes 32-bit numbers. 32-bit numbers are no problem that can’t be handled with a
C statement or C macro. Code Snippet 7.16 is a macro I put together to disassemble a 32-bit
number the way TCP/IP wants it broken down.

#define set_packet32(d,s) packet[d] = make8(s,3); \
packet[d+1] = make8(s,2); \
packet[d+2] = make8(s,1); \
packet[d+3]= make8(s,0);

Code Snippet 7.16: This macro stuffs a 32-bit number into a byte array. You’ll find this macro
twiddling TCP sequence numbers in the TCP module of the Easy Ethernet CS8900A firmware.

The real work of reading and writing the CS8900A-CQ is done by a quartet of macros.
The RpppL (Read PacketPage Port Low) and RpppH (Read PacketPage Port High) macros in
Code Snippet 7.17 are very simple to read and understand when you know what the macros
inside the RpppL and RpppH macros do. Even if you didn’t know about the I/O pin clear and
set macros, the language of the macros give their intent away.

Ethernet

155

//**
//* RpppL (Read packetpage port Low)
//* Reads low byte of specified PacketPage Port
//* pp_port = PacketPage Port - dest = where to store data
//**
#define RpppL(pp_port,dest) writeaddrport(pp_port); \

clr_aen; \
clr_ior; \
delay_cycles(1); \
dest = readdataport; \
set_ior; \
set_aen;

//**
//* RpppH (read packetpage port High)
//* Reads high byte of specified PacketPage Port
//* pp_port = PacketPage Port - dest = where to store data
//**
#define RpppH(pp_port,dest) writeaddrport(pp_port+1); \

clr_aen; \
clr_ior; \
delay_cycles(1); \
dest = readdataport; \
set_ior; \
set_aen;

Code Snippet 7.17: I can’t assume everyone reading this section knows what the backward slash
(\) behind some of the macro lines is for. The backward slashes (\) are macro statement continuation
symbols. If another macro statement needs to follow, the backward slash (\) is added to signify that
to the C compiler. Note that single-line macros and the last line of the multilined macros do not
require the continuation slash.

Having the base macros already in place makes writing other macros based on them very
easy to do. In fact, the PacketPage write macros in Code Snippet 7.18 were generated from
copies of the RpppL/RpppH macros you see in Code Snippet 7.17.

//**
//* WpppL (Write packetpage port Low)
//* Writes low byte to specified PacketPage Port
//* pp_port = PacketPage Port - datum = data to write
//**
#define WpppL(pp_port,datum) writeaddrport(pp_port); \

writedataport(datum); \
clr_aen; \
clr_iow; \
delay_cycles(1); \

Chapter 7

156

set_iow; \
set_aen;

//**
//* WpppH (Write packetpage port High)
//* Writes high byte to specified PacketPage Port
//* pp_port = PacketPage Port - datum = data to write
//**
#define WpppH(pp_port,datum) writeaddrport(pp_port+1); \

writedataport(datum) ; \
clr_aen; \
clr_iow; \
delay_cycles(1); \
set_iow; \
set_aen;

Code Snippet 7.18: When a good code foundation is laid such as with our macro base, the further
you get into writing the code the more it seems the code is writing itself.

It’s never too late to add a macro. Many of the macros in the Easy Ethernet CS8900A
firmware were added after the code was “finished” and working.

Defining the CS8900A-CQ PacketPage Register Set
You’ve already figured out that there are a bunch of CS8900A-CQ registers. The best way to
keep up with them is to predefine them with names or labels that relate to the register’s
function or name. In the CS8900A-CQ driver firmware beginning with the PacketPage I/O
Port Definitions, all of the internal CS8900A-CQ registers are listed and defined, whether we
use them in this design or not.

You were briefly introduced to the CS8900A-CQ PacketPage registers at the beginning of
our CS8900A-CQ discussion. In Code Snippet 7.19, I’ve mapped out the PacketPage port
structure so it can be used in our Easy Ethernet CS8900A firmware.

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
#define pageport_RxTxData1 0x02 //Receive/Transmit data Port 1
#define pageport_TxCmd 0x04 //Transmit Command
#define pageport_TxLen 0x06 //Transmit Length
#define pageport_ISQ 0x08 //Interrupt Status Queue
#define pageport_Ptr 0x0A //PacketPage Pointer
#define pageport_Data0 0x0C //PacketPage Data Port 0
#define pageport_Data1 0x0E //PacketPage Data Port 1

Code Snippet 7.19: There’s nothing new here. Again, it’s easier to remember a name associated
with a function than remember a number associated with a function.

Ethernet

157

In the Easy Ethernet CS8900A source code labels beginning with pageport represent the
16 base PacketPage I/O ports. PacketPage internal registers that are accessed using the
PacketPage I/O ports are prefixed by ppage. The ppage area is where the CS8900A-CQ
initialization and operational registers are located. Also, you’ll find the counters and status
registers in the group of PacketPage registers you see listed in Code Snippet 7.20.

//**
//* PacketPage Internal Register Definitions
//**
#define ppageEISA 0x0000 //EISA Registration number of CS8900
#define ppagePID 0x0002 //Product ID Number
#define ppageBaseIO 0x0020 //I/O Base Address
#define ppageINT 0x0022 //Interrupt number (0,1,2, or 3)
#define ppageBaseMemory 0x002C //20-bit Memory Base address register
#define ppageRxCFG 0x0102 //Receiver Configuration
#define ppageRxCTL 0x0104 //Receiver Control
#define ppageTxCFG 0x0106 //Transmit Configuration
#define ppageTxCmdRO 0x0108 //Transmit Command Read Only Status
#define ppageBufCFG 0x010A //Buffer Configuration
#define ppageLineCTL 0x0112 //Line Control
#define ppageSelfCTL 0x0114 //Self Control
#define ppageBusCTL 0x0116 //Bus Control
#define ppageTestCTL 0x0118 //Test Control
#define ppageISQ 0x0120 //Interrupt status queue
#define ppageRxEvent 0x0124 //Receiver Event
#define ppageTxEvent 0x0128 //Transmitter Event
#define ppageBufEvent 0x012C //Buffer Event
#define ppageRxMiss 0x0130 //Receiver Miss Counter
#define ppageTxColl 0x0132 //Transmit Collision Counter
#define ppageLineStatus 0x0134 //Line Status
#define ppageSelfStatus 0x0136 //Self Status
#define ppageBusStatus 0x0138 //Bus Status
#define ppageTxCmd 0x0144 //Transmit Command Request
#define ppageTxLength 0x0146 //Transmit Length
#define ppageIA 0x0158 //Individual Address
#define ppageRxStatus 0x0400 //Receive Status
#define ppageRxLength 0x0402 //Receive Length
#define ppageRxFrame 0x0404 //Receive Frame Offset
#define ppageTxFrame 0x0A00 //Transmit Frame Offset

Code Snippet 7.20: Some of the PacketPage registers are “set and forget,” while other PacketPage
registers may report the status of a frame or report an error condition.

There are five PacketPage Event Registers and they are defined by their datasheet names
in Code Snippet 7.21.

Chapter 7

158

//**
//* PacketPage Event Register Definitions
//**
#define RXEVENT_REG 0x0004
#define TXEVENT_REG 0x0008
#define BUFEVENT_REG 0x000C
#define RXMISS_REG 0x0010
#define TXCOLL_REG 0x0012

Code Snippet 7.21: The register definitions in this code snippet are actually the register numbers.

PacketPage registers and register sets can be subdivided into six major categories:

■ Bus Interface Registers

■ Status and Control Registers

■ Initiate Transmit Registers

■ Address Filter Registers

■ Receive Frame Location

■ Transmit Frame Location

The six categories including all of their subsets are found within the CS8900A-CQ’s
4 Kbyte PacketPage memory area.

CS8900A-CQ Bus Interface Registers
The Bus Interface Registers are primarily intended for interfacing the CS8900A-CQ to a
personal computer ISA bus. Since there’s no place for an ISA connector on the Easy Ethernet
CS8900A, we won’t be using much of the Bus Interface Register’s functionality. The
ppageBaseIO, which is part of the Bus Interface Register group, defaults to 0x0300 after a
chip-wide reset, which is the Easy Ethernet CS8900A’s preselected I/O base address. The
advantage to using the default address is that we don’t have to write any code to set anything
up in the I/O base address department. You’ve already been introduced to the I/O Base
Address register layout earlier in Figure 7.6.

Product Identification Code
I purposely didn’t write any algorithms to obtain the hardware level of the Easy Ethernet
CS8900A’s CS8900A-CQ IC. We could have used the ppagePID register to determine which
hardware level of CS8900A-CQ we soldered to our Easy Ethernet CS8900A printed circuit
board, but in reality that is just wasted code and wasted time, as the data won’t be of use to
us. The information concerning the CS8900A-CQ we could obtain is contained in the Prod-
uct Identification Code register as shown in Figure 7.8.

Ethernet

159

The rest of the Bus Status Registers are geared for ISA operation or interrupt handling
and we can simply ignore them. Let’s move ahead and take a look at the next set of
CS8900A-CQ registers called Status and Control Registers.

CS8900A-CQ Status and Control Registers
Instances of the Status and Control Registers can be found throughout the Easy Ethernet
CS8900A code, as their job is to report the status of transmitted and received frames. Status
and Control Register activity can also be found in situations where we need to know what’s
going on inside the CS8900A-CQ. The Status and Control Registers can be subdivided into
two groups:

■ Configuration and Control Registers

■ Status and Event Registers

CS8900A-CQ Configuration and Control Registers

The Easy Ethernet CS8900A utilizes many of the Configuration and Control Registers early
in the Easy Ethernet CS8900A code to set up various areas that deal with CS8900A-CQ
receive-and-transmit functions. Configuration and Control registers also determine how
Ethernet frames are transmitted and received.

The CS8900A-CQ Receiver Configuration Register

For easier identification, all of the Configuration and Control registers are odd numbered.
Configuration and Control Register 1 is reserved. So, our discussion of Configuration and
Control Registers begins with Register 3, the Receiver Configuration Register, which is
shown graphically in Figure 7.9.

Figure 7.8: These are the first four bytes of the PacketPage. Once you’ve driven through this code
a few times you’ll know how to read and retrieve these bytes if you really want them.

Product Identification Code

Address 0x0000 Address 0x0001 Address0x0002 Address 0x0003
First byte of EISA

registration number
for Crystal

Semiconductor

Second byte of
EISA registration

number for Crystal
Semiconductor

First 8 bits of
Product ID number

Last 3 bits of the
Product ID number

RECEIVER CONFIGURATION REGISTER

Figure 7.9: In the case of the Easy Ethernet CS8900A, this is a set-and-forget register except when
a frame needs to be trashed using the Skip_1 bit.

7 6 5 4 3 2 1 0
StreamE Skip_1 000011

F E D C B A 9 8
 ExtradataiE RuntiE CRCerroriE BufferCRC AutoRxDMAE RxDMAonly RxOKie

Chapter 7

160

Operating the CS8900A-CQ in 8-bit mode really narrows the choices when it comes to
which bits we can twiddle. In the Receiver Configuration Register we can count out any bit
that ends with “iE.” Any bit with DMA in its name including StreamE can be pushed off over
side as well.

Only two of the bits in Figure 7.9 and Code Snippet 7.22 are of interest to our Easy
Ethernet CS8900A application. The RXCFG_SKIP_BIT bit is used to skip over and never
return to a frame in the CS8900A-CQ receive buffer. Hopefully, we won’t be employing the
services of the Receiver Configuration Register very often.

We also want to make sure that the BufferCRC bit is clear. Clearing the BufferCRC bit
instructs the CS8900A-CQ not to load the incoming CRC bytes into the CS8900A-CQ
receive buffer. The BufferCRC bit should be clear on CS8900A-CQ power up, but we’ll write
some code to assure that.

//**
//* PacketPage Receiver Configuration Bit Definitions
//**
#define RXCFG_NOBUF_CRC 0x0000
#define RXCFG_SKIP_BIT 0x0006
#define RXCFG_SKIP 0x0040
#define RXCFG_RX_OK_IE 0x0100
#define RXCFG_CRC_ERR_IE 0x1000
#define RXCFG_RUNT_IE 0x2000
#define RXCFG_X_DATA_IE 0x4000

Code Snippet 7.22: RXCFG_SKIP is a mask that could be used to manipulate the Skip_1 bit. If bit
manipulation routines that require a bit number are required, RXCFG_SKIP_BIT would be the
definition of choice. Clearing the Receiver Configuration Register is insurance to make certain that
the BufferCRC bit is clear when we startup the CS8900A-CQ and go online.

The “iE” behind some of the bits in the Receiver Configuration Register stand for “inter-
rupt enable.” According to the CS8900A-CQ datasheet, any event that occurs and has a
corresponding “iE” bit set will generate an interrupt. We can’t use any of those bits and rely
on getting valid data as interrupt use on the CS8900A-CQ is forbidden in 8-bit mode.

The original CS8900A-CQ assembler driver uses the interrupt mechanism of the
CS8900A-CQ and the services of the RXCFG_RX_OK_IE bit. The current version of the
Easy Ethernet CS8900A hardware makes an exception and includes the INTRQ0 physical
connection between the PIC16F877 and the CS8900A-CQ (PIC16F877 pin RB5).

You’ll find that the interrupts do indeed work on the CS8900A-CQ in 8-bit mode as long
as you keep the Ethernet traffic very light. To that end, I’ve also included a C version of the
“illegal” interrupt driven Easy Ethernet CS8900A firmware on the CD-ROM so you can see
how CS8900A-CQ interrupts would work if we were “allowed” to use them.

Ethernet

161

The CS8900A-CQ Receiver Control Register

The next Configuration and Control Register in line is Register 5, the Receiver Control Register.

RECEIVER CONTROL REGISTER

7 6 5 4 3 2 1 0
PromiscuousA IAHashA 000101

F E D C B A 9 8
 ExtradataA RuntA CRCerrorA BroadcastA IndividualA MulticastA RxOKA

Figure 7.10, the Receiver Control Register, is made up of nine Accept bits. Setting an
Accept bit indicates that the CS8900A-CQ will accept that the type of frame the Accept bit
represents. An accepted frame is one that is validated and placed in the CS8900A-CQ’s on-
chip memory. The first definition in Code Snippet 7.23 is a good indication of which
Receiver Control Register bits we’re interested in using in the Easy Ethernet CS8900A
firmware.

//**
//* PacketPage Receiver Control Register Bit Definitions
//**
#define RXCTL_SETUP (RXCTL_RX_OK_A|RXCTL_IND_A|RXCTL_BCAST_A)
#define RXCTL_RX_OK_A 0x0100
#define RXCTL_MCAST_A 0x0200
#define RXCTL_IND_A 0x0400
#define RXCTL_BCAST_A 0x0800
#define RXCTL_CRC_ERR_A 0x1000
#define RXCTL_RUNT_A 0x2000
#define RXCTL_X_DATA_A 0x4000

Code Snippet 7.23: It’s pretty obvious that the RXCTL_SETUP value will be loaded into the Receiver
Control Register. The interesting thing about some of the choices is that they are undesirable in the
everyday working world of networking. The idea behind having unlimited frame access is to be
able to receive packets and frames no matter what kind of shape they’re in. The uninhibited
reception of packets is good for debugging networking designs and making useful tools like Sniffers.

The CS8900A-CQ Transmit Configuration Register

One look at the Transmit Configuration Register in Figure 7.11 and taking into account the
number of bits followed by “iE” leads to one conclusion; there’s nothing in this register we
can use in 8-bit mode. Every bit in the Transmit Configuration Register is an interrupt enable
bit.

Figure 7.10: This register must be really smart—Look at all of the good grades its bits have! Bit 7 is
of particular interest because if it is set the CS8900A-CQ will accept a frame with any address.

Chapter 7

162

TRANSMIT CONFIGURATION REGISTER

Even though the contents of the Transmit Configuration Register are null and void as far
as we are concerned, it’s bit pattern is still defined in the Easy Ethernet CS8900A source
code as you see it in Code Snippet 7.24.

//**
//* PacketPage Transmit Configuration Register Bit Definitions
//**
#define TXCFG_LOSS_CRS_IE 0x0040
#define TXCFG_SQE_ERR_IE 0x0080
#define TXCFG_TX_OK_IE 0x0100
#define TXCFG_OUT_WIN_IE 0x0200
#define TXCFG_JABBER_IE 0x0400
#define TXCFG_16_COLL_IE 0x8000
#define TXCFG_ALL_IE 0x8FC0

Code Snippet 7.24: The current version of the Easy Ethernet CS8900A firmware doesn’t use the
CS8900A-CQ interrupts. However, you can get a taste of what it’s like to use the TXCFG_TX_ALL_IE
bit structure in the interrupt-enabled version of the Easy Ethernet CS8900A firmware included on
the CD-ROM that is included with this book.

The CS8900A-CQ Transmit Command Status Register

Number 9, Number 9, Number 9…the Transmit Command Status Register is strange, but not
in the sense of that Number 9 line from a popular psychedelic recording I grew up with.
There are two Transmit Command Status Registers. Transmit Command Status Register 9 is
read only and resides at PacketPage Address 0x0108. The other Transmit Command Status
Register, which is also Register 9, is write only and is located at PacketPage Address 0x0144.
The Transmit Command Status Register at PacketPage Address 0x0144 takes the transmit
commands issued by the Easy Ethernet CS8900A firmware. If necessary, the contents of the
Transmit Command Status Register are read from the Transmit Command Status Register at
PacketPage Address 0x0108. Isn’t that lovely?

The Transmit Command Status Register at PacketPage Address 0x0144 actually belongs
to the Initiate Transmit Registers group. While we have the Transmit Command Status
Register’s attention, let’s go ahead and describe our use of its bits in the Easy Ethernet
CS8900A firmware.

Figure 7.11: Since the Transmit Configuration Register is useless to us, this is a good place to point
out that every register we’ve looked at so far is identified numerically in the first five bits of the low
byte of the register. The Transmit Configuration Register is register number 7.

7 6 5 4 3 2 1 0
SQEerroriE Loss-of-CRSiE 000111

F E D C B A 9 8
16colliE AnycolliE JabberiE Out-of-windowiE TxOKie

Ethernet

163

TRANSMIT COMMAND STATUS REGISTER

The TxStart bits shown in the Transmit Command Status Register in Figure 7.12 are
always set in the Easy Ethernet CS8900A code. Setting both TxStart bits tells the CS8900A-
CQ to start the transmission of the frame after the entire frame is transferred to the
CS8900A-CQ transmit queue.

The Transmit Command Status Register at PacketPage Address 0x0108 is mapped in the
PacketPage register definitions but there is no bit group definition associated with it. The bit
definitions in Code Snippet 7.25 belong to the Transmit Command Status Register at
PacketPage Address 0x0144.

//**
//* PacketPage Transmit Command Register Bit Definitions
//**
#define TXCMD_AFTER_5 0x0000
#define TXCMD_AFTER_381 0x0080
#define TXCMD_AFTER_1021 0x0040
#define TXCMD_AFTER_ALL 0x00C0
#define TXCMD_FORCE 0x0100
#define TXCMD_ONE_COLL 0x0200
#define TXCMD_NO_CRC 0x1000
#define TXCMD_NO_PAD 0x2000

Code Snippet 7.25: Since the Transmit Command Status Register at PacketPage Address 0x0144 is
updated before each transmission, we could actually change the way each packet is transmitted
on the fly. The Easy Ethernet CS8900A firmware uses a standard combination of the bits in this
register for every transmission.

The CS8900A-CQ Buffer Configuration Register

The Buffer Configuration Register in Figure 7.13 is another of those “iE” registers.

Figure 7.12: The Transmit Command Status Register at PacketPage Address 0x0144 is touched
every time a packet is transmitted.

7 6 5 4 3 2 1 0
TxStart 001001

F E D C B A 9 8
 TxPadDis InhibitCRC Onecoll Force

BUFFER CONFIGURATION REGISTER

Figure 7.13: About the only things useful to us are the Register identification bits.

7 6 5 4 3 2 1 0
RxDMAiE Swint 001011

F E D C B A 9 8

RxDestiE Miss OvfloiE TxCol OvfloiE Rx128iE RxMissiE TxUnder runtiE Rdy4TxiE

Chapter 7

164

//**
//* PacketPage Buffer Configuration Register Bit Definitions
//**
#define BUFCFG_SW_INT 0x0040
#define BUFCFG_RDY4TX_IE 0x0100
#define BUFCFG_TX_UNDR_IE 0x0200

Code Snippet 7.26: There just isn’t anything to talk about here.

The Buffer Configuration Register is not even used in our “illegal” Easy Ethernet
CS8900A interrupt code, and the code in Code Snippet 7.26 is virtually useless. Enough said.

The CS8900A-CQ Line Control Register

The CS8900A-CQ Line Control Register (Figure 7.14) is of a bit more use than the Buffer
Configuration Register. The Line Control Register bits enable the CS8900A-CQ transmitter
and receiver and determine what type of interface is attached to the CS8900A-CQ. The
LINECTL_10BASET definition in Code Snippet 7.27 for 10Base-T operation is what we’ll
use in the Easy Ethernet CS8900A firmware.

To set the Ethernet interface for 10Base-T requires both the AutoAUI/10BT and the
AUIonly bits to be clear. That’s not obvious, looking at the bit descriptions for bits 8 and 9 of
the Line Control Register, and you must consult the CS8900A-CQ datasheet description for
that information.

LINE CONTROL REGISTER
7 6 5 4 3 2 1 0

SerTxON SerRxON 010011

F E D C B A 9 8
 LoRxSquelch 2partDefDis PloarityDis ModBackoffE AutoAUI/10BT AUIonly

Figure 7.14: An interesting feature of the CS8900A-CQ is its ability to extend its range by setting
the LoRxSquelch bit. The LoRxSquelch bit lowers the 10Base-T receiver squelch thresholds and
allows operation on “quiet” cables with lengths in excess of 100 meters.

//**
//* PacketPage Line Control Bit Definitions
//**
#define LINECTL_RX_ON_BIT 0x0006
#define LINECTL_RX_ON 0x0040
#define LINECTL_TX_ON_BIT 0x0007
#define LINECTL_TX_ON 0x0080
#define LINECTL_AUI_ONLY 0x0100
#define LINECTL_10BASET 0x0000

Code Snippet 7.27: The CS8900A-CQ can be set to detect the interface (AUI or 10Base-T)
automatically.

Ethernet

165

The CS8900A-CQ Self Control Register

The Self Control Register (Figure 7.15) has the potential of being one of the most interesting
registers to work with. If you decide to manipulate the LED driver/logic level output pins,
this is your register. The Self Control Register is also the holder of the CS8900A-CQ RESET
bit and can control the CS8900A-CQ’s power modes as well.

SELF CONTROL REGISTER

Used or not, the Self Control Register bits are included in the Easy Ethernet CS8900A
firmware and are laid out as shown in Code Snippet 7.28.

//**
//* PacketPage Self Control Register Bit Definitions
//**
#define SELFCTL_RESET 0x0040
#define SELFCTL_HC1E 0x2000
#define SELFCTL_HCB1 0x8000

Code Snippet 7.28: I figured most of you would want the LED indicators, so I didn’t “pen in” the
LED’s alternate bit definitions.

The CS8900A-CQ Bus Control Register

The Bus Control Register (Figure 7.16) is intended for use with ISA systems. The only bit of
any interest to us is the “illegal” EnableIRQ bit that is used in the “illegal” interrupt versions
of the Easy Ethernet CS8900A firmware.

Figure 7.15: I personally like the blinky LED indicators. However, if you’re down to needing just one
more output pin, you can steal one from the CS8900A-CQ using the bits in this register.

7 6 5 4 3 2 1 0
 RESET 010101

F E D C B A 9 8
HCB1 HCB0 HC1E HC0E HW Standby HWSleepE SW Suspend

BUS CONTROL REGISTER

 7 6 5 4 3 2 1 0
 Reset RxDMA 010111

F E D C B A 9 8
EnableIRQ RxDMAsize IOCH RDYE DABurst MemoryE UseSA DMAextend

Figure 7.16: The EnableIRQ bit tells the CS8900A-CQ to generate an interrupt when an interrupt-
tagged event occurs. This bit enables the “illegal” 8-bit mode code to control the logic level of the
CS8900A-CQ’s INTRQ0 pin.

Chapter 7

166

//**
//* PacketPage Bus Control Bit Definitions
//**
#define BUSCTL_USE_SA 0x0200
#define BUSCTL_MEM_MODE 0x0400
#define BUSCTL_IOCHRDY 0x1000
#define BUSCTL_INT_ENBL_BIT 0x0007
#define BUSCTL_INT_ENBL 0x8000

Code Snippet 7.29: This is another register that you can see in action if you run the older Easy
Ethernet CS8900A interrupt code.

The Bus Control Register bit definitions are holdovers from the earlier Easy Ethernet
CS8900A code that used the INTRQ0 interrupt line. The BUSCTL_INT_ENBL_BIT in
Code Snippet 7.29 is not used in the current spin of the Easy Ethernet CS8900A firmware.

The CS8900A-CQ Test Control Register

The Test Control Register (Figure 7.17) is primarily used to test the Manchester ENDEC by
looping its output back into its input. There are also a couple of bits in the Test Control
Register that deal with standard operation of the CS8900A-CQ. The Disable Backoff bit turns
off the “wait after a collision” algorithms. If the Disable Backoff bit is set, the CS8900A-CQ
will attempt to transmit on the time interval between Ethernet packets no matter what. The
minimum inter packet gap interval is 9.6 µS.

TEST CONTROL REGISTER
7 6 5 4 3 2 1 0

DisableLT 011001

F E D C B A 9 8
 FDX Disable Back-off AUIloop ENDEC loop

Figure 7.17: The Easy Ethernet CS8900A firmware doesn’t take advantage of the CS8900A-CQ’s
internal loopback features. However, the FDX bit is used.

The TESTCTL_FDX bit in Code Snippet 7.20 puts the CS8900A-CQ into full duplex
mode. Full duplex mode allows transmission and reception to occur simultaneously. In most
cases, you would need separate transmit and receive wiring to achieve full duplex mode. If
you take a look at standard Category 5 twisted pair and how it’s used in an Ethernet LAN,
you’ll notice that there is a transmit and receive pair of wires allocated within the four twisted
pairs.

Ethernet

167

//**
//* PacketPage Test Control Bit Definitions
//**
#define TESTCTL_DIS_LT 0x0080
#define TESTCTL_ENDEC_LP 0x0200
#define TESTCTL_AUI_LOOP 0x0400
#define TESTCTL_DIS_BKOFF 0x0800
#define TESTCTL_FDX 0x4000

Code Snippet 7.30: Just enabling the loopback bits doesn’t a loopback test make—one must
interpret the loopback data with supporting software.

Let’s move on and investigate the next major set of CS8900A-CQ operational registers.

CS8900A-CQ Status and Event Registers

The CS8900A-CQ Interrupt Status Queue

The CS8900A-CQ Status and Event Registers aren’t as prolific as the CS8900A-CQ’s
Control and Configuration Registers. And, I shouldn’t even be discussing the very first Status
and Event Register, the Interrupt Status Queue (Figure 7.18), as interrupt operation in 8-bit
mode is not recommended.

INTERRUPT STATUS QUEUE

7 6 5 4 3 2 1 0
RegContent RegNum

F E D C B A 9 8
RegContent

Figure 7.18: The Interrupt Status Queue maps the register number and contents of certain interrupt-
enabled registers for use by the application.

If you’re interested in how to use the Interrupt Status Queue, you can get plenty of
Interrupt Status Queue experience from the down-level and “illegal” Easy Ethernet CS8900A
interrupt-laden firmware.

The CS8900A-CQ Receiver Event Register

When we get into looking at the Easy Ethernet CS8900A source code, you’ll find the Re-
ceiver Event Register (Figure 7.19) is instrumental in the Ethernet frame receive and transfer
process. The Receiver Event Register is the register that is polled to check for valid incoming
Ethernet frames held in the CS8900A-CQ’s receive buffer.

Chapter 7

168

The Receiver Event Register is one of the event registers that is mapped to the Interrupt
Service Queue when interrupts are enabled for the CS8900A-CQ. The difference in polling
and interrupt modes is that when polled, the Receiver Event Register’s contents aren’t moved
to the Interrupt Status Queue and the status of the receive event must be taken from the
condition of the Receiver Event Register’s bits. This will all make more sense when we
discuss the Receiver Event Register’s role in the Easy Ethernet CS8900A firmware.

The CS8900A-CQ Transmitter Event Register

The Transmitter Event Register (Figure 7.20) is a neat register if statistics are your thing.
However, it’s not used at all in the Easy Ethernet CS8900A firmware.

RECEIVER EVENT REGISTER

7 6 5 4 3 2 1 0
Dribblebits IAHash 000100

F E D C B A 9 8
 Extradata Runt CRCerror Broadcast Individual Adr Hashed RxOK

Figure 7.19: Using the CS8900A-CQ interrupts maps this register number and its contents into the
Interrupt Status Queue when a receive event occurs. For polled operation, which is used in the
current version of the Easy Ethernet CS8900A firmware, this register is continually read and its bits
evaluated to determine if a frame is positioned in the CS8900A-CQ receive queue.

TRANSMITTER EVENT REGISTER

7 6 5 4 3 2 1 0
SQEerror Loss-of-CRS 010011

F E D C B A 9 8
16coll Number-of-Tx-collisions Jabber Out-of-window TxOK

Figure 7.20: Some of the bits pertain to AUI (Loss-of-CRS and SQEerror). But, you can use the rest
of the bits in this register to collect data about the link your Easy Ethernet CS8900A is operating on.

The idea behind this book is to give you working hardware and software. There may be
some things you read in this text that will fuel an idea or tweak your curiosity, so I’ve in-
cluded all of the CS8900A-CQ register definitions in the Easy Ethernet CS8900A source
code instead of leaving out what I feel to be unimportant. Code Snippet 7.31 is another
example of register definition code not used by the Easy Ethernet CS8900A but available for
use by you.

Ethernet

169

//**
//* PacketPage Transmit Event Register Bit Definitions
//**
#define TXEVENT_TX_OK 0x0100
#define TXEVENT_OUT_WIN 0x0200
#define TXEVENT_JABBER 0x0400
#define TXEVENT_16COLLS 0x1000

Code Snippet 7.31: The bit definitions for the Transmitter Event Register are in the Easy Ethernet
CS8900A source code if you wish to use them.

The CS8900A-CQ Buffer Event Register

This is yet another CS8900A-CQ register that goes unused in the Easy Ethernet CS8900A
firmware. The Buffer Event Register (Figure 7.21) provides the status of the CS8900A-CQ
transmit and receive buffers.

BUFFER EVENT REGISTER

7 6 5 4 3 2 1 0
RxDMA frame SWint 001100

F E D C B A 9 8
RxDest Rx128 RxMiss TxUnderrun Rdy4Tx

The Rdy4Tx bit is directly tied to an interrupt process. The CS8900A-CQ datasheet says
the Rdy4Tx bit is very similar to the Rdy4TxNOW bit. So, I substituted the Rdy4Tx bit for
the Rdy4TxNOW bit in the transmit code. It didn’t work. So, unequivocally the Rdy4Tx bit
cannot be used in 8-bit mode to signal a successful bid for transmission. In true CS8900A-
CQ 8-bit mode (no interrupts enabled), the microcontroller must poll the Rdy4TxNOW bit
before gaining access to the CS8900A-CQ’s transmit buffer.

The CS8900A-CQ Receiver Miss Counter and Transmit Collision Counter Registers

Neither of these registers are used in the Easy Ethernet CS8900A firmware. In a nutshell,
both registers are 10-bit counters that can be used to signal the networking application that
something is really wrong with the way things are going on the transmit and/or receive side
of the link. The PacketPage Addresses of both counters is defined for those of you that need
to write code to employ this functionality.

The CS8900A-CQ Line Status Register

This is another register that can be used at your discretion, as nothing is coded for its use in
the Easy Ethernet CS8900A firmware. The Line Status Register simply reports the status of
the Ethernet physical interface.

Figure 7.21: The RxDest and Rx128 bits can be used in the preprocessing of incoming frames. By
checking the status of the RxDest and Rx128 bits, the application can get a jump start on processing
the incoming frame.

Chapter 7

170

The CS8900A-CQ Self Status Register

Just when you were thinking that the rest of the Status and Event Registers were absolutely
good for nothing, a bit inside the Self Status Register (Figure 7.22) rises from the ashes. The
INITD bit of the Self Status Register is used by the Easy Ethernet CS8900A firmware to
check for a valid initialization of the CS8900A-CQ.

SELF STATUS REGISTER

7 6 5 4 3 2 1 0
INITD 3.3V Active 010110

F E D C B A 9 8
 EEsize ELPresent EEPROM OK EEPROM present SIBUSY

Figure 7.22: Most of the bits in this register have to do with an EEPROM, which isn’t used in 8-bit
mode and not included in the hardware design of the Easy Ethernet CS8900A.

The Easy Ethernet CS8900A code does a bit test operation to check the INITD bit. So,
the SELFSTAT_INIT_DONE_BIT definition in Code Snippet 7.28 is used. The
SELFSTAT_INIT_DONE definition can be used as a mask to determine if the INITD bit is
set.

//**
//* PacketPage Self Status Bit Definitions
//**
#define SELFSTAT_INIT_DONE_BIT 0x0007
#define SELFSTAT_INIT_DONE 0x0080
#define SELFSTAT_SI_BUSY 0x0100
#define SELFSTAT_EEP_PRES 0x0200
#define SELFSTAT_EEP_OK 0x0400
#define SELFSTAT_EL_PRES 0x0800

Code Snippet 7.28: Note that the definitions following the SELFSTAT_INIT_DONE_BIT definition are
all mask values.

The CS8900A-CQ Bus Status Register

Only two bits of information exist in the Bus Status Register (Figure 7.23) and both relate to
transmission. The Rdy4TxNOW bit tells the PIC16F877 that the CS8900A-CQ is ready to
accept the transfer of a frame from the PIC16F877 for transmission.

Ethernet

171

The BUSSTA_RDY4TXNOW_BIT definition represents bit 0 of the upper byte of the
mask definition BUSSTA_RDY4TXNOW in Code Snippet 7.29.

//**
//* PacketPage Bus Status Bit Definitions
//**
#define BUSSTA_TX_BID_ERR 0x0080
#define BUSSTA_RDY4TXNOW_BIT 0x0000
#define BUSSTA_RDY4TXNOW 0x0100

Code Snippet 7.29: As you will see later, a bit test operation is performed on the Bus Status
Register’s high byte to check for the OK to transfer a frame to the CS8900A-CQ transmit queue.

CS8900A-CQ Address Filter Registers

The CS8900A-CQ comes equipped with a destination address register called the Individual
Address Register. The IA Register is part of an address filtering mechanism that includes bits
from a number of other registers. This address filter mechanism determines which frames
will pass the CS8900A-CQ receive portal and be placed in the CS8900A-CQ receive buffer.
The description of the physical IA Register and some of the supporting code have already
been covered.

For the Easy Ethernet CS8900A to respond to an incoming address, the very first bit of
the destination address should be 0. The reason for this is that if the first bit is not a 0, the
address is not a physical address. In the Easy Ethernet CS8900A firmware using bits in the
Receiver Control Register, we tell the CS8900A-CQ that the DA (Destination Address) on
the incoming frame must match the physical address in the CS8900A-CQ IA Register.

BUS STATUS REGISTER

7 6 5 4 3 2 1 0
TxBidErr 011000

F E D C B A 9 8
 Rdy4TxNOW

Figure 7.23: The maximum number of bytes you can stuff into an Ethernet frame is 1518. Now,
consider that the last 4 bytes of a frame are the CRC. That’s 1518 – 4, or 1514 bytes of stuff you
can cram into a frame. The TxBidErr bit will set when you try to exceed the maximum Ethernet
frame size. If you decide to modify the maximum frame size in the Easy Ethernet CS8900A firmware,
be sure to write some code to check this bit if you think you’ll get close to the max frame size.

Chapter 7

172

If the first bit of the incoming DA is a 1, then the frame is a multicast frame and the
address is logical, not physical. The CS8900A-CQ uses a hash technique to determine if it
should accept the incoming multicast frame. If you look at the RXCTL_SETUP definition in the
Easy Ethernet CS8900A source code, you will find that the multicast (RXCTL_MCAST_A) bit
is not included in the OR (|) scheme and as a result is not set. Thus, our implementation of
the Easy Ethernet CS8900A will ignore multicast addresses. Note also that the Easy Ethernet
CS8900A’s onboard CS8900A-CQ has been instructed to accept broadcast addresses.

CS8900A-CQ Receive and Transmit Frame Locations

These areas are used to transfer Ethernet frames between the CS8900A-CQ and the
PIC16F877. Only one receive and transmit frame are available at any time and the space for
each is dynamically allocated. The Easy Ethernet CS8900A runs in 8-bit mode and all of the
data is transferred to and from the CS8900A-CQ buffer memory area via the PacketPage I/O
ports.

Did It Register?
That does it for the CS8900A-CQ register set. As you can see, there are a multitude of
variables and configurations that can be had by setting and clearing the right set of bits in the
right set of registers.

We’ve covered a large amount of information and some of it may not make sense to you
right now. I can tell you that in the beginning of my experiences with the CS8900A-CQ, it
took a few readings of the CS8900A-CQ datasheet and application notes for some of the
concepts to become clear to me. Don’t worry—if we left anything out or set a bit incorrectly,
the problem will surface as we apply the firmware to the hardware and walk through receiv-
ing and transmitting frames with the CS8900A-CQ.

173

C H A P T E R 8
Writing the CS8900A-CQ Firmware

The best way to learn the ways of the CS8900A-CQ is to write some code to drive the
CS8900A-CQ. You’ve been introduced to the “do’s and don’ts” of using the CS8900A-CQ in
8-bit mode and you’ve been schooled in Ethernet etiquette. So, dust off your hexadecimal
calculator because it’s time to bring the CS8900A-CQ section of the Easy Ethernet CS8900A
to life.

As we make our way through the hows and whys of the Easy Ethernet CS8900A firm-
ware, I’ll reference the contents of certain registers. For example, note that in Figure 8.1 the
value of the first six bits of the Line Control Register equate to decimal 13. A look back at
our discussion of CS8900A-CQ registers, CS8900A-CQ Register 13 is the Line Control
Register. You and I can’t overwrite these first six bits as they are used internally by the
CS8900A-CQ to positively identify registers. To test this point, I actually commented out the
original bit_set lines of code and replaced them with code in Code Snippet 8.1 that would
erase the lower byte of the Line Control Register and replace it with a mask of 0xC0
(11000000 binary), which would normally turn on the SerTxON and SerRxON bits and write
zeroes to the lower five bits.

//**
//* TEST CODE TO PROVE THAT LOWER BITS OF LOWER BYTE ARE PERMANENT
//**

// ORIGINAL CODE RUNS NORMALLY UP TO HERE
// bit_set(data_L,LINECTL_RX_ON_BIT);
//bit_set(data_L,LINECTL_TX_ON_BIT);

LINE CONTROL REGISTER

Figure 8.1: You can always cross-reference a CS8900A-CQ register by the number in the lower six
bits of the register.

7 6 5 4 3 2 1 0
SerTxON SerRxON 010011

F E D C B A 9 8
 LoRxSquelch 2partDefDis PloarityDis ModBackoffE AutoAUI/10BT AUIonly

Chapter 8

174

//TEST CODE
data_L &= 0x00; //clear the data_L byte just read in to 0x00
data_L |= 0xC0; //set both SerTxON and SerRxON bits

//CODE CONTINUES NORMALLY FROM HERE

Code Snippet 8.1: Some things just don’t change.

The Easy Ethernet CS8900A was still able to turn on the receiver and transmitter after
loading and running this temporary change.

OK…you should have a pretty good idea of what we want to accomplish. We’re going to
take all of the concepts that we have discussed and put them to work. With that, let’s dive
into the Easy Ethernet CS8900A code.

The First Step
The setup_xxxx portion of the Absolute Start Point code is automatically generated by the
Custom Computer Services C Compiler. Those lines of source code could also have been
generated manually, but why reinvent the wheel when the functionality is put there for you.
You’ll notice that we’ve turned off many of the goodies that are part of the PIC16F877. That
doesn’t mean you can’t use them. The PIC16F877 internal peripherals are simply not used in
this spin of the code.

The Easy Ethernet CS8900A purposely pins out the entire bit structure of PORTA. If the
A/D resources of the PIC16F877 were needed, we could actually get rid of the first two lines
of code and enable the analog circuitry of the PIC16F877 just as easily as we’ve disabled it.

All of the microcontroller’s initial port directions are set up with the Custom Computer
Services C Compiler “set_tris_x”(0xYY)” function. For the Microchip PIC, a ‘1’ says that
the bit position is an input pin and a ‘0’ denotes an output pin. Check the set_tris_x bit
patterns against the schematic to find out which pins are set for input and which pins are set
for output.

The series of set/clr macros that follow the set_tris functions are directed at preparing the
CS8900A-CQ for reset and initialization. If the macros look familiar, it’s because we dis-
cussed them earlier. The idea is to set all of the CS8900A-CQ I/O control pins to their
inactive states.

The final printf statement is optional and was used in the code development and debug-
ging process.

//**
//* Absolute Start Point
//**
void main() {

int16 scratch16;

Writing the CS8900-CQ Firmware

175

setup_adc_ports(NO_ANALOGS);
setup_adc(ADC_OFF);
setup_psp(PSP_DISABLED);
setup_spi(FALSE);
setup_counters(RTCC_INTERNAL,WDT_18MS);
setup_timer_1(T1_DISABLED);
setup_timer_2(T2_DISABLED,0,1);

set_tris_a(0x00);
set_tris_b(0xE0); //11100000
set_tris_c(0xBD); //10111101
set_tris_d(0x00);
set_tris_e(0x00);
clr_reset;
set_ior;
set_iow;
set_aen;
clr_hex;
//printf(“Starting CS8900A-CQ Initialization.\r\n”);

Code Snippet 8.2: The clr_hex statement is clearing a flag bit that is used in the UDP application
code.

Reset the CS8900A-CQ
In Code Snippet 8.3, the reset bit within ppageSelfCTL is set with the code generated by the
WPP(ppageSelfCTL,SELFCTL_RESET) function and a 10 millisecond delay is implemented
to allow the CS8900A-CQ to calibrate its on-chip analog circuitry.

//**
//* PacketPage Self Control Register Bit Definitions
//**
#define SELFCTL_RESET 0x0040
//**
//* Reset the CS8900
//**

WPP(ppageSelfCTL,SELFCTL_RESET);
do
{

delay_ms(10);
RPP(ppageSelfStatus);

}while(!(bit_test(data_L,SELFSTAT_INIT_DONE_BIT)));
//printf(“CS8900A-CQ is RESET.\r\n”);

Code Snippet 8.3: The delay_ms() function within the Custom Computer Services C Compiler saves
the programmer from having to write complex and tricky delay routines from scratch.

Chapter 8

176

The ppageSelfCTL RESET bit (bit 6 of the Self Control Register) is an Act-Once bit.
That is, it is set and cleared automatically by the action it initiates. Notice in the code that a
mask of 0x40 (the SELFCTL_RESET value) was written to the lower byte of the Self
Control Register, and only bit 6 (RESET) was affected.

SELF CONTROL REGISTER

7 6 5 4 3 2 1 0
 RESET 010101

F E D C B A 9 8

HCB1 HCB0 HC1E HC0E HW Standby HWSleepE SW Suspend

While we’re talking about the Self Control Register, note that the SELFCTL_RESET
mask also determines how the CS8900A-CQ LINKLED pin will operate. By clearing the
HC0E bit in the Self Control Register, we turn the LINKLED function on with the upper byte
of the SELFCTL_RESET mask. If either the HC0E or HC1E bits were set, bits HCB0 and
HCB1 allow the microcontroller to have control of the pins used to drive the indicator LEDs.

SELF STATUS REGISTER

7 6 5 4 3 2 1 0
INITD 3.3V Active 010110

F E D C B A 9 8
 EEsize ELPresent EEPROM OK EEPROM present SIBUSY

After 10 milliseconds, a bit check is run against the INITD bit in the Self Status Register
(SELFSTAT_INIT_DONE_BIT). When this bit clears, the global CS8900A-CQ reset is
complete. Again, I’ve added an optional printf statement to signal a successful CS8900A-CQ
reset sequence.

Load the CS8900A-CQ Basic Parameters
The first line of code in the Load the CS8900 Basic Parameter code block dictates that the
ether will be 10BASE-T (LINECTL_10BASET) and the CS8900A-CQ will pump Manches-
ter-encoded bits onto the ether in Full Duplex mode (TESTCTL_FDX).

LINE CONTROL REGISTER

7 6 5 4 3 2 1 0
SerTxON SerRxON 010011

F E D C B A 9 8
 LoRxSquelch 2partDefDis PloarityDis ModBackoffE AutoAUI/10BT AUIonly

TEST CONTROL REGISTER

7 6 5 4 3 2 1 0
DisableLT 011001

F E D C B A 9 8
 FDX Disable Back-off AUIloop ENDEC loop

Writing the CS8900-CQ Firmware

177

Resulting mask applied to Receiver Control Register =

Here’s what the mnemonics within the RXCTL_SETUP definition specify:

■ The CS8900A-CQ accepts frames with correct CRC and length only
(RXCTL_RX_OK_A)

■ The Destination Address in the packet header must match the IA address found in
ppageIA (RXCTL_IND_A)

■ Broadcast frames with a Destination Address of FFFF FFFF FFFF hexadecimal are
accepted (RXCTL_BCAST_A)

//**
//* PacketPage Line Control Bit Definitions
//**
#define LINECTL_10BASET 0x0000
//**
//* PacketPage Test Control Bit Definitions
//**
#define TESTCTL_FDX 0x4000
//**
//* PacketPage Receiver Control Register Bit Definitions
//**
#define RXCTL_SETUP (RXCTL_RX_OK_A|RXCTL_IND_A|RXCTL_BCAST_A)
//**
//* Load the CS8900 Basic Parameters
//* 10BaseT/Full Duplex/accept broadcast /individual addresses
//**

WPP(ppageLineCTL,LINECTL_10BASET);
WPP(ppageTestCTL,TESTCTL_FDX);
WPP(ppageRxCTL,RXCTL_SETUP);
WPP(ppageRxCFG,RXCFG_NOBUF_CRC);

//printf(“CS8900A-CQ Basic Parameters SET.\r\n”);

Code Snippet 8.4: Remember that to choose the 10Base-T option, both bits 8 and 9 of the Line
Control Register must be cleared. The PacketPage write to the ppageRxCFG (Receiver Configuration
Register) is our insurance code that makes sure the BufferCRC bit inside the Receiver Configuration
Register is clear.

Let’s check our work. In the code we logically OR (that’s what the | between the bit fields
RXCTL_RX_OK_A|RXCTL_IND_A|RXCTL_BCAST_A means) the hexadecimal values
within the RXCTL_SETUP definition and apply the mask to the Receiver Control Register.

 HEX BINARY
RXCTL_RX_OK_A 0x0100 = 00000001 00000000
RXCTL_IND_A 0x0400 = 00000100 00000000
RXCTL_BCAST_A 0x0800 = 00001000 00000000

00001101 00000000

Chapter 8

178

RECEIVER CONTROL REGISTER

7 6 5 4 3 2 1 0
PromiscuousA IAHashA 000101

F E D C B A 9 8
 ExtradataA RuntA CRCerrorA BroadcastA IndividualA MulticastA RxOKA

Matching the logically OR’ed bits to the high byte of the Receiver Control Register sets
bits 8, A and B, which instructs the CS8900A-CQ to accept frames with the correct CRC and
length (bit 8), match the frame’s DA (Destination Address) to the Individual Address and
accept broadcast frames. That’s exactly what we want to happen when a packet is received.

Load the CS8900A-CQ Individual Address Register Set
We’ve already covered the next code module. For the sake of continuity, I’ll show it to you again.

//**
//* HARDWARE (MAC) ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID MAC ADDRESS
//**
int8 MYMAC[6] = { 0,0,’E’,’D’,’T’,’P’ };

MYMAC 5 4 3 2 1 0
CS REG 0X15D 0X15C 0X15B 0X15A 0X159 0X158

 P T D E 0 0

//**
//* PacketPage Internal Register Definitions
//**
#define ppageIA 0x0158 //Individual Address
int16 scratch16;
//**
//* Load the CS8900 IA
//* INDIVIDUAL ADDRESS LAYOUT IN CS8900
//**

scratch16 = make16(MYMAC[1],MYMAC[0]);
WPP(ppageIA,scratch16);
scratch16 = make16(MYMAC[3],MYMAC[2]);
WPP(ppageIA+2,scratch16);
scratch16 = make16(MYMAC[5],MYMAC[4]);
WPP(ppageIA+4,scratch16);

//uncomment this code to see the MAC address as it has been entered
//RPP(ppageIA);
//printf(“%x%x \r\n”,data_H,data_L);

Writing the CS8900-CQ Firmware

179

//RPP(ppageIA+2);
//printf(“%x%x \r\n”,data_H,data_L);
//RPP(ppageIA+4);
//printf(“%x%x \r\n”,data_H,data_L);

//end commented code
//printf(“CS8900A-CQ MAC Address LOADED.\r\n”);

Code Snippet 8.5: I inserted the CS8900A-CQ Individual Address layout into the snippet to refresh
your memory as to how the MAC bytes are stored inside the CS8900A-CQ.

The code in Code Snippet 8.5 uses the services of the WPP macro to load the IA (Indi-
vidual Address) into the CS8900A-CQ’s IA register set. In Code Snippet 8.4, we set bit A in
the Receiver Control Register to instruct the CS8900A-CQ to receive packets addressed to
the IA that was loaded in Code Snippet 8.5.

Enable the CS8900A-CQ Transmitter and Receiver
Everything register-wise needed to get the CS8900A-CQ online is set and ready to go. All
that stands between the CS8900A-CQ and the LAN segment is the enabling of the CS8900A-
CQ’s transmitter and receiver in Code Snippet 8.6.

//**
//* PacketPage Internal Register Definitions
//**
#define ppageINT 0x0022 //Interrupt number (0,1,2, or 3)
//**
//* PacketPage Bus Control Bit Definitions
//**
#define BUSCTL_INT_ENBL_BIT 0x0007
//**
//* PacketPage Line Control Bit Definitions
//**
#define LINECTL_RX_ON_BIT 0x0006
#define LINECTL_TX_ON_BIT 0x0007
//**
//* Enable CS8900 TRANSMITTER AND RECEIVER

//**
RPP(ppageLineCTL);
bit_set(data_L,LINECTL_RX_ON_BIT);
bit_set(data_L,LINECTL_TX_ON_BIT);
PPWrite();

//printf(“CS8900A-CQ Ethernet Transceiver ENABLED.\r\n”);
printf(“Easy Ethernet CS8900A Version 03.08.02\r\n”);

Code Snippet 8.6: The RPP (Read PacketPage) macro reads a PacketPage register into the data_H
and data_L variables. Our targeted bits are in data_L. Once the desired bits are twiddled, the
PPWrite (PacketPage Write) macro puts the newly revised register contents (data_H and data_L)
back into the PacketPage register they originated from.

Chapter 8

180

We set the link type to 10Base-T in a previous code segment by clearing some bits in the
Line Control Register. To activate the CS8900A-CQ transmitter and receiver, we need to set
bits 6 and 7 of the Line Control Register. The easiest way to set the bits inside the register
without disturbing the bits we’ve already twiddled is to read the Line Control Register, set
the SerTxON and SerRxON bits in the contents that we read from the Line Control Register
and write the new bit settings back into the Line Control Register. Of course there are macros
to perform the register reads (RPP macro) and writes (PPWrite macro). I added a printf
statement to assure you that the Easy Ethernet CS8900A’s RS-232 port is functional, and to
inform you of the version of firmware your Easy Ethernet CS8900A is running.

Let’s stop for a moment and collect our thoughts. We’ve completed quite a bit of work
towards our goal of putting the Easy Ethernet CS8900A on a LAN. Up to this point we’ve:

■ Effected the PIC16F877-to-CS8900A-CQ interface

■ Reset and Initialized the CS8900A-CQ

■ Loaded transmit and receive parameters into the CS8900A-CQ

■ Loaded the MAC address as 00EDTP

■ Enabled the CS8900A-CQ’s transmitter and receiver

We’ve also covered the important CS8900A-CQ registers and their roles in passing a
packet from one Ethernet node to another on a LAN. All of the Easy Ethernet CS8900A
hardware is primed and ready to go. It’s time to venture out into the ether…

The Main Service Loop
You were probably expecting lots of activity inside the “Main Service Loop” you see in Code
Snippet 8.7. Without a doubt, there are other things we could be doing with the microcontroller
inside the Main Service Loop but right now our focus is on transmitting and receiving Ethernet
packets. Once we accomplish that, then we can spend our time coding the applications.

The Main Service Loop consists of two do-while loops running inside of a never-ending
while loop. The first do-while loop performs the polling function.

RECEIVER EVENT REGISTER

 7 6 5 4 3 2 1 0
 Dribblebits IAHash 000100

 F E D C B A 9 8
 Extradata Runt CRCerror Broadcast Individual

Adr
 Hashed RxOK

The RPP (Read PacketPage) macro continually reads the Receiver Event Register. Bit 8
of the Receiver Event Register is set when a valid frame has been loaded into the CS8900A-
CQ’s receive buffer. So, following the read of the Receiver Event Register, the first do-while

Writing the CS8900-CQ Firmware

181

loop checks the state of the RxOK bit in the Receiver Event Register. If the RxOK bit is not
set, the polling do-while loop repeats the read/bit test procedure until the RxOK bit is set by
the CS8900A-CQ.

To receive a frame, the CS8900A-CQ must accept it using the IA Register and Destina-
tion Address filter. We have already specified that only broadcast addresses and the matching
IA Register address will be recognized by our CS8900A-CQ. Once the packet is accepted,
the preamble and Start of Frame Delimiter are stripped off, and the bits following the SFD
are loaded into the CS8900A-CQ receive buffer area. Remember that a packet is the entire
message including the preamble, the Start of Frame Delimiter (SOF), the Destination Ad-
dress, the Source Address, the length and packet type information, the data, any necessary
padding and the FCS (Frame Check Sequence) or CRC (Cyclic Redundancy Check) value. A
frame is a packet without the preamble and SOF.

Earlier we cleared the BufferCRC bit inside the Receiver Configuration Register. Clear-
ing the BufferCRC bit means we will not include the CRC bytes in the receive buffer
contents or the length calculations.

//**
//* PacketPage Internal Register Definitions
//**
#define ppageRxEvent 0x0124 //Receiver Event
//**
//* PacketPage Receiver Event Register Bit Definitions
//**
#define RXEVENT_RX_OK_BIT 0x0000
//**
//* MAIN SERVICE LOOP
//**

while(1)
{

do{
RPP(ppageRxEvent);
}while(!(bit_test(data_H,RXEVENT_RX_OK_BIT)));

do{
get_frame();
RPP(ppageRxEvent);

}while(bit_test(data_H,RXEVENT_RX_OK_BIT));

}

Code Snippet 8.7: Other processes can be included inside the Main Service Loop, but one must
crawl before he or she begins to walk.

Chapter 8

182

Once a valid frame is received by the CS8900A-CQ and the RxOK bit is set, the second
do-while loop in Code Snippet 8.7 takes over. The second do-while loop transfers the frame
from the CS8900A-CQ receive queue to the PIC16F877 buffer, which is actually a memory
array called packet. The frame is then processed by the PIC16F877. After the processing of
the current frame is complete, the second do-while loop reads the Receiver Event Register
and checks the status of the RxOK bit. If the RxOK bit is set, there is another frame waiting
to be retrieved from the CS8900A-CQ receive queue. The second do-while loop continually
retrieves frames from the CS8900A-CQ until the RxOK bit is cleared by the CS8900A-CQ.
When the last frame is transferred and the RxOK bit clears, the first do-while loop once again
begins the polling operation. The two do-while loops run forever polling for frames and
transferring frames.

A Frame Under the Microscope
The only function that is called from the Main Service Loop is the get_frame function. The
get_frame function does exactly what its name implies. It gets frames.

I’ve set up an MPLAB ICE 2000 and the Sniffer to show you what goes on inside the
get_frame function. I’ll kick off the capture using a PING command. I’ll issue “ping
192.168.0.150” from the personal computer on the LAN segment with the Easy Ethernet
CS8900A. You should recognize the IP address of 192.168.0.150 as it belongs to the Easy
Ethernet CS8900A.

Here’s what should happen. The personal computer issuing the ping request only knows
the Easy Ethernet CS8900A’s IP address, which I enter in the ping command. The personal
computer, not knowing the IA or hardware address of the Easy Ethernet CS8900A, will issue
an ARP request. The ARP request is a broadcast message asking for a hardware address from
the owner of the IP address in the ping command. The Easy Ethernet CS8900A will see a
broadcast IA and allow the packet to be retrieved for processing. Once the Easy Ethernet
CS8900A sees that the ARP request belongs to the Easy Ethernet CS8900A’s IP address, the
Easy Ethernet CS8900A will generate an ARP reply. I’m going to stop the capture just before
the Easy Ethernet CS8900A assembles and sends the ARP reply. The MPLAB ICE 2000
capture results are shown in Screen Capture 8.1.

Let’s use the get_frame function code and the hex dump you see in Screen Capture 8.1 to
see if what I said should happen after issuing the PING command really happens. We’ll start
with the conditions that satisfy the do-while loops in the Main Service Loop that ultimately
call the get_frame function.

Writing the CS8900-CQ Firmware

183

Address Symbol Name Value

006D pageheader 09

0110 packet FF

0036 data_H 09

0037 data_L 04

0063 MYIP A8C0

0067 MYMAC 0000

Table 8.1: This is a text version of the Watch Window in Figure 8.1.

Screen Capture 8.1: This graphic gives you an idea of the level of detail provided by the MPLAB ICE
2000. I’ll supplement screen shots like this with the hex dump data in print format to make it a bit
easier to read and follow.

Chapter 8

184

The first do-while loop performed the last read of a PacketPage register before passing
control to the get_frame function. That means that the data in the data_H and data_L global
variables is the content of the Receive Event Register. Using the Watch Window as our guide,
we see the data_H and data_L global variables keep their values at addresses 0x0036 and
0x0037, respectively. Let’s lay the contents of the data_H and data_L variables into the
Receiver Event Register bit scheme.

RECEIVER EVENT REGISTER

 7 6 5 4 3 2 1 0
 Dribblebits IAHash 000100

 F E D C B A 9 8
 Extradata Runt CRCerror Broadcast Individual

Adr
 Hashed RxOK

Laying the data_L value (0x04) into bits 0:7 of the Receiver Event Register tells us that
no bits dribbled in after the packet reception was completed. Also, since we’re not using the
CS8900A-CQ hash filter to determine which packets to accept, the IAHash bit is zero. That
leaves only one bit set in the Receiver Event Register identifier, which gives the lower byte of
the Receiver Event Register a value of 0x04.

Turning our attention to the upper byte of the Receiver Event Register and laying in 0x09
informs us that the incoming frame is a broadcast frame and it was received into the
CS8900A-CQ receiver queue without encountering any problems.

Take another look at Table 8.1, as it identifies the microcontroller memory area (the
packet array starting at address 0x0110) that holds the frame data that gets transferred from
the CS8900A-CQ receive buffer.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 FF FF FF FF FF FF 00 E0 29 87 F5 5B 08 06 00 01)..[....
 0120 08 00 06 04 00 01 00 E0 29 87 F5 5B C0 A8 00 01)..[....
 0130 00 00 00 00 00 00 C0 A8 00 96 00 00 00 00 00 00
 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Hex Dump 8.1: Pretty soon, you’ll be picking out specific protocol fields in hex dumps like this
without external visual aids.

Note that the first 6 bytes of Hex Dump 8.1 beginning at address 0x0110 contain 0xFF.
This series of 0xFF bytes is a broadcast address, and we’ve already been told that this is a
broadcast packet by the Receiver Event Register.

The “packet” area in Hex Dump 8.1 is a byte array that contains all of the frame data. The
neat thing about the packet array is that every byte of data is in order. Since this is frame

Writing the CS8900-CQ Firmware

185

data, there is no preamble and no SOF delimiter. So, the packet array begins with the DA, or
Destination Address. In our Easy Ethernet CS8900A code, the DA begins at location 0x00 of
the packet array and continues for 6 bytes ending at packet array location 0x05. The DA
begins at location 0x0110 in Hex Dump 8.1, which is the beginning of the packet byte array,
and contains 6 bytes of 0xFF, which we now know is a broadcast address.

OK…now the get_frame function is called, and the first thing that happens is a read of
the RxStatus word that is the same information that is contained in the Receiver Event
Register we read in the Main Service Loop do-while loop. The next word following the
RxStatus word is the RxLength, which is the length of the incoming frame. The RxStatus and
RxLength words must be read before any of the frame data can be transferred from the
CS8900A-CQ to the PIC16F877 packet array. The RxStatus and RxLength values are kept in
another PIC16F877 array called pageheader. Table 8.1 tells us that the pageheader array
begins at PIC16F877 memory location 0x006D.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0060 0C 00 00 C0 A8 00 96 00 00 45 44 54 50 09 04 00EDTP...
 0070 3C 00 24 00 00 00 00 0A 00 07 00 00 00 00 00 00 <.$.....

Hex Dump 8.2: If you look closely, you can pick out the Easy Ethernet CS8900A’s IP (0x0063:0x0066)
and MAC (0x0067:0x006C) addresses.

In Hex Dump 8.2, you can see the high-order byte of the RxStatus word at 0x006D and
the low-order byte of the RxStatus word at 0x006E. The RxLength word follows, beginning
at PIC16F877 memory location 0x006F.

A look at the beginning of the get_frame function in Code Snippet 8.8 shows the code
collecting the RxStatus and RxLength values from the CS8900A-CQ and storing them in the
PIC16F877’s pageheader array.

//**
//* Ethernet Header Layout
//**
int8 pageheader[4];
#define enetpacketstatusH 0x00
#define enetpacketstatusL 0x01
#define enetpacketLenH 0x02
#define enetpacketLenL 0x03
//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
//**
//* Receive a Frame
//**

Chapter 8

186

void get_frame()
{

int8 i;
dataport_in;

RpppH(pageport_RxTxData0,pageheader[enetpacketstatusH]);
RpppL(pageport_RxTxData0,pageheader[enetpacketstatusL]);
RpppH(pageport_RxTxData0,pageheader[enetpacketLenH]);
RpppL(pageport_RxTxData0,pageheader[enetpacketLenL]);

rxlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
//printf(“rxlen=%lu\r\n”,rxlen);

Code Snippet 8.8: The dataport_in macro configures the PIC16F877 databus pins as inputs.

After the PIC16F877’s data port is put into input mode, the receive status is read high-
order byte first using the RpppH (Read PacketPage Port High) macro. Notice that the receive
status is stored for later use, but never used. Even so, it still must be read.

The next read brings in the length of the frame that will be transferred from the
CS8900A-CQ to the PIC16F877. This is the total length of bytes starting with the DA and
ending with the last byte before the 4-byte CRC value. The RxLength word is used to pro-
vide a count value for retrieving the rest of the frame from the CS8900A-CQ receive queue.

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
int8 packet[96]; //50 bytes of UDP data available
//**
//* Receive a Frame
//**

for(i=0;i<rxlen;i+=2)

{
//dump any bytes that will overrun the receive buffer
if(i < 96)
{

RpppL(pageport_RxTxData0,packet[i]);
RpppH(pageport_RxTxData0,packet[i+1]);

}
}

Code Snippet 8.9: Any byte after byte number 96 will be tossed into the bit bucket and discarded.
You can experiment with the maximum frame value as it depends on how much free RAM you
have to work with.

Writing the CS8900-CQ Firmware

187

We know what rxlen will resolve to as the RxLength value becomes the rxlen value and
the RxLength value is stored in the pageheader array. RxLength is equal to 0x003C, which
translates to a frame length of 60 bytes. So, no bits in this frame will be tossed into the bit
bucket.

The CS8900A-CQ receive buffer is then read in low byte/high byte order (Code Snippet
8.9) into the PIC16F877 packet array memory area for the length of the buffered frame,
which is determined by the value of rxlen. The 60 bytes of this frame are shown in Hex
Dump 8.1.

Through trial and error, I determined that the PIC16F877’s frame buffer area extends
safely out to be 96 bytes. There is plenty of leftover RAM in the PIC16F877 in other banks
that can be used, and for starters, the 96 bytes allocated to the packet array buffer area is
plenty. To keep things from getting out of hand, we must only accept frames of 96 bytes or
less, and in transmit mode only fill our PIC16F877 packet buffer area with 96 bytes maxi-
mum. If you’re on a LAN with personal computers running Windows, the 96-byte incoming
frame length limit is certain to be exceeded. The good news is that we can throw away any
incoming bytes above number 96. In the get_frame function if incrementing the i variable in
the for(i=0;i<rxlen;i+=2) loop, which is pointing to the next available packet array memory
location, puts the “i” byte count 96, the rest of the remaining bytes are read from the
CS8900A-CQ receive buffer and dumped into the bitbucket. Instead of throwing away bytes
beyond number 96 in the CS8900A-CQ receive buffer, we could use the receive event data to
trigger the CS8900A-CQ to move on to the next frame in its buffer after byte number 96, but
since we’re reading the entire frame there’s no need to do that. By not prematurely trashing
the frame ensures that the entire frame is read whether we will use all of the data or not.

Now that the frame has been transferred from the CS8900A-CQ buffer memory to the
PIC16F877’s buffer memory, the contents of the frame must be processed. We already know
quite a bit about the frame we just transferred, and thanks to the MPLAB ICE 2000, we have
all of the clues needed to complete the analysis of the newly acquired frame data. This is
where the second half of the get_frame function comes into play.

Earlier, I predicted that an ARP request would be the first message received by the Easy
Ethernet CS8900A from the personal computer sharing the LAN segment.

//**
//* Ethernet Header Layout
//**
int8 pageheader[4];
#define enetpacketstatusH 0x00
#define enetpacketstatusL 0x01
#define enetpacketLenH 0x02
#define enetpacketLenL 0x03
int8 packet[96]; //50 bytes of UDP data available
#define enetpacketDest0 0x00 //destination mac address

Chapter 8

188

#define enetpacketDest1 0x01
#define enetpacketDest2 0x02
#define enetpacketDest3 0x03
#define enetpacketDest4 0x04
#define enetpacketDest5 0x05
#define enetpacketSrc0 0x06 //source mac address
#define enetpacketSrc1 0x07
#define enetpacketSrc2 0x08
#define enetpacketSrc3 0x09
#define enetpacketSrc4 0x0A
#define enetpacketSrc5 0x0B
#define enetpacketType0 0x0C //type/length field
#define enetpacketType1 0x0D
#define enetpacketData 0x0E //IP data area begins here
//**
//* Receive a Frame
//**

if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06)
{

if(packet[arp_hwtype+1] == 0x01 &&
packet[arp_prtype] == 0x08 && packet[arp_prtype+1] == 0x00 &&
packet[arp_hwlen] == 0x06 && packet[arp_prlen] == 0x04 &&
packet[arp_op+1] == 0x01 &&
MYIP[0] == packet[arp_tipaddr] &&
MYIP[1] == packet[arp_tipaddr+1] &&
MYIP[2] == packet[arp_tipaddr+2] &&
MYIP[3] == packet[arp_tipaddr+3])
arp();

}

Code Snippet 8.10: I purposely overloaded the packet array dependencies to illustrate the location
of the bytes that determine if the packet received by the CS8900A-CQ carried an ARP frame.

If we can satisfy the if statement in Code Snippet 8.10, the data contained in Hex Dump
8.1 is an ARP frame of some sort. The layout of the PIC16F877 packet array says that we
want to look at memory locations 0x0C and 0x0D in the packet array. If the enetpacketType0
value is 0x08 and the value of enenpacketType1 is 0x06, this is an ARP frame. Checking Hex
Dump 8.1 verifies just that. We have a broadcast frame in the PIC16F877 memory that so far
has the markings of an ARP request. The code goes on to check other fields of the packet that
would confirm this is really an ARP request frame. In addition, the ARP request check code
in Code Snippet 8.9 checks the destination IP address within the ARP frame to make sure the
ARP request frame is addressed to the Easy Ethernet CS8900A.

If you browse through the PIC16F877 packet byte array, you’ll notice that the bytes
within the packet array match with the fields found in an Ethernet frame. The only exceptions
being the Pad and FCS fields, which are not kept in the microcontroller buffer memory.

Writing the CS8900-CQ Firmware

189

Remember that earlier we coded the appropriate CS8900A-CQ registers so that the Pad and
FCS are generated by the CS8900A-CQ at transmit time. In reality, our packet array is really
an Ethernet frame array. I used the name packet because ultimately that’s what the collection
of frame data will end up as. As you’re comparing bytes of the packet array to fields in the
Ethernet packet graphic, the bytes are transmitted left to right according to our Ethernet
packet graphic and bytes are transmitted beginning at packet array location 0x00 in our code.

Figure 8.1: Everything in red (gray area) is contained in the incoming frame data shown in Hex
Dump 8.1.

OK…where are we? So far, we’ve:

■ Effected the PIC16F877-to-CS8900A-CQ interface

■ Reset and Initialized the CS8900A-CQ

■ Loaded transmit and receive parameters into the CS8900A-CQ

■ Loaded the MAC address as 00EDTP

■ Enabled the CS8900A-CQ’s transmitter and receiver

■ Received what seems to be an ARP request

Let’s find out a little more about ARP.

The Art of ARP
Let’s assume another host such as a personal computer is trying to communicate with the
Easy Ethernet CS8900A. Let’s also assume that no other communication sessions between
the host personal computer and the Easy Ethernet CS8900A have occurred. Going with our
assumptions, the personal computer has to first find out how to contact the Easy Ethernet
CS8900A. Since there was no prior contact with the Easy Ethernet CS8900A, the only
information the host personal computer has is the Easy Ethernet CS8900A’s IP address,
which has been provided by the human user or via a program procedure. One more assump-
tion must be made here. The host personal computer knows the Easy Ethernet CS8900A’s IP
address and that is all it knows about the Easy Ethernet CS8900A. To communicate with the
Easy Ethernet CS8900A, the host must learn the Easy Ethernet CS8900A’s hardware address.
The Easy Ethernet CS8900A’s hardware address is known to you as its MAC address or

Chapter 8

190

Individual Address (00EDTP). The host personal computer learns the Easy Ethernet
CS8900A’s hardware address by issuing an ARP request to the Easy Ethernet CS8900A. ARP
is short for Address Resolution Protocol. Let’s look further at the data in Hex Dump 8.1 and
try to determine if the frame in our PIC16F877’s packet buffer is an ARP request frame. I’ve
placed a copy of Hex Dump 8.1 in the text here for your convenience.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 FF FF FF FF FF FF 00 E0 29 87 F5 5B 08 06 00 01)..[....
 0120 08 00 06 04 00 01 00 E0 29 87 F5 5B C0 A8 00 01)..[....
 0130 00 00 00 00 00 00 C0 A8 00 96 00 00 00 00 00 00
 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 0160 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

We already know that the first 6 bytes represent a broadcast address. A quick look at our
Ethernet packet graphic and the Easy Ethernet CS8900A source code tells us the next 6 bytes
are the sender’s hardware address (source address or SA). The SA may not be as meaningful
as our homebrewed MAC address, but if you break down the bytes and check them against
the IEEE registration in Figure 8.2, you would find that they have a meaning. I can tell you
that the SA is from an Ethernet NIC sold by SMC. That’s more than you need to know about
the SA’s bytes at this point.

00-E0-29 (hex) STANDARD MICROSYSTEMS CORP.
00E029 (base 16) STANDARD MICROSYSTEMS CORP.

6 HUGHES
IRVINE CA 92718
UNITED STATES

Figure 8.2: You can find the owner of any OUI by visiting the following IEEE web site: http://
standards.ieee.org/regauth/oui/index.shtml. The OUI text for the SMC NIC in my personal computer,
that is included in this figure, was taken directly from a page on the IEEE web site.

Moving on, the next 2 bytes at addresses 0x0C and 0x0D are the type/length bytes and
hold some significance in our search for the purpose of this frame. We only have to go as far
as the beginning of the second half of the get_frame function in the source code to gain some
valuable knowledge about the yet unknown frame.

We already know that the enetpackeType0 and enetpackeType1 bytes satisfy the criteria
set forth by the if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06)
statement that begins the second half of our get_frame function. The combination of 0x0806
signals that the frame is an Ethernet ARP frame.

An ARP frame has a distinct layout. So, in the Easy Ethernet CS8900A source code, I’ve
laid out the contents of an ARP frame just as it would appear in microcontroller memory
(Code Snippet 8.11). The ARP bytes are located inside the Ethernet frame data area.

Writing the CS8900-CQ Firmware

191

//**
//* Ethernet Header Layout
//**
#define enetpacketData 0x0E //IP data area begins here
//**
//* ARP Layout
//**
#define arp_hwtype 0x0E
#define arp_prtype 0x10
#define arp_hwlen 0x12
#define arp_prlen 0x13
#define arp_op 0x14
#define arp_shaddr 0x16 //arp source mac address
#define arp_sipaddr 0x1C //arp source ip address
#define arp_thaddr 0x20 //arp target mac address
#define arp_tipaddr 0x26 //arp target ip address

Code Snippet 8.11: Notice that the ARP bytes lie inside the IP data area.

The first real ARP bytes begin at memory location 0x011E in the microcontroller
memory and location 0x0E in the packet array. The 0x01 value at memory location 0x011F
denotes the hardware type, which is 10 MB Ethernet. Since an IP address was used to find
the Easy Ethernet CS8900A, the next 2 bytes beginning at address 0x0120 (0x0800) identify
the protocol as IP (Internet Protocol). Also, since the value of the Length/Type field is greater
than 0x0600, the field is defined to be a Type field.

We know that a MAC or hardware address is 6 bytes in length and an IP address is 4
bytes in length. This is verified by the 2 bytes beginning at memory address 0x0122. The
byte at address 0x0122 represents the length of the hardware address in bytes (6 bytes), and
the value of the byte at address 0x0123 is the length of the protocol address, which in the
case of IP is 4 bytes. The next 2 bytes nail it down. The 0x0001 in this position tells us the
frame is an ARP request.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

0110 00 01)..[....
0120 08 00 06 04 00 01 00 E0 29 87 F5 5B C0 A8 00 01)..[....

Hex Dump 8.3: I’ve removed some preceding bytes for clarity. Was I right about the ARP or what?

Now that we know the frame is a request for the Easy Ethernet CS8900A’s MAC address,
it would be nice to know who requested our hardware address. In addition, every host on the
LAN is processing this request up to this point. If this ARP request isn’t pointed toward our
Easy Ethernet CS8900A, it would be nice to know that before we process a return frame.
Fortunately, the sending host includes both its IP and hardware address in the ARP request
frame. Actually, we already know where the packet came from in the hardware address sense

Chapter 8

192

as the SA is the sending host’s hardware or MAC address. Beginning at microcontroller
memory address 0x0126, the sender’s hardware address is enumerated and is immediately
followed by the sender’s IP address. Decoding the bytes beginning at microcontroller
memory address 0x012C yields a sender IP address of 192 (0xC0).168 (0xA8).0 (0x00).1
(0x01). The Easy Ethernet CS8900A knows it is responsible for answering this ARP request
because its IP address exists at memory location 0x0136. Earlier in the CS8900A-CQ initial-
ization process, we placed our IP address in an array called MYIP. All we have to do to see if
this ARP request is for us, is compare the bytes in the MYIP array with the destination IP
address buried within the ARP request frame. Let’s decode the Easy Ethernet CS8900A IP
address just for fun:

 192(0xC0).168(0xA8).0(0x00).150(0x96).

If you’re wondering what the 6 bytes of 0x00 beginning at memory address 0x0130 are for in
Hex Dump 8.4, that’s a neat thing about the ARP frame. We’ll put our hardware address
there, change a byte or two here and there, and send the packet back to the sender.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 FF FF FF FF FF FF 00 E0 29 87 F5 5B 08 06 00 01)..[....
 0120 08 00 06 04 00 01 00 E0 29 87 F5 5B C0 A8 00 01)..[....
 0130 00 00 00 00 00 00 C0 A8 00 96 00 00 00 00 00 00

Hex Dump 8.4: An ARP response is a swap-this-for-that-fill-in-the-blanks process that returns vital
information about a remote host to the ARP requester.

Although it’s fun reading hex dumps and solving problems byte by byte, there is a really
nifty tool out there to help sort out what’s going on inside host devices participating in an
Ethernet LAN. It’s called a Sniffer and the one I will be using throughout this book is manu-
factured by Network Associates. The Sniffer is a piece of software that runs on a personal
computer. You can also purchase certified Ethernet NICs that will allow the Sniffer software
to capture hardware errors as well as packet errors on the LAN.

I used the Sniffer extensively when writing the microcontroller driver firmware for the
CS8900A-CQ. The Sniffer was an indispensable tool in my firmware development of the
CS8900A-CQ firmware and I want to use it to give you a deeper insight of what is going on
inside an Ethernet frame. Sniffer Screen Capture 8.2 is a Sniffer view of the ARP request hex
dump we just analyzed.

In Sniffer Screen Capture 8.2, the DLC Header (Data Link Control Header) is a part of
the service that is provided by the Data Link Layer. The Data Link Layer is responsible for
providing reliable data transfer across one physical link or communications path within a
network. The Data Link Layer consists of two sublayers: the Logical Link Control layer and
the Media Access Control layer. The Logical Link Control layer concentrates on flow control
and error control. You already know a bit about the Media Access Control, or MAC layer.
The MAC layer allows us to share the LAN with a number of hosts using unique hardware
addresses. As you can see from its contents, the DLC Header is part of the Ethernet protocol.

Writing the CS8900-CQ Firmware

193

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0060 0C 00 00 C0 A8 00 96 00 00 45 44 54 50 09 04 00EDTP...
 0070 3C 00 24 00 00 00 00 0A 00 07 00 00 00 00 00 00 <.$.....

Hex Dump 8.5: DLC is short for Data Link Control.

The frame length is displayed at locations 0x6F and 0x70 in the PIC16F877 hex frame
dump as shown in Screen Capture 8.1 and Hex Dump 8.5. The frame length values were
gleaned from the RxLength header bytes we read from the CS8900A-CQ. When the frame is
captured using a Sniffer, no searching through a hex dump is necessary as the Sniffer capture
simply tells you the frame size in the DLC Header area.

Starting at location 0x0110 in the PIC16F877 ARP request frame dump (Hex Dump 8.1),
you can follow along byte for byte in the Sniffer hex frame dump area, which resides at the
bottom of the Sniffer capture window. The Sniffer gives us a byte detail view of the frame
that is not immediately obvious in the PIC16F877 ARP request frame dump. Let’s use the
Sniffer capture as a pointer to the associated data in the PIC16F877 ARP request frame dump.

Sniffer Screen Capture 8.2: Don’t know what a “broadcast address” is? You do now…

Chapter 8

194

In the DLC area of the Sniffer capture, a frame size of 60 tells us that there’s probably
been some padding of the original data to meet the minimum frame length requirements, and
if you’re not quick with decimal-to-hexadecimal conversion, the Sniffer gives you the frame
size in both hex and decimal.

Just in case you aren’t a networking guru and don’t know what a broadcast address is, the
Sniffer makes sure you’re properly educated on broadcast addressing in the DLC Header
area. A look at the Sniffer hex dump and the DLC Header descriptive area indicates that the
DA (Destination Address) is filled with 0xFF’s, which as we already know is a broadcast
address. The Sniffer has also isolated the source address (SA) that belongs to a personal
computer running an SMC NIC on the local LAN segment. We know it’s an SMC NIC
because we looked it up on the IEEE OUI registration web page. By the way, you won’t find
an IEEE entry for our homebrew OUI 00EDTP.

The Sniffer Ethertype is an element of data that the Easy Ethernet CS8900A firmware
will key on. These 2 bytes tell the Easy Ethernet CS8900A firmware that the frame trans-
ferred from the CS8900A-CQ to the PIC16F877 is an ARP frame. The rest of the Easy
Ethernet CS8900A ARP firmware checks every field you see in the Sniffer ARP/RARP
frame. If it all matches the criteria we programmed into our ARP algorithm (which it does),
then an ARP request has been tendered by a personal computer host and the Easy Ethernet
CS8900A must assemble and transmit an ARP reply to the sender. We also know that the real
length of the original ARP request frame was 42 bytes, as the Sniffer capture tells us that 18
bytes of the frame are padding. Now you know why I love my Sniffer.

The top of the Sniffer capture is a short-form description of the frames that are held in the
Sniffer’s capture buffer. Remember that I set a break point in the Easy Ethernet CS8900A
firmware that stops the Easy Ethernet CS8900A code just after the ARP request is received.
So, the events you see in the Sniffer capture are ARP requests from the personal computer,
which were never answered by the Easy Ethernet CS8900A. A look at the destination address
next to the summary box gives us a clue as to if it is an ARP request or an ARP reply. Since
the DA is all 0xFF’s, which translates to a broadcast address, it’s a safe bet this frame is an
ARP request frame.

I want to show you a successful ARP request/ARP reply sequence. So, I removed the
breakpoint I set in the Easy Ethernet CS8900A firmware using the MPLAB ICE 2000. I also
issued an arp –d * command to clear the personal computer’s ARP cache. With the Easy
Ethernet CS8900A running normally and the personal computer ignorant to the existence of
the Easy Ethernet CS8900A, I issued another PING command from the personal computer.

Screen Capture 8.3 looks much like the ARP request Sniffer capture with the exception of
the events area.

Writing the CS8900-CQ Firmware

195

In Screen Capture 8.4, note that there is an additional hardware address supplied by the Easy
Ethernet CS8900A and an opcode in the ARP frame denoting the frame as an ARP reply.
This whole ARP process is somewhat like an algebra problem. You use the known (IP
addresses) to solve for the unknowns (hardware addresses).

An ARP frame has been successfully received by the CS8900A-CQ and transferred to the
PIC16F877 on the Easy Ethernet CS8900A. For the ARP process to be successful, the Easy
Ethernet CS8900A must answer the ARP request and provide the requested information to
the personal computer host. Let’s take a look at the firmware that supplies the Easy Ethernet
CS8900A’s ARP reply, beginning with Code Snippet 8.12.

Sniffer Screen Capture 8.3: You can see what’s on the way and who’s doing who in the Summary
Window.

Chapter 8

196

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_TxCmd 0x04 //Transmit Command
#define pageport_TxLen 0x06 //Transmit Length
//**
//* PacketPage Internal Register Definitions
//**
#define ppageBusStatus 0x0138 //Bus Status
//**
//* PacketPage Bus Status Bit Definitions
//**
#define BUSSTA_RDY4TXNOW_BIT 0x0000
//**
//* SEND ARP RESPONSE
//**

Sniffer Screen Capture 8.4: Note that what is highlighted in the detail area is also highlighted in the
hex dump area.

Writing the CS8900-CQ Firmware

197

void arp()
{

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0);
WpppL(pageport_TxLen,0x2A);
WpppH(pageport_TxLen,0);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

Code Snippet 8.12: The WpppL/WpppH (Write PacketPage Port) macros are issuing a bid for transmit
buffer space on the CS8900A-CQ. Once the bid is accepted, the CS8900A-CQ allows the transfer
of data into the newly allocated CS8900A-CQ transmit buffer area.

In the SEND ARP RESPONSE code (Code Snippet 8.12), the data port of the PIC16F877
is commanded to become an output port. The CS8900A-CQ is instructed to wait until all
bytes have been transferred to its transmit buffer from the PIC16F877 microcontroller before
beginning the transmit operation. 0x2A or 42 bytes of ARP response frame buffer area are
requested from the CS8900A-CQ. After issuing the bid to the CS8900A-CQ, the PIC16F877
polls the CS8900A-CQ Bus Status Register looking for permission to start the data transfer.

BUS STATUS REGISTER

7 6 5 4 3 2 1 0
TxBidErr 011000

F E D C B A 9 8
 Rdy4TxNOW

Once the CS8900A-CQ allocates the space and sets the RDY4TXNOW_BIT in the
CS8900A-CQ Bus Status Register, the bytes of our ARP reply flow out of the PIC16F877’s
packet buffer into the CS8900A-CQ transmit buffer in the order shown in the Ethernet packet
graphic (Figure 8.1).

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE DA

dataport_out;

Chapter 8

198

WpppL(pageport_RxTxData0,packet[enetpacketSrc0]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc1]);
WpppL(pageport_RxTxData0,packet[enetpacketSrc2]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc3]);
WpppL(pageport_RxTxData0,packet[enetpacketSrc4]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc5]);

Code Snippet 8.13: Here’s an example of some swap-this-for-that code. Imagine answering a
letter. You send your reply to the return address on the envelope. The return address in this case is
the SA (Source Address) in the ARP request frame.

The Easy Ethernet CS8900A firmware derives the ARP reply DA from the SA of the
ARP request in Code Snippet 8.13. The 6 bytes of the ARP request SA were stored in the
PIC16F877’s packet array using the enetpacketSrcX elements. All we have to do is to simply
copy the original SA bytes into the CS8900A-CQ buffer as if they were the DA bytes.

The next field that we should transfer to the CS8900A-CQ in the Ethernet frame order is
the SA. The SA is the Easy Ethernet CS8900A’s hardware address and that is already stored
as an array within the PIC16F877 we named MYMAC. The Easy Ethernet CS8900A’s MAC
address is written into the CS8900A-CQ buffer memory in order as 00EDTP in Code Snippet
8.14.

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
//**
//* HARDWARE (MAC) ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID MAC ADDRESS
//**
int8 MYMAC[6] = { 0,0,’E’,’D’,’T’,’P’ };
//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE SA

WpppL(pageport_RxTxData0,MYMAC[0]);
WpppH(pageport_RxTxData0,MYMAC[1]);
WpppL(pageport_RxTxData0,MYMAC[2]);
WpppH(pageport_RxTxData0,MYMAC[3]);
WpppL(pageport_RxTxData0,MYMAC[4]);
WpppH(pageport_RxTxData0,MYMAC[5]);

Code Snippet 8.14: This code, when compared to answering a letter, is the letter answerer’s return
address. In the ARP process, this is what the ARP requesting host is asking for.

Writing the CS8900-CQ Firmware

199

`Since this is an ARP reply, the Ethernet frame type is still ARP and is denoted by loading
0x0806 into the CS8900A-CQ buffer memory immediately following the SA. This value
could have been obtained from the packet array area (enetpacketType0/1) as well, as its value
doesn’t change between ARP reply and ARP response. The same can be said of the hardware
type field (arp_hwtype), the protocol type field (arp_prtype) and the protocol and hardware
address length fields (arp_hwlen and arp_prlen). You can simply copy these fields out to the
CS8900A-CQ if you wish. I chose to code the explicit values for clarity in Code Snippet 8.15.

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE

//Ethertype = ARP
WpppL(pageport_RxTxData0,0x08);
WpppH(pageport_RxTxData0,0x06);

//Hardware type = 10Mb Ethernet
WpppL(pageport_RxTxData0,0x00);
WpppH(pageport_RxTxData0,0x01);

//Protocol type = IP
WpppL(pageport_RxTxData0,0x08);
WpppH(pageport_RxTxData0,0x00);

//Hardware Address Length/Protocol Address Length
WpppL(pageport_RxTxData0,0x06);
WpppH(pageport_RxTxData0,0x04);

Code Snippet 8.15: Specifying IP as the protocol implies that the ARP messages travel within the
confines of the IP data area.

There are two fields that change values in the ARP response that is generated by the Easy
Ethernet CS8900A. The first is the frame opcode. Instead of an ARP request opcode of
0x0001, in Code Snippet 8.16, the frame opcode is replaced with an ARP response opcode of
0x0002.

Chapter 8

200

//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE

WpppL(pageport_RxTxData0,0x00);
WpppH(pageport_RxTxData0,0x02);

Code Snippet 8.16: So far, everything we’ve coded follows the byte order in Sniffer Screen Capture
8.3. Remember, we’re still loading the CS8900A-CQ transmit buffer and nothing has been passed
to the ether as of yet.

We already know the sender’s full address, as we can find the sender’s hardware address
in the ARP request SA and within the sender’s hardware address area of the ARP request
frame. The sender’s protocol or IP address can be found in the sender’s protocol address area
of the ARP request frame.

In Hex Dump 8.6, the sender’s hardware address (MAC address) is found to begin at
memory offsets 0x0116 and 0x0126.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 FF FF FF FF FF FF 00 E0 29 87 F5 5B 08 06 00 01)..[....
 0120 08 00 06 04 00 01 00 E0 29 87 F5 5B C0 A8 00 01)..[....
 0130 00 00 00 00 00 00 C0 A8 00 96 00 00 00 00 00 00

Hex Dump 8.6: The Easy Ethernet CS8900A’s IP address is also conveniently positioned inside the
ARP request frame for use by the ARP responder.

The sender’s IP address in Hex Dump 8.6 can be found beginning at memory offset
0x012C.

The idea of an ARP request is to contact the host you want to talk to and request its
hardware address with the expectation that you will receive the remote host’s hardware
address in an ARP reply. The host requesting the ARP reply will use the address information
within the ARP reply frame to form a full address for the host it is trying to reach. A full
address includes both an IP and MAC address.

With that idea in mind, let’s fill in the blanks for the requesting host beginning with the
sender’s hardware address. In an ARP reply, the Easy Ethernet CS8900A becomes the sender.
So, the sender’s hardware address will be the Easy Ethernet CS8900A MAC address that is
stored in the MAC address array MYMAC.

The requesting host already knew the Easy Ethernet CS8900A’s IP address, but it is
protocol to include it in the sender’s protocol address field. Like the MAC address, the Easy
Ethernet CS8900A’s protocol or IP address is also stored in the PIC16F877’s memory as an
array called MYIP.

Writing the CS8900-CQ Firmware

201

//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE

//Sender’s hardware address
WpppL(pageport_RxTxData0,MYMAC[0]);
WpppH(pageport_RxTxData0,MYMAC[1]);
WpppL(pageport_RxTxData0,MYMAC[2]);
WpppH(pageport_RxTxData0,MYMAC[3]);
WpppL(pageport_RxTxData0,MYMAC[4]);
WpppH(pageport_RxTxData0,MYMAC[5]);

//Sender’s protocol address
WpppL(pageport_RxTxData0,MYIP[0]);
WpppH(pageport_RxTxData0,MYIP[1]);
WpppL(pageport_RxTxData0,MYIP[2]);
WpppH(pageport_RxTxData0,MYIP[3]);

Code Snippet 8.17: The sender’s hardware address begins at memory offset 0x0126 of Hex Dump
8.6. The sender’s IP address begins immediately following the sender’s MAC address at memory
offset 0x012C.

Keep in mind that we are actually building the ARP reply packet inside the CS8900A-CQ
transmit buffer and not within the PIC16F877’s packet array. In Code Snippet 8.17, we’re
simply taking known values from the PIC16F877 RAM and transferring them to the
CS8900A-CQ in the correct Ethernet frame order.

In the ARP reply process the Easy Ethernet CS8900A has become the sending host and
the requesting host has become the target host. The last fields of the ARP reply require the
target host’s hardware and protocol addresses. Fortunately, those addresses are identified and
stored from the original ARP request frame within the PIC16F877’s packet array memory area.
The original ARP request SA is stored as elements of the packet array (enetpacketSrcX). So,
we can use the original SA to fill the target hardware address field within the CS8900A-CQ’s
transmit buffer. We also captured and stored the ARP requester’s protocol address from
within the ARP request frame. The packet array elements called arp_sipaddr in Code Snippet
8.18 hold the 4 bytes of the ARP requester’s IP address.

//**
//* SEND ARP RESPONSE
//**
// GENERATE THE ARP RESPONSE

//Target hardware address
WpppL(pageport_RxTxData0,packet[enetpacketSrc0]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc1]);

Chapter 8

202

WpppL(pageport_RxTxData0,packet[enetpacketSrc2]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc3]);
WpppL(pageport_RxTxData0,packet[enetpacketSrc4]);
WpppH(pageport_RxTxData0,packet[enetpacketSrc5]);

//Target Protocol address
WpppL(pageport_RxTxData0,packet[arp_sipaddr]);
WpppH(pageport_RxTxData0,packet[arp_sipaddr+1]);
WpppL(pageport_RxTxData0,packet[arp_sipaddr+2]);
WpppH(pageport_RxTxData0,packet[arp_sipaddr+3]);

Code Snippet 8.18: Again we’ve used captured data from the ARP request frame to fill in the
swap-this-for-that blanks in the ARP reply.

If you want to take a look back at what we’ve discussed so far, you’ll see that the Easy
Ethernet CS8900A firmware has stuffed the fields needed to reply to an ARP request into the
CS8900A-CQ buffer in Ethernet protocol order. This fact becomes clear if you compare what
we’ve fed the CS8900A-CQ with the hex dump at the bottom of Sniffer Screen Capture 8.3.

Once all of the bytes the CS8900A-CQ was told would be sent are transferred from the
Easy Ethernet CS8900A’s PIC16F877 microcontroller and collected in the CS8900A-CQ
transmit buffer, the CS8900A-CQ looks to see if the ether is clear. If there is no traffic on the
ether and the CS8900A-CQ determines that its receiver is not receiving data, the CS8900A-CQ
then generates a preamble that is immediately followed by an SFD and, assuming no colli-
sion occurs, our ARP reply hits the ether followed by a CS8900A-CQ generated CRC. All of
the packet building and packet transmission “magic” is performed by the CS8900A-CQ.
Once the CS8900A-CQ is initialized, all we have to do is supply some address information
and data to the CS8900A-CQ’s transmit buffer to pass information between hosts on an
Ethernet LAN segment.

203

C H A P T E R 9
PINGing the Easy Ethernet CS8900A

You’re well on the way. Now that your Easy Ethernet CS8900A can identify itself to others,
let’s see if we can get the Easy Ethernet CS8900A to raise its hand when called upon.

I started this whole ARP thing with a PING command. If you know absolutely nothing
about Internet protocols, you’ve probably heard someone talking about “pinging” someone
else’s computer. PING is actually an application of sorts that is based on the ICMP protocol.
It’s a quick and nasty way to establish that a remote host is online.

We’ll use what we’ve learned about Ethernet frames and reference the Sniffer capture of
the ICMP frame when we move into unknown territory. Hex Dump 9.1 should look familiar.
It’s a hex dump of the ICMP frame as it appears inside the PIC16F877 microcontroller. All of
the Easy Ethernet CS8900A code that you’ve been introduced to that is used to collect frames
from the CS8900A-CQ has brought us to this point (Code Snippet 9.1).

//**
//* Receive a Frame
//**
void get_frame()
{

int8 i;
dataport_in;

RpppH(pageport_RxTxData0,pageheader[enetpacketstatusH]);
RpppL(pageport_RxTxData0,pageheader[enetpacketstatusL]);
RpppH(pageport_RxTxData0,pageheader[enetpacketLenH]);
RpppL(pageport_RxTxData0,pageheader[enetpacketLenL]);

rxlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
//printf(“rxlen=%lu\r\n”,rxlen);
for(i=0;i<rxlen;i+=2)

{
//dump any bytes that will overrun the receive buffer
if(i < 96)

 {
 RpppL(pageport_RxTxData0,packet[i]);

RpppH(pageport_RxTxData0,packet[i+1]);
}

 }

Chapter 9

204

//process an ARP packet
if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06)
{

if(packet[arp_hwtype+1] == 0x01 &&
packet[arp_prtype] == 0x08 && packet[arp_prtype+1] == 0x00 &&
packet[arp_hwlen] == 0x06 && packet[arp_prlen] == 0x04 &&
packet[arp_op+1] == 0x01 &&
MYIP[0] == packet[arp_tipaddr] &&
MYIP[1] == packet[arp_tipaddr+1] &&
MYIP[2] == packet[arp_tipaddr+2] &&
MYIP[3] == packet[arp_tipaddr+3])
arp();

 }
//process an IP packet
else if(packet[enetpacketType0] == 0x08 &&

packet[enetpacketType1] == 0x00 &&
packet[ip_destaddr] == MYIP[0] &&
packet[ip_destaddr+1] == MYIP[1] &&
packet[ip_destaddr+2] == MYIP[2] &&
packet[ip_destaddr+3] == MYIP[3])

 {
if(packet[ip_proto] == PROT_ICMP)

 {
// WE ARE HERE
i = 0; // this line added to support an emulator break point
icmp();

}
else if(packet[ip_proto] == PROT_UDP)

udp();
else if(packet[ip_proto] == PROT_TCP)

tcp();
}

Code Snippet 9.1: The MPLAB ICE 2000 is great when it comes to stopping “time” in the
microcontroller frame of reference.

Now that our personal computer has the Easy Ethernet CS8900A’s MAC address in its
ARP cache, let’s tear the ICMP or PING request in Hex Dump 1 apart byte by byte.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 00 45 44 54 50 00 E0 29 87 F5 5B 08 00 45 00 ..EDTP..)..[..E.
 0120 00 3C 02 33 00 00 80 01 B6 A6 C0 A8 00 01 C0 A8 .<.3....
 0130 00 96 08 00 0A 5C 02 00 41 00 61 62 63 64 65 66\.. A.abcdef
 0140 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 ghijklmn opqrstuv
 0150 77 61 62 63 64 65 66 67 68 69 00 00 00 00 00 00 wabcdefg hi......

Hex Dump 9.1: Lots of this should be familiar by now. Even though this frame does something
other than ARP, it’s still an Ethernet frame.

PINGing the Easy Ethernet CS8900A

205

I’ve let the cat out of the bag and told you that Hex Dump 9.1 is an ICMP frame. Let’s
pretend you don’t know that yet. So, thus far the CS8900A-CQ has received yet another un-
known frame that bears the Easy Ethernet CS8900A’s hardware and protocol address. We’ve
just processed an ARP. So, it’s safe to assume that the host that requested the Easy Ethernet
CS8900A’s hardware address wants to communicate with the Easy Ethernet CS8900A and
that the unknown frame we just received is from the host that ARPed earlier.

Thus far, a remote host has sent a frame addressed to the Easy Ethernet CS8900A. The
CS8900A-CQ signaled the Easy Ethernet CS8900A’s microcontroller that a properly addressed
frame is ready to be transferred from the CS8900A-CQ’s receive queue to the Easy Ethernet
CS8900A’s PIC16F877 microcontroller’s RAM. The Easy Ethernet CS8900A’s PIC16F877
microcontroller executed the get_frame function, and we stopped the Easy Ethernet CS8900A’s
microcontroller at the “WE ARE HERE” point shown in the get_frame source code in Code
Snippet 9.1.

If all is as it should be in an Ethernet frame, the first six bytes of the hex frame dump in
Hex Dump 9.1 should be a hardware or physical destination address (DA). Decoding the first

Sniffer Screen Capture 9.1: You could almost stop reading here as the Sniffer tells all about the
ICMP frame.

Chapter 9

206

six bytes yields 00EDTP, which happens to be the Easy Ethernet CS8900A’s MAC (hard-
ware) address. Assuming the hosts on our network segment haven’t changed, the source
address (SA) looks just like the one that ARPed the Easy Ethernet CS8900A earlier. The
Ethernet packet type field of 0x0800 doesn’t jive with 0x0806, which we know as an ARP
frame indicator. At this point, we could consult the one thousand plus pages of technical
documentation that describe Internet protocols or we could simply take a look at Sniffer
Screen Capture 9.1.

The 0x0800 in the Ethernet packet type field is telling us that the frame is an IP frame.
And, to further complicate matters, there’s something called and IP Header where our ARP
data used to be. This is all by design and is called encapsulation. In fact, the ARP data that
occupied this space in the ARP process was encapsulated too.

The Ethernet packet is simply a box that all of the Internet protocols can travel in. The IP
data area begins at the same point that denotes the beginning of the Ethernet frame data area.
Since and ARP packet will never coexist with an IP packet within an Ethernet frame, they can
share the data space in a mutually exclusive kind of way. A look at the layout of the
PIC16F877’s packet array ARP data and IP header starting locations in Code Snippet 9.2
makes this point.

//**
//* Ethernet Header Layout
//**
#define enetpacketType0 0x0C //type/length field
#define enetpacketType1 0x0D
#define enetpacketData 0x0E //IP data area begins here
//**
//* ARP Layout
//**
#define arp_hwtype 0x0E
//**
//* IP Header Layout
//**
#define ip_vers_len 0x0E //IP version and header length

Code Snippet 9.2: You’ll soon see that all of the Internet protocols can be shipped in the Ethernet
box.

We’re obviously not going any further until we crack the contents of the IP header. So,
let’s do what we do best; tear it down byte by byte.

Figure 9.1 is a graphical depiction of the contents of the IP header. The top row repre-
sents bit positions within each 32-bit field of the IP header. Each row in the figure represents
32 bits or 4 bytes.

PINGing the Easy Ethernet CS8900A

207

IP packets are called datagrams. The definition of a datagram implies that a datagram is
an independent entity that can carry a message on a network but cannot guarantee the safe
arrival of that message.

The first 4 bits of the IP header contain the datagram’s IP version, which is currently 4.
The next 4 bits of the IP header represent the length of the IP header. The IP header length is
calculated by multiplying the IHL (IP header length) by 4. The IHL value is actually the
number of 32-bit words in the IP header.

The Type of Service field is one of those fields that makes the Sniffer shine. Instead of
digging through tons of documentation to find out about the bits within the Type of Service
field, it only takes a look at the Sniffer capture to get the total breakdown. The Easy Ethernet
CS8900A firmware doesn’t care about any of the bits in the Type of Service field. That
doesn’t mean you can twiddle them if you want. As you can see from the Sniffer capture
descriptions, the Type of Service field specifies how upper-layer protocols want the datagram
handled. Note there aren’t any special handling instructions for our datagram.

The Total Length field of the IP header is a field that the Easy Ethernet CS8900A firm-
ware will use. This field’s value represents the length of the entire IP packet including the
data and the header. The total length value could come in handy when loading an IP datagram
into the CS8900A-CQ transmit buffer.

The Identification field is a number that represents the current datagram. It’s used to
reorder fragments. I noticed that when I issued a PING with the Easy Ethernet CS8900A
disconnected from the network the Identification number incremented by one for each ICMP
echo request issued by the host personal computer.

The Flags field is used to determine if the packet can be fragmented. The low order bit
controls fragmentation, while the middle bit signals if this is the last fragment in a series of
fragmented packets. The high order bit of the Flags field is not used. This is another field that
makes you happy to have a Sniffer. According to our Sniffer screen capture, fragmentation is
not allowed.

Even though the process of sending datagrams is reliable to a great extent, there still
looms the possibility of having a “bad” datagram bouncing around uncontrolled on a net-
work. The Time to Live value is really a counter that gradually decrements until its value
reaches zero. When Time to Live equals zero, the life of the packet ends and it is discarded.

0..3 4..7 8 .. 15 16 .. 19 .. 23 24 .. 31
Version IHL Type of Service Total Length

Identification Flags Fragment Offset
Time To Live Protocol Header Checksum

Source IP Address
Destination IP Address

Options Padding
Data

Figure 9.1: The IP header looks really busy until you break it down into fields and their purposes.

Chapter 9

208

The Protocol field is another field that is used by the Easy Ethernet CS8900A firmware.
The value in this field represents an upper-layer protocol that will be the recipient of the IP
packet after it is processed. From the Easy Ethernet CS8900A’s source code, you can see that
the Easy Ethernet CS8900A will service the ICMP, TCP and UDP protocols. A value of 0x01
in this field indicates that the ICMP protocol is in control.

The IP header checksum is very important, as it is a way of checking the integrity of the
IP header. I’ll hold the theory behind calculating the IP header checksum until we get to the
checksum firmware description.

The source and destination addresses are the protocol addresses of the players in the
ICMP echo communications session. Note that the IP header is the only place you will see an
IP address in an IP datagram. No options have been specified for our IP datagram. So, the
destination IP address field gives way directly to the IP data area.

Encapsulation is an important concept to understand when dealing with Ethernet and IP.
The IP header is encapsulated within the data area of an Ethernet packet.

Here’s how the IP header is arranged in the Easy Ethernet CS8900A’s PIC16F877’s
internal memory. Note the IP data area in Code Snippet 9.3. Carving out this data area
implies that it has been put there to hold something else. That’s what encapsulation is all
about.

//**
//* IP Header Layout
//**
#define ip_vers_len 0x0E //IP version and header length
#define ip_tos 0x0F //IP type of service
#define ip_pktlen 0x10 //packet length
#define ip_id 0x12 //datagram id
#define ip_frag_offset 0x14 //fragment offset
#define ip_ttl 0x16 //time to live
#define ip_proto 0x17 //protocol (ICMP=1, TCP=6, UDP=11)
#define ip_hdr_cksum 0x18 //header checksum
#define ip_srcaddr 0x1A //IP address of source
#define ip_destaddr 0x1E //IP addess of destination
#define ip_data 0x22 //IP data area

Code Snippet 9.3: The IP header consists of 20 bytes. The IP header is like the markings on a
package or letter as it tells the “postman” how to handle the package, where to send and who
sent it. The “goods” ride inside the IP data area.

ICMP messages serve many purposes. For instance, we’re using ICMP to echo a packet
from one host to another and back. An ICMP message may also be sent when a datagram
cannot reach its destination. ICMP messages are primarily used to provide feedback about
problems that exist with datagrams in the communication environment. The only thing an
ICMP message can’t do is tell on itself when it’s bad.

PINGing the Easy Ethernet CS8900A

209

A “ping” is really an application that issues an ICMP echo request packet. Basically, a
ping sends some data to a remote host and expects the remote host to echo it back.

The ICMP header and its data are encapsulated within the IP data area, which is encapsu-
lated within the Ethernet packet data area (Figure 9.2).

Figure 9.2: Here’s a graphical view of the ICMP message riding in the IP box, which is riding in the
Ethernet box. That’s encapsulation.

In Code Snippet 9.4, I’ve included a snippet of the source code that describes how and
where the ICMP header is laid out in the Easy Ethernet CS8900A’s microcontroller’s
memory.

//**
//* IP Header Layout
//**
#define ip_srcaddr 0x1A //IP address of source
#define ip_destaddr 0x1E //IP addess of destination
#define ip_data 0x22 //IP data area
//**
//* ICMP Header
//**
#define ICMP_type ip_data
#define ICMP_code ICMP_type+1
#define ICMP_cksum ICMP_code+1
#define ICMP_id ICMP_cksum+2
#define ICMP_seqnum ICMP_id+2
#define ICMP_data ICMP_seqnum+2

Code Snippet 9.4: The entire ICMP header and the message it carries in the ICMP data area ride
encapsulated inside the IP data area.

Chapter 9

210

Rather than describe the fields of the ICMP header in Figure 9.3, let’s look at the code
that drives the response to the ping request. In Sniffer Screen Capture 9.2, I’ve also included
the rest of the Sniffer capture that details the meaning of the fields inside the ICMP header,
which is riding inside the IP data area.

Figure 9.3: ICMP messages come in many colors. What’s carried in the data area depends on the
type of ICMP message.

0..7 8..15 16..31
Type Code Checksum

Data (depends on type and code)

Sniffer Screen Capture 9.2: When it comes to tearing apart an Ethernet frame, it just doesn’t get
any better than this.

After the get_frame function pulls in the ICMP frame, it’s up to the Easy Ethernet
CS8900A firmware and the PIC16F877 to put together a frame to echo in response to the
ICMP echo request. The echo response begins in earnest inside the ICMP function in Code
Snippet 9.5.

PINGing the Easy Ethernet CS8900A

211

//**
//* PING
//**
void icmp()
{

//set echo reply
packet[ICMP_type]=0x00;
packet[ICMP_code]=0x00;

//clear the ICMP checksum
packet[ICMP_cksum]=0x00;
packet[ICMP_cksum+1]=0x00;

Code Snippet 9.5: Like the ARP response, the ICMP echo reply is a swap-this-for-that procedure
but requires a bit more work from the firmware and the PIC16F877 microcontroller.

The ICMP_type field contains a 0x08, which represents an ICMP echo request. So, the
very first thing we have to do is change that field to a 0x00, which says this is an echo
response. The ICMP_code field will remain at 0x00 for both the echo request and echo reply.
The identifier and sequence number in the ICMP header may be used to identify and match
echo requests and echo replies. A 0x00 in the code field allows a sequence number or identi-
fier to be 0x00.

The next step in preparing to answer the ICMP echo request is to clear the checksum
word. The ICMP checksum word should always be cleared before beginning the calculation
of a new ICMP checksum value.

//**
//* PING //
**

//setup the IP header
setipaddrs();

Code Snippet 9.6: This function call is much like the ARP function call except the ICMP echo reply
is actually built inside the PIC16F877’s RAM that holds the packet array.

You didn’t think I would take you through all of that IP header stuff without having a
good reason, did you? After clearing the ICMP checksum fields and before calculating any
checksums, we must assemble our IP datagram. All of the fields for the Ethernet packet, the IP
header and the ICMP header are logically arranged in the Easy Ethernet CS8900A’s PIC16F877
internal RAM. All we have to do is place our data and checksums into the correct elements of
the packet array and bid for some transmit buffer space on the Easy Ethernet CS8900A’s
resident CS8900A-CQ. The setipaddrs function called in Code Snippet 9.6 handles putting
the right IP stuff in the right packet array slots. Let’s analyze the setipaddrs function module
by module.

Chapter 9

212

//**
//* IP ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID IP ADDRESS
//**
int8 MYIP[4] = { 192,168,0,150 };
//**
//* IP Header Layout
//**
#define ip_srcaddr 0x1A //IP address of source
#define ip_destaddr 0x1E //IP addess of destination
//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* Do IP and MAC Housekeeping SNIPPET
//**
void setipaddrs()
{

//move IP source address to destination address
packet[ip_destaddr]=packet[ip_srcaddr];
packet[ip_destaddr+1]=packet[ip_srcaddr+1];
packet[ip_destaddr+2]=packet[ip_srcaddr+2];
packet[ip_destaddr+3]=packet[ip_srcaddr+3];

//make Easy Ethernet CS8900A module IP address the source address
packet[ip_srcaddr]=MYIP[0];
packet[ip_srcaddr+1]=MYIP[1];
packet[ip_srcaddr+2]=MYIP[2];
packet[ip_srcaddr+3]=MYIP[3];

Code Snippet 9.7: Much like the ARP reply, we assemble the ICMP echo response using data that
has been acquired and data in the PIC16F877 vault.

We are assembling an echo. So, most of what will be sent back to the requester is just
what the requester has sent to us. The first module in Code Snippet 9.7 simply takes the
source IP address that was included in the ICMP echo request (packet[ip_srcaddr]) and loads
it into the IP header destination address fields (packet[ip_destaddr]).

Since we already know what our local IP address is (it’s preloaded into a section of the
PIC16F877 RAM), we can safely overwrite the IP header destination address we received in
the echo request IP header. The IP header source IP address will be drawn from the MYIP
array that is internal to the PIC16F877. With that, by completing the execution of the second
code module in Code Snippet 9.7, we’ve logically addressed our echo reply datagram.

PINGing the Easy Ethernet CS8900A

213

//**
//* HARDWARE (MAC) ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID MAC ADDRESS
//**
int8 MYMAC[6] = { 0,0,’E’,’D’,’T’,’P’ };
//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
#define enetpacketDest0 0x00 //destination mac address
#define enetpacketDest1 0x01
#define enetpacketDest2 0x02
#define enetpacketDest3 0x03
#define enetpacketDest4 0x04
#define enetpacketDest5 0x05
#define enetpacketSrc0 0x06 //source mac address
#define enetpacketSrc1 0x07
#define enetpacketSrc2 0x08
#define enetpacketSrc3 0x09
#define enetpacketSrc4 0x0A
#define enetpacketSrc5 0x0B
//**
//* Do IP and MAC Housekeeping SNIPPET
//**

//move hardware source address to destination address
packet[enetpacketDest0]=packet[enetpacketSrc0];
packet[enetpacketDest1]=packet[enetpacketSrc1];
packet[enetpacketDest2]=packet[enetpacketSrc2];
packet[enetpacketDest3]=packet[enetpacketSrc3];
packet[enetpacketDest4]=packet[enetpacketSrc4];
packet[enetpacketDest5]=packet[enetpacketSrc5];

//make Easy Ethernet CS8900A MAC address the source address
packet[enetpacketSrc0]=MYMAC[0];
packet[enetpacketSrc1]=MYMAC[1];
packet[enetpacketSrc2]=MYMAC[2];
packet[enetpacketSrc3]=MYMAC[3];
packet[enetpacketSrc4]=MYMAC[4];
packet[enetpacketSrc5]=MYMAC[5];

Code Snippet 9.8: If you’re having trouble getting your code to run, remember that the “00” in
00EDTP MAC address are zeroes.

Chapter 9

214

To perform the hardware addressing, we turn to the physical (hardware) addresses that
were transmitted in the echo request. In Code Snippet 9.8, again, we sacrifice the already
stored destination MAC address (packet[enetpacketDest0:5]) and load the contents of the
source MAC address (packet[enetpacketSrc0:5]) into its packet array memory slots. And,
since we have the Easy Ethernet CS8900A’s MAC coded into the Easy Ethernet CS8900A’s
firmware, we simply pull the values for the source MAC address from the MYMAC array.

Now that all of the physical and logical addressing is completed, it’s time to compute the
IP header checksum. The IP header checksum is computed on the IP header fields only. The
IP checksum is defined as the 16-bit one’s complement of the one’s complement sum of all
16-bit words in the header. Got that? It sounds more confusing than it really is. Let’s break
the language down into something that we can all understand and write some code to.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* IP Header Layout
//**
#define ip_vers_len 0x0E //IP version and header length
#define ip_hdr_cksum 0x18 //header checksum
int8 *addr;
int8 data_H,data_L;
int16 chksum16,hdrlen;
int32 hdr_chksum;
//**
//* Do IP and MAC Housekeeping SNIPPET
//**

//calculate the IP header checksum
packet[ip_hdr_cksum]=0x00;
packet[ip_hdr_cksum+1]=0x00;

hdr_chksum =0;
hdrlen = (packet[ip_vers_len] & 0x0F) * 4;
addr = &packet[ip_vers_len];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[ip_hdr_cksum] = make8(chksum16,1);
packet[ip_hdr_cksum+1] = make8(chksum16,0);

Code Snippet 9.9: If you think this code is “complicated,” check out the assembler version of this
function. If that doesn’t make you want to learn to code microcontrollers in C, nothing will.

PINGing the Easy Ethernet CS8900A

215

The first order of IP header checksum business in Code Snippet 9.9 is to clear the IP
header checksum array elements. Once the checksum array slots are cleared, we can use the
lower nibble of the first byte of the IP header to compute the length of the IP header. Accord-
ing to our hex frame dump in Hex Dump 9.1 and the hex dump at the bottom of Sniffer
Screen Captures 9.1 and 9.2, the first byte of the IP header is 0x45. To compute our value for
the hdrlen variable in Code Snippet 9.9, we simply multiply the lower nibble of the first byte
of the IP header (0x05) by 4 (32 bits = 4 bytes). Thus, hdrlen is loaded with the value of 20
decimal. This number is reinforced by Sniffer Screen Capture 9.1, which also calculated the
IP header length at 20 bytes.

Now, let’s repeat the definition of the IP header checksum and think about what it is
telling us. You may want to read this out loud:

The IP checksum is defined as the 16-bit one’s complement of the one’s
complement sum of all 16-bit words in the header.

The first step towards a successful checksum calculation is to satisfy the all 16-bit words
in the header substatement. To satisfy the word all, we load the pointer addr with the address
of the beginning byte of the IP header.

The next important word in the IP checksum definition is sum, which when added to of
all 16-bit words in the header means to add every pair of bytes within the IP header. That
makes our checksum function in Code Snippet 9.10 easy to write.

int8 *addr;
int8 data_H,data_L;
int16 chksum16,hdrlen;
int32 hdr_chksum;
//**
//* CHECKSUM CALCULATION ROUTINE
//**
void cksum()
{

while(hdrlen > 1)
{

data_H=*addr++;
data_L=*addr++;
chksum16=make16(data_H,data_L);
hdr_chksum = hdr_chksum + chksum16;
hdrlen -=2;

}
if(hdrlen > 0)
{

data_H=*addr;
data_L=0x00;

Chapter 9

216

chksum16=make16(data_H,data_L);
hdr_chksum = hdr_chksum + chksum16;

}
}

Code Snippet 9.10: The make16 built-in function makes the checksum code a bit less hairy to
write.

As long as the hdrlen variable is an even number, we can simply move our addr pointer
through the IP header one byte at a time and combine every other byte (data_L) with the byte
before it (data_H) to make a 16-bit number (chksum16). Each individual 16-bit number is
then added together to form a final total (hdr_chksum). If by chance the IP header length is
an odd number, the lower byte of the last 16-bit number (chksum16) will be filled with the
value of 0x00. I didn’t make that up. The addition of the padding 0x00 value is actually part
of the rules for the IP header checksum algorithm.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
#define ip_hdr_cksum 0x18 //header checksum
int16 chksum16,hdrlen;
int32 hdr_chksum;
//**
//* Do IP and MAC Housekeeping SNIPPET
//**

chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[ip_hdr_cksum] = make8(chksum16,1);
packet[ip_hdr_cksum+1] = make8(chksum16,0);

Code Snippet 9.11: Lots of mumbo jumbo in the three lines of code that make up this snippet, but
this is where the rubber meets the road as the IP header checksum is installed in the appropriate
packet array slots.

At this point, the 32-bit variable hdr_chksum contains the sum of all of the 16-bit words
in the IP header. Let’s talk out loud one more time:

The IP checksum is defined as the 16-bit one’s complement sum of all 16-bit
words in the header.

Reading out loud, we can conclude that we haven’t satisfied the one’s complement rule
that is applied against the sum we accumulated in the hdr_chksum variable. A one’s comple-
ment sum is calculated by summing all of the numbers and adding the sum of the carry bits
to the result. We know that our final checksum figure must be a 16-bit word. Therefore, the
carry sum will be the value of the upper 16-bits of the 32-bit hdr_chksum variable that holds
the sum of the IP header words. So, we simply add each bit that was carried over into the

PINGing the Easy Ethernet CS8900A

217

upper 16-bits of hdr_chksum back into hdr_chksum. This satisfies the substatement one’s
complement sum of all 16-bit words in the header, as the one’s complement sum of all 16-bit
words in the header is now the contents of the variable hdr_chksum. The “~” in CS8900A-
CQ 11 performs a one’s complement of the one’s complement sum of all 16-bit words in the
header (hdr_chksum). By using chksum16 to hold the one’s complement sum of all 16-bit
words in the header, we only take the lower 16-bits of hdr_chksum, which satisfies the IP
checksum definition. The value of chksum16 is placed into the ip_hdr_cksum memory slots
inside the packet array memory area. Doing the checksum trick in PIC assembler is a bit
more tricky than manipulating the numbers with C. If you’re into pain, I’ve included the
assembler checksum algorithm on the CD-ROM that accompanies this book.

Calculating the IP header checksum is the last task the setipaddrs function has to perform.
The completion of the setipaddrs function returns us to the ICMP echo reply function where
the next step is to compute and place the ICMP header checksum as I’ve done with code in
Code Snippet 9.12.

//**
//* PING SNIPPET
//**

//calculate the ICMP checksum
hdr_chksum =0;
hdrlen = (make16(packet[ip_pktlen],packet[ip_pktlen+1])) –

(packet[ip_vers_len] & 0x0F) * 4);
addr = &packet[ICMP_type];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[ICMP_cksum] = make8(chksum16,1);
packet[ICMP_cksum+1] = make8(chksum16,0);

Code Snippet 9.12: As one famous British rock group would say, “Second verse same as the first.”

The ICMP checksum is defined as:

The ICMP checksum is the 16-bit one’s complement of the one’s complement sum of the
ICMP message starting with the ICMP Type. If the total length is odd, the received data is
padded with one octet of zeros for computing the checksum.

The process of computing the ICMP checksum is no different than what we just did for
the IP header checksum. There’s nothing in the ICMP header to tell us how long the ICMP
header is. So, we calculate the ICMP header length by simply subtracting the IP header
length from the total length of the frame. The total length of the IP datagram is 60 bytes. The
total length value is found in the total length field of the IP header. We previously calculated
the IP header length as 20 bytes. So, 60 bytes – 20 bytes leaves 40 bytes as the ICMP mes-
sage. This checks out against the numbers in Sniffer Screen Capture 9.2. Sniffer Screen

Chapter 9

218

Capture 9.2 tells us directly that there are 32 bytes of data in the ICMP message. Counting
the ICMP header bytes totals to 8 bytes in the ICMP header. So, 32 + 8 is 40 total bytes in
the ICMP message.

Now, all that’s left to do is point to the ICMP_type memory slot and walk through 40
bytes and adding them as if they were 20 16-bit values. The 16-bit ICMP checksum is then
placed in the ICMP checksum array slots in the packet array memory area using the same 16-
bit one’s complement algorithm we used for the IP header checksum. The final function
performed by the ICMP reply code, echo_packet, puts us back on familiar ground in Code
Snippet 9.13.

//**
//* PING SNIPPET
//**

echo_packet();

//**
//* ECHO THE PACKET
//**
void echo_packet()
{

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0x00);
WpppL(pageport_TxLen,pageheader[enetpacketLenL]);
WpppH(pageport_TxLen,pageheader[enetpacketLenH]);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

dataport_out;
txlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
for(i=0;i<txlen;i+=2)
{

WpppL(pageport_RxTxData0,packet[i]);
WpppH(pageport_RxTxData0,packet[i+1]);

}
}

Code Snippet 9.13: Wondering what British group I quoted in Code Snippet 12? How about Herman’s
Hermits singing “I’m Henry the VIII, I Am.”

PINGing the Easy Ethernet CS8900A

219

At this point, we’ve touched every necessary field to send an echo reply packet back to
the requester. All we have to do now is bid for some CS8900A-CQ transmit buffer space and
roll out the bytes from the Easy Ethernet CS8900A’s PIC16F877 microcontroller to the
CS8900A-CQ transmit buffer in the order they are packed into the PIC16F877’s packet array.
There’s nothing in the echo_packet function in Code Snippet 9.13 that you don’t already
know about unless you didn’t get the British band brainteaser I offered up in Code Snippet 9.12.

Hex Dump 9.2 is a PIC16F877 RAM dump of the ICMP echo request frame that origi-
nated from the personal computer on the LAN segment with the Easy Ethernet CS8900A.
Hex Dump 9.3 is the PIC16F877 memory dump captured just before the ICMP echo reply
data was to be transferred from the PIC16F877 microcontroller to the CS8900A-CQ transmit
buffer.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 00 45 44 54 50 00 E0 29 87 F5 5B 08 00 45 00 ..EDTP..)..[..E.
 0120 00 3C 02 33 00 00 80 01 B6 A6 C0 A8 00 01 C0 A8 .<.3....
 0130 00 96 08 00 0A 5C 02 00 41 00 61 62 63 64 65 66\.. A.abcdef
 0140 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 ghijklmn opqrstuv
 0150 77 61 62 63 64 65 66 67 68 69 00 00 00 00 00 00 wabcdefg hi......

Hex Dump 9.2: Before the swap-this-for-that…

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 E0 29 87 F5 5B 00 00 45 44 54 50 08 00 45 00 ..)..[.. EDTP..E.
 0120 00 3C 02 33 00 00 80 01 B6 A6 C0 A8 00 96 C0 A8 .<._.... .z......
 0130 00 01 00 00 06 5C 02 00 41 00 61 62 63 64 65 66\.. M.abcdef
 0140 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 ghijklmn opqrstuv
 0150 77 61 62 63 64 65 66 67 68 69 00 00 00 00 00 00 wabcdefg hi......

Hex Dump 9.3: After the PIC16F877 microcontroller has manipulated the addresses and computed
new checksums.

Now that you’re a bit more familiar with what should be where, I’ll bet you can pick out
the echo request and echo reply address inversions in the MAC and IP address fields in Hex
Dumps 9.2 and 9.3. Can you also see that the ICMP checksum is different in the before and
after hex dumps? The ICMP checksum changed because we changed the ICMP_type byte
from 0x08 in the echo request frame to 0x00 in the echo reply frame. The results of our work
thus far can be seen in Sniffer Screen Capture 9.3.

Chapter 9

220

Sniffer Screen Capture 9.3: It’s ALIVE!

221

C H A P T E R 10
UDP and the Easy Ethernet CS8900A

UDP is the closest thing to RS-232 communications you’ll get in an internet protocol. I love
UDP because it just doesn’t care. You can send just about anything with it at any time you
wish. Of all of the Internet protocols, I think UDP is the easiest to implement. UDP is lots of
fun as well. Now that our Easy Ethernet CS8900A can speak, let’s do some UDP coding.

If you thought seeing that PING request being answered by your Easy Ethernet CS8900A
was exciting, you’re gonna love working with UDP. UDP is short for User Datagram Proto-
col. You could also unofficially call it Unreliable Delivery Protocol. Like IP, UDP has
absolutely no means of ensuring that a data packet will arrive in one piece or arrive at all.
However, you’ll find that it is reliable enough for most tasks it’s used for.

UDP is a very simple protocol. Basically, UDP takes a message from an application and
tags on a checksum and source and destination port numbers before flinging the UDP seg-
ment to IP for encapsulation. IP does its best to deliver the UDP segment since there is
nothing to guarantee that the UDP segment will arrive intact.

Logically, a UDP host transmits a UDP datagram through a source port to a UDP
recipient’s destination port. The destination port number and destination IP address are used
to route the UDP segment to the correct application once the segment arrives at its destina-
tion. By using port numbers, various applications can be using the services of UDP
simultaneously. This is called multiplexing. The combination of the IP address and the port
number is called a socket.

A UDP transmission can occur at any time without the need to establish a communica-
tions session with the remote host. Since there is no handshaking or predetermined contact
between UDP hosts, UDP is defined as a connectionless protocol. This is similar to RS-232
communications.

Despite the shortcomings that UDP appears to emanate, UDP does have advantages over
its cousin TCP. For instance, UDP does not have to establish a formal connection and as a
result, is a faster way to send a message. As you will see later, TCP uses a three-way hand-
shake to establish a communications session before transmitting any data, and TCP does an
awful lot of housekeeping compared to none for UDP.

UDP is able to send messages as fast as the microcontroller and application it is involved
with can run. The only thing that slows UDP down is the limitations of the hardware it is
running on and the bandwidth of the LAN it is riding on. Unlike UDP, TCP has built in rev

Chapter 10

222

limiters that throttle the data rate to relieve congestion on the LAN segment. UDP segments
with any kind of problems are simply discarded.

The bottom line is that both UDP and TCP have their place depending on what the
application demands. The application of UDP that we’re about to explore successfully
transferred data on the internet between an Easy Ethernet CS8900A located in Florida and a
personal computer in Australia. That’s pretty danged good for an unreliable protocol!

//**
//* Ethernet Header Layout
//**
#define enetpacketType0 0x0C //type/length field
#define enetpacketType1 0x0D
#define enetpacketData 0x0E //IP data area begins here
//**
//* UDP Header
//**
#define UDP_srcport ip_data
#define UDP_destport UDP_srcport+2
#define UDP_len UDP_destport+2
#define UDP_cksum UDP_len+2
#define UDP_data UDP_cksum+2

Code Snippet 10.1: UDP is yet another protocol that lies within the bowels of the IP data area.

The layout of the UDP header in Code Snippet 10.1 shows that the UDP segment rides in
the IP data area. Thus, the UDP datagram is encapsulated within the IP datagram (Figure
10.1). The UDP source and destination ports are 16 bits in length, which allows port numbers
to range from 0 to 65535. The UDP header is only 8 bytes long, compared to the 20 bytes
that make up the IP header. The UDP datagram length or size is simply the total number of
bytes in the UDP header plus the number of bytes in the payload (data area).

Figure 10.1: There are 28 bytes of header information in the UDP
datagram. The UDP datagram is riding inside the IP datagram,
which will all ride in the Ethernet frame.

UDP checksumming is optional. However, the Easy Ethernet CS8900A firmware
checksums every UDP datagram. The UDP checksum is put there for use by the application
as UDP itself doesn’t care about it at all.

UDP and the Easy Ethernet CS8900A

223

Every bit of code we produce as we go along is another networking brick in the wall. Up
to this point, our Easy Ethernet CS8900A is answering ARP requests and ICMP echo re-
quests or pings. The ICMP echo reply said its ABC’s but we really haven’t passed any
application data through the Easy Ethernet CS8900A yet. The next module of source code
will implement UDP functionality with a bit of help from a personal computer-based UDP
program.

A UDP Internet Test Panel
Using Microsoft® Visual Basic® as a programming language is one of the easiest means of
writing useful applications for today’s personal computers. Visual Basic is full of functional-
ity and includes network applications modules for UDP and TCP/IP. The inclusion of the
networking modules makes Visual Basic a perfect UDP datagram generator.

Screen Capture 10.1: You can use this program to test the
operation of any of the Easy Ethernet devices depicted in this
book.

The Internet Test Panel shown in Screen Capture 10.1 is a Visual Basic application that
uses UDP socket programming to send a UDP datagram to a well-known port or a socket of
your choice. The Internet Test Panel also includes programming to send a UDP message to an
LCD-equipped UDP host. Here’s how it all works.

Chapter 10

224

Each window in the Internet Test Panel is associated with a name and a variable that
represents the text within the window. For example, the LCD Data Entry window in Screen
Capture 10.1 is named txtlcdin and the text within txtlcdin is recognized by the program as
txtlcdin.Text.

Private Sub Form_Load()
On Error Resume Next
txtip.Text = “192.168.1.150”
txtport.Text = “5000”
With udp_PC
.RemoteHost = txtip.Text
.RemotePort = Val(txtport.Text)
.Bind 5002
End With
frm_B.Show
End Sub

Code Snippet 10.2: This code snippet is shown in Visual Basic format. I’ve included source that you
can run inside the Visual Basic IDE that you can easily modify to build your own version of the
Internet Test Panel.

The udp_PC mnemonic in Code Snippet 10.2 represents the Visual Basic Winsock
module that provides the UDP protocol and UDP socket services. In the Internet Test Panel
application, our Winsock module, udp_PC, is bound to local port 5002. The binding pre-
cludes any other application or Winsock module from using port 5002.

Prefixing the RemoteHost and RemotePort variables with the Winsock designator associ-
ates the IP address and port address represented by RemoteHost and RemotePort with the
Winsock in the prefix and its bound port number. The RemoteHost variable is actually a
string that represents the IP address of the remote host. A number is required for the
RemotePort variable, and the Val function is used to convert the text string into a numeric
value that the RemotePort variable will accept. For example, udp_PC.RemoteHost associates
the IP address represented by RemoteHost to the Winsock named udp_PC,

Private Sub txtip_Change()
On Error Resume Next
udp_PC.RemoteHost = txtip.Text
End Sub

Private Sub txtport_Change()
On Error Resume Next
udp_PC.RemotePort = Val(txtport.Text)
End Sub

Code Snippet 10.3: Both of the Visual Basic subroutines in this snippet are triggered when the text
inside their respective windows changes.

UDP and the Easy Ethernet CS8900A

225

The Visual Basic Internet Test Panel program is event-driven. Code Snippet 10.3 shows
us that text entered in the Internet Test Panel’s Target IP Address window is used to set the IP
address of the remote host the Internet Test Panel will communicate with using UDP
datagrams. As you can see in Screen Capture 10.1, the default destination IP address is
192.168.1.150.

A destination port number is also required and according to the code in Code Snippet
10.3, that value is entered using the Target Port window of the Internet Test Panel application.
The default Internet Test Panel destination port number is 5000. The Internet Test Panel’s
source port number is fixed at 5002. The Easy Ethernet CS8900A UDP firmware is coded to
respond to ports 5000 and 7 with an IP address of 192.168.0.150.

Simply typing the desired numbers into the appropriate Internet Test Panel windows will
change the default values for the Target IP Address and the Target Port. The Visual Basic
functions txtip_Change and txtport_Change in Code Snippet 10.3 will sense the changes in
the text within their respective text boxes (txtip and txtport) and load the Internet Test Panel
application’s RemoteHost variable with the new remote IP address and the RemotePort
variable with the new destination port address.

Private Sub txtsend_Change()
On Error Resume Next
udp_PC.RemoteHost = txtip.Text
udp_PC.RemotePort = 7
udp_PC.SendData txtsend.Text
End Sub

Code Snippet 10.4: Sending a UDP datagram to well-known port 7 and receiving an echo of the
data isn’t magical. The echoing host must be running code that will complete the echo operation.

A well-known port is one that has a standard function associated with it. On today’s
Internet, port 7 is the well-known echo port. If a UDP message has a destination port of 7,
which the code in Code Snippet 10.4 is addressed to, the data transmitted to the remote host
should be echoed from the remote host back to the sender.

The txsend.Text Visual Basic variable in Code Snippet 10.4 is actually text data entered
in the Original Data window (txtsend) of the Internet Test Panel. The entering of text into the
Original Data window triggers the txtsend_Change function, which sends the contents of the
Original Data window to port 7 of the of the remote host with the IP address that is listed in
the Target IP Address window of the Internet Test Panel.

When using the echo function of the Internet Test Panel, the UDP message size increases
for every byte entered in the Original Data window. For instance, if the letter “A” is entered,
it is immediately sent and echoed. Entering the letter “B” would send “AB,” entering “C”
would send “ABC,” and so forth. If all works as planned, the remote host echoes whatever is
in the Original Data window back to the Internet Test Panel application.

Chapter 10

226

Private Sub udp_PC_DataArrival(ByVal bytesTotal As Long)
On Error Resume Next
udp_PC.RemoteHost = txtip.Text
Dim strData As String
udp_PC.GetData strData
txtreceive.Text = strData
End Sub

Code Snippet 10.5: Setting up multiple UDP sockets in the Visual Basic program would allow
multiple Easy Ethernet CS8900A’s to pass information to the Visual Basic application.

The incoming bytes of echoed data trigger another event that calls the
udp_PC_DataArrival function. The echoed data (txtreceive.Text) is retrieved using the Visual
Basic GetData method and displayed in the Echoed Data window (txtreceive). After execut-
ing udp_PC.GetData strData, the Visual Basic program knows to route the incoming echoed
data from the Easy Ethernet CS8900A to the port address and IP address tied to Winsock
udp_PC.

Private Sub txtlcdin_Change()
On Error Resume Next
udp_PC.RemoteHost = txtip.Text
udp_PC.RemotePort = Val(txtport.Text)
udp_PC.SendData Right(txtlcdin.Text, 1)

Code Snippet 10.6: Here’s an example of the Visual Basic program talking to a different socket on
the Easy Ethernet CS8900A.

The LCD Data Entry window (txtlcdin) has a dual-purpose role. Primarily, the data
entered into the LCD Data Entry window (txtlcdin.Text) in Code Snippet 10.6 is designed to
be interpreted by a remote host that is driving a standard 4-line LCD module. The workings
of the Visual Basic event mechanism for the LCD Data Entry window are no different than
when sending data from the Original Data window. Only the socket addressing is changed.
The data entered into the LCD Data Entry window is aimed at port 5000 by default, and the
data doesn’t accumulate like it does in the Port 7 Echo Function windows. The data shown in
the LCD Data Entry window will seem to accumulate visually, but only one character is sent
per event and that’s always the last character in the window. The LCD Data Entry window’s
addressing is controlled by the values of the Target IP Address and Target Port windows.

Private Sub btnclear_Click()
On Error Resume Next
udp_PC.RemotePort = txtport.Text
udp_PC.SendData &H0
txtlcdin = “”
End Sub

UDP and the Easy Ethernet CS8900A

227

Private Sub btnline1_Click()
On Error Resume Next
udp_PC.RemotePort = txtport.Text
udp_PC.SendData &H1
txtlcdin = “”
End Sub

Private Sub btnline2_Click()
On Error Resume Next
udp_PC.RemotePort = txtport.Text
udp_PC.SendData &H2
txtlcdin = “”
End Sub

Private Sub btnline3_Click()
On Error Resume Next
udp_PC.RemotePort = txtport.Text
udp_PC.SendData &H3
txtlcdin = “”
End Sub

Private Sub btnline4_Click()
On Error Resume Next
udp_PC.RemotePort = txtport.Text
udp_PC.SendData &H4
txtlcdin = “”
End Sub

Code Snippet 10.7: Obviously, the buttons in this snippet were put there for a reason. I’ll show you
how to use them for what they were originally designed for in the Easy Ethernet AVR section.

The Easy Ethernet CS8900A doesn’t have a native LCD module but we can still use the
LCD Data Entry window to our advantage with the Easy Ethernet CS8900A. Text characters
sent from the LCD Data Entry window can be captured by the Easy Ethernet CS8900A and
used to control selected pins on the PIC16F877’s I/O ports. The same can be done with the
buttons that are normally used to switch from line to line on a multilined LCD module. The
Internet Test Panel buttons: Line 1, Line 2, Line 3, Line 4 and CLEAR in Code Snippet 10.7
send raw hex values of 0x0100, 0x0200, 0x0300, 0x0400 and 0x0000, respectively. The Easy
Ethernet CS8900A firmware is instructed to only pick up the high byte of each word sent by
the buttons.

Just because we have a new protocol to play with doesn’t change anything that we have
discussed thus far. The PIC16F877 microcontroller residing on the Easy Ethernet CS8900A
initializes the CS8900A-CQ and polls the RxOK bit in the CS8900A’s Receiver Event
Register looking for the opportunity to grab a frame from the CS8900A-CQ’s receive buffer.

Chapter 10

228

The Internet Test Panel application is running on a host personal computer that is partici-
pating on the same LAN segment as the Easy Ethernet CS8900A (192.168.0.XXX). To allow
the Internet Test Panel to operate on the same LAN segment and point to the Easy Ethernet
CS8900A, the Target IP Address window of the Internet Test Panel has been changed to
reflect the IP address of the Easy Ethernet CS8900A, 192.168.0.150.

Screen Capture 10.2: This may seem to be a trivial example, but
it’s exciting to see that character echo back from a device you’ve
just completed building and programming.

In Screen Capture 10.2, the letter “A” is typed into the Internet Test Panel’s Original Data
window. If the Easy Ethernet CS8900A’s IP and MAC address are not in the Internet Test
Panel’s personal computer’s ARP cache, an ARP request is generated. The Easy Ethernet
CS8900A sees the ARP request and responds supplying its MAC address to the personal
computer where it is stored in the ARP cache.

A UDP segment containing the source port value (5002 decimal), the destination port
value (7 decimal), the length of the UDP segment (9 decimal), a checksum value and the data
are assembled and rolled into the IP data area. The protocol field within the IP header is set
to represent UDP (17 decimal), addresses are assembled, checksums calculated and the IP
datagram is sent on its way. I’ve sniffed the personal computer side of the UDP echo message
and presented it for you in Screen Capture 10.3.

UDP and the Easy Ethernet CS8900A

229

The Easy Ethernet CS8900A’s CS8900A-CQ receives the frame and sets the RxOK bit to
let the PIC16F877 know that an Ethernet frame is waiting in the CS8900A-CQ receive buffer.
Meanwhile, the Easy Ethernet CS8900A’s PIC16F877 microcontroller is polling the
CS8900A-CQ’s Receiver Event Register and finds the RxOK bit is set. The Easy Ethernet
CS8900A’s get_frame function is called.

The get_frame function analyzes the new frame and concludes that it is an IP frame.
Further examination reveals that the frame’s protocol is UDP. It just so happens that the Easy
Ethernet CS8900A contains some UDP application firmware and that’s where the Easy
Ethernet CS8900A’s UDP datagram processing begins.

Screen Capture 10.3: As usual, the Sniffer knows all, sees all and tells all.

Chapter 10

230

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 00 45 44 54 50 00 E0 29 87 F5 5B 08 00 45 00 .. EDTP..)..[..E.
 0120 00 1D 03 0E 00 00 80 11 B5 DA C0 A8 00 01 C0 A8
 0130 00 96 13 8A 00 07 00 09 29 63 41 00 00 00 00 00)cA.....
 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Hex Dump 10.1: If you know what you’re looking for (and you do), and you don’t have a Sniffer
handy, the memory dumps supplied by the MPLAB ICE 2000 can be used in place of a Sniffer.

Hex Dump 10.1 is a hex dump of the PIC16F877’s packet array memory and shows our
data (“A”) at memory location 0x013A. The UDP header begins with the source port word at
memory location 0x0132. The hexadecimal number, 0x138A, at memory location 0x0132
equates to 5002 decimal, which is the source port number of our Internet Test Panel applica-
tion that is running on the personal computer.

Immediately following the source port word is the destination port word, 0x0007, which
is the well-known echo port that the Easy Ethernet CS8900A UDP application is coded to
look for. We already know that the UDP header is 8 bytes long and adding the single data
byte gives us a total UDP header length of 0x0009, which resides just ahead of the UDP
checksum value.

Everything else in the hex frame dump of the UDP datagram in Hex Dump 10.1 is just as
we would expect it to be. The DLC header area at the beginning of Hex Dump 10.1 contains
the physical (MAC) addresses and Ethernet packet type while the protocol addressing,
protocol identification and datagram handling duties are carried out by the IP header fields
that follow behind the DLC bytes.

//**
//* IP Header Layout
//**
#define ip_data 0x22 //IP data area
//**
//* UDP Header
//**
#define UDP_srcport ip_data
#define UDP_destport UDP_srcport+2

int8 data_L;
//**
//* UDP Function SNIPPET
//* This function receives data from a Visual Basic UDP program and
//* echoes the data back to the VB program and sets or resets bits
//* on the PIC16F877’s PORT A under control of the VB program.
//**
void udp()

UDP and the Easy Ethernet CS8900A

231

{
//port 7 is the well-known echo port
if(packet[UDP_destport] == 0x00 && packet[UDP_destport+1] ==0x07)
{

//build the IP header
setipaddrs();

//swap the UDP source and destination ports
data_L = packet[UDP_srcport];
packet[UDP_srcport] = packet[UDP_destport];
packet[UDP_destport] = data_L;

data_L = packet[UDP_srcport+1];
packet[UDP_srcport+1] = packet[UDP_destport+1];
packet[UDP_destport+1] = data_L;

Code Snippet 10.8: First the incoming frame is identified as an IP frame. Then, inspecting the
contents of the incoming frame leads to it being tagged as carrying a UDP datagram destined for
the Easy Ethernet CS8900A’s IP address. The UDP datagram is then routed according to its port
number to the Easy Ethernet CS8900A’s UDP application that echoes the data back to the sending
host.

The Easy Ethernet CS8900A’s IP processing has already identified half of the socket, the
IP address, which matches the Easy Ethernet CS8900A’s IP address. The very first thing our
UDP application code in Code Snippet 10.8 that is running on the Easy Ethernet CS8900A
does is check the destination port number, which completes the socket address. If the port
number is found to be 7, the firmware immediately flows into the process of preparing the
frame to be echoed.

Using the addressing information garnered from the incoming frame and the addressing
information stored inside the PIC16F877 microcontroller, the setipaddrs function points the
frame in the microcontroller’s packet array memory at the original sender of the frame. In
addition to the IP and MAC source and destination address switcheroos, the UDP source and
destination ports must be reversed as well.

//**
//* UDP Header
//**
#define UDP_srcport ip_data
#define UDP_destport UDP_srcport+2
#define UDP_len UDP_destport+2
#define UDP_cksum UDP_len+2
//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available

Chapter 10

232

//**
//* IP Header Layout
//**
#define ip_proto 0x17 //protocol (ICMP=1, TCP=6, UDP=11)
#define ip_srcaddr 0x1A //IP address of source
#define ip_destaddr 0x1E //IP address of destination

int32 hdr_chksum;
int16 chksum16,hdrlen;
//**
//* UDP Function SNIPPET
//* This function receives data from a Visual Basic UDP program and
//* echoes the data back to the VB program and sets or resets bits
//* on the PIC16F877’s PORT A under control of the VB program.
//**

//calculate the UDP checksum
packet[UDP_cksum] = 0x00;
packet[UDP_cksum+1] = 0x00;

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];
cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
hdrlen = 0x02;
addr = &packet[UDP_len];
cksum();
hdrlen = make16(packet[UDP_len],packet[UDP_len+1]);
addr = &packet[UDP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[UDP_cksum] = make8(chksum16,1);
packet[UDP_cksum+1] = make8(chksum16,0);

Code Snippet 10.9: You should be getting good at checksum calculations by now. However, this
one slips you a mickey.

When all of the fields within the IP and UDP headers are loaded with the correct data, the
checksum calculations in Code Snippet 10.9 can begin. The UDP checksum calculation
process is a bit different than what we’ve seen before. You would think the UDP checksum
would cover only the bytes within the UDP header and data area. Not so. The UDP checksum
includes some choice bytes from the IP header as well. In fact, the UDP checksum is calcu-
lated using:

■ The IP source address word

■ The IP destination address word

UDP and the Easy Ethernet CS8900A

233

■ The IP protocol byte

■ The UDP length word

■ The UDP header

■ The UDP data

And yes, the UDP length word is used twice in the calculation of the UDP checksum.
Otherwise, the UDP checksum definition is the same as the IP checksum definition, which is
(repeat after me):

When all of the dust settles, the PIC16F877 has assembled a suitable UDP echo reply
frame in its packet array memory area just like the one shown in Hex Dump 10.2.

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 E0 29 87 F5 5B 00 00 45 44 54 50 08 00 45 00 ..)..[.. EDTP..E.
 0120 00 1D 03 0E 00 00 80 11 B5 DA C0 A8 00 96 C0 A8
 0130 00 01 00 07 13 8A 00 09 29 63 41 00 00 00 00 00)cA.....
 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Hex Dump 10.2: The amount of data we can stuff into the UDP data area is limited by the size of
the data area of an Ethernet frame. Since the PIC16F877 has less than 400 bytes of RAM, we can
stuff in UDP data as long as there’s RAM in the PIC16F877 to hold it.

With everything in place, the PIC16F877 executes the code contained within the
echo_packet function (Code Snippet 10.10) and bids for some transmit buffer space on the
CS8900A-CQ.

//**
//* ECHO THE PACKET
//**
void echo_packet()
{

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0x00);

Figure 10.2: A little checksum sign language…

Chapter 10

234

WpppL(pageport_TxLen,pageheader[enetpacketLenL]);
WpppH(pageport_TxLen,pageheader[enetpacketLenH]);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

dataport_out;
txlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
for(i=0;i<txlen;i+=2)

 {
WpppL(pageport_RxTxData0,packet[i]);
WpppH(pageport_RxTxData0,packet[i+1]);

 }
}

Code Snippet 10.10: Since this is an echo operation, the RxLength value can be used as the length
of the outgoing frame.

Now, let’s put a ‘0’ (ASCII zero or 0x30) in the LCD Data Entry window (Screen Capture 10.4).

Screen Capture 10.4: The LCD Data Entry field is capable of
transmitting data to a remote LCD via the Internet using UDP.
Don’t worry, I’ve included the complete source code for the LCD
application on the CD-ROM.

UDP and the Easy Ethernet CS8900A

235

//**
//* UDP Function SNIPPET
//* This function receives data from a Visual Basic UDP program and
//* echoes the data back to the VB program and sets or resets bits
//* on the PIC16F877’s PORT A under control of the VB program.
//**

//buttons on the VB GUI are pointed towards port address 5000 decimal
else if(packet[UDP_destport] == 0x13 && packet[UDP_destport+1] == 0x88);

{
if(packet[UDP_data] == ‘0’)

//received a ‘0’ from the VB program
bit_clear(PORTA,5);

else if(packet[UDP_data] == ‘1’)
//received a ‘1’ from the VB program
bit_set(PORTA,5);

else if(packet[UDP_data] == 0x00)
//received a 0x00 from the VB program
output_a(0x00);

else if(packet[UDP_data] == 0x01)
//received a 0x01 from the VB program
bit_set(PORTA,1);

else if(packet[UDP_data] == 0x02)
//received a 0x02 from the VB program
bit_set(PORTA,2);

else if(packet[UDP_data] == 0x03)
//received a 0x03 from the VB program
bit_set(PORTA,3);

else if(packet[UDP_data] == 0x04)
//received a 0x04 from the VB program
bit_set(PORTA,4);

Code Snippet 10.11: I assigned a logical progression to the use of the Internet Test Panel buttons.
The code can be changed to meet your requirements.

The PIC16F877’s PORTA was conditioned to be an output port in the initialization
sequence and if the Easy Ethernet CS8900A’s UDP application determines that the destina-
tion port address is not 7 decimal (0x0007) but is actually 5000 decimal (0x1388), the Easy
Ethernet CS8900A’s UDP application looks at the data in the UDP data area. Remember the
term “multiplexing”? Well, we just did it (multiplexed) when we determined that the button
application in Code Snippet 10.11 was the target for the data in the UDP datagram and not
the UDP echo application.

Chapter 10

236

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 00 45 44 54 50 00 E0 29 87 F5 5B 08 00 45 00 ..EDTP..)..[..E.
 0120 00 1D 03 18 00 00 80 11 B5 D0 C0 A8 00 01 C0 A8
 0130 00 96 13 8A 13 88 00 09 26 E2 30 00 00 00 00 00 &.0.....
 0140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Hex Dump 10.3: There are a couple of logical ways to say zero. You can say ASCII 0 with a 0x30 or
you can say binary 0 with 0x00. In this dump, we are speaking ASCII at memory offset 0x013A.

You’re getting pretty good at reading hex frame dumps by now and you easily find the
destination port value of 0x1388 (5000 decimal) and the UDP segment data, 0x30 or ‘0’
(ASCII zero) in Hex Dump 10.3. Looking at the Easy Ethernet CS8900A UDP application
source code for port 5000 and IP address 192.168.0.150 tells us that a ‘0’ in the UDP data
field controls the logic level of PORTA pin 5. This part of the Easy Ethernet CS8900A’s UDP
application firmware is relatively easy to follow. Clicking the Internet Test Panel’s CLEAR
button will take all of the PIC16F877’s PORTA I/O pins to a logical low level. Clicking on
an Internet Test Panel LineX button will take the PORTA I/O pin associated with the button
to a logic high level.

UDP is dead easy to get up and running on a small microcontroller-based system like the
Easy Ethernet CS8900A. Little is needed in addition to the necessary IP header information
to pass a UDP message from host to host. I used the easy way out and used the Winsock
services of Visual Basic to produce UDP datagrams. It wouldn’t take too much more work to
cut the personal computer out of the equation completely and have a multitude of Easy
Ethernet CS8900A’s swapping UDP datagrams on an Ethernet LAN segment.

Before we leave UDP I’d like to leave you with a picture of where we have been as it
pertains to protocols, encapsulation and UDP. You and I have already coded every bit of what
you see graphically in Figure 10.3.

The primary reason for all of this is to allow an application to send some meaningful data
from Application A to Application B. In this section, we chose to use UDP, IP and Ethernet
as the information conduit for the applications’ data. So, we wrapped the data using UDP
wrapping paper, which addressed the data to Application B and included a return address to
Application A so we could receive a reply.

The freshly wrapped UDP package containing our Application A data was then put into a
box that provided yet another address (IP address) that would allow our UDP wrapped
package to be logically transported on the network. In addition to allowing our UDP package
to ride on the network, the IP box includes a packing slip telling the receiver what’s inside (a
UDP packet containing the Application A data). At this point, our Application A data, which
is wrapped in its UDP wrapper and boxed inside of IP, can logically get from Application A
(us) to Application B (them). However, our IP package needs a physical means of going from
Point A (us) to Point B (them). So, we put our IP package inside of another box (Ethernet
frame), which is addressed to Point B and includes a Point A return address.

UDP and the Easy Ethernet CS8900A

237

Once our trucking company talks to the folks at Point B to verify their physical address,
the Ethernet frame is loaded on a truck and proceeds to travel from Point A (us) to Point B
(them).

Our trucking company is a good one and the package arrives at Point B without a scratch.
Our trucker hands the precious package to the loading dock receiver at Point B, who tears off
the physical address (Ethernet header and trailer) and takes the IP box out of the Ethernet
box. The information contained on the IP packing slip (IP header) tells the receiver to route
the box to the UDP department.

Once the UDP department gets the box, it discards the IP box (IP header) and sees that
the package is wrapped in a UDP wrapper (UDP header). The UDP wrapper (UDP header)
tells the mail clerk to deliver the contents of the package to Application B. That’s what we
coded and that’s how it all works. This process is not unique to UDP as you will see later.

A situation may arise where a Visual Basic application or any Windows-based application
could not be used, or was not available to communicate with a microcontroller-based LAN
device like the Easy Ethernet CS8900A. If that were to happen, the alternative communica-
tions method would most likely fall to a legacy Internet application such as Telnet. UDP
doesn’t do Telnet, but there is one more trick in the Easy Ethernet CS8900A’s bag that will,
TCP.

Figure 10.3: A picture is worth a thousand packets.

[This is a blank page.]

239

C H A P T E R 11
TCP and the Easy Ethernet CS8900A

This is the most complex of any of the Internet protocols we’ll examine. There have been
many books written about TCP and I’m not going to try to add my name to the list of TCP
authors. Instead, I’m going to show you how to write the bare minimum of code to deploy
your own microcontroller TCP/IP firmware.

The TCP/IP implementation that is effected by the Easy Ethernet CS8900A’s firmware is
designed to conserve both microcontroller program memory and microcontroller data
memory space, and as a result is a very minimal TCP/IP model. The TCP/IP firmware is
fashioned as a Telnet server that echoes characters it receives and services a PIC16F877 port
I/O application.

Just like all of the other protocols up to this point, the TCP/IP module of the Easy
Ethernet CS8900A’s firmware is called from the get_frame function. The Ethernet type field
identifies the frame inside its data area as an IP frame and once that fact is established, the
protocol field inside the IP header is examined. If the value in the protocol field of the IP
header is equal to 6, the Easy Ethernet CS8900A code is routed to the TCP function’s code.

You’ve already been exposed to IP as it relates to UDP. TCP (Transmission Control
Protocol) works with IP in much the same manner. The concept of encapsulation is still
strong as like UDP, TCP lies within the IP data area (Figure 11.1).

Figure 11.1: Let’s count ‘em up...20 bytes for the IP header, and 20 more for the TCP header.
Remember what you learned about encapsulation and UDP? You’ll need that again for TCP.

TCP/IP was designed from the ground up to be platform independent. That’s why we can
run a flavor of TCP/IP on a relatively tiny microcontroller-based system or on a mainframe
complex the size of a football field. TCP/IP is a collection of protocols that are standardized
across the world of networking. TCP/IP can’t be used for every situation. However, while
TCP/IP is not the total solution to all networking problems, TCP/IP stands as a pretty good
model of what all of internetworking should be. Normally, to implement TCP/IP, one must

Chapter 11

240

employ the use of what is termed a “TCP/IP stack.” Complete TCP/IP stacks can be very large
and usually aren’t easily ported fully to smaller platforms like our Easy Ethernet CS8900A.

Telnet is a protocol that is common to most users of the Internet. The purpose of the
Telnet Protocol is to provide a general-purpose means of interfacing terminal devices and
terminal-oriented applications to each other.

Just as you’ve seen with UDP network devices, every machine or device on a TCP/IP-
based network, no matter how big or how small, is called a host. That includes clients as well
as servers. It used to be that a server was always the big machine in the cloud, and the client
was a workstation on someone’s desk. Today, servers sit on desks and clients can be worn on
your wrist or vice versa. Regardless of the host’s size, the idea is that all hosts can communi-
cate with each other. This implies that all hosts on all networks can communicate host to host
across differing networks. This may sound impractical, but that’s how the Internet works.
Today, hosts all over the world communicate by passing messages, accessing data and
transferring files between themselves sometimes using dissimilar networks.

In the TCP/IP world, messages are generally short packets of data. Just like UDP, each
TCP data packet is addressed to reach a particular host on a particular network. There is no
difference in the addressing scheme used for TCP and UDP. The protocol or IP address for
both protocols is the familiar 4-bytes-divided-by-dots address scheme (192.168.0.150).
Physical addresses or MAC addresses apply to both UDP and TCP and are used in the
identical manner by both protocols.

You’re probably used to hearing the term “TCP/IP” and thinking about it as one protocol.
However, you know from our UDP experiences that IP is indeed its own protocol. The
combination of Transmission Control Protocol and Internet Protocol was not done by acci-
dent, but by design. Just as it is in the UDP world, IP is the unreliable component of the
TCP/IP pair. You will remember that IP is termed unreliable because there is no way that IP
itself can guarantee that a data packet will actually be delivered to its destination. All of the
hosts in the Internet or on a local LAN give their best effort to deliver an IP data packet.
Despite all of the good intentions, the problem is that nobody cares how it looks when it gets
where it’s going. If you’ve ever sat and watched baggage handlers load baggage onto an
aircraft, you already have a pretty good concept of how IP works. For example, relating to the
IP datagram, an IP data packet is just like a piece of freight in the hands of the person loading
baggage onto an airplane. They get the bag (our IP datagram) from one of those mobile
baggage carts they drive around (the host) and sling it towards the moving-belt ramp (LAN,
Internet). Sometimes the handlers throw a bag and it misses the conveyor. One of the other
baggage handlers (other hosts) may pick up the dropped bag (corrupted IP datagram) and
either sling it back on the ramp (passed it along to the next host for inspection) or put it
directly on the plane (delivered the damaged IP datagram to the receiving host). The plane
(receiving host), although being loaded with a bag full of broken goods, never reported back
to the cart (sending host) that the bag (IP datagram) that was finally loaded had its contents
damaged in transit. My little story implies that each bag or each IP datagram is independent
of any other IP datagram and nobody really cares what’s inside the bag while it is in transit.

TCP and the Easy Ethernet CS8900A

241

The TCP/IP protocol stack is composed of five layers as shown in
Figure 11.1. The Physical Layer is the simplest layer, and in my mind
the hardest working layer with the Application Layer chiming in as
potentially the most complex of the five layers. As you can see in the
“stack” (Figure 11.2), each layer of the stack has a distinct job to do.

The confusion that could exist between the layers is eliminated by
our old friend encapsulation. Each layer passes only properly formatted
output to the next layer for processing. Encapsulation also allows each
layer to treat the data in the way it prefers without affecting the way the
data is treated in other layers. For example, the Transport Layer likes to
pretend that data is entering in a constant stream while the Internet or
IP layer sees data as separate connectionless datagrams. To write a
successful embedded TCP/IP application it is necessary to understand
the functions of each protocol layer. Let’s take a look at each of them.

The Physical Layer
The Physical Layer is another way of saying hardware layer. This is the
wire, cable and electronics that connect the devices and networks to
each other. Physical also implies “touchable” or real. For the Easy
Ethernet CS8900A, an Ethernet cable, the Ethernet isolation magnetics
and some interface circuitry inside the CS8900A-CQ form the Physical
Layer. The rest of the physical network could consist of an Ethernet
hub or Ethernet router and any other cabling or electronic devices that
tie the physical network together. The bottom line is that the Physical Layer always sees the
entire packet whether it is receiving it or transmitting it and never adds or subtracts to a
packet’s contents.

The Data Link Layer
The Data Link Layer is only responsible for transferring a datagram from one host over a
single physical link to another host. Most, if not all, of the Data Link Layer functionality
resides in the implementation of the CS8900A-CQ MAC engine. The CS8900A-CQ MAC
engine accepts data and wraps it into an Ethernet-compatible package that can be received
and “unwrapped” by the host the data was addressed to. Remember, it’s the CS8900A-CQ’s
MAC engine that generates the preamble and CRC when an Ethernet frame is transmitted.
The CS8900A-CQ’s MAC engine also makes sure the ether is clear before attempting to send

Figure 11.2: This is the “stack,” which is really a bunch of layers between
the wire and the application. Believe it or not, you already know more
about this stack thing than you think.

Chapter 11

242

a message and if a collision occurs, the CS8900A-CQ’s MAC engine waits and retries the
send operation. Also, recall that the CS8900A-CQ MAC engine checks the incoming frame’s
hardware address to determine if the incoming data belongs to it or another host on the
network.

The MAC is the lower sublayer of the Data Link Layer that interfaces with the physical
part of the network to help deliver a frame. The LLC (Logical Link Control) is the upper
sublayer of the Data Link Layer and is not used by the Easy Ethernet CS8900A.

Just in case you’re wondering where ARP belongs—ARP lives in the Data Link Layer.

The Network Layer
The Network Layer encapsulates messages passed from the Transport Layer and produces
datagrams. This is where IP lives. The Network Layer encapsulates a UDP packet or TCP
segment inside an IP datagram. An IP header is added, which calls out the handling of the IP
datagram, and the datagram is then passed along to the Data Link Layer for transmission.

As we get further into coding some PIC16F877 TCP/IP routines, you will come to the
realization that the IP datagram is the fundamental information that flows over the Internet.

ARP thrives in the Data Link Layer. ICMP hangs around in the Network Layer.

The Transport Layer
Between the Application Layer and the Network Layer lies the Transport Layer. The job of
the Transport Layer is to pass data between the Application Layer and the Transport Layer
using TCP or UDP protocols.

UDP lives here but TCP is what makes the Transport Layer famous. TCP, unlike UDP,
uses a virtual connection to make sure that the data arrives at its destination intact and in
order. TCP accomplishes this “connection” via handshaking and special codes in each data
segment.

TCP and UDP receive data from the application and form segments or packets, respec-
tively. A destination address is added before passing the packet or segment to the Network
Layer.

The Application Layer
The final and topmost layer is the Application Layer. This is where the programmer reigns.
There are more protocols used in this layer than I care to mention, some familiar and some
homegrown. In simplest terms, data flows from the Application Layer of the originating host
down through the TCP/IP stack and out the Physical Layer across to the Physical Layer of
the destination host. Once the data enters the destination host’s Physical Layer, the process is
reversed and the data flows up through the TCP/IP stack to the Application Layer where it is
processed (Figure 11.3).

TCP and the Easy Ethernet CS8900A

243

Figure 11.3: According to a very popular space exploration
television series, the Vulcans were the first extraterrestrials to
acknowledge their presence on Earth. This is so logical, I wonder
if they were the ones that really invented this encapsulation
stuff?

Chapter 11

244

OK, there’s only one more subject standing between us and coding our Easy Ethernet
CS8900A TCP/IP application—ports. As most of you know, a host could be running multiple
applications at once. In fact, we sort of did that in our UDP code. How does the TCP/IP stack
know where to route the messages? Just like UDP, TCP/IP handles these situations by assigning
each network connection its own protocol port. A protocol port is actually an internal TCP or
UDP address. This address is passed down the stack in the header of each packet of data. IP
sends logical host addresses (192.168.0.150), TCP and UDP send protocol port addresses (7,
23, 5000, and so forth).

You already know about ports and multiplexing from your experiences with UDP. So,
let’s go TCP/IP coding.

Coding TCP/IP for the Easy Ethernet CS8900A
Our UDP ports consisted of one well-known port (7) and one homebrewed port (5000). The
Easy Ethernet CS8900A TCP/IP code will use port 0x1F98 or 8088 decimal. I’ve assigned
the TCP/IP port address value to MY_PORT_ADDRESS in Code Snippet 11.1.

//**
//* PORT ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID PORT ADDRESS
//**
#define MY_PORT_ADDRESS 0x1F98 // 8088 DECIMAL

Code Snippet 11.1: I was thinking about old personal computers when I came up with the Easy
Ethernet CS8900A’s TCP/IP port number.

Thus far, you’ve seen IP headers, UDP headers and ICMP headers. It stands to reason that
TCP would also have a header. A graphic depiction of the TCP header is shown in Figure 11.4.

Figure 11.4: We won’t be using the Options area of the TCP header in the Easy Ethernet
CS8900A firmware.

TCP and the Easy Ethernet CS8900A

245

And, just like UDP and the others, I’ve laid out the TCP header for use in the Easy
Ethernet CS8900A’s firmware in Code Snippet 11.2.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* TCP Header Layout
//**
#define TCP_srcport 0x22 //TCP source port
#define TCP_destport 0x24 //TCP destination port
#define TCP_seqnum 0x26 //sequence number
#define TCP_acknum 0x2A //acknowledgement number
#define TCP_hdrflags 0x2E //4-bit header len and flags
#define TCP_window 0x30 //window size
#define TCP_cksum 0x32 //TCP checksum
#define TCP_urgentptr 0x34 //urgent pointer
#define TCP_data 0x36 //option/data

Code Snippet 11.2: The TCP header is a bit busier than the other headers we’ve examined.

Looking at Code Snippet 11.3, you can see that the TCP section of the Easy Ethernet
CS8900A’s code is called from the get_frame function in the same manner as any of the other
IP protocol’s code we’ve discussed so far.

//**
//* IP Protocol Types
//**
#define PROT_ICMP 0x01
#define PROT_TCP 0x06
#define PROT_UDP 0x11
//**
//* Receive a Frame
//**

//process an IP packet
else if(packet[enetpacketType0] == 0x08 &&

packet[enetpacketType1] == 0x00 &&
packet[ip_destaddr] == MYIP[0] &&
packet[ip_destaddr+1] == MYIP[1] &&
packet[ip_destaddr+2] == MYIP[2] &&
packet[ip_destaddr+3] == MYIP[3])

Chapter 11

246

{
if(packet[ip_proto] == PROT_ICMP)

icmp();
else if(packet[ip_proto] == PROT_UDP)

udp();
else if(packet[ip_proto] == PROT_TCP)

tcp();
}

Code Snippet 11.3: An incoming IP frame with the Easy Ethernet CS8900A’s IP address and a
pointer to the TCP protocol kicks-off the TCP function.

To have gotten to the Easy Ethernet CS8900A’s TCP code, the incoming IP address
matched the Easy Ethernet CS8900A’s IP address and the hardware or MAC address was
verified to belong to the Easy Ethernet CS8900A by the CS8900A-CQ’s MAC engine.
Remember that just like UDP, a TCP port address is used to select a particular application. In
the case of the Easy Ethernet CS8900A, there is only one application. Nevertheless, a TCP
port number is still required.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* TCP Header Layout
//**
#define TCP_srcport 0x22 //TCP source port
#define TCP_destport 0x24 //TCP destination port
//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**
void tcp()
{

int8 i,j;

//assemble the destination port address from the incoming packet
portaddr = make16(packet[TCP_destport],packet[TCP_destport+1]);

Code Snippet 11.4: The destination port is located in the second word of the TCP header. To invoke
the Easy Ethernet CS8900A’s TCP application, the destination port number should be 8088 decimal.

TCP and the Easy Ethernet CS8900A

247

Code Snippet 11.4 uses the Custom Computer Services C Compiler’s resident make16
function to assemble the TCP destination port address. Just in case the port address is the one
the Easy Ethernet CS8900A is looking for, the amount of data in the incoming TCP frame is
determined by the code in Code Snippet 11.5.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* IP Header Layout
//**
#define ip_vers_len 0x0E //IP version and header length
#define ip_pktlen 0x10 //packet length
//**
//* TCP Header Layout
//**
#define TCP_hdrflags 0x2E //4-bit header len and flags
//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//calculate the length of the data coming in with the packet
//tcpdatalen_in = incoming packet length - incoming ip header

length - incoming tcp header length
tcpdatalen_in = (make16(packet[ip_pktlen],packet[ip_pktlen+1])) -
((packet[ip_vers_len] & 0x0F) * 4) - (((packet[TCP_hdrflags] & 0xF0) >> 4) * 4);

Code Snippet 11.5: Using information collected from here and there, we can easily find out how
many bytes of data is being carried inside the TCP data area.

To get what we need to perform our length calculations, we must turn to fields in both the
IP and TCP headers. Now you can see why you’ve always heard TCP and IP coupled as TCP/
IP. In Code Snippet 11.5 the TCP data length is calculated by subtracting the IP header length
and TCP header length from the total IP packet length. We already have the IP datagram
length in the ip_pktlen field of the IP header. The IP header length is calculated using the
ip_vers_len field of the IP header multiplied times four. In a similar fashion, the high nibble
of the TCP_hdrflags field in the TCP header is multiplied by four to obtain the TCP header
length. Let’s see if we can pick out our header fields in Hex Dump 11.1.

Chapter 11

248

 Address 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F ASCII

 0110 00 00 45 44 54 50 00 E0 29 87 F5 5B 08 00 45 00 ..EDTP..)..[..E.
 0120 00 30 02 E2 40 00 80 06 75 FE C0 A8 00 01 C0 A8 .0..@... u.......
 0130 00 96 04 0D 1F 98 01 C0 22 7B 00 00 00 00 70 02 “{....p.
 0140 40 00 79 57 00 00 02 04 05 B4 01 01 04 02 @.yW....

Hex Dump 11.1: This PIC16F877 hex TCP dump was taken just before the TCP function was to be
called.

The destination MAC address beginning at offset 0x0110 in Hex Dump 11.1 belongs to
the Easy Ethernet CS8900A (00EDTP). The source MAC address belongs to the personal
computer on the LAN segment I’m using to generate the packets. 0x0800 at memory location
0x011C is the Ethernet type field and says this is an IP frame. Consulting the Easy Ethernet
CS8900A source code and the layout of the packet array, which is byte-for-byte correlated
with an Ethernet packet, the IP header begins at offset 0x011E. The IP datagram length is
0x0030, which is noted at offset 0x0120 of Hex Dump 11.1. That has located all of the IP
header information we need so far.

The TCP header lies at the beginning of the IP data area. The easy way to find the IP data
area is to locate the source and destination IP addresses in the IP header. Our LAN segment is
addressed as 192.168.0.XXX. So, we can scan Hex Dump 11.1 looking for a 0xC0, which is
192 decimal. The first 0xC0 is found at offset 0x012A. Taking in the next three bytes yields
“C0 A8 00 01.” That’s hexadecimal notation for “192 168 0 1.” Add the dots between the
bytes and you end up with the sending personal computer’s IP address. According to the IP
header layout in the Easy Ethernet CS8900A source code, this is the source address
(ip_srcaddr). The next field should be the destination IP address. Scanning again for the next
0xC0, we find the pattern “C0 A8 00 96,” which is “192 168 0 150.” That is the Easy
Ethernet CS8900A’s IP address, which we assigned early on in the Easy Ethernet CS8900A
source code. OK…the byte immediately following the 0x96 at offset 0x132 is the beginning
of the IP data area and the beginning of the TCP header. Repeat after me: THIS IS A PRIME
EXAMPLE OF ENCAPSULATION.

According to the TCP header shown in Figure 11.4, the very first word (16 bits) of the
TCP header is the source port address. In Hex Dump 11.1, we see “04 0D” as the beginning
word of the TCP header that begins at offset 0x0132. 0x040D equates to 1037 decimal,
which is the TCP port being used by the Telnet application on the personal computer I used
to generate the packet. Since I told the personal computer program to contact a device at
192.168.0.150 and use port number 8088, the next word of the TCP header should be the
destination port address, which should be the TCP port address we assigned the Easy
Ethernet CS8900A in the source code, which is 8088. And, indeed, 0x1F98 is the next word
and that translates to 8088 decimal.

To get to the TCP header length field, we must travel across two 32-bit numbers that we
will explore further in a moment. The first 32-bit word is the TCP sequence number, and the

TCP and the Easy Ethernet CS8900A

249

second 32-bit word is the TCP acknowledgement number. The last value we are looking for,
the TCP header length field, is located at offset 0x013E of Hex Dump 11.1 (0x70). We use
the upper nibble multiplied by four in our data length calculation.

Now that you’ve done your homework and deciphered the codes in Hex Dump 11.1, you
can check your dump reading skills against Sniffer Screen Capture 11.1’s interpretation of
Hex Dump 11.1.

Sniffer Screen Capture 11.1: If you can decipher the IP header, you can also easily figure out what’s
going on in the TCP header.

I stopped the Easy Ethernet CS8900A, as the personal computer was attempting to
establish a TCP connection. I’ll remove the PIC16F877 breakpoint and allow the code to run
its course. Lots of stuff will be going on. So, I’ll capture the entire session establishment with
the Sniffer.

Beginning on familiar ground, in Sniffer Screen Capture 11.2, the very first thing the
personal computer does after I issue the Telnet open command is to perform an ARP, which
is promptly handled by the Easy Ethernet CS8900A in Sniffer Screen Capture 11.3.

Chapter 11

250

You should be able to work your way through an IP header. So, I’ll concentrate on the
TCP header and associated code for the contents of Sniffer Screen Capture 11.4. Bear in
mind that TCP likes to sequence things. So, don’t try to correlate any numbers in the Sniffer
Screen Captures from this point on with Hex Dump 11.1. The theory remains the same but
the numbers will sequence every time a new pass and new Sniffer screen capture is made.

Sniffer Screen Capture 11.2: Nothing new for you here. In fact, you can probably tell this is an ARP
frame by looking at the hex dump.

TCP and the Easy Ethernet CS8900A

251

Take some time to look over Sniffer Screen Capture 11.4 carefully. There are lots of little
things that can be used on the screen that make the interpreted information more meaningful.
For instance, the Summary window gives the direction of the data flow, the MAC and IP
addresses of the communicating parties and a brief summary of what the packet did. Plus,
using the Sniffer screen captures beats the heck out of reading dumps.

Sniffer Screen Capture 11.3: In the Summary window, notice the MAC addresses are shown for
the ARP frames and IP addresses are displayed for the TCP frames.

Chapter 11

252

The Summary window for Sniffer Screen Capture 11.4, tells us at a glance, that the
packet information being displayed below it is a TCP frame that originated at the personal
computer (192.168.0.1) and was aimed at the Easy Ethernet CS8900A (192.168.0.150).
Without looking at the detailed breakdown, the Summary area of the Summary window tells
us the destination port (8088), the source port (1038) and TCP flag status for starters. Sniffer
Screen Capture 11.4 is the first leg of the 3-way handshake procedure that establishes a TCP
session between the personal computer and the Easy Ethernet CS8900A. I’ve put the associ-
ated Easy Ethernet CS8900A source code in Code Snippet 11.6.

Sniffer Screen Capture 11.4: This is the first phase of the 3-way handshake process.

TCP and the Easy Ethernet CS8900A

253

//**
//* TELNET SERVER BANNER STATEMENT CONSTANT
//**
int8 const telnet_banner[] = “\r\nEDTP Telnet Server>”;
//**
//* PORT ADDRESS DEFINITION
//* YOU MAY CHANGE THIS TO ANY VALID PORT ADDRESS
//**
#define MY_PORT_ADDRESS 0x1F98 // 8088 DECIMAL
//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
//**
//* TCP Header Layout
//**
#define TCP_srcport 0x22 //TCP source port
#define TCP_destport 0x24 //TCP destination port
#define TCP_seqnum 0x26 //sequence number
#define TCP_acknum 0x2A //acknowledgement number
#define TCP_hdrflags 0x2E //4-bit header len and flags
#define TCP_window 0x30 //window size
#define TCP_cksum 0x32 //TCP checksum
#define TCP_urgentptr 0x34 //urgent pointer
#define TCP_data 0x36 //option/data
//**
//* TCP Flags
//* IN flags represent incoming bits
//* OUT flags represent outgoing bits
//**
#define FIN_IN bit_test(packet[TCP_hdrflags+1],0)
#define SYN_IN bit_test(packet[TCP_hdrflags+1],1)
#define RST_IN bit_test(packet[TCP_hdrflags+1],2)
#define PSH_IN bit_test(packet[TCP_hdrflags+1],3)
#define ACK_IN bit_test(packet[TCP_hdrflags+1],4)
#define URG_IN bit_test(packet[TCP_hdrflags+1],5)
#define FIN_OUT bit_set(packet[TCP_hdrflags+1],0);
#define SYN_OUT bit_set(packet[TCP_hdrflags+1],1);
#define RST_OUT bit_set(packet[TCP_hdrflags+1],2);
#define PSH_OUT bit_set(packet[TCP_hdrflags+1],3);
#define ACK_OUT bit_set(packet[TCP_hdrflags+1],4);
#define URG_OUT bit_set(packet[TCP_hdrflags+1],5);

int8 aux_data[16]; //tcp application received data area
int8 data_H,data_L;
int16 tcpdatalen_out,ISN,ip_packet_len;

Chapter 11

254

int16 portaddr,chksum16,hdrlen,tcplen,tcpdatalen_in;
int32 hdr_chksum,my_seqnum,client_seqnum;
int1 synflag;
//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//this code segment processes the incoming SYN from the Telnet client
//and sends back the initial sequence number (ISN) and acknowledges
//the incoming SYN packet
if(SYN_IN && portaddr == MY_PORT_ADDRESS)
{

tcpdatalen_in = 0x01;
synflag = 1;

setipaddrs();

data_L = packet[TCP_srcport];
packet[TCP_srcport] = packet[TCP_destport];
packet[TCP_destport] = data_L;

data_L = packet[TCP_srcport+1];
packet[TCP_srcport+1] = packet[TCP_destport+1];
packet[TCP_destport+1] = data_L;

assemble_ack();

if(++ISN == 0x0000 || ++ISN == 0xFFFF)
ISN = 0x1234;

my_seqnum = make32(ISN,0xFFFF);

set_packet32(TCP_seqnum,my_seqnum);

packet[TCP_hdrflags+1] = 0x00;
SYN_OUT;
ACK_OUT;

packet[TCP_cksum] = 0x00;
packet[TCP_cksum+1] = 0x00;

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];

TCP and the Easy Ethernet CS8900A

255

cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
tcplen = make16(packet[ip_pktlen],packet[ip_pktlen+1]) –
((packet[ip_vers_len] & 0x0F) * 4);
hdr_chksum = hdr_chksum + tcplen;
hdrlen = tcplen;
addr = &packet[TCP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[TCP_cksum] = make8(chksum16,1);
packet[TCP_cksum+1] = make8(chksum16,0);

Code Snippet 11.6: This isn’t as bad as it looks.

Lots of stuff is taking place in a hurry in Code Snippet 11.6. So, let’s digest it line by
line, beginning with Code Snippet 11.7.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

if(SYN_IN && portaddr == MY_PORT_ADDRESS)

Code Snippet 11.7: A SYN flag bit and the Easy Ethernet CS8900A’s TCP port address must be
sensed by the Easy Ethernet CS8900A before the handshake process can begin.

The first message sent in the 3-way handshake process is a data-less TCP segment with
the SYN bit set in the TCP header flags field. If there is no session established, the Easy
Ethernet CS8900A’s first inclination is to check for its own port address (MY_PORT_ADDRESS)
and run a test on the SYN flag bit (SYN_IN) in the TCP header as shown in Code
Snippet 11.8.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

tcpdatalen_in = 0x01;
synflag = 1;

setipaddrs();

Code Snippet 11.8: The SYN flag bit is considered data and is accounted for in tcpdatalen_in.

Chapter 11

256

If it is determined that the remote host is trying to establish a TCP/IP session, the Easy
Ethernet CS8900A prepares for part 2 of the 3-way handshake by telling itself that the
incoming sequence number from the client should be incremented in the outgoing message
in the server’s outgoing acknowledgement number (tcpdatalen_in = 0x01). Let’s get a better
grasp on this before we move on.

The Easy Ethernet CS8900A in this scenario is the server, and the personal computer is
the client. The SYN flag in the incoming frame of the client’s first TCP handshake segment
must be treated as a sequence number in the server’s response, which is the second part of the
3-way handshake. This is best understood by examining the value of the randomly generated
Initial sequence number field in Sniffer Screen Capture 11.4 (790137259). Note that the
client personal computer (192.168.0.1 port 1038) is expecting the value of the Initial se-
quence number field to be incremented by one, as the client’s Next expected Seq number field
is set at 790137260. The Sniffer detail also points out that the SYN flag bit is set. So, the
incoming data length is set for one, even though there is no data in the TCP segment. A
software flag (synflag) is set to signal to the Easy Ethernet CS8900A’s TCP function that the
first part of the 3-way handshake has already taken place.

Let’s pick up with the setipaddrs function in Code Snippet 11.8, which gets the frame
ready to return from whence it came by turning around the source and destination IP and
MAC addresses and calculating the IP header checksum. This is the same setipaddrs function
we used in the UDP discussion.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**
data_L = packet[TCP_srcport];
packet[TCP_srcport] = packet[TCP_destport];
packet[TCP_destport] = data_L;

data_L = packet[TCP_srcport+1];
packet[TCP_srcport+1] = packet[TCP_destport+1];
packet[TCP_destport+1] = data_L;

Code Snippet 11.9: I could have picked any free variable other than data_L to make this swapperoo.

The same turning around of source and destination addresses has to be done for the
source and destination TCP port numbers. In Code Snippet 11.9, I used data_L as a scratch
register to hold the original TCP source port value as the packet[TCP_srcport] memory
location gets changed in the process.

TCP and the Easy Ethernet CS8900A

257

//**
//* Assemble the Acknowledgment
//* This function assembles the acknowledgment to send to
//* to the client by adding the received data count to the
//* client’s incoming sequence number.
//**
void assemble_ack()
{
client_seqnum=make32(packet[TCP_seqnum],packet[TCP_seqnum+1],packet
[TCP_seqnum+2],packet[TCP_seqnum+3]);
 client_seqnum = client_seqnum + tcpdatalen_in;
 set_packet32(TCP_acknum,client_seqnum);
}

Code Snippet 11.10: A perfect example of how the Custom Computer Services C Compiler built-in
make functions make it easy to manipulate 32-bit TCP header field variables.

The assemble_ack function depicted in Code Snippet 11.10 takes the client’s (personal
computer’s) incoming sequence number and increments it by one. Since the server (Easy
Ethernet CS8900A) must acknowledge with an incremented client sequence number, the
client’s incremented sequence number is placed in the server’s outgoing acknowledgement
field.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

if(++ISN == 0x0000 || ++ISN == 0xFFFF)
ISN = 0x1234;

my_seqnum = make32(ISN,0xFFFF);

set_packet32(TCP_seqnum,my_seqnum);

Code Snippet 11.11: The ISN is an arbitrary number with no special meaning at this point.

Before sending an acknowledgement, the server (Easy Ethernet CS8900A) must establish
an initial sequence number of its own. As you can see in the source code offered by Code
Snippet 11.11, the ISN (Initial Sequence Number) is a 32-bit pseudo-random number that is
ultimately placed into the server’s (Easy Ethernet CS8900A) outgoing TCP sequence number
header field.

Chapter 11

258

packet[TCP_hdrflags+1] = 0x00;
SYN_OUT;
ACK_OUT;

Code Snippet 11.12: The TCP code isn’t complicated. All we have to do is follow the TCP/IP protocol
standards and fill in the blanks in our TCP header.

In this part of the 3-way handshake process, the server (Easy Ethernet CS8900A) must
respond with the SYN and ACK flag bits set in the TCP header. The TCP header flags area is
cleared by the first line of code in Code Snippet 11.12. If you look at the Easy Ethernet
CS8900A TCP source code, you’ll see that SYN_OUT and ACK_OUT are macros that set
the flag bits in the server’s TCP header area.

packet[TCP_cksum] = 0x00;
packet[TCP_cksum+1] = 0x00;

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];
cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
tcplen = make16(packet[ip_pktlen],packet[ip_pktlen+1]) –
((packet[ip_vers_len] & 0x0F) * 4);
hdr_chksum = hdr_chksum + tcplen;
hdrlen = tcplen;
addr = &packet[TCP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[TCP_cksum] = make8(chksum16,1);
packet[TCP_cksum+1] = make8(chksum16,0);

Code Snippet 11.13: Even the dreaded checksum code is easy when you break it down into
manageable bytes.

It seems that nothing we’ve done so far in the Ethernet and Internet worlds can live
without a checksum. The TCP checksum in Code Snippet 11.13 is calculated exactly like the
UDP checksum with the calculation and transmission of the TCP checksum not being an
option.

We have built an image of the TCP segment we want to send to the client in the PIC16F877’s
packet array memory. All we have to do now is call an old friend (the echo_packet function)
to send the Ethernet frame, which contains our brand new TCP segment, which completes
part 2 of the 3-way handshake.

TCP and the Easy Ethernet CS8900A

259

//**
//* ECHO THE PACKET
//**
void echo_packet()
{

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0x00);
WpppL(pageport_TxLen,pageheader[enetpacketLenL]);
WpppH(pageport_TxLen,pageheader[enetpacketLenH]);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

dataport_out;
txlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
for(i=0;i<txlen;i+=2)
{

WpppL(pageport_RxTxData0,packet[i]);
WpppH(pageport_RxTxData0,packet[i+1]);

}
}

Code Snippet 11.14: Most of the time what comes in must go out.

You already know about what is going on inside the echo_packet code contained in Code
Snippet 11.14. So, take a look at what’s going on in Sniffer Screen Capture 11.5, which is the
Sniffer screen capture of the TCP segment we just sent back to the client.

It looks like we did everything right. The Easy Ethernet CS8900A established its ISN as
547028991 and expects 547028992 to be acknowledged from the client. Note that both the
SYN and ACK flag bits are set in the Easy Ethernet CS8900A’s reply TCP segment, and the
Easy Ethernet CS8900A acknowledged with 790137260 just as the client expected. We know
this is all correct because we just coded it.

Now that all of the sequence numbers have been exchanged, the only thing standing
between the Easy Ethernet CS8900A and the client personal computer’s exchange of real data
is the final acknowledgement from the client. Let’s check out the action in Sniffer Screen
Capture 11.6 and Code Snippet 11.15.

Chapter 11

260

Sniffer Screen Capture 11.5: The story is told in both the Summary window and the detail area.
Don’t you love the Sniffer?

TCP and the Easy Ethernet CS8900A

261

The meat of Sniffer Screen Capture 11.6 is that the client acknowledges with 547028992
and satisfies the next sequence number expected by the server. The Sequence number and
Next expected Seq number fields are identical, which means that there is no data in the
client’s acknowledgement. The lack of data kicks in the next piece of Easy Ethernet
CS8900A TCP code laid out in Code Snippet 11.15.

Sniffer Screen Capture 11.6: Use the Summary window and the detail area to gain a perspective
on what’s going on here.

Chapter 11

262

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//If an ACK is received and the destination port address is valid
and no data is in the packet

if(ACK_IN && portaddr == MY_PORT_ADDRESS && tcpdatalen_in == 0x00)
{

//assemble the acknowledgment number from the incoming packet
incoming_ack =make32(packet[TCP_acknum],packet[TCP_acknum+1],

packet[TCP_acknum+2],
packet[TCP_acknum+3]);

//if the incoming packet is a result of session establishment
if(synflag)
{

//clear the SYN flag
synflag = 0;

//the incoming acknowledgment is my new sequence number
my_seqnum = incoming_ack;

//send the Telnet server banner
j = sizeof(telnet_banner);
for(i=0;i<j;++i)

packet[TCP_data+i] = telnet_banner[i];
//length of the banner message

tcpdatalen_out = j;

//expect to get an acknowledgment of the banner message
expected_ack = my_seqnum + tcpdatalen_out;

//send the TCP/IP packet
send_tcp_packet();

}
}

Code Snippet 11.15: If that Telnet banner shows, you’ll be just as excited as you were when you
saw your UDP data echoed earlier.

Let’s break down the logic of the source code in Code Snippet 11.15. The first line of
Code Snippet 11.15 is satisfied in that within the incoming TCP segment shown in Sniffer
Screen Capture 11.6, the ACK flag bit is set, the port address matches the Easy Ethernet
CS8900A’s TCP port address (8088) and there is no data in the TCP segment.

TCP and the Easy Ethernet CS8900A

263

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//assemble the acknowledgment number from the incoming packet
incoming_ack =make32(packet[TCP_acknum],packet[TCP_acknum+1],

packet[TCP_acknum+2],
packet[TCP_acknum+3]);

Code Snippet 11.16: Here’s yet another example of how the Custom Computer Services C Compiler
built-in functions help us do TCP.

Depending on the upcoming circumstances, we may have to do some calculating with the
acknowledgement number. So, in Code Snippet 11.16 the incoming acknowledgement
number is reassembled into a 32-bit value from the values found in the packet array bytes that
make up the incoming acknowledgement number.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//if the incoming packet is a result of session establishment
if(synflag)
{

//clear the SYN flag
synflag = 0;

//the incoming acknowledgment is my new sequence number
my_seqnum = incoming_ack;

Code Snippet 11.17: We’re ready to rock and roll now.

Recall that we set the synflag to signal to us that we are in the 3-way handshake/session
establishment process if we passed through the TCP function again. Here we are. Part of
Code Snippet 11.17 clears the synflag. The 3-way handshake process is now complete and
the client and server are ready to exchange data. The incoming acknowledgement number we
pulled from the client in Code Snippet 11.16 is the server’s starting sequence number for data
transmission.

Chapter 11

264

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//send the Telnet server banner
j = sizeof(telnet_banner);
for(i=0;i<j;++i)

packet[TCP_data+i] = telnet_banner[i];
//length of the banner message

tcpdatalen_out = j;

Code Snippet 11.18: The Telnet banner is stored in program memory instead of RAM.

Since the client has gotten to this point using Telnet, it would be nice to send a banner to
the client, which would give the human using the client some positive feedback. The
telnet_banner is hard-coded into the flash of the PIC16F877. We need to get the
telnet_banner characters moved into the TCP data area in the PIC16F877’s packet array
RAM. We also need to tell the Easy Ethernet CS8900A TCP code how long the
telnet_banner message is. Code Snippet 11.18 does all of that.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//expect to get an acknowledgment of the banner message
expected_ack = my_seqnum + tcpdatalen_out;

Code Snippet 11.19: This is what makes TCP/IP harder to code. You must keep up with every byte
that is transferred. Our minimal TCP/IP firmware lacks many of the more complex error recovery
procedures.

We already know how many bytes we’ll be sending in our banner message and we know
our starting sequence number. So, in Code Snippet 11.19, we calculate an expected
acknowledgement number that the client will return after the banner message is delivered.

 //send the TCP/IP packet
 send_tcp_packet();

Code Snippet 11.20: Whoosh!

TCP and the Easy Ethernet CS8900A

265

So far, we’ve only set up the data portion of the TCP segment, and Code Snippet 11.20
calls yet another TCP function, send_TCP_packet. You’ve been working very hard and your
dump reading abilities are at the highest level. So, let’s do the analysis of Code Snippet 11.21
backwards using Sniffer Screen Capture 11.7 as our guide.

//**
//* Ethernet Header Layout
//**
int8 packet[96]; //50 bytes of UDP data available
#define ip_pktlen 0x10 //packet length
#define TCP_srcport 0x22 //TCP source port
#define TCP_destport 0x24 //TCP destination port

//**
//* PacketPage I/O Port Definitions
//**
#define pageport_RxTxData0 0x00 //Receive/Transmit data Port 0
#define pageport_TxCmd 0x04 //Transmit Command
#define pageport_TxLen 0x06 //Transmit Length

int8 data_H,data_L;
int16 i,txlen,rxlen,chksum16,hdrlen,tcplen,tcpdatalen_in;
int16 tcpdatalen_out,ISN,portaddr,ip_packet_len;
int32 hdr_chksum,my_seqnum,client_seqnum,incoming_ack,expected_ack;
//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**
void send_tcp_packet()
{

//count IP and TCP header bytes.. Total = 40 bytes
ip_packet_len = 40 + tcpdatalen_out;
packet[ip_pktlen] = make8(ip_packet_len,1);
packet[ip_pktlen+1] = make8(ip_packet_len,0);
setipaddrs();

data_L = packet[TCP_srcport];
packet[TCP_srcport] = packet[TCP_destport];
packet[TCP_destport] = data_L;
data_L = packet[TCP_srcport+1];
packet[TCP_srcport+1] = packet[TCP_destport+1];
packet[TCP_destport+1] = data_L;

Chapter 11

266

assemble_ack();
set_packet32(TCP_seqnum,my_seqnum);

packet[TCP_hdrflags+1] = 0x00;
ACK_OUT;
if(finflag)
{

FIN_OUT;
finflag = 0;

}

packet[TCP_cksum] = 0x00;
packet[TCP_cksum+1] = 0x00;

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];
cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
tcplen = ip_packet_len - ((packet[ip_vers_len] & 0x0F) * 4);
hdr_chksum = hdr_chksum + tcplen;
hdrlen = tcplen;
addr = &packet[TCP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[TCP_cksum] = make8(chksum16,1);
packet[TCP_cksum+1] = make8(chksum16,0);

txlen = ip_packet_len + 14;
if(txlen < 60)

txlen = 60;
data_L = make8(txlen,0);
data_H = make8(txlen,1);

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0);
WpppL(pageport_TxLen,data_L);
WpppH(pageport_TxLen,data_H);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

dataport_out;
for(i=0;i<txlen;i+=2)

TCP and the Easy Ethernet CS8900A

267

{
WpppL(pageport_RxTxData0,packet[i]);
WpppH(pageport_RxTxData0,packet[i+1]);

}

Code Snippet 11.21: The txlen variable is checked to make sure it is at least 60 decimal. The
CS8900A-CQ will automatically pad potential runt packets. The txlen code is a holdover from the
code you’ll see when we explore the RTL8019AS, which does not automatically pad a potentially
runt packet.

Let’s start our backwards analysis by first looking at the Summary window in Sniffer
Screen Capture 11.7. We are working with frame 6 in the Summary window. Notice that just
beyond the Summary data inside the Summary window is a field called Len. Len represents
the total length of the frame in bytes. Let’s look at the code and see if we can come up with
76 bytes.

Sniffer Screen Capture 11.7: You don’t have to count them if you’re using the Sniffer. Look in the
Summary window, far right.

Chapter 11

268

Since this implementation of TCP/IP is not by any means a complete implementation,
I’ve cut to the chase and assumed no options or frills would be included in the TCP or IP
headers. That would set the TCP and IP headers at a constant 20 bytes each. That’s where the
number 40 comes from in Code Snippet 11.22.

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

//count IP and TCP header bytes.. Total = 40 bytes
ip_packet_len = 40 + tcpdatalen_out;
packet[ip_pktlen] = make8(ip_packet_len,1);
packet[ip_pktlen+1] = make8(ip_packet_len,0);

Code Snippet 11.22: Some assumptions about the headers were made to keep from calculating
the header length in detail every time we send a TCP segment.

The tcpdatalen_out value is equal to the length of our Telnet banner message. A look at
the bottom of Sniffer Screen Capture 11.7 tells us that our banner message is 22 bytes long.
Let’s just count the bytes in Code Snippet 11.23.

//**
//* TELNET SERVER BANNER STATEMENT CONSTANT
//**
int8 const telnet_banner[] = “\r\nEDTP Telnet Server>”;

Code Snippet 11.23: Custom Computer Services C Compiler allows me to define an array without
having to tell the compiler how long the array will be.

The carriage return and line feed characters (\r\n) count as 2 bytes. So, that’s 2 (\r\n) + 4
(EDTP) + 7 (space Telnet) + 8 (space +Server>), which is equal to 21. What? A look back at
the hex dump area of Sniffer Screen Capture 11.7 shows 0x00 at the end of our Telnet banner
message. There are no padding messages in Sniffer Screen Capture 11.7, so what is that extra
0x00 doing in there?

 Address ASCII

 0000 3000 008A 2C3A 0000 100A 108A 110A 0782 .0..:,..
 0008 340D 340A 3445 3444 3454 3450 3420 3454 .4.4E4D4 T4P4 4T4
 0010 3465 346C 346E 3465 3474 3420 3453 3465 e4l4n4e4 t4 4S4e4
 0018 3472 3476 3465 3472 343E 3400 100A 108A r4v4e4r4 >4.4....

Hex Dump 11.2: The “terminator”…

TCP and the Easy Ethernet CS8900A

269

Let’s see if we can find the 0x00. Since the Telnet banner is a constant string, that means
it is somewhere in the PIC16F877’s flash program memory. So, I loaded the MPLAB ICE
2000 with the Easy Ethernet CS8900A executable code and took a look at what was in the
Easy Ethernet CS8900A’s flash program memory. I found our 0x00 in Hex Dump 11.2.

Line Address Opcode Disassembly Fred’s Translation

 9 0008 340D RETLW 0xd carriage return
 10 0009 340A RETLW 0xa line feed
 11 000A 3445 RETLW 0x45 E
 12 000B 3444 RETLW 0x44 D
 13 000C 3454 RETLW 0x54 T
 14 000D 3450 RETLW 0x50 P
 15 000E 3420 RETLW 0x20 space
 16 000F 3454 RETLW 0x54 T
 17 0010 3465 RETLW 0x65 e
 18 0011 346C RETLW 0x6c l
 19 0012 346E RETLW 0x6e n
 20 0013 3465 RETLW 0x65 e
 21 0014 3474 RETLW 0x74 t
 22 0015 3420 RETLW 0x20 space
 23 0016 3453 RETLW 0x53 S
 24 0017 3465 RETLW 0x65 e
 25 0018 3472 RETLW 0x72 r
 26 0019 3476 RETLW 0x76 v
 27 001A 3465 RETLW 0x65 e
 28 001B 3472 RETLW 0x72 r
 29 001C 343E RETLW 0x3e >
 30 001D 3400 RETLW 0 string terminator

Memory Dump 11.1: I speak a number of bit-oriented languages.

However, it’s a bit easier to decipher in Memory Dump 11.1. The 0x00 is a null character
and is used to indicate the end of a string. Thus, the string terminator (0x00) is our 22nd byte.
So far, our ip_packet_len is 62, which includes the TCP header length, the IP header length
and our Telnet banner message. Do you know where the other 14 bytes are? They’re in the
Ethernet DLC header. How about 6 bytes for the hardware destination address. Add 6 more
bytes for the hardware source address. That’s 12 bytes and that puts us at 74 bytes. The last 2
bytes are the Type bytes. That rounds out the frame and give us our total of 76 bytes just like
Sniffer Screen Capture 11.7.

Again, just looking at Sniffer Screen Capture 11.7’s event number 6 in the Sniffer Sum-
mary window, we can see that our setipaddrs and associated address swapping code in Code
Snippet 11.24 worked to perfection.

Chapter 11

270

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

setipaddrs();

data_L = packet[TCP_srcport];
packet[TCP_srcport] = packet[TCP_destport];
packet[TCP_destport] = data_L;
data_L = packet[TCP_srcport+1];
packet[TCP_srcport+1] = packet[TCP_destport+1];
packet[TCP_destport+1] = data_L;

Code Snippet 11.24: Here’s that swapperoonie code again.

There was no data from the client for the server to acknowledge, and the
acknowledgement number in Sniffer Screen Capture 11.7 hasn’t changed to reflect that.

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

assemble_ack();
set_packet32(TCP_seqnum,my_seqnum);

packet[TCP_hdrflags+1] = 0x00;
ACK_OUT;
if(finflag)
{

FIN_OUT;
finflag = 0;

}

Code Snippet 11.25: More math and more flag waving. That’s how it goes in TCP/IP.

The server’s assemble_ack function in Code Snippet 11.25 adds the total of incoming bytes
to the client’s sequence number it received (790137260). The resulting acknowledgement
from the server should reflect the total number of bytes sent by the client added to the
received client’s sequence number. In this case, no data was received and zero was added to
the received client’s sequence number. Therefore, the client’s sequence number was not
changed. In a similar fashion, the server sends its sequence number (547028992) to the client
expecting to get an acknowledgement of the 22 bytes in the Telnet banner message, which

TCP and the Easy Ethernet CS8900A

271

through the acknowledgement from the client will increase the server’s sequence number by
22 bytes. The TCP header Acknowledge flag bit will always be set after the client/server
connection is established. Being set, the Acknowledge flag bit vouches for the
acknowledgement number’s validity.

A sender always sends a sequence number indicating the number of the first byte of data
being sent. Note that the Next expected Seq number field in the Sniffer screen captures is not
a TCP header field. It’s a convenience offered by the Sniffer software. After the connection was
established, the server’s (Easy Ethernet CS8900A’s) sequence number was set at 547028992
and the client’s (personal computer’s) sequence number was initialized at 790137260. The
server sent 22 bytes of Telnet banner message. The Sniffer calculates the sender’s TCP data
length and offers up the Next expected Seq number field to help you see what the acknowledge-
ment from the receiver should be. According to the Sniffer, the sender should get an
acknowledgement number of 547029014.

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

packet[TCP_cksum] = 0x00;
packet[TCP_cksum+1] = 0x00;

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];
cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
tcplen = ip_packet_len - ((packet[ip_vers_len] & 0x0F) * 4);
hdr_chksum = hdr_chksum + tcplen;
hdrlen = tcplen;
addr = &packet[TCP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[TCP_cksum] = make8(chksum16,1);
packet[TCP_cksum+1] = make8(chksum16,0);

txlen = ip_packet_len + 14;
if(txlen < 60)

txlen = 60;
data_L = make8(txlen,0);
data_H = make8(txlen,1);

Code Snippet 11.26: This ensures that a runt packet will not be transmitted.

Chapter 11

272

The client hasn’t sent a FIN (Finish Flag Bit) to end the connection yet. So, the server
won’t set its FIN flag this time around. The TCP checksum is calculated and the frame length
is checked and assured to be at least 60 bytes in length in Code Snippet 11.26. Since Sniffer
Screen Capture 11.7 exists, all went well with the server’s transmission in Code Snippet 11.27.

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

dataport_out;
WpppL(pageport_TxCmd,TXCMD_AFTER_ALL);
WpppH(pageport_TxCmd,0);
WpppL(pageport_TxLen,data_L);
WpppH(pageport_TxLen,data_H);
do{

RPP(ppageBusStatus);
}while(!(bit_test(data_H,BUSSTA_RDY4TXNOW_BIT)));

dataport_out;
for(i=0;i<txlen;i+=2)
{
WpppL(pageport_RxTxData0,packet[i]);
WpppH(pageport_RxTxData0,packet[i+1]);

Code Snippet 11.27: Send it…

The client (personal computer) has yet to send a byte of data, but it did acknowledge the
22 bytes of Telnet banner in Sniffer Screen Capture 11.8. I stopped the Sniffer trace at this
point with the client’s Telnet session window showing the Telnet banner transmitted by the
Easy Ethernet CS8900A Telnet server in Sniffer Screen Capture 11.9.

We’ve written just enough code to set up a TCP/IP session between the Easy Ethernet
CS8900A and the personal computer using Telnet. It should be pretty obvious now as to why
TCP is known as a connection-oriented protocol, and UDP and IP are called connectionless
protocols. Let’s crank up the Sniffer and look at what happens when the client (personal
computer) finally sends some data to the Easy Ethernet CS8900A Telnet server. Let’s study
the Easy Ethernet CS8900A’s code first and then see if what we write as Easy Ethernet
CS8900A source code makes sense as a Sniffer screen capture.

TCP and the Easy Ethernet CS8900A

273

Sniffer Screen Capture 11.8: Notice the checksums we calculated are right on the money.

Sniffer Screen Capture 11.9: We’ve written a bunch of TCP/IP code just to get those 19
characters to appear.

Chapter 11

274

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//if an ack is received and the port address is valid and there is
data in the incoming packet

if(ACK_IN && portaddr == MY_PORT_ADDRESS && tcpdatalen_in)
{

for(i=0;i<tcpdatalen_in;++i)
{

//receive the data and put it into the incoming data buffer
aux_data[i] = packet[TCP_data+i];

//run the TCP application
application_code();

}

Code Snippet 11.28: The application code is run on a character-by-character basis.

We’re still inside the TCP function, and Code Snippet 11.28 is an area within the code
that responds when data arrives that is addressed to the Easy Ethernet CS8900A’s Telnet
server application. The Easy Ethernet CS8900A’s Telnet application is character-based. So,
every character that is received is acted upon. I’ve allocated a small 16-byte buffer
(aux_data[]) just in case I ever wanted to receive and act on a block of characters. Code
Snippet 11.28 is pretty easy to follow. So, let’s explore the application_code function in
Code Snippet 11.29.

//**
//* TELNET SERVER BANNER STATEMENT CONSTANT
//**
int8 const telnet_banner[] = “\r\nEDTP Telnet Server>”;

#define latchdata output_high(LE); \
delay_us(1); \
output_low(LE);

#define set_hex hexflag=1
#define clr_hex hexflag=0
int8 aux_data[16]; //tcp application received data area
int16 tcpdatalen_out,tcpdatalen_in;
int8 cntr,byteout;

TCP and the Easy Ethernet CS8900A

275

//**
//* Application Code
//* Your application code goes here.
//* Following a * this module writes the hex value that follows
//* the * to the 74HCT573 latch..
//* Use Telnet to connect.
//* Example: *55 writes 01010101 to the 74HCT573 latch
//**
void application_code()
{

int8 i,j;

++cntr;

if(aux_data[0] != 0x0A)
tcpdatalen_out = tcpdatalen_in;

if(aux_data[0] == 0x0A)
{

tcpdatalen_out = 0x00;
clr_hex;

}
if(hexflag)

{
if(aux_data[0] >= ‘0’ && aux_data[0] <= ‘9’)

aux_data[0] -= 0x30;
else if(aux_data[0] >= ‘A’ && aux_data[0] <= ‘F’)

aux_data[0] -= 0x37;
else if(aux_data[0] >= ‘a’ && aux_data[0] <= ‘f’)

aux_data[0] -= 0x67;
else
{

cntr = 0x00;
clr_hex;

}

if(cntr == 1)
byteout = aux_data[0] << 4;

if(cntr == 2)
{

byteout |= aux_data[0] & 0x0F;
dataport_out;
writedataport(byteout);
latchdata;
clr_hex;
printf(“Byte Latched = %x\r\n”,byteout);

}
}

if(aux_data[0] == ‘*’)

Chapter 11

276

{
set_hex;

cntr=0;
}

if (aux_data[0] == 0x0D)
{

j = sizeof(telnet_banner);
for(i=0;i<j;++i)

packet[TCP_data+i] = telnet_banner[i];
tcpdatalen_out = j;

}

Code Snippet 11.29: Note that the hexflag in this application is actually a Boolean variable instead
of a Boolean bit within a byte.

Believe it or not, we’ve already done the hard and dirty work. The TCP application is
quite simple. Instead of popping your eyeballs out going back and forth, let’s look at the code
in Code Snippet 11.29 module by module, beginning with Code Snippet 11.30.

//**
//* Application Code
//* Your application code goes here.
//* Following a * this module writes the hex value that follows
//* the * to the 74HCT573 latch..
//* Use Telnet to connect.
//* Example: *55 writes 01010101 to the 74HCT573 latch
//**

++cntr;

if(aux_data[0] != 0x0A)
tcpdatalen_out = tcpdatalen_in;

if(aux_data[0] == 0x0A)
{

tcpdatalen_out = 0x00;
clr_hex;

}

if (aux_data[0] == 0x0D)
{

j = sizeof(telnet_banner);
for(i=0;i<j;++i)

packet[TCP_data+i] = telnet_banner[i];
tcpdatalen_out = j;

}

Code Snippet 11.30: The cntr variable allows us to capture two consecutive ASCII bytes.

TCP and the Easy Ethernet CS8900A

277

The variable cntr is a counter that keeps up with the number of bytes that have been
processed. The cntr variable is only allowed to increment up to 2 before being reset.

As long as the incoming data is not a line feed character (0x0A), the incoming data is
echoed. In other words, if you don’t hit the ENTER key on the personal computer, the data
you enter in the Telnet window will be echoed to your Telnet session. I’ve skipped to the
bottom of the application in Code Snippet 11.30 to show you the code that responds to the
carriage return character (0x0D) by throwing up the Telnet banner message.

The setting and clearing of the hexflag determines if the TCP application tickles the Easy
Ethernet CS8900A’s hardware or not. Notice that when a line feed character is sensed, the
TCP data length is cleared to zero and the hexflag is cleared. When the hexflag is clear, only
the data echo function will be active. Setting the hexflag activates the latched port output
function of the TCP application. The hexflag gets set with a “*” (0x2A) character and is
received from the Telnet client. As you can see in Code Snippet 11.31, the cntr variable is
cleared right after the hexflag is set.

//**
//* Application Code
//* Your application code goes here.
//* Following a * this module writes the hex value that follows
//* the * to the 74HCT573 latch..
//* Use Telnet to connect.
//* Example: *55 writes 01010101 to the 74HCT573 latch
//**

if(aux_data[0] == ‘*’)
{

set_hex;
cntr=0;

}

Code Snippet 11.31: Two ASCII bytes are collected following the ‘*’.

If you have read the application code banner, you already know that after the “*” is
entered, the following two hexadecimal numbers will be combined into a byte and fed to the
Easy Ethernet CS8900A’s onboard 74HCT573 octal transparent latch, which presents the
byte on a set of the Easy Ethernet CS8900A’s I/O header pins.

OK, the “*” has been received. The hexflag gets set and the cntr variable is cleared. The
TCP application only processes a character at a time and each character invokes the applica-
tion code. The next character received from the client will flow through the TCP application
code and increment the cntr variable to 1. The hexflag is set at this point and that kicks off
the code in Code Snippet 11.32.

Chapter 11

278

//**
//* Application Code
//* Your application code goes here.
//* Following a * this module writes the hex value that follows
//* the * to the 74HCT573 latch..
//* Use Telnet to connect.
//* Example: *55 writes 01010101 to the 74HCT573 latch
//**

if(hexflag)
{

if(aux_data[0] >= ‘0’ && aux_data[0] <= ‘9’)
aux_data[0] -= 0x30;

else if(aux_data[0] >= ‘A’ && aux_data[0] <= ‘F’)
aux_data[0] -= 0x37;

else if(aux_data[0] >= ‘a’ && aux_data[0] <= ‘f’)
aux_data[0] -= 0x67;

else
{

cntr = 0x00;
clr_hex;

}

if(cntr == 1)
byteout = aux_data[0] << 4;

if(cntr == 2)
{

byteout |= aux_data[0] & 0x0F;
dataport_out;
writedataport(byteout);
latchdata;
clr_hex;
printf(“Byte Latched = %x\r\n”,byteout);

}
}

Code Snippet 11.32: This is a simple ASCII-to-hex conversion routine. There are more elegant ways
to do this, but we’re not here for a programming glamour contest.

The incoming data from the client’s Telnet session is ASCII data. Therefore, we have to
convert the ASCII numbers to their numeric equivalents. ASCII character values 0 thru 9 run
as shown in Table 11.1:

TCP and the Easy Ethernet CS8900A

279

The code in Code Snippet 11.32 handles any ASCII character between 0 and 9 by simply
subtracting 0x30 from the ASCII value. The tables turn in Table 11.2 when you have to figure
out how to convert the rest of the hexadecimal numbers (A thru F) from ASCII to numeric.

Table 11.1: This is all very logical until you get to the number 10.

ASCII CHARACTER ASCII HEX NUMERIC HEX (DECIMAL)
0 0x30 0x00 (0)
1 0x31 0x01 (1)
2 0x32 0x02 (2)
3 0x33 0x03 (3)
4 0x34 0x04 (4)
5 0x35 0x05 (5)
6 0x36 0x06 (6)
7 0x37 0x07 (7)
8 0x38 0x08 (8)
9 0x39 0x09 (9)

Table 11.2: Lower case, upper case…no difference when it comes to the numeric value.

ASCII CHARACTER ASCII
HEX

NUMERIC HEX
(DECIMAL)

A 0x41 0x0A (10)
B 0x42 0x0B (11)
C 0x43 0x0C (12)
D 0x44 0x0D (13)
E 0x45 0x0E (14)
F 0x46 0x0F (15)
a 0x61 0x0A (10)
b 0x62 0x0B (11)
c 0x63 0x0C (12)
d 0x64 0x0D (13)
e 0x65 0x0E (14)
f 0x66 0x0F (15)

The ASCII character representations of the hexadecimal characters are sequential. That
means we can convert the ASCII alpha characters to numbers using a single conversion value.
Subtracting 0x37 (decimal 55) from ASCII characters A thru F will give us the desired
numeric value represented by the ASCII character. The same holds true for ASCII characters
a thru f except the subtraction conversion value is 0x67 (103 decimal). If a “*” is followed by
any ASCII character that cannot be converted directly to an equivalent hexadecimal value, the
hexflag and the cntr variable are cleared.

Chapter 11

280

After the ASCII is converted to its equivalent numeric value, the cntr variable is checked.
If this is the high-order nibble of the byte to be latched out, the cntr variable will be equal to
0x01. If the value of cntr is 0x01, the high-order nibble of aux_data[0] is stored in the
byteout variable.

The next character from the client should be the low-order nibble of the byte we want to
latch out to the Easy Ethernet CS8900A’s I/O pins. The byteout variable, which already
contains the upper nibble of the byte to latch out, is combined via a bit-wise OR with the
lower nibble garnered from the buffer array aux_data[0]. The completed byte within the
byteout variable is then written to the 74HCT573 octal transparent latch. A serial port mes-
sage is then fired off to confirm the value of the byte that was just latched out.

When the client wants to end the Telnet session, it sends a TCP segment with the FIN
flag bit set in the TCP header. The Easy Ethernet CS8900A responds with a FIN-laden
acknowledgement, and everything we worked so hard to build collapses into the bit bucket.

We’ve been studying TCP behavior frame-by-frame in relative slow motion, as I’ve been
talking while the movie’s on. So, let’s look at a complete set of Sniffer screen captures from
start to finish with minimal interruption by yours truly.

The following screen captures are shots of a Telnet session between the personal com-
puter client and the Easy Ethernet CS8900A Telnet server implementation. The message is
ABC123. Following the message the client ends the session by issuing a Telnet close, which
throws a FIN TCP segment across to the Easy Ethernet CS8900A TCP application.

TCP and the Easy Ethernet CS8900A

281

Sniffer Screen Capture 11.10: The client’s human operator issues open 192.168.0.150 8088 to
kick off a Telnet session between the client (personal computer) and the server (Easy Ethernet
CS8900A). The client sends this TCP segment with a client ISN of 4003349370. This is part 1 of the
3-way handshake.

Chapter 11

282

Sniffer Screen Capture 11.11: The Easy Ethernet CS8900A Telnet server acknowledges the client’s
SYN and issues a TCP segment with its ISN (10158079). Notice the ACK flag bit has been set
indicating that the acknowledgement number field is now valid. This is part 2 of the 3-way handshake.

TCP and the Easy Ethernet CS8900A

283

Sniffer Screen Capture 11.12: The client acknowledges the server’s SYN segment, and both the
client and server now have their beginning sequence numbers set. The ACK flag bit will remain set
throughout the session indicating that the acknowledgement number fields are valid and should
not be ignored. The 3-way handshake is complete and data can now be transferred.

Chapter 11

284

Sniffer Screen Capture 11.13: The Easy Ethernet CS8900A takes this opportunity to fire off the
Telnet banner message, while the human operator is paused waiting for some sort of positive
feedback. The Sniffer has predicted the client’s acknowledgement in the Next expected Seq number
field of the Sniffer screen capture.

TCP and the Easy Ethernet CS8900A

285

Sniffer Screen Capture 11.14: The client has issued an acknowledgement number just as Sniffer
Screen Capture 11.13 said it would. I’ve moved the Rel Time window into view in the Summary
window area to show that around 4 seconds after this acknowledgement, the human operator at
the client host wakes up and sends the first byte of data you see in Sniffer Screen Capture 11.15.

Chapter 11

286

Sniffer Screen Capture 11.15: This TCP segment contains A. Also note that the Push flag bit is set.
The Push flag bit tells the receiving host to “push” all of the buffered data to the application. Since
we’re running a minimal character-based TCP implementation on the Easy Ethernet CS8900A, the
Push flag bit is ignored.

TCP and the Easy Ethernet CS8900A

287

Sniffer Screen Capture 11.16: The Easy Ethernet CS8900A echoes back every character to the
client so the human Telnet operator can see what has been entered and sent. An Ethernet packet
has to be at least 64 bytes in length. The Easy Ethernet CS8900A’s code always sends a 60-byte
message with the last 4 bytes being added as CRC bytes by the CS8900A-CQ. The 0x00 bytes that
finish up the required 60-byte length requirement are simply what was in the PIC16F877’s packet
array at those locations. Remember the data length is determined by subtracting 40 decimal from
the total length of the IP datagram that contains the TCP segment. In this screen shot, we have 20
bytes of IP header, 20 bytes of TCP header, 12 bytes of Ethernet DLC header, 2 bytes of Ethernet
Type data and 6 bytes of data in the TCP data field. The extra 5 bytes in the data area prevent the
packet from being too small or a runt. The TCP application knows to pick up only 1 byte of data,
and the CS8900A-CQ was instructed to pad the outgoing Ethernet packet and not allow a runt
packet to be transmitted. The CS8900A-CQ need not add padding as the Easy Ethernet CS8900A
firmware always sends a 60-byte message.

Chapter 11

288

Sniffer Screen Capture 11.17: An acknowledgement to the echoed character. I think you’ve got
the hang of this. The next Sniffer shot would look just like Sniffer Screen Capture 11.15 with the
sequence numbers changed due to the acknowledgements being bantered back and forth between
the client and the server and a B in the TCP data area. The B would get echoed by the Easy Ethernet
CS8900A and you would end up here to do it all over again. Let’s skip by the BC123 data entry and
jump to the human Telnet operator issuing a Telnet close.

TCP and the Easy Ethernet CS8900A

289

Sniffer Screen Capture 11.18: In this shot, the human Telnet operator has issued the Telnet close
command, which kicks out a TCP segment with the FIN flag bit set. This tells the server to expect
no more data from the client. It is possible for the server to send more data to the client, but in our
minimal TCP/IP implementation that is not possible.

Chapter 11

290

Sniffer Screen Capture 11.19: The Easy Ethernet CS8900A sees the incoming FIN segment and
immediately fires back an acknowledgement to the client’s FIN and includes a FIN flag bit of its
own. The session is totally closed at this point.

TCP and the Easy Ethernet CS8900A

291

Code Snippet 11.33 is a fitting finish to the words we’ve devoted to the Easy Ethernet
CS8900A hardware and firmware.

//**
//* TCP Function
//* This function uses TCP protocol to act as a Telnet server on
//* port 8088 decimal. The application function is called with
//* every incoming character.
//**

//this code segment processes a FIN from the Telnet client
//and acknowledges the FIN and any incoming data.
if(FIN_IN && portaddr == MY_PORT_ADDRESS)
{

if(tcpdatalen_in)
{

for(i=0;i<tcpdatalen_in;++i)
{

aux_data[i] = packet[TCP_data+i];
application_code();

}
}

finflag = 1;

++tcpdatalen_in;

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**

packet[TCP_hdrflags+1] = 0x00;
ACK_OUT;
if(finflag)
{

FIN_OUT;
finflag = 0;

}

Code Snippet 11.33: That’s all folks…

Chapter 11

292

The Easy Ethernet CS8900A TCP code attempts to make sure that any data that may
have arrived with the FIN segment is processed by the Easy Ethernet CS8900A’s TCP
application. The finflag is set and a byte is added to the outgoing acknowledgement number
(++tcpdatalen_in). When the code falls through to the send_tcp_packet function, the ACK
and FIN flag bits are set in the outgoing TCP segment.

You now possess the skills to allow you to drive a microcontroller-powered CS8900A-
CQ on a LAN or the Internet. Even though the conversation has been limited to a PIC16F877
and the CS8900A-CQ, you can apply what you’ve learned here to other microcontrollers and
Ethernet engine ICs.

293

C H A P T E R 12
Let’s Do It Again

You can add the CS8900A-CQ, Ethernet and Internet coding to your resume. It’s time for
some extra credit coding. We’ve managed to recycle everything we’ve coded up to this point.
So, let’s take all we know now and apply it once again to a completely different Ethernet
engine IC.

If you’re not “chapter hopping,” you’ve just eaten one big sandwich made of Ethernet
bread and Internet protocol meat. The Ethernet sandwich you just ate was flavored with the
CS8900A-CQ Ethernet IC.

Believe it or not, you already know enough to put a big bite into another Ethernet sand-
wich flavored with the Realtek RTL8019AS. In the text to follow, you and I will take all of
the hardware and firmware tricks we learned building the Easy Ethernet CS8900A and apply
them to a new project called the Easy Ethernet W(hacked).

Easy Ethernet Whacked??? What the…?
The Easy Ethernet W project is an upgraded offspring of a project called the Packet Whacker
(Photo 12.1). The Packet Whacker is no more than a Realtek RTL8019AS perched on a
printed circuit board with all of its pins terminated at convenient .1-inch-center header points.
Add a 20-MHz crystal, some power supply bypass capacitors, a few choice resistors and
some custom magnetics and you have a fully functional 10 Mbps Ethernet engine.

Photo 12.1: As far as Ethernet is concerned, this is as simple as it can get.

Chapter 12

294

Originally, the Packet Whacker was designed to be integrated with a microcontroller of
the designer’s choice. If you continue reading this book, when you’re finished you’ll be able
to interface the basic Packet Whacker design to a PIC16F877, a PIC18F452 and an Atmel
ATmega16. The Atmel devices are so similar when it comes to coding them in C that you
actually can use the ATmega16 code to Ethernet enable an ATmega32, ATmega64 and
ATmega 128.

Do I have your attention now? Good. Let’s start on our new Easy Ethernet W project by
talking about the Realtek RTL8019AS.

The Realtek RTL8019AS
The Realtek RTL8019AS is an NE2000-compatible IC that is easily integrated into just about
any microcontroller project that is being designed to use Ethernet connectivity. The Realtek
RTL8019AS is based on the National DP8390 Network Interface Controller, which like the
CS8900A-CQ, provides all the Media Access Control layer functions required for transmis-
sion and reception of packets in accordance with the IEEE 802.3 CSMA/CD (Carrier Sense
Multiple Access/Collision Detection) standard.

The Realtek RTL8019AS has many of the features you are familiar with from the
CS8900A-CQ. Like the CS8900A-CQ, the RTL8019AS provides interface auto-detect
capability and can choose between an integrated 10Base-T transceiver, a BNC or an AUI
interface. And, again like the CS8900A-CQ, the Realtek RTL8019AS’s on-chip 10Base-T
transceiver can automatically correct the polarity at its receiving cable pair.

In 8-bit mode, both the CS8900A-CQ and the RTL8019AS use a 4 Kb on-chip RAM area
despite the RTL8019AS’s 16 Kb specification, which only applies to 16-bit mode. In
NE2000 fashion, the RTL8019AS’s buffer memory is configured as a ring, while CS8900A-
CQ PacketPage buffer memory is treated as a flat 4 Kb of buffer area.

In our exploration of the Easy Ethernet CS8900A’s onboard CS8900A-CQ, we discov-
ered that using the CS8900A-CQ’s on-chip DMA resources to transfer data from the
CS8900A-CQ’s on-chip buffer memory to microcontroller memory in 8-bit mode is illegal. I
use the word illegal because we know it can be done, but we were told by the CS8900A-CQ
IC designers that you’re not supposed to do that because in 8-bit mode it is not a reliable way
to move data.

Unlike the CS8900A-CQ, the RTL8019AS uses internal DMA resources to manage and
move data between the RTL8019AS’s FIFO and the Realtek RTL8019AS’s internal buffer
memory. Within the Realtek RTL8019AS, the onboard FIFO (First In, First Out) and Local
DMA (Direct Memory Access) channels work in conjunction to form a simple packet man-
agement scheme that provides up to 10 megabyte per second internal DMA transfers. The
FIFO lies between the network interface and the Local DMA channel.

Let’s Do It Again

295

A second Realtek RTL8019AS Remote DMA channel is included on-chip to get data out
of the RTL8019AS’s internal Buffer Ring and into microcontroller memory for processing
and vice versa. It’s important to remember that the Local DMA channel moves data between
the Realtek RTL8019AS’s internal FIFO and the RTL8019AS’s Buffer Ring, and the Remote
RTL8019AS DMA channel moves data between the Realtek RTL8019AS’s Buffer Ring and
the microcontroller’s working memory.

Despite the difference in the way the RTL8019AS and the CS8900A-CQ handle data
internally, physically the Realtek RTL8019AS and the CS8900A-CQ interface with their
external support circuitry and the network in a similar manner. Just like the CS8900A-CQ,
the Realtek RTL8019AS was originally designed for major Ethernet applications in desktop
personal computers and some of the RTL8019AS’s functionality will be useless to the
hardware used on our Easy Ethernet W. The Realtek RTL8019AS side of the Easy Ethernet
W can be seen in Schematic 12.1.

Schematic 12.1: Although designed to work as a personal computer Ethernet interface, the Realtek
RTL8019AS is well-suited for work with 8-bit microcontrollers.

R1
22.1K

S
A

3

SD5

R2
200

LE
D

2

C5

.1uF

RSTDRV

C2

.1uF

C1

.1uF

RTL8019AS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

IN
T

3
IN

T
2

IN
T

1
IN

T
0

S
A

0
V

D
D

S
A

1
S

A
2

S
A

3
S

A
4

S
A

5
S

A
6

S
A

7
G

N
D

S
A

8
S

A
9

V
D

D
S

A
10

S
A

11
S

A
12

S
A

13
S

A
14

S
A

15
S

A
16

S
A

17
S

A
18

S
A

19
G

N
D

IO
R

B
IO

W
B

OSCI
TX+
TX-

VDD
LD
HD

GND
SD7
SD6
SD5
SD4
SD3
SD2
SD1
SD0

IOCHRDY
AEN

RSTDRV
SMEMWB
SMEMRB

B
D

4
B

D
5

B
D

6
B

D
7

E
E

C
S

B
C

S
B

B
A

14
B

A
15

B
A

16
B

A
17

V
D

D
B

A
18

B
A

19
B

A
20

B
A

21 JP A
U

I
LE

D
2

LE
D

1
LE

D
0

LE
D

B
N

C
T

P
IN

+
T

P
IN

-
V

D
D

R
X

+
R

X
-

C
D

+
C

D
-

G
N

D
O

S
C

O

BD3
BD2
GND
BD1
BD0
GND
SD15
SD14
VDD
SD13
SD12
SD11
SD10
SD9
SD8
IOCS16B
INT7
INT6
INT5
INT4

C4

.1uF

C3

.1uF

C6
.1uF

R3 AND LED0 ARE
OPTIONAL

+5VDC

E
E

C
S

LE
D

0

S
A

4

SD6

SD1

S
A

0

E
E

S
K

IO
R

B

SD7

LEDS INTEGRAL TO RJ-45 MAGNETICS IN
REV C AND REV D BOARDS

+5VDC

IO
W

B

LE
D

1

SD3

SD0

R5

680

S
A

1

E
E

D
I

XTAL1

20MHz +5VDC

R4

680

8
7
6 TRANSMIT-
5
4
3 TRANSMIT+
2 RECEIVE-
1 RECEIVE+

T
O

 C
A

B
LE

IN
T

E
R

N
A

L C
O

N
N

E
C

T
IO

N
S

LF1S022

1

2

3

4

5

6

7

8

CTX_EXT

CRX_EXT

CTX_INT

TPOUT+

TPOUT-

TPIN+

TPIN-

CRX_INT

C7
.1uF

SD4

SD2

R3

680

S
A

2

C8

.1uF

+5VDC

IN
T

0
E

E
D

O

Chapter 12

296

The Realtek RTL8019AS is controlled through an array of on-chip registers similar to
those found in the CS8900A-CQ. The RTL8019AS doesn’t use CS8900A-CQ PacketPage
technology, but as you come to find out, the RTL8019AS’s register operations are logically
identical to the CS8900A-CQ’s register operations.

Again, just like the CS8900A-CQ, the Realtek RTL8019AS registers are used during
initialization, packet transmission and reception. There are also registers for Remote DMA
operations on the Realtek RTL8019AS that don’t exist on the CS8900A-CQ. Basically, using
the Realtek RTL8019AS internal registers we can perform the same logical operations that
are performed using the CS8900A-CQ’s PacketPage registers. The basic operations include
defining the hardware physical address, setting the receive parameters and setting the trans-
mission parameters. For the Realtek RTL8019AS, add configuring DMA channels and
allocating transmit and receive Buffer Ring areas to the aforementioned list of operations.

In that DMA is an integral part of the Realtek RTL8019AS’s microcontroller interface,
there must be a control mechanism or register to act as the traffic cop for the data flow
between the RTL8019AS’s buffers and the microcontroller memory and the RTL8019AS’s
MAC engine to Ethernet interface. That control register for the Realtek RTL8019AS is the
Command Register (CR), which is used to initiate Remote DMA operations as well as data
transmission. Remember, Remote DMA operations are used to move data between the
RTL8019AS’s buffer and the microcontroller’s memory. As you examine the Easy Ethernet
W’s source code, you’ll come to the conclusion that the RTL8019AS CR register is a well-
used register. So, I’ve put its bits into graphical format in Figure 12.1.

7 6 5 4 3 2 1 0
PS1 PS0 RD2 RD1 RD0 TXP STA STP

CR

Figure 12.1: You’re going to get to know this register very well.

An early version of the Easy Ethernet CS8900A used the CS8900A-CQ’s internal inter-
rupt structure to sense the presence of a valid frame in the CS8900A-CQ’s receive buffer. The
Easy Ethernet W detects a valid frame in a similar manner. The Easy Ethernet W’s
PIC16F877 microcontroller checks for a valid frame by polling an interrupt pin (INT0) on
the RTL8019AS. Once a valid level is sensed on the INT0 pin, the PIC16F877 interrogates
the Realtek RTL8019AS’s Interrupt Status Register (ISR) to determine what type of interrupt
has occurred.

We already know that both the CS8900A-CQ and the Realtek RTL8019AS transmit
packets in accordance with the CSMA/CD protocol standards. Both the Realtek RTL8019AS
and the CS8900A-CQ schedule retransmission of packets up to 15 times on collisions
according to the truncated binary exponential backoff algorithm. The CS8900A-CQ datasheet
calls this the Standard Backoff algorithm. Once you cut the transmit process loose, both
Ethernet ICs run the show until the transmission cycle is aborted or completed.

ferds
Highlight

Let’s Do It Again

297

Here’s where things you already know about the Easy Ethernet CS8900A and CS8900A-CQ
will be applied to the Easy Ethernet W and the RTL8019AS. Assuming buffer memory is
allocated and free, transmitting packets with the Realtek RTL8019AS entails setting up an
IEEE 802.3 frame in memory with:

■ 6 bytes of the destination address (DA)

■ 6 bytes of the source address (SA)

■ The data length in bytes

■ The data

Unless you’re “chapter hopping,” you may recognize the above bulleted sequence of
bytes as a standard Ethernet frame. Once the required frame items are built in the
microcontroller’s packet array memory area, the Realtek RTL8019AS register TPSR (Trans-
mit Page Start Register) is loaded with the frame starting address and the TBCR0 (Transmit
Byte Count 0) and TBCR1 (Transmit Byte Count 1) registers are filled with the length of the
frame. It’s easier to visualize if you have some structure to view. You can see the structure of
the TPSR and TBCR register set in Figure 12.2.

TPSR
7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8

TBCR0
7 6 5 4 3 2 1 0

TBC7 TBC6 TBC5 TBC4 TBC3 TBC2 TBC1 TBC0

TBCR1
7 6 5 4 3 2 1 0

TBC15 TBC14 TBC13 TBC12 TBC11 TBC10 TBC9 TBC8

Figure 12.2: The TPSR represents the upper byte of a 16-bit address. If that doesn’t register right
now, it will make more sense later when we talk about allocating buffer area within the RTL8019AS.

To initiate the transmission of a packet, the TXP (transmit packet) bit of the Realtek
RTL8019AS Command Register is set. If the total length of the Ethernet packet is less than
46 bytes, the Realtek RTL8019AS cannot be instructed to automatically pad the packet to
avoid sending a runt packet onto the network. Therefore, we must as programmers make sure
we don’t generate any runt packets. The TCP/IP section of the Easy Ethernet W’s code
checks for runts. The ARP, ICMP and UDP routines use the length of the incoming packets
as their guide. Since we will setup the RTL8019AS to not accept runt packets, the UDP and
ICMP packets received will always meet the minimum length requirement. The ARP code
builds a 60-byte ARP reply packet.

Chapter 12

298

Your first encounter with runt packet avoidance was in the TCP/IP section of the Easy
Ethernet CS8900A source code. If you have a reason to break the rules for research or you’re
just playing around, by configuring the right bits in the right registers, you can tell either the
CS8900A-CQ or the Realtek RTL8019AS to send and receive runt packets.

You’re beginning to see how we can use knowledge acquired in our Easy Ethernet
CS8900A project to quickly get our Easy Ethernet W project up and running. There are lots
of similarities in the operation of the RTL8019AS and the CS8900A-CQ Ethernet ICs.

When it comes to allocating transmit buffer space, the CS8900A-CQ is a little different in
that the on-chip buffer space is asked for, and permission is granted to load the buffer area
before any data is transferred for transmission. This is called a “bid” for buffer space. The
Realtek RTL8019AS transmit buffer area is allocated according to the contents of an
RTL8019AS register. The Realtek RTL8019AS datasheet stresses that if the Buffer Ring area
of the Realtek RTL8019AS is set up correctly at initialization, there should never be any
contention for transmit buffer memory under normal operating conditions.

The act of transmitting data to the ether is a parallel process for both the CS8900A-CQ
and RTL8019AS. Before jumping onto the ether, both the CS8900A-CQ and the
RTL8019AS will check themselves internally to see if they are receiving data from the
network. If the all clear is sounded, the CS8900A-CQ starts transmission of the 8-byte
preamble once a specified number of bytes (5, 381,1021 or ALL) are loaded into the transmit
buffer. You’ll recall that this begin transmission threshold is determined by bit settings in the
CS8900A-CQ Transmit Command Register.

The Realtek RTL8019AS uses its Local DMA channel and FIFO to follow the
RTL8019AS-generated preamble with valid data. The Realtek RTL8019AS’s Local DMA
bursts data to the FIFO, which is then serialized out onto the network as clocked NRZ data.

If you stop and think about this, every Ethernet IC on a network has to conform to these
standards in order to communicate with each other. You saw the NRZ data trick when we
discussed the CS8900A-CQ MAC engine. The Realtek RTL8019AS’s Local DMA refreshes
the FIFO when the FIFO “send more” threshold is reached. The FIFO “send more” threshold
is programmable. In both cases, the RTL8019AS and the CS8900A-CQ continue the trans-
mission as long as the transmission byte count in the byte count registers is greater than zero.
Once all bytes are sent, the CRC is calculated by both the CS8900A-CQ and RTL8019AS
and is sent to complete the packet.

For either the CS8900A-CQ or the RTL8019AS, if a collision occurs during transmis-
sion, the transmission is stopped and 32 ones (a jam sequence) are transmitted to make sure
everybody on the network segment knows a collision just took place. Both the CS8900A-CQ
and the Realtek RTL8019AS execute the Standard Backoff algorithm and the transmission is
retried. When the transmission completes, both the RTL8019AS and the CS8900A-CQ have
transmit status registers that can be queried to see how the transmission went.

Let’s Do It Again

299

As you’ve probably already concluded, we’re working with a bunch of standards that
allow differing Ethernet IC manufacturers to design and build products that can communicate
with each other over a common medium called Ethernet. Now with that in mind, transmitting
data and receiving data from the ether is a similar process for the RTL8019AS and CS8900A-
CQ as well. Both the CS8900A-CQ and the RTL8019AS listen to the wire sense a carrier and
start syncing up with the alternating 1/0 preamble that starts a 10 Mbps Ethernet packet.
Once the two consecutive ones of the SFD (Start of Frame Delimiter) are sensed, the pre-
amble ends and the MAC engines within the RTL8019AS and CS8900A-CQ expect
everything behind the set of SFD ones to be valid data.

Both the CS8900A-CQ and RTL8019AS check the destination address (DA) to see if the
incoming packet is addressed to them. If it is not, it is not moved into buffer memory and the
packet is discarded. On the other hand, if the packet destination address matches the Ethernet
IC’s address filter setting (hashed or individual), in the case of the RTL8019AS or CS8900A-
CQ, the frame is moved into the Ethernet IC’s on-chip buffer memory so it can be transferred
to the microcontroller’s RAM (Random Access Memory) for processing. If everything goes
OK during the receive cycle, both the RTL8019AS and the CS8900A-CQ post receive status
in their respective receive status registers. The RTL8019AS raises an interrupt I/O line, while
the CS8900A-CQ must have its register bank polled to alert the microcontroller of a valid
frame in the receive buffer.

Earlier, I mentioned that the Realtek RTL8019AS uses NE2000 conventions and thus
buffers its data in a ring. The Realtek RTL8019AS differs from the CS8900A-CQ in that the
data coming into the Realtek RTL8019AS from the network is put into a receive Buffer Ring;
whereas the CS8900A-CQ stuffs the data into a flat predefined buffer area. To help you
visualize a ring versus a flat memory area, think like sailors of ancient times. Those old salts
thought the world was flat, and therefore, if they sailed far enough they would simply fall of
the edge of the world. That’s a flat memory area. Later, some enterprising sailors figured out
that they could sail and sail and as long as they navigated correctly, they could end up where
they started without falling off the edge. That’s a ring.

The CS8900A-CQ flat memory model method is valid, and there’s nothing special about
the Realtek RTL8019AS’s ring buffer. It’s a classic circular, head and tail buffer scheme with
four pointers controlling the activity in the Buffer Ring:

■ PSTART

■ PSTOP

■ CURR

■ BNRY

A graphical representation of the RTL8019AS Buffer Ring is shown in Figure 12.3.

Chapter 12

300

PSTART (Page Start) is the beginning address of the Buffer Ring. PSTOP (Page Stop) is
the address of the end of the Buffer Ring. The Buffer Ring size is determined by the number
of bytes between PSTART and PSTOP. For the RTL8019AS, PSTART and PSTOP are
loaded at initialization time. There are no CS8900A-CQ counterparts for PSTART and
PSTOP. CURR, the Current Page Pointer, points to the next available buffer area for the next
incoming frame. BNRY, or the Boundary Pointer, points to the next frame to be unloaded
from the Buffer Ring. Think of the CURR as the write pointer and the BNRY as the read
pointer for the Buffer Ring. As frames come in, the CURR pointer moves ahead of the
BNRY pointer around the ring. If CURR reaches BNRY, the Buffer Ring is full. All recep-
tions are aborted, and missed packet registers within the RTL8019AS are updated until this
condition is cleared. The RTL8019AS’s Remote DMA channel is the mechanism that re-
moves frames from the Buffer Ring. Figure 12.4 is a representation of an initialized Buffer
Ring.

Figure 12.3: Although the buffer pointers can hold a 64K value (0xFFFF), note that only 8K of
buffer RAM is available in the RTL8019AS.

Let’s Do It Again

301

Each Realtek RTL8019AS ring buffer segment in Figure 12.4 is 256 bytes in length. A
valid received frame is placed at location CURR plus a 4-byte offset. Buffer segments are
automatically linked together to receive frames larger than 256 bytes. When all the bytes are
loaded, the RSR (Receive Status Register) status, a pointer to the next frame and the byte
count of the current frame are written into the 4-byte offset. That’s basically how the Realtek
RTL8019AS and any other NE2000-compatible Ethernet IC works. A visual of a frame
inside the RTL8019AS’s Buffer Ring is shown in Figure 12.5.

Figure 12.4: An empty ring is signaled by the CURR and BNRY pointers being equal.

Chapter 12

302

The Easy Ethernet W Hardware
There are only a couple of differences in the Easy Ethernet W hardware represented schemati-
cally in Schematic 12.2 and the Easy Ethernet CS8900A hardware. The bank of pull-up
resistors is missing from the Easy Ethernet W schematic. I experimented with removing the
pull-ups from the Easy Ethernet CS8900A and the Easy Ethernet CS8900A performed as
expected with no problems. However, as a precaution, I left pads for the pull-up resistors on
the Easy Ethernet CS8900A printed circuit board as the MPLAB ICE 2000 required them to
operate properly. If you use the MPLAB ICE 2000, you’ll need those pull-up resistors on the
Easy Ethernet CS8900A printed circuit board. The only other physical difference in the Easy
Ethernet CS8900A and the Easy Ethernet W are the pin assignments of the PIC16F877
microcontroller’s I/O.

Figure 12.5: This is a graphic from the original National Semiconductor
datasheet. The term “packet” is used loosely in the figure.

Let’s Do It Again

303

There is another difference that isn’t evident in Schematic 12.2. The PIC16F877 is loaded
with CS8900A-CQ firmware that has been modified to control the RTL8019AS. Photo 12.2
gives us a view of a fully assembled Easy Ethernet W.

INT0

SD2

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

SD2

SCL

OUT3
+5VDC

SD3

SDA

LE

SA3

RESET

SA4

D1

1N5819

+5VDC

TXD

PGD

SD0

I/O3

LED3

JR3

1

2

+5VDC

C10

.1uF

+5VDC

RXD

C9

.1uF

EESK

SD6
TXOUT

PGD

RSTDRV

RXD

SD4 OUT4

SD7

JR1

ICSP CONNECTOR

1
2
3

4
5
6

1
2
3

4
5
6

C12

20pF

OUT0

I/O5

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

+5VDC

RXIN
SA1

SCL

C14

.1uF

SA0

+5VDC

PGC

U3

74HCT573D

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

C
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

SD5

SD5

LE

SD0

OUT5

SD3

XTAL2
2OMHz

+5VDC

R10
10K

RXIN

SD4

MCLR

BYPASS CAPACITORS FOR
PIC16F877 AND SP233

SD1

U1

PIC16F877

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

*MCLR
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
OSC1
OSC2
RC0
RC1
RC2
RC3
RD0
RD1 RD2

RD3
RC4
RC5
RC6
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

+C15

47uF

R6
10K

+5VDC

OUT1

+C17

47uF

EEDO

IOWB

C11

.1uF

SD6

I/O1

R9
10K

C18

.1uF

OUT6

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

74HCT573 PIN 20 = +5VDC
74HCT573 PIN 10 = GND

PGC

D2

1N5819

SA2

TXD

C16
.1uF

SDA

+9VDC

I/O4

+5VDC

SD1
OUT2

IORB

R8
10K

TXOUT

SD7

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

R7

470

I/O2

C13

20pF

MCLR

OUT7

Schematic 12.2: We’ve even recycled the hardware.

Chapter 12

304

The Easy Ethernet W Firmware
You are already familiar with the CSMA/CD protocol, the Ethernet frame and packet and the
Internet protocols TCP, UDP, IP, ARP and ICMP. Guess what? You don’t have to “relearn”
anything to build and code an Easy Ethernet W of your own. All of that knowledge you
gained from building the Easy Ethernet CS8900A applies here for the Easy Ethernet W, and
with the hardware changes from the Easy Ethernet CS8900A to the Easy Ethernet W being
minimal, you’re already checked out on the hardware and we can start coding the PIC16F877
firmware for the Easy Ethernet W right now.

Photo12.2: This device is the result of crossbreeding a Packet Whacker,
our RS-232 circuitry, our I²C circuitry, a 74HCT573 latch (bottom of the
board) and all of the supporting power supply and PIC programming
components.

Let’s Do It Again

305

Thanks to the portability of C, lots of the code we used in the Easy Ethernet CS8900A
project will be reused in the Easy Ethernet W project without modification. The original
CS8900A-CQ packet array memory area and the Ethernet and Internet protocol layouts
remain unchanged in the RTL8019AS code. The IP address and MAC addresses for the Easy
Ethernet W can easily be changed in your version of the project; however, as you see in Code
Snippet 12.1, to avoid unneeded confusion I’ll keep them just as they were in the Easy
Ethernet CS8900A project. The only change I made in the Ethernet and Internet protocols
area was the wording in the Telnet banner.

//**
//* TELNET SERVER BANNER STATEMENT CONSTANT
//**
int8 const telnet_banner[] = “\r\nWhacked Easy Ethernet>”;
//**
//* IP ADDRESS DEFINITION
//* This is the Ethernet Module IP address.
//* You may change this to any valid address.
//**
int8 MYIP[4] = { 192,168,0,150 };
//**
//* HARDWARE (MAC) ADDRESS DEFINITION
//* This is the Ethernet Module hardware address.
//* You may change this to any valid address.
//**
char MYMAC[6] = { 0,0,’E’,’D’,’T’,’P’ };

Code Snippet 12.1: Using the same MAC and IP addresses for the Easy Ethernet W makes relating
to the original CS8900A-CQ code and concepts a bit easier.

Earlier, I mentioned that a 4-byte header preceded each frame in the RTL8019AS’s ring
buffer (Figure 12.5). That prompted a slight change in the pageheader array in Code Snippet
12.3. The Easy Ethernet CS8900A’s pageheader array layout is shown in Code Snippet 12.2.

//**
//* Ethernet Header Layout
//**
int8 pageheader[4];
#define enetpacketstatusH 0x00
#define enetpacketstatusL 0x01
#define enetpacketLenH 0x02
#define enetpacketLenL 0x03

Code Snippet 12.2: This is the CS8900A-CQ’s 4-byte header layout.

Chapter 12

306

//**
//* Receive Ring Buffer Header Layout
//* This is the 4-byte header that resides infront of the
//* data packet in the receive buffer.
//**
int8 pageheader[4];
#define enetpacketstatus 0x00
#define nextblock_ptr 0x01
#define enetpacketLenL 0x02
#define enetpacketLenH 0x03

Code Snippet 12.3: The CS8900A-CQ and RTL8019AS frame headers perform the same function
but are totally different in logic and nature. I’ve included the Easy Ethernet CS8900A’s pageheader
array definition for comparison and your viewing pleasure in Code Snippet 12.2.

It stands to reason that the internal definitions for the RTL8019AS in Code Snippet 12.4
will differ from those we laid out for the CS8900A-CQ. We don’t need to know the details of
every RTL8019AS register. And, since the concepts of sending and receiving packets is
common for both the RTL8019AS and the CS8900A-CQ, I’ll point out the differences and
highlight the similarities of the RTL8019AS firmware as they relate to the CS8900A-CQ
firmware.

//**
//* REALTEK CONTROL REGISTER OFFSETS
//* All offsets in Page 0 unless otherwise specified
//**
#define CR 0x00
#define PSTART 0x01
#define PAR0 0x01 // Page 1
#define CR9346 0x01 // Page 3
#define PSTOP 0x02
#define BNRY 0x03
#define TSR 0x04
#define TPSR 0x04
#define TBCR0 0x05
#define NCR 0x05
#define TBCR1 0x06
#define ISR 0x07
#define CURR 0x07 // Page 1
#define RSAR0 0x08
#define CRDA0 0x08
#define RSAR1 0x09
#define CRDAL 0x09
#define RBCR0 0x0A
#define RBCR1 0x0B

Let’s Do It Again

307

#define RSR 0x0C
#define RCR 0x0C
#define TCR 0x0D
#define CNTR0 0x0D
#define DCR 0x0E
#define CNTR1 0x0E
#define IMR 0x0F
#define CNTR2 0x0F
#define RDMAPORT 0X10
#define RSTPORT 0x18

Code Snippet 12.4: If you’re wondering what the “Page” comments are all about, we’ll get to that
soon. The creg term you will see throughout the Easy Ethernet W source code refers to this Code
Snippet. When you see creg think of that as short for Control Registers.

You already have a bit of familiarity with the RTL8019AS, as I provided an overview of
how the RTL8019AS worked earlier in the text. Rather than fill you with theory up front,
let’s do something different. Let’s dive into the code and work our way through the changes
needed to make the RTL8019AS our Ethernet IC of choice for the Easy Ethernet W.

Initializing the Realtek RTL8019AS
The Easy Ethernet W firmware was written for the PIC16F877 using Custom Computer
Services C Compiler. The very first instruction in the Easy Ethernet W firmware in Code
Snippet 12.5 begins the RTL8019AS’s initialization process. Again, if you’re not “chapter
hopping,” you should already know what the synflag and finflag are and why we’re initializ-
ing them here.

The Easy Ethernet banner serves the same purpose here as it did in the Easy Ethernet
CS8900A code. It verifies the operation of the Easy Ethernet W’s serial port and provides a
visual of the Easy Ethernet W firmware version.

int1 synflag,finflag;
//**
//* MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAIN
//**
void main()
{

init_RTL8019AS();
synflag = 0;
finflag = 0;
printf(“Easy Ethernet W Version For PIC16F877 03.08.12\r\n”);

Code Snippet 12.5: The banner is optional but nice to have as it tells you if the Easy Ethernet W is
alive when you first apply power.

Chapter 12

308

The RTL8019AS initialization code is a bit lengthy and is like eating breakfast. It’s the
most important meal of the day. The whole RTL8019AS initialization breakfast enchilada is
offered up in Code Snippet 12.6. We’ll look at it a bite at a time.

//**
//* REALTEK CONTROL REGISTER OFFSETS
//* All offsets in Page 0 unless otherwise specified
//**
#define CR 0x00
#define RSTPORT 0x18
#define RBCR0 0x0A
#define RBCR1 0x0B
#define RCR 0x0C
#define TPSR 0x04
#define TCR 0x0D
#define PSTART 0x01
#define BNRY 0x03
#define PSTOP 0x02
#define CURR 0x07 // Page 1
//**
//* RTL8016AS PIN DEFINITIONS
//**
#define INT0 PORTC,0
#define le_pin PORTC,1
#define ior_pin PORTE,0
#define iow_pin PORTE,1
#define rst_pin PORTE,2
//**
//* RTL8019AS 9346 EEPROM PIN DEFINITIONS
//**
#define EEDO PORTA,0
//**
//* RTL8019AS I/O PORT DEFINITIONS
//**
#define cregaddr PORTB
#define cregdata PORTD
#define tocreg set_tris_D(0x00);
#define fromcreg set_tris_D(0xFF);
//**
//* RTL8019AS INITIAL REGISTER VALUES
//**
#define rcrval 0x04
#define tcrval 0x00
#define dcrval 0x58
#define imrval 0x11 // PRX and OVW interrupt enabled
#define txstart 0x40

Let’s Do It Again

309

#define rxstart 0x46
#define rxstop 0x60

int8 byte_read;
//**
//* Initialize the RTL8019AS
//**
void init_RTL8019AS()
{

ADCON1 = 0x06; //00000110 all digital to start
ADCON0 = 0;
set_tris_C(0x9D);
set_tris_A(0x00);
bit_clear(EEDO);
bit_clear(le_pin);
set_tris_B(0xE0); // setup address lines
cregaddr = 0x00; // clear address lines
fromcreg; // address lines = input
set_tris_E(0x00); // setup IOW, IOR, RESET
bit_set(iow_pin); // disable IOW
bit_set(ior_pin); // disable IOR
bit_set(rst_pin); // put NIC in reset
delay_ms(2); // delay at least 1.6ms
bit_clear(rst_pin); // disable reset line
read_creg(RSTPORT); // read contents of reset port
write_creg(RSTPORT,byte_read); // do soft reset
delay_ms(10); // give it time
read_creg(ISR); // check for good soft reset
if(!bit_test(byte_read,RST)){

while(1){
printf(“INIT FAILED\n\r”);
}

 }

write_creg(CR,0x21); // stop the NIC, abort DMA, page 0
delay_ms(2); // make sure nothing is coming in

or going out
write_creg(DCR,dcrval); // 0x58
write_creg(RBCR0,0x00);
write_creg(RBCR1,0x00);
write_creg(RCR,rcrval);
write_creg(TPSR,txstart);
write_creg(TCR,0x02);
write_creg(PSTART,rxstart);
write_creg(BNRY,rxstart);
write_creg(PSTOP,rxstop);

Chapter 12

310

write_creg(CR,0x61);
write_creg(CURR,rxstart);
for(i=0;i<6;++i)

write_creg(PAR0+i, MYMAC[i]);

write_creg(CR,0x22);
write_creg(ISR,0xFF);
write_creg(IMR,imrval);
write_creg(TCR,tcrval);

}

Code Snippet 12.6: You can break the code into three parts. The first part of the code initializes the
RTL8019AS’s on-chip hardware resources. The second part of the code prepares the RTL8019AS’s
register set for operation. The third part of the code activates the RTL8019AS and brings it online
to the network.

Some of the PIC16F877’s I/O pins (PORTA and PORTE) work double-duty and can be
configured as analog inputs. The PIC16F877 analog pins are set in the analog input mode by
default on power up. The Easy Ethernet W’s UDP application code will use the PORTA I/O
as an output port. Also, the Easy Ethernet W uses the PORTE pins to drive some of the
RTL8019AS’s bus control pins. So, we need to disable all of the analog functionality, and the
first two lines of code in Code Snippet 12.7 disable all analog I/O functions. The analog
inputs of the PIC16F877 can be enabled if you desire to use them. However, we won’t be
using them in this text.

The set_tris_X(0xXX) functions are built-in Custom Computer Services C Compiler
functions that determine the direction the I/O lines will take. For instance, in Code Snippet
12.5, PORTA of the PIC16F877 is configured as an output port. This is standard PIC setup
stuff and you’ve seen this before in the Easy Ethernet CS8900A source code. A ‘1’ in a bit
position indicates that the I/O pin associated with that bit is an input, while a ‘0’ denotes
output for an I/O pin position.

Like the CS8900A-CQ, the RTL8019AS is capable of reading some of its initial configu-
ration parameters from an external EEPROM and tries to do this automatically unless it’s
headed off at the pass. As with the CS8900A-CQ and Easy Ethernet CS8900A, the Easy
Ethernet W doesn’t require any data to be stored on an external EEPROM. To prevent the
RTL8019AS from expecting data from an external EEPROM at startup, we tell the
RTL8019AS that no EEPROM device exists by taking the RTL8019AS’s EEDO (EEPROM
Data Output) line low (bit_clear(EEDO)) and leaving it low forever. The bit_clear function
that puts the logic level on the PIC16F877 EEDO I/O pin is another one of the many Custom
Computer Services C Compiler built-in functions.

The rest of the intentions in Code Snippet 12.7 are pretty obvious. Basically, we want to
put everything inside and outside of the RTL8019AS in an operable state and then reset the
RTL8019AS. The “NIC” (Network Interface Controller) mentioned in the Easy Ethernet W
source code is actually referring to the RTL8019AS IC.

Let’s Do It Again

311

//**
//* Initialize the RTL8019AS
//**

ADCON1 = 0x06; //00000110 all digital to start
ADCON0 = 0;
set_tris_C(0x9D);
set_tris_A(0x00);
bit_clear(EEDO);
bit_clear(le_pin);
set_tris_B(0xE0); // setup address lines
cregaddr = 0x00; // clear address lines
fromcreg; // address lines = input
set_tris_E(0x00); // setup IOW, IOR, RESET

bit_set(iow_pin); // disable IOW
bit_set(ior_pin); // disable IOR
bit_set(rst_pin); // put NIC in reset

Code Snippet 12.7: This part of the Easy Ethernet W code is actually working on setting up the Easy
Ethernet W’s PIC16F877 microcontroller, which directly affects the RTL8019AS’s I/O control and
reset pins.

Once the RTL8019AS reset pin is activated, we must give the RTL8019AS at least 1.6
ms to perform the internal reset process. Once we’ve waited long enough and think that the
hard reset is finished, a write to the RTL8019AS RSTPORT initiates a soft reset. To be safe,
we simply read the RTL8019AS’s Reset Port (RSTPORT) and then write the contents we
read from it back into it. The idea is to make sure the RTL8019AS has actually entered the
reset state successfully. If the RST bit of the ISR (Interrupt Status Register) is found to be
set, the RTL8019AS is in reset state and we can continue. If the RTL8019AS fails to enter
reset state, an endless loop in the Easy Ethernet W firmware is entered that informs the user
that the initialization process has failed via the Easy Ethernet W’s serial port.

The RST bit isn’t the only bit in the ISR we’ll be using in the Easy Ethernet W firmware.
So, I decided to show you the ISR layout in Figure 12.3.

ISR
7 6 5 4 3 2 1 0

RST RDC CNT OVW TXE RXE PTX PRX

Figure 12.3: This is a register we wish we could have used in the Easy Ethernet CS8900A firmware.

Chapter 12

312

//**
//* Initialize the RTL8019AS
//**

delay_ms(2); // delay at least 1.6mS
bit_clear(rst_pin); // disable reset line
read_creg(RSTPORT); // read contents of reset port
write_creg(RSTPORT,byte_read); // do soft reset
delay_ms(10); // give it time
read_creg(ISR); // check for good soft reset
if(!bit_test(byte_read,RST)){

while(1){
printf(“INIT FAILED\n\r”);
}

Code Snippet 12.8: This is a very critical piece of code. If things don’t go right here, we’re dead in
the water.

Code Snippet 12.8 uses the read_creg and write_creg functions to load and read the
contents of the RTL8019AS’s internal registers. The read_creg and write_creg functions are
going to become your friends, as they will be used extensively in the Easy Ethernet W
firmware. Remember that any terms that contain creg will be dealing with the RTL8019AS
Control Registers you see listed in Code Snippet 12.3.

The read_creg function in Code Snippet 12.9 is easy to follow. First, the fromcreg macro
puts the PIC16F877 I/O pins assigned as the databus in input mode. The register address is
then loaded onto the PIC16F877’s I/O pins doing the address bus duty. The RTL8019AS’s
IORB pin is activated and the RTL8019AS’s register data is presented to the PIC16F877’s
databus port I/O pins, which are currently configured as inputs. The IORB pin is deactivated,
and the byte that was just read from the RTL8019AS’s register is returned in the variable
byte_read.

//**
//* Read From NIC Control Register
//**
int8 read_creg(int regaddr)
{

fromcreg;
cregaddr = regaddr;
bit_clear(ior_pin);
byte_read = input_d();
bit_set(ior_pin);
return(byte_read);

}

Let’s Do It Again

313

//**
//* Write to NIC Control Register
//**
void write_creg(int regaddr, int regdata)
{

cregaddr = regaddr;
cregdata = regdata;
tocreg;
bit_clear(iow_pin);
delay_cycles(1);
bit_set(iow_pin);
fromcreg;

}

Code Snippet 12.9: It’s a bit easier to read and write the RTL8019AS registers versus the CS8900A-CQ
registers.

The write_creg function in Code Snippet 12.10 is very similar to the read_creg function.
Register data and address information is presented to the PIC16F877’s data and address
busses. The PIC16F877 databus pins are configured as outputs by the tocreg macro, and the
RTL8019AS’s IOWB pin is toggled. After the write operation is completed, the PIC16F877’s
databus I/O pins are reconfigured as inputs by the fromcreg macro. This is done to make sure
the databus is free for other devices that may need to use it. The delay_cycles(1) function is
native to the Custom Computer Services C Compiler and wastes time for 1 instruction cycle,
which is 200 nS with the Easy Ethernet W’s 20 MHz microcontroller clock.

//**
//* Initialize the RTL8019AS
//**

write_creg(CR,0x21); // stop the NIC, abort DMA, page 0
delay_ms(2); // make sure nothing is coming in or going out
write_creg(DCR,dcrval); // 0x58
write_creg(RBCR0,0x00);
write_creg(RBCR1,0x00);
write_creg(RCR,rcrval);
write_creg(TPSR,txstart);
write_creg(TCR,0x02);
write_creg(PSTART,rxstart);
write_creg(BNRY,rxstart);
write_creg(PSTOP,rxstop);
write_creg(CR,0x61);
write_creg(CURR,rxstart);
for(i=0;i<6;++i)

write_creg(PAR0+i, MYMAC[i]);

Chapter 12

314

show_regs();
while(1);

Code Snippet 12.10: The show_regs() function is a way to see inside the RTL8019AS’s Control
Register Bank.

We briefly mentioned the RTL8019AS’s CR register (Command Register) and I warned
you that you would become very familiar with it before we finish this project. Well, here it is
again in Figure 12.4 and we’re writing a value to it in the first line of Code Snippet 12.10.

CR
7 6 5 4 3 2 1 0

PS1 PS0 RD2 RD1 RD0 TXP STA STP

Figure 12.4: Curiously, the STA bit does nothing as far as starting and stopping the RTL8019AS.

The first line of code in Code Snippet 12.10 is writing a 0x21 to the RTL8019AS’s CR
register. Let’s break 0x21 down into binary (00100001) and superimpose the binary mask on
the CR register’s bits.

CR
7 6 5 4 3 2 1 0

PS1 PS0 RD2 RD1 RD0 TXP STA STP
0 0 1 0 0 0 0 1

Taking it from left to right, the PS1 and PS0 bits are called Page Select bits. The CR
register is common to all three NE2000-compatible Register Pages and the fourth test page
that contains data that is unique to the RTL8019AS. Don’t worry about the fourth Register
Page right now as it is manipulated from an external EEPROM and used for performing tests
on the RTL8019AS. Once you have a good grasp of the inner workings of the RTL8019AS
you can fiddle with the bits in that fourth page.

Getting back to the task at hand, PS1 and PS0 are both 0 (zero) and point to Register
Page 0. If you look once again at Code Snippet 12.4, you’ll see that I’ve assigned a page
number to some of the RTL8019AS register definitions. The Page Select bits in the CR
register determine which RTL8019AS Register Page is addressed, and the definitions in Code
Snippet 12.3 are used by the read_creg and write_creg functions to select the register inside
the Register Page that is to be addressed.

RD2, RD1 and RD0 are the Remote DMA Command bits. The ‘1’ in the RD2 position
commands the RTL8019AS to abort any DMA activity that may be in progress. This effec-
tively stops packet generation and reception. We want the RTL8019AS to be focused on the
initialization process and not out there trying to receive or transmit packets on the network.

The TXP bit must be set to initiate a transmission. We’re trying to reset the RTL8019AS
and so far we’ve issued an abort DMA command, which resets this bit internally. We don’t
want this bit to be set right now as we’re not in any position to begin any type of transmission
process.

Let’s Do It Again

315

STA is short for START. As far as the RTL8019AS is concerned, this bit actually does
nothing at all. The logic level of the STOP bit controls starting and stopping the
RTL8019AS.

STP is not the super slick lubricant you buy at auto stores. STP is short for STOP. When
active, this bit takes the RTL8019AS offline. No packets will be received or transmitted by
the RTL8019AS. If any reception or transmission is in progress, it will continue to comple-
tion before the reset state is entered.

To exit the stopped state, the STP bit must be cleared and the STA bit must be set. To
perform a software reset, the STP bit should be set high. Notice that we did not explicitly
issue a command to set the STP bit when we performed our soft reset earlier. That’s because
the STP defaults to a high state upon RTL8019AS power up. After executing commands to
put the RTL8019AS into reset mode, we checked the validity of our software reset by check-
ing the RST bit in the ISR register. Since it is possible for an operation to be in progress
while we’re issuing a STOP command, we wait an ample amount of time (delay_ms(2)) to
make sure that nothing is coming into or going out of the RTL8019AS.

After killing some time to ensure tranquility between the RTL8019AS and any attached
network, we begin a series of write_creg instructions that are called out in this sequence by
the National Semiconductor® NE2000 software documentation. The first,
write_creg(DCR,dcrval), loads the DCR (Data Configuration Register) register with 0x58.

DCR
7 6 5 4 3 2 1 0
- FT1 FT0 ARM LS LAS BOS WTS
0 1 0 1 1 0 0 0

Figure 12.5: I’ve superimposed the 0x58 onto the description of the DCR’s bits.

Bit 7 is not used, and we begin our discussion of the DCR with the FIFO Threshold
Select bits. FT1 and FT0 determine how many bytes are in the RTL8019AS’s FIFO before a
call to the Local DMA engine is made. We are set for 8 bytes. The FIFO receive threshold
ranges from 2 bytes to 12 bytes depending on the bit pattern set in FT1 and FT0.

The ARM bit is set and that allows us to use the Send Packet command and auto-initial-
ize the Remote DMA to extract a frame from the Buffer Ring. Don’t get confused by using
the term “send” in a receive operation. Remember the RTL8019AS’s Remote DMA channel
moves data into and out of the RTL8019AS buffer queue and literally sends the data to an
external microcontroller’s memory.

I’m going to get ahead of us a bit with this explanation of the significance of the ARM
bit, but we’ll cover the now “unknown” registers and concepts later and all of this will make
sense then. To help the words, I’ve put up Figure 12.6 for you.

Chapter 12

316

By setting the ARM (Auto-Initialize Remote) bit in the DCR, the RTL8019AS’s Remote
DMA channel can be automatically initialized to transfer a single frame from the Receive
Buffer Ring. The PIC16F877 begins this automated transfer by issuing a Send Packet com-
mand (writing a 0x1A to the CR Register). The RTL8019AS’s DMA engine will be
initialized to the value contained in the Boundary Pointer Register. Remember that the
boundaries fall on 256 byte intervals 0x0100). Therefore, the lower byte of the Remote Start
Address will always be 0x00. The Remote Byte Count Register pair (RBCR0, RBCR1) is
initialized to the value held in the Receive Byte Count fields found in the frame’s 4-byte
Buffer Header, which are the same bytes inside the Easy Ethernet W’s pageheader array
(enetpacketLenL and enetpacketLenH). After the data is transferred, the RTL8019AS Bound-
ary Pointer is advanced to allow the RTL8019AS buffers to be used for new incoming
frames. The Remote Read will terminate when the Byte Count reaches zero. When the
current Remote Read operation is complete, the RTL8019AS’s Remote DMA engine is then
prepared to read the next frame from the RTL8019AS’s Receive Buffer Ring. If the
RTL8019AS’s DMA pointer crosses the Page Stop Register, it is reset to the Page Start
Address. This allows the RTL8019AS’s Remote DMA engine to remove frames that have
wrapped around to the top of the RTL8019AS’s Receive Buffer Ring.

Figure 12.6: This drawing really helped me when I was first introduced to the RTL8019AS. Note
again the loose use of the term “packet.”

Let’s Do It Again

317

Getting back to our look at the bits we’ve loaded into the DCR, the LS (Loopback Select)
bit is set at this point to allow the RTL8019AS to operate in normal mode. The LAS bit
selects 32-bit or 16-bit dual DMA mode. The RTL8019AS requires that the LAS (Long
Address Select) bit be cleared as the RTL8019AS only supports dual 16-bit DMA mode. The
DCR is also used to program the RTL8019AS to operate in 8-bit or 16-bit DMA mode. The
Easy Ethernet W needs to run in 8-bit DMA mode and this is accomplished by clearing the
WTS (Word Transfer Select) bit in the DCR.

The DCR must be initialized prior to loading the Remote Byte Count Registers. Now that
the DCR work is finished, we can safely clear both the RBCR0 and RBCR1 registers.

The RCR (Receiver Configuration Register) determines what packets to accept and
whether or not to store them in the RTL8019AS’s receive queue. We know from our
CS8900A-CQ experience that we want to receive broadcast packets, and we need to make
sure any packets other than broadcast packets handled by our RTL8019AS have the Easy
Ethernet W’s hardware address embedded within them. Our Easy Ethernet W code writes the
value assigned to rcrval (0x04) to the RCR, and I’ve added the bit mask to the RCR graphic
in Figure 12.7.

RCR
7 6 5 4 3 2 1 0
- - MON PRO AM AB AR SEP
0 0 0 0 0 1 0 0

Figure 12.7: You can do some really cool things by bending the rules with bits in this register.

To effect our desired receiver configuration, we must set the AB (Accept Broadcast) bit
and clear the PRO (Promiscuous Physical) bit. Putting the RTL8019AS into promiscuous
mode allows any packet to be received regardless of its address. You already know that a
Broadcast Packet is addressed in the Ethernet DLC area as FF FF FF FF FF FF.

To reject packets with errors, the SEP (Save Errored Packets) bit is cleared. We aren’t
interested in dealing with runt packets. So, the AR (Accept Runt Packets) bit is cleared to
reject packets that are less than 64 bytes in length. The RTL8019AS on the Easy Ethernet W
will not be using any multicast addressing schemes. So, the AM (Accept Multicast) bit is also
cleared. And, we want to buffer any valid incoming frames. To enable frame buffering, the
MON (Monitor Mode) bit is cleared by the Easy Ethernet W firmware.

The next line of code in Code Snippet 12.10 loads the predefined txstart value (0x40) into
the TPSR (Transmit Page Start Register) shown in Figure 12.8.

TPSR
7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8
0 1 0 0 0 0 0 0

Figure 12.8: This 0x40 translates to a Transmit Page Start address of 0x4000.

Chapter 12

318

The RTL8019AS datasheet tells us point blank to not exceed 0x60 as a PSTOP register
value in 8-bit mode. That means our Buffer Ring memory area cannot go beyond physical
address of 0x6000. The RTL8019AS has 8 Kb of on-chip memory area. In days before the
RTL8019AS, that 8 Kb of memory was not on-chip, and the Buffer Ring addresses were
dictated by the hardware. I took a look at the National Semiconductor NE2000 code and
concluded that an effort was made to standardize the Buffer Ring addressing. I’ve included
all of the original National Semiconductor documentation on the CD-ROM for you. With that
little tidbit of history, let’s work out our Buffer Ring strategy with the numbers we have been
given.

We already have determined that PSTOP will be set for 0x60. Remember that this is the
upper byte of a 16-bit address that always falls on a 256-byte boundary (0x0100). If you look
ahead in Code Snippet 12.8, you’ll see the PSTOP register is loaded with the rxstop value
(0x60). Now that we have the top of our Buffer Ring, let’s compute backwards towards the
bottom. We know that we have 8 Kb of Buffer Ring area available on-chip with the
RTL8019AS. If the maximum Buffer Ring memory address is 0x6000, and we subtract 8 Kb
(0x2000) from the maximum address, that will give us our bottom Buffer Ring address,
which is 0x4000 or PSTART. In the tradition of NE2000, we’ll allocate the transmit buffer
first. Since we only use the upper byte to designate the address, that puts 0x40 (the pre-
defined value of txstart) in the TPSR.

While we’re working on the transmit side of the RTL8019AS house, we need to make
sure that the RTL8019AS’s CRC checking and generation processes are enabled. The CRC
functions are enabled in normal mode by clearing the CRC bit in the TCR (Transmit Con-
figuration Register).

TCR
7 6 5 4 3 2 1 0
- - - OFST ATD LB1 LB0 CRC
0 0 0 0 0 0 1 0

Figure 12.9: The loopback disables the RTL8019AS’s Local DMA.

The RTL8019AS must be put into loopback mode before we set the remaining Buffer
Ring pointers. Setting the LB0 bit in the TCR is Figure 12.9 puts the RTL8019AS in internal
loopback mode. Now that we’ve stopped the RTL8019AS’s Local DMA, we can set the
PSTART, PSTOP and BNRY pointers.

Only one transmit frame will be present at any time in the RTL8019AS transmit buffer.
Therefore, we only need enough space for one complete frame or 1518 bytes. 1518 bytes
works out to 0x05EE, which doesn’t fall on a 256-byte boundary. We can’t round down. So,
the next 256-byte boundary following 0x05EE is 0x0600, which will be the beginning
address of the RTL8019AS’s receive buffer relative to the beginning of the Buffer Ring.
Doing a bit more memory map math gives us the starting address of the receive buffer:

TPSR (0x4000) + size of one Ethernet frame (0x0600) = Receive buffer starting address (0x4600)

Let’s Do It Again

319

Looking back at Figure 12.4, we know that the PSTART and BNRY pointers should be
set to point at address 0x4600. So, we load the PSTART and BNRY registers with 0x46,
which just happens to be the predefined value of rxstart in the Easy Ethernet W source code.
We must also initialize the CURR pointer, which lies in Page 1. Writing 0x61 to the CR flips
us into Page 1 where we write the rxstart value to the CURR register.

Remember the flip-flop we had to do in our Easy Ethernet CS8900A code to write the
MAC address into the CS8900A-CQ? Well, the concept is the same for the RTL8019AS, but
the actual code is nothing more than a for loop pushing the contents of the MYMAC[] array
into the RTL8019AS’s Physical Address Registers (PAR0:PAR5), which also happen to
reside in Page 1.

We are just a C statement away from activating our Easy Ethernet W and putting it
online. However, some of you see one C statement in particular that would prevent the
RTL8019AS activation and, for that matter, any more code execution; while(1). For those of
you that may be C challenged, the while(1) statement is an endless loop statement.

I’ve halted the program execution here to show you a tool that is included in the Easy
Ethernet W’s firmware called show_regs(). We can’t see into the RTL8019AS’s Control
Registers with the MPLAB ICE 2000 or the Sniffer. So, I wrote a simple function to dump
the RTL8019AS Control Registers to a HyperTerminal window using the Easy Ethernet W’s
serial port. The show_regs code suite in Code Snippet 12.11 is quite simple.

//**
//* Converts Binary to Displayable Hex Characters
//* ie.. 0x00 in gives 0x30 and 0x30 out
//**
void bin2hex(binchar)
{

high_nibble = (binchar & 0xF0) / 16;
if(high_nibble > 0x09)

high_char = high_nibble + 0x37;
else

high_char = high_nibble + 0x30;

low_nibble = (binchar & 0x0F);
if(low_nibble > 0x09)

low_char = low_nibble + 0x37;
else

low_char = low_nibble + 0x30;
}
//**
//* Read/Write for show_regs
//* This routine reads a NIC register and dumps it out to the
//* serial port as ASCII.
//**

Chapter 12

320

//
void readwrite()
{

read_creg(i);
bin2hex(byte_read);
printf(“\t%c%c”,high_char,low_char);

}
//**
//* Displays Control Registers in Pages 0, 1, 2 and 3
//* This routine dumps all of the NIC internal registers
//* to the serial port as ASCII characters.
//**
void show_regs()
{

write_creg(CR,0x21);
cls();
printf(“\r\n”);
printf(“ Realtek 8019AS Register Dump\n\n\r”);
printf(“REG\tPage0\tPage1\tPage2\tPage3\n\r”);

for(i=0;i<16;++i)
{

bin2hex((int8) i);
printf(“%c%c”,high_char,low_char);
write_creg(CR,0x21);
readwrite();
write_creg(CR,0x61);
readwrite();
write_creg(CR,0xA1);
readwrite();
write_creg(CR,0xE1);
readwrite();
printf(“\r\n”);

}
}

Code Snippet 12.11: Nothing to it…the code reads each register in each page and converts the
binary register data to ASCII. The ASCII data is then displayed in an easy to read format.

Let’s follow the order of register writes in Code Snippet 12.10 and see if we can find
them in the show_regs screen capture in Figure 12.10.

Let’s Do It Again

321

The CR (REG 00) spans across all of the RTL8019AS register pages. Each entry under a
PageX header is the command given to go to that particular page. Let’s see if we can find the
DCR, which should contain a value of 0x58. The DCR is located at offset 0x0E in Page 0.
There’s 0x00 there. What gives? This is the quirk in the RTL8019AS Control Register set.
The DCR is write-only at offset 0x0E in Page 0. To read the contents of the DCR we must
travel to offset 0x0E in Page 2. The DCR value is read-only in Page 2. Found it? The value
still isn’t 0x58, is it?

Figure 12.10: It may be helpful to reference the Control Register offsets in Code
Snippet 12.3 while searching for the truth in this screen capture.

Chapter 12

322

DCR
7 6 5 4 3 2 1 0
- FT1 FT0 ARM LS LAS BOS WTS
0 1 0 1 1 0 0 0

Figure 12.11: This value was written to the DCR.

Figure 12.11 is a reminder of what was written into the DCR before we ran the
show_regs function. Bit 7 of the DCR is an unused bit. Let’s perform a simple logical AND
operation using the value we wrote to the DCR and the DCR value we read:

We wrote: 01011000 0x58

We read: 11011000 0xD8

Result: 01011000 0x58

Bit 7 of the DCR is a “don’t care” bit and if we ignore it, we find our original value is
stored in the DCR.

Now, let’s find the RBCR0 and RBCR1 and check their values against what we loaded in
the Easy Ethernet W source code. These registers should be located at offsets 0x0A and
0x0B, respectively, in Page 0. 0x50 and 0x70 don’t look like 0x00 to me. What you see in the
Control Register dump are the RTL8019AS ID bytes. The read-only data at offsets 0x0A and
0x0B are the RTL8019AS ID bytes. The RBCR0 and RBCR1 registers are write-only at
these same offsets and there are no read-only locations for these bytes.

Let’s try the RCR at offset 0x0C in Page 0. What you see in Figure 12.10 at offset 0x0C
in Page 0 is not the contents of the RCR. What you see is the contents of the RSR (Receive
Status Register). The contents of the RCR are found at the same offset in Page 2.

RCR
7 6 5 4 3 2 1 0
- - MON PRO AM AB AR SEP
0 0 0 0 0 1 0 0

Figure 12.12: Can you see why 0xC4 is the value we read from the RCR?

However, again the RCR value in Page 2 doesn’t match up with the 0x04 we originally
put into the RCR. Take a look at Figure 12.12 and apply our “don’t care” bits policy we used
to find the true value of the DCR. I’m sure you can resolve the 0x04 in the RCR value we
read.

You get the idea, I’m sure. The only read/write registers in Page 0 are the CR, BNRY and
ISR. We haven’t written to the ISR yet, but we can check the BNRY value. Take a look at
offset 0x03 in Page 0. The Easy Ethernet W source code in Code Snippet 12.10 reveals that
we wrote the value assigned to rxstart (0x46) to the BNRY, CURR and PSTART registers.
Scanning the Control Register screen capture for the value of 0x46 gives us:

Let’s Do It Again

323

BNRY offset 0x03 Page 0

CURR offset 0x07 Page 1

PSTART offset 0x04 Page 2

We know that the Easy Ethernet W MAC address (00EDTP) is loaded in the PAR0:PAR5
registers beginning at offset 0x01 in Page 1. The sequence is found in the Control Register
screen capture under the Page 1 header as 00 00 45 44 54 50.

The show_regs function is not intended to be a run-time tool as it will corrupt the data
and give false readings. However, the show_regs function coupled with a while(1) statement
is a great debugging tool. If you want to continue proving out values, consult the
RTL8019AS datasheet for a complete listing of the Control Registers. A copy of the latest
Realtek RTL8019AS datasheet is included on the CD-ROM.

As far as the RTL8019AS Control Registers are concerned, we’ve thus far established a
place for everything, and everything is in its place. Code Snippet 12.12 issues a START
command to the RTL8019AS, clears the ISR, enables the packet received OK and overflow
interrupts and takes the RTL8019AS out of loopback mode enabling the RTL8019AS’s Local
DMA channel. Houston, the Easy Ethernet W is online.

CR
7 6 5 4 3 2 1 0

PS1 PS0 RD2 RD1 RD0 TXP STA STP
0 0 1 0 0 0 1 0

ISR
7 6 5 4 3 2 1 0

RST RDC CNT OVW TXE RXE PTX PRX
1 1 1 1 1 1 1 1

IMR
7 6 5 4 3 2 1 0
- RDC CNT OVW TXE RXE PTX PRX
- 0 0 1 0 0 0 1

TCR
7 6 5 4 3 2 1 0
- - - OFST ATD LB1 LB0 CRC
0 0 0 0 0 0 0 0

Figure 12.13: The register values match up with the variables in Code Snippet 12.12.

Chapter 12

324

//**
//* Initialize the RTL8019AS
//**

write_creg(CR,0x22);
write_creg(ISR,0xFF);
write_creg(IMR,imrval);
write_creg(TCR,tcrval);

Code Snippet 12.12: This is akin to an automobile burnout. The accelerator is floored in the CR
statement (the START command is given), and the brake is lifted in the TCR statement (the RTL8019AS
Local DMA is activated).

Online with the Easy Ethernet W
It’s all downhill from here. With Ethernet fundamentals under our belt, the only things we’ll
have to tackle to bring the Easy Ethernet W to Internet-protocol life are the differences in the
way the RTL8019AS interfaces logically and physically. We still have to use the PIC16F877
microcontroller to sense the presence of a valid frame in the RTL8019AS Buffer Ring. The
PIC must also initiate the fetch go get the data from the RTL8019AS’s receive Buffer Ring to
the PIC16F877’s memory.

//**
//* Look for a frame in the receive buffer ring
//**

while(1)
{

//start the NIC
write_creg(CR,0x22);

//wait for a good frame
while(!bit_test(INT0));

//read the interrupt status register
read_creg(ISR);

//if the receive buffer has been overrun
if(bit_test(byte_read,OVW))

overrun();

//if the receive buffer holds a good frame
if(bit_test(byte_read,PRX))

get_frame();

Code Snippet 12.13: Once the get_frame function is called by the Easy Ethernet W’s PIC16F877
microcontroller, when compared to the Easy Ethernet CS8900A, there isn’t very much difference in
what happens next.

Let’s Do It Again

325

The presence of the while(1) tells us that this code runs forever, exiting only to retrieve or
send a packet. The Easy Ethernet W frame retrieval code begins by starting the RTL8019AS.
The RTL8019AS’s INT0 line is polled. When INT0 goes high, the PIC16F877 reads the
RTL8019AS’s ISR. If the overrun bit (OVW) of the ISR is set, the overrun function is called.

The overrun function is actually a sequence called out by the NE2000 documentation that
attempts to recover any latent frames that may be usable if the receive Buffer Ring blows up.
We won’t go into detail about the overrun function here. You can read about it in the NE2000
documentation I’ve included on the CD-ROM if you’re interested in the details.

If the ISR’s PRX (Packet Received OK) bit is set, the get_frame function is called. 0x1A
is written to the CR to issue the Send Packet command. Since we “ARM”ed the RTL8019AS
in the initialization procedure, the automatic Remote DMA functionality of the RTL8019AS
is put into action to retrieve a frame from the receive Buffer Ring.

//**
//* Receive Ring Buffer Header Layout
//* This is the 4-byte header that resides in front of the
//* data packet in the receive buffer.
//**
int8 pageheader[4];
#define enetpacketstatus 0x00
#define nextblock_ptr 0x01
#define enetpacketLenL 0x02
#define enetpacketLenH 0x03
//**
//* REALTEK CONTROL REGISTER OFFSETS
//* All offsets in Page 0 unless otherwise specified
//**
#define RDMAPORT 0X10
#define RSTPORT 0x18

int8 byte_read;
int16 i,rxlen;
//**
//* Get A Frame From the Ring
//* This routine removes an Ethernet frame from the receive buffer
//* ring.
//**
void get_frame()
{

//execute Send Packet command to retrieve the packet
write_creg(CR,0x1A);
for(i=0;i<4;++i)

{
read_creg(RDMAPORT);

Chapter 12

326

pageheader[i] = byte_read;
}

rxlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]);
for(i=0;i<rxlen;++i)

{
read_creg(RDMAPORT);
//dump any bytes that will overrun the receive buffer
if(i < 96)

packet[i] = byte_read;
}

while(!bit_test(byte_read,RDC))
read_creg(ISR);

write_creg(ISR,0xFF);

//process an ARP packet
if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06)
{

if(packet[arp_hwtype+1] == 0x01 &&
packet[arp_prtype] == 0x08 && packet[arp_prtype+1] == 0x00 &&
packet[arp_hwlen] == 0x06 && packet[arp_prlen] == 0x04 &&
packet[arp_op+1] == 0x01 &&
MYIP[0] == packet[arp_tipaddr] &&
MYIP[1] == packet[arp_tipaddr+1] &&
MYIP[2] == packet[arp_tipaddr+2] &&
MYIP[3] == packet[arp_tipaddr+3])
arp();

}
//process an IP packet
else if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x00

&& packet[ip_destaddr] == MYIP[0]
&& packet[ip_destaddr+1] == MYIP[1]
&& packet[ip_destaddr+2] == MYIP[2]
&& packet[ip_destaddr+3] == MYIP[3])

{
if(packet[ip_proto] == PROT_ICMP)

icmp();
else if(packet[ip_proto] == PROT_UDP)

udp();
else if(packet[ip_proto] == PROT_TCP)

tcp();
}

}

Code Snippet 12.14: As soon as the code starts to search for the frame type, the Easy Ethernet W’s
code looks exactly like the Easy Ethernet CS8900A’s code.

Let’s Do It Again

327

Immediately following the Send Packet command, the Easy Ethernet W’s code reads the
4-byte buffer header information into the pageheader array. The length of the buffered frame
is computed and the bytes are read in from the RTL8019AS’s Remote DMA port. The
Remote DMA port is eight bytes long and begins at offset 0x10. Once all of the bytes have
been transferred from the RTL8019AS receive Buffer Ring to the PIC16F877’s packet array,
the Easy Ethernet W waits for the Remote DMA done bit (RDC) in the ISR to signal the end
of the Remote DMA operation. After verifying the end of the Remote DMA operation,
writing 0xFF to the ISR clears the ISR register.

//**
//* Look for a frame in the receive buffer ring
//**

//make sure the receive buffer ring is empty
//if BNRY = CURR, the buffer is empty

read_creg(BNRY);
data_L = byte_read;
write_creg(CR,0x62);
read_creg(CURR);
data_H = byte_read;
write_creg(CR,0x22);

//buffer is not empty.. get next frame
if(data_L != data_H)

get_frame();

//reset the interrupt bits
write_creg(ISR,0xFF);

Code Snippet 12.15: It’s a simple heads-and-tails game to determine if there are any more frames
to be retrieved from the RTL8019AS’s receive Buffer Ring.

The RTL8019AS receive Buffer Ring can hold more than one frame. So, when the code
returns to the main function, the BNRY and CURR pointers are examined. If the BNRY and
CURR pointers are not the same value, the receive Buffer Ring contains another frame that
needs to be transferred and the get_frame function is called again. If the BNRY and CURR
pointers match, the RTL8019AS receive Buffer Ring is empty. The ISR is cleared, and the
code begins again as shown in Code Snippet 12.15.

Sending a Frame using the Easy Ethernet W
All of the logic that applied to filling arrays and building frames with the Easy Ethernet W is
identical to what we wrote into the Easy Ethernet CS8900A project. The only significant
differences in the two sets of code are the CS8900A-CQ and RTL8019AS transmit and
receive processes. You’ve just seen how a frame is received and transferred using the
RTL8019AS Remote DMA engine. Now, let’s examine the code and procedures needed to
transmit a packet using the RTL8019AS.

Chapter 12

328

//**
//* Echo Packet Function
//* This routine does not modify the incoming packet size and
//* thus echoes the original packet structure.
//**
void echo_packet()
{

write_creg(CR,0x22);
write_creg(TPSR,txstart);
write_creg(RSAR0,0x00);
write_creg(RSAR1,0x40);
write_creg(ISR,0xFF);
write_creg(RBCR0,pageheader[enetpacketLenL] - 4);
write_creg(RBCR1,pageheader[enetpacketLenH]);
write_creg(CR,0x12);

txlen = make16(pageheader[enetpacketLenH],pageheader[enetpacketLenL]) - 4;
for(i=0;i<txlen;++i)

write_creg(RDMAPORT,packet[enetpacketDest0+i]);

byte_read = 0;
while(!bit_test(byte_read,RDC))

read_creg(ISR);

write_creg(TBCR0,pageheader[enetpacketLenL] - 4);
write_creg(TBCR1,pageheader[enetpacketLenH]);
write_creg(CR,0x24);

}

Code Snippet 12.16: The basic rules of packet transmission for the RTL8019AS are found in this code.

After making sure the RTL8019AS is started (loading CR with 0x22), the TPSR must be
initialized. This sets the beginning of the transmit buffer area. Since we will be transferring
data from the Easy Ethernet W’s PIC16F877 microcontroller to the RTL8019AS’s transmit
buffer area, we must set up the Remote DMA start address registers, RSAR0 and RSAR1,
with the address of the transmit buffer and tell the Remote DMA engine how many bytes to
transfer in the RBCR0 and RBCR1 register pair. In the meantime, we’ve also cleared the ISR
to make sure we can detect the end of the Remote DMA operation.

Now that the RTL8019AS transmit buffer is defined and the Remote DMA knows how
many bytes to move and where to put them, a Remote Read command (writing 0x12 to the
CR) is issued. The RTL8019AS’s Remote DMA port is bidirectional. So, using the same
Remote DMA port we used to transfer bytes from the RTL8019AS to the PIC16F877, we write
the number of bytes loaded into the RBCR0 and RBCR1 register set to the RTL8019AS’s
transmit buffer. Remember that the first 4 bytes in the RTL8019AS frame buffer are the
pageheader bytes and must not be counted in our transfer length calculations.

Let’s Do It Again

329

When the PIC16F877 has transferred all of the required bytes, the ISR’s RDC bit is
interrogated to verify the completion of the Remote DMA operation. Even though we’ve
specified the TPSR and loaded the RTL8019AS’s transmit buffer, we haven’t sent anything
from the RTL8019AS’s MAC engine yet. So, we must load the TBCR0 and TBCR1 (Trans-
mit Byte Count Registers) and issue a Remote Write with the TXP bit set to the CR (0x24).
The command (0x24) kicks off the Local DMA and bytes are transferred from the
RTL8019AS’s transmit buffer area to the FIFO through the MAC engine and out to the
network. If you check the Easy Ethernet W’s TCP/IP code in Code Snippet 12.17, you’ll see
that the transmit operation is logically identical to the echo_packet function used by UDP and
ICMP.

//**
//* Send TCP Packet
//* This routine assembles and sends a complete TCP/IP packet.
//* 40 bytes of IP and TCP header data is assumed.
//**
void send_tcp_packet()
{

//count IP and TCP header bytes.. Total = 40 bytes
ip_packet_len = 40 + tcpdatalen_out;
packet[ip_pktlen] = make8(ip_packet_len,1);
packet[ip_pktlen+1] = make8(ip_packet_len,0);
setipaddrs();

data_L = packet[TCP_srcport];
packet[TCP_srcport] = packet[TCP_destport];
packet[TCP_destport] = data_L;
data_L = packet[TCP_srcport+1];
packet[TCP_srcport+1] = packet[TCP_destport+1];
packet[TCP_destport+1] = data_L;

assemble_ack();
set_packet32(TCP_seqnum,my_seqnum);

packet[TCP_hdrflags+1] = 0x00;
ACK_OUT;
if(finflag)
{

FIN_OUT;
finflag = 0;

}

packet[TCP_cksum] = 0x00;
packet[TCP_cksum+1] = 0x00;

Chapter 12

330

hdr_chksum =0;
hdrlen = 0x08;
addr = &packet[ip_srcaddr];
cksum();
hdr_chksum = hdr_chksum + packet[ip_proto];
tcplen = ip_packet_len - ((packet[ip_vers_len] & 0x0F) * 4);
hdr_chksum = hdr_chksum + tcplen;
hdrlen = tcplen;
addr = &packet[TCP_srcport];
cksum();
chksum16= ~(hdr_chksum + ((hdr_chksum & 0xFFFF0000) >> 16));
packet[TCP_cksum] = make8(chksum16,1);
packet[TCP_cksum+1] = make8(chksum16,0);

txlen = ip_packet_len + 14;
if(txlen < 60)

txlen = 60;
data_L = make8(txlen,0);
data_H = make8(txlen,1);
write_creg(CR,0x22);
write_creg(TPSR,txstart);
write_creg(RSAR0,0x00);
write_creg(RSAR1,0x40);
write_creg(ISR,0xFF);
write_creg(RBCR0,data_L);
write_creg(RBCR1,data_H);
write_creg(CR,0x12);

for(i=0;i<txlen;++i)
write_creg(RDMAPORT,packet[enetpacketDest0+i]);

byte_read = 0;
while(!bit_test(byte_read,RDC))

read_creg(ISR);

write_creg(TBCR0,data_L);
write_creg(TBCR1,data_H);
write_creg(CR,0x24);

}

Code Snippet 12.17: Note the txlen code that ensures the outgoing packet is at least 60 bytes in
length. This same piece of txlen code exists in the Easy Ethernet CS8900A firmware but is not really
needed there, as the CS8900A-CQ can be instructed to automatically pad a potentially runt packet.

Let’s Do It Again

331

We can stick a fork in our discussion of the RTL8019AS. It’s done. There’s no need for
any additional RTL8019AS Sniffer shots, as they would look exactly like their CS8900A-CQ
counterparts. The inside-the-microcontroller views of the PIC16F877’s packet array provided
by the MPLAB ICE 2000 would also be identical for both the RTL8019AS and the CS8900A-CQ,
as the data in the Ethernet frames is identical between the CS8900A-CQ and the RTL8019AS.
The CS8900A-CQ and RTL8019AS TCP/IP and UDP applications perform identically, and
the Test Panel application you saw in the CS8900A-CQ section of this book will work with
the Easy Ethernet W in the exact same manner. As for the rest of the code, if it is bound to
the PIC16F877 (checksum calculation, swapping IP and MAC addresses in the packet array,
printing the Telnet banner, serial port operations, and so forth), it is identical code in both the
Easy Ethernet CS8900A and Easy Ethernet W firmware.

You now have the skills necessary to implement two differing Ethernet IC technologies
(RTL8019AS and CS8900A-CQ) over two types of Microchip microcontrollers (PIC16F877
and PIC18F452). Before we move on, there are a couple of tools I haven’t mentioned that
may help you with the development of your personal and unique Ethernet project.

Tools for Work and Play
I used the Sniffer and the MPLAB ICE 2000 extensively in my text to give you an in-depth
look at how Ethernet is effected using small 8-bit microcontrollers. Before I had the luxury of
owning a Sniffer or MPLAB ICE 2000, I used my programming powers to look into my
work. You’ve already been introduced to the show_regs function. So, let me show you a
function I wrote to mimic the MPLAB ICE 2000’s ability to see into the PIC16F877’s
memory.

//**
//* show_packet
//* This routine is for diagnostic purposes and displays
//* the Packet Buffer memory in the PIC.
//**
void show_packet()
{

cls();
printf(“\r\n”);
data_L = 0x00;
for(i=0;i<96;++i)
{

bin2hex(packet[i]);
printf(“ %c%c”,high_char,low_char);
if(++data_L == 0x10)

Chapter 12

332

{
data_L = 0x00;
printf(“\r\n”);

}
}

}

Code Snippet 12.18: This tool actually shows you the frame that is currently residing in the
PIC16F877’s packet array.

It is advantageous to be able to look at the contents of a frame in its raw form in the
microcontroller memory. That’s what the code in Code Snippet 12.18 does. Figure 12.14 is
the fruit produced by Code Snippet 12.18. Let’s see just how good you’ve gotten.

Figure 12.14: It doesn’t have a fancy GUI interface, but it gives you what you want;
a peek at the frame in the PIC16F877’s memory.

Sure looks like a broadcast message to me. Those six bytes of FF in the DA should be
very familiar to you. It also looks like I’m using that same personal computer to generate this
frame. Yep, 00 E0 29 87 F5 5B matches up with the SA in Hex Dump 8.1. The next two
bytes (08 06) tell us this is an ARP. Since the SA is a broadcast address you can bet this is an
ARP request. Let’s see if the Easy Ethernet W’s MAC address is in there anywhere (00 00 45
44 54 50). Nope. Then that means it is an ARP request, and if we pegged the SA correctly the
IP address should be 192.168.0.150 or C0 A8 00 01. It is. That’s how I used to do it! After a
while you get the feel for the locations of the fields, and by examining just a few fields you
know what type of frame you’re looking at.

Let’s Do It Again

333

There were times I needed to see the buffer area header that was captured into the
PIC16F877’s pageheader array. I wrote a small piece of code called aptly, dump_header, that
you can see in Code Snippet 12.19.

//**
//* Dump Receive Ring Buffer Header
//* This routine dumps the 4-byte receive buffer ring header
//* to the serial port as ASCII characters.
//**
void dump_header()
{

cls();
for(i=0;i<4;++i)

{
bin2hex(pageheader[i]);
printf(“\r\n%c%c”,high_char,low_char);

}
}

Code Snippet 12.19: The 4 bytes of the buffer header for the Easy Ethernet W are shown in Figure
12.15 and were generated with the hex dump shown in Figure 12.14. The first byte of the four is
the Receive Status, and I’ve laid out the first byte’s bit pattern in Figure 12.16. Let’s figure out what
these 4 bytes are telling us.

Figure 12.15: When you’re in the debugging ditch, there’s lots to be gained by
knowing what’s in these four little bytes.

Chapter 12

334

The first byte is equivalent to the RSR (Receive Status Register). Looks like we have the
PHY bit and the PRX bits set. The PHY bit being set tells us that the received packet con-
tains a broadcast address. I know this to be true, as I generated the buffer header with a PING
that generated an ARP request. The PRX bit says that the packet was received with no errors.

RSR
7 6 5 4 3 2 1 0

DFR DIS PHY MPA - FAE CRC PRX
0 0 1 0 0 0 0 1

Fig 12.16: Interpreting this register can help dig you out of that debugging ditch.

The second byte of the buffer header points to the next buffer page. Remember that each
buffer page is 256 bytes long and in hex that’s 0x0100. Also, remember that each page falls
on a 256-byte boundary and that we set the starting page at 0x46 when we initialized the
RTL8019AS. You’ll also remember that the 0x46 is the upper byte, and the lower byte must
always fall on a 256-byte boundary. So, that give us a receive buffer starting address of
0x4600. Adding one page to 0x4600 gives us our next page of 0x4700, which is what the
0x47 represents.

The third byte of the buffer header is the low byte of the 16-bit length of the frame that is
buffered. We must remember to subtract 4 from this value, as the 4 bytes of the buffer header
are included in the count. So, 0x40 is equivalent to 64 decimal and taking into account our 4
bytes of header information, the frame is 60 bytes long. Anything coming in that is less than
60 bytes in length would be a runt, and the RTL8019AS has been instructed not to accept
runt packets. The last of the buffer header bytes is the upper byte of the length value.

//**
//* Get A Frame From the Ring
//* This routine removes an Ethernet frame from the receive buffer
//* ring.
//**
void get_frame()
{

//execute Send Packet command to retrieve the packet
write_creg(CR,0x1A);
for(i=0;i<4;++i)

{
read_creg(RDMAPORT);
pageheader[i] = byte_read;

}
rxlen = make16(pageheader[enetpacketLenH],pageheader
[enetpacketLenL]);
for(i=0;i<rxlen;++i)

Let’s Do It Again

335

{
read_creg(RDMAPORT);
//dump any bytes that will overrun the receive buffer
if(i < 96)

packet[i] = byte_read;
}

while(!bit_test(byte_read,RDC))
read_creg(ISR);

write_creg(ISR,0xFF);

show_packet(); //write the PIC16F877’s packet array contents
 OR
dump_header(); // write the 4 receive buffer header bytes
while(1); // wait here forever

//process an ARP packet
if(packet[enetpacketType0] == 0x08 && packet[enetpacketType1] == 0x06)

Code Snippet 12.20: Always use the while(1) statement to freeze the contents of the reads done
by the show_packet or dump_header functions.

So, by using the software tools I’ve included in the Easy Ethernet W firmware, you can do
some pretty heavy debugging by simply inserting show_regs, show_packet or dump_header,
followed by a while(1) statement in the appropriate places in the Easy Ethernet W or Easy
Ethernet CS8900A firmware.

[This is a blank page.]

337

C H A P T E R 13
Putting the Easy Ethernet AVR Online

We’ve done wonderful things with Ethernet and Microchip’s PICs. Now it’s time for the
Atmel AVR to shine. We have to use a totally different tool set and a completely different
compiler package. However, we can still recycle 99% of everything we’ve done thus far,
including the hardware.

This is going to be easy. All we have to do to get an Easy Ethernet AVR running is to
replace the PIC16F877 or PIC18F452 on the Easy Ethernet W with an Atmel ATmega16 and
change some coding behind the macros. Our new AVR-based project’s schematic is shown in
Schematic 13.1, and the fully assembled Easy Ethernet AVR can be seen in Photo 13.1.

Photo 13.1: Port C is left open to allow the attachment of the AVR JTAG ICE. You
can also use Port C as a general purpose I/O.

Chapter 13

338

Most of the C statements will be identical to the Easy Ethernet W code. Some minor
differences will have to be addressed, but most of the coding we will do will simply be
adapting the logic to the new AVR hardware. For instance, the AVR uses a ‘1’ to denote an
I/O pin as an output. Conversely, the PIC uses a ‘1’ to represent an I/O input pin. Let’s take a
look at Code Snippet 13.1 for an example.

//**
//* Easy Ethernet W RTL8019AS I/O PORT DEFINITIONS
//**
#define cregaddr PORTB
#define cregdata PORTD
#define tocreg set_tris_D(0x00);
#define fromcreg set_tris_D(0xFF);

OUT7

RXIN

MISO

INT0

+5VDC

PC1

+5VDC

U3

74HCT573D

2
3
4
5
6
7
8
9

11
1

19
18
17
16
15
14
13
12

D1
D2
D3
D4
D5
D6
D7
D8

C
OC

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

JR2A

DB9 FEMALE

1
2

3
4

5
6

7
8

9

1
2

3
4

5
6

7
8

9

OUT5

OUT3

C15
.1uF

SD5

PC5

SA2

SD4

SD2

SD1

MOSI
J1

AVR ISP

1
3
5
7
9

2
4
6
8

10

OUT6

SCK

LE

C10

.1uF

+5VDC

SD5

C13

.1uF

SD3

PC0

+5VDC

SD6

SA3

LED3

PC4

R8
10K

SD2

RESET

JR3

1

2

RESET

RSTDRV

+5VDC

RXIN

OUT2

SD0

SD7

SP233ACT PIN 7 = +5VDC
SP233ACT PINS 6,9 =
GND

LE

C17

.1uF

TXOUT

RXD

IOWB

XTAL2
7.37MHz

C9

.1uF

SD1

SD7

PC3

SA4

RXD

VR1
LM340S-5.0

1 3

2

IN OUT

G
N

D

+5VDC

D1

1N5819

SCK

SA0

C11

18pF

EEDO

SD3

TXD

SD6

PC7

MOSI

TXD

+5VDC

R9
10K

74HCT573 PIN 20 = +5VDC
74HCT573 PIN 10 = GND

OUT0

TXOUT

+C14

47uF

+C16

47uF

+9VDC

U1

ATMEGA16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20 21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
RESET
VCC
GND
XTAL2
XTAL1
PD0
PD1
PD2
PD3
PD4
PD5
PD6 PD7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

AVCC
GND

AREF
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

PC2

IORB

U2

SP233ACT

2
1
3

20

12
15
16
11

10
17

5
18
4
19

T1IN
T2IN
R1OUT
R2OUT

C2+
C2+
C2-
C2-

V-
V-

T1OUT
T2OUT

R1IN
R2IN

OUT4

R6
100K

SD0

SD4

OUT1

SCL

MISO

C12

18pF

BYPASS CAPACITORS FOR
ATMEGA16, 74HCT573
AND SP233

SDA
SA1

R7

470

PC6

Schematic 13.1: The changes to accommodate the ATmega16 are minor. The clock speed is 7.37
MHz, and the AVR uses a 10-pin double-row header as the programming header instead of the RJ-
11 phone jack programming interface on the Easy Ethernet CS8900A and Easy Ethernet W.

Putting the Easy Ethernet AVR Online

339

//**
//* Easy Ethernet AVR RTL8019AS DATA/ADDRESS PIN DEFINITIONS
//**
#define rtladdr PORTB
#define rtldata PORTA
#define tortl DDRA = 0xFF
#define fromrtl DDRA = 0x00
//**
//* Initialize the RTL8019AS
//**
void init_RTL8019AS()
{

fromrtl; // PORTA data lines = input
PORTA = 0xFF;
DDRB = 0xFF;
rtladdr = 0x00; // clear address lines
DDRC = 0xFF;
DDRD = 0xFA; //setup IOW, IOR, EEPROM,RXD,TXD,CTS,LE

PORTD = 0x05; // enable pullups on input pins

Code Snippet 13.1: I’ve included some companion code from the Easy Ethernet W for comparison.

The Easy Ethernet AVR’s fromrtl definition is equivalent to the Easy Ethernet W’s
fromcreg definition. Note that 0xFF is written to the port data direction register to indicate
that the AVR I/O pins are output pins. That’s opposite for the PIC controlling the Easy
Ethernet W. Another difference found in the AVR is the ability to internally pull-up input pins
by writing a ‘1’ to the I/O pins that are designated as inputs.

Since most of the code changes occur behind the macros, let’s look at some changes that
must be made in Code Snippet 13.2.

//**
//* Easy Ethernet AVR PORT DEFINITIONS
//**
#define iorwport PORTD
//**
//* Easy Ethernet AVR RTL8019AS PIN DEFINITIONS
//**
#define iow_pin 0x80 //PORTD7 10000000
#define rst_pin 0x10 //PORTD4 00010000
//**
//* Easy Ethernet W Initialize the RTL8019AS
//**
bit_set(iow_pin)
bit_clear(rst_pin)

Chapter 13

340

//**
//* Easy Ethernet AVR Initialize the RTL8019AS
//**
#define set_iow_pin iorwport |= iow_pin
#define clr_rst_pin resetport &= ~rst_pin

Code Snippet 13.2: There are no AVR-specific built-in macros in the ImageCraft C Compiler package.

The bit_set and bit_clear functions used in the Easy Ethernet W are built into the Custom
Computer Services C Compiler. To get the same functionality for the AVR, we have to build
our own mini-macros. Let’s translate the first AVR definition.

To set the RTL8019AS’s IOWB pin, we code set_iow_pin. What really happens is:

iorwport = iorwport | iow_pin;

In effect, the AVR PORTD pin connected to the RTL8019AS’s IOWB pin is set by ORing
(|) PORTD with the iow_pin value (0x80). A look at Schematic 13.1 verifies the fact that the
most significant bit of the ATmega16’s PORTD is tied to the RTL8019AS IOWB pin.

To clear the reset pin (RSTDRV), we would code clr_rst_pin, which would equate to:

resetport = resetport & ~rst_pin;

The rst_pin value (0x10) is negated and becomes 0xEF. The negation flips the bit that
represents the AVR rst_pin I/O pin. The AVR pin assigned to the RTL8019AS’s RSTDRV
will have no choice but to go low as ANDing (&) any value with a zero will result in zero.
All of the set and clear functions used in the Easy Ethernet AVR firmware will follow the
models we have just examined. Code Snippet 13.3 is a look at all of the set/clear mini-
macros.

//**
//* RTL8019AS 9346 EEPROM PIN DEFINITIONS
//**
#define EEDO 0x20 //PORTD5 00100000
//**
//* Flags
//**
#define synflag 0x01 //00000001
#define finflag 0x02 //00000010
#define hexflag 0x04 //00000100
#define synflag_bit flags & synflag
#define finflag_bit flags & finflag
#define hexflag_bit flags & hexflag
//**
//* PORT and LCD DEFINITIONS
//**

Putting the Easy Ethernet AVR Online

341

#define databus PORTA
#define addrbus PORTB
#define eeprom PORTD
#define iorwport PORTD
#define cport PORTC
#define resetport PORTD
//**
//* RTL8019AS PIN DEFINITIONS
//**
#define ior_pin 0x40 //PORTD6 01000000
#define iow_pin 0x80 //PORTD7 10000000
#define rst_pin 0x10 //PORTD4 00010000
#define INT0_pin 0x04 //PORTD2 00000100
#define LE_pin 0x08 //PORTD3 00001000
//**
//* RTL8019AS PIN MACROS
//**
#define set_ior_pin iorwport |= ior_pin
#define clr_ior_pin iorwport &= ~ior_pin
#define set_iow_pin iorwport |= iow_pin
#define clr_iow_pin iorwport &= ~iow_pin
#define set_rst_pin resetport |= rst_pin
#define clr_rst_pin resetport &= ~rst_pin
#define set_le_pin iorwport |= LE_pin
#define clr_le_pin iorwport &= ~LE_pin

#define set_cport_0 cport |= 0x01
#define set_cport_1 cport |= 0x02
#define set_cport_2 cport |= 0x04
#define set_cport_3 cport |= 0x08
#define set_cport_4 cport |= 0x10
#define set_cport_5 cport |= 0x20
#define set_cport_6 cport |= 0x40
#define set_cport_7 cport |= 0x80

#define clr_cport_0 cport &= ~0x01
#define clr_cport_1 cport &= ~0x02
#define clr_cport_2 cport &= ~0x04
#define clr_cport_3 cport &= ~0x05
#define clr_cport_4 cport &= ~0x10
#define clr_cport_5 cport &= ~0x20
#define clr_cport_6 cport &= ~0x40
#define clr_cport_7 cport &= ~0x80

#define clr_EEDO eeprom &= ~EEDO
#define set_EEDO eeprom |= EEDO

Chapter 13

342

#define clr_synflag flags &= ~synflag
#define set_synflag flags |= synflag
#define clr_finflag flags &= ~finflag
#define set_finflag flags |= finflag

#define clr_hex flags &= ~hexflag
#define set_hex flags |= hexflag

Code Snippet 13.3: Using the AND NOT and OR logical operations, we can build an army of AVR bit
set and clear mini-macros.

Millisecond and microsecond timing is another Custom Computer Services C Compiler
built-in function that I took advantage of when using the PIC microcontroller for the Easy
Ethernet W and Easy Ethernet CS8900A. Since the Ethernet code spans across three
microcontrollers now, we must code some similar timing routines into our Easy Ethernet
AVR firmware.

Before actually writing the code, one must figure out the values to put into the timing
registers to get the desired timing intervals. Fortunately, a gentleman named Jack Tidwell
wrote a very useful program called AVRCalc. As you can see in Figure 13.1, all I had to do
was enter the AVR ATmega16 clock speed (7.37 MHz) and enter the timing interval I wanted
(1 ms). The AVRCalc program does the rest. All I had to do was fill in the blanks in Code
Snippet 13.4.

Figure 13.1: I use this tool quite often. It’s great for “what if” work while you’re developing code.

Putting the Easy Ethernet AVR Online

343

//**
//* Delay millisecond Function
//* This function uses Timer 1 and the A compare registers
//* to produce millisecond delays.
//*
//**
void delay_ms(unsigned int delay)
{

unsigned int i;
OCR1AH = 0x1C;
OCR1AL = 0xCC;
TCCR1B = 0x00; // Stop Timer1
for(i=0;i<delay;++i)
{
TCCR1B = 0x00; // Stop Timer1
TCNT1H = 0x00; // Clear Timer1
TCNT1L = 0x00;
TCCR1B = 0x09; // Start Timer1 with clk/1
while(!(TIFR & 0x10));
TIFR |= 0x10;
}

}
//**
//* Delay microsecond Function
//* This function uses Timer 1 and the A compare registers
//* to produce microsecond delays.
//*
//**
void delay_us(unsigned int delay)
{

unsigned int i;
OCR1AH = 0x00;
OCR1AL = 0x07;
TCCR1B = 0x00; // Stop Timer1
for(i=0;i<delay;++i)
{
TCCR1B = 0x00; // Stop Timer1
TCNT1H = 0x00; // Clear Timer1
TCNT1L = 0x00;
TCCR1B = 0x09; // Start Timer1 with clk/1
while(!(TIFR & 0x10));
TIFR |= 0x10;
}

}

Code Snippet 13.4: These hand-written AVR timing routines are very accurate. And, if I enter 1 µS
as my timing interval, the AVRCalc program spits out an OCR1AL value of 7. Thanks, Jack.

Chapter 13

344

The timing routines use a special compare mode that is driven by the AVR’s internal
timers and compare modules. When the count matches the value loaded in OCR1A, the
OCF1A bit is set in the TIFR (Timer/Counter Interrupt Flag Register). Since we’re not
vectoring to an interrupt when the match occurs, we must write a ‘1’ to the OCF1A bit to
clear it (TIFR |= 0x10).

AVRCalc is also instrumental in calculating AVR baud rate values. Code Snippet 13.5 is
the fill-in-the-blanks code I based on the baud rate calculation in Figure 13.1.

//**
//* BAUD RATE NUMBERS FOR UBRR
//**
#define b9600 47 // 7.3728MHz clock
#define b19200 23
#define b38400 11
#define b57600 7
//**
//* USART Function
//*
//**
void init_USART(unsigned int baud)
{

UBRR = baud;
UCSRB = 0x18;

}

Code Snippet 13.5: Once the baud rate value is derived, the rest is dead easy.

The Custom Computer Services C Compiler’s “make” came in handy when I had to
manipulate bytes within 32-bit and 16-bit numbers. If I wanted to be able to port the code
across AVRs and PICs, I’d have to write some “make” macros like the ones in Code Snippet
13.6.

//**
//* RTL8019AS PIN MACROS
//**
#define make8(var,offset) (var >> (offset * 8)) & 0xFF

#define make16(varhigh,varlow) ((varhigh & 0xFF)* 0x100) + (varlow & 0xFF)

#define make32(var1,var2,var3,var4) \
((unsigned long)var1<<24)+((unsigned long)var2<<16)+ \
((unsigned long)var3<<8)+((unsigned long)var4)

Code Snippet 13.6: Being able to mimic the Custom Computer Services C Compiler built-in functions
allows easier porting of the original PIC code to ImageCraft C for the AVR devices.

Putting the Easy Ethernet AVR Online

345

There’s nothing else I can show you with the Easy Ethernet AVR you haven’t already
seen in the Easy Ethernet CS8900A and Easy Ethernet W as far as how the code works.
When you compare the Easy Ethernet AVR source code with the Easy Ethernet W source
code, you’ll notice that there are lots of places where the source code for each respective
device reads exactly the same.

The reason you don’t see any Easy Ethernet AVR Sniffer shots is because the logic within
the Easy Ethernet AVR firmware, the Easy Ethernet CS8900A firmware and the Easy
Ethernet W firmware is identical. Thus, the Sniffer screen captures you’ve already been
introduced to apply to the Easy Ethernet AVR. In addition, the software tools I showed you
in the Easy Ethernet W section of this book also apply to the Easy Ethernet AVR.

There is one last screen capture I’d like to show you before we leave the Easy Ethernet
AVR.

Figure 13.2: This is a screen shot of AVR Studio in debug mode with an AVR JTAG ICE attached. The
source code you see is the firmware for the Easy Ethernet AVR. Can you see the ICMP frame in the
Memory window? How about the Telnet banner in the Memory2 window?

Chapter 13

346

This AVR Studio screenshot gives you an idea of just how powerful (and fun) coding for
the Atmel AVR can be. Figure 13.2 was made possible by AVR Studio and an AVR JTAG
ICE that is pinned into the JTAG interface of an Easy Ethernet AVR.

347

C H A P T E R 14
Finale

You now have access to four Ethernet devices that can be used on a standard Ethernet LAN or
on the Internet. The Packet Whacker is the most basic Ethernet package we have discussed
and is based on the RTL8019AS. There’s also a basic CS8900A-CQ configuration I would
like to show you before you close this book. It’s called NICki (Photo 14.1).

Photo 14.1: This represents the most basic CS8900A-CQ configuration.

NICki’s circuitry is identical to the CS8900A-CQ circuitry found on the Easy Ethernet
CS8900A. Like the Packet Whacker, NICki is designed to be interfaced to your favorite
microcontroller.

Chapter 14

348

Obtaining Easy Ethernet Devices
All of the Easy Ethernet devices can be purchased fully assembled or in kit form from EDTP
Electronics. You can make Internet contact with EDTP Electronics at http://www.edtp.com.
Once you are there, you can purchase the Easy Ethernet devices from the EDTP Electronics
online store. You’ll also find a wealth of information and source code relating to various
Ethernet and Internet devices on the EDTP Electronics web site.

349

About the Author

For the past 18 years, Fred has written technical columns and articles for engineering journals
and electronics magazines.

Fred is well versed in embedded system programming and his hardware expertise spans
the embedded hardware spectrum including 8748, 8051, PIC and Atmel microcontrollers.
Many of Fred’s columns have also dealt with applications using the services of X86-based
single board computers.

As an engineering consultant, Fred has implemented communications networks for the
space program and designed firmware and hardware for the medical, retail and public utility
industries. He currently designs and markets microcontroller-based hardware through his
Internet-based online store.

[This is a blank page.]

351

Index

Numbers

10Base-T, 126
74HCT573 latch, 102

A

ACK, 104
Address Filter Registers, 172
ARP, 139
ASCII, 65
ATmega16, 70
Atmel, ix, 70
AVR, x, xii
AVR JTAG ICE, xii, 73
AVR Studio, ix, 71
AVR USART, 76
AVRCalc, 342

B

BASIC, 37
BNRY, 299
Bob Metcalfe, 121
Buffer Configuration Register, 163
Buffer Event Register, 169
Bus Control Register, 165
Bus Interface Registers, 158
Bus Status Register, 171

C

CCS, xv
CKP (SCK release control), 104
CodeDesigner Lite, 37
CR, 314, 323
CR register, 296
CRC (FCS) bytes, 125

CREN, 59
CS8900A, 47
CS8900CQ – Cirrus Logic, 122
CURR, 299
Custom Computer Services C Compiler, 11

D

DA, 125, 127
datagram, 207
DCE, 2, 4
DCR, 315, 322
DLC Header (Data Link Control Header), 192
DS1488, 15
DS1489, 15
DTE, 2, 4

E

Easy Ethernet, 47
Easy Ethernet AVR, 70, 99, 337
Easy Ethernet CS8900A, 130
Easy Ethernet W, 293
EDTP Electronics, 348
EEDI (EEDataIn), 125
EEPROM, 125
encapsulation, 206
ENDEC, 126
EOF, 133
Ethernet, ix, 121
Ethernet Media Access Control, 126
Ethernet packet, 124

F

f675.h, 24
FIFO, 50
finflag, 292

Index

352

Flags field, 207
frame, 124

H

HyperTerminal, 20

I

I²C, ix, 81
I²C master, 86
I²C slave, 99
I²C START and STOP conditions, 86
ICCAVR, xii, 71
ICD, 136
ICMP, 139
ICMP headers, 244
ICSP, 52, 136
ImageCraft, 71
ImageCraft AVR C compiler, 71
ImageCraft IDE, 71
IMR, 323
In-Circuit Serial Programming, 52
Individual Address (IEEE address), 147
Initiate Transmit Registers, 172
Internet Test Panel, 223
Interrupt Status Queue, 167
IP, 139
IP address, 236
IP checksum, 233
IP header, 206
IP headers, 244
ISN (Initial Sequence Number), 257
isolation transformers, 132
ISR, 311, 323

J

JTAG ICE, 72

L

LANLED, 126
Line Control Register, 164, 173
LINKLED, 126

M

MAC, 126
MAC (Media Access Control), 146
magnetics, 132
Manchester ENDEC (Encoder/Decoder),

124, 126
MAX232CPE, 15
Microchip, ix
Microchip PICkit 1 FLASH Starter Kit, 16
MPLAB, ix
MPLAB ICD 2, xv, 50
MPLAB ICE 2000, 140
MPLAB IDE, 37
MSSP, 100
multiplexing, 221

N

NAK, 104
NE2000, 122
NICki, 347
NRZ, 128
NRZ (Non-Return to Zero), 128
NU1S114-XXX, 133

O

OUI, or Organizationally Unique Identifier, 146

P

Packet Whacker, 293
PacketPage, 125
Philips Semiconductor, 81
PIC, xii
PIC USART, 50
PIC12F675, xiv
PIC16F877, xiii, xiv, 130
PIC18F452, 47
PicBasic™ Pro Compiler, 17
PING, 182
PIR1, 67
POTS (Plain Old Telephone System), 121
preamble, 124
PRO MATE II, 136

Index

353

Protocol field, 208
PSTART, 299
PSTOP, 299

R

RCR, 317, 322
RCREG, 49
RCSTA REGISTER, 49
Receive Frame Location, 172
Receiver Configuration Register, 159
Receiver Control Register, 161
Receiver Event Register, 168, 180, 184
RS-232, ix
RSR, 334
RSR (Receive Status Register), 301
RTL8019AS – Realtek, 122

S

SA, 127
SCL, 81
SDA, 81
Self Control Register, 165
Self Status Register, 170
serial clock line, 81
serial data line, 81
serial port, 116
SFD, 124
Sipex SP232ACP, 19
Sniffer, ix, 192
socket, 221
SPBRG, 50
SSPADD, 102
SSPBUF, 102
SSPSTAT, 100
START condition, 104
Status and Control Registers, 172
SYN flag, 256
synflag, 263

T

TBCR0 (Transmit Byte Count 0), 297
TBCR1 (Transmit Byte Count 1), 297
TCP, 139
TCP checksum, 258

TCP/IP, 240
TCR, 318, 323
Telnet, 272
Tera Term Pro, 20
Time to Live value, 207
TPSR, 317
TPSR (Transmit Page Start Register), 297
Transmit Command Status Register, 163
Transmit Configuration Register, 162
Transmit Frame Location, 172
Transmitter Event Register, 168
TSR, 67
TWBR (Two-Wire Interface Bit Rate Register),

92
TWCR (Two-Wire Interface Control Register),

92
TWI, xii
TWI (Two-Wire Interface), 92
TWSR (Two-Wire Interface Status Register), 92
TX, 67
TXEN, 66
TXIF, 67
TXREG, 49
TXSTA REGISTER, 49
Type of Service field, 207

U

UCSRA, 76, 77
UCSRC, 77
UDP, 139
UDP checksum, 233
UDP headers, 244
UDRE, 77
USART, x
USART Control and Status Register A, 77
USART Control and Status Register B, 76
USART Control and Status Register C, 77
USCRB, 76

V

Visual Basic, 224

X

Xerox PARC, 121

[This is a blank page.]

ELSEVIER SCIENCE CD-ROM LICENSE AGREEMENT

PLEASE READ THE FOLLOWING AGREEMENT CAREFULLY BEFORE USING THIS CD-ROM PRODUCT. THIS CD-ROM
PRODUCT IS LICENSED UNDER THE TERMS CONTAINED IN THIS CD-ROM LICENSE AGREEMENT (“Agreement”). BY
USING THIS CD-ROM PRODUCT, YOU, AN INDIVIDUAL OR ENTITY INCLUDING EMPLOYEES, AGENTS AND
REPRESENTATIVES (“You” or “Your”), ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, THAT YOU
UNDERSTAND IT, AND THAT YOU AGREE TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT.
ELSEVIER SCIENCE INC. (“Elsevier Science”) EXPRESSLY DOES NOT AGREE TO LICENSE THIS CD-ROM PRODUCT TO
YOU UNLESS YOU ASSENT TO THIS AGREEMENT. IF YOU DO NOT AGREE WITH ANY OF THE FOLLOWING TERMS,
YOU MAY, WITHIN THIRTY (30) DAYS AFTER YOUR RECEIPT OF THIS CD-ROM PRODUCT RETURN THE UNUSED CD-
ROM PRODUCT AND ALL ACCOMPANYING DOCUMENTATION TO ELSEVIER SCIENCE FOR A FULL REFUND.

DEFINITIONS

As used in this Agreement, these terms shall have the following meanings:

“Proprietary Material” means the valuable and proprietary information content of this CD-ROM Product including all
indexes and graphic materials and software used to access, index, search and retrieve the information content from
this CD-ROM Product developed or licensed by Elsevier Science and/or its affiliates, suppliers and licensors.

“CD-ROM Product” means the copy of the Proprietary Material and any other material delivered on CD-ROM and any
other human-readable or machine-readable materials enclosed with this Agreement, including without limitation
documentation relating to the same.

OWNERSHIP

This CD-ROM Product has been supplied by and is proprietary to Elsevier Science and/or its affiliates, suppliers and
licensors. The copyright in the CD-ROM Product belongs to Elsevier Science and/or its affiliates, suppliers and licensors
and is protected by the national and state copyright, trademark, trade secret and other intellectual property laws of
the United States and international treaty provisions, including without limitation the Universal Copyright Convention
and the Berne Copyright Convention. You have no ownership rights in this CD-ROM Product. Except as expressly set
forth herein, no part of this CD-ROM Product, including without limitation the Proprietary Material, may be modified,
copied or distributed in hardcopy or machine-readable form without prior written consent from Elsevier Science. All
rights not expressly granted to You herein are expressly reserved. Any other use of this CD-ROM Product by any
person or entity is strictly prohibited and a violation of this Agreement.

SCOPE OF RIGHTS LICENSED (PERMITTED USES)

Elsevier Science is granting to You a limited, non-exclusive, non-transferable license to use this CD-ROM Product in
accordance with the terms of this Agreement. You may use or provide access to this CD-ROM Product on a single
computer or terminal physically located at Your premises and in a secure network or move this CD-ROM Product to
and use it on another single computer or terminal at the same location for personal use only, but under no circumstances
may You use or provide access to any part or parts of this CD-ROM Product on more than one computer or terminal
simultaneously.

You shall not (a) copy, download, or otherwise reproduce the CD-ROM Product in any medium, including, without
limitation, online transmissions, local area networks, wide area networks, intranets, extranets and the Internet, or in
any way, in whole or in part, except that You may print or download limited portions of the Proprietary Material that
are the results of discrete searches; (b) alter, modify, or adapt the CD-ROM Product, including but not limited to
decompiling, disassembling, reverse engineering, or creating derivative works, without the prior written approval of
Elsevier Science; (c) sell, license or otherwise distribute to third parties the CD-ROM Product or any part or parts
thereof; or (d) alter, remove, obscure or obstruct the display of any copyright, trademark or other proprietary notice
on or in the CD-ROM Product or on any printout or download of portions of the Proprietary Materials.

RESTRICTIONS ON TRANSFER

This License is personal to You, and neither Your rights hereunder nor the tangible embodiments of this CD-ROM
Product, including without limitation the Proprietary Material, may be sold, assigned, transferred or sub-licensed to
any other person, including without limitation by operation of law, without the prior written consent of Elsevier
Science. Any purported sale, assignment, transfer or sublicense without the prior written consent of Elsevier Science
will be void and will automatically terminate the License granted hereunder.

TERM

[This is a blank page.]

This Agreement will remain in effect until terminated pursuant to the terms of this Agreement. You may terminate
this Agreement at any time by removing from Your system and destroying the CD-ROM Product. Unauthorized
copying of the CD-ROM Product, including without limitation, the Proprietary Material and documentation, or otherwise
failing to comply with the terms and conditions of this Agreement shall result in automatic termination of this license
and will make available to Elsevier Science legal remedies. Upon termination of this Agreement, the license granted
herein will terminate and You must immediately destroy the CD-ROM Product and accompanying documentation. All
provisions relating to proprietary rights shall survive termination of this Agreement.

LIMITED WARRANTY AND LIMITATION OF LIABILITY

NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS REPRESENT OR WARRANT THAT THE INFORMATION CONTAINED IN
THE PROPRIETARY MATERIALS IS COMPLETE OR FREE FROM ERROR, AND NEITHER ASSUMES, AND BOTH EXPRESSLY
DISCLAIM, ANY LIABILITY TO ANY PERSON FOR ANY LOSS OR DAMAGE CAUSED BY ERRORS OR OMISSIONS IN THE
PROPRIETARY MATERIAL, WHETHER SUCH ERRORS OR OMISSIONS RESULT FROM NEGLIGENCE, ACCIDENT, OR ANY
OTHER CAUSE. IN ADDITION, NEITHER ELSEVIER SCIENCE NOR ITS LICENSORS MAKE ANY REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE PERFORMANCE OF YOUR NETWORK OR COMPUTER
SYSTEM WHEN USED IN CONJUNCTION WITH THE CD-ROM PRODUCT.

If this CD-ROM Product is defective, Elsevier Science will replace it at no charge if the defective CD-ROM Product is
returned to Elsevier Science within sixty (60) days (or the greatest period allowable by applicable law) from the date
of shipment.

Elsevier Science warrants that the software embodied in this CD-ROM Product will perform in substantial compliance
with the documentation supplied in this CD-ROM Product. If You report significant defect in performance in writing
to Elsevier Science, and Elsevier Science is not able to correct same within sixty (60) days after its receipt of Your
notification, You may return this CD-ROM Product, including all copies and documentation, to Elsevier Science and
Elsevier Science will refund Your money.

YOU UNDERSTAND THAT, EXCEPT FOR THE 60-DAY LIMITED WARRANTY RECITED ABOVE, ELSEVIER SCIENCE, ITS
AFFILIATES, LICENSORS, SUPPLIERS AND AGENTS, MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, WITH RESPECT
TO THE CD-ROM PRODUCT, INCLUDING, WITHOUT LIMITATION THE PROPRIETARY MATERIAL, AN SPECIFICALLY
DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

If the information provided on this CD-ROM contains medical or health sciences information, it is intended for
professional use within the medical field. Information about medical treatment or drug dosages is intended strictly for
professional use, and because of rapid advances in the medical sciences, independent verification f diagnosis and
drug dosages should be made.

IN NO EVENT WILL ELSEVIER SCIENCE, ITS AFFILIATES, LICENSORS, SUPPLIERS OR AGENTS, BE LIABLE TO YOU FOR
ANY DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES, ARISING OUT OF YOUR USE OR INABILITY TO USE THE CD-ROM PRODUCT REGARDLESS
OF WHETHER SUCH DAMAGES ARE FORESEEABLE OR WHETHER SUCH DAMAGES ARE DEEMED TO RESULT FROM
THE FAILURE OR INADEQUACY OF ANY EXCLUSIVE OR OTHER REMEDY.

U.S. GOVERNMENT RESTRICTED RIGHTS

The CD-ROM Product and documentation are provided with restricted rights. Use, duplication or disclosure by the
U.S. Government is subject to restrictions as set forth in subparagraphs (a) through (d) of the Commercial Computer
Restricted Rights clause at FAR 52.22719 or in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.2277013, or at 252.2117015, as applicable. Contractor/Manufacturer is Elsevier Science
Inc., 655 Avenue of the Americas, New York, NY 10010-5107 USA.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New York, USA. In any dispute arising out of this
Agreement, you and Elsevier Science each consent to the exclusive personal jurisdiction and venue in the state and
federal courts within New York County, New York, USA.

	Cover
	Title Page
	Copyright Page
	Contents (hyperlinked)
	Preface
	What’s on the CD-ROM?
	Chapter 1: The Essence of Microcontroller Networking—RS-232
	Some History
	RS-232 Standard Operating Procedure
	RS-232 Voltage Conversion Considerations

	Chapter 2: Implementing RS-232 with a Microcontroller
	Basic RS-232 Hardware
	Building a Simple Microcontroller RS-232 Transceiver

	Chapter 3: Writing RS-232 Microcontroller Routines in BASIC
	BASIC RS-232

	Chapter 4: Building Some RS-232 Communications Hardware
	A Few More BASIC RS-232 Instructions

	Chapter 5: Using Microcontroller USARTs
	Some Interrupt-Driven USART Code
	Applying What We Know about RS-232 to the Atmel AVR

	Chapter 6: I²C…The Other Serial Protocol
	Why use I²C?
	The I²C bus

	Chapter 7: Ethernet
	What is Ethernet?
	The CS8900A-CQ
	Easy Ethernet CS8900A Hardware
	The CS8900A-CQ Ethernet Engine
	Powering the CS8900A-CQ
	The CS8900A-CQ Ethernet Magnetics
	Designing in the Easy Ethernet CS8900A’s PIC16F877 Microcontroller
	The ICSP (In-Circuit Serial Programming) Interface
	Developing the Easy Ethernet CS8900A Firmware
	Setting up the PIC16F877 Microcontroller
	Carving up the PIC16F877’s Memory Resources
	The Easy Ethernet CS8900A Macros
	Defining the CS8900A-CQ PacketPage Register Set

	Chapter 8: Writing the CS8900A-CQ Firmware
	The First Step
	Reset the CS8900A-CQ
	Load the CS8900A-CQ Basic Parameters
	Load the CS8900A-CQ Individual Address Register Set
	Enable the CS8900A-CQ Transmitter and Receiver
	The Main Service Loop
	A Frame Under the Microscope
	The Art of ARP

	Chapter 9: PINGing the Easy Ethernet CS8900A
	Chapter 10: UDP and the Easy Ethernet CS8900A
	A UDP Internet Test Panel

	Chapter 11: TCP and the Easy Ethernet CS8900A
	The Physical Layer
	The Data Link Layer
	The Network Layer
	The Transport Layer
	The Application Layer
	Coding TCP/IP for the Easy Ethernet CS8900A

	Chapter 12: Let’s Do It Again
	Easy Ethernet Whacked??? What the…?
	The Realtek RTL8019AS
	The Easy Ethernet W Hardware
	The Easy Ethernet W Firmware
	Initializing the Realtek RTL8019AS
	Online with the Easy Ethernet W
	Sending a Frame using the Easy Ethernet W
	Tools for Work and Play

	Chapter 13: Putting the Easy Ethernet AVR Online
	Chapter 14: Finale
	Obtaining Easy Ethernet Devices

	About the Author
	Index (hyperlinked)

	License Information: Unauthorized reproduction or distribution of this eBook may result in severe criminal penalties.

