4 el

J. Glenn Brookshear

computer seience

AN OVERVIEW

This page intentionally left blank

AN OVERVIEW

[1th Edition

J. Glenn Brookshear

with contributions from

David T. Smith

Indiana University of Pennsylvania

Dennis Brylow

Marquette University

Addison-Wesley

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton Cover Designer: Rachael Cronin

Editor-in-Chief: Michael Hirsch Cover Image: “Slot Canyon”
Editorial Assistant: Stephanie Sellinger © gettyimages® Inc.
Vice President of Marketing: Patrice Jones RF Media Editor: Dan Sandin and Wanda
Marketing Manager: Yezan Alayan Rockwell
Marketing Coordinator: Kathryn Ferranti Project Management: GEX Publishing Services
Vice President, Production: Vince O'Brien Composition and Illustration: GEX Publishing
Managing Editor: Jetf Holcomb Services
Production Project Manager: Kayla Printer/Binder: Edwards Brothers
Smith-Tarbox Cover Printer: Lehigh-Phoenix
Senior Operations Supervisor: Lisa McDowell Color/Hagerstown
Art Directors: Jayne Conte and Kristine
Carney
Credits

Figure 0.3: “An abacus . © Wayne Chandler. Figure 0.4: “The Mark I computer.” Courtesy of
IBM corporate archives. Unauthorized use is not permitted. Figure 10.1: “A photograph of a viral
world produced by using 3D graphics (from Toy Story by Walt Disney/Pixar Animation Studios) ©
Disney/Pixar. Figure 10.6: “A scene from Shrek 2 by Dreamworks SKG. © Dreamworks/

Picture Desk Inc./Kobal collection. Figure 11.19: “Results of using a neural network to classify
pixels in an image.” Inspired by www.actapress.com. Chapter 11, Robots Making History
feature: a. “A soccer robot kicks a ball during the RoboCup German Open 2010 on April 15, 2010
in Magdeburg, eastern Germany.” © Jens Schlueter/AFP/ Getty Images/ Newscom. b. “Tartan
Racing’s “Boss—winner of the Urban Challenge, a contest sponsored by DARPA to have vehicles
drive themselves an urban environment.” © DARPA. c. “One of NASA’s rovers—a robot geologist
exploring the surface of Mars.” Courtesy of NASA/JPL-Caltech.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-
Wesley. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s)
to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was

aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Catologing-in-Publication Data available upon request.

1098765432 1—-EB—14 13 12 11 10

Addison-Wesley
is an imprint of

PEARSON ISBN 10: 0-13-256903-5
il
ISBN 13: 978-0-13-256903-3

www.actapress.com
www.actapress.com

preface

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience

I wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, Web browsing, and
Internet file sharing since that is essentially all they have seen. Yet computer
science is much more than this. In turn, beginning computer science stu-
dents need exposure to the breadth of the subject in which they are planning
to major. Providing this exposure is the theme of this book. It gives students
an overview of computer science—a foundation from which they can appreci-
ate the relevance and interrelationships of future courses in the field. This
survey approach is, in fact, the model used for introductory courses in the
natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for training, but this text is about educating.

Thus, while writing this text, maintaining accessibility for nontechnical stu-
dents was a major goal. The result is that previous editions have been used suc-
cessfully in courses for students over a wide range of disciplines and educational
levels, ranging from high school to graduate courses. This eleventh edition is
designed to continue that tradition.

New in the Eleventh Edition

The underlying theme during the development of this eleventh edition was to
update the text to include handheld mobile devices, in particular smartphones.
Thus, you will find that the text has been modified, and at times expanded, to

Vi

Preface

present the relationship between the subject matter being discussed and smart-
phone technology. Specific topics include:

Smartphone hardware

The distinction between 3G and 4G networks
Smartphone operating systems

Smartphone software development

The human/smartphone interface

These additions are most noticeable in Chapters 3 (Operating Systems) and
4 (Networking) but is also observable in Chapters 6 (Programming Languages),
and 7 (Software Engineering).

Other prominent changes to this edition include updates to the following
topics:

® Software ownership and liability: The material in Chapter 7 (Software
Engineering) pertaining to this topic has been rewritten and updated.

¢ Training artificial neural networks: This material, in Chapter 11 (Artificial
Intelligence), has been modernized.

Finally, you will find that the material throughout the text has been updated
to reflect the state of today’s technology. This is most prevalent in Chapter 0
(Introduction), Chapter 1 (Data Storage), and Chapter 2 (Data Manipulation).

Organization

This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presentation
in which each topic leads to the next. It begins with the fundamentals of informa-
tion encoding, data storage, and computer architecture (Chapters 1 and 2); pro-
gresses to the study of operating systems (Chapter 3) and computer networks
(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms and
Programming Languages) and returns to the earlier chapters as desired. In con-
trast, I know of one course that starts with the material on computability from
Chapter 12. In still other cases the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, I have used asterisks to mark some sec-
tions as optional. These are sections that cover topics of more specific interest or

perhaps explore traditional topics in more depth. My intention is merely to pro-
vide suggestions for alternative paths though the text. There are, of course, other
shortcuts. In particular, if you are looking for a quick read, T suggest the follow-
ing sequence:

Section Topic

1.1-1.4 Basics of data encoding and storage
2.1-2.3 Machine architecture and machine language
3.1-3.3 Operating systems

4.1-4.3 Networking and the Internet
51-5.4 Algorithms and algorithm design
6.1-6.4 Programming languages

7.1-7.2 Software engineering

8.1-8.3 Data abstractions

9.1-9.2 Database systems

10.1-10.2 Computer graphics

11.1-11.3 Artificial intelligence

12.1-12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspec-
tive, discusses the current state of affairs, and indicates directions of research.
Another theme is the role of abstraction and the way in which abstract tools are
used to control complexity. This theme is introduced in Chapter 0 and then
echoed in the context of operating system architecture, networking, algorithm
development, programming language design, software engineering, data organi-
zation, and computer graphics.

To Instructors

There is more material in this text than can normally be covered in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you to
pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. I suggest encouraging students to read the
material not explicitly included in your course. I think we underrate students if
we assume that we have to explain everything in class. We should be helping
them learn to learn on their own.

I feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. I think as academics we too often assume that students
will appreciate our perspective of a subject—often one that we have developed
over many years of working in a field. As teachers I think we do better by pre-
senting material from the student’s perspective. This is why the text starts with
data representation/storage, machine architecture, operating systems, and net-
working. These are topics to which students readily relate—they have most
likely heard terms such as JPEG and MP3; they have probably recorded data on
CDs and DVDs; they have purchased computer components; they have inter-
acted with an operating system; and they have used the Internet. By starting the
course with these topics, students discover answers to many of the “why” ques-
tions they have been carrying for years and learn to view the course as practical

To Instructors

vii

viii

Preface

rather than theoretical. From this beginning it is natural to move on to the more
abstract issues of algorithms, algorithmic structures, programming languages,
software development methodologies, computability, and complexity that those
of us in the field view as the main topics in the science. As I've said before, the
topics are presented in a manner that does not force you to follow this bottom-up
sequence, but I encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly, and
the lessons they learn implicitly are often better absorbed than those that are studied
explicitly. This is significant when it comes to “teaching” problem solving. Students
do not become problem solvers by studying problem-solving methodologies. They
become problem solvers by solving problems—and not just carefully posed “textbook
problems.” So this text contains numerous problems, a few of which are intentionally
vague—meaning that there is not necessarily a single correct approach or a single
correct answer. I encourage you to use these and to expand on them.

Another topic in the “implicit learning” category is that of professionalism,
ethics, and social responsibility. I do not believe that this material should be pre-
sented as an isolated subject that is merely tacked on to the course. Instead, it
should be an integral part of the coverage that surfaces when it is relevant. This
is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.8, 9.7,
and 11.7 present such topics as security, privacy, liability, and social awareness
in the context of operating systems, networking, database systems, software en-
gineering, and artificial intelligence. Moreover, Section 0.6 introduces this theme
by summarizing some of the more prominent theories that attempt to place eth-
ical decision making on a philosophically firm foundation. You will also find that
each chapter includes a collection of questions called Social Issues that challenge
students to think about the relationship between the material in the text and the
society in which they live.

Thank you for considering my text for your course. Whether you do or do
not decide that it is right for your situation, I hope that you find it to be a contri-
bution to the computer science education literature.

Pedagogical Features

This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this eleventh edition. These are classified as Ques-
tions/Exercises, Chapter Review Problems, and Social Issues. The Questions/
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for the
introductory chapter). They are designed to serve as “homework” problems in that
they cover the material from the entire chapter and are not answered in the text.

Also at the end of each chapter are the questions in the Social Issues cate-
gory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains ref-
erences to other material relating to the subject of the chapter. The Web sites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

Supplemental Resources

A variety of supplemental materials for this text are available at the book’s
Companion Website: www.pearsonhighered.com/brookshear. The following are
accessible to all readers:

® Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

® Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

¢ Manuals that teach the basics of Java and C++ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified instruc-
tors at Pearson Education's Instructor Resource Center. Please visit
www.pearsonhighered.com or contact your Pearson sales representative for
information on how to access them:

¢ Instructor’s Guide with answers to the Chapter Review Problems
¢ PowerPoint lecture slides
¢ Test bank

You may also want to check out my personal Web site at www.mscs.mu
.edu/~glennb. It is not very formal (and it is subject to my whims and sense of
humor), but I tend to keep some information there that you may find helpful. In
particular, you will find an errata page that lists corrections to errors in the text
that have been reported to me.

To Students

I'm a bit of a nonconformist (some of my friends would say more than a bit) so
when T set out to write this text I didn't always follow the advice I received. In
particular, many argued that certain material was too advanced for beginning
students. But, I believe that if a topic is relevant, then it is relevant even if the ac-
ademic community considers it to be an “advanced topic.” You deserve a text that
presents a complete picture of computer science—not a watered-down version
containing artificially simplified presentations of only those topics that have
been deemed appropriate for introductory students. Thus, I have not avoided
topics. Instead I've sought better explanations. I've tried to provide enough depth
to give you an honest picture of what computer science is all about. As in the
case of spices in a recipe, you may choose to skip some of the topics in the fol-
lowing pages, but they are there for you to taste if you wish—and I encourage
you to do so.

I should also point out that in any course dealing with technology, the details
you learn today may not be the details you will need to know tomorrow. The
field is dynamic—that’s part of the excitement. This book will give you a current
picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. I encourage you to start the
growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in me by choosing to read my book.
As an author I have an obligation to produce a manuscript that is worth your
time. I hope you find that I have lived up to this obligation.

To Students

ix

www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb
www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb

X

Preface

Acknowledgments

I first thank those of you who have supported this book by reading and using it in
previous editions. I am honored.

David T. Smith (Indiana University of Pennsylvania) and Dennis Brylow
(Marquette University) played significant roles in the production this eleventh
edition. David concentrated on Chapters 0, 1, 2, 7, and 11; and Dennis focused on
Chapters 3, 4, 6, and 10. Without their hard work this new edition would not exist
today. I sincerely thank them.

As mentioned in the preface to the tenth edition, I am indebted to Ed Angel,
John Carpinelli, Chris Fox, Jim Kurose, Gary Nutt, Greg Riccardi, and Patrick
Henry Winston for their assistance in the development of that edition. The
results of their efforts remain visible in this eleventh edition.

Others who have contributed in this or previous editions include J. M.
Adams, C. M. Allen, D. C. S. Allison, R. Ashmore, B. Auernheimer, P. Bankston, M.
Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown, B. Cal-
loni, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M. J. Crowley, F. Deek,
M. Dickerson, M. J. Duncan, S. Ezekiel, S. Fox, N. E. Gibbs, J. D. Harris, D. Has-
com, L. Heath, P. B. Henderson, L. Hunt, M. Hutchenreuther, L. A. Jehn, K. K.
Kolberg, K. Korb, G. Krenz, J. Liu, T. J. Long, C. May, J. J. McConnell, W. Mc-
Cown, S. J. Merrill, K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S.
Noonan, W. W. Oblitey, S. Olariu, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G.
Saito, W. Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, G. Sheppard, Z. Shen, J. C.
Simms, M. C. Slattery, J. Slimick, J. A. Slomka, D. Smith, J. Solderitsch, R. Steiger-
wald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato,
P. Tromovitch, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals T give my sincere thanks.

As already mentioned, you will find Java and C++ manuals at the text’s
Companion Website that teach the basics of these languages in a format compat-
ible with the text. These were written by Diane Christie. Thank you Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the Companion Website.

I also thank the people at Addison-Wesley who have contributed to this proj-
ect. They are a great bunch to work with—and good friends as well. If you are
thinking about writing a textbook, you should consider having it published by
Addison-Wesley.

I continue to be grateful to my wife Earlene and daughter Cheryl who have
been tremendous sources of encouragement over the years. Cheryl, of course,
grew up and left home several years ago. But Earlene is still here. I'm a lucky
man. On the morning of December 11, 1998, T survived a heart attack because
she got me to the hospital in time. (For those of you in the younger generation
I should explain that surviving a heart attack is sort of like getting an extension
on a homework assignment.)

Finally, I thank my parents, to whom this book is dedicated. I close with the
following endorsement whose source shall remain anonymous: “Our son'’s book
is really good. Everyone should read it.”

J. G. B.

Chapter 0

Chapter 1

Chapter 2

conlents

Introduction 1

0.1 The Role of Algorithms 2

0.2 The History of Computing 4
0.3 The Science of Algorithms 10
0.4 Abstraction 11

0.5 An Outline of Our Study 12
0.6 Social Repercussions 13

Data Storage 19

1.1 Bits and Their Storage 20
1.2 Main Memory 26
1.3 Mass Storage 29
1.4 Representing Information as Bit Patterns 35
*1.5 The Binary System 42
*1.6 Storing Integers 47
*1.7 Storing Fractions 53
*1.8 Data Compression 58
*1.9 Communication Errors 63

Data Manipulation 73

2.1 Computer Architecture 74

2.2 Machine Language 77

2.3 Program Execution 83

*2.4 Arithmetic/Logic Instructions 90

*2.5 Communicating with Other Devices 94
*2.6 Other Architectures 100

*Asterisks indicate suggestions for optional sections.

Xi

Xii

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Operating Systems 109

3.1
3.2
3.3
*3.4
3.5

The History of Operating Systems 110
Operating System Architecture 114

Coordinating the Machine'’s Activities 122

Handling Competition Among Processes
Security 130

Networking and the Internet 139

4.1
4.2
4.3
*4.4
4.5

Network Fundamentals 140
The Internet 149

The World Wide Web 158
Internet Protocols 167
Security 173

Algorithms 187

5.1
5.2
5.3
5.4
5.5
5.6

The Concept of an Algorithm 188
Algorithm Representation 191
Algorithm Discovery 198
Iterative Structures 204
Recursive Structures 214
Efficiency and Correctness 222

Programming Languages 239

6.1
6.2
6.3
6.4
6.5
*6.6
*6.7

Historical Perspective 240

Traditional Programming Concepts 248
Procedural Units 260

Language Implementation 268
Object-Oriented Programming 276
Programming Concurrent Activities 283
Declarative Programming 286

Software Engineering 299

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

The Software Engineering Discipline 300
The Software Life Cycle 302

Software Engineering Methodologies 306
Modularity 308

Tools of the Trade 316

Quality Assurance 324

Documentation 328

The Human-Machine Interface 329
Software Ownership and Liability 332

125

Chapter 8 Data Abstractions 341

Chapter 9

Chapter 10

8.1
8.2
8.3
8.4
8.5
*8.6
*8.7

Basic Data Structures 342

Related Concepts 345
Implementing Data Structures 348
A Short Case Study 362
Customized Data Types 367
Classes and Objects 371

Pointers in Machine Language 372

Database Systems 383

9.1
9.2
*9.3
*9.4
*9.5
9.6
9.7

Database Fundamentals 384

The Relational Model 389
Object-Oriented Databases 400
Maintaining Database Integrity 402
Traditional File Structures 406

Data Mining 414

Social Impact of Database Technology 416

Computer Graphics 425

10.1
10.2
10.3
10.4
*10.5
10.6

The Scope of Computer Graphics 426
Overview of 3D Graphics 428
Modeling 430

Rendering 439

Dealing with Global Lighting 449
Animation 452

Chapter 11 Artificial Intelligence 461

Chapter 12

11.1
11.2
11.3
11.4
11.5
11.6
11.7

Intelligence and Machines 462
Perception 467

Reasoning 473

Additional Areas of Research 484
Artificial Neural Networks 489
Robotics 497

Considering the Consequences 500

Theory of Computation 509

12.1
12.2
12.3
12.4
12.5
*12.6

Functions and Their Computation 510
Turing Machines 512

Universal Programming Languages 516
A Noncomputable Function 522
Complexity of Problems 527
Public-Key Cryptography 536

Contents

Xiii

Xiv Contents

Appendixes 545

A ASCII 547
B Circuits to Manipulate Two’'s Complement
Representations 548
C A Simple Machine Language 551
D High-Level Programming Languages 553
E The Equivalence of Iterative and Recursive Structures 555
F Answers to Questions & Exercises 557

Index 597

CHAPTER

Introduction

In this preliminary chapter we consider the scope of computer
science, develop a historical perspective, and establish a

foundation from which to launch our study.

0.1 TheRole of Algorithms 0.3 The Science 0.5 An Outline of

. of Algorithms Our Study
0.2 The History

of Computing 0.4 Abstraction 0.6 Social Repercussions

2

Chapter 0 Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information process-
ing, algorithmic solutions of problems, and the algorithmic process itself. It pro-
vides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typi-
cal university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will be
interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms

We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usu-
ally displayed on the inside of the washer’s lid or perhaps on the wall of a laun-
dromat), for playing music (expressed in the form of sheet music), and for
performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is com-
patible with the machine. A representation of an algorithm is called a program.
For the convenience of humans, computer programs are usually printed on
paper or displayed on computer screens. For the convenience of machines, pro-
grams are encoded in a manner compatible with the technology of the machine.
The process of developing a program, encoding it in machine-compatible form,
and inserting it into a machine is called programming. Programs, and the algo-
rithms they represent, are collectively referred to as software, in contrast to the
machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of direc-
tions that described how all problems of a particular type could be solved. One of
the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers. Another example is the
Euclidean algorithm, discovered by the ancient Greek mathematician Euclid, for
finding the greatest common divisor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of
that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without
understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

0.1 The Role of Algorithms 3

Figure 0.1 An algorithm for a magic trick

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

Step 1. From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Step 2. Announce that you have selected some red cards and some black cards.

Step 3. Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Step 4. Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Step 5. Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughy mixing the cards.

Step 6. As long as there are face-down cards on the table, repeatedly
execute the following steps:

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
the remaining cards to prove your claim.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.
Step 2. Divide M by N, and call the remainder R.

Step 3. If Ris not 0, then assign M the value of N, assign N the value of R, and return to step 2;
otherwise, the greatest common divisor is the value currently assigned to N.

4

Chapter 0 Introduction

It is through this ability to capture and convey intelligence (or at least intel-
ligent behavior) by means of algorithms that we are able to build machines that
perform useful tasks. Consequently, the level of intelligence displayed by
machines is limited by the intelligence that can be conveyed through algorithms.
We can construct a machine to perform a task only if an algorithm exists for per-
forming that task. In turn, if no algorithm exists for solving a problem, then the
solution of that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Godel’s incompleteness
theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any
complete study of our arithmetic system lies beyond the capabilities of algorith-
mic activities.

This realization shook the foundations of mathematics, and the study of algo-
rithmic capabilities that ensued was the beginning of the field known today as
computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing

Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it most likely had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine is
quite simple, consisting of beads strung on rods that are in turn mounted in a
rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads
that this “computer” represents and stores data. For control of an algorithm’s exe-
cution, the machine relies on the human operator. Thus the abacus alone is
merely a data storage system; it must be combined with a human to create a
complete computational machine.

In the time period after the Middle Ages and before the Modern Era the quest
for more sophisticated computing machines was seeded. A few inventors began
to experiment with the technology of gears. Among these were Blaise Pascal
(1623-1662) of France, Gottfried Wilhelm Leibniz (1646-1716) of Germany, and
Charles Babbage (1792-1871) of England. These machines represented data
through gear positioning, with data being input mechanically by establishing ini-
tial gear positions. Output from Pascal’s and Leibniz's machines was achieved by
observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibil-
ity of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flexibility
in these machines. Pascal’'s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the structure
of the machine itself. In a similar manner, Leibniz’s machine had its algorithms
firmly embedded in its architecture, although it offered a variety of arithmetic
operations from which the operator could select. Babbage'’s Difference Engine (of
which only a demonstration model was constructed) could be modified to perform
a variety of calculations, but his Analytical Engine (the construction for which he

0.2 The History of Computing

Figure 0.3 An abacus (photography by Wayne Chandler)

never received funding) was designed to read instructions in the form of holes in
paper cards. Thus Babbage's Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she demon-
strated how Babbage’s Analytical Engine could be programmed to perform various
computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752-1834), who, in
1801, had developed a weaving loom in which the steps to be performed during
the weaving process were determined by patterns of holes in large thick cards
made of wood (or cardboard). In this manner, the algorithm followed by the loom
could be changed easily to produce different woven designs. Another beneficiary
of Jacquard’s idea was Herman Hollerith (1860-1929), who applied the concept of
representing information as holes in paper cards to speed up the tabulation
process in the 1890 U.S. census. (It was this work by Hollerith that led to the cre-
ation of IBM.) Such cards ultimately came to be known as punched cards and sur-
vived as a popular means of communicating with computers well into the 1970s.
Indeed, the technique lives on today, as witnessed by the voting issues raised in
the 2000 U.S. presidential election.

The technology of the time was unable to produce the complex gear-driven
machines of Pascal, Leibniz, and Babbage in a financially feasible manner. But
with the advances in electronics in the early 1900s, this barrier was overcome.
Examples of this progress include the electromechanical machine of George
Stibitz, completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944

6

Chapter 0 Introduction

Babbage’s Difference Engine

The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco-
nomically feasible manner and if the data processing demands of commerce and gov-
ernment had been on the scale of today’s requirements, Babbage’s ideas could have
led to a computer revolution in the 1800s. As it was, only a demonstration model of
his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of 4
in the following manner (see the following diagram). We first compute the differ-
ences of the squares we already know: 12 — 02 = 1,22 — 12 =3,and 3> — 22 = 5.
Then we compute the differences of these results: 3 — 1 = 2, and 5 — 3 = 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe-
matics can show that it does) we conclude that the difference between the value
(4% — 32 and the value (3% — 22) must also be 2. Hence (42 — 3%) must be 2 greater
than (32 — 2?), so 4% — 32 = 7 and thus 4% = 3% + 7 = 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on the
values of 12, 22, 3%, and 42. (Although a more in-depth discussion of successive differ-
ences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y = x? is
a straight line with a slope of 2.)

x X2 First Second
difference | difference
0 o\\> .
1 1—T > =~ T
T by 2
3 —
2 a—T 5
3 9 >
AP
4 16 «— | 2
“
\5~_/—‘
‘/-/

at Harvard University by Howard Aiken and a group of IBM engineers (Figure 0.4).
These machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally
electronic computers. The first of these machines was apparently the Atanasoff-
Berry machine, constructed during the period from 1937 to 1941 at Towa State
College (now Iowa State University) by John Atanasoft and his assistant, Clifford
Berry. Another was a machine called Colossus, built under the direction of Tommy

0.2 The History of Computing

Figure 0.4 The Mark | computer (Courtesy of IBM archives. Unauthorized use is not permitted.)

Flowers in England to decode German messages during the latter part of World
War II. (Actually, as many as ten of these machines were apparently built, but mil-
itary secrecy and issues of national security kept their existence from becoming
part of the ‘computer family tree.”) Other, more flexible machines, such as the
ENIAC (electronic numerical integrator and calculator) developed by John
Mauchly and J. Presper Eckert at the Moore School of Electrical Engineering,
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the
1940s were reduced over the decades to the size of single cabinets. At the same
time, the processing power of computing machines began to double every two
years (a trend that has continued to this day). As work on integrated circuitry
progressed, many of the circuits within a computer became readily available on
the open market as integrated circuits encased in toy-sized blocks of plastic
called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer hob-
byists who built homemade computers from combinations of chips. It was within
this “underground” of hobby activity that Steve Jobs and Stephen Wozniak built a
commercially viable home computer and, in 1976, established Apple Computer,
Inc. (now Apple Inc.) to manufacture and market their products. Other compa-
nies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they

8

Chapter 0 Introduction

Augusta Ada Byron

Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815-1852) that was complicated by poor health and the fact that she was a non-
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ-
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is con-
sidered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

were not widely accepted by the business community, which continued to look
to the well-established IBM for the majority of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal com-
puter, or PC, whose underlying software was developed by a newly formed com-
pany known as Microsoft. The PC was an instant success and legitimized the
desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desk-
top computer, most of which continue to be marketed with software from
Microsoft. At times, however, the term PC is used interchangeably with the
generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

0.2 The History of Computing

At the same time that desktop computers (and the newer mobile laptop
computers) were being accepted and used in homes, the miniaturization of
computing machines continued. Today, tiny computers are embedded within
various devices. For example, automobiles now contain small computers run-
ning Global Positioning Systems (GPS), monitoring the function of the engine,
and providing voice command services for controlling the car’s audio and phone
communication systems.

Perhaps the most potentially revolutionary application of computer miniatur-
ization is found in the expanding capabilities of portable telephones. Indeed, what
was recently merely a telephone has evolved into a small hand-held general-
purpose computer known as a smartphone on which telephony is only one of
many applications. These “phones” are equipped with a rich array of sensors
and interfaces including cameras, microphones, compasses, touch screens,
accelerometers (to detect the phone’s orientation and motion), and a number of
wireless technologies to communicate with other smartphones and computers.
The potential is enormous. Indeed, many argue that the smartphone will have a
greater effect on society than the PC.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society. Computer tech-
nology is so prevalent now that familiarity with it is fundamental to being a
member of modern society. Computing technology has altered the ability of
governments to exert control; had enormous impact on global economics; led to
startling advances in scientific research; revolutionized the role of data collec-
tion, storage, and applications; provided new means for people to communicate
and interact; and has repeatedly challenged society’s status quo. The result is a
proliferation of subjects surrounding computer science, each of which is now a
significant field of study in its own right. Moreover, as with mechanical engi-
neering and physics, it is often difficult to draw a line between these fields and

Google

Founded in 1998, Google Inc. has become one of the world’s most recoginzed techol-
ogy companies. Its core service, the Google search engine, is used by millions of peo-
ple to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet based video sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging soci-
ety. For example, Google’s search engine has led to questions regarding the extent
to which an international company should comply with the wishes of individual
governments; YouTube has raised questions regarding the extent to which a com-
pany should be liable for information that others distribute through its services as
well as the degree to which the company can claim ownership of that information;
Google Books has generated concerns regarding the scope and limitations of
intelectual property rights; and Google Maps has been accused of violating
privacy rights.

10

Chapter 0 Introduction

computer science itself. Thus, to gain a proper perspective, our study will not
only cover topics central to the core of computer science but will also explore a
variety of disciplines dealing with both applications and consequences of the
science. Indeed, an introduction to computer science is an interdisciplinary
undertaking.

0.3 The Science of Algorithms

Conditions such as limited data storage capabilities and intricate, time-consuming
programming procedures restricted the complexity of the algorithms utilized in
early computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began to
tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Godel's incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms. The
scope of this science is broad, drawing from such diverse subjects as mathematics,
engineering, psychology, biology, business administration, and linguistics. Indeed,
researchers in different branches of computer science may have very distinct defi-
nitions of the science. For example, a researcher in the field of computer architec-
ture may focus on the task of miniaturizing circuitry and thus view computer
science as the advancement and application of technology. But, a researcher in the
field of database systems may see computer science as seeking ways to make infor-
mation systems more useful. And, a researcher in the field of artificial intelligence
may regard computer science as the study of intelligence and intelligent behavior.

Thus, an introduction to computer science must include a variety of topics,
which is a task that we will pursue in the following chapters. In each case, our
goal will be to introduce the central ideas in the subject, the current topics of
research, and some of the techniques being applied to advance knowledge in the
area. With such a variety of topics, it is easy to lose track of the overall picture.
We therefore pause to collect our thoughts by identifying some questions that
provide a focus for its study.

e Which problems can be solved by algorithmic processes?

e How can the discovery of algorithms be made easier?

e How can the techniques of representing and communicating algorithms
be improved?

e How can the characteristics of different algorithms be analyzed
and compared?

e How can algorithms be used to manipulate information?

e How can algorithms be applied to produce intelligent behavior?

e How does the application of algorithms affect society?

Note that the theme common to all these questions is the study of algorithms
(Figure 0.5).

Figure 0.5 The central role of algorithms in computer science

Limitations of

Application of \ / Execution of

Algorithms
Analysis of — T Communication of
Discovery of Representation of

0.4 Abstraction

The concept of abstraction so permeates the study of computer science and the
design of computer systems that it behooves us to address it in this preliminary
chapter. The term abstraction, as we are using it here, refers to the distinction
between the external properties of an entity and the details of the entity’s inter-
nal composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which is constructed from smaller components. Each component represents a
level of abstraction at which the use of the component is isolated from the details
of the component’s internal composition.

It is by applying abstraction, then, that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we view
the system in terms of components, called abstract tools, whose internal com-
position we ignore. This allows us to concentrate on how each component inter-
acts with other components at the same level and how the collection as a whole
forms a higher-level component. Thus we are able to comprehend the part of the
system that is relevant to the task at hand rather than being lost in a sea of details.

We emphasize that abstraction is not limited to science and technology. It is
an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the var-
ious conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With
each new advancement, a small part of society chooses to specialize in its
implementation while the rest of us learn to use the results as abstract tools. In
this manner, society’s warehouse of abstract tools expands, and society’s ability
to progress increases.

0.4 Abstraction

11

12

Chapter 0 Introduction

Abstraction is a recurring theme in our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion in
which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

0.5 An Outline of Our Study

This text follows a bottom up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage) we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation) we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction of
future technology.

In Chapter 3 (Operating Systems) we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the
user’s requests.

In Chapter 4 (Networking and the Internet) we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols,
the Internet’s structure and internal operation, the World Wide Web, and numer-
ous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages) we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages.
We investigate these paradigms and languages as well as consider issues of gram-
mar and language translation.

0.6 Social Repercussions

Chapter 7 (Software Engineering) introduces the branch of computer science
known as software engineering, which deals with the problems encountered
when developing large software systems. The underlying theme is that the
design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineer-
ing has become an important field of research within computer science, drawing
from such diverse fields as engineering, project management, personnel man-
agement, programming language design, and even architecture.

In next two chapters we look at ways data can be organized within a com-
puter system. In Chapter 8 (Data Abstractions) we introduce techniques tradi-
tionally used for organizing data in a computer’s main memory and then trace
the evolution of data abstraction from the concept of primitives to today’s object-
oriented techniques. In Chapter 9 (Database Systems) we consider methods tra-
ditionally used for organizing data in a computer’'s mass storage and investigate
how extremely large and complex database systems are implemented.

In Chapter 10 (Computer Graphics) we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence) we learn that in order to develop more
useful machines computer science has turned to the study of human intelli-
gence for leadership. The hope is that by understanding how our own minds rea-
son and perceive, researchers will be able to design algorithms that mimic these
processes and thus transfer these capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable
from a practical perspective. Thus, it is through this study that we are able to
grasp the scope and limitations of algorithmic systems.

In each chapter our goal is to explore to a depth that leads to a true under-
standing of the subject. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.6 Social Repercussions

Progress in computer science is blurring many distinctions on which our society
has based decisions in the past and is challenging many of society’s long-held
principles. In law, it generates questions regarding the degree to which intellec-
tual property can be owned and the rights and liabilities that accompany that

13

14

Chapter 0 Introduction

ownership. In ethics, it generates numerous options that challenge the traditional
principles on which social behavior is based. In government, it generates debates
regarding the extent to which computer technology and its applications should be
regulated. In philosophy, it generates contention between the presence of intelli-
gent behavior and the presence of intelligence itself. And, throughout society, it
generates disputes concerning whether new applications represent new free-
doms or new controls.

Although not a part of computer science itself, such topics are important for
those contemplating careers in computing or computer-related fields. Revelations
within science have sometimes found controversial applications, causing serious
discontent for the researchers involved. Moreover, an otherwise successful career
can quickly be derailed by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology is
infiltrating society so rapidly that few, if any, are independent of its effects.

This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted to
social, ethical, and legal issues. These include security concerns, issues of soft-
ware ownership and liability, the social impact of database technology, and the
consequences of advances in artificial intelligence.

Moreover, there is often no definitive correct answer to a problem, and
many valid solutions are compromises between opposing (and perhaps equally
valid) views. Finding solutions in these cases often requires the ability to listen,
to recognize other points of view, to carry on a rational debate, and to alter one’s
own opinion as new insights are gained. Thus, each chapter of this text ends
with a collection of questions under the heading “Social Issues” that investigate
the relationship between computer science and society. These are not neces-
sarily questions to be answered. Instead, they are questions to be considered. In
many cases, an answer that may appear obvious at first will cease to satisfy you
as you explore alternatives. In short, the purpose of these questions is not to
lead you to a “correct” answer but rather to increase your awareness, including
your awareness of the various stakeholders in an issue, your awareness of alter-
natives, and your awareness of both the short- and long-term consequences of
those alternatives.

We close this section by introducing some of the approaches to ethics that
have been proposed by philosophers in their search for fundamental theories
that lead to principles for guiding decisions and behavior. Most of these theories
can be classified under the headings of consequence-based ethics, duty-based
ethics, contract-based ethics, and character-based ethics. You may wish to use
these theories as a means of approaching the ethical issues presented in the text.
In particular, you may find that different theories lead to contrasting conclusions
and thus expose hidden alternatives.

Consequence-based ethics attempts to analyze issues based on the conse-
quences of the various options. A leading example is utilitarianism that proposes
that the “correct” decision or action is the one that leads to the greatest good for
the largest portion of society. At first glance utilitarianism appears to be a fair
way of resolving ethical dilemmas. But, in its unqualified form, utilitarianism

0.6 Social Repercussions

leads to numerous unacceptable conclusions. For example, it would allow the
majority of a society to enslave a small minority. Moreover, many argue that
consequence-based approaches to ethical theories, which inherently emphasize
consequences, tend to view a human as merely a means to an end rather than as
a worthwhile individual. This, they continue, constitutes a fundamental flaw in
all consequence-based ethical theories.

In contrast to consequence-based ethics, duty-based ethics does not consider
the consequences of decisions and actions but instead proposes that members of
a society have certain intrinsic duties or obligations that in turn form the foun-
dation on which ethical questions should be resolved. For example, if one
accepts the obligation to respect the rights of others, then one must reject slav-
ery regardless of its consequences. On the other hand, opponents of duty-based
ethics argue that it fails to provide solutions to problems involving conflicting
duties. Should you tell the truth even if doing so destroys a colleague’s confi-
dence? Should a nation defend itself in war even though the ensuing battles will
lead to the death of many of its citizens?

Contract-based ethical theory begins by imagining society with no ethical
foundation at all. In this “state of nature” setting, anything goes—a situation in
which individuals must fend for themselves and constantly be on guard against
aggression from others. Under these circumstances, contract-based ethical the-
ory proposes that the members of the society would develop “contracts” among
themselves. For example, I won't steal from you if you won't steal from me. In
turn, these “contracts” would become the foundation for determining ethical
behavior. Note that contract-based ethical theory provides a motivation for ethi-
cal behavior—we should obey the “contracts of ethics” because we would other-
wise live an unpleasant life. However, opponents of contract-based ethical
theory argue that it does not provide a broad enough basis for resolving ethical
dilemmas since it provides guidance only in those cases in which contracts have
been established. (I can behave anyway I want in situations not covered by an
existing contract.) In particular, new technologies may present uncharted terri-
tory in which existing ethical contracts may not apply.

Character-based ethics (sometimes called virtue ethics), which was pro-
moted by Plato and Aristotle, argues that “good behavior” is not the result of
applying identifiable rules but instead is a natural consequence of “good char-
acter.” Whereas consequence-based ethics, duty-based ethics, and contract-
based ethics propose that a person resolve an ethical dilemma by asking, “What
are the consequences?”; “What are my duties?”; or “What contracts do I have?”
character-based ethics proposes that dilemmas be resolved by asking, “Who do
I want to be?” Thus, good behavior is obtained by building good character,
which is typically the result of sound upbringing and the development of vir-
tuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety of
ethical questions in the professionals’ area of expertise. Then, by discussing the
pros and cons in these cases, the professionals become more aware, insightful,
and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.

15

16

Chapter 0 Introduction

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1.

The premise that our society is different from what it would have been with-
out the computer revolution is generally accepted. Is our society better than
it would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

. Is it acceptable to participate in today’s technical society without making an

effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?
Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

By using cash in financial transactions, individuals have traditionally had the
option to manage their financial affairs without service charges. However, as
more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is
there a point at which these charges unfairly restrict an individual’s access to
the economy? For example, suppose an employer pays employees only by
check, and all financial institutions were to place a service charge on check
cashing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

In the context of interactive television, to what extent should a company be
allowed to retrieve information from children (perhaps via an interactive
game format)? For example, should a company be allowed to obtain a child’s
report on his or her parents’ buying patterns? What about information about
the child?

To what extent should a government regulate computer technology and its
applications? Consider, for example, the issues mentioned in Questions 3
and 4. What justifies governmental regulation?

To what extent will our decisions regarding technology in general, and com-
puter technology in particular, affect future generations?

As technology advances, our educational system is constantly challenged to
reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some
argue that long division should also give way to abstraction. What other sub-
jects are involved with similar controversies? Do modern word processors
eliminate the need to develop spelling skills? Will the use of video technol-
ogy someday remove the need to read?

10.

11.

12.

13.

14,

15.

16.

The concept of public libraries is largely based on the premise that all citi-
zens in a democracy must have access to information. As more information
is stored and disseminated via computer technology, does access to this tech-
nology become a right of every individual? If so, should public libraries be
the channel by which this access is provided?

What ethical concerns arise in a society that relies on the use of abstract
tools? Are there cases in which it is unethical to use a product or service
without understanding how it works? Without knowing how it is produced?
Or, without understanding the byproducts of its use?

As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in
which Orwell predicted?

If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what
extent can one technology be separated from another? Is it consistent to
protest against global warming yet accept modern medical treatment?

Suppose your job requires that you reside in another culture. Should you
continue to practice the ethics of your native culture or adopt the ethics of
your host culture? Does your answer depend on whether the issue involves
dress code or human rights? Which ethical standards should prevail if you
continue to reside in your native culture but conduct business with a for-
eign culture?

Has society become too dependent on computer applications for commerce,
communications, or social interactions? For example, what would be the
consequences of a long-term interruption in Internet and/or cellular tele-
phone service?

Most smartphones are able to identify the phone’s location by means of GPS.
This allows applications to provide location-specific information (such as the
local news, local weather, or the presence of businesses in the immediate
area) based on the phone’s current location. However, such GPS capabilities
may also allow other applications to broadcast the phone’s location to other
parties. Is this good? How could knowledge of the phone’s location (thus
your location) be abused?

On the basis of your initial answers to the preceding questions, to which eth-
ical theory presented in Section 0.6 do you tend to subscribe?

Additional Reading

Goldstine, J. J. The Computer from Pascal to von Neumann. Princeton: Princeton
University Press, 1972.

Kizza, J. M. Ethical and Social Issues in the Information Age, 3rd ed. London:
Springer-Verlag, 2007.

Additional Reading

17

18

Chapter 0 Introduction

Mollenhoff, C. R. Atanasoff: Forgotten Father of the Computer. Ames: Towa State
University Press, 1988.

Neumann, P. G. Computer Related Risks. Boston, MA: Addison-Wesley, 1995.

Ni, L. Smart Phone and Next Generation Mobile Computing. San Francisco: Morgan
Kaufmann, 2006.

Quinn, M. J. Ethics for the Information Age, 2nd ed. Boston, MA: Addison-
Wesley, 2006.

Randell, B. The Origins of Digital Computers, 3rd ed. New York: Springer-
Verlag, 1982.

Spinello, R. A. and H. T. Tavani. Readings in CyberEthics, 2nd ed. Sudbury, MA:
Jones and Bartlett, 2004.

Swade, D. The Difference Engine. New York: Viking, 2000.

Tavani, H. T. Ethics and Technology: Ethical Issues in an Age of Information and
Communication Technology, 3rd ed. New York: Wiley, 2011.

Woolley, B. The Bride of Science, Romance, Reason, and Byron's Daughter. New
York: McGraw-Hill, 1999.

CHAPTER

Data Storage

In this chapter, we consider topics associated with data represen-
tation and the storage of data within a computer. The types of data
we will consider include text, numeric values, images, audio, and
video. Much of the information in this chapter is also relevant to
fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.

1.1 Bits and Their Storage

Boolean Operations
Gates and Flip-Flops
Hexadecimal Notation

1.2 Main Memory

Memory Organization
Measuring Memory Capacity

1.3 Mass Storage

Magnetic Systems
Optical Systems

Flash Drives

File Storage and Retrieval

1.4 Representing
Information as Bit Patterns
Representing Text
Representing Numeric Values
Representing Images
Representing Sound

*1.5 The Binary System

Binary Notation
Binary Addition
Fractions in Binary

*1.6 Storing Integers

Two’s Complement Notation
Excess Notation

*1.7 Storing Fractions

Floating-Point Notation
Truncation Errors

*1.8 Data Compression

Generic Data Compression
Techniques

Compressing Images

Compressing Audio and Video

*1.9 Communication Errors
Parity Bits
Error-Correcting Codes

*Asterisks indicate suggestions for
optional sections.

20

Chapter 1 Data Storage

We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is
encoded for storage in these systems. We will explore the ramifications of today’s
data storage systems and how such techniques as data compression and error
handling are used to overcome their shortfalls.

1.1 Bits and Their Storage

Inside today’s computers information is encoded as patterns of Os and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose meaning
depends on the application at hand. Sometimes patterns of bits are used to rep-
resent numeric values; sometimes they represent characters in an alphabet and
punctuation marks; sometimes they represent images; and sometimes they rep-
resent sounds.

Boolean Operations

To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false and
the bit 1 represents the value true because that allows us to think of manipulat-
ing bits as manipulating true/false values. Operations that manipulate
true/false values are called Boolean operations, in honor of the mathemati-
cian George Boole (1815-1864), who was a pioneer in the field of mathematics
called logic. Three of the basic Boolean operations are AND, OR, and XOR
(exclusive or) as summarized in Figure 1.1. These operations are similar to the
arithmetic operations TIMES and PLUS because they combine a pair of values
(the operation’s input) to produce a third value (the output). In contrast to
arithmetic operations, however, Boolean operations combine true/false values
rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of a
statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q
where P represents one statement and Q represents another—for example,
Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas all
other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

PORQ

1.1 Bits and Their Storage

where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.
then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops

A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

The AND operation

0 0 1 1
AND o AND 1 AND o AND 1
0 0 0 1

The OR operation

0 0 1 1
OR o OR 1 OR o OR 1
1 1
The XOR operation
0 0 1 1
XOR o0 XOR 1 XOR o0 XOR 1

0 1 1 0

21

22

Chapter 1 Data Storage

form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop
is a circuit that produces an output value of 0 or 1, which remains constant until a
pulse (a temporary change to a 1 that returns to 0) from another circuit causes it
to shift to the other value. In other words, the output will flip or flop between two
values under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However, tem-
porarily placing a 1 on the upper input will force the output to be 1, whereas tem-
porarily placing a 1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND
gate will now be 1, since the other input to this gate is already 1 (the output pro-
duced by the NOT gate whenever the lower input of the flip-flop is at 0). The out-
put of the AND gate will then become 1, which means that the second input to

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

AND OR

Inputs } Output Inputs 3 Output
Inputs Output Inputs Output
00 0 00 0
01 0 01 1
10 0 10 1
11 1 11 1

XOR NOT

Inputs D Output Inputs —Do— Output
Inputs Output Inputs Output
00 0 0 1
01 1 1 0
10 1
11 0

1.1 Bits and Their Storage 23

Figure 1.3 Asimple flip-flop circuit

Input
>—‘D7% Output

—(]
Input {>c

the OR gate will now be 1 (Figure 1.4b). This guarantees that the output of the
OR gate will remain 1, even when the upper input to the flip-flop is changed
back to 0 (Figure 1.4c). In summary, the flip-flop’s output has become 1, and this
output value will remain after the upper input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input
value returns to 0.

Figure 1.4 Setting the output of a flip-flop to 1

a. 1is placed on the upper input. b.This causes the output of the OR gate to be 1 and,
in turn, the output of the AND gate to be 1.

: o : >

c.The 1 from the AND gate keeps the OR gate from
changing after the upper input returns to 0.

24

Chapter 1 Data Storage

Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer
engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and the
use of abstract tools. Actually, there are other ways to build a flip-flop. One alter-
native is shown in Figure 1.5. If you experiment with this circuit, you will find
that, although it has a different internal structure, its external properties are the
same as those of Figure 1.3. A computer engineer does not need to know which
circuit is actually used within a flip-flop. Instead, only an understanding of the
flip-flop’s external properties is needed to use it as an abstract tool. A flip-flop,
along with other well-defined circuits, forms a set of building blocks from which
an engineer can construct more complex circuitry. In turn, the design of com-
puter circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to have
the output value of either 0 or 1. Other circuits can adjust this value by sending
pulses to the flip-flop’s inputs, and still other circuits can respond to the stored
value by using the flip-flop’s output as their inputs. Thus, many flip-flops, con-
structed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of Os and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. In turn, these chips are used as abstract tools in the con-
struction of computer systems. In fact, in some cases VLSI is used to create an
entire computer system on a single chip.

Hexadecimal Notation

When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal

Figure 1.5 Another way of constructing a flip-flop

Input {>c

{>c Output
Input

1.1 Bits and Their Storage

Figure 1.6 The hexadecimal encoding system

Hexadecima
Bit pattern representation

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

HEHUOUQWM™» OO u & WN - o

notation, which takes advantage of the fact that bit patterns within a machine
tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each sub-
string by its hexadecimal equivalent—1011 is represented by B, and 0101 is repre-
sented by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced
to the more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you

will come to appreciate its efficiency.
i

1. What input bit patterns will cause the following circuit to produce an

output of 1?
Inputs ijD }Output

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.

25

15 8 Exercises |||
158 Exerdises | | |1

26 Chapter 1 Data Storage

3. Assuming that both inputs to the flip-flop in Figure 1.5 are 0, describe the
sequence of events that occurs when the upper input is temporarily set to 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean oper-
ation does the circuit compute?

Input {>c
L
,—%
Input {>c

b. If the output of an OR gate is passed through a NOT gate, the combi-
nation computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

Input >—/|—

Output

Input >———-

5. Use hexadecimal notation to represent the following bit patterns:

a. 0110101011110010 b. 111010000101010100010111
c. 01001000

6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 b. 610A c. ABCD d. 0100

1.2 Main Memory

For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is
known as the machine’s main memory.

Memory Organization

A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers used in such
household devices as microwave ovens may have main memories consisting of
only a few hundred cells, whereas large computers may have billions of cells in
their main memories.

Figure 1.7 The organization of a byte-size memory cell

High-order end 0 1 0 1 1 0 1 0 Low-orderend

Most Least
significant significant
bit bit

Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the right-
most bit is referred to as the low-order bit or the least significant bit. Thus we may
represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’'s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the tech-
nique of identifying houses in a city by addresses. In the case of memory cells,
however, the addresses used are entirely numeric. To be more precise, we envi-
sion all the cells being placed in a single row and numbered in this order starting
with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within a
computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the
length of a single cell. In particular, we can still store a string of 16 bits merely by
using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to

Figure 1.8 Memory cells arranged by address

1.2 Main Memory

27

28

A
A
nnbitidatebsithant bty

Chapter 1 Data Storage

store and retrieve data from the memory cells. In this way, other circuits can get
data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular
address (called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability to
access cells in any order, a computer's main memory is often called random
access memory (RAM). This random access feature of main memory is in
stark contrast to the mass storage systems that we will discuss in the next sec-
tion, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using other technologies that provide
greater miniaturization and faster response time. Many of these technologies store
bits as tiny electric charges that dissipate quickly. Thus these devices require addi-
tional circuitry, known as a refresh circuit, that repeatedly replenishes the charges
many times a second. In recognition of this volatility, computer memory con-
structed from such technology is often called dynamic memory, leading to the
term DRAM (pronounced “DEE-ram”) meaning Dynamic RAM. Or, at times the
term SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is used
in reference to DRAM that applies additional techniques to decrease the time
needed to retrieve the contents from its memory cells.

Measuring Memory Capacity

As we will learn in the next chapter, it is convenient to design main memory systems
in which the total number of cells is a power of two. In turn, the size of the memo-
ries in early computers were often measured in 1024 (which is 2!%) cell units. Since
1024 is close to the value 1000, the computing community adopted the prefix kilo in
reference to this unit. That is, the term kilobyte (abbreviated KB) was used to refer to
1024 bytes. Thus, a machine with 4096 memory cells was said to have a 4KB mem-
ory (4096 = 4 X 1024). As memories became larger, this terminology grew to include
MB (megabyte), GB (gigabyte), and TB (terabyte). Unfortunately, this application of
prefixes kilo-, mega-, and so on, represents a misuse of terminology because these
are already used in other fields in reference to units that are powers of a thousand.
For example, when measuring distance, kilometer refers to 1000 meters, and when
measuring radio frequencies, megahertz refers to 1,000,000 hertz. Thus, a word of
caution is in order when using this terminology. As a general rule, terms such as
kilo-, mega-, etc. refer to powers of two when used in the context of a computer’s
memory, but they refer to powers of a thousand when used in other contexts.

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 67

2. Suppose you want to interchange the values stored in memory cells 2
and 3. What is wrong with the following sequence of steps:

Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.

Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

1.3 Mass Storage

29

1.3 Mass Storage

Due to the volatility and limited size of a computer’s main memory, most computers
have additional memory devices called mass storage (or secondary storage) sys-
tems, including magnetic disks, CDs, DVDs, magnetic tapes, and flash drives (all of
which we will discuss shortly). The advantages of mass storage systems over main
memory include less volatility, large storage capacities, low cost, and in many cases,
the ability to remove the storage medium from the machine for archival purposes.

The terms on-line and off-line are often used to describe devices that can be
either attached to or detached from a machine. On-line means that the device or
information is connected and readily available to the machine without human
intervention. Off-line means that human intervention is required before the
device or information can be accessed by the machine—perhaps because the
device must be turned on, or the medium holding the information must be
inserted into some mechanism.

A major disadvantage of mass storage systems is that they typically require
mechanical motion and therefore require significantly more time to store and
retrieve data than a machine’s main memory, where all activities are per-
formed electronically.

Magnetic Systems

For years, magnetic technology has dominated the mass storage arena. The most
common example in use today is the magnetic disk, in which a thin spinning
disk with magnetic coating is used to hold data (Figure 1.9). Read/write heads are
placed above and/or below the disk so that as the disk spins, each head traverses
a circle, called a track. By repositioning the read/write heads, different concen-
tric tracks can be accessed. In many cases, a disk storage system consists of sev-
eral disks mounted on a common spindle, one on top of the other, with enough
space for the read/write heads to slip between the platters. In such cases, the

Figure 1.9 Adisk storage system

Track divided
into sectors

Read/write head

Access arm

Arm motion

—»

Disk motion

30

Chapter 1 Data Storage

read/write heads move in unison. Each time the read/write heads are reposi-
tioned, a new set of tracks—which is called a cylinder—becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All sec-
tors on a disk contain the same number of bits (typical capacities are in the
range of 512 bytes to a few KB), and in the simplest disk storage systems each
track contains the same number of sectors. Thus, the bits within a sector on a
track near the outer edge of the disk are less compactly stored than those on the
tracks near the center, since the outer tracks are longer than the inner ones. In
fact, in high capacity disk storage systems, the tracks near the outer edge are
capable of containing significantly more sectors than those near the center, and
this capability is often utilized by applying a technique called zoned-bit
recording. Using zoned-bit recording, several adjacent tracks are collectively
known as zones, with a typical disk containing approximately ten zones. All
tracks within a zone have the same number of sectors, but each zone has more
sectors per track than the zone inside of it. In this manner, efficient utilization
of the entire disk surface is achieved. Regardless of the details, a disk storage
system consists of many individual sectors, each of which can be accessed as an
independent string of bits.

The location of tracks and sectors is not a permanent part of a disk’s physical
structure. Instead, they are marked magnetically through a process called
formatting (or initializing) the disk. This process is usually performed by the
disk’s manufacturer, resulting in what are known as formatted disks. Most com-
puter systems can also perform this task. Thus, if the format information on a
disk is damaged, the disk can be reformatted, although this process destroys all
the information that was previously recorded on the disk.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six plat-
ters mounted on a common spindle. Furthermore, data may be stored on both
the upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance: (1)
seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in an
outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of

several thousands times per second, achieving transfer rates that are measured
in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths of a
second) or less, whereas seek times, latency times, and access times of disk sys-
tems are measured in milliseconds (thousandths of a second). Thus the time
required to retrieve information from a disk system can seem like an eternity to
an electronic circuit awaiting a result.

Disk storage systems are not the only mass storage devices that apply mag-
netic technology. An older form of mass storage using magnetic technology is
magnetic tape (Figure 1.10). In these systems, information is recorded on the
magnetic coating of a thin plastic tape that is wound on a reel for storage. To
access the data, the tape is mounted in a device called a tape drive that typically
can read, write, and rewind the tape under control of the computer. Tape drives
range in size from small cartridge units, called streaming tape units, which use
tape similar in appearance to that in stereo systems to older, large reel-to-reel
units. Although the capacity of these devices depends on the format used, most
can hold many GB.

A major disadvantage of magnetic tape is that moving between different posi-
tions on a tape can be very time-consuming owing to the significant amount of
tape that must be moved between the reels. Thus tape systems have much longer
data access times than magnetic disk systems in which different sectors can be
accessed by short movements of the read/write head. In turn, tape systems are not
popular for on-line data storage. Instead, magnetic tape technology is reserved for
off-line archival data storage applications where its high capacity, reliability, and
cost efficiency are beneficial, although advances in alternatives, such as DVDs and
flash drives, are rapidly challenging this last vestige of magnetic tape.

Optical Systems

Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective
coating. Information is recorded on them by creating variations in their reflective

Figure 1.10 A magnetic tape storage mechanism

Tape reel Take-up ree

Read/write
head

Tape motion

1.3 Mass Storage

31

32

Chapter 1 Data Storage

surfaces. This information can then be retrieved by means of a laser beam that
detects irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, informa-
tion on these CDs is stored on a single track that spirals around the CD like a
groove in an old-fashioned record, however, unlike old-fashioned records, the track
on a CD spirals from the inside out (Figure 1.11). This track is divided into units
called sectors, each with its own identifying markings and a capacity of 2KB of
data, which equates to '/s of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser beam is scanning the outer
portion of the spiraled track than when the beam is scanning the inner portion of
the track. Thus, to obtain a uniform rate of data transfer, CD-DA players are
designed to vary the rotation speed depending on the location of the laser beam.
However, most CD systems used for computer data storage spin at a faster, con-
stant speed and thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform best
when dealing with long, continuous strings of data, as when reproducing music. In
contrast, when an application requires access to items of data in a random manner,
the approach used in magnetic disk storage (individual, concentric tracks divided
into individually accessible sectors) outperforms the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable of
storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As a

Figure 1.11 CD storage format

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Disk motion

result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives

A common property of mass storage systems based on magnetic or optic tech-
nology is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years, this tech-
nology is suitable for off-line storage of data.

Although data stored in flash memory systems can be accessed in small
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is not
suitable for general main memory applications where its contents might be
altered many times a second. However, in those applications in which alter-
ations can be controlled to a reasonable level, such as in digital cameras, cellu-
lar telephones, and hand-held PDAs, flash memory has become the mass
storage technology of choice. Indeed, since flash memory is not sensitive to
physical shock (in contrast to magnetic and optic systems) its potential in
portable applications is enticing.

Flash memory devices called flash drives, with capacities of up to a few
hundred GBs, are available for general mass storage applications. These units are
packaged in small plastic cases approximately three inches long with a remov-
able cap on one end to protect the unit’s electrical connector when the drive is
off-line. The high capacity of these portable units as well as the fact that they are
easily connected to and disconnected from a computer make them ideal for off-
line data storage. However, the vulnerability of their tiny storage chambers dic-
tates that they are not as reliable as optical disks for truly long term applications.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are also
available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended
Capacity) memory cards may exceed a TB. Given their compact physical size,
these cards conveniently slip into slots of small electronic devices. Thus, they are
ideal for digital cameras, smartphones, music players, car navigation systems, and
a host of other electronic appliances.

File Storage and Retrieval

Information stored in a mass storage system is conceptually grouped into large
units called files. A typical file may consist of a complete text document, a photo-
graph, a program, a music recording, or a collection of data about the employees in

1.3 Mass Storage

33

34

Chapter 1 Data Storage

a company. We have seen that mass storage devices dictate that these files be
stored and retrieved in smaller, multiple byte units. For example, a file stored on a
magnetic disk must be manipulated by sectors, each of which is a fixed predeter-
mined size. A block of data conforming to the specific characteristics of a storage
device is called a physical record. Thus, a large file stored in mass storage will
typically consist of many physical records.

In contrast to this division into physical records, a file often has natural divi-
sions determined by the information represented. For example, a file containing
information regarding a company’s employees would consist of multiple units,
each consisting of the information about one employee. Or, a file containing a
text document would consist of paragraphs or pages. These naturally occurring
blocks of data are called logical records.

Logical records often consist of smaller units called fields. For example, a
logical record containing information about an employee would probably consist
of fields such as name, address, employee identification number, etc. Sometimes
each logical record within a file is uniquely identified by means of a particular
field within the record (perhaps an employee’s identification number, a part
number, or a catalogue item number). Such an identifying field is called a key
field. The value held in a key field is called a key.

Logical record sizes rarely match the physical record size dictated by a mass
storage device. In turn, one may find several logical records residing within a sin-
gle physical record or perhaps a logical record split between two or more physical
records (Figure 1.12). The result is that a certain amount of unscrambling is asso-
ciated with retrieving data from mass storage systems. A common solution to this
problem is to set aside an area of main memory that is large enough to hold sev-
eral physical records and to use this memory space as a regrouping area. That is,
blocks of data compatible with physical records can be transferred between this
main memory area and the mass storage system, while the data residing in the
main memory area can be referenced in terms of logical records.

An area of memory used in this manner is called a buffer. In general, a
buffer is a storage area used to hold data on a temporary basis, usually during the
process of being transferred from one device to another. For example, modern

Figure 1.12 Logical records versus physical records on a disk

Logical records correspond
to natural divisions within the data

\

R NE—

Physical records correspond
to the size of a sector

1.4 Representing Information as Bit Patterns

printers contain memory circuitry of their own, a large part of which is used as a
buffer for holding portions of a document that have been received by the printer

but not yet printed.

1. What is gained by increasing the rotation speed of a disk or CD?

2. When recording data on a multiple-disk storage system, should we fill a
complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

4. Sometimes, when modifying a document with a word processor, adding
text does not increase the apparent size of the file in mass storage, but at
other times the addition of a single symbol can increase the apparent
size of the file by several hundred bytes. Why?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What is a buffer?

35

I " | Il
|(Qusstions & Exsrcises |]
nsnifitnchi i

1.4 Representing Information as Bit Patterns

Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text

Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alpha-
bet and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolifera-
tion of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN-see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS-kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0 at the
most significant end of each of the seven-bit patterns. This technique not only

36

Chapter 1 Data Storage

produces a code in which each pattern fits conveniently into a typical byte-size
memory cell but also provides 128 additional bit patterns (those obtained by
assigning the extra bit the value 1) that can be used to represent symbols beyond
the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.13.

The International Organization for Standardization (also known as ISO,
in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which were designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels &, 6, and 1.

The ISO extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some
Eastern European languages. Second, because a given document was con-
strained to using symbols in just the one selected standard, documents contain-
ing text of languages from disparate language groups could not be supported.
Both proved to be a significant detriment to international use. To address this
deficiency, Unicode, was developed through the cooperation of several of the
leading manufacturers of hardware and software and has rapidly gained the sup-
port in the computing community. This code uses a unique pattern of 16 bits
to represent each symbol. As a result, Unicode consists of 65,536 different bit
patterns—enough to allow text written in such languages as Chinese, Japanese,
and Hebrew to be represented.

A file consisting of a long sequence of symbols encoded using ASCII or
Unicode is often called a text file. It is important to distinguish between simple
text files that are manipulated by utility programs called text editors (or often
simply editors) and the more elaborate files produced by word processors such
as Microsoft's Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by a
word processor contains numerous proprietary codes representing changes in
fonts, alignment information, etc.

Representing Numeric Values

Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number

Figure 1.13 The message “Hello.” in ASCII

01001000 01100101 01101100 01101100 01101111 00101110
H e | | o

1.4 Representing Information as Bit Patterns

The American National Standards Institute

The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector.
Today, ANSI membership includes more than 1300 businesses, professional organi-
zations, trade associations, and government agencies. ANSI is headquartered in New
York and represents the United States as a member body in the ISO. The Web site for
the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and Technical
Supervision (China), Deutsches Institut fiir Normung (Germany), Japanese Industrial
Standards Committee (Japan), Direccién General de Normas (Mexico), State Committee
of the Russian Federation for Standardization and Metrology (Russia), Swiss
Association for Standardization (Switzerland), and British Standards Institution

(United Kingdom).

37

we could store using 16 bits is 99. However, as we will shortly see, by using
binary notation we can store any integer in the range from 0 to 65535 in these
16 bits. Thus, binary notation (or variations of it) is used extensively for encoded
numeric data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional dec-
imal, or base ten, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels
contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000
0001
0010
0011
0100
0101
0110
0111
1000

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique to dis-
cover that the bit pattern consisting of sixteen 1s represents the value 65535,

http://www.ansi.org
http://www.ansi.org

38

Chapter 1 Data Storage

which confirms our claim that any integer in the range from 0 to 65535 can be
encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis for
several numeric storage techniques used within machines. Some of these varia-
tions of the binary system are discussed later in this chapter. For now, we merely
note that a system called two’s complement notation (see Section 1.6) is com-
mon for storing whole numbers because it provides a convenient method for rep-
resenting negative numbers as well as positive. For representing numbers with
fractional parts such as 4'/. or %, another technique, called floating-point nota-
tion (see Section 1.7), is used.

Representing Images

One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection
of these encoded pixels. Such a collection is called a bit map. This approach is
popular because many display devices, such as printers and display screens,
operate on the pixel concept. In turn, images in bit map form are easily format-
ted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
back and white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.

In the case of color images, each pixel is encoded by more complex system.
Two approaches are common. In one, which we will call RGB encoding, each
pixel is represented as three color components—a red component, a green com-
ponent, and a blue component—corresponding to the three primary colors of
light. One byte is normally used to represent the intensity of each color compo-
nent. In turn, three bytes of storage are required to represent a single pixel in the
original image.

ISO—The International Organization for Standardization

The International Organization for Standardization (more commonly called 1SO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO
maintains a Web site at http://www.iso.org.

http://www.iso.org
http://www.iso.org

1.4 Representing Information as Bit Patterns

An alternative to simple RGB encoding is to use a “brightness” component
and two color components. In this case the “brightness” component, which is
called the pixel’s luminance, is essentially the sum of the red, green, and blue
components. (Actually, it is considered to be the amount of white light in the
pixel, but these details need not concern us here.) The other two components,
called the blue chrominance and the red chrominance, are determined by com-
puting the difference between the pixel’s luminance and the amount of blue or
red light, respectively, in the pixel. Together these three components contain the
information required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version of
an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom’ that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem is to
describe the image as a collection of geometric structures, such as lines and
curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how the
geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For example,
TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data. This
geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’s Paint utility) that allow the user to draw pictures
consisting of preestablished shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing
process, the software maintains a geometric description of the shape being
drawn. As directions are given by the mouse, the internal geometric represen-
tation is modified, reconverted to bit map form, and displayed. This allows for
easy scaling and shaping of the image. Once the drawing process is complete,
however, the underlying geometric description is discarded and only the bit
map is preserved, meaning that additional alterations require a tedious pixel-
by-pixel modification process. On the other hand, some drawing systems pre-
serve the description as geometric shapes, which can be modified later. With
these systems, the shapes can be easily resized, maintaining a crisp display at
any dimension.

39

40

Chapter 1 Data Storage

Representing Sound

The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude, falls
briefly, rises to a higher level, and then drops back to 0 (Figure 1.14). This tech-
nique, using a sample rate of 8000 samples per second, has been used for years
in long-distance voice telephone communication. The voice at one end of the
communication is encoded as numeric values representing the amplitude of the
voice every eight-thousandth of a second. These numeric values are then trans-
mitted over the communication line to the receiving end, where they are used to
reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second
is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital
Interface (MIDI, pronounced “MID-ee”) is widely used in the music synthesiz-
ers found in electronic keyboards, for video game sound, and for sound effects
accompanying Web sites. By encoding directions for producing music on a syn-
thesizer rather than encoding the sound itself, MIDI avoids the large storage
requirements of the sampling technique. More precisely, MIDI encodes what
instrument is to play which note for what duration of time, which means that a
clarinet playing the note D for two seconds can be encoding in three bytes
rather than more than two million bits when sampled at a rate of 44,100 sam-
ples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.

Figure 1.14 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0

Encoded sound wave

TN

0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

1.4 Representing Information as Bit Patterns 41

I " | Il
LTI vsstions & Exreises) |1
nsniiitnchidbi i

. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. b. Does2 + 3 = 5?

. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol 1
to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

. Convert each of the following binary representations to its equivalent
base ten form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

. Convert each of the following base ten representations to its equivalent
binary form:

a. 6 b. 13 c. 11
d. 18 e. 27 f. 4

. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

. An alternative to hexadecimal notation for representing bit patterns is
dotted decimal notation in which each byte in the pattern is repre-
sented by its base ten equivalent. In turn, these byte representations are
separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 b. 001100110000000010000000
c. 0000101010100000

. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?

42

Chapter 1 Data Storage

1.5 The Binary System

In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that are
used in the more common base ten notational system. It is time now to look at
binary notation more thoroughly.

Binary Notation

Recall that in the base ten system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.15a). Each quantity
is ten times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity
associated with that digit’s position and then adding those products. To illustrate,
the pattern 375 represents (3 X hundred) + (7 X ten) + (5 X one), which, in
more technical notation, is (3 X 10%) + (7 X 101) + (5 X 10%).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (2%), the
next position to the left is associated with two (2!), the next is associated with
four (2%), the next with eight (2%), and so on. For example, in the binary repre-
sentation 1011, the rightmost 1 is in the position associated with the quantity
one, the 1 next to it is in the position associated with two, the 0 is in the posi-
tion associated with four, and the leftmost 1 is in the position associated with
eight (Figure 1.15b).

To extract the value represented by a binary representation, we follow the
same procedure as in base ten—we multiply the value of each digit by the quan-
tity associated with its position and add the results. For example, the value rep-
resented by 100101 is 37, as shown in Figure 1.16. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to
adding the quantities associated with the positions occupied by 1s. Thus the
binary pattern 1011 represents the value eleven, because the 1s are found in the
positions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.17. Let us apply
this algorithm to the value thirteen (Figure 1.18). We first divide thirteen by two,

Figure 1.15 The base ten and binary systems

a. Base ten system b. Base two system

3|17|5]—Representation SIS RO TR T]—Representation

> & o & 588

3 T < . . 5358 . .
g’? ~ o }Posmon’s quantity g0 Position’s quantity
§
T

1.5 The Binary System

Figure 1.16 Decoding the binary representation 100101

Binary

pattern—[11]1- X one = 1
0 x two = 0
1 x four = 4
0 x eight = 0
0 x sixteen = 0
1 X thirty-two = 32

4 ——— 37 Total

Value Position’s
of bit quantity

Figure 1.17 An algorithm for finding the binary representation of a positive integer

Step 1. Divide the value by two and record the remainder.

Step 2. As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.18 Applying the algorithm in Figure 1.17 to obtain the binary representation
of thirteen

Remainder 1 —

0
2J1

[y

Remainder 1

?
1
2)3

w

3 Remainder 0
2J6

6
2)13

[e))

<
<
<
<
4

4

Remainder 1 l
1

110 Binary representation

obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient
of three and a remainder of zero. The newest quotient is still not zero, so we
divide it by two, obtaining a quotient of one and a remainder of one. Once again,
we divide the newest quotient (one) by two, this time obtaining a quotient of
zero and a remainder of one. Since we have now acquired a quotient of zero, we
move on to Step 3, where we learn that the binary representation of the original
value (thirteen) is 1101, obtained from the list of remainders.

43

44

Chapter 1 Data Storage

Binary Addition

To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base ten notation. Consider, for example, the following problem:

58
+ 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

We now add the 5 and 2 in the next column along with the 1 that was carried
to obtain the sum 8, which we record at the bottom of the column. The result
is as follows:

58
+ 27

85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same pro-
cedure except that all sums are computed using the addition facts shown in
Figure 1.19 rather than the traditional base ten facts that you learned in elemen-
tary school. For example, to solve the problem

111010
+ 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next col-
umn. At this point, our solution looks like this:

1
111010
+ 11011
01

Figure 1.19 The binary addition facts

0 1 0 1
B e o
0 1 1 10

1.5 The Binary System

We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the col-
umn and carry the 1 to the next column. Now our solution looks like this:

1
111010
+ 11011
0101

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010
+ 11011
010101

The only entry in the next column is the 1 that we carried from the previous col-
umn so we record it in the answer. Our final solution is this:

111010
+ 11011
1010101

Fractions in Binary

To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the dig-
its to the left of the point represent the integer part (whole part) of the value and
are interpreted as in the binary system discussed previously. The digits to its
right represent the fractional part of the value and are interpreted in a manner
similar to the other bits, except their positions are assigned fractional quanti-
ties. That is, the first position to the right of the radix is assigned the quantity
'/, (which is 271), the next position the quantity /4 (which is 27%), the next '/
(which is 27%), and so on. Note that this is merely a continuation of the rule
stated previously: Each position is assigned a quantity twice the size of the one
to its right. With these quantities assigned to the bit positions, decoding a
binary representation containing a radix point requires the same procedure as
used without a radix point. More precisely, we multiply each bit value by the
quantity assigned to that bit’s position in the representation. To illustrate, the
binary representation 101.101 decodes to 5%, as shown in Figure 1.20.

Figure 1.20 Decoding the binary representation 101.101

Binary 73 9 1.1 0 1

pattern 1 x one-eighth = 14
0 x one-fourth = o
1 x one-half = 1,
1 x one = 1
0 X two = 0
1 x four = 4

s s e 5% Total

Value Position’s
of bit quantity

45

46

Chapter 1 Data Storage

Analog Versus Digital

Prior to the twenty-first century, many researchers debated the pros and cons of dig-
ital versus analog technology. In a digital system, a value is encoded as a series of
digits and then stored using several devices, each representing one of the digits. In
an analog system, each value is stored in a single device that can represent any value
within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To
simulate a digital system, we could agree to let an empty bucket represent the digit 0 and
a full bucket represent the digit 1. Then we could store a numeric value in a row of buckets
using floating-point notation (see Section 1.7). In contrast, we could simulate an analog
system by partially filling a single bucket to the point at which the water level represented
the numeric value being represented. At first glance, the analog system may appear to be
more accurate since it would not suffer from the truncation errors inherent in the digital
system (again see Section 1.7). However, any movement of the bucket in the analog sys-
tem could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full
bucket and an empty bucket would be blurred. Thus the digital system would be less
sensitive to error than the analog system. This robustness is a major reason why many
applications that were originally based on analog technology (such as telephone commu-
nication, audio recordings, and television) are shifting to digital technology.

U
||||||||||||I"! ik I! % [Exe

. Convert each of the following binary representations to its equivalent

For addition, the techniques applied in the base ten system are also applica-

ble in binary. That is, to add two binary representations having radix points, we
merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
+ 100.110
111.001

|
base ten form:

a. 101010 b. 100001 ¢ 10111 d. 0110 e. 11111

. Convert each of the following base ten representations to its equivalent

binary form:

a. 32 b. 64 c. 96 d. 15 e. 27

. Convert each of the following binary representations to its equivalent

base ten form:

a. 11.01 b. 101.111 ¢ 10.1 d. 110.011 e. 0.101

. Express the following values in binary notation:

a. 4/ b. 2% c. 1'% d. %s e. 5%

1.6 Storing Integers

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 ¢ 11111 d. 111.11
+1100 + 1.101 + 0001 + 00.01

47

1.6 Storing Integers

Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation

The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two's complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

Figure 1.21 Two’s complement notation systems

a. Using patterns of length three b. Using patterns of length four
Bit Value Bit Value
pattern represented pattern represented

011 3 0111 7
010 2 0110 6
001 1 0101 5
000 0 0100 4
111 =1 0011 3
110 =2 0010 2
101 =g 0001 1
100 -4 0000 0
1111 =1
1110 -2
1101 -3
1100 —4
1011 -5
1010 -6
1001 =17
1000 -8

48

Chapter 1 Data Storage

system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values —1,
—2, =3, (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and —2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing —2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Figure 1.22 Encoding the value —6 in two’s complement notation using 4 bits

Two's complement notation —{ 0 1 1 0
for 6 using four bits | |
| |
| |
| |
| |
| | .
Copy the bits from
| | i .
| | ; right to left until a
I I] 1 has been copied
| |
| |
| |
| |
I T Complement the
|] remaining bits
Two’s complement notation v ¥ v v
for -6 using four bits ——1 0 1 0

1.6 Storing Integers

though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents —6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 + 1011 =
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to

subtract, a machine using two’s complement notation needs to know only how
to add.

Figure 1.23 Addition problems converted to two’s complement notation

Problem in Problem in Answer in
base ten two's complement base ten
0011

+‘;’ —» 1£0010

0101 — 5

= 1101
.2 —» +1110

1011 —> =5

. 0111
.5 —» 1011

0010 —> 2

49

50

Chapter 1 Data Storage

For example, the subtraction problem 7 — 5 is the same as the addition prob-
lem 7 + (—5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to —5 (represented as
1011) and then perform the addition process of 0111 + 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
=5 — — 0101 — + 1011
0010 — 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are
shown and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples
is that in any two’s complement system there is a limit to the size of the values
that can be represented. When using two's complement with patterns of 4 bits,
the largest positive integer that can be represented is 7, and the most negative
integer is —8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 + 4. In fact, the
result would appear as —7. This phenomenon is called overflow. That is, over-
flow is the problem that occurs when a computation produces a value that falls
outside the range of values that can be represented. When using two’s comple-
ment notation, this might occur when adding two positive values or when adding
two negative values. In either case, the condition can be detected by checking
the sign bit of the answer. An overflow is indicated if the addition of two positive
values results in the pattern for a negative value or if the sum of two negative
values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns of
32 bits for storing values in two’s complement notation, allowing for positive val-
ues as large as 2,147,483,647 to accumulate before overflow occurs. If still larger
values are needed, longer bit patterns can be used or perhaps the units of meas-
ure can be changed. For instance, finding a solution in terms of miles instead of
inches results in smaller numbers being used and might still provide the accu-
racy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmertrs and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was com-
mon to use patterns of 16 bits for representing values in two’s complement nota-
tion, which meant that overflow would occur when values of 2!> = 32,768 or
larger were reached. On September 19, 1989, a hospital computer system mal-
functioned after years of reliable service. Close inspection revealed that this date
was 32,768 days after January 1, 1900, and the machine was programmed to com-
pute dates based on that starting date. Thus, because of overflow, September 19,
1989, produced a negative value—a phenomenon for which the computer’s pro-
gram was not designed to handle.

1.6 Storing Integers

Excess Notation

Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish
an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this are
used to represent 1, 2, 3, . . .; and the patterns preceding it are used for —1,
—2, =3, The resulting code, when using patterns of length four, is
shown in Figure 1.24. There we see that the value 5 is represented by the
pattern 1101 and —5 is represented by 0011. (Note that the difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.24 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values repre-
sented in the excess notation. In each case, you will find that the binary inter-
pretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but in
the excess system it represents negative 8. In a similar manner, an excess sys-
tem based on patterns of length five would be called excess 16 notation,

Figure 1.24 An excess eight conversion table

Bit Value
pattern represented
1111 7
1110 6
1101 5
1100 4
1011 3
1010 2
1001 1
1000 0
0111 -1
0110 -2
0101 -3
0100 -4
0011 -5
0010 -6
0001 =7
0000 -8

51

52

A

Chapter 1 Data Storage

Figure 1.25 An excess notation system using bit patterns of length three

Bit Value
pattern represented

111 3

110 2

101 1

100 0

011 -1

010 -2

001 -3

000 -4

because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to
confirm that the three-bit excess system would be known as excess four nota-

tion (Figure 1.25).

X
1

. Convert each of the following two’s complement representations to its

equivalent base ten form:

a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

. Convert each of the following base ten representations to its equivalent

two's complement form using patterns of 8 bits:

a. 6 b. —6 c. —17

d. 13 e. —1 f. 0

Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the neg-
ative of each value:

a. 00000001 b. 01010101 ¢ 11111100

d. 11111110 e. 00000000 f. 01111111

Suppose a machine stores numbers in two’s complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?

a. four b. six c. eight

In the following problems, each bit pattern represents a value stored in
two’s complement notation. Find the answer to each problem in two's
complement notation by performing the addition process described in

1.7 Storing Fractions

the text. Then check your work by translating the problem and your

answer into base ten notation.

a. 0101 b. 0011 C. 0101 d. 1110 e. 1010
+ 0010 + 0001 + 1010 + 0011 + 1110

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.

a. 0100 b. 0101 (& 1010 d. 1010 e. 0111
+ 0011 + 0110 + 1010 + 0111 + 0001

7. Translate each of the following problems from base ten notation into
two’s complement notation using bit patterns of length four, then con-
vert each problem to an equivalent addition problem (as a machine
might do), and perform the addition. Check your answers by converting
them back to base ten notation.

a. 6 b. 3 c. 4 d. 2 e. 1

—(-1) =7 —6 —(—4) -5

8. Can overflow ever occur when values are added in two’s complement nota-
tion with one value positive and the other negative? Explain your answer.

9. Convert each of the following excess eight representations to its equiva-
lent base ten form without referring to the table in the text:

a. 1110 b. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its equivalent
excess eight form without referring to the table in the text:

a. 5 b. —5 c. 3
d. 0 e. 7 f. —8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.

53

1.7 Storing Fractions

In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of 0s and 1s representing its binary
representation but also the position of the radix point. A popular way of doing
this is based on scientific notation and is called floating-point notation.

Floating-Point Notation

Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into

54

Chapter 1 Data Storage

two groups, or fields: the exponent field and the mantissa field. Let us desig-
nate the 3 bits following the sign bit as the exponent field and the remaining
4 bits as the mantissa field. Figure 1.26 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place a
radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as an
integer stored using the 3-bit excess method (see again Figure 1.25). Thus the
pattern in the exponent field in our example represents a positive 2. This tells us
to move the radix in our solution to the right by 2 bits. (A negative exponent
would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 2%. Next, we note that the sign bit in our
example is 0; the value represented is thus nonnegative. We conclude that the
byte 01101011 represents 2%:. Had the pattern been 11101011 (which is the same as
before except for the sign bit), the value represented would have been —2%..

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value —1. We therefore have

.01100

which represents *s. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents .

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 1'%, first we express it in binary notation and
obtain 1.001. Next, we copy the bit pattern into the mantissa field from left to
right, starting with the leftmost 1 in the binary representation. At this point, the
byte looks like this:

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.

Figure 1.26 Floating-point notation components

:I—Bit positions

Mantissa
Exponent

Sign bit

1.7 Storing Fractions 55

In our example, we see that the radix in .1001 must be moved 1 bit to the right to
obtain 1.001. The exponent should therefore be a positive one, so we place 101
(which is positive one in excess four notation as shown in Figure 1.25) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored is
nonnegative. The finished byte looks like this:

01011001

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from left
to right, starting with the leftmost 1. To clarify, consider the process of storing the
value %, which is .011 in binary notation. In this case the mantissa will be

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to the
value %, but only the first pattern is in normalized form. Complying with nor-
malized form also means that the representation for all nonzero values will have
a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all Os.

Truncation Errors

Let us consider the annoying problem that occurs if we try to store the value 2%
with our one-byte floating-point system. We first write 2% in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last ') is lost (Figure 1.27). If we ignore

Figure 1.27 Encoding the value 2%

25/, Original representation

-

10.101 Basetwo representation

-

1 0101 Raw bitpattern

|
| Lost bit
Mantissa

Exponent

Sign bit

56

Chapter 1 Data Storage

this problem for now and continue by filling in the exponent field and the sign
bit, we end up with the bit pattern 01101010, which represents 2'/ instead of
2°/s. What has occurred is called a truncation error, or round-off error—
meaning that part of the value being stored is lost because the mantissa field is
not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express '/s in decimal form. Some val-
ues cannot be accurately expressed regardless of how many digits we use. The
difference between our traditional base ten notation and binary notation is that
more values have nonterminating representations in binary than in decimal
notation. For example, the value one-tenth is nonterminating when expressed
in binary. Imagine the problems this might cause the unwary person using
floating-point notation to store and manipulate dollars and cents. In particular,
if the dollar is used as the unit of measure, the value of a dime could not be
stored accurately. A solution in this case is to manipulate the data in units of
pennies so that all values are integers that can be accurately stored using a
method such as two's complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often
massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

2%+ s+

Single Precision Floating Point

The floating-point notation introduced in this chapter (Section 1.7) is far too simplis-
tic to be used in an actual computer. After all, with just 8 bits only 256 numbers out of
set of all real numbers can be expressed. Our discussion has used 8 bits to keep the
examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 103%) down to very small
numbers (order of 1037) with the precision of 7 decimal digits. That is to say, the
first 7 digits of a given decimal number can be stored with very good accuracy (a
small amount of error may still be present). Any digits passed the first 7 will certainly
be lost by truncation error (although the magnitude of the number is retained).
Another form, called Double Precision Floating Point, uses 64 bits and provides a
precision of 15 decimal digits.

1.7 Storing Fractions 57

If we add the values in the order listed, we first add 2'/2 to '/s and obtain 2%,
which in binary is 10.101. Unfortunately, because this value cannot be stored
accurately (as seen previously), the result of our first step ends up being stored
as 2'/2 (which is the same as one of the values we were adding). The next step is
to add this result to the last '/s. Here again a truncation error occurs, and our final
result turns out to be the incorrect answer 2'/..

Now let us add the values in the opposite order. We first add % to '/ to obtain
'/e. In binary this is .01; so the result of our first step is stored in a byte as
00111000, which is accurate. We now add this '/: to the next value in the list, 2'/,
and obtain 2%, which we can accurately store in a byte as 01101011. The result
this time is the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shielding
the uneducated user from problems such as this. In a typical spreadsheet sys-
tem, correct answers will be obtained unless the values being added differ in size
by a factor of 10! or more. Thus, if you found it necessary to add one to the value

10,000,000,000,000,000
you might get the answer

10,000,000,000,000,000
rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree

of accuracy offered by most commercial software is sufficient.
| Il
| st s
ulitiehiadl i i

1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 2% b. 5 C. s d. —3% e. —4%

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a

58

Chapter 1 Data Storage

simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?

1.8 Data Compression

For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods
and then look at some approaches designed for specific applications.

Generic Data Compression Techniques

Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are
therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the num-
ber of times it occurs in the sequence. For example, less space is required to indi-
cate that a bit pattern consists of 253 ones, followed by 118 zeros, followed by
87 ones than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths as opposed to codes such as Unicode, in which all symbols are
represented by 16 bits. David Huffman is credited with discovering an algorithm
that is commonly used for developing frequency-dependent codes, and it is com-
mon practice to refer to codes developed in this manner as Huffman codes. In
turn, most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters ¢, t, a, and i
are used more frequently than the letters z, g, and x. So, when constructing a
code for text in the English language, space can be saved by using short bit pat-
terns to represent the former letters and longer bit patterns to represent the lat-
ter ones. The result would be a code in which English text would have shorter
representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative

1.8 Data Compression

encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit.
Relative encoding can be implemented in either lossless or lossy form depending
on whether the differences between consecutive data units are encoded pre-
cisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our dis-
cussion of image compression, there are times when the entries in the dictionary
are only approximations of the correct data elements, resulting in a lossy com-
pression system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
ASCII or Unicode. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by an
integer in the range of 0 to 24,999. This means that a particular entry in the dic-
tionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using 8-bit ASCII or 96 bits using Unicode.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators,
Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW,
one starts with a dictionary containing the basic building blocks from which the
message is constructed, but as larger units are found in the message, they are
added to the dictionary—meaning that future occurrences of those units can be
encoded as single, rather than multiple, dictionary references. For example,
when encoding English text, one could start with a dictionary containing indi-
vidual characters, digits, and punctuation marks. But as words in the message
are identified, they could be added to the dictionary. Thus, the dictionary would
grow as the message is encoded, and as the dictionary grows, more words (or
recurring patterns of words) in the message could be encoded as single refer-
ences to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not
have to be present to decode the message. Only the original small dictionary
would be needed. Indeed, the decoding process could begin with the same small
dictionary with which the encoding process started. Then, as the decoding
process continues, it would encounter the same units found during the encoding
process, and thus be able to add them to the dictionary for future reference just
as in the encoding process.

To clarify, consider applying LZW encoding to the message

XYX XYX XYyX XyX

59

60

Chapter 1 Data Storage

starting with a dictionary with three entries, the first being x, the second being y,
and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as xyx
followed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the
word xyx, producing the pattern

XyX XYyX
Continuing in this manner we would ultimately decode the string 121343434 as
XYyX XYyX XYyX XyX

which is the original message.

Compressing Images

In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numerous
compression schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and pro-
nounced “Giff” by some and “Jiff” by others) is a dictionary encoding system that
was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The
red-green-blue combination for each of these colors is encoded using three bytes,
and these 256 encodings are stored in a table (a dictionary) called the palette.
Each pixel in an image can then be represented by a single byte whose value
indicates which of the 256 palette entries represents the pixel’s color. (Recall that
a single byte can contain any one of 256 different bit patterns.) Note that GIF is a
lossy compression system when applied to arbitrary images because the colors
in the palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in
which multiple images must move around on a computer screen. On the other
hand, its ability to encode only 256 colors renders it unsuitable for applications
in which higher precision is required, as in the field of photography.

1.8 Data Compression

Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG’s lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG’s baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limita-
tions. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms of
luminance and chrominance components, the first step is to average the chromi-
nance values over two-by-two pixel squares. This reduces the size of the chromi-
nance information by a factor of four while preserving all the original brightness
information. The result is a significant degree of compression without a notice-
able loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a
mathematical technique known as the discrete cosine transform, whose details
need not concern us here. The important point is that this transformation con-
verts the original eight-by-eight block into another block whose entries reflect
how the pixels in the original block relate to each other rather than the actual
pixel values. Within this new block, values below a predetermined threshold are
then replaced by zeros, reflecting the fact that the changes represented by these
values are too subtle to be detected by the human eye. For example, if the origi-
nal block contained a checkerboard pattern, the new block might reflect a uni-
form average color. (A typical eight-by-eight pixel block would represent a very
small square within the image so the human eye would not identify the checker-
board appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG's baseline standard normally compresses color images by a fac-
tor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not as
a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in fac-
simile applications. These use variations of run-length encoding to take advan-
tage of the fact that text documents consist of long strings of white pixels. The

61

62

Chapter 1 Data Storage

color image compression option included in the TIFF standards is based on
techniques similar to those used by GIF, and are therefore not widely used in
the photography community.

Compressing Audio and Video

The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of I1SO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabili-
ties. And, both of these applications differ from that of storing video in such a
manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode the
entire picture, only its distinctions from the prior image are recorded. The
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was developed
within the MPEG standards. In fact, the acronym MP3 is short for MPEG layer 3.
Among other compression techniques, MP3 takes advantage of the properties of
the human ear, removing those details that the human ear cannot perceive. One
such property, called temporal masking, is that for a short period after a loud
sound, the human ear cannot detect softer sounds that would otherwise be audi-
ble. Another, called frequency masking, is that a sound at one frequency tends
to mask softer sounds at nearby frequencies. By taking advantage of such char-
acteristics, MP3 can be used to obtain significant compression of audio while
maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage and portable
music players can store as many as 400 popular songs in a single GB. But, in con-
trast to the goals of compression in other settings, the goal of compressing audio
and video is not necessarily to save storage space. Just as important is the goal of
obtaining encodings that allow information to be transmitted over today’s commu-
nication systems fast enough to provide timely presentation. If each video frame
required a MB of storage and the frames had to be transmitted over a communica-
tion path that could relay only one KB per second, there would be no hope of suc-
cessful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.

1.9 Communication Errors

1. List four generic compression techniques.

2. What would be the encoded version of the message
XYX YXXXY XYX YXXXY YXXXY

if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?

4. Suppose you were part of a team designing a spacecraft that will travel
to other planets and send back photographs. Would it be a good idea to
compress the photographs using GIF or JPEG’s baseline standard to
reduce the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG’s baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?

7. Identify a troubling phenomenon that is common when encoding
numeric information, images, and sound as bit patterns.

63

I " | |!
LTI mestionss Exereises]
nsniiitnchidbi i

1.9 Communication Errors

When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
And, in the case of some technologies, normal background radiation can alter
patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits

A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s. This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps
at the high-order end). In each case, we assign the value 1 or 0 to this new bit

64

Chapter 1 Data Storage

so that the entire resulting pattern has an odd number of 1s. Once our encod-
ing system has been modified in this way, a pattern with an even number of
1s indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.28 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has an
odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this tech-
nique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit encod-
ing system in which an error would be indicated by any 9-bit pattern with an
even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple but it has its limitations. If a
pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case the pattern is accompanied by a collection of parity bits making up
a checkbyte. Each bit within the checkbyte is a parity bit associated with a
particular collection of bits scattered throughout the pattern. For instance,
one parity bit may be associated with every eighth bit in the pattern starting

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity

Parity bit ASCII A containing an even Parity bit ~ ASCII F containing an odd
number of 1s number of 1s
l | | l |
101000001 001000110
[
Total pattern has an odd Total pattern has an odd
number of 1s number of 1s

1.9 Communication Errors

with the first bit, while another may be associated with every eighth bit start-
ing with the second bit. In this manner, a collection of errors concentrated in
one area of the original pattern is more likely to be detected, since it will be
in the scope of several parity bits. Variations of this checkbyte concept lead
to error detection schemes known as checksums and cyclic redundancy
checks (CRC).

Error-Correcting Codes

Although the use of a parity bit allows the detection of an error, it does not pro-
vide the information needed to correct the error. Many people are surprised
that error-correcting codes can be designed so that errors can be not only
detected but also corrected. After all, intuition says that we cannot correct
errors in a received message unless we already know the information in the
message. However, a simple code with such a corrective property is presented
in Figure 1.29.

To understand how this code works, we first define the term Hamming
distance, which is named after R. W. Hamming who pioneered the search for
error-correcting codes after becoming frustrated with the lack of reliability of the
early relay machines of the 1940s. The hamming distance between two bit pat-
terns is the number of bits in which the patterns differ. For example, the
Hamming distance between the patterns representing A and B in the code in
Figure 1.29 is four, and the Hamming distance between B and C is three. The
important feature of the code in Figure 1.29 is that any two patterns are sepa-
rated by a Hamming distance of at least three.

If a single bit is modified in a pattern from Figure 1.29, the error can be
detected since the result will not be a legal pattern. (We must change at least
3 bits in any pattern before it will look like another legal pattern.) Moreover, we
can also figure out what the original pattern was. After all, the modified pattern
will be a Hamming distance of only one from its original form but at least two
from any of the other legal patterns.

Thus, to decode a message that was originally encoded using Figure 1.29, we
simply compare each received pattern with the patterns in the code until we find
one that is within a distance of one from the received pattern. We consider this
to be the correct symbol for decoding. For example, if we received the bit pattern
010100 and compared this pattern to the patterns in the code, we would obtain

Figure 1.29 An error-correcting code

Symbol Code

000000
001111
010011
011100
100110
101001
110101
111010

=R N ey B o R @ W ve ik o

65

66 Chapter 1 Data Storage

Figure 1.30 Decoding the pattern 010100 using the code in Figure 1.29

Distance between
Pattern received pattern
Character Code received and code
A 000000 010100 2
B 001111 010100 4
C 010011 010100 3
D 011100 010100 1 S_mallest
E 100110 010100 3 distance
F 101001 010100 5]
G 110101 010100 2
H 111010 010100 4

the table in Figure 1.30. Thus, we would conclude that the character transmitted
must have been a D because this is the closest match.

You will observe that using this technique with the code in Figure 1.29 actu-
ally allows us to detect up to two errors per pattern and to correct one error. If we
designed the code so that each pattern was a Hamming distance of at least five
from each of the others, we would be able to detect up to four errors per pattern
and correct up to two. Of course, the design of efficient codes associated with
large Hamming distances is not a straightforward task. In fact, it constitutes a
part of the branch of mathematics called algebraic coding theory, which is a sub-
ject within the fields of linear algebra and matrix theory.

Error-correcting techniques are used extensively to increase the reliability of
computing equipment. For example, they are often used in high-capacity mag-
netic disk drives to reduce the possibility that flaws in the magnetic surface will
corrupt data. Moreover, a major distinction between the original CD format used
for audio disks and the later format used for computer data storage is in the
degree of error correction involved. CD-DA format incorporates error-correcting
features that reduce the error rate to only one error for two CDs. This is quite
adequate for audio recordings, but a company using CDs to supply software to
customers would find that flaws in 50 percent of the disks would be intolerable.
Thus, additional error-correcting features are employed in CDs used for data
storage, reducing the probability of error to one in 20,000 disks.

I
[

““IIIIIII!!l!II NI
‘l (uiest III.' R BX in::.:
D

1. The following bytes were originally encoded using odd parity. In which
of them do you know that an error has occurred?

a. 100101101 b. 100000001 ¢ 000000000
d. 111000000 e. 011111111

2. Could errors have occurred in a byte from Question 1 without your
knowing it? Explain your answer.

67

Chapter Review Problems

3. How would your answers to Questions 1 and 2 change if you were told

that even parity had been used instead of odd?

4. Encode these sentences in ASCII using odd parity by adding a parity bit

at the high-order end of each character code:

a. “Stop!” Cheryl shouted. b. Does 2 + 3 = 5?

5. Using the error-correcting code presented in Figure 1.29, decode the fol-

lowing messages:

a. 001111 100100 001100
c. 011010 110110 100000 011100

b. 010001 000000 001011

6. Construct a code for the characters A, B, C, and D using bit patterns of
length five so that the Hamming distance between any two patterns is at

least three.

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1. Determine the output of each of the following b.
circuits, assuming that the upper input is 1
and the lower input is 0. What would be the Input
output when upper input is 0 and the lower
inputis 1?
% Input
*3. a.
a.
b.
c.

2. a. What Boolean operation does the circuit

compute?
::D% Output

>0

Input

Input

[>o

What Boolean operation does the circuit
compute?

Output

If we were to purchase a flip-flop circuit from
an electronic component store, we may find
that it has an additional input called flip.
When this input changes from a 0 to 1, the
output flips state (if it was 0 it is now 1 and
vice versa). However, when the flip input
changes from 1 to a 0, nothing happens.
Even though we may not know the details of
the circuitry needed to accomplish this
behavior, we could still use this device as an
abstract tool in other circuits. Consider the
circuitry using two of the following flip-flops.
If a pulse were sent on the circuit’s input, the
bottom flip-flop would change state.
However, the second flip-flop would not
change, since its input (received from the
output of the NOT gate) went from a 1 to a 0.
As a result, this circuit would now produce
the outputs 0 and 1. A second pulse would

68

Chapter 1 Data Storage

flip the state of both flip-flops, producing an
output of 1 and 0. What would be the output
after a third pulse? After a fourth pulse?

Output 0 ©

0
flip | Flip-flop
[
fli 0
ip | Flip-fl

Input >————— 'p-tiop
0

b. It is often necessary to coordinate activities
of various components within a computer.
This is accomplished by connecting a pul-
sating signal (called a clock) to circuitry
similar to part a. Additional gates (as
shown) will then send signals in a coordi-
nated fashion to other connected circuits.
On studying this circuit you should be able
to confirm that on the 1%, 5™, 9™ pulses
of the clock, a 1 will be sent on output A.
On what pulses of the clock will a 1 be sent
on output B? On what pulses of the clock
will a 1 be sent on output C? On which out-

putis a 1 sent on the 4™ pulse of the clock?
Output A
flip | Flip-flop
r o< ‘ DO_D%Output B
flip | Flip-flop Output C
Clock >——————
4. Assume that both of the inputs in the follow-

5.

ing circuit are 1. Describe what would happen
if the upper input were temporarily changed
to 0. Describe what would happen if the lower
input were temporarily changed to 0. Redraw
the circuit using NAND gates.

>

The following table represents the addresses
and contents (using hexadecimal notation) of

10.

11.

some cells in a machine’s main memory.
Starting with this memory arrangement, follow
the sequence of instructions and record the
final contents of each of these memory cells:

Address Contents
00 AB
01 53
02 D6
03 02

Step 1. Move the contents of the cell whose
address is 03 to the cell at address 00.

Step 2. Move the value 01 into the cell at
address 02.

Step 3. Move the value stored at address 01
into the cell at address 03.

How many cells can be in a computer’s main
memory if each cell’s address can be repre-
sented by two hexadecimal digits? What if four
hexadecimal digits are used?

What bit patterns are represented by the fol-
lowing hexadecimal notations?

a. CD b. 67 C.
d. FF e. 10

What is the value of the most significant bit in
the bit patterns represented by the following
hexadecimal notations?

a. 8F b. FF

c. 6F d. 1F

9A

Express the following bit patterns in hexadeci-
mal notation:

a. 101000001010

b. 110001111011

c. 000010111110

Suppose a digital camera has a storage capac-
ity of 256MB. How many photographs could
be stored in the camera if each consisted of
1024 pixels per row and 1024 pixels per column
if each pixel required three bytes of storage?

Suppose a picture is represented on a
display screen by a rectangular array
containing 1024 columns and 768 rows

of pixels. If for each pixel, 8 bits are required
to encode the color and another 8 bits to
encode the intensity, how many byte-size
memory cells are required to hold the

entire picture?

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

a. Identify two advantages that main memory
has over magnetic disk storage.

b. Identify two advantages that magnetic disk
storage has over main memory.

Suppose that only 50GB of your personal com-
puter’s 120GB hard-disk drive is empty. Would
it be reasonable to use CDs to store all the
material you have on the drive as a backup?
What about DVDs?

If each sector on a magnetic disk contains
1024 bytes, how many sectors are required to
store a single page of text (perhaps 50 lines of
100 characters) if each character is repre-
sented in Unicode?

How many bytes of storage space would be
required to store a 400-page novel in which
each page contains 3500 characters if ASCII
were used? How many bytes would be
required if Unicode were used?

How long is the latency time of a typical
hard-disk drive spinning at 360 revolutions
per second?

What is the average access time for a hard disk
spinning at 360 revolutions per second with a
seek time of 10 milliseconds?

Suppose a typist could type 60 words per
minute continuously day after day. How long
would it take the typist to fill a CD whose
capacity is 640MB? Assume one word is five
characters and each character requires one
byte of storage.

Here is a message in ASCII. What does it say?
01010111 01101000 01100001 01110100
00100000 01100100 01101111 01100101
01110011 00100000 01101001 01110100
00100000 01110011 01100001 01111001
00111111

The following is a message encoded in ASCII
using one byte per character and then repre-
sented in hexadecimal notation. What is the
message”?

68657861646563696D616C

Encode the following sentences in ASCII using
one byte per character.

a. Does 100 / 5 = 20?

b. The total cost is $7.25.

22.

23.

24,

25.

*26.

*27.

*28.

*29.

*30.

*31.

*32.

69

Chapter Review Problems

Express your answers to the previous prob-
lem in hexadecimal notation.

List the binary representations of the inte-
gers from 8 to 18.

a. Write the number 23 by representing the 2
and 3 in ASCII.

b. Write the number 23 in binary
representation.

What values have binary representations in
which only one of the bits is 1? List the
binary representations for the smallest six
values with this property.

Convert each of the following binary represen-
tations to its equivalent base ten representation:

a. 1111 b. 0001 c. 10101
d. 1000 e. 10011 f. 000000
g. 1001 h. 10001 i. 100001
j. 11001 k. 11010 1. 11011

Convert each of the following base ten represen-
tations to its equivalent binary representation:

a. 7 b. 11 c. 16

d. 17 e. 31

Convert each of the following excess 16
representations to its equivalent base ten

representation:
a. 10001 b. 10101 c. 01101
d. 01111 e. 11111

Convert each of the following base ten
representations to its equivalent excess four

representation:
a. 0 b. 3 c. —2
d. -1 e 2

Convert each of the following two’s comple-
ment representations to its equivalent base
ten representation:

a. 01111 b. 10100
d. 10000 e. 10110

Convert each of the following base ten repre-
sentations to its equivalent two’s comple-
ment representation in which each value is
represented in 7 bits:

a. 13 b. —13 c.
d. 0 e. 16

Perform each of the following additions
assuming the bit strings represent values in
two’s complement notation. Identify each

c. 01100

-1

70

*33.

*34,

*35.

*36.

*37.

*38.

*39.

Chapter 1 Data Storage

case in which the answer is incorrect
because of overflow.

a. 00101 b. 11111 c. 01111
+01000 +00001 +00001
d. 10111 e. 11111 f. 00111
+11010 +11111 +01100

Solve each of the following problems by trans-
lating the values into two’s complement nota-

tion (using patterns of 5 bits), converting any

subtraction problem to an equivalent addition
problem, and performing that addition. Check
your work by converting your answer to base

ten notation. (Watch out for overflow.)

a. 5 b. 5 c. 12
+1 -1 =5
d. 8 e. 12 f. 5
-7 +5 -1

Convert each of the following binary
representations into its equivalent base
ten representation:

a. 11.11 b. 100.0101 c¢. 0.1101
d. 1.0 e. 10.01

Express each of the following values in
binary notation:

a. 5% b. 15%4s
d. 1 e. 6%

Decode the following bit patterns using the
floating-point format described in Figure 1.26:
a. 01011001 b. 11001000

c. 10101100 d. 00111001

c. 5%

Encode the following values using the 8-bit
floating-point format described in Figure 1.26.
Indicate each case in which a truncation
€TTOT OCCUTS.

a. =7 b. '/ C.
d. 7/ e. '/

—3%

Assuming you are not restricted to using nor-
malized form, list all the bit patterns that could
be used to represent the value % using the
floating-point format described in Figure 1.26.

What is the best approximation to the square
root of 2 that can be expressed in the 8-bit
floating-point format described in Figure 1.26?
What value is actually obtained if this approxi-
mation is squared by a machine using this
floating-point format?

*40,

*41.

*42.

*43.

*44,

*45.

*46.

*}7.

What is the best approximation to the value one-
tenth that can be represented using the 8-bit
floating-point format described in Figure 1.26?

Explain how errors can occur when measure-
ments using the metric system are recorded
in floating-point notation. For example, what
if 110 cm was recorded in units of meters?

One of the bit patterns 01011 and 11011 repre-

sents a value stored in excess 16 notation and

the other represents the same value stored in
two's complement notation.

a. What can be determined about this com-
mon value?

b. What is the relationship between a pattern
representing a value stored in two's com-
plement notation and the pattern repre-
senting the same value stored in excess
notation when both systems use the same
bit pattern length?

The three bit patterns 10000010, 01101000,
and 00000010 are representations of the same
value in two’s complement, excess, and the
8-bit floating-point format presented in
Figure 1.26, but not necessarily in that order.
What is the common value, and which pat-
tern is in which notation?

Which of the following values cannot be rep-
resented accurately in the floating-point for-
mat introduced in Figure 1.26?

a. 6'% b. s c. 9

d. "/ e. /e

If you changed the length of the bit strings
being used to represent integers in binary
from 4 bits to 6 bits, what change would be
made in the value of the largest integer you
could represent? What if you were using
two's complement notation?

What would be the hexadecimal representa-
tion of the largest memory address in a mem-
ory consisting of 4MB if each cell had a
one-byte capacity?

What would be the encoded version of

the message

if LZW compression, starting with the diction-
ary containing x, y, and a space (as described
in Section 1.8), were used?

*48.

*49.

*50.

*51.

The following message was compressed using
LZW compression with a dictionary whose
first, second, and third entries are x, y, and
space, respectively. What is the decompressed
message?

22123113431213536
If the message

XXY YYX XXY XXYY

were compressed using LZW with a starting
dictionary whose first, second, and third
entries were x, y, and space, respectively, what
would be the entries in the final dictionary?

As we will learn in the next chapter, one
means of transmitting bits over traditional
telephone systems is to convert the bit pat-
terns into sound, transfer the sound over the
telephone lines, and then convert the sound
back into bit patterns. Such techniques are
limited to transfer rates of 57.6 Kbps. Is this
sufficient for teleconferencing if the video is
compressed using MPEG?

Encode the following sentences in ASCII
using even parity by adding a parity bit

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

*52.

*53.

*54,

71

Social Issues

at the high-order end of each character
code:

a. Does 100/5 = 20?

b. The total cost is $7.25.

The following message was originally transmit-
ted with odd parity in each short bit string. In
which strings have errors definitely occurred?

11001 11011 10110 00000 11111 10001
10101 00100 01110

Suppose a 24-bit code is generated by repre-
senting each symbol by three consecutive
copies of its ASCII representation (for example,
the symbol A is represented by the bit string
010000010100000101000001). What error-
correcting properties does this new code have?

Using the error-correcting code described in
Figure 1.30, decode the following words:

111010 110110
101000 100110
011101 000110
010010 001000
000000 110111
e. 010011 000000

001100
000000
001110
100110
101001

010100
101111

a0 o

100110

1. A truncation error has occurred in a critical situation, causing extensive dam-
age and loss of life. Who is liable, if anyone? The designer of the hardware?
The designer of the software? The programmer who actually wrote that part
of the program? The person who decided to use the software in that particu-
lar application? What if the software had been corrected by the company that
originally developed it, but that update had not been purchased and applied
in the critical application? What if the software had been pirated?

Is it acceptable for an individual to ignore the possibility of truncation errors
and their consequences when developing his or her own applications?

Was it ethical to develop software in the 1970s using only two digits to repre-
sent the year (such as using 76 to represent the year 1976), ignoring the fact
that the software would be flawed as the turn of the century approached? Is
it ethical today to use only three digits to represent the year (such as 982 for
1982 and 015 for 2015)? What about using only four digits?

72

Chapter 1 Data Storage

4,

Many argue that encoding information often dilutes or otherwise distorts the
information, since it essentially forces the information to be quantified. They
argue that a questionnaire in which subjects are required to record their opin-
ions by responding within a scale from one to five is inherently flawed. To what
extent is information quantifiable? Can the pros and cons of different locations
for a waste disposal plant be quantified? Is the debate over nuclear power and
nuclear waste quantifiable? Is it dangerous to base decisions on averages and
other statistical analysis? Is it ethical for news agencies to report polling results
without including the exact wording of the questions? Is it possible to quantify
the value of a human life? Is it acceptable for a company to stop investing in the
improvement of a product, even though additional investment could lower the
possibility of a fatality relating to the product’s use?

Should there be a distinction in the rights to collect and disseminate data
depending on the form of the data? That is, should the right to collect and
disseminate photographs, audio, or video be the same as the right to collect
and disseminate text?

Whether intentional or not, a report submitted by a journalist usually
reflects that journalist’s bias. Often by changing only a few words, a story can
be given either a positive or negative connotation. (Compare, “The majority
of those surveyed opposed the referendum.” to “A significant portion of those
surveyed supported the referendum.”) Is there a difference between altering
a story (by leaving out certain points or carefully selecting words) and alter-
ing a photograph?

Suppose that the use of a data compression system results in the loss of sub-
tle but significant items of information. What liability issues might be raised?
How should they be resolved?

Additional Reading

Drew, M. and Z. Li. Fundamentals of Multimedia. Upper Saddle River, NJ:
Prentice-Hall, 2004.

Halsall, F. Multimedia Communications. Boston, MA: Addison-Wesley, 2001.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 2, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Long, B. Complete Digital Photography, 3rd ed. Hingham, MA: Charles River
Media, 2005.

Miano, J. Compressed Image File Formats. New York: ACM Press, 1999.

Petzold, C. CODE: The Hidden Language of Computer Hardware and Software.
Redman, WA: Microsoft Press, 2000.

Salomon, D. Data Compression: The Complete Reference, 4th ed. New York:
Springer, 2007.

Sayood, K. Introduction to Data Compression, 3rd ed. San Francisco: Morgan
Kaufmann, 2005.

CHAPTER

Data Manipulation

In this chapter we will learn how a computer manipulates data and
communicates with peripheral devices such as printers and key-
boards. In doing so, we will explore the basics of computer archi-
tecture and learn how computers are programmed by means of

encoded instructions, called machine language instructions.

2.1 Computer Architecture
CPU Basics
The Stored-Program Concept

2.2 Machine Language

The Instruction Repertoire
An Illustrative Machine Language

2.3 Program Execution

An Example of Program
Execution

Programs Versus Data

*2.4 Arithmetic/Logic
Instructions

Logic Operations

Rotation and Shift Operations
Arithmetic Operations

*2.5 Communicating with
Other Devices

The Role of Controllers

Direct Memory Access
Handshaking

Popular Communication Media
Communication Rates

*2.6 Other Architectures
Pipelining
Multiprocessor Machines

*Asterisks indicate suggestions for
optional sections.

74

Chapter 2 Data Manipulation

In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture

The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU'’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics

A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of

Figure 2.1 CPU and main memory connected via a bus

Central processing unit Main memory

Register unit

Arithmetic/logic
unit

Bus

Control
unit

[00--- 0000

_[

Registers

2.1 Computer Architecture

the special-purpose registers in Section 2.3. For now, we are concerned only with
the general-purpose registers.

General-purpose registers serve as temporary holding places for data being
manipulated by the CPU. These registers hold the inputs to the arithmetic/logic
unit’s circuitry and provide storage space for results produced by that unit. To per-
form an operation on data stored in main memory, the control unit transfers the
data from memory into the general-purpose registers, informs the arithmetic/logic
unit which registers hold the data, activates the appropriate circuitry within the
arithmetic/logic unit, and tells the arithmetic/logic unit which register should
receive the result.

For the purpose of transferring bit patterns, a machine’s CPU and main memory
are connected by a collection of wires called a bus (see again Figure 2.1). Through
this bus, the CPU extracts (reads) data from main memory by supplying the address
of the pertinent memory cell along with an electronic signal telling the memory cir-
cuitry that it is supposed to retrieve the data in the indicated cell. In a similar man-
ner, the CPU places (writes) data in memory by providing the address of the
destination cell and the data to be stored together with the appropriate electronic sig-
nal telling main memory that it is supposed to store the data being sent to it.

Based on this design, the task of adding two values stored in main memory
involves more than the mere execution of the addition operation. The data must
be transferred from main memory to registers within the CPU, the values must
be added with the result being placed in a register, and the result must then be
stored in a memory cell. The entire process is summarized by the five steps
listed in Figure 2.2.

The Stored-Program Concept

Early computers were not known for their flexibility—the steps that each device
executed were built into the control unit as a part of the machine. To gain more
flexibility, some of the early electronic computers were designed so that the CPU
could be conveniently rewired. This flexibility was accomplished by means of a
pegboard arrangement similar to old telephone switchboards in which the ends
of jumper wires were plugged into holes.

Figure 2.2 Adding values stored in memory

Step 1. Get one of the values to be
added from memory and
place it in a register.

Step 2. Get the other value to be
added from memory and
place it in another register.

Step 3. Activate the addition circuitry
with the registers used in
Steps 1 and 2 as inputs and
another register designated
to hold the result.

Step 4. Store the result in memory.

Step 5. Stop.

75

76

Chapter 2 Data Manipulation

Cache Memory

Itis instructive to compare the memory facilities within a computer in relation to their
functionality. Registers are used to hold the data immediately applicable to the oper-
ation at hand; main memory is used to hold data that will be needed in the near
future; and mass storage is used to hold data that will likely not be needed in the
immediate future. Many machines are designed with an additional memory level,
called cache memory. Cache memory is a portion (perhaps several hundred KB) of
high-speed memory located within the CPU itself. In this special memory area, the
machine attempts to keep a copy of that portion of main memory that is of current
interest. In this setting, data transfers that normally would be made between regis-
ters and main memory are made between registers and cache memory. Any changes
made to cache memory are then transferred collectively to main memory at a more
opportune time. The result is a CPU that can execute its machine cycle more rapidly

because it is not delayed by main memory communication.

(1] et

A breakthrough (credited, apparently incorrectly, to John von Neumann)
came with the realization that a program, just like data, can be encoded and
stored in main memory. If the control unit is designed to extract the program
from memory, decode the instructions, and execute them, the program that the
machine follows can be changed merely by changing the contents of the com-
puter’'s memory instead of rewiring the CPU.

The idea of storing a computer’s program in its main memory is called
the stored-program concept and has become the standard approach used
today—so standard, in fact, that it seems obvious. What made it difficult orig-
inally was that everyone thought of programs and data as different entities:
Data were stored in memory; programs were part of the CPU. The result was
a prime example of not seeing the forest for the trees. It is easy to be caught
in such ruts, and the development of computer science might still be in
many of them today without our knowing it. Indeed, part of the excitement
of the science is that new insights are constantly opening doors to new theo-
ries and applications.

i IR
n |H:il SES
LT T

1. What sequence of events do you think would be required to move the
contents of one memory cell in a computer to another memory cell?

2. What information must the CPU supply to the main memory circuitry to
write a value into a memory cell?

3. Mass storage, main memory, and general-purpose registers are all stor-
age systems. What is the difference in their use?

2.2 Machine Language

2.2 Machine Language

To apply the stored-program concept, CPUs are designed to recognize instruc-
tions encoded as bit patterns. This collection of instructions along with the
encoding system is called the machine language. An instruction expressed in
this language is called a machine-level instruction or, more commonly, a
machine instruction.

The Instruction Repertoire

The list of machine instructions that a typical CPU must be able to decode and
execute is quite short. In fact, once a machine can perform certain elementary
but well-chosen tasks, adding more features does not increase the machine’s the-
oretical capabilities. In other words, beyond a certain point, additional features
may increase such things as convenience but add nothing to the machine’s fun-
damental capabilities.

The degree to which machine designs should take advantage of this fact has
lead to two philosophies of CPU architecture. One is that a CPU should be designed
to execute a minimal set of machine instructions. This approach leads to what is
called a reduced instruction set computer (RISC). The argument in favor of
RISC architecture is that such a machine is efficient, fast, and less expensive to
manufacture. On the other hand, others argue in favor of CPUs with the ability to
execute a large number of complex instructions, even though many of them are
technically redundant. The result of this approach is known as a complex
instruction set computer (CISC). The argument in favor of CISC architecture is
that the more complex CPU can better cope with the ever increasing complexities

Who Invented What?

Awarding a single individual credit for an invention is always a dubious undertaking.
Thomas Edison is credited with inventing the incandescent lamp, but other
researchers were developing similar lamps, and in a sense Edison was lucky to be the
one to obtain the patent. The Wright brothers are credited with inventing the airplane,
but they were competing with and benefited from the work of many contemporaries,
all of whom were preempted to some degree by Leonardo da Vinci, who toyed with the
idea of flying machines in the fifteenth century. Even Leonardo’s designs were appar-
ently based on earlier ideas. Of course, in these cases the designated inventor still
has legitimate claims to the credit bestowed. In other cases, history seems to have
awarded credit inappropriately—an example is the stored-program concept. Without
a doubt, John von Neumann was a brilliant scientist who deserves credit for numerous
contributions. But one of the contributions for which popular history has chosen to
credit him, the stored-program concept, was apparently developed by researchers led
by J. P. Eckert at the Moore School of Electrical Engineering at the University of
Pennsylvania. John von Neumann was merely the first to publish work reporting the

idea and thus computing lore has selected him as the inventor.

77

78

Chapter 2 Data Manipulation

of today’s software. With CISC, programs can exploit a powerful rich set of instruc-
tions, many of which would require a multi-instruction sequence in a RISC design.

In the 1990s and into the millennia, commercially available CISC and RISC
processors were actively competing for dominance in desktop computing. Intel
processors, used in PCs, are examples of CISC architecture; PowerPC processors
(developed by an alliance between Apple, IBM, and Motorola) are examples of
RISC architecture and were used in the Apple Macintosh. As time progressed,
the manufacturing cost of CISC was drastically reduced; thus Intel’s processors
(or their equivalent from AMD—Advanced Micro Devices, Inc.) are now found in
virtually all desktop and laptop computers (even Apple is now building comput-
ers based on Intel products).

While CISC secured its place in desktop computers, it has an insatiable thirst
for electrical power. In contrast, the company Advanced RISC Machine (ARM) has
designed a RISC architecture specifically for low power consumption. (Advanced
RISC Machine was originally Acorn Computers and is now ARM Holdings.) Thus,
ARM-based processors, manufactured by a host of vendors including Qualcomm
and Texas Instruments, are readily found in game controllers, digital TVs, naviga-
tion systems, automotive modules, cellular telephones, smartphones, and other
consumer electronics.

Regardless of the choice between RISC and CISC, a machine’s instructions
can be categorized into three groupings: (1) the data transfer group, (2) the
arithmetic/logic group, and (3) the control group.

Data Transfer The data transfer group consists of instructions that request the
movement of data from one location to another. Steps 1, 2, and 4 in Figure 2.2 fall
into this category. We should note that using terms such as transfer or move to iden-
tify this group of instructions is actually a misnomer. It is rare that the data being
transferred is erased from its original location. The process involved in a transfer
instruction is more like copying the data rather than moving it. Thus terms such as
copy or clone better describe the actions of this group of instructions.

While on the subject of terminology, we should mention that special terms
are used when referring to the transfer of data between the CPU and main
memory. A request to fill a general-purpose register with the contents of a

Variable-Length Instructions

To simplify explanations in the text, the machine language used for examples in this
chapter (and described in Appendix C) uses a fixed size (two bytes) for all instruc-
tions. Thus, to fetch an instruction, the CPU always retrieves the contents of two con-
secutive memory cells and increments its program counter by two. This consistency
streamlines the task of fetching instructions and is characteristic of RISC machines.
CISC machines, however, have machine languages whose instructions vary in length.
Today’s Intel processors, for example, have instructions that range from single-byte
instructions to multiple-byte instructions whose length depends on the exact use of
the instruction. CPUs with such machine languages determine the length of the
incoming instruction by the instruction’s op-code. That is, the CPU first fetches the
op-code of the instruction and then, based on the bit pattern received, knows how
many more bytes to fetch from memory to obtain the rest of the instruction.

2.2 Machine Language

memory cell is commonly referred to as a LOAD instruction; conversely, a
request to transfer the contents of a register to a memory cell is called a STORE
instruction. In Figure 2.2, Steps 1 and 2 are LOAD instructions, and Step 4 is a
STORE instruction.

An important group of instructions within the data transfer category consists
of the commands for communicating with devices outside the CPU-main memory
context (printers, keyboards, display screens, disk drives, etc.). Since these
instructions handle the input/output (I/O) activities of the machine, they are
called I/0 instructions and are sometimes considered as a category in their own
right. On the other hand, Section 2.5 describes how these I/0 activities can be
handled by the same instructions that request data transfers between the CPU
and main memory. Thus, we shall consider the I/0 instructions to be a part of the
data transfer group.

Arithmetic/Logic The arithmetic/logic group consists of the instructions that tell
the control unit to request an activity within the arithmetic/logic unit. Step 3 in
Figure 2.2 falls into this group. As its name suggests, the arithmetic/logic unit is
capable of performing operations other than the basic arithmetic operations. Some
of these additional operations are the Boolean operations AND, OR, and XOR,
introduced in Chapter 1, which we will discuss in more detail later in this chapter.
Another collection of operations available within most arithmetic/logic units
allows the contents of registers to be moved to the right or the left within the reg-
ister. These operations are known as either SHIFT or ROTATE operations,
depending on whether the bits that “fall off the end” of the register are merely
discarded (SHIFT) or are used to fill the holes left at the other end (ROTATE).

Control The control group consists of those instructions that direct the execution
of the program rather than the manipulation of data. Step 5 in Figure 2.2 falls
into this category, although it is an extremely elementary example. This group
contains many of the more interesting instructions in a machine’s repertoire,
such as the family of JUMP (or BRANCH) instructions used to direct the CPU to
execute an instruction other than the next one in the list. These JUMP instruc-
tions appear in two varieties: unconditional jumps and conditional jumps.

Figure 2.3 Dividing values stored in memory

Step 1. LOAD a register with a value
from memory.

Step 2. LOAD another register with
another value from memory.

Step 3. If this second value is zero,
JUMP to Step 6.

Step 4. Divide the contents of the
first register by the second
register and leave the result
in a third register.

Step 5. STORE the contents of the
third register in memory.

Step 6. STOP.

79

80

Chapter 2 Data Manipulation

An example of the former would be the instruction “Skip to Step 5”; an example
of the latter would be, “If the value obtained is 0, then skip to Step 5.” The dis-
tinction is that a conditional jump results in a “change of venue” only if a certain
condition is satisfied. As an example, the sequence of instructions in Figure 2.3
represents an algorithm for dividing two values where Step 3 is a conditional
jump that protects against the possibility of division by zero.

An Illustrative Machine Language

Let us now consider how the instructions of a typical computer are encoded.
The machine that we will use for our discussion is described in Appendix C and
summarized in Figure 2.4. It has 16 general-purpose registers and 256 main
memory cells, each with a capacity of 8 bits. For referencing purposes, we label
the registers with the values 0 through 15 and address the memory cells with
the values 0 through 255. For convenience we think of these labels and
addresses as values represented in base two and compress the resulting bit pat-
terns using hexadecimal notation. Thus, the registers are labeled 0 through F,
and the memory cells are addressed 00 through FF.

The encoded version of a machine instruction consists of two parts: the op-code
(short for operation code) field and the operand field. The bit pattern appearing
in the op-code field indicates which of the elementary operations, such as
STORE, SHIFT, XOR, and JUMP, is requested by the instruction. The bit patterns
found in the operand field provide more detailed information about the opera-
tion specified by the op-code. For example, in the case of a STORE operation, the
information in the operand field indicates which register contains the data to be
stored and which memory cell is to receive the data.

The entire machine language of our illustrative machine (Appendix C) con-
sists of only twelve basic instructions. Each of these instructions is encoded
using a total of 16 bits, represented by four hexadecimal digits (Figure 2.5). The
op-code for each instruction consists of the first 4 bits or, equivalently, the first
hexadecimal digit. Note (Appendix C) that these op-codes are represented by
the hexadecimal digits 1 through C. In particular, the table in Appendix C shows

Figure 2.4 The architecture of the machine described in Appendix C

Central processing unit Main memory
. Address Cells
Registers
o Program counter 00 L]
Bus
1] 01]
02 1]
[12 Instruction register

] v

CF) ’
FF []

2.2 Machine Language

Figure 2.5 The composition of an instruction for the machine in Appendix C

Op-code Operand
1 1

[[N |
0011 0101 1010 0111 Actual bit pattern (16 bits)

3 5 A 7 Hexadecimal form (4 digits)

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 2° different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Figure 2.6 Decoding the instruction 35A7

Instruction—[3 b A 7

/

Op-code 3 means

to store the contents This part of the operand identifies
of a registerin a the address of the memory cell
memory cell. that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

81

82

Chapter 2 Data Manipulation

As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two's com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two's complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

Figure 2.7 An encoded version of the instructions in Figure 2.2

Encoded
instructions Translation
156C Load register 5 with the bit pattern
found in the memory cell at
address 6C.
166D Load register 6 with the bit pattern
found in the memory cell at
address 6D.
5056 Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.
306E Store the contents of register 0
in the memory cell at address 6E.
C000 Halt.

2.3 Program Execution

1. Why might the term move be considered an incorrect name for the oper-
ation of moving data from one location in a machine to another?

2. In the text, JUMP instructions were expressed by identifying the desti-
nation explicitly by stating the name (or step number) of the destination
within the JUMP instruction (for example, “Jump to Step 6”). A draw-
back of this technique is that if an instruction name (number) is later
changed, we must be sure to find all jumps to that instruction and
change that name also. Describe another way of expressing a JUMP
instruction so that the name of the destination is not explicitly stated.

3. Is the instruction “If 0 equals 0, then jump to Step 7” a conditional or
unconditional jump? Explain your answer.

4. Write the example program in Figure 2.7 in actual bit patterns.
5. The following are instructions written in the machine language
described in Appendix C. Rewrite them in English.

a. 368A b. BADE c. 803C d. 40F4

6. What is the difference between the instructions 15AB and 25AB in the
machine language of Appendix C?

7. Here are some instructions in English. Translate each of them into the
machine language of Appendix C.

a. LOAD register number 3 with the hexadecimal value 56.

b. ROTATE register number 5 three bits to the right.

c. AND the contents of register A with the contents of register 5 and
leave the result in register 0.

83

| Il
s Exercises) |]
il hrtdtdbansinoi

2.3 Program Execution

A computer follows a program stored in its memory by copying the instructions
from memory into the CPU as needed. Once in the CPU, each instruction is
decoded and obeyed. The order in which the instructions are fetched from mem-
ory corresponds to the order in which the instructions are stored in memory
unless otherwise altered by a JUMP instruction.

To understand how the overall execution process takes place, it is necessary
to consider two of the special purpose registers within the CPU: the instruction
register and the program counter (see again Figure 2.4). The instruction regis-
ter is used to hold the instruction being executed. The program counter contains
the address of the next instruction to be executed, thereby serving as the
machine'’s way of keeping track of where it is in the program.

The CPU performs its job by continually repeating an algorithm that guides
it through a three-step process known as the machine cycle. The steps in the

84

Chapter 2 Data Manipulation

machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

Figure 2.8 The machine cycle

1. Retrieve the next
instruction from
memory (as indicated
by the program
counter) and then
increment the
program counter.

2. Decode the bit pattern
in the instruction register.

3. Perform the action
required by the
instruction in the
instruction register.

2.3 Program Execution

Comparing Computer Power

When shopping for a personal computer, you will find that clock speeds are often
used to compare machines. A computer’s clock is a circuit, called an oscillator, which
generates pulses that are used to coordinate the machine’s activities —the faster this
oscillating circuit generates pulses, the faster the machine performs its machine
cycle. Clock speeds are measured in hertz (abbreviated as Hz) with one Hz equal to
one cycle (or pulse) per second. Typical clock speeds in desktop computers are in the
range of a few hundred MHz (older models) to several GHz. (MHz is short for mega-
hertz, which is a million Hz. GHz is short for gigahertz, which is 1000 MHz.)

Unfortunately, different CPU designs might perform different amounts of work in
one clock cycle, and thus clock speed alone fails to be relevant in comparing
machines with different CPUs. If you are comparing a machine based on an Intel
processor to one based on ARM, it would be more meaningful to compare perform-
ance by means of benchmarking, which is the process of comparing the performance
of different machines when executing the same program, known as a benchmark. By
selecting benchmarks representing different types of applications, you get meaning-
ful comparisons for various market segments.

85

terminates and the next machine cycle begins. If, however, the contents of these
registers are equal, the machine places the value 58 (hexadecimal) in its program
counter during the execute step. In this case, then, the next fetch step finds 58 in
the program counter, so the instruction at that address will be the next instruction

to be fetched and executed.

Note that if the instruction had been B058, then the decision of whether the
program counter should be changed would depend on whether the contents of
register 0 was equal to that of register 0. But these are the same registers and
thus must have equal content. In turn, any instruction of the form BOXY will
cause a jump to be executed to the memory location XY regardless of the con-

tents of register 0.

Figure 2.9 Decoding the instruction B258

Instruction—[B

/

Op-code B means to
change the value of
the program counter
if the contents of the
indicated register is
the same as that in
register 0.

5 8

o

This part of the operand is the
address to be placed in the
program counter.

This part of the operand identifies
the register to be compared to
register 0.

86

Chapter 2 Data Manipulation

An Example of Program Execution

Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and Al. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

Program counter contains
address of first instructions.
CPU Main memory
Address Cells
Registers
Program counter A0
o [
Al
Bus
. _ A2 16 _PrOQram is
A3 stored in
— main memory
2 - 24 beginning at
address AO.
A5
Instruction register A6
] a7
A8
F [
A9 _

2.3 Program Execution 87

Figure 2.11 Performing the fetch step of the machine cycle

CPU Main memory

Program counter

Address Cells

Bus 0 s

e a |ea
Instruction register

156C A2

A3

a. At the beginning of the fetch step the instruction starting at address A0 is
retrieved from memory and placed in the instruction register.

CPU Main memory
Program counter Address Cells
A0
. . Al
Instruction register
156C A2
A3

b. Then the program counter is incremented so that it points to the next instruction.

register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

88

(] oot

Chapter 2 Data Manipulation

next instruction (306E) from the two memory cells starting at memory location
A6 and increments the program counter to A8. This instruction is then decoded
and executed. At this point, the sum is placed in memory location 6E.

The next instruction is fetched starting from memory location A8, and the
program counter is incremented to AA. The contents of the instruction register
(C000) are now decoded as the halt instruction. Consequently, the machine stops
during the execute step of the machine cycle, and the program is completed.

In summary, we see that the execution of a program stored in memory
involves the same process you and I might use if we needed to follow a detailed
list of instructions. Whereas we might keep our place by marking the instructions
as we perform them, the CPU keeps its place by using the program counter. After
determining which instruction to execute next, we would read the instruction and
extract its meaning. Then, we would perform the task requested and return to the
list for the next instruction in the same manner that the CPU executes the instruc-
tion in its instruction register and then continues with another fetch.

Programs Versus Data

Many programs can be stored simultaneously in a computer’s main memory, as
long as they occupy different locations. Which program will be run when the
machine is started can then be determined merely by setting the program
counter appropriately.

One must keep in mind, however, that because data are also contained in main
memory and encoded in terms of Os and 1s, the machine alone has no way of know-
ing what is data and what is program. If the program counter were assigned the
address of data instead of the address of the desired program, the CPU, not knowing
any better, would extract the data bit patterns as though they were instructions and
execute them. The final result would depend on the data involved.

We should not conclude, however, that providing programs and data with a
common appearance in a machine’s memory is bad. In fact, it has proved a use-
ful attribute because it allows one program to manipulate other programs (or
even itself) the same as it would data. Imagine, for example, a program that mod-
ifies itself in response to its interaction with its environment and thus exhibits
the ability to learn, or perhaps a program that writes and executes other pro-
grams in order to solve problems presented to it.

1. Suppose the memory cells from addresses 00 to 05 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
00 14
01 02
02 34
03 17
04 CO0

05 00

If we start the machine with its program counter containing 00, what bit
pattern is in the memory cell whose address is hexadecimal 17 when the
machine halts?

. Suppose the memory cells at addresses BO to B8 in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
BO 13
Bl B8
B2 A3
B3 02
B4 33
B5 B8
B6 (@[0)
B7 00
B8 OF

a. If the program counter starts at BO, what bit pattern is in register
number 3 after the first instruction has been executed?

b. What bit pattern is in memory cell B8 when the halt instruction
is executed?

. Suppose the memory cells at addresses A4 to Bl in the machine
described in Appendix C contain the (hexadecimal) bit patterns given in
the following table:

Address Contents
A4 20
A5 00
Ab 21
A7 03
A8 22
A9 01
AA Bl
AB BO
AC 50
AD 02
AE BO
AF AA
BO (0[0)
Bl 00

When answering the following questions, assume that the machine is
started with its program counter containing A4.

a. What is in register 0 the first time the instruction at address AA
is executed?

b. What is in register 0 the second time the instruction at address AA
is executed?

¢. How many times is the instruction at address AA executed before the
machine halts?

2.3 Program Execution

89

90

Chapter 2 Data Manipulation

4. Suppose the memory cells at addresses FO to F9 in the machine
described in Appendix C contain the (hexadecimal) bit patterns
described in the following table:

Address Contents
FO 20
F1 Co
F2 30
F3 F8
F4 20
F5 00
F6 30
F7 F9
F8 FF
F9 FF

If we start the machine with its program counter containing F0, what
does the machine do when it reaches the instruction at address F8?

2.4 Arithmetic/Logic Instructions

As indicated earlier, the arithmetic/logic group of instructions consists of
instructions requesting arithmetic, logic, and shift operations. In this section, we
look at these operations more closely.

Logic Operations

We introduced the logic operations AND, OR, and XOR (exclusive or) in Chapter 1
as operations that combine two input bits to produce a single output bit. These
operations can be extended to operations that combine two strings of bits to pro-
duce a single output string by applying the basic operation to individual
columns. For example, the result of ANDing the patterns 10011010 and 11001001
results in

10011010
AND 11001001
10001000

where we have merely written the result of ANDing the 2 bits in each column at the
bottom of the column. Likewise, ORing and XORing these patterns would produce

10011010 10011010
OR 11001001 XOR 11001001
11011011 01010011

One of the major uses of the AND operation is for placing 0s in one part of a
bit pattern while not disturbing the other part. Consider, for example, what hap-
pens if the byte 00001111 is the first operand of an AND operation. Without know-
ing the contents of the second operand, we still can conclude that the four most
significant bits of the result will be 0s. Moreover, the four least significant bits of

2.4 Arithmetic/Logic Instructions

the result will be a copy of that part of the second operand, as shown in the fol-
lowing example:

00001111
AND 10101010
00001010

This use of the AND operation is an example of the process called masking.
Here one operand, called a mask, determines which part of the other operand
will affect the result. In the case of the AND operation, masking produces a
result that is a partial replica of one of the operands, with 0s occupying the
nonduplicated positions.

Such an operation is useful when manipulating a bit map, a string of bits in
which each bit represents the presence or absence of a particular object. We have
already encountered bit maps in the context of representing images, where each
bit is associated with a pixel. As another example, a string of 52 bits, in which
each bit is associated with a particular playing card, can be used to represent a
poker hand by assigning 1s to those 5 bits associated with the cards in the hand
and Os to all the others. Likewise, a bit map of 52 bits, of which thirteen are 1s,
can be used to represent a hand of bridge, or a bit map of 32 bits can be used to
represent which of thirty-two ice cream flavors are available.

Suppose, then, that the 8 bits in a memory cell are being used as a bit map,
and we want to find out whether the object associated with the third bit from the
high-order end is present. We merely need to AND the entire byte with the mask
00100000, which produces a byte of all 0s if and only if the third bit from the
high-order end of the bit map is itself 0. A program can then act accordingly by
following the AND operation with a conditional branch instruction. Moreover, if
the third bit from the high-order end of the bit map is a 1, and we want to change
it to a 0 without disturbing the other bits, we can AND the bit map with the mask
11011111 and then store the result in place of the original bit map.

Where the AND operation can be used to duplicate a part of a bit string while
placing Os in the nonduplicated part, the OR operation can be used to duplicate a
part of a string while putting 1s in the nonduplicated part. For this we again use
a mask, but this time we indicate the bit positions to be duplicated with 0s and
use 1s to indicate the nonduplicated positions. For example, ORing any byte with
11110000 produces a result with 1s in its most significant 4 bits while its remain-
ing bits are a copy of the least significant 4 bits of the other operand, as demon-
strated by the following example:

11110000
OR 10101010
11111010

Consequently, whereas the mask 11011111 can be used with the AND operation to
force a 0 in the third bit from the high-order end of a byte, the mask 00100000 can
be used with the OR operation to force a 1 in that position.

A major use of the XOR operation is in forming the complement of a bit
string. XORing any byte with a mask of all 1s produces the complement of the
byte. For example, note the relationship between the second operand and the
result in the following example:

11111111
XOR 10101010
01010101

91

92

Chapter 2 Data Manipulation

In the machine language described in Appendix C, op-codes 7, 8, and 9 are
used for the logic operations OR, AND, and XOR, respectively. Each requests
that the corresponding logic operation be performed between the contents of
two designated registers and that the result be placed in another designated reg-
ister. For example, the instruction 7ABC requests that the result of ORing the
contents of registers B and C be placed in register A.

Rotation and Shift Operations

The operations in the class of rotation and shift operations provide a means for
moving bits within a register and are often used in solving alignment prob-
lems. These operations are classified by the direction of motion (right or left)
and whether the process is circular. Within these classification guidelines are
numerous variations with mixed terminology. Let us take a quick look at the
ideas involved.

Consider a register containing a byte of bits. If we shift its contents 1 bit to the
right, we imagine the rightmost bit falling off the edge and a hole appearing at the
leftmost end. What happens with this extra bit and the hole is the distinguishing
feature among the various shift operations. One technique is to place the bit that
fell off the right end in the hole at the left end. The result is a circular shift, also
called a rotation. Thus, if we perform a right circular shift on a byte-size bit pat-
tern eight times, we obtain the same bit pattern we started with.

Another technique is to discard the bit that falls off the edge and always fill
the hole with a 0. The term logical shift is often used to refer to these opera-
tions. Such shifts to the left can be used for multiplying two’s complement rep-
resentations by two. After all, shifting binary digits to the left corresponds to
multiplication by two, just as a similar shift of decimal digits corresponds to mul-
tiplication by ten. Moreover, division by two can be accomplished by shifting the
binary string to the right. In either shift, care must be taken to preserve the sign
bit when using certain notational systems. Thus, we often find right shifts that
always fill the hole (which occurs at the sign bit position) with its original value.
Shifts that leave the sign bit unchanged are sometimes called arithmetic shifts.

Among the variety of shift and rotate instructions possible, the machine
language described in Appendix C contains only a right circular shift, desig-
nated by op-code A. In this case the first hexadecimal digit in the operand spec-
ifies the register to be rotated, and the rest of the operand specifies the number
of bits to be rotated. Thus the instruction A501 means “Rotate the contents of
register 5 to the right by 1 bit.” In particular, if register 5 originally contained
the bit pattern 65 (hexadecimal), then it would contain B2 after this instruction
is executed (Figure 2.12). (You may wish to experiment with how other shift
and rotate instructions can be produced with combinations of the instructions
provided in the machine language of Appendix C. For example, since a register
is 8 bits long, a right circular shift of 3 bits produces the same result as a left
circular shift of 5 bits.)

Arithmetic Operations

Although we have already mentioned the arithmetic operations of add, sub-
tract, multiply, and divide, a few loose ends should still be connected. First, we
have already seen that subtraction can be simulated by means of addition and
negation. Moreover, multiplication is merely repeated addition and division is
repeated subtraction. (Six divided by two is three because three two’s can be

2.4 Arithmetic/Logic Instructions 93

Figure 2.12 Rotating the bit pattern 65 (hexadecimal) one bit to the right

o 1 1 0 O 1 0 1 The original bit pattern
L |

The bits move one position
to the right. The rightmost
bit “falls off” the end and
is placed in the hole at the
other end.

|=
=
|_\
|_|
|lo
1=
|_|
=]

The final bit pattern

subtracted from six.) For this reason, some small CPUs are designed with only
the add or perhaps only the add and subtract instructions.

We should also mention that numerous variations exist for each arithmetic
operation. We have already alluded to this in relation to the add operations avail-
able on our machine in Appendix C. In the case of addition, for example, if the
values to be added are stored in two’s complement notation, the addition process
must be performed as a straightforward column by column addition. However, if
the operands are stored as floating-point values, the addition process must
extract the mantissa of each, shift them right or left according to the exponent
fields, check the sign bits, perform the addition, and translate the result into
floating-point notation. Thus, although both operations are considered addition,
the action of the machine is not the same.

AR I
0 :.'||||.'. m-N:il.‘:‘-: II
Dt

1. Perform the indicated operations.

a. 01001011 b. 10000011 C. 11111111
AND 10101011 AND 11101100 AND 00101101
d. 01001011 e. 10000011 f. 11111111
OrR 10101011 OR 11101100 OR 00101101
. 01001011 h. 10000011 i. 11111111
XOR 10101011 XOR 11101100 XOR 00101101

2. Suppose you want to isolate the middle 4 bits of a byte by placing 0s in
the other 4 bits without disturbing the middle 4 bits. What mask must
you use together with what operation?

94 Chapter 2 Data Manipulation

3. Suppose you want to complement the 4 middle bits of a byte while leav-
ing the other 4 bits undisturbed. What mask must you use together with
what operation?

4. a. Suppose you XOR the first 2 bits of a string of bits and then continue
down the string by successively XORing each result with the next bit
in the string. How is your result related to the number of 1s appearing
in the string?

b. How does this problem relate to determining what the appropriate
parity bit should be when encoding a message?

5. It is often convenient to use a logical operation in place of a numeric
one. For example, the logical operation AND combines 2 bits in the same
manner as multiplication. Which logical operation is almost the same as
adding 2 bits, and what goes wrong in this case?

6. What logical operation together with what mask can you use to change
ASCII codes of lowercase letters to uppercase? What about uppercase
to lowercase?

7. What is the result of performing a 3-bit right circular shift on the follow-
ing bit strings:

a. 01101010 b. 00001111 ¢ 01111111

8. What is the result of performing a 1-bit left circular shift on the following
bytes represented in hexadecimal notation? Give your answer in hexa-
decimal form.

a. AB b. 5C c. B7 d. 35

9. A right circular shift of 3 bits on a string of 8 bits is equivalent to a left cir-
cular shift of how many bits?

10. What bit pattern represents the sum of 01101010 and 11001100 if the pat-
terns represent values stored in two's complement notation? What if the
patterns represent values stored in the floating-point format discussed in
Chapter 1?

11. Using the machine language of Appendix C, write a program that places
a 1 in the most significant bit of the memory cell whose address is A7
without modifying the remaining bits in the cell.

12. Using the machine language of Appendix C, write a program that copies
the middle 4 bits from memory cell EO into the least significant 4 bits of
memory cell E1, while placing 0s in the most significant 4 bits of the cell
at location E1.

2.5 Communicating with Other Devices

Main memory and the CPU form the core of a computer. In this section, we
investigate how this core, which we will refer to as the computer, communicates
with peripheral devices such as mass storage systems, printers, keyboards, mice,
display screens, digital cameras, and even other computers.

2.5 Communicating with Other Devices

The Role of Controllers

Communication between a computer and other devices is normally handled
through an intermediary apparatus known as a controller. In the case of a per-
sonal computer, a controller may consist of circuitry permanently mounted on
the computer’s motherboard or, for flexibility, it may take the form of a circuit
board that plugs into a slot on the motherboard. In either case, the controller
connects via cables to peripheral devices within the computer case or perhaps to
a connector, called a port, on the back of the computer where external devices
can be attached. These controllers are sometimes small computers themselves,
each with its own memory circuitry and simple CPU that performs a program
directing the activities of the controller.

A controller translates messages and data back and forth between forms
compatible with the internal characteristics of the computer and those of the
peripheral device to which it is attached. Originally, each controller was
designed for a particular type of device; thus, purchasing a new peripheral
device often required the purchase of a new controller as well.

Recently, steps have been taken within the personal computer arena to
develop standards, such as the universal serial bus (USB) and FireWire, by
which a single controller is able to handle a variety of devices. For example, a
single USB controller can be used as the interface between a computer and any
collection of USB-compatible devices. The list of devices on the market today
that can communicate with a USB controller includes mice, printers, scanners,
mass storage devices, digital cameras, and smartphones.

Each controller communicates with the computer itself by means of connec-
tions to the same bus that connects the computer’s CPU and main memory
(Figure 2.13). From this position it is able to monitor the signals being sent between
the CPU and main memory as well as to inject its own signals onto the bus.

With this arrangement, the CPU is able to communicate with the controllers
attached to the bus in the same manner that it communicates with main mem-
ory. To send a bit pattern to a controller, the bit pattern is first constructed in one
of the CPU’s general-purpose registers. Then an instruction similar to a STORE
instruction is executed by the CPU to “store” the bit pattern in the controller.

Figure 2.13 Controllers attached to a machine’s bus

CD drive Modem

Controller Controller

Main

CPU memory

Controller Controller

Monitor Disk drive

95

96

Chapter 2 Data Manipulation

Likewise, to receive a bit pattern from a controller, an instruction similar to a
LOAD instruction is used.

In some computer designs the transfer of data to and from controllers is
directed by the same LOAD and STORE op-codes that are already provided for
communication with main memory. In these cases, each controller is designed
to respond to references to a unique set of addresses while main memory is
designed to ignore references to these locations. Thus when the CPU sends a
message on the bus to store a bit pattern at a memory location that is assigned to
a controller, the bit pattern is actually “stored” in the controller rather than main
memory. Likewise, if the CPU tries to read data from such a memory location, as
in a LOAD instruction, it will receive a bit pattern from the controller rather than
from memory. Such a communication system is called memory-mapped 1/0
because the computer’s input/output devices appear to be in various memory
locations (Figure 2.14).

An alternative to memory-mapped I/0 is to provide special op-codes in the
machine language to direct transfers to and from controllers. Instructions with
these op-codes are called 1/0 instructions. As an example, if the language
described in Appendix C followed this approach, it might include an instruction
such as F5A3 to mean “STORE the contents of register 5 in the controller identi-
fied by the bit pattern A3.”

Direct Memory Access

Since a controller is attached to a computer’s bus, it can carry on its own com-
munication with main memory during those nanoseconds in which the CPU is
not using the bus. This ability of a controller to access main memory is known as
direct memory access (DMA), and it is a significant asset to a computer’s per-
formance. For instance, to retrieve data from a sector of a disk, the CPU can send
requests encoded as bit patterns to the controller attached to the disk asking the
controller to read the sector and place the data in a specified area of main mem-
ory. The CPU can then continue with other tasks while the controller performs
the read operation and deposits the data in main memory via DMA. Thus two
activities will be performed at the same time. The CPU will be executing a pro-
gram and the controller will be overseeing the transfer of data between the disk
and main memory. In this manner, the computing resources of the CPU are not
wasted during the relatively slow data transfer.

The use of DMA also has the detrimental effect of complicating the commu-
nication taking place over a computer’s bus. Bit patterns must move between the
CPU and main memory, between the CPU and each controller, and between
each controller and main memory. Coordination of all this activity on the bus is
a major design issue. Even with excellent designs, the central bus can become an

Figure 2.14 A conceptual representation of memory-mapped 1/0

Main
memory

:DE — Controller — Peripheral device

CPU

2.5 Communicating with Other Devices

USB and FireWire

The universal serial bus (USB) and FireWire are standardized serial communication
systems that simplify the process of adding new peripheral devices to a personal
computer. USB was developed under the lead of Intel. The development of FireWire
was led by Apple. In both cases the underlying theme is for a single controller to pro-
vide external ports at which a variety of peripheral devices can be attached. In this
setting, the controller translates the internal signal characteristics of the computer to
the appropriate USB or FireWire standard signals. In turn, each device connected to
the controller converts its internal idiosyncrasies to the same USB or FireWire stan-
dard, allowing communication with the controller. The result is that attaching a new
device to a PC does not require the insertion of a new controller. Instead, one merely
plugs any USB compatible device into a USB port or a FireWire compatible device
into a FireWire port.

Of the two, FireWire provides a faster transfer rate, but the lower cost of USB
technology has made it the leader in the lower-cost mass market arena. USB com-
patible devices on the market today include mice, keyboards, printers, scanners, dig-
ital cameras, smartphones, and mass storage systems designed for backup
applications. FireWire applications tend to focus on devices that require higher trans-

fer rates such as video recorders and online mass storage systems.

97

impediment as the CPU and the controllers compete for bus access. This imped-
iment is known as the von Neumann bottleneck because it is a consequence of
the underlying von Neumann architecture in which a CPU fetches its instruc-
tions from memory over a central bus.

Handshaking

The transfer of data between two computer components is rarely a one-way
affair. Even though we may think of a printer as a device that receives data, the
truth is that a printer also sends data back to the computer. After all, a computer
can produce and send characters to a printer much faster than the printer can
print them. If a computer blindly sent data to a printer, the printer would quickly
fall behind, resulting in lost data. Thus a process such as printing a document
involves a constant two-way dialogue, known as handshaking, in which the
computer and the peripheral device exchange information about the device’s sta-
tus and coordinate their activities.

Handshaking often involves a status word, which is a bit pattern that is gen-
erated by the peripheral device and sent to the controller. The status word is a bit
map in which the bits reflect the conditions of the device. For example, in the
case of a printer, the value of the least significant bit of the status word may indi-
cate whether the printer is out of paper, while the next bit may indicate whether
the printer is ready for additional data. Still another bit may be used to indicate
the presence of a paper jam. Depending on the system, the controller may
respond to this status information itself or make it available to the CPU. In either
case, the status word provides the mechanism by which communication with a
peripheral device can be coordinated.

98

Chapter 2 Data Manipulation

Popular Communication Media

Communication between computing devices is handled over two types of paths:
parallel and serial. These terms refer to the manner in which signals are trans-
ferred with respect to each other. In the case of parallel communication, sev-
eral signals are transferred at the same time, each on a separate “line.” Such a
technique is capable of transferring data rapidly but requires a relatively com-
plex communication path. Examples include a computer’s internal bus where
multiple wires are used to allow large blocks of data and other signals to be trans-
ferred simultaneously.

In contrast, serial communication is based on transferring signals one
after the other over a single line. Thus serial communication requires a simpler
data path than parallel communication, which is the reason for its popularity.
USB and FireWire, which offer relatively high-speed data transfer over short dis-
tances of only a few meters, are examples of serial communication systems. For
slightly longer distances (within a home or office building), serial communica-
tion over Ethernet connections (Section 4.1), either by wire or radio broadcast,
are popular.

For communication over greater distances, traditional voice telephone lines
dominated the personal computer arena for many years. These communication
paths, consisting of a single wire over which tones are transferred one after the
other, are inherently serial systems. The transfer of digital data over these lines
is accomplished by first converting bit patterns into audible tones by means of a
modem (short for modulator-demodulator), transferring these tones serially over
the telephone system, and then converting the tones back into bits by another
modem at the destination.

For faster long-distance communication over traditional telephone lines,
telephone companies offer a service known as DSL (Digital Subscriber Line),
which takes advantage of the fact that existing telephone lines are capable of
handling a wider frequency range than that used by traditional voice communi-
cation. More precisely, DSL uses frequencies above the audible range to transfer
digital data while leaving the lower frequency spectrum for voice communica-
tion. Although DSL has been highly successful, telephone companies are rapidly
upgrading their systems to fiber-optic lines, which support digital communica-
tion more readily than traditional telephone lines.

Other technologies that compete with DSL and fiber optics include cable,
as used in cable television systems, and satellite links via high-frequency
radio broadcast.

Communication Rates

The rate at which bits are transferred from one computing component to
another is measured in bits per second (bps). Common units include Kbps
(kilo-bps, equal to one thousand bps), Mbps (mega-bps, equal to one million
bps), and Gbps (giga-bps, equal to one billion bps). (Note the distinction between
bits and bytes—that is, 8 Kbps is equal to 1 KB per second. In abbreviations, a
lowercase b usually means bit whereas an uppercase B means byte.)

For short distance communication, USB and FireWire provide transfer rates
of several hundred Mbps, which is sufficient for most multimedia applications.

2.5 Communicating with Other Devices

This, combined with their convenience and relatively low cost, is why they are
popular for communication between home computers and local peripherals
such as printers, external disk drives, and cameras.

By combining multiplexing (the encoding or interweaving of data so that a
single communication path serves the purpose of multiple paths) and data com-
pression techniques, traditional voice telephone systems were able to support
transfer rates of 57.6 Kbps, which falls short of the needs of today’s multimedia
and Internet applications, such as YouTube and Facebook. To play MP3 music
recordings requires a transfer rate of about 64 Kbps, and to play even low quality
video clips requires transfer rates measured in units of Mbps. This is why alter-
natives such as DSL, cable, and satellite links, which provide transfer rates well
into the Mbps range, have replaced traditional audio telephone systems. (For
example, DSL offers transfer rates on the order of 54 Mbps.)

The maximum rate available in a particular setting depends on the type of
the communication path and the technology used in its implementation. This
maximum rate is often loosely equated to the communication path’s
bandwidth, although the term bandwidth also has connotations of capacity
rather than transfer rate. That is, to say that a communication path has a high
bandwidth (or provides broadband service) means that the communication
path has the ability to transfer bits at a high rate as well as the capacity to carry

large amounts of information simultaneously.
N

1. Assume that the machine described in Appendix C uses memory-
mapped I/0 and that the address B5 is the location within the printer
port to which data to be printed should be sent.

a. If register 7 contains the ASCII code for the letter A, what machine
language instruction should be used to cause that letter to be printed
at the printer?

b. If the machine executes a million instructions per second, how many
times can this character be sent to the printer in one second?

c. If the printer is capable of printing five traditional pages of text per
minute, will it be able to keep up with the characters being sent to

it in (b)?

2. Suppose that the hard disk on your personal computer rotates at 3000
revolutions a minute, that each track contains 16 sectors, and that each
sector contains 1024 bytes. Approximately what communication rate is
required between the disk drive and the disk controller if the controller
is going to receive bits from the disk drive as they are read from the spin-
ning disk?

3. Estimate how long it would take to transfer a 300-page novel encoded in
Unicode at a transfer rate of 54 Mbps.

99

i Il
ot Exereises ||
it

100

Chapter 2 Data Manipulation

2.6 Other Architectures

To broaden our perspective, let us consider some alternatives to the traditional
machine architecture we have discussed so far.

Pipelining

Electric pulses travel through a wire no faster than the speed of light. Since light
travels approximately 1 foot in a nanosecond (one billionth of a second), it
requires at least 2 nanoseconds for the CPU to fetch an instruction from a mem-
ory cell that is 1 foot away. (The read request must be sent to memory, requiring
at least 1 nanosecond, and the instruction must be sent back to the CPU, requiring
at least another nanosecond.) Consequently, to fetch and execute an instruction in
such a machine requires several nanoseconds—which means that increasing the
execution speed of a machine ultimately becomes a miniaturization problem.

However, increasing execution speed is not the only way to improve a com-
puter’s performance. The real goal is to improve the machine’s throughput,
which refers to the total amount of work the machine can accomplish in a given
amount of time.

An example of how a computer’s throughput can be increased without
requiring an increase in execution speed involves pipelining, which is the
technique of allowing the steps in the machine cycle to overlap. In particular,
while one instruction is being executed, the next instruction can be fetched,
which means that more than one instruction can be in “the pipe” at any one
time, each at a different stage of being processed. In turn, the total throughput
of the machine is increased even though the time required to fetch and execute
each individual instruction remains the same. (Of course, when a JUMP
instruction is reached, any gain that would have been obtained by prefetching
is not realized because the instructions in “the pipe” are not the ones needed
after all.)

Modern machine designs push the pipelining concept beyond our simple
example. They are often capable of fetching several instructions at the same
time and actually executing more than one instruction at a time when those
instructions do not rely on each other.

The Multi-Core CPU

As technology provides ways of placing more and more circuitry on a silicon chip, the
physical distinction between a computer’s components diminishes. For instance, a
single chip might contain a CPU and main memory. This is an example of the “system-
on-a-chip” approach in which the goal is to provide a complete apparatus in a single
device that can be used as an abstract tool in higher level designs. In other cases
multiple copies of the same circuit are provided within a single device. This latter tac-
tic originally appeared in the form of chips containing several independent gates or
perhaps multiple flip-flops. Today’s state of the art allows for more than one entire
CPU to be placed on a single chip. This is the underlying architecture of devices
known as multi-core CPUs, which consist of two or more CPUs residing on the same
chip along with shared cache memory. (Multi-core CPUs containing two processing
units are typically called dual-core CPUs.) Such devices simplify the construction of
MIMD systems and are readily available for use in home computers.

2.6 Other Architectures 101

Multiprocessor Machines

Pipelining can be viewed as a first step toward parallel processing, which is the
performance of several activities at the same time. However, true parallel pro-
cessing requires more than one processing unit, resulting in computers known
as multiprocessor machines.

A variety of computers today are designed with this idea in mind. One strat-
egy is to attach several processing units, each resembling the CPU in a single-
processor machine, to the same main memory. In this configuration, the
processors can proceed independently yet coordinate their efforts by leaving mes-
sages to one another in the common memory cells. For instance, when one
processor is faced with a large task, it can store a program for part of that task in
the common memory and then request another processor to execute it. The result
is a machine in which different instruction sequences are performed on different
sets of data, which is called a MIMD (multiple-instruction stream, multiple-data
stream) architecture, as opposed to the more traditional SISD (single-instruction
stream, single-data stream) architecture.

A variation of multiple-processor architecture is to link the processors
together so that they execute the same sequence of instructions in unison, each
with its own set of data. This leads to a SIMD (single-instruction stream, multiple-
data stream) architecture. Such machines are useful in applications in which the
same task must be applied to each set of similar items within a large block of data.

Another approach to parallel processing is to construct large computers as
conglomerates of smaller machines, each with its own memory and CPU. Within
such an architecture, each of the small machines is coupled to its neighbors so
that tasks assigned to the whole system can be divided among the individual
machines. Thus if a task assigned to one of the internal machines can be broken
into independent subtasks, that machine can ask its neighbors to perform these
subtasks concurrently. The original task can then be completed in much less

time than would be required by a single-processor machine.
] " I |!
||| u! !!'!.'I!!:l:!!!:!!!!! ||||||
naindda o

1. Referring back to Question 3 of Section 2.3, if the machine used the
pipeline technique discussed in the text, what will be in “the pipe” when
the instruction at address AA is executed? Under what conditions would
pipelining not prove beneficial at this point in the program?

2. What conflicts must be resolved in running the program in Question 4 of
Section 2.3 on a pipeline machine?

3. Suppose there were two “central” processing units attached to the same
memory and executing different programs. Furthermore, suppose that
one of these processors needs to add one to the contents of a memory
cell at roughly the same time that the other needs to subtract one from
the same cell. (The net effect should be that the cell ends up with the
same value with which it started.)

a. Describe a sequence in which these activities would result in the cell
ending up with a value one less than its starting value.

b. Describe a sequence in which these activities would result in the cell
ending up with a value one greater than its starting value.

102

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

Chapter 2 Data Manipulation

1.

a. In what way are general-purpose registers
and main memory cells similar?
b. In what way do general-purpose registers

a. 7123
d. B100

b. 40E1
e. 2BCD

c. A304

i X 8. Suppose a machine language is designed with
and main memory cells differ? an op-code field of 4 bits. How many different
2. Answer the following questions in terms of instruction types can the language contain?
the machine language described in Appendix C. What if the op-code field is increased to 6 bits?
a. Write the instruction 2304 (hexadecimal) as g yanslate the following instructions from
a string of 16 bits. . . English into the machine language described
b. Write the. op-code of the instruction B2A5 in Appendix C.
(hexadecimal) as a string of 4 bits. a. LOAD register 6 with the hexadecimal
c. Write the operand field of the instruction value 77.
B2A5 (hexadecimal) as a string of 12 bits. b. LOAD register 7 with the contents of mem-
3. Suppose a block of data is stored in the mem- ory cell 77.
ory cells of the machine described in c. JUMP to the instruction at memory loca-
Appendix C from address 98 to A2, inclusive. tion 24 if the contents of register 0 equals
How many memory cells are in this block? the value in register A.
List their addresses. d. ROTATE register 4 three bits to the right.
4. What is the value of the program counter in e. AND the cont(?nts of registers E and 2 leav-
the machine described in Appendix C immedi- ing the result in register 1.
ately after executing the instruction BOCD? 10. Rewrite the program in Figure 2.7 assuming
5. Suppose the memory cells at addresses 00 that f[he Val,ues to b? added are encoded using
through 05 in the machine described in floating-point potatlon rather than two’s com-
Appendix C contain the following bit patterns: plement notation.
Address Contents 11. Classify egch of the following ins‘Fructigns (in
00 2 the machine language of Appendix C) in
0 1 terms of whether its execution changes the
02 1 contents of the memory cell at location 3B,
03 02 retrieves the contents of the memory cell at
04 co location 3C, or is independent of the contents
05 00 of the memory cell at location 3C.
a. 353C b. 253C c. 153C
Assuming that the program counter initially d. 3C3C e. 403C
contained 00, record the contents of the pro- 12. Suppose the memory cells at addresses 00

gram counter, instruction register, and memory
cell at address 02 at the end of each fetch phase
of the machine cycle until the machine halts.

through 03 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
6. Suppose three values x, y, and z are stored in a 00 26
machine’s memory. Describe the sequence of 01 55
events (loading registers from memory, saving 02 Co
values in memory, and so on) that leads to the 03 00
computation of x + y + z. How about (2v) + y? a. Translate the first instruction into English.
7. The following are instructions written in the b. If the machine is started with its program

machine language described in Appendix C.
Translate them into English.

counter containing 00, what bit pattern is
in register 6 when the machine halts?

13.

14,

15.

Suppose the memory cells at addresses 00
through 02 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 12
01 21
02 34

a. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 00?

b. What would be the first instruction exe-
cuted if we started the machine with its
program counter containing 017

Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 12
01 02
02 32
03 42
04 CO0
05 00

When answering the following questions,

assume that the machine starts with its pro-

gram counter equal to 00.

a. Translate the instructions that are executed
into English.

b. What bit pattern is in the memory cell at
address 42 when the machine halts?

¢. What bit pattern is in the program counter
when the machine halts?

Suppose the memory cells at addresses 00
through 09 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 1C
01 03
02 2B
03 03
04 5A
05 BC
06 3A
07 00
08 (@[0)
09 00

Assume that the machine starts with its pro-
gram counter containing 00.

16.

17.

103

Chapter Review Problems

a. What will be in the memory cell at address
00 when the machine halts?

b. What bit pattern will be in the program
counter when the machine halts?

Suppose the memory cells at addresses 00
through 07 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 2B
01 07
02 3B
03 06
04 Cco
05 00
06 00
07 23

a. List the addresses of the memory cells that
contain the program that will be executed if
we start the machine with its program
counter containing 00.

b. List the addresses of the memory cells that
are used to hold data.

Suppose the memory cells at addresses 00
through 0D in the machine described in
Appendix C contain the following bit patterns:

Address Contents
00 20
01 04
02 21
03 01
04 40
05 12
06 51
07 12
08 Bl
09 0C
0A BO
0B 06
0C CoO
0D 00

Assume that the machine starts with its pro-

gram counter containing 00.

a. What bit pattern will be in register 0 when
the machine halts?

b. What bit pattern will be in register 1 when
the machine halts?

¢. What bit pattern is in the program counter
when the machine halts?

104

18.

19.

20.

Chapter 2 Data Manipulation

Suppose the memory cells at addresses FO
through FD in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

Address Contents
FO 20
F1 00
F2 22
F3 02
F4 23
F5 04
F6 B3
F7 FC
F8 50
F9 02
FA BO
FB Fo6
FC CO
FD 00

If we start the machine with its program
counter containing F0O, what is the value in
register 0 when the machine finally executes
the halt instruction at location FC?

If the machine in Appendix C executes an
instruction every microsecond (a millionth of
a second), how long does it take to complete
the program in Problem 18?

Suppose the memory cells at addresses 20
through 28 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
20 12
21 20
22 32
23 30
24 BO
25 21
26 24
27 (@[0)
28 00

Assume that the machine starts with its pro-

gram counter containing 20.

a. What bit patterns will be in registers 0, 1,
and 2 when the machine halts?

b. What bit pattern will be in the memory cell
at address 30 when the machine halts?

c. What bit pattern will be in the memory cell
at address BO when the machine halts?

21.

22,

23,

24,

Suppose the memory cells at addresses AF
through B1 in the machine described in
Appendix C contain the following bit patterns:

Address Contents
AF BO
BO BO
Bl AF

What would happen if we started the machine
with its program counter containing AF?

Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

Address Contents
00 25
01 BO
02 35
03 04
04 (@[0)
05 00

If we start the machine with its program counter
containing 00, when does the machine halt?

In each of the following cases, write a short
program in the machine language described in
Appendix C to perform the requested activi-
ties. Assume that each of your programs is
placed in memory starting at address 00.

a. Move the value at memory location D8 to
memory location B3.

b. Interchange the values stored at memory
locations D8 and B3.

c. If the value stored in memory location 44 is
00, then place the value 01 in memory loca-
tion 46; otherwise, put the value FF in
memory location 46.

A game that used to be popular among com-
puter hobbyists is core wars—a variation of
battleship. (The term core originates from an
early memory technology in which Os and 1s
were represented as magnetic fields in little
rings of magnetic material. The rings were
called cores.) The game is played between two
opposing programs, each stored in different
locations of the same computer’s memory.
The computer is assumed to alternate
between the two programs, executing an
instruction from one followed by an instruc-
tion from the other. The goal of each program

25.

26.

27.

28.

is to cause the other to malfunction by writing

extraneous data on top of it; however, neither

program knows the location of the other.

a. Write a program in the machine language
of Appendix C that approaches the game
in a defensive manner by being as small
as possible.

b. Write a program in the language of

Appendix C that tries to avoid any attacks
from the opposing program by moving to
different locations. More precisely, begin-
ning at location 00, write a program that
will copy itself to location 70 and then
jump to location 70.

c. Extend the program in (b) to continue relo-
cating to new memory locations. In particu-
lar, make your program move to location 70,
then to EO (= 70 + 70), then to 60 (= 70 +
70 + 70), etc.

Write a program in the machine language of
Appendix C to compute the sum of floating-
point values stored at memory locations AO,
Al, A2, and A3. Your program should store the
total at memory location A4.

Suppose the memory cells at addresses 00
through 05 in the machine described in
Appendix C contain the following (hexadeci-
mal) bit patterns:

Address Contents
00 20
01 CoO
02 30
03 04
04 00
05 00

What happens if we start the machine with its
program counter containing 00?

What happens if the memory cells at
addresses 08 and 09 of the machine described
in Appendix C contain the bit patterns B0 and
08, respectively, and the machine is started with
its program counter containing the value 08?

Suppose the following program, written in the
machine language of Appendix C, is stored in
main memory beginning at address 30 (hexa-
decimal). What task will the program perform
when executed?

2003

2101

29.

*30.

*31.

*32.

*33.

105

Chapter Review Problems

2200
2310
1400
3410
5221
5331
3239
333B
B248
B038
c000

Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code B. Express your
answer as a set of directions as though you
were telling the CPU what to do.

Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 5. Express your
answer as a set of directions as though you
were telling the CPU what to do.

Summarize the steps involved when the
machine described in Appendix C performs
an instruction with op-code 6. Express your
answer as a set of directions as though you
were telling the CPU what to do.

Suppose the registers 4 and 5 in the machine
described in Appendix C contain the bit pat-
terns 3A and C8, respectively. What bit pat-
tern is left in register 0 after executing each
of the following instructions:
a. 5045 b. 6045

d. 8045 e. 9045

c. 7045

Using the machine language described in
Appendix C, write programs to perform each
of the following tasks:

a. Copy the bit pattern stored in memory
location 44 into memory location AA.

b. Change the least significant 4 bits in the
memory cell at location 34 to 0s while
leaving the other bits unchanged.

c. Copy the least significant 4 bits from
memory location A5 into the least signifi-
cant 4 bits of location A6 while leaving the
other bits at location A6 unchanged.

d. Copy the least significant 4 bits from
memory location A5 into the most signifi-
cant 4 bits of A5. (Thus, the first 4 bits in
A5 will be the same as the last 4 bits.)

106

*34,

*35.

*36.

*37.

*38.

*39.

*40.

Chapter 2 Data Manipulation

Perform the indicated operations:

a. 111001 b. 000101
AND 101001 AND 101010
c. 001110 d. 111011
AND 010101 AND 110111
e 111001 f 010100
OR 101001 OR 101010
g. 000100 h. 101010
OR 010101 OR 110101
i. 111001 j. 000111
XOR 101001 XOR 101010
k. 010000 1. 111111
XOR 010101 XOR 110101

Identify both the mask and the logical opera-

tion needed to accomplish each of the follow-

ing objectives:

a. Put 1s in the upper4 bits of an 8-bit pat-
tern without disturbing the other bits.

b. Complement the most significant bit of an
8-bit pattern without changing the other bits.

¢. Complement a pattern of 8 bits.

d. Put a 0 in the least significant bit of an 8-bit
pattern without disturbing the other bits.

e. Put 1sin all but the most significant bit of
an 8-bit pattern without disturbing the
most significant bit.

Identify a logical operation (along with a corre-
sponding mask) that, when applied to an input
string of 8 bits, produces an output string of all
0s if and only if the input string is 10000001.

Describe a sequence of logical operations
(along with their corresponding masks) that,
when applied to an input string of 8 bits, pro-
duces an output byte of all 0s if the input string
both begins and ends with 1s. Otherwise, the
output should contain at least one 1.

What would be the result of performing a 4-bit
left circular shift on the following bit patterns?
a. 10101 b. 11110000 c. 001

d. 101000 e. 00001

What would be the result of performing a
2-bit right circular shift on the following
bytes represented in hexadecimal notation
(give your answers in hexadecimal notation)?
a. 3F b. 0D

c. FF d. 77

a. What single instruction in the machine
language of Appendix C could be used to

*41.

*42,

*43,

*44,

*45,

*46.

accomplish a 5-bit right circular shift of
register B?

b. What single instruction in the machine lan-
guage of Appendix C could be used to accom-
plish a 2-bit left circular shift of register B?

Write a program in the machine language of
Appendix C that reverses the contents of the
memory cell at address 8C. (That is, the final
bit pattern at address 8C when read from left
to right should agree with the original pat-
tern when read from right to left.)

Write a program in the machine language of
Appendix C that subtracts the value stored at
Al from the value stored at address A2 and
places the result at address AO. Assume that
the values are encoded in two's complement
notation.

High definition video can be delivered at a
rate of 30 frames per second (fps) where each
frame has a resolution of 1920 X 1080 pixels
using 24 bits per pixel. Can an uncompressed
video stream of this format be sent over a
USB 1.1 serial port? USB 2.0 serial port?

USB 3.0 serial port? (Note: The maximum
speeds of USB 1.1, USB 2.0, and USB 3.0 serial
ports are 12Mbps, 480Mbps, and 5Gbps
respectively.)

Suppose a person is typing forty words per
minute at a keyboard. (A word is considered
to be five characters.) If a machine executes
500 instructions every microsecond (millionth
of a second), how many instructions does the
machine execute during the time between the
typing of two consecutive characters?

How many bits per second must a keyboard
transmit to keep up with a typist typing forty
words per minute? (Assume each character is
encoded in ASCII and each word consists of
six characters.)

Suppose the machine described in Appendix
C communicates with a printer using the
technique of memory-mapped 1/0. Suppose
also that address FF is used to send characters
to the printer, and address FE is used to
receive information about the printer’s status.
In particular, suppose the least significant bit
at the address FE indicates whether the
printer is ready to receive another character
(with a 0 indicating “not ready” and a 1 indi-
cating “ready”). Starting at address 00, write a
machine language routine that waits until the

*47.

*48,

*49.

Social Issues

107

printer is ready for another character and *50. Suppose you are given 32 processors, each
then sends the character represented by the capable of finding the sum of two multidigit

bit pattern in register 5 to the printer.

Write a program in the machine language

numbers in a millionth of a second. Describe
how parallel processing techniques can be

described in Appendix C that places 0Os in all applied to find the sum of 64 numbers in
the memory cells from address A0 through CO only six-millionths of a second. How much
but is small enough to fit in the memory cells time does a single processor require to find
from address 00 through 13 (hexadecimal). this same sum?

Suppose a machine has 200 GB of storage *51. Summarize the difference between a CISC
space available on a hard disk and receives architecture and a RISC architecture.

data over a broadband connection at the rate ~ *52. Identify two approaches to increasing

of 15 Mbps. At this rate, how long will it take throughput.

to fill the available storage space? *53. Describe how the average of a collection of
Suppose a satellite system is being used to numbers can be computed more rapidly with
receive a serial data stream at 250 Kbps. If a a multiprocessor machine than a single-
burst of atmospheric interference lasts 6.96 sec- processor machine.

onds, how many data bits will be affected?

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1.

Suppose a computer manufacturer develops a new machine architecture. To
what extent should the company be allowed to own that architecture? What
policy would be best for society?

In a sense, the year 1923 marked the birth of what many now call planned
obsolescence. This was the year that General Motors, led by Alfred Sloan,
introduced the automobile industry to the concept of model years. The idea
was to increase sales by changing styling rather than necessarily introducing
a better automobile. Sloan is quoted as saying, “We want to make you dissat-
isfied with your current car so you will buy a new one.” To what extent is this
marketing ploy used today in the computer industry?

We often think in terms of how computer technology has changed our society.
Many argue, however, that this technology has often kept changes from occur-
ring by allowing old systems to survive and, in some cases, become more
entrenched. For example, would a central government’s role in society have
survived without computer technology? To what extent would centralized
authority be present today had computer technology not been available? To
what extent would we be better or worse off without computer technology?

Is it ethical for an individual to take the attitude that he or she does not need
to know anything about the internal details of a machine because someone
else will build it, maintain it, and fix any problems that arise? Does your
answer depend on whether the machine is a computer, automobile, nuclear
power plant, or toaster?

Suppose a manufacturer produces a computer chip and later discovers a flaw
in its design. Suppose further that the manufacturer corrects the flaw in
future production but decides to keep the original flaw a secret and does not

108

Chapter 2 Data Manipulation

recall the chips already shipped, reasoning that none of the chips already in
use are being used in an application in which the flaw will have conse-
quences. Is anyone hurt by the manufacturer’s decision? Is the manufac-
turer’s decision justified if no one is hurt and the decision keeps the
manufacturer from loosing money and possibly having to layoff employees?

6. Does advancing technology provide cures for heart disease or is it a source of
a sedentary life style that contributes to heart disease?

7. It is easy to imagine financial or navigational disasters that may occur as the
result of arithmetic errors due to overflow and truncation problems. What con-
sequences could result from errors in image storage systems due to loss of
image details (perhaps in fields such as reconnaissance or medical diagnosis)?

8. ARM Holdings is a small company that designs the processors for a wide vari-
ety of consumer electronic devices. It does not manufacture any of the proces-
sors; instead the designs are licensed to semiconductor vendors (such as
Qualcomm, Samsung, and Texas Instruments) who pay a royalty for each unit
produced. This business model spreads the high cost of research and develop-
ment of computer processors across the entire consumer electronic market.
Today, over 95 percent of all cellular phones (not just smartphones), over
40 percent of all digital cameras, and 25 percent of Digital TVs use an ARM
processor. Furthermore, ARM processors are found in mini-notebooks, MP3
players, game controllers, electronic book readers, navigation systems, and the
list goes on. Given this, do you consider this company to be a monopoly? Why or
why not? As consumer devices play an ever increasing role in today’s society, is
the dependency on this little known company good, or does it raise concerns?

Additional Reading

Carpinelli, J. D. Computer Systems Organization and Architecture. Boston, MA:
Addison-Wesley, 2001.

Comer, D. E. Essentials of Computer Architecture. Upper Saddle River, NJ:
Prentice- Hall, 2005.

Dandamudi, S P. Guide to RISC Processors for Programmers and Engineers. New
York: Springer, 2005.

Furber, S. ARM System-on-Chip Architecture, 2nd ed. Boston, MA: Addison-
Wesley, 2000.

Hamacher, V. C., Z. G. Vranesic, and S. G. Zaky. Computer Organization, 5th ed.
New York: McGraw-Hill, 2002.

Knuth, D. E. The Art of Computer Programming, Vol. 1, 3rd ed. Boston, MA:
Addison-Wesley, 1998.

Murdocca, M. J. and V. P. Heuring. Computer Architecture and Organization: An
Integrated Approach. New York: Wiley, 2007.

Stallings, W. Computer Organization and Architecture, 7th ed. Upper Saddle River,
NJ: Prentice-Hall, 2006.

Tanenbaum, A. S. Structured Computer Organization, 5th ed. Upper Saddle River,
NJ: Prentice-Hall, 2006.

CHAPTER

Operating
Systems

In this chapter we study operating systems, which are software
packages that coordinate a computer’s internal activities as well as
oversee its communication with the outside world. It is a computer’s
operating system that transforms the computer hardware into a
useful tool. Our goal is to understand what operating systems do
and how they do it. Such a background is central to being an

enlightened computer user.

3.1 The History of Operating *3.4 Handling Competition

Systems Among Processes

3.2 Operating System Semaphores
Architecture Deadlock

A Software Survey 3.5 Security
Components of an Operating System Attacks from the Outside
Getting It Started Attacks from Within

3.3 Coordinating the Machine’s *Asterisks indicate suggestions for
Activities optional sections.

The Concept of a Process
Process Administration

110

Chapter 3 Operating Systems

An operating system is the software that controls the overall operation of a com-
puter. It provides the means by which a user can store and retrieve files, provides
the interface by which a user can request the execution of programs, and provides
the environment necessary to execute the programs requested.

Perhaps the best known example of an operating system is Windows, which
is provided in numerous versions by Microsoft and widely used in the PC
arena. Another well-established example is UNIX, which is a popular choice for
larger computer systems as well as PCs. In fact, UNIX is the core of two other
popular operating systems: Mac OS, which is the operating system provided
by Apple for its range of Mac machines, and Solaris, which was developed by
Sun Microsystems (now owned by Oracle). Still another example of an operat-
ing system found on both large and small machines is Linux, which was origi-
nally developed noncommercially by computer enthusiasts and is now
available through many commercial sources, including IBM.

For casual computer users, the differences between operating systems are
largely cosmetic. For computing professionals, different operating systems can
represent major changes in the tools they work with or the philosophy they
follow in disseminating and maintaining their work. Nevertheless, at their core
all mainstream operating systems address the same kinds of problems that
computing experts have faced for more than half a century.

3.1 The History of Operating Systems

Today's operating systems are large, complex software packages that have grown
from humble beginnings. The computers of the 1940s and 1950s were not very
flexible or efficient. Machines occupied entire rooms. Program execution
required significant preparation of equipment in terms of mounting magnetic
tapes, placing punched cards in card readers, setting switches, and so on. The
execution of each program, called a job, was handled as an isolated activity—the
machine was prepared for executing the program, the program was executed,
and then all the tapes, punched cards, etc. had to be retrieved before the next
program preparation could begin. When several users needed to share a
machine, sign-up sheets were provided so that users could reserve the machine
for blocks of time. During the time period allocated to a user, the machine was
totally under that user’s control. The session usually began with program setup,
followed by short periods of program execution. It was often completed in a hur-
ried effort to do just one more thing (“It will only take a minute”) while the next
user was impatiently starting to set up.

In such an environment, operating systems began as systems for simplifying
program setup and for streamlining the transition between jobs. One early devel-
opment was the separation of users and equipment, which eliminated the phys-
ical transition of people in and out of the computer room. For this purpose a
computer operator was hired to operate the machine. Anyone wanting a pro-
gram run was required to submit it, along with any required data and special
directions about the program’s requirements, to the operator and return later for
the results. The operator, in turn, loaded these materials into the machine’s mass
storage where a program called the operating system could read and execute

3.1 The History of Operating Systems

them one at a time. This was the beginning of batch processing—the execution
of jobs by collecting them in a single batch, then executing them without further
interaction with the user.

In batch processing systems, the jobs residing in mass storage wait for exe-
cution in a job queue (Figure 3.1). A queue is a storage organization in which
objects (in this case, jobs) are ordered in first-in, first-out (abbreviated FIFO
and pronounced ‘FI-foe”) fashion. That is, the objects are removed from the
queue in the order in which they arrived. In reality, most job queues do not rig-
orously follow the FIFO structure, since most operating systems provide for con-
sideration of job priorities. As a result, a job waiting in the job queue can be
bumped by a higher-priority job.

In early batch processing systems, each job was accompanied by a set of
instructions explaining the steps required to prepare the machine for that
particular job. These instructions were encoded, using a system known as a
job control language (JCL), and stored with the job in the job queue. When
the job was selected for execution, the operating system printed these
instructions at a printer where they could be read and followed by the com-
puter operator. This communication between the operating system and the
computer operator is still seen today, as witnessed by PC operating systems
that report such errors as “disk drive not accessible” and “printer not
responding.”

A major drawback to using a computer operator as an intermediary between
a computer and its users is that the users have no interaction with their jobs once
they are submitted to the operator. This approach is acceptable for some applica-
tions, such as payroll processing, in which the data and all processing decisions
are established in advance. However, it is not acceptable when the user must
interact with a program during its execution. Examples include reservation
systems in which reservations and cancellations must be reported as they occur;
word processing systems in which documents are developed in a dynamic
write and rewrite manner; and computer games in which interaction with the
machine is the central feature of the game.

To accommodate these needs, new operating systems were developed that
allowed a program being executed to carry on a dialogue with the user through

Figure 3.1 Batch processing

Jobs: Program, data, Results
and directions

User domain

Machine l TEuEE) Job

domain execution

111

112

Chapter 3 Operating Systems

remote terminals—a feature known as interactive processing (Figure 3.2).
(A terminal consisted of little more than an electronic typewriter by which the user
could type input and read the computer’s response that was printed on paper. Today
terminals have evolved into more sophisticated devices called workstations and
even into complete PCs that can function as stand-alone computers when desired.)

Paramount to successful interactive processing is that the actions of the com-
puter be sufficiently fast to coordinate with the needs of the user rather than forcing
the user to conform to the machine’s timetable. (The task of processing payroll can
be scheduled to conform to the amount of time required by the computer, but using
a word processor would be frustrating if the machine did not respond promptly as
characters are typed.) In a sense, the computer is forced to execute tasks under a
deadline, a process that became known as real-time processing in which the
actions performed are said to occur in real-time. That is, to say that a computer
performs a task in real time means that the computer performs the task in
accordance with deadlines in its (external real-world) environment.

If interactive systems had been required to serve only one user at a time,
real-time processing would have been no problem. But computers in the 1960s
and 1970s were expensive, so each machine had to serve more than one user. In
turn, it was common for several users, working at remote terminals, to seek
interactive service from a machine at the same time, and real-time considera-
tions presented obstacles. If the operating system insisted on executing only one
job at a time, only one user would receive satisfactory real-time service.

The solution to this problem was to design operating systems that provided
service to multiple users at the same time: a feature called time-sharing. One
means of implementing time-sharing is to apply the technique called
multiprogramming in which time is divided into intervals and then the execu-
tion of each job is restricted to only one interval at a time. At the end of each inter-
val, the current job is temporarily set aside and another is allowed to execute
during the next interval. By rapidly shuffling the jobs back and forth in this man-
ner, the illusion of several jobs executing simultaneously is created. Depending on
the types of jobs being executed, early time-sharing systems were able to provide
acceptable real-time processing to as many as 30 users simultaneously. Today,
multiprogramming techniques are used in single-user as well as multiuser sys-
tems, although in the former the result is usually called multitasking. That is,
time-sharing refers to multiple users sharing access to a common computer,
whereas multitasking refers to one user executing numerous tasks simultaneously.

Figure 3.2 Interactive processing

Programs, data,
directions, and results

User domain 1

Machine
domain

Program
execution

3.1 The History of Operating Systems

With the development of multiuser, time-sharing operating systems, a typi-
cal computer installation was configured as a large central computer connected
to numerous workstations. From these workstations, users could communicate
directly with the computer from outside the computer room rather than submit-
ting requests to a computer operator. Commonly used programs were stored in
the machine’s mass storage devices and operating systems were designed to exe-
cute these programs as requested from the workstations. In turn, the role of a
computer operator as an intermediary between the users and the computer
begins to fade.

Today, the existence of a computer operator has essentially disappeared, espe-
cially in the arena of personal computers where the computer user assumes all of
the responsibilities of computer operation. Even most large computer installations
run essentially unattended. Indeed, the job of computer operator has given way to
that of a system administrator who manages the computer system—obtaining and
overseeing the installation of new equipment and software, enforcing local regula-
tions such as the issuing of new accounts and establishing mass storage space limits
for the various users, and coordinating efforts to resolve problems that arise in the
system—rather than operating the machines in a hands-on manner.

In short, operating systems have grown from simple programs that retrieved
and executed programs one at a time into complex systems that coordinate time-
sharing, maintain programs and data files in the machine’s mass storage devices,
and respond directly to requests from the computer’s users.

But the evolution of operating systems continues. The development of multi-
processor machines has led to operating systems that provide time-sharing/
multitasking capabilities by assigning different tasks to different processors as well as
by sharing the time of each single processor. These operating systems must wrestle
with such problems as load balancing (dynamically allocating tasks to the various
processors so that all processors are used efficiently) as well as scaling (breaking
tasks into a number of subtasks compatible with the number of processors available).

Moreover, the advent of computer networks in which numerous machines
are connected over great distances has led to the creation of software systems to
coordinate the network’s activities. Thus the field of networking (which we will
study in Chapter 4) is in many ways an extension of the subject of operating

What’s in a Smartphone?

As cell phones have become more powerful, it has become possible for them to offer
services well beyond simply processing voice calls. A typical smartphone can now be
used to text message, browse the Web, provide directions, view multimedia
content—in short, it can be used to provide many of the same services as a tradi-
tional PC. As such, smartphones require full-fledged operating systems, not only to
manage the limited resources of the smartphone hardware, but also to provide fea-
tures that support the rapidly expanding collection of smartphone application soft-
ware. The battle for dominance in the smartphone operating system market place
promises to be fierce and will likely be settled on the basis of which system can pro-
vide the most imaginative features at the best price. Competitors in the smartphone
operating system arena include Apple’s iPhone OS, Research In Motion’s BlackBerry

0S, Microsoft’s Windows Phone, Nokia’s Symbian OS, and Google’s Android.

113

114 | Chapter 3 Operating Systems

systems—the goal being to manage resources across many users on many
machines rather than a single, isolated computer.

Still another direction of research in operating systems focuses on devices that
are dedicated to specific tasks such as medical devices, vehicle electronics, home
appliances, cell phones, or other hand-held computers. The computer systems
found in these devices are known as embedded systems. Embedded operating sys-
tems are often expected to conserve battery power, meet demanding real-time
deadlines, or operate continuously with little or no human oversight. Successes in
this endeavor are marked by systems such as VXWORKS, developed by Wind River
Systems and used in the Mars Exploration Rovers named Spirit and Opportunity;
Windows CE (also known as Pocket PC) developed by Microsoft; and Palm OS
developed by PalmSource, Inc., especially for use in hand-held devices.

A
‘l Duiestions (& ExXerncises
natifittiebticint it dinli

1. Identify examples of queues. In each case, indicate any situations that
violate the FIFO structure.

2. Which of the following activities require real-time processing?

Printing mailing labels

Playing a computer game

Displaying numbers on a smartphone screen as they are dialed
Executing a program that predicts the state of next year’s economy

Y PR PP

Playing an MP3 recording

3. What is the difference between embedded systems and PCs?
4. What is the difference between time-sharing and multitasking?

3.2 Operating System Architecture

To understand the composition of a typical operating system, we first consider
the complete spectrum of software found within a typical computer system.
Then we will concentrate on the operating system itself.

A Software Survey

We approach our survey of the software found on a typical computer system by
presenting a scheme for classifying software. Such classification schemes invari-
ably place similar software units in different classes in the same manner as the
assignment of time zones dictates that nearby communities must set their clocks
an hour apart even though there is no significant difference between the occur-
rence of sunrise and sunset. Moreover, in the case of software classification, the
dynamics of the subject and the lack of a definitive authority lead to contradictory
terminology. For example, users of Microsoft's Windows operating systems will
find groups of programs called “Accessories” and “Administrative Tools” that include
software from what we will call the application and utility classes. The following

3.2 Operating System Architecture [~ 119

taxonomy should therefore be viewed as a means of gaining a foothold in an exten-
sive, dynamic subject rather than as a statement of universally accepted fact.

Let us begin by dividing a machine’s software into two broad categories:
application software and system software (Figure 3.3). Application software
consists of the programs for performing tasks particular to the machine’s utiliza-
tion. A machine used to maintain the inventory for a manufacturing company
will contain different application software from that found on a machine used by
an electrical engineer. Examples of application software include spreadsheets,
database systems, desktop publishing systems, accounting systems, program
development software, and games.

In contrast to application software, system software performs those tasks
that are common to computer systems in general. In a sense, the system soft-
ware provides the infrastructure that the application software requires, in much
the same manner as a nation’s infrastructure (government, roads, utilities, finan-
cial institutions, etc.) provides the foundation on which its citizens rely for their
individual lifestyles.

Within the class of system software are two categories: one is the operating
system itself and the other consists of software units collectively known as
utility software. The majority of an installation’s utility software consists of
programs for performing activities that are fundamental to computer installa-
tions but not included in the operating system. In a sense, utility software con-
sists of software units that extend (or perhaps customize) the capabilities of
the operating system. For example, the ability to format a magnetic disk or to
copy a file from a magnetic disk to a CD is often not implemented within the oper-
ating system itself but instead is provided by means of a utility program. Other
instances of utility software include software to compress and decompress data,
software for playing multimedia presentations, and software for handling net-
work communication.

Implementing certain activities as utility software allows system software to
be customized to the needs of a particular installation more easily than if they

Figure 3.3 Software classification

Software
Application System
Utility Operating

system

AN

User Interface Kernel

116

Chapter 3 Operating Systems

Linux

For the computer enthusiast who wants to experiment with the internal components
of an operating system, there is Linux. Linux is an operating system originally
designed by Linus Torvalds while a student at the University of Helsinki. It is a non-
proprietary product and available, along with its source code (see Chapter 6) and
documentation, without charge. Because it is freely available in source code form, it
has become popular among computer hobbyists, students of operating systems, and
programmers in general. Moreover, Linux is recognized as one of the more reliable
operating systems available today. For this reason, several companies now package
and market versions of Linux in an easily useable form, and these products are now
challenging the long-established commercial operating systems on the market. You
can learn more about Linux from the Web site at http://www.linux.org.

were included in the operating system. Indeed, it is common to find companies
or individuals who have modified, or added to, the utility software that was orig-
inally provided with their machine’s operating system.

Unfortunately, the distinction between application software and utility soft-
ware can be vague. From our point of view, the difference is whether the pack-
age is part of the computer’s “software infrastructure.” Thus a new application
may evolve to the status of a utility if it becomes a fundamental tool. When still
a research project, software for communicating over the Internet was considered
application software; today such tools are fundamental to most PC usage and
would therefore be classified as utility software.

The distinction between utility software and the operating system is equally
vague. In particular, antitrust lawsuits in the United States and Europe have been
founded on questions regarding whether units such as browsers and media play-
ers are components of Microsoft's operating systems or utilities that Microsoft has
included merely to squash competition.

Components of an Operating System

Let us focus now on components that are within the domain of an operating sys-
tem. In order to perform the actions requested by the computer’'s users, an
operating system must be able to communicate with those users. The portion of
an operating system that handles this communication is often called the user
interface. Older user interfaces, called shells, communicated with users
through textual messages using a keyboard and monitor screen. More modern
systems perform this task by means of a graphical user interface (GUI—
pronounced “GOO-ee”) in which objects to be manipulated, such as files and
programs, are represented pictorially on the display as icons. These systems
allow users to issue commands by using one of several common input devices.
For example, a computer mouse, with one or more buttons, can be used to click
or drag icons on the screen. In place of a mouse, special-purpose pointing
devices or styluses are often used by graphic artists or on several types of hand-
held devices. More recently, advances in fine-grained touch screens allow users
to manipulate icons directly with their fingers. Whereas today’s GUIs use two-
dimensional image projection systems, three-dimensional interfaces that allow
human users to communicate with computers by means of 3D projection

http://www.linux.org
http://www.linux.org

3.2 Operating System Architecture

systems, tactile sensory devices, and surround sound audio reproduction systems
are subjects of current research.

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts of
the operating system is emphasized by the fact that some operating systems
allow a user to select among different interfaces to obtain the most comfortable
interaction for that particular user. Users of the UNIX operating system, for exam-
ple, can select among a variety of shells including the Bourne shell, the C shell,
and the Korn shell, as well as a GUI called X11. The earliest versions of Microsoft
Windows were a GUI application program that could be loaded from the MS-DOS
operating system’s command shell. The DOS cmd.exe shell can still be found as a
utility program in the latest versions of Windows, although this interface is
almost never required by casual users. Similarly, Apple’s OS X retains a Terminal
utility shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window manager,
which allocates blocks of space on the screen, called windows, and keeps track of
which application is associated with each window. When an application wants to
display something on the screen, it notifies the window manager, and the win-
dow manager places the desired image in the window assigned to the applica-
tion. In turn, when a mouse button is clicked, it is the window manager that
computes the mouse’s location on the screen and notifies the appropriate appli-
cation of the mouse action. Window managers are responsible for what is gener-
ally called the “style” of a GUI, and most managers offer a range of configurable
choices. Linux users even have a range of choices for a window manager, with
popular choices including KDE and Gnome.

In contrast to an operating system'’s user interface, the internal part of an oper-
ating system is called the kernel. An operating system’s kernel contains those
software components that perform the very basic functions required by the com-
puter installation. One such unit is the file manager, whose job is to coordinate
the use of the machine’s mass storage facilities. More precisely, the file manager

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel

User

User User

Kernel

f User interface K

¥ X

User User

117

118

Chapter 3 Operating Systems

maintains records of all the files stored in mass storage, including where each
file is located, which users are allowed to access the various files, and which por-
tions of mass storage are available for new files or extensions to existing files.
These records are kept on the individual storage medium containing the related
files so that each time the medium is placed on-line, the file manager can retrieve
them and thus know what is stored on that particular medium.

For the convenience of the machine’s users, most file managers allow files to
be grouped into a bundle called a directory or folder. This approach allows a
user to organize his or her files according to their purposes by placing related
files in the same directory. Moreover, by allowing directories to contain other
directories, called subdirectories, a hierarchical organization can be constructed.
For example, a user may create a directory called MyRecords that contains sub-
directories called FinancialRecords, MedicalRecords, and HouseHold-
Records. Within each of these subdirectories could be files that fall within that
particular category. (Users of a Windows operating system can ask the file man-
ager to display the current collection of folders by executing the utility program
Windows Explorer.)

A chain of directories within directories is called a directory path. Paths are
often expressed by listing the directories along the path separated by slashes. For
instance, animals/prehistoric/dinosaurs would represent the path start-
ing at the directory named animals, passing through its subdirectory named
prehistoric, and terminating in the sub-subdirectory dinosaurs. (For Win-
dows users the slashes in such a path expression are reversed as in animals\
prehistoric\dinosaurs.)

Any access to a file by other software units is obtained at the discretion of
the file manager. The procedure begins by requesting that the file manager grant
access to the file through a procedure known as opening the file. If the file man-
ager approves the requested access, it provides the information needed to find
and to manipulate the file.

Another component of the kernel consists of a collection of device drivers,
which are the software units that communicate with the controllers (or at times,
directly with peripheral devices) to carry out operations on the peripheral
devices attached to the machine. Each device driver is uniquely designed for its
particular type of device (such as a printer, disk drive, or monitor) and translates
generic requests into the more technical steps required by the device assigned to
that driver. For example, a device driver for a printer contains the software for
reading and decoding that particular printer’s status word as well as all the other
handshaking details. Thus, other software components do not have to deal with
those technicalities in order to print a file. Instead, the other components can
merely rely on the device driver software to print the file, and let the device
driver take care of the details. In this manner, the design of the other software
units can be independent of the unique characteristics of particular devices. The
result is a generic operating system that can be customized for particular periph-
eral devices by merely installing the appropriate device drivers.

Still another component of an operating system’s kernel is the memory
manager, which is charged with the task of coordinating the machine’s use of
main memory. Such duties are minimal in an environment in which a computer
is asked to perform only one task at a time. In these cases, the program for per-
forming the current task is placed at a predetermined location in main memory,
executed, and then replaced by the program for performing the next task. How-
ever, in multiuser or multitasking environments in which the computer is asked

3.2 Operating System Architecture

to address many needs at the same time, the duties of the memory manager are
extensive. In these cases, many programs and blocks of data must reside in main
memory concurrently. Thus, the memory manager must find and assign mem-
ory space for these needs and ensure that the actions of each program are
restricted to the program’s allotted space. Moreover, as the needs of different
activities come and go, the memory manager must keep track of those memory
areas no longer occupied.

The task of the memory manager is complicated further when the total main
memory space required exceeds the space actually available in the computer. In
this case the memory manager may create the illusion of additional memory
space by rotating programs and data back and forth between main memory and
mass storage (a technique called paging). Suppose, for example, that a main
memory of 8GB is required but the computer only has 4GB. To create the illusion
of the larger memory space, the memory manager reserves 4GB of storage space
on a magnetic disk. There it records the bit patterns that would be stored in main
memory if main memory had an actual capacity of 8GB. This data is divided into
uniform sized units called pages, which are typically a few KB in size. Then the
memory manager shuffles these pages back and forth between main memory
and mass storage so that the pages that are needed at any given time are actually
present in the 4GB of main memory. The result is that the computer is able to
function as though it actually had 8GB of main memory. This large “fictional”
memory space created by paging is called virtual memory.

Two additional components within the kernel of an operating system are the
scheduler and dispatcher, which we will study in the next section. For now we
merely note that in a multiprogramming system the scheduler determines
which activities are to be considered for execution, and the dispatcher controls
the allocation of time to these activities.

Getting It Started

We have seen that an operating system provides the software infrastructure
required by other software units, but we have not considered how the operating
system gets started. This is accomplished through a procedure known as

Firmware

In addition to the boot loader, a PC’s ROM contains a collection of software routines for
performing fundamental input/output activities such as receiving information from the
keyboard, displaying messages on the computer screen, and reading data from mass
storage. Being stored in nonvolatile memory such as FlashROM, this software is not
immutably etched into the silicon of the machine—the hardware—but is also not as
readily changeable as the rest of the programs in mass storage —the software. The term
firmware was coined to describe this middle ground. Firmware routines can be used by
the boot loader to perform 1/0 activities before the operating system becomes func-
tional. For example, they are used to communicate with the computer user before the
boot process actually begins and to report errors during booting. Widely used firmware
systems include the BIOS (Basic Input/Output System) long used in “PCs”, the newer
EFI (Extensible Firmware Interface), Sun’s Open Firmware (now a product of Oracle),
and the CFE (Common Firmware Environment) used in many embedded devices.

119

120

Chapter 3 Operating Systems

boot strapping (often shortened to booting) that is performed by a computer
each time it is turned on. It is this procedure that transfers the operating system
from mass storage (where it is permanently stored) into main memory (which
is essentially empty when the machine is first turned on). To understand the
boot strap process and the reason it is necessary, we begin by considering the
machine’s CPU.

A CPU is designed so that its program counter starts with a particular prede-
termined address each time the CPU is turned on. It is at this location that the
CPU expects to find the beginning of the program to be executed. Conceptually,
then, all that is needed is to store the operating system at this location. However,
for technical reasons, a computer’'s main memory is typically constructed from
volatile technologies—meaning that the memory loses the data stored in it when
the computer is turned off. Thus, the contents of main memory must be replen-
ished each time the computer is restarted.

In short, we need a program (preferably the operating system) to be present
in main memory when the computer is first turned on, but the computer’s
volatile memory is erased each time the machine is turned off. To resolve this
dilemma, a small portion of a computer’s main memory where the CPU expects
to find its initial program is constructed from special nonvolatile memory cells.
Such memory is known as read-only memory (ROM) because its contents
can be read but not altered. As an analogy, you can think of storing bit patterns
in ROM as blowing tiny fuses (some blown open—ones—and some blown
closed—zeros), although the technology used is more advanced. More precisely,
most ROM in today’s PCs is constructed with flash memory technology
(which means that it is not strictly ROM because it can be altered under special
circumstances).

In a general-purpose computer, a program called the boot loader is perma-
nently stored in the machine’s ROM. This, then, is the program that is initially
executed when the machine is turned on. The instructions in the boot loader
direct the CPU to transfer the operating system from a predetermined location
into the volatile area of main memory (Figure 3.5). Modern boot loaders can copy
an operating system into main memory from a variety of locations. For example,
in embedded systems, such as smartphones, the operating system is copied from
special flash (nonvolatile) memory; in the case of small workstations at large
companies or universities, the operating system may be copied from a distant
machine over a network. Once the operating system has been placed in main
memory, the boot loader directs the CPU to execute a jump instruction to that
area of memory. At this point, the operating system takes over and begins con-
trolling the machine’s activities. The overall process of executing the boot loader
and thus starting the operating system is called booting the computer.

You may ask why desktop computers are not provided with enough ROM to
hold the entire operating system so that booting from mass storage would not be
necessary. While this is feasible for embedded systems with small operating sys-
tems, devoting large blocks of main memory in general-purpose computers to
nonvolatile storage is not efficient with today’s technology. Moreover, com-
puter operating systems undergo frequent updates in order to maintain security
and keep abreast of new and improved device drivers for the latest hardware.
While it is possible to update operating systems and boot loaders stored in ROM,

Figure 3.5 The booting process

3.2 Operating System Architecture

121

Main memory

Main memory

B Disk storage B o
ROM— D00t ROM— oo Disk storage
Operating
system
Volatile_| Volatile_|
memory memory
Operating Operating
L system L system
Step 1: Machine starts by executing the boot loader Step 2: Boot loader program directs the transfer of

program already in memory. Operating

system is stored in mass storage.

the operating system into main memory
and then transfers control to it.

(often called a firmware update) the technological limits make mass storage
the most common choice for more traditional computer systems.

In closing we should point out that understanding the boot process as well as
the distinctions between an operating system, utility software, and application
software allows us to comprehend the overall methodology under which most
general-purpose computer systems operate. When such a machine is first turned
on, the boot loader loads and activates the operating system. The user then
makes requests to the operating system regarding the utility or application pro-
grams to be executed. As each utility or application is terminated, the user is put
back in touch with the operating system, at which time the user can make addi-
tional requests. Learning to use such a system is therefore a two-layered process.
In addition to learning the details of the specific utility or application desired,
one must learn enough about the machine’s operating system to navigate among

the applications.

1. List the components of a typical operating system and summarize the
role of each in a single phrase.

2. What is the difference between application software and utility software?
What is virtual memory?

5

4. Summarize the booting procedure.

i ks 1]

122

Chapter 3 Operating Systems

3.3 Coordinating the Machine’s Activities

In this section we consider how an operating system coordinates the execution
of application software, utility software, and units within the operating system
itself. We begin with the concept of a process.

The Concept of a Process

One of the most fundamental concepts of modern operating systems is the dis-
tinction between a program and the activity of executing a program. The former
is a static set of directions, whereas the latter is a dynamic activity whose prop-
erties change as time progresses. (This distinction is analogous to a piece of
sheet music, sitting inert in a book on the shelf, versus a musician performing
that piece by taking actions that the sheet music describes.) The activity of exe-
cuting a program under the control of the operating system is known as a
process. Associated with a process is the current status of the activity, called the
process state. This state includes the current position in the program being
executed (the value of the program counter) as well as the values in the other
CPU registers and the associated memory cells. Roughly speaking, the process
state is a snapshot of the machine at a particular time. At different times during
the execution of a program (at different times in a process) different snapshots
(different process states) will be observed.

Unlike a musician, who normally tries to play only one musical piece at a
time, typical time-sharing/multitasking computers are running many processes,
all competing for the computer’s resources. It is the task of the operating system
to manage these processes so that each process has the resources (peripheral
devices, space in main memory, access to files, and access to a CPU) that it
needs, that independent processes do not interfere with one another, and that
processes that need to exchange information are able to do so.

Process Administration

The tasks associated with coordinating the execution of processes are handled
by the scheduler and dispatcher within the operating system’s kernel. The
scheduler maintains a record of the processes present in the computer system,
introduces new processes to this pool, and removes completed processes from
the pool. Thus when a user requests the execution of an application, it is the
scheduler that adds the execution of that application to the pool of current
processes.

To keep track of all the processes, the scheduler maintains a block of infor-
mation in main memory called the process table. Each time the execution of a
program is requested, the scheduler creates a new entry for that process in the
process table. This entry contains such information as the memory area assigned
to the process (obtained from the memory manager), the priority of the process,
and whether the process is ready or waiting. A process is ready if it is in a state
in which its progress can continue; it is waiting if its progress is currently
delayed until some external event occurs, such as the completion of a mass stor-
age operation, the pressing of a key at the keyboard, or the arrival of a message
from another process.

The dispatcher is the component of the kernel that overseas the execu-
tion of the scheduled processes. In a time-sharing/multitasking system this

3.3 Coordinating the Machine’s Activities

task is accomplished by multiprogramming; that is, dividing time into
short segments, each called a time slice (typically measured in milli-
seconds or microseconds), and then switching the CPU’s attention among
the processes as each is allowed to execute for one time slice (Figure 3.6).
The procedure of changing from one process to another is called a process
switch (or a context switch).

Each time the dispatcher awards a time slice to a process, it initiates a timer
circuit that will indicate the end of the slice by generating a signal called an
interrupt. The CPU reacts to this interrupt signal in much the same way that you
react when interrupted from a task. You stop what you are doing, record where
you are in the task (so that you will be able to return at a later time), and take care
of'the interrupting entity. When the CPU receives an interrupt signal, it completes
its current machine cycle, saves its position in the current process and begins exe-
cuting a program, called an interrupt handler, which is stored at a predeter-
mined location in main memory. This interrupt handler is a part of the dispatcher,
and it describes how the dispatcher should respond to the interrupt signal.

Thus, the effect of the interrupt signal is to preempt the current process and
transfer control back to the dispatcher. At this point, the dispatcher selects the
process from the process table that has the highest priority among the ready
processes (as determined by the scheduler), restarts the timer circuit, and allows
the selected process to begin its time slice.

Paramount to the success of a multiprogramming system is the ability to
stop, and later restart, a process. If you are interrupted while reading a book,
your ability to continue reading at a later time depends on your ability to
remember your location in the book as well as the information that you had
accumulated to that point. In short, you must be able to re-create the environ-
ment that was present immediately prior to the interruption.

In the case of a process, the environment that must be re-created is the
process’s state, which as already mentioned, includes the value of the program
counter as well as the contents of the registers and pertinent memory cells.
CPUs designed for multiprogramming systems incorporate the task of saving this
information as part of the CPU’s reaction to the interrupt signal. These CPUs also

Figure 3.6 Multiprogramming between process A and process B

123

Intelrrupt Intell'rupt Intell'rupt Interlrupt Intell'rupt
| i i i i
! Process B ! Process B ! Proc
I I I
I I I
| l e,
: Process Process I Process Process 1 Process
| switch switch | switch switch | switch
| \ | \ |
I I I
ss A Process A Process A
Advancing
. | | | | | | | | | | »
time T T i K T T - K T T -) T T - - T T »
Time slice Time slice Time slice Time slice

124\ Chapter 3 Operating Systems

Interrupts

The use of interrupts for terminating time slices, as described in the text, is only one
of many applications of a computer’s interrupt system. There are many situations in
which an interrupt signal is generated, each with its own interrupt routine. Indeed,
interrupts provide an important tool for coordinating a computer’s actions with its
environment. For example, both clicking a mouse and pressing a key on the keyboard
generate interrupt signals that cause the CPU to set aside its current activity and
address the cause of the interrupt.

To manage the task of recognizing and responding to incoming interrupts, the
various interrupt signals are assigned priorities so that the more important tasks can
be taken care of first. The highest priority interrupt is usually associated with a power
failure. Such an interrupt signal is generated if the computer’s power is unexpectedly
disrupted. The associated interrupt routine directs the CPU through a series of
“housekeeping” chores during the milliseconds before the voltage level drops below
an operational level.

tend to have machine-language instructions for reloading a previously saved
state. Such features simplify the task of the dispatcher when performing a
process switch and exemplify how the design of modern CPUs is influenced by
the needs of today’s operating systems.

In closing, we should note that the use of multiprogramming has been found
to increase the overall efficiency of a machine. This is somewhat counterintu-
itive since the shuffling of processes required by multiprogramming introduces
an overhead. However, without multiprogramming each process runs to comple-
tion before the next process begins, meaning that the time that a process is wait-
ing for peripheral devices to complete tasks or for a user to make the next
request is wasted. Multiprogramming allows this lost time to be given to another
process. For example, if a process executes an I/O request, such as a request to
retrieve data from a magnetic disk, the scheduler will update the process table to
reflect that the process is waiting for an external event. In turn, the dispatcher
will cease to award time slices to that process. Later (perhaps several hundred
milliseconds), when the I/O request has been completed, the scheduler will
update the process table to show that the process is ready, and thus that process
will again compete for time slices. In short, progress on other tasks will be made
while the I/0 request is being performed, and thus the entire collection of tasks
will be completed in less time than if executed in a sequential manner.

““IIIIIII!!I I
‘l 0 ::||u|.' - H:il::'—:
LTI T LTI T T T T

1. Summarize the difference between a program and a process.

2. Summarize the steps performed by the CPU when an interrupt occurs.

3. In a multiprogramming system, how can high-priority processes be allowed
to run faster than others?

3.4 Handling Competition Among Processes

4. If each time slice in a multiprogramming system is 50 milliseconds and
each context switch requires at most a microsecond, how many
processes can the machine service in a single second?

5. If each process uses its complete time slice in the machine in Question 4,
what fraction of the machine’s time is spent actually performing
processes? What would this fraction be if each process executed an I/0
request after only a microsecond of its time slice?

125

3.4 Handling Competition Among Processes

An important task of an operating system is the allocation of the machine’s
resources to the processes in the system. Here we are using the term resource in
a broad sense, including the machine’s peripheral devices as well as features
within the machine itself. The file manager allocates access to files as well and
allocates mass storage space for the construction of new files; the memory man-
ager allocates memory space; the scheduler allocates space in the process table;
and the dispatcher allocates time slices. As with many problems in computer
systems, this allocation task may appear simple at first glance. Below the sur-
face, however, lie several subtleties that can lead to malfunctions in a poorly
designed system. Remember, a machine does not think for itself; it merely fol-
lows directions. Thus, to construct reliable operating systems, we must develop
algorithms that cover every possible contingency, regardless of how minuscule
it may appear.

Semaphores

Let us consider a time-sharing/multitasking operating system controlling the
activities of a computer with a single printer. If a process needs to print its
results, it must request that the operating system give it access to the printer’s
device driver. At this point, the operating system must decide whether to grant
this request, depending on whether the printer is already being used by another
process. If it is not, the operating system should grant the request and allow the
process to continue; otherwise, the operating system should deny the request

Microsoft’s Task Manager

You can gain insight to some of the internal activity of a Microsoft Windows operating
system by executing the utility program called Task Manager. (Press the Ctrl, Alt, and
Delete keys simultaneously.) In particular, by selecting the Processes tab in the Task
Manager window, you can view the process table. Here is an experiment you can per-
form: Look at the process table before you activate any application program. (You
may be surprised that so many processes are already in the table. These are neces-
sary for the system’s basic operation.) Now activate an application and confirm that
an additional process has entered the table. You will also be able to see how much

memory space was allocated to the process.

126

Chapter 3 Operating Systems

and perhaps classify the process as a waiting process until the printer becomes
available. After all, if two processes were given simultaneous access to the com-
puter’s printer, the results would be worthless to both.

To control access to the printer, the operating system must keep track of
whether the printer has been allocated. One approach to this task would be to
use a flag, which in this context refers to a bit in memory whose states are
often referred to as set and clear, rather than 1 and 0. A clear flag (value 0) indi-
cates that the printer is available and a set flag (value 1) indicates that the
printer is currently allocated. On the surface, this approach seems well-
founded. The operating system merely checks the flag each time a request for
printer access is made. If it is clear, the request is granted and the operating
system sets the flag. If the flag is set, the operating system makes the request-
ing process wait. Each time a process finishes with the printer, the operating
system either allocates the printer to a waiting process or, if no process is
waiting, merely clears the flag.

However, this simple flag system has a problem. The task of testing and pos-
sibly setting the flag may require several machine instructions. (The value of
the flag must be retrieved from main memory, manipulated within the CPU,
and finally stored back in memory.) It is therefore possible for a task to be inter-
rupted after a clear flag has been detected but before the flag has been set.
In particular, suppose the printer is currently available, and a process requests
use of it. The flag is retrieved from main memory and found to be clear, indi-
cating that the printer is available. However, at this point, the process is inter-
rupted and another process begins its time slice. It too requests the use of the
printer. Again, the flag is retrieved from main memory and found still clear
because the previous process was interrupted before the operating system had
time to set the flag in main memory. Consequently, the operating system allows
the second process to begin using the printer. Later, the original process
resumes execution where it left off, which is immediately after the operating
system found the flag to be clear. Thus the operating system continues by set-
ting the flag in main memory and granting the original process access to the
printer. Two processes are now using the same printer.

The solution to this problem is to insist that the task of testing and possibly
setting the flag be completed without interruption. One approach is to use the
interrupt disable and interrupt enable instructions provided in most machine
languages. When executed, an interrupt disable instruction causes future inter-
rupts to be blocked, whereas an interrupt enable instruction causes the CPU to
resume responding to interrupt signals. Thus, if the operating system starts the
flag-testing routine with a disable interrupt instruction and ends it with an enable
interrupt instruction, no other activity can interrupt the routine once it starts.

Another approach is to use the test-and-set instruction that is available in
many machine languages. This instruction directs the CPU to retrieve the value
of a flag, note the value received, and then set the flag—all within a single
machine instruction. The advantage here is that because the CPU always com-
pletes an instruction before recognizing an interrupt, the task of testing and set-
ting the flag cannot be split when it is implemented as a single instruction.

A properly implemented flag, as just described, is called a semaphore, in
reference to the railroad signals used to control access to sections of track. In
fact, semaphores are used in software systems in much the same way as they are
in railway systems. Corresponding to the section of track that can contain only

3.4 Handling Competition Among Processes

one train at a time is a sequence of instructions that should be executed by only
one process at a time. Such a sequence of instructions is called a critical region.
The requirement that only one process at a time be allowed to execute a critical
region is known as mutual exclusion. In summary, a common way of obtaining
mutual exclusion to a critical region is to guard the critical region with a sema-
phore. To enter the critical region, a process must find the semaphore clear and
then set the semaphore before entering the critical region; then upon exiting the
critical region, the process must clear the semaphore. If the semaphore is found
in its set state, the process trying to enter the critical region must wait until the
semaphore has been cleared.

Deadlock

Another problem that can arise during resource allocation is deadlock, the con-
dition in which two or more processes are blocked from progressing because
each is waiting for a resource that is allocated to another. For example, one
process may have access to the computer’s printer but be waiting for access to
the computer’s CD player, while another process has access to the CD player but
is waiting for the printer. Another example occurs in systems in which processes
are allowed to create new processes (an action called forking in the UNIX ver-
nacular) to perform subtasks. If the scheduler has no space left in the process
table and each process in the system must create an additional process before it
can complete its task, then no process can continue. Such conditions, as in other
settings (Figure 3.7), can severely degrade a system'’s performance.

Analysis of deadlock has revealed that it cannot occur unless all three of the
following conditions are satisfied:

1. There is competition for nonshareable resources.

2. The resources are requested on a partial basis; that is, having received
some resources, a process will return later to request more.

3. Once a resource has been allocated, it cannot be forcibly retrieved.

Figure 3.7 A deadlock resulting from competition for nonshareable railroad intersections

127

128

Chapter 3 Operating Systems

The point of isolating these conditions is that the deadlock problem can be
removed by attacking any one of the three. Techniques that attack the third con-
dition fall into the category known as deadlock detection and correction
schemes. In these cases, the occurrence of deadlock is considered so remote
that no effort is made to avoid the problem. Instead, the approach is to detect it
should it occur and then correct it by forcibly retrieving some of the allocated
resources. Our example of a full process table might fall in this class. If deadlock
should occur due to a full table, routines within the operating system (or per-
haps a human administrator using his or her powers as “super user”) can
remove (the technical term is kill) some of the processes. This releases space in
the process table, breaking the deadlock and allowing the remaining processes
to continue their tasks.

Techniques that attack the first two conditions are known as deadlock
avoidance schemes. One, for example, attacks the second condition by requir-
ing each process to request all its resources at one time. Another scheme
attacks the first condition, not by removing the competition directly but by
converting nonshareable resources into shareable ones. For example, suppose
the resource in question is a printer and a variety of processes require its use.
Each time a process requests the printer, the operating system could grant
the request. However, instead of connecting the process to the printer's device
driver, the operating system would connect it to a device driver that stores the
information to be printed in mass storage rather than sending it to the printer.
Thus each process, thinking it has access to the printer, could execute in its
normal way. Later, when the printer is available, the operating system could
transfer the data from mass storage to the printer. In this manner, the operat-
ing system would make the nonshareable resource appear shareable by creat-
ing the illusion of more than one printer. This technique of holding data for
output at a later but more convenient time is called spooling.

We have introduced spooling as a technique for granting several processes
access to a common resource—a theme that has many variations. For example, a

Multi-Core Operating Systems

Traditional time-sharing/multitasking systems give the illusion of executing many
processes at once by switching rapidly between time slices faster than a human can
perceive. Modern systems continue to multitask in this way, but in addition, the lat-
est multi-core CPUs are genuinely capable of running two, four, or many more
processes simultaneously. Unlike a group of single-core computers working
together, a multi-core machine contains multiple independent processors (in this
case called cores) that share the computer's peripherals, memory, and other
resources. For a multi-core operating system, this means that the dispatcher and
scheduler must consider which processes to execute on each core. With different
processes running on different cores, handling competition among processes
becomes more challenging because disabling interrupts on all cores whenever one
needs to enter a critical region would be highly inefficient. Computer science has
many active research areas related to building operating system mechanisms better
suited to the new multi-core world.

3.4 Handling Competition Among Processes 129

file manager could grant several processes access to the same file if the
processes are merely reading data from the file, but conflicts can occur if more
than one process tries to alter a file at the same time. Thus, a file manager may
allocate file access according to the needs of the processes, allowing several
processes to have read access but allowing only one to have write access. Other
systems may divide the file into pieces so that different processes can alter
different parts of the file concurrently. Each of these techniques, however, has
subtleties that must be resolved to obtain a reliable system. How, for example,
should those processes with only read access to a file be notified when a process

with write access alters the file?
] “ | |!
[T et et |
nailifiisttibsichitsinntitieisinti

1. Suppose process A and process B are sharing time on the same machine,
and each needs the same nonshareable resource for short periods of
time. (For example, each process may be printing a series of independ-
ent, short reports.) Each process may then repeatedly acquire the re-
source, release it, and later request it again. What is a drawback to
controlling access to the resource in the following manner:

Begin by assigning a flag the value 0. If process A requests the resource and
the flag is 0, grant the request. Otherwise, make process A wait. If process B
requests the resource and the flag is 1, grant the request. Otherwise, make
process B wait. Each time process A finishes with the resource, change the
flag to 1. Each time process B finishes with the resource, change the flag to 0.

2. Suppose a two-lane road converges to one lane to pass through a tunnel.
To coordinate the use of the tunnel, the following signal system has been
installed:

A car entering either end of the tunnel causes red lights above the tunnel
entrances to be turned on. As the car exits the tunnel, the lights are turned
off. If an approaching car finds a red light on, it waits until the light is turned
off before entering the tunnel.

What is the flaw in this system?

3. Suppose the following solutions have been proposed for removing the
deadlock that occurs on a single-lane bridge when two cars meet. Iden-
tify which condition for deadlock given in the text is removed by each
solution.

a. Do not let a car onto the bridge until the bridge is empty.
b. If cars meet, make one of them back up.
c. Add a second lane to the bridge.

4. Suppose we represent each process in a multiprogramming system with
a dot and draw an arrow from one dot to another if the process repre-
sented by the first dot is waiting for a (nonshareable) resource being
used by the second. Mathematicians call the resulting picture a directed
graph. What property of the directed graph is equivalent to deadlock in
the system?

130

Chapter 3 Operating Systems

3.5 Security

Since the operating system oversees the activities in a computer, it is natural for
it to play a vital role in maintaining security as well. In the broad sense, this
responsibility manifests itself in multiple forms, one of which is reliability. If a
flaw in the file manager causes the loss of part of a file, then the file was not
secure. If a defect in the dispatcher leads to a system failure (often called a sys-
tem crash) causing the loss of an hour’s worth of typing, we would argue that our
work was not secure. Thus the security of a computer system requires a well-
designed, dependable operating system.

The development of reliable software is not a subject that is restricted to
operating systems. It permeates the entire software development spectrum and
constitutes the field of computer science known as software engineering, which
we will study in Chapter 7. In this section, then, we focus on security problems
that are more closely related to the specifics of operating systems.

Attacks from the Outside

An important task performed by operating systems is to protect the computer’s
resources from access by unauthorized personnel. In the case of computers used
by multiple people, this is usually approached by means of establishing
“accounts” for the various authorized users—an account being essentially a
record within the operating system containing such entries as the user’s name,
password, and privileges to be granted to that user. The operating system can
then use this information during each login procedure (a sequence of transac-
tions in which the user establishes initial contact with a computer’s operating
system) to control access to the system.

Accounts are established by a person known as the super user or the
administrator. This person gains highly privileged access to the operating
system by identifying him- or herself as the administrator (usually by name
and password) during the login procedure. Once this contact is established,
the administrator can alter settings within the operating system, modify criti-
cal software packages, adjust the privileges granted to other users, and per-
form a variety of other maintenance activities that are denied normal users.

From this “lofty perch,” the administrator is also able to monitor activity
within the computer system in an effort to detect destructive behavior, whether
malicious or accidental. To assist in this regard, numerous software utilities,
called auditing software, have been developed that record and then analyze the
activities taking place within the computer system. In particular, auditing soft-
ware may expose a flood of attempts to login using incorrect passwords, indicat-
ing that an unauthorized user may be trying to gain access to the computer.
Auditing software may also identify activities within a user’s account that do not
conform to that user’s past behavior, which may indicate that an unauthorized
user has gained access to that account. (It is unlikely that a user who traditionally
uses only word processing and spreadsheet software will suddenly begin to access
highly technical software applications or try to execute utility packages that lie
outside that user’s privileges.)

Another culprit that auditing systems are designed to detect is the presence
of sniffing software, which is software that, when left running on a computer,

records activities and later reports them to a would-be intruder. An old, well-
known example is a program that simulates the operating system’s login
procedure. Such a program can be used to trick authorized users into thinking
they are communicating with the operating system, whereas they are actually
supplying their names and passwords to an impostor.

With all the technical complexities associated with computer security, it is
surprising to many that one of the major obstacles to the security of computer
systems is the carelessness of the users themselves. They select passwords that
are relatively easy to guess (such as names and dates), they share their pass-
words with friends, they fail to change their passwords on a timely basis, they
subject off-line mass storage devices to potential degradation by transferring
them back and forth between machines, and they import unapproved software
into the system that might subvert the system’s security. For problems like these,
most institutions with large computer installations adopt and enforce policies
that catalog the requirements and responsibilities of the users.

Attacks from Within

Once an intruder (or perhaps an authorized user with malicious intent) gains
access to a computer system, the next step is usually to explore, looking for
information of interest or for places to insert destructive software. This is a
straightforward process if the prowler has gained access to the administrator’s
account, which is why the administrator’s password is closely guarded. If, how-
ever, access is through a general user’s account, it becomes necessary to trick the
operating system into allowing the intruder to reach beyond the privileges
granted to that user. For example, the intruder may try to trick the memory man-
ager into allowing a process to access main memory cells outside its allotted
area, or the prowler may try to trick the file manager into retrieving files whose
access should be denied.

Today’s CPUs are enhanced with features that are designed to foil such
attempts. As an example, consider the need to restrict a process to the area of
main memory assigned to it by the memory manager. Without such restric-
tions, a process could erase the operating system from main memory and take
control of the computer itself. To counter such attempts, CPUs designed for
multiprogramming systems typically contain special-purpose registers in which
the operating system can store the upper and lower limits of a process’s allot-
ted memory area. Then, while performing the process, the CPU compares each
memory reference to these registers to ensure that the reference is within the
designated limits. If the reference is found to be outside the process’s desig-
nated area, the CPU automatically transfers control back to the operating sys-
tem (by performing an interrupt sequence) so that the operating system can
take appropriate action.

Embedded in this illustration is a subtle but significant problem. Without fur-
ther security features, a process could still gain access to memory cells outside of
its designated area merely by changing the special-purpose registers that contain
its memory limits. That is, a process that wanted access to additional memory
could merely increase the value in the register containing the upper memory
limit and then proceed to use the additional memory space without approval
from the operating system.

3.5 Security

131

132 | Chapter 3 Operating Systems

To protect against such actions, CPUs for multiprogramming systems are
designed to operate in one of two privilege levels; we will call one “privileged
mode,” the other we will call “nonprivileged mode.” When in privileged mode,
the CPU is able to execute all the instructions in its machine language. However,
when in nonprivileged mode, the list of acceptable instructions is limited. The
instructions that are available only in privileged mode are called privileged
instructions. (Typical examples of privileged instructions include instructions
that change the contents of memory limit registers and instructions that change
the current privilege mode of the CPU.) An attempt to execute a privileged
instruction when the CPU is in nonprivileged mode causes an interrupt. This
interrupt converts the CPU to privileged mode and transfers control to an
interrupt handler within the operating system.

When first turned on, the CPU is in privileged mode. Thus, when the oper-
ating system starts at the end of the boot process, all instructions are exe-
cutable. However, each time the operating system allows a process to start a
time slice, it switches the CPU to nonprivileged mode by executing a “change
privilege mode” instruction. In turn, the operating system will be notified if
the process attempts to execute a privileged instruction, and thus the operat-
ing system will be in position to maintain the integrity of the computer
system.

Privileged instructions and the control of privilege levels is the major tool
available to operating systems for maintaining security. However, the use of
these tools is a complex component of an operating system'’s design, and errors
continue to be found in current systems. A single flaw in privilege level control
can open the door to disaster from malicious programmers or from inadvertent
programming errors. If a process is allowed to alter the timer that controls the
system’s multiprogramming system, that process can extend its time slice and
dominate the machine. If a process is allowed to access peripheral devices
directly, then it can read files without supervision by the system’s file manager.
If a process is allowed to access memory cells outside its allotted area, it can read
and even alter data being used by other processes. Thus, maintaining security
continues to be an important task of an administrator as well as a goal in operat-
ing system design.

11 Gl e
‘l :.'u»l., Nl EXenaises
naitintihihadimitii o

1. Give some examples of poor choices for passwords and explain why they
would be poor choices.

2. Processors in Intel’s Pentium series provide for four privilege levels.
Why would the designers of CPUs decide to provide four levels rather
than three or five?

3. If a process in a multiprogramming system could access memory cells
outside its allotted area, how could it gain control of the machine?

Chapter Review Problems

(Asterisked problems are associated with optional sections.)

1.
2.

List four activities of a typical operating system.

Summarize the distinction between batch pro-
cessing and interactive processing.

Suppose three items R, S, and T are placed in a
queue in that order. Then one item is removed
from the queue before a fourth item, X, is
placed in the queue. Then one item is removed
from the queue, the items Y and Z are placed in
the queue, and then the queue is emptied by
removing one item at a time. List all the items
in the order in which they were removed.

What is the difference between embedded sys-
tems and PCs?

5. What is a multitasking operating system?

10.

11.

12.

13.

14.

If you have a PC, identify some situations in
which you can take advantage of its multitask-
ing capabilities.

On the basis of a computer system with

which you are familiar, identify two units of

application software and two units of utility

software. Then explain why you classified

them as you did.

a. What is the role of the user interface of an
operating system?

b. What is the role of the kernel of an operat-
ing system?

What directory structure is described by the
path X/Y/Z7?

Define the term “process” as it is used in the
context of operating systems.

What information is contained in a process
table within an operating system?

What is the difference between a process that
is ready and a process that is waiting?

What is the difference between virtual mem-
ory and main memory?

Suppose a computer contained 512MB (MiB)
of main memory, and an operating system
needed to create a virtual memory of twice
that size using pages of 2KB (KiB). How many
pages would be required?

15.

16.

17.

18.
19.
20.

21.

22.

23.

133

Chapter Review Problems

What complications could arise in a time-sharing/
multitasking system if two processes require
access to the same file at the same time? Are
there cases in which the file manager should
grant such requests? Are there cases in which
the file manager should deny such requests?

What is the distinction between application
software and system software? Give an exam-
ple of each.

Define load balancing and scaling in the con-
text of multiprocessor architectures.

Summarize the booting process.
Why is the booting process necessary?

If you have a PC, record the sequence activities
that you can observe when you turn it on. Then
determine what messages appear on the com-
puter screen before the booting process actually
begins. What software writes these messages?

Suppose a multiprogramming operating system
allocated time slices of 10 milliseconds and the
machine executed an average of five instruc-
tions per nanosecond. How many instructions
could be executed in a single time slice?

If a typist types sixty words per minute
(where a word is considered five characters),
how much time would pass between typing
each character? If a multiprogramming oper-
ating system allocated time slices in

10 millisecond units and we ignore the time
required for process switches, how many time
slices could be allocated between characters
being typed?

Suppose a multiprogramming operating sys-
tem is allotting time slices of 50 milliseconds.
If it normally takes 8 milliseconds to position a
disk’s read/write head over the desired track
and another 17 milliseconds for the desired
data to rotate around to the read/write head,
how much of a program’s time slice can be
spent waiting for a read operation from a disk
to take place? If the machine is capable of exe-
cuting ten instructions each nanosecond, how
many instructions can be executed during this

134

24,

25.

26.

27.

28.

29.

30.

31.

32.

Chapter 3 Operating Systems

waiting period? (This is why when a process
performs an operation with a peripheral
device, a multiprogramming system terminates
that process’s time slice and allows another
process to run while the first process is waiting
for the services of the peripheral device.)

List five resources to which a multitasking oper-
ating system might have to coordinate access.

A process is said to be I/0-bound if it requires
a lot of I/O operations, whereas a process that
consists of mostly computations within the
CPU/memory system is said to be compute-
bound. If both a compute-bound process and
an I/O-bound process are waiting for a time
slice, which should be given priority? Why?

Would greater throughput be achieved by a
system running two processes in a multi-
programming environment if both processes
were I/O-bound (refer to Problem 25) or if one
were 1/0-bound and the other were compute-
bound? Why?

Write a set of directions that tells an operating
system’s dispatcher what to do when a
process'’s time slice is over.

What information is contained in the state of a
process?

Identify a situation in a multiprogramming
system in which a process does not consume
the entire time slice allocated to it.

List in chronological order the major events
that take place when a process is interrupted.

Answer each of the following in terms of an

operating system that you use:

a. How do you ask the operating system to
copy a file from one location to another?

b. How do you ask the operating system to
show you the directory on a disk?

c. How do you ask the operating system to
execute a program?

Answer each of the following in terms of an

operating system that you use:

a. How does the operating system restrict
access to only those who are approved users?

b. How do you ask the operating system to
show you what processes are currently in
the process table?

*33.

*34,

*35.

c. How do you tell the operating system that
you do not want other users of the machine
to have access to your files?

Explain an important use for the test-and-set
instruction found in many machine languages.
Why is it important for the entire test-and-set
process to be implemented as a single instruction?

A banker with only $100,000 loans $50,000 to
each of two customers. Later, both customers
return with the story that before they can repay
their loans they must each borrow another
$10,000 to complete the business deals in which
their previous loans are involved. The banker
resolves this deadlock by borrowing the addi-
tional funds from another source and passing
on this loan (with an increase in the interest rate)
to the two customers. Which of the three condi-
tions for deadlock has the banker removed?

Students who want to enroll in Model Railroad-
ing IT at the local university are required to
obtain permission from the instructor and pay
a laboratory fee. The two requirements are ful-
filled independently in either order and at
different locations on campus. Enrollment is
limited to twenty students; this limit is main-
tained by both the instructor, who will grant
permission to only twenty students, and the
financial office, which will allow only twenty
students to pay the laboratory fee. Suppose that
this registration system has resulted in nineteen
students having successfully registered for the
course, but with the final space being claimed
by two students—one who has only obtained
permission from the instructor and another
who has only paid the fee. Which requirement
for deadlock is removed by each of the follow-
ing solutions to the problem?

a. Both students are allowed in the course.

b. The class size is reduced to nineteen, so
neither of the two students is allowed to
register for the course.

c. The competing students are both denied
entry to the class and a third student is
given the twentieth space.

d. Tt is decided that the only requirement for
entry into the course is the payment of the
fee. Thus the student who has paid the fee
gets into the course, and entry is denied to
the other student.

*36.

*37.

*38.

*39.

*40.

Since each area on a computer’s display can
be used by only one process at a time (other-
wise the image on the screen would be
unreadable), these areas are nonshareable
resources that are allocated by the window
manager. Which of the three conditions neces-
sary for deadlock does the window manager
remove in order to avoid deadlock?

Suppose each nonshareable resource in a com-
puter system is classified as a level 1, level 2,
or level 3 resource. Moreover, suppose each
process in the system is required to request
the resources it needs according to this classifi-
cation. That is, it must request all the required
level 1 resources at once before requesting any
level 2 resources. Once it receives the level 1
resources, it can request all the required level
2 resources, and so on. Can deadlock occur in
such a system? Why or why not?

Each of two robot arms is programmed to lift
assemblies from a conveyor belt, test them for
tolerances, and place them in one of two bins
depending on the results of the test. The assem-
blies arrive one at a time with a sufficient inter-
val between them. To keep both arms from
trying to grab the same assembly, the comput-
ers controlling the arms share a common mem-
ory cell. If an arm is available as an assembly
approaches, its controlling computer reads the
value of the common cell. If the value is
nonzero, the arm lets the assembly pass. Other-
wise, the controlling computer places a nonzero
value in the memory cell, directs the arm to
pick up the assembly, and places the value 0
back into the memory cell after the action is
complete. What sequence of events could lead
to a tug-of-war between the two arms?

Identify the use of a queue in the process of
spooling output to a printer.

A process that is waiting for a time slice is said to

suffer starvation if it is never given a time slice.

a. The pavement in the middle of an intersec-
tion can be considered as a nonshareable
resource for which cars approaching the
intersection compete. A traffic light rather
than an operating system is used to control
the allocation of the resource. If the light is
able to sense the amount of traffic arriving

*41.

*42,

*43,

*44,

45,

46.

47.

135

Chapter Review Problems

from each direction and is programmed to
give the green light to the heavier traffic,
the lighter traffic might suffer from starva-
tion. How is starvation avoided?

b. In what sense can a process starve if the dis-
patcher always assigns time slices according
to a priority system in which the priority of
each process remains fixed? (Hint: What is
the priority of the process that just com-
pleted its time slice in comparison to the
processes that are waiting, and conse-
quently which routine gets the next time
slice?) How, would you guess, do many
operating systems avoid this problem?

What is the similarity between deadlock and
starvation? (Refer to Problem 40.) What is the
difference between deadlock and starvation?

The following is the “dining philosophers” prob-
lem that was originally proposed by E. W. Dijkstra
and is now a part of computer science folklore.

Five philosophers are sitting at a round table.
In front of each is a plate of spaghetti. There
are five forks on the table, one between each
plate. Each philosopher wants to alternate
between thinking and eating. To eat, a philoso-
pher requires possession of both the forks that
are adjacent to the philosopher’s plate.

Identify the possibilities of deadlock and star-
vation (see Problem 40) that are present in the
dining philosophers problem.

What problem arises as the lengths of the
time slices in a multiprogramming system are
made shorter and shorter? What about as
they become longer and longer?

As computer science has developed, machine
languages have been extended to provide
specialized instructions. Three such machine
instructions were introduced in Section 3.4
that are used extensively by operating sys-
tems. What are these instructions?

Identity two activities that can be performed
by an operating system’s administrator but not
by a typical user.

How does an operating system keep a process
from accessing another process's memory space?

Suppose a password consisted of a string of
nine characters from the English alphabet

136 | Chapter 3 Operating Systems

(twenty-six characters). If each possible pass- 51. What is a multi-core operating system?
word could be tested in a millisecond, how long 52
would it take to test all possible passwords?

48. Why are CPUs that are designed for multitask- 53
ing operating systems capable of operating at
different privilege levels?

. What is the difference between a firmware
update and an operating system update?

. How is the window manager related to the
operating system?

54. Is Internet Explorer a part of Microsoft's

49. Identify two activities that are typically Windows operating system?

requested by privileged instructions. o)
55. What special issues might an embedded

50. Identify three ways in which a process could operating system address?

challenge the security of a computer system if
not prevented from doing so by the operating
system.

Social Issues

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. Suppose you are using a multiuser operating system that allows you to view
the names of the files belonging to other users as well as to view the contents
of those files that are not otherwise protected. Would viewing such informa-
tion without permission be similar to wandering through someone’s un-
locked home without permission, or would it be more like reading materials
placed in a common lounge such as a physician’s waiting room?

2. When you have access to a multiuser computer system, what responsibilities
do you have when selecting your password?

3. If a flaw in an operating system’s security allows a malicious programmer to
gain unauthorized access to sensitive data, to what extent should the devel-
oper of the operating system be held responsible?

4. Ts it your responsibility to lock your house in such a way that intruders can-
not get in, or is it the public’s responsibility to stay out of your house unless
invited? Is it the responsibility of an operating system to guard access to a
computer and its contents, or is it the responsibility of hackers to leave the
machine alone?

5. In Walden, Henry David Thoreau argues that we have become tools of our
tools; that is, instead of benefiting from the tools that we have, we spend our
time obtaining and maintaining our tools. To what extent is this true with
regard to computing? For example, if you own a personal computer, how much
time do you spend earning the money to pay for it, learning how to use its
operating system, learning how to use its utility and application software,
maintaining it, and downloading upgrades to its software in comparison to the
amount of time you spend benefiting from it? When you use it, is your time
well spent? Are you more socially active with or without a personal computer?

Additional Reading

Additional Reading

Bishop, M. Introduction to Computer Security. Boston, MA: Addison-Wesley, 2005.

Davis, W. S. and T. M. Rajkumar. Operating Systems: A Systematic View, 6th ed.
Boston, MA: Addison-Wesley, 2005.

Deitel, H. M., P. J. Deitel, and D. R. Choffnes. Operating Systems, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall, 2005.

Nutt, G. Operating Systems: A Modern Approach, 3rd ed. Boston, MA: Addison-
Wesley, 2004.

Rosenoer, J. CyberLaw, The Law of the Internet. New York: Springer, 1997.

Silberschatz, A., P. B. Galvin, and G. Gagne. Operating System Concepts, 8th ed.,
New York: Wiley, 2008.

Stallings, W. Operating Systems, 5th ed. Upper Saddle River, NJ: Prentice-Hall, 2006.

Tanenbaum, A. S. Modern Operating Systems, 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2008.

137

This page intentionally left blank

CHAPTER

Networking
and the Internet

In this chapter we discuss the area of computer science known as
networking, which encompasses the study of how computers can be
linked together to share information and resources. Our study will
include the construction and operation of networks, applications of
networks, and security issues. A prominent topic will be a particular

worldwide network of networks known as the Internet.

4.1 Network Fundamentals

Network Classifications

Protocols

Combining Networks

Methods of Process
Communication

Distributed Systems

4.2 The Internet

Internet Architecture
Internet Addressing
Internet Applications

4.3 The World Wide Web

Web Implementation

HTML

XML

Client-Side and Server-Side
Activities

*4.4 Internet Protocols

The Layered Approach to
Internet Software
The TCP/IP Protocol Suite

4.5 Security

Forms of Attack

Protection and Cures

Encryption

Legal Approaches to Network
Security

*Asterisks indicate suggestions for
optional sections.

140

Chapter 4 Networking and the Internet

The need to share information and resources among different computers has led to
linked computer systems, called networks, in which computers are connected so
that data can be transferred from machine to machine. In these networks, com-
puter users can exchange messages and share resources—such as printing capabili-
ties, software packages, and data storage facilities—that are scattered throughout the
system. The underlying software required to support such applications has grown
from simple utility packages into an expanding system of network software that
provides a sophisticated network-wide infrastructure. In a sense, network software
is evolving into a network-wide operating system. In this chapter we will explore
this expanding field of computer science.

4.1 Network Fundamentals

We begin our study of networks by introducing a variety of basic networking
concepts.

Network Classifications

A computer network is often classified as being either a local area network
(LAN), a metropolitan area network (MAN), or a wide area network
(WAN). A LAN normally consists of a collection of computers in a single build-
ing or building complex. For example, the computers on a university campus or
those in a manufacturing plant might be connected by a LAN. A MAN is a net-
work of intermediate size, such as one spanning a local community. A WAN links
machines over a greater distance—perhaps in neighboring cities or on opposite
sides of the world.

Another means of classifying networks is based on whether the network’s
internal operation is based on designs that are in the public domain or on inno-
vations owned and controlled by a particular entity such as an individual or a
corporation. A network of the former type is called an open network; a network
of the latter type is called a closed, or sometimes a proprietary, network. Open
network designs are freely circulated and often grow in popularity to the point
that they ultimately prevail over proprietary approaches whose applications are
restricted by license fees and contract conditions.

The Internet (a popular worldwide network of networks that we will study in
this chapter) is an open system. In particular, communication throughout the
Internet is governed by an open collection of standards known as the TCP/IP
protocol suite, which is the subject of Section 4.4. Anyone is free to use these
standards without paying fees or signing license agreements. In contrast, a com-
pany such as Novell Inc. might develop proprietary systems for which it chooses
to maintain ownership rights, allowing the company to draw income from selling
or leasing these products.

Still another way of classifying networks is based on the topology of the net-
work, which refers to the pattern in which the machines are connected. Two of
the more popular topologies are the bus, in which the machines are all con-
nected to a common communication line called a bus (Figure 4.1a), and the star,
in which one machine serves as a central focal point to which all the others are
connected (Figure 4.1b). The bus topology was popularized in the 1990s when it
was implemented under a set of standards known as Ethernet, and Ethernet
networks remain one of the most popular networking systems in use today.

4.1 Network Fundamentals 141

Figure 4.1 Two popular network topologies

a. Bus b. Star
Computer Computer Computer Computer
Computer | Computer
| | | \ Computer
Computer Computer Computer Computer

The star topology has roots as far back as the 1970s. It evolved from the paradigm
of a large central computer serving many users. As the simple terminals
employed by these users grew into small computers themselves, a star network
emerged. Today, the star configuration is popular in wireless networks where
communication is conducted by means of radio broadcast and the central
machine, called the access point (AP), serves as a focal point around which all
communication is coordinated.

The difference between a bus network and a star network is not always
obvious by the physical arrangement of equipment. The distinction is whether
the machines in the network envision themselves as communicating directly
with each other over a common bus or indirectly through an intermediary
central machine. For instance, a bus network might not appear as a long bus
from which computers are connected over short links as depicted in
Figure 4.1. Instead, it may have a very short bus with long links to the individ-
ual machines, meaning that the network would look more like a star. Indeed,
sometimes a bus network is created by running links from each computer to a
central location where they are connected to a device called a hub. This hub is
little more than a very short bus. All it does is relay any signal it receives (with
perhaps some amplification) back out to all the machines connected to it. The
result is a network that looks like a star network although it operates like a bus
network.

Protocols

For a network to function reliably, it is important to establish rules by which activ-
ities are conducted. Such rules are called protocols. By developing and adopting
protocol standards, vendors are able to build products for network applications
that are compatible with products from other vendors. Thus, the development of
protocol standards is an indispensable process in the development of networking
technologies.

As an introduction to the protocol concept, let us consider the problem of
coordinating the transmission of messages among computers in a network. With-
out rules governing this communication, all the computers might insist on trans-
mitting messages at the same time or fail to assist other machines when that
assistance is required.

In a bus network based on the Ethernet standards, the right to transmit mes-
sages is controlled by the protocol known as Carrier Sense, Multiple Access

142

Chapter 4 Networking and the Internet

with Collision Detection (CSMA/CD). This protocol dictates that each mes-
sage be broadcast to all the machines on the bus (Figure 4.2). Each machine mon-
itors all the messages but keeps only those addressed to itself. To transmit
a message, a machine waits until the bus is silent, and at this time it begins trans-
mitting while continuing to monitor the bus. If another machine also begins
transmitting, both machines detect the clash and pause for a brief, independently
random period of time before trying to transmit again. The result is a system sim-
ilar to that used by a small group of people in a conversation. If two people start
to talk at once, they both stop. The difference is that people might go through a
series such as, “I'm sorry, what were you going to say?”, “No, no. You go first,”
whereas under the CSMA/CD protocol each machine merely tries again later.
Note that CSMA/CD is not compatible with wireless star networks in which
all machines communicate through a central AP. This is because a machine may
be unable to detect that its transmissions are colliding with those of another. For
example, the machine may not hear the other because its own signal drowns out
that of the other machine. Another cause might be that the signals from the
different machines are blocked from each other by objects or distance even though
they can all communicate with the central AP (a condition known as the hidden
terminal problem, Figure 4.3). The result is that wireless networks adopt the
policy of trying to avoid collisions rather than trying to detect them. Such policies
are classified as Carrier Sense, Multiple Access with Collision Avoidance
(CSMA/CA), many of which are standardized by IEEE (see the sidebar “Institute
of Electrical and Electronics Engineers” in Chapter 7) within the protocols
defined in TEEE 802.11 and commonly referred to as WiFi. We emphasize that col-
lision avoidance protocols are designed to avoid collisions and may not eliminate
them completely. When collisions do occur, messages must be retransmitted.
The most common approach to collision avoidance is based on giving advan-
tage to machines that have already been waiting for an opportunity to transmit.
The protocol used is similar to Ethernet’s CSMA/CD. The basic difference is that
when a machine first needs to transmit a message and finds the communication
channel silent, it does not start transmitting immediately. Instead, it waits for a
short period of time and then starts transmitting only if the channel has
remained silent throughout that period. If a busy channel is experienced during
this process, the machine waits for a randomly determined period before trying
again. Once this period is exhausted, the machine is allowed to claim a silent
channel without hesitation. This means that collisions between “newcomers”
and those that have already been waiting are avoided because a “newcomer” is

Figure 4.2 Communication over a bus network

Computer Computer Computer

Computer Computer

4.1 Network Fundamentals

Figure 4.3 The hidden terminal problem

Range of B

Range|of C

Access point

None of the end systems
can hear each other although
each can communicate

Range of A with the AP.

not allowed to claim a silent channel until any machine that has been waiting is
given the opportunity to start.

This protocol, however, does not solve the hidden terminal problem. After
all, any protocol based on distinquishing between a silent or busy channel
requires that each individual station be able to hear all the others. To solve this
problem, some WiFi networks require that each machine send a short “request”
message to the AP and wait until the AP acknowledges that request before trans-
mitting an entire message. If the AP is busy because it is dealing with a “hidden
terminal,” it will ignore the request, and the requesting machine will know to
wait. Otherwise, the AP will acknowledge the request, and the machine will
know that it is safe to transmit. Note that all the machines in the network will
hear all acknowledgements sent from the AP and thus have a good idea of
whether the AP is busy at any given time, even though they may not be able to
hear the transmissions taking place.

Combining Networks

Sometimes it is necessary to connect existing networks to form an extended com-
munication system. This can be done by connecting the networks to form a larger
version of the same “type” of network. For example, in the case of bus networks
based on the Ethernet protocols, it is often possible to connect the buses to form a
single long bus. This is done by means of different devices known as repeaters,
bridges, and switches, the distinctions of which are subtle yet informative.

143

144

Chapter 4 Networking and the Internet

Ethernet

Ethernet is a set of standards for implementing a LAN with a bus topology. Its name is
derived from the original Ethernet design in which machines were connected by a
coaxial cable called the ether. Originally developed in the 1970s and now standard-
ized by IEEE as a part of the IEEE 802 family of standards, Ethernet is one of the most
common methods of networking PCs. Indeed, Ethernet controllers have become a
standard component in the PCs available in the current retail market.

Today there are actually several versions of Ethernet, reflecting advances in
technology and higher transfer rates. All, however, share common traits that charac-
terize the Ethernet family. Among these are the format in which data are packaged for
transmission, the use of Manchester encoding (a method of representing 0s and 1s
in which a 0 is represented by a descending signal and a 1 is represented by an
ascending signal) for the actual transmission of bits, and the use of CSMA/CD for
controlling the right to transmit.

The simplest of these is the repeater, which is little more than a device that simply
passes signals back and forth between the two original buses (usually with some
form of amplification) without considering the meaning of the signals (Figure 4.4a).

A bridge is similar to, but more complex than, a repeater. Like a repeater, it
connects two buses, but it does not necessarily pass all messages across the con-
nection. Instead, it looks at the destination address that accompanies each mes-
sage and forwards a message across the connection only when that message is
destined for a computer on the other side. Thus, two machines residing on the
same side of a bridge can exchange messages without interfering with communi-
cation taking place on the other side. A bridge produces a more efficient system

than that produced by a repeater.

Figure 4.4 Building a large bus network from smaller ones

Repeater Switch
or
I - |

—

.
—

-

a. A repeater or bridge connecting b. A switch connecting multiple buses

two buses

4.1 Network Fundamentals 145

A switch is essentially a bridge with multiple connections, allowing it to
connect several buses rather than just two. Thus, a switch produces a net-
work consisting of several buses extending from the switch as spokes on a wheel
(Figure 4.4b). As in the case of a bridge, a switch considers the destination
addresses of all messages and forwards only those messages destined for other
spokes. Moreover, each message that is forwarded is relayed only into the appro-
priate spoke, thus minimizing the traffic in each spoke.

It is important to note that when networks are connected via repeaters,
bridges, and switches, the result is a single large network. The entire system
operates in the same manner (using the same protocols) as each of the original
smaller networks.

Sometimes, however, the networks to be connected have incompatible char-
acteristics. For instance, the characteristics of a WiFi network are not readily
compatible with an Ethernet network. In these cases the networks must be con-
nected in a manner that builds a network of networks, known as an internet,
in which the original networks maintain their individuality and continue to
function as autonomous networks. (Note that the generic term internet is dis-
tinct from the Internet. The Internet, written with an uppercase I, refers to a par-
ticular, worldwide internet that we will study in later sections of this chapter.
There are many other examples of internets. Indeed, traditional telephone com-
munication was handled by worldwide internet systems well before the Internet
was popularized.)

The connection between networks to form an internet is handled by
devices known as routers, which are special purpose computers used for
forwarding messages. Note that the task of a router is different from that of
repeaters, bridges, and switches in that routers provide links between networks
while allowing each network to maintain its unique internal characteristics. As
an example, Figure 4.5 depicts two WiFi star networks and an Ethernet bus

Figure 4.5 Routers connecting two WiFi networks and an Ethernet network to form

an internet
WiFi network
(RN
J AP
&
> Router Router
| |
| |
Router Ethernet network
“
AP
~ /.
= 2 WiFi network

146

Chapter 4 Networking and the Internet

network connected by routers. When a machine in one of the WiFi networks
wants to send a message to a machine in the Ethernet network, it first sends the
message to the AP in its network. From there, the AP sends the message to its
associated router, and this router forwards the message to the router at the Eth-
ernet. There the message is given to a machine on the bus, and that machine
then forwards the message to its final destination in the Ethernet.

The reason that routers are so named is that their purpose is to forward mes-
sages in their proper directions. This forwarding process is based on an internet-
wide addressing system in which all the devices in an internet (including the
machines in the original networks and the routers) are assigned unique addresses.
(Thus, each machine in one of the original networks has two addresses: its original
“local” address within its own network and its internet address.) A machine wanting
to send a message to a machine in a distant network attaches the internet address of
the destination to the message and directs the message to its local router. From there
it is forwarded in the proper direction. For this forwarding purpose, each router
maintains a forwarding table that contains the router’s knowledge about the direc-
tion in which messages should be sent depending on their destination addresses.

The “point” at which one network is linked to an internet is often called a
gateway because it serves as a passageway between the network and the outside
world. Gateways can be found in a variety of forms, and thus the term is used
rather loosely. In many cases a network’s gateway is merely the router through
which it communicates with the rest of the internet. In other cases the term
gateway may be used to refer to more than just a router. For example, in most res-
idential WiFi networks that are connected to the Internet, the term gateway
refers collectively to both the network’s AP and the router connected to the AP
because these two devices are normally packaged in a single unit.

Methods of Process Communication

The various activities (or processes) executing on the different computers within
a network (or even executing on the same machine via time-sharing/multitasking)
must often communicate with each other to coordinate their actions and to per-
form their designated tasks. Such communication between processes is called
interprocess communication.

A popular convention used for interprocess communication is the client/
server model. This model defines the basic roles played by the processes as
either a client, which makes requests of other processes, or a server, which
satisfies the requests made by clients.

An early application of the client/server model appeared in networks con-
necting all the computers in a cluster of offices. In this situation, a single, high-
quality printer was attached to the network where it was available to all the
machines in the network. In this case the printer played the role of a server
(often called a print server), and the other machines were programmed to play
the role of clients that sent print requests to the print server.

Another early application of the client/server model was used to reduce the
cost of magnetic disk storage while also removing the need for duplicate copies of
records. Here one machine in a network was equipped with a high-capacity mass
storage system (usually a magnetic disk) that contained all of an organization’s
records. Other machines on the network then requested access to the records as
they needed them. Thus the machine that actually contained the records played

4.1 Network Fundamentals

the role of a server (called a file server), and the other machines played the role
of clients that requested access to the files that were stored at the file server.

Today the client/server model is used extensively in network applications,
as we will see later in this chapter. However, the client/server model is not the
only means of interprocess communication. Another model is the peer-to-peer
(often abbreviated P2P) model. Whereas the client/server model involves
one process (the server) providing a service to numerous others (clients), the
peer-to-peer model involves processes that provide service to and receive service
from each other (Figure 4.6). Moreover, whereas a server must execute continu-
ously so that it is prepared to serve its clients at any time, the peer-to-peer model
usually involves processes that execute on a temporary basis. For example, appli-
cations of the peer-to-peer model include instant messaging in which people
carry on a written conversation over the Internet as well as situations in which
people play competitive interactive games.

The peer-to-peer model is also a popular means of distributing files such as
music recordings and motion pictures via the Internet. In this case, one peer
may receive a file from another and then provide that file to other peers. The
collection of peers participating in such a distribution is sometimes called a
swarm. The swarm approach to file distribution is in contrast to earlier
approaches that applied the client/server model by establishing a central distri-
bution center (the server) from which clients downloaded files (or at least
found sources for those files).

One reason that the P2P model is replacing the client/server model for file
sharing is that it distributes the service task over many peers rather than concen-
trating it at one server. This lack of a centralized base of operation leads to a more
efficient system. Unfortunately, another reason for the popularity of file

Figure 4.6 The client/server model compared to the peer-to-peer model

Client Client

N/
/

Client Client

a. Server must be prepared to serve multiple clients at any time.

Peer <4——p» Peer

b. Peers communicate as equals on a one-to-one basis.

147

148

Chapter 4 Networking and the Internet

distribution systems based on the P2P model is that, in cases of questionable legal-
ity, the lack of a central server makes legal efforts to enforce copyright laws more
difficult. There are numerous cases, however, in which individuals have discovered
that “difficult” does not mean “impossible” and have found themselves faced with
significant liabilities due to copyright infringement violations.

You might often read or hear the term peer-to-peer network, which is an exam-
ple of how misuse of terminology can evolve when technical terms are adopted
by the nontechnical community. The term peer-to-peer refers to a system by
which two processes communicate over a network (or internet). It is not a prop-
erty of the network (or internet). A process might use the peer-to-peer model to
communicate with another process and later use the client/server model to
communicate with another process over the same network. Thus, it would be
more accurate to speak of communicating by means of the peer-to-peer model
rather than communicating over a peer-to-peer network.

Distributed Systems

With the success of networking technology, interaction between computers
via networks has become common and multifaceted. Many modern software
systems, such as global information retrieval systems, company-wide account-
ing and inventory systems, computer games, and even the software that con-
trols a network’s infrastructure itself are designed as distributed systems,
meaning that they consist of software units that execute as processes on dif-
ferent computers.

Early distributed systems were developed independently from scratch. But
today, research is revealing a common infrastructure running throughout these
systems, including such things as communication and security systems. In turn,
efforts have been made to produce prefabricated systems that provide this basic
infrastructure and therefore allow distributed applications to be constructed by
merely developing the part of the system that is unique to the application.

Several types of distributed computing systems are now common. Cluster
computing describes a distributed system in which many independent comput-
ers work closely together to provide computation or services comparable to a
much larger machine. The cost of these individual machines, plus the high-speed
network to connect them, can be less than a higher-priced supercomputer, but
with higher reliability and lower maintenance costs. Such distributed systems are
used to provide high-availability—because it is more likely that at least one
member of the cluster will be able to answer a request, even if other cluster mem-
bers break down or are unavailable—and load-balancing—because the workload
can be shifted automatically from members of the cluster that have too much to do
to those that may have too little. Grid computing refers to distributed systems
that are more loosely coupled than clusters but that still work together to accom-
plish large tasks. Grid computing can involve specialized software to make it easier
to distribute data and algorithms to the machines participating in a grid. Examples
include University of Wisconsin’s Condor system, or Berkeley’s Open Infrastruc-
ture for Network Computing (BOINC). Both of these systems are often installed on
computers that are used for other purposes, such as PCs at work or at home, that
can then volunteer computing power to the grid when the machine is not other-
wise being used. Enabled by the growing connectivity of the Internet, this type of
voluntary, distributed grid computing has enabled millions of home PCs to work

on enormously complex mathematical and scientific problems. Cloud computing,
whereby huge pools of shared computers on the network can be allocated for use
by clients as needed, is the latest trend in distributed systems. Much as the spread
of metropolitan electrical grids in the early twentieth century eliminated the need
for individual factories and businesses to maintain their own generators, the Inter-
net is making it possible for entities to entrust their data and computations to “the
Cloud,” which in this case refers to the enormous computing resources already
available on the network. Services such as Amazon’s Elastic Compute Cloud allow
clients to rent virtual computers by the hour, without concern for where the com-
puter hardware is actually located. Google Docs and Google Apps allow users to col-
laborate on information or build Web services without needing to know how many
computers are working on the problem or where the relevant data are stored. Cloud
computing services provide reasonable guarantees of reliability and scalability, but
also raise concerns about privacy and security in a world where we may no longer
know who owns and operates the computers that we use.

4.2

(T T questions &

What is an open network?
Summarize the distinction between a bridge and a switch.
What is a router?

= R P

Identify some relationships in society that conform to the client/server
model.

5

Identify some protocols used in society.
6. Summarize the distinction between cluster computing and grid computing.

The Internet 149

srcise |||

4.2 The Internet

The most notable example of an internet is the Internet (note the uppercase I),
which originated from research projects going back to the early 1960s. The goal
was to develop the ability to link a variety of computer networks so that they
could function as a connected system that would not be disrupted by local disasters.
Much of this work was sponsored by the U.S. government through the Defense
Advanced Research Projects Agency (DARPA—pronounced “DAR-pa”). Over the
years, the development of the Internet shifted from a government-sponsored
project to an academic research project, and today it is largely a commercial
undertaking that links a worldwide combination of LANs, MANs, and WANs
involving millions of computers.

Internet Architecture

As we have already mentioned, the Internet is a collection of connected networks.
In general, these networks are constructed and maintained by organizations called
Internet Service Providers (ISPs). It is also customary to use the term ISP in ref-
erence to the networks themselves. Thus, we will speak of connecting to an ISP,
when what we really mean is connecting to the network provided by an ISP.

150 | Chapter 4 Networking and the Internet

Figure 4.7

The system of networks operated by the ISPs can be classified in a hierarchy
according to the role they play in the overall Internet structure (Figure 4.7). At
the top of this hierarchy are relatively few tier-1 ISPs that consist of very
high-speed, high-capacity, international WANs. These networks are thought of as
the backbone of the Internet. They are typically operated by large companies
that are in the communications business. An example would be a company that
originated as a traditional telephone company and has expanded its scope into
providing other communication services.

Connecting to the tier-1 ISPs are the tier-2 ISPs that tend to be more
regional in scope and less potent in their capabilities. (The distinction between
the tier-1 and tier-2 ISPs is often a matter of opinion.) Again, these networks tend
to be operated by companies in the communications business.

Tier-1 and tier-2 ISPs are essentially networks of routers that collectivly pro-
vide the Internet’s communication infrastructure. As such, they can be thought
of as the core of the Internet. Access to this core is usually provided by an inter-
mediary called an access ISP. An access ISP is essentially an independent inter-
net, sometimes called an intranet, operated by a single authority that is in the
business of supplying Internet access to individual users. Examples include com-
panies such as AOL, Microsoft, and local cable and telephone companies that
charge for their service as well as organizations such as universities or corpora-
tions that take it upon themselves to provide Internet access to individuals
within their organizations.

The devices that individual users connect to the access ISPs are known as
end systems or hosts. These end systems are not necessarily computers in the
traditional sense. They range over a multitude of devices including telephones,
video cameras, automobiles, and home appliances. After all, the Internet is
essentially a communications system, and thus any device that would benefit
from communicating with other devices is a potential end system.

Internet composition

— Tier-1 ISPs

— Tier-2 ISPs

— Access ISPs

j— End systems

The technology by which end systems connect to access ISPs is also varied.
Perhaps the fastest growing are wireless connections based on WiFi technology.
The strategy is to connect the AP to an access ISP and thus provide Internet
access through that ISP to end systems within the AP’s broadcast range. The area
within the AP's range is often called a hot spot. Hot spots and groupings of hot
spots are becoming quite prevalent, ranging from individual residences, hotel
and office buildings, small businesses, parks, and in some cases entire cities. A
similar technology is used by the cellular telephone industry where hot spots are
known as cells and the “routers” generating the cells are coordinated to provide
continuous service as an end system moves from one cell to another.

Other popular techniques for connecting to access ISP’s use telephone lines
or cable/satellite systems. These technologies may be used to provide direct con-
nection to an end system or to a customer’s router to which multiple end sys-
tems are connected. This latter tactic is becoming increasingly popular for
individual residences where a local hot spot is created by a router/AP connected
to an access ISP by means of existing cable or telephone lines.

Existing cable and satellite links are inherently more compatible with high-
speed data transfer than traditional telephone lines, which were originally
installed with voice communication in mind. However, several clever schemes
have been developed to extend these voice links to accommodate transmission of
digital data. These make use of devices called modems (short for modulator/
demodulator) that convert the digital data to be transferred into a form compatible
with the transmission medium being used. An example is DSL (digital sub-
scriber line) in which the frequency range below 4 KHz (4,000 kilocycles per sec-
ond) is reserved for traditional voice communication and the higher frequencies
are used for transferring digital data. Another, older approach is to convert the dig-
ital data into sound and transmit it in the same manner as voice. This latter prac-
tice is called dial-up access in reference to the fact that it is used for temporary
connections in which the user places a traditional telephone call to an access ISP’s
router and then connects his or her telephone to the end system to be used.
Although inexpensive and widely available, dial-up’s relatively slow data transfer
rate is increasingly unable to handle today’s Internet applications that tend to rely
on real-time video communication and the transmission of large blocks of data.
Thus, a growing number of homes and small businesses connect to their access
ISP through broadband technologies including cable television connections,
dedicated telephone data lines, satellite dishes, and even fiber-optic cables.

Internet2

4.2 The Internet

Now that the Internet has shifted from a research project to a household commodity,
the research community has moved on to a project called Internet2. Internet2 is
intended as an academic-only system and involves numerous universities working in
partnership with industry and government. The goal is to conduct research in inter-
net applications requiring high bandwidth communication, such as remote access
and control of costly state-of-the-art equipment such as telescopes and medical
diagnostic devices. An example of current research involves remote surgery per-
formed by robot hands that mimic the hands of a distant surgeon who views the
patient by video. You can learn more about Internet2 at http://www.internet2.org.

151

http://www.internet2.org
http://www.internet2.org

152

Chapter 4 Networking and the Internet

Internet Addressing

As we learned in Section 4.1, an internet needs an internet-wide addressing
system that assigns a unique identifying address to each computer in the system.
In the Internet these addresses are known as IP addresses. (The term IP refers
to “Internet Protocol,” which is a term we will learn more about in Section 4.4.)
Originally, each IP address was a pattern of 32 bits, but to provide a larger set of
addresses, the process of converting to 128-bit addresses is currently underway
(see the discussion of IPv6 in Section 4.4). Blocks of consecutively numbered IP
addresses are awarded to ISPs by the Internet Corporation for Assigned
Names and Numbers (ICANN), which is a nonprofit corporation established to
coordinate the Internet’s operation. The ISPs are then allowed to allocate the
addresses within their awarded blocks to machines within their region of author-
ity. Thus, machines throughout the Internet are assigned unique IP addresses.

IP addresses are traditionally written in dotted decimal notation in which
the bytes of the address are separated by periods and each byte is expressed
as an integer represented in traditional base ten notation. For example, using
dotted decimal notation, the pattern 5.2 would represent the two-byte bit pattern
0000010100000010, which consists of the byte 00000101 (represented by 5) followed
by the byte 00000010 (represented by 2), and the pattern 17.12.25 would represent
the three-byte bit pattern consisting of the byte 00010001 (which is 17 written in
binary notation), followed by the byte 00001100 (12 written in binary), followed
by the byte 00011001 (25 written in binary). In summary, a 32-bit IP address might
appear as 192.207.177.133 when expressed in dotted decimal notation.

Addresses in bit-pattern form (even when compressed using dotted decimal
notation) are rarely conducive to human consumption. For this reason the Inter-
net has an alternative addressing system in which machines are identified by
mnemonic names. This addressing system is based on the concept of a domain,
which can be thought of as a “region” of the Internet operated by a single author-
ity such as a university, club, company, or government agency. (The word
region is in quotations here because, as we will soon see, such a region may not
correspond to a physical area of the Internet.) Each domain must be registered
with ICANN—a process handled by companies, called registrars, that have been
assigned this role by ICANN. As a part of this registration process, the domain is
assigned a mnemonic domain name, which is unique among all the domain
names throughout the Internet. Domain names are often descriptive of the
organization registering the domain, which enhances their utility for humans.

As an example, the domain name of the Addison-Wesley publishing company
is aw.com. Note the suffix following the period. It is used to reflect the domain’s
classification, which in this case is “commercial” as indicated by the com suffix.
These suffixes are called top-level domains (TLDs). Other TLDs include edu
for educational institutions, gov for U.S. government institutions, org for non-
profit organizations, museum for museums, info for unrestricted use, and net,
which was originally intended for ISPs but is now used on a much broader scale.
In addition to these general TLDs, there are also two-letter TLDs for specific
countries (called country-code TLDs) such as au for Australia and ca for Canada.

Once a domain’s mnemonic name is registered, the organization that regis-
tered the name is free to extend the name to obtain mnemonic identifiers for
individual items within the domain. For example, an individual machine within
Addison-Wesley may be identified as ssenterprise.aw.com. Note that domain
names are extended to the left and separated by a period. In some cases multiple

extensions, called subdomains, are used as a means of organizing the names
within a domain. These subdomains often represent different networks within
the domain’s jurisdiction. For example, if Nowhere University was assigned the
domain name nowhereu. edu, then an individual computer at Nowhere Univer-
sity might have a name such as r2d2 . compsc.nowhereu.edu, meaning that
the computer r2d2 is in the subdomain compsc within the domain nowhereu
within the TLD edu. (We should emphasize that the dotted notation used in
mnemonic addresses is not related to the dotted decimal notation used to repre-
sent addresses in bit pattern form.)

Although mnemonic addresses are convenient for humans, messages are
always transferred over the Internet by means of IP addresses. Thus, if a human
wants to send a message to a distant machine and identifies the destination by
means of a mnemonic address, the software being used must be able to convert
that address into an IP address before transmitting the message. This conversion
is performed with the aid of numerous servers, called name servers, that are
essentially directories that provide address translation services to clients. Collec-
tively, these name servers are used as an Internet-wide directory system known
as the domain name system (DNS). The process of using the DNS to perform
a translation is called a DNS lookup.

Thus, for a machine to be accessible by means of a mnemonic domain name,
that name must be represented in a name server within the DNS. In those cases in
which the entity establishing the domain has the resources, it can establish and
maintain its own name server containing all the names within that domain.
Indeed, this is the model on which the domain system was originally based. Each
registered domain represented a physical region of the Internet that was operated
by a local authority such as a company, university, or government agency. This
authority was essentially an access ISP that provided Internet access to its mem-
bers by means of its own intranet that was linked to the Internet. As part of this
system, the organization maintained its own name server that provided translation
services for all the names used within its domain.

This model is still common today. However, many individuals or small organ-
izations want to establish a domain presence on the Internet without committing
the resources necessary to support it. For example, it might be beneficial for a
local chess club to have a presence on the Internet as KingsandQueens . org,
but the club would likely not have the resources to establish its own network,
maintain a link from this network to the Internet, and implement its own name
server. In this case, the club can contract with an access ISP to create the appear-
ance of a registered domain using the resources already established by the ISP
Typically, the club, perhaps with the assistance of the ISP, registers the name
chosen by the club and contracts with the ISP to have that name included in the
ISP’s name server. This means that all DNS lookups regarding the new domain
name will be directed to the ISP’s name server, from which the proper transla-
tion will be obtained. In this way, many registered domains can reside within a
single ISP, each often occupying only a small portion of a single computer.

Internet Applications

In this subsection we discuss some applications of the Internet, beginning with
three traditional applications. However, these “conventional” applications fall
short of capturing the excitement of today’s Internet. Indeed, the distinction

4.2 The Internet

153

154

Chapter 4 Networking and the Internet

between a computer and other electronic devices is becoming blurred. Tele-
phones, televisions, sound systems, burglar alarms, microwave ovens, and video
cameras are all potential “Internet devices.” In turn, the traditional applications
of the Internet are being dwarfed by an expanding flood of new uses including
instant messaging, video conferencing, Internet telephony, and Internet radio.
After all, the Internet is merely a communication system over which data can be
transferred. As technology continues to increase the transfer rates of that sys-
tem, the content of the data being transferred will be limited only by one’s imag-
ination. Thus, we will include two newer Internet applications, telephony and
radio broadcast, to demonstrate some of the issues associated with today’s
emerging Internet, including the need for additional protocol standards, the
need to link the Internet to other communication systems, and the need to
expand the functionality of the Internet’s routers.

Electronic Mail One of the most popular uses of the Internet is email (short for
electronic mail), a system by which messages are transferred among Internet
users. For the purpose of providing email service, a domain’s local authority may
designate a particular machine within its domain to play the role of a mail
server. Typically, mail servers are established within domains operated by
access ISPs for the purpose of providing mail service to users within its realm.
When a user sends email from his or her local machine, it is first transferred to
the user’s mail server. There it is forwarded to the destination mail server where
it is stored until the recipient contacts the mail server and asks to view the
accumulated mail.

The protocol used to transfer mail between mail servers as well as to send a
new message from its author’s local machine to the author’s mail server is SMTP
(Simple Mail Transfer Protocol). Because SMTP was initially designed for
transferring text messages encoded with ASCII, additional protocols such as
MIME (Multipurpose Internet Mail Extensions) have been developed to
convert non-ASCII data to SMTP compatible form.

There are two popular protocols that may be used for accessing email that has
arrived and accumulated at a user’s mail server. These are POP3 (Post Office
Protocol version 3) and IMAP (Internet Mail Access Protocol). POP3 (pro-
nounced “pop-THREE") is the simpler of the two. Using POP3, a user transfers
(downloads) messages to his or her local computer where they can be read,
stored in various folders, edited, and otherwise manipulated as the user desires.
This is done on the user’s local machine using the local machine’s mass storage.
IMAP (pronounced “EYE-map”) allows a user to store and manipulate messages
and related materials on the same machine as the mail server. In this manner, a
user who must access his or her email from different computers can maintain
records at the mail server that are then accessible from any remote computer to
which the user may have access.

With the role of a mail server in mind, it is easy to understand the structure
of an individual’s email address. It consists of a symbol string (sometimes called
the account name) identifying the individual, followed by the symbol @ (read
“at”), followed by the mnemonic string that ultimately identifies the mail server
that should receive the mail. (In reality this string often merely identifies the
destination domain, and the domain’s mail server is ultimately identified by
means of a DNS lookup.) Thus the email address of an individual at Addison-
Wesley Inc. might appear as shakespeare@aw.com. In other words, a message

sent to this address is to go to the mail server in the domain aw.com where it
should be held for the person identified by the symbol string shakespeare.

The File Transfer Protocol One means of transferring files (such as documents, photo-
graphs, or other encoded information) is to attach them to email messages. How-
ever, a more efficient means is to take advantage of the File Transfer Protocol
(FTP), which is a client/server protocol for transferring files across the Internet. To
transfer a file using FTP, a user at one computer in the Internet uses a software
package that implements FTP to establish contact with another computer. (The
original computer plays the role of a client. The computer it contacts plays the role
of a server, which is usually called an FTP server.) Once this connection is estab-
lished, files can be transferred between the two computers in either direction.

FTP has become a popular way of providing limited access to data via the
Internet. Suppose, for example, that you want to allow certain people to retrieve
a file while prohibiting access by anyone else. You need merely place the file in
a machine with FTP server facilities and guard access to the file via a password.
Then, people who know the password will be able to gain access to the file via
FTP, while all others will be blocked. A machine in the Internet used in this
manner is sometimes called an FTP site because it constitutes a location in the
Internet at which files are available via FTP.

FTP sites are also used to provide unrestricted access to files. To accomplish
this, FTP servers use the term anonymous as a universal login name. Such sites
are often referred to as anonymous FTP sites and provide unrestricted access to
files under their auspices.

While FTP clients and servers remain widely available, most users now find
their file transfer needs met through Web browsers using HTTP (discussed in the
next section).

Telnet and Secure Shell One of the early uses of the Internet was to allow com-
puter users to access computers from great distances. Telnet is a protocol system
that was established for this purpose. Using telnet, a user (running telnet client
software) can contact the telnet server at a distant computer and then follow that
operating system’s login procedure to gain access to the distant machine. Thus,
by means of telnet, a distant user has the same access to the applications and
utilities on the computer that a local user has.

Having been designed early in the development of the Internet, telnet has
several shortcomings. One of the more critical ones is that communication via
telnet is not encrypted. This is significant even if the subject of the communica-
tion is not sensitive because the user’s password is part of the communication
during the login process. Thus the use of telnet opens the possibility that an
eavesdropper might intercept a password and later misuse this critical infor-
mation. Secure Shell (SSH) is an alternative to telnet that offers a solution to
this problem and is rapidly replacing telnet. Among the features of SSH is that
it provides for encryption of data being transferred as well as authentication
(Section 4.5), which is the process of making sure that the two parties communi-
cating are, in fact, who they claim to be.

VolP As an example of a more recent Internet application, consider VoIP (Voice
over Internet Protocol) in which the Internet infrastructure is used to provide
voice communication similar to that of traditional telephone systems. In its

4.2 The Internet

155

156

Chapter 4 Networking and the Internet

simplest form, VoIP consists of two processes on different machines transferring
audio data via the P2P model—a process that in itself presents no significant prob-
lems. However, tasks such as initiating and receiving calls, linking VoIP with tra-
ditional telephone systems, and providing services such as emergency 911
communication are issues that extend beyond traditional Internet applications.
Moreover, governments that own their country’s traditional telephone companies
view VOIP as a threat and have either taxed it heavily or outlawed it completely.

Existing VoIP systems come in four different forms that are competing for
popularity. VoIP soft phones consist of P2P software that allows two or more
PCs to share a call with no more special hardware than a speaker and a micro-
phone. An example of a VoIP soft phone system is Skype, which also provides its
clients with links to the traditional telephone communication system. One draw-
back to Skype is that it is a proprietary system, and thus much of its operational
structure is not publicly known. This means that Skype users must trust the
integrity of the Skype software without third-party verification. For instance, to
receive calls, a Skype user must leave his or her PC connected to the Internet
and available to the Skype system, which means that some of the PC’s resources
may be used to support other Skype communications without the PC owner’s
awareness—a feature that has generated some resistance.

A second form of VoIP consists of analog telephone adapters, which are
devices that allow a user to connect his or her traditional telephone to phone serv-
ice provided by an access ISP. This choice is frequently bundled with traditional
Internet service and/or digital television service.

The third type of VoIP comes in the form of embedded VoIP phones, which are
devices that replace a traditional telephone with an equivalent handset connected
directly to a TCP/IP network. Embedded VoIP phones are becoming increasingly
common for large organizations, many of whom are replacing their traditional
internal copper wire telephone systems with VoIP over Ethernet to reduce costs
and enhance features.

Finally, the next generation of smartphones are slated to use VoIP technology.
That is, earlier generations of wireless phones only communicated with the tele-
phone company’s network using that company’s protocols. Access to the Internet

The Generations of Wireless Telephones

In the past decade mobile phone technology has advanced from simple, single-
purpose, portable devices to complex, multifunction hand-held computers. The first
generation wireless telephone network transmitted analog voice signals through the
air, much like traditional telephones but without the copper wire running through the
wall. In retrospect, we call these early phone systems “1G,” or first generation, net-
works. The second generation used digital signals to encode voice, providing more
effective use of the airwaves and the transmission of other kinds of digital data such as
text messaging. Third generation (“3G”) phone network provides higher data transfer
rates, allowing for mobile video calls and other bandwidth-intensive activities. The 4G
network objectives include even higher data transfer rates, and a fully packet-switched
network using the IP protocol, which will provide the newest generation of smart-
phones with the capabilities currently available only to broadband-enabled PCs.

was obtained by gateways between the company’s network and the Internet, at
which point signals were converted to the TCP/TP system. However, the new 4G
phone network is designed to be an IP-based network throughout, which means a
4G telephone is essentially just another host computer on the global Internet.

Internet Radio Another recent Internet application is the transmission of radio
station programming—a process called webcasting as opposed to broadcasting
because the signals are transferred via the Internet rather than “over the air.”
More precisely, Internet radio is a specific example of streaming audio, which
refers to the transfer of sound data on a real-time basis.

On the surface, Internet radio may not seem to require special considera-
tion. One might guess that a station could merely establish a server that would
send program messages to each of the clients who requested them. This tech-
nique is known as N-unicast. (More precisely, unicast refers to one sender send-
ing messages to one receiver, whereas N-unicast refers to a single sender
involved with multiple unicasts.) The N-unicast approach has been applied but
has the drawback of placing a substantial burden on the station’s server as well as
on the server's immediate Internet neighbors. Indeed, N-unicast forces the
server to send individual messages to each of its clients on a real-time basis, and
all these messages must be forwarded by the server’s neighbors.

Most alternatives to N-unicast represent attempts to alleviate this problem.
One applies the P2P model in a manner reminiscent of file sharing systems.
That is, once a peer has received data, it begins to distribute that data to those
peers that are still waiting, meaning that much of the distribution problem is
transferred from the data’s source to the peers.

Another alternative, called multicast, transfers the distribution problem to the
Internet routers. Using multicast, a server transmits a message to multiple clients
by means of a single address and relies on the routers in the Internet to recognize
the significance of that address and to produce and forward copies of the message to
the appropriate destinations. The single address used in multicast is called a group
address and is identified by a specific initial bit pattern. The remaining bits are used
to identify the broadcasting station, which in multicasting terminology is called the
group. When a client wants to receive the messages from a particular station (wants
to subscribe to a particular group), it notifies its nearest router of its desire. That
router essentially forwards that desire back through the Internet so that other
routers know to begin forwarding all future messages with that group address in the
direction of the client. In short, when using multicast, the server transmits only one
copy of the program regardless of how many clients are listening, and it is the
responsibility of the routers to make copies of these messages as needed and route
them to their appropriate destinations. Note then that applications relying on mul-
ticast require that the functionality of the Internet routers be expanded beyond
their original duties. This process is currently underway.

We see then that Internet radio, like VoIP, is growing in popularity while it is
searching for its foundations. Exactly what the future holds is not certain. How-
ever, as the capabilities of the Internet infrastructure continue to expand, appli-
cations of webcasting are certain to develop with it.

Embedded devices and home computers are now able to stream high defini-
tion video on demand via the Internet. A broad class of televisions, DVD/Blu-ray
players, and game consoles can now connect directly to the TCP/IP network to
select viewable content from a multitude of both free and subscription servers.

4.2 The Internet

157

158 | Chapter 4 Networking and the Internet

11t e
|| :.'Hll., .‘uh:il-':‘.:
T T T

1. What is the purpose of tier-1 and tier-2 ISPs? What is the purpose of ac-
cess ISPs?

2. What is the DNS?

3. What bit pattern is represented by 3.6.9 in dotted decimal notation?
Express the bit pattern 0001010100011100 using dotted decimal notation.

4. In what way is the structure of a mnemonic address of a computer on
the Internet (such as r2d2 . compsc.nowhereu. edu) similar to a tradi-
tional postal address? Does this same structure occur in IP addresses?

5. Name three types of servers found on the Internet and tell what
each does.

6. Why is SSH considered superior to telnet?
7. In what way do the P2P and multicast approaches to Internet radio
broadcast differ from N-unicast?

8. What criteria should one consider when choosing one of the four types
of VoIP?

4.3 The World Wide Web

In this section we focus on an Internet application by which multimedia infor-
mation is disseminated over the Internet. It is based on the concept of hypertext,
a term that originally referred to text documents that contained links, called
hyperlinks, to other documents. Today, hypertext has been expanded to encom-
pass images, audio, and video, and because of this expanded scope it is sometimes
referred to as hypermedia.

When using a GUI, the reader of a hypertext document can follow the hyper-
links associated with it by pointing and clicking with the mouse. For example,
suppose the sentence “The orchestra’s performance of ‘Bolero’ by Maurice Ravel
was outstanding” appeared in a hypertext document and the name Maurice Ravel
was linked to another document—perhaps giving information about the
composer. A reader could choose to view that associated material by pointing to
the name Maurice Ravel with the mouse and clicking the mouse button. More-
over, if the proper hyperlinks are installed, the reader might listen to an audio
recording of the concert by clicking on the name Bolero.

In this manner, a reader of hypertext documents can explore related docu-
ments or follow a train of thought from document to document. As portions of
various documents are linked to other documents, an intertwined web of related
information is formed. When implemented on a computer network, the docu-
ments within such a web can reside on different machines, forming a network-
wide web. The web that has evolved on the Internet spans the entire globe and
is known as the World Wide Web (also referred to as WWW, W3, or the Web).
A hypertext document on the World Wide Web is often called a Web page.
A collection of closely related Web pages is called a Web site.

The World Wide Web had its origins in the work of Tim Berners-Lee who realized
the potential of combining the linked-document concept with internet technology
and produced the first software for implementing the WWW in December of 1990.

4.3 The World Wide Web

Web Implementation

Software packages that allow users to access hypertext on the Internet fall into
one of two categories: packages that play the role of clients, and packages that
play the role of servers. A client package resides on the user’s computer and is
charged with the tasks of obtaining materials requested by the user and pre-
senting these materials to the user in an organized manner. It is the client that
provides the user interface that allows a user to browse within the Web. Hence
the client is often referred to as a browser, or sometimes as a Web browser.
The server package (often called a Web server) resides on a computer
containing hypertext documents to be accessed. Its task is to provide access to
the documents under its control as requested by clients. In summary, a user
gains access to hypertext documents by means of a browser residing on the
user’'s computer. This browser, playing the role of a client, obtains the docu-
ments by soliciting the services of the Web servers scattered throughout the
Internet. Hypertext documents are normally transferred between browsers
and Web servers using a protocol known as the Hypertext Transfer Protocol
(HTTP).

In order to locate and retrieve documents on the World Wide Web, each doc-
ument is given a unique address called a Uniform Resource Locator (URL).
Each URL contains the information needed by a browser to contact the proper
server and request the desired document. Thus to view a Web page, a person first
provides his or her browser with the URL of the desired document and then
instructs the browser to retrieve and display the document.

A typical URL is presented in Figure 4.8. It consists of four segments:
the protocol to use to communicate with the server controlling access to the
document, the mnemonic address of the machine containing the server,
the directory path needed for the server to find the directory containing the
document, and the name of the document itself. In short, the URL in Figure 4.8
tells a browser to contact the Web server on the computer known as
ssenterprise.aw.com using the protocol HTTP and to retrieve the document
named Julius_Caesar.html found within the subdirectory Shakespeare
within the directory called authors.

Sometimes a URL might not explicitly contain all the segments shown in
Figure 4.8. For example, if the server does not need to follow a directory path to
reach the document, no directory path will appear in the URL. Moreover,

Figure 4.8 Atypical URL

http://ssenterprise.aw.com/authors/Shakespeare/Julius_ Caesar.html

Mnemonic name of Document name
host holding the
document

Protocol required Directory path

to access the indicating the

document. In location of the

this case it is document within

hypertext transfer the host's

protocol (http). file system

159

http://ssenterprise.aw.com/authors/Shakespeare/Julius_Caesar.html
http://ssenterprise.aw.com/authors/Shakespeare/Julius_Caesar.html

160

Chapter 4 Networking and the Internet

sometimes a URL will consist of only a protocol and the mnemonic address of a
computer. In these cases, the Web server at that computer will return a
predetermined document, typically called a home page, that usually describes
the information available at that Web site. Such shortened URLs provide a simple
means of contacting organizations. For example, the URL http://www.
google.com will lead to the home page of Google, which contains hyperlinks to
the services, products, and documents relating to the company.

To further simplify locating Web sites, many browsers assume that the HTTP
protocol should be used if no protocol is identified. These browsers correctly
retrieve the Google home page when given the “URL” consisting merely of
www .google.com.

HTML

A traditional hypertext document is similar to a text file because its text is
encoded character by character using a system such as ASCII or Unicode. The
distinction is that a hypertext document also contains special symbols, called tags,
that describe how the document should appear on a display screen, what multi-
media resources (such as images) should accompany the document, and which
items within the document are linked to other documents. This system of tags is
known as Hypertext Markup Language (HTML).

Thus, it is in terms of HTML that an author of a Web page describes the
information that a browser needs in order to present the page on the user’s
screen and to find any related documents referenced by the current page. The
process is analogous to adding typesetting directions to a plain typed text (per-
haps using a red pen) so that a typesetter will know how the material should
appear in its final form. In the case of hypertext, the red markings are replaced
by HTML tags, and a browser ultimately plays the role of the typesetter, read-
ing the HTML tags to learn how the text is to be presented on the computer
screen.

The HTML encoded version (called the source version) of an extremely sim-
ple Web page is shown in Figure 4.9a. Note that the tags are delineated by the
symbols < and >. The HTML source document consists of two sections—a head
(surrounded by the <head> and </head> tags) and a body (surrounded by the
<body> and </body> tags). The distinction between the head and body of a
Web page is similar to that of the head and body of an interoffice memo. In both

The World Wide Web Consortium

The World Wide Web Consortium (W3C) was formed in 1994 to promote the World
Wide Web by developing protocol standards (known as W3C standards). W3C is
headquartered at CERN, the high-energy particle physics laboratory in Geneva,
Switzerland. CERN is where the original HTML markup language was developed as
well as the HTTP protocol for transferring HTML documents over the Internet. Today
W3C is the source of many standards (including standards for XML and numerous
multimedia applications) that lead to compatibility over a wide range of Internet
products. You can learn more about W3C via its Web site at http://www.w3c.org.

http://www.google.com
http://www.google.com
www.google.com
http://www.w3c.org
http://www.google.com
http://www.google.com
www.google.com.HTML
www.google.com.HTML
http://www.w3c.org

4.3 The World Wide Web

cases, the head contains preliminary information about the document (date, sub-
ject, etc. in the case of a memo). The body contains the meat of the document,
which in the case of a Web page is the material to be presented on the computer
screen when the page is displayed.

The head of the Web page displayed in Figure 4.9a contains only the title of the
document (surrounded by “title” tags). This title is only for documentation pur-
poses; it is not part of the page that is to be displayed on the computer screen. The
material that is displayed on the screen is contained in the body of the document.

The first entry in the body of the document in Figure 4.9a is a level-one
heading (surrounded by the <hl> and </h1> tags) containing the text “My Web
Page.” Being a level-one heading means that the browser should display this text
prominently on the screen. The next entry in the body is a paragraph of text
(surrounded by the <p> and </p> tags) containing the text “Click here for
another page.” Figure 4.9b shows the page as it would be presented on a
computer screen by a browser.

Figure 4.9 A simple Web page

a. The page encoded using HTML.

Tag indicating
beginning of —[<html>

document <heads>

Preliminaries — <title>demonstration page</title>
| </head>
[<body>

The part of the
document that — <hl1>My Web Page</hl>
will be displayed

by a browser <p>Click here for another page.</p>
</body>

Tag indicating _[html
end of document L </html>

b. The page as it would appear on a computer screen.

4)

My Web Page

Click here for another page.

161

162

Chapter 4 Networking and the Internet

In its present form, the page in Figure 4.9 is not fully functional in the
sense that nothing will happen when the viewer clicks on the word here, even
though the page implies that doing so will cause the browser to display another
page. To cause the appropriate action, we must link the word here to another
document.

Let us suppose that, when the word here is clicked, we want the browser to
retrieve and display the page at the URL http: /crafty.com/demo.html. To
do so, we must first surround the word here in the source version of the page with
the tags <a> and , which are called anchor tags. Inside the opening anchor
tag we insert the parameter

href = http://crafty.com/demo.html

(as shown in Figure 4.10a) indicating that the hypertext reference (href) associ-
ated with the tag is the URL following the equal sign (http://crafty.com/
demo.html). Having added the anchor tags, the Web page will now appear
on a computer screen as shown in Figure 4.10b. Note that this is identical to
Figure 4.9b except that the word here is highlighted by color indicating that
it is a link to another Web document. Clicking on such highlighted terms will
cause the browser to retrieve and display the associated Web document. Thus, it
is by means of anchor tags that Web documents are linked to each other.

Finally, we should indicate how an image could be included in our simple
Web page. For this purpose, let us suppose that a JPEG encoding of the image
we want to include is stored as the file named OurPic.jpg in the directory
Images at Images.com and is available via the Web server at that location.
Under these conditions, we can tell a browser to display the image at
the top of the Web page by inserting the image tag <img src = “http:/
Images.com/Images/OurPic. jpg”> immediately after the <body> tag in
the HTML source document. This tells the browser that the image named
OurPic. jpg should be displayed at the beginning of the document. (The term
src is short for “source,” meaning that the information following the equal sign
indicates the source of the image to be displayed.) When the browser finds this
tag, it will send a message to the HTTP server at Images.com requesting the
image called OurPic.jpg and then display the image appropriately.

If we moved the image tag to the end of the document just before the
</body> tag, then the browser would display the image at the bottom of the
Web page. There are, of course, more sophisticated techniques for positioning an
image on a Web page, but these need not concern us now.

XML

HTML is essentially a notational system by which a text document along with
the document’s appearance can be encoded as a simple text file. In a similar
manner we can also encode nontextual material as text files—an example being
sheet music. At first glance the pattern of staffs, measure bars, and notes in
which music is traditionally represented does not conform to the character-by-
character format dictated by text files. However, we can overcome this problem
by developing an alternative notation system. More precisely, we could agree to
represent the start of a staff by <staff clef = “treble”>, the end of the

http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://crafty.com/demo.html
http://Images.com/Images/OurPic.jpg
http://Images.com/Images/OurPic.jpg

4.3 The World Wide Web

Figure 4.10 An enhanced simple Web page

Anchor tag
containing
parameter

Closing
anchor tag __[

a. The page encoded using HTML.

<html>
<head>
<title>demonstration page</title>
</head>
<body>
<hl1>My Web Page</hl>
<p>Click

here

for another page.</p>
</body>
</html>

b. The page as it would appear on a computer screen.

-

~

My Web Page

Click here for another page

staff by </staff>, a time signature with the form <time> 2/4 </time>, the
beginning and ending of a measure by <measure> and </measure>, respec-
tively, a note such as an eighth note on C as <notes> egth C </notes>, and

so on. Then the text

<staff clef

= “treble”> <key>C minor</key>

<time> 2/4 </time>

<measure> <rest> egth </rest> <notes> egth G,
egth G, egth G </notes></measure>

<measure> <notes> hlf E </notes></measure>

</staff>

163

164

Chapter 4 Networking and the Internet

could be used to encode the music shown in Figure 4.11. Using such notation,
sheet music could be encoded, modified, stored, and transferred over the Inter-
net as text files. Moreover, software could be written to present the contents of
such files in the form of traditional sheet music or even to play the music on a
synthesizer.

Note that our sheet music encoding system encompasses the same style
used by HTML. We chose to delineate the tags that identify components by the
symbols < and >. We chose to indicate the beginning and end of structures
(such as a staff, string of notes, or measure) by tags of the same name—the
ending tag being designated by a slash (a <measure> was terminated with the
tag </measure>). And we chose to indicate special attributes within tags by
expressions such as clef = “treble”. This same style could also be used to
develop systems for representing other formats such as mathematical expres-
sions and graphics.

The eXtensible Markup Language (XML) is a standardized style (similar
to that of our music example) for designing notational systems for representing
data as text files. (Actually, XML is a simplified derivative of an older set of stan-
dards called the Standard Generalized Markup Language, better known as
SGML.) Following the XML standard, notational systems called markup lan-
guages have been developed for representing mathematics, multimedia presen-
tations, and music. In fact, HTML is the markup language based on the XML
standard that was developed for representing Web pages. (Actually, the original
version of HTML was developed before the XML standard was solidified, and
therefore some features of HTML do not strictly conform to XML. That is why
you might see references to XHTML, which is the version of HTML that rigor-
ously adheres to XML.)

XML provides a good example of how standards are designed to have wide-
ranging applications. Rather than designing individual, unrelated markup lan-
guages for encoding various types of documents, the approach represented by
XML is to develop a standard for markup languages in general. With this stan-
dard, markup languages can be developed for various applications. Markup
languages developed in this manner possess a uniformity that allows them to
be combined to obtain markup languages for complex applications such as
text documents that contain segments of sheet music and mathematical
expressions.

Finally we should note that XML allows the development of new markup
languages that differ from HTML in that they emphasize semantics rather than
appearance. For example, with HTML the ingredients in a recipe can be
marked so that they appear as a list in which each ingredient is positioned on a

Figure 4.11 The first two bars of Beethoven’s Fifth Symphony

~ |
) T
/bl
D

R

C N\

L/

C/oN

4.3 The World Wide Web

separate line. But if we used semantic-oriented tags, ingredients in a recipe
could be marked as ingredients (perhaps using the tags <ingredient> and
</ingredient>) rather than merely items in a list. The difference is subtle
but important. The semantic approach would allow search engines (Web sites
that assist users in locating Web material pertaining to a subject of interest) to
identify recipes that contain or do not contain certain ingredients, which
would be a substantial improvement over the current state of the art in which
only recipes that do or do not contain certain words can be isolated. More pre-
cisely, if semantic tags are used, a search engine can identify recipes for
lasagna that do not contain spinach, whereas a similar search based merely on
word content would skip over a recipe that started with the statement “This
lasagna does not contain spinach.” In turn, by using an Internet-wide standard
for marking documents according to semantics rather than appearance, a
World Wide Semantic Web, rather than the World Wide Syntactic Web we have
today, would be created.

Client-Side and Server-Side Activities

Consider now the steps that would be required for a browser to retrieve the sim-
ple Web page shown in Figure 4.10 and display it on the browser’s computer
screen. First, playing the role of a client, the browser would use the information
in a URL (perhaps obtained from the person using the browser) to contact the
Web server controlling access to the page and ask that a copy of the page be
transferred to it. The server would respond by sending the text document dis-
played in Figure 4.10a to the browser. The browser would then interpret the
HTML tags in the document to determine how the page should be displayed and
present the document on its computer screen accordingly. The user of the
browser would see an image like that depicted in Figure 4.10b. If the user then
clicked the mouse over the word here, the browser would use the URL in the
associated anchor tag to contact the appropriate server to obtain and display
another Web page. In summary, the process consists of the browser merely fetch-
ing and displaying Web pages as directed by the user.

But what if we wanted a Web page involving animation or one that allows a
customer to fill out an order form and submit the order? These needs would
require additional activity by either the browser or the Web server. Such activi-
ties are called client-side activities if they are performed by a client (such as a
browser) or server-side activities if they are performed by a server (such as a
Web server).

As an example, suppose a travel agent wanted customers to be able to iden-
tify desired destinations and dates of travel, at which time the agent would pre-
sent the customer with a customized Web page containing only the information
pertinent to that customer’s needs. In this case the travel agent’s Web site would
first provide a Web page that presents a customer with the available destinations.
On the basis of this information, the customer would specify the destinations of
interest and desired dates of travel (a client-side activity). This information
would then be transferred back to the agent’s server where it would be used to
construct the appropriate customized Web page (a server-side activity) which
would then be sent to the customer’s browser.

165

166

Chapter 4 Networking and the Internet

Another example occurs when using the services of a search engine. In
this case a user at the client specifies a topic of interest (a client-side activity)
which is then transferred to the search engine where a customized Web page
identifying documents of possible interest is constructed (a server-side activity)
and sent back to the client. Still another example occurs in the case of
Web mail—an increasingly popular means by which computer users are able
to access their email by means of Web browsers. In this case, the Web server
is an intermediary between the client and the client’s mail server. Essentially,
the Web server builds Web pages that contain information from the mail server
(a server-side activity) and sends those pages to the client where the
client’s browser displays them (a client-side activity). Conversely, the browser
allows the user to create messages (a client-side activity) and sends that infor-
mation to the Web server, which then forwards the messages to the mail server
(a server-side activity) for mailing.

There are numerous systems for performing client- and server-side activi-
ties, each competing with the others for prominence. An early and still popular
means of controlling client-side activities is to include programs written in the
language JavaScript (developed by Netscape Communications, Inc.) within
the HTML source document for the Web page. From there a browser can extract
the programs and follow them as needed. Another approach (developed by Sun
Microsystems) is to first transfer a Web page to a browser and then transfer addi-
tional program units called applets (written in the language Java) to the browser
as requested within the HTML source document. Still another approach is
the system Flash (developed by Macromedia) by which extensive multimedia
client-side presentations can be implemented.

An early means of controlling server-side activities was to use a set of stan-
dards called CGI (Common Gateway Interface) by which clients could request
the execution of programs stored at a server. A variation of this approach (devel-
oped by Sun Microsystems) is to allow clients to cause program units called
servlets to be executed at the server side. A simplified version of the servlet
approach is applicable when the requested server-side activity is the construc-
tion of a customized Web page, as in our travel agent example. In this case Web
page templates called JavaServer Pages (JSP) are stored at the Web server and
completed using information received from a client. A similar approach is used
by Microsoft, where the templates from which customized Web pages are con-
structed are called Active Server Pages (ASP). In contrast to these proprietary
systems, PHP (originally standing for Personal Home Page but now considered
to mean PHP Hypertext Processor) is an open source system for implementing
server-side functionality.

Finally, we would be remiss if we did not recognize the security and eth-
ical problems that arise from allowing clients and servers to execute pro-
grams on the other’s machine. The fact that Web servers routinely transfer
programs to clients where they are executed leads to ethical questions on the
server side and security questions on the client side. If the client blindly exe-
cutes any program sent to it by a Web server, it opens itself to malicious activ-
ities by the server. Likewise, the fact that clients can cause programs to be
executed at the server leads to ethical questions on the client side and secu-
rity questions on the server side. If the server blindly executes any program
sent to it by a client, security breaches and potential damage at the server
could result.

4.4 Internet Protocols

167

stz

1. What is a URL? What is a browser?

2. What is a markup language?

3. What is the difference between HTML and XML?

4. What is the purpose of each of the following HTML tags?

<html>
<head>
</p>
.

e n T

5. To what do the terms client side and server side refer?

4.4 Internet Protocols

In this section we investigate how messages are transferred over the Internet.
This transfer process requires the cooperation of all the computers in the
system, and therefore software for controlling this process resides on every com-
puter in the Internet. We begin by studying the overall structure of this software.

The Layered Approach to Internet Software

A principal task of networking software is to provide the infrastructure required
for transferring messages from one machine to another. In the Internet, this
message-passing activity is accomplished by means of a hierarchy of software
units, which perform tasks analogous to those that would be performed if you
were to send a gift in a package from the West Coast of the United States to a
friend on the East Coast (Figure 4.12). You would first wrap the gift as a package

Figure 4.12 Package-shipping example

Origin Final destination

Prepares package i Receives and
for shipping You Friend opens package

v

Places package Removes package

in container Shipping Shipping from container
for airli company) company and delivers it
orairline Intermediate stops c to addressee
v
Places container o L o o Sends container
in airplane Airline —» Airline » Airline — Airline to shipping
company

Transfers container
to another airplane

168

Chapter 4 Networking and the Internet

and write the appropriate address on the outside of the package. Then, you
would take the package to a shipping company such as the U.S. Postal Service.
The shipping company might place the package along with others in a large
container and deliver the container to an airline, whose services it has con-
tracted. The airline would place the container in an aircraft and transfer it to
the destination city, perhaps with intermediate stops along the way. At the final
destination, the airline would remove the container from the aircraft and give it
to the shipping company’s office at the destination. In turn, the shipping
company would take your package out of the container and deliver it to the
addressee.

In short, the transportation of the gift would be carried out by a three-level
hierarchy: (1) the user level (consisting of you and your friend), (2) the shipping
company, and (3) the airline. Each level uses the next lower level as an abstract
tool. (You are not concerned with the details of the shipping company, and the
shipping company is not concerned with the internal operations of the airline.)
Each level in the hierarchy has representatives at both the origin and the
destination, with the representatives at the destination tending to do the reverse
of their counterparts at the origin.

Such is the case with software for controlling communication over the Inter-
net, except that the Internet software has four layers rather than three, each
consisting of a collection of software routines rather than people and businesses.
The four layers are known as the application layer, the transport layer, the
network layer, and the link layer (Figure 4.13). A message typically originates
in the application layer. From there it is passed down through the transport and
network layers as it is prepared for transmission, and finally it is transmitted by
the link layer. The message is received by the link layer at the destination and
passed back up the hierarchy until it is delivered to the application layer at the
message’s destination.

Let us investigate this process more thoroughly by tracing a message as it
finds its way through the system (Figure 4.14). We begin our journey with the
application layer.

Figure 4.13 The Internet software layers

Application

Transport

Network

Link

4.4 Internet Protocols

Figure 4.14 Following a message through the Internet

169

At each intermediate stop
the network layer determines
the direction in which the
packet should be forwarded.

Prepares . . Receives
message Application Application | message
and provides 7'
destination
address
v
Chops message Collects packets
into packets Transport Transport | and reassembles
A message
v
Assigns Detects that
intermediate Network Network Network Network packet has
address to 7' N 7' reached its
each packet final destination
v N v
Transfers Receives
packet Link P Link > Link P> Link packet
Origin Intermediate Final
stops destination

The application layer consists of those software units such as clients and
servers that use Internet communication to carry out their tasks. Although the
names are similar, this layer is not restricted to software in the application
classification presented in Section 3.2, but also includes many utility packages.
For example, software for transferring files using FTP or for providing remote
login capabilities using SSH have become so common that they are normally
considered utility software.

The application layer uses the transport layer to send and receive messages
over the Internet in much the same way that you would use a shipping company
to send and receive packages. Just as it is your responsibility to provide an address
compatible with the specifications of the shipping company, it is the application
layer’s responsibility to provide an address that is compatible with the Internet
infrastructure. To fulfill this need, the application layer may use the services of
the name servers within the Internet to translate mnemonic addresses used by
humans into Internet-compatible IP addresses.

An important task of the transport layer is to accept messages from the
application layer and to ensure that the messages are properly formatted for

170

Chapter 4 Networking and the Internet

transmission over the Internet. Toward this latter goal, the transport layer
divides long messages into small segments, which are transmitted over the Inter-
net as individual units. This division is necessary because a single long message
can obstruct the flow of other messages at the Internet routers where numerous
messages cross paths. Indeed, small segments of messages can interweave at these
points, whereas a long message forces others to wait while it passes (much like
cars waiting for a long train to pass at a railroad crossing).

The transport layer adds sequence numbers to the small segments it pro-
duces so that the segments can be reassembled at the message’s destination.
Then it hands these segments, known as packets, to the network layer. From
this point, the packets are treated as individual, unrelated messages until they
reach the transport layer at their final destination. It is quite possible for the
packets related to a common message to follow different paths through the
Internet.

It is the network layer’s job to decide in which direction a packet should be
sent at each step along the packet’s path through the Internet. In fact, the com-
bination of the network layer and the link layer below it constitutes the soft-
ware residing on the Internet routers. The network layer is in charge of
maintaining the router’s forwarding table and using that table to determine the
direction in which to forward packets. The link layer at the router is in charge of
receiving and transmitting the packets.

Thus, when the network layer at a packet’s origin receives the packet from the
transport layer, it uses its forwarding table to determine where the packet should
be sent to get it started on its journey. Having determined the proper direction, the
network layer hands the packet to the link layer for actual transmission.

The link layer has the responsibility of transferring the packet. Thus the link
layer must deal with the communication details particular to the individual net-
work in which the computer resides. For instance, if that network is an Ethernet,
the link layer applies CSMA/CD. If the network is a WiFi network, the link layer
applies CSMA/CA.

When a packet is transmitted, it is received by the link layer at the other end
of the connection. There, the link layer hands the packet up to its network layer
where the packet’s final destination is compared to the network layer’s forward-
ing table to determine the direction of the packet’s next step. With this decision
made, the network layer returns the packet to the link layer to be forwarded
along its way. In this manner each packet hops from machine to machine on its
way to its final destination.

Note that only the link and network layers are involved at the intermediate
stops during this journey (see again Figure 4.14), and thus these are the only lay-
ers present on routers, as previously noted. Moreover, to minimize the delay at
each of these intermediate “stops,” the forwarding role of the network layer
within a router is closely integrated with the link layer. In turn, the time
required for a modern router to forward a packet is measured in millionths of a
second.

At a packet’s final destination, it is the network layer that recognizes that the
packet’s journey is complete. In that case the network layer hands the packet to
its transport layer rather than forwarding it. As the transport layer receives
packets from the network layer, it extracts the underlying message segments and
reconstructs the original message according to the sequence numbers that were
provided by the transport layer at the message’s origin. Once the message

4.4 Internet Protocols

is assembled, the transport layer hands it to the appropriate unit within the
application layer—thus completing the message transmission process.

Determining which unit within the application layer should receive an incom-
ing message is an important task of the transport layer. This is handled by assigning
unique port numbers (not related to the I/O ports discussed in Chapter 2) to the
various units and requiring that the appropriate port number be appended to a mes-
sage’s address before starting the message on its journey. Then, once the message is
received by the transport layer at the destination, the transport layer merely hands
the message to the application layer software at the designated port number.

Users of the Internet rarely need to be concerned with port numbers
because the common applications have universally accepted port numbers. For
example, if a Web browser is asked to retrieve the document whose URL is
http: /www.zoo.org/animals/frog.html, the browser assumes that it
should contact the HTTP server at www. zoo . org via port number 80. Likewise,
when transferring a file, an FTP client assumes that it should communicate with
the FTP server through port numbers 20 and 21.

In summary, communication over the Internet involves the interaction of
four layers of software. The application layer deals with messages from the
application’s point of view. The transport layer converts these messages into
segments that are compatible with the Internet and reassembles messages that
are received before delivering them to the appropriate application. The net-
work layer deals with directing the segments through the Internet. The link
layer handles the actual transmission of segments from one machine to
another. With all this activity, it is somewhat amazing that the response time of
the Internet is measured in milliseconds, so that many transactions appear to
take place instantaneously.

The TCP/IP Protocol Suite

The demand for open networks has generated a need for published standards by
which manufacturers can supply equipment and software that function properly
with products from other vendors. One standard that has resulted is the Open
System Interconnection (OSI) reference model, produced by the Interna-
tional Organization for Standardization. This standard is based on a seven-level
hierarchy as opposed to the four-level hierarchy we have just described. It is an
often-quoted model because it carries the authority of an international organiza-
tion, but it has been slow to replace the four-level point of view, mainly because
it was established after the four-level hierarchy had already become the de facto
standard for the Internet.

The TCP/IP protocol suite is a collection of protocol standards used by the
Internet to implement the four-level communication hierarchy implemented in
the Internet. Actually, the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) are the names of only two of the protocols in this vast
collection—so the fact that the entire collection is referred to as the TCP/IP pro-
tocol suite is rather misleading. More precisely, TCP defines a version of the
transport layer. We say a version because the TCP/IP protocol suite provides for
more than one way of implementing the transport layer; one of the other options
is defined by the User Datagram Protocol (UDP). This diversity is analogous
to the fact that when shipping a package, you have a choice of different shipping
companies, each of which offers the same basic service but with its own unique

171

http://www.zoo.org/animals/frog.html
www.zoo.org
http://www.zoo.org/animals/frog.html
www.zoo.org

172

Chapter 4 Networking and the Internet

characteristics. Thus, depending on the particular quality of service required, a
unit within the application layer might choose to send data via a TCP or UDP
version of the transport layer (Figure 4.15).

There are several differences between TCP and UDP. One is that before send-
ing a message as requested by the application layer, a transport layer based on
TCP sends its own message to the transport layer at the destination telling it that
a message is about to be sent. It then waits for this message to be acknowledged
before starting to send the application layer’'s message. In this manner, a TCP
transport layer is said to establish a connection before sending a message. A
transport layer based on UDP does not establish such a connection prior to sending
a message. It merely sends the message to the address it was given and forgets
about it. For all it knows, the destination computer might not even be opera-
tional. For this reason, UDP is called a connectionless protocol.

Another difference between TCP and UDP is that TCP transport layers at the
origin and destination work together by means of acknowledgments and packet
retransmissions to assure that all segments of a message are successfully
transferred to the destination. For this reason TCP is called a reliable protocol,
whereas UDP, which does not offer such retransmission services, is said to be an
unreliable protocol.

Still another distinction between TCP and UDP is that TCP provides for both
flow control, meaning that a TCP transport layer at a message's origin can
reduce the rate at which it transmits segments to keep from overwhelming its
counterpart at the destination, as well as congestion control, meaning that a
TCP transport layer at a message’s origin can adjust its transmission rate to alle-
viate congestion between it and the message’s destination.

All this does not mean that UDP is a poor choice. After all, a transport layer
based on UDP is more streamlined than a layer based on TCP, and thus if an
application is prepared to handle the potential consequences of UDP, that option
might be the better choice. For example, the efficiency of UDP makes it the
protocol of choice for DNS lookups and VoIP. However, because email is less time
sensitive, mail servers use TCP to transfer email.

Figure 4.15 Choosing between TCP and UDP

Application layer

Transport
layer
TCP uDP
More “reliable” More efficient

but less efficient but less “reliable”

IP is the Internet’s standard for implementing the tasks assigned to the net-
work layer. We have already observed that this task consists of forwarding, which
involves relaying packets through the Internet, and routing, which involves
updating the layer’s forwarding table to reflect changing conditions. For instance,
a router may malfunction, meaning that traffic should no longer be forwarded in
its direction, or a section of the Internet may become congested, meaning that
traffic should be routed around the blockage. Much of the IP standard associated
with routing deals with the protocols used for communication among neighboring
network layers as they interchange routing information.

An interesting feature associated with forwarding is that each time an IP net-
work layer at a message’s origin prepares a packet, it appends a value called a hop
count, or time to live, to that packet. This value is a limit to the number of times
the packet should be forwarded as it tries to find its way through the Internet. Each
time an IP network layer forwards a packet, it decrements that packet’s hop count
by one. With this information, the network layer can protect the Internet from
packets circling endlessly within the system. Although the Internet continues to
grow on a daily basis, an initial hop count of 64 remains more than sufficient to
allow a packet to find its way through the maze of routers within today’s ISPs.

For years a version of IP known as IPv4 (IP version four) has been used for
implementing the network layer within the Internet. However, the Internet is
rapidly outgrowing the 32-bit internet addressing system dictated by IPv4. To
solve this problem as well as to implement other improvements such as multicast,
a new version of IP known as IPv6, which uses internet addresses consisting of
128 bits, has been established. The process of converting from IPv4 to IPv6 is
currently underway—this is the conversion that was alluded to in our introduc-
tion of Internet addresses in Section 4.2—and it is expected that the use of 32-bit
addresses within the Internet will be extinct by 2025.

A
naiihi

1. What layers of the Internet software hierarchy are not needed at a
router?

2. What are some differences between a transport layer based on the TCP
protocol and another based on the UDP protocol?

3. How does the transport layer determine which unit with the application
layer should receive an incoming message?

4. What keeps a computer on the Internet from recording copies of all the
messages passing through it?

4.5 Security

173

| |!
ot Exsrcioes ||
Liiehvintlranitdhin i

4.5 Security

When a computer is connected to a network, it becomes subject to unauthorized
access and vandalism. In this section we address topics associated with these
problems.

174

Chapter 4 Networking and the Internet

The Computer Emergency Response Team

In November 1988 a worm released into the Internet caused significant disruption
of service. Consequently, the U.S. Defense Advanced Research Projects Agency
(DARPA—pronounced “DAR-pa”) formed the Computer Emergency Response Team
(CERT—pronounced “SERT”), located at the CERT Coordination Center at Carnegie-
Mellon University. The CERT is the Internet’s security “watchdog.” Among its duties
are the investigation of security problems, the issuance of security alerts, and the
implementation of public awareness campaigns to improve Internet security. The
CERT Coordination Center maintains a Web site at http://www.cert.org where it posts
notices of its activities.

Forms of Attack

There are numerous ways that a computer system and its contents can be
attacked via network connections. Many of these incorporate the use of mali-
cious software (collectively called malware). Such software might be transferred
to, and executed on, the computer itself, or it might attack the computer from
a distance. Examples of software that is transferred to, and executed on, the com-
puter under attack include viruses, worms, Trojan horses, and spyware, whose
names reflect the primary characteristic of the software.

A virus is software that infects a computer by inserting itself into programs that
already reside in the machine. Then, when the “host” program is executed, the virus
is also executed. When executed, many viruses do little more than try to transfer
themselves to other programs within the computer. Some viruses, however, per-
form devastating actions such as degrading portions of the operating system, eras-
ing large blocks of mass storage, or otherwise corrupting data and other programs.

A worm is an autonomous program that transfers itself through a network,
taking up residence in computers and forwarding copies of itself to other comput-
ers. As in the case of a virus, a worm can be designed merely to replicate itself or
to perform more extreme vandalism. A characteristic consequence of a worm is
an explosion of the worm’s replicated copies that degrades the performance of
legitimate applications and can ultimately overload an entire network or internet.

A Trojan horse is a program that enters a computer system disguised as a
desirable program, such as a game or useful utility package, that is willingly
imported by the victim. Once in the computer, however, the Trojan horse per-
forms additional activities that might have harmful effects. Sometimes these
additional activities start immediately. In other instances, the Trojan horse
might lie dormant until triggered by a specific event such as the occurrence of a
preselected date. Trojan horses often arrive in the form of attachments to entic-
ing email messages. When the attachment is opened (that is, when the recipient
asks to view the attachment), the misdeeds of the Trojan horse are activated.
Thus, email attachments from unknown sources should never be opened.

Another form of malicious software is spyware (sometimes called sniffing
software), which is software that collects information about activities at the com-
puter on which it resides and reports that information back to the instigator of the
attack. Some companies use spyware as a means of building customer profiles,
and in this context, it has questionable ethical merit. In other cases, spyware is

http://www.cert.org
http://www.cert.org

used for blatantly malicious purposes such as recording the symbol sequences
typed at the computer’s keyboard in search of passwords or credit card numbers.

As opposed to obtaining information secretly by sniffing via spyware,
phishing is a technique of obtaining information explicitly by simply asking for it.
The term phishing is a play on the word fishing because the process involved is to
cast numerous “lines” in hopes that someone will “take the bait.” Phishing is often
carried out via email, and in this form, it is little more than an old telephone con.
The perpetrator sends email messages posing as a financial institution, a govern-
ment bureau, or perhaps a law enforcement agency. The email asks the potential
victim for information that is supposedly needed for legitimate purposes. How-
ever, the information obtained is used by the perpetrator for hostile purposes.

In contrast to suffering from such internal infections as viruses and spyware,
a computer in a network can also be attacked by software being executed on
other computers in the system. An example is a denial of service (DoS) attack,
which is the process of overloading a computer with messages. Denial of service
attacks have been launched against large commercial Web servers on the
Internet to disrupt the company’s business and in some cases have brought the
company’s commercial activity to a halt.

A denial of service attack requires the generation of a large number of mes-
sages over a brief period of time. To accomplish this, an attacker usually plants
software on numerous unsuspecting computers that will generate messages when
a signal is given. Then, when the signal is given, all of these computers swamp the
target with messages. Inherent, then, in denial of service attacks is the availability
of unsuspecting computers to use as accomplices. This is why all PC users are dis-
couraged from leaving their computers connected to the Internet when not in use.
It has been estimated that once a PC is connected to the Internet, at least one
intruder will attempt to exploit its existence within 20 minutes. In turn, an unpro-
tected PC represents a significant threat to the integrity of the Internet.

Another problem associated with an abundance of unwanted messages is the
proliferation of unwanted junk email, called spam. However, unlike a denial of
service attack, the volume of spam is rarely sufficient to overwhelm the com-
puter system. Instead, the effect of spam is to overwhelm the person receiving
the spam. This problem is compounded by the fact that, as we have already seen,
spam is a widely adopted medium for phishing and instigating Trojan horses that
might spread viruses and other detrimental software.

Protection and Cures

The old adage “an ounce of prevention is worth a pound of cure” is certainly true
in the context of controlling vandalism over network connections. A primary
prevention technique is to filter traffic passing through a point in the network,
usually with a program called a firewall. For instance, a firewall might be installed
at the gateway of an organization’s intranet to filter messages passing in and out
of the region. Such firewalls might be designed to block outgoing messages with
certain destination addresses or to block incoming messages from origins that
are known to be sources of trouble. This latter function is a tool for terminating a
denial of service attack because it provides a means of blocking traffic from the
attacking computers. Another common role of a firewall at a gateway is to block
all incoming messages that have origin addresses within the region accessed
through the gateway because such a message would indicate that an outsider is

4.5 Security

175

176

Chapter 4 Networking and the Internet

pretending to be a member of the inside region. Masquerading as a party other
than one’s self is known as spoofing.

Firewalls are also used to protect individual computers rather than entire net-
works or domains. For example, if a computer is not being used as a Web server, a
name server, or an email server, then a firewall should be installed at that com-
puter to block all incoming traffic addressed to such applications. Indeed, one
way an intruder might gain entry to a computer is by establishing contact through
a “hole” left by a nonexistent server. In particular, one method for retrieving infor-
mation gathered by spyware is to establish a clandestine server on the infected
computer by which malicious clients can retrieve the spyware’s findings. A prop-
erly installed firewall could block the messages from these malicious clients.

Some variations of firewalls are designed for specific purposes—an example
being spam filters, which are firewalls designed to block unwanted email. Many
spam filters use rather sophisticated techniques to distinguish between desirable
email and spam. Some learn to make this distinction via a training process in
which the user identifies items of spam until the filter acquires enough examples
to make decisions on its own. These filters are examples of how a variety of
subject areas (probability theory, artificial intelligence, etc.) can jointly con-
tribute to developments in other fields.

Another preventative tool that has filtering connotations is the proxy server.
A proxy server is a software unit that acts as an intermediary between a client
and a server with the goal of shielding the client from adverse actions of the
server. Without a proxy server, a client communicates directly with a server,
meaning that the server has an opportunity to learn a certain amount about the
client. Over time, as many clients within an organization’s intranet deal with a
distant server, that server can collect a multitude of information about the
intranet’s internal structure—information that can later be used for malicious
activity. To counter this, an organization can establish a proxy server for a
particular kind of service (FTP, HTTP, telnet, etc.). Then, each time a client
within the intranet tries to contact a server of that type, the client is actually
placed in contact with the proxy server. In turn, the proxy server, playing the
role of a client, contacts the actual server. From then on the proxy server plays
the role of an intermediary between the actual client and the actual server by
relaying messages back and forth. The first advantage of this arrangement is that
the actual server has no way of knowing that the proxy server is not the true
client, and in fact, it is never aware of the actual client’s existence. In turn, the
actual server has no way of learning about the intranet’s internal features. The
second advantage is that the proxy server is in position to filter all the messages
sent from the server to the client. For example, an FTP proxy server could check
all incoming files for the presence of known viruses and block all infected files.

Still another tool for preventing problems in a network environment is audit-
ing software that is similar to the auditing software we learned about in our dis-
cussion on operating system security (Section 3.5). Using network auditing software,
a system administrator can detect a sudden increase in message traffic at various
locations within the administrator’s realm, monitor the activities of the system’s
firewalls, and analyze the pattern of requests being made by the individual com-
puters in order to detect irregularities. In effect, auditing software is an adminis-
trator’s primary tool for identifying problems before they grow out of control.

Another means of defense against invasions via network connections is soft-
ware called antivirus software, which is used to detect and remove the presence

of known viruses and other infections. (Actually, antivirus software represents a
broad class of software products, each designed to detect and remove a specific
type of infection. For example, whereas many products specialize in virus control,
others specialize in spyware protection.) It is important for users of these pack-
ages to understand that, just as in the case of biological systems, new computer
infections are constantly coming on the scene that require updated vaccines.
Thus, antivirus software must be routinely maintained by downloading updates
from the software’s vendor. Even this, however, does not guarantee the safety of a
computer. After all, a new virus must first infect some computers before it is dis-
covered and a vaccine is produced. Thus, a wise computer user never opens
email attachments from unfamiliar sources, does not download software without
first confirming its reliability, does not respond to pop-up adds, and does not leave
a PC connected to the Internet when such connection is not necessary.

Encryption

In some cases the purpose of network vandalism is to disrupt the system (as in
denial of service attacks), but in other cases the ultimate goal is to gain access to
information. The traditional means of protecting information is to control its
access through the use of passwords. However, passwords can be compromised
and are of little value when data are transferred over networks and internets
where messages are relayed by unknown entities. In these cases encryption can
be used so that even if the data fall into unscrupulous hands, the encoded infor-
mation will remain confidential. Today, many traditional Internet applications
have been altered to incorporate encryption techniques, producing what are called
“secure versions” of the applications. Examples include FTPS, which is a secure
version of FTP, and SSH, which we introduced in Section 4.2 as a secure replace-
ment for telnet.

Still another example is the secure version of HTTP, known as HTTPS, which
is used by most financial institutions to provide customers with secure Internet
access to their accounts. The backbone of HTTPS is the protocol system known as
Secure Sockets Layer (SSL), which was originally developed by Netscape to pro-
vide secure communication links between Web clients and servers. Most browsers
indicate the use of SSL by displaying a tiny padlock icon on the computer screen.
(Some use the presence or absence of the icon to indicate whether SSL is being
used; others display the padlock in either the locked or unlocked position.)

One of the more fascinating topics in the field of encryption is public-key
encryption, which involves techniques by which encryption systems are
designed so that having knowledge about how messages are encrypted does not
allow one to decrypt messages. This characteristic is somewhat counterintuitive.
After all, intuition would suggest that if a person knows how messages are
encrypted, then that person should be able to reverse the encryption process and
thus decrypt messages. But public-key encryption systems defy this intuitive logic.

A public-key encryption system involves the use of two values called keys.
One key, known as the public key, is used to encrypt messages; the other key,
known as the private key, is required to decrypt messages. To use the system,
the public key is first distributed to those who might need to send messages to a
particular destination. The private key is held in confidence at this destination.
Then, the originator of a message can encrypt the message using the public key
and send the message to its destination with assurance that its contents are safe,

4.5 Security

1717

178 | Chapter 4 Networking and the Internet

Pretty Good Privacy

Perhaps the most popular public-key encryption systems used within the Internet
are based on the RSA algorithm, named after its inventors Ron Rivest, Adi Shamir,
and Len Adleman, which we will discuss in detail at the end of Chapter 12. RSA tech-
niques (@mong others) are used in a collection of software packages produced by
PGP Corporation. PGP stands for Pretty Good Privacy. These packages are compatible
with most email software used on PCs and available without charge for personal,
noncommercial use at http://www.pgp.com. Using PGP software, an individual can
generate public and private keys, encrypt messages with public keys, and decrypt
messages with private keys.

even if it is handled by intermediaries who also know the public key. Indeed, the
only party that can decrypt the message is the party at the message’s destination
who holds the private key. Thus if Bob creates a public-key encryption system
and gives both Alice and Carol the public key, then both Alice and Carol can
encrypt messages to Bob, but they cannot spy on the other’'s communication.
Indeed, if Carol intercepts a message from Alice, she cannot decrypt it even though
she knows how Alice encrypted it (Figure 4.16).

There are, of course, subtle problems lurking within public-key systems.
One is to ensure that the public key being used is, in fact, the proper key for the
destination party. For example, if you are communicating with your bank, you

Figure 4.16 Public key encryption

Alice holds Encr

. Ybteq
ublic ke Mesg,
P Y N Both Alice and
Bob holds Carol can send
e5529€S
rypted ™
Carol holds % M

encrypted messages

rivate ke
P Y to Bob.

public key

Alice holds Encr
public key % Ypted Message Carol g
arol cannot decrypt
? Bob holds Alice’'s message even
private key though she knows how

Alice encrypted it.
Carol holds

public key

http://www.pgp.com
http://www.pgp.com

want to be sure that the public key you are using for encryption is the one for the
bank and not an impostor. If an impostor presents itself as the bank (an example
of spoofing) and gives you its public key, the messages you encrypt and send to
the “bank” would be meaningful to the impostor and not your bank. Thus, the
task of associating public keys with correct parties is significant.

One approach to resolving this problem is to establish trusted Internet sites,
called certificate authorities, whose task is to maintain accurate lists of parties
and their public keys. These authorities, acting as servers, then provide reli-
able public-key information to their clients in packages known as certificates. A
certificate is a package containing a party’s name and that party’s public key.
Many commercial certificate authorities are now available on the Internet,
although it is also common for organizations to maintain their own certificate
authorities in order to maintain tighter control over the security of the organiza-
tion’s communication.

Finally, we should comment on the role public-key encryption systems play
in solving problems of authentication—making sure that the author of a mes-
sage is, in fact, the party it claims to be. The critical point here is that, in some
public-key encryption systems, the roles of the encryption and decryption keys
can be reversed. That is, text can be encrypted with the private key, and because
only one party has access to that key, any text that is so encrypted must have
originated from that party. In this manner, the holder of the private key can pro-
duce a bit pattern, called a digital signature, that only that party knows how to
produce. By attaching that signature to a message, the sender can mark the mes-
sage as being authentic. A digital signature can be as simple as the encrypted
version of the message itself. All the sender must do is encrypt the message
being transmitted using his or her private key (the key typically used for
decrypting). When the message is received, the receiver uses the sender’s public
key to decrypt the signature. The message that is revealed is guaranteed to be
authentic because only the holder of the private key could have produced the
encrypted version.

Legal Approaches to Network Security

Another way of enhancing the security of computer networking systems is to
apply legal remedies. There are, however, two obstacles to this approach. The
first is that making an action illegal does not preclude the action. All it does is
provide a legal recourse. The second is that the international nature of
networking means that obtaining recourse is often very difficult. What is illegal
in one country might be legal in another. Ultimately, enhancing network
security by legal means is an international project, and thus must be handled by
international legal bodies—a potential player would be the International Court of
Justice in The Hague.

Having made these disclaimers, we must admit that, although less than per-
fect, legal forces still have a tremendous influence, and thus it behooves us to
explore some of the legal steps that are being taken to resolve conflicts in the
networking arena. For this purpose, we use examples from the federal laws of
the United States. Similar examples could be drawn from other government
bodies such as the European Union.

We begin with the proliferation of malware. In the United States this problem
is addressed by the Computer Fraud and Abuse Act, which was first passed in

4.5 Security

179

180

Chapter 4 Networking and the Internet

1984, although it has been amended several times. It is under this act that most
cases involving the introduction of worms and viruses have been prosecuted. In
short, the act requires proof that the defendant knowingly caused the transmis-
sion of a program or data that intentionally caused damage.

The Computer Fraud and Abuse Act also covers cases involving the theft of
information. In particular, the act outlaws obtaining anything of value via the
unauthorized access of a computer. Courts have tended to assign a broad interpre-
tation to the phrase “anything of value,” and thus the Computer Fraud and Abuse
Act has been applied to more than the theft of information. For instance, courts
have ruled that the mere use of a computer might constitute “anything of value.”

The right of privacy is another, and perhaps the most controversial, networking
issue facing the legal community. Questions involving an employer’s right to mon-
itor the communications of employees and the extent to which an Internet service
provider is authorized to access the information being communicated by its clients
have been given considerable thought. In the United States, many of these ques-
tions are addressed by the Electronic Communication Privacy Act (ECPA) of 1986,
which has its origins in legislation to control wiretapping. Although the act is
lengthy, its intent is captured in a few short excerpts. In particular, it states that

Except as otherwise specifically provided in this chapter any person who intentionally
intercepts, endeavors to intercept, or procures any other person to intercept or endeavor
to intercept, any wire, oral, or electronic communication . . . shall be punished as pro-
vided in subsection (4) or shall be subject to suit as provided in subsection (5).

and

... any person or entity providing an electronic communication service to the public
shall not intentionally divulge the contents of any communication . . . on that service
to any person or entity other than an addressee or intended recipient of such com-
munication or an agent of such addressee or intended recipient.

In brief, the ECPA confirms an individual’s right to private communication—it is
illegal for an Internet service provider to release information about the commu-
nication of its clients, and it is illegal for unauthorized per