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Preface

Reading without meditation is sterile;
meditation without reading is liable to error;
prayer without meditation is lukewarm;
meditation without prayer is unfruitful;
prayer, when it is fervent, wins contemplation,
but to obtain contemplation without
prayer would be rare, even miraculous.

Bernhard de Clairvaux (12th century)

Nobody can deny that IP-based traffic has invaded our daily life in many ways
and no one can escape from its different forms of appearance. However, most
people are not aware of this fact. From the usage of mobile phones – either as
simple telephone or for data transmissions – over the new form of telephone
service Voice over IP (VoIP), up to the widely used Internet at the users own
PC, in all instances the transmission of the information, encoded in a digital
form, relies on the Internet Protocol (IP). So, we should take a brief glimpse
at this protocol and its constant companions such as TCP and UDP, which
have revolutionized the communication system over the past 20 years.
The communication network has experienced a fundamental change, which
was dominated up to end of the eighties of the last century by voice applica-
tion. But from the middle of the nineties we have observed a decisive migration
in the data transmission.
If the devoted reader of this monograph reads the title ‘IP traffic theory and
performance’, she/he may ask, why do we have to be concerned with model-
ing IP traffic, and why do we have to consider and get to know new concepts.
She/he may argue that on the one hand, since the early days of Erlang and
his fundamental view on the traffic description in the emerging communica-
tion world, formulas and tables have contributed to the building of powerful
communication networks. On the other hand she/he may be guided by the
argument that, even if we do not meet the correct model, i.e. if our standard
knowledge does not suffice and fails, there is enough technical potential in the
classical telecommunication network, in terms of equipment, to overcome any
bottleneck.
In some respect, we will disprove this misleading attitude. But before going
into details, we can already argue that on the one side, and this is done in
several parts of the monograph, IP-based traffic does not fit into the classical
framework of the Erlang theory. Since the network connections is no longer
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end-to end built, but it is chaotic at the first glance, and that is the strength
of the IP-based networks, since the Internet is self-organized, i.e. deciding
more less at each router or node, which route it will take. This introduces the
stochastic aspect, which runs through the IP modeling as well through our
book as a dominant feature.
On the other side making server or router as powerful as possible so as to
make any modeling superfluous, has its decisive drawback. The network is
not clearly structured, so that at each possible node, the capacity and service
rate is large enough to encounter any traffic load. Only a few bottlenecks
diminish the performance and would especially influence extensively the time
sensitive traffic, as Voice over IP or video streaming, with its strong quality
of service (QoS) requirement. The customer would avoid any of these services
as a consequence. This in fact has occurred already in reality and is not a
fiction. Incorrect design of networks according to IP traffic requirements lead
to a rejection or at least an unexpected delay of new services like VoIP or
video on demand.
In addition, a variety of technical possibilities raises more expectations: if we
have the traffic capacity, we want, and we will use it without restriction – and
in turn the network will meet its limits soon. Avoiding these difficulties and
being prepared for future challenges, we present models, indicate consequences
and outline major key aspects, like queueing for judging performances of the
network.
After the discovery of the Bellcore group in the early 1990’s it was Ilkka Norros
who developed a first approach in describing the IP-based traffic. He used the
fractional Brownian motion as stochastic perturbation to incorporate the basic
phenomena of self-similarity and long-range dependence of the connectionless
traffic. As already mentioned this is in contrast to the classical circuit switched
traffic, where averaging over all scales is leveling the bursty character – this
bursty character does not change over all time scales in the IP case.
In fact, this approach was not new, since in the sixties Benôıt Mandelbrot
and John Winslow Van Ness used the fractional Brownian motion and its self-
similarity for the description of stock pricing in financial markets. The race
for the most appropriate model was opened! A significant variety of models
was introduced, which is a consequence of the fast growing number of applica-
tions accompanied by different protocols, especially with the TCP/IP. Some
tried to describe the large scales and the more Gaussian traffic, other the
more bursty traffic and again others the small scales influenced by the control
cycle triggered by the TCP/IP. Here, especially the multifractal models and
cascades entered the scene, with some of course relatively complicated and
with the lack of a suitable chance for application. Up to now a unified theory
is missing, which of course may not be near to fulfillment, since the variety of
modern networks counteracts these efforts.
Hence, we will present the major models and indicate their advantages and
limitation. It is clear that it would be beyond the scope of the book to give
a full list of all approaches. It is our aim on the one hand to give a certain
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feeling, why the IP traffic differs from the classical Erlang description, to give
insight into the different approaches, where of course we will to some extent
only introduce them and will not go into details. This is left to the reader for
further study. We will show, how one can map the traffic to the models using
standard statistical methods and we will finally try to answer the question,
as to what are the decisive key values, like queueing, waiting time and QoS
thresholds. These factors enter finally into the major question of optimization
– from the network point of view as well as from the economical standpoint.
Summarizing we do not pursue completeness or even a full and profound
description of all existing models for IP traffic. In fact, we would like the
monograph to be considered as a ‘window not mirror’ as Rainer Maria Rilke in
his ‘testamony’ once put it [79]. Writing the book was for us like the metaphor
of Rilke, with only a small ‘window hole’ compared to the huge building of
nature.
The book is organized as follows: We start with the fundamental ingredients
and properties of the IP-based traffic and its resulting concepts and models.
The second chapter is, what we call the classical traffic theory. We build
up the foundations from the well-known Erlang formulas and the resulting
basic ideas of telecommunication traffic in the circuit switched context to
the new development of incorporating phase distributed approaches for inter
arrival and service times. In addition, deterministic approaches mixed with
probability aspects applied to the control cycles and stochastic influences of
the chaotic structure of the network, will be considered as well.
As illustrated in the first chapter, the basic phenomena in IP traffic can be
described as self-similarity and long-range dependence. Already outlined in
chapter 2, the traffic is determined by stochastic perturbation. Thus, we have
to deal with the basic stochastic processes as fractional Brownian motion
(FBM), the FARIMA time series and fractional α-stable processes and its key
value, the Hurst exponent. Their influence and significance in the IP traffic will
be outlined in the sequel, one using the approach with stochastic differential
equation (like the Norros approaches) and the other from a more physical
point of view. Finally, we incorporate the protocol influence which leads to
the multifractal Brownian motion (mBm) or the pure multifractal models.
To implement the models for a given observed network, we have to collect
different samples of data and analyze them using standard statistical methods.
This is especially important for estimating one key value, the Hurst parameter.
Methods like the absolute value, the Whittle and wavelet estimator are to
be mentioned. But, as the entire monograph demonstrates, no method is the
dominant and fundamental one. The preferred model as well as the estimation
methods depends on the particular application.
Finally, in the fifth chapter, we consider the major field of application for each
of the various models – the performance and optimization aspect. Within the
narrative, we present key models, like the Norros and multifractal approaches,
and its influence on the performance key values. In conclusion, we apply this
to the optimization under some selected aspects. The last section follows more
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or less the idea of fair prices introduced by Kelly, Maulhoo and Tan [138] and
we apply this together with the special perturbation of the FBM. Here, we
select the toolbox for optimal control, developed in mathematical economy.
Since most approaches require mathematics for a suitable description, evitable,
the reader should be familiar with some key concepts, such as differential equa-
tions, probability theory, and stochastic analysis. It should be mentioned that
we have tried to keep most techniques as simple as possible, to avoid burden-
ing the reader with details. These details and a more profound understanding
is left to the interested reader in the specific monographs or the original liter-
ature. But the mathematical toolbox is essential and it seems suitable to cite
Galileo Galilei:

The book of nature can only be understood, if we have learned its lan-
guage and letters, in which it is written. And it is written in mathe-
matical language and the letters are triangle, circles and geometrical
figures; without those auxiliaries it is not possible for mankind to un-
derstand a single word.

Even though geometry does play only a minor role for us, we can transfer the
idea behind Galilei’s words to the analytical field in mathematics, used for
this monograph.

Hannover and München Christian Grimm
May 2008 Georg Schlüchtermann
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1

Introduction to IP Traffic

He that will not apply new remedies must expect new evils:
for time is the greatest innovator.

Francis Bacon (16th and 17th century)

Before starting with the mathematical analysis of IP traffic, we give an intro-
duction to the characteristics and special properties of the Internet, so as to
get a better understanding in the different models and their justification. In
this first chapter, we will explain the structure of the protocols and networks
as well as the applications in the Internet with regard to their impact on
mathematical modeling. We will take a birds eye position, without in depth
explanations of technical details. For a mathematical treatment of selected
aspects and discussions of further details we refer to the remainder of this
book.

1.1 TCP/IP Architecture Model

The Internet is a highly developed and complex system. Its infrastructure and
usage is marked by heterogeneity and it is subject to both ongoing changes
and permanent growth. Today, several hundred thousand local networks and
wide area networks connect via millions of routers and links some ten millions
end systems and hundreds of million users. All end systems and intermediate
components exchange data with each other by help of a few common rules for
their communication: the so-called TCP/IP protocols.
In addition, these joint protocol packet switching is the other main character-
istic of the Internet. Each messages that is exchanged between end systems is
divided by the sender into small units. Generally, the transmitting units of a
protocol are denoted as Protocol Data Units (PDU). Every PDU is provided
with control information for addressing of target processes, protocol-inherent
mechanisms or checksums to identify transmission errors. With this additional
information each PDU is forwarded by routers to the receiver, in principle
completely independent of any preceding or succeeding PDU. The size, quan-
tity and timely correlation of PDUs sent depends on different parameters in
each protocol.
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Packet switching builds the robust and efficient network infrastructure for the
Internet. The failure of a single link merely affects the PDUs being transferred
at that moment. If necessary at all, only these PDUs must be transferred
again. With this, the packet switching seems more efficient compared to the
circuit switched networks: the available resources are completely assigned to
any arbitrary single PDU and not a priori to dedicated connections. Waiting
or inactive periods which occur in every communication process can immedi-
ately be saturated with PDUs that are sent by concurrent users or processes.
However, this results in a permanent competition of all PDUs around the
available resources. The transmission quality, that is the guaranteed temporal
behavior of PDUs and a constant data rate, as it is natural for circuit switched
networks is possible in packet switched networks only with considerable addi-
tional overhead.
Figure 1.1 illustrates the traditional TCP/IP communication architecture
with five distinct layers on the end systems. A further subdivision of the
topmost application layer in three layers leads to the well known ISO/OSI
(International Organization for Standardization/Open Systems Interconnec-
tion) model with seven layers in total. On every end system all layers have to
be implemented to exchange data among each others. In routers which serve
as forwarding units for the PDUs or IP packets between the end systems,
merely the three lower layers have to be implemented. The protocols illus-
trated as horizontal arrows in figure 1.1 represent the logical communication
between the same layers on different systems.

Fig. 1.1. TCP/IP Model by Department of Defense (DoD)

In addition to figure 1.1 figure 1.2 illustrates the typical implementation of
all layers on the end systems as well as the addressing used in the respective
layer. Typically, the two lower layers are build in hardware on the network
interface card and must be implemented strictly according to the respective
standards released by e.g. IEEE or ISO, since additional modifications are
hardly possible.
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Fig. 1.2. Implementation and Addressing in TCP/IP

The protocols on network and transmission layer are implemented as part of
the operating systems. The specifications are mainly published by the Internet
Engineering Task Force (IETF). In principle, only a low degree of freedom is
allowed with the implementations, since otherwise different end systems would
have incompatible operating systems which could not communicate with each
other. However, the behavior of single protocols can be varied in certain limits.
We will show later that e.g. different adaptive algorithms in TCP are possible
without violating the interoperability of end systems.
On application layer, an individual design of protocols is possible with the
implementation of the respective application. Depending on the purpose of the
application the programmer can freely define ‘his own’ protocols. By providing
executables only the details of the protocols used in the application may even
remain unpublished.
From these simple facts, important criteria follow for our models. The proto-
cols on lower layers are described by models that were already build during
the development of the respective technology. They were used as a necessary
proof for the expected success of the technology, before a decision about the
production of the respective hardware was made. We may regard these models
as static because the protocols must be strictly compliant to their specifica-
tions. On the other hand, protocols on higher layers can be described only
with more complex models, since they are subject to a variety of parame-
ters and degrees of freedom and therefore have a higher variability. Even for
unpublished protocols, a mathematical modeling is possible merely based on
measured traffic.
Before we go into the details of IP traffic characteristics, we will briefly explain
the typical properties of the five layers in the TCP/IP protocol architecture
from figure 1.1 and their impact on modeling.

1.1.1 Physical Layer

The physical layer describes the transmission of signals over different types of
media like copper cables, glass fibers or the air. Parameters like signal level and
codings, modulation methods and frequency domains, but also the properties
of the transmission media, antennas and cable connectors are defined here.
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From this it follows that the physical layer is of limited influence for the
modeling of IP traffic. However, modeling of new technologies in the physical
layer is essential today, especially for mobile communication.

1.1.2 Data Link Layer

The protocols on data link layer determine the rules by which the trans-
mission medium is accessed. The typical procedures differ considerably in
local and wide area networks. During the second half of the nineties Ethernet
emerged as the predominant technology in local area networks to transmit
best effort traffic. Today, the Ethernet protocol family is used with data rates
from – historically – 10 MBit/second to currently 10 GBit/second. Ethernet
represents, like the typical access mode in Wireless LAN, a non deterministic
behavior. By the robust decentralized approach for media access, little tech-
nical requirements and simple scalability of the data rate over several orders
of magnitude, Ethernet proves to be the ideal protocol on data link layer
below IP.
In the original Ethernet, several stations were connected in bus topology to a
shared media. Due to the decentralized algorithm for media access more than
a single station could send data at the same time. Competing end systems
caused overlays of the signals on the link (often denoted as colliding PDUs or
collisions) which made all data sent erroneous. Today, by switching technol-
ogy with an underlying star topology and full duplex transmission between at
least the end system and the next switch port, Ethernet provides full chan-
nel capacity at every interface. Significant impact with regard to modeling
will only arise if accompanying protocols for packet prioritization or resource
reservation with explicit demands for a given quality of service are established
to support real time applications.
In wide area networks the circuit switched SONET/SDH technologies are used
besides the cell switched ATM. The invention of Synchronous Optical NET-
work (SONET) in the US and the almost compatible Synchronous Digital
Hierarchy (SDH) in Europe and Japan at the end of the eighties made homo-
geneous, world wide data networks possible. SONET/SDH provides data rates
of currently up to 160 GBit/s (OC-3072/STM-1024). Small data rates can be
easily multiplexed with low overhead to high-rate streams and vice versa.
An effective management of the network resources leads to an almost fail-
safe operation with high availability. The introduction of failover circuits and
centralized management provides short bridging times and a robust behav-
ior in case of failures of single components. With Dense Wavelength Division
Multiplexing (DWDM) even multiple SDH channels can be transferred on dif-
ferent carriers over a single optical fiber. Depending on the applied techniques,
at present, an immediate multiplication of the data rate to up to a total of
160 GBit/s is possible.
For many protocols in the data link layer excellent mathematical models exist.
This applies both to the protocols in wide area networks as well as to Ethernet
or WLAN in local area networks.
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1.1.3 Network Layer

The most prominent protocol on network layer is the Internet Protocol (IP).
From figure 1.1 the significance of IP in the Internet is immediately obvious
because the network layer is the topmost layer on all components involved
between the end systems. On network layer the necessary information is ex-
changed and evaluated for the appropriate routing of the so-called IP packets.
Based on the calculated routing information, every router determines the next
optimal link for every IP packet on the path to the receiver. In general, each
IP packet is handled independent of all preceding and succeeding packets.
This means that each IP packet carries the full information that is needed
for routing decisions. Additionally, subsequent IP packets may even follow
different paths through the network.
Each router may fragment IP packets, if the next link allows the transmission
of smaller units only. The corresponding defragmentation of IP packets is
done only by the receiver. By determining the maximum common packet size
on all links between sender and receiver this fragmentation may be avoided.
With the so-called Maximum Transmission Unit (MTU) the best possible IP
packet size us used for a connection. Today, the typical MTU size for most
connections is slightly below 1,500 bytes which corresponds directly with the
maximum frame size of Ethernet.
For a single IP packet, a router needs only bounded information for its routing
decision. In most cases only the receiver address of the IP packet as well as
the information about the status of the links and the directly connected next
routers are required. The decentralized structure arising from this hop-by-hop
principle is the foundation for bypassing single components in case of failures
and the resulting robustness of the Internet.
The behavior of routers is of high significance for our models. On one hand,
with their decisions about the adequate next links on the path, routers can
substantially influence the delay of IP packets and the achievable data rate.
On the other hand, routers buffer IP packets in queues if a suitable path
to the receiver is not immediately available. The mathematical treatment of
these queues is crucial for modeling. Considering additional prioritization of
IP packets leads to approaches which correspond to a withdrawal from the
simple FIFO procedure towards more complex models.

1.1.4 Transport Layer

The protocols on transport layer represent the lowest layer of the so called
end-to-end communication on the Internet between sender and receiver. The
transport protocols operate exclusively between the end systems and are not
interrupted by routers or other network components. In the TCP/IP proto-
col stack, two different protocols are available on transport layer. The User
Datagram Protocol (UDP) can be considered as a rudimentary protocol which
merely puts a header in front of the payload sent by the application. The goal
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of UDP is to address the application processes on the communicating hosts
and to identify transmission errors. The PDUs in UDP are described as UDP
datagrams.
Unlike UDP the Transmission Control Protocol (TCP) represents a complex
protocol which provides a reliable communication between sender and receiver.
Here, the term ‘reliable communication’ preferably means complete and cor-
rect transmission of data but also guaranteed identification of occurring errors
to the applications with respective signaling.
For this, TCP introduces acknowledgments and timeouts as well as explicit
phases for connection set-up (three way handshake) and connection tear-down
(four way close). The duration of timeouts is not given by a fixed value but con-
tinuously calculated dependent on the current and possibly varying Roundtrip
Time (RTT) between sender and receiver. The PDUs transferred with TCP
are described as TCP segments. As an example, figure 1.3 illustrates the down-
load of a World Wide Web object via TCP with its three phases.

Fig. 1.3. Phases of data transmission in TCP

After the initial three way handshake the transmission of the data starts
with a TCP segment containing the HTTP request of the client. The server
acknowledges the request first and then sends the object in three separate
TCP segments which are in turn acknowledged by the client. The reliable
connection tear-down is done with the four way close in the last phase. In our
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example, the server sends the first segment of the four way close but it may
also be initiated by the client.
The three way handshake in TCP corresponds to a check of accessibility and
ready-to-receive state of the receiver before the payload or application data is
transmitted. Therefore, TCP is also described as connection-oriented trans-
port protocol. Correspondingly UDP in which comparable mechanisms are
missing, is often called a connectionless transport protocol.
In TCP, we find two adaptive algorithms for the regulation of the data rate:

• flow control: avoid flooding of a possibly slow or temporarily overloaded
receiver and

• congestion control: avoid flooding of network components such as routers
with slow links.

For flow control, the receiver informs the sender with every header of a TCP
segment about the free memory in its receive buffer (RecvWindow). Conse-
quently the sender is allowed to send only less than RecvWindow byte with
the next TCP segment. With this simple algorithm it is guaranteed that the
sender will not overflow the receiver.
In most cases, packet loss is caused by congestion of routers or links in the net-
work. The sender identifies these situations as an incomplete sequence of ac-
knowledgments (duplicate ACKs) or as completely missing acknowledgments
(timeouts) and treats both situations differently. To avoid flooding of the net-
work already at the beginning of the transmission, TCP starts with a low
transmission rate, increases the rate at first exponentially to a certain value
(slow start phase) and then linearly (congestion avoidance phase). At conges-
tion events, the sender halves (at duplicate ACKs) the current transmission
rate or reduces it to a minimum (at timeouts). Afterwards, TCP increases
the data rate again according to slow start or congestion avoidance phase.
The corresponding sawtooth of the data rate as transmitted by the sender is
illustrated in figure 1.4.
The described behavior was proposed with TCP Reno which was the typ-
ical implementation of TCP in most modern operation systems for several
years. Fairness and robustness of the Internet are significantly based on this
algorithm, since at congestion events all senders immediately reduce their
transmission rate by, at least, a half. Today, new TCP implementations such
as TCP BIC, TCP CuBIC or Highspeed TCP arise. For example, we find
TCP BIC as the default TCP algorithm in current Linux kernels since version
2.16.9. In most cases these variants modify the behavior in congestion avoid-
ance phase to gain better performance. Of course, by the use of a different
algorithm the traditional fairness in the Internet is no longer guaranteed.
The dynamic behavior of the transmission rate in a single TCP stream with its
partial exponential increase is of high importance for the modeling and leads
to complex approaches. With multifractal models, we will explain possible
solutions more precisely in sections 3.8.2 and 5.2.
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Fig. 1.4. TCP Slow Start

1.1.5 Application Layer

The application layer contains all protocols that are specified with the imple-
mentation of the respective applications. Compared to lower layers the term
‘protocol’ must be interpreted more broadly here, since also transformation
or representation of data must be taken into account. By the implementation
and the choice of the underlying transport protocol (TCP or UDP), essential
characteristics are defined with regard to the sending behavior of an appli-
cation. Typical best effort applications like World Wide Web or Email are
ideally based on the connection-oriented and reliable transport protocol TCP.
The application merely submits data to the TCP process on transport layer
which provides the complete and reliable transmission. Transient problems
concerning the transmission of the data are therefore handled and solved by
TCP (that is the operating system) and remain hidden to the user. Even
the programmer does not have to worry about the detection – or correction
– of transmission errors. Only a corresponding error message to the user in
case of failed connection set-up or complete failure of transmission should be
taken into account. Correspondingly, the characteristics of the transmitted
data stream depends on the application itself and the user behavior, as well
as on the implementation of TCP on both communicating system.
Due to adaptive algorithms and possible retransmits in TCP neither the tem-
poral behavior of PDUs nor the effective data rate can be reliably controlled
by the application. Therefore, real time applications such as live streaming,
video conferencing, Voice over IP or online games largely use UDP instead
of TCP as transport protocol. With UDP, the temporal behavior of PDUs as
well as the effective data rate are under direct control of the application.
In the previous paragraphs, we considered protocols that are used for the
transmission of application data only. However, we must point out that al-
most hidden to both, the programmer and the user, further information has to
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be exchanged between services involved in order to operate the whole infras-
tructure of the Internet in a reliable way. Among others these services contain
the following protocols:

• resolution or mapping of alphanumerical or numerical addresses (e.g. DNS
and ARP)

• routing (e.g. BGP, OSPF, RIP, ISIS)
• network management (e.g. SNMP)
• signalling (e.g. ICMP, RSVP)
• authentication (e.g. RADIUS)

Table 1.1 summarizes some selected applications and infrastructure services
with their corresponding protocols on application and transport layer.

Table 1.1. Corresponding protocols on application and transport layer

protocol on
application

application layer transport layer

World Wide Web HTTP TCP
Email SMTP, IMAP, POP TCP
File Transfer FTP TCP
TELNET, Secure Shell TELNET, SSH TCP
Peer to Peer diverse TCP
Network File System NFS, SMB UDP
Network Management SNMP UDP
Domain Name Service DNS UDP
Authentication RADIUS, Diameter TCP
Voice over IP RTP UDP
Streaming RTP, RTCP UDP
Control of Streams RTSP TCP

This table does not represent a complete or even definite picture. For example,
apart from UDP the domain name service also uses TCP for so-called zone
transfers, that is the exchange of address tables between DNS servers. Current
versions of NFS can alternatively be used over TCP as well.

1.2 Aspects of IP Modeling

We explained in the previous section that data traffic in the Internet is sub-
stantially affected by both, the protocols used in distinct layers with their
respective implementation and the dependences between different layers. Mea-
surements of e.g. the temporal behavior of IP packets or the flow of TCP
segments contain a large amount of relevant information. The description of
single parameters like interarrival times of IP packets or transmission duration
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of single files are of limited use and may not be viewed in isolation for our
models. For a comprehensive analysis particularly with regard to modeling
the complete context of several layers must be considered carefully.
The measurement of sample data or a path Ω of IP traffic and the separation
into single data streams does not lead to distinct series of random variables,
that is a discrete stochastic process or a time series of PDUs. With our illus-
trations presented in the previous section it is obvious that data traffic occurs
in different forms in different layers. This leads to two relevant considerations
for our models:

• we have to apply specific models for each layer and
• we may not neglect dependencies between different layers.

1.2.1 Levels of Modeling

In accordance with the TCP/IP architecture model in figure 1.1 figure 1.5
illustrates different levels at which the user behavior and the resulting data
traffic can be measured and modeled (we remark that we use the term ‘level’
and not ‘layer’ here).

Fig. 1.5. Usage profiles at different levels
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We assume that on each level the begin and end of events can be deter-
mined and the data volume transferred during this period can be measured.
The necessary information is provided by logfiles in the operating system and
network measurements of the data traffic. We have already noted that different
approaches are available for the modeling of the characteristics observed on
the respective level. Models which take the characteristics of different levels
into account are denoted as multi-level models. We will apply a multi-level
model to World Wide Web traffic as an example at the end of this section.

Access Level

At the topmost layer we find the time at which the user is connected to the
Internet. For subscribers with dial-in lines this period corresponds to the du-
ration between connection set-up and tear-down of their modem or respective
equipment. For subscribers with permanent connection to the Internet this
period correspond to the uptime of their end system. The basic structure in
this level is significantly determined by different tariffs.

Application Level

The applications are represented by the next level. Several applications can
be executed in parallel on clients as well as on servers. The execution and
termination of an applications is initiated by the user, the operating system,
other applications or even the application itself. Similar to the access level
events, in the application level, events are mainly characterized by on and
off periods. However, we have to consider the parallel execution of different
or even the same application. With this, we get different usage times for the
individual applications which are typically correlated with each other.

Dialogue Level

The next level represents the interaction between users and the applications.
By the dialogue with the application, the user typically initiates data trans-
missions. Here, the application itself as well as the response times of other
hosts and the network substantially influence the behavior of the user. As an
example we illustrate three common phases of a user dialogue in the World
Wide Web:

• Click: the user initiates the dialogue by clicking on a link.
• Wait: the download of the webpage starts, including all embedded images.

The waiting phase is finished when all objects are retrieved from poten-
tially different servers and the whole webpage is displayed in the browser.

• Think: depending on the content of the webpage and the interpretation
by the user the webpage is viewed more or less carefully. During this time
no further data is transferred and an inactive phase occurs. By clicking a
new link this pause is finished and another dialogue is initiated.
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Connection Level

Applied to the previous example of a dialogue in the World Wide Web with
HTTP on application layer and TCP on transport layer the connection level
represents the time period between connection set-up (three way handshake)
and connection tear-down (four way close). In particular for HTTP we have to
remember that not all objects of a web page have to be retrieved from the same
web server and that not all objects have to be transferred over a single TCP
connection (see mathematical modeling in the sections 2.8.1 and 3.8). Thus,
the behavior on the connection level during the transmission highly depends
on the version of HTTP agreed between the browser and each distinct web
server.
If an application uses UDP instead of TCP as the transport protocol, no def-
inite time period can be determined from the measured traffic, since UDP
contains no explicit information about connection set-up and tear-down. For
an in-depth analysis of UDP traffic we have to either consider further infor-
mation of higher protocols or define empirical time periods for the typical
duration of entire data flows.

Burst Level

IP packets contain TCP segments or UDP datagrams that are already mea-
sured on connection level. However, an important class of models does not
consider individual but narrow series of IP packets. These so called Bursts of
IP packets form the basis of on-off models which distinguish merely between
active and passive phases of data transmission. We give a mathematical anal-
ysis of on-off models in section 3.4.3 (see also section 2.10).

Packet Level

With the analysis of IP packets on packet level, we close our illustration of
different levels of modeling. At this level we consider all parameters such as
interarrival or interreceive times between single IP packets. For the complex
modeling of this layer, multifractal models are frequently consulted. For the
mathematical treatment of multifractal models, we refer to section 3.8.
We remark that in networks with high data rates (above 1 GBit/s) an ap-
propriate analysis of these parameters requires a resolution in the area of
nanoseconds. It it obvious that the measurement equipment must guaran-
tee the corresponding precision. Current PC-based equipment provides times-
tamps with a precision of only around a few microseconds and it is thus not
suitable for such measurements without special hardware support.

Multilevel Models for World Wide Web Traffic

We summarize our considerations about multilevel models with an application
to World Wide Web traffic. Several multilevel models for World Wide Web
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traffic exist, including those published by Mah [171], Feldmann et al. [84] or
Choi and Limb [53]. All three models start from an application perspective
at the client or server. Although the investigations are focused on applica-
tion, dialogue and connection level, the target is to identify reasons for the
characteristics on burst and packet level. In figure 1.6, we illustrate some of
the investigated parameters. We see different sessions on application layer,
number of pages from the same web server and different objects on connec-
tion layer. As already pointed out with our description of the connection level
above it depends on the version of HTTP whether all objects are transferred
over a single or over multiple TCP connections.

pages 

intersession 
time 

interpage (think) 
time 

object 1 object 2 object 3 

request length, response size, interpacket time etc.

page 1 page 2 page 3 page 4 

interobject 
time 

application 
level 

dialogue 
level 

connection 
level 

objects 

session 1 session 2 

Fig. 1.6. Multilevel model for World Wide Web traffic

We omit an in depth comparison about the exact findings of the cited models.
For our introduction, we just remark that all models agree that most param-
eters, even on higher levels, are described best with heavy-tail distributions
like Pareto or Weibull.

Example 1.1. To give an early example for heavy-tail distributions we mea-
sured the size of video files in world wide web traffic. Figure 1.7 shows the
empirical complementary distribution function with logarithmic scales on both
axis. Starting at a certain scale (around 106) we see an almost straight line
which clearly indicates a heavy-tail distribution. The line represents a Pareto
distribution with adjusted parameters. We will illustrate the estimation of
such distributions in the section 4.1.3.

1.2.2 Traffic Relations

In our explanations about different levels of modeling, we referred essentially
to the communication between two end systems or even between two processes
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Fig. 1.7. CCDF for volume of video files in world wide web traffic

only. In contrast, data traffic in particular in wide area networks consists of a
huge number of concurrent data streams between many distributed partners.
To analyze this traffic the superposition can be split up after different commu-
nication partners at first. We may consider routers and end systems as well
as subnetworks as communication partners. In a next step, the analysis of
the separated streams and an appropriate superposition leads to the so-called
composite traffic models. For a mathematical analysis of these models we refer
to section 3.4.4.
In the following paragraphs we illustrate several criteria after which data
traffic can be split up into different traffic relations. We refer to the addressing
in the individual layers in accordance with figure 1.1.

Port-to-Port

A directed data stream between two processes can be represented by a so-
called flow. A flow is defined as a tuple of the five elements {source IP address,
source port number, destination IP address, destination port number, protocol
ID}. The IP addresses indicate the two communicating systems involved, the
port numbers the respective processes on both systems and the protocol ID
the transport protocol used in this flow.
Table 1.2 represents as an example six different flows which were measured
during the transmission of a simple webpage that consists of one HTML
file and 15 embedded images of different size. The objects were retrieved
by the client (131.34.62.123) from two different servers (195.34.129.243 and
187.250.45.136). Our choice of WWW as application implies HTTP as ap-
plication protocol and TCP as underlying transport protocol. Therefore, we
omit the protocol ID 19 for TCP in the remainder of our example.
At first we recognize that the application on both servers is addressed by the
destination port 80. This value is recommended by IETF as port number for
WWW services. Furthermore we see that the client initiates connections to
the server 195.34.129.243 from two different source ports 2267 and 2268.
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Table 1.2. Unidirectional port-to-port flows during transmission of a webpage

Source Destination IP Volume
IP address Port IP address Port packets [Byte]

131.34.62.123 2267 195.34.129.243 80 76 11,929
131.34.62.123 2268 195.34.129.243 80 27 8,078
131.34.62.123 3265 187.250.45.136 80 5 1,078
195.34.129.243 80 131.34.62.123 2267 125 151,322
195.34.129.243 80 131.34.62.123 2268 35 26,583
187.250.45.136 80 131.34.62.123 3265 8 4,397

Table 1.2 represents a direction-dependent, that is a unidirectional analysis of
the transferred data traffic. However, in some cases we are less interested in
data flows per direction than in bidirectional communication between two ap-
plication processes. With a simple pair-wise exchange of the elements {source
IP, destination IP} and {source port, destination port} in the tuple we obtain
this direction-independent analysis. By this reduction, we get for our example
the result in table 1.3.

Table 1.3. Bidirectional port-to-port flows during transmission of a webpage

IP Volume
IP address Port IP address Port packets [Byte]

131.34.62.123 2267 195.34.129.243 80 201 163,251
131.34.62.123 2268 195.34.129.243 80 62 34,661
131.34.62.123 3265 187.250.45.136 80 13 5,475

Host-to-Host

An analysis based on hosts offers an alternative view on our example. Here,
we consider merely the IP addresses of the communicating systems and the
transport protocol and not the port numbers of the communicating processes
on each system. That is our tuple is reduced to {Source IP, Destination IP,
Protocol ID}. The analysis of our example is made straightforward by the
addition of the lines with identical source and destination IP addresses. Again,
a unidirectional as well as a bidirectional variant is possible.
We show the host-to-host analysis merely with the direction-dependent view
in table 1.4 as a proof for the strong asymmetry in WWW traffic. A compar-
ison of the transferred data volume shows that the relationship between the
directions Client→Server and Server→Client is approximately 1:9. Another
explanation for this is found in the next section.
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Table 1.4. Unidirectional host-to-host flows during transmission of a webpage

Source Destination IP Volume
IP address IP address packets [Byte]

131.34.62.123 195.34.129.243 103 20,007
195.34.129.243 131.34.62.123 160 177,905
131.34.62.123 187.250.45.136 5 1,078
187.250.45.136 131.34.62.123 8 4,397

End System

The analysis represented above were strongly focused on data traffic between
communicating systems. With two further possible relations, we show results
from the perspective of single entities. At first, data traffic can be summarized
for single systems only, that is independent of their communicating partners.
If this analysis is done direction-dependent, the difference between a client
(typical data sink, high degree of downstream traffic) and a server (typical
data source, high degree of upstream traffic) will be emphasized again. Table
1.5 shows the corresponding results for our example.

Table 1.5. Up- and downstream flows of single end systems during transmission of
a webpage

Upstream Downstream
Host IP packets Volume IP packets Volume

131.34.62.123 108 20.085 168 182.302
195.34.129.243 160 177.905 103 20.007
187.250.45.136 8 4.397 5 1.078

Net-to-Net and Net

If we consider whole subnetworks instead of single end systems we will obtain
another rough structure of the data traffic. Again, both unidirectional and
bidirectional variants are possible as well as the analysis for a single network
independent of the communicating partners (Net) or between selected sub-
networks (Net-to-Net). The criteria by which subnetworks can be defined in
a suitable simple manner follow from the known structure of IP addressing
and from routing information. We remark that in both cases, dependent of
the selected point of measurement, the internal traffic is also measured, i.e.
between two hosts within the same subnetwork.
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1.2.3 Asymmetry in IP Traffic

A characteristic property of legacy TCP based services, such as World Wide
Web, FTP or Email, is the asymmetry of the volume exchanged between
clients and servers. For the description of this asymmetry we simply build the
ratio of upstream load updata to downstream load downdata. Because we can
assume the connection times in both directions are almost equal, the ratio of
the mean bit rates in upstream and downstream is approximately equal to
the ratio of the respective volumes.
It was shown in [51] that the relation updata

downdata
of the volumes of transfer in

World Wide Web or FTP traffic can be described by lognormal distributions.
The reason for this behavior is straightforward, since the size of acknowledg-
ments in TCP can be neglected and thus the relation is substantially deter-
mined by the size of the transferred objects.
In contrast, asymmetry with regard to the number of IP packets varies with
the number of acknowledgments sent by the client. If each received TCP
segment is confirmed with an acknowledgment, the number of IP packets in
upstream and downstream will be almost equal – independent of the applica-
tion used. As already explained in section 1.1 this behavior of TCP is defined
by the implementation in the operating system.
For Email, we have to remember that asymmetry is already given by different
protocols for upload and download between clients and servers. Emails are
downloaded by the clients from the mailboxes stored on mail servers with
the Internet Message Access Protocol (IMAP) or the Post Office Protocol
(POP). The upload of Emails, that is the sending to the outgoing mail relay
(mail transfer agents, MTA), is done with the Simple Mail Transfer Protocol
(SMTP). This protocol is also used for forwarding emails between different
mail relays. From this it follows that we may expect a strong asymmetry for
IMAP and POP as well as for SMTP between clients and mail relays. However,
SMTP traffic between mail relays is almost symmetric.
With the examples above, we simply illustrate the differences between asym-
metric and symmetric applications. Most other applications can be assigned
to one of these categories. For example, video streaming is strictly asymmet-
ric while Voice over IP, video conferencing or peer-to-peer applications show
a clear symmetric behavior.

1.2.4 Temporal Behavior

Besides the mainly technical driven factors we have explained so far, we now
discuss further parameters which we have to consider for measurements as
well as for the selection of suitable models.
Like most systems that are affected by human behavior, the activity in the
Internet strongly depends on the particular day of the week and the time of
day. Figure 1.8 shows the data rate measured at the transition router between
a local network and the providers backbone. The traffic was measured in a
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public facility where most of the employees access the Internet continuously
during their daily work. To eliminate momentary peaks, as well as distinct
temporal activity, we consider the total of incoming and outgoing traffic and
plot averages over intervals of 20 minutes. To demonstrate the similar char-
acteristics of daily courses, we also give the results for two successive weeks.
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Fig. 1.8. Temporal behavior of IP traffic over two weeks

From the diagram, a periodic course can be recognized within each day as well
as within a week. The factor between phases of intense activity (on working
days from 1:00 to 2:00 pm) and lowest traffic (all days from 5:00 to 6:00
am) is approximately 5. We remark that this factor is considerably higher for
measurements over shorter intervals and with distinct directions.
Corresponding curves of data traffic for e.g. private households reveal slightly
shifted characteristics. Here, the main traffic hours fundamentally depend on
the tariffs offered by the provider but also on the customers behavior during
their leisure activities.
Consequently, the temporal behavior must be taken into account dependent of
the environment in which the traffic flows are measured. A measurement over
several hours will likely contain phases of different intensity. The dimensioning
of network components derived from this inappropriate measurement may lead
to weak results. Similar to the traditional modeling of telephony networks, it
is therefore essential also for IP traffic to carefully identify main traffic hours.

1.2.5 Network Topology

Since the Internet is a global system of many distributed components, the
topology of the network between sender and receiver plays an important rôle.
Rather than the geographical distance, the ‘network distance’, which can be
indicated by the number of routers passed through, is of special interest.
Because of competing traffic in every router, it is likely that the average
transmission time as well as its variance increases with the network distance
between both entities. Unfortunately, it is difficult to take the network distance
and its characteristics into account for a comprehensive analysis of IP traffic.
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The number of routers which are passed through between sender and receiver,
the load of the queues and processors in the routers, as well as the available
capacity on the links cannot be determined with the common end-to-end
measurement. Further investigation of these parameters could be done solely
with concurrent hop-by-hop measurements. The measurement with suitable
equipment at every router together with an environment for a centralized data
processing can be conducted, but only at a very high cost.
Still a crude consideration of topographical aspects arises from the classifi-
cation of net-to-net traffic relation as represented in section 1.2.2. A possible
distinction is offered by dividing traffic into:

• data traffic to all nodes in the local network, that is without traversal of
a router, or

• data traffic to all nodes that are connected to the same router, or
• data traffic to all nodes that are reachable over the same network provider,

that is over the same backbone network, or
• data traffic to all other nodes.

The necessary information as to which IP addresses can be found in the re-
garded networks is at least known to the operator of the local network or the
network provider.
Again, we remark that the uncertainty of this analysis still lies particularly
in the unknown capacity and load of all network segments involved even for
a known topology. For example, the achievable data rate to a host that is
connected to the same, but overloaded router might be considerably lower
than to a host that is connected via unloaded, large backbone routers and
high capacity links.

1.3 Quality of Service

Here, network engineering results that are obtained from observation and
modeling of IP traffic, are applied to the validation and dimensioning of net-
work components as well as network topology. As part of these efforts, the
compliance with quality of service (QoS) parameters such as data rate, delay,
jitter or packet loss is of major interest. Before we give a more detailed intro-
duction into QoS, we will first differentiate between two fundamental kinds of
data traffic.

1.3.1 Best Effort Traffic

Best effort traffic is characterized by the use of TCP as protocol on transport
layer. The receiver is reached over paths that are a priori unknown and may
vary for each IP packet. The queues in the routers along these paths show
different characteristics, depending on the load on other directly connected
links. As already described in section 1.1, TCP implements an error control,
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which automatically initiates retransmission of lost segments after dynam-
ically calculated timeouts. Additionally, TCP features adaptive algorithms
for flow control (avoid flooding of the receiver) as well as congestion control
(avoid flooding of the network). From this it follows that the transferred TCP
segments and consequently the underlying IP packets show no constant size
or interarrival times, even already at the sender side. The data is just sent
out as fast as possible, the focus of TCP is clearly on an entire and error free
transmission. Best effort traffic merely saturates the available bandwidth in
the present of giving long lasting, error free transmissions.
Traditional queueing models are not applicable to best effort traffic. Suitable
models and corresponding dimensioning of networks are focused on minimizing
blocking and loss probability. In section 5.3.2 we give further details of these
models.

1.3.2 Time Sensitive Data Traffic

The transmission of applications with real time requirements, like live stream-
ing, Voice over IP or video conferencing is not possible with best effort traffic.
These applications relay on time-critical parameters like maximum delay of
packets, maximum oscillation of delays (that is jitter) as well as clear limits
for an acceptable packet loss and a minimum bound of available data rate.
A guarantee of these four so-called QoS parameters must be fulfilled for the
transmission of time sensitive traffic and thus represent special demands for
the dimensioning of the IP networks. Furthermore, it is obvious that TCP
is inappropriate for these applications and UDP has to be used as transport
protocol instead.
In sections 3.5.2 and 3.5.1, we will describe the characteristics of time sensitive
traffic and the implications for the dimensioning of IP networks. Generally
packet delay and packet loss must be kept under control to fulfill real time
requirements, data rate and jitter may be regarded as a result. The demand
to hold a predefined data rate within narrow bounds corresponds to a low
variance of the delay. Together, we find the first reasons here why modeling
of time sensitive traffic is done by means of Gaussian marginal distributions,
i.e. the fractional Brownian motion. Furthermore, a low blocking probability
is an essential model prerequisite because of the strong time sensitivity. We
will point out in sections 3.5.1 and 3.8.1 that multifractal Brownian motion
and general multifractals with Gaussian marginal distributions are suitable
approaches for mathematical models of time sensitive traffic.
In principle two possible attempts exist to meet the requirements of time
sensitive traffic.

1.3.3 Overprovisioning

Overprovisioning is a simple, straightforward solution for dimensioning of data
networks, since resources are provided more than enough. From a technical
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perspective, the main challenge lies in an appropriate load sharing between
the components that are operated partly in parallel. A value of 3–5 compared
to the mean load in the main traffic hour is typically accepted as a factor for
the necessary overdimensioning of IP based networks. With this factor the
high costs for components that are rarely completely utilized emerge as an
obvious disadvantage of overprovisioning.
However, overprovisioning does not guarantee compliance with predefined QoS
parameters. Not all routers on the path may treat IP packets of time sensitive
applications and best effort applications in the same manner. In other words,
there is no guarantee that all routers prioritize real time application in their
queues. Because of missing mechanisms like flow control or congestion control
in TCP, applications based on UDP may flood a network. This may suppress
TCP based applications almost completely and arbitrarily disrupt competing
flows. After all, the dynamicity of IP traffic, which is easily proved by the
high variance of the QoS parameters, cannot be completely compensated by
an overprovisioning of resources. We go deeper into this finding by means of
mathematical models in sections 3.5.1, 5.1 and 5.2.

1.3.4 Prioritization

With Integrated Services (IntServ) and Differentiated Services (DiffServ), the
IETF tried to establish two different architectures on the network layer for
assigning distinct priorities to data flows as an alternative to overprovision-
ing. While IntServ allows for almost arbitrary, fine granular requirements of
QoS parameters, DiffServ is restricted to a few prioritized classes with prede-
fined QoS parameters. Both approaches need additional signaling mechanisms,
especially for allocation and deallocation of resources, as well as for confirma-
tion or rejection of reservation requests. Because of packet switching or the
hop-by-hop delivery of IP packets, the necessary implementations for IntServ
or DiffServ cover both routers in the network and operating systems at the
sender and receiver.
Apart from the technical challenges for reservation mechanisms authorization
(who is allowed to reserve what resources) and accounting (which data has
to be collected to write the bills for prioritized IP traffic) are just two more
aspects that have prevented the deployment of a comprehensive architecture
for prioritization in the Internet so far. However, we see a progressive use
of Multiprotocol Label Switching (MPLS) today. MPLS adapts certain fea-
tures of IntServ and DiffServ between data link and network layer. With this
approach, QoS parameters can be managed at least in the backbones of indi-
vidual providers.
In section 3.5.2, we will introduce a rather complex and not well suited model
of Norros et al. to analyze the use of priorities and their impact on IP traffic.
In section 3.5.1, which is about the two scale FBM and also in sections 3.8.2
and 3.8, which are about multifractals, we will consider alternative approaches
which offer a more favorable access to prioritization.
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1.4 Why Traditional Models Fail

In the previous sections, we have explained the main characteristics of IP traf-
fic and have discussed possible solutions for respective models. These models
were not as yet based on strict mathematical derivations but clearly revealed
the challenges and provided first insight towards a dimensioning. We now
want to answer the developing question as to why traditional traffic mod-
els fail with the paradigm shift in telecommunications networks from circuit
switched telephone networks (Public Switched Telephone Networks, PSTN) to
packet switched (or IP based) data networks.
With traditional telecommunication systems, the following four steps were
defined as the state-of-the-art framework for building analytical models:

• measurement and statistical description of sample data
• preparation of mathematical models
• analysis and
• optimization of queueing models and performance.

Models built with this framework for telecommunication networks were also
applied to the communication processes in the Internet as recently as 15 years
ago. At that time, the planning of Internet backbones was just a marginal
aspect in dimensioning of conventional telecommunication networks. But the
observed properties of the heavy IP traffic soon cast doubts on this procedure.
We give a short example: If we ask how often telephone connections fail we
will get the answers ‘once a month’ or ‘once a year’. In case of unsuccessful
connections to arbitrary servers in the Internet the question is possibly about
‘once a day’ or ‘once a week’.
Why are telephony networks operated with such astonishing reliability? The
conventional PSTN is a static system to a large extent. It is both well struc-
tured and internationally standardized and shows only a low degree of variabil-
ity. The applications are limited and well-defined. Additionally, the behavior
of the users is also static and hardly subject to changes. This situation leads to
well-established models with Poisson distributed arrival and service processes
for the dimensioning of telephony networks. A further advantage of these mod-
els is the limited number of parameters and thus the few degrees of freedom.
The simplicity and proved validity of the models led to the perspective that
the world of telecommunication is strictly ‘Poisson’ minded.
Today, the migration from circuit to packet switched networks is realized with
great efforts by all providers and carriers. It is widely accepted that packet
switched networks provide higher efficiency, since free capacities lead to higher
data rates of current flows or can be immediately utilized by new traffic.
The challenge for a comprehensive modeling is that single IP packets and
not only entire flows compete for the available resources. At low load, the
full capacity of the resources is used and every IP packet is forwarded almost
without additional delay. With increasing load, the delay of every IP packet is
significantly determined by queueing and scheduling algorithms in the routers.
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Another important finding about IP traffic is that already the offered load of
the sender is of high variability and thus almost unpredictable. Especially with
TCP, the sender may transmit bursts of IP packets, there is no steady flow.
This behavior is an essential difference which we have to consider accurately
for the mathematical modeling.
If we now ask for the main characteristics of the Internet, we may give the
following answers:

• The Internet is a heterogeneous system that depends on many processes
on different layers. A clear pattern of applications or even of user behavior
can not be recognized. We may define several characteristic profiles, but a
clearly definable structure, as is well known in the conventional telecom-
munication networks, does not exist.

• The Internet is not exactly describable, it is even ‘chaotic’ in its behavior.
Clear circuit switching structures are not recognizable, that is a circuit
set-up between sender and receiver does not exist.

• The Internet is unpredictable in its growth. Even if an end of growth was
occasionally predicted, new applications like e.g. Peer to Peer networks,
Voice over IP, Live Video Streaming, Grid Computing or Storage Area
Networks (SAN) frequently arise which cause a continuous increase of de-
mands for more resources. Even today, after 15 years of intensive growth,
an assured prediction about the development of the Internet within the
next few years is almost impossible.

In circuit switched traffic, we find Poisson processes and consequently the ex-
ponential distribution which leads to an Erlang distribution for the summation
of service times. The derivation requires the same distribution for both the
arrival and the service processes (with possibly different rates). This is e.g. de-
scribed by the arrival rate λ and service rate µ. If we assume e.g. λ = 100 1/s,
then the scale of bursts is around 10 ms. Variations of this scale, which means
greater or smaller gaps in the interarrival times resp. service time, appear only
with rapidly changing probability (decreasing resp. increasing).
IP traffic is characterized by frequent changes of passive and active phases
in different time scales. An adequate modeling with Poisson processes and
exponential distributions is not feasible, since variations would lead to large
active or passive phases because of the rapidly decreasing probability.
A significant finding for IP traffic modeling was published by the group of
W. E. Leland at Bellcore in 1992 [160]. The sample data was measured during
an hour on a router between the local network and the providers backbone.
The comparison of measured data rate over different time scales in figure 1.9
clearly illustrates the difference between Poisson (left column) and IP traffic
(right column). Each black shaded area corresponds to the entire time range
in the diagram above. With increasing time scales the Poisson process shows
a clear smooth pattern while the measured traffic is still of high variability.
Poisson traffic is easily treated with regard to dimensioning of the network. As
of a certain time scale no ‘surprises’ occur and we may avoid measurements
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with larger scales. Then the corresponding process gets stationary and the
transition probabilities are therefore time-independent. Questions about the
dimensioning of queues in routers or switches as well as the design of back-
bones and even the explicit analysis of QoS would get superfluous under these
conditions.
However, according to the right column of figure 1.9, IP traffic exhibits a
different behavior. From this follows immediately the need for larger queues
along with separate consideration about QoS.
In summary we can state some early results about Poisson-based models ap-
plied to packet switched networks for IP traffic:

• Poisson processes cannot cover all parameters of IP traffic.
• Poisson processes cannot reflect the dynamics in IP traffic.
• Poisson processes cannot represent the multi-layer complexity of charac-

teristic patterns in IP traffic.

We clearly see that Poisson processes are of limited relevance for IP traffic
models. According to these results, we have to develop new suitable models for
IP traffic. We can statistically describe the high variability with the so-called
Long-Range Dependence processes (LRD). In contrast to Poisson processes the
autocorrelation of LRD processes does not rapidly decrease. This is expressed
e.g. by the fact that the autocorrelation for a sequence of increasing time spots
is not summable (in contrast to the Poisson process). The variance of LRD
processes decrease with a rate of a power bein greater than −1 and not linear
as the Poisson process reveals.
The service times or file sizes can be described by heavy-tailed or subexpo-
nential distributions instead of exponential distributions. We will give more
details about these distributions in section 2.7.4, for example with the Pareto
distribution and its complementary distribution function Cx−α with α ∈]0, 2[.
In chapter 2, we will extensively treat models of the form M/G/n, GI/G/n
or M/GI/∞. We will mathematically derive, why long-range dependence or
fractal processes appear for heavy-tail distributed service processes. We will
also illustrate that fractal processes behave similarly in large and small time
scales.
To give a simple graphical proof of these assumptions in figure 1.10 we replaced
the Poisson process by a fractal process, the fractional Gaussian Noise. We
introduce the Gaussian Noise as a process (Xt)t∈[0,∞[ with the autocorrelation

Cor(Xt,Xt+s) =
1
2
(
(s + t)2H − 2s2H + |s− t|2H

)

The finite dimensional marginal distributions of this process are normal dis-
tributed. The parameter H ∈ [12 , 1[ is denoted as the Hurst exponent (see
section 3.1.2). We remark that we only need a single parameter to determine
the strength of the fractional scales and that this process is different from
a Brownian motion with the difference increasing as H increases. We may
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Fig. 1.9. Comparison of Poisson process (left) and measured IP traffic (right)
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Fig. 1.10. Comparison of fractal process (left) and measured IP traffic (right)
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already assume that models based on such processes can be suitably applied
to IP traffic.
As in figure 1.9, the black shaded areas in figure 1.10 represent the entire
time range of the diagram immediately above. The right column contains the
measured data again and the left columns shows the fractal process (in this
case a fractional Gaussian noise). It is obvious that in contrast to the Poisson
process illustrated in figure 1.9 the structures in both columns remain similar
for all time scales.
We will intensively treat fractal processes in sections 3.2 and 3.3 but we want
to briefly introduce this topic in our introduction. We start with a time-
discrete process (Xk)k∈N with mean 0 and stationary covariance, that is the
process depends on increases only and not on time. We denote the process
exactly self-similar or fractal if there is a parameter H ∈ [12 , 1[ with

Xm d∼ mH−1X

X is the multidimensional random vector and Xm is the mean of block wise
formed discrete time values

X(m)(k) =
1
m

(
X(m−1)k+1 + X(m−1)k+2 + . . . + Xmk

)

The fractional Gaussian noise is such a process with an appropriate Hurst
parameter H ∈ [12 , 1[. For H = 1

2 we obtain the conventional white noise. For
an exactly self-similar process we can show that

Var(Xm) ∼ κm2H−2

This reflects a decrease of the autocorrelation which is no longer summable.
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Fig. 1.11. Variance-Time Plot. The steeply falling line represents a Poisson process

Figure 1.11 gives another graphical comparison of Poisson and fractal behav-
ior. Here, a log-log diagram of the variance of measured traffic depending
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on the scaling factor or time interval m is shown. Instead of absolute val-
ues we selected the relative variance on the y-axis compared to the value at
m = 10−2 ms which is not shown. The dotted line represents the case of a
Poisson distribution and clearly illustrates the difference against long-range
dependent (LRD) processes, depicted by the hyperbole of the solid line.
When using self-similar processes, we always have to consider the absence of
stationarity. This may occur with strongly varying sample data which leads
to stationary self-similar processes. To identify this behavior we measure e.g.
service times, interarrival times or data volume over a period of two minutes
and compare the values with a succeeding period of two minutes and another
period of four minutes. If the results correspond to a stationary self-similar
process, we have a suitable assumption for our model.
With all these findings we conclude that there is no easy recipe with which
one can dimension arbitrary IP networks. Nevertheless, we already identified
some important invariants:

• Poisson processes are still suitable for model connections initiated by the
users.

• For the modeling of transferred data volume, file sizes or service times, we
use heavy-tail distributions with a complementary distribution function
F c(x) = x−αL(x), whereas L is a slowly varying function and α < 2 or
even α < 1.

• If we sum up measured data we see a fractal structure which is not visible
for individual connections. The question arises as to how we can consider
an infinite variance as invariant for e.g. individual connection durations.
Again, this is an asymptotic result which we obtain as mean over a large
number of connections.

• The multi-layer architecture of protocols in the Internet significantly de-
termines the characteristics of appropriate fractal models.

Because an exact description or a common model cannot be found for IP
traffic (e.g. which α-stable process is suitable or which Hurst estimator is
best), broader models like multifractals were developed. In these models the
Hurst parameter is regarded, time-dependent, that is it depends on the time
scale. We will go into the details of these models in section 3.8.2.
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Classical Traffic Theory

There is nothing more practical than a good theory.

Immanuel Kant (18th century)

2.1 Introduction to Traffic Theory

2.1.1 Basic Examples

To illustrate the complexity of traffic theory we begin this chapter with three
basic examples. Each example refers to certain aspects of traffic theory briefly
and motivates the broad variety of models we will introduce in later sections
of this chapter.

PAR Protocols

We already noted in section 1.1.4 that protocols following positive acknowl-
edgment with retransmit (PAR protocols) are basic for reliable data transfers
as implemented with TCP. A sender is transmitting data packets to a receiver.
If the packets are received without error according to the underlying protocol,
those packets are acknowledged by a signal, called the ACK (positive acknowl-
edgment). If the ACKs are not received within a certain timeout interval, the
sender retransmits the respective packets. This procedure is repeated until
the sender receives an ACK for each transmitted packet or a given number
of retransmits is reached and an error message is delivered to the respective
application.
We denote by ηN the transmission time and by τ the delay, caused by a single
retransmission cycle. We want to compute the virtual transmission time ην .
This is the actual time for the successful transmission. We have to impose a
certain probability for the failure transmission, which we denote by pη. So we
have by assuming the independence of the repeated transmission:

• with a probability of 1 − pη the virtual transmission time ην = η and
• with probability pη an additional transmission time of η + τ for ην .

Considering the packet arrival time, we get a classical traffic model, where the
serving time is the virtual transmission time. As we will see in section 2.8.2,
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this is a so called one level GI/G/1 system, assuming general distributed
arrival and serving time. As expected the analysis will provide e.g. queueing
time and traffic load depending on the error probability pη.

Data Transmission

To give another example for the application of the classical traffic theory,
we consider the basic concept of data transmission using the packet switched
technique. As described in section 3.4.3 we apply the most basic model, given
in the figure 2.1.

Fig. 2.1. Scheme of incoming and outgoing data transmission at a router on the
packet level

It corresponds to the packet or burst level, which we discussed in section
1.2.1 and explained by the figure 1.5. We can consider each of the packets as
demands, which have to directed in the router resp. server to further outgoing
lines. These packets arrive with a certain rate, depending e.g. on the user
behavior. This is determined e.g. by the dial in of all users into the Internet or
intranet and indicates the interarrival times of the packets. Thus, the incoming
stream is modeled as the arrival process. The router resp. server plays the rôle
of the serving part of the traffic model. Here, depending of the future structure
of the net and the destination of each of the transmitted data, these packets
are distributed or served. Hence, we will call this the serving process. Since
the incoming streams may surpass the outgoing capacity, we will observe an
storage of data prior to the further transmission. Thus, these packets have to
wait and will go into the queueing. We will denote this as the waiting room
and the corresponding process the queueing process.

Call Attempts in a Cellular Mobile System

Let’s consider a cell in a mobile communication system, more precisely in the
most prominent global system for mobile communication, the Global System
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for Mobile Communications (GSM). This system is the most successful cellular
communication system which was introduced in 1991, mainly in Europe and
with adjustments in the USA and Japan. It has been based from the outset
on the already existing large variety of different cellular systems. In GSM
several new technologies entered the mobile communication, where, next to
the unique standardization, we encounter the first time a digital transmission
technique on the air interface. For our present purpose we have to know that
the area covered by the mobile communication is split into a beehive-like
structure, i.e. into several cells, each equipped with one base station or Base
Transceiver Station (BTS). Every mobile station can get in contact with this
fixed station, where data (mostly the encoded speech) is transferred via fixed
line, finally to the core network for further handling.
The basic transmission technique on the air interface is a combination of
time and frequency multiplex, since each user has to be separated from the
other. To avoid interference between neighbouring cells, network management
has to apply a careful frequency planning for each cell, a fact which can
be neglected for the Universal Mobile Telecommunications System (UMTS)
technique. Guard bands have to be implied as well.

• Time multiplex: Each frequency band is splitted in 8 time slots, where for
each second frequency multiplex channel one channel is used for service
transmission.

• Frequency multiplex: For each user there exits a pair of frequencies – the
upper frequency for download the lower one for upload. In GSM900 the
first and mostly used standard the band 935 to 960 MHz are receiver
frequency and 890 to 915 MHz is the upload frequency band. With a
distant of 200 kHz a maximum of 124 channel pairs can be provided.

The basic quality of service in GSM is that a certain blocking of incoming call
attempts are not allowed to be surpassed by a fixed given probability. For the
modeling of the GSM cell we use:

• Serving process: In each cell we have n given frequency pairs for the voice
transmission. They build the serving units. The duration of a call is de-
scribe as serving time by a random variable η. An accepted call will occupy
a pair of channel, i.e. a serving unit. If all serving units resp. channel pairs
are occupied, the next incoming call is blocked and thus, rejected. We
encounter a pure loss system.

• Arrival process: In each cell we find a finite number of m users, which are
‘silent’, ‘active’ or ‘idle’. We can determine three kinds of arrival processes.
– Arrival process with finite sources: we have m users, i.e. a finite number.

The aggregated traffic is the compound of all users in the state ‘silent’
(see section 2.4.3).

– Arrival process with infinite sources: suppose the number m of users is
sufficient large. Then we can approximate the system by a model with
infinite sources. This model is easier to handle and leads to the well
known Erlang formula (see section 2.4.1).
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– Model with call repetition: in reality an overload situation can be de-
tected, which emerges faster, since usually rejected call in a blocking
situation try to repeat the call in decreasing time intervals (so called
snow ball effect) (see section 2.4.3).

2.1.2 Basic Processes and Kendall Notation

The classical model in the traffic theory can be divided into three basic pro-
cesses: arrival, serving and state processes. We briefly summarize the main
characteristics of these three models.

Arrival Process

The incoming demands are modeled as discrete time spots. They can include
call attempts in the telecommunication, data packets or data units as observed
in high speed networks like ATM. We can divide this class of arrival processes
into single or group arrivals. The time between two succeeding arrivals is called
interarrival time and represents a central issue in modeling (fig. 2.2).

ξ1 ξ2 ξ3 ξ4 ξ5

T1 T2 T3 T4 T5

t

Fig. 2.2. Arrival process: arrival times Ti and interarrival times ξi

Serving Process

After its arrival the demand is handed over to the serving process. This leads
to a number of demands in the serving process (a discrete process) and to
the serving time (a time continuous process). The interarrival times as the
serving time (serving process) are often modeled as Markov processes, i.e. we
consider both processes as memoryless. It is assumed that the remaining time
has the same distribution as the whole interarrival or serving time. Here, the
remaining time is the time left in the serving process (fig. 2.3).

State Process

Often two kinds of state processes are considered:

• Number of demands in the system: Here, we have a discrete process. For
example every incoming call increases the number of demands, where each
of these calls could be served or fail.
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Fig. 2.3. Serving process: arrival times Ti and service times ηi

• Residual work in the system: Every incoming demand increases the remain-
ing amount of work. The residual work is not identical with the serving
time, since we have to consider the waiting time in addition. The resid-
ual time will decrease continuously and thus, we deal with a continuous
process (fig. 2.4).

Fig. 2.4. State process: upper arrows mark arrivals, lower arrows departures of
demands; gray shaded areas the number of demands in the system

We can represent arrival and serving processes in a short notation, the so called
Kendall notation, e.g. M/M/n− S. Here, the first symbol reflects the arrival
process, the second one the serving process, with n we indicate the number of
possible simultaneous serving processes and S is the number of waiting places.
In the above example the symbol M means that we have chosen a ‘Markov’
process as arrival and serving process. If we do not assume a Markov process
– and this happens especially in the IP serving processes – then we use the
notation M/G/n−S, GI/M/n−S or GI/G/n−S. Here, the symbol G means
‘generally’ distributed resp. GI ‘generally independent’ distributed. Hence, the
arrivals (resp. calls or initializations of Internet connections) are stochasticly
independent. The distribution of arrival resp. serving processes are arbitrary.

2.1.3 Basic Properties of Exponential Distributions

We call a distribution Fξ(t) = 1 − e−αt with density fα(x) = αe−αx, the
exponential distribution for α, where the parameter α is called intensity. If we
choose independent RV ξ1, . . . , ξk for a k ∈ N exponential distributed with
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the same intensity λ, then we call the distribution of the sum ξ =
∑k
i=1 ξi the

Erlang-k distribution.
We want to cite an important property of exponential distributions. To do so,
let ξ be a random variable, which e.g. represents the serving time (like the
duration of a call). We say that ξ is memoryless, if the conditional probability
that the serving time lasts further s time units is independent of the already
time passed t, i.e.

P(ξ > s + t | ξ > t) = P(ξ > s | ξ > 0), s, t ≥ 0

Now, we assume in addition that P(ξ > t) > 0 (a call could last arbitrary
long). We have according to the definition of conditional probability

P(ξ > s + t | ξ > t) =
P(ξ > s + t)

P(ξ > t)

If ξ is exponential distributed for an intensity λ, then we conclude

P(ξ > s + t)
P(ξ > t)

=
e−λ(s+t)

e−λt
= e−λs = P(ξ > s | ξ > 0)

where we remark that P(ξ > 0) = 1, since calls always last a certain time.
Thus, the exponential distribution is memoryless. But we have even more.

Theorem 2.1. Let ξ be a random variable, which is memoryless. In addition
we assume P(ξ ≤ 0) = 0 and P(ξ > t) > 0 for all t ≥ 0. Then there is a λ > 0,
such that ξ is exponential distributed according to λ.

This theorem is of great importance for our purposes of IP traffic modeling,
since we can also assume in the case of IP traffic P(ξ ≤ 0) = 0 and P(ξ > t) > 0
(for the time of data transmission). Thus, we can conclude: If the statistic
data will reveal that the connection time is not exponential distributed, then
according to the above theorem the random variable cannot be memoryless.
For modeling with stochastic processes this is of decisive importance.

2.2 Kolmogorov Equation

We begin with a discrete process (Xt)t∈N, i.e. a process with a discrete pa-
rameter space and select a sequence of succeeding time spots t0, t1, . . . , tn. We
raise the question for a Markov process: If the state depends at time tn+1

only on the preceding tn, can we fix a process only by knowing its transition
probabilities (i.e. the conditional probabilities)

pij(tn, tn+1) = P(Xtn+1 = j |Xtn = i)

If the transition behavior is identical for all time spots, then we call the process
homogeneous. Then, we have for all n
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pij(tn, tn+1) = pij(tn+1 − tn) = pij(∆t)

Since each demand can either stay in state i or reach a new one, we have the
completeness relation

∑

j

pij(∆t) = 1, for all ∆t > 0

Accordingly, we define the transitions from i to j of the transition probability
of a homogeneous process in dependence of time t and represent all transition
probabilities in a matrix form. Here, the i-th row and the j-th column show
the transition probability from state i to j

P(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

p00(t) p01(t) . . . p0j(t) . . .
p10(t) p11(t) . . . p1j(t) . . .

...
...

. . .
...

. . .
pi0(t) pi1(t) . . . pij(t) . . .

...
...

. . . . . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

With this representation we can formulate the Chapman-Kolmogorov equa-
tion. It describes the relation of the transition probability between the time
spots t and t + ∆t, ∆t > 0

P(t + ∆t) = P(t)P(∆t)

or if we represent it for every point (i, j) in the left matrix

pij(t + ∆t) =
∑

k

pik(t)pkj(∆t) (2.1)

We reformulate this expression and divide by ∆t

pij(t + ∆t) − pij(t)
∆t

=

∑
k �=j pik(t)pkj(∆t)

∆t
− pij(t)(1 − pjj(t))

∆t

We assume the existence of all appearing limits and investigate, what comes
out, if the time difference ∆t tends to 0. By this, we obtain different intensities

lim
∆t↓0

pij(t + ∆t) − pij(t)
∆t

=
d

dt
pij(t)

(representing the first derivative of the transition probabilities pij(t) at time t)

lim
∆t↓0

pkj(∆t)
∆t

= qkj , k �= j

(this is the transition probability density for the transition k → j)
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lim
∆t↓0

(1 − pjj(t))
∆t

= qj =
∑

k �=j
qjk

(we consider this as the transition probability density for leaving the state j).
These values describe the tendency in changing the transition probability. The
expression lim∆t↓0 means that ∆t tends to 0 from positive values, thus, from
‘above’. The Chapman-Kolmogorov equation can be restated after a limiting
process to

d

dt
pij(t) =

∑

k �=j
qkjpik(t) − qjpij(t)

Writing the values qkj into a matrix, we obtain

Q(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q00(t) q01(t) . . . q0j(t) . . .
q10(t) q11(t) . . . q1j(t) . . .

...
...

. . .
...

. . .
qj0(t) qj1(t) . . . qjj(t) . . .

...
...

. . .
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since
∑
k qjk = 0, we have for the probability for remaining in state j

qjj =
∑

k �=j
qjk = −qj

This leads to the Kolmogorov forward equation for Markov processes, a system
of differential equations formulated in matrix notation

dP(t)
dt

= P(t)Q

2.2.1 State Probability

We denote by x(j, t) = P(Xt = j) the probability that the process is in the
state j at time t. We can express this by applying conditional probability and
get

x(j, t) =
∑

i

P(Xt = j |X0 = i)P(X0 = i) =
∑

i

x(i, 0)pij(t)

Multiplying the Kolmogorov forward equation with x(i, 0) and summing over
all i, this implies

∑

i

d

dt
pij(t)x(i, 0) =

⎛

⎝
∑

k �=j
qkj

(
∑

i

x(i, 0)pik(t)

)⎞

⎠−
(
∑

i

x(i, 0)pij(t)qj

)

Finally we obtain a system of partial differential equations, the so called Kol-
mogorov forward equations for state probabilities
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∂

∂t
x(i, t) =

∑

k �=j
qkjx(k, t) − qjx(j, t) (2.2)

and the completeness relation
∑

j

x(j, t) = 1

With this, one describes the development of the state process Xt, who is
in state j at time t. With the help of differential equation we can compute
the time dependent state probabilities for the general case of an instationary
Markov process. An instationary view is e.g. necessary for the overload be-
havior of server and communication systems. But for stationary processes we
can simplify this problem to ordinary differential equation.

2.2.2 Stationary State Equation

In this case we have that the process is not dependent of time, i.e.

d

dt
P(Xt = j) =

∂

∂t
x(j, t) = 0 (2.3)

With this, we obtain for the state probability

x(j) = lim
t→∞

P(Xt = j)

The system of partial differential equations (2.2) will turn with the help of
(2.3) into a more simple system of linear equations

qjx(j) =
∑

k �=j
qkjx(k) and

∑

j

x(j) = 1

Example 2.2. Transition probabilities for a Poisson process: We consider a
state process with Poisson arrivals. For the distribution of the interarrival
time ξ as for the recurrence time R we have (see also (2.23)

Fξ(t) = FR(t) = 1 − e−λt

We denote by Xt the state process at time t, e.g. the numbers of call attempts
or the numbers of dial-ins to the network at time t. Let Xt = i. The probability
density for the transition of i to i + 1 can be computed according to

qi,i+1 = lim
∆t→0

pi,i+1(∆t)
∆t

= lim
∆t→0

P(R ≤ ∆t)
∆t

= lim
∆t→0

1 − e−λ∆t

∆t

= lim
∆t→0

1 −
(
1 − λ∆t

t + (λ∆1!)2

2! + . . .
)

∆t
= λ
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Example 2.3. Transition probabilities with exponential distributed serving
time (call duration): This time we consider the call duration. For that we
start more generally and denote by Xt the number of all enduring servings at
time t. Let k be active and let the serving time be exponential distributed.
For the distribution of the serving time η and the recurrence time R it holds

Fη(t) = FR(t) = 1 − e−µt

The time until the next end of serving (or the end of a call) is the minimum
of all recurrence times of the independent calls

R∗ = min(R1, . . . , Rk)

Thus, we get for the distribution of R∗

FR∗ = 1 −
k∏

i=1

(1 − FR(t)) = 1 − e−kµt

For computing the probability of the transition of k to k−1, i.e. the probability
for the end of a call and the resulting serving of the remaining k− 1 calls, we
obtain

qk,k−1 = lim
∆t→0

pk,k−1(∆t)
∆t

= lim
∆t→0

P(R∗ ≤ ∆t)
∆t

= lim
∆t→0

1 − e−kµ∆t

∆t

= lim
∆t→0

1 −
(
1 − kµ∆t

t + (kµ∆1!)2

2! + . . .
)

∆t
= kµ

2.3 Transition Processes

Birth and death processes are fundamental for the description in telecommu-
nication. If we want to describe Markov processes, we need the list of the
transitions probability rates qij , to determine the transition probability in the
matrix according to the Kolmogorov forward equation.

Fig. 2.5. State transition diagram for birth and death processes

We interpret the state transition diagram from figure 2.5. The single birth
rates are λi, i.e. the transition from i to i + 1. The death rate is given by µi
and indicates the transition from i to i− 1. Thus, we get
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qij =

⎧
⎪⎨

⎪⎩

λi for i = 0, 1, . . . , n− 1, j = i + 1
µi for i = 1, 2, . . . , n, j = i− 1
0 else

The next steps consist in splitting into instationary and stationary birth and
death processes, as well as the formulation of the respective Kolmogorov for-
ward equation for i = 1, . . . , n− 1

∂

∂t
x(0, t) = −λ0x(0, t) + µ1x(1, t)

∂

∂t
x(i, t) = −(λi + µi)x(i, t) + λi−1x(i− 1, t) + µi+1x(i + 1, t)

∂

∂t
x(n, t) = −µnx(n, t) + λn−1x(n− 1, t)

In the above problem we solve the partial differential equation using the ex-
ample of Poisson processes as pure birth process. For this let Xt denote the
number of incidents during the time period t, e.g. the active telephone con-
nection. Then we get for the state probability

x(i, t) = P(Xt = i)

We start at time t = 0 from an empty system, i.e. we choose X0 = 0. As exam-
ple we pick a pure birth process, i.e we have a birth rate λ and consequently
a death rate µ = 0. Thus,

qij =

{
λ for i = 0, 1, . . . , n− 1, j = i + 1
0 else

The differential equations reads as

∂

∂t
x(0, t) = −λx(0, t)

∂

∂t
x(i, t) = −λx(i, t) + λx(i− 1, t), i = 1, 2, . . .

With the Laplace transform ΦX (see e.g. [74]) we deduce

x(i, t) LT↔ ΦX(i, s)
∂

∂t
x(i, t) LT↔ sΦX(i, s) − x(i, 0)

The system of differential equations turns into a system of linear equations

sΦX(0, s) − 1 = −λΦX(0, s)
sΦX(i, s) − 0 = −λΦX(i, s) + λΦX(i− 1, s), i = 1, 2, . . .

With successive insertions we obtain
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ΦX(i, s) =
λi

(s + λ)i+1

The inverse Laplace transform gives

x(i, t) = P(Xt = i) = e−λt
(λt)i

i!
, with i = 0, 1, . . . , t ≥ 0.

Hence, (Xt) is a Poisson process, derived as pure birth process.

2.4 Pure Markov Systems M/M/n

2.4.1 Loss Systems M/M/n

Description of the Model

We treat the special case of a loss system M/M/n as first important birth and
death process. Figure 2.6 represents the components of the system. For the

Fig. 2.6. Loss System M/M/n

model we choose the following assumptions:

• Poisson arrival process (call attempts): arrival rate λ (birth rate), i.e. the
interarrival time ξ is exponential distributed w.r.t. λ. The distribution of
the interarrival times reads as

Fξ(t) = 1 − e−λt and E(ξ) =
1
λ

• Exponential distributed serving time η (call duration): serving rate µ, i.e.
the serving time η is exponential distributed w.r.t. µ

Fη(t) = 1 − e−µt and E(η) =
1
µ

• Occupation of n places and blocking, if all places are occupied.
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Erlang Loss Formula

We assume that the initial value of the state process runs at the beginning
through an instationary phase and ends up in a stationary state. Since the
process will then be time independent, we will describe it by the random
variable X

x(i) = P(Xt = i) = P(X = i)

We consider two fundamental events:

• Arrival event: The transition X = i to X = i + 1 happens according to a
Poisson arrival process with rate λ, if the demands (calls) are all served.
If X = n, then all further demands are rejected. Thus, we have a pure loss
system.

• Serving end: If X = i, we have i demands in the serving phase (i calls).
For an exponential distributed serving time we know that the transition
from X = i to X = i− 1 happens with a rate of iµ.

Thus, we obtain for the transition probability rates

qij =

⎧
⎪⎨

⎪⎩

λ for i = 0, 1, . . . , n− 1, j = i + 1
iµ for i = 1, 2, . . . , n, j = i− 1
0 else

A state transition diagram of a loss system M/M/n can be found in figure
2.7.

Fig. 2.7. State transition diagram for loss system M/M/n

The linear system of equations for the solution of the state probabilities is

λx(i− 1) = iµx(i), i = 1, 2, . . . , n and
n∑

i=0

x(i) = 1

Setting α = λ
µ , called the offer, we obtain the respective state probabilities

by successive insertion

x(i) =
αi

i!∑n
k=0

αk

k!

(2.4)

This leads for the blocking probability to the Erlang-B formula or Erlang
formula for a loss system.
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Blocking Probabilities

An important key value of the loss system is the blocking probability. The
system is in a blocked state, if we have X = n. That means the blocking
probability or Erlang-B formula can be computed according to

pB = x(n) =
αn

n!∑n
k=0

αk

k!

Erlang-B formula (2.5)

The traffic value Y is the average number of occupied serving units, which is
given by the product of the average serving time and the mean rate of accepted
demands. The mean rate of accepted demands is gained as the product of
arrival rate and the non-blocking probability, thus, λ(1 − pB). This can be
expressed in the formula

Y = λ(1 − pB)
1
µ

= α(1 − pB) Unit: Erlang

We consider a bundle of lines in a telephone network and deduce the following
facts:

• Arrival process: As arrival process we have the call attempts for occupation
of the bundle of lines. For sufficient large number of telephone users we can
assume a Poisson arrival process. This leads to a simple analysis, whose
assumption is proved by empirical study.

• Serving process: If the call is accepted the line is busy. The line corresponds
to a serving unit, thus, the serving time to the call duration. If all n lines
are busy, a call attempt is rejected.

• Multiplexing gain: In telephone networks line bundles are built according
the principle that large bundles are more efficient than smaller ones. This
gain can be extracted from the Erlang formula. If we denote by n the
number of lines and with Y the traffic value as indicated above, then we
have by Y/n the average traffic value per line

From the relation
Y

n
= λ(1 − pB)

1
nµ

=
α(1 − pB)

n

we deduce the following:

• If λ and pB are fixed, then a growing n gives an increasing coefficient and
hence, an increasing α a larger rate as n. Thus, the fraction Y

n increases.
Each line can serve more traffic (calls).

• The value Y
n can be regarded as multiplexing gain. But the curve Y

n gets
more horizontal for constant pB if n grows and approaches a saturation.
The important interpretation of this evidence is that larger networks do
not provide necessarily a bigger gain!
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Multiplexing Gain

We start with a figure for the multiplexing of several lines in a telecommu-
nication network. We consider up to 150 lines. In fact, at the beginning all
lines are separated, while we bundle up to 150 bundles in the final system.
The gain will be expressed by Y/N , where N expresses the number of lines
combined together.
For demonstrating the multiplexing gain, we just consider for a given n, λ > 0
and µ two exactly identical loss systems, say 1a and 1b. For the system 1a
and 1b we can compute the blocking probability p1,B according to the Erlang
formula (2.4). Now we multiplex both systems and obtain a new loss system,
called system 2, with 2n serving units, 2λ as arrival intensity and the same µ.
Hence, the new load α2 = 2α. The major observation is (see figure 2.8)

p2,B < p1,B
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Fig. 2.8. Blocking probability (Erlang-B formula) depending on the number of lines
n and the traffic load α

This phenomena can be explained by the fact that in two separated systems
one demand can be rejected, since its subsystem is occupied, while the other
subsystem has still free capacity. In the compounded system 2 the free capacity
is incorporated in the whole system and the new demand is not rejected. For
illustrating this we look at the following example.

Example 2.4. Consider a telephone phone system between location A and B.
We have an arrival rate of 2λ = 0.8 calls per second. The duration of a call η in
B is exponential distributed with mean E(η) = 100 seconds. Thus the serving
rate µ = 1

E(η) = 0.01 calls per second. An incoming call meeting an occupied
line is rejected. Thus we have a loss system M/M/n, where the results can be
transformed to the general case of M/GI/n. We consider two alternative ways
of installations:
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• System 1: First we consider two subsystems with each n = 50 switching
servers, each having an arrival rate of λ1 = 0.4 transactions per second.
The load in each system is α1 = λ1 · E(η) = 40 Erl. The load per server
is ρ1 = λ1·E(η)

50 = 4
5 Erl. Thus, each line is loaded up to 80%. The loss

probability reads as p1,B = 0.0187 or 1.87%. For the traffic value we have
each Y1 = 39.25. Thus, over all Y = 78.5.

• System 2: Now we combine the two subsystems to a whole of n = 100
switching servers, each having, thus, an arrival rate of λ2 = 2λ1 = 0.8
transactions per second. The load in each system is a2 = λ2 · E(η) =
120 Erl. The load per server is ρ2 = λ2·E(η)

100 = 4
5 Erl. Thus, each server has

a traffic value of 80%. The loss probability turns out to be p2,B = 0.004
or 0.4%. The traffic value over all in the system II reads as Y2 = 79.68.

The example reveals impressively that the traffic load increases from 78.5 to
79.68, and even more the loss probability decreases drastically from 1.87%
to 0.4%. Figure 2.9 depicts that with an increase of lines the multiplex gain
increases rapidly – the free traffic capacity per line increases up to 1, but the
gain for growing numbers of n is fast getting slowlier, for all traffic amounts
α.
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Fig. 2.9. Multiplexing gain M/M/n: Depending on the traffic load α and the number
of coumpounded lines. We see that with increasing n the gain grows to 1, though
its increase gets significant slowlier starting from 40. This indicates that more lines
need not increase the gain in the same scale

2.4.2 Queueing Systems M/M/n

Description of the Model

Similar to the loss system we choose for the queueing system M/M/n the
following assumptions:
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• Poisson arrival process (call attempts): arrival rate λ (birth rate), i.e. the
interarrival time ξ is exponential distributed

Fξ(t) = 1 − e−λt and E(ξ) =
1
λ

• Exponential distributed serving time η (call duration): service rate µ, i.e.
the service time µ is exponential distributed

Fη(t) = 1 − e−µt and E(η) =
1
µ

• Occupation of n places and an infinite queue.

Figure 2.10 shows a representation of a queueing system M/M/n. For a pure

Fig. 2.10. Queueing System M/M/n

queueing system the load is identical to the offer and thus,

α =
λ

µ
=

λ

E(η)

For the load of a unit we obtain the loading coefficient

ν =
α

n

Now we have λE(η) as average number of arrivals during a serving time. If
λE(η) grows more than n, then the system will become unstable. Hence, we
have to introduce a stability criteria

ν =
α

n
< 1 or α < n

Erlang-C Formula

Since beside the demands Xη(t) in the serving system there exist demands in
the queue, we introduce another process of demands in the queue XW (t). We
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have due to the restriction of n serving places Xη(t) ≤ n. If Xη(t) < n, so we
deduce XW (t) = 0.
The state process is time continuous, state discrete and Markovian, since
the arrival and serving process are Markovian. If the process turns to be
stationary, then we denote the demand process by Xη resp. XW . According
to

x(i) = P(X(t) = i) = P(X = i)

we can determine the transition probabilities as in the loss system:

• Arrival event: X = i −→ X = i + 1 with rate λ and i = 0, 1, 2, . . .
• Serving end:

– If X ≤ n, then we assume X = i ≤ n. As in the loss system we have
the transition X = i −→ X = i− 1 with rate (death rate) iµ.

– If X > n, then all serving places are occupied and XW = X−n. Hence,
it follows as for X ≤ n the transition X = i −→ X = i − 1 with rate
nµ and i = n + 1, n + 2, . . .

The state transition diagram for the queueing system M/M/n can be seen in
figure 2.11.

Fig. 2.11. State transition diagram for queueing system M/M/n

Thus, we obtain the Kolmogorov equations

λx(i− 1) = iµx(i), i = 1, 2, . . . , n
λx(i− 1) = nµx(i), i = n + 1, . . .

∞∑

i=0

x(i) = 1 (2.6)

This simple system of linear equations can successively be solved, and we get

x(i) =

{
x(0)α

i

i! for i = 0, 1, 2, . . . , n
x(0)α

n

n! (αn )i−n = x(n)νi−n for i = n + 1, n + 2, . . .

Hence, we only need to determine x(0) and obtain from the normalization
equation (2.6) with ν < 1

x(0)−1 =
n−1∑

k=0

αk

k!
+

αn

n!

∞∑

k=0

νk =
n−1∑

k=0

αk

k!
+

αn

n!
1

1 − ν
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For ν ≥ 1 the series
∑∞
k=0 ν

k does not converge. The reasoning can immedi-
ately be deduced. If ν ≥ 1 holds, then we know that the mean offer is always
bigger than the number of serving units. The system gets unstable.
As in the system of the loss system, we determine some system characteristics.
Before we continue with considering the queueing probability in the next
subsection, we want to cite a standard result in the classical traffic theory. We
formulate the theorem of Little.

Proposition 2.5. If λ > 0 is the intensity of the arrival process and if η > 0
is the serving time of a demand, then we have for the average number E(Ψ)
of all demands in the system

Y = E(Ψ) = λ · (η)

For a proof see [253, p. 12] resp. [11, p. 240].

Queueing Probability

According to the model a unit has to wait before being served, if X = n holds.
Thus, we get for the queueing probability the sum of all state probabilities is
larger or equal than n, thus,

pW =
∞∑

i=n

x(i)

Expressing this with the help of α, we find the Erlang queueing formula or
Erlang-C formula

pW =
αn

n!(1−ν)
∑n−1
i=0

αi

i! + αn

n!(1−ν)
(2.7)

The figure 2.12 depicts the decrease for the waiting probability if two separated
systems are compounded. We consider the traffic value as the mean number
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Fig. 2.12. Queueing probability pW depending on the traffic load α with n = 5 for
two separated systems, thus queues, and a compounded system with one queue
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of occupied serving units Υ . With the same notation we get

Y = E(Υ ) =
n−1∑

i=0

ix(i) +
∞∑

i=n

x(i) = α Unit: Erlang

According to the Little formula from proposition 2.5 we can express this di-
rectly

Y =
λ

µ
= α

The figure 2.13 shows, depending on the traffic load ρ and for different mul-
tiplexed lines, the logarithmic queueing time probability.
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Fig. 2.13. Logarithmic queueing probability (Erlang formula) for different multi-
plexed lines from n = 1, 2, 4, 5 to 10

Queueing Distribution

According to the definition it coincides with the expectation of the numbers
of units in the queue, thus, we get the mean queueing length Ψ

Ψ = E(XW ) =
∞∑

i=n

(i− n)x(i) =
∞∑

i=n

(i− n)x(n)νi−n = x(n)
∞∑

i=n

iνi

= x(n)
ν

(1 − ν)2
= x(0)

αn

n!
ν

(1 − ν)2

According to our formula for the queueing probability we deduce

Ψ = pW
ν

1 − ν

With this we can now state the mean queueing or waiting time. For this we
split our system into two kinds of waiting times, hence, two subsystems I
and II:
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• I: the mean waiting time of all demands E(W ) and
• II: the mean waiting time of the queueing elements E(W1).

We start with the investigation of the subsystem I, the waiting time of all
demands:

• The mean arrival rate is λI = λ.
• The average number of demands equals the sum of all demands in the

waiting queue and of the serving units

E(XI) = E(XW ) + E(Xη) = Ψ + Y

• The average time spent in the system is the sum of the waiting time
according to all demands and the serving time

E(TI) = E(W ) + E(η)

The mean waiting time decreases, if two systems of each n lines are com-
pounded. The multiplexing gain is depicted in the figure 2.14 for n = 5. It
also reveals the intense increase approaching the value α= → 5, which is
equivalent to the relative traffic ρ → 1 in this situation. We selected two
disjoint regions of α for better understanding and used λ = 1
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Fig. 2.14. Mean waiting time E(W ) with respect to all demands, depending on the
traffic load α for three systems with each n = 5, the upper line represents three
separated systems, thus queues, the lower one compounded with only one queue

Using the Little formula, we deduce

λIE(TI) = E(XI)

and thus,

E(W ) =
Ψ

λ
(2.8)

Now we turn to the subsystem II. Here, we have a pure waiting queue:

• The mean arrival rate is λII = pWλ. This is the arrival rate of all demands
weighted by the waiting probability.
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• The average number of all demands in the system E(XII) equals the mean
queueing length, thus, E(XII) = ν.

• The average time spent in the system E(TII) equals the mean waiting time
according to all waiting elements, thus, E(W1).

With the Little formula we can deduce λIIE(TII) = E(XII) and hence,

E(W1) =
ν

pWλ
=

1
λ

ν

1 − ν

The figure 2.15 shows the mean queueing length E(W1) for different number
of lines, indicating that the length decreases for growing n for fixed ρ, while
the increase gets more intense with growing number of lines for ρ → 1.
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Fig. 2.15. Mean queueing length for multiplexed lines n = 1, 2, 4, 5, 10 and n = 100
(from above to below)

Important for the consideration of the waiting time is the queueing distribu-
tion, which is finally considered in this section of queueing systems. We start
with the queueing system using the First-In-First-Out (FIFO) principle. We
consider a sample demands arriving for the derivation of the distribution and
we want to compute the probability that this unit has a positive waiting time.
For this, we use the concept of the conditional probability, thus for t > 0

P(W > t |W > 0) =
P(W > t,W > 0)

P(W > 0)
=

P(W > t)
P(W > 0)

According to the derivation of the queueing probability we know

P(W > 0) = pW = x(n)
1

1 − ν

We use an arbitrary sample demand and want to investigate its way through
the system. At the arrival time it meets i elements in the system. A positive
waiting time gives

P(W > t |W > 0) =
∞∑

i=0

P(W > t |Φ = i + n)P(Φ = i + n)
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For this we have
P(Φ = i + n) = x(i + n) = x(n)νi

As first result we deduce

P(W > t |W > 0) =
∞∑

i=0

P(W > t |Φ = i + n)(1 − ν)νi

For computing the probability distribution P(W > t) we need a formula for
P(W > t |Φ = i + n).
At the arrival time our sample meets Φ = i + n demands. Thus, all serving
places are occupied and i elements are waiting in the queue. The period η∗

between two serving ends in this state is exponential distributed according to

Fη∗ = P(η∗ ≤ t) = 1 − e−nµt

The waiting time of the sample is built up as follows. First, we have to consider
the time between the arrival of the sample and the first serving end. This
is the forward recurrence time of η∗, which has, as derived later, the same
distribution as η∗ itself. Next, we compute the time from the first serving end
until the time spot, for which all i = Ψ − n are switched over to the serving
process. These are i intervals, each distributed as η∗. Hence, the waiting time
consists of i+ 1 intervals of the type η∗. The distribution of the waiting time
resembles an Erlang distribution of order (i + 1)

P(W > t |Φ = i + n) = e−nµt
i∑

k=0

(nµt)k

k!

Inserted in the above equation we deduce

P(W > t |W > 0) = e−nµt(1 − ν)
∞∑

i=0

i∑

k=0

νi
(nµt)k

k!

= e−nµt(1 − ν)
∞∑

i=0

(nµt)k

k!

i∑

k=0

νi

= e−(1−ν)nµt

Thus, it follows

P(W > t) = P(W > t |W > 0)P(W > 0)
= e−(1−ν)nµtpW

= 1 − FW (t)

and the waiting distribution is finally computed according to

FW (t) = 1 − e−(1−ν)nµtpW
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The figure 2.16 depicts the complementary waiting time distribution each for
two different number of multiplexed lines and three different values of relative
traffic load ρ in a logarithmic scale.
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Fig. 2.16. Complementary queueing time distribution for n = 10 (dotted lines, left
and right), n = 2 (solid lines, left) and n = 5 (solid lines, right), each for ρ = 0.3,
0.5, and 0.7 and µ = 1

The figure 2.17 demonstrates the relative load per line depending of traffic
load α and the multiplexed lines n.
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Fig. 2.17. Proportional occupancy of traffic amount per line depending on the
traffic load α and number of lines n.

2.4.3 Application to Teletraffic

Multiplexing Gain in Queueing Systems

Already in section 2.4.1 on loss systems we considered the multiplexing gain
in connection with telecommunication systems using the Erlang loss formula.
The basic result was that multiplexed systems reduce the blocking probability
compared to single systems. The compound system is working more efficiently.
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We want to follow that line in queueing systems as well. For this we consider
a simple configuration, which of course can be generalized, though the main
idea are already revealed in this situation:

• System I
– Consisting of two subsystems Ia and Ib of type M/M/n queueing sys-

tems.
– Subsystems Ia and Ib have identical serving places n and service rates.

The arrival process has the same rate λ = λ1.
– The waiting probability in system I is pW1 .
– The average waiting time of all demands is W1.

• System II
– All demands are served by a common system of 2·n units (multiplexing

of system I).
– We have one central queue, e.g. implemented as shared memory.
– The queueing system has 2 · n units and one arrival process with rate

λ2 = 2 · λ.
– The waiting probability of system II is denoted by pW2 .
– Let W2 be the waiting time of all demands.

We can easily detect (see also figures 2.12 and 2.14) using formulas (2.7) and
(2.8) that

pW2 < pW1 and W2 < W1

How can we explain this phenomena? Suppose a demand in subsystem Ia
arrives and encounters all service units occupied. Then it has to wait, though
there maybe a vacant spot in subsystem Ib. Since both systems are strictly
separated, the test demand in system Ia has to wait. In contrast in system II
this demand would be served immediately, which implies a reduction of the
waiting queue and mean waiting time.

Example 2.6. Consider a server system with arrival rate of 2λ1 = 1, 600 trans-
actions per second. The duration of one transaction η is exponential dis-
tributed with mean E(η) = 10 ms. Thus the serving rate µ = 1

E(η) = 100
transactions per second.

• System I: First we consider two subsystems with each n = 12 switching
servers, each having, thus, an arrival rate of λ1 = 800 transactions per
second. The load in each system is a1 = λ1 · E(η) = 8 Erl. The load per
server is ρ1 = λ1·E(η)

n = 2
3 Erl. Thus, each server is loaded up to 66.6%.

The waiting time probability according to (2.8) is pW1 = 0.14 or 14%, the
mean waiting time of all demands is E(W1) = 0.35 ms.

• System II: Now we combine the two subsystems to a whole of n = 24
switching servers, having thus, an arrival rate of λ2 = 2λ1 = 1, 600 trans-
actions per second. The load in each system is a2 = λ2 · E(η) = 16 Erl.
The load per server is ρ2 = λ2·E(η)

24 = 2
3 Erl. Thus, each server is loaded up

to 66.6%. The waiting time probability according to (2.8) is pW2 = 0.043
or 4.3%, the mean waiting time of all demands is E(W2) = 0.05 ms.
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The numerical example shows that multiplexing decreases the waiting time
probability significant from 14% to 4.3% and the mean waiting time falls from
0.35 ms to 0.05 ms, the seventh part.

Loss Systems with Finitely Many Sources

We consider the following model:

• There are n service units (e.g. ongoing calls) with exponential distributed
service time (call duration) Fη(t) = 1 − e−µt,E(η) = 1

µ .
• We have m > n incoming clients. Thus, the arrival process is not a Poisson

process, since we do not have infinite many sources.

The incoming user can be divided into two classes - the active and the silent
one.

• The active clients are just served. The sojourn time in the active phase
coincides with the serving time.

• The silent client stays in this idle mode until the next attempt is started.
Either the attempt is successful or the client is again blocked the client
returns into the idle mode. The duration of this idle phase I is exponential
distributed with parameter a, i.e. FI(t) = P(I ≤ t) = 1 − e−at.

State probabilities: From the macro state M, which are combined by several
micro states X = 0, 1, . . . , i− 1, we deduce the Kolmogorov equations:

(m− i + 1)τx(i− 1) = iµx(i), i = 1, 2, . . . , n and
n∑

i=0

x(i) = 1

Inserting successively reveals with ã = τ
µ

x(i) =

(
m
i

)
ãi

∑n
k=0

(
m
k

)
ãk

When do we observe a blocking? Here is the blocking probability

pB = xA(n) =

(
m−1
n

)
ãn

∑n
k=0

(
m−1
k

)
ãk

Engset formula

The radio-based network ALOHA was an early example of such a loss system
with finitely many sources, working with the phase model according to Erlang
(see e.g. [260]). With ALOHA, university campuses between Hawaiian islands
were connected over a shared radio channel. The basic idea of this network
was to omit a centralized approach granting access to the channel. In contrast,
a distributed algorithm was implemented at the cost of possible simultaneous
transmissions of several stations causing collisions on the shared channel. With
the so called Aloha protocol basic algorithms on the data link layer for channel
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access and retransmits in case of failures resp. collisions were implemented on
each station of the entire ALOHA network.
Started in late 1970, ALOHA is regarded today as the world’s first wireless
packet-switched network. The most prominent successor of the Aloha protocol
was Ethernet, which employed with Carrier Sense Multiple Access/Collision
Detection (CSMA/CD) a ‘polite’ version of the Aloha protocol. In CSMA/CD,
the stations are listening to the channel and waiting for a free period before
transmitting to avoid collisions with an already ongoing transmission (see e.g.
[143]). We remark that in the current Gigabit or 10 Gigabit Ethernet standard
different access protocols are implemented.

Example 2.7. We consider a mobile cell with finite sources in more detail now,
since we have already looked at the cellular system GSM in the introductory
examples. There we sketched how a mobile system works in principle. It is
a loss system with finitely many resources. This fact and together with the
Engset formula will be used for dimensioning the GSM cells. We present the
necessary ingredients:

• E(η) = 1
µ .

• α is the arrival rate of a user in the state ‘idle’. The load of a user in the
‘idle’ or silent state is Y = α · E(η) = α

µ Erl. Thus, the overall load in the
cell is a = m · Y = m · α · E(η) Erl. If m → ∞ we get approximately a
Poisson process with λ = α ·m. The number n of usable channels (which
implies the required frequencies) has to dimensioned in such a way that
the total offer should not surpass a given certain QoS threshold, expressed
by the blocking probability.

We consider certain further directions and specifications of the above Marko-
vian systems, which we shortly consider. For a detailed investigation the reader
should consult the literature.

Call Repetition with Finitely Many Resources

Though the above model may somehow describe the traffic within a mobile
cell, in a lot of situation rejected call attempts lead to a call repetition. In case
of a model with finitely many sources this has a decisive influence on the over
all traffic. Hence, this model is an extension of the previous one. We shortly
indicate the model description and note that a major application consists in
the traffic analysis of a mobile cell with call repetition. For further information
please consult [255, 257].
Instead of describing the model abstract, we change immediately to the situa-
tion of the telephone communication. We start with the user view. Thus a first
call attempt will be just denoted by ‘call’, while a repeated call after blocking
is denoted by ‘subsequent call’. In figure 2.18 we have depicted the model
from the user’s point of view. All parts are Markovian. Let’s characterize the
used RV:
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• Idle time: Time, where the source resp. telephone is not calling. We char-
acterize it by a exponential distributed RV

Fι(t) = P(ι ≤ t) = 1 − e−αt and E(ι) =
1
α

• Serving time resp. connection time: this is the duration of the active call,
again exponential distributed

Fη(t) = P(η ≤ t) = 1 − e−µt and E(η) =
1
µ

idle

active

waiting for
reattempt

α

µ
α0

αθ

α0(1 − θ)

Fig. 2.18. Call repetition with finitely many resources from the user’s point of view

• Inter-reattempt time: the time between the first call and the first repeated
call attempt resp. between the succeeding call attempts. The repeating in-
tervals are independent of each other and exponential distributed assumed

F	(t) = P(� ≤ t) = 1 − e−α0t and E(�) =
1
α0

In general the mean ‘interreattempt’ time is decisive smaller than the mean
idle time, i.e. E(ϕ) < E.(ι). In figure 2.19 the transitions of all states are
depicted. We included the factor θ to indicate the probability how impatient
the user is. Usually the parameter decreases with the number of call attempts,
but we assume it constant.
We incorporate all parts into the general model, which is sketched in the figure
2.19 and indicate its basic components:

• We have a finite number m of users, forming the arrival space. The traffic
intensity depends on the number of users in the ‘idle’ phase.

• The number n of serving spots (e.g. channels in a cell of a mobile commu-
nication system) characterizing the serving space. As done for the users,
it is exponential distributed with intensity µ. We have a loss system, pro-
vided an incoming call meets n occupied serving units. By a probability
of θ ∈ ]0, 1[ the call is repeated or with 1 − θ stopped.

• The repetition space, where at most m− n calls wait for reattempts, has
a leaving rate of α0 as indicated in figure 2.19.
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Fig. 2.19. Call reattempts with finite number of users

Reduction Methods for Markovian Systems

We shortly summarize this area and refer for a detailed description to the
literature [255]. In many communication system, we do not have a one di-
mensional state space, as seen in the classical telephone system: everyone just
calls, there is no quality or service difference. Especially in mobile communi-
cation but also the use of the Internet often offers different resource classes to
the user. This leads to a higher dimensional state process. Since one can allow
combination between classes, the increase of resource classes leads to an ex-
ponential increase in the states. This again makes numerical implementations
more difficult.
Since we stick to the simple Markovian case, for each class one has to analyze
a M/M/n loss system. So higher dimension for the state space implies an
exponential increase of numerical blocking analysis. The major method is
introduced by Kaufman and Roberts [135].
We briefly describe the model. There are l resources, which may e.g. be the
number of available orthogonal codes in the CDMA used in UMTS, the ca-
pacity of a CPU or the capacity of a plain line. We assume c different classes
of users requiring different applications or services. A user in class c is part
of a Poisson process with the arrival rate λc. The serving time is described
by the RV ηc and with rate µc. Each user of class c demands an amount
ac. Assuming at the arrival time spot we do have as resources available, the
new user occupies all resources. After the serving time ηc the user leaves the
system.
As remarked above, since we do not require the detailed description for the
further study, we do not go deeper in the material. The basic idea consists
in determination of the state probability using the reduction method due to
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Kaufman and Roberts with the help of recursion. It is based on the reduc-
tion of the higher dimensional state space to a one dimensional one, whose
states corresponds to the occupied resources. In accordance, in one particu-
lar state all higher dimensional states are compounded in occupying an equal
number of resources. Instead of computing all state equation for all classes it
suffices in determination of the blocking probability and the computation of
the distribution of occupied resources.

2.5 Special Traffic Models

In this section we will sketch some special traffic models and discuss some
of the main results. A detailed description can be found in monographs as
[21, 30].

2.5.1 Loss Systems M/M/∞

The loss system M/M/∞ is neither a queueing nor a pure loss system. Since
each demand gets on a serving spot, we obtain a pure birth and death process
with the transition probability rates

qi,i+1 = λ, i = 0, 1, . . . and qi,i−1 = iµ, i = 1, 2, . . .

As state probabilities in the stationary case we get (provided we have n → ∞
in the system M/M/n− 0)

xi =
ρi

i!
e−ρ

with ρ = λ
µ . Thus, the mean number of serving elements equals the traffic

load
E(X) = ρ

We will consider a generalization of M/G/∞ in chapter 3, because it was one
of the first models in IP traffic theory, explaining the so called asymptotic
self-similarity.

2.5.2 Queueing Systems of Engset

We give a short description of the queueing system of Engset. From s sources
demands arrive independently according to a Poisson process with intensity λ
and are distributed on n ≤ m serving channels. Again the serving procedures
are stochasticly independent and exponential distributed with parameter µ.
In contrast to the loss system of Engset rejected units are stored in queueing
space with m − n spots. Each unit receive at least one waiting place. The
source cannot send new demands to the system, if there are units in the serving
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procedure or in the waiting space. E.g. under the constraint Xt = i, only m−i
sources can be active. We obtain for the stationary state probabilities

xi =

{(
m
i

)
ρix0 for 1 ≤ i ≤ n
m!

ni−nn!(m−i)!ρ
ix0 for n ≤ i ≤ m

and for the empty probability with ρ = λ
µ as traffic intensity

x0 =

(
n∑

i=1

(
m

i

)
ρi +

m∑

i=n+1

m!
ni−nn!(m− i)!

ρi

)−1

If we allow n > m, every demand finds a serving channel and the system is no
longer a queueing system. It is binomial distributed with parameters m and
λ
λ+µ .

2.5.3 Queueing Loss Systems

Here, we have a system of the form M/M/n−s. We start with the description
of the model:

• The arrival process is a Poisson process with interarrival times exponential
distributed according to the rate λ.

• We have n serving spots. The serving time is again exponential distributed
according to µ.

• There are s queueing spots.
• Each demand to serve, which neither finds a waiting spot nor a serving

channel, is lost.
• As above we have ρ = λ

µ < n, i.e. we assume a = ρ
n < 1, to keep the

system stable.

First we obtain the state space Z = {0, 1, . . . , n+ s}. The transition probabil-
ities read as

qi,i+1 = λ, i = 0, . . . , s + m− 1

and

qi,i−1 =

{
iµ for i = 1, . . . , s
nµ for i = n + 1, . . . , n + s

We get for the state probabilities in the stationary case

xi =

{
1
i!ρ
ix0 for i = 1, . . . , n− 1
1

n!ni−n ρ
ix0 for i = n, . . . , n + s

x0 =

(
n−1∑

i=0

1
i!
ρi +

n+s∑

i=n

1
n!ni−n

ρi

)−1
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We can sum up the second term (geometric series!) and conclude

x0 =

⎧
⎪⎨

⎪⎩

(∑n−1
i=0

1
i!ρ
i + 1

n!

1−( ρ
n )s+1

1− ρ
n

ρn
)−1

for ρ �= n
(∑n−1

i=0
1
i!ρ
i + (s + 1)n

n

n!

)−1

for ρ = n

We assumed arbitrary values for ρ, since we do not have a pure loss system.
Let us summarize some important probabilities:

• x0 is the void probability.
• xn+s is the loss probability.
• pf =

∑n−1
i=0 xi is the probability that a serving channel is not occupied.

• pW =
∑n+s
i=n xi is the queueing probability.

As in a pure loss system we can describe the traffic load and the mean number
of occupied serving spots

Y = ρ(1 − xn+m) mean number of occupied serving spots

ν =
ρ

n
(1 − xs+n) traffic load

2.6 Renewal Processes

The area of renewal processes is fundamental and widely explored in the
traffic theory. Thus, we only selected a small angle and treat in particular the
following items:

• basic examples (Poisson process),
• elementary renewal theorem and the theorem of Blackwell,
• limit theorems,
• stationary processes.

2.6.1 Definitions and Concepts

A classical renewal process can be found in telecommunication in the form
of call attempts. Here, the interarrival times of the call attempts at times
t0, t1, . . . , tn, . . . build a point process ξi. The time between the time spots
ti and ti+1 is denoted as interarrival time and has the distribution function
Fξi

(t). It is clear that the particular interarrival times are independent, since
the single user does not know of the other calls. Simultaneously, we model the
interarrival time for each user homogeneously, i.e. identical distributed. Only
the time up to the first call is often differently assumed. Hence, the following
definition is motivated.
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Definition 2.8. A non negative point process (ξi)i≥1, which is independent
(for i ≥ 1) and identical distributed (for i ≥ 2), is called renewal process.
Thus, Fξi

(t) turns to Fξ(t) for all i = 2, 3, . . . The value ξi is called life time
or in traffic theory interarrival time. If Fξ(t) �= Fξ1(t), then the process is
called modified or delayed. Otherwise we call it ordinary or simple.

Important random variables are the renewal times or arrival times

Tn =
n∑

i=1

ξi

and the renewal counting process

N(t) = sup{n ∈ N;Tn ≤ t}, with N(t) = 0, for t < T1

We have N(t) ≥ n ⇔ Tn ≤ t, thus,

FTn
(t) = P(Tn ≤ t) = P(N(t) ≥ n) (2.9)

For computing a probability density of N(t), we proceed recursively as follows:

FTn
(t) = Fξ1 � F

∗(n−1)
ξ , with F ∗(0)(t) = 1, n = 1, 2, . . . (2.10)

Suppose f1 = F ′
ξ1

and f = F ′
ξ are the corresponding densities of the distribu-

tions of Fξ1 and Fξi
, i ≥ 2, then it follows

fTn
(t) = f1 � f

∗(n−1), with f∗(0)(t) = 1, n = 1, 2, . . .

Since we have P(N(t) ≥ n) = P(N(t) = n) + P(N(t) ≥ n+ 1), we obtain with
(2.9)

P(N(t) = n) = FTn
(t) − FTn+1(t), with FT0(t) = 1, n = 0, 1, . . .

With this we can tackle several problems, e.g. the question, how much capacity
a system still has. For an answer we compute the additional load, which
a system can allow not to surpass a certain security line 1 − α, so that a
renewal process (i.e. new arrival events) does not stop. This means to solve
the following inequality

1 − FTn
(t) = F cTn

≥ 1 − α

In this connection we introduce the next notion of the random walk as gen-
eralization of the renewal process. Let S0 and (ζn)n≥1 be a sequence of inde-
pendent random variables, where the (ζn)n≥1 are identical distributed. Then
we call the (discrete) process

Sn = S0 + ζ1 + . . . + ζn, n ≥ 0 (2.11)
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a random walk for the initial value S0. A random variable ζ is called generator
of the random walk, if it is distributed as ξ1 (and thus, as all ξn). Since all
random variables (ζn) are identical distributed, we will often skip the index
and only use the generator. A random walk is called discrete, if it assumes
values in Z (or generally in a discrete set), and if ζ is Binom(n, p)-distributed.
We call a discrete random walk symmetric, if P(ζ = −1) = P(ζ = 1) = 1

2 .
Further properties of random walks can be found in monographs like those of
Schürger [232], Alsmeyer [11] and Feller [86].
We proceed to the important notion of the renewal function.

Definition 2.9. We call
H(t) = E(N(t))

a subordinated renewal function. It indicates the expected numbers of arrival
events in the interval [0, t].

We see that

H(t) =
∞∑

n=0

P(N(t) ≥ n)

and with (2.9) and (2.10)

H(t) =
∞∑

n=1

Fξ1 � F
∗(n−1)
ξ (t) (2.12)

We insert the definition of the convolution and obtain

H(t) =
∞∑

n=1

Fξ1 � F
∗(n−1)
ξ (t) = Fξ1(t) +

∞∑

n=1

∫ t

0

Fξ1 � F
∗(n−1)
ξ (t− x)dFξ(x)

= Fξ1(t) +
∫ t

0

∞∑

n=1

(
Fξ1 � F

∗(n−1)
ξ (t− x)

)
dFξ(x)

According to (2.12) we can rewrite the integrand as H(t− x). Thus, we get

H(t) = Fξ1(t) +
∫ t

0

H(t− x)dFξ(x) (2.13)

Analogously we conclude

H(t) = Fξ1(t) +
∞∑

n=1

∫ t

0

F
∗(n)
ξ (t− x)dFξ1(x)

= Fξ1(t) +
∫ t

0

∞∑

n=1

F
∗(n)
ξ (t− x)dFξ1(x)

Thus, it follows
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H(t) = Fξ1(t) +
∫ t

0

Hg(t− x)dFξ1(x)

where Hg is the renewal function of the ordinary renewal process. Because of
Fξ1 = Fξ for an ordinary renewal process, we obtain the integral equation

Hg(t) = Fξ(t) +
∫ t

0

Hg(t− x)dFξ(x) (2.14)

The equations (2.13) and (2.14) are called renewal equations and according to
Feller can be solved uniquely [88].
Up to now we determined uniquely the distributions of the renewal function
using an integral equation. In fact, in most cases we cannot derive an explicit
solution. The problem consists in the convolution of the distribution functions,
which can be transformed by the Laplace transform into an algebraic equation
(see e.g. [74]). For this we first differentiate (2.12) and get

dH

dt
(t) = h(t) =

∞∑

n=1

fξ1 � f
∗(n−1)
ξ (t)

We call h(t) the renewal density. An analogous definition can be obtained for
the renewal density hg of an ordinary renewal process. Thus, we rewrite the
integral equation using simple differentiation

h(x) = fξ1(x) +
∫ x

0

h(x− s)fξ(s)ds (2.15)

h(x) = fξ1(x) +
∫ x

0

hg(x− s)fξ1(s)ds (2.16)

hg(x) = fξ(x) +
∫ x

0

hg(x− s)fξ(s)ds (2.17)

For solving the equations (2.15), we apply the Laplace transform and obtain

Lh(s) = Lfξ1(s) + Lh(s) · Lfξ(s) resp. Lhg(s) = Lfξ(s) + Lhg(s) · Lfξ(s)

Solving the above equation, we get

Lh(s) =
Lfξ1(s)

1 − Lfξ(s)
resp. Lhg(s) =

Lfξ(s)
1 − Lfξ(s)

Considering the relation between Laplace transform and the Laplace trans-
form of the derivative, we can deduce

LH(s) =
Lfξ1(s)

s(1 − Lfξ(s))
resp. LHg(s) =

Lfξ(s)
s(1 − Lfξ(s))

(2.18)

Using the Laplace transform we can determine the renewal function with the
help of the inverse Laplace transform. Now we present some examples, which
are important for the traffic theory, as the exponential distribution.
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Example 2.10. Exponential distribution: Taking the density fξ(t) = λe−λt, we
compute for the Laplace transform

Lfξ(s) =
λ

s + λ

and get according to (2.18)

LHg(s) =
λ
s+λ

s− λs
s+λ

=
λ

s2

With the help of the inverse we can determine the renewal function

Hg(t) = λt

Because of the uniqueness of the solution we can say that the renewal process
is exactly exponential distributed, if the renewal function is linear.

Example 2.11. Erlang-k distribution: We consider interarrival times of serving
times which are Erlang-k distributed for a parameter λ > 0. The renewal
function can be computed again with the help of the Laplace transform. The
Laplace transform of the Erlang-k distribution is

Lfξ(s) =
(

λ

λ + s

)k

Thus, it follows by (2.18):

LHg(s) =
Lfξ(s)

s(1 − Lfξ(s))
=

(
λ
λ+s

)k

s

(
1 −
(
λ
λ+s

)k)

Hence we get for the renewal function (see e.g. [43])

Hg(t) = eλt
∞∑

n=1

∞∑

i=kn

(λt)i

i!

As example, we get for k = 2

Hg(t) =
1
2

(
λt− 1

2
+

1
2
e−2λt

)

and for k = 4

Hg(t) =
1
4

(
λt− 3

2
+

1
2
e−λt +

√
2e−2λt sin(λt +

π

4
)
)
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Example 2.12. Normal or Gaussian distribution: We cite the renewal function
for the normal distribution N (µ, σ2) without proof

Hg(t) =
∞∑

n=1

Φ

(
t− nµ

σ
√
n

)

where Φ represents the distribution function of N (0, 1).

Provided the first moment exists we want to cite an important formula for
the renewal function. For this we set

fI(t) =
1
µ

(1 − Fξ(t)) =
1
µ
F cξ (t)

resp.

FI(t) =
1
µ

∫ t

0

F cξ (s)ds (2.19)

This definition reflects the integrated complementary distribution function
FI , which wil be discussed in detail in section 2.7.4.

Theorem 2.13. Let µ = E(ξ) =
∫∞
0

F cξ (s)ds be the expectation value. Then
the renewal function H has exactly the form

H(t) =
t

µ

if fξ1(s) = fI(s) resp. Fξ1(t) = FI(t).

We state finally a useful relationship for the generating random variable ξ̂,
having FI as distribution function. It is possible to derive that

E(ξ̂) =
µ2 + σ2

2µ
resp. E(ξ̂2) =

E(ξ3)
3µ

(2.20)

2.6.2 Bounds for the Renewal Function

Considering the theorem of Little, it is evident that one is interested in the
knowledge of the expected value E(N(t)), thus, in the computation of the
renewal function. But as already described it is difficult or even impossible to
indicate the exact form of the renewal function in full generality. Hence, one
is often interested in estimations or asymptotic behavior. Let us begin with
some elementary estimations for ordinary renewal processes (thus, we write
H(t) instead of Hg(t)).



66 2 Classical Traffic Theory

Simple Approach

To determine N(t), we have to estimate Tn

sup
1≤i≤n

ξi ≤
n∑

i=1

ξi = Tn

Hence, by the iid-property

F
∗(n)
ξ (t) = P(Tn ≤ t) ≤ P

(
sup

1≤i≤n
ξi ≤ t

)
= (Fξ(t))

n

Summing up both sides over n and assuming that Fξ(t) < 1 holds (geometric
series on the right side!), we get

Fξ(t) ≤ H(t) ≤ Fξ(t)
1 − Fξ(t)

=
Fξ(t)
F cξ (t)

Linear Approach

As exercise the reader may derive the following estimation: Defining FI as
in (2.19), we get with µ = E(ξ), F = {t ≥ 0;Fξ(t) < 1} and Lu =
inft∈F

Fξ(t)−FI(t)
F c

ξ (t) , Lo = supt∈F
Fξ(t)−FI(t)
F c

ξ (t)

t

µ
+ Lu ≤ H(t) ≤ t

µ
+ Lo

As we will learn in the section on subexponential distributions (see section
2.7.4), FI is again a distribution function. Thus, we can build the correspond-
ing complementary distribution function F cI . Defining

L(t) =
fI(t)
F cI (t)

, t ≥ 0

it follows

L(t) =
F cξ (t)∫∞

t
F cξ (s)ds

Hence, this gives the representations

Lu =
1
µ

inf
t∈F

1
L(t)

− 1 and Lo =
1
µ

sup
t∈F

1
L(t)

− 1

Finally, we have

t

µ
+

1
µ

inf
t∈F

1
L(t)

− 1 ≤ H(t) ≤ t

µ
+

1
µ

sup
t∈F

1
L(t)

− 1
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2.6.3 Recurrence Time

We define two new processes, based on a particular renewal process. They
represent a virtual and independent observer watching at two renewal time
spots at the renewal process. We call

Rr(t) = t− TN(t)

the backward recurrence time and

Rv(t) = TN(t)+1 − t

the forward recurrence time, each taken for t ≥ 0. We indicate with Rr the
time intervals as backward recurrence time, that is the time from the last event
to the observing time and Rv the forward recurrence time, that is the time
from the observer time until the next renewal event. With this we compute
the particular distributions

FRr(t)(x) = P(t− TN(t) ≤ x) = P(t− x ≤ TN(t))

=
∞∑

n=1

P(t− x ≤ Tn, N(t) = n)

=
∞∑

n=1

P(t− x ≤ Tn ≤ t < Tn+1) =
∞∑

n=1

∫ t

t−x
F cξ (t− s)dFTn

(s)

=
∞∑

n=1

∫ t

t−x
F cξ (t− s)d

(
Fξ1 � F

∗(n−1)
ξ

)
(s)

=
∫ t

t−x
F cξ (t− s)

∞∑

n=1

d
(
Fξ1 � F

∗(n−1)
ξ

)
(s) =

∫ t

t−x
F cξ (t− s)dH(s)

Thus, we get

FRr(t)(x) =

{∫ t
t−x F

c
ξ (t− s)dH(s) for 0 ≤ x ≤ t

1 for x > t
(2.21)

For the derivative and hence for the density follows

fRr(t)(x) =

{
F cξ (x)h(t− x) for 0 ≤ x ≤ t

0 for x > t

Analogously one can derive a representation of the distribution for the forward
recurrence time

FRv(t)(x) = Fξ1(t + x) −
∫ t

0

F cξ (t + x− s)dH(s) (2.22)

fRv(t)(x) = fξ1 −
∫ t

0

fξ(t + x− s)h(s)ds
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Example 2.14. We consider the Poisson process as renewal process. For a Pois-
son process the interarrival times are exponential distributed. Thus, we have
for the density

fξ(x) = λe−λx

and for the distribution function

Fξ(t) = 1 − e−λt

As distribution of the recurrence time we get the density

fR(t) = λ

∫ ∞

t

fξ(x)dx = λ(1 − Fξ(t)) = λe−λt = fξ(t)

With this the identity in distribution

FR(t) = Fξ(t) (2.23)

follows. This means that the remaining time period R until the next event,
watched by the observer, possesses the same distribution as if she/he would
watch the process at the renewal time spots. The process develops itself inde-
pendently from the observed time spot, which again indicates the memoryless
of the Poisson process. It possesses the Markov property.

As exercise the reader may explicitly compute the corresponding distributions
FRr(t) and FRv(t). Again easily done for exercise, one can show that N(t)+1 is
a stopping time (see for the notion of stopping time e.g. [208]) for the renewal
process but not N(t). We can apply the Wald identity (see e.g. [208]) and get

E(Rv(t)) = E(ξ1) + µH(t) − t

If H = Hg, i.e. if (ξi) is an ordinary renewal process, we can simplify this to

E(Rv(t)) = µ(Hg(t) + 1) − t

In both cases and for further derivation let µ = E(ξ). A representation for
E(Rr(t)) cannot be derived using the same arguments. The reader is invited
to give a reasoning for this as exercise.

2.6.4 Asymptotic Behavior

As already mentioned above there is in general no satisfying representation of
the renewal function, even using the Laplace transform. But, which is useful
in a lot of cases, one can derive an asymptotic behavior. A first result in this
direction is the so called elementary renewal theorem.

Theorem 2.15. Let (ξi) be a renewal process. Then we have the asymptotic

lim
t→∞

H(t)
t

=
1
µ

where µ = E(ξ), if the first moment exists. Otherwise set µ = ∞.
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The elementary renewal theorem states nothing else than that the expectation
value of the arrival process, averaged over large times, behaves like the arrival
rate, thus, 1

E(ξ) = 1
µ . To formulate the fundamental renewal theorem, we have

to introduce the notion of an arithmetic renewal process.

Definition 2.16. A renewal process (ξi) resp. its distribution function Fξ is
called arithmetic, if

∞∑

i=0

P(ξi = i · a) = 1

for a suitable a > 0.

Expressed in other words, this means that a non-arithmetic renewal process
does not live on a fixed grain (with distance a > 0). Equivalently, an arith-
metic renewal process assumes values in a subset of R, whose elements have
a distance of an integer multiple of a fixed a > 0. Thus, we can formulate the
fundamental renewal theorem.

Theorem 2.17. Suppose Fξ is not arithmetic and g : [0,∞[ −→ R is inte-
grable. Then we have for an arbitrary initial distribution Fξ1

lim
t→∞

∫ t

0

g(t− s)dH(s) =
1
µ

∫ ∞

0

g(s)ds

As example we set for u > 0

g(s) =

{
1 for 0 ≤ s ≤ u

0 else

With theorem 2.17 we can deduce the following well-known renewal theorem
of Blackwell.

Theorem 2.18. If h > 0 and Fξ not arithmetic, then independently of the
initial distribution Fξ1 we have

lim
t→∞

(H(t + h) −H(t)) =
h

µ

The elementary renewal theorem shows an asymptotic ‘swing in’ into a sta-
tionary state. The result of Blackwell describes on the other hand a local
behavior, which depends on the step width h > 0.
Assuming the existence of the variance of the renewal theorem, we can state
another asymptotic.

Proposition 2.19. Let Fξ be not arithmetic and σ2 = Var(ξ) < ∞. then it
follows

lim
t→∞

(
H(t) − t

µ

)
=

σ2

2µ2
− E(ξ1)

µ
+

1
2
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Let us remember the distribution of the forward and backward recurrence
times (2.22) and (2.21). Then we can e.g. deduce with (2.22) and the funda-
mental renewal theorem (for fixed x ≥ 0 and g(t) = F cξ (t + x))

lim
t→∞

FRv(t)(x) = lim
t→∞

F1(t + x) − 1
µ

∫ ∞

0

F cξ (x + s)ds = 1 − 1
µ

∫ ∞

x

F cξ (t)dt

We have because of F cI,ξ(x) = 1
µ

∫∞
x

F cξ (t)dt

lim
t→∞

FRv(t)(x) = FI,ξ(x) (2.24)

Analogously it follows

lim
t→∞

FRr(t)(x) = FI,ξ(x)

One would expect because of the symmetry of the forward resp. backward
recurrence times that building the expected value we obtain

lim
t→∞

E(Rv(t)) =
µ

2

This could be interpreted in the way that in the mean the observation of
an arrival process (e.g. the call attempts) lies exactly in the middle of the
interarrival time interval. In fact, one has because of (2.24) and (2.20)

lim
t→∞

E(Rv(t)) = E(ξ̂) =
µ2 + σ2

2µ
>

µ

2

if σ2 > 0. This is called the paradox of the renewal theory. A reasoning for
this can be find in the fact that it is more probable, if an observation time
spot lies in an interarrival time of longer distance. We can deduce similar to
the renewal theorem resp. proposition 2.19

lim
t→∞

h(t) =
t

µ

Assuming the existence of the first moments E(ξ1) and µ = E(ξ), we can
conclude the ‘central limit theorem’ for renewal count processes.

Theorem 2.20. Let N(t) be asymptotically Gaussian distributed with an ex-
pected value of t

µ and the variance σ2t
µ2 . Thus, we have

lim
t→∞

P

(
N(t) − t

µ

σ
√
tµ−3

≤ x

)

= Φ(x)

where Φ is the Gaussian distribution N (0, 1).
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2.6.5 Stationary Renewal Processes

The notion of stationarity is, as in the case of stochastic processes, central
for the treatment of the renewal theory. For the definition we pick a renewal
process (ξi) and switch to the equivalent process of the forward recurrence
times (Rv(t)).

Definition 2.21. A renewal process (ξi) is called stationary, if the process of
the forward recurrence times (Rv(t)) is stationary in the stricter sense.

This notion could be equivalently introduced using the backward recurrence
times or the corresponding count process N(t). We can define the stationarity,
since the forward recurrence times are Markovian, using

FRv(t)(x) = Fv(x), for all x ≥ 0

The distribution of the forward recurrence time is independent of the time
spot t. We remember that the expected value µ = E(ξ) can be written in the
form µ =

∫∞
0

F cξ (x)dx according to (2.34).

Theorem 2.22. If Fξ is not arithmetic and if ξ has a first moment µ, then
the renewal process is stationary if and only if

H(t) =
t

µ

Remark 2.23. According to theorem 2.13 the random variable (ξi) is exactly
stationary if

F1(x) = FI(x) =
1
µ

∫ x

0

F c(t)dt

2.6.6 Random Sum Processes

We will return to random sums in section 2.7.4 on subexponential distribu-
tions. Thus, we give a short introduction for renewal processes. For this we
define first an aggregated process.

Definition 2.24. Let N(t) be a counting process with Ti = inf{t ≥ 0, N(t) =
i} and (ηj) a sequence of random variables. We call

S(t) =
N(t)∑

i=1

ηi, t ≥ 0

an aggregated process or sum process.

This definition will be applied to renewal processes resp. to traffic theory. For
this we pick for an ordinary renewal process (ξi) the corresponding counting
process N(t) and a sequence of iid random variables (ηj). Here, the ξi and
ηj are assumed to be stochastic independent for i �= j. Simultaneously, we
assume for ξ, as for η, the existence of the first and second moments.
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Example 2.25. As known, one can consider the (ξi) as interarrival times , e.g.
the time between two succeeding calls i− 1 and i. Then the ηi represents the
serving time (or the i-th call duration) to the i-th demand and thus, cannot
be assumed independently to the ξi, but to the other interarrival times. We
can consider the amount S(t) =

∑N(t)
j=1 ηj as overall load in the system, where

the N(t) represents the corresponding counting process to the (ξi).

We want to investigate the expectation value. A simple computation shows

S(t) =
N(t)∑

j=1

ηj =
N(t)+1∑

j=1

ηj − ηN(t)+1

Applying the expectation operator we can use the Wald identity on the right
side (see e.g. [208] for the Wald identity), since N(t) + 1 is a stopping time.
Thus it follows

E(S(t)) = E(η)(E(N(t)) + 1) − E(ηN(t)+1) = E(η)(Hg(t) + 1) − E(η)
= E(η)Hg(t)

Defining m(t) = E(X(t)) as the expected value of the stochastic process at
time t, we deduce the following proposition.

Proposition 2.26. Let (ξi) be an ordinary renewal process, N(t) the corre-
sponding counting process and (ηj) a sequence of iid random variables accord-
ing to our model. Then we have

m(t) = E(η)H(t)

The elementary renewal theorem allows to formulate the following asymptotic
fact.

Proposition 2.27. Let (ξi) be an ordinary renewal process, N(t) be the cor-
responding counting process and (ηj) be a sequence of iid random variables
with an expectation value ν = E(η). Then we have

lim
t→∞

m(t)
t

=
ν

µ
(2.25)

We can consider (2.25) as load in the system, whereas 1
µ is the arrival rate and

ν the serving rate. As we will see later, when considering the aggregated traffic
for subexponential or heavy-tail distributions, we can investigate in particular
a convergence in distribution, i.e. the derivation of the classical central limit
theorem.

Theorem 2.28. If
σ2 = Var(µη − νξ) > 0 (2.26)

then it follows
X(t) − ν

µ t

µ− 3
2σ

√
t

d→ Φ

i.e., the convergence in distribution to the Gaussian distribution.
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We can reformulate the equation (2.26) in the form

σ2 = µ2Var(η) + ν2Var(η)

If the relation (2.26) is satisfied, then the convergence is expressed in the form

X(t) d→ N
(
ν

µ
t, µ−3σ2t

)

2.7 General Poisson Arrival and Serving Systems
M/G/n

2.7.1 Markov Chains and Embedded Systems

If we assume, as necessary for modeling the IP-based traffic, that the inter-
arrival times or serving times are no longer Markovian, we have to use more
general methods to derive the key values of the traffic. This leads to the
method of the embedded Markov chains.
We start with a state discrete process (X(t))t∈I . For certain time spots
(tn), n = 0, 1, . . . we assume that the process enjoys the Markov property.
Hence

P(Xtn+1 = xn+1 |Xtn = xn, . . . , Xt0 = x0) = P(Xtn+1 = xn+1 |Xtn = xn)

for the time spots t0 < t1 < . . . < tn < tn+1. The whole development after
the time spot tn is described by the state Xtn and can be computed. The
sequence (Xtn) is called a Markov chain. The method considering just the
sequence (Xtn) and not the whole process (Xt) is called the method of the
embedded Markov chain. We define as above

x(i, n) = P(Xtn = i)

and Xn = (x(i, n); i = 0, 1, . . .). The transition matrix P = (pij) with

pij = P(Xtn+1 = j |Xtn = i), i, j = 0, 1, 2, . . .

gives us
Xn+1 = XnP

The matrix P is called a stochastic matrix, i.e., Pe = e where e = (1, 1, . . .).
P is different to the transition probability matrix, which was used for the
treatment of time continuous processes.
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2.7.2 General Loss Systems M/G/n

Description of the Model

Since we are interested in waiting queue systems, we just indicate the assump-
tion of the pure loss model. Here we assume:

• Poisson arrival process: Rate λ (birth rate), i.e., the interarrival times ξ are
exponential distributed. Thus, the distribution and the expectation value
of the interarrival times are Fξ(t) = 1 − e−λt, and E(ξ) = 1

λ .
• There are n serving places.
• The serving time is assumed general distributed.
• We have for the mean serving time E(η) = µ.
• The load of the system turns out to be λ·µ according to the Little theorem.
• The relative load per serving place is λµ

n .

Erlang Formula

If we define a = λ
µ , then the formula (2.4) and Erlang formula (2.5) hold

respectively. This is shown e.g. in [238].

Consequences

Since this type of traffic model does not have any influence on the self-similar
and long-range dependent processes (see e.g. section 3.3), which are needed
for modeling the IP-based traffic, we only cite [20] for the interested reader
as reference for further details. The key values of the M/G/n− 0 system are
widely influenced by the Poisson arrival process but not the general serving
distributions, as e.g. the heavy-tail distributions used in the IP-based data
transfer. The Erlang-B formula is valid, respectively (here we have α = λ ·µ).

2.7.3 Queueing Systems M/G/n

Description of the Model

The waiting queue model M/G/1 is characterized by the following assumption:

• Poisson arrival process (call attempts): Rate λ (birth rate), i.e., the inter-
arrival times ξ are exponential distributed

Fξ(t) = 1 − e−λt and E(ξ) =
1
λ

• We assume one serving place.
• The serving time η is assumed to be general distributed with expected

value E(η) = µ.
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• We have an infinite waiting room with queueing principles FIFO, FCFS,
LIFO or RANDOM.

• The load of the system is according to Little formula λ · µ.

We denote by λ the arrival rate and by µ the mean serving time. Thus,
ρ = λµ = E(η)

E(ξ) indicates the mean load.

Embedded Time Spots

Here, we use the principle of the embedded Markov times. Since the serving
time process is the only process, which does not enjoy the Markov property,
the process is memoryless at the end of each serving time. Thus, we choose
for the embedded time spots the times of the single serving times. Hence, we
denote by (X(t0)X(t1), . . . , X(tn),X(tn+1), . . .) the system states, whereas tn
is the time of the n-th serving end (fig. 2.20).

arrivals

departures

X(t)
ηn

ξn

t

tn tn+1tn−1

n−1 n+1n

Fig. 2.20. State process for the queueing system M/G/1.

We introduce the random variable ζ. It describes the amount of arrival events
during a single serving time η. The distribution is

Fζ(i) = P(ζ = i)

As generating function we get

ζEF(z) =
∞∑

i=0

Fζ(i)zi

Hence, it follows

E(ζ) =
dζEF(z)

dz

∣
∣
∣
∣
z=1

= λE(η) = ρ
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State Transitions

For analyzing the state transitions we need the transition probabilities

pij = P(Xtn+1 = j |Xtn = i)

We have to consider several cases for the investigation of the time period
between two succeeding serving endings, i.e the interval ]tn, tn+1[:

• i = 0: the system is empty at time tn. If a demand enters the system, the
serving process starts immediately. To be able to observe j demands in
the system at time tn+1, in the meantime, j demands have to enter the
system. Hence,

p0j = Fζ(j), j = 0, . . .

• i > 0: the system is not empty at time tn. The process of the state is
given according to: At tn we have i demands in the system. Immediately
afterwards the serving process starts. At tn+1 we still observe j demands in
the system. This means that during one serving period (j− i+1) demands
entered the system. Thus,

pij = Fζ(j − i + 1), i = 1, . . . , j = i− 1, i, . . .

The state transition matrix P looks as follows:

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Fζ(0) Fζ(1) Fζ(2) Fζ(3) . . .
Fζ(0) Fζ(1) Fζ(2) Fζ(3) . . .

0 Fζ(0) Fζ(1) Fζ(2) . . .
0 0 Fζ(0) Fζ(1) . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

State Equations

To start with the analysis, we fix the state transition probabilities

x(j, n) = P(X(tn) = j), j = 0, 1, . . .

We write this infinite vector in the form

Xn = (x(0, n), x(1, n), . . . , x(j, n), . . .)

and thus, we can formulate the general state transition equation in a matrix
writing

XnP = Xn+1

From the start vector Xn we can successively compute all state vectors Xm,
m > n. This is of importance for the analysis of instationary processes, as
observed in communication networks while overload or swing in phases. Here
as well, we can consider stationary states and obtain them according to
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Xn = Xn+1 = . . . = X

where X = (x(0), x(1), . . .), and the stationary state transition equation
reads as

XP = X
We see that a stationary state is obtained by using e.g. the estimation of the
form

|E(X(tn+1) − E(X(tn))| < ε = 10−8

We want to gain an expression for the state probability. For this we use the
method of the generating function. With the help of the state transition equa-
tion

x(j) = x(0)Fζ(j) +
j+1∑

i=1

x(i)Fζ(j − i + 1), j = 0, 1, . . . (2.27)

we get using the concept of generating function

XEF(z) =
∞∑

j=0

x(j)zj = x(0)
∞∑

j=0

Fζ(j)zj +
∞∑

j=0

j+1∑

i=1

x(i)Fζ(j − i + 1)zj (2.28)

With the help of the identity

ζEF(z) =
∞∑

j=0

Fζ(j)zj

and ζEF(z) =
∑∞
j∗=0 Fζ(j

∗)zj
∗

we can rearrange the double sum into

∞∑

j=0

j+1∑

i=1

x(i)Fζ(j − i + 1)zj =
∞∑

i=1

x(i)
∞∑

j=0

Fζ(j − i + 1)zj

j∗=j−i+1
=

∞∑

i=1

x(i)
∞∑

j∗=0

Fζ(j∗)zj
∗
zi−1

=
∞∑

i=1

x(i)ζEF(z)zi−1

=
1
z
ζEF(z)(XEF(z) − x(0))

Inserting this expression into the double sum of (2.28), it finally follows

XEF(z) = x(0)ζEF(z) +
ζEF(z)

z
(XEF(z) − x(0))

resp.

XEF(z) = x(0)
ζEF(z)(1 − z)
ζEF(z) − z
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For a determination of x(0) we choose the limit z → 1 in the last equation.
In case of limz→1 XEF(z) = 0

0 we use the rule of l’Hospital

1 =
∞∑

j=0

x(j) = lim
z→1

XEF(z)

= x(0) lim
z→1

(
d
dz ζEF(z)(1 − z) − ζEF(z)

d
dz ζEF(z) − 1

)

= x(0)
−1

limz→1
d
dz ζEF(z) − 1

Here, we applied

lim
z→1

d

dz
ζEF(z) = lim

z→1

∞∑

j=0

Fζ(j)jzj−1 = E(ζ) = λE(η) = ρ

thus,

x(0) = 1 − ρ and XEF(z) = (1 − ρ)(1 − z)
ζEF(z)

ζEF(z) − z

The generating function ζEF(z) represents the Poisson arrivals during one
particular serving period, thus, during an interval with distribution function
F (t) and corresponding Laplace transform Φη(s). Hence, it follows for the
generating function

ζEF(z) =
∞∑

j=0

Fζ(j)zj =
∞∑

j=0

(∫ ∞

0

(λt)j

j!
e−λtfη(t)dt

)
zj

= Φη(s)|s=λ(1−z) = Φη(λ(1 − z))

For the generating function of X we obtain

XEF(z) = (1 − ρ)(1 − z)
Φη(λ(1 − z))

Φη(λ(1 − z)) − z

Thus, we derived the Pollaczek-Khintchine formula for state probabilities.

Queueing Distribution Functions

Demands could consist e.g. in ‘clicks’ for loading of certain contents of World
Wide Web pages. The demands are directed into a virtual waiting room ac-
cording to a queueing principle of types as FIFO or FCFS. As in the system
M/M/n we start with a test demand and denote by D the random variable
describing the time, used by this unit to be guided through the system. With
fD we mean its density function, and for the distribution function we write
FD. Then, we have
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D = W + η

fD = w(t) ∗ fη(t)

and for the Laplace transform accordingly

ΦD(s) = ΦW (s) · Φη(s)

We can represent the sojourn time in the system with the help of figure 2.21.

arrival
of test

exit
of test

T1 T2 T3

t

ηservice time

Wwaiting time

Dtime spend in system 

Fig. 2.21. Sojourn time in the system

We assume that at the time, when the test unit exits the system, there are still
X = m demands in the system left. Hence, it is X = m the system state at the
time of a Markov chain spot. Because of the FIFO-principle these demands
entered the system during the time, the test unit spend in the system D.
Thus,

x(m) = P(test unit leaves m demands in the system)
= P(m arrival during the time spend in the system D)

Hence, it follows X = m as the amount of Poisson arrivals during D, a time
interval with distribution function FD(t)

XEF (z) =
∞∑

j=0

x(j)zj =
∞∑

j=0

(∫ ∞

0

(λt)j

j!
e−λtfD(t)dt

)
zj

= ΦD(s)|s=λ(1−z) = ΦD(λ(1 − z))

Inserting this into the Pollaczek-Khintchine formula for state probabilities, it
follows

ΦD(λ(1 − z)) = (1 − ρ)(1 − z)
Φη(λ(1 − z))

Φη(λ(1 − z)) − z

or, if we set s = λ(1 − z),

ΦD(s) = Φη(s)
s(1 − ρ)

s− λ + λΦη(s)
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Using the product representation of the Laplace transform of ΦD(s) and solv-
ing for ΦW (s), we finally obtain the Pollaczek-Khintchine formula for waiting
time distribution functions

ΦW (s) =
s(1 − ρ)

s− λ + λΦη(s)

To gain the desired distribution function, we apply the inverse Laplace trans-
form. In tables one can, depending on the case, find the corresponding distri-
bution function.

Waiting Time Probabilities

The distribution of the waiting time will be computed using Laplace transform

FW (t) ←→ ΦW (s)
s

The probability not to wait, thus, P(W = 0), can be written according to the
right side continuity of the distribution function

P(W = 0) = lim
t→0

FW (t) = lim
s→∞

sΦW (s)
s

= 1 − ρ (2.29)

For the above representation in the form of Laplace transform we applied
the limit theorem for the Laplace transforms and, in the last equation, the
Pollaczek-Khintchine formula for waiting time distribution functions.
Thus, we obtain with the help of the complementary distribution function the
queueing probability

pW = P(W > 0) = 1 − P(W = 0) = lim
t→0

(1 − FW (t)) = ρ

Mean Waiting Time

As in the pure Markov model we divide into the mean waiting time E(W ) of
all demands and the mean waiting time of the demands in the waiting queue
E(W1). They will be again computed with the help of the Pollaczek-Khintchine
formula for waiting time distribution functions

E(W ) =
E(η)ρ(1 + c2η)

2(1 − ρ)
=

λE(η2)
2(1 − ρ)

and for mean waiting time of the demands in the queue

E(W1) =
E(W )
pW

= E(η)
1 + c2η

2(1 − ρ)
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Here, the amount cη =
√

Var(η)

µ represents the variational coefficient of η. But
in several cases this formula will not be very helpful for determine the mean
waiting time in the Internet traffic, since the serving resp. the connection
time do not have a second moment, will say, a finite variance and we will have
to refer to other methods (see section 3). A relationship between the second
moment of the serving time and the first moment of the waiting time will be
established e.g. in section 3.3.4.
According to the above mentioned formulas, we realize that the mean waiting
time is only depending on the first two moments of the serving time. The
mean waiting time depends on the load of the system.
For an interpretation we remark that the expected waiting time is proportional
to the factor (1 + c2η). This means that a high variance of the serving time in
the server implies a higher waiting time.

2.7.4 Heavy-Tail Serving Time Distribution

Introduction to Subexponential Distributions

For further results and investigations we need the introduction to the class of
subexponential and in particular heavy-tail distributions. They enjoy proper-
ties, which stand mainly in contrast to those of the exponential distribution,
which is, as we know, widely used in the classical traffic theory, especially for
the description of the circuit switched networks. As we will point out below,
the subexponential distributions fit perfectly in modeling the IP-based traffic.
Let Fξ be a distribution function of a random variable ZV ξ. Let ξ1, . . . , ξn
be further stochastic independent random variables, identical distributed as
ξ. We denote by F c∗n the complementary distribution function of the sum
variable Sn = ξ1 + . . . + ξn. This means

F c∗n(t) = P (Sn > t)

The relation between the sum and the maximum of a sequence of iid random
variables gives rise to the following definition.

Definition 2.29. The distribution F is called subexponential (denoted by
F ∈ S) if

lim
x→∞

F c∗n(x)
F c(x)

= n (2.30)

The following result is remarkable in this context and gives a good interpre-
tation for the behavior of IP-based traffic:

For the maximum Mn = max(ξ1, . . . , ξn) (which is again a random
variable) of n identical, stochastic independent and subexponential
distributed random variables holds

P(Mn > x) ∼ P(Sn > x)

asymptotically for large x, if t → ∞.
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Exactly this result shows that for subexponential distributed events not each
single event, but the extreme event determines the behavior. Suppose the
connection times in the IP-based traffic are subexponential distributed, then
not the major part of the connections determines the behavior of the network,
but those of long durations.
Many of the known distributions Fξ used in the classical theory satisfy the
property

lim sup
t→∞

eνtF cξ (t) < ∞ (2.31)

Here, ξ is a random variable distributed according to Fξ. This means that if
the expected value exists then

there is a ν > 0, with F cξ (t) ≤ e−νtE(νξ), t ≥ 0

This shows again that for those distributions extreme values are not very
likely. In (2.31) we used the ‘limes superior’ of a function f(t)

lim sup
t→∞

f(t) = lim
t→∞

sup{f(s); s ≥ t}

Equivalently one may introduce the ‘limes inferior’ lim inft→∞ f(t). We give
some examples of the fast decaying distributions.

Example 2.30. Exponential distribution (fig. 2.22): F cξ (t) = e−λt, λ > 0. This
distribution characterizes, as we know, the positive random variables, which
are memoryless, i.e.,

P(ξ > t + s) = P(ξ > s)P(ξ > t)

If one detects by statistical methods that the sample does not behave like a ex-
ponential distribution (resp. no Poissson process), then consequently one does
not have a memoryless random variable (resp. a Markov process) according
to theorem 2.1.
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Fig. 2.22. Probability density function (pdf, left) and cumulative distribution func-
tion (cdf, right) of the exponential distribution for different λ
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Example 2.31. Beta distribution with a > 0 and b > 0 (fig. 2.23):

f(x) =

{
xa−1(1−x)b−1

B(a,b) for 0 < x < 1

0 else

Here B(a, b) is the so called beta function

B(a, b) =
Γ (a)Γ (b)
Γ (a + b)
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Fig. 2.23. Probability density function (pdf, left) and cumulative distribution func-
tion (cdf, right) of the beta distribution for different a and b

Example 2.32. Weibull distribution with c > 0 and τ ≥ 1 (fig. 2.24):

F cξ (x) = ecx
τ
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Fig. 2.24. Probability density function (pdf, left) and cumulative distribution func-
tion (cdf, right) of the Weibull distribution for different τ and β

Example 2.33. Normal distribution on [0, 1[ (fig. 2.25):
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fξ(x) =

√
2
π
e−

x2
2
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Fig. 2.25. Probability density function (pdf, left) and cumulative distribution func-
tion (cdf, right) of the normal distribution for different µ and σ2

Example 2.34. Every distribution with compact support.

In contrast to the above distributions, we encounter certain different proper-
ties of the subexponential distributions or its subclass the heavy-tail distribu-
tions. The reasoning for the notion of subexponential is given by the following
fact:

If a distribution F is subexponential, i.e., F ∈ S, then we have for all
ε > 0

eεxF c(x) → ∞, for x → ∞
This implies that the complementary distribution function (also called ‘tail’)
does not decay as fast as every positive power of the exponential function
grows. Thus, often distribution functions with a special behavior are used.

Definition 2.35. We say that the distribution function F is heavy-tailed if

F cξ (x) ∼ x−αL(x), for x → ∞, α ∈ ]0, 2] (2.32)

where L ∈ R0 is a slowly varying function, that means

lim
x→∞

L(tx)
L(x)

= 1, for all t > 0

Those slowly varying functions are e.g. the constant functions or log(x). We
can say that how much the scaling is changed, larger or smaller, in the limit of
infinity, they all behave the same. This is central for the behavior of the com-
plementary distribution functions. Substituting the number ‘1’ in the above
limit by the function ‘tp’, we can analogously define the class Rp:
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A function L on [0,∞[ belongs to the class Rp, p ∈ R, if we have for
all t > 0

lim
x→∞

L(tx)
L(x)

= tp

Example 2.36. We give some examples:

• Every constant functions belongs to the class R0.
• For all p ∈ R we find the following functions in the class Rp

xp, xp log(1 + x), (x log(1 + x))p, xp log(log(e + x))

The functions
2 + cosx, sin(log(1 + x))

do not belong to any class Rp.
• It can happen that a function in these classes oscillates heavily

lim inf
x→∞

L(x) = 0 and lim sup
x→∞

L(x) = ∞

An example is

L(x) = exp
(
log(1 + x)

1
2 cos

(
log(1 + x)

1
2

))

The so called ‘heavy-tail’ distributions play a central rôle in the IP traffic
theory, we will treat them later more intensively. First, we will sketch some
interesting properties and relationships of the heavy-tail distributions, while
examples of distributions being heavy-tail, will be given below later.

Property 2.37. We indicate two remarkable properties of distributions F ∈ S:

• If F ∈ S, then we have

lim
x→∞

F c(x− y)
F c(x)

= 1

uniformly for y in bounded subsets of ]0,∞[.
• By the property of subexponential distributions F ∈ S, we can obtain for

every ε > 0 and y ≥ 0:
∫ ∞

y

eεxf(x)dx ≥ eεyF c(y), with f density of F

We deduce briefly the inequality
∫ ∞

y

eεxf(x)dx ≥ eεy
∫ ∞

y

f(x)dx

= eεy(1 −
∫ y

−∞
f(x)dx)

= eεy(1 − F (y)) = eεyF c(y)
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This means for the Laplace transform of f :

If F ∈ S, then we have L(f)(−ε) = ∞, for all ε > 0 (2.33)

In other words the Laplace transform has a singularity of first order at 0.

We want to sketch a first relationship to the arrival processes in the IP-based
telecommunication. For this we describe shortly the model. We denote by
ξk the independent and identical distributed data amounts (ξk for the k-th
connection). The distribution of the until time t summed up data amount
S(t) =

∑N(t)
k=1 ξk is

Gt(x) = P(S(t) ≤ x) =
∞∑

k=0

e−µt
(µt)k

k!
F k∗ξ1 (x)

Here, the arrival process is a homogeneous Poisson process with intensity
µ > 0, i.e.,

P(N(t) = k) = e−µt
(µt)k

k!
, k ≥ 0

Assuming an arbitrary arrival process, then we have

Gt(x) =
∞∑

k=0

pt(k)F k∗ξ1 (x), x ≥ 0

where we set
pt(k) = P(N(t) = k), k ≥ 0

as the distribution of the arrival process (compare this with the usual Poisson
arrival process). Since we assume a subexponential distribution F for the data
amount of a particular connection, we can deduce the following theorem for
the distribution of the aggregated data amounts.

Theorem 2.38. Let Fξ1 ∈ S and t > 0. Furthermore, the distribution of the
arrival process (pt) satisfies the inequality

∞∑

k=0

(1 + ε)kpt(k) < ∞

for an ε > 0. Then we have Gt ∈ S and

Gct(x) ∼ E(N(t))F cξ1 , for x → ∞

Remark 2.39. We give some remarks on the preceding theorem.

• The condition ∞∑

k=0

(1 + ε)kpt(k) < ∞
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tells us that pt(k) decays relatively fast, while in contrast (1 + ε)k grows
for k → ∞ exponential towards ∞ (ε > 0). With this for example we
try to overweight the probability of the first connection attempts. This
incorporate the fact that a server capacity cannot be increased arbitrary,
i.e. that we cannot have arbitrary many call or connection attempts.

• We can deduce that the aggregated data amount are subexponential or
heavy-tail distributed at time t.

• The theorem indicates in addition an approximative formula for large data
amounts and hence, it can be used for simulations resp. computing the
overall data amount.

For the treatment of the single distribution functions, to establish a table and
for a better investigation of the particular properties we define four further
classes of distributions (fig. 2.26):

D = {F distribution on ]0,∞[; lim sup
x→∞

F c(x2 )
F c(x)

< ∞}

E = {F distribution on ]0,∞[; lim
x→∞

F c(x− y)
F c(x)

, for all y > 0}

K = {F distribution on ]0,∞[;L(f)(−ε) =

∞∫

0

eεxf(x)dx = ∞, for all ε > 0}

R = {F distribution on ]0,∞[;F c ∈ R−α, for a α ≥ 0}

K
E

S
R

D

Fig. 2.26. Scheme of subclasses of subexponential distributions

As we see from the figure the class R is contained in all the other and thus,
possesses all the characteristic properties. On the other side the representation
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of the tail of these distribution is very useful for applications (especially often,
if a closed expression of the distribution is not possible). These are the facts,
why one prefers choosing for modeling the data amount or connection time
distributions from the class R. We will describe further reasons in section
3.2.3.
We introduce for further purposes the important notion of the integrated com-
plementary) distribution.

Definition 2.40. If Fξ is a distribution function of a random variable ξ with
mean µ = E(ξ), then we define by

FI,ξ(t) =
1
µ

∫ t

0

F cξ (x)dx, t ≥ 0,

the integrated (complementary) distribution function to ξ.

We integrated the complementary distribution function. This method is of-
ten used, to level out jumps or abrupt behavior. The new function FI,ξ is
‘smoother’. Because of the existence of the expected value we could divide by
µ. Thus, the resulting function reveals the properties, necessary for a distribu-
tion function of positive random variables (FI,ξ(0) = 0, FI,ξ(t) is monotone
increasing, since F cξ is positive, FI,ξ(t) is continuous, because of the integral
and limt→∞ FI,ξ(t) = 1 ). As exercise one can deduce the fact that

∫ ∞

0

F cξ (x)dx = µ (2.34)

From this follows the property limt→∞ FI,ξ(t) = 1
∫ t

0

F c(x)dx =
∫ t

0

(1 − F (x))dx = t−
∫ t

0

1 · F (x)dx

= t− xF (x)|t0 +
∫ t

0

xf(x)dx

= (1 − F (t))t +
∫ t

0

xf(x)dx

= t

∫ ∞

t

f(x)dx +
∫ t

0

xf(x)dx

The last integral
∫ t
0
xf(x)dx converges for t → ∞ towards the expected value

µ. The first integral can be estimated by (note that the density is positive)

0 ≤ t

∫ ∞

t

f(x)dx ≤
∫ ∞

t

xf(x)dx

Since the integral
∫∞
0

xf(x)dx = µ exists (note that the random variable is
positive), the expression

∫∞
t

xf(x)dx converges towards 0 for t → ∞. Hence,
the integral t

∫∞
t

f(x)dx does it also, and we overall conclude
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∫ t

0

F c(x)dx →
∫ ∞

0

xf(x)dx = µ

Before establishing the connection between subexponential and subexponen-
tial integrated distribution, we give some examples of subexponential distri-
butions. We indicate only the complementary distribution function, since we
have Fξ(t) = 1 − F cξ (t) and for the density fξ of Fξ.

Example 2.41. Weibull distribution (fig. 2.27):

fξ(x) = aτtτ−1e−at
τ

, F cξ (t) = e−at
τ

, for a > 0, 0 < τ < 1
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Fig. 2.27. Complementary cumulative distribution function (ccdf) of the Weibull
distribution, linear (left) and logarithmic (right) scale on x-axis

Example 2.42. Pareto distribution (fig. 2.28):

fξ(x) = ακα
(

1
κ + x

)α+1

, F cξ (t) =
(

κ

κ + t

)α
, for α, κ > 0
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Fig. 2.28. Complementary cumulative distribution function (ccdf) of the Pareto
distribution, linear (left) and logarithmic (right) scale on x-axis
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Example 2.43. Burr distribution (fig. 2.29):

fξ(x) = κατxτ−1

(
1

κ + xτ

)α+1

, F cξ (t) =
(

κ

κ + tτ

)α
, for α, κ, τ > 0
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Fig. 2.29. Complementary cumulative distribution function (ccdf) of the Burr dis-
tribution, linear (left) and logarithmic (right) scale on x-axis

Example 2.44. Benktander distribution type I (fig. 2.30):

F cξ (t) =
(

1 + 2
(
β

α

)
log t

)
e−β(log t)2−(α+1) log t, for α, β > 0
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Fig. 2.30. Complementary cumulative distribution function (ccdf) of the Benk-
tander I distribution, linear (left) and logarithmic (right) scale on x-axis

Example 2.45. Benktander distribution type II (fig. 2.31):

F cξ (t) = e
α
β t−(1−β)e−α

tβ

β , for α > 0, 0 < β < 1
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Fig. 2.31. Complementary cumulative distribution function (ccdf) of the Benk-
tander II distribution, linear (left) and logarithmic (right) scale on x-axis

Example 2.46. Lognormal distribution (fig. 2.32):

fξ(x) =
1√

2πσx
e−

(log x−µ)2

2σ2 , for µ ≥ 0, σ > 0

(F cξ cannot be given in closed form.)
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Fig. 2.32. Complementary cumulative distribution function (ccdf) of the Lognormal
distribution, linear (left) and logarithmic (right) scale on x-axis

Example 2.47. Log-gamma distribution:

fξ(x) =
αβ

Γ (β)
(log x)β−1x−α−1, for α > 0, β > 0

where Γ is the gamma function (F cξ cannot be given in a closed form).

Next we state the relationship between the complementary and integrated
(complementary) distribution function. Unfortunately neither F ∈ S ⇒ FI ∈
S or FI ∈ S ⇒ F ∈ S does hold. But there is for most applications some
hope, since for distributions interesting for modeling the IP-based traffic per-
formance the equivalence hold: they fulfill F ∈ S as FI ∈ S. Here is a list of
samples, in fact identical with the former list of examples:
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• Pareto distribution,
• Weibull distribution for τ < 1,
• Lognormal distribution,
• Benktander type I and Benktander type II distribution,
• Burr distribution,
• Log-gamma distribution.

An important rôle for the estimation of subexponential resp. heavy-tail dis-
tributions plays the so called mean excess function or excess distribution.

Definition 2.48. Let ξ be a random variable:

• For a random variable ξ with distribution function Fξ and a threshold x
we define

Fx,ξ(t) = P(ξ − x ≤ t | ξ > x), x ≥ 0

as the excess distribution of ξ above the threshold x.
• The function

CMEξ(x) = E(ξ − x | ξ > x)

for a random variable ξ will be called excess function.

If the distribution F is continuous, then the function CMEξ provides a useful
representation. We have

CMEξ(x) = E(ξ)
FI,ξ(x)c

F c(x)

if ξ has a first moment. We can express it in other words

F c(x) =
CMEξ(0)
CMEξ(x)

exp
(
−
∫ x

0

1
CMEξ(t)

dt

)
, x > 0

For characterizing the heavy-tail distributions, we cite the theorem of Kara-
mata [133] (resp. [76, A.3.6]), to which we will come back, when modeling the
so called on-off models.

Theorem 2.49. Let L ∈ R0 locally bounded on the interval [x0,∞[, x0 > 0.
We have:

• If α > −1, then it follows
∫ x

x0

tαL(t)dt ∼ (α + 1)−1xα+1L(x), x → ∞

• If α < −1, then it holds
∫ x

x0

tαL(t)dt ∼ −(α + 1)−1xα+1L(x), x → ∞
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• For the case α = −1 we get

1
L(x)

∫ x

x0

L(t)
t

dt −→ ∞, x → ∞

and x �−→
∫ x
x0

L(t)
t dt ∈ R0.

• If α = −1 and suppose
∫ x
x0

L(t)
t dt < ∞, then we deduce

1
L(x)

∫ ∞

x

L(t)
t

dt −→ ∞, x → ∞

and x �−→
∫∞
x

L(t)
t dt ∈ R0.

With these facts we obtain, provided F c ∈ R−α, for α > 1

CMEξ(x) ∼ x

α− 1
, for x → ∞ (2.35)

Since the mean excess function plays the central rôle for the estimations, we
give for certain important distributions their corresponding excess functions
in the table 2.1.

Table 2.1. Excess functions

Exponential CME(x) = 1
λ

Lognormal CME(x) = σ2x
log x−µ

(1 + o(1))

Pareto CME(x) = x0+x
α−1

, α > 1

Weibull CME(x) = x1−τ

cτ
(1 + o(1))

Normal CME(x) = 1
x
(1 + o(1))

In the figures 2.33 to 2.33e we depict the excess functions from table 2.1, where
we omitted the expression o(1), i.e. setting it 0. Thus, we have to mention
that the excess function for ‘lognormal’, ‘Weibull’ and ‘standard normal’ are
asymptotic.
As we will see, the Pareto and lognormal distributions exhibit a prominent
rôle within the class of subexponential distributions. Thus, we will deduce
some properties of them. At first we consider a Pareto distribution Fξ(x) =

1 −
(

κ
κ+x

)α
, where a random variable ξ is distributed according to Fξ. Then

it follows
P(ξ > 2x) = cP(ξ > x), x > 0

where c is a constant independent of x. Furthermore the Pareto distribution is
the only distribution, which is invariant for cutting from below, i.e., suppose
y ≥ x0 > 0, then we have

P(ξ > y | ξ > x0) = P
((x0

κ

)
ξ > y

)
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Fig. 2.33. Excess function for the ex-
ponential distribution

Fig. 2.33a. Excess function for the
standard normal distribution
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Thus the conditional distribution is again a Pareto distribution, just with
different parameters.
For the lognormal distribution we estimate the complementary distribution
function first, since it is not available in closed form. We have as density for
the parameter µ = 0 and σ = 1, a standard lognormal distribution

fξ(t) =
1√

2πσt
e−

(log t)2

2

This means the random variable log ξ is Gaussian. For the standard normal
distributed random variable ZV η it holds

P(η > y) ∼ 1√
2πy

e−
y2

2

This implies

P(ξ > x) ∼ 1√
2π log x

e−
(log x)2

2

Thus, there is a constant c with

P(ξ > x) ∼ c
e−

(log x)2

2

log x

We have for n ∈ N

log x · e
(log x)2

2 > xn (2.36)

for sufficient large x. We can deduce (2.36) in the following way:

Find for n ∈ N a x0, such that it holds

log x > n, for all x ≥ x0

Then, we obtain

(log x)2 > n log x, thus e(log x)
2
> xn, for x ≥ x0

The lognormal distribution is subexponential but according to our definition
not heavy-tail, since the complementary distribution function does not enjoy
the behavior

F c(x) ∼ x−αL(x)

for large x with a suitable 0 < α and a slowly varying function L ∈ R0.

2.7.5 Application of M/G/1 Models to IP Traffic

Motivation for the following section are the measurements done by the Leland
group at Bellcore [160], to which we will return in connection with the Nor-
ros model and the introduction of the FBM into the traffic modeling. These
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measurements show the decisive differences in local networks, when e.g. con-
sidering transmission times of FTP transfers. The main difference consists in
the great variability of the average serving rates µ, what clearly indicates that
the Poisson process is no longer applicable.
In addition, the measurements revealed that the CPU times as well as the
amount of data follow the rules of heavy-tail distributions. The time series of
data in IP traffic show the so called long-range dependence, which we will dis-
cuss in the next chapter intensively (e.g. in the section on α-stable processes).
This implies that the present state is strongly depending on the former one.
We keep to the standard definition that for a discrete process (Xn)n∈N the cor-
relation function Cor(X0,Xn) decays more slowly than exponential and is not
summable (see theorem 3.37). The classical ARMA processes or time series
have a correlation function decaying exponentially (see e.g. section 3.3.3).
We start with a brief summary on the classical queueing model M/G/1:

• The arrival process is Poisson with rate λ, i.e., the interarrival time ξn
is Markovian resp. exponential. The arrival times Tn, with ξ1 = T1 and
ξn = Tn − Tn−1, n ≥ 2 are Poisson with rate λ.

• The serving rate is general distributed according to the function F with
mean (expected value) µ.

• We assume a stable system, i.e. the average load is ρ = E(η)
E(ξ) = λµ < 1.

The aim is to obtain results on the waiting time distribution, residual work
and queueing length under the assumption of a subexponential distributed
serving time. Differently to section 2.7.3, we will formulate only qualitative
results. No detailed proofs will be presented, which is left to the reader in the
given literature. The following results are mainly based on the article [104].
We denote by Wn the waiting time of the n-th user, by ηn (set η0 = 0) the
serving time of the n-th user and with ξn+1 = Tn+1 −Tn the interarrival time
from the n-th to the (n + 1)-th user. We have the relation

W0 = 0, Wn+1 = (Wn + ηn − ξn)+

For a fixed n ∈ N ∪ {0} we derive from [11, Lemma 11.1.1] the identity in
distribution

Wn = max
0≤k≤n

k∑

i=0

(ηi − ξi+1)

where (Sn =
∑n
n=0(ηi − ξi+1))n≥0

, with S0 = 0, is a stochastic random walk
with generator

ζ = η − ξ

(see (2.11) from section 2.6). For the expected value of the generator we get

E(ζ) = E(η − ξ) = µ− 1
λ

=
1
λ

(λµ− 1) < 0
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This indicates that (Wn) is distributed like the maximum of a random walk
with negative drift and converges almost surely towards a RV W∞, for n → ∞
(see [11, Satz 11.1.3a)]). The random walk W∞ is finite (because of conver-
gence) with a distribution function W(t), t > 0. According to a result of
[11, S. 238] resp. the waiting time distribution due to Pollaczek-Khintchine
(see section 2.7.3), we deduce

W(t) = (1 − ρ)
∞∑

n=0

ρnFn∗I (t), t ≥ 0 (2.37)

where F 0∗
I = δ[0,∞[ is the Dirac distribution with measure 1 at 0. According

to our notation, we have

Fn∗I (t) =
1
µ

∫ t

0

Fn∗,c(y)dy

where Fn∗,c(y) is the complementary distribution function of the n-times con-
volution of the distribution function F , i.e. the complementary distribution
function of the random variable η1 + . . .+ηn. Changing to the complementary
distribution of W(t), it follows

Wc(t) = (1 − ρ)
∞∑

n=0

ρn(Fn∗,cI (t)), t ≥ 0

It is obvious to divide both sides by 1 − F cI (t). This implies

Wc(t)
F cI (t)

= (1 − ρ)
∞∑

n=0

ρn
1 − Fn∗I (t)
1 − F cI (t)

Results on the asymptotic behavior of Wc(t) can be derived, if interchanging
limit and summation is possible. According to [233, Lemma 2.10] and the
dominated convergence theorem (see e.g. [98, Satz 1.6.10]), this can be done.
Using the characterization of subexponential distributions in (2.30) and the
convergence of the geometric series

∑
n≥0 ρ

n (note that ρ < 1), we can derive
the following results, which serves even as another characterization of subex-
ponential distributions, because of the stationary distribution of W and the
integrated distribution of FI .

Theorem 2.50. In a M/G/1 model with ρ < 1 the following assertions are
equivalent

lim
t→∞

Wc(t)
F cI (t)

=
ρ

1 − ρ
⇔ FI is subexponential ⇔ W(t) is subexponential

The limit exists, if and only if one has ρ
1−ρ as asymptotic value of Wc(t)

F c
I (t) .

Modeling serving times subexponential, we obtain a subexponential equilib-
rium distribution FI . This is again equivalent to the fact that the waiting
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time distribution is subexponential, since the complementary distribution of
the waiting time differs only by a constant factor, namely ρ

1−ρ . For a rigorous
proof of this heuristic justification see [78].
This result is valid with the restriction, if one changes to a general arrival
process, since the necessary result from [11] is also valid in the GI/G/1 case
– only the first moments of ξ and η have to exist.

Theorem 2.51. Assume a GI/G/1 waiting system. Then the following im-
plications hold

FI is subexponential ⇔ W(t) is subexponential ⇒ lim
t→∞

Wc(t)
F cI (t)

=
ρ

1 − ρ

When does greater load occurs in the systems? For this let

τ = inf {n > 0;Wn = 0} = inf {n > 0;Sn < 0}

(see e.g. [11, Kor. 11.1.2]), where Sn =
∑n
i=1(ηi − ξi) =

∑n
i=1 ηi − Tn is

a random walk with S0 = 0 and generator ζ = η − ξ. Sn represents the
aggregated n serving times of the n first interarrival times. The value τ is
denoted as weak decreasing laddar index (LI) (see e.g. [11, S. 38]) and indicates
the first demand, which does not have to wait. We assume that F ∈ L, (see the
definition form section 2.7.4) i.e. it holds limx→∞

F c(x+y)
F c(x) = 1 for y ∈ R. This

tells us that the distribution function is subexponential with F c(x) = L(x)x−α

and L ∈ R0 slowly varying – we know the notion from section 2.7.4. Then the
complementary distribution function Gc of ζ looks like

Gc(x) = P(ζ > x) =
∫ ∞

0

P(η > x + y)dFξ(y)

∼ P(η > x) = F c(x), for x → ∞

The complementary distribution Wc is thus equivalent to the complementary
distribution function of F , that means

Wc(x) ∼ 1
ν

∫ ∞

x

F c(y)dy =
µ

ν
(1 − FI(x)), for x → ∞ (2.38)

where ν = E(ζ − ξ). Since we assumed ρ < 1, this gives τ < ∞ a.s., but
we have even more. It holds E(τ) < ∞, and with the Wald identity (see [98,
Lemma 6.3.18])

E(τ) = λE(ξ1)≤

where ξ≤1 = Tτ (see [11, S. 234, (11.2.2)]). The distribution of the (Tn) is
Poisson.
We define the ‘stopped’ maximum

Mτ = sup
1≤n≤τ

Sn
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This reflects the greatest values of Sn up to that demand, which is the first
one sent without waiting. It is natural to ask, when the first moment (or the
first demand) occurs, where the random walk (Sn) steps over a fixed threshold
x, i.e.

τ(x) = inf {n > 0;Sn > x}
Then it is immediately clear, that P(Mτ > x) = P(τ(x) < τ). The paper
[104] examines, how and when such a cyclic maximum Mτ occurs. Thus, we
introduce for 0 < x0 < x < ∞ three values

N(x, x0) = card {n ≥ 0;n < τ, Sn ≤ x0, Sn+1 > x}
p1(x, x0) = P(Sn+1 > x, for a 0 ≤ n < τ with Sn ≤ x0)
p2(x, x0) = P(τ(x) < τ and x0 ≤ Sτ(x)−1 ≤ x)

Before we formulate the main result for the relationship of these value, we
shortly look closer to them. The value N(x, x0) indicates the amount of de-
mands n, which are in the first cycle (i.e. not to wait until the first demand),
for which the first serving time Sn is smaller than x0 and the next demand
of Sn+1 steps over the threshold x. Correspondingly p1(x, x0) measures the
probability, that this happens at least once within a cycle, and p2(x, x0) the
probability that for given x0 < x before the incident Sτ(x) > x the demand
Sτ(x)−1 surpasses the value x0. We have now the following theorem.

Theorem 2.52. (Greiner/Jobman/Klüppelberg) Let m = E(τ). Then it fol-
lows:

a) p1(x, x0) ≤ P(Mτ > x) ≤ p1(x, x0) + p2(x, x0) for x > x0.
b) E(N(x, x0)) ∼ p1(x, x0) ∼ mWc(x0)F c(x) for x0 > 0 and asymptotic

x → ∞.
c) If W possesses a density w, such that w(x) ∼ F c(x)

ν for x → ∞, then it
follows

lim
x0→∞

lim sup
x→∞

p2(x, x0)
F c(x)

= 0

d) P(Mτ > x) ∼ mF c(x), x → ∞.

The proof is given in [104].

Remark 2.53. We give some remarks on theorem 2.52:

• By comparing c) of the result in theorem 2.52 with relation (2.38), we
realize that the assumption of c) in the theorem is fulfilled, if we choose
F ∈ L. Examples and further explanation to the class L can be found in
section 2.7.4.

• The relevance of the value τ and τ(x) lies in the judgment, when the buffer
(or server, router) is again empty or at least works without delay (in the
case τ) and when the traffic grows over the threshold (case τ(x)). The
theorem reveals, in which form this occurs in dependence of the serving
distribution.
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• How can we interpret the result? At first it shows that the traffic (i.e. the
random walk Sn) develops with negative drift of the generator ζ = η − ξ.
Is the serving time F strongly heavy-tailed, then the surpass of a high
threshold occurs at x (see point c) in the theorem). After that we have a
system similar to the beginning with the help of τ , and the negative drift
occurs again. But on the way down an overflow can occur (see point b) in
the theorem), which is justified by the heavy-tail of F .

• A weak point of the M/G/1 model consists in the consideration of only
one serving unit. Thus, mostly so called processor sharing systems are
considered, as we do partly in the section 3.5.2. Another extreme case, the
M/G/∞ models, are done in section 2.5.1.

A next value of interest is the remaining or queueing traffic load (Vt). It is also
called the virtual waiting time and consists of the sum of all serving times of
the waiting requests and handled loads up to time t, i.e. all waiting demands
and just sent IP packets in a server or router. Vt is nothing else as the waiting
time of an incoming data request at time t until its successful sending. This
can be formally described as

Vt =
∞∑

n=0

(Tn + W + ηn − t)+1[Tn,Tn+1[(t)

Suppose Θ is a p Bernoulli distributed random variable, which is independent
to all appearing random variables, then under ρ < 1 the identity holds in
distribution

Vt
d= (1 −Θ) + Θ(W∞ + η∗) d= (W∞ + η − ξ) d= (M + η − ξ)

where M = supn≥0 Sn and η∗ is a random variable, distributed according to
FI and independent to the already introduced random variables. A proof can
be found e.g. in [11, prop. 11.3.2.]. It can be seen that the distribution of the
remaining load or request is determined by the waiting time resp. serving time
in case of exponential distributed interarrival times. This means that it is also
subexponential distributed, provided F or FI are subexponential.
We investigate another key quantity, the waiting queue Qt in the system up
to time t, as we already looked at in the chapter on the classical traffic theory
under FIFO principle. Let Dn = ηn + Wn the sojourn time of the n-th user,
which should be independent to all later arrival times in the system. Let
furthermore Nt a stationary version of the counting process, subordinated to
the arrival times, i.e. w.l.o.g.

Nt = sup {n ≥ 0;Tn ≤ t}

This corresponds to the amount of requests up to time t. Furthermore we
define with D = η + W the stationary sojourn time (consider in the section
‘renewal process’the notion ‘stationary’). A request n will be part of the wait-
ing queue at time t, if Tn ≤ t holds for its arrival time, and it has not been
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served yet until time Tn + Dn, i.e. Tn + Dn > t. Thus, we have the identity
in distribution

Qt =
∑

n≥0

1(Tn≤t;Tn+Dn>t)

With Q∞ we denote the stationary waiting queue distribution, then in this
case follows (see [11, p. 240])

Qt −→ Q∞ in distribution, for t → ∞

Let (T̂n) be a copy of (Tn) independent to all appearing random variables.
Then we have the following waiting queue distribution (see [11, prop. 14.4.2]).

Theorem 2.54. For the asymptotic length of the waiting queue Q∞ and all
n ≥ 1 we have

P(Q∞ = 0) = 1 − ρ (compare with (2.29))
P(Q∞ ≥ n) = P(W∞ + η∗ > T̂n−1) = P(Dn > ξ∗ + T̂n−1)

= P(V > T̂n−1)

In particular
E(Q∞) = λE(D) = λE(W∞) + ρ (2.39)

The equation (2.39) is called the Theorem of Little (see proposition 2.5). This
identity can be described heuristically as follows: The expected value E(D)
indicates the mean sojourn time of the data in the system in the stationary
case. Then λE(D) is the average amount of incoming requests during this time
period. But this corresponds also to the mean number of waiting requests, if
just one is severed and leaves the server or router. Hence, we can reformulate
the theorem of Little

Q∞
d= ND

If Fη is subexponential, then we have F cη (x) = o(1 − Fη,I(x)) according to
the result in [233, Lemma 3.1.]. Hence, F cη decays faster than Wc (see e.g. the
representation of the distribution W from (2.37)). Thus, W∞ predominates
η, the serving time in the sum of D, and it follows

P(D > x) ∼ P(W∞ > x), for x → ∞

If we assume a heavy-tail distributed serving time, as done in the most models,
so we get the following result according to Assmussen et al. [22].

Theorem 2.55. We consider a waiting time system M/G/1 with arrival rate
λ and traffic identity ρ = µλ < 1. Assume that the serving time is distributed
according to Fη, where the integrated (complementary) equilibrium distribution
Fη,I ∈ S, i.e. it is subexponential. Let W∞ be the stationary waiting time.
Furthermore it is assumed that
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lim
x→∞

F cη (xe
y√
x )

F cη (x)
= 1, y ∈ I (2.40)

holds uniformly on bounded intervals I ⊂ R. Then, for k → ∞ the stationary
waiting queue distribution Q fulfills the relationship

Qc(k) = P(Q∞ > k) ∼ E(λW∞ > k) ∼ ρ

1 − ρ
(1 − FIη(

k

λ
))

The assumption (2.40) guaranties that the complementary distribution de-
cays more slowly than the complementary Weibull distribution with density
exp(−√

x). Consequently, this results holds for the Pareto distribution, log-
normal distribution and Weibull distribution with complementary distribution
function of order F cη (x) ∼ exp(−xβ), β < 0.5. In these cases the waiting queue
will be large because of the long serving time. The Poisson-arrival does not
contribute anything substantial. But, if the complementary serving time dis-
tribution F cη (x) ∼ exp(−xβ) decays with β > 0.5, then one has to take the
arrival process into account and both influence the waiting queue resp. its
distribution. Some examples demonstrate this fact:

• If F cη (x) ∼ exp(−√
x), then we have

P(W > k) ∼ e
1
8λ e−

√
xd
λ , for k → ∞

• Assume F cη (x) ∼ exp(−xβ), β = ]12 ,
2
3 [, then it follows

P(W > k) ∼ e−( k
8λ )β

+
(1−β)β2

λ ( k
λ )2β−1

, for k → ∞

• If β > 2
3 then we get an expression with terms of higher order and the

expression gets rather complicated.

2.7.6 Markov Serving Times Models GI/M/1

Though the following traffic situation is not rarely observed in IP traffic, we
present it for completeness. We initially describe the ingredients of the model.

Description of the Model

In accordance to the mixed system M/GI/1 we consider now:

• General distributed interarrival time ξ with expected value E(ξ).
• One serving place.
• Poisson distributed serving time Fη(t) = P(η ≤ t) = 1−e−µt ⇒ E(η) = 1

µ .

• For the load coefficient we get ρ = E(η)
E(ξ) = 1

µE(ξ) .
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Methods for Treatment of the Model

Since the interarrival times are general distributed we choose for the embed-
ding time spots according to the memoryless the particular arrival times.
If X(t) denote the system state at time t, then we form the sequence
(X(t0),X(t1), . . . , X(tn),X(tn+1), . . .) as embedded Markov chain. As in the
treatment of the waiting system M/G/1, we define the random variable ζ,
as the amount of demands in the system during an interarrival time periods.
Accordingly we denote the distribution function by

Fζ(i) = P(ζ = i)

The generating function can be written in the form

ζEF(z) =
∞∑

i=0

Fζ(i)zi

whereas E(ζ) = dζEF(z)
dz

∣
∣
∣
z=1

= µE(ξ) = 1
ρ .

As already done in the treatment of the waiting system M/G/1 in section
2.7.3 we use for the computation of the transition probabilities

pij = P(Xtn+1 = j |Xtn = i)

a division into several cases. During the interval ]tn, tn+1[ we have no arrival
events. This implies a pure loss process:

• j = 0: the system is empty at time tn+1. Immediately after the n-th arrival
we find i + 1 demands in the system. The probability pi0 equals the one
that at least i + 1 demands are served, i.e.,

pi0 =
∞∑

k=i+1

Fζ(k) = 1 −
i∑

k=0

Fη(k), i = 0, 1, 2, . . .

• j > 0: the system is not empty at time tn+1. Directly before the n-th
arrival we have i demands in the system; shortly afterwards we have i+ 1
demands. Just before the (n+1)-th arrival there are still j demands in the
system. Hence, (i+1−j) demands are served during the interval ]tn, tn+1[.
Hence

pij = Fζ(i + 1 − j), i = 0, 1, . . . , j = 1, . . . , i + 1

The transition matrix is written in the compact form

P = (pij) =

⎡

⎢
⎢
⎢
⎣

1 − Fζ(0) Fζ(0) 0 0 . . .

1 −
∑1
k=0 Fζ(k) Fζ(1) Fζ(0) 0 . . .

1 −
∑2
k=0 Fζ(k) Fζ(2) Fζ(1) Fζ(0) . . .
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎦
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State Probabilities

We proceed as in the case of the waiting system M/GI/1. For this let x(i, n) =
P(X(tn) = j) and the state probability vector

Xn = (x(0, n), x(1, n), . . . , x(j, n), . . .)

We conclude the state transition equation

XnP = Xn+1

With the initial vector X0 we can successively compute all vectors Xn in the
instationary case. Again we find a condition for the stationary state

Xn = Xn+1 = . . . = X = (x(0), x(1), . . . , x(j), . . .)

We find for the state equation

XP = X

Again, we derive the state probabilities for the stationary case. For this we
split the matrix notation into the components:

x(0) =
∞∑

i=0

x(i)

(

1 −
i∑

k=0

Fζ(k)

)

=
∞∑

i=0

x(i)
∞∑

k=i+1

Fζ(k)

x(j) =
∞∑

i=j−1

x(i)Fζ(i + 1 − j) =
∞∑

i=0

x(i + j − 1)Fζ(i), j = 1, 2, . . .

We choose a so called geometric approach (see e.g. [141, 253])

x(j + 1) = �x(j), j = 0, 1, 2, . . . resp. x(j + 1) = �j+1x(0)

The aim is now to determine the particular parameter �. We insert this ap-
proach in the above equation and deduce

x(j) − (x(j − 1)Fζ(0) + x(j)Fζ(1) + x(j + 1)Fζ(2) + . . .) = 0

This gives

�x(j − 1) − x(j − 1)Fζ(0) − �x(j − 1)F�(1) − �2x(j − 1)Fζ(2) − . . . = 0

or

x(j − 1)
(
�− (F�(0) + �Fζ(1) + �2Fζ(2) + . . .)

)

= x(j − 1)

(

�−
∞∑

i=0

Fζ(i)�i
)

= 0
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Assuming that x(j − 1) > 0, then the solution of the last equation must
coincide with the one of the following equation (also called fix point equation)

z = ζEF(z)

since this is exactly the content of the brackets. Excluding the trivial solution
� = 1, i.e., x(i) = x(i + 1) for all i = 0, 1, . . . , we consider the area of
convergence of the series

∑∞
i=0 Fζ(i)z

i for |z| ≤ 1. For this we differentiate
the generating function twice

dζEF (z)
dz

=
∑

i=1

Fζ(i)izi−1 ≥ 0

d2ζEF (z)
dz2

=
∞∑

i=2

Fζ(i)i(i− 1)zi−2 ≥ 0

Thus, the generating function is monotone increasing and convex in the in-
terval ]0, 1[.
Depending on the value dζEF (z)

dz at the spot z = 1, we find:

• an intersection point at z = 1, if dζEF (z)
dz

∣
∣
∣
z=1

≤ 1, or

• two intersection points, in particular one in ]0, 1[, if dζEF (z)
dz

∣
∣
∣
z=1

> 1.

Since dζEF (z)
dz

∣
∣
∣
z=1

= E(ζ) = 1
ρ , this implies that there exists exactly one non

trivial solution, if 1
ρ > 1 or ρ < 1. This is a fact, which we already observed

for the stability of the system M/M/1. We have for the solution �

x(j) = �jx(0) and
∞∑

i=0

x(i) = 1

Hence, we obtain by inserting the state probabilities

x(j) = (1 − �)�j

The solution for � can be obtained in general using numerical techniques, as
the approximation methods according to Newton.

Waiting Time Distributions

Here, we follow the same line as in the last case of the M/G/1 - case and con-
sider the queueing principle FIFO. The approach uses the conditional proba-
bilities

P(W > t |W > 0) =
P(W > t,W > 0)

P(W > 0)
=

P(W > t)
P(W > 0)

whereas
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P(W > 0) =
∞∑

i=0

x(i) = 1 = 1 − x(0) = �

Again, we choose a test unit and analyze the demands in the system. Only if
X > 0, we can observe a positive waiting probability. Thus,

P(W > t) =
∞∑

i=1

P(W > t |X = i)P(X = i) =
∞∑

i=1

P(W > t |X = i)(1 − �)�i

From the representation of P(W > 0) we can divide the last equation by ρ
and get

P(W > t |W > 0) =
P(W > t)
P(W > 0)

=
∑

i=1

P(W > t |X = i)(1 − �)�i−1

To obtain a final form of the waiting distribution, we have to express P(W >
t |X = i). As assumption we choose X = i in the system. The waiting time
of a test unit is divided into two phases:

• The time period starting from the arrival of the test unit until the first
end of the serving time. This coincides with the forward recurrence time
of the serving time η and has, because of the Markov property, the same
distribution as η.

• The time period from the first serving end until the time spot, when all
demands are served. This means the time of i− 1 serving units.

Thus, the waiting time is combined of i serving periods η. Hence, we have
that P(W > t |X = i) is an Erlang distribution of order i

P(W > t |X = i) = e−µt
i−1∑

k=0

(µt)k

k!

Substituting into the equation for P(W > t |W > 0) we deduce

P(W > t |W > 0) = e−µt
∞∑

i=1

i−1∑

k=0

(µt)k

k!
(1 − �)�i−1

= e−µt
∞∑

k=0

(µt)k

k!

∞∑

i=k+1

(1 − �)�i−1

= e−µt
∞∑

k=0

(�µt)k

k!
= e−(1−�)µt

Hence, we can solve for P(W > t) and realize

P(W > t) = P(W > t |W > 0)P(W > 0) = �e−(1−�)µt = 1 −W (t)

For the final waiting distribution we note

W (t) = 1 − �e−(1−�)µt
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Remark 2.56. The treatment of the general GI/G/1 loss resp. waiting system
is still to do. We will come to it in more detail in section 2.8.1 (see also [11,
p. 230]).

2.8 General Serving Systems GI/G/n

2.8.1 Loss Systems

We presented in section 2.7.3 queueing probabilities and further key dates,
which were not representable in closed form. The only way consisted in using
the mean generating function. With Fξ we indicate, as usually, the distribu-
tion of the interarrival times. Let ΦF be the Laplace transform of a function
F . In a GI/G/1 − 0 loss system all new arriving demands will be blocked
during the serving of this particular unit. We denote by NA the amounts of
arriving demands during the serving time. Then the blocking probability can
be computed according to (see also section 2.7.3)

pB =
E(NA)

1 + E(NA)

in other words the relation of the incoming demands to all demands in the
system. As in section 2.7.3 we want to determine the expected number E(NA)
via the conditional probability of η

P(NA = n | η = x) = F
(n)
ξ (x) − F

(n−1)
ξ (x) (2.41)

where F
(n)
ξ is the n times convolution of the distribution function Fξ. Here,

we use the fact that the single arrivals, thus, the incomings of the data in
the server or router are independent. From the formula for the conditional
expectation we obtain with (2.41)

E(NA | η = x) =
∞∑

n=1

nP(NA = n | η = x) =
∞∑

n=1

F
(n)
ξ (x)

With the help of the formula for the conditional expectation we deduce fur-
thermore

E(NA) =
∫ ∞

0

E(NA | η = x)fη(x)dx (2.42)

where fη is the density of the serving duration.
To gain a upmost explicit representation, we want to assume a hyperexpo-
nential distributed serving time. There are more possibilities for considering
heavy-tail distributed serving times. For this let

fξ(x) =
m∑

j=1

βjµje
−µjx (2.43)
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Here the coefficients βj and µj are suitable chosen. We can rewrite (2.42) with
the help of (2.43) (assuming that the integrals are convergent absolutely)

E(NA) =
m∑

j=1

βjµj

∫ ∞

0

F
(n)
ξ (x)e−µjxdx (2.44)

As known from the results of sums over random variables that the n times
convolution (thus, the distribution of the sum of n random variables) can be
written as the product of the Laplace transform of the corresponding func-
tions. Hence, we can represent the integrand with (1.20) and (1.19) from [102]
as ∫ ∞

0

F
(n)
ξ (x)e−µjxdx =

1
µj

(ΦF (µj))
n (2.45)

Here we pick s = µj (inserted into (1.18) of [102]). Putting into (2.44), we
deduce

E(NA) =
m∑

j=1

βj
ΦF (µj)

1 − ΦF (µj)

With increasing serving time the blocking probability decreases – a surprising
fact from result (2.45). What is the reason for this? For this we consider the
probability that the interarrival items are larger than the serving times, i.e.

∆ = P(ξ > η) (2.46)

These amounts play also a rôle in the consideration of the stationarity. In
a loss system GI/G/r − 0 the state process is stationary, if E(η) < ∞ and
P(η0 < rξ0), where η0 and ξ0 are the serving and interarrival time distributions
of the first demand (see section 2.7.3). In contrast to the above example of the
hyperexponential distributed serving time, we have chosen a general density
fη. With the complementary distribution function F cξ of the interarrival times
we represents (2.46) (consider e.g. section 2.7.4)

∆ =
∫ ∞

0

F cξ (x)fη(x)dx (2.47)

Let’s first consider the hyperexponential distributed interarrival and serving
times

fχ(x) =
mχ∑

j=1

βχj e
µχ

j x, χ ∈ {ξ, η}

Computing the integral in (2.47) this leads in the hyperexponential case

∆ =
mξ∑

i=1

mη∑

j=1

βξi β
η
j

µηj

µξi + µηj

On the other hand, choosing a Pareto distribution for the interarrival rep.
serving times
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Fχ(x) = 1 −
(xχ
x

)αχ

, χ ∈ {ξ, η}, x ≥ xχ

we obtain for the complementary distribution function (see section 2.7.4)

F cξ (x) = 1x≤xξ
+ 1x>xξ

(xξ
x

)αξ

(2.48)

The density of the serving time reads as

fη(x) =
αη
x

(xη
x

)αη

, x > 0 (2.49)

We can again insert (2.48) and (2.49) into (2.47) and get

∆Par =

⎧
⎨

⎩

αη

αξ+αη

(
xξ

xη

)αξ

for xξ ≤ xη

1 − αξ

αξ+αη

(
xη

xξ

)αη

for xξ > xη
(2.50)

The ∆ in (2.48) as in (2.50) depends heavily on the parameters, influencing the
variance (e.g. the α in the expression of the Pareto distribution). A growing
∆ means an increase in variance of the serving time distribution and this
diminishes the blocking probability. But we cannot consider 1−∆ as an upper
threshold for the blocking probability, since there is a correlation between the
existing serving interval and the amount of blocked demands. In the Pareto
situation a larger serving time variance is gained in the case of the lowest value
of αη. We know that there does not exist a finite variance for αη < 2. But
also in this case the blocking probability 1 −∆ decreases (as next blocking)
with increasing serving time variance.
Even if the subexponential distributions, as we saw (and will furthermore
deduce later) lead to the so called long-range dependence and self-similarity
with all the undesirable side effects (as increased waiting time probability
see section 3), there are interesting facts, which, as demonstrated in this sec-
tion, with increasing variance of the serving time lead to decreasing blocking
probability, provided the interarrival times have a sufficient large variance.

2.8.2 The Time-Discrete Queueing System GI/G/1

As we already saw in the above treatment of the loss system, in the general case
of a GI/G/1 queueing system it will be difficult, mostly impossible, to establish
formulas for queueing in closed form. But nevertheless, we can give, using the
Z-resp. Fourier-transform, some formulas, which will enable a suitable analysis
with the help of computer programmes.

Description of the Model

• The interarrival times are general distributed, but the events occur stochas-
ticly independent.
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• The serving time is general distributed, as well.
• We allow an infinite queue, where the entrance into the serving part will

occur according to the principles FIFO, FCFS, LIFO or RANDOM.

Since we are interested in the discrete time model, we define

ξ(k) = P(ξ = k ·∆t), k = 0, 1, . . .
η(k) = P(η = k ·∆t), k = 0, 1, . . .

where ξ resp. η denote the interarrival resp. the serving time of each demand,
and ∆t is a fixed time length. The traffic load of one unit is given by

ρ =
E(η)
E(ξ)

General Methods

As already mentioned an analytical solution to the queueing problem is not at
hand. The fundamental tool for attacking the problem consists in the consid-
eration of the state process of the remaining work. To solve this question the
integral equation due to Lindley (see [165]) is a suitable approach, designed
for the continuous case. For getting the idea, what is about the integral equa-
tion method, we briefly turn to the time continuous case. We denote, as usual,
with Fξ resp. Fη the distribution function of the interarrival resp. the serving
time, while fξ resp. fη denote its densities. If we write

fψ(t) = fξ(−t) ∗ fη(t)

then, according to Lindley [165], we have the stationary waiting time distri-
bution given by

W (t) =

{
0 for t < 0
W (t) ∗ fψ(t) for t ≥ 0

(2.51)

which is an integral equation (∗ represents the convolution). The function
fψ is often called ‘systems function’, since it contains all random parameters
necessary for the queueing system.
The above integral equation (2.51) is a slight modification of the Wiener-Hopf
integral equation used in mathematical physics resp. stochastic analysis.
If we differentiate (2.51), we obtain an integral equation for the density w

w(t) =

⎧
⎪⎨

⎪⎩

0 for t < 0
δ(t)

∫ 0+

−∞ (w(u) ∗ fψ(u)) du for t = 0
w(t) ∗ fψ(t) for t > 0

(2.52)

Citing Kleinrock [141], we get the compact form

w(t) = π0(w(t) ∗ fψ(t))
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where the operator π0 is defined by

π0(f(t)) =

⎧
⎪⎨

⎪⎩

0 for t < 0
δ(t)

∫ 0+

−∞ f(u)du for t = 0
f(t) for t > 0

Solutions for the Time Discrete Queueing System

The above introduced integral equation is now applied to the time discrete
case. We can, in principle, derive the necessary expressions directly from the
equation (2.51), but we will directly deduce them in the following.
In the figure 2.34 the arrival and serving process is depicted. The remaining
workload R(t) at time t is defined as sum of the whole serving and residual
serving time of all demands being in the system. Since we assume a discrete
time, the remaining time process R is time discrete, too, consisting of integer
valued amounts. If a serving unit is occupied, for each time step ∆t exactly
one working unit is done.

t

R(t)

R−
n R+

n Rvn+1

arrivals
n−1 n+1n

ξn

ηn

Fig. 2.34. Arrival and serving process for a discrete GI/G/1 system.

We consider the following random variables (RV):

• ξn: RV for the interarrival time between the n-th and (n+ 1)-th demand.
• ηn: RV for the serving time of the n-th demand.
• R−

n : RV for the residual work time in the system immediately before the
arrival time of the n-th demand.

• R+
n : RV for the residual work time in the system immediately after the

arrival time of the n-th demand.
• Rvn+1: RV for the virtual residual work time in the system immediately

before the arrival time of the (n + 1)-th demand.

The RV Rvn+1 just serves for the derivation of the results. For Rvn+1 it is
assumed that the serving period continues, though there is no demand in the
system. Hence, it can assume negative values.
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We want to compute R−
n with the help of R−

n+1. For this, we represent the
expression in the figure 2.34

R−
n −→ R+

n −→ Rvn+1 −→ R−
n+1

• R−
n −→ R+

n : The residual workload increases after the arrival of the n-th
demand by the serving time of this demand, i.e

R+
n = R−

n + ηn

r+
n (j) = r−n (j) ∗ fηn

(j)

Note that r+
n , r

−
n and fηn

are the discrete densities of the respective RV’s,
and that the density function of the sum of two independent RV is the
convolution.

• R+
n −→ Rvn+1: We can detect using the figure

Rvn+1 = R+
n − ξn

rvn+1(j) = r+
n (j) ∗ fξn

(−j)

• Rvn −→ R−
n+1: The relation between the remaining time and virtual resid-

ual workload is given by the fact that in an empty system, the virtual
time decreases, while the ‘real’ residual serving time stays at 0. Thus, the
virtual residual workload may attain negative values.

R−
n+1 = max(0,Rvn)

r−n+1(j) = π0(rvn+1(j))

where πm is defined as an operator in the discrete time range, in analogy
to (2.52)

πm(x(j)) =

⎧
⎪⎨

⎪⎩

0 for j < m
∑m
i=−∞ x(i) for j = m

x(j) for j > m

We can deduce the general Lindley integral equation

r−n+1(j) = π0(r−n (j) ∗ fξn
(−j) ∗ fηn

(j))
= π0(r−n (j) ∗ fψn

(j))

where
fψn

(j) = fξn
(−j) ∗ fηn

(j) (2.53)

denotes the time discrete system function. We assume FIFO regime and thus,
R−
n is identical with the waiting time Wn of the n-th demand. Hence, from

(2.53) we conclude
wn+1(j) = π0 (wn(j) ∗ fψ(j)) (2.54)

The relation (2.54) indicates the queueing time distribution of two succeeding
demands for general arrival and serving processes. The arrival resp. serving
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time can be demand dependent. We assume that the interarrival and serving
time are iid distributed, i.e.

ξ = ξn, η = ηn, for all n ∈ N

and the system is stationary, i.e.

W = lim
n→∞

Wn

Thus, we obtain a stationary probability

w(j) = π0 (w(j) ∗ fψ(j)) , with fψ(j) = fξ(−j) ∗ fη(j) (2.55)

From equation (2.55) we can derive a formula for the queueing time distribu-
tion

FW (j) =
j∑

k=0

fW (k) =
j∑

k=−∞
fψ(k) ∗ fW (k) =

j∑

k=−∞

∞∑

i=−∞
fψ(i) · fW (k − i)

=
∞∑

i=−∞
fψ(i)

j∑

k=−∞
fW (k − i) =

∞∑

i=−∞
fψ(i) · FW (k − i), j = 0, 1, . . .

or shortly written

FW (j) =

{
0 for k < 0
fψ(j) ∗ FW (j) for k ≥ 0

(2.56)

Thus, it is obvious to state the queueing probability pW in our system

pW (j) = P(at least one demand has to wait until being served)
= P(W > 0) = 1 − FW (0) = 1 − fW (0) (2.57)

Analysis by Z-Transformation

We can, using (2.56), deduce that FW is the discrete convolution with fψ(·),
provided we omit the negative time part. We introduce a correction term
FW−(k) for k < 0 and obtain

FW−(k) + FW (k) = fψ(k) ∗ FW (k) (2.58)

We consider the Z-transform WZ(·) of fw and WZ(·) of the distribution FW .
Similar W−

Z (·) is the Z-transform of the correction term. We can formulate
the relationships
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fw(j) Z-trans.⇔ WZ(z) =
∞∑

j=0

fw(j)z−j

FW (j) =
j∑

k=0

fW (k), j = 0, 1, . . . Z-trans.⇔ WZ(z) =
∞∑

j=0

FW (j)z−j

FW−(j), j = 0, 1, . . . Z-trans.⇔ W−
Z (z) =

−1∑

j=−∞
FW−(j)z−j

We have for the Z-transform of the FW

WZ(z) =
∞∑

j=0

FW (j)z−j =
∞∑

j=0

j∑

k=0

fW (k)z−j =
WZ(z)
1 − z−1

(2.59)

By equation (2.58) and (2.59) we conclude with Zfψ
as the Z-transform of the

density fψ
W−
Z (z) + WZ(z) = Zfψ

(z) · WZ(z)

which can be transformed to the so called characteristic equation

W−
Z (z) · 1

WZ(z)
=

Zfψ
(z) − 1

1 − z−1
(2.60)

We denote the right side of (2.60) as characteristic function

SZ(z) =
Zfψ

(z) − 1
1 − z−1

(2.61)

Remark 2.57. We give some further remarks on the results above.

• We can interpret the term W−
Z (z) as the Z-transform of a sequence of

coefficients, which do not increase on the negative axis. According to the
Eneström-Kakeya theorem all zero points lie outside of the unit circle (see
[8]). Since FW− is a left hand side defined sequence with finite and non
negative values, it can be shown according to [198] that the region of
convergence of the function W−

Z (z) is within and on the unit circle. Thus,
all singularities are outside. Hence, W−

Z (z) is a Z-transform of a maximal
phase sequence.

• The function FW is the Z-transform of a distribution. Hence, it converges
within and on the unit circle and all singularity are outside.

• Because of the stability constraint ρ < 1, we conclude with the help of the
limit theorem of Z-transforms

0 < lim
z→∞

WZ(z) ≤ 1

Example 2.58. The Geom(m)/Geom(m)/1 system: For some distributions
concerning the interarrival times resp. serving times it is possible to derive
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the characteristic equation directly. We choose the parameter m identical for
both processes, the arrival as well as the serving one

fξ(j) = (1 − α)αj−m, j ≥ m, E(ξ) = m +
α

1 − α

fη(j) = (1 − β)βj−m, j ≥ m, E(ξ) = m +
β

1 − β

with α, β ∈ [0, 1]. The Z-transforms read as

Zfξ
(z) =

(1 − α)z−m

1 − αz−1

Zfη
(z) =

(1 − β)z−m

1 − βz−1

The stability constraint implies

ρ =
E(η)
E(ξ)

< 1 ⇔ β < α

From equation in (2.53) we deduce the Z-transform of the system function

Zfψ
(z) = Zfξ

(z−1) · Zfη
(z) =

(1 − α)(1 − β)
(1 − αz)(1 − βz−1)

According to the definition of the characteristic function (2.60), we get

SZ =
αz − β

(1 − αz)(1 − βz−1)

Since for further analysis the singularities and zero points are important, we
give the useful alternative representation

SZ = α
z
(
1 − β

αz
−1
)

(1 − αz)(1 − βz−1)
= W−

Z (z) · 1
ZW (z)

(2.62)

Thus, 1
α is the only singularity outside the unit circle of W−

Z (·), which is the
Y-transform of the maximal phase sequence (FW−(j)). We deduce by equation
(2.62) the queueing time distribution

ZW (z) = K0
1
α
zK1−1 1 − βz−1

1 − β
αz

−1

Because of the norming constraint ZW (1) = 1, we get

K0 =
α− β

1 − β
(2.63)

Equation (2.61) tells us
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lim
z→∞

ZW (z) > 0 (2.64)

and we obtain
K1 = 1 (2.65)

Finally, equations (2.63), (2.64) and (2.65) offer the queueing time distribution
in the Z-transform

ZW =
α− β

1 − β
· z − β

zα− β

Analytical Cycles

From

fWn+1(j) = π0 (fWn
(j) ∗ fξn

(−j) ∗ fηn
(j)) = π0 (fWn

(j) ∗ fψn
(j))

follows

fW0(j) = δ(j) =

{
1 for j = 0
0 else

Algorithm in the Transformed Range

The algorithm for determining the queueing probability for the general
GI/G/1 queueing system are based on the Z-transform

W−
Z (z) · 1

WZ(z)
=

Zfψ
(z) − 1

1 − z−1

W−
gf(z) ·

1
Wgf(z)

=
GFfψ

(z) − 1
1 − z−1

where W−
gf, Wgf and GFfψ

are the generating functions. To solve the above
equations for the explicit queueing probability, there are two standard meth-
ods:

• Polynomial factorization: Separation method by explicit computation of
the singularities and zero points using polynomial factorization (see [147,
252].

• Cepstrum separation: By considering the phase property terms the charac-
teristic function will be separated by the Cepstrum concept (see [8, 256]).

We do not go into the details of both methods, since this topic is beyond the
scope of this book. The reader is recommended to consult the given literature.
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System Characteristics

Queueing time probability: As already analyzed in equation (2.57), the prob-
ability that an arriving demand has to wait, is identical with the probability
that immediately before the arriving time spot the serving units are occupied,
i.e.

pW =
∞∑

j=1

u−(j) = 1 − u−(0) = 1 − w(0) waiting time!probability

Queueing Time of the Waiting Demands: The distribution fw1(j) of the wait-
ing time W1 of the demands, which have to wait, can be computed from the
general waiting time distribution W (j) of an arbitrary demand

fw1(j) = P(W1 = j) =

{
0 for j ≤ 0
fw(j)
pW

for k > 0

System load and mean queueing length: With the help of the Little formula
and the mean waiting time we can determine the mean queueing length Ω
and the system load E(X). For the entire system we get E(W ) + E(η) for the
whole sojourn time, and with the mean interarrival time E(ξ), we conclude
finally the system load E(X)

E(X) =
E(W ) + E(η)

E(ξ)
=

E(W )
E(ξ)

+ ρ

with as usual ρ = E(η)
E(ξ) . Using the Little formula, we get for the mean queueing

length

Ω =
E(W1) · pW

E(ξ)
=

E(W )
E(ξ)

2.8.3 GI/G/1 Time Discrete Queueing System with Limitation

For the analysis in the preceding section an unlimited queueing time was as-
sumed. In most communications systems we have to impose a limited waiting
time.

Queueing in Systems with Limitation

In this system the waiting queue is not allowed to excced a certain threshold
Wmax, which is given by a time interval ∆t and a fixed length L. The time
axis is divided in intervals of length ∆n

Wmax = L ·∆t

This means that the residual workload does not exceed the threshold Wmax.
We introduce the following random variables:
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• ξn: RV for the interarrival time of the n-th to the (n + 1)-th demand.
• ηn: RV for the serving time of the n-th demand.
• Rn: RV for the residual time in the system, immediately before the arrival

time spot of the n-th demand.

We treat the problem by splitting it into three cases. In the first case we
assume that the residual time Rn is smaller than L, then that Rn exceeds L
and finally we consider the general case:

• Case 1: Acceptance of the demand in case of Rn < L. We consider the
conditional RV Rn,0 = Rn|Rn<L, whose distribution reads as

rn,0(j) =
σL−1(rj))
P(Rn < L)

=
σL−1(rj))
∑L−1
k=0 rn(k)

(2.66)

where σm(x(j)) is the operator mimicking the lower part (k ≤ m) of the
distribution x(·)

σm (x(j)) =

{
x(j) for j ≤ m

0 for j > m

Dividing the equation (2.66) by P(Rn < L) is nothing else than a kind
of norming of the conditional distribution of the RV Rn,0 = Rn|Rn<L. It
follows

Rn+1,0 = Rn,0 + ηn − ξn (2.67)
rn+1,0(j) = π0 (rn,0(j) ∗ fηn

(j) ∗ fξn
(−j))

• Case 2: Blocking of demands in case of Rn ≥ L. We analyze this case
similar to the above one. Start with the conditional RV Rn,1 = Rn|Rn≥L.
For the distribution we get

rn,1(j) =
σL(r(j))

P(Rn ≥ L)
=

σL(r(j))∑∞
k=L rn(k)

(2.68)

where σm(x(j)) is the operator passing the upper part (k ≤ m) of the
distribution x(·)

σm (x(j)) =

{
x(j) for j ≥ m

0 for j < m

Again dividing the equation (2.68) by P(Rn ≥ L) is basically the norming
of the conditional distribution of the RV Rn,1 = Rn|Rn≥L. It follows

Rn+1,1 = Rn,1 − ξn (2.69)
rn+1,1(j) = π0 (rn,1(j) ∗ fξn

(−j))
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• Case 3: Combination of Case 1 and Case 2. This case reflects both the
acceptance and blocking of the residual workload from between the n-th
and (n+1)-th demand. The distribution is a weighted combination of both
cases (resp. equations (2.67) and (2.69))

rn+1(j)
= P(Rn < L)rn+1,0(j) + P(Rn ≥ L)rn+1,1(j)
= π0

(
σL−1(rn,0(j)) ∗ fηn

(j) ∗ fξn
(−j)

)
+ π0 (σL(rn,1(j)) ∗ fξn

(−j))

= π0

((
σL−1(rn,0(j)) ∗ fηn

(j) + σL(rn,1(j))
)
∗ fξn

(−j)
)

where the last equation is due to the fact that π0 is piecewise linear

pB =
∞∑

j=L

r(j)

Analysis of Spacers in Communications Networks

Example 2.59. Spacer in communication networks: Before we apply the above
theoretical framework to this particular model, we shortly give an overview
on the concept of spacers in the communication networks. This concept is
used for the traffic management and admission control at the User Network
Interface (UNI). As we already mentioned in the previous chapter, usual IP
traffic reveals a bursty character. The spacing technique is assigned to smooth
the bursts. Intensively applying in ATM networks, it is introduced in the IP
networks for the QoS solutions. Let us describe, how the concept works.
As simple idea, the spacing tries to separate two incoming demands up to
interval of T time units. Thus, the arrival rate is at most 1

T . This value will
be agreed on by the users and providers in the so called service level agree-
ments (SLA). The incoming traffic is smoothed up to this agreed SLA. Shortly
speaking, the spacer is functioning as a device for keeping distances between
the incoming demands, entering the network. The figure 2.35 depicts the spac-
ing of two incoming demands for a parameter T . The arrival process (ξ1(t)) is
smoothed down, so that the outgoing process (ξ2(t)) has a distance on T time
units. In the right figure the arrivals 1, 2, 6 are in time and are passing without
delay the spacer, while 3, 4 and 5 are too early and are stored. To avoid a too
large storing, a maximal spacing time Tmax is defined. If an incoming demand
is predicted to surpass this maximal spacing time, it is rejected.

Example 2.60. Spacer model as GI/D/1 system with queueing time limit: We
discretize the time axis in intervals ∆t for the time discrete analysis:

• ξ1: RV for the interarrival time of the incoming process resp. arrival pro-
cess.

• ξ2: RV for the ‘interleaving’ time of the outgoing resp. leaving process.
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Spacer

t

T

t

T T T T

W

Tmax

1 2 3 4 5 6

1 2 3 4 5 6

(ξ1(t))
arrivals

(ξ2(t))
departures

Fig. 2.35. Spacing of incoming demands

• Ξ: maximal interarrival distance (unit ∆t), i.e the maximal allowed inter-
arrival time is 1

Ξ .
• τmax: maximal delay in the spacer (unit ∆t).

Our aim is to show that we can model the spacer as a GI/D/1 system. This is
done, if we can demonstrate that the arrival process, the blocking probability
and the outgoing process are identical. For this purpose we give evidence for:

• both models agree on the blocking behavior provided the same arrival
process and

• the outgoing process coincides with a delay of T .

In the figure 2.36 we compare the state process in the spacer and the GI/D/1−
Tmax queueing system.
We now give an interpretation of the above examples. For this we investigate
the remaining time R(t):

• Spacer: R(t) is the time until the arrival of the next demand will be ac-
cepted, since the minimal interarrival time is fulfilled. Demands 1 and 2
meet the spacer being empty and pass it (see figure 2.36), while demands
3, 4 and 5 see a positive residual work time R(t) and are delayed at about
R(t), before leaving the spacer. Clearly, accepted demands increase the
residual workload R(t) by the value T . Thus, incoming demand 6 would
have to wait more than Tmax and will be rejected, not increasing the re-
maining workload R(t).

• GI/D/1 system with queueing time limit: The remaining workload R(t)
in the system is described similar to the general GI/G/1 queueing system.

The queueing time is identical for both systems. They only differ by the fact
that the spacer does not need additional serving. Comparing the outgoing
processes, we see that, because of the missing serving time T , these outgoing
processes differ at the amount T . As the blocking behavior is identical in
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Fig. 2.36. Outgoing processes of spacer and GI/D/1 system with queueing time
limit

both models, we can say that the GI/D/1 queueing system is suitable for the
description of the spacer concept.

Serving Time in a Network

We start with the description, how the heavy-tail distribution exercises its
influence on the waiting time probability. For this we denote with Ta the time
already spend in the net, with TR the remaining time and with T the present
time of the flow in the net. Under the assumption that the flow in the network
already durated Ta, we can compute the conditional probability that the time
of the flow in the network will surpass the time value of Ta + t and represent
this in the form

P(T > Ta + t |T > Ta) = P(TR > t |T > Ta) =
F cT (Ta + t)
F cT (Ta)

Here, F cT describes the complementary distribution function of the duration
of the flow in the net. With this equation we can determine the time, which
remains to determine a shortcut for the flow. Here, we assume a probability
that the flow will stay in the connection for at least t time units. It is clear
that with growing t the probability will decrease and hence, we will determine
an upper bound, before which the decision has to be taken.
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The following consideration is crucial in connection with the heavy-tail dis-
tributions. With growing duration time Ta, the probability increases to stay
further t time units in the net, which would not be the case in the classical
exponential distributed duration time

F cT (Ta + t)
F cT (Ta)

∼ L(Ta + t)
L(Ta)

(Ta + t)−α

T−α
a

(L ∈ R0) (2.70)

Because of the property of slowly varying functions that L(Ta+t)
L(Ta) → 1 for

Ta → ∞ holds, we get with (2.70)

lim
Ta→∞

F cT (Ta + t)
F cT (Ta)

= lim
Ta→∞

(Ta + t)−α

T−α
a

= lim
Ta→∞

(
1 +

t

Ta

)−α
>

(
1 +

t

Ta′

)−α

for all Ta′ > 0. Thus, the conditional probability increases with growing Ta.
This is in contrast to the exponential distributed serving times, which the
reader may convince herself/himself easily as exercise.

2.9 Network Models

In this section we summarize a selection of well known network models. All
models are extensively described in the respective literature and provide a
foundation for numerous specific approaches.

2.9.1 Jackson’s Network

In a lot of service systems a simple linear division in arrival part, service
part and waiting room is not possible. The best examples can be found in
communications and computer networks, where a large number of routers
and hosts are connected to a network. We separate two larger systems, the
open and the closed service networks and start with the open systems.
Since differing from the classical models, the representation will get more
complex. Similar observations can be made by passing from the Poisson arrival
as well as serving systems to the general distributed interarrival time resp.
as well as serving times, as derived already in section 2.7.3. Thus, we will
introduce the simple and often discussed service network due to Jackson (see
e.g. [30]). First we give some necessary preliminaries:

• We start with n nodes 1, . . . ,n.
• The node j has sj channels (1 ≤ sj ≤ ∞).
• In each node there is an infinite waiting room.
• Each node receives demands from ‘outside’. These demands arrive inde-

pendently at the node j, and they are Poisson distributed with intensity
λj .
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• The serving time in each node j are independent and identically expo-
nential distributed with parameter µj . In addition, between the nodes the
serving times are independent.

• According to the probability αj a certain demand leaves after serving in
node j the network or enters the node i with transition probability pji,
where it is served again. The transition distribution is independent to the
preceding process. The serving process is also again a Markov process.

• Let P = (pji)i,j=1,...,n be the transition matrix. If E is the unit matrix,
then let P−E be invertible, i.e. (P−E)−1 exists. It holds for all j = 1, . . . , n

αj +
n∑

i=1

pji = 1 (2.71)

We denote by σj the whole request rate in the node j, which consists of all
demands within as well as outside the network. Since we assume stationarity
in the whole system, we have to stress the equality of input and output rate.
By σjpji we have the part of the input rate of the node i, coming from j.
Then

∑n
j=1 σjpji reflects the whole input rate of the node i, and it follows the

stationarity condition

σi = λi +
n∑

j=1

σjpji, i = 1, . . . , n (2.72)

We can express this more elegantly

σ(P − E) = λ (2.73)

where σ = (σ1, . . . , σn) and λ = (λ1, . . . , λn). If we know the transition proba-
bilities and the arrival rates, then we can compute the specific input intensities

σ = λ(P − E)−1

The weighted sum of the Poisson streams is not necessarily again Poisson. As
done in the other models we denote by X (t) = (X1(t), . . . , Xn(t)) the state
vector, where we indicate by

k = (k1, . . . , kn)

the vector of realizations. The stationary state probabilities read as

xk = lim
t→∞

P(X (t) = k)

By ej = (0, . . . , 1, . . . , 0) we denote the j-th unit vector, with a 1 at the j-th
place. We can represent each k as sum of different unit vectors e1, . . . , en.
Let’s start with the state k. Then we can treat the following transitions:

• If a demand enters the node j from outside, then the state X (t) goes into
the state k + ej .
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• If a serving in node j is finished, then we have a transition into the state
so k − ej .

• If in the node j a serving unit is done and enters the node i, then we obtain
k − ej + ei.

Hence, we deduce the transition probability rates

qk,k+ej
= λj

qk,k−ej
= min(kj , sj)µjαj

qk,k−ej+ei
= min(kj , sj)µjpji, j �= i

Because of (2.71), we deduce
∑n
i=1,j �=i pji = 1−pjj−αj . The rate leaving the

state k is given by

qk = −
n∑

j=1

λj −
n∑

j=1

µj(1 − pjj)min(xj , sj)µj

Since all states k fulfill the linear equations of the Chapman-Kolmogorov
system, we obtain by (2.1)

qkxk =
n∑

j=1

λjxk−ej
+

n∑

j=1

αjµj min(kj + 1, sj)xk+ej
(2.74)

=
n∑

i=1

n∑

j=1,j �=i
αjµj min(kj + 1, sj)pjixk+ej−ei

in conjunction with norming equation

1 =
∑

k∈Z

xk

We remind the state probabilities of the waiting system M/M/sj − ∞ from
section 2.4.2. If all demands enter with intensity σj into the system, and if
all demands are independent and identical exponential distributed on the sj
channels with traffic load ρj = σj

µj
, then we have under the condition σj < sj

xj(i) =

⎧
⎨

⎩

1
i!ρ
i
jxj(0) for i = 1, 2, . . . , sj − 1
1

sj !s
i−sj
j

ρijxj(0) for i = sj , sj + 1, . . .

where from the norming equation

xj(0) =

(
sj−1∑

i=0

1
i!
ρij +

ρ
sj

j

(sj − 1)!(sj − ρj)

)−1

(2.75)

follows. Because of the independence, the channels are coupled multiplicatively
and thus, we can formulate the following theorem for j = 1, . . . , n.
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Theorem 2.61. If the intensity rate σ satisfies in addition to equation (2.72)
and the relation

σj < sjµj , for j = 1, 2, . . . , n

holds, then for k = (k1, . . . , kn) the process X possesses the state probabilities

xk =
n∏

j=1

xj(kj)

We see that the system resembles a waiting system of the form M/M/s−∞,
but it is not of the same type. The M/M/s−∞ waiting system was a special
form of the birth and death process, i.e. (Xt) reflects a birth and death process.
That is not the case here, since the input process is a compounded Poisson
process, and this need not to be again Poissonian. The waiting queue length in
the respective nodes (server or router) are mutually independent. An explicit
computation for proving is rather sophisticated. For this, one has to compute
(2.75) and consequently insert the result into (2.74). Then, with the help of
(2.73) and (2.72) we establish an identity. We give two examples for special
networks.

Example 2.62. For the most simple example we choose n = 1. But in addition
we stress that a part of the served demand is not leaving the system, but
appears again as demands. It could e.g. happen that a part of (1 − α)100%
data are error transmitted and has to repeat the run through the router. Then,
α denotes the probability leaving the system and we have p11 = 1−α. In the
sequel we omit the indices. Because of (2.71), we get for the input rate

σ = λ + σ(1 − σ)

Then, we deduce

σ =
λ

α

By condition λ
α < sµ (or equivalently ρ < αs) we deduce the stationarity

where ρ = λ
µ ). Thus, we can compute the stationary state probabilities

xi =

{
1
i! (
ρ
α )ix0 for i = 1, 2, . . . , s− 1
1

s!si−s ( ρα )ix0 for i = s, s + 1, . . .

where

x0 =

(
s−1∑

i=1

1
i!

(
ρ

α
)i +

( ρα )s

(s− 1)!(s− ρ
α )

)−1

We have a M/M/s−∞ waiting system without respond, whose demands have
the intensity λ

α .
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Example 2.63. In this example we want to examine a sequential network. De-
mands resp. data from outside appear only at the node 1, i.e. λ1 = λ. The
demands run through the network sequentially from 1 to n. Thus, we can
state the following parameters for the system

λj = 0, j = 2, . . . , n
pj,j+1 = 1, j = 1, . . . , n

αj = 0, j = 1, . . . , n− 1
αn = 1

In the case of stationarity the input rates at all nodes have to match

λ = σ1 = σ2 = . . . = σn

Assuming only one service channel for each node, we get

ρj =
λ

µj
< 1, j = 1, . . . , n

We deduce the estimation

λ < min(µ1, . . . , µn)

Hence, the network is as efficient as its weakest member is. The state proba-
bility can be computed for k = (k1, . . . , kn) according to

xk =
n∏

j=1

ρ
kj

j (1 − ρj), k ∈ Zn

State Dependent Parameter

In particular for communication networks, the input and service rates can
be state dependent. Thus, the exterior arrival rates in the nodes j are state
dependent according to the condition

λj(k) = rjλ(k), with r1 + r2 + . . . + rn = 1

if we have k demands in the system (j = 1, . . .). Assuming at time t an over
all state in the single nodes of X1(t) + X2(t) + . . . + Xn(t) = k, the over all
arrival rate in the system is λ(k). Similar we denote by µj(kj) the service rate
in the node j under the presumption that kj demands are served there.
All other conditions of the Jackson service network are assumed to be still
valid. In addition, we assume the existence of a number N ∈ N, such that
λ(k) > 0, if k < N and λ(k) = 0 for k ≥ N . Thus, we want to prevent
that the system suffers an overflow, as soon as the system falls under the
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threshold N . Furthermore, let (we assume the unique solvability) be the vector
σ = (σ1, . . . , σn) as unique solution of the system of equations

σi = ri +
n∑

j=1

σjpji, j = 1, . . . , n

In addition, we start with an empty initial system, i.e. xi(0) = 1 and

xj(k) =
k∏

l=1

σj
µj(l)

, k = 1, 2, . . .

We choose an arbitrary state vector k = (k1, . . . , kn). The single nodes fulfill
the boundary condition

|k| =
n∑

i=1

ki

This is the over all number of demands in the system. We can determine the
state probability in dependence of the vector k

xk = xk0

|k|∏

l=1

λ(l)
n∏

j=1

xj(kj), k ∈ Zn, |k| > 0

with k0 = (0, 0, . . . , 0) and

xk0 =

⎛

⎝1 +
∑

{k;|k|>0}

|k|∏

l=1

λ(l)
n∏

j=1

xj(kj)

⎞

⎠

−1

Though the state probabilities appear in product form, the particular states
in the nodes are no longer mutually independent.

Closed Serving Networks

Here, we consider a network without demands entering from outside. That
means that demands served in a node, are not leaving the system and are
handled over to another serving node. Thus, we can state first that the number
of demands do not change. The modeling reads as:

• The network consists of n nodes 1, . . . ,n.
• After the serving in a node j the demand enters with probability pji the

node i. Hence, we have the presumption

n∑

i=1

pji = 1, i = 1, . . . , n (2.76)
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• For the Markov process with state space N = {1, 2, . . . n} and with tran-
sition matrix P = (pji) the state probabilities fulfill for x1, . . . , xn the
equations

xi =
n∑

j=1

pjixi, i = 1, . . . , n,
n∑

i=1

xi = 1 (2.77)

• We denote the serving rate in the node j by µj(kj), provided kj demands
are in the node j.

As usual we denote the state in the node j at time t by Xj(t) and the over all
state in the system by X (t) = (X1(t), . . . , Xn(t)). Indicating by N the whole
number of demands in the system, we deduce for the state space

Z =

⎧
⎨

⎩
k = (k1, . . . , kn);

n∑

j=1

kj = N, kj = 0, 1, . . . n

⎫
⎬

⎭
(2.78)

The state space Z consist of
(
n+N−1
N

)
elements. The transition probability

rates for the state k = (k1, . . . , kn) are indicated with the same notation

qk−ej+ei,k = µi(ki + 1)pij , j �= i, k − ej + ei ∈ Z

and
qk,k−ej+ei

= µj(kj)pji, j �= i, ki ≥ 1

Because of the relation (2.76) we can derive the rate leaving the state k

qk =
n∑

j=1

µj(kj)(1 − pjj)

The state probabilities

xk = lim
t→∞

P(X(t) = k), k ∈ Z

of the stationary process (X(t))t≥0 can be written as

n∑

j=1

µj(kj)(1 − pjj)xk =
n∑

i,j=1
j �=i

µi(ki + 1)pijxk−ej+ei
(2.79)

Suppose we have k − ej + ei �∈ Z, then define xk−ej+ei
= 0. Let ϕj(0) = 1

and for j = 1, . . . , n, i = 1, . . . , N

ϕj(i) =
i∏

m=1

(
xj

µj(m)

)

Then we are able formulating the main theorem for closed serving networks.
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Theorem 2.64. For a given state k = (k1, . . . , kn) ∈ Z the stationary state
probabilities read as

xk = c

n∏

j=1

ϕj(kj)

with

c =

⎛

⎝
∑

z∈Z

n∏

j=1

ϕj(zj)

⎞

⎠

−1

Using the probability in (2.79), we can prove e.g. the stationarity.

Example 2.65. (see [30]) We consider a simple computer network with central
unit and two peripheric devices 1 and 2. After the phase of computation in
the central device 1 the programme changes with probability p over to 2,
and with probability 1 − p to 3. From 2 the demand returns immediately
back to the central unit with probability, the same holds for 3, so that the
demand in a queue builds up to the over all number in the system N . It is a
multi-programming system with N level of multi-programming. We obtain a
transition matrix

P =

⎡

⎣
0 1 − p p
1 0 0
1 0 0

⎤

⎦

Hence, we get as solution of (2.77)

x1 =
1
2
, x2 =

(1 − p)
2

, x3 =
p

2

The service rates µ1, µ2 and µ3 are assumed to be independent of the number
of the demands. Then we have

ϕ1(k1) =
(

1
2µ1

)k1
, ϕ2(k2) =

(
1 − p

2µ2

)k2
, ϕ3(k3) =

(
p

2µ3

)k3

Let k = (k1, k2, k3) with k1 + k2 + k3 = N be an admissible state. Then we
conclude the following probabilities in the stationary state

xk =
c

2N

(
1
µ1

)k1 (1 − p

µ2

)k2 ( p

µ3

)k3

where

c =
2N

∑
z∈Z

(
1
µ1

)z1 (
1−p
µ2

)z2 (
p
µ3

)z3

The state space is given by (2.78) with N = 3.
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2.9.2 Systems with Priorities

We use as basic model the serving system with one channel and Poisson dis-
tributed arrival and serving processes, thus a system M/M/1 − 1. It can be
derived that the model turns already very complex even with one channel
and the extension is no longer sufficiently representable. Indeed, a transfer to
many channels is canonical and does not contribute to further understanding.
Beside the serving system we assume two types of demands for handling, 1 and
2. Both types have exponential distributed interarrival times with parameters
λ1 resp. λ2. Type 1 has absolute priority in the following sense:

• If there are demands of type 1 and 2 in the system, then the type 1 is
served.

• An ongoing serving of type 2 will be interrupted immediately, if a demand
of type 1 arrives. The interrupted demand of type 2 is lost, provided all
waiting spots are occupied.

• A demand of 1 replaces a waiting demand of type 2 on the particular
waiting spot. In this case a demand of type 1 is just served.

• Replaced demands are always lost.

The serving times are exponential distributed w.r.t. µ1 resp. µ2. The states in
the systems are denoted by (i, j), where i is the number of demands of type 1, j
the number of demands of type 2. We have 0 ≤ i, j ≤ 2 and i+j ≤ 2. But, our
system turns out not to be a birth and death process, since the representation
is done in a triangle form and not linear. Nevertheless, the state process (Xt)
consists of a Markov chain. From the stationary Kolmogorov equation we
deduce the following system. We write in the stationary case

xi,j = P(X = (i, j))

This implies

(λ1 + λ2)x0,0 = µ1x1,0 + µ2x0,1

(λ1 + λ2 + µ1)x1,0 = λ1x0,0 + µ1x0,2

(λ1 + λ2 + µ2)x0,1 = λ2x0,0 + µ1x1,1 + µ2x0,2

(λ1 + µ1)x1,1 = λ2x1,0 + λ1x0,1 + λ1x0,2

µ1x2,0 = λ1x1,0 + λ1x1,1

(λ1 + µ2)x0,2 = λ2x0,1

Simultaneously, we have the norming condition

2∑

i,j=0

xi,j = 1

A general solution of all seven linear equation is complex and their represen-
tation does not provide any further insights. Thus, we skip their noting and
keep to the fact of the unique solvability and to an example.
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If the number of demands of type 1 is of interest, then we have the classical
form of a loss and queueing systems M/M/1 − 1 (see section 2.4.2), since
demands of type 2 do not influence those of type 1.
Finally, we treat the case that there is no waiting spot, i.e. we are taking
of a system M/M/1 − 0. Every demand is lost, which meets a serving spot,
provided it is occupied by demands of type 1. A demand of type 1 replaces
one of type 2 on the serving channel. Thus, we obtain with the above notation
the stationary probabilities

(λ1 + λ2)x0,0 = µ1x1,0 + µ2x0,1

µ1x1,0 = λ1x0,0 + λ1x0,1

and the norming condition

x0,0 + x1,0 + x0,1 = 1

From this we deduce the state probabilities

x0,0 =
µ1(λ1 + λ2)

(λ1 + µ1)(λ1 + λ2 + µ2)

x0,1 =
µ1λ2

(λ1 + µ1)(λ1 + λ2 + µ2)

x1,0 =
λ1

λ1 + µ1

Here, x1,0 is the lost probability of the demand of type 1. There is no infor-
mation entering from type 2, but only the probability is important that the
random serving period of type 1 is larger than the interarrival time of type 1
in the serving system. At last, we determine the lost probability of a demand
2, being in the serving channel. It coincides with the conditional probability
under the constraint that a demand of 1 arrives, and reads as

∫ ∞

0

e−µ2tλ1e
−λ1t = λ1

∫ ∞

0

e−(λ1+µ2)tdt =
λ1

λ1 + µ1

Thus, for the lost probability pV of a demand of type 2 we have

pV =
λ1

λ1 + µ1
x0,0 + x0,1 + x1,0

pV = 1 − µ1µ2

(λ1 + µ1)(λ1 + λ2 + µ2)

2.9.3 Systems with Impatient Demands

We cannot assume in general that in a system with infinite waiting space
no incoming demand does not get lost. This e.g. happens, if we assume a
limited waiting time. In computer networks the timeouts restrict the waiting
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time up to acknowledgments, where after the timeouts the data is sent again.
Further examples for systems with limited waiting time are real-time steering
units, booking and reservation systems, or computer based control centers.
We realize by the number of examples that there is a variety of those model
and select one exemplary model.
We start with a pure queueing system M/M/n−∞, but introduce an admis-
sible waiting distribution. The admissible waiting times of the serving units
are independent and identical exponential distributed according to the rate
ν. As above, we indicate the transition and state probabilities

qi,i+1 = λ, i = 0, . . .

and

qi,i−1 =

{
iµ for i = 1, . . . , n
nµ + (i− n)ν for i = n + 1, n + 2, . . .

With this we see that the death rate is practically unbounded. This means
that independently of the traffic value ρ = λ

µ , more demands leave a suffi-
ciently large waiting queue than enter. In addition, the system swings into a
stationary state with state probabilities according to

xi =

{
1
i!ρ
ix0 for i = 1, . . . , n

ρn

n!
λi−n

∏ i−n
j=1 (nµ+jν)

x0 for i = n + 1, n + 2, . . .

x0 =

⎛

⎜
⎜
⎜
⎝

n∑

i=0

1
i!
ρi +

ρn

n!

∞∑

i=n+1

λi−n

i−n∏

j=1

(nµ + jν)

⎞

⎟
⎟
⎟
⎠

−1

The mean waiting queue is

E(WL) =
∞∑

i=n+1

xi(i− n)

and reads after simple transformation

E(WL) = xn

∞∑

i=1

iλi

⎛

⎝
i∏

j=1

(nµ + jν)

⎞

⎠

−1

Since we start from a pure waiting system and the lost possibilities are given
by the surpassing of the waiting times, we have to proceed differently for
computing the loss probability than in the pure loss system. We denote with
pV the loss probability. It represents the probability that a unit leaves the
system without being served. Consequently 1 − pV is the probability that a
unit leaves the system after serving. This results in
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pV =
ν

λ
E(WL)

Thus, the loss probability is directly proportional to the mean waiting queue
length.

2.9.4 Conservation Laws Model

We start with a model due to [62, 204], based on deterministic traffic flow
models, which are mainly used for describing road traffic. This approach re-
quires a certain knowledge in the area of partial differential equation. Since
most models are mainly centered around the stochastic setting, we do not go
into details of the huge theory of partial differential equation. In addition, we
briefly outline the approach and do not want to dive to deep into the models,
since the original literature may serve as a good reference anyhow. Our aim is
mainly to provide a certain insight into the idea and to embed this approach
with the other stochastic models.
While we considered in most scenarios a single link network, here we change
to a large number of nodes, using a simple routing algorithm, which is based
on limiting procedure, obtained by partial differential equation for the packet
density in the network. Each node consists on many incoming and outgoing
lines. We start with formulating the underlying situation. We assume that
each node (router) sends and receives packets. Three further assumptions are
taken into account:

• Each packet travels with a fixed speed and final destination. Later we will
incorporate some stochastic perturbation of the velocity.

• Each node handles the packets, i.e. sends and receives them.
• There exists a probability of data loss, which is resolved by the retrans-

mission algorithm of TCP.

To get a first feeling, we focus on a straight line with consequent lines out of a
router. As we consider data transfers via TCP between sender an receiver, the
packets are sent, until they are acknowledged. So, on the macroscopic level we
have all packets conserved. Thus, we conclude for the microscopic dynamic
the conservation law

∂

∂t
ρ(t, x) +

∂

∂x
f(ρ(t, x)) = 0 (2.80)

Here, ρ(t, x) describes the packet density at time t and position x, while
f(ρ) = vρ with a velocity function v, which is assumed constant in a first run.
To incorporate a more complex structure of the network, We have to impose
two different rules for the routing algorithm (according to [62]):

• RA1: Packets from incoming lines are sent to outgoing lines directly with-
out taking into account any congestion or high load in lines.

• RA2: Packets are sent to outgoing lines to maximize the flux.
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2.9.5 Packet Loss and Velocity Functions on Transmission Lines

Other network model consists of nodes Nk representing servers, routers or
edges. Between consequent nodes a line is nothing else than a real interval I
built up by the union of several edges. As mentioned above we are interested
in the incorporation the packet loss phenomena: while the dynamic is given
by the conservation law model (2.80), between the nodes Nk and Nk+1 there
may happen a loss, triggered by an overflow in the node Nk+1 and resolved by
the retransmission algorithm of TCP. We assume a constant velocity between
nodes Nk and Nk+1. At discrete time ti we have a packet amount of Rk(ti)
at node Nk. As known from the elastic IP traffic, packets may got lost. This
is represented by a function

p : [0, Rmax] −→ [0, 1]

making the loss probability depending on the amount of packets sent. We
assign by δ the distance between the node Nk and Nk+1 (here constant for
different nodes). By ∆t0 we mean the transmission time between node Nk
and Nk+1, provided the packet was sent successfully, and by ∆tav the average
transmission time under the constraint that some packets are lost at the node
Nk+1. At last by v = δ

∆t0
resp. v = δ

∆tav
we denote the packet velocity.

We assume a geometric distribution, i.e. we have a failure probability of p ∈
]0, 1[ and consequently a ‘success’ probability of 1 − p. Hence, we conclude

∆tav =
∞∑

n=1

n∆t0(1 − p)pn−1 (2.81)

This results into a average time, needed to travel from one node to the other,
and consequently a mean velocity v.

v =
δ

∆tav
=

δ

∆t0
(1 − p) = v(1 − p) (2.82)

Theorem 2.66. If we assume a fixed initial input rate Rk(t0) = R for all
nodes k = 1, . . . , n, then the average transmission velocity is given by (2.81)
and (2.82).

The following examples are cited from [204]. As revealed by the above deriva-
tion the selection of the loss probability is fundamental.

Example 2.67. We choose

p(ρ) =

{
0 for 0 ≤ ρ ≤ σ
2(ρ−σ)
ρ for σ ≤ ρ ≤ ρmax

where σ ∈ ]0, ρ2 [. The function is depicted in figure 2.37. As average transmis-
sion velocity we obtain
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v(ρ) = v(1 − p(ρ)) =

{
v for 0 ≤ ρ ≤ σ

v (2σ−ρ)
ρ for σ ≤ ρ ≤ ρmax

If we suppose that v(ρmax) = v (2σ−ρ)
ρ = 0 (i.e. for a maximum density there

is flux anymore), we conclude that σ = ρmax
2 . Because of the form of the flux

f(ρ) = v(ρ)ρ we get

f(ρ) =

{
vρ for 0 ≤ ρ ≤ σ

v(2σ − ρ) for σ ≤ ρ ≤ ρmax

The results are depicted in the figure 2.37.
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Fig. 2.37. The functions p for the probability selection, v as velocity and f as flow
function

Example 2.68. We now choose

p(ρ) =

{
0 for 0 ≤ ρ ≤ σ
ρ−σ
σ for σ ≤ ρ ≤ ρmax

where σ ∈ ]0, ρmax[. The function is depicted in figure 2.39. As average trans-
mission velocity we obtain

v(ρ) = v(1 − p(ρ)) =

{
v for 0 ≤ ρ ≤ σ

v (2σ−ρ)
σ for σ ≤ ρ ≤ ρmax

If we suppose that v(ρmax) = v (2σ−ρ)
ρ = 0, we deduce that σ = ρmax

2 . Because
of the form of the flux f(ρ) = v(ρ)ρ we get

f(ρ) =

{
vρ for 0 ≤ ρ ≤ σ

vρ 2σ−ρ
σ for σ ≤ ρ ≤ ρmax

The results are depicted in the figure 2.38.
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Fig. 2.38. The functions p for the probability selection, v as velocity and f as flow
function

Example 2.69. Similar to the above example finally we proceed with an alter-
native loss probability

p(ρ) =

{
0 for 0 ≤ ρ ≤ σ
(ρ−σ)2

σ2 for σ ≤ ρ ≤ ρmax

where σ ∈ ]0, ρmax[. The function is depicted in figure 2.38. As average trans-
mission velocity we obtain

v(ρ) = v(1 − p(ρ)) =

{
v for 0 ≤ ρ ≤ σ

vρ (2σ−ρ)
σ2 for σ ≤ ρ ≤ ρmax

If we suppose that v(ρmax) = v (2σ−ρ)
ρ = 0, we conclude that σ = ρmax

2 .
Because of the form of the flux f(ρ) = v(ρ)ρ, we get

f(ρ) =

{
vρ for 0 ≤ ρ ≤ σ

vρ2 (2σ−ρ)
σ2 for σ ≤ ρ ≤ ρmax

The results are depicted in the figure 2.39.
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Fig. 2.39. The functions p for the probability selection, v as velocity and f as flow
function
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We have to realize that only in example 2.67 the flux satisfies at the point
ρ0 ∈ ]0, ρmax[ the realizations

lim
ρ−ρ0+

f ′(ρ) �= 0 and lim
ρ−ρ0−

f ′(ρ) �= 0

So the density variation along discontinuities not crossing σ is equivalent to
the flux ones. This motivates to consider in the sequel only this examples and
gives rise by norming the packet density, i.e. assuming ρmax = 1, to impose
on the flux the following condition

f : [0, 1] −→ R, f(ρ) =

{
vρ for 0 ≤ ρσ

v(2σ − ρ) for σ ≤ ρ ≤ 1
(2.83)

Thus, we get for the maximums point σ = 1
2 .

The three examples above serve as a first introduction and as exemplary
velocity function models. After indicating these examples, we now define the
solution of the Cauchy problem (2.80) in our situation. For this purpose the
different lines Ii = [ai, bi] ⊂ R, i = 1, . . . , N, ai < bi or bi = ∞ are modeled
according to the conservation equation (2.80) in conjunction with condition
(2.83). The network evolution is due to solution ρi defined on [0,∞[×Ii. The
ρi are weak entropy solution on the transmission line Ii, i.e.

∫ ∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ f(ρi)

∂ϕ

∂x

)
dxdt = 0 (2.84)

for all ϕ : [0,∞[×Ii −→ R smooth, positive with compact support in
]0,∞[×[ai, bi[. This reflects the weak solution condition. The usual entropy
condition is formulated in the form of the so called Kruzkov entropy.

Definition 2.70. Let the scalar version of (2.80) with initial condition (2.87)
be given. Let ρ(t, x) (t ∈ [0, T ], x ∈ R) be a weak solution. Then we say that
ρ satisfies the Kruzkov entropy admissibility, provided

∫ T

0

∫

R

(
|ρ− k|∂ϕ̂

∂t
+ sgn(ρ− k)(f(ρ) − f(k))

∂ϕ̂

∂x

)
dxdt ≥ 0

for every k ∈ R and every C1−function ϕ ≥ 0 with compact support in
[0, T [×R. One should compare this with (2.85).

Basic is the following theorem to determine a Kruzkov entropy.

Theorem 2.71. Let ρ = ρ(t, x) be a piecewise C1-solution of the scalar ver-
sion of (2.80) with initial data (2.87). Then ρ is Kruzkov entropy admissible,
if and only if along any line of jump x = η(t) the following condition holds:

f(αρ+ + (1 − α)ρ−) ≥ αF (ρ+) + (1 − α)f(ρ−), for ρ− < ρ+

f(αρ+ + (1 − α)ρ−) ≤ αF (ρ+) + (1 − α)f(ρ−), for ρ− > ρ+

where ρ− := ρ(t, η(t)−) and ρ+ := ρ(t, η(t)+).
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The condition in the previous theorem merely states that in the first case the
graph of f lies above the line connecting ρ− and ρ+, while in the second case
the picture is reverse.
The weak entropy condition reads for each node as

∫ ∞

0

∫ bi

ai

(
|ρi − k|∂ϕ

∂t
+ sgn(ρi − k)(f(ρi) − f(k))

∂ϕ

∂x

)
dxdt ≥ 0 (2.85)

for k ∈ R and ϕ̂ : [0,∞[×Ii −→ R smooth, positive with compact support in
]0,∞[×]ai, bi[. Finally, the definition of the whole network requires the sum
over all lines – incoming as outgoing – between the different nodes

n+m∑

j=1

(∫ ∞

0

∫ bj

aj

(
ρj

∂ϕj
∂t

+ f(ρj)
∂ϕj
∂x

)
dxdt

)

= 0 (2.86)

where ϕj , j = 1, . . . , n + m are smooth function with compact support in
]0,∞[×]aj , bj ] if j = 1, . . . , n (these represents the incoming lines) and for the
outgoing ones in ]0,∞[×[aj , bj [, if j = n + 1, . . . , n + m. We also stress that
the solution should be smooth across the junctions (nodes)

ϕi(·, bi) = ϕj(·, aj),
∂ϕi
∂x

(·, bi) =
∂ϕj
∂x

(·, aj), i = 1, . . . , n, j = n+1, . . . , n+m

Remark 2.72. The equations (2.84) and (2.86) represent the ‘weak solution’
resp. ‘solutions in the distributive sense’ for ρ. This is the reason, why we
require in the equation the property ‘smooth with compact support’ for the
ϕ functions.

Remark 2.73. Suppose the vector ρ = (ρ1, . . . , ρn+m) is a weak solution
(see remark 2.72 above) at the junction, so that every function ρi(t, ·) has
bounded variation (see definition below). Then the function fulfills the so
called Rankine-Hugoniot condition

n∑

i=1

f(ρi(t, bi−)) =
n+m∑

j=n+1

f(ρi(t, aj+))

for almost all t > 0.

Before we continue to establish a concept for solutions we introduce certain
definition and results concerning general solutions for partial differential equa-
tions. We have to mention that, by no means, we could give a complete intro-
duction in this field and refer to the literature, which is certainly huge (see
e.g. [80]). Since we are only concerned with the conservation equation (2.80),
we will give the definitions in respect of this particular situation. We start
with the concept of weak solution.
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Definition 2.74. Let u0 ∈ L1
loc(R,Rn) and T > 0. A function ρ : [0, T ] ×

R −→ Rn is a weak solution to the Cauchy problem (2.80) with initial data
ρ(0, x) = u0(x), if ρ is continuous as a function from [0, T ] into L1

loc and if
for every C1 function ϕ with compact support and supp(ϕ) ⊂ ]−∞, T [×R we
have

∫ T

0

∫

R

(
ρ · ∂ϕ

∂t
+ f(ρ) · ∂ϕ

∂x

)
dxdt +

∫

R

u0(x) · ϕ(0, x)dx = 0

The equality required for a function to be weak solution to (2.80)

ρ(0, x) = u0(x), for a.a. x ∈ R (2.87)

A first condition imposed on weak solutions is originated in physics, the so
called entropy (see e.g. [63]).

Definition 2.75. A C1−function g : Rn −→ R is an entropy for the system
(2.80), if it is convex, and if there exists a C1 function q : Rn −→ R, such
that

Df(u) · ∇g(u) = ∇q(u)

for all u ∈ Rn (where ‘D’ is the differential operator). The function q is called
the entropy flux for g. The pair (g, q) is said to be entropy-entropy flux pair
for (2.80).

Definition 2.76. A weak solution ρ to the Cauchy problem (2.80) with initial
data (2.87) is said entropy admissible, if for all ψ ≥ 0 with compact support
in [0, T [×R and any entropy-entropy flux pair (g, q) we have

∫ T

0

∫

R

(
g(ρ)

∂ψ

∂t
+ q(ρ)

∂ψ

∂x

)
dxdt ≥ 0

We shortly illustrate the concept for the scalar case, i.e. n = 1.

Example 2.77. Let the scalar version of (2.80) and (2.87) be given. In this case
of f : R −→ R the entropy respectively entropy flux assumes the form

g′(u)f ′(u) = q′(u)

Thus, we can express the entropy flux with the help of the entropy g by

q(u) =
∫ u

u0

g′(s)f ′(s)ds

with u0 ∈ R.

Fundamental for dealing the solution in the network problem is the formula-
tion of the Cauchy problem in terms of the Riemann problem, which indicates
that the initial data is of Heaviside form. For this let Ω ⊂ Rn be an open set
and let f : Ω −→ Rn be smooth. We suppose that the problem (2.80) is purely
hyperbolic.
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Definition 2.78. A Riemann problem concerning the Cauchy problem (2.80)
has the initial data u0 of the form

u0(x) =

{
u− for x < 0
u+ for x > 0

This initial condition just tells us, that the starting density before a node Nk
(here expressed by x) is u−, while after passing the node it turns into u+.
So, we incorporate a certain discontinuity at the nodes, representing edges,
servers or routers.
The Riemann problem is the key step for solving the Cauchy problem. In fact,
one establishes the so called wave-front tracking method described as follows:

• Approximate the initial data by piecewise constant data.
• At every point solve the respective Riemann problem.
• Approximate the exact solution with the help of Riemann problems with

piecewise constant functions and glue them together to a function until
two wave fronts interact.

• Repeat this steps inductively starting from the interaction time.
• Prove that the sequence converges to a limit function and prove that this

is an admissible entropy weak solution.

The next definition is required to find a space, where solutions to the Riemann
problem can be established, and where one can find the space for suitable
convergence.

Definition 2.79. Let I ⊂ R be an interval and g : I −→ R be a function. The
total variation of the function g is defined by (Klammer ergaenzt)

‖g‖ = sup

(
N∑

i=1

|g(xj) − g(xj−1)|
)

where the supremum is taken over all choices x0 < x1 < . . . < xN of arbitrary
points in I (N ∈ N). The function g is said of bounded variation, if ‖g‖ < ∞.
The space of functions of bounded variation on I is called BV (I) and is a
Banach space equipped with the norm ‖ · ‖, defined above (variational norm).

Fundamental for the application is Helly’s theorem (see e.g. [74]). We state it
in the for our purpose required form.

Theorem 2.80. Let hn : I −→ Rn be s sequence of uniformly bounded func-
tion is the space of function of bounded variations, i.e. there are constant
L,M > 0 such that

• supn∈N ‖hn‖ ≤ L and
• supx∈I supn∈N |hn(x)| ≤ M .

Then there exists a subsequence (hnk
) and a function of bounded variation

h : I −→ Rn, such that
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• limk→∞ hnk
(x) = h(x) for all x ∈ I,

• ‖h‖ ≤ L and
• supx∈I |h(x)| ≤ M .

2.9.6 Riemann Solvers

This concept was originated by Picolli and Garavello (see e.g. [204, 62]). First,
we call the Cauchy problem in (2.80) with corresponding initial data, which
are constant along the transmission lines, a Riemann problem. In this respect
we define a Riemann solver.

Definition 2.81. (see e.g.[62]) Let J be a junction. A map

RS : [0, 1]n × [0, 1]m −→ [0, 1]n × [0, 1]m

which associates initial data ρ0 = (ρ1,0, . . . , ρn+m,0) at the junction J to a
vector ρ̃ = (ρ̃1, . . . , ρ̃n+m) in such a way that the solution on an incoming
transmission line Ii (i = 1, . . . , n) is given by the wave solution (ρi,0, ρ̃i) and
on the outgoing line Ij (j = n+1, . . . , n+m) by the wave (ρ̃j , ρj,0). In addition,
the consistency condition has to hold

RS(RS(ρ0)) = RS(ρ0) (2.88)

Remark 2.82. The condition (2.88) is necessary to provide uniqueness.

Remark 2.83. Suppose we assume that RS(ρ) = ρ′ and RS(ρ′) = ρ for ρ �= ρ′.
If we want to solve the Riemann problem with the datum ρ, one should apply
the boundary datum ρ′ at the junction. If ρ′ gets into the lines, we have to go
back to ρ and so on. Then a solution would not exist.

If we have obtained the Riemann solver, we can define the admissible solution
and J .

Definition 2.84. Suppose we have assigned a Riemann solver RS. Let ρ =
(ρ1, . . . , ρn+m), so that ρi(t, ·) be of bounded variation for all t ≥ 0. Then ρ is
an admissible solution of (2.80) related to RS at the junction J if and only if
we have:

• ρ is a weak solution at the junction J and
• for almost every t we have by setting

ρJ (t) = (ρ1(·, b1−), . . . , ρn(·, bn−), ρn+1(·, an+1+), . . . , ρn+m(·, an+m+))

RS(ρJ(t)) = ρJ (t)

We apply the definition of Riemann solver for the two basic scenarios of trans-
mission networks: We assume the following two different routing algorithm:

(RA1) Assume the following two conditions
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(A) The traffic from incoming transmission lines being distributed on
outgoing transmission lines according to fixed coefficients.

(B) Let (A) be assumed. Then the router chooses to send packets in
order to maximize the flux (i.e. the number of packets processed).

(RA2) The number of both incoming and outgoing packets through the junc-
tion are maximized.

Riemann Solver for Model (RA1)

We start with an algorithm to solve the problem (RA1). For getting an idea
in the technique to solve the Riemann problem, we sketch the method but
refer to the literature for more details see [52, 55, 204]). The network in
consideration consists of a junction J with n transmission lines with incoming
traffic and m lines for outgoing traffic. Assumption (A) implies that we choose
a transmission matrix

A = (αji)
i=1,...,n
j=1,...,m ∈ Rm,n, with constraints 0 < αji < 1,

m+n∑

j=n+1

αji = 1

for each i = 1, . . . , n and j = n + 1, . . . ,m + n. The αji gives the percentage
of packets from the incoming line i to the outgoing one j. We indicate for
i = 1, . . . , n the density of the incoming line i with

(t, x) � R+ × Ii �−→ ρi(t, x) ∈ [0, 1]

and for j = n + 1, . . . , n + m as

(t, x) � R+ × Ij �−→ ρj(t, x) ∈ [0, 1]

for the density of the outgoing line j. We depict this situation in figure 2.40.
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ρn

ρn+m

ρn+1
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n + m

n + 1

n + 2

3

1

2

Fig. 2.40. A typical example of a junction (node) for n incoming traffic and m
outgoing lines



2.9 Network Models 143

Definition 2.85. Define a map τ : [0, 1] �−→ [0, 1] such that

• f(τ(ρ)) = f(ρ) for all ρ ∈ [0, 1] and
• τ(ρ) �= ρ for all ρ ∈ [0, 1] \ {σ}.

We see that such a function is well-defined with the property

0 ≤ ρ ≤ σ ⇔ σ ≤ τ(ρ) ≤ 1
σ ≤ ρ ≤ 1 ⇔ 0 ≤ τ(ρ) ≤ σ

To formulate the main result for this Riemann solver, we have to impose some
additional properties for the matrix A (this is automatically fulfilled in case
of m = n). Denote by {e1, . . . , en} the canonical basis of Rn and for any
subset V ⊂ Rn let V ⊥ its orthogonal complement. Let Hi be the hyperplane
orthogonal to the basis vector ei, i.e. Hi = {ei}⊥ and let αj = {αj1, . . . , αjn} ∈
Rn. Define Hj = {αj}⊥. Furthermore select tupels of indices k = (k1, . . . , kl)
with 1 ≤ l ≤ n − 1, such that 0 ≤ k1, . . . , kl ≤ n + m, define the set of all
these tupels by K and build finally for k ∈ K the space Hk =

⋂l
r=1 Hr. Let

1 = (1, . . . , 1) ∈ Rn. For the following theorem we need to assume

1 �∈ H⊥
k , for all k ∈ K (2.89)

We can interpret the technical assumption (2.89) as follows: Condition (2.89)
on the matrix A cannot hold for a situation with two incoming and one out-
going line.
We are now ready for the main theorem for the Riemann solver in case of
algorithm (RA1).

Theorem 2.86. (see [55]) Consider a junction J of n incoming and m out-
going lines. Assume that the flux f : [0, 1] −→ R satisfies the conditions (2.83)
and let (2.89) be fulfilled. For all initial conditions ρ1,0, . . . , ρn+m,0 ∈ [0, 1],
there exists a unique admissible centered weak solution ρ = (ρ1, . . . , ρn+m) of
(2.80) at the junction J so that

ρ1(0, ·) = ρ1,0, . . . , ρn+m(0, ·) = ρn+m,0

In addition, there exists a unique (n+m)-tupel (ρ̃1, . . . , ρ̃n+m) ∈ [0, 1]n+m, so
that for i = 1, . . . , n

ρ̃i ∈
{
{ρi,0} ∪ ]τ(ρi,0), 1] for 0 ≤ ρi,0 ≤ σ

[σ, 1] for σ ≤ ρi,0 ≤ 1
(2.90)

and for j = n + 1, . . . , n + m

ρ̃j ∈
{

[0, σ] for 0 ≤ ρj,0 ≤ σ

{ρj,0} ∪ [0, τ(ρi,0)[ for σ ≤ ρi,0 ≤ 1
(2.91)

On each incoming line Ij the solution consists of a single wave (ρi,0, ρ̃i), where
for each outgoing one Ij the solution exists for the single wave (ρ̃j , ρj,0)
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Riemann Solver for Model (RA2)

This traffic model works with priority and certain traffic distribution such as
‘differentiating traffic’. Thus, we have to introduce the following parameters,
describing these traffic imposements. To keep the description as easy as pos-
sible and to get the decisive idea, we consider a junction J with n = m = 2,
i.e. two incoming and outgoing lines. So, we have only one priority parameter
q ∈ ]0, 1[ and one traffic distribution parameter α ∈ ]0, 1[. Denote by ρi(t, x),
i = 1, 2, resp. ρj(t, x), j = 3, 4, the traffic density of the incoming resp. outgo-
ing lines. Let (ρ1,0, ρ2,0, ρ3,0, ρ4,0) be the initial value. We define two maximal
incoming γmax

i (for i = 1, 2) resp. outgoing γmax
j (for j = 3, 4) flux

γmax
i =

{
f(ρi, 0) for ρi,0 ∈ [0, σ]
f(σ) for ρi,0 ∈ [σ, 1]

and

γmax
j =

{
f(σ) for ρi,0 ∈ [0, σ]
f(ρi, 0) for ρi,0 ∈ [σ, 1]

These values describe the maximal flux, which can be obtained by a single
wave solution on each transmission line, incoming as outgoing. We denote
γmax
in = γmax

1 + γmax
2 , γmax

out = γmax
3 + γmax

4 and finally

γ = min(γmax
in , γmax

out )

The aim is, to have γ as flux through the junction J. As in theorem 2.86
we need to determine γ̃i = f(ρ̃i) for i = 1, 2. For getting simple wave with
the suitable velocities, i.e. negative on incoming, and positive on outgoing
lines, we obtain the constraints (2.90) and (2.91). To tackle the problem, we
distinguish, due to the definition, two cases:

• γmax
in = γ and

• γmax
in > γ.

In the first case, obviously we have γ̃i = γmax
i for i = 1, 2. Thus, we analyze

the second case with the help of the priority parameter q. Consider (γ1, γ2)
and define the following lines

τq : γ2 =
1 − q

q
γ1

τγ : γ1 + γ2 = γ

Let
Ω = {(γ1, γ2); 0 ≤ γi ≤ γmax

i , i = 1, 2}
we can detect two cases:

• P belongs to Ω and
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• P does not lie in Ω.

In the first case P = (γ̃1, γ̃2) and in the second case Q = (γ̃1, γ̃2) where
Q = PrΩ∩τγ

(P ) is the projection on the convex set Ω ∩ τγ . The argument
can be transferred to n incoming lines. In the case Rn the line τq is given
according to τq = tvq (t ∈ R), where the velocity fulfills vq ∈ ∆n−1 for the set

∆n−1 =

{

(γ1, γn); γ ≥ 0, i = 1, . . . , n,
n∑

i=1

γi = 1

}

as (n− 1)-dimensional simplex and

Hγ =

{

(γ1, . . . , γn);
n∑

i=1

γi = γ

}

as hyperplane with γ = min(
∑

in γ
max
i ,

∑
out γ

max
j ). Because vq ∈ ∆n−1,

we have a unique point P ∈ τq ∩ Hγ . Suppose P ∈ Ω, then we choose
(γ̃1, . . . , γ̃n) = P. In case P �∈ Ω we pick (γ̃1, . . . , γ̃n) = Q, where similar
as before Q = PrΩ∩Hγ

. As known from functional analysis the projection is
unique, since the set Ω ∩Hγ is a closed and convex subset of Hγ .

Remark 2.87. As alternative definition of (γ̃1, . . . , γ̃n) in the case of P �∈ Ω we
can pick the vertices of the convex set Ω ∩Hγ .

Lemma 2.88. The condition (2.88) required for the RS in definition 2.81
holds for the RS defined above for the algorithm (RA2).

Estimates on Densities and Existence of Solutions

Up to now we showed that Riemann solver exists in both cases. But, we need
to solve the original Cauchy problem (2.80). Here, we will use the concept
of function with bounded variation and a certain uniform boundedness con-
dition to show that a suitable sequence of RS converges. Again we split our
consideration into two cases (RA1) and (RA2) and start with the algorithm
(RA1).

Lemma 2.89. There exists an L > 0 such that for all times t ≥ 0

‖f(ρ(t, ·))‖ ≤ eLt‖f(ρ(0+, ·))‖ ≤ eLt(‖f(ρ(0, ·))‖ + 2Nf(σ)

where N is the total number of lines in the network.

A proof can be found in [55].
Condition (2.83) is responsible that the next lemma can be proved.

Lemma 2.90. The function f satisfies condition (2.83). Then there is an
L > 0 such that for all t ≥ 0
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‖ρ(t, ·)‖ ≤ ‖ρ(0, ·)‖ + 2N
(
eLtf(σ)

v
+ 1
)

where N is the total number of transmission lines in the network, v the mean
velocity.

We are ready for the theorem, which is based on the Lipschitz continuous
dependence in Lloc, theorem 2.80 and the lemmata 2.88 and 2.90.

Theorem 2.91. Let a telecommunication network (I, J) be given and assume
(2.83) and (2.89). Then under the assumption (RA1) and given T > 0 for
every initial data there exists an admissible solution to the Cauchy problem
(2.80) on the interval [0, T ].

It should be mention that we have to choose the locally convex space Lloc

instead of L1, since there does not exist any Lipschitz continuity in general
(see [55]).
We turn now to the algorithm (RA2). Condition (2.83) is responsible that the
next lemma can be proved.

Lemma 2.92. The function f satisfies condition (2.83). Then there is an
L > 0 such that for all t ≥ 0

‖ρ(t, ·)‖ ≤ ‖ρ(0, ·)‖ + 2N (f(σ)v + 1)

where N is the total number of transmission lines in the network, v the mean
velocity.

We are ready for the theorem, which is based on the Lipschitz continuous
dependence in Lloc, theorem 2.80 and the lemmata 2.88 and 2.92.

Theorem 2.93. Let a telecommunication network (I, J) be given and assume
(2.83) and (2.89). Then under the assumption (RA2) and given T > 0 for
every initial data there exists an admissible solution to the Cauchy problem
(2.80) on the interval [0, T ].

Remark 2.94. We did not go into details for the proofs, since the interested
reader can study them in the original literature (see [52, 55, 204]).

2.9.7 Stochastic Velocities and Density Functions

This section is an outlook and should give a first approach to incorporate
stochastic perturbations into the deterministic setting of the previous conser-
vation model. We introduce the model just for getting understanding; there
will be no evaluations or mathematical solution, since at the moment we have
not developed the technical methods for solving. This will be done at the end
of the monograph, because the required technique would surpass the scope of
the book at the present state. In addition, there is still data evaluation to be
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done for verifying the model, which indicates that the concept is still in state
of development.
The starting point is the macrodynamic view given by the conservation equa-
tion (2.80)

∂

∂t
ρ(t, x) +

∂

∂x
f(ρ(t, x)) = 0

We rewrite it in the form

dρ(t, x) = − ∂

∂x
f(ρ(t, x))dt

expressing that a small change in time of the density of the traffic depends
proportional on the time interval dt with factor − ∂

∂xf(ρ(t, x)), expressing that
the change is negative proportional on the change of the flux on the different
nodes or line spots x.
Now we suppose that beside the TCP algorithm, expressed by the probability
function p(ρ) as done in the examples 2.67 to 2.69, we insert a stochastic per-
turbation, which is triggered by the underlying links. Since we want to keep
the model on a simple level and since we had worked in the small scale influ-
ence by the function p, we consider a perturbation by a fractional Brownian
motion, whose scale is determined proportional to the flux derivation

−a
∂

∂x
f(ρ(t, x)), a ∈ R+

Thus, we obtain the equation

dρ(t, x) = − ∂

∂x
f(ρ(t, x))dt− a

∂

∂x
f(ρ(t, x))dB(H)

t

Since we have not yet introduced the fractional Brownian motion (FBM)
at that point, we refer to the later chapter 3 for detailed description. We
just collect some fact on the FBM relevant for the IP traffic. As we already
mentioned in the introductory chapter 1 and there especially in the section 1.4,
the IP traffic reveals a so called long-range dependency. Roughly speaking, this
mean that changes now perform influences on changes of later times and this
dependency decays slowlier than linear. E.g. the classical Brownian motion
or even the Poisson process have independent increments, thus no existing
dependency. In addition, the variance of the traffic is not decaying linear as in
the Brownian motion case but hyperbolic. All these phenomena can be covered
by the perturbation with the FBM up to a certain extend. Hence, though we
have already incorporated a stochastic component in the pure deterministic
framework of the conservation law with the probability function p(ρ), the long-
range dependence is not explained by the above model, presented in section
2.9.4. The part

a
∂

∂x
f(ρ(t, x))dB(H)

t

means that the perturbation is driven by the FBM and the magnitude depends
on a scaling factor a and the change in the flux ∂

∂xf(ρ(t, x)) depending on the
density and the space variable x, thus the location.
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2.10 Matrix-Analytical Methods

In this last section we give a short introduction to the matrix analytical meth-
ods. In contrast to the models based on the statistical evaluation and its key
properties, like self-similarity and long-range dependence, which lead to ap-
proaches based on stochastic processes and its analysis, in this part we still
remain in the classical environment, expressed by the Kendall notation. Neuts
and Lucantoni are two of the major representatives in this area. At the end,
after the introduction of the toolbox, we demonstrate the application to the IP
network. It should be emphazised that the models will mimic the long-range
dependence resp. the heavy-tail phenomena of the data transfer, using a more
complicated Poisson arrival process. As Lucantoni et al. put it, the models
based on perturbation of stochastic processes are asymptotical self-similar,
as all continuous model inherit this property, while the models based on the
matrix analytic model are claimed to be exact. Our description is based on
the monographs of Tran-Gia [254, 255] and the original literature of Neuts
[187] and Lucantoni [166, 167, 168].

2.10.1 Phase Distribution

The basic concept consists in describing non-Markovian components, as they
appear in the serving time processes of the data transfer (see section 2.7.5),
a more complex system based on pure Markovian processes, in particular by
the Poisson process. This leads to combine phases of the Poisson process, and
brings up the notion of the phase distribution

Erlang-k Distribution as Motivation

The phase representation of various RV as well as the phase distribution of a
general distributed RV is done by exponential distributed phases. To get the
idea we start with the Erlang distribution. We summarize the facts given by
the figure 2.41. In both cases we find an Erlang distributed RV:

• Phase representation: This is basically a sequence of λ-exponential dis-
tributed phases: The RV starts in phase 1 at the end, enters into phase
2 and so forth. After the j-th phase it enters the phase (j + 1), again
exponential distributed with the same λ.

• Phase distribution: After the phase k the process enters the so called ab-
sorbing state k+1. Then, a new event occurs. Leaving the absorbed state,
means a restart of the process in the state 1. Here, the process starts always
in 1 (p1 = 1, pi = 0, i �= 1).
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interval

1
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k

λ

λ

λ

λ

absorbing state

phase 1 

phase 2 

phase k

p1 = 1

absorption, arrivalrestart

k + 1

Fig. 2.41. In the left figure we show the scheme of an Erlang-k distribution. The
right one is the phase distribution representation of an Erlang-k distribution

Definition of Phase Distributions

We have two basic phases – the transient state and the absorbing state. The
process is based on a finite and irreducible Markov chain in continuous time,
called the guided Markov chain. The transition between two transient phases
i and j is described by transition probability densities qij (i, j ∈ {1, . . . , k}).
The process can move into the absorbing state (only one state) with rate ωi
from the transient state i. We write them into the absorption vector

Ω =

⎛

⎜
⎜
⎜
⎝

ω1

ω2

...
ωk

⎞

⎟
⎟
⎟
⎠

The decisive difference to the Erlang-k distribution is the introduction of the
absorbing state. The process stops in the absorbing state, but restarts in
state i as arrival event at the end of the serving period. The process restarts
independent of the phase before the absorption occurs with rate pi into state
i. The time spent in the absorbing state depends on the process – if we want
to model serving period, then the restart will coincide with the beginning of
the serving period. The duration of the absorption will be the time of the
serving process. In contrast, if we model the interarrival time process, then
the restart occurs immediately after the absorption and the restart happens
timeless.
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We define the new start vector as

Π = {p1, p2, . . . , pk, pk+1}

The vector includes the probability distribution of the restart with the com-
pleteness relation

k+1∑

j=1

pk = 1 or equivalently Πe = 1

where e = (1, 1, . . . , 1) ∈ Rk+1. The probability pk+1, describing the restart
directly after the absorbing state, is used by compound RV to reflect the
transition between the components. Usually we set pk+1 = 0 and obtain the
modified new start vector

Π = {p1, p2, . . . , pk}, with
k∑

j=1

pj = 1

The transition probability densities fulfill

qjj = −
k∑

i=1,i �=j
qji − ωj = −λj

where λ−1 describes the mean time spent in phase i. Similar to the pure
Markov process we define the transition matrix

Q =
(
Q0 Ω
O 0

)
∈ R(k+1)×(k+1) (2.92)

Note that, since Q0 ∈ Rk×k, Ω ∈ Rk×1 and O ∈ R1×k (zero matrix), we get
Q ∈ R(k+1)×(k+1). Since the Markov chain is irreducible, we have qii < 0 and
the matrix Q0 is regular. We can determine uniquely the absorption vector Ω

Q0e + Ω = 0 resp. Ω = −Q0e

The pair (Π,Q0) determines uniquely the phase distribution. Hence, we de-
note by PH(Π,Q0) the given phase distribution (fig. 2.42).

Distribution Function of a Phase Distributed Random Variable

How does a distribution function for a PH(Π,Q0)-distributed random vari-
able looks like? The random variable ξ describes the time from the restart
until the absorption. If ξ describes the interarrival time of the arrival pro-
cess, then ξ is nothing else than the time between two different absorption
time spots. Let X(t) denote the state of the process, describing the particular
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absorbing state

absorption, arrival
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2

k
pk

p1

p2

q12

q2k qk2

q21
qk1

ωk = qk,k+1

ω2 = q2,k+1

ω1 = q1,k+1

k + 1

q1k

restart

Fig. 2.42. Scheme of a typical phase distribution (PH)

phase, i.e X(t) = 1, . . . , k, k + 1. Suppose at time t = 0, we have a restart.
Then we can describe the random variable as follows

fξ(t) = (ξ ≤ t) = P(phase process at time t is in the absorbing state)
= P(X(t) = k + 1)

It is clear that the process can pass through several transient states until it
hits the absorption state. To get full information about the distribution func-
tion, we have to analyze the transition probabilities from the restart up to
the absorption state (fig. 2.43). We assume that the process (X(t)) is homo-
geneous. Again we follow the standard technique for state equations and state
probabilities (see e.g. [141, 238]).
Let P(t) denote the matrix of transition probability densities designed for the
interval ]0, t[, describing two succeeding states of absorption. According to the
Kolmogorov backward equations we obtain

dP(t)
dt

= Q · P(t) (2.93)

Since we set P(0) = id, we obtain as solution for the matrix valued differential
equation (2.93)

P(t) = eQt = id + Qt + Q2 t
2

2!
+ Q3 t

3

3!
+ . . .

By the block structure of Q according to (2.92) and since Ω = −Q0e we
conclude
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Fig. 2.43. Realization of a phase distributed RV

eQt =
(
eQ0t e− eQ0te
O 1

)

The vector (
e− eQ0te

1

)

as element in Rk+1 and its components reflect the conditional probability
for the fact that, after the start in state i at time 0, the process is in the
absorbing state at time t. Applying left multiplication with the restart vector
Π, we obtain the distribution function of the random variable ξ

Fξ(t) = 1 −ΠeQ0te PH distribution function

We differentiate to obtain the density function, called PH-density function

fξ(t) =
dFξ(t)
dt

= −ΠeQ0tQ0e = −ΠeQ0tΩ

We compute the Laplace transform

Lfξ
(s) =

∫ ∞

0

fξ(t)e−stdt (2.94)

= pk+1 + Π (s · id −Q0))
−1 ·Ω Laplace transform of a PH-CDF

Renewal Property

Since the restart vector is independent of the absorption phase, the phase dis-
tributed arrival process enjoys at the arrival time spots the renewal property.
The interarrival intervals, which indicates the time between two absorption
times, are stochastic independent. The sequence of absorptions time spots
consists of a classical renewal process, as defined in section 2.6
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2.10.2 Examples for Different Phase Distributions

Exponential Distribution

We start with the exponential distribution, which has as phase distribution
the representatives

Π = 1 and Q0 = (−λ)

The corresponding arrival process is a Poisson process. Inserting the param-
eters into equation (2.94), we obtain the Laplace transform

Lfξ
(s) =

λ

λ + s

Erlang-k Distribution

Selecting the Erlang-k distribution, we conclude for its representation as phase
distribution

Π = {1, 0, . . . , 0}
and the k × k-matrix

Q0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ 0 . . . 0 0
0 −λ λ . . . 0 0
0 0 −λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −λ λ
0 0 0 . . . 0 −λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Hyperexponential Distribution

As a well-known fact, the hyperexponential distribution can be considered
as k-parallel exponential distributed phases with different rates. The phase j
possesses a rate λj , which is selected with probability pj . Hence, we obtain
the following representation for the phase distribution

Π = {p1, p2, . . . , pk}

and

Q0 =

⎛

⎜
⎜
⎜
⎝

−λ1 0 . . . 0
0 −λ2 . . . 0
...

...
. . .

...
0 0 . . . −λk

⎞

⎟
⎟
⎟
⎠

= diag(−λ1, . . . ,−λk)

The matrix reveals that there is no transition between the transient phases.



154 2 Classical Traffic Theory

Interrupted Poisson Processes

This a particular interested example for the simple description of IP traffic. It
forms the basic idea, which we will transform in the next chapter for the on-off
models in the packet oriented traffic. We select a Poisson process with rate
λ2, modulated with another independent process in an ‘on-off’ type manner.
The ‘off’ phase V1 and the ‘on’ phase of the modulated process consists of
exponential distributed interarrival times, given by the parameters γ1 and
γ2, i.e.

Fξoff = 1 − e−γ1t and Fξon = 1 − e−γ2t

During the ‘On’-phases we generate events with rate λ2, while during the
‘Off’-phases nothing happens (fig. 2.44). This process is called interrupted

arrivals
modulated
process

modulating
process

t

t

λ2

λ(t) V1 V2

Fig. 2.44. The interrupted Poisson process

Poisson process (IPP). The IPP is a renewal and phase distributed process
and can be characterize by the parameters

Π = {0, 1}

and

Q =
(
Q0 Ω
O 0

)
=

⎛

⎝
−γ1 γ1 0
γ2 (−γ2 − γ1) λ2

0 0 0

⎞

⎠

The transient phase 1 corresponds to the ‘off’ phase of the modulated process.
The probability to leave this state depends only on the exponential distributed
phase duration with rate γ1. The transient phase is the ‘on’ phase. Here, we
meet two possibilities: either we have absorption with rate λ2, or we encounter
the end of the phase with rate γ2. Since we have an arrival process modeled,
we see a restart after the absorption, which runs into phase 2 again (fig. 2.45).
Thus, we have a classical modified renewal process.
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restart
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3

p2 = 1 ω2 = λ2

γ1 γ2

Fig. 2.45. Scheme of the phase distribution of the interrupted Poisson process

Time Discrete Phase Distribution

For describing communication networks and for indicating the key values of
performance some times, one has to map IP data traffic with constant dura-
tion. Here, the time discrete phase distribution (D-PH) is very suitable.
The time axis will be discretized by ∆t, where this reflects the duration of
transient phase. The decisive difference consists in the fact that all events
happens at discrete time spots The duration of a transient phase lasts ∆t.
The transition behavior is characterized by the transition probability, not by
transition rates. The transition matrix reads as

Q =
(
Q0 Ω
O 1

)

where Q lies in R(k+1)×(k+1) and is a stochastic matrix, since the sum over a
row has to match 1. The submatrix Q0 is substochastic, i.e. the sum over all
element of a row is less or equal to 1 and reflects the transitions between the
single transient states. The restart vector Π is a row vector and indicates the
restart probability in the time continuous case. We have

Ω = e−Q0e =

⎛

⎜
⎜
⎝

1 −
∑k
j=1 Q0(1 · j)

...
1 −
∑k
j=1 Q0(k · j)

⎞

⎟
⎟
⎠

The time from the restart to the absorption state is modeled by the discrete
random variable X. Using a discrete phase distribution model the restart
occurs immediately after the absorption. The time X coincides with the in-
terarrival time. If we model the serving time with the discrete model, the
restart time spot is determined by the serving time. We can compute the dis-
tribution of X resp. the probability that the absorption occurs i time intervals
after the restart according to

x(j) = P(X = j) = ΠQj−1
0 Ω, j > 0

x(0) = pk+1
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2.10.3 Markovian Arrival Processes

This section will bring a generalization of the phase distribution, called Marko-
vian Arrival Process (MAP), which is based on original work of Neuts and
Lucantoni ([187, 188, 166, 167]). They include in addition general correlated
arrival processes without renewal property.

Definition

As we did for the phase distribution, we start with an irreducible Markov
chain. Beside the guiding chain we will consider an embedded one in discrete
time, which will describe the jump behavior. In figure 2.46 we sketch the
significance of the embedded Markov chain. Different to the phase distribution,
the restart probability depends on the phase directly before the absorption.
This indicates the advantage: the MAP can be used for modeling segmented
dependent and correlated processes.

absorbing
state

arrival

1

2

k

absorption and restart

transient
states

p1k(0) pk1(0)

p2k(0) pk2(0)

p12(0) p21(0)

pij(1)

Fig. 2.46. The Markovian arrival process with its state transitions

Transition Properties

The state space of the embedded Markov chain consists of k transient phases
and one absorbing one. The duration of each transient state is exponential
distributed with rate λi:
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• Transient transition: This happens with a probability pij(0), i �= j between
the transient state i and j without generating a new arrival event.

• Transition with absorption and restart: The transition probability pij(1)
describes the transition of the transient state i into the restart in phase j,
passing the absorption state and generating an arrival event.

The transition probabilities fulfill the completeness property
k∑

i=1,i �=j
pji(0) +

k∑

i=1

pji(1) = 1, for 1 ≤ j ≤ k (2.95)

and built up the k × k arrival matrices A0 resp. A1

D0 =

⎛

⎜
⎜
⎜
⎝

−λ1 λ1p12(0) . . . λ1p1k(0)
λ2p21(0) −λ2 . . . λ2p2k(0)

...
...

. . .
...

λkpk1(0) λkpk2(0) . . . −λk

⎞

⎟
⎟
⎟
⎠

D1 =

⎛

⎜
⎜
⎜
⎝

λ1p11(1) λ1p12(1) . . . λ1p1k(1)
λ2p21(1) λ2p22(1) . . . λ2p2k(1)

...
...

. . .
...

λkpk1(1) λkpk2(1) . . . λkpkk(1)

⎞

⎟
⎟
⎟
⎠

The transition matrix D0 belongs to the case that a phase transition happens
without simultaneously generating a new arrival event. The matrix D1 reflects
the case that at the time spot of the phase transition and arrival event occurs.
We assume the regularity of the matrix D0. The summation matrix

D = D0 + D1

is the generator of the guiding Markov chain. (D0,D1) is called representative
of the Markovian arrival process. We can define similar to the distribution
function a generating function for the arrival matrices of the arrival process

DEF (z) =
∞∑

j=0

Djzj = D0 + zD1

setting Dj = 0 for j ≥ 2.

Semi-Markov Property and Markov Renewal Processes

The time intervals between two succeeding phases of absorption are not nec-
essarily identical distributed, since the probability for a restart depends of
the phase before absorption. We consider the arrival process as semi Markov
process. Let (ξn,Xn) be the sequence of pairs describing the time between
the (n− 1)-th and n-th absorption, and Xn the phase immediately after the
n-th absorption, then we obtain a Markovian renewal process. The past of the
whole process is included completely in the embedding time spots of the state
(ξn,Xn). The sequence (ξn,Xn) describes a Markov chain.
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Phase Distribution as Example of MAP

We give the phase distribution, indicating its representatives (Π,Q0). For this,
we define the arrival matrices to ensure the Markov property of the arrival
process

D0 = Q0

D1 = −Q0eΠ = ΩΠ

Markov Modulated Poisson Processes

The Markov Modulated Poisson Process (MPP) is often used for correlated
traffic streams in communication networks. It is a double stochastic process,
where the arrival rate is described by a Markov chain. The modulated MMPP
possesses k transient phases, where the duration of each is exponential dis-
tributed with rate γi. Suppose the process is in phase i. Then, arrival events
will occur according to a Markov process with rate λi. The guiding modulated
Markov process is based on a time continuous Markov chain with generator
Γ . We can characterize it by the matrix Γ and the rate matrix Λ

Λ = diag(λ1, λ2, . . . , λk)

Other than the case of the interrupted Poisson process, the MMPP is not
a renewal process. With the above matrices Γ and Λ we can indicate the
representatives of the MMPP (see also Fischer and Meier-Hellstein [89] and
Lucantoni [167])

D0 = Γ − Λ

D1 = Λ

For the special case of an interrupted Poisson process defined by

Γ =
(
−γ1 γ1

γ2 −γ2

)
(2.96)

and

∆ =
(

0 0
0 λ2

)

we obtain with equation (2.96) the MAP representatives

D0 = Γ − Λ =
(
−γ1 γ1

γ2 −γ2 − λ2

)
, D1 = Λ =

(
0 0
0 λ2

)

This representative can also be deduced by the phase distribution of the IPP

Π = {0, 1}, Q0 =
(
−γ1 γ1

γ2 −γ2 − λ2

)
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and the equivalence of the phase distribution of the MAP, expressed in equa-
tion (2.95)

D0 = Q0 =
(
−γ1 γ1

γ2 −γ2 − λ2

)
, D1 = −Q0eΠ =

(
0 0
0 λ2

)

Batch Markovian Arrival Processes

With the help of the matrices D0 and D1 we describe transitions without
and with arrival events. Analogously we define the matrices Dn indicating the
case of n arrivals. For this purpose we denote by pij(n), i �= j the transition
probability of phase i, passing through an absorption state to a restart into
phase j, where n demands appear simultaneously. The probability fulfills the
completeness relation

k∑

i=1,i �=j
pji(0) +

∞∑

n=1

k∑

i=1

pji(n) = 1, for 1 ≤ j ≤ k

The corresponding arrival matrices D0 and Dn are defined by

D0 =

⎛

⎜
⎜
⎜
⎝

−λ1 λ1p12(0) . . . λ1p1k(0)
λ2p21(0) −λ2 . . . λ2p2k(0)

...
...

. . .
...

λkpk1(0) λkpk2(0) . . . −λk

⎞

⎟
⎟
⎟
⎠

Dn =

⎛

⎜
⎜
⎜
⎝

λ1p11(n) λ1p12(n) . . . λ1p1k(n)
λ2p21(n) λ2p22(n) . . . λ2p2k(n)

...
...

. . .
...

λkpk1(n) λkpk2(n) . . . λkpkk(n)

⎞

⎟
⎟
⎟
⎠

The above defined process is called Batch Markovian Arrival Process (BMAP).
This process enables to describe the group arrivals, which are suitable to model
the buffers of multiplexers in communication networks. A good reference for
a more detailed description of BMAP is [166, 167].

Time Discrete Markov Arrival Processes

Basic of the Time Discrete Markov Arrival Process (D-MAP) is the consid-
eration of a discretized time axis by the step width ∆t, which indicates the
duration of each transient phase. Hence, an absorption occurs only at the end
of each phase. Again we have, as in the D-PH-case, transition probabilities
substituting the rates. Thus, the matrices D0 and D1 are stochastic matri-
ces, indicating the respective transition probabilities. The summation matrix
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D = D0 +D1 is again stochastic, and by the element D[ij] we mean the prob-
ability that the phase j was the successor of transient state i. The matrix D
is assumed to be irreducible and aperiodical. This indicates that the matrix

(id −D0)
−1 =

∞∑

k=0

Dk0

exists. Especially (1 − D0)−1D1 describes the probability that a period with
arrival finishes sometimes with the arrival. The above properties ensure that
D has eigenvalue 1 and, hence, let π be a left eigen vector of D, i.e. satisfying

π = πD, with πe = 1 (2.97)

indicating the stationary probability to remain in a transient phase. Let λ be
the column vector, representing the phase depending arrival rates. We have

λ = D1e (2.98)

As mean aggregated arrival rates we conclude

λ = π · λ = πD1e

Example 2.95. Cyclic on-off process: This Markovian arrival process is partic-
ular suitable for the characterization of general processes with the correlation
property. We describe in 2.47 an example of time discrete process with a cycle
of 5 slots – 3 full and 2 empty ones.

arrivals
on

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

off

phase

t/∆t

Fig. 2.47. Realization of a phase distributed RV

These 5 slots represent 5 transient phases

D0 =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

D1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠
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2.10.4 Queueing Systems MAP/G/1

An important approach consists in the generalization of the M/G/1 system.
We will basically proceed as in section 2.7.3 and use the embedded Markovian
renewal process. More and detailed description can be found in the litera-
ture (see [166, 167, 168]). In the figure 2.48 we indicate the following model
MAP/G/1-∞, i.e with infinite queueing space:

We have the two k × k matrices D0 and D1 indicating the transition
probability of the transient phases with corresponding mean arrival
rate λ. The serving time η is general distributed.

G

time continous
Markovian

arrival process

general
distributed

service times

infinite
queuing
space

MAP

D0,D1 ∞

Fig. 2.48. Realization of a phase distributed RV

The analysis is more or less equivalent to the classical M/G/1 system. But it
does not suffice to know the state condition resp. the amount of demands at
the embedded time spots. In addition, we need information on the relation of
the arrival process to the embedded time spots.
We consider the system in the interval ]0, t]. As usual, we denote by N(t)
the number of arrivals, the phase at time t is denoted by X(t). The triple
(N(t),X(t))t>0 is a time continuous and state discrete process. The process
is Markovian and the generator is the matrix

QA =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D0 D1 0 0 . . .
0 D0 D1 0 . . .
0 0 D0 D1 . . .
0 0 0 D0 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(2.99)

We already divided the process into two levels:

• the level of events resp. demands and
• the level of the phase description of the MAP arrival process.

Block Structure of Matrices

The matrix in (2.99) reveals a typical block structure and reflects the form
of the process (N(t),X(t))t>0. On the level of demands we recognize the
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arrival matrices due to the MAP arrival process. Defining a niveau as the
set of all states, where the demands are not changed, these so called niveaus
of the process correspond to the block structures of row and columns. Since
the MAP-arrival process enjoys k transients, we have k elementary states. A
change in the states on the level of demands corresponds with passing from
niveau to another, while a change in a phase is equivalent to passing between
two transient states.
The basic idea behind the block structure is the linearization of the two di-
mensional processes (N(t),X(t))t>0 and enables a simplified notation of the
transition probabilities, given by the above generator QA. We can find a com-
parison with the formulas of the one dimensional case in the literature e.g. in
[167].

Transition Equations

We denote by R(t) the transition probability for the process (N(t),X(t))t>0.
It is stochastic and enjoys block structure as well, like the matrix QA.

R(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

R0(t) R1(t) R2(t) R3(t) . . .
0 R0(t) R1(t) R2(t) . . .
0 0 R0(t) R1(t) . . .
0 0 0 R0(t) . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The blocks Rn(t) are matrices representing the transition probability

Rn(t)[ij] = P (N(t) = n, J(t) = j |N(0) = 0, J(0) = i)

The matrix Rn(t) is called counting function of the arrival process. Since R(t)
and the generator QA satisfy the Kolmogorov forward equation, Rn(t) fulfills
the matrix-valued initial value problem

d

dt
R(t) = R(t)QA, for t ≥ 0 and R(0) = id

By inserting the matrices R(t) and QA, we obtain using the block structure

d

dt
Rn(t) = Rn(t) · D0 + Rn−1 · D1, for n ≥ 1, t ≥ 0 and R0(0) = id

(2.100)
A formal transformation of the counting function Rn(t) with the help of the
generating function reveals

REF (z, t) =
∞∑

k=0

Rk(t)zk

With the help of equation (2.100) we conclude
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∂

∂t
REF (z, t) = REF (z, t) · DEF (z) and REF (z, 0) = id

where

DEF (z) =
∞∑

k=0

Dkzk = D0 + zD1

Thus, it follows

REF (z, t) = eDEF (z)t, for |z| ≤ 1, t ≥ 0 (2.101)

the last equation helps to determine the transition probability matrix, de-
pending on the pair (D0,D1) of the MAP arrival process.

Example 2.96. Poisson process: Equation (2.101) will be discussed using the
Poisson arrival process. For this case we have D0 = (−λ) and D1 = (λ) and
the transition matrix R(t) is nothing else than the counting function of the
Poisson process, i.e.

Rn(t) =
1
n!

(λt)ne−λt

Inserted into equation (2.101), gives

REF (z, t) = e(−λ+λz)t

This examples demonstrates clearly that the MAP is the matrix generalization
of the Poisson process. The important information of the transition behavior
in the MAP/G/1 system will be attacked in the following section.

Embedded Markovian Renewal Processes

Let Fη be the distribution function of the serving time. We consider a sequence
of time spots t0, . . . , tν , immediately after a certain end of a serving period.
Since the process (N(t),X(t))t>0 enjoys the Markov property at these time
spots, we can embed a Markov process at these times.
The state of this embedded Markov process is determined by (N(tν),X(tν))ν≥0

and attains values in {(n, j);n ≥ 0, 1 ≤ j ≤ k}. The component (N(tν)) re-
flects a number of changes in the system until time tν , while X(tν) indicates
the transient state at time tν . We assume that the start of the process is set
at t = 0.
Let us now analyze the transitions. We start with two succeeding embedded
time spots tν and tν+1 and let t = tν+1−tν . The probability for the transition
of the states [N(tν) = nν ,X(tν) = xν ] to [N(tν+1) = nν+1,X(tν+1) = xν+1]
during the time t is given by the following matrix, enjoying block structure
as well

P(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ω0(t) Ω1(t) Ω2(t) Ω3(t) . . .
Υ0(t) Υ1(t) Υ2(t) Υ3(t) . . .

0 Υ0(t) Υ1(t) Υ2(t) . . .
0 0 Υ0(t) Υ1(t) . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Here, Υn(t) as well as Ωn(t) are again matrices defined as follows:

• Υn(t)[ij]: Probability for the transition: At time 0 we find the end of a
serving period. The system is not empty, and immediately afterwards a
new serving period starts. This serving period finishes at least at time t.
At time 0 the MAP arrival process is in state i, at time t in phase j. We
encounter n new arrivals in the interval ]0, t].

• Ωn(t)[ij]: Probability for the following transition: A serving period ends at
time 0 and the system is empty and runs through a vacant phase until the
next arrival. Immediately afterwards, the serving period starts and finishes
at least at time t. At time 0 the MAP arrival process is in phase i and at
t in phase j. During the time interval ]0, t] we detect (n + 1) demands in
the system, thus, at the end of the period n demands remain.

Both matrices fully describe the possibilities, how the transition from one
embedded time spot to the other during the time period t occurs. We can
compute the matrix Υn from the counting function Rn according to

Υn(t) =
∫ t

0

Rn(s)dFη(s)

The matrix Ωn can be computed from the matrix Υn, by initially inserting a
vacant period. We can explain the relationship using suitable transformations
as follows. For this, we construct the Laplace-Stieltjes transform the transition
matrices, where we consider the integrand as matrix-valued

ΦΥn
(s) =

∫ ∞

0

e−stdΥn(s), ΦΩn
(s)
∫ ∞

0

e−stdΩn(s)

The expression will be transformed to the so called double transform (DT),
using matrix generating function according to the arrivals

ΥDT (z, s) =
∞∑

n=0

ΦΥn
(s)zn, ΩDT (z, s) =

∞∑

n=0

ΦΩn
(s)zn (2.102)

We have as usual |z| ≤ 1 and Re(s) ≥ 0.
First, we are interested in the stationary distributions, i.e. the asymptotical
behavior for the time t → ∞. We can consider this after the swing in. We
obtain

P = P(∞) = lim
t→∞

P(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ω0 Ω1 Ω2 Ω3 . . .
Υ0 Υ1 Υ2 Υ3 . . .
0 Υ0 Υ1 Υ2 . . .
0 0 Υ0 Υ1 . . .
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where we define the stationary transition probabilities
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Υn = ΦΥn
(0) = Υn(∞) = lim

t→∞
Υn(t) (2.103)

Ωn = ΦΩn
(0) = Ωn(∞) = lim

t→∞
Ωn(t)

Note that P is a stochastic matrix, representing the transition probabilities.
Formally for later purposes we introduce the sum of the matrices (Υn) resp.
(Ωn)

Υ =
∞∑

n=0

Υn = lim
s→0,z→1

ΥDT (z, s), Ω =
∞∑

n=0

Ωn = lim
s→0,z→1

ΩDT (z, s)

Again the matrices Υ and Ω are stochastic. From the definition and the prop-
erties of the limit of transformation we can determine the form of Υ

Υ = lim
s→0,z→1

ΥDT (z, s) = lim
s→0,z→1

∫ ∞

0

e−steDEF (z)tdFη(s)

=
∫ ∞

0

eDtdFη(s)

From the double transformation

ΩDT (z, s) =
1
z
(sid −D0)−1(DEF (z) −D0)ΥDT (z, t)

we conclude by the limit process s → 0 and → 1

Ωn = −D−1
0 D1Υn

and
Ω =

(
id −D−1

0 D
)
Υ

It is possible to show that the stationary probability π, to remain in the
particular transient state defined in equation (2.97), also fulfills the relation

π = πΥ

We can formally obtain from the double transform ΥnDT (z, s) the average of
(Υn) with respect to n

EΥ =
∞∑

n=0

nΥne = lim
z→1

(
∂

∂z
ΥDT (z, 0)

)
· e = ρe + (id − Υ )(eπ −D)−1λ

The row vector λ = D1 · e represents the phase depending arrival rates of the
MAP arrival process and is defined in equation (2.98). The mean number of
arrivals during the serving period is identical with the mean traffic load ρ. We
have

πEΥ = ρ
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Stationary State Probabilities

For the determination of the state vector X at the embedded time spots,
which means the ends of the serving periods, we consider the following eigen
value problem

X = X · P, with X · e = 1

Note the stability restriction ρ < 1. In addition, the row vector X is according
to the matrix P(t) split into block of size 1 × k

X = {X0,X1, . . .} (2.104)

The subvector Xν corresponds to the level ν and indicates the phase depending
probability that the system will be on the level ν at the serving end. From
the block structure of P we obtain the subvector

Xν = X0Ων +
ν+1∑

n=1

XnΥν+1−n, for ν ≥ 0 (2.105)

The component Xν [j] indicates the probability that the system contains ν
demands after the serving period and the MAP process is in phase j. The
above equations reveals the close relationship to the classical M/G/1 system,
which we repeat again (see also (2.27))

x(ν) = x(0)γ(ν) +
ν+1∑

j=1

x(j)γ(ν + 1 − j)

Let us shortly describe the equivalence of (2.104) with (2.105):

• The vector Xν of the MAP/G/1 system correspond with the with state
probability x(ν) in the M/G/1 case.

• The matrices Υν , Ων with γ(ν) as the number of Poisson arrivals during a
serving period.

How can we solve the linear system (2.104)? First, using the basic cycle, we
determine the subvector X0. This is start for the iterative algorithm to get
successively X1,X2 . . .. The stationary vector X ∗ will be obtained via X as
seen in the next section.

Fundamental Period

For further investigations we introduce some notions (fig. 2.49):

• First passage time: this is the time period for the transition of level ν1 to
level ν2, i.e. the time interval for the first entering the level ν1 until the
first arrival in level ν2 We denote it by [ν1, ν2].
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• Back step: This is the time period between the arrival in the level ν > 0
and the immediately following enter into level ν − 1 ends. The transition
time is also called fundamental period.

• The first passage time [0, 0] is called fundamental cycle and consists of a
vacant period and the serving period of serving process.

fundamental period

ground cycle

t

N(t)

1
2
3
4
5
6

K(9)

Ω2

G(6)
G(2)

Fig. 2.49. Fundamental cycle and period

With G(r) ∈ Rk × Rk we denote the probability that the fundamental period
consists of r serving periods. As the definition reveals, this means that dur-
ing [ν, ν − 1] exactly r demands are served. Obviously we have a matrix of
probabilities, since we have to encounter the phases of the arrival process at
the beginning and at the end of the serving period. In this way, the compo-
nent G(r)[ij] indicates the probability that the fundamental period consists
of r serving periods and at the beginning resp. at the end of the fundamen-
tal period the MAP arrival process is in phase i resp. j. Figure 2.49 depicts
some examples of fundamental periods. In figure 2.50 we show in an exam-
ple the realization of a fundamental period, where from level 4 to 3 we have
r = 8 serving periods. In the general case the fundamental period of r serving
periods consists of:

• A serving period where n demands arrive (n ≥ 0). This is characterized
by matrix Υn and

• n fundamental periods consisting of (r−1) serving periods. This is describe
by the convolution G(n)(r − 1).

We obtain in matrix notation

G(1) = Υ0

G(r) =
∞∑

n=0

ΥnG(n)(r − 1), r > 1
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t

N(t)

1
2
3
4
5
6

G(8)

G(2)G(1) G(8)

Fig. 2.50. Structure of the fundamental period

Here, we set G(0) = id and G(0)(r) = O for r > 0. After a transformation,
using the generating function, we obtain

GEF (z) =
∞∑

r=0

G(r)zr = z

∞∑

n=0

Υn (GEF (z))n (2.106)

The consideration of the limit z → 1, we conclude

G = GEF (1) =
∞∑

r=0

G(r)

and with the help of equation (2.106) we obtain

G =
∞∑

n=0

ΥnGn (2.107)

The above equation gives us the tool to compute G successively. Some com-
ments on the matrix are in order:

• The component G[ij] reflect the probability that at the beginning resp.
at the end of a fundamental period the MAP arrival process is in phase i
resp. j.

• The matrix G is stochastic, irreducible and a uniquely determined fix point
vector γ, i.e. the solution of

γ = γG, with γ · e = 1

With the matrix G we finally found the central player in the matrix analytic
method, and the interested reader can consult [187]. We use the vector EG , the
mean value vector of the fundamental period, without derivation and compute
it according to
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EG =
(

d

dz
GEF (z)

)∣∣
∣
∣
z=1

· e = (id − G + e · γ) (id − Υ + (e− EΥ ) γ)−1
e

Similar to the matrix G the component EG [i] indicates the mean number of
serving time in a fundamental period starting at i.

Fundamental Cycle

We defined a fundamental cycle K0 by the first passage time [0, 0], which is
also denoted as the recurrence time in level 0. As we remember, it consist of a
vacant and a serving period. The matrix K(r) ∈ Rk×Rk reflects the probabil-
ity that K0 includes r serving periods. Similar as before the element K(r)[ij]
indicates that the time period K0 has r serving periods, while at the start
resp. at the end of the fundamental cycle the MAP arrival process is in phase
i resp. j. In figure 2.49 we have depicted an example with 9 serving times.
After each vacant period a serving period starts, while 2 demands arrive. This
is described by a matrix Ω2. The process gets to level 2 afterwards. To get to
level 2, the process has to pass through 2 fundamental cycles, including over
all 8 serving periods. The path is built up by the matrices G(6) and G(2).
The interval K0 in questions can be described by the matrix multiplication
Ω2 · G(6)G(2).
In the general case the fundamental cycle, which includes r serving units and
is represented by the matrix K(r) consists of:

• A vacant period succeeding a first serving period, during which n demands
arrive, and which is characterized by a matrix Ωn and

• n fundamental periods, including r − 1 serving periods. This is described
by the convolution of G(n)(r − 1).

By considering all possible paths which are needed for the realization of a
basic cycle, we obtain the so called matrix distribution of the basic cycle

K(r) =
∞∑

k=0

ΩkG(k)(r − 1), r ≥ 1

We obtain by applying a transformation

KEF (z) =
∞∑

r=0

G(r)zr = z
∞∑

n=0

Ωn (GEF (z))n

Analogously as before we get by the limit procedure z → 1

K = KEF (1) =
∞∑

r=0

K(r) (2.108)

Equation (2.108) implies
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K =
∞∑

n=0

ΩnGn

And guess again, we give some comment on K: the component K[ij] indicates
the probability that at the start resp. at the end of a fundamental cycle K0

the MAP arrival process is in state i resp. j. We obtain for the matrix K

K = −D−1
0 (DEF (G) −D0) = id −D−1

0 DEF (G)

where we defined DEF (G) = D0 +D1G. Note the fact that the fix point vector
of DGF (G) is identical with that of G

γ = γDEF (G)

Not surprising, we find the matrix K stochastic, irreducible and with a unique
fix point vector

κ = κK, with κ · e = 1

The component κ[j] tells us the stationary probability that at the start of a
fundamental cycle K0 the MAP arrival process is in state j.

State Probabilities

For the computation of the vector X we need the mean value vector EK

EK =
(

d

dz
KEF (z)

)∣∣
∣
∣
z=1

· e

= −D−1
0 (D −DEF (G) + λ · γ) (id − Υ + (e− EΥ ) γ)−1

e

We know the game already – here are some comments on EK: the component
EK[i] indicates the mean serving time in a fundamental cycle K0, starting in
phase i. With this we can determine the mean number η of serving times in
the fundamental cycle

η = κ · EK

We can compute the vector X0 with the help of the mean vector EK

X0 =
κ

η
=

κ

κ · EK

After some sophisticated arrangements we conclude

X0 =
1 − ρ

λ
γ(−D0)

We can determine the vectors Xν recursively

Xν =

(

X0Ων +
ν+1∑

n=1

XnΥ ν+1−n

)
(
id − Υ 1

)−1
, for ν ≥ 0 (2.109)
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where in the case of a pure MAP/G/1 queueing system we have

Υ =
∞∑

ν=n

ΥνGν−n and Ωn =
∞∑

ν=n

ΩνGν−n

Define XGF (z) =
∑∞
ν=0 Xνzν , we have

XGF (z) (zid − ΥGF (z)) = X0 (zΩGF (z) − ΥGF (z))
= −X0D−1

0 DGF (z)ΥGF (z)

where according to equation (2.102) we get

ΥGF (z) =
∞∑

n=0

Υnz
n and ΩGF (z) =

∞∑

n=0

Ωnz
n

By equation (2.109), we can explicitly determine the complete vector of the
stationary state probabilities at the embedded time spots.

State Probabilities at Arbitrary Time Spots

As already done, X ∗ denotes the stationary distribution of the state at ar-
bitrary time spots. We write X ∗ = (X ∗

0 ,X ∗
1 , . . .), where each component is a

1 × k-matrix. Here is the relationship between X and X ∗

X ∗
0 = λX0D−1

0 = (1 − ρ)γ

X ∗
ν+1 =

(
ν∑

n=0

X ∗
nDν+1−n − λ(Xν −Xν+1)

)

(−D0)−1 (2.110)

The corresponding generating functions reads as

X ∗
GF (z)DGF (z) = −λ(1 − z)XGF (z)

Virtual Queueing Time Distribution Function

With the notion virtual queueing time we denote the time a test demand would
have to wait. The MAP arrival process does not allow an arrival at all time,
thus, we do not have PASTA. We obtain different queueing time distribution
for the different arrivals.
Consequently, let Wj(·) denote the distribution of the virtual queueing time,
if the MAP arrival process is in phase j. We build the vector

W(t) = {W1(t), . . . ,Wk(t)}

The phase independent distribution function of the virtual queueing time is
given by
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W (t) = W(t) · e
The Laplace-Stieltjes transform reads as

ΦW(s) =
∫ ∞

0

e−stdW(t), i.e. ΦW(s) = ΦW (s) · e

Finally, here is the generalization of the known Pollaczek-Khintchine formula
for the queueing time, which we met in the M/G/1 system. Without proof we
present

φW(s) = sX ∗
0 (sid + DGF (Φη(s)))

−1

ΦW(0) = π

With this we obtain as generalization for the virtual queueing time distribu-
tion function ΦW in the MAP/G/1 system

ΦW (s) = ΦW(s) · e (2.111)

= sX ∗
0 (sid + DGF (Φη(s)))

−1 · e

Summary of the Algorithm

We start with the MAP/G/1 queueing system. As usual we denote by D0 and
D1 the distribution matrices of the MAP arrival process. Let η be the serving
time. We present the steps for analyzing the virtual queueing time:

a) Calculation of the matrices (Υn) according to equation (2.103)
b) Computation of the matrix G. According to Neuts [187] we use an expres-

sion equivalent to (2.107), which enables iteration to determine G

Gν+1 = (id − Υ )−1
∞∑

n=0,n �=1

ΥnGnν

where ν denotes the iteration index. The start matrix G0 uses the matrix
Υ . Thus, the iterative determined matrices G1,G2, . . . are stochastic. We
can stop the iteration provided

max
i,j

∣
∣
∣
∣
∣
Gν [ij] −

( ∞∑

n=0

ΥnGnν

)

[ij]

∣
∣
∣
∣
∣
< ε

The fix point vector γ can be computed, using an iteration method as well.
c) With the help of equation (2.109) we obtain X0 and thus, the other vectors

Xν , ν > 0.
d) Computation of the vectors X ∗

ν using (2.110).
e) Knowing X ∗

0 , we can compute the virtual queueing time distribution by
(2.111).
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2.10.5 Application to IP Traffic

In this subsection we want to apply the above theoretical concepts to the IP
traffic modeling. We refer mainly to a paper of Heyman and Lucantoni [108].
The approach is a MMPP model to describe the IP traffic on the packet resp.
byte level. Instead of using self-similar processes, as we will introduce in the
next chapter, one of the characteristics of IP traffic, obtained by statistical
evaluations, this traffic phenomena is mimicked by the MMPP model. As seen
in the next chapter the IP-modeling, using self-similar processes, describes the
traffic asymptotically. The model presented here claims to be exact, proved by
fitting the traces and statistical resp. numerical evaluation. In fact, by using
MMPP the relevant part of the trace showing heavy-tail behavior is quite
good fitted by the MMPP, where the underlying example is an ATM trace. In
several papers [12, 225] the MMPP example is fitted to certain IP traces to
mimic the LRD behavior over several magnitudes. But for this model as for
the other ones we have to stress that it depends on the traces and the view
point – long-range behavior, i.e. averaging over large scales, self-similarity or
the behavior on small scales – there is no model fitting for all kind of traces.
With this and the others again we open windows, looking at some aspects of
the traces.
But enough! Let’s start with the description.

Introduction

We can detect two fundamental applications of queueing models: sizing the
line transport and fitting the buffer space in routers. Actually we will deal
with this in more detail in the last chapter, but since the application of the
matrix analytic methods to the IP traffic should be given, we present the
discussion here. As already mentioned, the content is an extraction of the
paper [108]. The basic situation can be described by several traffic steams,
each is modeled by a MMPP, combined together. This can happen, when at
the provider’s several streams at the router are compounded to use afterwards
a single high speed link. As we demonstrated in the first chapter, IP traffic can
not be correctly interpreted by the Poisson or even purely Markovian queueing
model. Before we start with the more mathematical advanced models in the
next chapter, we still stick to the Poisson approach, but now as a matrix model
MMPP, as e.g originally demonstrated in papers like [108, 189]. In papers like
[12, 225] the behavior is captured on several scales.

Fitting IP Traces and D-MMPP Model

Before giving the basic idea we state some alternatives to the MMPP model.
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Hidden Markov Model

A Hidden Markov model, which is a discrete-time process, where the pa-
rameters, controlling the distributions (as interarrival and serving time) are
governed by a (hidden) Markov chain, is an alternative way to the MMPP. An
MMPP is a point process, where the key random variables are the interarrival
times. The phases of the MMPP are continuous-time Markov chain. Now we
slightly change and suppose that the phases are described by a discrete time
Markov chain, where the rates behave as in the case of the MMPP. Thus, the
phase changes happen as an integer multiple of a fundamental time interval,
which is called phase transition epochs. Though Markov chain is involved, it
is not a Markovian process, since it is not memoryless, it is regenerative at
any transition time spot. Otherwise the technique can be copied from the
standard MMPP. We call this process D-MMPP, which is a special case of the
BMAP, the batch Markovian arrival process (see [168]). Another approach,
using matrix methods, consists in the

Interrupted Poisson Processes

In the paper [15] with the help of an maximum likelihood estimator (see
section 4.1.4) they use superstition of IPP to reproduce a MMPP. This requires
that the arrival times are given in addition to the counts, which should be
avoided, since it requires to use too much information. In the paper [157] the
time between the phases are modeled with a non exponential distribution.
The traces, the paper [108] uses, does not fit into this approach.

D-MMPP Model

For the D-MMPP model we define a n × n transition probability matrix P.
After each discrete step of ∆t we have a Poisson arrival with rate λi, where i
is the step before the transition (Markov chain). We define the arrival vector
λ = (λ1, . . . , λn)T , where we assume λ1 ≥ λ2 ≥ . . . λn. Note that n is the
number of states in the Markov chain. We have a D-MMPP model, which
coincides with a discrete BMAP (resp discrete BMAP) arrival process with
representation matrices Dk, where

Dk = diag
(
e−λ1

λk1
k!

, . . . , e−λn
λkn
k!

)
· P

Let’s define the irreducible, stochastic matrix D =
∑∞
k=0 Dk. We have a fix

point or stationary probability vector π and mean arrival rate vector λ com-
puted as

∞∑

k=0

kDke = (λ1, λ2, . . . , λn) = λ
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How can we fit now a data trace to the above model? As always stressed before,
the data trace has to be suitably described by an MMPP or D-MMPP. A two
state MMPP cannot describe a highly bursty data trace, since we have a big
gap in between. This can easily be seen by the simple Gaussian approximation
of the Poisson distribution. As well known fact, 95% of the probabilty is in
a range of deviation 1.95. The mean and variance of the Poisson distribution
let say is λ. For large λ Poisson and Gaussian distribution function are close,
where FP is within λ ± a

√
λ, with a = 2. Assume we have a large peak to

mean ratio, then the two phases λ1 and λ2 differ heavily and λ2 + 2
√
λ2 is

much less than λ1 − 2
√
λ1. And hence, the traffic in between is not matched

by the model.

1. Choosing the arrival rates: We use rates λ1 ≥ λ2 ≥ . . . ≥ λN , where N
has to be specified. λ1 should describe the large observation.

λ1 + 2
√
λ1 = peak of data trace

which gives the possibility that a sample path may cover data larger than
the observed ones. We get for a solution

λ1 = (
√

1 + peak − 1)2

covering the lower bound of the peak data by λ1 − 2
√
λ1, which will be

the upper bound for the data covered by λ2.

λ2 + 2
√
λ2 = λ1 − 2

√
λ1

The solution is
λ2 = (

√
λ1 − 2)2

Now we know the game and repeat the procedure for the other λi, where
we stop, when meeting the smallest data trace.
We have to give some notes on some key parameter of the algorithm. First
why choosing a = 2? A smaller number yields more states and a bigger
number gives a larger overlap algorithm based on this first iteration as
given in [107].

2. Fitting the Markov chain: By the algorithm the smallest data trace is
covered by the algorithm stops, and we have found N . Now we construct
the Markov chain transition matrix for the phases. For this assume that
{xi, i = 1, 2, . . . , T} are the observations. The phase ϕi is associated with
the observation xi in the following way

λj − a
√
λj < xi ≤ λj + a

√
λj ⇒ ϕi = j

The set {ϕi; i = 1, . . . , N} can be interpreted as observations on the phase
process. Define the matrix P = (pij) where

pij =
number of transitions from i to j

number of transitions out of i
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Fitting of N-State MMPP

Though the D-MMPP/D/1-queueing system falls into the paradigm of M/G/1,
its computational treatment and storage is elusive and hence, it is not as suit-
able for highly structured traffic, since the transition matrices turn relatively
quickly to be large. So one can avoid this by applying the continuous MMPP
queueing system resp. MAP (see [168]).
As we know from the generator or rate matrix for the phase transition, Q =
(qij) is the basic ingredient. There is a simple way to attach the transition
matrix of the D-MMPP system to the matrix Q by

qij = pij , i �= j, qii = pii − 1

This implies that both system enjoy the same sojourn time in phases i, for
the probability of given states and the steady-state distribution. Thus, we get

D1 = diag(λ) and D0 = Q−D1

using the standard notation for MAP. The alert reader may ask, why first
doing the computation of the D-MMPP and not directly of the MMPP. Well,
in real traffic with high speed links it is easier to obtain traffic measurements
over counts than over the amount of individual packets.

Mean Queue Length at Arrivals

We denote by WV the virtual and by WA the waiting time seen at an arrival in
the MAP/D/1 system with mean service time set to 1. The results in [167, 168]
reveal

E(WV ) =
3ρ− 2bD1e

2(1 − ρ)

E(WA) =
1 − (bD1e)
ρ + E(Wv)

+ E(Wv)

with b = ((1 − ρ)g + πD1)(eπ + D0 + D1)−1 being the stationary proba-
bility vector of the irreducible stochastic matrix G, being the solution of the
fundamental equation

G = eD0+D1G (2.112)

and π is the stationary vector (or fix point vector) of the generator D0 +D1.
To compute G from (2.112), we start the iteration with G0 = eπ and use
about 100, 000 steps to achieve 10 decimal accuracy. The Little formula implies
finally the mean queue length

E(QV ) = ρE(WV ) and E(QA) = ρE(WA)
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Example 2.97. In [107] the following trace is investigated to fit the D-MMPP.
The depicted figure show a quite good description of the examined traffic to
the D-MMPP model. The trace was observed over a period of three hours
on a IP backbone link. The data measures packets per 500 ms and mean
packet length of 1000 byte. The mean data rate is 360 packets per 500 ms or
5, 76 Mb/s. The authors used the algorithm LAMBDA to fit the D-MMPP
model. In the example 21 states were needed for the description.
The autocorrelation existing in the data trace is not used directly for fitting
the model. The autocorrelation for the rough data is decaying more rapidly
than the smoothed one. It does not affect the queueing behavior, since the
link utilization is higher than the simulated one. For testing the ability of the
D-MMPP model, the author estimated the mean packet delay by simulating
an infinite buffer queue with deterministic (constant) service time. The model
as well as the data trace fit quite good in the range for a traffic utilization of
ρ ∈ ]0, 0.6[. The fact that the accuracy declines heavily, is also due to the TCP
effects and leads to an application of other methods like the multifractals in
the next chapter.
A second test consist in the investigation of the packet loss. Here, up to the
traffic load ρ = 0.72, both the applied MMPP models and the data trace fit
quite accurately. More on the detailed data traces and results the reader can
find in [107].

Limiting Access Line Speeds

As we showed in the previous chapter 3 and will again deal with in the next
chapter 3, the Poisson process is inadequate to cover the bursty character of
the data traffic.
If we assume that the original traffic is well modeled by the D-MMPP, it is
not difficult to represent the same process transmitted over the access line
with limit rates by another D-MMPP model, but now, with all states of the
original D-MMPP model with higher rates than the peak rate are included
into one particular state (see the main result in theorem 2.98).
So, let a D-MMPP system with transition probability matrix P and arrival
rate vector λ = (λ1, . . . , λn)T be given, where λ1 ≥ λ2 ≥ . . . ≥ λn. The D-
MMPP approximates a bursty traffic entering an output port, while the peak
rate of the flow is limited by the rate of the link. We provide now a D-MMPP
model to reflect the effect of limiting the peak.
Choose the stationary (resp. fixpoint vector) π of P. This indicates

π = πP, πe = 1

Then, we have λ∗ = 〈λ,π〉 for the arrival rate in the D-MMPP system.
Suppose the peak rate is λ, with λi < λ < λ1 for i > 1. With T1 we denote
the generic sojourn time in state 1 of the Markov chain. If the system is in
state 1, this means by definition that the arrival rate is higher than the line
can process. The expected number of arrivals in state 1 is



178 2 Classical Traffic Theory

λ1E(T1) =
λ1

1 − P11

Now we assume an infinite buffer, implying that the data is stored without
loss (one could incorporate a loss factor, as e.g. by setting the output rate to
the carried load on the link).
As defined above, the actual rate that the packets are processed is λ. Hence, to
conserve the expected number of packets during a sojourn time in a state is to
replace λ1 in the original D-MMPP model by λ and P ′ instead of P, provided
the mean arrival rate is conserved. The same holds for the behavior during a
sojourn time. Because λ < λ1 and the others are fixed, we have P ′

11 > P11.
Thus, the average sojourn time in state 1 increases. In the sequel we derive
the necessary parameters to approximate the traffic by the D-MMPP model.
We pick an index m, such that λm ≥ λ and λ > λm+1 Let k = n − m and
split P and λ according to

P =
(
S U
V T

)
, λ =

(
λS
λT

)

where S is a m×m matrix, T a k×k matrix and λS resp. λT are m×1 resp.
k × 1 vectors.
The idea is to include all states with rates larger or equal to the peak into one
particular state with peak rate as the corresponding rate and keep the rest
behavior untouched. The sojourn time in the state of the peak rate should be
enlarged to provide an unchanged overall mean rate.
We split the vector π = (π′

S ,π
′
T ) and normalise the first component by πS =

π′
S

〈π′
S ,e〉

. The main theorem reads as follows.

Theorem 2.98. The D-MMPP with the required property has the transition
probability matrix

P ′ =
(

1 − p pu
v T

)
(2.113)

where the mean arrival rate vector is λ′ = (λ,λTT )T and where

u =
πS(id − S)−1U

πS(id − S)−1Ue

v = V e, p =
λ∗ − λ

βλ∗ − γ

β = −u(id − T )−1e and γ = −u(id − T )−1λT

Proof. To get some insight we sketch the proof. Evidently the traffic described
by the D-MMPP model according to (2.113) has peak rate λ, otherwise no
behavior is changed from the original one. The vector v is constructed, such
that the rate into the peak state from less-peak-state i is the same as the rate
into states with rates larger or equal to the peak state in the original model.
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The probability for getting into a less-than-peak-rate-state for the first time
in state j under the premise that the process starts in a larger-than-peak-
rate-state i, can be detected by the (i, j) element of the matrix (id − S)−1U
(see [139, 97]).
We can calculate directly the stationary (or fixed point) probability vector of
the matrix P ′ and obtain

α = (1 + pu(id − T )−1e)−1(1, pu(id − T )−1)

with the average arrival rate αλ′. If we redefine this as λ∗ and solve for p, we
get the final expression of the theorem. ��

Example 2.99. The above trace is used for the investigation of limited access
lines as well. Remember the mean traffic of 5.76 MBit/s. On a 45 MBit/s line
only little effect is seen, while by decreasing the capacity to 34.6 MBit/s and
23 MBit/s limiting the peak rate a certain level of smoothing is achieved. To
achieve the average of the original trace, as the peak gets more limited, the
D-MMPP has to stay at the peak rate for longer time.

Further Literature

There are a lot of monographs dealing with classical traffic theory. We used
the monographs of [254, 255], which we think, give a good introduction to the
different topics of the area. Classical queueing theory for the traffic theory are
presented in [20, 87, 142]. For the general description of stochastic analysis
we recommend for further reading [38, 75, 208, 237] and for analysis [222].
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Mathematical Modeling of IP-based Traffic

As far as theorems in mathematics concern the reality,
they are uncertain and as far as they are exact, they do
not reflect the reality.

Albert Einstein (20th century)

3.1 Scalefree Traffic Observation

3.1.1 Motivation and Concept

As we already pointed out in section 1.4, the Bellcore experiment of the Leland
group raised doubts on applying the classical traffic theory of telecommuni-
cation. We briefly summarize the facts and the major ingredients, which lead
to the application of new mathematical models.

Observations

Among several observations of the Leland group [160], one of the basic ideas of
them was that statistical key values like variance and correlation of the traffic
amount could not be explained by the Poisson based models, being used in
traffic modeling since the days of Erlang. In addition, IP traffic issues like data
amount or interarrival time perform no significant change on different scales.
As we already realized in the previous chapter, the IP traffic is highly not
deterministic and thus, the Leland group looked for mathematical concepts to
describe the traffic. One way of finding the appropriate model was to average
the traffic amount:

They started with the certain time spots i and evaluated the traffic
amount at that particular time. Since they were not interested in the
special chosen time i, they averaged over a time period of length m,
i.e. they built disjoint blocks of length m

X(m)(i) =
1
m

(
X(i−1)m+1 + X(i−1)m+2 + . . . + Xim

)

now depending on the reference time spots i and looking back the
period of m subdivided times.
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They did it with increasing length m and realized that the picture of the eval-
uated traffic looked similar. This lead to a concept of self-similarity, already
used by Mandelbrot and Van Ness in the 1960ties to describe asset pricing in
finance. Roughly speaking – it will be done mathematical rigorous below in
section 3.2 – this means that the traffic behavior does not depend on the scale.
It is scale free or fractal. But, as later investigation will indicate, the traffic is
not exactly self-similar, i.e. does not match the mathematical model exactly.
In fact, the mentioned picture of successive averaging can be misleading as the
example of the geometric Brownian motion shows. It is the asymptotic self-
similarity, i.e. the compounded data process after successive averaging over
large intervals, which coincides in the limit with the well-treated concept of
drifted self-similarity. Figure 1.9 resp. 1.10 in chapter 1 indicates the process
of averaging over several time scales and reveal the fact that the real data
traffic does not change its shape for different scales.

Example: Heavy-Tail Distribution of File Sizes

As Crovella and Bestavros argued in a later paper [59], one reason may result
in the high data rates, which they investigated exemplarily for the World Wide
Web. It was proven in [250], based on a simple physical on-off model, that the
traffic leads asymptotically to the above mentioned self-similarity, provided
the on-periods are modeled with a distribution without existing variance.
So, one possibility in explaining the phenomena of self-similarity would be to
detect a heavy-tail distribution for the on-periods (see section 2.7.4).
In section 4.1 we give an example of measured data traffic, which demonstrate
that the size is distributed according to a heavy-tail distribution.

Example: Data Traffic

But still there might be some hope for the use of the classical Poisson pro-
cess. Could it be possible that the Poisson process perform asymptotical self-
similarity, too? But, as we already showed in the figure 1.9 in section 1.4, the
asympotic of the Poisson process, i.e. the averaging of the blocks X(m)(i) does
not lead to the respective observed figure of the IP traffic. In the Poisson case
the bursts are leveled out.
That the real data traffic is not matched by the Poisson process but instead
of the so called self-similar processes is reflected in the figures 1.9 and 1.10 in
chapter 1.

Example: Protocol Influence

Later, when the models of Norros or Willinger et al. were well established and
the World Wide Web ‘got on the victory line’, the protocol seemed to have
more influence on the traffic as one has thought of, and it is not only the



3.1 Scalefree Traffic Observation 183

statistically gained asymptotic self-similarity, which performs the IP-based
traffic picture. This lead and continues with the incorporation of protocol
influences into the framework of self-similarity. The pure self-similarity aspect
more or less leads to a leveling of the traffic and gives way for applying the
central limit theory, which is a good initiator for the Gaussian distribution
(see section 3.2.3). But, the more spiky traffic seems not to match the picture
of the Gaussian processes. Here, we encounter the so called multifractal traffic
models, which will be the issue in section 3.8.

3.1.2 Self-Similarity

In section 3.1.1 we briefly described the IP traffic observation, e.g. obtained
by the Leland group. In the following section we will introduce and sketch
the main results on the mathematical concept of self-similarity. But first, we
summarize two methods of examination and formulate suitable notions for
the IP traffic:

• Instead of looking at the traffic Xt on a link during and interval [0, t]
one considers the increment Xt − Xs for s < t. Since this is certainly
depending of the interval, one has to divide by its length t− s. As we saw
the behavior for different lengths of the interval of the measured traffic
does not change. So we have a similarity for the shape of the traffic. This
leads to the following definition.

Definition 3.1. Let (Xk)k∈N be a discrete stationary process of second
order with expectation 0. We call X(m) the averaged process with i =
1, 2, . . . , m = 1, 2, . . . and define it according

X(m)(i) =
1
m

(
X(i−1)m+1 + X(i−1)m+2 + . . . + Xim

)
(3.1)

• A useful basic number is the development of the variance for the averaged
process X(m)(i). In fact, with growing block lengths the process should
approach an ideal self-similar process, which we introduced above. But in
addition it should confirm the observed measurements. Hence, We define
the block process (X(m)(i))i∈N to be asymptotic self-similar if there is a
constant H ∈ ]0, 1[ (the Hurst exponent) provided

lim
m→∞

Var(X(m)(k))
σ2m2H−2

= 1, 0 < σ2 < ∞ (3.2)

or equivalent via the covariance structure

lim
m→∞

r(m)(k) = lim
m→∞

Cor
(
X(m)(k),X(m)(k + 1)

)
(3.3)

=
(
(k + 1)2H − 2k2H + (k − 1)2H

)
, k ∈ N
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Interpretation: The idea underlying this concept for the IP traffic is the follow-
ing: The equation (3.2) and (3.3) hold for stochastic processes, which exhibit
a self-similar structure (see theorems 3.3 and 3.11). IP traffic does not reveal
an exact self-similar structure but by averaging over all scales we can detect
in the limit such a self-similarity. Hence, a good mathematical approach is an
approximation of the traffic by a suitable self-similar process.

3.2 Self-Similar Processes

3.2.1 Definition and Basic Properties

We start with the mathematical concept of the self-similarity. The crucial
point interesting for the IP-based traffic is the behavior for large times, i.e.
the time depending development of a process. We meet the notion of self-
similarity, which we will introduce and which offers the best possibility to
describe the IP traffic (as e.g. data traffic in the Internet) for asymptotic large
times. Thus, we have to examine some of the basic properties more closely
and start with the treatment of the important class of self-similar processes.
From the motivation of traffic observation we can extract the definition of
self-similarity, which was originally introduced by Mandelbrot and Van Ness
([174]) calling it self affine.

Definition 3.2. A process (Xt)t∈I I ⊂ R is called exact self-similar, if one
finds for all choices of factors a > 0 a b(a) > 0 such that, for the random
vectors

(Xat0 , . . . , Xatn) and b(a)(Xt0 , . . . , Xtn) (3.4)

coincide in distribution for all times t0, . . . , tn. Here, I could be discrete or a
continuum like I = R, [0,∞[.

The equation (3.4) raises the question, whether the factor b(a) could be written
in the form aH , with a fixed 0 < H. In other words, does for a self-similar
process (Xt) exists a H > 0, such that for all a > 0 and all times t0, . . . , tn
the finite marginal distributions of

(Xat0 , . . . , Xatn) and aH(Xt0 , . . . , Xtn) (3.5)

coincide? Indeed Lamperti [154] solved this question under certain additional
assumption.

Theorem 3.3. (Lamperti) Let (Xt)t∈[0,∞[ be a self-similar non trivial process
(i.e., not almost surely constant), whose paths are stochastic continuous at
t = 0 (i.e, P(|Xh − X0| ≥ ε) → 0 for all ε > 0 and h → 0), then there is
exactly one H ≥ 0 with b(a) = aH for all choices of a > 0.
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Fig. 3.1. Path of a fractional Brownian motion with H = 0.8

Remark 3.4. In the sequel we list several basic properties of self-similar pro-
cesses:

a) The value H is called Hurst exponent. Theorem 3.3 shows, that the Hurst
exponent H is unique. Thus, we will call a process (Xt)t∈I an H-ss process,
provided (3.4) resp. (3.5) holds (‘ss’ for ‘self-similar’).

b) The relation (3.4) (i.e. equality in distribution) expresses the invariance of
scales and not any change of the corresponding paths. It should be empha-
sized that representing self-similar processes cannot be done by zooming
in and out of the paths. The scaling represents an equality in distribution,
since the paths are a realization due to the randomness, though it can be
used for a first presentation.

c) Usually one considers t as time variable and Xt as the space variable.
Hence, the self-similarity means that zooming in the time dimension with
a factor a implies an enlarging of the space vector by a factor aH , always
under consideration of a realization ω ∈ Ω and the equality in distribution.

d) Self-similarity of a process is useful for the path simulation of Xt, since
knowing the path on [0, 1], enables to stretch it by a factor aH on the
scale at.

e) Choosing t0 = 0 and H > 0 the relation Xa0 = aHX0 reveals that X0 = 0
almost surely. Under the assumption of theorem 3.3 we can deduce an even
stronger property

H = 0 ⇔ Xt = X0 a.s.

Due to the last two properties we will consider in the sequel H-ss processes
with H > 0, whose paths are stochastic continuous at 0. There exist pro-
cesses, which are self-similar for H = 0, but which do not satisfy X0 �= 0
almost surely (see [77, S. 3]).

f) H-ss processes with stationary increments are briefly called H-sssi pro-
cesses.

g) An H-sssi process with existing first moment satisfies for all t ≥ 0
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E(X2t) = 2HE(Xt) according to self-similarity
E(X2t) = E(X2t −Xt) + E(Xt)

= E(Xt) + E(Xt) = 2E(Xt) because of stat. increments

Thus we have E(Xt) = 0 for all t ∈ R using 2HE(Xt) = 2E(Xt), provided
H �= 1.

h) Furthermore we get for an H-sssi process (Xt) and t ∈ R

X−t
e)
= X−t −X0

g),d
= X0 −Xt = −Xt

i) Suppose an H-sssi process (Xt) has a finite second moment. Then with
h) we have σ2 = Var(X1) = E(X2

1 ) provided H < 1 (remember that for
H < 1 it is E(Xt) = 0)

E(X2
t )
h)
= E(X2

|t|sign(t)) = |t|2HE(X2
1·sign(t))

h)
= t2HE(X2

1 ) = t2Hσ2

If σ2 = E(X2
1 ) = 1, then (Xt) is called a standard process.

j) Provided E(|X1|) < ∞, we deduce according to the stationary increments

E(|X2|) = E(|X2 −X1 + X1|) ≤ E(|X2 −X1|) + E(|X1|) = 2E(|X1|)

Self-similarity implies
E(|X2|) = 2HE(|X1|)

Finally it follows 2H ≤ 2 which is equivalent to H ≤ 1.

Example 3.5. Brownian motion: For this we introduce a Gaussian process,
which is a process with finite dimensional normal distribution. The Brownian
motion is determined as a process with continuous paths, X0 = 0, m(t) =
E(Xt) = 0 and a special covariance function γ(s, t) = Cov(Xs,Xt) = t. If
(Xt) is a H-ss process (not necessarily H-sssi!), then

m(t) = tHE(X1) and γ(s, t) = s2HCov(X t
s
,X1), s �= 0

This equation can be deduced easily as exercise. For the Brownian motion we
get H = 1

2 as Hurst parameter. In other words: Choosing an H-ss Gaussian
process with continuous paths and H0 = 0, then we have exactly a Brow-
nian motion provided a Hurst parameter H = 1

2 . Gaussian processes with
H �= 0 will be called fractional Brownian motion (FBM). We will intensively
investigate those processes and their importance for modeling IP traffic in
section 3.2.2.

Example 3.6. According to a result of Lamperti [154] each self-similar process
is the weak limit of certain normalized sum processes. The Brownian motion is
such a limit: It is the weak limit according to the central limit theorem or more
precisely the invariance principle of Donsker [76]. In a separate section 3.2.3
we will transfer this concept of weak limits to other limit distribution than the
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normal distribution. This will lead to limit processes called α-stable processes
(α < 2) which are performing an important feature for IP traffic: They are
self-similar with heavy-tail distribution, which do not have a finite variance.
Hence, those processes show in addition a so called long-range dependence
(LRD).

Example 3.7. An example of a not self-similar process, revealing a similar
time structure and thus is important for modeling heavy-tail phenomena is
the geometric fractional Brownian motion and consider them in the special
section 3.2.2. We will in addition introduce shortly the concept of stochastic
differential equation.

Fig. 3.2. Path of a geometric Brownian motion

Example 3.8. α-stable motions: These processes start at 0, have piecewise con-
tinuous paths, independent and stationary increments and α-stable finite di-
mensional distributions. For α < 2 we have pure jump processes , for α = 2
we get the Brownian motion with H = 1

2 . These processes will be investigated
in detail in section 3.2.3. As the Brownian motion the α-stable motions (or in
general the Lévy processes) have nowhere differentiable paths almost surely –
a result due to Mandelbrot and Van Ness [174] which holds for all important
self-similar processes. In case of α < 2 (in particular for all non Brownian
motions) these processes have no continuous paths: All paths have count-
able many jumps. The figures 3.3 demonstrate two examples of self-similar
processes, the so called linear fractional α-stable process. Particularly in the
right figure the jumps show the discontinuity (see section 3.2.3).

Example 3.9. Connection to stationary processes: Suppose (Xt) is an H-ss
process. Then the process Yt = e−HtXet is a stationary process. We remind
that stationary processes play a decisive rôle in the consideration of serving
and interarrival times. Vice versa every stationary process can be transformed
into an H-ss process. The result is again due to Lamperti [154]. For more
details consult [77, Th. 1.5.1].
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Fig. 3.3. Paths of α-stable processes with α = 1.5 and H = 0.2 (left) and H = 0.7
(right)

Example 3.10. As we know from the classical traffic theory, processes with
stationary increments play an important rôle. Thus, we will stick in particular
to H-sssi processes. For these H-sssi processes hold the following equation,
describing the stationary increments:

(Xt0+h −Xh, ...,Xtn+h −Xh) = (Xt0 , ...,Xtn) in distribution

In the case of Gaußprocesses this characterizes exactly the fractional Brownian
motion.

A decisive connection will be discovered later with heavy-tail distribution.
Since the notion of self-similarity is basic for the description of IP-based traffic,
we will cite some important facts and follow the line of the monograph of
Embrechts and Maejima [77]. A fundamental result concerns the form of the
covariance function γ(s, t) = Cov(Xs,Xt) of an H-ss process. It is due to
Taqqu [240]. We provide a proof for exercise.

Theorem 3.11. Let (Xt)t∈[0,∞[ an H-ss process with stationary increments
and H < 1. Suppose E(X2

1 ) < ∞. Then

γ(s, t) = E(XsXt) =
1
2
(
t2H + s2H − |t− s|2H

)
E(X2

1 )

Proof. We compute (here we apply the identity ab = 1
2 (a2 + b2 − (a− b)2)):

E(XsXt) =
1
2
(
E(X2

t ) + E(X2
s ) − E((Xt −Xs)2)

)
(3.6)

=
1
2

(
E(X2

t ) + E(X2
s ) − E(X2

|t−s|)
)

because of stat. increments

=
1
2
(
t2H + s2H − |t− s|2H

)
E(X2

1 )

Here we used the fact:

E(X2
t ) = E((tH)2X2

1 ) = t2HE(X2
1 )
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Again because of the stationary increments and since X0 = 0, we have
E(Xt) = 0 according to the assumption H < 1 with remark 3.4 g). This
implies

γ(s, t) = E(XsXt)

��

From (3.6) we deduce in the case H = 1 (in (3.6) we did not use the restriction
H < 1)

E(XsXt) = stE(X2
1 )

and hence

E((Xt − tX1)2) = E(X2
t ) − 2tE(XtX1) + t2E(X2

1 ) = (t2 − 2tt + t2)E(X2
1 ) = 0

Thus we can deduce for H = 1 immediately under the condition E(X2
1 ) < ∞

Xt = tX1 holds for all t ∈ R a.s.

It seems obvious that for an Hurst exponent H ∈ ]0, 1[ one defines a fractional
Brownian motion (B(H)

t ) as real Gaussian process with continuous paths,
E(B(H)

t ) = 0 and covariance function

E
(
B

(H)
t B(H)

s

)
=

1
2
(
t2H + s2H − |t− s|2H

)
E
(
(B(H)

1 )2
)

We will provide an integral representation of the fractional Brownian motion
in section 3.2.3 for H ∈ ]0, 1[. A proof that by the above definition the FBM
is self-similar to H, is given in [77, p. 6].
We summarize a list of results on self-similar processes ([77, p. 19]).

Proposition 3.12. Let (Xt)t∈[0,∞[ be an H-sssi process with H > 0 and not
for t > 0, i.e., is not P-f.s. constant. Then:

a) If E(|X1|δ) < ∞ for a 0 < δ < 1, then H < 1
δ (see [169]).

b) From E(X1) < ∞ follows H ≤ 1.
c) If E(|X1|) < ∞ and 0 < H < 1, then E(Xt) = 0 for all t ≥ 0 (see remark

3.4 g)).
d) With E(|X1|) < ∞ and H = 1 follows Xt = tX1 almost surely.

This implies immediately the following result.

Corollary 3.13. Let (Xt)t∈[0,∞[ H-sssi with H > 1. Then E(|X1|
1
H ) = ∞.

Proof. Suppose E(|X1|
1
H ) < ∞. Since δ = 1

H < 1 proposition 3.12 shows
H < 1

δ = H, a contradiction. ��
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3.2.2 Fractional Brownian Motion

The Brownian motion can be considered as the ‘mother of all processes’.
This follows in particular by the Gaussian marginal distribution, which are
one of best investigated one. A central result says, that a Gaussian process
(i.e. a process with Gaussian marginal distributions) is determined by its
covariance structure, i.e. by the function γ(s, t). In particular for a given
symmetric function, one finds exactly one particular Gaussian process. Since
we are interested in self-similar processes, more precisely in H-sssi processes,
by theorem 3.11 we know, how a Gaussian H-sssi has to look like and hence
is uniquely determined. Thus, we give the following definition.

Definition 3.14. We call a continuous Gaussian H-sssi process B
(H)
t with

0 < H < 1 fractional Brownian motion. It is standard, if E(B(H)
1 ) = 1.

Remark 3.15. We briefly comment on the exposed values of H, namely H = 1
and H = 1

2 :

• We have excluded H = 1, since then every H-sssi process has the form
tX1.

• For H = 1
2 we have

γ(s, t) = E(B(H)
s , B

(H)
t ) =

{
min(|s|, |t|) for s · t ≥ 0
0 else

We are now able to give a first characterizing theorem.

Theorem 3.16. Let (Xt)t∈R be a process with stationary increments. Fur-
thermore we have:

• (Xt)t∈R is Gaussian distributed with mean 0 and X0 = 0.
• E(X2

t ) = σ2|t|2H , for a σ > 0 and 0 < H < 1.

Then (Xt)t∈R is a FBM to the exponent H.

The discrete process (∆(n))n∈Z from theorem 3.24 is called in case of a Gaus-
sian process (Xt) also fractional Gaussian noise.
In the representation resp. simulation of processes properties of corresponding
paths play an important rôle. A result of Kolmogorov [98, S. 281, corollary
7.2.51] states, that a process (Xt)t∈R has continuous paths, provided that
there are δ ≥ 1, ν > 1 and c > 0, with

E
(
|Xt1 −Xt2 |δ

)
≤ c|t1 − t2|ν , for all t1, t2 ∈ R (3.7)

For a FBM (B(H)
t ) we choose a δ ≥ 1 with δ > 1

H . Since the FBM is an H-sssi
process, we have

E
(
|B(H)
t2 −B

(H)
t1 |δ

)
= E

(
|X1|δ

)
|t2 − t1|Hδ (3.8)

and thus the continuity. But there is more
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Theorem 3.17. (Theorem of Adler) Let 0 < H and δ > 0. Then there are
constants h > 0 and A > 0, such that

|B(H)
t2 −B

(H)
t1 | ≤ A|t2 − t1|H−δ a.s.

for all 0 ≤ t1, t2 ≤ 1, |t1 − t2| < h. On the other hand one finds for all δ > 0
a sufficient small h > 0 with

sup{|B(H)
t −B(H)

s |; |t− s| ≤ h} ≥ KhH+δ

for all s, t ∈ [a, b] and all K < ∞ a.s.

What can be said about the differentiability of the paths? For this we have
to consider the differential quotient

B
(H)
t1 −B

(H)
t2

t1 − t2

for t1 → t2. The relation

E

⎛

⎝

∣
∣
∣
∣
∣
B

(H)
t2 −B

(H)
t1

t2 − t1

∣
∣
∣
∣
∣

2
⎞

⎠ = σ2|t2 − t1|2H−2 → ∞, for t2 → t1 (3.9)

implies that the path (B(H)
· (ω)) is nowhere differentiable for almost all ω in

the case of H < 1.
But it can be stated even more. For this we consider the notion of Hölder
continuity: A function or path Y (·) is Hölder continuous with respect to λ > 0
at t, if all s in the neighbourhood of t satisfy

|Y (t) − Y (s)| ≤ C|t− s|λ

The bigger the λ, the more smooth the function will be. Then we have the

Proposition 3.18. The paths of a fractional Brownian motion (B(H)
· (ω)) are

for all λ > H nowhere (i.e. for no t ∈ R) Hölder continuous.

By (3.9) we see tat with small H the right hand side in (3.9) tends to ∞
faster. Thus, for 0 < H < 1

2 we detect a stronger ‘zigzag’ as for the Brownian
motion (H = 1

2 ). Simultaneously for 1
2 < H < 1 the path is smoother. Thus,

we divide the FBM into

• antipersistent for 0 < H < 1
2 ,

• chaotic for H = 1
2 and

• persistent for 1
2 < H < 1.

The stronger ‘zigzag’ stems from the negative value of the autocorrelation
function (see remark to (3.17)) in contrast to the case of the positive correla-
tion in the case 1

2 < H < 1.
In fact, there are non-Gaussian processes with finite variance and H-sssi pro-
cesses without existing variance. In the section 3.2.3 we briefly consider this
phenomena. Detailed description the reader can find in [226].
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Representation of the FBM

In section 3.5.1 we need a representation of the fractional Brownian motion
using the Fourier transform. Thus, we want to indicate an alternative formula
for the FBM (B(H)

t ). The following representation is cited from the upcoming
section 3.2.3, where it is introduced in a broader context

B
(H)
t =

1
C(H)

∫ ∞

−∞

(
(t− x)H− 1

2
+ − (−x)H− 1

2
+

)
dB(x) (3.10)

where B is the Brownian motion and

C(H) =
(∫ ∞

0

(1 + x)H− 1
2 − xH− 1

2 )2dx +
1

2H

) 1
2

As described in 3.2.3, we have understand (3.10) as Itō integral (see e.g. [134]).
We now consider the so called harmonic representation of the FBM. For this
we will use the form

I(f̂t) =
∫ ∞

−∞
f̂t(x)dB̂(x) (3.11)

and derive the function f̂t(x), (t, x ∈ R). Here, f̂t is a complex valued func-
tion with f̂t = f

(1)
t + if

(2)
t , where f

(1)
t , f

(2)
t is real valued functions, which are

f
(1)
t (x) = f

(1)
t (−x) (axially symmetric) and f

(2)
t = −f

(2)
t (−x), x ∈ R (sym-

metric w.r.t. the origin). By B̂ = B(1) + iB(2) we denote the complex valued
version of the Brownian motion. B(1) and B(2) are independent versions of the
Brownian motion on R+ with (considered as measures) B(1)(A) = B(1)(−A)
and B(2)(A) = −B(2)(−A), (A ⊂ R+ measurable). Then the integral (3.11)
will turn to

I(f̂t) =
∫ ∞

−∞
f

(1)
t (x)dB(1)(x) −

∫ ∞

−∞
f

(2)
t (x)dB(2)(x)

We give now the marmonic representation and consult for a rigorous proof to
[226, S. 328].

Theorem 3.19. Let 0 < H < 1. Then the fractional Brownian motion
(B(H)
t )t∈R can be represented in the integral from

B
(H)
t =

1
C1(H)

∫ ∞

−∞

eixt − 1
ix

|x|−(H− 1
2 )dB̂(x), t ∈ R (3.12)

with

C1(H) =
(

π

HΓ (2H) sin(Hπ)

) 1
2
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We will give a heuristic derivation of this fact, not being a rigorous proof,
since the appearing integrals diverges partly. But with this we show some of
the used techniques. We follow the argumentation given in [226] and assume
for simplification H > 1

2 and t > 0. If we rewrite (3.10), we obtain

B
(H)
t =

1
C(H)

(
H − 1

2

)∫ ∞

−∞

(∫ t

0

(s− x)H− 3
2

+ ds

)
dB(x)

With this the integrand in (3.10) was simply differentiated and then integrated
(thus, we have assumed t > 0). Furthermore from the above integral we derive:

B
(H)
t =

1
C(H)

(
H − 1

2

)∫ ∞

−∞

(∫ ∞

−∞
1[0,t](s)(s− x)H− 3

2
+ ds

)
dB(x) (3.13)

Considering the integrand, we see that it consists in a convolution of the
functions s �−→ 1[0,t](s) and s �−→ s

H− 3
2

+ . The convolution of the Fourier
transform leads as well known to a product. Now the Fourier transform of
1[0,t] reads as

1√
2π

∫ t

0

eixsds =
1√
2π

eixt − 1
ix

The Fourier transform of s �−→ s
H− 3

2
+ does not exist, since s �−→ s

H− 3
2

+ is nei-
ther square nor simple integrable. Nevertheless we will develop the approach
further. A correct but rather technical derivation lies in the suitable cutting
of the integrand and an approximation of s �−→ s

H− 3
2

+ using functions with
non existing Fourier transforms (for the rigorous proof see e.g. [244]):

1√
2π

∫ ∞

−∞
eixss

H− 3
2

+ ds = |x|−(H− 1
2 )
√

2π
∫ ∞

0

eiuuH− 3
2 du (3.14)

where we have set u = xs. The integral on the right hand side in (3.14) can
be considered as the Cauchy value of the integral. It as the value

∫ ∞

0

eiuuH− 3
2 du = ei

H− 1
2

2 πΓ

(
H − 1

2

)

If f is an integrable function and

f̂(s) =
1√
2π

∫ ∞

−∞
eisuft(u)du

is the Fourier transform, then we have in distribution
{
I(ft) =

∫ ∞

−∞
ft(x)dB(x), t ∈ R

}
d=
{
I(f̂t) =

∫ ∞

−∞
f̂tdB̂(x), t ∈ R

}

(3.15)
Using the rules for the Fourier transforms (f̂ · g) =

√
2πf̂ · ĝ, we apply them

to the integrands in (3.13)and deduce with result (3.15) the fact in theorem
3.19.
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3.2.3 α-stable Processes

We start with the definition of an α-stable distributed random variable.

Definition 3.20. A stable distribution G (and a G-distributed random vari-
able ξ) has the characteristic function

ΦG(t) = E (exp(iξt)) = exp (iγt− c|t|α (1 − iβsign(t)z(t, α))) , t ∈ R

Here, γ is a real number, c < 0, α ∈ ]0, 2], β ∈ [−1, 1] and

z(t, α) =

{
tan(πα2 ) for α �= 1
− 2
π log |t| for α = 1

In more detail we will consider and investigate the rôle of α-stable distributed
random variables for the description of the IP-based traffic. There, too, the
importance of α-stable processes will be revealed. In this section we purely
describe the α-stable processes within the framework of self-similar and long-
range dependent processes:

• For our purposes we will consider only distributions with γ = 0.
• An important parameter is α. It determines decisive details of the distribu-

tion, as the existing moments, the shape of the complementary distribution
(so called tails) and the asymptotic behavior of iid sums.

• The number α is called the characteristic moment and the corresponding
distribution α-stable distribution.

• The case α = 2 gives the well-known normal or Gaussian distribution with
the characteristic function

ΦG(t) = exp
(
−ct2

)

Here the random variable has the average 0 and variance 2c. We see that
the normal distribution depends, as special case of α-stable distributions,
only on two parameters, mean and variance, while the general is deter-
mined by four values. The reason lies in the symmetry of the normal dis-
tribution. The general α-stable distribution can be asymmetric for α < 2
or is only defined on one half axis (as e.g. for α < 1).

• Another important case is α = 1, which leads to the so called Cauchy laws
resp. to the Cauchy distribution. The general characteristic function reads
in this cases:

ΦG(t) = exp
(
−c|t|

(
1 + iβ

2
π

sign(t) log(t)
))

• For fixed α the values c and β determine details of the distribution. The
constant c is a scaling number and corresponds in case of the Gaussian
distribution (i.e. for finite variance) to the value c = σ2

2 . If there is no
existing second moment (which can be observed in many cases of modeling
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IP traffic, i.e. if there is no Gaussian distribution), then it is possible to
interpret this in an equivalent way. β determines the range of values of the
random variable. The characteristic function is exactly real valued if and
only if β = 0. In this case the random variable is symmetric. Such random
variables are called sαs (symmetric α-stable). If β = 1 and α < 1, then
the corresponding random variable ξ is positive.

Definition 3.21. (α-stable motion) A stochastic process (ξt)t∈[0,1] with càdlàg
paths (i.e. continuous from right with existing limits from left) is called
α-stable motion, if:

• ξ0 = 0 P-almost surely (the process starts in 0).
• The process has independent and stationary increments.
• For all t ∈ [0, 1] the random variable ξt has an α-stable distribution with

fixed and to t independent parameters β ∈ [−1, 1] and γ = 0 in the spectral
representation.

Such a process is also called an α-stable Lévy process. If nothing is determined
about the marginal distributions and only a) and b) hold, then one simple calls
it Lévy process (see for more details [77, p. 8–9]).
We come to a short introduction of the so called stable processes. These are
rarely investigated in the applied literature, but especially for the investiga-
tion of heavy-tail distribution and the long-range dependence those processes
are of significant importance. The described phenomena can be summarized
under the notion of extremal events. Another point to mentioned is the lacking
interest of practitioners to use this processes for their modeling, though their
properties are widely investigated and known.
Consider a process (Xt)t∈I . Then the marginal distribution determine the
process. This can be observed e.g. in the case of the Brownian motion, where
for each process with normal marginal distributions there is a version with
continuous paths. Hence, we have to know the details of the distribution of
any finite dimensional vector (Xt1 , . . . , Xtd), t1, . . . , td, d ∈ N, which in turn
characterizes the process. We will restrict ourselves to the symmetric α-stable
processes (abbreviated sαs), since nothing changes by multiplying the process
with −1. It only simplifies the representation. We recall that the α-stable
distribution of a random variable ξ has a characteristic function of the form
E(eitξ) = e−c|t|

α

(c > 0, 0 < α ≤ 2, the case α = 2 implies Gaussian
distribution).
To introduce the definition of an α-stable distribution of a random vector, we
require the scalar product on Rd:

For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd, define the scalar product

〈x,y〉 = x1y1 + x2y2 + . . . + xdyd

Similar to the introduction of the α-stable distribution we define the dis-
tribution of a random vector X ∈ Rd by the characteristic function of the
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distribution F of X. For 0 < α < 2 we call X ∈ Rd a sαs-random vector, if
the characteristic function has the form

E(ei〈t,X〉) = exp
(
−
∫

Sd−1
|〈t,y〉|αdms(y)

)
, t ∈ Rd

where ms(·) is a symmetric probability measure on ‘the unit sphere’ Sd−1 =
{y = (y1, . . . , yd); ‖y‖2

2 = y2
1 + . . .+y2

d = 1}, i.e. ms(A) = ms(−A), for A ⊂ Rn

and ‖y‖2
2 = 1 for all y ∈ A. The measure ms is called spectral measure of the

random vector X.
If (X1, . . . , Xd) are independent sαs-random variables with characteristic
functions E(eitXj ) = exp(−cj |t|α), cj > 0, j = 1, . . . , d and if we define
X = (X1, . . . , Xd) then we have as spectral representation of the random
vector

E
(
ei〈t,X〉

)
=

d∏

j=1

E
(
eitjXj

)
= exp

⎛

⎝−
d∑

j=1

cj |tj |α
⎞

⎠ , t = (t1, . . . , td)

After this preliminaries we start with the introduction of sαs processes.

Definition 3.22. A stochastic process (Xt) with sαs-stable marginal distri-
bution is called an sαs process.

From the definition we see that linear combinations of sαs processes are again
sαs. A particular example of an sαs process is already known to us: the sαs
motion, whose most prominent member is the Brownian motion. A sαs process
(Xt) is an sαs motion, if and only if:

• X0 = 0 almost surely and (Xt) is stochastic continuous at t = 0 and
• (Xt) has independent and stationary increments and
• (Xt) has càdlàg paths almost surely.

A sαs motion is also called a sαs-stable Lévy process. In particular any sαs
motion prevails a self-similar structure, i.e., we have for all c > 0 and t1, . . . , td

(Xct1 , . . . , Xctd) is distributed as c
1
α (Xct1 , . . . , Xtd)

The exponent 1
α is noting else than the Hurst parameter. We abbreviate an

H-sssi sαs process with (LH,α(t)). It holds

LH,α(t) − LH,α(s) is distributed like a sαs random variable

with variance |t − s|HVar(LH,α(1)). The increments of LH,α are exactly in-
dependent if we have H = 1

α (and thus the case of a sαs motion). This
generalizes the notion of the Brownian motion for H = 1

2 . Simply for a sαs
motion we write LH = L 1

α
.

Since for the description of the packet switched traffic sαs processes (and in
particular the fractional Brownian motion) play a decisive rôle, we will sketch
a constructive approach.
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For this we will extend the concept of measures. We recall the axiomatic
definition of a probability space. The triple (Ω,F ,P) is a probability space,
provided Ω is set, F a σ-algebra on Ω, i.e. a system of subsets stable under
complementation and countable union. These subsets consists of the different
events which can happen. The probability measure P indicates the probability
that the special event occurs, i.e., it maps each element of F into a real number
between 0 and 1, abbreviated

F � A �→ P(A) ∈ [0, 1]

We extend the concept where P is no longer bounded by 1 and call it measure.
As example we choose Ω = R the real numbers and F = B the so called Borel
sets, which is the σ-algebra, generated by the intervals. The suitable measure
P is the Lebesgue-measure λ, where λ([a, b]) = b − a is the canonical length
of an interval. Generally we call a triple (E, E ,m) consisting in a basic set E,
with a σ-algebra E and a measure m, a measure space. As best example one
should keep (R,B, λ) in mind.
Lets fix a measure space (E, E ,m), and consider a set-valued function M ,
which maps each set A ∈ E to a sαs-distributed random variable, i.e., M(A)
is a sαs-distributed random variable. We call M a sαs-random measure, if it
satisfies the following conditions:

• For all A ∈ E , such that m(A) < ∞, the characteristic function of M(A)
has the form

E
(
eitM(A)

)
= exp (−m(A)|t|α) , t ∈ R

• For disjoint A1, . . . , Ad ∈ E , such that the sum
∑d
i=1 m(Ai) < ∞ is finite,

the random variables M(A1), . . . ,M(Ad) are independent.
• For a disjoint sequence A1, A2 . . . ∈ E , such that sum

∑∞
i=1 m(Ai) < ∞

converges, we have the convergence in probability

M

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

M(Ai)

Starting from a sαs motion (Xt), which is continuous in probability on [0,∞[
we get canonical an example. For this sαs motion (Xt)t∈[0,∞[ with charac-
teristic function E(eitXs) = exp(−s|t|α) we choose as basic set E = [0,∞[
as σ-algebra the Borel sets on [0,∞[ and as measure M = λ the Lebesgue-
measure. The set-valued function M([s, t]) = Xt − Xs is a sαs-measure, as
easily seen according to the definition of a sαs motion.
The reason for introducing a sαs-random measure lies in the construction
of a sαs integral. For all 0 < α ≤ 2 and functions f : E −→ R such that∫
E
|f(x)|αdx < ∞ we can define a sαs integral

∫

E

f(x)dM(x)
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Here
∫
E
f(x)dM(x) is again a sαs-distributed random variable with charac-

teristic function

E
(
eit
∫

E
f(x)dM(x)

)
= exp

(
−|t|α

∫

E

|f(x)|αdm(x)
)
, t ∈ R

For the derivation of the above integral concept first one starts with the so
called elementary functions and extends the integral to the measurable func-
tions. An important case can be found in α = 2. This leads to the well-known
Itō integral, which is central study of modern stochastics (see for more details
[35]). For a deeper understanding of the sαs integral the knowledge of the Itō
integral is quite substantial. We get in the case α = 2 and a sαs measure M

E
(
eit
∫

E
f(x)dM(x)

)
= exp

(
−|t|2

∫

E

f(x)2dm(x)
)

i.e.
∫
E
f(x)dM(x) is N (0, 2

∫
E
f(x)2dm(x))-distributed (for the example

m = λ pick the usual Lebesgue integral on R). It is easy to derive the in-
tegral

∫
E
f(x)dM(x) in the case α = 2 using the variance of

∫
E
f(x)dM(x),

which is done simply by computing the integral
∫
E
f(x)2dm(x).

As important application we briefly introduce the so called long-range depen-
dent processes. In more detail we will deal with them in the next section.
As prominent representation of this long-range dependence we encounter the
fractional Brownian motion in the case α = 2. For an exponent 0 < H ≤ 1
and a scaling value c(H) we define the fractional Brownian motion (FBM)
(B(H)
t )t∈R as stochastic integral

B
(H)
t = c(H)

∫

R

((
(t− x)+

)H− 1
2 −
(
(−x)+

)H− 1
2
)
dB(x)

where M as mentioned above is defined by a corresponding measure of the
Brownian motion. This integral coincides with the Itō integral (see [114]).
The fractional Brownian motion has a covariance function

Cov(B(H)
t1 , B

(H)
t2 ) =

1
2
(
|t1|2H + |t2|2H − |t1 − t2|2H

)
Var

(
B

(H)
1

)
(3.16)

It is possible defining the fractional Brownian motion by the covariance rela-
tion (3.16), as done in section 3.2.2.
For H = 1

2 we obtain Brownian motion back (simple insertion into the in-
tegral reveals the expression). Since the FBM is a s2s motion, we have a
self-similarity with coefficient aH . We see

Z
(H)
t = B

(H)
t+1 −B

(H)
t , t ∈ R

This process has stationary increments with Gaussian marginal distributions.
For H = 1

2 the process (Zt) consists of the Gaussian or white noise. It is the
time continuous version of the increments ∆ from theorem 3.24. In the case
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1
2 < H ≤ 1 we call the process fractional Brownian noise, and we have the
covariance relation

Cov(Z0, Zt) ∼ ct2(H−1), for t → ∞

(see section 3.2.1). In this case the sequence is not summable (or integrable)
Cov(Z0, Zt)t≥0: it decays to slow. This is the classical behavior of processes
with long-range dependence, which we will encounter in the IP-based traffic
and which we will deal with in the next sections in more detail.
If we consider the time dependent behavior of the transmitted data in small
intervals, as shown in section 3.1.2, then the fractional Brownian noise indi-
cates exactly this behavior (see also figure 1.10). In section 3.8 this process
will be the starting point for general description of IP-based traffic in data
networks.
This specific property stands in opposite to the ARMA processes, which we got
to known in the classical traffic theory describing short-range dependence. The
covariance decays exponential. There is another difference to the Brownian
motion as ARMA process, hence in the self-similar case H �= 1

2 . In this case,
as we will indicate in section 3.4.1, the central limit theorem does not hold: In
the case H �= 1

2 , we have α < 2 for the limit distribution Gα and the norming
coefficient is no longer n

1
2 , but nH . This phenomena was first observed by

Hurst and thus, the exponent is named after him as ‘Hurst coefficient’. He
found out that the annual flooding of the river Nile do not happen with a
magnitude n

1
2 but with n0,7.

Modeling phenomena by long-range dependence was made popular by
Mandelbrot and Van Ness, who introduced the fractional Brownian motion for
describing asset values. Analyzing time series, the sequence (Z(H)

t )t∈Z exhibits
a singularity at 0 (see also (3.23)). This is in contrast to the usual behavior to
time series, like ARMA processes, since the spectral representation is contin-
uous at 0 (see [76, Theorem 7.1.2., S. 374]). From the spectral representation
of stationary processes we can deduce (and the fractional Brownian motion
fulfills it): A singularity at 0 indicates cycles of arbitrary length, exactly what
is suitable for the IP-based traffic. This behavior was named ‘Joseph-effect’
according to Mandelbrot and Van Ness, since Josef could predict seven good
and seven bad years in the bible (see [264, 174]).
For our further investigation in IP traffic the generalization of the FBM is
important, since in contrast to the FBM most of those long-range depen-
dence processes do not possess any second moment (this is the case e.g. if
the marginal distribution consist of α-stable distribution for α < 2). In these
cases it is no longer possible to define those processes by the covariance func-
tion, as done in the case of the FBM. If one is interested to construct such
a sαs process depending on a Hurst exponent, one has to use the integral
representation.
For a 0 < H < 1 and a sαs-random measure with m = λ we define an H-self-
similar process (X(H)

t )t∈R according to the following stochastic integral
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X
(H)
t =

∫

R

((
(t− x)+

)H− 1
α −

(
(−x)+

)H− 1
α

)
dM(x), t ∈ R

where M is a sαs-random measure with the Lebesgue-measure λ as control.
For H = 1

α we receive formally a sαs Lévy motion. This specific α-stable
process was discussed an introduced in different ways (see e.g. also [32]). In
the monograph [77] one can learn more on them (see e.g. in particular [77,
p. 28–31]), especially that these processes are again H-sssi and symmetric
α-stable.
Analogously we get in the special case α = 2 and M the Brownian random
measure in the definition of the FBM. In accordance to the FBM we call
those processes linear fractional stable motion. It is a process with stationary
increments. The corresponding fractional sαs-noise is defined as in the case
of the FBM:

Y
(H)
t = X

(H)
t+1 −X

(H)
t , t ∈ R
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Fig. 3.4. Paths of linear fractional α-stable motions with α = 1.0, H = 0.2 (left)
and H = 0.7 (right)

We can consider some special cases: For H = 1
α we have a sαs-noise (as in

the case α = 2 we get the white noise). If 1
α < H < 1 and 1 < α < 2, then we

again encounter a process with long-range dependence as in the case of the
FBM. Mandelbrot and Van Ness also found a name for this phenomena: the
‘Noah effect’, because these processes have a heavy-tail property and Noah
survived a flood of large duration.
Finally we introduce some special self-similar processes for the sake of com-
pleteness:

• (Log-fractional stable motion) One defines

X
(log)
t =

∫ ∞

−∞
log
∣
∣
∣
∣
t− x

x

∣
∣
∣
∣ dMα(x)

where Mα is a sαs-stable measure. The process is well defined for 1<α≤ 2
(see also [77, Theorem 3.5.2]). It is 1

α -sssi.
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In case of α = 2 we receive the Brownian motion. Why? Hence, the process
has independent increments for α = 2. But for α < 2 the process (X(log)

t )
do not have independent increments and thus, it is no longer an α-stable
Lévy process.

• Another interesting process without independent increments can be found
in [140]. It is the limit of stochastic path processes, where the limit is
represented by a stochastic integrands (see also [77, p. 40–41]).

• All processes under considerations exhibited self-similarity with station-
ary increments. If in addition, these increments are independent, we
called them Lévy process (or in particular sαs- motion). The marginal
distribution are determined uniquely. Dropping the ‘independence’ and
‘stationarity’ this is no longer the case and a sufficient classification is
not at hand. But for self-similar processes with independent increments,
shortly H-ssii, we can formulate again some facts (see also [77, p. 57–
62]). Since the correlation structure reads as Cor(Xt −Xs,Xv −Xu) = 0
for 0 ≤ s < t < u < v < ∞, these H-ssii processes are inadequate for
describing long-range dependence and thus, IP-based traffic.

• We cite in this context an interesting example of an H-ssii process in [196]:
Let (B(H)

t )t≥0 be a fractional Brownian motion with 1
2 < H < 1. Define:

Xt =
∫ t

0

x
1
2 (t− x)

1
2−HdB(H)(x), t ≥ 0

Norros et al. showed in [196] that (Xt)t≥0

– is Gaussian,
– is (1 −H) self-similar,
– has independent increments, which are not stationary,
– is a martingale.

Closing this section we classify the up to now considered self-similar processes.
For this we divide the particular processes by the property of their paths. If
two processes (Xt)t∈I and (Yt)t∈I , (I ⊂ R) are equal in distribution (i.e. have
the same marginal distribution), we say each of them is a version of the other.
It is possible to investigate certain properties of the paths:

A There is a version with continuous paths.
B Property A is not true, but there exists a version with right continuous

paths having limits from the left. As we know they are called càdlàg.
C Each version of the process is nowhere bounded, i.e. unbounded on each

interval.

A classification of the up to now considered processes can be done in the
following way:

• In class A we find the Brownian motion, generally the FBM and the linear
sαs motion with 1

α < H < 1 (see (3.8) and the definition of a sαs motion).
• In B there are all non Gaussian Lévy processes.
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• In C are the log-fractional stable motions and the linear sαs motion for
0 < H < 1

α .

Property A holds for linear fractional stable motions and can be proved with
(3.7) analogously to the FBM case. The property B follows from the definition.
How can one prove property C for a particular process? For this we pick a
sαs process in the integral representation

Xt =
∫ ∞

−∞
f(t, x)dMα(x)

where Mα is a sαs-random measure and f(t, ·) ∈ Lα(R,B,m) with a suit-
able control measure m. Fortunately we can state the following theorem for
classification.

Theorem 3.23. Let 0 < α < 2. Suppose there is a countable dense subset
T ∗ ⊂ R such that for all pairs a < b the integral has value

∫ b

a

sup
t∈T∗

|f(t, x)|αdm(x) = ∞

Then the process (Xt) has property C.

For the case of the log-fractional and linear fractional stable motion one
chooses T ∗ = Q.

3.3 Long-Range Dependence

One of the major differences of the IP traffic, observed e.g. by the Leland
group, compared to the Poissonian approach consists in the so called long-
range dependence. As we mentioned already in section 2.1.3, the memoryless
behavior of the classical telecommunication traffic results in the use of the
exponential distribution and hence, the Poisson process. Based on the Erlang
model it turns out that the resulting Poisson process prevails independent
increments. This means that the change at the instant moment does not in-
fluence later periods. The statistical evaluation of the IP traces, as in the
LAN, WAN or for specific applications such as World Wide Web, reveals two
major issues for the transmitted data amount At, different to the classical
modeling:

a) The variance V(At) ∼ tp with p > 1, showing a hyperbolic shape.
b) For r(n) = E((An+1 − An)A1)) the series

∑
n∈N

r(n) = ∞ does not con-
verge.

Figure 1.11 reflects the fact of the long-range dependence of real data traffic
best, in contrast to the short-range dependent Poisson process.
Though the Brownian motion is a fractal (i.e. self-similar) process, the in-
crements are independent (hence item b) fails) and the variance V(Bt) = t
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behaves consequently linear. Again Mandelbrot and Van Ness considered the
feature interesting enough for their economic descriptions, and called the phe-
nomena in b) ‘Joseph-effect’. There is a quite interesting equivalent way to
look at b): If ones considers the spectral density of the underlying process
(At), one will in fact detect, as we will point later in section 3.3.1, that the
spectral density has a singularity at 0. This means that with low frequency
the cycles may be arbitrary long, which in turn can be interpreted for the IP
traffic in such a way that the data amount may be transmitted in larger time
intervals and that this may happen in arbitrary long cycles. That is again a
confirmation for the fact that a large queueing time may trigger larger ones in
the future. Considering subexponential distribution this is nothing new, as we
have already pointed out in section 2.7.4. Short-range depending processes,
especially those with independent increments like Poisson process, Brownian
motion, or the ARMA time series, show the different behavior close to the
frequency 0 by cycles of bounded length.

3.3.1 Definition and Concepts

After the preceeding section, where we detect the long-range dependence in
the IP traffic, we proceed in this subsection with the presentation of the
mathematical concept and indicate the connection to the self-similarity. We
return to the concept of fractional Gaussian noise and define for an H-sssi
process (Xt)t∈I

∆(n) = Xn+1 −Xn, n ∈ Z Increments
r(n) = E(∆(0)∆(n)), n ∈ Z

The (discrete) process describes the change within one time unit at the discrete
times n ∈ N. The next theorem describes that this changes depend heavily on
the Hurst exponent H.

Theorem 3.24. The sequence (∆(n))n∈N is stationary and we have
{
r(n) ∼ H(2H − 1)n2H−2E(X2

1 ), for n → ∞ and H �= 1
2

r(n) = 0, for n ≥ 1 and H = 1
2

(3.17)

We give a proof for this fact to get some insight in the structure of H-sssi
processes.

Proof. We prove 3.17. From remark 3.4 e) follows X0 = 0 almost surely. Since
E(|X1|) < ∞, the fact that the second moment exists and by assumption
0 < H < 1, follows from proposition 3.12 c), that E(Xt) = 0 for all t ≥ 0.
This implies r(∆(n)) = r(n) = γ(0, n) and we can use theorem 3.11

r(n) = E (∆(0)∆(n)) = E (X1(Xn+1 −Xn)) (3.18)
= E(X1Xn+1) − E(X1Xn)

=
1
2
(
(n + 1)2H − 2n2H + (n− 1)2H

)
E(X2

1 )
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where we applied theorem 3.11 suitably on the last equation. For H = 1
2 im-

mediately we deduce r(n) = 0. The assertion for H �= 1
2 is a simple calculation

and left to the reader. ��
Remark 3.25. According to the above asymptotic we can summarize for 0 <
H < 1:

a) If 0 < H < 1
2 , then 2H − 2 < −1 and thus, the series

∑∞
n=0 |r(n)| < ∞

converges. In addition, we have r(n) < 0 (negative correlation). This can be
deduced from the last equation in the above proof: the function x �−→ x2H

is concave for 0 < H < 1
2 .

b) For H = 1
2 the discrete process (∆(n))n∈Z is uncorrelated.

c) If 1
2 < H < 1, then 2H − 2 > −1 and hence, the series

∞∑

n=0

r(n) = ∞ (3.19)

is no longer convergent. In this case the function x �−→ x2H is convex,
which implies that the right side of the equation in the proof is a positive
number (we can call it positive correlation).

The phenomena in item c) is usually called long-range dependence. It should
be emphasized that this definition is only valid for processes with existing
second moment, especially for Gaussian processes). Thus, we will introduce
some different notions for the long-range dependence. This can be compared
with the different definitions of stationary processes, depending whether the
underlying process has a second moment or not. We deduce the following
definitions of long-range dependence according to the above explanations.

Definition 3.26. A (discrete) process (or time series) (Xk) is called long-
range dependent, if there exists a H ∈ ]12 , 1[, such that

r(k) = O(k2H−2) (3.20)

If one considers the ‘block process’ according to (3.1), then this means

r(m)(k) = O(m2H−2)

In this case we have the asymptotic for k,m → ∞. A slightly more general
concept for long-range dependence is given in the next definition.

Definition 3.27. A process (or time series) (Xk) is called long-range depen-
dent in the general sense, if

∑

k∈N

|r(k)| = ∞ if the process is discrete (3.21)

or ∫ ∞

0

|r(t)|dt = ∞ if the process is time continuous

(see the above remark 3.25 and (3.19)).
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It should be mentioned that the definition 3.26 implies the one of 3.27. It
always depends on the situation, which approach is chosen. In this situation,
too, one can consider the compounded process and hence, we have to replace
r(k) by r(m)(k).

Remark 3.28. If the second moment does not exists, a different definition has
to be used. As we discussed before in more details, most considered processes
are embedded into the general context of the α-stable processes, where 0 <
α ≤ 2. The variance exists at most in the case of α = 2. In the general
situation the notion of long-range dependence can be defined by fixing

H >
1
α

In the case of α = 2 the definition coincides with the usual given definition
above. But for α ≤ 1 we cannot proceed that way, since there is no H-sssi
process for H > max(1, 1

α ), hence in particular for α ≤ 1, as we know by [77,
Theorem 3.6.1].

An alternative approach for defining the long-range dependence for processes
without existing variance was introduced by Heyde und Yang [106].

Definition 3.29. If (Xn)n∈N is a stationary sequence with mean 0, then this
sequence is called long-range dependent in the sense of the Allan-variance
(LRD-SAV), provided the quotient

(
∑m
k=1 Xk)

2

∑m
k=1 X

2
k

→ ∞

in probability for m → ∞.

In this context we find the following result interesting.

Proposition 3.30. Suppose (Xt)t∈[0,∞[ is a H-sssi process and we have the
relation E(|X1|δ) < ∞ for a δ ∈ ]0, 2[, then (Xt) is LRD-SAV, provided
H > 1

δ .

This is again a reason for defining the long-range dependence of a general
α-stable process via the condition H > 1

α , α ∈ ]1, 2[.
There are a number of alternative not necessarily equivalent definitions of
the long-range dependence. For special processes these notions are equivalent.
Thus, we will discuss in the sequel mainly processes with existing variance.
With the above notation we look at a H-sssi process (Xt) with E(X2

1 ) < ∞. As
mentioned above we define r(n) = E(Xn+1X1)−E(XnX1), (X0 = 0!). Hence,
the long-range dependence is exactly determined by the autocorrelation func-
tion γ(n,m) = γ(|n − m|), n,m ∈ N (see the definition of autocorellation
function and of stationary process, e.g. [38, 208]). This is the reason why we
treat r(n) in the following instead of γ(n,m).
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We know for a H-sssi process that γ(k), (k = |n−m|) behaves asymptotically
up to constant as k2H−2. Let f : [−π, π] −→ C be the spectral density of the
autocovariance (γ(k)), which is expressed according to

γ(k) =
∫ π

−π
eiktf(t)dt

(this is nothing else than the discrete Fourier transform). Then we have

f(t) =
1
2π

∞∑

k=−∞
e−iktγ(k), t ∈ [−π, π] (3.22)

The long-range dependence expressed in ‘time’ k will be transferred to the
spectral density f close to 0, since low frequencies, i.e. values of t close to 0
imply big jumps in time. According to the result of (see [226]) we have indeed

f(t) ∼ const · t1−2H , for t → 0 (3.23)

This means for 1
2 < H < 1, that the spectral density has a singularity at t = 0

(remark that in this case 1 − 2H < 0). Figure 3.5 shows a fractional white
noise Zt = Xt+1 −Xt for a FBM (Xt).
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Fig. 3.5. Fractional Brownian motion with H = 0.6

According to the remark of the result (3.17) the divergence of the series∑
n∈N

r(n) determines the long-range dependence, though r(n) converges to
0 with the order of 2H − 2. We will use the following definitions and concepts
to describe the long-range dependence

γ(n) ∼ n−αL1(n), n → ∞ for a 0 < α < 1
f(t) ∼ t−βL2(t), t → 0 for a 0 < β < 1 (3.24)

n∑

k=0

γ(k) ∼ nϑL3(n), n → ∞ for a 0 < ϑ < 1
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Li ∈ R0, i = 1, 2, 3 are slowly varying functions. The parameters α, β and ϑ
measure the degree of long-range dependence. The larger or higher the values
of the parameters the more dependence we observe.
As seen in section 2.7.4, the function U(x) = xpL(x), x > 0, L ∈ R0 play a
decisive rôle. Since we have for the quotient limx→∞

U(tx)
U(x) = tp for all t > 0,

the slowly varying function L does not exhibit any influence for large values
of x. Is it possible to specify the relationship of the parameters? The following
result gives an answer [241, Prop. 4.1].

Proposition 3.31. Suppose the autocovariance (γ(n)) is finally monotone for
n → ∞, then the conditions in (3.24) are equivalent and we have

ϑ = 1 − α, L1(x) =
1
2
(1 − α)L3(x)

and
β = 1 − α

L2(x) =
1
2π

Γ (ϑ + 1) sin
π(1 − ϕ)

2
L3

(
1
x

)
=

1
π
Γ (1 − α) sin

πα

2
L1

(
1
x

)

It seems natural to define the short-range dependence. If a process is not long-
range dependence then it is called short-range dependent. Defining r(k) =
E(Xk+1X1) − E(XkX1), then it follows

∑

k∈N

|r(k)| < ∞ or in the case of continuous time
∫ ∞

0

|r(t)|dt < ∞

This happens e.g. if the autocorrelation decays exponentially, or if

r(k) = O(ρ−k) with a suitable constant 0 < ρ < 1

By the property r(k) = O(ρ−k) we have for
∑
k∈N

|r(k)| a geometric series,
and thus,

∑
k∈N

|r(k)| < ∞. The difference of long and short-range depen-
dence (shortly LRD resp. SRD) can be described by the convergence of the
series

∑
k∈N

|r(k)| or the existence of the integral
∫∞
0

r(t)dt. The next sections
considers the special case of a discrete time series, which can handle both phe-
nomena long and short-range dependence: the fractional ARMA time series.

3.3.2 Fractional Brownian Motion and Fractional Brownian Noise

We start with a first derivation of the above result 3.31 and apply it to the
FBM. Proposition 3.31 can be specified for the FBM. As we already considered
the discrete process of the increments (in this case the fractional white noise)
∆(n) = Xk+1−Xk of a H-sssi process stated in theorem 3.24, we investigated
the different concept of long-range dependence. For the FBM we can state the
following fact concerning long-range dependence.
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Theorem 3.32. Let (B(H)
t ) be a FBM with 1

2 < H < 1. Then the three
concepts in (3.24) are equivalent and we have (with the notation from (3.24))

ϑ = 2H − 1, L3(x) = σ22H
α = 2 − 2H, L1(x) = σ2H(2H − 1)
β = 2H − 1, L2(x) = σ2π−1HΓ (2H) sinπH

First, we look in detail at the fractional Brownian noise. We start with a
particular FBM (B(H)

t )t∈R and give the following definition.

Definition 3.33. A sequence Zj = B
(H)
j+1−B

(H)
j with j ∈ Z is called fractional

white noise or fractional Brownian noise (FGN). If σ2
0 = Var(Zj) = 1 then

we call it standard fractional Brownian noise. Often one uses the terminology
fractional Gaussian noise.

Indeed it is possible to define the fractional Brownian noise in continuous
time, i.e.

Zt = B
(H)
t+1 −B

(H)
t , t ∈ R

Because most applications in IP traffic are modeled in discrete time and most
phenomena can be described there, we will stick to our original definition in
discrete time.
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Fig. 3.6. Fractional Brownian noise with H = 0.7

Since the FBM is a process with stationary increments, the FGN is a station-
ary process.
In our short introduction to H-sssi processes we cited general results for the
process of increments. In the case of the FGN we briefly note them in this
particular situation. For this we define by γ(k) = r(k) = E(Z0Zj) as the
covariance function done in theorem 3.24.

Theorem 3.34. The FGN has a covariance function
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r(k) =
σ2

0

2
(
|k + 1|2H − |k|2H + |k − 1|2H

)
, k ∈ Z (3.25)

and a spectral density f

f(λ) =
σ2

0

C1(H)2
| exp(iλ) − 1|2

∞∑

k=−∞

1
|λ + 2πk|2H+1

=
σ2

0

∫∞
0

cos(xλ)
(
sin2

(
x
2

))
x−2H−1dx

∫∞
0

(
sin2

(
x
2

))
x−2H−1dx

, −π ≤ λ ≤ π

As partially introduced before, it is possible to elaborate some results:

• r(k) behaves for k → ∞ as f(λ) for λ → 0, i.e. as a power of k resp. as λ.
• In the case of 1

2 < H < 1 we have long-range dependence, i.e. the series∑∞
k=−∞ |r(k)| = ∞ diverges. Equivalently the spectral density reveals a

singularity at 0.
• The case 0 < H < 1

2 indicates short-range dependence, which is for most
considerations in IP traffic not relevant. Nevertheless it is interesting in
some sense. We have

∑∞
k=−∞ |r(k)| < ∞ and because of the telescope sum

of the sequence r(k) it follows
∑∞
k=−∞ r(k) = 0. This is also expressed by

the property of the spectral density f because f(λ) → 0 if |λ| → 0. Since
the constant H(2H − 1) is negative, we can conclude with 3.24, that for
large k the correlation r(k) is negative. Indeed we have r(k) < 0 for all
k �= 0 (see [35]). Hence

0 =
∞∑

k=−∞
r(k) = r(0) + 2

∞∑

k=1

r(k) = σ2
0 + 2

∞∑

k=1

r(k)

and thus ∞∑

k=1

r(k) = −σ2
0

2

• The FGN serves as classical counterexample to the central limit theorem
in the case of H �= 1

2 . For a suitable sequence of coefficients αn the se-
quence 1

αn

∑n
k=1 Zk converges for n → ∞ to a non trivial random variable.

Nevertheless it is not possible to choose the same coefficients αn =
√
n as

in the classical central limit theorem. It is necessary to pick αn = nH for
large n. We have 1

nH

∑n
k=1 Zj = 1

nH B
(H)
n

d= B
(H)
1 . In general the process

1
nH

∑[nt]
k=1 Zj → B

(H)
t converges for all t, where [x] is the entire function,

i.e. the largest integer less than x.
• Because of the long-range dependence the normalized sum of polynomials

in (Zk) does not converge to a Gaussian process.

If we consider the covariance (3.25) of the FGN, then we observe the well-
known asymptotic behavior r(k) ∼ Ck2H−2 for k → ∞, which expresses the
long-range dependence in the case 1

2 < H < 1. In a lot of applications one
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is interested in this asymptotic and wants to use it, since equality (3.25) is
not suitable for modeling. A possible approach can be seen in using gliding
averages, i.e. use the approach of FARIMA time series, a concept, which we
will discuss in detail later. These Gaussian sequences reveal the form

Xk =
k∑

j=−∞
ak−jεj

where the sequence (εj) is an iid N(0, 1) sequence of random variables. Then
we have (as cited in theorem 3.37 in detail)

r(k) = E(X0Xk) =
k∑

j=−∞
a−jak−j ∼ Ck2H−2

Finally, we give a detailed description of long-range dependence of a Gaussian
series (see also theorem 3.24 resp. 3.32) and show that, as in the case of FGN,
the central limit theorem does not hold necessarily.

Theorem 3.35. Let 0 < H < 1 and (Xj) be a stationary Gaussian time
series with autocovariance r(k) = E(X0Xk), which fulfills one of the following
cases:

• If 1
2 < H < 1, then

r(k) ∼ ck2H−2, k → ∞, c > 0

• If H = 1
2 , then

∞∑

k=1

|r(k)| < ∞ and
∞∑

k=−∞
r(k) = c > 0

• If 0 < H < 1
2 , then

r(k) ∼ ck2H−2, k → ∞, with c < 0 and
∞∑

k=−∞
r(k) = 0

Then the marginal distributions of the process { 1
n

∑[nt]
k=1 Xk; 0 ≤ t ≤ 1} con-

verge to those of {σ0B
(H)
t ; 0 ≤ t ≤ 1}, where (B(H)

t ) is a standard fractional
Brownian motion. For the constant σ0 we have

σ2
0 =

⎧
⎪⎨

⎪⎩

H−1(2H − 1)−1c for 1
2 < H < 1

c for H = 1
2

−H−1(2H − 1)−1c for 0 < H < 1
2

More on mathematical treatments for the fractional Brownian motion can be
found in [33, 34, 114, 113, 35] and the forthcoming book [35].
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3.3.3 Farima Time Series

The Gaussian or fractional white noise (∆(n))n∈N (FGN) (see theorem 3.24)
characterizes the long-range dependence. It is suitable for describing the be-
havior of the IP-based traffic over large time intervals. Changing to small
time fractions, then the observed or estimated autocovariance differs from the
Gaussian or the FGN. At the end of section 3.8.6 we will consider physically
based models of the IP traffic, which encounter this two different phenom-
ena: a long-range one and a multifractal one on short scale. A first step to
overcome this drawback of FGN-models well be done in this section by the
introduction of special time series, the so called FARIMA models. Here, it will
already be possible to model the long-range dependence as well as the calibra-
tion of parameters for the small time scales. The FARIMA models (fractional
autoregressive moving average) enlarge the concept of the ARMA time series.
For a deeper understanding of the FARIMA time series we will deduce its
definition in detail. Thus, we need some preliminaries.

Definition 3.36. A sequence (Xt)t∈Z is called linear Gaussian sequence, if
there is a sequence (aj)j∈Z, such that

Xt =
∞∑

j=−∞
at−jεj =

∞∑

j=−∞
ajεt−j , t ∈ Z (3.26)

where
∑∞
j=−∞ |aj | < ∞, and (εj)j∈Z is a sequence of iid Gaussian distributed

random variables, which are called generator or increments.

We summarize some properties:

• The sequence (Xt)t∈Z is called causal, provided aj = 0 for all j < 0.
• A linear Gaussian sequence (Xt) is stationary.
• If the (εj)j∈Z are distributed according to N (µ, σ2) with µ �= 0, then we

require
∑∞
j=−∞ |aj | < ∞

• If in addition the sequence is N (µ, σ2) with µ = 0, then stressing∑∞
j=−∞ a2

j < ∞ is sufficient.

It is not necessary to choose the increments (εj) in (3.26) to be Gaussian
distributed. It is possible to use α-stable increments, which is of importance
for modeling IP-based traffic, where the incoming traffic need not to have
finite variance. In the sections 3.3.3 and 4.2 we will discuss in more detail
special α-stable increments and judge the different possibilities to calibrate
the different parameters for the IP-based traffic. If the mean of ε1 exists, one
needs the absolute convergence of

∑∞
j=−∞ |aj | < ∞. Suppose the variance

of ε1 is finite, then it suffices that
∑∞
j=−∞ a2

j < ∞. If the (εj) are Gaussian
distributed, so is the time series (Xt). But if the (εj) are e.g. exponential
distributed, it is no longer possible to specify the distribution (Xt), since linear
combinations of exponential distributed random variables are not necessarily
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exponential distributed. The behavior of mean and variance is the same as in
the Gaussian case.
The FARIMA series will be introduced as a special case of the linear Gaus-
sian models. But the concept can be transferred to other distributions. These
time series will bear the same name. We will use the common notation
FARIMA[p, d, q], with p, q ∈ N0 and d ∈ R and consider the case p = q = 0
first, in other words FARIMA[0, d, 0]. Demonstrating how to construct a
FARIMA[0, d, 0]-series for a given d ∈ R, we will have to make some prepara-
tions. Since the time series play a decisive rôle in describing IP-based traffic,
we will deduce the construction in more detail. First we choose d = 0, 1, . . . ,
thus, a non-negative integer. Let (Xt)t∈Z be a discrete process. We define
for (Xt)

∆0Xt = Xt, ∆1Xt = Xt −Xt−1, ∆2Xt = ∆(∆Xt) = ∆(Xt −Xt−1), . . .

It is possible to write the operator ∆j , j = 0, 1, 2, . . . in the form

∆j = (Id−A)j , j = 1, 2 . . .

where AjXt = Xt−j represents a shift operator with Id = A0. We have e.g.

∆2Xt = ∆(Xt −Xt−1) = Xt − 2Xt−1 + Xt−2

= (Id− 2A + A2)Xt = (Id−A)2Xt

We call a linear Gaussian sequence (Xt)t∈Z a FARIMA[0, d, 0] time series, if

∆dXt = εt, for all t ∈ Z (3.27)

How can we define the operator ∆d for d ∈ R? For this we rewrite (3.27),
multiply

∆dXt = (Id−A)dXt = εt, for all t ∈ Z

with (Id − A)−d and deduce Xt = (Id − A)−dεt if (Id − A)−1 exists (e.g. if
‖A‖ < 1). In this case the series is representable as (Id−A)−d =

∑∞
j=0 bjA

j ,
where the series

Xt = (Id−A)−dεt =
∞∑

j=0

bjA
jej =

∞∑

j=0

bjet−j

converges. This condition is too strong; thus, we we will deduce – also for
further purposes – a weaker convergence. For a complex number z ∈ C with
|z| < 1 we can represent (1 − z)−d in a power series

(1 − z)−d =
∞∑

j=0

bjz
j

Remark that the function z �−→ (1 − z)−d is analytic for |z| < 1, i.e., repre-
sentable in a power (see e.g. [92, S. 174 f.]). In this representation we have
b0 = 1, and for the other coefficients j ∈ N it holds
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bj =
j∏

k=1

k − 1 + d

k
=

Γ (j + d)
Γ (j + 1)Γ (d)

(3.28)

where Γ (x) =
∫∞
0

tx−1e−tdt, x > 0 the Gamma function. The Gamma func-
tion satisfies the functional equation

Γ (x + 1) = xΓ (x) (3.29)

and the well known Stirling formula

Γ (x) ∼
√

2πe−x+1(x− 1)x−
1
2 , x → ∞

Applying (3.29) to the representation (3.28), then one has for large j → ∞

bj ∼ Γ (d)−1jd−1

Hence
∑∞
j=1 b

2
j < ∞ converges (the convergence is determined by large j),

if
∑∞
j=1 j

2(d−1) < ∞ holds. And thus, by a criterion for convergent series
2(d− 1) < −1 ⇔ −∞ < d < 1

2 . In this case
∑∞
j=0 bjεj converges in the space

L2(Ω). Remark that in this space (εt−j) consists of an orthogonal system and,
as shown above, we have

∑
j=1 b

2
j < ∞. Hence, we can define for − 1

2 < d < 1
2

the representation

Xt = (Id−A)−dεt =
∞∑

j=0

bjεt−j

and we have (Id−A)dXt = εt. This enables us easily to enlarge the definition
of a FARIMA[0,d,0] time series for all d ∈ R, since a general d ∈ R can
be written in the form d = d′ + d′′, where d′ ∈ Z and − 1

2 ≤ d′′ ≤ 1
2 (e.g.

d = 1.7 = 2 + (−0.3)). In general we write

d =
[
d +

1
2

]
+
(
d−
[
d +

1
2

])

where [x] = the smallest integer less or equal to x. For this we remark that
− 1

2 ≤ d− [d+ 1
2 ] < 1

2 . Suppose d ≥ 1
2 , then define the FARIMA[0, d, 0] process

(Xt) by
(Id−A)d−[d+ 1

2 ]
(
(Id−A)[d+

1
2 ]Xt

)
= εt, t ∈ Z

This means that the process Zt = (Id−A)[d+
1
2 ]Xt is a FARIMA[0, d−[d+ 1

2 ], 0]
time series. But Zt can be defined for integer exponents (see (3.27)). For
d < − 1

2 the process can explicitly written in the form

Xt = (Id−A)−[d+ 1
2 ]
(
(Id−A)−d+[d+ 1

2 ]εt
)
, t ∈ Z

The introduction of the FARIMA time series represents a time continuous
process (Xt) using a series of Gaussian distributed random variables, thus,
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discretized. In the context of self-similarity and long-range dependence we are
especially interested how the covariance function γ(k) = E(X0Xk) looks like
for large numbers k → ∞. For this we give the following fundamental result
without detailed proof.

Theorem 3.37. Let (Xt)t∈Z be a FARIMA[0, d, 0] time series with − 1
2 < d <

1
2 , d �= 0. Then we have

γ(0) = σ2Γ (1 − 2d)
Γ (1 − d)2

γ(k) = σ2 (−1)kΓ (1 − 2d)
Γ (k − d + 1)Γ (1 − k − d)

(3.30)

= σ2 Γ (k + d)Γ (1 − 2d)
Γ (k − d + 1)Γ (d)Γ (1 − k − d)

∼ c|k|2d−1

for k → ∞, where c = γ(0) Γ (1−2d)
Γ (d)Γ (1−d) .

Proof. We do not present the full proof, but present the argument for the
asymptotic in (3.30) as exercise

σ2 Γ (k + d)Γ (1 − 2d)
Γ (k − d + 1)Γ (d)Γ (1 − k − d)

= σ2 Γ (1 − 2d)
Γ (d)Γ (1 − d)

Γ (k + d)
Γ (k − d + 1)

= c
Γ (k + d)

Γ (k − d + 1)
∼ ce−2d+1(k − 1 + d)k+d−

1
2 (k − d)−k+d−

1
2

∼ ce−2d+1(k2 − d2)−
1
2 (k2 − d2)d

(
k − 1 + d

k − d
)
)k

∼ c|k|2d−1

since (k−1+d
k−d )k → e2d−1, for k → ∞. ��

We know that a stationary process (Xt)t∈Z is long-range dependent, if∑∞
k=0 |γ(k)| = ∞ for γ(k) = E(XtXt+k). But we have

∞∑

k=1

k2d−1 = ∞ ⇔ 2d− 1 ≥ −1 ⇔ d ≥ 0

Thus, we see by theorem 3.37 that this holds exactly for 0 < d < 1
2 . How do

we detect the relationship with the Hurst exponent? From equation (3.17) we
know for a H-sssi process (Xt)t∈Z

γ(k) = E(XtXt+k) ∼ ck2H−2, for k → ∞ (3.31)

Comparing the behavior for large k in (3.30) with (3.31), this implies

2H − 2 = 2d− 1 ⇔ H = d +
1
2
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Thus, we see that long-range dependence of a FARIMA[0, d, 0] time series
determined by 0 < d < 1

2 which is equivalent to the fact that the Hurst
exponent satisfies 1

2 < H < 1. There is another common feature for FARIMA
time series and long-range dependent processes: As shown in [226] (see also
3.35), we have for a Gaussian FARIMA[0, d, 0] time series (Xs)s∈Z (0 < d < 1

2 )
the weak convergence

1
nH

[nt]∑

s=1

Xs −→ B
(H)
t , for n → ∞

hence, in the marginal distribution. Here H = d + 1
2 and (B(H)

t )t≥0 is a
fractional Brownian motion.
We start now with the general case of a Gaussian FARIMA[p, d, q] time series.
For this we split the general case again. First let d = 0. This coincides with
the well known case of an ARMA(p, q) time series (autoregressive moving
average).

Definition 3.38. A time series (Xt)t∈Z is called an ARMA(p, q) process, pro-
vided there are numbers φ1, . . . , φp and ψ1, . . . , ψq with

Xt − φ1Xt−1 − . . .− φpXt−p = εt − ψ1εt−1 − . . .− ψqεt−q, t ∈ Z (3.32)

where (εt) is an independent distributed sequence of N (0, σ2) random vari-
ables.

The idea is to incorporate the ‘past’ of a time series (Xt)t∈Z by representing
it with the help of a suitable sequence of independent centralized Gaussian
variables. If p = 0, then we have a MA(q) process (moving average). In the case
of q = 0, it is called an AR(p) process (autoregressive). As in the derivation
of the FARIMA[0,d,0] time series we define for certain operators representing
the left resp. the right side of (3.32) Φp(A) = Id − φ1A − . . . − φpA

p resp.
Ψq(A) = Id− ψ1A− . . .− ψpA

q. Then we rewrite (3.32) into

Φp(A)Xt = Ψq(A)εt (3.33)

We want a representation of (Xt) in dependence of a Gaussian sequence, as
in the case of the FARIMA[0, d, 0] time series, i.e., we want to solve (3.33) to
Xt in the form

Xt = Φp(A)−1Ψq(A)εt (3.34)

by getting an expression like

Xt =
∞∑

j=0

bjεt−j

For this we have to consider complex valued polynomials and define (we use
the notation of the operators) the polynomial Φp(z) = 1 − φ1z − φ2z

2 −
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. . . − φpz
p of degree p, which possesses in the complex plain C the complex

roots (points of value 0 for the polynomial) r1, . . . , rp. Then we can write the
polynomial in the form

Φp(z) =
(

1 − z

r1

)
· · ·
(

1 − z

rp

)
(3.35)

This implies

Φp(z)−1 =
(

1 − z

r1

)−1

· · ·
(

1 − z

rp

)−1

Since the operator A has the norm 1, we want to know in which cases

(
1 − z

ri

)−1

=
∞∑

j=1

(
1
ri

)j
zj , i = 1, . . . , p

converges for |z| = 1. This happens exactly, if |ri| > 1 (i = 1, . . . , p, geometric
series!). With this we stress that the roots of the polynomial in (3.35) lie
outside the unit circle. Thus it is possible to define

(
Id− A

ri

)−1

=
∞∑

j=1

(
1
ri

)j
Aj

and apply it to a L2(Ω)-integrable time series. The equation (3.34) is well-
defined. Similar we define the polynome

Ψq(z) = 1 − ψ1z − ψ2z
2 − . . .− ψqz

q

and demand, that Φp(z) and Ψq(z) do not have common roots and in addition,
all roots of Ψq(z) lie outside the unit circle. The last property is important for
estimation, since one considers εt as realization of the Xt.

Example 3.39. Let us start with an AR(2) time series (Xt), which has accord-
ing to statistical evaluations (see section 4.2) the following form

Xt − φ1Xt−1 − φ2Xt−2 = εt, t ∈ R

Hence, we have to consider polynomial p(z) = 1 − φ1z − φ2z
2, φ2 �= 0. The

roots are

r1/2 = − φ1

2φ2
±

√(
φ1

2φ2

)2

+
1
φ2

Then, we get |ri| > 1 for i = 1, 2, provided 1
φ2

> 1. The form of the time
series turns into
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Xt =
(

1 − A

r1

)−1(
1 − A

r2

)−1

εt

=

( ∞∑

i=0

(
1
r1

)i
Ai

)⎛

⎝
∞∑

j=1

1
r2
Aj

⎞

⎠ εt

=
∞∑

n=0

n∑

k=0

(
1 − 1

r1

)n−k (
1 − 1

r2

)k
εt−n

An important observation is the decay of the covariance function. It is easy to
demonstrate and left to the reader as exercise that there is an s ∈ ]0, 1[ with

|r(k)| ≤ const · s|k| = const · e−|k| log 1
s

(see also [42]). As seen above we detect an exponential decay, which in turn
describes the SRD phenomena of the ARMA(p, q) time series. The advantage
of the general FARIMA[p, d, q] time series lies in the combination of the LRD
property of the FARIMA[0, d, 0] and the SRD phenomena in the ARMA(p, q)
part. Thus, we have to consider the general case finally.

Definition 3.40. A time series (Xt)t∈Z is a FARIMA[p, d, q] time series, if
the representation

Φp(A)∆dXt = Ψq(A)εt, t ∈ Z

holds.

Thus we combine both above cases and receive the following representation
under the made presumptions

Xt = Φp(A)−1Ψq(A)∆−dεt (3.36)

If d < 1
2 and the polynomial φp(z) does not have a root within the unit

circle, then the time series in (3.36) is well-defined, causal and stationary. If
in addition Ψq(z) has roots only outside the unit circle, the representation
can be reversed. The covariance structure depends only on d and the roots of
Φp(z) and Ψq(z).
The increments in the serving part of the IP-based traffic, i.e. the connection
times, data rates and the amount of TCP-connections, are mostly heavy-tail
distributed. These distributions include the Pareto- resp. all general α-stable
distributions, as will be treated in the section 3.4.1. But we cannot transfer the
results, especially (3.30), literally. In this respect the long-range dependence is
only valid for d ∈ [0, 1− 1

α [. The connection between α and the Hurst exponent
can be stated as

H = d +
1
α

(3.37)

(see [226, S. 382]). For further results of FARIMA-series with α-stable incre-
ments the reader should consult the monograph [226, section 7.13].
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Fig. 3.7. Realizations of Gaussian FARIMA time series (α = 2) with H = 0.8 resp.
H = 1.2 and different p, q

3.3.4 Fractional Brownian Motion and IP Traffic – the Norros
Approach

As we will derive in section 3.4.4, averaging of a simple on-off model over
time will lead in the limit with certain assumptions on the serving time to the
fractional Brownian motion resp. fractional white noise. This is the decisive
reason, why the FBM is an important tool for modeling the traffic load A(t).
Before describing the classical Norros approach [190], we shall give notes on
the basic concept of the Gaussian model. Though the approach is still very
popular in the literature, some critics has to be mentioned, since the traffic
does not behave Gaussian in principle. This is based on reasons, which will be
discussed in the section on multifractal approach later (see section 3.8). First
of all the Gaussian model implies that with the same probability negative
values could occur (locally the FBM has the expected value 0!). Then the
traffic flows described by the FBM model are assumed to be independent
of the transport protocol, which is for most application very unrealistic. A
Gaussian traffic flow is mainly balanced or averaged and hence, reveals only
a few bursts, which is especially not true for TCP-based traffic. Thus, there
are only a few queueing models with pure Gaussian input.
Nevertheless the attractivity of Gaussian based models will still prevail that
for once a many-user-traffic is balanced by averaging according to the central
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limit theorem. On the other hand an individual treatment of each single flow
of IP packets would be too complex to gain sufficient exactness in the descrip-
tion, as e.g. seen in the video applications. The simple structure of mean and
covariance of the FBM in junction with the stationary increments simplifies
the modeling of aggregated traffic.
This section is devoted to an introduction an partially a summary of some
important observations, as the fractional Brownian motion (FBM) could be
applied in modeling the data traffic, especially in a LAN, and as the FBM de-
scribes the scenarios appropriately. A lot of these results go back to the original
literature due to Norros, which we cite and comment on. It was Mandelbrot
and Van Ness [174], who discovered the great value of the FBM in explaining
the so called long-range dependence. At that time, they surely used the FBM
in modeling the stock prices and not data traffic in IP networks.

Remark 3.41. We first give some initial remarks concerning the situation,
which will be investigated:

• A lot of data is sent in small independent burst in the considered networks.
The bursts consist of IP packets, which in turn contain UDP-datagrams
or TCP-segments. We already describe this in the section 1.1 intensively.

• In packet switched traffic no constant data rate could be detected, in
contrast to the circuit switched traffic. This property can be especially
observed for the TCP-based traffic (see section 1.1), who prevents by the
mechanism for congestion control an overflow at the routers mainly by
dynamical adjustment of the sent data rates.

• Beside transmission times in packet switched traffic there are silent mo-
ments. Thus, the on-off model is the adequate approach as initial model,
where the level of aggregated traffic is asymptotically reached, and hence,
the FBM can be used.

• The time structure depends on several factors: E.g. from the implemented
protocols, the day time (different peaks in different user scenarios) and the
application (see table 1.1) and sections 1.1 and 1.3).

• In the packet switched traffic a unified modeling is practically impossible,
since the traffic depends on a lot of components.

• The Leland group at Bellcore discovered 1992 that the data traffic in a
LAN can be described very well by self-similarity (or more appropriate by
the asymptotical self-similarity).

• We use the so called Gaussian model, i.e. processes with Gaussian marigi-
nal distribution. We give a survey on models with non Gaussian marginal
in subsequent sections (see e.g. section 3.8) with special focus on multi-
fractal models.

We proceed to the mathematical description of the approach and split the
approach in several steps, motivated by the described observations of the
Bellcore experiment:
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• With At we denote as usual the traffic amount (e.g. bit rates) within the
half open interval [0, t[, t ∈ ]0,∞[ resp. ]t, 0], t ∈ ]−∞, 0[. Let As,t = At−As
be the traffic within the half open interval [s, t[, s < t.

• We assume that the process (At) has stationary increments. In the case
of the Gaussian distribution we have Var(At) < ∞, i.e., E(A2

t ) < ∞ and
E(At) = mt because of the stationarity. We have

Cov(As, At) =
1
2

(v(t) + v(s) − v(t− s))

where we set v(t) = Var(At).
• We call a process short-range dependent, provided the correlation fulfills

Cor(Acs,ct, Acu,cv) −→ 0, for c → ∞ and all s < t ≤ u < v

Otherwise we call the process long-range dependent. This definition coin-
cides with the one in section 3.3, as one easily can verify.

• If (At) is short-range dependent, then Var(At) is asymptotically linear,
i.e. Var(At) ∼ ct for t → ∞.

• If the process (At) has independent increments, as e.g. the Poisson pro-
cess or the Brownian motion, then the variance Var(At) is asymptotically
linear – these processes are indeed short-range dependent due to the
Markov-property.

• The measurements of Bellcore provided for the function v(t) an asymptotic
of degree tp with 1 < p < 2, as we e.g. already found in our theoretical
considerations in section 1.1 resp. 1.4

• On the other hand the self-similarity of the process (At) provided as we
realized in section 3.3) that

v(Act) = (ct)2H = c2Hv(At)

for a suitable H ∈ ]12 , 1[. Thus, Act and cHAt enjoy the same correlation
structure, and these self-similar processes are long-range dependence, ex-
cept they have independent increments. This property is already known
to us.

• In section 3.2.2 on fractional Brownian motion we remarked that the FBM
can be introduced via the correlation structure, something which is impos-
sible in the general case of α-stable processes. Thus, the Gaussian processes
are the best and only choice and this is one major reason for selecting the
FBM.

• The FBM (Zt) was introduced in section 3.1.2 via the autocorrelation
function.

• Considering the covariance of the fractional white noise (see theorem 3.24),
then one discovers for non overlapping intervals, i.e. for all s < t ≤ u < v
a similar structure

Cor(Zt − Zs, Zv − Zu)

=
1
2
(
(v − s)2H − (u− s)2H + (u− t)2H − (v − t)2H

)
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• As already remarked the FBM with Hurst exponent H �= 1
2 lacks some

major properties of the usual processes used in telecommunication, like the
Poisson process, which include e.g.: The FBM does not enjoy the Markov
property and is not a semi-martingale, which is important for the classical
form of the stochastic integration (for the definition of semi-martingale see
e.g. [208]). As the Brownian motion the FBM has continuous but nowhere
differentiable paths. In addition the FBM looks smoother, if simulated,
(see section 3.2.2 resp. (3.9) with proposition 3.18).

• At last we remark that the FBM is ergodic though the strong correlation of
the increments, i.e the correlation of the fractional white noise Zt+1 −Zt.

After the mathematical description of the Bellcore observation we will now
introduce the traffic model, which is basic for the traffic model of Norros ad
which will be dealt of in the next parts of this section:

• The process (At) describing the data amount will be defined as follows

At = mt +
√
amZt, t ∈ ] −∞,∞[ (3.38)

where (Zt) is the standard FBM. The three parameters allow the following
interpretation: m > 0 is the average input rate and a > 0 represents the
variance of the traffic. The FBM Zt has no physical unit – one has to norm
the parameter t, to indicate a time unit. Keeping things simple, we skip
this fact.

• The factor
√
m can be explained by superposition: Suppose At =

∑n
i=1 A

(i)
t

shows the aggregated sum of n traffic streams with the same parameters a
and the fractional Brownian motion with the same Hurst exponent H, but
with individual rates mi, then m can be written as the sum m =

∑n
i=1 mi,

where At = mt+
√
maZt. The figures 3.8 until 3.11 show on the one hand

the measured traffic and below the simulated paths according to the Norros
model. Very clearly one recognized that the Norros model represents very
well the structure of the traffic for large scales (at most 100 ms).

• The parameters a and H describe the ‘quality’ and m the ‘quantity’ of the
traffic.

Finally we give some comments on the selection of the process At. In classical
telecommunication one uses the Poisson process for modeling the arrival and
serving processes. As known one can represent the Poisson process (Nt) on
the form

Nt = mt + Mt

where Mt = Nt − mt is a martingale. Let us consider the martingale more
closely. For c → ∞ we have the convergence

Nct − cmt√
cm

→ Bt

((Bt)t≥0 Brownian motion), as the theorem of Donsker or the functional cen-
tral limit theorem from section 3.2.3 tell us. Thus, we can in general write the
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Poisson process in the form

Nt = mt +
√
mBt

In the case of the self-similar traffic the data process (At) is modeled anal-
ogously. We exchange the Brownian motion by the FBM and introduce an
additional parameter a for better modeling.
With the help of a flow model in traffic theory we will try to give some
practical meaning to the parameters a and H. In addition, we will reveal
the connection between ‘self-similarity’ and ‘heavy-tail’ distributed serving
time. Especially, we will point out, using the classical traffc model M/G/1,
how the heavy-tail distributed serving time influences the self-similarity resp.
long-range dependence.

Description of the Model

We start with describing the situation, useful for the derivation of the Norros
model, i.e. the perturbation with the fractional Brownian motion. For this
purpose we describe the traffic with the help of the classical traffic model
M/G/1:

• As arrival process we choose a Poisson process with parameter λ.
• The arrival rate for each ‘Burst’ Bn is given by r > 0.
• We assume a joint distribution of the amount of burst,i.e FB(x) = P(B≤x).
• The length of each burst (i.e the serving time) Tn = Bn

r . This gives a joint
distribution of the serving time T : FT (t) = P(T ≤ t) = FB(rt).

Let us denote by Nt the number of bursts, which are served up to time t. We
use the traffic model M/G/∞, which is a model with infinite serving space. As
shown in section 2.4.2, the demand process will be stationary, if the serving
rate µ = E(B) is finite. In this case we get

E(N) = λE(T )

by the theorem of Little. We get for the covariance (see e.g. [57])

Cov(Nt, Nt+h) = λ

∫ ∞

h

F cB(rs)ds

The observation tells us that the traffic is long-range dependent. Hence to
have the system M/G/∞ ‘long-range dependent’ (see the definition in section
3.3), we need r(t) = Cov(N0, Nt)

E(T 2) =
∫ ∞

0

r(t)dt

=
∫ ∞

0

Cov(N0, Nt)dt

= λ

∫ ∞

0

∫ ∞

t

F cB(rs)ds = ∞
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which coincides with the above definition, since in our case the covariance is
not integrable. This implies, that B has no finite variance. Furthermore we
denote with

Rt = rNt

the arrival rate of the fow process at time t. The R has a mean arrival rate of

m = E(R) = rE(N) = rλE(T ) = λE(B) = rb

The use of the letter m is intended to show the connection with the approach
of the traffic amount process At. The aggregated process At has the form

At =
∫ t

0

Rsds

As variance of At we deduce

Var(At) = Cov
(∫ t

0

Rsds,

∫ t

0

Rudu

)

= 2λrb
∫ t

0

∫ s

0

P(U > ru)dsdu (3.39)

= λrb

(

2tE
(
U

r
∧ t

)
− E

(
U

r
∧ t

)2
)

Here U is a random variable, which is distributed according to the comple-
mentary distribution of B, i.e.

P(U ≤ u) =
1
b

∫ u

0

F cB(s)ds

=
1

E(B)

∫ u

0

F cB(s)ds

= FI,B(u)

The infinite variance of B implies an infinite value of expectation of U , because
∫ ∞

0

P(U > u)du =
∫ ∞

0

F cI,B(u)du (3.40)

and the right integral is finite, if and only if the variance of B is finite. From
the equation (3.40) in junction with (3.39) the following can be deduced for the
variance of the traffic load Var(At). We assume that complementary serving
time B is heavy-tailed with F cB(t) ∼ Ct−α and α < 2. Then the variance does
not exists and by a result of Karamata 2.49 we have F cI,B(u) ∼ C ′u−α+1. The
integration in (3.40) provides for x → ∞ the asymptotic

∫ x

0

F cI,B(u)du ∼ C
′′
x−α+2
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again by the result of Karamata (see teorem 2.49). With (3.39) we get

Var(At) ∼ const · t−α+3 (3.41)

Suppose now that α ∈ ]1, 2[, so is −α+ 3 ∈ ]1, 2[ which is again a hint for the
long-range dependence, as we have pointed out at the beginning of this section.
We compare this with the result (3.54) from section 3.4.4. There we had

v(t) = Var(At) ∼ σ2t2H

where we deduce according to (3.55) H = 3−min(αon,αoff)
2 . If α = min(αon,

αoff), then by (3.54) together with (3.55) it follows

v(t) ∼ σ2t−α+3

what is exactly (3.41). This is again a justification for the approach of Norros:
As with the help of the on-off model and the deduced asymptotic according to
(3.56), as with the classical approach using the traffic theory model M/G/∞,
we receive the same values of α and H.
As we already stated in the previous section, the figures 3.8 to 3.11 illustrate
evidently that the Norros model provides a suitable description of measured
traffic – here volume of data per time unit – over several timescales.
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Fig. 3.8. Measured traffic (above) compared to simulated traffic according to the
Norros model (below), scaling t = 100 ms (left) and t = 200 ms (right)
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Fig. 3.9. Measured traffic (above) compared to simulated traffic according to the
Norros model (below), scaling t = 400 ms (left) and t = 800 ms (right)
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Fig. 3.10. Measured traffic (above) compared to simulated traffic according to the
Norros model (below), scaling t = 1000 ms (left) and t = 2000 ms (right)
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Fig. 3.11. Measured traffic (above) compared to simulated traffic according to the
Norros model (below), scaling t = 4000 ms (left) and t = 8000 ms (right)

3.4 Influence of Heavy-Tail Distributions on Long-Range
Dependence

3.4.1 General Central Limit Theorem

We already introduced the α-stable distributions and α-stable processes. In
this section we give a derivation and motivation for the α-stable distribution.
We shortly return and remind to the central limit theorem:

For a sequence of iid random variables (ξk) and its corresponding
partial sums (Sn) = (

∑n
k=1 ξi) hold σ2 = Var(ξ1) < ∞

1
σ
√
n

(Sn − nE(ξ1)) −→ N (0, 1) in distribution

As seen in the above examples we cannot assume a finite variance Var(ξ1) < ∞
for the amount of transmitted data in general. How do we have to change the
central limit theorem? Closely related to this fact is the characterization of
those distributions G, for which hold:

For all random variable ξ, ξ1, ξ2, distributed according to G, and for
all number c1, c2 ≥ 0, there are numbers b(c1, c2) > 0 and a(c1, c2),
such that
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c1ξ1 + c2ξ2
d= b(c1, c2)ξ + a(c1, c2) (3.42)

in distribution.

The left side is the convolution of two with ci multiplied random variables. E.g.
the convolution of two Poisson distributed random variables are again Poisson
distributed. Nevertheless (3.42) is not true for the Poisson distribution.

Theorem 3.42. A distribution G is stable, if and only if for independent and
G-distributed random variables ξ, ξ1 and ξ2 the relation (3.42) holds.

Generalizing (3.42) on n identical and independent random variables and thus,
the corresponding identity (3.42) for

Sn = ξ1 + . . . + ξn
d= bnξ + an

we get solving
b−1
n (Sn − an)

d= ξ

in distribution. This is valid for all n ∈ N, i.e. convergence in distribution,
since the right side stays constant. The following question comes up: Does the
stable distribution exactly characterize this convergence? The answer will be
a yes.

Theorem 3.43. The class of stable distributions coincides with the class of
those distributions for which after appropriate norming and centralizing the
sequence (b−1

n (Sn − an)) converges within this class in distribution.

We formulate the major question: What for condition do the iid ξk for a given
α-stable distribution Gα have to fulfill and which values for bn and an do we
have to choose, to get

b−1
n (Sn − an)

d→ Gα (3.43)

thus convergence in distribution? Suppose the random variables ξk are dis-
tributed according to F , then we call F in the domain of attraction of Gα, if
(3.43) hold (written as F ∈ DA(Gα) or if we do not stress on the distribution
Gα simply F ∈ DA(α)).
We have to distinguish two cases: α = 2 and α < 2. For the case α = 2 (i.e.
for example if G2 is Gaussian) follows that F ∈ DA(G2) if and only if for
a random variable ξ, distributed according to F , one of the following cases
holds:

• E(ξ2) < ∞ or
• E(ξ2) = ∞ and P(|ξ| > x) = o(x−2

∫
|y|≤x y

2dF (y)) (o is the small Landau-
symbol).

The case α < 2 has to be treated differently. For this we need the notion of
slowly varying function from classical analysis, which we treated already in
section 2.7.4. In the literature (e.g [76]) one finds more concerning this topic.
We give more references below.



228 3 Mathematical Modeling of IP-based Traffic

Definition 3.44. A function L on [0,∞[ is called slowly varying or belonging
to the class R0, if we have for all t > 0

lim
x→∞

L(tx)
L(x)

= 1

Suppose F ∈ DA(Gα), then P(|ξ| > x) = x−αL(x), (x > 0), with L slowly
varying, and

x2P(|ξ| > x)∫
|y|≤x y

2dF (y)
→ 2 − α

α
, for x → ∞ (3.44)

We can formulate the following cases. Let F ∈ DA(Gα) (and ξ distributed
according to F ). Then

E(|ξ|δ) < ∞, for δ < α

E(|ξ|δ) = ∞, for δ > α and α < 2, in particular Var(ξ) = ∞
E(|ξ|) < ∞, for α > 1
E(|ξ|) = ∞, for α < 1

We are now prepared to answer the major question.

Theorem 3.45. General central limit theorem: Let F ∈ DA(Gα) and α ∈
]0, 2]:

• Suppose E(ξ2) < ∞ (i.e. the variance σ2 exists). Then it follows with Φ
the Gaussian distribution

(
σn

1
2

)−1

(Sn − nµ) d→ Φ

• If E(ξ2) = ∞ and α = 2 hold or if α < 2, then we get
(
n

1
αL(n)

)−1

(Sn − an)
d→ Gα (3.45)

where Gα is an α-stable distribution, L a suitable slowly varying function
and

αn =

⎧
⎪⎨

⎪⎩

E(ξ) = µ for α ∈ ]1, 2]
0 for α ∈ ]0, 1[
0 for α = 1 and F is symmetrical

The norming factor according to (3.45) is give by b−1
n = (n

1
αL(n))−1. Of

course it is difficult to determine the function L. Thus, one is interested to
find possibilities to choose bn = cn

1
α instead of bn = (n

1
αL(n)). This is the

case e.g. if E(ξ2) < ∞ resp. if ξ are α-stable distributed.
We introduce a notion for the general case. The random variables (ξk) with
corresponding distribution function F lies in the domain of normal attraction
of an α-stable distribution Gα (in sign F ∈ DNA(α)), if in (3.45) bn =
cn

1
α can be chosen instead of (n

1
αL(n)) (c > 0 suitable). The next result

characterizes the distributions F ∈ DNA(Gα).
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Corollary 3.46. Let F be in the domain of attraction of an α−stable distri-
bution. Then:

• We have F ∈ DNA(2) if an only if E(ξ2) < ∞.
• If α < 2, then F ∈ DNA(α) if and only if there are constants c1, c2 ≥ 0

with c1 + c2 > 0 such that

F (−x) ∼ c1x
−α and F c(x) ∼ c2x

−α, for x → ∞

Note that the complementary distribution function reveals a behavior as a
Pareto distribution (resp. an asymptotic as a special heavy-tail distribution).
Since in the IP traffic a Pareto distribution shows a good description of trans-
mission duration and data sizes, the last corollary plays an important rôle.
If F c(x) ∼ cx−α for an α ≥ 2 then F ∈ DA(2) and for α > 2 we even get
F ∈ DNA(2).

Relevance for IP Traffic

For applying the classical central limit theorem, the assumption have to be ful-
filled, e.g. V ar(ξi) = V ar(ξ1) < ∞. But exactly this can hardly be satisfied in
a adequate modeling for transmission times. The distributions are not Markov
without finite variance. Thus, one has to apply the generalized convergence
theorem 3.45 and its subsequent corollary. To guaranty convergence, we have
to fulfill assumption on P(|ξ1| > x) (= P(ξ1 > x) for positive random vari-
ables). This influences properties concerning the distribution F of the serving
time. For a general formulation as in 3.45 one certainly need the computation
of the function L. To get a simple modeling, we try to assume F ∈ DNA(α).
As we see for distributions F without second moment, this coincides with a
Pareto-like distribution. This is the motivation modeling transmission times
(or serving times) in the IP-based traffic by Pareto distributions, in case of
non-existent variance.
It is possible to formulate this ‘local’ version of convergence of the generalized
central limit theorem in a functional way. Bu this the Brownian motion enters
the scene and on the other hand the already known α-stable motion comes
into play. Both is of fundamental importance for the description of the IP
traffic, as we will see later.
We choose an F -distributed iid-sequence of random variables (ξn). Let 0 <
σ2 < ∞ be the variance. For k = 0, . . . , n we define at k

n

Sn

(
k

n

)
=

1
σ
√
n

(Sk − kµ)

where Sk = ξ1 + . . . + ξk and µ = E(ξ1). Between the points we interpolate
linearly. Thus, one gets a function Sn(·) : [0, 1] −→ R. The consequence is
the so called functional central limit theorem or the invariance principle of
Donsker.
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Theorem 3.47. It holds
Sn(·) → B·

in weak convergence, where in particular on [0, 1] we have for a continuous f

f (Sn(·)) −→ f(B·)

(see [76]).

How can a generalization of 3.47 be formulated?

Theorem 3.48. Let (ζn) be a sequence of iid ZV with distribution function
F , for which F ∈ DA(α) and Zα is an α-stable (with γ = 0 in the spectral
representation). Assume

(
n

1
αL(n)

)−1

(Sn − an)
d−→ Zα, for n → ∞

with adequate coefficient (an), Sn = ζ1+. . .+ζn and a slowly varying function
L. Then the sequence

(
n

1
αL(n)

)−1 (
S[nt] − a[nt]

)

converges weakly in the space of càdlàg functions D([0, 1]) to an α-stable mo-
tion (Xt) with X1 distributed as Zα (where [nt] denotes the greatest natural
number k with k ≤ [nt]).

The space D([0, 1]) is equipped with the so called Skorokhod-metric. (see [98,
S. 270]).
We know that the Brownian motion has continuous paths. This is no longer
true for the case α < 2. These processes have jumps, which occur at arbitrary
times with arbitrary heights. But there is a certain connection between par-
ticular α-stable processes (α < 2) and the Brownian motion, which we know
already.
But first we look at random sums. This is important for the Internet traffic.
For, if we denote by N(t) the amount of demands and if (ξk) is a sequence of
iid random variables, which indicates the serving time, then

S(t) = SN(t) =

{
0 for N(t) = 0
ξ1 + . . . + ξN(t) for N(t) ≥ 1

describe the total amount of demand at time t. In section 2.6 on renewal pro-
cesses we have dealt with the counting process (N(t)), t ≥ 0 and its properties.
Usually the process (N(t)) takes values in the integers, which is generated by
the sequence of random variables (Tn)n∈N, T1 ≤ T2 ≤ . . ., the so called arrival
times:

N(t) = sup{n ≥ 1;Tn ≤ t}
This reflects e.g. the number of calls in a network up to the time t. In a first
step we want to extend 3.45 to a random sum.
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Theorem 3.49. Let (ξn) be an iid sequence distributed according to F let
(N(t))t≥0 an independent counting process. Let N(t) → ∞ converge in prob-
ability, if t → ∞. Let F ∈ DA(α) for an α, 0 < α ≤ 2. Then theorem 3.45
holds, if one exchange n by N(t), i.e. there exists a sequence of constants (an)
and a slowly varying function L such that
(
N(t)

1
αL (N(t))

)−1 (
S(t) − aN(t)

)
−→ Gα, for t → ∞ in distribution

Here Gα is an adequate α-stable distribution.

Considering the general traffic theory, the process (N(t)) reveals special struc-
ture. As above let

N(t) = sup{n ≥ 1, Tn ≤ t}, t ≥ 0

where we represent the random variable Tn as sum of non-negative iid random
variables ζn

Tn = ζ1 + . . . + ζn

Such processes are called renewal counting processes. The homogeneous Pois-
son process is such a renewal counting process, if the ζn are distributed ex-
ponential with mean 1

λ . An interesting fact is stated in the following result.
Suppose E(ζn) = 1

λ ≤ ∞ (for E(ζn) = ∞ set λ = 0), then we have

N(t)
t

→ λ a.s.

A consequence from the renewal theorem 2.15 is the next fact. In this sense
we have to consider the following result. If the variance of ζn is finite, i.e.
σ2
ζ < ∞, then we get

(
σ2
ζλ

3t
)− 1

2 (N(t) − λt) → Φ in distribution

where Φ is the N(0,1) distribution. This is the classical central limit theorem
for renewal counting processes (see theorem 2.28 from section 2.6).
What can be said for S(t) if N(t) is a renewal counting process? Is it possible
to exchange in theorem 3.49 N(t) by a deterministic function e.g. of type
λt, as the theorem 2.15 pretends? Unfortunately this assertion is not true in
general. But under the assumption of a finite moment for ζn we can formulate
a strong law of large numbers , as a central limit theorem. Let‘s start with
the strong law of large numbers. Here, as in the theorem 3.45 a = 0, provided
p < 1 and µ = E(ξn), if 1 ≤ p < 2.

Theorem 3.50. Let E(|ξn|p) < ∞ for a 0 < p < 2:

• Suppose E(ζn) < ∞, then

t−
1
p (S(t) − aN(t)) → 0 a.s., for t → ∞
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• If in addition p ≥ 1 and E(ζpn) < ∞, then

t−
1
p (S(t) − µλt) → 0 a.s., for → ∞

Since N(t) → ∞ in distribution, we can formulate a central limit theorem
under mild assumptions.

Theorem 3.51. We assume for the joint distribution F of the (ξn) that F ∈
DA(α), 0 < α ≤ 2 and according to theorem 3.45 that

(
n

1
αL(n)

)−1

(Sn − ãn) −→ Gα in distribution

Here, Gα is an α-stable distribution, L a slowly varying function and ã = 0
for α ≤ 1 resp. ã = µ = E(ξn) if 1 < α ≤ 2:

a) If E(ζn) < ∞, then it holds
(
(λt)

1
αL(t)

)−1

(S(t) − ãN(t)) −→ Gα in distribution

In case of σ2 = E(ξ2
n) < ∞ we even have

(λσ2t)−
1
2 (S(t) − µN(t)) −→ Φ in distribution

where Φ is the N (0, 1) distribution.
b) In the case of 1 < α < 2 and E(ζpn) < ∞ for a p > α, we get

(
(λt)

1
αL(t)

)−1

(S(t) − λµt) −→ Gα in distribution

Example 3.52. In the sequel the above summarized results will be illustrated
by an example. The starting point is the traffic model GI/G/∞. That means a
waiting model with infinite serving space. The interarrival times are described
by ζi. Then the i-th arrival time, written as Ti, is represented

Ti = ζ1 + . . . + ζi

The process
N(t) = sup{n ≥ 1;Tn ≤ t}

indicates the amount of users being in the system t. What describes the ran-
dom variable ξn? This could be the length of the connection or the amount
of IP packets of the n-th users. Then by S(t) w denote the serving load in
the system. We did not describe any flow out of the system. In this model
the flow out of the system is described by the random variable ξn. We can
compute the asymptotic development for large times using the theorems 3.50
and 3.51. Let us consider in particular theorem 3.51. We use as assumption
for the distribution F ∈ DA(α) with 0 < α ≤ 2. This gives the possibility to
model the serving times resp. the serving amount by heavy-tail distribution
by the α-stable distribution Gα. Applying this to the IP traffic, we describe
two possible scenarios, which one could think of:
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• Assuming only the existence of the expected value of the interarrival times,
we get according to item a) in theorem 3.51 either the convergence in
distribution to a heavy-tail distribution Gα for α < 2 or according to the
central limit theorem towards a normal distribution, if the serving times
have a second moment. Comparing this with the classical theory, we see
that for Markov processes used for interarrival and serving times, the first
two moments exist. For applications in centralizing for computing this is
not easy to handle, since ãN(t) is not a constant resp. deterministic, but
a random variable.

• Assuming a better integration property of the interarrival times (i.e.
E(ζpi ) < ∞ for p > α), then we can improve:

By a suitable norming of slowly varying function L, applying the
power 1

α and the centralization with λµt the distribution converges
to Gα. The fact p > α means, that the interarrival times exhibits
with better moment property as the serving times.

3.4.2 Heavy-Tail Distributions in M/G/∞ Models

Influence of Pareto Distributions on Asymptotic Self-Similarity

We consider the M/G/∞ system with Poisson arrival process, a Pareto dis-
tributed serving or transmission time and a waiting queue model with in-
finitely many server. Let λ be the arrival rate. With (Xt)t∈N we denote the
number of user at time t. If F is the serving time distribution, then we know
according to [56]:

r(k) = Cov(Xt,Xt+k) = λ

∫ ∞

k

F c(x)dx = λ

∫ ∞

k

(1 − F (x)) dx (3.46)

Using the simple case of the Pareto distribution F (x) = 1−( a
a+x )α with a > 0

and 1 < α < 2 then by (3.46) follows:

r(k) = λ

∫ ∞

k

(
a

a + x

)α
dx = λ

aα

α− 1
(a + k)1−α

Hence, we have
r(k) ∼ k−dL(k), for k → ∞

where 0 < d = α − 1 < 1 and L(k) = λ aα

α−1 = const, which is a slowly
varying function. Thus, the time series is long-range dependent according to
our definition (3.20). But we will see that r(k) does not fulfill the equation

r(k) =
1
2
(
(k + 1)2H − 2k2H + (k − 1)2H

)

The process (Xt) is not exactly self-similar according to (3.5) because of the-
orem 3.11. Which relationship does exist between the Hurst coefficient and d?
According to (3.17) we get
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H =
2 − d

2
thus 1

2 < H < 1. The distribution of (Xt) is Poisson with mean λµ according
[57, p. 138], while µ is the expected value of the serving time, thus, µ =∫∞
0

F c(x)dx. In our case of the Pareto distribution we get

µ =
∫ ∞

0

(
a

a + x

)α
dx =

aα

α− 1
a1−α =

a

α− 1

Thus, we have finite marginal Poisson distribution with parameter aλ
α−1 for

α > 1.

Influence of Lognormal Distributions on M/G/∞ Models

We consider a lognormal distribution with density

f(t) =
1√

2π log t
exp
(
− (log t)2

2

)

As we showed in section 2.7.4 we get the asymptotic for the complementary
distribution

F c(x) ∼ 1√
2π log x

exp(− (log x)2

2
)

By using the relation (3.46) we deduce

r(k) ∼ λ

∫ ∞

k

1
log x

1√
2π

exp
(
− (log x)2

2

)
dx

∼ λ√
2π

∫ ∞

k

1

log xx
log x

2

dx

The counting process (Xt) is only long-range dependent if
∑∞
k=1 r(k) = ∞

(see 3.21). We estimate for sufficient large N ∈ N

∞∑

k=N

r(k) ∼
∞∑

k=N

(
λ√
2π

∫ ∞

k

1

log xx
log x

2

dx

)

∼ λ√
2π

∞∑

k=N

∞∑

x=h

1

log xx
log x

2

∼ λ√
2π

∞∑

x=N

x−N + 1

log xx
log x

2

Here, the integral was substituted by a discrete sum. The convergence prop-
erty will not be changed. Now, we have

∑∞
x=1 x

−2 < ∞. Parallel we get the
estimation

x−N + 1

log xx
log x

2

≤ x

x
log x

2

≤ 1
x2

And thus
∑∞
k=1 r(k) < ∞. Hence, the subexponential lognormal distributed

serving times does not induce long-range dependence.
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3.4.3 Heavy-Tail Distributions in On-Off Models

Simple On-Off Models

For a better understanding of the aggregated traffic and for parallel investiga-
tion of the impact of subexponential distribution we consider a simple on-off
model of data transmission. We want to illustrate the above processes – FBM
and α-stable processes. The model goes back to Taqqu et al. (see [264]). For
modeling it starts on the application level (see figure 1.5). We have a switch-
ing of active and silent intervals at the user (sender) and receiver. During
the active phase packets of fixed defined length are sent, while during the
silent phase nothing happens. The structure of transmission does not enter
the model – we solely assume a fixed number of users – sender and receiver.
This is an alternating renewal process, which we fix in a mathematical model.
The sequence of times (Tn)n∈N is given, and forms a discrete stationary re-
newal process. With F we denote the distribution of the interarrival times
(after the first arrival). This leads to a distribution of the variable T1 (and
hence because of the stationarity also for the other times), which has the form
(remember the theorem 2.22 and theorem 2.13)

F cT1
(t) = P(T1 > t) = F cI (t), t ≥ 0

where FI(t) is the integrated complementary distribution function of F , i.e.

FI(t) =
1
µ

∫ t

0

F c(x)dx

Assuming that there exists a first moment of the interarrival times, let
F, FI ∈S.

Fig. 3.12. Schema of a simple on-off model

Let (W (t))t≥0 be the stochastic process defined in the following way

W (t) =

{
1 if t falls in an on interval
0 if t falls in an off phase

The phases alternate, W (t) is a renewal process during the on-phase with
W (t) = 1 for these t. In a similar way we have consequently a reward 0
and so on. After an ‘on’ interval follows an ‘off’ interval and vice versa. We
show, that the process (W (t)) is long-range dependent in the sense of the
definition introduced in section 3.1.2, i.e. that the auto correlation function
Cor(W (0),W (t)) decay more slowly than exponential.
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Theorem 3.53. Let arrival times (Tn)n∈N be a stationary renewal process,
whose interarrival times are distributed according to F ∈ S and FI ∈ S. Let
(W (t))t≥0 be the above defined stationary renewal process with transmission
probability pij, i, j = 0, 1 (i.e. pij = P(W (Tn) = j |W (Tn−1) = i), n =
1, 2, . . .) and stationary remain probability πi, for i = 0, 1. Then

Cov (W (0),W (t)) ∼ Var (W (0))F cI (t), t → ∞

Note that F c(t) = o(F cI (t)), which means that the integrated distribution
shows a stronger heavy-tail behavior than the original distribution of the
interarrival times. For large times t the correlation Cor(W (0),W (t)) behaves
roughly speaking according to theorem 3.53 like the probability, that the on-
phase, which is active at time 0, will hold on at time t. Since we assumed
the heavy-tail property for F cI , then the autocorrelation decays consequently
subexponential. We can formulate some special cases, which are especially
useful for the applications, as we will discuss in the next subsection.

Corollary 3.54. Suppose the complementary distribution function has the
form F c(x) = x−αL(x), x > 0 with a slowly varying function L and α > 1.
Then we have for t → ∞:

Cov (W (0),W (t)) ∼ Var (W (0))
1

(α− 1)µ
t−(α−1)L(t)

Obviously for 1 < α < 2 the auto correlation function is no longer integrable.
Hence we have long-range dependence in the stronger sense. Since by the
assumption the ‘on’ as the ‘off’ phases possesses the same distribution in this
model, one has to consider the approach as not consistent with the observation
in telecommunication. But it is suitable for illustrating the influence of heavy-
tail distributions on the long-range behavior. The model will be extended in
the next subsection.

On-Off Models with Different Distribution for On and Off Phases

The non-negative iid random variables (ξon, ξn)n∈N describe the on-periods,
the non-negative iid (ηoff, ηn)n∈N the ‘off’ intervals. By Fon resp. Foff we
denote the distribution function of the ‘on’ resp. ‘off’ periods. We assume
the existence of the first moments µon = E(ξon) and µoff = E(ηoff) with
µ = µon + µoff. The above renewal process (W (t)) has interarrival times, dis-
tributed as ξon + ηoff. Thus, each renewal time is a starting point for a new
‘on’ phase and the interarrival times consists exactly of an ‘on’ and an ‘off’
interval. If we see an ‘off’ period, then the renewal time T1 appears immedi-
ately after an ‘off’ phase. Otherwise if we see an ‘on’ interval, then T1 appears
after the next ‘off’ period. To describe the interval [0, T1[, we introduce the
random variables ξI, ηI and B, which are stochastic independent to the triple
(ηoff, ξn, ηn). Here ξI has the integrated complementary distribution function
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Fon,I(x) =
1
µon

∫ x

0

F con(t)dt

ηI the corresponding distribution function

Foff,I(x) =
1
µoff

∫ x

0

F coff(t)dt

and B is a Bernoulli distributed random variable with P(B = 1) = µon

µ . Then
we can describe the time T1 in the form

T1 = B(ξI + ηoff) + (1 −B)ηI

Our process (W (t)) can be represented as

W (t) = B1[0,ξI[(t) +
∞∑

n=1

1[Tn,Tn+ξn+1[(t), t > 0

where (Tn) is the sequence of the renewal times.

Fig. 3.13. Scheme of a simple on-off model with observation time spot

Suppose t ≥ T1, then we have

W (t) =

{
1 for Tn ≤ t < Tn + ξn+1

0 for Tn + ξn+1 ≤ t < Tn+1

For t ∈ [0, T1[ we get

W (t) =

{
1 provided B = 1 and 0 ≤ t < ξI

0 else

With this construction (W (t)) is stationary in the stronger sense, since (W (t))
inherits this property from the renewal times (Tn) (see e.g. the result for
renewal processes from theorem 2.22). In addition we deduce

P (W (t) = 1) = E (W (t)) (3.47)

= P(B = 1)P(ξI > t) +
∞∑

n=1

P(Tn ≤ t < Tn + ξn+1)
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By the elementary renewal theorem we deduce for the renewal function H1

(note that W (t) is stationary and see theorem 2.22)

H1(t) =
∞∑

n=1

P(Tn ≤ t) =
t

µ
, t > 0 (3.48)

We want to quantify the representation of P(W (t)). The infinite sum in (3.47)
can be rearranged for t > 0 in the form

∞∑

n=1

∫ t

0

F con(t− u)1{Tn≤u}dP(u)
(3.48)
=
∫ t

0

F con(t− u)dH1(u)

=
1
µ

∫ t

0

F con(t− u)du

(3.48)
=

µon

µ
Fon,I(t)

With the definition of the random variable B we deduce

E (W (t)) = P(B = 1)P(ξI > t) +
µon

µ
F con(t)

=
µon

µ
(P(ξI > t) + P(ξI ≤ t)) =

µon

µ

We are ready to state the first major result of the model.

Theorem 3.55. Let F con(t) = t−αL(t), t > 0, where L ∈ R0 and α ∈ ]1, 2[.
Furthermore let F coff(t) = o(F con(t)) for t → ∞ and ξon + ηoff not trivial (i.e.
not P-a.s. 0). Then we have

Cov (W (0),W (t)) ∼ µ2
off

(α− 1)µ3
t−(α−1)L(t), for t → ∞

The proof is based on deep results from renewal theory for heavy-tail distri-
butions.
We define the aggregated input process up to time t

A(t) =
∫ t

0

W (u)du (3.49)

During the time interval [0, 1] the traffic load A(t) is streaming into a buffer
or storage. Since E(W (t)) = µon

µ , by the lay of great numbers we have

A(t)
t

−→ µon
µ

a.s., for t → ∞

Let r be the serving rate, where we write r(x) = r, if the buffer is not empty
(i.e x > 0). This means that there is transmission data in the network. Fur-
thermore let r(x) = 0, in case if the buffer is empty. For the stability of the
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system we need that µon

µ < r < 1 (otherwise the growth gets unstable). Next
let V (t) denote the storage process in the buffer, which can be regarded as its
load at time t. It will be described be the stochastic differential equation

dVt = dA(t) − r (V (t)) dt (3.50)

with a random variable V0 as initial value, choosing for A(t) a general stochas-
tic process, one can not give the equation (3.50) a rigorous definition. But we
have to understand the integral in (3.49) pathwise (i.e. for each ω ∈ Ω) and
the equation (3.50) can be considered as pathwise differential equation. The
equation (3.50) means, that the change in the storage process is on the one
hand determined by the change in the load process minus the serving rate,
where the serving rate depends on the instantaneous amount of storage. Dur-
ing the ‘on’ period the incoming data rate of (1−r) will be put into the buffer,
while during the silent period data with a rate of r is released. The sequence
(Tn) consists of the renewal times of the storage process (V (t))t≥0, stationary
ergodic. The difference of V (Tn) and V (Tn+1) between the renewal times Tn
and Tn+1 can be written in the form

VTn+1 = (VTn
+ (1 − r)ξn+1 − rηn+1)

+
, n ∈ N

The increments have the expected value of

E ((1 − r)ξn+1 − rηn+1) = (1 − r)µon − rµoff = µon − rµ < 0

Thus, VTn
satisfies the recursive equation

V0 = 0
VTn+1 = (VTn

+ (1 − r)ξn+1 − r(Tn+1 − Tn))
+

= (VTn
+ (1 − r)ξn+1 − rηn+1)

+

For the asymptotic we get with the help of [11, Lemma 11.1.1]

VTn

d−→ VT∞ = sup
n≥1

n∑

i=1

((1 − r)ξi+1 − rηi+1)
+

The stationary waiting time distribution will be denoted by π and the load
rate as usual by ρ = arrival rate/serving rate = (1−r)µon

rµoff
. Then we get for the

waiting time distribution the following theorem.

Theorem 3.56. Denoting by π the distribution function of VT∞ and setting
ρ = (1−r)µon

rµoff
we have

π ∈ S ⇔ Fon,I ∈ S ⇒ πc(x) ∼ ρ

1 − ρ
F con,I

(
x

1 − r

)
, for x → ∞
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Suppose we choose F c in the form x−αL(x), then by the theorem of Karamata
(see theorem 2.49) it follows the next corollary.

Corollary 3.57. If F c(x) = x−αL(x) for α > 1 and L ∈ R0 slowly varying
(x > 0), then we have

πc(x) ∼ ρ

1 − ρ

(1 − r)α−1

µon(α− 1)
x−(α−1)L(x) =: bx−(α−1)L(x), for x → ∞

The cyclic behavior of the buffer content reaches its maximum not at the
times Tn, but at Tn + ξn+1. The following result is hence not surprisingly. It
reveals that V (t) shows a larger tail as VTn

.

Theorem 3.58. Let F con(x) = x−αL(x), x > 0 for α > 1 and L a slowly
varying function. Let b as in 3.57. Then it follows Vt

d−→ V∞. For V∞ we get
the distribution

P(V∞ > x) ∼
(
b +

(1 − r)α−1

µ(α− 1)

)
x−(α−1)L(x), x → ∞

Figure 3.14 shows an example of an (empirical) heavy-tail distribution of
transmitted video files in the WWW traffic in a logarithmic scale. It reveals
for an α = 1.3, which justifies the application of the upper result in the WWW
traffic.
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Fig. 3.14. CCDF of measured video file sizes in WWW traffic

3.4.4 Aggregated Traffic

Willinger et al. [263, 264] were the first to derive from a simple on-off model
self-similarity and long-range dependence of the data traffic. We will follow
their arguments and hence, consider a traffic load process A(t) in more de-
tail. The self-similar process can be regarded as superstition of many simple
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renewal processes with renewal values 0 or 1, where one can describe the
construction in the following way. The on-off periods alternate without over-
lapping. Thus, we choose the following approach for the distribution of the
random variables ξon and ηoff

F con(x) = x−αonLon(x), 1 < αon ≤ 2 (3.51)
F coff(x) = x−αoffLoff(x), 1 < αoff ≤ 2 (3.52)

where Lon and Loff are slowly varying function. For each time the load process
A(t) represents the amount of the ‘on’ phase. Such a model can represent a
network with several server, where every server transmit data with constant
rate or not.
We keep in mind the results of the previous sections, where we derived a
waiting queue estimation for serving resp. connection time on the basis of
the classical traffic theory. But we also know that there are subexponential
distribution (like the lognormal distribution), which can not be represented in
the form (3.51). These distributions did not indicate long-range dependence
in the M/G/∞ model. First we compute the variance the load process A(t)

v(t) = Var (A(t)) = Var
(∫ t

0

W (u)du
)

(3.53)

= 2
∫ t

0

(∫ u

0

γ(v)dv
)
du

where
γ(v) = Cov (W (0),W (v)) = E (W (v)W (0)) − E (W (0))2

describe the covariance function of W (t). The last equation in (3.53) can be
seen in the following way: Remembering the result from theorem 3.55, it tells
us roughly speaking:

Suppose F coff(x) = o(F con(x)), then for the covariance function holds

γ(v) ∼ const · v−αon−1L(v), v → ∞

with a slowly varying function L.

Extending and generalizing the result from theorem 3.55 to A(t), we have

v(t) ∼ σ2t2H (3.54)

with a constant σ > 0 and H as Hurst exponent given by

H =
3 − min(αon, αoff)

2
(3.55)

The proof to (3.54) resp. (3.55) is slightly complicated and for the details the
reader is referred to the original literature (see [250]).
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The asymptotic in (3.54) is crucial for the subsequent results. Easily seen the
case αon = αoff = 2 implies a Hurst parameter 1

2 , what immediate leads to the
Brownian motion in the case of Gaussian processes. These results are valid for
just one user. So we ask, what will happen in the case of arbitrary many? We
investigate several asymptotics, i.e. the behavior for large time resp. averaging
over large time intervals and over large number of users. The results reflect
an asymptotic behavior, which means, we get an asymptotic self-similarity.
For this let M be the number of users and respectively W (m)(t) the load at
time t for the m-th user. If we assume an identical distribution for the single
user (homogeneous sources), then we receive for the variance Var(W (m)(t)) =
Var(W (t)) of the m-th user. First we increase the number of users resp. appli-
cations. Since we do not observe any influence of time, we can apply the central
limit theorem. Then we get for the convergence in distribution according to
the central limit theorem (note that it holds Var(W (t)) < ∞)

lim
M→∞

1
M

1
2

M∑

m=1

(
W (m)(t) − E(W (m)(t))

)
= G(t), t ≥ 0

Here, G(t) is a Gaussian random variable with mean 0, i.e. (G(t))t≥0 is a
centralized Gaussian process. It is stationary, since W (m)(t) is stationary for
all m ∈ N, and for the covariance function we deduce γ(t) (identical distri-
bution!). We continue with the time scaling. For this we stretch the time by
the factor n > 0, as shown in the figure in section 3.1.2. For the derivation we
choose a value 1 < α ≤ 2 and compute the normalized integral

n− 1
α

∫ nt

0

G(u)du

What value does α actual have? For the answer we transform

∫ nt

0

G(u)du =
∫ nt

0

lim
M→∞

1
M

1
2

M∑

m=1

(
W (m)(u) − E

(
W (m)(u)

))
du

= lim
M→∞

1
M

1
2

∫ nt

0

M∑

m=1

(
W (m)(u) − E

(
W (m)(u)

))
du

= lim
M→∞

1
M

1
2

M∑

m=1

(∫ nt

0

W (m)(u) − E
(
W (m)(u)du

))

= lim
M→∞

1
M

1
2

M∑

m=1

(A(nt) − E (A(nt)))

The process (A(t)) has a covariance function of the form σt2H . To get con-
vergence in the distributive sense and that the limit process reveals the cor-
responding covariance structure the value has to be α = 1

H . Hence, it follows
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lim
n→∞

1
nH

∫ nt

0

G(u)du = σBH(t), t ≥ 0 (3.56)

Here the process σBH(t) possesses Gaussian marginal distributions, stationary
increments (since this is true for the integral) and the variance can be writ-
ten in the form σt2H . But this meets exactly the definition of the fractional
Brownian motion with Hurst exponent H (see in addition theorem 3.16).
The result tells us that by appropriate normalization, assuming the number of
users tending to infinity and finally averaging over large time intervals, then
the load process converges towards a FBM with Hurst parameter H. What
happens, if one switches the order of convergence, i.e. first averaging over the
time intervals (hence for each single user) and then tending the number of
users towards infinity? Then the results looks different. Let’s consider it more
closely. For this we choose α = min(αon, αoff) and deduce for the convergence
in distribution

lim
M→∞

lim
n→∞

1
M

1
α

1
n

1
α

Tt∫

0

M∑

m=1

(
W (m)(u) − E

(
W (m)(u)

))
du = const · Sα, t ≥ 0

where (Sα(t))t≥0 is an α-stable Lévy process (or an α-stable motion) with in
general infinite variance.
Expressing the result concerning the load for all users, thus, A(M)(t) =∫ t
0

∑M
m=1 W

(m)(u)du, so we get the different convergences in distribution

lim
n→∞

lim
M→∞

A(M)(nt) − E
(
A(M)(nt)

)

nH
√
M

= σBH(t), t ≥ 0

and

lim
M→∞

lim
n→∞

A(M)(nt) − E
(
A(M)(nt)

)

nH
√
M

= const · Sα(t), t ≥ 0

A more detailed derivation can be found in [264].
What happens, if one performs the limits simultaneously? For this we choose a
function M(n) with values in the natural numbers, not decreasing and tending
towards ∞ for n → ∞. There are two cases to distinguish:

• If limn→∞
M(n)
nα−1 = ∞ (e.g. for M(n) = nκ, κ > α − 1), then the number

of users grows faster than the width of the time windows. We get

lim
n→∞

A(M(n))(nt) − E
(
A(M(n))(nt)

)

nH
√
M(n)

= σBH(t)

• Considering the other extreme, i.e. limn→∞
M(n)
nα−1 = 0 (e.g. for M(n) = nκ,

κ < α − 1), then we stretch the time interval faster than the number of
users increases, we conclude

lim
n→∞

A(M(n))(nt) − E
(
A(M(n))(nt)

)

nH
√
M(n)

= const · Sα(t)
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Of course we ask, in which way this model reflects the reality resp. in which
situations this model can be applied best.

On-Off Models with Poisson Arrivals – Embedding into M/G/∞
Approach

The model based on Cox assumes a infinite source. With an intensity λ the
sources send data according to Poisson arrival. The distribution Fon describes
the transmission time and is heavy-tailed according to

F con(x) ∼ cx−α, α ∈ ]1, 2[

Thus, we have an average transmission time µon, without finite variance (since
α < 2). The single transmissions of the sources are iid. After the transmission
each source is silent. This model can be used to describe simple applications.
For this we attach to each application its transmission time, which enters the
network according to a Poisson arrival process and which is send through the
network according to a heavy-tail distributed connection time. This model is
in a certain sense equivalent to the one from section 3.4.4, because the rate λ
corresponds to the limit M → ∞. Remembering the derivation of the Poisson
distribution, the relationship is evident. In correspondence to section 3.4.4 let
W (u) be the amount of active sources at time u > 0. Then we define

A(t) =
∫ t

0

W (u)du (3.57)

as aggregated load at time t. It is clear that A(t) depends on the arrival process
and thus on λ. If one generally denotes with λ(T ) the aggregated arrival rate
up to time T , then one has to require first

lim
T→∞

λ(T )
Tα−1

= ∞

and one has the convergence in distribution

lim
n→∞

A(nt) − E (A(nt))√
λT

3−α
2

= C1B
(H)
t , t ≥ 0 (3.58)

where (B(H)
t ) is a fractional Brownian motion with Hurst exponent H = 3−α

2 .
The arrival rate at time T is λ(T ) (hence, not stationary), and we can consider
this value as expected value of the intensity of the counting process N(t), i.e.,
λ(T ) = E(N(T ))

T . Thus, comparing with the renewal theorem 2.15 the condition
(3.57) is a weighting growing condition for the interarrival times.
But if we have

lim
T→∞

λ(T )
Tα−1

= 0

then we can deduce again the convergence in distribution
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lim
n→∞

A(nt) − E (A(nt))√
λT

3−α
2

= C2Sα(t), t ≥ 0

with an α-stable motion. According to the theorem of Little in Proposition 2.5
we get E(A(t)) = µonλt. This convergence (3.58) was first deduced by Kurtz
[152], while the treatment of the cases is due to [181].
The representations in the section 3.4.4 serve showing that using the classical
approaches in traffic theory and the on-off model we get in the limit self-
similar processes exhibiting long-range dependence. Thus, for modeling the
IP traffic one immediately uses these processes as starting point. But one
needs for consideration of the serving times and the physical structure of the
traffic the approach of the classical traffic or the on-off models. Without them
a satisfaction a use of these processes would be unthinkable.

3.5 Models for Time Sensitive Traffic

3.5.1 Multiscale Fractional Brownian Motion

With this section we start transferring the Norros model with the Brown-
ian motion as driving process to a multiscale view. Later we go on to the
multifractal picture.
Trying to model the time sensitive traffic, one faces clear presumption to
guaranty a necessary minimal quality. Though at this stage we do not care
for performance, this model of multiscale Brownian motion can give some
good insight, how a model can be applied for maintenance resp. improvement
of the QoS of the transmitted data and services. For this a necessary lower
bound Dreq will be introduce, which describes the maximal allowed delay.
Simultaneously we indicate by di,j the delay between the POPs i and j. This
represents a random variable, computed from the model. Afterwards we define
a bound or threshold ε > 0, resulting from the necessity and QoS requirements
and stress

P
(
di,j > Dreq

)
< ε (3.59)

The condition (3.59) describes the required quality.
In section 1.1 we already mentioned the modeling and dimensioning in a IP
network and remarked the two fundamental time scalings. Here, we present a
approach due to Diot, Fraleigh and Tobagi [95], for going a first step towards
modeling on several scales. The mentioned model, as a example, is based on
the approach due to Norros, which we dealt with before. Thus, we use the
notations from section 5.1. The queueing length at time t = 0 is given by

Q0 = sup
t≥0

(At − Ct)

where C is the constant capacity in the network. The probability that the
queue surpasses a length x, can be computed according to
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P(Q0 > x) = P

(
sup
t≥0

(At − Ct) > x

)

which turned out to be difficult. Hence, we have derived in section 5.1.1 an
lower estimation

P(Q0 > x) = P

(
sup
t≥0

(At − Ct) > x

)
(3.60)

≥ sup
t≥0

P ((At > x + Ct))

This estimation is kind of rough, but as seen in 5.1.1, it turns out well in
logarithmic scale for large values of x. Computing the value b (e.g. in byte)
the waiting time for an IP packet, we get the amounts:

• x
C as aggregated time of the waiting queue and

• b
C as serving time in the network.

The distribution of the stationary waiting time W∞ can be determined im-
mediately from the waiting queue distribution

P(W∞ > d) = sup
t≥0

P(At > C(t + d))

Since we are not interested in the serving time and since it is significant
smaller than the waiting time, we do not care about it any longer. In figure
3.15 the empirical distribution function of the averaged traffic was computed
(from time intervals 100 ms until 10, 000, 000 ms). The x-axis represents the
corresponding data rate in Mbit/s. We have an OC-3 connection with a data
rate of 155 Mbit/s. Each IP packet has a maximal volume of 1, 500 byte. Thus,
the pure transmission time for a single IP packet with maximum length over an
OC-3 connection takes only 77 µs. We realize that the empirical distribution
function resembles a Gaussian distribution (in particular the figures for 1,000
and 10,000 ms).
The correlation of the FBM γ(t) is, as known, decaying with scale t2H−2 (see
theorem 3.32). As we discussed before, we can model the data traffic with the
help of the one dimensional FBM very well on large scales. The multifractal
wavelet model respectively the cascade model from sections 3.8.2 and 3.8.5
try to incorporate both scales, the large and the small scales. Since these
models are introduced for the analysis on small scales, and for large networks
this distinction is not necessary needed, we will proceed with an simplified
multiscale model.
In figure 3.16 the variance of the averaged traffic over different scales t is
shown. As already seen in figure 3.15, there is an edge between the time scale
of 100 ms and the other, which represents a qualitative difference. Thus, it
is understandable in figure 3.16 that the edge in the curve appears in the
estimated traffic at that point where the influence of the protocol enters. This
motivates the approach to use not only a single Hurst parameter H, but to
distinguish at least two sales. We will present the analytic part in the sequel.
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Fig. 3.15. Empirical distribution of data amounts in the time range from 16:00 to
16:05 for the different scalings t = 102, 103, 104, 105, 106, and 107 ms (from above
left to bottom right)

(MK)-Fractional Brownian Motion

The multiscale-FBM is an extension of the standard FBM, where one does
not have a fixed Hurst parameter H, but where one introduces several time
dependent exponents into the model. For this let H0 be the Hurst parameter
for large times and H1 for small time scales. It is possible to achieve a similar
description using different FBM approaches; we will come back to this issue,
when dealing with multifractal models (see also the remark at the end of the
section). This model, described here, has the decisive advantage of stationary
increments, while this property is not fulfilled by other approaches, as we
will see later. There, only locally the FBM is reflected, with its properties of
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Fig. 3.16. Variance of the aggregated traffic over different scales according to the
traffic from figure 3.15

self-similarity and stationary increments. This suffices to recapture the basic
results for H-sssi processes from section 3.1.2 as seen later in section 3.8.1.

Description of the Model

We use the representation of an FBM by its Fourier transformation:

BH(t) =
∫ ∞

−∞

eiωt − 1
C(H)|ω|H+ 1

2
dB̂(ω)

where dB(ω) is the Wiener measure, dB̂(ω) its Fourier transform (see 3.19)
and C(H) = ( π

HΓ (2H) sin(Hπ) )
1
2 (see the representation (3.12) from section

3.2.2). The (MK)-Fractional Brownian Motion ((MK)-FBM) is the general-
ization of this representation, where H is a function of time resp. the inverse
of its frequency. We have to stress that other than in section 3.8.1 we used
the Fourier transform, where directly the definition of the FBM enters. Thus
we define the (MK)-FBM process (Xη) by

Xη(t) =
∫ ∞

−∞

eiωt − 1
η(ω)

dB̂(ω), −∞ < t < ∞

We have:

• For i, . . . ,K (K ∈ N represents the number of the Hurst parameter) let
ωi, ai,Hi ∈ R+ × R+×] 12 , 1[, such that

η(ω) =
C(Hi)|ω|Hi+

1
2

√
ai

with ωi≤ω<ωi+1 and the property 0=ω0 <ω1 < . . . <ωK <ωK+1 =∞.
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• In addition, η(−ω) = η(ω) so that the integral can be defined for ω < 0.

Using the Fourier transform the small times correspond to large frequencies,
and vice versa one maps higher time scales to small frequencies. This defined
process has Gaussian marginal distributions and stationary increments (see.
[226]). We get for the variance at time difference δ > 0

Var(δ) = E
(
(Xη(t + δ) −Xη(t))

2
)

= 4
K∑

j=0

δ2Hj
aj

C(Hj)2

∫ δωj+1

δωj

1 − cosu
u2Hj+1

du

3.5.2 Norros Models for Differentiating Traffic

The priority traffic is only considered here as compounded traffic and sep-
arated in individual flows, though in routers the single flows are separately
determined and classified according to the priority classes. The priority traffic
is built up in different classes, which are adjoined a special QoS. In addition,
this can be implemented if there is an admissible description.
We use as stochastic driving process the FBM, i.e. the Gauß, since we may
assume that the traffic is approximative Gaussian distribution according to
the central limit theorem. Within the elastic traffic the queueing length anal-
ysis is not important, since TCP imposes a strong influence on the end-to-to
connections. Differently we detect the situation for the time sensitive traffic.
There, the queueing is decisive and for maintaining the QoS its understanding
is crucial. In the priority traffic the FIFO queueing are of no meaning. Thus,
it is important, how the queueing behave, provided the incoming traffic is
Gaussian.
We start with the description of the fundamental model according to Norros:

a) We consider n different priority classes, which are classified according to
its importance: Class 1 has highest priority, class n the lowest.

b) We consider a link and denote by (A(j)
t )t∈R the aggregated traffic on this

link, belonging to calls j. We simple set A(j)
0 = 0.

c) The increment, i.e. the additional incoming traffic in the interval ]s, t], is
computed according to A(j)(s, t) = A

(j)
t −A

(j)
s , −∞ < s < t < ∞.

d) Mixing different classes i, j, we obtain accordingly

A
(i,j)
t = A

(i)
t + A

(j)
t

e) We assume that the particular processes (A(j)
t )t∈R are stochastic inde-

pendent. Every process A
(j)
t is modeled as continuous Gaußprocess with

stationary increments. This lead to the expression

A
(j)
t = mjt + X

(j)
t , Var(Xj)

t ) = γj(t)
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where X(j)
t are centralized Gaussian process with covariance function (thus

an FBM)

Cov
(
X(j)
s ,X

(j)
t

)
= γ(s, t) =

1
2

(γj(s) + γj(t) − γj(s− t))

To exclude certain pathological cases, we assume

There is an α ∈ ]0, 2[: lim
x→∞

γj(x)
xα

= 0, for all i = 1, . . . , n

Here, mj is the mean data rate. We may not assume mj = 0, since each
class enjoys a different load rate. For the Gauß-traffic the values mj and
γj , are easy to estimate.

f) By C we denote the link capacity.

Inductively we define the queueing process and start with class 1

Q
(1)
t = sup

s≤t

(
A(1)(s, t) − C(t− s)

)

Combining class 1 and class 2, we obtain

Q
(1,2)
t = sup

s≤t

(
A(1,2)(s, t) − C(t− s)

)

Thus, the waiting queue for class 2 can be written according to

Q
(2)
t = Q

(1,2)
t −Q

(1)
t

Generally we may say

Q
(j+1)
t = Q

(1,...,j+1)
t −Q

(1,...,j)
t

We sum up all classes to

Qt = sup
s≤t

⎛

⎝
n∑

j=1

A(i)(s, t) − C(t− s)

⎞

⎠

Note that modeling using Gaussian processes the waiting queue can attain
negative values – an undesired effect, which do not have a decisive influence on
the further analysis. Nevertheless we can avoid this effect by using the discrete
time approach for describing the traffic, to keep the individual waiting queue
from becoming negative.
The virtual queueing time of class j at time t will be denoted by V

(j)
t . This

is the time τ , necessary for a unit entering the system at time t leaving the
system at time t+τ . We can describe V (j)

t differently. It is the smallest τ , such
that the whole buffered traffic of higher or equal priority as j and the new



3.5 Models for Time Sensitive Traffic 251

incoming traffic in interval [t, t + τ ] will be transmitted with higher priority
than j before t + τ . In addition

V
(1)
t =

Q
(1)
t

C
, V

(j+1)
t = inf

{
s ≥ 0;Q(1,...,j+1)

t + A(1,...,j)(t, t + s) ≤ Cs
}

For technical reasons we need the space of paths

Cw(R) =
{
f : R −→ R; f is steady, f(0) = 0, lim

x→±∞

f(x)
1 + |x|

}

On Cw(R) we define a suitable norm

‖f‖w = sup
{

f(x)
1 + |x| ;x ∈ R

}

With this (Cw(R), ‖ · ‖w) will be a separable Banach space (see e.g.[74]).
Simultaneously we fix the probability space

Ω = Cnw(R) the n-times cartesian product

and
F = B(Ω) the Borel σ-algebra on Cnw(R)

(see [74]). Furthermore we choose the probability measure P as unique mea-
sure on Ω in such a way that the random variable X

(j)
t (f1, . . . , fn) = fj(t)

j = 1, . . . , n, define independent Gaussian processes with covariance function
γj(·, ·). With other words we choose a projection on the j-th component of
the Gaussian margibnal distribution with given covariance matrix. This is as
well known uniquely determined (see e.g. [38, 98]). The necessary probability
reads as

lim
t→∞

X
(j)
t

t
= 0 a.s.

(due to the definition of the space Cw(R)).
If we want to obtain informations for the queueing time {Qt > x}, i.e., on the
probability that the buffer containment lies above a treshold x, we transform
the set to

{Qt > x} =
{

sup
s≤t

Xt −Xs
x + (C −m)(t− s)

> 1
}

(3.61)

The process

Y (x,t)
s =

Xt −Xs
x− (C −m)(t− s)

is a centralized Gaussian process. Hence, (3.61) is equivalently with determing
the marginal distribution of the supremum sups≤t Y

(x,t)
s of a centralized Gaus-

sian process. Numerical results are complicated, as we will treat and see in
the section 5.1.1. But as there we can find a lower bound
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P(Qt > x) ≥
∑

s≤t
P
(
Y (x,t)
s > 1

)
= Ψ c

(
x + (C −m)t∗
√
γ(t∗)

)

where Ψ c is the complemented distribution function of the standard Gaussian
distribution and t∗ > 0 is chosen such that the expression

(x + (Cm)t)2

γ(t)
, t > 0

will be minimized (t∗ = t∗x depends on x). The value t∗ characterizes the time
in question that a waiting queue of length x can be observed. Building the
logarithm we have the approximation

P(Qt > x) ≈ exp
(
− ((x− C −m)t∗)2

2γ(t∗)

)
(3.62)

In simulations it can verified that (3.62) is also an upper bound, without
finding a rigorous mathematical proof. Another possibility consists in approx-
imating a discrete waiting queue (Qt)t∈N by appropriate multiplication with
a scalar p, in such a way that

p · lim
x→0+

exp
(
− ((x− C −m)t∗)2

2γ(t∗x)

)
≈ P(Qt > x)

There are good approximations for a discrete waiting queue not being empty

P(Qt > 0) ≈ 2P(Aδ > Cδ)

(δ > 0 is the length of a time interval). We have to keep an eye on the geometry
of the set {Qt > x}. It is the union of the sets of the form {A(s, t)−C(t−s) >
x} over s. This in turn are half spaces and thus, the complement of a convex
sets, containing the origin.
First we want to look at the case, how the waiting queue of size x builds
up in our model. The waiting queue principle does not influence this at this
stage since we have a queueing system and the over all traffic is not divided
in classes. First we realize how we detect the most probable paths.

Proposition 3.59. The most probable path vector f∗
x in {Q(1,...,k)

0 ≥ x} has
the form

−x + (C −m)(−tx)
∑k
j=1 γj(tx)

(γ1(tx, ·), . . . , γk(tx, ·))

where tx minimizes the expression

w(t) =
(x + (C −m)(−t))2

∑k
j=1 γj(t)



3.5 Models for Time Sensitive Traffic 253

Let us briefly discuss the notation of the most probable path vector. Basis is
the principle of largest deviation for Gaussian distribution in Banach spaces
(see e.g. [44] and [191]). As e.g described in [74], we can find for the autoco-
variance functions γi(·, ·) of the particular Gaussian processes (X(i)

t ) Hilbert
spaces Hi ⊂ Cw(R). The cartesian product H = H1×· · ·×Hn will be equipped
with the scalar product

〈(g1, . . . , gn), (h1, . . . , hn)〉H =
n∑

i=1

〈gi, hi〉Hi

to define again a Hilbert space H ⊂ Cnw(R). In our situation we define for
ω ∈ Ω, i.e., ω = (g1, . . . , gn) ∈ Cnw(R):

I(ω) =

{
1
2‖ω‖2

H for ω ∈ H
∞ else

The significance lies in the statement

if F ⊂ Ω is closed: lim sup
k→∞

log P

(
X√
n
∈ F

)
≤ − inf

ω∈F
I(ω)

if G ⊂ Ω is open: lim inf
k→∞

log P

(
X√
n
∈ G

)
≥ − inf

ω∈G
I(ω)

To provide a possible most sharp estimation we have to find a path ω, min-
imizing I (because of inf). This path will be called the most probable path.
We can consider exp(−I(ω)) as probability density (similar to the exponential
distribution) with respect to P. Hence, the most probable path means maxi-
mizing this density. The interested reader is referred to the literature for more
information [9, 176, 266].
The most probable path vector, minimizing I(ω) in the set

{
A(1,...,k)(t, 0) ≥ y

}
, t < 0 and y > −mt

can be expressed as conditional expectation

E
(
(X(1)

s , . . . , X(k)
s )|A(1,...,k)(t, 0) = y

)

The reason for this is based on the fact that the conditional distribution of
a Gaussian random vector w.r.t. a linear condition is gain Gaussian and the
expectation equals the value, where the density attains its maximum. Figure
3.17 illustrates the most proabale vector f∗ graphically.

Example 3.60. We choose C = 1, m1 = 0.2, m2 = 0.4, γ1(t) = |t|1.7, and
γ2(t) = [t]1[1 − t]1, where [t]1 = t mod 1. Thus, the first class is driven by
a FBM, while the second is a periodical Brownian motion. In this case the
minimizing function w(t) is not convex and thus, tx is not unique.
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{Q(1,...,k)
0 ≥ x}

f∗

{A(1,...,k)(t,0) ≥ x}

Fig. 3.17. Scheme of the most probable path vector as the perpendicular on the
tangent at the circle

Now we turn to the case of an empty buffer and want to determine the waiting
queue. In different articles it was stated that the waiting queue in a two class
system can be approximated by the one of the lower class 2. This can be very
applied for thso called processor sharing models. If the most probable path
vector f∗

x is determined according to proposition 3.59, then we set Q(1)
0 (f∗

x) =
0 and get

P
(
Q(2) ≥ x

)
≈ P

(
Q(1,2) ≥ x

)
≈ exp

(
−1

2
‖f∗
x‖2
R

)
= exp

(
−1

2
h(tx)

)

Tough in the analytical approach it is often difficult to prove whether the
vector corresponding to x is the most probable, we can determine approxi-
mately for two classes. We call this approach the coarse empty link approxi-
mation(ELA). For this we set

f∗
x,1(tx, 0) + m1|tx| ≤ Cµ1|tx| (3.63)

i.e., that the most probable incoming rate of class 1 is smaller than the guar-
anteed part in the interval [tx, 0]. For this µ1 = 1 is defined for the priority
class 1.
We can deduce the following interesting facts. As usual we assume a system
with two priority classes. Without loss of generality let m1 = 0. The condition
(3.63) reads as

x

tx
−m2 ≤ γ2(tx)

γ1(tx)
C

In particular we have m2 ≥ x
tx
, where on the other hand tx depends on the

presumptions. If the variance of the particular load processes has simple struc-
ture, e.g. γi(t) = aiγ(t), i = 1, 2 with a fixed function γ, then tx is independent
of the constants ai. If m2 surpasses a certain threshold we encounter roughly
speaking an ELA case independent of the variational coefficients ai. This can
be e.g. observed, if both driving fractional Brownian motions enjoy the same
Hurst exponent H. Then we deduce tx = − Hx

(1−H)(C−m2)
and hence, we get the

threshold m2 ≥ 1−H
C . The higher the H the more bursty the traffic and the

lower the threshold, which will lead to a larger waiting queue for the class 2.
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We turn now to the full link approximation (FLA). Again we examine only two
traffic classes. It is possible to transfer the results to a processor sharing model,
but the expression will turn significant more complex and the estimations are
no longer reliable. We will give a heuristic approach. In a processor sharing
system we have two weights g1 and g2, where we assume g1 = 1 in in a
priority system. Let us determine P(Q(2)

0 ≥ x). First, we compute the most
probable path f∗

x for the set {Q(1,2)
0 ≥ x}. Suppose we have Q

(1)
0 (f∗

x) = 0,
we can return to the determination of the empty buffer. Hence, we assume
Q

(1)
0 (f∗

x) > 0. This is extraordinary in a priority system. In processor sharing
systems this is valid at least for one class.
The idea reads as follows. Every additional superfluous built up waiting queue
diminishes the probability for the path vector f∗

x . Since we want to stress that
Q

(2)
0 is large, we have to impose that Q

(1)
0 close to 0 for the optimal path

f∗
x = ω ∈ Ω. Hence, a waiting queue in class 2 is at least of size x, provided

the class1 uses the guaranted traffic amount g1C without waiting queue and
in class 2 we ave a garanteed capacity plus the surplus x. We simplify a little
bit more and set for t < 0 the condition

{
A(1)(t, 0) = g1C|t|
A(2)(t, 0) = g2C|t| + x

(3.64)

Now we determine the most probable path, satisfying (3.64), and minimizing
the norm w.r.t. t. We summarize the above considerations in the following
theorem.

Theorem 3.61. Full link approximation (FLA): For the most probable path
vector fvlax , fulfilling (3.64) holds

fvlax (·) =
(

(g1C −m1)t∗x
γ1(t∗x)

γ1(t∗x, ·),
−x + (g2C −m2)t∗x

γ2(t∗x)
γ2(t∗x, ·)

)

where t∗x is the value minimizing the function

V (t) =
(g1C −m1)2t2

γ1(t)
+

(x− (g2C −m2)t)
2

γ2(t)

Remark 3.62. In the case that both classes are driven by a Brownian motion
the (FLA) reflects the exact most probable path in the not-(ELA). In gen-
eral the path in (FLA), subordinated to the class 1, does not use the whole
guaranteed capacity on the interval ]t∗x, 0[. Hence, a part of the calls-2 traffic
is wasted and there is a small waiting queue in class 1, while the one in class
2 turns out smaller.

As already mentioned simulations show that

P(Q(2)
0 ≥ x) ≈ exp

(
−1

2
‖fvlax ‖2

R

)
= exp

(
−1

2
v(t∗x)

)
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serves as an upper bound. For a further approximation, but this time for the
lower bound, we obtain

P(Q(2)
0 ≥ x) = P(E) = Ψ c

⎛

⎝

√
((g1C −m1)t∗x)

2

γ1(t∗x)
+

(x + (g2C −m2)t∗x)
2

γ2(t∗x)

⎞

⎠

We want to list the steps, how the waiting queue in a priority resp. processor
sharing system can be determined. For this purpose we approximate the set
{Qt > x} in five steps:

a) If j = 1, i.e., we consider {Q(1)
t > x}, and the server has priority, then we

apply the approximation (3.62) and substitute m by m1 resp. γ by γ1.
b) We determine the most probable path vector f∗

x corresponding to the
results {Q(1,...,n)

0 > x}. This will be handled in the sequel.
c) If Q(1,...,n)\{i})

0 (f∗
x) = 0, then proceed to step d), otherwise to step e).

d) If the buffer is empty, thus Q(1,...,k)\{i})
0 (f∗

x) = 0, then f∗
x is the most prob-

able path vector in {Q(i)
t > x} and we use exp(−‖f∗

x‖2
R

2 ) as approximation
of the probability. Afterwards stop the algorithm (approximation of the
empty buffer). This approximation uses the most probable path vector and
it is as exactly as the approximation (3.62).

e) Full link approximation: We determine a fvla, so that the only positive
waiting queue is Q(i). Afterwards we use the approximation exp(−‖fvla‖2

R

2 ).
In contrast to step d) fvla is only the heuristic approximation of the most
probable path vector.

Example 3.63. We want to give two examples of queueing systems: a homo-
geneous and a heterogeneous one. The results of the analytical models are
compared with the help of measurements from simulations. The random mid-
dlepoint method is used (see [25]).
Beside the used resp. observed parameters the calibration of the driving frac-
tional Brownian motion is important. We use in both classea the same Hurst
parameter, thus, γi(t) = σ2

i t
2H , with H ∈ ]0, 1[. Now we fix a x and obtain

for {Q(1,2)
0 ≥ x}

tx =
−Hx

(1 −H)(C −m)

The ELA-criterion (3.63) provides for the waiting queues of classes 2 (Klam-
mern pruefen, 2 eingefuegt):

(µ1C −m1)|tx| ≥ −f∗
x,1(tx) =

(x + (C −m)) |tx|γ1(tx)
γ(tx) + γ2(tx)

=
(x + (C −m)) |tx|σ2

1

σ2
1 + σ2

2

Inserting tx, we get



3.5 Models for Time Sensitive Traffic 257

(µ1C −m1)H
C −m

≥ σ2
1

σ2
1 + σ2

2

(3.65)

The expression separates the serving rates and the mean on the left side from
the variances on the right one. If (3.65) is satisfied, it follows

P
(
Q(2) ≥ x

)
≈ P

(
Q(1,2) ≥ x

)

≈ 2Φc
(

C −m
√
σ2

1 + σ2
2

)

exp
(
−(C −m)2Hx2−2H

2φ(H)2(σ2
1 + σ2

2)

)

where ϕ(H) = HH(1−H)1−H and Φc are the complementary standard Gaus-
sian distribution. 2Φc is necessary to obtain in simulations with a resolution
of ∆ = 1 approximately a correct probability that the buffer is not empty.
If (3.65) does not hold, then we turn to the coarse ELA. We have to consider
the set {−A

(1)
t ≥ µ1C|t|,−A

(2)
t ≥ µ2C|t|}. Then the square R-norm of most

probable path is f∗
x

‖f∗
x‖2
r =

(µ1C −m1)2

σ2
1

|t|2−2H +
(x− (µ2C −m2)t)

2

σ2
2 |t|2H

For the wanted minimum we get t̂x = −ϑx, where ϑ is the solution of a
quadratic equation

ϑ =
a2 +

√
a2
2 + 4aH

2a1

with

a1 =
(

(µ1C −m1)2

σ2
1

+
(µ2C −m2)2

σ2
2

)
(1 −H), a2 =

(µ2C −m2)(2H − 1)
σ2

2

Then we can determine the queue probability

P(Q(2)
0 ≥ x)

≈ −1
2

(
(µ1C −m1)2

σ2
1

+
(µ2C −m2)2

σ2
2

ϑ2−2H +
((µ2C −m2)ϑ + 1)2

σ2
2ϑ

2H
x2−2H

)

The right side tends towards 1 for x → 0. Keeping to the resolution for the
simulation at ∆ = 1, we have to choose the suitable prefactor

p2 = min

(

2Φc
(
µ2C −m2

σ2

)
, 2Φ

(
C −m
√
σ2

1 + σ2
2

))

The prefactor expresses the worst case. Independent of the classes 1 and 2
at least µ2C capacity has to be reserved. With this the non-idle probability
cannot exceed than the one in the single classes with guaranty µ2C. If on
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the other hand the guaranty is close to the mean rate or even smaller, then
one should not use the non-idle probability of the whole waiting queue. The
waiting queue of class 1 can of course be treated simply by exchanging the
rôles. As concrete example we use m1 = 1, m2 = 2, σ2

1 = 1, σ2
2 = 2, H = 0.75,

and C = 4 to study the influence of the parameter µi.
We turn to the second example, the heterogeneous traffic. Here, we can find
explicit formulas. But, using numerical methods we can compute approxima-
tions. The following numerical examples are based on the length of waiting
queues. We consider a general processor sharing knot, which is serving two
independent Gaussian flows. Then, we assume that class 1 is LRD, while class
2 is SRD. Our parameters reads as m1 = 2, m2 = 1.5, C = 5 and

γ1(t) = 6(t− 1 + e−1), v2(t) =

{
9
8 t

2 − 1
8 t

3 for t ∈ [0, 1]
1
8 − 9

8 t + 2t
3
2 for t > 1

Here the class-2 traffic is Poisson with Pareto bursts. For the exemplary values
for the priority we choose

µ = (µ1, µ2) = (1, 0) resp. µ = (0.5, 0.5) resp. µ = (0.3, 0.7)

The first case describes a pure priority. Here, we can use a simple queue-
ing formula, by imposing the FIFO principle with input A

(1)
t . But with the

coarse FLA for the classes 1 and the ELA for class 2 we can obtain good
approximations.
The second case is the most interesting one. The most probable path vector
for the class 1 only exists on the interval [0, 5]. For x ∈ ]5, 67] both classes are
sent into the queueing and in the case x > 67 we have only one queue for the
class 2. Thus, we get the classification given in table 3.1.

Table 3.1. Example for the classification of priority traffic

Class [0, 5] [5, 67] ]67,∞[

1 ELA coarse FLA coarse VLA
2 coarse FLA coarse FLA ELA

The second case demonstrates the opposite to the first case. The guaranteed
load of class 1 is smaller than its the mean rate and thus, we can approximate
f∗
x using ELA. Similarly class 2 will be approximated by FLA. For the non-idle

case we can determine the following probabilities

p̃(∆) = 2Φc
(

(C −m)∆
√
γ1(∆) + γ1(Γ )

)

p̃i(∆,µ) = min

(

2Φc
(

(µiC −m)∆
√
γi(∆)

)

, p̃(∆)

)

, i = 1, 2
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As above ∆ is the step width of the simulation. Because both used Gaussian
processes are absolutely continuous, no probability converges towards 1, if
x → 0. Thus, we have to weight the non-idle probability suitably

(x + (C −m)tx)
2

γ(tx)
=

4γ(tx)
γ′(tx)2

where γ(t) = γ1(t)+γ2(t) is differentiable at tx. Since from x → 0 we conclude
the converges tx → 0, we obtain

lim
x→0

(x + (C −m)tx)
2

γ(tx)
=

18
33

For the coarse FLA we cannot proceed similarly, but we have to apply nu-
merical methods. Thus, first the limits of

L1(µ) = lim
x→0

(
x− (µ1C −m1)t̃x

)2

γ1(t̃x)
+

(µ2C −m2)2t̃2x
γ2(t̃2x)

L2(µ) = lim
x→0

(µ1C −m1)2t̃2x
γ1(t̃x)

+

(
x− (µ2C −m2)t̃x

)2

γ2(t̃2x)

have to be determined. If this is done, we can compute the prefactor

p(∆) = e
33
36 p̃(∆)

p1(µ,∆) = eΩ1(µ)p̃1(µ,∆)
p2(µ,∆) = eΩ2(µ)p̃(µ,∆)

The prefactor p is used for the ELA estimation and for p1 resp. p2 in the
corresponding coarse FLA.

3.6 Fractional Lévy Motion in IP-based Network Traffic

3.6.1 Description of the Model

Starting point is the consideration of the α-stable processes. We shortly review
the definition.

Definition 3.64. Let (Xt)t∈I be stochastic process. Then

• (Xt)t∈I is a linear fractional stable motion, if for given a, b ∈ R, ab �= 0 it
possesses a representation

Xt(H, a, b, α) =
∫ ∞

−∞

(
a
(
(t− x)H− 1

2
+ − (−x)H− 1

2
+

)

+b
(
(t− x)H− 1

α
− − (−x)H− 1

α
−

))
dZα(x)
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where (Zα(t)) is a sαs-Lévy process, i.e. a process with α-stable finite
marginal distributions, H-sssi with independent increments. A linear frac-
tional stable motion is a H-sssi sαs process.

• (Xt)t∈I is a fractional Lévy process, if it has a representation

Xt(H,α) =
∫ ∞

0

1
Γ
(
H + 1

2 − 1
α

) (t− x)H− 1
α dZα(x)

where (Zα(t)) is a sαs-Lévy motion, i.e. a process with α-stable finite
marginal distributions, H-sssi with independent increments. A fractional
Lévy process (FLM) has stationary increments and is H-sssi.

The FLM is a generalization of the FBM. As we know the path are no longer
continuous – they exhibit infinite countable many jumps. Since the fractional
Lévy process is easier to handle we stick for the IP-based traffic modeling to
the FLM. We start with the distribution density of an α-stable Lévy motion
(Zα(t)). For given c > 0 and 0 < α ≤ 2 we have

pα(x, t) =
1
2π

∫ ∞

−∞
exp (−c|u|αt) exp(−iux)du

We cite some properties.

Theorem 3.65. The FLM is a H-sssi with Hurst exponent H ∈ [ 1
α , 1[.

Proposition 3.66. We have for a FLM (Xt) with subordinated LM (Zα(t))
and a Zα-integrable function f

E

(
exp
(
−ix

∫ t

0

f(u)dZα(u)
))

= exp
(
−c|x|α

∫ t

0

fα(u)du
)
, for all x ∈ R

We get for the density function of a FLM the following theorem.

Theorem 3.67. The density function pα,H(x, t) of a FLM is

pα,H(x, t) =
1
2π

∫ ∞

−∞
exp
(
−c′|u|αtα(H− 1

2 )+1
)

exp(iux)du

where c′ = c
Γα(H+ 1

2− 1
α )αH

.

3.6.2 Calibration of a Fractional Lévy Motion Model

We shortly outline the concept to calibrate the FLM-model according to the
observed traffic and divide the process into several steps:

1. First we use the standard methods to estimate the mean m and the vari-
ance c of the traffic traces. For more detailed description the reader should
consult the section 4.1.
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2. Next we use (5.13) to compute the value Xt(α,H) according to the ap-
proach

Xt(α,H) = (cm)−
1
α (A(t) −mt)

Here, A(t) represents the measured accumulated traffic.
3. The crucial part consists in the estimation of the heavy-tail parameter α

for the observed traffic traces (e.g. the interarrival time or the amount of
data). In addition we need the Hurst exponent H ′, computed according
to the standard measures as done in section 4.2. Thus, we can compute by
theorem (3.65) the Hurst parameter of the Lévy motion Zα. According to
proposition 3.66 we can estimate the parameter α. Another possibility is
to use the increments and estimate via the Crovella and Taqqu tool (see
4.1.3) the slope of traffic difference.

4. Finally after obtaining the calibrated model we simulate the FLM-model
using the Taqqu tool, described in [234] for matching the observed traffic
with the model.

3.7 Fractional Ornstein-Uhlenbeck Processes
and Telecom Processes

In the last section we considered the generalization of the Norros approach
to model bursty LRD traffic using a process with sαs marginal distributions
instead of a Gaussian one. This process is called fractional Lévy process or mo-
tion (FLM). In this section we stick to the same framework of LRD and present
another view for bursty traffic, namely the fractional Ornstein-Uhlenbeck pro-
cesses, introduced for network modeling e.g. by Wolpert and Taqqu [269]. Let
us first sketch the abstract network terms, which are going to be subject of
the investigation:

• The instantaneous work-load or rate X ′(t) at time t.
• The cumulated work-load X(t) =

∫ t
0
X ′(s)ds. Both describe it in a net-

work with a random incident flux of work with varying intensities κ and
durations τ which arrive randomly at times σ.

• Finally the weighted workload X(θ) =
∫

R
θ(s)X ′(s)ds for a suitable space

Θ of weighting function θ. We will see the technical reason for this later
below.

One of the key items is the distribution for the intensity κ, which will be a so
called infinitely-divisible distribution (abbr. by ID). The different distributions
will lead to the different fractional Ornstein-Uhlenbeck processes.

3.7.1 Description of the Model

We start with a random measure M(dσ, dτ) on R × R+, which marginal dis-
tributions are infinitely-divisible. Later examples concern of Gaussian, sαs,
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gamma and in general Lèvy random measures. As shortly described in the
above introduction we consider the following three situations

X ′(t) =
∫ ∞

−∞

∫ ∞

0

1]σ,σ+τ ](t)dM(τ)dM(σ) (3.66)

X(θ) =
∫ ∞

−∞

∫ ∞

0

∫ σ+τ

σ

θ(s)dsdM(τ)dM(σ) (3.67)

X(t) =
∫ ∞

−∞

∫ ∞

0

vol (]σ, σ + τ ]∩]0, t]) dM(τ)dM(σ) (3.68)

whereas ‘vol’ means the volume of a set. We briefly interpret these three
equations:

• Equation (3.66) describes the instantaneous workload X ′(t) at time t,
which is the cumulated sum of all measurements of M(σ, τ) built up over
all times starting at σ < t until σ + τ ≥ 0.

• The equation (3.68) shows the accumulated workload from time 0 until t,
represented as integral over X ′(s).

• The equation (3.67) finally describes the weighted aggregated work by a
function θ(s). If we choose θ = 1]0,t] (and if the indicator function is an
element of Θ), then we return to the case of X(t). Otherwise, if we use as
θ = δt the Dirac function then (again if δt ∈ Θ) we have the instantaneous
rate X ′.

3.7.2 Fractional Ornstein-Uhlenbeck Gaussian Processes

In the sequel let (Bt)t∈R be a standard Brownian motion on a probability
space (Ω,F ,P). For fixed λ, σ > 0 and t ∈ R define the Itō integral

Z1(t) = σ
√

2λ
∫ t

−∞
exp (−λ(t− s)) dB(s) (3.69)

The process (Z1(t))t∈R defines the well known Ornstein-Uhlenbeck process
with mean 0, stationary and a covariance structure given according to

ρ1(t) = E
(
Z1(0)Z1(t)

)

= σ22λ
∫ 0∧t

−∞
exp (−λ(t− s)) exp (−λ(0 − s)) ds = σ2e−λ|t|

We define inductively a series of processes derived from (3.69) and indexed by
ν ≥ 2

Zν(t) =
∫ t

−∞
λ exp (−λ(t− s))Zν−1ds (3.70)

Consequently resubstituting one finds a representation as Itō integral
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Zν(t) = σ
√

2λ
∫ t

−∞

λν−1(t− s)ν−1

Γ (ν)
exp (−λ(t− s)) dB(s) (3.71)

Though one can not define (Zν(t)) for a ν �∈ N using the original definition
(3.70) with the help of the representation (3.71) one can define it for ν > 1

2 . In
this case – for ν > 1

2 – we call the process fractional Ornstein-Uhlenbeck Gaus-
sian process. It is a stationary Gaussian process with mean 0. The covariance
structure is given by

ρ(ν) = E (Zν(0)Zν(t))

= σ2e−λ|t|
2λ2ν−1

Γ (ν)2

∫ 0

−∞
(|t| − s)ν−1(−s)ν−1 exp(2λs)ds

=
2σ2e−λ|t|

Γ (ν)2

∫ ∞

0

(λ|t| + x)ν−1xν−1 exp(−2x)dx

=
2σ2

Γ (H − 1
2 )
√
π

(
λ|t|
2

)H−1

KH−1(λ|t|)

where H = ν + 1
2 and Kγ(u) is the modified Bessel function of second kind

(see [1]).

3.7.3 Telecom Processes

The heavy-tail renewal process was outlined in section 2.7.4. It was incor-
porated into the so called on-off models. We saw that in the limit we get
after rescaling a FBM as driving process (see (3.56)). The Hurst exponent
expressing the self-similarity can be computed according to

H =
3 − α

2
(3.72)

where 1 < α < 2 is the heavy-tail exponent of the inter-renewal times. In
the first approach we considered constant renewals. We outlined that by as-
suming a heavy-tailed renewal of exponent β ∈ ]α, 2[ (being in the domain of
attraction of the sαs that the limiting process after rescaling and centering is
a process (Zt)t≥0), which Levy and Taqqu called telecom process, being a sαs
process with Hurst exponent

H =
β − α + 1

β
(3.73)

3.7.4 Representations of Telecom Processes

We refer to the abstract approach in section (3.7.3). In [206] Pipiras and Taqqu
demonstrated that the telecom process can be represented in the form
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Zt =
∫ ∞

−∞

∫ ∞

−∞

(∫ t

0

1{u≤s≤v}ds

)
dM(u)dM(v) (3.74)

where M is a sαs measure with control measure m given by

dm(u)dm(v) = α(v − u)−α−1
+ dudv (3.75)

For more details on controlled sαs random measures on R2 please refer to
section (3.2.3). An interesting observation tells us that for β = 2 in equation
(3.73) gives the well known formula (3.72) for the Hurst exponent and the
FBM. In fact, if β ↑ 2, then the telecom process in (3.74) converges to the FBM
weakly. Towards an interpretation of the telecom process for the describing of
network flows we have the following representation of the telecom process in
(3.74) using a compensated Poisson measure Ñ

Zt
d=
∫∫∫

R3

(∫ t

0

1{u≤s≤v}ds

)
wdÑ(w)dÑ(u)dÑ(v) (3.76)

where

dÑ(w)dÑ(u)dÑ(v) = dN(w)dN(u)dN(v) − dµ(w)dµ(u)µ(v)

with
dN(w)dN(u)dN(v) ∼ Po(dµ(w)dµ(u)dµ(v))

and
dµ(w)dµ(u)dµ(v) = |w|−β−1dwdm(u)dm(v)

The equation dm(u)dm(v) = α(v − u)−α−1
+ dudv is the telecom measure ac-

cording to (3.75). The drawback is that the representation (3.74) and (3.76)
are less suitable for an interpretation to IP-based networks. Thus, we need an
equivalent way using the so called upstairs representation.

Theorem 3.68. Let g : [0,∞[−→ R be a non-negative strictly monotone de-
creasing differentiable function on R+. Extend g on whole R by g(s) = 0 for
s < 0. The process

Y
(1)
t =

∫∫

R2

(∫ t

0

1{u≤s≤v}ds

)
dM

(1)
β (u)dM (1)

β (v) (3.77)

where M
(1)
β is a sβs measure on R2 with control measure

dm(1)(u)dm(1)(v) = |g′(v − u)|dudv

has the same marginal distributions as the process

Y
(2)
t =

∫

R2

∫ ∞

0

(∫ t

0

1{0<u≤g(r−v)}dr

)
dM

(2)
β (u)dM (2)

β (v) (3.78)
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where M
(2)
β is a sβs measure on R2 with control measure

dm(2)(u)dm(2)(v) = dudv

if both processes are well defined. Suppose the process (Y (2)
t ) is differentiable,

i.e. if

Y ′
t =

∫ ∞

0

∫

R

1{0<u≤g(t−v)}dM
(2)
β (u)dM (2)

β (v)

=
∫ t

−∞

∫ g(t−v)

0

dM
(2)
β (u)dM (2)

β (v)

is well defined. Then the processes (Y (1)
t ) and (Y (2)

t ) have the same marginal
distributions as

Y
(3)
t =

∫ t

0

Y ′
sds =

∫ t

0

∫

R

∫ g(s−v)

0

dM
(2)
β (u)dM (2)

β (v)ds (3.79)

d=
∫ t

0

∫

R

∫ g(s−v)

0

∫

R

wdÑ(w)dÑ(u)dÑ(v)ds

where

dÑ(w)dÑ(u)dÑ(v) = dN(w)dN(u)dN(v) − dµ(w)dµ(u)µ(v)

is the compensated version of a Poisson measure

dN(w)dN(u)dN(v) ∼ Po(dµ(w)dµ(u)dµ(v))

with control measure

dµ(w)dµ(u)dµ(v) = |w|−β−1dwdudv (3.80)

3.7.5 Application of Telecom Processes

We return to the equation (3.80) for an interpretation the compensated Pois-
son measure N generating points (w, u, v). Which interpretation can be given
to a particular point (w, u, v)? A point (w, u, v) indicates an arrival at a net-
work at time v for job with rate w, which has a duration τ . The duration is
surely randomly with a complementary distribution function

P(τ > t) =
g(t)
g(0)

where g : [0,∞[−→ R is a differentiable and strictly monotone decreasing
function. We can regard u = g(τ) as a realization of a uniform random variable
on the interval ]0, g(0)]. This indicates:
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The event {0 < u ≤ g(r−v)} describes that the job generated at time
v has not terminated at time τ .

With a given start time v this event occurs with the conditional probability

P (0 < u ≤ g(r − v) | v) =
g(r − v)
g(0)

vanishing for r < v and decreasing from 1 at r = v to 0 for r → ∞. This gives
a physical explanation for the range of the Poisson measure.

Example 3.69. We want to apply theorem 3.68 to the function g(s) = (s+)−α if
0 < β < α < 2. The function satisfies the assumption of theorem 3.68, since it
is surely strictly monotone decreasing with g′(s) = −αs−α−1 on ]0,∞[. It can
be shown (see [269, p.27]) that equation (3.77) and (3.78) are valid but not the
last two in (3.79), since

∫∞
0

g(s)ds = ∞, as indication for not differentiability
of the process (Y (2)

t ). To overcome this difficulty we approximate the process
by setting

gε(s) = s−α ∧ ε−α1{s≥0}

The function gε is integrable, since
∫∞
0

gε(s)ds = ε1−α

α−1 < ∞ (remember α > 1!)
So, we have last two equations in (3.79) with gε instead of g and a differentiable
process (Y (3)

t,ε ), which converges in probability to (Y (2)
t ), if ε → 0. Thus, we

can formulate for the telecom process the following corollary

Corollary 3.70. The telecom process (Yt) defined by equation (3.74) has the
representation

Yt =
∫

R

∫

R+

(∫ t

0

1{0<u≤(r−v)−α
+ }dr

)
dMβ(u)dM (2)

β (v)

d= lim
ε→0

∫ t

0

(∫

R

∫ gε(s−v)

0

dMβ(u)dMβ(v)

)

ds

d= lim
ε→0

∫ t

0

(∫

R

∫ gε(s−v)

0

∫

R

wdÑ(w)dÑ(u)dÑ(v)

)

ds

where gε(s) = s−α ∧ ε−α1{s≥0}, Mβ is a sβs measure with control measure
dudv and

dÑ(w)dÑ(u)dÑ(v) = dN(w)dN(u)dN(v) − dµ(w)dµ(u)µ(v)

is the compensated version of a Poisson measure

dN(w)dN(u)dN(v) ∼ Po(dµ(w)dµ(u)dµ(v))

with control measure

dµ(w)dµ(u)dµ(v) = |w|−β−1dwdudv
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3.8 Multifractal Models and the Influence of Small
Scales

Up to know most models are built upon the general central limit theorem
(see section 3.4.1) and the result of Willinger et al. as presented in section
3.4.4. Applying the central limit theorem will result in a traffic model, which
is self-similar and long-range dependent, but the local structure of the path
of the process is still relatively regular. In other words the irregularity of the
traffic is identical for all scales. Later we will describe this with the help of
the so called deterministic partition function.
As different authors observed the so called monofractality, induced by FBM
and FLM, is not quite the true story of the IP traffic. In fact, different scales
behave rather differently. If the transport protocol does not exercise a decisive
influence on the transmitted traffic, we may stick to the above developed
models by perturbations of the FBM and FLM in the suitable way (see sections
3.3.4 and 3.6). But especially the appearance of the TCP changes the IP
traffic shape. As described in section 1.1.4, TCP adjusts the transmitted data
rate according to a possible congestion in the network. Thus, the already
transmitted data as well as the data to be sent, influence the TCP mechanism.
This in whole is highly irregular and causes a traffic shape which is quite
different to the expected one, using the standard approach due to Norros for
example. Since the small scales as well exercise a decisive impact on the traffic
behavior as well as its performance (see e.g. section 5.2 for a comparison
of the multifractal models to the monofractal with respect to the queueing
probability), this behavior has to be taken into account as well, and it is one
of the challenging tasks in traffic modeling of today to fit both the long-range
behavior, indicated by the large scales and the small scale behavior into one
satisfying model. This section will give a short insight of some of the standard
approaches and theories, developed in recent years, which are far of being
complete, since this area is one of the fastest growing one in the IP traffic
theory.

3.8.1 Multifractal Brownian Motion

The first approach for an analysis on different scales and incorporating differ-
ent Hurst exponents is the following approach using the multifractal Brownian
motion. Instead of using a constant H the original model of Norros is modified
literately by a selected function H(t).

Definition and Concept

As we know the sample path of a stochastic process (Xt) fulfils a certain
Hölder estimation, which we discuss in more detail in section 3.8 and which
reads as (see e.g. (3.107)):
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There is a function H(·) and a c > 0 : |Xt+h −Xt| ≤ c|h|H(t), for h → 0
(3.81)

The inequality is tight, meaning that the value H(t) is the largest. The FBM
fulfils the inequality (3.81) with a constant function H, the Hurst exponent.
In general H : R −→]0, 1[ a is called a Hölder function. We start with the
definition of the multifractal Brownian motion. The concept is derived from
the representation of the usual FBM, using an integral representation as we
used in section 3.2.3

B
(H)
t =

1
Γ
(
H + 1

2

)
∫

R

((
(t− x)+

)H− 1
2 −
(
(−x)+

)H− 1
2 )
)
dB(x)

=
1

Γ
(
H + 1

2

)
(∫ 0

−∞

(
(t− x)H− 1

2 − (−x)H− 1
2

)
dB(x)

+
∫ t

0

(t− x)H− 1
2 dB(x)

)

We turn to the mBm which is a continuous Gaussian process with in general
non-stationary increments, in contrast to the FBM

W
(H(t))
t =

1
Γ
(
H(t) + 1

2

)
∫

R

((
(t− x)+

)H(t)− 1
2 −
(
(−x)+

)H(t)− 1
2
)
dB(x)

=
1

Γ
(
H(t) + 1

2

)
(∫ 0

−∞

(
(t− x)H(t)− 1

2 − (−x)H(t)− 1
2

)
dB(x)

+
∫ t

0

(t− x)H(t)− 1
2 dB(x)

)
(3.82)

Though, in general, the mBm does not reaveal even asymptotically station-
ary increments, we observe a local stationarity, detected as self-similarity as
follows

lim
γ→0+

(
Wt+γs −Wt

γH(t)

)

s>0

=
(
BH(t)(s)

)
s>0

(3.83)

where (Wt) is a multifractal Brownian motion with Hölder function H(·) and
(BH(t)(s)) is a FBM with Hurst exponent H(t).
For special properties of the multifractal Brownian motion the reader may
consult the literature (see [91, 179]).

Envelope Process

As pointed out in the previous section the multifractal Brownian motion is in
general a stochastic process with non-stationary increments. From the general
theory in section 3.2.1 we know that H-sssi processes can be easily charac-
terized and worked with. There are a number of models introduced as we
already mentioned (see e.g sections 3.8) to incorporate multifractal analysis
of the traffic traces. To overcome some difficulties arising from multifractal
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Brownian motion, we introduce a stochastic process, easier to handle and eas-
ier to understand. Since we are interested in an estimation of necessary bound
of the traffic load, this lead to the definition of an envelope process.

Definition 3.71. Let (Xt)t∈I be a stochastic process. We call another process
(Yt)t∈I :

• Deterministic envelope, if Xt ≤ Yt for all t ∈ I almost surely.
• Stochastic envelope, if, for a predefined probability threshold ε > 0, P(Yt <

Xt) ≤ ε for all t ∈ I.

Example 3.72. Let ZHt = BHt+δ − BHt (with δ > 0) the increment of a FBM
(BHt ), i.e. the FGN. According to [91], there is a κ > 0 : ZHt ≤ κHtH−1 for
a suitable small δ > 0. Since we can approximate a mBm locally by a FBM
(see (3.83)), we can find an upper estimation for the increments (ZH(·)

t ) of a
mBm (WH(·)

t ) at time t according to

Z
H(t)
t ≤ κH(t)tH(t)−1 (3.84)

Consider the Norros model for the accumulated traffic

At = mt +
√
amBHt (3.85)

With the help of (3.85) we deduce by a standard integration a (deterministic)
envelope process of the form

Ât = mt + κ
√
amtH

If we now proceed to the model of using a mBm instead of a FBM in (3.85),
then we get again by integration and (3.84)

Ât =
∫ t

0

m + κσH(x)xH(x)−1dx (3.86)

where H(·) is the Hölder function corresponding to the mBm and σ =
√
am.

It is natural to ask what form the Hölder function has. In general it possesses
a complicated form, if one considers multifractal analysis as done in section
3.8. Often especially for practical reasons one uses polynomials. One should
keep in mind that the function has to be integrable. Examples are

H(x) = a2x
2 + a1x + a0, x ∈ ]0, 1[

H(x) = b1x + b0, x ∈ ]0, 1[

with a2, a1, a0, b1, b0 ∈ R.
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Calibration: Examples of IP Traffic Envelopes

If one measures resp. observes IP traffic, the first step for a selection of the
mBm is the detection of the multifractal traffic. The decisive tool is the deter-
ministic partition function T (q), given in section 3.8 on multifractal models.
Monofractal traffic is linear, as e.g. the classical Norros model shows in this
case T (q) = qH − 1. If the deterministic function reveals a strictly concave
or convex form, this is a clear evidence for multifactal behavior. Before we
exhibit the examples, we will present a short summary of the necessary steps
to go for calibration and simulation of the observed traffic:

• First we have to detect the ‘fractality’ of the observed traffic and decide,
whether it is mono- or multifractal. This is done by analyzing the shape
of the deterministic partition function T (q).

• To fit the suitable multifractal Brownian motion we have to find the right
Hölder function H(x). This can be done with the help of the tools men-
tioned in chapter 4 on statistical methods or as in [47]. In most cases the
form of the Hölder function is highly irregular, exhibited by the figures
in [179]. With the help of interpolating the original Hölder function using
e.g. L2 approximation by polynomials, we can simplify the Hölder func-
tion. Usually one wants to stick to a low degree of the polynomials, keeping
the computation as simple as possible. But this has the drawback consist-
ing in the request that a too low degree would not match the multifractal
behavior. Usually polynomials of degree between 7 and 15 fit quite good,
though for simplicity one selects quadratic polynomials.

• Next we have to compute the aggregated traffic, which will be used for the
update to the calibrated model.

• According to the formula (3.86) above, we have to compute Â(t) and com-
pare this with the (aggregated) real data of the traffic. If the envelop
process Â(t) does not fit with the aggregated traffic, the above steps have
to repeated.

• The last step consists in following the line of the section 5.1.4 in the last
chapter to gain the key values of queueing and bandwidth and validate
this with the real traffic observations. Again this is compared with the
observed data.

3.8.2 Wavelet-Based Multifractal Models

Short Introduction to Wavelets

We just give shortly an introduction to the wavelet analysis and refer the
reader to the literature for a detailed study. For this purpose we remind to
the discrete wavelet transform, which we discussed in the previous section.
Let x : R −→ R be a given signal and let ϕ(·) be the Haar mother wavelet.
Then we have the wavelet representation:
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x(t) =
∑

k∈Z

⎛

⎝uk2−
J0
2 φ(2−J0t− k) +

J0∑

j=−∞
wj,k2−

j
2ϕ(2−jt− k)

⎞

⎠ (3.87)

where J0 is the coarsest scaling, φ the scaling function (father-wavelet) corre-
sponding to the Haar wavelet, let uk be the scaling coefficients and wj,k the
wavelet coefficients. The scaling coefficients are a coarse approximation of the
signal, while the wavelet coefficients describe the fine structure (parts of the
signal with high frequency).
In figure 3.18 the transmitted data amount is splitted into two disjoint interval
at each level.

Xj+1,2k Xj+1,2k+1

Xj+2,4k Xj+2,4k+1 Xj+2,4k+2 Xj+2,4k+3

Xj,k

Fig. 3.18. Splitting of transmitted data amount into an dyadic tree. With each
level the transmission time is divided into two equal intervals

Describing a LRD signal via a wavelet transform, i.e. by coefficients is the
approach, forming a highly correlated signal into an almost uncorrelated one
(see section 4.2.7). While the autocorrelation of an FBM is only approximative
of order t2H−2, there, the wavelet coefficient is an exact representation of the
variance resp. correlation (please note since the FBM is a random variable for
each t, so are the corresponding wavelet coefficients because they are computed
for each path). For this purpose we use capital letters (Wj,k RV for wj,k)

Var(Wj,k) = σ22(2H−1)(j−1)
(
2 − 2(2H−1)

)
(3.88)

As known from the theory of wavelets, it is possible to gain back the original
signal from the wavelet coefficients. With this we can get a Gaussian process
with in general negative values as well, which is a kind of unrealistic for data
traffic. In addition a Gaussian process is not suitable for small scales.

Multifractal Models using Wavelets

We start with describing the basic idea:
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• To construct a signal with negative values, we will have to stress certain
conditions to the coefficients.

• To obtain the LRD condition we will use the property (3.88).

Wavelet Coefficients for Non-Negative Data

Which conditions do the coefficients uj , wj,k have to fulfill, to receive the
signal x in (3.87) with non negative values? In general one cannot sufficiently
answer this for all wavelets in closed form. But for Haar wavelets we obtain

uj,2k = 2−
1
2 (uj+1,k + wj+1,k) (3.89)

uj,2k+1 = 2.−
1
2 (uj+1,k − wj+1,k) (3.90)

where we receive the new scaling coefficients recursively and use the old one
for the level k = 0. If the signal is positive then it follows uj,k ≥ 0 and

|wj,k| ≤ uj,k (3.91)

Figure 3.19 sketches the fundamental idea of the WIG model.

Xj+1,2k Xj+1,2k+1

+ −

Wj,k

1/
√

2 1/
√

2

Xj,k

Fig. 3.19. Construction of a WIG-model

Multiplicative Models

The equation (3.91) gives conditions for constructing positive processes. This
enables us to build simple multiplicative models. Thus, let Aj,k be RV with
values in the interval [−1, 1]. We define the wavelet coefficients of the process

Wj,k = Aj,kUj,k

By (3.89) we obtain

Uj,2k = 2−
1
2 (1 + Aj,k)Uj+1,k

Uj,2k+1 = 2−
1
2 (1 −Aj,k)Uj+1,k

The Aj,k are mostly chosen beta distributed.
In contrast to the WIG model we do not use weighted sums in the MWM,
but multiply between each scaling level with certain random variables (here
the Aj,k). Figure 3.20 shows this schematic.
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Xj+1,2k Xj+1,2k+1

+ −

Wj,k

1/
√

2 1/
√

2

Xj,kAj,k

Fig. 3.20. Construction of a multiplicative wavelet model

Alternative Approach to Wavelet Analysis

Beside the analysis using the wavelet transform we will sketch an approach
with the help of so called multiscaled trees. We remind again to the derivation
of the aggregated traffic done in section 3.2.3. Let (Xk) be a stationary LRD
process of second order in discrete time. This means that the autocorellation
decays according to rX(k) = E

(
(Xt+k −Xt)2

)
∼ k2H−2 for large k and a

suitable Hurst parameter 1
2 < H < 1, such that the series

∑
k∈N

rX(k) is not
summable. Equivalent to this fact is that for the process summed up in blocks

X(m)(k) = X(k−1)m+1 + · · · + Xkm

the variance satisfies Var(X(k)(m)) = O(m2H) for large m ∈ N (the same
H and independent of k, since we have a stationary process!). A well known
example is the fractional white noise, which we dealt with in the previous
sections (3.1.2 and 3.3.2). The increments correspond to the FBM: If (B(H)

t )
is a fractional Brownian motion with Hurst parameter H ∈ ]12 , 1[, then

Z
(H)
t = B

(H)
t+1 −B

(H)
t , t ∈ R

is the corresponding fractional white noise (FGN). We get for the autocorel-
lation (evaluated at discrete times, see (3.18))

rZ(k) =
σ2

2
(
|k + 1|2H − 2|k|2 + |k − 1|2H

)
∼ k2H−2

and the variance of the summed process is (see theorem 3.16b))

Var
(
Z(m)

)
= σ2m2H

The argumentation for the FGN will be transmitted to the observed signal
(resp. time series). The blocks X(m) can be ordered in a dyadic tree, which is
suitable for synthesizing a process from wavelet coefficients. Let

Vj,k = X
(2m−j)
k = Vj+1,2k + Vj+1,2k+1, k = 0, . . . , 2j − 1 (3.92)

Here, the m-th level correspond to the process X
(2m−m)
k = X

(1)
k = Xk. The

tree is build from the bottom up and the upper level to level j = 0 corresponds
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to the summed process X
(2m)
k . The aggregated process forms the bases. It

can reflect e.g. the amount of bytes per µs up to the scale k. The whole
time period of length 2n will be splitted in single scales (time spots) k =
0, 1, . . . , 2n − 1. One can see from the definition of the tree (Vj,k) in (3.92)
that the predecessor is the sum of both successor. This motivated in the
following way. On starts with the whole data load, which is described by the
coarsest random variable, in our case V0,0. Now we proceed with finer scales
and the aggregated traffic, which is summed up on one scale is splitted. This
can be justified for e.g. by application protocols, like HTTP, and the transport
protocols like TCP. They divide the whole traffic in single segments. But this
procedure is not deterministic. To generate the observed traffic synthetically,
one has to introduce further random variables into the model.
We can construct now the tree from up to down ‘synthetic’, i.e. one can build
up by given wavelet coefficients starting from level j = 0, thus V0,0, iteratively
and generate the corresponding fractional white noise. We consider as above
two fundamental different approaches: the WIG and MWM.

Gaussian WIG Model

For this we start with a RV V0,0, which is N (m2m, σ222mH)-distributed. Up
to now no fine structure is incorporated and only the long-range dependence
is exhibited. Furthermore define a certain auxiliary random variables Zj,k,
which are N (0, σ2(22−2H − 1)22(m−j)H)-distributed, i.e. for k = 0, . . . , 2j − 1
the Zj,k are iid. Why did we chose these distributions? First, one uses the
discrete recursive definition

Vj+1,2k =
Vj,k + Zj,k

2
, Vj+1,2k+1 =

Vj,k − Zj,k
2

(3.93)

The figure 3.21 shows on the one hand the splitted traffic into a binomial tree
with progressively finer scales and below both approaches for computation.
It can be clearly seen that from a knot in the j-th level the two new knots be-
low are formed with the help of the perturbation Zj,k, where one gets the even
knots (or left ones) by the arithmetic mean and the odd one (or right one)
by the weighted mean. The Zj,k represent the normalized Haar wavelet coef-
ficients of the available data material using wavelet analysis. To gain asymp-
totically a Gaussian model (i.e. averaging of large times), we have to impose
certain conditions to the random variables. For this we choose V0,0 and Zj,k
Gaussian. Then the Zj,k have to be within the same scaling j identical dis-
tributed. In addition the expectations E(Vj,k) = E(Vj) show up independently
of k. It follows

Var(Vj+1) =
Var(Vj) + Var(Zj)

4
(3.94)

From these presumptions we get for the RV V0,0 and Zj,k:

• V0,0 is N (m2m, σ222mH)-distributed.
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Fig. 3.21. Comparison of data amounts in different scalings, WIG and multiplicative
wavelet model (MWM)

• Zj,k are N (0, σ2(22−2H−1)22(m−j)H)-distributed, i.e. for k = 0, . . . , 2j−1
the Zj,k are iid.

Then, with the help of (Vj,k), we have constructed a Gaussian process with

Var(Vj) = σ222(n−j)H (3.95)

Hence, we obtain the same variance as in the FBN case with Hurst exponent
H, mean m and Variance σ2. If one considers this triangle of the Zj,k asymp-
totical for j → ∞, then the tree converges, i.e. the Vj,k converge towards the
FGN according to the functional central limit theorem or generalized Donsker
principle. We call this model wavelet-domain independent Gaussian or simply
WIG model.

Multifractal Wavelet Model

The disadvantage of the preceding approach lies in the use of the Gaussian
marginal distributions, which do not take the bursty character into account,
revealing the interarrival times or the load in the network. In addition, the
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IP traffic will not be Gaussian on small scales. The basic approach from the
WIG model will prevail, but in contrast, we use the iteration

Vj+1,2k = Vj,kMj,k, Vj+1,2k+1 = Vj,k(1 −Mj,k) (3.96)

Here, the Mj,k are symmetric around 1
2 with values in ]0, 1[ and iid RV for

each level j. This assures the stationarity of the process in the level j. Si-
multaneously let V0,0 be positive. We can use beta distributions or simply
discrete distributions, which fit in practice. The limit process (for j → ∞)
is lognormal for small time scales and bursty, as seen later. This model will
be called multifractal wavelet model (MWM) and coincides with the general
approach of binomial cascades from section 3.8.5.
How do we have to choose the distribution of V0,0 and Mj,k? If we want to
obtain again a suitable asymptotic, then we have to use the approach of Gaus-
sian distributions. Since we choose a multiplicative structure we will select a
lognormal distribution for the RV Mj,k, because the product of lognormal dis-
tributed RV is again a lognormal distributed RV. A disadvantage of lognormal
distributed RV lies in its unboundedness. This is surely not suitable for the
IP traffic. Hence we select a symmetric beta distribution, i.e.

Mj,k is distributed as β(pj , pj) (3.97)

The variance of a β(pj , pj) RV is

Var (β(pj , pj)) =
1

4 + 8pj
(3.98)

(see eg. [38]). The parameter pj has to be chosen, so that it matches the data of
the second order statistic (see the definition of the second order statistic 4.1.1
and there theorem 4.9). If we introduce a further parameter for an approach
of different distributions, one can match the statistic of higher order. For the
initial variable V0,0 we can use any distribution with support in the positive
real numbers. We choose e.g.

V0,0 is distributed as aM−1

where M−1 is in turn β(p−1, q−1)-distributed. If the traffic on the coarsest
scaling will not be Gaussian, then we pick p−1 �= q−1, and M−1 is no longer
symmetric beta distributed. With sufficient aggregation of the traffic we can
assume that the distribution is Gaussian. Then we have p−1 = q−1.
How can we determine the parameter in (3.98)? We have to compute a and
pj , j = −1, 0, 1, . . . , n− 1. It holds

a = E(V0,0) and p−1 =
1
2

(
E(V0,0)2

Var(V0,0)
− 1
)

From (3.96) we get for j = −1, 0, 1, . . . , n− 1 because of the independence of
the Vj,k and Mj,k
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E(V 2
j+1) = E(V 2

j,k)E(M2
j ) = σ2

j∏

i=−1

E(M2
i ) (3.99)

With (3.98) and (3.99) it follows

pj =
E(V 2

j ) − 2E(V 2
j+1)

4E(V 2
j+1) − E(V 2

j )
, 0 ≤ j ≤ n− 1

Hence, we can obtain the pj from the estimation of E(V 2
j+1). It is E(V 2

j ) =
2−jE(V 2

0,0), and thus, the determination of the second moment is nothing else
than computing the variance. Selecting for a Hurst exponent H the pj in
dependence of H, to incorporate the LRD property, then we get

pj = 22H−2(pj−1 + 1) − 1
2
, j = 0, . . . , n− 1

Thus, we only need the parameter p−1, H and a.

Traffic Measurements on Small Scales

Up to now we determined the distribution of the multipliers Mj,k in con-
nection with the covariance structure of the observed traffic. Now we have
to incorporate the small scales in the modeling. We first assume a general
distribution and will later fit the data after estimations.
The long-range dependence is described by the Hurst exponent of the second
order statistic and by the heavy-tail distribution of the on-off models. With
this and the known methods (see e.g. the sections 3.4.3, 4.2 and 5.1.1) we can
compute the Hurst exponent. But these information do not suffice to judge
correctly the QoS resp. the network performance. Here, we have to consider
the small scales.
In general the small time intervals will be given in as RTT (Round Trip Time).
But according to the aggregated traffic the situation can change much faster
at server, router or on the links. The pure consideration on large scales resp.
the asymptotic as in section 3.4.4 is too coarse.
We now use the multifractals. Hence, theoretical results from sections 3.8.2
and 3.8 are applied. We will give references to the results at the corresponding
spots.
Considering a path of a general process or an observed time series of an IP-
based traffic (Y (t))t∈[0,1], we can describe the change on the small scales using
the expression (see the coarse exponents of the increment (3.112))

|Y (t + δ) − Y (t)| ≈ δα(t)

As described in section 3.8.3, a small α(t) indicates that the traffic exhibits
high burstiness. We can detect that the difference depends on time t and can
assume different values. In the following we try to verify and quantify this
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by observations, and in addition, to derive a method how to calibrate MW
models with the respective information. The decisive basis is formed by the
multifractal analysis or the multifractal formalism. There, not only the second
order statistic is used, but also the ones of higher order (see again section
3.8.3). This formalism shows the possibility to use non Gaussian models, and
it demonstrates, how they can describe the traffic on smaller scales more
properly.

Structure on Small Scales

We use the notation from section 3.8.3. For j ∈ N let N (n)(α, 2−j) denote the
number of bursts of magnitude α on the scale 2−j (see (3.113)). We can insert
this into a relation of the q-th moment of the increments

E

⎛

⎝
2j−1∑

kj=0

∣
∣Y
(
(kj + 1)2−j

)
− Y (kj2−j)

∣
∣q
⎞

⎠ ≈ 2−jT (q) (3.100)

(see (3.119)). Here, T (q) means the deterministic partition function (3.117).
With (3.119) and considering the relation (3.118) resp. the proposition 3.93
we get for the grain-based spectral N (n)(α, 2−j) the following relationship

N (n)(α, 2−j) ≈ 2T
∗(α) (3.101)

where T ∗(α) = infq{qα − T (q)} is the Legendre transform (see (3.119)). We
describe in the sections 3.8.3 and 3.8.4 the value T ∗(α) in more detail, present
further properties and formulate a relationships to other spectrals and func-
tions. We can represent T ∗(α) as the smallest distance between the deter-
ministic partition function T (q) and the line qα. If T ∗(α) is negative, which
implies that there is no t with α(t) = α. We can denote T ∗ as the multifractal
spectral.
Since in practice it is impossible to consider arbitrary small scales there exists
a minimum in the resolution and hence, only a finite number of dyadic time
intervals. To determine T (q) from data, we use again a log-log plot (see sec-
tions 4.1.2 and 4.1.3). For this we indicate on the x-axis the values of α and
map them to the T ∗(α) values on the y-axis, where the T ∗(q) are computed
according to (3.100), (3.101) and theorem 3.95. We can obtain the T (q) for
the MWM (see (3.116)). The formula is

T (q) = −1
j

log2 E

⎛

⎝
2j−1∑

k=0

|Vj,k|q
⎞

⎠ (3.102)

How can we derive the necessary parameter with the help of formula (3.102)
to calibrate the MWM? For this we assume that the multipliers Mj,k converge
for j → ∞ in distribution towards a RV M ∼ β(p, p). Then we have according
to (3.135)
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TMWM (q) = −1 − log2 E(Mq)

Hence, it follows by (3.137)

TMWM (q) =

{
−1 − log2

Γ (p+q)Γ (2p)
Γ (2p+q)Γ (p) for q > −p

−∞ for q ≤ −p
(3.103)

Using instead of the MWM the WIG model with a distribution Vj ∼
N (0, 2−2jH), we obtain (see 3.157)

TWIG(q) =

{
qH − 1 for q > −1
−∞ for q ≤ −1

Comparing the form of function T ∗(α) with the theoretical computed one
T (q), then we realize e.g. in the WIG model

T ∗(α) = inf
q

(qα− qH + 1) = inf
q>−1

(q(α−H) + 1) (3.104)

Suppose we have determined a fixed H from the known statistical methods
(see section 4.1), then we realize from (3.104) that T ∗ takes only one value
or is linear, since T is linear in α (see e.g. proposition 3.126). The FBM is
omnipresent. But the empirical determined curve are strictly concave. This
shows clearly that the WIG models do not fit very well to describe the bursty
character of the WAN traffic.
How do both models reflect the bursty character resp. the LRD property of
the traffic? We will show at selected examples in different scenarios, how the
parameter are fitted. The figure 3.22 shows two curves of the measured deter-
ministic grain-based spectral. Clearly we see that there is no linear structure
and that thus, the classical approaches with Gaussian models do not match
on small scales. The MWM fits decisively well for the values α ≤ 1.
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Fig. 3.22. Multifractal spectrum and the Hölder exponent Tα of interarrival times
in Bellcore traffic pAug (left) and pOct (right) and fitted MWM model with p = 6.0

Remark 3.73. For investigating the irregularity of the processes we will have
to employ the multifractal formalism as described above. It relates the amount
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and degree of irregularity of the paths to the behavior of the moments. De-
noting by Pj the counting measure on {1, 2, . . . , 2j − 1}, then we have for all
q > 0:

Pj(Vj,k ≥ 2−ja) = Pj(V
q
j,k ≥ 2−jqa) ≤

Ej(V
q
j,k)

2−jqa
(3.105)

We can detect by the principle of large deviation, for which q the estimation
is sharp, provided j → ∞. One can consider the right side as the possible,
to observe an interarrival time during a realization, which is relatively large
compared to the time scale. The most important expression on the right side
of (3.105) are the moments. Assuming iid multiplier Mj,k, we obtain

Ej(Vj,k) = (Ej(Mq))j

Thus, we at a exponential rate of decay for (3.105) in the expression

inf
q

(qa + log2 E(Mq))

hence, a convex function in a. This implies for the WIG method

Ej(V
q
j,k) = cq

(
2−qH

)j

where the FGN is applied, or with other words that the Vj,k are N (0, σ22−2jH)-
distributed.
The exponential rate of decay in (3.105) will turn to a constant, i.e. we
do not observe any decay! According to the classical result of Adler (Satz
3.16) the auto correlation X(m) in realizations reveals mainly a behavior of
the order mH for all t in case of the FGN. But, this cannot be confirmed by
the observation of the real data traffic, which hence, looks more similar to the
MWM.

3.8.3 Characteristics of Multifractal Models

Singular Measures

The singular measures are fundamental for describing multifractal traffic.
Thus, we start with their description in more detail.

Hölder Exponent

We start with the classical concept of continuity and differentiability. The aim
is to determine the behavior of a function or process (Yt) in a neighborhood
of a particular point t ∈ [0, 1]. This means, we want to derive an estimation
of the form

|Y (s) − Y (t)| ≤ C|s− t|h, s ∈ ]t− ε, t + ε[, s, t ∈ [0, 1]
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(for a fixed ε > 0). We have to emphasize that we consider a path of
(Y (t))t∈[0,1], hence, the value of the right side is mainly a random variable,
thus, depending on ω ∈ Ω. The constant C is connected to the point t and is
not of particular interest for us. The degree h of the continuity is more impor-
tant. If h = 1, then we call it Lipschitz continuity. Since we are in particular
interested in the behavior close to t, a large h implies that the curve resp.
path looks smoother. The smaller h the more chaotic the behavior will turn
out. We will investigate this more closely. In the sequel we will not explicitly
emphasize that we consider a path or realization of (Y (t)). If Y (·) is contin-
uous at t, then we have Y (s) − Y (t) = o(1), and if Y (·) is even differential
at t, then it follows Y (s) = Y (t) + Y ′(t)(t− s) + o(s− t). The last fact leads
to the well known Taylor expansion. One realizes by the last fact that we
try to approximate Y (s) by a polynomial. Thus, the following approach is
understandable.

Definition 3.74. Let Y (·) be a function or a path of a stochastic process and
let t ∈ [0, 1]. Then Y (·) belongs to the class Cht , (denoted by Y ∈ Cht ), if there
is a polynomial Pt(·), such that

|Y (s) − Pt(s)| ≤ c|s− t|h (3.106)

for s sufficiently close to t. The polynomial depends on the particular point t.
We define the local degree of the Hölder continuity of Y according to

H(t) = sup
{
h > 0;Y ∈ Cht

}
(3.107)

According to the above considerations it is clear that we try to find a h as
large as possible. Suppose Y has a Taylor polynomial of degree n at t, then we
have necessarily [H(t)] = n, where [x] is the greatest integer smaller or equal
to x and Pt(·) is the Taylor polynomial. But this need not to be the case as
the example Y (x) = 1 + x + x2 + x3.9 sin( 1

x ) reveals.
Certainly of particular interest is the case, if the polynomial Pt(·) is constant
and thus, necessarily coincides with the value Y (t). Then, we define the Hölder
exponent in the following definition.

Definition 3.75. The function or path Y (·) is Hölder continuous of degree
h(t) at t, where

h(t) = lim inf
ε→0

1
log2(2ε)

log2 sup
|s−t|<ε

|Y (s) − Y (t)|

One measures by h(t) the maximal perturbation of Y (s) from the reference
point Y (t) in form of a power of two (thus, the logarithm log2 for the basis 2),
and one considers it in dependence of ε, thus, the length of the interval (hence,
dividing by the logarithm of length of the interval). Considerable simple is the
derivation of the fact that if h < h(t) then it holds |Y (s) − Y (t)| ≤ c|s − t|h
and h(t) ≤ H(t). If we can choose in (3.106) only a constant, then we have of
course h(t) = H(t). It follows a useful proposition.
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Proposition 3.76. If h(t) �∈ N, then we have Pt in (3.106) as a constant and
h(t) = H(t).

For the applications we have to avoid any ‘continuous’ selection of the width
of the interval. We have to construct a sequence of decreasing intervals around
t. For this we choose for t and n ∈ Z the coefficient

kn(t) =
[
t2−n

]
(3.108)

Then we have for all n ∈ N

t ∈ I
(n)
kn

= [kn(t)2−n, (kn(t) + 1)2−n[

With decreasing n the sequence (I(n)
kn

) forms a sequence of embedded intervals.
Using this sequence of intervals, we can find a good approximation of h(t).
For this we define the coarse Hölder exponent of (·) at the point t

h
(n)
kn

= − 1
n

log2 sup
{
|Y (s) − Y (t)|; s ∈ [(kn − 1)2−n, (kn + 1)2−n[

}

For an illustration note

[(kn − 1)2−n, (kn + 1)2−n[ ⊂ [t− ε, t + ε[
⊂ [(kn+2 − 1)2−n+2, (kn+2 + 1)2−n+2[

if one has 2−n+1 ≤ ε < 2−n+2. Thus, it follows the next proposition.

Proposition 3.77. Let Y (·) be a function or path. Then we have for t ∈ [0, 1]

h(t) = lim inf
n→−∞

h
(n)
kn

The Hölder exponent reflects very intrinsically intrinsic how a function be-
haves close to the reference point. But for the statistical evaluations and thus,
the modeling of the IP traffic another exponent is of importance and is more
and more used – the wavelet exponent.

Wavelet Exponent

We already exposed that wavelets build a suitable environment to describe
signals and data series. Thus, we start with an arbitrary mother wavelet ϕ
and the corresponding scaling function ψ. We fix the wavelet representation
and define as already done in section 3.8.2 for j, k ∈ Z

ϕj,k(t) = 2
j
2ϕ(2jt− k) and ψj,k(t) = 2

j
2ψ(2jt− k)

We construct for a function or path Y (·) the wavelet coefficient

Dj,k =
∫ ∞

−∞
Y (s)ϕj,k(s)ds resp. Cj,k =

∫ ∞

−∞
Y (s)ψj,k(s)ds
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Then we have (see section 3.8.2)

Y (t) =
∞∑

j=J0

∑

k∈Z

Dj,kϕj,k(t) +
∑

k∈Z

CJ0,kψJ0,k(t)

How can we interpret the particular coefficients? Selecting a mother wavelet,
centralized with the frequency f0, the coefficient Dj,k measures the path
around 2−jf0 and at the point 2jk. The scaling coefficients Cj,k reflect the
averaging of the path at the point 2jt. With j we describe as well known the
scaling: The smaller the j, the finer the scaling will be. The value J0 indicates
the coarsest scaling, which is available and which offers still informations.

Remark 3.78. We detect the difference to the LRD phenomena: While we av-
erage traffic load for the LRD consideration over large time intervals and let
the scaling width tend to infinity, for the wavelet coefficient we are interested
in the local behavior. This can already be seen using the Hölder exponent and
will be detected later for the wavelet exponent.

For the closer investigation those wavelet with compact support are of interest,
and here, we choose the ‘most simple’ wavelet, the Haar wavelet. We can
represent the Haar wavelet in the form

ϕ(t) = ψ(2t) − ψ(2t− 1)

where the scaling function ψ is the indicator function of the unit interval.
Thus, J0 = 0 is fixed, since we restrict our function resp. the path Y (·) to the
interval [0, 1] and extend it by 0 elsewhere. The sequence of wavelets can be
easily representable: The finer ones ‘are halving’ the preceding ones. We can
describe this fact very easily in a tree. Formally one orders the coefficients in
a recursive scheme

Dj,k =
1√
2

(Dj+1,2k + Dj+1,2k+1)

Cj,k =
1√
2

(Cj+1,2k + Cj+1,2k+1)

The local behavior of Y (·) can be described very well.

Proposition 3.79. For fixed t ∈ [0, 1] and a sequence (kn = kn(t))n∈Z as in
(3.108) holds: If

|Y (t) − Y (s)| = O
(
|s− t|h

)
, for s → t (3.109)

and ϕ has a compact support
∫∞
−∞ |ϕ(s)|ds < ∞,

∫∞
−∞ ϕ(s)ds = 0, thus, it

follows

2
n
2 |Dn,kn

| = 2n
∣
∣
∣
∣

∫ ∞

−∞
Y (s)ϕ(2ns− k)ds

∣
∣
∣
∣ = O(2−nh), for n → ∞ (3.110)
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We will give some remarks on this.

Remark 3.80. The equation (3.109) tells us that in a neighbourhood of t the
functions change by the order of |s− t|h; hence, a large h implies only a small
change and the path is smooth, and vice versa a very small h indicates an
abrupt change.

Remark 3.81. The assertion (3.110) shows us an idea, computing the exponent
h with the help of the wavelet coefficient this time. Suppressing the Landau
symbol O, then we get a equation and solve it for k

h = − 1
n

log2

∣
∣2

n
2 Dn,kn

∣
∣ (3.111)

Remark 3.82. The proof of the assertion is still valid, if the wavelet does not
have a compact support, but has in turn a sufficient fast decay behavior. For
our purposes we skip the details.

Remark 3.83. If we change the wavelet representation, then the finer scaling
of the wavelet coefficient will be indicated by decreasing j. Then we have to
revert the direction of limiting, i.e. by exchanging n → −∞. Since this is not
practicable, we stay with the usual definition of finer scaling with increasing j.

From remark 3.81 resp. (3.111) we can deduce the definition of the coarse
wavelet coefficient.

Definition 3.84. The coarse wavelet exponent is defined according to

w
(n)
kn

= − 1
n

log2

∣
∣2

n
2 Dn,kn

∣
∣

We call
w(t) = lim inf

n→∞
w

(n)
kn

the local wavelet exponent at t.

Summarizing that the Hölder exponent indicates the irregularity of Y (·), but
only under the condition that the approximating polynomial is constant. The
advantage of the wavelet exponent lies in the independence of polynomial
trends, which is caused by the vanishing moments

∫∞
−∞ tmϕ(t)dt. But we can

estimate the Hölder exponent only with complicated methods (see [185]).
Considering the Hölder exponent more coarser, and this is important for the
so called increasing or monotone stochastic processes, then we can define a
further exponent.

Definition 3.85. The coarse exponent of the increase for a function or path
Y (·) is given by

α
(n)
kn

=
1
n

log2

∣
∣Y
(
(kn + 1)2−n

)
− Y (kn2−n)

∣
∣ (3.112)
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In the survey section 3.8.2 we selected this particular exponent for the treat-
ment of the IP-based traffic. It can be handled easily because of the simple
approach.
Finally analogously to the two preceding exponents we can define the local
exponent of the increments:

α(t) = lim inf
n→∞

α
(n)
kn

, t ∈ [0, 1]

Further exponents, as the Choquet capacity can be found in [164]. But for our
purposes they are not of interest and are not significant for the description of
the IP traffic.

Multifractal Analysis – Partition Function

As seen we can quantify the irregularity of a function or path of a stochastic
process in different ways. Since we do not differ explicitly between the Hölder-,
wavelet- or exponent of the increments, we will denote by

s
(n)
k ∈

{
h

(n)
k , w

(n)
k , α

(n)
k

}
, k = 0, . . . , 2n, n ∈ Z

a particular coarse exponent for the interval I(n)
k . As already mentioned s

(n)
k

is a random variable in the case of a stochastic process.
It seems clear that for different t we can expect different values of h(t), w(t)
and α(t). But how do they behave? How are the values distributed over the
interval in question, here [0, 1]? The answer is the main aim of the multifractal
analysis. It is called for a geometric resp. statistical representation of the
function t �−→ sk(t). Roughly speaking we want to determine how often the
particular exponent a appears in time, i.e. we have to deal with the question
how the set

Kα = {t ∈ [0, 1]; sk(t) = a}
can be described. We want to give a precise derivation for this heuristic fact.

The Spectral of the Exponent

We define for a number a ∈ R two sets

Ea =
{
t ∈ [0, 1]; lim inf

n→∞
s
(n)
kn

= a
}

Ka =
{
t ∈ [0, 1]; lim

n→∞
s
(n)
kn

= a
}

In general these sets look very ‘fractal’. That means, their geometric structure
is relatively complex. For a description we introduce the so called Hausdorff
spectrum.
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Definition 3.86. The function

a �−→ dim(Ea)

is called Haussdorff spectrum, where dim(Ea) represents the Hausdorff di-
mension of the set E (see [258]).

Often in literature the set Ka is considered. But this assumes the convergence
of the sequence s

(n)
k , while the definition of Ea only needs the boundedness

from below. Nevertheless the determination of the Hausdorff dimension is
difficult in practice and not very practicable. Thus, we introduce a further
concept, which ‘approximates’ the Hausdorff dimension. The definition of the
Haussdorff dimension is relatively complex and not of importance for our
purposes. Thus, we will not explicitly consider it in our further study and
refer the reader to the literature.

Grain-Based Spectrum

We assume the notations from above. Starting point is the determination and
computation of

N (n)(a, ε) = card
(
k = 0, . . . , 2n − 1; a− ε ≤ s

(n)
k ≤ a + ε

)
(3.113)

for ε > 0. If the random variable satisfies s
(n)
k = ∞, then we do not consider

it in our further countings. ‘card’ means the number of elements in a set. It
is bounded by 2n for N (n)(a, ε). With the help of the set N (n)(a, ε) we can
define the grain-based spectrum.

Definition 3.87. The grain-based spectrum is the function

f(a) = lim
ε↓0

lim sup
n→∞

1
n

log2 N
(n)(a, ε)

Useful is the following alternative definition (exchange the supremum by infi-
mum)

f(a) = lim
ε↓0

lim inf
n→∞

1
n

log2 N
(n)(a, ε)

The function offers beside the possibility of the computation of the Hausdorff
dimension also another meaning. We want to go into more details in this
section. It is for certain importance for modeling the TCP-based IP traffic.
We have the following estimations.

Proposition 3.88.

dim(Ea) ≤ f(a)
dim(Ka) ≤ f(a)
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An decisive interpretation will be revealed by the grain-based spectrum, if
we examine the principle of large deviation. For this purpose we consider the
quotient

N (n)(a, ε)
2n

as the probability finding a number kn = 0, . . . , 2n − 1, so that for a given
function or realization Y (·) the value s

(n)
kn

lies in the interval [a − ε, a + ε].
We want to have a close look at the grain-based spectrum f(â) for a special
point â. If we assume for simplicity for a small ε > 0 f(â) = 1

n log2 N(â, ε)
and presume that for all k = 0, . . . , 2n − 1 the value s

(n)
k lies in the interval

[â− ε, â + ε], then f(â) attains the value 1. Then we have in particular

lim
n→∞

s
(n)
kn

= â

Of course the reverse direction holds as well. But what happens, if we choose
a �= â? Then for a particular ε > 0 the interval [a− ε, a + ε] does not contain
â and we have a sequence of coarse exponents s(n)

kn
, which do not fall into the

interval [a − ε, a + ε]. Thus, the number N (n)(a, ε) decreases relatively fast
with a smaller ε and the value of f(a) decreases also fast for an a �= â.
We did not give any comments whether we can write instead ‘lim sup’ in the
definition of f(a) simply the limit ‘lim’. This we want to investigate now.
For this we have to introduce some new notions, which also appear in the
construction of IP traffic models (see e.g. the WIG and MWM models).
First we define a random variable ξn = −ns

(n)
K . We remind that we consider

a realization or a path of a stochastic process (Y (t))t∈[0,1]. Thus, the coarse
exponent s(n)

k is a random variable. But for ξn we choose K randomly out of
the set {0, 1, . . . , 2n−1}, where we consider for this set the uniform distribution
Un. We replace N (n)(a, ε) by a partition in the following definition.

Definition 3.89. The partition function τ of the path Y (·) is defined for q ∈
R according to

τ(q) = lim inf
n→∞

− 1
n

log2 S
(n)(q)

Here, we have

S(n)(q) =
2n−1∑

k=0

exp
(
−nqs

(n)
k log(2)

)
=

2n−1∑

k=0

2−nqs
(n)
k (3.114)

= 2nEn
(
2−nqs

(n)
K

)
= En

(
2−qξn

)

Note that the expectation En is constructed according to the uniform dis-
tribution Un on the set {0, 1, . . . , 2n − 1} and log is the natural logarithm.
We mention the notation 2−q∞ = 0. How can we represent the grain-based
spectrum with the help of the partition function? The next theorem, which
has an generalization, gives an answer.
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Theorem 3.90. Assume for all q the limit

τ(q) = lim
n→∞

− 1
n

log2 S
(n)(q) (3.115)

exists and assume that τ : R −→ R is differentiable. Then there exists also
the double limit

f(a) = lim
ε↓0

lim
n→∞

1
n

log2 N
(n)(a, ε)

and we have for all a ∈ R

f(a) = f(a)
f(a) = τ∗(a) = inf

q∈R

(qa− τ(q))

Unfortunately the assumption is not fulfilled in most applications and thus,
we have to mention the following estimation.

Proposition 3.91. We have for all a ∈ R

f(a) ≤ τ∗(a) (3.116)

Often one wants to obtain a good estimation of the partition function and
hence, one considers not necessarily a random variable. Thus, we try to inves-
tigate the values global, though they depend normally on the path. For this
we introduce the deterministic envelope.

Deterministic Envelope

We consider s(n)
K as random variable on the product space (Ω×{0, 1, . . . , 2n−

1}). Here, K is uniformly distributed on {0, 1, . . . , 2n−1} and independent of
ω ∈ Ω.

Definition 3.92. We define the deterministic envelope function of the process
(Y (t))t∈[0,1] for q ∈ R by

T (q) = lim inf
n→∞

− 1
n

log2 EΩ
(
S(n)(q)

)

Often we will not and cannot restrict the process (Y (t)) on a compact interval
as [0, 1]. Then, we have to define the values differently. Suppose e.g. that
(Y (t))t∈R is a process on the whole real line R. Then we substitute (3.114) by

S(n)(q) = lim
N→∞

1
N

N2n−1∑

k=0

2−nqs
(n)
k

and (3.113) by

N (n)(a, ε) = card
{
k = 0, . . . , N2n − 1; a− ε ≤ s

(n)
k ≤ a + ε

}
(3.117)



3.8 Multifractal Models and the Influence of Small Scales 289

-10

-8

-6

-4

-2

 0

 2

 4

-4 -3 -2 -1  0  1  2  3  4
q -10

-8

-6

-4

-2

 0

 2

 4

-4 -3 -2 -1  0  1  2  3  4
q

0.5, 1.0, 2.0

Fig. 3.23. Deterministic envelope function T (q) for deterministic distribution (left)
and exponential distributions with λ = 0.5, 1.0, 2.0 (right)
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Fig. 3.24. Deterministic envelope function T (q) for Pareto distributions with k =
1 and α = 0.5, 0.7, 1.0, 2.0 (left) and Weibull distributions with β = 1 and τ =
0.1, 0.5, 1.0, 2.0 (right)

If (Y (t)) is ergodic, then we obtain S(n)(q) = 2nEΩ(2−nqs
(n)
K ) a.s. (resp. the

uniform distribution), and thus, naturally EΩ(S(n)(q)) = S(n)(q) a.s. resp.

T (q) = τ(q, ω) a.s. (3.118)

It is evident that we cannot expect (3.118) in general (note that we assumed an
ergodic process!). Nevertheless, we have (3.118) in most interesting situations
and T (q) can be considered as a deterministic envelope of τ(q, ω). We have
added ω to emphasize the dependence of the path.

Proposition 3.93. We have with probability 1

τ(q, ω) ≥ T (q)

for all q ∈ R, satisfying T (q) < ∞.

We defined τ∗ and denoted the existence of the limit (3.115) in theorem 3.90
as crucial. This limit exists for the so called binomial cascades, as we will
then treat as example in one of the next sections. In turn, they are used
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for modeling the IP traffic. But in general for a lot of applications of these
processes we can state and use the inequality

lim sup
n→∞

− 1
n

log2 S
(n)(a) ≤ f∗(a) = inf

q∈R

(
qa− f(a)

)

With this we obtain for a ∈ R

f(a) = T ∗(a) = inf
q∈R

(qa− T (a)) (3.119)
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Fig. 3.25. Multifractal spectrum and the Hölder exponent Tα for deterministic
distribution (left) and exponential distributions with λ = 0.5, 1.0, 2.0 (right)
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and τ = 0.1, 0.5, 1.0, 2.0 (right)

The transition from the partition function τ to the deterministic envelope
function T consists in changing from averaging within a path over the single
coarse exponents to the averaging within and over all paths of the process. This
in turn implies for the function f(a) that we change now from the probability
of one path to the distribution within and over all paths. That means that
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we have to average over N (n)(a, ε) in dependence of ω. Fixing n, a and ε, we
let η(ω) = 1

s
(n)
K (ω)∈[a−ε,a+ε[. That means η(ω) = 1 if s(n)

k (ω) ∈ [a − ε, a + ε[
and η(ω) = 0 else. Here, (ω, k) ∈ Ω×{0, 1, . . . , 2n− 1}. Clearly we obtain the
equation E(η) = PΩ×2n(η = 1) (PΩ×2n is the product measure on the product
space Ω × {0, 1, . . . , 2n − 1}). This probability can be computed according to
the well known rule of Fubini for product measures. Hence, it is possible to
exchange the integrations: Either we fix a k and average over all paths (thus,
averaging over PΩ([a − ε, a + ε[), or we fix an ω, i.e., a path and average
first within the path (then we obtain N(n)(a,ε)

2n ). Subsequently we use the
expectation over all paths. Summarizing we obtain

PΩ×2n

(
[a− ε ≤ s

(n)
K < a + ε[

)

= 2−n
2n−1∑

k=0

PΩ
(
[a− ε ≤ s

(n)
k < a + ε[

)

= EΩ

(
N (n)(a, ε)

2n

)

With this derivations we can define the deterministic grain spectrum.

Definition 3.94. The deterministic grain spectrum of a path will be define
for a ∈ R by

F (a) = lim
ε↓0

lim sup
n→∞

1
n

log2 EΩ
(
N (n)(a, ε)

)

As for the grain-based spectrum f(a) we set

F (a) = lim
ε↓0

lim inf
n→∞

1
n

log2 EΩ
(
N (n)(a, ε)

)

Thus, the random variable f(a), which is dependent of the path, turns into a
real number. As already done for the grain-based spectrum we can formulate
a main theorem for the deterministic spectrum.

Theorem 3.95. We have for all a ∈ R

F (a) ≤ T ∗(a)

In particular: Assume for all a ∈ R the limit T (a) exists and the function
a �−→ T (a) is concave and differentiable, then the limit

F (a) = lim
ε↓0

lim
n→∞

1
n

log2 EΩ
(
N (n)(a, ε)

)
(3.120)

exists and it follows
F (a) = F (a) = T ∗(a) (3.121)
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How does the random variable f(a) behave with respect to the deterministic
value F (a)? The upcoming theorem gives an answer.

Theorem 3.96. For a fixed a ∈ R follows

f(a, ω) ≤ F (a) a.s.

Suppose for all n ∈ N the set of random variables s
(n)
k , k = 0, . . . , 2n − 1 is

iid and suppose F (a) = F (a) > 0, then we have a.s.

f(a, ω) = f(a, ω) = F (a) (3.122)

Note that only the equality in the limit on both sides is required. This does
not mean that the limit need to exist according to (3.120). If (Y (t)) has
independent increments (which we want to assume in our IP models), then
we can apply the fact (3.122) to the process (Y (t)), and not only for the
coarse exponents of the increments but also for the coarse Hölder- and wavelet
exponent.
We summarize the results in a corollary.

Corollary 3.97. We assume that the limit T (a) exists for all a ∈ R and that
the function a �−→ T (a) is concave and differentiable. Let further up to a finite
set of n ∈ N the coarse exponents (s(n)

k , k = 0, . . . , 2n − 1) be iid, which are
used for the definition. Let â ∈ R so that T (â) > 0. Then we have a.s.

f(â, ω) = f(â, ω) = τ∗(â, ω) = F (â) = T ∗(â)

The functions T ∗ and F can certainly assume negative values, while this is
not the case for f . Thus, F and T ∗ are good estimators for f, where they
are positive. Finally we summarize all relations in the final theorem of this
section.

3.8.4 Multifractal Formalism

We give first a short summary on the different spectra.

Theorem 3.98. If all values are built according to the same coarse exponent
s
(n)
k , then we have for all a ∈ R

dim(Ka) ≤ f(a) ≤ f(a) ≤ τ∗(a)
a.s.
≤ T ∗(a) (3.123)

Here, all but the last inequalities hold pathwise. Analogously we have

dim(Ea) ≤ f(a)
a.s.
≤ F (a) ≤ T ∗(a)
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A short comment to the last is in order at this point. On the left side of the
inequality we find values, which reflect the singularity resp. irregularity of
the path best. In contrast the possibility for computations improves going to
the right side, and with the help of the Legendre transformations τ∗, F ∗ and
T ∗ we are able to compute the values sufficiently. The assertion of theorem
3.98 is often called the multifractal formalism. Nevertheless another way of
expression is commonly in use: If there is equality of the partition function
with its Legendre transform, then we say the multifractal formalism holds. In
this case it holds, that means in (3.123) appears equality (see for more details
[122]). Though if in some situations we can detect equality, the inequality is
valid and commonly (considered pathwise). On the other hand we find a lot of
interesting relationships between the grain-based spectrum and the partition
function. We will state them in the next section.
We start with the main result and remark that the coarse exponents s

(n)
k

with infinite values do not contribute to the construction of the grain-based
spectrum resp. partition function. Hence, we assume that all exponents are
finite. Simultaneously, we know that the computation of the grain-based spec-
trum and partition function is difficult. Thus, the following theorem is of great
importance.

Theorem 3.99. Let a path Y (·) be given. Then we have:

• If the set {s(n)
k , k = 0, . . . , 2n − 1, n ∈ N} is not bounded from below and

above in R, then it follows τ(q) = −∞, q �= 0.
• If the set {s(n)

k , k = 0, . . . , 2n − 1, n ∈ N} is bounded from below and not
bound from above in R, it holds

τ(q) =

{
f∗(q) for all q > 0
−∞ for all q < 0

(Leftsided multifractal)
• If the set {s(n)

k , k = 0, . . . , 2n − 1, n ∈ N} is not bounded from below, but
bounded from above in R, then we obtain

τ(q) =

{
−∞ for all q > 0
f∗(q) for all q < 0

(Rightsided multifractal)
• If the set {s(n)

k , k = 0, . . . , 2n − 1, n ∈ N} is in R bounded, then we get

τ(q) = f∗(q), q ∈ R

(Bothsided multifractal)

Which properties does the partition function τ have? The preceding theorem
tells us that the different cases and its properties can be determined by the
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Legendre transform. Thus, τ is always concave and, depending on the four
cases in theorem 3.99, we observe continuity on the sets R, {q > 0} or {q < 0}.
In addition, it is up to countable many points, differentiable. We deduce from
the definition that τ is non decreasing as long as the exponents s(n)

k are positive
up to finite set. This stems from the case s

(n)
k = h

(n)
k for paths with bounded

variation or in the case s
(n)
k = w

(n)
k if almost all paths are square integrable.

But the function could be decreasing, provided the process exists only in the
distributive sense. In any acse τ is more robust than f , since τ is constructed
using expectation operator and no double limits are involved. Is it possible to
obtain similar result as for τ in theorem 3.99 for f , too? We try it and will
note first a simple to prove assertion.

Proposition 3.100. The grain-based spectrum f is lower semi-continuous,
that means, if (am) is a sequence converging to a, then it follows

f(a) ≥ lim sup
m→∞

f(am)

We do not obtain equality in theorem 3.99 with exchanged rôles. But twice
application of the Legendre transform will help us over this obstacle.

Theorem 3.101. (Central multifractal formalism). We have for all a ∈ R

f(a) ≤ f∗∗(a) = τ∗(a) (3.124)

where f∗∗ is the Legendre transform of f∗. In addition we have equality, if the
derivative from the right side (resp. from the left side) τ ′(q+) = limx↓q τ ′(x)
(resp. τ ′(q−) = limx↑q τ ′(x)) exists in R. That means if a = τ ′(q+) (resp.
a = τ ′(q−), then it follows

f(a) = f∗∗(a) = τ∗(a) = qτ ′(q+) − τ ′(q+)

(analogously for a = τ ′(q−)).

The formulation in (3.124) is only determined by local properties of the par-
tition function. From classical analysis we know that a concave function is
almost everywhere differentiable (up to countable many point). Thus, we can
also define τ ′(q+) for all those q, if τ is differentiable for all sequences xn ↓ q
provided it is differentiable at xn (n ∈ N). The only problem consists whether
the limit τ ′(q+) exists in R. In this sense we have to understand the right
sided (resp.) leftsided limit in the above theorem 3.101. In the light of theo-
rem 3.99 and proposition 3.100 we either can formulate results for the whole
of R, for the set {q < 0}, for the set {q > 0} or for no set.
How do some of the values of τ look like and what shape does f have? For
this we remember that S(n)(0) is the number of the finite values of s(n)

k :

• If all s(n)
k , k = 0, . . . , 2n − 1, n ∈ N are finite then we have τ(0) = −1. In

general, −τ(0) indicates the dimension of the support of the path Y (·).
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• The number S(n)(0) counts per definition the number of the finite s(n)
k , k =

0, . . . , 2n−1. Hence, we have S(n)(0) ≥ 0 and thus, τ(0) ≤ 0. Furthermore,
we deduce S(n)(0) ≥ N (n)(a, ε) for a ∈ R and ε > 0. This implies

f(a) ≤ −τ(0) (3.125)

• In some cases the singular exponents are monotone. That means e.g. if
s
(n)
k = h

(n)
k . Then we get

2−ns
(n)
k ≥ max

(
2−ns

(n+1)
2k , 2−ns

(n+1)
2k+1

)

Thus, we deduce

S(n)(1) ≥ 2S(n+1)(1) and τ(1) ≥ −1

(the h
(n)
k are bounded from below). In the case s

(n)
k = α

(n)
k , we have

S(n)(1) = S(n+1)(1) and τ(1) = 0

Hence, we obtain
fα(a) ≤ a

Thus, we get equality in the case a = τ ′(1+) and a = τ ′(1−).
• If the process is not monotone (the cascades are monotone for example),

then we do not have (3.125) necessarily. For some monotone processes we
can identify τ ′(1) as the dimension of the information of the support [82].

• We can define the support of a function as the closure of the set, where
the function is not constant and the kernel is the smallest set on which
the functions reveals its whole variability, i.e. that all values are assumed
by s

(n)
k . In the special case of a distribution function the support consists

of all open intervals with positive probability. The kernel indicates the
smallest set with probability 1.

We finally give some comments on the deterministic partition function.

Proposition 3.102. If T (q) is finite for a q > 0, then the set of the finite
exponents s

(n)
k , k = 0, . . . , 2n− 1, n ∈ N, is bounded from below for almost all

paths. In addition, we have for all q > 0 with finite T (q)

T (q) = F ∗(q)

If T (q) is finite for a q < 0, then the set of the finite exponents s
(n)
k , k =

0, . . . , 2n − 1, n ∈ N, is bounded from above for almost all paths. In addition,
it holds for all q < 0 with finite T (q)

T (q) = F ∗(q)

For all q ∈ R, where T is differentiable, i.e., if a = T ′(q) ∈ R exists, we deduce

F (a) = T ∗(a) = qT ′(q) − T (q) (3.126)
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3.8.5 Construction of Cascades

The concept of binomial cascades has greater importance in modeling TCP
based traffic. Hence, we deal in the following in more detail the so called mono-
tone processes, and will apply the results to irregularity. The construction is
two-fold: First we will construct geometrically a path, which is modeled in the
sequel stochastically. We explain this heuristical view more precisely.
Each path of a binomial cascade is a distribution function Mb(t). In particular,
each Mb(t) possesses the property of a distribution function: It is continuous
from right and monotone increasing. But almost everywhere Mb(·) is not
differentiable, i.e. it does not have a representation of the form Mb(t) =∫ t
−∞M ′

b(s)ds. As known from probability theory, every distribution function
defines a measure on R. We denote the corresponding measure by µb(] −
∞, t[) = Mb(t). In fact, it is easier to define the measure µb first and construct
in the sequel the process Mb. We can denote µb as binomial measure and Mb

as binomial cascade.
We proceed to the geometric construction. For this we successively divide the
interval [0, 1]. In this way we construct a tree, where each branch consists of
an ‘interval’ and in each level the preceding intervals will be divided. Formally
we can express this as follows.
For every t ∈ [0, 1] we select uniquely a sequence k1, k2, . . . such that t ∈
I
(n)
kn

= [kn2−n, (kn+ 1)2−n[ holds for all n ∈ N. Explicitly, we have kn = [t2n]
(remember the definition (3.108)). With this we uniquely determine for every
t ∈ [0, 1] a sequence (kn). We define this fact.

Definition 3.103. We call a sequence (kn)n∈N, for which I
(n+1)
kn+1

is a subin-

terval of I(n)
kn

, an embedded sequence.

Vice versa it is evident that averaging over a interval sequence of half open
intervals, belonging to an embedded sequence, defines exactly one point {t}.
How can we define for an ω a binomial measure µb? For this we consider
an interval I(n)

kn
on the level n. We divide it into the subintervals I

(n+1)
2kn

and

I
(n+1)
2kn+1.

I
(2)
0

I
(1)
0

I
(0)
0 I

(0)
1

I
(1)
1 I

(1)
2 I

(1)
3

I
(2)
1 I

(2)
2 I

(2)
3 I

(2)
4 I

(2)
5 I

(2)
6 I

(2)
7

Fig. 3.27. Scheme of the embedded intervals constructing the binomial measure



3.8 Multifractal Models and the Influence of Small Scales 297

Considering both intervals in the classical Lebesgue measure, both have length
2−(n+1). We want to weight each subinterval with positive numbers M

(n+1)
2kn

and M
(n+1)
2kn+1, in such a way that the union of both subintervals has the mass

of I(n)
kn

, i.e. preserving the mass. Hence, we stress that M (n+1)
2kn

+M
(n+1)
2kn+1 = 1.

The M
(n)
kn

are called multipliers, if they fulfill in addition the three properties,
described A) to C) below. But before we define the mass of µb for a particular
path.

Definition 3.104. For given multipliers M (n)
kn

we define the binomial measure
according to

µb(I
(n)
kn

) = M
(n)
kn

·M (n−1)
kn−1

· · ·M (1)
k1

·M (0)
0 (3.127)

and the binomial cascade is given by Mb(0) = 0 and

Mb

(
(kn + 1)2−n

)
−Mb(kn2n) = µb

(
I
(n)
kn

)
(3.128)

From measure theory we know that the half open dyadic interval form a
intersection stable generator of the Borel-σ-algebra. Hence, the definition in
(3.128) suffices for determining the whole measure. Integrals and expected
values are of great importance. We show this by an example for a continuous
function g (it is true for a general class of functions g)

∫ ∞

−∞
g(t)dµb(t) = lim

n→∞

2n−1∑

k=0

g(k2−n)dµb
(
I
(n)
k

)
(3.129)

= lim
n→∞

2n−1∑

k=0

g(k2−n)
(
Mb

(
(k + 1)2−n

)
−Mb(k2−n)

)

=
∫ ∞

−∞
g(t)dMb(t)

We defined Mb only at dyadic points. Since Mb is continuous from right as
distribution function and the dyadic numbers lie dense in the interval [0, 1],
the definition in (3.128) suffices.
We defined one path up to now. To generate a process, we have to stress
that the multipliers M

(n)
kn

are random variables, which fulfill the following
conditions. As initial value, the so called basic mass, we choose a positive
random variable M

(0)
0 :

A) Preserving of the mass: One chooses M
(n)
k > 0 almost surely everywhere

and stresses
M

(n+1)
2k + M

(n+1)
2k+1 = 1 a.s., for all n, k (3.130)

Thus, the Mb is uniquely determined. But it is possible to weaken A)
with the alternative condition A′).
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A′) Preserving of the mean:

E (M0 + M1) = 1

This condition enables more flexibility in modeling. But one has to be
more careful in the definition (3.127) and modify it in a certain direction
(see [127]).

B) Embedded independence: For easier computations in applications (and be-
cause it often can be assumed), we stress that for an embedded sequence
(kn) the sequence of multipliers is stochastic independent. We obtain
(similar as for all existing moments)

EΩ
(
Mkn

· · ·M (0)
0

)
= EΩ

(
M

(n)
kn

)
· · ·EΩ

(
M

(0)
0

)
(3.131)

C) Identical distribution: For all n, k we choose the following equation in
distributional sense

M
(n)
k =

{
M

(1)
0 = M0 for k is even

M
(1)
1 = M1 for k is odd

n = 0

M
(2)
2 ·M(1)

1 ·M(0)
0

M
(1)
0 = 3

5

M
(2)
0 = 3

4

n = 1

n = 2
M

(2)
0 ·M(1)

0 ·M(0)
0

M
(2)
1 ·M(1)

0 ·M(0)
0 M

(2)
3 ·M(1)

1 ·M(0)
0

M
(1)
1 ·M(0)

0

M
(1)
0 ·M(0)

0

M
(0)
0

M
(1)
1 = 2

5

M
(2)
1 = 1

4
M

(2)
2 = 2

3
M

(2)
3 = 1

3

Fig. 3.28. Binomial cascade under the condition A) – preserving the mass (dashed
line)

We should remark that under the assumption A′) we cannot expect Mb(1) =
M

(0)
0 anymore. Similar the chosen identity (3.127) for the construction for

µb(I
(n)
k ) has to be understood in distributional sense because of the iid prop-

erty of the multipliers and not as pure identity
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µb

(
I
(n)
kn

)
d= M

(n)
kn

·M (n−1)
kn−1

· · ·M (1)
k1

·M (0)
0 (3.132)

Because we have E(Mb(1)) = E(M (0)
0 ), we get for the conditional expectation

E
(
µb

(
I
(n)
kn

) ∣
∣M (n)

kn
, . . . ,M

(1)
k1

)
= M

(n)
kn

· · ·M (1)
k1

E
(
M

(0)
0

)
(3.133)

and it follows in particular E(µb(I
(n)
kn

)) = 1
2n E(M (0)

0 ). This implies for sim-
ulations that in the process of simulations one does not receive the value of
µb(I

(n)
kn

) using (3.133), but only the expected value. The decisive advantage
of the alternative definition A′) lies in the fact that one can use unbounded
multipliers as e.g. the lognormal distribution for the random variables M0 and
M1. Then the marginal distribution of µb(I

(n)
kn

) turn out lognormal. In general

we can deduce under the conditions A′), B) and C) that µb(I
(n)
kn

) is according
to the central limit theorem at least asymptotical lognormal distributed, of
course under the assumption that the variance in (3.127) is finite.
After considering the construction of the binomial cascades we want to com-
ment on the irregularity of the paths. Here, a problem concerning the measure
µb arises. Since we did define it only in the distributional sense and since it
does not possesses paths in realizations, we have to proceed differently. Thus
we restrict ourselves to the treatment of the multifractal analysis of the distri-
bution function Mb. The following proposition shows us that both the coarse
increment exponent α

(n)
k as the coarse Hölder exponent leads to the same

(deterministic) partition function. The consideration of the wavelet exponent
will be done separately.

Proposition 3.105. For a binomial cascade (Y (t)) = (M(t)) which is almost
surely increasing we have

Tα(q) = Th(q), for all q ∈ R

In addition, we get for almost all paths

τα(q, ω) = τh(q, ω), for all q ∈ R

We want to compute the envelope resp. the partition function precisely.
For this we select the coarse exponent of the increments α

(n)
k . Because of

proposition 3.105 we also obtain the result for the coarse Hölder exponent.
We have Mb((kn + 1)2−n) − Mb(kn2−n) = µb(I

(n)
kn

). According to (3.127)
(resp. (3.132)) we get by the independence condition B) (see also (3.131)) and
condition C)

E
(
S

(n)
α,Mb

)
=

2n−1∑

kn=0

E
((

M
(n)
kn

)q
· · ·
(
M

(1)
k1

)q)
E ((Mb(1))q) (3.134)

= E ((Mb(1))q) ·
n∑

j=0

(
n

j

)
E(Mq

0 )jE(Mq
1 )n−j

= E ((Mb(1))q) · (E(Mq
0 ) + E(Mq

1 ))n
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In case A) we have Mb(1) = M
(0)
0 almost surely. We summarize this fact in

a theorem.

Theorem 3.106. Let Mb be a binomial cascade, for which A′), B) and C)
hold. It follows T (q) = −∞, if one of the values E(Mq

0 ), E(Mq
1 ) or E(Mb(1)q)

is infinite. Otherwise we have

Tα,Mb
(q) = Th,Mb

(q) = − log2 E (Mq
0 + Mq

1 ) (3.135)

If the multipliers M0 and M1 have at least one existing negative moment (i.e.
q < 0), then it holds in the case of the coarse exponent of the increment α(n)

k

for all a ∈ R with T ∗(a) > 0

dim(Ka) = dim(Ea) = f(a) = f(a) = τ∗(a) = F (a) = T ∗(a) (3.136)

Assuming further that the random variables M0 and M1 are bounded away
from 0 almost surely, then we get for the coarse Hölder exponent h(n)

k and all
a ∈ R with T ∗(a) > 0 the equality (3.136) almost surely.

We should present some examples of binomial cascade.

Example 3.107. Beta-binomial cascade: The multipliers M0 and M1 are iden-
tical beta distributed. As known the density of the distribution is g(x) =
cpx

p−1(1 − x)p−1, for x ∈ [0, 1] and g(x) = 0 for x �∈ [0, 1]. Here, p > 0 is a
given parameter, describing the tail behavior (see (2.32)), and cp is a constant
(to obtain a probability density g). Because of the condition (3.130) we get a
symmetric distribution, since M0 and M1 = 1−M0 are uniformly distributed.
The β distribution has a finite moment for all q > −p, i.e. E(Mq

0 ) < ∞ for
q > −p. Thus, we deduce for the binomial cascade (with (3.135) and theorem
3.106)

Tα(q) = −1 − log2

Γ (p + q)Γ (2p)
Γ (2p + q)Γ (p)

, q > −p (3.137)

and Tα(q) = −∞ for q ≤ −p. We considered this fact when investigating
binomial cascades in the TCP traffic.

Example 3.108. Assuming in example 3.107 explicitly p = 1, then we obtain
the uniform distribution. We conclude Tα(q) = −1 + log2(1 + q), if q > −1.
Applying the Legendre transform, then the explicit form

T ∗
α(a) = 1 − a + log2(e) + log2

(
a

log2(e)

)

for a > 0 and T ∗(a) = −∞ if a ≤ 0 follows.

Example 3.109. A very interesting case is revealed by the lognormal binomial
cascades. We use the lognormal distribution for the multipliers M0 and M1

(see e.g. for the lognormal distribution [38]). In this case we have to substitute
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Fig. 3.29. Deterministic envelope function T (q) (left) and multifractal spectrum
and the Hölder exponent Tα (right) for the MWM model with p = 0.1, 0.5, 1.0, 2.0,
5.0, 10.0

A) by A′). Lognormal means that we used a N (m,σ2)-distributed Gaussian
variable ξ and considered M = exp(ξ). Then we have E(Mq) = E(exp(ξ)q) =
exp( qm+q2σ2

2 ). Assuming again M0 and M1 as identical distributed, then (ac-
cording to A′)) the respective mean has to be 1

2 , and we obtain the equality
m+σ2

2 = log(2). From (3.135) we get for the lognormal binomial cascade

Tα(q) = (q − 1)
(

1 − σ2

2 log(2)
q

)
(3.138)

for all q ∈ R, for which E(Mb(1)q) is finite. The parabola in (3.138) has two
points of value 0: 1 and qkrit = 2 log(2)

σ2 . To obtain a non degenerated cascade,
we have to have T ′(1) > 0, which is equivalent to qkrit > 1. Then, we conclude
E(Mb(1)q) < ∞ for all q < qkrit (see [127]). Indeed, we can describe the tail
behavior of Mb(1): It is P(Mb(1) > x) ∼ xqkrit for large x → ∞ (see [105]).
We omit the details and present the results:

• From the representation we can detect that T is differentiable for all q <
qkrit. Then we can compute the Legendre transform according to (3.126)
for a = T ′(q), q < qkrit, i.e. for a > akrit = T ′(qkrit) + σ2

2 log(2)

T ∗(a) = 1 − log(2)
2σ2

(
a− 1 − σ2

2 log(2)

)2

, a > akrit

If a ≤ akrit, then we have T ∗(a) = a · qkrit. Hence, at akrit the parabola of
T ∗ turns into its tangent, going through the origin with slope qkrit. Since
qkrit > 1, we have akrit < 0 and the spectra for negative a possesses a finite
but negative value T ∗(a).

• Deterministic spectra: It holds T ∗(a) = F (a) for all a ∈ R with a = T ′(q)
according to 3.102.

• Partition function: All path of the cascade are increasing, thus, the coarse
exponent of the increments α

(n)
kn

has to turn positive and hence, τα(q) is
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monotone increasing. On the other hand we know that the deterministic
partition function Tα(q) is a parabola, where Tα(q) attains finite values.
Thus, consequently we have τ(q) > T (q) for q > 1+qkrit

2 , and hence, q lies
on the right of the maximum of T.

• Negative (real) exponents: It seem surprising on the first glimpse that
in the case of lognormal binomial cascades negative values of a < 0 can
occur, for those with finite T ∗(a). Negative exponents show that the incre-
ment within one subinterval can be larger as in the preceding one, which
is impossible for increasing paths. The contradiction can be solved by the
reasoning that the exponent is not directly responsible for the single ingre-
dients of the measure but for the M (i)

ki
, and here, what should be expected,

not for virtual paths.

Remark 3.110. Finally we want to give some remarks on the shape of the de-
terministic partition function or envelope. We start with the Legendre trans-
form T ∗ and consider first the part T ∗(a) > 0. This reveals the properties
of the path. In case of the cascade we have, according to the theorem 3.106,
that T ∗(a) is the value of the Hausdorff dimension dim(Ea), thus, reflecting
the local structure of the path using the coarse exponents s

(n)
k . Similar the

value T ∗(a) indicates the values of the grain-based spectral f(a) resp. the
Legendre transform of the partition function τ∗(a). In general T ∗ consists as
an upper bound (see theorem 3.98). The positive part of T ∗ lies between its
roots, which are in turn representing the corresponding slope of the tangents
to T (q), which run through the origin. As disadvantage one cannot interpret
the negative part of T ∗ as dimension. Let‘s consider the values a, which oc-
cur in the spectrum. As already discussed those a make trouble for which
T ∗(a) < 0 hold. They are called the latent exponents. The virtual are those
with a < 0. For the coarse exponents α

(n)
k resp. h(n)

k of monotone processes
all virtual exponents are latent ones. We can realize this by the fact that
T (1) = 0 and hence, T ∗(a) ≤ a. Of course no increasing path can show a
negative coarse exponent of the increments and virtual exponents are rarely.
But this observation will change for the wavelet exponents.

Remark 3.111. Stationary increments: Because of property C) of the binomial
cascades the increments Mb((k+1)2−n)−Mb(k2−n) are identical distributed,
if – and this can be assumed – the M0 and M1 are identical distributed. In
this case we have stationary increments of the first order, but we will not get
those of second order.

Remark 3.112. One can extend the binomial structure to the so called c-adic
cascades Then, the geometric representation is not given by a tree since in each
knot of a level we have c-subtrees. In addition we could alter the deterministic
or the stochastic numbers c(n) for each levels n. Then we call these objects
multinomial cascades. On this very sophisticated structure we will go into
details and refer on the literature (e.g. [218]).
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The coarse Hölderexponent resp. the exponent of the increments could only
be defined for Mb. To present in addition a multifractal analysis for µb, we
have to use the wavelet exponents.
For this we first use the Haar wavelet. The wavelet coefficients are

2−
n
2 Dn,kn

(µb) = µb

(
I
(n+1)
2kn

)
− µ
(
I
(n+1)
2kn+1

)
(3.139)

=
n∏

j=0

M
(j)
kj

(
M

(n+1)
2kn

−M
(n+1)
2kn+1

)

The scaling coefficients turn out to be

Cn,k(µb) =
∫ ∞

−∞
ψn,k(t)dµb(t) = 2

n
2

∫ (k+1)2−n

k2−n

dµb(t) = 2
n
2 µb

(
I
(n)
k

)
(3.140)

Changing from the Haar wavelet to a general one with arbitrary support in
[0, 1], we apply the substitution s = 2nt−kn, to gain from (3.139) the equation

2−
n
2 Dn,kn

(µb) =
∫

I
(n)
kn

ϕ(2nt− kn)dµb(t) (3.141)

= M
(n)
kn

· · ·M (1)
k1

∫ 1

0

ϕ(s)dµn,kn

b (s)

The measure µn,kn

b is formed for every embedded sequence (km) at the knot
kn starting with length m and depending of the interval. We give a more
precise definition.

Definition 3.113. For a given embedded sequence k1, . . . , kn we set

µn,kn

b

(
I
(m)
im

)
= M̂

(0)
0 M

(n+1)
2kn+i1

M
(n+2)
4kn+i2

· · ·M (n+m)
2mkn+im

where (i1, i2, . . . , im) is an embedded sequence defined depending on the inter-
val I(m)

im
. Furthermore M̂

(0)
0 is an independent copy of M (0)

0 . Finally we set
Mn,kn

b (t) = µn,kn

b ([0, t[).

We define the wavelet coefficients for binomial cascade measures. Now we will
transfer (3.141) to the distribution function Mb. For this let t ∈ [0, 1] and
kn = kn(t) = [2nt] .We compute

Mb(t) −Mb(kn2−n) = µb
(
[kn2−n, t]

)
= Mn,kn

b (2nt− kn)M
(n)
kn

· · ·M (1)
k1

How do the particular wavelet coefficients look like? Again we pick a mother
wavelet ϕ with support in [0, 1]. This implies that ϕn,k = ϕ(2n · −k) has a
support in I

(n)
k . Choosing s = 2nt− k it follows
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∫

I
(n)
k

ϕn,kMb(t)dt =
∫

I
(n)
k

ϕ(2nt− kn)
(
Mb(t) −Mb(kn2−n)

)
dt

= 2−n ·M (n)
kn

· · ·M (1)
k1

·
∫ 1

0

ϕ(s)Mn,kn

b (s)ds

To obtain a closed representation, we define the following random variables:

ηn,k(µb) =
∫ 1

0

ϕ(t)dµn,kn

b (t) resp. ηn,k(Mb) =
∫ 1

0

ϕ(t)Mn,kn

b (t)dt

We are now able to summarize the results in the following proposition.

Proposition 3.114. Suppose ϕ is a mother wavelet with support in [0, 1] and
µb satisfies the conditions A) to C). Then we have for the wavelet coefficients
(random variables!)

Dn,kn
(µb) = 2

n
2 M

(n)
kn

· · ·M (1)
k1

ηn,kn
(µb)

Dn,kn
(Mb) = 2−

n
2 M

(n)
kn

· · ·M (1)
k1

ηn,kn
(Mb)

In addition, the random variables ηn,kn
and M

(i)
ki

, i = 0, . . . , n are, as for µb
and for Mb pairwise independent and

ηn,kn

d= η0,0 = D0,0 (3.142)

Remark 3.115. Proposition 3.114 has a great impact for modeling the TCP
traffic. Starting with the data, obtained by the wavelet analysis, one models
with the help of the result (3.142) a binomial cascade. For this suitable as-
sumptions to the starting distributions of M0 and M1 are made. Consequently,
one receive with the help of the data, thus, the wavelet coefficients, a reliable
multifractal model. We discussed this in more detail in section 3.8.2.

How can we determine the irregularity of binomials cascades using the wavelet
coefficients? As already mentioned they are particularly useful for the treat-
ment of binomial measures µb. Again we start with the computation of the
deterministic envelope. The proposition 3.105 resp. the computation in (3.134)
can be transferred and we obtain

E
(
S(n)
w,µb

(q)
)

= 2nqE (|D0,0(µb)|q) · (EΩ(Mq
0 ) + E(Mq

1 ))n

Similar we can determine E(S(n)
w,Mb

(q)). We summarize

Proposition 3.116. Assuming the condition that the moments of the wavelet
coefficients E(|D0,0(µb)|q) resp. E(|D0,0(Mb)|q) and the moments E(Mq

0 ),
E(Mq

1 ) and E(Mb(1)q) are all finite, we have

Tw,µb
(q) + q = Tw,Mb

(q) = Tα,Mb
(q)

T ∗
w,µb

(a− 1) = T ∗
w,Mb

(a) = T ∗
α,Mb

(a) (3.143)
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We considered the moments for the coarse wavelet exponents. How can we
determine in particular the w

(n)
k ? For this we have to pose some additional

conditions on the initial distribution of M0 resp. M1, so that the wavelet
coefficient D0,0 will not turn out to be too small. Hence, it suffices to stress
|D0,0| ≥ ε for a sufficient small ε > 0 (for the Haar wavelet we have D0,0 =
2M0 − 1 a.s.). With this condition we get for all t ∈ [0, 1]

lim
n→∞

1
n

log2

(∫ 1

0

ϕ(s)dµn,kn

b (s)
)

= 0

Taking in addition (3.141) into account, then it follows

wµb
(t) = lim inf

n→∞
− 1
n

log2

(
2

n
2 |Dn,kn

|
)

= αMb
(t) − 1

Here, we have a coincidence with (3.143), and we realize that the wavelet
exponent of the measure differs from the exponent of the increment α of
the distribution function by the value 1, assuming the cascade is sufficiently
‘nice’ (expressed by the boundedness of the wavelet coefficient from below).
In case this condition is not satisfied that simple observation may fail. This
is also expressed by considering the coarse Hölder exponent. Using the above
proposition we can formulate the following corollary.

Corollary 3.117. Suppose µb satisfies the conditions A) to C) and the ran-
dom variables ηn,k(µb) resp. ηn,k(Mb) are uniformly bounded away from 0.
In this case we have equality in the multifractal formalism, i.e.

dim(Ka
w,µb

) = fw,µb
(a) = τ∗w,µb

(a) = T ∗
w,µb

(a) = T ∗
α,Mb

(a + 1) (3.144)

resp.
dim(Ka

w,Mb
) = fw,Mb

(a) = τ∗w,Mb
(a) = T ∗

w,Mb
(a) (3.145)

Here, all equations in (3.145) have to be understood almost surely (as in
(3.144) with exception of the last one).

We have for the Haar wavelet ηn,k = M
(n+1)
2k − M

(n+1)
2k+1 = 2M (n+1)

2k − 1.
The restriction being bounded away from 0 seems just for applications quite
unrealistic. Looking more closely to the scene we can provide some technique
to avoid this unwished restriction

• Being bounded away from 0 is needed, whenever we divide by the random
variable or simply if we have to consider negative moments, as done by
the multifractal formalism. Thus, it is possible to substitute the stronger
assumption being bounded away from 0 by the weaker condition of the
existence of all negative moments of ηn,k. If we drop condition C) and
demand that the distribution of the multipliers depend on the level n,
then we can skip the boundedness on finite many levels ηn,k, i.e. ηn,k
is only bounded away from 0 for large n. We realize just in the case of
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the treatment of network traffic that on the fine scales (small n) discrete
distributions on [−1, 1] are used, which have a large variance and no mass
around 0.

• There is another, maybe more crude method, to avoid small wavelet coef-
ficients. For this we use the maximum of the wavelet coefficient for all t in
its neighborhood and define a new wavelet exponent w̃. For this coefficient
we can derive a multifractal formalism. More detailed conditions can be
found in [28, 123].

With the help of an example we want to investigate, if we can apply the simple
rule in all cases – we loose one degree of Hölder continuity after differentiating.
We already remarked before the last one that this cannot be done as simple.

Example 3.118. For this let Mb(t) = 5t + t3 sin(1
t ). Its derivative reads as

M′
b(t) = 5+3t2 sin(1

t )−t cos( 1
t ) (it exists for all t ∈ R) and it is strictly positive

on [0, 1]. Hence, Mb is monotone increasing. The local Hölder continuity at
t = 0 is 3, since |Mb(t) − 5t| ≤ |t|3 is the best polynomial approximation.
But at t = 0 we have only |M′

b(t) − 5| ≤ |t| and thus, the Hölder exponent
HM′

b
= 1. The regularity decreases rate 2 and this happens because Mb

oscillates very heavy in a neighborhood of 0.

We want to examine the relationship between the Hölder exponent of the path
Mb and the derivative M′

b. Since we are not interested in the orthogonality of
the wavelets, we use for our purposes different mother wavelets than the Haar
wavelet. We consider the so called Gaußkernel exp(−x2

2 ) and its derivatives
(we need differentiable wavelets). To study the relationship between the par-
ticular wavelet coefficients, we apply the partial integration in the following
step:

∫ 1

0

g(t)dµb(t) = lim
n→∞

2n−1∑

k=0

g(k2−n)
(
Mb

(
(k + 1)2−n

)
−Mb(k2−n)

)

= lim
n→∞

2n−1∑

k=0

g(k2−n)Mb(k2−n)
(
g
(
(k − 1)2−n

)
− g(k2−n)

)

+Mb(1)g(1 − 2−n) −Mb(0)g(−2−n)

= Mb(1)g(1) −M(0)g(0) −
∫ 1

0

g′(t)Mb(t)dt

Hence
∫ 1

0

g(t)dµb(t) = Mb(1)g(1) −Mb(0)g(0) −
∫ 1

0

g′(t)Mb(t)dt (3.146)

Here, we have used (3.129), integrated partially and permutated some terms.
If Mb allows a derivative, then dµb(t) turns to M′

b(t)dt.
We define g(t) = 2

n
2 ϕ(2nt−k) for a differentiable mother wavelet ϕ and obtain
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g′(t) = 2
3n
2 ϕ′(2nt− k)

Since we have Mb(1) = 1 and Mb(0) = 0 (Mb is the distribution function
with support in [0, 1]), it follows by (3.146)

Dn,k(ϕ, µb) = 2
n
2 ϕ(2n − k) − 2nDn,k(ϕ′,Mb) (3.147)

We can estimate the argument of ϕ in (3.147) for large t asymptotically. It
holds because of kn = [t2n]

2n − kn = 2n − [t2n] ∼ 2n − t2n = (1 − t)2n, for large t

Because of the choice of the mother wavelet ϕ(t) it decays for t → ∞ ex-
ponentially (see [74] for the definition of the Schwarz space) and thus, we
get

wϕ,µb
= −1 + wϕ′,Mb

(t)

Summarizing we have the relationship given in the following theorem.

Theorem 3.119. For a differentiable mother wavelet ϕ with exponential de-
cay if t → ∞ it follows

Ea+1
ϕ,µb

= Eaϕ′,Mb
, fϕ,µb

(a) = fϕ′,Mb
(a+ 1), τ∗ϕ,µb

(a) = τ∗ϕ′,Mb
(a+ 1) (3.148)

To understand the result in (3.148) more precisely, we want to discuss the
following observation. The derivative ϕ′ has a vanishing moment less than the
mother wavelet (simple computation with partial integration). As we already
remarked, it is dµb(t) = M′

b(t)dt, i.e., the measure is the derivative of the
distribution function and hence, its Taylor expansion has one degree less than
that of Mb(t). As we already stated in section 3.8.2, the wavelet should be
‘blind’ to polynomials. The assertion (3.148) is also true, if the distribution
function oscillates heavily at some points. Then the wavelet analysis is not
suitable, to discover those spots. It could be said that the multifractal analysis
of µb = M′

b using ϕ is equivalent to that of Mb using ϕ′.

Remark 3.120. It seems to be surprising that the Haar wavelet, though it
does not have vanishing moments, can describe and analyze the binomial
distribution function Mb as its derivative µb. The regularity decays and thus,
we could not describe Mb. The illumination is given by the structure of the
cascades themselves. In the dyadic points the polynomials are constant and
thus, the property

∫
ϕ(t)dt = 0 suffices. The demand for

∫
tkϕ(t)dt = 0 for

larger k is not necessary, even if there is a regularity of α(t) > 1. Finally we can
state that the wavelets cannot describe singularities at those points for which
the degree of the approximating polynomial is higher than the regularity.
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3.8.6 Multifractals, Self-Similarity and Long-Range Dependence

As above we follow the line of the survey article of Riedi [218]. We remark
that as in the whole chapter of multifractal analysis we only give a short sur-
vey on the theory, which can be studied in more details in papers like [218].
In addition, there the theory is presented more mathematical formally. Up to
now we sketched the concept of multifractals from the observed data mate-
rial resp. signal. We saw that with the help of MWM resp. cascade models
one can describe the multifractal character of the IP-based traffic. How is
the multifractality connected to the concept of self-similarity and long-range
dependence? We repeat the definition of self-similarity and state some prop-
erties.

Definition 3.121. A process (X(t)) is called self-similar, if there exists an
exponent (Hurst exponent) H > 0, such that

X(at) = aHX(t), for all a > 0 (3.149)

in the sense of equality in the marginal distribution.

We say that (X(t)) has stationary increments if for all s, t > 0

X(t + s) −X(t) d= X(s) −X(0)

A self-similar process with stationary increments is called an H-sssi process.
For more details we refer to the section 3.1.2. Since naturally the increments
of an H-sssi process are of importance, we define

Z(t) = X(t + 1) −X(t)

or the discrete version

Z(k) = X(k + 1) −X(k)

Example 3.122. The most prominent example of an H-sssi process is the FBM:
The only H-sssi process (0 < H ≤ 1) with Gaussian marginal distributions is
the fractional Brownian motion (B(H)

t ), as we know from section 3.2.2. The
process (Z(t))t∈]−∞,∞[ = (B(H)(t + 1) −B(H)(t))t∈]−∞,∞[ is called Gaussian
white noise (in continuous time) (FGN). Instead of the drift with value 1, one
can choose a fixed δ > 0. If H = 1

2 , we get the Wiener process or Brown-
ian motion and the FBN turns into the white noise. We want to describe a
representation of the FBM using the Itō integral

B(H)(t) =
1

Γ
(
H + 1

2

)
∫ ∞

−∞

(
(t− s)H− 1

2
+ − (−s)H− 1

2
+

)
dB( 1

2 )(s) (3.150)

(x+ = max(x, 0)). This representation goes back to Mandelbrot and Van Ness
[174]. For further results we refer to the section 3.2.2. In particular the FBM
has a autocovariance function, since the finite marginal distributions have a
second moment.
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Example 3.123. There are processes, as seen in section 3.2.3, whose marginal
distributions do not have necessarily a second moment. These processes were
introduced, motivated by the generalization of the central limit theorem,
through the symmetric α-stable distribution (0 < α ≤ 2). The characteristic
function of the random variable X(t) reads e.g as

E (exp(ixX(t)) = exp (−C(t)α|x|α + iβx)

The H-sssi processes, whose marginal distribution are symmetric α-stable,
form the next class for which the q-moments exists only for q ≤ α. In the case
α = 2 we obtain the Gaussian distribution. We denote a symmetric α-stable
H-sssi process with LH,α. We know that the random variable LH,α(t)−LH,α(s)
is distributed according to C(t) = |t− s|HCLH,α(1) if the increments are inde-
pendent then is equivalent to H = 1

α and these processes are called α-stable
Lévy process. They are denoted by LH, 1

H
= LH .

Example 3.124. For an H-sssi process it must hold H ≤ max( 1
α , 1), as we

know already. If H �= 1
α , then we replace in (3.150) the exponent H − 1

2 by
H − 1

α �= 0 and the Brownian motion by an α-stable Lévy process. Then
we obtain a general linear fractional stable motion. The special case α = 2
gives us the FBM back, and this is the only case that the H-sssi is a 2-stable
process uniquely determined and has continuous paths, i.e. the FBM. In other
cases the H-sssi process is uniquely determined and possesses almost surely
not continuous paths.

After these introductory remarks we turn to the multifractal analysis of self-
similar processes.

Deterministic Envelope and Self Similarity

In the sequel we consider an H-sssi process (X(t)) and get

2−nα
(n)
k =

∣
∣X
(
(k + 1)2−n

)
−X(k2−n)

∣
∣ (3.151)

=
∣
∣X(2−n)

∣
∣ = 2−nH |X(1)| = 2−nH2−α

(0)
0

The two equation in the middle are valid in distributional sense. The second
equation is a result of the stationary increments and the third follows, since we
have a self-similar process. If we apply on both sides of (3.151) the logarithm,
then we conclude: −nα

(n)
k = −nH − α

(0)
0 and, thus

α
(n)
k = H +

1
n
α

(0)
0

We can formulate this more generally.
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Proposition 3.125. Suppose (X(t)) is an H-sssi process. Then the singular
exponents α

(n)
k , h

(n)
k and w

(n)
k satisfy the scaling equation

s
(n)
k = H +

1
n
s
(0)
0 in distribution, for s ∈ {α, h,w} (3.152)

The mean EΩ(2−ns
(0)
0 ) is exactly for all Qu < q < Qo finite, where for s

(n)
k =

α
(n)
k resp. s(n)

k = w
(n)
k we have

(Qu, Qo) =

{
(−1,∞) for the FBM
(−1, α) for an sαs process

(3.153)

In the case s = h we get

Qo = ∞ for a FBM
Qo ≤ α for a sαs motion (3.154)

Qu = −∞ for a Lévy stable process or the Brownian motion

Using (3.152) we obtain

EΩ
(
S(n)(q, ω)

)
= EΩ

(
2n−1∑

k=0

2−nqs
(n)
k

)
(3.152)

= 2n2−nqHEΩ
(
2−qs

(0)
0

)

Combining (3.153) and (3.154), we can conclude

Ts(q) = lim
n→∞

log2 EΩ
(
S(n)(q)

)

−n
=

{
qH − 1 for Qu < q < Qo

−∞ else
(3.155)

We see that the deterministic partition function is linear. How does th deter-
ministic grain spectrum F (a) looks like? The derivation is left to the reader
as exercise. Here is the result.

Proposition 3.126. The Legendre transform T ∗ of the deterministic parti-
tion function of an H-sssi process is for the singular exponents s

(n)
k , s ∈

{α, h,w} (the upper resp. lower bound Qo resp. Qu are given according to
proposition 3.125):

T ∗(a) =

⎧
⎪⎨

⎪⎩

1 + Qu(a−H) for a > H

1 for a = H

1 + Qo(a−H) for a < H

According to (3.121) it is F (a) = F (a) and thus it follows

Fα(a) = Fw(a) = T ∗
α(a) = T ∗

w(a) and Fh(a) = T ∗
h (a)
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Up to now we were concerned with deterministic functions, which approximate
the actual spectrum. How does the Hausdorff dimension of Ka and Ea look
like? As seen in section 3.2.2 using a result of Adler, we realize that for the
FBM it is h(t) = H. Hence we can formulate for the fractional Brownian
motion

dim (Eah) = fh(a) = τ∗(a) = T ∗(a) =

{
1 for a = H

−∞ for a < H

Hence, we also call the FBM monofractal. We should remind that a certain
multifractal structure can be introduced by the FBM as we have sketched in
section 3.5.1 and 3.8.1. But there we used the approach of several densities
and a so called envelope function. Jaffard [124] computed for a Lévy stable
motion (L 1

α ,α
(t)) with α < 2 its Hausdorff dimension

dim(Eah) =

{
a
H for 0 < a < H

−∞ else

We proceed to the grain-based spectrum. Since the Brownian motion as the
Lévy stable processes have independent increments, we obtain for a Lévy pro-
cess and the singular exponents s ∈ {α, h,w} with proposition 3.126, theorem
3.96 and theorem 3.98

f
s
(a) = fs(a) = τ∗s (a) = Fs(a) = T ∗

s (a) (3.156)

where a ∈ R with T ∗(a) ≥ 0 or T ∗(a) = −∞ holds. Here, the corresponding
mother wavelet for the singular exponent w has compact support. For a FBM
with H �= 1

2 there are only numerical results, which raise some hope to find
theoretical verification for the FBM according to the strong decorrelation
property of the wavelets. We close the consideration for H-sssi processes with
the analysis of the partition function. We know, that according to (3.155) the
deterministic partition function T is linear. Thus, we have to assume that
there are positive as negative q, with T (q) < ∞. The definition tells us that
S(n)(0, ω) counts the increasing jumps of order 2n. Thus, it follows τ(0) = −1
(see the definition of τ). In addition we get T (0) = −1. Furthermore we know
that τ is concave and has to lie above T (see proposition 3.93). Hence, τ has
to be linear as well. Thus, we have for an H-sssi process

τ(q, ω) = qH − 1 (3.157)

for all q ∈ ]Qu, Qo[ and for almost all ω ∈ Ω.
Considering both for the FBM as for a Lévy stable process the values dim(Ea)
and the deterministic envelop (Legendre transform of the deterministic par-
tition function) T ∗

s for s = α or s = h, then one detects decisive differ-
ences. In the case of the FBM we have dim(Ea) is only one point a = H,
while T ∗

w(a) = T ∗
α(a) is a decreasing line, starting at a = H and with the
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value T ∗
s (H) = 1 and slope −1. Similar facts can be stated for the Lévy sta-

ble process. Hence, we can say that T ∗
α = T ∗

w does not correctly reflects the
Hölder continuity. The reason is that α(n)

k as w(n)
k are random variables, which

are Gaussian or α-stable distributed and whose distribution is concentrated
around the origin. Nevertheless (3.156) and (3.157) provide a good deal of
information for applications. At those spots where the line has a slope of −1,
we can detect for α

(n)
k resp. for w

(n)
k a larger value, hence there, where the

increments resp. the wavelet coefficients are smaller than 2−nH .
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Fig. 3.30. Deterministic envelope function T (q) (left) and multifractal spectrum
and the Hölder exponent Tα (right) for the WIG model with H = 0.5, 0.6, 0.7, 0.8,
0.9, 1.0

After the treatment of the self-similarity using multifractal analysis we turn
to the long-range dependence.

Multifractal Analysis and Long-Range Dependence

The correlation structure of the white noise in (3.18) is not sufficient for ap-
propriate modeling. In addition the structure depends on the constant length
of the steps. It is easy to realize that rZ(k) ∼ k2H−2 holds for the FBN. For
1
2 < H < 1 the correlation decays as slow that it is not summable over k. In
the section 3.1.2 we already discussed different approaches. We shortly review
them.

Definition 3.127. We say that the process of the increments (Z(t) = X(t +
δ)−X(t))t∈R (δ > 0 fixed) is long-range dependent, if the sum

∑∞
k=1 rZ(k) =

∞ is not convergent (set t = k ∈ Z). This definition is equivalent to the
long-range dependence given for aggregated processes

Z(m)(k) =
1
m

(k+1)m−1∑

i=km

Z(i)

This means
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rZ(k) ∼ k2H−1, for k → ∞ (3.158)

⇔ Var (Z(k)) ≈ m2−2HVar
(
Z(m)(i)

)
, for m → ∞

for fixed i ∈ N. Solving for H this leads to the definition of the self-similarity of
second order. We say that (Z(t)) is self-similar of second order for a parameter
HVar if

HVar = 1 +
1
2

lim
m→∞

log
(

Var(Z(m))
Var(Z(1))

)

logm
(3.159)

(here the averages Z(m) and Z(i) are defined according to (3.1)).

Definition 3.128. If we have an H-sssi process (X(t))t∈R with variance
structure then we get for Z(k) = X(k + 1) − X(k) the equality HVar,Z = H
according to (3.149). In addition we already described the equivalence of a
certain behavior of the correlation function and the spectral representation in
section 3.1.2. Applying the Fourier transform on the autocorrelation rZ then
we see that

rZ(k) ∼ k2H−2, for k → ∞
⇔ F(rZ)(λ) ∼ λ−(2H−1), for λ → 0

We can use the wavelet transform instead of the Fourier analysis and receive
a similar representation (for details see [7])

Var(DZj,k) = O
(
2−j(2H−1)

)
(3.160)

In (3.160) the factor 2j takes over the rôle of the frequency λ. Since the
wavelet coefficients are less correlated as the subordinated FBM, the wavelet
methods for estimating the Hurst parameter are getting more into the center of
interest. We will come back to this topic in section 4.2.7. Hence, in accordance
to (3.159) we give the following definition.

Definition 3.129. A process (Z(t)) is asymptotical wavelet self-similar for a
parameter Hwave, if the following limit exists

Hwave =
1
2
− 1

2
lim
j→∞

1
j

log2 Var
(
DZj,k

)
(3.161)

Deterministic Partition Function and Long-Range Dependence

The value T (2) is closely related to the Hurst parameter H, since both measure
have the scaling behavior and the statistic of second order: T (2) describes the
scaling behavior of the second moments of the paths (on small scales), while H
indicates the decay of the correlation (long-range dependence on large scales).
We have the following proposition.
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Proposition 3.130. If a process (X(t)) has increments with vanishing first
moments (that means e.g. E(Z(t)) = E(X(t + 1) −X(t)) = 0), then it holds

HVar =
Tα,Z(2) + 1

2
(3.162)

Considering processes, which are constructed by multipliers, such as the bi-
nomials cascades, then we do not have stationarity of second order. Hence,
we cannot introduce the LRD via its covariance. In section 3.1.2 we discussed
already alternative approaches. But we can define values like the variance of
the aggregated traffic and the wavelet coefficients, which are, as we know,
equivalent to the stationarity of second order. We can give the following com-
putation, since the binomials cascades have positive increments Z(k)

2−2i2(i−n)(1+T (2)) � E
(
|Z(m)|2

)
= Var

(
Z(m)

)
+ E

(
Z(m)

)2

� Var(Z)2i(2H−2) + E(Z)2

Because of the stationary increments E(X(m)) is independent of the scaling
m. Hence we assume that for small m and i at least the limit offers a similar
result as (3.162). Using (3.158) for estimating the Hurst parameters (e.g. with
the variance method, see section 4.2.2), then the method is not very reliable
in contrast to the wavelet method (see 4.2.7). The value Tw,Z(2) can be con-
sidered as ‘wavelet energy’, i.e. as variance of the wavelet coefficient of Z. We
have Var(Dj,k) = 2−jE(2j |Dj,k|2) � 2−j2−j(1+T (2)) = 2−j(2+T (2)) because
of the stationarity of M. Thus, we have for multiplicative processes (as the
binomial cascades)

Hwave =
Tw,Z(2) + 3

2
We consider more closely the particular relationships for two important groups
of processes.

Example 3.131. Parameter for the binomial cascades: If X = Mb a binomial
cascade, then it follows using (3.143)

Hwave,Mb
=

Tw,µb
(2) + 3
2

=
TMb

(2) + 1
2

= HVar,Mb
(3.163)

Example 3.132. Linear processes – FARIMA: Up to now we computed in ex-
ample the parameters H and T (q) with maximal two scales. This does not
suffice for applications. We can establish the multifractal parameters resp. the
long-range dependence property only as limit process over very small scales
or very large ones. A typical example are the linear processes as the FARIMA
sequences, which describe both the small time correlation and the long-range
dependence. The value T (2)+1

2 is not sufficient to describe all time scales, as
we see later, in particular if the small scales are characterized by a large mean.
In th following we will consider a binomial cascade M

(n)
k , and will assume A),
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B) and instead of the identical distribution assumption C) the following con-
dition due to [218]: The cascade possesses within a level n the distribution,
satisfying the equation

Var
(
M

(n)
k

)
=

22−2HVar
(
M

(n−1)
k

)

4Var
(
M

(n−1)
k

)
+ 1

(3.164)

To determine the distribution completely we assume that M (n−1)
k is symmetric

beta distributed on [0, 1]. Simultaneously let E((M (1)
k )2) � 1

4 , but not equal
1
4 , or let us assume Var(M (1)

k ) � 0. The significance of this presumption can
be seen in the treatment of the network traffic. This low variance is observed
in a far over one minute aggregated network traffic. Iterating the condition
(3.164) over the first n terms, we receive E((M (n)

k )2) � 1
4 and Var(M (n)

k ) �
σ2(22−2H)n, which is small for small n, if 2− 2H > 0 ⇔ H < 1. Only on very
small scales (large n) we have the convergence

E
(
(M (n)

k )2
)

= Var
(
M

(1)
k

)
+

1
4
, towards the limit 2−2H

This influences the long-range dependence by the expression T (2)+1
2 . Because

of (3.134) we can use the term − 1
n log2(2n

∏n
i=1 E((Mk(i))2)) as estimator

for T (2). Having only measurements available for small n, we get T (2) �
− 1
n log2(2n4−n) = 1, since the convergence is slowly and we have T (2)+1

2 �
1. If the expression converge for n → ∞, then we obtain in limit T (2) �
− 1
n log2(2n2−2nH) = 2H − 1, and the true value T (2)+1

2 � H appears. How
can we detect this with the help of the wavelet coefficients? At least we will
guess that already for small n we obtain a good estimation for H. It can
be shown ([217]), that (3.161) is exact for small n. We want to motivate
this in more detail. Because of the definition of binomial cascades we get
M

(n+1)
2kn

−M
(n+1)
2kn+1 = 2M (n+1)

2kn
− 1 and with (3.140) it turns out

E
(
D2
n,k

)
= 2nE

(
(M (1)

k )2
)
· · ·E

(
(M (n)

k )2
)
· 4Var

(
M

(n+1)
k

)

� 2n4−n4
(
22−2H

)n
= 4
(
21−2H

)n

which was to prove. The so called wavelet energy Var(Dn,k) immediately indi-
cates (independent of n) Hwave = H. The reason for the different estimations
of T (2) lies in the fact that T (2) is based on the second moments, which
are not centralized. The scaling behavior for coarse scales of the estimator
based on T (2) is hidden in the mean of the process. But also for small n we
can obtain the approximation HVar � H. For this we use E((M (i)

k )2) � 1
4 ,

i = 1, . . . , n− 1, E(M (n)
k )2) = 1

4 + Var(M (N)
k ), which leads to
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Var
(
Z2−n

)
= E

(
M

(1)
k )2

)
· · ·E

(
M

(n)
k )2

)
−
(

1
2n

)2

� 1
4n−1

Var
(
M

(n)
k

)
� σ2

4
· 2−2nH

and reveals the scaling HVar = H. With an alternative initial condition
E((M (1)

k )2) = 2−2H we have an exact scaling, which also gives us (3.163).

α-β Models

Based on the well-known on-off model from section 3.4.3, which was designed
to explain the long-range dependence and self-similarity on the large scales in
an adequate fashion, below the RTT the protocols have much more influence
and the pure on-off model fails to capture the spikiness of the short-range
behavior. In [227] it is shown that small rate sessions are well described by in-
dependent duration and rate, while the large rate sessions are better explained
by independent file size and rate. As [227] put it:

The patience of users is limiting the small bandwidth connections,
while users with large bandwidth freely choose their file size.

This is incorporated in a two factor on-off model called α-β on-off model. The
α-β models were first introduced by [228] to describe the different behavior of
the traffic on different time scales as pointed out in section 3.5.1. The basic
idea of the model is that especially in TCP based traffic on two significant
scales key values as interarrival times or transmitted data size show different
behavior, one for small time scales (below RTT), we call them α scales and
consequently one for large scales, called β scales. The reason for this notation
lies in the observation that the small scales dominate the traffic behavior
and result in a very bursty character, as in the animal kingdom, where they
are called α animals and in correspondence the other β animals. So the α
component describes aggressive behavior given by high rates and large file
transfer, while in turn the β one is the passive part. The model is a first step
to give an understanding of both burstiness and long-range dependence. The
model is based on the connection level consisting of all packets with the same
source and destination IP addresses, port numbers and protocols.
For the model we simply describe by the process (Yt) a certain traffic value,
like transmission time or transmitted data volume, then we note by (Y αt ) the
contribution of traffic below a certain given threshold time T0 and call it α
traffic part). In addition, define the ‘rest’ Y βt = Yt − Y αt as the β part.

3.9 Summary of Models for IP Traffic

In table 3.2 we summarize key properties of IP traffic models described in this
chapter. We compare the major models, presented in the previous sections and
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indicate the respective key formulas. Finally, we present in the right column
the tools for estimation.

Further Literature

Self-Similarity and Long-Range Dependence

At the moment there is no book on the market, dealing with the topic of
self-similarity and long-range dependence. A good while short introduction to
self-similarity can be found in the monograph of Embrechts and Maejima [77],
though the reader should like mathematical formalism. Special literature is
presented in [155, 156, 242, 243, 246]. The α−stable processes are investigated
in many articles as e.g. [173]. Self-similarity and long-range dependence in
others than IP traffic modeling is treated in a lot of articles, covering e.g.
hydrology, economics medicine [183, 251, 101]. For those, who like to have
a glimpse at the starting point of self-similar processes we recommend the
original literature of Mandelbrot [172, 173, 174].
Standard and Fractional Brownian Motion The topic of the standard
Brownian motion is presented in a vast variety of books. We just mention
some of some which deal especially with the stochastic analysis in general like
[199, 18, 134, 208]. More literature though more mathematical challenging
are [121, 270, 271, 272]. A description of Gaussian as well as non-Gaussian
processes is presented in the several time cited monograph of Samorodnitsky
and Taqqu [226]. The relationship between the heavy-tailed distributions and
the so called α-stable processes can be found in [76], which we used as a
guideline for our presentation. Special literature is given by [69, 172, 67, 121].
The more and more important becoming topic of the fractional Brownian
motion attracts a great number of authors, which include for the general
topic [45, 65, 33, 34, 35, 205, 206, 207, 199]

FARIMA Time Series

FARIMA time series are dealt with in a number of original papers. In the
monograph [68] one can find several collected papers on this topic. Again
[226] gives a good introduction to the time series. In the book [200] edited by
Park and Willinger several article deal with the connection of FARIMA series
and network performance.

Norros Model

The Norros model is one of the striking one, since it gives a very intrinsic
description of the network traffic and simultaneously is quite simple to un-
derstand. There are a number of original papers, which formed the basis of
our given representation. The article [190, 192] are a good starter for a first



318 3 Mathematical Modeling of IP-based Traffic

approach to the area, while [193, 195] deal with more advance topics. The
original model is used for advanced modeling like the differentiated traffic
[195, 197]. Further literature, where also other aspects like multifractal are
considered, can be found e.g. in [163, 176].

Heavy-Tailed Distributions and the Classical Models in IP Traffic
Theory

The heavy-tailed distribution for modeling inter arrival times and the file sizes
is done in several original articles [58, 59, 61]. They especially deal with the
question, why in the Word Wide Web the transmitted files are heavy-tailed.
The performance in connection with the heavy-tailed distribution is presented
e.g. in [94, 212, 29, 245]. The connection between the classical theory and the
IP traffic can be read in some monographs like [253, 20] or in the original
literature [104, 49, 50, 152, 151, 201].
Nevertheless, one should give a physical justification, why the aggregated
traffic leads to the use of the self-similar processes, starting with the clas-
sical traffic theory and its M/G/n approach. This is extensively done e.g. in
[264, 250, 86, 262, 263, 152, 85, 41].

Multifractal Processes

This area is one of the newest areas in the IP traffic theory, which was intro-
duced according to the well known reasons treated in the sections 3.5.1,3.6,3.7
and 3.8. A detailed survey is given by the article [218]. The connection to IP
traffic is presented in a vast variety of papers, where we only cite some for a
first glance [3, 6, 112, 177, 180, 213, 219, 220]. The article [84] the different
transmission protocols as TCP/IP and UDP are considered and its influence
concerning the open as well as closed loop algorithm on the traffic modeling
investigated. The article [217] shows the advantages of the non-Gaussian frac-
tals in comparison to the Gaussian WIG models. Theoretical results as well as
the introduction to the topics of cascades are given in [14, 17, 83, 128, 129]. In
[48] the MWM are transformed to the more advanced cascade models. More
on the telecom process is given in [131].
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4

Statistical Estimators

It remains to investigate, if, fixed by the increase in
observations, the probability grows for that amount that
the number of the good observation in relation to the
bad ones attains the true relationship, and this in such
a way that the probability surpasses finally every degree
of certainty, ...

Jakob Bernoulli (18th century)

4.1 Parameter Estimation

A broad variety of approaches exists to estimate an appropriate distribution
and its parameters, when given a sample of data. They contain among oth-
ers: unbiased estimators, regression methods or maximum likelihood estimator
(see e.g. [118, 98, 158]). In this chapter we introduce relevant estimators for
characteristic properties of IP traffic. We start with some standard estimators
and later introduce appropriate approaches with regard to IP traffic. Further
details on basic concepts of parameter estimation are summarized in mono-
graphs like [208].
Like in most models IP traffic is measured in careful experiments and de-
scribed by appropriate distributions with optimal parameters. In general, we
apply all estimators under the premise of optimal parameters. Therefore, we
have to specify the term ‘optimal’ at first. As described e.g. in [261] we start
with a statistical experiment (X , (Wθ)θ∈Θ) whereas X denotes the sample
space. In our context a statistical experiment is represented by the measure-
ment of characteristic properties of IP traffic. These experiments are repeated
N times, which leads to N values of the random variable ξ. We describe these
measurements as experiments with sample size N .
The decision space is denoted by D = R and the estimator function is a
measurable map g : X −→ D. This is necessary, since we usually apply a
composition with random variable ξ. In most cases we estimate a certain
value or a part γ(θ) (e.g. conditional distribution), whereas γ : Θ −→ R
represents the value of dependence of parameter θ. We denote the estimator
as point estimator. To determine, i.e. to estimate the expectation γ(θ) = µθ
of a random variable ξ, the point estimator

ξ =
1
N

N∑

i=1

ξi
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is used, whereas ξ1, . . . , ξN represent (iid) independent and according to ξ
distributed random variables. If x1, . . . , xN are realizations of this random
vector (ξ1, . . . , ξN ), then

x =
1
N

N∑

i=1

xi

is a point estimation of µ. With this

g(x) = x, x1, . . . , xN ∈ X

and
g(ξ) = ξ

is the corresponding point estimator. In a similar form we consider

S2 =
1

N − 1

N∑

i=1

(ξ1 − ξ)2

as point estimator of variance σ2.
A common approach to measure the optimality consists in minimizing the risk,
not having determined the correct model. To avoid the effects of alternating
signs, an appropriate measure is the difference calculated as quadratic loss
function

R(θ, g) = (γ(θ) − g)2 (4.1)

In the remainder of this section we will examine this term more closely, al-
though without formal derivation.

4.1.1 Unbiased Estimators

With the expressions above we describe the risk of the estimator g by

R(θ, g) =
∫

X
(γ(θ) − g(x))2 dFθ(x) = Eθ

(
(γ(θ) − g(ξ))2

)
(4.2)

The Fθ are distributions, which depend on the assumption of parameter θ.
The relation (4.2) can be written in the form

R(θ, g) = (γ(θ) − Eθ (g(ξ)))2 + Varθ (g(ξ))

The term
γ(θ) − Eθ (g(ξ)) (4.3)

represents the systematic error that occurs with the use of estimator g and the
existence of parameter θ. In the literature the systematic error is often denoted
as bias. We will use this term as from now. The second term in 4.3 denotes
the variation of the estimator. With our estimation we want to minimize the
risk, i.e. we want to:
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• avoid a systematic error, i.e. the bias,
• achieve a variance as low as possible.

To fulfill the first demand, we select an estimator g with

Eθ (g(ξ)) = γ(θ)

and denote it by unbiased estimator. With such an (unbiased) estimator the
risk is

R(θ, g) = Varθ (g(ξ))

We give two elementary examples.

Example 4.1. We consider a binomial distributed random variable ξ with pa-
rameters N and θ. Then we can show that ξ

N is an unbiased estimator for
γ(θ) = θ: we know for a binomial distribution that E(ξ) = Nθ and with this
it follows

E

(
ξ

N

)
=

1
N

E(ξ) =
1
N
Nθ = θ

Thus g(ξ) = ξ
N is an unbiased estimator for θ.

The next example illustrates that not every estimator is unbiased.

Example 4.2. We consider an iid sequence ξ, . . . , ξN of realizations of the ran-
dom variable ξ, which is distributed with density

f(x) =

{
e−(x−δ) for x > δ

0 else

We will show that g(ξ) = ξ is not an unbiased estimator for γ(δ) = δ. The
mean of ξ is given by

µ =
∫ ∞

0

xe−(x−δ)dx = 1 + δ

However,

E(ξ) =
1
N

N∑

i=1

E(ξi) = µ = 1 + δ �= δ

With this follows that ξ is obviously a biased estimator of δ.

Now the question arises, whether g(ξ) = S2 is an estimator of σ2? We give
the result by a remark and a proof.

Remark 4.3. If the point estimator is unrestricted, then S2 is an unbiased
estimator of the variance γ(θ) = σ2

θ of a random variable ξ.
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Proof. We build a sequence of realizations of the random variable ξ by iid
random variables ξ1, . . . , ξN

S2 =
1

N − 1

N∑

i=1

(ξi − ξ)2

With this we get

E(S2) = E

(
1

N − 1

N∑

i=1

(ξi − ξ)2
)

=
1

N − 1
E

(
N∑

i=1

(
(ξi − µ) − (ξ − µ)

)2
)

=
1

N − 1

(
N∑

i=1

E
(
(ξi − µ)2

)
− nE

(
(ξ − µ)2

)
)

1)
=

1
N − 1

(
N∑

i=1

σ2 − n
σ2

n

)

= σ2

��

This fact is one reason, why the empirical variance is calculated with the
factor 1

N−1 instead of 1
N .

We now address the problem to fulfill equation ‘1)’ above. At first we quote
the so called Cramér-Rao Inequality

Var(g) ≥ 1

NE

((
∂ log f(ξ)
∂θ

)2
)

whereas f denotes the density of a random variable ξ and N the number of
iid realizations of ξ. With this we get the following property.

Property 4.4. If g is an unbiased estimator for θ and

Var(g) =
1

NE

((
∂ log f(ξ)
∂θ

)2
) (4.4)

then g is an unbiased estimator that minimizes the variance.

The denominator of (4.4) is often described as degree of information. With
this we see that the larger the information the smaller the variance is.
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Consistency

By an example we will demonstrate that the previous criteria for the determi-
nation of an optimal estimator do not necessarily lead to a suitable approach.
We consider a set of sample data that depends on the parameter θ and is
distributed with density

f(x) = r
1

σ
√

2π
exp

(

−1
2

(
x− θ

σ

)2
)

+ (1 − r)
1
π

1
1 + (x− θ)2

whereas −∞ < x < ∞ and 0 < r < 1. This expression is a combination
of a normal distribution with mean θ and variance σ2 and a Cauchy distri-
bution with α = θ and β = 1. We remind that α-stable distributions play
an important rôle and that normal and Cauchy distributions are two promi-
nent representatives of this class (see section 3.2.3). If we choose r near 1,
e.g. r = 1 − 10−1000 and σ = 10−1000 very small, then we may assume that
(because of small variance) ξ assumes the value θ and with this the estimator
is precise for θ. However, the variance of a Cauchy distribution does not ex-
ist and hence not the variance of the estimator. Consequently the method of
minimizing the variance fails. From a mathematical perspective this argumen-
tation is inconclusive, but it clearly shows that we have to draw our attention
to the distribution itself. This is the reason for an alternative approach which
considers the probability that the estimators takes values near θ. A particular
tool helpful for this approach is the Chebyshev inequality (see e.g. [38, 208]).
With this we define a consistent estimator.

Definition 4.5. An estimator g is consistent to the parameter θ if and only
if

lim
N→∞

P (|g(ξ) − θ| < c) = 1

where N denotes the sample size.

Theorem 4.6. If g(ξ) is an unbiased estimator of parameter θ and if the
variance Var(g(ξ)) → 0 for an infinite number of realizations, i.e. N → ∞,
then the estimator g(ξ) is consistent to θ.

Example 4.7. We show that for a normal distributed sample the estimator S2

is consistent for the variance σ2. According to theorem 4.3, S2 is an unbiased
estimator of σ2. Hence, we can apply theorem 4.6 and have to show that
Var(S2) → 0, if the sample size tends towards infinite, i.e. N → ∞. With

Var(S2) =
2σ4

N − 1

it follows immediately that Var(S2) → 0 for N → ∞.
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Example 4.8. To discuss the following example we have to introduce the con-
cept of order statistic first. For this purpose we randomly select a sample
of size N with a steady distribution function. We order the values x, i.e. the
smallest value is assigned to the random variable Y1, the next value is assigned
to the random variable Y2 and so on. The random variables Y1, . . . , YN are
described as order statistic. Y1 denotes the first order statistic, Y2 the second
order statistic etc. In case of N = 2 we have

y1 = x1 and y2 = x2, for x1 < x2

y1 = x2 and y2 = x1, for x2 < x1

The following theorem about the distribution applies.

Theorem 4.9. Given a random sample of size N from an infinite set with
the value f(x) at x. The probability density gr of the r-th order statistic Yr is

gr(yr) = (4.5)

N !
(r − 1)!(N − r)!

·
(∫ yr

−∞
f(x)dx

)r−1

· f(yr) ·
(∫ ∞

yr

f(x)dx
)N−r

if −∞ < yr < ∞.

We consider example 4.2 again. We now want to show that the first order
statistic Y1 of a f(x)-distributed random variable is a consistent estimator
of δ. We deduce this as follows: we substitute f in (4.5) and obtain as first
order statistics

g1(y1) = N exp (−(y1 − δ))
(∫ ∞

y1

e−(x−δ)dx

)N−1

= N exp (−N(y1 − δ))

if y1 > δ and g1(Y1) = 0 otherwise. Now, we immediately get

E(Y1) = δ +
1
N

With this follows that E(Y1) − δ → 0 if N → ∞. Hence, Y1 is asymptotic
unbiased. Furthermore, it is

P (|Y1 − δ| < c) = P(δ < Y1 < δ + c)

=
∫ δ+c

δ

Ne−N(x−δ)dx

= 1 − exp(−Nc)

which leads to limN→∞(1−exp(−Nc)) = 1. With this result and the definition
4.5 it follows that Y1 is a consistent estimator of δ.
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Sufficient Statistic

Definition 4.10. An estimator g(ξ) is exactly sufficient for the parameter θ,
if for every realization of g(ξ) the conditional density f(x1, . . . , xN | g(ξ)) of
the realization vector (x1, . . . , xN ) under the condition g(ξ) = θ is independent
of θ (see e.g. [98, 38, 208] about the term ‘conditional density’).

In practice, it is hard to verify this. This is, why we use the factorization
theorem according to Neymann.

Theorem 4.11. The estimator g(ξ) of parameter θ is a sufficient estimator, if
and only if the joint distribution function of the realization vector (ξ1, . . . , ξN )
and θ can be written in the form

f(x1, . . . , xN ; θ) = h1(g(x), θ)h2(x1, x2, . . . , xN ) (4.6)

Here h1(x, θ) depends only on the realizations of g(ξ), i.e. g(x) and θ. h2 is
independent of θ.

To prove that an estimator is sufficient we apply theorem 4.11. To prove that
an estimator is not sufficient we better consult the definition.

Example 4.12. We consider a set of samples ξ1, ξ2, ξ3 and show that

η =
1
6
(ξ1 + 2ξ2 + 3ξ3)

is not a sufficient estimator for the parameter θ of a Bernoulli distribution:
because of (4.6), we have to show that

f(x1, x2, x3 | y) =
f(x1, x2, x3, y)

g(y)

is for some values of the random variables ξ1, ξ2 and ξ3 not independent of θ.
For this we assume the realizations x1 = 1, x2 = 1 and x3 = 0. Then for the
realizations y of η we get

y =
1
6
(1 + 2 · 1 + 3 · 0) =

1
2

Thus it follows

f(1, 1, 0 | η =
1
2
) =

P(ξ1 = 1, ξ2 = 1, ξ3 = 0, η = 1
2 )

P(η = 1
2 )

=
f(1, 1, 0)

f(1, 1, 0) + f(0, 0, 1)

whereas
f(x1, x2, x3) = θx1+x2+x3(1 − θ)3−(x1+x2+x3)
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with xi = 0 or xi = 1 for i = 1, 2, 3. Because of f(1, 1, 0) = θ2(1 − θ) and
f(0, 0, 1) = θ(1 − θ)2 follows

f

(
1, 1, 0 | η =

1
2

)
=

θ2(1 − θ)
θ2(1 − θ) + θ(1 − θ)2

= θ

and thus, is not independent of θ. Consequently, the estimator is not sufficient.
We remark that for every n ξ = ξ1+...+ξn

n is a sufficient estimator of a Bernoulli
distributed random variable.

Example 4.13. We show that for a N (µ, σ2)-distributed random variable, the
empirical mean ξ is a sufficient estimator of µ: for the realizations x1, . . . , xn
we have

f(x1, . . . , xn;µ) =
(

1
σ
√

2π

)n
· exp

(

−1
2

n∑

i=1

(xi − µ)2

σ2

)

Furthermore, we have

n∑

i=1

(xi − µ)2 =
n∑

i=1

((xi − x) − (µ− x))2

!=
n∑

i=1

(xi − x)2 +
n∑

i=1

(x− µ)2

=
n∑

i=1

(xi − x)2 + n(x− µ)2

We notice that for ‘!’ it applies
∑n
i=1(xi − x)(µ− x) = 0. With this follows

f(x1, . . . , xn;µ) =

⎛

⎝
√
n

σ
√

2π
· exp

⎛

⎝−1
2

(
x− µ
σ√
n

)2
⎞

⎠

⎞

⎠

·
(

1√
n
·
(

1
σ
√

2π

)n−1

· exp

(

−1
2

n∑

i=1

(xi − µ)2

σ2

))

The first factor on the right depends only on the estimated value x and mean
µ, while the second factor is independent of µ. Following theorem 4.11 ξ is
therefore a sufficient estimator of µ under the condition of known variance σ2.

Robustness

It is difficult to give a rigorous definition of the term robustness, since uniform
criteria are missing. The term robustness describes generally the quality of an
estimator to be hardly affected by changes of the assumptions. We shortly
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outline the idea of robustness. If we assume e.g. exponential distributed in-
terarrival times, the estimator shall find the missing data by means of the
observed realizations. But, if it turns out that the initial data is Weibull dis-
tributed, then the property of the estimator to indicate mean or variance
correctly should not be affected. In this case, we say that the estimator is
robust. Certainly, other properties may change and quantitative changes will
occur, but their degree (not specified exactly as already mentioned) should be
low.

4.1.2 Linear Regression

Linear regression and especially regression lines are classified under the generic
term of linear methods. Since we will often apply these methods for estimat-
ing characteristic properties of IP traffic, we give a short introduction here.
Further details are given in several monographs [118, 158].

Straight Line Fitting

Again we start with N realizations X = {ξ1, . . . , ξN} of the random variable
ξ with the assumed distribution Fθ, θ ∈ Θ. The result of the random experi-
ment depends on some independent parameters t1, . . . , tN . We give a detailed
example with regard to World Wide Web traffic.

Example 4.14. We examine the size of 50 objects of mimetype text in World
Wide Web traffic. Table 4.1 summarizes the sizes in ascending order. Appar-
ently each size occurs only once. Therefore, we can assign each object size the
discrete probability P(ξ = xi) = 1

50 = 0.02 with xi for i = 1, . . . , 50 repre-
senting the different object sizes. With this we calculate the empirical mean
µ = E(ξ) = 160, 201 and the empirical variance Var(ξ) = 562, 011, 106, 276.

Table 4.1. Size (in byte) of text objects in world wide web traffic.

No. Size No. Size No. Size No. Size No. Size

1. 155 11. 353 21. 691 31. 2,250 41. 35,056
2. 165 12. 385 22. 807 32. 2,386 42. 40,590
3. 177 13. 438 23. 856 33. 3,549 43. 49,353
4. 208 14. 463 24. 991 34. 5,899 44. 54,624
5. 221 15. 472 25. 997 35. 6,367 45. 68,397
6. 233 16. 571 26. 1,060 36. 6,440 46. 116,751
7. 236 17. 623 27. 1,223 37. 7,828 47. 395,856
8. 237 18. 635 28. 1,467 38. 10,521 48. 751,309
9. 242 19. 649 29. 2,003 39. 11,066 49. 1,263,871

10. 301 20. 659 30. 2,108 40. 12,806 50. 5,145,481

Figure 4.1 illustrates the measured data by an empirical distribution. The
x-axis represents the object sizes and the y-axis the respective cumulative
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distribution Fξ(x) = P(ξ ≤ x). The probability of object sizes between two
measured data points is calculated by linearization.

1.0

0.8 

0.6 

0.4 

0.2 

0.0
107106 105 104 103 102 

Fig. 4.1. (Empirical) probability distribution of object sizes

Because we consider ξi iid to ξ (same assumption applies to all experiments),
we now formulate the equations

ξ1 = a1 + a2t1 + ε1

ξ2 = a1 + a2t2 + ε2
... =

...
ξN−1 = a1 + a2tN−1 + εN−1

ξN = a1 + a2tN + εN

With these equations we assume that the measured data behaves linearly
to the intervals (expressed by the straight line y = a1 + a2t) and that the
stochastic fluctuation can be indicated by the respective random variables εi.
Since we assume with this model that no preference of difference exists below
or above the straight line we have E(εi) = 0, i = 1, . . . , N . For i = 1, . . . , N
we now obtain

E(ξi) = a1 + a2ti

With this we do not postulate a strictly valid linear relation, but only a
possible description of the trend of the measured data, which can be of use
for further analysis or forecasts.
In our example we selected quantities only instead of the exact distribution,
and therefore, we have to choose a specific approach. Since we assume a
heavy-tail distribution, we start with a Pareto distribution (see also because
of corollary 3.46)

Fξ(x) = 1 −
(
k

x

)α
(4.7)
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However, this distribution represents no straight line and is therefore not
suitable as a regression line. For this we have equivalently to reorder equation
(4.7) and apply the complementary distribution function F cξ (x) = 1 − Fξ(x)

log
(
F cξ (x)

)
= log

((
k

x

)α)
= α log

(
k

x

)

= α (log k − log x)
= −α log x + α log k

We substitute
log(F cξ (x)) = ỹ = a2x̃ + a1

with x̃ = log x, a2 = −α and a1 = α log k. With the regression line a2x̃ = a1

we now get α and k according to α = −a2 and log k = a1
α . Finally, we obtain

k by
log k =

a1

−a2
⇔ k = e−

a1
a2

 0.0
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Fig. 4.2. Linearization and regression line of an (empirical) complementary cumu-
lative distribution

With the regression line in figure 4.2 we obtain

α = 0.3545 and k = 159.8178

Generally, this approach can be transferred to multiple parameters (denoted
as regressors), for example

Xi = a1 + a2t
(1)
i + a3t

(2)
i + a4t

(3)
i + εi, i = 1, . . . , N

How can we determine a1, a2 which indicate the trend? For this, we formulate
the method of least squares. This method proves that depending on the samples
x = (x1, . . . , xN ) we have to choose the values â1(x) and â2(x), such that
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N∑

i=1

(xi − (â1(x) + â2(x)ti))
2 = inf

(a1,a2)∈R2

N∑

i=1

(xi − (a1 + a2ti))
2

is fulfilled. In practice, we partially derive the right term (without ‘inf’) with
respect to a1 resp. a2. The minima (â1(x), â2(x)) have to fulfill the equations

∂

∂a1

N∑

i=1

(xi − (a1 + a2ti))
2 = 0 and

∂

∂a2

N∑

i=1

(xi − (a1 + a2ti))
2 = 0

This yields to

N∑

i=1

(xi − a1 − a2ti) = 0 and
N∑

i=1

ti(xi − a1 − a2ti) = 0

Substituting x = 1
N

∑N
i=1 xi and t = 1

N

∑N
i=1 ti, we get

â2(x) =
∑N
i=1(ti − t)(xi − x)
∑N
i=1(ti − t)2

and â1(x) = x− â2(x)t

The pair (â1(x), â2(x)) is denoted the least square estimation, the projection

(â1, â2) : RN −→ R2

is denoted the least square estimator (LSE). With y = â1(x) + â2(x)t the
regression line is defined.

Linear Model

A linear model is given, if for a N dimensional random variable Υ the form
applies

Υ = Aθ + ε

where Υ = (x1, . . . , xN )T , θ̃ = (θ1, . . . , θp)T and ε = (ε1, . . . , εN )T . A is a
known N×p matrix and θ̃ the parameter vector to be estimated in the param-
eter space Θ̃ ⊂ Rp. For the random vector ε, which describes the fluctuations,
we have

• E(ε1) = . . . = E(εN ) = 0
• Var(ε1) = . . . = Var(εN ) = σ2 with unknown σ2 > 0
• Cor(εi, εj) = 0 for i �= j

These three conditions mathematically express that with random fluctuations
no systematic distortion, no mutual influence and no uniform conditions exist.
Obviously, the latter two conditions are fulfilled with iid realizations, i.e. with
random variables ξ1, . . . , ξN . Since, apart from the unknown parameter θ̃, σ2

is also unknown, we altogether have the unknown parameter vector
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θ =
(
θ̃, σ2

)
∈ Θ ⊂ Rp × [0,∞[

In general, this vector cannot describe the entire model, since the special
structure of the fluctuation vector ε is not estimated. However, this does not
affect the following results. The matrix A is often denoted as design matrix and
describes the observation conditions or the experimental setup, respectively.
In the ordinary linear case the design matrix is

A =

⎡

⎢
⎢
⎢
⎣

1 t1
2 t2
...

...
N tN

⎤

⎥
⎥
⎥
⎦

As in the one-dimensional case the least square estimator is used for estimating
θ̃, too. Assuming the linear model Υ = Aθ̃ + ε, then for the sample x =
(x1, . . . , xN ) ∈ RN the vector

θ̂(x) ∈ Rp

is denoted as least square estimated value if the equation
(
x−Aθ̂(x)

)T (
x−Aθ̂(x)

)
= inf
θ̃∈Rp

(x−Aθ̃)T (x−Aθ̃)

is fulfilled. The corresponding estimator

θ̂ =

⎡

⎢
⎣

θ1

...
θN

⎤

⎥
⎦ : RN −→ Rp

assigns to each sample a least square estimator value that is denoted as least
square estimator. As we can easily deduce from the definition of the least
square estimator, the solution can be obtained by geometrical interpretation.
Hence, the solution is given in the form of the normal equation.

Theorem 4.15. Given that Υ = Aθ̃+ε is a linear model with θ̃ ∈ Rp. x ∈ RN

is a sample. Then θ̂(x) is a least square estimated value if

ATAθ̂(x) = ATx (4.8)

To obtain a least square estimated value, we have to solve the normal equation
(4.8). In doing so we will consider explicit and definite solutions only. If

rangA = p and Θ̃ = Rp

we denote the linear model a model with full rank. The inequality p ≤ N is
necessary, because the maximum number of linear independent columns, i.e.
p, cannot be larger than the number of linear independent columns, i.e. N .
The significance of the definition is formulated in the following theorem (see
e.g. [223] about the term rank of a matrix).
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Theorem 4.16. In a linear model Υ = Aθ̃ + ε with full rank the least square
estimator is given by

θ̂(x) =
(
ATA

)−1 ATx, x ∈ RN (4.9)

We remark that we developed plausible approaches to determine a least square
estimator so far. But what about the risk of having determined a ‘bad’ esti-
mator? We give a definition to determine that risk.

Definition 4.17. We consider a sample space X = RN with square loss func-
tion according to (4.1) and denote an estimator of the form

g : RN −→ R, g(x) = aTx, a ∈ RN

as linear estimator. A linear estimator ĝ is denoted as uniform best linear
unbiased estimator, if:

• ĝ is unbiased and
• for every linear unbiased estimators g

R(θ, ĝ) ≤ R(θ, g), θ ∈ Θ

For unbiased estimators the second condition can be reduced to

Varθ (ĝ(ξ)) ≤ Varθ (g(ξ)) , θ ∈ Θ

The least square estimator is given with the following result.

Theorem 4.18. Given a linear model Υ = Aθ̃+ε with full rank. According to
(4.9) the least square estimator is θ̂(x) = (ATA)−1ATx. For α ∈ RN we have
to estimate γ(θ) = αT θ̃. Then αT θ̂ represents a uniform best linear unbiased
estimator with the risk

R
(
θ, αT θ̂

)
= σ2αT

(
ATA

)−1
α, for all θ ∈ Θ

To estimate the single components θi, we substitute α = ei the i-th unit vector
in Rp (each component is 0 apart from the i-th), i.e. eTi θ̃ = θi and conclude
that θ̂i is an uniform best linear unbiased estimator for θi.
Finally, we have to estimate as remaining parameter the variance σ2. If we
consider the model of linear regression and calculate the least square estimator
θ̂(x) = (θ̂1(x), θ̂2(x)) for an observed realization x = x1, . . . , xN , then the
corresponding regression line θ̂1(x) + θ̂2(x)t takes at ti the values θ̂1(x) +
θ̂2(x)ti. Thus the quadratic distance is given by

SSE : RN −→ [0,∞[, SSE(x) =
N∑

i=1

(
xi − θ̂1(x) − θ̂2(x)ti

)2
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We denote SSE as sum of squares error. It is obvious that by SSE we can
describe the variance of the error, because it defines the distance between
a single measurement and the regression line and builds the sum over all
quadratic differences. The larger the difference is the larger SSE and the
more distinctive the error variable εi becomes. We illustrate this with the
following definition.

Definition 4.19. Given a linear model Υ = Aθ̃+ ε. We define the sum of the
error squares according to

SSE : RN −→ [0,∞[, SSE(x) =
(
x−Aθ̂(x)

)T (
x−Aθ̂(x)

)

Is SSE an unbiased estimator for σ2? The next theorem gives the answer for
a system with full rank.

Theorem 4.20. In a linear model Υ = Aθ̃ + ε with full rank we have

Eθ (SSE(ξ)) = (N − p)σ2, for all θ = (θ̃, σ2)

To estimate the unknown parameter p < N is required, because for e.g. p =
N = 2 two points (t1, x1), (t2, x2) are necessarily on the regression line and
thus SSE(x) = 0. But the variance of ε is not necessarily identical to 0.

Proposition 4.21. If p < N in a linear model Υ = Aθ̃ + ε with full rank,
then SSE

N−p represents an unbiased estimator of σ2.

4.1.3 Estimation of the Heavy-Tail Exponent α

The estimation of the exponent in complementary distribution functions of the
form F c(x) ∼ cx−α is of great importance for IP traffic modeling. With this
distribution we describe e.g. on-off phases as well as the size of transferred
files in good approximation. Several methods exist to calculate or estimate
the decay of a heavy-tail distributed random variable representing measured
sample data. We will introduce four selected approaches:

• Regression method,
• Hill Estimator,
• Mean excess function CME(x),
• Scaling estimators according to Crovella and Taqqu.

At first we remind that most considered random variables exhibit a behavior
of the form

P(ξ > x) = F cξ (x) ∼ x−αL(x), x → ∞, 0 < α < 2

with slowly varying function L. Here ‘∼’ denotes that

lim
x→∞

F c(x)
x−αL(x)

= 1
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We now consider L(x) = c = const. With the logarithm of x and F c(x) and
considering only larges values of x we get

d logF c(x)
d log x

∼ −α (4.10)

The relation (4.10) reveals that applying logF c(x) over log x values for large
x results in a straight line with slope −α.

Regression Line

We draw a diagram with measured data according to (4.10). The x axis rep-
resents the values under investigation e.g. size of transferred files, duration of
transfers, number of packets per transfer or duration of connections. These
values occur with a certain frequency, which is represented by the empiri-
cal probability distribution F . According to the complementary distribution
function we write down the logarithm of x against the logarithm of frequen-
cies in a table and draw the corresponding data in a diagram. The slope of
a regression line in the logarithmic diagram denotes −α. We remark that we
have to define x0 carefully above, which the measured data provides a good
approximation by the regression line. This diagram is often denoted as CD
plot. The example given in section 4.1.2 yields to the diagrams in fig. 4.3.
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Fig. 4.3. Regression line with complementary distribution function (left) and cor-
responding empirical distribution (right)

Both diagrams prove that in this case the regression line yields to a good
approximation and that x̃1 = 5 is an appropriate starting point. However,
the logarithmic diagram on the left indicates that for large x the deviation
between measured data and regression line increases.

Hill Estimator

The Hill estimator gives the exponent α as a function of the k largest values.
For this we reorder the sample data xi, i = 1, . . . n by size and denote the



4.1 Parameter Estimation 337

resulting series by x(i), i = 1, . . . , n. Now we apply the k-th order statistics

Hk,n =

⎛

⎝1
k

k−1∑

j=0

(
log x(n−i) − log x(n−k)

)
⎞

⎠

−1

In practice we plot the estimated value Hk,n for the tail exponent α over the
degree of the order statistic, i. e. k. For increasing k the curve asymptotically
approaches a certain value that is regarded as tail exponent.

Mean Excess Function

With the definition CMEξ(x) = E(ξ−x | ξ ≥ x) and because of the empirical
distribution function and the corresponding empirical conditional expectation
E(ξ − x | ξ ≥ x) we again obtain a curve that depends on x. Provided that
the distribution is heavy-tailed, the slope of this curve is strictly monotone
with x. In section 2.7.4 we thoroughly investigated the excess function (see
e.g. (2.35) and theorem 2.49). Further details and particular applications of
the excess function are given in [76].

Scaling Estimator

All approaches we treated so far show a considerable disadvantage. The CD
plot as well as the Hill estimator and the excess function require a certain
value x0, above which the log-log plot behaves with slope −α. In practice,
we can rarely determine a precise value of x0 adequately. Furthermore, the
exponent significantly depends on x0, in most cases a large x0 leads to a larger
slope. However, with a steeper slope we may neglect a relevant part of the
data and eventually cannot state anything about the subexponential behavior
of the distribution. This was the reason for Crovella and Taqqu to introduce
a new estimator that is based on building averages, i.e. the already known
blocks X(m).
The scaling estimator is based on the fact that the quality of the tail is deter-
mined by the scaling properties of sample data, if it is compounded. For this
we again build the non-overlapping blocks of length m for m ∈ N, or more
precisely

X
(m)
i =

im∑

j+(i−1)m+1

Xj

We remind of the definition of a stable distribution. If F is a α-stable distri-
bution, then for non-negative numbers s, t

s
1
αX1 + t

1
αX2

d= (s + t)
1
αX

with X,X1,X2 distributed to F . If F belongs in case of α = 2 to the domain
of normal attraction of a α-stable distribution Gα, i.e. F ∈ DNA(Gα), then
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F is the normal distribution (see corollary 3.46). Generally, for n ∈ N and
F ∈ DNA(Gα) we obtain

X1 + . . . + Xn
d∼ cnX

Then for F ∈ DNA(Gα) we have cn = 1

n
1
α

(see corollary 3.46) and call
the iid series (Xi) strictly α-stable. As from now we denote this property
scaling property. It indicates that the property of the tail is constant with the
aggregation. We already know this fact in a similar form for subexponential
distribution. Apart form the normal distribution the Pareto distribution is
a well known example of this property, especially in the case of α < 2. In
principle we have two difficulties to deal with:

• Which m do we have to choose?
• Above which value of x do we have to measure the tail?

From now we consider a sequence of iid Xi strictly α-stable random variables
and build X(m) = (X(m)

i ) as above. For two different values m1 < m2 we
determine the tail distributions P(X(mi) > x) and draw the respective curves
in a diagram. The essential values δ and τ denote the horizontal and vertical
distance respectively.

log P(X > x)

log(x)
X(m1)

X(m2)

τ

δ

Fig. 4.4. Determination of δ and τ for the Crovella-Taqqu estimator

We will try to answer the questions above depending on δ and τ . For this
we assume F ∈ DNA(Gα) stable. The problem is to estimate α. We choose
x1 > 0 and consider a certain point

(
log x1, log P(X(m1) > x1)

)

whereas P denotes the empirical distribution. We now choose a x2 > 0 with

P
(
X(m1) > x1

)
= P

(
X(m2) > x2

)

Because of F ∈ DNA(Gα) we have approximately
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1

m
1
α
1

X(m1) d=
1

m
1
α
2

X(m2)

With this follows

P
(
X(m1) > x1

)
= P

(

X(m2) >

(
m2

m1

) 1
α

x1

)

According to the definition we find

δ = log x2 − log x1 = log

((
m2

m1

) 1
α

x1

)

− log x1 =
1
α

log
m2

m1
(4.11)

Although we can determine α by the difference δ (m1 and m2 are known), we
do not know, which point x1 we have to choose or which one is appropriate.
Therefore, we have to determine a new parameter τ . We set

τ = log P
(
X(m2) > x1

)
− log P

(
X(m1) > x1

)
(4.12)

Now we have to distinguish two cases: at first let α < 2. Because F ∈ DNA(α)
it follows according to corollary 3.46

F c(x) ∼ cx−α, for x → ∞

Thus, for large x the logarithm yields to

log P
(
X(m) > x

)
= log c + logm− α log x

Substituting in (4.12), we obtain

τ = (log c + logm2 − α log x) − (log c + logm1 − α log x) = log
m2

m1
(4.13)

Considering (4.11) and (4.13), we see that the quotient τ
δ estimates α. The

asymptotic of (X(m)
i ) is true according to the general central limit theorem

3.45, after subtracting the empirical expectation µ = E(X). Afterwards we
have to determine x1 such that

τ ≈ log
m2

m1

Since the values of m1 < m2 are arbitrary, we set ∆ = m2
m1

. In most cases
∆ = 2 is used. Thus, x1 is determined, such that τ = log∆. With this we
have

α =
log∆
δ

The second case α = 2 implies according to corollary 3.46 that F is normal
distributed with µ and σ. To verify this, we have to measure a large set of
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sample data, because convergence is reached slowly. The same phenomena
arises with simulations – in most cases the estimation of this parameter is
rather vague.
The implementation to estimate the heavy-tail exponent according to the
given algorithm was proposed by Crovella and Taqqu in [60]. Roughly, the
underlying algorithm consists of the following steps:

• Calculate δ and τ for a set of data m1 < m2, ∆ = m2
m1

and subset x1.
• Calculate for this subset α̂ = log∆

δ .
• Compare τ with log∆. If τ and log∆ are almost equal, then abort the

search for x1. We now have α̂ as an estimator for α if e. g.

|τ − log∆| < Θ log∆

is true for a given Θ.

We want to give some comments on the scaling estimator. Besides the esti-
mation of parameter α with this method we can:

a) determine the range (i.e. the values x) where heavy-tail behavior occurs,
b) determine after rescaling, whether the series 1

mX(m) shows asymptotic
self-similarity.

The question is how we can observe both properties? To answer this we have
to distinguish between two cases:

• If F is pure α-stable (especially normal distributed), then a) is fulfilled
according to the definition. Property b) follows due to the theorems about
self-similarity, that is the general central limit theorem 3.45.

• For F ∈ DNA(α) we have a) for large x following (3.44) and also b) fol-
lowing corollary 3.45. Because this applies for large x only, we only can
prove b) for small x very vaguely. However, we obtain better results for
small x with a larger θ. If F ∈ DNA(α) then F c(x) ∼ cx−α according to
corollary 3.46. With this we have a good convergence for Pareto distribu-
tions already for small x. Otherwise convergence occurs slowly for α close
to 2. Generally, a) can be obtained for large x, only, self-similarity in b)
can be observed for all scales.

To observe convergency in particular for b), we have to subtract the empirical
expectation µ according to the general central limit theorem if α > 1.

• α > 1: If µ �= 0 then the estimator is insufficient and we have to subtract
the expectation. In doing so, the range of heavy-tail occurrence in a) may
be shifted.

• α < 1: According to the general central limit theorem we do not subtract
the expectation in this case (for α < 1 no expectation exists in the asymp-
totic x → ∞). If we subtract the expectation, nevertheless we may obtain
negative values, which distort the estimation. This is the main reason for
a careful handling, especially for α ≈ 1.
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Fig. 4.5. α estimator for Pareto distribution with shifted data set

Table 4.2. Results for α estimator

fig. function parameter α estimator

1. Pareto k = 1, α = 0.5 α = 0.674
2. Pareto k = 1, α = 0.7 α = 0.798
3. Pareto k = 1, α = 0.9 α = 0.962
4. Pareto k = 1, α = 1.1 α = 1.126
5. Pareto k = 1, α = 1.5 α = 1.429
6. Pareto k = 1, α = 1.8 α = 1.615



342 4 Statistical Estimators

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

-5 -4 -3 -2 -1   0   1   2   3

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

-4 -3 -2 -1   0   1   2   3

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

-4 -3 -2 -1   0   1   2   3

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

-4 -3 -2 -1   0   1   2   3

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

-5 -4 -3 -2 -1   0   1   2   3   4

-0.0
-0.5 

-1.0 

-1.5 

-2.0 

-2.5 

-3.0 

-3.5 

-4.0 

-4.5 
-5.0

  1   2   3   4   5   6   7   8

Fig. 4.6. α estimator for lognormal (left column) and Weibull (right column) dis-
tribution

Table 4.3. Results for α estimator

fig. function parameter α estimator

1. lognormal µ = 1.0, σ = 1.0 α = 2.066
2. Weibull a = 1.0, b = e−0,5 α = 2.266
3. lognormal µ = 1.0, σ = 1.5 α = 1.787
4. Weibull a = 1.0, b = e−1 α = 1.191
5. lognormal µ = 1.0, σ = 2.0 α = 1.460
6. Weibull a = 1.0, b = e−2 α = 0.936
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Fig. 4.7. α estimator for Pareto distribution with non-shifted data set

Table 4.4. Results for α estimator

fig. function parameter α estimator

1. Pareto k = 1.0, α = 0.5 α = 0.502
2. Pareto k = 1.0, α = 0.7 α = 0.689
3. Pareto k = 1.0, α = 0.9 α = 0.892
4. Pareto k = 1.0, α = 1.1 α = 1.110
5. Pareto k = 1.0, α = 1.5 α = 1.631
6. Pareto k = 1.0, α = 1.8 α = 2.031
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4.1.4 Maximum Likelihood Method

We begin our description of the well known maximum likelihood estimator
with a short introduction to the method of moments. As we already stated
in the previous section, a single parameter of a given distribution can be de-
termined in several ways. In the remainder of this chapter we will introduce
approaches to estimate the Hurst parameter. Hence, we are in the need for
an appropriate approach to determine an estimator with most of the desired
properties. Among these approaches are the method of moments, the max-
imum likelihood estimator, the Bayes estimator (see e.g. [98, 38]) and the
method of least square.

Method of Moments

The method of moments is based on the mapping of moments of a random
variable. Thus, we give a definition here.

Definition 4.22. The k-th moment of N realizations x1, . . . , xN is the mean
of the k-th power of the observations, i.e.

mk =
1
N

N∑

i=1

xki (4.14)

To determine the parameters of an assumed distribution, we have to solve as
much of the equations

mk = µk

as possible (µk is the k-th moment of the distribution).

Example 4.23. We consider a gamma distribution and estimate the parameters
α and β. At first we introduce two variables

m1 = µ1 and m2 = µ2

whereas µ1 = αβ and µ2 = α(α + 1)β2 (we remark that the second moment
is not the variance). With this we get

m1 = αβ and m2 = α(α + 1)β2

By solving these equations, we obtain the estimated parameters

α̂ =
m2

1

m2 −m2
1

and β̂ =
m2

2 −m2
1

m2
1

Finally, we substitute definition (4.14), and with x = 1
N

∑N
i=1 xi we get

α̂ =
Nx2

∑N
i=1(xi − x)2

and β̂ =
∑N
i=1(xi − x)2

Nx2

If we want to estimate expectation and variance only, we do not have to
assume a certain distribution.
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Maximum Likelihood Estimator

The Maximum Likelihood Estimator, which was developed at the beginning
of the 20th century, is a sufficient and asymptotically unbiased minimum vari-
ance estimator. The idea behind this estimator is to determine the parameters
of a given sample of data, such that the observations are realized with maxi-
mal likelihood. Below we consider the estimation of a single parameter only.
However, this approach can be easily generalized to the estimation of multiple
parameters.
The probability that the observations x1, . . . , xN occur is given by

P(ξ1 = x1, . . . , ξN = xN ) = f(x1, . . . , xN , θ)

whereas the joint N dimensional distribution depends on the parameter θ.
Since x1, . . . , xN are known, the right equation is a function of the unknown θ.

Definition 4.24. If x1, . . . , xN are observed realizations of a random variable
ξ, whose distribution f depends on parameter θ, then the Likelihood Function
is given by

L(θ) = f(x1, . . . , xN ; θ)

whereas θ ∈ D is in a given domain D ⊂ R.

To apply the Maximum Likelihood method, we have to search for the maxi-
mum of the function L over D.

Example 4.25. Let a sample of data with exponential distributed interarrival
times be given. We observe N values t1, . . . , tN and determine the parameter
θ of the appropriate distribution. The likelihood function is given by

L(θ) = f(t1, . . . , tN ; θ) =
N∏

i=1

f(ti, θ) =
1
θN

exp

(

−1
θ

N∑

i=1

ti

)

Differentiating the term logL(θ) with respect to θ yields to

d log(L(θ))
dθ

= −N

θ
+

1
θ

N∑

i=1

ti

Then the extremum (set derivative to 0) is

θ̂ =
1
N

N∑

i=1

ti = t

Example 4.26. We consider N realizations ξ1, . . . , ξN of sample data that are
(µ, σ2)-distributed. We determine the values of µ and σ2. The Likelihood
function of both parameters is given by
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L(µ, σ2) =
N∏

i=1

N (xi, µ, σ2)

=
(

1
σ
√

2π

)N
exp

(

− 1
2σ2

N∑

i=1

(xi − µ)2
)

Partial differentiation of logL(µ, σ2) with respect to µ and σ leads to

∂
(
logL(µ, σ2)

)

∂µ
= − 1

σ2

N∑

i=1

(xi − µ)

∂
(
logL(µ, σ2)

)

∂σ2
= − N

2σ2
+

1
2σ4

N∑

i=1

(xi − µ)2

We set both equation to 0 again, and it follows

µ̂ =
1
N

N∑

i=1

xi = x and σ̂2 =
1
N

N∑

i=1

(xi − x)2

Example 4.27. We consider a uniform distribution in the interval [0, α]. We
determine from a sample x1, . . . , xN of size N of a uniform distributed random
variable the maximum likelihood estimator for α. We build the likelihood
function according to

L(α) =
n∏

i=1

f(xi, α) =
(

1
α

)n

if α is greater than or equal to the largest value of xi. The likelihood func-
tion is set to 0 otherwise. Since the likelihood function increases exactly with
decreasing α, we have to make α as small as possible. Hence, Yn is the n-th
order statistic, a maximum likelihood estimator for α.

With the examples above gave the structure of distribution assumptions in
product form. On the other hand we assumed that the parametric density
family fθ is differentiable with respect to θ. We summarize this with the
following definition.

Definition 4.28. We call a statistical experiment (X , (Fθ)θ∈Θ) with the den-
sities fθ differentiable, if Θ ⊂ R is an open interval and for all observed
realizations x = (x1, . . . , xN ) ∈ X the mapping

θ �−→ fθ(x) is differentiable with respect to fθ(x) > 0

In particular for a differentiable experiment we have

∂

∂θ
log(fθ(x)) =

∂
∂θfθ(x)
fθ(x)
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We denote the mapping

L(θ, x) = log (fθ(x))

as loglikelihood function and

∂

∂θ
L(θ, x) = 0 (4.15)

as likelihood equation.
By selecting an observed realization x = (x1, . . . , xN ) ∈ X , it follows for a
Maximum Likelihood estimate θ̂(x)

L
(
θ̂(x), x

)
= sup
θ∈Θ

L(θ, x)

and hence,
∂

∂θ
L
(
θ̂(x), x

)
= 0 (4.16)

However, (4.15) is a necessary constraint only. Solutions of the likelihood
equations may exist which are no maximum likelihood estimators. In all cases
the maximality has to be proved.
Finally we want to address the product form of parametrised densities in
examples 4.25 and 4.27. Again, we consider in general a differentiable exper-
iment and repeat it N times, i.e. we have an iid sequence ξ1 . . . , xN with
observed realizations x = (x1, . . . , xN ). Then, the joint density of (ξ1, . . . , ξN )
with respect to the estimator parameter θ is given by

fθ,N =
N∏

i=1

fθ(xi)

The likelihood function is

LN (θ, x) = log (fθ,N (x)) =
N∑

i=1

L(θ, xi)

Here, we observe the advantage of the likelihood function: if we execute sub-
sequent experiments, we obtain a density distribution in product form. With
this, the likelihood function generates a sum that is easy to handle according
to theorems on stochastic limits (see [38, 208]).
If we determine a maximum likelihood estimator θ̂(x) for N observed values
x = (x1, . . . , xN ), then it follows according to (4.16)

LN

(
θ̂(x), x

)
= sup
θ∈Θ

LN (θ, x)

and
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∂

∂θ
LN

(
θ̂(x), x

)
=

N∑

i=1

∂

∂θ
L
(
θ̂(x), xi

)
= 0

The equation
N∑

i=1

∂

∂θ
L(θ, xi) = 0

is often denoted as likelihood equation of sample size N .

Example 4.29. We consider an experimental sequence that is described by iid
random variables ξ1, . . . , ξN . The distribution Fθ is unknown and depends on
parameter θ. We estimate the unknown expectation γ(θ) = Eθ(ξ1). For this
we assume that the variance σ2

θ = Var(ξ1) is finite. As consistent estimator
we already know

gN (x1, . . . , xN ) =
1
N

N∑

i=1

xi

For every θ we have

1√
Nσθ

(gN (x1, . . . , xN ) − γ(θ)) =
1

√
nVar(ξ1)

N∑

i=1

(ξi − Eθ(ξi))

and with the central limit theorem we conclude

1
√
NVar(ξ1)

N∑

i=1

(ξi − Eθ(ξ1)) −→ N (0, 1) in distribution

We say that the sequence of estimations (gN (x))N∈N is asymptotically normal
with γ(θ) = Eθ(ξ1) and variance σ2

θ of the observations.

Confidence Interval

Our findings were focused on point estimators so far. The goal was to de-
termine or estimate certain parameters under the assumption of given distri-
butions. However, we omitted the estimation of possible errors or, in other
words, of confidence in the results. We give a short answer to this. Assuming
a point estimator θ̂ of a parameter θ, then the deviation can be described
with the variance Var(ξ) or other informations about the distribution of the
random variable ξ. We consider an interval estimation here. For this, we as-
sume an interval ]θ1, θ2[ with θ inside. For θ1 or θ2 we select an appropriate
random variable ξ1 or ξ2, respectively. For a given bound γ and probability P
this leads to

P(ξ1 < ξ < ξ2) = P(θ1 < θ < θ2) = 1 − γ

Hence, the interval θ1 < θ < θ2 is denoted as (1−γ100)% confidence interval.
The value 1 − γ is denoted as grade of confidence, whereas θ1 and θ2 are
denoted confidence limits. The challenge is to determine for a small γ (i.e. for
a high percentage 1 − γ) a small interval ]θ1, θ2[.
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4.2 Estimators of Hurst Exponent in IP Traffic

Most estimators follow the statistical reproduction of the self-similarity that
is determined by autocorrelation, spectral density f or its reciprocal 1/f (see
also [7, 81]). The best choice depends on the regarded application and the
grade of complexity. Generally, we distinguish between two basic types of
models:

• The first model is the classical traffic theory with its distinction between
arrival and service processes. We apply the models M/G/1 or GI/G/1,
respectively, and estimate the appropriate model for arrival or service pro-
cesses based on the measured data. The underlying formulas give quantita-
tive or asymptotical evidence about certain characteristics, such as queue
length, distribution of waiting times and loss probability (see e.g. sections
2.7.5 and 2.8.2). The essential point is estimating the parameters of the re-
garded distributions, e.g. of exponential distributions for interarrival times
or of Pareto and Weibull distributions for connection and general service
times. We presented approaches for these estimations in the above section.

• Models with heavy-tail distributions share the phenomena of long-range
dependence or self-similarity respectively. Here, the challenge is to deter-
mine under the premise of these models the parameters that characterise
the respective models best. With this, we have to distinguish between dis-
crete models (time series, especially FARIMA) a time continuous processes
like FBM, FBN and α-stable motions.

Methods that estimate the parameters of already compound and with this
in most cases time continuous traffic appear to be interesting but complex.
We will present and discuss some established methods and comment their
application. We begin with pure parametric estimators and later introduce
the improved and more precise semiparametric estimators which presume a
certain form of spectral density. In the last case, we assume that long term
dependence depends on the Hurst exponent H according to our definition and
that the covariance structure is unknown. With semiparametric estimators we
determine the Hurst parameter H of stationary process (Xt) (e.g. amount of
data, waiting time) with a spectral representation of the form

f(λ) = f̂(λ)
∣
∣1 − exp(−iλ)

∣
∣1−2H (4.17)

In most cases we have 1
2 < H < 1 and f̂ is a steady function with f̂(0) �= 0. We

find that f(λ) ∼ f̂(0)|λ|1−2H for λ → 0. With this we have LRD phenomena
if H ∈ ]121[.

4.2.1 Absolute Value Method (AVM)

With the introduction to asymptotic self-similarity we already built blocks
over certain intervals of the form (X(m)

t ) according to the aggregated traffic
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(see also section 3.4.4). We now consider the first moment of the particular
blocks (X(m)

t ). Afterwards we apply the expectation log E(X(m)
t ) over time

log t in a log-log diagram. The slope of the line of best fit represents the Hurst
parameter H, e.g. if the traffic is LRD, the slope is equal to the value of H−1.
To give a more formal description of this, we consider a FARIMA[p, d, q] time
series and define the mean

AVX(m) =
1
N
m

N
m∑

k=1

∣
∣
∣X(m)
t − µ

∣
∣
∣ (4.18)

N denotes the length of the sample data, which is divided into block of length
m. The mean over the whole period is represented by µ = 1

N

∑N
i=1 Xi. In

case of asymptotic self-similarity, the centralized time series X(m)
t −E(X(m)

t )
behaves as mH−1Yα,d with (Yα,d) an α-stable time series (0 < α ≤ 2). In
case of finite variance, we have fractional Gaussian noise Yα,d according to
(3.2.3). With this, AV(m)

X behaves as mH−1 for large m. We already deduced
in section 3.3.3 that in the case of α = 2 we obtain H = d + 1

2 and with this,
mH−1 = md−

1
2 . In case of α < 2, we have H = d + 1

α (see [226, S. 382] and
(3.37), respectively) and with this, mH−1 = md+

1
α−1 . Thus, the estimation

according to (4.18) yields to the parameter H and not d, because the term
still contains the unknown factor α.
To determine H we have to draw the results for different values of m in a log-
log diagram. The AVM stands in a straight line of the method of least squares,
where regression lines could provide support for the AVM. We remark that
the amount of sample data N and the number of blocks have to be sufficiently
large to obtain reasonably good results.
We also find that in case of no long-range dependence the slope is − 1

2 , because
of H = 1

2 . Another important observation is that small values of m (i.e.
building the mean over very small time scales) as well as large values of m
(i.e. building the mean over the whole data) yield to no significant information.
The fractality for small values is too fine grained and for large values too coarse
grained to obtain reliable results; so we have to avoid these extreme scales.
An alternative estimator was proposed by Higuchi[111]:

L(m) =
N − 1
m3

m∑

i=1

[
N − i

m

] [N−i
m ]∑

k=1

∣
∣
∣
∣
∣
∣

i+km∑

j=i+(k−1)m+1

Xj

∣
∣
∣
∣
∣
∣

whereas [x] denotes the Gaussian bracket, i.e. the largest integer g with g ≤ x.
Asymptotically, we get

E(L(m)) ∼ const ·mH−2

with which we again obtain H, represented by the slope of the straight line
in a log-log diagram. We express the difference compared to the legacy AVM
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method in the following way: we do not build disjunct blocks but ‘observation
windows’ which slide over the whole set of sample data. The computational
effort is larger, but leads with huge sets of data (more than 10, 000 entries) to
more precise results.

Quality of Estimation

We will conclude each of the following sections with an empirical study to
reflect the properties of the respective Hurst estimator. The underlying algo-
rithms follow the methods of analysis given by Taqqu. For this we generated
three different series (FGN and FARIMA(1,d,1) with α = 1, 8 and α = 2, 0),
each with six different Hurst parameters H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96. Each
series consists of 65, 536 values and was generated 200 times. We applied the
different estimators as presented in the respective section to each of these
3 · 6 · 200 = 3, 600 series. To illustrate the results, the boxplots include the
following information:

• middle 50% of data (boxes),
• median (black line),
• 95% confidence interval about the median (shaded grey area),
• mean (black dot),
• whiskers encompassing 95% of the data (dashed lines),
• outliers that fell beyond the whiskers.

The absolute value method is among the better ones for Gaussian traffic,
especially for Gaussian time series. However, it exhibits unsatisfying behavior
with increments of infinite variance. With α-stable distributions the behavior
gets insufficient for decreasing α. Hence this estimator is preferred for traffic
whose increments are Gaussian distributed or of finite variance. This method
estimates H for FARIMA time series and not d.
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Fig. 4.8. Absolute Value method for FGN, Gaussian FARIMA series and FARIMA
series with 1.5-stable generator (from left to right) with respective Hurst parameter
H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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The Absolute Value method yields to good estimations for Gaussian FARIMA
series and FGN except for H = 0.96, whereas the results for FARIMA series
with 1.5-stable generator are of limited quality.

4.2.2 Variance Method

The approach of the Variance Method is quite similar to the Absolute Value
Method (AVM). However, instead of the expectation we now draw the variance
line Var(X(m)

t ). Again, the slope β of the regression line in the log-log diagram
denotes the longe range dependence. With −1 < β < 2 we find the Hurst
parameter H = 1 − β

2 ∈ ]0, 1 1
2 [. Because for Var(X(m)

t ) ∼ cm2H−2, the slope
β in the log-log diagram represents the value of 2H − 2. With this, we have
H = 1 − β

2 .
For a more formal description let X(m) denote the aggregated traffic, and
instead of (4.18) we now obtain the variance according to

V̂ar(X(m)) =
1
N
m

N
m∑

k=1

(
X

(m)
k − µ

)2

whereas µ represents again the mean over the entire sample data, i.e. µ =
1
N

∑N
i=1 Xi. As already stated in section 4.2.1 the centralized process X(m)

t −
E(X(m)

t ) behaves asymptotically to mH−1. In case of time series with Gaussian
increments or with increments of finite variance, we find asymptotical behavior
of m2H−2 = m2d−1 for large N

m and m.
For infinite variance we get a more complex solution and give a short derivation
here. Because of the convergence of (X(m)) towards an α-stable process or to
a linear fractional stable noise respectively, we have

V̂ar(X(m)) ∼ V̂ar
(
mH−1Sα,d

)

= m2H−2

⎛

⎜
⎝

1
N
m

N
m∑

k=1

Sα,d(k) −

⎛

⎝ 1
N
m

N
m∑

k=1

Sα,d(k)

⎞

⎠

2
⎞

⎟
⎠

Because we assume (Xt) asymptotically self-similar, it follows that for large
m the compounded blocks (X(m)) behave like mH−1Sα,s, distributed whereas
Sα,d is a FARIMA[p, d, q] series with α-stable increments. With this follows
in distribution

V̂ar
(
X(m)

)
∼ m2H−2

((
N

m

) 2
α−1

Zα
2
− C2

)

whereas Zα
2

is a α
2 -stable random variable and C a constant. We obtain the

asymptotic in distribution



4.2 Estimators of Hurst Exponent in IP Traffic 353

V̂ar
(
X(m)

)
∼ C(N)m2H−2+1− 2

αZα,d

= C(N)m2d−1Zα,d

whereas C(N) depends on the length N of the sample data.
If we select N very large compared to the possible compositions m, we again
obtain the value of d as the slope of a straight line in the log-log diagram,
namely in case of existing as well as in case of infinite variance. If the series
of means exhibit leaps or a smooth decrease, this may indicate instationarity.
To distinguish between this phenomena and the behavior of long-range de-
pendence, we consider

V̂ar
(
X(mi+1)

)
− V̂ar

(
X(mi)

)

for subsequent values mi. This may prove to be an effective way to determine
nonstationarity, and therefore should be considered apart from any common
method. However, we state that for α-stable FARIMA[1, d, 1] series the vari-
ation increases, such that reasonable estimations cannot be guaranteed.

Quality of Estimation

We treat the Variance Estimator as our second traditional graphical estimator.
It exhibits distinct biased behavior, especially for d > 0.3 with an arbitrary
Gaussian FARIMA[p, d, q] time series. This behavior does not change signif-
icantly for non-Gaussian increments. Nevertheless, the variance estimator is
very robust but less accurate than the Whittle estimator described below (see
4.2.6).
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Fig. 4.9. Variance estimator of FGN, Gaussian FARIMA series and FARIMA series
with 1.5-stable generator (from left to right) with respective Hurst parameter H =
0.5, 0.6, 0.7, 0.8, 0.9, 0.96

The variance estimator clearly leads to weak results for FARIMA series with
1.5-stable generator.
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4.2.3 Variance of Residuals

The idea of the Variance of Residuals method is to linearise the aggregated
traffic and to examine the resulting distortion, i.e. the remainder, with the
variance estimator. We illustrate some details on this approach, which was
introduced by Peng et al. [202].
We divide the series Xi into blocks of size m and remind of the definition of
compounded traffic. Within each block we build the partial sum (in favor of
a simple illustration we consider only the first block)

Yt =
t∑

k=1

Xk, t = 1, . . . ,m

Finally, we fit a line at−b to this series by applying the least square estimator
or the regression method respectively (see 4.1.2), i.e. we consider the residual∑m
t=1(Yt − at− b). For this ‘residual’ we now estimate the variance

1
m

m∑

t=1

(Yt − at− b)2 (4.19)

In this equation we may regard Yt as sum of all observed traffic until time t.
How does this estimator behave dependent on H and d? For an answer we
first define two random variables

Z1 =
∫ 1

0

Lα,H(t)dt and Z2 =
∫ 1

0

tLα,H(t)dt

whereas (Lα,H(t))t∈R is a α-stable fractional motion (for a definition see sec-
tion 3.2.3) with H = d + 1

α . According to this, we obtain for large m due
to the self-similarity (note that 0 < α ≤ 2 and α = 2 in case of fractional
Brownian motion) in distribution

Ymt ∼ mHLα,H(t)

This yields to the approximations
m∑

t=1

Yt ∼
∫ m

0

Ytdt
d∼ mH+1Z1

m∑

t=1

tY (t) ∼
∫ t

0

Ytdt
d∼ mH+2Z2

We determine the coefficients with (4.19) by calculating

a =

m∑

t=1
tYt

1
m

m∑

t=1
Yt

m∑

t=1
t

m∑

t=1
t2 1
m

(
m∑

t=1
t

)2

d∼
mH+2Z2 −mH+2 Z1

2
m3

3 − m3

4

= mH−1(12Z2 − 6Z1)
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b =
1
m

m∑

t=1

Yt −
1
m

m∑

t=1

at
d∼ mHZ1 −mH

12Z2 − 6Z1

2

= mH(4Z1 − 6Z2)

In distribution we have

1
m

m∑

t=1

(Yt−at−b)2 d∼ m2H

∫ 1

0

(Lα,H−6t(2Z2−Z1)− (4Z1−6Z2))2dt (4.20)

The integral is independent of m and thus, the variance of the distortion in
(4.19) behaves as m2H apart of a constant. We remark that we presented a
rough derivation only. A mathematically rigorous illustration for finite as well
as for infinite variance is given in [248].
We have two options to estimate the Hurst parameter. The first is to apply the
approach as described above to each block N

m and calculate the mean over all
blocks. The results drawn in log-log diagram versus m should give a straight
line with slope 2H.
The second option is to obtain a new random variable by building averages
over all blocks. However, we have to be careful, because according to (4.20),
the integral behaves as α

2 -stable random variable. If the original sample data
is of infinite variance, then the new random variable shows none either – this
behavior is often true for Internet traffic. With averaging these α

2 -stable ran-
dom variables of Nm blocks, we get an asymptotic of m1− 2

α . The corresponding
variance behaves as m2H+1−α

2 = m2d+1. This option is feasible, if we are inter-
ested in d instead of H. However, for a large set of sample data the variation
is too large, so that we favor the first option in practice.

Quality of Estimation

Apart from the absolute value method the variance of residuals is the only
estimator for FARIMA time series that estimates H instead of d.
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Fig. 4.10. Variance of Residuals estimator of FGN, Gaussian FARIMA series and
FARIMA series with 1.5-stable generator (from left to right) with respective Hurst
parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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The variance of residuals exhibits excellent results for all simulated processes,
especially for FARIMA series with 1.5-stable generator. For Gaussian and
stable FARIMA[0, d, 0] series it leads to better results compared to analytical
estimators, like Whittle estimator or wavelet analysis (see below). Here, LSE
shows the smallest value of all graphical estimators. However, the behavior
worsens for time series with increasing short-range dependence of p and q.
Although its robust behavior for traditional distributions, the bias of this es-
timator rises significantly for increments in time series of Pareto or lognormal
distributions, as well as for all kinds of FARIMA[1, d, 1] time series.

4.2.4 R/S Method

The R/S method belongs to the traditional estimators and is still in broad
use today. This approach was first investigated by Hurst [115]. We want to
give a detailed description and start with a formal definition.

Definition 4.30. Let (Xk) be a time series or simply a series of random
variables. Similar to the previous section we set Yt =

∑t
k=1 Xk for t ∈ N and

may regard Yt as the sum of load at time t, here. We denote

R(l, k) = max
1≤j≤k

(
Yl+j − Yl −

j

k
(Yl+k − Yl)

)

− min
1≤j≤k

(
Yl+j − Yl −

j

k
(Yl+k − Yl)

)

the adjusted target region and define

S(l, k) =

⎛

⎝1
k

l+k∑

j=l+1

(
Xj − X̂l,k

)2

⎞

⎠

1
2

whereas X̂l,k = 1
k

∑k+l
j=k+1 Xj represents the mean of the l-th block.

The fraction

Q(l, k) =
R(l, k)
S(l, k)

is denoted as rescaled adjusted target region. The value S(l, k) represents the
variance estimator of the time series. The index l ensures that we move one
block to the right in each step. In favor of a simple notation we write Q(k) =
Q(0, k) in case of l = 0 from now on. For e.g. stationary increments, we omit
the notion of l, because Yl+j − Yl distributed like Yj − Y0. For H-sssi random
series (Xi) the term Q(k) = R(k)

S(k) thus specifies an estimator of H for k → ∞.
With theorem 4.32 and 4.34 we will give further details on this below.
How can we interpret the specific parameters? R(k) exhibits a behavior of
the form kH = kd+

1
α because of the compound random variables Y and their
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asymptotical behavior. Otherwise, S(k) is, as already described, the square
root of the variance of a data series, which is in turn proportional to k

2
α−1.

With this it follows S(k) ∼ k
1
α− 1

2 . Then the joint convergence for R(k) and
S(k) yields for Q(k) to

Q(k) =
R(k)
S(k)

∼ kd+
1
2 , for k → ∞

Hence, drawing the quotient Q(k) in a log-log diagram leads to the value of
parameter d again. A more rigorous illustration of this heuristic derivation is
given in several monographs (see [173, 23, 32]).
To estimate the Hurst parameter with this method we assume long-range
dependence (this can be proved by other estimators) and draw logQ(k)
versus log k as above. For each k ∈ N we have n − k + 1 copies, namely
Q(0, k), . . . , Q(n − k, k). This implies that for large k we have to consider a
large number of realizations.

Theorem 4.31. Let (Xk) be a stationary time series in the strict sense such
that (X2

k) is ergodic and 1
n

∑[nt]
j=1 Xj converges weakly to the Brownian motion

for n → ∞, i.e. convergence in a functional sense. Then for k → ∞ the
following asymptotic applies

k
1
2Q(k) d∼ ξ

whereas ξ is a non-degenerated random variable.

If the well known central limit theorem applies, then the term k
1
2Q(k) con-

verges also to a random variable. In that case we obtain the Hurst parameter
with value 1

2 . The result is different, if we assume convergence to the fractional
Brownian motion.

Theorem 4.32. Let (Xk) be a stationary time series in the strict sense, such
that (X2

k) is ergodic and 1
n

∑[nt]
j=1 Xj converges weakly to the fractional Brow-

nian motion with Hurst parameter H for n → ∞, i.e. is convergence in a
functional sense. Then, for k → ∞ the following asymptotic applies

kHQ(k) d∼ ξ

whereas ξ is a non-degenerated random variable.

How can we determine the distinct behavior? We draw the respective realiza-
tions logQ(k) (as described above n− k+ 1 times) versus log k. If we observe
a scattered plot around a straight line with slope 1

2 , then we have the result
according to theorem 4.31. But if the scattered plot is of slope H > 1

2 , i.e.
a straight line of the form H log k with dispersion log ξ, then we have a frac-
tional Brownian motion according to theorem 4.32. The particular property
of this method is formulated in the next theorem that specifies the transfer
on non-existing variance.
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Theorem 4.33. Let (Xk) be a iid time series such that E(X2
k) = ∞. Further-

more, let the series be in attraction to an α-stable distribution (see section
3.2.3) with 0 < α < 2. Then, for k → ∞ the following asymptotic applies

k
1
2Q(k) d∼ ξ

whereas ξ is a non-degenerated random variable.

With this the asymptotic of the R/S statistic also applies to heavy-tail
marginal distributions. However, proofs and propositions about convergence
are rather difficult. Further details are given in an article by [23]. To provide
more insight in theorems 4.31 to 4.33, we cite a result that goes back to B.
Mandelbrot.

Theorem 4.34. Let (Xk) be a stationary time series in the strict sense such
that ⎛

⎝ 1
nH1L1(n)

[nt]∑

j=1

Xj ,
1

nH2L2(n)

[nt]∑

j=1

X2
j

⎞

⎠ −→ (M(t), V (t))

converges, whereas L1, L2 are slowly varying functions and the convergence
has to be seen in a certain functional sense, such that building of inf and sup
remain. Then, the renormalized R/S statistic

(
R([kt])

kJL(k)S(k)
, 0 ≤ t ≤ 1

)
(4.21)

converges, whereas L is a slowly alternating function and J = H1 − H2
2 + 1

2 .

With this theorem we also determine, if a 0 ≤ J ≤ 1 and a slowly varying
function exist, such that a convergence as in (4.21) is possible. As described in
[23] J depends only on the Hurst exponent and not on the finite-dimensional
marginal distributions of the stationary time series. If J = d+ 1

2 applies, then
R/S is robust, whereas d ∈ ]0, 1

2 [ represents the measure of the long-range
dependence of the FARIMA series. According to [32], we summarize the R/S
method with the following three steps:

• First, calculate Q(l, k) for an adequate number of different k, l.
• Second, draw logQ(l, k) versus log k for different k with a dispersion of

the respective values of l.
• Finally, we plot a line of best fit y = a log k + b which describes for large

values of k our sample data. By means of the least square method we
determine appropriate values of ã, b̃ and then ã = H̃ is an estimator of the
Hurst parameter.

We give some comments on possible difficulties with the R/S method. It is
hard to determine, at which value of k the asymptotic occurs. For a finite
set of sample data the distribution of Q is neither symmetric nor normal
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and for different scales, no independence exists, which is essential for the
central limit theorem. Furthermore, for large values the calculability of Q(k)
is limited, what makes the asymptotic less reliable. Hence, this method is not
recommended for accurate estimations.

Quality of Estimation

The R/S method is rather inapplicable for accurate estimations and should be
used only to get a rough idea of the behavior of a time series. This estimator
exhibits clear weaknesses for all paths and fits with high variation to some
degree at H = 0.6 only. For non-Gaussian processes like the FARIMA time
series with 1.5-stable generator the R/S estimator is not applicable.
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Fig. 4.11. R/S estimator of FGN, Gaussian FARIMA series and FARIMA series
with 1.5-stable generator (from left to right) with respective Hurst parameter H =
0.5, 0.6, 0.7, 0.8, 0.9, 0.96

4.2.5 Log Periodogram – Local and Global

We begin with a general description of the periodogram estimator and intro-
duce specific variants afterwards. Foundation is the Periodogram of a time
series (Xt) with length N . Accordingly, to the frequency λ we build

I(λ) =
1

2πN

∣
∣
∣
∣
∣

N∑

k=1

Xke
−ikλ

∣
∣
∣
∣
∣

2

(4.22)

If the time series is of finite variance, then the spectral density is estimated
herewith. As we already described in section 3.1.2 in case of long term depen-
dence, the time series behavior as |λ|−2d at the origin. Drawing the dependence
of the frequency in a log-log diagram, we again may determine the value −2d
as slope. However, this applies only in case of finite variance. For infinite vari-
ance the solution gets far more complicated, and we still miss a satisfying
theoretical results today (see [144, 145] and [148]). However, empirical results
indicate that the method can also be extended to this case.
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For semiparametric methods we have to distinguish between the local and
global periodogram. Roughly, the Hurst parameter is determined by the slope
of the logarithm of the spectral density against the logarithm of the frequency
of the applied Fourier transform. The local periodogram uses frequencies near
0 only, the global periodogram all frequencies, instead. Although, a limita-
tion of the shape of the spectral density exists. Both methods are Gaussian
estimators, i.e. they are applied to estimate Gaussian processes.
For a detailed description of the local logperiodogram estimator we consider
equation (4.17) at first. A logarithmic regression is recommended to estimate
the exponent by means of the first m(N) Fourier coefficients. We define for
N values the periodogram depending on the frequency of the Fourier series

IN (λ) =
1

2πN

N∑

k=1

|Xk exp(−ikλ)|2

With the semiparametric approach (4.17) we deduce the following estimator
over the first m(N) frequencies for j = 1, . . . ,m(N)

log (IN (λj)) = log
(
f̂(0)

)

+(1 − 2H) log (|1 − exp(−iλj)|) (4.23)

+ log

(
f̂(λj)

f̂(0)

)

+ log
(
IN (λj)
f(λj)

)

The local Log-Periodogram estimator is consistent for the parameter m(N) =
Nα, 0 < α < 1. Taking the series of Fourier coefficients λj → 0, the third
term (4.23) vanishes, because f̂ is steady at 0 and log 1 = 0. The fourth term
can be regarded as error term and is not iid.
The expectation depends on j, and we remind that IN (λj) is a random vari-
able depending on Xk. Under certain properties of the function f̂ this term
converges in distribution to a N (µ, σ2)-distributed random variable. More de-
tails about these results are given in [116]. The complexity is in the order of
the regular regression problem, i.e. with m frequencies the complexity is of
order O(m) (see 4.1.2). The estimator is applied to Gaussian processes, where
normally f̂ is differentiable and considered locally bounded in a neighbour-
hood of 0.
We now consider the global estimator. We already pointed out that the first
periodogram estimator is denoted as local, because the used frequencies con-
verge to 0. With the global periodogram the situation is different. The model,
introduced by Moulines and Soulier [182], uses the whole range of observable
Fourier frequencies. However, there is a certain drawback: with this approach
we have not only to determine the regarded Hurst parameter H, but we also
we have to estimate the function log(f̂(·)). For this let (ej) be a base of the
Hilbert space of L2(R) representing the function f̂ ∈ L2(R)
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log(f̂) =
∞∑

k=0

αjej

With the method described here, the so called FESM (fractional exponential
estimator method), we apply the orthonormal base

ej(λj ·) =
1√
π

cos(jλj ·)

We divide the N periodogram variables X1, . . . , XN to K blocks of length
m, whereas the last index is omitted. The same separation applies to the
respective Fourier frequencies λ1, . . . , λN . Over each block we now build a
weighted sum and renormalise to obtain the expectation 1. Then we build
the logarithm and get the variables (ZN,k)k=1,...,K . With the LSE (see section
4.1.2) we finally obtain

ZN,k = (1 − 2H) log (|1 − exp(−ixk)|) +
m∑

j=0

αjej(xk) + RN,k, k = 1, . . . ,K

whereas xk = (2k+1)π
N . We remark that the error terms RN,k are neither

independent nor centralized, and the bias with constant m does not converge
asymptotically to 0.
The FESM is consistent and asymptotically normal, if we select blocks of
length m = Nβ , whereas 1

2δ < β < 2
3 . The factor δ describes the Hölder

continuous of the function f̂ here. Finding the right value m by using a least
square estimator, is equivalent to finding the right value by using the local
periodogram estimator (see [117]). The model estimates Gaussian processes,
and the function f̂ should be bounded away from 0, where we stress a decaying
condition on the Fourier coefficients of the function log(f̂).

Quality of Estimation

All three log periodogram estimators provide good results for FGN, whereas
the compound estimator becomes considerably biased for the Gaussian se-
ries. The estimation of a non-Gaussian series leads to partially wrong results,
e.g. short-range dependency at H ≈ 0.4 instead of the expected long term
dependency at H = 0.6. This last graphical estimator is the methodical foun-
dation of the Whittle estimator. It proves to be the best graphical estimator
for Gaussian processes. Although we remark that the precision is excellent
in case of FARIMA[0, d, 0] series, its behavior worsens in case of increments
without variance. This is the reason, why the periodogram estimator is not
recommended for non-Gaussian time series.
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Fig. 4.12. Local Log-Periodogram estimator of FGN, Gaussian FARIMA series and
FARIMA series with 1.5-stable generator (from left to right) with respective Hurst
parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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Fig. 4.13. Global Log-Periodogram estimator of FGN, Gaussian FARIMA series
and FARIMA series with 1.5-stable generator (from left to right) with respective
Hurst parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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Fig. 4.14. Cumulative Periodogram estimator of FGN, Gaussian FARIMA series
and FARIMA series with 1.5-stable generator (from left to right) with respective
Hurst parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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4.2.6 Maximum Likelihood and Whittle Estimator

Before we turn our attention to the Whittle estimator (which is not a semi-
parametric estimator), we want to express some fundamental remarks on para-
metric estimators. With the methods introduced so far, we determine, whether
observed data exhibits long-range dependence. These approaches were based
mostly on heuristic techniques, statistical theory was not applied. However,
parametric attempts are useful to achieve the best possible model by appro-
priate selection of the parameters, i.e. in most cases by maximization. In that
case we apply the correlation structure or spectral density respectively rather
than evaluating the asymptotical behavior.
This led to frequent assumptions like ‘for large values of k only’ or ‘if λ is as
small as possible’. The immediate question arises at which values for k we may
begin valid evaluations. We remind of the scaling estimators introduced by
Crovella and Taqqu for the determination of heavy-tail distributions. There is
a certain risk in considering asymptotic behavior for the wrong range in favor
of better results for the Hurst exponent.
We now apply the Maximum Likelihood estimator to determine the Hurst
exponent in the case of Gaussian processes. The results are also valid for
more general time series with heavy-tail distributed increments [76, section
7.5.]. For our descriptions we follow the approach given by Beran [30]. We
start with a finite stationary time series X1, . . . , Xn with mean 0 (generalized
by shifting) and variance σ2. We assume an autocorrelation of the series

γ(k) ∼ k2H−2

i.e. long-range dependence occurs again if 1
2 < H < 1. By applying the spectral

density, we examine the exact Hurst parameter and select a family of densities
{f(λ, θ); θ ∈ Θ}. Here, the unknown vector

θ =
(
σ2,H, θ3, . . . , θm

)T

represents the parameter to be specified with the Maximum Likelihood
method. Furthermore, we assume that the time series is a FARIMA series

Xi =
∞∑

k=0

bkεi−k (4.24)

whereas εj are a iid Gaussian series with mean 0 and variance σ2. The coeffi-
cients have to fulfill appropriate conditions, as we already described in section
3.3.3. With the regularity condition we show that the maximum likelihood
estimator θ̂k is of strong consistency and

√
n(θ̂k − θ) d→ η, for k → ∞ (4.25)

whereas η is a m-dimensional vector of random variables with mean 0 and
covariance matrix Γ (θ) for Gaussian distributed data. However, the calcula-
tive evaluation of the maximum likelihood estimator is difficult already for
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simple models of the form (4.24). Hence, we have to approximate the maxi-
mum likelihood function (see (4.15)). This yields to the well known Whittle
estimators, which we will illustrate below (see [267] or [268] and [76] respec-
tively for heavy-tail increments εj). We follow [30] again and assume that the
Maximum Likelihood function is a function of log |Γ (θ)| and Γ (θ), whereas Γ
denotes the covariance matrix of the data (depending on θ).
The Maximum Likelihood estimator is based on the following requirements:

• limn→∞
1
n |Γn(θ)| = (2n)−1

∫ π
−π log f(λ, θ)dλ and

• replace the inverse matrix Γ (θ)−1 by A(θ) = (a(j − l))j,l=1,...,n, whereas

ajl = a(j − l) = (2π)−1

∫ π

−π

ei(j−l)λ

f(λ; θ)
dλ (4.26)

Minimizing the expression

LW (θ;x) =
1
2π

∫ π

−π
log f(λ; θ)dλ +

xTA(θ)x
n

, x ∈ Rn (4.27)

yields to the Whittle estimator. We can show that the Whittle estimator θ̂W,n
is consistent in the sense of

√
n(θ̂W,n − θ) d→ η with η according to (4.25).

With this, the Whittle estimator exhibits the same convergence in distribution
as the exact maximum likelihood estimator. To calculate (4.26), we have to
discretise first, i.e. we transform into a finite sum and then apply the (FFT).
For the Whittle estimator we have to calculate the integral in (4.27) n ·s times
for each realization of θ. Because of our assumption of long-range dependence
f has a singularity at λ = 0. With this, we can determine 1

f more precisely,
and we replace (4.26) by the sum

âk = 2
1

(2π)2

m∑

j=1

1
f(λj,m; θ)

eikλj,m
2π
m

=
1

(π)

m∑

j=1

1
f(λj,m; θ)

eikλj,m

whereas
λj,m =

2πj
m

, j = 1, . . . ,m∗

and m∗ denotes the largest integer of m−1
2 .

We now describe the parametric estimator again and later introduce the local
Whittle estimator. The Whittle estimator is based on the periodogram. We
select a vector θ of unknown parameters. The spectral density f(θ, ·) depends
on this vector. Then we build the function

LW (θ;x) =
1
2π

(∫ π

−π

I(λ;x)
f(λ; θ)

dλ +
∫ π

−π
log f(λ; θ)dλ

)
(4.28)
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whereas I(λ;x) is the periodogram according to (4.22). Normalizing the spec-
tral density to 1, we may set the last integral to 0. Hence, we define f∗ = cf
and

∫ π
−π log f∗(λ; θ, )dλ = 0. The basic idea is now to minimize the integral

in (4.28), such that the periodogram reproduces the spectral density at best.
In practice the integral is approximated by a Fourier series of different fre-
quencies. In case of FARIMA[0, d, 0] time series, θ consists of d only, in case
of FARIMA[p, d, q] time series θ contains also the autoregressive and moving
average parts p, q. We remark that the Whittle method estimates d and not
H. With this, we have the following approximation

LW (θ;x) = 2
1

(2π)2

⎛

⎝
[m]∑

j=1

log f(λj,m; θ)
2π
m

+
[m]∑

j=1

I(λj,m;x)
f(λj,m; θ)

2π
m

⎞

⎠ (4.29)

Since the periodogram is easily calculated by means of the Fast Fourier trans-
form, the discrete Whittle estimator can be determined in good approximation
as well.
We give some remarks on possible disadvantages of the Whittle estimator:

• The parametric form of the spectral density has to be known in advance to
apply f(θ, λ). If the parametric form is unknown, the estimator will become
very biased and hence, is not sufficiently robust (see [93, 32, 145, 149]).

• With an increasing amount of sample data the computational efforts be-
come rather huge, whereby this method exhibits clear shortcomings com-
pared to the graphical estimators.

We may circumvent the problem of a missing form of the spectral density with
a compound Whittle estimator. For this we select an appropriate amount of
sample data and build

X
(m)
k =

1
m

mk∑

j=m(k−1)+1

Xj

We find the definition of the compound traffic again that led to the idea of
asymptotical self-similarity (see section 3.1.2). Certainly, a small number of
aggregated data increases the variation. With large amounts of sample data as
well as with compound data, the term X(m) − E(X(m)) is near the fractional
Brownian motion in case of finite variance. Additionally, the bias is decreased
because we may assume the spectral density of the FBM. In case of infinite
variance we asymptotically reach a linear α-stable process. However, we should
assume the FGN model, as observed in the article by [149].
With the local Whittle estimator we now turn to another semiparametric esti-
mator. This estimator was introduced and described first by Robinson [221].
We start with a likelihood function

LN (θ) =
1
4π

∫ π

−π
log (f(λ)) +

IN (λ))
f(λ)

dλ (4.30)
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whereas IN (λ) represents a periodogram of the vector (X1, . . . , XN ) of obser-
vations

IN (λ) =
1

2πN

N∑

j=1

∣
∣Xj exp(−ijλ)

∣
∣2

With a renormalization of f , such that
∫ π
−π log(f(λ))dλ = 0, we obtain as

estimator (
Ĥ(N), ̂̂fN (·)

)
= Argmin(H,f̂)LN (θ)

Because f̂ is not of interest, here we calculate the Whittle estimator in a neigh-
bourhood of λ = 0, where f̂ is almost constant f̂(0). Therefore this estimator
is typically denoted local Whittle estimator. We now replace the integral in
(4.30) by a sum that is more suitable for discrete observations. The sums are
build over different frequencies, where the maximum frequency converges to
0, if the number of observations converges to ∞. With the minimization we
get

LN (H) = log

⎛

⎝ 1
m(N)

m(N)∑

j=1

IN (λj)
λ1−2H
j

⎞

⎠+
1 − 2H
m(N)

m(N)∑

j=1

log(λj)

whereas λj = 2jπ
N , j = 1, . . . , [N−1)

2 ] represent the Fourier frequencies. The
estimator is denoted by

θ̂ = ArgminH∈ΘLn(H)

whereas Θ = [H1,H2] represent the estimation interval. Even if the com-
plexity of the calculation is of grade O(m(N) log(N)), the complexity may
raise, because the range for minimization are unknown. If the function f̂ is
differentiable on the interval ]0, δ[, then f̂ is of order O(λ−1) around 0. And
if m(N) → ∞ for N → ∞, then the estimator is consistent. Under stricter
differentiability at 0 and stronger conditions at m, the estimator of H is
asymptotical normal with rate

√
m and asymptotical variance 1

4 (see [221]).
Although no theoretical results exist, this estimator seems also suitable for
non-Gaussian processes with infinite variance of the increments.
Apart from the semiparametric approach in (4.17) we may alternatively apply

f(λ) ∼ g(d)|λ|−2d

whereas g is a function of d. In principle, this method is equivalent to the
Whittle estimator. However, as already remarked for the first approach, the
frequencies are cut above 2πm

n . The estimator is build by minimizing the
expression (see (4.29))

R(d) = log

⎛

⎝ 1
M

M∑

j=1

I(λj
λ−2d
j

⎞

⎠− 2d
1
M

M∑

j=1

log λj
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Quality of Estimation

In principle, the Whittle estimators exhibits the best behavior of all estima-
tors. They are preferred if the parametric form of the time series is known.
However, we have to distinguish between the different Whittle estimators:

• The Whittle estimator yields to good results for the parameters φ1 and ψ1.
Problems arise, if instead of an actual FARIMA[0, d, 0] a FARIMA[1, d, 1]
series is selected as first attempt.

• The compounded Whittle estimator is rather unbiased, the error of es-
timation may become larger compared to the Whittle estimator. With
FARIMA[1, d, 1] series the error is low compared to graphical methods.

• Compared to the Whittle estimator the locale Whittle estimator does not
estimate φ1 and ψ1 of a FARIMA[1, d, 1] series. If the parametric form of
a time series is not known, this is the best approach.
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Fig. 4.15. Whittle estimator (FGN) of FGN, Gaussian FARIMA series and
FARIMA series with 1.5-stable generator (from left to right) with respective Hurst
parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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Fig. 4.16. Whittle estimator (FARIMA) of FGN, Gaussian FARIMA series and
FARIMA series with 1.5-stable generator (from left to right) with respective Hurst
parameter H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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Fig. 4.17. Local Whittle estimator of FGN, Gaussian FARIMA series and FARIMA
series with 1.5-stable generator (from left to right) with respective Hurst parameter
H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96

All three Whittle estimators exhibit superb results for Gaussian processes.
Similar to the log-periodogram estimator the results become partly wrong for
for FARIMA time series with 1.5-stable generator (εt).

4.2.7 Wavelet Analysis

In contrast to the survey-like illustration of the estimators above we will give
a detailed presentation of the wavelet analysis, which was developed over the
past years and delivers promising results. With the wavelet transformation
(here, the selection of specific wavelets is relevant) the signal or sample data
under investigation is transformed into a series of wavelet coefficients. After-
wards we estimate the Hurst parameter by using this series.
We describe the approach developed by Flandrin [90] and Abry et al. [2, 4]
by means of Gaussian stationary processes. At first we assume a stationary
process (Xt)t∈R with

∫∞
−∞X2

t dt < ∞ almost surely. Then, we select a mother
wavelet ϕ with M ≥ 1 vanishing moments and define the wavelet coefficients
of discretization n and at point k with

DXn,k =
1√
n

∫ ∞

−∞
Xtϕ

(
t

n
− k

)
dt (4.31)

It is important that (Xt) as well as the wavelet ϕ are quadratically integrable
(this is valid e.g. if ϕ has compact support). The wavelet coefficients have the
following characteristics:

• Since the process (Xt) is stationary, the series of wavelet coefficients DXn,k
is also stationary for n > 0.

• Since (Xt) is Gaussian, the wavelet coefficients are also Gaussian.
• Since (Xt) is a LRD process that fulfils constraint (4.17), the property of M

vanishing moments leads to the fact that the series of wavelet coefficients
is SRD.
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• Since (Xt) is Gaussian and fulfils (4.17), it applies under Hölder continuity
for the exponent β > 0 of the function f̂

E((DXn,k)2) ∼ C(ϕ,H, f̂)n2H−1, if n → ∞ for all k ∈ N (4.32)

with C(ϕ,H, f̂) > 0 is constant. More details are described in [27].

With the following steps we illustrate how the calculated wavelet coefficients
of the sample data (Xt) can be utilized to estimate the exponent H:

• We assume that the process was observed for all times t ∈ [0, N ]. We
selected a step count of nj , j = 1, . . . , J and define

SN (nj) =
1
Nj

Nj∑

k=1

(
DXnj ,k

)2

whereas Nj = [ Nnj
] represent the existing coefficients to the discretization

nj ([r] = denotes the largest natural number that is less or equal than r).
We remark that SN (nj) is a consistent estimator for the empirical mean
E((DXnj ,k

)2) with fixed nj and N → ∞ (see the unbiased estimators in
section 4.1.1 and [27]).

• With (4.32) follows the linearization

log (SN (nj)) = (2H − 1) log nj + K(ϕ,H, f̂) + R(nj , N)

whereas K(ϕ,H, f̂) = log(C(ϕ,H, f̂)) ∈ R and R(nj , N) → 0 in probabil-
ity, if nj and N

nj
→ ∞.

• A linear regression of the vector (log(SN (nj)))j=1,...,J versus the vector
(log(nj))j=1,...,J yields to a slope, which represents a suitable estimator
Ĥ(N) for the Hurst parameter H. The estimator is consistent in a sense
that Ĥ(N) P−→ H for nj → ∞ and [ Nnj

] → ∞.

Remark 4.35. We give two remarks on the estimation illustrated above:

• With increasing M the series of coefficients DXn,k converges to white noise
and theoretically leads to a better estimator of H

E
(
DXn,k1D

X
n,k2

)
= O

(
|k1 − k2|2(H−M)−2

)

However, the asymptotic variance of the estimator Ĥ(N) increases with
M .

• With multiscaling analysis the wavelet coefficients are calculated in a
pyramidically structured tree. With this further restrictions apply to the
mother wavelet (e.g. orthogonality) and the step count nj . However, apart
from the number of vanishing moments and a certain regularity, no prop-
erties of the mother wavelet are taken into account.

We introduced the wavelet analysis for Gaussian processes but it can be ex-
tended to general α-stable processes as well.
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Wavelet Coefficients of Self-Similar and Long-Range Dependent
Processes

We start with a stochastic process (Xt) and the respective wavelet coefficients
Dj,k. With the calculation of the coefficients we assume either realizations of
the stochastic process or wavelet coefficients as random variables (we remind of
the definition of a stochastic process). If the wavelet is of compact support (or
the decay behavior is sufficiently large for t → ∞, depending of the stochastic
process), then the following properties apply, whereas the mother wavelet ϕ
has N vanishing moments:

a) The wavelet coefficients are identically for Xt and Xt + P (t), if P (t) is a
polynomial of (N − 1)-th grade. Then,

∫ ∞

−∞
P (t)ϕj,k(t)dt =

∫ ∞

−∞
P
(
2j(s + k)

)
ϕ(s)ds = 0

(we remark that s �−→ P (2j(s + k)) is a polynomial of (N − 1)-th grade).
With this, the DWT is invariant compared to distortions by polynomials
of (N − 1)-th grade. In particular, Xt + c and Xt have the same wavelet
coefficients.

b) In our model we assumed stationary increments of the observed processes
(the fractional Brownian motion is the only Gaussian process with this
property). What about the wavelet coefficients in this case? Let (Xt)t∈R

be a process with stationary increments, i.e. the finite dimensional distri-
butions of (Xt+h−Xt)t∈R are independent of t. If we consider a scaling of
j ∈ Z, then the series (Dj,k)k∈Z) is stationary. As a simplification we as-
sume j = 0 and show that the one-dimensional distributions of (Dj,k)k∈Z)
are independent of k:

D0,k+k0 =
∫ ∞

−∞
Xtϕ(t− k − k0)dt (4.33)

=
∫ ∞

−∞
Xs+k0ϕ(s− k)ds =

∫ ∞

−∞
(Xs+k0 −Xs)ϕ(s− k)ds

d=
∫ ∞

−∞
(Xs −X0)ϕ(s− k)ds =

∫ ∞

−∞
Xsϕ(s− k)ds = D0,k

The third identity in (4.33) is given by the properties of wavelets (see
e.g. [126]) or [63]). The fourth identity in (4.33) is a consequence of the
stationary increments (the integral is approximated with a sequence of
sums here). Similarly, we can show for a selection of points k1, . . . , kn and
real numbers r1, . . . , rn that

∑n
i=1 riD0,ki+k0

d=
∑n
i=1 riD0,ki

. With this
follows the stationarity. In a similar way we conclude for wavelets with
vanishing moments that the sequence Dj,k (j constant) has stationary
increments, if (Xt) is stationary of order N (see about the term stationarity
of order N e.g. [38]). In particular, (Dj,k) is stationary, if (Xt) is stationary
as well.
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c) What about a process (Xt) that is self-similar to a Hurst parameter H?
In this case we again obtain for a constant j ∈ Z

Dj,k d= 2j(H+ 1
2 )D0,k, k ∈ Z (4.34)

How can we derive this result? We deduce equation X2js
d= 2jHXt because

of the self-similarity. With this we have

Dj,k =
∫ ∞

−∞
X2js2−

j
2ϕ(s− k)ds d= 2j(H+ 1

2 )D0,k

The summand 1
2 in the exponent follows due to the normalization with

2−j
1
2 .

d) In a further step we assume that the process (Xt)t∈R is H-sssi (0 < H < 1).
I.e. the process is self-similar with stationary increments, mean 0 and an
existing second moment, like a fractional Brownian motion. From property
b) we derive that E(Dj,k) = 0, and with (4.34) follows

E(D2
j,k) = E(D2

0,0)2
j(2H+1) (4.35)

Taking the logarithm to base 2, on both sides we get

log2

(
E(D2

j,k)
)

= log2

(
E(D2

0,0)
)

+ (2H + 1)j (4.36)

The function on the right hand is linear in j and of slope 2H + 1. We
already see the relevance of the wavelet coefficients to determine the Hurst
parameter and want to provide deeper insight into this method.

e) Instead of the variance we apply the covariance to estimate the Hurst
parameter. We already know from property c) above that the sequence
(Dj,k)k∈Z is SRD for a constant j. Hence, the covariance decays fast to 0
although the sequence is correlated

E(Dj,k1Dj,k2) = const(j)|k1 − k2|2(H−N) (4.37)

whereas with N the number of vanishing moments is selected sufficiently
large and const(j) denotes a constant depending on j. To detect no LRD
property, i.e.

∞∑

k=0

E (|Dj,kDj,0|) < ∞

we must choose N > H + 1
2 , i.e. at least N = 2. The Haar wavelet does

not have sufficient vanishing moments.

Instead of equation (4.37) we can estimate the Hurst exponent with the spec-
tral representation. For the second moment of the wavelet coefficients we have

E(D2
j,k) =

∫ ∞

−∞
fX(s)2j |ϕ̂(2js)|2ds (4.38)
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whereas
ϕ̂(λ) =

∫ ∞

−∞
exp(−i2πλt)ϕ(t)dt

represents the Fourier transform of the mother wavelets and fX the spectral
density of the signal. If X is LRD with a spectral density of the form fX(λ) ∼
|λ|−γ (compare (3.22)), then it follows

E(D2
j,k) ∼ Cf2jγ

∫ ∞

−∞
|λ|−γ |ϕ̂(λ)|2dλ, for j → ∞ (4.39)

as estimator. The covariance of the wavelet coefficients is

E(Dj,kDj,k′) =
∫ ∞

−∞
fX(λ)2j |ϕ̂(2jλ)|2 exp

(
−i2π(k − k′)2jλ

)
dλ

We see that E(Dj,kDj,k′) is a function that only depends on the difference
|k−k′|. The asymptotical behavior |k−k′| → ∞ is determined by the behavior
of the Fourier transform fX |ϕ̂(2js)|2 at the origin. If the mother wavelet ϕ
has N vanishing moments, then ϕ̂ behaves as |λ|N at the origin (compare
e.g. [37, 63, 126]). Therefore, the LRD property caused by the factor |λ|−γ
in (4.39) is compensated by the factor |λ|2N (the integral (4.39) contains
|ϕ̂(2jλ)|2).
Essentially, we want to achieve that the wavelet coefficients Dj,k are decor-
related, i.e. not LRD. Therefore, we have the constraint 2N > γ for the
vanishing moments of the wavelets. With this we obtain for the j-th octave
of the wavelet a decrease of the covariance in approximative form (note that
fX(λ) ∼ |λ|−γ around 0).

E(Dj,kDj,k′) ∼= |k − k′|λ−2N−1 (4.40)

We see that relation (4.40) is consistent with (4.37) by the transition of a
H-sssi process to the increments Zt = Xt − Xt−h. We can prove that (Zt)
is LRD with γ = 2H − 1 as we know from (3.22). For H̃ = H − 1 (4.37) is
consistent with (4.40):

2(H̃ −N) = 2H − 2N − 2 = γ − 2N − 1

The reason for estimating the ‘exponent of the frequency’ γ instead of H
is, because according to (3.23) that the relation 2N > γ is equivalent to
2N > 2H − 1 ⇔ N > H − 1

2 . With this, we can already apply the Haar
wavelet here in contrast to (4.37). In practice, we use wavelets with two or
three vanishing moments, because of the faster decorrelation in (4.40) and the
weak localization of wavelets for higher vanishing moments.
We summarize common properties of both approaches to estimate the wavelet
coefficients for H-sssi processes:

• Both approaches are stationary for constant scales.
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• Both approaches exhibit short time dependency (decorrelation) (compare
(4.37) and (4.40)).

• The wavelet coefficients reflect self-similarity and LRD property (compare
equation (4.35)).

These properties are originated on the one hand in the invariance of scales
of the processes (given by the self-similarity) and on the other hand in the
multiscale analysis of the wavelet, which seems to be almost created for the IP
traffic modeling. This implies that the mother wavelet has to possess at least
0 vanishing moments, and all wavelet can be deduced from it via translation
and scaling. This fits exactly into the definition of H-sssi processes. This
method can be transferred to other processes without characteristic on certain
scales, e.g. 1

f -noise (see [81]), multifractal processes (like binomial cascades)
or multiplicative cascades (see for a more detailed overview [5]).
If we want to estimate the parameters of sample data, we encounter two
problems: First we have to identify the basic pattern, i.e. if we face SRD
or LRD. Afterwards we have to proceed to the quantitative estimation of
the necessary parameter. We want to treat long-range dependence here and
exemplarily consider five discrete models.

Logarithmic Scale Diagram

As already stated in our short introduction to wavelets (see section 3.8.2),
we know that the values of j represent the frequencies of the signal under
consideration. The lesser the value of j, the shorter the wavelength, i.e. the
higher frequent the signal is. We take advantage of this fact of localization
with the estimation of LRD. As we already detect with relation (4.36), the
logarithmic representation of the second moment of the wavelet frequencies
E(Dj,·) reveals a possible estimation of the Hurst parameter. In detail we
calculate for each scale j ∈ Z the value of

sj = log2

(
E(D2

j,·)
)

(4.41)

and draw it over j. The slope of the shifted straight line represents the value
of 2H + 1. This method is referred to as exact logarithmic scale diagram. We
have to consider the precondition that the underlying process is H-sssi.
Representations for different wavelets with different vanishing moments N =
1, N = 3 or N = 6 naturally lead to changing figures, since the constants
in (4.37) depend on the choice of the wavelet. Simultaneously we will see a
straight line up to the small values of j. Already a few estimated values of H
reveal a strong similarity in the slope and indicate the result on convergence
(3.20). The LRD property of the applied fractional white noise is reproduced
clearly by the asymptotic for large time scales (i.e. large j, hence, lower fre-
quencies). Additionally, we realize that with increasing j and N the impact
of the wavelet diminishes – a characteristic of the logarithmic scale diagram.
With the computation of (4.41) we also introduce an error: it is not possible to
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compute the second moment exactly. Thus, we have to consider a confidence
interval. In addition, generating the wavelet, using the multiscale analysis has
an impact on the width of the confidence interval: with increasing j the tree
algorithm of the multiscale analysis of the existing coefficients is halved, which
leads to an enlargement of the confidence interval.

Estimation with Logarithmic Scale Diagram

How can we compute the sj with (4.41)? For this, we consider the unbiased
estimator of the variance

σ̂j =
1
nj

nj∑

k=1

|Dj,k|2

whereas nj is the number of the existing wavelet coefficients for the scale j
(see the section 4.1.1 for the estimator of the variance). The logarithm, i.e. the
value log2(σ̂j), is an estimator of sj . But because of E(log2(·)) �= log2(E(·)),
it is biased. Thus, we introduce a correction factor rj

Dj = log2(σ̂j) − rj

We denote by σ2
j the variance of Dj,·, and we compute the confidence interval

using the Gaussian approximation of Dj,·. We consider the interval [j1, j2],
where we observe the LRD behavior via on a straight line. The value j1 is
denoted as lower or small scale or high frequency and correspondingly the
index j2 higher scale or lower frequency. As done by most graphical solutions to
estimate the Hurst parameter, we find the interval in the region of the straight
line of the diagram. Determining the exponent, we can use the weighted linear
regression over the spots Dj . More precisely, we define S =

∑j2
j=j1

1
σ2

j
, S1 =

∑j2
j=j1

j
σ2

j
and S2 =

∑j2
j=j1

j2

σ2
j
. With this, the estimator γ̂ for γ reads as

γ̂ =

j2∑

j=j1

Dj (jS−S1)
σ2

j

SS2 − S2
1

=
j2∑

j=j1

wjDj

The estimator is unbiased, provided the scale diagram indicates the interval
[j1, j2]. The coefficients wj for j = j1, . . . , j2 are defined resp. fixed by the
middle part of the expression. Several questions concerning the computation of
the correction term rj and the variance σ2

j remain, because we cannot exactly
determine these expressions. Nevertheless, we have some approximations at
hand, as the following equations express

rj =
Γ ′ (nj

2

)

Γ
(nj

2

)
log 2

− log2

(nj
2

)
∼ −1

nj log 2
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σ2
j =

ζ
(
2, nj

2

)

(log 2)2
∼ 2

nj(log 2)2

whereas Γ is the gamma function, Γ ′ its derivative and ζ(2, z) =
∑∞
k=0

1
(z+k)2

the generalized Riemannian zeta function. These approximations hold in par-
ticular, if the wavelet coefficients Dj,k are Gaussian.
Under the ideal condition of independence and for large nj , we deduce

Var(γ̂) =
j2∑

j=j1

σ2
jw

2
j ∼

1
n

1 − 2−j

F
(4.42)

with F = F (j1, J) = (log 2)221−j1(1−(J
2

2 +2)2−J+2−2J ) and J = j2−j1+1.
The above method can be applied independently of the considered situation
(LRD, H-sssi etc.). We only have to demand that the wavelet possesses suffi-
cient vanishing moments to guarantee the decorrelation. The first important
item in question is the scaling interval [j1, j2]. Having stated that we have a
H-ss model, we can choose j1 = 1 and j2 as large as possible. In other situa-
tions this will get more complex. We will turn to the adequate determination
of j1 in the next section.

Estimation of Long-Range Dependence

We already stated above that long-range dependence is defined asymptotically.
As already seen for the estimation of heavy-tail distributions, we encounter
several problems: we cannot detect the suitable frequency (for the spectral
density) resp. the scaling, where the long-range dependence starts. Similar to
section 4.1.3, we have to impose an extra condition to determine the frequency
resp. the scaling. We obtain this with the estimation quality. For each index j1
we apply the method of least squares and hence, obtain the optimal j1 = jkQS1 .
Thus, we define

kQS(γ̂) = (E(γ − γ̂))2 = ((γ − E(γ̂))2 − Var(γ̂) (4.43)

whereas Var(γ̂) is computed according to (4.42). The value j2 will be chosen
very high, e.g. in practice as described in (4.44) below. If more values of
jkQS1 are found, then we choose naturally the smallest one to define a largest
possible region. In small scales the bias decreases, but because of the low
number of sample data, we get a variance of the estimator. With growing n
the number jkQS1 increases, since the Dj decreases. The bias remains constant
at j, since it depends on the correct long-range dependence. Thus, j1(n)kQS

is a non-decreasing function in n. We may consider jkQS1 as transition point
between SRD and LRD. But the point jkQS1 depends on the applied method
– here the wavelet based estimator, which is not an absolute value.
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Analysis of Discrete Data

It is important to keep in mind that the (discrete) wavelet transform is de-
fined for continuous processes and not for FARIMA time series. However, the
measurement of sample data always leads to time discrete series. Otherwise,
FARIMA time series are an important approach for IP traffic modeling.
The continuity of the wavelet transform is required for equation (4.31) and
cannot be build for discrete processes. In addition, the approach D0,k = Xk is
arbitrary and without authorization. We briefly treat an alternative approach,
which is promising for the determination of γ. It was developed by Veitch,
Taqqu und Abry [259].
We start with a stationary discrete process (Xk) and spectral density gx.
The decisive region is found for frequencies in the interval ] − 1

2 ,
1
2 ]. Hence,

we will choose a continuous process (X̃t) with identical spectral density in
the interval ] − 1

2 ,
1
2 ]. We now apply the discrete wavelet transform to the

continuous process (X̃t). For application of the multiscale analysis we can
combine the transition from X to X̃ together with the subsequent multiscale
analysis in one step. We remember the discrete convolution and determine

DX̃0,k = (X � I)(k)

whereas I represents a discrete filter

I(m) =
∫ ∞

−∞
sin (π(t + m))

ϕ0(t)
π(t + m)

dt

The filter depends on the used wavelet only. An infinite support of I can be
bounded, too. With this filter we can prevent errors on the first two octaves
and thus, the values of Dj are valid on all scales.

Examples for Estimation of Short-Range and Long-Range
Dependence

We now explain the method developed by Abry et al. by means of the sample
data given in [4]. We start with three scenarios:

a) Exact data, i.e. theoretical data: here, the FGN and Gaussian FARIMA
time series are used. All scenarios as SRD, LRD and combined SRD/LRD
are covered.

b) Empirical data, modeled by FGN resp. Gaussian FARIMA time series.
c) Empirical data, modeled by arbitrary increments (with and without exist-

ing variance).

In the scenario a) we know the exact process and are aware of all numerical
values. Thus, we can compute exactly and obtain an estimator for Var(γ̂)
explicitly from equation (4.38) as variance of the wavelet coefficient. Here, fX
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is the spectral density of the H-sssi process and ϕ̂ is the Fourier transform of
the mother wavelet. We obtain the value jkQS from 2 or 3 for the FGN and
jkQS for the FARIMA series between 1 and 5 (1 and 2 for the homogeneous
FARMA[0, d, 0]-series, mostly defined 5 otherwise).
The scenarios b) and c) were considered by simulations of 50 realization. Here,
the exact values are not known, and we have to estimate each time the time
series of length n = 10, 000. As remarked above, we can choose j2 as large as
possible. Indeed, we use the fact

j2 = [log2 n− const] (4.44)

Here, [·] is the entire function (the largest integer less than or equal to) and
const = log2(2N+1), whereas N reflects the vanishing moments of the mother
wavelet. By this large number we prevent that the limiting effects of the
estimation falsifies the variance. As example we note n = 10, 000, N = 4 and
hence, j2 = 14.
We repeat briefly the models of the FARIMA time series. For this we ap-
ply the wavelet method on a FARIMA[p, d, q] time series and start with a
FARIMA[0, d, 0] series, which is given in the form Xt = ∆−dεt, t ≥ 1, with
εt iid Gaussian distributed increments with mean 0 and variance σ2. We re-
mind of the exact analysis in section 3.3.3 and note the backward operator
Bεt = εt−1 and bt(−d) = Γ (t+d)

Γ (d)Γ (t+1) , t = 1, 2, . . . with Γ the gamma function.
Then, we can write ∆ in the form

∆−dεt =
∞∑

i=0

bi(−d)Bi(εt)

The FARIMA series is LRD, if 0 < d < 1
2 and

γ = 2d

If we now consider a FARIMA[1, d, 1] series, then we have an equation

Xt − Φ1Xt−1 = ∆−dεt − θ1∆
−dεt−1

whereas Φ1 and θ1 represent the autoregressive and moving average coeffi-
cients. We obtain with the Fourier transform

fX(λ) = σ2|1 − e−2iλ|−2d |1 − θ1e
−2iλ|2

|1 − Φ1e−2iλ|2 , −1
2
< λ <

1
2

We discuss this by means of an example of a FARIMA process with significant
SRD phenomena. We start with a FARIMA[1, d, 1] series defined for H =
d + 1

2 = 0.7, φ1 = 0.3 and ψ1 = 0.7. Using the logarithmic scale diagram, we
obtain a slope of γ = 0.4 over the first four octaves of the wavelet scales. It is
again n = 10, 000, N = 3 and jkQS1 = 5 (with the estimated values, described
in (4.41) until (4.43)).
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The values for j1 vary in the computations from 1 to 5 and separate clearly the
regions of SRD and LRD. Comparing the scale regions, i.e. the value jkQS1 , we
realize that the first both scenarios are almost identical. Only for two exact
values of FARIMA[1, d, 1] series with H = 0.7 we obtain the estimated value
jkQS1 = 6, whereas we expected as exact value jkQS1 = 5.
After all, the results show that the wavelet analysis with semiparametric ap-
proach gains comparable good results. The Whittle estimator assumes a spec-
tral density of the form f(λ) ∼ C|λ|−γ for 0 < λ < 2πm

n (n is the number
of the observed values, m a suitable parameter). The value m

n describes the
results for high frequencies and corresponds with the scale 2−j1 in the case of
the wavelet analysis (see section 4.2.6).
Simultaneously, we can extend the FARIMA time series to non-Gaussian in-
crements. Here, on the one hand side, increments with variance (exponential
and lognormal) are used and on the other hand, increments with non-existing
variance (Pareto distribution and sαs distribution [α = 1.2 and α = 1.5]). We
emphasized that with these particular distributions the resulting time series
not necessarily have marginal distributions (only increments εj). Even if the
variance does not exist (as for the Pareto distribution or in general for α-stable
distribution with α < 2), the wavelet analysis reveals very good results. But
the variance of the estimator γ̂ increases relatively fast, whereas the Bias stays
very low.
Further results and detailed analysis are beyond the scope of this book. We
refer to the original papers [4, 247, 119] and the indicated literature therein.

Quality of Estimation

Using the wavelet analysis for Gaussian processes we obtain almost as good
results as with the Whittle estimator. The wavelet estimator reveals weak
results for non-Gaussian FARIMA series, even less significant.
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Fig. 4.18. Wavelet estimator of FGN, Gaussian FARIMA series and FARIMA
series with 1.5-stable generator (from left to right) with respective Hurst parameter
H = 0.5, 0.6, 0.7, 0.8, 0.9, 0.96
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4.2.8 Quadratic Variation

Before we conclude our results, we encounter again a semiparametric estima-
tor. This method is based on the wavelet estimator for time continuous pro-
cesses. Here, the process is discretised, i.e. we consider a time series. Therefore,
we select discrete values X1, . . . , XN of the stationary (load-) process (Xt) und
define the approximating wavelet coefficients

DXnj ,k =
1

√
nj

N∑

i=1

Xiϕ

(
i

nj
− k

)

We ‘discretise’ the integral of the wavelet coefficients with a ordinary Riemann
sum. The wavelet possesses not necessarily vanishing moments on the grid
i
nj

−k. With this, the series (DXnj ,k
)k∈N is not necessarily SRD. However, this

is the case, if the number N of the selected points and with this also nj tend
towards ∞.
As with our descriptions of different approaches in sections 4.2.1 to 4.2.4,
we may examine compounded traffic as well here. For this, we build Zn =∑N
i=1 Xi and alternatively define the coefficients according to

DXnj ,k =
lj∑

i=1

di,jZnj(k+i)

whereas (Di,j)i=1,...,nj
, nj ∈ N represents a discrete filter with M vanishing

moments (
∑nj

i=1 i
mdi,j = 0, for all m = 0, 1, . . . ,M − 1 and

∑nj

i=1 i
Mdi,j �=

0). With this, we achieve that the discretization of the integration of the
wavelet transform exhibits similar properties as the time continuous wavelet
transform. Indeed the DXnj ,k

are SRD if M ≥ 2. We substitute the coefficients
DXnj ,k

for DXnj ,k
and apply again the same estimation procedure as with the

wavelet method. The generalised quadratic variation of the discretised process
(Xk) is

SN,nj
=

1
N

N∑

k=1

(
DXnj ,k

)2

This method can be applied to processes with stationary increments like FBM
or general α-stable processes.
Only few results exist about the goodness of convergence and the asymptotic
of the quadratic variation. In the original article by [26] several approaches
with different results are discussed. Compared to the wavelet method one ap-
proach achieves the same goodness of convergence. Another approach achieves
a goodness of

√
N (see [24]). The complexity is of the order of n, i.e. O(n).

More details can be found in the original articles by Bardet [24] as well as in
Stoev, Papiras and Taqqu [235].
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4.2.9 Remarks on Estimators

We concluded each section of our introduction into selected estimators with
some remarks on their quality. We close this chapter with comments on their
behavior in particular with regard to different time series.
In principle, we have to distinguish between two basic scenarios for an evalu-
ation of the estimators:

a) pure FGN processes and FARIMA[0, d, 0] time series,
b) Gaussian FARIMA[p, d, q] time series and FARIMA time series with incre-

ments of infinite variance.

Generally, all methods estimate the value of d and not H (apart from the
absolute value estimator and the variance of residuals). All estimators behave
well in case of a). In case of b) we have to distinguish four more cases:

• Gaussian FARIMA[p, d, q] series: The results essentially depend on the
AR part p or the MA part q, respectively. If both parameters are negative,
then the estimators are unbiased, and we obtain similar results to case
a). If both parameters are positive, then the estimators are not unbiased
anymore. The Whittle estimator is an exception of this rule: it is unbiased
for p = q = 1 and the locale Whittle estimator delivers the best result.

• If the increments are exponentially or lognormal distributed, then nearly
all estimators are unbiased. However, two exceptions exist: the absolute
value method (for large values of d) and the variance of residuals behave
extremely biased for lognormal distributions.

• Considering large areas of symmetric α-stable increments (i.e. increments
of infinite variance) all estimators are unbiased for FARIMA[0, d, 0] se-
ries apart from the absolute value method. However, the infinite variance
causes smaller confidence intervals. In case of FARIMA[1, d, 1] time series
all estimators behave similar to the Gaussian case apart from the absolute
value method again.

• Estimations of Pareto distributions and non-symmetric α-stable incre-
ments show similar behavior as symmetric α-stable distributions, except
for the rather biased estimator of the variance of residuals.

In summary the log periodogram and the local Whittle estimator yield to
the best results of all considered estimators in this chapter. The wavelet ap-
proaches – the time continuous as well as the discretized quadratic variant
– are fast and easy to implement and show good performance, especially for
Gaussian processes. Wavelet estimators are also suitable for non-Gaussian
processes but with increasing variance. The worst results with regard to vari-
ability encounter were achieved with the local periodogram.
Situations remain difficult, if it is not possible to identify the structure of the
sample data in advance. Distortions of the long-range behavior might lead to
different results for all estimators.

Remark 4.36. We give some closer comments on this:
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• If the data is distorted with FGN the Whittle estimator and the peri-
odogram lead to best results.

• There is no estimator that is universally suited for all scenarios, e.g. the
Whittle estimator leads to poor results for non-LRD data.

• Diverging estimations may occur for LRD. However, the LRD phenom-
ena may exist, even if the estimators differ as long as the result of the
estimators is 1

2 < H < 1.
• If there is no sufficient estimation of the Hurst exponent H, then the

existence of LRD behavior is unlikely.
• Separation of the sample data is recommended. Thus, multifractals and

the respective wavelet analysis appear to be adequate.
• Simultaneous estimation with different methods is highly recommended.

The Whittle estimators (common, local as well as compounded) lead to
good results for the Hurst parameter. However, the Whittle estimator leads
to poor results in case of distortions with non-LRD periodic processes.

• The existence of LRD is unlikely, if different estimators do not lead to
stable Hurst exponents H ∈]12 , 1[ (e.g. with small confidence intervals).

In practice it is important to know, if some rules of thumb exist. Karagiannis,
Faloutsos and Riedi already pointed out in [132] that for consequent studies
the determination of a Hurst exponent is futile without stating the respective
method in use. Furthermore, the confidence interval and the coefficient of cor-
relation have to be specified precisely as an essential information about the
quality of the estimator. Additionally, the estimation should consider differ-
ent methods, because some approaches tend to rather optimistic results (e.g.
Whittle estimator, Periodogram).
To estimate the dimensioning and performance of a network, the determina-
tion of the Hurst exponent constitutes a first and effective step. This estima-
tion is crucial and thus, has to be robust to implement the adequate models
as described in the next chapter. Only with carefully constructed models, the
dimensioning of networks is carried out efficiently, such that weaknesses can
be identified and adjusted in advance. However, the application on complex
networks is beyond the scope of this monograph.

Remarks on Estimators in the Literature

A broad variety of literature exist about estimators of the grade α for heavy-
tail distributions as well as of the Hurst exponent in the approach of LRD
property. We already cited this literature in the respective sections above.
Apart from that many authors carry out in-depth examination of observed
data such as network traffic, e.g. [151]. The approach to estimate the exponent
of heavy-tail distributions is originated from the work of Crovella and Taqqu
[60]. In their work a series of example measurements is presented together with
a reference implementation. At present the Whittle estimator belongs to the
well established methods and thus, is described in many monographs, e.g. the
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already cited monograph [77] provides a well compiled number of papers and
reports. The estimation of FARIMA series is described in an overview given
by [247] particularly with regard to different qualities of the respective esti-
mators and the application of standard methods to non-Gaussian increments.
The articles [151] and [132] describe scenarios, where different estimators lead
to varying results under miscellaneous assumptions. With this work a funda-
mental hint is given that not merely a single method exists for all situations,
but rather selected estimators have to be applied to each data stream.

Further Literature

There are a lot of articles dealing with the existing data material and its treat-
ment, like in [151]. A good description of the maximum likelihood estimator
is given in [14]. Further literature for the Hurst exponent can be found in
[36, 66, 70, 99, 184]. The estimation methods for the heavy-tailed distribu-
tions are due to Crovella and Taqqu [60]. In the monograph [77] the reader
finds more literature on the topic of estimation of self-similar processes. The
estimation concerning FARIMA time series well exposed in [247]. The articles
[151, 132] describe very well the situation, where different the estimators lead
to different results. General topics of estimation theory can be found e.g. in
[76, 209].



5

Performance of IP: Waiting Queues
and Optimization

Like as the waves make towards the pebbled shore,
So do our minutes hasten to their end,
Each changing place with that which goes before,
In sequent toil all forwards do content.

William Shakespeare (16th century)

In this chapter we will deal with the problem of determine waiting queues
in various models as well as some aspects of optimization. It is obvious that
we cannot cover the full range of approaches, offered by the research com-
munity. In this respect, we will provide suitable literature for the interested
reader. Our optimization approaches will be twofold: first on the basis of net-
work flows, given by the formulas of fractional Brownian motion (and here in
particular of the Norros model as introduced in the section 3.3.4), second op-
timization techniques, once by applying the Lyapunov function (and here for
deterministic traffic description) as well as an optimal control approach using
stochastic optimization, which is initiated in economics. Hence, at the end of
this chapter we will enter the optimization not purely from the network view,
but as optimization from the equilibrium point of view given by the offer of
the network provider and the user as consumer.

5.1 Queueing of IP Traffic for Perturbation
with Long-Range Dependence Processes

In this section we will return to the models of IP-based traffic, introduced in
chapter 3. In particular we considered the perturbation of deterministic traffic,
using FBM, multiscale FBM, multifractal FBM and fractional Lévy processes.
These processes allow a fairly easy marginal distribution, though, as we will
see, for the queueing distribution we will find only lower bounds. This fact
reveals that we cannot expect exponential asymptotics, as seen in the short-
range dependence situation in case of M/M/n models. These derived formulas,
mainly from the original literature and mostly inspired by the approach of
Norros, will be a starting point for the network optimization, shortly dealt
with in section 5.3.2.
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5.1.1 Waiting Queues for Models with Fractional Brownian
Motion

In the sections 2.7.3, 2.7.5 and 2.8.2 we investigated waiting time distributions
for the systems M/G/1, GI/M/n and G/G/1 and by examples indicated the
impact of a heavy-tail distribution on the waiting time distribution. We look
now at an alternative storage model, which is especially suitable for the traffic
modeling in a LAN, using the Norros approach as starting point. In the later
sections 5.1.3 and 5.1.4 this model will be transferred to the general case of
Lévy processes and multifractal Brownian motion.
We recall the accumulated traffic up to time t

At = mt +
√
amB

(H)
t , t ∈ ] −∞,∞[

and define the storage process with respect to the fractional Brownian motion
by

Xt = sup
s≤t

(At −As − C(t− s)), t ∈ ] −∞,∞[, C > m (5.1)

Here, At represents the load process with parameters m, a and H ∈ ]12 , 1].
With C > m we denote the capacity of the network, i.e. the rate of the
outgoing data flow. We can interpret the expression (5.1), so that one has to
subtract from the ‘new’ load At−As the outgoing data amount C(t−s). After-
wards the supremum (or maximum) over the differences up to time t is taken.
The process (Xt) is stationary, since (At) is stationary, and by the theorem
of Birkhoff [98, prop. 9.3.9] the supremum is finite almost everywhere. Later,
we partly generalize the queueing in a slightly more complicated scenario of a
network. Though (At) can assume negative values, the supremum will make
(Xt) always positive. In addition, one can prove that for all t ∈ ] −∞,∞[

lim
s→−∞

(At −As − C(t− s)) = −∞ a.s.

We want to determine the probability that Xt lies over a fixed threshold x.
This gives

ε = P(Xt > x) (5.2)

We can consider x as buffer capacity. The value P(Xt > x) expresses the
probability that the load process jumps over the capacity x. We want to
indicate by ε a limit or quantile for the expression ε = P(Xt > x), which
can be regarded as upper limit for the overflow probability. Then, we will
compute by t = t0 the time, when the overflow probability exceeds the value
ε at first. This value ε will be mainly determined by the requests of the QoS.
Next we will compute the time t0, where the relationship ε = P(Xt > x) holds
first. The self-similarity of the fractional Brownian motion (Zt) allows a better
representation of the expression (5.2).

Theorem 5.1. With the definition (5.2) we get
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f−1(ε) = (C −m)(ma)−
1

2H x
1−H

H (5.3)

where the function f is defined according to

f(z) = P

(
{ω ∈ Ω; sup

t≥0
(Zt(ω) − zt) > 1}

)

and depends only on H, but not on m, a, C, and x.

A short outline of the proof can be found in section 5.3.2. The right side of
(5.3) will turn for H = 1

2 , i.e. the Brownian motion, to

1 − ρ

ρa
= const, ρ =

m

C
(5.4)

This fact can be seen briefly as follows. Assume ε > 0 and let the buffer
capacity x be given. Then f−1(ε) = const and it follows by (5.3)

const = (C −m)(ma)−1x =
(
m

ρ
−m

)
1
ma

x =
1 − ρ

ρa
x

Since x is constant as well, (5.4) follows. We can consider 1−ρ as free capacity,
and halving the capacity means a doubling of the buffer capacity (to get ‘const’
back). The value ρ = m

C is the average load in the traffic model of Norros.
It is equivalent to the notion of ρ = λ

µ defined for classical queueing models
like M/M/n. As in section 2.4 we stress ρ ≤ 1 to keep the system stable. The
value 1 − ρ = C−m

C can be considered as the (relative) free capacity of the
system.
The case is different for H > 1

2 . We solve first (5.3) for x and get

x =
(
f−1(ε)

) H
1−H · a

1
2(1−H) · C

2H−1
2(H−1) · ρ

1
2(1−H)

(1 − ρ)
H

1−H

Here, we see that, if H is close to 1, a bisection of (1−ρ) requests much more
storage capacity. This fact is supported by the observed behavior that in the
packet switched traffic the flow cannot be increased by arbitrary enlarging the
buffer. Finally we can express (5.3) for dimensioning the bandwidth

C = m + f−1(ε) · a 1
2H · x− 1−H

H ·m 1
2H (5.5)

We can also derive by (5.5) that for H > 1
2 the link capacity C grows more

slowly than linear in m. Hence, a multiplex gain is achieved by bundling links
of higher capacity. In figure 5.5 on page 388 we depict (5.5) for different H.
The value f−1(y) is model-depending, i.e. only the QoS parameter ε and the
nature of the FBM is entering. In the figures 5.1 and 5.6 we depict two key
values, responsible for the behavior of the required buffer capacity (depending
on the QoS value ε) and the service rate. With figure 5.1 it is obvious that
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already a small long-range dependence changes the behavior significantly. Ad-
ditionally, for high values of H we see an immediate increase near ρ = 1.0.
In figure 5.6 the dependence of the free capacity for the service rate C shows
that the service rate reacts for the standard Brownian motion only marginal
compared to the FBM, provided the relative free capacity declines.
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The figures 5.2 to 5.4 give under the certain selection of the Hurst parameter
H the buffer requirement x for matching the given QoS rate ε. The buffer
requirement depends on the given capacity C and the traffic load ρ. The
average traffic amount m is incorporated and the parameter a is set to 2.8.
The values on the vertical axes are scale free, but should indicate the relative
value compared for the different Hurst parameter and respective capacity C
and traffic load ρ.
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As expected, x is higher for increasing H. In the right diagram of figure 5.2 x
reaches the lowest value for H = 0.7, C = 80 and ρ = 0.82 and surpasses the
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other two manifolds at C = 70. This reflects the fact that lowering the service
rate with an simultaneous increase of the traffic load reacts more sensitive for
higher long-range dependent traffic.
The left diagram of figure 5.3 indicates that for high traffic load and low values
of C the buffer requirement increases rapidly for higher values of H. The right
figure shows that higher long-range dependence reacts highly sensitive at lower
values of C, but decreases more significantly for higher C.
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In figure 5.4, both diagrams reflect again that the more long-range dependent
traffic is higher for low values of C and high traffic load ρ.

14

19

24

0.64
0.65

0.66
0.67

0.68

0

5

10

15

20

ρ
C

0.9

14

15

16

0.630
0.635

0.640
0.645

0.650

0

6

10

ρ
C

8

2

4

0.95
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On the other hand, assuming an average traffic flow of m and a given buffer
threshold x, we can compute the necessary service rate (or bandwidth) C,
depending on the given queueing or QoS probability ε. For this we can use the
equation (5.5) and depict the situation for different traffic situations, expressed
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by the Hurst exponents H ranging from 0.5 to 0.95 in figure 5.5. In the lower
right diagram we selected small ranges for x and m to demonstrate that for
very low values of buffer capacity x the service rate increases very slow for
higher values of long-range dependence.
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Fig. 5.5. The service rate C in dependence of the mean traffic rate m and the buffer
requirement x according to equation (5.5) for Hurst parameter H = 0.6, 0.7, 0.8,
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An alternative representation of the system capacity C is given by

C(ρ) = const · ρ 1
2H−1 · (1 − ρ)−

2H
2H−1 (5.6)

Equation (5.6) indicates the service rate or capacity in the network in de-
pendence of the traffic load ρ. The crucial factor is ρ

1
2H−1 · (1 − ρ)−

2H
2H−1 ,

which depends on the Hurst exponent H and the traffic load ρ. The necessary
capacity C(ρ) depending on the traffic load is increasing more than linear,
if the traffic load grows. This increase is higher for larger values of H, ex-
pressing the fact that higher values of the Hurst exponent means a deeper
long-range dependence – the network has to build up reserve capacity for this
dependence.
As seen in the left diagram of figure 5.6, the capacity increases slowlier with
higher H, but then close to 1.0 rapidly. The exception is the Brownian motion
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case H = 0.5. The right diagram of figure 5.6 is an equivalent representation,
revealing the dependence of the relative free capacity 1− ρ. It shows that the
expected decay for the capacity or service rate is larger and particularly strong
if the Hurst parameter is high. This indicates that the lack of free capacity
(low values) is much more crucial, provided the long-range dependence is more
significant. Again more free capacity has to be stored for this dependence
and thus, for occurring higher traffic load, resulting from the higher LRD
phenomena. We see with equation (5.6) that for a high Hurst exponent H =
0.95, halving the free capacity for low values of ρ (0.8 to 0.4) requires already
more than six times as much service rate.

0

 500

 1000

 1500

 2000

 0.6  0.7  0.8  0.9 1.0

 0.55

 0.95  0.9  0.8  0.7

 0.5

 0.6

ρ
0

 500

 1000

 1500

 2000

 2500

 3000

0.0  0.1  0.2  0.3  0.4  0.5

 0.55

 0.95 0.9 0.8 0.7

 0.6

ρ

Fig. 5.6. Dependence of the service rate or capacity C on the relative traffic amount
ρ = m

C
(left) and the relative free capacity 1 − ρ = C−m

C
(right) for different Hurst

exponents H

Of course, we are interested for important key values like computing the ‘wait-
ing probability’. But this raises the problem (it already appeared in the general
case of M/G/n systems) that an explicit representation is not possible. Here
we encounter the problem that the marginal distribution of (Xt) cannot be
explicitly expressed. But according to Norros there exists a lower bound [190].

Theorem 5.2. Let (Xt) be a storage process as defined in (5.1) with param-
eter m, a, H, and C > m. Then we have

P(Xt > x) ≥ Φc
(
tH(C −m)Hx1−H

ϕ(H)
√
am

)
(5.7)

where ϕ(H) = HH(1−H)1−H , and Φc is the complementary standard Gaus-
sian distribution function N (0, 1).

We obtain (5.7) from the estimation

P (Xt > x) = P

(
sup
s≤t

(At −As − C(t− s)) > x

)

≥ max
t≥0

(At > t + x) = max
t≥0

Φc
(

(1 −m)t + x

tH
√
am

)
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where the maximum is attained at t0 = Hx
(1−H)(C−m) . Inserting t0, it follows

(5.7), and thus, the right side is independent of t. Now, we deduce the simple
approximation

Φc(z) ≈ 1√
2πz

exp
(
−z2

2

)
∼ exp

(
−z2

2

)

for large z. Hence, we get by inserting into (5.7)

P(Xt > x) ∼ exp
(
− (C −m)2H

2ϕ(H)2am
x2−2H

)
(5.8)

for large values of x. In the figures 5.7 we indicated three scenarios for the
complementary waiting time distribution with values C = 480 MBit, m =
22 MBit/s and a = 2.8 MBit/s. The first scenario reflects pure Markovian
traffic with H = 0.5, the other scenarios illustrate LRD traffic for H = 0.6
and H = 0.7. Though, if the probability in the LRD cases lies already for small
x above the Markovian case (H = 0.5), there exists an intersection point for
relatively small values, before 10% of the overflow probability.
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In the best case scenario the waiting probability for the storage is Weibullian

P(Xt > x) ∼ exp
(
−κxβ

)

with β ≤ 1 (β < 1, if H > 1
2 ), since in (5.7) we have ‘≥’. In particular, we

see that the Hurst exponent H has a decisive impact on the waiting time
distribution. How does this look like in the case of the Brownian motion
(H = 1

2 )? Then the load process (At) is Markovian, and we have (a = 1)

P(Xt > x) ∼ exp
(
−2

C(1 −m)
m

x

)
(5.9)
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which reveals the well-known asymptotic waiting time distribution of M/M/1
models. Solving (5.8) for C, we get a useful relationship for the capacity of C

C = m +
(
ϕ(H)

√
−2 log ε

) 1
H · a 1

2H · x− 1−H
H ·m 1

2H

where as above P(Xt > x) = ε is a threshold for the waiting probability.
The interesting case H > 1

2 leads to a Weibullian distribution exp(−κx2−2H).
But this distribution is not very suitable for application. Though it has an
expected value, it lacks of a moment generating function. Since it is a subex-
ponential distribution, its Laplace transform shows a singularity in a neigh-
bourhood of 0 (2.33). But this is again evidence of the long-range dependence
of the IP traffic and indicates that it does not perform short-range dependence
like in the classical M/M/n traffic.

Example 5.3. We want to illustrate the above results by an example according
to Norros. The packet switched traffic enters a router from a variety of sources,
where n links exit the router with the same capacity. All links are modeled
independently by the same load process At with the same parameter a, m,
C. They all use the same buffer. Here, the Xi

t for i = 1, . . . , n represents the
storage of the aggregated IP packets or bursts at time t. In section 1.2.1 we
indicated the problems for the suitable selection. The aggregated data amount
is given by Xt =

∑n
i=1 X

i
t . For estimating a threshold K of the buffer capacity,

we can consider the value

P
(
Xi
t > xi, i = 1, . . . , n

)
=

n∏

i=1

P
(
Xi
t > xi

)

with the
∑n
i=1 xi = K. In the case of short-range dependence (i.e. Markovian

with H = 1
2 ) we get

P
(
Xi
t > xi, i = 1, . . . , n

)
=

n∏

i=1

P
(
Xi
t > xi

)

= exp

(

−γ

n∑

i=1

xi

)

= exp (−γK)

using our equation (5.9). This holds for all ‘single thresholds’ xi with
∑n
i=1 xi

thus on the simplex S = {(x1, . . . , xn);
∑n
i=1 xi = K}. With this, the re-

sponsibility of an overflow is uniform distributed on the simplex. In the case
H > 1

2 we have

P
(
Xi
t > xi, i = 1, . . . , n

)
= exp

(

−γ
n∑

i=1

x2−2H
i

)

≤ exp
(
−γK2−2H

)

Hence, the inequality turns into an equality (and thus to a maximum) in
the corners of the simplex S. That means, where for an i = 1, . . . , n we get
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xi = K. For increasing H the probability grows, so that for a xi the capacity
threshold is already overflown. But for a large number of links n this results
is no longer true. Then the single corners xi are no longer of importance.

Later in this chapter (see e.g. the sections 5.3.2 and 5.3.3) we will optimize a
simple network with different input parameters.

5.1.2 Queueing in Multiscaling FBM

In section 3.5.1 we introduced the multiscale FBM to incorporate the traffic
behavior on different scales. We consider the standard topics for the traffic
performance. As we proceed for the standard FBM according to the Norros
model, we compute the waiting queue length. For this we define analogously
the aggregated traffic

Aη(t) = mt +
√
mXη(t)

where m represents the average arrival rate and
√
mXη(t) the fluctuation

around the mean, where (Xη(t)) is the multiscaling FBM. With the lower
bound estimation (see (3.60)) and the fact that Aη(t) has the mean mt and
the variance mVar(t), we receive

P (Q > x) ≥ sup
t≥0

Φc

(
x + Ct−mt
√
mVar(t)

)

(5.10)

where Φc is the complementary distribution function of the standard Gaussian.
To obtain an upper estimation, i.e. to assume the worst case, we have to
maximize the right side in (5.10) over t. This is difficult in the general case
of a Mk-FBM. Thus, we will restrict ourself to only two different scalings, i.e.
the case K = 1. For this we use the approximation

Var (Xη(δ)) ≈
{
δ2H1 a1

C(H1)2
for 0 ≤ δ < 1

ω1

δ2H0 a0
C(H0)2

for 1
ω1

≤ δ < ∞
(5.11)

where (a1,H1) represents the small scaling, while (a0,H0) the large time in-
tervals (note that 0 = ω0 < ω1 and thus, 1

ω1
≤ 1

ω0
= ∞). The value 1

ω1
indicates the step between the small and the large scaling. With (5.11) we
can maximize (5.10) and receive

t = t∗ =

{
H1

1−H1

x
C−m for x < xc

H0
1−H0

x
C−m for x ≥ xc

and hence, the distribution of the waiting queue turns into

P (Q > x) ∼
{

exp
(
−κ(a1,H1)x2−2H1

)
for x < xc

exp
(
−κ(a0,H0)x2−2H0

)
for x ≥ xc
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where

κ(a,H) =
(C −m)2H

2am(1 −H)2−2HH2H

and

xc =
(C −m)(1 −H1)

H1

· exp

⎛

⎝
H0 log

(
H1
H0

)
+ (H0 − 1) log

(
H1−1
H0−1

)
+ 1

2 log
(
a1
a0

)

H0 −H1

⎞

⎠

In the figure 5.8 we present the tail probability for the situation a0 =
0.3 MBit/s, a1 = 0.07 MBit/s, H0 = 0.89, H1 = 0.62, m = 75 MBit/s,
C1 = 90 MBit/s and C2 = 100 MBit/s (see [95]). The critical scale is reached
at xc1 = 0.1138 for C1 and at xc2 = 0.18974 for C2. In both cases the tail
probability resp. the QoS scale falls abrupt at that point. However, we realize
that a relatively small increase from C1 to C2 causes a significant change of
the behavior.
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Fig. 5.8. Tail probability P(Q > x) for C1 = 90 Mbit/s (upper left and right),
C2 = 100 Mbit/s (lower left and right) and different scales on x- and y-axis

The result can be extended to N independent two-scale FBM processes.
Suppose mn is the mean and Varn(t) the variance of the two-scale t and
the n-th flow, then we get for the distribution of the waiting queue
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P (Q > x) = sup
t≥0

φc

(
x + Ct−mnt√

mnVarn(t)

)

(5.12)

But different to the pure two-scale case we cannot use the approximation
(5.11), since the variance has more than two different regions. Even if we
cannot solve (5.12) analytically, we may use mathematical tools like Matlab
or numerical libraries for to implement appropriate algorithms.

Verification of the Model

To verify the model, we have to compare the analytically derived model above
with actual data, in particular its waiting queue formula. For this a simulation
program generates traffic, while putting the measured values in an infinite
buffer queue with constant bit rate. But there are reasons, why the simulated
results can differ from the actual data:

• There is no ideal FIFO waiting queue implemented at the router. This
can happen e.g. that router information is worked in. But this delay is not
significant.

• In reality, the buffer is finite and not infinite as assumed in simulations. In
2003, Fraleigh, Tobagi and Diot published traffic measurements conducted
in the Sprint IP backbone [95]. They observed typical buffer sizes which
correspond to 250 ms and 1 s of queueing delay. However, simulations
described in the same paper reveal delays of less than 100 ms. In this case
we would not observe any loss and there would be no difference between the
results gained by simulations mimicking an infinite buffer and the actual
routers in the network.

• The decisive difference lies, as mostly, in denying of any TCP influence,
in case this protocol is used in the traffic. But we will consider situations
later, where only a small amount of IP packets are influenced by this delay
algorithm. In this situation the TCP exercises only a small impact.

How can we proceed? First we will determine the Hurst coefficients H0 and
H1 using e.g. the wavelet estimators (see section 4.2.7). With the help of linear
regression (method of least square) in the variance time plot we will compute
the values a0 and a1. The decisive scale change takes place between 100 ms
and 500 ms. For this we observe the scales (a1,H1) between 2 ms and 64 ms
and (a0,H0) on 512 ms and 60 s. Now, we will implement this for the network
A with a heavy load of user the data in the example H1 = 0.62, H0 = 0.89,
a1 = 69.6 kBit·s, a0 = 338 kBit·s and m = 75 MBit/s. Simultaneously, we
will assume a threshold ε = 0.0001 for the probability of the delay. This is
very restrictive, since in the existing networks for time sensitive traffic as
VoIP a higher value is tolerated. For a bigger output the traditional model is
comparable to the two scale FBM. In this region the bigger scales dominate, i.e
the asymptotic of the waiting queue behavior. For smaller scales the multiscale
FBM is better because the delay is described exacter.
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Higher loads, i.e. traffic values of ρ = µλ = 0.7 or even ρ = 0.9 can lead to
large delays in networks. Thus, one wants to verify the model exactly in this
situations.

5.1.3 Fractional Lévy Motion and Queueing in IP Traffic Modeling

We introduced the fractional Lévy motion above on one side to incorporate
the bursty character of the IP-based traffic and on the other hand as a gen-
eralization of the FBM, which we discussed in detail above and which was
initially introduced by Norros for modeling the IP traffic.
Starting point is the network model due to Norros. So, we recall it from section
5.1.1 and consider a cumulated traffic at time t, denoted by A(t) the amount
of traffic produced in the interval [0, t]. Similar as in 3.3.4 we set

A(t) = mt + (cm)
1
α X(t, α,H) (5.13)

where as in the Norros model m > 0 is the mean input rate, c > 0 the scaling
factor (in the Norros model we denoted it by a; see also the definition in section
3.6.1) and (X(t, α,H)) a fractional Lévy process. We briefly summarize the
meanings of the different parameters used in the above model (5.13):

• The parameter m > 0 represents the average throughput rate.
• With α, the characteristic parameter in the stable marginal distributions,

we indicate the heavy-tail distribution of the traffic load.
• We can regard

c =
σ

Γ (H + 1 − 1
α )ααH

as a kind of deviation of the traffic around its mean rate, where σ2 is the
usual variance of te traffic. Recall the meaning of c in the definition of
stable distributions: in the case of α = 2 and the Gaussian distribution we
had c = σ2

2 with σ2 its variance.
• According to theorem 3.67 the Hurst exponent H has to fulfill H ∈ [ 1

α , 1[.
It reflects the self-similarity of the traffic.

Our next term concerns the description of the queueing length and its distri-
bution. Following again the approach of Norros as described in section 3.3.4,
we select a single server queue with, as usual, a serving rate of C > 0 and
an infinite buffer space, to make the model as simple as possible. The input
amount follows the equation in (5.13). The parameter ρ = m

C can be seen as
traffic load resp. as the queue utilization. As in the classical traffic models we
have to assume m < C, hence, for the traffic load ρ < 1, for stability reason.
Depending on the service rate C > 0, we denote by Q(t, C) the queue length
at time t > 0. As in section 5.1.1 we have for the queueing process

Q(t, C) = sup
0≤s≤t

(A(t) −A(s) − C(t− s))
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which is Reich‘s formula [31, 210] for the virtual waiting queue length. Again
as in section 5.1.1 we interpret the terms as follows:

• A(t) −A(s) is the incoming traffic load during the interval ]s, t].
• With C(t − s) is the outgoing traffic load of the single server during the

same interval.
• The process (Q(t, C)) is stationary, since (X(t, α,H)) has stationary in-

crements. In addition, it is fractional stable process, which is due to the
property of the driving process FLM (X(t, α,H)).

We first describe the scaling property of the queueing process, whose proof
runs basically as the one presented later for theorem 5.17.

Theorem 5.4. The queueing process has the scaling property

Q(at, C) d= aH ·Q
(
t, a1−HC +

(
1 − a1−H)m

)

for all a > 0.

The theorem tells us basically two facts. First, the queueing process Q(t, C)
is ‘self-similar’ with the Hurst exponent of the original FLM, namely H and
the new serving rate a1−H ·C+(1−a1−H) ·m. In other words if Q(t, C) is the
queue length at time t for a serving rate C, then we have to apply the new
serving rate a1−H ·C + (1− a1−H) ·m and the scale multiplier aH . Second, if
we set α = 2, then we have in particular for H ∈ [12 , 1[

Q(at, C) = aH ·Q
(
t, a1−HC +

(
1 − a1−H)m

)

This is exactly the result of theorem 5.1 (resp. in slight generalization of the
one in theorem 5.17). As in the case of FBM we define for the QoS threshold

ε = P (Q(0, C) > x) = P

(
sup
τ≥0

(A(τ) − Cτ) > x

)
(5.14)

We can consider equation (5.14) as describing the quantitative connection
between the necessary buffer size expressed by x and the QoS requirement
indicated by ε, which shows the probability of the overflow. Like in the Norros
model, we define the auxiliary function

q(x, z) = P

(
sup
τ≥0

(X(τ, α,H) − τz) > x

)

As example we choose x = 1, and realize that the function q(1, z) is strictly
decreasing in z. Can we find a representation for the general function q(x, z)
with the help of q(1, z), i.e. does there exist a kind of homogeneity resp. scaling
property? The answer is given with the following proposition.

Proposition 5.5. The function (x, z) �−→ q(x, z) has the scaling property

q(x, z) = q
(
1, x

1−H
H z
)
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As we proceeded in the case of FBM, we can express (5.14)

ε = q

(
x

(cm)
1
α

,
C −m

(cm)
1
α

)
= q

(

1,
(

x

(cm)
1
α

) 1−H
H

· C −m

(cm)
1
α

)

We are now able to formulate two equations, expressing on the one hand the
requirement for the bandwidth and on the other hand the requirement for the
buffer capacity.

Proposition 5.6. Using equation (5.14), we can formulate the bandwidth re-
quirements by

C = m + q−1(1, ε) · c 1
αH · x− 1−H

H ·m 1
αH (5.15)

and for the buffer dimension

1 − ρ

ρ
1

αH

· x 1−H
H · C αH−1

αH = c
1

αH · q−1(1, ε) (5.16)

where q−1(1, ·) is the inverse function of q(1, ·).

With this general results we consider some typically examples.

Example 5.7. The simplest time continuous case is the ordinary Brownian
motion, i.e. H = 1

2 and α = 2. Then, inserting into (5.16), this gives, by
solving for x

x = x(ρ) = const · ρ · (1 − ρ)−1

Example 5.8. We consider again a driving process having independent incre-
ments with α-stable marginal distribution and α ∈ ]0, 2[. This means we have
an ordinary Lévy motion. Again with (5.16) we deduce a formula for the buffer
dimension

x = x(ρ) = const · ρ 1
1−α · (1 − ρ)−

1
1−α

As we saw for the Brownian motion, the serving rate C has disappeared
because of H = 1

2 . Since the marginal distribution influences the traffic model
in figure 5.9, we started with its incorporation. First we considered the buffer
requirement x depending on the traffic load ρ and the heavy-tail exponent α.
It reveals that, with falling α, the buffer overflow for a fixed QoS threshold ε
occurs already for low values of x.
The diagrams in figure 5.9 give a more detailed description for the particular
range of traffic load ρ and different range of α. Note that in all cases we
have the lack of LRD, since H = 1

2 . We encounter Lévy stable motions. As
seen, small α and high traffic load ρ results in a very low threshold x. In the
right figure we realize that the threshold x falls dramatically almost to 0, if
α and ρ are close to 1. The bursty traffic for small α is thus reflected by this
observation.
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Fig. 5.9. The buffer size for which the same overflow probability ε occurs depending
on different ranges of α and traffic load ρ

Example 5.9. Things change if we consider the case H > 1
2 . First, we proceed

with the case α = 2 and fix a serving rate C. Then,

x = x(ρ) = const · ρ
1

2(1−H) · (1 − ρ)−
H

1−H (5.17)

This is exactly the result from section 5.1.1. The serving rate C is included in
the constant. In opposite, if we fix a buffer size x, then it follows

C = C(ρ) = const · ρ 1
2H−1 · (1 − ρ)

− H

H− 1
2

Here, x is part of the constant term.

Example 5.10. Finally, we generalize both parameters H > 1
2 and 0 < α < 2.

Again we fix a serving rate C and use (5.16). We deduce

x = x(ρ) = const · c
1

α(1−H) ρ
1

α(1−H) · (1 − ρ)−
H

1−H (5.18)

As we know from section 3.2.3, there is no arbitrary choice resp. combination
of α and H for an α-stable process to be H-sssi. By theorem 3.67 we know
H ∈ [ 1

α , [. But on the other side we know from section 3.3, the LRD property
is defined for general α-stable processes by the inequality H > 1

α .
Figure 5.10 reflects the buffer requirement x for satisfying the QoS threshold
ε. We realize that a low value of α, thus, a bursty traffic, requires a larger
buffer. This goes conform with the usual expectation that bursty traffic needs
some ‘safety‘ buffer space to ensure QoS guarantees. In the left diagram we
see that the values of α do not significantly influence the buffer requirement
as the traffic load does for high values of ρ. The reaction on the value of α is
more intense for higher values of ρ as illustrated in the right diagram.
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Fig. 5.10. The buffer requirement x for Hurst exponent H = 0.6, depending on α
and different ranges of relative traffic load ρ

Figures 5.11 and 5.12 indicate the bursty traffic behavior, but this time the
behavior results from the different LRD phenomena imposed by the varying
Hurst exponent. Again as easily seen and expected more LRD and bursty
traffic trigger a decisive impact for larger buffer requirements.
In figure 5.11, both diagrams demonstrate the dependence of the burstiness,
i.e. of the parameter α in the distribution of the marginal distributions of
the α-stable process. We see that the buffer requirements increases rapidly,
especially depending on the Hurst parameter H.
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Fig. 5.11. The buffer requirement x for Hurst exponents H = 0.7, 0.6 (left and
right), depending on α and different ranges of relative traffic load ρ

In figure 5.12 see again that the buffer requirement increases rapidly for lower
values of H, bursty traffic and high traffic load ρ.
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Fig. 5.12. The buffer requirement x for different Hurst exponents H = 0.7, 0.8
(left) and H = 0.8, 0.9 (right), depending on α and different ranges of relative
traffic load ρ

If we set α = 2 in (5.18), we get (5.17) back, hence a generalization of the
Norros case. As in example 5.10, the serving rate is included in the constant.
At last, we compute the service rate C for a fixed buffer size x

C = C(ρ) = const · c 1
αH−1 ρ

1
αH−1 · (1 − ρ)

− H

H− 1
α

Figure 5.13 depicts the necessary capacity resp. service rate for ensuring the
QoS requirement in the same situation as above for the buffer requirement.
As in all figures the absolute value is not important for the analysis, but the
qualitative behavior of the manifolds.
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Fig. 5.13. The service rate C for the Hurst parameter H = 0.6 (left) and H = 0.9
(right), depending on the marginal distribution of the Lévy process α and the relative
traffic load ρ

As seen in both diagrams shortly before low values of α no significant change
is detected. The figure should demonstrate that for both values of H the
service rate is heavily depending on the burstiness of the traffic, depicted by
the extremely fast change for low values of α.
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To illustrate the dependence of H, we depict in figure 5.14 similar diagrams
as in figure 5.13. We show the service rate C for the same areas of α and
ρ and the same Hurst exponent H. However, we also depict C for a slightly
decreased value of H in each diagram and thus have to adjust the scaling on
the z-axis.
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Fig. 5.14. The service rate C for the Hurst parameters H = 0.57, 0.60 (left) and
H = 0.86, 0.90 (right), depending on the marginal distribution of the Lévy process
α and the relative traffic load ρ

We see that the service rate C increases for a low value of the Hurst exponent
very rapidly if the value of α is small and the traffic load is high. Already a
small decrease for the Hurst exponent results in a very sensitive behavior for
a large traffic load and small α.
In figure 5.15 we finally compare the service rate C for Hurst parameters
H = 0.8 and 0.95 each for the same range of α.
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Fig. 5.15. The service rate C for the Hurst parameter H = 0.8 (left) and H = 0.95
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As it is shown the service rate is significantly higher for lower values of long-
range dependence reflecting the fact that more long-range dependence requires
more service rate. Obviously, the burstiness for small α in conjunction with a
high traffic load results in a very fast growing value of the service rate. The
increase is lower for higher values of long-range dependence.

Since we started with a QoS requirement ε, we would like to know, how we
can detect a relationship between the buffer size x the service rate C and the
QoS constraint ε > 0. Like in the FBM case, the result is again a lower bound
estimate of the following type, expressed in the succeeding theorem. We have
to stress that first the estimation (5.19) is trivially fulfilled for α = 2. In this
case one should consult the already known asymptotic (5.8) for the FBM. On
the other hand, as the last figure below demonstrates, the estimation should
be used as asymptotic, thus not for lower values of the buffer capacity x.

Theorem 5.11. For large buffer size, i.e. if x → ∞, we have the lower esti-
mate

ε = P (Q(0, C) > x) ≥ Θαx
−α(1−H) (5.19)

where

Θα = Cα · (cm) (1 −H)α ·
(

H

(1 −H) (C −m)

)αH

and
Cα =

c

απ
· Γ (α + 1) · sin

(πα
2

)
(5.20)

In the figures 5.16 and 5.17 we depict the lower bound for several versions of
the Hurst parameter and the range of 1 < α < 2. As expected the probability
bound increases for lower α and increasing Hurst exponent. For low buffer
capacity (right) we see that the exponent α has higher impact.
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Fig. 5.16. The lower bound of equation (5.19) for Hurst exponents H = 0.6, 0.7,
0.8, 0.9, 0.97, depending on α and the buffer storage x
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The left diagram in figure 5.17 demonstrates the less sensitive reaction for
higher Hurst exponents at low values of α. The right diagram illustrates that
the above lower bound holds only asymptotically.
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Fig. 5.17. The lower bound of equation (5.19) for Hurst exponents H = 0.6, 0.7,
0.8, 0.9, 0.97 (left) and H = 0.6, 0.97 (right), depending on α and the buffer storage
x

From the above theorem we can deduce approximately the required service
rate C for a given large buffer size x and a given QoS constraint by solving
(5.19)

C = m +
(
Cα
ε

) 1
αH

· c 1
αH ·m 1

αH · xH−1
H (5.21)

Comparing (5.15) with (5.21) we see that the term q−1(1, ε) is substituted by
(
Cα

ε

) 1
αH .

The result in theorem 5.11 includes several classical ones in traffic theory:

• If we consider the case of Brownian motion, i.e. H = 1
2 and α = 2, then

inequality (5.20) turns into the well known Erlang formula for exponential
distributed interarrival times.

• For H = 1
2 and 0 < α < 2 we are in the situation of the ordinary Lévy

motion, the results of which are presented in [150].
• The case of α = 2 and H > 1

2 leads to the FBM case, which lower bound
was first found by Norros (see theorem 5.2).

We consider in the remainder of this section a similar situation as in the Norros
case, but now with the FLM instead of the FBM. The network consists of
the volume scaling parameter a, so called speed representing the bandwidth
parameter x and n iid FLM driven multiplexed streams. This means:

• The workload A(t) −A(s) has to be multiplied by a.
• The argument of A(t) must be multiplied by x, i.e. A(xt), since faster links

will increase the load.
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• The n links are iid, i.e. they follow the same model and the load is just
the sum, since they are assumed being independent.

Hence we have the load in the interval ]s, t]

n∑

j=1

a (Aj(xt) −Aj(xs)) (5.22)

We use the representation of A(t) in our model and deduce the queueing
formula

Q(t, a, b, n, r) = sup
0≤s≤t

(
n∑

j=1

a(cm)
1
2

(
X(j)(bt, α,H) −X(j)(bs, α,H)

)

−abn(C −m)(t− s)

)

where the (X(j)(t, α,H)) are iid FLM. The term Q(t, a, b, n, C) describes the
buffer occupancies. Thus we have by using FIFO principle

Ψ(a, b, n) =
Q(a, b, n)
abnr

as the queueing delay. We can easily find the scaling laws for the queueing
delays as

Ψ(a, b, n) d= Ψ(1, b, n) and Ψ(a, b, n) d= b−1Ψ(a, 1, n)

Our aim is to see, how the multiplex parameter n influences the queueing
delay.

Theorem 5.12. With the multiplex model according to equation (5.22) we
have the scaling

Ψ(a, b, n) d= n− α−1
α(1−H) · Ψ(a, b, 1)

In the figure 5.18 the multiplex factor n− α−1
α(1−H) is depicted for several Hurst

exponents. As expected, the queueing probability decreases for larger numbers
of lines. For higher Hurst exponents, the multiplex factor reacts more sensitive
on α. The gain is smaller for higher Hurst exponents, since the decrease does
not react as sensitive as for the lower Hurst exponent.
We remark that though the multiplex factor decreases with higher H, for the
queueing probability we still have to encounter the factor Ψ(a, b, 1) as well.
Over all we can see that the multiplex gain is small for small values of α,
again revealing that bursty traffic is more difficult to multiplex.
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Fig. 5.18. The multiplex factor in dependence of α and the number of multiplexed
lines n for Hurst parameter H = 0.5, 0.6 (upper left), H = 0.6, 0.7 (upper right),
H = 0.8, 0.9 (lower left), and H = 0.90, 0.91 (lower right)

5.1.4 Queueing Theory and Performance for Multifractal
Brownian Motion

In section 3.8.1 we introduced the (nonstationary) multifractal Brownian mo-
tion and the corresponding envelope process. Thus, the following considerations
have to be seen in a line with section 3.8.1. We start with the computation of a
queue length in multifractal IP traffic using mBm and a corresponding envelope
process. Fundamental is the FIFO system, which we already considered in the
classical traffic theory. We introduce the following notions:

• A(t): the accumulated traffic amount, where we set A(0) = 0,
• S(t): the served traffic amount,
• C: the capacity of the buffer.

Then the queueing length can be expressed by

Q(t) = A(t) − S(t) (5.23)

and

S(t) = Ct + min
(

0, inf
t≥0

(A(t) − Ct)
)

= Ct + A(t̃) − Ct̃ (5.24)
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where t̃ = arg inft≥0 (A(t) − Ct), i.e. t̃ expresses the time at which the largest
idle period in the interval [0, t] ends. We define t∗ = t

t̃
. Then we have an

expression for the serving process S(t) immediately from (5.24)

S(t) = Ct + A

(
t

t∗

)
− C

t

t∗
(5.25)

This leads with (5.23) to

Q(t) = A(t) − S(t) = A(t) − Ct−A

(
t

t∗

)
+ C

t

t∗
(5.26)

= A(t) −A

(
t

t∗

)
− Ct

(
1 − 1

t∗

)

The equation (5.26) expresses a stochastic process. We use the (deterministic)
envelope process to transform the problem of (5.26) into a deterministic one
and call the corresponding process Q̂(·). First, we insert the envelope process
in the expression for the service rate in (5.25). Hence, we compute t̂∗ = t

t̂
,

where t̂ = arg inft≥0(Â(t)−Ct). Thus, we define the equivalent (deterministic)
envelope process for the service rate

Ŝ(t) = Ct + Â

(
t

t̂∗

)
− C

t

t̂∗
(5.27)

Hence, we obtain an upper bound for the queueing length Q̂

Q̂(t) = Â(t) − Ŝ(t) = Â(t) − Â

(
t

t̂∗

)
− Ct

(
1 − 1

t̂∗

)
(5.28)

=
∫ t

0

m + κ
√
amH(x)xH(x)−1dx−

∫ t

t̂∗

0

m + κ
√
amH(x)xH(x)−1dx

−Ct

(
1 − 1

t̂∗

)

Next, we want to calculate the time t∗, where the queue length reaches its
maximum. For this, we have to solve the equation

q̂max = maxt≥0

(
Q̂(t)

)

The maximal queue length is attained at time t̃∗, which can be computed
according to an implicit given equation

t̃∗ =

κσ

(

H(t̃∗)(t̃∗)H(t̃∗) − t̂H
(
t̃∗

t̂

)(
t̃∗

t̂

)H( t̃∗
t̂ )
)

(C −m)
(
1 − 1

t̂

) (5.29)
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Equation (5.29) is derived by computing the derivative in (5.28). Indeed we
compute dQ

dt and set dQdt = 0.
In the case of a the monofractal envelope process, equation (5.29) collapses to

t̃∗ =

⎛

⎝κσH
(
1 − (t̂)−H

)

(C −m)
(
1 − 1

t̂

)

⎞

⎠

1
1−H

(5.30)

Equation (5.30) gives insight of the importance of multifractal modeling. The
crucial time t̃∗, where the queue will be maximal, grows exponential with the
Hurst exponent H, since it enters in the formula with the exponent 1

1−H , It
would overestimate the variation of the Hölder exponent.

Several Multifractal Flows

As in the classical Norros model, we consider N flows, forming an aggregated
traffic. We can compute the amount of traffic by using the local asymptotically
self-similarity (lass). It is straightforward that the sum of N independent FBM
with the same Hurst exponent, mean mi, i = 1, . . . , N and variance σ2

i is again
a FBM with mean m =

∑N
i=1 mi and variance σ2 =

∑N
i=1 σ

2
i given by

ÂN (t) =
N∑

i=1

Âi(t)

=
∫ t

0

N∑

i=1

mi + κ

(
N∑

i=1

σ2
iHi(s)s

2Hi(s)−1

)(
N∑

i=1

σ2
i s

2Hi(s)

)− 1
2

ds

Inserting this into equation (5.27) reveals

ŜN (t) = Ct + ÂN
(
t

t̂

)
− C

t

t̂

If we proceed as in the single queueing model, we find an upper bound for the
queueing length Q̂N . This gives in analogy

Q̂N (t) = ÂN (t) − ŜN (t) = ÂN (t) − ÂN
(
t

t̂

)
− Ct

(
1 − 1

t̂

)

=
∫ t

0

N∑

i=1

mi + κ

(
N∑

i=1

σ2
iHi(s)s

2Hi(s)−1

)(
N∑

i=1

σ2
i s

2Hi(s)

)− 1
2

ds

−
∫ t

t̂

0

N∑

i=1

mi + κ

(
N∑

i=1

σ2
iHi(s)s

2Hi(s)−1

)(
N∑

i=1

σ2
i s

2Hi(s)

)− 1
2

ds

−Ct

(
1 − 1

t̂

)
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Again, we deduce similarly

q̂Nmax = maxt≥0

(
Q̂N (t)

)

After solving, this gives the equivalent equation

κ

⎛

⎝

(
N∑

i=1

σ2
iHi(t)t

2Hi(t)−1

)

·
(
N∑

i=1

σ2
i t

2Hi(t)

)− 1
2

+

(
N∑

i=1

σ2
iHi

(
t

t̂

)(
t

t̂

)2Hi( t
t̂ )−1

)

·
(
N∑

i=1

σ2
i

(
t

t̂

)2Hi( t
t̂ )
)− 1

2
⎞

⎠

−
(

C −
N∑

i=1

mi

)(
1 − 1

t̂

)
= 0

Homogeneous Flows

In this case we have m = mi and σ = σi. This leads immediately to

ÂN (t) =
N∑

i=1

Âi(t) =
∫ t

0

Nm + N
1
2κσH(s)sH(s)−1ds

and for the upper bound of the queueing length

Q̂N (t) = ÂN (t) − ŜN (t) = ÂN (t) − ÂN
(
t

t̂

)
− Ct

(
1 − 1

t̂

)

=
∫ t

0

Nm + N
1
2κσH(s)sH(s)−1ds−

∫ t
t̂

0

Nm + N
1
2κσH(s)sH(s)−1ds

−Ct

(
1 − 1

t̂

)

As above we can compute the time t̃∗ of the largest queue

t̃∗ = N− 1
2

κσ

(

H(t̃∗)(t̃∗)H(t̃∗) − t̂H
(
t̃∗

t̂

)(
t̃∗

t̂

)H( t̃∗
t̂ )
)

(C −m)
(
1 − 1

t̂

) = N− 1
2 t̃∗i

where t̃∗i is the time computed according to equation (5.29) with the normal-
ized link capacity, i.e. C̃ = C

N .
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Calculation of the Equivalent Bandwidth

As already considered in the Norros model, we will deal with the following
problem:

Suppose N flows with traffic mean mi and variances σi are given. We
model each of them according a mBm with Hölder exponents func-
tions Hi(·). What is the needed link capacity C, so that the maximal
queueing length q̂Nmax occurs with probability at most ε ∈ ]0, 1[?

The answer to this question consists in finding a C, such that

max
t>0

Q̂N (t) − q̂Nmax = 0

⇔ max
t>0

(
ÂN (t) − ÂN

(
t

t̂

)
− Ct

(
1 − 1

t̂

))
− q̂Nmax = 0

Here, we compute Q̂N (t) according to (5.28).

Theorem 5.13. The equivalent link capacity or bandwidth can be computed
in at most

n = O (log(C))

iterations, where C is the channel capacity.

Our next aim is to describe the multiplex gain, which will be analyzed in the
sequel for different forms of Hölder function H(·). To do so, we define the
equivalent bandwidth of the i-th flow by

eBi =

t̃i
∗∫

0

m̃i + κσiHi(x)xHi(x)−1dx−

t̃i
∗

t̂∗
i∫

0

m̃i + κσiHi(x)xHi(x)−1dx−K

t̃i
∗ (1 − 1

t̂∗i

)

For the aggregated bandwidth we compute

eB(n) =

t̃∗∗∫

0

n∑

i=1

m̃i + κ

n∑

i=1
σ2

iHi(x)x
2Hi(x)−1

(
n∑

i=1
σ2

i x
2Hi(x)

) 1
2

dx

t̃∗∗
(
1 − 1

t̂∗∗

)

−

t̃∗∗
r̃∗n∫

0

n∑

i=1

m̃i + κ

n∑

i=1
σ2

iHi(x)x
2Hi(x)−1

(
n∑

i=1
σ2

i x
2Hi(x)

) 1
2

dx−K ′

t̃∗∗
(
1 − 1

t̂∗∗

)

Here, eB(i) is the equivalent bandwidth of a single flow i and eB(n) the
aggregate flow of n flows. t∗i is the time scale for queueing of the i-th flow, and
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t∗∗ of the aggregated system, respectively. The value K indicates the buffer
size, while K ′ = K

n is the relative buffer size for each connection.
The gain measure G(n) for the multiplexing of n homogeneous flows is given
by

G(n) =

n∑

i=1

eBi

eB(n)

=

n∑

i=1

t̃i
∗
∫

0
m̃i+κσiHi(x)x

Hi(x)−1dx−

t̃i
∗

t̂∗
i∫

0
m̃i+κσiHi(x)x

2Hi(x)−1dx−K

t̃i
∗
(

1− 1
t̂∗
i

)

t̃∗∗∫

0

n∑

i=1
m̃i+κ

n∑

i=1
σ2

i
Hi(x)x2Hi(x)−1

(
n∑

i=1
σ2

i
x2Hi(x)

) 1
2
dx−

t̃∗∗
t̂∗∗∫

0

n∑

i=1
m̃i+κ

n∑

i=1
σ2

i
Hi(x)xHi(x)−1

(
n∑

i=1
σ2

i
x2Hi(x)

) 1
2
dx−K′

t̃∗∗(1− 1
t̂∗∗ )

It is computed as the ratio of n times the equivalent bandwidth of a flow and
the equivalent bandwidth for the aggregated n homogeneous flows. If all flows
are identical, we get a special case of the homogeneous flows

G(n) =
n · eB1

eB(n)

=

t̃1
∗
∫

0
m̃1+κσ1H1(x)x

H1(x)−1dx−

t̃1
∗

t̂∗1∫

0
m̃1+κσ1H1(x)x

H1(x)−1dx−K

t̃1
∗
(

1− 1
t̂∗1

)

t̃∗∗∫

0
m̃1+n

− 1
2 κσ1H1(x)xH1(x)−1dx−

t̃∗∗
t̂∗∗∫

0
m̃1+n

− 1
2 κσ1H1(x)xH1(x)−1dx−K′

t̃∗∗(1− 1
t̂∗∗ )

Here, eB(1) is the equivalent bandwidth of a single flow and eB(n) the ag-
gregate flow of n flows. The times t̃1 and t̃ indicate the time scales of the
effective bandwidth for the single and multiple connections, respectively. The
value K indicates the buffer size, while K ′ = K

n is the relative buffer size for
each connection.

Example 5.14. We investigate a scenario of homogeneous flows ranging from
N = 1 to 250 (see [179]). We use different envelope functions and different
variances σ, which are, as the mean rate m, identical for all flows. The mean
arrival rate is m = 1, 000, and the lowest variance σ = 10, 000. We consider
the envelope functions H(·) from table 5.1.
In the figure 5.19 the multiplex gain for different variances and envelope func-
tions are depicted. We chose for a = 513.3, σ2 = 14, 400, κ = 12, C = 5, 500
and K = 50. In addition, we picked the first two Hölder functions in the above
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Table 5.1. Envelope functions for different flows

Flow Envelope function

1 1.9x2 − 1.9x2 + 0.985
2 4.9x3 − 7.9x2 + 3.3x + 0.51
3 2.1x4 + 1.1x3 − 0.1x2 + 0.8x + 0.51
4 sin x

10
+ 0.61

5 0.5x + 0.5

table and varied the variances each time for σ2, 10σ2 and 100σ2. In all cases
the higher the variance the higher the multiplex gain is.

0

1

2

3

4

0  50  100  150  200

100σ2

10σ2

σ2

x 0

1

2

3

4

0  50  100  150  200

100σ2

10σ2

σ2

x

Fig. 5.19. Quadratic (left) and cubic (right) Hölder function with variances σ2,
10σ2 and 100σ2

5.2 Queueing in Multifractal Traffic

As we did in the description of the models for IP traffic in chapter 3 we
pursue an equivalent way of representation. After the view of the pure LRD
phenomena and its impact on queueing we proceed to the impact on the small
scales, namely how the multifractal analysis describes the queueing behavior.
Though the LRD analysis does not loose its significance the small scales will
perform a decisive impact on the waiting queues and its resulting impact on
the QoS requirements.

5.2.1 Queueing in Multifractal Tree Models

We start with a queueing formula derived by Ribeiro, Riedi, Crouse and Bara-
niuk [214]. It has its origin in the classical formula for a single server due to
Lindley [165]. This approach was used in the previous sections already fre-
quently to consider the queueing behavior (see e.g. section 5.1.1, 5.1.3 resp.
5.1.4). The notation is as usual. Instead of the continuous time models, the
multifractal models are constructed at discrete time spots. Thus, for i ∈ Z
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let W (i) be the traffic per time unit that entered an infinite buffer of a single
server queue with capacity or service rate C > 0 per time unit. As usual we
denote by Q(i) the queue size at time spot i. Again let A(l) be the aggregated
traffic between the time −l + 1 and 0. This is expressed in

A(l) :=
0∑

i=−l+1

W (i)

The traffic amount A(l) is referred to the time scale r. We set as usual A(0)=0.
By the result of Lindley we have

Q(0) := max (Q(−1) + A(1) − C, 0)

As exercise the reader can convince herself that

Q(0) := max (Q(−l) + A(l) − lC,A(l − 1) − (l − 1)C, . . . , A(0))

By definition it is Q(−l) ≥ 0 for all l. This implies

Q(0) ≥ sup
l∈N

(A(l) − lC)

Suppose −t was the last time spot, where the buffer was empty before time 0
(t ≥ 0). Then we conclude

Q(0)
by def.

= A(t) − tC ≤ sup
l∈N

(A(l) − lC)

So, if the queue was empty in the past at some time, we have

Q(0) = sup
l∈N

(A(l) − lC) (5.31)

For the sake of simplicity we will consider the queue at time t = 0. According
to (5.31) we have a direct link between the queue size and the aggregated
traffic A(l) for multiple time scales l. This is the basic secret behind the
queueing formula for multifractal traffic, since we have explicit formulas for
A(l). Before deriving the formulas, we make three assumptions (A1 to A3),
which are crucial for the analysis, and justify them.

A1: Tail Queue Probability of Traffic at Dyadic Time Spots
Captures Best the One of the Whole Traffic

Thus, we have to show that

P (Q(0) > x)

is well described using the dyadic times. For a justification, we denote by
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QD(0) = sup
m=0,...,n

(A(2m) − 2mC) (5.32)

The assumption A1 can be rewritten in the form

P (Q(0) > x) ≈ P (QD(0) > x) (5.33)

It is obvious that Q(0) ≤ QD(0) and hence, P (Q(0) > x) ≥ P (QD(0) > x).
So, if we want to justify (5.33) by using (5.32), we have to verify that

• only dyadic time scales are crucial and
• no time scales bigger than 2n are required.

It can easy be assumed that there are no busy periods longer than 2n. Hence,
the time scales in question are smaller than 2n. A little bit more work has
to be done to justify that only dyadic time scales are necessary. For this
we apply some results on the critical time scale (CTS) as done in the papers
[224, 186, 100]. With the help of the CTS we will be able to give some estimates
of P(Q(0) > x) resp. of P(QD(0) > x). The CTS is the largest scale l, so that
the probability of the network traffic, exceeding the threshold x, is maximal.
This reads formally

l∗ = arg sup
l∈N

P (A(l) − lC > x)

Analogously we define the critical time scale queue (CTSQ) as

CTSQ(x) = P (A(l∗) − l∗C > x)

According to the above mentioned papers [224, 186, 100], we have

CTSQ(x) ≈ P (Q(0) > x)

It is evident due to the definition that

CTSQ(x) ≤ P(Q > x)

for all x > 0. As above we introduce the critical dyadic time scale (CDTS)
according to

l∗D = arg sup
m=0,...,n

P (A(2m) − 2mC > x)

and consequently the critical dyadic time scale queue(CDTSQ)

CDTSQ(x) = P (A(l∗D) − l∗DC)

The CDTSQ is very suitable to substitute the CTSQ, since it provides easy
computations, due to the few statistical evaluations at the dyadic time spots.
We have the following chain of inequalities

CDTSQ(x) ≤ P (QD(0) > x) ≤ P (Q(0) > x)



414 5 Performance of IP: Waiting Queues and Optimization

for all x > 0.
For the numerical evidence we follow the original literature of [214]. They
observe an empirical queueing situation and construct synthetic WIG and
MWM traces. WIG as MWM have FGN correlation structure with a Hurst
exponent of H = 0.8. In both situations the reveal that CDTSQ is of the same
order of magnitude as the empirical trace. For the WIG model the CDTSQ
is almost identical as CTSQ, while for MWM there is no formula for CTSQ.
The figure 6 in [214] reveals that CDTSQ is a suitable approximation for the
queue length probability P(Q > x). Finally, one should remark that there is
no change for this result when varying the Hurst parameter.
Mathematically the integers N form a tiny subset within the natural numbers
R. So, we would expect (5.31) very different to its approximation (5.32). But
the dyadic intervals generate all time intervals, meaning that each time spot
l∗ can be sandwiched between two dyadic time spots. So, close to l∗ we find
l∗D. Then we can expect CTSQ ≈ CDTSQ.

A2: Necessary Assumption for the Joint Distribution

The second assumptions concerns the modeling joint distribution: the joint
distribution of A(2m) is determined by the right-edge node traffic Vm,2m . It is
obvious that for computing CDTSQ(x) = P (QD(0) > x) we have to know the
joint distributions of A(2m). It will turn out that this distribution is given by
the right node of the tree in each level. Hence, the distributions are available
due to the structure of the tree models and easy to compute. First, simplifying
the representation of the distribution we assert that the appropriate time
instant is the very right one of the tree, i.e. at 2j . The advantage is that at
that time spot the amount A(2j) and its distribution are available and easy to
determine, which in turn helps us to find the equivalent one for QD(0). Let’s
do it now!
To start we consider the queueing at time spot t = 4k + 2 and scale j + 2.
This is illustrated in the figure 3.21 in section 3.8. We have A(1) = Vj+2,4k+2

and A(2) = Vj+2,4k+1 + Vj+2,4k+2. Since A(2) is not detected as a node in
the tree, in the model we cannot easily figure out the dependence of A(1) and
A(2). Now let t = 4k + 1. Then, we have in turn A(1) = Vj+2,4k+1, A(2) =
Vj+2,4k + Vj+2,4k+1 = Vj+1,2k and A(4) = Vj+2,4k−2 + . . . + Vj+2,4k+1 =
Vj+1,2k−1 + Vj+1,2k. In this construction A(1) and A(2) are tree nodes, but
not A(4). Thus, to have all necessary quantities A(1), . . . , A(2m) modeled in
the tree, we have to perform the analysis at the time spot 2n − 1, where 2−n

will be the particular time unit. Because 2n has to incorporate all necessary
time spots, we need n ≥ m. So we get

A(2j) = Vn−j,2n−j−1, for j = 0, . . . ,m (5.34)

We will mostly work with n = m.
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A3: Approximative Independence of Large Arrivals in the Dyadic
Tree

As we just saw, the traffic amount A(1), . . . , A(2M ) are not independent. But
we will show in the sequel that large arrivals in the tree, i.e. the events Eci ,
where

Ei = {A(2n−i) < x + 2n−iC} (5.35)

can be assumed to be, what is called, nearly independent of each other. In
fact, the complement sets Eci are independent. The events Ei are highly prob-
ably, since P(Ei) ≈ 1 for most i. More precisely, they converge, as proposition
5.16 will show, exponentially towards 1. Hence, if we know that Ei has oc-
curred, this does not give us information about the other events Ej , j �= i.
So, Eci of large queue sizes gives us the required nearly independence. The
next proposition reveals the recent argument more rigorously.

Proposition 5.15. Let Ei be events of the form {Si, xi} with Si = R0 + . . .+
Ri−1 (1 ≤ i ≤ n), where R0, . . . , Rn are independent but arbitrary random
variables. Then it holds for 1 ≤ i ≤ n

P(Ei|Ei−1, . . . , E0) ≥ P(Ei) (5.36)

We will see that the above defined events in (5.35) are of the form required
for proposition 5.15. Using (5.36), we deduce

P (QD(0) > x) = 1 − P (QD(0) < x) = 1 − P

⎛

⎝
n⋂

j=1

Ei

⎞

⎠

= 1 − P(E0)
n∏

i=1

P(Ei|Ei−1, . . . , E0)

≤ 1 −
n∏

i=0

P(Ei) = MSQ(x) (5.37)

where the last line defines the multiscale queueing formula. We remark that in
case of independent events E0, . . . , En we will obtain the equality MSQ(x) =
P(Q(0)D > x). The MSQ(x) is a conservative approximation of the dyadic
queue tail probability. In fact,

P (Q(0) > x) ≥ P (QD(0) > x) ≤ MSQ(x)

Dependence of the Tree Depth

Up to now we did not say anything about the coarsest and finest time scale
in question. The restriction to the coarsest is given by the fact that we have
to look back as far into the past, so that we find the time spot, which ensures
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that the queue was empty in the covered time period with probability almost 1.
This largest scale will be fixed, and we look now for the finest one, what is
called the depth of modeling.
In this respect, we have to index the used quantities with the superscript
(n), as e.g. MSQ(n) or A(n)(2j). To make things simple, we set MSQ(n) =
MSQ(n)(x) for a fixed x. With increasing n, thus the depth of the time reso-
lution, the number of terms in the expression of MSQ(n) in (5.41) and (5.37)
grows. Since P(E(n)

i ) is naturally bounded by 1, the value MSQ(n) could ap-
proach easily 1 for n → ∞. Can this happen? We say no and prove it now.
As we know, E(N)

j is an event of large arrivals at level j below the tree root.
If we have fixed the largest time scale, all events are obviously the same for
different depth, i.e. E(n)

j = E
(m)
j as long as n,m ≥ j. Hence,

1 −MSQ(n) =
n∏

i=0

P
(
E

(n)
i

)
=

n∏

i=0

P
(
E

(i)
i

)

As asserted and proved in the next proposition 5.16, we have

lim
n→∞

P
(
E

(n)
j

)
= 1

as fast that MSQ(n) does not converge to 1. As a side product we will find an
error bound for neglected finer time scales. For proving proposition 5.16, we
need some notations and conventions. Thus, we introduce the ideal infinite-
resolution of MSQ

MSQ(∞) = lim
n→∞

MSQ(n) = 1 −
∞∏

n=1

P
(
E(n)
n

)

In addition, we define the threshold scale N . Let N be such that

P
(
E

(i)
i

)
≥ 1 − 2−i, for all i ≥ N (5.38)

and max
k

VN,k ≥ x (5.39)

Proposition 5.16. There exists an N ∈ N such that

P(E(j)
j ) ≥ 1 − 2j

for all j ≥ N and

MSQ(∞) ≤ MSQ(N) ≤ MSQ(∞) ·
(
1 − 2−N + 2−N+1

)
(5.40)

Under the assumptions A1 to A3 we claim the following estimation for the
tail queue probability
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P (Q(0) > x) ≈ P

(
sup

m=0,...,n
(A(2m) − 2mC) < x

)

= P (A(2m) < x + 2mC, m = 0, . . . , n)

≈
n∏

m=0

P (A(2m) ≤ x + 2mC)

5.2.2 Queueing Formula

According to [214] we present a multiscale queueing formula (MSQ) as ap-
proximation of the tail queue probability

MSQ(x) = 1 −
n∏

i=0

P
(
A(2n−i) < x + 2n−iC

)
(5.41)

The reader should be aware that other than in most queueing formulas ob-
tained e.g. in the Norros model, here the so called multiscale marginal dis-
tribution of the A(2i), i = 0, . . . , n, enter (5.41) and not only their variances
(see e.g. [190, 56]). Numerical simulations for bursty traffic as shown in the
figure 5 c) and d) in [214] reveal that

P(Q(0) > x) ≈ MSQ(x)

Having selected a model for describing the multifractal traffic, we only have
to choose the appropriate depth of the tree for applying the formula (5.41).
We will sketch the procedure for most used models.

Multiscale Queues in WIG and MWM Models

Analyzing formula (5.41), we see that we have to compute the value of

P(Ei) = P
(
A(2n−i) < x + 2n−iC

)

This we have to derive with the help of the marginal distributions of the
respective multiple time scales, represented by the tree knots i different levels.
We can achieve this for the tree models, starting from V0,0 at level 0 and the
multiscale innovations Zj,k and Mj,k.
As usual the WIG model is the simple case to investigate. Because of its addi-
tive structure A(2n−i) = Vi,2i−1 is the sum of independent Gaussian random
variables, the so called tree root variables and the independent innovations.
The sum is again Gaussian with mean µi and variance σ2

i . Setting µi and
σ2
i the mean resp variance of the sample means resp. variance in the nodes

Vi,k, we can model the tree. An alternative way is given by starting in V0,0

and using appropriate innovations Zj,k according to the observed samples and
compute σ2

i by (3.94) resp. (3.95). Suppose Φµi,σi
is the distribution function

of the variable Vi,2i−1, then we obtain
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MSQWIG(x) = 1 −
n∏

i=0

Φµi,σi

(
x + 2n−i

)

Deriving a similar result for the MWM model is not as straightforward. The
amount A(s−i) is a product not a sum as in the WIG model. In fact, it is the
product of the tree root V0,0 and the multiplicative innovations, hence, the
product of i+ 1 independent random variables. Choosing lognormal distribu-
tion for the innovations will end up in a lognormal distribution for A(2n−i),
which is unbounded and thus certainly not bounded by 0 and 1. As mentioned
in section 3.8, when treating the multifractal modeling, we found the symmet-
ric beta distribution suitable. Fan showed (see [82, 125]) that the product of
beta distributed random variables can be approximated by another beta dis-
tributed random variable with known parameters. We get for A(2n−i) (see
(3.96) and (5.34))

A
(
2n−i

)
∼ aβ(di, ei)

where a is a constant, and the parameters di, ei are given according to

di = ζ
(
θ − ζ2

)−1
(ζ − θ), ei = di

1 − ζ

ζ

with ζ = 2−i and

θ =
i−1∏

i=−1

pi + 1
2(2pi + 1)

The above approximation due to Fan reflects exactly the mean and variance
of the product of the beta random variables and approximates very well the
first 10 moments of the product variable. The parameters a and pj are gained
according to the fitting procedure in section 3.8.2. If we denote by BM,di,ei

the distribution function of the beta distribution β0,M (di, ei), then we can
formulate the MSQ for MWM as follows

MSQMWM (x) = 1 −
n∏

i=0

BM,di,ei

(
x + 2n−iC

)

Proof to Proposition 5.15

Define

Yi = Si |Ei−1, . . . , E0 and Ui = Si |Ei, . . . , E0, i ≥ 1

It suffices for proving the proposition

FYi
(z) ≥ FSi

(z) (5.42)

for all z ∈ R and all i ∈ N0 and set in particular z = xi to get the proof. The
proof of (5.42) runs by induction over i
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FUi
(z) =

{
c

FYi
(xi)

for z ≤ xi

1 else

This gives immediately
FUi

(z) ≥ FYi
(z) (5.43)

for all z

FYi+1(z) = P(Ui + Ri+1 < z)

=
∫ ∞

−∞

∫ z−zi+1

−∞
fUi

(ui)fRi+1(zi+1)duidzi+1

=
∫ ∞

−∞
FUi

(z − zi+1)fRi+1(zi+1)dzi+1

by (5.43)

≥
∫ ∞

−∞
FYi

(z − zi+1)fRi+1(zi+1)dzi+1

by induction

≥
∫ ∞

−∞
FSi

(z − zi+1)fRi+1(zi+1)dzi+1

= P(Si + Ri+1 < z)
= FSi+1(z)

We first want to apply proposition 5.15 to the WIG model. From the structure
of the WIG model we obtain (see (3.93) in section 3.8.2)

A(2−i) = Vi,2i−1 = 2−iV0,0 −
i−1∑

j=0

2j−iZj,2j−1

where the Zj,k are the innovations in the building block of the tree. Now, we
only have to set xi = 2ix + 2nC, R0 = V0,0 and Ri = −2i−1Zi−1,2i−1−1.
Now we apply proposition 5.15 to the MWM model. According to 3.96

A(2n−i) = Vi,2i−1 = V0,0

i−1∏

j=0

(1 −Mj)

where the Mj are the multiplicative innovations of the tree. If we apply on
both sides the logarithms, we obtain the desired form, setting xi = log(x +
2n−iC), R0 = log(V0,0) and Ri = log(1 −Mi−1).

Proof to Proposition 5.16

First, we will proof the existence of the threshold scale given in (5.38). All
events E(n)

n depend on the buffer size x(n), the link capacity C(n) at time scale
2−n and the arriving workload A(n)(2n−i). Since the buffer works independent
of the time scale, we have x(n) = x. In addition, the link capacity fulfills
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C(n) = 2−nC, where C is the maximal size of bytes, which can be emptied
from the queue on the coarsest level. Finally, A(n)(2n−i) = V

(n)
i,2i−1 according to

(3.96) and (3.97). Thus, A(n)(2n−i) equals in distribution the random variable
aM−1

∏i−1
j=0(1 −Mj). We do not have to indicate the depth of the tree, since

the tree grows downwards with increasing n. The multiplier at level i does
not change – new ones are added successively. Since the Mi are symmetrical,
we obtain

P
(
E(n)
n

)
= P

(
aM1 . . .Mn−1 < C2−n

)

We abbreviate Di = log2(Mi) and

αn = − 1
n

log2

(
x

a
+ C

2−n+1

a

)
(5.44)

For all q > 0 we apply the Jensen inequality and the independence of the
multipliers and receive the Chernoff bound

1 − P
(
E(n)
n

)
= P

(
− 1
n

(D−1 + . . . + Dn−1) < αn

)

= P
(
2q(D−1+...+Dn−1) > 2−qnαn

)

≤
E
(
2q(D−1+...+Dn−1)

)

2−qnαn

= 2n(−T (n)(q)−1+qαn)

According to (3.103), we have for the deterministic envelope function (see
definition 3.92) at level n

T (n)(q) = −1 − 1
n

n−1∑

i=−1

log2 E (Mq
i )

We apply the logarithm and minimize for q > 0, which implies

1
n

log2

(
1 − P

(
E(n)
n

))
≤ inf
q>0

(
qαn − T (n)(q)

)
− 1

= −1 +
(
T (n)

)∗
(αn) ≤ −1

provided that αn is so small that
(
T (n)

)∗
(αn) < 1, where

(
T (n)

)∗
is the

Legendre transform (see 3.101 and 3.119 for the definition of the Legendre
transform). We remind for the concave shape of T (n), where negative input
values remain positive, but smaller than 1. In addition, αn decreases towards
0 and T (n) converges to T , implying that the 0 of

(
T (n)

)∗
do not change

much, once n is sufficiently large. In this respect, w.l.o.g. we can assume that(
T (n)

)∗
(αn) is negative for all n ≥ N for a critical N . Putting things together

now, we obtain for n ≥ N that
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1 − P
(
E(n)
n

)
≤ 2−n ≤ 2−N

which gives us finally (5.38). We have

log2

(
P
(
E(n)
n

))
≥ −b0

(
1 − P

(
E(n)
n

))

forcing for b0 the definition

b0 =
log2

(
1 − 2−N

)

−2−N

for all n ≥ N . This implies

log2

⎛

⎝
N ′
∏

n=N

P
(
E(n)
n

)
⎞

⎠ ≥ −b0

N ′
∑

n=N

(
1 − P

(
E(n)
n

))

≥ −b0

N ′
∑

n=N

2−n ≥ −b0

∞∑

n=N

2−n

≥ −b02−N+1

Estimating the neglected terms of MSQ(N) by

1 ≥
∞∏

n=N

P
(
E(n)
n

)
≥ 2−b02

−N+1

we conclude

1 −MSQ(N) ≥ 1 −MSQ(∞)

≥
(
1 −MSQ(N)

)
2−b02

−N+1

≥
(
1 −MSQ(N)

)
(1 − 2−N)2 (5.45)

Noting that (5.40) is equivalent to (5.45), we cheer for finishing the proof.
How can we find the necessary tree depth N in practice? The intensively inves-
tigated multifractal formalism helps: Choosing in (3.119)

(
T (n)

)∗
(αn)< 0, this

implies that there is no exponent αn, since N(αn) = 0. The definition of the
coarse Hölder exponent tells us that at scale n all α(t) = − 1

j log2 |Vn,k| ≥αn.

With the help of (5.44) we get consequently x + 2−n+1C ≥ |Vn,k|. For a con-
servative estimation we choose

(
T (n)

)∗
(αn) < 0 for n ≥ N , which can easily

be checked, and impose as practicable requirement

x ≥ |VN,k|

matching with (5.39).
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Impact of the Multiscale Marginals on Queueing

Usually the queueing analysis is based for IP traffic on the LRD property
as done in the previous sections (see 5.1.1,5.1.3 and 5.1.4). LRD is crucial,
especially, when the traffic is modeled by FBM (resp. FGN). This is motivated
by the analysis of asymptotic self-similarity, obtained by the second order
statistics. In the models based on the Norros approach (the FBM as well as
the FLM) we used infinite buffer (though ‘x’ serves as the QoS threshold) and
gained the estimates

P(Q(0) > x) � exp
(
−γx2−2H

)
(5.46)

for a FBM perturbation

P(Q > x) ≥ sup
t≥0

Φc

(
x + Ct−mt
√
mVar(t)

)

(5.47)

for the multiscaling FBM

Q̂(t) =
∫ t

0

m + κ
√
amH(x)xH(x)−1dx−

∫ t

t̂∗

0

m + κ
√
amH(x)xH(x)−1dx

−
∫ t

t̂∗

0

m + κ
√
amH(x)xH(x)−1dx− Ct

(
1 − 1

t̂∗

)

for the multifractal FBM and finally

ε = P (Q(0, C) > x) ≥ Θαx
−α( 3

2−H− 1
α ) (5.48)

for the FLM. In the asymptotic (5.46) the parameter γ (as the other constants
in the equations (5.47) to (5.48)) depends on certain traffic parameters like
C, m or the QoS requirement x. Sticking to the first asymptotic (5.46) (the
other are more complicated), we realize that the queueing is asymptotically
according to Weibullian law (recall that it is a lower bound), in contrast to the
SRD expressed by the exponential function in classical traffic models (when
H = 1

2 ). If x is small, we do have as depicted in several figures a not suitable
description. The LRD captures only the asymptotic variance of the traffic.
In the multifractal queueing formula we incorporate according to [214] the
marginal distribution in contrast to the asymptotic formulas, using second
order statistics. Traffic characteristics at CTS impacts, as recent investigations
revealed, more than the Hurst parameter H on small time scales. So, at any
time scale the variance of traffic affects P(Q > x) more than H.
The multifractal queueing formula reveals that traffic with heavier tail implies
that P(A(2i), x + C2i) is smaller, thus, MSQ is larger. Since the models of
MWM perform heavier tails than the WIG, consequently, the MSQ is larger
for MWM. But our intuition emphasizes this as well, because large bursts
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for different times naturally lead to larger queues. The WIG model is more
closely to the Gaussian traffic model with its averaging traffic assumption.
Finally, the MSQ can express, why LRD leads to larger queues than SRD
(with identical m and σ): LRD has heavier tailed marginal distributions at
multiple time scales than SRD.

5.3 Traffic Optimization

In this last section we briefly give some insight in the theory of optimiza-
tion for network design. We select some approaches examplarily of this topic,
attacking mainly two problems. The first concerns the intrinsic network op-
timization using key values like queueing and service capacity. In a second
step we turn to the economic aspect and optimize towards an equilibrium. In
the latter case, the basic approach is based on the utility, both for the user
and the network. Fundamental for the investigation is a model introduced by
Kelly, Maulhoo and Tan (see [138]). There, the optimization is derived by
a deterministic equation and stochastic equations, which incorporates small
stochastic perturbation, given by short-range dependent processes, as Poisson
or standard Brownian motion. But, this model will be our starting point to
derive a result for the equilibrium, using the optimal control technique for
a stochastic differential equation, derived for the transmission rate. Beside a
deterministic part we will use, both a short-range dependence contribution by
a Poisson perturbation and the LRD phenomena by the FBM. The technique
could be transferred for other stochastic processes, for which a stochastic inte-
gration theory as for Brownian resp. fractional Brownian motion is available.

5.3.1 Mixed Traffic

Up to now we considered mainly a modeling with long-range dependent pro-
cesses, especially the FBM. As we know the LAN traffic investigated and
documented by the well known Bellcore experiment and its subsequent mod-
eling by Norros using the FBM, data traffic is well modeled by the long range
dependent processes, looking at large scale behavior. In 3.4.4 we showed, how
the simple on-off models lead in the limit to a perturbation by FBM or special
fractional Lévy processes. In practice, traffic is a mixture of several different
kinds. Especially VoIP is becoming more and more important. A separated
line for VoIP would keep everything to the standard Erlang formulas, while a
pure data line is represented by the long-range dependent processes. In reality
we prefer considering a mixture or superstition of both models. Thus, we keep
to the approach of Norros and insert the Poisson process for the ‘voice’ part.
If At is the whole traffic amount in connection during the interval ] −∞, t],
(Nt) represents homogeneous Poisson process with intensity λ, (B(H)

t ) a FBM
with Hurst parameter H and scaling constants m1, m2, m3 and σ, then we
use the approach



424 5 Performance of IP: Waiting Queues and Optimization

At = m1t + m2Nt +
√
m3σB

(H)
t

Since we are concerned with time sensitive traffic we consider the following
topics:

• Queueing theory and estimation of threshold probability
• Optimization of certain network situations

As mentioned above we consider a traffic mix of voice and data. The major
assumption is that the voice traffic part is independent of the data stream.
This seems to be realistic, since the telephone behavior of the user as well as
data transmission are not linked in any particular way.

5.3.2 Optimization of Network Flows

We follow basically the standard idea:

Suppose Qt represents the queueing line at a server or router. The
amount of traffic in an interval [s, t], s < t can be represented by

As,t = At −As

If C > 0 denotes the capacity of the router or server, then we have
for the net amount of the traffic (i.e. the queue length)

Q̃s,t = (At −As) − C(t− s)

Since queues can build up, we have finally

Qt = sup
s≤t

Q̃s,t = sup
s≤t

((At −As) − C(t− s))

Up to now we investigated and described the traffic and its key values like
queueing behavior with the help of long-range dependence processes. In the
next two sections we consider an important question for network designers or
maintainers: optimization. Certainly, we can only present a short insight in
this vast area. We start with a simple example of N buffers or servers, which
are linked together in a network described in the figure 5.20.

Fig. 5.20. Mesh of servers an routers
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Each router i, i = 1, . . . , N, is connected with another connection determined
by the pair of buffer (server) j, j = 1, . . . , N . At the beginning of the network
the incoming traffic is splitted by the router R into the N connections. We
denote the accumulated traffic amount at the beginning (before R) by At and
the respective amount at the buffer i by A

(i)
t . Thus,

N∑

i=1

A
(i)
t = At

Each buffer (server) i has a capacity of Ci, i = 1, . . . , N . By using capacity
of others buffers j, j = 1, . . . , N, j �= i we can distribute the traffic amount
using by partitioning the traffic according to qi,j(t) ∈ [0, 1], meaning shuffling
capacity of j to i. Thus, for the connection i we have a new capacity of

Ci(t) = Ci

⎛

⎝1 −
N∑

j=1,j �=i
qj,i(t)

⎞

⎠+
N∑

j=1,j �=i
qi,j(t)Cj

This gives restriction to the fractions qi,j(t)

N∑

i=1,i �=j
qi,j(t) = 1, for all times t and j = 1, . . . , N

and

C =
N∑

i=1

Ci(t), for all times t

where C is a fixed given capacity of the system. The optimization problem
consists in finding the optimal fractions qi,j(t), such that the over all queue
is minimized. We denote by Qi(t) the length of the queue at the buffer i at
time t, i.e.

Qi(t) = sup
s≤t

((
A

(i)
t −A(i)

s

)
−
∫ t

s

Ci(u)du
)

Our first aim is to investigate, whether the process (Qi(t)) is a kind of self-
similar. We remind to the result of Norros [190], where Ci(u) = C = const.
We assume that Ci(·) is continuous with a self-similar integral, i.e.

There exists a H̃i ≥ 0 :
∫ αt

αs

Ci(u)du = αH̃i

∫ t

s

Ci(u)du

for all i = 1, . . . , N . Examples of self-similar integrals are functions Ci(u) = uθ

with θ ≥ 0. We get the following theorem, inspired by [190, theorem 3.1].

Theorem 5.17. Let m, H and a be given according to the Norros model
(3.38). Let the capacity function Ci(u) have self-similar integral w.r.t. Hi.
Then for any α > 0 the process Q(αt) is distributed like αH times the corre-
sponding process Q̃ with the same FBM but capacity function Ci(u)α

H̃i

αH +m−
α1−Hm.
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Proof. Since the proof is short and gives some insight, we transfer the Norros
proof for our means. We easily conclude

Q(αt)

= sup
s≤t

(
A(αt) −A(αs) −

∫ αt

αs

Ci(u)du
)

= sup
s≤t

(
mα(t− s) +

√
ma

(
B

(H)
αt −B(H)

αs − αH̃i

∫ t

s

Ci(u)du
))

d= αH sup
s≤t

(

mα1−H(t− s) +
√
ma

(

B
(H)
t −B(H)

s − αH̃i

αH

∫ t

s

Ci(u)du

))

= αH sup
s≤t

(

A(t) −A(s) −
∫ t

s

(
αH̃i

αH
Ci(u) + α1−H

)

du

)

��

The process (Q(t)) is stationary, provided the capacity function is constant.
Since we are only interested in stationary scenarios, we will assume that,
after a certain time, the function, representing the assigned new capacity,
Ci(·) = C∗

i being constant. For our needs we define certain constants, emerging
from the general model due to Norros (see section 3.3.4). We assume for each
user the model

A
(i)
t = mit +

√
aimiB

(H)
t

with independent copies of FBM w.r.t. the same Hurst exponent to reflect a
similar connection behavior as well as to keep the investigation as simple as
possible. The mean traffic amount as well as the ‘variance’ parameter ai are
specific selected for user. In contrast the Hurst exponent is equal for all users
to express the over all property of the considered network. In this respect we
define

Di = a
− 1

2H
i m

− 1
2H

i

and the function

g(y) = P

(
sup
t≥0

(
B

(H)
t − yt

)
≤ 1
)

for i = 1, . . . , N. We can investigate the following four problems.

Problem 1: Minimizing the Maximal Queueing Probability

Suppose a maximal queue length x is given. Then, depending on t, we try to
minimize the probability

P

(
max

i=1,...,N
Qi(t) > x

)
−→ min (5.49)
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This means, finding optimal control processes (qi,j(u)), is minimizing (5.49)
(remember that they are contained in the expression of the (Q(i)

t )). We can
formulate the following theorem.

Theorem 5.18. Consider the above described network. Then the optimal se-
lection for the capacity distribution is given by the vector

q∗ = (q∗i,j , i, j = 1, . . . , N, i �= j)

provided for

y∗i = Dix
−1+ 1

H

⎛

⎝Ci

⎛

⎝1 −
N∑

j=1,j �=i
q∗j,i

⎞

⎠+
N∑

j=1,j �=i
Cjq

∗
i,j

⎞

⎠

we have the relation for all i, j = 1, . . . , N, i �= j

Di
Dj

=
(
ajmj
aimj

) 1
2H

=
g′(y∗j )
g′(y∗i )

· g(y
∗
i )

g(y∗j )

where g′ denote the derivative of g.

Proof. We follow basically the proof of Norros in [190]. For this recall that
for all i = 1, . . . , N the stationary process (Q(i)

t ) is symmetric, i.e. Q(i)
0 =

supt≤0(A(t)−Ci) is distributed as supt≥0(A(t)−Ci) because of the symmetry
of the FBM. Thus, we define

p(x, β) = P

(
sup
t≥0

(
B(t)(H) − βt

)
≤ x

)

where we write B(t)(H) for the FBM with Hurst parameter H. The self-
similarity of the FBM implies

p(αx, β) = P

(
sup
t≥0

(
B

(
t

α
1
H

)
− β

α
t

)
≤ x

)
= p
(
x, α

H
1−H β

)

and finally
p(x, β) = p

(
1, x

1−H
H β

)
= g
(
x

1−H
H β

)

with the function g as defined above. Obviously, the function g is increasing
for y ≥ 0 with g(0) = 0 and limy→∞ g(y) = 1. We can conclude

P

(
max

1≤i≤N
Q

(i)
0 > x

)
(5.50)

= 1 − P

(
max

1≤i≤N
Q

(i)
t ≤ x

)

= 1 − P

(
max

1≤i≤N

(
sup
t≥0

(
B(t)(H) − C∗

i −mi√
aimi

t

)
≤ x√

aimi

))
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With the help of the independence of the copies of the FBM this results into

P

(
max

1≤i≤N
Q

(i)
0 > x

)
= 1 −

N∏

i=1

g

((
x√
aimi

) 1−H
H

· C
∗
i −mi√
aimi

)

Hence, we have to optimize the expression

q �−→
N∏

i=1

gi(q)

where

gi(q) = g

⎛

⎜
⎜
⎝Dix

−1+ 1
H

⎛

⎜
⎜
⎝Ci

⎛

⎜
⎜
⎝1 −

N∑

j=1
j �=i

qj,i

⎞

⎟
⎟
⎠+

N∑

j=1
j �=i

Cjqi,j −mi

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

and q = (qi,j , i, j = 1, . . . , N, i �= j). We partially differentiate w.r.t. to
qi,j , i �= j and obtain

∂(
N∏

i=k

gk)

∂qi,j
=

N∏

k=1
i�=k �=j

gk(q)
∂(gi · gj)
∂qi,j

(5.51)

=
N∏

k=1
i�=k �=j

gk(q)
(
DiCjx

−1+ 1
H g′i(q)gj(q) −DjCjx

−1+ 1
H g′j(q)gi(q)

)

∂(
∏

i=1

gi)

∂qj,i
=

N∏

k=1N

i�=k �=j

gk(q)
∂(gi · gj)
∂qj,i

(5.52)

=
N∏

k=1
i�=k �=j

gk(q)
(
DjCix

−1+ 1
H g′j(q)gi(q) −DiCix

−1+ 1
H g′i(q)gj(q)

)

Setting both equations (5.51) and (5.52) to 0 and dividing both by the term∏N
k=1,i �=k �=j gk(q) gives the assertion by suitable simplification. ��

Our next step is to apply the above result under a certain assumption con-
cerning the functions g, i.e. we use the lower bound and its approximation
to derive a suitable expression, which could be easily computed, in particular
evaluated by available programmes. We shortly outline the approach. For this
we return to equation (5.8), which tells us that
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P(A(i)
t − C∗t > x) ∼ exp

(
− (C∗

i −mi)2H

2H2H(1 −H)2−2Haimi
x2−2H

)

We will use a similar approximation for the function g(y)

1 − g(y) ≤ 1 − max
t≥0

Φc
(
y + 1
tH

)
∼ 1 − exp

(
−

2y2H(1 −H)2H

2H2H

)

Hence, it seems suitable for computation to assume that

g(y) = 1 − exp
(
− (y2H(1 −H)2H

2H2H

)

If we apply this to theorem 5.18 we get a condition for the optimal capacity
distribution
(
ajmj
aimi

) 1
2H

=
2H(y∗j )

2H−1

2H(y∗i )2H−1
· exp

(
−
(
(y∗j )

2H − (y∗i )
2H
) (1 −H)2H

2H2H

)

·

⎛

⎝
1 − exp

(
− (y∗i )2H(1−H)2H

2H2H

)

1 − exp
(
− (y∗j )2H(1−H)2H

2H2H

)

⎞

⎠

= exp
(
−
(
(y∗j )

2H − (y∗i )
2H
) (1 −H)2H

2H2H

)

·

⎛

⎝
1 − exp

(
− (y∗i )2H(1−H)2H

2H2H

)

1 − exp
(
− (y∗j )2H(1−H)2H

2H2H

)

⎞

⎠
(
y∗j
y∗i

)2H

for i, j = 1, . . . , N, i �= j since the derivative of exp(·) is again exp(·).

Example 5.19. We start with the example of two lines in figure 5.21. For the
Norros model, we choose a1 = 2.8, m1 = 22, a2 = 1.5, m2 = 18 and C = 500,
as initial service rate capacity C1 = C2 = 250 and H = 0.7.
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Fig. 5.21. The intersection between the horizontal flat and the manifold gives the
optimal allocation
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The two manifolds in figure 5.21 express the necessary service rate C1 and C2,
depending on the buffer capacity x and the allocation q12. The intersection
line of both manifolds gives the optimal allocation in dependence of the values
of x.
Figures 5.22 and 5.23 show the line of optimal allocations for different values
of Hurst parameter H. Negative values mean more capacity contribution for
line 1.
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Fig. 5.22. The optimal allocation q12 for traffic with H = 0.6 (upper left), 0.7
(upper right), 0.8 (lower left), and 0.9 (lower right)
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Fig. 5.23. The optimal allocation q12 for traffic with H = 0.51 (left) and 0.55
(right)
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The first observation shows that with increasing value of H the buffer value x
falls very fast, where the queueing probability surpasses the threshold ε. On
the other hand, in all situations of Hurst exponent H low values of the buffer x
requires more capacity given to the line 1 (expressed by the decreasing values
of z1 in the figures). This indicates that the more volatile traffic in line 1
(higher values of a) needs more capacity to match the required QoS.

Problem 2: Minimizing the Single Queueing Probabilities

If we consider different traffic requirements in different subnets, i.e. for differ-
ent i, i = 1, . . . , N, then (5.49) turns into: Given maximal queue lengths xi
for i = 1, . . . , N find the optimal control processes (qi,j(u)), such that

P (Qi(t) > xi) −→ min, for all i = 1, . . . , N (5.53)

We have to remark that minimizing (5.53) indicates minimizing

1 − g

((
x√
aimi

) 1−H
H

· C
∗
i −mi√
aimi

)

for all i = 1, . . . , N according to (5.50). If we define

εi = 1 − g

((
x√
aimi

) 1−H
H

· C
∗
i −mi√
aimi

)

then we have to find minimal εi. If we want to minimize on a fair level, i.e.
if we choose all minimal εi equal, then we have, since g is strictly increasing,
that all arguments of g are equal, i.e.

(
x√
aimi

) 1−H
H

· C
∗
i −mi√
aimi

=
(

x
√
ajmj

) 1−H
H

·
C∗
j −mj
√
ajmj

⇔
(

1√
aimi

) 1−H
H

· C
∗
i −mi√
aimi

=
(

1
√
ajmj

) 1−H
H

·
C∗
j −mj
√
ajmj

(5.54)

⇔
(
ajmj
aimi

) 1
2H

=
C∗
j −mj

C∗
i −mi

Example 5.20. Again we first illustrate with figure 5.24 the two line example.
We choose for the Norros model a1 = 2.8, m1 = 22, a2 = 1.5, m2 = 18, and
C = 500. The initial service rate capacity is set to C1 = C2 = 250.
Both diagrams indicate at H = 0.5 the quotient C1/C2 ≈ 3.0. With in-
creasing Hurst parameter H we see that C1 decreases and C2 increases as
expected. However, for H = 0.9 the relation of the service rate allocation is
still C1/C2 ≈ 1.8.
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Fig. 5.24. The dependence of the optimal service rate allocation C1 (left) and C2

(right) for Hurst exponents H = 0.5 to 1.0

Example 5.21. In this example we proceed with the next step of three lines
being connected. Here let a1 = 2.8, m1 = 22, a2 = 1.5, m2 = 18, a3 = 1.4,
m3 = 15, and C = 900. Again the initial service rate are equal C1 = C2 =
C3 = 300. We consider two values of H = 0.7 and H = 0.8. In the figures 5.25
we see the two optimal allocations for C2, C3 and on the vertical line C1.
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Fig. 5.25. The three manifolds intersect in the optimal point resp. optimal alloca-
tion of the three service rates C1 (vertical line) and C2 and C3 in the case of H = 0.7
(left) and H = 0.8 (right)

The optimal selection of the service rates in case of H = 0.7 are C1 = 364.3,
C2 = 201.1 and C3 = 253.3. In case of H = 0.8 we get C1 = 427.5, C2 = 212.3
and C3 = 260.2.
With this example we realize that in the Norros model an increasing Hurst
parameter implies higher service rates for lower values of a and m.

Problem 3: Minimizing the Average Queueing Probability

If we allow an overflow for some subnet i and not in the average, we consider
the optimal control problem: Find optimal processes (qi,j(u)), such that
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P

((
1
N

N∑

i=1

Qi(t)

)

> x

)

−→ min

Problem 4: Minimizing the Expected Weighted Maximal Queueing
Length

Up to now we had a local view, considering everything for a given t. Now we
look globally, i.e. over the whole time range. Given a maximal queue length
x and a preference discount rate of δ > 0 we find optimal processes (qi,j(u)),
such that

E

(∫ ∞

0

exp(−δu) max
i=1,...,N

Qi(u)du
)

−→ min (5.55)

The idea is originated from economics, where the expression in brackets rep-
resents the utility over time, thus (5.55) is minimizing the expected ‘utility’.
The discount factor ‘exp(−δu)’ evaluates future events less important than
earlier ones. In our context we used a so called risk neutral utility function
u(z) = z to ‘measure’ the maximal queue length maxi=1,...,N Qi(u) (i.e. not a
concave function u(z) = zγ

γ with γ ∈ ] −∞, 1[ as usual in economics).

Remark 5.22. The result in problem 4 is directly linked to problem 1 in the
following way, which shows that the control problem 1 can be used for solving
problem 4

E

(
max

i=1,...,N
Qi(t)

)
=
∫ ∞

0

P

(
max

i=1,...,N
Qi(t) > x

)
dx

Thus using Fubini’s theorem

E

(∫ ∞

0

exp(−δu) max
i=1,...,N

Qi(u)du
)

(5.56)

=
∫

Ω

(∫ ∞

0

exp(−δu) max
i=1,...,N

Qi(u)du
)
dP(ω)

=
∫ ∞

0

exp(−δu) ·
(∫

Ω

max
i=1,...,N

Qi(u)dP(ω)
)
du

=
∫ ∞

0

exp(−δu) · E

(
max

i=1,...,N
Qi(u)

)
du

=
∫ ∞

0

exp(−δu) ·
(∫ ∞

0

P

(
max

i=1,...,N
Qi(u) > x

)
dx

)
du

Thus, minimizing relation (5.55) is equivalent to minimize the last double in-
tegral in (5.56). But this is in turn equivalent in find the minimal function
(u, x) �−→ P (maxi=1,...,N Qi(u) > x), wich is exactly problem 1. Problem 2
and Problem 3 can be transferred to the concept of minimizing the expected
queueing length respectively. Since they do not incorporate new insights, we
skip them. Results to problems 1 to 4 will give answer to the following ques-
tions for network design and maintenance:
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• The solution to the above problems are depending on the one hand of the
overall capacity C =

∑N
i=1 Ci(t) =

∑N
i=1 Ci. In this respect the minimal

(optimal) queueing probability P (maxi=1,...,N Qi(t) > x) will be a function
on the long-range dependence parameter as well as the other traffic input
values, but also the capacity C.

• In the same way as in the previous item, we have a dependence of the
optimal probability as well as the optimal expected queue length on the
single capacities of the subnets i.

• The optimal control processes (qi,j(u)) can be used to implement programs
to channelize the traffic into networks with better or vacant capacities. This
contributes to a higher efficiency of the network.

• Since we can consider the subnets as virtual, they could represent traffic
streams with different priorities. We only have to insert for different i
different weights, to evaluate some virtual networks with higher priority.

• We used a relatively general framework by introducing the weight pro-
cesses (qi,j(u). It is possible to use certain constraints on these processes
to describe any other kind of network design than the above example.

Optimization Using Economic Equilibrium

We will consider a certain network structure with N connections, where, to
keep things basic, all have the same priority. We sketch the approach, which
we follow in detail in section 5.3.4. It should be mentioned that we outline
the approach here in a broader generality than later, since the detailed in-
vestigation in 5.3.4 will be partly elusive anyhow. The situation will be the
following:

1. The N lines are used in total by all consumers Γj , j = 1, . . . ,M . Each
line has a capacity of Ci(t), i = 1, . . . , N at time t. All consumers have
the same estimation for the available bandwidth, i.e. we have for all users
a utility function, which expresses the use of data minus the costs. So we
have as utility

u(C) = uj(C) =
Cγ

γ

with γ ∈ ]−∞, 1]. The utility function indicates that unbounded increase
of bandwidth does not automatically increase the utility estimation in the
same way. We choose a concave utility. But it is not the capacity, which
is to maximize but a compound amount:
a) First the consumer estimates her/his transferred data amount At up

to time T > 0 with the utility

u1(T ) =

{
A

γ1
T

γ1
γ1 ∈ ] −∞, 1], γ1 �= 0

log(AT )
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b) Next she/he has to subtract the price for the guaranteed bandwidth
g(Ci(t)) for consumer i with a continuous and concave function g
expressing that more bandwidth (capacity) does not mean a linear
increasing price.

u2(t) =

{
g(Ci(t))

γ2

γ2
γ2 ∈ ] −∞, 1], γ2 �= 0

log (g (Ci(t)))

c) In addition the queueing length has to be subtracted, since it would
cause negative judgment of the performance. For this we choose, de-
pending on the consumer i, a threshold of length xi > 0, which indi-
cates a waiting queue Wi(t) resp. waiting probability

u3(t) =

{
Wi(t)

γ3

γ3
γ3 ∈ ] −∞, 1], γ3 �= 0

log (Wi(t))

For all k = 1, 2, 3 we have γk ∈ ] −∞, 1] \ {0}. Finally we have for each
consumer i a optimization problem:

Vi(S) = max
Ci(t)

(

E(u1(T )) − E

(∫ T

0

u2(u)du

)

− E

(∫ T

0

u3(u)du

))

= max
Ci(t)

E

(

u1(T ) −
∫ T

0

u2(u)du−
∫ T

0

u3(u)du

)

(5.57)

2. The price of bandwidth is g(C(t)) per unit and the cost for it will be
denoted by f(C(t)). Then we have:
• the price for the consumer g(Ci(t)) and the
• cost for the provider is f(

∑N
i=1 Ci(t)).

3. The consumer maximizes her/his expected utility over the whole time
period and the provider his expected profit

E

(∫ ∞

0

exp(−δs)(g − f)

(
N∑

i=1

Ci(s)

)

ds

)

4. Since we also consider time sensitive applications in the traffic mixture,
we have to guaranty an available traffic amount with a certain threshold
as failure probability ε > 0, i.e.

P(Qt > x) < ε

This gives a constraint for the xi of mini=1,...,N xi ≥ x.
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5.3.3 Rate Control: Shadow Prices and Proportional Fairness

Following [138] we start with a model on rate control and the so called pro-
portional fairness. It is based on a paper of Kelly, Maulhoo and Tan. First,
we will sketch the basic ideas, without going into the detail description done
in the above mentioned article. Our aim is to transfer the basic idea to the
traffic models, introduced in chapter 3. We start with I as the set of sources
associated with a given capacity Ci. A route r is a non-empty subset of I and
defines a users. The set of possible routes resp. users is called R. In addition,
we need a matrix A = (air) with i ∈ I and r ∈ R. We have air = 1, if i ∈ r,
i.e. the source i lies on the route of r and air = 0 otherwise. Thus, A is a 0−1
matrix. We assign to each route r a rate xr. This rate gives, depending on the
users a certain utility, i.e for all r let ur be an increasing and strictly concave
function on the set of all xr ≥ 0. A traffic, which leads to such a utility func-
tion is called elastic, which we already associated with the pure data traffic.
In contrast to this is the time sensitive or inelastic traffic: here the utility is
0 below a certain threshold x∗, since below that rate voice or other time sen-
sitive traffic would have no required quality. Thus, the utility function would
be in that region never be strictly concave (see [229]). We assume further that
the utility is additive giving an overall utility of the system by

∑
r∈R ur(xr).

We can look at the optimization problem from different point of view: the
system optimization, user optimization and network optimization.

System optimization S(u,A, C). The aim is to find the optimal vector
x̃ = (xr, r ∈ R) which fulfills the following control problem

sup
x̃∈X

∑

r∈R
ur(xr)

subject to Ax̃ ≤ C and x̃ ≥ 0 where C = (Ci, i ∈ I).

The optimization problem is mathematical tractable with the usual assump-
tion. But it involves utility functions, which in practice is hard to specify.
Hence, the problem is splitted into two subproblems: Users optimization and
network optimization. For this we denote by wr a price per unit time and
receive in turn a flow of xr, which is proportional to wr, e.g. xr = wr

λr
. Thus

λr is the charge per unit flow of the user. Hence, we get a single optimization
problem for each user:

User optimization Ur(ur, C).
(
ur

(
wr
λr

)
− wr

)
−→ max, for wr ≥ 0

Suppose now that the network knows the vector w = (wr, r ∈ R) and tries to
maximize its utility function

∑
r∈R wr log xr Then, we get the optimization

problem for the network:
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Network optimization (A, C, w).
∑

r∈R
wr log xr −→ max

subject to A ≤ C for x ≥ 0.

We note a fact due to [137].

Theorem 5.23. There exists always a vector λ = (λr, r ∈ R), so that for
w = (wr, r ∈ R) and x = (xr, r ∈ R) satisfying wr = λrxr for all r ∈ R, the
vector w solves the User Ur(ur, C) problem (r ∈ R )and x solves the Network
(A, C, w) problem. In particular the vector x is the unique solution for the
system problem (u,A, C).

We call a vector x = (xr, r ∈ R) proportional fair, if it is feasible, that is
x ≥ 0 with Ax ≤ C, and if for any other feasible vector x̃ the aggregate of
proportional changes is negative, i.e.

∑

r∈R

x̃r − xr
xr

≤ 0 (5.58)

We should mention that we will use a continuous version of (5.58), which we
will call in the context of stochastic perturbation later, stochastic growth rate.
In fact, in economics this factor in the non-stochastic case is well known for
determine steady state growth rates.
Suppose wr = 1, r ∈ R, then the vector x solves Network(A,C,w), if and
only if x is proportional fair. This vector x is a so called Nash bargaining
solution (i.e. satisfying certain axioms of fairness, see e.g. [96]). In [178] we
find this idea transferred to the context of telecommunication.
We can finally state that for a vector x the rates per unit change are propor-
tionally fair, if x is feasible and if for all other feasible vectors x̃ we have

∑

r∈R
wr

x̃r − xr
xr

≤ 0

Let us mention that, if we solve the network problem for a given vector of
prices w = (wr, r ∈ R), then the resulting optimal rate vector x solves a
slightly different system problem with weighted utility

∑
r∈R αrur(xr), where

αr = wr

xru′(xr) . We can say that the choice of prices w by the network corre-
sponds implicitly to the fact that the network weights the single users util-
ities respectively. We decompose the optimization problem system into the
two blocks of user and network. For the network problem the single utility
is not required, since it is already given by the special form of the function∑
r∈R wr log xr. Hence, for solving the network problem we consider the Lan-

grangian
L(x, z, µ) =

∑

r∈R
wr log xr + µT (C −Ax− z)
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where z ≥ 0 is a slack variable, and µ is the vector of Lagrange multipliers or
shadow prices. We have as necessary optimal condition

∂L

∂xr
=

wr
xr

−
∑

i∈r
µi

We get for the optimal unique solution

xr =
wr∑
i∈r µi

(5.59)

where the vectors x = (xr, r ∈ R) and (µi, i ∈ I) solve

µ ≥ 0, Ax ≤ C, µT (C −Ax) = 0

and (5.59).
Before we consider the driving equation for the rate xr and its solution, we
introduce the so called Dual problem, where we optimize over the shadow
prices µ:

Dual (A, C, w). Optimize the vector µ = (µi, i ∈ I) such that

max
∑

r∈R
wr log

(
∑

i∈I
µi

)

−
∑

i∈I
µiCi

under the restriction µ ≥ 0.

We start considering the basic system of differential equations. The underly-
ing idea is the following. The network is offering a certain rate xr for each
user/route r, whose change dxr

dt is proportional to the rate itself with the
constant λr. Hence, we first get

dxr
dt

= κλrxr = κwr

where κ is a still free selectable constant. Now suppose for all nodes i with
i ∈ r (for a fixed route r) the provider of this node requires a certain price
pi, depending of the rates going through this nodes, i.e. pi(

∑
s:i∈s xs). This

means that the price depends on the whole through traffic from other routes
running through node i. In turn, this effects our user r, who tries to adjust
the rate xr by the price xr

∑
i∈r µi(t) with µi(t) = pi

(∑
s:i∈s xs(t)

)
. Hence,

this results in the following system

d

dt
xr(t) = κ

(

λrxr − xr
∑

i∈r
µi(t)

)

(5.60)

where
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µi(t) = pi

(
∑

s:i∈s
xs(t)

)

(5.61)

But we can give an alternative explanation. This will be important, when we
describe the stochastic perturbations. Each node or source i gives a feedback
signal of rate pi(y) with total flow through i of y. It is assumed that a copy
is sent to the user, who adjusts the rate according to the feedback signal for
avoiding the congestion. So, the steady increase of the rate according to the
term λxr is partially compensated by the rate (as subtraction) xr

∑
i∈r pi(y).

Thus, this results in (5.60).
In the next subsection we will consider the following function U which will
serve under some mild assumption to pi as a Lyapunov function.

U(x) =
∑

r∈R
wr log xr −

∑

i∈I

∫ ∑
s:i∈s xs

0

pj(y)dy

where x = (xs, s ∈ R). Let’s give some interpretation into this function. It
shows on the right hand side first the term for maximizing the total ‘util-
ity’ of the network by

∑
r∈R wr log xr. This is corrected by the ‘feedback sig-

nal’
∑
i∈I
∫ ∑

s:i∈s xs

0
pj(y)dy. Hence, maximizing the above Lyapunov function

gives an arbitrary close solution to the above mentioned network optimization
problem.

Lyaponov Approach and Stochastic Perturbations

Define for certain price functions pi under mild conditions the function

U(x) =
∑

r∈R
wr log xr −

∑

i∈I

∫ ∑
s:i∈s xs

0

pi(z)dz

As the next theorem tells us, the function U serves as a Lyapunov function
for the system of differential equations (5.60) and (5.61). This means that
an extremum of the function is a stable point of the system of differential
equations. For this let pi for i ∈ I be non-negative, increasing and not identical
0 defined on the interval [0,∞[.

Theorem 5.24. (Kelly, Maulhoo, Tan [138]) Under the above restriction the
concave function U provides a Lyapunov function for the system of differential
equations (5.60) and (5.61). The unique value x maximising U is a stable point
of the differential equation, where all trajectories converge in.

We linearise the system in a neighbourhood of the stable point x∗ = (x∗
r)r∈R

of the system (5.60) and (5.61) by the approach xr(t) = x∗
r+x

1
2 yr(t) according

to the system of linear equations, which reads as
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d

dt
yr(t) = −κ

(

yr(t)
∑

i∈r
µi + x

1
2
r

∑

i∈r
p′i
∑

s:i∈s
x

1
2
s ys(t)

)

= −κ

(
wr
xr

yr(t) + x
1
2
r

∑

i∈r

∑

s:i∈s
p′iairaisx

1
2
s ys(t)

)

(here p′i is the derivative of the function pi). In matrix form this results in

d

dt
yr(t) = −κ

(
WX−1 + X

1
2ATP ′AX

1
2

)
y(t)

where X =diag(xr, r ∈ R), W =diag(wr, r ∈ R) and P ′ =diag(p′i, i ∈ I). The
matrix

WX−1 + X
1
2ATP ′AX

1
2 (5.62)

is real-valued, symmetric and positive definite. Hence, we can find an orthogo-
nal matrix Γ (in particular ΓΓT = Id) and a matrix Φ, the matrix of positive
eigenvalues of (5.62) in the diagonal, i.e. Φ =diag(φr, r ∈ R). Then, we have

ΓTΦΓ = WX−1 + X
1
2ATP ′WX

1
2

This results in
d

dt
yr(t) = −κΓTΦΓy(t) (5.63)

Hence, the speed of convergence to the stable point is determined by the
smallest eigenvalue of the matrix (5.62). The next step is to investigate a
stochastic perturbation of the linearised equation (5.63).

dyr(t) = −κ
(
ΓTΦΓy(t)dt + FdB(H)(t)

)
(5.64)

where F is an arbitrary cardR×cardI matrix and B(H)(t) = (B(H)
i (t), i ∈ I)

is a family of independent standard fractional Brownian motions to the Hurst
parameter H. As solution we get (see [35])

y(t) = −κ

∫ t

−∞
exp
(
−κ (t− τ)ΓTΦΓ

)
FdB(H)(τ)

Σ = E(y(t)y(t)T ) = κ2

∫ 0

−∞
exp
(
κτΓTΦΓ

)
FFT exp

(
κτΓTΦΓ

)
dτ

= κΓT
(∫ 0

−∞
exp(τΦ)ΓFFTΓT exp(τΦ)dτ

)
Γ (5.65)

Define the symmetric matrix [ΓF ;Φ] according to

[ΓF ;Φ]rs =
(∫ 0

−∞
exp(τΦ)ΓFFTΓT exp(τΦ)dτ

)

rs

=
(ΓFFTΓT )rs

φr + φs

Then, we obtain
Σ = κΓT [ΓF ;Φ]Γ
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Stochastic Version of (5.60) and (5.61)

Up to now we used a deterministic approach: the rate xr was driven by a fixed
price λr for the available bandwidth and a diminishing factor µi, depending on
the node i used by route r ∈ R, which is considered as a Langrange multiplier
or for further interpretation as fair price. In the sequel, we want to incorporate
the certainly existing random factor. The network, which we consider, is on the
one hand ‘deterministic’ constructed by using certain routes, but the impact
of the selection of the services, like WWW, FTP or Email beside the pure
data transfer, requires the introduction of factors of uncertainty. We start in
the next equation with the usual factor

dxr(t) = κwrdt = κλrxr(t)dt (5.66)

The rate given by equation (5.66) is reduced by an algorithm given according
to congestion in node i ∈ I. Thus, we describe the individual rate of route
r ∈ R by

dxr(t) = κ

(

wrdt− xr(t)
∑

i∈r
εidNi

(
ε−1
i

∫ t

0

µi(τ)dτ
))

(5.67)

with independent Poisson processes Ni and rate ε−1
i

∫ t
0
µi(τ)dτ . The descrip-

tion resp. quantitative evaluation is more elusive than considering a limit.
Thus, with ε → 0 we get in the limit a Brownian motion and the equation

dxr(t) = κ

(

wrdt− xr(t)
∑

i∈r

(
µi(t)dt + ε

1
2
i µi(t)

1
2 dBi(t)

)
)

(5.68)

where the (Bi(t))t≥0 are a family of independent standard Brownian motions
for t ≥ 0, i ∈ I. Considering the linearised version according to (5.63) gives
exactly (5.64), where we have B(t) = (Bi(t), i ∈ I) and F is a |R|×|I|-matrix
with components

Fri = ε
1
2
i µ

1
2
i Airx

1
2
r

This turns into
FFT = X

1
2 ·AT · E · P ·A ·X 1

2

where E =diag(εi, i ∈ I) and P =diag(µi, i ∈ I). Finally, we obtain a station-
ary covariance matrix Σ, which can be calculated by (5.65). Equation (5.67)
can be changed to an individual feedback, which we will consider in the next
subsection in a broader view. The basic difference consists in splitting the
Poisson process Ni into individual ones Nir.

Remark 5.25. In this subsection we introduced the rate model of Kelly,
Maulhoo and Tan, which we will use as basis for a further study of eco-
nomic optimization in the succeeding subsections incorporating stochastic
perturbations:
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• The above approach using the Lyaponov approach to find stability results
is as just mentioned investigated in details, e.g. in the papers [138, 136].
The paper [138] establishes parallel to the above Lyaponov technic for
the network problem the Lyaponov-type the result for the dual algorithm,
which we formulated in the equations (5.60) and (5.61). We skip the details
and refer to the original literature [138].

• Also in [138] further topics are treated, like user adaptions – the user
can instantly monitor her/his rate and adapt the parameter by optimized
decision – and a more general optimization approach, where the restriction
Ax ≤ C is substituted by a penalty, expressed by certain delay and loss
factors. A similar idea we will follow up in the next subsection.

• In the subsection 5.76 we are concerned with a more general perturbation

dxr(t) = κ

(

λrxr(t)dt− xr(t)
∑

i∈r
εidNi

(
ε−1
i

∫ t

0

µi(τ)dτ
))

+xr(t)FrdB(H)(t)

The major difference to equation (5.67) resp. (5.68) consists in the use
of the fractional Brownian motion in conjunction with a family of inde-
pendent Poisson process. The latter ones should incorporate a short rate
dependence and give tribute to the idea of the mixed traffic, whose model
was shortly introduced in subsection 5.3.2. Here, we will investigate the
impact of the used factors on the optimal rate as well as in certain alloca-
tion of network resources on the basis of economic viewpoint. The other
difference to the Kelly, Maulhoo and Tan model is established by the truly
existing fact of long-range dependence as widely investigated by us (and
the research community), using the FBM. In fact, the relative rate dxr

xr

is nothing else as the accumulated traffic model due to Norros, with the
slight difference of the Poisson factor. But here we are back to the model
in subsection 5.3.2.

5.3.4 Optimization for Stochastic Perturbation

Different to the above approach, using Lyapunov functions, we apply the
classical optimal control tools. First we start with the network view, i.e. we
optimize the income of the network and find an optimal solution, depending
on certain constraints. Next, we will optimize the constraints according to
each user to get an equilibrium.
First, we simply describe the model and will specify mathematically the used
variables. The basic scenario is transferred from the model in section 5.3.3.
In general depending on a price πr for a unit of rate xr, the change of offer is
proportional. Hence,

dxr = πrxrdt

for each route or user r. This basic proportional rate is diminished by a certain
price µi,r, proportional to xr for using the nodes i ∈ Ir. Here, Ir is the subset
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of resources met by the route (user) r ∈ R. Expressed in the differential
equation, it looks like

dxr(t) = πr(t)xr(t)dt− xr(t)
∑

i∈Ir

µi,r(t)dt

for r ∈ R. On the other hand the multiplier µi,r leads to a congestion at node
i which gives a feedback signal to the user to decrease the rate. The amount is
depending on a certain factor εi and as a stochastic event occurring according
to a stationary Poisson process Ni,r, r ∈ R, i ∈ Ir, with rate λiµi,r, which
are assumed to be mutually independent, since the congestion and subsequent
decision are independent of each other. Thus, we get a stochastic differential
equation of the form

dxr(t) = πr(t)xr(t)dt− xr(t)
∑

i∈Ir

(µi,r(t)dt + εidNi(µi,r))

for r ∈ R. In addition, we incorporate an improvement of the network. This
improvement is expressed by a better performance of each node, which in-
creases the rate for these particular bottlenecks. We model it by a family of
independent Poisson processes Mi,r and factors ε̃r. The rate is similar to the
congestion and modeled by a rate λ̃Di,r. The factor Di,r ∈ [0, 1] is an invest-
ment factor of the network provider for the route r and the node or bottleneck
i ∈ Ir. Thus, this factor will decrease the income of the network. Therefore
we obtain the next form of the equation

dxr(t) = πr(t)xr(t)dt−
∑

i∈Ir

(µi,r(t)xr(t)dt + εi,r(t)xr(t)dNi,r(µi,r))

+xr(t)
∑

i∈Ir

ε̃r(t)dMi,r(Di,r)

for r ∈ R. Finally, we have to take a long-range component into account,
depending on the rate xr and an additional scaling factor a. It will be modeled
by the FBM for a Hurst parameter H ∈ ]12 , 1[, since we want to incorporate
the over all LRD property. We choose the FBM independent of the Poisson
processes. Over all we obtain the stochastic differential equation for the rate xr

dxr(t) = κ

(

πr(t)xr(t)dt− xr(t)
∑

i∈Ir

(µi,r(t)dt + εi(t)dNi,r(µi)) (5.69)

+xr(t)
∑

i∈Ir

ε̃r(t)dMi,r(Di,r) + axr(t)dB
(H)
t

)

The scaling parameter κ will be set 1, since we do not want to overload the
solutions by constants not necessary needed for the qualitative description of
the model.
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Next, we select the function for maximizing the utility of the network. First,
we have to specify the ‘income’ of the network. We choose a weight parameter
θ ∈ ]0, 1[ and define the weighted income for one route and one node, according
to the Cobb-Douglas production function(see [10])

Fi,r(R,D) = Rθi,r (1 −Di,r)
1−θ (5.70)

where Ri,r = µi,rxr for i ∈ Ir and r ∈ R. The amount Ri,r can be interpreted
as the income of the throughput of resource i generated by user or route r. This
amount is multiplied by a factor of increase 1 −Di,r, where Di,r gives more
efficiency to the throughput, but in turn decreases the income and thus, we
multiply by 1−Di,r. The factor 1−Di,r reflects the fact that less improvement
on the net structure (small Di,r) depending on the route r and node i, will
in turn offer more income for the network. Each of these incomes is again
weighted by utility. As usual, higher profit does not necessarily result in a
linearly higher considered utility. Thus, we choose for the model a function
u : [0,∞[−→ R, u(x) = xγ

1−γ with γ ∈ ]−∞, 1[ to illustrate that higher income
will not increase the utility in the same manner. Those utility functions are
called risk averse. Other functions like the logarithm are also possible. Hence,
the over all utility would be

u(F (R,D)) =
∑

r∈R

(
∑

i∈I

(
Rθi,r (1 −Di,r)

1−θ
)γ
)

(5.71)

with R = (Ri,r, i ∈ Ir, r ∈ R) and D = (Di,r, i ∈ Ir, r ∈ R). Obviously, the
amount Ri,r is the income received from user (route) r for using resource i as
the product of rate xr and price µi,r.
Before we come to the optimal control problem, we shortly comment on the
stochastic growth rate, which is the relative change to the rate itself in the
context of (5.69)

dxr
xr

= κ

(

πrdt−
(
∑

i∈Ir

µi,rdt +
∑

i∈Ir

εidNi,r(µi,r)

)

+
∑

i∈Ir

ε̃r(t)dMi,r(Di,r) + adB
(H)
t

)

Thus, the right hand side defines a stochastic equation for a process (Yr(t)).
If we skip the Poisson processes, we get an equation in the from, which is
basically known to us as the model of Norros from section 3.3.4

dYr(t) = κ

(

πrdt−
(
∑

i∈Ir

µi,rdt +
∑

i∈Ir

εidNi,r(µi,r)

)

+
∑

i∈Ir

ε̃r(t)dMi,r(Di,r) + aπrdB
(H)
t

)
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In general, the (control-)variables µi,r and Di,r as well as πr are stochastic
processes. We will later specify the property to ensure an appropriate solvabil-
ity of equation (5.69). In particular, we encounter a differential equation with
fractional Brownian motion. As in the Norros approach, we want to obtain
stability. Thus, we are interested in a stability condition

E

(
dxr
xr

)
= E (dYr(t)) = Adt

with a variable A ∈ R which will be determined later as the optimal condition.
This results for all initial conditions Yr(u) = Yu in the solution of the form

Yr(T ) = A(T − u) + Yu (5.72)

where Yu is a given and integrable random variable. Before we proceed, we
have to give some results on the stochastic calculus for the FBM.

Stochastic Calculus for the Fractional Brownian Motion

In the sequel we consider a fractional Brownian motion for 1
2 < H < 1,

since then, we know that the covariance decays slowly. Fundamental for the
stochastic calculus is the Malliavin derivative Dt0Xt0 for a stochastic process
(Xt)t∈R at time t0 (see [73, 114, 33] for details). Further set

ψ(s, t) = H(2H − 1)|s− t|2H−2

CH =
(

2Γ
(
H − 1

2

)
cos
(
π

2

(
H − 1

2

)))−1

(Γ (2H + 1) sin(πH))
1
2

with the Gamma function Γ (x) =
∫∞
0

tx−1e−tdt. Then, we define the space
of underlying processes for the optimal control problem.

Definition 5.26. The space L1,2
ψ (R) consists of all processes (Xt) such that

‖X‖2
L1,2

ψ (R)
= E

(∫

R2
XsXtdsdt +

(∫

R

(∫

R

ψ(s, t)DtXtdt
)
Xsds

)2
)

< ∞

For all following applications the condition will be satisfied, and this is the
class of processes, for which one can define a suitable integration theory, such
that in particular theorem 5.27 holds. If we have a deterministic process f(t)
(not depending on a probability space Ω), then

|f |2ψ = ‖f‖2
L1,2

ψ (R)
=
∫

R2
f(s)f(t)ψ(s, t)dsdt

We start with citing without proofs some results on the integral with respect
to the FBM.
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Theorem 5.27. For any process X ∈ L1,2
ψ (R)2 we have

E

(∫

R

Xt(ω)dB(H)
t

)
= 0

Theorem 5.28. (Fractional Girsanov theorem, see [114, 35]). Let T > 0 and
let g : [0, T ] −→ R be continuous. Let further K : [0, T ] −→ R satisfy the
equation ∫ T

0

K(s)ψ(s, t)ds = g(t), 0 ≤ t ≤ T

and extend K to all of R, such that K(s) = 0 for s �∈ [0, T ]. Then, define the
probability measure P̂ by

dP̂(ω) = exp

(

−
∫ T

0

K(s)dB(H)
s − 1

2
|K|2ψ

)

dP(ω)

Then

B̂
(H)
t =

∫ t

0

g(s)ds + B
(H)
t

is a fractional Brownian motion in the probability space (Ω,F , P̂).

We recall the natural filtration (F (H)
t ) with respect to the Brownian motion,

i.e. the σ-algebra generated by the path of fractional Brownian motion up to
the time t

F (H)
t = σ

(
B(H)
s ; s ≤ t

)

We have to introduce the quasi-conditional expectation and quasi-martingales.
A random variable X with formal expansion

X(ω) =
∞∑

n=0

∫

[0,T ]n
fndB

(H),⊗n
t , fn ∈ L2

ψ ([0, T ]n) (5.73)

is defined to lie in the space G(P), if there is a q ∈ N such that

‖X‖G,−q =
∞∑

n=0

n!‖fn‖2
L2

ψ([0,T ]n)e
−2qn < ∞

Then, we define for a random variable X of the form (5.73)

Ẽ
(
F |F (H)

t

)
=

∞∑

n=0

∫

[0,t]n
fndB

(H),⊗n
t

A process (Xt) adapted to the filtration (Ft) is called a quasi-martingale, if

Ẽ
(
Xt|F (H)

s

)
= Xs, for all s ≤ t
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Theorem 5.29. For any X ∈ L1,2
ψ (R) the process

M(t) =
∫ t

0

Xt(ω)dB(H)
t , t ≥ 0

is a quasi-martingale. In particular, for all t ≥ 0

E(M(t)) = E(M(0)) = 0

Theorem 5.30. (Fractional Clark-Haussmann-Ocone (CHO) theorem, see
[114]) Suppose G ∈ L2(P) is F (H)

T -measurable. Define

ϑ(t, ω) = Ẽ
(
DtG|F (H)

t

)

Then we have
ϑ ∈ L1,2

ψ (R)

and

G(ω) = E(G) +
∫ T

0

ϑ(t, ω)dB(H)
t

where DtG = dG
dω (t, ω) is the Malliavin derivative or stochastic gradient of G

at t, which exists almost surely in G(P) (see [114]).

Finally we come to the stochastic differential equation with fractional Brow-
nian motion as driving term. For this, let α, β ∈ L1,2

ψ (R). By the differential
equation

dXt = αtdt + βtdB
(H)
t

we mean the process in integral form

Xt = X0 +
∫ t

0

α(s)ds +
∫ t

0

β(s)dB(H)
s (5.74)

If α(s) = µ(s,Xs) and β(s) = σ(s,X(s)), we call (5.74) a stochastic differen-
tial equation in X. Suppose now that α(s) = µ(s)Xs and β(s) = βXs with α
deterministic and β ∈ R, then it is possible to give a solution of (5.74)

Theorem 5.31. (see [33]) Let α ∈ L2
ψ(R) and β ∈ R. Then

Xt = X0 exp
(
βB

(H)
t +

∫ t

0

α(s)ds− βt2H
)

is the solution of the differential equation (5.74) with initial value X0 for
t = 0.

In stochastic analysis the Itō formula plays a decisive rôle (see e.g. [231, 153]).
How can one formulate such a formula for the fractional Brownian motion?
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Theorem 5.32. (Fractional Itō formula, see [33]) Let (Xt) be a process satis-
fying with initial condition X0 the stochastic differential equation (5.74). Let
F : R −→ R be twice differentiable. Then

F (Xt) = F (X0) =
∫ t

0

F ′(Xs)α(s)ds +
∫ t

0

F ′(Xs)β(s)dB(H)
s

+
∫ t

0

F ′′(Xs)DsXsβ(s)ds

where DsXs is the Malliavin derivative of X at time s.

For details on the stochastic calculus of the FBM we refer to [226, 35].
Finally, we state two theorems, which give the solution of a stochastic differen-
tial equation for the perturbation of Poisson and fractional Brownian motion.
The proof and further results can be found in [161, 162].

Theorem 5.33. The following stochastic differential with constants a, b �= 0
and c > −1

dYt = aYtdt + bYtdB
(H)
t + cYtdNt, t ≥ 0

as shorthand notation for

Yt = Y0 +
∫ t

0

aYsds +
∫ t

0

bYsdB
(H)
s +

∫ t

0

cYsdNs

is uniquely solved by the geometric fractional Brownian-Poissonian motion

Yt = Y0 exp
(
at + bB

(H)
t − 1

2
b2t2H + ln(1 + c)Nt

)

Theorem 5.34. Let a(·), b(·), c(·) be deterministic functions then the stochas-
tic differential equation

dYt = a(t)Ytdt + b(t)YtdB
(H)
t + c(t)YtdNt, t ≥ 0

which is a shorthand notation for

Yt = Y0 +
∫ t

0

a(s)Ysds +
∫ t

0

b(s)YsdB(H)
s +

∫ t

0

c(s)YsdNs

can be uniquely solved by the geometric fractional Brownian-Poissonian mo-
tion

Yt = Y0 exp
(∫ t

0

a(s)ds +
∫ t

0

b(s)dB(H)
s − 1

2

∫

R

(
Ms

(
b(s)χ[0,t](s)

))2
ds

+
∫ t

0

ln(1 + c(s))dNs

)
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5.3.5 Optimization of Network Flows Using an Utility Approach

The optimization with Poisson or Brownian motion perturbations are classical
implemented in the optimal control theory and done in several monographs.
The reader may consult e.g. [231, 162]. The problem, we are encountered,
consists in a perturbation of Poisson and fractional Brownian motion. For the
combined Poisson and Brownian motion case, the Itō formula is fundamental,
once for the Hamilton-Jacobi-Bellman equation and second for the explicit
solution. The latter one was done e.g. by [110], the first one is folklore. To
transfer the technique to the fractional Brownian motion case we have to
introduce the Malliavin derivative, as e.g. indicated above in theorem 5.32,
called fractional Itō formula. The drawback consists in the application of the
Malliavin derivative. In like paper [113] resp. in the monograph [35], the rep-
resentation is not very suitable. But, the technique using Lagrange multipliers
as done e.g. in [113] can be applied in certain situations to find the optimal
solution in our network situation.
Before we start with finding the optimal prices and transmission rates, we
introduce some notions for a general stochastic process used in economics.

Definition 5.35. A stochastic process (Yt) is in steady state, if the derivative
of the function t → E[Yt] is constant or E(dYt) = Adt for a suitable A ∈ R.

We return to the control problem and want to solve it by maximizing the
expected utility, given according to equation (5.71) in section 5.3.4. Looking
at its expectation by applying Fubini’s theorem, we obtain for a solution of
equation (5.72)

E(YT ) = E(Yu) + E

(

κ

(∫ T

u

πrdt−
(
∑

i∈Ir

µi,rdt +
∑

i∈Ir

εidNi,r(µi,r)

)

+
∑

i∈Ir

ε̃r(t)dMi,r(Di,r) +
∫ T

u

aπrdB
(H)
t

))

(5.75)

= E(Yu) + κ

(∫ T

u

πr(s)ds−
∫ T

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds

+
∫ T

u

∑

i∈Ir

ε̃rλ̃E(Di,r(u))ds

)

since the expectation of the FBM is 0 (see theorem 5.27), E(dNi,r(s)) =
λiµi,r(s))ds and E(dMi,r(s)) = λ̃E(Di,r(s))ds for the used Poisson processes
with intensities λiµi(s) and λ̃E(Di,r(s)) (see eg. [230, 231, 162]). In view of
(5.75), we define the following process
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Ỹt = E(Yu) + κ

(∫ t

u

πr(s)ds−
∫ t

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds

+
∫ t

u

∑

i∈Ir

ε̃rλ̃E(Di,r(u))ds

)

This yields for all t ≥ 0 to

E(Yt) = E(Ỹt) and E(dYt) = E(dỸt)

Thus, we can consider the process (Yt) as the growth rate of the data rate
process (xr(t)), which is driven by the fractional Brownian motion. Setting
x = (xr, r ∈ R) and fixing T > u > 0, we are able to formulate the optimal
control problem (P1) under steady state by

(P1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (x) = maxR(t),D(t) E
(∫ T
u
e−δtu(C(t))dt

)

C(t) = F (Rt,Dt)

dxr(t) = κxr(t)
(
πr(t)dt−

∑
i∈Ir (µi,r(t)dt + εi(t)dNi,r(µi))

+
∑
i∈Ir ε̃r(t)dMi,r(Di,r) + aπrdB

(H)
t

)
, for all r ∈ R

E(dYt) = Adt
R(t), D(t), 1 −D(t) ≥ 0, x(t) ≥ 0, for all t ≥ u

where we used the notation R(t), D(t) ≥ 0 meaning componentwise, and
where we imposed the condition 1−D(t), to indicate that each factor Di,r does
not exceed 1. For simplicity we assume κ = 1. Apart from this Ri,r = µi,rxr(t)
is chosen to be our Markov control, where (µ(t)) = ((µi,r(t), i ∈ Ir, r ∈ R))
is an adapted processes uncorrelated to (xt) (see [230]).
To find the optimal solution, we transform this problem into an equivalent
unconstraint optimization problem (P1)′ given by

(P1)′

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṽϕu
(x) = maxR(t),L(t) E

(
∫ T
u
e−δtu(C(t))dt− ϕu

(
∑
r∈R

(
∫ T
u
πr(s)

−
∫ T
u

∑
i∈Ir (1 + λεi)µi,r(s)ds +

∫ T
u

∑
i∈Ir ε̃rdMi,r(s)

)))

C(t) = F (R(t),D(t))

dxr(t) = κxr(t)
(
πr(t)dt−

∑
i∈Ir (µi(t)dt + εi(t)dNi,r(µi))

+
∑
i∈Ir ε̃r(t)dMi,r(Di,r) + aπrdB

(H)
t

)
, for all r ∈ R

E(dYt) = Adt
R(t), D(t), 1 −D(t) ≥ 0, x(t) ≥ 0, for all t ≥ u

where ϕu is an integrable random variable, which is uncorrelated to the incre-
ments of the process (Ni,r(s))u<s≤T and (µ(s))u<s≤T . At the end, we have to
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check for the Lagrange variable ϕu, if these assumptions are fulfilled. Suppose
we found for the problem (P1)′ the optimal pair ((R∗

t )t≤T , (D
∗
t )t≤T ) and ϕ∗

u

and ((Rt), (Dt)) is any pair solving the original problem, then

E

(∫ T

u

e−δt
∑

r∈R

∑

i∈Ir

Rθγt (1 −Dt)γ(1−θ)

γ
dt

)

= E

(∫ T

u

e−δt
∑

r∈R

∑

i∈Ir

Rθγi,r(t)(1 −Di,r(t))γ(1−θ)

γ
dt

−ϕ∗
u

(∫ T

u

πr(s)ds−
∫ T

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds

+
∫ T

u

∑

i∈Ir

ε̃rdMi,r(s)

)

+ ϕ∗
u (A(T − u))

)

= E

(∫ T

u

e−δt
∑

r∈R

∑

i∈Ir

Rθγi,r(t)(1 −Di,r(t))γ(1−θ)

γ
dt

)

−ϕ∗
u

(

E

(∫ T

u

πr(s)ds−
∫ T

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds

+
∫ T

u

∑

i∈Ir

ε̃rdMi,r(s)

)

+ ϕ∗
u (A(T − u))

)

≤ E

(∫ T

u

e−δt
∑

r∈R

∑

i∈Ir

(R∗
i,r)

θγ(t)(1 −D∗
i,r(t))

γ(1−θ)

γ
dt

)

−ϕ∗
u

(

E

(∫ T

u

πr(s)ds−
∫ T

u

∑

i∈Ir

(1 + λεi)µ∗
i,r(s)ds

+
∫ T

u

∑

i∈Ir

ε̃rdM
∗
i,r(s)

)

+ ϕ∗
u (A(T − u))

)

= E

(∫ T

u

e−δt
(R∗
i,r(t))

θγ(1 −D∗
i,r(t))

γ(1−θ)

γ
dt

)

where we used in the second and last equation that ϕ∗
u is uncorrelated to

(Mi,r(s))s<T and (µs)s<T , and that

E

(∫ t

u

πr(s)ds−
∫ t

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds +
∫ t

u

∑

i∈Ir

ε̃r(s)dMi,r(s)

)

= E

(∫ t

u

πr(s)ds−
∫ t

u

∑

i∈Ir

(1 + λεi)µi,r(s)ds +
∫ t

u

∑

i∈Ir

λ̃ε̃r(s)Di,r(s)ds

)

= E(Yr(T )) − E(Yr(u)) = A(T − u)
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This shows that an optimal solution of the original problem (P1) is implied
by the optimal solution of (P1)′.
By the identity E(Yt) = E(Ỹt), the value Ṽϕu

(S) function can be rewritten as

Ṽϕu
(S) = max

R(t),D(t)
E

((∫ T

u

e−δs
∑

r∈R

∑

i∈Ir

Rθγi,r(t)Di,r(t)
γ(1−θ)

γ
ds

)

(5.76)

−ϕu

(
∑

r∈R

(∫ T

u

πrds−
∑

i∈Ir

∫ T

u

(1 + λεi)µi,r(s)ds

+
∑

i∈Ir

∫ T

u

λ̃ε̃r(s)Di,r(s)ds

)))

The corresponding solution is given by finding the optimum of the function

G(R,D)

= e−δs
∑

r∈R

∑

i∈Ir

Rθγi,r(s)Di,r(s)
γ(1−θ)

γ

+ϕu

(
∑

r∈R

(

πr(s) −
∑

i∈Ir

(1 + λεi)µi,r(s) +
∑

i∈Ir

λ̃ε̃r(s)Di,r(s)

))

= e−δs
∑

r∈R

∑

i∈Ir

Rθγi,r(s)Di,r(s)
γ(1−θ)

γ

+ϕu

(
∑

r∈R

(

πr(s) +
∑

i∈Ir

λ̃ε̃r(s)Di,r(s)

)

−
∑

r∈R

∑

i∈Ir

(1 + λεi)
Ri,r(s)
xr

)

for each s ∈ R s ∈ [u, T ].
Computing the partial derivatives for the components r ∈ R, i ∈ Ir and
setting to 0 gives for t ∈ [u, T ] (we skip the argument of Ri,r, Di,r, xr and
their subscript, remember that Ri,r = µixr)

∂G

∂Ri,r
= e−δtθγ

Rθγ−1(1 −D)γ(1−θ)

γ
− ϕu(1 + λεi)

1
x

= 0 (5.77)

∂G

∂Di,r
= −e−δt(1 − θ)γ

Rθγ(1 −Di,r)γ(1−θ)−1

γ
+ ϕu(λ̃ε̃r) = 0 (5.78)

Solving both equations and dividing (5.78) by (5.77) gives

R =
θ

1 − θ

λ̃ε̃r
1 + λεi

(1 −D)x

Thus, we obtain for R and D
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R =
(

θ

1 − θ
λ̃ε̃r

) γ(θ−1)
1−γ

· (1 + λεi)
γ(θ−1)+1

γ−1 ·
(

θ

ϕeδt

) 1
1−γ

· x
γ(θ−1)+1

1−γ (5.79)

1 −D =
(

θ

1 − θ
λ̃ε̃r

) γθ−1
1−γ

· (1 + λεi)
γθ

γ−1 ·
(

θ

ϕeδt

) 1
1−γ

· x
γθ

1−γ (5.80)

To compute ϕ = ϕu depending on the variable u, we use the following con-
straint

A(T − u) (5.81)

= E

(∫ T

u

πr(s)ds +
∑

i∈Ir

(∫ T

u

λ̃ε̃r(s)Di,r(s)ds−
∫ T

u

(1 + λεi)µi,r(s)ds

))

= E

(∫ T

u

πr(s)ds +
∑

i∈Ir

(∫ T

u

λ̃ε̃r(s)Di,r(s)ds−
∫ T

u

(1 + λεi)
Ri,r(s)
xr(s)

ds

))

= E

(∫ T

u

πr(s)ds +
∑

i∈Ir

(∫ T

u

λ̃ε̃r(s)Di,r(s)ds

−
∫ T

u

θλ̃ε̃r(s)
1 − θ

(1 −Di,r(s))ds

))

= E

(∫ T

u

πr(s)ds + |Ir|
∫ T

u

λ̃ε̃r(s)ds−
∑

i∈Ir

∫ T

u

ε̃r(s)
1 − θ

λ̃(1 −Di,r(s))ds)

)

where we inserted (5.79) for Rs, did some arrangements and used the notation
|Ir| = #{i ∈ Ir} for the number of elements in Ir. Using (5.81) we get

A(T − u) −
∫ T

u

πr(s)ds− |Ir|
∫ T

u

λ̃ε̃r(s)ds

= −E

(∫ T

u

∑

i∈Ir

(
1

1 − θ
λ̃ε̃r(s)

)
·
(

θ

1 − θ
λ̃ε̃r(s)

) γθ−1
1−γ

·(1 + λεi)
γθ

γ−1 ·
(

θ

ϕeδt

) 1
1−γ

· x
γθ

1−γ ds

)

Applying Fubini’s theorem, differentiating with respect to u and setting
Λ(u) = πr(u) + |Ir|λ̃ε̃r(u) −A, this yields to

Λ(u) = E

(
∑

i∈Ir

(
1

1 − θ
λ̃ε̃r(s)

)
·
(

θ

1 − θ
λ̃ε̃r(s)

) γθ−1
1−γ

·(1 + λεi)
γθ

γ−1 ·
(

θ

ϕeδt

) 1
1−γ

· x
γθ

1−γ (u)

)
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Hence, we obtain as candidate for ϕu

ϕ
− 1

1−γ
u = x

−γθ
1−γ
r (u) · (eδu) 1

1−γ · Λ(u) · 1 − θ

λ̃ε̃r(u)
·
(

θ

1 − θ
λ̃ε̃r(u)

) γθ−1
γ−1

·θ− 1
1−γ ·

(
∑

i∈Ir

(1 + λεi(u))
γθ

γ−1

)−1

Defining ∆r(u) =
∑
i∈Ir (1 + λεi(u))

γθ
γ−1 and inserting it back into (5.80),

reveals finally

1 −Di,r(u) =
x

γθ
1−γ
r (u)

x
γθ

1−γ
r (u)

· Λ(u) · 1 − θ

λ̃ε̃r(u)
· (1 + λεi(u))

γθ
γ−1 ·∆−1

r (u) (5.82)

=
(
πr(u) + |Ir|λ̃ε̃r(u) −A

)
· (1 − θ)(1 + λεi(u))

γθ
γ−1

λ̃ε̃r(u)
·∆−1

r (u)

and for R we get

Ri,r(u) =
(
πr(u) + |Ir|λ̃ε̃r(u) −A

)
· θ(1 + λεi(u))

γ(θ−1)+1
γ−1

∆r(u)
· xr(u) (5.83)

Thus, we conclude for the prices µi

µi,r(u) =
(
πr(u) + |Ir|λ̃ε̃r(u) −A

)
· θ(1 + λεi(u))

γ(θ−1)+1
1−γ

∆r(u)
(5.84)

Since u and T are arbitrary, we have (5.82) to (5.84) for all u ≥ 0. Finally, we
have to check the assumptions on ϕu. The process (µi,r(u)) is uncorrelated
to (xr(u)), because µi,r(u) is a deterministic function. The random variable
ϕu depends only on the value of xr(u) and is therefore uncorrelated to the
increments of (µi,r(t))u<t≤T , (Mi,r(t))u<t≤T and (Ni,r(t))u<t≤T , because of
the independent increments of the Poisson process, and since the Poisson
processes (Mi,r(t))u<t≤T and (Ni,r(t))u<t≤T are independent of the fractional
Brownian motion.
By the next theorem we are able to solve the optimization problem (P1). We
will fix the basic prices πr, the time preference δ, the concavity of the utility γ,
the weighting of income by the resource fees µi,r, the multiplier Di,r and the
‘congestion reply’ εi,r with its intensity λ. The LRD property will come in as
well by the scaling factor a as by the crucial Hurst exponent H. Since we start
with this facts, we will optimize w.r.t. the steady state rate A. Choosing this
optimized slope A, we will see, how the solution of the rate xr depends on the
other parameter just mentioned. Before starting with the theorem, we briefly
comment on the above optimal income Ri,r and its multipliers µi,r and Di,r.
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Interpretation

The multipliers 1 −Di,r can be considered as the part of the company (resp.
network provider) responsible for maintenance of the network. Thus, in prin-
ciple, Di,r represents the development part, enabling the increase of network
performance. The direct input for the network is modeled as independent
Poisson processes for the nodes or bottleneck. Basically, we have two parts on
the right hand side of (5.69):

• πr(t)xr(t)dt− εi(t)µi,rdNi,r(µi,r) + aπrxrdB
(H)
t reflects the pure network

behavior, i.e. the change of transmission rate proportional to the price
together with the congestion control expressed in the ‘Poisson part’ of
Ni,r and the LRD property of the network incorporated by the factor
axrdBr(t)(H).

• the economic part xr(t
∑
i∈Ir
(
µi,r(t)dt+xr(t)

∑
i∈Ir ε̃i(t)dMi,r(Di,r) which

reflects the tendency to use less bandwidth according to the price of nodes
(as routers or servers), whose performance is increased by the efforts of the
network randomly according to the independent Poisson processes dMi,r.

Some more comments on the parameters are in order.

• We consider the multiplier Di,r. It is depending on the term A − πr(u),
which indicates that a high basic price πr does not necessary increase the
surplus, expressed by the term

∑
i∈Ir,r∈RRi,rDi,r.

• The optimal ‘price’ and multiplier for the congestion rate µi,r(u) given
by the equation (5.84) indicates, that enlarging the traffic rate Ar will in
turn result in a lower price: this indicates that given fixed price πr and
improvement rates ε̃r, the price µi,r have to decrease for higher rates Ar.

• If we increase the improvement rate ε̃r, then the network can impose in
turn higher prices for using the better performing nodes.

• If the user accepts a high price for the overall network use given by πr, the
network can in turn again impose higher prices for the use of each nodes,
provided the stationary rate Ar is not changed.

Theorem 5.36. The optimal income rate (R∗(t)), the optimal part of the
multiplier (D∗(t)) and the optimal growth rate A∗

r, depending on the given
parameters δ, γ, θ, λ and the basic price πr of the constraint problem (P1) is
given by

R∗
i,r(t) =

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)
· θ(1 + λεi(t))

γ(θ−1)+1
1−γ

∆r(t)
· xr(t)

D∗
i,r(t) = 1 −

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)
· (1 − θ)(1 + λεi(t))

γθ
γ−1

λ̃ε̃r(t)∆r(t)

where Ar is the steady state rate of user r. We have for the development of
the data rate
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x∗
t = x0 exp

(∫ t

0

πr(s)ds−
1
2
a2t2H + aB

(H)
t (5.85)

−
∑

i∈Ir

(∫ t

0

(
πr(s) + |Ir|λ̃ε̃r(s) −A

)
· θ(1 + λεi(s))

γ(θ−1)+1
1−γ

∆r(s)
ds

)

−
∑

i∈Ir

∫ t

0

log(1 + εi(s))dNi(s) +
∑

i∈Ir

∫ t

0

log(1 + ε̃r(s))dMi(s)

)

If in particular the prices πr and the rates ε̃r and εi are time independent (i.e.
constant), then the optimal rate A∗

r is the unique solution of the equation
∫ ∞

0

exp
(
−δt + γθA∗

rt− γθ
1
2
a2t2H +

1
2
γ2θ2a2t2H

)

(
θt
(
πr + |Ir|λ̃ε̃r −A∗

r

)
− 1
)
dt = 0 (5.86)

Proof. The formula for R∗
t and D∗

t is a consequence of equation (5.82) and
(5.83). To verify x∗

t , we consider the following stochastic differential equation

dx(t) = πr(t)x(t)dt

−
∑

i∈Ir

((
πr(t) + |Ir|λ̃ε̃r(t) −Ar

) θ(1 + λεi(t))
γ(θ−1)+1

1−γ

∆r(t)
x(t)dt

)

−
∑

i∈Ir

εi(t)x(t)dNi(t) +
∑

i∈Ir

ε̃r(t)dMi(t) + ax(t)dB(H)
t

Using theorem 5.34 (note that the function in the fractional Brownian motion
part is constant a and thus the Malliavin operator turns in to the identy), we
obtain (5.85). Finally, we have to show (5.86). In doing so, we insert (Rt) and
(Lt) in the value function of (P1) and obtain

∫ ∞

u

1
γ

exp(−δt)
∑

r∈R

∑

i∈Ir

Rγθt (1 −D)γ(1−θ)t dt

=
∫ ∞

u

1
γ

exp(−δt)

·
∑

r∈R

∑

i∈Ir

(
(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)
· θ(1 + λεi(t))

γ(θ−1)+1
γ−1

∆r(t)

)γθ

xr(t)γθ

·
(
(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)
· (1 − θ)(1 + λεi(u))

γθ
γ−1

λ̃ε̃r(t)
∆−1
r (t)

)γ(1−θ)

dt
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=
∫ ∞

u

1
γ

exp(−δt)

·
∑

r∈R

∑

i∈Ir

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

∆r(t)

)γ

xr(t)γθθγθ(1 − θ)γ(1−θ)

·(1 + λεi(u))
γθ

γ−1 (λ̃ε̃r(t))γ(θ−1)dt

·
∫ ∞

u

1
γ

exp(−δt)
∑

r∈R

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ
∆r(t)1−γ

·xr(t)γθθγθ(1 − θ)γ(1−θ)(λ̃ε̃r(t))γ(θ−1)dt

because of the definition of ∆r and using the constant stochastic growth rate
A of the transmitted data. We maximize according to Ar. The function

(Ar) → V (S, (Ar))

= E

(∫ ∞

u

1
γ

exp(−δt)
(∑

r∈R

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ

·∆r(t)1−γxr(t)γθθγθ(1 − θ)γ(1−θ)(λ̃ε̃r(t))γ(θ−1)

)
dt

)

is concave (note that limAr→−∞ V (S,Ar) = 0 and V (S, Ãr) = 0 for Ãr =
πr(t) + |Ir|λ̃ε̃r(t)). We differentiate it with respect to A

∂

∂Ar
(V (S, (Ar)))

=
1
γ

∫ ∞

u

∂

∂Ar

(

exp(−δt)
(∑

r∈R

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ

·∆r(t)1−γ

·E
(
xr(t)γθ

)
θγθ(1 − θ)γ(1−θ)

(
λ̃ε̃r(t)

)γ(θ−1)
))

dt

=
θγθ(1 − θ)γ(1−θ)

γ

∫ ∞

u

exp(−δt)∆r(t)1−γ
(
λ̃ε̃r(t)

)γ(θ−1)

· ∂

∂Ar

((
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ
· E
(
xr(t)γθ

))
dt

By using the product rule, follows
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∂

∂Ar
(V (S,A)) =

∫ ∞

u

θγθ(1 − θ)γ(1−θ)

γ
exp(−δt)∆r(t)1−γ

(
λ̃ε̃r(t)

)γ(θ−1)

·
(

E
(
xγθr (t)

) ∂

∂Ar

(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ
(5.87)

+
(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ ∂

∂Ar
E
(
xγθr (t)

)
)

dt

=
∫ ∞

u

θγθ(1 − θ)γ(1−θ)

γ
exp(−δt)∆r(t)1−γ

(
λ̃ε̃r(t)

)γ(θ−1)

·
(

E
(
xγθr (t)

)
(
−γ
(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ−1
)

+
((

πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ) ∂

∂Ar
E
(
xγθr (t)

)
)

dt

Thus, we need to compute E(xγθr (t)). We now assume constant rates εi, ε̃r
and price πr. Because of theorems (5.29) and (5.33) we conclude with (5.85)

E
(
xγθr (t)

)
= x0 exp

(
γθtAr − γθ

1
2
a2t2H +

1
2
γ2θ2a2t2H

)

Then, we get finally by (5.87)

∂

∂Ar
(V (S,A)) = θγθ(1 − θ)γ(1−θ)

·
∫ ∞

u

exp(−δt)∆r(t)1−γ
(
λ̃ε̃r(t)

)γ(θ−1)

·
(

x0 exp
(
γθAt− γθ

1
2
a2t2H +

1
2
γ2θ2a2t2H

)

·
(
θt
(
πr(t) + |Ir|λ̃ε̃r(t) −Ar

)
− 1
)

·
((

πr(t) + |Ir|λ̃ε̃r(t) −Ar

)γ−1
))

dt

Since the price functions πr, ε̃r and congestion control function εi are deter-
ministic, we can conclude after rearrangements for the maximum A∗ with
∂
∂Ar

V (S,A∗
r) = 0

∫∞
0

exp
(
−δt + γθA∗

rt− γθ
1
2
a2t2H +

1
2
γ2θ2a2t2H

)

·
(
θt
(
πr + |Ir|λ̃ε̃r −A∗

r

)
− 1
)
dt = 0

��
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Remark 5.37. We give a short comment of the optimal rate A∗
r . It is indepen-

dent of the fixed congestion rate εi. An increasing εi would on a first glance
result in a lower rate xr. But in turn, the lower price µi,r according to (5.84)
will balance this effect. A decrease on the other hand has the same effect:
better performance is responsible for higher prices µi,r.

Up to now we know the network provider optimizes the price for using the
nodes respectively the optimal investment for development. As open param-
eters the users have to pay for bandwidth and the surplus of performance at
the bottlenecks. Thus, we consider the following utility problem for the users
(resp. the route) r ∈ R.

ur(xr) = w1
xγ̃r
γ̃

− w2

(
πθr
(
|Ir|ε̃r

)1−θ)γ̃
xγ̃r

γ̃
(5.88)

with w1, w2 ∈ ]0, 1[, w1 > w2. Some comments should be made on (5.88). The
utility approach described in equation (5.57) is modified, since a computable
expression for P(Q > x), as queueing probability is even in the simple case of
the FBM not available. Thus, this part was taken tribute as diminishing factor
in the driving stochastic equation of dxr expressed by the Poisson processes
dNi,r as control cycle. So basically the utility of the performance expressed

by xγ̃
r

γ̃ reflects the network performance.
The economic part (πθr (|Ir|ε̃r)1−θ)γ̃ ·xγ̃r/γ̃ indicates the price of the bandwidth
in conjunction with the surplus factor for a better bottleneck performance.
Both ingredients are weighted by factors w1, w2, where naturally we assume
w1 > w2. We again pursue the technique described above for optimizing the
network and obtain for the optimal price vector (πr, ε̃r) the equations

πr =
−θ

1 − θ
λ̃|Ir|ε̃r

(
∑

i∈Ir

(1 −Di,r) +
θ

1 − θ
λ̃ε̃r|Ir|2)

)

ε̃r =
A∗
r

λ̃

(
θ
|Ir|2
1 − θ

+ |Ir| −
θ|Ir|

∑
i∈Ir (1 −Di,r)
1 − θ

−
∑
i∈Ir (1 −Di,r)

1 − θ

)−1

Thus, we can formulate the final theorem.

Theorem 5.38. Let the optimal control problem (P1) be given. Then there
exists a equilibrium price vector and an optimal distribution of development
investment for each node i ∈ I, which is given by



460 5 Performance of IP: Waiting Queues and Optimization

ε̃r
∗(t) =

A∗
r

λ̃

θ∆r(t) − 1−θ
1+θ

2θ∆r(t) − 1
1+θ

(r ∈ R)

π∗
r (t) =

θ

1 − θ
λ̃ε̃r

∗(t)
∑

i∈Ir

D∗
i,r

=
θ

1 − θ
|Ir|λ̃ε̃r∗(t) −

θ

1 − θ
λ̃ε̃r

∗(t)
∑

i∈Ir

(1 −D∗
i,r)

µ∗
i,r(t) =

(
π∗
r (t) + |Ir|λ̃ε̃r∗(t) −A∗

) θ(1 + λεi(t))
γ(θ−1)+1

1−γ

∆r(t)
(i ∈ I)

Di,r(t)∗ = 1 −
(
π∗
r (t) + |Ir|λ̃ε̃r∗(t) −A∗

r

)

· (1 − θ)(1 + λεi(t))
γθ

γ−1

λ̃ε̃r
∗(t)∆r(t)

(i ∈ Ir, r ∈ R)

The optimal A∗
r is given by the equation (5.86) for all r ∈ R.

Remark 5.39. The optimal vector (A∗
r , ε̃r(t), π

∗
r (t), µ

∗
i,r(t),Di,r(t)

∗) should be
commented:

1. If the rate A∗
r increases, then in turn the rate ε̃r will, too. This can be

interpreted that it is more efficient for the network provider to invest more
into the improvement of the net, since it will, according to (5.84), enable
to receive a higher price for the nodes.

2. If the congestion rates εi are constant, this implies the same for ε̃r as well.
3. Again if the rates εi are constant, then we get

πr is constant ⇔ D∗
i,r is constant ⇔ µ∗

i,r is constant.
Thus, if we fix an optimal price π∗

r at time t = 0, then all the other optimal
solutions will be constant, too. We have a stationary system and can skip
the time parameter t.

Impact of Network Structure

The network structure enters in two decisive parts. One consists in the conges-
tion mechanism, expressed in the term ‘λεi,’ giving the amount of data being
send back or denied for transmission and the rate of occurrence. This is basi-
cally a network implemented procedure and is triggered in a more predictable
way. The second part reflects the long-range dependence and is incorporated
in the Hurst parameter of the FBM. Thus, in some way only implicitly we
observe this impact via the optimal parameter A∗

r , which is computed out of
the equation (5.86). In the succeeding figures we show, how the parameter
A∗
r changes, if the Hurst exponent differs between 0.5 (Brownian motion) and

0.925. We selected the free parameters γ = 0.5, θ = 0.7, λ = 0.1, λ̃ = 0.1,
εi = 0.1, i ∈ I, and |Ir| = 20. First, we compute the optimal A∗

r in depen-
dence of the Hurst parameter. In the figure 5.26 we see that the optimal A∗

r
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given according to (5.86) as intersection value with the horizontal axes in-
creases with increasing H. Hence, the curves represent the partial derivatives
∂
∂Ar

(V (S,A)). The figures shows the function defined as the left hand side of
(5.86).
In the figure 5.26 we compare the solutions of the different optimal A∗

r , the
left diagram for 20 nodes and right diagram for 5. Clearly, the optimal A∗

r

increase, while the number of nodes Ir for the route r decreases. This can be
interpreted in the following way: more nodes means that the steady state rate
of dxr

xr
is lower. On the other hand, as seen in the figures 5.27 and 5.28, there

is for lower optimal A∗
r a higher number of nodes which is used.
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Fig. 5.26. Solutions for the optimal Ar according to equation (5.86) for different
Hurst exponents H = 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.925 and different number
of nodes |Ir| = 20 (left) and |Ir| = 5 (right). The intersection with the x-axis (zero
line) is the desired value of Ar

In the figure 5.27 we present the optimal solutions of the price vector µ∗
i,r,

the development investment as part of all employees and the optimal price
vectors for π∗

r and ε̃r
∗.
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Fig. 5.27. The price µi depending on the steady state rate Ar and the parameter
εi for different number of nodes |Ir| = 20 (left) and |Ir| = 5 (right)
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Since no user is specially marked, we just choose as representative user r. For
this we used first |Ir| = 20 and then |Ir| = 5 otherwise common parameters.
We see that a higher number of nodes indicates in turn a lower price per
rate unit. On the other hand, in the left figure we use 4 times as much nodes
than in the right figure. For H = 0.6 we obtain as optimal rate Ar for 20
nodes 5.95 and for 5 nodes 7.86. Choosing in both cases εi = 6 we get as
income for the provider 1.48 in the case of 20 nodes and 0.975 in the case of 5
nodes. Thus, the cost for using one node is decreasing with more complicated
network, while the overall costs are increasing.
As the figure 5.28 indicate, more nodes mean that the investment for devel-
opment is even more efficient for lower steady state rate A∗

r . This is induced
by the fact that it is economical reasonable to invest labor for development
and increase the performance, if the number of nodes is higher.
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Fig. 5.28. Part of development investment Di,r depending on the steady state rate
Ar and the parameter εi for the number of nodes |Ir| = 20 (left) and |Ir| = 5 (right)

Again we can realize that in the first case of a higher number of nodes we
find that a lower steady state rate A∗

r and even a higher congestion control
parameter gives rise to lower prices for each node. The comparison for the
investment of development indicates that a bigger part for the development
is efficient for a lower rate of A∗

r and a higher rate of congestion parameter.
This is confirmed by the fact that it is reasonable to invest more for a better
performance of the bottlenecks resp. nodes.

Economic Interpretation

We used a twofold approach to find an equilibrium for prices and investment
of development:

• The Cobb-Douglas production function, expressed by the equation (5.70),
is standard in economic where the ingredients are the prices µ∗

i,r (resp.
Ri,r = µ∗

i,rxr) for the nodes and the multiplier 1 − D∗
i,r as part of the

maintenance. The utility approach is used for finding decisions.
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• For finding fair price we have chosen a similar utility approach for each
user, where the utility concavity is assumed to be equal to the network
provider. The decision is depending on the price for bandwidth π∗

r and the
price ε̃r

∗ for the improvement of the performance of the nodes. It can also
be regarded as a price for priority handling.

• The result is an existing equilibrium price vector (π∗
r , µ

∗
i,, ε̃r

∗) and optimal
selection for development investment D∗

i,r.
• A higher number of bottleneck indicates that it is more efficient to induce

a lower price µ∗
i,r, which will then result in a lower optimal steady state

rate A∗
r . On the other hand the prices π∗

r are lower and it is more efficient
to invest in the improvement of the node performance, which is given by
higher values of Di,r.

• A higher value of λ̃ (which we did not reflect in additional figures) indicate
a better use of the investment and thus, a lower value or a smaller part of
D∗
i,r is needed.

Further Literature

Queueing theory for the Norros model in done in several articles, where we
consulted the original literature [190, 192]. The fractional Lévy processes and
the queueing behavior is e.g. investigated in [155]. The reader can look up
a general description of the queueing theory in [103, 239]. The multifractal
models and the queueing results are originated in the articles of [214, 215].
For the analytical treatment of the FBM and its application to queueing and
stochastic optimization a survey on the integrals with respect to the FBM
are given on [64, 236]. In [71] the economical part of the queueing is treated.
A more functional analytic approach using differential equations is presented
in [16].
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203. Peyriére, J. Calculs de dimensions de Hausdorff, Duke Mathematical Journal,
44(3), pp. 591–601 (1977).

204. Piccoli, B. and Garavello, M. Traffic Flow on Networks, AIMS Applied Math-
ematics, 1 (2006).

205. Pipiras, V. and Taqqu, M. S. Integration question related to fractional Brow-
nian motion, Probability Theory and Related Fields, 118(2), pp. 251–291
(2000).

206. Pipiras, V. and Taqqu, M. S. The limit of a renewal reward process with heavy-
tailed rewards is not a linear fractional stable motion, Bernoulli, 6(4), pp.
607–614 (2000).

207. Pipiras, V. and Taqqu, M. S. Fractional calculus and its connection to frac-
tional Brownian Motion, In: Doukhan, P., Oppenheim, G. and Taqqu,
M. (eds.) Long-Range Dependence: Theory and Application, Birkhäuser,
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248. Taqqu, M. S., Teverovsky, V. and Willinger, W. Estimators for long-range
dependence: An empirical study, Fractals, 3(4), pp. 785–798 (1995).

249. Taqqu, M. S., Teverovsky, V. and Willinger, W. Is network traffic self-similar
or multifractal?, Fractals, 5(1), pp. 63–73 (1996).

250. Taqqu, M. S., Willinger, W. and Sherman, R. Proof of a fundamental result in
self-similar traffic modelling, Computer Communication Review, 27, pp. 5–23
(1997).

251. Thurner, S., Lowen, S. B., Heneghan, C., Feurstein, M. C., Feichtinger, H.
G. and Teich, M. Analysis, synthesis, and estimation of fractal-rate stochastic
point processes, Fractals, 5(4), pp. 565–595 (1997).

252. Tjims, H. Stochastic Models: An algorithmic Approach, John Wiley & Sons,
(1994).

253. Tran-Gia, P. Analytische Leistungsbewertung verteilter Systeme, Springer
(1996).
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α-stable, 309
distribution, 194
Lévy process, 243
motion, 187, 195
process, 187
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σ-algebra, 197

absolute value method, 349
absorbing state, 149
access level, 11
adjusted target region, 356
admission control, 119
aggregated process, 71
Aloha, 55
analytical cycle, 116
application

best effort, 8
real time, 8

application layer, 8
application level, 11, 235
ARMA, 215

model, 211
arrival process

batch Markovian, 159
MAP, 162
Poisson, 244
time discrete Markov, 159

arrival rates
fitting, 175

arrival time, 61
asymptotic

linear, 220

lognormal, 299
wavelet self-similar, 313

asymptotic unbiased, 326
autocorrelation function, 191
autocovariance, 206

function, 198
autoregressive moving average, 215
AVX , 350
AVM, 349, 350

backward recurrence time, 67
Banach space, 251
batch Markovian arrival process, 159
Bellcore measurements, 95
best effort application, 8
beta distribution, 83, 276

symmetric, 276
bias, 322
birth rate, 38
Blackwell renewal theorem, 69
blocking, 118

probability, 42
BMAP, 159, 174
bounded variation, 140
Brownian motion, 186, 242, 311

complex-valued version, 192
fractional, 186

buffer
capacity, 384
size, 396

burst, 12
burst level, 12

calling attempts, 60
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capacity, 425
cascade

beta-binomial, 300
binomial, 296, 314
c-adic, 302
lognormal, 300
multinomial, 302

Cauchy
distribution, 194, 325
problem, 140

cellular mobile system, 30
central limit theorem, 226, 242

general, 228
renewal counting processes, 231

Chapman-Kolmogorov
equation, 35
system

Jackson network, 124
characteristic function, 195
characteristic moment, 194
classes of priority, 249
Cobb-Douglas production function, 444,

463
completeness relation, 35
confidence interval, 348
connection duration

heavy-tail distributed, 244
connection level, 12
consistent estimator, 325
control process, 427
correlation function, 313
counting process, 231
covariance function, 186, 188, 189, 241
Cramér-Rao inequality, 324
critical dyadic time scale, 413

queue, 413
critical time scale, 413
CSMA/CD, 55

D-MAP, 159
D-PH, 155
data link layer, 4
data traffic, see traffic
death rate, 38
deterministic envelope, 288, 309
dialogue level, 11
differentiability of paths, 191
differential equation, stochastic, 239,

443

differentiated services, 21
DiffServ, 21
distribution

α-stable, 194
empirical, 329
Erlang-k, 148
heavy-tail, 84, 121
hyperexponential, 153
integrated

complementary, 65
PH, 152
phase, 148
symmetric beta, 418
time discrete phase, 155
waiting time, 105

distribution function
empirical, 246

DNA, 228
Donsker invariance principle, 229
DWT, 370
dyadic tree, 273, 415

ELA, 254
embedded independence, 298
embedded time, 75
end system, 1, 16
entropy admissible, 139
entropy flux, 139
envelope, 302

deterministic, 288, 289, 309, 311
envelope process

deterministic, 406
Erlang loss formula, 42
Erlang queueing formula, 47
Erlang-k distribution, 148
Erlang-B formula, 42
Erlang-C formula, 47
estimator

fractional exponential, 361
graphical, 353
parametric, 349, 364
semiparametric, 349, 360, 379

estimator function, 321
Ethernet, 4
exact self-similar, 184
excess distribution, 92
exponent of the increase

coarse, 284
local, 285
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exponential decay, 207
exponential distribution, 82

factorization theorem, 327
FARIMA time series, 211, 314, 376, 380
FARIMA[0, d, 0], 212
FARIMA[p, d, q], 212, 217
Fast Fourier transform, 364
FBM, 308, 310, 311

antipersistent, 191
chaotic, 191
persistent, 191

FCFS, 78
FESM, 361
FGN, 208, 308

process, 380
FIFO, 50, 78, 79, 105
first passage time, 166
flow, 14

homogenous, 408, 410
model, 222

flux, 135
forward recurrence time, 67

distribution, 67
Fourier transform, 192
fractional sαs-noise, 200
fractional Brownian motion, 186, 189,

190, 192, 198, 244
Fourier transform, 248
multiscaling, 245

fractional Brownian-Poissonian motion
geometric, 449

fractional Clark-Haussmann-Ocone
theorem, 447

fractional Gaussian noise, 24
fractional Girsanov theorem, 446
fractional Itō formula, 448
fractional white noise, 190, 208
free capacity, 385
function, slowly varying, 207, 227
fundamental cycle, 169
fundamental period, 166

Gα-attraction, 227
Gamma function, 213
Gaussian distribution, 83, 194
Gaussian estimator, 360
Gaussian noise, fractional, 208
Gaussian process, 250

Gaussian sequence, linear, 211
Gaussian traffic, 218
generator, 62, 98
Geom(m)/Geom(m)/1 system, 114
geometric approach, 104
GI/G/n − S system, 33
GI/M/n − S system, 33
grade of confidence, 348
grain-based spectrum, 286, 287

deterministic, 291
grid computing, 23
growth rate

stochastic, 437, 445
GSM, 31

H-sssi process, 185, 189, 191
without finite variance, 191

Hölder continuity, 191
local degree, 281

Hölder exponent, 280
coarse, 282
function, 409

Haar wavelet, 283, 303
harmonic representation, 192
Hausdorff dimension, 286
Hausdorff spectrum, 285
heavy-tail distribution, 81, 85
heavy-tail exponent

estimator, 335
hidden Markov model, 174
Hilbert space, 253
Hill estimator, 336
host-to-host, 15
Hurst exponent, 185, 241, 277

estimator, 349
Hurst parameter, 185, 186, 242

IETF, 3
increments, stationary, 185, 302
initial value problem

matrix-valued, 162
inner product, 195
integral equation, 63, 110

Lindley, 112
Wiener-Hopf, 110

integral representation, 199
integral, stochastic, 198
integrated distribution, 88

complementary, 88, 91
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integrated services, 21
interarrival time, 32, 61, 72, 232
Internet Protocol, 5
interrupted Poisson process, 154, 174
interval estimation, 348
IntServ, 21
IP, 5
IP traffic

N -state MMPP
fitting, 176

BMAP process, 174
D-MMPP model, 173, 174, 177
interrupted Poisson process, 174
MMPP model, 173

Itō integral, 192

Jackson serving network, 126
jitter, 20
Joseph effect, 199
jump process, 187

Kendall notation, 32, 33
Kolmogorov forward equation, 36
Kruzkov

entropy, 137

Lévy Process, 195
laddar index, 98
Lagrange multiplicator, 438
Landau symbol, 284
Laplace transform, 63, 86
Laplace-Stieltjes transform, 164
least square estimation, 332
Lebesgue measure, 197
Legendre transform, 278, 293, 294, 302,

311
Leland group, 219
life time, 61
likelihood function, 345, 346

sample size N , 348
limit theorem

functional, 229
line speed

limiting, 177
linear fractional stable motion, 200
linear model, 332
link approximation

coarse empty, 254
full, 255

Lipschitz continuity, 281
Little formula, 48, 101
live video streaming, 23
loading coefficient, 45
local Whittle estimator, 364
log periodogram, 359

estimator
global, 360
local, 360

log-fractional stable motion, 200
log-log diagram, 352, 359
logarithmic scale diagram, 373
loglikelihood function, 347
lognormal distribution, 95, 276
long-range dependence, 187, 204, 205,

240, 312
Allan variance (LRD-SAV), 205
estimator, 375
general, 204
process, 198

loss system
finite source number, 54
M/M/∞, 58

LRD, 187
LRD and SRD, 207
LRD-SAV, 205
Lyaponov function, 439

MK-FBM, 247
M/G/n − S system, 33
M/M/n − S system, 33
Malliavin derivative, 445
MAP, 156
marginal distribution

Gaussian, 251
multiscale, 417

Markov chain, 73, 130
embedded, 73
fitting, 175
irreducible, 149

Markov control, 451
Markov modulated Poisson process, 158
Markov process, 32
Markov property, 73
Markovian arrival process, 156
matrix-analytic method, 148
maximum likelihood

estimator, 345, 363
function, 364
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maximum transmission unit, 5
mean excess function, 92
mean queueing length, 117
measure space, 197
method

matrix-analytic, 148
of least squares, 331
of moments, 344

MFA, 285
mixed traffic, 423
MMPP, 158
model

multiplicative, 272
on-off, 240
TCP/IP, 2

mother wavelet, 282
MPLS, 21
MTU, 5
multifractal

bothsided, 293
leftsided, 293
rightsided, 293

multifractal analysis, 285
multifractal flow

aggregation, 407
multifractal formalism, 293

central, 294
multifractal wavelet model, 275
multiplexing, 404

gain, 42, 404, 409
multiplier, 297
multiprotocol label switching, 21
multiscale FBM, 247
multiscale queueing formula, 415
multiscaled trees, 273
MWM, 275

model, 418

Net, 16
net-to-net, 16
network

capacity, 384
circuit switched, 2
conservation laws model, 133
Jackson, 122
layer, 5
packet switched, 2
peer to peer, 23
topology, 18

new start vector, 150
Noah effect, 200
nodes, 123
non-Gaussian processes, 191
normal attraction, 228
normal distribution, 194
normal equation, 333
Norros approach, 218

on-off models, 235
on-off process, cyclic, 160
optimal selection, 427
optimization

economic equilibrium, 435
network flow, 424

utility approach, 449
stochastic perturbation, 443

order statistic, 326
second, 276

overflow probability, 384
overprovisioning, 20

packet level, 12
packet loss, 20, 134
packet switching, 1
PAR protocols, 29
parameter

state dependent, 126
Pareto distribution, 93, 229
partition function, 287, 301

deterministic, 278, 288, 295, 302, 310,
311, 313

PASTA, 171
path vector, 253

most probable, 252, 253
path, càdlàg, 195
PDU, 1
periodogram, 365
phase distribution, 148
phase representation, 148
physical layer, 3
point estimator, 321
Poisson process

interrupted, 154
Markov modulated, 158
memoryless, 68

Pollaczek-Khintchine formula
queueing state probability, 80
queueing time, 97
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state probabilities, 78, 79
polynomial, 281
port-to-port, 14
preserving the mass, 297
preserving the mean, 298
principle of largest deviation, 253, 287
prioritization, 21
process

α-stable, 187
α-stable Lévy, 309
arrival, 32
H-sssi, 185, 308, 311
homogeneous, 34
Lévy stable, 310, 311
LRD, 370
Markov renewal, 157
sαs, 310
self-similar, 370
serving, 32
stable, 195
state, 32
stationary, 187

processor sharing model, 255
processor sharing system, 254
proportional fair, 437
proportional fairness, 436
protocol data unit, 1
PSTN, 22
public switched telephone networks, 22

QoS, 19
quadratic variation, 379
quality of service, 19
quasi-martingale, 447
queue

tail probability, 416
queue length

D-MMPP, 176
maximal

time, 406
queueing

FIFO, 394
fractional Lévy motion, 395
LRD processes, 383
multifractal, 405, 411
multifractal tree, 411
multiscale FBM, 392

queueing distribution, 50
admissible, 132

queueing distribution function, 78
queueing formula, multiscale, 417
queueing length, 96, 101

mean, 48, 132
queueing loss system, 59
queueing probability, 47, 80
queueing process, 250
queueing space, infinite, 45
queueing system

discrete
G/G/1, 109

Engset, 59
GI/G/1, 98, 107
M/G/1, 96
MAP/G/1, 161

queueing time
mean, 48, 80
Pollaczek-Khintchine formula, 172
virtual, 171

queueing time distribution
discrete, 113
storage, 390

R/S estimator, 356
random sum, 71, 230
random vector, 196
random walk, 62, 98

discrete, 62
symmetric, 62

Rankine-Hugoniot, 138
rate

outgoing data, 384
rate control, 436
real time application, 8
real time requirements, 20
recurrence time, 67
regression line, 329, 336, 352, 354
regression method, 335
renewal counting process, 61
renewal density, 63
renewal equation, 63
renewal function, 62

boundary, 65
Erlang-k distribution, 64
exponential distribution, 64
normal distribution, 65

renewal process, 60, 61, 231
arithmetic, 69
asymptotic behavior, 68
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delayed, 61
embedded Markovian, 163
modified, 61
non-arithmetic, 69
ordinary, 61, 63
simple, 61
stationary, 71

renewal theorem
Blackwell, 69
elementary, 68
fundamental, 69

renewal theory, paradox, 70
renewal time, 61
residual time, 32
residual work, 96
reward process, 235
Riemann problem, 139
Riemann solver, 141
robust estimator, 328
roundtrip time, 6
RTT, 6

sample space, 321
sαs Lévy motion, 200
sαs motion, 196
sαs process, 196
sαs-random measure, 197
scaling equation, 310
scaling estimator, 337
scaling property

fractional Lévy motion, 396
SDH, 4
self-similar, 188
self-similarity, 184, 240

asymptotic
Pareto distribution, 233

second degree, 313
semi-Markov property, 157
sequence

causal, 211
series, divergence, 206
service duration, 32
service level agreements, 119
service rate, 388, 395, 412, 425, 433
serving network, closed, 127, 128
serving time, 72, 229

subexponential, 96
set

closed, 253

open, 253
shadow price, 436, 438
short-range dependence, 207, 220
singularity, 206

first order, 86
Skorokhod metric, 230
SLA, 119
slowly varying functions, 84
sojourn time, 79
solution

distributive sense, 138
SONET, 4
spacer, 119

GI/D/1 system, 119
spectral density, 206, 349
spectral representation, 349
spectrum of the exponent, 285
spectrum, deterministic, 301
stability criteria, 45
stable process, 195
standard process, 186
state

absorbing, 149
transient, 149

state equations, 76
stationary, 37

state probability, 36, 104
Kolmogorov forward equation, 36
MAP, 170
stationary, 166

state transition, 76
stationary increments, 185
stationary process, 187
stationary sequence, 203
Stirling formula, 213
stochastic calculus

fractional Brownian motion, 445
stochastic continuous, 184
stochastic matrix, 73
storage area networks, 23
storage process, 239, 384
strong law of large numbers, 231
subexponential distributions, 81
sufficient statistic, 327
sum process, 71
Synchronous Digital Hierarchy, 4
Synchronous Optical NETwork, 4
system

demand, 32
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load, 117
M/G/∞

lognormal distribution, 234
residual work, 33

systematic error, 322

Taylor polynomial, 281
TCP, 6

acknowledgment, 6
congestion control, 7
connection-oriented, 7
control cycle, 133
flow control, 7
four way close, 6
segment, 6
slow start, 7
three way handshake, 6
timeouts, 6

TCP influence, 394
TCP/IP

protocol architecture, 3
theorem of Adler, 191
theorem of Karamata, 224
threshold scale, 416
time discrete Markov arrival process,

159
total variation, 140
traffic

asymmetry, 17
circuit switched, 22
composite, 14
elastic, 19, 134, 436
end system, 16
flow, 14
Gaussian, 218
heterogeneous, 258
host-to-host, 15
intensity, 101
load, 110, 388
management, 119
model

GI/G/∞, 232
models

special, 58
net, 16
net-to-net, 16
optimization, 423
packet switched, 22, 219
port-to-port, 14

priority, 130, 144
relations, 13
TCP, 304
temporal behavior, 17
time sensitive, 20, 245
value, 42
WAN, 279

transient state, 149
transient transition, 157
transition diagram, 46
transition matrix, 73, 103
transition probability, 34

exponential distributed serving time,
38

Poisson process, 37
transmission control protocol, 6
transport layer, 5

UDP, 5
connectionless, 7

UMTS, 31
unbiased estimator, 322, 323
UNI, 119
user datagram protocol, 5
user network interface, 119
utility function, 435, 436

vanishing moment, 369
variance method, 352
variance of residuals, 354
velocity functions, 134
VLA, 255
Voice over IP, 23

waiting model, 232
waiting queue distribution, 102
waiting time

distribution, 96, 105, 106
stationary, 110
subexponential, 97
Weibull, 391

mean, 48
probability, 117

Wald identity, 68, 72
wavelet

analysis, 307, 368
coefficient, 303, 368, 379
differentiable, 306
energy, 315
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exponent, 282
coarse, 284, 305
local, 284

transform, 379
wavelet-domain independent Gaussian,

275
weak solution, 138

Weibull distribution, 83

white noise, fractional, 208

Whittle estimator, 363, 364

local, 365

WIG model, 274, 417

workload, 100
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