
1 FUNCTIONS AND MODELS
1.1 Four Ways to Represent a Function

In exercises requiring estimations or approximations, your answers may vary slightly from the answers given here.

1. (a) The point (−1,−2) is on the graph of f , so f(−1) = −2.

(b) When x = 2, y is about 2.8, so f(2) ≈ 2.8.

(c) f(x) = 2 is equivalent to y = 2. When y = 2, we have x = −3 and x = 1.

(d) Reasonable estimates for x when y = 0 are x = −2.5 and x = 0.3.

(e) The domain of f consists of all x-values on the graph of f . For this function, the domain is −3 ≤ x ≤ 3, or [−3, 3].
The range of f consists of all y-values on the graph of f . For this function, the range is−2 ≤ y ≤ 3, or [−2, 3].

(f ) As x increases from −1 to 3, y increases from −2 to 3. Thus, f is increasing on the interval [−1, 3].

3. From Figure 1 in the text, the lowest point occurs at about (t, a) = (12,−85). The highest point occurs at about (17, 115).

Thus, the range of the vertical ground acceleration is−85 ≤ a ≤ 115. Written in interval notation, we get [−85, 115].

5. No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails

the Vertical Line Test.

7. Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [−3, 2] and the range

is [−3,−2) ∪ [−1, 3].

9. The person’s weight increased to about 160 pounds at age 20 and stayed fairly steady for 10 years. The person’s weight

dropped to about 120 pounds for the next 5 years, then increased rapidly to about 170 pounds. The next 30 years saw a gradual

increase to 190 pounds. Possible reasons for the drop in weight at 30 years of age: diet, exercise, health problems.

11. The water will cool down almost to freezing as the ice

melts. Then, when the ice has melted, the water will

slowly warm up to room temperature.

13. Of course, this graph depends strongly on the

geographical location!

15. As the price increases, the amount sold decreases.

 

17.

9



10 ¤ CHAPTER 1 FUNCTIONS AND MODELS

19. (a) (b) From the graph, we estimate the number of

cell-phone subscribers worldwide to be about

92 million in 1995 and 485 million in 1999.

21. f(x) = 3x2 − x+ 2.

f(2) = 3(2)2 − 2 + 2 = 12− 2 + 2 = 12.
f(−2) = 3(−2)2 − (−2) + 2 = 12 + 2 + 2 = 16.
f(a) = 3a2 − a+ 2.

f(−a) = 3(−a)2 − (−a) + 2 = 3a2 + a+ 2.

f(a+ 1) = 3(a+ 1)2 − (a+ 1) + 2 = 3(a2 + 2a+ 1)− a− 1 + 2 = 3a2 + 6a+ 3− a+ 1 = 3a2 + 5a+ 4.

2f(a) = 2 · f(a) = 2(3a2 − a+ 2) = 6a2 − 2a+ 4.
f(2a) = 3(2a)2 − (2a) + 2 = 3(4a2)− 2a+ 2 = 12a2 − 2a+ 2.
f(a2) = 3(a2)2 − (a2) + 2 = 3(a4)− a2 + 2 = 3a4 − a2 + 2.

[f(a)]2 = 3a2 − a+ 2
2
= 3a2 − a+ 2 3a2 − a+ 2

= 9a4 − 3a3 + 6a2 − 3a3 + a2 − 2a+ 6a2 − 2a+ 4 = 9a4 − 6a3 + 13a2 − 4a+ 4.

f(a+ h) = 3(a+ h)2 − (a+ h) + 2 = 3(a2 + 2ah+ h2)− a− h+ 2 = 3a2 + 6ah+ 3h2 − a− h+ 2.

23. f(x) = 4 + 3x− x2, so f(3 + h) = 4 + 3(3 + h)− (3 + h)2 = 4 + 9 + 3h− (9 + 6h+ h2) = 4− 3h− h2,

and f(3 + h)− f(3)

h
=
(4− 3h− h2)− 4

h
=

h(−3− h)

h
= −3− h.

25. f(x)− f(a)

x− a
=

1

x
− 1

a
x− a

=

a− x

xa
x− a

=
a− x

xa(x− a)
=
−1(x− a)

xa(x− a)
= − 1

ax

27. f(x) = x/(3x− 1) is defined for all x except when 0 = 3x− 1 ⇔ x = 1
3

, so the domain

is x ∈ R | x 6= 1
3
= −∞, 1

3
∪ 1

3 ,∞ .

29. f(t) =
√
t+ 3

√
t is defined when t ≥ 0. These values of t give real number results for

√
t, whereas any value of t gives a real

number result for 3
√
t. The domain is [0,∞).

31. h(x) = 1 4
√
x2 − 5x is defined when x2 − 5x > 0 ⇔ x(x− 5) > 0. Note that x2 − 5x 6= 0 since that would result in

division by zero. The expression x(x− 5) is positive if x < 0 or x > 5. (See Appendix A for methods for solving

inequalities.) Thus, the domain is (−∞, 0) ∪ (5,∞).
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33. f(x) = 5 is defined for all real numbers, so the domain is R, or (−∞,∞).
The graph of f is a horizontal line with y-intercept 5.

35. f(t) = t2 − 6t is defined for all real numbers, so the domain is R, or

(−∞,∞). The graph of f is a parabola opening upward since the coefficient

of t2 is positive. To find the t-intercepts, let y = 0 and solve for t.

0 = t2 − 6t = t(t− 6) ⇒ t = 0 and t = 6. The t-coordinate of the
vertex is halfway between the t-intercepts, that is, at t = 3. Since

f(3) = 32 − 6 · 3 = −9, the vertex is (3,−9).

37. g(x) =
√
x− 5 is defined when x− 5 ≥ 0 or x ≥ 5, so the domain is [5,∞).

Since y =
√
x− 5 ⇒ y2 = x− 5 ⇒ x = y2 +5, we see that g is the

top half of a parabola.

39. G(x) = 3x+ |x|
x

. Since |x| =
x if x ≥ 0
−x if x < 0

, we have

G(x) =

⎧⎪⎨⎪⎩
3x+ x

x
if x > 0

3x− x

x
if x < 0

=

⎧⎪⎨⎪⎩
4x

x
if x > 0

2x

x
if x < 0

=
4 if x > 0

2 if x < 0

Note that G is not defined for x = 0. The domain is (−∞, 0) ∪ (0,∞).

41. f(x) =
x+ 2 if x < 0

1− x if x ≥ 0
The domain is R.

43. f(x) =
x+ 2 if x ≤ −1
x2 if x > −1

Note that for x = −1, both x+ 2 and x2 are equal to 1.

The domain is R.

45. Recall that the slope m of a line between the two points (x1, y1) and (x2, y2) is m =
y2 − y1
x2 − x1

and an equation of the line

connecting those two points is y − y1 = m(x− x1). The slope of this line segment is 7− (−3)
5− 1 =

5

2
, so an equation is

y − (−3) = 5
2
(x− 1). The function is f(x) = 5

2
x− 11

2
, 1 ≤ x ≤ 5.



12 ¤ CHAPTER 1 FUNCTIONS AND MODELS

47. We need to solve the given equation for y. x+ (y − 1)2 = 0 ⇔ (y − 1)2 = −x ⇔ y − 1 = ±√−x ⇔
y = 1±√−x. The expression with the positive radical represents the top half of the parabola, and the one with the negative

radical represents the bottom half. Hence, we want f(x) = 1−√−x. Note that the domain is x ≤ 0.

49. For 0 ≤ x ≤ 3, the graph is the line with slope −1 and y-intercept 3, that is, y = −x+ 3. For 3 < x ≤ 5, the graph is the line

with slope 2 passing through (3, 0); that is, y − 0 = 2(x− 3), or y = 2x− 6. So the function is

f(x) =
−x+ 3 if 0 ≤ x ≤ 3
2x− 6 if 3 < x ≤ 5

51. Let the length and width of the rectangle be L and W . Then the perimeter is 2L+ 2W = 20 and the area is A = LW .

Solving the first equation for W in terms of L gives W =
20− 2L
2

= 10−L. Thus, A(L) = L(10−L) = 10L−L2. Since

lengths are positive, the domain of A is 0 < L < 10. If we further restrict L to be larger than W , then 5 < L < 10 would be

the domain.

53. Let the length of a side of the equilateral triangle be x. Then by the Pythagorean Theorem, the height y of the triangle satisfies

y2 + 1
2x

2
= x2, so that y2 = x2 − 1

4x
2 = 3

4x
2 and y =

√
3
2 x. Using the formula for the area A of a triangle,

A = 1
2
(base)(height), we obtain A(x) = 1

2
(x)

√
3
2
x =

√
3
4
x2, with domain x > 0.

55. Let each side of the base of the box have length x, and let the height of the box be h. Since the volume is 2, we know that

2 = hx2, so that h = 2/x2, and the surface area is S = x2 + 4xh. Thus, S(x) = x2 + 4x(2/x2) = x2 + (8/x), with

domain x > 0.

57. The height of the box is x and the length and width are L = 20− 2x, W = 12− 2x. Then V = LWx and so

V (x) = (20− 2x)(12− 2x)(x) = 4(10− x)(6− x)(x) = 4x(60− 16x+ x2) = 4x3 − 64x2 + 240x.

The sides L, W , and x must be positive. Thus, L > 0 ⇔ 20− 2x > 0 ⇔ x < 10;

W > 0 ⇔ 12− 2x > 0 ⇔ x < 6; and x > 0. Combining these restrictions gives us the domain 0 < x < 6.

59. (a) (b) On $14,000, tax is assessed on $4000, and 10%($4000) = $400.

On $26,000, tax is assessed on $16,000, and

10%($10,000) + 15%($6000) = $1000 + $900 = $1900.

(c) As in part (b), there is $1000 tax assessed on $20,000 of income, so

the graph of T is a line segment from (10,000, 0) to (20,000, 1000).

The tax on $30,000 is $2500, so the graph of T for x > 20,000 is

the ray with initial point (20,000, 1000) that passes through

(30,000, 2500).
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61. f is an odd function because its graph is symmetric about the origin. g is an even function because its graph is symmetric with

respect to the y-axis.

63. (a) Because an even function is symmetric with respect to the y-axis, and the point (5, 3) is on the graph of this even function,

the point (−5, 3) must also be on its graph.

(b) Because an odd function is symmetric with respect to the origin, and the point (5, 3) is on the graph of this odd function,

the point (−5,−3) must also be on its graph.

65. f(x) = x

x2 + 1
.

f(−x) = −x
(−x)2 + 1 =

−x
x2 + 1

= − x

x2 + 1
= −f(x).

So f is an odd function.

67. f(x) = x

x+ 1
, so f(−x) = −x

−x+ 1 =
x

x− 1 .

Since this is neither f(x) nor −f(x), the function f is

neither even nor odd.

69. f(x) = 1 + 3x2 − x4.

f(−x) = 1 + 3(−x)2 − (−x)4 = 1 + 3x2 − x4 = f(x).

So f is an even function.

1.2 Mathematical Models: A Catalog of Essential Functions

1. (a) f(x) = 5
√
x is a root function with n = 5.

(b) g(x) =
√
1− x2 is an algebraic function because it is a root of a polynomial.

(c) h(x) = x9 + x4 is a polynomial of degree 9.

(d) r(x) = x2 + 1

x3 + x
is a rational function because it is a ratio of polynomials.

(e) s(x) = tan 2x is a trigonometric function.

(f ) t(x) = log10 x is a logarithmic function.

3. We notice from the figure that g and h are even functions (symmetric with respect to the y-axis) and that f is an odd function

(symmetric with respect to the origin). So (b) y = x5 must be f . Since g is flatter than h near the origin, we must have

(c) y = x8 matched with g and (a) y = x2 matched with h.
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5. (a) An equation for the family of linear functions with slope 2

is y = f(x) = 2x+ b, where b is the y-intercept.

(b) f(2) = 1 means that the point (2, 1) is on the graph of f . We can use the

point-slope form of a line to obtain an equation for the family of linear

functions through the point (2, 1). y − 1 = m(x− 2), which is equivalent

to y = mx+ (1− 2m) in slope-intercept form.

(c) To belong to both families, an equation must have slope m = 2, so the equation in part (b), y = mx+ (1− 2m),

becomes y = 2x− 3. It is the only function that belongs to both families.

7. All members of the family of linear functions f(x) = c− x have graphs

that are lines with slope −1. The y-intercept is c.

9. Since f(−1) = f(0) = f(2) = 0, f has zeros of −1, 0, and 2, so an equation for f is f(x) = a[x− (−1)](x− 0)(x− 2),
or f(x) = ax(x+ 1)(x− 2). Because f(1) = 6, we’ll substitute 1 for x and 6 for f(x).

6 = a(1)(2)(−1) ⇒ −2a = 6 ⇒ a = −3, so an equation for f is f(x) = −3x(x+ 1)(x− 2).

11. (a) D = 200, so c = 0.0417D(a+ 1) = 0.0417(200)(a+ 1) = 8.34a+ 8.34. The slope is 8.34, which represents the

change in mg of the dosage for a child for each change of 1 year in age.

(b) For a newborn, a = 0, so c = 8.34 mg.

13. (a) (b) The slope of 9
5

means that F increases 9
5

degrees for each increase

of 1◦C. (Equivalently, F increases by 9 when C increases by 5

and F decreases by 9 when C decreases by 5.) The F -intercept of

32 is the Fahrenheit temperature corresponding to a Celsius

temperature of 0.
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15. (a) Using N in place of x and T in place of y, we find the slope to be T2 − T1
N2 −N1

=
80− 70
173− 113 =

10

60
=
1

6
. So a linear

equation is T − 80 = 1
6
(N − 173) ⇔ T − 80 = 1

6
N − 173

6
⇔ T = 1

6
N + 307

6
307
6
= 51.16 .

(b) The slope of 1
6

means that the temperature in Fahrenheit degrees increases one-sixth as rapidly as the number of cricket

chirps per minute. Said differently, each increase of 6 cricket chirps per minute corresponds to an increase of 1◦F.

(c) When N = 150, the temperature is given approximately by T = 1
6
(150) + 307

6
= 76.16 ◦F ≈ 76 ◦F.

17. (a) We are given change in pressure
10 feet change in depth

=
4.34

10
= 0.434. Using P for pressure and d for depth with the point

(d, P ) = (0, 15), we have the slope-intercept form of the line, P = 0.434d+ 15.

(b) When P = 100, then 100 = 0.434d+ 15 ⇔ 0.434d = 85 ⇔ d = 85
0.434 ≈ 195.85 feet. Thus, the pressure is

100 lb/in2 at a depth of approximately 196 feet.

19. (a) The data appear to be periodic and a sine or cosine function would make the best model. A model of the form

f(x) = a cos(bx) + c seems appropriate.

(b) The data appear to be decreasing in a linear fashion. A model of the form f(x) = mx+ b seems appropriate.

Some values are given to many decimal places. These are the results given by several computer algebra systems — rounding is left to the reader.

21. (a)

A linear model does seem appropriate.

(b) Using the points (4000, 14.1) and (60,000, 8.2), we obtain

y − 14.1 = 8.2− 14.1
60,000− 4000 (x− 4000) or, equivalently,

y ≈ −0.000105357x+ 14.521429.

(c) Using a computing device, we obtain the least squares regression line y = −0.0000997855x+ 13.950764.

The following commands and screens illustrate how to find the least squares regression line on a TI-83 Plus.

Enter the data into list one (L1) and list two (L2). Press to enter the editor.

Find the regession line and store it in Y1. Press .
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Note from the last figure that the regression line has been stored in Y1 and that Plot1 has been turned on (Plot1 is

highlighted). You can turn on Plot1 from the Y= menu by placing the cursor on Plot1 and pressing or by

pressing .

Now press to produce a graph of the data and the regression

line. Note that choice 9 of the ZOOM menu automatically selects a window

that displays all of the data.

(d) When x = 25,000, y ≈ 11.456; or about 11.5 per 100 population.

(e) When x = 80,000, y ≈ 5.968; or about a 6% chance.

(f ) When x = 200,000, y is negative, so the model does not apply.

23. (a)

A linear model does seem appropriate.

(b)

Using a computing device, we obtain the least squares
regression line y = 0.089119747x− 158.2403249,
where x is the year and y is the height in feet.

(c) When x = 2000, the model gives y ≈ 20.00 ft. Note that the actual winning height for the 2000 Olympics is less than the

winning height for 1996—so much for that prediction.

(d) When x = 2100, y ≈ 28.91 ft. This would be an increase of 9.49 ft from 1996 to 2100. Even though there was an increase

of 8.59 ft from 1900 to 1996, it is unlikely that a similar increase will occur over the next 100 years.

25. Using a computing device, we obtain the cubic

function y = ax3 + bx2 + cx+ d with
a = 0.0012937, b = −7.06142, c = 12,823,
and d = −7,743,770. When x = 1925,
y ≈ 1914 (million).



SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS ¤ 17

1.3 New Functions from Old Functions

1. (a) If the graph of f is shifted 3 units upward, its equation becomes y = f(x) + 3.

(b) If the graph of f is shifted 3 units downward, its equation becomes y = f(x)− 3.

(c) If the graph of f is shifted 3 units to the right, its equation becomes y = f(x− 3).

(d) If the graph of f is shifted 3 units to the left, its equation becomes y = f(x+ 3).

(e) If the graph of f is reflected about the x-axis, its equation becomes y = −f(x).

(f ) If the graph of f is reflected about the y-axis, its equation becomes y = f(−x).

(g) If the graph of f is stretched vertically by a factor of 3, its equation becomes y = 3f(x).

(h) If the graph of f is shrunk vertically by a factor of 3, its equation becomes y = 1
3f(x).

3. (a) (graph 3) The graph of f is shifted 4 units to the right and has equation y = f(x− 4).

(b) (graph 1) The graph of f is shifted 3 units upward and has equation y = f(x) + 3.

(c) (graph 4) The graph of f is shrunk vertically by a factor of 3 and has equation y = 1
3
f(x).

(d) (graph 5) The graph of f is shifted 4 units to the left and reflected about the x-axis. Its equation is y = −f(x+ 4).

(e) (graph 2) The graph of f is shifted 6 units to the left and stretched vertically by a factor of 2. Its equation is

y = 2f(x+ 6).

5. (a) To graph y = f(2x) we shrink the graph of f
horizontally by a factor of 2.

The point (4,−1) on the graph of f corresponds to the

point 1
2 · 4,−1 = (2,−1).

(b) To graph y = f 1
2
x we stretch the graph of f

horizontally by a factor of 2.

The point (4,−1) on the graph of f corresponds to the

point (2 · 4,−1) = (8,−1).

(c) To graph y = f(−x) we reflect the graph of f about
the y-axis.

The point (4,−1) on the graph of f corresponds to the

point (−1 · 4,−1) = (−4,−1).

(d) To graph y = −f(−x) we reflect the graph of f about
the y-axis, then about the x-axis.

The point (4,−1) on the graph of f corresponds to the

point (−1 · 4,−1 ·−1) = (−4, 1).
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7. The graph of y = f(x) =
√
3x− x2 has been shifted 4 units to the left, reflected about the x-axis, and shifted downward

1 unit. Thus, a function describing the graph is

y = −1 ·
reflect

about x-axis

f (x+ 4)

shift
4 units left

− 1

shift
1 unit left

This function can be written as

y = −f(x+ 4)− 1 = − 3(x+ 4)− (x+ 4)2 − 1 = − 3x+ 12− (x2 + 8x+ 16)− 1 = −√−x2 − 5x− 4− 1

9. y = −x3: Start with the graph of y = x3 and reflect

about the x-axis. Note: Reflecting about the y-axis

gives the same result since substituting−x for x gives

us y = (−x)3 = −x3.

11. y = (x+ 1)2: Start with the graph of y = x2

and shift 1 unit to the left.

13. y = 1 + 2 cosx: Start with the graph of y = cosx, stretch vertically by a factor of 2, and then shift 1 unit upward.

15. y = sin(x/2): Start with the graph of y = sinx and stretch horizontally by a factor of 2.
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17. y =
√
x+ 3 : Start with the graph of

y =
√
x and shift 3 units to the left.

19. y = 1
2 (x

2 + 8x) = 1
2 (x

2 + 8x+ 16)− 8 = 1
2 (x+ 4)

2 − 8: Start with the graph of y = x2, compress vertically by a

factor of 2, shift 4 units to the left, and then shift 8 units downward.

0 0 0 0

21. y = 2/(x+ 1): Start with the graph of y = 1/x, shift 1 unit to the left, and then stretch vertically by a factor of 2.

23. y = |sinx|: Start with the graph of y = sinx and reflect all the parts of the graph below the x-axis about the x-axis.

25. This is just like the solution to Example 4 except the amplitude of the curve (the 30◦N curve in Figure 9 on June 21) is

14− 12 = 2. So the function is L(t) = 12 + 2 sin 2π
365 (t− 80) . March 31 is the 90th day of the year, so the model gives

L(90) ≈ 12.34 h. The daylight time (5:51 AM to 6:18 PM) is 12 hours and 27 minutes, or 12.45 h. The model value differs

from the actual value by 12.45−12.34
12.45 ≈ 0.009, less than 1%.

27. (a) To obtain y = f(|x|), the portion of the graph of y = f(x) to the right of the y-axis is reflected about the y-axis.

(b) y = sin |x| (c) y = |x|
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29. f(x) = x3 + 2x2; g(x) = 3x2 − 1. D = R for both f and g.

(f + g)(x) = (x3 + 2x2) + (3x2 − 1) = x3 + 5x2 − 1, D = R.

(f − g)(x) = (x3 + 2x2)− (3x2 − 1) = x3 − x2 + 1, D = R.

(fg)(x) = (x3 + 2x2)(3x2 − 1) = 3x5 + 6x4 − x3 − 2x2, D = R.

f

g
(x) =

x3 + 2x2

3x2 − 1 , D = x | x 6= ± 1√
3

since 3x2 − 1 6= 0.

31. f(x) = x2 − 1, D = R; g(x) = 2x+ 1, D = R.

(a) (f ◦ g)(x) = f(g(x)) = f(2x+ 1) = (2x+ 1)2 − 1 = (4x2 + 4x+ 1)− 1 = 4x2 + 4x, D = R.

(b) (g ◦ f)(x) = g(f(x)) = g(x2 − 1) = 2(x2 − 1) + 1 = (2x2 − 2) + 1 = 2x2 − 1, D = R.

(c) (f ◦ f)(x) = f(f(x)) = f(x2 − 1) = (x2 − 1)2 − 1 = (x4 − 2x2 + 1)− 1 = x4 − 2x2, D = R.

(d) (g ◦ g)(x) = g(g(x)) = g(2x+ 1) = 2(2x+ 1) + 1 = (4x+ 2) + 1 = 4x+ 3, D = R.

33. f(x) = 1− 3x; g(x) = cosx. D = R for both f and g, and hence for their composites.

(a) (f ◦ g)(x) = f(g(x)) = f(cosx) = 1− 3 cosx.

(b) (g ◦ f)(x) = g(f(x)) = g(1− 3x) = cos(1− 3x).

(c) (f ◦ f)(x) = f(f(x)) = f(1− 3x) = 1− 3(1− 3x) = 1− 3 + 9x = 9x− 2.

(d) (g ◦ g)(x) = g(g(x)) = g(cosx) = cos(cosx) [Note that this is not cosx · cosx.]

35. f(x) = x+
1

x
, D = {x | x 6= 0}; g(x) =

x+ 1

x+ 2
, D = {x | x 6= −2}

(a) (f ◦ g)(x) = f(g(x)) = f
x+ 1

x+ 2
=

x+ 1

x+ 2
+

1
x+ 1

x+ 2

=
x+ 1

x+ 2
+

x+ 2

x+ 1

=
(x+ 1)(x+ 1) + (x+ 2)(x+ 2)

(x+ 2)(x+ 1)
=

x2 + 2x+ 1 + x2 + 4x+ 4

(x+ 2)(x+ 1)
=

2x2 + 6x+ 5

(x+ 2)(x+ 1)

Since g(x) is not defined for x = −2 and f(g(x)) is not defined for x = −2 and x = −1,
the domain of (f ◦ g)(x) is D = {x | x 6= −2,−1}.

(b) (g ◦ f)(x) = g(f(x)) = g x+
1

x
=

x+
1

x
+ 1

x+
1

x
+ 2

=

x2 + 1 + x

x
x2 + 1 + 2x

x

=
x2 + x+ 1

x2 + 2x+ 1
=

x2 + x+ 1

(x+ 1)2

Since f(x) is not defined for x = 0 and g(f(x)) is not defined for x = −1,

the domain of (g ◦ f)(x) is D = {x | x 6= −1, 0}.

(c) (f ◦ f)(x) = f(f(x)) = f x+
1

x
= x+

1

x
+

1

x+ 1
x

= x+
1

x
+

1
x2+1
x

= x+
1

x
+

x

x2 + 1

=
x(x) x2 + 1 + 1 x2 + 1 + x(x)

x(x2 + 1)
=

x4 + x2 + x2 + 1 + x2

x(x2 + 1)

=
x4 + 3x2 + 1

x(x2 + 1)
, D = {x | x 6= 0}
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(d) (g ◦ g)(x) = g(g(x)) = g
x+ 1

x+ 2
=

x+ 1

x+ 2
+ 1

x+ 1

x+ 2
+ 2

=

x+ 1 + 1(x+ 2)

x+ 2
x+ 1 + 2(x+ 2)

x+ 2

=
x+ 1 + x+ 2

x+ 1 + 2x+ 4
=
2x+ 3

3x+ 5

Since g(x) is not defined for x = −2 and g(g(x)) is not defined for x = − 5
3 ,

the domain of (g ◦ g)(x) is D = x | x 6= −2,− 5
3

.

37. (f ◦ g ◦ h)(x) = f(g(h(x))) = f(g(x− 1)) = f(2(x− 1)) = 2(x− 1) + 1 = 2x− 1

39. (f ◦ g ◦ h)(x) = f(g(h(x))) = f(g(x3 + 2)) = f [(x3 + 2)2]

= f(x6 + 4x3 + 4) = (x6 + 4x3 + 4)− 3 = √x6 + 4x3 + 1

41. Let g(x) = x2 + 1 and f(x) = x10. Then (f ◦ g)(x) = f(g(x)) = f(x2 + 1) = (x2 + 1)10 = F (x).

43. Let g(x) = 3
√
x and f(x) = x

1 + x
. Then (f ◦ g)(x) = f(g(x)) = f( 3

√
x ) =

3
√
x

1 + 3
√
x
= F (x).

45. Let g(t) = cos t and f(t) =
√
t. Then (f ◦ g)(t) = f(g(t)) = f(cos t) =

√
cos t = u(t).

47. Let h(x) = x2, g(x) = 3x, and f(x) = 1 − x. Then

(f ◦ g ◦ h)(x) = f(g(h(x))) = f(g(x2)) = f 3x
2
= 1− 3x2 = H(x).

49. Let h(x) =
√
x, g(x) = secx, and f(x) = x4. Then

(f ◦ g ◦ h)(x) = f(g(h(x))) = f(g(
√
x )) = f(sec

√
x ) = (sec

√
x )

4
= sec4 (

√
x ) = H(x).

51. (a) g(2) = 5, because the point (2, 5) is on the graph of g. Thus, f(g(2)) = f(5) = 4, because the point (5, 4) is on the
graph of f .

(b) g(f(0)) = g(0) = 3

(c) (f ◦ g)(0) = f(g(0)) = f(3) = 0

(d) (g ◦ f)(6) = g(f(6)) = g(6). This value is not defined, because there is no point on the graph of g that has
x-coordinate 6.

(e) (g ◦ g)(−2) = g(g(−2)) = g(1) = 4

(f ) (f ◦ f)(4) = f(f(4)) = f(2) = −2
53. (a) Using the relationship distance = rate · time with the radius r as the distance, we have r(t) = 60t.

(b) A = πr2 ⇒ (A ◦ r)(t) = A(r(t)) = π(60t)2 = 3600πt2. This formula gives us the extent of the rippled area
(in cm2) at any time t.

55. (a) From the figure, we have a right triangle with legs 6 and d, and hypotenuse s.

By the Pythagorean Theorem, d2 + 62 = s2 ⇒ s = f(d) =
√
d 2 + 36.

(b) Using d = rt, we get d = (30 km/hr)(t hr) = 30t (in km). Thus,

d = g(t) = 30t.

(c) (f ◦ g)(t) = f(g(t)) = f(30t) = (30t)2 + 36 =
√
900t2 + 36. This function represents the distance between the

lighthouse and the ship as a function of the time elapsed since noon.
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57. (a)

H(t) =
0 if t < 0

1 if t ≥ 0

(b)

V (t) =
0 if t < 0

120 if t ≥ 0 so V (t) = 120H(t).

(c) Starting with the formula in part (b), we replace 120 with 240 to reflect the

different voltage. Also, because we are starting 5 units to the right of t = 0,

we replace t with t− 5. Thus, the formula is V (t) = 240H(t− 5).

59. If f(x) = m1x + b1 and g(x) = m2x + b2, then

(f ◦ g)(x) = f(g(x)) = f(m2x+ b2) = m1(m2x+ b2) + b1 = m1m2x+m1b2 + b1.

So f ◦ g is a linear function with slope m1m2.

61. (a) By examining the variable terms in g and h, we deduce that we must square g to get the terms 4x2 and 4x in h. If we let

f(x) = x2 + c, then (f ◦ g)(x) = f(g(x)) = f(2x+ 1) = (2x+ 1)2 + c = 4x2 + 4x+ (1 + c). Since

h(x) = 4x2 + 4x+ 7, we must have 1 + c = 7. So c = 6 and f(x) = x2 + 6.

(b) We need a function g so that f(g(x)) = 3(g(x)) + 5 = h(x). But

h(x) = 3x2 + 3x+ 2 = 3(x2 + x) + 2 = 3(x2 + x− 1) + 5, so we see that g(x) = x2 + x− 1.

63. (a) If f and g are even functions, then f(−x) = f(x) and g(−x) = g(x).
(i) (f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) = (f + g)(x), so f + g is an even function.

(ii) (fg)(−x) = f(−x) · g(−x) = f(x) · g(x) = (fg)(x), so fg is an even function.

(b) If f and g are odd functions, then f(−x) = −f(x) and g(−x) = −g(x).
(i) (f + g)(−x) = f(−x) + g(−x) = −f(x) + [−g(x)] = −[f(x) + g(x)] = −(f + g)(x),

so f + g is an odd function.
(ii) (fg)(−x) = f(−x) · g(−x) = −f(x) · [−g(x)] = f(x) · g(x) = (fg)(x), so fg is an even function.

65. We need to examine h(−x).
h(−x) = (f ◦ g)(−x) = f(g(−x)) = f(g(x)) [because g is even] = h(x)

Because h(−x) = h(x), h is an even function.
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1.4 Graphing Calculators and Computers

1. f(x) =
√
x3 − 5x2

(a) [−5, 5] by [−5, 5]
(There is no graph shown.)

(b) [0, 10] by [0, 2] (c) [0, 10] by [0, 10]

The most appropriate graph is produced in viewing rectangle (c).

3. Since the graph of f(x) = 5 + 20x− x2 is a

parabola opening downward, an appropriate viewing

rectangle should include the maximum point.

5. f(x) = 4
√
81− x4 is defined when 81− x4 ≥ 0 ⇔

x4 ≤ 81 ⇔ |x| ≤ 3, so the domain of f is [−3, 3]. Also

0 ≤ 4
√
81− x4 ≤ 4

√
81 = 3, so the range is [0, 3].

7. The graph of f(x) = x3 − 225x is symmetric with respect to the origin.

Since f(x) = x3 − 225x = x(x2 − 225) = x(x+ 15)(x− 15), there

are x-intercepts at 0, −15, and 15. f(20) = 3500.

9. The period of g(x) = sin(1000x) is 2π
1000

≈ 0.0063 and its range is

[−1, 1]. Since f(x) = sin2(1000x) is the square of g, its range is

[0, 1] and a viewing rectangle of [−0.01, 0.01] by [0, 1.1] seems

appropriate.

11. The domain of y =
√
x is x ≥ 0, so the domain of f(x) = sin

√
x is [0,∞)

and the range is [−1, 1]. With a little trial-and-error experimentation, we find

that an Xmax of 100 illustrates the general shape of f , so an appropriate

viewing rectangle is [0, 100] by [−1.5, 1.5].
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13. The first term, 10 sinx, has period 2π and range [−10, 10]. It will be the dominant term in any “large” graph of

y = 10 sinx+ sin 100x, as shown in the first figure. The second term, sin 100x, has period 2π
100

= π
50

and range [−1, 1].

It causes the bumps in the first figure and will be the dominant term in any “small” graph, as shown in the view near the

origin in the second figure.

15. We must solve the given equation for y to obtain equations for the upper and
lower halves of the ellipse.

4x2 + 2y2 = 1 ⇔ 2y2 = 1− 4x2 ⇔ y2 =
1− 4x2
2

⇔

y = ± 1− 4x2
2

17. From the graph of y = 3x2 − 6x+ 1
and y = 0.23x− 2.25 in the viewing

rectangle [−1, 3] by [−2.5, 1.5], it is

difficult to see if the graphs intersect.

If we zoom in on the fourth quadrant,

we see the graphs do not intersect.

19. From the graph of f(x) = x3 − 9x2 − 4, we see that there is one solution

of the equation f(x) = 0 and it is slightly larger than 9. By zooming in or

using a root or zero feature, we obtain x ≈ 9.05.

21. We see that the graphs of f(x) = x2 and g(x) = sinx intersect twice. One

solution is x = 0. The other solution of f = g is the x-coordinate of the
point of intersection in the first quadrant. Using an intersect feature or

zooming in, we find this value to be approximately 0.88. Alternatively, we

could find that value by finding the positive zero of h(x) = x2 − sinx.

Note: After producing the graph on a TI-83 Plus, we can find the approximate value 0.88 by using the following keystrokes:

. The “1” is just a guess for 0.88.
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23. g(x) = x3/10 is larger than f(x) = 10x2 whenever x > 100.

25. We see from the graphs of y = |sinx− x| and y = 0.1 that there are

two solutions to the equation |sinx− x| = 0.1: x ≈ −0.85 and

x ≈ 0.85. The condition |sinx− x| < 0.1 holds for any x lying

between these two values, that is, −0.85 < x < 0.85.

27. (a) The root functions y =
√
x,

y = 4
√
x and y = 6

√
x

(b) The root functions y = x,

y = 3
√
x and y = 5

√
x

(c) The root functions y =
√
x, y = 3

√
x,

y = 4
√
x and y = 5

√
x

(d) • For any n, the nth root of 0 is 0 and the nth root of 1 is 1; that is, all nth root functions pass through the points (0, 0)
and (1, 1).

• For odd n, the domain of the nth root function is R, while for even n, it is {x ∈ R | x ≥ 0}.
• Graphs of even root functions look similar to that of

√
x, while those of odd root functions resemble that of 3

√
x.

• As n increases, the graph of n
√
x becomes steeper near 0 and flatter for x > 1.

29. f(x) = x4 + cx2 + x. If c < −1.5, there are three humps: two minimum points

and a maximum point. These humps get flatter as c increases, until at c = −1.5
two of the humps disappear and there is only one minimum point. This single

hump then moves to the right and approaches the origin as c increases.

31. y = xn2−x. As n increases, the maximum of the

function moves further from the origin, and gets

larger. Note, however, that regardless of n, the

function approaches 0 as x→∞.
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33. y2 = cx3 + x2. If c < 0, the loop is to the right of the origin, and if c is positive,

it is to the left. In both cases, the closer c is to 0, the larger the loop is. (In the

limiting case, c = 0, the loop is “infinite,” that is, it doesn’t close.) Also, the

larger |c| is, the steeper the slope is on the loopless side of the origin.

35. The graphing window is 95 pixels wide and we want to start with x = 0 and end with x = 2π. Since there are 94 “gaps”

between pixels, the distance between pixels is 2π−0
94 . Thus, the x-values that the calculator actually plots are x = 0 + 2π

94 · n,

where n = 0, 1, 2, . . . , 93, 94. For y = sin 2x, the actual points plotted by the calculator are 2π
94
· n, sin 2 · 2π

94
· n for

n = 0, 1, . . . , 94. For y = sin 96x, the points plotted are 2π
94
· n, sin 96 · 2π

94
· n for n = 0, 1, . . . , 94. But

sin 96 · 2π
94
· n = sin 94 · 2π

94
· n+ 2 · 2π

94
· n = sin 2πn+ 2 · 2π

94
· n

= sin 2 · 2π94 · n [by periodicity of sine], n = 0, 1, . . . , 94

So the y-values, and hence the points, plotted for y = sin 96x are identical to those plotted for y = sin 2x.
Note: Try graphing y = sin 94x. Can you see why all the y-values are zero?

1.5 Exponential Functions

1. (a) f(x) = ax, a > 0 (b) R (c) (0,∞) (d) See Figures 4(c), 4(b), and 4(a), respectively.

3. All of these graphs approach 0 as x→−∞, all of them pass through the point

(0, 1), and all of them are increasing and approach∞ as x→∞. The larger the

base, the faster the function increases for x > 0, and the faster it approaches 0 as

x→−∞.

Note: The notation “x→∞” can be thought of as “x becomes large” at this point.

More details on this notation are given in Chapter 2.

5. The functions with bases greater than 1 (3x and 10x) are increasing, while those

with bases less than 1 1
3

x and 1
10

x are decreasing. The graph of 1
3

x is the

reflection of that of 3x about the y-axis, and the graph of 1
10

x is the reflection of

that of 10x about the y-axis. The graph of 10x increases more quickly than that of

3x for x > 0, and approaches 0 faster as x→−∞.

7. We start with the graph of y = 4x (Figure 3) and then

shift 3 units downward. This shift doesn’t affect the

domain, but the range of y = 4x − 3 is (−3,∞) .
There is a horizontal asymptote of y = −3.

y = 4x y = 4x − 3
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9. We start with the graph of y = 2x (Figure 3),

reflect it about the y-axis, and then about the

x-axis (or just rotate 180◦ to handle both

reflections) to obtain the graph of y = −2−x.

In each graph, y = 0 is the horizontal

asymptote.
y = 2x y = 2−x y = −2−x

11. We start with the graph of y = ex (Figure 13) and reflect about the y-axis to get the graph of y = e−x. Then we compress the

graph vertically by a factor of 2 to obtain the graph of y = 1
2
e−x and then reflect about the x-axis to get the graph of

y = − 1
2
e−x. Finally, we shift the graph upward one unit to get the graph of y = 1− 1

2
e−x.

13. (a) To find the equation of the graph that results from shifting the graph of y = ex 2 units downward, we subtract 2 from the

original function to get y = ex − 2.

(b) To find the equation of the graph that results from shifting the graph of y = ex 2 units to the right, we replace x with x− 2
in the original function to get y = e(x−2).

(c) To find the equation of the graph that results from reflecting the graph of y = ex about the x-axis, we multiply the original

function by −1 to get y = −ex.

(d) To find the equation of the graph that results from reflecting the graph of y = ex about the y-axis, we replace x with −x in

the original function to get y = e−x.

(e) To find the equation of the graph that results from reflecting the graph of y = ex about the x-axis and then about the

y-axis, we first multiply the original function by −1 (to get y = −ex) and then replace x with −x in this equation to

get y = −e−x.

15. (a) The denominator 1 + ex is never equal to zero because ex > 0, so the domain of f(x) = 1/(1 + ex) is R.

(b) 1− ex = 0 ⇔ ex = 1 ⇔ x = 0, so the domain of f(x) = 1/(1− ex) is (−∞, 0) ∪ (0,∞).

17. Use y = Cax with the points (1, 6) and (3, 24). 6 = Ca1 C = 6
a

and 24 = Ca3 ⇒ 24 =
6

a
a3 ⇒

4 = a2 ⇒ a = 2 [since a > 0] and C = 6
2
= 3. The function is f(x) = 3 · 2x.

19. If f(x) = 5x, then f(x+ h)− f(x)

h
=
5x+h − 5x

h
=
5x5h − 5x

h
=
5x 5h − 1

h
= 5x

5h − 1
h

.
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21. 2 ft = 24 in, f(24) = 242 in = 576 in = 48 ft. g(24) = 224 in = 224/(12 · 5280) mi ≈ 265 mi

23. The graph of g finally surpasses that of f at x ≈ 35.8.

25. (a) Fifteen hours represents 5 doubling periods (one doubling period is three hours). 100 · 25 = 3200

(b) In t hours, there will be t/3 doubling periods. The initial population is 100,

so the population y at time t is y = 100 · 2t/3.

(c) t = 20 ⇒ y = 100 · 220/3 ≈ 10,159

(d) We graph y1 = 100 · 2x/3 and y2 = 50,000. The two curves intersect at

x ≈ 26.9, so the population reaches 50,000 in about 26.9 hours.

27. An exponential model is y = abt, where a = 3.154832569× 10−12

and b = 1.017764706. This model gives y(1993) ≈ 5498 million and

y(2010) ≈ 7417 million.

29. From the graph, it appears that f is an odd function (f is undefined for x = 0).

To prove this, we must show that f(−x) = −f(x).

f(−x) = 1− e1/(−x)

1 + e1/(−x)
=
1− e(−1/x)

1 + e(−1/x)
=
1− 1

e1/x

1 +
1

e1/x

· e
1/x

e1/x
=

e1/x − 1
e1/x + 1

= −1− e1/x

1 + e1/x
= −f(x)

so f is an odd function.

1.6 Inverse Functions and Logarithms

1. (a) See Definition 1.

(b) It must pass the Horizontal Line Test.

3. f is not one-to-one because 2 6= 6, but f(2) = 2.0 = f(6).

5. No horizontal line intersects the graph of f more than once. Thus, by the Horizontal Line Test, f is one-to-one.
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7. The horizontal line y = 0 (the x-axis) intersects the graph of f in more than one point. Thus, by the Horizontal Line Test,

f is not one-to-one.

9. The graph of f(x) = x2 − 2x is a parabola with axis of symmetry x = − b

2a
= − −2

2(1)
= 1. Pick any x-values equidistant

from 1 to find two equal function values. For example, f(0) = 0 and f(2) = 0, so f is not one-to-one.

11. g(x) = 1/x. x1 6= x2 ⇒ 1/x1 6= 1/x2 ⇒ g (x1) 6= g (x2), so g is one-to-one.

Geometric solution: The graph of g is the hyperbola shown in Figure 14 in Section 1.2. It passes the Horizontal Line Test,

so g is one-to-one.

13. A football will attain every height h up to its maximum height twice: once on the way up, and again on the way down. Thus,

even if t1 does not equal t2, f(t1) may equal f(t2), so f is not 1-1.

15. Since f(2) = 9 and f is 1-1, we know that f−1(9) = 2. Remember, if the point (2, 9) is on the graph of f , then the point

(9, 2) is on the graph of f−1.

17. First, we must determine x such that g(x) = 4. By inspection, we see that if x = 0, then g(x) = 4. Since g is 1-1 (g is an

increasing function), it has an inverse, and g−1(4) = 0.

19. We solve C = 5
9 (F − 32) for F : 9

5C = F − 32 ⇒ F = 9
5C + 32. This gives us a formula for the inverse function, that

is, the Fahrenheit temperature F as a function of the Celsius temperature C. F ≥ −459.67 ⇒ 9
5C + 32 ≥ −459.67 ⇒

9
5C ≥ −491.67 ⇒ C ≥ −273.15, the domain of the inverse function.

21. f(x) =
√
10− 3x ⇒ y =

√
10− 3x (y ≥ 0) ⇒ y2 = 10− 3x ⇒ 3x = 10− y2 ⇒ x = − 1

3
y2 + 10

3
.

Interchange x and y: y = − 1
3x

2 + 10
3 . So f−1(x) = − 1

3x
2 + 10

3 . Note that the domain of f−1 is x ≥ 0.

23. y = f(x) = ex
3 ⇒ ln y = x3 ⇒ x = 3

√
ln y. Interchange x and y: y = 3

√
lnx. So f−1(x) = 3

√
lnx.

25. y = f(x) = ln (x+ 3) ⇒ x+ 3 = ey ⇒ x = ey − 3. Interchange x and y: y = ex − 3. So f−1(x) = ex − 3.

27. y = f(x) = x4 + 1 ⇒ y − 1 = x4 ⇒ x = 4
√
y − 1 (not ± since

x ≥ 0). Interchange x and y : y = 4
√
x− 1. So f−1(x) = 4

√
x− 1. The

graph of y = 4
√
x− 1 is just the graph of y = 4

√
x shifted right one unit.

From the graph, we see that f and f−1 are reflections about the line y = x.

29. Reflect the graph of f about the line y = x. The points (−1,−2), (1,−1),
(2, 2), and (3, 3) on f are reflected to (−2,−1), (−1, 1), (2, 2), and (3, 3)

on f−1.
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31. (a) It is defined as the inverse of the exponential function with base a, that is, loga x = y ⇔ ay = x.

(b) (0,∞) (c) R (d) See Figure 11.

33. (a) log5 125 = 3 since 53 = 125. (b) log3
1

27
= −3 since 3−3 = 1

33
=
1

27
.

35. (a) log2 6− log2 15 + log2 20 = log2( 615 ) + log2 20 [by Law 2]

= log2(
6
15
· 20) [by Law 1]

= log2 8, and log2 8 = 3 since 23 = 8.

(b) log3 100− log3 18− log3 50 = log3
100
18

− log3 50 = log3 100
18·50

= log3(
1
9
), and log3

1
9
= −2 since 3−2 = 1

9
.

37. ln 5 + 5 ln 3 = ln 5 + ln 35 [by Law 3]

= ln(5 · 35) [by Law 1]

= ln1215

39. ln(1 + x2) + 1
2 lnx− ln sinx = ln(1 + x2) + lnx1/2 − ln sinx = ln[(1 + x2)

√
x ]− ln sinx = ln (1 + x2)

√
x

sinx

41. To graph these functions, we use log1.5 x =
lnx

ln 1.5
and log50 x =

lnx

ln 50
.

These graphs all approach−∞ as x→ 0+, and they all pass through the

point (1, 0). Also, they are all increasing, and all approach∞ as x→∞.

The functions with larger bases increase extremely slowly, and the ones with

smaller bases do so somewhat more quickly. The functions with large bases

approach the y-axis more closely as x→ 0+.

43. 3 ft = 36 in, so we need x such that log2 x = 36 ⇔ x = 236 = 68,719,476,736. In miles, this is

68,719,476,736 in · 1 ft
12 in

· 1 mi
5280 ft

≈ 1,084,587.7 mi.

45. (a) Shift the graph of y = log10 x five units to the left to

obtain the graph of y = log10(x+5). Note the vertical

asymptote of x = −5.

y = log10 x y = log10(x+ 5)

(b) Reflect the graph of y = lnx about the x-axis to obtain

the graph of y = − lnx.

y = lnx y = − lnx

47. (a) 2 lnx = 1 ⇒ lnx = 1
2
⇒ x = e1/2 =

√
e

(b) e−x = 5 ⇒ −x = ln 5 ⇒ x = − ln 5
49. (a) 2x−5 = 3 ⇔ log2 3 = x− 5 ⇔ x = 5 + log2 3.

Or: 2x−5 = 3 ⇔ ln 2x−5 = ln3 ⇔ (x− 5) ln 2 = ln 3 ⇔ x− 5 = ln 3

ln 2
⇔ x = 5 +

ln 3

ln 2
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(b) lnx+ ln(x− 1) = ln(x(x− 1)) = 1 ⇔ x(x− 1) = e1 ⇔ x2 − x− e = 0. The quadratic formula (with a = 1,

b = −1, and c = −e) gives x = 1
2
1±√1 + 4e , but we reject the negative root since the natural logarithm is not

defined for x < 0. So x = 1
2
1 +

√
1 + 4e .

51. (a) ex < 10 ⇒ ln ex < ln 10 ⇒ x < ln 10 ⇒ x ∈ (−∞, ln 10)

(b) lnx > −1 ⇒ elnx > e−1 ⇒ x > e−1 ⇒ x ∈ (1/e,∞)

53. (a) For f(x) =
√
3− e2x, we must have 3− e2x ≥ 0 ⇒ e2x ≤ 3 ⇒ 2x ≤ ln 3 ⇒ x ≤ 1

2 ln 3. Thus, the domain

of f is (−∞, 12 ln 3].

(b) y = f(x) =
√
3− e2x [note that y ≥ 0] ⇒ y2 = 3− e2x ⇒ e2x = 3− y2 ⇒ 2x = ln(3− y2) ⇒

x = 1
2
ln(3− y2). Interchange x and y: y = 1

2
ln(3− x2). So f−1(x) = 1

2
ln(3− x2). For the domain of f−1, we must

have 3− x2 > 0 ⇒ x2 < 3 ⇒ |x| < √3 ⇒ −√3 < x <
√
3 ⇒ 0 ≤ x <

√
3 since x ≥ 0. Note that the

domain of f−1, [0,
√
3 ), equals the range of f .

55. We see that the graph of y = f(x) =
√
x3 + x2 + x+ 1 is increasing, so f is 1-1.

Enter x = y3 + y2 + y + 1 and use your CAS to solve the equation for y.

Using Derive, we get two (irrelevant) solutions involving imaginary expressions,

as well as one which can be simplified to the following:

y = f−1(x) = − 3√4
6

3
√
D − 27x2 + 20− 3

√
D + 27x2 − 20 + 3

√
2

where D = 3
√
3
√
27x4 − 40x2 + 16.

Maple and Mathematica each give two complex expressions and one real expression, and the real expression is equivalent

to that given by Derive. For example, Maple’s expression simplifies to 1
6

M2/3 − 8− 2M1/3

2M1/3
, where

M = 108x2 + 12
√
48− 120x2 + 81x4 − 80.

57. (a) n = 100 · 2t/3 ⇒ n

100
= 2t/3 ⇒ log2

n

100
=

t

3
⇒ t = 3 log2

n

100
. Using formula (10), we can write

this as t = f−1(n) = 3 · ln(n/100)
ln 2

. This function tells us how long it will take to obtain n bacteria (given the number n).

(b) n = 50,000 ⇒ t = f−1(50,000) = 3 · ln
50,000
100

ln 2
= 3

ln 500

ln 2
≈ 26.9 hours

59. (a) sin−1
√
3
2

= π
3 since sin π

3 =
√
3
2 and π

3 is in −π
2 ,

π
2

.

(b) cos−1(−1) = π since cosπ = −1 and π is in [0, π].

61. (a) arctan 1 = π
4 since tan π

4 = 1 and π
4 is in −π

2 ,
π
2

.

(b) sin−1 1√
2
= π

4 since sin π
4 =

1√
2

and π
4 is in −π

2 ,
π
2

.
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63. (a) In general, tan(arctanx) = x for any real number x. Thus, tan(arctan 10) = 10.

(b) sin−1 sin 7π
3

= sin−1 sin π
3
= sin−1

√
3
2
= π

3
since sin π

3
=
√
3
2

and π
3

is in −π
2
, π
2

.

[Recall that 7π
3 = π

3 + 2π and the sine function is periodic with period 2π.]

65. Let y = sin−1 x. Then −π
2
≤ y ≤ π

2
⇒ cos y ≥ 0, so cos(sin−1 x) = cos y = 1− sin2 y = √1− x2.

67. Let y = tan−1 x. Then tan y = x, so from the triangle we see that

sin(tan−1 x) = sin y =
x√
1 + x2

.

69. The graph of sin−1 x is the reflection of the graph of

sinx about the line y = x.

71. g(x) = sin−1(3x+ 1).

Domain (g) = {x | −1 ≤ 3x+ 1 ≤ 1} = {x | −2 ≤ 3x ≤ 0} = x | −2
3
≤ x ≤ 0 = − 2

3
, 0 .

Range (g) = y | −π
2
≤ y ≤ π

2
= −π

2
, π
2

.

73. (a) If the point (x, y) is on the graph of y = f(x), then the point (x− c, y) is that point shifted c units to the left. Since f is

1-1, the point (y, x) is on the graph of y = f−1(x) and the point corresponding to (x− c, y) on the graph of f is

(y, x− c) on the graph of f−1. Thus, the curve’s reflection is shifted down the same number of units as the curve itself is

shifted to the left. So an expression for the inverse function is g−1(x) = f−1(x)− c.

(b) If we compress (or stretch) a curve horizontally, the curve’s reflection in the line y = x is compressed (or stretched)

vertically by the same factor. Using this geometric principle, we see that the inverse of h(x) = f(cx) can be expressed as

h−1(x) = (1/c) f−1(x).
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1 Review

1. (a) A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B. The set A is

called the domain of the function. The range of f is the set of all possible values of f(x) as x varies throughout the

domain.

(b) If f is a function with domain A, then its graph is the set of ordered pairs {(x, f(x)) | x ∈ A}.

(c) Use the Vertical Line Test on page 16.

2. The four ways to represent a function are: verbally, numerically, visually, and algebraically. An example of each is given

below.
Verbally: An assignment of students to chairs in a classroom (a description in words)

Numerically: A tax table that assigns an amount of tax to an income (a table of values)

Visually: A graphical history of the Dow Jones average (a graph)

Algebraically: A relationship between distance, rate, and time: d = rt (an explicit formula)

3. (a) An even function f satisfies f(−x) = f(x) for every number x in its domain. It is symmetric with respect to the y-axis.

(b) An odd function g satisfies g(−x) = −g(x) for every number x in its domain. It is symmetric with respect to the origin.

4. A function f is called increasing on an interval I if f(x1) < f(x2) whenever x1 < x2 in I.

5. Amathematical model is a mathematical description (often by means of a function or an equation) of a real-world

phenomenon.

6. (a) Linear function: f(x) = 2x+ 1, f(x) = ax+ b 7.

(b) Power function: f(x) = x2, f(x) = xa

(c) Exponential function: f(x) = 2x, f(x) = ax

(d) Quadratic function: f(x) = x2 + x+ 1, f(x) = ax2 + bx+ c

(e) Polynomial of degree 5: f(x) = x5 + 2

(f ) Rational function: f(x) = x

x+ 2
, f(x) = P (x)

Q(x)
where P (x) and

Q(x) are polynomials

8. (a) (b)
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(c) (d) (e)

(f ) (g) (h)

9. (a) The domain of f + g is the intersection of the domain of f and the domain of g; that is, A ∩B.

(b) The domain of fg is also A ∩B.

(c) The domain of f/g must exclude values of x that make g equal to 0; that is, {x ∈ A ∩B | g(x) 6= 0}.

10. Given two functions f and g, the composite function f ◦ g is defined by (f ◦ g) (x) = f(g (x)). The domain of f ◦ g is the

set of all x in the domain of g such that g(x) is in the domain of f .

11. (a) If the graph of f is shifted 2 units upward, its equation becomes y = f(x) + 2.

(b) If the graph of f is shifted 2 units downward, its equation becomes y = f(x)− 2.

(c) If the graph of f is shifted 2 units to the right, its equation becomes y = f(x− 2).

(d) If the graph of f is shifted 2 units to the left, its equation becomes y = f(x+ 2).

(e) If the graph of f is reflected about the x-axis, its equation becomes y = −f(x).

(f ) If the graph of f is reflected about the y-axis, its equation becomes y = f(−x).

(g) If the graph of f is stretched vertically by a factor of 2, its equation becomes y = 2f(x).

(h) If the graph of f is shrunk vertically by a factor of 2, its equation becomes y = 1
2f(x).

(i) If the graph of f is stretched horizontally by a factor of 2, its equation becomes y = f 1
2
x .

(j) If the graph of f is shrunk horizontally by a factor of 2, its equation becomes y = f(2x).

12. (a) A function f is called a one-to-one function if it never takes on the same value twice; that is, if f(x1) 6= f(x2) whenever

x1 6= x2. (Or, f is 1-1 if each output corresponds to only one input.)

Use the Horizontal Line Test: A function is one-to-one if and only if no horizontal line intersects its graph more than
once.

(b) If f is a one-to-one function with domain A and range B, then its inverse function f−1 has domain B and range A and is

defined by

f−1(y) = x ⇔ f(x) = y

for any y in B. The graph of f−1 is obtained by reflecting the graph of f about the line y = x.
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13. (a) The inverse sine function f(x) = sin−1 x is defined as follows:

sin−1 x = y ⇔ sin y = x and −π

2
≤ y ≤ π

2

Its domain is −1 ≤ x ≤ 1 and its range is −π

2
≤ y ≤ π

2
.

(b) The inverse cosine function f(x) = cos−1 x is defined as follows:

cos−1 x = y ⇔ cos y = x and 0 ≤ y ≤ π

Its domain is −1 ≤ x ≤ 1 and its range is 0 ≤ y ≤ π.

(c) The inverse tangent function f(x) = tan−1 x is defined as follows:

tan−1 x = y ⇔ tan y = x and −π

2
< y <

π

2

Its domain is R and its range is −π

2
< y <

π

2
.

1. False. Let f(x) = x2, s = −1, and t = 1. Then f(s+ t) = (−1 + 1)2 = 02 = 0, but

f(s) + f(t) = (−1)2 + 12 = 2 6= 0 = f(s+ t).

3. False. Let f(x) = x2. Then f(3x) = (3x)2 = 9x2 and 3f(x) = 3x2. So f(3x) 6= 3f(x).

5. True. See the Vertical Line Test.

7. False. Let f(x) = x3. Then f is one-to-one and f−1(x) = 3
√
x. But 1/f(x) = 1/x3, which is not equal to f−1(x).

9. True. The function lnx is an increasing function on (0,∞).

11. False. Let x = e2 and a = e. Then lnx
ln a

=
ln e2

ln e
=
2 ln e

ln e
= 2 and ln x

a
= ln

e2

e
= ln e = 1, so in general the statement

is false. What is true, however, is that ln x
a
= lnx− ln a.

13. False. For example, tan−1 20 is defined; sin−1 20 and cos−1 20 are not.

1. (a) When x = 2, y ≈ 2.7. Thus, f(2) ≈ 2.7.

(b) f(x) = 3 ⇒ x ≈ 2.3, 5.6

(c) The domain of f is −6 ≤ x ≤ 6, or [−6, 6].

(d) The range of f is −4 ≤ y ≤ 4, or [−4, 4].

(e) f is increasing on [−4, 4], that is, on −4 ≤ x ≤ 4.

(f ) f is not one-to-one since it fails the Horizontal Line Test.

(g) f is odd since its graph is symmetric about the origin.
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3. f(x) = x2 − 2x+ 3, so f(a+ h) = (a+ h)2 − 2(a+ h) + 3 = a2 + 2ah+ h2 − 2a− 2h+ 3, and

f(a+ h)− f(a)

h
=
(a2 + 2ah+ h2 − 2a− 2h+ 3)− (a2 − 2a+ 3)

h
=

h(2a+ h− 2)
h

= 2a+ h− 2.

5. f(x) = 2/(3x− 1). Domain: 3x− 1 6= 0 ⇒ 3x 6= 1 ⇒ x 6= 1
3

. D = −∞, 1
3
∪ 1

3
,∞

Range: all reals except 0 (y = 0 is the horizontal asymptote for f .) R = (−∞, 0) ∪ (0,∞)

7. h(x) = ln(x+ 6). Domain: x+ 6 > 0 ⇒ x > −6. D = (−6,∞)
Range: x+ 6 > 0, so ln(x+ 6) takes on all real numbers and, hence, the range is R.

R = (−∞,∞)

9. (a) To obtain the graph of y = f(x) + 8, we shift the graph of y = f(x) up 8 units.

(b) To obtain the graph of y = f(x+ 8), we shift the graph of y = f(x) left 8 units.

(c) To obtain the graph of y = 1 + 2f(x), we stretch the graph of y = f(x) vertically by a factor of 2, and then shift the

resulting graph 1 unit upward.

(d) To obtain the graph of y = f(x− 2)− 2, we shift the graph of y = f(x) right 2 units (for the “−2” inside the

parentheses), and then shift the resulting graph 2 units downward.

(e) To obtain the graph of y = −f(x), we reflect the graph of y = f(x) about the x-axis.

(f ) To obtain the graph of y = f−1(x), we reflect the graph of y = f(x) about the line y = x (assuming f is one–to-one).

11. y = − sin 2x: Start with the graph of y = sinx, compress horizontally by a factor of 2, and reflect about the x-axis.

13. y = 1
2
(1 + ex):

Start with the graph of y = ex,

shift 1 unit upward, and compress

vertically by a factor of 2.

15. f(x) = 1

x+ 2
:

Start with the graph of f(x) = 1/x

and shift 2 units to the left.
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17. (a) The terms of f are a mixture of odd and even powers of x, so f is neither even nor odd.

(b) The terms of f are all odd powers of x, so f is odd.

(c) f(−x) = e−(−x)
2

= e−x
2

= f(x), so f is even.

(d) f(−x) = 1 + sin(−x) = 1− sinx. Now f(−x) 6= f(x) and f(−x) 6= −f(x), so f is neither even nor odd.

19. f(x) = lnx, D = (0,∞); g(x) = x2 − 9, D = R.

(a) (f ◦ g)(x) = f(g(x)) = f(x2 − 9) = ln(x2 − 9).
Domain: x2 − 9 > 0 ⇒ x2 > 9 ⇒ |x| > 3 ⇒ x ∈ (−∞,−3) ∪ (3,∞)

(b) (g ◦ f)(x) = g(f(x)) = g(lnx) = (lnx)2 − 9. Domain: x > 0, or (0,∞)

(c) (f ◦ f)(x) = f(f(x)) = f(lnx) = ln(lnx). Domain: lnx > 0 ⇒ x > e0 = 1, or (1,∞)

(d) (g ◦ g)(x) = g(g(x)) = g(x2 − 9) = (x2 − 9)2 − 9. Domain: x ∈ R, or (−∞,∞)

21. Many models appear to be plausible. Your choice depends on whether you

think medical advances will keep increasing life expectancy, or if there is

bound to be a natural leveling-off of life expectancy. A linear model,

y = 0.2493x− 423.4818, gives us an estimate of 77.6 years for the

year 2010.

23. We need to know the value of x such that f(x) = 2x+ lnx = 2. Since x = 1 gives us y = 2, f−1(2) = 1.

25. (a) e2 ln 3 = eln 3
2
= 32 = 9

(b) log10 25 + log10 4 = log10(25 · 4) = log10 100 = log10 102 = 2

(c) tan arcsin 1
2
= tan π

6
= 1√

3

(d) Let θ = cos−1 4
5 , so cos θ = 4

5 . Then sin cos−1 4
5
= sin θ =

√
1− cos2 θ = 1− 4

5

2
= 9

25 =
3
5 .

27. (a) The population would reach 900 in about 4.4 years.

(b) P =
100,000

100 + 900e−t
⇒ 100P + 900Pe−t = 100,000 ⇒ 900Pe−t = 100,000− 100P ⇒

e−t =
100,000− 100P

900P
⇒ −t = ln 1000− P

9P
⇒ t = − ln 1000− P

9P
, or ln 9P

1000− P
; this is the time

required for the population to reach a given number P .

(c) P = 900 ⇒ t = ln
9 · 900

1000− 900 = ln 81 ≈ 4.4 years, as in part (a).





PRINCIPLES OF PROBLEM SOLVING
1. By using the area formula for a triangle, 1

2
(base) (height), in two ways, we see that

1
2
(4) (y) = 1

2
(h) (a), so a = 4y

h
. Since 42 + y2 = h2, y =

√
h2 − 16, and

a =
4
√
h2 − 16
h

.

3. |2x− 1| =
2x− 1 if x ≥ 1

2

1− 2x if x < 1
2

and |x+ 5| =
x+ 5 if x ≥ −5
−x− 5 if x < −5

Therefore, we consider the three cases x < −5, −5 ≤ x < 1
2

, and x ≥ 1
2

.

If x < −5, we must have 1− 2x− (−x− 5) = 3 ⇔ x = 3, which is false, since we are considering x < −5.

If −5 ≤ x < 1
2 , we must have 1− 2x− (x+ 5) = 3 ⇔ x = − 7

3 .

If x ≥ 1
2 , we must have 2x− 1− (x+ 5) = 3 ⇔ x = 9.

So the two solutions of the equation are x = − 7
3 and x = 9.

5. f(x) = x2 − 4 |x|+ 3 . If x ≥ 0, then f(x) = x2 − 4x+ 3 = |(x− 1)(x− 3)|.
Case (i): If 0 < x ≤ 1, then f(x) = x2 − 4x+ 3.

Case (ii): If 1 < x ≤ 3, then f(x) = −(x2 − 4x+ 3) = −x2 + 4x− 3.

Case (iii): If x > 3, then f(x) = x2 − 4x+ 3.

This enables us to sketch the graph for x ≥ 0. Then we use the fact that f is an even

function to reflect this part of the graph about the y-axis to obtain the entire graph. Or, we

could consider also the cases x < −3, −3 ≤ x < −1, and −1 ≤ x < 0.

7. Remember that |a| = a if a ≥ 0 and that |a| = −a if a < 0. Thus,

x+ |x| =
2x if x ≥ 0
0 if x < 0

and y + |y| =
2y if y ≥ 0
0 if y < 0

We will consider the equation x+ |x| = y + |y| in four cases.

(1) x ≥ 0, y ≥ 0
2x = 2y

x = y

(2) x ≥ 0, y < 0
2x = 0

x = 0

(3) x < 0, y ≥ 0
0 = 2y

0 = y

(4) x < 0, y < 0
0 = 0

Case 1 gives us the line y = x with nonnegative x and y.

Case 2 gives us the portion of the y-axis with y negative.

Case 3 gives us the portion of the x-axis with x negative.

Case 4 gives us the entire third quadrant.

39
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9. |x|+ |y| ≤ 1. The boundary of the region has equation |x|+ |y| = 1. In quadrants

I, II, III, and IV, this becomes the lines x+ y = 1, −x+ y = 1, −x− y = 1, and

x− y = 1 respectively.

11. (log2 3)(log3 4)(log4 5) · · · (log31 32) =
ln 3

ln 2

ln 4

ln 3

ln 5

ln 4
· · · ln 32

ln 31
=
ln 32

ln 2
=
ln 25

ln 2
=
5 ln 2

ln 2
= 5

13. ln x2 − 2x− 2 ≤ 0 ⇒ x2 − 2x− 2 ≤ e0 = 1 ⇒ x2 − 2x− 3 ≤ 0 ⇒ (x− 3)(x+ 1) ≤ 0 ⇒ x ∈ [−1, 3].

Since the argument must be positive, x2 − 2x− 2 > 0 ⇒ x− 1−√3 x− 1 +
√
3 > 0 ⇒

x ∈ −∞, 1−√3 ∪ 1 +
√
3,∞ . The intersection of these intervals is −1, 1−√3 ∪ 1 +

√
3, 3 .

15. Let d be the distance traveled on each half of the trip. Let t1 and t2 be the times taken for the first and second halves of the trip.

For the first half of the trip we have t1 = d/30 and for the second half we have t2 = d/60. Thus, the average speed for the

entire trip is total distance
total time

=
2d

t1 + t2
=

2d
d

30
+

d

60

· 60
60
=

120d

2d+ d
=
120d

3d
= 40. The average speed for the entire trip

is 40 mi/h.

17. Let Sn be the statement that 7n − 1 is divisible by 6.

• S1 is true because 71 − 1 = 6 is divisible by 6.

• Assume Sk is true, that is, 7k − 1 is divisible by 6. In other words, 7k − 1 = 6m for some positive integer m. Then
7k+1 − 1 = 7k · 7− 1 = (6m+ 1) · 7− 1 = 42m+ 6 = 6(7m+ 1), which is divisible by 6, so Sk+1 is true.

• Therefore, by mathematical induction, 7n − 1 is divisible by 6 for every positive integer n.

19. f0(x) = x2 and fn+1(x) = f0(fn(x)) for n = 0, 1, 2, . . ..

f1(x) = f0(f0(x)) = f0 x2 = x2
2
= x4, f2(x) = f0(f1(x)) = f0(x

4) = (x4)2 = x8,

f3(x) = f0(f2(x)) = f0(x
8) = (x8)2 = x16, . . .. Thus, a general formula is fn(x) = x2

n+1

.



2 LIMITS AND DERIVATIVES
2.1 The Tangent and Velocity Problems

1. (a) Using P (15, 250), we construct the following table:

t Q slope = mPQ

5 (5, 694) 694−250
5−15 = − 444

10
= −44.4

10 (10, 444) 444−250
10−15 = − 194

5
= −38.8

20 (20, 111) 111−250
20−15 = − 139

5 = −27.8

25 (25, 28) 28−250
25−15 = − 222

10
= −22.2

30 (30, 0) 0−250
30−15 = − 250

15 = −16.6

(b) Using the values of t that correspond to the points

closest to P (t = 10 and t = 20), we have

−38.8 + (−27.8)
2

= −33.3

(c) From the graph, we can estimate the slope of the

tangent line at P to be −300
9

= −33.3.

3. (a)
x Q mPQ

(i) 0.5 (0.5, 0.333333) 0.333333

(ii) 0.9 (0.9, 0.473684) 0.263158

(iii) 0.99 (0.99, 0.497487) 0.251256

(iv) 0.999 (0.999, 0.499750) 0.250125

(v) 1.5 (1.5, 0.6) 0.2

(vi) 1.1 (1.1, 0.523810) 0.238095

(vii) 1.01 (1.01, 0.502488) 0.248756

(viii) 1.001 (1.001, 0.500250) 0.249875

(b) The slope appears to be 1
4 .

(c) y − 1
2
= 1

4
(x− 1) or y = 1

4
x+ 1

4
.

5. (a) y = y(t) = 40t− 16t2. At t = 2, y = 40(2)− 16(2)2 = 16. The average velocity between times 2 and 2 + h is

vave =
y(2 + h)− y(2)

(2 + h)− 2 =
40(2 + h)− 16(2 + h)2 − 16

h
=
−24h− 16h2

h
= −24− 16h, if h 6= 0.

(i) [2, 2.5]: h = 0.5, vave = −32 ft/s (ii) [2, 2.1]: h = 0.1, vave = −25.6 ft/s

(iii) [2, 2.05]: h = 0.05, vave = −24.8 ft/s (iv) [2, 2.01]: h = 0.01, vave = −24.16 ft/s

(b) The instantaneous velocity when t = 2 (h approaches 0) is −24 ft/s.

41
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7. (a) (i) On the interval [1, 3], vave =
s(3)− s(1)

3− 1 =
10.7− 1.4

2
=
9.3

2
= 4.65 m/s.

(ii) On the interval [2, 3], vave =
s(3)− s(2)

3− 2 =
10.7− 5.1

1
= 5.6 m/s.

(iii) On the interval [3, 5], vave =
s(5)− s(3)

5− 3 =
25.8− 10.7

2
=
15.1

2
= 7.55 m/s.

(iv) On the interval [3, 4], vave =
s(4)− s(3)

4− 3 =
17.7− 10.7

1
= 7 m/s.

(b) Using the points (2, 4) and (5, 23) from the approximate tangent

line, the instantaneous velocity at t = 3 is about 23− 4
5− 2 ≈ 6.3 m/s.

9. (a) For the curve y = sin(10π/x) and the point P (1, 0):

x Q mPQ

2 (2, 0) 0

1.5 (1.5, 0.8660) 1.7321

1.4 (1.4,−0.4339) −1.0847
1.3 (1.3,−0.8230) −2.7433
1.2 (1.2, 0.8660) 4.3301

1.1 (1.1,−0.2817) −2.8173

x Q mPQ

0.5 (0.5, 0) 0

0.6 (0.6, 0.8660) −2.1651
0.7 (0.7, 0.7818) −2.6061
0.8 (0.8, 1) −5
0.9 (0.9,−0.3420) 3.4202

As x approaches 1, the slopes do not appear to be approaching any particular value.

(b) We see that problems with estimation are caused by the frequent

oscillations of the graph. The tangent is so steep at P that we need to

take x-values much closer to 1 in order to get accurate estimates of

its slope.

(c) If we choose x = 1.001, then the point Q is (1.001,−0.0314) and mPQ ≈ −31.3794. If x = 0.999, then Q is

(0.999, 0.0314) and mPQ = −31.4422. The average of these slopes is −31.4108. So we estimate that the slope of the

tangent line at P is about −31.4.
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2.2 The Limit of a Function

1. As x approaches 2, f(x) approaches 5. [Or, the values of f(x) can be made as close to 5 as we like by taking x sufficiently

close to 2 (but x 6= 2).] Yes, the graph could have a hole at (2, 5) and be defined such that f(2) = 3.

3. (a) lim
x→−3

f(x) =∞ means that the values of f(x) can be made arbitrarily large (as large as we please) by taking x

sufficiently close to −3 (but not equal to−3).

(b) lim
x→4+

f(x) = −∞ means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to 4

through values larger than 4.

5. (a) f(x) approaches 2 as x approaches 1 from the left, so lim
x→1−

f(x) = 2.

(b) f(x) approaches 3 as x approaches 1 from the right, so lim
x→1+

f(x) = 3.

(c) lim
x→1

f(x) does not exist because the limits in part (a) and part (b) are not equal.

(d) f(x) approaches 4 as x approaches 5 from the left and from the right, so lim
x→5

f(x) = 4.

(e) f(5) is not defined, so it doesn’t exist.

7. (a) lim
t→0−

g(t) = −1 (b) lim
t→0+

g(t) = −2

(c) lim
t→0

g(t) does not exist because the limits in part (a) and part (b) are not equal.

(d) lim
t→2−

g(t) = 2 (e) lim
t→2+

g(t) = 0

(f ) lim
t→2

g(t) does not exist because the limits in part (d) and part (e) are not equal.

(g) g(2) = 1 (h) lim
t→4

g(t) = 3

9. (a) lim
x→−7

f(x) = −∞ (b) lim
x→−3

f(x) =∞ (c) lim
x→0

f(x) =∞

(d) lim
x→6−

f(x) = −∞ (e) lim
x→6+

f(x) =∞

(f ) The equations of the vertical asymptotes are x = −7, x = −3, x = 0, and x = 6.

11. (a) lim
x→0−

f(x) = 1

(b) lim
x→0+

f(x) = 0

(c) lim
x→0

f(x) does not exist because the limits

in part (a) and part (b) are not equal.

13. lim
x→1−

f(x) = 2, lim
x→1+

f(x) = −2, f(1) = 2 15. lim
x→3+

f(x) = 4, lim
x→3−

f(x) = 2, lim
x→−2

f(x) = 2,

f(3) = 3, f(−2) = 1
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17. For f(x) = x2 − 2x
x2 − x− 2 :

x f(x)

2.5 0.714286

2.1 0.677419

2.05 0.672131

2.01 0.667774

2.005 0.667221

2.001 0.666778

x f(x)

1.9 0.655172

1.95 0.661017

1.99 0.665552

1.995 0.666110

1.999 0.666556

It appears that lim
x→2

x2 − 2x
x2 − x− 2 = 0.6̄ =

2
3

.

19. For f(x) = ex − 1− x

x2
:

x f(x)

1 0.718282

0.5 0.594885

0.1 0.517092

0.05 0.508439

0.01 0.501671

x f(x)

−1 0.367879

−0.5 0.426123

−0.1 0.483742

−0.05 0.491770

−0.01 0.498337

It appears that lim
x→0

ex − 1− x

x2
= 0.5 = 1

2 .

21. For f(x) =
√
x+ 4− 2

x
:

x f(x)

1 0.236068

0.5 0.242641

0.1 0.248457

0.05 0.249224

0.01 0.249844

x f(x)

−1 0.267949

−0.5 0.258343

−0.1 0.251582

−0.05 0.250786

−0.01 0.250156

It appears that lim
x→0

√
x+ 4− 2

x
= 0.25 = 1

4 .

23. For f(x) = x6 − 1
x10 − 1 :

x f(x)

0.5 0.985337

0.9 0.719397

0.95 0.660186

0.99 0.612018

0.999 0.601200

x f(x)

1.5 0.183369

1.1 0.484119

1.05 0.540783

1.01 0.588022

1.001 0.598800

It appears that lim
x→1

x6 − 1
x10 − 1 = 0.6 =

3
5 .

25. lim
x→−3+

x+ 2

x+ 3
= −∞ since the numerator is negative and the denominator approaches 0 from the positive side as x→ −3+.

27. lim
x→1

2− x

(x− 1)2 =∞ since the numerator is positive and the denominator approaches 0 through positive values as x→ 1.

29. Let t = x2 − 9. Then as x→ 3+, t→ 0+, and lim
x→3+

ln(x2 − 9) = lim
t→0+

ln t = −∞ by (3).

31. lim
x→2π−

x cscx = lim
x→2π−

x

sinx
= −∞ since the numerator is positive and the denominator approaches 0 through negative

values as x→ 2π−.

33. (a) f(x) = 1

x3 − 1 .

From these calculations, it seems that

lim
x→1−

f(x) = −∞ and lim
x→1+

f(x) =∞.

x f(x)

0.5 −1.14
0.9 −3.69
0.99 −33.7
0.999 −333.7
0.9999 −3333.7
0.99999 −33,333.7

x f(x)

1.5 0.42

1.1 3.02

1.01 33.0

1.001 333.0

1.0001 3333.0

1.00001 33,333.3



SECTION 2.2 THE LIMIT OF A FUNCTION ¤ 45

(b) If x is slightly smaller than 1, then x3 − 1 will be a negative number close to 0, and the reciprocal of x3 − 1, that is, f(x),

will be a negative number with large absolute value. So lim
x→1−

f(x) = −∞.

If x is slightly larger than 1, then x3 − 1 will be a small positive number, and its reciprocal, f(x), will be a large positive

number. So lim
x→1+

f(x) =∞.

(c) It appears from the graph of f that

lim
x→1−

f(x) = −∞ and lim
x→1+

f(x) =∞.

35. (a) Let h(x) = (1 + x)1/x.

x h(x)

−0.001 2.71964

−0.0001 2.71842

−0.00001 2.71830

−0.000001 2.71828

0.000001 2.71828

0.00001 2.71827

0.0001 2.71815

0.001 2.71692

It appears that lim
x→0

(1 + x)1/x ≈ 2.71828, which is approximately e.

In Section 3.6 we will see that the value of the limit is exactly e.

(b)

37. For f(x) = x2 − (2x/1000):
(a)

x f(x)

1 0.998000

0.8 0.638259

0.6 0.358484

0.4 0.158680

0.2 0.038851

0.1 0.008928

0.05 0.001465

It appears that lim
x→0

f(x) = 0.

(b)
x f(x)

0.04 0.000572

0.02 −0.000614
0.01 −0.000907
0.005 −0.000978
0.003 −0.000993
0.001 −0.001000

It appears that lim
x→0

f(x) = −0.001.
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39. No matter how many times we zoom in toward the origin, the graphs of f(x) = sin(π/x) appear to consist of almost-vertical

lines. This indicates more and more frequent oscillations as x→ 0.

41. There appear to be vertical asymptotes of the curve y = tan(2 sinx) at x ≈ ±0.90
and x ≈ ±2.24. To find the exact equations of these asymptotes, we note that the

graph of the tangent function has vertical asymptotes at x = π
2
+ πn. Thus, we

must have 2 sinx = π
2
+ πn, or equivalently, sinx = π

4
+ π

2
n. Since

−1 ≤ sinx ≤ 1, we must have sinx = ±π
4

and so x = ± sin−1 π
4

(corresponding

to x ≈ ±0.90). Just as 150◦ is the reference angle for 30◦, π − sin−1 π
4 is the

reference angle for sin−1 π
4 . So x = ± π − sin−1 π

4
are also equations of

vertical asymptotes (corresponding to x ≈ ±2.24).

2.3 Calculating Limits Using the Limit Laws

1. (a) lim
x→2

[f(x) + 5g(x)] = lim
x→2

f(x) + lim
x→2

[5g(x)] [Limit Law 1]

= lim
x→2

f(x) + 5 lim
x→2

g(x) [Limit Law 3]

= 4 + 5(−2) = −6

(b) lim
x→2

[g(x)]3 = lim
x→2

g(x)
3

[Limit Law 6]

= (−2)3 = −8

(c) lim
x→2

f(x) = lim
x→2

f(x) [Limit Law 11]

=
√
4 = 2
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(d) lim
x→2

3f(x)

g(x)
=
lim
x→2

[3f(x)]

lim
x→2

g(x)
[Limit Law 5]

=
3 lim
x→2

f(x)

lim
x→2

g(x)
[Limit Law 3]

=
3(4)

−2 = −6

(e) Because the limit of the denominator is 0, we can’t use Limit Law 5. The given limit, lim
x→2

g(x)

h(x)
, does not exist because the

denominator approaches 0 while the numerator approaches a nonzero number.

(f ) lim
x→2

g(x)h(x)

f(x)
=
lim
x→2

[g(x)h(x)]

lim
x→2

f(x)
[Limit Law 5]

=
lim
x→2

g(x) · lim
x→2

h(x)

lim
x→2

f(x)
[Limit Law 4]

=
−2 · 0
4

= 0

3. lim
x→−2

(3x4 + 2x2 − x+ 1) = lim
x→−2

3x4 + lim
x→−2

2x2 − lim
x→−2

x+ lim
x→−2

1 [Limit Laws 1 and 2]

= 3 lim
x→−2

x4 + 2 lim
x→−2

x2 − lim
x→−2

x+ lim
x→−2

1 [3]

= 3(−2)4 + 2(−2)2 − (−2) + (1) [9, 8, and 7]

= 48 + 8 + 2 + 1 = 59

5. lim
x→8

(1 + 3
√
x ) (2− 6x2 + x3) = lim

x→8
(1 + 3

√
x ) · lim

x→8
(2− 6x2 + x3) [Limit Law 4]

= lim
x→8

1 + lim
x→8

3
√
x · lim

x→8
2− 6 lim

x→8
x2 + lim

x→8
x3 [1, 2, and 3]

= 1 + 3
√
8 · 2− 6 · 82 + 83 [7, 10, 9]

= (3)(130) = 390

7. lim
x→1

1 + 3x

1 + 4x2 + 3x4

3

= lim
x→1

1 + 3x

1 + 4x2 + 3x4

3

[6]

=
lim
x→1

(1 + 3x)

lim
x→1

(1 + 4x2 + 3x4)

3

[5]

=
lim
x→1

1 + 3 lim
x→1

x

lim
x→1

1 + 4 lim
x→1

x2 + 3 lim
x→1

x4

3

[2, 1, and 3]

=
1 + 3(1)

1 + 4(1)2 + 3(1)4

3

=
4

8

3

=
1

2

3

=
1

8
[7, 8, and 9]

9. lim
x→4−

√
16− x2= lim

x→4−
(16− x2) [11]

= lim
x→4−

16− lim
x→4−

x2 [2]

= 16− (4)2 = 0 [7 and 9]
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11. lim
x→2

x2 + x− 6
x− 2 = lim

x→2

(x+ 3)(x− 2)
x− 2 = lim

x→2
(x+ 3) = 2 + 3 = 5

13. lim
x→2

x2 − x+ 6

x− 2 does not exist since x− 2→ 0 but x2 − x+ 6→ 8 as x→ 2.

15. lim
t→−3

t2 − 9
2t2 + 7t+ 3

= lim
t→−3

(t+ 3)(t− 3)
(2t+ 1)(t+ 3)

= lim
t→−3

t− 3
2t+ 1

=
−3− 3
2(−3) + 1 =

−6
−5 =

6

5

17. lim
h→0

(4 + h)2 − 16
h

= lim
h→0

(16 + 8h+ h2)− 16
h

= lim
h→0

8h+ h2

h
= lim

h→0

h(8 + h)

h
= lim

h→0
(8 + h) = 8 + 0 = 8

19. By the formula for the sum of cubes, we have

lim
x→−2

x+ 2

x3 + 8
= lim

x→−2
x+ 2

(x+ 2)(x2 − 2x+ 4) = lim
x→−2

1

x2 − 2x+ 4 =
1

4 + 4 + 4
=
1

12
.

21. lim
t→9

9− t

3−√t = lim
t→9

3 +
√
t 3−√t
3−√t = lim

t→9
3 +

√
t = 3 +

√
9 = 6

23. lim
x→7

√
x+ 2− 3
x− 7 = lim

x→7

√
x+ 2− 3
x− 7 ·

√
x+ 2 + 3√
x+ 2 + 3

= lim
x→7

(x+ 2)− 9
(x− 7) √x+ 2 + 3

= lim
x→7

x− 7
(x− 7) √x+ 2 + 3 = lim

x→7

1√
x+ 2+ 3

=
1√
9 + 3

=
1

6

25. lim
x→−4

1

4
+
1

x
4 + x

= lim
x→−4

x+ 4

4x
4 + x

= lim
x→−4

x+ 4

4x(4 + x)
= lim

x→−4
1

4x
=

1

4(−4) = −
1

16

27. lim
x→16

4−√x
16x− x2

= lim
x→16

(4−√x )(4 +√x )
(16x− x2)(4 +

√
x )

= lim
x→16

16− x

x(16− x)(4 +
√
x )

= lim
x→16

1

x(4 +
√
x )

=
1

16 4 +
√
16

=
1

16(8)
=

1

128

29. lim
t→0

1

t
√
1 + t

− 1

t
= lim

t→0

1−√1 + t

t
√
1 + t

= lim
t→0

1−√1 + t 1 +
√
1 + t

t
√
t+ 1 1 +

√
1 + t

= lim
t→0

−t
t
√
1 + t 1 +

√
1 + t

= lim
t→0

−1√
1 + t 1 +

√
1 + t

=
−1√

1 + 0 1 +
√
1 + 0

= −1
2

31. (a)

lim
x→0

x√
1 + 3x− 1 ≈

2

3

(b)
x f(x)

−0.001 0.6661663
−0.0001 0.6666167
−0.00001 0.6666617
−0.000001 0.6666662
0.000001 0.6666672
0.00001 0.6666717
0.0001 0.6667167
0.001 0.6671663

The limit appears to be 2
3

.
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(c) lim
x→0

x√
1 + 3x− 1 ·

√
1 + 3x+ 1√
1 + 3x+ 1

= lim
x→0

x
√
1 + 3x+ 1

(1 + 3x)− 1 = lim
x→0

x
√
1 + 3x+ 1

3x

=
1

3
lim
x→0

√
1 + 3x+ 1 [Limit Law 3]

=
1

3
lim
x→0

(1 + 3x) + lim
x→0

1 [1 and 11]

=
1

3
lim
x→0

1 + 3 lim
x→0

x+ 1 [1, 3, and 7]

=
1

3

√
1 + 3 · 0 + 1 [7 and 8]

=
1

3
(1 + 1) =

2

3

33. Let f(x) = −x2, g(x) = x2 cos 20πx and h(x) = x2. Then

−1 ≤ cos 20πx ≤ 1 ⇒ −x2 ≤ x2 cos 20πx ≤ x2 ⇒ f(x) ≤ g(x) ≤ h(x).

So since lim
x→0

f(x) = lim
x→0

h(x) = 0, by the Squeeze Theorem we have

lim
x→0

g(x) = 0.

35. We have lim
x→4

(4x− 9) = 4(4)− 9 = 7 and lim
x→4

x2 − 4x+ 7 = 42 − 4(4) + 7 = 7. Since 4x− 9 ≤ f(x) ≤ x2 − 4x+ 7

for x ≥ 0, lim
x→4

f(x) = 7 by the Squeeze Theorem.

37. −1 ≤ cos(2/x) ≤ 1 ⇒ −x4 ≤ x4 cos(2/x) ≤ x4. Since lim
x→0

−x4 = 0 and lim
x→0

x4 = 0, we have

lim
x→0

x4 cos(2/x) = 0 by the Squeeze Theorem.

39. |x− 3| =
x− 3 if x− 3 ≥ 0
−(x− 3) if x− 3 < 0

=
x− 3 if x ≥ 3
3− x if x < 3

Thus, lim
x→3+

(2x+ |x− 3|) = lim
x→3+

(2x+ x− 3) = lim
x→3+

(3x− 3) = 3(3)− 3 = 6 and

lim
x→3−

(2x+ |x− 3|) = lim
x→3−

(2x+ 3− x) = lim
x→3−

(x+ 3) = 3 + 3 = 6. Since the left and right limits are equal,

lim
x→3

(2x+ |x− 3|) = 6.

41. 2x3 − x2 = x2(2x− 1) = x2 · |2x− 1| = x2 |2x− 1|

|2x− 1| =
2x− 1 if 2x− 1 ≥ 0
−(2x− 1) if 2x− 1 < 0 =

2x− 1 if x ≥ 0.5
−(2x− 1) if x < 0.5

So 2x3 − x2 = x2[−(2x− 1)] for x < 0.5.

Thus, lim
x→0.5−

2x− 1
|2x3 − x2| = lim

x→0.5−
2x− 1

x2[−(2x− 1)] = lim
x→0.5−

−1
x2

=
−1
(0.5)2

=
−1
0.25

= −4.
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43. Since |x| = −x for x < 0, we have lim
x→0−

1

x
− 1

|x| = lim
x→0−

1

x
− 1

−x = lim
x→0−

2

x
, which does not exist since the

denominator approaches 0 and the numerator does not.

45. (a) (b) (i) Since sgnx = 1 for x > 0, lim
x→0+

sgnx = lim
x→0+

1 = 1.

(ii) Since sgnx = −1 for x < 0, lim
x→0−

sgn x = lim
x→0−

−1 = −1.

(iii) Since lim
x→0−

sgnx 6= lim
x→0+

sgnx, lim
x→0

sgnx does not exist.

(iv) Since |sgnx| = 1 for x 6= 0, lim
x→0

|sgnx| = lim
x→0

1 = 1.

47. (a) (i) lim
x→1+

F (x) = lim
x→1+

x2 − 1
|x− 1| = lim

x→1+

x2 − 1
x− 1 = lim

x→1+
(x+ 1) = 2 (c)

(ii) lim
x→1−

F (x) = lim
x→1−

x2 − 1
|x− 1| = lim

x→1−
x2 − 1
− (x− 1) = lim

x→1−
− (x+ 1) = −2

(b) No, lim
x→1

F (x) does not exist since lim
x→1+

F (x) 6= lim
x→1−

F (x).

49. (a) (i) [[x]] = −2 for −2 ≤ x < −1, so lim
x→−2+

[[x]] = lim
x→−2+

(−2) = −2

(ii) [[x]] = −3 for −3 ≤ x < −2, so lim
x→−2−

[[x]] = lim
x→−2−

(−3) = −3.

The right and left limits are different, so lim
x→−2

[[x]] does not exist.

(iii) [[x]] = −3 for −3 ≤ x < −2, so lim
x→−2.4

[[x]] = lim
x→−2.4

(−3) = −3.

(b) (i) [[x]] = n− 1 for n− 1 ≤ x < n, so lim
x→n−

[[x]] = lim
x→n−

(n− 1) = n− 1.

(ii) [[x]] = n for n ≤ x < n+ 1, so lim
x→n+

[[x]] = lim
x→n+

n = n.

(c) lim
x→a

[[x]] exists ⇔ a is not an integer.

51. The graph of f(x) = [[x]] + [[−x]] is the same as the graph of g(x) = −1 with holes at each integer, since f(a) = 0 for any

integer a. Thus, lim
x→2−

f(x) = −1 and lim
x→2+

f (x) = −1, so lim
x→2

f(x) = −1. However,

f(2) = [[2]] + [[−2]] = 2 + (−2) = 0, so lim
x→2

f(x) 6= f(2).

53. Since p(x) is a polynomial, p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n. Thus, by the Limit Laws,

lim
x→a

p(x) = lim
x→a

a0 + a1x+ a2x
2 + · · ·+ anx

n = a0 + a1 lim
x→a

x+ a2 lim
x→a

x2 + · · ·+ an lim
x→a

xn

= a0 + a1a+ a2a
2 + · · ·+ ana

n = p(a)

Thus, for any polynomial p, lim
x→a

p(x) = p(a).
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55. lim
x→1

[f(x)− 8] = lim
x→1

f(x)− 8
x− 1 · (x− 1) = lim

x→1

f(x)− 8
x− 1 · lim

x→1
(x− 1) = 10 · 0 = 0.

Thus, lim
x→1

f(x) = lim
x→1

{[f(x)− 8] + 8} = lim
x→1

[f(x)− 8] + lim
x→1

8 = 0 + 8 = 8.

Note: The value of lim
x→1

f(x)− 8
x− 1 does not affect the answer since it’s multiplied by 0. What’s important is that lim

x→1

f(x)− 8
x− 1

exists.

57. Observe that 0 ≤ f(x) ≤ x2 for all x, and lim
x→0

0 = 0 = lim
x→0

x2. So, by the Squeeze Theorem, lim
x→0

f(x) = 0.

59. Let f(x) = H(x) and g(x) = 1−H(x), where H is the Heaviside function defined in Exercise 1.3.57.

Thus, either f or g is 0 for any value of x. Then lim
x→0

f(x) and lim
x→0

g(x) do not exist, but lim
x→0

[f(x)g(x)] = lim
x→0

0 = 0.

61. Since the denominator approaches 0 as x→ −2, the limit will exist only if the numerator also approaches

0 as x → −2. In order for this to happen, we need lim
x→−2

3x2 + ax+ a+ 3 = 0 ⇔

3(−2)2 + a(−2) + a+ 3 = 0 ⇔ 12− 2a+ a+ 3 = 0 ⇔ a = 15. With a = 15, the limit becomes

lim
x→−2

3x2 + 15x+ 18

x2 + x− 2 = lim
x→−2

3(x+ 2)(x+ 3)

(x− 1)(x+ 2) = lim
x→−2

3(x+ 3)

x− 1 =
3(−2 + 3)
−2− 1 =

3

−3 = −1.

2.4 The Precise Definition of a Limit

1. On the left side of x = 2, we need |x− 2| < 10
7
− 2 = 4

7
. On the right side, we need |x− 2| < 10

3
− 2 = 4

3
. For both of

these conditions to be satisfied at once, we need the more restrictive of the two to hold, that is, |x− 2| < 4
7

. So we can choose

δ = 4
7 , or any smaller positive number.

3. The leftmost question mark is the solution of
√
x = 1.6 and the rightmost,

√
x = 2.4. So the values are 1.62 = 2.56 and

2.42 = 5.76. On the left side, we need |x− 4| < |2.56− 4| = 1.44. On the right side, we need |x− 4| < |5.76− 4| = 1.76.

To satisfy both conditions, we need the more restrictive condition to hold — namely, |x− 4| < 1.44. Thus, we can choose

δ = 1.44, or any smaller positive number.

5. From the graph, we find that tanx = 0.8 when x ≈ 0.675, so
π
4 − δ1 ≈ 0.675 ⇒ δ1 ≈ π

4 − 0.675 ≈ 0.1106. Also, tanx = 1.2

when x ≈ 0.876, so π
4
+ δ2 ≈ 0.876 ⇒ δ2 = 0.876− π

4
≈ 0.0906.

Thus, we choose δ = 0.0906 (or any smaller positive number) since this is

the smaller of δ1 and δ2.



52 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

7. For ε = 1, the definition of a limit requires that we find δ such that 4 + x− 3x3 − 2 < 1 ⇔ 1 < 4 + x− 3x3 < 3

whenever 0 < |x− 1| < δ. If we plot the graphs of y = 1, y = 4 + x− 3x3 and y = 3 on the same screen, we see that we

need 0.86 ≤ x ≤ 1.11. So since |1− 0.86| = 0.14 and |1− 1.11| = 0.11, we choose δ = 0.11 (or any smaller positive

number). For ε = 0.1, we must find δ such that 4 + x− 3x3 − 2 < 0.1 ⇔ 1.9 < 4 + x− 3x3 < 2.1 whenever

0 < |x− 1| < δ. From the graph, we see that we need 0.988 ≤ x ≤ 1.012. So since |1− 0.988| = 0.012 and

|1− 1.012| = 0.012, we choose δ = 0.012 (or any smaller positive number) for the inequality to hold.

9. (a) From the graph, we find that y = tan2 x = 1000 when x ≈ 1.539 and

x ≈ 1.602 for x near π
2

. Thus, we get δ ≈ 1.602− π
2
≈ 0.031 for

M = 1000.

(b) From the graph, we find that y = tan2 x = 10,000 when x ≈ 1.561 and

x ≈ 1.581 for x near π
2

. Thus, we get δ ≈ 1.581− π
2
≈ 0.010 for

M = 10,000.

11. (a) A = πr2 and A = 1000 cm2 ⇒ πr2 = 1000 ⇒ r2 = 1000
π

⇒ r = 1000
π

(r > 0) ≈ 17.8412 cm.

(b) |A− 1000| ≤ 5 ⇒ −5 ≤ πr2 − 1000 ≤ 5 ⇒ 1000− 5 ≤ πr2 ≤ 1000 + 5 ⇒

995
π
≤ r ≤ 1005

π
⇒ 17.7966 ≤ r ≤ 17.8858. 1000

π
− 995

π
≈ 0.04466 and 1005

π
− 1000

π
≈ 0.04455. So

if the machinist gets the radius within 0.0445 cm of 17.8412, the area will be within 5 cm2 of 1000.

(c) x is the radius, f(x) is the area, a is the target radius given in part (a), L is the target area (1000), ε is the tolerance in the

area (5), and δ is the tolerance in the radius given in part (b).

13. (a) |4x− 8| = 4 |x− 2| < 0.1 ⇔ |x− 2| < 0.1

4
, so δ = 0.1

4
= 0.025.

(b) |4x− 8| = 4 |x− 2| < 0.01 ⇔ |x− 2| < 0.01

4
, so δ = 0.01

4
= 0.0025.
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15. Given ε > 0, we need δ > 0 such that if 0 < |x− 1| < δ, then

|(2x+ 3)− 5| < ε. But |(2x+ 3)− 5| < ε ⇔

|2x− 2| < ε ⇔ 2 |x− 1| < ε ⇔ |x− 1| < ε/2.

So if we choose δ = ε/2, then 0 < |x− 1| < δ ⇒

|(2x+ 3)− 5| < ε. Thus, lim
x→1

(2x+ 3) = 5 by the definition of a limit.

17. Given ε > 0, we need δ > 0 such that if 0 < |x− (−3)| < δ, then

|(1− 4x)− 13| < ε. But |(1− 4x)− 13| < ε ⇔

|−4x− 12| < ε ⇔ |−4| |x+ 3| < ε ⇔ |x− (−3)| < ε/4.

So if we choose δ = ε/4, then 0 < |x− (−3)| < δ ⇒

|(1− 4x)− 13| < ε. Thus, lim
x→−3

(1− 4x) = 13 by the definition of

a limit.
x

19. Given ε > 0, we need δ > 0 such that if 0 < |x− 3| < δ, then x

5
− 3

5
< ε ⇔ 1

5
|x− 3| < ε ⇔ |x− 3| < 5ε.

So choose δ = 5ε. Then 0 < |x− 3| < δ ⇒ |x− 3| < 5ε ⇒ |x− 3|
5

< ε ⇒ x

5
− 3

5
< ε. By the definition

of a limit, lim
x→3

x

5
=
3

5
.

21. Given ε > 0, we need δ > 0 such that if 0 < |x− 2| < δ, then x2 + x− 6
x− 2 − 5 < ε ⇔

(x+ 3)(x− 2)
x− 2 − 5 < ε ⇔ |x+ 3− 5| < ε [x 6= 2] ⇔ |x− 2| < ε. So choose δ = ε.

Then 0 < |x− 2| < δ ⇒ |x− 2| < ε ⇒ |x+ 3− 5| < ε ⇒ (x+ 3)(x− 2)
x− 2 − 5 < ε [x 6= 2] ⇒

x2 + x− 6
x− 2 − 5 < ε. By the definition of a limit, lim

x→2

x2 + x− 6
x− 2 = 5.

23. Given ε > 0, we need δ > 0 such that if 0 < |x− a| < δ, then |x− a| < ε. So δ = ε will work.

25. Given ε > 0, we need δ > 0 such that if 0 < |x− 0| < δ, then x2 − 0 < ε ⇔ x2 < ε ⇔ |x| < √ε. Take δ =
√
ε.

Then 0 < |x− 0| < δ ⇒ x2 − 0 < ε. Thus, lim
x→0

x2 = 0 by the definition of a limit.

27. Given ε > 0, we need δ > 0 such that if 0 < |x− 0| < δ, then |x|− 0 < ε. But |x| = |x|. So this is true if we pick δ = ε.

Thus, lim
x→0

|x| = 0 by the definition of a limit.
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29. Given ε > 0, we need δ > 0 such that if 0 < |x− 2| < δ, then x2 − 4x+ 5 − 1 < ε ⇔ x2 − 4x+ 4 < ε ⇔

(x− 2)2 < ε. So take δ =
√
ε. Then 0 < |x− 2| < δ ⇔ |x− 2| < √ε ⇔ (x− 2)2 < ε. Thus,

lim
x→2

x2 − 4x+ 5 = 1 by the definition of a limit.

31. Given ε > 0, we need δ > 0 such that if 0 < |x− (−2)| < δ, then x2 − 1 − 3 < ε or upon simplifying we need

x2 − 4 < ε whenever 0 < |x+ 2| < δ. Notice that if |x+ 2| < 1, then −1 < x+ 2 < 1 ⇒ −5 < x− 2 < −3 ⇒

|x− 2| < 5. So take δ = min {ε/5, 1}. Then 0 < |x+ 2| < δ ⇒ |x− 2| < 5 and |x+ 2| < ε/5, so

x2 − 1 − 3 = |(x+ 2)(x− 2)| = |x+ 2| |x− 2| < (ε/5)(5) = ε. Thus, by the definition of a limit, lim
x→−2

(x2 − 1) = 3.

33. Given ε > 0, we let δ = min 2, ε
8

. If 0 < |x− 3| < δ, then |x− 3| < 2 ⇒ −2 < x− 3 < 2 ⇒

4 < x+ 3 < 8 ⇒ |x+ 3| < 8. Also |x− 3| < ε
8

, so x2 − 9 = |x+ 3| |x− 3| < 8 · ε
8
= ε. Thus, lim

x→3
x2 = 9.

35. (a) The points of intersection in the graph are (x1, 2.6) and (x2, 3.4)

with x1 ≈ 0.891 and x2 ≈ 1.093. Thus, we can take δ to be the

smaller of 1− x1 and x2 − 1. So δ = x2 − 1 ≈ 0.093.

(b) Solving x3 + x+ 1 = 3 + ε gives us two nonreal complex roots and one real root, which is

x(ε) =
216 + 108ε+ 12

√
336 + 324ε+ 81ε2

2/3 − 12
6 216 + 108ε+ 12

√
336 + 324ε+ 81ε2

1/3
. Thus, δ = x(ε)− 1.

(c) If ε = 0.4, then x(ε) ≈ 1.093 272 342 and δ = x(ε)− 1 ≈ 0.093, which agrees with our answer in part (a).

37. 1. Guessing a value for δ Given ε > 0, we must find δ > 0 such that |√x−√a| < ε whenever 0 < |x− a| < δ. But

|√x−√a| = |x− a|√
x+

√
a
< ε (from the hint). Now if we can find a positive constant C such that

√
x+

√
a > C then

|x− a|√
x+

√
a
<
|x− a|
C

< ε, and we take |x− a| < Cε. We can find this number by restricting x to lie in some interval

centered at a. If |x− a| < 1
2a, then − 1

2a < x− a < 1
2a ⇒ 1

2a < x < 3
2a ⇒ √

x+
√
a > 1

2a+
√
a, and so

C = 1
2a+

√
a is a suitable choice for the constant. So |x− a| < 1

2a+
√
a ε. This suggests that we let

δ = min 1
2
a, 1

2
a+

√
a ε .

2. Showing that δ works Given ε > 0, we let δ = min 1
2
a, 1

2
a+

√
a ε . If 0 < |x− a| < δ, then

|x− a| < 1
2
a ⇒ √

x+
√
a > 1

2
a+

√
a (as in part 1). Also |x− a| < 1

2
a+

√
a ε, so

|√x−√a | = |x− a|√
x+

√
a
<

a/2 +
√
a ε

a/2 +
√
a

= ε. Therefore, lim
x→a

√
x =

√
a by the definition of a limit.
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39. Suppose that lim
x→0

f(x) = L. Given ε = 1
2 , there exists δ > 0 such that 0 < |x| < δ ⇒ |f(x)− L| < 1

2 . Take any rational

number r with 0 < |r| < δ. Then f(r) = 0, so |0− L| < 1
2

, so L ≤ |L| < 1
2

. Now take any irrational number s with

0 < |s| < δ. Then f(s) = 1, so |1− L| < 1
2

. Hence, 1− L < 1
2

, so L > 1
2

. This contradicts L < 1
2

, so lim
x→0

f(x) does not

exist.

41. 1

(x+ 3)4
> 10,000 ⇔ (x+ 3)4 <

1

10,000
⇔ |x+ 3| < 1

4
√
10,000

⇔ |x− (−3)| < 1

10

43. Given M < 0 we need δ > 0 so that lnx < M whenever 0 < x < δ; that is, x = eln x < eM whenever 0 < x < δ. This

suggests that we take δ = eM . If 0 < x < eM , then lnx < ln eM =M . By the definition of a limit, lim
x→0+

lnx = −∞.

2.5 Continuity

1. From Definition 1, lim
x→4

f(x) = f(4).

3. (a) The following are the numbers at which f is discontinuous and the type of discontinuity at that number: −4 (removable),

−2 ( jump), 2 ( jump), 4 (infinite).

(b) f is continuous from the left at −2 since lim
x→−2−

f(x) = f(−2). f is continuous from the right at 2 and 4 since

lim
x→2+

f(x) = f(2) and lim
x→4+

f(x) = f(4). It is continuous from neither side at −4 since f(−4) is undefined.

5. The graph of y = f(x) must have a discontinuity at x = 3 and must show that lim
x→3−

f(x) = f(3).

7. (a) (b) There are discontinuities at times t = 1, 2, 3, and 4. A person

parking in the lot would want to keep in mind that the charge will

jump at the beginning of each hour.

9. Since f and g are continuous functions,

lim
x→3

[2f(x)− g(x)] = 2 lim
x→3

f(x)− lim
x→3

g(x) [by Limit Laws 2 and 3]

= 2f(3)− g(3) [by continuity of f and g at x = 3]

= 2 · 5− g(3) = 10− g(3)

Since it is given that lim
x→3

[2f(x)− g(x)] = 4, we have 10− g(3) = 4, so g(3) = 6.
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11. lim
x→−1

f(x) = lim
x→−1

x+ 2x3
4
= lim

x→−1
x+ 2 lim

x→−1
x3

4

= −1 + 2(−1)3 4
= (−3)4 = 81 = f(−1).

By the definition of continuity, f is continuous at a = −1.

13. For a > 2, we have

lim
x→a

f(x) = lim
x→a

2x+ 3

x− 2 =
lim
x→a

(2x+ 3)

lim
x→a

(x− 2) [Limit Law 5]

=
2 lim
x→a

x+ lim
x→a

3

lim
x→a

x− lim
x→a

2
[1, 2, and 3]

=
2a+ 3

a− 2 [7 and 8]

= f(a)

Thus, f is continuous atx = a for every a in (2,∞); that is, f is continuous on (2,∞).

15. f(x) = ln |x− 2| is discontinuous at 2 since f(2) = ln 0 is not defined.

17. f(x) =
ex if x < 0

x2 if x ≥ 0
The left-hand limit of f at a = 0 is lim

x→0−
f(x) = lim

x→0−
ex = 1. The

right-hand limit of f at a = 0 is lim
x→0+

f(x) = lim
x→0+

x2 = 0. Since these

limits are not equal, lim
x→0

f(x) does not exist and f is discontinuous at 0.

19. f(x) =

⎧⎪⎨⎪⎩
cosx if x < 0

0 if x = 0

1− x2 if x > 0

lim
x→0

f(x) = 1, but f(0) = 0 6= 1, so f is discontinuous at 0.

21. F (x) = x

x2 + 5x+ 6
is a rational function. So by Theorem 5 (or Theorem 7), F is continuous at every number in its domain,

x | x2 + 5x+ 6 6= 0 = {x | (x+ 3)(x+ 2) 6= 0} = {x | x 6= −3, − 2} or (−∞,−3) ∪ (−3,−2) ∪ (−2,∞).

23. By Theorem 5, the polynomials x2 and 2x− 1 are continuous on (−∞,∞). By Theorem 7, the root function
√
x is

continuous on [0,∞). By Theorem 9, the composite function
√
2x− 1 is continuous on its domain, [ 1

2
,∞).

By part 1 of Theorem 4, the sum R(x) = x2 +
√
2x− 1 is continuous on [ 1

2
,∞).
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25. By Theorem 7, the exponential function e−5t and the trigonometric function cos 2πt are continuous on (−∞,∞).

By part 4 of Theorem 4, L(t) = e−5t cos 2πt is continuous on (−∞,∞).

27. By Theorem 5, the polynomial t4 − 1 is continuous on (−∞,∞). By Theorem 7, lnx is continuous on its domain, (0,∞).

By Theorem 9, ln t4 − 1 is continuous on its domain, which is

t | t4 − 1 > 0 = t | t4 > 1 = {t | |t| > 1} = (−∞,−1) ∪ (1,∞)

29. The function y = 1

1 + e1/x
is discontinuous at x = 0 because the

left- and right-hand limits at x = 0 are different.

31. Because we are dealing with root functions, 5 +
√
x is continuous on [0,∞),√x+ 5 is continuous on [−5,∞), so the

quotient f(x) = 5 +
√
x√

5 + x
is continuous on [0,∞). Since f is continuous at x = 4, lim

x→4
f(x) = f(4) = 7

3
.

33. Because x2 − x is continuous on R, the composite function f(x) = ex
2−x is continuous on R, so

lim
x→1

f(x) = f(1) = e1− 1 = e0 = 1.

35. f(x) =
x2 if x < 1
√
x if x ≥ 1

By Theorem 5, since f(x) equals the polynomial x2 on (−∞, 1), f is continuous on (−∞, 1). By Theorem 7, since f(x)

equals the root function
√
x on (1,∞), f is continuous on (1,∞). At x = 1, lim

x→1−
f(x) = lim

x→1−
x2 = 1 and

lim
x→1+

f(x) = lim
x→1+

√
x = 1. Thus, lim

x→1
f(x) exists and equals 1. Also, f(1) =

√
1 = 1. Thus, f is continuous at x = 1.

We conclude that f is continuous on (−∞,∞).

37. f(x) =

⎧⎪⎪⎨⎪⎪⎩
1 + x2 if x ≤ 0
2− x if 0 < x ≤ 2
(x− 2)2 if x > 2

f is continuous on (−∞, 0), (0, 2), and (2,∞) since it is a polynomial on

each of these intervals. Now lim
x→0−

f(x) = lim
x→0−

(1 + x2) = 1 and lim
x→0+

f(x) = lim
x→0+

(2− x) = 2, so f is

discontinuous at 0. Since f(0) = 1, f is continuous from the left at 0. Also, lim
x→2−

f(x) = lim
x→2−

(2− x) = 0,

lim
x→2+

f(x) = lim
x→2+

(x− 2)2 = 0, and f(2) = 0, so f is continuous at 2. The only number at which f is discontinuous is 0.
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39. f(x) =

⎧⎪⎪⎨⎪⎪⎩
x+ 2 if x < 0

ex if 0 ≤ x ≤ 1
2− x if x > 1

f is continuous on (−∞, 0) and (1,∞) since on each of these intervals

it is a polynomial; it is continuous on (0, 1) since it is an exponential.

Now lim
x→0−

f(x) = lim
x→0−

(x+ 2) = 2 and lim
x→0+

f(x) = lim
x→0+

ex = 1, so f is discontinuous at 0. Since f(0) = 1, f is

continuous from the right at 0. Also lim
x→1−

f(x) = lim
x→1−

ex = e and lim
x→1+

f(x) = lim
x→1+

(2− x) = 1, so f is discontinuous

at 1. Since f(1) = e, f is continuous from the left at 1.

41. f(x) =
cx2 + 2x if x < 2

x3 − cx if x ≥ 2
f is continuous on (−∞, 2) and (2,∞). Now lim

x→2−
f(x) = lim

x→2−
cx2 + 2x = 4c+ 4 and

lim
x→2+

f(x) = lim
x→2+

x3 − cx = 8− 2c. So f is continuous ⇔ 4c+4 = 8− 2c ⇔ 6c = 4 ⇔ c = 2
3

. Thus, for f

to be continuous on (−∞,∞), c = 2
3 .

43. (a) f(x) = x4 − 1
x− 1 =

(x2 + 1)(x2 − 1)
x− 1 =

(x2 + 1)(x+ 1)(x− 1)
x− 1 = (x2 + 1)(x+ 1) [or x3 + x2 + x+ 1]

for x 6= 1. The discontinuity is removable and g(x) = x3 + x2 + x+ 1 agrees with f for x 6= 1 and is continuous on R.

(b) f(x) = x3 − x2 − 2x
x− 2 =

x(x2 − x− 2)
x− 2 =

x(x− 2)(x+ 1)
x− 2 = x(x+ 1) [or x2 + x] for x 6= 2. The discontinuity

is removable and g(x) = x2 + x agrees with f for x 6= 2 and is continuous on R.

(c) lim
x→π−

f(x) = lim
x→π−

[[sinx]] = lim
x→π−

0 = 0 and lim
x→π+

f(x) = lim
x→π+

[[sinx]] = lim
x→π+

(−1) = −1, so lim
x→π

f(x) does not

exist. The discontinuity at x = π is a jump discontinuity.

45. f(x) = x2 + 10 sinx is continuous on the interval [31, 32], f(31) ≈ 957, and f(32) ≈ 1030. Since 957 < 1000 < 1030,

there is a number c in (31, 32) such that f(c) = 1000 by the Intermediate Value Theorem. Note: There is also a number c in

(−32,−31) such that f(c) = 1000.

47. f(x) = x4 + x− 3 is continuous on the interval [1, 2], f(1) = −1, and f(2) = 15. Since −1 < 0 < 15, there is a number c

in (1, 2) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation x4 + x− 3 = 0 in the

interval (1, 2).

49. f(x) = cosx− x is continuous on the interval [0, 1], f(0) = 1, and f(1) = cos 1− 1 ≈ −0.46. Since −0.46 < 0 < 1, there

is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root of the equation

cosx− x = 0, or cosx = x, in the interval (0, 1).
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51. (a) f(x) = cosx− x3 is continuous on the interval [0, 1], f(0) = 1 > 0, and f(1) = cos 1− 1 ≈ −0.46 < 0. Since

1 > 0 > −0.46, there is a number c in (0, 1) such that f(c) = 0 by the Intermediate Value Theorem. Thus, there is a root

of the equation cosx− x3 = 0, or cosx = x3, in the interval (0, 1).

(b) f(0.86) ≈ 0.016 > 0 and f(0.87) ≈ −0.014 < 0, so there is a root between 0.86 and 0.87, that is, in the interval

(0.86, 0.87).

53. (a) Let f(x) = 100e−x/100 − 0.01x2. Then f(0) = 100 > 0 and

f(100) = 100e−1 − 100 ≈ −63.2 < 0. So by the Intermediate

Value Theorem, there is a number c in (0, 100) such that f(c) = 0.

This implies that 100e−c/100 = 0.01c2.

(b) Using the intersect feature of the graphing device, we find that the

root of the equation is x = 70.347, correct to three decimal places.

55. (⇒) If f is continuous at a, then by Theorem 8 with g(h) = a+ h, we have

lim
h→0

f(a+ h) = f lim
h→0

(a+ h) = f(a).

(⇐) Let ε > 0. Since lim
h→0

f(a+ h) = f(a), there exists δ > 0 such that 0 < |h| < δ ⇒
|f(a+ h)− f(a)| < ε. So if 0 < |x− a| < δ, then |f(x)− f(a)| = |f(a+ (x− a))− f(a)| < ε.

Thus, lim
x→a

f(x) = f(a) and so f is continuous at a.

57. As in the previous exercise, we must show that lim
h→0

cos(a+ h) = cos a to prove that the cosine function is continuous.

lim
h→0

cos(a+ h) = lim
h→0

(cos a cosh− sin a sinh) = lim
h→0

(cos a cosh)− lim
h→0

(sin a sinh)

= lim
h→0

cos a lim
h→0

cosh − lim
h→0

sin a lim
h→0

sinh = (cos a)(1)− (sin a)(0) = cos a

59. f(x) =
0 if x is rational

1 if x is irrational
is continuous nowhere. For, given any number a and any δ > 0, the interval (a− δ, a+ δ)

contains both infinitely many rational and infinitely many irrational numbers. Since f(a) = 0 or 1, there are infinitely many

numbers x with 0 < |x− a| < δ and |f(x)− f(a)| = 1. Thus, lim
x→a

f(x) 6= f(a). [In fact, lim
x→a

f(x) does not even exist.]

61. If there is such a number, it satisfies the equation x3 +1 = x ⇔ x3 − x+1 = 0. Let the left-hand side of this equation be

called f(x). Now f(−2) = −5 < 0, and f(−1) = 1 > 0. Note also that f(x) is a polynomial, and thus continuous. So by the

Intermediate Value Theorem, there is a number c between −2 and −1 such that f(c) = 0, so that c = c3 + 1.

63. f(x) = x4 sin(1/x) is continuous on (−∞, 0) ∪ (0,∞) since it is the product of a polynomial and a composite of a

trigonometric function and a rational function. Now since −1 ≤ sin(1/x) ≤ 1, we have−x4 ≤ x4 sin(1/x) ≤ x4. Because



60 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

lim
x→0

(−x4) = 0 and lim
x→0

x4 = 0, the Squeeze Theorem gives us lim
x→0

(x4 sin(1/x)) = 0, which equals f(0). Thus, f is

continuous at 0 and, hence, on (−∞,∞).

65. Define u(t) to be the monk’s distance from the monastery, as a function of time, on the first day, and define d(t) to be his

distance from the monastery, as a function of time, on the second day. Let D be the distance from the monastery to the top of

the mountain. From the given information we know that u(0) = 0, u(12) = D, d(0) = D and d(12) = 0. Now consider the

function u− d, which is clearly continuous. We calculate that (u− d)(0) = −D and (u− d)(12) = D. So by the

Intermediate Value Theorem, there must be some time t0 between 0 and 12 such that (u− d)(t0) = 0 ⇔ u(t0) = d(t0).

So at time t0 after 7:00 AM, the monk will be at the same place on both days.

2.6 Limits at Infinity; Horizontal Asymptotes

1. (a) As x becomes large, the values of f(x) approach 5.

(b) As x becomes large negative, the values of f(x) approach 3.

3. (a) lim
x→2

f(x) =∞ (b) lim
x→−1−

f(x) =∞ (c) lim
x→−1+

f(x) = −∞

(d) lim
x→∞

f(x) = 1 (e) lim
x→−∞

f(x) = 2 (f ) Vertical: x = −1, x = 2; Horizontal: y = 1, y = 2

5. f(0) = 0, f(1) = 1,

lim
x→∞

f(x) = 0,

f is odd

7. lim
x→2

f(x) = −∞, lim
x→∞

f(x) =∞,

lim
x→−∞

f(x) = 0, lim
x→0+

f(x) =∞,

lim
x→0−

f(x) = −∞

9. f(0) = 3, lim
x→0−

f(x) = 4,

lim
x→0+

f(x) = 2,

lim
x→−∞

f(x) = −∞, lim
x→4−

f(x) = −∞,

lim
x→4+

f(x) =∞, lim
x→∞

f(x) = 3

11. If f(x) = x2/2x, then a calculator gives f(0) = 0, f(1) = 0.5, f(2) = 1, f(3) = 1.125, f(4) = 1, f(5) = 0.78125,

f(6) = 0.5625, f(7) = 0.3828125, f(8) = 0.25, f(9) = 0.158203125, f(10) = 0.09765625, f(20) ≈ 0.00038147,

f(50) ≈ 2.2204× 10−12, f(100) ≈ 7.8886× 10−27.

It appears that lim
x→∞

x2/2x = 0.
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13. lim
x→∞

3x2 − x+ 4

2x2 + 5x− 8 = lim
x→∞

(3x2 − x+ 4)/x2

(2x2 + 5x− 8)/x2 [divide both the numerator and denominator by x2

(the highest power of x thatappears in the denominator)]

=
lim
x→∞

(3− 1/x+ 4/x2)
lim
x→∞

(2 + 5/x− 8/x2) [Limit Law 5]

=
lim
x→∞

3− lim
x→∞

(1/x) + lim
x→∞

(4/x2)

lim
x→∞

2 + lim
x→∞

(5/x)− lim
x→∞

(8/x2)
[Limit Laws 1 and 2]

=
3− lim

x→∞
(1/x) + 4 lim

x→∞
(1/x2)

2 + 5 lim
x→∞

(1/x)− 8 lim
x→∞

(1/x2)
[Limit Laws 7 and 3]

=
3− 0 + 4(0)
2 + 5(0)− 8(0) [Theorem 5 of Section 2.5]

=
3

2

15. lim
x→∞

1

2x+ 3
= lim

x→∞
1/x

(2x+ 3)/x
=

lim
x→∞

(1/x)

lim
x→∞

(2 + 3/x)
=

lim
x→∞

(1/x)

lim
x→∞

2 + 3 lim
x→∞

(1/x)
=

0

2 + 3(0)
=
0

2
= 0

17. lim
x→−∞

1− x− x2

2x2 − 7 = lim
x→−∞

(1− x− x2)/x2

(2x2 − 7)/x2 =
lim

x→−∞
(1/x2 − 1/x− 1)
lim

x→−∞
(2− 7/x2)

=
lim

x→−∞
(1/x2)− lim

x→−∞
(1/x)− lim

x→−∞
1

lim
x→−∞

2− 7 lim
x→−∞

(1/x2)
=
0− 0− 1
2− 7(0) = −

1

2

19. Divide both the numerator and denominator by x3 (the highest power of x that occurs in the denominator).

lim
x→∞

x3 + 5x

2x3 − x2 + 4
= lim

x→∞

x3 + 5x

x3

2x3 − x2 + 4

x3

= lim
x→∞

1 +
5

x2

2− 1

x
+
4

x3

=

lim
x→∞

1 +
5

x2

lim
x→∞

2− 1

x
+
4

x3

=
lim
x→∞

1 + 5 lim
x→∞

1

x2

lim
x→∞

2− lim
x→∞

1

x
+ 4 lim

x→∞
1

x3

=
1 + 5(0)

2− 0 + 4(0) =
1

2

21. First, multiply the factors in the denominator. Then divide both the numerator and denominator by u4.

lim
u→∞

4u4 + 5

(u2 − 2)(2u2 − 1) = lim
u→∞

4u4 + 5

2u4 − 5u2 + 2 = lim
u→∞

4u4 + 5

u4

2u4 − 5u2 + 2
u4

= lim
u→∞

4 +
5

u4

2− 5

u2
+
2

u4

=

lim
u→∞

4 +
5

u4

lim
u→∞

2− 5

u2
+
2

u4

=
lim
u→∞

4 + 5 lim
u→∞

1

u4

lim
u→∞

2− 5 lim
u→∞

1

u2
+ 2 lim

u→∞
1

u4

=
4 + 5(0)

2− 5(0) + 2(0) =
4

2
= 2



62 ¤ CHAPTER 2 LIMITS AND DERIVATIVES

23. lim
x→∞

√
9x6 − x

x3 + 1
= lim

x→∞

√
9x6 − x /x3

(x3 + 1)/x3
=

lim
x→∞

(9x6 − x)/x6

lim
x→∞

(1 + 1/x3)
[since x3 =

√
x6 for x > 0]

=
lim
x→∞

9− 1/x5
lim
x→∞

1 + lim
x→∞

(1/x3)
=

lim
x→∞

9− lim
x→∞

(1/x5)

1 + 0

=
√
9− 0 = 3

25. lim
x→∞

√
9x2 + x− 3x = lim

x→∞

√
9x2 + x− 3x √

9x2 + x+ 3x√
9x2 + x+ 3x

= lim
x→∞

√
9x2 + x

2 − (3x)2√
9x2 + x+ 3x

= lim
x→∞

9x2 + x − 9x2√
9x2 + x+ 3x

= lim
x→∞

x√
9x2 + x+ 3x

· 1/x
1/x

= lim
x→∞

x/x

9x2/x2 + x/x2 + 3x/x
= lim

x→∞
1

9 + 1/x+ 3
=

1√
9 + 3

=
1

3 + 3
=
1

6

27. lim
x→∞

√
x2 + ax−√x2 + bx = lim

x→∞

√
x2 + ax−√x2 + bx

√
x2 + ax+

√
x2 + bx√

x2 + ax+
√
x2 + bx

= lim
x→∞

(x2 + ax)− (x2 + bx)√
x2 + ax+

√
x2 + bx

= lim
x→∞

[(a− b)x]/x√
x2 + ax+

√
x2 + bx /

√
x2

= lim
x→∞

a− b

1 + a/x+ 1 + b/x
=

a− b√
1 + 0 +

√
1 + 0

=
a− b

2

29. lim
x→∞

x+ x3 + x5

1− x2 + x4
= lim

x→∞
(x+ x3 + x5)/x4

(1− x2 + x4)/x4
[divide by the highest power of x in the denominator]

= lim
x→∞

1/x3 + 1/x+ x

1/x4 − 1/x2 + 1 =∞

because (1/x3 + 1/x+ x)→∞ and (1/x4 − 1/x2 + 1)→ 1 as x→∞.

31. lim
x→−∞

(x4 + x5) = lim
x→−∞

x5( 1x + 1) [factor out the largest power of x] = −∞ because x5 →−∞ and 1/x+ 1→ 1

as x→−∞.

Or: lim
x→−∞

x4 + x5 = lim
x→−∞

x4 (1 + x) = −∞.

33. lim
x→∞

1− ex

1 + 2ex
= lim

x→∞
(1− ex)/ex

(1 + 2ex)/ex
= lim

x→∞
1/ex − 1
1/ex + 2

=
0− 1
0 + 2

= −1
2

35. Since −1 ≤ cosx ≤ 1 and e−2x > 0, we have −e−2x ≤ e−2x cosx ≤ e−2x. We know that lim
x→∞

(−e−2x) = 0 and

lim
x→∞

e−2x = 0, so by the Squeeze Theorem, lim
x→∞

(e−2x cosx) = 0.

37. (a)

From the graph of f(x) =
√
x2 + x+ 1 + x, we estimate

the value of lim
x→−∞

f(x) to be −0.5.

(b)
x f(x)

−10,000 −0.4999625
−100,000 −0.4999962
−1,000,000 −0.4999996

From the table, we estimate the limit

to be −0.5.
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(c) lim
x→−∞

√
x2 + x+ 1 + x = lim

x→−∞
√
x2 + x+ 1+ x

√
x2 + x+ 1− x√
x2 + x+ 1− x

= lim
x→−∞

x2 + x+ 1 − x2√
x2 + x+ 1− x

= lim
x→−∞

(x+ 1)(1/x)√
x2 + x+ 1− x (1/x)

= lim
x→−∞

1 + (1/x)

− 1 + (1/x) + (1/x2)− 1
=

1 + 0

−√1 + 0 + 0− 1 = −
1

2

Note that for x < 0, we have
√
x2 = |x| = −x, so when we divide the radical by x, with x < 0, we get

1

x

√
x2 + x+ 1 = − 1√

x2

√
x2 + x+ 1 = − 1 + (1/x) + (1/x2).

39. lim
x→∞

2x+ 1

x− 2 = lim
x→∞

2x+ 1

x
x− 2
x

= lim
x→∞

2 +
1

x

1− 2

x

=

lim
x→∞

2 +
1

x

lim
x→∞

1− 2

x

=
lim
x→∞

2 + lim
x→∞

1

x

lim
x→∞

1− lim
x→∞

2

x

=
2 + 0

1− 0 = 2, so y = 2 is a horizontal asymptote.

The denominator x− 2 is zero when x = 2 and the numerator is not zero, so we

investigate y = f(x) =
2x+ 1

x− 2 as x approaches 2. lim
x→2−

f(x) = −∞ because as

x→ 2− the numerator is positive and the denominator approaches 0 through

negative values. Similarly, lim
x→2+

f(x) =∞. Thus, x = 2 is a vertical asymptote.

The graph confirms our work.

41. lim
x→∞

2x2 + x− 1
x2 + x− 2 = lim

x→∞

2x2 + x− 1
x2

x2 + x− 2
x2

= lim
x→∞

2 +
1

x
− 1

x2

1 +
1

x
− 2

x2

=

lim
x→∞

2 +
1

x
− 1

x2

lim
x→∞

1 +
1

x
− 2

x2

=
lim
x→∞

2 + lim
x→∞

1

x
− lim

x→∞
1

x2

lim
x→∞

1 + lim
x→∞

1

x
− 2 lim

x→∞
1

x2

=
2 + 0− 0
1 + 0− 2(0) = 2, so y = 2 is a horizontal asymptote.

y = f(x) =
2x2 + x− 1
x2 + x− 2 =

(2x− 1)(x+ 1)
(x+ 2)(x− 1) , so lim

x→−2−
f(x) =∞,

lim
x→−2+

f(x) = −∞, lim
x→1−

f(x) = −∞, and lim
x→1+

f(x) =∞. Thus, x = −2

and x = 1 are vertical asymptotes. The graph confirms our work.

43. y = f(x) =
x3 − x

x2 − 6x+ 5 =
x(x2 − 1)

(x− 1)(x− 5) =
x(x+ 1)(x− 1)
(x− 1)(x− 5) =

x(x+ 1)

x− 5 = g(x) for x 6= 1.

The graph of g is the same as the graph of f with the exception of a hole in the

graph of f at x = 1. By long division, g(x) = x2 + x

x− 5 = x+ 6 +
30

x− 5 .

As x→ ±∞, g(x)→ ±∞, so there is no horizontal asymptote. The denominator

of g is zero when x = 5. lim
x→5−

g(x) = −∞ and lim
x→5+

g(x) =∞, so x = 5 is a

vertical asymptote. The graph confirms our work.
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45. From the graph, it appears y = 1 is a horizontal asymptote.

lim
x→∞

3x3 + 500x2

x3 + 500x2 + 100x+ 2000
= lim

x→∞

3x3 + 500x2

x3

x3 + 500x2 + 100x+ 2000

x3

= lim
x→∞

3 + (500/x)

1 + (500/x) + (100/x2) + (2000/x3)

=
3 + 0

1 + 0 + 0 + 0
= 3, so y = 3 is a horizontal asymptote.

The discrepancy can be explained by the choice of the viewing window. Try

[−100,000, 100,000] by [−1, 4] to get a graph that lends credibility to our

calculation that y = 3 is a horizontal asymptote.

47. Let’s look for a rational function.

(1) lim
x→±∞

f(x) = 0 ⇒ degree of numerator < degree of denominator

(2) lim
x→0

f(x) = −∞ ⇒ there is a factor of x2 in the denominator (not just x, since that would produce a sign

change at x = 0), and the function is negative near x = 0.

(3) lim
x→3−

f(x) =∞ and lim
x→3+

f(x) = −∞ ⇒ vertical asymptote at x = 3; there is a factor of (x− 3) in the

denominator.

(4) f(2) = 0 ⇒ 2 is an x-intercept; there is at least one factor of (x− 2) in the numerator.

Combining all of this information and putting in a negative sign to give us the desired left- and right-hand limits gives us

f(x) =
2− x

x2(x− 3) as one possibility.

49. y = f(x) = x4 − x6 = x4(1− x2) = x4(1 + x)(1− x). The y-intercept is

f(0) = 0. The x-intercepts are 0, −1, and 1 [found by solving f(x) = 0 for x].

Since x4 > 0 for x 6= 0, f doesn’t change sign at x = 0. The function does change

sign at x = −1 and x = 1. As x→ ±∞, f(x) = x4(1− x2) approaches−∞

because x4 →∞ and (1− x2)→−∞.

51. y = f(x) = (3− x)(1 + x)2(1− x)4. The y-intercept is f(0) = 3(1)2(1)4 = 3.

The x-intercepts are 3, −1, and 1. There is a sign change at 3, but not at −1 and 1.

When x is large positive, 3− x is negative and the other factors are positive, so

lim
x→∞

f(x) = −∞. When x is large negative, 3− x is positive, so

lim
x→−∞

f(x) =∞.

53. (a) Since −1 ≤ sinx ≤ 1 for all x, − 1
x
≤ sinx

x
≤ 1

x
for x > 0. As x→∞, −1/x→ 0 and 1/x→ 0, so by the Squeeze

Theorem, (sinx)/x→ 0. Thus, lim
x→∞

sinx

x
= 0.



SECTION 2.6 LIMITS AT INFINITY; HORIZONTAL ASYMPTOTES ¤ 65

(b) From part (a), the horizontal asymptote is y = 0. The function

y = (sinx)/x crosses the horizontal asymptote whenever sinx = 0;

that is, at x = πn for every integer n. Thus, the graph crosses the

asymptote an infinite number of times.

55. Divide the numerator and the denominator by the highest power of x in Q(x).

(a) If degP < degQ, then the numerator → 0 but the denominator doesn’t. So lim
x→∞

[P (x)/Q(x)] = 0.

(b) If degP > degQ, then the numerator → ±∞ but the denominator doesn’t, so lim
x→∞

[P (x)/Q(x)] = ±∞

(depending on the ratio of the leading coefficients of P and Q).

57. lim
x→∞

5
√
x√

x− 1 ·
1/
√
x

1/
√
x
= lim

x→∞
5

1− (1/x) =
5√
1− 0 = 5 and

lim
x→∞

10ex − 21
2ex

· 1/e
x

1/ex
= lim

x→∞
10− (21/ex)

2
=
10− 0
2

= 5. Since 10e
x − 21
2ex

< f(x) <
5
√
x√

x− 1 ,

we have lim
x→∞

f(x) = 5 by the Squeeze Theorem.

59. (a) lim
t→∞

v(t) = lim
t→∞

v∗ 1− e−gt/v
∗
= v∗(1− 0) = v∗

(b) We graph v(t) = 1− e−9.8t and v(t) = 0.99v∗, or in this case,

v(t) = 0.99. Using an intersect feature or zooming in on the point of

intersection, we find that t ≈ 0.47 s.

61. Let g(x) = 3x2 + 1

2x2 + x+ 1
and f(x) = |g(x)− 1.5|. Note that

lim
x→∞

g(x) = 3
2

and lim
x→∞

f(x) = 0. We are interested in finding the

x-value at which f(x) < 0.05. From the graph, we find that x ≈ 14.804,

so we choose N = 15 (or any larger number).

63. For ε = 0.5, we need to find N such that
√
4x2 + 1

x+ 1
− (−2) < 0.5 ⇔

−2.5 <
√
4x2 + 1

x+ 1
< −1.5 whenever x ≤ N . We graph the three parts of this

inequality on the same screen, and see that the inequality holds for x ≤ −6.So we

choose N = −6 (or any smaller number).

For ε = 0.1, we need −2.1 <
√
4x2 + 1

x+ 1
< −1.9 whenever x ≤ N.From the

graph, it seems that this inequality holds for x ≤ −22. So we choose N = −22
(or any smaller number).
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65. (a) 1/x2 < 0.0001 ⇔ x2 > 1/0.0001 = 10 000 ⇔ x > 100 (x > 0)

(b) If ε > 0 is given, then 1/x2 < ε ⇔ x2 > 1/ε ⇔ x > 1/
√
ε. Let N = 1/

√
ε.

Then x > N ⇒ x >
1√
ε
⇒ 1

x2
− 0 =

1

x2
< ε, so lim

x→∞
1

x2
= 0.

67. For x < 0, |1/x− 0| = −1/x. If ε > 0 is given, then −1/x < ε ⇔ x < −1/ε.

Take N = −1/ε. Then x < N ⇒ x < −1/ε ⇒ |(1/x)− 0| = −1/x < ε, so lim
x→−∞

(1/x) = 0.

69. Given M > 0, we need N > 0 such that x > N ⇒ ex > M . Now ex > M ⇔ x > lnM , so take

N = max(1, lnM). (This ensures that N > 0.) Then x > N = max(1, lnM) ⇒ ex > max(e,M) ≥M ,

so lim
x→∞

ex =∞.

71. Suppose that lim
x→∞

f(x) = L. Then for every ε > 0 there is a corresponding positive number N such that |f(x)− L| < ε

whenever x > N . If t = 1/x, then x > N ⇔ 0 < 1/x < 1/N ⇔ 0 < t < 1/N . Thus, for every ε > 0 there is a

corresponding δ > 0 (namely 1/N) such that |f(1/t)− L| < ε whenever 0 < t < δ. This proves that

lim
t→0+

f(1/t) = L = lim
x→∞

f(x).

Now suppose that lim
x→−∞

f(x) = L. Then for every ε > 0 there is a corresponding negative number N such that

|f(x)− L| < ε whenever x < N . If t = 1/x, then x < N ⇔ 1/N < 1/x < 0 ⇔ 1/N < t < 0. Thus, for every

ε > 0 there is a corresponding δ > 0 (namely −1/N) such that |f(1/t)− L| < ε whenever −δ < t < 0. This proves that

lim
t→0−

f(1/t) = L = lim
x→−∞

f(x).

2.7 Derivatives and Rates of Change

1. (a) This is just the slope of the line through two points: mPQ =
∆y

∆x
=

f(x)− f(3)

x− 3 .

(b) This is the limit of the slope of the secant line PQ as Q approaches P : m = lim
x→3

f(x)− f(3)

x− 3 .

3. (a) (i) Using Definition 1 with f(x) = 4x− x2 and P (1, 3),

m= lim
x→a

f(x)− f(a)

x− a
= lim

x→1

(4x− x2)− 3
x− 1 = lim

x→1

−(x2 − 4x+ 3)
x− 1 = lim

x→1

−(x− 1)(x− 3)
x− 1

= lim
x→1

(3− x) = 3− 1 = 2
(ii) Using Equation 2 with f(x) = 4x− x2 and P (1, 3),

m= lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

f(1 + h)− f(1)

h
= lim

h→0

4(1 + h)− (1 + h)2 − 3
h

= lim
h→0

4 + 4h− 1− 2h− h2 − 3
h

= lim
h→0

−h2 + 2h
h

= lim
h→0

h(−h+ 2)
h

= lim
h→0

(−h+ 2) = 2

(b) An equation of the tangent line is y − f(a) = f 0(a)(x− a) ⇒ y − f(1) = f 0(1)(x− 1) ⇒ y − 3 = 2(x− 1),
or y = 2x+ 1.
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(c) The graph of y = 2x+ 1 is tangent to the graph of y = 4x− x2 at the

point (1, 3). Now zoom in toward the point (1, 3) until the parabola and

the tangent line are indistiguishable.

5. Using (1) with f(x) = x− 1
x− 2 and P (3, 2),

m= lim
x→a

f(x)− f(a)

x− a
= lim

x→3

x− 1
x− 2 − 2
x− 3 = lim

x→3

x− 1− 2(x− 2)
x− 2
x− 3

= lim
x→3

3− x

(x− 2)(x− 3) = lim
x→3

−1
x− 2 =

−1
1
= −1

Tangent line: y − 2 = −1(x− 3) ⇔ y − 2 = −x+ 3 ⇔ y = −x+ 5

7. Using (1), m = lim
x→1

√
x−√1
x− 1 = lim

x→1

(
√
x− 1)(√x+ 1)

(x− 1)(√x+ 1) = lim
x→1

x− 1
(x− 1)(√x+ 1) = lim

x→1

1√
x+ 1

=
1

2
.

Tangent line: y − 1 = 1
2 (x− 1) ⇔ y = 1

2x+
1
2

9. (a) Using (2) with y = f(x) = 3 + 4x2 − 2x3,

m= lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

3 + 4(a+ h)2 − 2(a+ h)3 − (3 + 4a2 − 2a3)
h

= lim
h→0

3 + 4(a2 + 2ah+ h2)− 2(a3 + 3a2h+ 3ah2 + h3)− 3− 4a2 + 2a3
h

= lim
h→0

3 + 4a2 + 8ah+ 4h2 − 2a3 − 6a2h− 6ah2 − 2h3 − 3− 4a2 + 2a3
h

= lim
h→0

8ah+ 4h2 − 6a2h− 6ah2 − 2h3
h

= lim
h→0

h(8a+ 4h− 6a2 − 6ah− 2h2)
h

= lim
h→0

(8a+ 4h− 6a2 − 6ah− 2h2) = 8a− 6a2

(b) At (1, 5): m = 8(1)− 6(1)2 = 2, so an equation of the tangent line

is y − 5 = 2(x− 1) ⇔ y = 2x+ 3.

At (2, 3): m = 8(2)− 6(2)2 = −8, so an equation of the tangent

line is y − 3 = −8(x− 2) ⇔ y = −8x+ 19.

(c)

11. (a) The particle is moving to the right when s is increasing; that is, on the intervals (0, 1) and (4, 6). The particle is moving to

the left when s is decreasing; that is, on the interval (2, 3). The particle is standing still when s is constant; that is, on the

intervals (1, 2) and (3, 4).
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(b) The velocity of the particle is equal to the slope of the tangent line of the

graph. Note that there is no slope at the corner points on the graph. On the

interval (0, 1), the slope is 3− 0
1− 0 = 3. On the interval (2, 3), the slope is

1− 3
3− 2 = −2. On the interval (4, 6), the slope is 3− 1

6− 4 = 1.

13. Let s(t) = 40t− 16t2.

v(2) = lim
t→2

s(t)− s(2)

t− 2 = lim
t→2

40t− 16t2 − 16
t− 2 = lim

t→2

−16t2 + 40t− 16
t− 2 = lim

t→2

−8 2t2 − 5t+ 2
t− 2

= lim
t→2

−8(t− 2)(2t− 1)
t− 2 = −8 lim

t→2
(2t− 1) = −8(3) = −24

Thus, the instantaneous velocity when t = 2 is −24 ft/s.

15. v(a) = lim
h→0

s(a+ h)− s(a)

h
= lim

h→0

1

(a+ h)2
− 1

a2

h
= lim

h→0

a2 − (a+ h)2

a2(a+ h)2

h
= lim

h→0

a2 − (a2 + 2ah+ h2)

ha2(a+ h)2

= lim
h→0

−(2ah+ h2)

ha2(a+ h)2
= lim

h→0

−h(2a+ h)

ha2(a+ h)2
= lim

h→0

−(2a+ h)

a2(a+ h)2
=

−2a
a2 · a2 =

−2
a3

m/s

So v (1) = −2
13

= −2 m/s, v(2) = −2
23

= −1
4

m/s, and v(3) = −2
33

= − 2

27
m/s.

17. g0(0) is the only negative value. The slope at x = 4 is smaller than the slope at x = 2 and both are smaller than the slope at

x = −2. Thus, g0(0) < 0 < g0(4) < g0(2) < g0(−2).

19. We begin by drawing a curve through the origin with a

slope of 3 to satisfy f(0) = 0 and f 0(0) = 3. Since

f 0(1) = 0, we will round off our figure so that there is

a horizontal tangent directly over x = 1. Last, we

make sure that the curve has a slope of −1 as we pass

over x = 2. Two of the many possibilities are shown.

21. Using Definition 2 with f(x) = 3x2 − 5x and the point (2, 2), we have

f 0(2) = lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

3(2 + h)2 − 5(2 + h) − 2
h

= lim
h→0

(12 + 12h+ 3h2 − 10− 5h)− 2
h

= lim
h→0

3h2 + 7h

h
= lim

h→0
(3h+ 7) = 7

So an equation of the tangent line at (2, 2) is y − 2 = 7(x− 2) or y = 7x− 12.
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23. (a) Using Definition 2 with F (x) = 5x/(1 + x2) and the point (2, 2), we have

F 0(2) = lim
h→0

F (2 + h)− F (2)

h
= lim

h→0

5(2 + h)

1 + (2 + h)2
− 2

h

= lim
h→0

5h+ 10

h2 + 4h+ 5
− 2

h
= lim

h→0

5h+ 10− 2(h2 + 4h+ 5)
h2 + 4h+ 5

h

= lim
h→0

−2h2 − 3h
h(h2 + 4h+ 5)

= lim
h→0

h(−2h− 3)
h(h2 + 4h+ 5)

= lim
h→0

−2h− 3
h2 + 4h+ 5

=
−3
5

So an equation of the tangent line at (2, 2) is y − 2 = − 3
5
(x− 2) or y = − 3

5
x+ 16

5
.

(b)

25. Use Definition 2 with f(x) = 3− 2x+ 4x2.

f 0(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

[3− 2(a+ h) + 4(a+ h)2]− (3− 2a+ 4a2)
h

= lim
h→0

(3− 2a− 2h+ 4a2 + 8ah+ 4h2)− (3− 2a+ 4a2)
h

= lim
h→0

−2h+ 8ah+ 4h2
h

= lim
h→0

h(−2 + 8a+ 4h)
h

= lim
h→0

(−2 + 8a+ 4h) = −2 + 8a

27. Use Definition 2 with f(t) = (2t+ 1)/(t+ 3).

f 0(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

2(a+ h) + 1

(a+ h) + 3
− 2a+ 1

a+ 3

h
= lim

h→0

(2a+ 2h+ 1)(a+ 3)− (2a+ 1)(a+ h+ 3)

h(a+ h+ 3)(a+ 3)

= lim
h→0

(2a2 + 6a+ 2ah+ 6h+ a+ 3)− (2a2 + 2ah+ 6a+ a+ h+ 3)

h(a+ h+ 3)(a+ 3)

= lim
h→0

5h

h(a+ h+ 3)(a+ 3)
= lim

h→0

5

(a+ h+ 3)(a+ 3)
=

5

(a+ 3)2

29. Use Definition 2 with f(x) = 1/
√
x+ 2.

f 0(a) = lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

1

(a+ h) + 2
− 1√

a+ 2

h
= lim

h→0

√
a+ 2−√a+ h+ 2√
a+ h+ 2

√
a+ 2

h

= lim
h→0

√
a+ 2−√a+ h+ 2

h
√
a+ h+ 2

√
a+ 2

·
√
a+ 2 +

√
a+ h+ 2√

a+ 2 +
√
a+ h+ 2

= lim
h→0

(a+ 2)− (a+ h+ 2)

h
√
a+ h+ 2

√
a+ 2

√
a+ 2 +

√
a+ h+ 2

= lim
h→0

−h
h
√
a+ h+ 2

√
a+ 2

√
a+ 2 +

√
a+ h+ 2

= lim
h→0

−1√
a+ h+ 2

√
a+ 2

√
a+ 2 +

√
a+ h+ 2

=
−1√

a+ 2
2
2
√
a+ 2

= − 1

2(a+ 2)3/2

Note that the answers to Exercises 31 – 36 are not unique.

31. By Definition 2, lim
h→0

(1 + h)10 − 1
h

= f 0(1), where f(x) = x10 and a = 1.

Or: By Definition 2, lim
h→0

(1 + h)10 − 1
h

= f 0(0), where f(x) = (1 + x)10 and a = 0.
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33. By Equation 3, lim
x→5

2x − 32
x− 5 = f 0(5), where f(x) = 2x and a = 5.

35. By Definition 2, lim
h→0

cos(π + h) + 1

h
= f 0(π), where f(x) = cosx and a = π.

Or: By Definition 2, lim
h→0

cos(π + h) + 1

h
= f 0(0), where f(x) = cos(π + x) and a = 0.

37. v(5) = f 0(5) = lim
h→0

f(5 + h)− f(5)

h
= lim

h→0

[100 + 50(5 + h)− 4.9(5 + h)2]− [100 + 50(5)− 4.9(5)2]
h

= lim
h→0

(100 + 250 + 50h− 4.9h2 − 49h− 122.5)− (100 + 250− 122.5)
h

= lim
h→0

−4.9h2 + h

h

= lim
h→0

h(−4.9h+ 1)
h

= lim
h→0

(−4.9h+ 1) = 1 m/s

The speed when t = 5 is |1| = 1 m/s.

39. The sketch shows the graph for a room temperature of 72◦ and a refrigerator

temperature of 38◦. The initial rate of change is greater in magnitude than the

rate of change after an hour.

41. (a) (i) [2000, 2002]: P (2002)− P (2000)

2002− 2000 =
77− 55
2

=
22

2
= 11 percent/year

(ii) [2000, 2001]: P (2001)− P (2000)

2001− 2000 =
68− 55
1

= 13 percent/year

(iii) [1999, 2000]: P (2000)− P (1999)

2000− 1999 =
55− 39
1

= 16 percent/year

(b) Using the values from (ii) and (iii), we have 13 + 16
2

= 14.5 percent/year.

(c) Estimating A as (1999, 40) and B as (2001, 70), the slope at 2000 is

70− 40
2001− 1999 =

30

2
= 15 percent/year.

43. (a) (i) ∆C

∆x
=

C(105)− C(100)

105− 100 =
6601.25− 6500

5
= $20.25/unit.

(ii) ∆C

∆x
=

C(101)− C(100)

101− 100 =
6520.05− 6500

1
= $20.05/unit.

(b) C(100 + h)−C(100)

h
=

5000 + 10(100 + h) + 0.05(100 + h)2 − 6500
h

=
20h+ 0.05h2

h

= 20 + 0.05h, h 6= 0
So the instantaneous rate of change is lim

h→0

C(100 + h)− C(100)

h
= lim

h→0
(20 + 0.05h) = $20/unit.

45. (a) f 0(x) is the rate of change of the production cost with respect to the number of ounces of gold produced. Its units are

dollars per ounce.
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(b) After 800 ounces of gold have been produced, the rate at which the production cost is increasing is $17/ounce. So the cost

of producing the 800th (or 801st) ounce is about $17.

(c) In the short term, the values of f 0(x) will decrease because more efficient use is made of start-up costs as x increases. But

eventually f 0(x) might increase due to large-scale operations.

47. T 0(10) is the rate at which the temperature is changing at 10:00 AM. To estimate the value of T 0(10), we will average the

difference quotients obtained using the times t = 8 and t = 12. Let A = T (8)− T (10)

8− 10 =
72− 81
−2 = 4.5 and

B =
T (12)− T (10)

12− 10 =
88− 81
2

= 3.5. Then T 0(10) = lim
t→10

T (t)− T (10)

t− 10 ≈ A+B

2
=
4.5 + 3.5

2
= 4◦F/h.

49. (a) S 0(T ) is the rate at which the oxygen solubility changes with respect to the water temperature. Its units are (mg/L)/◦C.

(b) For T = 16◦C, it appears that the tangent line to the curve goes through the points (0, 14) and (32, 6). So

S0(16) ≈ 6− 14
32− 0 = −

8

32
= −0.25 (mg/L)/◦C. This means that as the temperature increases past 16◦C, the oxygen

solubility is decreasing at a rate of 0.25 (mg/L)/◦C.

51. Since f(x) = x sin(1/x) when x 6= 0 and f(0) = 0, we have

f 0(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h sin(1/h)− 0
h

= lim
h→0

sin(1/h). This limit does not exist since sin(1/h) takes the

values −1 and 1 on any interval containing 0. (Compare with Example 4 in Section 2.2.)

2.8 The Derivative as a Function

1. It appears that f is an odd function, so f 0 will be an even

function—that is, f 0(−a) = f 0(a).

(a) f 0(−3) ≈ 1.5
(c) f 0(−1) ≈ 0
(e) f 0(1) ≈ 0
(g) f 0(3) ≈ 1.5

(b) f 0(−2) ≈ 1
(d) f 0(0) ≈ −4
(f ) f 0(2) ≈ 1

3. (a)0= II, since from left to right, the slopes of the tangents to graph (a) start out negative, become 0, then positive, then 0, then

negative again. The actual function values in graph II follow the same pattern.

(b)0= IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly

become negative, then positive again. The discontinuities in graph IV indicate sudden changes in the slopes of the tangents.

(c)0= I, since the slopes of the tangents to graph (c) are negative for x < 0 and positive for x > 0, as are the function values of

graph I.

(d)0= III, since from left to right, the slopes of the tangents to graph (d) are positive, then 0, then negative, then 0, then

positive, then 0, then negative again, and the function values in graph III follow the same pattern.
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Hints for Exercises 4 –11: First plot x-intercepts on the graph of f 0 for any horizontal tangents on the graph of f . Look for any corners on the graph
of f— there will be a discontinuity on the graph of f 0. On any interval where f has a tangent with positive (or negative) slope, the graph of f 0 will be
positive (or negative). If the graph of the function is linear, the graph of f 0 will be a horizontal line.

5. 7.

9. 11.

13. It appears that there are horizontal tangents on the graph of M for t = 1963

and t = 1971. Thus, there are zeros for those values of t on the graph of

M 0. The derivative is negative for the years 1963 to 1971.

15.

The slope at 0 appears to be 1 and the slope at 1

appears to be 2.7. As x decreases, the slope gets

closer to 0. Since the graphs are so similar, we might

guess that f 0(x) = ex.
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17. (a) By zooming in, we estimate that f 0(0) = 0, f 0 1
2
= 1, f 0(1) = 2,

and f 0(2) = 4.

(b) By symmetry, f 0(−x) = −f 0(x). So f 0 − 1
2
= −1, f 0(−1) = −2,

and f 0(−2) = −4.

(c) It appears that f 0(x) is twice the value of x, so we guess that f 0(x) = 2x.

(d) f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − x2

h

= lim
h→0

x2 + 2hx+ h2 − x2

h
= lim

h→0

2hx+ h2

h
= lim

h→0

h(2x+ h)

h
= lim

h→0
(2x+ h) = 2x

19. f 0(x)= lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1
2 (x+ h)− 1

3
− 1

2x− 1
3

h
= lim

h→0

1
2
x+ 1

2
h− 1

3
− 1

2
x+ 1

3

h

= lim
h→0

1
2
h

h
= lim

h→0

1
2
= 1

2

Domain of f = domain of f 0 = R.

21. f 0(t) = lim
h→0

f(t+ h)− f(t)

h
= lim

h→0

5(t+ h)− 9(t+ h)2 − (5t− 9t2)
h

= lim
h→0

5t+ 5h− 9(t2 + 2th+ h2)− 5t+ 9t2
h

= lim
h→0

5t+ 5h− 9t2 − 18th− 9h2 − 5t+ 9t2
h

= lim
h→0

5h− 18th− 9h2
h

= lim
h→0

h(5− 18t− 9h)
h

= lim
h→0

(5− 18t− 9h) = 5− 18t

Domain of f = domain of f 0 = R.

23. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)3 − 3(x+ h) + 5 − (x3 − 3x+ 5)
h

= lim
h→0

x3 + 3x2h+ 3xh2 + h3 − 3x− 3h+ 5 − x3 − 3x+ 5
h

= lim
h→0

3x2h+ 3xh2 + h3 − 3h
h

= lim
h→0

h 3x2 + 3xh+ h2 − 3
h

= lim
h→0

3x2 + 3xh+ h2 − 3 = 3x2 − 3

Domain of f = domain of f 0 = R.

25. g0(x) = lim
h→0

g(x+ h)− g(x)

h
= lim

h→0

1 + 2(x+ h)−√1 + 2x
h

1 + 2(x+ h) +
√
1 + 2x

1 + 2(x+ h) +
√
1 + 2x

= lim
h→0

(1 + 2x+ 2h)− (1 + 2x)
h 1 + 2(x+ h) +

√
1 + 2x

= lim
h→0

2√
1 + 2x+ 2h+

√
1 + 2x

=
2

2
√
1 + 2x

=
1√
1 + 2x

Domain of g = − 1
2 ,∞ , domain of g0 = − 1

2 ,∞ .
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27. G0(t) = lim
h→0

G(t+ h)−G(t)

h
= lim

h→0

4(t+ h)

(t+ h) + 1
− 4t

t+ 1

h
= lim

h→0

4(t+ h)(t+ 1)− 4t(t+ h+ 1)

(t+ h+ 1)(t+ 1)

h

= lim
h→0

4t2 + 4ht+ 4t+ 4h − 4t2 + 4ht+ 4t

h(t+ h+ 1)(t+ 1)
= lim

h→0

4h

h(t+ h+ 1)(t+ 1)

= lim
h→0

4

(t+ h+ 1)(t+ 1)
=

4

(t+ 1)2

Domain of G = domain of G0 = (−∞,−1) ∪ (−1,∞).

29. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)4 − x4

h
= lim

h→0

x4 + 4x3h+ 6x2h2 + 4xh3 + h4 − x4

h

= lim
h→0

4x3h+ 6x2h2 + 4xh3 + h4

h
= lim

h→0
4x3 + 6x2h+ 4xh2 + h3 = 4x3

Domain of f = domain of f 0 = R.

31. (a) f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

[(x+ h)4 + 2(x+ h)]− (x4 + 2x)
h

= lim
h→0

x4 + 4x3h+ 6x2h2 + 4xh3 + h4 + 2x+ 2h− x4 − 2x
h

= lim
h→0

4x3h+ 6x2h2 + 4xh3 + h4 + 2h

h
= lim

h→0

h(4x3 + 6x2h+ 4xh2 + h3 + 2)

h

= lim
h→0

(4x3 + 6x2h+ 4xh2 + h3 + 2) = 4x3 + 2

(b) Notice that f 0(x) = 0 when f has a horizontal tangent, f 0(x) is

positive when the tangents have positive slope, and f 0(x) is

negative when the tangents have negative slope.

33. (a) U 0(t) is the rate at which the unemployment rate is changing with respect to time. Its units are percent per year.

(b) To find U 0(t), we use lim
h→0

U(t+ h)− U(t)

h
≈ U(t+ h)− U(t)

h
for small values of h.

For 1993: U 0 (1993) ≈ U(1994)− U(1993)

1994− 1993 =
6.1− 6.9

1
= −0.80

For 1994: We estimate U 0(1994) by using h = −1 and h = 1, and then average the two results to obtain a final estimate.

h = −1 ⇒ U 0(1994) ≈ U(1993)− U(1994)

1993− 1994 =
6.9− 6.1
−1 = −0.80;

h = 1 ⇒ U 0(1994) ≈ U(1995)− U(1994)

1995− 1994 =
5.6− 6.1

1
= −0.50.

So we estimate that U 0 (1994) ≈ 1
2
[(−0.80) + (−0.50)] = −0.65.

t 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

U 0(t) −0.80 −0.65 −0.35 −0.35 −0.45 −0.35 −0.25 0.25 0.90 1.10
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35. f is not differentiable at x = −4, because the graph has a corner there, and at x = 0, because there is a discontinuity there.

37. f is not differentiable at x = −1, because the graph has a vertical tangent there, and at x = 4, because the graph has a corner

there.

39. As we zoom in toward (−1, 0), the curve appears more and more like a

straight line, so f(x) = x+ |x| is differentiable at x = −1. But no

matter how much we zoom in toward the origin, the curve doesn’t straighten

out—we can’t eliminate the sharp point (a cusp). So f is not differentiable

at x = 0.

41. a = f , b = f 0, c = f 00. We can see this because where a has a horizontal tangent, b = 0, and where b has a horizontal tangent,

c = 0. We can immediately see that c can be neither f nor f 0, since at the points where c has a horizontal tangent, neither a

nor b is equal to 0.

43. We can immediately see that a is the graph of the acceleration function, since at the points where a has a horizontal tangent,

neither c nor b is equal to 0. Next, we note that a = 0 at the point where b has a horizontal tangent, so b must be the graph of

the velocity function, and hence, b0 = a. We conclude that c is the graph of the position function.

45. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1 + 4(x+ h)− (x+ h)2 − (1 + 4x− x2)

h

= lim
h→0

(1 + 4x+ 4h− x2 − 2xh− h2)− (1 + 4x− x2)

h
= lim

h→0

4h− 2xh− h2

h
= lim

h→0
(4− 2x− h) = 4− 2x

f 00(x) = lim
h→0

f 0(x+ h)− f 0(x)
h

= lim
h→0

[4− 2(x+ h)]− (4− 2x)
h

= lim
h→0

−2h
h

= lim
h→0

(−2) = −2

We see from the graph that our answers are reasonable because the graph of

f 0 is that of a linear function and the graph of f 00 is that of a constant

function.
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47. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

2(x+ h)2 − (x+ h)3 − (2x2 − x3)

h

= lim
h→0

h(4x+ 2h− 3x2 − 3xh− h2)

h
= lim

h→0
(4x+ 2h− 3x2 − 3xh− h2) = 4x− 3x2

f 00(x) = lim
h→0

f 0(x+ h)− f 0(x)
h

= lim
h→0

4(x+ h)− 3(x+ h)2 − (4x− 3x2)
h

= lim
h→0

h(4− 6x− 3h)
h

= lim
h→0

(4− 6x− 3h) = 4− 6x

f 000(x) = lim
h→0

f 00(x+ h)− f 00(x)
h

= lim
h→0

[4− 6(x+ h)]− (4− 6x)
h

= lim
h→0

−6h
h

= lim
h→0

(−6) = −6

f (4)(x) = lim
h→0

f 000(x+ h)− f 000(x)
h

= lim
h→0

−6− (−6)
h

= lim
h→0

0

h
= lim

h→0
(0) = 0

The graphs are consistent with the geometric interpretations of the

derivatives because f 0 has zeros where f has a local minimum and a local

maximum, f 00 has a zero where f 0 has a local maximum, and f 000 is a

constant function equal to the slope of f 00.

49. (a) Note that we have factored x− a as the difference of two cubes in the third step.

f 0(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x1/3 − a1/3

x− a
= lim

x→a

x1/3 − a1/3

(x1/3 − a1/3)(x2/3 + x1/3a1/3 + a2/3)

= lim
x→a

1

x2/3 + x1/3a1/3 + a2/3
=

1

3a2/3
or 1

3
a−2/3

(b) f 0(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

3
√
h− 0
h

= lim
h→0

1

h2/3
. This function increases without bound, so the limit does not

exist, and therefore f 0(0) does not exist.

(c) lim
x→0

|f 0(x)| = lim
x→0

1

3x2/3
=∞ and f is continuous at x = 0 (root function), so f has a vertical tangent at x = 0.

51. f(x) = |x− 6| =
x− 6 if x− 6 ≥ 6
−(x− 6) if x− 6 < 0 =

x− 6 if x ≥ 6
6− x if x < 6

So the right-hand limit is lim
x→6+

f(x)− f(6)

x− 6 = lim
x→6+

|x− 6|− 0
x− 6 = lim

x→6+

x− 6
x− 6 = lim

x→6+
1 = 1, and the left-hand limit

is lim
x→6−

f(x)− f(6)

x− 6 = lim
x→6−

|x− 6|− 0
x− 6 = lim

x→6−
6− x

x− 6 = lim
x→6−

(−1) = −1. Since these limits are not equal,

f 0(6) = lim
x→6

f(x)− f(6)

x− 6 does not exist and f is not differentiable at 6.

However, a formula for f 0 is f 0(x) =
1 if x > 6

−1 if x < 6

Another way of writing the formula is f 0(x) = x− 6
|x− 6| .
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53. (a) f(x) = x |x| =
x2 if x ≥ 0
−x2 if x < 0

(b) Since f(x) = x2 for x ≥ 0, we have f 0(x) = 2x for x > 0.

[See Exercise 2.8.17(d).] Similarly, since f(x) = −x2 for

x < 0, we have f 0(x) = −2x for x < 0. At x = 0, we have

f 0(0) = lim
x→0

f(x)− f(0)

x− 0 = lim
x→0

x |x|
x

= lim
x→0

|x| = 0.

So f is differentiable at 0. Thus, f is differentiable for all x.

(c) From part (b), we have f 0(x) =
2x if x ≥ 0
−2x if x < 0

= 2 |x|.

55. (a) If f is even, then

f 0(−x) = lim
h→0

f(−x+ h)− f(−x)
h

= lim
h→0

f [−(x− h)]− f(−x)
h

= lim
h→0

f(x− h)− f(x)

h
= − lim

h→0

f(x− h)− f(x)

−h [let ∆x = −h]

= − lim
∆x→0

f(x+∆x)− f(x)

∆x
= −f 0(x)

Therefore, f 0 is odd.

(b) If f is odd, then

f 0(−x) = lim
h→0

f(−x+ h)− f(−x)
h

= lim
h→0

f [−(x− h)]− f(−x)
h

= lim
h→0

−f(x− h) + f(x)

h
= lim

h→0

f(x− h)− f(x)

−h [let ∆x = −h]

= lim
∆x→0

f(x+∆x)− f(x)

∆x
= f 0(x)

Therefore, f 0 is even.

57. In the right triangle in the diagram, let ∆y be the side opposite angle φ and ∆x

the side adjacent angle φ. Then the slope of the tangent line

is m = ∆y/∆x = tanφ. Note that 0 < φ < π
2

. We know (see Exercise 17)

that the derivative of f(x) = x2 is f 0(x) = 2x. So the slope of the tangent to

the curve at the point (1, 1) is 2. Thus, φ is the angle between 0 and π
2 whose

tangent is 2; that is, φ = tan−1 2 ≈ 63◦.
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2 Review

1. (a) lim
x→a

f(x) = L: See Definition 2.2.1 and Figures 1 and 2 in Section 2.2.

(b) lim
x→a+

f(x) = L: See the paragraph after Definition 2.2.2 and Figure 9(b) in Section 2.2.

(c) lim
x→a−

f(x) = L: See Definition 2.2.2 and Figure 9(a) in Section 2.2.

(d) lim
x→a

f(x) =∞: See Definition 2.2.4 and Figure 12 in Section 2.2.

(e) lim
x→∞

f(x) = L: See Definition 2.6.1 and Figure 2 in Section 2.6.

2. In general, the limit of a function fails to exist when the function does not approach a fixed number. For each of the following

functions, the limit fails to exist at x = 2.

The left- and right-hand

limits are not equal.

There is an

infinite discontinuity.

There are an infinite

number of oscillations.

3. (a) – (g) See the statements of Limit Laws 1– 6 and 11 in Section 2.3.

4. See Theorem 3 in Section 2.3.

5. (a) See Definition 2.2.6 and Figures 12–14 in Section 2.2.

(b) See Definition 2.6.3 and Figures 3 and 4 in Section 2.6.

6. (a) y = x4: No asymptote (b) y = sinx: No asymptote

(c) y = tanx: Vertical asymptotes x = π
2
+ πn, n an integer (d) y = tan−1 x: Horizontal asymptotes y = ±π

2

(e) y = ex: Horizontal asymptote y = 0

lim
x→−∞

ex = 0

(f ) y = lnx: Vertical asymptote x = 0

lim
x→0+

lnx = −∞

(g) y = 1/x: Vertical asymptote x = 0,

horizontal asymptote y = 0

(h) y =
√
x: No asymptote

7. (a) A function f is continuous at a number a if f(x) approaches f(a) as x approaches a; that is, lim
x→a

f(x) = f(a).

(b) A function f is continuous on the interval (−∞,∞) if f is continuous at every real number a. The graph of such a

function has no breaks and every vertical line crosses it.
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8. See Theorem 2.5.10.

9. See Definition 2.7.1.

10. See the paragraph containing Formula 3 in Section 2.7.

11. (a) The average rate of change of y with respect to x over the interval [x1, x2] is f(x2)− f(x1)

x2 − x1
.

(b) The instantaneous rate of change of y with respect to x at x = x1 is lim
x2→x1

f(x2)− f(x1)

x2 − x1
.

12. See Definition 2.7.2. The pages following the definition discuss interpretations of f 0(a) as the slope of a tangent line to the

graph of f at x = a and as an instantaneous rate of change of f(x) with respect to x when x = a.

13. See the paragraphs before and after Example 6 in Section 2.8.

14. (a) A function f is differentiable at a number a if its derivative f 0 exists

at x = a; that is, if f 0(a) exists.

(c)

(b) See Theorem 2.8.4. This theorem also tells us that if f is not

continuous at a, then f is not differentiable at a.

15. See the discussion and Figure 7 on page 159.

1. False. Limit Law 2 applies only if the individual limits exist (these don’t).

3. True. Limit Law 5 applies.

5. False. Consider lim
x→5

x(x− 5)
x− 5 or lim

x→5

sin(x− 5)
x− 5 . The first limit exists and is equal to 5. By Example 3 in Section 2.2,

we know that the latter limit exists (and it is equal to 1).

7. True. A polynomial is continuous everywhere, so lim
x→b

p(x) exists and is equal to p(b).

9. True. See Figure 8 in Section 2.6.

11. False. Consider f(x) =
1/(x− 1) if x 6= 1
2 if x = 1

13. True. Use Theorem 2.5.8 with a = 2, b = 5, and g(x) = 4x2 − 11. Note that f(4) = 3 is not needed.

15. True, by the definition of a limit with ε = 1.

17. False. See the note after Theorem 4 in Section 2.8.

19. False. d 2y

dx2
is the second derivative while dy

dx

2

is the first derivative squared. For example, if y = x,

then d 2y

dx2
= 0, but dy

dx

2

= 1.
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1. (a) (i) lim
x→2+

f(x) = 3 (ii) lim
x→−3+

f(x) = 0

(iii) lim
x→−3

f(x) does not exist since the left and right limits are not equal. (The left limit is −2.)

(iv) lim
x→4

f(x) = 2

(v) lim
x→0

f(x) =∞ (vi) lim
x→2−

f(x) = −∞

(vii) lim
x→∞

f(x) = 4 (viii) lim
x→−∞

f(x) = −1

(b) The equations of the horizontal asymptotes are y = −1 and y = 4.

(c) The equations of the vertical asymptotes are x = 0 and x = 2.

(d) f is discontinuous at x = −3, 0, 2, and 4. The discontinuities are jump, infinite, infinite, and removable, respectively.

3. Since the exponential function is continuous, lim
x→1

ex
3−x = e1−1 = e0 = 1.

5. lim
x→−3

x2 − 9
x2 + 2x− 3 = lim

x→−3
(x+ 3)(x− 3)
(x+ 3)(x− 1) = lim

x→−3
x− 3
x− 1 =

−3− 3
−3− 1 =

−6
−4 =

3

2

7. lim
h→0

(h− 1)3 + 1
h

= lim
h→0

h3 − 3h2 + 3h− 1 + 1

h
= lim

h→0

h3 − 3h2 + 3h
h

= lim
h→0

h2 − 3h+ 3 = 3

Another solution: Factor the numerator as a sum of two cubes and then simplify.

lim
h→0

(h− 1)3 + 1
h

= lim
h→0

(h− 1)3 + 13
h

= lim
h→0

[(h− 1) + 1] (h− 1)2 − 1(h− 1) + 12
h

= lim
h→0

(h− 1)2 − h+ 2 = 1− 0 + 2 = 3

9. lim
r→9

√
r

(r − 9)4 =∞ since (r − 9)4 → 0 as r→ 9 and
√
r

(r − 9)4 > 0 for r 6= 9.

11. lim
u→1

u4 − 1
u3 + 5u2 − 6u = lim

u→1

(u2 + 1)(u2 − 1)
u(u2 + 5u− 6) = lim

u→1

(u2 + 1)(u+ 1)(u− 1)
u(u+ 6)(u− 1) = lim

u→1

(u2 + 1)(u+ 1)

u(u+ 6)
=
2(2)

1(7)
=
4

7

13. Since x is positive,
√
x2 = |x| = x. Thus,

lim
x→∞

√
x2 − 9
2x− 6 = lim

x→∞

√
x2 − 9/√x2
(2x− 6)/x = lim

x→∞
1− 9/x2
2− 6/x =

√
1− 0
2− 0 =

1

2

15. Let t = sinx. Then as x→ π−, sinx→ 0+, so t→ 0+. Thus, lim
x→π−

ln(sinx) = lim
t→0+

ln t = −∞.

17. lim
x→∞

√
x2 + 4x+ 1− x = lim

x→∞

√
x2 + 4x+ 1− x

1
·
√
x2 + 4x+ 1 + x√
x2 + 4x+ 1 + x

= lim
x→∞

(x2 + 4x+ 1)− x2√
x2 + 4x+ 1 + x

= lim
x→∞

(4x+ 1)/x

(
√
x2 + 4x+ 1 + x)/x

divide by x =
√
x2 for x > 0

= lim
x→∞

4 + 1/x

1 + 4/x+ 1/x2 + 1
=

4 + 0√
1 + 0 + 0 + 1

=
4

2
= 2
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19. Let t = 1/x. Then as x→ 0+, t→∞ , and lim
x→0+

tan−1(1/x) = lim
t→∞

tan−1 t =
π

2
.

21. From the graph of y = cos2 x /x2, it appears that y = 0 is the horizontal

asymptote and x = 0 is the vertical asymptote. Now 0 ≤ (cosx)2 ≤ 1 ⇒
0

x2
≤ cos2 x

x2
≤ 1

x2
⇒ 0 ≤ cos2 x

x2
≤ 1

x2
. But lim

x→±∞
0 = 0 and

lim
x→±∞

1

x2
= 0, so by the Squeeze Theorem, lim

x→±∞
cos2 x

x2
= 0.

Thus, y = 0 is the horizontal asymptote. lim
x→0

cos2 x

x2
=∞ because cos2 x→ 1 and x2 → 0 as x→ 0, so x = 0 is the

vertical asymptote.

23. Since 2x− 1 ≤ f(x) ≤ x2 for 0 < x < 3 and lim
x→1

(2x− 1) = 1 = lim
x→1

x2, we have lim
x→1

f(x) = 1 by the Squeeze Theorem.

25. Given ε > 0, we need δ > 0 such that if 0 < |x− 2| < δ, then |(14− 5x)− 4| < ε. But |(14− 5x)− 4| < ε ⇔
|−5x+ 10| < ε ⇔ |−5| |x− 2| < ε ⇔ |x− 2| < ε/5. So if we choose δ = ε/5, then 0 < |x− 2| < δ ⇒
|(14− 5x)− 4| < ε. Thus, lim

x→2
(14− 5x) = 4 by the definition of a limit.

27. Given ε > 0, we need δ > 0 so that if 0 < |x− 2| < δ, then x2 − 3x− (−2) < ε. First, note that if |x− 2| < 1, then

−1 < x− 2 < 1, so 0 < x− 1 < 2 ⇒ |x− 1| < 2. Now let δ = min {ε/2, 1}. Then 0 < |x− 2| < δ ⇒
x2 − 3x− (−2) = |(x− 2)(x− 1)| = |x− 2| |x− 1| < (ε/2)(2) = ε.

Thus, lim
x→2

x2 − 3x = −2 by the definition of a limit.

29. (a) f(x) =
√−x if x < 0, f(x) = 3− x if 0 ≤ x < 3, f(x) = (x− 3)2 if x > 3.

(i) lim
x→0+

f(x) = lim
x→0+

(3− x) = 3 (ii) lim
x→0−

f(x) = lim
x→0−

√−x = 0

(iii) Because of (i) and (ii), lim
x→0

f(x) does not exist. (iv) lim
x→3−

f(x) = lim
x→3−

(3− x) = 0

(v) lim
x→3+

f(x) = lim
x→3+

(x− 3)2 = 0 (vi) Because of (iv) and (v), lim
x→3

f(x) = 0.

(b) f is discontinuous at 0 since lim
x→0

f(x) does not exist.

f is discontinuous at 3 since f(3) does not exist.

(c)

31. sinx is continuous on R by Theorem 7 in Section 2.5. Since ex is continuous on R, esin x is continuous on R by Theorem 9 in

Section 2.5. Lastly, x is continuous on R since it’s a polynomial and the product xesin x is continuous on its domain R by

Theorem 4 in Section 2.5.

33. f(x) = 2x3 + x2 + 2 is a polynomial, so it is continuous on [−2,−1] and f(−2) = −10 < 0 < 1 = f(−1). So by the

Intermediate Value Theorem there is a number c in (−2,−1) such that f(c) = 0, that is, the equation 2x3 + x2 + 2 = 0 has a

root in (−2,−1).
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35. (a) The slope of the tangent line at (2, 1) is

lim
x→2

f(x)− f(2)

x− 2 = lim
x→2

9− 2x2 − 1
x− 2 = lim

x→2

8− 2x2
x− 2 = lim

x→2

−2(x2 − 4)
x− 2 = lim

x→2

−2(x− 2)(x+ 2)
x− 2

= lim
x→2

[−2(x+ 2)] = −2 · 4 = −8

(b) An equation of this tangent line is y − 1 = −8(x− 2) or y = −8x+ 17.

37. (a) s = s(t) = 1 + 2t+ t2/4. The average velocity over the time interval [1, 1 + h] is

vave =
s(1 + h)− s(1)

(1 + h)− 1 =
1 + 2(1 + h) + (1 + h)2 4− 13/4

h
=
10h+ h2

4h
=
10 + h

4

So for the following intervals the average velocities are:

(i) [1, 3]: h = 2, vave = (10 + 2)/4 = 3 m/s (ii) [1, 2]: h = 1, vave = (10 + 1)/4 = 2.75 m/s

(iii) [1, 1.5]: h = 0.5, vave = (10 + 0.5)/4 = 2.625 m/s (iv) [1, 1.1]: h = 0.1, vave = (10 + 0.1)/4 = 2.525 m/s

(b) When t = 1, the instantaneous velocity is lim
h→0

s(1 + h)− s(1)

h
= lim

h→0

10 + h

4
=
10

4
= 2.5 m/s.

39. (a) f 0(2) = lim
x→2

f(x)− f(2)

x− 2 = lim
x→2

x3 − 2x− 4
x− 2

= lim
x→2

(x− 2) x2 + 2x+ 2
x− 2

= lim
x→2

x2 + 2x+ 2 = 10

(c)

(b) y − 4 = 10(x− 2) or y = 10x− 16
41. (a) f 0(r) is the rate at which the total cost changes with respect to the interest rate. Its units are dollars/(percent per year).

(b) The total cost of paying off the loan is increasing by $1200/(percent per year) as the interest rate reaches 10%. So if the

interest rate goes up from 10% to 11%, the cost goes up approximately $1200.

(c) As r increases, C increases. So f 0(r) will always be positive.

43.
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45. (a) f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

3− 5(x+ h)−√3− 5x
h

3− 5(x+ h) +
√
3− 5x

3− 5(x+ h) +
√
3− 5x

= lim
h→0

[3− 5(x+ h)]− (3− 5x)
h 3− 5(x+ h) +

√
3− 5x

= lim
h→0

−5
3− 5(x+ h) +

√
3− 5x =

−5
2
√
3− 5x

(b) Domain of f : (the radicand must be nonnegative) 3− 5x ≥ 0 ⇒
5x ≤ 3 ⇒ x ∈ −∞, 3

5

Domain of f 0: exclude 3
5

because it makes the denominator zero;

x ∈ −∞, 3
5

(c) Our answer to part (a) is reasonable because f 0(x) is always negative and f

is always decreasing.

47. f is not differentiable: at x = −4 because f is not continuous, at x = −1 because f has a corner, at x = 2 because f is not

continuous, and at x = 5 because f has a vertical tangent.

49. C 0(1990) is the rate at which the total value of US currency in circulation is changing in billions of dollars per year. To

estimate the value of C 0(1990), we will average the difference quotients obtained using the times t = 1985 and t = 1995.

Let A =
C(1985)− C(1990)

1985− 1990 =
187.3− 271.9

−5 =
−84.6
−5 = 16.92 and

B =
C(1995)−C(1990)

1995− 1990 =
409.3− 271.9

5
=
137.4

5
= 27.48. Then

C 0(1990) = lim
t→1990

C(t)−C(1990)

t− 1990 ≈ A+B

2
=
16.92 + 27.48

2
=
44.4

2
= 22.2 billion dollars/year.

51. |f(x)| ≤ g(x) ⇔ −g(x) ≤ f(x) ≤ g(x) and lim
x→a

g(x) = 0 = lim
x→a

−g(x).

Thus, by the Squeeze Theorem, lim
x→a

f(x) = 0.





PROBLEMS PLUS

1. Let t = 6
√
x, so x = t6. Then t→ 1 as x→ 1, so

lim
x→1

3
√
x− 1√
x− 1 = lim

t→1

t2 − 1
t3 − 1 = lim

t→1

(t− 1)(t+ 1)
(t− 1) (t2 + t+ 1)

= lim
t→1

t+ 1

t2 + t+ 1
=

1 + 1

12 + 1 + 1
=
2

3
.

Another method:Multiply both the numerator and the denominator by (
√
x+ 1)

3
√
x2 + 3

√
x+ 1 .

3. For − 1
2
< x < 1

2
, we have 2x− 1 < 0 and 2x+ 1 > 0, so |2x− 1| = −(2x− 1) and |2x+ 1| = 2x+ 1.

Therefore, lim
x→0

|2x− 1|− |2x+ 1|
x

= lim
x→0

−(2x− 1)− (2x+ 1)
x

= lim
x→0

−4x
x

= lim
x→0

(−4) = −4.

5. Since [[x]] ≤ x < [[x]] + 1, we have [[x]]
[[x]]

≤ x

[[x]]
<
[[x]] + 1

[[x]]
⇒ 1 ≤ x

[[x]]
< 1 +

1

[[x]]
for x ≥ 1. As x→∞, [[x]]→∞,

so 1

[[x]]
→ 0 and 1 + 1

[[x]]
→ 1. Thus, lim

x→∞
x

[[x]]
= 1 by the Squeeze Theorem.

7. f is continuous on (−∞, a) and (a,∞). To make f continuous on R, we must have continuity at a. Thus,

lim
x→a+

f(x) = lim
x→a−

f(x) ⇒ lim
x→a+

x2 = lim
x→a−

(x+ 1) ⇒ a2 = a+ 1 ⇒ a2 − a− 1 = 0 ⇒

[by the quadratic formula] a = 1±√5 2 ≈ 1.618 or −0.618.

9. lim
x→a

f(x) = lim
x→a

1
2 [f(x) + g(x)] + 1

2 [f(x)− g(x)] = 1
2 limx→a

[f(x) + g(x)] + 1
2 limx→a

[f(x)− g(x)]

= 1
2
· 2 + 1

2
· 1 = 3

2
,

and lim
x→a

g(x) = lim
x→a

[f(x) + g(x)]− f(x) = lim
x→a

[f(x) + g(x)]− lim
x→a

f(x) = 2− 3
2
= 1

2
.

So lim
x→a

[f(x)g(x)] = lim
x→a

f(x) lim
x→a

g(x) = 3
2
· 1
2
= 3

4
.

Another solution: Since lim
x→a

[f(x) + g(x)] and lim
x→a

[f(x)− g(x)] exist, we must have

lim
x→a

[f(x) + g(x)]2 = lim
x→a

[f(x) + g(x)]
2

and lim
x→a

[f(x)− g(x)]2 = lim
x→a

[f(x)− g(x)]
2

, so

lim
x→a

[f(x) g(x)] = lim
x→a

1
4
[f(x) + g(x)]2 − [f (x)− g(x)]2 [because all of the f2 and g2 cancel]

= 1
4
lim
x→a

[f(x) + g(x)]2 − lim
x→a

[f(x)− g(x)]2 = 1
4
22 − 12 = 3

4
.

11. (a) Consider G(x) = T (x+ 180◦)− T (x). Fix any number a. If G(a) = 0, we are done: Temperature at a =Temperature

at a+ 180◦. If G(a) > 0, then G(a+ 180◦) = T (a+ 360◦)− T (a+ 180◦) = T (a)− T (a+ 180◦) = −G(a) < 0.

Also, G is continuous since temperature varies continuously. So, by the Intermediate Value Theorem, G has a zero on the

interval [a, a+ 180◦]. If G(a) < 0, then a similar argument applies.
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(b) Yes. The same argument applies.

(c) The same argument applies for quantities that vary continuously, such as barometric pressure. But one could argue that

altitude above sea level is sometimes discontinuous, so the result might not always hold for that quantity.

13. (a) Put x = 0 and y = 0 in the equation: f(0 + 0) = f(0) + f(0) + 02 · 0 + 0 · 02 ⇒ f(0) = 2f(0).

Subtracting f(0) from each side of this equation gives f(0) = 0.

(b) f 0(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

f(0) + f(h) + 02h+ 0h2 − f(0)

h
= lim

h→0

f(h)

h
= lim

x→0

f(x)

x
= 1

(c) f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x) + f(h) + x2h+ xh2 − f(x)

h
= lim

h→0

f(h) + x2h+ xh2

h

= lim
h→0

f(h)

h
+ x2 + xh = 1+ x2



3 DIFFERENTIATION RULES
3.1 Derivatives of Polynomials and Exponential Functions

1. (a) e is the number such that lim
h→0

eh − 1
h

= 1.

(b)

x
2.7x − 1

x

−0.001 0.9928

−0.0001 0.9932

0.001 0.9937

0.0001 0.9933

x
2.8x − 1

x

−0.001 1.0291

−0.0001 1.0296

0.001 1.0301

0.0001 1.0297

From the tables (to two decimal places),

lim
h→0

2.7h − 1
h

= 0.99 and lim
h→0

2.8h − 1
h

= 1.03.

Since 0.99 < 1 < 1.03, 2.7 < e < 2.8.

3. f(x) = 186.5 is a constant function, so its derivative is 0, that is, f 0(x) = 0.

5. f(t) = 2− 2
3
t ⇒ f 0(t) = 0− 2

3
= − 2

3

7. f(x) = x3 − 4x+ 6 ⇒ f 0(x) = 3x2 − 4(1) + 0 = 3x2 − 4

9. f(t) = 1
4
(t4 + 8) ⇒ f 0(t) = 1

4
(t4 + 8)0 = 1

4
(4t4−1 + 0) = t3

11. y = x−2/5 ⇒ y0 = − 2
5x

(−2/5)−1 = − 2
5x
−7/5 = − 2

5x7/5

13. V (r) = 4
3
πr3 ⇒ V 0(r) = 4

3
π 3r2 = 4πr2

15. A(s) = −12
s5
= −12s−5 ⇒ A0(s) = −12(−5s−6) = 60s−6 or 60/s6

17. G(x) =
√
x− 2ex = x1/2 − 2ex ⇒ G 0(x) = 1

2x
−1/2 − 2ex = 1

2
√
x
− 2ex

19. F (x) = ( 1
2
x)5 = 1

2

5
x5 = 1

32
x5 ⇒ F 0(x) = 1

32
(5x4) = 5

32
x4

21. y = ax2 + bx+ c ⇒ y0 = 2ax+ b

23. y = x2 + 4x+ 3√
x

= x3/2 + 4x1/2 + 3x−1/2 ⇒

y0 = 3
2
x1/2 + 4 1

2
x−1/2 + 3 − 1

2
x−3/2 = 3

2

√
x+

2√
x
− 3

2x
√
x

note that x3/2 = x2/2 · x1/2 = x
√
x

The last expression can be written as 3x2

2x
√
x
+

4x

2x
√
x
− 3

2x
√
x
=
3x2 + 4x− 3
2x
√
x

.

25. y = 4π2 ⇒ y0 = 0 since 4π2 is a constant.
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27. We first expand using the Binomial Theorem (see Reference Page 1).

H(x) = (x+ x−1)3 = x3 + 3x2x−1 + 3x(x−1)2 + (x−1)3 = x3 + 3x+ 3x−1 + x−3 ⇒

H0(x) = 3x2 + 3 + 3(−1x−2) + (−3x−4) = 3x2 + 3− 3x−2 − 3x−4

29. u = 5
√
t+ 4

√
t5 = t1/5 + 4t5/2 ⇒ u0 = 1

5
t−4/5 + 4 5

2
t3/2 = 1

5
t−4/5 + 10t3/2 or 1/ 5

5
√
t4 + 10

√
t3

31. z = A

y10
+Bey = Ay−10 +Bey ⇒ z0 = −10Ay−11 +Bey = −10A

y11
+Bey

33. y = 4
√
x = x1/4 ⇒ y0 = 1

4x
−3/4 =

1

4
4
√
x3

. At (1, 1), y0 = 1
4 and an equation of the tangent line is

y − 1 = 1
4 (x− 1) or y = 1

4x+
3
4 .

35. y = x4 + 2ex ⇒ y0 = 4x3 + 2ex. At (0, 2), y0 = 2 and an equation of the tangent line is y − 2 = 2(x− 0)

or y = 2x+ 2. The slope of the normal line is − 1
2

(the negative reciprocal of 2) and an equation of the normal line is

y − 2 = − 1
2
(x− 0) or y = − 1

2
x+ 2.

37. y = 3x2 − x3 ⇒ y0 = 6x− 3x2.

At (1, 2), y0 = 6− 3 = 3, so an equation of the tangent line is

y − 2 = 3(x− 1) or y = 3x− 1.

39. f(x) = ex − 5x ⇒ f 0(x) = ex − 5.

Notice that f 0(x) = 0 when f has a horizontal tangent, f 0 is positive

when f is increasing, and f 0 is negative when f is decreasing.

41. f(x) = 3x15 − 5x3 + 3 ⇒ f 0(x) = 45x14 − 15x2.

Notice that f 0(x) = 0 when f has a horizontal tangent, f 0 is positive

when f is increasing, and f 0 is negative when f is decreasing.
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43. (a) (b) From the graph in part (a), it appears that f 0 is zero at x1 ≈ −1.25, x2 ≈ 0.5,

and x3 ≈ 3. The slopes are negative (so f 0 is negative) on (−∞, x1) and

(x2, x3). The slopes are positive (so f 0 is positive) on (x1, x2) and (x3,∞).

(c) f(x) = x4 − 3x3 − 6x2 + 7x+ 30 ⇒

f 0(x) = 4x3 − 9x2 − 12x+ 7

45. f(x) = x4 − 3x3 + 16x ⇒ f 0(x) = 4x3 − 9x2 + 16 ⇒ f 00(x) = 12x2 − 18x

47. f(x) = 2x− 5x3/4 ⇒ f 0(x) = 2− 15
4
x−1/4 ⇒ f 00(x) = 15

16
x−5/4

Note that f 0 is negative when f is decreasing and positive when f is

increasing. f 00 is always positive since f 0 is always increasing.

49. (a) s = t3 − 3t ⇒ v(t) = s0 (t) = 3t2 − 3 ⇒ a(t) = v0(t) = 6t

(b) a(2) = 6(2) = 12 m/s2

(c) v(t) = 3t2 − 3 = 0 when t2 = 1, that is, t = 1 and a(1) = 6 m/s2.

51. The curve y = 2x3 + 3x2 − 12x+ 1 has a horizontal tangent when y0 = 6x2 + 6x− 12 = 0 ⇔ 6(x2 + x− 2) = 0 ⇔
6(x+ 2)(x− 1) = 0 ⇔ x = −2 or x = 1. The points on the curve are (−2, 21) and (1,−6).

53. y = 6x3 + 5x− 3 ⇒ m = y0 = 18x2 + 5, but x2 ≥ 0 for all x, so m ≥ 5 for all x.

55. The slope of the line 12x− y = 1 (or y = 12x− 1) is 12, so the slope of both lines tangent to the curve is 12.

y = 1+ x3 ⇒ y0 = 3x2. Thus, 3x2 = 12 ⇒ x2 = 4 ⇒ x = ±2, which are the x-coordinates at which the tangent

lines have slope 12. The points on the curve are (2, 9) and (−2,−7), so the tangent line equations are y − 9 = 12(x− 2)
or y = 12x− 15 and y + 7 = 12(x+ 2) or y = 12x+ 17.
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57. The slope of y = x2 − 5x+ 4 is given by m = y0 = 2x− 5. The slope of x− 3y = 5 ⇔ y = 1
3x− 5

3 is 1
3 ,

so the desired normal line must have slope 1
3

, and hence, the tangent line to the parabola must have slope−3. This occurs if

2x− 5 = −3 ⇒ 2x = 2 ⇒ x = 1. When x = 1, y = 12 − 5(1) + 4 = 0, and an equation of the normal line is

y − 0 = 1
3
(x− 1) or y = 1

3
x− 1

3
.

59. Let a, a2 be a point on the parabola at which the tangent line passes through the

point (0,−4). The tangent line has slope 2a and equation y − (−4) = 2a(x− 0) ⇔
y = 2ax− 4. Since a, a2 also lies on the line, a2 = 2a(a)− 4, or a2 = 4. So

a = ±2 and the points are (2, 4) and (−2, 4).

61. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1

x+ h
− 1

x
h

= lim
h→0

x− (x+ h)

hx(x+ h)
= lim

h→0

−h
hx(x+ h)

= lim
h→0

−1
x(x+ h)

= − 1

x2

63. Let P (x) = ax2 + bx+ c. Then P 0(x) = 2ax+ b and P 00(x) = 2a. P 00(2) = 2 ⇒ 2a = 2 ⇒ a = 1.

P 0(2) = 3 ⇒ 2(1)(2) + b = 3 ⇒ 4 + b = 3 ⇒ b = −1.

P (2) = 5 ⇒ 1(2)2 + (−1)(2) + c = 5 ⇒ 2 + c = 5 ⇒ c = 3. So P (x) = x2 − x+ 3.

65. y = f(x) = ax3 + bx2 + cx+ d ⇒ f 0(x) = 3ax2 + 2bx+ c. The point (−2, 6) is on f , so f(−2) = 6 ⇒
−8a+ 4b− 2c+ d = 6 (1). The point (2, 0) is on f , so f(2) = 0 ⇒ 8a+ 4b+ 2c+ d = 0 (2). Since there are

horizontal tangents at (−2, 6) and (2, 0), f 0(±2) = 0. f 0(−2) = 0 ⇒ 12a− 4b+ c = 0 (3) and f 0(2) = 0 ⇒
12a+ 4b+ c = 0 (4). Subtracting equation (3) from (4) gives 8b = 0 ⇒ b = 0. Adding (1) and (2) gives 8b+ 2d = 6,

so d = 3 since b = 0. From (3) we have c = −12a, so (2) becomes 8a+ 4(0) + 2(−12a) + 3 = 0 ⇒ 3 = 16a ⇒

a = 3
16

. Now c = −12a = −12 3
16

= − 9
4

and the desired cubic function is y = 3
16
x3 − 9

4
x+ 3.

67. f(x) = 2− x if x ≤ 1 and f(x) = x2 − 2x+ 2 if x > 1. Now we compute the right- and left-hand derivatives defined in

Exercise 2.8.54:

f 0−(1) = lim
h→0−

f(1 + h)− f(1)

h
= lim

h→0−
2− (1 + h)− 1

h
= lim

h→0−
−h
h
= lim

h→0−
−1 = −1 and

f 0+(1) = lim
h→0+

f(1 + h)− f(1)

h
= lim

h→0+

(1 + h)2 − 2(1 + h) + 2− 1
h

= lim
h→0+

h2

h
= lim

h→0+
h = 0.

Thus, f 0(1) does not exist since f 0−(1) 6= f 0+(1), so f

is not differentiable at 1. But f 0(x) = −1 for x < 1

and f 0(x) = 2x− 2 if x > 1.
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69. (a) Note that x2 − 9 < 0 for x2 < 9 ⇔ |x| < 3 ⇔ −3 < x < 3. So

f(x) =

⎧⎪⎪⎨⎪⎪⎩
x2 − 9 if x ≤ −3
−x2 + 9 if −3 < x < 3

x2 − 9 if x ≥ 3
⇒ f 0(x) =

⎧⎪⎨⎪⎩
2x if x < −3
−2x if −3 < x < 3

2x if x > 3

=
2x if |x| > 3
−2x if |x| < 3

To show that f 0(3) does not exist we investigate lim
h→0

f(3 + h)− f(3)

h
by computing the left- and right-hand derivatives

defined in Exercise 2.8.54.

f 0−(3) = lim
h→0−

f(3 + h)− f(3)

h
= lim

h→0−
[−(3 + h)2 + 9]− 0

h
= lim

h→0−
(−6− h) = −6 and

f 0+(3) = lim
h→0+

f(3 + h)− f(3)

h
= lim

h→0+

(3 + h)2 − 9 − 0
h

= lim
h→0+

6h+ h2

h
= lim

h→0+
(6 + h) = 6.

Since the left and right limits are different,

lim
h→0

f(3 + h)− f(3)

h
does not exist, that is, f 0(3)

does not exist. Similarly, f 0(−3) does not exist.

Therefore, f is not differentiable at 3 or at −3.

(b)

71. Substituting x = 1 and y = 1 into y = ax2 + bx gives us a+ b = 1 (1). The slope of the tangent line y = 3x− 2 is 3 and the

slope of the tangent to the parabola at (x, y) is y0 = 2ax+ b. At x = 1, y0 = 3 ⇒ 3 = 2a+ b (2). Subtracting (1) from

(2) gives us 2 = a and it follows that b = −1. The parabola has equation y = 2x2 − x.

73. y = f(x) = ax2 ⇒ f 0(x) = 2ax. So the slope of the tangent to the parabola at x = 2 is m = 2a(2) = 4a. The slope

of the given line, 2x+ y = b ⇔ y = −2x+ b, is seen to be −2, so we must have 4a = −2 ⇔ a = − 1
2 . So when

x = 2, the point in question has y-coordinate − 1
2
· 22 = −2. Now we simply require that the given line, whose equation is

2x+ y = b, pass through the point (2,−2): 2(2) + (−2) = b ⇔ b = 2. So we must have a = − 1
2

and b = 2.

75. f is clearly differentiable for x < 2 and for x > 2. For x < 2, f 0(x) = 2x, so f 0−(2) = 4. For x > 2, f 0(x) = m, so

f 0+(2) = m. For f to be differentiable at x = 2, we need 4 = f 0−(2) = f 0+(2) = m. So f(x) = 4x+ b. We must also have

continuity at x = 2, so 4 = f(2) = lim
x→2+

f(x) = lim
x→2+

(4x+ b) = 8 + b. Hence, b = −4.

77. Solution 1: Let f(x) = x1000. Then, by the definition of a derivative, f 0(1) = lim
x→1

f(x)− f(1)

x− 1 = lim
x→1

x1000 − 1
x− 1 .

But this is just the limit we want to find, and we know (from the Power Rule) that f 0(x) = 1000x999, so

f 0(1) = 1000(1)999 = 1000. So lim
x→1

x1000 − 1
x− 1 = 1000.

Solution 2: Note that (x1000 − 1) = (x− 1)(x999 + x998 + x997 + · · ·+ x2 + x+ 1). So

lim
x→1

x1000 − 1
x− 1 = lim

x→1

(x− 1)(x999 + x998 + x997 + · · ·+ x2 + x+ 1)

x− 1 = lim
x→1

(x999 + x998 + x997 + · · ·+ x2 + x+ 1)

= 1 + 1 + 1 + · · ·+ 1 + 1 + 1 = 1000, as above.

1000 ones
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79. y = x2 ⇒ y0 = 2x, so the slope of a tangent line at the point (a, a2) is y0 = 2a and the slope of a normal line is −1/(2a),

for a 6= 0. The slope of the normal line through the points (a, a2) and (0, c) is a2 − c

a− 0 , so a2 − c

a
= − 1

2a
⇒

a2 − c = − 1
2
⇒ a2 = c− 1

2
. The last equation has two solutions if c > 1

2
, one solution if c = 1

2
, and no solution if

c < 1
2

. Since the y-axis is normal to y = x2 regardless of the value of c (this is the case for a = 0), we have three normal lines

if c > 1
2

and one normal line if c ≤ 1
2

.

3.2 The Product and Quotient Rules

1. Product Rule: y = (x2 + 1)(x3 + 1) ⇒

y0 = (x2 + 1)(3x2) + (x3 + 1)(2x) = 3x4 + 3x2 + 2x4 + 2x = 5x4 + 3x2 + 2x.

Multiplying first: y = (x2 + 1)(x3 + 1) = x5 + x3 + x2 + 1 ⇒ y0 = 5x4 + 3x2 + 2x (equivalent).

3. By the Product Rule, f(x) = (x3 + 2x)ex ⇒

f 0(x) = (x3 + 2x)(ex)0 + ex(x3 + 2x)0 = (x3 + 2x)ex + ex(3x2 + 2)

= ex[(x3 + 2x) + (3x2 + 2)] = ex(x3 + 3x2 + 2x+ 2)

5. By the Quotient Rule, y = ex

x2
⇒ y0 =

x2
d

dx
(ex)− ex

d

dx
(x2)

(x2)2
=

x2 (ex)− ex(2x)

x4
=

xex(x− 2)
x4

=
ex(x− 2)

x3
.

The notations
PR⇒ and

QR⇒ indicate the use of the Product and Quotient Rules, respectively.

7. g(x) = 3x− 1
2x+ 1

QR⇒ g0(x) =
(2x+ 1)(3)− (3x− 1)(2)

(2x+ 1)2
=
6x+ 3− 6x+ 2
(2x+ 1)2

=
5

(2x+ 1)2

9. V (x) = (2x3 + 3)(x4 − 2x) PR⇒

V 0(x) = (2x3 + 3)(4x3 − 2) + (x4 − 2x)(6x2) = (8x6 + 8x3 − 6) + (6x6 − 12x3) = 14x6 − 4x3 − 6

11. F (y) = 1

y2
− 3

y4
(y + 5y3) = y−2 − 3y−4 y + 5y3

PR⇒

F 0(y) = (y−2 − 3y−4)(1 + 15y2) + (y + 5y3)(−2y−3 + 12y−5)
= (y−2 + 15− 3y−4 − 45y−2) + (−2y−2 + 12y−4 − 10 + 60y−2)
= 5 + 14y−2 + 9y−4 or 5 + 14/y2 + 9/y4

13. y = x3

1− x2
QR⇒ y0 =

(1− x2) (3x2)− x3(−2x)
(1− x2)2

=
x2(3− 3x2 + 2x2)

(1− x2)2
=

x2(3− x2)

(1− x2)2
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15. y = t2 + 2

t4 − 3t2 + 1
QR⇒

y0 =
(t4 − 3t2 + 1)(2t)− (t2 + 2)(4t3 − 6t)

(t4 − 3t2 + 1)2 =
2t[(t4 − 3t2 + 1)− (t2 + 2)(2t2 − 3)]

(t4 − 3t2 + 1)2

=
2t(t4 − 3t2 + 1− 2t4 − 4t2 + 3t2 + 6)

(t4 − 3t2 + 1)2 =
2t(−t4 − 4t2 + 7)
(t4 − 3t2 + 1)2

17. y = (r2 − 2r)er PR⇒ y0 = (r2 − 2r)(er) + er(2r − 2) = er(r2 − 2r + 2r − 2) = er(r2 − 2)

19. y = v3 − 2v√v
v

= v2 − 2√v = v2 − 2v1/2 ⇒ y0 = 2v − 2 1
2
v−1/2 = 2v − v−1/2.

We can change the form of the answer as follows: 2v − v−1/2 = 2v − 1√
v
=
2v
√
v − 1√
v

=
2v3/2 − 1√

v

21. f(t) = 2t

2 +
√
t

QR⇒ f 0(t) =
(2 + t1/2)(2)− 2t 1

2 t
−1/2

(2 +
√
t )2

=
4 + 2t1/2 − t1/2

(2 +
√
t )2

=
4 + t1/2

(2 +
√
t )2

or 4 +
√
t

(2 +
√
t )2

23. f(x) = A

B +Cex
QR⇒ f 0(x) =

(B +Cex) · 0−A(Cex)

(B +Cex)2
= − ACex

(B +Cex)2

25. f(x) = x

x+ c/x
⇒ f 0(x) =

(x+ c/x)(1)− x(1− c/x2)

x+
c

x

2 =
x+ c/x− x+ c/x

x2 + c

x

2 =
2c/x

(x2 + c)2

x2

· x
2

x2
=

2cx

(x2 + c)2

27. f(x) = x4ex ⇒ f 0(x) = x4ex + ex · 4x3 = x4 + 4x3 ex or x3ex(x+ 4) ⇒

f 00(x) = (x4 + 4x3)ex + ex(4x3 + 12x2) = (x4 + 4x3 + 4x3 + 12x2)ex

= (x4 + 8x3 + 12x2)ex or x2ex(x+ 2)(x+ 6)

29. f(x) = x2

1 + 2x
⇒ f 0(x) =

(1 + 2x)(2x)− x2(2)

(1 + 2x)2
=
2x+ 4x2 − 2x2
(1 + 2x)2

=
2x2 + 2x

(1 + 2x)2
⇒

f 00(x) =
(1 + 2x)2(4x+ 2)− (2x2 + 2x)(1 + 4x+ 4x2)0

[(1 + 2x)2]2
=
2(1 + 2x)2(2x+ 1)− 2x(x+ 1)(4 + 8x)

(1 + 2x)4

=
2(1 + 2x)[(1 + 2x)2 − 4x(x+ 1)]

(1 + 2x)4
=
2(1 + 4x+ 4x2 − 4x2 − 4x)

(1 + 2x)3
=

2

(1 + 2x)3

31. y = 2x

x+ 1
⇒ y0 =

(x+ 1)(2)− (2x)(1)
(x+ 1)2

=
2

(x+ 1)2
.

At (1, 1), y0 = 1
2

, and an equation of the tangent line is y − 1 = 1
2
(x− 1), or y = 1

2
x+ 1

2
.

33. y = 2xex ⇒ y0 = 2(x · ex + ex · 1) = 2ex(x+ 1).

At (0, 0), y0 = 2e0(0 + 1) = 2 · 1 · 1 = 2, and an equation of the tangent line is y − 0 = 2(x− 0), or y = 2x. The slope of

the normal line is − 1
2

, so an equation of the normal line is y − 0 = − 1
2
(x− 0), or y = − 1

2
x.
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35. (a) y = f(x) =
1

1 + x2
⇒

f 0(x) =
(1 + x2)(0)− 1(2x)

(1 + x2)2
=

−2x
(1 + x2)2

. So the slope of the

tangent line at the point −1, 12 is f 0(−1) = 2

22
= 1

2 and its

equation is y − 1
2
= 1

2
(x+ 1) or y = 1

2
x+ 1.

(b)

37. (a) f(x) = ex

x3
⇒ f 0(x) =

x3(ex)− ex(3x2)

(x3)2
=

x2ex(x− 3)
x6

=
ex(x− 3)

x4

(b) f 0 = 0 when f has a horizontal tangent line, f 0 is negative when

f is decreasing, and f 0 is positive when f is increasing.

39. (a) f(x) = (x− 1)ex ⇒ f 0(x) = (x− 1)ex + ex(1) = ex(x− 1 + 1) = xex.

f 00(x) = x(ex) + ex(1) = ex(x+ 1)

(b) f 0 = 0 when f has a horizontal tangent and f 00 = 0 when f 0 has a

horizontal tangent. f 0 is negative when f is decreasing and positive when f

is increasing. f 00 is negative when f 0 is decreasing and positive when f 0 is

increasing. f 00 is negative when f is concave down and positive when f is
concave up.

41. f(x) = x2

1 + x
⇒ f 0(x) =

(1 + x)(2x)− x2(1)

(1 + x)2
=
2x+ 2x2 − x2

(1 + x)2
=

x2 + 2x

x2 + 2x+ 1
⇒

f 00(x) =
(x2 + 2x+ 1)(2x+ 2)− (x2 + 2x)(2x+ 2)

(x2 + 2x+ 1)2
=
(2x+ 2)(x2 + 2x+ 1− x2 − 2x)

[(x+ 1)2]2

=
2(x+ 1)(1)

(x+ 1)4
=

2

(x+ 1)3
,

so f 00(1) = 2

(1 + 1)3
=
2

8
=
1

4
.

43. We are given that f(5) = 1, f 0(5) = 6, g(5) = −3, and g0(5) = 2.

(a) (fg)0(5) = f(5)g0(5) + g(5)f 0(5) = (1)(2) + (−3)(6) = 2− 18 = −16

(b) f

g

0
(5) =

g(5)f 0(5)− f(5)g0(5)
[g(5)]2

=
(−3)(6)− (1)(2)

(−3)2 = −20
9

(c) g

f

0
(5) =

f(5)g0(5)− g(5)f 0(5)
[f(5)]2

=
(1)(2)− (−3)(6)

(1)2
= 20

45. f(x) = exg(x) ⇒ f 0(x) = exg0(x) + g(x)ex = ex[g0(x) + g(x)]. f 0(0) = e0[g0(0) + g(0)] = 1(5 + 2) = 7
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47. (a) From the graphs of f and g, we obtain the following values: f(1) = 2 since the point (1, 2) is on the graph of f ;

g(1) = 1 since the point (1, 1) is on the graph of g; f 0(1) = 2 since the slope of the line segment between (0, 0) and (2, 4)

is 4− 0
2− 0 = 2; g0(1) = −1 since the slope of the line segment between (−2, 4) and (2, 0) is 0− 4

2− (−2) = −1.

Now u(x) = f(x)g(x), so u0(1) = f(1)g0(1) + g(1) f 0(1) = 2 · (−1) + 1 · 2 = 0.

(b) v(x) = f(x)/g(x), so v0(5) = g(5)f 0(5)− f(5)g0(5)
[g(5)]2

=
2 − 1

3
− 3 · 2

3

22
=
− 8
3

4
= −2

3

49. (a) y = xg(x) ⇒ y0 = xg0(x) + g(x) · 1 = xg0(x) + g(x)

(b) y = x

g(x)
⇒ y0 =

g(x) · 1− xg0(x)
[g(x)]2

=
g(x)− xg0(x)
[g(x)]2

(c) y = g(x)

x
⇒ y0 =

xg0(x)− g(x) · 1
(x)2

=
xg0(x)− g(x)

x2

51. If y = f(x) =
x

x+ 1
, then f 0(x) = (x+ 1)(1)− x(1)

(x+ 1)2
=

1

(x+ 1)2
. When x = a, the equation of the tangent line is

y − a

a+ 1
=

1

(a+ 1)2
(x− a). This line passes through (1, 2) when 2− a

a+ 1
=

1

(a+ 1)2
(1− a) ⇔

2(a+ 1)2 − a(a+ 1) = 1− a ⇔ 2a2 + 4a+ 2− a2 − a− 1 + a = 0 ⇔ a2 + 4a+ 1 = 0.

The quadratic formula gives the roots of this equation as a =
−4± 42 − 4(1)(1)

2(1)
=
−4±√12

2
= −2±√3,

so there are two such tangent lines. Since

f −2±√3 =
−2±√3

−2±√3 + 1 =
−2±√3
−1±√3 ·

−1∓√3
−1∓√3

=
2± 2√3∓√3− 3

1− 3 =
−1±√3
−2 =

1∓√3
2

,

the lines touch the curve at A −2 +√3, 1−
√
3

2
≈ (−0.27,−0.37)

and B −2−√3, 1+
√
3

2
≈ (−3.73, 1.37).

53. If P (t) denotes the population at time t and A(t) the average annual income, then T (t) = P (t)A(t) is the total personal

income. The rate at which T (t) is rising is given by T 0(t) = P (t)A0(t) +A(t)P 0(t) ⇒
T 0(1999) = P (1999)A0(1999) +A(1999)P 0(1999) = (961,400)($1400/yr) + ($30,593)(9200/yr)

= $1,345,960,000/yr + $281,455,600/yr = $1,627,415,600/yr

So the total personal income was rising by about $1.627 billion per year in 1999.

The term P (t)A0(t) ≈ $1.346 billion represents the portion of the rate of change of total income due to the existing

population’s increasing income. The term A(t)P 0(t) ≈ $281 million represents the portion of the rate of change of total

income due to increasing population.
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We will sometimes use the form f 0g + fg0 rather than the form fg0 + gf 0 for the Product Rule.

55. (a) (fgh)0 = [(fg)h]0 = (fg)0h+ (fg)h0 = (f 0g + fg0)h+ (fg)h0 = f 0gh+ fg0h+ fgh0

(b) Putting f = g = h in part (a), we have d

dx
[f(x)]3 = (fff)0 = f 0ff + ff 0f + fff 0 = 3fff 0 = 3[f(x)]2f 0(x).

(c) d

dx
(e3x) =

d

dx
(ex)3 = 3(ex)2ex = 3e2xex = 3e3x

57. For f(x) = x2ex, f 0(x) = x2ex + ex(2x) = ex(x2 + 2x). Similarly, we have

f 00(x) = ex(x2 + 4x+ 2)

f 000(x) = ex(x2 + 6x+ 6)

f (4)(x) = ex(x2 + 8x+ 12)

f (5)(x) = ex(x2 + 10x+ 20)

It appears that the coefficient of x in the quadratic term increases by 2 with each differentiation. The pattern for the

constant terms seems to be 0 = 1 · 0, 2 = 2 · 1, 6 = 3 · 2, 12 = 4 · 3, 20 = 5 · 4. So a reasonable guess is that

f (n)(x) = ex[x2 + 2nx+ n(n− 1)].

Proof: Let Sn be the statement that f (n)(x) = ex[x2 + 2nx+ n(n− 1)].
1. S1 is true because f 0(x) = ex(x2 + 2x).

2. Assume that Sk is true; that is, f (k)(x) = ex[x2 + 2kx+ k(k − 1)]. Then

f (k+1)(x) =
d

dx
f (k)(x) = ex(2x+ 2k) + [x2 + 2kx+ k(k − 1)]ex

= ex[x2 + (2k + 2)x+ (k2 + k)] = ex[x2 + 2(k + 1)x+ (k + 1)k]

This shows that Sk+1 is true.

3. Therefore, by mathematical induction, Sn is true for all n; that is, f (n)(x) = ex[x2 + 2nx+ n(n− 1)] for every
positive integer n.

3.3 Derivatives of Trigonometric Functions

1. f(x) = 3x2 − 2 cosx ⇒ f 0(x) = 6x− 2(− sinx) = 6x+ 2 sinx

3. f(x) = sinx+ 1
2
cotx ⇒ f 0(x) = cosx− 1

2
csc2 x

5. g(t) = t3 cos t ⇒ g0(t) = t3(− sin t) + (cos t) · 3t2 = 3t2 cos t− t3 sin t or t2(3 cos t− t sin t)

7. h(θ) = csc θ + eθ cot θ ⇒ h0(θ) = − csc θ cot θ + eθ(− csc2 θ) + (cot θ)eθ = − csc θ cot θ + eθ(cot θ − csc2 θ)

9. y = x

2− tanx ⇒ y0 =
(2− tanx)(1)− x(− sec2 x)

(2− tanx)2 =
2− tanx+ x sec2 x

(2− tanx)2

11. f(θ) = sec θ

1 + sec θ
⇒

f 0(θ) =
(1 + sec θ)(sec θ tan θ)− (sec θ)(sec θ tan θ)

(1 + sec θ)2
=
(sec θ tan θ) [(1 + sec θ)− sec θ]

(1 + sec θ)2
=
sec θ tan θ

(1 + sec θ)2
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13. y = sinx

x2
⇒ y0 =

x2 cosx− (sinx)(2x)
(x2)2

=
x(x cosx− 2 sinx)

x4
=

x cosx− 2 sinx
x3

15. Using Exercise 3.2.55(a), f(x) = xex cscx ⇒

f 0(x) = (x)0ex cscx+ x(ex)0 cscx+ xex(cscx)0 = 1ex cscx+ xex cscx+ xex(− cotx cscx)
= ex cscx (1 + x− x cotx)

17. d

dx
(cscx) =

d

dx

1

sinx
=
(sinx)(0)− 1(cosx)

sin2 x
=
− cosx
sin2 x

= − 1

sinx
· cosx
sinx

= − cscx cotx

19. d

dx
(cotx) =

d

dx

cosx

sinx
=
(sinx)(− sinx)− (cosx)(cosx)

sin2 x
= − sin

2 x+ cos2 x

sin2 x
= − 1

sin2 x
= − csc2 x

21. y = secx ⇒ y0 = secx tanx, so y0(π
3
) = sec π

3
tan π

3
= 2

√
3. An equation of the tangent line to the curve y = secx

at the point π
3
, 2 is y − 2 = 2√3 x− π

3
or y = 2

√
3x+ 2− 2

3

√
3π.

23. y = x+cosx ⇒ y0 = 1− sinx. At (0, 1), y0 = 1, and an equation of the tangent line is y− 1 = 1(x− 0), or y = x+1.

25. (a) y = 2x sinx ⇒ y0 = 2(x cosx+ sinx · 1). At π
2
, π ,

y0 = 2 π
2
cos π

2
+ sin π

2
= 2(0 + 1) = 2, and an equation of the

tangent line is y − π = 2 x− π
2

, or y = 2x.

(b)

27. (a) f(x) = secx− x ⇒ f 0(x) = secx tanx− 1
(b) Note that f 0 = 0 where f has a minimum. Also note that f 0 is negative

when f is decreasing and f 0 is positive when f is increasing.

29. H(θ) = θ sin θ ⇒ H0(θ) = θ (cos θ) + (sin θ) · 1 = θ cos θ + sin θ ⇒
H00(θ) = θ (− sin θ) + (cos θ) · 1 + cos θ = −θ sin θ + 2cos θ

31. (a) f(x) = tanx− 1
secx

⇒

f 0(x) =
secx(sec2 x)− (tanx− 1)(secx tanx)

(secx)2
=
secx(sec2 x− tan2 x+ tanx)

sec 2 x
=
1 + tanx

secx

(b) f(x) = tanx− 1
secx

=

sinx

cosx
− 1

1

cosx

=

sinx− cosx
cosx
1

cosx

= sinx− cosx ⇒ f 0(x) = cosx− (− sinx) = cosx+ sinx

(c) From part (a), f 0(x) = 1 + tanx

secx
=

1

secx
+
tanx

secx
= cosx+ sinx, which is the expression for f 0(x) in part (b).
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33. f(x) = x+ 2 sinx has a horizontal tangent when f 0(x) = 0 ⇔ 1 + 2 cosx = 0 ⇔ cosx = − 1
2 ⇔

x = 2π
3
+ 2πn or 4π

3
+ 2πn, where n is an integer. Note that 4π

3
and 2π

3
are ±π

3
units from π. This allows us to write the

solutions in the more compact equivalent form (2n+ 1)π ± π
3 , n an integer.

35. (a) x(t) = 8 sin t ⇒ v(t) = x0(t) = 8 cos t ⇒ a(t) = x00(t) = −8 sin t

(b) The mass at time t = 2π
3 has position x 2π

3
= 8 sin 2π

3 = 8
√
3
2

= 4
√
3, velocity v 2π

3
= 8cos 2π

3 = 8 − 1
2
= −4,

and acceleration a 2π
3

= −8 sin 2π
3
= −8

√
3
2

= −4√3. Since v 2π
3

< 0, the particle is moving to the left.

37. From the diagram we can see that sin θ = x/10 ⇔ x = 10 sin θ. We want to find the rate

of change of x with respect to θ, that is, dx/dθ. Taking the derivative of x = 10 sin θ, we get

dx/dθ = 10(cos θ). So when θ = π
3

, dx
dθ
= 10 cos π

3
= 10 1

2
= 5 ft/rad.

39. lim
x→0

sin 3x

x
= lim

x→0

3 sin 3x

3x
[multiply numerator and denominator by 3]

= 3 lim
3x→0

sin 3x

3x
[as x→ 0, 3x→ 0]

= 3 lim
θ→0

sin θ

θ
[let θ = 3x]

= 3(1) [Equation 2]

= 3

41. lim
t→0

tan 6t

sin 2t
= lim

t→0

sin 6t

t
· 1

cos 6t
· t

sin 2t
= lim

t→0

6 sin 6t

6t
· lim
t→0

1

cos 6t
· lim
t→0

2t

2 sin 2t

= 6 lim
t→0

sin 6t

6t
· lim
t→0

1

cos 6t
· 1
2
lim
t→0

2t

sin 2t
= 6(1) · 1

1
· 1
2
(1) = 3

43. lim
θ→0

sin(cos θ)

sec θ
=
sin lim

θ→0
cos θ

lim
θ→0

sec θ
=
sin 1

1
= sin 1

45. Divide numerator and denominator by θ. (sin θ also works.)

lim
θ→0

sin θ

θ + tan θ
= lim

θ→0

sin θ

θ

1 +
sin θ

θ
· 1

cos θ

=
lim
θ→0

sin θ

θ

1 + lim
θ→0

sin θ

θ
lim
θ→0

1

cos θ

=
1

1 + 1 · 1 =
1

2

47. lim
x→π/4

1− tanx
sinx− cosx = lim

x→π/4

1− sinx

cosx
· cosx

(sinx− cosx) · cosx = lim
x→π/4

cosx− sinx
(sinx− cosx) cosx = lim

x→π/4

−1
cosx

=
−1
1/
√
2
= −√2

49. (a) d

dx
tanx =

d

dx

sinx

cosx
⇒ sec2 x =

cosx cosx− sinx (− sinx)
cos2 x

=
cos2 x+ sin2 x

cos2 x
. So sec2 x = 1

cos2 x
.

(b) d

dx
secx =

d

dx

1

cosx
⇒ secx tanx =

(cosx)(0)− 1(− sinx)
cos2 x

. So secx tanx = sinx

cos2 x
.
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(c) d

dx
(sinx+ cosx) =

d

dx

1 + cotx

cscx
⇒

cosx− sinx = cscx (− csc2 x)− (1 + cotx)(− cscx cotx)
csc2 x

=
cscx [− csc2 x+ (1 + cotx) cotx]

csc2 x

=
− csc2 x+ cot2 x+ cotx

cscx
=
−1 + cotx
cscx

So cosx− sinx = cotx− 1
cscx

.

51. By the definition of radian measure, s = rθ, where r is the radius of the circle. By drawing the bisector of the angle θ, we can

see that sin θ
2
=

d/2

r
⇒ d = 2r sin

θ

2
. So lim

θ→0+

s

d
= lim

θ→0+

rθ

2r sin(θ/2)
= lim

θ→0+

2 · (θ/2)
2 sin(θ/2)

= lim
θ→0

θ/2

sin(θ/2)
= 1.

[This is just the reciprocal of the limit lim
x→0

sin x
x
= 1 combined with the fact that as θ → 0, θ

2
→ 0 also.]

3.4 The Chain Rule

1. Let u = g(x) = 4x and y = f(u) = sinu. Then dy

dx
=

dy

du

du

dx
= (cosu)(4) = 4 cos 4x.

3. Let u = g(x) = 1− x2 and y = f(u) = u10. Then dy

dx
=

dy

du

du

dx
= (10u9)(−2x) = −20x(1− x2)9.

5. Let u = g(x) =
√
x and y = f(u) = eu. Then dy

dx
=

dy

du

du

dx
= (eu) 1

2x
−1/2 = e

√
x · 1

2
√
x
=

e
√
x

2
√
x

.

7. F (x) = (x4 + 3x2 − 2)5 ⇒ F 0(x) = 5(x4 + 3x2 − 2)4 · d

dx
x4 + 3x2 − 2 = 5(x4 + 3x2 − 2)4(4x3 + 6x)

or 10x(x4 + 3x2 − 2)4(2x2 + 3)

9. F (x) = 4
√
1 + 2x+ x3 = (1 + 2x+ x3)1/4 ⇒

F 0(x) = 1
4
(1 + 2x+ x3)−3/4 · d

dx
(1 + 2x+ x3) =

1

4(1 + 2x+ x3)3/4
· (2 + 3x2) = 2 + 3x2

4(1 + 2x+ x3)3/4

=
2 + 3x2

4 4 (1 + 2x+ x3)3

11. g(t) = 1

(t4 + 1)3
= (t4 + 1)−3 ⇒ g0(t) = −3(t4 + 1)−4(4t3) = −12t3(t4 + 1)−4 = −12t3

(t4 + 1)4

13. y = cos(a3 + x3) ⇒ y0 = − sin(a3 + x3) · 3x2 [a3 is just a constant] = −3x2 sin(a3 + x3)

15. y = xe−kx ⇒ y0 = x e−kx(−k) + e−kx · 1 = e−kx(−kx+ 1) or (1− kx)e−kx

17. g(x) = (1 + 4x)5(3 + x− x2)8 ⇒
g0(x) = (1 + 4x)5 · 8(3 + x− x2)7(1− 2x) + (3 + x− x2)8 · 5(1 + 4x)4 · 4

= 4(1 + 4x)4(3 + x− x2)7 2(1 + 4x)(1− 2x) + 5(3 + x− x2 )

= 4(1 + 4x)4(3 + x− x2)7 (2 + 4x− 16x2) + (15 + 5x− 5x2 ) = 4(1 + 4x)4(3 + x− x2 )7(17 + 9x− 21x2 )
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19. y = (2x− 5)4(8x2 − 5)−3 ⇒
y0 = 4(2x− 5)3(2)(8x2 − 5)−3 + (2x− 5)4(−3)(8x2 − 5)−4(16x)
= 8(2x− 5)3(8x2 − 5)−3 − 48x(2x− 5)4(8x2 − 5)−4

[This simplifies to 8(2x− 5)3(8x2 − 5)−4(−4x2 + 30x− 5).]

21. y = x2 + 1

x2 − 1
3

⇒

y0 = 3
x2 + 1

x2 − 1
2

· d

dx

x2 + 1

x2 − 1 = 3
x2 + 1

x2 − 1
2

· (x
2 − 1)(2x)− (x2 + 1)(2x)

(x2 − 1)2

= 3
x2 + 1

x2 − 1
2

· 2x[x
2 − 1− (x2 + 1)]
(x2 − 1)2 = 3

x2 + 1

x2 − 1
2

· 2x(−2)
(x2 − 1)2 =

−12x(x2 + 1)2
(x2 − 1)4

23. y = ex cos x ⇒ y0 = ex cos x · d

dx
(x cosx) = ex cos x [x(− sinx) + (cosx) · 1] = ex cosx(cosx− x sinx)

25. F (z) = z − 1
z + 1

=
z − 1
z + 1

1/2

⇒

F 0(z) =
1

2

z − 1
z + 1

−1/2
· d

dz

z − 1
z + 1

=
1

2

z + 1

z − 1
1/2

· (z + 1)(1)− (z − 1)(1)
(z + 1)2

=
1

2

(z + 1)1/2

(z − 1)1/2 ·
z + 1− z + 1

(z + 1)2
=
1

2

(z + 1)1/2

(z − 1)1/2 ·
2

(z + 1)2
=

1

(z − 1)1/2(z + 1)3/2

27. y = r√
r2 + 1

⇒

y0 =

√
r2 + 1 (1)− r · 12 (r2 + 1)−1/2(2r)√

r2 + 1
2 =

√
r2 + 1− r2√

r2 + 1√
r2 + 1

2 =

√
r2 + 1

√
r2 + 1− r2√

r2 + 1√
r2 + 1

2

=
r2 + 1 − r2

√
r2 + 1

3 =
1

(r2 + 1)3/2
or (r2 + 1)−3/2

Another solution: Write y as a product and make use of the Product Rule. y = r(r2 + 1)−1/2 ⇒

y0 = r ·− 1
2 (r

2 + 1)−3/2(2r) + (r2 + 1)−1/2 · 1 = (r2 + 1)−3/2[−r2 + (r2 + 1)1] = (r2 + 1)−3/2(1) = (r2 + 1)−3/2.

The step that students usually have trouble with is factoring out (r2 + 1)−3/2. But this is no different than factoring out x2

from x2 + x5; that is, we are just factoring out a factor with the smallest exponent that appears on it. In this case, − 3
2

is

smaller than − 1
2

.

29. y = sin(tan 2x) ⇒ y0 = cos(tan 2x) · d

dx
(tan 2x) = cos(tan 2x) · sec2(2x) · d

dx
(2x) = 2 cos(tan 2x) sec2(2x)

31. Using Formula 5 and the Chain Rule, y = 2 sinπx ⇒

y0 = 2 sinπx(ln 2) · d

dx
(sinπx) = 2 sinπx(ln 2) · cosπx · π = 2 sinπx(π ln 2) cosπx
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33. y = sec2 x + tan2 x = (secx)2 + (tanx)2 ⇒
y0 = 2(secx)(secx tanx) + 2(tanx)(sec2 x) = 2 sec2x tanx+ 2 sec2x tanx = 4 sec2x tanx

35. y = cos 1− e2x

1 + e2x
⇒

y0 = − sin 1− e2x

1 + e2x
· d

dx

1− e2x

1 + e2x
= − sin 1− e2x

1 + e2x
· (1 + e2x)(−2e2x)− (1− e2x)(2e2x)

(1 + e2x)2

= − sin 1− e2x

1 + e2x
· −2e

2x (1 + e2x) + (1− e2x)

(1 + e2x)2
= − sin 1− e2x

1 + e2x
· −2e

2x(2)

(1 + e2x)2
=

4e2x

(1 + e2x)2
· sin 1− e2x

1 + e2x

37. y = cot2(sin θ) = [cot(sin θ)]2 ⇒

y0 = 2[cot(sin θ)] · d

dθ
[cot(sin θ)] = 2 cot(sin θ) · [− csc2(sin θ) · cos θ] = −2 cos θ cot(sin θ) csc2(sin θ)

39. f(t) = tan(et) + etan t ⇒ f 0(t) = sec2(et) · d
dt
(et) + etan t · d

dt
(tan t) = sec2(et) · et + etan t · sec2 t

41. f(t) = sin2 esin
2t = sin esin

2t
2

⇒

f 0(t) = 2 sin esin
2t · d

dt
sin esin

2t = 2 sin esin
2t · cos esin

2t · d
dt

esin
2t

= 2 sin esin
2t cos esin

2t · esin2t · d
dt
sin2 t = 2 sin esin

2t cos esin
2t esin

2t · 2 sin t cos t

= 4 sin esin
2t cos esin

2t esin
2t sin t cos t

43. g(x) = (2rarx + n)p ⇒

g0(x) = p(2rarx + n)p−1 · d

dx
(2rarx + n) = p(2rarx + n)p−1 · 2rarx(ln a) · r = 2r2p(ln a)(2rarx + n)p−1arx

45. y = cos sin(tanπx) = cos(sin(tanπx))1/2 ⇒

y0 = − sin(sin(tanπx))1/2 · d

dx
(sin(tanπx))1/2 = − sin(sin(tanπx))1/2 · 12 (sin(tanπx))−1/2 ·

d

dx
(sin(tanπx))

=
− sin sin(tanπx)

2 sin(tanπx)
· cos(tanπx) · d

dx
tanπx =

− sin sin(tanπx)

2 sin(tanπx)
· cos(tanπx) · sec2(πx) · π

=
−π cos(tanπx) sec2(πx) sin sin(tanπx)

2 sin(tanπx)

47. h(x) =
√
x2 + 1 ⇒ h0(x) =

1

2
(x2 + 1)−1/2(2x) =

x√
x2 + 1

⇒

h00(x) =

√
x2 + 1 · 1− x 1

2 (x
2 + 1)−1/2(2x)

√
x2 + 1

2 =
x2 + 1

−1/2
(x2 + 1)− x2

(x2 + 1)1
=

1

(x2 + 1)3/2



102 ¤ CHAPTER 3 DIFFERENTIATION RULES

49. y = eαx sinβx ⇒ y0 = eαx · β cosβx+ sinβx · αeαx = eαx(β cosβx+ α sinβx) ⇒
y00 = eαx(−β2 sinβx+ αβ cosβx) + (β cosβx+ α sinβx) · αeαx

= eαx(−β2 sinβx+ αβ cosβx+ αβ cosβx+ α2 sinβx) = eαx(α2 sinβx− β2 sinβx+ 2αβ cosβx)

= eαx (α2 − β2) sinβx+ 2αβ cosβx

51. y = (1 + 2x)10 ⇒ y0 = 10(1 + 2x)9 · 2 = 20(1 + 2x)9.

At (0, 1), y0 = 20(1 + 0)9 = 20, and an equation of the tangent line is y − 1 = 20(x− 0), or y = 20x+ 1.

53. y = sin(sinx) ⇒ y0 = cos(sinx) · cosx. At (π, 0), y0 = cos(sinπ) · cosπ = cos(0) · (−1) = 1(−1) = −1, and an

equation of the tangent line is y − 0 = −1(x− π), or y = −x+ π.

55. (a) y = 2

1 + e−x
⇒ y0 =

(1 + e−x)(0)− 2(−e−x)
(1 + e−x)2

=
2e−x

(1 + e−x)2
.

At (0, 1), y0 = 2e0

(1 + e0)2
=

2(1)

(1 + 1)2
=
2

22
=
1

2
. So an equation of the

tangent line is y − 1 = 1
2
(x− 0) or y = 1

2
x+ 1.

(b)

57. (a) f(x) = x
√
2− x2 = x(2 − x2)1/2 ⇒

f 0(x) = x · 1
2
(2− x2)−1/2(−2x) + (2− x2)1/2 · 1 = (2− x2)−1/2 −x2 + (2− x2) =

2− 2x2√
2− x2

(b) f 0 = 0 when f has a horizontal tangent line, f 0 is negative when f is

decreasing, and f 0 is positive when f is increasing.

59. For the tangent line to be horizontal, f 0(x) = 0. f(x) = 2 sinx+ sin2 x ⇒ f 0(x) = 2 cosx+ 2 sinx cosx = 0 ⇔
2 cosx(1 + sinx) = 0 ⇔ cosx = 0 or sinx = −1, so x = π

2
+ 2nπ or 3π

2
+ 2nπ, where n is any integer. Now

f π
2
= 3 and f 3π

2
= −1, so the points on the curve with a horizontal tangent are π

2
+ 2nπ, 3 and 3π

2
+ 2nπ,−1 ,

where n is any integer.

61. F (x) = f(g(x)) ⇒ F 0(x) = f 0(g(x)) · g0(x), so F 0(5) = f 0(g(5)) · g0(5) = f 0(−2) · 6 = 4 · 6 = 24

63. (a) h(x) = f(g(x)) ⇒ h0(x) = f 0(g(x)) · g0(x), so h0(1) = f 0(g(1)) · g0(1) = f 0(2) · 6 = 5 · 6 = 30.

(b) H(x) = g(f(x)) ⇒ H0(x) = g0(f(x)) · f 0(x), so H0(1) = g0(f(1)) · f 0(1) = g0(3) · 4 = 9 · 4 = 36.

65. (a) u(x) = f(g(x)) ⇒ u0(x) = f 0(g(x))g0(x). So u0(1) = f 0(g(1))g0(1) = f 0(3)g0(1). To find f 0(3), note that f is

linear from (2, 4) to (6, 3), so its slope is 3− 4
6− 2 = −

1

4
. To find g0(1), note that g is linear from (0, 6) to (2, 0), so its slope

is 0− 6
2− 0 = −3. Thus, f 0(3)g0(1) = − 1

4
(−3) = 3

4
.

(b) v(x) = g(f(x)) ⇒ v0(x) = g0(f(x))f 0(x). So v0(1) = g0(f(1))f 0(1) = g0(2)f 0(1), which does not exist since

g0(2) does not exist.
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(c) w(x) = g(g(x)) ⇒ w0(x) = g0(g(x))g0(x). So w0(1) = g0(g(1))g0(1) = g0(3)g0(1). To find g0(3), note that g is

linear from (2, 0) to (5, 2), so its slope is 2− 0
5− 2 =

2

3
. Thus, g0(3)g0(1) = 2

3
(−3) = −2.

67. (a) F (x) = f(ex) ⇒ F 0(x) = f 0(ex)
d

dx
(ex) = f 0(ex)ex

(b) G(x) = ef(x) ⇒ G0(x) = ef(x)
d

dx
f(x) = ef(x)f 0(x)

69. r(x) = f(g(h(x))) ⇒ r0(x) = f 0(g(h(x))) · g0(h(x)) · h0(x), so

r0(1) = f 0(g(h(1))) · g0(h(1)) · h0(1) = f 0(g(2)) · g0(2) · 4 = f 0(3) · 5 · 4 = 6 · 5 · 4 = 120

71. F (x) = f(3f(4f(x))) ⇒

F 0(x) = f 0(3f(4f(x))) · d

dx
(3f(4f(x))) = f 0(3f(4f(x))) · 3f 0(4f(x)) · d

dx
(4f(x))

= f 0(3f(4f(x))) · 3f 0(4f(x)) · 4f 0(x), so

F 0(0) = f 0(3f(4f(0))) · 3f 0(4f(0)) · 4f 0(0) = f 0(3f(4 · 0)) · 3f 0(4 · 0) · 4 · 2 = f 0(3 · 0) · 3 · 2 · 4 · 2 = 2 · 3 · 2 · 4 · 2 = 96.

73. y = Ae−x +Bxe−x ⇒
y0 = A(−e−x) +B[x(−e−x) + e−x · 1] = −Ae−x +Be−x −Bxe−x = (B −A)e−x −Bxe−x ⇒
y00 = (B −A)(−e−x)−B[x(−e−x) + e−x · 1] = (A−B)e−x −Be−x +Bxe−x = (A− 2B)e−x +Bxe−x,

so y00 + 2y0 + y = (A− 2B)e−x +Bxe−x + 2[(B −A)e−x −Bxe−x] +Ae−x +Bxe−x

= [(A− 2B) + 2(B −A) +A]e−x + [B − 2B +B]xe−x = 0.

75. The use of D, D2, . . ., Dn is just a derivative notation (see text page 157). In general, Df(2x) = 2f 0(2x),

D2f(2x) = 4f 00(2x), . . ., Dnf(2x) = 2nf (n)(2x). Since f(x) = cosx and 50 = 4(12) + 2, we have

f (50)(x) = f (2)(x) = − cosx, so D50 cos 2x = −250 cos 2x.

77. s(t) = 10 + 1
4
sin(10πt) ⇒ the velocity after t seconds is v(t) = s0(t) = 1

4
cos(10πt)(10π) = 5π

2
cos(10πt) cm/s.

79. (a) B(t) = 4.0 + 0.35 sin 2πt
5.4

⇒ dB

dt
= 0.35 cos

2πt

5.4

2π

5.4
=
0.7π

5.4
cos

2πt

5.4
=
7π

54
cos

2πt

5.4

(b) At t = 1, dB
dt

=
7π

54
cos

2π

5.4
≈ 0.16.

81. s(t) = 2e−1.5t sin 2πt ⇒
v(t) = s0(t) = 2[e−1.5t(cos 2πt)(2π) + (sin 2πt)e−1.5t(−1.5)] = 2e−1.5t(2π cos 2πt− 1.5 sin 2πt)
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83. By the Chain Rule, a(t) = dv

dt
=

dv

ds

ds

dt
=

dv

ds
v(t) = v(t)

dv

ds
. The derivative dv/dt is the rate of change of the velocity

with respect to time (in other words, the acceleration) whereas the derivative dv/ds is the rate of change of the velocity with

respect to the displacement.

85. (a) Using a calculator or CAS, we obtain the model Q = abt with a ≈ 100.0124369 and b ≈ 0.000045145933.

(b) Use Q0(t) = abt ln b (from Formula 5) with the values of a and b from part (a) to get Q0(0.04) ≈ −670.63 μA.

The result of Example 2 in Section 2.1 was −670 μA.

87. (a) Derive gives g0(t) = 45(t− 2)8
(2t+ 1)10

without simplifying. With either Maple or Mathematica, we first get

g0(t) = 9
(t− 2)8
(2t+ 1)9

− 18 (t− 2)
9

(2t+ 1)10
, and the simplification command results in the expression given by Derive.

(b) Derive gives y0 = 2(x3 − x+ 1)3(2x+ 1)4(17x3 + 6x2 − 9x+ 3) without simplifying. With either Maple or

Mathematica, we first get y0 = 10(2x+ 1)4(x3 − x+ 1)4 + 4(2x+ 1)5(x3 − x+ 1)3(3x2 − 1). If we use

Mathematica’s Factor or Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives

the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful.

89. (a) If f is even, then f(x) = f(−x). Using the Chain Rule to differentiate this equation, we get

f 0(x) = f 0(−x) d

dx
(−x) = −f 0(−x). Thus, f 0(−x) = −f 0(x), so f 0 is odd.

(b) If f is odd, then f(x) = −f(−x). Differentiating this equation, we get f 0(x) = −f 0(−x)(−1) = f 0(−x), so f 0 is
even.

91. (a) d

dx
(sinn x cosnx) = n sinn−1 x cosx cosnx+ sinn x (−n sinnx) [Product Rule]

= n sinn−1 x (cosnx cosx− sinnx sinx) [factor out n sinn−1 x]

= n sinn−1 x cos(nx+ x) [Addition Formula for cosine]

= n sinn−1 x cos[(n+ 1)x] [factor out x]

(b) d

dx
(cosn x cosnx) = n cosn−1 x (− sinx) cosnx+ cosn x (−n sinnx) [Product Rule]

= −n cosn−1 x (cosnx sinx+ sinnx cosx) [factor out −n cosn−1 x]

= −n cosn−1 x sin(nx+ x) [Addition Formula for sine]

= −n cosn−1 x sin[(n+ 1)x] [factor out x]

93. Since θ◦ = π
180

θ rad, we have d

dθ
(sin θ◦) =

d

dθ
sin π

180θ = π
180 cos

π
180θ =

π
180 cos θ

◦.

95. The Chain Rule says that dy
dx

=
dy

du

du

dx
, so

d2y

dx2
=

d

dx

dy

dx
=

d

dx

dy

du

du

dx
=

d

dx

dy

du

du

dx
+

dy

du

d

dx

du

dx
[Product Rule]

=
d

du

dy

du

du

dx

du

dx
+

dy

du

d2u

dx2
=

d2y

du2
du

dx

2

+
dy

du

d2u

dx2
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3.5 Implicit Differentiation

1. (a) d

dx
(xy + 2x+ 3x2) =

d

dx
(4) ⇒ (x · y0 + y · 1) + 2 + 6x = 0 ⇒ xy0 = −y − 2− 6x ⇒

y0 =
−y − 2− 6x

x
or y0 = −6− y + 2

x
.

(b) xy + 2x+ 3x2 = 4 ⇒ xy = 4− 2x− 3x2 ⇒ y =
4− 2x− 3x2

x
=
4

x
− 2− 3x, so y0 = − 4

x2
− 3.

(c) From part (a), y0 = −y − 2− 6x
x

=
−(4/x− 2− 3x)− 2− 6x

x
=
−4/x− 3x

x
= − 4

x2
− 3.

3. (a) d

dx

1

x
+
1

y
=

d

dx
(1) ⇒ − 1

x2
− 1

y2
y0 = 0 ⇒ − 1

y2
y0 =

1

x2
⇒ y0 = −y2

x2

(b) 1
x
+
1

y
= 1 ⇒ 1

y
= 1− 1

x
=

x− 1
x

⇒ y =
x

x− 1 , so y0 = (x− 1)(1)− (x)(1)
(x− 1)2 =

−1
(x− 1)2 .

(c) y0 = −y2

x2
= − [x/(x− 1)]

2

x2
= − x2

x2(x− 1)2 = −
1

(x− 1)2

5. d

dx
x3 + y3 =

d

dx
(1) ⇒ 3x2 + 3y2 · y0 = 0 ⇒ 3y2 y0 = −3x2 ⇒ y0 = −x2

y2

7. d

dx
(x2 + xy − y2) =

d

dx
(4) ⇒ 2x+ x · y0 + y · 1− 2y y0 = 0 ⇒

xy0 − 2y y0 = −2x− y ⇒ (x− 2y) y0 = −2x− y ⇒ y0 =
−2x− y

x− 2y =
2x+ y

2y − x

9. d

dx
x4(x+ y) =

d

dx
y2(3x− y) ⇒ x4(1 + y0) + (x+ y) · 4x3 = y2(3− y0) + (3x− y) · 2y y0 ⇒

x4 + x4 y0 + 4x4 + 4x3y = 3y2 − y2 y0 + 6xy y0 − 2y2 y0 ⇒ x4 y0 + 3y2 y0 − 6xy y0 = 3y2 − 5x4 − 4x3y ⇒

(x4 + 3y2 − 6xy) y0 = 3y2 − 5x4 − 4x3y ⇒ y0 =
3y2 − 5x4 − 4x3y
x4 + 3y2 − 6xy

11. d

dx
(x2y2 + x sin y) =

d

dx
(4) ⇒ x2 · 2y y0 + y2 · 2x+ x cos y · y0 + sin y · 1 = 0 ⇒

2x2y y0 + x cos y · y0 = −2xy2 − sin y ⇒ (2x2y + x cos y)y0 = −2xy2 − sin y ⇒ y0 =
−2xy2 − sin y
2x2y + x cos y

13. d

dx
(4 cosx sin y) =

d

dx
(1) ⇒ 4 [cosx · cos y · y0 + sin y · (− sinx)] = 0 ⇒

y0(4 cosx cos y) = 4 sinx sin y ⇒ y0 =
4 sinx sin y

4 cosx cos y
= tanx tan y

15. d

dx
(ex/y) =

d

dx
(x − y) ⇒ ex/y · d

dx

x

y
= 1 − y0 ⇒

ex/y · y · 1− x · y0
y2

= 1− y0 ⇒ ex/y · 1
y
− xex/y

y2
· y0 = 1− y0 ⇒ y0 − xex/y

y2
· y0 = 1− ex/y

y
⇒

y0 1− xex/y

y2
=

y − ex/y

y
⇒ y0 =

y − ex/y

y

y2 − xex/y

y2

=
y(y − ex/y)

y2 − xex/y
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17. xy = 1 + x2y ⇒ 1
2 (xy)

−1/2(xy0 + y · 1) = 0 + x2y0 + y · 2x ⇒ x

2 xy
y0 +

y

2 xy
= x2y0 + 2xy ⇒

y0
x

2 xy
− x2 = 2xy − y

2 xy
⇒ y0

x− 2x2 xy

2 xy
=
4xy xy − y

2 xy
⇒ y0 =

4xy xy − y

x− 2x2 xy

19. d

dx
(ey cosx) =

d

dx
[1 + sin(xy)] ⇒ ey(− sinx) + cosx · ey · y0 = cos(xy) · (xy0 + y · 1) ⇒

−ey sinx+ ey cosx · y0 = x cos(xy) · y0 + y cos(xy) ⇒ ey cosx · y0 − x cos(xy) · y0 = ey sinx+ y cos(xy) ⇒

[ey cosx− x cos(xy)] y0 = ey sinx+ y cos(xy) ⇒ y0 =
ey sinx+ y cos(xy)

ey cosx− x cos(xy)

21. d

dx
f(x) + x2[f(x)]3 =

d

dx
(10) ⇒ f 0(x) + x2 · 3[f(x)]2 · f 0(x) + [f(x)]3 · 2x = 0. If x = 1, we have

f 0(1) + 12 · 3[f(1)]2 · f 0(1) + [f(1)]3 · 2(1) = 0 ⇒ f 0(1) + 1 · 3 · 22 · f 0(1) + 23 · 2 = 0 ⇒

f 0(1) + 12f 0(1) = −16 ⇒ 13f 0(1) = −16 ⇒ f 0(1) = − 16
13

.

23. d

dy
(x4y2 − x3y + 2xy3) =

d

dy
(0) ⇒ x4 · 2y + y2 · 4x3 x0 − (x3 · 1 + y · 3x2 x0) + 2(x · 3y2 + y3 · x0) = 0 ⇒

4x3y2 x0 − 3x2y x0 + 2y3 x0 = −2x4y + x3 − 6xy2 ⇒ (4x3y2 − 3x2y + 2y3)x0 = −2x4y + x3 − 6xy2 ⇒

x0 =
dx

dy
=
−2x4y + x3 − 6xy2
4x3y2 − 3x2y + 2y3

25. x2 + xy + y2 = 3 ⇒ 2x+ x y0 + y · 1 + 2yy0 = 0 ⇒ x y0 + 2y y0 = −2x− y ⇒ y0(x+ 2y) = −2x− y ⇒

y0 =
−2x− y

x+ 2y
. When x = 1 and y = 1, we have y0 = −2− 1

1 + 2 · 1 =
−3
3
= −1, so an equation of the tangent line is

y − 1 = −1(x− 1) or y = −x+ 2.

27. x2 + y2 = (2x2 + 2y2 − x)2 ⇒ 2x+ 2y y0 = 2(2x2 + 2y2 − x)(4x+ 4y y0 − 1). When x = 0 and y = 1
2

, we have

0 + y0 = 2( 1
2
)(2y0 − 1) ⇒ y0 = 2y0 − 1 ⇒ y0 = 1, so an equation of the tangent line is y − 1

2
= 1(x− 0)

or y = x+ 1
2

.

29. 2(x2 + y2)2 = 25(x2 − y2) ⇒ 4(x2 + y2)(2x + 2y y0) = 25(2x− 2y y0) ⇒
4(x+ y y0)(x2 + y2) = 25(x− y y0) ⇒ 4y y0(x2 + y2) + 25yy0 = 25x− 4x(x2 + y2) ⇒

y0 =
25x− 4x(x2 + y2)

25y + 4y(x2 + y2)
. When x = 3 and y = 1, we have y0 = 75− 120

25+40
= − 45

65
= − 9

13
,

so an equation of the tangent line is y − 1 = − 9
13
(x− 3) or y = − 9

13
x+ 40

13
.

31. (a) y2 = 5x4 − x2 ⇒ 2y y0 = 5(4x3)− 2x ⇒ y0 =
10x3 − x

y
.

So at the point (1, 2) we have y0 = 10(1)3 − 1
2

=
9

2
, and an equation

of the tangent line is y − 2 = 9
2
(x− 1) or y = 9

2
x− 5

2
.

(b)
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33. 9x2 + y2 = 9 ⇒ 18x+ 2y y0 = 0 ⇒ 2y y0 = −18x ⇒ y0 = −9x/y ⇒

y00 = −9 y · 1− x · y0
y2

= −9 y − x(−9x/y)
y2

= −9 · y
2 + 9x2

y3
= −9 · 9

y3
[since x and y must satisfy the original

equation, 9x2 + y2 = 9]. Thus, y00 = −81/y3.

35. x3 + y3 = 1 ⇒ 3x2 + 3y2 y0 = 0 ⇒ y0 = −x2

y2
⇒

y00 = −y2(2x)− x2 · 2y y0
(y2)2

= −2xy
2 − 2x2y(−x2/y2)

y4
= −2xy

4 + 2x4y

y6
= −2xy(y

3 + x3)

y6
= −2x

y5
,

since x and y must satisfy the original equation, x3 + y3 = 1.

37. (a) There are eight points with horizontal tangents: four at x ≈ 1.57735 and

four at x ≈ 0.42265.

(b) y0 = 3x2 − 6x+ 2
2(2y3 − 3y2 − y + 1)

⇒ y0 = −1 at (0, 1) and y0 = 1
3

at (0, 2).

Equations of the tangent lines are y = −x+ 1 and y = 1
3x+ 2.

(c) y0 = 0 ⇒ 3x2 − 6x+ 2 = 0 ⇒ x = 1± 1
3

√
3

(d) By multiplying the right side of the equation by x− 3, we obtain the first

graph. By modifying the equation in other ways, we can generate the other

graphs.

y(y2 − 1)(y − 2)
= x(x− 1)(x− 2)(x− 3)

y(y2 − 4)(y − 2)
= x(x− 1)(x− 2)

y(y + 1)(y2 − 1)(y − 2)
= x(x− 1)(x− 2)

(y + 1)(y2 − 1)(y − 2)
= (x− 1)(x− 2)

x(y + 1)(y2 − 1)(y − 2)
= y(x− 1)(x− 2)

y(y2 + 1)(y − 2)
= x(x2 − 1)(x− 2)

y(y + 1)(y2 − 2)
= x(x− 1)(x2 − 2)
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39. From Exercise 29, a tangent to the lemniscate will be horizontal if y0 = 0 ⇒ 25x− 4x(x2 + y2) = 0 ⇒
x[25− 4(x2 + y2)] = 0 ⇒ x2 + y2 = 25

4
(1). (Note that when x is 0, y is also 0, and there is no horizontal tangent

at the origin.) Substituting 25
4

for x2 + y2 in the equation of the lemniscate, 2(x2 + y2)2 = 25(x2 − y2), we get

x2 − y2 = 25
8

(2). Solving (1) and (2), we have x2 = 75
16

and y2 = 25
16

, so the four points are ± 5
√
3

4
,± 5

4
.

41. x2

a2
− y2

b2
= 1 ⇒ 2x

a2
− 2yy0

b2
= 0 ⇒ y0 =

b2x

a2y
⇒ an equation of the tangent line at (x0, y0) is

y − y0 =
b2x0
a2y0

(x− x0). Multiplying both sides by y0
b2

gives y0y

b2
− y20

b2
=

x0x

a2
− x20

a2
. Since (x0, y0) lies on the hyperbola,

we have x0x

a2
− y0y

b2
=

x20
a2
− y20

b2
= 1.

43. If the circle has radius r, its equation is x2 + y2 = r2 ⇒ 2x+ 2yy0 = 0 ⇒ y0 = −x

y
, so the slope of the tangent line

at P (x0, y0) is −x0
y0

. The negative reciprocal of that slope is −1
−x0/y0 =

y0
x0

, which is the slope of OP , so the tangent line at

P is perpendicular to the radius OP .

45. y = tan−1
√
x ⇒ y0 =

1

1 +
√
x

2 ·
d

dx

√
x =

1

1 + x
1
2x
−1/2 =

1

2
√
x (1 + x)

47. y = sin−1(2x + 1) ⇒

y0 =
1

1− (2x+ 1)2 ·
d

dx
(2x+ 1) =

1

1− (4x2 + 4x+ 1) · 2 =
2√−4x2 − 4x =

1√−x2 − x

49. G(x) =
√
1− x2 arccosx ⇒ G0(x) =

√
1− x2 · −1√

1− x2
+ arccosx · 1

2
(1− x2)−1/2(−2x) = −1− x arccosx√

1− x2

51. h(t) = cot−1(t) + cot−1(1/t) ⇒

h0(t) = − 1

1 + t2
− 1

1 + (1/t)2
· d
dt

1

t
= − 1

1 + t2
− t2

t2 + 1
· − 1

t2
= − 1

1 + t2
+

1

t2 + 1
= 0.

Note that this makes sense because h(t) = π

2
for t > 0 and h(t) = 3π

2
for t < 0.

53. y = cos−1(e2x) ⇒ y0 = − 1

1− (e2x)2 ·
d

dx
(e2x) = − 2e2x√

1− e4x

55. f(x) =
√
1− x2 arcsinx ⇒ f 0(x) =

√
1− x2 · 1√

1− x2
+ arcsinx · 1

2
1− x2

−1/2
(−2x) = 1− x arcsinx√

1− x2

Note that f 0 = 0 where the graph of f has a horizontal tangent. Also note

that f 0 is negative when f is decreasing and f 0 is positive when f is

increasing.
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57. Let y = cos−1 x. Then cos y = x and 0 ≤ y ≤ π ⇒ − sin y dy

dx
= 1 ⇒

dy

dx
= − 1

sin y
= − 1

1− cos2 y = −
1√
1− x2

. [Note that sin y ≥ 0 for 0 ≤ y ≤ π.]

59. x2 + y2 = r2 is a circle with center O and ax+ by = 0 is a line through O [assume a

and b are not both zero]. x2 + y2 = r2 ⇒ 2x+ 2yy0 = 0 ⇒ y0 = −x/y, so the

slope of the tangent line at P0 (x0, y0) is −x0/y0. The slope of the line OP0 is y0/x0,

which is the negative reciprocal of −x0/y0. Hence, the curves are orthogonal, and the

families of curves are orthogonal trajectories of each other.

61. y = cx2 ⇒ y0 = 2cx and x2 + 2y2 = k [assume k > 0] ⇒ 2x+ 4yy0 = 0 ⇒

2yy0 = −x ⇒ y0 = − x

2(y)
= − x

2(cx2)
= − 1

2cx
, so the curves are orthogonal if

c 6= 0. If c = 0, then the horizontal line y = cx2 = 0 intersects x2 + 2y2 = k orthogonally

at ±√k, 0 , since the ellipse x2 + 2y2 = k has vertical tangents at those two points.

63. To find the points at which the ellipse x2 − xy + y2 = 3 crosses the x-axis, let y = 0 and solve for x.

y = 0 ⇒ x2 − x(0) + 02 = 3 ⇔ x = ±√3. So the graph of the ellipse crosses the x-axis at the points ±√3, 0 .

Using implicit differentiation to find y0, we get 2x− xy0 − y + 2yy0 = 0 ⇒ y0(2y − x) = y − 2x ⇔ y0 =
y − 2x
2y − x

.

So y0 at
√
3, 0 is 0− 2√3

2(0)−√3 = 2 and y0 at −√3, 0 is 0 + 2
√
3

2(0) +
√
3
= 2. Thus, the tangent lines at these points are parallel.

65. x2y2 + xy = 2 ⇒ x2 · 2yy0 + y2 · 2x+ x · y0 + y · 1 = 0 ⇔ y0(2x2y + x) = −2xy2 − y ⇔

y0 = −2xy
2 + y

2x2y + x
. So −2xy

2 + y

2x2y + x
= −1 ⇔ 2xy2 + y = 2x2y + x ⇔ y(2xy + 1) = x(2xy + 1) ⇔

y(2xy + 1)− x(2xy + 1) = 0 ⇔ (2xy + 1)(y − x) = 0 ⇔ xy = −1
2

or y = x. But xy = − 1
2
⇒

x2y2 + xy = 1
4
− 1

2
6= 2, so we must have x = y. Then x2y2 + xy = 2 ⇒ x4 + x2 = 2 ⇔ x4 + x2 − 2 = 0 ⇔

(x2 + 2)(x2 − 1) = 0. So x2 = −2, which is impossible, or x2 = 1 ⇔ x = ±1. Since x = y, the points on the curve

where the tangent line has a slope of−1 are (−1,−1) and (1, 1).

67. (a) If y = f−1(x), then f(y) = x. Differentiating implicitly with respect to x and remembering that y is a function of x,

we get f 0(y) dy
dx

= 1, so dy

dx
=

1

f 0(y)
⇒ f−1

0
(x) =

1

f 0(f−1(x))
.

(b) f(4) = 5 ⇒ f−1(5) = 4. By part (a), f−1
0
(5) =

1

f 0(f−1(5))
=

1

f 0(4)
= 1 2

3
= 3

2
.



110 ¤ CHAPTER 3 DIFFERENTIATION RULES

69. x2 + 4y2 = 5 ⇒ 2x+ 4(2yy0) = 0 ⇒ y0 = − x

4y
. Now let h be the height of the lamp, and let (a, b) be the point of

tangency of the line passing through the points (3, h) and (−5, 0). This line has slope (h− 0)/[3− (−5)] = 1
8
h. But the

slope of the tangent line through the point (a, b) can be expressed as y0 = − a

4b
, or as b− 0

a− (−5) =
b

a+ 5
[since the line

passes through (−5, 0) and (a, b)], so − a

4b
=

b

a+ 5
⇔ 4b2 = −a2 − 5a ⇔ a2 + 4b2 = −5a. But a2 + 4b2 = 5

[since (a, b) is on the ellipse], so 5 = −5a ⇔ a = −1. Then 4b2 = −a2 − 5a = −1− 5(−1) = 4 ⇒ b = 1, since the

point is on the top half of the ellipse. So h

8
=

b

a+ 5
=

1

−1 + 5 =
1

4
⇒ h = 2. So the lamp is located 2 units above the

x-axis.

3.6 Derivatives of Logarithmic Functions

1. The differentiation formula for logarithmic functions, d

dx
(loga x) =

1

x ln a
, is simplest when a = e because ln e = 1.

3. f(x) = sin(lnx) ⇒ f 0(x) = cos(lnx) · d

dx
lnx = cos(lnx) · 1

x
=
cos(lnx)

x

5. f(x) = log2(1− 3x) ⇒ f 0(x) =
1

(1− 3x) ln 2
d

dx
(1− 3x) = −3

(1− 3x) ln 2 or 3

(3x− 1) ln 2

7. f(x) = 5
√
lnx = (lnx)1/5 ⇒ f 0(x) = 1

5 (lnx)
−4/5 d

dx
(lnx) =

1

5(lnx)4/5
· 1
x
=

1

5x 5 (lnx)4

9. f(x) = sinx ln(5x) ⇒ f 0(x) = sinx · 1
5x
· d
dx
(5x)+ ln(5x) · cosx = sinx · 5

5x
+cosx ln(5x) =

sinx

x
+cosx ln(5x)

11. F (t) = ln (2t+ 1)
3

(3t− 1)4 = ln(2t+ 1)
3 − ln(3t − 1)4 = 3 ln(2t+ 1)− 4 ln(3t− 1) ⇒

F 0(t) = 3 · 1

2t+ 1
· 2− 4 · 1

3t− 1 · 3 =
6

2t+ 1
− 12

3t− 1 , or combined, −6(t+ 3)
(2t+ 1)(3t− 1) .

13. g(x) = ln x
√
x2 − 1 = lnx + ln(x2 − 1)1/2 = lnx + 1

2
ln(x2 − 1) ⇒

g0(x) =
1

x
+
1

2
· 1

x2 − 1 · 2x =
1

x
+

x

x2 − 1 =
x2 − 1 + x · x
x(x2 − 1) =

2x2 − 1
x(x2 − 1)

15. f(u) = lnu

1 + ln(2u)
⇒

f 0(u) =
[1 + ln(2u)] · 1

u − lnu · 1
2u · 2

[1 + ln(2u)]2
=

1
u [1 + ln(2u)− lnu]
[1 + ln(2u)]2

=
1 + (ln 2 + lnu)− lnu

u[1 + ln(2u)]2
=

1 + ln 2

u[1 + ln(2u)]2

17. y = ln 2− x− 5x2 ⇒ y0 =
1

2− x− 5x2 · (−1− 10x) =
−10x− 1
2− x− 5x2 or 10x+ 1

5x2 + x− 2

19. y = ln(e−x + xe−x) = ln(e−x(1 + x)) = ln(e−x) + ln(1 + x) = −x+ ln(1 + x) ⇒

y0 = −1 + 1

1 + x
=
−1− x+ 1

1 + x
= − x

1 + x
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21. y = 2x log10
√
x = 2x log10 x

1/2 = 2x · 12 log10 x = x log10 x ⇒ y0 = x · 1

x ln 10
+ log10 x · 1 =

1

ln 10
+ log10 x

Note: 1

ln 10
=
ln e

ln 10
= log10 e, so the answer could be written as 1

ln 10
+ log10 x = log10 e+ log10 x = log10 ex.

23. y = x2 ln(2x) ⇒ y0 = x2 · 1
2x
· 2 + ln(2x) · (2x) = x + 2x ln(2x) ⇒

y00 = 1 + 2x · 1
2x
· 2 + ln(2x) · 2 = 1 + 2 + 2 ln(2x) = 3 + 2 ln(2x)

25. y = ln x+
√
1 + x2 ⇒

y0 =
1

x+
√
1 + x2

d

dx
x+

√
1 + x2 =

1

x+
√
1 + x2

1 + 1
2
(1 + x2)−1/2(2x)

=
1

x+
√
1 + x2

1 +
x√
1 + x2

=
1

x+
√
1 + x2

·
√
1 + x2 + x√
1 + x2

=
1√
1 + x2

⇒

y00 = − 1
2
(1 + x2)−3/2(2x) =

−x
(1 + x2)3/2

27. f(x) = x

1− ln(x− 1) ⇒

f 0(x) =
[1− ln(x− 1)] · 1− x · −1

x− 1
[1− ln(x− 1)]2 =

(x− 1)[1− ln(x− 1)] + x

x− 1
[1− ln(x− 1)]2 =

x− 1− (x− 1) ln(x− 1) + x

(x− 1)[1− ln(x− 1)]2

=
2x− 1− (x− 1) ln(x− 1)
(x− 1)[1− ln(x− 1)]2

Dom(f) = {x | x− 1 > 0 and 1− ln(x− 1) 6= 0} = {x | x > 1 and ln(x− 1) 6= 1}
= x | x > 1 and x− 1 6= e1 = {x | x > 1 and x 6= 1 + e} = (1, 1 + e) ∪ (1 + e,∞)

29. f(x) = ln(x2 − 2x) ⇒ f 0(x) =
1

x2 − 2x (2x− 2) =
2(x− 1)
x(x− 2) .

Dom(f) = {x | x(x− 2) > 0} = (−∞, 0) ∪ (2,∞).

31. f(x) = lnx

x2
⇒ f 0(x) =

x2(1/x)− (lnx)(2x)
(x2)2

=
x− 2x lnx

x4
=

x(1− 2 lnx)
x4

=
1− 2 lnx

x3
,

so f 0(1) = 1− 2 ln 1
13

=
1− 2 · 0
1

= 1.

33. y = ln xex
2

= lnx+ ln ex
2

= lnx+ x2 ⇒ y0 =
1

x
+ 2x. At (1, 1), the slope of the tangent line is

y0(1) = 1 + 2 = 3, and an equation of the tangent line is y − 1 = 3(x− 1), or y = 3x− 2.

35. f(x) = sinx+ lnx ⇒ f 0(x) = cosx+ 1/x.

This is reasonable, because the graph shows that f increases when f 0 is

positive, and f 0(x) = 0 when f has a horizontal tangent.
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37. y = (2x+ 1)5(x4 − 3)6 ⇒ ln y = ln (2x+ 1)5(x4 − 3)6 ⇒ ln y = 5 ln(2x+ 1) + 6 ln(x4 − 3) ⇒
1

y
y0 = 5 · 1

2x+ 1
· 2 + 6 · 1

x4 − 3 · 4x
3 ⇒

y0 = y
10

2x+ 1
+

24x3

x4 − 3 = (2x+ 1)5(x4 − 3)6 10

2x+ 1
+

24x3

x4 − 3 .

[The answer could be simplified to y0 = 2(2x+ 1)4(x4 − 3)5(29x4 + 12x3 − 15), but this is unnecessary.]

39. y = sin2 x tan4 x

(x2 + 1)2
⇒ ln y = ln(sin2 x tan4 x) − ln(x2 + 1)2 ⇒

ln y = ln(sinx)2 + ln(tanx)4 − ln(x2 + 1)2 ⇒ ln y = 2 ln |sinx|+ 4 ln |tanx|− 2 ln(x2 + 1) ⇒
1

y
y0 = 2 · 1

sinx
· cosx+ 4 · 1

tanx
· sec2 x− 2 · 1

x2 + 1
· 2x ⇒ y0 =

sin2 x tan4 x

(x2 + 1)2
2 cotx+

4 sec2 x

tanx
− 4x

x2 + 1

41. y = xx ⇒ ln y = lnxx ⇒ ln y = x lnx ⇒ y0/y = x(1/x) + (lnx) · 1 ⇒ y0 = y(1 + lnx) ⇒
y0 = xx(1 + lnx)

43. y = x sin x ⇒ ln y = lnx sinx ⇒ ln y = sinx lnx ⇒ y0

y
= (sinx) · 1

x
+ (lnx)(cosx) ⇒

y0 = y
sinx

x
+ lnx cosx ⇒ y0 = x sin x

sinx

x
+ lnx cosx

45. y = (cosx)x ⇒ ln y = ln(cosx)x ⇒ ln y = x ln cosx ⇒ 1

y
y0 = x · 1

cosx
· (− sinx) + ln cosx · 1 ⇒

y0 = y ln cosx− x sinx

cosx
⇒ y0 = (cosx)x(ln cosx− x tanx)

47. y = (tanx)1/x ⇒ ln y = ln(tanx)1/x ⇒ ln y =
1

x
ln tanx ⇒

1

y
y0 =

1

x
· 1

tanx
· sec2 x+ ln tanx · − 1

x2
⇒ y0 = y

sec2 x

x tanx
− ln tanx

x2
⇒

y0 = (tanx)1/x
sec2 x

x tanx
− ln tanx

x2
or y0 = (tanx)1/x · 1

x
cscx secx− ln tanx

x

49. y = ln(x2 + y2) ⇒ y0 =
1

x2 + y2
d

dx
(x2 + y2) ⇒ y0 =

2x+ 2yy0

x2 + y2
⇒ x2y0 + y2y0 = 2x+ 2yy0 ⇒

x2y0 + y2y0 − 2yy0 = 2x ⇒ (x2 + y2 − 2y)y0 = 2x ⇒ y0 =
2x

x2 + y2 − 2y

51. f(x) = ln(x− 1) ⇒ f 0(x) =
1

(x− 1) = (x− 1)
−1 ⇒ f 00(x) = −(x− 1)−2 ⇒ f 000 (x) = 2(x− 1)−3 ⇒

f (4)(x) = −2 · 3(x− 1)−4 ⇒ · · · ⇒ f (n)(x) = (−1)n−1 · 2 · 3 · 4 · · · · · (n− 1)(x− 1)−n = (−1)n−1 (n− 1)!
(x− 1)n

53. If f(x) = ln (1 + x), then f 0(x) =
1

1 + x
, so f 0(0) = 1.

Thus, lim
x→0

ln(1 + x)

x
= lim

x→0

f(x)

x
= lim

x→0

f(x)− f(0)

x− 0 = f 0(0) = 1.
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3.7 Rates of Change in the Natural and Social Sciences

1. (a) s = f(t) = t3 − 12t2 + 36t ⇒ v(t) = f 0(t) = 3t2 − 24t+ 36
(b) v(3) = 27− 72 + 36 = −9 ft/s

(c) The particle is at rest when v(t) = 0. 3t2 − 24t+ 36 = 0 ⇔ 3(t− 2)(t− 6) = 0 ⇔ t = 2 s or 6 s.

(d) The particle is moving in the positive direction when v(t) > 0. 3(t− 2)(t− 6) > 0 ⇔ 0 ≤ t < 2 or t > 6.

(e) Since the particle is moving in the positive direction and in the

negative direction, we need to calculate the distance traveled in the

intervals [0, 2], [2, 6], and [6, 8] separately.

|f(2)− f(0)| = |32− 0| = 32.

|f(6)− f(2)| = |0− 32| = 32.

|f(8)− f(6)| = |32− 0| = 32.

The total distance is 32 + 32 + 32 = 96 ft.

(f )

(g) v(t) = 3t2 − 24t+ 36 ⇒
a(t) = v0(t) = 6t− 24.

a(3) = 6(3)− 24 = −6 (ft/s)/s or ft/s2.

(h )

(i) The particle is speeding up when v and a have the same sign. This occurs when 2 < t < 4 [v and a are both negative] and

when t > 6 [v and a are both positive]. It is slowing down when v and a have opposite signs; that is, when 0 ≤ t < 2 and

when 4 < t < 6.

3. (a) s = f(t) = cos(πt/4) ⇒ v(t) = f 0(t) = − sin(πt/4) · (π/4)
(b) v(3) = −π

4 sin
3π
4 = −π

4 ·
√
2
2 = −π

√
2

8 ft/s [≈ −0.56]

(c) The particle is at rest when v(t) = 0. −π
4
sin πt

4
= 0 ⇒ sin πt

4
= 0 ⇒ πt

4
= πn ⇒ t = 0, 4, 8 s.

(d) The particle is moving in the positive direction when v(t) > 0. −π
4
sin πt

4
> 0 ⇒ sin πt

4
< 0 ⇒ 4 < t < 8.

(e) From part (c), v(t) = 0 for t = 0, 4, 8. As in Exercise 1, we’ll

find the distance traveled in the intervals [0, 4] and [4, 8].

|f(4)− f(0)|= |−1− 1| = 2
|f(8)− f(4)|= |1− (−1)| = 2.

The total distance is 2 + 2 = 4 ft.

(f )

 

(g) v(t) = −π

4
sin

πt

4
⇒

a(t) = v0(t) = −π

4
cos

πt

4
· π
4
= −π2

16
cos

πt

4
.

a(3) = −π2

16
cos

3π

4
= −π2

16
−
√
2

2
=

π2
√
2

32
(ft/s)/s or ft/s2.

(h )
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(i) The particle is speeding up when v and a have the same sign. This occurs when 0 < t < 2 or 8 < t < 10 [v and a are

both negative] and when 4 < t < 6 [v and a are both positive]. It is slowing down when v and a have opposite signs;

that is, when 2 < t < 4 and when 6 < t < 8.

5. (a) From the figure, the velocity v is positive on the interval (0, 2) and negative on the interval (2, 3). The acceleration a is

positive (negative) when the slope of the tangent line is positive (negative), so the acceleration is positive on the interval

(0, 1), and negative on the interval (1, 3). The particle is speeding up when v and a have the same sign, that is, on the

interval (0, 1) when v > 0 and a > 0, and on the interval (2, 3) when v < 0 and a < 0. The particle is slowing down

when v and a have opposite signs, that is, on the interval (1, 2) when v > 0 and a < 0.

(b) v > 0 on (0, 3) and v < 0 on (3, 4). a > 0 on (1, 2) and a < 0 on (0, 1) and (2, 4). The particle is speeding up on (1, 2)

[v > 0, a > 0] and on (3, 4) [v < 0, a < 0]. The particle is slowing down on (0, 1) and (2, 3) [v > 0, a < 0].

7. (a) s(t) = t3 − 4.5t2 − 7t ⇒ v(t) = s0(t) = 3t2 − 9t− 7 = 5 ⇔ 3t2 − 9t− 12 = 0 ⇔

3(t− 4)(t+ 1) = 0 ⇔ t = 4 or −1. Since t ≥ 0, the particle reaches a velocity of 5 m/s at t = 4 s.

(b) a(t) = v0(t) = 6t− 9 = 0 ⇔ t = 1.5. The acceleration changes from negative to positive, so the velocity changes

from decreasing to increasing. Thus, at t = 1.5 s, the velocity has its minimum value.

9. (a) h = 10t− 0.83t2 ⇒ v(t) =
dh

dt
= 10− 1.66t, so v(3) = 10− 1.66(3) = 5.02 m/s.

(b) h = 25 ⇒ 10t− 0.83t2 = 25 ⇒ 0.83t2 − 10t+ 25 = 0 ⇒ t = 10±√17
1.66 ≈ 3.54 or 8.51.

The value t1 = 10−√17
1.66 corresponds to the time it takes for the stone to rise 25 m and t2 = 10+

√
17

1.66 corresponds to the

time when the stone is 25 m high on the way down. Thus, v(t1) = 10− 1.66 10−√17
1.66

=
√
17 ≈ 4.12 m/s.

11. (a) A(x) = x2 ⇒ A0(x) = 2x. A0(15) = 30 mm2/mm is the rate at which

the area is increasing with respect to the side length as x reaches 15 mm.

(b) The perimeter is P (x) = 4x, so A0(x) = 2x = 1
2
(4x) = 1

2
P (x). The

figure suggests that if ∆x is small, then the change in the area of the square

is approximately half of its perimeter (2 of the 4 sides) times ∆x. From the

figure, ∆A = 2x (∆x) + (∆x)2. If ∆x is small, then ∆A ≈ 2x (∆x) and

so ∆A/∆x ≈ 2x.

13. (a) Using A(r) = πr2, we find that the average rate of change is:

(i) A(3)−A(2)

3− 2 =
9π − 4π
1

= 5π (ii) A(2.5)−A(2)

2.5− 2 =
6.25π − 4π

0.5
= 4.5π

(iii) A(2.1)−A(2)

2.1− 2 =
4.41π − 4π

0.1
= 4.1π

(b) A(r) = πr2 ⇒ A0(r) = 2πr, so A0(2) = 4π.
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(c) The circumference is C(r) = 2πr = A0(r). The figure suggests that if ∆r is small,

then the change in the area of the circle (a ring around the outside) is approximately equal

to its circumference times ∆r. Straightening out this ring gives us a shape that is approx-

imately rectangular with length 2πr and width ∆r, so ∆A ≈ 2πr(∆r). Algebraically,

∆A = A(r +∆r)−A(r) = π(r +∆r)2 − πr2 = 2πr(∆r) + π(∆r)2.

So we see that if ∆r is small, then ∆A ≈ 2πr(∆r) and therefore, ∆A/∆r ≈ 2πr.

15. S(r) = 4πr2 ⇒ S0(r) = 8πr ⇒
(a) S0(1) = 8π ft2/ft (b) S0(2) = 16π ft2/ft (c) S0(3) = 24π ft2/ft

As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the

radius.

17. The mass is f(x) = 3x2, so the linear density at x is ρ(x) = f 0(x) = 6x.

(a) ρ(1) = 6 kg/m (b) ρ(2) = 12 kg/m (c) ρ(3) = 18 kg/m

Since ρ is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end.

19. The quantity of charge is Q(t) = t3 − 2t2 + 6t+ 2, so the current is Q0(t) = 3t2 − 4t+ 6.

(a) Q0(0.5) = 3(0.5)2 − 4(0.5) + 6 = 4.75 A (b) Q0(1) = 3(1)2 − 4(1) + 6 = 5 A

The current is lowest when Q0 has a minimum. Q00(t) = 6t− 4 < 0 when t < 2
3

. So the current decreases when t < 2
3

and

increases when t > 2
3

. Thus, the current is lowest at t = 2
3

s.

21. (a) To find the rate of change of volume with respect to pressure, we first solve for V in terms of P .

PV = C ⇒ V =
C

P
⇒ dV

dP
= − C

P 2
.

(b) From the formula for dV/dP in part (a), we see that as P increases, the absolute value of dV/dP decreases.

Thus, the volume is decreasing more rapidly at the beginning.

(c) β = − 1
V

dV

dP
= − 1

V
− C

P 2
=

C

(PV )P
=

C

CP
=
1

P

23. In Example 6, the population function was n = 2t n0. Since we are tripling instead of doubling and the initial population is

400, the population function is n(t) = 400 · 3t. The rate of growth is n0(t) = 400 · 3t · ln 3, so the rate of growth after

2.5 hours is n0(2.5) = 400 · 32.5 · ln 3 ≈ 6850 bacteria/hour.

25. (a) 1920: m1 =
1860 − 1750

1920 − 1910
=
110

10
= 11, m2 =

2070 − 1860

1930 − 1920
=
210

10
= 21,

(m1 +m2)/ 2 = (11 + 21)/2 = 16 million/year

1980: m1 =
4450 − 3710

1980 − 1970
=
740

10
= 74, m2 =

5280 − 4450

1990 − 1980
=
830

10
= 83,

(m1 +m2)/ 2 = (74 + 83)/2 = 78.5 million/year

(b) P (t) = at3 + bt2 + ct+ d (in millions of people), where a ≈ 0.0012937063, b ≈ −7.061421911, c ≈ 12,822.97902,

and d ≈ −7,743,770.396.

(c) P (t) = at3 + bt2 + ct+ d ⇒ P 0(t) = 3at2 + 2bt+ c (in millions of people per year)
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(d) P 0(1920) = 3(0.0012937063)(1920)2 + 2(−7.061421911)(1920) + 12,822.97902

≈ 14.48 million/year [smaller than the answer in part (a), but close to it]

P 0(1980) ≈ 75.29 million/year (smaller, but close)

(e) P 0(1985) ≈ 81.62 million/year, so the rate of growth in 1985 was about 81.62 million/year.

27. (a) Using v = P

4ηl
(R2 − r2) with R = 0.01, l = 3, P = 3000, and η = 0.027, we have v as a function of r:

v(r) =
3000

4(0.027)3
(0.012 − r2). v(0) = 0.925 cm/s, v(0.005) = 0.694 cm/s, v(0.01) = 0.

(b) v(r) = P

4ηl
(R2 − r2) ⇒ v0(r) =

P

4ηl
(−2r) = −Pr

2ηl
. When l = 3, P = 3000, and η = 0.027, we have

v0(r) = − 3000r

2(0.027)3
. v0(0) = 0, v0(0.005) = −92.592 (cm/s)/cm, and v0(0.01) = −185.185 (cm/s)/cm.

(c) The velocity is greatest where r = 0 (at the center) and the velocity is changing most where r = R = 0.01 cm

(at the edge).

29. (a) C(x) = 1200 + 12x− 0.1x2 + 0.0005x3 ⇒ C0(x) = 12− 0.2x+ 0.0015x2 $/yard, which is the marginal cost

function.

(b) C0(200) = 12− 0.2(200) + 0.0015(200)2 = $32/yard, and this is the rate at which costs are increasing with respect to

the production level when x = 200. C0(200) predicts the cost of producing the 201st yard.

(c) The cost of manufacturing the 201st yard of fabric is C(201)− C(200) = 3632.2005− 3600 ≈ $32.20, which is

approximately C0(200).

31. (a) A(x) = p(x)

x
⇒ A0(x) =

xp0(x)− p(x) · 1
x2

=
xp0(x)− p(x)

x2
.

A0(x) > 0 ⇒ A(x) is increasing; that is, the average productivity increases as the size of the workforce increases.

(b) p0(x) is greater than the average productivity ⇒ p0(x) > A(x) ⇒ p0(x) >
p(x)

x
⇒ xp0(x) > p(x) ⇒

xp0(x)− p(x) > 0 ⇒ xp0(x)− p(x)

x2
> 0 ⇒ A0(x) > 0.

33. PV = nRT ⇒ T =
PV

nR
=

PV

(10)(0.0821)
=

1

0.821
(PV ). Using the Product Rule, we have

dT

dt
=

1

0.821
[P (t)V 0(t) + V (t)P 0(t)] =

1

0.821
[(8)(−0.15) + (10)(0.10)] ≈ −0.2436 K/min.

35. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is, dC
dt

= 0 and dW

dt
= 0.

(b) “The caribou go extinct” means that the population is zero, or mathematically, C = 0.

(c) We have the equations dC

dt
= aC − bCW and dW

dt
= −cW + dCW . Let dC/dt = dW/dt = 0, a = 0.05, b = 0.001,

c = 0.05, and d = 0.0001 to obtain 0.05C − 0.001CW = 0 (1) and −0.05W + 0.0001CW = 0 (2). Adding 10 times

(2) to (1) eliminates the CW -terms and gives us 0.05C − 0.5W = 0 ⇒ C = 10W . Substituting C = 10W into (1)
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results in 0.05(10W )− 0.001(10W )W = 0 ⇔ 0.5W − 0.01W 2 = 0 ⇔ 50W −W 2 = 0 ⇔
W (50−W ) = 0 ⇔ W = 0 or 50. Since C = 10W , C = 0 or 500. Thus, the population pairs (C,W ) that lead to

stable populations are (0, 0) and (500, 50). So it is possible for the two species to live in harmony.

3.8 Exponential Growth and Decay

1. The relative growth rate is 1
P

dP

dt
= 0.7944, so dP

dt
= 0.7944P and, by Theorem 2, P (t) = P (0)e0.7944t = 2e0.7944t.

Thus, P (6) = 2e0.7944(6) ≈ 234.99 or about 235 members.

3. (a) By Theorem 2, P (t) = P (0)ekt = 100ekt. Now P (1) = 100ek(1) = 420 ⇒ ek = 420
100

⇒ k = ln 4.2.

So P (t) = 100e(ln 4.2)t = 100(4.2)t.

(b) P (3) = 100(4.2)3 = 7408.8 ≈ 7409 bacteria

(c) dP/dt = kP ⇒ P 0(3) = k · P (3) = (ln 4.2) 100(4.2)3 [from part (a)] ≈ 10,632 bacteria/hour

(d) P (t) = 100(4.2)t = 10,000 ⇒ (4.2)t = 100 ⇒ t = (ln 100)/(ln 4.2) ≈ 3.2 hours

5. (a) Let the population (in millions) in the year t be P (t). Since the initial time is the year 1750, we substitute t− 1750 for t in

Theorem 2, so the exponential model gives P (t) = P (1750)ek(t−1750). Then P (1800) = 980 = 790ek(1800−1750) ⇒
980
790

= ek(50) ⇒ ln 980
790

= 50k ⇒ k = 1
50
ln 980

790
≈ 0.0043104. So with this model, we have

P (1900) = 790ek(1900−1750) ≈ 1508 million, and P (1950) = 790ek(1950−1750) ≈ 1871 million. Both of these

estimates are much too low.

(b) In this case, the exponential model gives P (t) = P (1850)ek(t−1850) ⇒ P (1900) = 1650 = 1260ek(1900−1850) ⇒

ln 1650
1260

= k(50) ⇒ k = 1
50
ln 1650

1260
≈ 0.005393. So with this model, we estimate

P (1950) = 1260ek(1950−1850) ≈ 2161 million. This is still too low, but closer than the estimate of P (1950) in part (a).

(c) The exponential model gives P (t) = P (1900)ek(t−1900) ⇒ P (1950) = 2560 = 1650ek(1950−1900) ⇒

ln 2560
1650 = k(50) ⇒ k = 1

50 ln
2560
1650 ≈ 0.008785. With this model, we estimate

P (2000) = 1650ek(2000−1900) ≈ 3972 million. This is much too low. The discrepancy is explained by the fact that the

world birth rate (average yearly number of births per person) is about the same as always, whereas the mortality rate

(especially the infant mortality rate) is much lower, owing mostly to advances in medical science and to the wars in the first

part of the twentieth century. The exponential model assumes, among other things, that the birth and mortality rates will

remain constant.

7. (a) If y = [N2O5] then by Theorem 2, dy
dt
= −0.0005y ⇒ y(t) = y(0)e−0.0005t = Ce−0.0005t.

(b) y(t) = Ce−0.0005t = 0.9C ⇒ e−0.0005t = 0.9 ⇒ −0.0005t = ln 0.9 ⇒ t = −2000 ln 0.9 ≈ 211 s
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9. (a) If y(t) is the mass (in mg) remaining after t years, then y(t) = y(0)ekt = 100ekt.

y(30) = 100e30k = 1
2 (100) ⇒ e30k = 1

2 ⇒ k = −(ln 2)/30 ⇒ y(t) = 100e−(ln 2)t/30 = 100 · 2−t/30

(b) y(100) = 100 · 2−100/30 ≈ 9.92 mg

(c) 100e−(ln 2)t/30 = 1 ⇒ −(ln 2)t/30 = ln 1
100 ⇒ t = −30 ln 0.01ln 2 ≈ 199.3 years

11. Let y(t) be the level of radioactivity. Thus, y(t) = y(0)e−kt and k is determined by using the half-life:

y(5730) = 1
2
y(0) ⇒ y(0)e−k(5730) = 1

2
y(0) ⇒ e−5730k = 1

2
⇒ −5730k = ln 1

2
⇒ k = − ln

1
2

5730
=
ln 2

5730
.

If 74% of the 14C remains, then we know that y(t) = 0.74y(0) ⇒ 0.74 = e−t(ln 2)/5730 ⇒ ln 0.74 = − t ln 2

5730
⇒

t = −5730(ln 0.74)
ln 2

≈ 2489 ≈ 2500 years.

13. (a) Using Newton’s Law of Cooling, dT
dt

= k(T − Ts), we have dT

dt
= k(T − 75). Now let y = T − 75, so

y(0) = T (0)− 75 = 185− 75 = 110, so y is a solution of the initial-value problem dy/dt = ky with y(0) = 110 and by

Theorem 2 we have y(t) = y(0)ekt = 110ekt.

y(30) = 110e30k = 150− 75 ⇒ e30k = 75
110 =

15
22 ⇒ k = 1

30 ln
15
22 , so y(t) = 110e

1
30
t ln( 1522 ) and

y(45) = 110e
45
30 ln(

15
22 ) ≈ 62◦F. Thus, T (45) ≈ 62 + 75 = 137◦F.

(b) T (t) = 100 ⇒ y(t) = 25. y(t) = 110e
1
30 t ln(

15
22 ) = 25 ⇒ e

1
30 t ln(

15
22 ) = 25

110 ⇒ 1
30 t ln

15
22 = ln

25
110 ⇒

t =
30 ln 25

110

ln 15
22

≈ 116 min.

15. dT

dt
= k(T − 20). Letting y = T − 20, we get dy

dt
= ky, so y(t) = y(0)ekt. y(0) = T (0)− 20 = 5− 20 = −15, so

y(25) = y(0)e25k = −15e25k, and y(25) = T (25)− 20 = 10− 20 = −10, so −15e25k = −10 ⇒ e25k = 2
3 . Thus,

25k = ln 2
3

and k = 1
25
ln 2

3
, so y(t) = y(0)ekt = −15e(1/25) ln(2/3)t. More simply, e25k = 2

3
⇒ ek = 2

3

1/25 ⇒

ekt = 2
3

t/25 ⇒ y(t) = −15 · 2
3

t/25.

(a) T (50) = 20 + y(50) = 20− 15 · 2
3

50/25
= 20− 15 · 2

3

2
= 20− 20

3
= 13.3̄ ◦C

(b) 15 = T (t) = 20 + y(t) = 20− 15 · 2
3

t/25 ⇒ 15 · 2
3

t/25
= 5 ⇒ 2

3

t/25
= 1

3 ⇒

(t/25) ln 2
3
= ln 1

3
⇒ t = 25 ln 1

3
ln 2

3
≈ 67.74 min.

17. (a) Let P (h) be the pressure at altitude h. Then dP/dh = kP ⇒ P (h) = P (0)ekh = 101.3ekh.

P (1000) = 101.3e1000k = 87.14 ⇒ 1000k = ln 87.14
101.3

⇒ k = 1
1000

ln 87.14
101.3

⇒

P (h) = 101.3 e
1

1000
h ln( 87.14101.3 ), so P (3000) = 101.3e3 ln(

87.14
101.3 ) ≈ 64.5 kPa.

(b) P (6187) = 101.3 e
6187
1000

ln( 87.14101.3 ) ≈ 39.9 kPa
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19. (a) Using A = A0 1 +
r

n

nt

with A0 = 3000, r = 0.05, and t = 5, we have:

(i) Annually: n = 1; A = 3000 1 + 0.05
1

1·5
= $3828.84

(ii) Semiannually: n = 2; A = 3000 1 + 0.05
2

2·5
= $3840.25

(iii) Monthly: n = 12; A = 3000 1 + 0.05
12

12·5
= $3850.08

(iv) Weekly: n = 52; A = 3000 1 + 0.05
52

52·5
= $3851.61

(v) Daily: n = 365; A = 3000 1 + 0.05
365

365·5
= $3852.01

(vi) Continuously: A = 3000e(0.05)5 = $3852.08

(b) dA/dt = 0.05A and A(0) = 3000.

3.9 Related Rates

1. V = x3 ⇒ dV

dt
=

dV

dx

dx

dt
= 3x2

dx

dt

3. Let s denote the side of a square. The square’s area A is given by A = s2. Differentiating with respect to t gives us

dA

dt
= 2s

ds

dt
. When A = 16, s = 4. Substitution 4 for s and 6 for ds

dt
gives us dA

dt
= 2(4)(6) = 48 cm2/s.

5. V = πr2h = π(5)2h = 25πh ⇒ dV

dt
= 25π

dh

dt
⇒ 3 = 25π

dh

dt
⇒ dh

dt
=

3

25π
m/min.

7. y = x3 + 2x ⇒ dy

dt
=

dy

dx

dx

dt
= (3x2 + 2)(5) = 5(3x2 + 2). When x = 2, dy

dt
= 5(14) = 70.

9. z2 = x2 + y2 ⇒ 2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
⇒ dz

dt
=
1

z
x
dx

dt
+ y

dy

dt
. When x = 5 and y = 12,

z2 = 52 + 122 ⇒ z2 = 169 ⇒ z = ±13. For dx
dt
= 2 and dy

dt
= 3,

dz

dt
=

1

±13 (5 · 2 + 12 · 3) = ±
46

13
.

11. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mi/h passes directly over a radar station.

If we let t be time (in hours) and x be the horizontal distance traveled by the plane (in mi), then we are given

that dx/dt = 500 mi/h.

(b) Unknown: the rate at which the distance from the plane to the station is increasing

when it is 2 mi from the station. If we let y be the distance from the plane to the station,

then we want to find dy/dt when y = 2 mi.

(c)

(d) By the Pythagorean Theorem, y2 = x2 + 1 ⇒ 2y (dy/dt) = 2x (dx/dt).

(e) dy

dt
=

x

y

dx

dt
=

x

y
(500). Since y2 = x2 + 1, when y = 2, x =

√
3, so dy

dt
=

√
3

2
(500) = 250

√
3 ≈ 433 mi/h.

13. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 ft/s. If we let t be time (in s)

and x be the distance from the pole to the man (in ft), then we are given that dx/dt = 5 ft/s.
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(b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft

from the pole. If we let y be the distance from the man to the tip of his

shadow (in ft), then we want to find d

dt
(x+ y) when x = 40 ft.

(c)

(d) By similar triangles, 15
6
=

x+ y

y
⇒ 15y = 6x+ 6y ⇒ 9y = 6x ⇒ y = 2

3
x.

(e) The tip of the shadow moves at a rate of d

dt
(x+ y) =

d

dt
x+

2

3
x =

5

3

dx

dt
= 5

3
(5) = 25

3
ft/s.

15. We are given that dx
dt
= 60 mi/h and dy

dt
= 25 mi/h. z2 = x2 + y2 ⇒

2z
dz

dt
= 2x

dx

dt
+ 2y

dy

dt
⇒ z

dz

dt
= x

dx

dt
+ y

dy

dt
⇒ dz

dt
=
1

z
x
dx

dt
+ y

dy

dt
.

After 2 hours, x = 2 (60) = 120 and y = 2 (25) = 50 ⇒ z =
√
1202 + 502 = 130,

so dz

dt
=
1

z
x
dx

dt
+ y

dy

dt
=
120(60) + 50(25)

130
= 65 mi/h.

17. We are given that dx
dt
= 4 ft/s and dy

dt
= 5 ft/s. z2 = (x+ y)2 + 5002 ⇒

2z
dz

dt
= 2(x+ y)

dx

dt
+

dy

dt
. 15 minutes after the woman starts, we have

x = (4 ft/s)(20 min)(60 s/min) = 4800 ft and y = 5 · 15 · 60 = 4500 ⇒
z = (4800 + 4500)2 + 5002 =

√
86,740,000, so

dz

dt
=

x+ y

z

dx

dt
+

dy

dt
=
4800 + 4500√
86,740,000

(4 + 5) =
837√
8674

≈ 8.99 ft/s.

19. A = 1
2
bh, where b is the base and h is the altitude. We are given that dh

dt
= 1 cm/min and dA

dt
= 2 cm2/min. Using the

Product Rule, we have dA

dt
=
1

2
b
dh

dt
+ h

db

dt
. When h = 10 and A = 100, we have 100 = 1

2
b(10) ⇒ 1

2
b = 10 ⇒

b = 20, so 2 = 1

2
20 · 1 + 10 db

dt
⇒ 4 = 20 + 10

db

dt
⇒ db

dt
=
4− 20
10

= −1.6 cm/min.

21. We are given that dx
dt
= 35 km/h and dy

dt
= 25 km/h. z2 = (x+ y)2 + 1002 ⇒

2z
dz

dt
= 2(x+ y)

dx

dt
+

dy

dt
. At 4:00 PM, x = 4(35) = 140 and y = 4(25) = 100 ⇒

z = (140 + 100)2 + 1002 =
√
67,600 = 260, so

dz

dt
=

x+ y

z

dx

dt
+

dy

dt
=
140 + 100

260
(35 + 25) =

720

13
≈ 55.4 km/h.
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23. If C = the rate at which water is pumped in, then dV

dt
= C − 10,000, where

V = 1
3πr

2h is the volume at time t. By similar triangles, r
2
=

h

6
⇒ r =

1

3
h ⇒

V = 1
3
π 1

3
h

2
h = π

27
h3 ⇒ dV

dt
=

π

9
h2

dh

dt
. When h = 200 cm,

dh

dt
= 20 cm/min, so C − 10,000 = π

9
(200)2(20) ⇒ C = 10,000 + 800,000

9
π ≈ 289,253 cm3/min.

25. The figure is labeled in meters. The area A of a trapezoid is

1
2
(base1+ base2)(height), and the volume V of the 10-meter-long trough is 10A.

Thus, the volume of the trapezoid with height h is V = (10) 1
2
[0.3 + (0.3 + 2a)]h.

By similar triangles, a
h
=
0.25

0.5
=
1

2
, so 2a = h ⇒ V = 5(0.6 + h)h = 3h+ 5h2.

Now dV

dt
=

dV

dh

dh

dt
⇒ 0.2 = (3 + 10h)

dh

dt
⇒ dh

dt
=

0.2

3 + 10h
. When h = 0.3,

dh

dt
=

0.2

3 + 10(0.3)
=
0.2

6
m/min =

1

30
m/min or 10

3
cm/min.

27. We are given that dV
dt

= 30 ft3/min. V =
1

3
πr2h =

1

3
π

h

2

2

h =
πh3

12
⇒

dV

dt
=

dV

dh

dh

dt
⇒ 30 =

πh2

4

dh

dt
⇒ dh

dt
=
120

πh2
.

When h = 10 ft, dh
dt
=
120

102π
=

6

5π
≈ 0.38 ft/min.

29. A = 1
2
bh, but b = 5 m and sin θ = h

4
⇒ h = 4 sin θ, so A = 1

2
(5)(4 sin θ) = 10 sin θ.

We are given dθ

dt
= 0.06 rad/s, so dA

dt
=

dA

dθ

dθ

dt
= (10 cos θ)(0.06) = 0.6 cos θ.

When θ = π

3
, dA
dt

= 0.6 cos
π

3
= (0.6) 1

2
= 0.3 m2/s.

31. Differentiating both sides of PV = C with respect to t and using the Product Rule gives us P dV

dt
+ V

dP

dt
= 0 ⇒

dV

dt
= −V

P

dP

dt
. When V = 600, P = 150 and dP

dt
= 20, so we have dV

dt
= −600

150
(20) = −80. Thus, the volume is

decreasing at a rate of 80 cm3/min.

33. With R1 = 80 and R2 = 100, 1
R
=

1

R1
+

1

R2
=
1

80
+

1

100
=
180

8000
=

9

400
, so R = 400

9
. Differentiating 1

R
=

1

R1
+

1

R2

with respect to t, we have − 1

R2

dR

dt
= − 1

R2
1

dR1

dt
− 1

R2
2

dR2

dt
⇒ dR

dt
= R2 1

R2
1

dR1

dt
+

1

R2
2

dR2

dt
. When R1 = 80 and

R2 = 100, dR
dt

=
4002

92
1

802
(0.3) +

1

1002
(0.2) =

107

810
≈ 0.132 Ω/s.
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35. We are given dθ/dt = 2◦/min = π
90 rad/min. By the Law of Cosines,

x2 = 122 + 152 − 2(12)(15) cos θ = 369− 360 cos θ ⇒

2x
dx

dt
= 360 sin θ

dθ

dt
⇒ dx

dt
=
180 sin θ

x

dθ

dt
. When θ = 60◦,

x =
√
369− 360 cos 60◦ = √189 = 3√21, so dx

dt
=
180 sin 60◦

3
√
21

π

90
=

π
√
3

3
√
21
=

√
7π

21
≈ 0.396 m/min.

37. (a) By the Pythagorean Theorem, 40002 + y2 = 2. Differentiating with respect to t,

we obtain 2y dy
dt
= 2

d

dt
. We know that dy

dt
= 600 ft/s, so when y = 3000 ft,

=
√
40002 + 30002 =

√
25,000,000 = 5000 ft

and d

dt
=

y dy

dt
=
3000

5000
(600) =

1800

5
= 360 ft/s.

(b) Here tan θ = y

4000
⇒ d

dt
(tan θ) =

d

dt

y

4000
⇒ sec2 θ

dθ

dt
=

1

4000

dy

dt
⇒ dθ

dt
=
cos2 θ

4000

dy

dt
. When

y = 3000 ft, dy
dt
= 600 ft/s, = 5000 and cos θ = 4000

=
4000

5000
=
4

5
, so dθ

dt
=
(4/5)2

4000
(600) = 0.096 rad/s.

39. cot θ = x

5
⇒ − csc2 θ dθ

dt
=
1

5

dx

dt
⇒ − csc

π

3

2 −π

6
=
1

5

dx

dt
⇒

dx

dt
=
5π

6

2√
3

2

=
10

9
π km/min [≈ 130 mi/h]

41. We are given that dx
dt
= 300 km/h. By the Law of Cosines,

y2 = x2 + 12 − 2(1)(x) cos 120◦ = x2 + 1− 2x − 1
2
= x2 + x+ 1, so

2y
dy

dt
= 2x

dx

dt
+

dx

dt
⇒ dy

dt
=
2x+ 1

2y

dx

dt
. After 1 minute, x = 300

60
= 5 km ⇒

y =
√
52 + 5+ 1 =

√
31 km ⇒ dy

dt
=
2(5) + 1

2
√
31

(300) =
1650√
31
≈ 296 km/h.

43. Let the distance between the runner and the friend be . Then by the Law of Cosines,
2 = 2002 +1002 − 2 · 200 · 100 · cos θ = 50,000− 40,000 cos θ ( ). Differentiating

implicitly with respect to t, we obtain 2 d

dt
= −40,000(− sin θ) dθ

dt
. Now if D is the

distance run when the angle is θ radians, then by the formula for the length of an arc

on a circle, s = rθ, we have D = 100θ, so θ = 1

100
D ⇒ dθ

dt
=

1

100

dD

dt
=

7

100
. To substitute into the expression for

d

dt
, we must know sin θ at the time when = 200, which we find from ( ): 2002 = 50,000− 40,000 cos θ ⇔

cos θ = 1
4
⇒ sin θ = 1− 1

4

2
=
√
15
4

. Substituting, we get 2(200) d
dt
= 40,000

√
15
4

7
100

⇒

d /dt = 7
√
15
4

≈ 6.78 m/s. Whether the distance between them is increasing or decreasing depends on the direction in which

the runner is running.



SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 123

3.10 Linear Approximations and Differentials

1. f(x) = x4 + 3x2 ⇒ f 0(x) = 4x3 + 6x, so f(−1) = 4 and f 0(−1) = −10.

Thus, L(x) = f(−1) + f 0(−1)(x− (−1)) = 4 + (−10)(x+ 1) = −10x− 6.

3. f(x) = cosx ⇒ f 0(x) = − sinx, so f π
2
= 0 and f 0 π

2
= −1.

Thus, L(x) = f π
2
+ f 0 π

2
x− π

2
= 0− 1 x− π

2
= −x+ π

2
.

5. f(x) =
√
1− x ⇒ f 0(x) =

−1
2
√
1− x

, so f(0) = 1 and f 0(0) = − 1
2 .

Therefore,
√
1− x = f(x) ≈ f(0) + f 0(0)(x− 0) = 1 + − 1

2
(x− 0) = 1− 1

2
x.

So
√
0.9 =

√
1− 0.1 ≈ 1− 1

2
(0.1) = 0.95

and
√
0.99 =

√
1− 0.01 ≈ 1− 1

2
(0.01) = 0.995.

7. f(x) = 3
√
1− x = (1− x)1/3 ⇒ f 0(x) = − 1

3 (1− x)−2/3, so f(0) = 1

and f 0(0) = − 1
3 . Thus, f(x) ≈ f(0) + f 0(0)(x− 0) = 1− 1

3x. We need

3
√
1− x− 0.1 < 1− 1

3x < 3
√
1− x+ 0.1, which is true when

−1.204 < x < 0.706.

9. f(x) = 1

(1 + 2x)4
= (1 + 2x)−4 ⇒

f 0(x) = −4(1 + 2x)−5(2) = −8
(1 + 2x)5

, so f(0) = 1 and f 0(0) = −8.

Thus, f(x) ≈ f(0) + f 0(0)(x− 0) = 1 + (−8)(x− 0) = 1− 8x.

We need 1

(1 + 2x)4
− 0.1 < 1− 8x <

1

(1 + 2x)4
+ 0.1, which is true

when − 0.045 < x < 0.055.

11. (a) The differential dy is defined in terms of dx by the equation dy = f 0(x) dx. For y = f(x) = x2 sin 2x,

f 0(x) = x2 cos 2x · 2 + sin 2x · 2x = 2x(x cos 2x+ sin 2x), so dy = 2x(x cos 2x+ sin 2x) dx.

(b) For y = f(t) = ln
√
1 + t2 = 1

2
ln(1 + t2), f 0(t) = 1

2
· 1

1 + t2
· 2t = t

1 + t2
, so dy = t

1 + t2
dt.

13. (a) For y = f(u) =
u+ 1

u− 1 , f 0(u) = (u− 1)(1)− (u+ 1)(1)
(u− 1)2 =

−2
(u− 1)2 , so dy = −2

(u− 1)2 du.

(b) For y = f(r) = (1 + r3)−2, f 0(r) = −2(1 + r3)−3(3r2) =
−6r2

(1 + r3)3
, so dy = −6r2

(1 + r3)3
dr.

15. (a) y = ex/10 ⇒ dy = ex/10 · 1
10
dx = 1

10
ex/10dx

(b) x = 0 and dx = 0.1 ⇒ dy = 1
10
e0/10(0.1) = 0.01.
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17. (a) y = tanx ⇒ dy = sec2 xdx

(b) When x = π/4 and dx = −0.1, dy = [sec(π/4)]2(−0.1) = √
2

2
(−0.1) = −0.2.

19. y = f(x) = 2x− x2, x = 2, ∆x = −0.4 ⇒
∆y = f(1.6)− f(2) = 0.64− 0 = 0.64
dy = (2− 2x) dx = (2− 4)(−0.4) = 0.8

21. y = f(x) = 2/x, x = 4, ∆x = 1 ⇒

∆y = f(5)− f(4) = 2
5
− 2

4
= −0.1

dy = − 2

x2
dx = − 2

42
(1) = −0.125

23. To estimate (2.001)5, we’ll find the linearization of f(x) = x5 at a = 2. Since f 0(x) = 5x4, f(2) = 32, and f 0(2) = 80,

we have L(x) = 32 + 80(x− 2) = 80x− 128. Thus, x5 ≈ 80x− 128 when x is near 2 , so

(2.001)5 ≈ 80(2.001)− 128 = 160.08− 128 = 32.08.

25. To estimate (8.06)2/3, we’ll find the linearization of f(x) = x2/3 at a = 8. Since f 0(x) = 2
3
x−1/3 = 2/ 3

3
√
x ,

f(8) = 4, and f 0(8) = 1
3

, we have L(x) = 4 + 1
3
(x− 8) = 1

3
x+ 4

3
. Thus, x2/3 ≈ 1

3
x+ 4

3
when x is near 8, so

(8.06)2/3 ≈ 1
3
(8.06) + 4

3
= 12.06

3
= 4.02.

27. y = f(x) = tanx ⇒ dy = sec2 xdx. When x = 45◦ and dx = −1◦,

dy = sec2 45◦(−π/180) = √
2

2
(−π/180) = −π/90, so tan 44◦ = f(44◦) ≈ f(45◦) + dy = 1− π/90 ≈ 0.965.

29. y = f(x) = secx ⇒ f 0(x) = secx tanx, so f(0) = 1 and f 0(0) = 1 · 0 = 0. The linear approximation of f at 0 is

f(0) + f 0(0)(x− 0) = 1 + 0(x) = 1. Since 0.08 is close to 0, approximating sec 0.08 with 1 is reasonable.

31. y = f(x) = lnx ⇒ f 0(x) = 1/x, so f(1) = 0 and f 0(1) = 1. The linear approximation of f at 1 is

f(1) + f 0(1)(x− 1) = 0 + 1(x− 1) = x− 1. Now f(1.05) = ln 1.05 ≈ 1.05− 1 = 0.05, so the approximation

is reasonable.

33. (a) If x is the edge length, then V = x3 ⇒ dV = 3x2 dx. When x = 30 and dx = 0.1, dV = 3(30)2(0.1) = 270, so the

maximum possible error in computing the volume of the cube is about 270 cm3. The relative error is calculated by dividing

the change in V , ∆V , by V . We approximate ∆V with dV .

Relative error = ∆V

V
≈ dV

V
=
3x2 dx

x3
= 3

dx

x
= 3

0.1

30
= 0.01.

Percentage error = relative error× 100% = 0.01× 100% = 1%.
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(b) S = 6x2 ⇒ dS = 12xdx. When x = 30 and dx = 0.1, dS = 12(30)(0.1) = 36, so the maximum possible error in

computing the surface area of the cube is about 36 cm2.

Relative error = ∆S

S
≈ dS

S
=
12xdx

6x2
= 2

dx

x
= 2

0.1

30
= 0.006.

Percentage error = relative error× 100% = 0.006× 100% = 0.6%.

35. (a) For a sphere of radius r, the circumference is C = 2πr and the surface area is S = 4πr2, so

r =
C

2π
⇒ S = 4π

C

2π

2

=
C2

π
⇒ dS =

2

π
C dC. When C = 84 and dC = 0.5, dS = 2

π
(84)(0.5) =

84

π
,

so the maximum error is about 84
π
≈ 27 cm2. Relative error ≈ dS

S
=
84/π

842/π
=
1

84
≈ 0.012

(b) V =
4

3
πr3 =

4

3
π

C

2π

3

=
C3

6π2
⇒ dV =

1

2π2
C2 dC. When C = 84 and dC = 0.5,

dV =
1

2π2
(84)2(0.5) =

1764

π2
, so the maximum error is about 1764

π2
≈ 179 cm3.

The relative error is approximately dV

V
=

1764/π2

(84)3/(6π2)
=
1

56
≈ 0.018.

37. (a) V = πr2h ⇒ ∆V ≈ dV = 2πrhdr = 2πrh∆r

(b) The error is

∆V − dV = [π(r +∆r)2h− πr2h]− 2πrh∆r = πr2h+ 2πrh∆r + π(∆r)2h− πr2h− 2πrh∆r = π(∆r)2h.

39. V = RI ⇒ I =
V

R
⇒ dI = − V

R2
dR. The relative error in calculating I is ∆I

I
≈ dI

I
=
−(V/R2) dR

V/R
= −dR

R
.

Hence, the relative error in calculating I is approximately the same (in magnitude) as the relative error in R.

41. (a) dc = dc

dx
dx = 0 dx = 0 (b) d(cu) = d

dx
(cu) dx = c

du

dx
dx = c du

(c) d(u+ v) =
d

dx
(u+ v) dx =

du

dx
+

dv

dx
dx =

du

dx
dx+

dv

dx
dx = du+ dv

(d) d(uv) = d

dx
(uv) dx = u

dv

dx
+ v

du

dx
dx = u

dv

dx
dx+ v

du

dx
dx = udv + v du

(e) d u

v
=

d

dx

u

v
dx =

v
du

dx
− u

dv

dx
v2

dx =
v
du

dx
dx− u

dv

dx
dx

v2
=

v du− udv

v2

(f ) d (xn) = d

dx
(xn) dx = nxn−1 dx

43. (a) The graph shows that f 0(1) = 2, so L(x) = f(1) + f 0(1)(x− 1) = 5 + 2(x− 1) = 2x+ 3.

f(0.9) ≈ L(0.9) = 4.8 and f(1.1) ≈ L(1.1) = 5.2.

(b) From the graph, we see that f 0(x) is positive and decreasing. This means that the slopes of the tangent lines are positive,

but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too

large.
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3.11 Hyperbolic Functions

1. (a) sinh 0 = 1
2 (e

0 − e0) = 0 (b) cosh 0 = 1
2 (e

0 + e0) = 1
2 (1 + 1) = 1

3. (a) sinh(ln 2) = eln 2 − e−ln 2

2
=

eln 2 − (eln 2)−1
2

=
2− 2−1
2

=
2− 1

2

2
=
3

4

(b) sinh 2 = 1
2
(e2 − e−2) ≈ 3.62686

5. (a) sech 0 = 1

cosh 0
=
1

1
= 1 (b) cosh−1 1 = 0 because cosh 0 = 1.

7. sinh(−x) = 1
2
[e−x − e−(−x)] = 1

2
(e−x − ex) = − 1

2
(e−x − ex) = − sinhx

9. coshx+ sinhx = 1
2
(ex + e−x) + 1

2
(ex − e−x) = 1

2
(2ex) = ex

11. sinhx cosh y + coshx sinh y = 1
2 (e

x − e−x) 1
2 (e

y + e−y) + 1
2 (e

x + e−x) 1
2 (e

y − e−y)

= 1
4
[(ex+y + ex−y − e−x+y − e−x−y) + (ex+y − ex−y + e−x+y − e−x−y)]

= 1
4
(2ex+y − 2e−x−y) = 1

2
[ex+y − e−(x+y)] = sinh(x+ y)

13. Divide both sides of the identity cosh2 x− sinh2 x = 1 by sinh2 x:

cosh2 x

sinh2 x
− sinh2 x

sinh2 x
=

1

sinh2 x
⇔ coth2 x− 1 = csch2 x.

15. Putting y = x in the result from Exercise 11, we have

sinh 2x = sinh(x+ x) = sinhx coshx+ coshx sinhx = 2 sinhx coshx.

17. tanh(lnx) = sinh(lnx)

cosh(lnx)
=
(eln x − e− lnx)/2

(eln x + e− lnx)/2
=

x− (eln x)−1
x+ (eln x)−1

=
x− x−1

x+ x−1
=

x− 1/x
x+ 1/x

=
(x2 − 1)/x
(x2 + 1)/x

=
x2 − 1
x2 + 1

19. By Exercise 9, (coshx+ sinhx)n = (ex)n = enx = coshnx+ sinhnx.

21. sechx = 1

coshx
⇒ sechx =

1

5/3
=
3

5
.

cosh2 x− sinh2 x = 1 ⇒ sinh2 x = cosh2 x− 1 = 5
3

2 − 1 = 16
9

⇒ sinhx = 4
3

[because x > 0].

cschx =
1

sinhx
⇒ cschx =

1

4/3
=
3

4
.

tanhx =
sinhx

coshx
⇒ tanhx =

4/3

5/3
=
4

5
.

cothx =
1

tanhx
⇒ cothx =

1

4/5
=
5

4
.

23. (a) lim
x→∞

tanhx = lim
x→∞

ex − e−x

ex + e−x
· e
−x

e−x
= lim

x→∞
1− e−2x

1 + e−2x
=
1− 0
1 + 0

= 1

(b) lim
x→−∞

tanhx = lim
x→−∞

ex − e−x

ex + e−x
· e

x

ex
= lim

x→−∞
e2x − 1
e2x + 1

=
0− 1
0 + 1

= −1
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(c) lim
x→∞

sinhx = lim
x→∞

ex − e−x

2
=∞

(d) lim
x→−∞

sinhx = lim
x→−∞

ex − e−x

2
= −∞

(e) lim
x→∞

sechx = lim
x→∞

2

ex + e−x
= 0

(f ) lim
x→∞

cothx = lim
x→∞

ex + e−x

ex − e−x
· e
−x

e−x
= lim

x→∞
1 + e−2x

1− e−2x
=
1 + 0

1− 0 = 1 [Or: Use part (a)]

(g) lim
x→0+

cothx = lim
x→0+

coshx

sinhx
=∞, since sinhx→ 0 through positive values and coshx→ 1.

(h) lim
x→0−

cothx = lim
x→0−

coshx

sinhx
= −∞, since sinhx→ 0 through negative values and coshx→ 1.

(i) lim
x→−∞

cschx = lim
x→−∞

2

ex − e−x
= 0

25. Let y = sinh−1 x. Then sinh y = x and, by Example 1(a), cosh2 y − sinh2 y = 1 ⇒ [with cosh y > 0]

cosh y = 1 + sinh2 y =
√
1 + x2. So by Exercise 9, ey = sinh y + cosh y = x+

√
1 + x2 ⇒ y = ln x+

√
1 + x2 .

27. (a) Let y = tanh−1 x. Then x = tanh y = sinh y

cosh y
=
(ey − e−y)/2
(ey + e−y)/2

· e
y

ey
=

e2y − 1
e2y + 1

⇒ xe2y + x = e2y − 1 ⇒

1+ x = e2y − xe2y ⇒ 1+ x = e2y(1− x) ⇒ e2y =
1 + x

1− x
⇒ 2y = ln

1 + x

1− x
⇒ y = 1

2
ln

1 + x

1− x
.

(b) Let y = tanh−1 x. Then x = tanh y, so from Exercise 18 we have

e2y =
1 + tanh y

1− tanh y =
1 + x

1− x
⇒ 2y = ln

1 + x

1− x
⇒ y = 1

2
ln

1 + x

1− x
.

29. (a) Let y = cosh−1 x. Then cosh y = x and y ≥ 0 ⇒ sinh y
dy

dx
= 1 ⇒

dy

dx
=

1

sinh y
=

1

cosh2 y − 1
=

1√
x2 − 1 [since sinh y ≥ 0 for y ≥ 0]. Or: Use Formula 4.

(b) Let y = tanh−1 x. Then tanh y = x ⇒ sech2 y
dy

dx
= 1 ⇒ dy

dx
=

1

sech2y
=

1

1− tanh2 y =
1

1− x2
.

Or: Use Formula 5.

(c) Let y = csch−1 x. Then csch y = x ⇒ − csch y coth y dy

dx
= 1 ⇒ dy

dx
= − 1

csch y coth y
. By Exercise 13,

coth y = ± csch2 y + 1 = ±√x2 + 1. If x > 0, then coth y > 0, so coth y =
√
x2 + 1. If x < 0, then coth y < 0,

so coth y = −√x2 + 1. In either case we have dy

dx
= − 1

csch y coth y
= − 1

|x|√x2 + 1 .

(d) Let y = sech−1 x. Then sech y = x ⇒ − sech y tanh y dy

dx
= 1 ⇒

dy

dx
= − 1

sech y tanh y
= − 1

sech y 1− sech2y
= − 1

x
√
1− x2

. [Note that y > 0 and so tanh y > 0.]
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(e) Let y = coth−1 x. Then coth y = x ⇒ − csch2 y dy

dx
= 1 ⇒ dy

dx
= − 1

csch2 y
=

1

1− coth2 y =
1

1− x2

by Exercise 13.

31. f(x) = x sinhx− coshx ⇒ f 0(x) = x (sinhx)0 + sinhx · 1− sinhx = x coshx

33. h(x) = ln(coshx) ⇒ h0(x) =
1

coshx
(coshx)0 =

sinhx

coshx
= tanhx

35. y = ecosh 3x ⇒ y0 = ecosh 3x · sinh 3x · 3 = 3ecosh 3x sinh 3x

37. f(t) = sech2(et) = [sech(et)]2 ⇒

f 0(t) = 2[sech(et)] [sech(et)]0 = 2 sech(et) − sech(et) tanh(et) · et = −2et sech2(et) tanh(et)

39. y = arctan(tanhx) ⇒ y0 =
1

1 + (tanhx)2
(tanhx)0 =

sech2 x

1 + tanh2 x

41. G(x) = 1− coshx
1 + coshx

⇒

G0(x) =
(1 + coshx)(− sinhx)− (1− coshx)(sinhx)

(1 + coshx)2
=
− sinhx− sinhx coshx− sinhx+ sinhx coshx

(1 + coshx)2

=
−2 sinhx

(1 + coshx)2

43. y = tanh−1
√
x ⇒ y0 =

1

1−
√
x

2 ·
1

2
x−1/2 =

1

2
√
x (1− x)

45. y = x sinh−1(x/3) − √9 + x2 ⇒

y0 = sinh−1
x

3
+ x

1/3

1 + (x/3)2
− 2x

2
√
9 + x2

= sinh−1
x

3
+

x√
9 + x2

− x√
9 + x2

= sinh−1
x

3

47. y = coth−1
√
x2 + 1 ⇒ y0 =

1

1− (x2 + 1)
2x

2
√
x2 + 1

= − 1

x
√
x2 + 1

49. As the depth d of the water gets large, the fraction 2πd
L

gets large, and from Figure 3 or Exercise 23(a), tanh 2πd

L

approaches 1. Thus, v = gL

2π
tanh

2πd

L
≈ gL

2π
(1) =

gL

2π
.

51. (a) y = 20 cosh(x/20)− 15 ⇒ y0 = 20 sinh(x/20) · 1
20
= sinh(x/20). Since the right pole is positioned at x = 7,

we have y0(7) = sinh 7
20
≈ 0.3572.

(b) If α is the angle between the tangent line and the x-axis, then tanα = slope of the line = sinh 7
20

, so

α = tan−1 sinh 7
20

≈ 0.343 rad ≈ 19.66◦. Thus, the angle between the line and the pole is θ = 90◦ − α ≈ 70.34◦.

53. (a) y = A sinhmx + B coshmx ⇒ y0 = mA coshmx +mB sinhmx ⇒
y00 = m2A sinhmx+m2B coshmx = m2(A sinhmx+B coshmx) = m2y
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(b) From part (a), a solution of y00 = 9y is y(x) = A sinh 3x+B cosh 3x. So −4 = y(0) = A sinh 0 +B cosh 0 = B, so

B = −4. Now y0(x) = 3A cosh 3x− 12 sinh 3x ⇒ 6 = y0(0) = 3A ⇒ A = 2, so y = 2 sinh 3x− 4 cosh 3x.

55. The tangent to y = coshx has slope 1 when y0 = sinhx = 1 ⇒ x = sinh−1 1 = ln 1 +
√
2 , by Equation 3.

Since sinhx = 1 and y = coshx = 1 + sinh2 x, we have coshx =
√
2. The point is ln 1 +

√
2 ,

√
2 .

57. If aex + be−x = α cosh(x+ β) [or α sinh(x+ β)], then

aex + be−x = α
2
ex+β ± e−x−β = α

2
exeβ ± e−xe−β = α

2
eβ ex ± α

2
e−β e−x. Comparing coefficients of ex

and e−x, we have a = α
2
eβ (1) and b = ±α

2
e−β (2). We need to find α and β. Dividing equation (1) by equation (2)

gives us a
b
= ±e2β ⇒ ( ) 2β = ln ±a

b
⇒ β = 1

2
ln ±a

b
. Solving equations (1) and (2) for eβ gives us

eβ =
2a

α
and eβ = ± α

2b
, so 2a

α
= ± α

2b
⇒ α2 = ±4ab ⇒ α = 2

√±ab.

( ) If a
b
> 0, we use the + sign and obtain a cosh function, whereas if a

b
< 0, we use the − sign and obtain a sinh

function.

In summary, if a and b have the same sign, we have aex + be−x = 2
√
ab cosh x+ 1

2
ln a

b
, whereas, if a and b have the

opposite sign, then aex + be−x = 2
√−ab sinh x+ 1

2
ln −a

b
.

3 Review

1. (a) The Power Rule: If n is any real number, then d

dx
(xn) = nxn−1. The derivative of a variable base raised to a constant

power is the power times the base raised to the power minus one.

(b) The Constant Multiple Rule: If c is a constant and f is a differentiable function, then d

dx
[cf(x)] = c

d

dx
f(x).

The derivative of a constant times a function is the constant times the derivative of the function.

(c) The Sum Rule: If f and g are both differentiable, then d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x). The derivative of a sum

of functions is the sum of the derivatives.

(d) The Difference Rule: If f and g are both differentiable, then d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x). The derivative of a

difference of functions is the difference of the derivatives.

(e) The Product Rule: If f and g are both differentiable, then d

dx
[f(x) g(x)] = f(x)

d

dx
g(x) + g(x)

d

dx
f(x). The

derivative of a product of two functions is the first function times the derivative of the second function plus the second

function times the derivative of the first function.
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(f ) The Quotient Rule: If f and g are both differentiable, then d

dx

f(x)

g(x)
=

g(x)
d

dx
f(x)− f(x)

d

dx
g(x)

[ g(x)]2
.

The derivative of a quotient of functions is the denominator times the derivative of the numerator minus the numerator

times the derivative of the denominator, all divided by the square of the denominator.

(g) The Chain Rule: If f and g are both differentiable and F = f ◦ g is the composite function defined by F (x) = f(g(x)),

then F is differentiable and F 0 is given by the product F 0(x) = f 0(g(x)) g0(x). The derivative of a composite function is

the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

2. (a) y = xn ⇒ y0 = nxn−1 (b) y = ex ⇒ y0 = ex

(c) y = ax ⇒ y0 = ax ln a (d) y = lnx ⇒ y0 = 1/x

(e) y = loga x ⇒ y0 = 1/(x ln a) (f ) y = sinx ⇒ y0 = cosx

(g) y = cosx ⇒ y0 = − sinx (h) y = tanx ⇒ y0 = sec2 x

(i) y = cscx ⇒ y0 = − cscx cotx ( j) y = secx ⇒ y0 = secx tanx

(k) y = cotx ⇒ y0 = − csc2 x (l) y = sin−1 x ⇒ y0 = 1/
√
1− x2

(m) y = cos−1 x ⇒ y0 = −1/√1− x2 (n) y = tan−1 x ⇒ y0 = 1/(1 + x2)

(o) y = sinhx ⇒ y0 = coshx (p) y = coshx ⇒ y0 = sinhx

(q) y = tanhx ⇒ y0 = sech2 x (r) y = sinh−1 x ⇒ y0 = 1/
√
1 + x2

(s) y = cosh−1 x ⇒ y0 = 1/
√
x2 − 1 (t) y = tanh−1 x ⇒ y0 = 1/(1− x2)

3. (a) e is the number such that lim
h→0

eh − 1
h

= 1.

(b) e = lim
x→0

(1 + x)1/x

(c) The differentiation formula for y = ax [y0 = ax ln a] is simplest when a = e because ln e = 1.

(d) The differentiation formula for y = loga x [y0 = 1/(x ln a)] is simplest when a = e because ln e = 1.

4. (a) Implicit differentiation consists of differentiating both sides of an equation involving x and y with respect to x, and then

solving the resulting equation for y0.

(b) Logarithmic differentiation consists of taking natural logarithms of both sides of an equation y = f(x), simplifying,

differentiating implicitly with respect to x, and then solving the resulting equation for y0.

5. (a) The linearization L of f at x = a is L(x) = f(a) + f 0(a)(x− a).

(b) If y = f(x), then the differential dy is given by dy = f 0(x) dx.

(c) See Figure 5 in Section 3.10.
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1. True. This is the Sum Rule.

3. True. This is the Chain Rule.

5. False. d

dx
f
√
x =

f 0
√
x

2
√
x

by the Chain Rule.

7. False. d

dx
10x = 10x ln 10

9. True. d

dx
(tan2 x) = 2 tanx sec2 x, and d

dx
(sec2 x) = 2 secx (secx tanx) = 2 tanx sec2 x.

Or: d

dx
(sec2 x) =

d

dx
(1 + tan2 x) =

d

dx
(tan2 x).

11. True. g(x) = x5 ⇒ g0(x) = 5x4 ⇒ g0(2) = 5(2)4 = 80, and by the definition of the derivative,

lim
x→2

g(x)− g(2)

x− 2 = g0(2) = 80.

1. y = (x4 − 3x2 + 5)3 ⇒

y0 = 3(x4 − 3x2 + 5)2 d

dx
(x4 − 3x2 + 5) = 3(x4 − 3x2 + 5)2(4x3 − 6x) = 6x(x4 − 3x2 + 5)2(2x2 − 3)

3. y =
√
x+

1
3
√
x4
= x1/2 + x−4/3 ⇒ y0 = 1

2x
−1/2 − 4

3x
−7/3 =

1

2
√
x
− 4

3
3
√
x7

5. y = 2x
√
x2 + 1 ⇒

y0 = 2x · 1
2
(x2 + 1)−1/2(2x) +

√
x2 + 1 (2) =

2x2√
x2 + 1

+ 2
√
x2 + 1 =

2x2 + 2(x2 + 1)√
x2 + 1

=
2(2x2 + 1)√

x2 + 1

7. y = esin 2θ ⇒ y0 = esin 2θ
d

dθ
(sin 2θ) = esin 2θ(cos 2θ)(2) = 2 cos 2θ esin 2θ

9. y = t

1− t2
⇒ y0 =

(1− t2)(1)− t(−2t)
(1− t2)2

=
1− t2 + 2t2

(1− t2)2
=

t2 + 1

(1− t2)2

11. y =
√
x cos

√
x ⇒

y0 =
√
x cos

√
x

0
+ cos

√
x
√
x

0
=
√
x − sin

√
x 1

2x
−1/2 + cos

√
x 1

2x
−1/2

= 1
2
x−1/2 −

√
x sin

√
x+ cos

√
x =

cos
√
x−

√
x sin

√
x

2
√
x

13. y = e1/x

x2
⇒ y0 =

x2(e1/x)0 − e1/x x2
0

(x2)2
=

x2(e1/x)(−1/x2)− e1/x(2x)

x4
=
−e1/x(1 + 2x)

x4
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15. d

dx
(xy4 + x2y) =

d

dx
(x+ 3y) ⇒ x · 4y3y0 + y4 · 1 + x2 · y0 + y · 2x = 1 + 3y0 ⇒

y0(4xy3 + x2 − 3) = 1− y4 − 2xy ⇒ y0 =
1− y4 − 2xy
4xy3 + x2 − 3

17. y = sec 2θ

1 + tan 2θ
⇒

y0=
(1 + tan 2θ)(sec 2θ tan 2θ · 2)− (sec 2θ)(sec2 2θ · 2)

(1 + tan 2θ)2
=
2 sec 2θ [(1 + tan2θ) tan 2θ − sec2 2θ]

(1 + tan 2θ)2

=
2 sec 2θ (tan 2θ + tan2 2θ − sec2 2θ)

(1 + tan 2θ)2
=
2 sec 2θ (tan 2θ − 1)
(1 + tan 2θ)2

1 + tan2 x = sec2 x

19. y = ecx(c sinx− cosx) ⇒

y0 = ecx(c cosx+ sinx) + cecx(c sinx− cosx) = ecx(c2 sinx− c cosx+ c cosx+ sinx)

= ecx(c2 sinx+ sinx) = ecx sinx (c2 + 1)

21. y = 3x ln x ⇒ y0 = 3x ln x · ln 3 · d

dx
(x lnx) = 3x lnx · ln 3 x · 1

x
+ lnx · 1 = 3x ln x · ln 3(1 + lnx)

23. y = (1− x−1)−1 ⇒

y0 = −1(1− x−1)−2[−(−1x−2)] = −(1− 1/x)−2x−2 = −((x− 1)/x)−2x−2 = −(x− 1)−2

25. sin(xy) = x2 − y ⇒ cos(xy)(xy0 + y · 1) = 2x− y0 ⇒ x cos(xy)y0 + y0 = 2x− y cos(xy) ⇒

y0[x cos(xy) + 1] = 2x− y cos(xy) ⇒ y0 =
2x− y cos(xy)

x cos(xy) + 1

27. y = log5(1 + 2x) ⇒ y0 =
1

(1 + 2x) ln 5

d

dx
(1 + 2x) =

2

(1 + 2x) ln 5

29. y = ln sinx− 1
2
sin2 x ⇒ y0 =

1

sinx
· cosx− 1

2
· 2 sinx · cosx = cotx− sinx cosx

31. y = x tan−1(4x) ⇒ y0 = x · 1

1 + (4x)2
· 4 + tan−1(4x) · 1 = 4x

1 + 16x2
+ tan−1(4x)

33. y = ln |sec 5x+ tan 5x| ⇒

y0 =
1

sec 5x+ tan 5x
(sec 5x tan 5x · 5 + sec2 5x · 5) = 5 sec 5x (tan 5x+ sec 5x)

sec 5x+ tan 5x
= 5 sec 5x

35. y = cot(3x2 + 5) ⇒ y0 = − csc2(3x2 + 5)(6x) = −6x csc2(3x2 + 5)

37. y = sin tan
√
1 + x3 ⇒ y0 = cos tan

√
1 + x3 sec2

√
1 + x3 3x2 2

√
1 + x3

39. y = tan2(sin θ) = [tan(sin θ)]2 ⇒ y0 = 2[tan(sin θ)] · sec2(sin θ) · cos θ
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41. y =
√
x+ 1 (2− x)5

(x+ 3)7
⇒ ln y = 1

2 ln(x+1)+ 5 ln(2− x)− 7 ln(x+3) ⇒ y0

y
=

1

2(x+ 1)
+

−5
2− x

− 7

x+ 3
⇒

y0 =
√
x+ 1 (2− x)5

(x+ 3)7
1

2(x+ 1)
− 5

2− x
− 7

x+ 3
or y0 =

(2− x)4(3x2 − 55x− 52)
2
√
x+ 1 (x+ 3)8

.

43. y = x sinh(x2) ⇒ y0 = x cosh(x2) · 2x+ sinh(x2) · 1 = 2x2 cosh(x2) + sinh(x2)

45. y = ln(cosh 3x) ⇒ y0 = (1/ cosh 3x)(sinh 3x)(3) = 3 tanh 3x

47. y = cosh−1(sinhx) ⇒ y0 =
1

(sinhx)2 − 1 · coshx =
coshx

sinh2 x− 1

49. y = cos e
√
tan 3x ⇒

y0 = − sin e
√
tan 3x · e

√
tan 3x

0
= − sin e

√
tan 3x e

√
tan 3x · 1

2
(tan 3x)−1/2 · sec2(3x) · 3

=
−3 sin e

√
tan 3x e

√
tan 3x sec2(3x)

2
√
tan 3x

51. f(t) =
√
4t+ 1 ⇒ f 0(t) = 1

2
(4t + 1)−1/2 · 4 = 2(4t + 1)−1/2 ⇒

f 00(t) = 2(− 1
2
)(4t+ 1)−3/2 · 4 = −4/(4t+ 1)3/2, so f 00(2) = −4/93/2 = − 4

27
.

53. x6 + y6 = 1 ⇒ 6x5 + 6y5y0 = 0 ⇒ y0 = −x5/y5 ⇒

y00 = −y5(5x4)− x5(5y4y0)
(y5)2

= −5x
4y4 y − x(−x5/y5)

y10
= −5x

4 (y6 + x6)/y5

y6
= −5x

4

y11

55. We first show it is true for n = 1: f(x) = xex ⇒ f 0(x) = xex + ex = (x+ 1)ex. We now assume it is true

for n = k: f (k)(x) = (x+ k)ex. With this assumption, we must show it is true for n = k + 1:

f (k+1)(x) =
d

dx
f (k)(x) =

d

dx
[(x+ k)ex] = (x+ k)ex + ex = [(x+ k) + 1]ex = [x+ (k + 1)]ex.

Therefore, f (n)(x) = (x+ n)ex by mathematical induction.

57. y = 4 sin2 x ⇒ y0 = 4 · 2 sinx cosx. At π
6 , 1 , y0 = 8 · 12 ·

√
3
2 = 2

√
3, so an equation of the tangent line

is y − 1 = 2√3 x− π
6

, or y = 2
√
3x+ 1− π

√
3/3.

59. y =
√
1 + 4 sinx ⇒ y0 = 1

2
(1 + 4 sinx)−1/2 · 4 cosx = 2cosx√

1 + 4 sinx
.

At (0, 1), y0 = 2√
1
= 2, so an equation of the tangent line is y − 1 = 2(x− 0), or y = 2x+ 1.

61. y = (2 + x)e−x ⇒ y0 = (2 + x)(−e−x) + e−x · 1 = e−x[−(2 + x) + 1] = e−x(−x− 1).
At (0, 2), y0 = 1(−1) = −1, so an equation of the tangent line is y − 2 = −1(x− 0), or y = −x+ 2.

The slope of the normal line is 1, so an equation of the normal line is y − 2 = 1(x− 0), or y = x+ 2.
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63. (a) f(x) = x
√
5− x ⇒

f 0(x) = x
1

2
(5− x)−1/2(−1) +

√
5− x =

−x
2
√
5− x

+
√
5− x · 2

√
5− x

2
√
5− x

=
−x

2
√
5− x

+
2(5− x)

2
√
5− x

=
−x+ 10− 2x
2
√
5− x

=
10− 3x
2
√
5− x

(b) At (1, 2): f 0(1) = 7
4 .

So an equation of the tangent line is y − 2 = 7
4 (x− 1) or y = 7

4x+
1
4 .

At (4, 4): f 0(4) = − 2
2
= −1.

So an equation of the tangent line is y − 4 = −1(x− 4) or y = −x+ 8.

(c)

(d) The graphs look reasonable, since f 0 is positive where f has tangents with

positive slope, and f 0 is negative where f has tangents with negative slope.

65. y = sinx+ cosx ⇒ y0 = cosx− sinx = 0 ⇔ cosx = sinx and 0 ≤ x ≤ 2π ⇔ x = π
4

or 5π
4

, so the points

are π
4
,
√
2 and 5π

4
,−√2 .

67. f(x) = (x− a)(x− b)(x− c) ⇒ f 0(x) = (x− b)(x− c) + (x− a)(x− c) + (x− a)(x− b).

So f 0(x)
f(x)

=
(x− b)(x− c) + (x− a)(x− c) + (x− a)(x− b)

(x− a)(x− b)(x− c)
=

1

x− a
+

1

x− b
+

1

x− c
.

Or: f(x) = (x− a)(x− b)(x− c) ⇒ ln |f(x)| = ln |x− a|+ ln |x− b|+ ln |x− c| ⇒
f 0(x)
f(x)

=
1

x− a
+

1

x− b
+

1

x− c

69. (a) h(x) = f(x) g(x) ⇒ h0(x) = f(x) g0(x) + g(x) f 0(x) ⇒
h0(2) = f(2) g0(2) + g(2) f 0(2) = (3)(4) + (5)(−2) = 12− 10 = 2

(b) F (x) = f(g(x)) ⇒ F 0(x) = f 0(g(x)) g0(x) ⇒ F 0(2) = f 0(g(2)) g0(2) = f 0(5)(4) = 11 · 4 = 44

71. f(x) = x2g(x) ⇒ f 0(x) = x2g0(x) + g(x)(2x) = x[xg0(x) + 2g(x)]

73. f(x) = [ g(x)]2 ⇒ f 0(x) = 2[ g(x)] · g0(x) = 2g(x) g0(x)

75. f(x) = g(ex) ⇒ f 0(x) = g0(ex) ex

77. f(x) = ln |g(x)| ⇒ f 0(x) =
1

g(x)
g0(x) =

g0(x)
g(x)
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79. h(x) = f(x) g(x)

f(x) + g(x)
⇒

h0(x) =
[f(x) + g(x)] [f(x) g0(x) + g(x) f 0(x)]− f(x) g(x) [f 0(x) + g0(x)]

[f(x) + g(x)]2

=
[f(x)]2 g0(x) + f(x) g(x) f 0(x) + f(x) g(x) g0(x) + [ g(x)]2 f 0(x)− f(x) g(x) f 0(x)− f(x) g(x) g0(x)

[f(x) + g(x)]2

=
f 0(x) [ g(x)]2 + g0(x) [f(x)]2

[f(x) + g(x)]2

81. Using the Chain Rule repeatedly, h(x) = f(g(sin 4x)) ⇒

h0(x) = f 0(g(sin 4x)) · d

dx
(g(sin 4x)) = f 0(g(sin 4x)) · g0(sin 4x) · d

dx
(sin 4x) = f 0(g(sin 4x))g0(sin 4x)(cos 4x)(4).

83. y = [ln(x+ 4)]2 ⇒ y0 = 2[ln(x+ 4)]1 · 1

x+ 4
· 1 = 2 ln(x+ 4)

x+ 4
and y0 = 0 ⇔ ln(x+ 4) = 0 ⇔

x+ 4 = e0 ⇒ x+ 4 = 1 ⇔ x = −3, so the tangent is horizontal at the point (−3, 0).

85. y = f(x) = ax2 + bx+ c ⇒ f 0(x) = 2ax+ b. We know that f 0(−1) = 6 and f 0(5) = −2, so −2a+ b = 6 and

10a+ b = −2. Subtracting the first equation from the second gives 12a = −8 ⇒ a = − 2
3

. Substituting − 2
3

for a in the

first equation gives b = 14
3

. Now f(1) = 4 ⇒ 4 = a+ b+ c, so c = 4 + 2
3
− 14

3
= 0 and hence, f(x) = − 2

3
x2 + 14

3
x.

87. s(t) = Ae−ct cos(ωt+ δ) ⇒

v(t) = s0(t) = A{e−ct [−ω sin(ωt+ δ)] + cos(ωt+ δ)(−ce−ct)} = −Ae−ct [ω sin(ωt+ δ) + c cos(ωt+ δ)] ⇒

a(t) = v0(t) = −A{e−ct[ω2 cos(ωt+ δ)− cω sin(ωt+ δ)] + [ω sin(ωt+ δ) + c cos(ωt+ δ)](−ce−ct)}
= −Ae−ct[ω2 cos(ωt+ δ)− cω sin(ωt+ δ)− cω sin(ωt+ δ)− c2 cos(ωt+ δ)]

= −Ae−ct[(ω2 − c2) cos(ωt+ δ)− 2cω sin(ωt+ δ)] = Ae−ct[(c2 − ω2) cos(ωt+ δ) + 2cω sin(ωt+ δ)]

89. (a) y = t3 − 12t+ 3 ⇒ v(t) = y0 = 3t2 − 12 ⇒ a(t) = v0(t) = 6t

(b) v(t) = 3(t2 − 4) > 0 when t > 2, so it moves upward when t > 2 and downward when 0 ≤ t < 2.

(c) Distance upward = y(3)− y(2) = −6− (−13) = 7,

Distance downward = y(0)− y(2) = 3− (−13) = 16. Total distance = 7 + 16 = 23.

(d) (e) The particle is speeding up when v and a have the same sign, that is,

when t > 2. The particle is slowing down when v and a have opposite

signs; that is, when 0 < t < 2.

91. The linear density ρ is the rate of change of mass m with respect to length x.

m = x 1 +
√
x = x+ x3/2 ⇒ ρ = dm/dx = 1 + 3

2

√
x, so the linear density when x = 4 is 1 + 3

2

√
4 = 4 kg/m.
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93. (a) y(t) = y(0)ekt = 200ekt ⇒ y(0.5) = 200e0.5k = 360 ⇒ e0.5k = 1.8 ⇒ 0.5k = ln 1.8 ⇒
k = 2 ln 1.8 = ln(1.8)2 = ln 3.24 ⇒ y(t) = 200e(ln 3.24)t = 200(3.24)t

(b) y(4) = 200(3.24)4 ≈ 22,040 bacteria

(c) y0(t) = 200(3.24)t · ln 3.24, so y0(4) = 200(3.24)4 · ln 3.24 ≈ 25,910 bacteria per hour

(d) 200(3.24)t = 10,000 ⇒ (3.24)t = 50 ⇒ t ln 3.24 = ln 50 ⇒ t = ln 50/ ln 3.24 ≈ 3.33 hours

95. (a) C0(t) = −kC(t) ⇒ C(t) = C(0)e−kt by Theorem 9.4.2. But C(0) = C0, so C(t) = C0e
−kt.

(b) C(30) = 1
2C0 since the concentration is reduced by half. Thus, 12C0 = C0e

−30k ⇒ ln 1
2 = −30k ⇒

k = − 1
30
ln 1

2
= 1

30
ln 2. Since 10% of the original concentration remains if 90% is eliminated, we want the value of t

such that C(t) = 1
10
C0. Therefore, 1

10
C0 = C0e

−t(ln 2)/30 ⇒ ln 0.1 = −t(ln 2)/30 ⇒ t = − 30
ln 2

ln 0.1 ≈ 100 h.

97. If x = edge length, then V = x3 ⇒ dV/dt = 3x2 dx/dt = 10 ⇒ dx/dt = 10/(3x2) and S = 6x2 ⇒

dS/dt = (12x) dx/dt = 12x[10/(3x2)] = 40/x. When x = 30, dS/dt = 40
30
= 4

3
cm2/min.

99. Given dh/dt = 5 and dx/dt = 15, find dz/dt. z2 = x2 + h2 ⇒

2z
dz

dt
= 2x

dx

dt
+ 2h

dh

dt
⇒ dz

dt
=
1

z
(15x+ 5h). When t = 3,

h = 45 + 3(5) = 60 and x = 15(3) = 45 ⇒ z =
√
452 + 602 = 75,

so dz

dt
=
1

75
[15(45) + 5(60)] = 13 ft/s.

101. We are given dθ/dt = −0.25 rad/h. tan θ = 400/x ⇒

x = 400 cot θ ⇒ dx

dt
= −400 csc2 θ dθ

dt
. When θ = π

6
,

dx

dt
= −400(2)2(−0.25) = 400 ft/h.

103. (a) f(x) = 3
√
1 + 3x = (1 + 3x)1/3 ⇒ f 0(x) = (1 + 3x)−2/3, so the linearization of f at a = 0 is

L(x) = f(0) + f 0(0)(x− 0) = 11/3 + 1−2/3x = 1 + x. Thus, 3
√
1 + 3x ≈ 1 + x ⇒

3
√
1.03 = 3 1 + 3(0.01) ≈ 1 + (0.01) = 1.01.

(b) The linear approximation is 3
√
1 + 3x ≈ 1 + x, so for the required accuracy

we want 3
√
1 + 3x− 0.1 < 1 + x < 3

√
1 + 3x+ 0.1. From the graph,

it appears that this is true when −0.23 < x < 0.40.
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105. A = x2 + 1
2π

1
2x

2
= 1 + π

8
x2 ⇒ dA = 2 + π

4
xdx. When x = 60

and dx = 0.1, dA = 2+ π
4
60(0.1) = 12 + 3π

2 , so the maximum error is

approximately 12 + 3π
2
≈ 16.7 cm2.

107. lim
h→0

4
√
16 + h− 2

h
=

d

dx
4
√
x

x=16

=
1

4
x−3/4

x=16

=
1

4 4
√
16

3 =
1

32

109. lim
x→0

√
1 + tanx−√1 + sinx

x3
= lim

x→0

√
1 + tanx−√1 + sinx √

1 + tanx+
√
1 + sinx

x3
√
1 + tanx+

√
1 + sinx

= lim
x→0

(1 + tanx)− (1 + sinx)
x3
√
1 + tanx+

√
1 + sinx

= lim
x→0

sinx (1/ cosx− 1)
x3
√
1 + tanx+

√
1 + sinx

· cosx
cosx

= lim
x→0

sinx (1− cosx)
x3
√
1 + tanx+

√
1 + sinx cosx

· 1 + cosx
1 + cosx

= lim
x→0

sinx · sin2 x
x3
√
1 + tanx+

√
1 + sinx cosx (1 + cosx)

= lim
x→0

sinx

x

3

lim
x→0

1√
1 + tanx+

√
1 + sinx cosx (1 + cosx)

= 13 · 1√
1 +

√
1 · 1 · (1 + 1) =

1

4

111. d

dx
[f(2x)] = x2 ⇒ f 0(2x) · 2 = x2 ⇒ f 0(2x) = 1

2x
2. Let t = 2x. Then f 0(t) = 1

2
1
2 t

2
= 1

8 t
2, so f 0(x) = 1

8x
2.





PROBLEMS PLUS
1. Let a be the x-coordinate of Q. Since the derivative of y = 1− x2 is y0 = −2x, the slope at Q is −2a. But since the triangle

is equilateral, AO/OC =
√
3/1, so the slope at Q is −√3. Therefore, we must have that −2a = −√3 ⇒ a =

√
3
2

.

Thus, the point Q has coordinates
√
3
2 , 1−

√
3
2

2

=
√
3
2 , 14 and by symmetry, P has coordinates −

√
3
2 , 14 .

3.

 

We must show that r (in the figure) is halfway between p and q, that is,

r = (p+ q)/2. For the parabola y = ax2 + bx+ c, the slope of the tangent line is

given by y0 = 2ax+ b. An equation of the tangent line at x = p is

y − (ap2 + bp+ c) = (2ap+ b)(x− p). Solving for y gives us

y = (2ap+ b)x− 2ap2 − bp+ (ap2 + bp+ c)

or y = (2ap+ b)x+ c− ap2 (1)

Similarly, an equation of the tangent line at x = q is

y = (2aq + b)x+ c− aq2 (2)

We can eliminate y and solve for x by subtracting equation (1) from equation (2).

[(2aq + b)− (2ap+ b)]x− aq2 + ap2 = 0

(2aq − 2ap)x= aq2 − ap2

2a(q − p)x= a(q2 − p2)

x=
a(q + p)(q − p)

2a(q − p)
=

p+ q

2

Thus, the x-coordinate of the point of intersection of the two tangent lines, namely r, is (p+ q)/2.

5. Let y = tan−1 x. Then tan y = x, so from the triangle we see that

sin(tan−1 x) = sin y =
x√
1 + x2

.Using this fact we have that

sin(tan−1(sinhx)) =
sinhx

1 + sinh2 x
=
sinhx

coshx
= tanhx.

Hence, sin−1(tanhx) = sin−1(sin(tan−1(sinhx))) = tan−1(sinhx).

7. We use mathematical induction. Let Sn be the statement that dn

dxn
(sin4 x+ cos4 x) = 4n−1 cos(4x+ nπ/2).

S1 is true because

d

dx
(sin4 x+ cos4 x) = 4 sin3 x cosx− 4 cos3 x sinx = 4 sinx cosx sin2 x− cos2 x x

= −4 sinx cosx cos 2x = −2 sin 2x cos 2 = − sin 4x = sin(−4x)
= cos π

2 − (−4x) = cos π
2 + 4x = 4n−1 cos 4x+ nπ

2
when n = 1

[continued]

139
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Now assume Sk is true, that is, dk

dxk
sin4 x+ cos4 x = 4k−1 cos 4x+ k π

2
. Then

dk+1

dxk+1
(sin4 x+ cos4 x) =

d

dx

dk

dxk
(sin4 x+ cos4 x) =

d

dx
4k−1 cos 4x+ k π

2

= −4k−1 sin 4x+ k π2 · d

dx
4x+ k π

2
= −4k sin 4x+ k π2

= 4k sin −4x− k π
2
= 4k cos π

2
− −4x− k π

2
= 4k cos 4x+ (k + 1) π

2

which shows that Sk+1 is true.

Therefore, dn

dxn
(sin4 x+ cos4 x) = 4n−1 cos 4x+ nπ

2
for every positive integer n, by mathematical induction.

Another proof: First write

sin4 x+ cos4 x = (sin2 x+ cos2 x)2 − 2 sin2 x cos2 x = 1− 1
2
sin2 2x = 1− 1

4
(1− cos 4x) = 3

4
+ 1

4
cos 4x

Then we have dn

dxn
(sin4 x+ cos4 x) =

dn

dxn
3

4
+
1

4
cos 4x =

1

4
· 4n cos 4x+ n

π

2
= 4n−1 cos 4x+ n

π

2
.

9. We must find a value x0 such that the normal lines to the parabola y = x2 at x = ±x0 intersect at a point one unit from the

points ±x0, x20 . The normals to y = x2 at x = ±x0 have slopes − 1

±2x0 and pass through ±x0, x20 respectively, so the

normals have the equations y − x20 = − 1

2x0
(x− x0) and y − x20 =

1

2x0
(x+ x0). The common y-intercept is x20 +

1

2
.

We want to find the value of x0 for which the distance from 0, x20 +
1
2

to x0, x
2
0 equals 1. The square of the distance is

(x0 − 0)2 + x20 − x20 +
1
2

2
= x20 +

1
4
= 1 ⇔ x0 = ±

√
3
2

. For these values of x0, the y-intercept is x20 + 1
2
= 5

4
, so

the center of the circle is at 0, 5
4

.

Another solution: Let the center of the circle be (0, a). Then the equation of the circle is x2 + (y − a)2 = 1.

Solving with the equation of the parabola, y = x2, we get x2 + (x2 − a)2 = 1 ⇔ x2 + x4 − 2ax2 + a2 = 1 ⇔
x4 + (1− 2a)x2 + a2 − 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in x2

has equal roots; that is, when the discriminant is 0. Thus, (1− 2a)2 − 4(a2 − 1) = 0 ⇔
1− 4a+ 4a2 − 4a2 + 4 = 0 ⇔ 4a = 5, so a = 5

4
. The center of the circle is 0, 5

4
.

11. We can assume without loss of generality that θ = 0 at time t = 0, so that θ = 12πt rad. [The angular velocity of the wheel

is 360 rpm = 360 · (2π rad)/(60 s) = 12π rad/s.] Then the position of A as a function of time is

A = (40 cos θ, 40 sin θ) = (40 cos 12πt, 40 sin 12πt), so sinα = y

1.2 m
=
40 sin θ

120
=
sin θ

3
=
1

3
sin 12πt.

(a) Differentiating the expression for sinα, we get cosα · dα
dt
=
1

3
· 12π · cos 12πt = 4π cos θ. When θ = π

3
, we have

sinα =
1

3
sin θ =

√
3

6
, so cosα = 1−

√
3

6

2

=
11

12
and dα

dt
=
4π cos π

3

cosα
=

2π

11/12
=
4π
√
3√

11
≈ 6.56 rad/s.
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(b) By the Law of Cosines, |AP |2 = |OA|2 + |OP |2 − 2 |OA| |OP | cos θ ⇒

1202 = 402 + |OP |2 − 2 · 40 |OP | cos θ ⇒ |OP |2 − (80 cos θ) |OP |− 12,800 = 0 ⇒

|OP | = 1
2
80 cos θ ±√6400 cos2 θ + 51,200 = 40 cos θ ± 40√cos2 θ + 8 = 40 cos θ +√8 + cos2 θ cm

[since |OP | > 0]. As a check, note that |OP | = 160 cm when θ = 0 and |OP | = 80√2 cm when θ = π
2

.

(c) By part (b), the x-coordinate of P is given by x = 40 cos θ +
√
8 + cos2 θ , so

dx

dt
=

dx

dθ

dθ

dt
= 40 − sin θ − 2 cos θ sin θ

2
√
8 + cos2 θ

· 12π = −480π sin θ 1 +
cos θ√
8 + cos2 θ

cm/s.

In particular, dx/dt = 0 cm/s when θ = 0 and dx/dt = −480π cm/s when θ = π
2

.

13. Consider the statement that dn

dxn
(eax sin bx) = rneax sin(bx + nθ). For n = 1,

d

dx
(eax sin bx) = aeax sin bx+ beax cos bx, and

reax sin(bx+ θ) = reax[sin bx cos θ + cos bx sin θ] = reax
a

r
sin bx+

b

r
cos bx = aeax sin bx+ beax cos bx

since tan θ = b

a
⇒ sin θ =

b

r
and cos θ = a

r
. So the statement is true for n = 1.

Assume it is true for n = k. Then

dk+1

dxk+1
(eax sin bx) =

d

dx
rkeax sin(bx+ kθ) = rkaeax sin(bx+ kθ) + rkeaxb cos(bx+ kθ)

= rkeax[a sin(bx+ kθ) + b cos(bx+ kθ)]

But

sin[bx+ (k + 1)θ] = sin[(bx+ kθ) + θ] = sin(bx+ kθ) cos θ + sin θ cos(bx+ kθ) = a
r
sin(bx+ kθ) + b

r
cos(bx+ kθ).

Hence, a sin(bx+ kθ) + b cos(bx+ kθ) = r sin[bx+ (k + 1)θ]. So

dk+1

dxk+1
(eax sin bx) = rkeax[a sin(bx+kθ)+b cos(bx+kθ)] = rkeax[r sin(bx+(k+1)θ)] = rk+1eax[sin(bx+(k+1)θ)].

Therefore, the statement is true for all n by mathematical induction.

15. It seems from the figure that as P approaches the point (0, 2) from the right, xT →∞ and yT → 2+. As P approaches the

point (3, 0) from the left, it appears that xT → 3+ and yT →∞. So we guess that xT ∈ (3,∞) and yT ∈ (2,∞). It is

more difficult to estimate the range of values for xN and yN . We might perhaps guess that xN ∈ (0, 3),

and yN ∈ (−∞, 0) or (−2, 0).
In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the

tangent line: x
2

9
+

y2

4
= 1 ⇒ 2x

9
+
2y

4
y0 = 0, so y0 = −4

9

x

y
. So at the point (x0, y0) on the ellipse, an equation of the
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tangent line is y − y0 = −4
9

x0
y0
(x− x0) or 4x0x+ 9y0y = 4x20 + 9y20 . This can be written as x0x

9
+

y0y

4
=

x20
9
+

y20
4
= 1,

because (x0, y0) lies on the ellipse. So an equation of the tangent line is x0x
9
+

y0y

4
= 1.

Therefore, the x-intercept xT for the tangent line is given by x0xT
9

= 1 ⇔ xT =
9

x0
, and the y-intercept yT is given

by y0yT
4

= 1 ⇔ yT =
4

y0
.

So as x0 takes on all values in (0, 3), xT takes on all values in (3,∞), and as y0 takes on all values in (0, 2), yT takes on

all values in (2,∞). At the point (x0, y0) on the ellipse, the slope of the normal line is− 1

y0(x0, y0)
=
9

4

y0
x0

, and its

equation is y − y0 =
9

4

y0
x0
(x− x0). So the x-intercept xN for the normal line is given by 0− y0 =

9

4

y0
x0
(xN − x0) ⇒

xN = −4x0
9
+ x0 =

5x0
9

, and the y-intercept yN is given by yN − y0 =
9

4

y0
x0
(0− x0) ⇒ yN = −9y0

4
+ y0 = −5y0

4
.

So as x0 takes on all values in (0, 3), xN takes on all values in 0, 5
3

, and as y0 takes on all values in (0, 2), yN takes on

all values in − 5
2
, 0 .

17. (a) If the two lines L1 and L2 have slopes m1 and m2 and angles of

inclination φ1 and φ2, then m1 = tan φ1 and m2 = tan φ2. The triangle

in the figure shows that φ1 + α+ (180◦ − φ2) = 180
◦ and so

α = φ2 − φ1. Therefore, using the identity for tan(x− y), we have

tanα = tan(φ2 − φ1) =
tanφ2 − tanφ1
1 + tanφ2 tanφ1

and so tan α =
m2 −m1

1 +m1m2
.

(b) (i) The parabolas intersect when x2 = (x− 2)2 ⇒ x = 1. If y = x2, then y0 = 2x, so the slope of the tangent

to y = x2 at (1, 1) is m1 = 2(1) = 2. If y = (x− 2)2, then y0 = 2(x− 2), so the slope of the tangent to

y = (x− 2)2 at (1, 1) is m2 = 2(1− 2) = −2. Therefore, tanα = m2 −m1

1 +m1m2
=

−2− 2
1 + 2(−2) =

4

3
and

so α = tan−1 4
3
≈ 53◦ [or 127◦].

(ii) x2 − y2 = 3 and x2 − 4x+ y2 + 3 = 0 intersect when x2 − 4x+ (x2 − 3) + 3 = 0 ⇔ 2x(x− 2) = 0 ⇒
x = 0 or 2, but 0 is extraneous. If x = 2, then y = ±1. If x2 − y2 = 3 then 2x− 2yy0 = 0 ⇒ y0 = x/y and

x2 − 4x+ y2 + 3 = 0 ⇒ 2x− 4 + 2yy0 = 0 ⇒ y0 =
2− x

y
. At (2, 1) the slopes are m1 = 2 and

m2 = 0, so tanα = 0− 2
1+ 2 · 0 = −2 ⇒ α ≈ 117◦. At (2,−1) the slopes are m1 = −2 and m2 = 0,

so tanα = 0− (−2)
1 + (−2) (0) = 2 ⇒ α ≈ 63◦ [or 117◦].
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19. Since ∠ROQ = ∠OQP = θ, the triangle QOR is isosceles, so

|QR| = |RO| = x. By the Law of Cosines, x2 = x2 + r2 − 2rx cos θ. Hence,

2rx cos θ = r2, so x = r2

2r cos θ
=

r

2 cos θ
. Note that as y → 0+, θ → 0+ (since

sin θ = y/r), and hence x→ r

2 cos 0
=

r

2
. Thus, as P is taken closer and closer

to the x-axis, the point R approaches the midpoint of the radius AO.

21. lim
x→0

sin(a+ 2x)− 2 sin(a+ x) + sin a

x2

= lim
x→0

sin a cos 2x+ cos a sin 2x− 2 sin a cosx− 2 cos a sinx+ sina
x2

= lim
x→0

sin a (cos 2x− 2 cosx+ 1) + cos a (sin 2x− 2 sinx)
x2

= lim
x→0

sin a (2 cos2 x− 1− 2 cosx+ 1) + cos a (2 sinx cosx− 2 sinx)
x2

= lim
x→0

sin a (2 cosx)(cosx− 1) + cos a (2 sinx)(cosx− 1)
x2

= lim
x→0

2(cosx− 1)[sin a cosx+ cos a sinx](cosx+ 1)
x2(cosx+ 1)

= lim
x→0

−2 sin2 x [sin(a+ x)]

x2(cosx+ 1)
= −2 lim

x→0

sinx

x

2

· sin(a+ x)

cosx+ 1
= −2(1)2 sin(a+ 0)

cos 0 + 1
= − sin a

23. Let f(x) = e2x and g(x) = k
√
x [k > 0]. From the graphs of f and g,

we see that f will intersect g exactly once when f and g share a tangent

line. Thus, we must have f = g and f 0 = g0 at x = a.

f(a) = g(a) ⇒ e2a = k
√
a ( )

and f 0(a) = g0(a) ⇒ 2e2a =
k

2
√
a

⇒ e2a =
k

4
√
a

.

So we must have k
√
a =

k

4
√
a

⇒
√
a

2

=
k

4k
⇒ a = 1

4
. From ( ), e2(1/4) = k 1/4 ⇒

k = 2e1/2 = 2
√
e ≈ 3.297.

25. y = x√
a2 − 1 −

2√
a2 − 1 arctan

sinx

a+
√
a2 − 1 + cosx . Let k = a+

√
a2 − 1. Then

y0 =
1√

a2 − 1 −
2√

a2 − 1 ·
1

1 + sin2 x/(k + cosx)2
· cosx(k + cosx) + sin

2 x

(k + cosx)2

=
1√

a2 − 1 −
2√

a2 − 1 ·
k cosx+ cos2 x+ sin2 x

(k + cosx)2 + sin2 x
=

1√
a2 − 1 −

2√
a2 − 1 ·

k cosx+ 1

k2 + 2k cosx+ 1

=
k2 + 2k cosx+ 1− 2k cosx− 2√

a2 − 1 (k2 + 2k cosx+ 1) =
k2 − 1√

a2 − 1 (k2 + 2k cosx+ 1)

But k2 = 2a2 + 2a
√
a2 − 1− 1 = 2a a+

√
a2 − 1 − 1 = 2ak − 1, so k2 + 1 = 2ak, and k2 − 1 = 2(ak − 1).

[continued]
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So y0 = 2(ak − 1)√
a2 − 1 (2ak + 2k cosx) =

ak − 1√
a2 − 1k (a+ cosx) . But ak − 1 = a2 + a

√
a2 − 1− 1 = k

√
a2 − 1,

so y0 = 1/(a+ cosx).

27. y = x4 − 2x2 − x ⇒ y0 = 4x3 − 4x− 1. The equation of the tangent line at x = a is

y − (a4 − 2a2 − a) = (4a3 − 4a− 1)(x− a) or y = (4a3 − 4a− 1)x+ (−3a4 + 2a2) and similarly for x = b. So if at

x = a and x = b we have the same tangent line, then 4a3 − 4a− 1 = 4b3 − 4b− 1 and−3a4 +2a2 = −3b4 +2b2. The first

equation gives a3 − b3 = a− b ⇒ (a− b)(a2 + ab+ b2) = (a− b). Assuming a 6= b, we have 1 = a2 + ab+ b2.

The second equation gives 3(a4 − b4) = 2(a2 − b2) ⇒ 3(a2 − b2)(a2 + b2) = 2(a2 − b2) which is true if a = −b.

Substituting into 1 = a2 + ab+ b2 gives 1 = a2 − a2 + a2 ⇒ a = ±1 so that a = 1 and b = −1 or vice versa. Thus,

the points (1,−2) and (−1, 0) have a common tangent line.

As long as there are only two such points, we are done. So we show that these are in fact the only two such points.

Suppose that a2 − b2 6= 0. Then 3(a2 − b2)(a2 + b2) = 2(a2 − b2) gives 3(a2 + b2) = 2 or a2 + b2 = 2
3 .

Thus, ab = (a2 + ab+ b2)− (a2 + b2) = 1− 2

3
=
1

3
, so b = 1

3a
. Hence, a2 + 1

9a2
=
2

3
, so 9a4 + 1 = 6a2 ⇒

0 = 9a4 − 6a2 + 1 = (3a2 − 1)2. So 3a2 − 1 = 0 ⇒ a2 =
1

3
⇒ b2 =

1

9a2
=
1

3
= a2, contradicting our assumption

that a2 6= b2.

29. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5× 2 grid shown. We can see that

the minimum value of r occurs when there is a line with slope 2
5

which touches the circle centered at (3, 1) and the circles

centered at (0, 0) and (5, 2).

To find P , the point at which the line is tangent to the circle at (0, 0), we simultaneously solve x2 + y2 = r2 and

y = − 5
2
x ⇒ x2 + 25

4
x2 = r2 ⇒ x2 = 4

29
r2 ⇒ x = 2√

29
r, y = − 5√

29
r. To find Q, we either use symmetry or

solve (x− 3)2 + (y− 1)2 = r2 and y− 1 = − 5
2 (x− 3). As above, we get x = 3− 2√

29
r, y = 1+ 5√

29
r. Now the slope of

the line PQ is 2
5

, so mPQ =
1 + 5√

29
r − − 5√

29
r

3− 2√
29
r − 2√

29
r

=
1 + 10√

29
r

3− 4√
29

r
=

√
29 + 10r

3
√
29− 4r =

2

5
⇒

5
√
29 + 50r = 6

√
29− 8r ⇔ 58r =

√
29 ⇔ r =

√
29
58

. So the minimum value of r for which any line with slope 2
5

intersects circles with radius r centered at the lattice points on the plane is r =
√
29
58 ≈ 0.093.
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31. By similar triangles, r
5
=

h

16
⇒ r =

5h

16
. The volume of the cone is

V = 1
3
πr2h = 1

3
π

5h

16

2

h =
25π

768
h3, so dV

dt
=
25π

256
h2

dh

dt
. Now the rate of

change of the volume is also equal to the difference of what is being added

(2 cm3/min) and what is oozing out (kπrl, where πrl is the area of the cone and k

is a proportionality constant). Thus, dV
dt

= 2− kπrl.

Equating the two expressions for dV
dt

and substituting h = 10, dh
dt
= −0.3, r = 5(10)

16
=
25

8
, and l√

281
=
10

16
⇔

l =
5

8

√
281, we get 25π

256
(10)2(−0.3) = 2− kπ

25

8
· 5
8

√
281 ⇔ 125kπ

√
281

64
= 2 +

750π

256
. Solving for k gives us

k =
256 + 375π

250π
√
281

. To maintain a certain height, the rate of oozing, kπrl, must equal the rate of the liquid being poured in;

that is,dV
dt

= 0. Thus, the rate at which we should pour the liquid into the container is

kπrl =
256 + 375π

250π
√
281

· π · 25
8
· 5
√
281

8
=
256 + 375π

128
≈ 11.204 cm3/min





4 APPLICATIONS OF DIFFERENTIATION
4.1 Maximum and Minimum Values

1. A function f has an absolute minimum at x = c if f(c) is the smallest function value on the entire domain of f , whereas

f has a local minimum at c if f(c) is the smallest function value when x is near c.

3. Absolute maximum at s, absolute minimum at r, local maximum at c, local minima at b and r, neither a maximum nor a

minimum at a and d.

5. Absolute maximum value is f(4) = 5; there is no absolute minimum value; local maximum values are f(4) = 5 and

f(6) = 4; local minimum values are f(2) = 2 and f(1) = f(5) = 3.

7. Absolute minimum at 2, absolute maximum at 3,

local minimum at 4

9. Absolute maximum at 5, absolute minimum at 2,

local maximum at 3, local minima at 2 and 4

11. (a) (b) (c)

13. (a) Note: By the Extreme Value Theorem,

f must not be continuous; because if it

were, it would attain an absolute

minimum.

(b)

147
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15. f(x) = 8− 3x, x ≥ 1. Absolute maximum f(1) = 5; no

local maximum. No absolute or local minimum.

17. f(x) = x2, 0 < x < 2. No absolute or local maximum or

minimum value.

19. f(x) = x2, 0 ≤ x < 2. Absolute minimum f(0) = 0; no
local minimum. No absolute or local maximum.

21. f(x) = x2, −3 ≤ x ≤ 2. Absolute maximum
f(−3) = 9. No local maximum. Absolute and local
minimum f(0) = 0.

23. f(x) = lnx, 0 < x ≤ 2. Absolute maximum

f(2) = ln 2 ≈ 0.69; no local maximum. No absolute or

local minimum.

25. f(x) = 1−√x. Absolute maximum f(0) = 1; no local

maximum. No absolute or local minimum.

27. f(x) =
1− x if 0 ≤ x < 2

2x− 4 if 2 ≤ x ≤ 3

Absolute maximum f(3) = 2; no local maximum. No absolute or local minimum.
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29. f(x) = 5x2 + 4x ⇒ f 0(x) = 10x+ 4. f 0(x) = 0 ⇒ x = − 2
5 , so − 2

5 is the only critical number.

31. f(x) = x3 + 3x2 − 24x ⇒ f 0(x) = 3x2 + 6x− 24 = 3(x2 + 2x− 8).
f 0(x) = 0 ⇒ 3(x+ 4)(x− 2) = 0 ⇒ x = −4, 2. These are the only critical numbers.

33. s(t) = 3t4 + 4t3 − 6t2 ⇒ s0(t) = 12t3 + 12t2 − 12t. s0(t) = 0 ⇒ 12t(t2 + t− 1) ⇒

t = 0 or t2 + t− 1 = 0. Using the quadratic formula to solve the latter equation gives us

t =
−1± 12 − 4(1)(−1)

2(1)
=
−1±√5

2
≈ 0.618, −1.618. The three critical numbers are 0, −1±

√
5

2
.

35. g(y) = y − 1
y2 − y + 1

⇒

g0(y) =
(y2 − y + 1)(1)− (y − 1)(2y − 1)

(y2 − y + 1)2
=

y2 − y + 1− (2y2 − 3y + 1)
(y2 − y + 1)2

=
−y2 + 2y

(y2 − y + 1)2
=

y(2− y)

(y2 − y + 1)2
.

g0(y) = 0 ⇒ y = 0, 2. The expression y2 − y + 1 is never equal to 0, so g0(y) exists for all real numbers.

The critical numbers are 0 and 2.

37. h(t) = t3/4 − 2t1/4 ⇒ h0(t) = 3
4
t−1/4 − 2

4
t−3/4 = 1

4
t−3/4(3t1/2 − 2) = 3

√
t− 2

4
4
√
t3

.

h0(t) = 0 ⇒ 3
√
t = 2 ⇒ √

t = 2
3
⇒ t = 4

9
. h0(t) does not exist at t = 0, so the critical numbers are 0 and 4

9
.

39. F (x) = x4/5(x− 4)2 ⇒

F 0(x) = x4/5 · 2(x− 4) + (x− 4)2 · 4
5
x−1/5 = 1

5
x−1/5(x− 4)[5 · x · 2 + (x− 4) · 4]

=
(x− 4)(14x− 16)

5x1/5
=
2(x− 4)(7x− 8)

5x1/5

F 0(x) = 0 ⇒ x = 4, 8
7

. F 0(0) does not exist. Thus, the three critical numbers are 0, 8
7

, and 4.

41. f(θ) = 2 cos θ + sin2 θ ⇒ f 0(θ) = −2 sin θ + 2 sin θ cos θ. f 0(θ) = 0 ⇒ 2 sin θ (cos θ − 1) = 0 ⇒ sin θ = 0

or cos θ = 1 ⇒ θ = nπ [n an integer] or θ = 2nπ. The solutions θ = nπ include the solutions θ = 2nπ, so the critical

numbers are θ = nπ.

43. f(x) = x2e−3x ⇒ f 0(x) = x2(−3e−3x) + e−3x(2x) = xe−3x(−3x+ 2). f 0(x) = 0 ⇒ x = 0, 2
3

[e−3x is never equal to 0]. f 0(x) always exists, so the critical numbers are 0 and 2
3

.

45. The graph of f 0(x) = 5e−0.1|x| sinx− 1 has 10 zeros and exists

everywhere, so f has 10 critical numbers.
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47. f(x) = 3x2 − 12x+ 5, [0, 3]. f 0(x) = 6x− 12 = 0 ⇔ x = 2. Applying the Closed Interval Method, we find that

f(0) = 5, f(2) = −7, and f(3) = −4. So f(0) = 5 is the absolute maximum value and f(2) = −7 is the absolute minimum

value.

49. f(x) = 2x3 − 3x2 − 12x+ 1, [−2, 3]. f 0(x) = 6x2 − 6x− 12 = 6(x2 − x− 2) = 6(x− 2)(x+ 1) = 0 ⇔
x = 2,−1. f(−2) = −3, f(−1) = 8, f(2) = −19, and f(3) = −8. So f(−1) = 8 is the absolute maximum value and

f(2) = −19 is the absolute minimum value.

51. f(x) = x4 − 2x2 + 3, [−2, 3]. f 0(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x+ 1)(x− 1) = 0 ⇔ x = −1, 0, 1.

f(−2) = 11, f(−1) = 2, f(0) = 3, f(1) = 2, f(3) = 66. So f(3) = 66 is the absolute maximum value and f(±1) = 2 is

the absolute minimum value.

53. f(x) = x

x2 + 1
, [0, 2]. f 0(x) =

(x2 + 1)− x(2x)

(x2 + 1)2
=

1− x2

(x2 + 1)2
= 0 ⇔ x = ±1, but −1 is not in [0, 2]. f(0) = 0,

f(1) = 1
2 , f(2) = 2

5 . So f(1) = 1
2 is the absolute maximum value and f(0) = 0 is the absolute minimum value.

55. f(t) = t
√
4− t2, [−1, 2].

f 0(t) = t · 1
2
(4− t2)−1/2 (−2t) + (4− t2)1/2 · 1 = −t2√

4− t2
+
√
4− t2 =

−t2 + (4− t2)√
4− t2

=
4− 2t2√
4− t2

.

f 0(t) = 0 ⇒ 4− 2t2 = 0 ⇒ t2 = 2 ⇒ t = ±√2, but t = −√2 is not in the given interval, [−1, 2].

f 0(t) does not exist if 4− t2 = 0 ⇒ t = ±2, but −2 is not in the given interval. f(−1) = −√3, f
√
2 = 2, and

f(2) = 0. So f
√
2 = 2 is the absolute maximum value and f(−1) = −√3 is the absolute minimum value.

57. f(t) = 2 cos t+ sin 2t, [0, π/2].

f 0(t) = −2 sin t+ cos 2t · 2 = −2 sin t+ 2(1− 2 sin2 t) = −2(2 sin2 t+ sin t− 1) = −2(2 sin t− 1)(sin t+ 1).

f 0(t) = 0 ⇒ sin t = 1
2 or sin t = −1 ⇒ t = π

6 . f(0) = 2, f(π6 ) =
√
3 + 1

2

√
3 = 3

2

√
3 ≈ 2.60, and f(π2 ) = 0.

So f(π6 ) =
3
2

√
3 is the absolute maximum value and f(π2 ) = 0 is the absolute minimum value.

59. f(x) = xe−x
2/8, [−1, 4]. f 0(x) = x · e−x2/8 · (−x

4
) + e−x

2/8 · 1 = e−x
2/8(−x2

4
+ 1). Since e−x

2/8 is never 0,

f 0(x) = 0 ⇒ −x2/4 + 1 = 0 ⇒ 1 = x2/4 ⇒ x2 = 4 ⇒ x = ±2, but −2 is not in the given interval, [−1, 4].

f(−1) = −e−1/8 ≈ −0.88, f(2) = 2e−1/2 ≈ 1.21, and f(4) = 4e−2 ≈ 0.54. So f(2) = 2e−1/2 is the absolute maximum

value and f(−1) = −e−1/8 is the absolute minimum value.

61. f(x) = ln(x2 + x+ 1), [−1, 1]. f 0(x) = 1

x2 + x+ 1
· (2x+ 1) = 0 ⇔ x = − 1

2
. Since x2 + x+ 1 > 0 for all x, the

domain of f and f 0 is R. f(−1) = ln 1 = 0, f − 1
2
= ln 3

4
≈ −0.29, and f(1) = ln 3 ≈ 1.10. So f(1) = ln 3 ≈ 1.10 is

the absolute maximum value and f − 1
2
= ln 3

4 ≈ −0.29 is the absolute minimum value.
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63. f(x) = xa(1− x)b, 0 ≤ x ≤ 1, a > 0, b > 0.

f 0(x) = xa · b(1− x)b−1(−1) + (1− x)b · axa−1 = xa−1(1− x)b−1[x · b(−1) + (1− x) · a]
= xa−1(1− x)b−1(a− ax− bx)

At the endpoints, we have f(0) = f(1) = 0 [the minimum value of f ]. In the interval (0, 1), f 0(x) = 0 ⇔ x =
a

a+ b
.

f
a

a+ b
=

a

a+ b

a

1− a

a+ b

b

=
aa

(a+ b)a
a+ b− a

a+ b

b

=
aa

(a+ b)a
· bb

(a+ b)b
=

aabb

(a+ b)a+b
.

So f a

a+ b
=

aabb

(a+ b)a+b
is the absolute maximum value.

65. (a) From the graph, it appears that the absolute maximum value is about

f(−0.77) = 2.19, and the absolute minimum value is about

f(0.77) = 1.81.

(b) f(x) = x5 − x3 + 2 ⇒ f 0(x) = 5x4 − 3x2 = x2(5x2 − 3). So f 0(x) = 0 ⇒ x = 0, ± 3
5

.

f − 3
5

= − 3
5

5

− − 3
5

3

+ 2 = − 3
5

2 3
5 +

3
5

3
5 + 2 =

3
5 − 9

25
3
5 + 2 =

6
25

3
5 + 2 (maximum)

and similarly, f 3
5

= − 6
25

3
5
+ 2 (minimum).

67. (a) From the graph, it appears that the absolute maximum value is about

f(0.75) = 0.32, and the absolute minimum value is f(0) = f(1) = 0;

that is, at both endpoints.

(b) f(x) = x
√
x− x2 ⇒ f 0(x) = x · 1− 2x

2
√
x− x2

+
√
x− x2 =

(x− 2x2) + (2x− 2x2)
2
√
x− x2

=
3x− 4x2
2
√
x− x2

.

So f 0(x) = 0 ⇒ 3x− 4x2 = 0 ⇒ x(3− 4x) = 0 ⇒ x = 0 or 3
4 .

f(0) = f(1) = 0 (minimum), and f 3
4
= 3

4
3
4
− 3

4

2
= 3

4
3
16
= 3

√
3

16
(maximum).

69. The density is defined as ρ = mass
volume

=
1000

V (T )
(in g/cm3). But a critical point of ρ will also be a critical point of V

[since dρ

dT
= −1000V −2 dV

dT
and V is never 0], and V is easier to differentiate than ρ.

V (T ) = 999.87− 0.06426T + 0.0085043T 2 − 0.0000679T 3 ⇒ V 0(T ) = −0.06426 + 0.0170086T − 0.0002037T 2.

Setting this equal to 0 and using the quadratic formula to find T , we get

T =
−0.0170086±√0.01700862 − 4 · 0.0002037 · 0.06426

2(−0.0002037) ≈ 3.9665◦C or 79.5318◦C. Since we are only interested



152 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

in the region 0◦C ≤ T ≤ 30◦C, we check the density ρ at the endpoints and at 3.9665◦C: ρ(0) ≈ 1000

999.87
≈ 1.00013;

ρ(30) ≈ 1000

1003.7628
≈ 0.99625; ρ(3.9665) ≈ 1000

999.7447
≈ 1.000255. So water has its maximum density at

about 3.9665◦C.

71. Let a = −0.000 032 37, b = 0.000 903 7, c = −0.008 956, d = 0.03629, e = −0.04458, and f = 0.4074.

Then S(t) = at5 + bt4 + ct3 + dt2 + et+ f and S0(t) = 5at4 + 4bt3 + 3ct2 + 2dt+ e.

We now apply the Closed Interval Method to the continuous function S on the interval 0 ≤ t ≤ 10. Since S0 exists for all t,

the only critical numbers of S occur when S0(t) = 0. We use a rootfinder on a CAS (or a graphing device) to find that

S0(t) = 0 when t1 ≈ 0.855, t2 ≈ 4.618, t3 ≈ 7.292, and t4 ≈ 9.570. The values of S at these critical numbers are

S(t1) ≈ 0.39, S(t2) ≈ 0.43645, S(t3) ≈ 0.427, and S(t4) ≈ 0.43641. The values of S at the endpoints of the interval are

S(0) ≈ 0.41 and S(10) ≈ 0.435. Comparing the six numbers, we see that sugar was most expensive at t2 ≈ 4.618

(corresponding roughly to March 1998) and cheapest at t1 ≈ 0.855 (June 1994).

73. (a) v(r) = k(r0 − r)r2 = kr0r
2 − kr3 ⇒ v0(r) = 2kr0r − 3kr2. v0(r) = 0 ⇒ kr(2r0 − 3r) = 0 ⇒

r = 0 or 2
3
r0 (but 0 is not in the interval). Evaluating v at 1

2
r0, 2

3
r0, and r0, we get v 1

2
r0 = 1

8
kr30 , v 2

3
r0 = 4

27
kr30 ,

and v(r0) = 0. Since 4
27

> 1
8

, v attains its maximum value at r = 2
3
r0. This supports the statement in the text.

(b) From part (a), the maximum value of v is 4
27
kr30 .

(c)

75. f(x) = x101 + x51 + x+ 1 ⇒ f 0(x) = 101x100 + 51x50 + 1 ≥ 1 for all x, so f 0(x) = 0 has no solution. Thus, f(x)

has no critical number, so f(x) can have no local maximum or minimum.

77. If f has a local minimum at c, then g(x) = −f(x) has a local maximum at c, so g0(c) = 0 by the case of Fermat’s Theorem

proved in the text. Thus, f 0(c) = −g0(c) = 0.

4.2 The Mean Value Theorem

1. f(x) = 5− 12x+ 3x2, [1, 3]. Since f is a polynomial, it is continuous and differentiable on R, so it is continuous on [1, 3]

and differentiable on (1, 3). Also f(1) = −4 = f(3). f 0(c) = 0 ⇔ −12 + 6c = 0 ⇔ c = 2, which is in the open

interval (1, 3), so c = 2 satisfies the conclusion of Rolle’s Theorem.
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3. f(x) =
√
x− 1

3x, [0, 9]. f , being the difference of a root function and a polynomial, is continuous and differentiable

on [0,∞), so it is continuous on [0, 9] and differentiable on (0, 9). Also, f(0) = 0 = f(9). f 0(c) = 0 ⇔
1

2
√
c
− 1

3
= 0 ⇔ 2

√
c = 3 ⇔ √

c =
3

2
⇒ c =

9

4
, which is in the open interval (0, 9), so c = 9

4
satisfies the

conclusion of Rolle’s Theorem.

5. f(x) = 1− x2/3. f(−1) = 1− (−1)2/3 = 1− 1 = 0 = f(1). f 0(x) = − 2
3
x−1/3, so f 0(c) = 0 has no solution. This

does not contradict Rolle’s Theorem, since f 0(0) does not exist, and so f is not differentiable on (−1, 1).

7. f(8)− f(0)

8− 0 =
6− 4
8

=
1

4
. The values of c which satisfy f 0(c) = 1

4
seem to be about c = 0.8, 3.2, 4.4, and 6.1.

9. (a), (b) The equation of the secant line is

y − 5 = 8.5− 5
8− 1 (x− 1) ⇔ y = 1

2
x+ 9

2
.

(c) f(x) = x+ 4/x ⇒ f 0(x) = 1− 4/x2.

So f 0(c) = 1
2 ⇒ c2 = 8 ⇒ c = 2

√
2, and

f(c) = 2
√
2 + 4

2
√
2
= 3

√
2. Thus, an equation of the

tangent line is y − 3√2 = 1
2
x− 2√2 ⇔

y = 1
2
x+ 2

√
2.

11. f(x) = 3x2 + 2x+ 5, [−1, 1]. f is continuous on [−1, 1] and differentiable on (−1, 1) since polynomials are continuous

and differentiable on R. f 0(c) =
f(b)− f(a)

b− a
⇔ 6c+ 2 =

f(1)− f(−1)
1− (−1) =

10− 6
2

= 2 ⇔ 6c = 0 ⇔

c = 0, which is in (−1, 1).

13. f(x) = e−2x, [0, 3]. f is continuous and differentiable on R, so it is continuous on [0, 3] and differentiable on (0, 3).

f 0(c) =
f(b)− f(a)

b− a
⇔ −2e−2c = e−6 − e0

3− 0 ⇔ e−2c =
1− e−6

6
⇔ −2c = ln 1− e−6

6
⇔

c = −1
2
ln

1− e−6

6
≈ 0.897, which is in (0, 3).



154 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

15. f(x) = (x− 3)−2 ⇒ f 0(x) = −2 (x− 3)−3. f(4)− f(1) = f 0(c)(4− 1) ⇒ 1

12
− 1

(−2)2 =
−2

(c− 3)3 · 3 ⇒

3

4
=

−6
(c− 3)3 ⇒ (c− 3)3 = −8 ⇒ c− 3 = −2 ⇒ c = 1, which is not in the open interval (1, 4). This does not

contradict the Mean Value Theorem since f is not continuous at x = 3.

17. Let f(x) = 1 + 2x+ x3 + 4x5. Then f(−1) = −6 < 0 and f(0) = 1 > 0. Since f is a polynomial, it is continuous, so the

Intermediate Value Theorem says that there is a number c between −1 and 0 such that f(c) = 0. Thus, the given equation has

a real root. Suppose the equation has distinct real roots a and b with a < b. Then f(a) = f(b) = 0. Since f is a polynomial, it

is differentiable on (a, b) and continuous on [a, b]. By Rolle’s Theorem, there is a number r in (a, b) such that f 0(r) = 0. But

f 0(x) = 2 + 3x2 + 20x4 ≥ 2 for all x, so f 0(x) can never be 0. This contradiction shows that the equation can’t have two

distinct real roots. Hence, it has exactly one real root.

19. Let f(x) = x3 − 15x+ c for x in [−2, 2]. If f has two real roots a and b in [−2, 2], with a < b, then f(a) = f(b) = 0. Since

the polynomial f is continuous on [a, b] and differentiable on (a, b), Rolle’s Theorem implies that there is a number r in (a, b)

such that f 0(r) = 0. Now f 0(r) = 3r2 − 15. Since r is in (a, b), which is contained in [−2, 2], we have |r| < 2, so r2 < 4.

It follows that 3r2 − 15 < 3 · 4− 15 = −3 < 0. This contradicts f 0(r) = 0, so the given equation can’t have two real roots

in [−2, 2]. Hence, it has at most one real root in [−2, 2].

21. (a) Suppose that a cubic polynomial P (x) has roots a1 < a2 < a3 < a4, so P (a1) = P (a2) = P (a3) = P (a4).

By Rolle’s Theorem there are numbers c1, c2, c3 with a1 < c1 < a2, a2 < c2 < a3 and a3 < c3 < a4 and

P 0(c1) = P 0(c2) = P 0(c3) = 0. Thus, the second-degree polynomial P 0(x) has three distinct real roots, which is

impossible.

(b) We prove by induction that a polynomial of degree n has at most n real roots. This is certainly true for n = 1. Suppose

that the result is true for all polynomials of degree n and let P (x) be a polynomial of degree n+ 1. Suppose that P (x) has

more than n+ 1 real roots, say a1 < a2 < a3 < · · · < an+1 < an+2. Then P (a1) = P (a2) = · · · = P (an+2) = 0.

By Rolle’s Theorem there are real numbers c1, . . . , cn+1 with a1 < c1 < a2, . . . , an+1 < cn+1 < an+2 and

P 0(c1) = · · · = P 0(cn+1) = 0. Thus, the nth degree polynomial P 0(x) has at least n+ 1 roots. This contradiction shows

that P (x) has at most n+ 1 real roots.

23. By the Mean Value Theorem, f(4)− f(1) = f 0(c)(4− 1) for some c ∈ (1, 4). But for every c ∈ (1, 4) we have

f 0(c) ≥ 2. Putting f 0(c) ≥ 2 into the above equation and substituting f(1) = 10, we get

f(4) = f(1) + f 0(c)(4− 1) = 10 + 3f 0(c) ≥ 10 + 3 · 2 = 16. So the smallest possible value of f(4) is 16.

25. Suppose that such a function f exists. By the Mean Value Theorem there is a number 0 < c < 2 with

f 0(c) =
f(2)− f(0)

2− 0 =
5

2
. But this is impossible since f 0(x) ≤ 2 < 5

2
for all x, so no such function can exist.
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27. We use Exercise 26 with f(x) =
√
1 + x, g(x) = 1 + 1

2x, and a = 0. Notice that f(0) = 1 = g(0) and

f 0(x) =
1

2
√
1 + x

<
1

2
= g0(x) for x > 0. So by Exercise 26, f(b) < g(b) ⇒ √

1 + b < 1 + 1
2
b for b > 0.

Another method: Apply the Mean Value Theorem directly to either f(x) = 1 + 1
2
x−√1 + x or g(x) =

√
1 + x on [0, b].

29. Let f(x) = sinx and let b < a. Then f(x) is continuous on [b, a] and differentiable on (b, a). By the Mean Value Theorem,

there is a number c ∈ (b, a) with sina− sin b = f(a)− f(b) = f 0(c)(a− b) = (cos c)(a− b). Thus,

|sin a− sin b| ≤ |cos c| |b− a| ≤ |a− b|. If a < b, then |sin a− sin b| = |sin b− sina| ≤ |b− a| = |a− b|. If a = b, both

sides of the inequality are 0.

31. For x > 0, f(x) = g(x), so f 0(x) = g0(x). For x < 0, f 0(x) = (1/x)0 = −1/x2 and g0(x) = (1 + 1/x)0 = −1/x2, so

again f 0(x) = g0(x). However, the domain of g(x) is not an interval [it is (−∞, 0) ∪ (0,∞)] so we cannot conclude that

f − g is constant (in fact it is not).

33. Let f(x) = arcsin x− 1
x+ 1

− 2 arctan√x+ π
2

. Note that the domain of f is [0,∞). Thus,

f 0(x) =
1

1− x− 1
x+ 1

2

(x+ 1)− (x− 1)
(x+ 1)2

− 2

1 + x
· 1

2
√
x
=

1√
x (x+ 1)

− 1√
x (x+ 1)

= 0.

Then f(x) = C on (0,∞) by Theorem 5. By continuity of f , f(x) = C on [0,∞). To find C, we let x = 0 ⇒
arcsin(−1)− 2 arctan(0) + π

2
= C ⇒ −π

2
− 0 + π

2
= 0 = C. Thus, f(x) = 0 ⇒

arcsin
x− 1
x+ 1

= 2arctan
√
x− π

2
.

35. Let g(t) and h(t) be the position functions of the two runners and let f(t) = g(t)− h(t). By hypothesis,

f(0) = g(0)− h(0) = 0 and f(b) = g(b)− h(b) = 0, where b is the finishing time. Then by the Mean Value Theorem,

there is a time c, with 0 < c < b, such that f 0(c) = f(b)− f(0)

b− 0 . But f(b) = f(0) = 0, so f 0(c) = 0. Since

f 0(c) = g0(c)− h0(c) = 0, we have g0(c) = h0(c). So at time c, both runners have the same speed g0(c) = h0(c).

4.3 How Derivatives Affect the Shape of a Graph

1. (a) f is increasing on (1, 3) and (4, 6). (b) f is decreasing on (0, 1) and (3, 4).

(c) f is concave upward on (0, 2). (d) f is concave downward on (2, 4) and (4, 6).

(e) The point of inflection is (2, 3).

3. (a) Use the Increasing/Decreasing (I/D) Test. (b) Use the Concavity Test.

(c) At any value of x where the concavity changes, we have an inflection point at (x, f(x)).
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5. (a) Since f 0(x) > 0 on (1, 5), f is increasing on this interval. Since f 0(x) < 0 on (0, 1) and (5, 6), f is decreasing on these

intervals.

(b) Since f 0(x) = 0 at x = 1 and f 0 changes from negative to positive there, f changes from decreasing to increasing and has

a local minimum at x = 1. Since f 0(x) = 0 at x = 5 and f 0 changes from positive to negative there, f changes from

increasing to decreasing and has a local maximum at x = 5.

7. There is an inflection point at x = 1 because f 00(x) changes from negative to positive there, and so the graph of f changes

from concave downward to concave upward. There is an inflection point at x = 7 because f 00(x) changes from positive to

negative there, and so the graph of f changes from concave upward to concave downward.

9. (a) f(x) = 2x3 + 3x2 − 36x ⇒ f 0(x) = 6x2 + 6x− 36 = 6(x2 + x− 6) = 6(x+ 3)(x− 2).
We don’t need to include the “6” in the chart to determine the sign of f 0(x).

Interval x+ 3 x− 2 f 0(x) f

x < −3 − − + increasing on (−∞,−3)
−3 < x < 2 + − − decreasing on (−3, 2)
x > 2 + + + increasing on (2,∞)

(b) f changes from increasing to decreasing at x = −3 and from decreasing to increasing at x = 2. Thus, f(−3) = 81 is a

local maximum value and f(2) = −44 is a local minimum value.

(c) f 0(x) = 6x2 + 6x− 36 ⇒ f 00(x) = 12x+ 6. f 00(x) = 0 at x = − 1
2

, f 00(x) > 0 ⇔ x > − 1
2

, and

f 00(x) < 0 ⇔ x < − 1
2

. Thus, f is concave upward on − 1
2
,∞ and concave downward on −∞,− 1

2
. There is an

inflection point at − 1
2
, f − 1

2
= − 1

2
, 37
2

.

11. (a) f(x) = x4 − 2x2 + 3 ⇒ f 0(x) = 4x3 − 4x = 4x x2 − 1 = 4x(x+ 1)(x− 1).

Interval x+ 1 x x− 1 f 0(x) f

x < −1 − − − − decreasing on (−∞,−1)
−1 < x < 0 + − − + increasing on (−1, 0)
0 < x < 1 + + − − decreasing on (0, 1)

x > 1 + + + + increasing on (1,∞)

(b) f changes from increasing to decreasing at x = 0 and from decreasing to increasing at x = −1 and x = 1. Thus,

f(0) = 3 is a local maximum value and f(±1) = 2 are local minimum values.

(c) f 00(x) = 12x2 − 4 = 12 x2 − 1
3
= 12 x+ 1/

√
3 x− 1/√3 . f 00(x) > 0 ⇔ x < −1/√3 or x > 1/

√
3 and

f 00(x) < 0 ⇔ −1/√3 < x < 1/
√
3. Thus, f is concave upward on −∞,−√3/3 and

√
3/3,∞ and concave

downward on −√3/3,√3/3 . There are inflection points at ±√3/3, 22
9

.
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13. (a) f(x) = sinx+ cosx, 0 ≤ x ≤ 2π. f 0(x) = cosx− sinx = 0 ⇒ cosx = sinx ⇒ 1 =
sinx

cosx
⇒

tanx = 1 ⇒ x = π
4

or 5π
4

. Thus, f 0(x) > 0 ⇔ cosx− sinx > 0 ⇔ cosx > sinx ⇔ 0 < x < π
4

or

5π
4
< x < 2π and f 0(x) < 0 ⇔ cosx < sinx ⇔ π

4
< x < 5π

4
. So f is increasing on 0, π

4
and 5π

4
, 2π and f

is decreasing on π
4
, 5π
4

.

(b) f changes from increasing to decreasing at x = π
4

and from decreasing to increasing at x = 5π
4

. Thus, f π
4
=
√
2 is a

local maximum value and f 5π
4

= −√2 is a local minimum value.

(c) f 00(x) = − sinx− cosx = 0 ⇒ − sinx = cosx ⇒ tanx = −1 ⇒ x = 3π
4

or 7π
4

. Divide the interval

(0, 2π) into subintervals with these numbers as endpoints and complete a second derivative chart.

Interval f 00(x) = − sinx− cosx Concavity

0, 3π
4

f 00 π
2
= −1 < 0 downward

3π
4
, 7π
4

f 00(π) = 1 > 0 upward
7π
4
, 2π f 00 11π

6
= 1

2
− 1

2

√
3 < 0 downward

There are inflection points at 3π
4
, 0 and 7π

4
, 0 .

15. (a) f(x) = e2x + e−x ⇒ f 0(x) = 2e2x − e−x. f 0(x) > 0 ⇔ 2e2x > e−x ⇔ e3x > 1
2
⇔ 3x > ln 1

2
⇔

x > 1
3 (ln 1− ln 2) ⇔ x > − 1

3 ln 2 [≈ −0.23] and f 0(x) < 0 if x < − 1
3 ln 2. So f is increasing on − 1

3 ln 2,∞
and f is decreasing on −∞,− 1

3
ln 2 .

(b) f changes from decreasing to increasing at x = − 1
3
ln 2. Thus,

f − 1
3
ln 2 = f ln 3 1/2 = e2 ln

3
√
1/2 + e− ln 3

√
1/2 = eln

3
√
1/4 + eln

3√2 = 3 1/4 + 3
√
2 = 2−2/3 + 21/3 [≈ 1.89]

is a local minimum value.

(c) f 00(x) = 4e2x + e−x > 0 [the sum of two positive terms]. Thus, f is concave upward on (−∞,∞) and there is no

point of inflection.

17. (a) y = f(x) =
lnx√
x

. (Note that f is only defined for x > 0.)

f 0(x) =

√
x (1/x)− lnx 1

2
x−1/2

x
=

1√
x
− lnx

2
√
x

x
· 2
√
x

2
√
x
=
2− lnx
2x3/2

> 0 ⇔ 2− lnx > 0 ⇔

lnx < 2 ⇔ x < e2. Therefore f is increasing on 0, e2 and decreasing on e2,∞ .

(b) f changes from increasing to decreasing at x = e2, so f(e2) = ln e2√
e2
=
2

e
is a local maximum value.

(c) f 00(x) = 2x3/2(−1/x)− (2− lnx)(3x1/2)
(2x3/2)

2 =
−2x1/2 + 3x1/2(lnx− 2)

4x3
=

x1/2(−2 + 3 lnx− 6)
4x3

=
3 lnx− 8
4x5/2

f 00(x) = 0 ⇔ lnx = 8
3 ⇔ x = e8/3. f 00(x) > 0 ⇔ x > e8/3, so f is concave upward on (e8/3,∞) and

concave downward on (0, e8/3). There is an inflection point at e8/3, 8
3
e−4/3 ≈ (14.39, 0.70).
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19. f(x) = x5 − 5x+ 3 ⇒ f 0(x) = 5x4 − 5 = 5(x2 + 1)(x+ 1)(x− 1).
First Derivative Test: f 0(x) < 0 ⇒ −1 < x < 1 and f 0(x) > 0 ⇒ x > 1 or x < −1. Since f 0 changes from

positive to negative at x = −1, f(−1) = 7 is a local maximum value; and since f 0 changes from negative to positive at x = 1,

f(1) = −1 is a local minimum value.

Second Derivative Test: f 00(x) = 20x3. f 0(x) = 0 ⇔ x = ±1. f 00(−1) = −20 < 0 ⇒ f(−1) = 7 is a local

maximum value. f 00(1) = 20 > 0 ⇒ f(1) = −1 is a local minimum value.

Preference: For this function, the two tests are equally easy.

21. f(x) = x+
√
1− x ⇒ f 0(x) = 1 + 1

2 (1− x)−1/2(−1) = 1− 1

2
√
1− x

. Note that f is defined for 1− x ≥ 0; that is,

for x ≤ 1. f 0(x) = 0 ⇒ 2
√
1− x = 1 ⇒ √

1− x = 1
2
⇒ 1− x = 1

4
⇒ x = 3

4
. f 0 does not exist at x = 1,

but we can’t have a local maximum or minimum at an endpoint.

First Derivative Test: f 0(x) > 0 ⇒ x < 3
4

and f 0(x) < 0 ⇒ 3
4
< x < 1. Since f 0 changes from positive to

negative at x = 3
4

, f 3
4
= 5

4
is a local maximum value.

Second Derivative Test: f 00(x) = − 1
2
− 1
2
(1− x)−3/2(−1) = − 1

4
√
1− x

3 .

f 00 3
4
= −2 < 0 ⇒ f 3

4
= 5

4 is a local maximum value.

Preference: The First Derivative Test may be slightly easier to apply in this case.

23. (a) By the Second Derivative Test, if f 0(2) = 0 and f 00(2) = −5 < 0, f has a local maximum at x = 2.

(b) If f 0(6) = 0, we know that f has a horizontal tangent at x = 6. Knowing that f 00(6) = 0 does not provide any additional

information since the Second Derivative Test fails. For example, the first and second derivatives of y = (x− 6)4,

y = −(x− 6)4, and y = (x− 6)3 all equal zero for x = 6, but the first has a local minimum at x = 6, the second has a

local maximum at x = 6, and the third has an inflection point at x = 6.

25. f 0(0) = f 0(2) = f 0(4) = 0 ⇒ horizontal tangents at x = 0, 2, 4.

f 0(x) > 0 if x < 0 or 2 < x < 4 ⇒ f is increasing on (−∞, 0) and (2, 4).

f 0(x) < 0 if 0 < x < 2 or x > 4 ⇒ f is decreasing on (0, 2) and (4,∞).
f 00(x) > 0 if 1 < x < 3 ⇒ f is concave upward on (1, 3).

f 00(x) < 0 if x < 1 or x > 3 ⇒ f is concave downward on (−∞, 1) and (3,∞).
There are inflection points when x = 1 and 3.

27. f 0(x) > 0 if |x| < 2 ⇒ f is increasing on (−2, 2).
f 0(x) < 0 if |x| > 2 ⇒ f is decreasing on (−∞,−2)
and (2,∞). f 0(−2) = 0 ⇒ horizontal tangent at x = −2.

lim
x→2

|f 0(x)| =∞ ⇒ there is a vertical asymptote or

vertical tangent (cusp) at x = 2. f 00(x) > 0 if x 6= 2 ⇒
f is concave upward on (−∞, 2) and (2,∞).
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29. The function must be always decreasing (since the first derivative is always negative)

and concave downward (since the second derivative is always negative).

31. (a) f is increasing where f 0 is positive, that is, on (0, 2), (4, 6), and (8,∞); and decreasing where f 0 is negative, that is,

on (2, 4) and (6, 8).

(b) f has local maxima where f 0 changes from positive to negative, at x = 2 and at x = 6, and local minima where f 0 changes

from negative to positive, at x = 4 and at x = 8.

(c) f is concave upward (CU) where f 0 is increasing, that is, on (3, 6) and (6,∞),
and concave downward (CD) where f 0 is decreasing, that is, on (0, 3).

(e)

(d) There is a point of inflection where f changes from being CD to being CU, that

is, at x = 3.

33. (a) f(x) = 2x3 − 3x2 − 12x ⇒ f 0(x) = 6x2 − 6x− 12 = 6(x2 − x− 2) = 6(x− 2)(x+ 1).
f 0(x) > 0 ⇔ x < −1 or x > 2 and f 0(x) < 0 ⇔ −1 < x < 2. So f is increasing on (−∞,−1) and (2,∞),
and f is decreasing on (−1, 2).

(b) Since f changes from increasing to decreasing at x = −1, f(−1) = 7 is a local

maximum value. Since f changes from decreasing to increasing at x = 2,

f(2) = −20 is a local minimum value.

(d)

(c) f 00(x) = 6(2x− 1) ⇒ f 00(x) > 0 on 1
2
,∞ and f 00(x) < 0 on −∞, 1

2
.

So f is concave upward on 1
2
,∞ and concave downward on −∞, 1

2
. There

is a change in concavity at x = 1
2 , and we have an inflection point at 1

2 ,− 13
2

.

35. (a) f(x) = 2 + 2x2 − x4 ⇒ f 0(x) = 4x− 4x3 = 4x(1− x2) = 4x(1 + x)(1− x). f 0(x) > 0 ⇔ x < −1 or

0 < x < 1 and f 0(x) < 0 ⇔ −1 < x < 0 or x > 1. So f is increasing on (−∞,−1) and (0, 1) and f is decreasing

on (−1, 0) and (1,∞).

(b) f changes from increasing to decreasing at x = −1 and x = 1, so f(−1) = 3 and f(1) = 3 are local maximum values.

f changes from decreasing to increasing at x = 0, so f(0) = 2 is a local minimum value.
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(c) f 00(x) = 4− 12x2 = 4(1− 3x2). f 00(x) = 0 ⇔ 1− 3x2 = 0 ⇔

x2 = 1
3
⇔ x = ±1/√3. f 00(x) > 0 on −1/√3, 1/√3 and f 00(x) < 0

on −∞,−1/√3 and 1/
√
3,∞ . So f is concave upward on

−1/√3, 1/√3 and f is concave downward on −∞,−1/√3 and

1/
√
3,∞ . f ±1/√3 = 2 + 2

3
− 1

9
= 23

9
. There are points of inflection

at ±1/√3, 23
9

.

(d)

37. (a) h(x) = (x+ 1)5 − 5x− 2 ⇒ h0(x) = 5(x+ 1)4 − 5. h0(x) = 0 ⇔ 5(x+ 1)4 = 5 ⇔ (x+ 1)4 = 1 ⇒

(x+ 1)2 = 1 ⇒ x+ 1 = 1 or x+ 1 = −1 ⇒ x = 0 or x = −2. h0(x) > 0 ⇔ x < −2 or x > 0 and

h0(x) < 0 ⇔ −2 < x < 0. So h is increasing on (−∞,−2) and (0,∞) and h is decreasing on (−2, 0).

(b) h(−2) = 7 is a local maximum value and h(0) = −1 is a local minimum value. (d)

(c) h00(x) = 20(x+ 1)3 = 0 ⇔ x = −1. h00(x) > 0 ⇔ x > −1 and

h00(x) < 0 ⇔ x < −1, so h is CU on (−1,∞) and h is CD on (−∞,−1).
There is a point of inflection at (−1, h(−1)) = (−1, 3).

39. (a) A(x) = x
√
x+ 3 ⇒ A0(x) = x · 1

2
(x+3)−1/2+

√
x+ 3 ·1 = x

2
√
x+ 3

+
√
x+ 3 =

x+ 2(x+ 3)

2
√
x+ 3

=
3x+ 6

2
√
x+ 3

.

The domain of A is [−3,∞). A0(x) > 0 for x > −2 and A0(x) < 0 for −3 < x < −2, so A is increasing on (−2,∞)
and decreasing on (−3,−2).

(b) A(−2) = −2 is a local minimum value. (d)

(c) A00(x) =
2
√
x+ 3 · 3− (3x+ 6) · 1√

x+ 3

2
√
x+ 3

2

=
6(x+ 3)− (3x+ 6)

4(x+ 3)3/2
=

3x+ 12

4(x+ 3)3/2
=

3(x+ 4)

4(x+ 3)3/2

A00(x) > 0 for all x > −3, so A is concave upward on (−3,∞). There is no inflection point.

41. (a) C(x) = x1/3(x+ 4) = x4/3 + 4x1/3 ⇒ C 0(x) = 4
3x

1/3 + 4
3x
−2/3 = 4

3x
−2/3(x+ 1) =

4(x+ 1)

3
3
√
x2

. C 0(x) > 0 if

−1 < x < 0 or x > 0 and C 0(x) < 0 for x < −1, so C is increasing on (−1,∞) and C is decreasing on (−∞,−1).
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(b) C(−1) = −3 is a local minimum value. (d)

(c) C00(x) = 4
9
x−2/3 − 8

9
x−5/3 = 4

9
x−5/3(x− 2) = 4(x− 2)

9
3
√
x5

.

C00(x) < 0 for 0 < x < 2 and C00(x) > 0 for x < 0 and x > 2, so C is

concave downward on (0, 2) and concave upward on (−∞, 0) and (2,∞).
There are inflection points at (0, 0) and 2, 6 3

√
2 ≈ (2, 7.56).

43. (a) f(θ) = 2 cos θ + cos2 θ, 0 ≤ θ ≤ 2π ⇒ f 0(θ) = −2 sin θ + 2cos θ (− sin θ) = −2 sin θ (1 + cos θ).
f 0(θ) = 0 ⇔ θ = 0, π, and 2π. f 0(θ) > 0 ⇔ π < θ < 2π and f 0(θ) < 0 ⇔ 0 < θ < π. So f is increasing on

(π, 2π) and f is decreasing on (0, π).

(b) f(π) = −1 is a local minimum value.

(c) f 0(θ) = −2 sin θ (1 + cos θ) ⇒
f 00(θ) = −2 sin θ (− sin θ) + (1 + cos θ)(−2 cos θ) = 2 sin2 θ − 2 cos θ − 2 cos2 θ

= 2(1− cos2 θ)− 2 cos θ − 2 cos2 θ = −4 cos2 θ − 2 cos θ + 2
= −2(2 cos2 θ + cos θ − 1) = −2(2 cos θ − 1)(cos θ + 1)

Since −2(cos θ + 1) < 0 [for θ 6= π], f 00(θ) > 0 ⇒ 2 cos θ − 1 < 0 ⇒ cos θ < 1
2 ⇒ π

3 < θ < 5π
3 and

f 00(θ) < 0 ⇒ cos θ > 1
2
⇒ 0 < θ < π

3
or 5π

3
< θ < 2π. So f is CU on π

3
, 5π
3

and f is CD on 0, π
3

and

5π
3
, 2π . There are points of inflection at π

3
, f π

3
= π

3
, 5
4

and 5π
3
, f 5π

3
= 5π

3
, 5
4

.

(d)

45. f(x) = x2

x2 − 1 =
x2

(x+ 1)(x− 1) has domain (−∞,−1) ∪ (−1, 1) ∪ (1,∞).

(a) lim
x→±∞

f(x) = lim
x→±∞

x2/x2

(x2 − 1)/x2 = lim
x→±∞

1

1− 1/x2 =
1

1− 0 = 1, so y = 1 is a HA.

lim
x→−1−

x2

x2 − 1 =∞ since x2 → 1 and (x2 − 1)→ 0+ as x→−1−, so x = −1 is a VA.

lim
x→1+

x2

x2 − 1 =∞ since x2 → 1 and (x2 − 1)→ 0+ as x→ 1+, so x = 1 is a VA.

(b) f(x) = x2

x2 − 1 ⇒ f 0(x) =
(x2 − 1)(2x)− x2(2x)

(x2 − 1)2 =
2x[(x2 − 1)− x2]

(x2 − 1)2 =
−2x

(x2 − 1)2 . Since (x2 − 1)2 is

positive for all x in the domain of f , the sign of the derivative is determined by the sign of −2x. Thus, f 0(x) > 0 if x < 0

(x 6= −1) and f 0(x) < 0 if x > 0 (x 6= 1). So f is increasing on (−∞,−1) and (−1, 0), and f is decreasing on (0, 1)

and (1,∞).

(c) f 0(x) = 0 ⇒ x = 0 and f(0) = 0 is a local maximum value.
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(d) f 00(x) = (x2 − 1)2(−2)− (−2x) · 2(x2 − 1)(2x)
[(x2 − 1)2]2

=
2(x2 − 1)[−(x2 − 1) + 4x2]

(x2 − 1)4 =
2(3x2 + 1)

(x2 − 1)3 .

The sign of f 00(x) is determined by the denominator; that is, f 00(x) > 0 if

|x| > 1 and f 00(x) < 0 if |x| < 1. Thus, f is CU on (−∞,−1) and (1,∞),
and f is CD on (−1, 1). There are no inflection points.

(e)

47. (a) lim
x→−∞

√
x2 + 1− x = ∞ and

lim
x→∞

√
x2 + 1− x = lim

x→∞
√
x2 + 1− x

√
x2 + 1 + x√
x2 + 1 + x

= lim
x→∞

1√
x2 + 1 + x

= 0, so y = 0 is a HA.

(b) f(x) =
√
x2 + 1− x ⇒ f 0(x) =

x√
x2 + 1

− 1. Since x√
x2 + 1

< 1 for all x, f 0(x) < 0, so f is decreasing on R.

(c) No minimum or maximum

(d) f 00(x) =
(x2 + 1)1/2(1)− x · 1

2
(x2 + 1)−1/2(2x)

√
x2 + 1

2

=

(x2 + 1)1/2 − x2

(x2 + 1)1/2

x2 + 1
=
(x2 + 1)− x2

(x2 + 1)3/2
=

1

(x2 + 1)3/2
> 0,

so f is CU on R. No IP

(e)

49. f(x) = ln(1− lnx) is defined when x > 0 (so that lnx is defined) and 1− lnx > 0 [so that ln(1− lnx) is defined].

The second condition is equivalent to 1 > lnx ⇔ x < e, so f has domain (0, e).

(a) As x→ 0+, lnx→ −∞, so 1− lnx→∞ and f(x)→∞. As x→ e−, lnx→ 1−, so 1− lnx→ 0+ and

f(x)→−∞. Thus, x = 0 and x = e are vertical asymptotes. There is no horizontal asymptote.

(b) f 0(x) = 1

1− lnx − 1
x

= − 1

x(1− lnx) < 0 on (0, e) . Thus, f is decreasing on its domain, (0, e) .

(c) f 0(x) 6= 0 on (0, e) , so f has no local maximum or minimum value. (e)

(d) f 00(x) = −− [x(1− lnx)]
0

[x(1− lnx)]2 =
x(−1/x) + (1− lnx)

x2(1− lnx)2

= − lnx

x2(1− lnx)2

so f 00(x) > 0 ⇔ lnx < 0 ⇔ 0 < x < 1. Thus, f is CU on (0, 1)

and CD on (1, e) . There is an inflection point at (1, 0) .

51. (a) lim
x→±∞

e−1/(x+1) = 1 since −1/(x+ 1)→ 0, so y = 1 is a HA. lim
x→−1+

e−1/(x+1) = 0 since −1/(x+ 1)→ −∞,

lim
x→−1−

e−1/(x+1) =∞ since −1/(x+ 1)→∞, so x = −1 is a VA.

(b) f(x) = e−1/(x+1) ⇒ f 0(x) = e−1/(x+1) −(−1) 1

(x+ 1)2
[Reciprocal Rule] = e−1/(x+1)/(x+ 1)2 ⇒

f 0 (x) > 0 for all x except −1, so f is increasing on (−∞,−1) and (−1,∞).
(c) There is no local maximum or minimum.
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(d) f 00(x) =
(x+ 1)2e−1/(x+1) 1/(x+ 1)2 − e−1/(x+1) [2(x+ 1)]

[(x+ 1)2]2

=
e−1/(x+1) [1− (2x+ 2)]

(x+ 1)4
= −e−1/(x+1)(2x+ 1)

(x+ 1)4
⇒

f 00(x) > 0 ⇔ 2x+ 1 < 0 ⇔ x < −1
2 , so f is CU on (−∞,−1)

and −1,− 1
2

, and CD on − 1
2

,∞ . f has an IP at − 1
2
, e−2 .

(e)

53. The nonnegative factors (x+ 1)2 and (x− 6)4 do not affect the sign of f 0(x) = (x+ 1)2(x− 3)5(x− 6)4.

So f 0(x) > 0 ⇒ (x− 3)5 > 0 ⇒ x− 3 > 0 ⇒ x > 3. Thus, f is increasing on the interval (3,∞).
55. (a) From the graph, we get an estimate of f(1) ≈ 1.41 as a local maximum

value, and no local minimum value.

f(x) =
x+ 1√
x2 + 1

⇒ f 0(x) =
1− x

(x2 + 1)3/2
.

f 0(x) = 0 ⇔ x = 1. f(1) = 2√
2
=
√
2 is the exact value.

(b) From the graph in part (a), f increases most rapidly somewhere between x = − 1
2

and x = − 1
4

. To find the exact value,

we need to find the maximum value of f 0, which we can do by finding the critical numbers of f 0.

f 00(x) =
2x2 − 3x− 1
(x2 + 1)5/2

= 0 ⇔ x =
3±√17

4
. x = 3 +

√
17

4
corresponds to the minimum value of f 0.

The maximum value of f 0 is at 3−√17
4 , 7

6 −
√
17
6

≈ (−0.28, 0.69).

57. f(x) = cosx+ 1
2 cos 2x ⇒ f 0(x) = − sinx− sin 2x ⇒ f 00(x) = − cosx− 2 cos 2x

(a) From the graph of f , it seems that f is CD on (0, 1), CU on (1, 2.5), CD on

(2.5, 3.7), CU on (3.7, 5.3), and CD on (5.3, 2π). The points of inflection

appear to be at (1, 0.4), (2.5,−0.6), (3.7,−0.6), and (5.3, 0.4).

(b) From the graph of f 00 (and zooming in near the zeros), it seems that f is CD

on (0, 0.94), CU on (0.94, 2.57), CD on (2.57, 3.71), CU on (3.71, 5.35),

and CD on (5.35, 2π). Refined estimates of the inflection points are

(0.94, 0.44), (2.57,−0.63), (3.71,−0.63), and (5.35, 0.44).

59. In Maple, we define f and then use the command

plot(diff(diff(f,x),x),x=-2..2);. In Mathematica, we define f

and then use Plot[Dt[Dt[f,x],x],{x,-2,2}]. We see that f 00 > 0 for

x < −0.6 and x > 0.0 [≈ 0.03] and f 00 < 0 for −0.6 < x < 0.0. So f is CU

on (−∞,−0.6) and (0.0,∞) and CD on (−0.6, 0.0).
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61. (a) The rate of increase of the population is initially very small, then gets larger until it reaches a maximum at about

t = 8 hours, and decreases toward 0 as the population begins to level off.

(b) The rate of increase has its maximum value at t = 8 hours.

(c) The population function is concave upward on (0, 8) and concave downward on (8, 18).

(d) At t = 8, the population is about 350, so the inflection point is about (8, 350).

63. Most students learn more in the third hour of studying than in the eighth hour, so K(3)−K(2) is larger than K(8)−K(7).

In other words, as you begin studying for a test, the rate of knowledge gain is large and then starts to taper off, so K0(t)

decreases and the graph of K is concave downward.

65. S(t) = Atpe−kt with A = 0.01, p = 4, and k = 0.07. We will find the

zeros of f 00 for f(t) = tpe−kt.

f 0(t) = tp(−ke−kt) + e−kt(ptp−1) = e−kt(−ktp + ptp−1)

f 00(t) = e−kt(−kptp−1 + p(p− 1)tp−2) + (−ktp + ptp−1)(−ke−kt)
= tp−2e−kt[−kpt+ p(p− 1) + k2t2 − kpt]

= tp−2e−kt(k2t2 − 2kpt+ p2 − p)

Using the given values of p and k gives us f 00(t) = t2e−0.07t(0.0049t2 − 0.56t+ 12). So S00(t) = 0.01f 00(t) and its zeros

are t = 0 and the solutions of 0.0049t2 − 0.56t+ 12 = 0, which are t1 = 200
7
≈ 28.57 and t2 = 600

7
≈ 85.71.

At t1 minutes, the rate of increase of the level of medication in the bloodstream is at its greatest and at t2 minutes, the rate of

decrease is the greatest.

67. f(x) = ax3 + bx2 + cx+ d ⇒ f 0(x) = 3ax2 + 2bx+ c.

We are given that f(1) = 0 and f(−2) = 3, so f(1) = a+ b+ c+ d = 0 and

f(−2) = −8a+ 4b− 2c+ d = 3. Also f 0(1) = 3a+ 2b+ c = 0 and

f 0(−2) = 12a− 4b+ c = 0 by Fermat’s Theorem. Solving these four equations, we get

a = 2
9

, b = 1
3

, c = − 4
3

, d = 7
9

, so the function is f(x) = 1
9
2x3 + 3x2 − 12x+ 7 .

69. y = 1 + x

1 + x2
⇒ y0 =

(1 + x2)(1)− (1 + x)(2x)

(1 + x2)2
=
1− 2x− x2

(1 + x2)2
⇒

y00 =
(1 + x2)2(−2− 2x)− (1− 2x− x2) · 2(1 + x2)(2x)

[(1 + x2)2]2
=
2(1 + x2)[(1 + x2)(−1− x)− (1− 2x− x2)(2x)]

(1 + x2)4

=
2(−1− x− x2 − x3 − 2x+ 4x2 + 2x3)

(1 + x2)3
=
2(x3 + 3x2 − 3x− 1)

(1 + x2)3
=
2(x− 1)(x2 + 4x+ 1)

(1 + x2)3

So y00 = 0 ⇒ x = 1, −2±√3. Let a = −2−√3, b = −2 +√3, and c = 1. We can show that f(a) = 1
4
1−√3 ,
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f(b) = 1
4
1 +

√
3 , and f(c) = 1. To show that these three points of inflection lie on one straight line, we’ll show that the

slopes mac and mbc are equal.

mac =
f(c)− f(a)

c− a
=
1− 1

4
1−√3

1− −2−√3 =
3
4
+ 1

4

√
3

3 +
√
3
=
1

4

mbc =
f(c)− f(b)

c− b
=
1− 1

4
1 +

√
3

1− −2 +√3 =
3
4
− 1

4

√
3

3−√3 =
1

4

71. Suppose that f is differentiable on an interval I and f 0(x) > 0 for all x in I except x = c. To show that f is increasing on I,

let x1, x2 be two numbers in I with x1 < x2.

Case 1 x1 < x2 < c. Let J be the interval {x ∈ I | x < c}. By applying the Increasing/Decreasing Test to f

on J , we see that f is increasing on J , so f(x1) < f(x2).

Case 2 c < x1 < x2. Apply the Increasing/Decreasing Test to f on K = {x ∈ I | x > c}.

Case 3 x1 < x2 = c. Apply the proof of the Increasing/Decreasing Test, using the Mean Value Theorem (MVT)

on the interval [x1, x2] and noting that the MVT does not require f to be differentiable at the endpoints

of [x1, x2].

Case 4 c = x1 < x2. Same proof as in Case 3.

Case 5 x1 < c < x2. By Cases 3 and 4, f is increasing on [x1, c] and on [c, x2], so f(x1) < f(c) < f(x2).

In all cases, we have shown that f(x1) < f(x2). Since x1, x2 were any numbers in I with x1 < x2, we have shown that f is

increasing on I.

73. (a) Since f and g are positive, increasing, and CU on I with f 00 and g00 never equal to 0, we have f > 0, f 0 ≥ 0, f 00 > 0,

g > 0, g0 ≥ 0, g00 > 0 on I. Then (fg)0 = f 0g + fg0 ⇒ (fg)00 = f 00g + 2f 0g0 + fg00 ≥ f 00g + fg00 > 0 on I ⇒
fg is CU on I.

(b) In part (a), if f and g are both decreasing instead of increasing, then f 0 ≤ 0 and g0 ≤ 0 on I, so we still have 2f 0g0 ≥ 0
on I. Thus, (fg)00 = f 00g + 2f 0g0 + fg00 ≥ f 00g + fg00 > 0 on I ⇒ fg is CU on I as in part (a).

(c) Suppose f is increasing and g is decreasing [with f and g positive and CU]. Then f 0 ≥ 0 and g0 ≤ 0 on I, so 2f 0g0 ≤ 0
on I and the argument in parts (a) and (b) fails.

Example 1. I = (0,∞), f(x) = x3, g(x) = 1/x. Then (fg)(x) = x2, so (fg)0(x) = 2x and

(fg)00(x) = 2 > 0 on I. Thus, fg is CU on I.

Example 2. I = (0,∞), f(x) = 4x√x, g(x) = 1/x. Then (fg)(x) = 4
√
x, so (fg)0(x) = 2/

√
x and

(fg)00(x) = −1/√x3 < 0 on I. Thus, fg is CD on I.

Example 3. I = (0,∞), f(x) = x2, g(x) = 1/x. Thus, (fg)(x) = x, so fg is linear on I.

75. f(x) = tanx− x ⇒ f 0(x) = sec2 x− 1 > 0 for 0 < x < π
2 since sec2 x > 1 for 0 < x < π

2 . So f is increasing

on 0, π
2

. Thus, f(x) > f(0) = 0 for 0 < x < π
2
⇒ tanx− x > 0 ⇒ tanx > x for 0 < x < π

2
.
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77. Let the cubic function be f(x) = ax3 + bx2 + cx+ d ⇒ f 0(x) = 3ax2 + 2bx+ c ⇒ f 00(x) = 6ax+ 2b.

So f is CU when 6ax+ 2b > 0 ⇔ x > −b/(3a), CD when x < −b/(3a), and so the only point of inflection occurs when

x = −b/(3a). If the graph has three x-intercepts x1, x2 and x3, then the expression for f(x) must factor as

f(x) = a(x− x1)(x− x2)(x− x3). Multiplying these factors together gives us

f(x) = a[x3 − (x1 + x2 + x3)x
2 + (x1x2 + x1x3 + x2x3)x− x1x2x3]

Equating the coefficients of the x2-terms for the two forms of f gives us b = −a(x1 + x2 + x3). Hence, the x-coordinate of

the point of inflection is − b

3a
= −−a(x1 + x2 + x3)

3a
=

x1 + x2 + x3
3

.

79. By hypothesis g = f 0 is differentiable on an open interval containing c. Since (c, f(c)) is a point of inflection, the concavity

changes at x = c, so f 00(x) changes signs at x = c. Hence, by the First Derivative Test, f 0 has a local extremum at x = c.

Thus, by Fermat’s Theorem f 00(c) = 0.

81. Using the fact that |x| = √x2, we have that g(x) = x
√
x2 ⇒ g0(x) =

√
x2 +

√
x2 = 2

√
x2 = 2 |x| ⇒

g00(x) = 2x x2
−1/2

=
2x

|x| < 0 for x < 0 and g00(x) > 0 for x > 0, so (0, 0) is an inflection point. But g00(0) does not

exist.

83. (a) f(x) = x4 sin
1

x
⇒ f 0(x) = x4 cos

1

x
− 1

x2
+ sin

1

x
(4x3) = 4x3 sin

1

x
− x2 cos

1

x
.

g(x) = x4 2 + sin
1

x
= 2x4 + f(x) ⇒ g0(x) = 8x3 + f 0(x).

h(x) = x4 −2 + sin 1
x

= −2x4 + f(x) ⇒ h0(x) = −8x3 + f 0(x).

It is given that f(0) = 0, so f 0(0) = lim
x→0

f(x)− f(0)

x− 0 = lim
x→0

x4 sin
1

x
− 0

x
= lim

x→0
x3 sin

1

x
. Since

− x3 ≤ x3 sin
1

x
≤ x3 and lim

x→0
x3 = 0, we see that f 0(0) = 0 by the Squeeze Theorem. Also,

g0(0) = 8(0)3 + f 0(0) = 0 and h0(0) = −8(0)3 + f 0(0) = 0, so 0 is a critical number of f , g, and h.

For x2n =
1

2nπ
[n a nonzero integer], sin 1

x2n
= sin 2nπ = 0 and cos 1

x2n
= cos 2nπ = 1, so f 0(x2n) = −x22n < 0.

For x2n+1 =
1

(2n+ 1)π
, sin 1

x2n+1
= sin(2n+ 1)π = 0 and cos 1

x2n+1
= cos(2n+ 1)π = −1, so

f 0(x2n+1) = x22n+1 > 0. Thus, f 0 changes sign infinitely often on both sides of 0.

Next, g0(x2n) = 8x32n + f 0(x2n) = 8x32n − x22n = x22n(8x2n − 1) < 0 for x2n < 1
8 , but

g0(x2n+1) = 8x32n+1 + x22n+1 = x22n+1(8x2n+1 + 1) > 0 for x2n+1 > − 1
8

, so g0 changes sign infinitely often on both

sides of 0.

Last, h0(x2n) = −8x32n + f 0(x2n) = −8x32n − x22n = −x22n(8x2n + 1) < 0 for x2n > − 1
8

and

h0(x2n+1) = −8x32n+1 + x22n+1 = x22n+1(−8x2n+1 +1) > 0 for x2n+1 < 1
8

, so h0 changes sign infinitely often on both

sides of 0.
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(b) f(0) = 0 and since sin 1
x

and hence x4 sin 1
x

is both positive and negative inifinitely often on both sides of 0, and

arbitrarily close to 0, f has neither a local maximum nor a local minimum at 0.

Since 2 + sin 1
x
≥ 1, g(x) = x4 2 + sin

1

x
> 0 for x 6= 0, so g(0) = 0 is a local minimum.

Since −2 + sin 1
x
≤ −1, h(x) = x4 −2 + sin 1

x
< 0 for x 6= 0, so h(0) = 0 is a local maximum.

4.4 Indeterminate Forms and L'Hospital's Rule

Note: The use of l’Hospital’s Rule is indicated by an H above the equal sign: H
=

1. (a) lim
x→a

f(x)

g(x)
is an indeterminate form of type 0

0
.

(b) lim
x→a

f(x)

p(x)
= 0 because the numerator approaches 0 while the denominator becomes large.

(c) lim
x→a

h(x)

p(x)
= 0 because the numerator approaches a finite number while the denominator becomes large.

(d) If lim
x→a

p(x) =∞ and f(x)→ 0 through positive values, then lim
x→a

p(x)

f(x)
=∞. [For example, take a = 0, p(x) = 1/x2,

and f(x) = x2.] If f(x)→ 0 through negative values, then lim
x→a

p(x)

f(x)
= −∞. [For example, take a = 0, p(x) = 1/x2,

and f(x) = −x2.] If f(x)→ 0 through both positive and negative values, then the limit might not exist. [For example,

take a = 0, p(x) = 1/x2, and f(x) = x.]

(e) lim
x→a

p(x)

q(x)
is an indeterminate form of type ∞∞ .

3. (a) When x is near a, f(x) is near 0 and p(x) is large, so f(x)− p(x) is large negative. Thus, lim
x→a

[f(x)− p(x)] = −∞.

(b) lim
x→a

[ p(x)− q(x)] is an indeterminate form of type∞−∞.

(c) When x is near a, p(x) and q(x) are both large, so p(x) + q(x) is large. Thus, lim
x→a

[p(x) + q(x)] =∞.

5. This limit has the form 0
0 . We can simply factor and simplify to evaluate the limit.

lim
x→1

x2 − 1
x2 − x

= lim
x→1

(x+ 1)(x− 1)
x(x− 1) = lim

x→1

x+ 1

x
=
1 + 1

1
= 2

7. This limit has the form 0
0 . lim

x→1

x9 − 1
x5 − 1

H
= lim

x→1

9x8

5x4
=
9

5
lim
x→1

x4 =
9

5
(1) =

9

5

9. This limit has the form 0
0

. lim
x→(π/2)+

cosx

1− sinx
H
= lim

x→(π/2)+

− sinx
− cosx = lim

x→(π/2)+
tanx = −∞.

11. This limit has the form 0
0

. lim
t→0

et − 1
t3

H
= lim

t→0

et

3t2
=∞ since et → 1 and 3t2 → 0+ as t→ 0.



168 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

13. This limit has the form 0
0

. lim
x→0

tan px

tan qx
H
= lim

x→0

p sec2 px

q sec2 qx
=

p(1)2

q(1)2
=

p

q

15. This limit has the form ∞
∞ . lim

x→∞
lnx√
x

H
= lim

x→∞
1/x

1
2
x−1/2

= lim
x→∞

2√
x
= 0

17. lim
x→0+

[(lnx)/x] = −∞ since lnx→ −∞ as x→ 0+ and dividing by small values of x just increases the magnitude of the

quotient (lnx)/x. L’Hospital’s Rule does not apply.

19. This limit has the form ∞
∞ . lim

x→∞
ex

x3
H
= lim

x→∞
ex

3x2
H
= lim

x→∞
ex

6x
H
= lim

x→∞
ex

6
=∞

21. This limit has the form 0
0

. lim
x→0

ex − 1− x

x2
H
= lim

x→0

ex − 1
2x

H
= lim

x→0

ex

2
=
1

2

23. This limit has the form 0
0

. lim
x→0

tanhx

tanx
H
= lim

x→0

sech 2x

sec2 x
=
sech2 0

sec2 0
=
1

1
= 1

25. This limit has the form 0
0 . lim

t→0

5t − 3t
t

H
= lim

t→0

5t ln 5− 3t ln 3
1

= ln 5− ln 3 = ln 5
3

27. This limit has the form 0
0

. lim
x→0

sin−1 x
x

H
= lim

x→0

1/
√
1− x2

1
= lim

x→0

1√
1− x2

=
1

1
= 1

29. This limit has the form 0
0 . lim

x→0

1− cosx
x2

H
= lim

x→0

sinx

2x
H
= lim

x→0

cosx

2
=
1

2

31. lim
x→0

x+ sinx

x+ cosx
=
0 + 0

0 + 1
=
0

1
= 0. L’Hospital’s Rule does not apply.

33. This limit has the form 0
0

. lim
x→1

1− x+ lnx

1 + cosπx
H
= lim

x→1

−1 + 1/x
−π sinπx

H
= lim

x→1

−1/x2
−π2 cosπx =

−1
−π2 (−1) = −

1

π2

35. This limit has the form 0
0

. lim
x→1

xa − ax+ a− 1
(x− 1)2

H
= lim

x→1

axa−1 − a

2(x− 1)
H
= lim

x→1

a(a− 1)xa−2
2

=
a(a− 1)

2

37. This limit has the form 0
0

. lim
x→0

cosx− 1 + 1
2x

2

x4
H
= lim

x→0

− sinx+ x

4x3
H
= lim

x→0

− cosx+ 1
12x2

H
= lim

x→0

sinx

24x
H
= lim

x→0

cosx

24
=
1

24

39. This limit has the form ∞ · 0.

lim
x→∞

x sin(π/x) = lim
x→∞

sin(π/x)

1/x
H
= lim

x→∞
cos(π/x)(−π/x2)

−1/x2 = π lim
x→∞

cos(π/x) = π(1) = π

41. This limit has the form ∞ · 0. We’ll change it to the form 0
0

.

lim
x→0

cot 2x sin 6x = lim
x→0

sin 6x

tan 2x
H
= lim

x→0

6 cos 6x

2 sec2 2x
=
6(1)

2(1)2
= 3

43. This limit has the form∞ · 0. lim
x→∞

x3e−x
2

= lim
x→∞

x3

ex2
H
= lim

x→∞
3x2

2xex2
= lim

x→∞
3x

2ex2
H
= lim

x→∞
3

4xex2
= 0
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45. This limit has the form 0 · (−∞).

lim
x→1+

lnx tan(πx/2) = lim
x→1+

lnx

cot(πx/2)
H
= lim

x→1+

1/x

(−π/2) csc2(πx/2) =
1

(−π/2)(1)2 = −
2

π

47. This limit has the form∞−∞.

lim
x→1

x

x− 1 −
1

lnx
= lim

x→1

x lnx− (x− 1)
(x− 1) lnx

H
= lim

x→1

x(1/x) + lnx− 1
(x− 1)(1/x) + lnx = lim

x→1

lnx

1− (1/x) + lnx
H
= lim

x→1

1/x

1/x2 + 1/x
· x

2

x2
= lim

x→1

x

1 + x
=

1

1 + 1
=
1

2

49. We will multiply and divide by the conjugate of the expression to change the form of the expression.

lim
x→∞

√
x2 + x− x = lim

x→∞

√
x2 + x− x

1
·
√
x2 + x+ x√
x2 + x+ x

= lim
x→∞

x2 + x − x2√
x2 + x+ x

= lim
x→∞

x√
x2 + x+ x

= lim
x→∞

1

1 + 1/x+ 1
=

1√
1 + 1

=
1

2

As an alternate solution, write
√
x2 + x− x as

√
x2 + x−√x2, factor out

√
x2, rewrite as ( 1 + 1/x− 1)/(1/x), and

apply l’Hospital’s Rule.

51. The limit has the form∞−∞ and we will change the form to a product by factoring out x.

lim
x→∞

(x− lnx) = lim
x→∞

x 1− lnx

x
=∞ since lim

x→∞
lnx

x
H
= lim

x→∞
1/x

1
= 0.

53. y = xx
2 ⇒ ln y = x2 lnx, so lim

x→0+
ln y = lim

x→0+
x2 lnx = lim

x→0+

lnx

1/x2
H
= lim

x→0+

1/x

−2/x3 = lim
x→0+

−1
2
x2 = 0 ⇒

lim
x→0+

xx
2
= lim

x→0+
eln y = e0 = 1.

55. y = (1− 2x)1/x ⇒ ln y =
1

x
ln(1− 2x), so lim

x→0
ln y = lim

x→0

ln(1− 2x)
x

H
= lim

x→0

−2/(1− 2x)
1

= −2 ⇒

lim
x→0

(1− 2x)1/x = lim
x→0

eln y = e−2.

57. y = 1 +
3

x
+
5

x2

x

⇒ ln y = x ln 1 +
3

x
+
5

x2
⇒

lim
x→∞

ln y = lim
x→∞

ln 1 +
3

x
+
5

x2

1/x
H
= lim

x→∞

− 3

x2
− 10

x3
1 +

3

x
+
5

x2

−1/x2 = lim
x→∞

3 +
10

x

1 +
3

x
+
5

x2

= 3,

so lim
x→∞

1 +
3

x
+
5

x2

x

= lim
x→∞

eln y = e3.

59. y = x1/x ⇒ ln y = (1/x) lnx ⇒ lim
x→∞

ln y = lim
x→∞

lnx

x
H
= lim

x→∞
1/x

1
= 0 ⇒

lim
x→∞

x1/x = lim
x→∞

eln y = e0 = 1
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61. y = (4x+ 1)cot x ⇒ ln y = cotx ln(4x+ 1), so lim
x→0+

ln y = lim
x→0+

ln(4x+ 1)

tanx
H
= lim

x→0+

4

4x+ 1
sec2 x

= 4 ⇒

lim
x→0+

(4x+ 1)cotx = lim
x→0+

eln y = e4.

63. y = (cosx)1/x
2 ⇒ ln y =

1

x2
ln cosx ⇒ lim

x→0+
ln y = lim

x→0+

ln cosx

x2
H
= lim

x→0+

− tanx
2x

H
= lim

x→0+

− sec2 x
2

= −1
2

⇒ lim
x→0+

(cosx)1/x
2

= lim
x→0+

eln y = e−1/2 = 1/
√
e

65. From the graph, if x = 500, y ≈ 7.36. The limit has the form 1∞.

Now y = 1 +
2

x

x

⇒ ln y = x ln 1 +
2

x
⇒

lim
x→∞

ln y = lim
x→∞

ln(1 + 2/x)

1/x
H
= lim

x→∞

1

1 + 2/x
− 2

x2

−1/x2

= 2 lim
x→∞

1

1 + 2/x
= 2(1) = 2 ⇒

lim
x→∞

1 +
2

x

x

= lim
x→∞

eln y = e2 [≈ 7.39]

67. From the graph, it appears that lim
x→0

f(x)

g(x)
= lim

x→0

f 0(x)
g0(x)

= 0.25.

We calculate lim
x→0

f(x)

g(x)
= lim

x→0

ex − 1
x3 + 4x

H
= lim

x→0

ex

3x2 + 4
=
1

4
.

69. lim
x→∞

ex

xn
H
= lim

x→∞
ex

nxn−1
H
= lim

x→∞
ex

n(n− 1)xn−2
H
= · · · H

= lim
x→∞

ex

n!
=∞

71. lim
x→∞

x√
x2 + 1

H
= lim

x→∞
1

1
2
(x2 + 1)−1/2(2x)

= lim
x→∞

√
x2 + 1

x
. Repeated applications of l’Hospital’s Rule result in the

original limit or the limit of the reciprocal of the function. Another method is to try dividing the numerator and denominator

by x: lim
x→∞

x√
x2 + 1

= lim
x→∞

x/x

x2/x2 + 1/x2
= lim

x→∞
1

1 + 1/x2
=
1

1
= 1

73. First we will find lim
n→∞

1 +
r

n

nt

, which is of the form 1∞. y = 1 +
r

n

nt

⇒ ln y = nt ln 1 +
r

n
, so

lim
n→∞

ln y = lim
n→∞

nt ln 1 +
r

n
= t lim

n→∞
ln(1 + r/n)

1/n
H
= t lim

n→∞
−r/n2

(1 + r/n)(−1/n2) = t lim
n→∞

r

1 + i/n
= tr ⇒

lim
n→∞

y = ert. Thus, as n→∞, A = A0 1 +
r

n

nt

→ A0e
rt.
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75. lim
E→0+

P (E) = lim
E→0+

eE + e−E

eE − e−E
− 1

E

= lim
E→0+

E eE + e−E − 1 eE − e−E

(eE − e−E)E
= lim

E→0+

EeE +Ee−E − eE + e−E

EeE −Ee−E
form is 0

0

H
= lim

E→0+

EeE + eE · 1 +E −e−E + e−E · 1− eE + −e−E
EeE + eE · 1− [E(−e−E) + e−E · 1]

= lim
E→0+

EeE −Ee−E

EeE + eE +Ee−E − e−E
= lim

E→0+

eE − e−E

eE +
eE

E
+ e−E − e−E

E

[divide by E]

=
0

2 + L
, where L = lim

E→0+

eE − e−E

E
form is 0

0

H
= lim

E→0+

eE + e−E

1
=
1 + 1

1
= 2

Thus, lim
E→0+

P (E) =
0

2 + 2
= 0.

77. We see that both numerator and denominator approach 0, so we can use l’Hospital’s Rule:

lim
x→a

√
2a3x− x4 − a 3

√
aax

a− 4
√
ax3

H
= lim

x→a

1
2
(2a3x− x4)−1/2(2a3 − 4x3)− a 1

3
(aax)−2/3a2

− 1
4
(ax3)−3/4(3ax2)

=
1
2 (2a

3a− a4)−1/2(2a3 − 4a3)− 1
3a

3(a2a)−2/3

− 1
4
(aa3)−3/4(3aa2)

=
(a4)−1/2(−a3)− 1

3
a3(a3)−2/3

− 3
4
a3(a4)−3/4

=
−a− 1

3
a

− 3
4

= 4
3

4
3
a = 16

9
a

79. Since f(2) = 0, the given limit has the form 0
0

.

lim
x→0

f(2 + 3x) + f(2 + 5x)

x
H
= lim

x→0

f 0(2 + 3x) · 3 + f 0(2 + 5x) · 5
1

= f 0(2) · 3 + f 0(2) · 5 = 8f 0(2) = 8 · 7 = 56

81. Since lim
h→0

[f(x+ h)− f(x− h)] = f(x)− f(x) = 0 (f is differentiable and hence continuous) and lim
h→0

2h = 0, we use

l’Hospital’s Rule:

lim
h→0

f(x+ h)− f(x− h)

2h
H
= lim

h→0

f 0(x+ h)(1)− f 0(x− h)(−1)
2

=
f 0(x) + f 0(x)

2
=
2f 0(x)
2

= f 0(x)

f(x+ h)− f(x− h)

2h
is the slope of the secant line between

(x− h, f(x− h)) and (x+ h, f(x+ h)). As h→ 0, this line gets closer

to the tangent line and its slope approaches f 0(x).

83. (a) We show that lim
x→0

f(x)

xn
= 0 for every integer n ≥ 0. Let y = 1

x2
. Then

lim
x→0

f(x)

x2n
= lim

x→0

e−1/x
2

(x2)n
= lim

y→∞
yn

ey
H
= lim

y→∞
nyn−1

ey
H
= · · · H

= lim
y→∞

n!

ey
= 0 ⇒

lim
x→0

f(x)

xn
= lim

x→0
xn

f(x)

x2n
= lim

x→0
xn lim

x→0

f(x)

x2n
= 0. Thus, f 0(0) = lim

x→0

f(x)− f(0)

x− 0 = lim
x→0

f(x)

x
= 0.
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(b) Using the Chain Rule and the Quotient Rule we see that f (n)(x) exists for x 6= 0. In fact, we prove by induction that for

each n ≥ 0, there is a polynomial pn and a non-negative integer kn with f (n)(x) = pn(x)f(x)/x
kn for x 6= 0. This is

true for n = 0; suppose it is true for the nth derivative. Then f 0(x) = f(x)(2/x3), so

f (n+1)(x) = xkn [p0n(x) f(x) + pn(x)f
0(x)]− knx

kn−1pn(x) f(x) x−2kn

= xknp0n(x) + pn(x) 2/x
3 − knx

kn−1pn(x) f(x)x−2kn

= xkn+3p0n(x) + 2pn(x)− knx
kn+2 pn(x) f(x)x

−(2kn+3)

which has the desired form.

Now we show by induction that f (n) (0) = 0 for all n. By part (a), f 0(0) = 0. Suppose that f (n)(0) = 0. Then

f (n+1)(0) = lim
x→0

f (n)(x)− f (n)(0)

x− 0 = lim
x→0

f (n)(x)

x
= lim

x→0

pn(x) f(x)/x
kn

x
= lim

x→0

pn(x) f(x)

xkn+1

= lim
x→0

pn(x) lim
x→0

f(x)

xkn+1
= pn(0) · 0 = 0

4.5 Summary of Curve Sketching

1. y = f(x) = x3 + x = x(x2 + 1) A. f is a polynomial, so D = R.

B. x-intercept = 0, y-intercept = f(0) = 0 C. f(−x) = −f(x), so f is

odd; the curve is symmetric about the origin. D. f is a polynomial, so there is

no asymptote. E. f 0(x) = 3x2 + 1 > 0, so f is increasing on (−∞,∞).
F. There is no critical number and hence, no local maximum or minimum value.

G. f 00(x) = 6x > 0 on (0,∞) and f 00(x) < 0 on (−∞, 0), so f is CU on

(0,∞) and CD on (−∞, 0). Since the concavity changes at x = 0, there is an

inflection point at (0, 0).

H.

3. y = f(x) = 2− 15x+ 9x2 − x3 = −(x− 2) x2 − 7x+ 1 A. D = R B. y-intercept: f(0) = 2; x-intercepts:

f(x) = 0 ⇒ x = 2 or (by the quadratic formula) x = 7±√45
2 ≈ 0.15, 6.85 C. No symmetry D. No asymptote

E. f 0(x) = −15 + 18x− 3x2 = −3(x2 − 6x+ 5)
= −3(x− 1)(x− 5) > 0 ⇔ 1 < x < 5

so f is increasing on (1, 5) and decreasing on (−∞, 1) and (5,∞).
F. Local maximum value f(5) = 27, local minimum value f(1) = −5
G. f 00(x) = 18− 6x = −6(x− 3) > 0 ⇔ x < 3, so f is CU on (−∞, 3)

and CD on (3,∞). IP at (3, 11)

H.
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5. y = f(x) = x4 + 4x3 = x3(x+ 4) A. D = R B. y-intercept: f(0) = 0;

x-intercepts: f(x) = 0 ⇔ x = −4, 0 C. No symmetry

D. No asymptote E. f 0(x) = 4x3 + 12x2 = 4x2(x+ 3) > 0 ⇔
x > −3, so f is increasing on (−3,∞) and decreasing on (−∞,−3).
F. Local minimum value f(−3) = −27, no local maximum

G. f 00(x) = 12x2 + 24x = 12x(x+ 2) < 0 ⇔ −2 < x < 0, so f is CD

on (−2, 0) and CU on (−∞,−2) and (0,∞). IP at (0, 0) and (−2,−16)

H.

7. y = f(x) = 2x5 − 5x2 + 1 A. D = R B. y-intercept: f(0) = 1 C. No symmetry D. No asymptote

E. f 0(x) = 10x4 − 10x = 10x(x3 − 1) = 10x(x− 1)(x2 + x+ 1), so f 0(x) < 0 ⇔ 0 < x < 1 and f 0(x) > 0 ⇔
x < 0 or x > 1. Thus, f is increasing on (−∞, 0) and (1,∞) and decreasing on (0, 1). F. Local maximum value f(0) = 1,

local minimum value f(1) = −2 G. f 00(x) = 40x3 − 10 = 10(4x3 − 1)
so f 00(x) = 0 ⇔ x = 1/ 3

√
4. f 00(x) > 0 ⇔ x > 1/ 3

√
4 and

f 00(x) < 0 ⇔ x < 1/ 3
√
4, so f is CD on −∞, 1/ 3

√
4 and CU

on 1/ 3
√
4,∞ . IP at 1

3
√
4
, 1− 9

2 3
√
4

2 ≈ (0.630,−0.786)

H.

9. y = f(x) = x/(x− 1) A. D = {x | x 6= 1} = (−∞, 1) ∪ (1,∞) B. x-intercept = 0, y-intercept = f(0) = 0

C. No symmetry D. lim
x→±∞

x

x− 1 = 1, so y = 1 is a HA. lim
x→1−

x

x− 1 = −∞, lim
x→1+

x

x− 1 =∞, so x = 1 is a VA.

E. f 0(x) = (x− 1)− x

(x− 1)2 =
−1

(x− 1)2 < 0 for x 6= 1, so f is

decreasing on (−∞, 1) and (1,∞) . F. No extreme values

G. f 00(x) = 2

(x− 1)3 > 0 ⇔ x > 1, so f is CU on (1,∞) and

CD on (−∞, 1). No IP

H.

11. y = f(x) = 1/(x2 − 9) A. D = {x | x 6= ±3} = (−∞,−3) ∪ (−3, 3) ∪ (3,∞) B. y-intercept = f(0) = − 1
9

, no

x-intercept C. f(−x) = f(x) ⇒ f is even; the curve is symmetric about the y-axis. D. lim
x→±∞

1

x2 − 9 = 0, so y = 0

is a HA. lim
x→3−

1

x2 − 9 = −∞, lim
x→3+

1

x2 − 9 =∞, lim
x→−3−

1

x2 − 9 =∞, lim
x→−3+

1

x2 − 9 = −∞, so x = 3 and x = −3

are VA. E. f 0(x) = − 2x

(x2 − 9)2 > 0 ⇔ x < 0 (x 6= −3) so f is increasing on (−∞,−3) and (−3, 0) and
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decreasing on (0, 3) and (3,∞). F. Local maximum value f(0) = − 1
9 .

G. y00 = −2(x2 − 9)2 + (2x)2(x2 − 9)(2x)
(x2 − 9)4 =

6(x2 + 3)

(x2 − 9)3 > 0 ⇔

x2 > 9 ⇔ x > 3 or x < −3, so f is CU on (−∞,−3) and (3,∞) and

CD on (−3, 3). No IP

H.

13. y = f(x) = x/(x2 + 9) A. D = R B. y-intercept: f(0) = 0; x-intercept: f(x) = 0 ⇔ x = 0

C. f(−x) = −f(x), so f is odd and the curve is symmetric about the origin. D. lim
x→±∞

[x/(x2 + 9)] = 0, so y = 0 is a

HA; no VA E. f 0(x) = (x2 + 9)(1)− x(2x)

(x2 + 9)2
=

9− x2

(x2 + 9)2
=
(3 + x)(3− x)

(x2 + 9)2
> 0 ⇔ −3 < x < 3, so f is increasing

on (−3, 3) and decreasing on (−∞,−3) and (3,∞). F. Local minimum value f(−3) = − 1
6

, local maximum

value f(3) = 1
6

f 00(x) =
(x2 + 9)2(−2x)− (9− x2) · 2(x2 + 9)(2x)

[(x2 + 9)2]2
=
(2x)(x2 + 9)[−(x2 + 9)− 2(9− x2)]

(x2 + 9)4
=
2x(x2 − 27)
(x2 + 9)3

= 0 ⇔ x = 0,±√27 = ±3√3

G. f 00(x) = (x2 + 9)2(−2x)− (9− x2) · 2(x2 + 9)(2x)
[(x2 + 9)2]2

=
(2x)(x2 + 9) −(x2 + 9)− 2(9− x2)

(x2 + 9)4

=
2x(x2 − 27)
(x2 + 9)3

= 0 ⇔ x = 0, ±√27 = ±3√3 H.

f 00(x) > 0 ⇔ −3√3 < x < 0 or x > 3
√
3, so f is CU on −3√3, 0

and 3
√
3,∞ , and CD on −∞,−3√3 and 0, 3

√
3 . There are three

inflection points: (0, 0) and ±3√3,± 1
12

√
3 .

15. y = f(x) =
x− 1
x2

A. D = {x | x 6= 0} = (−∞, 0) ∪ (0,∞) B. No y-intercept; x-intercept: f(x) = 0 ⇔ x = 1

C. No symmetry D. lim
x→±∞

x− 1
x2

= 0, so y = 0 is a HA. lim
x→0

x− 1
x2

= −∞, so x = 0 is a VA.

E. f 0(x) = x2 · 1− (x− 1) · 2x
(x2)2

=
−x2 + 2x

x4
=
−(x− 2)

x3
, so f 0(x) > 0 ⇔ 0 < x < 2 and f 0(x) < 0 ⇔

x < 0 or x > 2. Thus, f is increasing on (0, 2) and decreasing on (−∞, 0)

and (2,∞). F. No local minimum, local maximum value f(2) = 1
4 .

G. f 00(x) = x3 · (−1)− [−(x− 2)] · 3x2
(x3)2

=
2x3 − 6x2

x6
=
2(x− 3)

x4
.

f 00(x) is negative on (−∞, 0) and (0, 3) and positive on (3,∞), so f is CD

on (−∞, 0) and (0, 3) and CU on (3,∞). IP at 3, 2
9

H.
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17. y = f(x) =
x2

x2 + 3
=
(x2 + 3)− 3

x2 + 3
= 1− 3

x2 + 3
A. D = R B. y-intercept: f(0) = 0;

x-intercepts: f(x) = 0 ⇔ x = 0 C. f(−x) = f(x), so f is even; the graph is symmetric about the y-axis.

D. lim
x→±∞

x2

x2 + 3
= 1, so y = 1 is a HA. No VA. E. Using the Reciprocal Rule, f 0(x) = −3 · −2x

(x2 + 3)2
=

6x

(x2 + 3)2
.

f 0(x) > 0 ⇔ x > 0 and f 0(x) < 0 ⇔ x < 0, so f is decreasing on (−∞, 0) and increasing on (0,∞).
F. Local minimum value f(0) = 0, no local maximum.

G. f 00(x) = (x2 + 3)2 · 6− 6x · 2(x2 + 3) · 2x
[(x2 + 3)2]2

=
6(x2 + 3)[(x2 + 3)− 4x2]

(x2 + 3)4
=
6(3− 3x2)
(x2 + 3)3

=
−18(x+ 1)(x− 1)

(x2 + 3)3

f 00(x) is negative on (−∞,−1) and (1,∞) and positive on (−1, 1),
so f is CD on (−∞,−1) and (1,∞) and CU on (−1, 1). IP at ±1, 1

4

H.

19. y = f(x) = x
√
5− x A. The domain is {x | 5− x ≥ 0} = (−∞, 5] B. y-intercept: f(0) = 0;

x-intercepts: f(x) = 0 ⇔ x = 0, 5 C. No symmetry D. No asymptote

E. f 0(x) = x · 1
2
(5− x)−1/2 (−1) + (5− x)1/2 · 1 = 1

2
(5− x)−1/2 [−x+ 2(5− x)] =

10− 3x
2
√
5− x

> 0 ⇔

x < 10
3

, so f is increasing on −∞, 10
3

and decreasing on 10
3
, 5 .

F. Local maximum value f 10
3
= 10

9

√
15 ≈ 4.3; no local minimum

G. f 00(x) =
2(5− x)1/2(−3)− (10− 3x) · 2 1

2
(5− x)−1/2(−1)

2
√
5− x

2

=
(5− x)−1/2[−6(5− x) + (10− 3x)]

4(5− x)
=

3x− 20
4(5− x)3/2

f 00(x) < 0 for x < 5, so f is CD on (−∞, 5). No IP

H.

21. y = f(x) =
√
x2 + x− 2 = (x+ 2)(x− 1) A. D = {x | (x+ 2)(x− 1) ≥ 0} = (−∞,−2] ∪ [1,∞)

B. y-intercept: none; x-intercepts: −2 and 1 C. No symmetry D. No asymptote

E. f 0(x) = 1
2
(x2 + x− 2)−1/2(2x+ 1) = 2x+ 1

2
√
x2 + x− 2 , f 0(x) = 0 if x = − 1

2
, but − 1

2
is not in the domain.

f 0(x) > 0 ⇒ x > − 1
2

and f 0(x) < 0 ⇒ x < − 1
2

, so (considering the domain) f is increasing on (1,∞) and

f is decreasing on (−∞,−2). F. No local extrema

G. f 00(x) =
2(x2 + x− 2)1/2(2)− (2x+ 1) · 2 · 12 (x2 + x− 2)−1/2(2x+ 1)

2
√
x2 + x− 2 2

=
(x2 + x− 2)−1/2 4(x2 + x− 2)− (4x2 + 4x+ 1)

4(x2 + x− 2)
=

−9
4(x2 + x− 2)3/2 < 0

so f is CD on (−∞,−2) and (1,∞). No IP

H.
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23. y = f(x) = x/
√
x2 + 1 A. D = R B. y-intercept: f(0) = 0; x-intercepts: f(x) = 0 ⇒ x = 0

C. f(−x) = −f(x), so f is odd; the graph is symmetric about the origin.

D. lim
x→∞

f(x) = lim
x→∞

x√
x2 + 1

= lim
x→∞

x/x√
x2 + 1/x

= lim
x→∞

x/x√
x2 + 1/

√
x2
= lim

x→∞
1

1 + 1/x2
=

1√
1 + 0

= 1

and

lim
x→−∞

f(x) = lim
x→−∞

x√
x2 + 1

= lim
x→−∞

x/x√
x2 + 1/x

= lim
x→−∞

x/x
√
x2 + 1/ −√x2

= lim
x→−∞

1

− 1 + 1/x2

=
1

−√1 + 0 = −1 so y = ±1 are HA.

No VA.

E. f 0(x) =

√
x2 + 1− x · 2x

2
√
x2 + 1

[(x2 + 1)1/2]2
=

x2 + 1− x2

(x2 + 1)3/2
=

1

(x2 + 1)3/2
> 0 for all x, so f is increasing on R.

F. No extreme values

G. f 00(x) = − 3
2
(x2 + 1)−5/2 · 2x = −3x

(x2 + 1)5/2
, so f 00(x) > 0 for x < 0

and f 00(x) < 0 for x > 0. Thus, f is CU on (−∞, 0) and CD on (0,∞).
IP at (0, 0)

H.

25. y = f(x) =
√
1− x2/x A. D = {x | |x| ≤ 1, x 6= 0} = [−1, 0) ∪ (0, 1] B. x-intercepts ±1, no y-intercept

C. f(−x) = −f(x), so the curve is symmetric about (0, 0) . D. lim
x→0+

√
1− x2

x
=∞, lim

x→0−

√
1− x2

x
= −∞,

so x = 0 is a VA. E. f 0(x) =
−x2/√1− x2 −√1− x2

x2
= − 1

x2
√
1− x2

< 0, so f is decreasing

on (−1, 0) and (0, 1). F. No extreme values

G. f 00(x) =
2− 3x2

x3(1− x2)3/2
> 0 ⇔ −1 < x < − 2

3
or 0 < x < 2

3
, so

f is CU on −1,− 2
3

and 0, 2
3

and CD on − 2
3
, 0 and 2

3
, 1 .

IP at ± 2
3
,± 1√

2

H.

27. y = f(x) = x− 3x1/3 A. D = R B. y-intercept: f(0) = 0; x-intercepts: f(x) = 0 ⇒ x = 3x1/3 ⇒
x3 = 27x ⇒ x3 − 27x = 0 ⇒ x(x2 − 27) = 0 ⇒ x = 0, ±3√3 C. f(−x) = −f(x), so f is odd;

the graph is symmetric about the origin. D. No asymptote E. f 0(x) = 1− x−2/3 = 1− 1

x2/3
=

x2/3 − 1
x2/3

.

f 0(x) > 0 when |x| > 1 and f 0(x) < 0 when 0 < |x| < 1, so f is increasing on (−∞,−1) and (1,∞), and

decreasing on (−1, 0) and (0, 1) [hence decreasing on (−1, 1) since f is

continuous on (−1, 1)]. F. Local maximum value f(−1) = 2, local minimum

value f(1) = −2 G. f 00(x) = 2
3
x−5/3 < 0 when x < 0 and f 00(x) > 0

when x > 0, so f is CD on (−∞, 0) and CU on (0,∞). IP at (0, 0)

H.
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29. y = f(x) = 3
√
x2 − 1 A. D = R B. y-intercept: f(0) = −1; x-intercepts: f(x) = 0 ⇔ x2 − 1 = 0 ⇔

x = ±1 C. f(−x) = f(x), so the curve is symmetric about the y-axis. D. No asymptote

E. f 0(x) = 1
3
(x2 − 1)−2/3(2x) = 2x

3 3 (x2 − 1)2 . f 0(x) > 0 ⇔ x > 0 and f 0(x) < 0 ⇔ x < 0, so f is

increasing on (0,∞) and decreasing on (−∞, 0). F. Local minimum value f(0) = −1

G. f 00(x) = 2

3
· (x

2 − 1)2/3(1)− x · 2
3
(x2 − 1)−1/3(2x)

[(x2 − 1)2/3]2

=
2

9
· (x

2 − 1)−1/3[3(x2 − 1)− 4x2]
(x2 − 1)4/3 = − 2(x2 + 3)

9(x2 − 1)5/3

f 00(x) > 0 ⇔ −1 < x < 1 and f 00(x) < 0 ⇔ x < −1 or x > 1, so

f is CU on (−1, 1) and f is CD on (−∞,−1) and (1,∞). IP at (±1, 0)

H.

31. y = f(x) = 3 sinx− sin3 x A. D = R B. y-intercept: f(0) = 0; x-intercepts: f(x) = 0 ⇒
sinx (3− sin2 x) = 0 ⇒ sinx = 0 [since sin2 x ≤ 1 < 3] ⇒ x = nπ, n an integer.

C. f(−x) = −f(x), so f is odd; the graph (shown for −2π ≤ x ≤ 2π) is symmetric about the origin and periodic

with period 2π. D. No asymptote E. f 0(x) = 3 cosx− 3 sin2 x cosx = 3cosx (1− sin2 x) = 3 cos3 x.

f 0(x) > 0 ⇔ cosx > 0 ⇔ x ∈ 2nπ − π
2
, 2nπ + π

2
for each integer n, and f 0(x) < 0 ⇔ cosx < 0 ⇔

x ∈ 2nπ + π
2 , 2nπ +

3π
2

for each integer n. Thus, f is increasing on 2nπ − π
2 , 2nπ +

π
2

for each integer n,

and f is decreasing on 2nπ + π
2
, 2nπ + 3π

2
for each integer n.

F. f has local maximum values f(2nπ + π
2
) = 2 and local minimum values f(2nπ + 3π

2
) = −2.

G. f 00(x) = −9 sinx cos2 x = −9 sinx (1− sin2 x) = −9 sinx (1− sinx)(1 + sinx).
f 00(x) < 0 ⇔ sinx > 0 and sinx 6= ±1 ⇔ x ∈ 2nπ, 2nπ + π

2
∪ 2nπ + π

2
, 2nπ + π for some integer n.

f 00(x) > 0 ⇔ sinx < 0 and sinx 6= ±1 ⇔ x ∈ (2n− 1)π, (2n− 1)π + π
2
∪ (2n− 1)π + π

2
, 2nπ

for some integer n. Thus, f is CD on the intervals 2nπ, 2n+ 1
2
π and

2n+ 1
2
π, (2n+ 1)π [hence CD on the intervals (2nπ, (2n+ 1)π)]

for each integer n, and f is CU on the intervals (2n− 1)π, 2n− 1
2
π and

2n− 1
2
π, 2nπ [hence CU on the intervals ((2n− 1)π, 2nπ)]

for each integer n. f has inflection points at (nπ, 0) for each integer n.

H.

33. y = f(x) = x tanx, −π
2
< x < π

2
A. D = −π

2
, π
2

B. Intercepts are 0 C. f(−x) = f(x), so the curve is

symmetric about the y-axis. D. lim
x→(π/2)−

x tanx =∞ and lim
x→−(π/2)+

x tanx =∞, so x = π
2

and x = −π
2

are VA.

E. f 0(x) = tanx+ x sec2 x > 0 ⇔ 0 < x < π
2

, so f increases on 0, π
2

and decreases on −π
2 , 0 . F. Absolute and local minimum value f(0) = 0.

G. y00 = 2 sec2 x+ 2x tanx sec2 x > 0 for −π
2
< x < π

2
, so f is

CU on −π
2
, π
2

. No IP

H.



178 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

35. y = f(x) = 1
2x− sinx, 0 < x < 3π A. D = (0, 3π) B. No y-intercept. The x-intercept, approximately 1.9, can be

found using Newton’s Method. C. No symmetry D. No asymptote E. f 0(x) = 1
2
− cos x > 0 ⇔ cosx < 1

2
⇔

π
3
< x < 5π

3
or 7π

3
< x < 3π, so f is increasing on π

3
, 5π
3

and 7π
3
, 3π and decreasing on 0, π

3
and 5π

3
, 7π
3

.

F. Local minimum value f π
3
= π

6 −
√
3
2 , local maximum value

f 5π
3

= 5π
6
+
√
3
2

, local minimum value f 7π
3

= 7π
6
−
√
3
2

G. f 00(x) = sinx > 0 ⇔ 0 < x < π or 2π < x < 3π, so f is CU on

(0, π) and (2π, 3π) and CD on (π, 2π). IPs at π, π2 and (2π, π)

H.

37. y = f(x) =
sinx

1 + cosx

⎡⎢⎣ when
cosx 6= 1

=
sinx

1 + cosx
· 1− cosx
1− cosx =

sinx (1− cosx)
sin2 x

=
1− cosx
sinx

= cscx− cotx

⎤⎥⎦
A. The domain of f is the set of all real numbers except odd integer multiples of π. B. y-intercept: f(0) = 0; x-intercepts:

x = nπ, n an even integer. C. f(−x) = −f(x), so f is an odd function; the graph is symmetric about the origin and has

period 2π. D. When n is an odd integer, lim
x→(nπ)−

f(x) =∞ and lim
x→(nπ)+

f(x) = −∞, so x = nπ is a VA for each odd

integer n. No HA. E. f 0(x) = (1 + cosx) · cosx− sinx(− sinx)
(1 + cosx)2

=
1+ cosx

(1 + cosx)2
=

1

1 + cosx
. f 0(x) > 0 for all x

except odd multiples of π, so f is increasing on ((2k − 1)π, (2k + 1)π) for each integer k. F. No extreme values

G. f 00(x) = sinx

(1 + cosx)2
> 0 ⇒ sinx > 0 ⇒

x ∈ (2kπ, (2k + 1)π) and f 00(x) < 0 on ((2k − 1)π, 2kπ) for each

integer k. f is CU on (2kπ, (2k + 1)π) and CD on ((2k − 1)π, 2kπ)
for each integer k. f has IPs at (2kπ, 0) for each integer k.

H.

39. y = f(x) = esinx A. D = R B. y-intercept: f(0) = e0 = 1; x-intercepts: none, since esin x > 0 C. f is periodic

with period 2π, so we determine E–G for 0 ≤ x ≤ 2π. D. No asymptote E. f 0(x) = esin x cosx. f 0(x) > 0 ⇔
cosx > 0 ⇒ x is in 0, π2 or 3π

2 , 2π [ f is increasing] and f 0(x) < 0 ⇒ x is in π
2 ,

3π
2

[ f is decreasing].

F. Local maximum value f π
2
= e and local minimum value f 3π

2
= e−1

G. f 00(x) = esinx(− sinx) + cosx (esin x cosx) = esin x (cos2 x− sinx). f 00(x) = 0 ⇔ cos2 x− sinx = 0 ⇔
1− sin2 x− sinx = 0 ⇔ sin2 x+ sinx− 1 = 0 ⇒ sinx = −1±√5

2 ⇒ α = sin−1 −1+√5
2

≈ 0.67 and

β = π − α ≈ 2.48. f 00(x) < 0 on (α, β) [ f is CD] and f 00(x) > 0 on (0, α) and (β, 2π) [ f is CU].

The inflection points occur when x = α, β.

H.



SECTION 4.5 SUMMARY OF CURVE SKETCHING ¤ 179

41. y = 1/(1 + e−x) A. D = R B. No x-intercept; y-intercept = f(0) = 1
2 . C. No symmetry

D. lim
x→∞

1/(1 + e−x) = 1
1+ 0

= 1 and lim
x→−∞

1/(1 + e−x) = 0 since lim
x→−∞

e−x =∞], so f has horizontal asymptotes

y = 0 and y = 1. E. f 0(x) = −(1 + e−x)−2(−e−x) = e−x/(1 + e−x)2. This is positive for all x, so f is increasing on R.

F. No extreme values G. f 00(x) = (1 + e−x)2(−e−x)− e−x(2)(1 + e−x)(−e−x)
(1 + e−x)4

=
e−x(e−x − 1)
(1 + e−x)3

The second factor in the numerator is negative for x > 0 and positive for x < 0,

and the other factors are always positive, so f is CU on (−∞, 0) and CD

on (0,∞). IP at 0, 1
2

H.

43. y = f(x) = x− lnx A. D = (0,∞) B. y-intercept: none (0 is not in the domain); x-intercept: f(x) = 0 ⇔
x = lnx, which has no solution, so there is no x-intercept. C. No symmetry D. lim

x→0+
(x− lnx) =∞, so x = 0

is a VA. E. f 0(x) = 1− 1/x > 0 ⇒ 1 > 1/x ⇒ x > 1 and

f 0(x) < 0 ⇒ 0 < x < 1, so f is increasing on (1,∞) and f is decreasing

on (0, 1). F. Local minimum value f(1) = 1; no local maximum value

G. f 00(x) = 1

x2
> 0 for all x, so f is CU on (0,∞). No IP

H.

45. y = f(x) = (1 + ex)−2 =
1

(1 + ex)2
A. D = R B. y-intercept: f(0) = 1

4 . x-intercepts: none [since f(x) > 0]

C. No symmetry D. lim
x→∞

f(x) = 0 and lim
x→−∞

f(x) = 1, so y = 0 and y = 1 are HA; no VA

E. f 0(x) = −2(1 + ex)−3ex =
−2ex

(1 + ex)3
< 0, so f is decreasing on R F. No local extrema

G. f 00(x) = (1 + ex)−3(−2ex) + (−2ex)(−3)(1 + ex)−4ex

= −2ex(1 + ex)−4[(1 + ex)− 3ex] = −2ex(1− 2ex)
(1 + ex)4

.

f 00(x) > 0 ⇔ 1− 2ex < 0 ⇔ ex > 1
2
⇔ x > ln 1

2
and

f 00(x) < 0 ⇔ x < ln 1
2

, so f is CU on ln 1
2
,∞ and CD on −∞, ln 1

2
.

IP at ln 1
2
, 4
9

H.

47. y = f(x) = ln(sinx)

A. D = {x in R | sinx > 0} =
∞

n=−∞
(2nπ, (2n+ 1)π) = · · · ∪ (−4π,−3π) ∪ (−2π,−π) ∪ (0, π) ∪ (2π, 3π) ∪ · · ·

B. No y-intercept; x-intercepts: f(x) = 0 ⇔ ln(sinx) = 0 ⇔ sinx = e0 = 1 ⇔ x = 2nπ + π
2

for each

integer n. C. f is periodic with period 2π. D. lim
x→(2nπ)+

f(x) = −∞ and lim
x→[(2n+1)π]−

f(x) = −∞, so the lines

x = nπ are VAs for all integers n. E. f 0(x) = cosx

sinx
= cotx, so f 0(x) > 0 when 2nπ < x < 2nπ + π

2
for each

integer n, and f 0(x) < 0 when 2nπ + π
2
< x < (2n+ 1)π. Thus, f is increasing on 2nπ, 2nπ + π

2
and
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decreasing on 2nπ + π
2 , (2n+ 1)π for each integer n.

F. Local maximum values f 2nπ + π
2
= 0, no local minimum.

G. f 00(x) = − csc2 x < 0, so f is CD on (2nπ, (2n+ 1)π) for

each integer n. No IP

H.

49. y = f(x) = xe−x
2

A. D = R B. Intercepts are 0 C. f(−x) = −f(x), so the curve is symmetric

about the origin. D. lim
x→±∞

xe−x
2
= lim

x→±∞
x

ex2
H
= lim

x→±∞
1

2xex2
= 0, so y = 0 is a HA.

E. f 0(x) = e−x
2 − 2x2e−x2 = e−x

2
(1− 2x2) > 0 ⇔ x2 < 1

2
⇔ |x| < 1√

2
, so f is increasing on − 1√

2
, 1√

2

and decreasing on −∞,− 1√
2

and 1√
2
,∞ . F. Local maximum value f 1√

2
= 1/

√
2e, local minimum

value f − 1√
2
= −1/√2e G. f 00(x) = −2xe−x2(1− 2x2)− 4xe−x2 = 2xe−x2(2x2 − 3) > 0 ⇔

x > 3
2

or − 3
2
< x < 0, so f is CU on 3

2
,∞ and

− 3
2
, 0 and CD on −∞,− 3

2
and 0, 3

2
.

IP are (0, 0) and ± 3
2
,± 3

2
e−3/2 .

H.

51. y = f(x) = e3x + e−2x A. D = R B. y-intercept= f(0) = 2; no x-intercept C. No symmetry D. No asymptote

E. f 0(x) = 3e3x − 2e−2x, so f 0(x) > 0 ⇔ 3e3x > 2e−2x [multiply by e2x] ⇔
e5x > 2

3 ⇔ 5x > ln 2
3 ⇔ x > 1

5 ln
2
3 ≈ −0.081. Similarly, f 0(x) < 0 ⇔

x < 1
5
ln 2

3
. f is decreasing on −∞, 1

5
ln 2

3
and increasing on 1

5
ln 2

3
,∞ .

F. Local minimum value f 1
5
ln 2

3
= 2

3

3/5
+ 2

3

−2/5 ≈ 1.96; no local maximum.

G. f 00(x) = 9e3x + 4e−2x, so f 00(x) > 0 for all x, and f is CU on (−∞,∞). No IP

H.

53. m = f(v) =
m0

1− v2/c2
. The m-intercept is f(0) = m0. There are no v-intercepts. lim

v→c−
f(v) =∞, so v = c is a VA.

f 0(v) = − 1
2m0(1− v2/c2)−3/2(−2v/c2) = m0v

c2(1− v2/c2)3/2
=

m0v

c2(c2 − v2)3/2

c3

=
m0cv

(c2 − v2)3/2
> 0, so f is

increasing on (0, c). There are no local extreme values.

f 00(v) =
(c2 − v2)3/2(m0c)−m0cv · 32 (c2 − v2)1/2(−2v)

[(c2 − v2)3/2]2

=
m0c(c

2 − v2)1/2[(c2 − v2) + 3v2]

(c2 − v2)3
=

m0c(c
2 + 2v2)

(c2 − v2)5/2
> 0,

so f is CU on (0, c). There are no inflection points.
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55. y = − W

24EI
x4 +

WL

12EI
x3 − WL2

24EI
x2 = − W

24EI
x2 x2 − 2Lx+ L2

=
−W
24EI

x2(x− L)2 = cx2(x− L)2

where c = − W

24EI
is a negative constant and 0 ≤ x ≤ L. We sketch

f(x) = cx2(x− L)2 for c = −1. f(0) = f(L) = 0.

f 0(x) = cx2[2(x− L)] + (x− L)2(2cx) = 2cx(x− L)[x+ (x− L)] = 2cx(x− L)(2x− L). So for 0 < x < L,

f 0(x) > 0 ⇔ x(x− L)(2x− L) < 0 [since c < 0] ⇔ L/2 < x < L and f 0(x) < 0 ⇔ 0 < x < L/2.

Thus, f is increasing on (L/2, L) and decreasing on (0, L/2), and there is a local and absolute

minimum at the point (L/2, f(L/2)) = L/2, cL4/16 . f 0(x) = 2c[x(x− L)(2x− L)] ⇒
f 00(x) = 2c[1(x− L)(2x− L) + x(1)(2x− L) + x(x− L)(2)] = 2c(6x2 − 6Lx+ L2) = 0 ⇔

x =
6L±√12L2

12
= 1

2
L±

√
3
6
L, and these are the x-coordinates of the two inflection points.

57. y = x2 + 1

x+ 1
. Long division gives us: x− 1

x+ 1 x2 + 1

x2 + x

− x+ 1

− x− 1
2

Thus, y = f(x) =
x2 + 1

x+ 1
= x− 1 + 2

x+ 1
and f(x)− (x− 1) = 2

x+ 1
=

2

x

1 +
1

x

[for x 6= 0] → 0 as x→ ±∞.

So the line y = x− 1 is a slant asymptote (SA).

59. y = 4x3 − 2x2 + 5
2x2 + x− 3 . Long division gives us: 2x− 2

2x2 + x− 3 4x3 − 2x2 + 5

4x3 + 2x2 − 6x
− 4x2 + 6x+ 5
− 4x2 − 2x+ 6

8x− 1

Thus, y = f(x) =
4x3 − 2x2 + 5
2x2 + x− 3 = 2x− 2 + 8x− 1

2x2 + x− 3 and f(x)− (2x− 2) = 8x− 1
2x2 + x− 3 =

8

x
− 1

x2

2 +
1

x
− 3

x2

[for x 6= 0] → 0 as x→ ±∞. So the line y = 2x− 2 is a SA.

61. y = f(x) =
−2x2 + 5x− 1

2x− 1 = −x+ 2 + 1

2x− 1 A. D = x ∈ R | x 6= 1
2
= −∞, 1

2
∪ 1

2 ,∞

B. y-intercept: f(0) = 1; x-intercepts: f(x) = 0 ⇒ −2x2 + 5x− 1 = 0 ⇒ x =
−5±√17
−4 ⇒ x ≈ 0.22, 2.28.

[continued]
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C. No symmetry D. lim
x→(1/2)−

f(x) = −∞ and lim
x→(1/2)+

f(x) =∞, so x = 1
2 is a VA.

lim
x→±∞

[f(x)− (−x+ 2)] = lim
x→±∞

1

2x− 1 = 0, so the line y = −x+ 2 is a SA.

E. f 0(x) = −1− 2

(2x− 1)2 < 0 for x 6= 1
2

, so f is decreasing on −∞, 1
2

and 1
2 ,∞ . F. No extreme values G. f 0(x) = −1− 2(2x− 1)−2 ⇒

f 00(x) = −2(−2)(2x− 1)−3(2) = 8

(2x− 1)3 , so f 00(x) > 0 when x > 1
2

and

f 00(x) < 0 when x < 1
2

. Thus, f is CU on 1
2
,∞ and CD on −∞, 1

2
. No IP

H.

63. y = f(x) = (x2 + 4)/x = x+ 4/x A. D = {x | x 6= 0} = (−∞, 0) ∪ (0,∞) B. No intercept

C. f(−x) = −f(x) ⇒ symmetry about the origin D. lim
x→∞

(x+ 4/x) =∞ but f(x)− x = 4/x→ 0 as x→ ±∞,

so y = x is a slant asymptote. lim
x→0+

(x+ 4/x) =∞ and

lim
x→0−

(x+ 4/x) = −∞, so x = 0 is a VA. E. f 0(x) = 1− 4/x2 > 0 ⇔

x2 > 4 ⇔ x > 2 or x < −2, so f is increasing on (−∞,−2) and (2,∞) and

decreasing on (−2, 0) and (0, 2). F. Local maximum value f(−2) = −4, local

minimum value f(2) = 4 G. f 00(x) = 8/x3 > 0 ⇔ x > 0 so f is CU on

(0,∞) and CD on (−∞, 0). No IP

H.

65. y = f(x) =
2x3 + x2 + 1

x2 + 1
= 2x+ 1 +

−2x
x2 + 1

A. D = R B. y-intercept: f(0) = 1; x-intercept: f(x) = 0 ⇒

0 = 2x3 + x2 + 1 = (x+ 1)(2x2 − x+ 1) ⇒ x = −1 C. No symmetry D. No VA

lim
x→±∞

[f(x)− (2x+ 1)] = lim
x→±∞

−2x
x2 + 1

= lim
x→±∞

−2/x
1 + 1/x2

= 0, so the line y = 2x+ 1 is a slant asymptote.

E. f 0(x) = 2 + (x2 + 1)(−2)− (−2x)(2x)
(x2 + 1)2

=
2(x4 + 2x2 + 1)− 2x2 − 2 + 4x2

(x2 + 1)2
=
2x4 + 6x2

(x2 + 1)2
=
2x2(x2 + 3)

(x2 + 1)2

so f 0(x) > 0 if x 6= 0. Thus, f is increasing on (−∞, 0) and (0,∞). Since f is continuous at 0, f is increasing on R.
F. No extreme values

G. f 00(x) =
(x2 + 1)2 · (8x3 + 12x)− (2x4 + 6x2) · 2(x2 + 1)(2x)

[(x2 + 1)2]2

=
4x(x2 + 1)[(x2 + 1)(2x2 + 3)− 2x4 − 6x2]

(x2 + 1)4
=
4x(−x2 + 3)
(x2 + 1)3

so f 00(x) > 0 for x < −√3 and 0 < x <
√
3, and f 00(x) < 0 for

−√3 < x < 0 and x >
√
3. f is CU on −∞,−√3 and 0,

√
3 ,

and CD on −√3, 0 and
√
3,∞ . There are three IPs: (0, 1),

−√3,− 3
2

√
3 + 1 ≈ (−1.73,−1.60), and

√
3, 3

2

√
3 + 1 ≈ (1.73, 3.60).

H.
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67. y = f(x) = x− tan−1 x, f 0(x) = 1− 1

1 + x2
=
1 + x2 − 1
1 + x2

=
x2

1 + x2
,

f 00(x) =
(1 + x2)(2x)− x2(2x)

(1 + x2)2
=
2x(1 + x2 − x2)

(1 + x2)2
=

2x

(1 + x2)2
.

lim
x→∞

f(x)− x− π
2

= lim
x→∞

π
2
− tan−1 x = π

2
− π

2
= 0, so y = x− π

2
is a SA.

Also, lim
x→−∞

f(x)− x+ π
2

= lim
x→−∞

−π
2 − tan−1 x = −π

2 − −π
2
= 0,

so y = x+ π
2

is also a SA. f 0(x) ≥ 0 for all x, with equality ⇔ x = 0, so f is

increasing on R. f 00(x) has the same sign as x, so f is CD on (−∞, 0) and CU on

(0,∞). f(−x) = −f(x), so f is an odd function; its graph is symmetric about the

origin. f has no local extreme values. Its only IP is at (0, 0).

69. x2

a2
− y2

b2
= 1 ⇒ y = ± b

a

√
x2 − a2. Now

lim
x→∞

b

a

√
x2 − a2 − b

a
x =

b

a
· lim
x→∞

√
x2 − a2 − x

√
x2 − a2 + x√
x2 − a2 + x

=
b

a
· lim
x→∞

−a2√
x2 − a2 + x

= 0,

which shows that y = b

a
x is a slant asymptote. Similarly,

lim
x→∞

− b

a

√
x2 − a2 − − b

a
x = − b

a
· lim
x→∞

−a2√
x2 − a2 + x

= 0, so y = − b

a
x is a slant asymptote.

71. lim
x→±∞

f(x)− x3 = lim
x→±∞

x4 + 1

x
− x4

x
= lim

x→±∞
1

x
= 0, so the graph of f is asymptotic to that of y = x3.

A. D = {x | x 6= 0} B. No intercept C. f is symmetric about the origin. D. lim
x→0−

x3 +
1

x
= −∞ and

lim
x→0+

x3 +
1

x
=∞, so x = 0 is a vertical asymptote, and as shown above, the graph of f is asymptotic to that of y = x3.

E. f 0(x) = 3x2 − 1/x2 > 0 ⇔ x4 > 1
3
⇔ |x| > 1

4√3 , so f is increasing on −∞,− 1
4
√
3

and 1
4
√
3
,∞ and

decreasing on − 1
4
√
3
, 0 and 0,

1
4
√
3

. F. Local maximum value

f − 1
4
√
3

= −4 · 3−5/4, local minimum value f 1
4
√
3

= 4 · 3−5/4

G. f 00(x) = 6x+ 2/x3 > 0 ⇔ x > 0, so f is CU on (0,∞) and CD

on (−∞, 0). No IP

H.
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4.6 Graphing with Calculus and Calculators

1. f(x) = 4x4 − 32x3 + 89x2 − 95x+ 29 ⇒ f 0(x) = 16x3 − 96x2 + 178x− 95 ⇒ f 00(x) = 48x2 − 192x+ 178.

f(x) = 0 ⇔ x ≈ 0.5, 1.60; f 0(x) = 0 ⇔ x ≈ 0.92, 2.5, 2.58 and f 00(x) = 0 ⇔ x ≈ 1.46, 2.54.

From the graphs of f 0, we estimate that f 0 < 0 and that f is decreasing on (−∞, 0.92) and (2.5, 2.58), and that f 0 > 0 and f

is increasing on (0.92, 2.5) and (2.58,∞) with local minimum values f(0.92) ≈ −5.12 and f(2.58) ≈ 3.998 and local

maximum value f(2.5) = 4. The graphs of f 0 make it clear that f has a maximum and a minimum near x = 2.5, shown more

clearly in the fourth graph.

From the graph of f 00, we estimate that f 00 > 0 and that f is CU on

(−∞, 1.46) and (2.54,∞), and that f 00 < 0 and f is CD on (1.46, 2.54).

There are inflection points at about (1.46,−1.40) and (2.54, 3.999).

3. f(x) = x6 − 10x5 − 400x4 + 2500x3 ⇒ f 0(x) = 6x5 − 50x4 − 1600x3 + 7500x2 ⇒
f 00(x) = 30x4 − 200x3 − 4800x2 + 1500x
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From the graph of f 0, we estimate that f is decreasing on (−∞,−15), increasing on (−15, 4.40), decreasing

on (4.40, 18.93), and increasing on (18.93,∞), with local minimum values of f(−15) ≈ −9,700,000 and

f(18.93) ≈ −12,700,000 and local maximum value f(4.40) ≈ 53,800. From the graph of f 00, we estimate that f is CU on

(−∞,−11.34), CD on (−11.34, 0), CU on (0, 2.92), CD on (2.92, 15.08), and CU on (15.08,∞). There is an inflection

point at (0, 0) and at about (−11.34,−6,250,000), (2.92, 31,800), and (15.08,−8,150,000).

5. f(x) = x

x3 − x2 − 4x+ 1 ⇒ f 0(x) =
−2x3 + x2 + 1

(x3 − x2 − 4x+ 1)2 ⇒ f 00(x) =
2(3x5 − 3x4 + 5x3 − 6x2 + 3x+ 4)

(x3 − x2 − 4x+ 1)3

We estimate from the graph of f that y = 0 is a horizontal asymptote, and that there are vertical asymptotes at x = −1.7,

x = 0.24, and x = 2.46. From the graph of f 0, we estimate that f is increasing on (−∞,−1.7), (−1.7, 0.24), and (0.24, 1),

and that f is decreasing on (1, 2.46) and (2.46,∞). There is a local maximum value at f(1) = − 1
3

. From the graph of f 00, we

estimate that f is CU on (−∞,−1.7), (−0.506, 0.24), and (2.46,∞), and that f is CD on (−1.7,−0.506) and (0.24, 2.46).

There is an inflection point at (−0.506,−0.192).

7. f(x) = x2 − 4x+ 7cosx, −4 ≤ x ≤ 4. f 0(x) = 2x− 4− 7 sinx ⇒ f 00(x) = 2− 7 cosx.

f(x) = 0 ⇔ x ≈ 1.10; f 0(x) = 0 ⇔ x ≈ −1.49, −1.07, or 2.89; f 00(x) = 0 ⇔ x = ± cos−1 2
7
≈ ±1.28.

From the graphs of f 0, we estimate that f is decreasing (f 0 < 0) on (−4,−1.49), increasing on (−1.49,−1.07), decreasing

on (−1.07, 2.89), and increasing on (2.89, 4), with local minimum values f(−1.49) ≈ 8.75 and f(2.89) ≈ −9.99 and local

maximum value f(−1.07) ≈ 8.79 (notice the second graph of f). From the graph of f 00, we estimate that f is CU (f 00 > 0)

on (−4,−1.28), CD on (−1.28, 1.28), and CU on (1.28, 4). There are inflection points at about (−1.28, 8.77)
and (1.28,−1.48).
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9. f(x) = 1 + 1

x
+
8

x2
+
1

x3
⇒ f 0(x) = − 1

x2
− 16

x3
− 3

x4
= − 1

x4
(x2 + 16x+ 3) ⇒

f 00(x) =
2

x3
+
48

x4
+
12

x5
=
2

x5
(x2 + 24x+ 6).

From the graphs, it appears that f increases on (−15.8,−0.2) and decreases on (−∞,−15.8), (−0.2, 0), and (0,∞); that f

has a local minimum value of f(−15.8) ≈ 0.97 and a local maximum value of f(−0.2) ≈ 72; that f is CD on (−∞,−24)

and (−0.25, 0) and is CU on (−24,−0.25) and (0,∞); and that f has IPs at (−24, 0.97) and (−0.25, 60).

To find the exact values, note that f 0 = 0 ⇒ x =
−16±√256− 12

2
= −8±√61 [≈ −0.19 and −15.81].

f 0 is positive (f is increasing) on −8−√61,−8 +√61 and f 0 is negative (f is decreasing) on −∞,−8−√61 ,

−8 +√61, 0 , and (0,∞). f 00 = 0 ⇒ x =
−24±√576− 24

2
= −12±√138 [≈ −0.25 and −23.75]. f 00 is

positive (f is CU) on −12−√138,−12 +√138 and (0,∞) and f 00 is negative (f is CD) on −∞,−12−√138

and −12 +√138, 0 .

11. (a) f(x) = x2 lnx. The domain of f is (0,∞).

(b) lim
x→0+

x2 lnx = lim
x→0+

lnx

1/x2
H
= lim

x→0+

1/x

−2/x3 = lim
x→0+

−x2

2
= 0.

There is a hole at (0, 0).

(c) It appears that there is an IP at about (0.2,−0.06) and a local minimum at (0.6,−0.18). f(x) = x2 lnx ⇒

f 0(x) = x2(1/x) + (lnx)(2x) = x(2 lnx+ 1) > 0 ⇔ lnx > − 1
2 ⇔ x > e−1/2, so f is increasing on

1/
√
e,∞ , decreasing on 0, 1/

√
e . By the FDT, f 1/

√
e = −1/(2e) is a local minimum value. This point is

approximately (0.6065,−0.1839), which agrees with our estimate.

f 00(x) = x(2/x) + (2 lnx+ 1) = 2 lnx+ 3 > 0 ⇔ lnx > − 3
2
⇔ x > e−3/2, so f is CU on (e−3/2,∞)

and CD on (0, e−3/2). IP is (e−3/2,−3/(2e3)) ≈ (0.2231,−0.0747).
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13. f(x) =
(x+ 4)(x− 3)2

x4(x− 1) has VA at x = 0 and at x = 1 since lim
x→0

f(x) = −∞,

lim
x→1−

f(x) = −∞ and lim
x→1+

f(x) =∞.

f(x) =

x+ 4

x
· (x− 3)

2

x2

x4

x3
· (x− 1)

dividing numerator
and denominator by x3 =

(1 + 4/x)(1− 3/x)2
x(x− 1) → 0

as x→ ±∞, so f is asymptotic to the x-axis.

Since f is undefined at x = 0, it has no y-intercept. f(x) = 0 ⇒ (x+4)(x− 3)2 = 0 ⇒ x = −4 or x = 3, so f has

x-intercepts−4 and 3. Note, however, that the graph of f is only tangent to the x-axis and does not cross it at x = 3, since f is

positive as x→ 3− and as x→ 3+.

From these graphs, it appears that f has three maximum values and one minimum value. The maximum values are

approximately f(−5.6) = 0.0182, f(0.82) = −281.5 and f(5.2) = 0.0145 and we know (since the graph is tangent to the

x-axis at x = 3) that the minimum value is f(3) = 0.

15. f(x) = x2(x+ 1)3

(x− 2)2(x− 4)4 ⇒ f 0(x) = −x(x+ 1)2(x3 + 18x2 − 44x− 16)
(x− 2)3(x− 4)5 [from CAS].

From the graphs of f 0, it seems that the critical points which indicate extrema occur at x ≈ −20, −0.3, and 2.5, as estimated

in Example 3. (There is another critical point at x = −1, but the sign of f 0 does not change there.) We differentiate again,

obtaining f 00(x) = 2(x+ 1)(x
6 + 36x5 + 6x4 − 628x3 + 684x2 + 672x+ 64)

(x− 2)4(x− 4)6 .

From the graphs of f 00, it appears that f is CU on (−35.3,−5.0), (−1,−0.5), (−0.1, 2), (2, 4) and (4,∞) and CD
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on (−∞,−35.3), (−5.0,−1) and (−0.5,−0.1). We check back on the graphs of f to find the y-coordinates of the

inflection points, and find that these points are approximately (−35.3,−0.015), (−5.0,−0.005), (−1, 0), (−0.5, 0.00001),
and (−0.1, 0.0000066).

17. y = f(x) =

√
x

x2 + x+ 1
. From a CAS, y0 = − 3x2 + x− 1

2
√
x (x2 + x+ 1)2

and y00 = 15x4 + 10x3 − 15x2 − 6x− 1
4x3/2(x2 + x+ 1)3

.

f 0(x) = 0 ⇔ x ≈ 0.43, so f is increasing on (0, 0.43) and decreasing on (0.43,∞). There is a local maximum value of

f(0.43) ≈ 0.41. f 00(x) = 0 ⇔ x ≈ 0.94, so f is CD on (0, 0.94) and CU on (0.94,∞). There is an inflection point at

(0.94, 0.34).

19. y = f(x) =
√
x+ 5 sinx, x ≤ 20.

From a CAS, y0 = 5cosx+ 1

2
√
x+ 5 sinx

and y00 = −10 cosx+ 25 sin
2 x+ 10x sinx+ 26

4(x+ 5 sinx)3/2
.

We’ll start with a graph of g(x) = x+ 5 sinx. Note that f(x) = g(x) is only defined if g(x) ≥ 0. g(x) = 0 ⇔ x = 0

or x ≈ −4.91, −4.10, 4.10, and 4.91. Thus, the domain of f is [−4.91,−4.10] ∪ [0, 4.10] ∪ [4.91, 20].

From the expression for y0, we see that y0 = 0 ⇔ 5 cosx+ 1 = 0 ⇒ x1 = cos
−1 − 1

5
≈ 1.77 and

x2 = 2π − x1 ≈ −4.51 (not in the domain of f ). The leftmost zero of f 0 is x1 − 2π ≈ −4.51. Moving to the right, the zeros

of f 0 are x1, x1 + 2π, x2 + 2π, x1 + 4π, and x2 + 4π. Thus, f is increasing on (−4.91,−4.51), decreasing on

(−4.51,−4.10), increasing on (0, 1.77), decreasing on (1.77, 4.10), increasing on (4.91, 8.06), decreasing on (8.06, 10.79),

increasing on (10.79, 14.34), decreasing on (14.34, 17.08), and increasing on (17.08, 20). The local maximum values are

f(−4.51) ≈ 0.62, f(1.77) ≈ 2.58, f(8.06) ≈ 3.60, and f(14.34) ≈ 4.39. The local minimum values are f(10.79) ≈ 2.43
and f(17.08) ≈ 3.49.

f is CD on (−4.91,−4.10), (0, 4.10), (4.91, 9.60), CU on (9.60, 12.25), CD

on (12.25, 15.81), CU on (15.81, 18.65), and CD on (18.65, 20). There are

inflection points at (9.60, 2.95), (12.25, 3.27), (15.81, 3.91), and (18.65, 4.20).
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21. y = f(x) =
1− e1/x

1 + e1/x
. From a CAS, y0 = 2e1/x

x2(1 + e1/x)2
and y00 = −2e1/x(1− e1/x + 2x+ 2xe1/x)

x4(1 + e1/x)3
.

f is an odd function defined on (−∞, 0) ∪ (0,∞). Its graph has no x- or y-intercepts. Since lim
x→±∞

f(x) = 0, the x-axis

is a HA. f 0(x) > 0 for x 6= 0, so f is increasing on (−∞, 0) and (0,∞). It has no local extreme values.

f 00(x) = 0 for x ≈ ±0.417, so f is CU on (−∞,−0.417), CD on (−0.417, 0), CU on (0, 0.417), and CD on (0.417,∞).
f has IPs at (−0.417, 0.834) and (0.417,−0.834).

23. (a) f(x) = x1/x

(b) Recall that ab = eb ln a. lim
x→0+

x1/x = lim
x→0+

e(1/x) ln x. As x→ 0+, lnx
x
→ −∞, so x1/x = e(1/x) lnx → 0. This

indicates that there is a hole at (0, 0). As x→∞, we have the indeterminate form∞0. lim
x→∞

x1/x = lim
x→∞

e(1/x) ln x,

but lim
x→∞

lnx

x
H
= lim

x→∞
1/x

1
= 0, so lim

x→∞
x1/x = e0 = 1. This indicates that y = 1 is a HA.

(c) Estimated maximum: (2.72, 1.45). No estimated minimum. We use logarithmic differentiation to find any critical

numbers. y = x1/x ⇒ ln y =
1

x
lnx ⇒ y0

y
=
1

x
· 1
x
+ (lnx) − 1

x2
⇒ y0 = x1/x

1− lnx
x2

= 0 ⇒

lnx = 1 ⇒ x = e. For 0 < x < e, y0 > 0 and for x > e, y0 < 0, so f(e) = e1/e is a local maximum value. This

point is approximately (2.7183, 1.4447), which agrees with our estimate.

(d) From the graph, we see that f 00(x) = 0 at x ≈ 0.58 and x ≈ 4.37. Since f 00

changes sign at these values, they are x-coordinates of inflection points.
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25.

From the graph of f(x) = sin(x+ sin 3x) in the viewing rectangle [0, π] by [−1.2, 1.2], it looks like f has two maxima

and two minima. If we calculate and graph f 0(x) = [cos(x+ sin 3x)] (1 + 3 cos 3x) on [0, 2π], we see that

the graph of f 0 appears to be almost tangent to the x-axis at about x = 0.7. The graph of

f 00 = − [sin(x+ sin 3x)] (1 + 3 cos 3x)2 + cos(x+ sin 3x)(−9 sin 3x) is even more interesting near this x-value:

it seems to just touch the x-axis.

If we zoom in on this place on the graph of f 00, we see that f 00 actually does cross the axis twice near x = 0.65,

indicating a change in concavity for a very short interval. If we look at the graph of f 0 on the same interval, we see that it

changes sign three times near x = 0.65, indicating that what we had thought was a broad extremum at about x = 0.7 actually

consists of three extrema (two maxima and a minimum). These maximum values are roughly f(0.59) = 1 and f(0.68) = 1,

and the minimum value is roughly f(0.64) = 0.99996. There are also a maximum value of about f(1.96) = 1 and minimum

values of about f(1.46) = 0.49 and f(2.73) = −0.51. The points of inflection on (0, π) are about (0.61, 0.99998),

(0.66, 0.99998), (1.17, 0.72), (1.75, 0.77), and (2.28, 0.34). On (π, 2π), they are about (4.01,−0.34), (4.54,−0.77),
(5.11,−0.72), (5.62,−0.99998), and (5.67,−0.99998). There are also IP at (0, 0) and (π, 0). Note that the function is odd

and periodic with period 2π, and it is also rotationally symmetric about all points of the form ((2n+ 1)π, 0), n an integer.

27. f(x) = x4 + cx2 = x2 x2 + c . Note that f is an even function. For c ≥ 0, the only x-intercept is the point (0, 0). We

calculate f 0(x) = 4x3 + 2cx = 4x x2 + 1
2
c ⇒ f 00(x) = 12x2 + 2c. If c ≥ 0, x = 0 is the only critical point and there

is no inflection point. As we can see from the examples, there is no change in the basic shape of the graph for c ≥ 0; it merely
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becomes steeper as c increases. For c = 0, the graph is the simple curve y = x4.For c < 0, there are x-intercepts at 0

and at±√−c. Also, there is a maximum at (0, 0), and there are

minima at ± − 1
2
c,− 1

4
c2 . As c→−∞, the x-coordinates of

these minima get larger in absolute value, and the minimum points

move downward. There are inflection points at ± − 1
6
c,− 5

36
c2 ,

which also move away from the origin as c→−∞.

29.

c = 0 is a transitional value — we get the graph of y = 1. For c > 0, we see that there is a HA at y = 1, and that the graph

spreads out as c increases. At first glance there appears to be a minimum at (0, 0), but f(0) is undefined, so there is no

minimum or maximum. For c < 0, we still have the HA at y = 1, but the range is (1,∞) rather than (0, 1). We also have

a VA at x = 0. f(x) = e−c/x
2 ⇒ f 0(x) = e−c/x

2 2c

x3
⇒ f 00(x) =

2c(2c− 3x2)
x6ec/x2

.

f 0(x) 6= 0 and f 0(x) exists for all x 6= 0 (and 0 is not in the domain of f ), so there are no maxima or minima.

f 00(x) = 0 ⇒ x = ± 2c/3, so if c > 0, the inflection points spread out as c increases, and if c < 0, there are no IP.

For c > 0, there are IP at ± 2c/3, e−3/2 . Note that the y-coordinate of the IP is constant.

31. Note that c = 0 is a transitional value at which the graph consists of the x-axis. Also, we can see that if we substitute −c for c,

the function f(x) = cx

1 + c2x2
will be reflected in the x-axis, so we investigate only positive values of c (except c = −1, as a

demonstration of this reflective property). Also, f is an odd function. lim
x→±∞

f(x) = 0, so y = 0 is a horizontal asymptote for

all c. We calculate f 0(x) = (1 + c2x2)c− cx(2c2x)

(1 + c2x2)2
= −c(c2x2 − 1)

(1 + c2x2)2
. f 0(x) = 0 ⇔ c2x2 − 1 = 0 ⇔ x = ±1/c.

So there is an absolute maximum value of f(1/c) = 1
2

and an absolute minimum value of f(−1/c) = −1
2

. These extrema

have the same value regardless of c, but the maximum points move closer to the y-axis as c increases.

f 00(x) =
(−2c3x)(1 + c2x2)2 − (−c3x2 + c)[2(1 + c2x2)(2c2x)]

(1 + c2x2)4

=
(−2c3x)(1 + c2x2) + (c3x2 − c)(4c2x)

(1 + c2x2)3
=
2c3x(c2x2 − 3)
(1 + c2x2)3

f 00(x) = 0 ⇔ x = 0 or ±√3/c, so there are inflection points at (0, 0) and

at ±√3/c,±√3/4 . Again, the y-coordinate of the inflection points does not

depend on c, but as c increases, both inflection points approach the y-axis.
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33. f(x) = cx+ sinx ⇒ f 0(x) = c+ cosx ⇒ f 00(x) = − sinx
f(−x) = −f(x), so f is an odd function and its graph is symmetric with respect to the origin.

f(x) = 0 ⇔ sinx = −cx, so 0 is always an x-intercept.

f 0(x) = 0 ⇔ cosx = −c, so there is no critical number when |c| > 1. If |c| ≤ 1, then there are infinitely

many critical numbers. If x1 is the unique solution of cosx = −c in the interval [0, π], then the critical numbers are 2nπ± x1,

where n ranges over the integers. (Special cases: When c = 1, x1 = 0; when c = 0, x = π
2

; and when c = −1, x1 = π.)

f 00(x) < 0 ⇔ sinx > 0, so f is CD on intervals of the form (2nπ, (2n+ 1)π). f is CU on intervals of the form

((2n− 1)π, 2nπ). The inflection points of f are the points (2nπ, 2nπc), where n is an integer.

If c ≥ 1, then f 0(x) ≥ 0 for all x, so f is increasing and has no extremum. If c ≤ −1, then f 0(x) ≤ 0 for all x, so f is

decreasing and has no extremum. If |c| < 1, then f 0(x) > 0 ⇔ cosx > −c ⇔ x is in an interval of the form

(2nπ − x1, 2nπ + x1) for some integer n. These are the intervals on which f is increasing. Similarly, we

find that f is decreasing on the intervals of the form (2nπ + x1, 2(n+ 1)π − x1). Thus, f has local maxima at the points

2nπ + x1, where f has the values c(2nπ + x1) + sinx1 = c(2nπ + x1) +
√
1− c2, and f has local minima at the points

2nπ − x1, where we have f(2nπ − x1) = c(2nπ − x1)− sinx1 = c(2nπ − x1)−
√
1− c2.

The transitional values of c are −1 and 1. The inflection points move vertically, but not horizontally, when c changes.

When |c| ≥ 1, there is no extremum. For |c| < 1, the maxima are spaced

2π apart horizontally, as are the minima. The horizontal spacing between

maxima and adjacent minima is regular (and equals π) when c = 0, but

the horizontal space between a local maximum and the nearest local

minimum shrinks as |c| approaches 1.

35. If c < 0, then lim
x→−∞

f(x) = lim
x→−∞

xe−cx = lim
x→−∞

x

ecx
H
= lim

x→−∞
1

cecx
= 0, and lim

x→∞
f(x) =∞.

If c > 0, then lim
x→−∞

f(x) = −∞, and lim
x→∞

f(x)
H
= lim

x→∞
1

cecx
= 0.

If c = 0, then f(x) = x, so lim
x→±∞

f(x) = ±∞, respectively.

So we see that c = 0 is a transitional value. We now exclude the case c = 0, since we know how the function behaves

in that case. To find the maxima and minima of f , we differentiate: f(x) = xe−cx ⇒

f 0(x) = x(−ce−cx) + e−cx = (1− cx)e−cx. This is 0 when 1− cx = 0 ⇔ x = 1/c. If c < 0 then this

represents a minimum value of f(1/c) = 1/(ce), since f 0(x) changes from negative to positive at x = 1/c;
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and if c > 0, it represents a maximum value. As |c| increases, the maximum or

minimum point gets closer to the origin. To find the inflection points, we

differentiate again: f 0(x) = e−cx(1− cx) ⇒
f 00(x) = e−cx(−c) + (1− cx)(−ce−cx) = (cx− 2)ce−cx. This changes sign

when cx− 2 = 0 ⇔ x = 2/c. So as |c| increases, the points of inflection get

closer to the origin.

37. (a) f(x) = cx4 − 2x2 + 1. For c = 0, f(x) = −2x2 + 1, a parabola whose vertex, (0, 1), is the absolute maximum. For

c > 0, f(x) = cx4 − 2x2 + 1 opens upward with two minimum points. As c→ 0, the minimum points spread apart and

move downward; they are below the x-axis for 0 < c < 1 and above for c > 1. For c < 0, the graph opens downward, and

has an absolute maximum at x = 0 and no local minimum.

(b) f 0(x) = 4cx3 − 4x = 4cx(x2 − 1/c) [c 6= 0]. If c ≤ 0, 0 is the only critical number.

f 00(x) = 12cx2 − 4, so f 00(0) = −4 and there is a local maximum at

(0, f(0)) = (0, 1), which lies on y = 1− x2. If c > 0, the critical

numbers are 0 and ±1/
√
c. As before, there is a local maximum at

(0, f(0)) = (0, 1), which lies on y = 1− x2.

f 00 ±1/
√
c = 12− 4 = 8 > 0, so there is a local minimum at

x = ±1/√c. Here f ±1/
√
c = c(1/c2)− 2/c+ 1 = −1/c+ 1.

But ±1/
√
c,−1/c+ 1 lies on y = 1− x2 since 1− ±1/

√
c

2

= 1− 1/c.

4.7 Optimization Problems

1. (a)
First Number Second Number Product

1 22 22

2 21 42

3 20 60

4 19 76

5 18 90

6 17 102

7 16 112

8 15 120

9 14 126

10 13 130

11 12 132

We needn’t consider pairs where the first number

is larger than the second, since we can just

interchange the numbers in such cases. The

answer appears to be 11 and 12, but we have

considered only integers in the table.
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(b) Call the two numbers x and y. Then x+ y = 23, so y = 23− x. Call the product P . Then

P = xy = x(23− x) = 23x− x2, so we wish to maximize the function P (x) = 23x− x2. Since P 0(x) = 23− 2x,

we see that P 0(x) = 0 ⇔ x = 23
2
= 11.5. Thus, the maximum value of P is P (11.5) = (11.5)2 = 132.25 and it

occurs when x = y = 11.5.

Or: Note that P 00(x) = −2 < 0 for all x, so P is everywhere concave downward and the local maximum at x = 11.5

must be an absolute maximum.

3. The two numbers are x and 100
x

, where x > 0. Minimize f(x) = x+
100

x
. f 0(x) = 1− 100

x2
=

x2 − 100
x2

. The critical

number is x = 10. Since f 0(x) < 0 for 0 < x < 10 and f 0(x) > 0 for x > 10, there is an absolute minimum at x = 10.

The numbers are 10 and 10.

5. If the rectangle has dimensions x and y, then its perimeter is 2x+ 2y = 100 m, so y = 50− x. Thus, the area is

A = xy = x(50− x). We wish to maximize the function A(x) = x(50− x) = 50x− x2, where 0 < x < 50. Since

A0(x) = 50− 2x = −2(x− 25), A0(x) > 0 for 0 < x < 25 and A0(x) < 0 for 25 < x < 50. Thus, A has an absolute

maximum at x = 25, and A(25) = 252 = 625 m2. The dimensions of the rectangle that maximize its area are x = y = 25 m.

(The rectangle is a square.)

7. We need to maximize Y for N ≥ 0. Y (N) =
kN

1 +N2
⇒

Y 0(N) =
(1 +N2)k − kN(2N)

(1 +N2)2
=

k(1−N2)

(1 +N2)2
=

k(1 +N)(1−N)

(1 +N2)2
. Y 0(N) > 0 for 0 < N < 1 and Y 0(N) < 0

for N > 1. Thus, Y has an absolute maximum of Y (1) = 1
2k at N = 1.

9. (a)

The areas of the three figures are 12,500, 12,500, and 9000 ft2. There appears to be a maximum area of at least 12,500 ft2.

(b) Let x denote the length of each of two sides and three dividers.

Let y denote the length of the other two sides.

(c) Area A = length×width = y · x
(d) Length of fencing = 750 ⇒ 5x+ 2y = 750

(e) 5x+ 2y = 750 ⇒ y = 375− 5
2x ⇒ A(x) = 375− 5

2x x = 375x− 5
2x

2

(f ) A0(x) = 375− 5x = 0 ⇒ x = 75. Since A00(x) = −5 < 0 there is an absolute maximum when x = 75. Then

y = 375
2
= 187.5. The largest area is 75 375

2
= 14,062.5 ft2. These values of x and y are between the values in the first

and second figures in part (a). Our original estimate was low.
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11. xy = 1.5× 106, so y = 1.5× 106/x. Minimize the amount of fencing, which is

3x+ 2y = 3x+ 2(1.5× 106/x) = 3x+ 3× 106/x = F (x).

F 0(x) = 3− 3× 106/x2 = 3(x2 − 106)/x2. The critical number is x = 103 and

F 0(x) < 0 for 0 < x < 103 and F 0(x) > 0 if x > 103, so the absolute minimum

occurs when x = 103 and y = 1.5× 103.

The field should be 1000 feet by 1500 feet with the middle fence parallel to the short side of the field.

13. Let b be the length of the base of the box and h the height. The surface area is 1200 = b2 +4hb ⇒ h = (1200− b2)/(4b).

The volume is V = b2h = b2(1200− b2)/4b = 300b− b3/4 ⇒ V 0(b) = 300− 3
4 b
2.

V 0(b) = 0 ⇒ 300 = 3
4
b2 ⇒ b2 = 400 ⇒ b =

√
400 = 20. Since V 0(b) > 0 for 0 < b < 20 and V 0(b) < 0 for

b > 20, there is an absolute maximum when b = 20 by the First Derivative Test for Absolute Extreme Values (see page 324).

If b = 20, then h = (1200− 202)/(4 · 20) = 10, so the largest possible volume is b2h = (20)2(10) = 4000 cm3.

15. 10 = (2w)(w)h = 2w2h, so h = 5/w2. The cost is

C(w) = 10(2w2) + 6[2(2wh) + 2hw] + 6(2w2)

= 32w2 + 36wh = 32w2 + 180/w

C0(w) = 64w − 180/w2 = 4(16w3 − 45)/w2 ⇒ w = 3 45
16

is the critical number. C0(w) < 0 for 0 < w < 3 45
16

and

C0(w) > 0 for w > 3 45
16

. The minimum cost is C 3 45
16

= 32(2.8125)2/3 + 180
√
2.8125 ≈ $191.28.

17. The distance from a point (x, y) on the line y = 4x+ 7 to the origin is (x− 0)2 + (y − 0)2 = x2 + y2. However, it is

easier to work with the square of the distance; that is, D(x) = x2 + y2
2

= x2 + y2 = x2 + (4x+ 7)2. Because the

distance is positive, its minimum value will occur at the same point as the minimum value of D.

D0(x) = 2x+ 2(4x+ 7)(4) = 34x+ 56, so D0(x) = 0 ⇔ x = − 28
17

.

D00(x) = 34 > 0, so D is concave upward for all x. Thus, D has an absolute minimum at x = −28
17

. The point closest to the

origin is (x, y) = − 28
17
, 4 − 28

17
+ 7 = − 28

17
, 7
17

.

19. From the figure, we see that there are two points that are farthest away from

A(1, 0). The distance d from A to an arbitrary point P (x, y) on the ellipse is

d = (x− 1)2 + (y − 0)2 and the square of the distance is

S = d 2 = x2 − 2x+ 1 + y2 = x2 − 2x+ 1 + (4− 4x2) = −3x2 − 2x+ 5.

S0 = −6x− 2 and S0 = 0 ⇒ x = − 1
3

. Now S00 = −6 < 0, so we know

that S has a maximum at x = − 1
3

. Since −1 ≤ x ≤ 1, S(−1) = 4,

S − 1
3
= 16

3 , and S(1) = 0, we see that the maximum distance is 16
3 . The corresponding y-values are

y = ± 4− 4 − 1
3

2
= ± 32

9
= ± 4

3

√
2 ≈ ±1.89. The points are − 1

3
,± 4

3

√
2 .
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21. The area of the rectangle is (2x)(2y) = 4xy. Also r2 = x2 + y2 so

y =
√
r2 − x2, so the area is A(x) = 4x

√
r2 − x2. Now

A0(x) = 4
√
r2 − x2 − x2√

r2 − x2
= 4

r2 − 2x2√
r2 − x2

. The critical number is

x = 1√
2
r. Clearly this gives a maximum.

y = r2 − 1√
2
r
2

= 1
2r

2 = 1√
2
r = x, which tells us that the rectangle is a square. The dimensions are 2x =

√
2 r

and 2y =
√
2 r.

23. The height h of the equilateral triangle with sides of length L is
√
3
2 L,

since h2 + (L/2)2 = L2 ⇒ h2 = L2 − 1
4L

2 = 3
4L

2 ⇒

h =
√
3
2
L. Using similar triangles,

√
3
2
L− y

x
=

√
3
2
L

L/2
=
√
3 ⇒

√
3x =

√
3

2
L− y ⇒ y =

√
3

2
L−√3x ⇒ y =

√
3

2
(L− 2x).

The area of the inscribed rectangle is A(x) = (2x)y =
√
3x(L− 2x) = √3Lx− 2√3x2, where 0 ≤ x ≤ L/2. Now

0 = A0(x) =
√
3L− 4√3x ⇒ x =

√
3L 4

√
3 = L/4. Since A(0) = A(L/2) = 0, the maximum occurs when

x = L/4, and y =
√
3
2
L−

√
3
4
L =

√
3
4
L, so the dimensions are L/2 and

√
3
4
L.

25. The area of the triangle is

A(x) = 1
2
(2t)(r + x) = t(r + x) =

√
r2 − x2(r + x). Then

0 = A0(x) = r
−2x

2
√
r2 − x2

+
√
r2 − x2 + x

−2x
2
√
r2 − x2

= − x2 + rx√
r2 − x2

+
√
r2 − x2 ⇒

x2 + rx√
r2 − x2

=
√
r2 − x2 ⇒ x2 + rx = r2 − x2 ⇒ 0 = 2x2 + rx− r2 = (2x− r)(x+ r) ⇒

x = 1
2
r or x = −r. Now A(r) = 0 = A(−r) ⇒ the maximum occurs where x = 1

2
r, so the triangle has height

r + 1
2
r = 3

2
r and base 2 r2 − 1

2
r
2
= 2 3

4
r2 =

√
3 r.

27. The cylinder has volume V = πy2(2x). Also x2 + y2 = r2 ⇒ y2 = r2 − x2, so

V (x) = π(r2 − x2)(2x) = 2π(r2x− x3), where 0 ≤ x ≤ r.

V 0(x) = 2π r2 − 3x2 = 0 ⇒ x = r/
√
3. Now V (0) = V (r) = 0, so there is a

maximum when x = r/
√
3 and V r/

√
3 = π(r2 − r2/3) 2r/

√
3 = 4πr3/ 3

√
3 .
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29. The cylinder has surface area

2(area of the base) + (lateral surface area) = 2π(radius)2 + 2π(radius)(height)

= 2πy2 + 2πy(2x)

Now x2 + y2 = r2 ⇒ y2 = r2 − x2 ⇒ y =
√
r2 − x2, so the surface area is

S(x) = 2π(r2 − x2) + 4πx
√
r2 − x2, 0 ≤ x ≤ r

= 2πr2 − 2πx2 + 4π x
√
r2 − x2

Thus, S0(x) = 0− 4πx+ 4π x · 1
2
(r2 − x2)−1/2(−2x) + (r2 − x2)1/2 · 1

= 4π −x− x2√
r2 − x2

+
√
r2 − x2 = 4π · −x

√
r2 − x2 − x2 + r2 − x2√

r2 − x2

S0(x) = 0 ⇒ x
√
r2 − x2 = r2 − 2x2 ( ) ⇒ x

√
r2 − x2

2
= (r2 − 2x2)2 ⇒

x2(r2 − x2) = r4 − 4r2x2 + 4x4 ⇒ r2x2 − x4 = r4 − 4r2x2 + 4x4 ⇒ 5x4 − 5r2x2 + r4 = 0.

This is a quadratic equation in x2. By the quadratic formula, x2 = 5±√5
10

r2, but we reject the root with the + sign since it

doesn’t satisfy ( ). [The right side is negative and the left side is positive.] So x = 5−√5
10

r. Since S(0) = S(r) = 0, the

maximum surface area occurs at the critical number and x2 = 5−√5
10

r2 ⇒ y2 = r2 − 5−√5
10

r2 = 5+
√
5

10
r2 ⇒

the surface area is

2π 5+
√
5

10
r2 + 4π 5−√5

10
5+

√
5

10
r2 = πr2 2 · 5+

√
5

10
+ 4

(5−
√
5)(5+

√
5)

10
= πr2 5+

√
5

5
+ 2

√
20
5

= πr2 5+
√
5+ 2·2√5
5

= πr2 5+ 5
√
5

5
= πr2 1 +

√
5 .

31. xy = 384 ⇒ y = 384/x. Total area is

A(x) = (8 + x)(12 + 384/x) = 12(40 + x+ 256/x), so

A0(x) = 12(1− 256/x2) = 0 ⇒ x = 16. There is an absolute minimum

when x = 16 since A0(x) < 0 for 0 < x < 16 and A0(x) > 0 for x > 16.

When x = 16, y = 384/16 = 24, so the dimensions are 24 cm and 36 cm.

33. Let x be the length of the wire used for the square. The total area is

A(x) =
x

4

2

+
1

2

10− x

3

√
3

2

10− x

3

= 1
16
x2 +

√
3

36
(10− x)2, 0 ≤ x ≤ 10

A0(x) = 1
8
x−

√
3

18
(10− x) = 0 ⇔ 9

72
x+ 4

√
3

72
x− 40

√
3

72
= 0 ⇔ x = 40

√
3

9+ 4
√
3

. Now A(0) =
√
3

36
100 ≈ 4.81,

A(10) = 100
16
= 6.25 and A 40

√
3

9+ 4
√
3
≈ 2.72, so

(a ) The maximum area occurs when x = 10 m, and all the wire is used for the square.

(b) The minimum area occurs when x = 40
√
3

9+ 4
√
3
≈ 4.35 m.
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35. The volume is V = πr2h and the surface area is

S(r) = πr2 + 2πrh = πr2 + 2πr
V

πr2
= πr2 +

2V

r
.

S0(r) = 2πr − 2V

r2
= 0 ⇒ 2πr3 = 2V ⇒ r = 3 V

π
cm.

This gives an absolute minimum since S0(r) < 0 for 0 < r < 3 V

π
and S0(r) > 0 for r > 3 V

π
.

When r = 3 V

π
, h = V

πr2
=

V

π(V/π)2/3
= 3 V

π
cm.

37. h2 + r2 = R2 ⇒ V = π
3
r2h = π

3
(R2 − h2)h = π

3
(R2h− h3).

V 0(h) = π
3
(R2 − 3h2) = 0 when h = 1√

3
R. This gives an absolute maximum, since

V 0(h) > 0 for 0 < h < 1√
3
R and V 0(h) < 0 for h > 1√

3
R. The maximum volume is

V 1√
3
R = π

3
1√
3
R3 − 1

3
√
3
R3 = 2

9
√
3
πR3.

39. By similar triangles, H
R
=

H − h

r
(1). The volume of the inner cone is V = 1

3
πr2h,

so we’ll solve (1) for h. Hr

R
= H − h ⇒

h = H − Hr

R
=

HR−Hr

R
=

H

R
(R− r) (2).

Thus, V(r) = π

3
r2 · H

R
(R− r) =

πH

3R
(Rr2 − r3) ⇒

V 0(r) =
πH

3R
(2Rr − 3r2) = πH

3R
r(2R− 3r).

V 0(r) = 0 ⇒ r = 0 or 2R = 3r ⇒ r = 2
3
R and from (2), h = H

R
R− 2

3
R =

H

R
1
3
R = 1

3
H.

V 0(r) changes from positive to negative at r = 2
3R, so the inner cone has a maximum volume of

V = 1
3
πr2h = 1

3
π 2

3
R

2 1
3
H = 4

27
· 1
3
πR2H, which is approximately 15% of the volume of the larger cone.

41. P (R) = E2R

(R+ r)2
⇒

P 0(R) =
(R+ r)2 ·E2 −E2R · 2(R+ r)

[(R+ r)2]2
=
(R2 + 2Rr + r2)E2 − 2E2R2 − 2E2Rr

(R+ r)4

=
E2r2 −E2R2

(R+ r)4
=

E2(r2 −R2)

(R+ r)4
=

E2(r +R)(r −R)

(R+ r)4
=

E2(r −R)

(R+ r)3

P 0(R) = 0 ⇒ R = r ⇒ P (r) =
E2r

(r + r)2
=

E2r

4r2
=

E2

4r
.

The expression for P 0(R) shows that P 0(R) > 0 for R < r and P 0(R) < 0 for R > r. Thus, the maximum value of the

power is E2/(4r), and this occurs when R = r.
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43. S = 6sh− 3
2s

2 cot θ + 3s2
√
3
2 csc θ

(a) dS

dθ
= 3

2
s2 csc2 θ − 3s2

√
3
2
csc θ cot θ or 3

2
s2 csc θ csc θ −√3 cot θ .

(b) dS

dθ
= 0 when csc θ −√3 cot θ = 0 ⇒ 1

sin θ
−√3 cos θ

sin θ
= 0 ⇒ cos θ = 1√

3
. The First Derivative Test shows

that the minimum surface area occurs when θ = cos−1 1√
3
≈ 55◦.

(c) If cos θ = 1√
3

, then cot θ = 1√
2

and csc θ =
√
3√
2

, so the surface area is

S = 6sh− 3
2
s2 1√

2
+ 3s2

√
3
2

√
3√
2
= 6sh− 3

2
√
2
s2 + 9

2
√
2
s2

= 6sh+ 6

2
√
2
s2 = 6s h+ 1

2
√
2
s

45. Here T (x) =
√
x2 + 25

6
+
5− x

8
, 0 ≤ x ≤ 5 ⇒ T 0(x) =

x

6
√
x2 + 25

− 1

8
= 0 ⇔ 8x = 6

√
x2 + 25 ⇔

16x2 = 9(x2 + 25) ⇔ x = 15√
7

. But 15√
7
> 5, so T has no critical number. Since T (0) ≈ 1.46 and T (5) ≈ 1.18, he

should row directly to B.

47. There are (6− x) km over land and
√
x2 + 4 km under the river.

We need to minimize the cost C (measured in $100,000) of the pipeline.

C(x) = (6− x)(4) +
√
x2 + 4 (8) ⇒

C0(x) = −4 + 8 · 1
2
(x2 + 4)−1/2(2x) = −4 + 8x√

x2 + 4
.

C0(x) = 0 ⇒ 4 =
8x√
x2 + 4

⇒ √
x2 + 4 = 2x ⇒ x2 + 4 = 4x2 ⇒ 4 = 3x2 ⇒ x2 = 4

3
⇒

x = 2/
√
3 [0 ≤ x ≤ 6]. Compare the costs for x = 0, 2/

√
3, and 6. C(0) = 24 + 16 = 40,

C 2/
√
3 = 24− 8/√3 + 32/√3 = 24 + 24/√3 ≈ 37.9, and C(6) = 0 + 8

√
40 ≈ 50.6. So the minimum cost is about

$3.79 million when P is 6− 2/√3 ≈ 4.85 km east of the refinery.

49. The total illumination is I(x) = 3k

x2
+

k

(10− x)2
, 0 < x < 10. Then

I0(x) =
−6k
x3

+
2k

(10− x)3
= 0 ⇒ 6k(10− x)3 = 2kx3 ⇒

3(10− x)3 = x3 ⇒ 3
√
3 (10− x) = x ⇒ 10 3

√
3− 3

√
3x = x ⇒ 10 3

√
3 = x+ 3

√
3x ⇒

10 3
√
3 = 1 + 3

√
3 x ⇒ x =

10 3
√
3

1 + 3
√
3
≈ 5.9 ft. This gives a minimum since I 00(x) > 0 for 0 < x < 10.
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51. Every line segment in the first quadrant passing through (a, b) with endpoints on the x-

and y-axes satisfies an equation of the form y − b = m(x− a), where m < 0. By setting

x = 0 and then y = 0, we find its endpoints, A(0, b− am) and B a− b
m , 0 . The

distance d from A to B is given by d = [ a− b
m
− 0]2 + [0− (b− am)]2.

It follows that the square of the length of the line segment, as a function of m, is given by

S(m) = a− b

m

2

+ (am− b)2 = a2 − 2ab

m
+

b2

m2
+ a2m2 − 2abm+ b2. Thus,

S0(m) =
2ab

m2
− 2b2

m3
+ 2a2m− 2ab = 2

m3
(abm− b2 + a2m4 − abm3)

=
2

m3
[b(am− b) + am3(am− b)] =

2

m3
(am− b)(b+ am3)

Thus, S0(m) = 0 ⇔ m = b/a or m = − 3 b
a

. Since b/a > 0 and m < 0, m must equal− 3 b
a

. Since 2

m3
< 0, we see

that S0(m) < 0 for m < − 3 b
a

and S0(m) > 0 for m > − 3 b
a

. Thus, S has its absolute minimum value when m = − 3 b
a

.

That value is

S − 3 b
a
= a+ b 3 a

b

2

+ −a 3 b
a
− b

2

= a+
3
√
ab2

2

+
3
√
a2b+ b

2

= a2 + 2a4/3b2/3 + a2/3b4/3 + a4/3b2/3 + 2a2/3b4/3 + b2 = a2 + 3a4/3b2/3 + 3a2/3b4/3 + b2

The last expression is of the form x3 + 3x2y + 3xy2 + y3 [= (x+ y)3] with x = a2/3 and y = b2/3,

so we can write it as (a2/3 + b2/3)3 and the shortest such line segment has length
√
S = (a2/3 + b2/3)3/2.

53. (a) If c(x) = C(x)

x
, then, by Quotient Rule, we have c0(x) = xC0(x)− C(x)

x2
. Now c0(x) = 0 when xC0(x)− C(x) = 0

and this gives C0(x) =
C(x)

x
= c(x). Therefore, the marginal cost equals the average cost.

(b) (i) C(x) = 16,000 + 200x+ 4x3/2, C(1000) = 16,000 + 200,000 + 40,000
√
10 ≈ 216,000 + 126,491, so

C(1000) ≈ $342,491. c(x) = C(x)/x =
16,000
x

+ 200 + 4x1/2, c(1000) ≈ $342.49/unit. C0(x) = 200 + 6x1/2,

C0(1000) = 200 + 60
√
10 ≈ $389.74/unit.

(ii) We must have C0(x) = c(x) ⇔ 200 + 6x1/2 =
16,000
x

+ 200 + 4x1/2 ⇔ 2x3/2 = 16,000 ⇔

x = (8,000)2/3 = 400 units. To check that this is a minimum, we calculate

c0(x) =
−16,000

x2
+

2√
x
=
2

x2
(x3/2 − 8000). This is negative for x < (8000)2/3 = 400, zero at x = 400,

and positive for x > 400, so c is decreasing on (0, 400) and increasing on (400,∞). Thus, c has an absolute minimum

at x = 400. [Note: c00(x) is not positive for all x > 0.]

(iii) The minimum average cost is c(400) = 40 + 200 + 80 = $320/unit.
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55. (a) We are given that the demand function p is linear and p(27,000) = 10, p(33,000) = 8, so the slope is

10− 8
27,000− 33,000 = − 1

3000
and an equation of the line is y − 10 = − 1

3000
(x− 27,000) ⇒

y = p(x) = − 1
3000x+ 19 = 19− (x/3000).

(b) The revenue is R(x) = xp(x) = 19x− (x2/3000) ⇒ R0(x) = 19− (x/1500) = 0 when x = 28,500. Since

R00(x) = −1/1500 < 0, the maximum revenue occurs when x = 28,500 ⇒ the price is p(28,500) = $9.50.

57. (a) As in Example 6, we see that the demand function p is linear. We are given that p(1000) = 450 and deduce that

p(1100) = 440, since a $10 reduction in price increases sales by 100 per week. The slope for p is 440− 450
1100− 1000 = − 1

10 ,

so an equation is p− 450 = − 1
10 (x− 1000) or p(x) = − 1

10x+ 550.

(b) R(x) = xp(x) = − 1
10
x2 + 550x. R0(x) = − 1

5
x+ 550 = 0 when x = 5(550) = 2750.

p(2750) = 275, so the rebate should be 450− 275 = $175.

(c) C(x) = 68,000 + 150x ⇒ P (x) = R(x)−C(x) = − 1
10x

2 + 550x− 68,000− 150x = − 1
10x

2 + 400x− 68,000,

P 0(x) = − 1
5
x+ 400 = 0 when x = 2000. p(2000) = 350. Therefore, the rebate to maximize profits should be

450− 350 = $100.

59. Here s2 = h2 + b2/4, so h2 = s2 − b2/4. The area is A = 1
2
b s2 − b2/4.

Let the perimeter be p, so 2s+ b = p or s = (p− b)/2 ⇒

A(b) = 1
2
b (p− b)2/4− b2/4 = b p2 − 2pb/4. Now

A0(b) =
p2 − 2pb
4

− bp/4

p2 − 2pb =
−3pb+ p2

4 p2 − 2pb .

Therefore, A0(b) = 0 ⇒ −3pb+ p2 = 0 ⇒ b = p/3. Since A0(b) > 0 for b < p/3 and A0(b) < 0 for b > p/3, there

is an absolute maximum when b = p/3. But then 2s+ p/3 = p, so s = p/3 ⇒ s = b ⇒ the triangle is equilateral.

61. Note that |AD| = |AP |+ |PD| ⇒ 5 = x+ |PD| ⇒ |PD| = 5− x.

Using the Pythagorean Theorem for ∆PDB and ∆PDC gives us

L(x) = |AP |+ |BP |+ |CP | = x+ (5− x)2 + 22 + (5− x)2 + 32

= x+
√
x2 − 10x+ 29 +√x2 − 10x+ 34 ⇒

L0(x) = 1 +
x− 5√

x2 − 10x+ 29 +
x− 5√

x2 − 10x+ 34 . From the graphs of L

and L0, it seems that the minimum value of L is about L(3.59) = 9.35 m.
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63. The total time is

T (x) = (time from A to C) + (time from C to B)

=

√
a2 + x2

v1
+

b2 + (d− x)2

v2
, 0 < x < d

T 0(x) =
x

v1
√
a2 + x2

− d− x

v2 b2 + (d− x)2
=
sin θ1
v1

− sin θ2
v2

The minimum occurs when T 0(x) = 0 ⇒ sin θ1
v1

=
sin θ2
v2

.

[Note: T 00(x) > 0]

65. y2 = x2 + z2, but triangles CDE and BCA are similar, so

z/8 = x/ 4
√
x− 4 ⇒ z = 2x/

√
x− 4. Thus, we minimize

f(x) = y2 = x2 + 4x2/(x− 4) = x3/(x− 4), 4 < x ≤ 8.

f 0(x) =
(x− 4)(3x2)− x3

(x− 4)2 =
x2[3(x− 4)− x]

(x− 4)2 =
2x2(x− 6)
(x− 4)2 = 0

when x = 6. f 0(x) < 0 when x < 6, f 0(x) > 0 when x > 6, so the minimum

occurs when x = 6 in.

67. It suffices to maximize tan θ. Now

3t

1
= tan(ψ + θ) =

tanψ + tan θ

1− tanψ tan θ =
t+ tan θ

1− t tan θ
. So

3t(1− t tan θ) = t+ tan θ ⇒ 2t = (1 + 3t2) tan θ ⇒ tan θ =
2t

1 + 3t2
.

Let f(t) = tan θ = 2t

1 + 3t2
⇒ f 0(t) =

2 1 + 3t2 − 2t(6t)
(1 + 3t2)2

=
2 1− 3t2
(1 + 3t2)2

= 0 ⇔ 1− 3t2 = 0 ⇔

t = 1√
3

since t ≥ 0. Now f 0(t) > 0 for 0 ≤ t < 1√
3

and f 0(t) < 0 for t > 1√
3

, so f has an absolute maximum when t = 1√
3

and tan θ =
2 1/

√
3

1 + 3 1/
√
3

2 =
1√
3

⇒ θ = π
6 . Substituting for t and θ in 3t = tan(ψ + θ) gives us

√
3 = tan ψ + π

6
⇒ ψ = π

6 .
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69. From the figure, tanα = 5

x
and tanβ = 2

3− x
. Since

α+ β + θ = 180◦ = π, θ = π − tan−1 5

x
− tan−1 2

3− x
⇒

dθ

dx
= − 1

1 +
5

x

2 − 5

x2
− 1

1 +
2

3− x

2

2

(3− x)2

=
x2

x2 + 25
· 5
x2
− (3− x)2

(3− x)2 + 4
· 2

(3− x)2
.

Now dθ

dx
= 0 ⇒ 5

x2 + 25
=

2

x2 − 6x+ 13 ⇒ 2x2 + 50 = 5x2 − 30x+ 65 ⇒

3x2 − 30x+ 15 = 0 ⇒ x2 − 10x+ 5 = 0 ⇒ x = 5± 2√5. We reject the root with the + sign, since it is larger

than 3. dθ/dx > 0 for x < 5− 2√5 and dθ/dx < 0 for x > 5− 2√5, so θ is maximized when

|AP | = x = 5− 2√5 ≈ 0.53.

71. In the small triangle with sides a and c and hypotenuse W , sin θ = a

W
and

cos θ =
c

W
. In the triangle with sides b and d and hypotenuse L, sin θ = d

L
and

cos θ =
b

L
. Thus, a =W sin θ, c =W cos θ, d = L sin θ, and b = L cos θ, so the

area of the circumscribed rectangle is

A(θ) = (a+ b)(c+ d) = (W sin θ + L cos θ)(W cos θ + L sin θ)

=W 2 sin θ cos θ +WL sin2 θ + LW cos2 θ + L2 sin θ cos θ

= LW sin2 θ + LW cos2 θ + (L2 +W 2) sin θ cos θ

= LW (sin2 θ + cos2 θ) + (L2 +W 2) · 1
2
· 2 sin θ cos θ = LW + 1

2
(L2 +W 2) sin 2θ, 0 ≤ θ ≤ π

2

This expression shows, without calculus, that the maximum value of A(θ) occurs when sin 2θ = 1 ⇔ 2θ = π
2
⇒

θ = π
4

. So the maximum area is A π
4
= LW + 1

2
(L2 +W 2) = 1

2
(L2 + 2LW +W 2) = 1

2
(L+W )2.

73. (a) If k = energy/km over land, then energy/km over water = 1.4k.

So the total energy is E = 1.4k
√
25 + x2 + k(13− x), 0 ≤ x ≤ 13,

and so dE

dx
=

1.4kx

(25 + x2)1/2
− k.

Set dE
dx

= 0: 1.4kx = k(25 + x2)1/2 ⇒ 1.96x2 = x2 + 25 ⇒ 0.96x2 = 25 ⇒ x = 5√
0.96

≈ 5.1.

Testing against the value of E at the endpoints: E(0) = 1.4k(5) + 13k = 20k, E(5.1) ≈ 17.9k, E(13) ≈ 19.5k.

Thus, to minimize energy, the bird should fly to a point about 5.1 km from B.
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(b) If W/L is large, the bird would fly to a point C that is closer to B than to D to minimize the energy used flying over water.

If W/L is small, the bird would fly to a point C that is closer to D than to B to minimize the distance of the flight.

E =W
√
25 + x2 + L(13− x) ⇒ dE

dx
=

Wx√
25 + x2

− L = 0 when W

L
=

√
25 + x2

x
. By the same sort of

argument as in part (a), this ratio will give the minimal expenditure of energy if the bird heads for the point x km from B.

(c) For flight direct to D, x = 13, so from part (b), W/L =

√
25+ 132

13 ≈ 1.07. There is no value of W/L for which the bird

should fly directly to B. But note that lim
x→0+

(W/L) =∞, so if the point at which E is a minimum is close to B, then

W/L is large.

(d) Assuming that the birds instinctively choose the path that minimizes the energy expenditure, we can use the equation for

dE/dx = 0 from part (a) with 1.4k = c, x = 4, and k = 1: c(4) = 1 · (25 + 42)1/2 ⇒ c =
√
41/4 ≈ 1.6.

4.8 Newton's Method

1. (a) The tangent line at x = 1 intersects the x-axis at x ≈ 2.3, so

x2 ≈ 2.3. The tangent line at x = 2.3 intersects the x-axis at

x ≈ 3, so x3 ≈ 3.0.

(b) x1 = 5 would not be a better first approximation than x1 = 1 since the tangent line is nearly horizontal. In fact, the second

approximation for x1 = 5 appears to be to the left of x = 1.

3. Since x1 = 3 and y = 5x− 4 is tangent to y = f(x) at x = 3, we simply need to find where the tangent line intersects the

x-axis. y = 0 ⇒ 5x2 − 4 = 0 ⇒ x2 =
4
5 .

5. f(x) = x3 + 2x− 4 ⇒ f 0(x) = 3x2 + 2, so xn+1 = xn − x3n + 2xn − 4
3x2n + 2

. Now x1 = 1 ⇒

x2 = 1− 1 + 2− 4
3 · 12 + 2 = 1−

−1
5
= 1.2 ⇒ x3 = 1.2− (1.2)3 + 2(1.2)− 4

3(1.2)2 + 2
≈ 1.1797.

7. f(x) = x5 − x− 1 ⇒ f 0(x) = 5x4 − 1, so xn+1 = xn − x5n − xn − 1
5x4n − 1 . Now x1 = 1 ⇒

x2 = 1− 1− 1− 1
5− 1 = 1− − 1

4
= 1.25 ⇒ x3 = 1.25− (1.25)5 − 1.25− 1

5(1.25)4 − 1 ≈ 1.1785.

9. f(x) = x3 + x+ 3 ⇒ f 0(x) = 3x2 + 1, so xn+1 = xn − x3n + xn + 3

3x2n + 1
.

Now x1 = −1 ⇒

x2 = −1− (−1)3 + (−1) + 3
3(−1)2 + 1 = −1− −1− 1 + 3

3 + 1
= −1− 1

4
= −1.25.

Newton’s method follows the tangent line at (−1, 1) down to its intersection with

the x-axis at (−1.25, 0), giving the second approximation x2 = −1.25.
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11. To approximate x = 5
√
20 (so that x5 = 20), we can take f(x) = x5 − 20. So f 0(x) = 5x4, and thus,

xn+1 = xn − x5n − 20
5x4n

. Since 5
√
32 = 2 and 32 is reasonably close to 20, we’ll use x1 = 2. We need to find approximations

until they agree to eight decimal places. x1 = 2 ⇒ x2 = 1.85, x3 ≈ 1.82148614, x4 ≈ 1.82056514,

x5 ≈ 1.82056420 ≈ x6. So 5
√
20 ≈ 1.82056420, to eight decimal places.

Here is a quick and easy method for finding the iterations for Newton’s method on a programmable calculator.

(The screens shown are from the TI-84 Plus, but the method is similar on other calculators.) Assign f(x) = x5 − 20

to Y1, and f 0(x) = 5x4 to Y2. Now store x1 = 2 in X and then enter X−Y1/Y2 → X to get x2 = 1.85. By successively

pressing the ENTER key, you get the approximations x3, x4, . . . .

In Derive, load the utility file SOLVE. Enter NEWTON(xˆ5-20,x,2) and then APPROXIMATE to get

[2, 1.85, 1.82148614, 1.82056514, 1.82056420]. You can request a specific iteration by adding a fourth argument. For

example, NEWTON(xˆ5-20,x,2,2) gives [2, 1.85, 1.82148614].

In Maple, make the assignments f := x→ xˆ5− 20;, g := x→ x− f(x)/D(f)(x);, and x := 2.;. Repeatedly execute

the command x := g(x); to generate successive approximations.

In Mathematica, make the assignments f [x_ ] := xˆ5− 20, g[x_ ] := x− f [x]/f 0[x], and x = 2. Repeatedly execute the

command x = g[x] to generate successive approximations.

13. f(x) = x4 − 2x3 + 5x2 − 6 ⇒ f 0(x) = 4x3 − 6x2 + 10x ⇒ xn+1 = xn − x4n − 2x3n + 5x2n − 6
4x3n − 6x2n + 10xn . We need to find

approximations until they agree to six decimal places. We’ll let x1 equal the midpoint of the given interval, [1, 2].

x1 = 1.5 ⇒ x2 = 1.2625, x3 ≈ 1.218808, x4 ≈ 1.217563, x5 ≈ 1.217562 ≈ x6. So the root is 1.217562 to six decimal

places.

15. sinx = x2, so f(x) = sinx− x2 ⇒ f 0(x) = cosx− 2x ⇒

xn+1 = xn − sinxn − x2n
cosxn − 2xn . From the figure, the positive root of sin x = x2 is

near 1. x1 = 1 ⇒ x2 ≈ 0.891396, x3 ≈ 0.876985, x4 ≈ 0.876726 ≈ x5. So

the positive root is 0.876726, to six decimal places.
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17. From the graph, we see that there appear to be points of intersection near

x = −0.7 and x = 1.2. Solving x4 = 1+ x is the same as solving

f(x) = x4 − x− 1 = 0. f(x) = x4 − x− 1 ⇒ f 0(x) = 4x3 − 1,

so xn+1 = xn − x4n − xn − 1
4x3n − 1 .

x1 = −0.7 x1 = 1.2

x2 ≈ −0.725253 x2 ≈ 1.221380
x3 ≈ −0.724493 x3 ≈ 1.220745
x4 ≈ −0.724492 ≈ x5 x4 ≈ 1.220744 ≈ x5

To six decimal places, the roots of the equation are−0.724492 and 1.220744.

19. From the graph, we see that there appear to be points of intersection near

x = 1.5 and x = 3. Solving (x− 2)2 = lnx is the same as solving

f(x) = (x− 2)2 − lnx = 0. f(x) = (x− 2)2 − lnx ⇒

f 0(x) = 2(x− 2)− 1/x, so xn+1 = xn − (xn − 2)2 − lnxn
2(xn − 2)− 1/xn .

x1 = 1.5 x1 = 3

x2 ≈ 1.406721 x2 ≈ 3.059167
x3 ≈ 1.412370 x3 ≈ 3.057106
x4 ≈ 1.412391 ≈ x5 x4 ≈ 3.057104 ≈ x5

To six decimal places, the roots of the equation are 1.412391 and 3.057104.

21. From the graph, there appears to be a point of intersection near x = 0.6.

Solving cosx =
√
x is the same as solving f(x) = cosx−

√
x = 0.

f(x) = cosx−
√
x ⇒ f 0(x) = − sinx− 1/ 2

√
x , so

xn+1 = xn − cosxn −
√
xn

− sinxn − 1/ 2
√
x

. Now x1 = 0.6 ⇒ x2 ≈ 0.641928,

x3 ≈ 0.641714 ≈ x4. To six decimal places, the root of the equation is 0.641714.

23. f(x) = x6 − x5 − 6x4 − x2 + x+ 10 ⇒
f 0(x) = 6x5 − 5x4 − 24x3 − 2x+ 1 ⇒

xn+1 = xn − x6n − x5n − 6x4n − x2n + xn + 10

6x5n − 5x4n − 24x3n − 2xn + 1 .

From the graph of f , there appear to be roots near −1.9, −1.2, 1.1, and 3.
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x1 = −1.9
x2 ≈ −1.94278290
x3 ≈ −1.93828380
x4 ≈ −1.93822884
x5 ≈ −1.93822883 ≈ x6

x1 = −1.2
x2 ≈ −1.22006245
x3 ≈ −1.21997997 ≈ x4

x1 = 1.1

x2 ≈ 1.14111662
x3 ≈ 1.13929741
x4 ≈ 1.13929375 ≈ x5

x1 = 3

x2 ≈ 2.99
x3 ≈ 2.98984106
x4 ≈ 2.98984102 ≈ x5

To eight decimal places, the roots of the equation are−1.93822883,−1.21997997, 1.13929375, and 2.98984102.

25. From the graph, y = x2
√
2− x− x2 and y = 1 intersect twice, at x ≈ −2 and

at x ≈ −1. f(x) = x2
√
2− x− x2 − 1 ⇒

f 0(x) = x2 · 1
2
(2− x− x2)−1/2(−1− 2x) + (2− x− x2)1/2 · 2x

= 1
2
x(2− x− x2)−1/2[x(−1− 2x) + 4(2− x− x2)]

=
x(8− 5x− 6x2)
2 (2 + x)(1− x)

,

so xn+1 = xn −
x2n
√
2− xn − x2n − 1

xn(8− 5xn − 6x2n)
2 (2 + xn)(1− xn)

. Trying x1 = −2 won’t work because f 0(−2) is undefined, so we’ll

try x1 = −1.95.

x1 = −1.95
x2 ≈ −1.98580357
x3 ≈ −1.97899778
x4 ≈ −1.97807848
x5 ≈ −1.97806682
x6 ≈ −1.97806681 ≈ x7

x1 = −0.8
x2 ≈ −0.82674444
x3 ≈ −0.82646236
x4 ≈ −0.82646233 ≈ x5

To eight decimal places, the roots of the equation are−1.97806681 and −0.82646233.

27. Solving 4e−x
2

sinx = x2 − x+ 1 is the same as solving

f(x) = 4e−x
2
sinx− x2 + x− 1 = 0.

f 0(x) = 4e−x
2
(cosx− 2x sinx)− 2x+ 1 ⇒

xn+1 = xn − 4e−x
2
n sinxn − x2n + xn − 1

4e−x2n (cosxn − 2xn sinxn)− 2xn + 1
.

From the figure, we see that the graphs intersect at approximately x = 0.2 and x = 1.1.

x1 = 0.2

x2 ≈ 0.21883273
x3 ≈ 0.21916357
x4 ≈ 0.21916368 ≈ x5

x1 = 1.1

x2 ≈ 1.08432830
x3 ≈ 1.08422462 ≈ x4

To eight decimal places, the roots of the equation are 0.21916368 and 1.08422462.
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29. (a) f(x) = x2 − a ⇒ f 0(x) = 2x, so Newton’s method gives

xn+1 = xn − x2n − a

2xn
= xn − 1

2
xn +

a

2xn
=
1

2
xn +

a

2xn
=
1

2
xn +

a

xn
.

(b) Using (a) with a = 1000 and x1 =
√
900 = 30, we get x2 ≈ 31.666667, x3 ≈ 31.622807, and x4 ≈ 31.622777 ≈ x5.

So
√
1000 ≈ 31.622777.

31. f(x) = x3 − 3x+ 6 ⇒ f 0(x) = 3x2 − 3. If x1 = 1, then f 0(x1) = 0 and the tangent line used for approximating x2 is

horizontal. Attempting to find x2 results in trying to divide by zero.

33. For f(x) = x1/3, f 0(x) = 1
3x
−2/3 and

xn+1 = xn − f(xn)

f 0(xn)
= xn − x

1/3
n

1
3
x
−2/3
n

= xn − 3xn = −2xn.

Therefore, each successive approximation becomes twice as large as the

previous one in absolute value, so the sequence of approximations fails to

converge to the root, which is 0. In the figure, we have x1 = 0.5,

x2 = −2(0.5) = −1, and x3 = −2(−1) = 2.

35. (a) f(x) = x6 − x4 + 3x3 − 2x ⇒ f 0(x) = 6x5 − 4x3 + 9x2 − 2 ⇒
f 00(x) = 30x4 − 12x2 + 18x. To find the critical numbers of f , we’ll find the

zeros of f 0. From the graph of f 0, it appears there are zeros at approximately

x = −1.3, −0.4, and 0.5. Try x1 = −1.3 ⇒

x2 = x1 − f 0(x1)
f 00(x1)

≈ −1.293344 ⇒ x3 ≈ −1.293227 ≈ x4.

Now try x1 = −0.4 ⇒ x2 ≈ −0.443755 ⇒ x3 ≈ −0.441735 ⇒ x4 ≈ −0.441731 ≈ x5. Finally try

x1 = 0.5 ⇒ x2 ≈ 0.507937 ⇒ x3 ≈ 0.507854 ≈ x4. Therefore, x = −1.293227, −0.441731, and 0.507854 are

all the critical numbers correct to six decimal places.

(b) There are two critical numbers where f 0 changes from negative to positive, so f changes from decreasing to increasing.

f(−1.293227) ≈ −2.0212 and f(0.507854) ≈ −0.6721, so −2.0212 is the absolute minimum value of f correct to four

decimal places.

37. From the figure, we see that y = f(x) = ecos x is periodic with period 2π. To

find the x-coordinates of the IP, we only need to approximate the zeros of y00

on [0, π]. f 0(x) = −ecosx sinx ⇒ f 00(x) = ecosx sin2 x− cosx . Since

ecos x 6= 0, we will use Newton’s method with g(x) = sin2 x− cosx,

g0(x) = 2 sinx cosx+ sinx, and x1 = 1. x2 ≈ 0.904173,

x3 ≈ 0.904557 ≈ x4. Thus, (0.904557, 1.855277) is the IP.
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39. We need to minimize the distance from (0, 0) to an arbitrary point (x, y) on the

curve y = (x− 1)2. d = x2 + y2 ⇒
d(x) = x2 + [(x− 1)2]2 = x2 + (x− 1)4. When d0 = 0, d will be

minimized and equivalently, s = d2 will be minimized, so we will use Newton’s

method with f = s0 and f 0 = s00.

f(x) = 2x+ 4(x− 1)3 ⇒ f 0(x) = 2 + 12(x− 1)2, so xn+1 = xn − 2xn + 4(xn − 1)3
2 + 12(xn − 1)2 . Try x1 = 0.5 ⇒

x2 = 0.4, x3 ≈ 0.410127, x4 ≈ 0.410245 ≈ x5. Now d(0.410245) ≈ 0.537841 is the minimum distance and the point on

the parabola is (0.410245, 0.347810), correct to six decimal places.

41. In this case, A = 18,000, R = 375, and n = 5(12) = 60. So the formula A = R

i
[1− (1 + i)−n] becomes

18,000 = 375

x
[1− (1 + x)−60] ⇔ 48x = 1− (1 + x)−60 [multiply each term by (1 + x)60] ⇔

48x(1 + x)60 − (1 + x)60 + 1 = 0. Let the LHS be called f(x), so that

f 0(x) = 48x(60)(1 + x)59 + 48(1 + x)60 − 60(1 + x)59

= 12(1 + x)59[4x(60) + 4(1 + x)− 5] = 12(1 + x)59(244x− 1)

xn+1 = xn − 48xn(1 + xn)
60 − (1 + xn)

60 + 1

12(1 + xn)59(244xn − 1) . An interest rate of 1% per month seems like a reasonable estimate for

x = i. So let x1 = 1% = 0.01, and we get x2 ≈ 0.0082202, x3 ≈ 0.0076802, x4 ≈ 0.0076291, x5 ≈ 0.0076286 ≈ x6.

Thus, the dealer is charging a monthly interest rate of 0.76286% (or 9.55% per year, compounded monthly).

4.9 Antiderivatives

1. f(x) = x− 3 = x1 − 3 ⇒ F (x) =
x1+1

1 + 1
− 3x+ C = 1

2
x2 − 3x+C

Check: F 0(x) = 1
2
(2x)− 3 + 0 = x− 3 = f(x)

3. f(x) = 1
2
+ 3

4
x2 − 4

5
x3 ⇒ F (x) = 1

2
x+

3

4

x2+1

2 + 1
− 4

5

x3+1

3 + 1
+C = 1

2
x+ 1

4
x3 − 1

5
x4 +C

Check: F 0(x) = 1
2
+ 1

4
(3x2)− 1

5
(4x3) + 0 = 1

2
+ 3

4
x2 − 4

5
x3 = f(x)

5. f(x) = (x+ 1)(2x− 1) = 2x2 + x− 1 ⇒ F (x) = 2 1
3
x3 + 1

2
x2 − x+ C = 2

3
x3 + 1

2
x2 − x+ C

7. f(x) = 5x1/4 − 7x3/4 ⇒ F (x) = 5
x1/4+ 1

1
4 + 1

− 7x
3/4+ 1

3
4 + 1

+C = 5
x5/4

5/4
− 7x

7/4

7/4
+ C = 4x5/4 − 4x7/4 +C

9. f(x) = 6
√
x− 6

√
x = 6x1/2 − x1/6 ⇒

F (x) = 6
x1/2+1

1
2
+ 1

− x1/6+1

1
6
+ 1

+ C = 6
x3/2

3/2
− x7/6

7/6
+ C = 4x3/2 − 6

7
x7/6 + C
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11. f(x) = 10

x9
= 10x−9 has domain (−∞, 0) ∪ (0,∞), so F (x) =

⎧⎪⎪⎨⎪⎪⎩
10x−8

−8 + C1 = − 5

4x8
+C1 if x < 0

− 5

4x8
+C2 if x > 0

See Example 1(b) for a similar problem.

13. f(u) = u4 + 3
√
u

u2
=

u4

u2
+
3u1/2

u2
= u2 + 3u−3/2 ⇒

F (u) =
u3

3
+ 3

u−3/2+1

−3/2 + 1 + C =
1

3
u3 + 3

u−1/2

−1/2 + C =
1

3
u3 − 6√

u
+ C

15. g(θ) = cos θ − 5 sin θ ⇒ G(θ) = sin θ − 5(− cos θ) + C = sin θ + 5cos θ +C

17. f(x) = 5ex − 3 coshx ⇒ F (x) = 5ex − 3 sinhx+ C

19. f(x) = x5 − x3 + 2x

x4
= x − 1

x
+
2

x3
= x − 1

x
+ 2x−3 ⇒

F (x) =
x2

2
− ln |x|+ 2 x−3+1

−3 + 1 +C = 1
2x

2 − ln |x|− 1

x2
+C

21. f(x) = 5x4 − 2x5 ⇒ F (x) = 5 · x
5

5
− 2 · x

6

6
+C = x5 − 1

3x
6 + C.

F (0) = 4 ⇒ 05 − 1
3 · 06 + C = 4 ⇒ C = 4, so F (x) = x5 − 1

3x
6 + 4.

The graph confirms our answer since f(x) = 0 when F has a local maximum, f is

positive when F is increasing, and f is negative when F is decreasing.

23. f 00(x) = 6x+ 12x2 ⇒ f 0(x) = 6 · x
2

2
+ 12 · x

3

3
+ C = 3x2 + 4x3 + C ⇒

f(x) = 3 · x
3

3
+ 4 · x

4

4
+Cx+D = x3 + x4 + Cx+D [C and D are just arbitrary constants]

25. f 00(x) = 2
3
x2/3 ⇒ f 0(x) =

2

3

x5/3

5/3
+C = 2

5
x5/3 + C ⇒ f(x) =

2

5

x8/3

8/3
+ Cx+D = 3

20
x8/3 +Cx+D

27. f 000(t) = et ⇒ f 00(t) = et + C ⇒ f 0(t) = et +Ct+D ⇒ f(t) = et + 1
2Ct

2 +Dt+E

29. f 0(x) = 1− 6x ⇒ f(x) = x− 3x2 +C. f(0) = C and f(0) = 8 ⇒ C = 8, so f(x) = x− 3x2 + 8.

31. f 0(x) =
√
x(6 + 5x) = 6x1/2 + 5x3/2 ⇒ f(x) = 4x3/2 + 2x5/2 + C.

f(1) = 6 +C and f(1) = 10 ⇒ C = 4, so f(x) = 4x3/2 + 2x5/2 + 4.

33. f 0(t) = 2 cos t+ sec2 t ⇒ f(t) = 2 sin t+ tan t+ C because −π/2 < t < π/2.

f π
3
= 2

√
3/2 +

√
3 +C = 2

√
3 +C and f π

3
= 4 ⇒ C = 4− 2√3, so f(t) = 2 sin t+ tan t+ 4− 2√3.
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35. f 0(x) = x−1/3 has domain (−∞, 0) ∪ (0,∞) ⇒ f(x) =

3
2x

2/3 +C1 if x > 0

3
2
x2/3 +C2 if x < 0

f(1) = 3
2
+C1 and f(1) = 1 ⇒ C1 = − 1

2
. f(−1) = 3

2
+C2 and f(−1) = −1 ⇒ C2 = − 5

2
.

Thus, f(x) =
3
2
x2/3 − 1

2
if x > 0

3
2
x2/3 − 5

2
if x < 0

37. f 00(x) = 24x2 + 2x+ 10 ⇒ f 0(x) = 8x3 + x2 + 10x+ C. f 0(1) = 8 + 1 + 10 + C and f 0(1) = −3 ⇒
19 + C = −3 ⇒ C = −22, so f 0(x) = 8x3 + x2 + 10x− 22 and hence, f(x) = 2x4 + 1

3
x3 + 5x2 − 22x+D.

f(1) = 2 + 1
3
+ 5− 22 +D and f(1) = 5 ⇒ D = 22− 7

3
= 59

3
, so f(x) = 2x4 + 1

3
x3 + 5x2 − 22x+ 59

3
.

39. f 00(θ) = sin θ + cos θ ⇒ f 0(θ) = − cos θ + sin θ + C. f 0(0) = −1 + C and f 0(0) = 4 ⇒ C = 5, so

f 0(θ) = − cos θ + sin θ + 5 and hence, f(θ) = − sin θ − cos θ + 5θ +D. f(0) = −1 +D and f(0) = 3 ⇒ D = 4,

so f(θ) = − sin θ − cos θ + 5θ + 4.

41. f 00(x) = 2− 12x ⇒ f 0(x) = 2x− 6x2 +C ⇒ f(x) = x2 − 2x3 + Cx+D.

f(0) = D and f(0) = 9 ⇒ D = 9. f(2) = 4− 16 + 2C + 9 = 2C − 3 and f(2) = 15 ⇒ 2C = 18 ⇒
C = 9, so f(x) = x2 − 2x3 + 9x+ 9.

43. f 00(x) = 2 + cosx ⇒ f 0(x) = 2x+ sinx+ C ⇒ f(x) = x2 − cosx+ Cx+D.

f(0) = −1 +D and f(0) = −1 ⇒ D = 0. f π
2
= π2/4 + π

2
C and f π

2
= 0 ⇒ π

2
C = −π2/4 ⇒

C = −π
2

, so f(x) = x2 − cosx− π
2
x.

45. f 00(x) = x−2, x > 0 ⇒ f 0(x) = −1/x+ C ⇒ f(x) = − ln |x|+ Cx+D = − lnx+ Cx+D [since x > 0].

f(1) = 0 ⇒ C +D = 0 and f(2) = 0 ⇒ − ln 2 + 2C +D = 0 ⇒ − ln 2 + 2C −C = 0 [since D = −C] ⇒
− ln 2 +C = 0 ⇒ C = ln 2 and D = − ln 2. So f(x) = − lnx+ (ln 2)x− ln 2.

47. Given f 0(x) = 2x+ 1, we have f(x) = x2 + x+C. Since f passes through (1, 6), f(1) = 6 ⇒ 12 +1+C = 6 ⇒
C = 4. Therefore, f(x) = x2 + x+ 4 and f(2) = 22 + 2 + 4 = 10.

49. b is the antiderivative of f . For small x, f is negative, so the graph of its antiderivative must be decreasing. But both a and c

are increasing for small x, so only b can be f ’s antiderivative. Also, f is positive where b is increasing, which supports our

conclusion.

51. The graph of F must start at (0, 1). Where the given graph, y = f(x), has a

local minimum or maximum, the graph of F will have an inflection point.

Where f is negative (positive), F is decreasing (increasing).

Where f changes from negative to positive, F will have a minimum.

Where f changes from positive to negative, F will have a maximum.

Where f is decreasing (increasing), F is concave downward (upward).
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53.

f 0(x) =

⎧⎪⎨⎪⎩
2 if 0 ≤ x < 1

1 if 1 < x < 2

−1 if 2 < x ≤ 3
⇒ f(x) =

⎧⎪⎨⎪⎩
2x+C if 0 ≤ x < 1

x+D if 1 < x < 2

−x+E if 2 < x ≤ 3

f(0) = −1 ⇒ 2(0) +C = −1 ⇒ C = −1. Starting at the point

(0,−1) and moving to the right on a line with slope 2 gets us to the point (1, 1).

The slope for 1 < x < 2 is 1, so we get to the point (2, 2). Here we have used the fact that f is continuous. We can include the

point x = 1 on either the first or the second part of f . The line connecting (1, 1) to (2, 2) is y = x, so D = 0. The slope for

2 < x ≤ 3 is −1, so we get to (3, 1). f(3) = 1 ⇒ −3 +E = 1 ⇒ E = 4. Thus

f(x) =

⎧⎪⎨⎪⎩
2x− 1 if 0 ≤ x ≤ 1
x if 1 < x < 2

−x+ 4 if 2 ≤ x ≤ 3
Note that f 0(x) does not exist at x = 1 or at x = 2.

55. f(x) = sinx

1 + x2
, −2π ≤ x ≤ 2π

Note that the graph of f is one of an odd function, so the graph of F will

be one of an even function.

57. v(t) = s0(t) = sin t− cos t ⇒ s(t) = − cos t− sin t+ C. s(0) = −1 + C and s(0) = 0 ⇒ C = 1, so

s(t) = − cos t− sin t+ 1.

59. a(t) = v0(t) = t− 2 ⇒ v(t) = 1
2
t2 − 2t+ C. v(0) = C and v(0) = 3 ⇒ C = 3, so v(t) = 1

2
t2 − 2t+ 3 and

s(t) = 1
6
t3 − t2 + 3t+D. s(0) = D and s(0) = 1 ⇒ D = 1, and s(t) = 1

6
t3 − t2 + 3t+ 1.

61. a(t) = v0(t) = 10 sin t+ 3cos t ⇒ v(t) = −10 cos t+ 3 sin t+ C ⇒ s(t) = −10 sin t− 3 cos t+ Ct+D.

s(0) = −3 +D = 0 and s(2π) = −3 + 2πC +D = 12 ⇒ D = 3 and C = 6
π

. Thus,

s(t) = −10 sin t− 3 cos t+ 6
π
t+ 3.

63. (a) We first observe that since the stone is dropped 450 m above the ground, v(0) = 0 and s(0) = 450.

v0(t) = a(t) = −9.8 ⇒ v(t) = −9.8t+ C. Now v(0) = 0 ⇒ C = 0, so v(t) = −9.8t ⇒
s(t) = −4.9t2 +D. Last, s(0) = 450 ⇒ D = 450 ⇒ s(t) = 450− 4.9t2.

(b) The stone reaches the ground when s(t) = 0. 450− 4.9t2 = 0 ⇒ t2 = 450/4.9 ⇒ t1 = 450/4.9 ≈ 9.58 s.
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(c) The velocity with which the stone strikes the ground is v(t1) = −9.8 450/4.9 ≈ −93.9 m/s.

(d) This is just reworking parts (a) and (b) with v(0) = −5. Using v(t) = −9.8t+C, v(0) = −5 ⇒ 0 + C = −5 ⇒
v(t) = −9.8t− 5. So s(t) = −4.9t2 − 5t+D and s(0) = 450 ⇒ D = 450 ⇒ s(t) = −4.9t2 − 5t+ 450.

Solving s(t) = 0 by using the quadratic formula gives us t = 5±√8845 (−9.8) ⇒ t1 ≈ 9.09 s.

65. By Exercise 64 with a = −9.8, s(t) = −4.9t2 + v0t+ s0 and v(t) = s0 (t) = −9.8t+ v0. So

[v(t)]2 = (−9.8t+ v0)
2 = (9.8)2 t2 − 19.6v0t+ v20 = v20 + 96.04t

2 − 19.6v0t = v20 − 19.6 −4.9t2 + v0t .

But −4.9t2 + v0t is just s(t) without the s0 term; that is, s(t)− s0. Thus, [v(t)]2 = v20 − 19.6 [s(t)− s0].

67. Using Exercise 64 with a = −32, v0 = 0, and s0 = h (the height of the cliff ), we know that the height at time t is

s(t) = −16t2 + h. v(t) = s0(t) = −32t and v(t) = −120 ⇒ −32t = −120 ⇒ t = 3.75, so

0 = s(3.75) = −16(3.75)2 + h ⇒ h = 16(3.75)2 = 225 ft.

69. Marginal cost = 1.92− 0.002x = C0(x) ⇒ C(x) = 1.92x− 0.001x2 +K. But C(1) = 1.92− 0.001 +K = 562 ⇒
K = 560.081. Therefore, C(x) = 1.92x− 0.001x2 + 560.081 ⇒ C(100) = 742.081, so the cost of producing

100 items is $742.08.

71. Taking the upward direction to be positive we have that for 0 ≤ t ≤ 10 (using the subscript 1 to refer to 0 ≤ t ≤ 10),

a1(t) = − (9− 0.9t) = v01(t) ⇒ v1(t) = −9t+ 0.45t2 + v0, but v1(0) = v0 = −10 ⇒
v1(t) = −9t+ 0.45t2 − 10 = s01(t) ⇒ s1(t) = − 9

2
t2 + 0.15t3 − 10t+ s0. But s1(0) = 500 = s0 ⇒

s1(t) = − 9
2
t2 + 0.15t3 − 10t+ 500. s1(10) = −450 + 150− 100 + 500 = 100, so it takes

more than 10 seconds for the raindrop to fall. Now for t > 10, a(t) = 0 = v0(t) ⇒
v(t) = constant = v1(10) = −9(10) + 0.45(10)2 − 10 = −55 ⇒ v(t) = −55.

At 55 m/s, it will take 100/55 ≈ 1.8 s to fall the last 100 m. Hence, the total time is 10 + 100
55
= 130

11
≈ 11.8 s.

73. a(t) = k, the initial velocity is 30 mi/h = 30 · 52803600 = 44 ft/s, and the final velocity (after 5 seconds) is

50 mi/h = 50 · 5280
3600

= 220
3

ft/s. So v(t) = kt+ C and v(0) = 44 ⇒ C = 44. Thus, v(t) = kt+ 44 ⇒

v(5) = 5k + 44. But v(5) = 220
3

, so 5k + 44 = 220
3

⇒ 5k = 88
3

⇒ k = 88
15
≈ 5.87 ft/s2.

75. Let the acceleration be a(t) = k km/h2. We have v(0) = 100 km/h and we can take the initial position s(0) to be 0.

We want the time tf for which v(t) = 0 to satisfy s(t) < 0.08 km. In general, v0(t) = a(t) = k, so v(t) = kt+ C, where

C = v(0) = 100. Now s0(t) = v(t) = kt+ 100, so s(t) = 1
2
kt2 + 100t+D, where D = s(0) = 0.

Thus, s(t) = 1
2kt

2 + 100t. Since v(tf ) = 0, we have ktf + 100 = 0 or tf = −100/k, so

s(tf ) =
1

2
k −100

k

2

+ 100 −100
k

= 10,000 1

2k
− 1

k
= −5,000

k
. The condition s(tf ) must satisfy is

−5,000
k

< 0.08 ⇒ −5,000
0.08

> k [k is negative] ⇒ k < −62,500 km/h2, or equivalently,

k < − 3125
648 ≈ −4.82 m/s2.
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77. (a) First note that 90 mi/h = 90× 5280
3600 ft/s = 132 ft/s. Then a(t) = 4 ft/s2 ⇒ v(t) = 4t+ C, but v(0) = 0 ⇒

C = 0. Now 4t = 132 when t = 132
4
= 33 s, so it takes 33 s to reach 132 ft/s. Therefore, taking s(0) = 0, we have

s(t) = 2t2, 0 ≤ t ≤ 33. So s(33) = 2178 ft. 15 minutes = 15(60) = 900 s, so for 33 < t ≤ 933 we have

v(t) = 132 ft/s ⇒ s(933) = 132(900) + 2178 = 120,978 ft = 22.9125 mi.

(b) As in part (a), the train accelerates for 33 s and travels 2178 ft while doing so. Similarly, it decelerates for 33 s and travels

2178 ft at the end of its trip. During the remaining 900− 66 = 834 s it travels at 132 ft/s, so the distance traveled is

132 · 834 = 110,088 ft. Thus, the total distance is 2178 + 110,088 + 2178 = 114,444 ft = 21.675 mi.

(c) 45 mi = 45(5280) = 237,600 ft. Subtract 2(2178) to take care of the speeding up and slowing down, and we have

233,244 ft at 132 ft/s for a trip of 233,244/132 = 1767 s at 90 mi/h. The total time is

1767 + 2(33) = 1833 s = 30 min 33 s = 30.55 min.

(d) 37.5(60) = 2250 s. 2250− 2(33) = 2184 s at maximum speed. 2184(132) + 2(2178) = 292,644 total feet or

292,644/5280 = 55.425 mi.

4 Review

1. A function f has an absolute maximum at x = c if f(c) is the largest function value on the entire domain of f , whereas f has

a local maximum at c if f(c) is the largest function value when x is near c. See Figure 4 in Section 4.1.

2. (a) See Theorem 4.1.3.

(b) See the Closed Interval Method before Example 8 in Section 4.1.

3. (a) See Theorem 4.1.4.

(b) See Definition 4.1.6.

4. (a) See Rolle’s Theorem at the beginning of Section 4.2.

(b) See the Mean Value Theorem in Section 4.2. Geometric interpretation—there is some point P on the graph of a function f

[on the interval (a, b)] where the tangent line is parallel to the secant line that connects (a, f(a)) and (b, f(b)).

5. (a) See the I/D Test before Example 1 in Section 4.3.

(b) If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I.

(c) See the Concavity Test before Example 4 in Section 4.3.

(d) An inflection point is a point where a curve changes its direction of concavity. They can be found by determining the points

at which the second derivative changes sign.

6. (a) See the First Derivative Test after Example 1 in Section 4.3.

(b) See the Second Derivative Test before Example 6 in Section 4.3.

(c) See the note before Example 7 in Section 4.3.
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7. (a) See l’Hospital’s Rule and the three notes that follow it in Section 4.4.

(b) Write fg as f

1/g
or g

1/f
.

(c) Convert the difference into a quotient using a common denominator, rationalizing, factoring, or some other method.

(d) Convert the power to a product by taking the natural logarithm of both sides of y = fg or by writing fg as eg ln f .

8. Without calculus you could get misleading graphs that fail to show the most interesting features of a function.

See the discussion at the beginning of Section 4.5 and the first paragraph in Section 4.6.

9. (a) See Figure 3 in Section 4.8.

(b) x2 = x1 − f(x1)

f 0(x1)

(c) xn+1 = xn − f(xn)

f 0(xn)

(d) Newton’s method is likely to fail or to work very slowly when f 0(x1) is close to 0. It also fails when f 0(xi) is undefined,

such as with f(x) = 1/x− 2 and x1 = 1.

10. (a) See the definition at the beginning of Section 4.9.

(b) If F1 and F2 are both antiderivatives of f on an interval I, then they differ by a constant.

1. False. For example, take f(x) = x3, then f 0(x) = 3x2 and f 0(0) = 0, but f(0) = 0 is not a maximum or minimum;

(0, 0) is an inflection point.

3. False. For example, f(x) = x is continuous on (0, 1) but attains neither a maximum nor a minimum value on (0, 1).

Don’t confuse this with f being continuous on the closed interval [a, b], which would make the statement true.

5. True. This is an example of part (b) of the I/D Test.

7. False. f 0(x) = g0(x) ⇒ f(x) = g(x) +C. For example, if f(x) = x+2 and g(x) = x+1, then f 0(x) = g0(x) = 1,

but f(x) 6= g(x).

9. True. The graph of one such function is sketched.

11. True. Let x1 < x2 where x1, x2 ∈ I. Then f(x1) < f(x2) and g(x1) < g(x2) [since f and g are increasing on I ],

so (f + g)(x1) = f(x1) + g(x1) < f(x2) + g(x2) = (f + g)(x2).

13. False. Take f(x) = x and g(x) = x− 1. Then both f and g are increasing on (0, 1). But f(x) g(x) = x(x− 1) is not

increasing on (0, 1).
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15. True. Let x1, x2 ∈ I and x1 < x2. Then f(x1) < f(x2) [f is increasing] ⇒ 1

f(x1)
>

1

f(x2)
[f is positive] ⇒

g(x1) > g(x2) ⇒ g(x) = 1/f(x) is decreasing on I.

17. True. If f is periodic, then there is a number p such that f(x+ p) = f(p) for all x. Differentiating gives

f 0(x) = f 0(x+ p) · (x+ p)0 = f 0(x+ p) · 1 = f 0(x+ p), so f 0 is periodic.

19. True. By the Mean Value Theorem, there exists a number c in (0, 1) such that f(1)− f(0) = f 0(c)(1− 0) = f 0(c).

Since f 0(c) is nonzero, f(1)− f(0) 6= 0, so f(1) 6= f(0).

1. f(x) = x3 − 6x2 + 9x+ 1, [2, 4]. f 0(x) = 3x2 − 12x+ 9 = 3(x2 − 4x+ 3) = 3(x− 1)(x− 3). f 0(x) = 0 ⇒
x = 1 or x = 3, but 1 is not in the interval. f 0(x) > 0 for 3 < x < 4 and f 0(x) < 0 for 2 < x < 3, so f(3) = 1 is a local

minimum value. Checking the endpoints, we find f(2) = 3 and f(4) = 5. Thus, f(3) = 1 is the absolute minimum value and

f(4) = 5 is the absolute maximum value.

3. f(x) = 3x− 4
x2 + 1

, [−2, 2]. f 0(x) =
(x2 + 1)(3)− (3x− 4)(2x)

(x2 + 1)2
=
−(3x2 − 8x− 3)

(x2 + 1)2
=
−(3x+ 1)(x− 3)

(x2 + 1)2
.

f 0(x) = 0 ⇒ x = − 1
3

or x = 3, but 3 is not in the interval. f 0(x) > 0 for − 1
3
< x < 2 and f 0(x) < 0 for

−2 < x < − 1
3 , so f − 1

3
= −5

10/9 = − 9
2 is a local minimum value. Checking the endpoints, we find f(−2) = −2 and

f(2) = 2
5

. Thus, f − 1
3
= − 9

2
is the absolute minimum value and f(2) = 2

5
is the absolute maximum value.

5. f(x) = x+ sin 2x, [0, π]. f 0(x) = 1 + 2 cos 2x = 0 ⇔ cos 2x = − 1
2
⇔ 2x = 2π

3
or 4π

3
⇔ x = π

3
or 2π

3
.

f 00(x) = −4 sin 2x, so f 00 π
3
= −4 sin 2π

3
= −2√3 < 0 and f 00 2π

3
= −4 sin 4π

3
= 2

√
3 > 0, so

f π
3
= π

3
+
√
3
2
≈ 1.91 is a local maximum value and f 2π

3
= 2π

3
−
√
3
2
≈ 1.23 is a local minimum value. Also f(0) = 0

and f(π) = π, so f(0) = 0 is the absolute minimum value and f(π) = π is the absolute maximum value.

7. This limit has the form 0
0 . lim

x→0

tanπx

ln(1 + x)
H
= lim

x→0

π sec2 πx

1/(1 + x)
=

π · 12
1/1

= π

9. This limit has the form 0
0 . lim

x→0

e4x − 1− 4x
x2

H
= lim

x→0

4e4x − 4
2x

H
= lim

x→0

16e4x

2
= lim

x→0
8e4x = 8 · 1 = 8

11. This limit has the form∞ · 0. lim
x→∞

x3e−x = lim
x→∞

x3

ex
H
= lim

x→∞
3x2

ex
H
= lim

x→∞
6x

ex
H
= lim

x→∞
6

ex
= 0
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13. This limit has the form∞−∞.

lim
x→1+

x

x− 1 −
1

lnx
= lim

x→1+

x lnx− x+ 1

(x− 1) lnx
H
= lim

x→1+

x · (1/x) + lnx− 1
(x− 1) · (1/x) + lnx = lim

x→1+

lnx

1− 1/x+ lnx
H
= lim

x→1+

1/x

1/x2 + 1/x
=

1

1 + 1
=
1

2

15. f(0) = 0, f 0(−2) = f 0(1) = f 0(9) = 0, lim
x→∞

f(x) = 0, lim
x→6

f(x) = −∞,

f 0(x) < 0 on (−∞,−2), (1, 6), and (9,∞), f 0(x) > 0 on (−2, 1) and (6, 9),

f 00(x) > 0 on (−∞, 0) and (12,∞), f 00(x) < 0 on (0, 6) and (6, 12)

17. f is odd, f 0(x) < 0 for 0 < x < 2, f 0(x) > 0 for x > 2,

f 00(x) > 0 for 0 < x < 3, f 00(x) < 0 for x > 3, limx→∞ f(x) = −2

19. y = f(x) = 2− 2x− x3 A. D = R B. y-intercept: f(0) = 2.

The x-intercept (approximately 0.770917) can be found using Newton’s

Method. C. No symmetry D. No asymptote

E. f 0(x) = −2− 3x2 = −(3x2 + 2) < 0, so f is decreasing on R.

F. No extreme value G. f 00(x) = −6x < 0 on (0,∞) and f 00(x) > 0 on

(−∞, 0), so f is CD on (0,∞) and CU on (−∞, 0). There is an IP at (0, 2).

H.

21. y = f(x) = x4 − 3x3 + 3x2 − x = x(x− 1)3 A. D = R B. y-intercept: f(0) = 0; x-intercepts: f(x) = 0 ⇔
x = 0 or x = 1 C. No symmetry D. f is a polynomial function and hence, it has no asymptote.

E. f 0(x) = 4x3 − 9x2 + 6x− 1. Since the sum of the coefficients is 0, 1 is a root of f 0, so

f 0(x) = (x− 1) 4x2 − 5x+ 1 = (x− 1)2(4x− 1). f 0(x) < 0 ⇒ x < 1
4

, so f is decreasing on −∞, 1
4

and f is increasing on 1
4
,∞ . F. f 0(x) does not change sign at x = 1, so

there is not a local extremum there. f 1
4
= − 27

256
is a local minimum value.

G. f 00(x) = 12x2 − 18x+ 6 = 6(2x− 1)(x− 1). f 00(x) = 0 ⇔ x = 1
2

or 1. f 00(x) < 0 ⇔ 1
2 < x < 1 ⇒ f is CD on 1

2 , 1 and CU on

−∞, 1
2

and (1,∞). There are inflection points at 1
2 ,− 1

16
and (1, 0).

H.
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23. y = f(x) =
1

x(x− 3)2 A. D = {x | x 6= 0, 3} = (−∞, 0) ∪ (0, 3) ∪ (3,∞) B. No intercepts. C. No symmetry.

D. lim
x→±∞

1

x(x− 3)2 = 0, so y = 0 is a HA. lim
x→0+

1

x(x− 3)2 =∞, lim
x→0−

1

x(x− 3)2 = −∞, lim
x→3

1

x(x− 3)2 =∞,

so x = 0 and x = 3 are VA. E. f 0(x) = − (x− 3)
2 + 2x(x− 3)

x2(x− 3)4 =
3(1− x)

x2(x− 3)3 ⇒ f 0(x) > 0 ⇔ 1 < x < 3,

so f is increasing on (1, 3) and decreasing on (−∞, 0), (0, 1), and (3,∞).

F. Local minimum value f(1) = 1
4
G. f 00(x) = 6(2x2 − 4x+ 3)

x3(x− 3)4 .

Note that 2x2 − 4x+ 3 > 0 for all x since it has negative discriminant.

So f 00(x) > 0 ⇔ x > 0 ⇒ f is CU on (0, 3) and (3,∞) and

CD on (−∞, 0). No IP

H.

25. y = f(x) =
x2

x+ 8
= x− 8 + 64

x+ 8
A. D = {x | x 6= −8} B. Intercepts are 0 C. No symmetry

D. lim
x→∞

x2

x+ 8
=∞, but f(x)− (x− 8) = 64

x+ 8
→ 0 as x→∞, so y = x− 8 is a slant asymptote.

lim
x→−8+

x2

x+ 8
=∞ and lim

x→−8−
x2

x+ 8
= −∞, so x = −8 is a VA. E. f 0(x) = 1− 64

(x+ 8)2
=

x(x+ 16)

(x+ 8)2
> 0 ⇔

x > 0 or x < −16, so f is increasing on (−∞,−16) and (0,∞) and

decreasing on (−16,−8) and (−8, 0) .
F. Local maximum value f(−16) = −32, local minimum value f(0) = 0

G. f 00(x) = 128/(x+ 8)3 > 0 ⇔ x > −8, so f is CU on (−8,∞) and

CD on (−∞,−8). No IP

H.

27. y = f(x) = x
√
2 + x A. D = [−2,∞) B. y-intercept: f(0) = 0; x-intercepts: −2 and 0 C. No symmetry

D. No asymptote E. f 0(x) = x

2
√
2 + x

+
√
2 + x =

1

2
√
2 + x

[x+ 2(2 + x)] =
3x+ 4

2
√
2 + x

= 0 when x = − 4
3

, so f is

decreasing on −2,− 4
3

and increasing on − 4
3
,∞ . F. Local minimum value f − 4

3
= − 4

3
2
3
= − 4

√
6

9
≈ −1.09,

no local maximum

G. f 00(x) =
2
√
2 + x · 3− (3x+ 4) 1√

2 + x
4(2 + x)

=
6(2 + x)− (3x+ 4)

4(2 + x)3/2

=
3x+ 8

4(2 + x)3/2

f 00(x) > 0 for x > −2, so f is CU on (−2,∞). No IP

H.



CHAPTER 4 REVIEW ¤ 219

29. y = f(x) = sin2 x− 2 cosx A. D = R B. y-intercept: f(0) = −2 C. f(−x) = f(x), so f is symmetric with respect

to the y-axis. f has period 2π. D. No asymptote E. y0 = 2 sinx cosx+ 2 sinx = 2 sinx (cosx+ 1). y0 = 0 ⇔
sinx = 0 or cosx = −1 ⇔ x = nπ or x = (2n+ 1)π. y0 > 0 when sinx > 0, since cosx+ 1 ≥ 0 for all x.

Therefore, y0 > 0 [and so f is increasing] on (2nπ, (2n+ 1)π); y0 < 0 [and so f is decreasing] on ((2n− 1)π, 2nπ).
F. Local maximum values are f((2n+ 1)π) = 2; local minimum values are f(2nπ) = −2.

G. y0 = sin 2x+ 2 sinx ⇒ y00 = 2cos 2x+ 2cosx = 2(2 cos2 x− 1) + 2 cosx = 4 cos2 x+ 2cosx− 2
= 2(2 cos2 x+ cosx− 1) = 2(2 cosx− 1)(cosx+ 1)

y00 = 0 ⇔ cosx = 1
2

or −1 ⇔ x = 2nπ ± π
3

or x = (2n+ 1)π.

y00 > 0 [and so f is CU] on 2nπ − π
3
, 2nπ + π

3
; y00 ≤ 0 [and so f is CD]

on 2nπ + π
3 , 2nπ +

5π
3

. There are inflection points at 2nπ ± π
3 ,− 1

4
.

H.

31. y = f(x) = sin−1(1/x) A. D = {x | −1 ≤ 1/x ≤ 1} = (−∞,−1] ∪ [1,∞) . B. No intercept

C. f(−x) = −f(x), symmetric about the origin D. lim
x→±∞

sin−1(1/x) = sin−1 (0) = 0, so y = 0 is a HA.

E. f 0(x) = 1

1− (1/x)2 − 1

x2
=

−1√
x4 − x2

< 0, so f is decreasing on (−∞,−1) and (1,∞) .

F. No local extreme value, but f(1) = π
2

is the absolute maximum value

and f(−1) = −π
2 is the absolute minimum value.

G. f 00(x) = 4x3 − 2x
2(x4 − x2)3/2

=
x 2x2 − 1
(x4 − x2)3/2

> 0 for x > 1 and f 00(x) < 0

for x < −1, so f is CU on (1,∞) and CD on (−∞,−1). No IP

H.

33. y = f(x) = xe−2x A. D = R B. y-intercept: f(0) = 0; x-intercept: f(x) = 0 ⇔ x = 0

C. No symmetry D. lim
x→∞

xe−2x = lim
x→∞

x

e2x
H
= lim

x→∞
1

2e2x
= 0, so y = 0 is a HA.

E. f 0(x) = x(−2e−2x) + e−2x(1) = e−2x(−2x+ 1) > 0 ⇔ −2x+ 1 > 0 ⇔ x < 1
2 and f 0(x) < 0 ⇔ x > 1

2 ,

so f is increasing on −∞, 1
2

and decreasing on 1
2
,∞ . F. Local maximum value f 1

2
= 1

2
e−1 = 1/(2e);

no local minimum value

G. f 00(x) = e−2x(−2) + (−2x+ 1)(−2e−2x)
= 2e−2x[−1− (−2x+ 1)] = 4 (x− 1) e−2x.

f 00(x) > 0 ⇔ x > 1 and f 00(x) < 0 ⇔ x < 1, so f is

CU on (1,∞) and CD on (−∞, 1). IP at (1, f(1)) = (1, e−2)

H.
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35. f(x) = x2 − 1
x3

⇒ f 0(x) =
x3(2x)− x2 − 1 3x2

x6
=
3− x2

x4
⇒

f 00(x) =
x4(−2x)− 3− x2 4x3

x8
=
2x2 − 12

x5

Estimates: From the graphs of f 0 and f 00, it appears that f is increasing on

(−1.73, 0) and (0, 1.73) and decreasing on (−∞,−1.73) and (1.73,∞);
f has a local maximum of about f(1.73) = 0.38 and a local minimum of about

f(−1.7) = −0.38; f is CU on (−2.45, 0) and (2.45,∞), and CD on

(−∞,−2.45) and (0, 2.45); and f has inflection points at about

(−2.45,−0.34) and (2.45, 0.34).

Exact: Now f 0(x) =
3− x2

x4
is positive for 0 < x2 < 3, that is, f is increasing

on −√3, 0 and 0,
√
3 ; and f 0 (x) is negative (and so f is decreasing) on

−∞,−√3 and
√
3,∞ . f 0 (x) = 0 when x = ±√3.

f 0 goes from positive to negative at x =
√
3, so f has a local maximum of

f
√
3 =

(
√
3 )2− 1
(
√
3 )3

= 2
√
3

9
; and since f is odd, we know that maxima on the

interval (0,∞) correspond to minima on (−∞, 0), so f has a local minimum of

f −√3 = − 2
√
3

9
. Also, f 00 (x) = 2x2 − 12

x5
is positive (so f is CU) on

−√6, 0 and
√
6,∞ , and negative (so f is CD) on −∞,−√6 and

0,
√
6 . There are IP at

√
6, 5

√
6

36
and −√6,− 5

√
6

36
.

37. f(x) = 3x6 − 5x5 + x4 − 5x3 − 2x2 + 2 ⇒ f 0(x) = 18x5 − 25x4 + 4x3 − 15x2 − 4x ⇒

f 00(x) = 90x4 − 100x3 + 12x2 − 30x− 4

From the graphs of f 0 and f 00, it appears that f is increasing on (−0.23, 0) and (1.62,∞) and decreasing on (−∞,−0.23)
and (0, 1.62); f has a local maximum of about f(0) = 2 and local minima of about f(−0.23) = 1.96 and f(1.62) = −19.2;
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f is CU on (−∞,−0.12) and (1.24,∞) and CD on (−0.12, 1.24); and f has inflection points at about (−0.12, 1.98) and

(1.24,−12.1).

39. From the graph, we estimate the points of inflection to be about (±0.82, 0.22).
f(x) = e−1/x

2 ⇒ f 0(x) = 2x−3e−1/x
2 ⇒

f 00(x) = 2[x−3(2x−3)e−1/x
2

+ e−1/x
2

(−3x−4)] = 2x−6e−1/x2 2− 3x2 .

This is 0 when 2− 3x2 = 0 ⇔ x = ± 2
3 , so the inflection points

are ± 2
3 , e

−3/2 .

41. f(x) = cos2 x√
x2 + x+ 1

, −π ≤ x ≤ π ⇒ f 0(x) = −cosx [(2x+ 1) cosx+ 4(x
2 + x+ 1) sinx]

2(x2 + x+ 1)3/2
⇒

f 00(x) = − (8x
4 + 16x3 + 16x2 + 8x+ 9) cos2 x− 8(x2 + x+ 1)(2x+ 1) sinx cosx− 8(x2 + x+ 1)2 sin2 x

4(x2 + x+ 1)5/2

f(x) = 0 ⇔ x = ±π
2

; f 0(x) = 0 ⇔ x ≈ −2.96, −1.57, −0.18, 1.57, 3.01;

f 00(x) = 0 ⇔ x ≈ −2.16, −0.75, 0.46, and 2.21.

The x-coordinates of the maximum points are the values at which f 0 changes from positive to negative, that is, −2.96, −0.18,

and 3.01. The x-coordinates of the minimum points are the values at which f 0 changes from negative to positive, that is,

−1.57 and 1.57. The x-coordinates of the inflection points are the values at which f 00 changes sign, that is, −2.16, −0.75,

0.46, and 2.21.

43. The family of functions f(x) = ln(sinx+ C) all have the same period and all

have maximum values at x = π
2
+ 2πn. Since the domain of ln is (0,∞), f has

a graph only if sinx+ C > 0 somewhere. Since −1 ≤ sinx ≤ 1, this happens

if C > −1, that is, f has no graph if C ≤ −1. Similarly, if C > 1, then

sinx+ C > 0 and f is continuous on (−∞,∞). As C increases, the graph of

f is shifted vertically upward and flattens out. If −1 < C ≤ 1, f is defined
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where sinx+C > 0 ⇔ sinx > −C ⇔ sin−1(−C) < x < π − sin−1(−C). Since the period is 2π, the domain of f

is 2nπ + sin−1(−C), (2n+ 1)π − sin−1(−C) , n an integer.

45. Let f(x) = 3x+ 2cosx+ 5. Then f(0) = 7 > 0 and f(−π) = −3π − 2 + 5 = −3π + 3 = −3(π − 1) < 0, and since f is

continuous on R (hence on [−π, 0]), the Intermediate Value Theorem assures us that there is at least one zero of f in [−π, 0].
Now f 0(x) = 3− 2 sinx > 0 implies that f is increasing on R, so there is exactly one zero of f , and hence, exactly one real

root of the equation 3x+ 2cosx+ 5 = 0.

47. Since f is continuous on [32, 33] and differentiable on (32, 33), then by the Mean Value Theorem there exists a number c in

(32, 33) such that f 0(c) = 1
5c
−4/5 =

5
√
33− 5

√
32

33− 32 = 5
√
33− 2, but 15c

−4/5 > 0 ⇒ 5
√
33− 2 > 0 ⇒ 5

√
33 > 2. Also

f 0 is decreasing, so that f 0(c) < f 0(32) = 1
5
(32)−4/5 = 0.0125 ⇒ 0.0125 > f 0(c) = 5

√
33− 2 ⇒ 5

√
33 < 2.0125.

Therefore, 2 < 5
√
33 < 2.0125.

49. (a) g(x) = f(x2) ⇒ g0(x) = 2xf 0(x2) by the Chain Rule. Since f 0(x) > 0 for all x 6= 0, we must have f 0(x2) > 0 for

x 6= 0, so g0(x) = 0 ⇔ x = 0. Now g0(x) changes sign (from negative to positive) at x = 0, since one of its factors,

f 0(x2), is positive for all x, and its other factor, 2x, changes from negative to positive at this point, so by the First

Derivative Test, f has a local and absolute minimum at x = 0.

(b) g0(x) = 2xf 0(x2) ⇒ g00(x) = 2[xf 00(x2)(2x) + f 0(x2)] = 4x2f 00(x2) + 2f 0(x2) by the Product Rule and the Chain

Rule. But x2 > 0 for all x 6= 0, f 00(x2) > 0 [since f is CU for x > 0], and f 0(x2) > 0 for all x 6= 0, so since all of its

factors are positive, g00(x) > 0 for x 6= 0. Whether g00(0) is positive or 0 doesn’t matter [since the sign of g00 does not

change there]; g is concave upward on R.

51. If B = 0, the line is vertical and the distance from x = −C

A
to (x1, y1) is x1 +

C

A
=
|Ax1 +By1 +C|√

A2 +B2
, so assume

B 6= 0. The square of the distance from (x1, y1) to the line is f(x) = (x− x1)
2 + (y − y1)

2 where Ax+By +C = 0, so

we minimize f(x) = (x− x1)
2 + −A

B
x− C

B
− y1

2

⇒ f 0(x) = 2 (x− x1) + 2 −A

B
x− C

B
− y1 −A

B
.

f 0(x) = 0 ⇒ x =
B2x1 −ABy1 −AC

A2 +B2
and this gives a minimum since f 00(x) = 2 1 +

A2

B2
> 0. Substituting

this value of x into f(x) and simplifying gives f(x) = (Ax1 +By1 + C)2

A2 +B2
, so the minimum distance is

f(x) =
|Ax1 +By1 + C|√

A2 +B2
.
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53. By similar triangles, y
x
=

r√
x2 − 2rx , so the area of the triangle is

A(x) = 1
2
(2y)x = xy =

rx2√
x2 − 2rx ⇒

A0(x) =
2rx

√
x2 − 2rx− rx2(x− r)/

√
x2 − 2rx

x2 − 2rx =
rx2 (x− 3r)
(x2 − 2rx)3/2

= 0

when x = 3r.

A0(x) < 0 when 2r < x < 3r, A0(x) > 0 when x > 3r. So x = 3r gives a minimum and A(3r) = r(9r2)√
3 r

= 3
√
3 r2.

55. We minimize L(x) = |PA|+ |PB|+ |PC| = 2√x2 + 16 + (5− x),

0 ≤ x ≤ 5. L0(x) = 2x
√
x2 + 16 − 1 = 0 ⇔ 2x =

√
x2 + 16 ⇔

4x2 = x2 + 16 ⇔ x = 4√
3

. L(0) = 13, L 4√
3
≈ 11.9, L(5) ≈ 12.8, so the

minimum occurs when x = 4√
3
≈ 2.3.

57. v = K
L

C
+

C

L
⇒ dv

dL
=

K

2 (L/C) + (C/L)

1

C
− C

L2
= 0 ⇔ 1

C
=

C

L2
⇔ L2 = C2 ⇔ L = C.

This gives the minimum velocity since v0 < 0 for 0 < L < C and v0 > 0 for L > C.

59. Let x denote the number of $1 decreases in ticket price. Then the ticket price is $12− $1(x), and the average attendance is

11,000 + 1000(x). Now the revenue per game is

R(x) = (price per person)× (number of people per game)

= (12− x)(11,000 + 1000x) = −1000x2 + 1000x+ 132,000

for 0 ≤ x ≤ 4 [since the seating capacity is 15,000] ⇒ R0(x) = −2000x+ 1000 = 0 ⇔ x = 0.5. This is a

maximum since R00(x) = −2000 < 0 for all x. Now we must check the value of R(x) = (12− x)(11,000 + 1000x) at

x = 0.5 and at the endpoints of the domain to see which value of x gives the maximum value of R.

R(0) = (12)(11,000) = 132,000, R(0.5) = (11.5)(11,500) = 132,250, and R(4) = (8)(15,000) = 120,000. Thus, the

maximum revenue of $132,250 per game occurs when the average attendance is 11,500 and the ticket price is $11.50.

61. f(x) = x5 − x4 + 3x2 − 3x− 2 ⇒ f 0(x) = 5x4 − 4x3 + 6x− 3, so xn+1 = xn − x5n − x4n + 3x
2
n − 3xn − 2

5x4n − 4x3n + 6xn − 3 .

Now x1 = 1 ⇒ x2 = 1.5 ⇒ x3 ≈ 1.343860 ⇒ x4 ≈ 1.300320 ⇒ x5 ≈ 1.297396 ⇒

x6 ≈ 1.297383 ≈ x7, so the root in [1, 2] is 1.297383, to six decimal places.
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63. f(t) = cos t+ t− t2 ⇒ f 0(t) = − sin t+ 1− 2t. f 0(t) exists for all

t, so to find the maximum of f , we can examine the zeros of f 0.

From the graph of f 0, we see that a good choice for t1 is t1 = 0.3.

Use g(t) = − sin t+ 1− 2t and g0(t) = − cos t− 2 to obtain

t2 ≈ 0.33535293, t3 ≈ 0.33541803 ≈ t4. Since f 00(t) = − cos t− 2 < 0

for all t, f(0.33541803) ≈ 1.16718557 is the absolute maximum.

65. f 0(x) = cosx− (1− x2)−1/2 = cosx− 1√
1− x2

⇒ f(x) = sinx− sin−1 x+ C

67. f 0(x) =
√
x3 +

3
√
x2 = x3/2 + x2/3 ⇒ f(x) =

x5/2

5/2
+

x5/3

5/3
+C = 2

5
x5/2 + 3

5
x5/3 + C

69. f 0(t) = 2t− 3 sin t ⇒ f(t) = t2 + 3cos t+C.

f(0) = 3 +C and f(0) = 5 ⇒ C = 2, so f(t) = t2 + 3cos t+ 2.

71. f 00(x) = 1− 6x+ 48x2 ⇒ f 0(x) = x− 3x2 + 16x3 + C. f 0(0) = C and f 0(0) = 2 ⇒ C = 2, so

f 0(x) = x− 3x2 + 16x3 + 2 and hence, f(x) = 1
2
x2 − x3 + 4x4 + 2x+D.

f(0) = D and f(0) = 1 ⇒ D = 1, so f(x) = 1
2
x2 − x3 + 4x4 + 2x+ 1.

73. v(t) = s0(t) = 2t− 1

1 + t2
⇒ s(t) = t2 − tan−1 t+ C.

s(0) = 0− 0 + C = C and s(0) = 1 ⇒ C = 1, so s(t) = t2 − tan−1 t+ 1.

75. (a) Since f is 0 just to the left of the y-axis, we must have a minimum of F at the same place since we are increasing through

(0, 0) on F . There must be a local maximum to the left of x = −3, since f changes from positive to negative there.

(b) f(x) = 0.1ex + sinx ⇒
F (x) = 0.1ex − cosx+C. F (0) = 0 ⇒
0.1− 1 + C = 0 ⇒ C = 0.9, so

F (x) = 0.1ex − cosx+ 0.9.

(c)

77. Choosing the positive direction to be upward, we have a(t) = −9.8 ⇒ v(t) = −9.8t+ v0, but v(0) = 0 = v0 ⇒
v(t) = −9.8t = s0(t) ⇒ s(t) = −4.9t2 + s0, but s(0) = s0 = 500 ⇒ s(t) = −4.9t2 + 500. When s = 0,

−4.9t2 + 500 = 0 ⇒ t1 =
500
4.9
≈ 10.1 ⇒ v(t1) = −9.8 500

4.9
≈ −98.995 m/s. Since the canister has been

designed to withstand an impact velocity of 100 m/s, the canister will not burst.
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79. (a) The cross-sectional area of the rectangular beam is

A = 2x · 2y = 4xy = 4x√100− x2, 0 ≤ x ≤ 10, so

dA

dx
= 4x 1

2
(100− x2)−1/2(−2x) + (100− x2)1/2 · 4

=
−4x2

(100− x2)1/2
+ 4(100− x2)1/2 =

4[−x2 + 100− x2 ]

(100− x2)1/2
.

dA

dx
= 0 when −x2 + 100− x2 = 0 ⇒ x2 = 50 ⇒ x =

√
50 ≈ 7.07 ⇒ y = 100− √

50
2
=
√
50.

Since A(0) = A(10) = 0, the rectangle of maximum area is a square.

(b) The cross-sectional area of each rectangular plank (shaded in the figure) is

A = 2x y −√50 = 2x
√
100− x2 −√50 , 0 ≤ x ≤ √50, so

dA

dx
= 2

√
100− x2 −√50 + 2x 1

2
(100− x2)−1/2(−2x)

= 2(100− x2)1/2 − 2√50− 2x2

(100− x2)1/2

Set dA
dx

= 0: (100− x2)−√50 (100− x2)1/2 − x2 = 0 ⇒ 100− 2x2 = √50 (100− x2)1/2 ⇒

10,000− 400x2 + 4x4 = 50(100− x2) ⇒ 4x4 − 350x2 + 5000 = 0 ⇒ 2x4 − 175x2 + 2500 = 0 ⇒

x2 =
175±√10,625

4
≈ 69.52 or 17.98 ⇒ x ≈ 8.34 or 4.24. But 8.34 >

√
50, so x1 ≈ 4.24 ⇒

y −√50 = 100− x21 −
√
50 ≈ 1.99. Each plank should have dimensions about 8 1

2
inches by 2 inches.

(c) From the figure in part (a), the width is 2x and the depth is 2y, so the strength is

S = k(2x)(2y)2 = 8kxy2 = 8kx(100− x2) = 800kx− 8kx3, 0 ≤ x ≤ 10. dS/dx = 800k − 24kx2 = 0 when

24kx2 = 800k ⇒ x2 = 100
3 ⇒ x = 10√

3
⇒ y = 200

3 = 10
√
2√
3
=
√
2x. Since S(0) = S(10) = 0, the

maximum strength occurs when x = 10√
3

. The dimensions should be 20√
3
≈ 11.55 inches by 20

√
2√
3
≈ 16.33 inches.

81. We first show that x

1 + x2
< tan−1 x for x > 0. Let f(x) = tan−1 x− x

1 + x2
. Then

f 0(x) =
1

1 + x2
− 1(1 + x2)− x(2x)

(1 + x2)2
=
(1 + x2)− (1− x2)

(1 + x2)2
=

2x2

(1 + x2)2
> 0 for x > 0. So f(x) is increasing

on (0,∞). Hence, 0 < x ⇒ 0 = f(0) < f(x) = tan−1 x− x

1 + x2
. So x

1 + x2
< tan−1 x for 0 < x. We next show

that tan−1 x < x for x > 0. Let h(x) = x− tan−1 x. Then h0(x) = 1− 1

1 + x2
=

x2

1 + x2
> 0. Hence, h(x) is increasing

on (0,∞). So for 0 < x, 0 = h(0) < h(x) = x− tan−1 x. Hence, tan−1 x < x for x > 0, and we conclude that
x

1 + x2
< tan−1 x < x for x > 0.





PROBLEMS PLUS

1. Let y = f(x) = e−x
2

. The area of the rectangle under the curve from−x to x is A(x) = 2xe−x
2

where x ≥ 0. We maximize

A(x): A0(x) = 2e−x
2 − 4x2e−x2 = 2e−x2 1− 2x2 = 0 ⇒ x = 1√

2
. This gives a maximum since A0(x) > 0

for 0 ≤ x < 1√
2

and A0(x) < 0 for x > 1√
2

. We next determine the points of inflection of f(x). Notice that

f 0(x) = −2xe−x2 = −A(x). So f 00(x) = −A0(x) and hence, f 00(x) < 0 for − 1√
2
< x < 1√

2
and f 00(x) > 0 for x < − 1√

2

and x > 1√
2

. So f(x) changes concavity at x = ± 1√
2

, and the two vertices of the rectangle of largest area are at the inflection

points.

3. First, we recognize some symmetry in the inequality: e
x+ y

xy
≥ e2 ⇔ ex

x
· e

y

y
≥ e · e. This suggests that we need to show

that e
x

x
≥ e for x > 0. If we can do this, then the inequality ey

y
≥ e is true, and the given inequality follows. f(x) = ex

x
⇒

f 0(x) =
xex − ex

x2
=

ex(x− 1)
x2

= 0 ⇒ x = 1. By the First Derivative Test, we have a minimum of f(1) = e, so

ex/x ≥ e for all x.

5. Let L = lim
x→0

ax2 + sin bx+ sin cx+ sin dx

3x2 + 5x4 + 7x6
. Now L has the indeterminate form of type 0

0
, so we can apply l’Hospital’s

Rule. L = lim
x→0

2ax+ b cos bx+ c cos cx+ d cos dx

6x+ 20x3 + 42x5
. The denominator approaches 0 as x→ 0, so the numerator must also

approach 0 (because the limit exists). But the numerator approaches 0 + b+ c+ d, so b+ c+ d = 0. Apply l’Hospital’s Rule

again. L = lim
x→0

2a− b2 sin bx− c2 sin cx− d 2 sin dx

6 + 60x2 + 210x4
=
2a− 0
6 + 0

=
2a

6
, which must equal 8. 2a

6
= 8 ⇒ a = 24.

Thus, a+ b+ c+ d = a+ (b+ c+ d) = 24 + 0 = 24.

7. Differentiating x2 + xy + y2 = 12 implicitly with respect to x gives 2x+ y + x
dy

dx
+ 2y

dy

dx
= 0, so dy

dx
= −2x+ y

x+ 2y
.

At a highest or lowest point, dy
dx

= 0 ⇔ y = −2x. Substituting −2x for y in the original equation gives

x2 + x(−2x) + (−2x)2 = 12, so 3x2 = 12 and x = ±2. If x = 2, then y = −2x = −4, and if x = −2 then y = 4.

Thus, the highest and lowest points are (−2, 4) and (2,−4).

9. y = x2 ⇒ y0 = 2x, so the slope of the tangent line at P (a, a2) is 2a and the slope of the normal line is − 1

2a
for a 6= 0.

An equation of the normal line is y − a2 = − 1

2a
(x− a). Substitute x2 for y to find the x-coordinates of the two points of

intersection of the parabola and the normal line. x2 − a2 = − x

2a
+
1

2
⇒ 2ax2 + x− 2a3 − a = 0 ⇒

227
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x =
−1± 1− 4(2a)(−2a3 − a)

2(2a)
=
−1±√1 + 16a4 + 8a2

4a
=
−1± (4a2 + 1)2

4a
=
−1± (4a2 + 1)

4a

=
4a2

4a
or −4a

2 − 2
4a

, or equivalently, a or −a− 1

2a

So the point Q has coordinates −a− 1

2a
, −a− 1

2a

2

. The square S of the distance from P to Q is given by

S = −a− 1

2a
− a

2

+ −a− 1

2a

2

− a2
2

= −2a− 1

2a

2

+ a2 + 1 +
1

4a2
− a2

2

= 4a2 + 2 +
1

4a2
+ 1 +

1

4a2

2

= 4a2 + 2 +
1

4a2
+ 1 +

2

4a2
+

1

16a4
= 4a2 + 3 +

3

4a2
+

1

16a4

S0 = 8a− 6

4a3
− 4

16a5
= 8a− 3

2a3
− 1

4a5
=
32a6 − 6a2 − 1

4a5
. The only real positive zero of the equation S0 = 0 is

a =
1√
2

. Since S00 = 8 + 9

2a4
+

5

4a6
> 0, a = 1√

2
corresponds to the shortest possible length of the line segment PQ.

11. f(x) = a2 + a− 6 cos 2x+ (a− 2)x+ cos 1 ⇒ f 0(x) = − a2 + a− 6 sin 2x (2) + (a− 2). The derivative exists

for all x, so the only possible critical points will occur where f 0(x) = 0 ⇔ 2(a− 2)(a+ 3) sin 2x = a− 2 ⇔

either a = 2 or 2(a+ 3) sin 2x = 1, with the latter implying that sin 2x = 1

2(a+ 3)
. Since the range of sin 2x is [−1, 1],

this equation has no solution whenever either 1

2(a+ 3)
< −1 or 1

2(a+ 3)
> 1. Solving these inequalities, we get

− 7
2
< a < − 5

2
.

13. A = x1, x
2
1 and B = x2, x

2
2 , where x1 and x2 are the solutions of the quadratic equation x2 = mx+ b. Let P = x, x2

and set A1 = (x1, 0), B1 = (x2, 0), and P1 = (x, 0). Let f(x) denote the area of triangle PAB. Then f(x) can be expressed

in terms of the areas of three trapezoids as follows:

f(x) = area (A1ABB1)− area (A1APP1)− area (B1BPP1)

= 1
2
x21 + x22 (x2 − x1)− 1

2
x21 + x2 (x− x1)− 1

2
x2 + x22 (x2 − x)

After expanding and canceling terms, we get

f(x) = 1
2
x2x

2
1 − x1x

2
2 − xx21 + x1x

2 − x2x
2 + xx22 = 1

2
x21(x2 − x) + x22(x− x1) + x2(x1 − x2)

f 0(x) = 1
2
−x21 + x22 + 2x(x1 − x2) . f 00(x) = 1

2
[2(x1 − x2)] = x1 − x2 < 0 since x2 > x1.

f 0(x) = 0 ⇒ 2x(x1 − x2) = x21 − x22 ⇒ xP =
1
2
(x1 + x2).

f(xP ) =
1
2
x21

1
2
(x2 − x1) + x22

1
2
(x2 − x1) +

1
4
(x1 + x2)

2(x1 − x2)

= 1
2

1
2
(x2 − x1) x

2
1 + x22 − 1

4
(x2 − x1)(x1 + x2)

2 = 1
8
(x2 − x1) 2 x21 + x22 − x21 + 2x1x2 + x22

= 1
8 (x2 − x1) x

2
1 − 2x1x2 + x22 = 1

8 (x2 − x1)(x1 − x2)
2 = 1

8 (x2 − x1)(x2 − x1)
2 = 1

8 (x2 − x1)
3
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To put this in terms of m and b, we solve the system y = x21 and y = mx1 + b, giving us x21 −mx1 − b = 0 ⇒

x1 =
1
2
m−√m2 + 4b . Similarly, x2 = 1

2
m+

√
m2 + 4b . The area is then 1

8
(x2 − x1)

3 = 1
8

√
m2 + 4b

3,

and is attained at the point P xP , x
2
P = P 1

2
m, 1

4
m2 .

Note: Another way to get an expression for f(x) is to use the formula for an area of a triangle in terms of the coordinates of

the vertices: f(x) = 1
2

x2x
2
1 − x1x

2
2 + x1x

2 − xx21 + xx22 − x2x
2 .

15. Suppose that the curve y = ax intersects the line y = x. Then ax0 = x0 for some x0 > 0, and hence a = x
1/x0
0 . We find the

maximum value of g(x) = x1/x, > 0, because if a is larger than the maximum value of this function, then the curve y = ax

does not intersect the line y = x. g0(x) = e(1/x) ln x − 1

x2
lnx+

1

x
· 1
x

= x1/x
1

x2
(1− lnx). This is 0 only where

x = e, and for 0 < x < e, f 0(x) > 0, while for x > e, f 0(x) < 0, so g has an absolute maximum of g(e) = e1/e. So if

y = ax intersects y = x, we must have 0 < a ≤ e1/e. Conversely, suppose that 0 < a ≤ e1/e. Then ae ≤ e, so the graph of

y = ax lies below or touches the graph of y = x at x = e. Also a0 = 1 > 0, so the graph of y = ax lies above that of y = x

at x = 0. Therefore, by the Intermediate Value Theorem, the graphs of y = ax and y = x must intersect somewhere between

x = 0 and x = e.

17. Note that f(0) = 0, so for x 6= 0, f(x)− f(0)

x− 0 =
f(x)

x
=
|f(x)|
|x| ≤ | sinx|

|x| =
sinx

x
.

Therefore, |f 0(0)| = lim
x→0

f(x)− f(0)

x− 0 = lim
x→0

f(x)− f(0)

x− 0 ≤ lim
x→0

sinx

x
= 1.

But f(x) = a1 sinx+ a2 sin 2x+ · · ·+ an sinnx ⇒ f 0(x) = a1 cosx+ 2a2 cos 2x+ · · ·+ nan cosnx, so

|f 0(0)| = |a1 + 2a2 + · · ·+ nan| ≤ 1.

Another solution: We are given that n
k=1 ak sin kx ≤ | sinx|. So for x close to 0, and x 6= 0, we have

n

k=1

ak
sin kx

sinx
≤ 1 ⇒ lim

x→0

n

k=1

ak
sin kx

sinx
≤ 1 ⇒

n

k=1

ak lim
x→0

sin kx

sinx
≤ 1. But by l’Hospital’s Rule,

lim
x→0

sin kx

sinx
= lim

x→0

k cos kx

cosx
= k, so

n

k=1

kak ≤ 1.

19. (a) Distance = rate× time, so time = distance/rate. T1 =
D

c1
, T2 =

2 |PR|
c1

+
|RS|
c2

=
2h sec θ

c1
+

D − 2h tan θ
c2

,

T3 =
2 h2 + D2/4

c1
=

√
4h2 +D2

c1
.

(b) dT2
dθ

=
2h

c1
· sec θ tan θ − 2h

c2
sec2 θ = 0 when 2h sec θ 1

c1
tan θ − 1

c2
sec θ = 0 ⇒

1

c1

sin θ

cos θ
− 1

c2

1

cos θ
= 0 ⇒ sin θ

c1 cos θ
=

1

c2 cos θ
⇒ sin θ =

c1
c2

. The First Derivative Test shows that this gives

a minimum.
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(c) Using part (a) with D = 1 and T1 = 0.26, we have T1 =
D

c1
⇒ c1 =

1
0.26

≈ 3.85 km/s. T3 =
√
4h2 +D2

c1
⇒

4h2 +D2 = T 23 c
2
1 ⇒ h = 1

2
T 2
3c
2
1 −D2 = 1

2
(0.34)2(1/0.26)2 − 12 ≈ 0.42 km. To find c2, we use sin θ = c1

c2

from part (b) and T2 =
2h sec θ

c1
+

D − 2h tan θ
c2

from part (a). From the figure,

sin θ =
c1
c2

⇒ sec θ =
c2

c22 − c21
and tan θ = c1

c22 − c21
, so

T2 =
2hc2

c1 c22 − c21
+

D c22 − c21 − 2hc1
c2 c22 − c21

. Using the values for T2 [given as 0.32],

h, c1, and D, we can graph Y1 = T2 and Y2 =
2hc2

c1 c22 − c21
+

D c22 − c21 − 2hc1
c2 c22 − c21

and find their intersection points.

Doing so gives us c2 ≈ 4.10 and 7.66, but if c2 = 4.10, then θ = arcsin(c1/c2) ≈ 69.6◦, which implies that point S is to

the left of point R in the diagram. So c2 = 7.66 km/s.

21. Let a = |EF | and b = |BF | as shown in the figure. Since = |BF |+ |FD|,
|FD| = − b. Now

|ED|= |EF |+ |FD| = a+ − b =
√
r2 − x2 + − (d− x)2 + a2

=
√
r2 − x2 + − (d− x)2 +

√
r2 − x2

2

=
√
r2 − x2 + −√d2 − 2dx+ x2 + r2 − x2

Let f(x) =
√
r2 − x2 + −√d2 + r2 − 2dx.

f 0(x) = 1
2
(r2 − x2)−1/2(−2x)− 1

2
(d2 + r2 − 2dx)−1/2(−2d) = −x√

r2 − x2
+

d√
d2 + r2 − 2dx .

f 0(x) = 0 ⇒ x√
r2 − x2

=
d√

d2 + r2 − 2dx ⇒ x2

r2 − x2
=

d2

d2 + r2 − 2dx ⇒

d2x2 + r2x2 − 2dx3 = d2r2 − d2x2 ⇒ 0 = 2dx3 − 2d2x2 − r2x2 + d2r2 ⇒
0 = 2dx2(x− d)− r2(x2 − d2) ⇒ 0 = 2dx2(x− d)− r2(x+ d)(x− d) ⇒ 0 = (x− d)[2dx2 − r2(x+ d)]

But d > r > x, so x 6= d. Thus, we solve 2dx2 − r2x − dr2 = 0 for x:

x =
−(−r2)± (−r2)2 − 4(2d)(−dr2)

2(2d)
=

r2 ±√r4 + 8d2r2
4d

. Because
√
r4 + 8d2r2 > r2, the “negative” can be

discarded. Thus, x = r2 +
√
r2
√
r2 + 8d2

4d
=

r2 + r
√
r2 + 8d2

4d
[r > 0] =

r

4d
r +

√
r2 + 8d2 . The maximum value

of |ED| occurs at this value of x.
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23. V = 4
3
πr3 ⇒ dV

dt
= 4πr2

dr

dt
. But dV

dt
is proportional to the surface area, so dV

dt
= k · 4πr2 for some constant k.

Therefore, 4πr2 dr
dt
= k · 4πr2 ⇔ dr

dt
= k = constant. An antiderivative of k with respect to t is kt, so r = kt+ C.

When t = 0, the radius r must equal the original radius r0, so C = r0, and r = kt+ r0. To find k we use the fact that when

t = 3, r = 3k + r0 and V = 1
2
V0 ⇒ 4

3
π(3k + r0)

3 = 1
2
· 4
3
πr30 ⇒ (3k + r0)

3 = 1
2
r30 ⇒ 3k + r0 =

1
3√2
r0 ⇒

k = 1
3
r0

1
3√2
− 1 . Since r = kt+ r0, r = 1

3
r0

1
3√2
− 1 t+ r0. When the snowball has melted completely we have

r = 0 ⇒ 1
3
r0

1
3√2
− 1 t+ r0 = 0 which gives t = 3 3

√
2

3
√
2− 1 . Hence, it takes 3 3

√
2

3
√
2− 1 − 3 =

3
3
√
2− 1 ≈ 11 h 33 min

longer.





5 INTEGRALS

5.1 Areas and Distances

1. (a) Since f is increasing, we can obtain a lower estimate by using

left endpoints. We are instructed to use five rectangles, so n = 5.

L5 =
5

i=1

f(xi−1)∆x [∆x = b−a
n
= 10− 0

5
= 2]

= f(x0) · 2 + f(x1) · 2 + f(x2) · 2 + f(x3) · 2 + f(x4) · 2
= 2 [f(0) + f(2) + f(4) + f(6) + f(8)]

≈ 2(1 + 3 + 4.3 + 5.4 + 6.3) = 2(20) = 40

Since f is increasing, we can obtain an upper estimate by using

right endpoints.

R5 =
5

i=1

f(xi)∆x

= 2 [f(x1) + f(x2) + f(x3) + f(x4) + f(x5)]

= 2 [f(2) + f(4) + f(6) + f(8) + f(10)]

≈ 2(3 + 4.3 + 5.4 + 6.3 + 7) = 2(26) = 52

Comparing R5 to L5, we see that we have added the area of the rightmost upper rectangle, f(10) · 2, to the sum and

subtracted the area of the leftmost lower rectangle, f(0) · 2, from the sum.

(b) L10 =
10

i=1

f(xi−1)∆x [∆x = 10− 0
10

= 1]

= 1 [f(x0) + f(x1) + · · ·+ f(x9)]

= f(0) + f(1) + · · ·+ f (9)

≈ 1 + 2.1 + 3 + 3.7 + 4.3 + 4.9 + 5.4 + 5.8 + 6.3 + 6.7
= 43.2

R10 =
10

i=1

f(xi)∆x = f(1) + f(2) + · · ·+ f(10)

= L10 + 1 · f(10)− 1 · f(0) add rightmost upper rectangle,
subtract leftmost lower rectangle

= 43.2 + 7− 1 = 49.2

233
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3. (a) R4 =
4

i=1

f(xi)∆x ∆x =
π/2− 0

4
=

π

8
=

4

i=1

f(xi) ∆x

= [f(x1) + f(x2) + f(x3) + f(x4)]∆x

= cos π
8
+ cos 2π

8
+ cos 3π

8
+ cos 4π

8
π
8

≈ (0.9239 + 0.7071 + 0.3827 + 0)π8 ≈ 0.7908
Since f is decreasing on [0, π/2], an underestimate is obtained by using the right endpoint approximation, R4.

(b) L4 =
4

i=1

f(xi−1)∆x =
4

i=1

f (xi−1) ∆x

= [f(x0) + f(x1) + f(x2) + f(x3)] ∆x

= cos 0 + cos π
8
+ cos 2π

8
+ cos 3π

8
π
8

≈ (1 + 0.9239 + 0.7071 + 0.3827)π
8
≈ 1.1835

L4 is an overestimate. Alternatively, we could just add the area of the leftmost upper rectangle and subtract the area of the
rightmost lower rectangle; that is, L4 = R4 + f(0) · π

8
− f π

2
· π
8

.

5. (a) f(x) = 1 + x2 and ∆x =
2− (−1)

3
= 1 ⇒

R3 = 1 · f(0) + 1 · f(1) + 1 · f(2) = 1 · 1 + 1 · 2 + 1 · 5 = 8.

∆x =
2− (−1)

6
= 0.5 ⇒

R6 = 0.5[f(−0.5) + f(0) + f(0.5) + f(1) + f(1.5) + f(2)]

= 0.5(1.25 + 1 + 1.25 + 2 + 3.25 + 5)

= 0.5(13.75) = 6.875

(b) L3 = 1 · f(−1) + 1 · f(0) + 1 · f(1) = 1 · 2 + 1 · 1 + 1 · 2 = 5

L6 = 0.5[f(−1) + f(−0.5) + f(0) + f(0.5) + f(1) + f(1.5)]

= 0.5(2 + 1.25 + 1 + 1.25 + 2 + 3.25)

= 0.5(10.75) = 5.375

(c) M3 = 1 · f(−0.5) + 1 · f(0.5) + 1 · f(1.5)
= 1 · 1.25 + 1 · 1.25 + 1 · 3.25 = 5.75

M6 = 0.5[f(−0.75) + f(−0.25) + f(0.25)

+ f(0.75) + f(1.25) + f(1.75)]

= 0.5(1.5625 + 1.0625 + 1.0625 + 1.5625 + 2.5625 + 4.0625)

= 0.5(11.875) = 5.9375

(d) M6 appears to be the best estimate.
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7. Here is one possible algorithm (ordered sequence of operations) for calculating the sums:

1 Let SUM = 0, X_MIN = 0, X_MAX = 1, N = 10 (depending on which sum we are calculating),

DELTA_X = (X_MAX - X_MIN)/N, and RIGHT_ENDPOINT = X_MIN + DELTA_X.

2 Repeat steps 2a, 2b in sequence until RIGHT_ENDPOINT > X_MAX.
2a Add (RIGHT_ENDPOINT)^4 to SUM.
2b Add DELTA_X to RIGHT_ENDPOINT.

At the end of this procedure, (DELTA_X)·(SUM) is equal to the answer we are looking for. We find that

R10 =
1

10

10

i=1

i

10

4

≈ 0.2533, R30 =
1

30

30

i=1

i

30

4

≈ 0.2170, R50 =
1

50

50

i=1

i

50

4

≈ 0.2101, and

R100 =
1

100

100

i=1

i

100

4

≈ 0.2050. It appears that the exact area is 0.2.

The following display shows the program SUMRIGHT and its output from a TI-83 Plus calculator. To generalize the

program, we have input (rather than assign) values for Xmin, Xmax, and N. Also, the function, x4, is assigned to Y1, enabling

us to evaluate any right sum merely by changing Y1 and running the program.

9. In Maple, we have to perform a number of steps before getting a numerical answer. After loading the student package

[command: with(student);] we use the command

left_sum:=leftsum(1/(xˆ2+1),x=0..1,10 [or 30, or 50]); which gives us the expression in summation

notation. To get a numerical approximation to the sum, we use evalf(left_sum);. Mathematica does not have a special

command for these sums, so we must type them in manually. For example, the first left sum is given by

(1/10)*Sum[1/(((i-1)/10)ˆ2+1)],{i,1,10}], and we use the N command on the resulting output to get a

numerical approximation.

In Derive, we use the LEFT_RIEMANN command to get the left sums, but must define the right sums ourselves.

(We can define a new function using LEFT_RIEMANN with k ranging from 1 to n instead of from 0 to n− 1.)

(a) With f(x) = 1

x2 + 1
, 0 ≤ x ≤ 1, the left sums are of the form Ln =

1

n

n

i=1

1
i−1
n

2
+ 1

. Specifically, L10 ≈ 0.8100,

L30 ≈ 0.7937, and L50 ≈ 0.7904. The right sums are of the form Rn =
1

n

n

i=1

1
i
n

2
+ 1

. Specifically, R10 ≈ 0.7600,

R30 ≈ 0.7770, and R50 ≈ 0.7804.
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(b) In Maple, we use the leftbox (with the same arguments as left_sum) and rightbox commands to generate the

graphs.

left endpoints, n = 10 left endpoints, n = 30 left endpoints, n = 50

right endpoints, n = 10 right endpoints, n = 30 right endpoints, n = 50

(c) We know that since y = 1/(x2 + 1) is a decreasing function on (0, 1), all of the left sums are larger than the actual area,

and all of the right sums are smaller than the actual area. Since the left sum with n = 50 is about 0.7904 < 0.791 and the

right sum with n = 50 is about 0.7804 > 0.780, we conclude that 0.780 < R50 < exact area < L50 < 0.791, so the

exact area is between 0.780 and 0.791.

11. Since v is an increasing function, L6 will give us a lower estimate and R6 will give us an upper estimate.

L6 = (0 ft/s)(0.5 s) + (6.2)(0.5) + (10.8)(0.5) + (14.9)(0.5) + (18.1)(0.5) + (19.4)(0.5) = 0.5(69.4) = 34.7 ft

R6 = 0.5(6.2 + 10.8 + 14.9 + 18.1 + 19.4 + 20.2) = 0.5(89.6) = 44.8 ft

13. Lower estimate for oil leakage: R5 = (7.6 + 6.8 + 6.2 + 5.7 + 5.3)(2) = (31.6)(2) = 63.2 L.

Upper estimate for oil leakage: L5 = (8.7 + 7.6 + 6.8 + 6.2 + 5.7)(2) = (35)(2) = 70 L.

15. For a decreasing function, using left endpoints gives us an overestimate and using right endpoints results in an underestimate.

We will use M6 to get an estimate. ∆t = 1, so

M6 = 1[v(0.5) + v(1.5) + v(2.5) + v(3.5) + v(4.5) + v(5.5)] ≈ 55 + 40 + 28 + 18 + 10 + 4 = 155 ft

For a very rough check on the above calculation, we can draw a line from (0, 70) to (6, 0) and calculate the area of the

triangle: 1
2
(70)(6) = 210. This is clearly an overestimate, so our midpoint estimate of 155 is reasonable.

17. f(x) = 4
√
x, 1 ≤ x ≤ 16. ∆x = (16 − 1)/n = 15/n and xi = 1 + i∆x = 1 + 15i/n.

A = lim
n→∞

Rn = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

4 1 +
15i

n
· 15
n

.

19. f(x) = x cosx, 0 ≤ x ≤ π
2

. ∆x = (π
2
− 0)/n = π

2
/n and xi = 0 + i∆x = π

2
i/n.

A = lim
n→∞

Rn = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

iπ

2n
cos

iπ

2n
· π

2n
.
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21. lim
n→∞

n

i=1

π

4n
tan

iπ

4n
can be interpreted as the area of the region lying under the graph of y = tanx on the interval 0, π

4
,

since for y = tanx on 0, π
4

with ∆x =
π/4− 0

n
=

π

4n
, xi = 0 + i∆x =

iπ

4n
, and x∗i = xi, the expression for the area is

A = lim
n→∞

n

i=1

f (x∗i )∆x = lim
n→∞

n

i=1

tan
iπ

4n

π

4n
. Note that this answer is not unique, since the expression for the area is

the same for the function y = tan(x− kπ) on the interval kπ, kπ + π
4

, where k is any integer.

23. (a) y = f(x) = x5. ∆x =
2− 0
n

=
2

n
and xi = 0 + i∆x =

2i

n
.

A = lim
n→∞

Rn = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

2i

n

5

· 2
n
= lim

n→∞

n

i=1

32i5

n5
· 2
n
= lim

n→∞
64

n6

n

i=1

i5.

(b)
n

i=1

i5
CAS
=

n2(n+ 1)2 2n2 + 2n− 1
12

(c) lim
n→∞

64

n6
· n

2(n+ 1)2 2n2 + 2n− 1
12

=
64

12
lim
n→∞

n2 + 2n+ 1 2n2 + 2n− 1
n2 · n2

=
16

3
lim
n→∞

1 +
2

n
+
1

n2
2 +

2

n
− 1

n2
= 16

3
· 1 · 2 = 32

3

25. y = f(x) = cosx. ∆x =
b− 0
n

=
b

n
and xi = 0 + i∆x =

bi

n
.

A = lim
n→∞

Rn = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

cos
bi

n
· b
n

CAS
= lim

n→∞

⎡⎢⎢⎣b sin b
1

2n
+ 1

2n sin
b

2n

− b

2n

⎤⎥⎥⎦ CAS
= sin b

If b = π
2

, then A = sin π
2
= 1.

5.2 The Definite Integral

1. f(x) = 3− 1
2
x, 2 ≤ x ≤ 14. ∆x =

b− a

n
=
14− 2
6

= 2.

Since we are using left endpoints, x∗i = xi−1.

L6 =
6

i=1

f(xi−1)∆x

= (∆x) [f(x0) + f(x1) + f(x2) + f(x3) + f(x4) + f(x5)]

= 2[f(2) + f(4) + f(6) + f(8) + f(10) + f(12)]

= 2[2 + 1 + 0 + (−1) + (−2) + (−3)] = 2(−3) = −6

The Riemann sum represents the sum of the areas of the two rectangles above the x-axis minus the sum of the areas of the

three rectangles below the x-axis; that is, the net area of the rectangles with respect to the x-axis.
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3. f(x) = ex − 2, 0 ≤ x ≤ 2. ∆x =
b− a

n
=
2− 0
4

=
1

2
.

Since we are using midpoints, x∗i = xi =
1
2 (xi−1 + xi).

M4 =
4

i=1

f(xi)∆x = (∆x) [f(x1) + f(x2) + f(x3) + f(x4)]

= 1
2
f 1

4
+ f 3

4
+ f 5

4
+ f 7

4

= 1
2
(e1/4 − 2) + (e3/4 − 2) + (e5/4 − 2) + (e7/4 − 2)

≈ 2.322986

The Riemann sum represents the sum of the areas of the three rectangles above the x-axis minus the area of the rectangle

below the x-axis; that is, the net area of the rectangles with respect to the x-axis.

5. ∆x = (b− a)/n = (8− 0)/4 = 8/4 = 2.

(a) Using the right endpoints to approximate 8

0
f(x) dx, we have

4

i=1

f(xi)∆x = 2[f(2) + f(4) + f(6) + f(8)] ≈ 2[1 + 2 + (−2) + 1] = 4.

(b) Using the left endpoints to approximate 8

0
f(x) dx, we have

4

i=1

f(xi−1)∆x = 2[f(0) + f(2) + f(4) + f(6)] ≈ 2[2 + 1 + 2 + (−2)] = 6.

(c) Using the midpoint of each subinterval to approximate 8

0
f(x) dx, we have

4

i=1

f(xi)∆x = 2[f(1) + f(3) + f(5) + f(7)] ≈ 2[3 + 2 + 1 + (−1)] = 10.

7. Since f is increasing, L5 ≤ 25

0
f(x) dx ≤ R5.

Lower estimate= L5 =
5

i=1

f(xi−1)∆x = 5[f(0) + f(5) + f(10) + f(15) + f(20)]

= 5(−42− 37− 25− 6 + 15) = 5(−95) = −475

Upper estimate= R5 =
5

i=1

f(xi)∆x = 5[f(5) + f(10) + f(15) + f(20) + f(25)]

= 5(−37− 25− 6 + 15 + 36) = 5(−17) = −85

9. ∆x = (10− 2)/4 = 2, so the endpoints are 2, 4, 6, 8, and 10, and the midpoints are 3, 5, 7, and 9. The Midpoint Rule

gives 10

2

√
x3 + 1 dx ≈

4

i=1

f(xi)∆x = 2
√
33 + 1 +

√
53 + 1 +

√
73 + 1+

√
93 + 1 ≈ 124.1644.

11. ∆x = (1− 0)/5 = 0.2, so the endpoints are 0, 0.2, 0.4, 0.6, 0.8, and 1, and the midpoints are 0.1, 0.3, 0.5, 0.7, and 0.9.

The Midpoint Rule gives

1

0
sin(x2) dx ≈

5

i=1

f(xi)∆x = 0.2 sin(0.1)2 + sin(0.3)2 + sin(0.5)2 + sin(0.7)2 + sin(0.9)2 ≈ 0.3084.
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13. In Maple, we use the command with(student); to load the sum and box commands, then

m:=middlesum(sin(xˆ2),x=0..1,5); which gives us the sum in summation notation, then M:=evalf(m); which

gives M5 ≈ 0.30843908, confirming the result of Exercise 11. The command middlebox(sin(xˆ2),x=0..1,5)

generates the graph. Repeating for n = 10 and n = 20 gives M10 ≈ 0.30981629 and M20 ≈ 0.31015563.

15. We’ll create the table of values to approximate π

0
sinxdx by using the

program in the solution to Exercise 5.1.7 with Y1 = sinx, Xmin = 0,

Xmax = π, and n = 5, 10, 50, and 100.

The values of Rn appear to be approaching 2.

n Rn

5 1.933766

10 1.983524

50 1.999342

100 1.999836

17. On [2, 6], lim
n→∞

n

i=1

xi ln(1 + x2i )∆x =
6

2
x ln(1 + x2) dx.

19. On [1, 8], lim
n→∞

n

i=1

2x∗i + (x
∗
i )
2∆x =

8

1

√
2x+ x2 dx.

21. Note that ∆x =
5− (−1)

n
=
6

n
and xi = −1 + i∆x = −1 + 6i

n
.

5

−1
(1 + 3x) dx = lim

n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

1 + 3 −1 + 6i

n

6

n
= lim

n→∞
6

n

n

i=1

−2 + 18i

n

= lim
n→∞

6

n

n

i=1

(−2) +
n

i=1

18i

n
= lim

n→∞
6

n
−2n+ 18

n

n

i=1

i

= lim
n→∞

6

n
−2n+ 18

n
· n(n+ 1)

2
= lim

n→∞
−12 + 108

n2
· n(n+ 1)

2

= lim
n→∞

−12 + 54n+ 1
n

= lim
n→∞

−12 + 54 1 +
1

n
= −12 + 54 · 1 = 42

23. Note that ∆x =
2− 0
n

=
2

n
and xi = 0 + i∆x =

2i

n
.

2

0

2− x2 dx = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

2− 4i2

n2
2

n
= lim

n→∞
2

n

n

i=1

2− 4

n2

n

i=1

i2

= lim
n→∞

2

n
2n− 4

n2

n

i=1

i2 = lim
n→∞

4− 8

n3
· n(n+ 1)(2n+ 1)

6

= lim
n→∞

4− 4

3
· n+ 1

n
· 2n+ 1

n
= lim

n→∞
4− 4

3
1 +

1

n
2 +

1

n
= 4− 4

3
· 1 · 2 = 4

3
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25. Note that ∆x =
2− 1
n

=
1

n
and xi = 1 + i∆x = 1 + i(1/n) = 1 + i/n.

2

1

x3 dx = lim
n→∞

n

i=1

f(xi)∆x = lim
n→∞

n

i=1

1 +
i

n

3
1

n
= lim

n→∞
1

n

n

i=1

n+ i

n

3

= lim
n→∞

1

n4

n

i=1

n3 + 3n2i+ 3ni2 + i3 = lim
n→∞

1

n4

n

i=1

n3 +
n

i=1

3n2i+
n

i=1

3ni2 +
n

i=1

i3

= lim
n→∞

1

n4
n · n3 + 3n2

n

i=1

i+ 3n
n

i=1

i2 +
n

i=1

i3

= lim
n→∞

1 +
3

n2
· n(n+ 1)

2
+
3

n3
· n(n+ 1)(2n+ 1)

6
+
1

n4
· n

2(n+ 1)2

4

= lim
n→∞

1 +
3

2
· n+ 1

n
+
1

2
· n+ 1

n
· 2n+ 1

n
+
1

4
· (n+ 1)

2

n2

= lim
n→∞

1 +
3

2
1 +

1

n
+
1

2
1 +

1

n
2 +

1

n
+
1

4
1 +

1

n

2

= 1 +
3

2
+ 1

2 · 2 + 1
4 = 3.75

27.
b

a

xdx = lim
n→∞

b− a

n

n

i=1

a+
b− a

n
i = lim

n→∞
a(b− a)

n

n

i=1

1 +
(b− a)2

n2

n

i=1

i

= lim
n→∞

a(b− a)

n
n+

(b− a)2

n2
· n(n+ 1)

2
= a (b− a) + lim

n→∞
(b− a)2

2
1 +

1

n

= a(b− a) + 1
2 (b− a)2 = (b− a) a+ 1

2b− 1
2a = (b− a) 12 (b+ a) = 1

2
b2 − a2

29. f(x) = x

1 + x5
, a = 2, b = 6, and ∆x =

6− 2
n

=
4

n
. Using Theorem 4, we get x∗i = xi = 2 + i∆x = 2 +

4i

n
,

so
6

2

x

1 + x5
dx = lim

n→∞
Rn = lim

n→∞

n

i=1

2 +
4i

n

1 + 2 +
4i

n

5 ·
4

n
.

31. ∆x = (π − 0)/n = π/n and x∗i = xi = πi/n.
π

0

sin 5xdx = lim
n→∞

n

i=1

(sin 5xi)
π

n
= lim

n→∞

n

i=1

sin
5πi

n

π

n
CAS
= π lim

n→∞
1

n
cot

5π

2n
CAS
= π

2

5π
=
2

5

33. (a) Think of 2

0
f(x) dx as the area of a trapezoid with bases 1 and 3 and height 2. The area of a trapezoid is A = 1

2 (b+B)h,

so 2

0
f(x) dx = 1

2
(1 + 3)2 = 4.

(b) 5

0
f(x) dx =

2

0
f(x) dx

trapezoid

+
3

2
f(x) dx

rectangle

+
5

3
f(x) dx

triangle

= 1
2
(1 + 3)2 + 3 · 1 + 1

2
· 2 · 3 = 4 + 3 + 3 = 10

(c) 7

5
f(x) dx is the negative of the area of the triangle with base 2 and height 3. 7

5
f(x) dx = − 1

2 · 2 · 3 = −3.

(d) 9

7
f(x) dx is the negative of the area of a trapezoid with bases 3 and 2 and height 2, so it equals

− 1
2
(B + b)h = − 1

2
(3 + 2)2 = −5. Thus,

9

0
f(x) dx =

5

0
f(x) dx+

7

5
f(x) dx+

9

7
f(x) dx = 10 + (−3) + (−5) = 2.
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35. 3

0
1
2x− 1 dx can be interpreted as the area of the triangle above the x-axis

minus the area of the triangle below the x-axis; that is,

1
2 (1)

1
2
− 1

2 (2)(1) =
1
4 − 1 = − 3

4 . 0

37. 0

−3 1 +
√
9− x2 dx can be interpreted as the area under the graph of

f(x) = 1 +
√
9− x2 between x = −3 and x = 0. This is equal to one-quarter

the area of the circle with radius 3, plus the area of the rectangle, so
0

−3 1 +
√
9− x2 dx = 1

4π · 32 + 1 · 3 = 3 + 9
4π.

39. 2

−1 |x| dx can be interpreted as the sum of the areas of the two shaded

triangles; that is, 1
2
(1)(1) + 1

2
(2)(2) = 1

2
+ 4

2
= 5

2
.

0

41. π

π
sin2 x cos4 xdx = 0 since the limits of intergration are equal.

43. 1

0
(5− 6x2) dx = 1

0
5 dx− 6 1

0
x2 dx = 5(1− 0)− 6 1

3
= 5− 2 = 3

45. 3

1
ex+2 dx =

3

1
ex · e2 dx = e2

3

1
ex dx = e2(e3 − e) = e5 − e3

47. 2

−2 f(x) dx+
5

2
f(x) dx− −1

−2 f(x) dx =
5

−2 f(x) dx+
−2
−1 f(x) dx [by Property 5 and reversing limits]

=
5

−1 f(x) dx [Property 5]

49. 9

0
[2f(x) + 3g(x)] dx = 2

9

0
f(x) dx+ 3

9

0
g(x) dx = 2(37) + 3(16) = 122

51. Using Integral Comparison Property 8, m ≤ f(x) ≤ M ⇒ m(2− 0) ≤ 2

0
f(x) dx ≤ M(2− 0) ⇒

2m ≤ 2

0
f(x) dx ≤ 2M .

53. If −1 ≤ x ≤ 1, then 0 ≤ x2 ≤ 1 and 1 ≤ 1 + x2 ≤ 2, so 1 ≤ √1 + x2 ≤ √2 and

1[1− (−1)] ≤ 1

−1
√
1 + x2 dx ≤ √2 [1− (−1)] [Property 8]; that is, 2 ≤ 1

−1
√
1 + x2 dx ≤ 2√2.

55. If 1 ≤ x ≤ 4, then 1 ≤ √x ≤ 2, so 1(4− 1) ≤ 4

1

√
xdx ≤ 2(4− 1); that is, 3 ≤ 4

1

√
xdx ≤ 6.

57. If π
4
≤ x ≤ π

3
, then 1 ≤ tanx ≤ √3, so 1 π

3
− π

4
≤ π/3

π/4
tanxdx ≤ √3 π

3
− π

4
or π

12
≤ π/3

π/4
tanxdx ≤ π

12

√
3.

59. The only critical number of f(x) = xe−x on [0, 2] is x = 1. Since f(0) = 0, f(1) = e−1 ≈ 0.368, and

f(2) = 2e−2 ≈ 0.271, we know that the absolute minimum value of f on [0, 2] is 0, and the absolute maximum is e−1. By

Property 8, 0 ≤ xe−x ≤ e−1 for 0 ≤ x ≤ 2 ⇒ 0(2− 0) ≤ 2

0
xe−x dx ≤ e−1(2− 0) ⇒ 0 ≤ 2

0
xe−x dx ≤ 2/e.

61.
√
x4 + 1 ≥ √x4 = x2, so 3

1

√
x4 + 1 dx ≥ 3

1
x2 dx = 1

3
33 − 13 = 26

3
.
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63. Using right endpoints as in the proof of Property 2, we calculate

b

a
cf(x) dx = lim

n→∞

n

i=1

cf(xi)∆x = lim
n→∞

c
n

i=1

f(xi)∆x = c lim
n→∞

n

i=1

f(xi)∆x = c
b

a
f(x) dx.

65. Since− |f(x)| ≤ f(x) ≤ |f(x)|, it follows from Property 7 that

− b

a
|f(x)| dx ≤ b

a
f(x) dx ≤ b

a
|f(x)| dx ⇒ b

a
f(x) dx ≤ b

a
|f(x)| dx

Note that the definite integral is a real number, and so the following property applies: −a ≤ b ≤ a ⇒ |b| ≤ a for all real

numbers b and nonnegative numbers a.

67. To show that f is integrable on [0, 1] , we must show that lim
n→∞

n

i=1

f(x∗i )∆x exists. Let n denote a positive integer and divide

the interval [0, 1] into n equal subintervals 0,
1

n
, 1

n
,
2

n
, ... , n− 1

n
, 1 . If we choose x∗i to be a rational number in the ith

subinterval, then we obtain the Riemann sum
n

i=1

f(x∗i ) · 1n = 0, so lim
n→∞

n

i=1

f(x∗i ) · 1n = lim
n→∞

0 = 0. Now suppose we

choose x∗i to be an irrational number. Then we get
n

i=1

f(x∗i ) · 1n =
n

i=1

1 · 1
n
= n · 1

n
= 1 for each n, so

lim
n→∞

n

i=1

f(x∗i ) · 1n = lim
n→∞

1 = 1. Since the value of lim
n→∞

n

i=1

f(x∗i )∆x depends on the choice of the sample points x∗i , the

limit does not exist, and f is not integrable on [0, 1].

69. lim
n→∞

n

i=1

i4

n5
= lim

n→∞

n

i=1

i4

n4
· 1
n
= lim

n→∞

n

i=1

i

n

4
1

n
. At this point, we need to recognize the limit as being of the form

lim
n→∞

n

i=1

f(xi)∆x, where ∆x = (1− 0)/n = 1/n, xi = 0 + i∆x = i/n, and f(x) = x4. Thus, the definite integral

is 1

0
x4 dx.

71. Choose xi = 1 +
i

n
and x∗i =

√
xi−1xi = 1 +

i− 1
n

1 +
i

n
. Then

2

1
x−2 dx= lim

n→∞
1

n

n

i=1

1

1 + i− 1
n

1 + i
n

= lim
n→∞

n
n

i=1

1

(n+ i− 1)(n+ i)

= lim
n→∞

n
n

i=1

1

n+ i− 1 −
1

n+ i
[by the hint] = lim

n→∞
n

n−1

i=0

1

n+ i
−

n

i=1

1

n+ i

= lim
n→∞

n
1

n
+

1

n+ 1
+ · · ·+ 1

2n− 1 − 1

n+ 1
+ · · ·+ 1

2n− 1 +
1

2n

= lim
n→∞

n
1

n
− 1

2n
= lim

n→∞
1− 1

2
= 1

2

5.3 The Fundamental Theorem of Calculus

1. One process undoes what the other one does. The precise version of this statement is given by the Fundamental Theorem of

Calculus. See the statement of this theorem and the paragraph that follows it on page 387.
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3. (a) g(x) = x

0
f(t) dt.

g(0) =
0

0
f(t) dt = 0

g(1) =
1

0
f(t) dt = 1 · 2 = 2 [rectangle],

g(2) =
2

0
f(t) dt =

1

0
f(t) dt+

2

1
f(t) dt = g(1) +

2

1
f(t) dt

= 2 + 1 · 2 + 1
2
· 1 · 2 = 5 [rectangle plus triangle],

g(3) =
3

0
f(t) dt = g(2) +

3

2
f(t) dt = 5+ 1

2
· 1 · 4 = 7,

g(6) = g(3) +
6

3
f(t) dt [the integral is negative since f lies under the x-axis]

= 7 + − 1
2
· 2 · 2 + 1 · 2 = 7− 4 = 3

(d)

(b) g is increasing on (0, 3) because as x increases from 0 to 3, we keep adding more area.

(c) g has a maximum value when we start subtracting area; that is, at x = 3.

5. (a) By FTC1 with f(t) = t2 and a = 1, g(x) = x

1
t2 dt ⇒

g0(x) = f(x) = x2.

(b) Using FTC2, g(x) = x

1
t2 dt = 1

3
t3

x

1
= 1

3
x3 − 1

3
⇒ g0(x) = x2.

7. f(t) = 1

t3 + 1
and g(x) =

x

1

1

t3 + 1
dt, so by FTC1, g0(x) = f(x) =

1

x3 + 1
. Note that the lower limit, 1, could be any

real number greater than −1 and not affect this answer.

9. f(t) = t2 sin t and g(y) = y

2
t2 sin t dt, so by FTC1, g0(y) = f(y) = y2 sin y.

11. F (x) =
π

x

√
1 + sec t dt = −

x

π

√
1 + sec t dt ⇒ F 0(x) = − d

dx

x

π

√
1 + sec t dt = −√1 + secx

13. Let u = 1

x
. Then du

dx
= − 1

x2
. Also, dh

dx
=

dh

du

du

dx
, so

h0(x) =
d

dx

1/x

2

arctan t dt =
d

du

u

2

arctan t dt · du
dx

= arctanu
du

dx
= −arctan(1/x)

x2
.

15. Let u = tanx. Then du

dx
= sec2 x. Also, dy

dx
=

dy

du

du

dx
, so

y0 =
d

dx

tan x

0

t+
√
t dt =

d

du

u

0

t+
√
t dt · du

dx
= u+

√
u
du

dx
= tanx+

√
tanx sec2 x.

17. Let w = 1− 3x. Then dw

dx
= −3. Also, dy

dx
=

dy

dw

dw

dx
, so

y0 =
d

dx

1

1−3x

u3

1 + u2
du =

d

dw

1

w

u3

1 + u2
du · dw

dx
= − d

dw

w

1

u3

1 + u2
du · dw

dx
= − w3

1 +w2
(−3) = 3(1− 3x)3

1 + (1− 3x)2

19.
2

−1
x3 − 2x dx =

x4

4
− x2

2

−1
=

24

4
− 22 − (−1)4

4
− (−1)2 = (4− 4)− 1

4
− 1 = 0− − 3

4
= 3

4
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21. 4

1
(5− 2t+ 3t2) dt = 5t− t2 + t3

4

1
= (20− 16 + 64)− (5− 1 + 1) = 68− 5 = 63

23. 1

0
x4/5 dx = 5

9
x9/5

1

0
= 5

9
− 0 = 5

9

25.
2

1

3

t4
dt = 3

2

1

t−4 dt = 3
t−3

−3
2

1

=
3

−3
1

t3

2

1

= −1 1

8
− 1 =

7

8

27. 2

0
x(2 + x5) dx =

2

0
(2x+ x6) dx = x2 + 1

7
x7

2

0
= 4 + 128

7
− (0 + 0) = 156

7

29.
9

1

x− 1√
x

dx=
9

1

x√
x
− 1√

x
dx =

9

1

(x1/2 − x−1/2) dx = 2
3
x3/2 − 2x1/2

9

1

= 2
3
· 27− 2 · 3 − 2

3
− 2 = 12− − 4

3
= 40

3

31. π/4

0
sec2 t dt = tan t

π/4

0
= tan π

4 − tan 0 = 1− 0 = 1

33. 2

1
(1 + 2y)2 dy =

2

1
(1 + 4y + 4y2) dy = y + 2y2 + 4

3
y3

2

1
= 2 + 8 + 32

3
− 1 + 2 + 4

3
= 62

3
− 13

3
= 49

3

35.
9

1

1

2x
dx =

1

2

9

1

1

x
dx = 1

2
ln |x| 9

1
= 1

2
(ln 9− ln 1) = 1

2
ln 9− 0 = ln 91/2 = ln 3

37.
√
3/2

1/2

6√
1− t2

dt = 6

√
3/2

1/2

1√
1− t2

dt = 6 sin−1 t
√
3/2

1/2
= 6 sin−1

√
3
2

− sin−1 1
2

= 6 π
3
− π

6
= 6 π

6
= π

39. 1

−1 e
u+1 du = eu+1

1

−1 = e2 − e0 = e2 − 1 [or start with eu+1 = eue1]

41. If f(x) =
sinx if 0 ≤ x < π/2

cosx if π/2 ≤ x ≤ π
then

π

0
f(x) dx =

π/2

0
sinxdx+

π

π/2
cosxdx = − cosx π/2

0
+ [sinx]ππ/2 = − cos π2 + cos 0 + sinπ − sin π

2

= −0 + 1 + 0− 1 = 0

Note that f is integrable by Theorem 3 in Section 5.2.

43. f(x) = x−4 is not continuous on the interval [−2, 1], so FTC2 cannot be applied. In fact, f has an infinite discontinuity at

x = 0, so 1

−2 x
−4 dx does not exist.

45. f(θ) = sec θ tan θ is not continuous on the interval [π/3, π], so FTC2 cannot be applied. In fact, f has an infinite

discontinuity at x = π/2, so π

π/3
sec θ tan θ dθ does not exist.

47. From the graph, it appears that the area is about 60. The actual area is

27

0
x1/3dx = 3

4
x4/3

27

0
= 3

4
· 81− 0 = 243

4
= 60.75. This is 3

4
of the

area of the viewing rectangle.



SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 245

49. It appears that the area under the graph is about 23 of the area of the viewing

rectangle, or about 2
3
π ≈ 2.1. The actual area is

π

0
sinxdx = [− cosx]π0 = (− cosπ)− (− cos 0) = − (−1) + 1 = 2.

51. 2

−1 x
3 dx = 1

4x
4 2

−1 = 4− 1
4 =

15
4 = 3.75

53. g(x) =
3x

2x

u2 − 1
u2 + 1

du =
0

2x

u2 − 1
u2 + 1

du+
3x

0

u2 − 1
u2 + 1

du = −
2x

0

u2 − 1
u2 + 1

du+
3x

0

u2 − 1
u2 + 1

du ⇒

g0(x) = − (2x)
2 − 1

(2x)2 + 1
· d

dx
(2x) +

(3x)2 − 1
(3x)2 + 1

· d

dx
(3x) = −2 · 4x

2 − 1
4x2 + 1

+ 3 · 9x
2 − 1

9x2 + 1

55. y = x3√
x

√
t sin t dt =

1√
x

√
t sin t dt+

x3

1

√
t sin t dt = −

√
x

1

√
t sin t dt+

x3

1

√
t sin t dt ⇒

y0 = − 4
√
x (sin

√
x ) · d

dx
(
√
x ) + x3/2 sin(x3) · d

dx
x3 = −

4
√
x sin

√
x

2
√
x

+ x3/2 sin(x3)(3x2)

= 3x7/2 sin(x3)− sin
√
x

2 4
√
x

57. F (x) =
x

1

f(t) dt ⇒ F 0(x) = f(x) =
x2

1

√
1 + u4

u
du since f(t) =

t2

1

√
1 + u4

u
du ⇒

F 00(x) = f 0(x) =
1 + (x2)4

x2
· d

dx
x2 =

√
1 + x8

x2
· 2x = 2

√
1 + x8

x
. So F 00(2) =

√
1 + 28 =

√
257.

59. By FTC2, 4

1
f 0(x) dx = f(4)− f(1), so 17 = f(4)− 12 ⇒ f(4) = 17 + 12 = 29.

61. (a) The Fresnel function S(x) = x

0
sin π

2
t2 dt has local maximum values where 0 = S0(x) = sin π

2
t2 and

S0 changes from positive to negative. For x > 0, this happens when π
2
x2 = (2n− 1)π [odd multiples of π] ⇔

x2 = 2(2n− 1) ⇔ x =
√
4n− 2, n any positive integer. For x < 0, S0 changes from positive to negative where

π
2
x2 = 2nπ [even multiples of π] ⇔ x2 = 4n ⇔ x = −2

√
n. S0 does not change sign at x = 0.

(b) S is concave upward on those intervals where S00(x) > 0. Differentiating our expression for S0(x), we get

S00(x) = cos π
2
x2 2π

2
x = πx cos π

2
x2 . For x > 0, S00(x) > 0 where cos(π

2
x2) > 0 ⇔ 0 < π

2
x2 < π

2
or

2n− 1
2
π < π

2 x
2 < 2n+ 1

2
π, n any integer ⇔ 0 < x < 1 or

√
4n− 1 < x <

√
4n+ 1, n any positive integer.

For x < 0, S00(x) > 0 where cos(π2 x
2) < 0 ⇔ 2n− 3

2
π < π

2 x
2 < 2n− 1

2
π, n any integer ⇔

4n− 3 < x2 < 4n− 1 ⇔ √
4n− 3 < |x| < √4n− 1 ⇒ √

4n− 3 < −x <
√
4n− 1 ⇒
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−√4n− 3 > x > −√4n− 1, so the intervals of upward concavity for x < 0 are −√4n− 1,−√4n− 3 , n any

positive integer. To summarize: S is concave upward on the intervals (0, 1), −√3,−1 ,
√
3,
√
5 , −√7,−√5 ,

√
7, 3 , . . . .

(c) In Maple, we use plot({int(sin(Pi*tˆ2/2),t=0..x),0.2},x=0..2);. Note that

Maple recognizes the Fresnel function, calling it FresnelS(x). In Mathematica, we use

Plot[{Integrate[Sin[Pi*tˆ2/2],{t,0,x}],0.2},{x,0,2}]. In Derive, we load the utility file

FRESNEL and plot FRESNEL_SIN(x). From the graphs, we see that x

0
sin π

2
t2 dt = 0.2 at x ≈ 0.74.

63. (a) By FTC1, g0(x) = f(x). So g0(x) = f(x) = 0 at x = 1, 3, 5, 7, and 9. g has local maxima at x = 1 and 5 (since f = g0

changes from positive to negative there) and local minima at x = 3 and 7. There is no local maximum or minimum at

x = 9, since f is not defined for x > 9.

(b) We can see from the graph that 1

0
f dt <

3

1
f dt <

5

3
f dt <

7

5
f dt <

9

7
f dt . So g(1) = 1

0
f dt ,

g(5) =
5

0
f dt = g(1)− 3

1
f dt +

5

3
f dt , and g(9) = 9

0
f dt = g(5)− 7

5
f dt +

9

7
f dt . Thus,

g(1) < g(5) < g(9), and so the absolute maximum of g(x) occurs at x = 9.

(c) g is concave downward on those intervals where g00 < 0. But g0(x) = f(x),

so g00(x) = f 0(x), which is negative on (approximately) 1
2
, 2 , (4, 6) and

(8, 9). So g is concave downward on these intervals.

(d)

65. lim
n→∞

n

i=1

i3

n4
= lim

n→∞
1− 0
n

n

i=1

i

n

3

=
1

0

x3 dx =
x4

4

1

0

=
1

4

67. Suppose h < 0. Since f is continuous on [x+ h, x], the Extreme Value Theorem says that there are numbers u and v in

[x+ h, x] such that f(u) = m and f(v) =M , where m and M are the absolute minimum and maximum values of f on

[x+ h, x]. By Property 8 of integrals, m(−h) ≤ x

x+h
f(t) dt ≤M(−h); that is, f(u)(−h) ≤ − x+h

x
f(t) dt ≤ f(v)(−h).

Since −h > 0, we can divide this inequality by −h: f(u) ≤ 1

h

x+h

x

f (t) dt ≤ f(v). By Equation 2,

g(x+ h)− g(x)

h
=
1

h

x+h

x

f(t) dt for h 6= 0, and hence f(u) ≤ g(x+ h)− g(x)

h
≤ f(v), which is Equation 3 in the

case where h < 0.
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69. (a) Let f(x) =
√
x ⇒ f 0(x) = 1/(2

√
x ) > 0 for x > 0 ⇒ f is increasing on (0,∞). If x ≥ 0, then x3 ≥ 0, so

1 + x3 ≥ 1 and since f is increasing, this means that f 1 + x3 ≥ f(1) ⇒ √
1 + x3 ≥ 1 for x ≥ 0. Next let

g(t) = t2 − t ⇒ g0(t) = 2t− 1 ⇒ g0(t) > 0 when t ≥ 1. Thus, g is increasing on (1,∞). And since g(1) = 0,

g(t) ≥ 0 when t ≥ 1. Now let t =
√
1 + x3, where x ≥ 0.

√
1 + x3 ≥ 1 (from above) ⇒ t ≥ 1 ⇒ g(t) ≥ 0 ⇒

1 + x3 −√1 + x3 ≥ 0 for x ≥ 0. Therefore, 1 ≤ √1 + x3 ≤ 1 + x3 for x ≥ 0.

(b) From part (a) and Property 7: 1

0
1 dx ≤ 1

0

√
1 + x3 dx ≤ 1

0
(1 + x3) dx ⇔

x
1

0
≤ 1

0

√
1 + x3 dx ≤ x+ 1

4x
4 1

0
⇔ 1 ≤ 1

0

√
1 + x3 dx ≤ 1 + 1

4 = 1.25.

71. 0 <
x2

x4 + x2 + 1
<

x2

x4
=

1

x2
on [5, 10], so

0 ≤
10

5

x2

x4 + x2 + 1
dx <

10

5

1

x2
dx = − 1

x

10

5

= − 1

10
− −1

5
=
1

10
= 0.1.

73. Using FTC1, we differentiate both sides of 6 +
x

a

f(t)

t2
dt = 2

√
x to get f(x)

x2
= 2

1

2
√
x

⇒ f(x) = x3/2.

To find a, we substitute x = a in the original equation to obtain 6 +
a

a

f(t)

t2
dt = 2

√
a ⇒ 6 + 0 = 2

√
a ⇒

3 =
√
a ⇒ a = 9.

75. (a) Let F (t) = t

0
f(s) ds. Then, by FTC1, F 0(t) = f(t) = rate of depreciation, so F (t) represents the loss in value over the

interval [0, t].

(b) C(t) = 1

t
A+

t

0

f(s) ds =
A+ F (t)

t
represents the average expenditure per unit of t during the interval [0, t],

assuming that there has been only one overhaul during that time period. The company wants to minimize average

expenditure.

(c) C(t) = 1

t
A+

t

0

f(s) ds . Using FTC1, we have C0(t) = − 1
t2

A+
t

0

f(s) ds +
1

t
f(t).

C0(t) = 0 ⇒ t f(t) = A+
t

0

f(s) ds ⇒ f(t) =
1

t
A+

t

0

f(s) ds = C(t).

5.4 Indefinite Integrals and the Net Change Theorem

1. d

dx

√
x2 + 1 + C =

d

dx
x2 + 1

1/2
+C = 1

2
x2 + 1

−1/2 · 2x+ 0 = x√
x2 + 1

3. d

dx
sinx− 1

3
sin3 x+C =

d

dx
sinx− 1

3
(sinx)3 +C = cosx− 1

3
· 3(sinx)2(cosx) + 0

= cosx(1− sin2 x) = cosx(cos2 x) = cos3 x

5. (x2 + x−2) dx =
x3

3
+

x−1

−1 + C =
1

3
x3 − 1

x
+C
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7. x4 − 1
2
x3 + 1

4
x− 2 dx =

x5

5
− 1

2

x4

4
+
1

4

x2

2
− 2x+C = 1

5
x5 − 1

8
x4 + 1

8
x2 − 2x+ C

9. (1− t)(2 + t2) dt = (2− 2t+ t2 − t3) dt = 2t− 2 t
2

2
+

t3

3
− t4

4
+C = 2t− t2 + 1

3
t3 − 1

4
t4 + C

11. x3 − 2
√
x

x
dx =

x3

x
− 2x1/2

x
dx = (x2 − 2x−1/2) dx = x3

3
− 2 x

1/2

1/2
+C = 1

3
x3 − 4

√
x+C

13. (sinx+ sinhx) dx = − cosx+ coshx+ C

15. (θ − csc θ cot θ) dθ = 1
2
θ2 + csc θ + C

17. (1 + tan2 α) dα = sec2 αdα = tanα+ C

19. cosx+ 1
2
x dx = sinx+ 1

4
x2 +C. The members of the family

in the figure correspond to C = −5, 0, 5, and 10.

21. 2

0
(6x2 − 4x+ 5) dx = 6 · 13x3 − 4 · 12x2 + 5x

2

0
= 2x3 − 2x2 + 5x 2

0
= (16− 8 + 10)− 0 = 18

23. 0

−1(2x− ex) dx = x2 − ex
0

−1 = (0− 1)− 1− e−1 = −2 + 1/e

25. 2

−2(3u+ 1)
2 du =

2

−2 9u2 + 6u+ 1 du = 9 · 1
3
u3 + 6 · 1

2
u2 + u

2

−2 = 3u3 + 3u2 + u
2

−2

= (24 + 12 + 2)− (−24 + 12− 2) = 38− (−14) = 52

27. 4

1

√
t (1 + t) dt =

4

1
(t1/2 + t3/2) dt = 2

3
t3/2 + 2

5
t5/2

4

1
= 16

3
+ 64

5
− 2

3
+ 2

5
= 14

3
+ 62

5
= 256

15

29.
−1

−2
4y3 +

2

y3
dy = 4 · 1

4
y4 + 2 · 1−2y

−2
−1

−2
= y4 − 1

y2

−1

−2
= (1− 1)− 16− 1

4
= − 63

4

31. 1

0
x

3
√
x+

4
√
x dx =

1

0
(x4/3 + x5/4) dx = 3

7x
7/3 + 4

9x
9/4

1

0
= 3

7 +
4
9
− 0 = 55

63

33. 4

1
5/x dx =

√
5

4

1
x−1/2 dx =

√
5 2

√
x

4

1
=
√
5 (2 · 2− 2 · 1) = 2√5

35. π

0
(4 sin θ − 3 cos θ) dθ = − 4 cos θ − 3 sin θ π

0
= (4− 0)− (−4− 0) = 8

37.
π/4

0

1 + cos2 θ

cos2 θ
dθ =

π/4

0

1

cos2 θ
+
cos2 θ

cos2 θ
dθ =

π/4

0

(sec2 θ + 1) dθ

= tan θ + θ
π/4

0
= tan π

4
+ π

4
− (0 + 0) = 1 + π

4
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39.
64

1

1 + 3
√
x√

x
dx =

64

1

1

x1/2
+

x1/3

x1/2
dx =

64

1

x−1/2 + x(1/3)− (1/2) dx =
64

1

(x−1/2 + x−1/6) dx

= 2x1/2 + 6
5
x5/6

64

1
= 16 + 192

5
− 2 + 6

5
= 14 + 186

5
= 256

5

41.
1/
√
3

0

t2 − 1
t4 − 1 dt=

1/
√
3

0

t2 − 1
(t2 + 1)(t2 − 1) dt =

1/
√
3

0

1

t2 + 1
dt = arctan t

1/
√
3

0
= arctan 1/

√
3 − arctan 0

= π
6
− 0 = π

6

43. 2

−1 (x− 2 |x|) dx =
0

−1[x− 2(−x)] dx+
2

0
[x− 2(x)] dx = 0

−1 3xdx+
2

0
(−x) dx = 3 1

2
x2

0

−1 − 1
2
x2

2

0

= 3 0− 1
2
− (2− 0) = − 7

2
= −3.5

45. The graph shows that y = x+ x2 − x4 has x-intercepts at x = 0 and at

x = a ≈ 1.32. So the area of the region that lies under the curve and above the

x-axis is
a

0
(x+ x2 − x4) dx = 1

2x
2 + 1

3x
3 − 1

5x
5 a

0

= 1
2a

2 + 1
3a

3 − 1
5a

5 − 0 ≈ 0.84

47. A = 2

0
2y − y2 dy = y2 − 1

3y
3 2

0
= 4− 8

3
− 0 = 4

3

49. If w0(t) is the rate of change of weight in pounds per year, then w(t) represents the weight in pounds of the child at age t. We

know from the Net Change Theorem that 10

5
w0(t) dt = w(10)− w(5), so the integral represents the increase in the child’s

weight (in pounds) between the ages of 5 and 10.

51. Since r(t) is the rate at which oil leaks, we can write r(t) = −V 0(t), where V (t) is the volume of oil at time t. [Note that the

minus sign is needed because V is decreasing, so V 0(t) is negative, but r(t) is positive.] Thus, by the Net Change Theorem,
120

0
r(t) dt = − 120

0
V 0(t) dt = − [V (120)− V (0)] = V (0)− V (120), which is the number of gallons of oil that leaked

from the tank in the first two hours (120 minutes).

53. By the Net Change Theorem, 5000

1000
R0(x) dx = R(5000)−R(1000), so it represents the increase in revenue when

production is increased from 1000 units to 5000 units.

55. In general, the unit of measurement for b

a
f(x) dx is the product of the unit for f(x) and the unit for x. Since f(x) is

measured in newtons and x is measured in meters, the units for 100

0
f(x) dx are newton-meters. (A newton-meter is

abbreviated N·m and is called a joule.)

57. (a) Displacement = 3

0
(3t− 5) dt = 3

2
t2 − 5t 3

0
= 27

2
− 15 = − 3

2
m

(b) Distance traveled = 3

0
|3t− 5| dt = 5/3

0
(5− 3t) dt+ 3

5/3
(3t− 5) dt

= 5t− 3
2
t2

5/3

0
+ 3

2
t2 − 5t 3

5/3
= 25

3
− 3

2
· 25
9
+ 27

2
− 15− 3

2
· 25
9
− 25

3
= 41

6
m

59. (a) v0(t) = a(t) = t+ 4 ⇒ v(t) = 1
2 t
2 + 4t+ C ⇒ v(0) = C = 5 ⇒ v(t) = 1

2 t
2 + 4t+ 5 m/s

(b) Distance traveled = 10

0
|v(t)| dt = 10

0
1
2
t2 + 4t+ 5 dt =

10

0
1
2
t2 + 4t+ 5 dt = 1

6
t3 + 2t2 + 5t

10

0

= 500
3
+ 200 + 50 = 416 2

3
m
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61. Since m0(x) = ρ(x), m =
4

0
ρ(x) dx =

4

0
9 + 2

√
x dx = 9x+ 4

3x
3/2

4

0
= 36 + 32

3 − 0 = 140
3 = 46 23 kg.

63. Let s be the position of the car. We know from Equation 2 that s(100)− s(0) =
100

0
v(t) dt. We use the Midpoint Rule for

0 ≤ t ≤ 100 with n = 5. Note that the length of each of the five time intervals is 20 seconds = 20
3600

hour = 1
180

hour.

So the distance traveled is
100

0
v(t) dt ≈ 1

180
[v(10) + v(30) + v(50) + v(70) + v(90)] = 1

180
(38 + 58 + 51 + 53 + 47) = 247

180
≈ 1.4 miles.

65. From the Net Change Theorem, the increase in cost if the production level is raised

from 2000 yards to 4000 yards is C(4000) − C(2000) =
4000

2000
C0(x) dx.

4000

2000
C0(x) dx = 4000

2000
3− 0.01x+ 0.000006x2 dx = 3x− 0.005x2 + 0.000002x3 4000

2000
= 60,000−2,000 = $58,000

67. (a) We can find the area between the Lorenz curve and the line y = x by subtracting the area under y = L(x) from the area

under y = x. Thus,

coefficient of inequality= area between Lorenz curve and line y = x

area under line y = x
=

1

0
[x− L(x)] dx

1

0
xdx

=

1

0
[x− L(x)] dx

[x2/2]10
=

1

0
[x− L(x)] dx

1/2
= 2

1

0
[x− L(x)] dx

(b) L(x) = 5
12
x2 + 7

12
x ⇒ L(50%) = L 1

2
= 5

48
+ 7

24
= 19

48
= 0.39583, so the bottom 50% of the households receive

at most about 40% of the income. Using the result in part (a),

coefficient of inequality= 2 1

0
[x− L(x)] dx = 2

1

0
x− 5

12x
2 − 7

12x dx = 2
1

0
5
12x− 5

12x
2 dx

= 2
1

0
5
12
(x− x2) dx = 5

6
1
2
x2 − 1

3
x3

1

0
= 5

6
1
2
− 1

3
= 5

6
1
6
= 5

36

5.5 The Substitution Rule

1. Let u = −x. Then du = − dx, so dx = − du. Thus, e−xdx = eu(−du) = −eu + C = −e−x + C. Don’t forget that it

is often very easy to check an indefinite integration by differentiating your answer. In this case,

d

dx
(−e−x + C) = −[e−x(−1)] = e−x, the desired result.

3. Let u = x3 + 1. Then du = 3x2 dx and x2 dx = 1
3 du, so

x2 x3 + 1 dx =
√
u 1

3
du =

1

3

u3/2

3/2
+C =

1

3
· 2
3
u3/2 +C = 2

9
(x3 + 1)3/2 + C.

5. Let u = cos θ. Then du = − sin θ dθ and sin θ dθ = −du, so

cos3 θ sin θ dθ = u3 (−du) = −u4

4
+C = − 1

4 cos
4 θ +C.

7. Let u = x2. Then du = 2xdx and xdx = 1
2
du, so x sin(x2) dx = sinu 1

2
du = − 1

2
cosu+C = − 1

2
cos(x2) +C.
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9. Let u = 3x− 2. Then du = 3 dx and dx = 1
3 du, so (3x− 2)20 dx = u20 1

3 du = 1
3 · 121u21+C = 1

63 (3x− 2)21+C.

11. Let u = 2x+ x2. Then du = (2 + 2x) dx = 2(1 + x) dx and (x+ 1) dx = 1
2
du, so

(x+ 1) 2x+ x2 dx =
√
u 1

2
du =

1

2

u3/2

3/2
+ C = 1

3
2x+ x2

3/2
+C.

Or: Let u =
√
2x+ x2. Then u2 = 2x+ x2 ⇒ 2udu = (2 + 2x) dx ⇒ udu = (1 + x) dx, so

(x+ 1)
√
2x+ x2 dx = u · udu = u2 du = 1

3u
3 + C = 1

3 (2x+ x2)3/2 +C.

13. Let u = 5 − 3x. Then du = −3 dx and dx = − 1
3 du, so

dx

5− 3x =
1

u
− 1
3
du = − 1

3
ln |u|+C = − 1

3
ln |5− 3x|+C.

15. Let u = πt. Then du = π dt and dt = 1
π du, so sinπt dt = sinu 1

π du = 1
π (− cosu) +C = − 1

π cosπt+ C.

17. Let u = 3ax + bx3. Then du = (3a + 3bx2) dx = 3(a + bx2) dx, so

a+ bx2√
3ax+ bx3

dx =
1
3 du

u1/2
=
1

3
u−1/2 du = 1

3 · 2u2 + C = 2
3 3ax+ bx3 + C.

19. Let u = lnx. Then du = dx

x
, so (lnx)2

x
dx = u2 du = 1

3
u3 + C = 1

3
(lnx)3 + C.

21. Let u =
√
t. Then du = dt

2
√
t

and 1√
t
dt = 2 du, so cos

√
t√

t
dt = cosu (2 du) = 2 sinu+ C = 2 sin

√
t+ Ċ.

23. Let u = sin θ. Then du = cos θ dθ, so cos θ sin6 θ dθ = u6 du = 1
7
u7 + C = 1

7
sin7 θ +C.

25. Let u = 1 + ex. Then du = ex dx, so ex
√
1 + ex dx =

√
udu = 2

3
u3/2 +C = 2

3
(1 + ex)3/2 + C.

Or: Let u =
√
1 + ex. Then u2 = 1 + ex and 2udu = ex dx, so

ex
√
1 + ex dx = u · 2udu = 2

3u
3 + C = 2

3 (1 + ex)3/2 +C.

27. Let u = 1 + z3. Then du = 3z2 dz and z2 dz = 1
3
du, so

z2

3
√
1 + z3

dz = u−1/3 1
3
du = 1

3
· 3
2
u2/3 + C = 1

2
(1 + z3)2/3 + C.

29. Let u = tanx. Then du = sec2 xdx, so etanx sec2 xdx = eu du = eu + C = etan x +C.

31. Let u = sinx. Then du = cosxdx, so cosx

sin2 x
dx =

1

u2
du = u−2 du =

u−1

−1 + C = − 1
u
+C = − 1

sinx
+ C

[or −cscx+ C ].

33. Let u = cotx. Then du = − csc2 xdx and csc2 xdx = −du, so

√
cotx csc2 xdx =

√
u (−du) = −u3/2

3/2
+C = − 2

3 (cotx)
3/2 + C.
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35. sin 2x

1 + cos2 x
dx = 2

sinx cosx

1 + cos2 x
dx = 2I. Let u = cosx. Then du = − sinxdx, so

2I = −2 udu

1 + u2
= −2 · 1

2
ln(1 + u2) + C = − ln(1 + u2) +C = − ln(1 + cos2 x) + C.

Or: Let u = 1 + cos2 x.

37. cotxdx =
cosx

sinx
dx. Let u = sinx. Then du = cosxdx, so cotxdx =

1

u
du = ln |u|+ C = ln |sinx|+ C.

39. Let u = secx. Then du = secx tanxdx, so

sec3 x tanxdx = sec2 x (secx tanx) dx = u2 du = 1
3u

3 +C = 1
3 sec

3 x+C.

41. Let u = sin−1 x. Then du = 1√
1− x2

dx, so dx√
1− x2 sin−1 x

=
1

u
du = ln |u|+C = ln sin−1 x +C.

43. Let u = 1 + x2. Then du = 2xdx, so

1 + x

1 + x2
dx =

1

1 + x2
dx+

x

1 + x2
dx = tan−1 x+

1
2
du

u
= tan−1 x+ 1

2
ln|u|+ C

= tan−1 x+ 1
2
ln 1 + x2 +C = tan−1 x+ 1

2
ln 1 + x2 +C [since 1 + x2 > 0].

45. Let u = x+ 2. Then du = dx, so

x
4
√
x+ 2

dx=
u− 2
4
√
u

du = (u3/4 − 2u−1/4) du = 4
7u

7/4 − 2 · 43u3/4 +C

= 4
7
(x+ 2)7/4 − 8

3
(x+ 2)3/4 + C

In Exercises 47–50, let f(x) denote the integrand and F (x) its antiderivative (with C = 0).

47. f(x) = x(x2 − 1)3. u = x2 − 1 ⇒ du = 2xdx, so

x(x2 − 1)3 dx = u3 1
2 du = 1

8u
4 + C = 1

8 (x
2 − 1)4 + C

Where f is positive (negative), F is increasing (decreasing). Where f

changes from negative to positive (positive to negative), F has a local

minimum (maximum).

49. f(x) = sin3 x cosx. u = sinx ⇒ du = cosxdx, so

sin3 x cosxdx = u3 du = 1
4
u4 + C = 1

4
sin4 x+C

Note that at x = π
2 , f changes from positive to negative and F has a local

maximum. Also, both f and F are periodic with period π, so at x = 0 and
at x = π, f changes from negative to positive and F has local minima.

51. Let u = x− 1, so du = dx. When x = 0, u = −1; when x = 2, u = 1. Thus, 2

0
(x− 1)25 dx = 1

−1 u
25 du = 0 by

Theorem 7(b), since f(u) = u25 is an odd function.
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53. Let u = 1 + 2x3, so du = 6x2 dx. When x = 0, u = 1; when x = 1, u = 3. Thus,

1

0
x2 1 + 2x3

5
dx =

3

1
u5 1

6
du = 1

6
1
6
u6

3

1
= 1

36
(36 − 16) = 1

36
(729− 1) = 728

36
= 182

9
.

55. Let u = t/4, so du = 1
4
dt. When t = 0, u = 0; when t = π, u = π/4. Thus,

π

0
sec2(t/4) dt =

π/4

0
sec2 u (4 du) = 4 tanu

π/4

0
= 4 tan π

4
− tan 0 = 4(1− 0) = 4.

57. π/6

−π/6 tan
3 θ dθ = 0 by Theorem 7(b), since f(θ) = tan3 θ is an odd function.

59. Let u = 1/x, so du = −1/x2 dx. When x = 1, u = 1; when x = 2, u = 1
2 . Thus,

2

1

e1/x

x2
dx =

1/2

1

eu (−du) = − eu
1/2

1
= −(e1/2 − e) = e−

√
e.

61. Let u = 1 + 2x, so du = 2 dx. When x = 0, u = 1; when x = 13, u = 27. Thus,
13

0

dx

3 (1 + 2x)2
=

27

1

u−2/3 1
2
du = 1

2
· 3u1/3

27

1
= 3

2
(3− 1) = 3.

63. Let u = x2 + a2, so du = 2xdx and xdx = 1
2
du. When x = 0, u = a2; when x = a, u = 2a2. Thus,

a

0

x x2 + a2 dx =
2a2

a2
u1/2 1

2 du = 1
2

2
3u

3/2
2a2

a2
= 1

3u
3/2

2a2

a2
= 1

3
(2a2)3/2 − (a2)3/2 = 1

3
2
√
2− 1 a3

65. Let u = x− 1, so u+ 1 = x and du = dx. When x = 1, u = 0; when x = 2, u = 1. Thus,
2

1

x
√
x− 1 dx =

1

0

(u+ 1)
√
udu =

1

0

(u3/2 + u1/2) du = 2
5
u5/2 + 2

3
u3/2

1

0
= 2

5
+ 2

3
= 16

15
.

67. Let u = lnx, so du =
dx

x
. When x = e, u = 1; when x = e4; u = 4. Thus,

e4

e

dx

x
√
lnx

=
4

1

u−1/2 du = 2 u1/2
4

1
= 2(2− 1) = 2.

69. Let u = ez + z, so du = (ez + 1) dz. When z = 0, u = 1; when z = 1, u = e+ 1. Thus,
1

0

ez + 1

ez + z
dz =

e+1

1

1

u
du = ln |u| e+1

1
= ln |e+ 1|− ln |1| = ln(e+ 1).

71. From the graph, it appears that the area under the curve is about

1 + a little more than 1
2
· 1 · 0.7 , or about 1.4. The exact area is given by

A =
1

0

√
2x+ 1 dx. Let u = 2x+1, so du = 2 dx. The limits change to

2 · 0 + 1 = 1 and 2 · 1 + 1 = 3, and

A =
3

1

√
u 1

2 du = 1
2

2
3u

3/2
3

1
= 1

3
3
√
3− 1 =

√
3− 1

3 ≈ 1.399.

73. First write the integral as a sum of two integrals:

I =
2

−2(x+ 3)
√
4− x2 dx = I1 + I2 =

2

−2 x
√
4− x2 dx+

2

−2 3
√
4− x2 dx. I1 = 0 by Theorem 7(b), since

f(x) = x
√
4− x2 is an odd function and we are integrating from x = −2 to x = 2. We interpret I2 as three times the area of

a semicircle with radius 2, so I = 0 + 3 · 1
2
π · 22 = 6π.
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75. First Figure Let u =
√
x, so x = u2 and dx = 2udu. When x = 0, u = 0; when x = 1, u = 1. Thus,

A1 =
1

0
e
√
x dx =

1

0
eu(2udu) = 2

1

0
ueu du.

Second Figure A2 =
1

0
2xex dx = 2

1

0
ueu du.

Third Figure Let u = sinx, so du = cosxdx. When x = 0, u = 0; when x = π
2 , u = 1. Thus,

A3 =
π/2

0
esin x sin 2xdx =

π/2

0
esin x(2 sinx cosx) dx =

1

0
eu(2udu) = 2

1

0
ueu du.

Since A1 = A2 = A3, all three areas are equal.

77. The rate is measured in liters per minute. Integrating from t = 0 minutes to t = 60 minutes will give us the total amount of oil

that leaks out (in liters) during the first hour.
60

0
r(t) dt=

60

0
100e−0.01t dt [u = −0.01t, du = −0.01dt]

= 100
−0.6
0

eu(−100 du) = −10,000 eu
−0.6
0

= −10,000(e−0.6 − 1) ≈ 4511.9 ≈ 4512 liters

79. The volume of inhaled air in the lungs at time t is

V (t) =
t

0
f(u) du =

t

0
1
2
sin 2π

5
u du =

2πt/5

0
1
2
sin v 5

2π
dv substitute v = 2π

5
u, dv = 2π

5
du

= 5
4π
− cos v 2πt/5

0
= 5

4π
− cos 2π

5
t + 1 = 5

4π
1− cos 2π

5
t liters

81. Let u = 2x. Then du = 2 dx, so 2

0
f(2x) dx =

4

0
f(u) 1

2
du = 1

2

4

0
f(u) du = 1

2
(10) = 5.

83. Let u = −x. Then du = −dx, so

b

a
f(−x) dx = −b

−a f(u)(−du) =
−a
−b f(u) du =

−a
−b f(x) dx

From the diagram, we see that the equality follows from the fact that we are

reflecting the graph of f , and the limits of integration, about the y-axis.

85. Let u = 1− x. Then x = 1− u and dx = −du, so
1

0
xa(1− x)b dx =

0

1
(1− u)a ub(−du) = 1

0
ub(1− u)a du =

1

0
xb(1− x)a dx.

87. x sinx

1 + cos2 x
= x · sinx

2− sin2 x = x f(sinx), where f(t) = t

2− t2
. By Exercise 86,

π

0

x sinx

1 + cos2 x
dx =

π

0

x f(sinx) dx =
π

2

π

0

f(sinx) dx =
π

2

π

0

sinx

1 + cos2 x
dx

Let u = cosx. Then du = − sinxdx. When x = π, u = −1 and when x = 0, u = 1. So

π

2

π

0

sinx

1 + cos2 x
dx = −π

2

−1

1

du

1 + u2
=

π

2

1

−1

du

1 + u2
=

π

2
tan−1 u

1

−1

=
π

2
[tan−1 1− tan−1(−1)] = π

2

π

4
− −π

4
=

π2

4
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5 Review

1. (a) n
i=1 f(x

∗
i )∆x is an expression for a Riemann sum of a function f .

x∗i is a point in the ith subinterval [xi−1, xi] and ∆x is the length of the subintervals.

(b) See Figure 1 in Section 5.2.

(c) In Section 5.2, see Figure 3 and the paragraph beside it.

2. (a) See Definition 5.2.2.

(b) See Figure 2 in Section 5.2.

(c) In Section 5.2, see Figure 4 and the paragraph by it (contains “net area”).

3. See the Fundamental Theorem of Calculus after Example 9 in Section 5.3.

4. (a) See the Net Change Theorem after Example 5 in Section 5.4.

(b) t2
t1

r(t) dt represents the change in the amount of water in the reservoir between time t1 and time t2.

5. (a) 120

60
v(t) dt represents the change in position of the particle from t = 60 to t = 120 seconds.

(b) 120

60
|v(t)| dt represents the total distance traveled by the particle from t = 60 to 120 seconds.

(c) 120

60
a(t) dt represents the change in the velocity of the particle from t = 60 to t = 120 seconds.

6. (a) f(x) dx is the family of functions {F | F 0 = f}. Any two such functions differ by a constant.

(b) The connection is given by the Net Change Theorem: b

a
f(x) dx = f(x) dx

b

a
if f is continuous.

7. The precise version of this statement is given by the Fundamental Theorem of Calculus. See the statement of this theorem and

the paragraph that follows it at the end of Section 5.3.

8. See the Substitution Rule (5.5.4). This says that it is permissible to operate with the dx after an integral sign as if it were a

differential.

1. True by Property 2 of the Integral in Section 5.2.

3. True by Property 3 of the Integral in Section 5.2.

5. False. For example, let f(x) = x2. Then 1

0

√
x2 dx =

1

0
xdx = 1

2
, but 1

0
x2 dx = 1

3
= 1√

3
.

7. True by Comparison Property 7 of the Integral in Section 5.2.

9. True. The integrand is an odd function that is continuous on [−1, 1], so the result follows from Theorem 5.5.7(b).
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11. False. The function f(x) = 1/x4 is not bounded on the interval [−2, 1]. It has an infinite discontinuity at x = 0, so it is
not integrable on the interval. (If the integral were to exist, a positive value would be expected, by Comparison
Property 6 of Integrals.)

13. False. For example, the function y = |x| is continuous on R, but has no derivative at x = 0.

15. False. b

a
f(x) dx is a constant, so d

dx
b

a
f(x) dx = 0, not f(x) [unless f(x) = 0]. Compare the given statement

carefully with FTC1, in which the upper limit in the integral is x.

1. (a) L6 =
6

i=1

f(xi−1)∆x [∆x = 6− 0
6
= 1]

= f(x0) · 1 + f(x1) · 1 + f(x2) · 1 + f(x3) · 1 + f(x4) · 1 + f(x5) · 1
≈ 2 + 3.5 + 4 + 2 + (−1) + (−2.5) = 8

The Riemann sum represents the sum of the areas of the four rectangles

above the x-axis minus the sum of the areas of the two rectangles below the

x-axis.

(b) M6 =
6

i=1

f(xi)∆x [∆x = 6− 0
6
= 1]

= f(x1) · 1 + f(x2) · 1 + f(x3) · 1 + f(x4) · 1 + f(x5) · 1 + f(x6) · 1
= f(0.5) + f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)

≈ 3 + 3.9 + 3.4 + 0.3 + (−2) + (−2.9) = 5.7

3. 1

0
x+

√
1− x2 dx =

1

0
xdx+

1

0

√
1− x2 dx = I1 + I2.

I1 can be interpreted as the area of the triangle shown in the figure

and I2 can be interpreted as the area of the quarter-circle.

Area = 1
2
(1)(1) + 1

4
(π)(1)2 = 1

2
+ π

4
.

5. 6

0
f(x) dx =

4

0
f(x) dx+

6

4
f(x) dx ⇒ 10 = 7 +

6

4
f(x) dx ⇒ 6

4
f(x) dx = 10− 7 = 3

7. First note that either a or b must be the graph of x

0
f(t) dt, since 0

0
f(t) dt = 0, and c(0) 6= 0. Now notice that b > 0 when c

is increasing, and that c > 0 when a is increasing. It follows that c is the graph of f(x), b is the graph of f 0(x), and a is the

graph of x

0
f(t) dt.

9. 2

1
8x3 + 3x2 dx = 8 · 1

4x
4 + 3 · 13x3

2

1
= 2x4 + x3

2

1
= 2 · 24 + 23 − (2 + 1) = 40− 3 = 37

11. 1

0
1− x9 dx = x− 1

10
x10

1

0
= 1− 1

10
− 0 = 9

10
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13.
9

1

√
u− 2u2
u

du =
9

1

(u−1/2 − 2u) du = 2u1/2 − u2
9

1
= (6− 81)− (2− 1) = −76

15. Let u = y2 + 1, so du = 2y dy and y dy = 1
2
du. When y = 0, u = 1; when y = 1, u = 2. Thus,

1

0
y(y2 + 1)5 dy =

2

1
u5 1

2
du = 1

2
1
6
u6

2

1
= 1

12
(64− 1) = 63

12
= 21

4
.

17.
5

1

dt

(t− 4)2 does not exist because the function f(t) = 1

(t− 4)2 has an infinite discontinuity at t = 4;

that is, f is discontinuous on the interval [1, 5].

19. Let u = v3, so du = 3v2 dv. When v = 0, u = 0; when v = 1, u = 1. Thus,
1

0
v2 cos(v3) dv =

1

0
cosu 1

3 du = 1
3
sinu

1

0
= 1

3 (sin 1− 0) = 1
3 sin 1.

21.
π/4

−π/4

t4 tan t

2 + cos t
dt = 0 by Theorem 5.5.7(b), since f(t) = t4 tan t

2 + cos t
is an odd function.

23. 1− x

x

2

dx =
1

x
− 1

2

dx =
1

x2
− 2

x
+ 1 dx = − 1

x
− 2 ln |x|+ x+C

25. Let u = x2 + 4x. Then du = (2x + 4) dx = 2(x + 2) dx, so

x+ 2√
x2 + 4x

dx = u−1/2 1
2
du = 1

2
· 2u1/2 +C =

√
u+C = x2 + 4x+ C.

27. Let u = sinπt. Then du = π cosπt dt, so sinπt cosπt dt = u 1
π
du = 1

π
· 1
2
u2 +C = 1

2π
(sinπt)2 +C.

29. Let u =
√
x. Then du = dx

2
√
x

, so e
√
x

√
x
dx = 2 eu du = 2eu + C = 2e

√
x + C.

31. Let u = ln(cosx). Then du =
− sinx
cosx

dx = − tanxdx, so

tanx ln(cosx) dx = − udu = − 1
2
u2 + C = − 1

2
[ln(cosx)]2 + C.

33. Let u = 1 + x4. Then du = 4x3 dx, so x3

1 + x4
dx =

1

4

1

u
du = 1

4
ln|u|+C = 1

4
ln 1 + x4 + C.

35. Let u = 1 + sec θ. Then du = sec θ tan θ dθ, so

sec θ tan θ

1 + sec θ
dθ =

1

1 + sec θ
(sec θ tan θ dθ) =

1

u
du = ln |u|+C = ln |1 + sec θ|+C.

37. Since x2 − 4 < 0 for 0 ≤ x < 2 and x2 − 4 > 0 for 2 < x ≤ 3, we have x2 − 4 = −(x2 − 4) = 4− x2 for 0 ≤ x < 2 and

x2 − 4 = x2 − 4 for 2 < x ≤ 3. Thus,

3

0

x2 − 4 dx =
2

0

(4− x2) dx+
3

2

(x2 − 4) dx = 4x− x3

3

2

0

+
x3

3
− 4x

3

2

= 8− 8
3
− 0 + (9− 12)− 8

3
− 8 = 16

3
− 3 + 16

3
= 32

3
− 9

3
= 23

3
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In Exercises 39 and 40, let f(x) denote the integrand and F (x) its antiderivative (with C = 0).

39. Let u = 1 + sinx. Then du = cosxdx, so

cosxdx√
1 + sinx

= u−1/2 du = 2u1/2 + C = 2
√
1 + sinx+ C.

41. From the graph, it appears that the area under the curve y = x
√
x between x = 0

and x = 4 is somewhat less than half the area of an 8× 4 rectangle, so perhaps

about 13 or 14. To find the exact value, we evaluate

4

0
x
√
xdx =

4

0
x3/2 dx = 2

5
x5/2

4

0
= 2

5
(4)5/2 = 64

5
= 12.8.

43. F (x) =
x

0

t2

1 + t3
dt ⇒ F 0(x) =

d

dx

x

0

t2

1 + t3
dt =

x2

1 + x3

45. Let u = x4. Then du

dx
= 4x3. Also, dg

dx
=

dg

du

du

dx
, so

g0(x) =
d

dx

x4

0

cos(t2) dt =
d

du

u

0

cos(t2) dt · du
dx

= cos(u2)
du

dx
= 4x3 cos(x8).

47. y =
x

√
x

et

t
dt =

1

√
x

et

t
dt +

x

1

et

t
dt = −

√
x

1

et

t
dt +

x

1

et

t
dt ⇒

dy

dx
= − d

dx

√
x

1

et

t
dt +

d

dx

x

1

et

t
dt . Let u =

√
x. Then

d

dx

√
x

1

et

t
dt =

d

dx

u

1

et

t
dt =

d

du

u

1

et

t
dt

du

dx
=

eu

u
· 1

2
√
x
=

e
√
x

√
x
· 1

2
√
x
=

e
√
x

2x
,

so dy

dx
= −e

√
x

2x
+

ex

x
.

49. If 1 ≤ x ≤ 3, then
√
12 + 3 ≤ √x2 + 3 ≤ √32 + 3 ⇒ 2 ≤ √x2 + 3 ≤ 2√3, so

2(3− 1) ≤ 3

1

√
x2 + 3 dx ≤ 2√3(3− 1); that is, 4 ≤ 3

1

√
x2 + 3 dx ≤ 4√3.

51. 0 ≤ x ≤ 1 ⇒ 0 ≤ cosx ≤ 1 ⇒ x2 cosx ≤ x2 ⇒ 1

0
x2 cosxdx ≤ 1

0
x2 dx = 1

3
x3

1

0
= 1

3
[Property 7].

53. cosx ≤ 1 ⇒ ex cosx ≤ ex ⇒ 1

0
ex cosxdx ≤ 1

0
ex dx = [ex]10 = e− 1

55. ∆x = (3− 0)/6 = 1
2 , so the endpoints are 0, 12 , 1, 32 , 2, 52 , and 3, and the midpoints are 1

4 , 34 , 54 , 74 , 94 , and 11
4 .

The Midpoint Rule gives

3

0
sin(x3) dx ≈

6

i=1

f(xi)∆x = 1
2
sin 1

4

3
+ sin 3

4

3
+ sin 5

4

3
+ sin 7

4

3
+ sin 9

4

3
+ sin 11

4

3 ≈ 0.280981.
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57. Note that r(t) = b0(t), where b(t) = the number of barrels of oil consumed up to time t. So, by the Net Change Theorem,

8

0
r(t) dt = b(8)− b(0) represents the number of barrels of oil consumed from Jan. 1, 2000, through Jan. 1, 2008.

59. We use the Midpoint Rule with n = 6 and ∆t = 24− 0
6

= 4. The increase in the bee population was

24

0
r(t) dt ≈M6 = 4[r(2) + r(6) + r(10) + r(14) + r(18) + r(22)]

≈ 4[50 + 1000 + 7000 + 8550 + 1350 + 150] = 4(18,100) = 72,400

61. Let u = 2 sin θ. Then du = 2cos θ dθ and when θ = 0, u = 0; when θ = π
2

, u = 2. Thus,

π/2

0
f(2 sin θ) cos θ dθ =

2

0
f(u) 1

2
du = 1

2

2

0
f(u) du = 1

2

2

0
f(x) dx = 1

2
(6) = 3.

63. Area under the curve y = sinh cx between x = 0 and x = 1 is equal to 1 ⇒
1

0
sinh cx dx = 1 ⇒ 1

c
cosh cx

1

0
= 1 ⇒ 1

c
(cosh c− 1) = 1 ⇒

cosh c− 1 = c ⇒ cosh c = c+ 1. From the graph, we get c = 0 and

c ≈ 1.6161, but c = 0 isn’t a solution for this problem since the curve

y = sinh cx becomes y = 0 and the area under it is 0. Thus, c ≈ 1.6161.

65. Using FTC1, we differentiate both sides of the given equation, x

0
f(t) dt = xe2x +

x

0
e−tf(t) dt, and get

f(x) = e2x + 2xe2x + e−xf(x) ⇒ f(x) 1− e−x = e2x + 2xe2x ⇒ f(x) =
e2x(1 + 2x)

1− e−x
.

67. Let u = f(x) and du = f 0(x) dx. So 2 b

a
f(x)f 0(x) dx = 2 f(b)

f(a)
udu = u2

f(b)

f(a)
= [f(b)]2 − [f(a)]2.

69. Let u = 1− x. Then du = −dx, so 1

0
f(1− x) dx =

0

1
f(u)(−du) = 1

0
f(u) du =

1

0
f(x) dx.

71. The shaded region has area 1

0
f(x) dx = 1

3
. The integral 1

0
f−1(y) dy

gives the area of the unshaded region, which we know to be 1− 1
3 =

2
3 .

So 1

0
f−1(y) dy = 2

3
.





PROBLEMS PLUS

1. Differentiating both sides of the equation x sinπx = x2

0
f(t) dt (using FTC1 and the Chain Rule for the right side) gives

sinπx+ πx cosπx = 2xf(x2). Letting x = 2 so that f(x2) = f(4), we obtain sin 2π + 2π cos 2π = 4f(4), so

f(4) = 1
4
(0 + 2π · 1) = π

2
.

3. Differentiating the given equation, x

0
f(t) dt = [f(x)]2, using FTC1 gives f(x) = 2f(x) f 0(x) ⇒

f(x)[2f 0(x)− 1] = 0, so f(x) = 0 or f 0(x) = 1
2

. Since f(x) is never 0, we must have f 0(x) = 1
2

and f 0(x) = 1
2
⇒

f(x) = 1
2x+ C. To find C, we substitute into the given equation to get x

0
1
2 t+C dt = 1

2x+ C
2 ⇔

1
4
x2 + Cx = 1

4
x2 + Cx+ C2. It follows that C2 = 0, so C = 0, and f(x) = 1

2
x.

5. f(x) =
g(x)

0

1√
1 + t3

dt, where g(x) =
cos x

0

[1 + sin(t2)] dt. Using FTC1 and the Chain Rule (twice) we have

f 0(x) =
1

1 + [g(x)]3
g0(x) =

1

1 + [g(x)]3
[1 + sin(cos2 x)](− sinx). Now g π

2
=

0

0

[1 + sin(t2)] dt = 0, so

f 0 π
2
=

1√
1 + 0

(1 + sin 0)(−1) = 1 · 1 · (−1) = −1.

7. By l’Hospital’s Rule and the Fundamental Theorem, using the notation exp(y) = ey ,

lim
x→0

x

0
(1− tan 2t)1/t dt

x
H
= lim

x→0

(1− tan 2x)1/x
1

= exp lim
x→0

ln(1− tan 2x)
x

H
= exp lim

x→0

−2 sec2 2x
1− tan 2x = exp

−2 · 12
1− 0 = e−2

9. f(x) = 2 + x− x2 = (−x+ 2)(x+ 1) = 0 ⇔ x = 2 or x = −1. f(x) ≥ 0 for x ∈ [−1, 2] and f(x) < 0 everywhere

else. The integral b

a
(2 + x− x2) dx has a maximum on the interval where the integrand is positive, which is [−1, 2]. So

a = −1, b = 2. (Any larger interval gives a smaller integral since f(x) < 0 outside [−1, 2]. Any smaller interval also gives a

smaller integral since f(x) ≥ 0 in [−1, 2].)

11. (a) We can split the integral n

0
[[x]] dx into the sum

n

i=1

i

i−1 [[x]] dx . But on each of the intervals [i− 1, i) of integration,

[[x]] is a constant function, namely i− 1. So the ith integral in the sum is equal to (i− 1)[i− (i− 1)] = (i− 1). So the

original integral is equal to
n

i=1

(i− 1) =
n−1

i=1

i =
(n− 1)n

2
.

261
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(b) We can write b

a
[[x]] dx =

b

0
[[x]] dx− a

0
[[x]] dx.

Now b

0
[[x]] dx =

[[b]]

0
[[x]] dx+

b

[[b]]
[[x]] dx. The first of these integrals is equal to 1

2
([[b]]− 1) [[b]],

by part (a), and since [[x]] = [[b]] on [[[b]] , b], the second integral is just [[b]] (b − [[b]]). So

b

0
[[x]] dx = 1

2 ([[b]]− 1) [[b]] + [[b]] (b− [[b]]) = 1
2 [[b]] (2b− [[b]]− 1) and similarly a

0
[[x]] dx = 1

2 [[a]] (2a− [[a]]− 1).

Therefore, b

a
[[x]] dx = 1

2 [[b]] (2b− [[b]]− 1)− 1
2 [[a]] (2a− [[a]]− 1).

13. Let Q(x) =
x

0

P (t) dt = at+
b

2
t2 +

c

3
t3 +

d

4
t4

x

0

= ax+
b

2
x2 +

c

3
x3 +

d

4
x4. Then Q(0) = 0, and Q(1) = 0 by the

given condition, a+ b

2
+

c

3
+

d

4
= 0. Also, Q0(x) = P (x) = a+ bx+ cx2 + dx3 by FTC1. By Rolle’s Theorem, applied to

Q on [0, 1], there is a number r in (0, 1) such that Q0(r) = 0, that is, such that P (r) = 0. Thus, the equation P (x) = 0 has a

root between 0 and 1.

More generally, if P (x) = a0 + a1x+ a2x
2 + · · ·+ anx

n and if a0 +
a1
2
+

a2
3
+ · · ·+ an

n+ 1
= 0, then the equation

P (x) = 0 has a root between 0 and 1. The proof is the same as before:

Let Q(x) =
x

0

P (t) dt = a0x+
a1
2
x2 +

a2
3
x3 + · · ·+ an

n+ 1
xn. Then Q(0) = Q(1) = 0 and Q0(x) = P (x). By

Rolle’s Theorem applied to Q on [0, 1], there is a number r in (0, 1) such that Q0(r) = 0, that is, such that P (r) = 0.

15. Note that d

dx

x

0

u

0

f(t) dt du =
x

0

f(t) dt by FTC1, while

d

dx

x

0

f(u)(x− u) du =
d

dx
x

x

0

f(u) du − d

dx

x

0

f(u)udu

=
x

0
f(u) du+ xf(x)− f(x)x =

x

0
f(u) du

Hence, x

0
f(u)(x− u) du =

x

0

u

0
f(t) dt du+C. Setting x = 0 gives C = 0.

17. lim
n→∞

1√
n
√
n+ 1

+
1√

n
√
n+ 2

+ · · ·+ 1√
n
√
n+ n

= lim
n→∞

1

n

n

n+ 1
+

n

n+ 2
+ · · ·+ n

n+ n

= lim
n→∞

1

n

1

1 + 1/n
+

1

1 + 2/n
+ · · ·+ 1√

1 + 1

= lim
n→∞

1

n

n

i=1

f
i

n
where f(x) = 1√

1 + x

=
1

0

1√
1 + x

dx = 2
√
1 + x

1

0
= 2

√
2− 1



6 APPLICATIONS OF INTEGRATION
6.1 Areas Between Curves

1. A =
x=4

x=0

(yT − yB) dx =
4

0

(5x− x2)− x dx =
4

0

(4x− x2) dx = 2x2 − 1
3x

3 4

0
= 32− 64

3
− (0) = 32

3

3. A=
y=1

y=−1
(xR − xL) dy =

1

−1
ey − (y2 − 2) dy =

1

−1
ey − y2 + 2 dy

= ey − 1
3
y3 + 2y

1

−1 = e1 − 1
3
+ 2 − e−1 + 1

3
− 2 = e− 1

e
+
10

3

5. A =
2

−1
(9− x2)− (x+ 1) dx

=
2

−1
(8− x− x2) dx

= 8x− x2

2
− x3

3

2

−1

= 16− 2− 8
3
− −8− 1

2 +
1
3

= 22− 3 + 1
2 =

39
2

7. The curves intersect when x = x2 ⇔ x2 − x = 0 ⇔
x(x− 1) = 0 ⇔ x = 0 or 1.

A =
1

0

(x− x2) dx = 1
2
x2 − 1

3
x3

1

0
= 1

2
− 1

3
= 1

6

9. A=
2

1

1

x
− 1

x2
dx = lnx+

1

x

2

1

= ln 2 + 1
2
− (ln 1 + 1)

= ln 2− 1
2
≈ 0.19

11. A =
1

0

√
x− x2 dx

= 2
3
x3/2 − 1

3
x3

1

0

= 2
3 − 1

3 =
1
3

263
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13. 12− x2 = x2 − 6 ⇔ 2x2 = 18 ⇔
x2 = 9 ⇔ x = ±3, so

A=
3

−3
(12− x2)− (x2 − 6) dx

= 2
3

0

18− 2x2 dx [by symmetry]

= 2 18x− 2
3x

3 3

0
= 2 [(54− 18)− 0]

= 2(36) = 72

15. The curves intersect when tanx = 2 sinx (on [−π/3, π/3]) ⇔ sinx = 2 sinx cosx ⇔

2 sinx cosx− sinx = 0 ⇔ sinx (2 cosx− 1) = 0 ⇔ sinx = 0 or cosx = 1
2
⇔ x = 0 or x = ±π

3
.

A=
π/3

−π/3
(2 sinx− tanx) dx

= 2
π/3

0

(2 sinx− tanx) dx [by symmetry]

= 2 −2 cosx− ln |secx| π/3

0

= 2 [(−1− ln 2)− (−2− 0)]
= 2(1− ln 2) = 2− 2 ln 2

17. 1
2
x =

√
x ⇒ 1

4
x2 = x ⇒ x2 − 4x = 0 ⇒ x(x− 4) = 0 ⇒ x = 0 or 4, so

A=
4

0

√
x− 1

2x dx+
9

4

1
2x−

√
x dx = 2

3x
3/2 − 1

4x
2
4

0
+ 1

4x
2 − 2

3x
3/2

9

4

= 16
3 − 4 − 0 + 81

4 − 18 − 4− 16
3

= 81
4 +

32
3 − 26 = 59

12
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19. 2y2 = 4 + y2 ⇔ y2 = 4 ⇔ y = ±2, so

A=
2

−2
(4 + y2)− 2y2 dy

= 2
2

0

(4− y2) dy [by symmetry]

= 2 4y − 1
3y

3 2

0
= 2 8− 8

3
= 32

3

21. The curves intersect when 1− y2 = y2 − 1 ⇔ 2 = 2y2 ⇔ y2 = 1 ⇔ y = ±1.

A =
1

−1
(1− y2)− (y2 − 1) dy

=
1

−1
2(1− y2) dy

= 2 · 2
1

0

(1− y2) dy

= 4 y − 1
3
y3

1

0
= 4 1− 1

3
= 8

3

23. Notice that cosx = sin 2x = 2 sinx cosx ⇔
2 sinx cosx− cosx = 0 ⇔ cosx (2 sinx− 1) = 0 ⇔
2 sinx = 1 or cosx = 0 ⇔ x = π

6
or π

2
.

A=
π/6

0

(cosx− sin 2x) dx+
π/2

π/6

(sin 2x− cosx) dx

= sinx+ 1
2
cos 2x

π/6

0
+ − 1

2
cos 2x− sinx π/2

π/6

= 1
2 +

1
2 · 12 − 0 + 1

2 · 1 + 1
2 − 1 − − 1

2 · 12 − 1
2
= 1

2

25. The curves intersect when x2 = 2

x2 + 1
⇔

x4 + x2 = 2 ⇔ x4 + x2 − 2 = 0 ⇔
(x2 + 2)(x2 − 1) = 0 ⇔ x2 = 1 ⇔ x = ±1.

A=
1

−1

2

x2 + 1
− x2 dx = 2

1

0

2

x2 + 1
− x2 dx

= 2 2 tan−1 x− 1
3
x3

1

0
= 2 2 · π

4
− 1

3
= π − 2

3
≈ 2.47
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27. 1/x = x ⇔ 1 = x2 ⇔ x = ±1 and 1/x = 1
4x ⇔

4 = x2 ⇔ x = ±2, so for x > 0,

A=
1

0

x− 1

4
x dx+

2

1

1

x
− 1

4
x dx

=
1

0

3

4
x dx+

2

1

1

x
− 1

4
x dx

= 3
8
x2

1

0
+ ln |x|− 1

8
x2

2

1

= 3
8
+ ln 2− 1

2
− 0− 1

8
= ln 2

29. An equation of the line through (0, 0) and (2, 1) is y = 1
2
x; through (0, 0)

and (−1, 6) is y = −6x; through (2, 1) and (−1, 6) is y = − 5
3
x+ 13

3
.

A=
0

−1
− 5
3x+

13
3
− (−6x) dx+

2

0

− 5
3x+

13
3
− 1

2x dx

=
0

−1
13
3
x+ 13

3
dx+

2

0

− 13
6
x+ 13

3
dx

= 13
3

0

−1
(x+ 1) dx+ 13

3

2

0

− 1
2
x+ 1 dx

= 13
3

1
2
x2 + x

0

−1 +
13
3
− 1
4
x2 + x

2

0

= 13
3
0− 1

2
− 1 + 13

3
[(−1 + 2)− 0] = 13

3
· 1
2
+ 13

3
· 1 = 13

2

31. The curves intersect when sinx = cos 2x (on [0, π/2]) ⇔ sinx = 1− 2 sin2 x ⇔ 2 sin2 x+ sinx− 1 = 0 ⇔

(2 sinx− 1)(sinx+ 1) = 0 ⇒ sinx = 1
2
⇒ x = π

6
.

A=
π/2

0

|sinx− cos 2x| dx

=
π/6

0

(cos 2x− sinx) dx+
π/2

π/6

(sinx− cos 2x) dx

= 1
2 sin 2x+ cosx

π/6

0
+ − cosx− 1

2 sin 2x
π/2

π/6

= 1
4

√
3 + 1

2

√
3 − (0 + 1) + (0− 0)− − 1

2

√
3− 1

4

√
3

= 3
2

√
3− 1

33. Let f(x) = cos2 πx

4
− sin2 πx

4
and ∆x =

1− 0
4

.

The shaded area is given by

A =
1

0
f(x) dx ≈M4

= 1
4
f 1

8
+ f 3

8
+ f 5

8
+ f 7

8

≈ 0.6407
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35. From the graph, we see that the curves intersect at x = 0 and x = a ≈ 0.896, with

x sin(x2) > x4 on (0, a). So the area A of the region bounded by the curves is

A=
a

0

x sin(x2)− x4 dx = − 1
2 cos(x

2)− 1
5x

5 a

0

= − 1
2
cos(a2)− 1

5
a5 + 1

2
≈ 0.037

37. From the graph, we see that the curves intersect at

x = a ≈ −1.11, x = b ≈ 1.25, and x = c ≈ 2.86, with

x3 − 3x+ 4 > 3x2 − 2x on (a, b) and 3x2 − 2x > x3 − 3x+ 4
on (b, c). So the area of the region bounded by the curves is

A=
b

a

(x3 − 3x+ 4)− (3x2 − 2x) dx+
c

b

(3x2 − 2x)− (x3 − 3x+ 4) dx

=
b

a

(x3 − 3x2 − x+ 4) dx+
c

b

(−x3 + 3x2 + x− 4) dx

= 1
4
x4 − x3 − 1

2
x2 + 4x

b

a
+ − 1

4
x4 + x3 + 1

2
x2 − 4x c

b
≈ 8.38

39. As the figure illustrates, the curves y = x and y = x5 − 6x3 + 4x
enclose a four-part region symmetric about the origin (since

x5 − 6x3 + 4x and x are odd functions of x). The curves intersect

at values of x where x5 − 6x3 + 4x = x; that is, where

x(x4 − 6x2 + 3) = 0. That happens at x = 0 and where

x2 =
6±√36− 12

2
= 3±√6; that is, at x = − 3 +

√
6, − 3−√6, 0, 3−√6, and 3 +

√
6.

The exact area is

2

√
3+
√
6

0

(x5 − 6x3 + 4x)− x dx = 2

√
3+
√
6

0

x5 − 6x3 + 3x dx

= 2

√
3−√6

0

(x5 − 6x3 + 3x) dx+ 2
√
3+
√
6

√
3−√6

(−x5 + 6x3 − 3x) dx

CAS
= 12

√
6− 9
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41. 1 second = 1
3600 hour, so 10 s = 1

360 h. With the given data, we can take n = 5 to use the Midpoint Rule.

∆t = 1/360−0
5

= 1
1800

, so

distance Kelly − distance Chris =
1/360

0
vK dt− 1/360

0
vC dt =

1/360

0
(vK − vC) dt

≈M5 =
1

1800
[(vK − vC)(1) + (vK − vC)(3) + (vK − vC)(5)

+ (vK − vC)(7) + (vK − vC)(9)]

= 1
1800

[(22− 20) + (52− 46) + (71− 62) + (86− 75) + (98− 86)]

= 1
1800 (2 + 6 + 9 + 11 + 12) =

1
1800 (40) =

1
45 mile, or 117 13 feet

43. Let h(x) denote the height of the wing at x cm from the left end.

A ≈M5 =
200− 0
5

[h(20) + h(60) + h(100) + h(140) + h(180)]

= 40(20.3 + 29.0 + 27.3 + 20.5 + 8.7) = 40(105.8) = 4232 cm2

45. We know that the area under curve A between t = 0 and t = x is x

0
vA(t) dt = sA(x), where vA(t) is the velocity of car A

and sA is its displacement. Similarly, the area under curve B between t = 0 and t = x is x

0
vB(t) dt = sB(x).

(a) After one minute, the area under curve A is greater than the area under curve B. So car A is ahead after one minute.

(b) The area of the shaded region has numerical value sA(1)− sB(1), which is the distance by which A is ahead of B after

1 minute.

(c) After two minutes, car B is traveling faster than car A and has gained some ground, but the area under curve A from t = 0

to t = 2 is still greater than the corresponding area for curve B, so car A is still ahead.

(d) From the graph, it appears that the area between curves A and B for 0 ≤ t ≤ 1 (when car A is going faster), which

corresponds to the distance by which car A is ahead, seems to be about 3 squares. Therefore, the cars will be side by side

at the time x where the area between the curves for 1 ≤ t ≤ x (when car B is going faster) is the same as the area for

0 ≤ t ≤ 1. From the graph, it appears that this time is x ≈ 2.2. So the cars are side by side when t ≈ 2.2 minutes.

47. To graph this function, we must first express it as a combination of explicit

functions of y; namely, y = ±x√x+ 3. We can see from the graph that the loop

extends from x = −3 to x = 0, and that by symmetry, the area we seek is just

twice the area under the top half of the curve on this interval, the equation of the

top half being y = −x√x+ 3. So the area is A = 2 0

−3 −x
√
x+ 3 dx. We

substitute u = x+ 3, so du = dx and the limits change to 0 and 3, and we get

A= −2 3

0
[(u− 3)√u ] du = −2 3

0
(u3/2 − 3u1/2) du

= −2 2
5u

5/2 − 2u3/2
3

0
= −2 2

5
32
√
3 − 2 3√3 = 24

5

√
3
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49. By the symmetry of the problem, we consider only the first quadrant, where

y = x2 ⇒ x = y. We are looking for a number b such that

b

0

y dy =
4

b

y dy ⇒ 2
3
y3/2

b

0
= 2

3
y3/2

4

b
⇒

b3/2 = 43/2 − b3/2 ⇒ 2b3/2 = 8 ⇒ b3/2 = 4 ⇒ b = 42/3 ≈ 2.52.

51. We first assume that c > 0, since c can be replaced by −c in both equations without changing the graphs, and if c = 0 the

curves do not enclose a region. We see from the graph that the enclosed area A lies between x = −c and x = c, and by

symmetry, it is equal to four times the area in the first quadrant. The enclosed area is

A = 4
c

0
(c2 − x2) dx = 4 c2x− 1

3
x3

c

0
= 4 c3 − 1

3
c3 = 4 2

3
c3 = 8

3
c3

So A = 576 ⇔ 8
3c
3 = 576 ⇔ c3 = 216 ⇔ c = 3

√
216 = 6.

Note that c = −6 is another solution, since the graphs are the same.

53. The curve and the line will determine a region when they intersect at two or

more points. So we solve the equation x/(x2 + 1) = mx ⇒
x = x(mx2 +m) ⇒ x(mx2 +m)− x = 0 ⇒
x(mx2 +m− 1) = 0 ⇒ x = 0 or mx2 +m− 1 = 0 ⇒

x = 0 or x2 = 1−m

m
⇒ x = 0 or x = ± 1

m
− 1. Note that if m = 1, this has only the solution x = 0, and no region

is determined. But if 1/m− 1 > 0 ⇔ 1/m > 1 ⇔ 0 < m < 1, then there are two solutions. [Another way of seeing

this is to observe that the slope of the tangent to y = x/(x2 + 1) at the origin is y0(0) = 1 and therefore we must have

0 < m < 1.] Note that we cannot just integrate between the positive and negative roots, since the curve and the line cross at

the origin. Since mx and x/(x2 + 1) are both odd functions, the total area is twice the area between the curves on the interval

0, 1/m− 1 . So the total area enclosed is

2

√
1/m−1

0

x

x2 + 1
−mx dx= 2 1

2 ln(x
2 + 1)− 1

2mx2
√
1/m−1

0
= [ln(1/m− 1 + 1)−m(1/m− 1)]− (ln 1− 0)

= ln(1/m)− 1 +m = m− lnm− 1



270 ¤ CHAPTER 6 APPLICATIONS OF INTEGRATION

6.2 Volumes

1. A cross-section is a disk with radius 2− 1
2x, so its area is A(x) = π 2− 1

2x
2.

V =
2

1

A(x) dx =
2

1

π 2− 1
2x

2
dx

= π
2

1

4− 2x+ 1
4
x2 dx

= π 4x− x2 + 1
12x

3 2

1

= π 8− 4 + 8
12

− 4− 1 + 1
12

= π 1 + 7
12

= 19
12
π

3. A cross-section is a disk with radius 1/x, so its area is

A(x) = π(1/x)2.

V =
2

1

A(x) dx =
2

1

π
1

x

2

dx

= π
2

1

1

x2
dx = π − 1

x

2

1

= π − 1
2
− (−1) = π

2

5. A cross-section is a disk with radius 2 y, so its area is

A(y) = π 2 y
2

.

V =
9

0

A(y) dy =
9

0

π 2 y
2

dy = 4π
9

0

y dy

= 4π 1
2
y2

9

0
= 2π(81) = 162π

7. A cross-section is a washer (annulus) with inner

radius x3 and outer radius x, so its area is

A(x) = π(x)2 − π(x3)2 = π(x2 − x6).

V =
1

0

A(x) dx =
1

0

π(x2 − x6) dx

= π 1
3x

3 − 1
7x

7 1

0
= π 1

3 − 1
7
= 4

21π
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9. A cross-section is a washer with inner radius y2

and outer radius 2y, so its area is

A(y) = π(2y)2 − π(y2)2 = π(4y2 − y4).

V =
2

0

A(y) dy = π
2

0

(4y2 − y4) dy

= π 4
3
y3 − 1

5
y5

2

0
= π 32

3
− 32

5
= 64

15
π

11. A cross-section is a washer with inner radius 1−
√
x and outer radius 1− x, so its area is

A(x) = π(1− x)2 − π 1−
√
x

2

= π (1− 2x+ x2)− 1− 2
√
x+ x

= π −3x+ x2 + 2
√
x .

V =
1

0

A(x) dx = π
1

0

−3x+ x2 + 2
√
x dx

= π − 3
2
x2 + 1

3
x3 + 4

3
x3/2

1

0
= π − 3

2
+ 5

3
= π

6

13. A cross-section is a washer with inner radius (1 + secx)− 1 = secx and outer radius 3− 1 = 2, so its area is

A(x) = π 22 − (secx)2 = π(4− sec2 x).

V =
π/3

−π/3
A(x) dx =

π/3

−π/3
π(4− sec2 x) dx

= 2π
π/3

0

(4− sec2 x) dx [by symmetry]

= 2π 4x− tanx π/3

0
= 2π 4π

3
−√3 − 0

= 2π 4π
3
−√3

15. V =
1

−1
π(1− y2)2 dy = 2

1

0

π(1− y2)2 dy

= 2π
1

0

(1− 2y2 + y4) dy

= 2π y − 2
3y

3 + 1
5y

5 1

0

= 2π · 8
15
= 16

15
π
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17. y = x2 ⇒ x =
√
y for x ≥ 0. The outer radius is the distance from x = −1 to x = y and the inner radius is the

distance from x = −1 to x = y2.

V =
1

0

π y − (−1) 2 − y2 − (−1) 2
dy = π

1

0

y + 1
2 − (y2 + 1)2 dy

= π
1

0

y + 2 y + 1− y4 − 2y2 − 1 dy = π
1

0

y + 2 y − y4 − 2y2 dy

= π 1
2
y2 + 4

3
y3/2 − 1

5
y5 − 2

3
y3

1

0
= π 1

2
+ 4

3
− 1

5
− 2

3
= 29

30
π

19. R1 about OA (the line y = 0): V =
1

0

A(x) dx =
1

0

π(x3)2 dx = π
1

0

x6 dx = π
1

7
x7

1

0

=
π

7

21. R1 about AB (the line x = 1):

V =
1

0

A(y) dy =
1

0

π 1− 3 y
2

dy = π
1

0

(1− 2y1/3 + y2/3) dy = π y − 3
2y

4/3 + 3
5y

5/3
1

0

= π 1− 3
2 +

3
5
= π

10

23. R2 about OA (the line y = 0):

V =
1

0

A(x) dx =
1

0

π(1)2 − π
√
x

2

dx = π
1

0

(1− x) dx = π x− 1
2x

2 1

0
= π 1− 1

2
= π

2

25. R2 about AB (the line x = 1):

V =
1

0

A(y) dy =
1

0

π(1)2 − π(1− y2)2 dy = π
1

0

1− (1− 2y2 + y4) dy = π
1

0

(2y2 − y4) dy

= π 2
3
y3 − 1

5
y5

1

0
= π 2

3
− 1

5
= 7

15
π

27. R3 about OA (the line y = 0):

V =
1

0

A(x) dx =
1

0

π
√
x

2

− π(x3)2 dx = π
1

0

(x− x6) dx = π 1
2
x2 − 1

7
x7

1

0
= π 1

2
− 1

7
= 5

14
π.

Note: Let R=R1 + R2 +R3. If we rotate R about any of the segments OA, OC, AB, or BC, we obtain a right circular

cylinder of height 1 and radius 1. Its volume is πr2h = π(1)2 · 1 = π. As a check for Exercises 19, 23, and 27, we can add the

answers, and that sum must equal π. Thus, π
7
+ π

2
+ 5π

14
= 2+ 7+ 5

14
π = π.
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29. R3 about AB (the line x = 1):

V =
1

0

A(y) dy =
1

0

π(1− y2)2 − π 1− 3 y
2

dy = π
1

0

(1− 2y2 + y4)− (1− 2y1/3 + y2/3) dy

= π
1

0

(−2y2 + y4 + 2y1/3 − y2/3) dy = π − 2
3y

3 + 1
5y

5 + 3
2y

4/3 − 3
5y

5/3
1

0
= π − 2

3 +
1
5 +

3
2 − 3

5
= 13

30π

Note: See the note in Exercise 27. For Exercises 21, 25, and 29, we have π
10
+ 7π

15
+ 13π

30
= 3+ 14+13

30
π = π.

31. V = π
π/4

0

(1− tan3 x)2 dx

33. V = π
π

0

(1− 0)2 − (1− sinx)2 dx

= π
π

0

12 − (1− sinx)2 dx

35. V = π

√
8

−√8
[3− (−2)]2 − y2 + 1− (−2) 2

dy

= π
2
√
2

−2√2
52 − 1 + y2 + 2

2

dy

37. y = 2 + x2 cosx and y = x4 + x+ 1 intersect at

x = a ≈ −1.288 and x = b ≈ 0.884.

V = π
b

a

[(2 + x2 cosx)2 − (x4 + x+ 1)2]dx ≈ 23.780
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39. V= π
π

0

sin2 x− (−1) 2 − [0− (−1)]2 dx

CAS
= 11

8
π2

41. π π/2

0
cos2 xdx describes the volume of the solid obtained by rotating the region R = (x, y) | 0 ≤ x ≤ π

2 , 0 ≤ y ≤ cosx
of the xy-plane about the x-axis.

43. π
1

0

(y4 − y8) dy = π
1

0

(y2)2 − (y4)2 dy describes the volume of the solid obtained by rotating the region

R = (x, y) | 0 ≤ y ≤ 1, y4 ≤ x ≤ y2 of the xy-plane about the y-axis.

45. There are 10 subintervals over the 15-cm length, so we’ll use n = 10/2 = 5 for the Midpoint Rule.

V =
15

0
A(x) dx ≈M5 =

15−0
5
[A(1.5) +A(4.5) +A(7.5) +A(10.5) +A(13.5)]

= 3(18 + 79 + 106 + 128 + 39) = 3 · 370 = 1110 cm3

47. (a) V =
10

2
π [f(x)]2 dx ≈ π 10− 2

4
[f(3)]2 + [f(5)]2 + [f(7)]2 + [f(9)]2

≈ 2π (1.5)2 + (2.2)2 + (3.8)2 + (3.1)2 ≈ 196 units3

(b) V =
4

0
π (outer radius)2 − (inner radius)2 dy

≈ π 4− 0
4

(9.9)2 − (2.2)2 + (9.7)2 − (3.0)2 + (9.3)2 − (5.6)2 + (8.7)2 − (6.5)2
≈ 838 units3

49. We’ll form a right circular cone with height h and base radius r by

revolving the line y = r
h
x about the x-axis.

V = π
h

0

r

h
x

2

dx = π
h

0

r2

h2
x2dx = π

r2

h2
1

3
x3

h

0

= π
r2

h2
1

3
h3 =

1

3
πr2h

Another solution: Revolve x = − r

h
y + r about the y-axis.

V = π
h

0

− r

h
y + r

2

dy
∗
= π

h

0

r2

h2
y2 − 2r2

h
y + r2 dy

= π
r2

3h2
y3 − r2

h
y2 + r2y

h

0

= π 1
3
r2h− r2h+ r2h = 1

3
πr2h

∗ Or use substitution with u = r − r

h
y and du = − r

h
dy to get

π
0

r

u2 −h

r
du = −π h

r

1

3
u3

0

r

= −π h

r
−1
3
r3 =

1

3
πr2h.
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51. x2 + y2 = r2 ⇔ x2 = r2 − y2

V = π
r

r−h
r2 − y2 dy = π r2y − y3

3

r

r−h

= π r3 − r3

3
− r2(r − h)− (r − h)3

3

= π 2
3
r3 − 1

3
(r − h) 3r2 − (r − h)2

= 1
3π 2r3 − (r − h) 3r2 − r2 − 2rh+ h2

= 1
3π 2r3 − (r − h) 2r2 + 2rh− h2

= 1
3
π 2r3 − 2r3 − 2r2h+ rh2 + 2r2h+ 2rh2 − h3

= 1
3
π 3rh2 − h3 = 1

3
πh2(3r − h), or, equivalently, πh2 r − h

3

53. For a cross-section at height y, we see from similar triangles that α/2
b/2

=
h− y

h
, so α = b 1− y

h
.

Similarly, for cross-sections having 2b as their base and β replacing α, β = 2b 1− y

h
. So

V =
h

0

A(y) dy =
h

0

b 1− y

h
2b 1− y

h
dy

=
h

0

2b2 1− y

h

2

dy = 2b2
h

0

1− 2y

h
+

y2

h2
dy

= 2b2 y − y2

h
+

y3

3h2

h

0

= 2b2 h− h+ 1
3
h

= 2
3
b2h [ = 1

3
Bh where B is the area of the base, as with any pyramid.]

55. A cross-section at height z is a triangle similar to the base, so we’ll multiply the legs of the base triangle, 3 and 4, by a

proportionality factor of (5− z)/5. Thus, the triangle at height z has area

A(z) =
1

2
· 3 5− z

5
· 4 5− z

5
= 6 1− z

5

2

, so

V =
5

0

A(z) dz = 6
5

0

1− z

5

2

dz = 6
0

1

u2(−5 du) u = 1− z/5,
du = − 1

5
dz

= −30 1
3
u3

0

1
= −30 − 1

3
= 10 cm3

57. If l is a leg of the isosceles right triangle and 2y is the hypotenuse,

then l2 + l2 = (2y)2 ⇒ 2l2 = 4y2 ⇒ l2 = 2y2.

V =
2

−2A(x) dx = 2
2

0
A(x) dx = 2

2

0
1
2
(l)(l) dx = 2

2

0
y2 dx

= 2
2

0
1
4 (36− 9x2) dx = 9

2

2

0
(4− x2) dx

= 9
2
4x− 1

3
x3

2

0
= 9

2
8− 8

3
= 24
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59. The cross-section of the base corresponding to the coordinate x has length

y = 1− x. The corresponding square with side s has area

A(x) = s2 = (1− x)2 = 1− 2x+ x2. Therefore,

V =
1

0

A(x) dx =
1

0

(1− 2x+ x2) dx

= x− x2 + 1
3
x3

1

0
= 1− 1 + 1

3
− 0 = 1

3

Or:
1

0

(1− x)2 dx =
0

1

u2(−du) [u = 1− x] = 1
3
u3

1

0
= 1

3

61. The cross-section of the base b corresponding to the coordinate x has length 1− x2. The height h also has length 1− x2,

so the corresponding isosceles triangle has area A(x) = 1
2
bh = 1

2
(1− x2)2. Therefore,

V =
1

−1
1
2
(1− x2)2 dx

= 2 · 1
2

1

0

(1− 2x2 + x4) dx [by symmetry]

= x− 2
3
x3 + 1

5
x5

1

0
= 1− 2

3
+ 1

5
− 0 = 8

15

63. (a) The torus is obtained by rotating the circle (x−R)2 + y2 = r2 about

the y-axis. Solving for x, we see that the right half of the circle is given by

x = R+ r2 − y2 = f(y) and the left half by x = R− r2 − y2 = g(y). So

V = π
r

−r [f(y)]2 − [g(y)]2 dy

= 2π
r

0
R2 + 2R r2 − y2 + r2 − y2 − R2 − 2R r2 − y2 + r2 − y2 dy

= 2π
r

0
4R r2 − y2 dy = 8πR

r

0
r2 − y2 dy

(b) Observe that the integral represents a quarter of the area of a circle with radius r, so

8πR
r

0
r2 − y2 dy = 8πR · 1

4
πr2 = 2π2r2R.

65. (a) Volume(S1) = h

0
A(z) dz = Volume(S2) since the cross-sectional area A(z) at height z is the same for both solids.

(b) By Cavalieri’s Principle, the volume of the cylinder in the figure is the same as that of a right circular cylinder with radius r

and height h, that is, πr2h.
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67. The volume is obtained by rotating the area common to two circles of radius r, as

shown. The volume of the right half is

Vright = π
r/2

0
y2 dx = π

r/2

0
r2 − 1

2r + x
2

dx

= π r2x− 1
3

1
2
r + x

3 r/2

0
= π 1

2
r3 − 1

3
r3 − 0− 1

24
r3 = 5

24
πr3

So by symmetry, the total volume is twice this, or 5
12πr

3.

Another solution: We observe that the volume is the twice the volume of a cap of a sphere, so we can use the formula from

Exercise 51 with h = 1
2
r: V = 2 · 1

3
πh2(3r − h) = 2

3
π 1

2
r
2
3r − 1

2
r = 5

12
πr3.

69. Take the x-axis to be the axis of the cylindrical hole of radius r.

A quarter of the cross-section through y, perpendicular to the

y-axis, is the rectangle shown. Using the Pythagorean Theorem

twice, we see that the dimensions of this rectangle are

x = R2 − y2 and z = r2 − y2, so

1
4
A(y) = xz = r2 − y2 R2 − y2, and

V =
r

−r A(y) dy =
r

−r 4 r2 − y2 R2 − y2 dy = 8
r

0
r2 − y2 R2 − y2 dy

71. (a) The radius of the barrel is the same at each end by symmetry, since the

function y = R− cx2 is even. Since the barrel is obtained by rotating

the graph of the function y about the x-axis, this radius is equal to the

value of y at x = 1
2
h, which is R− c 1

2
h

2
= R− d = r.

(b) The barrel is symmetric about the y-axis, so its volume is twice the volume of that part of the barrel for x > 0. Also, the

barrel is a volume of rotation, so

V = 2
h/2

0

πy2 dx = 2π
h/2

0

R− cx2
2
dx = 2π R2x− 2

3Rcx
3 + 1

5c
2x5

h/2

0

= 2π 1
2
R2h− 1

12
Rch3 + 1

160
c2h5

Trying to make this look more like the expression we want, we rewrite it as V = 1
3πh 2R

2 + R2 − 1
2Rch

2 + 3
80c

2h4 .

But R2 − 1
2
Rch2 + 3

80
c2h4 = R− 1

4
ch2

2 − 1
40
c2h4 = (R− d)2 − 2

5
1
4
ch2

2
= r2 − 2

5
d2.

Substituting this back into V , we see that V = 1
3
πh 2R2 + r2 − 2

5
d 2 , as required.
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6.3 Volumes by Cylindrical Shells

1. If we were to use the “washer” method, we would first have to locate the

local maximum point (a, b) of y = x(x− 1)2 using the methods of

Chapter 4. Then we would have to solve the equation y = x(x− 1)2

for x in terms of y to obtain the functions x = g1(y) and x = g2(y)

shown in the first figure. This step would be difficult because it involves

the cubic formula. Finally we would find the volume using

V = π
b

0
[g1(y)]

2 − [g2(y)]2 dy.

Using shells, we find that a typical approximating shell has radius x, so its circumference is 2πx. Its height is y, that is,

x(x− 1)2. So the total volume is

V =
1

0

2πx x(x− 1)2 dx = 2π
1

0

x4 − 2x3 + x2 dx = 2π
x5

5
− 2x

4

4
+

x3

3

1

0

=
π

15

3. V =
2

1

2πx · 1
x
dx = 2π

2

1

1 dx

= 2π x
2

1
= 2π(2− 1) = 2π

5. V =
1

0
2πxe−x

2
dx. Let u = x2.

Thus, du = 2xdx, so

V = π
1

0
e−u du = π −e−u 1

0
= π(1− 1/e).

7. The curves intersect when 4(x− 2)2 = x2 − 4x+ 7 ⇔ 4x2 − 16x+ 16 = x2 − 4x+ 7 ⇔
3x2 − 12x+ 9 = 0 ⇔ 3(x2 − 4x+ 3) = 0 ⇔ 3(x− 1)(x− 3) = 0, so x = 1 or 3.

V = 2π
3

1
x x2 − 4x+ 7 − 4(x− 2)2 dx = 2π

3

1
x(x2 − 4x+ 7− 4x2 + 16x− 16) dx

= 2π
3

1
x(−3x2 + 12x− 9) dx = 2π(−3) 3

1
(x3 − 4x2 + 3x) dx = −6π 1

4x
4 − 4

3x
3 + 3

2x
2 3

1

= −6π 81
4
− 36 + 27

2
− 1

4
− 4

3
+ 3

2
= −6π 20− 36 + 12 + 4

3
= −6π − 8

3
= 16π
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9. V =
2

1
2πy(1 + y2) dy = 2π

2

1
(y + y3) dy = 2π 1

2y
2 + 1

4y
4 2

1

= 2π (2 + 4)− 1
2
+ 1

4
= 2π 21

4
= 21

2
π

11. V = 2π
8

0

y( 3 y − 0) dy

= 2π
8

0

y4/3 dy = 2π 3
7
y7/3

8

0

=
6π

7
(87/3) =

6π

7
(27) =

768

7
π

13. The height of the shell is 2− 1 + (y − 2)2 = 1− (y − 2)2 = 1− y2 − 4y + 4 = −y2 + 4y − 3.

V = 2π
3

1
y(−y2 + 4y − 3) dy

= 2π
3

1
(−y3 + 4y2 − 3y) dy

= 2π − 1
4
y4 + 4

3
y3 − 3

2
y2

3

1

= 2π − 81
4
+ 36− 27

2
− − 1

4
+ 4

3
− 3

2

= 2π 8
3
= 16

3
π

15. The shell has radius 2− x, circumference 2π(2− x), and height x4.

V =
1

0
2π(2− x)x4 dx

= 2π
1

0
(2x4 − x5) dx

= 2π 2
5x

5 − 1
6x

6 1

0

= 2π 2
5
− 1

6
− 0 = 2π 7

30
= 7

15
π
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17. The shell has radius x− 1, circumference 2π(x− 1), and height (4x− x2)− 3 = −x2 + 4x− 3.

V=
3

1
2π(x− 1)(−x2 + 4x− 3) dx

= 2π
3

1
(−x3 + 5x2 − 7x+ 3) dx

= 2π − 1
4
x4 + 5

3
x3 − 7

2
x2 + 3x

3

1

= 2π − 81
4 + 45− 63

2 + 9 − − 1
4 +

5
3 − 7

2 + 3

= 2π 4
3
= 8

3π

19. The shell has radius 1− y, circumference 2π(1− y), and height 1− 3 y y = x3 ⇔ x = 3 y .

V=
1

0
2π(1− y)(1− y1/3) dy

= 2π
1

0
(1− y − y1/3 + y4/3) dy

= 2π y − 1
2y

2 − 3
4y

4/3 + 3
7y

7/3
1

0

= 2π 1− 1
2
− 3

4
+ 3

7
− 0

= 2π 5
28

= 5
14
π

21. V =
2

1
2πx lnxdx 23. V =

1

0
2π[x− (−1)] sin π

2
x− x4 dx

25. V =
π

0
2π(4− y)

√
sin y dy
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27. V =
1

0
2πx

√
1 + x3 dx. Let f(x) = x

√
1 + x3.

Then the Midpoint Rule with n = 5 gives

1

0
f(x) dx≈ 1−0

5
[f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)]

≈ 0.2(2.9290)

Multiplying by 2π gives V ≈ 3.68.

29. 3

0
2πx5 dx = 2π

3

0
x(x4) dx. The solid is obtained by rotating the region 0 ≤ y ≤ x4, 0 ≤ x ≤ 3 about the y-axis using

cylindrical shells.

31. 1

0
2π(3− y)(1− y2) dy. The solid is obtained by rotating the region bounded by (i) x = 1− y2, x = 0, and y = 0 or

(ii) x = y2, x = 1, and y = 0 about the line y = 3 using cylindrical shells.

33. From the graph, the curves intersect at x = 0 and x = a ≈ 0.56,

with
√
x+ 1 > ex on the interval (0, a). So the volume of the solid

obtained by rotating the region about the y-axis is

V = 2π
a

0
x

√
x+ 1 − ex dx ≈ 0.13.

35. V = 2π
π/2

0

π
2
− x sin2 x− sin4 x dx

CAS
= 1

32π
3

37. Use shells:

V =
4

2
2πx(−x2 + 6x− 8) dx = 2π 4

2
(−x3 + 6x2 − 8x) dx

= 2π − 1
4x

4 + 2x3 − 4x2 4

2

= 2π[(−64 + 128− 64)− (−4 + 16− 16)]
= 2π(4) = 8π

39. Use shells:

V =
4

1
2π[x− (−1)][5− (x+ 4/x)] dx

= 2π
4

1
(x+ 1)(5− x− 4/x) dx

= 2π
4

1
(5x− x2 − 4 + 5− x− 4/x) dx

= 2π
4

1
(−x2 + 4x+ 1− 4/x) dx = 2π − 1

3
x3 + 2x2 + x− 4 lnx 4

1

= 2π − 64
3
+ 32 + 4− 4 ln 4 − − 1

3
+ 2 + 1− 0

= 2π(12− 4 ln 4) = 8π(3− ln 4)
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41. Use disks: x2 + (y − 1)2 = 1 ⇔ x = ± 1− (y − 1)2

V = π
2

0

1− (y − 1)2 2

dy = π
2

0

(2y − y2) dy

= π y2 − 1
3
y3

2

0
= π 4− 8

3
= 4

3
π

43. Use shells:

V = 2
r

0
2πx

√
r2 − x2 dx

= −2π r

0
(r2 − x2)1/2(−2x) dx

= −2π · 2
3
(r2 − x2)3/2

r

0

= − 4
3
π(0− r3) = 4

3
πr3

 

45. V = 2π
r

0

x −h

r
x+ h dx = 2πh

r

0

−x2

r
+ x dx

= 2πh −x3

3r
+

x2

2

r

0

= 2πh
r2

6
=

πr2h

3

 

6.4 Work

1. W = Fd = mgd = (40)(9.8)(1.5) = 588 J

3. W =
b

a

f(x) dx =
9

0

10

(1 + x)2
dx = 10

10

1

1

u2
du [u = 1 + x, du = dx] = 10 − 1

u

10

1

= 10 − 1
10
+ 1 = 9 ft-lb

5. The force function is given by F (x) (in newtons) and the work (in joules) is the area under the curve, given by
8

0
F (x) dx =

4

0
F (x) dx+

8

4
F (x) dx = 1

2
(4)(30) + (4)(30) = 180 J.

7. 10 = f(x) = kx = 1
3k [4 inches = 1

3 foot], so k = 30 lb/ft and f(x) = 30x. Now 6 inches = 1
2 foot, so

W =
1/2

0
30xdx = 15x2

1/2

0
= 15

4
ft-lb.

9. (a) If 0.12

0
kx dx = 2 J, then 2 = 1

2kx
2 0.12

0
= 1

2k(0.0144) = 0.0072k and k = 2
0.0072 =

2500
9 ≈ 277.78 N/m.

Thus, the work needed to stretch the spring from 35 cm to 40 cm is
0.10

0.05
2500
9

xdx = 1250
9

x2
1/10

1/20
= 1250

9
1
100
− 1

400
= 25

24
≈ 1.04 J.

(b) f(x) = kx, so 30 = 2500
9 x and x = 270

2500 m = 10.8 cm
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11. The distance from 20 cm to 30 cm is 0.1 m, so with f(x) = kx, we get W1 =
0.1

0
kx dx = k 1

2x
2 0.1

0
= 1

200k.

Now W2 =
0.2

0.1
kx dx = k 1

2
x2

0.2

0.1
= k 4

200
− 1

200
= 3

200
k. Thus, W2 = 3W1.

In Exercises 13 – 20, n is the number of subintervals of length ∆x, and x∗i is a sample point in the ith subinterval [xi−1, xi].

13. (a) The portion of the rope from x ft to (x+∆x) ft below the top of the building weighs 1
2
∆x lb and must be lifted x∗i ft,

so its contribution to the total work is 1
2
x∗i ∆x ft-lb. The total work is

W = lim
n→∞

n

i=1

1
2x
∗
i ∆x =

50

0
1
2xdx =

1
4x

2 50

0
= 2500

4 = 625 ft-lb

Notice that the exact height of the building does not matter (as long as it is more than 50 ft).

(b) When half the rope is pulled to the top of the building, the work to lift the top half of the rope is

W1 =
25

0
1
2
xdx = 1

4
x2

25

0
= 625

4
ft-lb. The bottom half of the rope is lifted 25 ft and the work needed to accomplish

that is W2 =
50

25
1
2
· 25dx = 25

2
x

50

25
= 625

2
ft-lb. The total work done in pulling half the rope to the top of the building

is W =W1 +W2 =
625
2
+ 625

4
= 3

4
· 625 = 1875

4
ft-lb.

15. The work needed to lift the cable is lim
n→∞

n
i=1 2x

∗
i ∆x =

500

0
2xdx = x2

500

0
= 250,000 ft-lb. The work needed to lift

the coal is 800 lb · 500 ft = 400,000 ft-lb. Thus, the total work required is 250,000 + 400,000 = 650,000 ft-lb.

17. At a height of x meters (0 ≤ x ≤ 12), the mass of the rope is (0.8 kg/m)(12− x m) = (9.6− 0.8x) kg and the mass of the

water is 36
12
kg/m (12− x m) = (36− 3x) kg. The mass of the bucket is 10 kg, so the total mass is

(9.6− 0.8x) + (36− 3x) + 10 = (55.6− 3.8x) kg, and hence, the total force is 9.8(55.6− 3.8x) N. The work needed to lift

the bucket ∆x m through the ith subinterval of [0, 12] is 9.8(55.6− 3.8x∗i )∆x, so the total work is

W = lim
n→∞

n

i=1

9.8(55.6− 3.8x∗i )∆x =
12

0
(9.8)(55.6− 3.8x) dx = 9.8 55.6x− 1.9x2 12

0
= 9.8(393.6) ≈ 3857 J

19. A “slice” of water ∆x m thick and lying at a depth of x∗i m (where 0 ≤ x∗i ≤ 1
2

) has volume (2× 1×∆x) m3, a mass of

2000∆x kg, weighs about (9.8)(2000∆x) = 19,600∆x N, and thus requires about 19,600x∗i ∆x J of work for its removal.

So W = lim
n→∞

n

i=1

19,600x∗i ∆x =
1/2

0
19,600xdx = 9800x2

1/2

0
= 2450 J.

21. A rectangular “slice” of water ∆x m thick and lying x m above the bottom has width x m and volume 8x∆x m3. It weighs

about (9.8× 1000)(8x∆x) N, and must be lifted (5− x) m by the pump, so the work needed is about

(9.8× 103)(5− x)(8x∆x) J. The total work required is

W ≈ 3

0
(9.8× 103)(5− x)8xdx = (9.8× 103) 3

0
(40x− 8x2) dx = (9.8× 103) 20x2 − 8

3
x3

3

0

= (9.8× 103)(180− 72) = (9.8× 103)(108) = 1058.4× 103 ≈ 1.06× 106 J
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23. Let x measure depth (in feet) below the spout at the top of the tank. A horizontal

disk-shaped “slice” of water ∆x ft thick and lying at coordinate x has radius
3
8
(16− x) ft ( ) and volume πr2∆x = π · 9

64
(16− x)2∆x ft3. It weighs

about (62.5) 9π
64
(16− x)2∆x lb and must be lifted x ft by the pump, so the

work needed to pump it out is about (62.5)x 9π
64
(16− x)2∆x ft-lb. The total

work required is

W ≈ 8

0
(62.5)x 9π

64 (16− x)2 dx = (62.5) 9π64
8

0
x(256− 32x+ x2) dx

= (62.5) 9π
64

8

0
(256x− 32x2 + x3) dx = (62.5) 9π

64
128x2 − 32

3
x3 + 1

4
x4

8

0

= (62.5)
9π

64

11, 264

3
= 33,000π ≈ 1.04× 105 ft-lb

( ) From similar triangles,
d

8− x
=
3

8
.

So r = 3 + d = 3 + 3
8 (8− x)

=
3(8)

8
+
3

8
(8− x)

= 3
8 (16− x)

25. If only 4.7× 105 J of work is done, then only the water above a certain level (call

it h) will be pumped out. So we use the same formula as in Exercise 21, except that

the work is fixed, and we are trying to find the lower limit of integration:

4.7× 105 ≈ 3

h
(9.8× 103)(5− x)8xdx = 9.8× 103 20x2 − 8

3x
3 3

h
⇔

4.7
9.8
× 102 ≈ 48 = 20 · 32 − 8

3
· 33 − 20h2 − 8

3
h3 ⇔

2h3 − 15h2 + 45 = 0. To find the solution of this equation, we plot 2h3 − 15h2 + 45 between h = 0 and h = 3.

We see that the equation is satisfied for h ≈ 2.0. So the depth of water remaining in the tank is about 2.0 m.

27. V = πr2x, so V is a function of x and P can also be regarded as a function of x. If V1 = πr2x1 and V2 = πr2x2, then

W =
x2

x1

F (x) dx =
x2

x1

πr2P (V (x)) dx =
x2

x1

P (V (x)) dV (x) [Let V (x) = πr2x, so dV (x) = πr2 dx.]

=
V2

V1

P (V ) dV by the Substitution Rule.

29. W =
b

a

F (r) dr =
b

a

G
m1m2

r2
dr = Gm1m2

−1
r

b

a

= Gm1m2
1

a
− 1

b

6.5 Average Value of a Function

1. fave =
1

b− a

b

a
f(x) dx = 1

4− 0
4

0
(4x− x2) dx = 1

4
2x2 − 1

3
x3

4

0
= 1

4
32− 64

3
− 0 = 1

4
32
3
= 8

3

3. gave =
1

b− a

b

a
g(x) dx = 1

8− 1
8

1

3
√
xdx = 1

7
3
4
x4/3

8

1
= 3

28
(16− 1) = 45

28

5. fave =
1

5− 0
5

0
te−t

2

dt = 1
5

−25
0

eu − 1
2
du u = −t2, du = −2t dt, t dt = − 1

2
du

= − 1
10

eu
−25
0

= − 1
10
(e−25 − 1) = 1

10
(1− e−25)
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7. have =
1

π− 0
π

0
cos4 x sinxdx = 1

π

−1
1

u4(−du) [u = cosx, du = − sinxdx]

= 1
π

1

−1 u
4 du = 1

π
· 2 1

0
u4 du [by Theorem 5.5.7] = 2

π
1
5
u5

1

0
= 2

5π

9. (a) fave =
1

5 − 2

5

2

(x− 3)2 dx = 1

3

1

3
(x− 3)3

5

2

= 1
9
23 − (−1)3 = 1

9
(8 + 1) = 1

(c)

(b) f(c) = fave ⇔ (c− 3)2 = 1 ⇔
c− 3 = ±1 ⇔ c = 2 or 4

11. (a) fave =
1

π − 0

π

0

(2 sinx− sin 2x) dx

= 1
π
−2 cosx+ 1

2
cos 2x

π

0

= 1
π

2 + 1
2
− −2 + 1

2
= 4

π

(c)

(b) f(c) = fave ⇔ 2 sin c− sin 2c = 4
π

⇔
c1 ≈ 1.238 or c2 ≈ 2.808

13. f is continuous on [1, 3], so by the Mean Value Theorem for Integrals there exists a number c in [1, 3] such that

3

1
f(x) dx = f(c)(3− 1) ⇒ 8 = 2f(c); that is, there is a number c such that f(c) = 8

2
= 4.

15. fave =
1

50− 20
50

20

f(x)dx ≈ 1
30
M3 =

1

30
· 50− 20

3
[f(25) + f(35) + f(45)] = 1

3
(38 + 29 + 48) = 115

3
= 38 1

3

17. Let t = 0 and t = 12 correspond to 9 AM and 9 PM, respectively.

Tave =
1

12− 0

12

0
50 + 14 sin 1

12
πt dt = 1

12
50t− 14 · 12

π
cos 1

12
πt

12

0

= 1
12
50 · 12 + 14 · 12

π + 14 · 12π = 50 + 28
π

◦F ≈ 59◦F

19. ρave =
1

8

8

0

12√
x+ 1

dx =
3

2

8

0

(x+ 1)−1/2 dx = 3
√
x+ 1

8

0
= 9− 3 = 6 kg/m

21. Vave =
1
5

5

0
V (t) dt = 1

5

5

0
5
4π

1− cos 2
5πt dt = 1

4π

5

0
1− cos 2

5πt dt

= 1
4π

t− 5
2π
sin 2

5
πt

5

0
= 1

4π
[(5− 0)− 0] = 5

4π
≈ 0.4 L

23. Let F (x) = x

a
f(t) dt for x in [a, b]. Then F is continuous on [a, b] and differentiable on (a, b), so by the Mean Value

Theorem there is a number c in (a, b) such that F (b)− F (a) = F 0(c)(b− a). But F 0(x) = f(x) by the Fundamental

Theorem of Calculus. Therefore, b

a
f(t) dt− 0 = f(c)(b− a).
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6 Review

1. (a) See Section 6.1, Figure 2 and Equations 6.1.1 and 6.1.2.

(b) Instead of using “top minus bottom” and integrating from left to right, we use “right minus left” and integrate from bottom

to top. See Figures 11 and 12 in Section 6.1.

2. The numerical value of the area represents the number of meters by which Sue is ahead of Kathy after 1 minute.

3. (a) See the discussion in Section 6.2, near Figures 2 and 3, ending in the Definition of Volume.

(b) See the discussion between Examples 5 and 6 in Section 6.2. If the cross-section is a disk, find the radius in terms of x or y

and use A = π(radius)2. If the cross-section is a washer, find the inner radius rin and outer radius rout and use

A = π r2out − π r2in .

4. (a) V = 2πrh∆r = (circumference)(height)(thickness)

(b) For a typical shell, find the circumference and height in terms of x or y and calculate

V =
b

a
(circumference)(height)(dx or dy), where a and b are the limits on x or y.

(c) Sometimes slicing produces washers or disks whose radii are difficult (or impossible) to find explicitly. On other

occasions, the cylindrical shell method leads to an easier integral than slicing does.

5. 6

0
f(x) dx represents the amount of work done. Its units are newton-meters, or joules.

6. (a) The average value of a function f on an interval [a, b] is fave =
1

b− a

b

a

f(x) dx.

(b) The Mean Value Theorem for Integrals says that there is a number c at which the value of f is exactly equal to the average

value of the function, that is, f(c) = fave. For a geometric interpretation of the Mean Value Theorem for Integrals, see

Figure 2 in Section 6.5 and the discussion that accompanies it.

1. The curves intersect when x2 = 4x− x2 ⇔ 2x2 − 4x = 0 ⇔
2x(x− 2) = 0 ⇔ x = 0 or 2.

A=
2

0
(4x− x2)− x2 dx =

2

0
(4x− 2x2) dx

= 2x2 − 2
3
x3

2

0
= 8− 16

3
− 0 = 8

3

3. If x ≥ 0, then |x | = x, and the graphs intersect when x = 1− 2x2 ⇔ 2x2 + x− 1 = 0 ⇔ (2x− 1)(x+ 1) = 0 ⇔
x = 1

2
or −1, but −1 < 0. By symmetry, we can double the area from x = 0 to x = 1

2
.

A= 2
1/2

0
(1− 2x2)− x dx = 2

1/2

0
(−2x2 − x+ 1) dx

= 2 − 2
3
x3 − 1

2
x2 + x

1/2

0
= 2 − 1

12
− 1

8
+ 1

2
− 0

= 2 7
24

= 7
12
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5. A =
2

0

sin
πx

2
− (x2 − 2x) dx

= − 2
π
cos

πx

2
− 1

3
x3 + x2

2

0

= 2
π
− 8

3
+ 4 − − 2

π
− 0 + 0 = 4

3
+ 4

π

7. Using washers with inner radius x2 and outer radius 2x, we have

V = π
2

0
(2x)2 − (x2)2 dx = π

2

0
(4x2 − x4) dx

= π 4
3x

3 − 1
5x

5 2

0
= π 32

3 − 32
5

= 32π · 2
15
= 64

15
π

9. V = π
3

−3 (9− y2)− (−1) 2 − [0− (−1)]2 dy

= 2π
3

0
(10− y2)2 − 1 dy = 2π

3

0
(100− 20y2 + y4 − 1) dy

= 2π
3

0
(99− 20y2 + y4) dy = 2π 99y − 20

3
y3 + 1

5
y5

3

0

= 2π 297− 180 + 243
5

= 1656
5

π

11. The graph of x2 − y2 = a2 is a hyperbola with right and left branches.

Solving for y gives us y2 = x2 − a2 ⇒ y = ±√x2 − a2.

We’ll use shells and the height of each shell is
√
x2 − a2 − −√x2 − a2 = 2

√
x2 − a2.

The volume is V =
a+h

a
2πx · 2√x2 − a2 dx. To evaluate, let u = x2 − a2,

so du = 2xdx and xdx = 1
2 du. When x = a, u = 0, and when x = a+ h,

u = (a+ h)2 − a2 = a2 + 2ah+ h2 − a2 = 2ah+ h2.

Thus, V = 4π
2ah+h2

0

√
u

1

2
du = 2π

2

3
u3/2

2ah+h2

0

=
4

3
π 2ah+ h2

3/2.

13. A shell has radius π
2
− x, circumference 2π π

2
− x , and height cos2 x− 1

4
.

y = cos2 x intersects y = 1
4

when cos2 x = 1
4
⇔

cosx = ± 1
2

[ |x| ≤ π/2] ⇔ x = ±π
3

.

V =
π/3

−π/3
2π

π

2
− x cos2 x− 1

4
dx
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15. (a) A cross-section is a washer with inner radius x2 and outer radius x.

V =
1

0
π (x)2 − (x2)2 dx =

1

0
π(x2 − x4) dx = π 1

3
x3 − 1

5
x5

1

0
= π 1

3
− 1

5
= 2

15
π

(b) A cross-section is a washer with inner radius y and outer radius y.

V =
1

0
π y

2

− y2 dy =
1

0
π(y − y2) dy = π 1

2
y2 − 1

3
y3

1

0
= π 1

2
− 1

3
= π

6

(c) A cross-section is a washer with inner radius 2− x and outer radius 2− x2.

V =
1

0
π (2− x2)2 − (2− x)2 dx =

1

0
π(x4 − 5x2 + 4x) dx = π 1

5
x5 − 5

3
x3 + 2x2

1

0
= π 1

5
− 5

3
+ 2 = 8

15
π

17. (a) Using the Midpoint Rule on [0, 1] with f(x) = tan(x2) and n = 4, we estimate

A =
1

0
tan(x2) dx ≈ 1

4
tan 1

8

2
+ tan 3

8

2
+ tan 5

8

2
+ tan 7

8

2 ≈ 1
4
(1.53) ≈ 0.38

(b) Using the Midpoint Rule on [0, 1] with f(x) = π tan2(x2) (for disks) and n = 4, we estimate

V =
1

0
f(x) dx ≈ 1

4
π tan2 1

8

2
+ tan2 3

8

2
+ tan2 5

8

2
+ tan2 7

8

2 ≈ π
4
(1.114) ≈ 0.87

19. π/2

0
2πx cosxdx =

π/2

0
(2πx) cosxdx

The solid is obtained by rotating the region R = (x, y) | 0 ≤ x ≤ π
2
, 0 ≤ y ≤ cosx about the y-axis.

21. π

0
π(2− sinx)2 dx

The solid is obtained by rotating the region R = {(x, y) | 0 ≤ x ≤ π, 0 ≤ y ≤ 2− sinx} about the x-axis.

23. Take the base to be the disk x2 + y2 ≤ 9. Then V =
3

−3A(x) dx, where A(x0) is the area of the isosceles right triangle

whose hypotenuse lies along the line x = x0 in the xy-plane. The length of the hypotenuse is 2
√
9− x2 and the length of

each leg is
√
2
√
9− x2. A(x) = 1

2

√
2
√
9− x2

2
= 9− x2, so

V = 2
3

0
A(x) dx = 2

3

0
(9− x2) dx = 2 9x− 1

3
x3

3

0
= 2(27− 9) = 36

25. Equilateral triangles with sides measuring 1
4x meters have height 14x sin 60

◦ =
√
3
8 x. Therefore,

A(x) = 1
2
· 1
4
x ·

√
3
8
x =

√
3

64
x2. V =

20

0
A(x) dx =

√
3

64

20

0
x2 dx =

√
3

64
1
3
x3

20

0
= 8000

√
3

64 · 3 = 125
√
3

3
m3.

27. f(x) = kx ⇒ 30 N = k(15− 12) cm ⇒ k = 10 N/cm = 1000 N/m. 20 cm− 12 cm = 0.08 m ⇒

W =
0.08

0
kx dx = 1000

0.08

0
xdx = 500 x2

0.08

0
= 500(0.08)2 = 3.2 N·m = 3.2 J.
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29. (a) The parabola has equation y = ax2 with vertex at the origin and passing through

(4, 4). 4 = a · 42 ⇒ a = 1
4
⇒ y = 1

4
x2 ⇒ x2 = 4y ⇒

x = 2 y. Each circular disk has radius 2 y and is moved 4− y ft.

W =
4

0
π 2 y

2

62.5(4− y) dy = 250π
4

0
y(4− y) dy

= 250π 2y2 − 1
3y

3 4

0
= 250π 32− 64

3
= 8000π

3 ≈ 8378 ft-lb

(b) In part (a) we knew the final water level (0) but not the amount of work done. Here

we use the same equation, except with the work fixed, and the lower limit of

integration (that is, the final water level — call it h) unknown: W = 4000 ⇔

250π 2y2 − 1
3y

3 4

h
= 4000 ⇔ 16

π = 32− 64
3
− 2h2 − 1

3h
3 ⇔

h3 − 6h2 + 32− 48
π = 0. We graph the function f(h) = h3 − 6h2 + 32− 48

π

on the interval [0, 4] to see where it is 0. From the graph, f(h) = 0 for h ≈ 2.1.

So the depth of water remaining is about 2.1 ft.

31. lim
h→0

fave = lim
h→0

1

(x+ h)− x

x+h

x

f(t) dt = lim
h→0

F (x+ h)− F (x)

h
, where F (x) = x

a
f(t) dt. But we recognize this

limit as being F 0(x) by the definition of a derivative. Therefore, lim
h→0

fave = F 0(x) = f(x) by FTC1.





PROBLEMS PLUS

1. (a) The area under the graph of f from 0 to t is equal to t

0
f(x) dx, so the requirement is that t

0
f(x) dx = t3 for all t. We

differentiate both sides of this equation with respect to t (with the help of FTC1) to get f(t) = 3t2. This function is

positive and continuous, as required.

(b) The volume generated from x = 0 to x = b is b

0
π[f(x)]2 dx. Hence, we are given that b2 = b

0
π[f(x)]2 dx for all

b > 0. Differentiating both sides of this equation with respect to b using the Fundamental Theorem of Calculus gives

2b = π[f(b)]2 ⇒ f(b) = 2b/π, since f is positive. Therefore, f(x) = 2x/π.

3. Let a and b be the x-coordinates of the points where the line intersects the

curve. From the figure, R1 = R2 ⇒

a

0
c− 8x− 27x3 dx=

b

a
8x− 27x3 − c dx

cx− 4x2 + 27
4
x4

a

0
= 4x2 − 27

4
x4 − cx

b

a

ac− 4a2 + 27
4
a4 = 4b2 − 27

4
b4 − bc − 4a2 − 27

4
a4 − ac

0 = 4b2 − 27
4
b4 − bc = 4b2 − 27

4
b4 − b 8b− 27b3

= 4b2 − 27
4
b4 − 8b2 + 27b4 = 81

4
b4 − 4b2

= b2 81
4 b

2 − 4

So for b > 0, b2 = 16
81

⇒ b = 4
9

. Thus, c = 8b− 27b3 = 8 4
9
− 27 64

729
= 32

9
− 64

27
= 32

27
.

5. (a) V = πh2(r − h/3) = 1
3
πh2(3r − h). See the solution to Exercise 6.2.51.

(b) The smaller segment has height h = 1 − x and so by part (a) its volume is

V = 1
3
π(1− x)2 [3(1)− (1− x)] = 1

3
π(x− 1)2(x+ 2). This volume must be 1

3
of the total volume of the sphere,

which is 4
3
π(1)3. So 1

3
π(x− 1)2(x+ 2) = 1

3
4
3
π ⇒ (x2 − 2x+ 1)(x+ 2) = 4

3
⇒ x3 − 3x+ 2 = 4

3
⇒

3x3 − 9x+ 2 = 0. Using Newton’s method with f(x) = 3x3 − 9x+ 2, f 0(x) = 9x2 − 9, we get

xn+1 = xn − 3x3n − 9xn + 2
9x2n − 9 . Taking x1 = 0, we get x2 ≈ 0.2222, and x3 ≈ 0.2261 ≈ x4, so, correct to four decimal

places, x ≈ 0.2261.

(c) With r = 0.5 and s = 0.75, the equation x3 − 3rx2 + 4r3s = 0 becomes x3 − 3(0.5)x2 + 4(0.5)3(0.75) = 0 ⇒
x3 − 3

2x
2 + 4 1

8
3
4 = 0 ⇒ 8x3 − 12x2 + 3 = 0. We use Newton’s method with f(x) = 8x3 − 12x2 + 3,

f 0(x) = 24x2 − 24x, so xn+1 = xn − 8x3n − 12x2n + 3
24x2n − 24xn . Take x1 = 0.5. Then x2 ≈ 0.6667, and x3 ≈ 0.6736 ≈ x4.

So to four decimal places the depth is 0.6736 m.
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(d) (i) From part (a) with r = 5 in., the volume of water in the bowl is

V = 1
3πh

2(3r − h) = 1
3πh

2(15− h) = 5πh2 − 1
3πh

3. We are given that dV
dt

= 0.2 in3/s and we want to find dh

dt

when h = 3. Now dV

dt
= 10πh

dh

dt
− πh2

dh

dt
, so dh

dt
=

0.2

π(10h− h2)
. When h = 3, we have

dh

dt
=

0.2

π(10 · 3− 32) =
1

105π
≈ 0.003 in/s.

(ii) From part (a), the volume of water required to fill the bowl from the instant that the water is 4 in. deep is

V = 1
2 · 43π(5)3 − 1

3π(4)
2(15− 4) = 2

3 · 125π− 16
3 · 11π = 74

3 π. To find the time required to fill the bowl we divide

this volume by the rate: Time = 74π/3
0.2

= 370π
3
≈ 387 s ≈ 6.5 min.

7. We are given that the rate of change of the volume of water is dV

dt
= −kA(x), where k is some positive constant and A(x) is

the area of the surface when the water has depth x. Now we are concerned with the rate of change of the depth of the water

with respect to time, that is, dx
dt

. But by the Chain Rule, dV
dt

=
dV

dx

dx

dt
, so the first equation can be written

dV

dx

dx

dt
= −kA(x) ( ). Also, we know that the total volume of water up to a depth x is V (x) = x

0
A(s) ds, where A(s) is

the area of a cross-section of the water at a depth s. Differentiating this equation with respect to x, we get dV/dx = A(x).

Substituting this into equation , we get A(x)(dx/dt) = −kA(x) ⇒ dx/dt = −k, a constant.

9. We must find expressions for the areas A and B, and then set them equal and see what this says about the curve C. If

P = a, 2a2 , then area A is just a

0
(2x2 − x2) dx =

a

0
x2 dx = 1

3
a3. To find area B, we use y as the variable of

integration. So we find the equation of the middle curve as a function of y: y = 2x2 ⇔ x = y/2, since we are

concerned with the first quadrant only. We can express area B as

2a2

0

y/2− C(y) dy =
4

3
(y/2)3/2

2a2

0

−
2a2

0

C(y) dy =
4

3
a3 −

2a2

0

C(y) dy

where C(y) is the function with graph C. Setting A = B, we get 1
3
a3 = 4

3
a3 − 2a2

0
C(y) dy ⇔ 2a2

0
C(y) dy = a3.

Now we differentiate this equation with respect to a using the Chain Rule and the Fundamental Theorem:

C(2a2)(4a) = 3a2 ⇒ C(y) = 3
4

y/2, where y = 2a2. Now we can solve for y: x = 3
4

y/2 ⇒

x2 = 9
16
(y/2) ⇒ y = 32

9
x2.

11. (a) Stacking disks along the y-axis gives us V =
h

0
π [f(y)]2 dy.

(b) Using the Chain Rule, dV
dt

=
dV

dh
· dh
dt
= π [f(h)]2

dh

dt
.
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(c) kA
√
h = π[f(h)]2

dh

dt
. Set dh

dt
= C: π[f(h)]2C = kA

√
h ⇒ [f(h)]2 =

kA

πC

√
h ⇒ f(h) =

kA

πC
h1/4; that

is, f(y) = kA

πC
y1/4. The advantage of having dh

dt
= C is that the markings on the container are equally spaced.

13. The cubic polynomial passes through the origin, so let its equation be

y = px3 + qx2 + rx. The curves intersect when px3 + qx2 + rx = x2 ⇔
px3 + (q − 1)x2 + rx = 0. Call the left side f(x). Since f(a) = f(b) = 0,

another form of f is

f(x) = px(x− a)(x− b) = px[x2 − (a+ b)x+ ab]

= p[x3 − (a+ b)x2 + abx]

Since the two areas are equal, we must have a

0
f(x) dx = − b

a
f(x) dx ⇒

[F (x)]a0 = [F (x)]
a
b ⇒ F (a)− F (0) = F (a)− F (b) ⇒ F (0) = F (b), where F is an antiderivative of f .

Now F (x) = f(x) dx = p[x3 − (a+ b)x2 + abx] dx = p 1
4
x4 − 1

3
(a+ b)x3 + 1

2
abx2 + C, so

F (0) = F (b) ⇒ C = p 1
4
b4 − 1

3
(a+ b)b3 + 1

2
ab3 + C ⇒ 0 = p 1

4
b4 − 1

3
(a+ b)b3 + 1

2
ab3 ⇒

0 = 3b− 4(a+ b) + 6a [multiply by 12/(pb3), b 6= 0] ⇒ 0 = 3b− 4a− 4b+ 6a ⇒ b = 2a.

Hence, b is twice the value of a.

15. We assume that P lies in the region of positive x. Since y = x3 is an odd

function, this assumption will not affect the result of the calculation. Let

P = a, a3 . The slope of the tangent to the curve y = x3 at P is 3a2, and so

the equation of the tangent is y − a3 = 3a2(x− a) ⇔ y = 3a2x− 2a3.

We solve this simultaneously with y = x3 to find the other point of intersection:

x3 = 3a2x− 2a3 ⇔ (x− a)2(x+ 2a) = 0. So Q = −2a,−8a3 is

the other point of intersection. The equation of the tangent at Q is

y − (−8a3) = 12a2[x− (−2a)] ⇔ y = 12a2x+ 16a3. By symmetry,

this tangent will intersect the curve again at x = −2(−2a) = 4a. The curve lies above the first tangent, and

below the second, so we are looking for a relationship between A = a

−2a x3 − (3a2x− 2a3) dx and

B =
4a

−2a (12a2x+ 16a3)− x3 dx. We calculate A = 1
4x

4 − 3
2a

2x2 + 2a3x
a

−2a =
3
4a

4 − (−6a4) = 27
4 a

4, and

B = 6a2x2 + 16a3x− 1
4
x4

4a

−2a = 96a
4 − (−12a4) = 108a4. We see that B = 16A = 24A. This is because our

calculation of area B was essentially the same as that of area A, with a replaced by −2a, so if we replace a with −2a in our

expression for A, we get 27
4
(−2a)4 = 108a4 = B.





7 TECHNIQUES OF INTEGRATION
7.1 Integration by Parts

1. Let u = lnx, dv = x2 dx ⇒ du = 1
x dx, v = 1

3x
3. Then by Equation 2,

x2 lnxdx= (lnx) 1
3x

3 − 1
3x

3 1
x

dx = 1
3x

3 lnx− 1
3

x2 dx = 1
3x

3 lnx− 1
3

1
3x

3 + C

= 1
3x

3 lnx− 1
9x

3 + C or 1
3x

3 lnx− 1
3
+C

Note: A mnemonic device which is helpful for selecting u when using integration by parts is the LIATE principle of precedence for u:

Logarithmic
Inverse trigonometric
Algebraic
Trigonometric
Exponential

If the integrand has several factors, then we try to choose among them a u which appears as high as possible on the list. For example, in xe2x dx

the integrand is xe2x, which is the product of an algebraic function (x) and an exponential function (e2x). Since Algebraic appears before Exponential,
we choose u = x. Sometimes the integration turns out to be similar regardless of the selection of u and dv, but it is advisable to refer to LIATE when in
doubt.

3. Let u = x, dv = cos 5xdx ⇒ du = dx, v = 1
5 sin 5x. Then by Equation 2,

x cos 5xdx = 1
5x sin 5x− 1

5 sin 5xdx =
1
5x sin 5x+

1
25 cos 5x+C.

5. Let u = r, dv = er/2 dr ⇒ du = dr, v = 2er/2. Then rer/2 dr = 2rer/2 − 2er/2 dr = 2rer/2 − 4er/2 + C.

7. Let u = x2, dv = sinπxdx ⇒ du = 2xdx and v = − 1
π cosπx. Then

I = x2 sinπxdx = − 1
π
x2 cosπx+ 2

π
x cosπxdx ( ). Next let U = x, dV = cosπxdx ⇒ dU = dx,

V = 1
π sinπx, so x cosπxdx = 1

πx sinπx− 1
π

sinπxdx = 1
πx sinπx+

1
π2
cosπx+ C1.

Substituting for x cosπxdx in ( ), we get

I = − 1
π
x2 cosπx+ 2

π
1
π
x sinπx+ 1

π2
cosπx+ C1 = − 1

π
x2 cosπx+ 2

π2
x sinπx+ 2

π3
cosπx+ C, where C = 2

π
C1.

9. Let u = ln(2x+ 1), dv = dx ⇒ du =
2

2x+ 1
dx, v = x. Then

ln(2x+ 1) dx = x ln(2x+ 1)− 2x

2x+ 1
dx = x ln(2x+ 1)− (2x+ 1)− 1

2x+ 1
dx

= x ln(2x+ 1)− 1− 1

2x+ 1
dx = x ln(2x+ 1)− x+ 1

2
ln(2x+ 1) + C

= 1
2 (2x+ 1) ln(2x+ 1)− x+ C

11. Let u = arctan 4t, dv = dt ⇒ du =
4

1 + (4t)2
dt =

4

1 + 16t2
dt, v = t. Then

arctan 4t dt = t arctan 4t− 4t

1 + 16t2
dt = t arctan 4t− 1

8

32t

1 + 16t2
dt = t arctan 4t− 1

8
ln(1 + 16t2) +C.
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13. Let u = t, dv = sec2 2t dt ⇒ du = dt, v = 1
2 tan 2t. Then

t sec2 2t dt = 1
2
t tan 2t− 1

2
tan 2t dt = 1

2
t tan 2t− 1

4
ln |sec 2t|+C.

15. First let u = (lnx)2, dv = dx ⇒ du = 2 lnx · 1
x
dx, v = x. Then by Equation 2,

I = (lnx)2 dx = x(lnx)2 − 2 x lnx · 1x dx = x(lnx)2 − 2 lnxdx. Next let U = lnx, dV = dx ⇒

dU = 1/xdx, V = x to get lnxdx = x lnx− x · (1/x) dx = x lnx− dx = x lnx− x+ C1. Thus,

I = x(lnx)2 − 2(x lnx− x+C1) = x(lnx)2 − 2x lnx+ 2x+ C, where C = −2C1.

17. First let u = sin 3θ, dv = e2θ dθ ⇒ du = 3cos 3θ dθ, v = 1
2
e2θ. Then

I = e2θ sin 3θ dθ = 1
2e

2θ sin 3θ − 3
2

e2θ cos 3θ dθ. Next let U = cos 3θ, dV = e2θ dθ ⇒ dU = −3 sin 3θ dθ,

V = 1
2
e2θ to get e2θ cos 3θ dθ = 1

2
e2θ cos 3θ + 3

2
e2θ sin 3θ dθ. Substituting in the previous formula gives

I = 1
2e

2θ sin 3θ − 3
4e

2θ cos 3θ − 9
4

e2θ sin 3θ dθ = 1
2e

2θ sin 3θ − 3
4e

2θ cos 3θ − 9
4I ⇒

13
4
I = 1

2
e2θ sin 3θ − 3

4
e2θ cos 3θ + C1. Hence, I= 1

13
e2θ(2 sin 3θ − 3 cos 3θ) + C, where C = 4

13
C1.

19. Let u = t, dv = sin 3t dt ⇒ du = dt, v = − 1
3
cos 3t. Then

π

0
t sin 3t dt = − 1

3
t cos 3t

π

0
+ 1

3

π

0
cos 3t dt = 1

3
π − 0 + 1

9
sin 3t

π

0
= π

3
.

21. Let u = t, dv = cosh t dt ⇒ du = dt, v = sinh t. Then

1

0
t cosh t dt= t sinh t

1

0
− 1

0
sinh t dt = (sinh 1− sinh 0)− cosh t

1

0
= sinh 1− (cosh 1− cosh 0)

= sinh 1− cosh 1 + 1.

We can use the definitions of sinh and cosh to write the answer in terms of e:

sinh 1− cosh 1 + 1 = 1
2
(e1 − e−1)− 1

2
(e1 + e−1) + 1 = −e−1 + 1 = 1− 1/e.

23. Let u = lnx, dv = x−2 dx ⇒ du =
1

x
dx, v = −x−1. By (6),

2

1

lnx

x2
dx = − lnx

x

2

1

+
2

1

x−2 dx = − 1
2
ln 2 + ln 1 + − 1

x

2

1

= − 1
2
ln 2 + 0− 1

2
+ 1 = 1

2
− 1

2
ln 2.

25. Let u = y, dv = dy

e2y
= e−2ydy ⇒ du = dy, v = −1

2
e−2y. Then

1

0

y

e2y
dy = − 1

2
ye−2y

1

0
+ 1

2

1

0

e−2ydy = − 1
2
e−2 + 0 − 1

4
e−2y

1

0
= − 1

2
e−2 − 1

4
e−2 + 1

4
= 1

4
− 3

4
e−2.

27. Let u = cos−1 x, dv = dx ⇒ du = − dx√
1− x2

, v = x. Then

I =
1/2

0

cos−1 xdx = x cos−1 x
1/2

0
+

1/2

0

xdx√
1− x2

= 1
2
· π
3
+

3/4

1

t−1/2 − 1
2
dt , where t = 1− x2 ⇒

dt = −2xdx. Thus, I = π
6
+ 1

2

1

3/4
t−1/2 dt = π

6
+
√
t
1

3/4
= π

6
+ 1−

√
3
2
= 1

6
π + 6− 3√3 .



SECTION 7.1 INTEGRATION BY PARTS ¤ 297

29. Let u = ln (sinx), dv = cosxdx ⇒ du =
cosx

sinx
dx, v = sinx. Then

I = cosx ln(sinx) dx = sinx ln(sinx)− cosxdx = sinx ln(sinx)− sinx+ C.

Another method: Substitute t = sinx, so dt = cosxdx. Then I = ln t dt = t ln t− t+ C (see Example 2) and so

I = sinx (ln sinx− 1) + C.

31. Let u = (lnx)2, dv = x4 dx ⇒ du = 2
lnx

x
dx, v = x5

5
. By (6),

2

1

x4(lnx)2 dx =
x5

5
(lnx)2

2

1

− 2
2

1

x4

5
lnxdx = 32

5
(ln 2)2 − 0− 2

2

1

x4

5
lnxdx.

Let U = lnx, dV =
x4

5
dx ⇒ dU =

1

x
dx, V =

x5

25
.

Then
2

1

x4

5
lnxdx =

x5

25
lnx

2

1

−
2

1

x4

25
dx = 32

25
ln 2− 0− x5

125

2

1

= 32
25
ln 2− 32

125
− 1

125
.

So 2

1
x4(lnx)2 dx = 32

5 (ln 2)
2 − 2 32

25 ln 2− 31
125

= 32
5 (ln 2)

2 − 64
25 ln 2 +

62
125 .

33. Let y =
√
x, so that dy = 1

2x
−1/2 dx =

1

2
√
x
dx =

1

2y
dx. Thus, cos

√
xdx = cos y (2y dy) = 2 y cos y dy. Now

use parts with u = y, dv = cos y dy, du = dy, v = sin y to get y cos y dy = y sin y − sin y dy = y sin y + cos y + C1,

so cos
√
xdx = 2y sin y + 2cos y +C = 2

√
x sin

√
x+ 2 cos

√
x+ C.

35. Let x = θ2, so that dx = 2θ dθ. Thus,
√
π

√
π/2

θ3 cos θ2 dθ =

√
π

√
π/2

θ2 cos θ2 · 1
2
(2θ dθ) = 1

2

π

π/2
x cosxdx. Now use

parts with u = x, dv = cosxdx, du = dx, v = sinx to get

1
2

π

π/2
x cosxdx= 1

2
x sinx

π

π/2 −
π

π/2
sinxdx = 1

2
x sinx+ cosx

π

π/2

= 1
2
(π sinπ + cosπ)− 1

2
π
2
sin π

2
+ cos π

2
= 1

2
(π · 0− 1)− 1

2
π
2
· 1 + 0 = − 1

2
− π

4

37. Let y = 1 + x, so that dy = dx. Thus, x ln(1 + x) dx = (y − 1) ln y dy. Now use parts with u = ln y, dv = (y − 1) dy,

du = 1
y
dy, v = 1

2
y2 − y to get

(y − 1) ln y dy = 1
2
y2 − y ln y − 1

2
y − 1 dy = 1

2
y(y − 2) ln y − 1

4
y2 + y +C

= 1
2
(1 + x)(x− 1) ln(1 + x)− 1

4
(1 + x)2 + 1 + x+ C,

which can be written as 1
2 (x

2 − 1) ln(1 + x)− 1
4x

2 + 1
2x+

3
4 +C.

In Exercises 39 – 42, let f(x) denote the integrand and F (x) its antiderivative (with C = 0).

39. Let u = 2x+ 3, dv = ex dx ⇒ du = 2 dx, v = ex. Then

(2x+ 3)ex dx= (2x+ 3)ex − 2 ex dx = (2x+ 3)ex − 2ex + C

= (2x+ 1) ex + C

We see from the graph that this is reasonable, since F has a minimum where

f changes from negative to positive.
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41. Let u = 1
2x

2, dv = 2x
√
1 + x2 dx ⇒ du = xdx, v = 2

3 (1 + x2)3/2.

Then

x3
√
1 + x2 dx= 1

2
x2 2

3
(1 + x2)3/2 − 2

3
x(1 + x2)3/2dx

= 1
3
x2(1 + x2)3/2 − 2

3
· 2
5
· 1
2
(1 + x2)5/2 +C

= 1
3
x2(1 + x2)3/2 − 2

15
(1 + x2)5/2 + C

Another method: Use substitution with u = 1 + x2 to get 1
5
(1 + x2)5/2 − 1

3
(1 + x2)3/2 +C.

43. (a) Take n = 2 in Example 6 to get sin2 xdx = −1
2
cosx sinx+

1

2
1 dx =

x

2
− sin 2x

4
+ C.

(b) sin4 xdx = − 1
4
cosx sin3 x+ 3

4
sin2 xdx = − 1

4
cosx sin3 x+ 3

8
x− 3

16
sin 2x+ C.

45. (a) From Example 6, sinn xdx = − 1
n
cosx sinn−1 x+

n− 1
n

sinn−2 xdx. Using (6),

π/2

0

sinn xdx= −cosx sin
n−1 x

n

π/2

0

+
n− 1
n

π/2

0

sinn−2 xdx

= (0− 0) + n− 1
n

π/2

0

sinn−2 xdx =
n− 1
n

π/2

0

sinn−2 xdx

(b) Using n = 3 in part (a), we have π/2

0
sin3 xdx = 2

3

π/2

0
sinxdx = − 2

3
cosx

π/2

0
= 2

3
.

Using n = 5 in part (a), we have π/2

0
sin5 xdx = 4

5

π/2

0
sin3 xdx = 4

5
· 2
3
= 8

15
.

(c) The formula holds for n = 1 (that is, 2n+ 1 = 3) by (b). Assume it holds for some k ≥ 1. Then
π/2

0

sin2k+1 xdx =
2 · 4 · 6 · · · · · (2k)

3 · 5 · 7 · · · · · (2k + 1) . By Example 6,

π/2

0

sin2k+3 xdx=
2k + 2

2k + 3

π/2

0

sin2k+1 xdx =
2k + 2

2k + 3
· 2 · 4 · 6 · · · · · (2k)
3 · 5 · 7 · · · · · (2k + 1)

=
2 · 4 · 6 · · · · · (2k)[2 (k + 1)]

3 · 5 · 7 · · · · · (2k + 1)[2 (k + 1) + 1] ,

so the formula holds for n = k + 1. By induction, the formula holds for all n ≥ 1.

47. Let u = (lnx)n, dv = dx ⇒ du = n(lnx)n−1(dx/x), v = x. By Equation 2,

(lnx)n dx = x(lnx)n − nx(lnx)n−1(dx/x) = x(lnx)n − n (lnx)n−1 dx.

49. tann xdx= tann−2 x tan2 xdx = tann−2 x (sec2 x− 1) dx = tann−2 x sec2 xdx− tann−2 xdx

= I − tann−2 xdx.

Let u = tann−2 x, dv = sec2 xdx ⇒ du = (n− 2) tann−3 x sec2 xdx, v = tanx. Then, by Equation 2,

I = tann−1 x− (n− 2) tann−2 x sec2 xdx

1I = tann−1 x− (n− 2)I
(n− 1)I = tann−1 x

I =
tann−1 x
n− 1

Returning to the original integral, tann xdx =
tann−1 x
n− 1 − tann−2 xdx.
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51. By repeated applications of the reduction formula in Exercise 47,

(lnx)3 dx= x (lnx)3 − 3 (lnx)2 dx = x(lnx)3 − 3 x(lnx)2 − 2 (lnx)1 dx

= x (lnx)3 − 3x(lnx)2 + 6 x(lnx)1 − 1 (lnx)0 dx

= x (lnx)3 − 3x(lnx)2 + 6x lnx− 6 1 dx = x (lnx)3 − 3x(lnx)2 + 6x lnx− 6x+C

53. Area = 5

0
xe−0.4xdx. Let u = x, dv = e−0.4x dx ⇒

du = dx, v = −2.5e−0.4x. Then

area = −2.5xe−0.4x 5

0
+ 2.5

5

0
e−0.4x dx

= −12.5e−2 + 0+ 2.5 −2.5e−0.4x 5

0

= −12.5e−2 − 6.25(e−2 − 1) = 6.25− 18.75e−2 or 25
4
− 75

4
e−2

55. The curves y = x sinx and y = (x− 2)2 intersect at a ≈ 1.04748 and

b ≈ 2.87307, so

area = b

a
[x sinx− (x− 2)2] dx

= −x cosx+ sinx− 1
3
(x− 2)3 b

a
[by Example 1]

≈ 2.81358− 0.63075 = 2.18283

57. V =
1

0
2πx cos(πx/2) dx. Let u = x, dv = cos(πx/2) dx ⇒ du = dx, v = 2

π
sin(πx/2).

V = 2π
2

π
x sin

πx

2

1

0

− 2π · 2
π

1

0

sin
πx

2
dx = 2π

2

π
− 0 − 4 − 2

π
cos

πx

2

1

0

= 4 +
8

π
(0− 1) = 4− 8

π
.

59. Volume = 0

−1 2π(1− x)e−x dx. Let u = 1− x, dv = e−x dx ⇒ du = − dx, v = −e−x.

V = 2π (1− x)(−e−x) 0

−1 − 2π
0

−1 e
−x dx = 2π (x− 1)(e−x) + e−x

0

−1 = 2π xe−x
0

−1 = 2π(0 + e) = 2πe

61. The average value of f(x) = x2 lnx on the interval [1, 3] is fave =
1

3− 1
3

1

x2 lnxdx = 1
2
I.

Let u = lnx, dv = x2 dx ⇒ du = (1/x) dx, v = 1
3x

3.

So I = 1
3x

3 lnx
3

1
− 3

1
1
3x

2 dx = (9 ln 3− 0)− 1
9x

3 3

1
= 9 ln 3− 3− 1

9
= 9 ln 3− 26

9 .

Thus, fave =
1
2
I = 1

2
9 ln 3− 26

9
= 9

2
ln 3− 13

9
.

63. Since v(t) > 0 for all t, the desired distance is s(t) = t

0
v(w) dw =

t

0
w2e−w dw.

First let u = w2, dv = e−w dw ⇒ du = 2wdw, v = −e−w. Then s(t) = −w2e−w t

0
+ 2

t

0
we−w dw.

Next let U = w, dV = e−w dw ⇒ dU = dw, V = −e−w. Then

s(t) = −t2e−t + 2 −we−w t

0
+

t

0
e−w dw = −t2e−t + 2 −te−t + 0 + −e−w t

0

= −t2e−t + 2(−te−t − e−t + 1) = −t2e−t − 2te−t − 2e−t + 2 = 2− e−t(t2 + 2t+ 2) meters

65. For I = 4

1
xf 00(x) dx, let u = x, dv = f 00(x) dx ⇒ du = dx, v = f 0(x). Then

I = xf 0(x) 4

1
− 4

1
f 0(x) dx = 4f 0(4)− 1 · f 0(1)− [f(4)− f(1)] = 4 · 3− 1 · 5− (7− 2) = 12− 5− 5 = 2.

We used the fact that f 00 is continuous to guarantee that I exists.
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67. Using the formula for volumes of rotation and the figure, we see that

Volume = d

0
πb2 dy − c

0
πa2 dy − d

c
π[g(y)]2 dy = πb2d− πa2c− d

c
π[g(y)]2 dy. Let y = f(x),

which gives dy = f 0(x) dx and g(y) = x, so that V = πb2d− πa2c − π
b

a
x2f 0(x) dx.

Now integrate by parts with u = x2, and dv = f 0(x) dx ⇒ du = 2xdx, v = f(x), and

b

a
x2 f 0(x) dx = x2 f(x)

b

a
− b

a
2x f(x) dx = b2 f(b)− a2 f(a)− b

a
2xf(x) dx, but f(a) = c and f(b) = d ⇒

V = πb2d− πa2c− π b2d− a2c− b

a
2xf(x) dx =

b

a
2πx f(x) dx.

7.2 Trigonometric Integrals

The symbols s
= and c

= indicate the use of the substitutions {u = sinx, du = cosxdx} and {u = cosx, du = − sinxdx}, respectively.

1. sin3 x cos2 xdx = sin2 x cos2 x sinxdx = (1− cos2 x) cos2 x sinxdx c
= (1− u2)u2(−du)

= (u2 − 1)u2 du = (u4 − u2) du = 1
5u

5 − 1
3u

3 +C = 1
5 cos

5 x− 1
3 cos

3 x+C

3. 3π/4

π/2
sin5 x cos3 xdx =

3π/4

π/2
sin5 x cos2 x cosxdx =

3π/4

π/2
sin5 x (1− sin2 x) cosxdx s

=
√
2/2

1
u5(1− u2) du

=
√
2/2

1
(u5 − u7) du = 1

6
u6 − 1

8
u8

√
2/2

1
= 1/8

6
− 1/16

8
− 1

6
− 1

8
= − 11

384

5. Let y = πx, so dy = π dx and

sin2(πx) cos5(πx) dx= 1
π

sin2 y cos5 y dy = 1
π

sin2 y cos4 y cos y dy

= 1
π

sin2 y (1− sin2 y)2 cos y dy s
= 1

π
u2(1− u2)2 du = 1

π
(u2 − 2u4 + u6) du

= 1
π

1
3u

3 − 2
5u

5 + 1
7u

7 +C = 1
3π sin

3 y − 2
5π sin

5 y + 1
7π sin

7 y +C

= 1
3π
sin3(πx)− 2

5π
sin5(πx) + 1

7π
sin7(πx) +C

7. π/2

0
cos2 θ dθ =

π/2

0
1
2
(1 + cos 2θ) dθ [half-angle identity]

= 1
2
θ + 1

2
sin 2θ

π/2

0
= 1

2
π
2
+ 0 − (0 + 0) = π

4

9. π

0
sin4(3t) dt =

π

0
sin2(3t)

2
dt =

π

0
1
2
(1− cos 6t) 2

dt = 1
4

π

0
(1− 2 cos 6t+ cos2 6t) dt

= 1
4

π

0
1− 2 cos 6t+ 1

2 (1 + cos 12t) dt = 1
4

π

0
3
2 − 2 cos 6t+ 1

2 cos 12t dt

= 1
4

3
2
t− 1

3
sin 6t+ 1

24
sin 12t

π

0
= 1

4
3π
2
− 0 + 0 − (0− 0 + 0) = 3π

8

11. (1 + cos θ)2 dθ = (1 + 2 cos θ + cos2 θ) dθ = θ + 2 sin θ + 1
2
(1 + cos 2θ) dθ

= θ + 2 sin θ + 1
2
θ + 1

4
sin 2θ +C = 3

2
θ + 2 sin θ + 1

4
sin 2θ + C

13. π/2

0
sin2 x cos2 xdx =

π/2

0
1
4 (4 sin

2 x cos2 x) dx =
π/2

0
1
4 (2 sinx cosx)

2dx = 1
4

π/2

0
sin2 2xdx

= 1
4

π/2

0
1
2
(1− cos 4x) dx = 1

8

π/2

0
(1− cos 4x) dx = 1

8
x− 1

4
sin 4x

π/2

0
= 1

8
π
2
= π

16
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15. cos5 α√
sinα

dα=
cos4 α√
sinα

cosαdα =
1− sin2 α 2

√
sinα

cosαdα
s
=

(1− u2)2√
u

du

=
1− 2u2 + u4

u1/2
du = (u−1/2 − 2u3/2 + u7/2) du = 2u1/2 − 4

5u
5/2 + 2

9u
9/2 + C

= 2
45
u1/2(45− 18u2 + 5u4) + C = 2

45

√
sinα (45− 18 sin2 α+ 5 sin4 α) +C

17. cos2 x tan3 xdx =
sin3 x

cosx
dx

c
=

(1− u2)(−du)
u

=
−1
u
+ u du

= − ln |u|+ 1
2
u2 + C = 1

2
cos2 x− ln |cosx|+C

19. cosx+ sin 2x

sinx
dx=

cosx+ 2 sinx cosx

sinx
dx =

cosx

sinx
dx+ 2cosxdx

s
=

1

u
du+ 2 sinx

= ln |u|+ 2 sinx+ C = ln |sinx|+ 2 sinx+ C

Or: Use the formula cotxdx = ln |sinx|+C.

21. Let u = tanx, du = sec2 xdx. Then sec2 x tanxdx = udu = 1
2
u2 +C = 1

2
tan2 x+ C.

Or: Let v = secx, dv = secx tanxdx. Then sec2 x tanxdx = v dv = 1
2
v2 +C = 1

2
sec2 x+ C.

23. tan2 xdx = (sec2 x− 1) dx = tanx− x+C

25. sec6 t dt = sec4 t · sec2 t dt = (tan2 t+ 1)2 sec2 t dt = (u2 + 1)2 du [u = tan t, du = sec2 t dt]

= (u4 + 2u2 + 1) du = 1
5
u5 + 2

3
u3 + u+ C = 1

5
tan5 t+ 2

3
tan3 t+ tan t+ C

27. π/3

0
tan5 x sec4 xdx =

π/3

0
tan5 x (tan2 x+ 1) sec2 xdx =

√
3

0
u5(u2 + 1) du [u = tanx, du = sec2 xdx]

=
√
3

0
(u7 + u5) du = 1

8
u8 + 1

6
u6

√
3

0
= 81

8
+ 27

6
= 81

8
+ 9

2
= 81

8
+ 36

8
= 117

8

Alternate solution:
π/3

0
tan5 x sec4 xdx =

π/3

0
tan4 x sec3 x secx tanxdx =

π/3

0
(sec2 x− 1)2 sec3 x secx tanxdx

=
2

1
(u2 − 1)2u3 du [u = secx, du = secx tanxdx] =

2

1
(u4 − 2u2 + 1)u3 du

=
2

1
(u7 − 2u5 + u3) du = 1

8
u8 − 1

3
u6 + 1

4
u4

2

1
= 32− 64

3
+ 4 − 1

8
− 1

3
+ 1

4
= 117

8

29. tan3 x secxdx = tan2 x secx tanxdx = (sec2 x− 1) secx tanxdx
= (u2 − 1) du [u = secx, du = secx tanxdx] = 1

3
u3 − u+C = 1

3
sec3 x− secx+ C

31. tan5 xdx = (sec2 x− 1)2 tanxdx = sec4 x tanxdx− 2 sec2 x tanxdx+ tanxdx

= sec3 x secx tanxdx− 2 tanx sec2 xdx+ tanxdx

= 1
4 sec

4 x− tan2 x+ ln |secx|+ C [or 1
4 sec

4 x− sec2 x+ ln |secx|+ C ]

33. tan3 θ

cos4 θ
dθ = tan3 θ sec4 θ dθ = tan3 θ · (tan2 θ + 1) · sec2 θ dθ

= u3(u2 + 1) du [u = tan θ, du = sec2 θ dθ]

= (u5 + u3) du = 1
6u

6 + 1
4u

4 +C = 1
6 tan

6 θ + 1
4 tan

4 θ + C
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35. Let u = x, dv = secx tanxdx ⇒ du = dx, v = secx. Then

x secx tanxdx = x secx− secxdx = x secx− ln |secx+ tanx|+ C.

37. π/2

π/6
cot2 xdx =

π/2

π/6
(csc2 x− 1) dx = − cotx− x

π/2

π/6
= 0− π

2
− −√3− π

6
=
√
3− π

3

39. cot3 α csc3 αdα = cot2 α csc2 α · cscα cotαdα = (csc2 α− 1) csc2 α · cscα cotαdα
= (u2 − 1)u2 · (−du) [u = cscα, du = − cscα cotαdα]

= (u2 − u4) du = 1
3u

3 − 1
5u

5 + C = 1
3 csc

3 α− 1
5 csc

5 α+ C

41. I = cscxdx =
cscx (cscx− cotx)

cscx− cotx dx =
− cscx cotx+ csc2 x

cscx− cotx dx. Let u = cscx− cotx ⇒

du = (− cscx cotx+ csc2 x) dx. Then I = du/u = ln |u| = ln |cscx− cotx|+ C.

43. sin 8x cos 5xdx
2a
= 1

2
[sin(8x− 5x) + sin(8x+ 5x)] dx = 1

2
sin 3xdx+ 1

2
sin 13xdx

= − 1
6
cos 3x− 1

26
cos 13x+ C

45. sin 5θ sin θ dθ
2b
= 1

2
[cos(5θ − θ)− cos(5θ + θ)] dθ = 1

2
cos 4θ dθ − 1

2
cos 6θ dθ = 1

8
sin 4θ − 1

12
sin 6θ + C

47. 1− tan2 x
sec2 x

dx = cos2 x− sin2 x dx = cos 2xdx =
1

2
sin 2x+C

49. Let u = tan(t2) ⇒ du = 2t sec2(t2) dt. Then t sec2(t2) tan4(t2) dt = u4 1
2
du = 1

10
u5 + C = 1

10
tan5(t2) + C.

In Exercises 51–54, let f(x) denote the integrand and F (x) its antiderivative (with C = 0).

51. Let u = x2, so that du = 2xdx. Then

x sin2(x2) dx= sin2 u 1
2 du = 1

2
1
2 (1− cos 2u) du

= 1
4
u− 1

2
sin 2u +C = 1

4
u− 1

4
1
2
· 2 sinu cosu + C

= 1
4x

2 − 1
4 sin(x

2) cos(x2) + C

We see from the graph that this is reasonable, since F increases where f is positive and F decreases where f is negative.

Note also that f is an odd function and F is an even function.

53. sin 3x sin 6xdx = 1
2
[cos(3x− 6x)− cos(3x+ 6x)] dx

= 1
2
(cos 3x− cos 9x) dx

= 1
6
sin 3x− 1

18
sin 9x+ C

Notice that f(x) = 0 whenever F has a horizontal tangent.

55. fave =
1
2π

π

−π sin
2 x cos3 xdx = 1

2π

π

−π sin
2 x (1− sin2 x) cosxdx

= 1
2π

0

0
u2(1− u2) du [where u = sinx]

= 0
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57. A=
π/4

−π/4
(cos2 x− sin2 x) dx =

π/4

−π/4
cos 2xdx

= 2
π/4

0

cos 2xdx = 2
1

2
sin 2x

π/4

0

= sin 2x
π/4

0

= 1− 0 = 1

59. It seems from the graph that 2π

0
cos3 xdx = 0, since the area below the

x-axis and above the graph looks about equal to the area above the axis and

below the graph. By Example 1, the integral is sinx− 1
3
sin3 x

2π

0
= 0.

Note that due to symmetry, the integral of any odd power of sinx or cosx

between limits which differ by 2nπ (n any integer) is 0.

61. Using disks, V =
π

π/2
π sin2 xdx = π

π

π/2
1
2
(1− cos 2x) dx = π 1

2
x− 1

4
sin 2x

π

π/2
= π π

2
− 0− π

4
+ 0 = π2

4

63. Using washers,

V =
π/4

0
π (1− sinx)2 − (1− cosx)2 dx

= π
π/4

0
(1− 2 sinx+ sin2 x)− (1− 2 cosx+ cos2 x) dx

= π
π/4

0
(2 cosx− 2 sinx+ sin2 x− cos2 x) dx

= π
π/4

0
(2 cosx− 2 sinx− cos 2x) dx = π 2 sinx+ 2cosx− 1

2
sin 2x

π/4

0

= π
√
2 +

√
2− 1

2
− (0 + 2− 0) = π 2

√
2− 5

2

65. s = f(t) =
t

0
sinωu cos2 ωudu. Let y = cosωu ⇒ dy = −ω sinωudu. Then

s = − 1
ω

cosωt

1
y2dy = − 1

ω
1
3
y3

cosωt

1
= 1

3ω
(1− cos3 ωt).

67. Just note that the integrand is odd [f(−x) = −f(x)].

Or: If m 6= n, calculate

π

−π
sinmx cosnxdx =

π

−π
1
2
[sin(m− n)x+ sin(m+ n)x] dx =

1

2
−cos(m− n)x

m− n
− cos(m+ n)x

m+ n

π

−π
= 0

If m = n, then the first term in each set of brackets is zero.

69. π

−π cosmx cosnxdx =
π

−π
1
2
[cos(m− n)x+ cos(m+ n)x] dx.

If m 6= n, this is equal to 1
2

sin(m− n)x

m− n
+
sin(m+ n)x

m+ n

π

−π
= 0.

If m = n, we get π

−π
1
2 [1 + cos(m+ n)x] dx = 1

2x
π

−π +
sin(m+ n)x

2(m+ n)

π

−π
= π + 0 = π.
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7.3 Trigonometric Substitution

1. Let x = 3 sec θ, where 0 ≤ θ < π
2

or π ≤ θ < 3π
2

. Then

dx = 3 sec θ tan θ dθ and
√
x2 − 9 = √9 sec2 θ − 9 = 9(sec2 θ − 1) =

√
9 tan2 θ

= 3 |tan θ| = 3 tan θ for the relevant values of θ.

1

x2
√
x2 − 9 dx =

1

9 sec2 θ · 3 tan θ 3 sec θ tan θ dθ =
1
9

cos θ dθ = 1
9
sin θ + C =

1

9

√
x2 − 9
x

+ C

Note that − sec(θ + π) = sec θ, so the figure is sufficient for the case π ≤ θ < 3π
2 .

3. Let x = 3 tan θ, where −π
2
< θ < π

2
. Then dx = 3 sec2 θ dθ and

√
x2 + 9=

√
9 tan2 θ + 9 = 9(tan2 θ + 1) =

√
9 sec2 θ

= 3 |sec θ| = 3 sec θ for the relevant values of θ.

x3√
x2 + 9

dx=
33 tan3 θ

3 sec θ
3 sec2 θ dθ = 33 tan3 θ sec θdθ = 33 tan2 θ tan θ sec θ dθ

= 33 (sec2 θ − 1) tan θ sec θ dθ = 33 (u2 − 1) du [u = sec θ, du = sec θ tan θ dθ]

= 33 1
3
u3 − u + C = 33 1

3
sec3 θ − sec θ + C = 33

1

3

x2 + 9
3/2

33
−
√
x2 + 9

3
+ C

= 1
3
(x2 + 9)3/2 − 9√x2 + 9 +C or 1

3
(x2 − 18)√x2 + 9 +C

5. Let t = sec θ, so dt = sec θ tan θ dθ, t =
√
2 ⇒ θ = π

4 , and t = 2 ⇒ θ = π
3 . Then

2

√
2

1

t3
√
t2 − 1 dt=

π/3

π/4

1

sec3 θ tan θ
sec θ tan θ dθ =

π/3

π/4

1

sec2 θ
dθ =

π/3

π/4

cos2 θ dθ

=
π/3

π/4
1
2 (1 + cos 2θ) dθ =

1
2
θ + 1

2 sin 2θ
π/3

π/4

= 1
2

π
3
+ 1

2

√
3
2

− π
4
+ 1

2
· 1 = 1

2
π
12
+
√
3
4
− 1

2
= π

24
+
√
3
8
− 1

4

7. Let x = 5 sin θ, so dx = 5cos θ dθ. Then

1

x2
√
25− x2

dx=
1

52 sin2 θ · 5 cos θ 5 cos θ dθ =
1

25
csc2 θ dθ

= − 1

25
cot θ + C = − 1

25

√
25− x2

x
+ C
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9. Let x = 4 tan θ, where −π
2 < θ < π

2 . Then dx = 4 sec2 θ dθ and
√
x2 + 16 =

√
16 tan2 θ + 16 = 16(tan2 θ + 1)

=
√
16 sec2 θ = 4 |sec θ|

= 4 sec θ for the relevant values of θ.

dx√
x2 + 16

=
4 sec2 θ dθ

4 sec θ
= sec θ dθ = ln |sec θ + tan θ|+ C1 = ln

√
x2 + 16

4
+

x

4
+ C1

= ln
√
x2 + 16 + x − ln |4|+ C1 = ln

√
x2 + 16 + x +C, where C = C1 − ln 4.

(Since
√
x2 + 16 + x > 0, we don’t need the absolute value.)

11. Let 2x = sin θ, where −π
2
≤ θ ≤ π

2
. Then x = 1

2
sin θ, dx = 1

2
cos θ dθ,

and
√
1− 4x2 = 1− (2x)2 = cos θ.
√
1− 4x2 dx= cos θ 1

2
cos θ dθ = 1

4
(1 + cos 2θ) dθ

= 1
4
θ + 1

2
sin 2θ + C = 1

4
(θ + sin θ cos θ) + C

= 1
4
sin−1(2x) + 2x

√
1− 4x2 +C

13. Let x = 3 sec θ, where 0 ≤ θ < π
2

or π ≤ θ < 3π
2

. Then

dx = 3 sec θ tan θ dθ and
√
x2 − 9 = 3 tan θ, so

√
x2 − 9
x3

dx =
3 tan θ

27 sec3 θ
3 sec θ tan θ dθ =

1

3

tan2 θ

sec2 θ
dθ

= 1
3

sin2 θ dθ = 1
3

1
2 (1− cos 2θ) dθ = 1

6θ − 1
12 sin 2θ +C = 1

6θ − 1
6 sin θ cos θ + C

=
1

6
sec−1

x

3
− 1

6

√
x2 − 9
x

3

x
+C =

1

6
sec−1

x

3
−
√
x2 − 9
2x2

+ C

15. Let x = a sin θ, dx = a cos θ dθ, x = 0 ⇒ θ = 0 and x = a ⇒ θ = π
2 . Then

a

0
x2
√
a2 − x2 dx=

π/2

0
a2 sin2 θ (a cos θ) a cos θ dθ = a4

π/2

0
sin2 θ cos2 θ dθ = a4

π/2

0
1
2
(2 sin θ cos θ)

2
dθ

=
a4

4

π/2

0

sin2 2θ dθ =
a4

4

π/2

0

1

2
(1− cos 4θ) dθ = a4

8
θ − 1

4
sin 4θ

π/2

0

=
a4

8

π

2
− 0 − 0 =

π

16
a4

17. Let u = x2 − 7, so du = 2xdx. Then x√
x2 − 7 dx =

1

2

1√
u
du = 1

2 · 2
√
u+C = x2 − 7 + C.
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19. Let x = tan θ, where −π
2 < θ < π

2 . Then dx = sec2 θ dθ

and
√
1 + x2 = sec θ, so

√
1 + x2

x
dx =

sec θ

tan θ
sec2 θ dθ =

sec θ

tan θ
(1 + tan2 θ) dθ

= (csc θ + sec θ tan θ) dθ

= ln |csc θ − cot θ|+ sec θ +C [by Exercise 7.2.41]

= ln

√
1 + x2

x
− 1

x
+

√
1 + x2

1
+C = ln

√
1 + x2 − 1

x
+
√
1 + x2 + C

21. Let x = 3
5
sin θ, so dx = 3

5
cos θ dθ, x = 0 ⇒ θ = 0, and x = 0.6 ⇒ θ = π

2
. Then

0.6

0

x2√
9− 25x2 dx=

π/2

0

3
5

2
sin2 θ

3 cos θ

3

5
cos θ dθ =

9

125

π/2

0

sin2 θ dθ

= 9
125

π/2

0
1
2
(1− cos 2θ) dθ = 9

250
θ − 1

2
sin 2θ

π/2

0

= 9
250

π
2 − 0 − 0 = 9

500π

23. 5 + 4x− x2 = −(x2 − 4x+ 4) + 9 = −(x− 2)2 + 9. Let

x− 2 = 3 sin θ, −π
2
≤ θ ≤ π

2
, so dx = 3cos θ dθ. Then

√
5 + 4x− x2 dx = 9− (x− 2)2 dx = 9− 9 sin2 θ 3 cos θ dθ

=
√
9 cos2 θ 3 cos θ dθ = 9 cos2 θ dθ

= 9
2
(1 + cos 2θ) dθ = 9

2
θ + 1

2 sin 2θ +C

= 9
2
θ + 9

4
sin 2θ +C = 9

2
θ + 9

4
(2 sin θ cos θ) +C

=
9

2
sin−1

x− 2
3

+
9

2
· x− 2

3
·
√
5 + 4x− x2

3
+ C

=
9

2
sin−1

x− 2
3

+
1

2
(x− 2)√5 + 4x− x2 +C

25. x2 + x+ 1 = x2 + x+ 1
4
+ 3

4
= x+ 1

2

2
+

√
3
2

2

. Let

x+ 1
2 =

√
3
2 tan θ, so dx =

√
3
2 sec

2 θ dθ and
√
x2 + x+ 1 =

√
3
2 sec θ.

Then

[continued]
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x√
x2 + x+ 1

dx=

√
3
2
tan θ − 1

2√
3
2
sec θ

√
3

2
sec2 θ dθ

=
√
3
2 tan θ − 1

2
sec θ dθ =

√
3
2 tan θ sec θ dθ − 1

2 sec θ dθ

=
√
3
2
sec θ − 1

2
ln |sec θ + tan θ|+ C1

=
√
x2 + x+ 1− 1

2
ln 2√

3

√
x2 + x+ 1 + 2√

3
x+ 1

2
+ C1

=
√
x2 + x+ 1− 1

2
ln 2√

3

√
x2 + x+ 1 + x+ 1

2
+ C1

=
√
x2 + x+ 1− 1

2
ln 2√

3
− 1

2
ln
√
x2 + x+ 1 + x+ 1

2
+C1

=
√
x2 + x+ 1− 1

2
ln
√
x2 + x+ 1 + x+ 1

2
+ C, where C = C1 − 1

2
ln 2√

3

27. x2 + 2x = (x2 + 2x+ 1)− 1 = (x+ 1)2 − 1. Let x+ 1 = 1 sec θ,

so dx = sec θ tan θ dθ and
√
x2 + 2x = tan θ. Then

√
x2 + 2xdx= tan θ (sec θ tan θ dθ) = tan2 θ sec θ dθ

= (sec2 θ − 1) sec θ dθ = sec3 θ dθ − sec θ dθ

= 1
2
sec θ tan θ + 1

2
ln |sec θ + tan θ|− ln |sec θ + tan θ|+ C

= 1
2 sec θ tan θ − 1

2 ln |sec θ + tan θ|+ C = 1
2 (x+ 1)

√
x2 + 2x− 1

2 ln x+ 1 +
√
x2 + 2x +C

29. Let u = x2, du = 2xdx. Then

x
√
1− x4 dx =

√
1− u2 1

2 du = 1
2

cos θ · cos θ dθ where u = sin θ, du = cos θ dθ,
and
√
1− u2 = cos θ

= 1
2

1
2
(1 + cos 2θ) dθ = 1

4
θ + 1

8
sin 2θ + C = 1

4
θ + 1

4
sin θ cos θ +C

= 1
4
sin−1 u+ 1

4
u
√
1− u2 + C = 1

4
sin−1(x2) + 1

4
x2
√
1− x4 +C

31. (a) Let x = a tan θ, where −π
2
< θ < π

2
. Then

√
x2 + a2 = a sec θ and

dx√
x2 + a2

=
a sec2 θ dθ

a sec θ
= sec θ dθ = ln|sec θ + tan θ|+C1 = ln

√
x2 + a2

a
+

x

a
+ C1

= ln x+
√
x2 + a2 +C where C = C1 − ln |a|

(b) Let x = a sinh t, so that dx = a cosh t dt and
√
x2 + a2 = a cosh t. Then

dx√
x2 + a2

=
a cosh t dt

a cosh t
= t+C = sinh−1

x

a
+C.

33. The average value of f(x) =
√
x2 − 1/x on the interval [1, 7] is

1

7− 1
7

1

√
x2 − 1
x

dx =
1

6

α

0

tan θ

sec θ
· sec θ tan θ dθ where x = sec θ, dx = sec θ tan θ dθ,√

x2 − 1 = tan θ, and α = sec−1 7

= 1
6

α

0
tan2 θ dθ = 1

6

α

0
(sec2 θ − 1) dθ = 1

6
tan θ − θ

α

0

= 1
6
(tanα− α) = 1

6

√
48− sec−1 7
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35. Area of4POQ = 1
2 (r cos θ)(r sin θ) =

1
2r

2 sin θ cos θ. Area of region PQR = r

r cos θ

√
r2 − x2 dx.

Let x = r cosu ⇒ dx = −r sinudu for θ ≤ u ≤ π
2

. Then we obtain

√
r2 − x2 dx= r sinu (−r sinu) du = −r2 sin2 udu = − 1

2
r2(u− sinu cosu) +C

= −1
2
r2 cos−1(x/r) + 1

2
x
√
r2 − x2 +C

so area of region PQR= 1
2
−r2 cos−1(x/r) + x

√
r2 − x2

r

r cos θ

= 1
2
0− (−r2θ + r cos θ r sin θ) = 1

2
r2θ − 1

2
r2 sin θ cos θ

and thus, (area of sector POR) = (area of4POQ) + (area of region PQR) = 1
2
r2θ.

37. From the graph, it appears that the curve y = x2
√
4− x2 and the

line y = 2− x intersect at about x = a ≈ 0.81 and x = 2, with

x2
√
4− x2 > 2− x on (a, 2). So the area bounded by the curve and the line is

A ≈ 2

a
x2
√
4− x2 − (2− x) dx =

2

a
x2
√
4− x2 dx− 2x− 1

2
x2

2

a
.

To evaluate the integral, we put x = 2 sin θ, where −π
2 ≤ θ ≤ π

2 . Then

dx = 2 cos θ dθ, x = 2 ⇒ θ = sin−1 1 = π
2 , and x = a ⇒ θ = α = sin−1(a/2) ≈ 0.416. So

2

a
x2
√
4− x2 dx≈ π/2

α
4 sin2 θ (2 cos θ)(2 cos θ dθ) = 4

π/2

α
sin2 2θ dθ = 4

π/2

α
1
2
(1− cos 4θ) dθ

= 2 θ − 1
4
sin 4θ

π/2

α
= 2 π

2
− 0 − α− 1

4
(0.996) ≈ 2.81

Thus, A ≈ 2.81− 2 · 2− 1
2
· 22 − 2a− 1

2
a2 ≈ 2.10.

39. (a) Let t = a sin θ, dt = a cos θ dθ, t = 0 ⇒ θ = 0 and t = x ⇒ θ = sin−1(x/a). Then

x

0

a2 − t2 dt=
sin−1(x/a)

0

a cos θ (a cos θ dθ)

= a2
sin−1(x/a)

0

cos2 θ dθ =
a2

2

sin−1(x/a)

0

(1 + cos 2θ) dθ

=
a2

2
θ + 1

2 sin 2θ
sin−1(x/a)

0
=

a2

2
θ + sin θ cos θ

sin−1(x/a)

0

=
a2

2
sin−1

x

a
+

x

a
·
√
a2 − x2

a
− 0

= 1
2
a2 sin−1(x/a) + 1

2
x
√
a2 − x2

(b) The integral x

0

√
a2 − t2 dt represents the area under the curve y =

√
a2 − t2 between the vertical lines t = 0 and t = x.

The figure shows that this area consists of a triangular region and a sector of the circle t2 + y2 = a2. The triangular region

has base x and height
√
a2 − x2, so its area is 1

2x
√
a2 − x2. The sector has area 1

2a
2θ = 1

2a
2 sin−1(x/a).
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41. Let the equation of the large circle be x2 + y2 = R2. Then the equation of

the small circle is x2 + (y − b)2 = r2, where b =
√
R2 − r2 is the distance

between the centers of the circles. The desired area is

A =
r

−r b+
√
r2 − x2 −√R2 − x2 dx

= 2
r

0
b+

√
r2 − x2 −√R2 − x2 dx

= 2
r

0
b dx+ 2

r

0

√
r2 − x2 dx− 2 r

0

√
R2 − x2 dx

The first integral is just 2br = 2r
√
R2 − r2. The second integral represents the area of a quarter-circle of radius r, so its value

is 1
4
πr2. To evaluate the other integral, note that

√
a2 − x2 dx = a2 cos2 θ dθ [x = a sin θ, dx = a cos θ dθ] = 1

2a
2 (1 + cos 2θ) dθ

= 1
2a

2 θ + 1
2 sin 2θ + C = 1

2a
2(θ + sin θ cos θ) +C

=
a2

2
arcsin

x

a
+

a2

2

x

a

√
a2 − x2

a
+C =

a2

2
arcsin

x

a
+

x

2

√
a2 − x2 + C

Thus, the desired area is

A = 2r
√
R2 − r2 + 2 1

4
πr2 − R2 arcsin(x/R) + x

√
R2 − x2

r

0

= 2r
√
R2 − r2 + 1

2
πr2 − R2 arcsin(r/R) + r

√
R2 − r2 = r

√
R2 − r2 + π

2
r2 −R2 arcsin(r/R)

43. We use cylindrical shells and assume that R > r. x2 = r2 − (y − R)2 ⇒ x = ± r2 − (y −R)2,

so g(y) = 2 r2 − (y −R)2 and

V =
R+r

R−r 2πy · 2 r2 − (y −R)2 dy =
r

−r 4π(u+R)
√
r2 − u2 du [where u = y −R]

= 4π
r

−r u
√
r2 − u2 du+ 4πR

r

−r
√
r2 − u2 du

where u = r sin θ , du = r cos θ dθ

in the second integral

= 4π − 1
3
(r2 − u2)3/2

r

−r
+ 4πR

π/2

−π/2 r
2 cos2 θ dθ = − 4π

3
(0− 0) + 4πRr2 π/2

−π/2 cos
2 θ dθ

= 2πRr2
π/2

−π/2(1 + cos 2θ) dθ = 2πRr
2 θ + 1

2
sin 2θ

π/2

−π/2 = 2π
2Rr2

Another method: Use washers instead of shells, so V = 8πR
r

0
r2 − y2 dy as in Exercise 6.2.63(a), but evaluate the

integral using y = r sin θ.
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7.4 Integration of Rational Functions by Partial Fractions

1. (a) 2x

(x+ 3)(3x+ 1)
=

A

x+ 3
+

B

3x+ 1

(b) 1

x3 + 2x2 + x
=

1

x(x2 + 2x+ 1)
=

1

x(x+ 1)2
=

A

x
+

B

x+ 1
+

C

(x+ 1)2

3. (a) x4 + 1

x5 + 4x3
=

x4 + 1

x3 (x2 + 4)
=

A

x
+

B

x2
+

C

x3
+

Dx+E

x2 + 4

(b) 1

(x2 − 9)2 =
1

[(x+ 3)(x− 3)]2 =
1

(x+ 3)2(x− 3)2 =
A

x+ 3
+

B

(x+ 3)2
+

C

x− 3 +
D

(x− 3)2

5. (a) x4

x4 − 1 =
(x4 − 1) + 1

x4 − 1 = 1 +
1

x4 − 1 [or use long division] = 1 +
1

(x2 − 1)(x2 + 1)
= 1 +

1

(x− 1)(x+ 1)(x2 + 1) = 1 +
A

x− 1 +
B

x+ 1
+

Cx+D

x2 + 1

(b) t4 + t2 + 1

(t2 + 1)(t2 + 4)2
=

At+B

t2 + 1
+

Ct+D

t2 + 4
+

Et+ F

(t2 + 4)2

7. x

x− 6 dx =
(x− 6) + 6

x− 6 dx = 1 +
6

x− 6 dx = x+ 6 ln |x− 6|+C

9. x− 9
(x+ 5)(x− 2) =

A

x+ 5
+

B

x− 2 . Multiply both sides by (x+ 5)(x− 2) to get x− 9 = A(x− 2) +B(x+ 5)(∗), or

equivalently, x− 9 = (A+B)x− 2A+ 5B. Equating coefficients of x on each side of the equation gives us 1 = A+B (1)

and equating constants gives us −9 = −2A+ 5B (2). Adding two times (1) to (2) gives us −7 = 7B ⇔ B = −1 and

hence, A = 2. [Alternatively, to find the coefficients A and B, we may use substitution as follows: substitute 2 for x in (∗) to

get −7 = 7B ⇔ B = −1, then substitute −5 for x in (∗) to get −14 = −7A ⇔ A = 2.] Thus,

x− 9
(x+ 5)(x− 2) dx =

2

x+ 5
+

−1
x− 2 dx = 2 ln |x+ 5|− ln |x− 2|+C.

11. 1

x2 − 1 =
1

(x+ 1)(x− 1) =
A

x+ 1
+

B

x− 1 . Multiply both sides by (x+ 1)(x− 1) to get 1 = A(x− 1) +B(x+ 1).

Substituting 1 for x gives 1 = 2B ⇔ B = 1
2

. Substituting −1 for x gives 1 = −2A ⇔ A = − 1
2

. Thus,

3

2

1

x2 − 1 dx =
3

2

−1/2
x+ 1

+
1/2

x− 1 dx = − 1
2 ln |x+ 1|+ 1

2 ln |x− 1|
3

2

= − 1
2
ln 4 + 1

2
ln 2 − − 1

2
ln 3 + 1

2
ln 1 = 1

2
(ln 2 + ln 3− ln 4) or 1

2
ln 3

2

13. ax

x2 − bx
dx =

ax

x(x− b)
dx =

a

x− b
dx = a ln |x− b|+ C
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15. x3 − 2x2 − 4
x3 − 2x2 = 1 +

−4
x2(x− 2) . Write −4

x2(x− 2) =
A

x
+

B

x2
+

C

x− 2 . Multiplying both sides by x2(x− 2) gives

−4 = Ax(x− 2) +B(x− 2) + Cx2. Substituting 0 for x gives −4 = −2B ⇔ B = 2. Substituting 2 for x gives

−4 = 4C ⇔ C = −1. Equating coefficients of x2, we get 0 = A+ C, so A = 1. Thus,

4

3

x3 − 2x2 − 4
x3 − 2x2 dx=

4

3

1 +
1

x
+
2

x2
− 1

x− 2 dx = x+ ln |x|− 2

x
− ln |x− 2|

4

3

= 4 + ln 4− 1
2
− ln 2 − 3 + ln 3− 2

3
− 0 = 7

6
+ ln 2

3

17. 4y2 − 7y − 12
y(y + 2)(y − 3) =

A

y
+

B

y + 2
+

C

y − 3 ⇒ 4y2 − 7y − 12 = A(y + 2)(y − 3) +By(y − 3) + Cy(y + 2). Setting

y = 0 gives −12 = −6A, so A = 2. Setting y = −2 gives 18 = 10B, so B = 9
5

. Setting y = 3 gives 3 = 15C, so C = 1
5

.

Now
2

1

4y2 − 7y − 12
y(y + 2)(y − 3) dy =

2

1

2

y
+

9/5

y + 2
+

1/5

y − 3 dy = 2 ln |y|+ 9
5
ln |y + 2|+ 1

5
ln |y − 3| 2

1

= 2 ln 2 + 9
5
ln 4 + 1

5
ln 1− 2 ln 1− 9

5
ln 3− 1

5
ln 2

= 2 ln 2 + 18
5
ln 2− 1

5
ln 2− 9

5
ln 3 = 27

5
ln 2− 9

5
ln 3 = 9

5
(3 ln 2− ln 3) = 9

5
ln 8

3

19. 1

(x+ 5)2 (x− 1) =
A

x+ 5
+

B

(x+ 5)2
+

C

x− 1 ⇒ 1 = A(x+ 5)(x− 1) +B(x− 1) +C(x+ 5)2.

Setting x = −5 gives 1 = −6B, so B = − 1
6 . Setting x = 1 gives 1 = 36C, so C = 1

36 . Setting x = −2 gives

1 = A(3)(−3) +B(−3) + C 32 = −9A− 3B + 9C = −9A+ 1
2
+ 1

4
= −9A+ 3

4
, so 9A = − 1

4
and A = − 1

36
. Now

1

(x+ 5)2 (x− 1) dx =
−1/36
x+ 5

− 1/6

(x+ 5)2
+
1/36

x− 1 dx = − 1

36
ln |x+ 5|+ 1

6(x+ 5)
+
1

36
ln |x− 1|+ C.

21. x
x2 + 4 x3 + 0x2 + 0x + 4

x3 + 4x

−4x + 4

By long division, x
3 + 4

x2 + 4
= x+

−4x+ 4
x2 + 4

. Thus,

x3 + 4

x2 + 4
dx= x+

−4x+ 4
x2 + 4

dx = x− 4x

x2 + 4
+

4

x2 + 22
dx

=
1

2
x2 − 4 · 1

2
ln x2 + 4 + 4 · 1

2
tan−1

x

2
+C =

1

2
x2 − 2 ln(x2 + 4) + 2 tan−1 x

2
+ C

23. 5x
2 + 3x− 2
x3 + 2x2

=
5x2 + 3x− 2
x2 (x+ 2)

=
A

x
+

B

x2
+

C

x+ 2
. Multiply by x2(x + 2) to

get 5x2 + 3x− 2 = Ax(x+ 2) + B(x+ 2) + Cx2. Set x = −2 to get C = 3, and take

x = 0 to get B = −1. Equating the coefficients of x2 gives 5 = A+ C ⇒ A = 2. So

5x2 + 3x− 2
x3 + 2x2

dx =
2

x
− 1

x2
+

3

x+ 2
dx = 2 ln |x|+ 1

x
+ 3 ln |x+ 2|+ C.
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25. 10

(x− 1)(x2 + 9) =
A

x− 1 +
Bx+C

x2 + 9
. Multiply both sides by (x− 1) x2 + 9 to get

10 = A x2 + 9 + (Bx+ C)(x− 1) ( ). Substituting 1 for x gives 10 = 10A ⇔ A = 1. Substituting 0 for x gives

10 = 9A− C ⇒ C = 9(1)− 10 = −1. The coefficients of the x2-terms in ( ) must be equal, so 0 = A+B ⇒
B = −1. Thus,

10

(x− 1)(x2 + 9) dx =
1

x− 1 +
−x− 1
x2 + 9

dx =
1

x− 1 −
x

x2 + 9
− 1

x2 + 9
dx

= ln|x− 1|− 1
2
ln(x2 + 9)− 1

3
tan−1 x

3
+ C

In the second term we used the substitution u = x2 + 9 and in the last term we used Formula 10.

27. x3 + x2 + 2x+ 1

(x2 + 1)(x2 + 2)
=

Ax+B

x2 + 1
+

Cx+D

x2 + 2
. Multiply both sides by x2 + 1 x2 + 2 to get

x3 + x2 + 2x+ 1 = (Ax+B) x2 + 2 + (Cx+D) x2 + 1 ⇔

x3 + x2 + 2x+ 1 = Ax3 +Bx2 + 2Ax+ 2B + Cx3 +Dx2 + Cx+D ⇔

x3 + x2 + 2x+ 1 = (A+C)x3 + (B +D)x2 + (2A+ C)x+ (2B +D). Comparing coefficients gives us the following

system of equations:

A+ C = 1 (1) B +D = 1 (2)

2A+ C = 2 (3) 2B +D = 1 (4)

Subtracting equation (1) from equation (3) gives us A = 1, so C = 0. Subtracting equation (2) from equation (4) gives us

B = 0, so D = 1. Thus, I = x3 + x2 + 2x+ 1

(x2 + 1)(x2 + 2)
dx =

x

x2 + 1
+

1

x2 + 2
dx. For x

x2 + 1
dx, let u = x2 + 1

so du = 2xdx and then x

x2 + 1
dx =

1

2

1

u
du =

1

2
ln |u|+C =

1

2
ln x2 + 1 + C. For 1

x2 + 2
dx, use

Formula 10 with a =
√
2. So 1

x2 + 2
dx =

1

x2 +
√
2

2 dx =
1√
2
tan−1

x√
2
+ C.

Thus, I = 1

2
ln x2 + 1 +

1√
2
tan−1

x√
2
+ C.

29. x+ 4

x2 + 2x+ 5
dx =

x+ 1

x2 + 2x+ 5
dx+

3

x2 + 2x+ 5
dx =

1

2

(2x+ 2) dx

x2 + 2x+ 5
+

3 dx

(x+ 1)2 + 4

=
1

2
ln x2 + 2x+ 5 + 3

2 du

4(u2 + 1)

where x+ 1 = 2u,
and dx = 2 du

=
1

2
ln(x2 + 2x+ 5) +

3

2
tan−1 u+C =

1

2
ln(x2 + 2x+ 5) +

3

2
tan−1

x+ 1

2
+ C

31. 1

x3 − 1 =
1

(x− 1)(x2 + x+ 1)
=

A

x− 1 +
Bx+ C

x2 + x+ 1
⇒ 1 = A x2 + x+ 1 + (Bx+C)(x− 1).

Take x = 1 to get A = 1
3

. Equating coefficients of x2 and then comparing the constant terms, we get 0 = 1
3
+B, 1 = 1

3
−C,
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so B = − 1
3 , C = − 2

3 ⇒

1

x3 − 1dx=
1
3

x− 1 dx+
− 1
3x− 2

3

x2 + x+ 1
dx = 1

3
ln |x− 1|− 1

3

x+ 2

x2 + x+ 1
dx

= 1
3
ln |x− 1|− 1

3

x+ 1/2

x2 + x+ 1
dx− 1

3

(3/2) dx

(x+ 1/2)2 + 3/4

= 1
3
ln |x− 1|− 1

6
ln x2 + x+ 1 − 1

2

2√
3

tan−1
x+ 1

2√
3 2

+K

= 1
3
ln |x− 1|− 1

6
ln(x2 + x+ 1)− 1√

3
tan−1 1√

3
(2x+ 1) +K

33. Let u = x4 + 4x2 + 3, so that du = (4x3 + 8x) dx = 4(x3 + 2x) dx, x = 0 ⇒ u = 3, and x = 1 ⇒ u = 8.

Then
1

0

x3 + 2x

x4 + 4x2 + 3
dx =

8

3

1

u

1

4
du =

1

4
ln |u| 8

3
=
1

4
(ln 8− ln 3) = 1

4
ln
8

3
.

35. 1

x(x2 + 4)2
=

A

x
+

Bx+ C

x2 + 4
+

Dx+E

(x2 + 4)2
⇒ 1 = A(x2 + 4)2 + (Bx+ C)x(x2 + 4) + (Dx+E)x. Setting x = 0

gives 1 = 16A, so A = 1
16

. Now compare coefficients.

1 = 1
16(x

4 + 8x2 + 16) + (Bx2 +Cx)(x2 + 4) +Dx2 +Ex

1 = 1
16
x4 + 1

2
x2 + 1 +Bx4 + Cx3 + 4Bx2 + 4Cx+Dx2 +Ex

1 = 1
16
+B x4 +Cx3 + 1

2
+ 4B +D x2 + (4C +E)x+ 1

So B + 1
16 = 0 ⇒ B = − 1

16 , C = 0, 12 + 4B +D = 0 ⇒ D = − 1
4 , and 4C +E = 0 ⇒ E = 0. Thus,

dx

x(x2 + 4)2
=

1
16

x
+
− 1
16x

x2 + 4
+

− 1
4x

(x2 + 4)2
dx =

1

16
ln |x|− 1

16
· 1
2
ln x2 + 4 − 1

4
−1
2

1

x2 + 4
+ C

=
1

16
ln |x|− 1

32
ln(x2 + 4) +

1

8(x2 + 4)
+ C

37. x2 − 3x+ 7
(x2 − 4x+ 6)2 =

Ax+B

x2 − 4x+ 6 +
Cx+D

(x2 − 4x+ 6)2 ⇒ x2 − 3x+ 7 = (Ax+B)(x2 − 4x+ 6) + Cx+D ⇒

x2 − 3x+ 7 = Ax3 + (−4A+B)x2 + (6A− 4B + C)x+ (6B +D). So A = 0, −4A+B = 1 ⇒ B = 1,

6A− 4B + C = −3 ⇒ C = 1, 6B +D = 7 ⇒ D = 1. Thus,

I =
x2 − 3x+ 7
(x2 − 4x+ 6)2 dx =

1

x2 − 4x+ 6 +
x+ 1

(x2 − 4x+ 6)2 dx

=
1

(x− 2)2 + 2 dx+
x− 2

(x2 − 4x+ 6)2 dx+
3

(x2 − 4x+ 6)2 dx

= I1 + I2 + I3.

[continued]
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I1 =
1

(x− 2)2 + √
2

2 dx =
1√
2
tan−1

x− 2√
2

+ C1

I2 =
1

2

2x− 4
(x2 − 4x+ 6)2 dx =

1

2

1

u2
du =

1

2
− 1
u

+ C2 = − 1

2(x2 − 4x+ 6) +C2

I3 = 3
1

(x− 2)2 + √
2

2 2 dx = 3
1

[2(tan2 θ + 1)]2

√
2 sec2 θ dθ

x− 2 = √2 tan θ,
dx =

√
2 sec2 θ dθ

=
3
√
2

4

sec2 θ

sec4 θ
dθ =

3
√
2

4
cos2 θ dθ =

3
√
2

4

1

2
(1 + cos 2θ) dθ

=
3
√
2

8
θ + 1

2
sin 2θ +C3 =

3
√
2

8
tan−1

x− 2√
2

+
3
√
2

8
1
2
· 2 sin θ cos θ +C3

=
3
√
2

8
tan−1

x− 2√
2

+
3
√
2

8
· x− 2√

x2 − 4x+ 6 ·
√
2√

x2 − 4x+ 6 +C3

=
3
√
2

8
tan−1

x− 2√
2

+
3(x− 2)

4(x2 − 4x+ 6) +C3

So I = I1 + I2 + I3 [C = C1 +C2 + C3]

=
1√
2
tan−1

x− 2√
2

+
−1

2(x2 − 4x+ 6) +
3
√
2

8
tan−1

x− 2√
2

+
3(x− 2)

4(x2 − 4x+ 6) + C

=
4
√
2

8
+
3
√
2

8
tan−1

x− 2√
2

+
3(x− 2)− 2
4(x2 − 4x+ 6) + C =

7
√
2

8
tan−1

x− 2√
2

+
3x− 8

4(x2 − 4x+ 6) + C

39. Let u =
√
x+ 1. Then x = u2 − 1, dx = 2udu ⇒

dx

x
√
x+ 1

=
2udu

(u2 − 1)u = 2
du

u2 − 1 = ln
u− 1
u+ 1

+C = ln

√
x+ 1− 1√
x+ 1 + 1

+ C.

41. Let u =
√
x, so u2 = x and dx = 2udu. Thus,

16

9

√
x

x− 4 dx =
4

3

u

u2 − 42udu = 2
4

3

u2

u2 − 4 du = 2
4

3

1 +
4

u2 − 4 du [by long division]

= 2 + 8
4

3

du

(u+ 2)(u− 2) ( )

Multiply 1

(u+ 2)(u− 2) =
A

u+ 2
+

B

u− 2 by (u+ 2)(u− 2) to get 1 = A(u− 2) +B(u+ 2). Equating coefficients we

get A+B = 0 and −2A+ 2B = 1. Solving gives us B = 1
4 and A = − 1

4 , so 1

(u+ 2)(u− 2) =
−1/4
u+ 2

+
1/4

u− 2 and ( ) is

2 + 8
4

3

−1/4
u+ 2

+
1/4

u− 2 du= 2 + 8 − 1
4
ln |u+ 2|+ 1

4
ln |u− 2|

4

3
= 2 + 2 ln |u− 2|− 2 ln |u+ 2|

4

3

= 2 + 2 ln
u− 2
u+ 2

4

3

= 2 + 2 ln 2
6 − ln 1

5
= 2 + 2 ln 2/6

1/5

= 2 + 2 ln 5
3

or 2 + ln 5
3

2
= 2 + ln 25

9
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43. Let u = 3
√
x2 + 1. Then x2 = u3 − 1, 2xdx = 3u2 du ⇒

x3 dx
3
√
x2 + 1

=
(u3 − 1) 3

2
u2 du

u
=
3

2
(u4 − u) du

= 3
10
u5 − 3

4
u2 + C = 3

10
(x2 + 1)5/3 − 3

4
(x2 + 1)2/3 +C

45. If we were to substitute u =
√
x, then the square root would disappear but a cube root would remain. On the other hand, the

substitution u = 3
√
x would eliminate the cube root but leave a square root. We can eliminate both roots by means of the

substitution u = 6
√
x. (Note that 6 is the least common multiple of 2 and 3.)

Let u = 6
√
x. Then x = u6, so dx = 6u5 du and

√
x = u3, 3

√
x = u2. Thus,

dx√
x− 3

√
x
=

6u5 du

u3 − u2
= 6

u5

u2(u− 1) du = 6
u3

u− 1 du

= 6 u2 + u+ 1 +
1

u− 1 du [by long division]

= 6 1
3
u3 + 1

2
u2 + u+ ln |u− 1| +C = 2

√
x+ 3

3
√
x+ 6

6
√
x+ 6 ln

6
√
x− 1 + C

47. Let u = ex. Then x = lnu, dx = du

u
⇒

e2x dx

e2x + 3ex + 2
=

u2 (du/u)

u2 + 3u+ 2
=

udu

(u+ 1)(u+ 2)
=

−1
u+ 1

+
2

u+ 2
du

= 2 ln |u+ 2|− ln |u+ 1|+ C = ln
(ex + 2)2

ex + 1
+C

49. Let u = tan t, so that du = sec2 t dt. Then sec2 t

tan2 t+ 3 tan t+ 2
dt =

1

u2 + 3u+ 2
du =

1

(u+ 1)(u+ 2)
du.

Now 1

(u+ 1)(u+ 2)
=

A

u+ 1
+

B

u+ 2
⇒ 1 = A(u + 2) + B(u + 1).

Setting u = −2 gives 1 = −B, so B = −1. Setting u = −1 gives 1 = A.

Thus, 1

(u+ 1)(u+ 2)
du =

1

u+ 1
− 1

u+ 2
du = ln |u+ 1|− ln |u+ 2|+C = ln |tan t+ 1|− ln |tan t+ 2|+C.

51. Let u = ln(x2 − x+ 2), dv = dx. Then du = 2x− 1
x2 − x+ 2

dx, v = x, and (by integration by parts)

ln(x2 − x+ 2) dx = x ln(x2 − x+ 2)− 2x2 − x

x2 − x+ 2
dx = x ln(x2 − x+ 2)− 2 +

x− 4
x2 − x+ 2

dx

= x ln(x2 − x+ 2)− 2x−
1
2
(2x− 1)

x2 − x+ 2
dx+

7

2

dx

(x− 1
2 )
2 + 7

4

= x ln(x2 − x+ 2)− 2x− 1

2
ln(x2 − x+ 2) +

7

2

√
7
2 du

7
4
(u2 + 1)

⎡⎣ where x− 1
2 =

√
7
2 u,

dx =
√
7
2 du,

(x− 1
2 )

2 + 7
4 =

7
4 (u

2 + 1)

⎤⎦
= (x− 1

2 ) ln(x
2 − x+ 2)− 2x+√7 tan−1 u+C

= (x− 1
2
) ln(x2 − x+ 2)− 2x+√7 tan−1 2x− 1√

7
+C
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53. From the graph, we see that the integral will be negative, and we guess

that the area is about the same as that of a rectangle with width 2 and

height 0.3, so we estimate the integral to be −(2 · 0.3) = −0.6. Now

1

x2 − 2x− 3 =
1

(x− 3)(x+ 1) =
A

x− 3 +
B

x+ 1
⇔

1 = (A+B)x+A− 3B, so A = −B and A− 3B = 1 ⇔ A = 1
4

and B = − 1
4

, so the integral becomes

2

0

dx

x2 − 2x− 3 =
1

4

2

0

dx

x− 3 −
1

4

2

0

dx

x+ 1
=
1

4
ln |x− 3|− ln |x+ 1| 2

0
=
1

4
ln

x− 3
x+ 1

2

0

= 1
4
ln 1

3
− ln 3 = − 1

2
ln 3 ≈ −0.55

55. dx

x2 − 2x =
dx

(x− 1)2 − 1 =
du

u2 − 1 [put u = x− 1]

=
1

2
ln

u− 1
u+ 1

+ C [by Equation 6] =
1

2
ln

x− 2
x

+C

57. (a) If t = tan x

2
, then x

2
= tan−1 t. The figure gives

cos
x

2
=

1√
1 + t2

and sin x

2
=

t√
1 + t2

.

(b) cosx = cos 2 · x
2

= 2 cos2
x

2
− 1

= 2
1√
1 + t2

2

− 1 = 2

1 + t2
− 1 = 1− t2

1 + t2

(c) x

2
= arctan t ⇒ x = 2arctan t ⇒ dx =

2

1 + t2
dt

59. Let t = tan(x/2). Then, using the expressions in Exercise 57, we have

1

3 sinx− 4 cosx dx=
1

3
2t

1 + t2
− 4 1− t2

1 + t2

2 dt

1 + t2
= 2

dt

3(2t)− 4(1− t2)
=

dt

2t2 + 3t− 2

=
dt

(2t− 1)(t+ 2) =
2

5

1

2t− 1 −
1

5

1

t+ 2
dt [using partial fractions]

= 1
5
ln |2t− 1|− ln |t+ 2| + C =

1

5
ln
2t− 1
t+ 2

+ C =
1

5
ln
2 tan (x/2)− 1
tan (x/2) + 2

+C

61. Let t = tan (x/2). Then, by Exercise 57,

π/2

0

sin 2x

2 + cosx
dx=

π/2

0

2 sinx cosx

2 + cosx
dx =

1

0

2 · 2t

1 + t2
· 1− t2

1 + t2

2 +
1− t2

1 + t2

2

1 + t2
dt =

1

0

8t(1− t2)

(1 + t2)2

2(1 + t2) + (1− t2)
dt

=
1

0

8t · 1− t2

(t2 + 3)(t2 + 1)2
dt = I
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If we now let u = t2, then 1− t2

(t2 + 3)(t2 + 1)2
=

1− u

(u+ 3)(u+ 1)2
=

A

u+ 3
+

B

u+ 1
+

C

(u+ 1)2
⇒

1− u = A(u+ 1)2 +B(u+ 3)(u+ 1) +C(u+ 3). Set u = −1 to get 2 = 2C, so C = 1. Set u = −3 to get 4 = 4A, so

A = 1. Set u = 0 to get 1 = 1 + 3B + 3, so B = −1. So

I =
1

0

8t

t2 + 3
− 8t

t2 + 1
+

8t

(t2 + 1)2
dt = 4 ln(t2 + 3)− 4 ln(t2 + 1)− 4

t2 + 1

1

0

= (4 ln 4− 4 ln 2− 2)− (4 ln 3− 0− 4) = 8 ln 2− 4 ln 2− 4 ln 3 + 2 = 4 ln 2
3
+ 2

63. By long division, x2 + 1

3x− x2
= −1 + 3x+ 1

3x− x2
. Now

3x+ 1

3x− x2
=

3x+ 1

x(3− x)
=

A

x
+

B

3− x
⇒ 3x+ 1 = A(3− x) +Bx. Set x = 3 to get 10 = 3B, so B = 10

3
. Set x = 0 to

get 1 = 3A, so A = 1
3 . Thus, the area is

2

1

x2 + 1

3x− x2
dx=

2

1

−1 +
1
3

x
+

10
3

3− x
dx = −x+ 1

3
ln |x|− 10

3
ln |3− x| 2

1

= −2 + 1
3
ln 2− 0 − −1 + 0− 10

3
ln 2 = −1 + 11

3
ln 2

65. P + S

P [(r − 1)P − S]
=

A

P
+

B

(r − 1)P − S
⇒ P + S = A [(r − 1)P − S] +BP = [(r − 1)A+B]P −AS ⇒

(r − 1)A+B = 1, −A = 1 ⇒ A = −1, B = r. Now

t =
P + S

P [(r − 1)P − S]
dP =

−1
P
+

r

(r − 1)P − S
dP = − dP

P
+

r

r − 1
r − 1

(r − 1)P − S
dP

so t = − lnP + r

r − 1 ln|(r − 1)P − S|+ C. Here r = 0.10 and S = 900, so

t = − lnP + 0.1
−0.9 ln|−0.9P − 900|+C = − lnP − 1

9
ln(|−1| |0.9P + 900|) = − lnP − 1

9
ln(0.9P + 900) + C.

When t = 0, P = 10,000, so 0 = − ln 10,000− 1
9 ln(9900) +C. Thus, C = ln 10,000 + 1

9 ln 9900 [≈ 10.2326], so our

equation becomes

t= ln 10,000− lnP + 1
9
ln 9900− 1

9
ln(0.9P + 900) = ln

10,000
P

+
1

9
ln

9900

0.9P + 900

= ln
10,000
P

+
1

9
ln

1100

0.1P + 100
= ln

10,000
P

+
1

9
ln

11,000
P + 1000

67. (a) In Maple, we define f(x), and then use convert(f,parfrac,x); to obtain

f(x) =
24,110/4879
5x+ 2

− 668/323

2x+ 1
− 9438/80,155

3x− 7 +
(22,098x+ 48,935)/260,015

x2 + x+ 5

In Mathematica, we use the command Apart, and in Derive, we use Expand.
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(b) f(x) dx = 24,110
4879

· 1
5
ln|5x+ 2|− 668

323
· 1
2
ln|2x+ 1|− 9438

80,155 · 13 ln |3x− 7|

+
1

260,015
22,098 x+ 1

2
+ 37,886

x+ 1
2

2
+ 19

4

dx+C

= 24,110
4879

· 1
5
ln|5x+ 2|− 668

323
· 1
2
ln|2x+ 1|− 9438

80,155 · 13 ln|3x− 7|

+ 1
260,015 22,098 · 1

2
ln x2 + x+ 5 + 37,886 · 4

19
tan−1 1√

19/4
x+ 1

2
+ C

= 4822
4879

ln|5x+ 2|− 334
323

ln|2x+ 1|− 3146
80,155 ln|3x− 7|+ 11,049

260,015 ln x2 + x+ 5

+ 75,772
260,015

√
19
tan−1 1√

19
(2x+ 1) +C

Using a CAS, we get

4822 ln(5x+ 2)

4879
− 334 ln(2x+ 1)

323
− 3146 ln(3x− 7)

80,155

+
11,049 ln(x2 + x+ 5)

260,015
+
3988

√
19

260,015
tan−1

√
19

19
(2x+ 1)

The main difference in this answer is that the absolute value signs and the constant of integration have been omitted. Also,

the fractions have been reduced and the denominators rationalized.

69. There are only finitely many values of x where Q(x) = 0 (assuming that Q is not the zero polynomial). At all other values of

x, F (x)/Q(x) = G(x)/Q(x), so F (x) = G(x). In other words, the values of F and G agree at all except perhaps finitely

many values of x. By continuity of F and G, the polynomials F and G must agree at those values of x too.

More explicitly: if a is a value of x such that Q(a) = 0, then Q(x) 6= 0 for all x sufficiently close to a. Thus,

F (a) = lim
x→a

F (x) [by continuity of F ]

= lim
x→a

G(x) [whenever Q(x) 6= 0]

= G(a) [by continuity of G]

7.5 Strategy for Integration

1. Let u = sinx, so that du = cosxdx. Then cosx(1+ sin2 x) dx = (1+u2) du = u+ 1
3
u3+C = sinx+ 1

3
sin3 x+C.

3. sinx+ secx

tanx
dx =

sinx

tanx
+
secx

tanx
dx = (cosx+ cscx) dx = sinx+ ln |cscx− cotx|+ C

5.
2

0

2t

(t− 3)2 dt =
−1

−3

2(u+ 3)

u2
du

u = t− 3,
du = dt

=
−1

−3

2

u
+
6

u2
du = 2 ln |u|− 6

u

−1

−3

= (2 ln 1 + 6)− (2 ln 3 + 2) = 4− 2 ln 3 or 4− ln 9

7. Let u = arctan y. Then du = dy

1 + y2
⇒

1

−1

earctan y

1 + y2
dy =

π/4

−π/4
eu du = eu

π/4

−π/4 = eπ/4 − e−π/4.
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9. 3

1
r4 ln r dr

u = ln r,

du =
dr

r

dv = r4 dr,
v = 1

5 r
5 = 1

5
r5 ln r

3

1
− 3

1
1
5
r4 dr = 243

5
ln 3− 0− 1

25
r5

3

1

= 243
5 ln 3− 243

25 − 1
25

= 243
5 ln 3− 242

25

11. x− 1
x2 − 4x+ 5 dx =

(x− 2) + 1
(x− 2)2 + 1 dx =

u

u2 + 1
+

1

u2 + 1
du [u = x− 2, du = dx]

= 1
2
ln(u2 + 1) + tan−1 u+C = 1

2
ln(x2 − 4x+ 5) + tan−1(x− 2) + C

13. sin3 θ cos5 θ dθ = cos5 θ sin2 θ sin θ dθ = − cos5 θ (1− cos2 θ)(− sin θ) dθ

= − u5(1− u2) du
u = cos θ,
du = − sin θ dθ

= (u7 − u5) du = 1
8u

8 − 1
6u

6 + C = 1
8 cos

8 θ − 1
6 cos

6 θ + C

Another solution:

sin3 θ cos5 θ dθ = sin3 θ (cos2 θ)2 cos θ dθ = sin3 θ (1− sin2 θ)2 cos θ dθ

= u3(1− u2)2 du
u = sin θ,

du = cos θ dθ
= u3(1− 2u2 + u4) du

= (u3 − 2u5 + u7) du = 1
4u

4 − 1
3u

6 + 1
8u

8 + C = 1
4 sin

4 θ − 1
3 sin

6 θ + 1
8 sin

8 θ + C

15. Let x = sin θ, where−π
2
≤ θ ≤ π

2
. Then dx = cos θ dθ and (1− x2)1/2 = cos θ,

so

dx

(1− x2)3/2
=

cos θ dθ

(cos θ)3
= sec2 θ dθ = tan θ + C =

x√
1− x2

+C.

17. x sin2 xdx
u = x,

du = dx

dv = sin2 x dx,
v = sin2 x dx = 1

2 (1− cos 2x) dx = 1
2x− 1

2 sinx cosx

= 1
2x

2 − 1
2x sinx cosx− 1

2x− 1
2 sinx cosx dx

= 1
2x

2 − 1
2x sinx cosx− 1

4x
2 + 1

4 sin
2 x+C = 1

4x
2 − 1

2x sinx cosx+
1
4 sin

2 x+ C

Note: sinx cosxdx = s ds = 1
2
s2 + C [where s = sinx, ds = cosxdx].

A slightly different method is to write x sin2 xdx = x · 1
2
(1− cos 2x) dx = 1

2
xdx− 1

2
x cos 2xdx. If we evaluate

the second integral by parts, we arrive at the equivalent answer 1
4x

2 − 1
4x sin 2x− 1

8 cos 2x+ C.

19. Let u = ex. Then ex+e
x
dx = ee

x
ex dx = eu du = eu + C = ee

x
+ C.

21. Let t =
√
x, so that t2 = x and 2t dt = dx. Then arctan

√
xdx = arctan t (2t dt) = I. Now use parts with

u = arctan t, dv = 2t dt ⇒ du =
1

1 + t2
dt, v = t2. Thus,

I = t2 arctan t− t2

1 + t2
dt = t2 arctan t− 1− 1

1 + t2
dt = t2 arctan t− t+ arctan t+ C

= x arctan
√
x−

√
x+ arctan

√
x+ C or (x+ 1) arctan

√
x−

√
x+C
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23. Let u = 1 +
√
x. Then x = (u − 1)2, dx = 2(u − 1) du ⇒

1

0
1 +

√
x

8

dx =
2

1
u8 · 2(u− 1) du = 2 2

1
(u9 − u8) du = 1

5
u10 − 2 · 1

9
u9

2

1
= 1024

5
− 1024

9
− 1

5
+ 2

9
= 4097

45
.

25. 3x2 − 2
x2 − 2x− 8 = 3 +

6x+ 22

(x− 4)(x+ 2) = 3 +
A

x− 4 +
B

x+ 2
⇒ 6x+ 22 = A(x+ 2) +B(x− 4). Setting

x = 4 gives 46 = 6A, so A = 23
3

. Setting x = −2 gives 10 = −6B, so B = −5
3

. Now

3x2 − 2
x2 − 2x− 8 dx = 3 +

23/3

x− 4 −
5/3

x+ 2
dx = 3x+ 23

3
ln |x− 4|− 5

3
ln |x+ 2|+C.

27. Let u = 1 + ex, so that du = ex dx = (u− 1) dx. Then 1

1 + ex
dx =

1

u
· du

u− 1 =
1

u(u− 1) du = I. Now

1

u(u− 1) =
A

u
+

B

u− 1 ⇒ 1 = A(u− 1) +Bu. Set u = 1 to get 1 = B. Set u = 0 to get 1 = −A, so A = −1.

Thus, I = −1
u
+

1

u− 1 du = − ln |u|+ ln |u− 1|+C = − ln(1 + ex) + ln ex + C = x− ln(1 + ex) +C.

Another method: Multiply numerator and denominator by e−x and let u = e−x + 1. This gives the answer in the

form − ln(e−x + 1) + C.

29.
5

0

3w − 1
w + 2

dw =
5

0

3− 7

w + 2
dw = 3w − 7 ln |w + 2| 5

0
= 15− 7 ln 7 + 7 ln 2

= 15 + 7(ln 2− ln 7) = 15 + 7 ln 2
7

31. As in Example 5,

1 + x

1− x
dx =

√
1 + x√
1− x

·
√
1 + x√
1 + x

dx =
1 + x√
1− x2

dx =
dx√
1− x2

+
xdx√
1− x2

= sin−1 x− 1− x2 +C.

Another method: Substitute u = (1 + x)/(1− x).

33. 3− 2x− x2 = −(x2 + 2x+ 1) + 4 = 4− (x+ 1)2. Let x+ 1 = 2 sin θ,

where −π
2
≤ θ ≤ π

2
. Then dx = 2cos θ dθ and

√
3− 2x− x2 dx = 4− (x+ 1)2 dx = 4− 4 sin2 θ 2 cos θ dθ

= 4 cos2 θ dθ = 2 (1 + cos 2θ) dθ

= 2θ + sin 2θ + C = 2θ + 2 sin θ cos θ +C

= 2 sin−1
x+ 1

2
+ 2 · x+ 1

2
·
√
3− 2x− x2

2
+ C

= 2 sin−1
x+ 1

2
+

x+ 1

2

√
3− 2x− x2 +C

35. Because f(x) = x8 sinx is the product of an even function and an odd function, it is odd.

Therefore, 1

−1 x
8 sinxdx = 0 [by (5.5.7)(b)].

37. π/4

0
cos2 θ tan2 θ dθ =

π/4

0
sin2 θ dθ =

π/4

0
1
2
(1− cos 2θ) dθ = 1

2
θ − 1

4
sin 2θ

π/4

0
= π

8
− 1

4
− (0− 0) = π

8
− 1

4
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39. Let u = sec θ, so that du = sec θ tan θ dθ. Then sec θ tan θ

sec2 θ − sec θ dθ =
1

u2 − u
du =

1

u(u− 1) du = I. Now

1

u(u− 1) =
A

u
+

B

u− 1 ⇒ 1 = A(u− 1) +Bu. Set u = 1 to get 1 = B. Set u = 0 to get 1 = −A, so A = −1.

Thus, I = −1
u
+

1

u− 1 du = − ln |u|+ ln |u− 1|+C = ln |sec θ − 1|− ln |sec θ|+ C [or ln |1− cos θ|+ C].

41. Let u = θ, dv = tan2 θ dθ = sec2 θ − 1 dθ ⇒ du = dθ and v = tan θ − θ. So

θ tan2 θ dθ = θ(tan θ − θ)− (tan θ − θ) dθ = θ tan θ − θ2 − ln |sec θ|+ 1
2
θ2 + C

= θ tan θ − 1
2
θ2 − ln |sec θ|+ C

43. Let u = 1 + ex, so that du = ex dx. Then ex
√
1 + ex dx = u1/2 du = 2

3
u3/2 + C = 2

3
(1 + ex)3/2 +C.

Or: Let u =
√
1 + ex, so that u2 = 1 + ex and 2udu = ex dx. Then

ex
√
1 + ex dx = u · 2udu = 2u2 du = 2

3
u3 + C = 2

3
(1 + ex)3/2 + C.

45. Let t = x3. Then dt = 3x2 dx ⇒ I = x5e−x
3

dx = 1
3

te−t dt. Now integrate by parts with u = t, dv = e−t dt:

I = − 1
3
te−t + 1

3
e−t dt = − 1

3
te−t − 1

3
e−t +C = − 1

3
e−x

3

(x3 + 1) +C.

47. Let u = x− 1, so that du = dx. Then

x3(x− 1)−4 dx= (u+ 1)3u−4 du = (u3 + 3u2 + 3u+ 1)u−4 du = (u−1 + 3u−2 + 3u−3 + u−4) du

= ln |u|− 3u−1 − 3
2u
−2 − 1

3u
−3 + C = ln |x− 1|− 3(x− 1)−1 − 3

2 (x− 1)−2 − 1
3 (x− 1)−3 + C

49. Let u =
√
4x+ 1 ⇒ u2 = 4x+ 1 ⇒ 2udu = 4 dx ⇒ dx = 1

2
udu. So

1

x
√
4x+ 1

dx=
1
2
udu

1
4 (u

2 − 1)u = 2
du

u2 − 1 = 2
1
2
ln

u− 1
u+ 1

+ C [by Formula 19]

= ln

√
4x+ 1− 1√
4x+ 1 + 1

+C

51. Let 2x = tan θ ⇒ x = 1
2
tan θ, dx = 1

2
sec2 θ dθ,

√
4x2 + 1 = sec θ, so

dx

x
√
4x2 + 1

=
1
2
sec2 θ dθ

1
2 tan θ sec θ

=
sec θ

tan θ
dθ = csc θ dθ

= − ln |csc θ + cot θ|+ C [or ln |csc θ − cot θ|+C]

= − ln
√
4x2 + 1

2x
+
1

2x
+C or ln

√
4x2 + 1

2x
− 1

2x
+C

53. x2 sinh(mx)dx =
1

m
x2 cosh(mx)− 2

m
x cosh(mx) dx

u = x2,
du = 2x dx

dv = sinh(mx) dx,
v = 1

m cosh(mx)

=
1

m
x2 cosh(mx)− 2

m
1
mx sinh(mx)− 1

m
sinh(mx) dx

U = x,
dU = dx

dV = cosh(mx) dx,
V = 1

m sinh(mx)

=
1

m
x2 cosh(mx)− 2

m2
x sinh(mx) +

2

m3
cosh(mx) +C
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55. Let u =
√
x, so that x = u2 and dx = 2udu. Then dx

x+ x
√
x
=

2udu

u2 + u2 · u =
2

u(1 + u)
du = I.

Now 2

u(1 + u)
=

A

u
+

B

1 + u
⇒ 2 = A(1 + u) +Bu. Set u = −1 to get 2 = −B, so B = −2. Set u = 0 to get 2 = A.

Thus, I = 2

u
− 2

1 + u
du = 2 ln |u|− 2 ln |1 + u|+ C = 2 ln

√
x− 2 ln 1 +

√
x + C.

57. Let u = 3
√
x+ c. Then x = u3 − c ⇒

x 3
√
x+ c dx= (u3 − c)u · 3u2 du = 3 (u6 − cu3) du = 3

7
u7 − 3

4
cu4 +C = 3

7
(x+ c)7/3 − 3

4
c(x+ c)4/3 +C

59. Let u = sinx, so that du = cosxdx. Then

cosx cos3(sinx) dx= cos3 udu = cos2 u cosudu = (1− sin2 u) cosudu
= (cosu− sin2 u cosu) du = sinu− 1

3
sin3 u+C = sin(sinx)− 1

3
sin3(sinx) + C

61. Let y =
√
x so that dy = 1

2
√
x
dx ⇒ dx = 2

√
xdy = 2y dy. Then

√
x e
√
x dx = yey(2y dy) = 2y2ey dy

u = 2y2,
du = 4y dy

dv = ey dy,
v = ey

= 2y2ey − 4yey dy
U = 4y,
dU = 4 dy

dV = ey dy,
V = ey

= 2y2ey − 4yey − 4ey dy = 2y2ey − 4yey + 4ey +C

= 2(y2 − 2y + 2)ey +C = 2 x− 2
√
x+ 2 e

√
x +C

63. Let u = cos2 x, so that du = 2 cosx (− sinx) dx. Then

sin 2x

1 + cos4 x
dx =

2 sinx cosx

1 + (cos2 x)2
dx =

1

1 + u2
(−du) = − tan−1 u+ C = − tan−1(cos2 x) + C.

65. dx√
x+ 1 +

√
x
=

1√
x+ 1 +

√
x
·
√
x+ 1− x

√
x

√
x+ 1−

√
x

dx = x+ 1−
√
x dx

= 2
3
(x+ 1)3/2 − x3/2 +C

67. Let x = tan θ, so that dx = sec2 θ dθ, x =
√
3 ⇒ θ = π

3 , and x = 1 ⇒ θ = π
4 . Then

√
3

1

√
1 + x2

x2
dx=

π/3

π/4

sec θ

tan2 θ
sec2 θ dθ =

π/3

π/4

sec θ (tan2 θ + 1)

tan2 θ
dθ =

π/3

π/4

sec θ tan2 θ

tan2 θ
+
sec θ

tan2 θ
dθ

=
π/3

π/4

(sec θ + csc θ cot θ) dθ = ln |sec θ + tan θ|− csc θ
π/3

π/4

= ln 2 +
√
3 − 2√

3
− ln

√
2 + 1 −√2 =

√
2− 2√

3
+ ln 2 +

√
3 − ln 1 +√2
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69. Let u = ex. Then x = lnu, dx = du/u ⇒

e2x

1 + ex
dx=

u2

1 + u

du

u
=

u

1 + u
du = 1− 1

1 + u
du = u− ln|1 + u|+ C = ex − ln(1 + ex) + C.

71. Let θ = arcsinx, so that dθ = 1√
1− x2

dx and x = sin θ. Then

x+ arcsinx√
1− x2

dx= (sin θ + θ) dθ = − cos θ + 1
2
θ2 + C

= −√1− x2 + 1
2
(arcsinx)2 + C

73. 1

(x− 2)(x2 + 4) =
A

x− 2 +
Bx+C

x2 + 4
⇒ 1 = A(x2+4)+(Bx+C)(x−2) = (A+B)x2+(C−2B)x+(4A−2C).

So 0 = A+B = C − 2B, 1 = 4A− 2C. Setting x = 2 gives A = 1
8 ⇒ B = − 1

8 and C = − 1
4 . So

1

(x− 2)(x2 + 4) dx=
1
8

x− 2 +
− 1
8x− 1

4

x2 + 4
dx =

1

8

dx

x− 2 −
1

16

2xdx

x2 + 4
− 1

4

dx

x2 + 4

= 1
8
ln|x− 2|− 1

16
ln(x2 + 4)− 1

8
tan−1(x/2) + C

75. Let y =
√
1 + ex, so that y2 = 1 + ex, 2y dy = ex dx, ex = y2 − 1, and x = ln(y2 − 1). Then

xex√
1 + ex

dx=
ln(y2 − 1)

y
(2y dy) = 2 [ln(y + 1) + ln(y − 1)] dy

= 2[(y + 1) ln(y + 1)− (y + 1) + (y − 1) ln(y − 1)− (y − 1)] + C [by Example 7.1.2]

= 2[y ln(y + 1) + ln(y + 1)− y − 1 + y ln(y − 1)− ln(y − 1)− y + 1] + C

= 2[y(ln(y + 1) + ln(y − 1)) + ln(y + 1)− ln(y − 1)− 2y] + C

= 2 y ln(y2 − 1) + ln y + 1
y − 1 − 2y + C = 2

√
1 + ex ln(ex) + ln

√
1 + ex + 1√
1 + ex − 1 − 2

√
1 + ex +C

= 2x
√
1 + ex + 2 ln

√
1 + ex + 1√
1 + ex − 1 − 4

√
1 + ex + C = 2(x− 2)√1 + ex + 2 ln

√
1 + ex + 1√
1 + ex − 1 +C

77. Let u = x3/2 so that u2 = x3 and du = 3
2
x1/2 dx ⇒

√
xdx = 2

3
du. Then

√
x

1 + x3
dx =

2
3

1 + u2
du =

2

3
tan−1 u+C = 2

3
tan−1(x3/2) + C.

79. Let u = x, dv = sin2 x cosxdx ⇒ du = dx, v = 1
3
sin3 x. Then

x sin2 x cosxdx = 1
3
x sin3 x− 1

3
sin3 xdx = 1

3
x sin3 x− 1

3
(1− cos2 x) sinxdx

=
1

3
x sin3 x+

1

3
(1− y2) dy

u = cosx,
du = − sinx dx

= 1
3
x sin3 x+ 1

3
y − 1

9
y3 +C = 1

3
x sin3 x+ 1

3
cosx− 1

9
cos3 x+ C
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81. The function y = 2xex
2

does have an elementary antiderivative, so we’ll use this fact to help evaluate the integral.

(2x2 + 1)ex
2

dx = 2x2ex
2

dx+ ex
2

dx = x 2xex
2

dx+ ex
2

dx

= xex
2 − ex

2

dx+ ex
2

dx
u = x,
du = dx

dv= 2xex
2
dx,

v= ex
2 = xex

2

+ C

7.6 Integration Using Tables and Computer Algebra Systems

Keep in mind that there are several ways to approach many of these exercises, and different methods can lead to different forms of the answer.

1. We could make the substitution u =
√
2x to obtain the radical

√
7− u2 and then use Formula 33 with a =

√
7.

Alternatively, we will factor
√
2 out of the radical and use a = 7

2 .

√
7− 2x2
x2

dx =
√
2

7
2
− x2

x2
dx

33
=
√
2

⎡⎣− 1
x

7
2
− x2 − sin−1 x

7
2

⎤⎦+ C

= − 1
x

√
7− 2x2 −√2 sin−1 2

7
x + C

3. Let u = πx ⇒ du = π dx, so

sec3(πx) dx= 1
π

sec3 udu
71
= 1

π
1
2
secu tanu+ 1

2
ln |secu+ tanu| + C

= 1
2π
secπx tanπx+ 1

2π
ln |secπx+ tanπx|+ C

5.
1

0

2x cos−1xdx 91
= 2

2x2 − 1
4

cos−1 x− x
√
1− x2

4

1

0

= 2 1
4 · 0− 0 − − 1

4 · π2 − 0 = 2 π
8
= π

4

7. Let u = πx, so that du = π dx. Then

tan3(πx) dx= tan3 u 1
π du = 1

π
tan3 udu

69
= 1

π
1
2 tan

2 u+ ln |cosu| + C

= 1
2π tan

2(πx) + 1
π ln |cos (πx)|+C

9. Let u = 2x and a = 3. Then du = 2 dx and

dx

x2
√
4x2 + 9

=
1
2 du

u2

4

√
u2 + a2

= 2
du

u2
√
a2 + u2

28
= −2

√
a2 + u2

a2u
+C

= −2
√
4x2 + 9

9 · 2x + C = −
√
4x2 + 9

9x
+ C

11.
0

−1
t2e−t dt 97

=
1

−1 t
2e−t

0

−1
− 2

−1
0

−1
te−t dt = e+ 2

0

−1
te−t dt 96

= e+ 2
1

(−1)2 (−t− 1) e
−t

0

−1

= e+ 2 −e0 + 0 = e− 2

13. tan3(1/z)

z2
dz

u = 1/z,
du = −dz/z2 = − tan3 udu

69
= − 1

2
tan2 u− ln |cosu|+ C

= −1
2
tan2 1

z
− ln cos 1

z
+ C
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15. Let u = ex, so that du = ex dx and e2x = u2. Then

e2x arctan(ex) dx= u2 arctanu
du

u
= u arctanudu

92
=

u2 + 1

2
arctanu− u

2
+ C =

1

2
(e2x + 1) arctan(ex)− 1

2
ex + C

17. Let z = 6+4y− 4y2 = 6− (4y2 − 4y+1)+ 1 = 7− (2y− 1)2, u = 2y− 1, and a =
√
7. Then z = a2 − u2, du = 2 dy,

and

y 6 + 4y − 4y2 dy = y
√
z dy = 1

2
(u+ 1)

√
a2 − u2 1

2
du = 1

4
u
√
a2 − u2 du+ 1

4

√
a2 − u2 du

= 1
4

√
a2 − u2 du− 1

8
(−2u)√a2 − u2 du

30
=

u

8

√
a2 − u2 +

a2

8
sin−1

u

a
− 1

8

√
wdw

w = a2 − u2,
dw = −2u du

=
2y − 1
8

6 + 4y − 4y2 + 7

8
sin−1

2y − 1√
7
− 1

8
· 2
3
w3/2 + C

=
2y − 1
8

6 + 4y − 4y2 + 7

8
sin−1

2y − 1√
7
− 1

12
(6 + 4y − 4y2)3/2 +C

This can be rewritten as

6 + 4y − 4y2 1

8
(2y − 1)− 1

12
(6 + 4y − 4y2) +

7

8
sin−1

2y − 1√
7

+ C

=
1

3
y2 − 1

12
y − 5

8
6 + 4y − 4y2 + 7

8
sin−1

2y − 1√
7

+C

=
1

24
(8y2 − 2y − 15) 6 + 4y − 4y2 + 7

8
sin−1

2y − 1√
7

+C

19. Let u = sinx. Then du = cosxdx, so

sin2 x cosx ln(sinx) dx = u2 lnudu
101
=

u2+1

(2 + 1)2
[(2 + 1) lnu− 1] +C = 1

9
u3(3 lnu− 1) + C

= 1
9 sin

3 x [3 ln(sinx)− 1] +C

21. Let u = ex and a =
√
3. Then du = ex dx and

ex

3− e2x
dx =

du

a2 − u2
19
=
1

2a
ln

u+ a

u− a
+ C =

1

2
√
3
ln

ex +
√
3

ex −√3 + C.

23. sec5 xdx
77
= 1

4
tanx sec3 x+ 3

4
sec3 xdx

77
= 1

4
tanx sec3 x+ 3

4
1
2
tanx secx+ 1

2
secxdx

14
= 1

4
tanx sec3 x+ 3

8
tanx secx+ 3

8
ln|secx+ tanx|+ C

25. Let u = lnx and a = 2. Then du = dx/x and

4 + (lnx)2

x
dx = a2 + u2 du

21
=

u

2
a2 + u2 +

a2

2
ln u+ a2 + u2 + C

= 1
2
(lnx) 4 + (lnx)2 + 2 ln lnx+ 4 + (lnx)2 + C



326 ¤ CHAPTER 7 TECHNIQUES OF INTEGRATION

27. Let u = ex. Then x = lnu, dx = du/u, so

e2x − 1 dx =
√
u2 − 1
u

du
41
= u2 − 1− cos−1(1/u) +C = e2x − 1− cos−1(e−x) +C.

29. x4 dx√
x10 − 2 =

x4 dx

(x5)2 − 2 =
1

5

du√
u2 − 2

u= x5,
du= 5x4 dx

43
= 1

5 ln u+
√
u2 − 2 + C = 1

5 ln x5 +
√
x10 − 2 + C

31. Using cylindrical shells, we get

V = 2π
2

0

x · x 4− x2 dx = 2π
2

0

x2 4− x2 dx
31
= 2π

x

8
(2x2 − 4) 4− x2 +

16

8
sin−1

x

2

2

0

= 2π[(0 + 2 sin−1 1)− (0 + 2 sin−1 0] = 2π 2 · π
2

= 2π2

33. (a) d

du

1

b3
a+ bu− a2

a+ bu
− 2a ln |a+ bu| +C =

1

b3
b+

ba2

(a+ bu)2
− 2ab

(a+ bu)

=
1

b3
b(a+ bu)2 + ba2 − (a+ bu)2ab

(a+ bu)2
=
1

b3
b3u2

(a+ bu)2
=

u2

(a+ bu)2

(b) Let t = a+ bu ⇒ dt = b du. Note that u = t− a

b
and du = 1

b
dt.

u2 du

(a+ bu)2
=
1

b3
(t− a)2

t2
dt =

1

b3
t2 − 2at+ a2

t2
dt =

1

b3
1− 2a

t
+

a2

t2
dt

=
1

b3
t− 2a ln |t|− a2

t
+ C =

1

b3
a+ bu− a2

a+ bu
− 2a ln |a+ bu| +C

35. Maple and Mathematica both give sec4 xdx = 2
3
tanx+ 1

3
tanx sec2 x, while Derive gives the second

term as sinx

3 cos3 x
=
1

3

sinx

cosx

1

cos2 x
=
1

3
tanx sec2 x. Using Formula 77, we get

sec4 xdx = 1
3 tanx sec

2 x+ 2
3

sec2 xdx = 1
3 tanx sec

2 x+ 2
3 tanx+ C.

37. Derive gives x2
√
x2 + 4 dx = 1

4
x(x2 + 2)

√
x2 + 4 − 2 ln √x2 + 4 + x . Maple gives

1
4x(x

2 + 4)3/2 − 1
2x
√
x2 + 4− 2 arcsinh 1

2x . Applying the command convert(%,ln); yields

1
4
x(x2 + 4)3/2 − 1

2
x
√
x2 + 4− 2 ln 1

2
x+ 1

2

√
x2 + 4 = 1

4
x(x2 + 4)1/2 (x2 + 4)− 2 − 2 ln x+

√
x2 + 4 /2

= 1
4
x(x2 + 2)

√
x2 + 4− 2 ln √x2 + 4 + x + 2 ln 2

Mathematica gives 1
4
x(2 + x2)

√
3 + x2 − 2 arcsinh(x/2). Applying the TrigToExp and Simplify commands gives

1
4
x(2 + x2)

√
4 + x2 − 8 log 1

2
x+

√
4 + x2 = 1

4
x(x2 + 2)

√
x2 + 4− 2 ln x+

√
4 + x2 + 2 ln 2, so all are

equivalent (without constant).
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Now use Formula 22 to get

x2 22 + x2 dx=
x

8
(22 + 2x2)

√
22 + x2 − 24

8
ln x+

√
22 + x2 +C

=
x

8
(2)(2 + x2)

√
4 + x2 − 2 ln x+

√
4 + x2 + C

= 1
4
x(x2 + 2)

√
x2 + 4− 2 ln √x2 + 4 + x + C

39. Maple gives x
√
1 + 2xdx = 1

10
(1 + 2x)5/2 − 1

6
(1 + 2x)3/2, Mathematica gives

√
1 + 2x 2

5
x2 + 1

15
x− 1

15
, and Derive

gives 1
15
(1 + 2x)3/2(3x− 1). The first two expressions can be simplified to Derive’s result. If we use Formula 54, we get

x
√
1 + 2xdx =

2

15(2)2
(3 · 2x− 2 · 1)(1 + 2x)3/2 + C = 1

30
(6x− 2)(1 + 2x)3/2 +C = 1

15
(3x− 1)(1 + 2x)3/2.

41. Maple gives tan5 xdx = 1
4
tan4 x− 1

2
tan2 x+ 1

2
ln(1 + tan2 x), Mathematica gives

tan5 xdx = 1
4
[−1− 2 cos(2x)] sec4 x− ln(cosx), and Derive gives tan5 xdx = 1

4
tan4 x− 1

2
tan2 x− ln(cosx).

These expressions are equivalent, and none includes absolute value bars or a constant of integration. Note that Mathematica’s

and Derive’s expressions suggest that the integral is undefined where cosx < 0, which is not the case. Using Formula 75,

tan5 xdx = 1
5− 1 tan

5−1 x− tan5−2 xdx = 1
4
tan4 x− tan3 xdx. Using Formula 69,

tan3 xdx = 1
2 tan

2 x+ ln |cosx|+C, so tan5 xdx = 1
4 tan

4 x− 1
2 tan

2 x− ln |cosx|+ C.

43. (a) F (x) = f(x) dx =
1

x
√
1− x2

dx
35
= −1

1
ln
1 +

√
1− x2

x
+ C = − ln 1 +

√
1− x2

x
+ C.

f has domain x | x 6= 0, 1− x2 > 0 = {x | x 6= 0, |x| < 1} = (−1, 0) ∪ (0, 1). F has the same domain.

(b) Derive gives F (x) = ln
√
1− x2 − 1 − lnx and Mathematica gives F (x) = lnx− ln 1 +√1− x2 .

Both are correct if you take absolute values of the logarithm arguments, and both would then have the

same domain. Maple gives F (x) = − arctanh 1/√1− x2 . This function has domain

x |x| < 1,−1 < 1/√1− x2 < 1 = x |x| < 1, 1/
√
1− x2 < 1 = x |x| < 1,√1− x2 > 1 = ∅,

the empty set! If we apply the command convert(%,ln); to Maple’s answer, we get

−1
2
ln

1√
1− x2

+ 1 +
1

2
ln 1− 1√

1− x2
, which has the same domain, ∅.

45. Maple gives the antiderivative

F (x) =
x2 − 1

x4 + x2 + 1
dx = − 1

2
ln(x2 + x+ 1) + 1

2
ln(x2 − x+ 1).

We can see that at 0, this antiderivative is 0. From the graphs, it appears that F has

a maximum at x = −1 and a minimum at x = 1 [since F 0(x) = f(x) changes

sign at these x-values], and that F has inflection points at x ≈ −1.7, x = 0, and

x ≈ 1.7 [since f(x) has extrema at these x-values].
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47. Since f(x) = sin4 x cos6 x is everywhere positive, we know that its antiderivative F is increasing. Maple gives

f(x) dx = − 1
10
sin3 x cos7 x− 3

80
sinx cos7 x+ 1

160
cos5 x sinx+ 1

128
cos3 x sinx+ 3

256
cosx sinx+ 3

256
x

and this expression is 0 at x = 0.

F has a minimum at x = 0 and a maximum at x = π.

F has inflection points where f 0 changes sign, that is, at x ≈ 0.7, x = π/2,

and x ≈ 2.5.

7.7 Approximate Integration

1. (a) ∆x = (b− a)/n = (4− 0)/2 = 2

L2 =
2

i=1

f(xi−1)∆x = f(x0) · 2 + f(x1) · 2 = 2 [f(0) + f(2)] = 2(0.5 + 2.5) = 6

R2 =
2

i=1

f(xi)∆x = f(x1) · 2 + f(x2) · 2 = 2 [f(2) + f(4)] = 2(2.5 + 3.5) = 12

M2 =
2

i=1

f(xi)∆x = f(x1) · 2 + f(x2) · 2 = 2 [f(1) + f(3)] ≈ 2(1.6 + 3.2) = 9.6

(b) L2 is an underestimate, since the area under the small rectangles is less than

the area under the curve, and R2 is an overestimate, since the area under the

large rectangles is greater than the area under the curve. It appears that M2

is an overestimate, though it is fairly close to I. See the solution to

Exercise 45 for a proof of the fact that if f is concave down on [a, b], then

the Midpoint Rule is an overestimate of b

a
f(x) dx.

(c) T2 = 1
2
∆x [f(x0) + 2f(x1) + f(x2)] =

2
2
[f(0) + 2f(2) + f(4)] = 0.5 + 2(2.5) + 3.5 = 9.

This approximation is an underestimate, since the graph is concave down. Thus, T2 = 9 < I. See the solution to

Exercise 45 for a general proof of this conclusion.

(d) For any n, we will have Ln < Tn < I < Mn < Rn.

3. f(x) = cos x2 , ∆x = 1− 0
4
= 1

4

(a) T4 = 1
4 · 2 f(0) + 2f 1

4
+ 2f 2

4
+ 2f 3

4
+ f(1) ≈ 0.895759

(b) M4 =
1
4
f 1

8
+ f 3

8
+ f 5

8
+ f 7

8
≈ 0.908907

The graph shows that f is concave down on [0, 1]. So T4 is an

underestimate and M4 is an overestimate. We can conclude that

0.895759 <
1

0
cos x2 dx < 0.908907.
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5. f(x) = x2 sinx, ∆x =
b− a

n
=

π − 0
8

=
π

8

(a) M8 =
π
8
f π

16
+ f 3π

16
+ f 5π

16
+ · · ·+ f 15π

16
≈ 5.932957

(b) S8 = π
8 · 3 f(0) + 4f π

8
+ 2f 2π

8
+ 4f 3π

8
+ 2f 4π

8
+ 4f 5π

8
+ 2f 6π

8
+ 4f 7π

8
+ f(π)

≈ 5.869247

Actual: π

0
x2 sinxdx

84
= −x2 cosx π

0
+ 2

π

0
x cosxdx

83
= −π2 (−1)− 0 + 2 cosx+ x sinx

π

0

= π2 + 2[(−1 + 0)− (1 + 0)] = π2 − 4 ≈ 5.869604

Errors: EM = actual−M8 =
π

0
x2 sinxdx−M8 ≈ −0.063353

ES = actual− S8 =
π

0
x2 sinxdx− S8 ≈ 0.000357

7. f(x) = 4
√
1 + x2, ∆x =

2− 0
8

=
1

4

(a) T8 = 1
4 · 2 f(0) + 2f 1

4
+ 2f 1

2
+ · · ·+ 2f 3

2
+ 2f 7

4
+ f(2) ≈ 2.413790

(b) M8 =
1
4
f 1

8
+ f 3

8
+ · · ·+ f 13

8
+ f 15

8
≈ 2.411453

(c) S8 = 1
4 · 3 f(0) + 4f 1

4
+ 2f 1

2
+ 4f 3

4
+ 2f(1) + 4f 5

4
+ 2f 3

2
+ 4f 7

4
+ f(2) ≈ 2.412232

9. f(x) = lnx

1 + x
, ∆x =

2− 1
10

=
1

10

(a) T10 = 1
10 · 2 [f(1) + 2f(1.1) + 2f(1.2) + · · ·+ 2f(1.8) + 2f(1.9) + f(2)] ≈ 0.146879

(b) M10 =
1
10
[f(1.05) + f(1.15) + · · ·+ f(1.85) + f(1.95)] ≈ 0.147391

(c) S10 = 1
10 · 3 [f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + 2f(1.4) + 4f(1.5) + 2f(1.6) + 4f(1.7)

+ 2f(1.8) + 4f(1.9) + f(2)]

≈ 0.147219

11. f(t) = sin(et/2), ∆t =
1
2
− 0
8

=
1

16

(a) T8 = 1
16 · 2 f(0) + 2f 1

16
+ 2f 2

16
+ · · ·+ 2f 7

16
+ f 1

2
≈ 0.451948

(b) M8 =
1
16

f 1
32

+ f 3
32

+ f 5
32

+ · · ·+ f 13
32

+ f 15
32

≈ 0.451991

(c) S8 = 1
16 · 3 f(0) + 4f 1

16
+ 2f 2

16
+ · · ·+ 4f 7

16
+ f 1

2
≈ 0.451976

13. f(t) = e
√
t sin t, ∆t =

4− 0
8

=
1

2

(a) T8 = 1
2 · 2 f(0) + 2f 1

2
+ 2f(1) + 2f 3

2
+ 2f(2) + 2f 5

2
+ 2f(3) + 2f 7

2
+ f(4) ≈ 4.513618

(b) M8 =
1
2
f 1

4
+ f 3

4
+ f 5

4
+ f 7

4
+ f 9

4
+ f 11

4
+ f 13

4
+ f 15

4
≈ 4.748256

(c) S8 = 1
2 · 3 f(0) + 4f 1

2
+ 2f(1) + 4f 3

2
+ 2f(2) + 4f 5

2
+ 2f(3) + 4f 7

2
+ f(4) ≈ 4.675111

15. f(x) = cosx

x
, ∆x =

5− 1
8

=
1

2

(a) T8 = 1
2 · 2 f(1) + 2f 3

2
+ 2f(2) + · · ·+ 2f(4) + 2f 9

2
+ f(5) ≈ −0.495333

(b) M8 =
1
2
f 5

4
+ f 7

4
+ f 9

4
+ f 11

4
+ f 13

4
+ f 15

4
+ f 17

4
+ f 19

4
≈ −0.543321

(c) S8 = 1
2 · 3 f(1) + 4f 3

2
+ 2f(2) + 4f 5

2
+ 2f(3) + 4f 7

2
+ 2f(4) + 4f 9

2
+ f(5) ≈ −0.526123
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17. f(y) = 1

1 + y5
, ∆y =

3− 0
6

=
1

2

(a) T6 = 1
2 · 2 f(0) + 2f 1

2
+ 2f 2

2
+ 2f 3

2
+ 2f 4

2
+ 2f 5

2
+ f(3) ≈ 1.064275

(b) M6 =
1
2
f 1

4
+ f 3

4
+ f 5

4
+ f 7

4
+ f 9

4
+ f 11

4
≈ 1.067416

(c) S6 = 1
2 · 3 f(0) + 4f 1

2
+ 2f 2

2
+ 4f 3

2
+ 2f 4

2
+ 4f 5

2
+ f(3) ≈ 1.074915

19. f(x) = cos(x2), ∆x = 1− 0
8 = 1

8

(a) T8 = 1
8 · 2 f(0) + 2 f 1

8
+ f 2

8
+ · · ·+ f 7

8
+ f(1) ≈ 0.902333

M8 =
1
8
f 1

16
+ f 3

16
+ f 5

16
+ · · ·+ f 15

16
= 0.905620

(b) f(x) = cos(x2), f 0(x) = −2x sin(x2), f 00(x) = −2 sin(x2)− 4x2 cos(x2). For 0 ≤ x ≤ 1, sin and cos are positive,

so |f 00(x)| = 2 sin(x2) + 4x2 cos(x2) ≤ 2 · 1 + 4 · 1 · 1 = 6 since sin(x2) ≤ 1 and cos x2 ≤ 1 for all x,

and x2 ≤ 1 for 0 ≤ x ≤ 1. So for n = 8, we take K = 6, a = 0, and b = 1 in Theorem 3, to get

|ET | ≤ 6 · 13/(12 · 82) = 1
128

= 0.0078125 and |EM | ≤ 1
256

= 0.00390625. [A better estimate is obtained by noting

from a graph of f 00 that |f 00(x)| ≤ 4 for 0 ≤ x ≤ 1.]

(c) Take K = 6 [as in part (b)] in Theorem 3. |ET | ≤ K(b− a)3

12n2
≤ 0.0001 ⇔ 6(1− 0)3

12n2
≤ 10−4 ⇔

1

2n2
≤ 1

104
⇔ 2n2 ≥ 104 ⇔ n2 ≥ 5000 ⇔ n ≥ 71. Take n = 71 for Tn. For EM , again take K = 6 in

Theorem 3 to get |EM | ≤ 10−4 ⇔ 4n2 ≥ 104 ⇔ n2 ≥ 2500 ⇔ n ≥ 50. Take n = 50 for Mn.

21. f(x) = sinx, ∆x = π− 0
10

= π
10

(a) T10 = π
10 · 2 f(0) + 2f π

10
+ 2f 2π

10
+ · · ·+ 2f 9π

10
+ f(π) ≈ 1.983524

M10 =
π
10

f π
20

+ f 3π
20

+ f 5π
20

+ · · ·+ f 19π
20

≈ 2.008248

S10 =
π

10 · 3 f(0) + 4f π
10

+ 2f 2π
10

+ 4f 3π
10

+ · · ·+ 4f 9π
10

+ f(π) ≈ 2.000110

Since I = π

0
sinxdx = − cosx π

0
= 1− (−1) = 2, ET = I − T10 ≈ 0.016476, EM = I −M10 ≈ −0.008248,

and ES = I − S10 ≈ −0.000110.

(b) f(x) = sinx ⇒ f (n)(x) ≤ 1, so take K = 1 for all error estimates.

|ET | ≤ K(b− a)3

12n2
=
1(π − 0)3
12(10)2

=
π3

1200
≈ 0.025839. |EM | ≤ |ET |

2
=

π3

2400
≈ 0.012919.

|ES | ≤ K(b− a)5

180n4
=
1(π − 0)5
180(10)4

=
π5

1,800,000
≈ 0.000170.

The actual error is about 64% of the error estimate in all three cases.

(c) |ET | ≤ 0.00001 ⇔ π3

12n2
≤ 1

105
⇔ n2 ≥ 105π3

12
⇒ n ≥ 508.3. Take n = 509 for Tn.

|EM | ≤ 0.00001 ⇔ π3

24n2
≤ 1

105
⇔ n2 ≥ 105π3

24
⇒ n ≥ 359.4. Take n = 360 for Mn.

|ES | ≤ 0.00001 ⇔ π5

180n4
≤ 1

105
⇔ n4 ≥ 105π5

180
⇒ n ≥ 20.3.

Take n = 22 for Sn (since n must be even).
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23. (a) Using a CAS, we differentiate f(x) = ecos x twice, and find that

f 00(x) = ecos x(sin2 x− cosx). From the graph, we see that the maximum

value of |f 00(x)| occurs at the endpoints of the interval [0, 2π].

Since f 00(0) = −e, we can use K = e or K = 2.8.

(b) A CAS gives M10 ≈ 7.954926518. (In Maple, use student[middlesum].)

(c) Using Theorem 3 for the Midpoint Rule, with K = e, we get |EM | ≤ e(2π − 0)3
24 · 102 ≈ 0.280945995.

With K = 2.8, we get |EM | ≤ 2.8(2π − 0)3
24 · 102 = 0. 289391916.

(d) A CAS gives I ≈ 7.954926521.

(e) The actual error is only about 3× 10−9, much less than the estimate in part (c).

(f) We use the CAS to differentiate twice more, and then graph

f (4)(x) = ecos x(sin4 x− 6 sin2 x cosx+ 3− 7 sin2 x+ cosx).

From the graph, we see that the maximum value of f (4)(x) occurs at the

endpoints of the interval [0, 2π]. Since f (4)(0) = 4e, we can use K = 4e

or K = 10.9.

(g) A CAS gives S10 ≈ 7.953789422. (In Maple, use student[simpson].)

(h) Using Theorem 4 with K = 4e, we get |ES | ≤ 4e(2π − 0)5
180 · 104 ≈ 0.059153618.

With K = 10.9, we get |ES | ≤ 10.9(2π − 0)5
180 · 104 ≈ 0.059299814.

(i) The actual error is about 7.954926521− 7.953789422 ≈ 0.00114. This is quite a bit smaller than the estimate in part (h),

though the difference is not nearly as great as it was in the case of the Midpoint Rule.

( j) To ensure that |ES | ≤ 0.0001, we use Theorem 4: |ES | ≤ 4e(2π)5

180 · n4 ≤ 0.0001 ⇒ 4e(2π)5

180 · 0.0001 ≤ n4 ⇒

n4 ≥ 5,915,362 ⇔ n ≥ 49.3. So we must take n ≥ 50 to ensure that |I − Sn| ≤ 0.0001.

(K = 10.9 leads to the same value of n.)

25. I = 1

0
xexdx = [(x− 1)ex]10 = 0− (−1) = 1, f(x) = xex, ∆x = 1/n

n = 5: L5 =
1
5
[f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)] ≈ 0.742943

R5 =
1
5
[f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)] ≈ 1.286599

T5 =
1
5 · 2 [f(0) + 2f(0.2) + 2f(0.4) + 2f(0.6) + 2f(0.8) + f(1)] ≈ 1.014771

M5=
1
5 [f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)] ≈ 0.992621

EL = I − L5 ≈ 1− 0.742943 = 0.257057
ER ≈ 1− 1.286599 = −0.286599
ET ≈ 1− 1.014771 = −0.014771
EM ≈ 1− 0.992621 = 0.007379

[parts or Formula 96]
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n = 10: L10 =
1
10 [f(0) + f(0.1) + f(0.2) + · · ·+ f(0.9)] ≈ 0.867782

R10 =
1
10 [f(0.1) + f(0.2) + · · ·+ f(0.9) + f(1)] ≈ 1.139610

T10 =
1

10 · 2{f(0) + 2[f(0.1) + f(0.2) + · · ·+ f(0.9)] + f(1)} ≈ 1.003696
M10=

1
10
[f(0.05) + f(0.15) + · · ·+ f(0.85) + f(0.95)] ≈ 0.998152

EL = I − L10 ≈ 1− 0.867782 = 0.132218
ER ≈ 1− 1.139610 = −0.139610
ET ≈ 1− 1.003696 = −0.003696
EM ≈ 1− 0.998152 = 0.001848

n = 20: L20 =
1
20
[f(0) + f(0.05) + f(0.10) + · · ·+ f(0.95)] ≈ 0.932967

R20 =
1
20 [f(0.05) + f(0.10) + · · ·+ f(0.95) + f(1)] ≈ 1.068881

T20 =
1

20 · 2{f(0) + 2[f(0.05) + f(0.10) + · · ·+ f(0.95)] + f(1)} ≈ 1.000924
M20=

1
20
[f(0.025) + f(0.075) + f(0.125) + · · ·+ f(0.975)] ≈ 0.999538

EL = I − L20 ≈ 1− 0.932967 = 0.067033
ER ≈ 1− 1.068881 = −0.068881
ET ≈ 1− 1.000924 = −0.000924
EM ≈ 1− 0.999538 = 0.000462

n Ln Rn Tn Mn

5 0.742943 1.286599 1.014771 0.992621

10 0.867782 1.139610 1.003696 0.998152

20 0.932967 1.068881 1.000924 0.999538

n EL ER ET EM

5 0.257057 −0.286599 −0.014771 0.007379

10 0.132218 −0.139610 −0.003696 0.001848

20 0.067033 −0.068881 −0.000924 0.000462

Observations:

1. EL and ER are always opposite in sign, as are ET and EM .

2. As n is doubled, EL and ER are decreased by about a factor of 2, and ET and EM are decreased by a factor of about 4.

3. The Midpoint approximation is about twice as accurate as the Trapezoidal approximation.

4. All the approximations become more accurate as the value of n increases.

5. The Midpoint and Trapezoidal approximations are much more accurate than the endpoint approximations.

27. I = 2

0
x4 dx = 1

5x
5 2

0
= 32

5 − 0 = 6.4, f(x) = x4, ∆x = 2− 0
n = 2

n

n = 6: T6 = 2
6 · 2 f(0) + 2 f 1

3
+ f 2

3
+ f 3

3
+ f 4

3
+ f 5

3
+ f(2) ≈ 6.695473

M6 =
2
6
f 1

6
+ f 3

6
+ f 5

6
+ f 7

6
+ f 9

6
+ f 11

6
≈ 6.252572

S6 = 2
6 · 3 f(0) + 4f 1

3
+ 2f 2

3
+ 4f 3

3
+ 2f 4

3
+ 4f 5

3
+ f(2) ≈ 6.403292

ET = I − T6 ≈ 6.4− 6.695473 = −0.295473
EM ≈ 6.4− 6.252572 = 0.147428
ES ≈ 6.4− 6.403292 = −0.003292
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n = 12: T12 =
2

12 · 2 f(0) + 2 f 1
6
+ f 2

6
+ f 3

6
+ · · ·+ f 11

6
+ f(2) ≈ 6.474023

M6 =
2
12

f 1
12

+ f 3
12

+ f 5
12

+ · · ·+ f 23
12

≈ 6.363008
S6 = 2

12 · 3 f(0) + 4f 1
6
+ 2f 2

6
+ 4f 3

6
+ 2f 4

6
+ · · ·+ 4f 11

6
+ f(2) ≈ 6.400206

ET = I − T12 ≈ 6.4− 6.474023 = −0.074023
EM ≈ 6.4− 6.363008 = 0.036992
ES ≈ 6.4− 6.400206 = −0.000206

n Tn Mn Sn

6 6.695473 6.252572 6.403292

12 6.474023 6.363008 6.400206

n ET EM ES

6 −0.295473 0.147428 −0.003292
12 −0.074023 0.036992 −0.000206

Observations:

1. ET and EM are opposite in sign and decrease by a factor of about 4 as n is doubled.

2. The Simpson’s approximation is much more accurate than the Midpoint and Trapezoidal approximations, and ES seems to
decrease by a factor of about 16 as n is doubled.

29. ∆x = (b− a)/n = (6− 0)/6 = 1
(a) T6 =

∆x
2 [f(0) + 2f(1) + 2f(2) + 2f(3) + 2f(4) + 2f(5) + f(6)]

≈ 1
2
[3 + 2(5) + 2(4) + 2(2) + 2(2.8) + 2(4) + 1]

= 1
2
(39.6) = 19.8

(b) M6 = ∆x[f(0.5) + f(1.5) + f(2.5) + f(3.5) + f(4.5) + f(5.5)]

≈ 1[4.5 + 4.7 + 2.6 + 2.2 + 3.4 + 3.2]
= 20.6

(c) S6 =
∆x
3
[f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(6)]

≈ 1
3
[3 + 4(5) + 2(4) + 4(2) + 2(2.8) + 4(4) + 1]

= 1
3
(61.6) = 20.53

31. (a) We are given the function values at the endpoints of 8 intervals of length 0.4, so we’ll use the Midpoint Rule with

n = 8/2 = 4 and ∆x = (3.2− 0)/4 = 0.8.

3.2

0
f(x) dx ≈M4 = 0.8[f(0.4) + f(1.2) + f(2.0) + f(2.8)] = 0.8[6.5 + 6.4 + 7.6 + 8.8]

= 0.8(29.3) = 23.44

(b) −4 ≤ f 00(x) ≤ 1 ⇒ |f 00(x)| ≤ 4, so use K = 4, a = 0, b = 3.2, and n = 4 in Theorem 3.

So |EM | ≤ 4(3.2− 0)3
24(4)2

=
128

375
= 0.3413.
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33. By the Net Change Theorem, the increase in velocity is equal to 6

0
a(t) dt. We use Simpson’s Rule with n = 6 and

∆t = (6− 0)/6 = 1 to estimate this integral:

6

0
a(t) dt ≈ S6 =

1
3
[a(0) + 4a(1) + 2a(2) + 4a(3) + 2a(4) + 4a(5) + a(6)]

≈ 1
3
[0 + 4(0.5) + 2(4.1) + 4(9.8) + 2(12.9) + 4(9.5) + 0] = 1

3
(113.2) = 37.73 ft/s

35. By the Net Change Theorem, the energy used is equal to 6

0
P (t) dt. We use Simpson’s Rule with n = 12 and

∆t = 6− 0
12

= 1
2

to estimate this integral:

6

0
P (t) dt ≈ S12 =

1/2
3
[P (0) + 4P (0.5) + 2P (1) + 4P (1.5) + 2P (2) + 4P (2.5) + 2P (3)

+ 4P (3.5) + 2P (4) + 4P (4.5) + 2P (5) + 4P (5.5) + P (6)]

= 1
6
[1814 + 4(1735) + 2(1686) + 4(1646) + 2(1637) + 4(1609) + 2(1604)

+ 4(1611) + 2(1621) + 4(1666) + 2(1745) + 4(1886) + 2052]

= 1
6
(61,064) = 10,177.3 megawatt-hours

37. Let y = f(x) denote the curve. Using cylindrical shells, V =
10

2
2πxf(x) dx = 2π

10

2
xf(x) dx = 2πI1.

Now use Simpson’s Rule to approximate I1:

I1 ≈ S8 =
10− 2
3(8)

[2f(2) + 4 · 3f(3) + 2 · 4f(4) + 4 · 5f(5) + 2 · 6f(6) + 4 · 7f(7) + 2 · 8f(8) + 4 · 9f(9) + 10f(10)]

≈ 1
3 [2(0) + 12(1.5) + 8(1.9) + 20(2.2) + 12(3.0) + 28(3.8) + 16(4.0) + 36(3.1) + 10(0)]

= 1
3
(395.2)

Thus, V ≈ 2π · 1
3
(395.2) ≈ 827.7 or 828 cubic units.

39. Using disks, V =
5

1
π(e−1/x)2 dx = π

5

1
e−2/x dx = πI1. Now use Simpson’s Rule with f(x) = e−2/x to approximate

I1. I1 ≈ S8 =
5− 1
3(8)

[f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + 2f(3) + 4f(3.5) + 2f(4) + 4f(4.5) + f(5)] ≈ 1
6
(11.4566)

Thus, V ≈ π · 1
6
(11.4566) ≈ 6.0 cubic units.

41. I(θ) = N2 sin2 k

k2
, where k = πNd sin θ

λ
, N = 10,000, d = 10−4, and λ = 632.8× 10−9. So I(θ) = (104)2 sin2 k

k2
,

where k = π(104)(10−4) sin θ
632.8× 10−9 . Now n = 10 and ∆θ =

10−6 − (−10−6)
10

= 2× 10−7, so

M10 = 2× 10−7[I(−0.0000009) + I(−0.0000007) + · · ·+ I(0.0000009)] ≈ 59.4.

43. Consider the function f whose graph is shown. The area 2

0
f(x) dx

is close to 2. The Trapezoidal Rule gives

T2 =
2− 0
2 · 2 [f(0) + 2f(1) + f(2)] = 1

2
[1 + 2 · 1 + 1] = 2.

The Midpoint Rule gives M2 =
2− 0
2
[f(0.5) + f(1.5)] = 1[0 + 0] = 0,

so the Trapezoidal Rule is more accurate.
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45. Since the Trapezoidal and Midpoint approximations on the interval [a, b] are the sums of the Trapezoidal and Midpoint

approximations on the subintervals [xi−1, xi], i = 1, 2, . . . , n, we can focus our attention on one such interval. The condition

f 00(x) < 0 for a ≤ x ≤ b means that the graph of f is concave down as in Figure 5. In that figure, Tn is the area of the

trapezoid AQRD, b

a
f(x) dx is the area of the region AQPRD, and Mn is the area of the trapezoid ABCD, so

Tn <
b

a
f(x) dx < Mn. In general, the condition f 00 < 0 implies that the graph of f on [a, b] lies above the chord joining the

points (a, f(a)) and (b, f(b)). Thus, b

a
f(x) dx > Tn. Since Mn is the area under a tangent to the graph, and since f 00 < 0

implies that the tangent lies above the graph, we also have Mn >
b

a
f(x) dx. Thus, Tn <

b

a
f(x) dx < Mn.

47. Tn = 1
2
∆x [f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)] and

Mn = ∆x [f(x1) + f(x2) + · · ·+ f(xn−1) + f(xn)], where xi = 1
2 (xi−1 + xi). Now

T2n =
1
2

1
2
∆x [f(x0) + 2f(x1) + 2f(x1) + 2f(x2) + 2f(x2) + · · ·+ 2f(xn−1) + 2f(xn−1) + 2f(xn) + f(xn)]

so

1
2
(Tn +Mn) =

1
2
Tn +

1
2
Mn

= 1
4∆x[f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)] +

1
4∆x[2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + 2f(xn)]

= T2n

7.8 Improper Integrals

1. (a) Since ∞
1

x4e−x
4

dx has an infinite interval of integration, it is an improper integral of Type I.

(b) Since y = secx has an infinite discontinuity at x = π
2

, π/2

0
secxdx is a Type II improper integral.

(c) Since y = x

(x− 2)(x− 3) has an infinite discontinuity at x = 2,
2

0

x

x2 − 5x+ 6 dx is a Type II improper integral.

(d) Since
0

−∞

1

x2 + 5
dx has an infinite interval of integration, it is an improper integral of Type I.

3. The area under the graph of y = 1/x3 = x−3 between x = 1 and x = t is

A(t) =
t

1
x−3 dx = − 1

2
x−2 t

1
= − 1

2
t−2 − − 1

2
= 1

2
− 1 2t2 . So the area for 1 ≤ x ≤ 10 is

A(10) = 0.5− 0.005 = 0.495, the area for 1 ≤ x ≤ 100 is A(100) = 0.5− 0.00005 = 0.49995, and the area for

1 ≤ x ≤ 1000 is A(1000) = 0.5− 0.0000005 = 0.4999995. The total area under the curve for x ≥ 1 is

lim
t→∞

A(t) = lim
t→∞

1
2
− 1/(2t2) = 1

2
.
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5. I =
∞

1

1

(3x+ 1)2
dx = lim

t→∞

t

1

1

(3x+ 1)2
dx. Now

1

(3x+ 1)2
dx =

1

3

1

u2
du [u = 3x+ 1, du = 3 dx] = − 1

3u
+ C = − 1

3(3x+ 1)
+ C,

so I = lim
t→∞

− 1

3(3x+ 1)

t

1

= lim
t→∞

− 1

3(3t+ 1)
+
1

12
= 0 +

1

12
=
1

12
. Convergent

7.
−1

−∞

1√
2− w

dw = lim
t→−∞

−1

t

1√
2−w

dw = lim
t→−∞

−2√2−w
−1
t

[u = 2− w, du = −dw]

= lim
t→−∞

−2√3 + 2√2− t =∞. Divergent

9. ∞
4

e−y/2 dy = lim
t→∞

t

4
e−y/2 dy = lim

t→∞
−2e−y/2 t

4
= lim

t→∞
(−2e−t/2 + 2e−2) = 0 + 2e−2 = 2e−2.

Convergent

11.
∞

−∞

xdx

1 + x2
=

0

−∞

xdx

1 + x2
+

∞

0

xdx

1 + x2
and

0

−∞

xdx

1 + x2
= lim

t→−∞
1
2
ln 1 + x2

0

t = lim
t→−∞

0− 1
2
ln 1 + t2 = −∞. Divergent

13. ∞
−∞ xe−x

2
dx =

0

−∞ xe−x
2
dx+

∞
0

xe−x
2
dx.

0

−∞ xe−x
2
dx = lim

t→−∞
− 1
2

e−x
2 0

t
= lim

t→−∞
− 1
2

1− e−t
2

= − 1
2
· 1 = − 1

2
, and

∞
0

xe−x
2
dx = lim

t→∞
− 1
2

e−x
2 t

0
= lim

t→∞
− 1
2

e−t
2 − 1 = − 1

2
· (−1) = 1

2
.

Therefore, ∞
−∞ xe−x

2

dx = − 1
2 +

1
2 = 0. Convergent

15. ∞
2π
sin θ dθ = lim

t→∞
t

2π
sin θ dθ = lim

t→∞
− cos θ t

2π
= lim

t→∞
(− cos t+ 1). This limit does not exist, so the integral is

divergent. Divergent

17.
∞

1

x+ 1

x2 + 2x
dx = lim

t→∞

t

1

1
2
(2x+ 2)

x2 + 2x
dx = 1

2
lim
t→∞

ln(x2 + 2x)
t

1
= 1

2
lim
t→∞

ln(t2 + 2t)− ln 3 =∞.

Divergent

19.
∞

0

se−5s ds = lim
t→∞

t

0

se−5s ds = lim
t→∞

− 1
5
se−5s − 1

25
e−5s by integration by

parts with u = s

= lim
t→∞

− 1
5
te−5t − 1

25
e−5t + 1

25
= 0− 0 + 1

25
[by l’Hospital’s Rule]

= 1
25

. Convergent
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21.
∞

1

lnx

x
dx = lim

t→∞
(lnx)2

2

t

1

by substitution with
u = lnx, du = dx/x

= lim
t→∞

(ln t)2

2
=∞. Divergent

23.
∞

−∞

x2

9 + x6
dx =

0

−∞

x2

9 + x6
dx+

∞

0

x2

9 + x6
dx = 2

∞

0

x2

9 + x6
dx [since the integrand is even].

Now x2 dx

9 + x6
u = x3

du = 3x2dx
=

1
3
du

9 + u2
u = 3v

du = 3 dv
=

1
3
(3 dv)

9 + 9v2
=
1

9

dv

1 + v2

=
1

9
tan−1 v + C =

1

9
tan−1

u

3
+ C =

1

9
tan−1

x3

3
+ C,

so 2
∞

0

x2

9 + x6
dx = 2 lim

t→∞

t

0

x2

9 + x6
dx = 2 lim

t→∞
1

9
tan−1

x3

3

t

0

= 2 lim
t→∞

1

9
tan−1

t3

3
=
2

9
· π
2
=

π

9
.

Convergent

25.
∞

e

1

x(lnx)3
dx= lim

t→∞

t

e

1

x(lnx)3
dx = lim

t→∞

ln t

1

u−3 du u = lnx,
du = dx/x

= lim
t→∞

− 1

2u2

ln t

1

= lim
t→∞

− 1

2 (ln t)2
+
1

2
= 0 +

1

2
=
1

2
. Convergent

27.
1

0

3

x5
dx = lim

t→0+

1

t

3x−5 dx = lim
t→0+

− 3

4x4

1

t

= −3
4
lim
t→0+

1− 1

t4
=∞. Divergent

29.
14

−2

dx
4
√
x+ 2

= lim
t→−2+

14

t

(x+ 2)−1/4 dx = lim
t→−2+

4

3
(x+ 2)3/4

14

t

=
4

3
lim

t→−2+
163/4 − (t+ 2)3/4

= 4
3
(8− 0) = 32

3
. Convergent

31.
3

−2

dx

x4
=

0

−2

dx

x4
+

3

0

dx

x4
, but

0

−2

dx

x4
= lim

t→0−
−x−3

3

t

−2
= lim

t→0−
− 1

3t3
− 1

24
=∞. Divergent

33. There is an infinite discontinuity at x = 1. 33

0
(x− 1)−1/5 dx = 1

0
(x− 1)−1/5 dx+ 33

1
(x− 1)−1/5 dx. Here

1

0
(x− 1)−1/5 dx = lim

t→1−
t

0
(x− 1)−1/5 dx = lim

t→1−
5
4 (x− 1)4/5

t

0
= lim

t→1−
5
4 (t− 1)4/5 − 5

4
= − 5

4 and

33

1
(x− 1)−1/5 dx = lim

t→1+

33

t
(x− 1)−1/5 dx = lim

t→1+

5
4
(x− 1)4/5 33

t
= lim

t→1+

5
4
· 16− 5

4
(t− 1)4/5 = 20.

Thus, 33

0
(x− 1)−1/5 dx = − 5

4 + 20 =
75
4 . Convergent

35. I =
3

0

dx

x2 − 6x+ 5 =
3

0

dx

(x− 1)(x− 5) = I1 + I2 =
1

0

dx

(x− 1)(x− 5) +
3

1

dx

(x− 1)(x− 5) .

Now 1

(x− 1)(x− 5) =
A

x− 1 +
B

x− 5 ⇒ 1 = A(x− 5) +B(x− 1).

Set x = 5 to get 1 = 4B, so B = 1
4

. Set x = 1 to get 1 = −4A, so A = −1
4

. Thus
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I1 = lim
t→1−

t

0

− 1
4

x− 1 +
1
4

x− 5 dx = lim
t→1−

−1
4
ln |x− 1|+ 1

4
ln |x− 5|

t

0

= lim
t→1−

− 1
4 ln |t− 1|+ 1

4 ln |t− 5| − − 1
4 ln |−1|+ 1

4 ln |−5|

=∞, since lim
t→1−

− 1
4
ln |t− 1| =∞.

Since I1 is divergent, I is divergent.

37.
0

−1

e1/x

x3
dx= lim

t→0−

t

−1

1

x
e1/x · 1

x2
dx = lim

t→0−

1/t

−1
ueu (−du) u = 1/x,

du = −dx/x2

= lim
t→0−

(u− 1)eu −1
1/t

use parts
or Formula 96 = lim

t→0−
−2e−1 − 1

t
− 1 e1/t

= −2
e
− lim

s→−∞
(s− 1)es [s = 1/t] = −2

e
− lim

s→−∞
s− 1
e−s

H
= −2

e
− lim

s→−∞
1

−e−s

= −2
e
− 0 = −2

e
. Convergent

39. I = 2

0
z2 ln z dz = lim

t→0+

2

t
z2 ln z dz = lim

t→0+

z3

32
(3 ln z − 1)

2

t

integrate by parts
or use Formula 101

= lim
t→0+

8
9
(3 ln 2− 1)− 1

9
t3(3 ln t− 1) = 8

3
ln 2− 8

9
− 1

9
lim
t→0+

t3(3 ln t− 1) = 8
3
ln 2− 8

9
− 1

9
L.

Now L = lim
t→0+

t3(3 ln t− 1) = lim
t→0+

3 ln t− 1
t−3

H
= lim

t→0+

3/t

−3/t4 = lim
t→0+

−t3 = 0.

Thus, L = 0 and I = 8
3
ln 2− 8

9
. Convergent

41. Area =
1

−∞ ex dx = lim
t→−∞

ex
1

t
= e− lim

t→−∞
et = e

43. Area =
∞

−∞

2

x2 + 9
dx = 2 · 2

∞

0

1

x2 + 9
dx = 4 lim

t→∞

t

0

1

x2 + 9
dx

= 4 lim
t→∞

1

3
tan−1

x

3

t

0

=
4

3
lim
t→∞

tan−1
t

3
− 0 =

4

3
· π
2
=
2π

3

45. Area = π/2

0
sec2 xdx = lim

t→(π/2)−
t

0
sec2 xdx = lim

t→(π/2)−
[tanx]t0

= lim
t→(π/2)−

(tan t− 0) =∞

Infinite area
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47. (a)
t

t

1
g(x) dx

2 0.447453

5 0.577101

10 0.621306

100 0.668479

1000 0.672957

10,000 0.673407

g(x) =
sin2 x

x2
.

It appears that the integral is convergent.

(b) −1 ≤ sinx ≤ 1 ⇒ 0 ≤ sin2 x ≤ 1 ⇒ 0 ≤ sin2 x

x2
≤ 1

x2
. Since

∞

1

1

x2
dx is convergent

[Equation 2 with p = 2 > 1],
∞

1

sin2 x

x2
dx is convergent by the Comparison Theorem.

(c) Since ∞
1

f(x) dx is finite and the area under g(x) is less than the area under f(x)

on any interval [1, t], ∞
1

g(x) dx must be finite; that is, the integral is convergent.

49. For x > 0, x

x3 + 1
<

x

x3
=
1

x2
.

∞

1

1

x2
dx is convergent by Equation 2 with p = 2 > 1, so

∞

1

x

x3 + 1
dx is convergent

by the Comparison Theorem.
1

0

x

x3 + 1
dx is a constant, so

∞

0

x

x3 + 1
dx =

1

0

x

x3 + 1
dx+

∞

1

x

x3 + 1
dx is also

convergent.

51. For x > 1, f(x) = x+ 1√
x4 − x

>
x+ 1√
x4

>
x

x2
=
1

x
, so

∞

2

f(x) dx diverges by comparison with
∞

2

1

x
dx, which diverges

by Equation 2 with p = 1 ≤ 1. Thus, ∞
1

f(x) dx =
2

1
f(x) dx+

∞
2

f(x) dx also diverges.

53. For 0 < x ≤ 1, sec
2 x

x
√
x

>
1

x3/2
. Now

I =
1

0

x−3/2 dx = lim
t→0+

1

t

x−3/2 dx = lim
t→0+

− 2x−1/2 1

t
= lim

t→0+
−2 + 2√

t
=∞, so I is divergent, and by

comparison,
1

0

sec2 x

x
√
x

is divergent.
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55.
∞

0

dx√
x (1 + x)

=
1

0

dx√
x (1 + x)

+
∞

1

dx√
x (1 + x)

= lim
t→0+

1

t

dx√
x (1 + x)

+ lim
t→∞

t

1

dx√
x (1 + x)

. Now

dx√
x (1 + x)

=
2udu

u(1 + u2)
u =
√
x, x = u2 ,

dx = 2udu
= 2

du

1 + u2
= 2 tan−1 u+C = 2 tan−1

√
x+ C, so

∞

0

dx√
x (1 + x)

= lim
t→0+

2 tan−1
√
x

1

t
+ lim

t→∞
2 tan−1

√
x

t

1

= lim
t→0+

2 π
4
− 2 tan−1√t + lim

t→∞
2 tan−1

√
t− 2 π

4
= π

2 − 0 + 2 π
2
− π

2 = π.

57. If p = 1, then
1

0

dx

xp
= lim

t→0+

1

t

dx

x
= lim

t→0+
[lnx]1t =∞. Divergent.

If p 6= 1, then
1

0

dx

xp
= lim

t→0+

1

t

dx

xp
[note that the integral is not improper if p < 0]

= lim
t→0+

x−p+1

−p+ 1
1

t

= lim
t→0+

1

1− p
1− 1

tp−1

If p > 1, then p− 1 > 0, so 1

tp−1
→∞ as t→ 0+, and the integral diverges.

If p < 1, then p− 1 < 0, so 1

tp−1
→ 0 as t→ 0+ and

1

0

dx

xp
=

1

1− p
lim
t→0+

1− t1−p =
1

1− p
.

Thus, the integral converges if and only if p < 1, and in that case its value is 1

1− p
.

59. First suppose p = −1. Then

1

0

xp lnxdx =
1

0

lnx

x
dx = lim

t→0+

1

t

lnx

x
dx = lim

t→0+

1
2
(lnx)2

1

t
= − 1

2
lim
t→0+

(ln t)2 = −∞, so the

integral diverges. Now suppose p 6= −1. Then integration by parts gives

xp lnxdx =
xp+1

p+ 1
lnx− xp

p+ 1
dx =

xp+1

p+ 1
lnx− xp+1

(p+ 1)2
+ C. If p < −1, then p+ 1 < 0, so

1

0

xp lnxdx = lim
t→0+

xp+1

p+ 1
lnx− xp+1

(p+ 1)2

1

t

=
−1

(p+ 1)2
− 1

p+ 1
lim
t→0+

tp+1 ln t− 1

p+ 1
=∞.

If p > −1, then p+ 1 > 0 and

1

0
xp lnxdx=

−1
(p+ 1)2

− 1

p+ 1
lim
t→0+

ln t− 1/(p+ 1)
t−(p+1)

H
=

−1
(p+ 1)2

− 1

p+ 1
lim
t→0+

1/t

−(p+ 1)t−(p+2)

=
−1

(p+ 1)2
+

1

(p+ 1)2
lim
t→0+

tp+1 =
−1

(p+ 1)2

Thus, the integral converges to − 1

(p+ 1)2
if p > −1 and diverges otherwise.
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61. (a) I = ∞
−∞ xdx =

0

−∞ xdx+
∞
0

xdx, and ∞
0

xdx = lim
t→∞

t

0
xdx = lim

t→∞
1
2x

2 t

0
= lim

t→∞
1
2 t
2 − 0 =∞,

so I is divergent.

(b) t

−t xdx =
1
2x

2 t

−t =
1
2 t
2 − 1

2 t
2 = 0, so lim

t→∞
t

−t xdx = 0. Therefore, ∞
−∞ xdx 6= lim

t→∞
t

−t xdx.

63. Volume =
∞

1

π
1

x

2

dx = π lim
t→∞

t

1

dx

x2
= π lim

t→∞
− 1
x

t

1

= π lim
t→∞

1− 1

t
= π <∞.

65. Work =
∞

R

F dr = lim
t→∞

t

R

GmM

r2
dr = lim

t→∞
GmM

1

R
− 1

t
=

GmM

R
. The initial kinetic energy provides the work,

so 1
2mv20 =

GmM

R
⇒ v0 =

2GM

R
.

67. We would expect a small percentage of bulbs to burn out in the first few hundred hours, most of the bulbs to burn out after

close to 700 hours, and a few overachievers to burn on and on.

(a)

(b) r(t) = F 0(t) is the rate at which the fraction F (t) of burnt-out bulbs increases as t increases. This could be interpreted as

a fractional burnout rate.

(c) ∞
0

r(t) dt = lim
x→∞

F (x) = 1, since all of the bulbs will eventually burn out.

69. I =
∞

a

1

x2 + 1
dx = lim

t→∞

t

a

1

x2 + 1
dx = lim

t→∞
tan−1 x

t

a
= lim

t→∞
tan−1 t− tan−1 a = π

2
− tan−1 a.

I < 0.001 ⇒ π
2
− tan−1 a < 0.001 ⇒ tan−1 a > π

2
− 0.001 ⇒ a > tan π

2
− 0.001 ≈ 1000.

71. (a) F (s) =
∞

0

f(t)e−st dt =
∞

0

e−st dt = lim
n→∞

−e−st

s

n

0

= lim
n→∞

e−sn

−s +
1

s
. This converges to 1

s
only if s > 0.

Therefore F (s) = 1

s
with domain {s | s > 0}.

(b) F (s) =
∞

0

f(t)e−st dt =
∞

0

ete−st dt = lim
n→∞

n

0

et(1−s) dt = lim
n→∞

1

1− s
et(1−s)

n

0

= lim
n→∞

e(1−s)n

1− s
− 1

1− s

This converges only if 1− s < 0 ⇒ s > 1, in which case F (s) = 1

s− 1 with domain {s | s > 1}.
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(c) F (s) = ∞
0

f(t)e−st dt = lim
n→∞

n

0
te−st dt. Use integration by parts: let u = t, dv = e−st dt ⇒ du = dt,

v = −e−st

s
. Then F (s) = lim

n→∞
− t

s
e−st − 1

s2
e−st

n

0

= lim
n→∞

−n
sesn

− 1

s2esn
+ 0 +

1

s2
=
1

s2
only if s > 0.

Therefore, F (s) = 1

s2
and the domain of F is {s | s > 0}.

73. G(s) = ∞
0

f 0(t)e−st dt. Integrate by parts with u = e−st, dv = f 0(t) dt ⇒ du = −se−st, v = f(t):

G(s) = lim
n→∞

f(t)e−st n

0
+ s

∞
0

f(t)e−st dt = lim
n→∞

f(n)e−sn − f(0) + sF (s)

But 0 ≤ f(t) ≤Meat ⇒ 0 ≤ f(t)e−st ≤Meate−st and lim
t→∞

Met(a−s) = 0 for s > a. So by the Squeeze Theorem,

lim
t→∞

f(t)e−st = 0 for s > a ⇒ G(s) = 0− f(0) + sF (s) = sF (s)− f(0) for s > a.

75. We use integration by parts: let u = x, dv = xe−x
2

dx ⇒ du = dx, v = − 1
2
e−x

2

. So

∞

0

x2e−x
2

dx = lim
t→∞

−1
2
xe−x

2
t

0

+
1

2

∞

0

e−x
2

dx = lim
t→∞

− t

2et2
+
1

2

∞

0

e−x
2

dx =
1

2

∞

0

e−x
2

dx

(The limit is 0 by l’Hospital’s Rule.)

77. For the first part of the integral, let x = 2 tan θ ⇒ dx = 2 sec2 θ dθ.

1√
x2 + 4

dx =
2 sec2 θ

2 sec θ
dθ = sec θ dθ = ln |sec θ + tan θ|.

From the figure, tan θ = x

2
, and sec θ =

√
x2 + 4

2
. So

I =
∞

0

1√
x2 + 4

− C

x+ 2
dx = lim

t→∞
ln

√
x2 + 4

2
+

x

2
− C ln|x+ 2|

t

0

= lim
t→∞

ln

√
t2 + 4 + t

2
−C ln(t+ 2)− (ln 1−C ln 2)

= lim
t→∞

ln

√
t2 + 4 + t

2 (t+ 2)C
+ ln 2C = ln lim

t→∞
t+

√
t2 + 4

(t+ 2)C
+ ln2C−1

Now L = lim
t→∞

t+
√
t2 + 4

(t+ 2)C
H
= lim

t→∞
1 + t/

√
t2 + 4

C (t+ 2)C−1
=

2

C lim
t→∞

(t+ 2)C−1
.

If C < 1, L =∞ and I diverges.

If C = 1, L = 2 and I converges to ln 2 + ln 20 = ln 2.
If C > 1, L = 0 and I diverges to −∞.

79. No, I = ∞
0

f(x) dx must be divergent. Since lim
x→∞

f(x) = 1, there must exist an N such that if x ≥ N , then f(x) ≥ 1
2 .

Thus, I = I1 + I2 =
N

0
f(x) dx+

∞
N

f(x) dx, where I1 is an ordinary definite integral that has a finite value, and I2 is

improper and diverges by comparison with the divergent integral ∞
N

1
2 dx.
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7 Review

1. See Formula 7.1.1 or 7.1.2. We try to choose u = f(x) to be a function that becomes simpler when differentiated (or at least

not more complicated) as long as dv = g0(x) dx can be readily integrated to give v.

2. See the Strategy for Evaluating sinm x cosn xdx on page 462.

3. If
√
a2 − x2 occurs, try x = a sin θ; if

√
a2 + x2 occurs, try x = a tan θ, and if

√
x2 − a2 occurs, try x = a sec θ. See the

Table of Trigonometric Substitutions on page 467.

4. See Equation 2 and Expressions 7, 9, and 11 in Section 7.4.

5. See the Midpoint Rule, the Trapezoidal Rule, and Simpson’s Rule, as well as their associated error bounds, all in Section 7.7.

We would expect the best estimate to be given by Simpson’s Rule.

6. See Definitions 1(a), (b), and (c) in Section 7.8.

7. See Definitions 3(b), (a), and (c) in Section 7.8.

8. See the Comparison Theorem after Example 8 in Section 7.8.

1. False. Since the numerator has a higher degree than the denominator,
x x2 + 4

x2 − 4 = x+
8x

x2 − 4 = x+
A

x+ 2
+

B

x− 2 .

3. False. It can be put in the form A

x
+

B

x2
+

C

x− 4 .

5. False. This is an improper integral, since the denominator vanishes at x = 1.
4

0

x

x2 − 1 dx =
1

0

x

x2 − 1 dx+
4

1

x

x2 − 1 dx and

1

0

x

x2 − 1 dx = lim
t→1−

t

0

x

x2 − 1 dx = lim
t→1−

1
2 ln x2 − 1

t

0
= lim

t→1−
1
2 ln t2 − 1 =∞

So the integral diverges.

7. False. See Exercise 61 in Section 7.8.

9. (a) True. See the end of Section 7.5.

(b) False. Examples include the functions f(x) = ex
2
, g(x) = sin(x2), and h(x) = sinx

x
.

11. False. If f(x) = 1/x, then f is continuous and decreasing on [1,∞) with lim
x→∞

f(x) = 0, but ∞
1

f(x)dx is divergent.

13. False. Take f(x) = 1 for all x and g(x) = −1 for all x. Then ∞
a

f(x) dx =∞ [divergent]

and ∞
a

g(x) dx = −∞ [divergent], but ∞
a
[f(x) + g(x)] dx = 0 [convergent].
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1.
5

0

x

x+ 10
dx =

5

0

1− 10

x+ 10
dx = x− 10 ln(x+ 10) 5

0
= 5− 10 ln 15 + 10 ln 10

= 5 + 10 ln 10
15
= 5+ 10 ln 2

3

3.
π/2

0

cos θ

1 + sin θ
dθ = ln(1 + sin θ)

π/2

0
= ln2− ln 1 = ln 2

5. π/2

0
sin3 θ cos2 θ dθ =

π/2

0
(1− cos2 θ) cos2 θ sin θ dθ = 0

1
(1− u2)u2 (−du) u = cos θ,

du = − sin θ dθ

=
1

0
(u2 − u4) du = 1

3
u3 − 1

5
u5

1

0
= 1

3
− 1

5
− 0 = 2

15

7. Let u = ln t, du = dt/t. Then sin(ln t)

t
dt = sinudu = − cosu+C = − cos(ln t) +C.

9.
4

1

x3/2 lnxdx
u = lnx,
du = dx/x

dv = x3/2 dx,
v = 2

5x
5/2 =

2

5
x5/2 lnx

4

1
− 2

5

4

1

x3/2 dx = 2
5
(32 ln 4− ln 1)− 2

5
2
5
x5/2

4

1

= 2
5
(64 ln 2)− 4

25
(32− 1) = 128

5
ln 2− 124

25
or 64

5
ln 4− 124

25

11. Let x = sec θ. Then
2

1

√
x2 − 1
x

dx =
π/3

0

tan θ

sec θ
sec θ tan θ dθ =

π/3

0

tan2 θ dθ =
π/3

0

(sec2 θ − 1) dθ = tan θ − θ
π/3

0
=
√
3− π

3
.

13. Let t = 3
√
x. Then t3 = x and 3t2 dt = dx, so e

3√x dx = et · 3t2 dt = 3I. To evaluate I, let u = t2,

dv = et dt ⇒ du = 2t dt, v = et, so I = t2et dt = t2et − 2tet dt. Now let U = t, dV = et dt ⇒

dU = dt, V = et. Thus, I = t2et − 2 tet − et dt = t2et − 2tet + 2et + C1, and hence

3I = 3et(t2 − 2t+ 2) + C = 3e
3√x (x2/3 − 2x1/3 + 2) + C.

15. x− 1
x2 + 2x

=
x− 1

x(x+ 2)
=

A

x
+

B

x+ 2
⇒ x− 1 = A(x+ 2) +Bx. Set x = −2 to get−3 = −2B, so B = 3

2
. Set x = 0

to get −1 = 2A, so A = −1
2 . Thus, x− 1

x2 + 2x
dx =

− 1
2

x
+

3
2

x+ 2
dx = −1

2
ln |x|+ 3

2
ln |x+ 2|+ C.

17. Integrate by parts with u = x, dv = secx tanxdx ⇒ du = dx, v = secx:

x secx tanxdx = x secx− secxdx
14
= x secx− ln|secx+ tanx|+ C.

19. x+ 1

9x2 + 6x+ 5
dx =

x+ 1

(9x2 + 6x+ 1) + 4
dx =

x+ 1

(3x+ 1)2 + 4
dx

u= 3x+ 1,
du= 3 dx

=
1
3
(u− 1) + 1
u2 + 4

1

3
du =

1

3
· 1
3

(u− 1) + 3
u2 + 4

du

=
1

9

u

u2 + 4
du+

1

9

2

u2 + 22
du =

1

9
· 1
2
ln(u2 + 4) +

2

9
· 1
2
tan−1

1

2
u + C

= 1
18
ln(9x2 + 6x+ 5) + 1

9
tan−1 1

2
(3x+ 1) +C
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21. dx√
x2 − 4x =

dx

(x2 − 4x+ 4)− 4 =
dx

(x− 2)2 − 22

=
2 sec θ tan θ dθ

2 tan θ
x− 2 = 2 sec θ,

dx = 2 sec θ tan θ dθ

= sec θ dθ = ln |sec θ + tan θ|+ C1

= ln
x− 2
2

+

√
x2 − 4x
2

+C1

= ln x− 2 +√x2 − 4x +C, where C = C1 − ln 2

23. Let x = tan θ, so that dx = sec2 θ dθ. Then

dx

x
√
x2 + 1

=
sec2 θ dθ

tan θ sec θ
=

sec θ

tan θ
dθ

= csc θ dθ = ln |csc θ − cot θ|+C

= ln

√
x2 + 1

x
− 1

x
+C = ln

√
x2 + 1− 1

x
+C

25. 3x
3 − x2 + 6x− 4
(x2 + 1)(x2 + 2)

=
Ax+B

x2 + 1
+

Cx+D

x2 + 2
⇒ 3x3 − x2 + 6x− 4 = (Ax+B) x2 + 2 + (Cx+D) x2 + 1 .

Equating the coefficients gives A+C = 3, B +D = −1, 2A+ C = 6, and 2B +D = −4 ⇒
A = 3, C = 0, B = −3, and D = 2. Now

3x3 − x2 + 6x− 4
(x2 + 1)(x2 + 2)

dx = 3
x− 1
x2 + 1

dx+ 2
dx

x2 + 2
=
3

2
ln x2 + 1 − 3 tan−1 x+√2 tan−1 x√

2
+C.

27. π/2

0
cos3 x sin 2xdx =

π/2

0
cos3 x (2 sinx cosx) dx =

π/2

0
2 cos4 x sinxdx = − 2

5
cos5 x

π/2

0
= 2

5

29. The product of an odd function and an even function is an odd function, so f(x) = x5 secx is an odd function.

By Theorem 5.5.7(b), 1

−1 x
5 secxdx = 0.

31. Let u =
√
ex − 1. Then u2 = ex − 1 and 2udu = ex dx. Also, ex + 8 = u2 + 9. Thus,

ln 10

0

ex
√
ex − 1

ex + 8
dx =

3

0

u · 2udu
u2 + 9

= 2
3

0

u2

u2 + 9
du = 2

3

0

1− 9

u2 + 9
du

= 2 u− 9

3
tan−1

u

3

3

0

= 2 (3− 3 tan−1 1)− 0 = 2 3− 3 · π
4

= 6− 3π

2

33. Let x = 2 sin θ ⇒ 4− x2
3/2

= (2 cos θ)3, dx = 2 cos θ dθ, so

x2

(4− x2)3/2
dx=

4 sin2 θ

8 cos3 θ
2 cos θ dθ = tan2 θ dθ = sec2 θ − 1 dθ

= tan θ − θ +C =
x√
4− x2

− sin−1 x

2
+ C
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35. 1√
x+ x3/2

dx =
dx

x (1 +
√
x )

=
dx√

x 1 +
√
x

⎡⎣ u = 1 +
√
x,

du =
dx

2
√
x

⎤⎦ =
2 du√
u
= 2u−1/2 du

= 4
√
u+C = 4 1 +

√
x+ C

37. (cosx+ sinx)2 cos 2xdx= cos2 x+ 2 sinx cosx+ sin2 x cos 2xdx = (1 + sin 2x) cos 2xdx

= cos 2xdx+ 1
2

sin 4xdx = 1
2
sin 2x− 1

8
cos 4x+ C

Or: (cosx+ sinx)2 cos 2xdx= (cosx+ sinx)2(cos2 x− sin2 x) dx
= (cosx+ sinx)3(cosx− sinx) dx = 1

4
(cosx+ sinx)4 + C1

39. We’ll integrate I = xe2x

(1 + 2x)2
dx by parts with u = xe2x and dv = dx

(1 + 2x)2
. Then du = (x · 2e2x + e2x · 1) dx

and v = −1
2
· 1

1 + 2x
, so

I = −1
2
· xe2x

1 + 2x
− −1

2
· e

2x(2x+ 1)

1 + 2x
dx = − xe2x

4x+ 2
+
1

2
· 1
2
e2x +C = e2x

1

4
− x

4x+ 2
+ C

Thus,
1/2

0

xe2x

(1 + 2x)2
dx = e2x

1

4
− x

4x+ 2

1/2

0

= e
1

4
− 1

8
− 1 1

4
− 0 =

1

8
e− 1

4
.

41.
∞

1

1

(2x+ 1)3
dx = lim

t→∞

t

1

1

(2x+ 1)3
dx = lim

t→∞

t

1

1
2
(2x+ 1)−3 2 dx = lim

t→∞
− 1

4(2x+ 1)2

t

1

= −1
4
lim
t→∞

1

(2t+ 1)2
− 1

9
= −1

4
0− 1

9
=
1

36

43. dx

x lnx
u = lnx,
du = dx/x

=
du

u
= ln |u|+C = ln |lnx|+ C, so

∞

2

dx

x lnx
= lim

t→∞

t

2

dx

x lnx
= lim

t→∞
ln |lnx| t

2
= lim

t→∞
[ln(ln t)− ln(ln 2)] =∞, so the integral is divergent.

45.
4

0

lnx√
x
dx = lim

t→0+

4

t

lnx√
x
dx

∗
= lim

t→0+
2
√
x lnx− 4

√
x

4

t

= lim
t→0+

(2 · 2 ln 4− 4 · 2)− 2
√
t ln t− 4√t ∗∗

= (4 ln 4− 8)− (0− 0) = 4 ln 4− 8

(∗) Let u = lnx, dv = 1√
x
dx ⇒ du =

1

x
dx, v = 2

√
x. Then

lnx√
x
dx = 2

√
x lnx− 2 dx√

x
= 2

√
x lnx− 4

√
x+ C

(∗∗) lim
t→0+

2
√
t ln t = lim

t→0+

2 ln t

t−1/2
H
= lim

t→0+

2/t

− 1
2 t
−3/2 = lim

t→0+
−4√t = 0

47.
1

0

x− 1√
x

dx= lim
t→0+

1

t

x√
x
− 1√

x
dx = lim

t→0+

1

t

(x1/2 − x−1/2) dx = lim
t→0+

2
3
x3/2 − 2x1/2 1

t

= lim
t→0+

2
3
− 2 − 2

3
t3/2 − 2t1/2 = − 4

3
− 0 = − 4

3
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49. Let u = 2x+ 1. Then

∞

−∞

dx

4x2 + 4x+ 5
=

∞

−∞

1
2
du

u2 + 4
=
1

2

0

−∞

du

u2 + 4
+
1

2

∞

0

du

u2 + 4

= 1
2 lim
t→−∞

1
2 tan

−1 1
2u

0

t
+ 1

2 limt→∞
1
2 tan

−1 1
2u

t

0
= 1

4
0− −π

2
+ 1

4
π
2 − 0 = π

4 .

51. We first make the substitution t = x+ 1, so ln(x2 + 2x+ 2) = ln (x+ 1)2 + 1 = ln(t2 + 1). Then we use parts with

u = ln(t2 + 1), dv = dt:

ln(t2 + 1) dt= t ln(t2 + 1)− t(2t) dt

t2 + 1
= t ln(t2 + 1)− 2 t2 dt

t2 + 1
= t ln(t2 + 1)− 2 1− 1

t2 + 1
dt

= t ln(t2 + 1)− 2t+ 2arctan t+ C

= (x+ 1) ln(x2 + 2x+ 2)− 2x+ 2arctan(x+ 1) +K, where K = C − 2

[Alternatively, we could have integrated by parts immediately with

u = ln(x2 + 2x+ 2).] Notice from the graph that f = 0 where F has a

horizontal tangent. Also, F is always increasing, and f ≥ 0.

53. From the graph, it seems as though 2π

0
cos2 x sin3 xdx is equal to 0.

To evaluate the integral, we write the integral as

I =
2π

0
cos2 x (1− cos2 x) sinxdx and let u = cosx ⇒

du = − sinxdx. Thus, I = 1

1
u2(1− u2)(−du) = 0.

55.
√
4x2 − 4x− 3 dx= (2x− 1)2 − 4 dx u = 2x− 1,

du = 2 dx
=

√
u2 − 22 1

2
du

39
=
1

2

u

2

√
u2 − 22 − 22

2
ln u+

√
u2 − 22 + C = 1

4u
√
u2 − 4− ln u+

√
u2 − 4 +C

= 1
4
(2x− 1)√4x2 − 4x− 3− ln 2x− 1 +√4x2 − 4x− 3 +C

57. Let u = sinx, so that du = cosxdx. Then

cosx 4 + sin2 xdx=
√
22 + u2 du

21
=

u

2

√
22 + u2 +

22

2
ln u+

√
22 + u2 + C

= 1
2
sinx 4 + sin2 x+ 2 ln sinx+ 4 + sin2 x +C

59. (a) d

du
− 1
u

√
a2 − u2 − sin−1 u

a
+C =

1

u2
√
a2 − u2 +

1√
a2 − u2

− 1

1− u2/a2
· 1
a

= a2 − u2
−1/2 1

u2
a2 − u2 + 1− 1 =

√
a2 − u2

u2
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(b) Let u = a sin θ ⇒ du = a cos θ dθ, a2 − u2 = a2 1− sin2 θ = a2 cos2 θ.
√
a2 − u2

u2
du=

a2 cos2 θ

a2 sin2 θ
dθ =

1− sin2 θ
sin2 θ

dθ = (csc2 θ − 1) dθ = − cot θ − θ +C

= −
√
a2 − u2

u
− sin−1 u

a
+C

61. For n ≥ 0, ∞
0

xn dx = lim
t→∞

xn+1/(n+ 1)
t

0
=∞. For n < 0, ∞

0
xn dx =

1

0
xn dx+

∞
1

xn dx. Both integrals are

improper. By (7.8.2), the second integral diverges if−1 ≤ n < 0. By Exercise 7.8.57, the first integral diverges if n ≤ −1.

Thus, ∞
0

xn dx is divergent for all values of n.

63. f(x) = 1

lnx
, ∆x =

b− a

n
=
4− 2
10

=
1

5

(a) T10 = 1
5 · 2{f(2) + 2[f(2.2) + f(2.4) + · · ·+ f(3.8)] + f(4)} ≈ 1.925444

(b) M10 =
1
5
[f(2.1) + f(2.3) + f(2.5) + · · ·+ f(3.9)] ≈ 1.920915

(c) S10 = 1
5 · 3 [f(2) + 4f(2.2) + 2f(2.4) + · · ·+ 2f(3.6) + 4f(3.8) + f(4)] ≈ 1.922470

65. f(x) = 1

lnx
⇒ f 0(x) = − 1

x(lnx)2
⇒ f 00(x) =

2 + lnx

x2(lnx)3
=

2

x2(lnx)3
+

1

x2(lnx)2
. Note that each term of

f 00(x) decreases on [2, 4], so we’ll take K = f 00(2) ≈ 2.022. |ET | ≤ K(b− a)3

12n2
≈ 2.022(4− 2)3

12(10)2
= 0.01348 and

|EM | ≤ K(b− a)3

24n2
= 0.00674. |ET | ≤ 0.00001 ⇔ 2.022(8)

12n2
≤ 1

105
⇔ n2 ≥ 105(2.022)(8)

12
⇒ n ≥ 367.2.

Take n = 368 for Tn. |EM | ≤ 0.00001 ⇔ n2 ≥ 105(2.022)(8)

24
⇒ n ≥ 259.6. Take n = 260 for Mn.

67. ∆t = 10
60
− 0 10 = 1

60
.

Distance traveled = 10

0
v dt ≈ S10

= 1
60 · 3 [40 + 4(42) + 2(45) + 4(49) + 2(52) + 4(54) + 2(56) + 4(57) + 2(57) + 4(55) + 56]

= 1
180
(1544) = 8.57 mi

69. (a) f(x) = sin(sinx). A CAS gives

f (4)(x) = sin(sinx)[cos4 x+ 7cos2 x− 3]
+ cos(sinx) 6 cos2 x sinx+ sinx

From the graph, we see that f (4)(x) < 3.8 for x ∈ [0, π].

(b) We use Simpson’s Rule with f(x) = sin(sinx) and ∆x = π
10

:

π

0
f(x) dx ≈ π

10 · 3 f(0) + 4f π
10

+ 2f 2π
10

+ · · ·+ 4f 9π
10

+ f(π) ≈ 1.786721

From part (a), we know that f (4)(x) < 3.8 on [0, π], so we use Theorem 7.7.4 with K = 3.8, and estimate the error

as |ES | ≤ 3.8(π − 0)5

180(10)4
≈ 0.000646.
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(c) If we want the error to be less than 0.00001, we must have |ES | ≤ 3.8π5

180n4
≤ 0.00001,

so n4 ≥ 3.8π5

180(0.00001)
≈ 646,041.6 ⇒ n ≥ 28.35. Since n must be even for Simpson’s Rule, we must have n ≥ 30

to ensure the desired accuracy.

71. x3

x5 + 2
≤ x3

x5
=
1

x2
for x in [1,∞).

∞

1

1

x2
dx is convergent by (7.8.2) with p = 2 > 1. Therefore,

∞

1

x3

x5 + 2
dx is

convergent by the Comparison Theorem.

73. For x in 0, π
2

, 0 ≤ cos2 x ≤ cosx. For x in π
2
, π , cosx ≤ 0 ≤ cos2 x. Thus,

area= π/2

0
(cosx− cos2 x) dx+ π

π/2
(cos2 x− cosx) dx

= sinx− 1
2x− 1

4 sin 2x
π/2

0
+ 1

2x+
1
4 sin 2x− sinx

π

π/2
= 1− π

4
− 0 + π

2 − π
4 − 1 = 2

75. Using the formula for disks, the volume is

V =
π/2

0
π [f(x)]2 dx = π

π/2

0
(cos2 x)2 dx = π

π/2

0
1
2 (1 + cos 2x)

2
dx

= π
4

π/2

0
(1 + cos2 2x+ 2 cos 2x) dx = π

4

π/2

0
1 + 1

2 (1 + cos 4x) + 2 cos 2x dx

= π
4

3
2
x+ 1

2
1
4
sin 4x + 2 1

2
sin 2x

π/2

0
= π

4
3π
4
+ 1

8
· 0 + 0 − 0 = 3π2

16

77. By the Fundamental Theorem of Calculus,

∞
0

f 0(x) dx = lim
t→∞

t

0
f 0(x) dx = lim

t→∞
[f(t)− f(0)] = lim

t→∞
f(t)− f(0) = 0− f(0) = −f(0).

79. Let u = 1/x ⇒ x = 1/u ⇒ dx = −(1/u2) du.

∞

0

lnx

1 + x2
dx =

0

∞

ln (1/u)

1 + 1/u2
−du

u2
=

0

∞

− lnu
u2 + 1

(−du) =
0

∞

lnu

1 + u2
du = −

∞

0

lnu

1 + u2
du

Therefore,
∞

0

lnx

1 + x2
dx = −

∞

0

lnx

1 + x2
dx = 0.





PROBLEMS PLUS

1.

By symmetry, the problem can be reduced to finding the line x = c such that the shaded area is one-third of the area of the

quarter-circle.An equation of the semicircle is y =
√
49− x2, so we require that c

0

√
49− x2 dx = 1

3
· 1
4
π(7)2 ⇔

1
2
x
√
49− x2 + 49

2
sin−1(x/7)

c

0
= 49

12
π [by Formula 30] ⇔ 1

2
c
√
49− c2 + 49

2
sin−1(c/7) = 49

12
π.

This equation would be difficult to solve exactly, so we plot the left-hand side as a function of c, and find that the equation

holds for c ≈ 1.85. So the cuts should be made at distances of about 1.85 inches from the center of the pizza.

3. The given integral represents the difference of the shaded areas, which appears to

be 0. It can be calculated by integrating with respect to either x or y, so we find x

in terms of y for each curve: y = 3
√
1− x7 ⇒ x = 7 1− y3 and

y = 7
√
1− x3 ⇒ x = 3 1− y7, so

1

0
3 1− y7 − 7 1− y3 dy =

1

0
7
√
1− x3 − 3

√
1− x7 dx.But this

equation is of the form z = −z. So 1

0
3
√
1− x7 − 7

√
1− x3 dx = 0.

5. The area A of the remaining part of the circle is given by

A = 4I = 4
a

0

a2 − x2 − b

a
a2 − x2 dx = 4 1− b

a

a

0

a2 − x2 dx

30
=
4

a
(a− b)

x

2

√
a2 − x2 +

a2

2
sin−1

x

a

a

0

=
4

a
(a− b) 0 +

a2

2

π

2
− 0 =

4

a
(a− b)

a2π

4
= πa(a− b),

which is the area of an ellipse with semiaxes a and a− b.

Alternate solution: Subtracting the area of the ellipse from the area of the circle gives us πa2 − πab = πa (a− b),

as calculated above. (The formula for the area of an ellipse was derived in Example 2 in Section 7.3.)

351
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7. Recall that cosA cosB = 1
2 [cos(A+B) + cos(A−B)]. So

f(x) =
π

0
cos t cos(x− t) dt = 1

2

π

0
[cos(t+ x− t) + cos(t− x+ t)] dt = 1

2

π

0
[cosx+ cos(2t− x)] dt

= 1
2

t cosx+ 1
2
sin(2t− x)

π

0
= π

2
cosx+ 1

4
sin(2π − x)− 1

4
sin(−x)

= π
2
cosx+ 1

4
sin(−x)− 1

4
sin(−x) = π

2
cosx

The minimum of cosx on this domain is −1, so the minimum value of f(x) is f(π) = −π
2 .

9. In accordance with the hint, we let Ik = 1(1−x2)k
0

dx, and we find an expression for Ik+1 in terms of Ik. We integrate Ik+1

by parts with u = (1− x2)k+1 ⇒ du = (k + 1)(1− x2)k(−2x), dv = dx ⇒ v = x, and then split the remaining

integral into identifiable quantities:

Ik+1 = x(1− x2)k+1
1

0
+ 2(k + 1)

1

0
x2(1− x2)k dx = (2k + 2)

1

0
(1− x2)k[1− (1− x2)] dx

= (2k + 2)(Ik − Ik+1)

So Ik+1[1 + (2k + 2)] = (2k + 2)Ik ⇒ Ik+1 =
2k + 2

2k + 3
Ik. Now to complete the proof, we use induction:

I0 = 1 =
20(0!)2

1!
, so the formula holds for n = 0. Now suppose it holds for n = k. Then

Ik+1 =
2k + 2

2k + 3
Ik =

2k + 2

2k + 3

22k(k!)2

(2k + 1)!
=
2(k + 1)22k(k!)2

(2k + 3)(2k + 1)!
=
2(k + 1)

2k + 2
· 2(k + 1)2

2k(k!)2

(2k + 3)(2k + 1)!

=
[2(k + 1)]2 22k(k!)2

(2k + 3)(2k + 2)(2k + 1)!
=
22(k+1) [(k + 1)!]2

[2(k + 1) + 1]!

So by induction, the formula holds for all integers n ≥ 0.

11. 0 < a < b. Now

1

0

[bx+ a(1− x)]t dx =
b

a

ut

(b− a)
du [u = bx+ a(1 − x)] =

ut+1

(t+ 1)(b− a)

b

a

=
bt+1 − at+1

(t+ 1)(b− a)
.

Now let y = lim
t→0

bt+1 − at+1

(t+ 1)(b− a)

1/t

. Then ln y = lim
t→0

1

t
ln

bt+1 − at+1

(t+ 1)(b− a)
. This limit is of the form 0/0,

so we can apply l’Hospital’s Rule to get

ln y = lim
t→0

bt+1 ln b− at+1 ln a

bt+1 − at+1
− 1

t+ 1
=

b ln b− a ln a

b− a
− 1 = b ln b

b− a
− a ln a

b− a
− ln e = ln bb/(b−a)

eaa/(b−a)
.

Therefore, y = e−1
bb

aa

1/(b−a)
.
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13. An equation of the circle with center (0, c) and radius 1 is x2 + (y − c)2 = 12, so

an equation of the lower semicircle is y = c−√1− x2. At the points of tangency,

the slopes of the line and semicircle must be equal. For x ≥ 0, we must have

y0 = 2 ⇒ x√
1− x2

= 2 ⇒ x = 2
√
1− x2 ⇒ x2 = 4(1− x2) ⇒

5x2 = 4 ⇒ x2 = 4
5
⇒ x = 2

5

√
5 and so y = 2 2

5

√
5 = 4

5

√
5.

The slope of the perpendicular line segment is − 1
2

, so an equation of the line segment is y − 4
5

√
5 = − 1

2
x− 2

5

√
5 ⇔

y = − 1
2x+

1
5

√
5 + 4

5

√
5 ⇔ y = − 1

2x+
√
5, so c =

√
5 and an equation of the lower semicircle is y =

√
5−√1− x2.

Thus, the shaded area is

2
(2/5)

√
5

0

√
5− 1− x2 − 2x dx

30
= 2

√
5x− x

2

√
1− x2 − 1

2
sin−1 x− x2

(2/5)
√
5

0

= 2 2−
√
5

5
· 1√
5
− 1

2
sin−1

2√
5

− 4

5
− 2(0)

= 2 1− 1

2
sin−1

2√
5

= 2− sin−1 2√
5

15. We integrate by parts with u = 1

ln(1 + x+ t)
, dv = sin t dt, so du = −1

(1 + x+ t)[ln(1 + x+ t)]2
and v = − cos t. The

integral becomes

I =
∞

0

sin t dt

ln(1 + x+ t)
= lim

b→∞
− cos t

ln(1 + x+ t)

b

0

−
b

0

cos t dt

(1 + x+ t)[ln(1 + x+ t)]2

= lim
b→∞

− cos b
ln(1 + x+ b)

+
1

ln(1 + x)
+

∞

0

− cos t dt
(1 + x+ t)[ln(1 + x+ t)]2

=
1

ln(1 + x)
+ J

where J =
∞

0

− cos t dt
(1 + x+ t)[ln(1 + x+ t)]2

. Now−1 ≤ − cos t ≤ 1 for all t; in fact, the inequality is strict except

at isolated points. So −
∞

0

dt

(1 + x+ t)[ln(1 + x+ t)]2
< J <

∞

0

dt

(1 + x+ t)[ln(1 + x+ t)]2
⇔

− 1

ln(1 + x)
< J <

1

ln(1 + x)
⇔ 0 < I <

2

ln(1 + x)
.





8 FURTHER APPLICATIONS OF INTEGRATION
8.1 Arc Length

1. y = 2x− 5 ⇒ L =
3

−1 1 + (dy/dx)2 dx =
3

−1 1 + (2)2 dx =
√
5 [3− (−1)] = 4√5.

The arc length can be calculated using the distance formula, since the curve is a line segment, so

L = [distance from (−1,−7) to (3, 1)] = [3− (−1)]2 + [1− (−7)]2 = √80 = 4√5

3. y = cosx ⇒ dy/dx = − sinx ⇒ 1 + (dy/dx)2 = 1 + sin2 x. So L = 2π

0
1 + sin2 xdx.

5. x = y + y3 ⇒ dx/dy = 1 + 3y2 ⇒ 1 + (dx/dy)2 = 1 + (1 + 3y2)2 = 9y4 + 6y2 + 2.

So L = 4

1
9y4 + 6y2 + 2dy.

7. y = 1 + 6x3/2 ⇒ dy/dx = 9x1/2 ⇒ 1 + (dy/dx)2 = 1 + 81x. So

L =
1

0

√
1 + 81xdx =

82

1
u1/2 1

81 du
u = 1 + 81x,
du = 81 dx

= 1
81 · 23 u3/2

82

1
= 2

243
82
√
82− 1

9. y = x5

6
+

1

10x3
⇒ dy

dx
=
5

6
x4 − 3

10
x−4 ⇒

1 + (dy/dx)2 = 1 + 25
36
x8 − 1

2
+ 9

100
x−8 = 25

36
x8 + 1

2
+ 9

100
x−8 = 5

6
x4 + 3

10
x−4 2. So

L =
2

1
5
6
x4 + 3

10
x−4 2

dx =
2

1
5
6
x4 + 3

10
x−4 dx = 1

6
x5 − 1

10
x−3 2

1
= 32

6
− 1

80
− 1

6
− 1

10

= 31
6
+ 7

80
= 1261

240

11. x = 1
3

√
y (y − 3) = 1

3
y3/2 − y1/2 ⇒ dx/dy = 1

2
y1/2 − 1

2
y−1/2 ⇒

1 + (dx/dy)2 = 1 + 1
4y − 1

2 +
1
4y
−1 = 1

4y +
1
2 +

1
4y
−1 = 1

2y
1/2 + 1

2y
−1/2 2

. So

L =
9

1
1
2
y1/2 + 1

2
y−1/2 dy = 1

2
2
3
y3/2 + 2y1/2

9

1
= 1

2
2
3
· 27 + 2 · 3 − 2

3
· 1 + 2 · 1

= 1
2
24− 8

3
= 1

2
64
3
= 32

3
.

13. y = ln(secx) ⇒ dy

dx
=
secx tanx

secx
= tanx ⇒ 1 +

dy

dx

2

= 1 + tan2 x = sec2 x, so

L =
π/4

0

√
sec2 xdx =

π/4

0
|secx| dx = π/4

0
secxdx = ln(secx+ tanx)

π/4

0

= ln
√
2 + 1 − ln(1 + 0) = ln √2 + 1

355
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15. y = ln(1 − x2) ⇒ y0 =
1

1− x2
· (−2x) ⇒

1 +
dy

dx

2

= 1 +
4x2

(1− x2)2
=
1− 2x2 + x4 + 4x2

(1− x2)2
=
1 + 2x2 + x4

(1− x2)2
=
(1 + x2)2

(1− x2)2
⇒

1 +
dy

dx

2

=
1 + x2

1− x2

2

=
1+ x2

1− x2
= −1 + 2

1− x2
[by division] = −1 + 1

1 + x
+

1

1− x
[partial fractions].

So L =
1/2

0

−1 + 1

1 + x
+

1

1− x
dx = −x+ ln |1 + x|− ln |1− x| 1/2

0
= − 1

2
+ ln 3

2
− ln 1

2
− 0 = ln 3− 1

2
.

17. y = ex ⇒ y0 = ex ⇒ 1 + (y0)2 = 1 + e2x. So

L=
1

0

1 + e2x dx =
e

1

1 + u2
du

u
u = ex, so

x = lnu, dx = du/u
=

e

1

√
1 + u2

u2
udu

=

√
1+e2

√
2

v

v2 − 1 v dv
v =
√
1 + u2, so

v2 = 1 + u2, v dv = udu
=

√
1+e2

√
2

1 +
1/2

v − 1 −
1/2

v + 1
dv

= v +
1

2
ln

v − 1
v + 1

√
1+e2

√
2

=
√
1 + e2 +

1

2
ln

√
1 + e2 − 1√
1 + e2 + 1

−√2− 1

2
ln

√
2− 1√
2 + 1

=
√
1 + e2 −√2 + ln √1 + e2 − 1 − 1− ln √2− 1

Or: Use Formula 23 for
√
1 + u2/u du, or substitute u = tan θ.

19. y = 1
2x

2 ⇒ dy/dx = x ⇒ 1 + (dy/dx)2 = 1 + x2. So

L=
1

−1
√
1 + x2 dx = 2

1

0

√
1 + x2 dx [by symmetry] 21

= 2 x
2

√
1 + x2 + 1

2
ln x+

√
1 + x2

1

0

or substitute
x = tan θ

= 2 1
2

√
2 + 1

2
ln 1 +

√
2 − 0 + 1

2
ln 1 =

√
2 + ln 1 +

√
2

21. From the figure, the length of the curve is slightly larger than the hypotenuse

of the triangle formed by the points (1, 0), (3, 0), and (3, f(3)) ≈ (3, 15),

where y = f(x) = 2
3
(x2 − 1)3/2. This length is about

√
152 + 22 ≈ 15, so

we might estimate the length to be 15.5.

y = 2
3 (x

2 − 1)3/2 ⇒ y0 = (x2 − 1)1/2(2x) ⇒ 1 + (y0)2 = 1 + 4x2(x2 − 1) = 4x4 − 4x2 + 1 = (2x2 − 1)2,

so, using the fact that 2x2 − 1 > 0 for 1 ≤ x ≤ 3,

L =
3

1
(2x2 − 1)2 dx = 3

1
2x2 − 1 dx =

3

1
(2x2 − 1) dx = 2

3
x3 − x

3

1
= (18− 3)− 2

3
− 1 = 46

3
= 15.3.

23. y = xe−x ⇒ dy/dx = e−x − xe−x = e−x(1− x) ⇒ 1 + (dy/dx)2 = 1 + e−2x(1− x)2. Let

f(x) = 1 + (dy/dx)2 = 1 + e−2x(1− x)2. Then L = 5

0
f(x) dx. Since n = 10, ∆x = 5− 0

10
= 1

2
. Now

L ≈ S10 =
1/2
3 [f(0) + 4f

1
2
+ 2f(1) + 4f 3

2
+ 2f(2) + 4f 5

2
+ 2f(3) + 4f 7

2
+ 2f(4) + 4f 9

2
+ f(5)]

≈ 5.115840

The value of the integral produced by a calculator is 5.113568 (to six decimal places).
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25. y = secx ⇒ dy/dx = secx tanx ⇒ L =
π/3

0
f(x) dx, where f(x) =

√
1 + sec2 x tan2 x.

Since n = 10, ∆x =
π/3− 0
10

=
π

30
. Now

L ≈ S10 =
π/30

3
f(0) + 4f

π

30
+ 2f

2π

30
+ 4f

3π

30
+ 2f

4π

30
+ 4f

5π

30

+ 2f
6π

30
+ 4f

7π

30
+ 2f

8π

30
+ 4f

9π

30
+ f

π

3
≈ 1.569619.

The value of the integral produced by a calculator is 1.569259 (to six decimal places).

27. (a)

(b) Let f(x) = y = x 3
√
4− x. The polygon with one side is just

the line segment joining the points (0, f(0)) = (0, 0) and

(4, f(4)) = (4, 0), and its length L1 = 4.

The polygon with two sides joins the points (0, 0),

(2, f(2)) = 2, 2 3
√
2 and (4, 0). Its length

L2 = (2− 0)2 + 2 3
√
2− 0 2

+ (4− 2)2 + 0− 2 3
√
2

2
= 2

√
4 + 28/3 ≈ 6.43

Similarly, the inscribed polygon with four sides joins the points (0, 0), 1, 3
√
3 , 2, 2 3

√
2 , (3, 3), and (4, 0),

so its length

L3 = 1 + 3
√
3

2
+ 1 + 2 3

√
2− 3

√
3

2
+ 1 + 3− 2 3

√
2

2
+
√
1 + 9 ≈ 7.50

(c) Using the arc length formula with dy

dx
= x 1

3 (4− x)−2/3(−1) + 3
√
4− x =

12− 4x
3(4− x)2/3

, the length of the curve is

L =
4

0

1 +
dy

dx

2

dx =
4

0

1 +
12− 4x

3(4− x)2/3

2

dx.

(d) According to a CAS, the length of the curve is L ≈ 7.7988. The actual value is larger than any of the approximations in

part (b). This is always true, since any approximating straight line between two points on the curve is shorter than the

length of the curve between the two points.
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29. y = lnx ⇒ dy/dx = 1/x ⇒ 1 + (dy/dx)2 = 1 + 1/x2 = (x2 + 1)/x2 ⇒

L=
2

1

x2 + 1

x2
dx =

2

1

√
1 + x2

x
dx

23
= 1 + x2 − ln 1 +

√
1 + x2

x

2

1

=
√
5− ln 1 +

√
5

2
−√2 + ln 1 +√2

31. y2/3 = 1− x2/3 ⇒ y = (1− x2/3)3/2 ⇒
dy

dx
= 3

2
(1− x2/3)1/2 − 2

3
x−1/3 = −x−1/3(1− x2/3)1/2 ⇒

dy

dx

2

= x−2/3(1− x2/3) = x−2/3 − 1. Thus

L = 4
1

0
1 + (x−2/3 − 1) dx = 4 1

0
x−1/3 dx = 4 lim

t→0+

3
2
x2/3

1

t
= 6.

33. y = 2x3/2 ⇒ y0 = 3x1/2 ⇒ 1 + (y0)2 = 1 + 9x. The arc length function with starting point P0(1, 2) is

s(x) =
x

1

√
1 + 9t dt = 2

27
(1 + 9t)3/2

x

1
= 2

27
(1 + 9x)3/2 − 10√10 .

35. y = sin−1 x +
√
1− x2 ⇒ y0 =

1√
1− x2

− x√
1− x2

=
1− x√
1− x2

⇒

1 + (y0)2 = 1 +
(1− x)2

1− x2
=
1− x2 + 1− 2x+ x2

1− x2
=
2− 2x
1− x2

=
2(1− x)

(1 + x)(1− x)
=

2

1 + x
⇒

1 + (y0)2 =
2

1 + x
. Thus, the arc length function with starting point (0, 1) is given by

s(x) =
x

0

1 + [f 0(t)]2 dt =
x

0

2

1 + t
dt =

√
2 2

√
1 + t

x

0
= 2

√
2
√
1 + x− 1 .

37. The prey hits the ground when y = 0 ⇔ 180− 1
45x

2 = 0 ⇔ x2 = 45 · 180 ⇒ x =
√
8100 = 90,

since x must be positive. y0 = − 2
45
x ⇒ 1 + (y0)2 = 1 + 4

452
x2, so the distance traveled by the prey is

L =
90

0

1 +
4

452
x2 dx =

4

0

1 + u2 45
2
du

u = 2
45x,

du = 2
45 dx

21
= 45

2
1
2
u
√
1 + u2 + 1

2
ln u+

√
1 + u2

4

0
= 45

2
2
√
17 + 1

2
ln 4 +

√
17 = 45

√
17 + 45

4
ln 4 +

√
17 ≈ 209.1 m

39. The sine wave has amplitude 1 and period 14, since it goes through two periods in a distance of 28 in., so its equation is

y = 1 sin 2π
14
x = sin π

7
x . The width w of the flat metal sheet needed to make the panel is the arc length of the sine curve

from x = 0 to x = 28. We set up the integral to evaluate w using the arc length formula with dy
dx
= π

7
cos π

7
x :

L =
28

0
1 + π

7
cos π

7
x

2
dx = 2

14

0
1 + π

7
cos π

7
x

2
dx. This integral would be very difficult to evaluate exactly,

so we use a CAS, and find that L ≈ 29.36 inches.

41. y = x

1

√
t3 − 1 dt ⇒ dy/dx =

√
x3 − 1 [by FTC1] ⇒ 1 + (dy/dx)2 = 1 +

√
x3 − 1 2

= x3 ⇒

L =
4

1

√
x3 dx =

4

1
x3/2 dx = 2

5
x5/2

4

1
= 2

5
(32− 1) = 62

5
= 12.4
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8.2 Area of a Surface of Revolution

1. y = x4 ⇒ dy/dx = 4x3 ⇒ ds = 1 + (dy/dx)2 dx =
√
1 + 16x6 dx

(a) By (7), an integral for the area of the surface obtained by rotating the curve about the x-axis is

S = 2πy ds =
1

0
2πx4

√
1 + 16x6 dx.

(b) By (8), an integral for the area of the surface obtained by rotating the curve about the y-axis is

S = 2πxds =
1

0
2πx

√
1 + 16x6 dx.

3. y = tan−1 x ⇒ dy

dx
=

1

1 + x2
⇒ ds = 1 +

dy

dx

2

dx = 1+
1

(1 + x2)2
dx.

(a) By (7), S = 2πy ds =
1

0
2π tan−1 x 1 +

1

(1 + x2)2
dx.

(b) By (8), S = 2πxds =
1

0
2πx 1 +

1

(1 + x2)2
dx.

5. y = x3 ⇒ y0 = 3x2. So

S =
2

0
2πy 1 + (y0)2 dx = 2π 2

0
x3
√
1 + 9x4 dx [u = 1 + 9x4, du = 36x3 dx]

= 2π
36

145

1

√
udu = π

18
2
3u

3/2
145

1
= π

27
145

√
145− 1

7. y =
√
1 + 4x ⇒ y0 = 1

2
(1 + 4x)−1/2(4) =

2√
1 + 4x

⇒ 1 + (y0)2 = 1 +
4

1 + 4x
=

5 + 4x

1 + 4x
. So

S =
5

1
2πy 1 + (y0)2 dx = 2π 5

1

√
1 + 4x

5 + 4x

1 + 4x
dx = 2π

5

1

√
4x+ 5 dx

= 2π
25

9

√
u 1

4 du
u = 4x+ 5,
du = 4 dx

= 2π
4

2
3u

3/2
25

9
= π

3 (25
3/2 − 93/2) = π

3 (125− 27) = 98
3 π

9. y = sinπx ⇒ y0 = π cosπx ⇒ 1 + (y0)2 = 1 + π2 cos2(πx). So

S =
1

0
2πy 1 + (y0)2 dx = 2π 1

0
sinπx 1 + π2 cos2(πx) dx

u = π cosπx,

du = −π2 sinπx dx

= 2π
−π

π

1 + u2 − 1

π2
du =

2

π

π

−π
1 + u2 du

=
4

π

π

0

1 + u2 du
21
=
4

π

u

2
1 + u2 + 1

2 ln u+ 1 + u2
π

0

=
4

π

π

2

√
1 + π2 + 1

2 ln π +
√
1 + π2 − 0 = 2

√
1 + π2 +

2

π
ln π +

√
1 + π2

11. x = 1
3
(y2 + 2)3/2 ⇒ dx/dy = 1

2
(y2 + 2)1/2(2y) = y y2 + 2 ⇒ 1 + (dx/dy)2 = 1 + y2(y2 + 2) = (y2 + 1)2.

So S = 2π 2

1
y(y2 + 1) dy = 2π 1

4
y4 + 1

2
y2

2

1
= 2π 4 + 2− 1

4
− 1

2
= 21π

2
.

13. y = 3
√
x ⇒ x = y3 ⇒ 1 + (dx/dy)2 = 1 + 9y4. So

S = 2π
2

1
x 1 + (dx/dy)2 dy = 2π

2

1
y3 1 + 9y4 dy = 2π

36

2

1
1 + 9y4 36y3 dy = π

18
2
3
1 + 9y4

3/2 2

1

= π
27
145

√
145− 10√10



360 ¤ CHAPTER 8 FURTHER APPLICATIONS OF INTEGRATION

15. x = a2 − y2 ⇒ dx/dy = 1
2 (a

2 − y2)−1/2(−2y) = −y/ a2 − y2 ⇒

1 +
dx

dy

2

= 1 +
y2

a2 − y2
=

a2 − y2

a2 − y2
+

y2

a2 − y2
=

a2

a2 − y2
⇒

S =
a/2

0

2π a2 − y2
a

a2 − y2
dy = 2π

a/2

0

ady = 2πa y
a/2

0
= 2πa

a

2
− 0 = πa2.

Note that this is 1
4

the surface area of a sphere of radius a, and the length of the interval y = 0 to y = a/2 is 1
4

the length of the

interval y = −a to y = a.

17. y = lnx ⇒ dy/dx = 1/x ⇒ 1 + (dy/dx)2 = 1 + 1/x2 ⇒ S =
3

1
2π lnx 1 + 1/x2 dx.

Let f(x) = lnx 1 + 1/x2. Since n = 10, ∆x = 3− 1
10

= 1
5
. Then

S ≈ S10 = 2π · 1/53 [f(1) + 4f(1.2) + 2f(1.4) + · · ·+ 2f(2.6) + 4f(2.8) + f(3)] ≈ 9.023754.

The value of the integral produced by a calculator is 9.024262 (to six decimal places).

19. y = secx ⇒ dy/dx = secx tanx ⇒ 1 + (dy/dx)2 = 1 + sec2 x tan2 x ⇒

S =
π/3

0
2π secx

√
1 + sec2 x tan2 xdx. Let f(x) = secx

√
1 + sec2 x tan2 x. Since n = 10, ∆x =

π/3− 0
10

=
π

30
.

Then S ≈ S10 = 2π · π/30
3

f(0) + 4f
π

30
+ 2f

2π

30
+ · · ·+ 2f 8π

30
+ 4f

9π

30
+ f

π

3
≈ 13.527296.

The value of the integral produced by a calculator is 13.516987 (to six decimal places).

21. y = 1/x ⇒ ds = 1 + (dy/dx)2 dx = 1 + (−1/x2)2 dx = 1 + 1/x4 dx ⇒

S =
2

1

2π · 1
x

1 +
1

x4
dx = 2π

2

1

√
x4 + 1

x3
dx = 2π

4

1

√
u2 + 1

u2
1
2
du [u = x2, du = 2x dx]

= π
4

1

√
1 + u2

u2
du

24
= π −

√
1 + u2

u
+ ln u+ 1 + u2

4

1

= π −
√
17
4
+ ln 4 +

√
17 +

√
2
1
− ln 1 +√2 =

π

4
4 ln

√
17 + 4 − 4 ln √2 + 1 −√17 + 4√2

23. y = x3 and 0 ≤ y ≤ 1 ⇒ y0 = 3x2 and 0 ≤ x ≤ 1.

S =
1

0
2πx 1 + (3x2)2 dx = 2π

3

0

√
1 + u2 1

6
du

u = 3x2,
du = 6x dx

= π
3

3

0

√
1 + u2 du

21
= [or use CAS] π

3
1
2
u
√
1 + u2 + 1

2
ln u+

√
1 + u2

3

0
= π

3
3
2

√
10 + 1

2
ln 3 +

√
10 = π

6
3
√
10 + ln 3 +

√
10

25. S = 2π
∞

1

y 1 +
dy

dx

2

dx = 2π
∞

1

1

x
1 +

1

x4
dx = 2π

∞

1

√
x4 + 1

x3
dx. Rather than trying to

evaluate this integral, note that
√
x4 + 1 >

√
x4 = x2 for x > 0. Thus, if the area is finite,

S = 2π
∞

1

√
x4 + 1

x3
dx > 2π

∞

1

x2

x3
dx = 2π

∞

1

1

x
dx. But we know that this integral diverges, so the area S is

infinite.
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27. Since a > 0, the curve 3ay2 = x(a− x)2 only has points with x ≥ 0.

[3ay2 ≥ 0 ⇒ x(a− x)2 ≥ 0 ⇒ x ≥ 0.]

The curve is symmetric about the x-axis (since the equation is unchanged

when y is replaced by −y). y = 0 when x = 0 or a, so the curve’s loop

extends from x = 0 to x = a.

d

dx
(3ay2) =

d

dx
[x(a− x)2] ⇒ 6ay

dy

dx
= x · 2(a− x)(−1) + (a− x)2 ⇒ dy

dx
=
(a− x)[−2x+ a− x]

6ay
⇒

dy

dx

2

=
(a− x)2(a− 3x)2

36a2y2
=
(a− x)2(a− 3x)2

36a2
· 3a

x(a− x)2
the last fraction

is 1/y2
=
(a− 3x)2
12ax

⇒

1 +
dy

dx

2

= 1 +
a2 − 6ax+ 9x2

12ax
=
12ax

12ax
+

a2 − 6ax+ 9x2
12ax

=
a2 + 6ax+ 9x2

12ax
=
(a+ 3x)2

12ax
for x 6= 0.

(a) S =
a

x=0

2πy ds = 2π
a

0

√
x (a− x)√
3a

· a+ 3x√
12ax

dx = 2π
a

0

(a− x)(a+ 3x)

6a
dx

=
π

3a

a

0

(a2 + 2ax− 3x2) dx = π

3a
a2x+ ax2 − x3

a

0
=

π

3a
(a3 + a3 − a3) =

π

3a
· a3 = πa2

3
.

Note that we have rotated the top half of the loop about the x-axis. This generates the full surface.

(b) We must rotate the full loop about the y-axis, so we get double the area obtained by rotating the top half of the loop:

S = 2 · 2π
a

x=0

xds = 4π
a

0

x
a+ 3x√
12ax

dx =
4π

2
√
3a

a

0

x1/2(a+ 3x) dx =
2π√
3a

a

0

(ax1/2 + 3x3/2) dx

=
2π√
3a

2

3
ax3/2 +

6

5
x5/2

a

0

=
2π
√
3

3
√
a

2

3
a5/2 +

6

5
a5/2 =

2π
√
3

3

2

3
+
6

5
a2 =

2π
√
3

3

28

15
a2

=
56π

√
3 a2

45

29. (a) x2

a2
+

y2

b2
= 1 ⇒ y (dy/dx)

b2
= − x

a2
⇒ dy

dx
= − b2x

a2y
⇒

1 +
dy

dx

2

= 1+
b4x2

a4y2
=

b4x2 + a4y2

a4y2
=

b4x2 + a4b2 1− x2/a2

a4b2 (1− x2/a2)
=

a4b2 + b4x2 − a2b2x2

a4b2 − a2b2x2

=
a4 + b2x2 − a2x2

a4 − a2x2
=

a4 − a2 − b2 x2

a2(a2 − x2)

The ellipsoid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the x-axis.
Thus,

S = 2
a

0

2πy 1 +
dy

dx

2

dx = 4π
a

0

b

a
a2 − x2

a4 − (a2 − b2)x2

a
√
a2 − x2

dx =
4πb

a2

a

0

a4 − (a2 − b2)x2 dx

=
4πb

a2

a
√
a2−b2

0

a4 − u2
du√

a2 − b2
u =
√
a2 − b2 x

30
=

4πb

a2
√
a2 − b2

u

2
a4 − u2 +

a4

2
sin−1

u

a2

a
√
a2−b2

0

=
4πb

a2
√
a2 − b2

a
√
a2 − b2

2
a4 − a2(a2 − b2) +

a4

2
sin−1

√
a2 − b2

a
= 2π

⎡⎢⎢⎣b2 + a2b sin−1
√
a2 − b2

a√
a2 − b2

⎤⎥⎥⎦
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(b) x2

a2
+

y2

b2
= 1 ⇒ x (dx/dy)

a2
= − y

b2
⇒ dx

dy
= −a2y

b2x
⇒

1 +
dx

dy

2

= 1+
a4y2

b4x2
=

b4x2 + a4y2

b4x2
=

b4a2(1− y2/b2) + a4y2

b4a2(1− y2/b2)
=

a2b4 − a2b2y2 + a4y2

a2b4 − a2b2y2

=
b4 − b2y2 + a2y2

b4 − b2y2
=

b4 − (b2 − a2)y2

b2(b2 − y2)

The oblate spheroid’s surface area is twice the area generated by rotating the first-quadrant portion of the ellipse about the
y-axis. Thus,

S = 2
b

0

2π x 1 +
dx

dy

2

dy = 4π
b

0

a

b
b2 − y2

b4 − (b2 − a2)y2

b b2 − y2
dy

=
4πa

b2

b

0

b4 − (b2 − a2)y2 dy =
4πa

b2

b
√
b2−a2

0

b4 − u2
du√

b2 − a2
u =
√
b2 − a2 y

30
=

4πa

b2
√
b2 − a2

u

2

√
b4 − u2 +

b4

2
sin−1

u

b2

b
√
b2−a2

0

=
4πa

b2
√
b2 − a2

b
√
b2 − a2

2
b4 − b2(b2 − a2) +

b4

2
sin−1

√
b2 − a2

b
= 2π

⎡⎢⎢⎣a2 + ab2 sin−1
√
b2 − a2

b√
b2 − a2

⎤⎥⎥⎦
Notice that this result can be obtained from the answer in part (a) by interchanging a and b.

31. The analogue of f(x∗i ) in the derivation of (4) is now c − f(x∗i ), so

S = lim
n→∞

n

i=1

2π[c− f(x∗i )] 1 + [f 0(x∗i )]2∆x =
b

a
2π[c− f(x)] 1 + [f 0(x)]2 dx.

33. For the upper semicircle, f(x) =
√
r2 − x2, f 0(x) = −x/√r2 − x2. The surface area generated is

S1 =
r

−r
2π r − r2 − x2 1 +

x2

r2 − x2
dx = 4π

r

0

r − r2 − x2
r√

r2 − x2
dx

= 4π
r

0

r2√
r2 − x2

− r dx

For the lower semicircle, f(x) = −√r2 − x2 and f 0(x) = x√
r2 − x2

, so S2 = 4π
r

0

r2√
r2 − x2

+ r dx.

Thus, the total area is S = S1 + S2 = 8π
r

0

r2√
r2 − x2

dx = 8π r2 sin−1
x

r

r

0
= 8πr2

π

2
= 4π2r2.

35. In the derivation of (4), we computed a typical contribution to the surface area to be 2π yi−1 + yi
2

|Pi−1Pi|,

the area of a frustum of a cone. When f(x) is not necessarily positive, the approximations yi = f(xi) ≈ f(x∗i ) and

yi−1 = f(xi−1) ≈ f(x∗i ) must be replaced by yi = |f(xi)| ≈ |f(x∗i )| and yi−1 = |f(xi−1)| ≈ |f(x∗i )|. Thus,

2π
yi−1 + yi

2
|Pi−1Pi| ≈ 2π |f(x∗i )| 1 + [f 0(x∗i )]2∆x. Continuing with the rest of the derivation as before,

we obtain S = b

a
2π |f(x)| 1 + [f 0(x)]2 dx.
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8.3 Applications to Physics and Engineering

1. The weight density of water is δ = 62.5 lb/ft3.

(a) P = δd ≈ (62.5 lb/ft3)(3 ft) = 187.5 lb/ft2

(b) F = PA ≈ (187.5 lb/ft2)(5 ft)(2 ft) = 1875 lb. (A is the area of the bottom of the tank.)

(c) As in Example 1, the area of the ith strip is 2 (∆x) and the pressure is δd = δxi. Thus,

F =
3

0
δx · 2 dx ≈ (62.5)(2) 3

0
xdx = 125 1

2
x2

3

0
= 125 9

2
= 562.5 lb.

In Exercises 3–9, n is the number of subintervals of length ∆x and x∗i is a sample point in the ith subinterval [xi−1, xi].

3. Set up a vertical x-axis as shown, with x = 0 at the water’s surface and x increasing in the

downward direction. Then the area of the ith rectangular strip is 6∆x and the pressure on

the strip is δx∗i (where δ ≈ 62.5 lb/ft3). Thus, the hydrostatic force on the strip is

δx∗i · 6∆x and the total hydrostatic force ≈
n

i=1

δx∗i · 6∆x. The total force

F = lim
n→∞

n

i=1

δx∗i · 6∆x =
6

2
δx · 6 dx = 6δ 6

2
xdx = 6δ 1

2
x2

6

2
= 6δ(18− 2) = 96δ ≈ 6000 lb

5. Set up a vertical x-axis as shown. The base of the triangle shown in the figure

has length 32 − (x∗i )2, so wi = 2 9− (x∗i )2, and the area of the ith

rectangular strip is 2 9− (x∗i )2∆x. The ith rectangular strip is (x∗i − 1) m

below the surface level of the water, so the pressure on the strip is ρg(x∗i − 1).

The hydrostatic force on the strip is ρg(x∗i − 1) · 2 9− (x∗i )2∆x and the total

force on the plate ≈
n

i=1

ρg(x∗i − 1) · 2 9− (x∗i )2∆x. The total force

F = lim
n

i=1

ρg(x∗i − 1) · 2 9− (x∗i )2∆x = 2ρg
3

1
(x− 1)√9− x2 dx

= 2ρg
3

1
x
√
9− x2 dx− 2ρg 3

1

√
9− x2 dx

30
= 2ρg − 1

3
(9− x2)3/2

3

1
− 2ρg x

2

√
9− x2 + 9

2
sin−1

x

3

3

1

= 2ρg 0 + 1
3
8
√
8 − 2ρg 0 + 9

2
· π
2
− 1

2

√
8 + 9

2
sin−1 1

3

= 32
3

√
2 ρg − 9π

2 ρg + 2
√
2 ρg + 9 sin−1 1

3
ρg = 38

3

√
2− 9π

2 + 9 sin
−1 1

3
ρg

≈ 6.835 · 1000 · 9.8 ≈ 6.7× 104 N
Note: If you set up a typical coordinate system with the water level at y = −1, then F = −1

−3 ρg(−1− y)2 9− y2 dy.
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7. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is

2− 2√
3
x∗i ∆x. By similar triangles, wi

2
=

√
3− x∗i√
3

, so wi = 2− 2√
3
x∗i .

The pressure on the strip is ρgx∗i , so the hydrostatic force on the strip is

ρgx∗i 2− 2√
3
x∗i ∆x and the hydrostatic force on the plate≈

n

i=1

ρgx∗i 2− 2√
3
x∗i ∆x.

The total force

F = lim
n→∞

n

i=1

ρgx∗i 2− 2√
3
x∗i ∆x =

√
3

0

ρgx 2− 2√
3
x dx = ρg

√
3

0

2x− 2√
3
x2 dx

= ρg x2 − 2

3
√
3
x3

√
3

0

= ρg [(3− 2)− 0] = ρg ≈ 1000 · 9.8 = 9.8× 103 N

9. Set up coordinate axes as shown in the figure. The length of the ith strip is

2 25− (y∗i )2 and its area is 2 25− (y∗i )2∆y. The pressure on this strip is

approximately δdi = 62.5(7− y∗i ) and so the force on the strip is approximately

62.5(7− y∗i )2 25− (y∗i )2∆y. The total force

F = lim
n→∞

n

i=1

62.5(7− y∗i )2 25− (y∗i )2∆y = 125
5

0
(7− y) 25− y2 dy

= 125
5

0
7 25− y2 dy − 5

0
y 25− y2 dy = 125 7

5

0
25− y2 dy − − 1

3 (25− y2)3/2
5

0

= 125 7 1
4
π · 52 + 1

3
(0− 125) = 125 175π

4
− 125

3
≈ 11,972 ≈ 1.2× 104 lb

11. Set up a vertical x-axis as shown. Then the area of the ith rectangular strip is

a

h
(2h− x∗i )∆x. By similar triangles, wi

2h− x∗i
=
2a

2h
, so wi =

a

h
(2h− x∗i ).

The pressure on the strip is δx∗i , so the hydrostatic force on the plate

≈
n

i=1

δx∗i
a

h
(2h− x∗i )∆x. The total force

F = lim
n→∞

n

i=1

δx∗i
a

h
(2h− x∗i )∆x = δ

a

h
h

0
x(2h− x) dx =

aδ

h
h

0
2hx− x2 dx

=
aδ

h
hx2 − 1

3
x3

h

0
=

aδ

h
h3 − 1

3
h3 =

aδ

h

2h3

3
= 2

3
δah2
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13. By similar triangles, 8

4
√
3
=

wi

x∗i
⇒ wi =

2x∗i√
3

. The area of the ith

rectangular strip is 2x
∗
i√
3
∆x and the pressure on it is ρg 4

√
3− x∗i .

F =
4
√
3

0

ρg 4
√
3− x

2x√
3
dx = 8ρg

4
√
3

0

xdx− 2ρg√
3

4
√
3

0

x2 dx

= 4ρg x2
4
√
3

0
− 2ρg

3
√
3

x3
4
√
3

0
= 192ρg − 2ρg

3
√
3
64 · 3√3 = 192ρg − 128ρg = 64ρg

≈ 64(840)(9.8) ≈ 5.27× 105N

15. (a) The top of the cube has depth d = 1 m− 20 cm = 80 cm = 0.8 m.

F = ρgdA ≈ (1000)(9.8)(0.8)(0.2)2 = 313.6 ≈ 314 N

(b) The area of a strip is 0.2∆x and the pressure on it is ρgx∗i .

F =
1

0.8
ρgx(0.2) dx = 0.2ρg 1

2
x2

1

0.8
= (0.2ρg)(0.18) = 0.036ρg = 0.036(1000)(9.8) = 352.8 ≈ 353 N

17. (a) The area of a strip is 20∆x and the pressure on it is δxi.

F =
3

0
δx20 dx = 20δ 1

2x
2 3

0
= 20δ · 92 = 90δ

= 90(62.5) = 5625 lb ≈ 5.63× 103 lb

(b) F = 9

0
δx20 dx = 20δ 1

2x
2 9

0
= 20δ · 812 = 810δ = 810(62.5) = 50,625 lb ≈ 5.06× 104 lb.

(c) For the first 3 ft, the length of the side is constant at 40 ft. For 3 < x ≤ 9, we can use similar triangles to find the length a:

a

40
=
9− x

6
⇒ a = 40 · 9− x

6
.

F =
3

0
δx40 dx+

9

3
δx(40)

9− x

6
dx = 40δ 1

2
x2

3

0
+ 20

3
δ

9

3
(9x− x2) dx = 180δ + 20

3
δ 9

2
x2 − 1

3
x3

9

3

= 180δ + 20
3 δ

729
2 − 243 − 81

2 − 9 = 180δ + 600δ = 780δ = 780(62.5) = 48,750 lb ≈ 4.88× 104 lb

(d) For any right triangle with hypotenuse on the bottom,

sin θ =
∆x

hypotenuse
⇒

hypotenuse = ∆x csc θ = ∆x

√
402 + 62

6
=

√
409

3
∆x.

F =
9

3
δx20

√
409
3

dx = 1
3
20
√
409 δ 1

2
x2

9

3

= 1
3
· 10√409 δ(81− 9) ≈ 303,356 lb ≈ 3.03× 105 lb

19. F = 5

2
ρgx · w(x) dx, where w(x) is the width of the plate at depth x. Since n = 6, ∆x = 5− 2

6
= 1

2
, and

F ≈ S6

= ρg · 1/23 [2 · w(2) + 4 · 2.5 · w(2.5) + 2 · 3 · w(3) + 4 · 3.5 · w(3.5) + 2 · 4 ·w(4) + 4 · 4.5 ·w(4.5) + 5 · w(5)]
= 1

6ρg(2 · 0 + 10 · 0.8 + 6 · 1.7 + 14 · 2.4 + 8 · 2.9 + 18 · 3.3 + 5 · 3.6)
= 1

6
(1000)(9.8)(152.4) ≈ 2.5× 105 N
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21. The moment M of the system about the origin is M =
2

i=1

mixi = m1x1 +m2x2 = 40 · 2 + 30 · 5 = 230.

The mass m of the system is m =
2

i=1

mi = m1 +m2 = 40 + 30 = 70.

The center of mass of the system is M/m = 230
70
= 23

7
.

23. m =
3

i=1

mi = 6 + 5 + 10 = 21.

Mx =
3

i=1

mi yi = 6(5) + 5(−2) + 10(−1) = 10; My =
3

i=1

mi xi = 6(1) + 5(3) + 10(−2) = 1.

x =
My

m
=
1

21
and y = Mx

m
=
10

21
, so the center of mass of the system is 1

21
, 10
21

.

25. Since the region in the figure is symmetric about the y-axis, we know

that x = 0. The region is “bottom-heavy,” so we know that y < 2,

and we might guess that y = 1.5.

A =
2

−2(4− x2) dx = 2
2

0
(4− x2) dx = 2 4x− 1

3
x3

2

0

= 2 8− 8
3
= 32

3
.

x = 1
A

2

−2 x(4− x2) dx = 0 since f(x) = x(4− x2) is an odd

function (or since the region is symmetric about the y-axis).

y = 1
A

2

−2
1
2
(4− x2)2 dx = 3

32
· 1
2
· 2 2

0
(16− 8x2 + x4) dx = 3

32
16x− 8

3
x3 + 1

5
x5

2

0

= 3
32
32− 64

3 +
32
5
= 3 1− 2

3 +
1
5
= 3 8

15
= 8

5

Thus, the centroid is (x, y) = 0, 85 .

27. The region in the figure is “right-heavy” and “bottom-heavy,” so we know

x > 0.5 and y < 1, and we might guess that x = 0.6 and y = 0.9.

A =
1

0
ex dx = [ex]10 = e− 1.

x = 1
A

1

0
xex dx = 1

e− 1 [xe
x − ex]10 [by parts]

= 1
e− 1 [0− (−1)] = 1

e− 1 .

y = 1
A

1

0
1
2 (e

x)2 dx = 1
e− 1 · 14 e2x

1

0
= 1

4(e− 1) e2 − 1 = e+1
4 .

Thus, the centroid is (x, y) = 1
e− 1 ,

e+1
4

≈ (0.58, 0.93).

29. A = 1

0
(x1/2 − x2) dx = 2

3
x3/2 − 1

3
x3

1

0
= 2

3
− 1

3
− 0 = 1

3
.

x= 1
A

1

0
x(x1/2 − x2) dx = 3

1

0
(x3/2 − x3) dx

= 3 2
5x

5/2 − 1
4x

4
1

0
= 3 2

5 − 1
4
= 3 3

20
= 9

20 .

y = 1
A

1

0
1
2
(x1/2)2 − (x2)2 dx = 3 1

2

1

0
(x− x4) dx

= 3
2

1
2
x2 − 1

5
x5

1

0
= 3

2
1
2
− 1

5
= 3

2
3
10

= 9
20

.

Thus, the centroid is (x, y) = 9
20
, 9
20

.
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31. A = π/4

0
(cosx− sinx) dx = sinx+ cosx

π/4

0
=
√
2− 1.

x = A−1 π/4

0
x(cosx− sinx) dx

= A−1 x(sinx+ cosx) + cosx− sinx π/4

0
[integration by parts]

= A−1 π
4

√
2− 1 =

1
4π
√
2− 1√
2− 1 .

y = A−1 π/4

0
1
2
(cos2 x− sin2 x) dx = 1

2A

π/4

0
cos 2xdx = 1

4A
sin 2x

π/4

0
=

1

4A
=

1

4
√
2− 1 .

Thus, the centroid is (x, y) = π
√
2− 4

4
√
2− 1 ,

1

4
√
2− 1 ≈ (0.27, 0.60).

33. From the figure we see that y = 0. Now

A =
5

0
2
√
5− xdx = 2 − 2

3
(5− x)3/2

5

0
= 2 0 + 2

3
· 53/2 = 20

3

√
5,

so

x= 1
A

5

0
x
√
5− x− −√5− x dx = 1

A

5

0
2x
√
5− xdx

= 1
A

0√
5
2 5− u2 u(−2u) du u =

√
5− x, x = 5− u2,

u2 = 5− x, dx = −2udu

= 4
A

√
5

0
u2(5− u2) du = 4

A
5
3
u3 − 1

5
u5

√
5

0
= 3

5
√
5

25
3

√
5− 5√5 = 5− 3 = 2.

Thus, the centroid is (x, y) = (2, 0).

35. The line has equation y = 3
4
x. A = 1

2
(4)(3) = 6, so m = ρA = 10(6) = 60.

Mx = ρ
4

0
1
2

3
4
x

2
dx = 10

4

0
9
32
x2 dx = 45

16
1
3
x3

4

0
= 45

16
64
3
= 60

My = ρ
4

0
x 3

4
x dx = 15

2

4

0
x2 dx = 15

2
1
3
x3

4

0
= 15

2
64
3
= 160

x =
My

m
=
160

60
=
8

3
and y = Mx

m
=
60

60
= 1. Thus, the centroid is (x, y) = 8

3 , 1 .

37. A =
2

0

(2x − x2) dx =
2x

ln 2
− x3

3

2

0

=
4

ln 2
− 8

3
− 1

ln 2
=

3

ln 2
− 8

3
≈ 1.661418.

x =
1

A

2

0

x(2x − x2) dx =
1

A

2

0

(x2x − x3) dx

=
1

A

x2x

ln 2
− 2x

(ln 2)2
− x4

4

2

0

[use parts]

=
1

A

8

ln 2
− 4

(ln 2)2
− 4 + 1

(ln 2)2
=
1

A

8

ln 2
− 3

(ln 2)2
− 4 ≈ 1

A
(1.297453) ≈ 0.781

[continued]
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y =
1

A

2

0

1
2
[(2x)2 − (x2)2] dx = 1

A

2

0

1
2
(22x − x4) dx =

1

A
· 1
2

22x

2 ln 2
− x5

5

2

0

=
1

A
· 1
2

16

2 ln 2
− 32

5
− 1

2 ln 2
=
1

A

15

4 ln 2
− 16

5
≈ 1

A
(2.210106) ≈ 1.330

Thus, the centroid is (x, y) ≈ (0.781, 1.330).

Since the position of a centroid is independent of density when the density is constant, we will assume for convenience that ρ = 1 in Exercises 38
and 39.

39. Choose x- and y-axes so that the base (one side of the triangle) lies along

the x-axis with the other vertex along the positive y-axis as shown. From

geometry, we know the medians intersect at a point 2
3

of the way from each

vertex (along the median) to the opposite side. The median from B goes to

the midpoint 1
2 (a+ c), 0 of side AC, so the point of intersection of the

medians is 2
3
· 1
2
(a+ c), 1

3
b = 1

3
(a+ c), 1

3
b .

This can also be verified by finding the equations of two medians, and solving them simultaneously to find their point of

intersection. Now let us compute the location of the centroid of the triangle. The area is A = 1
2
(c− a)b.

x=
1

A

0

a

x · b
a
(a− x) dx+

c

0

x · b
c
(c− x) dx =

1

A

b

a

0

a

(ax− x2) dx+
b

c

c

0

cx− x2 dx

=
b

Aa

1

2
ax2 − 1

3
x3

0

a

+
b

Ac

1

2
cx2 − 1

3
x3

c

0

=
b

Aa
−1
2
a3 +

1

3
a3 +

b

Ac

1

2
c3 − 1

3
c3

=
2

a (c − a)
· −a

3

6
+

2

c (c − a)
· c

3

6
=

1

3 (c − a)
(c2 − a2) =

a + c

3

and y =
1

A

0

a

1

2

b

a
(a− x)

2

dx+
c

0

1

2

b

c
(c− x)

2

dx

=
1

A

b2

2a2

0

a

(a2 − 2ax+ x2) dx+
b2

2c2

c

0

(c2 − 2cx+ x2) dx

=
1

A

b2

2a2
a2x− ax2 + 1

3
x3

0

a
+

b2

2c2
c2x− cx2 + 1

3
x3

c

0

=
1

A

b2

2a2
−a3 + a3 − 1

3a
3 +

b2

2c2
c3 − c3 + 1

3c
3 =

1

A

b2

6
(−a+ c) =

2

(c − a) b
· (c− a)b2

6
=

b

3

Thus, the centroid is (x, y) = a+ c

3
,
b

3
, as claimed.

Remarks: Actually the computation of y is all that is needed. By considering each side of the triangle in turn to be the base,

we see that the centroid is 1
3 of the way from each side to the opposite vertex and must therefore be the intersection of the

medians.
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The computation of y in this problem (and many others) can be

simplified by using horizontal rather than vertical approximating rectangles.

If the length of a thin rectangle at coordinate y is (y), then its area is

(y)∆y, its mass is ρ (y)∆y, and its moment about the x-axis is

∆Mx = ρy (y)∆y. Thus,

Mx = ρy (y) dy and y =
ρy (y) dy

ρA
=
1

A
y (y) dy

In this problem, (y) = c− a

b
(b− y) by similar triangles, so

y =
1

A
b

0

c− a

b
y(b− y) dy =

2

b2
b

0
(by − y2) dy =

2

b2
1
2
by2 − 1

3
y3

b

0
=
2

b2
· b

3

6
=

b

3

Notice that only one integral is needed when this method is used.

41. Divide the lamina into two triangles and one rectangle with respective masses of 2, 2 and 4, so that the total mass is 8. Using

the result of Exercise 39, the triangles have centroids −1, 2
3

and 1, 2
3

. The centroid of the rectangle (its center) is 0,− 1
2

.

So, using Formulas 5 and 7, we have y = Mx

m
=
1

m

3

i=1

mi yi =
1
8
2 2

3
+ 2 2

3
+ 4 − 1

2
= 1

8
2
3
= 1

12 , and x = 0,

since the lamina is symmetric about the line x = 0. Thus, the centroid is (x, y) = 0, 1
12

.

43. b

a
(cx+ d) f(x) dx=

b

a
cx f(x) dx+

b

a
df(x) dx = c

b

a
x f(x) dx+ d

b

a
f(x) dx = cxA+ d

b

a
f(x) dx [by (8)]

= cx
b

a
f(x) dx+ d

b

a
f(x) dx = (cx+ d)

b

a
f(x) dx

45. A cone of height h and radius r can be generated by rotating a right triangle

about one of its legs as shown. By Exercise 39, x = 1
3
r, so by the Theorem of

Pappus, the volume of the cone is

V = Ad = 1
2
· base · height · (2πx) = 1

2
rh · 2π 1

3
r = 1

3
πr2h.

47. Suppose the region lies between two curves y = f(x) and y = g(x) where f(x) ≥ g(x), as illustrated in Figure 13.

Choose points xi with a = x0 < x1 < · · · < xn = b and choose x∗i to be the midpoint of the ith subinterval; that is,

x∗i = xi =
1
2
(xi−1 + xi). Then the centroid of the ith approximating rectangle Ri is its center Ci = xi,

1
2
[f(xi) + g(xi)] .

Its area is [f(xi)− g(xi)]∆x, so its mass is

ρ[f(xi)− g(xi)]∆x. Thus, My(Ri) = ρ[f(xi)− g(xi)]∆x · xi = ρxi [f(xi)− g(xi)]∆x and

Mx(Ri) = ρ[f(xi)− g(xi)]∆x · 1
2
[f(xi) + g(xi)] = ρ · 1

2
f(xi)

2 − g(xi)
2 ∆x. Summing over i and taking the limit

as n → ∞, we get My = lim
n→∞ i ρxi [f(xi)− g(xi)]∆x = ρ

b

a
x[f(x)− g(x)] dx and

Mx = lim
n→∞ i ρ · 12 f(xi)

2 − g(xi)
2 ∆x = ρ

b

a
1
2
f(x)2 − g(x)2 dx.

Thus, x = My

m
=

My

ρA
=
1

A

b

a

x[f(x)− g(x)] dx and y =
Mx

m
=

Mx

ρA
=
1

A

b

a

1
2
f(x)2 − g(x)2 dx.
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8.4 Applications to Economics and Biology

1. By the Net Change Theorem, C(2000)− C(0) =
2000

0
C 0(x) dx ⇒

C(2000) = 20,000 + 2000

0
(5− 0.008x+ 0.000009x2) dx = 20,000 + 5x− 0.004x2 + 0.000003x3 2000

0

= 20,000 + 10,000− 0.004(4,000,000) + 0.000003(8,000,000,000) = 30,000− 16,000 + 24,000

= $38,000

3. If the production level is raised from 1200 units to 1600 units, then the increase in cost is

C(1600)−C(1200) =
1600

1200
C0(x) dx = 1600

1200
(74 + 1.1x− 0.002x2 + 0.00004x3) dx

= 74x+ 0.55x2 − 0.002
3 x3 + 0.00001x4

1600

1200
= 64,331,733.33− 20,464,800 = $43,866,933.33

5. p(x) = 10 ⇒ 450

x+ 8
= 10 ⇒ x+ 8 = 45 ⇒ x = 37.

Consumer surplus=
37

0

[p(x)− 10] dx =
37

0

450

x+ 8
− 10 dx

= 450 ln (x+ 8)− 10x 37

0
= (450 ln 45− 370)− 450 ln 8

= 450 ln 45
8
− 370 ≈ $407.25

7. P = pS(x) ⇒ 400 = 200 + 0.2x3/2 ⇒ 200 = 0.2x3/2 ⇒ 1000 = x3/2 ⇒ x = 10002/3 = 100.

Producer surplus = 100

0
[P − pS(x)] dx =

100

0
[400− (200 + 0.2x3/2)] dx = 100

0
200− 1

5x
3/2 dx

= 200x− 2
25
x5/2

100

0
= 20,000− 8,000 = $12,000

9. p(x) = 800,000e−x/5000

x+ 20,000
= 16 ⇒ x = x1 ≈ 3727.04.

Consumer surplus = x1
0
[p(x)− 16] dx ≈ $37,753

11. f(8)− f(4) =
8

4
f 0(t) dt = 8

4

√
t dt = 2

3
t3/2

8

4
= 2

3
16
√
2− 8 ≈ $9.75 million

13. N =
b

a

Ax−k dx = A
x−k+1

−k + 1
b

a

=
A

1− k
(b1−k − a1−k).

Similarly,
b

a

Ax1−k dx = A
x2−k

2− k

b

a

=
A

2− k
(b2−k − a2−k).

Thus, x = 1

N

b

a

Ax1−k dx =
[A/(2− k)](b2−k − a2−k)
[A/(1− k)](b1−k − a1−k)

=
(1− k)(b2−k − a2−k)
(2− k)(b1−k − a1−k)

.

15. F = πPR4

8ηl
=

π(4000)(0.008)4

8(0.027)(2)
≈ 1.19× 10−4 cm3/s



SECTION 8.5 PROBABILITY ¤ 371

17. From (3), F = A
T

0
c (t) dt

=
6

20I
, where

I =
10

0

te−0.6t dt =
1

(−0.6)2 (−0.6t− 1) e
−0.6t

10

0

integrating
by parts = 1

0.36
(−7e−6 + 1)

Thus, F = 6(0.36)

20(1− 7e−6) =
0.108

1− 7e−6 ≈ 0.1099 L/s or 6.594 L/min.

19. As in Example 2, we will estimate the cardiac output using Simpson’s Rule with ∆t = (16− 0)/8 = 2.
16

0
c(t) dt ≈ 2

3
[c(0) + 4c(2) + 2c(4) + 4c(6) + 2c(8) + 4c(10) + 2c(12) + 4c(14) + c(16)]

≈ 2
3
[0 + 4(6.1) + 2(7.4) + 4(6.7) + 2(5.4) + 4(4.1) + 2(3.0) + 4(2.1) + 1.5]

= 2
3
(109.1) = 72.73 mg· s/L

Therefore, F ≈ A

72.73
=

7

72.73
≈ 0.0962 L/s or 5.77 L/min.

8.5 Probability

1. (a) 40,000
30,000 f(x) dx is the probability that a randomly chosen tire will have a lifetime between 30,000 and 40,000 miles.

(b) ∞
25,000 f(x) dx is the probability that a randomly chosen tire will have a lifetime of at least 25,000 miles.

3. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) ≥ 0 for all x,

and (2) ∞
−∞ f(x) dx = 1. For 0 ≤ x ≤ 4, we have f(x) = 3

64
x
√
16− x2 ≥ 0, so f(x) ≥ 0 for all x. Also,

∞
−∞ f(x) dx =

4

0
3
64x

√
16− x2 dx = − 3

128

4

0
(16− x2)1/2(−2x) dx = − 3

128
2
3 (16− x2)3/2

4

0

= − 1
64

16− x2
3/2 4

0
= − 1

64
(0− 64) = 1.

Therefore, f is a probability density function.

(b) P (X < 2) =
2

−∞ f(x) dx =
2

0
3
64x

√
16− x2 dx = − 3

128

2

0
(16− x2)1/2(−2x) dx

= − 3
128

2
3
(16− x2)3/2

2

0
= − 1

64
(16− x2)3/2

2

0
= − 1

64
(123/2 − 163/2)

= 1
64
64− 12√12 = 1

64
64− 24√3 = 1− 3

8

√
3 ≈ 0.350481

5. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) ≥ 0 for all x,

and (2) ∞
−∞ f(x) dx = 1. If c ≥ 0, then f(x) ≥ 0, so condition (1) is satisfied. For condition (2), we see that

∞

−∞
f(x) dx =

∞

−∞

c

1 + x2
dx and

Similarly,

∞

0

c

1 + x2
dx= lim

t→∞

t

0

c

1 + x2
dx = c lim

t→∞
tan−1 x

t

0
= c lim

t→∞
tan−1 t = c

π

2

0

−∞

c

1 + x2
dx= c

π

2
, so

∞

−∞

c

1 + x2
dx = 2c

π

2
= cπ.

Since cπ must equal 1, we must have c = 1/π so that f is a probability density function.
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(b) P (−1 < X < 1) =
1

−1

1/π

1 + x2
dx =

2

π

1

0

1

1 + x2
dx =

2

π
tan−1 x

1

0
=
2

π

π

4
− 0 =

1

2

7. (a) In general, we must satisfy the two conditions that are mentioned before Example 1—namely, (1) f(x) ≥ 0 for all x,

and (2) ∞
−∞ f(x) dx = 1. Since f(x) = 0 or f(x) = 0.1, condition (1) is satisfied. For condition (2), we see that

∞
−∞ f(x) dx =

10

0
0.1 dx = 1

10x
10

0
= 1. Thus, f(x) is a probability density function for the spinner’s values.

(b) Since all the numbers between 0 and 10 are equally likely to be selected, we expect the mean to be halfway between the

endpoints of the interval; that is, x = 5.

μ =
∞
−∞ xf(x) dx =

10

0
x(0.1) dx = 1

20
x2

10

0
= 100

20
= 5, as expected.

9. We need to find m so that ∞
m

f(t) dt = 1
2
⇒ lim

x→∞
x

m
1
5
e−t/5 dt = 1

2
⇒ lim

x→∞
1
5
(−5)e−t/5

x

m
= 1

2
⇒

(−1)(0− e−m/5) = 1
2
⇒ e−m/5 = 1

2
⇒ −m/5 = ln 1

2
⇒ m = −5 ln 1

2
= 5 ln 2 ≈ 3.47 min.

11. We use an exponential density function with μ = 2.5 min.

(a) P (X > 4) =
∞
4

f(t) dt = lim
x→∞

x

4
1
2.5e

−t/2.5 dt = lim
x→∞

−e−t/2.5 x

4
= 0 + e−4/2.5 ≈ 0.202

(b) P (0 ≤ X ≤ 2) = 2

0
f(t) dt = −e−t/2.5

2

0
= −e−2/2.5 + 1 ≈ 0.551

(c) We need to find a value a so that P (X ≥ a) = 0.02, or, equivalently, P (0 ≤ X ≤ a) = 0.98 ⇔
a

0
f(t) dt = 0.98 ⇔ −e−t/2.5

a

0
= 0.98 ⇔ −e−a/2.5 + 1 = 0.98 ⇔ e−a/2.5 = 0.02 ⇔

−a/2.5 = ln 0.02 ⇔ a = −2.5 ln 1
50 = 2.5 ln 50 ≈ 9.78 min ≈ 10 min. The ad should say that if you aren’t served

within 10 minutes, you get a free hamburger.

13. P (X ≥ 10) =
∞

10

1

4.2
√
2π
exp − (x− 9.4)

2

2 · 4.22 dx. To avoid the improper integral we approximate it by the integral from

10 to 100. Thus, P (X ≥ 10) ≈
100

10

1

4.2
√
2π
exp − (x− 9.4)

2

2 · 4.22 dx ≈ 0.443 (using a calculator or computer to estimate

the integral), so about 44 percent of the households throw out at least 10 lb of paper a week.

Note: We can’t evaluate 1− P (0 ≤ X ≤ 10) for this problem since a significant amount of area lies to the left of X = 0.

15. (a) P (0 ≤ X ≤ 100) =
100

0

1

8
√
2π

exp − (x− 112)
2

2 · 82 dx ≈ 0.0668 (using a calculator or computer to estimate the

integral), so there is about a 6.68% chance that a randomly chosen vehicle is traveling at a legal speed.

(b) P (X ≥ 125) =
∞

125

1

8
√
2π

exp − (x− 112)
2

2 · 82 dx =
∞

125

f(x) dx. In this case, we could use a calculator or computer

to estimate either 300

125
f(x) dx or 1− 125

0
f(x) dx. Both are approximately 0.0521, so about 5.21% of the motorists are

targeted.
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17. P (μ− 2σ ≤ X ≤ μ+ 2σ) =
μ+2σ

μ−2σ

1

σ
√
2π
exp − (x− μ)2

2σ2
dx. Substituting t = x− μ

σ
and dt = 1

σ
dx gives us

2

−2

1

σ
√
2π

e− t2/2(σ dt) =
1√
2π

2

−2
e− t2/2 dt ≈ 0.9545.

19. (a) First p(r) = 4

a30
r2e−2r/a0 ≥ 0 for r ≥ 0. Next,

∞

−∞
p(r) dr =

∞

0

4

a30
r2e−2r/a0 dr =

4

a30
lim
t→∞

t

0

r2e−2r/a0 dr

By using parts, tables, or a CAS , we find that x2ebx dx = (ebx/b3)(b2x2 − 2bx+ 2). ( )

Next, we use ( ) (with b = −2/a0) and l’Hospital’s Rule to get 4
a30

a30
−8(−2) = 1. This satisfies the second condition for

a function to be a probability density function.

(b) Using l’Hospital’s Rule, 4
a30

lim
r→∞

r2

e2r/a0
=
4

a30
lim
r→∞

2r

(2/a0)e2r/a0
=
2

a20
lim
r→∞

2

(2/a0)e2r/a0
= 0.

To find the maximum of p, we differentiate:

p0(r) =
4

a30
r2e−2r/a0 − 2

a0
+ e−2r/a0(2r) =

4

a30
e−2r/a0(2r) − r

a0
+ 1

p0(r) = 0 ⇔ r = 0 or 1 = r

a0
⇔ r = a0 [a0 ≈ 5.59× 10−11 m].

p0(r) changes from positive to negative at r = a0, so p(r) has its maximum value at r = a0.

(c) It is fairly difficult to find a viewing rectangle, but knowing the maximum

value from part (b) helps.

p(a0) =
4

a30
a20e

−2a0/a0 =
4

a0
e−2 ≈ 9,684,098,979

With a maximum of nearly 10 billion and a total area under the curve of 1,

we know that the “hump” in the graph must be extremely narrow.

(d) P (r) =
r

0

4

a30
s2e−2s/a0 ds ⇒ P (4a0) =

4a0

0

4

a30
s2e−2s/a0 ds. Using ( ) from part (a) [with b = −2/a0],

P (4a0) =
4

a30

e−2s/a0

−8/a30
4

a20
s2 +

4

a0
s+ 2

4a0

0

=
4

a30

a30
−8 [e−8(64 + 16 + 2)− 1(2)] = − 1

2
(82e−8 − 2)

= 1− 41e−8 ≈ 0.986

(e) μ =
∞

−∞
rp(r) dr =

4

a30
lim
t→∞

t

0

r3e−2r/a0 dr. Integrating by parts three times or using a CAS, we find that

x3ebx dx =
ebx

b4
b3x3 − 3b2x2 + 6bx− 6 . So with b = − 2

a0
, we use l’Hospital’s Rule, and get

μ =
4

a30
−a40
16
(−6) = 3

2
a0.
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1. (a) The length of a curve is defined to be the limit of the lengths of the inscribed polygons, as described near Figure 3 in

Section 8.1.

(b) See Equation 8.1.2.

(c) See Equation 8.1.4.

2. (a) S = b

a
2πf(x) 1 + [f 0(x)]2 dx

(b) If x = g(y), c ≤ y ≤ d, then S = d

c
2πy 1 + [g0(y)]2 dy.

(c) S = b

a
2πx 1 + [f 0(x)]2 dx or S =

d

c
2πg(y) 1 + [g0(y)]2 dy

3. Let c(x) be the cross-sectional length of the wall (measured parallel to the surface of the fluid) at depth x. Then the hydrostatic

force against the wall is given by F =
b

a
δxc(x) dx, where a and b are the lower and upper limits for x at points of the wall

and δ is the weight density of the fluid.

4. (a) The center of mass is the point at which the plate balances horizontally.

(b) See Equations 8.3.8.

5. If a plane region R that lies entirely on one side of a line in its plane is rotated about , then the volume of the resulting solid

is the product of the area of R and the distance traveled by the centroid of R.

6. See Figure 3 in Section 8.4, and the discussion which precedes it.

7. (a) See the definition in the first paragraph of the subsection Cardiac Output in Section 8.4.

(b) See the discussion in the second paragraph of the subsection Cardiac Output in Section 8.4.

8. A probability density function f is a function on the domain of a continuous random variable X such that b

a
f(x) dx

measures the probability that X lies between a and b. Such a function f has nonnegative values and satisfies the relation

D
f(x) dx = 1, where D is the domain of the corresponding random variable X. If D = R, or if we define f(x) = 0 for real

numbers x /∈ D, then ∞
−∞ f(x) dx = 1. (Of course, to work with f in this way, we must assume that the integrals of f exist.)

9. (a) 130

0
f(x) dx represents the probability that the weight of a randomly chosen female college student is less than

130 pounds.

(b) μ = ∞
−∞ xf(x) dx =

∞
0

xf(x) dx

(c) The median of f is the number m such that ∞
m

f(x) dx = 1
2

.

10. See the discussion near Equation 3 in Section 8.5.

8 Review
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1. y = 1
6 (x

2 + 4)3/2 ⇒ dy/dx = 1
4 (x

2 + 4)1/2(2x) ⇒

1 + (dy/dx)2 = 1 + 1
2x(x

2 + 4)1/2
2

= 1 + 1
4x

2(x2 + 4) = 1
4x

4 + x2 + 1 = 1
2x

2 + 1
2.

Thus, L = 3

0
1
2x

2 + 1
2
dx =

3

0
1
2x

2 + 1 dx = 1
6x

3 + x
3

0
= 15

2 .

3. (a) y = x4

16
+

1

2x2
=
1

16
x4 +

1

2
x−2 ⇒ dy

dx
=
1

4
x3 − x−3 ⇒

1 + (dy/dx)2 = 1 + 1
4x

3 − x−3
2
= 1 + 1

16x
6 − 1

2 + x−6 = 1
16x

6 + 1
2 + x−6 = 1

4x
3 + x−3

2.

Thus, L = 2

1
1
4
x3 + x−3 dx = 1

16
x4 − 1

2
x−2

2

1
= 1− 1

8
− 1

16
− 1

2
= 21

16
.

(b) S = 2

1
2πx 1

4
x3 + x−3 dx = 2π

2

1
1
4
x4 + x−2 dx = 2π 1

20
x5 − 1

x

2

1

= 2π 32
20 − 1

2
− 1

20 − 1 = 2π 8
5 − 1

2 − 1
20 + 1 = 2π 41

20
= 41

10π

5. y = e−x
2 ⇒ dy/dx = −2xe−x2 ⇒ 1 + (dy/dx)2 = 1 + 4x2e−2x

2

. Let f(x) = 1 + 4x2e−2x2 . Then

L =
3

0

f(x) dx ≈ S6 =
(3− 0)/6

3
[f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + f(3)] ≈ 3.292287

7. y = x

1

√
t− 1 dt ⇒ dy/dx =

√
x− 1 ⇒ 1 + (dy/dx)2 = 1 +

√
x− 1 =

√
x.

Thus, L = 16

1

√
xdx =

16

1
x1/4 dx = 4

5
x5/4

16

1
= 4

5
(32− 1) = 124

5
.

9. As in Example 1 of Section 8.3, a

2− x
=
1

2
⇒ 2a = 2− x and w = 2(1.5 + a) = 3 + 2a = 3 + 2− x = 5− x.

Thus, F = 2

0
ρgx(5− x) dx = ρg 5

2
x2 − 1

3
x3

2

0
= ρg 10− 8

3
= 22

3
δ [ρg = δ] ≈ 22

3
· 62.5 ≈ 458 lb.

11. A = 4

0

√
x− 1

2
x dx = 2

3
x3/2 − 1

4
x2

4

0
= 16

3
− 4 = 4

3

x= 1
A

4

0
x
√
x− 1

2
x dx = 3

4

4

0
x3/2 − 1

2
x2 dx

= 3
4

2
5
x5/2 − 1

6
x3

4

0
= 3

4
64
5
− 64

6
= 3

4
64
30

= 8
5

y = 1
A

4

0
1
2

√
x

2

− 1
2
x

2
dx = 3

4

4

0
1
2
x− 1

4
x2 dx = 3

8
1
2
x2 − 1

12
x3

4

0
= 3

8
8− 16

3
= 3

8
8
3
= 1

Thus, the centroid is (x, y) = 8
5
, 1 .

13. An equation of the line passing through (0, 0) and (3, 2) is y = 2
3
x. A = 1

2
· 3 · 2 = 3. Therefore, using Equations 8.3.8,

x = 1
3

3

0
x 2

3x dx = 2
27

x3
3

0
= 2 and y = 1

3

3

0
1
2

2
3x

2
dx = 2

81
x3

3

0
= 2

3 . Thus, the centroid is (x, y) = 2, 23 .
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15. The centroid of this circle, (1, 0), travels a distance 2π(1) when the lamina is rotated about the y-axis. The area of the circle

is π(1)2. So by the Theorem of Pappus, V = A(2πx) = π(1)22π(1) = 2π2.

17. x = 100 ⇒ P = 2000− 0.1(100)− 0.01(100)2 = 1890

Consumer surplus = 100

0
[p(x)− P ] dx =

100

0
2000− 0.1x− 0.01x2 − 1890 dx

= 110x− 0.05x2 − 0.01
3
x3

100

0
= 11,000− 500− 10,000

3
≈ $7166.67

19. f(x) =
π
20 sin

π
10x if 0 ≤ x ≤ 10

0 if x < 0 or x > 10

(a) f(x) ≥ 0 for all real numbers x and

∞
−∞ f(x) dx =

10

0
π
20
sin π

10
x dx = π

20
· 10
π
− cos π

10
x

10

0
= 1

2
(− cosπ + cos 0) = 1

2
(1 + 1) = 1

Therefore, f is a probability density function.

(b) P (X < 4) =
4

−∞ f(x) dx =
4

0
π
20
sin π

10
x dx = 1

2
− cos π

10
x

4

0
= 1

2
− cos 2π

5
+ cos 0

≈ 1
2
(−0.309017 + 1) ≈ 0.3455

(c) μ = ∞
−∞ xf(x) dx =

10

0
π
20
x sin π

10
x dx

=
π

0
π
20 · 10π u(sinu) 10

π
du [u = π

10x, du = π
10 dx]

= 5
π

π

0
u sinudu

82
= 5

π
[sinu− u cosu]π0 =

5
π
[0− π(−1)] = 5

This answer is expected because the graph of f is symmetric about the

line x = 5.

21. (a) The probability density function is f(t) =
0 if t < 0

1
8
e−t/8 if t ≥ 0

P (0 ≤ X ≤ 3) = 3

0
1
8e
−t/8 dt = −e−t/8

3

0
= −e−3/8 + 1 ≈ 0.3127

(b) P (X > 10) =
∞
10

1
8e
−t/8 dt = lim

x→∞
−e−t/8 x

10
= lim

x→∞
(−e−x/8 + e−10/8) = 0 + e−5/4 ≈ 0.2865

(c) We need to find m such that P (X ≥ m) = 1
2
⇒ ∞

m
1
8
e−t/8 dt = 1

2
⇒ lim

x→∞
−e−t/8

x

m
= 1

2
⇒

lim
x→∞

(−e−x/8 + e−m/8) = 1
2
⇒ e−m/8 = 1

2
⇒ −m/8 = ln 1

2
⇒ m = −8 ln 1

2
= 8 ln 2 ≈ 5.55 minutes.



PROBLEMS PLUS
1. x2 + y2 ≤ 4y ⇔ x2 + (y − 2)2 ≤ 4, so S is part of a circle, as shown

in the diagram. The area of S is

1

0
4y − y2 dy

113
= y−2

2
4y − y2 + 2cos−1 2−y

2

1

0
[a = 2]

= − 1
2

√
3 + 2 cos−1 1

2
− 2 cos−1 1

= −
√
3
2
+ 2 π

3
− 2(0) = 2π

3
−
√
3
2

Another method (without calculus): Note that θ = ∠CAB = π
3

, so the area is

(area of sector OAB)− (area of4ABC) = 1
2
22 π

3
− 1

2
(1)
√
3 = 2π

3
−
√
3
2

3. (a) The two spherical zones, whose surface areas we will call S1 and S2, are

generated by rotation about the y-axis of circular arcs, as indicated in the figure.

The arcs are the upper and lower portions of the circle x2 + y2 = r2 that are

obtained when the circle is cut with the line y = d. The portion of the upper arc

in the first quadrant is sufficient to generate the upper spherical zone. That

portion of the arc can be described by the relation x = r2 − y2 for

d ≤ y ≤ r. Thus, dx/dy = −y/ r2 − y2 and

ds = 1 +
dx

dy

2

dy = 1 +
y2

r2 − y2
dy =

r2

r2 − y2
dy =

r dy

r2 − y2

From Formula 8.2.8 we have

S1 =
r

d

2πx 1 +
dx

dy

2

dy =
r

d

2π r2 − y2
r dy

r2 − y2
=

r

d

2πr dy = 2πr(r − d)

Similarly, we can compute S2 = d

−r 2πx 1 + (dx/dy)2 dy =
d

−r 2πr dy = 2πr(r + d). Note that S1 + S2 = 4πr
2,

the surface area of the entire sphere.

(b) r = 3960 mi and d = r (sin 75◦) ≈ 3825 mi,

so the surface area of the Arctic Ocean is about

2πr(r−d) ≈ 2π(3960)(135) ≈ 3.36×106 mi2.

377
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(c) The area on the sphere lies between planes y = y1 and y = y2, where y2 − y1 = h. Thus, we compute the surface area on

the sphere to be S =
y2

y1

2πx 1 +
dx

dy

2

dy =
y2

y1

2πr dy = 2πr(y2 − y1) = 2πrh.

This equals the lateral area of a cylinder of radius r and height h, since such

a cylinder is obtained by rotating the line x = r about the y-axis, so the

surface area of the cylinder between the planes y = y1 and y = y2 is

A=
y2

y1

2πx 1 +
dx

dy

2

dy =
y2

y1

2πr 1 + 02 dy

= 2πry
y2

y=y1
= 2πr(y2 − y1) = 2πrh

(d) h = 2r sin 23.45◦ ≈ 3152 mi, so the surface area of the

Torrid Zone is 2πrh ≈ 2π(3960)(3152) ≈ 7.84× 107 mi2.

5. (a) Choose a vertical x-axis pointing downward with its origin at the surface. In order to calculate the pressure at depth z,

consider n subintervals of the interval [0, z] by points xi and choose a point x∗i ∈ [xi−1, xi] for each i. The thin layer of

water lying between depth xi−1 and depth xi has a density of approximately ρ(x∗i ), so the weight of a piece of that layer

with unit cross-sectional area is ρ(x∗i )g∆x. The total weight of a column of water extending from the surface to depth z

(with unit cross-sectional area) would be approximately
n

i=1

ρ(x∗i )g∆x. The estimate becomes exact if we take the limit

as n→∞; weight (or force) per unit area at depth z is W = lim
n→∞

n

i=1

ρ(x∗i )g∆x. In other words, P (z) = z

0
ρ(x)g dx.

More generally, if we make no assumptions about the location of the origin, then P (z) = P0 +
z

0
ρ(x)g dx, where P0 is

the pressure at x = 0. Differentiating, we get dP/dz = ρ(z)g.

(b) F =
r

−r P (L+ x) · 2√r2 − x2 dx

=
r

−r P0 +
L+x

0
ρ0e

z/Hg dz · 2√r2 − x2 dx

= P0
r

−r 2
√
r2 − x2 dx+ ρ0gH

r

−r e(L+x)/H − 1 · 2√r2 − x2 dx

= (P0 − ρ0gH)
r

−r 2
√
r2 − x2 dx+ ρ0gH

r

−r e
(L+x)/H · 2√r2 − x2 dx

= (P0 − ρ0gH) πr
2 + ρ0gHeL/H

r

−r e
x/H · 2√r2 − x2 dx
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7. To find the height of the pyramid, we use similar triangles. The first figure shows a cross-section of the pyramid passing

through the top and through two opposite corners of the square base. Now |BD| = b, since it is a radius of the sphere, which

has diameter 2b since it is tangent to the opposite sides of the square base. Also, |AD| = b since4ADB is isosceles. So the

height is |AB| = √b2 + b2 =
√
2 b.

We first observe that the shared volume is equal to half the volume of the sphere, minus the sum of the four equal volumes

(caps of the sphere) cut off by the triangular faces of the pyramid. See Exercise 6.2.51 for a derivation of the formula for the

volume of a cap of a sphere. To use the formula, we need to find the perpendicular distance h of each triangular face from the

surface of the sphere. We first find the distance d from the center of the sphere to one of the triangular faces. The third figure

shows a cross-section of the pyramid through the top and through the midpoints of opposite sides of the square base. From

similar triangles we find that

d

b
=
|AB|
|AC| =

√
2 b

b2 +
√
2 b

2
⇒ d =

√
2 b2√
3b2

=

√
6

3
b

So h = b− d = b−
√
6
3 b = 3−√6

3 b. So, using the formula V = πh2(r − h/3) from Exercise 6.2.51 with r = b, we find that

the volume of each of the caps is π 3−√6
3

b
2

b− 3−√6
3 · 3 b = 15− 6√6

9
· 6+

√
6

9
πb3 = 2

3
− 7

27

√
6 πb3. So, using our first

observation, the shared volume is V = 1
2

4
3
πb3 − 4 2

3
− 7

27

√
6 πb3 = 28

27

√
6− 2 πb3.

9. We can assume that the cut is made along a vertical line x = b > 0, that the

disk’s boundary is the circle x2 + y2 = 1, and that the center of mass of the

smaller piece (to the right of x = b) is 1
2 , 0 . We wish to find b to two

decimal places. We have 1
2
= x =

1

b
x · 2√1− x2 dx
1

b
2
√
1− x2 dx

. Evaluating the

numerator gives us − 1

b
(1− x2)1/2(−2x) dx = − 2

3
1− x2

3/2 1

b
= − 2

3
0− 1− b 2

3/2
= 2

3 (1− b 2)3/2.

Using Formula 30 in the table of integrals, we find that the denominator is

x
√
1− x2 + sin−1x

1

b
= 0 + π

2
− b

√
1− b 2 + sin−1b . Thus, we have 1

2
= x =

2
3 (1− b 2)3/2

π
2
− b

√
1− b 2 − sin−1b , or,

equivalently, 2
3
(1− b 2)3/2 = π

4
− 1

2
b
√
1− b 2 − 1

2
sin−1b. Solving this equation numerically with a calculator or CAS, we

obtain b ≈ 0.138173, or b = 0.14 m to two decimal places.
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11. If h = L, then P = area under y = L sin θ

area of rectangle
=

π

0
L sin θ dθ

πL
=
[− cos θ]π0

π
=
− (−1) + 1

π
=
2

π
.

If h = L/2, then P =
area under y = 1

2L sin θ

area of rectangle
=

π

0
1
2
L sin θ dθ

πL
=
[− cos θ]π0
2π

=
2

2π
=
1

π
.



9 DIFFERENTIAL EQUATIONS

9.1 Modeling with Differential Equations

1. y = x− x−1 ⇒ y0 = 1 + x−2. To show that y is a solution of the differential equation, we will substitute the expressions

for y and y0 in the left-hand side of the equation and show that the left-hand side is equal to the right-hand side.

LHS= xy0 + y = x(1 + x−2) + (x− x−1) = x+ x−1 + x− x−1 = 2x =RHS

3. (a) y = erx ⇒ y0 = rerx ⇒ y00 = r2erx. Substituting these expressions into the differential equation

2y00 + y0 − y = 0, we get 2r2erx + rerx − erx = 0 ⇒ (2r2 + r − 1)erx = 0 ⇒
(2r − 1)(r + 1) = 0 [since erx is never zero] ⇒ r = 1

2
or −1.

(b) Let r1 = 1
2

and r2 = −1, so we need to show that every member of the family of functions y = aex/2 + be−x is a

solution of the differential equation 2y00 + y0 − y = 0.

y = aex/2 + be−x ⇒ y0 = 1
2
aex/2 − be−x ⇒ y00 = 1

4
aex/2 + be−x.

LHS = 2y00 + y0 − y = 2 1
4
aex/2 + be−x + 1

2
aex/2 − be−x − (aex/2 + be−x)

= 1
2
aex/2 + 2be−x + 1

2
aex/2 − be−x − aex/2 − be−x

= 1
2a+

1
2a− a ex/2 + (2b− b− b)e−x

= 0 = RHS

5. (a) y = sinx ⇒ y0 = cosx ⇒ y00 = − sinx.

LHS = y00 + y = − sinx+ sinx = 0 6= sinx, so y = sinx is not a solution of the differential equation.

(b) y = cosx ⇒ y0 = − sinx ⇒ y00 = − cosx.

LHS = y00 + y = − cosx+ cosx = 0 6= sinx, so y = cosx is not a solution of the differential equation.

(c) y = 1
2
x sinx ⇒ y0 = 1

2
(x cosx+ sinx) ⇒ y00 = 1

2
(−x sinx+ cosx+ cosx).

LHS = y00 + y = 1
2
(−x sinx+ 2cosx) + 1

2
x sinx = cosx 6= sinx, so y = 1

2
x sinx is not a solution of the

differential equation.

(d) y = − 1
2x cosx ⇒ y0 = − 1

2 (−x sinx+ cosx) ⇒ y00 = − 1
2 (−x cosx− sinx− sinx).

LHS = y00 + y = − 1
2 (−x cosx− 2 sinx) + − 1

2x cosx = sinx = RHS, so y = − 1
2x cosx is a solution of the

differential equation.

7. (a) Since the derivative y0 = −y2 is always negative (or 0 if y = 0), the function y must be decreasing (or equal to 0) on any

interval on which it is defined.

(b) y = 1

x+ C
⇒ y0 = − 1

(x+ C)2
. LHS = y0 = − 1

(x+C)2
= − 1

x+C

2

= −y2 = RHS

381
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(c) y = 0 is a solution of y0 = −y2 that is not a member of the family in part (b).

(d) If y(x) = 1

x+C
, then y(0) = 1

0 +C
=
1

C
. Since y(0) = 0.5, 1

C
=
1

2
⇒ C = 2, so y = 1

x+ 2
.

9. (a) dP

dt
= 1.2P 1− P

4200
. Now dP

dt
> 0 ⇒ 1− P

4200
> 0 [assuming that P > 0] ⇒ P

4200
< 1 ⇒

P < 4200 ⇒ the population is increasing for 0 < P < 4200.

(b) dP

dt
< 0 ⇒ P > 4200

(c) dP

dt
= 0 ⇒ P = 4200 or P = 0

11. (a) This function is increasing and also decreasing. But dy/dt = et(y − 1)2 ≥ 0 for all t, implying that the graph of the

solution of the differential equation cannot be decreasing on any interval.

(b) When y = 1, dy/dt = 0, but the graph does not have a horizontal tangent line.

13. (a) P increases most rapidly at the beginning, since there are usually many simple, easily-learned sub-skills associated with

learning a skill. As t increases, we would expect dP/dt to remain positive, but decrease. This is because as time

progresses, the only points left to learn are the more difficult ones.

(b) dP

dt
= k(M − P ) is always positive, so the level of performance P

is increasing. As P gets close to M , dP/dt gets close to 0; that is,

the performance levels off, as explained in part (a).

(c)

9.2 Direction Fields and Euler's Method

1. (a) (b) It appears that the constant functions y = 0, y = −2, and y = 2 are

equilibrium solutions. Note that these three values of y satisfy the

given differential equation y0 = y 1− 1
4
y2 .

3. y0 = 2− y. The slopes at each point are independent of x, so the slopes are the same along each line parallel to the x-axis.

Thus, III is the direction field for this equation. Note that for y = 2, y0 = 0.

5. y0 = x+ y− 1 = 0 on the line y = −x+1. Direction field IV satisfies this condition. Notice also that on the line y = −x we

have y0 = −1, which is true in IV.
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7. (a) y(0) = 1

(b) y(0) = 2

(c) y(0) = −1

9.
x y y0 = 1 + y

0 0 1

0 1 2

0 2 3

0 −3 −2
0 −2 −1

Note that for y = −1, y0 = 0. The three solution curves sketched go
through (0, 0), (0,−1), and (0,−2).

11.
x y y0 = y − 2x
−2 −2 2

−2 2 6

2 2 −2
2 −2 −6

Note that y0 = 0 for any point on the line y = 2x. The slopes are
positive to the left of the line and negative to the right of the line. The
solution curve in the graph passes through (1, 0).

13.
x y y0 = y + xy

0 ±2 ±2
1 ±2 ±4
−3 ±2 ∓4

Note that y0 = y(x+ 1) = 0 for any point on y = 0 or on x = −1.
The slopes are positive when the factors y and x+ 1 have the same
sign and negative when they have opposite signs. The solution curve
in the graph passes through (0, 1).
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15. In Maple, we can use either directionfield (in Maple’s share library) or
DEtools[DEplot] to plot the direction field. To plot the solution, we can
either use the initial-value option in directionfield, or actually solve the
equation.

In Mathematica, we use PlotVectorField for the direction field, and the
Plot[Evaluate[. . .]] construction to plot the solution, which is

y = 2arctan ex
3/3 · tan 1

2
.

In Derive, use Direction_Field (in utility file ODE_APPR) to plot the direction field. Then use

DSOLVE1(-xˆ2*SIN(y),1,x,y,0,1) (in utility file ODE1) to solve the equation. Simplify each result.

17. The direction field is for the differential equation y0 = y3 − 4y.

L = lim
t→∞

y(t) exists for −2 ≤ c ≤ 2;

L = ±2 for c = ±2 and L = 0 for −2 < c < 2.

For other values of c, L does not exist.

19. (a) y0 = F (x, y) = y and y(0) = 1 ⇒ x0 = 0, y0 = 1.

(i) h = 0.4 and y1 = y0 + hF (x0, y0) ⇒ y1 = 1 + 0.4 · 1 = 1.4. x1 = x0 + h = 0 + 0.4 = 0.4,

so y1 = y (0.4) = 1.4.

(ii) h = 0.2 ⇒ x1 = 0.2 and x2 = 0.4, so we need to find y2.

y1 = y0 + hF (x0, y0) = 1 + 0.2y0 = 1 + 0.2 · 1 = 1.2,

y2 = y1 + hF (x1, y1) = 1.2 + 0.2y1 = 1.2 + 0.2 · 1.2 = 1.44.

(iii) h = 0.1 ⇒ x4 = 0.4, so we need to find y4. y1 = y0 + hF (x0, y0) = 1 + 0.1y0 = 1 + 0.1 · 1 = 1.1,

y2 = y1 + hF (x1, y1) = 1.1 + 0.1y1 = 1.1 + 0.1 · 1.1 = 1.21,

y3 = y2 + hF (x2, y2) = 1.21 + 0.1y2 = 1.21 + 0.1 · 1.21 = 1.331,

y4 = y3 + hF (x3, y3) = 1.331 + 0.1y3 = 1.331 + 0.1 · 1.331 = 1.4641.

(b) We see that the estimates are underestimates since

they are all below the graph of y = ex.
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(c) (i) For h = 0.4: (exact value)− (approximate value) = e0.4 − 1.4 ≈ 0.0918
(ii) For h = 0.2: (exact value)− (approximate value) = e0.4 − 1.44 ≈ 0.0518

(iii) For h = 0.1: (exact value)− (approximate value) = e0.4 − 1.4641 ≈ 0.0277
Each time the step size is halved, the error estimate also appears to be halved (approximately).

21. h = 0.5, x0 = 1, y0 = 0, and F (x, y) = y − 2x.

Note that x1 = x0 + h = 1 + 0.5 = 1.5, x2 = 2, and x3 = 2.5.

y1 = y0 + hF (x0, y0) = 0 + 0.5F (1, 0) = 0.5[0− 2(1)] = −1.

y2 = y1 + hF (x1, y1) = −1 + 0.5F (1.5,−1) = −1 + 0.5[−1− 2(1.5)] = −3.

y3 = y2 + hF (x2, y2) = −3 + 0.5F (2,−3) = −3 + 0.5[−3− 2(2)] = −6.5.

y4 = y3 + hF (x3, y3) = −6.5 + 0.5F (2.5,−6.5) = −6.5 + 0.5[−6.5− 2(2.5)] = −12.25.

23. h = 0.1, x0 = 0, y0 = 1, and F (x, y) = y + xy.

Note that x1 = x0 + h = 0 + 0.1 = 0.1, x2 = 0.2, x3 = 0.3, and x4 = 0.4.

y1 = y0 + hF (x0, y0) = 1 + 0.1F (0, 1) = 1 + 0.1[1 + (0)(1)] = 1.1.

y2 = y1 + hF (x1, y1) = 1.1 + 0.1F (0.1, 1.1) = 1.1 + 0.1[1.1 + (0.1)(1.1)] = 1.221.

y3 = y2 + hF (x2, y2) = 1.221 + 0.1F (0.2, 1.221) = 1.221 + 0.1[1.221 + (0.2)(1.221)] = 1.36752.

y4 = y3 + hF (x3, y3) = 1.36752 + 0.1F (0.3, 1.36752) = 1.36752 + 0.1[1.36752 + (0.3)(1.36752)]

= 1.5452976.

y5 = y4 + hF (x4, y4) = 1.5452976 + 0.1F (0.4, 1.5452976)

= 1.5452976 + 0.1[1.5452976 + (0.4)(1.5452976)] = 1.761639264.

Thus, y(0.5) ≈ 1.7616.

25. (a) dy/dx+ 3x2y = 6x2 ⇒ y0 = 6x2 − 3x2y. Store this expression in Y1 and use the following simple program to

evaluate y(1) for each part, using H = h = 1 and N = 1 for part (i), H = 0.1 and N = 10 for part (ii), and so forth.

h→ H: 0→ X: 3→ Y:

For(I, 1, N): Y+ H×Y1 → Y: X+H → X:

End(loop):

Display Y. [To see all iterations, include this statement in the loop.]

(i) H = 1, N = 1 ⇒ y(1) = 3

(ii) H = 0.1, N = 10 ⇒ y(1) ≈ 2.3928
(iii) H = 0.01, N = 100 ⇒ y(1) ≈ 2.3701
(iv) H = 0.001, N = 1000 ⇒ y(1) ≈ 2.3681

(b) y = 2 + e−x
3 ⇒ y0 = −3x2e−x3

LHS = y0 + 3x2y = −3x2e−x3 + 3x2 2 + e−x
3

= −3x2e−x3 + 6x2 + 3x2e−x3 = 6x2 = RHS

y(0) = 2 + e−0 = 2 + 1 = 3
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(c) The exact value of y(1) is 2 + e−1
3

= 2 + e−1.
(i) For h = 1: (exact value)− (approximate value) = 2 + e−1 − 3 ≈ −0.6321

(ii) For h = 0.1: (exact value)− (approximate value) = 2 + e−1 − 2.3928 ≈ −0.0249
(iii) For h = 0.01: (exact value)− (approximate value) = 2 + e−1 − 2.3701 ≈ −0.0022
(iv) For h = 0.001: (exact value)− (approximate value) = 2 + e−1 − 2.3681 ≈ −0.0002
In (ii)–(iv), it seems that when the step size is divided by 10, the error estimate is also divided by 10 (approximately).

27. (a) R dQ

dt
+
1

C
Q = E(t) becomes 5Q0 +

1

0.05
Q = 60

or Q0 + 4Q = 12.

(b) From the graph, it appears that the limiting value of the

charge Q is about 3.

(c) If Q0 = 0, then 4Q = 12 ⇒ Q = 3 is an

equilibrium solution.

(d)

(e) Q0 + 4Q = 12 ⇒ Q0 = 12− 4Q. Now Q(0) = 0, so t0 = 0 and Q0 = 0.

Q1 = Q0 + hF (t0, Q0) = 0 + 0.1(12− 4 · 0) = 1.2
Q2 = Q1 + hF (t1, Q1) = 1.2 + 0.1(12− 4 · 1.2) = 1.92
Q3 = Q2 + hF (t2, Q2) = 1.92 + 0.1(12− 4 · 1.92) = 2.352
Q4 = Q3 + hF (t3, Q3) = 2.352 + 0.1(12− 4 · 2.352) = 2.6112
Q5 = Q4 + hF (t4, Q4) = 2.6112 + 0.1(12− 4 · 2.6112) = 2.76672

Thus, Q5 = Q(0.5) ≈ 2.77 C.

9.3 Separable Equations

1. dy

dx
=

y

x
⇒ dy

y
=

dx

x
[y 6= 0] ⇒ dy

y
=

dx

x
⇒ ln |y| = ln |x|+ C ⇒

|y| = eln|x|+C = eln|x|eC = eC |x| ⇒ y = Kx, where K = ±eC is a constant. (In our derivation, K was nonzero,

but we can restore the excluded case y = 0 by allowing K to be zero.)

3. (x2 + 1)y0 = xy ⇒ dy

dx
=

xy

x2 + 1
⇒ dy

y
=

xdx

x2 + 1
[y 6= 0] ⇒ dy

y
=

xdx

x2 + 1
⇒

ln |y| = 1
2
ln(x2 + 1) + C [u = x2 + 1, du = 2xdx] = ln(x2 + 1)1/2 + ln eC = ln eC

√
x2 + 1 ⇒

|y| = eC
√
x2 + 1 ⇒ y = K

√
x2 + 1, where K = ±eC is a constant. (In our derivation, K was nonzero, but we can

restore the excluded case y = 0 by allowing K to be zero.)
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5. (1 + tan y) y0 = x2 + 1 ⇒ (1 + tan y)
dy

dx
= x2 + 1 ⇒ 1 +

sin y

cos y
dy = (x2 + 1) dx ⇒

1− − sin y
cos y

dy = (x2 + 1) dx ⇒ y − ln |cos y| = 1
3x

3 + x+ C.

Note: The left side is equivalent to y + ln |sec y|.

7. dy

dt
=

tet

y 1 + y2
⇒ y 1 + y2 dy = tet dt ⇒ y 1 + y2 dy = tet dt ⇒ 1

3
1 + y2

3/2
= tet − et + C

[where the first integral is evaluated by substitution and the second by parts] ⇒ 1 + y2 = [3(tet − et + C)]2/3 ⇒
y = ± [3(tet − et +C)]2/3 − 1

9. du

dt
= 2 + 2u+ t+ tu ⇒ du

dt
= (1 + u)(2 + t) ⇒ du

1 + u
= (2 + t)dt [u 6= −1] ⇒

ln |1 + u| = 1
2
t2 + 2t+ C ⇒ |1 + u| = et

2/2+ 2t+C = Ket
2/2+ 2t, where K = eC ⇒ 1 + u = ±Ket

2/2+ 2t ⇒

u = −1±Ket
2/2+ 2t where K > 0. u = −1 is also a solution, so u = −1 +Aet

2/2+ 2t, where A is an arbitrary constant.

11. dy

dx
=

x

y
⇒ y dy = xdx ⇒ y dy = xdx ⇒ 1

2
y2 = 1

2
x2 + C. y(0) = −3 ⇒

1
2
(−3)2 = 1

2
(0)2 +C ⇒ C = 9

2
, so 1

2
y2 = 1

2
x2 + 9

2
⇒ y2 = x2 + 9 ⇒ y = −√x2 + 9 since y(0) = −3 < 0.

13. x cosx = (2y + e3y) y0 ⇒ x cosxdx = (2y + e3y) dy ⇒ (2y + e3y) dy = x cosxdx ⇒
y2 + 1

3
e3y = x sinx+ cosx+C [where the second integral is evaluated using integration by parts].

Now y(0) = 0 ⇒ 0 + 1
3 = 0+ 1 + C ⇒ C = − 2

3 . Thus, a solution is y2 + 1
3e

3y = x sinx+ cosx− 2
3 .

We cannot solve explicitly for y.

15. du

dt
=
2t+ sec2 t

2u
, u(0) = −5. 2udu = 2t+ sec2 t dt ⇒ u2 = t2 + tan t+ C,

where [u(0)]2 = 02 + tan 0 + C ⇒ C = (−5)2 = 25. Therefore, u2 = t2 + tan t+ 25, so u = ±√t2 + tan t+ 25.

Since u(0) = −5, we must have u = −√t2 + tan t+ 25.

17. y0 tanx = a+ y, 0 < x < π/2 ⇒ dy

dx
=

a+ y

tanx
⇒ dy

a+ y
= cotxdx [a+ y 6= 0] ⇒

dy

a+ y
=

cosx

sinx
dx ⇒ ln |a+ y| = ln |sinx|+C ⇒ |a+ y| = eln|sin x|+C = eln|sinx| · eC = eC |sinx| ⇒

a+ y = K sinx, where K = ±eC . (In our derivation, K was nonzero, but we can restore the excluded case

y = −a by allowing K to be zero.) y(π/3) = a ⇒ a+ a = K sin
π

3
⇒ 2a = K

√
3

2
⇒ K =

4a√
3

.

Thus, a+ y =
4a√
3
sinx and so y = 4a√

3
sinx− a.

19. If the slope at the point (x, y) is xy, then we have dy

dx
= xy ⇒ dy

y
= xdx [y 6= 0] ⇒ dy

y
= xdx ⇒

ln |y| = 1
2
x2 +C. y(0) = 1 ⇒ ln 1 = 0 + C ⇒ C = 0. Thus, |y| = ex

2/2 ⇒ y = ±ex2/2, so y = ex
2/2

since y(0) = 1 > 0. Note that y = 0 is not a solution because it doesn’t satisfy the initial condition y(0) = 1.
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21. u = x+ y ⇒ d

dx
(u) =

d

dx
(x+ y) ⇒ du

dx
= 1 +

dy

dx
, but dy

dx
= x+ y = u, so du

dx
= 1 + u ⇒

du

1 + u
= dx [u 6= −1] ⇒ du

1 + u
= dx ⇒ ln |1 + u| = x+ C ⇒ |1 + u| = ex+C ⇒

1 + u = ±eCex ⇒ u = ±eCex − 1 ⇒ x+ y = ±eCex − 1 ⇒ y = Kex − x− 1, where K = ±eC 6= 0.

If u = −1, then −1 = x+ y ⇒ y = −x− 1, which is just y = Kex − x− 1 with K = 0. Thus, the general solution

is y = Kex − x− 1, where K ∈ R.

23. (a) y0 = 2x 1− y2 ⇒ dy

dx
= 2x 1− y2 ⇒ dy

1− y2
= 2xdx ⇒ dy

1− y2
= 2xdx ⇒

sin−1 y = x2 +C for −π
2
≤ x2 + C ≤ π

2
.

(b) y(0) = 0 ⇒ sin−1 0 = 02 +C ⇒ C = 0,

so sin−1 y = x2 and y = sin x2 for

− π/2 ≤ x ≤ π/2.

(c) For 1− y2 to be a real number, we must have −1 ≤ y ≤ 1; that is, −1 ≤ y(0) ≤ 1. Thus, the initial-value problem

y0 = 2x 1− y2, y(0) = 2 does not have a solution.

25. dy

dx
=
sinx

sin y
, y(0) =

π

2
. So sin y dy = sinxdx ⇔

− cos y = − cosx+C ⇔ cos y = cosx− C. From the initial condition,

we need cos π
2 = cos 0− C ⇒ 0 = 1− C ⇒ C = 1, so the solution is

cos y = cosx− 1. Note that we cannot take cos−1 of both sides, since that would

unnecessarily restrict the solution to the case where−1 ≤ cosx− 1 ⇔ 0 ≤ cosx,

as cos−1 is defined only on [−1, 1]. Instead we plot the graph using Maple’s

plots[implicitplot] or Mathematica’s Plot[Evaluate[· · ·]].

27. (a)
x y y0 = 1/y

0 0.5 2

0 −0.5 −2
0 1 1

0 −1 −1
0 2 0.5

x y y0 = 1/y

0 −2 −0.5
0 4 0.25

0 3 0.3

0 0.25 4

0 0.3 3
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(b) y0 = 1/y ⇒ dy/dx = 1/y ⇒
y dy = dx ⇒ y dy = dx ⇒ 1

2y
2 = x+ C ⇒

y2 = 2(x+ C) or y = ± 2(x+ C).

(c)

29. The curves x2 + 2y2 = k2 form a family of ellipses with major axis on the x-axis. Differentiating gives

d

dx
(x2 + 2y2) =

d

dx
(k2) ⇒ 2x+ 4yy0 = 0 ⇒ 4yy0 = −2x ⇒ y0 =

−x
2y

. Thus, the slope of the tangent line

at any point (x, y) on one of the ellipses is y0 = −x
2y

, so the orthogonal trajectories

must satisfy y0 = 2y

x
⇔ dy

dx
=
2y

x
⇔ dy

y
= 2 =

dx

x
⇔

dy

y
= 2

dx

x
⇔ ln |y| = 2 ln |x|+ C1 ⇔ ln |y| = ln |x|2 + C1 ⇔

|y| = elnx
2+C1 ⇔ y = ±x2 · eC1 = Cx2. This is a family of parabolas.

31. The curves y = k/x form a family of hyperbolas with asymptotes x = 0 and y = 0. Differentiating gives

d

dx
(y) =

d

dx

k

x
⇒ y0 = − k

x2
⇒ y0 = −xy

x2
[since y = k/x ⇒ xy = k] ⇒ y0 = −y

x
. Thus, the slope

of the tangent line at any point (x, y) on one of the hyperbolas is y0 = −y/x,

so the orthogonal trajectories must satisfy y0 = x/y ⇔ dy

dx
=

x

y
⇔

y dy = xdx ⇔ y dy = xdx ⇔ 1
2
y2 = 1

2
x2 + C1 ⇔

y2 = x2 + C2 ⇔ x2 − y2 = C. This is a family of hyperbolas with

asymptotes y = ±x.

33. From Exercise 9.2.27, dQ
dt

= 12− 4Q ⇔ dQ

12− 4Q = dt ⇔ − 1
4
ln|12− 4Q| = t+ C ⇔

ln|12− 4Q| = −4t− 4C ⇔ |12− 4Q| = e−4t−4C ⇔ 12− 4Q = Ke−4t [K = ±e−4C] ⇔

4Q = 12−Ke−4t ⇔ Q = 3−Ae−4t [A = K/4]. Q(0) = 0 ⇔ 0 = 3−A ⇔ A = 3 ⇔

Q(t) = 3− 3e−4t. As t→∞, Q(t)→ 3− 0 = 3 (the limiting value).

35. dP

dt
= k(M − P ) ⇔ dP

P −M
= (−k) dt ⇔ ln|P −M | = −kt+ C ⇔ |P −M | = e−kt+C ⇔

P −M = Ae−kt [A = ±eC ] ⇔ P =M +Ae−kt. If we assume that performance is at level 0 when t = 0, then

P (0) = 0 ⇔ 0 =M +A ⇔ A = −M ⇔ P (t) =M −Me−kt. lim
t→∞

P (t) =M −M · 0 =M .
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37. (a) If a = b, then dx

dt
= k(a− x)(b− x)1/2 becomes dx

dt
= k(a− x)3/2 ⇒ (a− x)−3/2 dx = k dt ⇒

(a− x)−3/2 dx = k dt ⇒ 2(a− x)−1/2 = kt+ C [by substitution] ⇒ 2

kt+ C
=
√
a− x ⇒

2

kt+ C

2

= a− x ⇒ x(t) = a− 4

(kt+C)2
. The initial concentration of HBr is 0, so x(0) = 0 ⇒

0 = a− 4

C2
⇒ 4

C2
= a ⇒ C2 =

4

a
⇒ C = 2/

√
a [C is positive since kt+ C = 2(a− x)−1/2 > 0].

Thus, x(t) = a− 4

(kt+ 2/
√
a )

2 .

(b) dx

dt
= k(a− x)(b− x)1/2 ⇒ dx

(a− x)
√
b− x

= k dt ⇒ dx

(a− x)
√
b− x

= k dt ( ).

From the hint, u =
√
b− x ⇒ u2 = b− x ⇒ 2udu = −dx, so

dx

(a− x)
√
b− x

=
−2udu

[a− (b− u2)]u
= −2 du

a− b+ u2
= −2 du√

a− b
2
+ u2

17
= −2 1√

a− b
tan−1

u√
a− b

So ( ) becomes −2√
a− b

tan−1
√
b− x√
a− b

= kt+ C. Now x(0) = 0 ⇒ C =
−2√
a− b

tan−1
√
b√

a− b
and we have

−2√
a− b

tan−1
√
b− x√
a− b

= kt− 2√
a− b

tan−1
√
b√

a− b
⇒ 2√

a− b
tan−1

b

a− b
− tan−1 b− x

a− b
= kt ⇒

t(x) =
2

k
√
a− b

tan−1
b

a− b
− tan−1 b− x

a− b
.

39. (a) dC

dt
= r − kC ⇒ dC

dt
= −(kC − r) ⇒ dC

kC − r
= −dt ⇒ (1/k) ln|kC − r| = −t+M1 ⇒

ln|kC − r| = −kt+M2 ⇒ |kC − r| = e−kt+M2 ⇒ kC − r =M3e
−kt ⇒ kC =M3e

−kt + r ⇒
C(t) = M4e

−kt + r/k. C(0) = C0 ⇒ C0 = M4 + r/k ⇒ M4 = C0 − r/k ⇒
C(t) = (C0 − r/k)e−kt + r/k.

(b) If C0 < r/k, then C0 − r/k < 0 and the formula for C(t) shows that C(t) increases and lim
t→∞

C(t) = r/k.

As t increases, the formula for C(t) shows how the role of C0 steadily diminishes as that of r/k increases.

41. (a) Let y(t) be the amount of salt (in kg) after t minutes. Then y(0) = 15. The amount of liquid in the tank is 1000 L at all

times, so the concentration at time t (in minutes) is y(t)/1000 kg/L and dy

dt
= − y(t)

1000

kg
L

10
L

min
= −y(t)

100

kg
min

.

dy

y
= − 1

100
dt ⇒ ln y = − t

100
+C, and y(0) = 15 ⇒ ln 15 = C, so ln y = ln 15− t

100
.

It follows that ln y

15
= − t

100
and y

15
= e−t/100, so y = 15e−t/100 kg.

(b) After 20 minutes, y = 15e−20/100 = 15e−0.2 ≈ 12.3 kg.
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43. Let y(t) be the amount of alcohol in the vat after t minutes. Then y(0) = 0.04(500) = 20 gal. The amount of beer in the vat

is 500 gallons at all times, so the percentage at time t (in minutes) is y(t)/500× 100, and the change in the amount of alcohol

with respect to time t is dy

dt
= rate in − rate out = 0.06 5

gal
min

− y(t)

500
5

gal
min

= 0.3− y

100
=
30− y

100

gal
min

.

Hence, dy

30− y
=

dt

100
and − ln |30− y| = 1

100 t+ C. Because y(0) = 20, we have − ln 10 = C, so

− ln |30− y| = 1
100

t− ln 10 ⇒ ln |30− y| = −t/100 + ln 10 ⇒ ln |30− y| = ln e−t/100 + ln 10 ⇒

ln |30− y| = ln(10e−t/100) ⇒ |30− y| = 10e−t/100. Since y is continuous, y(0) = 20, and the right-hand side is

never zero, we deduce that 30− y is always positive. Thus, 30− y = 10e−t/100 ⇒ y = 30− 10e−t/100. The

percentage of alcohol is p(t) = y(t)/500× 100 = y(t)/5 = 6− 2e−t/100. The percentage of alcohol after one hour is

p(60) = 6− 2e−60/100 ≈ 4.9.

45. Assume that the raindrop begins at rest, so that v(0) = 0. dm/dt = km and (mv)0 = gm ⇒ mv0 + vm0 = gm ⇒

mv0 + v(km) = gm ⇒ v0 + vk = g ⇒ dv

dt
= g − kv ⇒ dv

g − kv
= dt ⇒

− (1/k) ln|g − kv| = t+ C ⇒ ln |g − kv| = −kt− kC ⇒ g − kv = Ae−kt. v(0) = 0 ⇒ A = g.

So kv = g − ge−kt ⇒ v = (g/k)(1− e−kt). Since k > 0, as t→∞, e−kt → 0 and therefore, lim
t→∞

v(t) = g/k.

47. (a) The rate of growth of the area is jointly proportional to A(t) and M −A(t); that is, the rate is proportional to the

product of those two quantities. So for some constant k, dA/dt = k
√
A (M −A). We are interested in the maximum of

the function dA/dt (when the tissue grows the fastest), so we differentiate, using the Chain Rule and then substituting for

dA/dt from the differential equation:

d

dt

dA

dt
= k

√
A (−1)dA

dt
+ (M −A) · 1

2A
−1/2 dA

dt
= 1

2kA
−1/2 dA

dt
[−2A+ (M −A)]

= 1
2
kA−1/2 k

√
A(M −A) [M − 3A] = 1

2
k2(M −A)(M − 3A)

This is 0 when M −A = 0 [this situation never actually occurs, since the graph of A(t) is asymptotic to the line y =M ,

as in the logistic model] and when M − 3A = 0 ⇔ A(t) =M/3. This represents a maximum by the First Derivative

Test, since d

dt

dA

dt
goes from positive to negative when A(t) =M/3.

(b) From the CAS, we get A(t) =M
Ce
√
Mkt − 1

Ce
√
Mkt + 1

2

. To get C in terms of the initial area A0 and the maximum area M ,

we substitute t = 0 and A = A0 = A(0): A0 =M
C − 1
C + 1

2

⇔ (C + 1)
√
A0 = (C − 1)

√
M ⇔

C
√
A0 +

√
A0 = C

√
M −√M ⇔ √

M +
√
A0 = C

√
M − C

√
A0 ⇔

√
M +

√
A0 = C

√
M −√A0 ⇔ C =

√
M +

√
A0√

M −√A0

. [Notice that if A0 = 0, then C = 1.]



392 ¤ CHAPTER 9 DIFFERENTIAL EQUATIONS

9.4 Models for Population Growth

1. (a) dP/dt = 0.05P − 0.0005P 2 = 0.05P (1− 0.01P ) = 0.05P (1− P/100). Comparing to Equation 4,

dP/dt = kP (1− P/K), we see that the carrying capacity is K = 100 and the value of k is 0.05.

(b) The slopes close to 0 occur where P is near 0 or 100. The largest slopes appear to be on the line P = 50. The solutions

are increasing for 0 < P0 < 100 and decreasing for P0 > 100.

(c) All of the solutions approach P = 100 as t increases. As in

part (b), the solutions differ since for 0 < P0 < 100 they are

increasing, and for P0 > 100 they are decreasing. Also, some

have an IP and some don’t. It appears that the solutions which

have P0 = 20 and P0 = 40 have inflection points at P = 50.

(d) The equilibrium solutions are P = 0 (trivial solution) and P = 100. The increasing solutions move away from P = 0 and

all nonzero solutions approach P = 100 as t→∞.

3. (a) dy

dt
= ky 1− y

K
⇒ y(t) =

K

1 +Ae−kt
with A = K − y(0)

y(0)
. With K = 8× 107, k = 0.71, and

y(0) = 2× 107, we get the model y(t) = 8× 107
1 + 3e−0.71t

, so y(1) = 8× 107
1 + 3e−0.71

≈ 3.23× 107 kg.

(b) y(t) = 4× 107 ⇒ 8× 107
1 + 3e−0.71t

= 4× 107 ⇒ 2 = 1 + 3e−0.71t ⇒ e−0.71t = 1
3
⇒

−0.71t = ln 1
3 ⇒ t =

ln 3

0.71
≈ 1.55 years

5. (a) We will assume that the difference in the birth and death rates is 20 million/year. Let t = 0 correspond to the year 1990

and use a unit of 1 billion for all calculations. k ≈ 1

P

dP

dt
=

1

5.3
(0.02) =

1

265
, so

dP

dt
= kP 1− P

K
=

1

265
P 1− P

100
, P in billions

(b) A = K − P0
P0

=
100− 5.3
5.3

=
947

53
≈ 17.8679. P (t) = K

1 +Ae−kt
=

100

1 + 947
53 e

−(1/265)t , so P (10) ≈ 5.49 billion.

(c) P (110) ≈ 7.81, and P (510) ≈ 27.72. The predictions are 7.81 billion in the year 2100 and 27.72 billion in 2500.

(d) If K = 50, then P (t) = 50

1 + 447
53

e−(1/265)t
. So P (10) ≈ 5.48, P (110) ≈ 7.61, and P (510) ≈ 22.41. The predictions

become 5.48 billion in the year 2000, 7.61 billion in 2100, and 22.41 billion in the year 2500.

7. (a) Our assumption is that dy
dt
= ky(1− y), where y is the fraction of the population that has heard the rumor.
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(b) Using the logistic equation (4), dP
dt

= kP 1− P

K
, we substitute y = P

K
, P = Ky, and dP

dt
= K

dy

dt
,

to obtain K dy

dt
= k(Ky)(1− y) ⇔ dy

dt
= ky(1− y), our equation in part (a).

Now the solution to (4) is P (t) = K

1 +Ae−kt
, where A = K − P0

P0
.

We use the same substitution to obtain Ky =
K

1 +
K −Ky0
Ky0

e−kt
⇒ y =

y0
y0 + (1− y0)e−kt

.

Alternatively, we could use the same steps as outlined in the solution of Equation 4.

(c) Let t be the number of hours since 8 AM. Then y0 = y(0) = 80
1000

= 0.08 and y(4) = 1
2

, so

1

2
= y(4) =

0.08

0.08 + 0.92e−4k
. Thus, 0.08 + 0.92e−4k = 0.16, e−4k = 0.08

0.92 =
2
23 , and e−k = 2

23

1/4,

so y = 0.08

0.08 + 0.92(2/23)t/4
=

2

2 + 23(2/23)t/4
. Solving this equation for t, we get

2y + 23y
2

23

t/4

= 2 ⇒ 2

23

t/4

=
2− 2y
23y

⇒ 2

23

t/4

=
2

23
· 1− y

y
⇒ 2

23

t/4−1
=
1− y

y
.

It follows that t
4
− 1 = ln[(1− y)/y]

ln 2
23

, so t = 4 1 +
ln((1− y)/y)

ln 2
23

.

When y = 0.9, 1− y

y
= 1

9
, so t = 4 1− ln 9

ln 2
23

≈ 7.6 h or 7 h 36 min. Thus, 90% of the population will have heard

the rumor by 3:36 PM.

9. (a) dP

dt
= kP 1− P

K
⇒ d2P

dt2
= k P − 1

K

dP

dt
+ 1− P

K

dP

dt
= k

dP

dt
−P

K
+ 1− P

K

= k kP 1− P

K
1− 2P

K
= k2P 1− P

K
1− 2P

K

(b) P grows fastest when P 0 has a maximum, that is, when P 00 = 0. From part (a), P 00 = 0 ⇔ P = 0, P = K,

or P = K/2. Since 0 < P < K, we see that P 00 = 0 ⇔ P = K/2.

11. Following the hint, we choose t = 0 to correspond to 1960 and subtract

94,000 from each of the population figures. We then use a calculator to

obtain the models and add 94,000 to get the exponential function

PE(t) = 1578.3(1.0933)
t + 94,000 and the logistic function

PL(t) =
32,658.5

1 + 12.75e−0.1706t
+ 94,000. PL is a reasonably accurate

model, while PE is not, since an exponential model would only be used

for the first few data points.

13. (a) dP

dt
= kP −m = k P − m

k
. Let y = P − m

k
, so dy

dt
=

dP

dt
and the differential equation becomes dy

dt
= ky.

The solution is y = y0e
kt ⇒ P − m

k
= P0 − m

k
ekt ⇒ P (t) =

m

k
+ P0 − m

k
ekt.
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(b) Since k > 0, there will be an exponential expansion ⇔ P0 − m

k
> 0 ⇔ m < kP0.

(c) The population will be constant if P0 − m

k
= 0 ⇔ m = kP0. It will decline if P0 − m

k
< 0 ⇔ m > kP0.

(d) P0 = 8,000,000, k = α− β = 0.016, m = 210,000 ⇒ m > kP0 (= 128,000), so by part (c), the population was

declining.

15. (a) The term −15 represents a harvesting of fish at a constant rate—in this case, 15 fish/week. This is the rate at which fish

are caught.

(b) (c) From the graph in part (b), it appears that P (t) = 250 and P (t) = 750

are the equilibrium solutions. We confirm this analytically by solving the

equation dP/dt = 0 as follows: 0.08P (1− P/1000)− 15 = 0 ⇒
0.08P − 0.00008P 2 − 15 = 0 ⇒
−0.00008(P 2 − 1000P + 187,500) = 0 ⇒
(P − 250)(P − 750) = 0 ⇒ P = 250 or 750.

(d) For 0 < P0 < 250, P (t) decreases to 0. For P0 = 250, P (t) remains

constant. For 250 < P0 < 750, P (t) increases and approaches 750.

For P0 = 750, P (t) remains constant. For P0 > 750, P (t) decreases

and approaches 750.

(e) dP

dt
= 0.08P 1− P

1000
− 15 ⇔ −100,000

8
· dP
dt

= (0.08P − 0.00008P 2 − 15) · −100,000
8

⇔

−12,500 dP
dt

= P 2 − 1000P + 187,500 ⇔ dP

(P − 250)(P − 750) = −
1

12,500
dt ⇔

−1/500
P − 250 +

1/500

P − 750 dP = − 1

12,500
dt ⇔ 1

P − 250 −
1

P − 750 dP = 1
25
dt ⇔

ln|P − 250|− ln|P − 750| = 1
25
t+C ⇔ ln

P − 250
P − 750 = 1

25
t+ C ⇔ P − 250

P − 750 = et/25+C = ket/25 ⇔

P − 250
P − 750 = ket/25 ⇔ P − 250 = Pket/25 − 750ket/25 ⇔ P − Pket/25 = 250− 750ket/25 ⇔

P (t) =
250− 750ket/25
1− ket/25

. If t = 0 and P = 200, then 200 = 250− 750k
1− k

⇔ 200− 200k = 250− 750k ⇔

550k = 50 ⇔ k = 1
11 . Similarly, if t = 0 and P = 300, then

k = − 1
9

. Simplifying P with these two values of k gives us

P (t) =
250(3et/25 − 11)

et/25 − 11 and P (t) = 750(et/25 + 3)

et/25 + 9
.
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17. (a) dP

dt
= (kP ) 1− P

K
1− m

P
. If m < P < K, then dP/dt = (+)(+)(+) = + ⇒ P is increasing.

If 0 < P < m, then dP/dt = (+)(+)(−) = − ⇒ P is decreasing.

(b) k = 0.08, K = 1000, and m = 200 ⇒
dP

dt
= 0.08P 1− P

1000
1− 200

P

For 0 < P0 < 200, the population dies out. For P0 = 200, the population

is steady. For 200 < P0 < 1000, the population increases and approaches

1000. For P0 > 1000, the population decreases and approaches 1000.

The equilibrium solutions are P (t) = 200 and P (t) = 1000.

(c) dP

dt
= kP 1− P

K
1− m

P
= kP

K − P

K

P −m

P
=

k

K
(K − P )(P −m) ⇔

dP

(K − P )(P −m)
=

k

K
dt. By partial fractions, 1

(K − P )(P −m)
=

A

K − P
+

B

P −m
, so

A(P −m) +B(K − P ) = 1.

If P = m, B =
1

K −m
; if P = K, A = 1

K −m
, so 1

K −m

1

K − P
+

1

P −m
dP =

k

K
dt ⇒

1

K −m
(− ln |K − P |+ ln |P −m|) = k

K
t+M ⇒ 1

K −m
ln

P −m

K − P
=

k

K
t+M ⇒

ln
P −m

K − P
= (K −m)

k

K
t+M1 ⇔ P −m

K − P
= De(K−m)(k/K)t [D = ±eM1 ].

Let t = 0: P0 −m

K − P0
= D. So P −m

K − P
=

P0 −m

K − P0
e(K−m)(k/K)t. Solving for P , we get

P (t) =
m(K − P0) +K(P0 −m)e(K−m)(k/K)t

K − P0 + (P0 −m)e(K−m)(k/K)t
.

(d) If P0 < m, then P0 −m < 0. Let N(t) be the numerator of the expression for P (t) in part (c). Then

N(0) = P0(K −m) > 0, and P0 −m < 0 ⇔ lim
t→∞

K(P0 −m)e(K−m)(k/K)t = −∞ ⇒ lim
t→∞

N(t) = −∞.

Since N is continuous, there is a number t such that N(t) = 0 and thus P (t) = 0. So the species will become extinct.

19. (a) dP/dt = kP cos(rt− φ) ⇒ (dP )/P = k cos(rt− φ) dt ⇒ (dP )/P = k cos(rt− φ) dt ⇒

lnP = (k/r) sin(rt− φ) + C. (Since this is a growth model, P > 0 and we can write lnP instead of ln|P |.) Since

P (0) = P0, we obtain lnP0 = (k/r) sin(−φ) + C = − (k/r) sinφ+ C ⇒ C = lnP0 + (k/r) sinφ. Thus,

lnP = (k/r) sin(rt− φ) + lnP0 + (k/r) sinφ, which we can rewrite as ln(P/P0) = (k/r)[sin(rt− φ) + sinφ] or,

after exponentiation, P (t) = P0e
(k/r)[sin(rt−φ)+sinφ].
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(b) As k increases, the amplitude
increases, but the minimum value
stays the same.

As r increases, the amplitude and
the period decrease.

A change in φ produces slight
adjustments in the phase shift and
amplitude.

P (t) oscillates between P0e(k/r)(1+sinφ) and P0e(k/r)(−1+sinφ) (the extreme values are attained when rt− φ is an odd

multiple of π
2

), so lim
t→∞

P (t) does not exist.

21. By Equation (7), P (t) = K

1 +Ae−kt
. By comparison, if c = (lnA)/k and u = 1

2
k(t− c), then

1 + tanhu = 1 +
eu − e−u

eu + e−u
=

eu + e−u

eu + e−u
+

eu − e−u

eu + e−u
=

2eu

eu + e−u
· e
−u

e−u
=

2

1 + e−2u

and e−2u = e−k(t−c) = ekce−kt = elnAe−kt = Ae−kt, so

1
2
K 1 + tanh 1

2
k(t− c) =

K

2
[1 + tanhu] =

K

2
· 2

1 + e−2u
=

K

1 + e−2u
=

K

1 +Ae−kt
= P (t).

9.5 Linear Equations

1. y0 + cosx = y ⇒ y0 + (−1)y = − cosx is linear since it can be put into the standard linear form (1),

y0 + P (x) y = Q(x).

3. yy0 + xy = x2 ⇒ y0 + x = x2/y ⇒ y0 − x2/y = −x is not linear since it cannot be put into the standard linear

form (1), y0 + P (x) y = Q(x).

5. Comparing the given equation, y0 + 2y = 2ex, with the general form, y0 + P (x)y = Q(x), we see that P (x) = 2 and the

integrating factor is I(x) = e P (x)dx = e 2 dx = e2x. Multiplying the differential equation by I(x) gives

e2xy0 + 2e2xy = 2e3x ⇒ (e2xy)0 = 2e3x ⇒ e2xy = 2e3x dx ⇒ e2xy = 2
3
e3x +C ⇒ y = 2

3
ex +Ce−2x.

7. xy0 − 2y = x2 [divide by x] ⇒ y0 + − 2
x

y = x ( ).

I(x) = e P (x) dx = e (−2/x) dx = e−2 ln|x| = eln|x|
−2
= eln(1/x

2) = 1/x2. Multiplying the differential equation ( )

by I(x) gives 1

x2
y0 − 2

x3
y =

1

x
⇒ 1

x2
y

0
=
1

x
⇒ 1

x2
y = ln |x|+ C ⇒

y = x2(ln |x|+ C ) = x2 ln |x|+Cx2.
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9. Since P (x) is the derivative of the coefficient of y0 [P (x) = 1 and the coefficient is x], we can write the differential equation

xy0 + y =
√
x in the easily integrable form (xy)0 =

√
x ⇒ xy = 2

3
x3/2 + C ⇒ y = 2

3

√
x+ C/x.

11. sinx dy

dx
+ (cosx) y = sin(x2) ⇒ [(sinx) y]0 = sin(x2) ⇒ (sinx) y = sin(x2) dx ⇒ y =

sin(x2) dx+C

sinx
.

13. (1 + t)
du

dt
+ u = 1 + t, t > 0 [divide by 1 + t] ⇒ du

dt
+

1

1 + t
u = 1 ( ), which has the

form u0 + P (t)u = Q(t). The integrating factor is I(t) = e P (t) dt = e [1/(1+t)] dt = eln(1+t) = 1 + t.

Multiplying ( ) by I(t) gives us our original equation back. We rewrite it as [(1 + t)u]0 = 1 + t. Thus,

(1 + t)u = (1 + t) dt = t+ 1
2 t
2 +C ⇒ u =

t+ 1
2 t
2 +C

1 + t
or u =

t2 + 2t+ 2C

2(t+ 1)
.

15. y0 = x+ y ⇒ y0 + (−1)y = x. I(x) = e (−1) dx = e−x. Multiplying by e−x gives e−xy0 − e−xy = xe−x ⇒
(e−xy)0 = xe−x ⇒ e−xy = xe−x dx = −xe−x − e−x +C [integration by parts with u = x, dv = e−x dx] ⇒
y = −x− 1 + Cex. y(0) = 2 ⇒ −1 +C = 2 ⇒ C = 3, so y = −x− 1 + 3ex.

17. dv

dt
− 2tv = 3t2et2 , v (0) = 5. I(t) = e (−2t) dt = e−t

2

. Multiply the differential equation by I(t) to get

e−t
2 dv

dt
− 2te−t2v = 3t2 ⇒ e−t

2

v
0
= 3t2 ⇒ e−t

2

v = 3t2 dt = t3 +C ⇒ v = t3et
2

+Cet
2

.

5 = v(0) = 0 · 1 + C · 1 = C, so v = t3et
2

+ 5et
2

.

19. xy0 = y + x2 sinx ⇒ y0 − 1

x
y = x sinx. I(x) = e (−1/x) dx = e− ln x = elnx

−1
=
1

x
.

Multiplying by 1
x

gives 1
x
y0 − 1

x2
y = sinx ⇒ 1

x
y

0
= sinx ⇒ 1

x
y = − cosx+C ⇒ y = −x cosx+ Cx.

y(π) = 0 ⇒ −π · (−1) + Cπ = 0 ⇒ C = −1, so y = −x cosx− x.

21. xy0 + 2y = ex ⇒ y0 +
2

x
y =

ex

x
.

I(x) = e (2/x) dx = e2 ln|x| = eln|x|
2

= |x|2 = x2.

Multiplying by I(x) gives x2 y0 + 2xy = xex ⇒ (x2y)0 = xex ⇒
x2y = xex dx = (x− 1)ex +C [by parts] ⇒
y = [(x− 1)ex + C]/x2. The graphs for C = −5, −3, −1, 1, 3, 5, and 7 are

shown. C = 1 is a transitional value. For C < 1, there is an inflection point and

for C > 1, there is a local minimum. As |C| gets larger, the “branches” get

further from the origin.
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23. Setting u = y1−n, du
dx

= (1− n) y−n
dy

dx
or dy

dx
=

yn

1− n

du

dx
=

un/(1−n)

1− n

du

dx
. Then the Bernoulli differential equation

becomes un/(1−n)

1− n

du

dx
+ P (x)u1/(1−n) = Q(x)un/(1−n) or du

dx
+ (1− n)P (x)u = Q(x)(1− n).

25. Here y0 + 2

x
y =

y3

x2
, so n = 3, P (x) = 2

x
and Q(x) = 1

x2
. Setting u = y−2, u satisfies u0 − 4u

x
= − 2

x2
.

Then I(x) = e (−4/x) dx = x−4 and u = x4 − 2

x6
dx+ C = x4

2

5x5
+ C = Cx4 +

2

5x
.

Thus, y = ± Cx4 +
2

5x

−1/2
.

27. (a) 2 dI
dt
+ 10I = 40 or dI

dt
+ 5I = 20. Then the integrating factor is e 5 dt = e5t. Multiplying the differential equation

by the integrating factor gives e5t dI
dt
+ 5Ie5t = 20e5t ⇒ (e5tI)0 = 20e5t ⇒

I(t) = e−5t 20e5t dt+C = 4 + Ce−5t. But 0 = I(0) = 4 +C, so I(t) = 4− 4e−5t.

(b) I(0.1) = 4− 4e−0.5 ≈ 1.57 A

29. 5 dQ
dt
+ 20Q = 60 with Q(0) = 0 C. Then the integrating factor is e 4 dt = e4t, and multiplying the differential

equation by the integrating factor gives e4t dQ
dt
+ 4e4tQ = 12e4t ⇒ (e4tQ)0 = 12e4t ⇒

Q(t) = e−4t 12e4t dt+C = 3 + Ce−4t. But 0 = Q(0) = 3 + C so Q(t) = 3(1− e−4t) is the charge at time t

and I = dQ/dt = 12e−4t is the current at time t.

31. dP

dt
+ kP = kM , so I(t) = e k dt = ekt. Multiplying the differential equation

by I(t) gives ekt dP
dt
+ kPekt = kMekt ⇒ (ektP )0 = kMekt ⇒

P (t) = e−kt kMektdt+C =M + Ce−kt, k > 0. Furthermore, it is

reasonable to assume that 0 ≤ P (0) ≤M , so −M ≤ C ≤ 0.

33. y(0) = 0 kg. Salt is added at a rate of 0.4
kg
L

5
L

min
= 2

kg
min

. Since solution is drained from the tank at a rate of

3 L/min, but salt solution is added at a rate of 5 L/min, the tank, which starts out with 100 L of water, contains (100 + 2t) L

of liquid after t min. Thus, the salt concentration at time t is y(t)

100 + 2t

kg
L

. Salt therefore leaves the tank at a rate of

y(t)

100 + 2t

kg
L

3
L

min
=

3y

100 + 2t

kg
min

. Combining the rates at which salt enters and leaves the tank, we get
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dy

dt
= 2− 3y

100 + 2t
. Rewriting this equation as dy

dt
+

3

100 + 2t
y = 2, we see that it is linear.

I(t) = exp
3 dt

100 + 2t
= exp 3

2
ln(100 + 2t) = (100 + 2t)3/2

Multiplying the differential equation by I(t) gives (100 + 2t)3/2 dy
dt
+ 3(100 + 2t)1/2y = 2(100 + 2t)3/2 ⇒

[(100 + 2t)3/2y]0 = 2(100 + 2t)3/2 ⇒ (100 + 2t)3/2y = 2
5
(100 + 2t)5/2 + C ⇒

y = 2
5
(100 + 2t) + C(100 + 2t)−3/2. Now 0 = y(0) = 2

5
(100) + C · 100−3/2 = 40 + 1

1000
C ⇒ C = −40,000, so

y = 2
5
(100 + 2t)− 40,000(100 + 2t)−3/2 kg. From this solution (no pun intended), we calculate the salt concentration

at time t to be C(t) = y(t)

100 + 2t
=

−40,000
(100 + 2t)5/2

+
2

5

kg
L

. In particular, C(20) = −40,000
1405/2

+
2

5
≈ 0.2275 kg

L

and y(20) = 2
5
(140)− 40,000(140)−3/2 ≈ 31.85 kg.

35. (a) dv

dt
+

c

m
v = g and I(t) = e (c/m) dt = e(c/m)t, and multiplying the differential equation by

I(t) gives e(c/m)t dv
dt
+

vce(c/m)t

m
= ge(c/m)t ⇒ e(c/m)tv

0
= ge(c/m)t. Hence,

v(t) = e−(c/m)t ge(c/m)t dt+K = mg/c+Ke−(c/m)t. But the object is dropped from rest, so v(0) = 0 and

K = −mg/c. Thus, the velocity at time t is v(t) = (mg/c)[1− e−(c/m)t].

(b) lim
t→∞

v(t) = mg/c

(c) s(t) = v(t) dt = (mg/c)[t+ (m/c)e−(c/m)t] + c1 where c1 = s(0)−m2g/c2.

s(0) is the initial position, so s(0) = 0 and s(t) = (mg/c)[t+ (m/c)e−(c/m)t]−m2g/c2.

9.6 Predator-Prey Systems

1. (a) dx/dt = −0.05x+ 0.0001xy. If y = 0, we have dx/dt = −0.05x, which indicates that in the absence of y, x declines at

a rate proportional to itself. So x represents the predator population and y represents the prey population. The growth of

the prey population, 0.1y (from dy/dt = 0.1y − 0.005xy), is restricted only by encounters with predators (the term

−0.005xy). The predator population increases only through the term 0.0001xy; that is, by encounters with the prey and

not through additional food sources.

(b) dy/dt = −0.015y + 0.00008xy. If x = 0, we have dy/dt = −0.015y, which indicates that in the absence of x, y would

decline at a rate proportional to itself. So y represents the predator population and x represents the prey population. The

growth of the prey population, 0.2x (from dx/dt = 0.2x− 0.0002x2 − 0.006xy = 0.2x(1− 0.001x)− 0.006xy), is

restricted by a carrying capacity of 1000 [from the term 1− 0.001x = 1− x/1000] and by encounters with predators (the

term −0.006xy). The predator population increases only through the term 0.00008xy; that is, by encounters with the prey

and not through additional food sources.
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3. (a) At t = 0, there are about 300 rabbits and 100 foxes. At t = t1, the number

of foxes reaches a minimum of about 20 while the number of rabbits is

about 1000. At t = t2, the number of rabbits reaches a maximum of about

2400, while the number of foxes rebounds to 100. At t = t3, the number of

rabbits decreases to about 1000 and the number of foxes reaches a

maximum of about 315. As t increases, the number of foxes decreases

greatly to 100, and the number of rabbits decreases to 300 (the initial

populations), and the cycle starts again.

(b)

5.

7. dW

dR
=
−0.02W + 0.00002RW

0.08R− 0.001RW ⇔ (0.08− 0.001W )RdW = (−0.02 + 0.00002R)W dR ⇔

0.08− 0.001W
W

dW =
−0.02 + 0.00002R

R
dR ⇔ 0.08

W
− 0.001 dW = −0.02

R
+ 0.00002 dR ⇔

0.08 ln|W |− 0.001W = −0.02 ln|R|+ 0.00002R+K ⇔ 0.08 lnW + 0.02 lnR = 0.001W + 0.00002R+K ⇔
ln W 0.08R0.02 = 0.00002R + 0.001W +K ⇔ W 0.08R0.02 = e0.00002R+0.001W+K ⇔

R0.02W 0.08 = Ce0.00002Re0.001W ⇔ R0.02W 0.08

e0.00002Re0.001W
= C. In general, if dy

dx
=
−ry + bxy

kx− axy
, then C =

xryk

ebxeay
.

9. (a) Letting W = 0 gives us dR/dt = 0.08R(1− 0.0002R). dR/dt = 0 ⇔ R = 0 or 5000. Since dR/dt > 0 for

0 < R < 5000, we would expect the rabbit population to increase to 5000 for these values of R. Since dR/dt < 0 for

R > 5000, we would expect the rabbit population to decrease to 5000 for these values of R. Hence, in the absence of

wolves, we would expect the rabbit population to stabilize at 5000.

(b) R and W are constant ⇒ R 0 = 0 and W 0 = 0 ⇒
0 = 0.08R(1− 0.0002R)− 0.001RW
0 = −0.02W + 0.00002RW

⇒
0 = R[0.08(1− 0.0002R)− 0.001W ]

0 =W (−0.02 + 0.00002R)

The second equation is true if W = 0 or R = 0.02
0.00002 = 1000. If W = 0 in the first equation, then either R = 0 or
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R = 1
0.0002 = 5000 [as in part (a)]. If R = 1000, then 0 = 1000[0.08(1− 0.0002 · 1000)− 0.001W ] ⇔

0 = 80(1− 0.2)−W ⇔ W = 64.

Case (i): W = 0, R = 0: both populations are zero

Case (ii): W = 0, R = 5000: see part (a)

Case (iii): R = 1000, W = 64: the predator/prey interaction balances and the populations are stable.

(c) The populations of wolves and rabbits fluctuate around 64 and 1000, respectively, and eventually stabilize at those values.

(d)

9 Review

1. (a) A differential equation is an equation that contains an unknown function and one or more of its derivatives.

(b) The order of a differential equation is the order of the highest derivative that occurs in the equation.

(c) An initial condition is a condition of the form y(t0) = y0.

2. y0 = x2 + y2 ≥ 0 for all x and y. y0 = 0 only at the origin, so there is a horizontal tangent at (0, 0), but nowhere else. The

graph of the solution is increasing on every interval.

3. See the paragraph preceding Example 1 in Section 9.2.

4. See the paragraph next to Figure 14 in Section 9.2.

5. A separable equation is a first-order differential equation in which the expression for dy/dx can be factored as a function of x

times a function of y, that is, dy/dx = g(x)f(y). We can solve the equation by integrating both sides of the equation

dy/f(y) = g(x)dx and solving for y.

6. A first-order linear differential equation is a differential equation that can be put in the form dy

dx
+ P (x) y = Q(x), where P

and Q are continuous functions on a given interval. To solve such an equation, multiply it by the integrating factor

I(x) = e P (x)dx to put it in the form [I(x) y]0 = I(x)Q(x) and then integrate both sides to get I(x) y = I(x)Q(x) dx,

that is, e P (x) dxy = e P (x) dxQ(x) dx. Solving for y gives us y = e− P (x) dx e P (x) dxQ(x) dx.
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7. (a) dy

dt
= ky ; the relative growth rate, 1

y

dy

dt
, is constant.

(b) The equation in part (a) is an appropriate model for population growth, assuming that there is enough room and nutrition to

support the growth.

(c) If y(0) = y0, then the solution is y(t) = y0e
kt.

8. (a) dP/dt = kP (1− P/K), where K is the carrying capacity.

(b) The equation in part (a) is an appropriate model for population growth, assuming that the population grows at a rate

proportional to the size of the population in the beginning, but eventually levels off and approaches its carrying capacity

because of limited resources.

9. (a) dF/dt = kF − aFS and dS/dt = −rS + bFS.

(b) In the absence of sharks, an ample food supply would support exponential growth of the fish population, that is,

dF/dt = kF , where k is a positive constant. In the absence of fish, we assume that the shark population would decline at a

rate proportional to itself, that is, dS/dt = −rS, where r is a positive constant.

1. True. Since y4 ≥ 0, y0 = −1− y4 < 0 and the solutions are decreasing functions.

3. False. x+ y cannot be written in the form g(x)f(y).

5. True. exy0 = y ⇒ y0 = e−xy ⇒ y0 + (−e−x)y = 0, which is of the form y0 + P (x) y = Q(x), so the

equation is linear.

7. True. By comparing dy

dt
= 2y 1− y

5
with the logistic differential equation (9.4.4), we see that the carrying

capacity is 5; that is, lim
t→∞

y = 5.

1. (a) (b) lim
t→∞

y(t) appears to be finite for 0 ≤ c ≤ 4. In fact

lim
t→∞

y(t) = 4 for c = 4, lim
t→∞

y(t) = 2 for 0 < c < 4, and

lim
t→∞

y(t) = 0 for c = 0. The equilibrium solutions are

y(t) = 0, y(t) = 2, and y(t) = 4.
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3. (a) We estimate that when x = 0.3, y = 0.8, so y(0.3) ≈ 0.8.

(b) h = 0.1, x0 = 0, y0 = 1 and F (x, y) = x2 − y2. So yn = yn−1 + 0.1 x2n−1 − y2n−1 . Thus,

y1 = 1 + 0.1 0
2 − 12 = 0.9, y2 = 0.9 + 0.1 0.12 − 0.92 = 0.82, y3 = 0.82 + 0.1 0.22 − 0.822 = 0.75676.

This is close to our graphical estimate of y(0.3) ≈ 0.8.

(c) The centers of the horizontal line segments of the direction field are located on the lines y = x and y = −x.

When a solution curve crosses one of these lines, it has a local maximum or minimum.

5. y0 = xe− sinx − y cosx ⇒ y0 + (cosx) y = xe− sinx ( ). This is a linear equation and the integrating factor is

I(x) = e cos x dx = esin x. Multiplying ( ) by esin x gives esinx y0 + esin x(cosx) y = x ⇒ (esinx y)0 = x ⇒
esin x y = 1

2
x2 + C ⇒ y = 1

2
x2 +C e− sinx.

7. 2yey
2
y0 = 2x+ 3

√
x ⇒ 2yey

2 dy

dx
= 2x+ 3

√
x ⇒ 2yey

2
dy = 2x+ 3

√
x dx ⇒

2yey
2
dy = 2x+ 3

√
x dx ⇒ ey

2
= x2 + 2x3/2 + C ⇒ y2 = ln(x2 + 2x3/2 + C) ⇒

y = ± ln(x2 + 2x3/2 + C)

9. dr

dt
+ 2tr = r ⇒ dr

dt
= r − 2tr = r(1− 2t) ⇒ dr

r
= (1− 2t) dt ⇒ ln |r| = t− t2 + C ⇒

|r| = et−t
2+C = ket−t

2
. Since r(0) = 5, 5 = ke0 = k. Thus, r(t) = 5et−t

2
.

11. xy0 − y = x lnx ⇒ y0 − 1

x
y = lnx. I(x) = e (−1/x) dx = e− ln|x| = eln|x|

−1
= |x|−1 = 1/x since the condition

y(1) = 2 implies that we want a solution with x > 0. Multiplying the last differential equation by I(x) gives

1

x
y0 − 1

x2
y =

1

x
lnx ⇒ 1

x
y

0
=
1

x
lnx ⇒ 1

x
y =

lnx

x
dx ⇒ 1

x
y = 1

2
(lnx)2 + C ⇒

y = 1
2x(lnx)

2 + Cx. Now y(1) = 2 ⇒ 2 = 0 +C ⇒ C = 2, so y = 1
2x(lnx)

2 + 2x.

13. d

dx
(y) =

d

dx
(kex) ⇒ y0 = kex = y, so the orthogonal trajectories must have y0 = −1

y
⇒ dy

dx
= −1

y
⇒

y dy = −dx ⇒ y dy = − dx ⇒ 1
2y

2 = −x+C ⇒ x = C − 1
2y

2, which are parabolas with a horizontal axis.
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15. (a) Using (4) and (7) in Section 9.4, we see that for dP
dt

= 0.1P 1− P

2000
with P (0) = 100, we have k = 0.1,

K = 2000, P0 = 100, and A = 2000− 100
100

= 19. Thus, the solution of the initial-value problem is

P (t) =
2000

1 + 19e−0.1t
and P (20) = 2000

1 + 19e−2
≈ 560.

(b) P = 1200 ⇔ 1200 =
2000

1 + 19e−0.1t
⇔ 1 + 19e−0.1t =

2000

1200
⇔ 19e−0.1t =

5

3
− 1 ⇔

e−0.1t = 2
3
/19 ⇔ −0.1t = ln 2

57
⇔ t = −10 ln 2

57
≈ 33.5.

17. (a) dL

dt
∝ L∞ − L ⇒ dL

dt
= k(L∞ − L) ⇒ dL

L∞ − L
= k dt ⇒ − ln |L∞ − L| = kt+ C ⇒

ln |L∞ − L| = −kt− C ⇒ |L∞ − L| = e−kt−C ⇒ L∞ − L = Ae−kt ⇒ L = L∞ −Ae−kt.

At t = 0, L = L(0) = L∞ −A ⇒ A = L∞ − L(0) ⇒ L(t) = L∞ − [L∞ − L(0)]e−kt.

(b) L∞ = 53 cm, L(0) = 10 cm, and k = 0.2 ⇒ L(t) = 53− (53− 10)e−0.2t = 53− 43e−0.2t.

19. Let P represent the population and I the number of infected people. The rate of spread dI/dt is jointly proportional to I and

to P − I, so for some constant k, dI
dt
= kI(P − I) = (kP )I 1− I

P
. From Equation 9.4.7 with K = P and k replaced by

kP , we have I(t) = P

1 +Ae−kPt
=

I0P

I0 + (P − I0)e−kPt
.

Now, measuring t in days, we substitute t = 7, P = 5000, I0 = 160 and I(7) = 1200 to find k:

1200 =
160 · 5000

160 + (5000− 160)e−5000·7·k ⇔ 3 =
2000

160 + 4840e−35,000k ⇔ 480 + 14,520e−35,000k = 2000 ⇔

e−35,000k =
2000− 480
14,520

⇔ −35,000k = ln 38
363

⇔ k =
−1
35,000

ln
38

363
≈ 0.00006448. Next, let

I = 5000× 80% = 4000, and solve for t: 4000 = 160 · 5000
160 + (5000− 160)e−k·5000·t ⇔ 1 =

200

160 + 4840e−5000kt
⇔

160 + 4840e−5000kt = 200 ⇔ e−5000kt =
200− 160
4840

⇔ −5000kt = ln 1

121
⇔

t =
−1
5000k

ln
1

121
=

1
1
7
ln 38

363

· ln 1

121
= 7 · ln 121

ln 363
38

≈ 14.875. So it takes about 15 days for 80% of the population

to be infected.

21. dh

dt
= −R

V

h

k + h
⇒ k + h

h
dh = −R

V
dt ⇒ 1 +

k

h
dh = −R

V
1 dt ⇒

h+ k lnh = −R

V
t+C. This equation gives a relationship between h and t, but it is not possible to isolate h and express it in

terms of t.

23. (a) dx/dt = 0.4x(1− 0.000005x)− 0.002xy, dy/dt = −0.2y + 0.000008xy. If y = 0, then

dx/dt = 0.4x(1− 0.000005x), so dx/dt = 0 ⇔ x = 0 or x = 200,000, which shows that the insect population

increases logistically with a carrying capacity of 200,000. Since dx/dt > 0 for 0 < x < 200,000 and dx/dt < 0 for

x > 200,000, we expect the insect population to stabilize at 200,000.
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(b) x and y are constant ⇒ x0 = 0 and y0 = 0 ⇒

0 = 0.4x(1− 0.000005x)− 0.002xy
0 = −0.2y + 0.000008xy ⇒

0 = 0.4x[(1− 0.000005x)− 0.005y]
0 = y(−0.2 + 0.000008x)

The second equation is true if y = 0 or x = 0.2
0.000008 = 25,000. If y = 0 in the first equation, then either x = 0

or x = 1
0.000005 = 200,000. If x = 25,000, then 0 = 0.4(25,000)[(1− 0.000005 · 25,000)− 0.005y] ⇒

0 = 10,000[(1− 0.125)− 0.005y] ⇒ 0 = 8750− 50y ⇒ y = 175.

Case (i): y = 0, x = 0: Zero populations

Case (ii): y = 0, x = 200,000: In the absence of birds, the insect population is always 200,000.

Case (iii): x = 25,000, y = 175: The predator/prey interaction balances and the populations are stable.

(c) The populations of the birds and insects fluctuate

around 175 and 25,000, respectively, and

eventually stabilize at those values.

(d)

25. (a) d2y

dx2
= k 1 +

dy

dx

2

. Setting z = dy

dx
, we get dz

dx
= k

√
1 + z2 ⇒ dz√

1 + z2
= k dx. Using Formula 25 gives

ln z +
√
1 + z2 = kx+ c ⇒ z +

√
1 + z2 = Cekx [where C = ec] ⇒ √

1 + z2 = Cekx − z ⇒

1 + z2 = C2e2kx − 2Cekxz + z2 ⇒ 2Cekxz = C2e2kx − 1 ⇒ z =
C

2
ekx − 1

2C
e−kx. Now

dy

dx
=

C

2
ekx − 1

2C
e−kx ⇒ y =

C

2k
ekx +

1

2Ck
e−kx + C 0. From the diagram in the text, we see that y(0) = a

and y(±b) = h. a = y(0) =
C

2k
+

1

2Ck
+ C 0 ⇒ C 0 = a− C

2k
− 1

2Ck
⇒

y =
C

2k
(ekx − 1) + 1

2Ck
(e−kx − 1) + a. From h = y(±b), we find h = C

2k
(ekb − 1) + 1

2Ck
(e−kb − 1) + a

and h = C

2k
(e−kb − 1) + 1

2Ck
(ekb − 1) + a. Subtracting the second equation from the first, we get

0 =
C

k

ekb − e−kb

2
− 1

Ck

ekb − e−kb

2
=
1

k
C − 1

C
sinh kb.

Now k > 0 and b > 0, so sinh kb > 0 and C = ±1. If C = 1, then

y =
1

2k
(ekx − 1) + 1

2k
(e−kx − 1) + a =

1

k

ekx + e−kx

2
− 1

k
+ a = a+

1

k
(cosh kx− 1). If C = −1,

then y = − 1

2k
(ekx − 1)− 1

2k
(e−kx − 1) + a =

−1
k

ekx + e−kx

2
+
1

k
+ a = a− 1

k
(cosh kx− 1).

Since k > 0, cosh kx ≥ 1, and y ≥ a, we conclude that C = 1 and y = a+
1

k
(cosh kx− 1), where
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h = y(b) = a+
1

k
(cosh kb− 1). Since cosh(kb) = cosh(−kb), there is no further information to extract from the

condition that y(b) = y(−b). However, we could replace a with the expression h− 1

k
(cosh kb− 1), obtaining

y = h+
1

k
(cosh kx− cosh kb). It would be better still to keep a in the expression for y, and use the expression for h to

solve for k in terms of a, b, and h. That would enable us to express y in terms of x and the given parameters a, b, and h.

Sadly, it is not possible to solve for k in closed form. That would have to be done by numerical methods when specific

parameter values are given.

(b) The length of the cable is

L=
b

−b 1 + (dy/dx)2 dx =
b

−b 1 + sinh2 kx dx =
b

−b cosh kx dx = 2
b

0
cosh kx dx

= 2 (1/k) sinh kx
b

0
= (2/k) sinh kb



PROBLEMS PLUS
1. We use the Fundamental Theorem of Calculus to differentiate the given equation:

[f(x)]2 = 100 +
x

0
[f(t)]2 + [f 0(t)]2 dt ⇒ 2f(x)f 0(x) = [f(x)]2 + [f 0(x)]2 ⇒

[f(x)]2 + [f 0(x)]2 − 2f(x)f 0(x) = 0 ⇒ [f(x)− f 0(x)]2 = 0 ⇔ f(x) = f 0(x). We can solve this as a separable

equation, or else use Theorem 9.4.2 with k = 1, which says that the solutions are f(x) = Cex. Now [f(0)]2 = 100, so

f(0) = C = ±10, and hence f(x) = ±10ex are the only functions satisfying the given equation.

3. f 0(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

f(x) [f(h)− 1]
h

[since f(x+ h) = f(x)f(h)]

= f(x) lim
h→0

f(h)− 1
h

= f(x) lim
h→0

f(h)− f(0)

h− 0 = f(x)f 0(0) = f(x)

Therefore, f 0(x) = f(x) for all x and from Theorem 9.4.2 we get f(x) = Aex. Now f(0) = 1 ⇒ A = 1 ⇒
f(x) = ex.

5. “The area under the graph of f from 0 to x is proportional to the (n+ 1)st power of f(x)” translates to

x

0
f(t) dt = k[f(x)]n+1 for some constant k. By FTC1, d

dx

x

0

f(t) dt =
d

dx
k[f(x)]n+1 ⇒

f(x) = k(n+ 1)[f(x)]nf 0(x) ⇒ 1 = k(n+ 1)[f(x)]n−1f 0(x) ⇒ 1 = k(n+ 1)yn−1
dy

dx
⇒

k(n+ 1)yn−1 dy = dx ⇒ k(n+ 1)yn−1 dy = dx ⇒ k(n+ 1)
1

n
yn = x+ C.

Now f(0) = 0 ⇒ 0 = 0 +C ⇒ C = 0 and then f(1) = 1 ⇒ k(n+ 1)
1

n
= 1 ⇒ k =

n

n+ 1
,

so yn = x and y = f(x) = x1/n.

7. Let y(t) denote the temperature of the peach pie t minutes after 5:00 PM and R the temperature of the room. Newton’s Law of

Cooling gives us dy/dt = k(y −R). Solving for y we get dy

y −R
= k dt ⇒ ln|y −R| = kt+ C ⇒

|y −R| = ekt+C ⇒ y −R = ±ekt · eC ⇒ y =Mekt +R, where M is a nonzero constant. We are given

temperatures at three times.

y(0) = 100 ⇒ 100 =M +R ⇒ R = 100−M

y(10) = 80 ⇒ 80 =Me10k +R (1)

y(20) = 65 ⇒ 65 =Me20k +R (2)

Substituting 100−M for R in (1) and (2) gives us

−20 =Me10k −M (3) and −35 =Me20k −M (4)

Dividing (3) by (4) gives us −20−35 =
M e10k − 1
M(e20k − 1) ⇒ 4

7
=

e10k − 1
e20k − 1 ⇒ 4e20k − 4 = 7e10k − 7 ⇒

407



408 ¤ CHAPTER 9 PROBLEMS PLUS

4e20k − 7e10k + 3 = 0. This is a quadratic equation in e10k. 4e10k − 3 e10k − 1 = 0 ⇒ e10k = 3
4

or 1 ⇒

10k = ln 3
4 or ln 1 ⇒ k = 1

10 ln
3
4 since k is a nonzero constant of proportionality. Substituting 3

4 for e10k in (3) gives us

−20 =M · 3
4
−M ⇒ −20 = −1

4
M ⇒ M = 80. Now R = 100−M so R = 20◦C.

9. (a) While running from (L, 0) to (x, y), the dog travels a distance

s =
L

x
1 + (dy/dx)2 dx = − x

L
1 + (dy/dx)2 dx, so

ds

dx
= − 1 + (dy/dx)2. The dog and rabbit run at the same speed, so the

rabbit’s position when the dog has traveled a distance s is (0, s). Since the

dog runs straight for the rabbit, dy
dx

=
s− y

0− x
(see the figure).

Thus, s = y − x
dy

dx
⇒ ds

dx
=

dy

dx
− x

d2y

dx2
+ 1

dy

dx
= −x d2y

dx2
. Equating the two expressions for ds

dx

gives us x d2y

dx2
= 1 +

dy

dx

2

, as claimed.

(b) Letting z = dy

dx
, we obtain the differential equation x dz

dx
=
√
1 + z2, or dz√

1 + z2
=

dx

x
. Integrating:

lnx =
dz√
1 + z2

25
= ln z + 1 + z2 + C. When x = L, z = dy/dx = 0, so lnL = ln 1 + C. Therefore,

C = lnL, so lnx = ln
√
1 + z2 + z + lnL = ln L

√
1 + z2 + z ⇒ x = L

√
1 + z2 + z ⇒

√
1 + z2 =

x

L
− z ⇒ 1 + z2 =

x

L

2

− 2xz

L
+ z2 ⇒ x

L

2

− 2z x

L
− 1 = 0 ⇒

z =
(x/L)2 − 1
2(x/L)

=
x2 − L2

2Lx
=

x

2L
− L

2

1

x
[for x > 0]. Since z = dy

dx
, y = x2

4L
− L

2
lnx+ C1.

Since y = 0 when x = L, 0 = L

4
− L

2
lnL+ C1 ⇒ C1 =

L

2
lnL − L

4
. Thus,

y =
x2

4L
− L

2
lnx+

L

2
lnL− L

4
=

x2 − L2

4L
− L

2
ln

x

L
.

(c) As x→ 0+, y →∞, so the dog never catches the rabbit.

11. (a) We are given that V = 1
3
πr2h, dV/dt = 60,000π ft3/h, and r = 1.5h = 3

2
h. So V = 1

3
π 3

2
h

2
h = 3

4
πh3 ⇒

dV

dt
= 3

4
π · 3h2 dh

dt
= 9

4
πh2

dh

dt
. Therefore, dh

dt
=
4(dV/dt)

9πh2
=
240,000π
9πh2

=
80,000
3h2

( ) ⇒

3h2 dh = 80,000 dt ⇒ h3 = 80,000t+ C. When t = 0, h = 60. Thus, C = 603 = 216,000, so

h3 = 80,000t+ 216,000. Let h = 100. Then 1003 = 1,000,000 = 80,000t+ 216,000 ⇒
80,000t = 784,000 ⇒ t = 9.8, so the time required is 9.8 hours.
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(b) The floor area of the silo is F = π · 2002 = 40,000π ft2, and the area of the base of the pile is

A = πr2 = π 3
2
h

2
= 9π

4
h2. So the area of the floor which is not covered when h = 60 is

F −A = 40,000π − 8100π = 31,900π ≈ 100,217 ft2. Now A = 9π
4
h2 ⇒ dA/dt = 9π

4
· 2h (dh/dt),

and from ( ) in part (a) we know that when h = 60, dh/dt = 80,000
3(60)2

= 200
27 ft/h. Therefore,

dA/dt = 9π
4
(2)(60) 200

27
= 2000π ≈ 6283 ft2/h.

(c) At h = 90 ft, dV/dt = 60,000π − 20,000π = 40,000π ft3/h. From ( ) in part (a),

dh

dt
=
4(dV/dt)

9πh2
=
4(40,000π)
9πh2

=
160,000
9h2

⇒ 9h2 dh = 160,000 dt ⇒ 3h3 = 160,000t+ C. When t = 0,

h = 90; therefore, C = 3 · 729,000 = 2,187,000. So 3h3 = 160,000t+ 2,187,000. At the top, h = 100 ⇒

3(100)3 = 160,000t+ 2,187,000 ⇒ t = 813,000
160,000 ≈ 5.1. The pile reaches the top after about 5.1 h.

13. Let P (a, b) be any point on the curve. If m is the slope of the tangent line at P , then m = y0(a), and an equation of the

normal line at P is y − b = − 1
m
(x− a), or equivalently, y = − 1

m
x+ b+

a

m
. The y-intercept is always 6, so

b+
a

m
= 6 ⇒ a

m
= 6− b ⇒ m =

a

6− b
. We will solve the equivalent differential equation dy

dx
=

x

6− y
⇒

(6− y) dy = xdx ⇒ (6− y) dy = xdx ⇒ 6y − 1
2y

2 = 1
2x

2 +C ⇒ 12y − y2 = x2 +K.

Since (3, 2) is on the curve, 12(2)− 22 = 32 +K ⇒ K = 11. So the curve is given by 12y − y2 = x2 + 11 ⇒

x2 + y2 − 12y + 36 = −11 + 36 ⇒ x2 + (y − 6)2 = 25, a circle with center (0, 6) and radius 5.





10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1. x = 1 +
√
t, y = t2 − 4t, 0 ≤ t ≤ 5

t 0 1 2 3 4 5

x 1 2 1 +
√
2

2.41

1 +
√
3

2.73

3 1 +
√
5

3.24

y 0 −3 −4 −3 0 5

3. x = 5 sin t, y = t2, −π ≤ t ≤ π

t −π −π/2 0 π/2 π

x 0 −5 0 5 0

y π2

9.87

π2/4

2.47

0 π2/4

2.47

π2

9.87

5. x = 3t− 5, y = 2t+ 1

(a)
t −2 −1 0 1 2 3 4

x −11 −8 −5 −2 1 4 7

y −3 −1 1 3 5 7 9

(b) x = 3t− 5 ⇒ 3t = x+ 5 ⇒ t = 1
3
(x+ 5) ⇒

y = 2 · 1
3
(x+ 5) + 1, so y = 2

3
x+ 13

3
.

7. x = t2 − 2, y = 5− 2t, −3 ≤ t ≤ 4
(a)

t −3 −2 −1 0 1 2 3 4

x 7 2 −1 −2 −1 2 7 14

y 11 9 7 5 3 1 −1 −3

(b) y = 5− 2t ⇒ 2t = 5− y ⇒ t = 1
2 (5− y) ⇒

x = 1
2
(5− y)

2 − 2, so x = 1
4
(5− y)2 − 2, −3 ≤ y ≤ 11.

411
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9. x =
√
t, y = 1− t

(a)
t 0 1 2 3 4

x 0 1 1.414 1.732 2

y 1 0 −1 −2 −3

(b) x =
√
t ⇒ t = x2 ⇒ y = 1− t = 1− x2. Since t ≥ 0, x ≥ 0.

So the curve is the right half of the parabola y = 1− x2.

11. (a) x = sin θ, y = cos θ, 0 ≤ θ ≤ π. x2 + y2 = sin2 θ + cos2 θ = 1. Since

0 ≤ θ ≤ π, we have sin θ ≥ 0, so x ≥ 0. Thus, the curve is the right half of

the circle x2 + y2 = 1.

(b)

 

13. (a) x = sin t, y = csc t, 0 < t < π
2

. y = csc t = 1

sin t
=
1

x
. For 0 < t < π

2
,

we have 0 < x < 1 and y > 1. Thus, the curve is the portion

of the hyperbola y = 1/x with y > 1.

(b)

15. (a) x = e2t ⇒ 2t = lnx ⇒ t = 1
2
lnx.

y = t+ 1 = 1
2 lnx+ 1.

(b)

17. (a) x = sinh t, y = cosh t ⇒ y2 − x2 = cosh2 t− sinh2 t = 1. Since

y = cosh t ≥ 1, we have the upper branch of the hyperbola y2 − x2 = 1.

(b)

19. x = 3 + 2 cos t, y = 1 + 2 sin t, π/2 ≤ t ≤ 3π/2. By Example 4 with r = 2, h = 3, and k = 1, the motion of the particle

takes place on a circle centered at (3, 1) with a radius of 2. As t goes from π
2 to 3π

2 , the particle starts at the point (3, 3) and

moves counterclockwise to (3,−1) [one-half of a circle].

21. x = 5 sin t, y = 2cos t ⇒ sin t =
x

5
, cos t = y

2
. sin2 t+ cos2 t = 1 ⇒ x

5

2

+
y

2

2

= 1. The motion of the

particle takes place on an ellipse centered at (0, 0). As t goes from−π to 5π, the particle starts at the point (0,−2) and moves

clockwise around the ellipse 3 times.
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23. We must have 1 ≤ x ≤ 4 and 2 ≤ y ≤ 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

25. When t = −1, (x, y) = (0,−1). As t increases to 0, x decreases to −1 and y

increases to 0. As t increases from 0 to 1, x increases to 0 and y increases to 1.

As t increases beyond 1, both x and y increase. For t < −1, x is positive and

decreasing and y is negative and increasing. We could achieve greater accuracy

by estimating x- and y-values for selected values of t from the given graphs and

plotting the corresponding points.

27. When t = 0 we see that x = 0 and y = 0, so the curve starts at the origin. As t

increases from 0 to 1
2

, the graphs show that y increases from 0 to 1 while x

increases from 0 to 1, decreases to 0 and to −1, then increases back to 0, so we

arrive at the point (0, 1). Similarly, as t increases from 1
2

to 1, y decreases from 1

to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x- and

y-values for selected values of t from the given graphs and plotting the corresponding points.

29. As in Example 6, we let y = t and x = t− 3t3 + t5 and use a t-interval of [−3, 3].

31. (a) x = x1 + (x2 − x1)t, y = y1 + (y2 − y1)t, 0 ≤ t ≤ 1. Clearly the curve passes through P1(x1, y1) when t = 0 and

through P2(x2, y2) when t = 1. For 0 < t < 1, x is strictly between x1 and x2 and y is strictly between y1 and y2. For

every value of t, x and y satisfy the relation y − y1 =
y2 − y1
x2 − x1

(x− x1), which is the equation of the line through

P1(x1, y1) and P2(x2, y2).

Finally, any point (x, y) on that line satisfies y − y1
y2 − y1

=
x− x1
x2 − x1

; if we call that common value t, then the given

parametric equations yield the point (x, y); and any (x, y) on the line between P1(x1, y1) and P2(x2, y2) yields a value of

t in [0, 1]. So the given parametric equations exactly specify the line segment from P1(x1, y1) to P2(x2, y2).

(b) x = −2 + [3− (−2)]t = −2 + 5t and y = 7 + (−1− 7)t = 7− 8t for 0 ≤ t ≤ 1.

33. The circle x2 + (y − 1)2 = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by x = 2cos t,

y = 1 + 2 sin t, 0 ≤ t ≤ 2π. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise orientation, we could change the equations to x = 2cos t, y = 1− 2 sin t, 0 ≤ t ≤ 2π.

(b) To get three times around in the counterclockwise direction, we use the original equations x = 2 cos t, y = 1+ 2 sin t with

the domain expanded to 0 ≤ t ≤ 6π.
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(c) To start at (0, 3) using the original equations, we must have x1 = 0; that is, 2 cos t = 0. Hence, t = π
2 . So we use

x = 2cos t, y = 1 + 2 sin t, π
2
≤ t ≤ 3π

2
.

Alternatively, if we want t to start at 0, we could change the equations of the curve. For example, we could use

x = −2 sin t, y = 1 + 2 cos t, 0 ≤ t ≤ π.

35. Big circle: It’s centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are

x = 2 + 2 cos t, y = 2 + 2 sin t, 0 ≤ t ≤ 2π

Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are

(left) x = 1+ 0.1 cos t, y = 3+ 0.1 sin t, 0 ≤ t ≤ 2π
and (right) x = 3+ 0.1 cos t, y = 3+ 0.1 sin t, 0 ≤ t ≤ 2π

Semicircle: It’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are

x = 2 + 1 cos t, y = 2 + 1 sin t, π ≤ t ≤ 2π

To get all four graphs on the same screen with a typical graphing calculator, we need to change the last t-interval to [0, 2π] in

order to match the others. We can do this by changing t to 0.5t. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the y-assignment, giving us

x = 2 + 1 cos(0.5t), y = 2− 1 sin(0.5t), 0 ≤ t ≤ 2π
37. (a) x = t3 ⇒ t = x1/3, so y = t2 = x2/3.

We get the entire curve y = x2/3 traversed in a left to

right direction.

(b) x = t6 ⇒ t = x1/6, so y = t4 = x4/6 = x2/3.

Since x = t6 ≥ 0, we only get the right half of the

curve y = x2/3.

(c) x = e−3t = (e−t)3 [so e−t = x1/3],

y = e−2t = (e−t)2 = (x1/3)2 = x2/3.

If t < 0, then x and y are both larger than 1. If t > 0, then x and y are between 0

and 1. Since x > 0 and y > 0, the curve never quite reaches the origin.

39. The case π
2 < θ < π is illustrated. C has coordinates (rθ, r) as in Example 7,

and Q has coordinates (rθ, r + r cos(π − θ)) = (rθ, r(1− cos θ))
[since cos(π − α) = cosπ cosα+ sinπ sinα = − cosα], so P has coordinates

(rθ − r sin(π − θ), r(1− cos θ)) = (r(θ − sin θ), r(1− cos θ))
[since sin(π − α) = sinπ cosα− cosπ sinα = sinα]. Again we have the

parametric equations x = r(θ − sin θ), y = r(1− cos θ).
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41. It is apparent that x = |OQ| and y = |QP | = |ST |. From the diagram,

x = |OQ| = a cos θ and y = |ST | = b sin θ. Thus, the parametric equations are

x = a cos θ and y = b sin θ. To eliminate θ we rearrange: sin θ = y/b ⇒

sin2 θ = (y/b)2 and cos θ = x/a ⇒ cos2 θ = (x/a)2. Adding the two

equations: sin2 θ + cos2 θ = 1 = x2/a2 + y2/b2. Thus, we have an ellipse.

43. C = (2a cot θ, 2a), so the x-coordinate of P is x = 2a cot θ. Let B = (0, 2a).

Then ∠OAB is a right angle and ∠OBA = θ, so |OA| = 2a sin θ and

A = ((2a sin θ) cos θ, (2a sin θ) sin θ). Thus, the y-coordinate of P

is y = 2a sin2 θ.

45. (a) There are 2 points of intersection:

(−3, 0) and approximately (−2.1, 1.4).

(b) A collision point occurs when x1 = x2 and y1 = y2 for the same t. So solve the equations:

3 sin t = −3 + cos t (1)

2 cos t = 1 + sin t (2)

From (2), sin t = 2cos t− 1. Substituting into (1), we get 3(2 cos t− 1) = −3 + cos t ⇒ 5 cos t = 0 ( ) ⇒
cos t = 0 ⇒ t = π

2 or 3π
2 . We check that t = 3π

2 satisfies (1) and (2) but t = π
2 does not. So the only collision point

occurs when t = 3π
2 , and this gives the point (−3, 0). [We could check our work by graphing x1 and x2 together as

functions of t and, on another plot, y1 and y2 as functions of t. If we do so, we see that the only value of t for which both

pairs of graphs intersect is t = 3π
2

.]

(c) The circle is centered at (3, 1) instead of (−3, 1). There are still 2 intersection points: (3, 0) and (2.1, 1.4), but there are

no collision points, since ( ) in part (b) becomes 5 cos t = 6 ⇒ cos t = 6
5
> 1.

47. x = t2, y = t3 − ct. We use a graphing device to produce the graphs for various values of c with −π ≤ t ≤ π. Note that all

the members of the family are symmetric about the x-axis. For c < 0, the graph does not cross itself, but for c = 0 it has a

cusp at (0, 0) and for c > 0 the graph crosses itself at x = c, so the loop grows larger as c increases.
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49. Note that all the Lissajous figures are symmetric about the x-axis. The parameters a and b simply stretch the graph in the

x- and y-directions respectively. For a = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses

itself at the origin and there are loops above and below the x-axis. In general, the figures have n− 1 points of intersection,

all of which are on the y-axis, and a total of n closed loops.

a = b = 1 n = 2 n = 3

10.2 Calculus with Parametric Curves

1. x = t sin t, y = t2 + t ⇒ dy

dt
= 2t+ 1, dx

dt
= t cos t+ sin t, and dy

dx
=

dy/dt

dx/dt
=

2t+ 1

t cos t+ sin t
.

3. x = t4 + 1, y = t3 + t; t = −1. dy

dt
= 3t2 + 1, dx

dt
= 4t3, and dy

dx
=

dy/dt

dx/dt
=
3t2 + 1

4t3
. When t = −1,

(x, y) = (2,−2) and dy/dx = 4
−4 = −1, so an equation of the tangent to the curve at the point corresponding to t = −1

is y − (−2) = (−1)(x− 2), or y = −x.

5. x = e
√
t, y = t− ln t2; t = 1. dy

dt
= 1− 2t

t2
= 1− 2

t
, dx
dt
=

e
√
t

2
√
t
, and dy

dx
=

dy/dt

dx/dt
=

1− 2/t
e
√
t/ 2

√
t
· 2t
2t
=
2t− 4√
te
√
t

.

When t = 1, (x, y) = (e, 1) and dy

dx
= −2

e
, so an equation of the tangent line is y − 1 = −2

e
(x− e), or y = −2

e
x+ 3.

7. (a) x = 1 + ln t, y = t2 + 2; (1, 3). dy

dt
= 2t,

dx

dt
=
1

t
, and dy

dx
=

dy/dt

dx/dt
=
2t

1/t
= 2t2.

At (1, 3), x = 1 + ln t = 1 ⇒ ln t = 0 ⇒ t = 1 and dy

dx
= 2, so an equation of the tangent is y − 3 = 2(x− 1),

or y = 2x+ 1.

(b) x = 1 + ln t ⇒ x− 1 = ln t ⇒ t = ex−1, so y = (ex−1)2 + 2 = e2x−2 + 2 and dy

dx
= 2e2x−2.

When x = 1, dy
dx

= 2e0 = 2, so an equation of the tangent is y = 2x+ 1, as in part (a).

9. x = 6 sin t, y = t2 + t; (0, 0).

dy

dx
=

dy/dt

dx/dt
=
2t+ 1

6 cos t
. The point (0, 0) corresponds to t = 0, so the

slope of the tangent at that point is 1
6 . An equation of the tangent is therefore

y − 0 = 1
6
(x− 0), or y = 1

6
x.
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11. x = 4 + t2, y = t2 + t3 ⇒ dy

dx
=

dy/dt

dx/dt
=
2t+ 3t2

2t
= 1 +

3

2
t ⇒

d2y

dx2
=

d

dx

dy

dx
=

d(dy/dx)/dt

dx/dt
=
(d/dt) 1 + 3

2
t

2t
=
3/2

2t
=
3

4t
.

The curve is CU when d2y

dx2
> 0, that is, when t > 0.

13. x = t − et, y = t + e−t ⇒

dy

dx
=

dy/dt

dx/dt
=
1− e−t

1− et
=
1− 1

et

1− et
=

et − 1
et

1− et
= −e−t ⇒ d2y

dx2
=

d

dt

dy

dx

dx/dt
=

d

dt
(−e−t)
dx/dt

=
e−t

1− et
.

The curve is CU when et < 1 [since e−t > 0] ⇒ t < 0.

15. x = 2 sin t, y = 3cos t, 0 < t < 2π.

dy

dx
=

dy/dt

dx/dt
=
−3 sin t
2 cos t

= −3
2
tan t, so d2y

dx2
=

d

dt

dy

dx

dx/dt
=
− 3
2
sec2 t

2 cos t
= −3

4
sec3 t.

The curve is CU when sec3 t < 0 ⇒ sec t < 0 ⇒ cos t < 0 ⇒ π
2
< t < 3π

2
.

17. x = 10− t2, y = t3 − 12t.
dy

dt
= 3t2 − 12 = 3(t+ 2)(t− 2), so dy

dt
= 0 ⇔

t = ±2 ⇔ (x, y) = (6,∓16).
dx

dt
= −2t, so dx

dt
= 0 ⇔ t = 0 ⇔ (x, y) = (10, 0).

The curve has horizontal tangents at (6,±16) and a vertical

tangent at (10, 0).

19. x = 2cos θ, y = sin 2θ.

dy

dθ
= 2 cos 2θ, so dy

dθ
= 0 ⇔ 2θ = π

2 + nπ

[n an integer] ⇔ θ = π
4 +

π
2n ⇔

(x, y) = ±√2,±1 . Also, dx
dθ
= −2 sin θ, so

dx

dθ
= 0 ⇔ θ = nπ ⇔ (x, y) = (±2, 0).

The curve has horizontal tangents at ±√2,±1 (four points), and vertical tangents at (±2, 0).

21. From the graph, it appears that the rightmost point on the curve x = t− t6, y = et

is about (0.6, 2). To find the exact coordinates, we find the value of t for which the

graph has a vertical tangent, that is, 0 = dx/dt = 1− 6t5 ⇔ t = 1/ 5
√
6.

Hence, the rightmost point is

1/ 5
√
6− 1/ 6 5

√
6 , e1/

5√6 = 5 · 6−6/5, e6−1/5 ≈ (0.58, 2.01).
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23. We graph the curve x = t4 − 2t3 − 2t2, y = t3 − t in the viewing rectangle [−2, 1.1] by [−0.5, 0.5]. This rectangle

corresponds approximately to t ∈ [−1, 0.8].

We estimate that the curve has horizontal tangents at about (−1,−0.4) and (−0.17, 0.39) and vertical tangents at

about (0, 0) and (−0.19, 0.37). We calculate dy

dx
=

dy/dt

dx/dt
=

3t2 − 1
4t3 − 6t2 − 4t . The horizontal tangents occur when

dy/dt = 3t2 − 1 = 0 ⇔ t = ± 1√
3

, so both horizontal tangents are shown in our graph. The vertical tangents occur when

dx/dt = 2t(2t2− 3t− 2) = 0 ⇔ 2t(2t+1)(t− 2) = 0 ⇔ t = 0,− 1
2

or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the t-interval [−1.2, 2.2] we see that there is another vertical tangent at (−8, 6).

25. x = cos t, y = sin t cos t. dx/dt = − sin t, dy/dt = − sin2 t+ cos2 t = cos 2t.
(x, y) = (0, 0) ⇔ cos t = 0 ⇔ t is an odd multiple of π

2 . When t = π
2 ,

dx/dt = −1 and dy/dt = −1, so dy/dx = 1. When t = 3π
2

, dx/dt = 1 and

dy/dt = −1. So dy/dx = −1. Thus, y = x and y = −x are both tangent to the

curve at (0, 0).

27. x = rθ − d sin θ, y = r − d cos θ.

(a) dx

dθ
= r − d cos θ, dy

dθ
= d sin θ, so dy

dx
=

d sin θ

r − d cos θ
.

(b) If 0 < d < r, then |d cos θ| ≤ d < r, so r − d cos θ ≥ r − d > 0. This shows that dx/dθ never vanishes,

so the trochoid can have no vertical tangent if d < r.

29. x = 2t3, y = 1 + 4t− t2 ⇒ dy

dx
=

dy/dt

dx/dt
=
4− 2t
6t2

. Now solve dy

dx
= 1 ⇔ 4− 2t

6t2
= 1 ⇔

6t2 + 2t− 4 = 0 ⇔ 2(3t− 2)(t+ 1) = 0 ⇔ t = 2
3

or t = −1. If t = 2
3

, the point is 16
27
, 29
9

, and if t = −1,

the point is (−2,−4).

31. By symmetry of the ellipse about the x- and y-axes,

A= 4
a

0
y dx = 4

0

π/2
b sin θ (−a sin θ) dθ = 4ab π/2

0
sin2 θ dθ = 4ab

π/2

0
1
2 (1− cos 2θ) dθ

= 2ab θ − 1
2
sin 2θ

π/2

0
= 2ab π

2
= πab
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33. The curve x = 1 + et, y = t− t2 = t(1− t) intersects the x-axis when y = 0,

that is, when t = 0 and t = 1. The corresponding values of x are 2 and 1 + e.

The shaded area is given by
x=1+e

x=2

(yT − yB) dx=
t=1

t=0

[y(t)− 0]x0(t) dt = 1

0
(t− t2)et dt

=
1

0
tet dt− 1

0
t2et dt =

1

0
tet dt− t2et

1

0
+ 2

1

0
tet dt [Formula 97 or parts]

= 3
1

0
tet dt− (e− 0) = 3 (t− 1)et 1

0
− e [Formula 96 or parts]

= 3[0− (−1)]− e = 3− e

35. x = rθ − d sin θ, y = r − d cos θ.

A =
2πr

0
y dx =

2π

0
(r − d cos θ)(r − d cos θ) dθ =

2π

0
(r2 − 2dr cos θ + d2 cos2 θ) dθ

= r2θ − 2dr sin θ + 1
2
d2 θ + 1

2
sin 2θ

2π

0
= 2πr2 + πd2

37. x = t − t2, y = 4
3
t3/2, 1 ≤ t ≤ 2. dx/dt = 1 − 2t and dy/dt = 2t1/2, so

(dx/dt)2 + (dy/dt)2 = (1− 2t)2 + (2t1/2)2 = 1− 4t+ 4t2 + 4t = 1 + 4t2.

Thus, L = b

a
(dx/dt)2 + (dy/dt)2 dt =

2

1

√
1 + 4t2 dt ≈ 3.1678.

39. x = t+ cos t, y = t− sin t, 0 ≤ t ≤ 2π. dx/dt = 1− sin t and dy/dt = 1− cos t, so

dx
dt

2
+ dy

dt

2
= (1− sin t)2 + (1− cos t)2 = (1− 2 sin t+ sin2 t) + (1− 2 cos t+ cos2 t) = 3− 2 sin t− 2 cos t.

Thus, L = b

a
(dx/dt)2 + (dy/dt)2 dt =

2π

0

√
3− 2 sin t− 2 cos t dt ≈ 10.0367.

41. x = 1 + 3t2, y = 4 + 2t3, 0 ≤ t ≤ 1.

dx/dt = 6t and dy/dt = 6t2, so (dx/dt)2 + (dy/dt)2 = 36t2 + 36t4.

Thus, L =
1

0

√
36t2 + 36t4 dt =

1

0
6t
√
1 + t2 dt

= 6
2

1

√
u 1

2
du [u = 1 + t2, du = 2t dt]

= 3 2
3u

3/2
2

1
= 2(23/2 − 1) = 2 2√2− 1

43. x = t

1 + t
, y = ln (1 + t), 0 ≤ t ≤ 2. dx

dt
=
(1 + t) · 1− t · 1

(1 + t)2
=

1

(1 + t)2
and dy

dt
=

1

1 + t
,

so dx

dt

2

+
dy

dt

2

=
1

(1 + t)4
+

1

(1 + t)2
=

1

(1 + t)4
1 + (1 + t)2 =

t2 + 2t+ 2

(1 + t)4
. Thus,

L=
2

0

√
t2 + 2t+ 2

(1 + t)2
dt =

3

1

√
u2 + 1

u2
du

u = t+ 1,

du = dt

24
= −

√
u2 + 1

u
+ ln u+ u2 + 1

3

1

= −
√
10
3
+ ln 3 +

√
10 +

√
2− ln 1 +√2
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45. x = et cos t, y = et sin t, 0 ≤ t ≤ π.

dx
dt

2
+ dy

dt

2
= [et(cos t− sin t)]2 + [et(sin t+ cos t)]2
= (et)2(cos2 t− 2 cos t sin t+ sin2 t)

+ (et)2(sin2 t+ 2 sin t cos t+ cos2 t

= e2t(2 cos2 t+ 2 sin2 t) = 2e2t

Thus, L = π

0

√
2e2t dt =

π

0

√
2 et dt =

√
2 et

π

0
=
√
2 (eπ − 1).

47. x = et − t, y = 4et/2, −8 ≤ t ≤ 3
dx
dt

2
+ dy

dt

2
= (et − 1)2 + (2et/2)2 = e2t − 2et + 1 + 4et

= e2t + 2et + 1 = (et + 1)2

L =
3

−8 (et + 1)2 dt =
3

−8(e
t + 1) dt = et + t

3t

−8

= (e3 + 3)− (e−8 − 8) = e3 − e−8 + 11

49. x = t − et, y = t + et, −6 ≤ t ≤ 6.

dx
dt

2
+ dy

dt

2
= (1− et)2 + (1 + et)2 = (1− 2et + e2t) + (1 + 2et + e2t) = 2 + 2e2t, so L = 6

−6
√
2 + 2e2t dt.

Set f(t) =
√
2 + 2e2t. Then by Simpson’s Rule with n = 6 and ∆t = 6−(−6)

6
= 2, we get

L ≈ 2
3
[f(−6) + 4f(−4) + 2f(−2) + 4f(0) + 2f(2) + 4f(4) + f(6)] ≈ 612.3053.

51. x = sin2 t, y = cos2 t, 0 ≤ t ≤ 3π.

(dx/dt)2 + (dy/dt)2 = (2 sin t cos t)2 + (−2 cos t sin t)2 = 8 sin2 t cos2 t = 2 sin2 2t ⇒

Distance = 3π

0

√
2 |sin 2t| dt = 6√2 π/2

0
sin 2t dt [by symmetry] = −3√2 cos 2t

π/2

0
= −3√2 (−1− 1) = 6√2.

The full curve is traversed as t goes from 0 to π
2 , because the curve is the segment of x+ y = 1 that lies in the first quadrant

(since x, y ≥ 0), and this segment is completely traversed as t goes from 0 to π
2

. Thus, L = π/2

0
sin 2t dt =

√
2, as above.

53. x = a sin θ, y = b cos θ, 0 ≤ θ ≤ 2π.
dx
dt

2
+ dy

dt

2
= (a cos θ)2 + (−b sin θ)2 = a2 cos2 θ + b2 sin2 θ = a2(1− sin2 θ) + b2 sin2 θ

= a2 − (a2 − b2) sin2 θ = a2 − c2 sin2 θ = a2 1− c2

a2
sin2 θ = a2(1− e2 sin2 θ)

So L = 4 π/2

0
a2 1− e2 sin2 θ dθ [by symmetry] = 4a π/2

0
1− e2 sin2 θ dθ.

55. (a) x = 11 cos t− 4 cos(11t/2), y = 11 sin t− 4 sin(11t/2).
Notice that 0 ≤ t ≤ 2π does not give the complete curve because

x(0) 6= x(2π). In fact, we must take t ∈ [0, 4π] in order to obtain the

complete curve, since the first term in each of the parametric equations has

period 2π and the second has period 2π
11/2

= 4π
11

, and the least common

integer multiple of these two numbers is 4π.
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(b) We use the CAS to find the derivatives dx/dt and dy/dt, and then use Formula 1 to find the arc length. Recent versions

of Maple express the integral 4π

0
(dx/dt)2 + (dy/dt)2 dt as 88E 2

√
2 i , where E(x) is the elliptic integral

1

0

√
1− x2t2√
1− t2

dt and i is the imaginary number
√−1.

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command

evalf(Int(sqrt(diff(x,t)̂ 2+diff(y,t)̂ 2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11 4π

0
−4 cos t cos 11t

2
− 4 sin t sin 11t

2
+ 5 dt.

57. x = 1 + tet, y = (t2 + 1)et, 0 ≤ t ≤ 1.

dx
dt

2
+ dy

dt

2
= (tet + et)2 + [(t2 + 1)et + et(2t)]2 = [et(t+ 1)]2 + [et(t2 + 2t+ 1)]2

= e2t(t+ 1)2 + e2t(t+ 1)4 = e2t(t+ 1)2[1 + (t+ 1)2], so

S = 2πy ds =
1

0
2π(t2 + 1)et e2t(t+ 1)2(t2 + 2t+ 2) dt =

1

0
2π(t2 + 1)e2t(t+ 1)

√
t2 + 2t+ 2 dt ≈ 103.5999

59. x = t3, y = t2, 0 ≤ t ≤ 1. dx
dt

2
+ dy

dt

2
= 3t2

2
+ (2t)2 = 9t4 + 4t2.

S =
1

0

2πy dx
dt

2
+ dy

dt

2
dt =

1

0

2πt2 9t4 + 4t2 dt = 2π
1

0

t2 t2(9t2 + 4) dt

= 2π
13

4

u− 4
9

√
u 1

18 du
u = 9t2 + 4, t2 = (u− 4)/9,
du = 18t dt, so t dt = 1

18 du
=

2π

9 · 18
13

4

(u3/2 − 4u1/2) du

= π
81

2
5
u5/2 − 8

3
u3/2

13

4
= π

81
· 2
15

3u5/2 − 20u3/2 13

4

= 2π
1215

3 · 132√13− 20 · 13√13 − (3 · 32− 20 · 8) = 2π
1215

247
√
13 + 64

61. x = a cos3 θ, y = a sin3 θ, 0 ≤ θ ≤ π
2

. dx
dθ

2
+ dy

dθ

2
= (−3a cos2 θ sin θ)2 + (3a sin2 θ cos θ)2 = 9a2 sin2 θ cos2 θ.

S =
π/2

0
2π · a sin3 θ · 3a sin θ cos θ dθ = 6πa2 π/2

0
sin4 θ cos θ dθ = 6

5πa
2 sin5 θ

π/2

0
= 6

5πa
2

63. x = t+ t3, y = t− 1

t2
, 1 ≤ t ≤ 2. dx

dt
= 1 + 3t2 and dy

dt
= 1 +

2

t3
, so dx

dt

2
+ dy

dt

2
= (1 + 3t2)2 + 1 +

2

t3

2

and S = 2πy ds =
2

1

2π t− 1

t2
(1 + 3t2)2 + 1 +

2

t3

2

dt ≈ 59.101.

65. x = 3t2, y = 2t3, 0 ≤ t ≤ 5 ⇒ dx
dt

2
+ dy

dt

2
= (6t)2 + (6t2)2 = 36t2(1 + t2) ⇒

S =
5

0
2πx (dx/dt)2 + (dy/dt)2 dt =

5

0
2π(3t2)6t

√
1 + t2 dt = 18π

5

0
t2
√
1 + t2 2t dt

= 18π
26

1
(u− 1)√udu u = 1 + t2,

du = 2t dt
= 18π

26

1
(u3/2 − u1/2) du = 18π 2

5u
5/2 − 2

3u
3/2

26

1

= 18π 2
5 · 676

√
26− 2

3 · 26
√
26 − 2

5 − 2
3

= 24
5 π 949

√
26 + 1
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67. If f 0 is continuous and f 0(t) 6= 0 for a ≤ t ≤ b, then either f 0(t) > 0 for all t in [a, b] or f 0(t) < 0 for all t in [a, b]. Thus, f

is monotonic (in fact, strictly increasing or strictly decreasing) on [a, b]. It follows that f has an inverse. Set F = g ◦ f−1,

that is, define F by F (x) = g(f−1(x)). Then x = f(t) ⇒ f−1(x) = t, so y = g(t) = g(f−1(x)) = F (x).

69. (a) φ = tan−1 dy

dx
⇒ dφ

dt
=

d

dt
tan−1

dy

dx
=

1

1 + (dy/dx)2
d

dt

dy

dx
. But dy

dx
=

dy/dt

dx/dt
=

ẏ

ẋ
⇒

d

dt

dy

dx
=

d

dt

ẏ

ẋ
=

ÿẋ− ẍẏ

ẋ2
⇒ dφ

dt
=

1

1 + (ẏ/ẋ)2
ÿẋ− ẍẏ

ẋ2
=

ẋÿ − ẍẏ

ẋ2 + ẏ2
. Using the Chain Rule, and the

fact that s =
t

0

dx
dt

2
+ dy

dt

2
dt ⇒ ds

dt =
dx
dt

2
+ dy

dt

2
= ẋ2 + ẏ2

1/2, we have that

dφ

ds
=

dφ/dt

ds/dt
=

ẋÿ − ẍẏ

ẋ2 + ẏ2
1

(ẋ2 + ẏ2)1/2
=

ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
. So κ = dφ

ds
=

ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
=

|ẋÿ − ẍẏ|
(ẋ2 + ẏ2)3/2

.

(b) x = x and y = f(x) ⇒ ẋ = 1, ẍ = 0 and ẏ =
dy

dx
, ÿ = d2y

dx2
.

So κ =
1 · (d2y/dx2)− 0 · (dy/dx)

[1 + (dy/dx)2]3/2
=

d2y/dx2

[1 + (dy/dx)2]3/2
.

71. x = θ − sin θ ⇒ ẋ = 1− cos θ ⇒ ẍ = sin θ, and y = 1− cos θ ⇒ ẏ = sin θ ⇒ ÿ = cos θ. Therefore,

κ =
cos θ − cos2 θ − sin2 θ
[(1− cos θ)2 + sin2 θ]3/2 =

cos θ − (cos2 θ + sin2 θ)
(1− 2 cos θ + cos2 θ + sin2 θ)3/2 =

|cos θ − 1|
(2− 2 cos θ)3/2 . The top of the arch is

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when θ = (2n− 1)π,

so take n = 1 and substitute θ = π into the expression for κ: κ =
|cosπ − 1|

(2− 2 cosπ)3/2 =
|−1− 1|

[2− 2(−1)]3/2 =
1

4
.

73. The coordinates of T are (r cos θ, r sin θ). Since TP was unwound from

arc TA, TP has length rθ. Also ∠PTQ = ∠PTR− ∠QTR = 1
2
π − θ,

so P has coordinates x = r cos θ + rθ cos 1
2
π − θ = r(cos θ + θ sin θ),

y = r sin θ − rθ sin 1
2
π − θ = r(sin θ − θ cos θ).

10.3 Polar Coordinates

1. (a) 2, π3 By adding 2π to π
3 , we obtain the point 2, 7π3 . The direction

opposite π
3

is 4π
3

, so −2, 4π
3

is a point that satisfies the r < 0

requirement.
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(b) 1,− 3π
4 r > 0: 1,− 3π

4 + 2π = 1, 5π4

r < 0: −1,− 3π
4
+ π = −1, π

4

(c) −1, π2 r > 0: −(−1), π2 + π = 1, 3π2

r < 0: −1, π
2
+ 2π = −1, 5π

2

3. (a) x = 1cosπ = 1(−1) = −1 and

y = 1 sinπ = 1(0) = 0 give us

the Cartesian coordinates (−1, 0).

(b) x = 2cos − 2π
3

= 2 − 1
2
= −1 and

y = 2 sin −2π
3

= 2 −
√
3
2

= −√3

give us −1,−√3 .

(c) x = −2 cos 3π4 = −2 −
√
2
2

=
√
2 and

y = −2 sin 3π
4
= −2

√
2
2

= −√2

gives us
√
2,−√2 .

5. (a) x = 2 and y = −2 ⇒ r = 22 + (−2)2 = 2√2 and θ = tan−1 −2
2

= −π
4

. Since (2,−2) is in the fourth

quadrant, the polar coordinates are (i) 2
√
2, 7π

4
and (ii) −2√2, 3π

4
.

(b) x = −1 and y =
√
3 ⇒ r = (−1)2 + √

3
2
= 2 and θ = tan−1

√
3

−1 = 2π
3

. Since −1,√3 is in the second

quadrant, the polar coordinates are (i) 2, 2π
3

and (ii) −2, 5π
3

.
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7. The curves r = 1 and r = 2 represent circles with center

O and radii 1 and 2. The region in the plane satisfying

1 ≤ r ≤ 2 consists of both circles and the shaded region

between them in the figure.

9. The region satisfying 0 ≤ r < 4 and −π/2 ≤ θ < π/6

does not include the circle r = 4 nor the line θ = π
6

.

11. 2 < r < 3, 5π
3
≤ θ ≤ 7π

3

13. Converting the polar coordinates (2, π/3) and (4, 2π/3) to Cartesian coordinates gives us 2 cos π
3
, 2 sin π

3
= 1,

√
3 and

4 cos 2π
3
, 4 sin 2π

3
= −2, 2√3 . Now use the distance formula.

d = (x2 − x1)
2 + (y2 − y1)

2 = (−2− 1)2 + 2
√
3−√3 2

=
√
9 + 3 =

√
12 = 2

√
3

15. r = 2 ⇔ x2 + y2 = 2 ⇔ x2 + y2 = 4, a circle of radius 2 centered at the origin.

17. r = 3 sin θ ⇒ r2 = 3r sin θ ⇔ x2 + y2 = 3y ⇔ x2 + y − 3
2

2
= 3

2

2, a circle of radius 3
2

centered at 0, 3
2

.

The first two equations are actually equivalent since r2 = 3r sin θ ⇒ r(r − 3 sin θ) = 0 ⇒ r = 0 or r = 3 sin θ. But

r = 3 sin θ gives the point r = 0 (the pole) when θ = 0. Thus, the single equation r = 3 sin θ is equivalent to the compound

condition (r = 0 or r = 3 sin θ).

19. r = csc θ ⇔ r =
1

sin θ
⇔ r sin θ = 1 ⇔ y = 1, a horizontal line 1 unit above the x-axis.

21. x = 3 ⇔ r cos θ = 3 ⇔ r = 3/ cos θ ⇔ r = 3 sec θ.

23. x = −y2 ⇔ r cos θ = −r2 sin2 θ ⇔ cos θ = −r sin2 θ ⇔ r = − cos θ
sin2 θ

= − cot θ csc θ.

25. x2 + y2 = 2cx ⇔ r2 = 2cr cos θ ⇔ r2 − 2cr cos θ = 0 ⇔ r(r − 2c cos θ) = 0 ⇔ r = 0 or r = 2c cos θ.
r = 0 is included in r = 2c cos θ when θ = π

2
+ nπ, so the curve is represented by the single equation r = 2c cos θ.

27. (a) The description leads immediately to the polar equation θ = π
6 , and the Cartesian equation y = tan π

6
x = 1√

3
x is

slightly more difficult to derive.

(b) The easier description here is the Cartesian equation x = 3.
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29. θ = −π/6 31. r = sin θ ⇔ r2 = r sin θ ⇔ x2 + y2 = y ⇔
x2 + y − 1

2

2
= 1

2

2. The reasoning here is the same

as in Exercise 17. This is a circle of radius 1
2

centered at 0, 1
2

.

33. r = 2(1− sin θ). This curve is a cardioid. 35. r = θ, θ ≥ 0

37. r = 4 sin 3θ

39. r = 2 cos 4θ

41. r = 1− 2 sin θ
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43. r2 = 9 sin 2θ

45. r = 2 cos 3
2
θ

47. r = 1 + 2 cos 2θ

49. For θ = 0, π, and 2π, r has its minimum value of about 0.5. For θ = π
2

and 3π
2

, r attains its maximum value of 2.

We see that the graph has a similar shape for 0 ≤ θ ≤ π and π ≤ θ ≤ 2π.

51. x = (r) cos θ = (4 + 2 sec θ) cos θ = 4cos θ + 2. Now, r→∞ ⇒

(4 + 2 sec θ)→∞ ⇒ θ → π
2

− or θ → 3π
2

+ [since we need only

consider 0 ≤ θ < 2π], so lim
r→∞

x = lim
θ→π/2−

(4 cos θ + 2) = 2. Also,

r→ −∞ ⇒ (4 + 2 sec θ)→−∞ ⇒ θ → π
2

+ or θ → 3π
2

−, so

lim
r→−∞

x = lim
θ→π/2+

(4 cos θ + 2) = 2. Therefore, lim
r→±∞

x = 2 ⇒ x = 2 is a vertical asymptote.
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53. To show that x = 1 is an asymptote we must prove lim
r→±∞

x = 1.

x = (r) cos θ = (sin θ tan θ) cos θ = sin2 θ. Now, r→∞ ⇒ sin θ tan θ→∞ ⇒
θ → π

2

−, so lim
r→∞

x = lim
θ→π/2−

sin2 θ = 1. Also, r→−∞ ⇒ sin θ tan θ →−∞ ⇒

θ → π
2

+, so lim
r→−∞

x = lim
θ→π/2+

sin2 θ = 1. Therefore, lim
r→±∞

x = 1 ⇒ x = 1 is

a vertical asymptote. Also notice that x = sin2 θ ≥ 0 for all θ, and x = sin2 θ ≤ 1 for all θ. And x 6= 1, since the curve is not

defined at odd multiples of π
2

. Therefore, the curve lies entirely within the vertical strip 0 ≤ x < 1.

55. (a) We see that the curve r = 1 + c sin θ crosses itself at the origin, where r = 0 (in fact the inner loop corresponds to

negative r-values,) so we solve the equation of the limaçon for r = 0 ⇔ c sin θ = −1 ⇔ sin θ = −1/c. Now if

|c| < 1, then this equation has no solution and hence there is no inner loop. But if c < −1, then on the interval (0, 2π)

the equation has the two solutions θ = sin−1(−1/c) and θ = π − sin−1(−1/c), and if c > 1, the solutions are

θ = π + sin−1(1/c) and θ = 2π − sin−1(1/c). In each case, r < 0 for θ between the two solutions, indicating a loop.

(b) For 0 < c < 1, the dimple (if it exists) is characterized by the fact that y has a local maximum at θ = 3π
2

. So we determine

for what c-values d2y

dθ2
is negative at θ = 3π

2
, since by the Second Derivative Test this indicates a maximum:

y = r sin θ = sin θ + c sin2 θ ⇒ dy

dθ
= cos θ + 2c sin θ cos θ = cos θ + c sin 2θ ⇒ d2y

dθ2
= − sin θ + 2c cos 2θ.

At θ = 3π
2

, this is equal to −(−1) + 2c(−1) = 1− 2c, which is negative only for c > 1
2

. A similar argument shows that

for −1 < c < 0, y only has a local minimum at θ = π
2

(indicating a dimple) for c < − 1
2

.

57. r = 2 sin θ ⇒ x = r cos θ = 2 sin θ cos θ = sin 2θ, y = r sin θ = 2 sin2 θ ⇒
dy

dx
=

dy/dθ

dx/dθ
=
2 · 2 sin θ cos θ
cos 2θ · 2 =

sin 2θ

cos 2θ
= tan 2θ

When θ = π

6
, dy
dx

= tan 2 · π
6

= tan
π

3
=
√
3. [Another method: Use Equation 3.]

59. r = 1/θ ⇒ x = r cos θ = (cos θ)/θ, y = r sin θ = (sin θ)/θ ⇒

dy

dx
=

dy/dθ

dx/dθ
=
sin θ(−1/θ2) + (1/θ) cos θ
cos θ(−1/θ2)− (1/θ) sin θ ·

θ2

θ2
=
− sin θ + θ cos θ

− cos θ − θ sin θ

When θ = π, dy
dx

=
−0 + π(−1)
−(−1)− π(0)

=
−π
1
= −π.

61. r = cos 2θ ⇒ x = r cos θ = cos 2θ cos θ, y = r sin θ = cos 2θ sin θ ⇒
dy

dx
=

dy/dθ

dx/dθ
=

cos 2θ cos θ + sin θ (−2 sin 2θ)
cos 2θ (− sin θ) + cos θ (−2 sin 2θ)

When θ = π

4
, dy
dx

=
0
√
2/2 +

√
2/2 (−2)

0 −√2/2 +
√
2/2 (−2) =

−√2
−√2 = 1.
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63. r = 3 cos θ ⇒ x = r cos θ = 3cos θ cos θ, y = r sin θ = 3 cos θ sin θ ⇒
dy
dθ
= −3 sin2 θ + 3 cos2 θ = 3 cos 2θ = 0 ⇒ 2θ = π

2
or 3π

2
⇔ θ = π

4
or 3π

4
.

So the tangent is horizontal at 3√
2
, π
4

and − 3√
2
, 3π
4

same as 3√
2
,−π

4
.

dx
dθ
= −6 sin θ cos θ = −3 sin 2θ = 0 ⇒ 2θ = 0 or π ⇔ θ = 0 or π

2
. So the tangent is vertical at (3, 0) and 0, π

2
.

65. r = 1 + cos θ ⇒ x = r cos θ = cos θ (1 + cos θ), y = r sin θ = sin θ (1 + cos θ) ⇒
dy
dθ = (1 + cos θ) cos θ − sin2 θ = 2cos2 θ + cos θ − 1 = (2 cos θ − 1)(cos θ + 1) = 0 ⇒ cos θ = 1

2 or −1 ⇒
θ = π

3
, π, or 5π

3
⇒ horizontal tangent at 3

2
, π
3

, (0, π), and 3
2
, 5π
3

.

dx
dθ = −(1 + cos θ) sin θ − cos θ sin θ = − sin θ (1 + 2 cos θ) = 0 ⇒ sin θ = 0 or cos θ = −1

2 ⇒
θ = 0, π, 2π

3
, or 4π

3
⇒ vertical tangent at (2, 0), 1

2
, 2π
3

, and 1
2
, 4π
3

.

Note that the tangent is horizontal, not vertical when θ = π, since lim
θ→π

dy/dθ

dx/dθ
= 0.

67. r = 2 + sin θ ⇒ x = r cos θ = (2 + sin θ) cos θ, y = r sin θ = (2 + sin θ) sin θ ⇒
dy
dθ = (2 + sin θ) cos θ + sin θ cos θ = cos θ · 2(1 + sin θ) = 0 ⇒ cos θ = 0 or sin θ = −1 ⇒
θ = π

2
or 3π

2
⇒ horizontal tangent at 3, π

2
and 1, 3π

2
.

dx
dθ = (2 + sin θ)(− sin θ) + cos θ cos θ = −2 sin θ − sin2 θ + 1− sin2 θ = −2 sin2 θ − 2 sin θ + 1 ⇒

sin θ =
2±√4 + 8

−4 =
2± 2√3
−4 =

1−√3
−2

1 +
√
3

−2 < −1 ⇒

θ1 = sin
−1 − 1

2
+ 1

2

√
3 and θ2 = π − θ1 ⇒ vertical tangent at 3

2
+ 1

2

√
3, θ1 and 3

2
+ 1

2

√
3, θ2 .

Note that r(θ1) = 2 + sin sin−1 − 1
2 +

1
2

√
3 = 2− 1

2 +
1
2

√
3 = 3

2 +
1
2

√
3.

69. r = a sin θ + b cos θ ⇒ r2 = ar sin θ + br cos θ ⇒ x2 + y2 = ay + bx ⇒
x2 − bx+ 1

2b
2
+ y2 − ay + 1

2a
2
= 1

2 b
2
+ 1

2a
2 ⇒ x− 1

2b
2
+ y − 1

2a
2
= 1

4 (a
2 + b2), and this is a circle

with center 1
2
b, 1

2
a and radius 1

2

√
a2 + b2.

Note for Exercises 71–76: Maple is able to plot polar curves using the polarplot command, or using the coords=polar option in a regular
plot command. In Mathematica, use PolarPlot. In Derive, change to Polar under Options State. If your graphing device cannot
plot polar equations, you must convert to parametric equations. For example, in Exercise 71, x = r cos θ = [1 + 2 sin(θ/2)] cos θ,
y = r sin θ = [1 + 2 sin(θ/2)] sin θ.

71. r = 1 + 2 sin(θ/2). The parameter interval is [0, 4π]. 73. r = esin θ − 2 cos(4θ). The parameter interval is [0, 2π].
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75. r = 2− 5 sin(θ/6). The parameter interval is [−6π, 6π].

77. It appears that the graph of r = 1 + sin θ − π
6

is the same shape as

the graph of r = 1 + sin θ, but rotated counterclockwise about the

origin by π
6

. Similarly, the graph of r = 1 + sin θ − π
3

is rotated by

π
3 . In general, the graph of r = f(θ − α) is the same shape as that of

r = f(θ), but rotated counterclockwise through α about the origin.

That is, for any point (r0, θ0) on the curve r = f(θ), the point

(r0, θ0 + α) is on the curve r = f(θ − α), since r0 = f(θ0) = f((θ0 + α)− α).

79. (a) r = sinnθ.

n = 2 n = 3 n = 4 n = 5

From the graphs, it seems that when n is even, the number of loops in the curve (called a rose) is 2n, and when n is odd,

the number of loops is simply n. This is because in the case of n odd, every point on the graph is traversed twice, due to

the fact that

r(θ + π) = sin[n(θ + π)] = sinnθ cosnπ + cosnθ sinnπ =
sinnθ if n is even

− sinnθ if n is odd

(b) The graph of r = |sinnθ| has 2n loops whether n is odd or even, since r(θ + π) = r(θ).

n = 2 n = 3 n = 4 n = 5
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81. r = 1− a cos θ

1 + a cos θ
. We start with a = 0, since in this case the curve is simply the circle r = 1.

As a increases, the graph moves to the left, and its right side becomes flattened. As a increases through about 0.4, the right

side seems to grow a dimple, which upon closer investigation (with narrower θ-ranges) seems to appear at a ≈ 0.42 [the

actual value is
√
2− 1]. As a→ 1, this dimple becomes more pronounced, and the curve begins to stretch out horizontally,

until at a = 1 the denominator vanishes at θ = π, and the dimple becomes an actual cusp. For a > 1 we must choose our

parameter interval carefully, since r →∞ as 1 + a cos θ → 0 ⇔ θ → ± cos−1(−1/a). As a increases from 1, the curve

splits into two parts. The left part has a loop, which grows larger as a increases, and the right part grows broader vertically,

and its left tip develops a dimple when a ≈ 2.42 [actually,
√
2 + 1]. As a increases, the dimple grows more and more

pronounced. If a < 0, we get the same graph as we do for the corresponding positive a-value, but with a rotation through π

about the pole, as happened when c was replaced with −c in Exercise 80.

a = 0 a = 0.3 a = 0.41, |θ| ≤ 0.5

a = 0.42,|θ| ≤ 0.5 a = 0.9, |θ| ≤ 0.5 a = 1, |θ| ≤ 0.1

a = 2

a = 2.41, |θ − π| ≤ 0.2

a = 2.42, |θ − π| ≤ 0.2

a = 4
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83. tanψ = tan(φ− θ) =
tanφ− tan θ
1 + tanφ tan θ

=

dy

dx
− tan θ

1 +
dy

dx
tan θ

=

dy/dθ

dx/dθ
− tan θ

1 +
dy/dθ

dx/dθ
tan θ

=

dy

dθ
− dx

dθ
tan θ

dx

dθ
+

dy

dθ
tan θ

=

dr

dθ
sin θ + r cos θ − tan θ dr

dθ
cos θ − r sin θ

dr

dθ
cos θ − r sin θ + tan θ

dr

dθ
sin θ + r cos θ

=
r cos θ + r · sin

2 θ

cos θ
dr

dθ
cos θ +

dr

dθ
· sin

2 θ

cos θ

=
r cos2 θ + r sin2 θ

dr

dθ
cos2 θ +

dr

dθ
sin2 θ

=
r

dr/dθ

10.4 Areas and Lengths in Polar Coordinates

1. r = θ2, 0 ≤ θ ≤ π
4

. A =
π/4

0

1
2
r2 dθ =

π/4

0

1
2
(θ2)2 dθ =

π/4

0

1
2
θ4 dθ = 1

10
θ5

π/4

0
= 1

10
π
4

5
= 1

10,240π
5

3. r = sin θ, π
3
≤ θ ≤ 2π

3
.

A=
2π/3

π/3

1
2
sin2 θ dθ = 1

4

2π/3

π/3

(1− cos 2θ) dθ = 1
4
θ − 1

2
sin 2θ

2π/3

π/3
= 1

4
2π
3
− 1

2
sin 4π

3
− π

3
+ 1

2
sin 2π

3

= 1
4

2π
3 − 1

2
−
√
3
2

− π
3 +

1
2

√
3
2

= 1
4

π
3 +

√
3
2

= π
12 +

√
3
8

5. r =
√
θ, 0 ≤ θ ≤ 2π. A =

2π

0

1
2
r2 dθ =

2π

0

1
2

√
θ

2

dθ =
2π

0

1
2
θ dθ = 1

4
θ2

2π

0
= π2

7. r = 4 + 3 sin θ, −π
2
≤ θ ≤ π

2
.

A=
π/2

−π/2
1
2
((4 + 3 sin θ)2 dθ = 1

2

π/2

−π/2
(16 + 24 sin θ + 9 sin2 θ) dθ = 1

2

π/2

−π/2
(16 + 9 sin2 θ) dθ [by Theorem 5.5.7(b)]

= 1
2 · 2

π/2

0

16 + 9 · 1
2 (1− cos 2θ) dθ [by Theorem 5.5.7(a)]

=
π/2

0

41
2
− 9

2
cos 2θ dθ = 41

2
θ − 9

4
sin 2θ

π/2

0
= 41π

4
− 0 − (0− 0) = 41π

4

9. The area above the polar axis is bounded by r = 3 cos θ for θ = 0

to θ = π/2 [not π]. By symmetry,

A = 2
π/2

0
1
2r

2 dθ =
π/2

0
(3 cos θ)2 dθ = 32

π/2

0
cos2 θ dθ

= 9
π/2

0
1
2
(1 + cos 2θ) dθ = 9

2
θ + 1

2
sin 2θ

π/2

0
= 9

2
π
2
+ 0 − (0 + 0) = 9π

4

Also, note that this is a circle with radius 3
2

, so its area is π 3
2

2
= 9π

4
.

11. The curve goes through the pole when θ = π/4, so we’ll find the area for

0 ≤ θ ≤ π/4 and multiply it by 4.

A = 4
π/4

0
1
2
r2 dθ = 2

π/4

0
(4 cos 2θ) dθ

= 8
π/4

0
cos 2θ dθ = 4 sin 2θ

π/4

0
= 4
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13. One-sixth of the area lies above the polar axis and is bounded by the curve

r = 2 cos 3θ for θ = 0 to θ = π/6.

A = 6
π/6

0
1
2
(2 cos 3θ)2 dθ = 12

π/6

0
cos2 3θ dθ

= 12
2

π/6

0
(1 + cos 6θ) dθ

= 6 θ + 1
6
sin 6θ

π/6

0
= 6 π

6
= π

15. A= 2π

0
1
2 (1 + 2 sin 6θ)

2 dθ = 1
2

2π

0
(1 + 4 sin 6θ + 4 sin2 6θ) dθ

= 1
2

2π

0
1 + 4 sin 6θ + 4 · 1

2 (1− cos 12θ) dθ

= 1
2

2π

0
(3 + 4 sin 6θ − 2 cos 12θ) dθ

= 1
2
3θ − 2

3
cos 6θ − 1

6
sin 12θ

2π

0

= 1
2
(6π − 2

3
− 0)− 0− 2

3
− 0 = 3π

17. The shaded loop is traced out from θ = 0 to θ = π/2.

A=
π/2

0
1
2r

2 dθ = 1
2

π/2

0
sin2 2θ dθ

= 1
2

π/2

0
1
2 (1− cos 4θ) dθ = 1

4
θ − 1

4 sin 4θ
π/2

0

= 1
4

π
2
= π

8

19. r = 0 ⇒ 3 cos 5θ = 0 ⇒ 5θ = π
2
⇒ θ = π

10
.

A =
π/10

−π/10
1
2
(3 cos 5θ)2 dθ =

π/10

0
9 cos2 5θ dθ = 9

2

π/10

0
(1 + cos 10θ) dθ = 9

2
θ + 1

10
sin 10θ

π/10

0
= 9π

20

21. This is a limaçon, with inner loop traced

out between θ = 7π
6

and 11π
6

[found by

solving r = 0].

A= 2
3π/2

7π/6

1
2 (1 + 2 sin θ)

2 dθ =
3π/2

7π/6

1 + 4 sin θ + 4 sin2 θ dθ =
3π/2

7π/6

1 + 4 sin θ + 4 · 1
2 (1− cos 2θ) dθ

= θ − 4 cos θ + 2θ − sin 2θ 3π/2

7π/6
= 9π

2
− 7π

2
+ 2

√
3−

√
3
2

= π − 3
√
3

2

23. 2 cos θ = 1 ⇒ cos θ = 1
2 ⇒ θ = π

3 or 5π
3 .

A= 2
π/3

0
1
2
[(2 cos θ)2 − 12] dθ = π/3

0
(4 cos2 θ − 1) dθ

=
π/3

0
4 1

2
(1 + cos 2θ) − 1 dθ =

π/3

0
(1 + 2 cos 2θ) dθ

= θ + sin 2θ
π/3

0
= π

3
+
√
3
2
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25. To find the area inside the leminiscate r2 = 8 cos 2θ and outside the circle r = 2,

we first note that the two curves intersect when r2 = 8 cos 2θ and r = 2,

that is, when cos 2θ = 1
2

. For −π < θ ≤ π, cos 2θ = 1
2
⇔ 2θ = ±π/3

or ±5π/3 ⇔ θ = ±π/6 or ±5π/6. The figure shows that the desired area is

4 times the area between the curves from 0 to π/6. Thus,

A= 4
π/6

0
1
2
(8 cos 2θ)− 1

2
(2)2 dθ = 8

π/6

0
(2 cos 2θ − 1) dθ

= 8 sin 2θ − θ
π/6

0
= 8

√
3/2− π/6 = 4

√
3− 4π/3

27. 3 cos θ = 1 + cos θ ⇔ cos θ = 1
2 ⇒ θ = π

3 or −π
3 .

A= 2
π/3

0
1
2
[(3 cos θ)2 − (1 + cos θ)2] dθ

=
π/3

0
(8 cos2 θ − 2 cos θ − 1) dθ = π/3

0
[4(1 + cos 2θ)− 2 cos θ − 1] dθ

=
π/3

0
(3 + 4 cos 2θ − 2 cos θ) dθ = 3θ + 2 sin 2θ − 2 sin θ π/3

0

= π +
√
3−√3 = π

29.
√
3 cos θ = sin θ ⇒ √

3 =
sin θ

cos θ
⇒ tan θ =

√
3 ⇒ θ = π

3
.

A=
π/3

0
1
2
(sin θ)2 dθ +

π/2

π/3
1
2

√
3 cos θ

2
dθ

=
π/3

0
1
2
· 1
2
(1− cos 2θ) dθ + π/2

π/3
1
2
· 3 · 1

2
(1 + cos 2θ) dθ

= 1
4
θ − 1

2
sin 2θ

π/3

0
+ 3

4
θ + 1

2
sin 2θ

π/2

π/3

= 1
4

π
3
−
√
3
4

− 0 + 3
4

π
2
+ 0 − π

3
+
√
3
4

= π
12
−
√
3

16
+ π

8
− 3

√
3

16
= 5π

24
−
√
3
4

31. sin 2θ = cos 2θ ⇒ sin 2θ

cos 2θ
= 1 ⇒ tan 2θ = 1 ⇒ 2θ = π

4 ⇒
θ = π

8
⇒

A= 8 · 2 π/8

0
1
2
sin 22θ dθ = 8

π/8

0
1
2
(1− cos 4θ) dθ

= 4 θ − 1
4 sin 4θ

π/8

0
= 4 π

8 − 1
4 · 1 = π

2 − 1

33. sin 2θ = cos 2θ ⇒ tan 2θ = 1 ⇒ 2θ = π
4
⇒ θ = π

8

A= 4
π/8

0
1
2
sin 2θ dθ [since r2 = sin 2θ]

=
π/8

0
2 sin 2θ dθ = − cos 2θ π/8

0

= − 1
2

√
2− (−1) = 1− 1

2

√
2
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35. The darker shaded region (from θ = 0 to θ = 2π/3) represents 1
2 of the desired area plus 1

2 of the area of the inner loop.

From this area, we’ll subtract 1
2 of the area of the inner loop (the lighter shaded region from θ = 2π/3 to θ = π), and then

double that difference to obtain the desired area.

A = 2
2π/3

0
1
2

1
2 + cos θ

2
dθ − π

2π/3
1
2

1
2 + cos θ

2
dθ

=
2π/3

0
1
4
+ cos θ + cos2 θ dθ − π

2π/3
1
4
+ cos θ + cos2 θ dθ

=
2π/3

0
1
4 + cos θ +

1
2 (1 + cos 2θ) dθ

− π

2π/3
1
4 + cos θ +

1
2 (1 + cos 2θ) dθ

=
θ

4
+ sin θ +

θ

2
+
sin 2θ

4

2π/3

0

− θ

4
+ sin θ +

θ

2
+
sin 2θ

4

π

2π/3

= π
6
+
√
3
2
+ π

3
−
√
3
8

− π
4
+ π

2
+ π

6
+
√
3
2
+ π

3
−
√
3
8

= π
4 +

3
4

√
3 = 1

4
π + 3

√
3

37. The pole is a point of intersection.

1 + sin θ = 3 sin θ ⇒ 1 = 2 sin θ ⇒ sin θ = 1
2
⇒

θ = π
6

or 5π
6

.

The other two points of intersection are 3
2
, π
6

and 3
2
, 5π
6

.

39. 2 sin 2θ = 1 ⇒ sin 2θ = 1
2
⇒ 2θ = π

6
, 5π
6

, 13π
6

, or 17π
6

.

By symmetry, the eight points of intersection are given by

(1, θ), where θ = π
12 , 5π12 , 13π12 , and 17π

12 , and

(−1, θ), where θ = 7π
12

, 11π
12

, 19π
12

, and 23π
12

.

[There are many ways to describe these points.]

41. The pole is a point of intersection. sin θ = sin 2θ = 2 sin θ cos θ ⇔
sin θ (1− 2 cos θ) = 0 ⇔ sin θ = 0 or cos θ = 1

2
⇒

θ = 0, π, π3 , or −π
3 ⇒ the other intersection points are

√
3
2 , π3

and
√
3
2
, 2π
3

[by symmetry].
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43.

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the θ-values

of the intersection points to be α ≈ 0.88786 ≈ 0.89 and π − α ≈ 2.25. (The first of these values may be more easily

estimated by plotting y = 1 + sinx and y = 2x in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

A= 2
α

0

1
2
(2θ)2 dθ + 2

π/2

α

1
2
(1 + sin θ)2 dθ =

α

0

4θ2 dθ +
π/2

α

1 + 2 sin θ + 1
2
(1− cos 2θ) dθ

= 4
3θ

3 α

0
+ θ − 2 cos θ + 1

2θ − 1
4 sin 2θ

π/2

α
= 4

3α
3 + π

2 +
π
4
− α− 2 cosα+ 1

2α− 1
4 sin 2α ≈ 3.4645

45. L =
b

a

r2 + (dr/dθ)2 dθ =
π/3

0

(3 sin θ)2 + (3 cos θ)2 dθ =
π/3

0

9(sin2θ + cos2θ) dθ

= 3
π/3

0

dθ = 3 θ
π/3

0
= 3 π

3
= π.

As a check, note that the circumference of a circle with radius 3
2

is 2π 3
2
= 3π, and since θ = 0 to π = π

3
traces out 1

3
of the

circle (from θ = 0 to θ = π), 1
3
(3π) = π.

47. L =
b

a

r2 + (dr/dθ)2 dθ =
2π

0

(θ2)2 + (2θ)2 dθ =
2π

0

θ4 + 4θ2 dθ

=
2π

0

θ2(θ2 + 4) dθ =
2π

0

θ θ2 + 4 dθ

Now let u = θ2 + 4, so that du = 2θ dθ θ dθ = 1
2 du and

2π

0

θ θ2 + 4 dθ =
4π2+4

4

1
2

√
udu = 1

2
· 2
3
u3/2

4(π2+1)

4
= 1

3
[43/2(π2 + 1)3/2 − 43/2] = 8

3
[(π2 + 1)3/2 − 1]

49. The curve r = 3 sin 2θ is completely traced with 0 ≤ θ ≤ 2π. r2 + dr
dθ

2
= (3 sin 2θ)2 + (6 cos 2θ)2 ⇒

L =
2π

0
9 sin2 2θ + 36 cos2 2θ dθ ≈ 29.0653



436 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51. The curve r = sin θ
2

is completely traced with 0 ≤ θ ≤ 4π. r2 + dr
dθ

2
= sin2 θ

2
+ 1

2 cos
θ
2

2 ⇒

L =
4π

0

sin2 θ
2
+ 1

4
cos2 θ

2
dθ ≈ 9.6884

53. The curve r = cos4(θ/4) is completely traced with 0 ≤ θ ≤ 4π.

r2 + (dr/dθ)2 = [cos4(θ/4)]2 + 4cos3(θ/4) · (− sin(θ/4)) · 14
2

= cos8(θ/4) + cos6(θ/4) sin2(θ/4)

= cos6(θ/4)[cos2(θ/4) + sin2(θ/4)] = cos6(θ/4)

L =
4π

0
cos6(θ/4) dθ =

4π

0
cos3(θ/4) dθ

= 2
2π

0
cos3(θ/4) dθ [since cos3(θ/4) ≥ 0 for 0 ≤ θ ≤ 2π] = 8

π/2

0
cos3 udu u = 1

4
θ

68
= 8 1

3
(2 + cos2 u) sinu

π/2

0
= 8

3
[(2 · 1)− (3 · 0)] = 16

3

55. (a) From (10.2.7),

S =
b

a
2πy (dx/dθ)2 + (dy/dθ)2 dθ

=
b

a
2πy r2 + (dr/dθ)2 dθ [from the derivation of Equation 10.4.5]

=
b

a
2πr sin θ r2 + (dr/dθ)2 dθ

(b) The curve r2 = cos 2θ goes through the pole when cos 2θ = 0 ⇒
2θ = π

2
⇒ θ = π

4
. We’ll rotate the curve from θ = 0 to θ = π

4
and double

this value to obtain the total surface area generated.

r2 = cos 2θ ⇒ 2r
dr

dθ
= −2 sin 2θ ⇒ dr

dθ

2

=
sin2 2θ

r2
=
sin2 2θ

cos 2θ
.

S = 2
π/4

0

2π
√
cos 2θ sin θ cos 2θ + sin2 2θ /cos 2θ dθ = 4π

π/4

0

√
cos 2θ sin θ

cos2 2θ + sin2 2θ

cos 2θ
dθ

= 4π
π/4

0

√
cos 2θ sin θ

1√
cos 2θ

dθ = 4π
π/4

0

sin θ dθ = 4π − cos θ π/4

0
= −4π

√
2
2
− 1 = 2π 2−√2
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10.5 Conic Sections

1. x = 2y2 ⇒ y2 = 1
2x. 4p = 1

2 , so p = 1
8 . The vertex

is (0, 0), the focus is 1
8
, 0 , and the directrix is x = − 1

8
.

3. 4x2 = −y ⇒ x2 = − 1
4y. 4p = − 1

4 , so p = − 1
16 .

The vertex is (0, 0), the focus is 0,− 1
16

, and the

directrix is y = 1
16

.

5. (x+ 2)2 = 8 (y − 3). 4p = 8, so p = 2. The vertex is

(−2, 3), the focus is (−2, 5), and the directrix is y = 1.

7. y2 + 2y + 12x+ 25 = 0 ⇒
y2 + 2y + 1 = −12x− 24 ⇒
(y + 1)2 = −12(x+ 2). 4p = −12, so p = −3.

The vertex is (−2,−1), the focus is (−5,−1), and the

directrix is x = 1.

9. The equation has the form y2 = 4px, where p < 0.

Since the parabola passes through (−1, 1), we have

12 = 4p(−1), so 4p = −1 and an equation is y2 = −x
or x = −y2. 4p = −1, so p = − 1

4
and the focus is

− 1
4 , 0 while the directrix is x = 1

4 .

11. x
2

9
+

y2

5
= 1 ⇒ a =

√
9 = 3, b =

√
5,

c =
√
a2 − b2 =

√
9− 5 = 2. The ellipse is centered at

(0, 0), with vertices at (±3, 0). The foci are (±2, 0).
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13. 4x2 + y2 = 16 ⇒ x2

4
+

y2

16
= 1 ⇒

a =
√
16 = 4, b =

√
4 = 2,

c =
√
a2 − b2 =

√
16− 4 = 2√3. The ellipse is

centered at (0, 0), with vertices at (0,±4). The foci

are 0,±2√3 .

15. 9x2 − 18x+ 4y2 = 27 ⇔
9(x2 − 2x+ 1) + 4y2 = 27 + 9 ⇔

9(x− 1)2 + 4y2 = 36 ⇔ (x− 1)2
4

+
y2

9
= 1 ⇒

a = 3, b = 2, c =
√
5 ⇒ center (1, 0),

vertices (1,±3), foci 1,±√5

17. The center is (0, 0), a = 3, and b = 2, so an equation is x2

4
+

y2

9
= 1. c =

√
a2 − b2 =

√
5, so the foci are 0,±√5 .

19. x2

144
− y2

25
= 1 ⇒ a = 12, b = 5, c =

√
144 + 25 = 13 ⇒

center (0, 0), vertices (±12, 0), foci (±13, 0), asymptotes y = ± 5
12x.

Note: It is helpful to draw a 2a-by-2b rectangle whose center is the center

of the hyperbola. The asymptotes are the extended diagonals of the

rectangle.

21. y2 − x2 = 4 ⇔ y2

4
− x2

4
= 1 ⇒ a =

√
4 = 2 = b,

c =
√
4 + 4 = 2

√
2 ⇒ center (0, 0), vertices (0,±2),

foci 0,±2√2 , asymptotes y = ±x

23. 4x2 − y2 − 24x− 4y + 28 = 0 ⇔
4(x2 − 6x+ 9)− (y2 + 4y + 4) = −28 + 36− 4 ⇔

4(x− 3)2 − (y + 2)2 = 4 ⇔ (x− 3)2
1

− (y + 2)2

4
= 1 ⇒

a =
√
1 = 1, b =

√
4 = 2, c =

√
1 + 4 =

√
5 ⇒

center (3,−2), vertices (4,−2) and (2,−2), foci 3±√5,−2 ,

asymptotes y + 2 = ±2(x− 3).
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25. x2 = y + 1 ⇔ x2 = 1(y + 1). This is an equation of a parabola with 4p = 1, so p = 1
4 . The vertex is (0,−1) and the

focus is 0,− 3
4

.

27. x2 = 4y − 2y2 ⇔ x2 + 2y2 − 4y = 0 ⇔ x2 + 2(y2 − 2y + 1) = 2 ⇔ x2 + 2(y − 1)2 = 2 ⇔
x2

2
+
(y − 1)2

1
= 1. This is an equation of an ellipse with vertices at ±√2, 1 . The foci are at ±√2− 1, 1 = (±1, 1).

29. y2 +2y = 4x2 +3 ⇔ y2 +2y+1 = 4x2 +4 ⇔ (y+1)2 − 4x2 = 4 ⇔ (y + 1)2

4
− x2 = 1. This is an equation

of a hyperbola with vertices (0,−1± 2) = (0, 1) and (0,−3). The foci are at 0,−1±√4 + 1 = 0,−1±√5 .

31. The parabola with vertex (0, 0) and focus (0,−2) opens downward and has p = −2, so its equation is x2 = 4py = −8y.

33. The distance from the focus (−4, 0) to the directrix x = 2 is 2− (−4) = 6, so the distance from the focus to the vertex is
1
2
(6) = 3 and the vertex is (−1, 0). Since the focus is to the left of the vertex, p = −3. An equation is y2 = 4p(x+ 1) ⇒

y2 = −12(x+ 1).

35. A parabola with vertical axis and vertex (2, 3) has equation y − 3 = a(x− 2)2. Since it passes through (1, 5), we have

5− 3 = a(1− 2)2 ⇒ a = 2, so an equation is y − 3 = 2(x− 2)2.

37. The ellipse with foci (±2, 0) and vertices (±5, 0) has center (0, 0) and a horizontal major axis, with a = 5 and c = 2,

so b2 = a2 − c2 = 25− 4 = 21. An equation is x2

25
+

y2

21
= 1.

39. Since the vertices are (0, 0) and (0, 8), the ellipse has center (0, 4) with a vertical axis and a = 4. The foci at (0, 2) and (0, 6)

are 2 units from the center, so c = 2 and b =
√
a2 − c2 =

√
42 − 22 = √12. An equation is (x− 0)

2

b2
+
(y − 4)2

a2
= 1 ⇒

x2

12
+
(y − 4)2
16

= 1.

41. An equation of an ellipse with center (−1, 4) and vertex (−1, 0) is (x+ 1)
2

b2
+
(y − 4)2
42

= 1. The focus (−1, 6) is 2 units

from the center, so c = 2. Thus, b2 + 22 = 42 ⇒ b2 = 12, and the equation is (x+ 1)
2

12
+
(y − 4)2
16

= 1.

43. An equation of a hyperbola with vertices (±3, 0) is x2

32
− y2

b2
= 1. Foci (±5, 0) ⇒ c = 5 and 32 + b2 = 52 ⇒

b2 = 25− 9 = 16, so the equation is x2

9
− y2

16
= 1.

45. The center of a hyperbola with vertices (−3,−4) and (−3, 6) is (−3, 1), so a = 5 and an equation is

(y − 1)2
52

− (x+ 3)2

b2
= 1. Foci (−3,−7) and (−3, 9) ⇒ c = 8, so 52 + b2 = 82 ⇒ b2 = 64− 25 = 39 and the

equation is (y − 1)
2

25
− (x+ 3)2

39
= 1.
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47. The center of a hyperbola with vertices (±3, 0) is (0, 0), so a = 3 and an equation is x2

32
− y2

b2
= 1.

Asymptotes y = ±2x ⇒ b

a
= 2 ⇒ b = 2(3) = 6 and the equation is x

2

9
− y2

36
= 1.

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

a− c from it) while the farthest point is the other vertex (at a distance of a+ c). So for this lunar orbit,

(a− c) + (a+ c) = 2a = (1728 + 110) + (1728 + 314), or a = 1940; and (a+ c)− (a− c) = 2c = 314− 110,

or c = 102. Thus, b2 = a2 − c2 = 3,753,196, and the equation is x2

3,763,600
+

y2

3,753,196
= 1.

51. (a) Set up the coordinate system so that A is (−200, 0) and B is (200, 0).

|PA|− |PB| = (1200)(980) = 1,176,000 ft = 2450
11

mi = 2a ⇒ a = 1225
11

, and c = 200 so

b2 = c2 − a2 =
3,339,375
121

⇒ 121x2

1,500,625
− 121y2

3,339,375
= 1.

(b) Due north of B ⇒ x = 200 ⇒ (121)(200)2

1,500,625
− 121y2

3,339,375
= 1 ⇒ y =

133,575
539

≈ 248 mi

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

y = f(x) = a 1 +
x2

b2
=

a

b

√
b2 + x2, so y0 =

a

b
x(b2 + x2)−1/2 and

y00 =
a

b
(b2 + x2)−1/2 − x2(b2 + x2)−3/2 = ab(b2 + x2)−3/2 > 0 for all x, and so f is concave upward.

55. (a) If k > 16, then k − 16 > 0, and x2

k
+

y2

k − 16 = 1 is an ellipse since it is the sum of two squares on the left side.

(b) If 0 < k < 16, then k − 16 < 0, and x2

k
+

y2

k − 16 = 1 is a hyperbola since it is the difference of two squares on the

left side.

(c) If k < 0, then k − 16 < 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) In case (a), a2 = k, b2 = k − 16, and c2 = a2 − b2 = 16, so the foci are at (±4, 0). In case (b), k − 16 < 0, so a2 = k,

b2 = 16− k, and c2 = a2 + b2 = 16, and so again the foci are at (±4, 0).

57. x2 = 4py ⇒ 2x = 4py0 ⇒ y0 =
x

2p
, so the tangent line at (x0, y0) is

y − x20
4p
=

x0
2p
(x− x0). This line passes through the point (a,−p) on the

directrix, so −p− x20
4p
=

x0
2p
(a− x0) ⇒ −4p2 − x20 = 2ax0 − 2x20 ⇔

x20 − 2ax0 − 4p2 = 0 ⇔ x20 − 2ax0 + a2 = a2 + 4p2 ⇔
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(x0 − a)2 = a2 + 4p2 ⇔ x0 = a± a2 + 4p2. The slopes of the tangent lines at x = a± a2 + 4p2

are
a± a2 + 4p2

2p
, so the product of the two slopes is

a+ a2 + 4p2

2p
· a− a2 + 4p2

2p
=

a2 − (a2 + 4p2)
4p2

=
−4p2
4p2

= −1,

showing that the tangent lines are perpendicular.

59. For x2 + 4y2 = 4, or x2/4 + y2 = 1, use the parametrization x = 2 cos t, y = sin t, 0 ≤ t ≤ 2π to get

L = 4
π/2

0
(dx/dt)2 + (dy/dt)2 dt = 4

π/2

0
4 sin2 t+ cos2 t dt = 4

π/2

0
3 sin2 t+ 1 dt

Using Simpson’s Rule with n = 10, ∆t = π/2− 0
10

= π
20

, and f(t) = 3 sin2 t+ 1, we get

L ≈ 4
3

π
20

f(0) + 4f π
20

+ 2f 2π
20

+ · · ·+ 2f 8π
20

+ 4f 9π
20

+ f π
2

≈ 9.69

61. x2

a2
− y2

b2
= 1 ⇒ y2

b2
=

x2 − a2

a2
⇒ y = ± b

a

√
x2 − a2.

A= 2
c

a

b

a
x2 − a2 dx

39
=
2b

a

x

2
x2 − a2 − a2

2
ln x+ x2 − a2

c

a

=
b

a
c
√
c2 − a2 − a2 ln c+

√
c2 − a2 + a2 ln |a|

Since a2 + b2 = c2, c2 − a2 = b2, and
√
c2 − a2 = b.

=
b

a
cb− a2 ln(c+ b) + a2 ln a =

b

a
cb+ a2(ln a− ln(b+ c))

= b2c/a+ ab ln[a/(b+ c)], where c2 = a2 + b2.

63. Differentiating implicitly, x
2

a2
+

y2

b2
= 1 ⇒ 2x

a2
+
2yy0

b2
= 0 ⇒ y0 = − b2x

a2y
[y 6= 0]. Thus, the slope of the tangent

line at P is − b2x1
a2y1

. The slope of F1P is y1
x1 + c

and of F2P is y1
x1 − c

. By the formula in Problem 17 on text page 268,

we have

tanα=

y1
x1 + c

+
b2x1
a2y1

1− b2x1y1
a2y1(x1 + c)

=
a2y21 + b2x1(x1 + c)

a2y1(x1 + c)− b2x1y1
=

a2b2 + b2cx1
c2x1y1 + a2cy1

using b2x21 + a2y21 = a2b2,
and a2 − b2 = c2

=
b2 cx1 + a2

cy1(cx1 + a2)
=

b2

cy1

and tanβ =

− b2x1
a2y1

− y1
x1 − c

1− b2x1y1
a2y1(x1 − c)

=
−a2y21 − b2x1(x1 − c)

a2y1 (x1 − c)− b2x1y1
=
−a2b2 + b2cx1
c2x1y1 − a2cy1

=
b2 cx1 − a2

cy1(cx1 − a2)
=

b2

cy1

Thus, α = β.



442 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.6 Conic Sections in Polar Coordinates

1. The directrix y = 6 is above the focus at the origin, so we use the form with “+ e sin θ” in the denominator. [See Theorem 6

and Figure 2(c).] r =
ed

1 + e sin θ
=

7
4
· 6

1 + 7
4 sin θ

=
42

4 + 7 sin θ

3. The directrix x = −5 is to the left of the focus at the origin, so we use the form with “− e cos θ” in the denominator.

r =
ed

1− e cos θ
=

3
4
· 5

1− 3
4
cos θ

=
15

4− 3 cos θ

5. The vertex (4, 3π/2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus (d = 8), and we use the

form with “−e sin θ ” in the denominator. e = 1 for a parabola, so an equation is r = ed

1− e sin θ
=

1(8)

1− 1 sin θ =
8

1− sin θ .

7. The directrix r = 4 sec θ (equivalent to r cos θ = 4 or x = 4) is to the right of the focus at the origin, so we will use the form

with “+e cos θ” in the denominator. The distance from the focus to the directrix is d = 4, so an equation is

r =
ed

1 + e cos θ
=

1
2 (4)

1 + 1
2
cos θ

· 2
2
=

4

2 + cos θ
.

9. r = 1

1 + sin θ
=

ed

1 + e sin θ
, where d = e = 1.

(a) Eccentricity= e = 1

(b) Since e = 1, the conic is a parabola.

(c) Since “+e sin θ ” appears in the denominator, the directrix is above the

focus at the origin. d = |Fl| = 1, so an equation of the directrix is y = 1.

(d) The vertex is at 1
2
, π
2

, midway between the focus and the directrix.

11. r = 12

4− sin θ ·
1/4

1/4
=

3

1− 1
4 sin θ

, where e = 1
4 and ed = 3 ⇒ d = 12.

(a) Eccentricity= e = 1
4

(b) Since e = 1
4
< 1, the conic is an ellipse.

(c) Since “−e sin θ ” appears in the denominator, the directrix is below the focus

at the origin. d = |Fl| = 12, so an equation of the directrix is y = −12.

(d) The vertices are 4, π
2

and 12
5
, 3π
2

, so the center is midway between them,

that is, 4
5
, π
2

.
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13. r = 9

6 + 2 cos θ
· 1/6
1/6

=
3/2

1 + 1
3 cos θ

, where e = 1
3

and ed = 3
2
⇒ d = 9

2
.

(a) Eccentricity= e = 1
3

(b) Since e = 1
3 < 1, the conic is an ellipse.

(c) Since “+e cos θ ” appears in the denominator, the directrix is to the right of

the focus at the origin. d = |Fl| = 9
2

, so an equation of the directrix is

x = 9
2

.

(d) The vertices are 9
8
, 0 and 9

4
, π , so the center is midway between them,

that is, 9
16 , π .

15. r = 3

4− 8 cos θ ·
1/4

1/4
=

3/4

1− 2 cos θ , where e = 2 and ed = 3
4 ⇒ d = 3

8 .

(a) Eccentricity= e = 2

(b) Since e = 2 > 1, the conic is a hyperbola.

(c) Since “−e cos θ ” appears in the denominator, the directrix is to the left of

the focus at the origin. d = |Fl| = 3
8

, so an equation of the directrix is

x = − 3
8 .

(d) The vertices are − 3
4
, 0 and 1

4
, π , so the center is midway between them,

that is, 1
2
, π .

17. (a) r = 1

1− 2 sin θ , where e = 2 and ed = 1 ⇒ d = 1
2

. The eccentricity

e = 2 > 1, so the conic is a hyperbola. Since “−e sin θ ” appears in the

denominator, the directrix is below the focus at the origin. d = |Fl| = 1
2 ,

so an equation of the directrix is y = − 1
2

. The vertices are −1, π
2

and

1
3 ,

3π
2

, so the center is midway between them, that is, 2
3 ,

3π
2

.

(b) By the discussion that precedes Example 4, the equation

is r = 1

1− 2 sin θ − 3π
4

.
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19. For e < 1 the curve is an ellipse. It is nearly circular when e is close to 0. As e

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At e = 1, the curve becomes a parabola with focus at the origin.

21. |PF | = e |Pl| ⇒ r = e[d− r cos(π − θ)] = e(d+ r cos θ) ⇒

r(1− e cos θ) = ed ⇒ r =
ed

1− e cos θ

23. |PF | = e |Pl| ⇒ r = e[d− r sin(θ − π)] = e(d+ r sin θ) ⇒

r(1− e sin θ) = ed ⇒ r =
ed

1− e sin θ

25. We are given e = 0.093 and a = 2.28× 108. By (7), we have

r =
a(1− e2)

1 + e cos θ
=
2.28× 108[1− (0.093)2]

1 + 0.093 cos θ
≈ 2.26× 108
1 + 0.093 cos θ

27. Here 2a = length of major axis = 36.18 AU ⇒ a = 18.09 AU and e = 0.97. By (7), the equation of the orbit is

r =
18.09 1− (0.97)2
1− 0.97 cos θ ≈ 1.07

1− 0.97 cos θ . By (8), the maximum distance from the comet to the sun is

18.09(1 + 0.97) ≈ 35.64 AU or about 3.314 billion miles.

29. The minimum distance is at perihelion, where 4.6× 107 = r = a(1− e) = a(1− 0.206) = a(0.794) ⇒

a = 4.6 × 107/0.794. So the maximum distance, which is at aphelion, is

r = a(1 + e) = 4.6× 107/0.794 (1.206) ≈ 7.0× 107 km.

31. From Exercise 29, we have e = 0.206 and a(1− e) = 4.6× 107 km. Thus, a = 4.6× 107/0.794. From (7), we can write the

equation of Mercury’s orbit as r = a
1− e2

1− e cos θ
. So since

dr

dθ
=
−a(1− e2)e sin θ

(1− e cos θ)2
⇒

r2 +
dr

dθ

2

=
a2(1− e2)2

(1− e cos θ)2
+

a2(1− e2)2 e2 sin2 θ

(1− e cos θ)4
=

a2(1− e2)2

(1− e cos θ)4
(1− 2e cos θ + e2)
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the length of the orbit is

L =
2π

0

r2 + (dr/dθ)2 dθ = a(1− e2)
2π

0

√
1 + e2 − 2e cos θ
(1− e cos θ)2

dθ ≈ 3.6× 108 km

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius a

is 2πa ≈ 3.6× 108 km.

10 Review

1. (a) A parametric curve is a set of points of the form (x, y) = (f(t), g(t)), where f and g are continuous functions of a

variable t.

(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the

curve by finding f(t) and g(t) for various values of t, either by hand or with a calculator or computer. Sometimes, when

f and g are given by formulas, we can eliminate t from the equations x = f(t) and y = g(t) to get a Cartesian equation

relating x and y. It may be easier to graph that equation than to work with the original formulas for x and y in terms of t.

2. (a) You can find dy

dx
as a function of t by calculating dy

dx
=

dy/dt

dx/dt
[if dx/dt 6= 0].

(b) Calculate the area as b

a
y dx =

β

α
g(t) f 0(t)dt [or α

β
g(t) f 0(t)dt if the leftmost point is (f(β), g(β)) rather

than (f(α), g(α))].

3. (a) L = β

α
(dx/dt)2 + (dy/dt)2 dt =

β

α
[f 0(t)]2 + [g0(t)]2 dt

(b) S = β

α
2πy (dx/dt)2 + (dy/dt)2 dt =

β

α
2πg(t) [f 0(t)]2 + [g0(t)]2 dt

4. (a) See Figure 5 in Section 10.3.

(b) x = r cos θ, y = r sin θ

(c) To find a polar representation (r, θ) with r ≥ 0 and 0 ≤ θ < 2π, first calculate r = x2 + y2. Then θ is specified by

cos θ = x/r and sin θ = y/r.

5. (a) Calculate dy

dx
=

dy

dθ
dx

dθ

=

d

dθ
(y)

d

dθ
(x)

=

d

dθ
(r sin θ)

d

dθ
(r cos θ)

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

, where r = f(θ).

(b) Calculate A = b

a
1
2
r2 dθ =

b

a
1
2
[f(θ)]2 dθ

(c) L = b

a
(dx/dθ)2 + (dy/dθ)2 dθ =

b

a
r2 + (dr/dθ)2 dθ =

b

a
[f(θ)]2 + [f 0(θ)]2 dθ

6. (a) A parabola is a set of points in a plane whose distances from a fixed point F (the focus) and a fixed line l (the directrix)

are equal.

(b) x2 = 4py; y2 = 4px
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7. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

(b) x2

a2
+

y2

a2 − c2
= 1.

8. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.

This difference should be interpreted as the larger distance minus the smaller distance.

(b) x2

a2
− y2

c2 − a2
= 1

(c) y = ±
√
c2 − a2

a
x

9. (a) If a conic section has focus F and corresponding directrix l, then the eccentricity e is the fixed ratio |PF | / |Pl| for points

P of the conic section.

(b) e < 1 for an ellipse; e > 1 for a hyperbola; e = 1 for a parabola.

(c) x = d: r = ed

1 + e cos θ
. x = −d: r = ed

1− e cos θ
. y = d: r = ed

1 + e sin θ
. y = −d: r = ed

1− e sin θ
.

1. False. Consider the curve defined by x = f(t) = (t− 1)3 and y = g(t) = (t− 1)2. Then g0(t) = 2(t− 1), so g0(1) = 0,

but its graph has a vertical tangent when t = 1. Note: The statement is true if f 0(1) 6= 0 when g0(1) = 0.

3. False. For example, if f(t) = cos t and g(t) = sin t for 0 ≤ t ≤ 4π, then the curve is a circle of radius 1, hence its length

is 2π, but 4π

0
[f 0(t)]2 + [g0(t)]2 dt = 4π

0
(− sin t)2 + (cos t)2 dt = 4π

0
1 dt = 4π, since as t increases

from 0 to 4π, the circle is traversed twice.

5. True. The curve r = 1− sin 2θ is unchanged if we rotate it through 180◦ about O because

1− sin 2(θ + π) = 1− sin(2θ + 2π) = 1− sin 2θ. So it’s unchanged if we replace r by −r. (See the discussion

after Example 8 in Section 10.3.) In other words, it’s the same curve as r = −(1− sin 2θ) = sin 2θ − 1.

7. False. The first pair of equations gives the portion of the parabola y = x2 with x ≥ 0, whereas the second pair of equations

traces out the whole parabola y = x2.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form y = cx2, where c > 0.

The tangent at the point a, ca2 is the line y − ca2 = 2ca(x− a); i.e., y = 2cax− ca2. This tangent meets

the parabola at the points x, cx2 where cx2 = 2cax− ca2. This equation is equivalent to x2 = 2ax− a2

[since c > 0]. But x2 = 2ax− a2 ⇔ x2 − 2ax+ a2 = 0 ⇔ (x− a)2 = 0 ⇔ x = a ⇔
x, cx2 = a, ca2 . This shows that each tangent meets the parabola at exactly one point.
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1. x = t2 + 4t, y = 2− t, −4 ≤ t ≤ 1. t = 2− y, so

x = (2− y)2 + 4(2− y) = 4− 4y + y2 + 8− 4y = y2 − 8y + 12 ⇔
x+ 4 = y2 − 8y + 16 = (y − 4)2. This is part of a parabola with vertex

(−4, 4), opening to the right.

3. y = sec θ = 1

cos θ
=
1

x
. Since 0 ≤ θ ≤ π/2, 0 < x ≤ 1 and y ≥ 1.

This is part of the hyperbola y = 1/x.

5. Three different sets of parametric equations for the curve y =
√
x are

(i) x = t, y =
√
t

(ii) x = t4, y = t2

(iii) x = tan2 t, y = tan t, 0 ≤ t < π/2

There are many other sets of equations that also give this curve.

7. (a) The Cartesian coordinates are x = 4cos 2π
3
= 4 − 1

2
= −2 and

y = 4 sin 2π
3
= 4

√
3
2

= 2
√
3, that is, the point −2, 2√3 .

(b) Given x = −3 and y = 3, we have r = (−3)2 + 32 = √18 = 3√2. Also, tan θ = y

x
⇒ tan θ =

3

−3 , and since

(−3, 3) is in the second quadrant, θ = 3π
4

. Thus, one set of polar coordinates for (−3, 3) is 3
√
2, 3π

4
, and two others are

3
√
2, 11π

4
and −3√2, 7π

4
.

9. r = 1− cos θ. This cardioid is

symmetric about the polar axis.
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11. r = cos 3θ. This is a

three-leaved rose. The curve is

traced twice.

13. r = 1 + cos 2θ. The curve is

symmetric about the pole and

both the horizontal and vertical
axes.

15. r = 3

1 + 2 sin θ
⇒ e = 2 > 1, so the conic is a hyperbola. de = 3 ⇒

d = 3
2 and the form “+2 sin θ” imply that the directrix is above the focus at

the origin and has equation y = 3
2

. The vertices are 1, π
2

and −3, 3π
2

.

17. x+ y = 2 ⇔ r cos θ + r sin θ = 2 ⇔ r(cos θ + sin θ) = 2 ⇔ r =
2

cos θ + sin θ

19. r = (sin θ)/θ. As θ→ ±∞, r → 0.

As θ → 0, r→ 1. In the first figure,

there are an infinite number of
x-intercepts at x = πn, n a nonzero

integer. These correspond to pole

points in the second figure.

21. x = ln t, y = 1 + t2; t = 1. dy
dt
= 2t and dx

dt
=
1

t
, so dy

dx
=

dy/dt

dx/dt
=
2t

1/t
= 2t2.

When t = 1, (x, y) = (0, 2) and dy/dx = 2.

23. r = e−θ ⇒ y = r sin θ = e−θ sin θ and x = r cos θ = e−θ cos θ ⇒
dy

dx
=

dy/dθ

dx/dθ
=

dr
dθ
sin θ + r cos θ

dr
dθ
cos θ − r sin θ

=
−e−θ sin θ + e−θ cos θ
−e−θ cos θ − e−θ sin θ

· −e
θ

−eθ =
sin θ − cos θ
cos θ + sin θ

.

When θ = π, dy
dx

=
0− (−1)
−1 + 0 =

1

−1 = −1.
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25. x = t+ sin t, y = t− cos t ⇒ dy

dx
=

dy/dt

dx/dt
=
1 + sin t

1 + cos t
⇒

d2y

dx2
=

d

dt

dy

dx

dx/dt
=

(1 + cos t) cos t− (1 + sin t)(− sin t)
(1 + cos t)2

1 + cos t
=
cos t+ cos2 t+ sin t+ sin2 t

(1 + cos t)3
=
1 + cos t+ sin t

(1 + cos t)3

27. We graph the curve x = t3 − 3t, y = t2 + t+ 1 for −2.2 ≤ t ≤ 1.2.

By zooming in or using a cursor, we find that the lowest point is about

(1.4, 0.75). To find the exact values, we find the t-value at which

dy/dt = 2t+ 1 = 0 ⇔ t = − 1
2 ⇔ (x, y) = 11

8 ,
3
4

.

29. x = 2a cos t− a cos 2t ⇒ dx

dt
= −2a sin t+ 2a sin 2t = 2a sin t(2 cos t− 1) = 0 ⇔

sin t = 0 or cos t = 1
2
⇒ t = 0, π

3
, π, or 5π

3
.

y = 2a sin t− a sin 2t ⇒ dy

dt
= 2a cos t− 2a cos 2t = 2a 1 + cos t− 2 cos2 t = 2a(1− cos t)(1 + 2 cos t) = 0 ⇒

t = 0, 2π
3 , or 4π

3 .

Thus the graph has vertical tangents where

t = π
3

, π and 5π
3

, and horizontal tangents where

t = 2π
3

and 4π
3

. To determine what the slope is

where t = 0, we use l’Hospital’s Rule to evaluate

lim
t→0

dy/dt

dx/dt
= 0, so there is a horizontal tangent

there.

t x y

0 a 0
π
3

3
2
a

√
3
2
a

2π
3

− 1
2
a 3

√
3

2
a

π −3a 0
4π
3

− 1
2
a − 3

√
3

2
a

5π
3

3
2
a −

√
3
2
a

31. The curve r2 = 9 cos 5θ has 10 “petals.” For instance, for − π
10
≤ θ ≤ π

10
, there are two petals, one with r > 0 and one

with r < 0.

A = 10
π/10

−π/10
1
2
r2 dθ = 5

π/10

−π/10 9 cos 5θ dθ = 5 · 9 · 2
π/10

0
cos 5θ dθ = 18 sin 5θ

π/10

0
= 18

33. The curves intersect when 4 cos θ = 2 ⇒ cos θ = 1
2 ⇒ θ = ±π

3

for −π ≤ θ ≤ π. The points of intersection are 2, π
3

and 2,−π
3

.



450 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

35. The curves intersect where 2 sin θ = sin θ + cos θ ⇒
sin θ = cos θ ⇒ θ = π

4
, and also at the origin (at which θ = 3π

4

on the second curve).

A=
π/4

0
1
2
(2 sin θ)2 dθ +

3π/4

π/4
1
2
(sin θ + cos θ)2 dθ

=
π/4

0
(1− cos 2θ) dθ + 1

2

3π/4

π/4
(1 + sin 2θ) dθ

= θ − 1
2
sin 2θ

π/4

0
+ 1

2
θ − 1

4
cos 2θ

3π/4

π/4
= 1

2
(π − 1)

37. x = 3t2, y = 2t3.

L=
2

0
(dx/dt)2 + (dy/dt)2 dt =

2

0
(6t)2 + (6t2)2 dt =

2

0

√
36t2 + 36t4 dt =

2

0

√
36t2

√
1 + t2 dt

=
2

0
6 |t|√1 + t2 dt = 6

2

0
t
√
1 + t2 dt = 6

5

1
u1/2 1

2
du u = 1 + t2, du = 2t dt

= 6 · 1
2
· 2
3
u3/2

5

1
= 2(53/2 − 1) = 2 5√5− 1

39. L = 2π

π
r2 + (dr/dθ)2 dθ =

2π

π
(1/θ)2 + (−1/θ2)2 dθ =

2π

π

θ2 + 1

θ2
dθ

24
= − θ2 + 1

θ
+ ln θ + θ2 + 1

2π

π

=

√
π2 + 1

π
−
√
4π2 + 1

2π
+ ln

2π +
√
4π2 + 1

π +
√
π2 + 1

=
2
√
π2 + 1−√4π2 + 1

2π
+ ln

2π +
√
4π2 + 1

π +
√
π2 + 1

41. x = 4
√
t, y = t3

3
+

1

2t2
, 1 ≤ t ≤ 4 ⇒

S =
4

1
2πy (dx/dt)2 + (dy/dt)2 dt =

4

1
2π 1

3
t3 + 1

2
t−2 2/

√
t

2
+ (t2 − t−3)2 dt

= 2π
4

1
1
3
t3 + 1

2
t−2 (t2 + t−3)2 dt = 2π 4

1
1
3
t5 + 5

6
+ 1

2
t−5 dt = 2π 1

18
t6 + 5

6
t− 1

8
t−4

4

1
= 471,295

1024
π

43. For all c except −1, the curve is asymptotic to the line x = 1. For

c < −1, the curve bulges to the right near y = 0. As c increases, the

bulge becomes smaller, until at c = −1 the curve is the straight line x = 1.

As c continues to increase, the curve bulges to the left, until at c = 0 there

is a cusp at the origin. For c > 0, there is a loop to the left of the origin,

whose size and roundness increase as c increases. Note that the x-intercept

of the curve is always −c.
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45. x2

9
+

y2

8
= 1 is an ellipse with center (0, 0).

a = 3, b = 2
√
2, c = 1 ⇒

foci (±1, 0), vertices (±3, 0).

47. 6y2 + x− 36y + 55 = 0 ⇔
6(y2 − 6y + 9) = −(x+ 1) ⇔
(y − 3)2 = − 1

6
(x+ 1), a parabola with vertex (−1, 3),

opening to the left, p = − 1
24

⇒ focus − 25
24
, 3 and

directrix x = − 23
24 .

49. The ellipse with foci (±4, 0) and vertices (±5, 0) has center (0, 0) and a horizontal major axis, with a = 5 and c = 4,

so b2 = a2 − c2 = 52 − 42 = 9. An equation is x2

25
+

y2

9
= 1.

51. The center of a hyperbola with foci (0,±4) is (0, 0), so c = 4 and an equation is y2

a2
− x2

b2
= 1.

The asymptote y = 3x has slope 3, so a

b
=
3

1
⇒ a = 3b and a2 + b2 = c2 ⇒ (3b)2 + b2 = 42 ⇒

10b2 = 16 ⇒ b2 = 8
5

and so a2 = 16− 8
5
= 72

5
. Thus, an equation is y2

72/5
− x2

8/5
= 1, or 5y

2

72
− 5x2

8
= 1.

53. x2 = −(y − 100) has its vertex at (0, 100), so one of the vertices of the ellipse is (0, 100). Another form of the equation of a

parabola is x2 = 4p(y − 100) so 4p(y − 100) = −(y − 100) ⇒ 4p = −1 ⇒ p = −1
4

. Therefore the shared focus is

found at 0, 399
4

so 2c = 399
4
− 0 ⇒ c = 399

8
and the center of the ellipse is 0, 399

8
. So a = 100− 399

8
= 401

8
and

b2 = a2 − c2 =
4012 − 3992

82
= 25. So the equation of the ellipse is x2

b2
+

y − 399
8

2

a2
= 1 ⇒ x2

25
+

y − 399
8

2

401
8

2 = 1,

or x
2

25
+
(8y − 399)2
160,801

= 1.

55. Directrix x = 4 ⇒ d = 4, so e = 1
3 ⇒ r =

ed

1 + e cos θ
=

4

3 + cos θ
.

57. In polar coordinates, an equation for the circle is r = 2a sin θ. Thus, the coordinates of Q are x = r cos θ = 2a sin θ cos θ

and y = r sin θ = 2a sin2 θ. The coordinates of R are x = 2a cot θ and y = 2a. Since P is the midpoint of QR, we use the

midpoint formula to get x = a(sin θ cos θ + cot θ) and y = a(1 + sin2 θ).





PROBLEMS PLUS

1. x =
t

1

cosu

u
du, y =

t

1

sinu

u
du, so by FTC1, we have dx

dt
=
cos t

t
and dy

dt
=
sin t

t
. Vertical tangent lines occur when

dx

dt
= 0 ⇔ cos t = 0. The parameter value corresponding to (x, y) = (0, 0) is t = 1, so the nearest vertical tangent

occurs when t = π
2

. Therefore, the arc length between these points is

L =
π/2

1

dx

dt

2

+
dy

dt

2

dt =
π/2

1

cos2 t

t2
+
sin2 t

t2
dt =

π/2

1

dt

t
= ln t

π/2

1
= ln π

2

3. In terms of x and y, we have x = r cos θ = (1 + c sin θ) cos θ = cos θ + c sin θ cos θ = cos θ + 1
2
c sin 2θ and

y = r sin θ = (1 + c sin θ) sin θ = sin θ + c sin2 θ. Now−1 ≤ sin θ ≤ 1 ⇒ −1 ≤ sin θ + c sin2 θ ≤ 1 + c ≤ 2, so

−1 ≤ y ≤ 2. Furthermore, y = 2 when c = 1 and θ = π
2 , while y = −1 for c = 0 and θ = 3π

2 . Therefore, we need a viewing

rectangle with −1 ≤ y ≤ 2.

To find the x-values, look at the equation x = cos θ + 1
2
c sin 2θ and use the fact that sin 2θ ≥ 0 for 0 ≤ θ ≤ π

2
and

sin 2θ ≤ 0 for −π
2
≤ θ ≤ 0. [Because r = 1 + c sin θ is symmetric about the y-axis, we only need to consider

−π
2
≤ θ ≤ π

2
.] So for −π

2
≤ θ ≤ 0, x has a maximum value when c = 0 and then x = cos θ has a maximum value

of 1 at θ = 0. Thus, the maximum value of x must occur on 0, π
2

with c = 1. Then x = cos θ + 1
2
sin 2θ ⇒

dx
dθ = − sin θ + cos 2θ = − sin θ + 1− 2 sin2 θ ⇒ dx

dθ = −(2 sin θ − 1)(sin θ + 1) = 0 when sin θ = −1 or 1
2

[but sin θ 6= −1 for 0 ≤ θ ≤ π
2

]. If sin θ = 1
2

, then θ = π
6

and

x = cos π
6
+ 1

2
sin π

3
= 3

4

√
3. Thus, the maximum value of x is 3

4

√
3, and,

by symmetry, the minimum value is − 3
4

√
3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

r = 1 + c sin θ, where 0 ≤ c ≤ 1, is − 3
4

√
3, 3

4

√
3 × [−1, 2].

5. (a) If (a, b) lies on the curve, then there is some parameter value t1 such that 3t1
1 + t31

= a and 3t21
1 + t31

= b. If t1 = 0,

the point is (0, 0), which lies on the line y = x. If t1 6= 0, then the point corresponding to t = 1

t1
is given by

x =
3(1/t1)

1 + (1/t1)3
=

3t21
t31 + 1

= b, y = 3(1/t1)
2

1 + (1/t1)3
=

3t1
t31 + 1

= a. So (b, a) also lies on the curve. [Another way to see

this is to do part (e) first; the result is immediate.] The curve intersects the line y = x when 3t

1 + t3
=

3t2

1 + t3
⇒

t = t2 ⇒ t = 0 or 1, so the points are (0, 0) and 3
2
, 3
2

.

453
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(b) dy

dt
=
(1 + t3)(6t)− 3t2(3t2)

(1 + t3)2
=
6t− 3t4
(1 + t3)2

= 0 when 6t− 3t4 = 3t(2− t3) = 0 ⇒ t = 0 or t = 3
√
2, so there are

horizontal tangents at (0, 0) and 3
√
2, 3
√
4 . Using the symmetry from part (a), we see that there are vertical tangents at

(0, 0) and 3
√
4, 3
√
2 .

(c) Notice that as t→ −1+, we have x→ −∞ and y →∞. As t→ −1−, we have x→∞ and y → −∞. Also

y − (−x− 1) = y + x+ 1 =
3t+ 3t2 + (1 + t3)

1 + t3
=
(t+ 1)3

1 + t3
=

(t+ 1)2

t2 − t+ 1
→ 0 as t→ −1. So y = −x− 1 is a

slant asymptote.

(d) dx

dt
=
(1 + t3)(3)− 3t(3t2)

(1 + t3)2
=

3− 6t3
(1 + t3)2

and from part (b) we have dy

dt
=
6t− 3t4
(1 + t3)2

. So dy

dx
=

dy/dt

dx/dt
=

t(2− t3)

1− 2t3 .

Also d2y

dx2
=

d

dt

dy

dx

dx/dt
=
2(1 + t3)4

3(1− 2t3)3 > 0 ⇔ t <
1
3
√
2

.

So the curve is concave upward there and has a minimum point at (0, 0)

and a maximum point at 3
√
2, 3
√
4 . Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

(e) x3 + y3 =
3t

1 + t3

3

+
3t2

1 + t3

3

=
27t3 + 27t6

(1 + t3)3
=
27t3(1 + t3)

(1 + t3)3
=

27t3

(1 + t3)2
and

3xy = 3
3t

1 + t3
3t2

1 + t3
=

27t3

(1 + t3)2
, so x3 + y3 = 3xy.

(f ) We start with the equation from part (e) and substitute x = r cos θ, y = r sin θ. Then x3 + y3 = 3xy ⇒

r3 cos3 θ + r3 sin3 θ = 3r2 cos θ sin θ. For r 6= 0, this gives r = 3 cos θ sin θ

cos3 θ + sin3 θ
. Dividing numerator and denominator

by cos3 θ, we obtain r =
3

1

cos θ

sin θ

cos θ

1 +
sin3 θ

cos3 θ

=
3 sec θ tan θ

1 + tan3 θ
.

(g) The loop corresponds to θ ∈ 0, π
2

, so its area is

A=
π/2

0

r2

2
dθ =

1

2
π/2

0

3 sec θ tan θ

1 + tan3 θ

2

dθ =
9

2
π/2

0

sec2 θ tan2 θ

(1 + tan3 θ)2
dθ =

9

2

∞

0

u2 du

(1 + u3)2
[let u = tan θ]

= lim
b→∞

9
2
− 1
3 (1 + u3)−1

b

0
= 3

2

(h) By symmetry, the area between the folium and the line y = −x− 1 is equal to the enclosed area in the third quadrant,

plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1
2

, and since y = −x− 1 ⇒

r sin θ = −r cos θ − 1 ⇒ r = − 1

sin θ + cos θ
, the area in the fourth quadrant is

1

2

−π/4

−π/2
− 1

sin θ + cos θ

2

− 3 sec θ tan θ

1 + tan3 θ

2

dθ
CAS
=
1

2
. Therefore, the total area is 1

2
+ 2 1

2
= 3

2
.



11 INFINITE SEQUENCES AND SERIES
11.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms an approach 8 as n becomes large. In fact, we can make an as close to 8 as we like by taking n sufficiently

large.

(c) The terms an become large as n becomes large. In fact, we can make an as large as we like by taking n sufficiently large.

3. an = 1− (0.2)n, so the sequence is {0.8, 0.96, 0.992, 0.9984, 0.99968, . . .}.

5. an =
3 (−1)n

n!
, so the sequence is −3

1
,
3

2
,
−3
6
,
3

24
,
−3
120

, . . . = −3, 3
2
,−1
2
,
1

8
,− 1

40
, . . . .

7. a1 = 3, an+1 = 2an − 1. Each term is defined in terms of the preceding term.

a2 = 2a1 − 1 = 2(3)− 1 = 5. a3 = 2a2 − 1 = 2(5)− 1 = 9. a4 = 2a3 − 1 = 2(9)− 1 = 17.

a5 = 2a4 − 1 = 2(17)− 1 = 33. The sequence is {3, 5, 9, 17, 33, . . .}.

9. 1, 1
3 ,

1
5 ,

1
7 ,

1
9 , . . . . The denominator of the nth term is the nth positive odd integer, so an =

1

2n− 1 .

11. {2, 7, 12, 17, . . .}. Each term is larger than the preceding one by 5, so an = a1 + d(n− 1) = 2 + 5(n− 1) = 5n− 3.

13. 1,− 2
3
, 4
9
,− 8

27
, . . . . Each term is − 2

3
times the preceding one, so an = − 2

3

n−1.

15. The first six terms of an =
n

2n+ 1
are 1

3
, 2
5

, 3
7

, 4
9

, 5
11

, 6
13

. It appears that the sequence is approaching 1
2

.

lim
n→∞

n

2n+ 1
= lim

n→∞
1

2 + 1/n
=
1

2

17. an = 1− (0.2)n, so lim
n→∞

an = 1− 0 = 1 by (9). Converges

19. an =
3 + 5n2

n+ n2
=
(3 + 5n2)/n2

(n+ n2)/n2
=
5 + 3/n2

1 + 1/n
, so an → 5 + 0

1 + 0
= 5 as n→∞. Converges

21. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim
n→∞

an = lim
n→∞

e1/n = elimn→∞(1/n) = e0 = 1. Converges

23. If bn =
2nπ

1 + 8n
, then lim

n→∞
bn = lim

n→∞
(2nπ)/n

(1 + 8n)/n
= lim

n→∞
2π

1/n+ 8
=
2π

8
=

π

4
. Since tan is continuous at π

4 , by

Theorem 7, lim
n→∞

tan
2nπ

1 + 8n
= tan lim

n→∞
2nπ

1 + 8n
= tan

π

4
= 1. Converges

455
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25. an =
(−1)n−1 n
n2 + 1

=
(−1)n−1
n+ 1/n

, so 0 ≤ |an| = 1

n+ 1/n
≤ 1

n
→ 0 as n→∞, so an → 0 by the Squeeze Theorem and

Theorem 6. Converges

27. an = cos(n/2). This sequence diverges since the terms don’t approach any particular real number as n→∞.

The terms take on values between −1 and 1.

29. an =
(2n− 1)!
(2n+ 1)!

=
(2n− 1)!

(2n+ 1)(2n)(2n− 1)! =
1

(2n+ 1)(2n)
→ 0 as n→∞. Converges

31. an =
en + e−n

e2n − 1 · e
−n

e−n
=
1 + e−2n

en − e−n
→ 0 as n→∞ because 1 + e−2n → 1 and en − e−n →∞. Converges

33. an = n2e−n =
n2

en
. Since lim

x→∞
x2

ex
H
= lim

x→∞
2x

ex
H
= lim

x→∞
2

ex
= 0, it follows from Theorem 3 that lim

n→∞
an = 0. Converges

35. 0 ≤ cos2 n

2n
≤ 1

2n
[since 0 ≤ cos2 n ≤ 1], so since lim

n→∞
1

2n
= 0, cos2 n

2n
converges to 0 by the Squeeze Theorem.

37. an = n sin(1/n) =
sin(1/n)

1/n
. Since lim

x→∞
sin(1/x)

1/x
= lim

t→0+

sin t

t
[where t = 1/x] = 1, it follows from Theorem 3

that {an} converges to 1.

39. y = 1 +
2

x

x

⇒ ln y = x ln 1 +
2

x
, so

lim
x→∞

ln y = lim
x→∞

ln(1 + 2/x)

1/x
H
= lim

x→∞

1

1 + 2/x
− 2

x2

−1/x2 = lim
x→∞

2

1 + 2/x
= 2 ⇒

lim
x→∞

1 +
2

x

x

= lim
x→∞

eln y = e2, so by Theorem 3, lim
n→∞

1 +
2

n

n

= e2. Convergent

41. an = ln(2n2 + 1)− ln(n2 + 1) = ln 2n2 + 1

n2 + 1
= ln

2 + 1/n2

1 + 1/n2
→ ln 2 as n→∞. Convergent

43. {0, 1, 0, 0, 1, 0, 0, 0, 1, . . .} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to

either one (or any other value) for n sufficiently large.

45. an =
n!

2n
=
1

2
· 2
2
· 3
2
· · · · · (n− 1)

2
· n
2
≥ 1

2
· n
2

[for n > 1] = n

4
→∞ as n→∞, so {an} diverges.

47. From the graph, it appears that the sequence converges to 1.

{(−2/e)n} converges to 0 by (9), and hence {1 + (−2/e)n}
converges to 1 + 0 = 1.
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49. From the graph, it appears that the sequence converges to 1
2 .

As n→∞,

an =
3 + 2n2

8n2 + n
=

3/n2 + 2

8 + 1/n
⇒ 0 + 2

8 + 0
=

1

4
=
1

2
,

so lim
n→∞

an =
1
2

.

51. From the graph, it appears that the sequence {an} = n2 cosn

1 + n2
is

divergent, since it oscillates between 1 and −1 (approximately). To

prove this, suppose that {an} converges to L. If bn =
n2

1 + n2
, then

{bn} converges to 1, and lim
n→∞

an
bn
=

L

1
= L. But an

bn
= cosn, so

lim
n→∞

an
bn

does not exist. This contradiction shows that {an} diverges.

53. From the graph, it appears that the sequence approaches 0.

0 < an =
1 · 3 · 5 · · · · · (2n− 1)

(2n)n
=

1

2n
· 3
2n
· 5
2n
· · · · · 2n− 1

2n

≤ 1

2n
· (1) · (1) · · · · · (1) = 1

2n
→ 0 as n→∞

So by the Squeeze Theorem, 1 · 3 · 5 · · · · · (2n− 1)
(2n)n

converges to 0.

55. (a) an = 1000(1.06)n ⇒ a1 = 1060, a2 = 1123.60, a3 = 1191.02, a4 = 1262.48, and a5 = 1338.23.

(b) lim
n→∞

an = 1000 lim
n→∞

(1.06)n, so the sequence diverges by (9) with r = 1.06 > 1.

57. If |r| ≥ 1, then {rn} diverges by (9), so {nrn} diverges also, since |nrn| = n |rn| ≥ |rn|. If |r| < 1 then

lim
x→∞

xrx = lim
x→∞

x

r−x
H
= lim

x→∞
1

(− ln r) r−x = lim
x→∞

rx

− ln r = 0, so lim
n→∞

nrn = 0, and hence {nrn} converges

whenever |r| < 1.

59. Since {an} is a decreasing sequence, an > an+1 for all n ≥ 1. Because all of its terms lie between 5 and 8, {an} is a

bounded sequence. By the Monotonic Sequence Theorem, {an} is convergent; that is, {an} has a limit L. L must be less than

8 since {an} is decreasing, so 5 ≤ L < 8.

61. an =
1

2n+ 3
is decreasing since an+1 =

1

2(n+ 1) + 3
=

1

2n+ 5
<

1

2n+ 3
= an for each n ≥ 1. The sequence is

bounded since 0 < an ≤ 1
5

for all n ≥ 1. Note that a1 = 1
5

.
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63. The terms of an = n(−1)n alternate in sign, so the sequence is not monotonic. The first five terms are −1, 2, −3, 4, and −5.

Since lim
n→∞

|an| = lim
n→∞

n =∞, the sequence is not bounded.

65. an =
n

n2 + 1
defines a decreasing sequence since for f(x) = x

x2 + 1
, f 0(x) =

x2 + 1 (1)− x(2x)

(x2 + 1)2
=

1− x2

(x2 + 1)2
≤ 0

for x ≥ 1. The sequence is bounded since 0 < an ≤ 1
2

for all n ≥ 1.

67. For
√
2, 2

√
2, 2 2

√
2, . . . , a1 = 21/2, a2 = 23/4, a3 = 27/8, . . ., so an = 2(2

n−1)/2n = 21−(1/2
n).

lim
n→∞

an = lim
n→∞

21−(1/2
n) = 21 = 2.

Alternate solution: Let L = lim
n→∞

an. (We could show the limit exists by showing that {an} is bounded and increasing.)

Then L must satisfy L =
√
2 · L ⇒ L2 = 2L ⇒ L(L− 2) = 0. L 6= 0 since the sequence increases, so L = 2.

69. a1 = 1, an+1 = 3− 1

an
. We show by induction that {an} is increasing and bounded above by 3. Let Pn be the proposition

that an+1 > an and 0 < an < 3. Clearly P1 is true. Assume that Pn is true. Then an+1 > an ⇒ 1

an+1
<

1

an
⇒

− 1

an+1
> − 1

an
. Now an+2 = 3− 1

an+1
> 3− 1

an
= an+1 ⇔ Pn+1. This proves that {an} is increasing and bounded

above by 3, so 1 = a1 < an < 3, that is, {an} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If L = lim
n→∞

an, then lim
n→∞

an+1 = L also, so L must satisfy L = 3− 1/L ⇒ L2 − 3L+ 1 = 0 ⇒ L = 3±√5
2

.

But L > 1, so L = 3+
√
5

2 .

71. (a) Let an be the number of rabbit pairs in the nth month. Clearly a1 = 1 = a2. In the nth month, each pair that is

2 or more months old (that is, an−2 pairs) will produce a new pair to add to the an−1 pairs already present. Thus,

an = an−1 + an−2, so that {an} = {fn}, the Fibonacci sequence.

(b) an =
fn+1
fn

⇒ an−1 =
fn
fn−1

=
fn−1 + fn−2

fn−1
= 1 +

fn−2
fn−1

= 1 +
1

fn−1 /fn−2
= 1 +

1

an−2
. If L = lim

n→∞
an,

then L = lim
n→∞

an−1 and L = lim
n→∞

an−2, so L must satisfy L = 1 +
1

L
⇒ L2 − L− 1 = 0 ⇒ L = 1+

√
5

2

[since L must be positive].

73. (a) From the graph, it appears that the sequence n5

n!

converges to 0, that is, lim
n→∞

n5

n!
= 0.
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(b)

From the first graph, it seems that the smallest possible value of N corresponding to ε = 0.1 is 9, since n5/n! < 0.1

whenever n ≥ 10, but 95/9! > 0.1. From the second graph, it seems that for ε = 0.001, the smallest possible value for N

is 11 since n5/n! < 0.001 whenever n ≥ 12.

75. Theorem 6: If lim
n→∞

|an| = 0 then lim
n→∞

− |an| = 0, and since − |an| ≤ an ≤ |an|, we have that lim
n→∞

an = 0 by the

Squeeze Theorem.

77. To Prove: If lim
n→∞

an = 0 and {bn} is bounded, then lim
n→∞

(anbn) = 0.

Proof: Since {bn} is bounded, there is a positive number M such that |bn| ≤M and hence, |an| |bn| ≤ |an|M for

all n ≥ 1. Let ε > 0 be given. Since lim
n→∞

an = 0, there is an integer N such that |an − 0| < ε

M
if n > N . Then

|anbn − 0| = |anbn| = |an| |bn| ≤ |an|M = |an − 0|M <
ε

M
·M = ε for all n > N . Since ε was arbitrary,

lim
n→∞

(anbn) = 0.

79. (a) First we show that a > a1 > b1 > b.

a1 − b1 =
a+ b
2
−√ab = 1

2
a− 2√ab+ b = 1

2

√
a−√b 2

> 0 [since a > b] ⇒ a1 > b1. Also

a− a1 = a− 1
2
(a+ b) = 1

2
(a− b) > 0 and b− b1 = b−√ab = √b √b−√a < 0, so a > a1 > b1 > b. In the same

way we can show that a1 > a2 > b2 > b1 and so the given assertion is true for n = 1. Suppose it is true for n = k, that is,

ak > ak+1 > bk+1 > bk. Then

ak+2 − bk+2 =
1
2
(ak+1 + bk+1)− ak+1bk+1 =

1
2

ak+1 − 2 ak+1bk+1 + bk+1 = 1
2

√
ak+1 − bk+1

2

> 0,

ak+1 − ak+2 = ak+1 − 1
2 (ak+1 + bk+1) =

1
2 (ak+1 − bk+1) > 0, and

bk+1 − bk+2 = bk+1 − ak+1bk+1 = bk+1 bk+1 −√ak+1 < 0 ⇒ ak+1 > ak+2 > bk+2 > bk+1,

so the assertion is true for n = k + 1. Thus, it is true for all n by mathematical induction.

(b) From part (a) we have a > an > an+1 > bn+1 > bn > b, which shows that both sequences, {an} and {bn}, are

monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let lim
n→∞

an = α and lim
n→∞

bn = β. Then lim
n→∞

an+1 = lim
n→∞

an + bn
2

⇒ α =
α+ β

2
⇒

2α = α+ β ⇒ α = β.
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81. (a) Suppose {pn} converges to p. Then pn+1 =
bpn

a+ pn
⇒ lim

n→∞
pn+1 =

b lim
n→∞

pn

a+ lim
n→∞

pn
⇒ p =

bp

a+ p
⇒

p2 + ap = bp ⇒ p(p+ a− b) = 0 ⇒ p = 0 or p = b− a.

(b) pn+1 =
bpn

a+ pn
=

b

a
pn

1 +
pn
a

<
b

a
pn since 1 + pn

a
> 1.

(c) By part (b), p1 <
b

a
p0, p2 <

b

a
p1 <

b

a

2

p0, p3 <
b

a
p2 <

b

a

3

p0, etc. In general, pn <
b

a

n

p0,

so lim
n→∞

pn ≤ lim
n→∞

b

a

n

· p0 = 0 since b < a. By result 9, lim
n→∞

rn = 0 if − 1 < r < 1. Here r = b

a
∈ (0, 1) .

(d) Let a < b. We first show, by induction, that if p0 < b− a, then pn < b− a and pn+1 > pn.

For n = 0, we have p1 − p0 =
bp0

a+ p0
− p0 =

p0(b− a− p0)

a+ p0
> 0 since p0 < b− a. So p1 > p0.

Now we suppose the assertion is true for n = k, that is, pk < b− a and pk+1 > pk. Then

b− a− pk+1 = b− a− bpk
a+ pk

=
a(b− a) + bpk − apk − bpk

a+ pk
=

a(b− a− pk)

a+ pk
> 0 because pk < b− a. So

pk+1 < b− a. And pk+2 − pk+1 =
bpk+1

a+ pk+1
− pk+1 =

pk+1(b− a− pk+1)

a+ pk+1
> 0 since pk+1 < b− a. Therefore,

pk+2 > pk+1. Thus, the assertion is true for n = k + 1. It is therefore true for all n by mathematical induction.

A similar proof by induction shows that if p0 > b− a, then pn > b− a and {pn} is decreasing.

In either case the sequence {pn} is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim
n→∞

pn = b− a.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.

3. n sn

1 −2.40000
2 −1.92000
3 −2.01600
4 −1.99680
5 −2.00064
6 −1.99987
7 −2.00003
8 −1.99999
9 −2.00000
10 −2.00000

From the graph and the table, it seems that the series converges to −2. In fact, it is a geometric

series with a = −2.4 and r = − 1
5

, so its sum is
∞

n=1

12

(−5)n =
−2.4

1− − 1
5

=
−2.4
1.2

= −2.

Note that the dot corresponding to n = 1 is part of both {an} and {sn}.

TI-86 Note: To graph {an} and {sn}, set your calculator to Param mode and DrawDot mode. (DrawDot is under
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GRAPH, MORE, FORMT (F3).) Now under E(t)= make the assignments: xt1=t, yt1=12/(-5)ˆt, xt2=t,

yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.

5.

n sn

1 1.55741

2 −0.62763
3 −0.77018
4 0.38764

5 −2.99287
6 −3.28388
7 −2.41243
8 −9.21214
9 −9.66446
10 −9.01610

The series
∞

n=1

tann diverges, since its terms do not approach 0.

7.

n sn

1 0.29289

2 0.42265

3 0.50000

4 0.55279

5 0.59175

6 0.62204

7 0.64645

8 0.66667

9 0.68377

10 0.69849

From the graph and the table, it seems that the series converges.

k

n=1

1√
n
− 1√

n+ 1
=

1√
1
− 1√

2
+

1√
2
− 1√

3
+ · · ·+ 1√

k
− 1√

k + 1

= 1− 1√
k + 1

,

so
∞

n=1

1√
n
− 1√

n+ 1
= lim

k→∞
1− 1√

k + 1
= 1.

9. (a) lim
n→∞

an = lim
n→∞

2n

3n+ 1
=
2

3
, so the sequence {an} is convergent by (11.1.1).

(b) Since lim
n→∞

an =
2
3
6= 0, the series

∞

n=1

an is divergent by the Test for Divergence.

11. 3 + 2 + 4
3
+ 8

9
+ · · · is a geometric series with first term a = 3 and common ratio r = 2

3
. Since |r| = 2

3
< 1, the series

converges to a
1− r

= 3
1−2/3 =

3
1/3

= 9.

13. 3− 4 + 16
3
− 64

9
+ · · · is a geometric series with ratio r = − 4

3
. Since |r| = 4

3
> 1, the series diverges.
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15.
∞

n=1

6(0.9)n−1 is a geometric series with first term a = 6 and ratio r = 0.9. Since |r| = 0.9 < 1, the series converges to

a

1− r
=

6

1− 0.9 =
6

0.1
= 60.

17.
∞

n=1

(−3)n−1
4n

=
1

4

∞

n=1

−3
4

n−1
. The latter series is geometric with a = 1 and ratio r = − 3

4
. Since |r| = 3

4
< 1, it

converges to 1

1− (−3/4) =
4
7

. Thus, the given series converges to 1
4

4
7
= 1

7
.

19.
∞

n=0

πn

3n+1
=
1

3

∞

n=0

π

3

n

is a geometric series with ratio r = π

3
. Since |r| > 1, the series diverges.

21.
∞

n=1

1

2n
=
1

2

∞

n=1

1

n
diverges since each of its partial sums is 1

2
times the corresponding partial sum of the harmonic series

∞

n=1

1

n
, which diverges. If

∞

n=1

1

2n
were to converge, then

∞

n=1

1

n
would also have to converge by Theorem 8(i).

In general, constant multiples of divergent series are divergent.

23.
∞

k=2

k2

k2 − 1 diverges by the Test for Divergence since lim
k→∞

ak = lim
k→∞

k2

k2 − 1 = 1 6= 0.

25. Converges.
∞

n=1

1 + 2n

3n
=

∞

n=1

1

3n
+
2n

3n
=

∞

n=1

1

3

n

+
2

3

n

[sum of two convergent geometric series]

=
1/3

1− 1/3 +
2/3

1− 2/3 =
1

2
+ 2 =

5

2

27.
∞

n=1

n
√
2 = 2 +

√
2 + 3

√
2 + 4

√
2 + · · · diverges by the Test for Divergence since

lim
n→∞

an = lim
n→∞

n
√
2 = lim

n→∞
21/n = 20 = 1 6= 0.

29.
∞

n=1

ln
n2 + 1

2n2 + 1
diverges by the Test for Divergence since

lim
n→∞

an = lim
n→∞

ln
n2 + 1

2n2 + 1
= ln lim

n→∞
n2 + 1

2n2 + 1
= ln 1

2 6= 0.

31.
∞

n=1

arctan n diverges by the Test for Divergence since lim
n→∞

an = lim
n→∞

arctann = π
2
6= 0.

33.
∞

n=1

1

en
=

∞

n=1

1

e

n

is a geometric series with first term a =
1

e
and ratio r = 1

e
. Since |r| = 1

e
< 1, the series converges

to 1/e

1− 1/e =
1/e

1− 1/e ·
e

e
=

1

e− 1 . By Example 6,
∞

n=1

1

n(n+ 1)
= 1. Thus, by Theorem 8(ii),

∞

n=1

1

en
+

1

n(n+ 1)
=

∞

n=1

1

en
+

∞

n=1

1

n(n+ 1)
=

1

e− 1 + 1 =
1

e− 1 +
e− 1
e− 1 =

e

e− 1 .
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35. Using partial fractions, the partial sums of the series
∞

n=2

2

n2 − 1 are

sn =
n

i=2

2

(i− 1)(i+ 1) =
n

i=2

1

i− 1 −
1

i+ 1

= 1− 1

3
+

1

2
− 1

4
+

1

3
− 1

5
+ · · ·+ 1

n− 3 −
1

n− 1 +
1

n− 2 −
1

n

This sum is a telescoping series and sn = 1 +
1

2
− 1

n− 1 −
1

n
.

Thus,
∞

n=2

2

n2 − 1 = lim
n→∞

sn = lim
n→∞

1 +
1

2
− 1

n− 1 −
1

n
=
3

2
.

37. For the series
∞

n=1

3

n(n+ 3)
, sn =

n

i=1

3

i(i+ 3)
=

n

i=1

1

i
− 1

i+ 3
[using partial fractions]. The latter sum is

1− 1
4
+ 1

2
− 1

5
+ 1

3
− 1

6
+ 1

4
− 1

7
+ · · ·+ 1

n−3 − 1
n
+ 1

n−2 − 1
n+1

+ 1
n−1 − 1

n+2
+ 1

n
− 1

n+3

= 1 + 1
2 +

1
3 − 1

n+1 − 1
n+2 − 1

n+3 [telescoping series]

Thus,
∞

n=1

3

n(n+ 3)
= lim

n→∞
sn = lim

n→∞
1 + 1

2
+ 1

3
− 1

n+1
− 1

n+2
− 1

n+3
= 1 + 1

2
+ 1

3
= 11

6
. Converges

39. For the series
∞

n=1

e1/n − e1/(n+1) ,

sn =
n

i=1

e1/i − e1/(i+1) = (e1 − e1/2) + (e1/2 − e1/3) + · · ·+ e1/n − e1/(n+1) = e− e1/(n+1)

[telescoping series]

Thus,
∞

n=1

e1/n − e1/(n+1) = lim
n→∞

sn = lim
n→∞

e− e1/(n+1) = e− e0 = e− 1. Converges

41. 0.2 = 2

10
+

2

102
+ · · · is a geometric series with a = 2

10
and r = 1

10
. It converges to a

1− r
=

2/10

1− 1/10 =
2

9
.

43. 3.417 = 3 + 417

103
+
417

106
+ · · · . Now 417

103
+
417

106
+ · · · is a geometric series with a = 417

103
and r = 1

103
.

It converges to a

1− r
=

417/103

1− 1/103 =
417/103

999/103
=
417

999
. Thus, 3.417 = 3 + 417

999
=
3414

999
=
1138

333
.

45. 1.5342 = 1.53 + 42

104
+
42

106
+ · · · . Now 42

104
+
42

106
+ · · · is a geometric series with a = 42

104
and r = 1

102
.

It converges to a

1− r
=

42/104

1− 1/102 =
42/104

99/102
=

42

9900
.

Thus, 1.5342 = 1.53 + 42

9900
=
153

100
+

42

9900
=
15,147
9900

+
42

9900
=
15,189
9900

or 5063
3300

.

47.
∞

n=1

xn

3n
=

∞

n=1

x

3

n

is a geometric series with r = x

3
, so the series converges ⇔ |r| < 1 ⇔ |x|

3
< 1 ⇔ |x| < 3;

that is, −3 < x < 3. In that case, the sum of the series is a

1− r
=

x/3

1− x/3
=

x/3

1− x/3
· 3
3
=

x

3− x
.
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49.
∞

n=0

4nxn =
∞

n=0

(4x)n is a geometric series with r = 4x, so the series converges ⇔ |r| < 1 ⇔ 4 |x| < 1 ⇔

|x| < 1
4

. In that case, the sum of the series is 1

1− 4x .

51.
∞

n=0

cosn x

2n
is a geometric series with first term 1 and ratio r = cosx

2
, so it converges ⇔ |r| < 1. But |r| = |cosx|

2
≤ 1

2

for all x. Thus, the series converges for all real values of x and the sum of the series is 1

1− (cosx)/2 =
2

2− cosx .

53. After defining f , We use convert(f,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

Simplify in Derive to find that the general term is 3n
2 + 3n+ 1

(n2 + n)3
=
1

n3
− 1

(n+ 1)3
. So the nth partial sum is

sn =
n

k=1

1

k3
− 1

(k + 1)3
= 1− 1

23
+

1

23
− 1

33
+ · · ·+ 1

n3
− 1

(n+ 1)3
= 1− 1

(n+ 1)3

The series converges to lim
n→∞

sn = 1. This can be confirmed by directly computing the sum using sum(f,1..infinity);

(in Maple), Sum[f,{n,1,Infinity}] (in Mathematica), or Calculus Sum (from 1 to∞) and Simplify (in Derive).

55. For n = 1, a1 = 0 since s1 = 0. For n > 1,

an = sn − sn−1 =
n− 1
n+ 1

− (n− 1)− 1
(n− 1) + 1 =

(n− 1)n− (n+ 1)(n− 2)
(n+ 1)n

=
2

n(n+ 1)

Also,
∞

n=1

an = lim
n→∞

sn = lim
n→∞

1− 1/n
1 + 1/n

= 1.

57. (a) The first step in the chain occurs when the local government spends D dollars. The people who receive it spend a fraction c

of those D dollars, that is, Dc dollars. Those who receive the Dc dollars spend a fraction c of it, that is, Dc2 dollars.

Continuing in this way, we see that the total spending after n transactions is

Sn = D +Dc+Dc2 + · · ·+Dcn–1 =
D(1− cn)

1− c
by (3).

(b) lim
n→∞

Sn = lim
n→∞

D(1− cn)

1− c
=

D

1− c
lim
n→∞

(1− cn) =
D

1− c
since 0 < c < 1 ⇒ lim

n→∞
cn = 0

=
D

s
[since c+ s = 1] = kD [since k = 1/s]

If c = 0.8, then s = 1− c = 0.2 and the multiplier is k = 1/s = 5.

59.
∞

n=2

(1 + c)−n is a geometric series with a = (1 + c)−2 and r = (1 + c)−1, so the series converges when

(1 + c)−1 < 1 ⇔ |1 + c| > 1 ⇔ 1 + c > 1 or 1 + c < −1 ⇔ c > 0 or c < −2. We calculate the sum of the

series and set it equal to 2: (1 + c)−2

1− (1 + c)−1
= 2 ⇔ 1

1 + c

2

= 2− 2 1

1 + c
⇔ 1 = 2(1 + c)2 − 2(1 + c) ⇔

2c2 + 2c− 1 = 0 ⇔ c = −2±√12
4

= ±√3− 1
2

. However, the negative root is inadmissible because −2 < −√3− 1
2

< 0.

So c =
√
3− 1
2

.
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61. esn = e1+
1
2
+
1
3
+···+ 1

n = e1e1/2e1/3 · · · e1/n > (1 + 1) 1 + 1
2

1 + 1
3
· · · 1 + 1

n
[ex > 1 + x]

=
2

1

3

2

4

3
· · · n+ 1

n
= n+ 1

Thus, esn > n+ 1 and lim
n→∞

esn =∞. Since {sn} is increasing, lim
n→∞

sn =∞, implying that the harmonic series is

divergent.

63. Let dn be the diameter of Cn. We draw lines from the centers of the Ci to

the center of D (or C), and using the Pythagorean Theorem, we can write

12 + 1− 1
2d1

2
= 1 + 1

2d1
2 ⇔

1 = 1 + 1
2d1

2 − 1− 1
2d1

2
= 2d1 [difference of squares] ⇒ d1 =

1
2 .

Similarly,

1 = 1 + 1
2d2

2 − 1− d1 − 1
2d2

2
= 2d2 + 2d1 − d21 − d1d2

= (2− d1)(d1 + d2) ⇔

d2 =
1

2− d1
− d1 =

(1− d1)
2

2− d1
, 1 = 1 + 1

2d3
2 − 1− d1 − d2 − 1

2d3
2 ⇔ d3 =

[1− (d1 + d2)]
2

2− (d1 + d2)
, and in general,

dn+1 =
1− n

i=1 di
2

2− n
i=1 di

. If we actually calculate d2 and d3 from the formulas above, we find that they are 1
6
=

1

2 · 3 and

1

12
=

1

3 · 4 respectively, so we suspect that in general, dn =
1

n(n+ 1)
. To prove this, we use induction: Assume that for all

k ≤ n, dk =
1

k(k + 1)
=
1

k
− 1

k + 1
. Then

n

i=1

di = 1− 1

n+ 1
=

n

n+ 1
[telescoping sum]. Substituting this into our

formula for dn+1, we get dn+1 =
1− n

n+ 1

2

2− n

n+ 1

=

1

(n+ 1)2

n+ 2

n+ 1

=
1

(n+ 1)(n+ 2)
, and the induction is complete.

Now, we observe that the partial sums n
i=1 di of the diameters of the circles approach 1 as n→∞; that is,

∞

n=1

an =
∞

n=1

1

n(n+ 1)
= 1, which is what we wanted to prove.

65. The series 1− 1 + 1− 1 + 1− 1 + · · · diverges (geometric series with r = −1) so we cannot say that

0 = 1− 1 + 1− 1 + 1− 1 + · · · .

67. ∞
n=1 can = lim

n→∞
n
i=1 cai = lim

n→∞
c n

i=1 ai = c lim
n→∞

n
i=1 ai = c ∞

n=1 an, which exists by hypothesis.

69. Suppose on the contrary that (an + bn) converges. Then (an + bn) and an are convergent series. So by Theorem 8,

[(an + bn)− an] would also be convergent. But [(an + bn)− an] = bn, a contradiction, since bn is given to be

divergent.

71. The partial sums {sn} form an increasing sequence, since sn − sn−1 = an > 0 for all n. Also, the sequence {sn} is bounded

since sn ≤ 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

an is convergent.
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73. (a) At the first step, only the interval 1
3 ,

2
3

(length 1
3 ) is removed. At the second step, we remove the intervals 1

9 ,
2
9

and

7
9
, 8
9

, which have a total length of 2 · 1
3

2. At the third step, we remove 22 intervals, each of length 1
3

3. In general,

at the nth step we remove 2n−1 intervals, each of length 1
3

n, for a length of 2n−1 · 1
3

n
= 1

3
2
3

n−1. Thus, the total

length of all removed intervals is
∞

n=1

1
3

2
3

n−1
= 1/3

1− 2/3 = 1 geometric series with a = 1
3

and r = 2
3

. Notice that at

the nth step, the leftmost interval that is removed is 1
3

n
, 2

3

n , so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is 1− 2
3

n
, 1− 1

3

n , so 1 is never removed. Some other numbers in the Cantor set

are 1
3 , 23 , 19 , 29 , 79 , and 8

9 .

(b) The area removed at the first step is 1
9

; at the second step, 8 · 1
9

2; at the third step, (8)2 · 1
9

3. In general, the area

removed at the nth step is (8)n−1 1
9

n
= 1

9
8
9

n−1, so the total area of all removed squares is

∞

n=1

1

9

8

9

n−1
=

1/9

1 − 8/9
= 1.

75. (a) For
∞

n=1

n

(n+ 1)!
, s1 =

1

1 · 2 =
1

2
, s2 =

1

2
+

2

1 · 2 · 3 =
5

6
, s3 =

5

6
+

3

1 · 2 · 3 · 4 =
23

24
,

s4 =
23

24
+

4

1 · 2 · 3 · 4 · 5 =
119

120
. The denominators are (n+ 1)!, so a guess would be sn =

(n+ 1)!− 1
(n+ 1)!

.

(b) For n = 1, s1 =
1

2
=
2!− 1
2!

, so the formula holds for n = 1. Assume sk =
(k + 1)!− 1
(k + 1)!

. Then

sk+1 =
(k + 1)!− 1
(k + 1)!

+
k + 1

(k + 2)!
=
(k + 1)!− 1
(k + 1)!

+
k + 1

(k + 1)!(k + 2)
=
(k + 2)!− (k + 2) + k + 1

(k + 2)!

=
(k + 2)!− 1
(k + 2)!

Thus, the formula is true for n = k + 1. So by induction, the guess is correct.

(c) lim
n→∞

sn = lim
n→∞

(n+ 1)!− 1
(n+ 1)!

= lim
n→∞

1− 1

(n+ 1)!
= 1 and so

∞

n=1

n

(n+ 1)!
= 1.

11.3 The Integral Test and Estimates of Sums

1. The picture shows that a2 =
1

21.3
<

2

1

1

x1.3
dx,

a3 =
1

31.3
<

3

2

1

x1.3
dx, and so on, so

∞

n=2

1

n1.3
<

∞

1

1

x1.3
dx. The

integral converges by (7.8.2) with p = 1.3 > 1, so the series converges.

3. The function f(x) = 1/ 5
√
x = x−1/5 is continuous, positive, and decreasing on [1,∞), so the Integral Test applies.

∞
1

x−1/5 dx = lim
t→∞

t

1
x−1/5 dx = lim

t→∞
5
4
x4/5

t

1
= lim

t→∞
5
4
t4/5 − 5

4
=∞, so

∞

n=1

1/ 5
√
n diverges.
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5. The function f(x) = 1

(2x+ 1)3
is continuous, positive, and decreasing on [1,∞), so the Integral Test applies.

∞

1

1

(2x+ 1)3
dx = lim

t→∞

t

1

1

(2x+ 1)3
dx = lim

t→∞
−1
4

1

(2x+ 1)2

t

1

= lim
t→∞

− 1

4(2t+ 1)2
+
1

36
=
1

36
.

Since this improper integral is convergent, the series
∞

n=1

1

(2n+ 1)3
is also convergent by the Integral Test.

7. f(x) = xe−x is continuous and positive on [1,∞). f 0(x) = −xe−x + e−x = e−x(1− x) < 0 for x > 1, so f is decreasing

on [1,∞). Thus, the Integral Test applies.

∞
1

xe−x dx = lim
b→∞

b

1
xe−x dx = lim

b→∞
−xe−x − e−x

b

1
[by parts] = lim

b→∞
[−be−b − e−b + e−1 + e−1] = 2/e

since lim
b→∞

be−b = lim
b→∞

(b/eb)
H
= lim

b→∞
(1/eb) = 0 and lim

b→∞
e−b = 0. Thus, ∞

n=1 ne
−n converges.

9. The series
∞

n=1

1

n0.85
is a p-series with p = 0.85 ≤ 1, so it diverges by (1). Therefore, the series

∞

n=1

2

n0.85
must also diverge,

for if it converged, then
∞

n=1

1

n0.85
would have to converge [by Theorem 8(i) in Section 11.2].

11. 1 + 1

8
+
1

27
+
1

64
+

1

125
+ · · · =

∞

n=1

1

n3
. This is a p-series with p = 3 > 1, so it converges by (1).

13. 1 + 1

3
+
1

5
+
1

7
+
1

9
+ · · · =

∞

n=1

1

2n− 1 . The function f(x) =
1

2x− 1 is

continuous, positive, and decreasing on [1,∞), so the Integral Test applies.
∞

1

1

2x− 1 dx = lim
t→∞

t

1

1

2x− 1 dx = lim
t→∞

1
2
ln |2x− 1| t

1
= 1

2
lim
t→∞

(ln(2t− 1)− 0) =∞, so the series
∞

n=1

1

2n− 1
diverges.

15.
∞

n=1

5− 2√n
n3

= 5
∞

n=1

1

n3
− 2

∞

n=1

1

n5/2
by Theorem 11.2.8, since

∞

n=1

1

n3
and

∞

n=1

1

n5/2
both converge by (1)

with p = 3 > 1 and p = 5
2 > 1 . Thus,

∞

n=1

5− 2√n
n3

converges.

17. The function f(x) = 1

x2 + 4
is continuous, positive, and decreasing on [1,∞), so we can apply the Integral Test.

∞

1

1

x2 + 4
dx= lim

t→∞

t

1

1

x2 + 4
dx = lim

t→∞
1

2
tan−1

x

2

t

1

=
1

2
lim
t→∞

tan−1
t

2
− tan−1 1

2

=
1

2

π

2
− tan−1 1

2

Therefore, the series
∞

n=1

1

n2 + 4
converges.

19.
∞

n=1

lnn

n3
=

∞

n=2

lnn

n3
since ln 1

1
= 0. The function f(x) = lnx

x3
is continuous and positive on [2,∞).

f 0(x) =
x3(1/x)− (lnx)(3x2)

(x3)2
=

x2 − 3x2 lnx
x6

=
1− 3 lnx

x4
< 0 ⇔ 1− 3 lnx < 0 ⇔ lnx > 1

3 ⇔
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x > e1/3 ≈ 1.4, so f is decreasing on [2,∞), and the Integral Test applies.

∞

2

lnx

x3
dx = lim

t→∞

t

2

lnx

x3
dx

( )
= lim

t→∞
− lnx
2x2

− 1

4x2

t

1

= lim
t→∞

− 1

4t2
(2 ln t+ 1) +

1

4

( )
=

1

4
, so the series

∞

n=2

lnn

n3

converges.

( ): u = lnx, dv = x−3 dx ⇒ du = (1/x) dx, v = − 1
2
x−2, so

lnx

x3
dx = − 1

2x
−2 lnx− − 1

2x
−2(1/x) dx = − 1

2x
−2 lnx+ 1

2 x−3 dx = − 1
2x
−2 lnx− 1

4x
−2 + C.

( ): lim
t→∞

−2 ln t+ 1
4t2

H
= − lim

t→∞
2/t

8t
= − 1

4
lim
t→∞

1

t2
= 0.

21. f(x) = 1

x lnx
is continuous and positive on [2,∞), and also decreasing since f 0(x) = − 1 + lnx

x2(lnx)2
< 0 for x > 2, so we can

use the Integral Test.
∞

2

1

x lnx
dx = lim

t→∞
[ln(lnx)]t2 = lim

t→∞
[ln(ln t)− ln(ln 2)] =∞, so the series

∞

n=2

1

n lnn
diverges.

23. The function f(x) = e1/x/x2 is continuous, positive, and decreasing on [1,∞), so the Integral Test applies.

[g(x) = e1/x is decreasing and dividing by x2 doesn’t change that fact.]

∞

1

f(x) dx = lim
t→∞

t

1

e1/x

x2
dx = lim

t→∞
−e1/x t

1
= − lim

t→∞
(e1/t − e) = −(1− e) = e− 1, so the series

∞

n=1

e1/n

n2

converges.

25. The function f(x) = 1

x3 + x
is continuous, positive, and decreasing on [1,∞), so the Integral Test applies. We use partial

fractions to evaluate the integral:
∞

1

1

x3 + x
dx= lim

t→∞

t

1

1

x
− x

1 + x2
dx = lim

t→∞
lnx− 1

2
ln(1 + x2)

t

1

= lim
t→∞

ln
x√
1 + x2

t

1

= lim
t→∞

ln
t√
1 + t2

− ln 1√
2

= lim
t→∞

ln
1

1 + 1/t2
+
1

2
ln 2 =

1

2
ln 2

so the series
∞

n=1

1

n3 + n
converges.

27. We have already shown (in Exercise 21) that when p = 1 the series
∞

n=2

1

n(lnn)p
diverges, so assume that p 6= 1.

f(x) =
1

x(lnx)p
is continuous and positive on [2,∞), and f 0(x) = − p+ lnx

x2(lnx)p+1
< 0 if x > e−p, so that f is eventually

decreasing and we can use the Integral Test.

∞

2

1

x(lnx)p
dx = lim

t→∞
(lnx)1−p

1− p

t

2

[for p 6= 1] = lim
t→∞

(ln t)1−p

1− p
− (ln 2)1−p

1− p

This limit exists whenever 1− p < 0 ⇔ p > 1, so the series converges for p > 1.
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29. Clearly the series cannot converge if p ≥ − 1
2 , because then lim

n→∞
n(1 + n2)p 6= 0. So assume p < − 1

2 . Then

f(x) = x(1 + x2)p is continuous, positive, and eventually decreasing on [1,∞), and we can use the Integral Test.

∞

1

x(1 + x2)pdx = lim
t→∞

1

2
· (1 + x2)p+1

p+ 1

t

1

=
1

2(p+ 1)
lim
t→∞

[(1 + t2)p+1 − 2p+1].

This limit exists and is finite ⇔ p+ 1 < 0 ⇔ p < −1, so the series converges whenever p < −1.

31. Since this is a p-series with p = x, ζ(x) is defined when x > 1. Unless specified otherwise, the domain of a function f is the

set of real numbers x such that the expression for f(x) makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers x such that the series is convergent.

33. (a) f(x) = 1

x2
is positive and continuous and f 0(x) = − 2

x3
is negative for x > 0, and so the Integral Test applies.

∞

n=1

1

n2
≈ s10 =

1

12
+
1

22
+
1

32
+ · · ·+ 1

102
≈ 1.549768.

R10 ≤
∞

10

1

x2
dx = lim

t→∞
−1
x

t

10

= lim
t→∞

−1
t
+
1

10
=
1

10
, so the error is at most 0.1.

(b) s10 +
∞

11

1

x2
dx ≤ s ≤ s10 +

∞

10

1

x2
dx ⇒ s10 +

1
11
≤ s ≤ s10 +

1
10

⇒

1.549768 + 0.090909 = 1.640677 ≤ s ≤ 1.549768 + 0.1 = 1.649768, so we get s ≈ 1.64522 (the average of 1.640677

and 1.649768) with error ≤ 0.005 (the maximum of 1.649768− 1.64522 and 1.64522− 1.640677, rounded up).

(c) Rn ≤
∞

n

1

x2
dx =

1

n
. So Rn < 0.001 if 1

n
<

1

1000
⇔ n > 1000.

35. f(x) = 1/(2x+ 1)6 is continuous, positive, and decreasing on [1,∞), so the Integral Test applies. Using (2),

Rn ≤
∞

n

(2x+ 1)−6 dx = lim
t→∞

−1
10(2x+ 1)5

t

n

=
1

10(2n+ 1)5
. To be correct to five decimal places, we want

1

10(2n+ 1)5
≤ 5

106
⇔ (2n+ 1)5 ≥ 20,000 ⇔ n ≥ 1

2
5
√
20,000− 1 ≈ 3.12, so use n = 4.

s4 =
4

n=1

1

(2n+ 1)6
=
1

36
+
1

56
+
1

76
+
1

96
≈ 0.001 446 ≈ 0.00145.

37.
∞

n=1

n−1.001 =
∞

n=1

1

n1.001
is a convergent p-series with p = 1.001 > 1. Using (2), we get

Rn ≤
∞

n

x−1.001 dx = lim
t→∞

x−0.001

−0.001
t

n

= −1000 lim
t→∞

1

x0.001

t

n

= −1000 − 1

n0.001
=
1000

n0.001
.

We want Rn < 0.000 000 005 ⇔ 1000

n0.001
< 5 × 10−9 ⇔ n0.001 >

1000

5× 10−9 ⇔

n > 2× 1011 1000
= 21000 × 1011,000 ≈ 1.07× 10301 × 1011,000 = 1.07× 1011,301.
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39. (a) From the figure, a2 + a3 + · · ·+ an ≤ n

1
f(x) dx, so with

f(x) =
1

x
, 1
2
+
1

3
+
1

4
+ · · ·+ 1

n
≤

n

1

1

x
dx = lnn.

Thus, sn = 1 +
1

2
+
1

3
+
1

4
+ · · ·+ 1

n
≤ 1 + lnn.

(b) By part (a), s106 ≤ 1 + ln 106 ≈ 14.82 < 15 and

s109 ≤ 1 + ln 109 ≈ 21.72 < 22.

41. blnn = eln b
lnn

= elnn
ln b

= nln b =
1

n− ln b
. This is a p-series, which converges for all b such that − ln b > 1 ⇔

ln b < −1 ⇔ b < e−1 ⇔ b < 1/e [with b > 0].

11.4 The Comparison Tests

1. (a) We cannot say anything about an. If an > bn for all n and bn is convergent, then an could be convergent or

divergent. (See the note after Example 2.)

(b) If an < bn for all n, then an is convergent. [This is part (i) of the Comparison Test.]

3. n

2n3 + 1
<

n

2n3
=

1

2n2
<
1

n2
for all n ≥ 1, so

∞

n=1

n

2n3 + 1
converges by comparison with

∞

n=1

1

n2
, which converges

because it is a p-series with p = 2 > 1.

5. n+ 1

n
√
n
>

n

n
√
n
=

1√
n

for all n ≥ 1, so
∞

n=1

n+ 1

n
√
n

diverges by comparison with
∞

n=1

1√
n

, which diverges because it is a

p-series with p = 1
2 ≤ 1.

7. 9n

3 + 10n
<
9n

10n
=

9

10

n

for all n ≥ 1.
∞

n=1

9
10

n is a convergent geometric series |r| = 9
10

< 1 , so
∞

n=1

9n

3 + 10n

converges by the Comparison Test.

9. cos
2 n

n2 + 1
≤ 1

n2 + 1
<
1

n2
, so the series

∞

n=1

cos2 n

n2 + 1
converges by comparison with the p-series

∞

n=1

1

n2
[p = 2 > 1].

11. n− 1
n 4n

is positive for n > 1 and n− 1
n 4n

<
n

n 4n
=
1

4n
=

1

4

n

, so
∞

n=1

n− 1
n 4n

converges by comparison with the convergent

geometric series
∞

n=1

1

4

n

.

13. arctann
n1.2

<
π/2

n1.2
for all n ≥ 1, so

∞

n=1

arctann

n1.2
converges by comparison with π

2

∞

n=1

1

n1.2
, which converges because it is a

constant times a p-series with p = 1.2 > 1.

15. 2 + (−1)
n

n
√
n

≤ 3

n
√
n

, and
∞

n=1

3

n
√
n

converges because it is a constant multiple of the convergent p-series
∞

n=1

1

n
√
n

p = 3
2 > 1 , so the given series converges by the Comparison Test.
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17. Use the Limit Comparison Test with an =
1√

n2 + 1
and bn =

1

n
:

lim
n→∞

an
bn
= lim

n→∞
n√

n2 + 1
= lim

n→∞
1

1 + (1/n2)
= 1 > 0. Since the harmonic series

∞

n=1

1

n
diverges, so does

∞

n=1

1√
n2 + 1

.

19. Use the Limit Comparison Test with an =
1 + 4n

1 + 3n
and bn =

4n

3n
:

lim
n→∞

an
bn
= lim

n→∞

1 + 4n

1 + 3n

4n

3n

= lim
n→∞

1 + 4n

1 + 3n
· 3

n

4n
= lim

n→∞
1 + 4n

4n
· 3n

1 + 3n
= lim

n→∞
1

4n
+ 1 · 1

1

3n
+ 1

= 1 > 0

Since the geometric series bn =
4
3

n diverges, so does
∞

n=1

1 + 4n

1 + 3n
. Alternatively, use the Comparison Test with

1 + 4n

1 + 3n
>
1 + 4n

3n + 3n
>

4n

2(3n)
=
1

2

4

3

n

or use the Test for Divergence.

21. Use the Limit Comparison Test with an =
√
n+ 2

2n2 + n+ 1
and bn =

1

n3/2
:

lim
n→∞

an
bn
= lim

n→∞
n3/2

√
n+ 2

2n2 + n+ 1
= lim

n→∞
(n3/2

√
n+ 2 )/(n3/2

√
n )

(2n2 + n+ 1)/n2
= lim

n→∞
1 + 2/n

2 + 1/n+ 1/n2
=

√
1

2
=
1

2
> 0.

Since
∞

n=1

1

n3/2
is a convergent p-series p = 3

2
> 1 , the series

∞

n=1

√
n+ 2

2n2 + n+ 1
also converges.

23. Use the Limit Comparison Test with an =
5 + 2n

(1 + n2)2
and bn =

1

n3
:

lim
n→∞

an
bn
= lim

n→∞
n3(5 + 2n)

(1 + n2)2
= lim

n→∞
5n3 + 2n4

(1 + n2)2
· 1/n4

1/(n2)2
= lim

n→∞

5
n + 2
1
n2
+ 1

2 = 2 > 0. Since
∞

n=1

1

n3
is a convergent

p-series [p = 3 > 1], the series
∞

n=1

5 + 2n

(1 + n2)2
also converges.

25. If an =
1+ n+ n2√
1 + n2 + n6

and bn =
1

n
, then lim

n→∞
an
bn
= lim

n→∞
n+ n2 + n3√
1 + n2 + n6

= lim
n→∞

1/n2 + 1/n+ 1

1/n6 + 1/n4 + 1
= 1 > 0,

so
∞

n=1

1 + n+ n2√
1 + n2 + n6

diverges by the Limit Comparison Test with the divergent harmonic series
∞

n=1

1

n
.

27. Use the Limit Comparison Test with an = 1 +
1

n

2

e−n and bn = e−n: lim
n→∞

an
bn
= lim

n→∞
1 +

1

n

2

= 1 > 0. Since

∞

n=1

e−n =
∞

n=1

1

en
is a convergent geometric series |r| = 1

e
< 1 , the series

∞

n=1

1 +
1

n

2

e−n also converges.

29. Clearly n! = n(n− 1)(n− 2) · · · (3)(2) ≥ 2 · 2 · 2 · · · · · 2 · 2 = 2n−1, so 1

n!
≤ 1

2n−1
.
∞

n=1

1

2n−1
is a convergent geometric

series |r| = 1
2
< 1 , so

∞

n=1

1

n!
converges by the Comparison Test.
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31. Use the Limit Comparison Test with an = sin
1

n
and bn =

1

n
. Then an and bn are series with positive terms and

lim
n→∞

an
bn
= lim

n→∞
sin(1/n)

1/n
= lim

θ→0

sin θ

θ
= 1 > 0. Since

∞

n=1

bn is the divergent harmonic series,

∞

n=1

sin (1/n) also diverges. [Note that we could also use l’Hospital’s Rule to evaluate the limit:

lim
x→∞

sin(1/x)

1/x
H
= lim

x→∞
cos(1/x) · −1/x2

−1/x2 = lim
x→∞

cos
1

x
= cos 0 = 1.]

33.
10

n=1

1√
n4 + 1

=
1√
2
+

1√
17
+

1√
82
+ · · ·+ 1√

10,001
≈ 1.24856. Now 1√

n4 + 1
<

1√
n4
=
1

n2
, so the error is

R10 ≤ T10 ≤
∞

10

1

x2
dx = lim

t→∞
− 1
x

t

10

= lim
t→∞

−1
t
+
1

10
=
1

10
= 0.1.

35.
10

n=1

1

1 + 2n
=
1

3
+
1

5
+
1

9
+ · · · + 1

1025
≈ 0.76352. Now 1

1 + 2n
<

1

2n
, so the error is

R10 ≤ T10 =
∞

n=11

1

2n
=

1/211

1− 1/2 [geometric series] ≈ 0.00098.

37. Since dn
10n

≤ 9

10n
for each n, and since

∞

n=1

9

10n
is a convergent geometric series |r| = 1

10
< 1 , 0.d1d2d3 . . . =

∞

n=1

dn
10n

will always converge by the Comparison Test.

39. Since an converges, lim
n→∞

an = 0, so there exists N such that |an − 0| < 1 for all n > N ⇒ 0 ≤ an < 1 for

all n > N ⇒ 0 ≤ a2n ≤ an. Since an converges, so does a2n by the Comparison Test.

41. (a) Since lim
n→∞

an
bn
=∞, there is an integer N such that an

bn
> 1 whenever n > N . (Take M = 1 in Definition 11.1.5.)

Then an > bn whenever n > N and since bn is divergent, an is also divergent by the Comparison Test.

(b) (i) If an =
1

lnn
and bn =

1

n
for n ≥ 2, then lim

n→∞
an
bn
= lim

n→∞
n

lnn
= lim

x→∞
x

lnx
H
= lim

x→∞
1

1/x
= lim

x→∞
x =∞,

so by part (a),
∞

n=2

1

lnn
is divergent.

(ii) If an =
lnn

n
and bn =

1

n
, then

∞

n=1

bn is the divergent harmonic series and lim
n→∞

an
bn
= lim

n→∞
lnn = lim

x→∞
lnx =∞,

so
∞

n=1

an diverges by part (a).

43. lim
n→∞

nan = lim
n→∞

an
1/n

, so we apply the Limit Comparison Test with bn =
1

n
. Since lim

n→∞
nan > 0 we know that either both

series converge or both series diverge, and we also know that
∞

n=1

1

n
diverges [p-series with p = 1]. Therefore, an must be

divergent.
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45. Yes. Since an is a convergent series with positive terms, lim
n→∞

an = 0 by Theorem 11.2.6, and bn = sin(an) is a

series with positive terms (for large enough n). We have lim
n→∞

bn
an

= lim
n→∞

sin(an)

an
= 1 > 0 by Theorem 3.3.2. Thus, bn

is also convergent by the Limit Comparison Test.

11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series
∞

n=1

(−1)n−1bn converges if 0 < bn+1 ≤ bn for all n and lim
n→∞

bn = 0. (This is the Alternating

Series Test.)

(c) The error involved in using the partial sum sn as an approximation to the total sum s is the remainder Rn = s− sn and the

size of the error is smaller than bn+1; that is, |Rn| ≤ bn+1. (This is the Alternating Series Estimation Theorem.)

3. 4
7
− 4

8
+
4

9
− 4

10
+
4

11
− · · · =

∞

n=1

(−1)n−1 4

n+ 6
. Now bn =

4

n+ 6
> 0, {bn} is decreasing, and lim

n→∞
bn = 0, so the

series converges by the Alternating Series Test.

5.
∞

n=1

an =
∞

n=1

(−1)n−1 1

2n+ 1
=

∞

n=1

(−1)n−1 bn. Now bn =
1

2n+ 1
> 0, {bn} is decreasing, and lim

n→∞
bn = 0, so the

series converges by the Alternating Series Test.

7.
∞

n=1

an =
∞

n=1

(−1)n 3n− 1
2n+ 1

=
∞

n=1

(−1)nbn. Now lim
n→∞

bn = lim
n→∞

3− 1/n
2 + 1/n

=
3

2
6= 0. Since lim

n→∞
an 6= 0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

9. bn =
n

10n
> 0 for n ≥ 1. {bn} is decreasing for n ≥ 1 since

x

10x

0
=
10x(1)− x · 10x ln 10

(10x)2
=
10x(1− x ln 10)

(10x)2
=
1− x ln 10

10x
< 0 for 1− x ln 10 < 0 ⇒ x ln 10 > 1 ⇒

x >
1

ln 10
≈ 0.4. Also, lim

n→∞
bn = lim

n→∞
n

10n
= lim

x→∞
x

10x
H
= lim

x→∞
x

10x ln 10
= 0. Thus, the series

∞

n=1

(−1)n n

10n

converges by the Alternating Series Test.

11. bn =
n2

n3 + 4
> 0 for n ≥ 1. {bn} is decreasing for n ≥ 2 since

x2

x3 + 4

0
=
(x3 + 4)(2x)− x2(3x2)

(x3 + 4)2
=

x(2x3 + 8− 3x3)
(x3 + 4)2

=
x(8− x3)

(x3 + 4)2
< 0 for x > 2. Also,

lim
n→∞

bn = lim
n→∞

1/n

1 + 4/n3
= 0. Thus, the series

∞

n=1

(−1)n+1 n2

n3 + 4
converges by the Alternating Series Test.

13.
∞

n=2

(−1)n n

lnn
. lim
n→∞

n

lnn
= lim

x→∞
x

lnx
H
= lim

x→∞
1

1/x
=∞, so the series diverges by the Test for Divergence.
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15.
∞

n=1

cosnπ

n3/4
=

∞

n=1

(−1)n
n3/4

. bn =
1

n3/4
is decreasing and positive and lim

n→∞
1

n3/4
= 0, so the series converges by the

Alternating Series Test.

17.
∞

n=1

(−1)n sin π

n
. bn = sin

π

n
> 0 for n ≥ 2 and sin π

n
≥ sin π

n+ 1
, and lim

n→∞
sin

π

n
= sin 0 = 0, so the series

converges by the Alternating Series Test.

19. nn

n!
=

n · n · · · · · n
1 · 2 · · · · · n ≥ n ⇒ lim

n→∞
nn

n!
=∞ ⇒ lim

n→∞
(−1)n nn

n!
does not exist. So the series diverges by the Test for

Divergence.

21.
n an sn

1 1 1

2 −0.35355 0.64645

3 0.19245 0.83890

4 −0.125 0.71390

5 0.08944 0.80334

6 −0.06804 0.73530

7 0.05399 0.78929

8 −0.04419 0.74510

9 0.03704 0.78214

10 −0.03162 0.75051

By the Alternating Series Estimation Theorem, the error in the approximation

∞

n=1

(−1)n−1
n3/2

≈ 0.75051 is |s− s10| ≤ b11 = 1/(11)
3/2 ≈ 0.0275 (to four

decimal places, rounded up).

23. The series
∞

n=1

(−1)n+1
n6

satisfies (i) of the Alternating Series Test because 1

(n+ 1)6
<
1

n6
and (ii) lim

n→∞
1

n6
= 0, so the

series is convergent. Now b5 =
1

56
= 0.000064 > 0.00005 and b6 =

1

66
≈ 0.00002 < 0.00005, so by the Alternating Series

Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

25. The series
∞

n=0

(−1)n
10n n!

satisfies (i) of the Alternating Series Test because 1

10n+1(n+ 1)!
<

1

10n n!
and (ii) lim

n→∞
1

10n n!
= 0,

so the series is convergent. Now b3 =
1

103 3!
≈ 0.000 167 > 0.000 005 and b4 =

1

104 4!
= 0.000 004 < 0.000 005, so by

the Alternating Series Estimation Theorem, n = 4 (since the series starts with n = 0, not n = 1). (That is, since the 5th term

is less than the desired error, we need to add the first 4 terms to get the sum to the desired accuracy.)

27. b7 =
1

75
=

1

16,807
≈ 0.000 059 5, so

∞

n=1

(−1)n+1
n5

≈ s6 =
6

n=1

(−1)n+1
n5

= 1− 1
32
+ 1

243
− 1

1024
+ 1

3125
− 1

7776
≈ 0.972 080. Adding b7 to s6 does not change

the fourth decimal place of s6, so the sum of the series, correct to four decimal places, is 0.9721.
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29. b7 =
72

107
= 0.000 004 9, so

∞

n=1

(−1)n−1n2
10n

≈ s6 =
6

n=1

(−1)n−1n2
10n

= 1
10 − 4

100 +
9

1000 − 16
10,000 +

25
100,000 − 36

1,000,000 = 0.067 614. Adding b7 to s6

does not change the fourth decimal place of s6, so the sum of the series, correct to four decimal places, is 0.0676.

31.
∞

n=1

(−1)n−1
n

= 1− 1

2
+
1

3
− 1

4
+ · · ·+ 1

49
− 1

50
+
1

51
− 1

52
+ · · · . The 50th partial sum of this series is an

underestimate, since
∞

n=1

(−1)n−1
n

= s50 +
1

51
− 1

52
+

1

53
− 1

54
+ · · · , and the terms in parentheses are all positive.

The result can be seen geometrically in Figure 1.

33. Clearly bn =
1

n+ p
is decreasing and eventually positive and lim

n→∞
bn = 0 for any p. So the series converges (by the

Alternating Series Test) for any p for which every bn is defined, that is, n+ p 6= 0 for n ≥ 1, or p is not a negative integer.

35. b2n = 1/(2n)2 clearly converges (by comparison with the p-series for p = 2). So suppose that (−1)n−1 bn

converges. Then by Theorem 11.2.8(ii), so does (−1)n−1bn + bn = 2 1 + 1
3 +

1
5 + · · · = 2

1

2n− 1 . But this

diverges by comparison with the harmonic series, a contradiction. Therefore, (−1)n−1 bn must diverge. The Alternating

Series Test does not apply since {bn} is not decreasing.

11.6 Absolute Convergence and the Ratio and Root Tests

1. (a) Since lim
n→∞

an+1
an

= 8 > 1, part (b) of the Ratio Test tells us that the series an is divergent.

(b) Since lim
n→∞

an+1
an

= 0.8 < 1, part (a) of the Ratio Test tells us that the series an is absolutely convergent (and

therefore convergent).

(c) Since lim
n→∞

an+1
an

= 1, the Ratio Test fails and the series an might converge or it might diverge.

3.
∞

n=0

(−10)n
n!

. Using the Ratio Test, lim
n→∞

an+1
an

= lim
n→∞

(−10)n+1
(n+ 1)!

· n!

(−10)n = lim
n→∞

−10
n+ 1

= 0 < 1, so the series is

absolutely convergent.

5.
∞

n=1

(−1)n+1
4
√
n

converges by the Alternating Series Test, but
∞

n=1

1
4
√
n

is a divergent p-series p = 1
4
≤ 1 , so the given series

is conditionally convergent.
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7. lim
k→∞

ak+1
ak

= lim
k→∞

(k + 1) 2
3

k+1

k 2
3

k
= lim

k→∞
k + 1

k

2

3

1

=
2

3
lim
k→∞

1 +
1

k
= 2

3
(1) = 2

3
< 1, so the series

∞

n=1

k 2
3

k is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the

same as convergence.

9. lim
n→∞

an+1
an

= lim
n→∞

(1.1)n+1

(n+ 1)4
· n4

(1.1)n
= lim

n→∞
(1.1)n4

(n+ 1)4
= (1.1) lim

n→∞
1

(n+ 1)4

n4

= (1.1) lim
n→∞

1

(1 + 1/n)4

= (1.1)(1) = 1.1 > 1,

so the series
∞

n=1

(−1)n (1.1)
n

n4
diverges by the Ratio Test.

11. Since 0 ≤ e1/n

n3
≤ e

n3
= e

1

n3
and

∞

n=1

1

n3
is a convergent p-series [p = 3 > 1],

∞

n=1

e1/n

n3
converges, and so

∞

n=1

(−1)ne1/n
n3

is absolutely convergent.

13. lim
n→∞

an+1
an

= lim
n→∞

10n+1

(n+ 2) 42n+3
· (n+ 1) 4

2n+1

10n
= lim

n→∞
10

42
· n+ 1
n+ 2

=
5

8
< 1, so the series

∞

n=1

10n

(n+ 1)42n+1

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

15. (−1)n arctann
n2

<
π/2

n2
, so since

∞

n=1

π/2

n2
=

π

2

∞

n=1

1

n2
converges (p = 2 > 1), the given series

∞

n=1

(−1)n arctann
n2

converges absolutely by the Comparison Test.

17.
∞

n=2

(−1)n
lnn

converges by the Alternating Series Test since lim
n→∞

1

lnn
= 0 and 1

lnn
is decreasing. Now lnn < n, so

1

lnn
>
1

n
, and since

∞

n=2

1

n
is the divergent (partial) harmonic series,

∞

n=2

1

lnn
diverges by the Comparison Test. Thus,

∞

n=2

(−1)n
lnn

is conditionally convergent.

19. |cos (nπ/3)|
n!

≤ 1

n!
and

∞

n=1

1

n!
converges (use the Ratio Test), so the series

∞

n=1

cos(nπ/3)

n!
converges absolutely by the

Comparison Test.

21. lim
n→∞

n |an| = lim
n→∞

n2 + 1

2n2 + 1
= lim

n→∞
1 + 1/n2

2 + 1/n2
=
1

2
< 1, so the series

∞

n=1

n2 + 1

2n2 + 1

n

is absolutely convergent by the

Root Test.

23. lim
n→∞

n |an| = lim
n→∞

n
1 +

1

n

n2

= lim
n→∞

1 +
1

n

n

= e > 1 (by Equation 3.6.6), so the series
∞

n=1

1 +
1

n

n2

diverges by the Root Test.
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25. Use the Ratio Test with the series

1− 1 · 3
3!

+
1 · 3 · 5
5!

− 1 · 3 · 5 · 7
7!

+ · · ·+ (−1)n−1 1 · 3 · 5 · · · · · (2n− 1)
(2n− 1)! + · · · =

∞

n=1

(−1)n−1 1 · 3 · 5 · · · · · (2n− 1)
(2n− 1)! .

lim
n→∞

an+1
an

= lim
n→∞

(−1)n · 1 · 3 · 5 · · · · · (2n− 1)[2(n+ 1)− 1]
[2(n+ 1)− 1]! · (2n− 1)!

(−1)n−1 · 1 · 3 · 5 · · · · · (2n− 1)

= lim
n→∞

(−1)(2n+ 1)(2n− 1)!
(2n+ 1)(2n)(2n− 1)! = lim

n→∞
1

2n
= 0 < 1,

so the given series is absolutely convergent and therefore convergent.

27.
∞

n=1

2 · 4 · 6 · · · · · (2n)
n!

=
∞

n=1

(2 · 1) · (2 · 2) · (2 · 3) · · · · · (2 · n)
n!

=
∞

n=1

2nn!

n!
=

∞

n=1

2n, which diverges by the Test for

Divergence since lim
n→∞

2n =∞.

29. By the recursive definition, lim
n→∞

an+1
an

= lim
n→∞

5n+ 1

4n+ 3
=
5

4
> 1, so the series diverges by the Ratio Test.

31. (a) lim
n→∞

1/(n+ 1)3

1/n3
= lim

n→∞
n3

(n+ 1)3
= lim

n→∞
1

(1 + 1/n)3
= 1. Inconclusive

(b) lim
n→∞

(n+ 1)

2n+1
· 2

n

n
= lim

n→∞
n+ 1

2n
= lim

n→∞
1

2
+
1

2n
=
1

2
. Conclusive (convergent)

(c) lim
n→∞

(−3)n√
n+ 1

·
√
n

(−3)n−1 = 3 lim
n→∞

n

n+ 1
= 3 lim

n→∞
1

1 + 1/n
= 3. Conclusive (divergent)

(d) lim
n→∞

√
n+ 1

1 + (n+ 1)2
· 1 + n2√

n
= lim

n→∞
1 +

1

n
· 1/n2 + 1

1/n2 + (1 + 1/n)2
= 1. Inconclusive

33. (a) lim
n→∞

an+1
an

= lim
n→∞

xn+1

(n+ 1)!
· n!
xn

= lim
n→∞

x

n+ 1
= |x| lim

n→∞
1

n+ 1
= |x| · 0 = 0 < 1, so by the Ratio Test the

series
∞

n=0

xn

n!
converges for all x.

(b) Since the series of part (a) always converges, we must have lim
n→∞

xn

n!
= 0 by Theorem 11.2.6.

35. (a) s5 =
5

n=1

1

n2n
=
1

2
+
1

8
+
1

24
+
1

64
+

1

160
=
661

960
≈ 0.68854. Now the ratios

rn =
an+1
an

=
n2n

(n+ 1)2n+1
=

n

2(n+ 1)
form an increasing sequence, since

rn+1 − rn =
n+ 1

2(n+ 2)
− n

2(n+ 1)
=
(n+ 1)2 − n(n+ 2)

2(n+ 1)(n+ 2)
=

1

2(n+ 1)(n+ 2)
> 0. So by Exercise 34(b), the error

in using s5 is R5 ≤ a6
1− lim

n→∞
rn
=
1/ 6 · 26
1− 1/2 =

1

192
≈ 0.00521.

(b) The error in using sn as an approximation to the sum is Rn =
an+1

1− 1
2

=
2

(n+ 1)2n+1
. We want Rn < 0.00005 ⇔

1

(n+ 1)2n
< 0.00005 ⇔ (n+ 1)2n > 20,000. To find such an n we can use trial and error or a graph. We calculate

(11 + 1)211 = 24,576, so s11 =
11

n=1

1

n2n
≈ 0.693109 is within 0.00005 of the actual sum.
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37. (i) Following the hint, we get that |an| < rn for n ≥ N , and so since the geometric series ∞
n=1 r

n converges [0 < r < 1],

the series ∞
n=N |an| converges as well by the Comparison Test, and hence so does ∞

n=1 |an|, so ∞
n=1 an is absolutely

convergent.

(ii) If lim
n→∞

n |an| = L > 1, then there is an integer N such that n |an| > 1 for all n ≥ N , so |an| > 1 for n ≥ N . Thus,

lim
n→∞

an 6= 0, so ∞
n=1 an diverges by the Test for Divergence.

(iii) Consider
∞

n=1

1

n
[diverges] and

∞

n=1

1

n2
[converges]. For each sum, lim

n→∞
n |an| = 1, so the Root Test is inconclusive.

39. (a) Since an is absolutely convergent, and since a+n ≤ |an| and a−n ≤ |an| (because a+n and a−n each equal

either an or 0), we conclude by the Comparison Test that both a+n and a−n must be absolutely convergent.

Or: Use Theorem 11.2.8.

(b) We will show by contradiction that both a+n and a−n must diverge. For suppose that a+n converged. Then so

would a+n − 1
2an by Theorem 11.2.8. But a+n − 1

2an = 1
2 (an + |an|)− 1

2an = 1
2 |an|, which

diverges because an is only conditionally convergent. Hence, a+n can’t converge. Similarly, neither can a−n .

11.7 Strategy for Testing Series

1. 1

n+ 3n
<

1

3n
=

1

3

n

for all n ≥ 1.
∞

n=1

1

3

n

is a convergent geometric series |r| = 1
3 < 1 , so

∞

n=1

1

n+ 3n

converges by the Comparison Test.

3. lim
n→∞

|an| = lim
n→∞

n

n+ 2
= 1, so lim

n→∞
an = lim

n→∞
(−1)n n

n+ 2
does not exist. Thus, the series

∞

n=1

(−1)n n

n+ 2
diverges by

the Test for Divergence.

5. lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)2 2n

(−5)n+1 · (−5)
n

n2 2n−1
= lim

n→∞
2(n+ 1)2

5n2
=
2

5
lim
n→∞

1 +
1

n

2

=
2

5
(1) =

2

5
< 1, so the series

∞

n=1

n2 2n−1

(−5)n converges by the Ratio Test.

7. Let f(x) = 1

x
√
lnx

. Then f is positive, continuous, and decreasing on [2,∞), so we can apply the Integral Test.

Since 1

x
√
lnx

dx
u = lnx,

du = dx/x
= u−1/2 du = 2u1/2 + C = 2

√
lnx+ C, we find

∞

2

dx

x
√
lnx

= lim
t→∞

t

2

dx

x
√
lnx

= lim
t→∞

2
√
lnx

t

2
= lim

t→∞
2
√
ln t− 2

√
ln 2 =∞. Since the integral diverges, the

given series
∞

n=2

1

n
√
lnn

diverges.
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9.
∞

k=1

k2e−k =
∞

k=1

k2

ek
. Using the Ratio Test, we get

lim
k→∞

ak+1
ak

= lim
k→∞

(k + 1)2

ek+1
· e

k

k2
= lim

k→∞
k + 1

k

2

· 1
e
= 12 · 1

e
=
1

e
< 1, so the series converges.

11. bn =
1

n lnn
> 0 for n ≥ 2, {bn} is decreasing, and lim

n→∞
bn = 0, so the given series

∞

n=2

(−1)n+1
n lnn

converges by the

Alternating Series Test.

13. lim
n→∞

an+1
an

= lim
n→∞

3n+1 (n+ 1)2

(n+ 1)!
· n!

3nn2
= lim

n→∞
3(n+ 1)2

(n+ 1)n2
= 3 lim

n→∞
n+ 1

n2
= 0 < 1, so the series

∞

n=1

3nn2

n!

converges by the Ratio Test.

15. lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)!

2 · 5 · 8 · · · · · (3n+ 2)[3(n+ 1) + 2] ·
2 · 5 · 8 · · · · · (3n+ 2)

n!
= lim

n→∞
n+ 1

3n+ 5
=
1

3
< 1,

so the series
∞

n=0

n!

2 · 5 · 8 · · · · · (3n+ 2) converges by the Ratio Test.

17. lim
n→∞

21/n = 20 = 1, so lim
n→∞

(−1)n 21/n does not exist and the series
∞

n=1

(−1)n21/n diverges by the Test for Divergence.

19. Let f(x) = lnx√
x

. Then f 0(x) = 2− lnx
2x3/2

< 0 when lnx > 2 or x > e2, so lnn√
n

is decreasing for n > e2.

By l’Hospital’s Rule, lim
n→∞

lnn√
n
= lim

n→∞
1/n

1/ 2
√
n

= lim
n→∞

2√
n
= 0, so the series

∞

n=1

(−1)n lnn√
n

converges by the

Alternating Series Test.

21.
∞

n=1

(−2)2n
nn

=
∞

n=1

4

n

n

. lim
n→∞

n |an| = lim
n→∞

4

n
= 0 < 1, so the given series is absolutely convergent by the Root Test.

23. Using the Limit Comparison Test with an = tan
1

n
and bn =

1

n
, we have

lim
n→∞

an
bn
= lim

n→∞
tan(1/n)

1/n
= lim

x→∞
tan(1/x)

1/x
H
= lim

x→∞
sec2(1/x) · (−1/x2)

−1/x2 = lim
x→∞

sec2(1/x) = 12 = 1 > 0. Since

∞

n=1

bn is the divergent harmonic series,
∞

n=1

an is also divergent.

25. Use the Ratio Test. lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)!

e(n+1)2
· e

n2

n!
= lim

n→∞
(n+ 1)n! · en2
en2+2n+1n!

= lim
n→∞

n+ 1

e2n+1
= 0 < 1, so

∞

n=1

n!

en2

converges.

27.
∞

2

lnx

x2
dx = lim

t→∞
− lnx

x
− 1

x

t

1

[using integration by parts] H
= 1. So

∞

n=1

lnn

n2
converges by the Integral Test, and since

k ln k

(k + 1)3
<

k ln k

k3
=
ln k

k2
, the given series

∞

k=1

k ln k

(k + 1)3
converges by the Comparison Test.
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29.
∞

n=1

an =
∞

n=1

(−1)n 1

coshn
=

∞

n=1

(−1)n bn. Now bn =
1

coshn
> 0, {bn} is decreasing, and lim

n→∞
bn = 0, so the series

converges by the Alternating Series Test.

Or: Write 1

coshn
=

2

en + e−n
<
2

en
and

∞

n=1

1

en
is a convergent geometric series, so

∞

n=1

1

coshn
is convergent by the

Comparison Test. So
∞

n=1

(−1)n 1

coshn
is absolutely convergent and therefore convergent.

31. lim
k→∞

ak = lim
k→∞

5k

3k + 4k
= [divide by 4k] lim

k→∞
(5/4)k

(3/4)k + 1
=∞ since lim

k→∞
3

4

k

= 0 and lim
k→∞

5

4

k

=∞.

Thus,
∞

k=1

5k

3k + 4k
diverges by the Test for Divergence.

33. Let an =
sin(1/n)√

n
and bn =

1

n
√
n

. Then lim
n→∞

an
bn
= lim

n→∞
sin(1/n)

1/n
= 1 > 0, so

∞

n=1

sin(1/n)√
n

converges by limit

comparison with the convergent p-series
∞

n=1

1

n3/2
[p = 3/2 > 1].

35. lim
n→∞

n |an| = lim
n→∞

n

n+ 1

n2/n

= lim
n→∞

1

[(n+ 1) /n]n
=

1

lim
n→∞

(1 + 1/n)n
=
1

e
< 1, so the series

∞

n=1

n

n+ 1

n2

converges by the Root Test.

37. lim
n→∞

n |an| = lim
n→∞

(21/n − 1) = 1− 1 = 0 < 1, so the series
∞

n=1

n
√
2− 1 n converges by the Root Test.

11.8 Power Series

1. A power series is a series of the form ∞
n=0 cnx

n = c0 + c1x+ c2x
2 + c3x

3 + · · · , where x is a variable and the cn’s are

constants called the coefficients of the series.

More generally, a series of the form ∞
n=0 cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + · · · is called a power series in

(x− a) or a power series centered at a or a power series about a, where a is a constant.

3. If an =
xn√
n

, then lim
n→∞

an+1
an

= lim
n→∞

xn+1√
n+ 1

·
√
n

xn
= lim

n→∞
x√

n+ 1/
√
n
= lim

n→∞
|x|
1 + 1/n

= |x|.

By the Ratio Test, the series
∞

n=1

xn√
n

converges when |x| < 1, so the radius of convergence R = 1. Now we’ll check the

endpoints, that is, x = ±1. When x = 1, the series
∞

n=1

1√
n

diverges because it is a p-series with p = 1
2
≤ 1. When x = −1,

the series
∞

n=1

(−1)n√
n

converges by the Alternating Series Test. Thus, the interval of convergence is I = [−1, 1).

5. If an =
(−1)n−1xn

n3
, then

lim
n→∞

an+1
an

= lim
n→∞

(−1)nxn+1
(n+ 1)3

· n3

(−1)n−1xn = lim
n→∞

(−1)xn3
(n+ 1)3

= lim
n→∞

n

n+ 1

3

|x| = 13 · |x| = |x|. By the
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Ratio Test, the series
∞

n=1

(−1)n−1xn
n3

converges when |x| < 1, so the radius of convergence R = 1. Now we’ll check the

endpoints, that is, x = ±1. When x = 1, the series
∞

n=1

(−1)n−1
n3

converges by the Alternating Series Test. When x = −1,

the series
∞

n=1

(−1)n−1(−1)n
n3

= −
∞

n=1

1

n3
converges because it is a constant multiple of a convergent p-series [p = 3 > 1].

Thus, the interval of convergence is I = [−1, 1].

7. If an =
xn

n!
, then lim

n→∞
an+1
an

= lim
n→∞

xn+1

(n+ 1)!
· n!
xn

= lim
n→∞

x

n+ 1
= |x| lim

n→∞
1

n+ 1
= |x| · 0 = 0 < 1 for all real x.

So, by the Ratio Test, R =∞ and I = (−∞,∞).

9. If an = (−1)n n2xn

2n
, then

lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)2 xn+1

2n+1
· 2n

n2 xn
= lim

n→∞
x(n+ 1)2

2n2
= lim

n→∞
|x|
2

1 +
1

n

2

=
|x|
2
(1)2 = 1

2 |x|. By the

Ratio Test, the series
∞

n=1

(−1)n n2xn

2n
converges when 1

2
|x| < 1 ⇔ |x| < 2, so the radius of convergence is R = 2.

When x = ±2, both series
∞

n=1

(−1)n n2(±2)n
2n

=
∞

n=1

(∓1)nn2 diverge by the Test for Divergence since

lim
n→∞

(∓1)n n2 =∞. Thus, the interval of convergence is I = (−2, 2).

11. an =
(−2)nxn

4
√
n

, so lim
n→∞

an+1
an

= lim
n→∞

2n+1 |x|n+1
4
√
n+ 1

·
4
√
n

2n |x|n = lim
n→∞

2 |x| 4
n

n+ 1
= 2 |x|, so by the Ratio Test, the

series converges when 2 |x| < 1 ⇔ |x| < 1
2

, so R = 1
2

. When x = − 1
2

, we get the divergent p-series
∞

n=1

1
4
√
n

p = 1
4 ≤ 1 . When x = 1

2 , we get the series
∞

n=1

(−1)n
4
√
n

, which converges by the Alternating Series Test.

Thus, I = − 1
2
, 1
2

.

13. If an = (−1)n xn

4n lnn
, then lim

n→∞
an+1
an

= lim
n→∞

xn+1

4n+1 ln(n+ 1)
· 4

n lnn

xn
=
|x|
4
lim
n→∞

lnn

ln(n+ 1)
=
|x|
4
· 1

[by l’Hospital’s Rule] = |x|
4

. By the Ratio Test, the series converges when |x|
4

< 1 ⇔ |x| < 4, so R = 4. When

x = −4,
∞

n=2

(−1)n xn

4n lnn
=

∞

n=2

[(−1)(−4)]n
4n lnn

=
∞

n=2

1

lnn
. Since lnn < n for n ≥ 2, 1

lnn
>
1

n
and

∞

n=2

1

n
is the

divergent harmonic series (without the n = 1 term),
∞

n=2

1

lnn
is divergent by the Comparison Test. When x = 4,

∞

n=2

(−1)n xn

4n lnn
=

∞

n=2

(−1)n 1

lnn
, which converges by the Alternating Series Test. Thus, I = (−4, 4].
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15. If an =
(x− 2)n
n2 + 1

, then lim
n→∞

an+1
an

= lim
n→∞

(x− 2)n+1
(n+ 1)2 + 1

· n2 + 1

(x− 2)n = |x− 2| lim
n→∞

n2 + 1

(n+ 1)2 + 1
= |x− 2|. By the

Ratio Test, the series
∞

n=0

(x− 2)n
n2 + 1

converges when |x− 2| < 1 [R = 1] ⇔ −1 < x− 2 < 1 ⇔ 1 < x < 3. When

x = 1, the series
∞

n=0

(−1)n 1

n2 + 1
converges by the Alternating Series Test; when x = 3, the series

∞

n=0

1

n2 + 1
converges by

comparison with the p-series
∞

n=1

1

n2
[p = 2 > 1]. Thus, the interval of convergence is I = [1, 3].

17. If an =
3n(x+ 4)n√

n
, then lim

n→∞
an+1
an

= lim
n→∞

3n+1(x+ 4)n+1√
n+ 1

·
√
n

3n(x+ 4)n
= 3 |x+ 4| lim

n→∞

√
n√

n+ 1
= 3 |x+ 4|.

By the Ratio Test, the series
∞

n=1

3n(x+ 4)n√
n

converges when 3 |x+ 4| < 1 ⇔ |x+ 4| < 1
3

R = 1
3

⇔

− 1
3 < x+ 4 < 1

3 ⇔ − 13
3 < x < − 11

3 . When x = − 13
3 , the series

∞

n=1

(−1)n 1√
n

converges by the Alternating Series

Test; when x = − 11
3

, the series
∞

n=1

1√
n

diverges p = 1
2
≤ 1 . Thus, the interval of convergence is I = − 13

3
,− 11

3
.

19. If an =
(x− 2)n

nn
, then lim

n→∞
n |an| = lim

n→∞
|x− 2|

n
= 0, so the series converges for all x (by the Root Test).

R =∞ and I = (−∞,∞).

21. an =
n

bn
(x− a)n, where b > 0.

lim
n→∞

an+1
an

= lim
n→∞

(n+ 1) |x− a|n+1
bn+1

· bn

n |x− a|n = lim
n→∞

1 +
1

n

|x− a|
b

=
|x− a|

b
.

By the Ratio Test, the series converges when |x− a|
b

< 1 ⇔ |x− a| < b [so R = b] ⇔ −b < x− a < b ⇔

a− b < x < a+ b. When |x− a| = b, lim
n→∞

|an| = lim
n→∞

n =∞, so the series diverges. Thus, I = (a− b, a+ b).

23. If an = n! (2x− 1)n, then lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)! (2x− 1)n+1
n!(2x− 1)n = lim

n→∞
(n+ 1) |2x− 1|→∞ as n→∞

for all x 6= 1
2

. Since the series diverges for all x 6= 1
2

, R = 0 and I = 1
2

.

25. lim
n→∞

an+1
an

= lim
n→∞

|4x+ 1|n+1
(n+ 1)2

· n2

|4x+ 1|n = lim
n→∞

|4x+ 1|
(1 + 1/n)2

= |4x+ 1|, so by the Ratio Test, the series

converges when |4x+ 1| < 1 ⇔ −1 < 4x+1 < 1 ⇔ −2 < 4x < 0 ⇔ − 1
2
< x < 0, so R = 1

4
. When x = − 1

2
,

the series becomes
∞

n=1

(−1)n
n2

, which converges by the Alternating Series Test. When x = 0, the series becomes
∞

n=1

1

n2
,

a convergent p-series [p = 2 > 1]. I = − 1
2
, 0 .
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27. If an =
xn

1 · 3 · 5 · · · · · (2n− 1) , then

lim
n→∞

an+1
an

= lim
n→∞

xn+1

1 · 3 · 5 · · · · · (2n− 1)(2n+ 1) ·
1 · 3 · 5 · · · · · (2n− 1)

xn
= lim

n→∞
|x|

2n+ 1
= 0 < 1. Thus, by the

Ratio Test, the series
∞

n=1

xn

1 · 3 · 5 · · · · · (2n− 1) converges for all real x and we have R =∞ and I = (−∞,∞).

29. (a) We are given that the power series ∞
n=0 cnx

n is convergent for x = 4. So by Theorem 3, it must converge for at least

−4 < x ≤ 4. In particular, it converges when x = −2; that is, ∞
n=0 cn(−2)n is convergent.

(b) It does not follow that ∞
n=0 cn(−4)n is necessarily convergent. [See the comments after Theorem 3 about convergence at

the endpoint of an interval. An example is cn = (−1)n/(n4n).]

31. If an =
(n!)k

(kn)!
xn, then

lim
n→∞

an+1
an

= lim
n→∞

[(n+ 1)!]k (kn)!

(n!)k [k(n+ 1)]!
|x| = lim

n→∞
(n+ 1)k

(kn+ k)(kn+ k − 1) · · · (kn+ 2)(kn+ 1) |x|

= lim
n→∞

(n+ 1)

(kn+ 1)

(n+ 1)

(kn+ 2)
· · · (n+ 1)
(kn+ k)

|x|

= lim
n→∞

n+ 1

kn+ 1
lim
n→∞

n+ 1

kn+ 2
· · · lim

n→∞
n+ 1

kn+ k
|x|

=
1

k

k

|x| < 1 ⇔ |x| < kk for convergence, and the radius of convergence is R = kk.

33. No. If a power series is centered at a, its interval of convergence is symmetric about a. If a power series has an infinite radius

of convergence, then its interval of convergence must be (−∞,∞), not [0,∞).

35. (a) If an =
(−1)n x2n+1

n!(n+ 1)! 22n+1
, then

lim
n→∞

an+1
an

= lim
n→∞

x2n+3

(n+ 1)!(n+ 2)! 22n+3
· n!(n+ 1)! 2

2n+1

x2n+1
=

x

2

2

lim
n→∞

1

(n+ 1)(n+ 2)
= 0 for all x.

So J1(x) converges for all x and its domain is (−∞,∞).

(b), (c) The initial terms of J1(x) up to n = 5 are a0 =
x

2
,

a1 = −x3

16
, a2 =

x5

384
, a3 = − x7

18,432
, a4 =

x9

1,474,560
,

and a5 = − x11

176,947,200
. The partial sums seem to

approximate J1(x) well near the origin, but as |x| increases,

we need to take a large number of terms to get a good

approximation.
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37. s2n−1 = 1 + 2x+ x2 + 2x3 + x4 + 2x5 + · · ·+ x2n−2 + 2x2n−1

= 1(1 + 2x) + x2(1 + 2x) + x4(1 + 2x) + · · ·+ x2n−2(1 + 2x) = (1 + 2x)(1 + x2 + x4 + · · ·+ x2n−2)

= (1 + 2x)
1− x2n

1− x2
[by (11.2.3)] with r = x2] → 1 + 2x

1− x2
as n→∞ [by (11.2.4)], when |x| < 1.

Also s2n = s2n−1 + x2n → 1 + 2x

1− x2
since x2n → 0 for |x| < 1. Therefore, sn → 1 + 2x

1− x2
since s2n and s2n−1 both

approach 1 + 2x
1− x2

as n→∞. Thus, the interval of convergence is (−1, 1) and f(x) = 1 + 2x

1− x2
.

39. We use the Root Test on the series cnx
n. We need lim

n→∞
n |cnxn| = |x| lim

n→∞
n |cn| = c |x| < 1 for convergence, or

|x| < 1/c, so R = 1/c.

41. For 2 < x < 3, cnx
n diverges and dnx

n converges. By Exercise 11.2.69, (cn + dn)x
n diverges. Since both series

converge for |x| < 2, the radius of convergence of (cn + dn)x
n is 2.

11.9 Representations of Functions as Power Series

1. If f(x) =
∞

n=0

cnx
n has radius of convergence 10, then f 0(x) =

∞

n=1

ncnx
n−1 also has radius of convergence 10 by

Theorem 2.

3. Our goal is to write the function in the form 1

1− r
, and then use Equation (1) to represent the function as a sum of a power

series. f(x) = 1

1 + x
=

1

1− (−x) =
∞

n=0

(−x)n =
∞

n=0

(−1)nxn with |−x| < 1 ⇔ |x| < 1, so R = 1 and I = (−1, 1).

5. f(x) = 2

3− x
=
2

3

1

1− x/3
=
2

3

∞

n=0

x

3

n

or, equivalently, 2
∞

n=0

1

3n+1
xn. The series converges when x

3
< 1,

that is, when |x| < 3, so R = 3 and I = (−3, 3).

7. f(x) = x

9 + x2
=

x

9

1

1 + (x/3)2
=

x

9

1

1− {−(x/3)2} =
x

9

∞

n=0

− x

3

2 n

=
x

9

∞

n=0

(−1)n x
2n

9n
=

∞

n=0

(−1)n x
2n+1

9n+1

The geometric series
∞

n=0

− x

3

2 n

converges when − x

3

2

< 1 ⇔ x2

9
< 1 ⇔ |x|2 < 9 ⇔ |x| < 3, so

R = 3 and I = (−3, 3).

9. f(x) = 1 + x

1− x
= (1 + x)

1

1− x
= (1 + x)

∞

n=0

xn =
∞

n=0

xn +
∞

n=0

xn+1 = 1 +
∞

n=1

xn +
∞

n=1

xn = 1 + 2
∞

n=1

xn.

The series converges when |x| < 1, so R = 1 and I = (−1, 1).

A second approach: f(x) = 1 + x

1− x
=
−(1− x) + 2

1− x
= −1 + 2 1

1− x
= −1 + 2

∞

n=0

xn = 1 + 2
∞

n=1

xn.

A third approach:

f(x) =
1 + x

1− x
= (1 + x)

1

1− x
= (1 + x)(1 + x+ x2 + x3 + · · · )

= (1 + x+ x2 + x3 + · · · ) + (x+ x2 + x3 + x4 + · · · ) = 1 + 2x+ 2x2 + 2x3 + · · · = 1 + 2
∞

n=1

xn.
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11. f(x) = 3

x2 − x− 2 =
3

(x− 2)(x+ 1) =
A

x− 2 +
B

x+ 1
⇒ 3 = A(x+ 1) +B(x− 2). Let x = 2 to get A = 1 and

x = −1 to get B = −1. Thus

3

x2 − x− 2 =
1

x− 2 −
1

x+ 1
=

1

−2
1

1− (x/2) − 1

1− (−x) = −
1

2

∞

n=0

x

2

n

−
∞

n=0

(−x)n

=
∞

n=0

−1
2

1

2

n

− 1(−1)n xn =
∞

n=0

(−1)n+1 − 1

2n+1
xn

We represented f as the sum of two geometric series; the first converges for x ∈ (−2, 2) and the second converges for (−1, 1).
Thus, the sum converges for x ∈ (−1, 1) = I.

13. (a) f(x) = 1

(1 + x)2
=

d

dx

−1
1 + x

= − d

dx

∞

n=0

(−1)n xn [from Exercise 3]

=
∞

n=1

(−1)n+1nxn−1 [from Theorem 2(i)] =
∞

n=0

(−1)n(n+ 1)xn with R = 1.

In the last step, note that we decreased the initial value of the summation variable n by 1, and then increased each

occurrence of n in the term by 1 [also note that (−1)n+2 = (−1)n].

(b) f(x) = 1

(1 + x)3
= −1

2

d

dx

1

(1 + x)2
= −1

2

d

dx

∞

n=0

(−1)n(n+ 1)xn [from part (a)]

= − 1
2

∞

n=1

(−1)n(n+ 1)nxn−1 = 1
2

∞

n=0

(−1)n(n+ 2)(n+ 1)xn with R = 1.

(c) f(x) = x2

(1 + x)3
= x2 · 1

(1 + x)3
= x2 · 1

2

∞

n=0

(−1)n(n+ 2)(n+ 1)xn [from part (b)]

=
1

2

∞

n=0

(−1)n(n+ 2)(n+ 1)xn+2

To write the power series with xn rather than xn+2, we will decrease each occurrence of n in the term by 2 and increase

the initial value of the summation variable by 2. This gives us 1
2

∞

n=2

(−1)n(n)(n− 1)xn with R = 1.

15. f(x) = ln(5− x) = − dx

5− x
= −1

5

dx

1− x/5
= −1

5

∞

n=0

x

5

n

dx = C − 1

5

∞

n=0

xn+1

5n(n+ 1)
= C −

∞

n=1

xn

n 5n

Putting x = 0, we get C = ln 5. The series converges for |x/5| < 1 ⇔ |x| < 5, so R = 5.

17. 1

2− x
=

1

2(1− x/2)
=
1

2

∞

n=0

x

2

n

=
∞

n=0

1

2n+1
xn for x

2
< 1 ⇔ |x| < 2. Now

1

(x− 2)2 =
d

dx

1

2− x
=

d

dx

∞

n=0

1

2n+1
xn =

∞

n=1

n

2n+1
xn−1 =

∞

n=0

n+ 1

2n+2
xn. So

f(x) =
x3

(x− 2)2 = x3
∞

n=0

n+ 1

2n+2
xn =

∞

n=0

n+ 1

2n+2
xn+3 or

∞

n=3

n− 2
2n−1

xn for |x| < 2. Thus, R = 2 and I = (−2, 2).
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19. f(x) = x

x2 + 16
=

x

16

1

1− (−x2/16) =
x

16

∞

n=0

−x2

16

n

=
x

16

∞

n=0

(−1)n 1

16n
x2n =

∞

n=0

(−1)n 1

16n+1
x2n+1.

The series converges when −x2/16 < 1 ⇔ x2 < 16 ⇔ |x| < 4, so R = 4. The partial sums are s1 =
x

16
,

s2 = s1 − x3

162
, s3 = s2 +

x5

163
, s4 = s3 − x7

164
, s5 = s4 +

x9

165
, . . . . Note that s1 corresponds to the first term of the infinite

sum, regardless of the value of the summation variable and the value of the exponent.

As n increases, sn(x) approximates f better on the interval of convergence, which is (−4, 4).

21. f(x) = ln 1 + x

1− x
= ln(1 + x)− ln(1− x) =

dx

1 + x
+

dx

1− x
=

dx

1− (−x) +
dx

1− x

=
∞

n=0

(−1)nxn +
∞

n=0

xn dx = [(1− x+ x2 − x3 + x4 − · · · ) + (1 + x+ x2 + x3 + x4 + · · · )] dx

= (2 + 2x2 + 2x4 + · · · ) dx =
∞

n=0

2x2n dx= C +
∞

n=0

2x2n+1

2n+ 1

But f(0) = ln 1
1 = 0, so C = 0 and we have f(x) =

∞

n=0

2x2n+1

2n+ 1
with R = 1. If x = ±1, then f(x) = ±2

∞

n=0

1

2n+ 1
,

which both diverge by the Limit Comparison Test with bn =
1

n
. The partial sums are s1 =

2x

1
, s2 = s1 +

2x3

3
,

s3 = s2 +
2x5

5
, . . . .

As n increases, sn(x) approximates f better on the interval of convergence, which is (−1, 1).
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23. t

1− t8
= t · 1

1− t8
= t

∞

n=0

(t8)n =
∞

n=0

t8n+1 ⇒ t

1− t8
dt = C +

∞

n=0

t8n+2

8n+ 2
. The series for 1

1− t8
converges

when t8 < 1 ⇔ |t| < 1, so R = 1 for that series and also the series for t/(1− t8). By Theorem 2, the series for

t

1− t8
dt also has R = 1.

25. By Example 7, tan−1 x =
∞

n=0

(−1)n x2n+1

2n+ 1
with R = 1, so

x− tan−1 x = x− x− x3

3
+

x5

5
− x7

7
+ · · · =

x3

3
− x5

5
+

x7

7
− · · · =

∞

n=1

(−1)n+1 x
2n+1

2n+ 1
and

x− tan−1 x
x3

=
∞

n=1

(−1)n+1 x
2n−2

2n+ 1
, so

x− tan−1 x
x3

dx = C +
∞

n=1

(−1)n+1 x2n−1

(2n+ 1)(2n− 1) = C +
∞

n=1

(−1)n+1 x2n−1

4n2 − 1 . By Theorem 2, R = 1.

27. 1

1 + x5
=

1

1− (−x5) =
∞

n=0

−x5 n
=

∞

n=0

(−1)nx5n ⇒

1

1 + x5
dx =

∞

n=0

(−1)nx5n dx = C +
∞

n=0

(−1)n x5n+1

5n+ 1
. Thus,

I =
0.2

0

1

1 + x5
dx = x− x6

6
+

x11

11
− · · ·

0.2

0

= 0.2− (0.2)6

6
+
(0.2)11

11
− · · · . The series is alternating, so if we use

the first two terms, the error is at most (0.2)11/11 ≈ 1.9× 10−9. So I ≈ 0.2− (0.2)6/6 ≈ 0.199989 to six decimal places.

29. We substitute 3x for x in Example 7, and find that

x arctan(3x) dx = x
∞

n=0

(−1)n (3x)
2n+1

2n+ 1
dx =

∞

n=0

(−1)n 3
2n+1 x2n+2

2n+ 1
dx = C +

∞

n=0

(−1)n 32n+1 x2n+3

(2n+ 1)(2n+ 3)

So
0.1

0

x arctan(3x) dx=
3x3

1 · 3 −
33x5

3 · 5 +
35x7

5 · 7 −
37x9

7 · 9 + · · ·
0.1

0

=
1

103
− 9

5× 105 +
243

35× 107 −
2187

63× 109 + · · · .

The series is alternating, so if we use three terms, the error is at most 2187

63× 109 ≈ 3.5× 10
−8. So

0.1

0

x arctan(3x) dx ≈ 1

103
− 9

5× 105 +
243

35× 107 ≈ 0.000 983 to six decimal places.

31. Using the result of Example 6, ln(1 − x) = −
∞

n=1

xn

n
, with x = −0.1, we have

ln 1.1 = ln[1− (−0.1)] = 0.1− 0.01

2
+
0.001

3
− 0.0001

4
+
0.00001

5
− · · · . The series is alternating, so if we use only

the first four terms, the error is at most 0.00001
5

= 0.000002. So ln 1.1 ≈ 0.1− 0.01

2
+
0.001

3
− 0.0001

4
≈ 0.09531.
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33. (a) J0(x) =
∞

n=0

(−1)n x2n
22n(n!)2

, J 00(x) =
∞

n=1

(−1)n 2nx2n−1
22n(n!)2

, and J 000 (x) =
∞

n=1

(−1)n 2n(2n− 1)x2n−2
22n(n!)2

, so

x2J 000 (x) + xJ 00(x) + x2J0(x) =
∞

n=1

(−1)n 2n(2n− 1)x2n
22n(n!)2

+
∞

n=1

(−1)n 2nx2n
22n(n!)2

+
∞

n=0

(−1)n x2n+2
22n(n!)2

=
∞

n=1

(−1)n 2n(2n− 1)x2n
22n(n!)2

+
∞

n=1

(−1)n 2nx2n
22n(n!)2

+
∞

n=1

(−1)n−1 x2n
22n−2 [(n− 1)!]2

=
∞

n=1

(−1)n 2n(2n− 1)x2n
22n(n!)2

+
∞

n=1

(−1)n 2nx2n
22n(n!)2

+
∞

n=1

(−1)n(−1)−122n2x2n
22n(n!)2

=
∞

n=1

(−1)n 2n(2n− 1) + 2n− 22n2
22n(n!)2

x2n

=
∞

n=1

(−1)n 4n2 − 2n+ 2n− 4n2
22n(n!)2

x2n = 0

(b)
1

0

J0(x) dx =
1

0

∞

n=0

(−1)n x2n
22n(n!)2

dx =
1

0

1− x2

4
+

x4

64
− x6

2304
+ · · · dx

= x− x3

3 · 4 +
x5

5 · 64 −
x7

7 · 2304 + · · ·
1

0

= 1− 1

12
+

1

320
− 1

16,128
+ · · ·

Since 1
16,128 ≈ 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,

1

0
J0(x) dx ≈ 1− 1

12 +
1
320 ≈ 0.920.

35. (a) f(x) =
∞

n=0

xn

n!
⇒ f 0(x) =

∞

n=1

nxn−1

n!
=

∞

n=1

xn−1

(n− 1)! =
∞

n=0

xn

n!
= f(x)

(b) By Theorem 9.4.2, the only solution to the differential equation df(x)/dx = f(x) is f(x) = Kex, but f(0) = 1,

so K = 1 and f(x) = ex.

Or: We could solve the equation df(x)/dx = f(x) as a separable differential equation.

37. If an =
xn

n2
, then by the Ratio Test, lim

n→∞
an+1
an

= lim
n→∞

xn+1

(n+ 1)2
· n

2

xn
= |x| lim

n→∞
n

n+ 1

2

= |x| < 1 for

convergence, so R = 1. When x = ±1,
∞

n=1

xn

n2
=

∞

n=1

1

n2
which is a convergent p-series (p = 2 > 1), so the interval of

convergence for f is [−1, 1]. By Theorem 2, the radii of convergence of f 0 and f 00 are both 1, so we need only check the

endpoints. f(x) =
∞

n=1

xn

n2
⇒ f 0(x) =

∞

n=1

nxn−1

n2
=

∞

n=0

xn

n+ 1
, and this series diverges for x = 1 (harmonic series)

and converges for x = −1 (Alternating Series Test), so the interval of convergence is [−1, 1). f 00(x) =
∞

n=1

nxn−1

n+ 1
diverges

at both 1 and −1 (Test for Divergence) since lim
n→∞

n

n+ 1
= 1 6= 0, so its interval of convergence is (−1, 1).
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39. By Example 7, tan−1 x =
∞

n=0

(−1)n x2n+1

2n+ 1
for |x| < 1. In particular, for x = 1√

3
, we

have π

6
= tan−1

1√
3

=
∞

n=0

(−1)n 1/
√
3
2n+1

2n+ 1
=

∞

n=0

(−1)n 1

3

n
1√
3

1

2n+ 1
, so

π =
6√
3

∞

n=0

(−1)n
(2n+ 1)3n

= 2
√
3
∞

n=0

(−1)n
(2n+ 1)3n

.

11.10 Taylor and Maclaurin Series

1. Using Theorem 5 with
∞

n=0

bn(x− 5)n, bn =
f (n)(a)

n!
, so b8 =

f (8)(5)

8!
.

3. Since f (n)(0) = (n + 1)!, Equation 7 gives the Maclaurin series

∞

n=0

f (n)(0)

n!
xn =

∞

n=0

(n+ 1)!

n!
xn =

∞

n=0

(n+ 1)xn. Applying the Ratio Test with an = (n+ 1)xn gives us

lim
n→∞

an+1
an

= lim
n→∞

(n+ 2)xn+1

(n+ 1)xn
= |x| lim

n→∞
n+ 2

n+ 1
= |x| · 1 = |x|. For convergence, we must have |x| < 1, so the

radius of convergence R = 1.

5.
n f (n)(x) f (n)(0)

0 (1− x)−2 1

1 2(1− x)−3 2

2 6(1− x)−4 6

3 24(1− x)−5 24

4 120(1− x)−6 120

...
...

...

(1− x)−2 = f(0) + f 0(0)x+
f 00(0)
2!

x2 +
f 000(0)
3!

x3 +
f (4)(0)

4!
x4 + · · ·

= 1 + 2x+ 6
2
x2 + 24

6
x3 + 120

24
x4 + · · ·

= 1 + 2x+ 3x2 + 4x3 + 5x4 + · · · =
∞

n=0

(n+ 1)xn

lim
n→∞

an+1
an

= lim
n→∞

(n+ 2)xn+1

(n+ 1)xn
= |x| lim

n→∞
n+ 2

n+ 1
= |x| (1) = |x| < 1

for convergence, so R = 1.

7.
n f (n)(x) f (n)(0)

0 sinπx 0

1 π cosπx π

2 −π2 sinπx 0

3 −π3 cosπx −π3
4 π4 sinπx 0

5 π5 cosπx π5

...
...

...

sinπx = f(0) + f 0(0)x+
f 00(0)
2!

x2 +
f 000(0)
3!

x3

+
f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 + · · ·

= 0 + πx+ 0− π3

3!
x3 + 0 +

π5

5!
x5 + · · ·

= πx− π3

3!
x3 +

π5

5!
x5 − π7

7!
x7 + · · ·

=
∞

n=0

(−1)n π2n+1

(2n+ 1)!
x2n+1

lim
n→∞

an+1
an

= lim
n→∞

π2n+3 x2n+3

(2n+ 3)!
· (2n+ 1)!

π2n+1 x2n+1
= lim

n→∞
π2 x2

(2n+ 3)(2n+ 2)

= 0 < 1 for all x, so R =∞.
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9.
n f (n)(x) f (n)(0)

0 e5x 1

1 5e5x 5

2 52e5x 25

3 53e5x 125

4 54e5x 625

...
...

...

e5x =
∞

n=0

f (n)(0)

n!
xn =

∞

n=0

5n

n!
xn.

lim
n→∞

an+1
an

= lim
n→∞

5n+1 |x|n+1
(n+ 1)!

· n!

5n |x|n = lim
n→∞

5 |x|
n+ 1

= 0 < 1

for all x, so R =∞.

11.
n f (n)(x) f (n)(0)

0 sinhx 0

1 coshx 1

2 sinhx 0

3 coshx 1

4 sinhx 0

...
...

...

f (n)(0) =
0 if n is even

1 if n is odd
so sinhx =

∞

n=0

x2n+1

(2n+ 1)!
.

Use the Ratio Test to find R. If an =
x2n+1

(2n+ 1)!
, then

lim
n→∞

an+1
an

= lim
n→∞

x2n+3

(2n+ 3)!
· (2n+ 1)!

x2n+1
= x2 · lim

n→∞
1

(2n+ 3)(2n+ 2)

= 0 < 1 for all x, so R =∞.

13.
n f (n)(x) f (n)(1)

0 x4 − 3x2 + 1 −1
1 4x3 − 6x −2
2 12x2 − 6 6

3 24x 24

4 24 24

5 0 0

6 0 0

...
...

...

f (n)(x) = 0 for n ≥ 5, so f has a finite series expansion about a = 1.

f(x) = x4 − 3x2 + 1 =
4

n=0

f (n)(1)

n!
(x− 1)n

=
−1
0!
(x− 1)0 + −2

1!
(x− 1)1 + 6

2!
(x− 1)2 + 24

3!
(x− 1)3 + 24

4!
(x− 1)4

= −1− 2(x− 1) + 3(x− 1)2 + 4(x− 1)3 + (x− 1)4

A finite series converges for all x, so R =∞.

15. f(x) = ex ⇒ f (n)(x) = ex, so f (n)(3) = e3 and ex =
∞

n=0

e3

n!
(x− 3)n. If an =

e3

n!
(x− 3)n, then

lim
n→∞

an+1
an

= lim
n→∞

e3(x− 3)n+1
(n+ 1)!

· n!

e3(x− 3)n = lim
n→∞

|x− 3|
n+ 1

= 0 < 1 for all x, so R =∞.

17.
n f (n)(x) f (n)(π)

0 cosx −1
1 − sinx 0

2 − cosx 1

3 sinx 0

4 cosx −1
...

...
...

cosx=
∞

k=0

f (k)(π)

k!
(x− π)k = −1 + (x− π)2

2!
− (x− π)4

4!
+
(x− π)6

6!
− · · ·

=
∞

n=0

(−1)n+1 (x− π)2n

(2n)!

lim
n→∞

an+1
an

= lim
n→∞

|x− π|2n+2
(2n+ 2)!

· (2n)!

|x− π|2n = lim
n→∞

|x− π|2
(2n+ 2)(2n+ 1)

= 0 < 1

for all x, so R =∞.
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19.
n f (n)(x) f (n)(9)

0 x−1/2 1
3

1 − 1
2
x−3/2 − 1

2
· 1
33

2 3
4
x−5/2 − 1

2
· − 3

2
· 1
35

3 − 15
8
x−7/2 − 1

2
· − 3

2
· − 5

2
· 1
37

...
...

...

1√
x
=
1

3
− 1

2 · 33 (x− 9) +
3

22 · 35
(x− 9)2
2!

− 3 · 5
23 · 37

(x− 9)3
3!

+ · · ·

=
1

3
+

∞

n=1

(−1)n 1 · 3 · 5 · · · · · (2n− 1)
2n · 32n+1 · n! (x− 9)n.

lim
n→∞

an+1
an

= lim
n→∞

1 · 3 · 5 · · · · · (2n− 1)[2(n+ 1)− 1] |x− 9|n+1
2n+1 · 3[2(n+1)+1] · (n+ 1)! · 2n · 32n+1 · n!

1 · 3 · 5 · · · · · (2n− 1) |x− 9|n

= lim
n→∞

(2n+ 1) |x− 9|
2 · 32(n+ 1) =

1

9
|x− 9| < 1

for convergence, so |x− 9| < 9 and R = 9.

21. If f(x) = sinπx, then f (n+1)(x) = ±πn+1 sinπx or ±πn+1 cosπx. In each case, f (n+1)(x) ≤ πn+1, so by Formula 9

with a = 0 and M = πn+1, |Rn(x)| ≤ πn+1

(n+ 1)!
|x|n+1 = |πx|n+1

(n+ 1)!
. Thus, |Rn(x)|→ 0 as n→∞ by Equation 10.

So lim
n→∞

Rn(x) = 0 and, by Theorem 8, the series in Exercise 7 represents sinπx for all x.

23. If f(x) = sinhx, then for all n, f (n+1)(x) = coshx or sinhx. Since |sinhx| < |coshx| = coshx for all x, we have

f (n+1)(x) ≤ coshx for all n. If d is any positive number and |x| ≤ d, then f (n+1)(x) ≤ coshx ≤ cosh d, so by

Formula 9 with a = 0 and M = cosh d, we have |Rn(x)| ≤ cosh d

(n+ 1)!
|x|n+1. It follows that |Rn(x)|→ 0 as n→∞ for

|x| ≤ d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents sinhx for all x.

25. The general binomial series in (17) is

(1 + x)k =
∞

n=0

k

n
xn = 1 + kx+

k(k − 1)
2!

x2 +
k(k − 1)(k − 2)

3!
x3 + · · · .

(1 + x)1/2 =
∞

n=0

1
2

n
xn = 1 + 1

2
x+

1
2
− 1
2

2!
x2 +

1
2
− 1
2
− 3
2

3!
x3 + · · ·

= 1 +
x

2
− x2

22 · 2! +
1 · 3 · x3
23 · 3! −

1 · 3 · 5 · x4
24 · 4! + · · ·

= 1 +
x

2
+

∞

n=2

(−1)n−1 1 · 3 · 5 · · · · · (2n− 3)xn
2n · n! for |x| < 1, so R = 1.
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27. 1

(2 + x)3
=

1

[2(1 + x/2)]3
=
1

8
1 +

x

2

−3
=
1

8

∞

n=0

−3
n

x

2

n

. The binomial coefficient is

−3
n

=
(−3)(−4)(−5) · · · · · (−3− n+ 1)

n!
=
(−3)(−4)(−5) · · · · · [−(n+ 2)]

n!

=
(−1)n · 2 · 3 · 4 · 5 · · · · · (n+ 1)(n+ 2)

2 · n! =
(−1)n(n+ 1)(n+ 2)

2

Thus, 1

(2 + x)3
=
1

8

∞

n=0

(−1)n(n+ 1)(n+ 2)
2

xn

2n
=

∞

n=0

(−1)n(n+ 1)(n+ 2)xn
2n+4

for x

2
< 1 ⇔ |x| < 2, so R = 2.

29. sinx =
∞

n=0

(−1)n x2n+1

(2n+ 1)!
⇒ f(x) = sin(πx) =

∞

n=0

(−1)n (πx)
2n+1

(2n+ 1)!
=

∞

n=0

(−1)n π2n+1

(2n+ 1)!
x2n+1, R =∞.

31. ex =
∞

n=0

xn

n!
⇒ e2x =

∞

n=0

(2x)n

n!
=

∞

n=0

2n xn

n!
, so f(x) = ex + e2x =

∞

n=0

1

n!
xn +

∞

n=0

2n

n!
xn =

∞

n=0

2n + 1

n!
xn,

R =∞.

33. cosx =
∞

n=0

(−1)n x2n

(2n)!
⇒ cos 1

2
x2 =

∞

n=0

(−1)n
1
2x

2 2n

(2n)!
=

∞

n=0

(−1)n x4n

22n (2n)!
, so

f(x) = x cos 1
2
x2 =

∞

n=0

(−1)n 1

22n(2n)!
x4n+1, R =∞.

35. We must write the binomial in the form (1+ expression), so we’ll factor out a 4.

x√
4 + x2

=
x

4(1 + x2/4)
=

x

2 1 + x2/4
=

x

2
1 +

x2

4

−1/2
=

x

2

∞

n=0

− 1
2

n

x2

4

n

=
x

2
1 + − 1

2

x2

4
+

− 1
2
− 3
2

2!

x2

4

2

+
− 1
2
− 3
2
− 5
2

3!

x2

4

3

+ · · ·

=
x

2
+

x

2

∞

n=1

(−1)n 1 · 3 · 5 · · · · · (2n− 1)
2n · 4n · n! x2n

=
x

2
+

∞

n=1

(−1)n 1 · 3 · 5 · · · · · (2n− 1)
n! 23n+1

x2n+1 and x2

4
< 1 ⇔ |x|

2
< 1 ⇔ |x| < 2, so R = 2.

37. sin2 x = 1

2
(1− cos 2x) = 1

2
1−

∞

n=0

(−1)n(2x)2n
(2n)!

=
1

2
1− 1−

∞

n=1

(−1)n(2x)2n
(2n)!

=
∞

n=1

(−1)n+122n−1x2n
(2n)!

,

R =∞

39. cosx =
∞

n=0

(−1)n x2n

(2n)!
⇒ f(x) = cos x2 =

∞

n=0

(−1)n x2
2n

(2n)!
=

∞

n=0

(−1)n x4n
(2n)!

, R =∞

Notice that, as n increases, Tn(x)

becomes a better approximation to f(x).
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41. ex (11)
=

∞

n=0

xn

n!
, so e−x =

∞

n=0

(−x)n
n!

=
∞

n=0

(−1)n xn

n!
, so

f(x) = xe−x =
∞

n=0

(−1)n 1

n!
xn+1

= x− x2 + 1
2
x3 − 1

6
x4 + 1

24
x5 − 1

120
x6 + · · ·

=
∞

n=1

(−1)n−1 xn

(n− 1)!
The series for ex converges for all x, so the same is true of the series

for f(x); that is, R =∞. From the graphs of f and the first few Taylor

polynomials, we see that Tn(x) provides a closer fit to f(x) near 0 as n increases.

43. ex =
∞

n=0

xn

n!
, so e−0.2 =

∞

n=0

(−0.2)n
n!

= 1− 0.2 + 1

2!
(0.2)2 − 1

3!
(0.2)3 +

1

4!
(0.2)4 − 1

5!
(0.2)5 +

1

6!
(0.2)6 − · · · .

But 1
6!
(0.2)6 = 8.8× 10−8, so by the Alternating Series Estimation Theorem, e−0.2 ≈

5

n=0

(−0.2)n
n!

≈ 0.81873, correct to

five decimal places.

45. (a) 1/
√
1− x2 = 1 + −x2 −1/2

= 1 + − 1
2
−x2 +

− 1
2
− 3
2

2!
−x2 2

+
− 1
2
− 3
2
− 5
2

3!
−x2 3

+ · · ·

= 1 +
∞

n=1

1 · 3 · 5 · · · · · (2n− 1)
2n · n! x2n

(b) sin−1 x = 1√
1− x2

dx = C + x+
∞

n=1

1 · 3 · 5 · · · · · (2n− 1)
(2n+ 1)2n · n! x2n+1

= x+
∞

n=1

1 · 3 · 5 · · · · · (2n− 1)
(2n+ 1)2n · n! x2n+1 since 0 = sin−1 0 = C.

47. cosx (16)
=

∞

n=0

(−1)n x2n

(2n)!
⇒ cos(x3) =

∞

n=0

(−1)n (x
3)2n

(2n)!
=

∞

n=0

(−1)n x6n

(2n)!
⇒

x cos(x3) =
∞

n=0

(−1)n x
6n+1

(2n)!
⇒ x cos(x3) dx = C +

∞

n=0

(−1)n x6n+2

(6n+ 2)(2n)!
, with R =∞.

49. cosx (16)
=

∞

n=0

(−1)n x2n

(2n)!
⇒ cosx− 1 =

∞

n=1

(−1)n x2n

(2n)!
⇒ cosx− 1

x
=

∞

n=1

(−1)n x2n−1

(2n)!
⇒

cosx− 1
x

dx = C +
∞

n=1

(−1)n x2n

2n · (2n)! , with R =∞.

51. By Exercise 47, x cos(x3) dx = C +
∞

n=0

(−1)n x6n+2

(6n+ 2)(2n)!
, so

1

0

x cos(x3) dx =
∞

n=0

(−1)n x6n+2

(6n+ 2)(2n)!

1

0

=
∞

n=0

(−1)n
(6n+ 2)(2n)!

=
1

2
− 1

8 · 2! +
1

14 · 4! −
1

20 · 6! + · · · , but

1

20 · 6! =
1

14,400
≈ 0.000 069, so

1

0

x cos(x3) dx ≈ 1

2
− 1

16
+

1

336
≈ 0.440 (correct to three decimal places) by the

Alternating Series Estimation Theorem.
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53.
√
1 + x4 = (1 + x4)1/2 =

∞

n=0

1/2

n
(x4)n, so 1 + x4 dx = C +

∞

n=0

1/2

n

x4n+1

4n+ 1
and hence, since 0.4 < 1,

we have

I =
0.4

0

1 + x4 dx =
∞

n=0

1/2

n

(0.4)4n+1

4n+ 1

= (1)
(0.4)1

0!
+

1
2

1!

(0.4)5

5
+

1
2
− 1
2

2!

(0.4)9

9
+

1
2
− 1
2
− 3
2

3!

(0.4)13

13
+

1
2
− 1
2
− 3
2
− 5
2

4!

(0.4)17

17
+ · · ·

= 0.4 +
(0.4)5

10
− (0.4)9

72
+
(0.4)13

208
− 5(0.4)17

2176
+ · · ·

Now (0.4)9

72
≈ 3.6× 10−6 < 5× 10−6, so by the Alternating Series Estimation Theorem, I ≈ 0.4 + (0.4)5

10
≈ 0.40102

(correct to five decimal places).

55. lim
x→0

x− tan−1 x
x3

= lim
x→0

x− x− 1
3
x3 + 1

5
x5 − 1

7
x7 + · · ·

x3
= lim

x→0

1
3x

3 − 1
5x

5 + 1
7x

7 − · · ·
x3

= lim
x→0

1
3
− 1

5
x2 + 1

7
x4 − · · · = 1

3

since power series are continuous functions.

57. lim
x→0

sinx− x+ 1
6
x3

x5
= lim

x→0

x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · − x+ 1
6x

3

x5

= lim
x→0

1
5!
x5 − 1

7!
x7 + · · ·

x5
= lim

x→0

1

5!
− x2

7!
+

x4

9!
− · · · =

1

5!
=

1

120

since power series are continuous functions.

59. From Equation 11, we have e−x
2

= 1− x2

1!
+

x4

2!
− x6

3!
+ · · · and we know that cosx = 1− x2

2!
+

x4

4!
− · · · from

Equation 16. Therefore, e−x
2
cosx = 1− x2 + 1

2
x4 − · · · 1− 1

2
x2 + 1

24
x4 − · · · . Writing only the terms with

degree ≤ 4, we get e−x
2

cosx = 1− 1
2x

2 + 1
24x

4 − x2 + 1
2x

4 + 1
2x

4 + · · · = 1− 3
2x

2 + 25
24x

4 + · · · .

61. x

sinx

(15)
=

x

x− 1
6
x3 + 1

120
x5 − · · · .

1 + 1
6x

2 + 7
360x

4 + · · ·
x− 1

6x
3 + 1

120x
5 − · · · x

x− 1
6
x3 + 1

120
x5 − · · ·

1
6
x3 − 1

120
x5 + · · ·

1
6
x3 − 1

36
x5 + · · ·

7
360

x5 + · · ·
7
360

x5 + · · ·

· · ·
From the long division above, x

sinx
= 1+ 1

6
x2 + 7

360
x4 + · · · .

63.
∞

n=0

(−1)n x
4n

n!
=

∞

n=0

−x4 n

n!
= e−x

4

, by (11).
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65.
∞

n=0

(−1)n π2n+1
42n+1(2n+ 1)!

=
∞

n=0

(−1)n π
4

2n+1

(2n+ 1)!
= sin π

4
= 1√

2
, by (15).

67. 3 + 9

2!
+
27

3!
+
81

4!
+ · · · = 31

1!
+
32

2!
+
33

3!
+
34

4!
+ · · · =

∞

n=1

3n

n!
=

∞

n=0

3n

n!
− 1 = e3 − 1, by (11).

69. Assume that |f 000(x)| ≤ M , so f 000(x) ≤ M for a ≤ x ≤ a+ d. Now x

a
f 000(t) dt ≤ x

a
M dt ⇒

f 00(x)− f 00(a) ≤M(x− a) ⇒ f 00(x) ≤ f 00(a) +M(x− a). Thus, x

a
f 00(t) dt ≤ x

a
[f 00(a) +M(t− a)] dt ⇒

f 0(x)− f 0(a) ≤ f 00(a)(x− a) + 1
2
M(x− a)2 ⇒ f 0(x) ≤ f 0(a) + f 00(a)(x− a) + 1

2
M(x− a)2 ⇒

x

a
f 0(t) dt ≤ x

a
f 0(a) + f 00(a)(t− a) + 1

2
M(t− a)2 dt ⇒

f(x) − f(a) ≤ f 0(a)(x − a) + 1
2f

00(a)(x − a)2 + 1
6M(x − a)3. So

f(x) − f(a) − f 0(a)(x − a) − 1
2
f 00(a)(x − a)2 ≤ 1

6
M(x − a)3. But

R2(x) = f(x)− T2(x) = f(x)− f(a)− f 0(a)(x− a)− 1
2
f 00(a)(x− a)2, so R2(x) ≤ 1

6
M(x− a)3.

A similar argument using f 000(x) ≥ −M shows that R2(x) ≥ − 1
6
M(x− a)3. So |R2(x2)| ≤ 1

6
M |x− a|3.

Although we have assumed that x > a, a similar calculation shows that this inequality is also true if x < a.

71. (a) g(x) =
∞

n=0

k

n
xn ⇒ g0(x) =

∞

n=1

k

n
nxn−1, so

(1 + x)g0(x) = (1 + x)
∞

n=1

k

n
nxn−1 =

∞

n=1

k

n
nxn−1 +

∞

n=1

k

n
nxn

=
∞

n=0

k

n+ 1
(n+ 1)xn +

∞

n=0

k

n
nxn

Replace n with n+ 1

in the first series

=
∞

n=0

(n+ 1)
k(k − 1)(k − 2) · · · (k − n+ 1)(k − n)

(n+ 1)!
xn +

∞

n=0

(n)
k(k − 1)(k − 2) · · · (k − n+ 1)

n!
xn

=
∞

n=0

(n+ 1)k(k − 1)(k − 2) · · · (k − n+ 1)

(n+ 1)!
[(k − n) + n]xn

= k
∞

n=0

k(k − 1)(k − 2) · · · (k − n+ 1)

n!
xn = k

∞

n=0

k

n
xn = kg(x)

Thus, g0(x) = kg(x)

1 + x
.

(b) h(x) = (1 + x)−k g(x) ⇒
h0(x) = −k(1 + x)−k−1g(x) + (1 + x)−k g0(x) [Product Rule]

= −k(1 + x)−k−1g(x) + (1 + x)−k
kg(x)

1 + x
[from part (a)]

= −k(1 + x)−k−1g(x) + k(1 + x)−k−1g(x) = 0

(c) From part (b) we see that h(x) must be constant for x ∈ (−1, 1), so h(x) = h(0) = 1 for x ∈ (−1, 1).
Thus, h(x) = 1 = (1 + x)−k g(x) ⇔ g(x) = (1 + x)k for x ∈ (−1, 1).
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11.11 Applications of Taylor Polynomials

1. (a)
n f (n)(x) f (n)(0) Tn(x)

0 cosx 1 1

1 − sinx 0 1

2 − cosx −1 1− 1
2
x2

3 sinx 0 1− 1
2
x2

4 cosx 1 1− 1
2
x2 + 1

24
x4

5 − sinx 0 1− 1
2
x2 + 1

24
x4

6 − cosx −1 1− 1
2
x2 + 1

24
x4 − 1

720
x6

(b)
x f T0 = T1 T2 = T3 T4 = T5 T6
π
4

0.7071 1 0.6916 0.7074 0.7071
π
2

0 1 −0.2337 0.0200 −0.0009
π −1 1 −3.9348 0.1239 −1.2114

(c) As n increases, Tn(x) is a good approximation to f(x) on a larger and larger interval.

3.
n f (n)(x) f (n)(2)

0 1/x 1
2

1 −1/x2 − 1
4

2 2/x3 1
4

3 −6/x4 − 3
8

T3(x) =
3

n=0

f (n)(2)

n!
(x− 2)n

=
1
2

0!
−

1
4

1!
(x− 2) +

1
4

2!
(x− 2)2 −

3
8

3!
(x− 2)3

= 1
2
− 1

4
(x− 2) + 1

8
(x− 2)2 − 1

16
(x− 2)3

5.
n f (n)(x) f (n)(π/2)

0 cosx 0

1 − sinx −1
2 − cosx 0

3 sinx 1

T3(x) =
3

n=0

f (n)(π/2)

n!
x− π

2

n

= − x− π
2
+ 1

6
x− π

2

3
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7.
n f (n)(x) f (n)(0)

0 arcsinx 0

1
1√
1− x2

1

2
x

(1− x2)3/2
0

3
2x2 + 1

(1− x2)5/2
1

T3(x) =
3

n=0

f (n)(0)

n!
xn = x+

x3

6

9.
n f (n)(x) f (n)(0)

0 xe−2x 0

1 (1− 2x)e−2x 1

2 4(x− 1)e−2x −4
3 4(3− 2x)e−2x 12

T3(x) =
3

n=0

f (n)(0)

n!
xn = 0

1
· 1 + 1

1
x1 + −4

2
x2 + 12

6
x3 = x− 2x2 + 2x3

11. You may be able to simply find the Taylor polynomials for

f(x) = cotx using your CAS. We will list the values of f (n)(π/4)

for n = 0 to n = 5.

n 0 1 2 3 4 5

f (n)(π/4) 1 −2 4 −16 80 −512

T5(x) =
5

n=0

f (n)(π/4)

n!
x− π

4

n

= 1− 2 x− π
4
+ 2 x− π

4

2 − 8
3
x− π

4

3
+ 10

3
x− π

4

4 − 64
15

x− π
4

5

For n = 2 to n = 5, Tn(x) is the polynomial consisting of all the terms up to and including the x− π
4

n term.

13.
n f (n)(x) f (n)(4)

0
√
x 2

1 1
2
x−1/2 1

4

2 − 1
4
x−3/2 − 1

32

3 3
8
x−5/2

(a) f(x) =
√
x ≈ T2(x) = 2 +

1

4
(x− 4)− 1/32

2!
(x− 4)2

= 2+ 1
4
(x− 4)− 1

64
(x− 4)2

(b) |R2(x)| ≤ M

3!
|x− 4|3, where |f 000(x)| ≤M. Now 4 ≤ x ≤ 4.2 ⇒

|x− 4| ≤ 0.2 ⇒ |x− 4|3 ≤ 0.008. Since f 000(x) is decreasing

on [4, 4.2], we can take M = |f 000(4)| = 3
84
−5/2 = 3

256 , so

|R2(x)| ≤ 3/256

6
(0.008) =

0.008

512
= 0.000 015 625.
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(c)

From the graph of |R2(x)| = |√x− T2(x)|, it seems that the

error is less than 1.52× 10−5 on [4, 4.2].

15.
n f (n)(x) f (n)(1)

0 x2/3 1

1 2
3
x−1/3 2

3

2 − 2
9x
−4/3 − 2

9

3 8
27
x−7/3 8

27

4 − 56
81x

−10/3

(a) f(x) = x2/3 ≈ T3(x) = 1 +
2
3
(x− 1)− 2/9

2!
(x− 1)2 + 8/27

3!
(x− 1)3

= 1 + 2
3 (x− 1)− 1

9 (x− 1)2 + 4
81 (x− 1)3

(b) |R3(x)| ≤ M

4!
|x− 1|4, where f (4)(x) ≤M . Now 0.8 ≤ x ≤ 1.2 ⇒

|x− 1| ≤ 0.2 ⇒ |x− 1|4 ≤ 0.0016. Since f (4)(x) is decreasing

on [0.8, 1.2], we can take M = f (4)(0.8) = 56
81
(0.8)−10/3, so

|R3(x)| ≤
56
81
(0.8)−10/3

24
(0.0016) ≈ 0.000 096 97.

(c)

From the graph of |R3(x)| = x2/3 − T3(x) , it seems that the

error is less than 0.000 053 3 on [0.8, 1.2].

17.
n f (n)(x) f (n)(0)

0 secx 1

1 secx tanx 0

2 secx (2 sec2 x− 1) 1

3 secx tanx (6 sec2 x− 1)

(a) f(x) = secx ≈ T2(x) = 1 +
1
2
x2

(b) |R2(x)| ≤ M

3!
|x|3, where f (3)(x) ≤M . Now −0.2 ≤ x ≤ 0.2 ⇒ |x| ≤ 0.2 ⇒ |x|3 ≤ (0.2)3.

f (3)(x) is an odd function and it is increasing on [0, 0.2] since secx and tanx are increasing on [0, 0.2],

so f (3)(x) ≤ f (3)(0.2) ≈ 1.085 158 892. Thus, |R2(x)| ≤ f (3)(0.2)

3!
(0.2)3 ≈ 0.001 447.

(c)

From the graph of |R2(x)| = |secx− T2(x)|, it seems that the

error is less than 0.000 339 on [−0.2, 0.2].
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19.
n f (n)(x) f (n)(0)

0 ex
2

1

1 ex
2

(2x) 0

2 ex
2

(2 + 4x2) 2

3 ex
2
(12x+ 8x3) 0

4 ex
2

(12 + 48x2 + 16x4)

(a) f(x) = ex
2 ≈ T3(x) = 1 +

2

2!
x2 = 1 + x2

(b) |R3(x)| ≤ M

4!
|x|4, where f (4)(x) ≤M . Now 0 ≤ x ≤ 0.1 ⇒

x4 ≤ (0.1)4, and letting x = 0.1 gives

|R3(x)| ≤ e0.01 (12 + 0.48 + 0.0016)

24
(0.1)4 ≈ 0.00006.

(c)

From the graph of |R3(x)| = ex
2 − T3(x) , it appears that the

error is less than 0.000 051 on [0, 0.1].

21.
n f (n)(x) f (n)(0)

0 x sinx 0

1 sinx+ x cosx 0

2 2 cosx− x sinx 2

3 −3 sinx− x cosx 0

4 −4 cosx+ x sinx −4
5 5 sinx+ x cosx

(a) f(x) = x sinx ≈ T4(x) =
2

2!
(x− 0)2 + −4

4!
(x− 0)4 = x2 − 1

6
x4

(b) |R4(x)| ≤ M

5!
|x|5, where f (5)(x) ≤M . Now−1 ≤ x ≤ 1 ⇒

|x| ≤ 1, and a graph of f (5)(x) shows that f (5)(x) ≤ 5 for −1 ≤ x ≤ 1.

Thus, we can take M = 5 and get |R4(x)| ≤ 5

5!
· 15 = 1

24
= 0.0416.

(c)

From the graph of |R4(x)| = |x sinx− T4(x)|, it seems that the

error is less than 0.0082 on [−1, 1].

23. From Exercise 5, cosx = − x− π
2
+ 1

6
x− π

2

3
+R3(x), where |R3(x)| ≤ M

4!
x− π

2

4 with

f (4)(x) = |cosx| ≤ M = 1. Now x = 80◦ = (90◦ − 10◦) = π
2
− π

18
= 4π

9
radians, so the error is

R3
4π
9

≤ 1
24

π
18

4 ≈ 0.000 039, which means our estimate would not be accurate to five decimal places. However,

T3 = T4, so we can use R4
4π
9

≤ 1
120

π
18

5 ≈ 0.000 001. Therefore, to five decimal places,

cos 80◦ ≈ − − π
18

+ 1
6
− π
18

3 ≈ 0.17365.

25. All derivatives of ex are ex, so |Rn(x)| ≤ ex

(n+ 1)!
|x|n+1, where 0 < x < 0.1. Letting x = 0.1,

Rn(0.1) ≤ e0.1

(n+ 1)!
(0.1)n+1 < 0.00001, and by trial and error we find that n = 3 satisfies this inequality since
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R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for ex corresponding to n = 0, 1, 2, and 3,

we can estimate e0.1 to within 0.00001. (In fact, this sum is 1.10516 and e0.1 ≈ 1.10517.)

27. sinx = x− 1

3!
x3 +

1

5!
x5 − · · · . By the Alternating Series

Estimation Theorem, the error in the approximation

sinx = x− 1

3!
x3 is less than 1

5!
x5 < 0.01 ⇔

x5 < 120(0.01) ⇔ |x| < (1.2)1/5 ≈ 1.037. The curves

y = x− 1
6
x3 and y = sinx− 0.01 intersect at x ≈ 1.043, so

the graph confirms our estimate. Since both the sine function

and the given approximation are odd functions, we need to check the estimate only for x > 0. Thus, the desired range of

values for x is −1.037 < x < 1.037.

29. arctanx = x− x3

3
+

x5

5
− x7

7
+ · · · . By the Alternating Series

Estimation Theorem, the error is less than − 1
7
x7 < 0.05 ⇔

x7 < 0.35 ⇔ |x| < (0.35)1/7 ≈ 0.8607. The curves

y = x− 1
3
x3 + 1

5
x5 and y = arctanx+ 0.05 intersect at

x ≈ 0.9245, so the graph confirms our estimate. Since both the

arctangent function and the given approximation are odd functions,

we need to check the estimate only for x > 0. Thus, the desired

range of values for x is −0.86 < x < 0.86.

31. Let s(t) be the position function of the car, and for convenience set s(0) = 0. The velocity of the car is v(t) = s0(t) and the

acceleration is a(t) = s00(t), so the second degree Taylor polynomial is T2(t) = s(0) + v(0)t+
a(0)

2
t2 = 20t+ t2. We

estimate the distance traveled during the next second to be s(1) ≈ T2(1) = 20 + 1 = 21 m. The function T2(t) would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 m/s2 for that long (if it did, its final

speed would be 140 m/s ≈ 313 mi/h!).

33. E =
q

D2
− q

(D + d)2
=

q

D2
− q

D2(1 + d/D)2
=

q

D2
1− 1 +

d

D

−2
.

We use the Binomial Series to expand (1 + d/D)−2:

E =
q

D2
1− 1− 2 d

D
+
2 · 3
2!

d

D

2

− 2 · 3 · 4
3!

d

D

3

+ · · · =
q

D2
2

d

D
− 3 d

D

2

+ 4
d

D

3

− · · ·

≈ q

D2
· 2 d

D
= 2qd · 1

D3

when D is much larger than d; that is, when P is far away from the dipole.
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35. (a) If the water is deep, then 2πd/L is large, and we know that tanhx→ 1 as x→∞. So we can approximate

tanh(2πd/L) ≈ 1, and so v2 ≈ gL/(2π) ⇔ v ≈ gL/(2π).

(b) From the table, the first term in the Maclaurin series of

tanhx is x, so if the water is shallow, we can approximate

tanh
2πd

L
≈ 2πd

L
, and so v2 ≈ gL

2π
· 2πd

L
⇔ v ≈ √gd.

n f (n)(x) f (n)(0)

0 tanhx 0

1 sech2 x 1

2 −2 sech2 x tanhx 0

3 2 sech2 x (3 tanh2 x− 1) −2

(c) Since tanhx is an odd function, its Maclaurin series is alternating, so the error in the approximation

tanh
2πd

L
≈ 2πd

L
is less than the first neglected term, which is |f

000(0)|
3!

2πd

L

3

=
1

3

2πd

L

3

.

If L > 10d, then 1
3

2πd

L

3

<
1

3
2π · 1

10

3

=
π3

375
, so the error in the approximation v2 = gd is less

than gL

2π
· π

3

375
≈ 0.0132gL.

37. (a) L is the length of the arc subtended by the angle θ, so L = Rθ ⇒
θ = L/R. Now sec θ = (R+ C)/R ⇒ R sec θ = R+ C ⇒

C = R sec θ −R = R sec(L/R)−R.

(b) Extending the result in Exercise 17, we have f (4)(x) = secx (18 sec2 x tan2 x+ 6 sec4 x− sec2 x− tan2 x),
so f (4)(0) = 5, and secx ≈ T4(x) = 1 + 1

2x
2 + 5

24x
4. By part (a),

C ≈ R 1 +
1

2

L

R

2

+
5

24

L

R

4

−R = R+
1

2
R · L

2

R2
+
5

24
R · L

4

R4
−R =

L2

2R
+
5L4

24R3
.

(c) Taking L = 100 km and R = 6370 km, the formula in part (a) says that

C = R sec(L/R)−R = 6370 sec(100/6370)− 6370 ≈ 0.785 009 965 44 km.

The formula in part (b) says that C ≈ L2

2R
+
5L4

24R3
=

1002

2 · 6370 +
5 · 1004
24 · 63703 ≈ 0.785 009 957 36 km.

The difference between these two results is only 0.000 000 008 08 km, or 0.000 008 08 m!

39. Using f(x) = Tn(x) +Rn(x) with n = 1 and x = r, we have f(r) = T1(r) +R1(r), where T1 is the first-degree Taylor

polynomial of f at a. Because a = xn, f(r) = f(xn) + f 0(xn)(r − xn) +R1(r). But r is a root of f , so f(r) = 0

and we have 0 = f(xn) + f 0(xn)(r − xn) +R1(r). Taking the first two terms to the left side gives us

f 0(xn)(xn − r)− f(xn) = R1(r). Dividing by f 0(xn), we get xn − r − f(xn)

f 0(xn)
=

R1(r)

f 0(xn)
. By the formula for Newton’s

method, the left side of the preceding equation is xn+1 − r, so |xn+1 − r| = R1(r)

f 0(xn)
. Taylor’s Inequality gives us

|R1(r)| ≤ |f 00(r)|
2!

|r − xn|2. Combining this inequality with the facts |f 00(x)| ≤M and |f 0(x)| ≥ K gives us

|xn+1 − r| ≤ M

2K
|xn − r|2.
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11 Review

1. (a) See Definition 11.1.1.

(b) See Definition 11.2.2.

(c) The terms of the sequence {an} approach 3 as n becomes large.

(d) By adding sufficiently many terms of the series, we can make the partial sums as close to 3 as we like.

2. (a) See Definition 11.1.11.

(b) A sequence is monotonic if it is either increasing or decreasing.

(c) By Theorem 11.1.12, every bounded, monotonic sequence is convergent.

3. (a) See (4) in Section 11.2.

(b) The p-series
∞

n=1

1

np
is convergent if p > 1.

4. If an = 3, then lim
n→∞

an = 0 and lim
n→∞

sn = 3.

5. (a) Test for Divergence: If lim
n→∞

an does not exist or if lim
n→∞

an 6= 0, then the series ∞
n=1 an is divergent.

(b) Integral Test: Suppose f is a continuous, positive, decreasing function on [1,∞) and let an = f(n). Then the series
∞
n=1 an is convergent if and only if the improper integral ∞

1
f(x) dx is convergent. In other words:

(i) If ∞
1

f(x) dx is convergent, then ∞
n=1 an is convergent.

(ii) If ∞
1

f(x) dx is divergent, then ∞
n=1 an is divergent.

(c) Comparison Test: Suppose that an and bn are series with positive terms.
(i) If bn is convergent and an ≤ bn for all n, then an is also convergent.

(ii) If bn is divergent and an ≥ bn for all n, then an is also divergent.

(d) Limit Comparison Test: Suppose that an and bn are series with positive terms. If lim
n→∞

(an/bn) = c, where c is a

finite number and c > 0, then either both series converge or both diverge.

(e) Alternating Series Test: If the alternating series ∞
n=1(−1)n−1bn = b1 − b2 + b3 − b4 + b5 − b6 + · · · [bn > 0]

satisfies (i) bn+1 ≤ bn for all n and (ii) lim
n→∞

bn = 0, then the series is convergent.

(f ) Ratio Test:

(i) If lim
n→∞

an+1
an

= L < 1, then the series
∞

n=1

an is absolutely convergent (and therefore convergent).

(ii) If lim
n→∞

an+1
an

= L > 1 or lim
n→∞

an+1
an

=∞, then the series
∞

n=1

an is divergent.

(iii) If lim
n→∞

an+1
an

= 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or

divergence of an.
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(g) Root Test:
(i) If lim

n→∞
n |an| = L < 1, then the series ∞

n=1 an is absolutely convergent (and therefore convergent).

(ii) If lim
n→∞

n |an| = L > 1 or lim
n→∞

n |an| =∞, then the series ∞
n=1 an is divergent.

(iii) If lim
n→∞

n |an| = 1, the Root Test is inconclusive..

6. (a) A series an is called absolutely convergent if the series of absolute values |an| is convergent.

(b) If a series an is absolutely convergent, then it is convergent.

(c) A series an is called conditionally convergent if it is convergent but not absolutely convergent.

7. (a) Use (3) in Section 11.3.

(b) See Example 5 in Section 11.4.

(c) By adding terms until you reach the desired accuracy given by the Alternating Series Estimation Theorem on page 712.

8. (a)
∞

n=0

cn(x− a)n

(b) Given the power series
∞

n=0

cn(x− a)n, the radius of convergence is:

(i) 0 if the series converges only when x = a

(ii) ∞ if the series converges for all x, or

(iii) a positive number R such that the series converges if |x− a| < R and diverges if |x− a| > R.

(c) The interval of convergence of a power series is the interval that consists of all values of x for which the series converges.

Corresponding to the cases in part (b), the interval of convergence is: (i) the single point {a}, (ii) all real numbers, that is,

the real number line (−∞,∞), or (iii) an interval with endpoints a−R and a+R which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

9. (a), (b) See Theorem 11.9.2.

10. (a) Tn(x) =
n

i=0

f (i)(a)

i!
(x− a)i

(b)
∞

n=0

f (n)(a)

n!
(x− a)n

(c)
∞

n=0

f (n)(0)

n!
xn [a = 0 in part (b)]

(d) See Theorem 11.10.8.

(e) See Taylor’s Inequality (11.10.9).

11. (a)–(e) See Table 1 on page 743.

12. See the binomial series (11.10.17) for the expansion. The radius of convergence for the binomial series is 1.
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1. False. See Note 2 after Theorem 11.2.6.

3. True. If lim
n→∞

an = L, then given any ε > 0, we can find a positive integer N such that |an − L| < ε whenever n > N .

If n > N , then 2n+ 1 > N and |a2n+1 − L| < ε. Thus, lim
n→∞

a2n+1 = L.

5. False. For example, take cn = (−1)n/(n6n).

7. False, since lim
n→∞

an+1
an

= lim
n→∞

1

(n+ 1)3
· n

3

1
= lim

n→∞
n3

(n+ 1)3
· 1/n

3

1/n3
= lim

n→∞
1

(1 + 1/n)3
= 1.

9. False. See the note after Example 2 in Section 11.4.

11. True. See (9) in Section 11.1.

13. True. By Theorem 11.10.5 the coefficient of x3 is f 000(0)
3!

=
1

3
⇒ f 000(0) = 2.

Or: Use Theorem 11.9.2 to differentiate f three times.

15. False. For example, let an = bn = (−1)n. Then {an} and {bn} are divergent, but anbn = 1, so {anbn} is convergent.

17. True by Theorem 11.6.3. [ (−1)n an is absolutely convergent and hence convergent.]

19. True. 0.99999 . . . = 0.9 + 0.9(0.1)1 + 0.9(0.1)2 + 0.9(0.1)3 + · · · =
∞

n=1

(0.9)(0.1)n−1 =
0.9

1− 0.1 = 1 by the formula

for the sum of a geometric series [S = a1/(1− r)] with ratio r satisfying |r| < 1.

1. 2 + n3

1 + 2n3
converges since lim

n→∞
2 + n3

1 + 2n3
= lim

n→∞
2/n3 + 1

1/n3 + 2
=
1

2
.

3. lim
n→∞

an = lim
n→∞

n3

1 + n2
= lim

n→∞
n

1/n2 + 1
=∞, so the sequence diverges.

5. |an| = n sinn

n2 + 1
≤ n

n2 + 1
<
1

n
, so |an|→ 0 as n→∞. Thus, lim

n→∞
an = 0. The sequence {an} is convergent.

7. 1 +
3

n

4n

is convergent. Let y = 1 +
3

x

4x

. Then

lim
x→∞

ln y = lim
x→∞

4x ln(1 + 3/x) = lim
x→∞

ln(1 + 3/x)

1/(4x)
H
= lim

x→∞

1

1 + 3/x
− 3

x2

−1/(4x2) = lim
x→∞

12

1 + 3/x
= 12, so

lim
x→∞

y = lim
n→∞

1 +
3

n

4n

= e12.

9. We use induction, hypothesizing that an−1 < an < 2. Note first that 1 < a2 =
1
3
(1 + 4) = 5

3
< 2, so the hypothesis holds

for n = 2. Now assume that ak−1 < ak < 2. Then ak = 1
3
(ak−1 + 4) < 1

3
(ak + 4) <

1
3
(2 + 4) = 2. So ak < ak+1 < 2,

and the induction is complete. To find the limit of the sequence, we note that L = lim
n→∞

an = lim
n→∞

an+1 ⇒
L = 1

3
(L+ 4) ⇒ L = 2.



CHAPTER 11 REVIEW ¤ 505

11. n

n3 + 1
<

n

n3
=
1

n2
, so

∞

n=1

n

n3 + 1
converges by the Comparison Test with the convergent p-series

∞

n=1

1

n2
[ p = 2 > 1].

13. lim
n→∞

an+1
an

= lim
n→∞

(n+ 1)3

5n+1
· 5

n

n3
= lim

n→∞
1 +

1

n

3

· 1
5
=
1

5
< 1, so

∞

n=1

n3

5n
converges by the Ratio Test.

15. Let f(x) = 1

x
√
lnx

. Then f is continuous, positive, and decreasing on [2,∞), so the Integral Test applies.

∞

2

f(x) dx= lim
t→∞

t

2

1

x
√
lnx

dx u = lnx, du =
1

x
dx = lim

t→∞

ln t

ln 2

u−1/2 du = lim
t→∞

2
√
u

ln t

ln 2

= lim
t→∞

2
√
ln t− 2√ln 2 =∞,

so the series
∞

n=2

1

n
√
lnn

diverges.

17. |an| = cos 3n

1 + (1.2)n
≤ 1

1 + (1.2)n
<

1

(1.2)n
=

5

6

n

, so
∞

n=1

|an| converges by comparison with the convergent geometric

series
∞

n=1

5
6

n
r = 5

6 < 1 . It follows that
∞

n=1

an converges (by Theorem 3 in Section 11.6).

19. lim
n→∞

an+1
an

= lim
n→∞

1 · 3 · 5 · · · · · (2n− 1)(2n+ 1)
5n+1 (n+ 1)!

· 5n n!

1 · 3 · 5 · · · · · (2n− 1) = lim
n→∞

2n+ 1

5(n+ 1)
=
2

5
< 1, so the series

converges by the Ratio Test.

21. bn =
√
n

n+ 1
> 0, {bn} is decreasing, and lim

n→∞
bn = 0, so the series

∞

n=1

(−1)n−1
√
n

n+ 1
converges by the Alternating

Series Test.

23. Consider the series of absolute values:
∞

n=1

n−1/3 is a p-series with p = 1
3
≤ 1 and is therefore divergent. But if we apply the

Alternating Series Test, we see that bn =
1
3
√
n
> 0, {bn} is decreasing, and lim

n→∞
bn = 0, so the series

∞

n=1

(−1)n−1 n−1/3

converges. Thus,
∞

n=1

(−1)n−1 n−1/3 is conditionally convergent.

25. an+1
an

=
(−1)n+1(n+ 2)3n+1

22n+3
· 22n+1

(−1)n(n+ 1)3n =
n+ 2

n+ 1
· 3
4
=
1 + (2/n)

1 + (1/n)
· 3
4
→ 3

4
< 1 as n→∞, so by the Ratio

Test,
∞

n=1

(−1)n(n+ 1)3n
22n+1

is absolutely convergent.

27.
∞

n=1

(−3)n−1
23n

=
∞

n=1

(−3)n−1
(23)n

=
∞

n=1

(−3)n−1
8n

=
1

8

∞

n=1

(−3)n−1
8n−1

=
1

8

∞

n=1

−3
8

n−1
=
1

8

1

1− (−3/8)

=
1

8
· 8
11
=
1

11
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29.
∞

n=1

[tan−1(n+ 1)− tan−1 n] = lim
n→∞

sn

= lim
n→∞

[(tan−1 2− tan−1 1) + (tan−1 3− tan−1 2) + · · ·+ (tan−1(n+ 1)− tan−1 n)]

= lim
n→∞

[tan−1(n+ 1)− tan−1 1] = π
2
− π

4
= π

4

31. 1− e+
e2

2!
− e3

3!
+

e4

4!
− · · · =

∞

n=0

(−1)n e
n

n!
=

∞

n=0

(−e)n
n!

= e−e since ex =
∞

n=0

xn

n!
for all x.

33. coshx = 1

2
(ex + e−x) =

1

2

∞

n=0

xn

n!
+

∞

n=0

(−x)n
n!

=
1

2
1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ · · · + 1− x+

x2

2!
− x3

3!
+

x4

4!
− · · ·

=
1

2
2 + 2 · x

2

2!
+ 2 · x

4

4!
+ · · · = 1+

1

2
x2 +

∞

n=2

x2n

(2n)!
≥ 1 + 1

2
x2 for all x

35.
∞

n=1

(−1)n+1
n5

= 1− 1

32
+

1

243
− 1

1024
+

1

3125
− 1

7776
+

1

16,807
− 1

32,768
+ · · · .

Since b8 =
1

85
=

1

32,768
< 0.000031,

∞

n=1

(−1)n+1
n5

≈
7

n=1

(−1)n+1
n5

≈ 0.9721.

37.
∞

n=1

1

2 + 5n
≈

8

n=1

1

2 + 5n
≈ 0.18976224. To estimate the error, note that 1

2 + 5n
<

1

5n
, so the remainder term is

R8 =
∞

n=9

1

2 + 5n
<

∞

n=9

1

5n
=

1/59

1− 1/5 = 6.4× 10
−7 geometric series with a = 1

59
and r = 1

5
.

39. Use the Limit Comparison Test. lim
n→∞

n+1
n

an

an
= lim

n→∞
n+ 1

n
= lim

n→∞
1 +

1

n
= 1 > 0.

Since |an| is convergent, so is n+ 1

n
an , by the Limit Comparison Test.

41. lim
n→∞

an+1
an

= lim
n→∞

|x+ 2|n+1
(n+ 1) 4n+1

· n 4n

|x+ 2|n = lim
n→∞

n

n+ 1

|x+ 2|
4

=
|x+ 2|
4

< 1 ⇔ |x+ 2| < 4, so R = 4.

|x+ 2| < 4 ⇔ −4 < x+ 2 < 4 ⇔ −6 < x < 2. If x = −6, then the series
∞

n=1

(x+ 2)n

n 4n
becomes

∞

n=1

(−4)n
n4n

=
∞

n=1

(−1)n
n

, the alternating harmonic series, which converges by the Alternating Series Test. When x = 2, the

series becomes the harmonic series
∞

n=1

1

n
, which diverges. Thus, I = [−6, 2).

43. lim
n→∞

an+1
an

= lim
n→∞

2n+1(x− 3)n+1√
n+ 4

·
√
n+ 3

2n(x− 3)n = 2 |x− 3| lim
n→∞

n+ 3

n+ 4
= 2 |x− 3| < 1 ⇔ |x− 3| < 1

2
,

so R = 1
2

. |x− 3| < 1
2
⇔ − 1

2
< x− 3 < 1

2
⇔ 5

2
< x < 7

2
. For x = 7

2
, the series

∞

n=1

2n(x− 3)n√
n+ 3

becomes

∞

n=0

1√
n+ 3

=
∞

n=3

1

n1/2
, which diverges p = 1

2
≤ 1 , but for x = 5

2
, we get

∞

n=0

(−1)n√
n+ 3

, which is a convergent

alternating series, so I = 5
2
, 7
2

.
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45.
n f (n)(x) f (n) π

6

0 sinx 1
2

1 cosx
√
3
2

2 − sinx − 1
2

3 − cosx −
√
3
2

4 sinx 1
2

...
...

...

sinx= f
π

6
+ f 0

π

6
x− π

6
+

f 00
π

6
2!

x− π

6

2

+
f (3)

π

6
3!

x− π

6

3

+
f (4)

π

6
4!

x− π

6

4

+ · · ·

=
1

2
1− 1

2!
x− π

6

2

+
1

4!
x− π

6

4

− · · · +

√
3

2
x− π

6
− 1

3!
x− π

6

3

+ · · ·

=
1

2

∞

n=0

(−1)n 1

(2n)!
x− π

6

2n

+

√
3

2

∞

n=0

(−1)n 1

(2n+ 1)!
x− π

6

2n+1

47. 1

1 + x
=

1

1− (−x) =
∞

n=0

(−x)n =
∞

n=0

(−1)n xn for |x| < 1 ⇒ x2

1 + x
=

∞

n=0

(−1)n xn+2 with R = 1.

49. 1

1− x
=

∞

n=0

xn for |x| < 1 ⇒ ln (1− x) = − dx

1− x
= −

∞

n=0

xn dx = C −
∞

n=0

xn+1

n+ 1
.

ln (1− 0) = C − 0 ⇒ C = 0 ⇒ ln (1− x) = −
∞

n=0

xn+1

n+ 1
=

∞

n=1

−xn
n

with R = 1.

51. sinx =
∞

n=0

(−1)n x2n+1
(2n+ 1)!

⇒ sin(x4) =
∞

n=0

(−1)n (x4)2n+1
(2n+ 1)!

=
∞

n=0

(−1)n x8n+4
(2n+ 1)!

for all x, so the radius of

convergence is∞.

53. f(x) = 1
4
√
16− x

=
1

4 16(1− x/16)
=

1
4
√
16 1− 1

16
x

1/4
= 1

2
1− 1

16
x
−1/4

=
1

2
1 + −1

4
− x

16
+

− 1
4
− 5
4

2!
− x

16

2

+
− 1
4

− 5
4

− 9
4

3!
− x

16

3

+ · · ·

=
1

2
+

∞

n=1

1 · 5 · 9 · · · · · (4n− 3)
2 · 4n · n! · 16n xn =

1

2
+

∞

n=1

1 · 5 · 9 · · · · · (4n− 3)
26n+1 n!

xn

for − x

16
< 1 ⇔ |x| < 16, so R = 16.

55. ex =
∞

n=0

xn

n!
, so ex

x
=
1

x

∞

n=0

xn

n!
=

∞

n=0

xn−1

n!
= x−1 +

∞

n=1

xn−1

n!
=
1

x
+

∞

n=1

xn−1

n!
and

ex

x
dx = C + ln |x|+

∞

n=1

xn

n · n! .
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57. (a)
n f (n)(x) f (n)(1)

0 x1/2 1

1 1
2
x−1/2 1

2

2 − 1
4
x−3/2 − 1

4

3 3
8
x−5/2 3

8

4 − 15
16
x−7/2 − 15

16

...
...

...

√
x ≈ T3(x) = 1 +

1/2

1!
(x− 1)− 1/4

2!
(x− 1)2 + 3/8

3!
(x− 1)3

= 1 + 1
2
(x− 1)− 1

8
(x− 1)2 + 1

16
(x− 1)3

(b) (c) |R3 (x)| ≤ M

4!
|x− 1|4, where f (4) (x) ≤M with

f (4)(x) = − 15
16
x−7/2. Now 0.9 ≤ x ≤ 1.1 ⇒

−0.1 ≤ x− 1 ≤ 0.1 ⇒ (x− 1)4 ≤ (0.1)4,

and letting x = 0.9 gives M =
15

16(0.9)7/2
, so

|R3(x)| ≤ 15

16(0.9)7/2 4!
(0.1)4 ≈ 0.000 005 648

≈ 0.000 006 = 6× 10−6
(d)

From the graph of |R3(x)| = |√x− T3(x)|, it appears

that the error is less than 5× 10−6 on [0.9, 1.1].

59. sinx =
∞

n=0

(−1)n x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · , so sinx− x = −x3

3!
+

x5

5!
− x7

7!
+ · · · and

sinx− x

x3
= − 1

3!
+

x2

5!
− x4

7!
+ · · · . Thus, lim

x→0

sinx− x

x3
= lim

x→0
−1
6
+

x2

120
− x4

5040
+ · · · = −1

6
.

61. f(x) =
∞

n=0

cn x
n ⇒ f(−x) =

∞

n=0

cn(−x)n =
∞

n=0

(−1)ncn xn

(a) If f is an odd function, then f(−x) = −f(x) ⇒
∞

n=0

(−1)ncnxn =
∞

n=0

−cnxn. The coefficients of any power series

are uniquely determined (by Theorem 11.10.5), so (−1)n cn = −cn.

If n is even, then (−1)n = 1, so cn = −cn ⇒ 2cn = 0 ⇒ cn = 0. Thus, all even coefficients are 0, that is,

c0 = c2 = c4 = · · · = 0.

(b) If f is even, then f(−x) = f(x) ⇒
∞

n=0

(−1)n cn xn =
∞

n=0

cn x
n ⇒ (−1)n cn = cn.

If n is odd, then (−1)n = −1, so −cn = cn ⇒ 2cn = 0 ⇒ cn = 0. Thus, all odd coefficients are 0,

that is, c1 = c3 = c5 = · · · = 0.



PROBLEMS PLUS
1. It would be far too much work to compute 15 derivatives of f . The key idea is to remember that f (n)(0) occurs in the

coefficient of xn in the Maclaurin series of f . We start with the Maclaurin series for sin: sinx = x− x3

3!
+

x5

5!
− · · · .

Then sin(x3) = x3 − x9

3!
+

x15

5!
− · · · , and so the coefficient of x15 is f (15)(0)

15!
=
1

5!
. Therefore,

f (15)(0) =
15!

5!
= 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 = 10,897,286,400.

3. (a) From Formula 14a in Appendix D, with x = y = θ, we get tan 2θ = 2 tan θ

1− tan2 θ , so cot 2θ = 1− tan2 θ
2 tan θ

⇒

2 cot 2θ =
1− tan2 θ
tan θ

= cot θ − tan θ. Replacing θ by 1
2
x, we get 2 cotx = cot 1

2
x− tan 1

2
x, or

tan 1
2x = cot

1
2x− 2 cotx.

(b) From part (a) with x

2n−1
in place of x, tan x

2n
= cot

x

2n
− 2 cot x

2n−1
, so the nth partial sum of

∞

n=1

1

2n
tan

x

2n
is

sn =
tan(x/2)

2
+
tan(x/4)

4
+
tan(x/8)

8
+ · · ·+ tan(x/2n)

2n

=
cot(x/2)

2
− cotx +

cot(x/4)

4
− cot(x/2)

2
+

cot(x/8)

8
− cot(x/4)

4
+ · · ·

+
cot(x/2n)

2n
− cot(x/2n−1)

2n−1
= − cotx+ cot(x/2n)

2n
[telescoping sum]

Now cot(x/2n)

2n
=

cos(x/2n)

2n sin(x/2n)
=
cos(x/2n)

x
· x/2n

sin(x/2n)
→ 1

x
· 1 = 1

x
as n→∞ since x/2n → 0

for x 6= 0. Therefore, if x 6= 0 and x 6= kπ where k is any integer, then

∞

n=1

1

2n
tan

x

2n
= lim

n→∞
sn = lim

n→∞
− cotx+ 1

2n
cot

x

2n
= − cotx+ 1

x

If x = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of length
1
3

of the side length at the preceding stage. Writing s0 and 0 for the

number of sides and the length of the side of the initial triangle, we

generate the table at right. In general, we have sn = 3 · 4n and

n =
1
3

n, so the length of the perimeter at the nth stage of construction

is pn = sn n = 3 · 4n · 1
3

n
= 3 · 4

3

n.

s0 = 3 0 = 1

s1 = 3 · 4 1 = 1/3

s2 = 3 · 42 2 = 1/3
2

s3 = 3 · 43 3 = 1/3
3

...
...

(b) pn =
4n

3n−1
= 4

4

3

n−1
. Since 4

3 > 1, pn →∞ as n→∞.

509



510 ¤ CHAPTER 11 PROBLEMS PLUS

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let a be the area of the original triangle. Then the area an of each of the small triangles added at stage n is

an = a · 1
9n
=

a

9n
. Since a small triangle is added to each side at every stage, it follows that the total area An added to the

figure at the nth stage is An = sn−1 · an = 3 · 4n−1 · a

9n
= a · 4

n−1

32n−1
. Then the total area enclosed by the snowflake

curve is A = a+A1 +A2 +A3 + · · · = a+ a · 1
3
+ a · 4

33
+ a · 4

2

35
+ a · 4

3

37
+ · · · . After the first term, this is a

geometric series with common ratio 4
9

, so A = a+
a/3

1− 4
9

= a+
a

3
· 9
5
=
8a

5
. But the area of the original equilateral

triangle with side 1 is a = 1

2
· 1 · sin π

3
=

√
3

4
. So the area enclosed by the snowflake curve is 8

5
·
√
3

4
=
2
√
3

5
.

7. (a) Let a = arctanx and b = arctan y. Then, from Formula 14b in Appendix D,

tan(a− b) =
tan a− tan b
1 + tan a tan b

=
tan(arctanx)− tan(arctan y)
1 + tan(arctanx) tan(arctan y)

=
x− y

1 + xy

Now arctanx− arctan y = a− b = arctan(tan(a− b)) = arctan
x− y

1 + xy
since−π

2
< a− b < π

2
.

(b) From part (a) we have

arctan 120
119
− arctan 1

239
= arctan

120
119
− 1

239

1 + 120
119

· 1
239

= arctan
28,561
28,441
28,561
28,441

= arctan 1 = π
4

(c) Replacing y by −y in the formula of part (a), we get arctanx+ arctan y = arctan x+ y

1− xy
. So

4 arctan 1
5
= 2 arctan 1

5
+ arctan 1

5
= 2arctan

1
5
+ 1

5

1− 1
5 · 15

= 2arctan 5
12
= arctan 5

12
+ arctan 5

12

= arctan
5
12
+ 5

12

1− 5
12 · 5

12

= arctan 120
119

Thus, from part (b), we have 4 arctan 1
5
− arctan 1

239
= arctan 120

119
− arctan 1

239
= π

4
.

(d) From Example 7 in Section 11.9 we have arctanx = x− x3

3
+

x5

5
− x7

7
+

x9

9
− x11

11
+ · · · , so

arctan
1

5
=
1

5
− 1

3 · 53 +
1

5 · 55 −
1

7 · 57 +
1

9 · 59 −
1

11 · 511 + · · ·

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between s5 and s6, that is, 0.197395560 < arctan 1
5
< 0.197395562.

(e) From the series in part (d) we get arctan 1

239
=

1

239
− 1

3 · 2393 +
1

5 · 2395 − · · · . The third term is less than

2.6× 10−13, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan 1
239 ≈ s2 ≈ 0.004184076. Thus, 0.004184075 < arctan 1

239 < 0.004184077.
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(f ) From part (c) we have π = 16 arctan 1
5 − 4 arctan 1

239 , so from parts (d) and (e) we have

16(0.197395560) − 4(0.004184077) < π < 16(0.197395562) − 4(0.004184075) ⇒
3.141592652 < π < 3.141592692. So, to 7 decimal places, π ≈ 3.1415927.

9. We start with the geometric series
∞

n=0

xn =
1

1− x
, |x| < 1, and differentiate:

∞

n=1

nxn−1 =
d

dx

∞

n=0

xn =
d

dx

1

1− x
=

1

(1− x)2
for |x| < 1 ⇒

∞

n=1

nxn = x
∞

n=1

nxn−1 =
x

(1− x)2

for |x| < 1. Differentiate again:

∞

n=1

n2xn−1 =
d

dx

x

(1− x)2
=
(1− x)2 − x · 2(1− x)(−1)

(1− x)4
=

x+ 1

(1− x)3
⇒

∞

n=1

n2 xn =
x2 + x

(1− x)3
⇒

∞

n=1

n3xn−1 =
d

dx

x2 + x

(1− x)3
=
(1− x)3(2x+ 1)− (x2 + x)3(1− x)2(−1)

(1− x)6
=

x2 + 4x+ 1

(1− x)4
⇒

∞

n=1

n3xn =
x3 + 4x2 + x

(1− x)4
, |x| < 1. The radius of convergence is 1 because that is the radius of convergence for the

geometric series we started with. If x = ±1, the series is n3(±1)n, which diverges by the Test For Divergence, so the

interval of convergence is (−1, 1).

11. ln 1− 1

n2
= ln

n2 − 1
n2

= ln
(n+ 1)(n− 1)

n2
= ln[(n+ 1)(n− 1)]− lnn2

= ln(n+ 1) + ln(n− 1)− 2 lnn = ln(n− 1)− lnn− lnn+ ln(n+ 1)

= ln
n− 1
n

− [lnn− ln(n+ 1)] = ln n− 1
n

− ln n

n+ 1
.

Let sk =
k

n=2

ln 1− 1

n2
=

k

n=2

ln
n− 1
n

− ln n

n+ 1
for k ≥ 2. Then

sk = ln
1

2
− ln 2

3
+ ln

2

3
− ln 3

4
+ · · ·+ ln

k − 1
k

− ln k

k + 1
= ln

1

2
− ln k

k + 1
, so

∞

n=2

ln 1− 1

n2
= lim

k→∞
sk = lim

k→∞
ln
1

2
− ln k

k + 1
= ln

1

2
− ln 1 = ln 1− ln 2− ln 1 = − ln 2.

13. (a) The x-intercepts of the curve occur where sinx = 0 ⇔ x = nπ,

n an integer. So using the formula for disks (and either a CAS or

sin2 x = 1
2
(1− cos 2x) and Formula 99 to evaluate the integral),

the volume of the nth bead is

Vn = π
nπ

(n−1)π (e
−x/10 sinx)2 dx = π

nπ

(n−1)π e
−x/5 sin2 xdx

= 250π
101

(e−(n−1)π/5 − e−nπ/5)
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(b) The total volume is

π
∞
0

e−x/5 sin2 xdx =
∞

n=1

Vn =
250π
101

∞

n=1

[e−(n−1)π/5 − e−nπ/5] = 250π
101

[telescoping sum].

Another method: If the volume in part (a) has been written as Vn = 250π
101

e−nπ/5(eπ/5 − 1), then we recognize
∞

n=1

Vn

as a geometric series with a = 250π
101

(1− e−π/5) and r = e−π/5.

15. If L is the length of a side of the equilateral triangle, then the area is A = 1
2
L ·

√
3
2
L =

√
3
4
L2 and so L2 = 4√

3
A.

Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that

L =
√
3 r + r + (n− 2)(2r) + r +

√
3 r = r 2n− 2 + 2√3 , so r = L

2 n+
√
3− 1 .

The number of circles is 1 + 2 + · · ·+ n =
n(n+ 1)

2
, and so the total area of the circles is

An =
n(n+ 1)

2
πr2 =

n(n+ 1)

2
π

L2

4 n+
√
3− 1 2

=
n(n+ 1)

2
π

4A/
√
3

4 n+
√
3− 1 2 =

n(n+ 1)

n+
√
3− 1 2

πA

2
√
3

⇒

An

A
=

n(n+ 1)

n+
√
3− 1 2

π

2
√
3

=
1 + 1/n

1 +
√
3− 1 /n

2

π

2
√
3
→ π

2
√
3

as n→∞

17. As in Section 11.9 we have to integrate the function xx by integrating series. Writing xx = (eln x)x = ex ln x and using the

Maclaurin series for ex, we have xx = (eln x)x = ex ln x =
∞

n=0

(x lnx)n

n!
=

∞

n=0

xn(lnx)n

n!
. As with power series, we can

integrate this series term-by-term:
1

0

xx dx =
∞

n=0

1

0

xn(lnx)n

n!
dx =

∞

n=0

1

n!

1

0

xn(lnx)n dx. We integrate by parts

with u = (lnx)n, dv = xn dx, so du = n(lnx)n−1

x
dx and v = xn+1

n+ 1
:

1

0

xn(lnx)n dx = lim
t→0+

1

t

xn(lnx)n dx = lim
t→0+

xn+1

n+ 1
(lnx)n

1

t

− lim
t→0+

1

t

n

n+ 1
xn(lnx)n−1 dx

= 0− n

n+ 1

1

0

xn(lnx)n−1 dx

(where l’Hospital’s Rule was used to help evaluate the first limit). Further integration by parts gives
1

0

xn(lnx)k dx = − k

n+ 1

1

0

xn(lnx)k−1 dx and, combining these steps, we get

1

0

xn(lnx)n dx =
(−1)n n!
(n+ 1)n

1

0

xn dx =
(−1)n n!
(n+ 1)n+1

⇒

1

0

xx dx =
∞

n=0

1

n!

1

0

xn(lnx)n dx =
∞

n=0

1

n!

(−1)n n!
(n+ 1)n+1

=
∞

n=0

(−1)n
(n+ 1)n+1

=
∞

n=1

(−1)n−1
nn

.
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19. Let f(x) =
∞

m=0

cmx
m and g(x) = ef(x) =

∞

n=0

dnx
n. Then g0(x) =

∞

n=0

ndnx
n−1, so ndn occurs as the coefficient

of xn−1. But also

g0(x) = ef(x)f 0 (x) =
∞

n=0

dnx
n

∞

m=1

mcmx
m−1

= d0 + d1x+ d2x
2 + · · ·+ dn−1xn−1 + · · · c1 + 2c2x+ 3c3x

2 + · · ·+ ncnx
n−1 + · · ·

so the coefficient of xn−1 is c1dn−1 + 2c2dn−2 + 3c3dn−3 + · · ·+ ncnd0 =
n

i=1

icidn−i. Therefore, ndn =
n

i=1

icidn−i.

21. Call the series S. We group the terms according to the number of digits in their denominators:

S = 1
1
+ 1

2
+ · · ·+ 1

8
+ 1

9

g1

+ 1
11
+ · · ·+ 1

99

g2

+ 1
111

+ · · ·+ 1
999

g3

+ · · ·

Now in the group gn, since we have 9 choices for each of the n digits in the denominator, there are 9n terms.

Furthermore, each term in gn is less than 1
10n−1 [except for the first term in g1]. So gn < 9n · 1

10n−1 = 9
9
10

n−1.

Now
∞

n=1

9 9
10

n−1 is a geometric series with a = 9 and r = 9
10

< 1. Therefore, by the Comparison Test,

S =
∞

n=1

gn <
∞

n=1

9 9
10

n−1
= 9

1− 9/10 = 90.

23. u = 1 + x3

3!
+

x6

6!
+

x9

9!
+ · · · , v = x+

x4

4!
+

x7

7!
+

x10

10!
+ · · · , w = x2

2!
+

x5

5!
+

x8

8!
+ · · · .

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (∞ in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:

du

dx
=
3x2

3!
+
6x5

6!
+
9x8

9!
+ · · · = x2

2!
+

x5

5!
+

x8

8!
+ · · · = w

Similarly, dv
dx

= 1 +
x3

3!
+

x6

6!
+

x9

9!
+ · · · = u, and dw

dx
= x+

x4

4!
+

x7

7!
+

x10

10!
+ · · · = v.

So u0 = w, v0 = u, and w0 = v. Now differentiate the left hand side of the desired equation:

d

dx
(u3 + v3 + w3 − 3uvw) = 3u2u0 + 3v2v0 + 3w2w0 − 3(u0vw + uv0w + uvw0)

= 3u2w + 3v2u+ 3w2v − 3(vw2 + u2w + uv2) = 0 ⇒

u3 + v3 + w3 − 3uvw = C. To find the value of the constant C, we put x = 0 in the last equation and get

13 + 03 + 03 − 3(1 · 0 · 0) = C ⇒ C = 1, so u3 + v3 +w3 − 3uvw = 1.





13 VECTORS AND THE GEOMETRY OF SPACE ET 12

13.1 Three-Dimensional Coordinate Systems ET 12.1

1. We start at the origin, which has coordinates (0, 0, 0). First we move 4 units along the positive x-axis, affecting only the

x-coordinate, bringing us to the point (4, 0, 0). We then move 3 units straight downward, in the negative z-direction. Thus

only the z-coordinate is affected, and we arrive at (4, 0,−3).

3. The distance from a point to the xz-plane is the absolute value of the y-coordinate of the point. Q(−5,−1, 4) has the

y-coordinate with the smallest absolute value, so Q is the point closest to the xz-plane. R(0, 3, 8) must lie in the yz-plane

since the distance from R to the yz-plane, given by the x-coordinate of R, is 0.

5. The equation x+ y = 2 represents the set of all points in

R3 whose x- and y-coordinates have a sum of 2, or

equivalently where y = 2− x. This is the set

{(x, 2− x, z) | x ∈ R, z ∈ R} which is a vertical plane

that intersects the xy-plane in the line y = 2− x, z = 0.

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

|PQ| = (7− 3)2 + [0− (−2)]2 + [1− (−3)]2 = √16 + 4 + 16 = 6

|QR| = (1− 7)2 + (2− 0)2 + (1− 1)2 = √36 + 4 + 0 = √40 = 2√10

|RP | = (3− 1)2 + (−2− 2)2 + (−3− 1)2 = √4 + 16 + 16 = 6

The longest side is QR, but the Pythagorean Theorem is not satisfied: |PQ|2 + |RP |2 6= |QR|2. Thus PQR is not a right

triangle. PQR is isosceles, as two sides have the same length.

9. (a) First we find the distances between points:

|AB| = (3− 2)2 + (7− 4)2 + (−2− 2)2 = √26

|BC| = (1− 3)2 + (3− 7)2 + [3− (−2)]2 = √45 = 3√5

|AC| = (1− 2)2 + (3− 4)2 + (3− 2)2 = √3

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest distance.

Since
√
26 +

√
3 6= 3√5, the three points do not lie on a straight line.

105
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(b) First we find the distances between points:

|DE| = (1− 0)2 + [−2− (−5)]2 + (4− 5)2 = √11

|EF | = (3− 1)2 + [4− (−2)]2 + (2− 4)2 = √44 = 2√11

|DF | = (3− 0)2 + [4− (−5)]2 + (2− 5)2 = √99 = 3√11
Since |DE|+ |EF | = |DF |, the three points lie on a straight line.

11. An equation of the sphere with center (1,−4, 3) and radius 5 is (x− 1)2 + [y − (−4)]2 + (z − 3)2 = 52 or

(x− 1)2 + (y + 4)2 + (z − 3)2 = 25. The intersection of this sphere with the xz-plane is the set of points on the sphere

whose y-coordinate is 0. Putting y = 0 into the equation, we have (x− 1)2 + 42 + (z − 3)2 = 25, y = 0 or

(x− 1)2 + (z − 3)2 = 9, y = 0, which represents a circle in the xz-plane with center (1, 0, 3) and radius 3.

13. The radius of the sphere is the distance between (4, 3,−1) and (3, 8, 1): r = (3− 4)2 + (8− 3)2 + [1− (−1)]2 = √30.

Thus, an equation of the sphere is (x− 3)2 + (y − 8)2 + (z − 1)2 = 30.

15. Completing squares in the equation x2 + y2 + z2 − 6x+ 4y − 2z = 11 gives

(x2 − 6x+ 9) + (y2 + 4y + 4) + (z2 − 2z + 1) = 11 + 9 + 4 + 1 ⇒ (x− 3)2 + (y + 2)2 + (z − 1)2 = 25, which we

recognize as an equation of a sphere with center (3,−2, 1) and radius 5.

17. Completing squares in the equation 2x2 − 8x + 2y2 + 2z2 + 24z = 1 gives

2(x2 − 4x+ 4) + 2y2 + 2(z2 + 12z + 36) = 1 + 8 + 72 ⇒ 2(x− 2)2 + 2y2 + 2(z + 6)2 = 81 ⇒
(x− 2)2 + y2 + (z + 6)2 = 81

2
, which we recognize as an equation of a sphere with center (2, 0,−6) and radius

81
2
= 9/

√
2.

19. (a) If the midpoint of the line segment from P1(x1, y1, z1) to P2(x2, y2, z2) is Q =
x1 + x2
2

,
y1 + y2
2

,
z1 + z2
2

,

then the distances |P1Q| and |QP2| are equal, and each is half of |P1P2|. We verify that this is the case:

|P1P2|= (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

|P1Q|= 1
2 (x1 + x2)− x1

2
+ 1

2 (y1 + y2)− y1
2
+ 1

2 (z1 + z2)− z1
2

= 1
2x2 − 1

2x1
2
+ 1

2y2 − 1
2y1

2
+ 1

2z2 − 1
2z1

2

= 1
2

2
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 = 1
2

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

= 1
2 |P1P2|

|QP2|= x2 − 1
2
(x1 + x2)

2
+ y2 − 1

2
(y1 + y2)

2
+ z2 − 1

2
(z1 + z2)

2

= 1
2
x2 − 1

2
x1

2
+ 1

2
y2 − 1

2
y1

2
+ 1

2
z2 − 1

2
z1

2
= 1

2

2
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2

= 1
2

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 = 1

2
|P1P2|

So Q is indeed the midpoint of P1P2.
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(b) By part (a), the midpoints of sides AB, BC and CA are P1 − 1
2 , 1, 4 , P2 1, 12 , 5 and P3 5

2 ,
3
2 , 4 . (Recall that a median

of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths of the medians are:

|AP2| = 02 + 1
2
− 2 2

+ (5− 3)2 = 9
4
+ 4 = 25

4
= 5

2

|BP3|= 5
2
+ 2

2
+ 3

2

2
+ (4− 5)2 = 81

4
+ 9

4
+ 1 = 94

4
= 1

2

√
94

|CP1|= − 1
2
− 4 2

+ (1− 1)2 + (4− 5)2 = 81
4
+ 1 = 1

2

√
85

21. (a) Since the sphere touches the xy-plane, its radius is the distance from its center, (2,−3, 6), to the xy-plane, namely 6.

Therefore r = 6 and an equation of the sphere is (x− 2)2 + (y + 3)2 + (z − 6)2 = 62 = 36.

(b) The radius of this sphere is the distance from its center (2,−3, 6) to the yz-plane, which is 2. Therefore, an equation is

(x− 2)2 + (y + 3)2 + (z − 6)2 = 4.

(c) Here the radius is the distance from the center (2,−3, 6) to the xz-plane, which is 3. Therefore, an equation is

(x− 2)2 + (y + 3)2 + (z − 6)2 = 9.

23. The equation y = −4 represents a plane parallel to the xz-plane and 4 units to the left of it.

25. The inequality x > 3 represents a half-space consisting of all points in front of the plane x = 3.

27. The inequality 0 ≤ z ≤ 6 represents all points on or between the horizontal planes z = 0 (the xy-plane) and z = 6.

29. The inequality x2 + y2 + z2 ≤ 3 is equivalent to x2 + y2 + z2 ≤ √3, so the region consists of those points whose distance

from the origin is at most
√
3. This is the set of all points on or inside the sphere with radius

√
3 and center (0, 0, 0).

31. Here x2 + z2 ≤ 9 or equivalently
√
x2 + z2 ≤ 3 which describes the set of all points in R3 whose distance from the y-axis is

at most 3. Thus, the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with

axis the y-axis.

33. This describes all points whose x-coordinate is between 0 and 5, that is, 0 < x < 5.

35. This describes a region all of whose points have a distance to the origin which is greater than r, but smaller than R. So

inequalities describing the region are r < x2 + y2 + z2 < R, or r2 < x2 + y2 + z2 < R2.

37. (a) To find the x- and y-coordinates of the point P , we project it onto L2 and

project the resulting point Q onto the x- and y-axes. To find the

z-coordinate, we project P onto either the xz-plane or the yz-plane

(using our knowledge of its x- or y-coordinate) and then project the

resulting point onto the z-axis. (Or, we could draw a line parallel to QO

from P to the z-axis.) The coordinates of P are (2, 1, 4).

(b) A is the intersection of L1 and L2, B is directly below the

y-intercept of L2, and C is directly above the x-intercept of L2.
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39. We need to find a set of points P (x, y, z) |AP | = |BP | .

(x+ 1)2 + (y − 5)2 + (z − 3)2 = (x− 6)2 + (y − 2)2 + (z + 2)2 ⇒

(x+ 1)2 + (y − 5) + (z − 3)2 = (x− 6)2 + (y − 2)2 + (z + 2)2 ⇒
x2 + 2x+ 1+ y2 − 10y + 25 + z2 − 6z + 9 = x2 − 12x+ 36 + y2 − 4y + 4+ z2 + 4z + 4 ⇒ 14x− 6y − 10z = 9.

Thus the set of points is a plane perpendicular to the line segment joining A and B (since this plane must contain the

perpendicular bisector of the line segment AB).

13.2 Vectors ET 12.2

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given

location.

(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.

(d) The population of the world is a scalar, because it has only magnitude.

3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry of the

parallelogram as a guide, we see that
−→
AB =

−−→
DC,

−−→
DA =

−−→
CB,

−−→
DE =

−−→
EB, and

−→
EA =

−−→
CE.

5. (a) (b) (c) (d)

7. a = h−2− 2, 1− 3i = h−4,−2i 9. a = h2− (−1), 2− 3i = h3,−1i

11. a = h2− 0, 3− 3,−1− 1i = h2, 0,−2i 13. h−1, 4i+ h6,−2i = h−1 + 6, 4 + (−2)i = h5, 2i



SECTION 13.2 VECTORS ET SECTION 12.2 ¤ 109

15. h0, 1, 2i+ h0, 0,−3i = h0 + 0, 1 + 0, 2 + (−3)i
= h0, 1,−1i

17. a+ b = h5 + (−3) ,−12 + (−6)i = h2,−18i
2a+ 3b = h10,−24i+ h−9,−18i = h1,−42i
|a| = 52 + (−12)2 = √169 = 13

|a− b| = |h5− (−3),−12− (−6)i| = |h8,−6i| = 82 + (−6)2 = √100 = 10

19. a+ b = (i+ 2 j− 3k) + (−2 i− j+ 5k) = − i+ j+ 2k
2a+ 3b = 2 (i+ 2 j− 3k) + 3 (−2 i− j+ 5k) = 2 i+ 4 j− 6k− 6 i− 3 j+ 15k =− 4 i+ j+ 9k
|a| = 12 + 22 + (−3)2 = √14

|a− b| = |(i+ 2 j− 3k)− (−2 i− j+ 5k)| = |3 i+ 3 j− 8k| = 32 + 32 + (−8)2 = √82

21. |−3 i+ 7 j| = (−3)2 + 72 = √58, so u = 1√
58
(−3 i+ 7 j) = − 3√

58
i+

7√
58
j.

23. The vector 8 i− j+ 4k has length |8 i− j+ 4k| = 82 + (−1)2 + 42 = √81 = 9, so by Equation 4 the unit vector with

the same direction is 1
9
(8 i− j+ 4k) = 8

9
i− 1

9
j+ 4

9
k.

25. From the figure, we see that the x-component of v is

v1 = |v| cos(π/3) = 4 · 12 = 2 and the y-component is

v2 = |v| sin(π/3) = 4 ·
√
3
2
= 2

√
3. Thus

v = hv1, v2i = 2, 2
√
3 .

27. The velocity vector v makes an angle of 40◦ with the horizontal and

has magnitude equal to the speed at which the football was thrown.

From the figure, we see that the horizontal component of v is

|v| cos 40◦ = 60 cos 40◦ ≈ 45.96 ft/s and the vertical component is

|v| sin 40◦ = 60 sin 40◦ ≈ 38.57 ft/s.

29. The given force vectors can be expressed in terms of their horizontal and vertical components as −300 i and

200 cos 60◦ i+ 200 sin 60◦ j = 200 1
2
i+ 200

√
3
2

j = 100 i+ 100
√
3 j. The resultant force F is the sum of these two

vectors: F = (−300 + 100) i+ 0 + 100
√
3 j = −200 i+ 100√3 j. Then we have
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|F| ≈ (−200)2 + 100
√
3

2
=
√
70,000 = 100

√
7 ≈ 264.6 N. Let θ be the angle F makes with the positive x-axis.

Then tan θ = 100
√
3

−200 = −
√
3

2
and the terminal point of F lies in the second quadrant, so

θ = tan−1 −
√
3

2
+ 180◦ ≈ −40.9◦ + 180◦ = 139.1◦.

31. With respect to the water’s surface, the woman’s velocity is the vector sum of the velocity of the ship with respect to the water,

and the woman’s velocity with respect to the ship. If we let north be the positive y-direction, then

v = h0, 22i+ h−3, 0i = h−3, 22i. The woman’s speed is |v| = √9 + 484 ≈ 22.2 mi/h. The vector v makes an angle θ

with the east, where θ = tan−1 22
−3 ≈ 98◦. Therefore, the woman’s direction is about N(98− 90)◦W= N8◦W.

33. LetT1 andT2 represent the tension vectors in each side of the

clothesline as shown in the figure. T1 andT2 have equal vertical

components and opposite horizontal components, so we can write

T1 = −a i+ b j andT2 = a i+ b j [a, b > 0]. By similar triangles, b
a
=
0.08

4
⇒ a = 50b. The force due to gravity

acting on the shirt has magnitude 0.8g ≈ (0.8)(9.8) = 7.84 N, hence we havew = −7.84 j. The resultantT1 +T2

of the tensile forces counterbalancesw, so T1 +T2 = −w ⇒ (−a i+ b j) + (a i+ b j) = 7.84 j ⇒
(−50b i+ b j) + (50b i+ b j) = 2b j = 7.84 j ⇒ b = 7.84

2 = 3.92 and a = 50b = 196. Thus the tensions are

T1 = −a i+ b j = −196 i+ 3.92 j andT2 = a i+ b j = 196 i+ 3.92 j.

Alternatively, we can find the value of θ and proceed as in Example 7.

35. The slope of the tangent line to the graph of y = x2 at the point (2, 4) is

dy

dx x=2

= 2x
x=2

= 4

and a parallel vector is i+ 4 j which has length |i+ 4 j| = √12 + 42 = √17, so unit vectors parallel to the tangent line are

± 1√
17
(i+ 4 j).

37. By the Triangle Law,
−→
AB +

−−→
BC =

−→
AC. Then

−→
AB +

−−→
BC +

−→
CA =

−→
AC +

−→
CA, but

−→
AC +

−→
CA =

−→
AC + −−→AC = 0.

So
−→
AB +

−−→
BC +

−→
CA = 0.

39. (a), (b) (c) From the sketch, we estimate that s ≈ 1.3 and t ≈ 1.6.

(d) c = sa+ tb ⇔ 7 = 3s+ 2t and 1 = 2s− t.

Solving these equations gives s = 9
7

and t = 11
7

.

41. |r− r0| is the distance between the points (x, y, z) and (x0, y0, z0), so the set of points is a sphere with radius 1 and

center (x0, y0, z0).

Alternate method: |r− r0| = 1 ⇔ (x− x0)2 + (y − y0)2 + (z − z0)2 = 1 ⇔
(x− x0)

2 + (y − y0)
2 + (z − z0)

2 = 1, which is the equation of a sphere with radius 1 and center (x0, y0, z0).
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43. a+ (b+ c) = ha1, a2i+ (hb1, b2i+ hc1, c2i) = ha1, a2i+ hb1 + c1, b2 + c2i
= ha1 + b1 + c1, a2 + b2 + c2i = h(a1 + b1) + c1, (a2 + b2) + c2i
= ha1 + b1, a2 + b2i+ hc1, c2i = (ha1, a2i+ hb1, b2i) + hc1, c2i
= (a+ b) + c

45. Consider triangle ABC, where D and E are the midpoints of AB and BC. We know that
−→
AB +

−−→
BC =

−→
AC (1) and

−−→
DB +

−−→
BE =

−−→
DE (2). However,

−−→
DB = 1

2

−→
AB, and

−−→
BE = 1

2

−−→
BC. Substituting these expressions for

−−→
DB and

−−→
BE into

(2) gives 1
2

−→
AB + 1

2

−−→
BC =

−−→
DE. Comparing this with (1) gives

−−→
DE = 1

2

−→
AC. Therefore

−→
AC and

−−→
DE are parallel and

−−→
DE = 1

2

−→
AC .

13.3 The Dot Product ET 12.3

1. (a) a · b is a scalar, and the dot product is defined only for vectors, so (a · b) · c has no meaning.

(b) (a · b) c is a scalar multiple of a vector, so it does have meaning.

(c) Both |a| and b · c are scalars, so |a| (b · c) is an ordinary product of real numbers, and has meaning.

(d) Both a and b+ c are vectors, so the dot product a · (b+ c) has meaning.

(e) a · b is a scalar, but c is a vector, and so the two quantities cannot be added and a · b+ c has no meaning.

(f ) |a| is a scalar, and the dot product is defined only for vectors, so |a| · (b+ c) has no meaning.

3. a · b = −2, 13 · h−5, 12i = (−2)(−5) + 1
3
(12) = 10 + 4 = 14

5. a · b = 4, 1, 14 · h6,−3,−8i = (4)(6) + (1)(−3) + 1
4
(−8) = 19

7. a · b = (i− 2 j+ 3k) · (5 i+ 9k) = (1)(5) + (−2)(0) + (3)(9) = 32

9. a · b = |a| |b| cos θ = (6)(5) cos 2π
3
= 30 − 1

2
= −15

11. u, v, andw are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60◦ and

u · v = |u| |v| cos 60◦ = (1)(1) 1
2
= 1

2
. Ifw is moved so it has the same initial point as u, we can see that the angle

between them is 120◦ and we have u ·w = |u| |w| cos 120◦ = (1)(1) − 1
2
= − 1

2
.

13. (a) i · j = h1, 0, 0i · h0, 1, 0i = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j · k = (0)(0) + (1)(0) + (0)(1) = 0 and

k · i = (0)(1) + (0)(0) + (1)(0) = 0.

Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)

is cos π
2
= 0.

(b) By Property 1 of the dot product, i · i = |i|2 = 12 = 1 since i is a unit vector. Similarly, j · j = |j|2 = 1 and

k · k = |k|2 = 1.

15. |a| = (−8)2 + 62 = 10, |b| = √
7

2
+ 32 = 4, and a · b = (−8) √7 + (6)(3) = 18− 8√7. From Corollary 6,

we have cos θ = a · b
|a| |b| =

18− 8√7
10 · 4 =

9− 4√7
20

. So the angle between a and b is θ = cos−1 9− 4√7
20

≈ 95◦.
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17. |a| = 32 + (−1)2 + 52 = √35, |b| = (−2)2 + 42 + 32 = √29, and a · b = (3)(−2) + (−1)(4) + (5)(3) = 5. Then

cos θ =
a · b
|a| |b| =

5√
35 ·√29 =

5√
1015

and the angle between a and b is θ = cos−1 5√
1015

≈ 81◦.

19. |a| = √02 + 12 + 12 = √2, |b| = 12 + 22 + (−3)2 = √14, and a · b = (0)(1) + (1)(2) + (1)(−3) = −1.

Then cos θ = a · b
|a| |b| =

−1√
2 ·√14 =

−1
2
√
7

and θ = cos−1 − 1

2
√
7

≈ 101◦.

21. Let a, b, and c be the angles at vertices A, B, and C respectively.

Then a is the angle between vectors
−→
AB and

−→
AC, b is the angle

between vectors
−→
BA and

−−→
BC, and c is the angle between vectors

−→
CA and

−−→
CB.

Thus cos a =
−→
AB ·−→AC
−→
AB

−→
AC

=
h2, 6i · h−2, 4i√

22 + 62 (−2)2 + 42 =
1√

40
√
20
(−4 + 24) = 20√

800
=

√
2

2
and

a = cos−1
√
2

2
= 45◦. Similarly, cos b =

−→
BA ·−−→BC
−→
BA

−−→
BC

=
h−2,−6i · h−4,−2i√
4 + 36

√
16 + 4

=
1√

40
√
20
(8 + 12) =

20√
800

=

√
2

2

so b = cos−1
√
2

2
= 45◦ and c = 180◦ − (45◦+ 45◦) = 90◦.

Alternate solution: Apply the Law of Cosines three times as follows: cos a =

−−→
BC

2

− −→
AB

2

− −→
AC

2

2
−→
AB

−→
AC

,

cos b =

−→
AC

2

− −→
AB

2

− −−→
BC

2

2
−→
AB

−−→
BC

, and cos c =

−→
AB

2

− −→
AC

2

− −−→
BC

2

2
−→
AC

−−→
BC

.

23. (a) a · b = (−5)(6) + (3)(−8) + (7)(2) = −40 6= 0, so a and b are not orthogonal. Also, since a is not a scalar multiple

of b, a and b are not parallel.

(b) a · b = (4)(−3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).

(c) a · b = (−1)(3) + (2)(4) + (5)(−1) = 0, so a and b are orthogonal (and not parallel).

(d) Because a = − 2
3
b, a and b are parallel.

25.
−−→
QP = h−1,−3, 2i, −→QR = h4,−2,−1i, and

−−→
QP ·−→QR = −4 + 6− 2 = 0. Thus

−−→
QP and

−→
QR are orthogonal, so the angle of

the triangle at vertex Q is a right angle.

27. Let a = a1 i+ a2 j+ a3 k be a vector orthogonal to both i+ j and i+ k. Then a · (i+ j) = 0 ⇔ a1 + a2 = 0 and

a · (i+ k) = 0 ⇔ a1 + a3 = 0, so a1 = −a2 = −a3. Furthermore a is to be a unit vector, so 1 = a21 + a22 + a23 = 3a
2
1

implies a1 = ± 1√
3

. Thus a = 1√
3
i− 1√

3
j− 1√

3
k and a = − 1√

3
i+ 1√

3
j+ 1√

3
k are two such unit vectors.



SECTION 13.3 THE DOT PRODUCT ET SECTION 12.3 ¤ 113

29. Since |h3, 4, 5i| = √9 + 16 + 25 = √50 = 5√2, using Equations 8 and 9 we have cosα = 3

5
√
2

, cosβ = 4

5
√
2

, and

cos γ = 5

5
√
2
= 1√

2
. The direction angles are given by α = cos−1 3

5
√
2
≈ 65◦, β = cos−1 4

5
√
2
≈ 56◦, and

γ = cos−1 1√
2
= 45◦.

31. Since |2 i+ 3 j− 6k| = √4 + 9 + 36 = √49 = 7, Equations 8 and 9 give cosα = 2
7

, cosβ = 3
7

, and cos γ = −6
7

, while

α = cos−1 2
7
≈ 73◦, β = cos−1 3

7
≈ 65◦, and γ = cos−1 − 6

7
≈ 149◦.

33. |hc, c, ci| = √c2 + c2 + c2 =
√
3c [since c > 0], so cosα = cosβ = cos γ = c√

3c
=

1√
3

and

α = β = γ = cos−1 1√
3
≈ 55◦.

35. |a| = 32 + (−4)2 = 5. The scalar projection of b onto a is compa b =
a · b
|a| =

3 · 5 + (−4) · 0
5

= 3 and the vector

projection of b onto a is proja b =
a · b
|a|

a

|a| = 3 ·
1
5
h3,−4i = 9

5
,− 12

5
.

37. |a| = √9 + 36 + 4 = 7 so the scalar projection of b onto a is compab =
a · b
|a| =

1
7 (3 + 12− 6) = 9

7 . The vector

projection of b onto a is projab =
9

7

a

|a| =
9
7
· 1
7
h3, 6,−2i = 9

49
h3, 6,−2i = 27

49
, 54
49
,− 18

49
.

39. |a| = √4 + 1 + 16 = √21 so the scalar projection of b onto a is compa b =
a · b
|a| =

0− 1 + 2√
21

=
1√
21

while the vector

projection of b onto a is proja b =
1√
21

a

|a| =
1√
21
· 2 i− j+ 4k√

21
= 1

21
(2 i− j+ 4k) = 2

21
i− 1

21
j+ 4

21
k.

41. (ortha b) · a = (b− proja b) · a = b · a− (proja b) · a = b · a−
a · b
|a|2 a · a = b · a−

a · b
|a|2 |a|

2 = b · a− a · b = 0.

So they are orthogonal by (7).

43. compa b =
a · b
|a| = 2 ⇔ a · b = 2 |a| = 2√10. If b = hb1, b2, b3i, then we need 3b1 + 0b2 − 1b3 = 2

√
10.

One possible solution is obtained by taking b1 = 0, b2 = 0, b3 = −2
√
10. In general, b = s, t, 3s− 2√10 , s, t ∈ R.

45. The displacement vector isD = (6− 0) i+ (12− 10) j+ (20− 8)k = 6 i+ 2 j+ 12k so by Equation 12 the work done is

W = F ·D = (8 i− 6 j+ 9k) · (6 i+ 2 j+ 12k) = 48− 12 + 108 = 144 joules.

47. Here |D| = 80 ft, |F| = 30 lb, and θ = 40◦. Thus

W = F ·D = |F| |D| cos θ = (30)(80) cos 40◦ = 2400 cos 40◦ ≈ 1839 ft-lb.

49. First note that n = ha, bi is perpendicular to the line, because if Q1 = (a1, b1) and Q2 = (a2, b2) lie on the line, then

n ·−−−→Q1Q2 = aa2 − aa1 + bb2 − bb1 = 0, since aa2 + bb2 = −c = aa1 + bb1 from the equation of the line.

Let P2 = (x2, y2) lie on the line. Then the distance from P1 to the line is the absolute value of the scalar projection
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of
−−−→
P1P2 onto n. compn

−−−→
P1P2 =

|n · hx2 − x1, y2 − y1i|
|n| =

|ax2 − ax1 + by2 − by1|√
a2 + b2

=
|ax1 + by1 + c|√

a2 + b2

since ax2 + by2 = −c. The required distance is |3 ·−2 +−4 · 3 + 5|√
32 + 42

=
13

5
.

51. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1, 1, 1) has vector representation h1, 1, 1i.
The angle θ between this vector and the vector of the edge which also begins at the origin and runs along the x-axis [that is,

h1, 0, 0i] is given by cos θ = h1, 1, 1i · h1, 0, 0i
|h1, 1, 1i| |h1, 0, 0i| =

1√
3

⇒ θ = cos−1 1√
3
≈ 55◦.

53. Consider the H — C — H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1, 0, 0) and

(0, 1, 0) (or any H — C — H combination, for that matter). Vector representations of the line segments emanating from the

carbon atom and extending to these two hydrogen atoms are 1− 1
2
, 0− 1

2
, 0− 1

2
= 1

2
,− 1

2
,− 1

2
and

0− 1
2 , 1− 1

2 , 0− 1
2
= − 1

2 ,
1
2 ,− 1

2
. The bond angle, θ, is therefore given by

cos θ =
1
2 ,− 1

2 ,− 1
2
· − 1

2 ,
1
2 ,− 1

2
1
2
,− 1

2
,− 1

2
− 1
2
, 1
2
,− 1

2

=
− 1
4
− 1

4
+ 1

4

3
4

3
4

= −1
3

⇒ θ = cos−1 − 1
3
≈ 109.5◦.

55. Let a = ha1, a2, a3i and = hb1, b2, b3i.
Property 2: a · b = ha1, a2, a3i · hb1, b2, b3i = a1b1 + a2b2 + a3b3

= b1a1 + b2a2 + b3a3 = hb1, b2, b3i · ha1, a2, a3i = b · a

Property 4: (ca) · b = hca1, ca2, ca3i · hb1, b2, b3i = (ca1)b1 + (ca2)b2 + (ca3)b3
= c (a1b1 + a2b2 + a3b3) = c (a · b) = a1(cb1) + a2(cb2) + a3(cb3)

= ha1, a2, a3i · hcb1, cb2, cb3i = a · (cb)

Property 5: 0 · a = h0, 0, 0i · ha1, a2, a3i = (0)(a1) + (0)(a2) + (0)(a3) = 0

57. |a · b| = |a| |b| cos θ = |a| |b| |cos θ|. Since |cos θ| ≤ 1, |a · b| = |a| |b| |cos θ| ≤ |a| |b|.
Note: We have equality in the case of cos θ = ±1, so θ = 0 or θ = π, thus equality when a and b are parallel.

59. (a) The Parallelogram Law states that the sum of the squares of the

lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

(b) |a+ b|2 = (a+ b) · (a+ b) = |a|2 + 2(a · b) + |b|2 and |a− b|2 = (a− b) · (a− b) = |a|2 − 2(a · b) + |b|2.

Adding these two equations gives |a+ b|2 + |a− b|2 = 2 |a|2 + 2 |b|2.
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13.4 The Cross Product ET 12.4

1. a× b=
i j k

6 0 −2
0 8 0

=
0 −2
8 0

i −
6 −2
0 0

j +
6 0

0 8
k

= [0− (−16)] i− (0− 0) j+ (48− 0)k = 16 i+ 48k

Now (a× b) · a = h16, 0, 48i · h6, 0,−2i = 96 + 0− 96 = 0 and (a× b) · b = h16, 0, 48i · h0, 8, 0i = 0 + 0 + 0 = 0, so

a× b is orthogonal to both a and b.

3. a× b =
i j k

1 3 −2
−1 0 5

=
3 −2
0 5

i −
1 −2
−1 5

j +
1 3

−1 0
k

= (15− 0) i− (5− 2) j+ [0− (−3)]k = 15 i− 3 j+ 3k

Since (a× b) · a = (15 i− 3 j+ 3k) · (i+ 3 j− 2k) = 15− 9− 6 = 0, a× b is orthogonal to a.

Since (a× b) · b = (15 i− 3 j+ 3k) · (−i+ 5k) = −15 + 0 + 15 = 0, a× b is orthogonal to b.

5. a× b =
i j k

1 −1 −1
1
2

1 1
2

=
−1 −1
1 1

2

i −
1 −1
1
2

1
2

j +
1 −1
1
2

1
k

= − 1
2
− (−1) i− 1

2
− (− 1

2
) j+ 1− (− 1

2
) k = 1

2
i− j+ 3

2
k

Now (a× b) · a = 1
2
i− j+ 3

2
k · (i − j − k) = 1

2
+ 1 − 3

2
= 0 and

(a× b) · b = 1
2 i− j+ 3

2 k · 1
2 i+ j+

1
2 k = 1

4 − 1 + 3
4 = 0, so a× b is orthogonal to both a and b.

7. a× b =
i j k

t t2 t3

1 2t 3t2

=
t2 t3

2t 3t2
i −

t t3

1 3t2
j +

t t2

1 2t
k

= (3t4 − 2t4) i− (3t3 − t3) j+ (2t2 − t2)k = t4 i− 2t3 j+ t2 k

Since (a× b) · a = t4,−2t3, t2 · t, t2, t3 = t5 − 2t5 + t5 = 0, a× b is orthogonal to a.

Since (a× b) · b = t4,−2t3, t2 · 1, 2t, 3t2 = t4 − 4t4 + 3t4 = 0, a× b is orthogonal to b.

9. According to the discussion preceding Theorem 8, i× j = k, so (i× j)× k = k× k = 0 [by Example 2].

11. (j− k)× (k− i) = (j− k)× k+ (j− k)× (−i) by Property 3 of Theorem 8

= j× k+ (−k)× k+ j× (−i) + (−k)× (−i) by Property 4 of Theorem 8

= (j× k) + (−1)(k× k) + (−1)(j× i) + (−1)2(k× i) by Property 2 of Theorem 8

= i+ (−1)0+ (−1)(−k) + j = i+ j+ k by Example 2 and the

discussion preceding Theorem 8
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13. (a) Since b× c is a vector, the dot product a · (b× c) is meaningful and is a scalar.

(b) b · c is a scalar, so a× (b · c) is meaningless, as the cross product is defined only for two vectors.

(c) Since b× c is a vector, the cross product a× (b× c) is meaningful and results in another vector.

(d) a · b is a scalar, so the cross product (a · b)× c is meaningless.

(e) Since (a · b) and (c · d) are both scalars, the cross product (a · b)× (c · d) is meaningless.

(f ) a× b and c× d are both vectors, so the dot product (a× b) · (c× d) is meaningful and is a scalar.

15. If we sketch u and v starting from the same initial point, we see that

the angle between them is 30◦. Using Theorem 6, we have

|u× v| = |u| |v| sin 30◦ = (6)(8) 1
2
= 24.

By the right-hand rule, u× v is directed into the page.

17. a× b =
i j k

1 2 1

0 1 3

=
2 1

1 3
i −

1 1

0 3
j +

1 2

0 1
k = (6− 1) i− (3− 0) j+ (1− 0)k = 5 i− 3 j+ k

b× a =
i j k

0 1 3

1 2 1

=
1 3

2 1
i −

0 3

1 1
j +

0 1

1 2
k = (1− 6) i− (0− 3) j+ (0− 1)k = −5 i+ 3 j− k

Notice a× b = −b× a here, as we know is always true by Theorem 8.

19. We know that the cross product of two vectors is orthogonal to both. So we calculate

h1,−1, 1i × h0, 4, 4i =
i j k

1 −1 1

0 4 4

=
−1 1
4 4

i −
1 1

0 4
j +

1 −1
0 4

k = −8 i− 4 j+ 4k.

So two unit vectors orthogonal to both are ± h−8,−4, 4i√
64 + 16 + 16

= ±h−8,−4, 4i
4
√
6

, that is, − 2√
6
,− 1√

6
, 1√

6

and 2√
6
, 1√

6
,− 1√

6
.

21. Let a = ha1, a2, a3i. Then

0× a =
i j k

0 0 0

a1 a2 a3

=
0 0

a2 a3
i −

0 0

a1 a3
j +

0 0

a1 a2
k = 0,

a× 0 =
i j k

a1 a2 a3

0 0 0

=
a2 a3

0 0
i −

a1 a3

0 0
j +

a1 a2

0 0
k = 0.

23. a× b = ha2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1i
= h(−1)(b2a3 − b3a2) , (−1)(b3a1 − b1a3) , (−1)(b1a2 − b2a1)i
= − hb2a3 − b3a2, b3a1 − b1a3, b1a2 − b2a1i = −b× a
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25. a× (b+ c) = a× hb1 + c1, b2 + c2, b3 + c3i
= ha2(b3 + c3)− a3(b2 + c2) , a3(b1 + c1)− a1(b3 + c3) , a1(b2 + c2)− a2(b1 + c1)i
= ha2b3 + a2c3 − a3b2 − a3c2, a3b1 + a3c1 − a1b3 − a1c3, a1b2 + a1c2 − a2b1 − a2c1i
= h(a2b3 − a3b2) + (a2c3 − a3c2) , (a3b1 − a1b3) + (a3c1 − a1c3) , (a1b2 − a2b1) + (a1c2 − a2c1)i
= ha2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1i+ ha2c3 − a3c2, a3c1 − a1c3, a1c2 − a2c1i
= (a× b) + (a× c)

27. By plotting the vertices, we can see that the parallelogram is determined by the

vectors
−→
AB = h2, 3i and

−−→
AD = h4,−2i. We know that the area of the parallelogram

determined by two vectors is equal to the length of the cross product of these vectors.

In order to compute the cross product, we consider the vector
−→
AB as the three-

dimensional vector h2, 3, 0i (and similarly for
−−→
AD), and then the area of

parallelogram ABCD is

−→
AB ×−−→AD =

i j k

2 3 0

4 −2 0

= |(0) i− (0) j+ (−4− 12)k| = |−16k| = 16

29. (a) Because the plane through P , Q, and R contains the vectors
−−→
PQ and

−→
PR, a vector orthogonal to both of these vectors

(such as their cross product) is also orthogonal to the plane. Here
−−→
PQ = h−1, 2, 0i and

−→
PR = h−1, 0, 3i, so

−−→
PQ×−→PR = h(2)(3)− (0)(0), (0)(−1)− (−1)(3), (−1)(0)− (2)(−1)i = h6, 3, 2i

Therefore, h6, 3, 2i (or any scalar multiple thereof) is orthogonal to the plane through P , Q, and R.

(b) Note that the area of the triangle determined by P , Q, and R is equal to half of the area of the parallelogram determined by

the three points. From part (a), the area of the parallelogram is
−−→
PQ×−→PR = |h6, 3, 2i| = √36 + 9 + 4 = 7, so the area

of the triangle is 1
2
(7) = 7

2
.

31. (a)
−−→
PQ = h4, 3,−2i and

−→
PR = h5, 5, 1i, so a vector orthogonal to the plane through P , Q, and R is

−−→
PQ×−→PR = h(3)(1)− (−2)(5), (−2)(5)− (4)(1), (4)(5)− (3)(5)i = h13,−14, 5i [or any scalar mutiple thereof ].

(b) The area of the parallelogram determined by
−−→
PQ and

−→
PR is

−−→
PQ×−→PR = |h13,−14, 5i| = 132 + (−14)2 + 52 = √390, so the area of triangle PQR is 1

2

√
390.

33. We know that the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product, which

is a · (b× c) =
6 3 −1
0 1 2

4 −2 5

= 6
1 2

−2 5
− 3

0 2

4 5
+ (−1)

0 1

4 −2 = 6(5 + 4)− 3(0− 8)− (0− 4) = 82.

Thus the volume of the parallelepiped is 82 cubic units.
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35. a =
−−→
PQ = h2, 1, 1i, b = −→PR = h1,−1, 2i, and c =

−→
PS = h0,−2, 3i.

a · (b× c) =
2 1 1

1 −1 2

0 −2 3

= 2
−1 2

−2 3
− 1

1 2

0 3
+ 1

1 −1
0 −2 = 2− 3− 2 = −3,

so the volume of the parallelepiped is 3 cubic units.

37. u · (v×w) =
1 5 −2
3 −1 0

5 9 −4
= 1

−1 0

9 −4 − 5
3 0

5 −4 + (−2)
3 −1
5 9

= 4 + 60− 64 = 0, which says that the volume

of the parallelepiped determined by u, v andw is 0, and thus these three vectors are coplanar.

39. The magnitude of the torque is |τ | = |r×F| = |r| |F| sin θ = (0.18 m)(60 N) sin(70 + 10)◦ = 10.8 sin 80◦ ≈ 10.6 N·m.

41. Using the notation of the text, r = h0, 0.3, 0i and F has direction h0, 3,−4i. The angle θ between them can be determined by

cos θ =
h0, 0.3, 0i · h0, 3,−4i
|h0, 0.3, 0i| |h0, 3,−4i| ⇒ cos θ =

0.9

(0.3)(5)
⇒ cos θ = 0.6 ⇒ θ ≈ 53.1◦. Then |τ | = |r| |F| sin θ ⇒

100 = 0.3 |F| sin 53.1◦ ⇒ |F| ≈ 417 N.

43. (a) The distance between a point and a line is the length of the perpendicular

from the point to the line, here
−→
PS = d. But referring to triangle PQS,

d =
−→
PS =

−−→
QP sin θ = |b| sin θ. But θ is the angle between

−−→
QP = b

and
−→
QR = a. Thus by Theorem 6, sin θ = |a× b|

|a| |b|

and so d = |b| sin θ = |b| |a× b|
|a| |b| =

|a× b|
|a| .

(b) a =
−→
QR = h−1,−2,−1i and b =

−−→
QP = h1,−5,−7i. Then

a× b = h(−2)(−7)− (−1)(−5), (−1)(1)− (−1)(−7), (−1)(−5)− (−2)(1)i = h9,−8, 7i.

Thus the distance is d = |a× b|
|a| = 1√

6

√
81 + 64 + 49 = 194

6 = 97
3 .

45. (a− b)× (a+ b) = (a− b)× a+ (a− b)× b by Property 3 of Theorem 8

= a× a+ (−b)× a+ a× b+ (−b)× b by Property 4 of Theorem 8

= (a× a)− (b× a) + (a× b)− (b× b) by Property 2 of Theorem 8 (with c = −1)

= 0− (b× a) + (a× b)− 0 by Example 2

= (a× b) + (a× b) by Property 1 of Theorem 8

= 2(a× b)

47. a× (b× c) + b× (c× a) + c× (a× b)
= [(a · c)b− (a · b)c] + [(b · a)c− (b · c)a] + [(c · b)a− (c · a)b] by Exercise 46

= (a · c)b− (a · b)c+ (a · b)c− (b · c)a+ (b · c)a− (a · c)b = 0
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49. (a) No. If a · b = a · c, then a · (b− c) = 0, so a is perpendicular to b− c, which can happen if b 6= c. For example,

let a = h1, 1, 1i, b = h1, 0, 0i and c = h0, 1, 0i.
(b) No. If a× b = a× c then a× (b− c) = 0, which implies that a is parallel to b− c, which of course can happen

if b 6= c.

(c) Yes. Since a · c = a · b, a is perpendicular to b− c, by part (a). From part (b), a is also parallel to b− c. Thus since

a 6= 0 but is both parallel and perpendicular to b− c, we have b− c = 0, so b = c.

13.5 Equations of Lines and Planes ET 12.5

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the x- and y-axes are both perpendicular to the z-axis, yet the x- and y-axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the xy- and yz-planes are not parallel, yet they are both perpendicular to the xz-plane.

(e) False; the x- and y-axes are not parallel, yet they are both parallel to the plane z = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the x-axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.

( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle θ, 0◦ ≤ θ < 90◦, and the

line will intersect the plane at an angle 90◦ − θ.

3. For this line, we have r0 = 2 i+ 2.4 j + 3.5k and v = 3 i+ 2 j− k, so a vector equation is

r = r0 + tv = (2 i+2.4 j+3.5k) + t(3 i+2 j− k) = (2+ 3t) i+ (2.4+ 2t) j+ (3.5− t)k and parametric equations are

x = 2 + 3t, y = 2.4 + 2t, z = 3.5− t.

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1, 3, 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is

r = (i+ 6k) + t(i+ 3 j+ k) = (1 + t) i+ 3t j+ (6 + t)k, and parametric equations are x = 1 + t, y = 3t, z = 6 + t.

7. The vector v = h−4− 1, 3− 3, 0− 2i = h−5, 0,−2i is parallel to the line. Letting P0 = (1, 3, 2), parametric equations are

x = 1− 5t, y = 3 + 0t = 3, z = 2− 2t, while symmetric equations are x− 1
−5 =

z − 2
−2 , y = 3. Notice here that the

direction number b = 0, so rather than writing y − 3
0

in the symmetric equation we must write the equation y = 3 separately.
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9. v = 2− 0, 1− 1
2 ,−3− 1 = 2, 12 ,−4 , and letting P0 = (2, 1,−3), parametric equations are x = 2 + 2t, y = 1 + 1

2 t,

z = −3− 4t, while symmetric equations are x− 2
2

=
y − 1
1/2

=
z + 3

−4 or x− 2
2

= 2y − 2 = z + 3

−4 .

11. The line has direction v = h1, 2, 1i. Letting P0 = (1,−1, 1), parametric equations are x = 1 + t, y = −1 + 2t, z = 1 + t

and symmetric equations are x− 1 = y + 1

2
= z − 1.

13. Direction vectors of the lines are v1 = h−2− (−4), 0− (−6),−3− 1i = h2, 6,−4i and

v2 = h5− 10, 3− 18, 14− 4i = h−5,−15, 10i, and since v2 = − 5
2v1, the direction vectors and thus the lines are parallel.

15. (a) The line passes through the point (1,−5, 6) and a direction vector for the line is h−1, 2,−3i, so symmetric equations for

the line are x− 1
−1 =

y + 5

2
=

z − 6
−3 .

(b) The line intersects the xy-plane when z = 0, so we need x− 1
−1 =

y + 5

2
=
0− 6
−3 or x− 1−1 = 2 ⇒ x = −1,

y + 5

2
= 2 ⇒ y = −1. Thus the point of intersection with the xy-plane is (−1,−1, 0). Similarly for the yz-plane,

we need x = 0 ⇒ 1 =
y + 5

2
=

z − 6
−3 ⇒ y = −3, z = 3. Thus the line intersects the yz-plane at (0,−3, 3). For

the xz-plane, we need y = 0 ⇒ x− 1
−1 =

5

2
=

z − 6
−3 ⇒ x = − 3

2
, z = − 3

2
. So the line intersects the xz-plane

at − 3
2
, 0,− 3

2
.

17. From Equation 4, the line segment from r0 = 2 i − j + 4k to r1 = 4 i + 6 j + k is

r(t) = (1− t) r0 + t r1 = (1− t)(2 i− j+ 4k) + t(4 i+ 6 j+ k) = (2 i− j+ 4k) + t(2 i+ 7 j− 3k), 0 ≤ t ≤ 1.

19. Since the direction vectors are v1 = h−6, 9,−3i and v2 = h2,−3, 1i, we have v1 = −3v2 so the lines are parallel.

21. Since the direction vectors h1, 2, 3i and h−4,−3, 2i are not scalar multiples of each other, the lines are not parallel, so we

check to see if the lines intersect. The parametric equations of the lines are L1: x = t, y = 1 + 2t, z = 2 + 3t and L2:

x = 3− 4s, y = 2− 3s, z = 1 + 2s. For the lines to intersect, we must be able to find one value of t and one value of s that

produce the same point from the respective parametric equations. Thus we need to satisfy the following three equations:

t = 3− 4s, 1 + 2t = 2− 3s, 2 + 3t = 1 + 2s. Solving the first two equations we get t = −1, s = 1 and checking, we see

that these values don’t satisfy the third equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

23. Since the plane is perpendicular to the vector h−2, 1, 5i, we can take h−2, 1, 5i as a normal vector to the plane.

(6, 3, 2) is a point on the plane, so setting a = −2, b = 1, c = 5 and x0 = 6, y0 = 3, z0 = 2 in Equation 7 gives

−2(x− 6) + 1(y − 3) + 5(z − 2) = 0 or −2x+ y + 5z = 1 to be an equation of the plane.

25. i+ j− k = h1, 1,−1i is a normal vector to the plane and (1,−1, 1) is a point on the plane, so setting a = 1, b = 1, c = −1,

x0 = 1, y0 = −1, z0 = 1 in Equation 7 gives 1 (x− 1) + 1[y − (−1)]− 1(z − 1) = 0 or x+ y − z = −1 to be an equation

of the plane.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h2,−1, 3i, and an equation of

the plane is 2(x− 0)− 1(y − 0) + 3(z − 0) = 0 or 2x− y + 3z = 0.
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29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h3, 0,−7i, and an equation of

the plane is 3(x− 4) + 0[y − (−2)]− 7(z − 3) = 0 or 3x− 7z = −9.

31. Here the vectors a = h1− 0, 0− 1, 1− 1i = h1,−1, 0i and b = h1− 0, 1− 1, 0− 1i = h1, 0,−1i lie in the plane, so

a× b is a normal vector to the plane. Thus, we can take n = a× b = h1− 0, 0 + 1, 0 + 1i = h1, 1, 1i. If P0 is the point

(0, 1, 1), an equation of the plane is 1(x− 0) + 1(y − 1) + 1(z − 1) = 0 or x+ y + z = 2.

33. Here the vectors a = h8− 3, 2− (−1), 4− 2i = h5, 3, 2i and b = h−1− 3,−2− (−1),−3− 2i = h−4,−1,−5i lie in

the plane, so a normal vector to the plane is n = a× b = h−15 + 2,−8 + 25,−5 + 12i = h−13, 17, 7i and an equation of

the plane is−13(x− 3) + 17[y − (−1)] + 7(z − 2) = 0 or −13x+ 17y + 7z = −42.

35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h−2, 5, 4i is one vector in the plane. We can verify that the given point (6, 0,−2)
does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and

find a vector connecting the points. If we put t = 0, we see that (4, 3, 7) is on the line, so

b = h6− 4, 0− 3,−2− 7i = h2,−3,−9i and n = a× b = h−45 + 12, 8− 18, 6− 10i = h−33,−10,−4i. Thus, an

equation of the plane is −33(x− 6)− 10(y − 0)− 4[z − (−2)] = 0 or 33x+ 10y + 4z = 190.

37. A direction vector for the line of intersection is a = n1 × n2 = h1, 1,−1i × h2,−1, 3i = h2,−5,−3i, and a is parallel to the

desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point (−1, 2, 1) in the plane. Setting x = 0, the equations of the planes reduce to y − z = 2 and −y + 3z = 1 with

simultaneous solution y = 7
2 and z = 3

2 . So a point on the line is 0, 72 ,
3
2

and another vector parallel to the plane is

−1,− 3
2
,− 1

2
. Then a normal vector to the plane is n = h2,−5,−3i × −1,− 3

2
,− 1

2
= h−2, 4,−8i and an equation of

the plane is−2(x+ 1) + 4(y − 2)− 8(z − 1) = 0 or x− 2y + 4z = −1.

39. To find the x-intercept we set y = z = 0 in the equation 2x+ 5y + z = 10

and obtain 2x = 10 ⇒ x = 5 so the x-intercept is (5, 0, 0). When

x = z = 0 we get 5y = 10 ⇒ y = 2, so the y-intercept is (0, 2, 0).

Setting x = y = 0 gives z = 10, so the z-intercept is (0, 0, 10) and we

graph the portion of the plane that lies in the first octant.

41. Setting y = z = 0 in the equation 6x− 3y + 4z = 6 gives 6x = 6 ⇒
x = 1, when x = z = 0 we have −3y = 6 ⇒ y = −2, and x = y = 0

implies 4z = 6 ⇒ z = 3
2 , so the intercepts are (1, 0, 0), (0,−2, 0), and

(0, 0, 3
2
). The figure shows the portion of the plane cut off by the coordinate

planes.
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43. Substitute the parametric equations of the line into the equation of the plane: (3− t)− (2 + t) + 2(5t) = 9 ⇒
8t = 8 ⇒ t = 1. Therefore, the point of intersection of the line and the plane is given by x = 3− 1 = 2, y = 2 + 1 = 3,

and z = 5(1) = 5, that is, the point (2, 3, 5).

45. Parametric equations for the line are x = t, y = 1 + t, z = 1
2 t and substituting into the equation of the plane gives

4(t)− (1 + t) + 3 1
2 t = 8 ⇒ 9

2 t = 9 ⇒ t = 2. Thus x = 2, y = 1 + 2 = 3, z = 1
2 (2) = 1 and the point of

intersection is (2, 3, 1).

47. Setting x = 0, we see that (0, 1, 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1, 1, 1i × h1, 0, 1i = h1, 0,−1i is the direction of this line. Therefore, direction numbers of the intersecting

line are 1, 0, −1.

49. Normal vectors for the planes are n1 = h1, 4,−3i and n2 = h−3, 6, 7i, so the normals (and thus the planes) aren’t parallel.

But n1 · n2 = −3 + 24− 21 = 0, so the normals (and thus the planes) are perpendicular.

51. Normal vectors for the planes are n1 = h1, 1, 1i and n2 = h1,−1, 1i. The normals are not parallel, so neither are the planes.

Furthermore, n1 · n2 = 1− 1 + 1 = 1 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos θ =
n1 · n2
|n1| |n2| =

1√
3
√
3
=
1

3
⇒ θ = cos−1 1

3
≈ 70.5◦.

53. The normals are n1 = h1,−4, 2i and n2 = h2,−8, 4i. Since n2 = 2n1, the normals (and thus the planes) are parallel.

55. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will fail if the line of

intersection does not cross the xy-plane; in that case, try setting x or y equal to 0.) The equations of the two planes reduce

to x+ y = 1 and x+ 2y = 1. Solving these two equations gives x = 1, y = 0. Thus a point on the line is (1, 0, 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1, 1, 1i × h1, 2, 2i = h2− 2, 1− 2, 2− 1i = h0,−1, 1i. By Equations 2, parametric equations for the

line are x = 1, y = −t, z = t.

(b) The angle between the planes satisfies cos θ = n1 · n2
|n1| |n2| =

1 + 2 + 2√
3
√
9
=

5

3
√
3

. Therefore θ = cos−1 5

3
√
3

≈ 15.8◦.

57. Setting z = 0, the equations of the two planes become 5x− 2y = 1 and 4x+ y = 6. Solving these two equations gives

x = 1, y = 2 so a point on the line of intersection is (1, 2, 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5,−2,−2i × h4, 1, 1i = h0,−13, 13i or

equivalently we can take v = h0,−1, 1i, and symmetric equations for the line are x = 1, y − 2−1 =
z

1
or x = 1, y − 2 = −z.

59. The distance from a point (x, y, z) to (1, 0,−2) is d1 = (x− 1)2 + y2 + (z + 2)2 and the distance from (x, y, z) to

(3, 4, 0) is (x− 3)2 + (y − 4)2 + z2. The plane consists of all points (x, y, z) where d1 = d2 ⇒ d 21 = d 22 ⇔
(x− 1)2 + y2 + (z + 2)2 = (x− 3)2 + (y − 4)2 + z2 ⇔
x2 − 2x+ y2 + z2 + 4z + 5 = x2 − 6x+ y2 − 8y + z2 + 25 ⇔ 4x+ 8y + 4z = 20 so an equation for the plane is

4x+ 8y + 4z = 20 or equivalently x+ 2y + z = 5.

Alternatively, you can argue that the segment joining points (1, 0,−2) and (3, 4, 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.
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61. The plane contains the points (a, 0, 0), (0, b, 0) and (0, 0, c). Thus the vectors a = h−a, b, 0i and b = h−a, 0, ci lie in the

plane, and n = a× b = hbc− 0, 0 + ac, 0 + abi = hbc, ac, abi is a normal vector to the plane. The equation of the plane is

therefore bcx+ acy + abz = abc+ 0 + 0 or bcx+ acy + abz = abc. Notice that if a 6= 0, b 6= 0 and c 6= 0 then we can

rewrite the equation as x

a
+

y

b
+

z

c
= 1. This is a good equation to remember!

63. Two vectors which are perpendicular to the required line are the normal of the given plane, h1, 1, 1i, and a direction vector for

the given line, h1,−1, 2i. So a direction vector for the required line is h1, 1, 1i × h1,−1, 2i = h3,−1,−2i. Thus L is given

by hx, y, zi = h0, 1, 2i+ th3,−1,−2i, or in parametric form, x = 3t, y = 1− t, z = 2− 2t.

65. Let Pi have normal vector ni. Then n1 = h4,−2, 6i, n2 = h4,−2,−2i, n3 = h−6, 3,−9i, n4 = h2,−1,−1i. Now

n1 = − 2
3
n3, so n1 and n3 are parallel, and hence P1 and P3 are parallel; similarly P2 and P4 are parallel because n2 = 2n4.

However, n1 and n2 are not parallel. 0, 0, 12 lies on P1, but not on P3, so they are not the same plane, but both P2 and P4

contain the point (0, 0,−3), so these two planes are identical.

67. Let Q = (1, 3, 4) and R = (2, 1, 1), points on the line corresponding to t = 0 and t = 1. Let

P = (4, 1,−2). Then a =
−→
QR = h1,−2,−3i, b = −−→QP = h3,−2,−6i. The distance is

d =
|a× b|
|a| =

|h1,−2,−3i × h3,−2,−6i|
|h1,−2,−3i| =

|h6,−3, 4i|
|h1,−2,−3i| =

62 + (−3)2 + 42
12 + (−2)2 + (−3)2 =

√
61√
14
=

64

14
.

69. By Equation 9, the distance is D =
|ax1 + by1 + cz1 + d|√

a2 + b2 + c2
=
|3(1) + 2(−2) + 6(4)− 5|√

32 + 22 + 62
=
|18|√
49
=
18

7
.

71. Put y = z = 0 in the equation of the first plane to get the point (2, 0, 0) on the plane. Because the planes are parallel, the

distance D between them is the distance from (2, 0, 0) to the second plane. By Equation 9,

D =
|4(2)− 6(0) + 2(0)− 3|

42 + (−6)2 + (2)2 =
5√
56
=

5

2
√
14

or 5
√
14

28
.

73. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let P0 = (x0, y0, z0) be a point on the plane given by ax+ by + cz + d1 = 0. Then ax0 + by0 + cz0 + d1 = 0 and the

distance between P0 and the plane given by ax+ by + cz + d2 = 0 is, from Equation 9,

D =
|ax0 + by0 + cz0 + d2|√

a2 + b2 + c2
=

|−d1 + d2|√
a2 + b2 + c2

=
|d1 − d2|√
a2 + b2 + c2

.

75. L1: x = y = z ⇒ x = y (1). L2: x+ 1 = y/2 = z/3 ⇒ x+ 1 = y/2 (2). The solution of (1) and (2) is

x = y = −2. However, when x = −2, x = z ⇒ z = −2, but x+ 1 = z/3 ⇒ z = −3, a contradiction. Hence the

lines do not intersect. For L1, v1 = h1, 1, 1i, and for L2, v2 = h1, 2, 3i, so the lines are not parallel. Thus the lines are skew

lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1, 1, 1i and h1, 2, 3i, the direction vectors of the two lines. So set
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n = h1, 1, 1i × h1, 2, 3i = h3− 2,−3 + 1, 2− 1i = h1,−2, 1i. From above, we know that (−2,−2,−2) and (−2,−2,−3)
are points of L1 and L2 respectively. So in the notation of Equation 8, 1(−2)− 2(−2) + 1(−2) + d1 = 0 ⇒ d1 = 0 and

1(−2)− 2(−2) + 1(−3) + d2 = 0 ⇒ d2 = 1.

By Exercise 73, the distance between these two skew lines is D =
|0− 1|√
1 + 4 + 1

=
1√
6

.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1, 1, 1i × h1, 2, 3i = h1,−2, 1i. Pick any point on each of the lines, say (−2,−2,−2) and (−2,−2,−3), and form the

vector b = h0, 0, 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, D =
|n · b|
|n| =

|1 · 0− 2 · 0 + 1 · 1|√
1 + 4 + 1

=
1√
6

.

77. If a 6= 0, then ax+ by + cz + d = 0 ⇒ a(x+ d/a) + b(y − 0) + c(z − 0) = 0 which by (7) is the scalar equation of the

plane through the point (−d/a, 0, 0) with normal vector ha, b, ci. Similarly, if b 6= 0 (or if c 6= 0) the equation of the plane can

be rewritten as a(x− 0) + b(y + d/b) + c(z − 0) = 0 [or as a(x− 0) + b(y − 0) + c(z + d/c) = 0] which by (7) is the

scalar equation of a plane through the point (0,−d/b, 0) [or the point (0, 0,−d/c)] with normal vector ha, b, ci.

13.6 Cylinders and Quadric Surfaces ET 12.6

1. (a) In R2, the equation y = x2 represents a parabola.

(b) In R3, the equation y = x2 doesn’t involve z, so any

horizontal plane with equation z = k intersects the graph

in a curve with equation y = x2. Thus, the surface is a

parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the z-axis.

(c) In R3, the equation z = y2 also represents a parabolic

cylinder. Since x doesn’t appear, the graph is formed by

moving the parabola z = y2 in the direction of the x-axis.

Thus, the rulings of the cylinder are parallel to the x-axis.
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3. Since x is missing from the equation, the vertical traces

y2 + 4z2 = 4, x = k, are copies of the same ellipse in the

plane x = k. Thus, the surface y2 + 4z2 = 4 is an elliptic

cylinder with rulings parallel to the x-axis.

5. Since z is missing, each horizontal trace x = y2, z = k,

is a copy of the same parabola in the plane z = k. Thus,

the surface x− y2 = 0 is a parabolic cylinder with rulings

parallel to the z-axis.

7. Since y is missing, each vertical trace z = cosx, y = k is a copy of a cosine curve in the plane y = k. Thus, the surface
z = cosx is a cylindrical surface with rulings parallel to the y-axis.

9. (a) The traces of x2 + y2 − z2 = 1 in x = k are y2 − z2 = 1− k2, a family of hyperbolas. (Note that the hyperbolas are

oriented differently for −1 < k < 1 than for k < −1 or k > 1.) The traces in y = k are x2 − z2 = 1− k2, a similar

family of hyperbolas. The traces in z = k are x2 + y2 = 1 + k2, a family of circles. For k = 0, the trace in the

xy-plane, the circle is of radius 1. As |k| increases, so does the radius of the circle. This behavior, combined with the

hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is

rotated so that its axis is the y-axis. Traces in y = k are circles,

while traces in x = k and z = k are hyperbolas.

(c) Completing the square in y gives x2 + (y + 1)2 − z2 = 1. The

surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative y-direction.
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11. For x = y2 + 4z2, the traces in x = k are y2 + 4z2 = k. When k > 0 we

have a family of ellipses. When k = 0 we have just a point at the origin, and

the trace is empty for k < 0. The traces in y = k are x = 4z2 + k2, a

family of parabolas opening in the positive x-direction. Similarly, the traces

in z = k are x = y2 + 4k2, a family of parabolas opening in the positive

x-direction. We recognize the graph as an elliptic paraboloid with axis the

x-axis and vertex the origin.

13. x2 = y2 + 4z2. The traces in x = k are the ellipses y2 + 4z2 = k2. The

traces in y = k are x2 − 4z2 = k2, hyperbolas for k 6= 0 and two

intersecting lines if k = 0. Similarly, the traces in z = k are

x2 − y2 = 4k2, hyperbolas for k 6= 0 and two intersecting lines if k = 0.

We recognize the graph as an elliptic cone with axis the x-axis and vertex

the origin.

15. −x2 + 4y2 − z2 = 4. The traces in x = k are the hyperbolas

4y2− z2 = 4+ k2. The traces in y = k are x2+ z2 = 4k2 − 4, a family of

circles for |k| > 1, and the traces in z = k are 4y2 − x2 = 4+ k2, a family

of hyperbolas. Thus the surface is a hyperboloid of two sheets with

axis the y-axis.

17. 36x2 + y2 +36z2 = 36. The traces in x = k are y2 + 36z2 = 36(1− k2),

a family of ellipses for |k| < 1. (The traces are a single point for |k| = 1
and are empty for |k| > 1.) The traces in y = k are the circles

36x2 + 36z2 = 36− k2 ⇔ x2 + z2 = 1− 1
36k

2, |k| < 6, and the

traces in z = k are the ellipses 36x2 + y2 = 36(1− k2), |k| < 1. The

graph is an ellipsoid centered at the origin with intercepts x = ±1, y = ±6,

z = ±1.

19. y = z2 − x2. The traces in x = k are the parabolas y = z2 − k2;

the traces in y = k are k = z2 − x2, which are hyperbolas (note the hyperbolas

are oriented differently for k > 0 than for k < 0); and the traces in z = k are

the parabolas y = k2 − x2. Thus, y
1
=

z2

12
− x2

12
is a hyperbolic paraboloid.

21. This is the equation of an ellipsoid: x2 + 4y2 + 9z2 = x2 +
y2

(1/2)2
+

z2

(1/3)2
= 1, with x-intercepts ±1, y-intercepts± 1

2

and z-intercepts± 1
3

. So the major axis is the x-axis and the only possible graph is VII.
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23. This is the equation of a hyperboloid of one sheet, with a = b = c = 1. Since the coefficient of y2 is negative, the axis of the

hyperboloid is the y-axis, hence the correct graph is II.

25. There are no real values of x and z that satisfy this equation for y < 0, so this surface does not extend to the left of the

xz-plane. The surface intersects the plane y = k > 0 in an ellipse. Notice that y occurs to the first power whereas x and z

occur to the second power. So the surface is an elliptic paraboloid with axis the y-axis. Its graph is VI.

27. This surface is a cylinder because the variable y is missing from the equation. The intersection of the surface and the xz-plane

is an ellipse. So the graph is VIII.

29. z2 = 4x2 + 9y2 + 36 or −4x2 − 9y2 + z2 = 36 or

−x2

9
− y2

4
+

z2

36
= 1 represents a hyperboloid of two

sheets with axis the z-axis.

31. x = 2y2 + 3z2 or x = y2

1/2
+

z2

1/3
or x
6
=

y2

3
+

z2

2

represents an elliptic paraboloid with vertex (0, 0, 0) and
axis the x-axis.

33. Completing squares in y and z gives

4x2 + (y − 2)2 + 4(z − 3)2 = 4 or

x2 +
(y − 2)2

4
+ (z − 3)2 = 1, an ellipsoid with

center (0, 2, 3).

35. Completing squares in all three variables gives

(x− 2)2 − (y + 1)2 + (z − 1)2 = 0 or

(y + 1)2 = (x− 2)2 + (z − 1)2, a circular cone with

center (2,−1, 1) and axis the horizontal line x = 2,
z = 1.

37. Solving the equation for z we get z = ± 1 + 4x2 + y2, so we plot separately z = 1 + 4x2 + y2 and

z = − 1 + 4x2 + y2.

To restrict the z-range as in the second graph, we can use the option view = -4..4 in Maple’s plot3d command, or
PlotRange -> {-4,4} in Mathematica’s Plot3D command.
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39. Solving the equation for z we get z = ± 4x2 + y2, so we plot separately z = 4x2 + y2 and z = − 4x2 + y2.

41.

43. The surface is a paraboloid of revolution (circular paraboloid) with vertex at the origin, axis the y-axis and opens to the right.

Thus the trace in the yz-plane is also a parabola: y = z2, x = 0. The equation is y = x2 + z2.

45. Let P = (x, y, z) be an arbitrary point equidistant from (−1, 0, 0) and the plane x = 1. Then the distance from P to

(−1, 0, 0) is (x+ 1)2 + y2 + z2 and the distance from P to the plane x = 1 is |x− 1| /√12 = |x− 1|

(by Equation 13.5.9 [ ET 12.5.9]). So |x− 1| = (x+ 1)2 + y2 + z2 ⇔ (x− 1)2 = (x+ 1)2 + y2 + z2 ⇔
x2 − 2x+ 1 = x2 + 2x+ 1 + y2 + z2 ⇔ −4x = y2 + z2. Thus the collection of all such points P is a circular

paraboloid with vertex at the origin, axis the x-axis, which opens in the negative direction.

47. (a) An equation for an ellipsoid centered at the origin with intercepts x = ±a, y = ±b, and z = ±c is x2

a2
+

y2

b2
+

z2

c2
= 1.

Here the poles of the model intersect the z-axis at z = ±6356.523 and the equator intersects the x- and y-axes at

x = ±6378.137, y = ±6378.137, so an equation is

x2

(6378.137)2
+

y2

(6378.137)2
+

z2

(6356.523)2
= 1

(b) Traces in z = k are the circles x2

(6378.137)2
+

y2

(6378.137)2
= 1 − k2

(6356.523)2
⇔

x2 + y2 = (6378.137)2 − 6378.137

6356.523

2

k2.
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(c) To identify the traces in y = mx we substitute y = mx into the equation of the ellipsoid:

x2

(6378.137)2
+

(mx)2

(6378.137)2
+

z2

(6356.523)2
= 1

(1 +m2)x2

(6378.137)2
+

z2

(6356.523)2
= 1

x2

(6378.137)2/(1 +m2)
+

z2

(6356.523)2
= 1

As expected, this is a family of ellipses.

49. If (a, b, c) satisfies z = y2 − x2, then c = b2 − a2. L1: x = a+ t, y = b+ t, z = c+ 2(b− a)t,

L2: x = a+ t, y = b− t, z = c− 2(b+ a)t. Substitute the parametric equations of L1 into the equation

of the hyperbolic paraboloid in order to find the points of intersection: z = y2 − x2 ⇒
c+ 2(b− a)t = (b+ t)2 − (a+ t)2 = b2 − a2 + 2(b− a)t ⇒ c = b2 − a2. As this is true for all values of t,

L1 lies on z = y2 − x2. Performing similar operations with L2 gives: z = y2 − x2 ⇒
c− 2(b+ a)t = (b− t)2 − (a+ t)2 = b2 − a2 − 2(b+ a)t ⇒ c = b2 − a2. This tells us that all of L2 also lies on

z = y2 − x2.

51. The curve of intersection looks like a bent ellipse. The projection

of this curve onto the xy-plane is the set of points (x, y, 0) which

satisfy x2 + y2 = 1− y2 ⇔ x2 + 2y2 = 1 ⇔

x2 +
y2

1/
√
2

2 = 1. This is an equation of an ellipse.

13 Review ET 12

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

2. To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law, as illustrated in Figures 3

and 4 in Section 13.2 [ ET 12.2]. Algebraically, we add the corresponding components of the vectors.

3. For c > 0, ca is a vector with the same direction as a and length c times the length of a. If c < 0, ca points in the opposite

direction as a and has length |c| times the length of a. (See Figures 7 and 15 in Section 13.2 [ ET 12.2].) Algebraically, to find

ca we multiply each component of a by c.

4. See (1) in Section 13.2 [ ET 12.2].

5. See Theorem 13.3.3 [ ET 12.3.3] and Definition 13.3.1 [ ET 12.3.1].
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6. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In

particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used to determine the

work done moving an object given the force and displacement vectors.

7. See the boxed equations on page 819 [ ET 783] as well as Figures 4 and 5 and the accompanying discussion on pages 818–19

[ ET 782–83] .

8. See Theorem 13.4.6 [ ET 12.4.6] and the preceding discussion; use either (1) or (4) in Section 13.4 [ ET 12.4].

9. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are

parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the

cross product can be used to determine torque if the force and position vectors are known.

10. (a) The area of the parallelogram determined by a and b is the length of the cross product: |a× b|.
(b) The volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product: |a · (b× c)|.

11. If an equation of the plane is known, it can be written as ax+ by+ cz+ d = 0. A normal vector, which is perpendicular to the

plane, is ha, b, ci (or any scalar multiple of ha, b, ci). If an equation is not known, we can use points on the plane to find two

non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

12. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle

using Corollary 13.3.6 [ ET 12.3.6].

13. See (1), (2), and (3) in Section 13.5 [ ET 12.5].

14. See (5), (6), and (7) in Section 13.5 [ ET 12.5].

15. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are

parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel.

16. (a) Determine the vectors
−−→
PQ = ha1, a2, a3i and

−→
PR = hb1, b2, b3i. If there is a scalar t such that

ha1, a2, a3i = t hb1, b2, b3i, then the vectors are parallel and the points must all lie on the same line.

Alternatively, if
−−→
PQ×−→PR = 0, then

−−→
PQ and

−→
PR are parallel, so P , Q, and R are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or

not the third point satisfies this equation.

(b) Find the vectors
−−→
PQ = a,

−→
PR = b,

−→
PS = c. a× b is normal to the plane formed by P , Q and R, and so S lies on this

plane if a× b and c are orthogonal, that is, if (a× b) · c = 0. (Or use the reasoning in Example 5 in Section 13.4

[ ET 12.4].)

Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point

satisfies this equation.
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17. (a) See Exercise 13.4.43 [ ET 12.4.43].

(b) See Example 8 in Section 13.5 [ ET 12.5].

(c) See Example 10 in Section 13.5 [ ET 12.5].

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find

the trace in the plane x = k (parallel to the yz-plane) by setting x = k and determining the curve represented by the resulting

equation. Traces in the planes y = k (parallel to the xz-plane) and z = k (parallel to the xy-plane) are found similarly.

19. See Table 1 in Section 13.6 [ ET 12.6].

1. True, by Theorem 13.3.2 [ ET 12.3.2], property 2.

3. True. If θ is the angle between u and v, then by Theorem 13.4.6 [ ET 12.4.6],

|u× v| = |u| |v| sin θ = |v| |u| sin θ = |v× u|.
(Or, by Theorem 13.4.8 [ ET 12.4.8], |u× v| = |−v× u| = |−1| |v× u| = |v× u|.)

5. Theorem 13.4.8 [ ET 12.4.8], property 2 tells us that this is true.

7. This is true by Theorem 13.4.8 [ ET 12.4.8], property 5.

9. This is true because u× v is orthogonal to u (see Theorem 13.4.5 [ ET 12.4.5]), and the dot product of two orthogonal vectors

is 0.

11. If |u| = 1, |v| = 1 and θ is the angle between these two vectors (so 0 ≤ θ ≤ π), then by Theorem 13.4.6 [ ET 12.4.6],

|u× v| = |u| |v| sin θ = sin θ, which is equal to 1 if and only if θ = π
2

(that is, if and only if the two vectors are orthogonal).

Therefore, the assertion that the cross product of two unit vectors is a unit vector is false.

13. This is false. In R2, x2 + y2 = 1 represents a circle, but (x, y, z) | x2 + y2 = 1 represents a three-dimensional surface,

namely, a circular cylinder with axis the z-axis.

15. False. For example, i · j = 0 but i 6= 0 and j 6= 0.

17. This is true. If u and v are both nonzero, then by (7) in Section 13.3 [ET 12.3], u · v = 0 implies that u and v are orthogonal.

But u× v = 0 implies that u and v are parallel (see Corollary 13.4.7 [ET 12.4.7]). Two nonzero vectors can’t be both parallel

and orthogonal, so at least one of u, v must be 0.

1. (a) The radius of the sphere is the distance between the points (−1, 2, 1) and (6,−2, 3), namely,

[6− (−1)]2 + (−2− 2)2 + (3− 1)2 = √69. By the formula for an equation of a sphere (see page 804 [ET 768]),

an equation of the sphere with center (−1, 2, 1) and radius
√
69 is (x+ 1)2 + (y − 2)2 + (z − 1)2 = 69.
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(b) The intersection of this sphere with the yz-plane is the set of points on the sphere whose x-coordinate is 0. Putting x = 0

into the equation, we have (y − 2)2 + (z − 1)2 = 68, x = 0 which represents a circle in the yz-plane with center (0, 2, 1)

and radius
√
68.

(c) Completing squares gives (x− 4)2 + (y + 1)2 + (z + 3)2 = −1 + 16 + 1 + 9 = 25. Thus the sphere is centered at

(4,−1,−3) and has radius 5.

3. u · v = |u| |v| cos 45◦ = (2)(3)
√
2
2
= 3

√
2. |u× v| = |u| |v| sin 45◦ = (2)(3)

√
2
2
= 3

√
2.

By the right-hand rule, u× v is directed out of the page.

5. For the two vectors to be orthogonal, we need h3, 2, xi · h2x, 4, xi = 0 ⇔ (3)(2x) + (2)(4) + (x)(x) = 0 ⇔
x2 + 6x+ 8 = 0 ⇔ (x+ 2)(x+ 4) = 0 ⇔ x = −2 or x = −4.

7. (a) (u× v) ·w = u · (v×w) = 2

(b) u · (w× v) = u · [− (v×w)] = −u · (v×w) = −2

(c) v · (u×w) = (v× u) ·w = − (u× v) ·w = −2

(d) (u× v) · v = u · (v× v) = u · 0 = 0

9. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0, 0, 0) to (1, 1, 1) and (1, 0, 0) to (0, 1, 1) are h1, 1, 1i and h−1, 1, 1i. Let θ be the angle between these

two vectors. h1, 1, 1i · h−1, 1, 1i = −1 + 1 + 1 = 1 = |h1, 1, 1i| |h−1, 1, 1i| cos θ = 3 cos θ ⇒ cos θ = 1
3
⇒

θ = cos−1 1
3
≈ 71◦.

11.
−→
AB = h1, 0,−1i, −→AC = h0, 4, 3i, so

(a) a vector perpendicular to the plane is
−→
AB ×−→AC = h0 + 4,−(3 + 0), 4− 0i = h4,−3, 4i.

(b) 1
2

−→
AB ×−→AC = 1

2

√
16 + 9 + 16 =

√
41
2

.

13. Let F1 be the magnitude of the force directed 20◦ away from the direction of shore, and let F2 be the magnitude of the other

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

F1 cos 20
◦ + F2 cos 30

◦ = 255 (1), and F1 sin 20◦ − F2 sin 30
◦ = 0 ⇒ F1 = F2

sin 30◦

sin 20◦
(2). Substituting (2)

into (1) gives F2(sin 30◦ cot 20◦ + cos 30◦) = 255 ⇒ F2 ≈ 114 N. Substituting this into (2) gives F1 ≈ 166 N.

15. The line has direction v = h−3, 2, 3i. Letting P0 = (4,−1, 2), parametric equations are

x = 4− 3t, y = −1 + 2t, z = 2+ 3t.

17. A direction vector for the line is a normal vector for the plane, n = h2,−1, 5i, and parametric equations for the line are

x = −2 + 2t, y = 2− t, z = 4 + 5t.
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19. Here the vectors a = h4− 3, 0− (−1) , 2− 1i = h1, 1, 1i and b = h6− 3, 3− (−1), 1− 1i = h3, 4, 0i lie in the plane,

so n = a× b = h−4, 3, 1i is a normal vector to the plane and an equation of the plane is

−4(x− 3) + 3(y − (−1)) + 1(z − 1) = 0 or −4x+ 3y + z = −14.

21. Substitution of the parametric equations into the equation of the plane gives 2x− y + z = 2(2− t)− (1 + 3t) + 4t = 2 ⇒
−t+ 3 = 2 ⇒ t = 1. When t = 1, the parametric equations give x = 2− 1 = 1, y = 1 + 3 = 4 and z = 4. Therefore,

the point of intersection is (1, 4, 4).

23. Since the direction vectors h2, 3, 4i and h6,−1, 2i aren’t parallel, neither are the lines. For the lines to intersect, the three

equations 1 + 2t = −1 + 6s, 2 + 3t = 3− s, 3 + 4t = −5 + 2s must be satisfied simultaneously. Solving the first two

equations gives t = 1
5

, s = 2
5

and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

25. n1 = h1, 0,−1i and n2 = h0, 1, 2i. Setting z = 0, it is easy to see that (1, 3, 0) is a point on the line of intersection of

x− z = 1 and y + 2z = 3. The direction of this line is v1 = n1 × n2 = h1,−2, 1i. A second vector parallel to the desired

plane is v2 = h1, 1,−2i, since it is perpendicular to x+ y − 2z = 1. Therefore, the normal of the plane in question is

n = v1 × v2 = h4− 1, 1 + 2, 1 + 2i = 3 h1, 1, 1i. Taking (x0, y0, z0) = (1, 3, 0), the equation we are looking for is

(x− 1) + (y − 3) + z = 0 ⇔ x+ y + z = 4.

27. By Exercise 13.5.73 [ ET 12.5.73], D =
|2− 24|√

26
=

22√
26

.

29. The equation x = z represents a plane perpendicular to

the xz-plane and intersecting the xz-plane in the line

x = z, y = 0.

31. The equation x2 = y2 + 4z2 represents a (right elliptical)

cone with vertex at the origin and axis the x-axis.

33. An equivalent equation is −x2 + y2

4
− z2 = 1, a

hyperboloid of two sheets with axis the y-axis. For

|y| > 2, traces parallel to the xz-plane are circles.

35. Completing the square in y gives

4x2 + 4(y − 1)2 + z2 = 4 or x2 + (y − 1)2 + z2

4
= 1,

an ellipsoid centered at (0, 1, 0).
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37. 4x2 + y2 = 16 ⇔ x2

4
+

y2

16
= 1. The equation of the ellipsoid is x2

4
+

y2

16
+

z2

c2
= 1, since the horizontal trace in the

plane z = 0 must be the original ellipse. The traces of the ellipsoid in the yz-plane must be circles since the surface is obtained

by rotation about the x-axis. Therefore, c2 = 16 and the equation of the ellipsoid is x2

4
+

y2

16
+

z2

16
= 1 ⇔

4x2 + y2 + z2 = 16.



PROBLEMS PLUS

1. Since three-dimensional situations are often difficult to visualize and work with, let

us first try to find an analogous problem in two dimensions. The analogue of a cube

is a square and the analogue of a sphere is a circle. Thus a similar problem in two

dimensions is the following: if five circles with the same radius r are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find r.

The diagonal of the square is
√
2. The diagonal is also 4r + 2x. But x is the diagonal of a smaller square of side r. Therefore

x =
√
2 r ⇒ √

2 = 4r + 2x = 4r + 2
√
2 r = 4 + 2

√
2 r ⇒ r =

√
2

4+ 2
√
2

.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is
√
12 + 12 + 12 =

√
3.

The diagonal of the cube is also 4r + 2x where x is the diagonal of a smaller cube with edge r. Therefore

x =
√
r2 + r2 + r2 =

√
3 r ⇒ √

3 = 4r + 2x = 4r + 2
√
3 r = 4 + 2

√
3 r. Thus r =

√
3

4 + 2
√
3
=
2
√
3 − 3

2
.

The radius of each ball is
√
3− 3

2
m.

3. (a) We find the line of intersection L as in Example 13.5.7(b) [ ET 12.5.7(b)]. Observe that the point (−1, c, c) lies on both

planes. Now since L lies in both planes, it is perpendicular to both of the normal vectors n1 and n2, and thus parallel to

their cross product n1 × n2 =
i j k

c 1 1

1 −c c

= 2c,−c2 + 1,−c2 − 1 . So symmetric equations of L can be written as

x+ 1

−2c =
y − c

c2 − 1 =
z − c

c2 + 1
, provided that c 6= 0, ±1.

If c = 0, then the two planes are given by y + z = 0 and x = −1, so symmetric equations of L are x = −1, y = −z. If

c = −1, then the two planes are given by−x+ y + z = −1 and x+ y + z = −1, and they intersect in the line x = 0,

y = −z − 1. If c = 1, then the two planes are given by x+ y + z = 1 and x− y + z = 1, and they intersect in the line

y = 0, x = 1− z.

(b) If we set z = t in the symmetric equations and solve for x and y separately, we get x+ 1 = (t− c)(−2c)
c2 + 1

,

y − c =
(t− c)(c2 − 1)

c2 + 1
⇒ x =

−2ct+ (c2 − 1)
c2 + 1

, y = (c2 − 1)t+ 2c
c2 + 1

. Eliminating c from these equations, we

have x2 + y2 = t2 + 1. So the curve traced out by L in the plane z = t is a circle with center at (0, 0, t) and

radius
√
t2 + 1.

(c) The area of a horizontal cross-section of the solid is A(z) = π(z2 + 1), so V =
1

0
A(z)dz = π 1

3z
3 + z

1

0
= 4π

3 .
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5. (a) When θ = θs, the block is not moving, so the sum of the forces on the block

must be 0, thusN+F+W = 0. This relationship is illustrated

geometrically in the figure. Since the vectors form a right triangle, we have

tan(θs) =
|F|
|N| =

μsn

n
= μs.

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force

H, with initial points at the origin. We then rotate this system so that F lies along the positive x-axis and the inclined plane

is parallel to the x-axis.

|F| is maximal, so |F| = μsn for θ > θs. Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are

N = n j F = (μsn) i

W = (−mg sin θ) i+ (−mg cos θ) j H = (hmin cos θ) i+ (−hmin sin θ) j
Equating components, we have

μsn−mg sin θ + hmin cos θ = 0 ⇒ hmin cos θ + μsn = mg sin θ (1)

n−mg cos θ − hmin sin θ = 0 ⇒ hmin sin θ +mg cos θ = n (2)

(c) Since (2) is solved for n, we substitute into (1):

hmin cos θ + μs(hmin sin θ +mg cos θ) =mg sin θ ⇒

hmin cos θ + hminμs sin θ =mg sin θ −mgμs cos θ ⇒

hmin = mg
sin θ − μs cos θ

cos θ + μs sin θ
= mg

tan θ − μs
1 + μs tan θ

From part (a) we know μs = tan θs, so this becomes hmin = mg
tan θ − tan θs
1 + tan θs tan θ

and using a trigonometric identity,

this is mg tan(θ − θs) as desired.

Note for θ = θs, hmin = mg tan 0 = 0, which makes sense since the block is at rest for θs, thus no additional forceH

is necessary to prevent it from moving. As θ increases, the factor tan(θ − θs), and hence the value of hmin, increases

slowly for small values of θ − θs but much more rapidly as θ − θs becomes significant. This seems reasonable, as the
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steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we

would need a much larger magnitude of horizontal force to keep the block motionless. If we allow θ → 90◦, corresponding

to the inclined plane being placed vertically, the value of hmin is quite large; this is to be expected, as it takes a great

amount of horizontal force to keep an object from moving vertically. In fact, without friction (so θs = 0), we would have

θ → 90◦ ⇒ hmin →∞, and it would be impossible to keep the block from slipping.

(d) Since hmax is the largest value of h that keeps the block from slipping, the force of friction is keeping the block from

moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = −(μsn) i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we

equate components:

−μsn−mg sin θ + hmax cos θ = 0 ⇒ hmax cos θ − μsn = mg sin θ

n−mg cos θ − hmax sin θ = 0 ⇒ hmax sin θ +mg cos θ = n

Then substituting,

hmax cos θ − μs(hmax sin θ +mg cos θ) = mg sin θ ⇒

hmax cos θ − hmaxμs sin θ = mg sin θ +mgμs cos θ ⇒

hmax = mg
sin θ + μs cos θ

cos θ − μs sin θ
= mg

tan θ + μs
1− μs tan θ

= mg
tan θ + tan θs
1− tan θs tan θ = mg tan(θ + θs)

We would expect hmax to increase as θ increases, with similar behavior as we established for hmin, but with hmax values

always larger than hmin. We can see that this is the case if we graph hmax as a function of θ, as the curve is the graph of

hmin translated 2θs to the left, so the equation does seem reasonable. Notice that the equation predicts hmax →∞ as

θ → (90◦ − θs). In fact, as hmax increases, the normal force increases as well. When (90◦ − θs) ≤ θ ≤ 90◦, the

horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.





14 VECTOR FUNCTIONS ET 13

14.1 Vector Functions and Space Curves ET 13.1

1. The component functions
√
4− t2, e−3t, and ln(t+ 1) are all defined when 4− t2 ≥ 0 ⇒ −2 ≤ t ≤ 2 and

t+ 1 > 0 ⇒ t > −1, so the domain of r is (−1, 2].

3. lim
t→0+

cos t = cos 0 = 1, lim
t→0+

sin t = sin 0 = 0, lim
t→0+

t ln t = lim
t→0+

ln t

1/t
= lim

t→0+

1/t

−1/t2 = lim
t→0+

−t = 0

[by l’Hospital’s Rule]. Thus lim
t→0+

hcos t, sin t, t ln ti = lim
t→0+

cos t, lim
t→0+

sin t, lim
t→0+

t ln t = h1, 0, 0i.

5. lim
t→0

e−3t = e0 = 1, lim
t→0

t2

sin2 t
= lim

t→0

1

sin2 t

t2

=
1

lim
t→0

sin2 t

t2

=
1

lim
t→0

sin t

t

2 =
1

12
= 1

and lim
t→0

cos 2t = cos 0 = 1. Thus the given limit equals i+ j+ k.

7. The corresponding parametric equations for this curve are x = sin t, y = t.

We can make a table of values, or we can eliminate the parameter: t = y ⇒
x = sin y, with y ∈ R. By comparing different values of t, we find the direction in

which t increases as indicated in the graph.

9. The corresponding parametric equations are x = t, y = cos 2t, z = sin 2t.

Note that y2 + z2 = cos2 2t+ sin2 2t = 1, so the curve lies on the circular

cylinder y2 + z2 = 1. Since x = t, the curve is a helix.

11. The corresponding parametric equations are x = 1, y = cos t, z = 2 sin t.

Eliminating the parameter in y and z gives y2 + (z/2)2 = cos2 t+ sin2 t = 1

or y2 + z2/4 = 1. Since x = 1, the curve is an ellipse centered at (1, 0, 0) in

the plane x = 1.
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13. The parametric equations are x = t2, y = t4, z = t6. These are positive

for t 6= 0 and 0 when t = 0. So the curve lies entirely in the first quadrant.

The projection of the graph onto the xy-plane is y = x2, y > 0, a half parabola.

On the xz-plane z = x3, z > 0, a half cubic, and the yz-plane, y3 = z2.

15. Taking r0 = h0, 0, 0i and r1 = h1, 2, 3i, we have from Equation 13.5.4 [ET 12.5.4]

r(t) = (1− t) r0 + t r1 = (1− t) h0, 0, 0i+ t h1, 2, 3i, 0 ≤ t ≤ 1 or r(t) = ht, 2t, 3ti, 0 ≤ t ≤ 1.

Parametric equations are x = t, y = 2t, z = 3t, 0 ≤ t ≤ 1.

17. Taking r0 = h1,−1, 2i and r1 = h4, 1, 7i, we have

r(t) = (1− t) r0 + t r1 = (1− t) h1,−1, 2i+ t h4, 1, 7i, 0 ≤ t ≤ 1 or r(t) = h1 + 3t,−1 + 2t, 2 + 5ti, 0 ≤ t ≤ 1.

Parametric equations are x = 1 + 3t, y = −1 + 2t, z = 2 + 5t, 0 ≤ t ≤ 1.

19. x = cos 4t, y = t, z = sin 4t. At any point (x, y, z) on the curve, x2 + z2 = cos2 4t+ sin2 4t = 1. So the curve lies on a

circular cylinder with axis the y-axis. Since y = t, this is a helix. So the graph is VI.

21. x = t, y = 1/(1 + t2), z = t2. Note that y and z are positive for all t. The curve passes through (0, 1, 0) when t = 0.

As t→∞, (x, y, z)→ (∞, 0,∞), and as t→−∞, (x, y, z)→ (−∞, 0,∞). So the graph is IV.

23. x = cos t, y = sin t, z = sin 5t. x2 + y2 = cos2 t+ sin2 t = 1, so the curve lies on a circular cylinder with axis the

z-axis. Each of x, y and z is periodic, and at t = 0 and t = 2π the curve passes through the same point, so the curve repeats

itself and the graph is V.

25. If x = t cos t, y = t sin t, z = t, then x2 + y2 = t2 cos2 t+ t2 sin2 t = t2 = z2,

so the curve lies on the cone z2 = x2 + y2. Since z = t, the curve is a spiral on

this cone.

27. Parametric equations for the curve are x = t, y = 0, z = 2t− t2. Substituting into the equation of the paraboloid gives

2t− t2 = t2 ⇒ 2t = 2t2 ⇒ t = 0, 1. Since r(0) = 0 and r(1) = i+ k, the points of intersection

are (0, 0, 0) and (1, 0, 1).

29. r(t) = hcos t sin 2t, sin t sin 2t, cos 2ti.
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.
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31. r(t) = ht, t sin t, t cos ti

33. x = (1 + cos 16t) cos t, y = (1 + cos 16t) sin t, z = 1 + cos 16t. At any

point on the graph,

x2 + y2 = (1 + cos 16t)2 cos2 t+ (1 + cos 16t)2 sin2 t

= (1 + cos 16t)2 = z2, so the graph lies on the cone x2 + y2 = z2.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.

35. If t = −1, then x = 1, y = 4, z = 0, so the curve passes through the point (1, 4, 0). If t = 3, then x = 9, y = −8, z = 28,

so the curve passes through the point (9,−8, 28). For the point (4, 7,−6) to be on the curve, we require y = 1− 3t = 7 ⇒
t = −2. But then z = 1 + (−2)3 = −7 6= −6, so (4, 7,−6) is not on the curve.

37. Both equations are solved for z, so we can substitute to eliminate z: x2 + y2 = 1 + y ⇒ x2 + y2 = 1 + 2y + y2 ⇒
x2 = 1 + 2y ⇒ y = 1

2
(x2 − 1). We can form parametric equations for the curve C of intersection by choosing a

parameter x = t, then y = 1
2
(t2 − 1) and z = 1 + y = 1 + 1

2
(t2 − 1) = 1

2
(t2 + 1). Thus a vector function representing C

is r(t) = t i+ 1
2
(t2 − 1) j+ 1

2
(t2 + 1)k.

39. The projection of the curve C of intersection onto the

xy-plane is the circle x2 + y2 = 4, z = 0. Then we can write

x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π. Since C also lies on

the surface z = x2, we have z = x2 = (2 cos t)2 = 4 cos2 t.

Then parametric equations for C are x = 2 cos t, y = 2 sin t,

z = 4cos2 t, 0 ≤ t ≤ 2π.

41. For the particles to collide, we require r1(t) = r2(t) ⇔ t2, 7t− 12, t2 = 4t− 3, t2, 5t− 6 . Equating components

gives t2 = 4t− 3, 7t− 12 = t2, and t2 = 5t− 6. From the first equation, t2− 4t+3 = 0 ⇔ (t− 3)(t− 1) = 0 so t = 1

or t = 3. t = 1 does not satisfy the other two equations, but t = 3 does. The particles collide when t = 3, at the

point (9, 9, 9).

43. (a) lim
t→a

u(t) + lim
t→a

v(t) = lim
t→a

u1(t), lim
t→a

u2(t), lim
t→a

u3(t) + lim
t→a

v1(t), lim
t→a

v2(t), lim
t→a

v3(t) and the limits of these

component functions must each exist since the vector functions both possess limits as t→ a. Then adding the two vectors
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and using the addition property of limits for real-valued functions, we have that

lim
t→a

u(t) + lim
t→a

v(t) = lim
t→a

u1(t) + lim
t→a

v1(t), lim
t→a

u2(t) + lim
t→a

v2(t), lim
t→a

u3(t) + lim
t→a

v3(t)

= lim
t→a

[u1(t) + v1(t)] , lim
t→a

[u2(t) + v2(t)] , lim
t→a

[u3(t) + v3(t)]

= lim
t→a

hu1(t) + v1(t), u2(t) + v2(t), u3(t) + v3(t)i [using (1) backward]

= lim
t→a

[u(t) + v(t)]

(b) lim
t→a

cu(t) = lim
t→a

hcu1(t), cu2(t), cu3(t)i = lim
t→a

cu1(t), lim
t→a

cu2(t), lim
t→a

cu3(t)

= c lim
t→a

u1(t), c lim
t→a

u2(t), c lim
t→a

u3(t) = c lim
t→a

u1(t), lim
t→a

u2(t), lim
t→a

u3(t)

= c lim
t→a

hu1(t), u2(t), u3(t)i = c lim
t→a

u(t)

(c) lim
t→a

u(t) · lim
t→a

v(t) = lim
t→a

u1(t), lim
t→a

u2(t), lim
t→a

u3(t) · lim
t→a

v1(t), lim
t→a

v2(t), lim
t→a

v3(t)

= lim
t→a

u1(t) lim
t→a

v1(t) + lim
t→a

u2(t) lim
t→a

v2(t) + lim
t→a

u3(t) lim
t→a

v3(t)

= lim
t→a

u1(t)v1(t) + lim
t→a

u2(t)v2(t) + lim
t→a

u3(t)v3(t)

= lim
t→a

[u1(t)v1(t) + u2(t)v2(t) + u3(t)v3(t)] = lim
t→a

[u(t) · v(t)]

(d) lim
t→a

u(t)× lim
t→a

v(t) = lim
t→a

u1(t), lim
t→a

u2(t), lim
t→a

u3(t) × lim
t→a

v1(t), lim
t→a

v2(t), lim
t→a

v3(t)

= lim
t→a

u2(t) lim
t→a

v3(t) − lim
t→a

u3(t) lim
t→a

v2(t) ,

lim
t→a

u3(t) lim
t→a

v1(t) − lim
t→a

u1(t) lim
t→a

v3(t) ,

lim
t→a

u1(t) lim
t→a

v2(t) − lim
t→a

u2(t) lim
t→a

v1(t)

= lim
t→a

[u2(t)v3(t)− u3(t)v2(t)] , lim
t→a

[u3(t)v1(t)− u1(t)v3(t)] ,

lim
t→a

[u1(t)v2(t)− u2(t)v1(t)]

= lim
t→a

hu2(t)v3(t)− u3(t)v2(t), u3 (t) v1(t)− u1(t)v3(t), u1(t)v2(t)− u2(t)v1(t)i

= lim
t→a

[u(t)× v(t)]

45. Let r(t) = hf (t) , g (t) , h (t)i and b = hb1, b2, b3i. If lim
t→a

r(t) = b, then lim
t→a

r(t) exists, so by (1),

b = lim
t→a

r(t) = lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t) . By the definition of equal vectors we have lim
t→a

f(t) = b1, lim
t→a

g(t) = b2

and lim
t→a

h(t) = b3. But these are limits of real-valued functions, so by the definition of limits, for every ε > 0 there exists

δ1 > 0, δ2 > 0, δ3 > 0 so that if 0 < |t− a| < δ1 then |f(t)− b1| < ε/3, if 0 < |t− a| < δ2 then |g(t)− b2| < ε/3, and

if 0 < |t− a| < δ3 then |h(t)− b3| < ε/3. Letting δ =minimum of {δ1, δ2, δ3}, then if 0 < |t− a| < δ we have

|f(t)− b1|+ |g(t)− b2|+ |h(t)− b3| < ε/3 + ε/3 + ε/3 = ε. But

|r(t)− b|= |hf(t)− b1, g(t)− b2, h(t)− b3i| = (f(t)− b1)2 + (g(t)− b2)2 + (h(t)− b3)2

≤ [f(t)− b1]2 + [g(t)− b2]2 + [h(t)− b3]2 = |f(t)− b1|+ |g(t)− b2|+ |h(t)− b3|
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Thus for every ε > 0 there exists δ > 0 such that if 0 < |t− a| < δ then

|r(t)− b| ≤ |f(t)− b1|+ |g(t)− b2|+ |h(t)− b3| < ε. Conversely, suppose for every ε > 0, there exists δ > 0 such

that if 0 < |t− a| < δ then |r(t)− b| < ε ⇔ |hf(t)− b1, g(t)− b2, h(t)− b3i| < ε ⇔

[f(t)− b1]2 + [g(t)− b2]2 + [h(t)− b3]2 < ε ⇔ [f(t)− b1]
2 + [g(t)− b2]

2 + [h(t)− b3]
2 < ε2. But each term

on the left side of the last inequality is positive, so if 0 < |t− a| < δ, then [f(t)− b1]
2 < ε2, [g(t)− b2]

2 < ε2 and

[h(t)− b3]
2 < ε2 or, taking the square root of both sides in each of the above, |f(t)− b1| < ε, |g(t)− b2| < ε and

|h(t)− b3| < ε. And by definition of limits of real-valued functions we have lim
t→a

f(t) = b1, lim
t→a

g(t) = b2 and

lim
t→a

h(t) = b3. But by (1), lim
t→a

r(t) = lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t) , so lim
t→a

r(t) = hb1, b2, b3i = b.

14.2 Derivatives and Integrals of Vector Functions ET 13.2

1. (a)

(b) r(4.5)− r(4)
0.5

= 2[r(4.5)− r(4)], so we draw a vector in the same

direction but with twice the length of the vector r(4.5)− r(4).
r(4.2)− r(4)

0.2
= 5[r(4.2)− r(4)], so we draw a vector in the same

direction but with 5 times the length of the vector r(4.2)− r(4).

(c) By Definition 1, r0(4) = lim
h→0

r(4 + h)− r(4)
h

. T(4) =
r0(4)
|r0(4)| .

(d) T(4) is a unit vector in the same direction as r0(4), that is, parallel to the tangent line to the curve at r(4) with length 1.
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3. Since (x+ 2)2 = t2 = y − 1 ⇒
y = (x+ 2)2 − 1, the curve is a

parabola.

(a), (c) (b) r0(t) = h1, 2ti,
r0(−1) = h1,−2i

5. x = sin t, y = 2cos t so

x2 + (y/2)2 = 1 and the curve is

an ellipse.

(a), (c) (b) r0(t) = cos t i− 2 sin t j,

r0
π

4
=

√
2

2
i−√2 j

7. Since y = e3t = (et)3 = x3, the

curve is part of a cubic cuve. Note

that here, x > 0.

(a), (c) (b) r0(t) = et i+ 3e3t j,

r0(0) = i+ 3 j

9. r0(t) = d

dt
[t sin t] ,

d

dt
t2 ,

d

dt
[t cos 2t] = ht cos t+ sin t, 2t, t(− sin 2t) · 2 + cos 2ti

= ht cos t+ sin t, 2t, cos 2t− 2t sin 2ti

11. r(t) = i− j+ e4t k ⇒ r0(t) = 0 i+ 0 j+ 4e4t k = 4e4t k

13. r(t) = et
2

i− j+ ln(1 + 3t)k ⇒ r0(t) = 2tet
2

i+
3

1 + 3t
k

15. r0(t) = 0+ b+ 2t c = b+ 2t c by Formulas 1 and 3 of Theorem 3.

17. r0(t) = −te−t + e−t, 2/(1 + t2), 2et ⇒ r0(0) = h1, 2, 2i. So |r0(0)| = √12 + 22 + 22 = √9 = 3 and

T(0) =
r0(0)
|r0(0)| =

1
3
h1, 2, 2i = 1

3
, 2
3
, 2
3

.

19. r0(t) = − sin t i + 3 j + 4 cos 2tk ⇒ r0(0) = 3 j + 4k. Thus

T(0) =
r0(0)
|r0(0)| =

1√
02 + 32 + 42

(3 j+ 4k) = 1
5
(3 j+ 4k) = 3

5
j+ 4

5
k.

21. r(t) = t, t2, t3 ⇒ r0(t) = 1, 2t, 3t2 . Then r0(1) = h1, 2, 3i and |r0(1)| = √12 + 22 + 32 = √14, so

T(1) =
r0(1)
|r0(1)| =

1√
14
h1, 2, 3i = 1√

14
, 2√

14
, 3√

14
. r00(t) = h0, 2, 6ti, so

r0(t)× r00(t) =
i j k

1 2t 3t2

0 2 6t

=
2t 3t2

2 6t
i − 1 3t2

0 6t
j +

1 2t

0 2
k

= (12t2 − 6t2) i− (6t− 0) j+ (2− 0)k = 6t2,−6t, 2
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23. The vector equation for the curve is r(t) = 1 + 2
√
t, t3 − t, t3 + t , so r0(t) = 1/

√
t, 3t2 − 1, 3t2 + 1 . The point

(3, 0, 2) corresponds to t = 1, so the tangent vector there is r0(1) = h1, 2, 4i. Thus, the tangent line goes through the point

(3, 0, 2) and is parallel to the vector h1, 2, 4i. Parametric equations are x = 3 + t, y = 2t, z = 2 + 4t.

25. The vector equation for the curve is r(t) = e−t cos t, e−t sin t, e−t , so

r0(t) = e−t(− sin t) + (cos t)(−e−t), e−t cos t+ (sin t)(−e−t), (−e−t)
= −e−t(cos t+ sin t), e−t(cos t− sin t),−e−t

The point (1, 0, 1) corresponds to t = 0, so the tangent vector there is

r0(0) = −e0(cos 0 + sin 0), e0(cos 0− sin 0),−e0 = h−1, 1,−1i. Thus, the tangent line is parallel to the vector

h−1, 1,−1i and parametric equations are x = 1 + (−1)t = 1− t, y = 0 + 1 · t = t, z = 1 + (−1)t = 1− t.

27. r(t) = t, e−t, 2t− t2 ⇒ r0 (t) = 1,−e−t, 2− 2t . At (0, 1, 0),

t = 0 and r0 (0) = h1,−1, 2i. Thus, parametric equations of the tangent

line are x = t, y = 1− t, z = 2t.

29. r(t) = ht cos t, t, t sin ti ⇒ r0(t) = hcos t− t sin t, 1, t cos t+ sin ti.
At (−π, π, 0), t = π and r0(π) = h−1, 1,−πi. Thus, parametric equations

of the tangent line are x = −π − t, y = π + t, z = −πt.

31. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r01(t) = 1, 2t, 3t2 and t = 0 at (0, 0, 0), r01(0) = h1, 0, 0i is a tangent vector to r1 at (0, 0, 0). Similarly,

r02(t) = hcos t, 2 cos 2t, 1i and since r2(0) = h0, 0, 0i, r02 (0) = h1, 2, 1i is a tangent vector to r2 at (0, 0, 0). If θ is the angle

between these two tangent vectors, then cos θ = 1√
1
√
6
h1, 0, 0i · h1, 2, 1i = 1√

6
and θ = cos−1 1√

6
≈ 66◦.

33. 1

0
(16t3 i− 9t2 j+ 25t4 k) dt = 1

0
16t3 dt i− 1

0
9t2 dt j+

1

0
25t4 dt k

= 4t4
1

0
i− 3t3

1

0
j+ 5t5

1

0
k = 4 i− 3 j+ 5k

35. π/2

0
(3 sin2 t cos t i+ 3 sin t cos2 t j+ 2 sin t cos tk) dt

=
π/2

0
3 sin2 t cos t dt i+

π/2

0
3 sin t cos2 t dt j+

π/2

0
2 sin t cos t dt k

= sin3 t
π/2

0
i+ − cos3 t π/2

0
j+ sin2 t

π/2

0
k = (1− 0) i+ (0 + 1) j+ (1− 0)k = i+ j+ k
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37. et i+ 2t j+ ln tk dt= et dt i+ 2t dt j+ ln t dt k

= et i+ t2 j+ (t ln t− t)k+C, whereC is a vector constant of integration.

39. r0(t) = 2t i+ 3t2 j+
√
tk ⇒ r(t) = t2 i+ t3 j+ 2

3
t3/2 k+C, whereC is a constant vector.

But i+ j = r (1) = i+ j+ 2
3
k+C. ThusC = − 2

3
k and r(t) = t2 i+ t3 j+ 2

3
t3/2 − 2

3
k.

For Exercises 41–44, let u(t) = hu1(t), u2(t), u3(t)i and v(t) = hv1(t), v2(t), v3(t)i. In each of these exercises, the procedure is to apply
Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

41. d

dt
[u(t) + v(t)] =

d

dt
hu1(t) + v1(t), u2(t) + v2(t), u3(t) + v3(t)i

=
d

dt
[u1(t) + v1 (t)] ,

d

dt
[u2(t) + v2(t)] ,

d

dt
[u3(t) + v3(t)]

= hu01(t) + v01(t), u
0
2(t) + v02(t), u

0
3(t) + v03(t)i

= hu01(t), u02 (t) , u03(t)i+ hv01(t), v02(t), v03(t)i = u0(t) + v0(t)

43. d

dt
[u(t)× v(t)] = d

dt
hu2(t)v3(t)− u3(t)v2(t), u3(t)v1(t)− u1(t)v3(t), u1(t)v2(t)− u2(t)v1(t)i

= hu02v3(t) + u2(t)v
0
3(t)− u03(t)v2(t)− u3(t)v

0
2(t),

u03(t)v1(t) + u3(t)v
0
1 (t)− u01(t)v3(t)− u1(t)v

0
3(t),

u01(t)v2(t) + u1(t)v
0
2(t)− u02(t)v1(t)− u2(t)v

0
1(t)i

= hu02(t)v3(t)− u03(t)v2 (t) , u
0
3(t)v1(t)− u01(t)v3(t), u

0
1(t)v2(t)− u02(t)v1(t)i

+ hu2(t)v03(t)− u3(t)v
0
2(t), u3(t)v

0
1 (t)− u1(t)v

0
3(t), u1(t)v

0
2(t)− u2(t)v

0
1(t)i

= u0(t)× v(t) + u(t)× v0(t)
Alternate solution: Let r(t) = u(t)× v(t). Then

r(t+ h)− r(t) = [u(t+ h)× v(t+ h)]− [u(t)× v(t)]
= [u(t+ h)× v(t+ h)]− [u(t)× v(t)] + [u(t+ h)× v(t)]− [u(t+ h)× v(t)]
= u(t+ h)× [v(t+ h)− v(t)] + [u(t+ h)− u(t)]× v(t)

(Be careful of the order of the cross product.) Dividing through by h and taking the limit as h→ 0 we have

r0(t) = lim
h→0

u(t+ h)× [v(t+ h)− v(t)]
h

+ lim
h→0

[u(t+ h)− u(t)]× v(t)
h

= u(t)× v0(t) + u0(t)× v(t)

by Exercise 14.1.43(a) [ET 13.1.43(a)] and Definition 1.

45. d

dt
[u(t) · v(t)] = u0(t) · v(t) + u(t) · v0(t) [by Formula 4 of Theorem 3]

= hcos t,− sin t, 1i · ht, cos t, sin ti+ hsin t, cos t, ti · h1,− sin t, cos ti
= t cos t− cos t sin t+ sin t+ sin t− cos t sin t+ t cos t

= 2t cos t+ 2 sin t− 2 cos t sin t
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47. d

dt
[r(t)× r0(t)] = r0(t)× r0(t) + r(t)× r00(t) by Formula 5 of Theorem 3. But r0(t)× r0(t) = 0 (by Example 2 in

Section 13.4 [ET 12.4]). Thus, d

dt
[r(t)× r0(t)] = r(t)× r00(t).

49. d

dt
|r(t)| = d

dt
[r(t) · r(t)]1/2 = 1

2
[r(t) · r(t)]−1/2 [2r(t) · r0(t)] = 1

|r(t)| r(t) · r
0(t)

51. Since u(t) = r(t) · [r0(t)× r00(t)],

u0(t) = r0(t) · [r0(t)× r00(t)] + r(t) · d
dt
[r0(t)× r00(t)]

= 0 + r(t) · [r00(t)× r00(t) + r0(t)× r000(t)] [since r0(t) ⊥ r0(t)× r00(t)]
= r(t) · [r0(t)× r000(t)] [since r00(t)× r00(t) = 0]

14.3 Arc Length and Curvature ET 13.3

1. r(t) = h2 sin t, 5t, 2 cos ti ⇒ r0(t) = h2 cos t, 5,−2 sin ti ⇒ |r0(t)| = (2 cos t)2 + 52 + (−2 sin t)2 = √29.

Then using Formula 3, we have L = 10

−10 |r0(t)| dt =
10

−10
√
29 dt =

√
29 t

10

−10 = 20
√
29.

3. r(t) =
√
2 t i+ etj+ e−tk ⇒ r0(t) =

√
2 i+ etj− e−tk ⇒

|r0(t)| = √
2

2
+ (et)2 + (−e−t)2 = √2 + e2t + e−2t = (et + e−t)2 = et + e−t [since et + e−t > 0].

Then L = 1

0
|r0(t)| dt = 1

0
(et + e−t) dt = et − e−t

1

0
= e− e−1.

5. r(t) = i+ t2 j+ t3 k ⇒ r0(t) = 2t j+ 3t2 k ⇒ |r0(t)| = √4t2 + 9t4 = t
√
4 + 9t2 [since t ≥ 0].

Then L = 1

0
|r0(t)| dt = 1

0
t
√
4 + 9t2 dt = 1

18
· 2
3
(4 + 9t2)3/2

1

0
= 1

27
(133/2 − 43/2) = 1

27
(133/2 − 8).

7. r(t) =
√
t, t, t2 ⇒ r0(t) =

1

2
√
t
, 1, 2t ⇒ |r0(t)| = 1

2
√
t

2

+ 12 + (2t)2 = 1
4t
+ 1 + 4t2, so

L =
4

1
|r0(t)| dt = 4

1
1
4t
+ 1 + 4t2 dt ≈ 15.3841.

9. r(t) = hsin t, cos t, tan ti ⇒ r0(t) = cos t,− sin t, sec2 t ⇒

|r0(t)| = cos2 t+ (− sin t)2 + (sec2 t)2 = √1 + sec4 t and L = π/4

0
|r0(t)| dt = π/4

0

√
1 + sec4 t dt ≈ 1.2780.

11. The projection of the curve C onto the xy-plane is the curve x2 = 2y or y = 1
2
x2, z = 0. Then we can choose the parameter

x = t ⇒ y = 1
2 t
2. Since C also lies on the surface 3z = xy, we have z = 1

3xy =
1
3 (t)(

1
2 t
2) = 1

6 t
3. Then parametric

equations for C are x = t, y = 1
2 t
2, z = 1

6 t
3 and the corresponding vector equation is r(t) = t, 12 t

2, 16 t
3 . The origin

corresponds to t = 0 and the point (6, 18, 36) corresponds to t = 6, so

L=
6

0
|r0(t)| dt = 6

0
1, t, 1

2
t2 dt =

6

0
12 + t2 + 1

2
t2

2
dt =

6

0
1 + t2 + 1

4
t4 dt

=
6

0
(1 + 1

2
t2)2 dt =

6

0
(1 + 1

2
t2) dt = t+ 1

6
t3

6

0
= 6 + 36 = 42
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13. r(t) = 2t i+ (1− 3t) j+ (5 + 4t)k ⇒ r0(t) = 2 i− 3 j+ 4k and ds
dt = |r0(t)| =

√
4 + 9 + 16 =

√
29. Then

s = s(t) =
t

0
|r0(u)| du = t

0

√
29 du =

√
29 t. Therefore, t = 1√

29
s, and substituting for t in the original equation, we

have r(t(s)) = 2√
29
s i+ 1− 3√

29
s j+ 5 + 4√

29
s k.

15. Here r(t) = h3 sin t, 4t, 3 cos ti, so r0(t) = h3 cos t, 4,−3 sin ti and |r0(t)| = 9 cos2 t+ 16 + 9 sin2 t =
√
25 = 5.

The point (0, 0, 3) corresponds to t = 0, so the arc length function beginning at (0, 0, 3) and measuring in the positive

direction is given by s(t) = t

0
|r0(u)| du = t

0
5 du = 5t. s(t) = 5 ⇒ 5t = 5 ⇒ t = 1, thus your location after

moving 5 units along the curve is (3 sin 1, 4, 3 cos 1).

17. (a) r(t) = h2 sin t, 5t, 2 cos ti ⇒ r0(t) = h2 cos t, 5,−2 sin ti ⇒ |r0(t)| = 4cos2 t+ 25 + 4 sin2 t =
√
29.

Then T(t) = r0(t)
|r0(t)| =

1√
29
h2 cos t, 5,−2 sin ti or 2√

29
cos t, 5√

29
,− 2√

29
sin t .

T0(t) = 1√
29
h−2 sin t, 0,−2 cos ti ⇒ |T0(t)| = 1√

29
4 sin2 t+ 0 + 4 cos2 t = 2√

29
. Thus

N(t) =
T0(t)
|T0(t)| =

1/
√
29

2/
√
29
h−2 sin t, 0,−2 cos ti = h− sin t, 0,− cos ti.

(b) κ(t) = |T0(t)|
|r0(t)| =

2/
√
29√
29

=
2

29

19. (a) r(t) =
√
2 t, et, e−t ⇒ r0(t) =

√
2, et,−e−t ⇒ |r0(t)| = √2 + e2t + e−2t = (et + e−t)2 = et + e−t.

Then

T(t) =
r0(t)
|r0(t)| =

1

et + e−t
√
2, et,−e−t =

1

e2t + 1

√
2et, e2t,−1 after multiplying by et

et
and

T0(t) =
1

e2t + 1

√
2et, 2e2t, 0 − 2e2t

(e2t + 1)2
√
2et, e2t,−1

=
1

(e2t + 1)2
(e2t + 1)

√
2et, 2e2t, 0 − 2e2t √2et, e2t,−1 =

1

(e2t + 1)2
√
2et 1− e2t , 2e2t, 2e2t

Then

|T0(t)|= 1

(e2t + 1)2
2e2t(1− 2e2t + e4t) + 4e4t + 4e4t =

1

(e2t + 1)2
2e2t(1 + 2e2t + e4t)

=
1

(e2t + 1)2
2e2t (1 + e2t)2 =

√
2et(1 + e2t)

(e2t + 1)2
=

√
2 et

e2t + 1

Therefore

N(t) =
T0(t)
|T0(t)| =

e2t + 1√
2 et

1

(e2t + 1)2
√
2 et(1− e2t), 2e2t, 2e2t

=
1√

2 et(e2t + 1)

√
2 et(1− e2t), 2e2t, 2e2t =

1

e2t + 1
1− e2t,

√
2 et,

√
2 et

(b) κ(t) = |T0(t)|
|r0(t)| =

√
2 et

e2t + 1
· 1

et + e−t
=

√
2 et

e3t + 2et + e−t
=

√
2 e2t

e4t + 2e2t + 1
=

√
2 e2t

(e2t + 1)2
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21. r(t) = t2 i+ tk ⇒ r0(t) = 2t i+ k, r00(t) = 2 i, |r0(t)| = (2t)2 + 02 + 12 =
√
4t2 + 1, r0(t)× r00(t) = 2 j,

|r0(t)× r00(t)| = 2. Then κ(t) = |r0(t)× r00(t)|
|r0(t)|3 =

2√
4t2 + 1

3 =
2

(4t2 + 1)3/2
.

23. r(t) = 3t i+ 4 sin t j+ 4 cos tk ⇒ r0(t) = 3 i+ 4 cos t j− 4 sin tk, r00(t) = −4 sin t j− 4 cos tk,

|r0(t)| = 9 + 16 cos2 t+ 16 sin2 t =
√
9 + 16 = 5, r0(t)× r00(t) = −16 i+ 12 cos t j− 12 sin tk,

|r0(t)× r00(t)| = 256 + 144 cos2 t+ 144 sin2 t =
√
400 = 20. Then κ(t) = |r0(t)× r00(t)|

|r0(t)|3 =
20

53
=
4

25
.

25. r(t) = t, t2, t3 ⇒ r0(t) = 1, 2t, 3t2 . The point (1, 1, 1) corresponds to t = 1, and r0(1) = h1, 2, 3i ⇒

|r0(1)| = √1 + 4 + 9 = √14. r00(t) = h0, 2, 6ti ⇒ r00(1) = h0, 2, 6i. r0(1)× r00(1) = h6,−6, 2i, so

|r0(1)× r00(1)| = √36 + 36 + 4 = √76. Then κ(1) = |r0(1)× r00(1)|
|r0(1)|3 =

√
76√
14

3 =
1

7

19

14
.

27. f(x) = 2x − x2, f 0(x) = 2 − 2x, f 00(x) = −2,

κ(x) =
|f 00(x)|

[1 + (f 0(x))2]3/2
=

|−2|
[1 + (2− 2x)2]3/2 =

2

(4x2 − 8x+ 5)3/2

29. f(x) = 4x5/2, f 0(x) = 10x3/2, f 00(x) = 15x1/2,

κ(x) =
|f 00(x)|

[1 + (f 0(x))2]3/2
=

15x1/2

[1 + (10x3/2)2]3/2
=

15
√
x

(1 + 100x3)3/2

31. Since y0 = y00 = ex, the curvature is κ(x) = |y00(x)|
[1 + (y0(x))2]3/2

=
ex

(1 + e2x)3/2
= ex(1 + e2x)−3/2.

To find the maximum curvature, we first find the critical numbers of κ(x):

κ0(x) = ex(1 + e2x)−3/2 + ex − 3
2
(1 + e2x)−5/2(2e2x) = ex

1 + e2x − 3e2x
(1 + e2x)5/2

= ex
1− 2e2x

(1 + e2x)5/2
.

κ0(x) = 0 when 1− 2e2x = 0, so e2x = 1
2

or x = − 1
2
ln 2. And since 1− 2e2x > 0 for x < − 1

2
ln 2 and

1− 2e2x < 0 for x > − 1
2
ln 2, the maximum curvature is attained at the point − 1

2
ln 2, e(− ln 2)/2 = − 1

2
ln 2, 1√

2
.

Since lim
x→∞

ex(1 + e2x)−3/2 = 0, κ(x) approaches 0 as x→∞.

33. (a) C appears to be changing direction more quickly at P than Q, so we would expect the curvature to be greater at P .

(b) First we sketch approximate osculating circles at P and Q. Using the

axes scale as a guide, we measure the radius of the osculating circle

at P to be approximately 0.8 units, thus ρ = 1

κ
⇒

κ =
1

ρ
≈ 1

0.8
≈ 1.3. Similarly, we estimate the radius of the

osculating circle at Q to be 1.4 units, so κ = 1

ρ
≈ 1

1.4
≈ 0.7.
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35. y = x−2 ⇒ y0 = −2x−3, y00 = 6x−4, and

κ(x) =
|y00|

[1 + (y0)2]3/2
=

6x−4

[1 + (−2x−3)2]3/2 =
6

x4(1 + 4x−6)3/2
.

The appearance of the two humps in this graph is perhaps a little surprising, but it is

explained by the fact that y = x−2 increases asymptotically at the origin from both

directions, and so its graph has very little bend there. (Note that κ(0) is undefined.)

37. Notice that the curve b has two inflection points at which the graph appears almost straight. We would expect the curvature to

be 0 or nearly 0 at these values, but the curve a isn’t near 0 there. Thus, a must be the graph of y = f(x) rather than the graph

of curvature, and b is the graph of y = κ(x).

39. Using a CAS, we find (after simplifying)

κ(t) =
6
√
4 cos2 t− 12 cos t+ 13
(17− 12 cos t)3/2 . (To compute cross

products in Maple, use the VectorCalculus package and

the CrossProduct(a,b) command; in Mathematica, use

Cross[a,b].) Curvature is largest at integer multiples of 2π.

41. x = et cos t ⇒ ẋ = et(cos t− sin t) ⇒ ẍ = et(− sin t− cos t) + et(cos t− sin t) = −2et sin t,

y = et sin t ⇒ ẏ = et(cos t+ sin t) ⇒ ÿ = et(− sin t+ cos t) + et(cos t+ sin t) = 2et cos t. Then

κ(t) =
|ẋÿ − ẏẍ|
[ẋ2 + ẏ2]3/2

=
et(cos t− sin t)(2et cos t)− et(cos t+ sin t)(−2et sin t)

([et(cos t− sin t)]2 + [et(cos t+ sin t)]2)3/2

=
2e2t(cos2 t− sin t cos t+ sin t cos t+ sin2 t)

e2t(cos2 t− 2 cos t sin t+ sin2 t+ cos2 t+ 2cos t sin t+ sin2 t) 3/2
=

2e2t(1)

[e2t(1 + 1)]3/2
=

2e2t

e3t(2)3/2
=

1√
2 et

43. 1, 2
3
, 1 corresponds to t = 1. T(t) =

r0(t)
|r0(t)| =

2t, 2t2, 1√
4t2 + 4t4 + 1

=
2t, 2t2, 1

2t2 + 1
, soT(1) = 2

3
, 2
3
, 1
3

.

T0(t) = −4t(2t2 + 1)−2 2t, 2t2, 1 + (2t2 + 1)−1 h2, 4t, 0i (by Formula 3 of Theorem 14.2 [ET 13.2])

= (2t2 + 1)−2 −8t2 + 4t2 + 2,−8t3 + 8t3 + 4t,−4t = 2(2t2 + 1)−2 1− 2t2, 2t,−2t

N(t) =
T0(t)
|T0(t)| =

2(2t2 + 1)−2 1− 2t2, 2t,−2t
2(2t2 + 1)−2 (1− 2t2)2 + (2t)2 + (−2t)2 =

1− 2t2, 2t,−2t√
1− 4t2 + 4t4 + 8t2 =

1− 2t2, 2t,−2t
1 + 2t2

N(1) = − 1
3
, 2
3
,− 2

3
andB(1) = T(1)×N(1) = − 4

9
− 2

9
,− − 4

9
+ 1

9
, 4
9
+ 2

9
= − 2

3
, 1
3
, 2
3

.

45. (0, π,−2) corresponds to t = π. r(t) = h2 sin 3t, t, 2 cos 3ti ⇒

T(t) =
r0(t)
|r0(t)| =

h6 cos 3t, 1,−6 sin 3ti
36 cos2 3t+ 1 + 36 sin2 3t

= 1√
37
h6 cos 3t, 1,−6 sin 3ti.

T(π) = 1√
37
h−6, 1, 0i is a normal vector for the normal plane, and so h−6, 1, 0i is also normal. Thus an equation for the
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plane is−6 (x− 0) + 1(y − π) + 0(z + 2) = 0 or y − 6x = π.

T0(t) = 1√
37
h−18 sin 3t, 0,−18 cos 3ti ⇒ |T0(t)| = 182 sin2 3t+ 182 cos2 3t√

37
=

18√
37

⇒

N(t) =
T0(t)
|T0(t)| = h− sin 3t, 0,− cos 3ti. SoN(π) = h0, 0, 1i andB(π) = 1√

37
h−6, 1, 0i × h0, 0, 1i = 1√

37
h1, 6, 0i.

SinceB(π) is a normal to the osculating plane, so is h1, 6, 0i.
An equation for the plane is 1(x− 0) + 6(y − π) + 0(z + 2) = 0 or x+ 6y = 6π.

47. The ellipse 9x2 + 4y2 = 36 is given by the parametric equations x = 2 cos t, y = 3 sin t, so using the result from

Exercise 40,

κ(t) =
|ẋÿ − ẍẏ|
[ẋ2 + ẏ2]3/2

=
|(−2 sin t)(−3 sin t)− (3 cos t)(−2 cos t)|

(4 sin2 t+ 9 cos2 t)3/2
=

6

(4 sin2 t+ 9cos2 t)3/2
.

At (2, 0), t = 0. Now κ(0) = 6
27
= 2

9
, so the radius of the osculating circle is

1/κ(0) = 9
2 and its center is − 5

2 , 0 . Its equation is therefore x+ 5
2

2
+ y2 = 81

4 .

At (0, 3), t = π
2

, and κ π
2
= 6

8
= 3

4
. So the radius of the osculating circle is 4

3
and

its center is 0, 53 . Hence its equation is x2 + y − 5
3

2
= 16

9 .

49. The tangent vector is normal to the normal plane, and the vector h6, 6,−8i is normal to the given plane.

ButT(t) k r0(t) and h6, 6,−8i k h3, 3,−4i, so we need to find t such that r0(t) k h3, 3,−4i.
r(t) = t3, 3t, t4 ⇒ r0(t) = 3t2, 3, 4t3 k h3, 3,−4i when t = −1. So the planes are parallel at the point (−1,−3, 1).

51. κ = dT

ds
=

dT/dt

ds/dt
=
|dT/dt|
ds/dt

andN =
dT/dt

|dT/dt| , so κN =

dT

dt

dT

dt

dT

dt

ds

dt

=
dT/dt

ds/dt
=

dT

ds
by the Chain Rule.

53. (a) |B| = 1 ⇒ B ·B = 1 ⇒ d

ds
(B ·B) = 0 ⇒ 2

dB

ds
·B = 0 ⇒ dB

ds
⊥ B

(b) B = T×N ⇒
dB

ds
=

d

ds
(T×N) = d

dt
(T×N) 1

ds/dt
=

d

dt
(T×N) 1

|r0(t)| = [(T
0 ×N) + (T×N0)]

1

|r0(t)|

= T0 × T0

|T0| + (T×N0)
1

|r0(t)| =
T×N0

|r0(t)| ⇒ dB

ds
⊥ T

(c) B = T×N ⇒ T ⊥ N,B ⊥ T andB ⊥ N. SoB, T andN form an orthogonal set of vectors in the three-

dimensional space R3. From parts (a) and (b), dB/ds is perpendicular to bothB and T, so dB/ds is parallel toN.

Therefore, dB/ds = −τ(s)N, where τ(s) is a scalar.

(d) SinceB = T×N, T ⊥N and both T andN are unit vectors,B is a unit vector mutually perpendicular to bothT and

N. For a plane curve, T and N always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus dB/ds = 0, but dB/ds = −τ(s)N andN 6= 0, so τ(s) = 0.
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55. (a) r0 = s0T ⇒ r00 = s00T+ s0T0 = s00T+ s0
dT

ds
s0 = s00T+ κ(s0)2N by the first Serret-Frenet formula.

(b) Using part (a), we have

r0 × r00 = (s0T)× [s00T+ κ(s0)2N]

= [(s0T)× (s00T)] + (s0T)× (κ(s0)2N) (by Property 3 of Theorem 13.4.8 [ ET 12.4.8])

= (s0s00)(T×T) + κ(s0)3(T×N) = 0+ κ(s0)3B = κ(s0)3B

(c) Using part (a), we have

r000 = [s00T+ κ(s0)2N]0 = s000T+ s00T0 + κ0(s0)2N+ 2κs0s00N+ κ(s0)2N0

= s000T+ s00
dT

ds
s0 + κ0(s0)2N+ 2κs0s00N+ κ(s0)2

dN

ds
s0

= s000T+ s00s0κN+ κ0(s0)2N+ 2κs0s00N+ κ(s0)3(−κT+ τ B) [by the second formula]

= [s000 − κ2(s0)3]T+ [3κs0s00 + κ0(s0)2]N+ κτ(s0)3B

(d) Using parts (b) and (c) and the facts thatB ·T = 0,B ·N = 0, andB ·B = 1, we get

(r0 × r00) · r000
|r0 × r00|2 =

κ(s0)3B · [s000 − κ2(s0)3]T+ [3κs0s00 + κ0(s0)2]N+ κτ(s0)3B

|κ(s0)3B|2 =
κ(s0)3κτ(s0)3

[κ(s0)3]2
= τ .

57. r = t, 12 t
2, 13 t

3 ⇒ r0 = 1, t, t2 , r00 = h0, 1, 2ti, r000 = h0, 0, 2i ⇒ r0 × r00 = t2,−2t, 1 ⇒

τ =
(r0 × r00) · r000
|r0 × r00|2 =

t2,−2t, 1 · h0, 0, 2i
t4 + 4t2 + 1

=
2

t4 + 4t2 + 1

59. For one helix, the vector equation is r(t) = h10 cos t, 10 sin t, 34t/(2π)i (measuring in angstroms), because the radius of each

helix is 10 angstroms, and z increases by 34 angstroms for each increase of 2π in t. Using the arc length formula, letting t go

from 0 to 2.9× 108 × 2π, we find the approximate length of each helix to be

L=
2.9×108×2π
0

|r0(t)| dt = 2.9×108×2π
0

(−10 sin t)2 + (10 cos t)2 + 34
2π

2
dt = 100 + 34

2π

2
2.9×108×2π

= 2.9× 108 × 2π 100 + 34
2π

2 ≈ 2.07× 1010 Å — more than two meters!

14.4 Motion in Space: Velocity and Acceleration ET 13.4

1. (a) If r(t) = x(t) i+ y (t) j+ z(t)k is the position vector of the particle at time t, then the average velocity over the time

interval [0, 1] is

vave =
r(1)− r(0)
1− 0 =

(4.5 i+ 6.0 j+ 3.0k)− (2.7 i+ 9.8 j+ 3.7k)
1

= 1.8 i− 3.8 j− 0.7k. Similarly, over the other

intervals we have

[0.5, 1] : vave =
r(1)− r(0.5)
1− 0.5 =

(4.5 i+ 6.0 j+ 3.0k)− (3.5 i+ 7.2 j+ 3.3k)
0.5

= 2.0 i− 2.4 j− 0.6k

[1, 2] : vave =
r(2)− r(1)
2− 1 =

(7.3 i+ 7.8 j+ 2.7k)− (4.5 i+ 6.0 j+ 3.0k)
1

= 2.8 i+ 1.8 j− 0.3k

[1, 1.5] : vave =
r(1.5)− r(1)
1.5− 1 =

(5.9 i+ 6.4 j+ 2.8k)− (4.5 i+ 6.0 j+ 3.0k)
0.5

= 2.8 i+ 0.8 j− 0.4k
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(b) We can estimate the velocity at t = 1 by averaging the average velocities over the time intervals [0.5, 1] and [1, 1.5]:

v(1) ≈ 1
2
[(2 i− 2.4 j− 0.6k) + (2.8 i+ 0.8 j− 0.4k)] = 2.4 i− 0.8 j− 0.5k. Then the speed is

|v(1)| ≈ (2.4)2 + (−0.8)2 + (−0.5)2 ≈ 2.58.

3. r(t) = − 1
2
t2, t ⇒ At t = 2:

v(t) = r0(t) = h−t, 1i v(2) = h−2, 1i

a(t) = r00(t) = h−1, 0i a(2) = h−1, 0i

|v(t)| = √t2 + 1

5. (t) = 3 cos t i+ 2 sin t j ⇒ At t = π/3:

v(t) = −3 sin t i+ 2 cos t j v π
3
= − 3

√
3

2
i+ j

a(t) = −3 cos t i− 2 sin t j a π
3
= − 3

2
i−√3 j

|v(t)| = 9 sin2 t+ 4 cos2 t = 4 + 5 sin2 t

Notice that x2/9 + y2/4 = sin2 t+ cos2 t = 1, so the path is an ellipse.

7. r(t) = t i+ t2 j+ 2k ⇒ At t = 1:

v(t) = i+ 2t j v(1) = i+ 2 j

a(t) = 2 j a(1) = 2 j

|v(t)| = √1 + 4t2

Here x = t, y = t2 ⇒ y = x2 and z = 2, so the path of the particle is a

parabola in the plane z = 2.

9. r(t) = t2 + 1, t3, t2 − 1 ⇒ v(t) = r0(t) = 2t, 3t2, 2t , a(t) = v0(t) = h2, 6t, 2i,

|v(t)| = (2t)2 + (3t2)2 + (2t)2 =
√
9t4 + 8t2 = |t|√9t2 + 8.

11. r(t) =
√
2 t i+ et j+ e−t k ⇒ v(t) = r0(t) =

√
2 i+ et j− e−t k, a(t) = v0(t) = et j+ e−t k,

|v(t)| = √2 + e2t + e−2t = (et + e−t)2 = et + e−t.

13. r(t) = ethcos t, sin t, ti ⇒
v(t) = r0(t) = ethcos t, sin t, ti+ et h− sin t, cos t, 1i = ethcos t− sin t, sin t+ cos t, t+ 1i

a(t) = v0(t) = ethcos t− sin t− sin t− cos t, sin t+ cos t+ cos t− sin t, t+ 1 + 1i
= eth−2 sin t, 2 cos t, t+ 2i

|v(t)| = et cos2 t+ sin2 t− 2 cos t sin t+ sin2 t+ cos2 t+ 2 sin t cos t+ t2 + 2t+ 1

= et
√
t2 + 2t+ 3
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15. a(t) = i+ 2 j ⇒ v(t) = a(t) dt = (i+ 2 j) dt = t i+ 2t j+C and k = v (0) = C,

soC = k and v(t) = t i+ 2t j+ k. r(t) = v(t) dt = (t i+ 2t j+ k) dt = 1
2 t
2 i+ t2 j+ tk+D.

But i = r (0) = D, soD = i and r(t) = 1
2
t2 + 1 i+ t2 j+ tk.

17. (a) a(t) = 2t i+ sin t j+ cos 2tk ⇒
v(t) = (2t i+ sin t j+ cos 2tk) dt = t2 i− cos t j+ 1

2 sin 2tk+C

and i = v (0) = −j+C, soC = i+ j

and v(t) = t2 + 1 i+ (1− cos t) j+ 1
2
sin 2tk.

r(t) = [ t2 + 1 i+ (1− cos t) j+ 1
2
sin 2tk]dt

= 1
3
t3 + t i+ (t− sin t) j− 1

4
cos 2tk+D

But j = r (0) = −1
4
k+D, soD = j+ 1

4
k and r(t) = 1

3
t3 + t i+ (t− sin t+ 1) j+ 1

4
− 1

4
cos 2t k.

(b)

19. r(t) = t2, 5t, t2 − 16t ⇒ v(t) = h2t, 5, 2t− 16i, |v(t)| = √4t2 + 25 + 4t2 − 64t+ 256 = √8t2 − 64t+ 281

and d

dt
|v(t)| = 1

2
(8t2 − 64t+ 281)−1/2(16t− 64). This is zero if and only if the numerator is zero, that is,

16t− 64 = 0 or t = 4. Since d

dt
|v(t)| < 0 for t < 4 and d

dt
|v(t)| > 0 for t > 4, the minimum speed of

√
153 is attained

at t = 4 units of time.

21. |F(t)| = 20 N in the direction of the positive z-axis, so F(t) = 20k. Also m = 4 kg, r(0) = 0 and v(0) = i− j.
Since 20k = F(t) = 4a(t), a(t) = 5k. Then v(t) = 5tk+ c1 where c1 = i− j so v(t) = i− j+ 5tk and the

speed is |v(t)| = √1 + 1 + 25t2 = √25t2 + 2. Also r(t) = t i− t j+ 5
2
t2 k+ c2 and 0 = r(0), so c2 = 0

and r(t) = t i− t j+ 5
2
t2 k.

23. |v(0)| = 500 m/s and since the angle of elevation is 30◦, the direction of the velocity is 1
2

√
3 i+ j . Thus

v(0) = 250
√
3 i+ j and if we set up the axes so the projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the

only force is that due to gravity, so F(t) = −mg j where g ≈ 9.8 m/s2. Thus a(t) = −g j and v(t) = −gt j+ c1. But

250
√
3 i+ j = v(0) = c1, so v(t) = 250

√
3 i+ (250− gt) j and r(t) = 250

√
3 t i+ 250t− 1

2
gt2 j+ c2 where

0 = r(0) = c2. Thus r(t) = 250
√
3 t i+ 250t− 1

2
gt2 j.

(a) Setting 250t− 1
2gt

2 = 0 gives t = 0 or t = 500
g ≈ 51.0 s. So the range is 250

√
3 · 500g ≈ 22 km.

(b) 0 = d

dt
250t− 1

2
gt2 = 250− gt implies that the maximum height is attained when t = 250/g ≈ 25.5 s.

Thus, the maximum height is (250)(250/g)− g(250/g)2 1
2
= (250)2/(2g) ≈ 3.2 km.

(c) From part (a), impact occurs at t = 500/g ≈ 51.0. Thus, the velocity at impact is

v(500/g) = 250
√
3 i+ [250− g(500/g)] j = 250

√
3 i− 250 j and the speed is |v(500/g)| = 250√3 + 1 = 500 m/s.
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25. As in Example 5, r(t) = (v0 cos 45◦)t i+ (v0 sin 45
◦)t− 1

2gt
2 j = 1

2
v0
√
2 t i+ v0

√
2 t− gt2 j . Then the ball

lands at t = v0
√
2

g
s. Now since it lands 90 m away, 90 = 1

2
v0
√
2
v0
√
2

g
or v20 = 90g and the initial velocity

is v0 =
√
90g ≈ 30 m/s.

27. Let α be the angle of elevation. Then v0 = 150 m/s and from Example 5, the horizontal distance traveled by the projectile is

d =
v20 sin 2α

g
. Thus 150

2 sin 2α

g
= 800 ⇒ sin 2α =

800g

1502
≈ 0.3484 ⇒ 2α ≈ 20.4◦ or 180− 20.4 = 159.6◦.

Two angles of elevation then are α ≈ 10.2◦ and α ≈ 79.8◦.

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100, 0)

and (600, 0). The initial speed is v0 = 80 m/s and let θ be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r (t) = (80 cos θ)t i+ (80 sin θ)t− 4.9t2 j. The top of the near city wall is at (100, 15),

which the rock will hit when (80 cos θ) t = 100 ⇒ t =
5

4 cos θ
and (80 sin θ)t− 4.9t2 = 15 ⇒

80 sin θ · 5

4 cos θ
− 4.9 5

4 cos θ

2

= 15 ⇒ 100 tan θ − 7.65625 sec2 θ = 15. Replacing sec2 θ with tan2 θ + 1 gives

7.65625 tan2 θ − 100 tan θ + 22.62625 = 0. Using the quadratic formula, we have tan θ ≈ 0.230324, 12.8309 ⇒
θ ≈ 13.0◦, 85.5◦. So for 13.0◦ < θ < 85.5◦, the rock will land beyond the near city wall. The base of the far wall is

located at (600, 0) which the rock hits if (80 cos θ)t = 600 ⇒ t =
15

2 cos θ
and (80 sin θ)t− 4.9t2 = 0 ⇒

80 sin θ · 15

2 cos θ
− 4.9 15

2 cos θ

2

= 0 ⇒ 600 tan θ − 275.625 sec2 θ = 0 ⇒

275.625 tan2 θ − 600 tan θ + 275.625 = 0. Solutions are tan θ ≈ 0.658678, 1.51819 ⇒ θ ≈ 33.4◦, 56.6◦. Thus the

rock lands beyond the enclosed city ground for 33.4◦ < θ < 56.6◦, and the angles that allow the rock to land on city ground

are 13.0◦ < θ < 33.4◦, 56.6◦ < θ < 85.5◦. If you consider that the rock can hit the far wall and bounce back into the city, we

calculate the angles that cause the rock to hit the top of the wall at (600, 15): (80 cos θ)t = 600 ⇒ t =
15

2 cos θ
and

(80 sin θ)t− 4.9t2 = 15 ⇒ 600 tan θ − 275.625 sec2 θ = 15 ⇒ 275.625 tan2 θ − 600 tan θ + 290.625 = 0.

Solutions are tan θ ≈ 0.727506, 1.44936 ⇒ θ ≈ 36.0◦, 55.4◦, so the catapult should be set with angle θ where

13.0◦ < θ < 36.0◦, 55.4◦ < θ < 85.5◦.

31. (a) After t seconds, the boat will be 5t meters west of point A. The velocity

of the water at that location is 3
400
(5t)(40− 5t) j. The velocity of the

boat in still water is 5 i, so the resultant velocity of the boat is

v(t) = 5 i+ 3
400
(5t)(40− 5t) j = 5i+ 3

2
t− 3

16
t2 j. Integrating, we obtain

r(t) = 5t i+ 3
4
t2 − 1

16
t3 j+C. If we place the origin at A (and consider j

to coincide with the northern direction) then r(0) = 0 ⇒ C = 0 and we have r(t) = 5t i+ 3
4 t
2 − 1

16 t
3 j. The boat
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reaches the east bank after 8 s, and it is located at r(8) = 5(8)i+ 3
4 (8)

2 − 1
16 (8)

3 j = 40 i+16 j. Thus the boat is 16 m

downstream.

(b) Let α be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by

5(cosα) i+ 5(sinα) j. At t seconds, the boat is 5(cosα)t meters from the west bank, at which point the velocity

of the water is 3
400
[5(cosα)t][40− 5(cosα)t] j. The resultant velocity of the boat is given by

v(t) = 5(cosα) i+ 5 sinα+ 3
400
(5t cosα)(40− 5t cosα) j = (5 cosα) i+ 5 sinα+ 3

2
t cosα− 3

16
t2 cos2 α j.

Integrating, r(t) = (5t cosα) i+ 5t sinα+ 3
4
t2 cosα− 1

16
t3 cos2 α j (where we have again placed

the origin at A). The boat will reach the east bank when 5t cosα = 40 ⇒ t =
40

5 cosα
=

8

cosα
.

In order to land at point B(40, 0) we need 5t sinα+ 3
4
t2 cosα − 1

16
t3 cos2 α = 0 ⇒

5
8

cosα
sinα+ 3

4

8

cosα

2

cosα− 1
16

8

cosα

3

cos2 α = 0 ⇒ 1

cosα
(40 sinα+ 48− 32) = 0 ⇒

40 sinα+ 16 = 0 ⇒ sinα = − 2
5 . Thus α = sin−1 − 2

5
≈ −23.6◦, so the boat should head 23.6◦ south of

east (upstream). The path does seem realistic. The boat initially heads

upstream to counteract the effect of the current. Near the center of the river,

the current is stronger and the boat is pushed downstream. When the boat

nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point B.

33. r(t) = (3t − t3) i + 3t2 j ⇒ r0(t) = (3 − 3t2) i + 6t j,
|r0(t)| = (3− 3t2)2 + (6t)2 = √9 + 18t2 + 9t4 = (3− 3t2)2 = 3 + 3t2,

r00(t) = −6t i + 6 j, r0(t) × r00(t) = (18 + 18t2)k. Then Equation 9 gives

aT =
r0(t) · r00(t)
|r0(t)| =

(3− 3t2)(−6t) + (6t)(6)
3 + 3t2

=
18t+ 18t3

3 + 3t2
=
18t(1 + t2)

3(1 + t2)
= 6t or by Equation 8,

aT = v0 =
d

dt
3 + 3t2 = 6t and Equation 10 gives aN =

|r0(t)× r00(t)|
|r0(t)| =

18 + 18t2

3 + 3t2
=
18(1 + t2)

3(1 + t2)
= 6.

35. r(t) = cos t i+ sin t j+ tk ⇒ r0(t) = − sin t i+ cos t j+ k, |r0(t)| = sin2 t+ cos2 t+ 1 =
√
2,

r00(t) = − cos t i− sin t j, r0(t)× r00(t) = sin t i− cos t j+ k.

Then aT =
r0(t) · r00(t)
|r0(t)| =

sin t cos t− sin t cos t√
2

= 0 and aN =
|r0(t)× r00(t)|

|r0(t)| =
sin2 t+ cos2 t+ 1√

2
=

√
2√
2
= 1.

37. r(t) = et i+
√
2 t j+ e−t k ⇒ r0(t) = et i+

√
2 j− e−t k, |r(t)| = √e2t + 2 + e−2t = (et + e−t)2 = et + e−t,

r00(t) = et i + e−t k. Then aT =
e2t − e−2t

et + e−t
=
(et + e−t)(et − e−t)

et + e−t
= et − e−t = 2 sinh t

and aN =
√
2e−t i− 2 j−√2et k

et + e−t
=

2(e−2t + 2 + e2t)

et + e−t
=
√
2
et + e−t

et + e−t
=
√
2.
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39. The tangential component of a is the length of the projection of a onto T, so we sketch

the scalar projection of a in the tangential direction to the curve and estimate its length to

be 4.5 (using the fact that a has length 10 as a guide). Similarly, the normal component of

a is the length of the projection of a ontoN, so we sketch the scalar projection of a in the

normal direction to the curve and estimate its length to be 9.0. Thus aT ≈ 4.5 cm/s2 and

aN ≈ 9.0 cm/s2.

41. If the engines are turned off at time t, then the spacecraft will continue to travel in the direction of v(t), so we need a t such

that for some scalar s > 0, r(t) + sv(t) = h6, 4, 9i. v(t) = r0(t) = i+
1

t
j+

8t

(t2 + 1)2
k ⇒

r(t) + sv(t) = 3 + t+ s, 2 + ln t+
s

t
, 7− 4

t2 + 1
+

8st

(t2 + 1)2
⇒ 3 + t+ s = 6 ⇒ s = 3− t,

so 7− 4

t2 + 1
+
8(3− t)t

(t2 + 1)2
= 9 ⇔ 24t− 12t2 − 4

(t2 + 1)2
= 2 ⇔ t4 + 8t2 − 12t+ 3 = 0.

It is easily seen that t = 1 is a root of this polynomial. Also 2 + ln 1 + 3− 1
1

= 4, so t = 1 is the desired solution.

14 Review ET 13

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

or integral, we can differentiate or integrate each component of the vector function.

2. The tip of the moving vector r(t) of a continuous vector function traces out a space curve.

3. The tangent vector to a smooth curve at a point P with position vector r(t) is the vector r0(t). The tangent line at P is the line

through P parallel to the tangent vector r0(t). The unit tangent vector is T(t) = r0(t)
|r0(t)| .

4. (a) – (f ) See Theorem 14.2.3 [ET 13.2.3].

5. Use Formula 14.3.2 [ ET 13.3.2], or equivalently, 14.3.3 [ ET 13.3.3].

6. (a) The curvature of a curve is κ = dT

ds
whereT is the unit tangent vector.

(b) κ(t) = T0(t)
r0(t)

(c) κ(t) = |r0(t)× r00(t)|
|r0(t)|3 (d) κ(x) = |f 00(x)|

[1 + (f 0(x))2]3/2

7. (a) The unit normal vector: N(t) = T0(t)
|T0(t)| . The binormal vector: B(t) = T(t)×N(t).

(b) See the discussion preceding Example 7 in Section 14.3 [ ET 13.3].
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8. (a) If r(t) is the position vector of the particle on the space curve, the velocity v(t) = r0(t), the speed is given by |v(t)|,
and the acceleration a(t) = v0(t) = r00(t).

(b) a = aTT+ aNN where aT = v0 and aN = κv2.

9. See the statement of Kepler’s Laws on page 880 [ET page 844].

1. True. If we reparametrize the curve by replacing u = t3, we have r(u) = u i+ 2u j+ 3uk, which is a line through the origin

with direction vector i+ 2 j+ 3k.

3. False. By Formula 5 of Theorem 14.2.3[ ET 13.2.3], d

dt
[u(t)× v(t)] = u0(t)× v(t) + u(t)× v0(t).

5. False. κ is the magnitude of the rate of change of the unit tangent vectorT with respect to arc length s, not with respect to t.

7. True. At an inflection point where f is twice continuously differentiable we must have f 00(x) = 0, and by Equation 14.3.11

[ET 13.3.11], the curvature is 0 there.

9. False. If r(t) is the position of a moving particle at time t and |r(t)| = 1 then the particle lies on the unit circle or the unit

sphere, but this does not mean that the speed |r0(t)| must be constant. As a counterexample, let r(t) = t,
√
1− t2 , then

r0(t) = 1,−t/√1− t2 and |r(t)| = √t2 + 1− t2 = 1 but |r0(t)| = 1 + t2/(1− t2) = 1/
√
1− t2 which is not

constant.

11. True. See the discussion preceding Example 7 in Section 14.3 [ ET 13.3].

1. (a) The corresponding parametric equations for the curve are x = t,

y = cos πt, z = sin πt. Since y2 + z2 = 1, the curve is contained in a

circular cylinder with axis the x-axis. Since x = t, the curve is a helix.

(b) r(t) = t i+ cos πt j+ sin πtk ⇒
r0(t) = i− π sin πt j+ π cos πtk ⇒
r00(t) = −π2 cos πt j− π2 sin πtk

3. The projection of the curve C of intersection onto the xy-plane is the circle x2 + y2 = 16, z = 0. So we can write

x = 4 cos t, y = 4 sin t, 0 ≤ t ≤ 2π. From the equation of the plane, we have z = 5− x = 5− 4 cos t, so parametric

equations for C are x = 4cos t, y = 4 sin t, z = 5− 4 cos t, 0 ≤ t ≤ 2π, and the corresponding vector function is

r(t) = 4 cos t i+ 4 sin t j+ (5− 4 cos t)k, 0 ≤ t ≤ 2π.
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5. 1

0
(t2 i+ t cos πt j+ sin πtk) dt =

1

0
t2 dt i+

1

0
t cos πt dt j+

1

0
sin πt dt k

= 1
3
t3

1

0
i+ t

π
sin πt

1

0
− 1

0
1
π
sin πt dt j+ − 1

π
cos πt

1

0
k

= 1
3 i+

1
π2
cos πt

1

0
j+ 2

π k =
1
3 i− 2

π2
j+ 2

π k

where we integrated by parts in the y-component.

7. r(t) = t2, t3, t4 ⇒ r0(t) = 2t, 3t2, 4t3 ⇒ |r0(t)| = √4t2 + 9t4 + 16t6 and

L =
3

0
|r0(t)| dt = 3

0

√
4t2 + 9t4 + 16t6 dt. Using Simpson’s Rule with f(t) =

√
4t2 + 9t4 + 16t6 and n = 6 we

have ∆t = 3−0
6
= 1

2
and

L≈ ∆t
3

f(0) + 4f 1
2
+ 2f(1) + 4f 3

2
+ 2f(2) + 4f 5

2
+ f(3)

= 1
6

√
0 + 0 + 0 + 4 · 4 1

2

2
+ 9 1

2

4
+ 16 1

2

6
+ 2 · 4(1)2 + 9(1)4 + 16(1)6

+ 4 · 4 3
2

2
+ 9 3

2

4
+ 16 3

2

6
+ 2 · 4(2)2 + 9(2)4 + 16(2)6

+ 4 · 4 5
2

2
+ 9 5

2

4
+ 16 5

2

6
+ 4(3)2 + 9(3)4 + 16(3)6

≈ 86.631

9. The angle of intersection of the two curves, θ, is the angle between their respective tangents at the point of intersection.

For both curves the point (1, 0, 0) occurs when t = 0.

r01(t) = − sin t i+ cos t j+ k ⇒ r01(0) = j+ k and r02(t) = i+ 2t j+ 3t2 k ⇒ r02(0) = i.

r01(0) · r02(0) = (j+ k) · i = 0. Therefore, the curves intersect in a right angle, that is, θ = π
2

.

11. (a) T(t) = r0(t)
|r0(t)| =

t2, t, 1

|ht2, t, 1i| =
t2, t, 1√

t4 + t2 + 1

(b) T0(t) = − 1
2 (t

4 + t2 + 1)−3/2(4t3 + 2t) t2, t, 1 + (t4 + t2 + 1)−1/2h2t, 1, 0i

=
−2t3 − t

(t4 + t2 + 1)3/2
t2, t, 1 +

1

(t4 + t2 + 1)1/2
h2t, 1, 0i

=
−2t5 − t3,−2t4 − t2,−2t3 − t + 2t5 + 2t3 + 2t, t4 + t2 + 1, 0

(t4 + t2 + 1)3/2
=

2t,−t4 + 1,−2t3 − t

(t4 + t2 + 1)3/2

|T0(t)| =
√
4t2 + t8 − 2t4 + 1 + 4t6 + 4t4 + t2

(t4 + t2 + 1)3/2
=

√
t8 + 4t6 + 2t4 + 5t2

(t4 + t2 + 1)3/2
and N(t) =

2t, 1− t4,−2t3 − t√
t8 + 4t6 + 2t4 + 5t2

.

(c) κ(t) = |T0(t)|
|r0(t)| =

√
t8 + 4t6 + 2t4 + 5t2

(t4 + t2 + 1)2

13. y0 = 4x3, y00 = 12x2 and κ(x) = |y00|
[1 + (y0)2]3/2

=
12x2

(1 + 16x6)3/2
, so κ(1) = 12

173/2
.

15. r(t) = hsin 2t, t, cos 2ti ⇒ r0(t) = h2 cos 2t, 1,−2 sin 2ti ⇒ T(t) = 1√
5
h2 cos 2t, 1,−2 sin 2ti ⇒

T0(t) = 1√
5
h−4 sin 2t, 0,−4 cos 2ti ⇒ N(t) = h− sin 2t, 0,− cos 2ti. SoN =N(π) = h0, 0,−1i and
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B = T×N = 1√
5
h−1, 2, 0i. So a normal to the osculating plane is h−1, 2, 0i and an equation is

−1(x− 0) + 2(y − π) + 0(z − 1) = 0 or x− 2y + 2π = 0.

17. r(t) = t ln t i+ t j+ e−t k, v(t) = r0(t) = (1 + ln t) i+ j− e−t k,

|v (t)| = (1 + ln t)2 + 12 + (−e−t)2 = 2 + 2 ln t+ (ln t)2 + e−2t, a(t) = v0(t) = 1
t i+ e−t k

19. We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,

|v(0)| = 43 ft/s, and v(0) has direction given by a 45◦ angle of elevation. Then a unit vector in the direction of v(0) is

1√
2
(i+ j) ⇒ v(0) = 43√

2
(i+ j). Assuming air resistance is negligible, the only external force is due to gravity, so as

in Example 14.4.5 [ET 13.4.5] we have a = −g j where here g ≈ 32 ft/s2. Since v0(t) = a(t), we integrate, giving

v(t) = −gt j+C whereC = v(0) = 43√
2
(i+ j) ⇒ v (t) = 43√

2
i+ 43√

2
− gt j. Since r0(t) = v(t) we integrate

again, so r(t) = 43√
2
t i+ 43√

2
t− 1

2
gt2 j+D. ButD = r(0) = 7 j ⇒ r(t) = 43√

2
t i+ 43√

2
t− 1

2
gt2 + 7 j.

(a) At 2 seconds, the shot is at r(2) = 43√
2
(2) i+ 43√

2
(2)− 1

2g(2)
2 + 7 j ≈ 60.8 i+ 3.8 j, so the shot is about 3.8 ft above

the ground, at a horizontal distance of 60.8 ft from the athlete.

(b) The shot reaches its maximum height when the vertical component of velocity is 0: 43√
2
− gt = 0 ⇒

t =
43√
2 g

≈ 0.95 s. Then r(0.95) ≈ 28.9 i+ 21.4 j, so the maximum height is approximately 21.4 ft.

(c) The shot hits the ground when the vertical component of r(t) is 0, so 43√
2
t− 1

2
gt2 + 7 = 0 ⇒

−16t2 + 43√
2
t+ 7 = 0 ⇒ t ≈ 2.11 s. r(2.11) ≈ 64.2 i− 0.08 j, thus the shot lands approximately 64.2 ft from the

athlete.

21. (a) Instead of proceeding directly, we use Formula 3 of Theorem 14.2.3 [ ET 13.2.3]: r(t) = tR(t) ⇒
v = r0(t) = R(t) + tR0(t) = cosωt i+ sinωt j+ tvd.

(b) Using the same method as in part (a) and starting with v = R(t) + tR0(t), we have

a = v0 = R0(t) +R0(t) + tR00(t) = 2R0(t) + tR00(t) = 2vd + tad.

(c) Here we have r(t) = e−t cosωt i + e−t sinωt j = e−tR(t). So, as in parts (a) and (b),

v = r0(t) = e−tR0(t)− e−tR(t) = e−t[R0(t)−R(t)] ⇒

a = v0 = e−t[R00(t)−R0(t)]− e−t[R0(t)−R(t)] = e−t[R00(t)− 2R0(t) +R(t)]

= e−t ad − 2e−t vd + e−tR

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving ad) is −2e−t vd + e−tR.



PROBLEMS PLUS
1. (a) r(t) = R cosωt i+R sinωt j ⇒ v = r0(t) = −ωR sinωt i+ ωR cosωt j, so r = R(cosωt i+ sinωt j) and

v = ωR(− sinωt i+ cosωt j). v · r = ωR2(− cosωt sinωt+ sinωt cosωt) = 0, so v ⊥ r. Since r points along a

radius of the circle, and v ⊥ r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form ωRu, where u is the unit vector − sinωt i+ cosωt j. Clearly |v| = ωR |u| = ωR. At

speed ωR, the particle completes one revolution, a distance 2πR, in time T = 2πR

ωR
=
2π

ω
.

(c) a = dv

dt
= −ω2R cosωt i− ω2R sinωt j = −ω2R(cosωt i+ sinωt j), so a = −ω2r. This shows that a is proportional

to r and points in the opposite direction (toward the origin). Also, |a| = ω2 |r| = ω2R.

(d) By Newton’s Second Law (see Section 14.4 [ET 13.4]), F = ma, so |F| = m |a| = mRω2 =
m (ωR)2

R
=

m |v|2
R

.

3. (a) The projectile reaches maximum height when 0 = dy

dt
=

d

dt
[(v0 sinα)t− 1

2
gt2] = v0 sinα− gt; that is, when

t =
v0 sinα

g
and y = (v0 sinα)

v0 sinα

g
− 1

2
g

v0 sinα

g

2

=
v20 sin

2 α

2g
. This is the maximum height attained when

the projectile is fired with an angle of elevation α. This maximum height is largest when α = π
2

. In that case, sinα = 1

and the maximum height is v20
2g

.

(b) Let R = v20 g. We are asked to consider the parabola x2 + 2Ry −R2 = 0 which can be rewritten as y = − 1

2R
x2 +

R

2
.

The points on or inside this parabola are those for which−R ≤ x ≤ R and 0 ≤ y ≤ −1
2R

x2 +
R

2
. When the projectile is

fired at angle of elevation α, the points (x, y) along its path satisfy the relations x = (v0 cosα) t and

y = (v0 sinα)t− 1
2
gt2, where 0 ≤ t ≤ (2v0 sinα)/g (as in Example 14.4.5 [ET 13.4.5]). Thus

|x| ≤ v0 cosα
2v0 sinα

g
=

v20
g
sin 2α ≤ v20

g
= |R|. This shows that −R ≤ x ≤ R.

For t in the specified range, we also have y = t v0 sinα− 1
2
gt = 1

2
gt

2v0 sinα

g
− t ≥ 0 and

y = (v0 sinα)
x

v0 cosα
− g

2

x

v0 cosα

2

= (tanα)x− g

2v20 cos
2 α

x2 = − 1

2R cos2 α
x2 + (tanα)x. Thus

y − −1
2R

x2 +
R

2
=

−1
2R cos2 α

x2 +
1

2R
x2 + (tanα)x− R

2

=
x2

2R
1− 1

cos2 α
+ (tanα)x− R

2
=

x2(1− sec2 α) + 2R (tanα)x−R2

2R

=
−(tan2 α)x2 + 2R (tanα)x−R2

2R
=
− [(tanα)x−R]2

2R
≤ 0

We have shown that every target that can be hit by the projectile lies on or inside the parabola y = − 1

2R
x2 +

R

2
.
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Now let (a, b) be any point on or inside the parabola y = − 1

2R
x2 +

R

2
. Then−R ≤ a ≤ R and 0 ≤ b ≤ − 1

2R
a2 +

R

2
.

We seek an angle α such that (a, b) lies in the path of the projectile; that is, we wish to find an angle α such that

b = − 1

2R cos2 α
a2 + (tanα) a or equivalently b = −1

2R
(tan2 α+ 1)a2 + (tanα) a. Rearranging this equation we get

a2

2R
tan2 α− a tanα+

a2

2R
+ b = 0 or a2(tanα)2 − 2aR(tanα) + (a2 + 2bR) = 0 (∗) . This quadratic equation

for tanα has real solutions exactly when the discriminant is nonnegative. Now B2 − 4AC ≥ 0 ⇔
(−2aR)2 − 4a2(a2 + 2bR) ≥ 0 ⇔ 4a2(R2 − a2 − 2bR) ≥ 0 ⇔ −a2 − 2bR+R2 ≥ 0 ⇔

b ≤ 1

2R
(R2 − a2) ⇔ b ≤ −1

2R
a2 +

R

2
. This condition is satisfied since (a, b) is on or inside the parabola

y = − 1

2R
x2 +

R

2
. It follows that (a, b) lies in the path of the projectile when tanα satisfies (∗), that is, when

tanα =
2aR± 4a2(R2 − a2 − 2bR)

2a2
=

R±√R2 − 2bR− a2

a
.

(c) If the gun is pointed at a target with height h at a distance D downrange, then

tanα = h/D. When the projectile reaches a distance D downrange (remember

we are assuming that it doesn’t hit the ground first), we have D = x = (v0 cosα)t,

so t = D

v0 cosα
and y = (v0 sinα)t− 1

2gt
2 = D tanα− gD2

2v20 cos
2 α

.

Meanwhile, the target, whose x-coordinate is also D, has fallen from height h to height

h− 1
2
gt2 = D tanα− gD2

2v20 cos
2 α

. Thus the projectile hits the target.

5. (a) a = −g j ⇒ v = v0 − gt j = 2 i− gt j ⇒ s = s0 + 2t i− 1
2gt

2 j = 3.5 j+ 2t i− 1
2gt

2 j ⇒

s = 2t i+ 3.5− 1
2
gt2 j. Therefore y = 0 when t = 7/g seconds. At that instant, the ball is 2 7/g ≈ 0.94 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (0.94, 0). At

impact, the velocity is v = 2 i−√7g j, so the speed is |v| = √4 + 7g ≈ 15 ft/s.

(b) The slope of the curve when t = 7

g
is dy

dx
=

dy/dt

dx/dt
=
−gt
2

=
−g 7/g

2
=
−√7g
2

. Thus cot θ =
√
7g

2

and θ ≈ 7.6◦.

(c) From (a), |v| = √4 + 7g. So the ball rebounds with speed 0.8
√
4 + 7g ≈ 12.08 ft/s at angle of inclination

90◦ − θ ≈ 82.3886◦. By Example 14.4.5 [ET 13.4.5], the horizontal distance traveled between bounces is

d =
v20 sin 2α

g
, where v0 ≈ 12.08 ft/s and α ≈ 82.3886◦. Therefore, d ≈ 1.197 ft. So the ball strikes the floor at

about 2 7/g + 1.197 ≈ 2.13 ft to the right of the table’s edge.
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7. The trajectory of the projectile is given by r(t) = (v cosα)t i + (v sinα)t− 1
2gt

2 j, so

v(t) = r0(t) = v cosα i+ (v sinα− gt) j and

|v(t)|= (v cosα)2 + (v sinα− gt)2 = v2 − (2vg sinα) t+ g2t2 = g2 t2 − 2v

g
(sinα) t+

v2

g2

= g t− v

g
sinα

2

+
v2

g2
− v2

g2
sin2 α = g t− v

g
sinα

2

+
v2

g2
cos2 α

The projectile hits the ground when (v sinα)t− 1
2
gt2 = 0 ⇒ t = 2v

g
sinα, so the distance traveled by the projectile is

L(α) =
(2v/g) sinα

0

|v(t)| dt =
(2v/g) sinα

0

g t− v

g
sinα

2

+
v2

g2
cos2 αdt

= g

⎡⎣ t− (v/g) sinα
2

t− v

g
sinα

2

+
v

g
cosα

2

+
[(v/g) cosα]2

2
ln

⎛⎝t− v

g
sinα+ t− v

g
sinα

2

+
v

g
cosα

2
⎞⎠⎤⎦(2v/g) sinα

0

[using Formula 21 in the Table of Integrals]

=
g

2

⎡⎣v
g
sinα

v

g
sinα

2

+
v

g
cosα

2

+
v

g
cosα

2

ln

⎛⎝v

g
sinα+

v

g
sinα

2

+
v

g
cosα

2
⎞⎠

+
v

g
sinα

v

g
sinα

2

+
v

g
cosα

2

− v

g
cosα

2

ln

⎛⎝−v

g
sinα+

v

g
sinα

2

+
v

g
cosα

2
⎞⎠⎤⎦

=
g

2

v

g
sinα · v

g
+

v2

g2
cos2 α ln

v

g
sinα+

v

g
+

v

g
sinα · v

g
− v2

g2
cos2 α ln −v

g
sinα+

v

g

=
v2

g
sinα+

v2

2g
cos2 α ln

(v/g) sinα+ v/g

− (v/g) sinα+ v/g
=

v2

g
sinα+

v2

2g
cos2 α ln

1 + sinα

1− sinα

We want to maximize L(α) for 0 ≤ α ≤ π/2.

L0(α) =
v2

g
cosα+

v2

2g
cos2 α · 1− sinα

1 + sinα
· 2 cosα

(1− sinα)2 − 2 cosα sinα ln
1 + sinα

1− sinα

=
v2

g
cosα+

v2

2g
cos2 α · 2

cosα
− 2 cosα sinα ln 1 + sinα

1− sinα

=
v2

g
cosα+

v2

g
cosα 1− sinα ln 1 + sinα

1− sinα =
v2

g
cosα 2− sinα ln 1 + sinα

1− sinα

L(α) has critical points for 0 < α < π/2 when L0(α) = 0 ⇒ 2− sinα ln 1+ sinα
1− sinα = 0 (since cosα 6= 0).

Solving by graphing (or using a CAS) gives α ≈ 0.9855. Compare values at the critical point and the endpoints:

L(0) = 0, L(π/2) = v2/g, and L(0.9855) ≈ 1.20v2/g. Thus the distance traveled by the projectile is maximized

for α ≈ 0.9855 or ≈ 56◦.
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15.1 Functions of Several Variables ET 14.1

1. (a) From Table 1, f(−15, 40) = −27, which means that if the temperature is−15◦C and the wind speed is 40 km/h, then the

air would feel equivalent to approximately−27◦C without wind.

(b) The question is asking: when the temperature is −20◦C, what wind speed gives a wind-chill index of −30◦C? From

Table 1, the speed is 20 km/h.

(c) The question is asking: when the wind speed is 20 km/h, what temperature gives a wind-chill index of −49◦C? From

Table 1, the temperature is−35◦C.

(d) The function W = f(−5, v) means that we fix T at −5 and allow v to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is −5◦C. From

Table 1 (look at the row corresponding to T = −5), the function decreases and appears to approach a constant value as v

increases.

(e) The function W = f(T, 50) means that we fix v at 50 and allow T to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km/h . From

Table 1 (look at the column corresponding to v = 50), the function increases almost linearly as T increases.

3. If the amounts of labor and capital are both doubled, we replace L,K in the function with 2L, 2K, giving

P (2L, 2K) = 1.01(2L)0.75(2K)0.25 = 1.01(20.75)(20.25)L0.75K0.25 = (21)1.01L0.75K0.25 = 2P (L,K)

Thus, the production is doubled. It is also true for the general case P (L,K) = bLαK1−α:

P (2L, 2K) = b(2L)α(2K)1−α = b(2α)(21−α)LαK1−α = (2α+1−α)bLαK1−α = 2P (L,K).

5. (a) According to Table 4, f(40, 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) h = f(30, t) means we fix v at 30 and allow t to vary, resulting in a function of one variable. Thus here, h = f(30, t)

gives the wave heights produced by 30-knot winds blowing for t hours. From the table (look at the row corresponding to

v = 30), the function increases but at a declining rate as t increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c) h = f(v, 30) means we fix t at 30, again giving a function of one variable. So, h = f(v, 30) gives the wave heights

produced by winds of speed v blowing for 30 hours. From the table (look at the column corresponding to t = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.

7. (a) f(2, 0) = 22e3(2)(0) = 4(1) = 4

(b) Since both x2 and the exponential function are defined everywhere, x2e3xy is defined for all choices of values for x and y.

Thus the domain of f is R2.

165
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(c) Because the range of g(x, y) = 3xy is R, and the range of ex is (0,∞), the range of eg(x,y) = e3xy is (0,∞).
The range of x2 is [0,∞), so the range of the product x2e3xy is [0,∞).

9. (a) f(2,−1, 6) = e
√
6−22−(−1)2 = e

√
1 = e.

(b) e
√
z−x2−y2 is defined when z − x2 − y2 ≥ 0 ⇒ z ≥ x2 + y2. Thus the domain of f is (x, y, z) | z ≥ x2 + y2 .

(c) Since z − x2 − y2 ≥ 0, we have e
√
z−x2−y2 ≥ 1. Thus the range of f is [1,∞).

11.
√
x+ y is defined only when x+ y ≥ 0, or y ≥ −x. So

the domain of f is {(x, y) | y ≥ −x}.

13. ln(9− x2 − 9y2) is defined only when

9− x2 − 9y2 > 0, or 1
9
x2 + y2 < 1. So the domain of f

is (x, y) 1
9
x2 + y2 < 1 , the interior of an ellipse.

15.
√
1− x2 is defined only when 1− x2 ≥ 0, or x2 ≤ 1

⇔ −1 ≤ x ≤ 1, and 1− y2 is defined only when

1− y2 ≥ 0, or y2 ≤ 1 ⇔ −1 ≤ y ≤ 1. Thus the

domain of f is {(x, y) | −1 ≤ x ≤ 1, − 1 ≤ y ≤ 1}.

17. y − x2 is defined only when y − x2 ≥ 0, or y ≥ x2.

In addition, f is not defined if 1− x2 = 0 ⇒
x = ±1. Thus the domain of f is

(x, y) | y ≥ x2, x 6= ±1 .

19. We need 1− x2 − y2 − z2 ≥ 0 or x2 + y2 + z2 ≤ 1,

so D = (x, y, z) | x2 + y2 + z2 ≤ 1 (the points inside

or on the sphere of radius 1, center the origin).

21. z = 3, a horizontal plane through the point (0, 0, 3).
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23. z = 10− 4x− 5y or 4x+ 5y + z = 10, a plane with

intercepts 2.5, 2, and 10.

25. z = y2 + 1, a parabolic cylinder

27. z = 4x2 + y2 + 1, an elliptic paraboloid with vertex
at (0, 0, 1).

29. z = x2 + y2 so x2 + y2 = z2 and z ≥ 0, the top half

of a right circular cone.

31. The point (−3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level curve with

z = 60, we estimate that f(−3, 3) ≈ 56. The point (3,−2) appears to be just about halfway between the level curves with

z-values 30 and 40, so we estimate f(3,−2) ≈ 35. The graph rises as we approach the origin, gradually from above, steeply

from below.

33. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are much

farther apart, so we would expect the terrain to be much less steep than near A, perhaps almost flat.

35. 37.
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39. The level curves are (y − 2x)2 = k or y = 2x±√k,

k ≥ 0, a family of pairs of parallel lines.

41. The level curves are y − lnx = k or y = lnx+ k.

43. The level curves are yex = k or y = ke−x, a family of

exponential curves.

45. The level curves are y2 − x2 = k or y2 − x2 = k2,

k ≥ 0. When k = 0 the level curve is the pair of lines

y = ±x. For k > 0, the level curves are hyperbolas with

axis the y-axis.

47. The contour map consists of the level curves k = x2 + 9y2, a family of
ellipses with major axis the x-axis. (Or, if k = 0, the origin.)

The graph of f (x, y) is the surface z = x2 + 9y2, an elliptic paraboloid.

If we visualize lifting each ellipse k = x2 + 9y2 of the contour map to the plane
z = k, we have horizontal traces that indicate the shape of the graph of f .

49. The isothermals are given by k = 100/(1 + x2 + 2y2) or

x2 + 2y2 = (100− k)/k [0 < k ≤ 100], a family of ellipses.
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51. f(x, y) = e−x
2

+ e−2y
2

53. f(x, y) = xy2 − x3

The traces parallel to the yz-plane (such as the left-front trace in the graph above) are parabolas; those parallel to the xz-plane
(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface
near the origin has places for both legs and tail to rest.

55. (a) C (b) II
Reasons: This function is periodic in both x and y, and the function is the same when x is interchanged with y, so its graph is
symmetric about the plane y = x. In addition, the function is 0 along the x- and y-axes. These conditions are satisfied only by
C and II.

57. (a) F (b) I
Reasons: This function is periodic in both x and y but is constant along the lines y = x+ k, a condition satisfied only by F and
I.

59. (a) B (b) VI
Reasons: This function is 0 along the lines x = ±1 and y = ±1. The only contour map in which this could occur is VI. Also

note that the trace in the xz-plane is the parabola z = 1− x2 and the trace in the yz-plane is the parabola z = 1− y2, so the
graph is B.

61. k = x+ 3y + 5z is a family of parallel planes with normal vector h1, 3, 5i.

63. k = x2 − y2 + z2 are the equations of the level surfaces. For k = 0, the surface is a right circular cone with vertex the origin
and axis the y-axis. For k > 0, we have a family of hyperboloids of one sheet with axis the y-axis. For k < 0, we have a
family of hyperboloids of two sheets with axis the y-axis.

65. (a) The graph of g is the graph of f shifted upward 2 units.

(b) The graph of g is the graph of f stretched vertically by a factor of 2.

(c) The graph of g is the graph of f reflected about the xy-plane.

(d) The graph of g(x, y) = −f(x, y) + 2 is the graph of f reflected about the xy-plane and then shifted upward 2 units.
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67. f(x, y) = 3x− x4 − 4y2 − 10xy

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of f

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.

69. f(x, y) =
x+ y

x2 + y2
. As both x and y become large, the function values

appear to approach 0, regardless of which direction is considered. As

(x, y) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, f(x, y)→∞, while in others f(x, y)→ −∞.

(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that f(x, y) approaches 0

along the line y = −x.

71. f (x, y) = ecx
2+y2 . First, if c = 0, the graph is the cylindrical surface

z = ey
2

(whose level curves are parallel lines). When c > 0, the vertical trace

above the y-axis remains fixed while the sides of the surface in the x-direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

c = 0

For 0 < c < 1, the ellipses have major axis the x-axis and the eccentricity increases as c→ 0.

c = 0.5 (level curves in increments of 1)
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For c = 1 the level curves are circles centered at the origin.

c = 1 (level curves in increments of 1)

When c > 1, the level curves are ellipses with major axis the y-axis, and the eccentricity increases as c increases.

c = 2 (level curves in increments of 4)

For values of c < 0, the sides of the surface in the x-direction curl downward and approach the xy-plane (while the vertical

trace x = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0, 0, 1). The level curves consist of

a family of hyperbolas. As c decreases, the surface becomes flatter in the x-direction and the surface’s approach to the curve in

the trace x = 0 becomes steeper, as the graphs demonstrate.

c = −0.5 (level curves in increments of 0.25)

c = −2 (level curves in increments of 0.25)
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73. z = x2 + y2 + cxy. When c < −2, the surface intersects the plane z = k 6= 0 in a hyperbola. (See graph below.) It intersects

the plane x = y in the parabola z = (2 + c)x2, and the plane x = −y in the parabola z = (2− c)x2. These parabolas open in

opposite directions, so the surface is a hyperbolic paraboloid.

When c = −2 the surface is z = x2 + y2 − 2xy = (x− y)2. So the surface is constant along each line x− y = k. That

is, the surface is a cylinder with axis x− y = 0, z = 0. The shape of the cylinder is determined by its intersection with the

plane x+ y = 0, where z = 4x2, and hence the cylinder is parabolic with minima of 0 on the line y = x.

c = −5, z = 2 c = −10 c = −2

When −2 < c ≤ 0, z ≥ 0 for all x and y. If x and y have the same sign, then

x2 + y2 + cxy ≥ x2 + y2 − 2xy = (x− y)2 ≥ 0. If they have opposite signs, then cxy ≥ 0. The intersection with the

surface and the plane z = k > 0 is an ellipse (see graph below). The intersection with the surface and the planes x = 0 and

y = 0 are parabolas z = y2 and z = x2 respectively, so the surface is an elliptic paraboloid.

When c > 0 the graphs have the same shape, but are reflected in the plane x = 0, because

x2 + y2 + cxy = (−x)2 + y2 + (−c)(−x)y. That is, the value of z is the same for c at (x, y) as it is for −c at (−x, y).

c = −1, z = 2 c = 0 c = 10

So the surface is an elliptic paraboloid for 0 < c < 2, a parabolic cylinder for c = 2, and a hyperbolic paraboloid for c > 2.

75. (a) P = bLαK1−α ⇒ P

K
= bLαK−α ⇒ P

K
= b

L

K

α

⇒ ln
P

K
= ln b

L

K

α

⇒

ln
P

K
= ln b+ α ln

L

K

(b) We list the values for ln(L/K) and ln(P/K) for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)
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Year x = ln(L/K) y = ln(P/K)

1899 0 0

1900 −0.02 −0.06
1901 −0.04 −0.02
1902 −0.04 0

1903 −0.07 −0.05
1904 −0.13 −0.12
1905 −0.18 −0.04
1906 −0.20 −0.07
1907 −0.23 −0.15
1908 −0.41 −0.38
1909 −0.33 −0.24
1910 −0.35 −0.27

Year x = ln(L/K) y = ln(P/K)

1911 −0.38 −0.34
1912 −0.38 −0.24
1913 −0.41 −0.25
1914 −0.47 −0.37
1915 −0.53 −0.34
1916 −0.49 −0.28
1917 −0.53 −0.39
1918 −0.60 −0.50
1919 −0.68 −0.57
1920 −0.74 −0.57
1921 −1.05 −0.85
1922 −0.98 −0.59

After entering the (x, y) pairs into a calculator or CAS, the resulting least squares regression line through the points is

approximately y = 0.75136x+ 0.01053, which we round to y = 0.75x+ 0.01.

(c) Comparing the regression line from part (b) to the equation y = ln b+ αx with x = ln(L/K) and y = ln(P/K), we have

α = 0.75 and ln b = 0.01 ⇒ b = e0.01 ≈ 1.01. Thus, the Cobb-Douglas production function is

P = bLαK1−α = 1.01L0.75K0.25.

15.2 Limits and Continuity ET 14.2

1. In general, we can’t say anything about f(3, 1)! lim
(x,y)→(3,1)

f(x, y) = 6 means that the values of f(x, y) approach 6 as

(x, y) approaches, but is not equal to, (3, 1). If f is continuous, we know that lim
(x,y)→(a,b)

f(x, y) = f(a, b), so

lim
(x,y)→(3,1)

f(x, y) = f(3, 1) = 6.

3. We make a table of values of

f(x, y) =
x2y3 + x3y2 − 5

2− xy
for a set

of (x, y) points near the origin.

As the table shows, the values of f(x, y) seem to approach −2.5 as (x, y) approaches the origin from a variety of different

directions. This suggests that lim
(x,y)→(0,0)

f(x, y) = −2.5. Since f is a rational function, it is continuous on its domain. f is

defined at (0, 0), so we can use direct substitution to establish that lim
(x,y)→(0,0)

f(x, y) =
0203 + 0302 − 5

2− 0 · 0 = −5
2

, verifying

our guess.
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5. f(x, y) = 5x3 − x2y2 is a polynomial, and hence continuous, so lim
(x,y)→(1,2)

f(x, y) = f(1, 2) = 5(1)3 − (1)2(2)2 = 1.

7. f(x, y) = 4− xy

x2 + 3y2
is a rational function and hence continuous on its domain.

(2, 1) is in the domain of f , so f is continuous there and lim
(x,y)→(2,1)

f(x, y) = f(2, 1) =
4− (2)(1)
(2)2 + 3(1)2

=
2

7
.

9. f(x, y) = y4/ x4 + 3y4 . First approach (0, 0) along the x-axis. Then f(x, 0) = 0/x4 = 0 for x 6= 0, so f(x, y)→ 0.

Now approach (0, 0) along the y-axis. Then for y 6= 0, f(0, y) = y4/3y4 = 1/3, so f(x, y)→ 1/3. Since f has two different

limits along two different lines, the limit does not exist.

11. f(x, y) = (xy cos y)/(3x2 + y2). On the x-axis, f (x, 0) = 0 for x 6= 0, so f(x, y)→ 0 as (x, y)→ (0, 0) along the

x-axis. Approaching (0, 0) along the line y = x, f(x, x) = (x2 cosx)/4x2 = 1
4 cosx for x 6= 0, so f(x, y)→ 1

4 along this

line. Thus the limit does not exist.

13. f(x, y) = xy

x2 + y2
. We can see that the limit along any line through (0, 0) is 0, as well as along other paths through

(0, 0) such as x = y2 and y = x2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. 0 ≤ xy

x2 + y2
≤ |x| since |y| ≤ x2 + y2, and |x|→ 0 as (x, y)→ (0, 0). So lim

(x,y)→(0,0)
f(x, y) = 0.

15. Let f(x, y) = x2yey

x4 + 4y2
. Then f(x, 0) = 0 for x 6= 0, so f(x, y)→ 0 as (x, y)→ (0, 0) along the x-axis. Approaching

(0, 0) along the y-axis or the line y = x also gives a limit of 0. But f x, x2 =
x2x2 ex

2

x4 + 4(x2)2
=

x4ex
2

5x4
=

ex
2

5
for x 6= 0, so

f(x, y)→ e0/5 = 1
5

as (x, y)→ (0, 0) along the parabola y = x2. Thus the limit doesn’t exist.

17. lim
(x,y)→(0,0)

x2 + y2

x2 + y2 + 1− 1 = lim
(x,y)→(0,0)

x2 + y2

x2 + y2 + 1− 1 ·
x2 + y2 + 1 + 1

x2 + y2 + 1 + 1

= lim
(x,y)→(0,0)

x2 + y2 x2 + y2 + 1 + 1

x2 + y2
= lim

(x,y)→(0,0)
x2 + y2 + 1 + 1 = 2

19. e−xy and sin(πz/2) are each compositions of continuous functions, and hence continuous, so their product

f(x, y, z) = e−xy sin(πz/2) is a continuous function. Then

lim
(x,y,z)→(3,0,1)

f(x, y, z) = f (3, 0, 1) = e−(3)(0) sin(π · 1/2) = 1.

21. f(x, y, z) = xy + yz2 + xz2

x2 + y2 + z4
. Then f(x, 0, 0) = 0/x2 = 0 for x 6= 0, so as (x, y, z)→ (0, 0, 0) along the x-axis,

f(x, y, z)→ 0. But f(x, x, 0) = x2/(2x2) = 1
2

for x 6= 0, so as (x, y, z)→ (0, 0, 0) along the line y = x, z = 0,

f(x, y, z)→ 1
2

. Thus the limit doesn’t exist.
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23. From the ridges on the graph, we see that as (x, y)→ (0, 0) along the

lines under the two ridges, f(x, y) approaches different values. So the

limit does not exist.

25. h(x, y) = g(f(x, y)) = (2x+ 3y − 6)2 +√2x+ 3y − 6. Since f is a polynomial, it is continuous on R2 and g is

continuous on its domain {t | t ≥ 0}. Thus h is continuous on its domain.

D = {(x, y) | 2x+ 3y − 6 ≥ 0} = (x, y) | y ≥ − 2
3
x+ 2 , which consists of all points on or above the line y = − 2

3
x+2.

27. From the graph, it appears that f is discontinuous along the line y = x.

If we consider f(x, y) = e1/(x−y) as a composition of functions,

g(x, y) = 1/(x− y) is a rational function and therefore continuous except

where x− y = 0 ⇒ y = x. Since the function h(t) = et is continuous

everywhere, the composition h(g(x, y)) = e1/(x−y) = f(x, y) is

continuous except along the line y = x, as we suspected.

29. The functions sin(xy) and ex − y2 are continuous everywhere, so F (x, y) = sin(xy)

ex − y2
is continuous except where

ex − y2 = 0 ⇒ y2 = ex ⇒ y = ±√ex = ±e 1
2
x. Thus F is continuous on its domain (x, y) | y 6= ±ex/2 .

31. F (x, y) = arctan x+ y = g(f(x, y)) where f(x, y) = x+ y, continuous on its domain {(x, y) | y ≥ 0}, and

g(t) = arctan t is continuous everywhere. Thus F is continuous on its domain {(x, y) | y ≥ 0}.

33. G(x, y) = ln x2 + y2 − 4 = g(f(x, y)) where f(x, y) = x2 + y2 − 4, continuous on R2, and g(t) = ln t, continuous on

its domain {t | t > 0}. Thus G is continuous on its domain (x, y) | x2 + y2 − 4 > 0 = (x, y) | x2 + y2 > 4 , the

exterior of the circle x2 + y2 = 4.

35. y is continuous on its domain {y | y ≥ 0} and x2 − y2 + z2 is continuous everywhere, so f(x, y, z) = y

x2 − y2 + z2
is

continuous for y ≥ 0 and x2 − y2 + z2 6= 0 ⇒ y2 6= x2 + z2, that is, (x, y, z) | y ≥ 0, y 6= √x2 + z2 .

37. f(x, y) =

⎧⎪⎨⎪⎩
x2y3

2x2 + y2
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0)
The first piece of f is a rational function defined everywhere except at the

origin, so f is continuous on R2 except possibly at the origin. Since x2 ≤ 2x2 + y2, we have x2y3/(2x2 + y2) ≤ y3 . We

know that y3 → 0 as (x, y)→ (0, 0). So, by the Squeeze Theorem, lim
(x,y)→(0,0)

f(x, y) = lim
(x,y)→(0,0)

x2y3

2x2 + y2
= 0.

But f(0, 0) = 1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set {(x, y) | (x, y) 6= (0, 0)}.
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39. lim
(x,y)→(0,0)

x3 + y3

x2 + y2
= lim

r→0+

(r cos θ)3 + (r sin θ)3

r2
= lim

r→0+
(r cos3 θ + r sin3 θ) = 0

41. lim
(x,y)→(0,0)

e−x
2−y2 − 1
x2 + y2

= lim
r→0+

e−r
2 − 1
r2

= lim
r→0+

e−r
2
(−2r)
2r

[using l’Hospital’s Rule]

= lim
r→0+

−e−r2 = −e0 = −1

43. f(x, y) =

⎧⎨⎩
sin(xy)

xy
if (x, y) 6= (0, 0)

1 if (x, y) = (0, 0)

From the graph, it appears that f is continuous everywhere. We know

xy is continuous on R2 and sin t is continuous everywhere, so

sin(xy) is continuous on R2 and sin(xy)
xy

is continuous on R2

except possibly where xy = 0. To show that f is continuous at those points, consider any point (a, b) in R2 where ab = 0.

Because xy is continuous, xy → ab = 0 as (x, y)→ (a, b). If we let t = xy, then t→ 0 as (x, y)→ (a, b) and

lim
(x,y)→(a,b)

sin(xy)

xy
= lim

t→0

sin(t)

t
= 1 by Equation 3.4.2 [ET 3.3.2]. Thus lim

(x,y)→(a,b)
f(x, y) = f(a, b) and f is continuous

on R2.

45. Since |x− a|2 = |x|2 + |a|2 − 2 |x| |a| cos θ ≥ |x|2 + |a|2 − 2 |x| |a| = (|x|− |a|)2, we have |x|− |a| ≤ |x− a|. Let

> 0 be given and set δ = . Then if 0 < |x− a| < δ, |x|− |a| ≤ |x− a| < δ = . Hence limx→a |x| = |a| and

f (x) = |x| is continuous on Rn.

15.3 Partial Derivatives ET 14.3

1. (a) ∂T/∂x represents the rate of change of T when we fix y and t and consider T as a function of the single variable x, which

describes how quickly the temperature changes when longitude changes but latitude and time are constant. ∂T/∂y

represents the rate of change of T when we fix x and t and consider T as a function of y, which describes how quickly the

temperature changes when latitude changes but longitude and time are constant. ∂T/∂t represents the rate of change of T

when we fix x and y and consider T as a function of t, which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) fx(158, 21, 9) represents the rate of change of temperature at longitude 158◦W, latitude 21◦N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect fx(158, 21, 9) to be positive. fy(158, 21, 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect fy(158, 21, 9) to be negative. ft(158, 21, 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air
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temperature increases from the morning to the afternoon as the sun warms it, we would expect ft(158, 21, 9) to be

positive.

3. (a) By Definition 4, fT (−15, 30) = lim
h→0

f(−15 + h, 30)− f(−15, 30)
h

, which we can approximate by considering h = 5

and h = −5 and using the values given in the table:

fT (−15, 30) ≈ f(−10, 30)− f(−15, 30)
5

=
−20− (−26)

5
=
6

5
= 1.2,

fT (−15, 30) ≈ f(−20, 30)− f(−15, 30)
−5 =

−33− (−26)
−5 =

−7
−5 = 1.4. Averaging these values, we estimate

fT (−15, 30) to be approximately 1.3. Thus, when the actual temperature is −15◦C and the wind speed is 30 km/h, the

apparent temperature rises by about 1.3◦C for every degree that the actual temperature rises.

Similarly, fv(−15, 30) = lim
h→0

f(−15, 30 + h)− f(−15, 30)
h

which we can approximate by considering h = 10 and

h = −10: fv(−15, 30) ≈ f(−15, 40)− f(−15, 30)
10

=
−27− (−26)

10
=
−1
10

= −0.1,

fv(−15, 30) ≈ f(−15, 20)− f(−15, 30)
−10 =

−24− (−26)
−10 =

2

−10 = −0.2. Averaging these values, we estimate

fv(−15, 30) to be approximately −0.15. Thus, when the actual temperature is −15◦C and the wind speed is 30 km/h, the

apparent temperature decreases by about 0.15◦C for every km/h that the wind speed increases.

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature T increases (look at a column of

the table), so ∂W

∂T
is positive. For a fixed temperature T , the values of W decrease (or remain constant) as v increases

(look at a row of the table), so ∂W

∂v
is negative (or perhaps 0).

(c) For fixed values of T , the function values f(T, v) appear to become constant (or nearly constant) as v increases, so the

corresponding rate of change is 0 or near 0 as v increases. This suggests that lim
v→∞

(∂W/∂v) = 0.

5. (a) If we start at (1, 2) and move in the positive x-direction, the graph of f increases. Thus fx(1, 2) is positive.

(b) If we start at (1, 2) and move in the positive y-direction, the graph of f decreases. Thus fy(1, 2) is negative.

7. (a) fxx = ∂
∂x
(fx), so fxx is the rate of change of fx in the x-direction. fx is negative at (−1, 2) and if we move in the

positive x-direction, the surface becomes less steep. Thus the values of fx are increasing and fxx(−1, 2) is positive.

(b) fyy is the rate of change of fy in the y-direction. fy is negative at (−1, 2) and if we move in the positive y-direction, the

surface becomes steeper. Thus the values of fy are decreasing, and fyy(−1, 2) is negative.

9. First of all, if we start at the point (3,−3) and move in the positive y-direction, we see that both b and c decrease, while a

increases. Both b and c have a low point at about (3,−1.5), while a is 0 at this point. So a is definitely the graph of fy , and

one of b and c is the graph of f . To see which is which, we start at the point (−3,−1.5) and move in the positive x-direction.

b traces out a line with negative slope, while c traces out a parabola opening downward. This tells us that b is the x-derivative

of c. So c is the graph of f , b is the graph of fx, and a is the graph of fy .
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11. f(x, y) = 16− 4x2 − y2 ⇒ fx(x, y) = −8x and fy(x, y) = −2y ⇒ fx(1, 2) = −8 and fy(1, 2) = −4. The graph

of f is the paraboloid z = 16− 4x2 − y2 and the vertical plane y = 2 intersects it in the parabola z = 12− 4x2, y = 2

(the curve C1 in the first figure). The slope of the tangent line

to this parabola at (1, 2, 8) is fx(1, 2) = −8. Similarly the

plane x = 1 intersects the paraboloid in the parabola

z = 12− y2, x = 1 (the curve C2 in the second figure) and

the slope of the tangent line at (1, 2, 8) is fy(1, 2) = −4.

13. f(x, y) = x2 + y2 + x2y ⇒ fx = 2x+ 2xy, fy = 2y + x2

Note that the traces of f in planes parallel to the xz-plane are parabolas which open downward for y < −1 and upward for

y > −1, and the traces of fx in these planes are straight lines, which have negative slopes for y < −1 and positive slopes for

y > −1. The traces of f in planes parallel to the yz-plane are parabolas which always open upward, and the traces of fy in

these planes are straight lines with positive slopes.

15. f(x, y) = y5 − 3xy ⇒ fx(x, y) = 0− 3y = −3y, fy(x, y) = 5y4 − 3x

17. f(x, t) = e−t cosπx ⇒ fx(x, t) = e−t (− sinπx) (π) = −πe−t sinπx, ft(x, t) = e−t(−1) cosπx = −e−t cosπx

19. z = (2x+ 3y)10 ⇒ ∂z

∂x
= 10(2x+ 3y)9 · 2 = 20(2x+ 3y)9, ∂z

∂y
= 10(2x+ 3y)9 · 3 = 30(2x+ 3y)9

21. f(x, y) = x− y

x+ y
⇒ fx(x, y) =

(1)(x+ y)− (x− y)(1)

(x+ y)2
=

2y

(x+ y)2
,

fy(x, y) =
(−1)(x+ y)− (x− y)(1)

(x+ y)2
= − 2x

(x+ y)2

23. w = sinα cosβ ⇒ ∂w

∂α
= cosα cosβ, ∂w

∂β
= − sinα sinβ

25. f(r, s) = r ln(r2 + s2) ⇒ fr(r, s) = r · 2r

r2 + s2
+ ln(r2 + s2) · 1 = 2r2

r2 + s2
+ ln(r2 + s2),

fs(r, s) = r · 2s

r2 + s2
+ 0 =

2rs

r2 + s2
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27. u = tew/t ⇒ ∂u

∂t
= t · ew/t(−wt−2) + ew/t · 1 = ew/t − w

t
ew/t = ew/t 1− w

t
, ∂u

∂w
= tew/t · 1

t
= ew/t

29. f(x, y, z) = xz − 5x2y3z4 ⇒ fx(x, y, z) = z − 10xy3z4, fy(x, y, z) = −15x2y2z4, fz(x, y, z) = x− 20x2y3z3

31. w = ln(x+ 2y + 3z) ⇒ ∂w

∂x
=

1

x+ 2y + 3z
, ∂w

∂y
=

2

x+ 2y + 3z
, ∂w

∂z
=

3

x+ 2y + 3z

33. u = xy sin−1(yz) ⇒ ∂u

∂x
= y sin−1(yz), ∂u

∂y
= xy · 1

1− (yz)2 (z)+ sin
−1(yz) ·x = xyz

1− y2z2
+x sin−1(yz),

∂u

∂z
= xy · 1

1− (yz)2 (y) =
xy2

1− y2z2

35. f(x, y, z, t) = xyz2 tan(yt) ⇒ fx(x, y, z, t) = yz2 tan(yt),

fy(x, y, z, t) = xyz2 · sec2(yt) · t+ xz2 tan(yt) = xyz2t sec2(yt) + xz2 tan(yt),

fz(x, y, z, t) = 2xyz tan(yt), ft(x, y, z, t) = xyz2 sec2(yt) · y = xy2z2 sec2(yt)

37. u = x21 + x22 + · · ·+ x2n. For each i = 1, . . ., n, uxi = 1
2
x21 + x22 + · · ·+ x2n

−1/2
(2xi) =

xi

x21 + x22 + · · ·+ x2n
.

39. f(x, y) = ln x+ x2 + y2 ⇒

fx(x, y) =
1

x+ x2 + y2
1 + 1

2
(x2 + y2)−1/2(2x) =

1

x+ x2 + y2
1 +

x

x2 + y2
,

so fx(3, 4) =
1

3 +
√
32 + 42

1 +
3√

32 + 42
= 1

8
1 + 3

5
= 1

5
.

41. f(x, y, z) = y

x+ y + z
⇒ fy(x, y, z) =

1(x+ y + z)− y(1)

(x+ y + z)2
=

x+ z

(x+ y + z)2
,

so fy(2, 1,−1) = 2 + (−1)
(2 + 1 + (−1))2 =

1

4
.

43. f(x, y) = xy2 − x3y ⇒

fx (x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
= lim

h→0

(x+ h)y2 − (x+ h)3y − (xy2 − x3y)

h

= lim
h→0

h(y2 − 3x2y − 3xyh− yh2)

h
= lim

h→0
(y2 − 3x2y − 3xyh− yh2) = y2 − 3x2y

fy (x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
= lim

h→0

x(y + h)2 − x3(y + h)− (xy2 − x3y)

h
= lim

h→0

h(2xy + xh− x3)

h

= lim
h→0

(2xy + xh− x3) = 2xy − x3

45. x2 + y2 + z2 = 3xyz ⇒ ∂

∂x
(x2 + y2 + z2) =

∂

∂x
(3xyz) ⇒ 2x+ 0 + 2z

∂z

∂x
= 3y x

∂z

∂x
+ z · 1 ⇔

2z
∂z

∂x
− 3xy ∂z

∂x
= 3yz − 2x ⇔ (2z − 3xy) ∂z

∂x
= 3yz − 2x, so ∂z

∂x
=
3yz − 2x
2z − 3xy .

∂

∂y
(x2 + y2 + z2) =

∂

∂y
(3xyz) ⇒ 0 + 2y + 2z

∂z

∂y
= 3x y

∂z

∂y
+ z · 1 ⇔ 2z

∂z

∂y
− 3xy ∂z

∂y
= 3xz − 2y ⇔

(2z − 3xy) ∂z
∂y

= 3xz − 2y, so ∂z

∂y
=
3xz − 2y
2z − 3xy .
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47. x− z = arctan(yz) ⇒ ∂

∂x
(x− z) =

∂

∂x
(arctan(yz)) ⇒ 1− ∂z

∂x
=

1

1 + (yz)2
· y ∂z

∂x
⇔

1 =
y

1 + y2z2
+ 1

∂z

∂x
⇔ 1 =

y + 1 + y2z2

1 + y2z2
∂z

∂x
, so ∂z

∂x
=

1 + y2z2

1 + y + y2z2
.

∂

∂y
(x− z) =

∂

∂y
(arctan(yz)) ⇒ 0− ∂z

∂y
=

1

1 + (yz)2
· y

∂z

∂y
+ z · 1 ⇔

− z

1 + y2z2
=

y

1 + y2z2
+ 1

∂z

∂y
⇔ − z

1 + y2z2
=

y + 1 + y2z2

1 + y2z2
∂z

∂y
⇔ ∂z

∂y
= − z

1 + y + y2z2
.

49. (a) z = f(x) + g(y) ⇒ ∂z

∂x
= f 0(x), ∂z

∂y
= g0(y)

(b) z = f(x+ y). Let u = x+ y. Then ∂z

∂x
=

df

du

∂u

∂x
=

df

du
(1) = f 0(u) = f 0(x+ y),

∂z

∂y
=

df

du

∂u

∂y
=

df

du
(1) = f 0(u) = f 0(x+ y).

51. f(x, y) = x3y5 + 2x4y ⇒ fx(x, y) = 3x
2y5 + 8x3y, fy(x, y) = 5x3y4 + 2x4. Then fxx(x, y) = 6xy5 + 24x2y,

fxy(x, y) = 15x
2y4 + 8x3, fyx(x, y) = 15x2y4 + 8x3, and fyy(x, y) = 20x3y3.

53. w =
√
u2 + v2 ⇒ wu =

1
2
(u2 + v2)−1/2 · 2u = u√

u2 + v2
, wv =

1
2
(u2 + v2)−1/2 · 2v = v√

u2 + v2
. Then

wuu =
1 ·√u2 + v2 − u · 1

2
(u2 + v2)−1/2(2u)√

u2 + v2
2 =

√
u2 + v2 − u2/

√
u2 + v2

u2 + v2
=

u2 + v2 − u2

(u2 + v2)3/2
=

v2

(u2 + v2)3/2
,

wuv = u − 1
2

u2 + v2
−3/2

(2v) = − uv

(u2 + v2)3/2
, wvu = v − 1

2
u2 + v2

−3/2
(2u) = − uv

(u2 + v2)3/2
,

wvv =
1 ·√u2 + v2 − v · 1

2
(u2 + v2)−1/2(2v)√

u2 + v2
2 =

√
u2 + v2 − v2/

√
u2 + v2

u2 + v2
=

u2 + v2 − v2

(u2 + v2)3/2
=

u2

(u2 + v2)3/2
.

55. z = arctan x+ y

1− xy
⇒

zx =
1

1 + x+y
1−xy

2 ·
(1)(1− xy)− (x+ y)(−y)

(1− xy)2
=

1 + y2

(1− xy)2 + (x+ y)2
=

1 + y2

1 + x2 + y2 + x2y2

=
1 + y2

(1 + x2)(1 + y2)
=

1

1 + x2
,

zy =
1

1 + x+y
1−xy

2 ·
(1)(1− xy)− (x+ y)(−x)

(1− xy)2
=

1 + x2

(1− xy)2 + (x+ y)2
=

1 + x2

(1 + x2)(1 + y2)
=

1

1 + y2
.

Then zxx = −(1 + x2)−2 · 2x = − 2x

(1 + x2)2
, zxy = 0, zyx = 0, zyy = −(1 + y2)−2 · 2y = − 2y

(1 + y2)2
.

57. u = x sin(x+ 2y) ⇒ ux = x · cos(x+ 2y)(1) + sin(x+ 2y) · 1 = x cos(x+ 2y) + sin(x+ 2y),

uxy = x(− sin(x + 2y)(2)) + cos(x + 2y)(2) = 2 cos(x + 2y) − 2x sin(x + 2y),
uy = x cos (x+ 2y) (2) = 2x cos(x+ 2y),

uyx = 2x · (− sin(x+ 2y)(1)) + cos (x+ 2y) · 2 = 2 cos(x+ 2y)− 2x sin(x+ 2y). Thus uxy = uyx.
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59. u = ln x2 + y2 = ln(x2 + y2)1/2 = 1
2 ln(x

2 + y2) ⇒ ux =
1

2

1

x2 + y2
· 2x = x

x2 + y2
,

uxy = x(−1)(x2 + y2)−2(2y) = − 2xy

(x2 + y2)2
and uy =

1

2

1

x2 + y2
· 2y = y

x2 + y2
,

uyx = y(−1)(x2 + y2)−2(2x) = − 2xy

(x2 + y2)2
. Thus uxy = uyx.

61. f(x, y) = 3xy4 + x3y2 ⇒ fx = 3y
4 + 3x2y2, fxx = 6xy2, fxxy = 12xy and

fy = 12xy
3 + 2x3y, fyy = 36xy2 + 2x3, fyyy = 72xy.

63. f(x, y, z) = cos(4x+ 3y + 2z) ⇒
fx = − sin(4x+ 3y + 2z)(4) = −4 sin(4x+ 3y + 2z), fxy = −4 cos(4x+ 3y + 2z)(3) = −12 cos(4x+ 3y + 2z),
fxyz = −12(− sin(4x + 3y + 2z))(2) = 24 sin(4x + 3y + 2z) and

fy = − sin(4x+ 3y + 2z)(3) = −3 sin(4x+ 3y + 2z),
fyz = −3 cos(4x+3y+2z)(2) = −6 cos(4x+3y+2z), fyzz = −6(− sin(4x+3y+2z))(2) = 12 sin(4x+3y+2z).

65. u = erθ sin θ ⇒ ∂u

∂θ
= erθ cos θ + sin θ · erθ (r) = erθ (cos θ + r sin θ),

∂2u

∂r ∂θ
= erθ (sin θ) + (cos θ + r sin θ) erθ (θ) = erθ (sin θ + θ cos θ + rθ sin θ),

∂3u

∂r2 ∂θ
= erθ (θ sin θ) + (sin θ + θ cos θ + rθ sin θ) · erθ (θ) = θerθ (2 sin θ + θ cos θ + rθ sin θ).

67. w = x

y + 2z
= x(y + 2z)−1 ⇒ ∂w

∂x
= (y + 2z)−1, ∂2w

∂y ∂x
= −(y + 2z)−2(1) = −(y + 2z)−2,

∂3w

∂z ∂y ∂x
= −(−2)(y + 2z)−3(2) = 4(y + 2z)−3 = 4

(y + 2z)3
and ∂w

∂y
= x(−1)(y + 2z)−2(1) = −x(y + 2z)−2,

∂2w

∂x∂y
= −(y + 2z)−2, ∂3w

∂x2 ∂y
= 0.

69. By Definition 4, fx(3, 2) = lim
h→0

f(3 + h, 2)− f(3, 2)

h
which we can approximate by considering h = 0.5 and h = −0.5:

fx(3, 2) ≈ f(3.5, 2)− f(3, 2)

0.5
=
22.4− 17.5

0.5
= 9.8, fx(3, 2) ≈ f(2.5, 2)− f(3, 2)

−0.5 =
10.2− 17.5
−0.5 = 14.6. Averaging

these values, we estimate fx(3, 2) to be approximately 12.2. Similarly, fx(3, 2.2) = lim
h→0

f(3 + h, 2.2)− f(3, 2.2)

h
which

we can approximate by considering h = 0.5 and h = −0.5: fx(3, 2.2) ≈ f(3.5, 2.2)− f(3, 2.2)

0.5
=
26.1− 15.9

0.5
= 20.4,

fx(3, 2.2) ≈ f(2.5, 2.2)− f(3, 2.2)

−0.5 =
9.3− 15.9
−0.5 = 13.2. Averaging these values, we have fx(3, 2.2) ≈ 16.8.

To estimate fxy(3, 2), we first need an estimate for fx(3, 1.8):

fx(3, 1.8) ≈ f(3.5, 1.8)− f(3, 1.8)

0.5
=
20.0− 18.1

0.5
= 3.8, fx(3, 1.8) ≈ f(2.5, 1.8)− f(3, 1.8)

−0.5 =
12.5− 18.1
−0.5 = 11.2.

Averaging these values, we get fx(3, 1.8) ≈ 7.5. Now fxy(x, y) =
∂

∂y
[fx(x, y)] and fx(x, y) is itself a function of two
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variables, so Definition 4 says that fxy(x, y) =
∂

∂y
[fx(x, y)] = lim

h→0

fx(x, y + h)− fx(x, y)

h
⇒

fxy(3, 2) = lim
h→0

fx(3, 2 + h)− fx(3, 2)

h
.

We can estimate this value using our previous work with h = 0.2 and h = −0.2:

fxy(3, 2) ≈ fx(3, 2.2)− fx(3, 2)

0.2
=
16.8− 12.2

0.2
= 23, fxy(3, 2) ≈ fx(3, 1.8)− fx(3, 2)

−0.2 =
7.5− 12.2
−0.2 = 23.5.

Averaging these values, we estimate fxy(3, 2) to be approximately 23.25.

71. u = e−α
2k2t sin kx ⇒ ux = ke−α

2k2t cos kx, uxx = −k2e−α2k2t sin kx, and ut = −α2k2e−α2k2t sin kx.

Thus α2uxx = ut.

73. u = 1

x2 + y2 + z2
⇒ ux = − 1

2
(x2 + y2 + z2)−3/2(2x) = −x(x2 + y2 + z2)−3/2 and

uxx = −(x2 + y2 + z2)−3/2 − x − 3
2
(x2 + y2 + z2)−5/2(2x) =

2x2 − y2 − z2

(x2 + y2 + z2)5/2
.

By symmetry, uyy =
2y2 − x2 − z2

(x2 + y2 + z2)5/2
and uzz =

2z2 − x2 − y2

(x2 + y2 + z2)5/2
.

Thus uxx + uyy + uzz =
2x2 − y2 − z2 + 2y2 − x2 − z2 + 2z2 − x2 − y2

(x2 + y2 + z2)5/2
= 0.

75. Let v = x+ at, w = x− at. Then ut =
∂[f(v) + g(w)]

∂t
=

df(v)

dv

∂v

∂t
+

dg(w)

dw

∂w

∂t
= af 0(v)− ag0(w) and

utt =
∂[af 0(v)− ag0(w)]

∂t
= a[af 00(v) + ag00(w)] = a2[f 00(v) + g00(w)]. Similarly, by using the Chain Rule we have

ux = f 0(v) + g0(w) and uxx = f 00(v) + g00(w). Thus utt = a2uxx.

77. z = ln(ex + ey) ⇒ ∂z

∂x
=

ex

ex + ey
and ∂z

∂y
=

ey

ex + ey
, so ∂z

∂x
+

∂z

∂y
=

ex

ex + ey
+

ey

ex + ey
=

ex + ey

ex + ey
= 1.

∂2z

∂x2
=

ex(ex + ey)− ex(ex)

(ex + ey)2
=

ex+y

(ex + ey)2
, ∂2z

∂x ∂y
=
0− ey(ex)

(ex + ey)2
= − ex+y

(ex + ey)2
, and

∂2z

∂y2
=

ey(ex + ey)− ey(ey)

(ex + ey)2
=

ex+y

(ex + ey)2
. Thus

∂2z

∂x2
∂2z

∂y2
− ∂2z

∂x ∂y

2

=
ex+y

(ex + ey)2
· ex+y

(ex + ey)2
− − ex+y

(ex + ey)2

2

=
(ex+y)2

(ex + ey)4
− (ex+y)2

(ex + ey)4
= 0

79. If we fix K = K0, P (L,K0) is a function of a single variable L, and dP

dL
= α

P

L
is a separable differential equation. Then

dP

P
= α

dL

L
⇒ dP

P
= α

dL

L
⇒ ln |P | = α ln |L|+ C (K0), where C(K0) can depend on K0. Then

|P | = eα ln|L|+C(K0), and since P > 0 and L > 0, we have P = eα lnLeC(K0) = eC(K0)elnL
α

= C1(K0)L
α where

C1(K0) = eC(K0).

81. By the Chain Rule, taking the partial derivative of both sides with respect to R1 gives

∂R−1

∂R

∂R

∂R1
=

∂ [(1/R1) + (1/R2) + (1/R3)]

∂R1
or −R−2 ∂R

∂R1
= −R−21 . Thus ∂R

∂R1
=

R2

R2
1

.
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83. By Exercise 82, PV = mRT ⇒ P =
mRT

V
, so ∂P

∂T
=

mR

V
. Also, PV = mRT ⇒ V =

mRT

P
and ∂V

∂T
=

mR

P
.

Since T = PV

mR
, we have T ∂P

∂T

∂V

∂T
=

PV

mR
· mR

V
· mR

P
= mR.

85. ∂K

∂m
= 1

2
v2, ∂K

∂v
= mv, ∂2K

∂v2
= m. Thus ∂K

∂m
· ∂

2K

∂v2
= 1

2
v2m = K.

87. fx(x, y) = x+ 4y ⇒ fxy(x, y) = 4 and fy(x, y) = 3x− y ⇒ fyx(x, y) = 3. Since fxy and fyx are continuous

everywhere but fxy(x, y) 6= fyx(x, y), Clairaut’s Theorem implies that such a function f(x, y) does not exist.

89. By the geometry of partial derivatives, the slope of the tangent line is fx(1, 2). By implicit differentiation of

4x2 + 2y2 + z2 = 16, we get 8x+ 2z (∂z/∂x) = 0 ⇒ ∂z/∂x = −4x/z, so when x = 1 and z = 2 we have

∂z/∂x = −2. So the slope is fx(1, 2) = −2. Thus the tangent line is given by z − 2 = −2(x− 1), y = 2. Taking the

parameter to be t = x− 1, we can write parametric equations for this line: x = 1 + t, y = 2, z = 2− 2t.

91. By Clairaut’s Theorem, fxyy = (fxy)y = (fyx)y = fyxy = (fy)xy = (fy)yx = fyyx.

93. Let g(x) = f(x, 0) = x(x2)−3/2e0 = x |x|−3. But we are using the point (1, 0), so near (1, 0), g(x) = x−2. Then

g0(x) = −2x−3 and g0(1) = −2, so using (1) we have fx(1, 0) = g0(1) = −2.

95. (a) (b) For (x, y) 6= (0, 0),

fx(x, y) =
(3x2y − y3)(x2 + y2)− (x3y − xy3)(2x)

(x2 + y2)2

=
x4y + 4x2y3 − y5

(x2 + y2)2

and by symmetry fy(x, y) =
x5 − 4x3y2 − xy4

(x2 + y2)2
.

(c) fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

(0/h2)− 0
h

= 0 and fy(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= 0.

(d) By (3), fxy(0, 0) =
∂fx
∂y

= lim
h→0

fx(0, h)− fx(0, 0)

h
= lim

h→0

(−h5 − 0)/h4
h

= −1 while by (2),

fyx(0, 0) =
∂fy
∂x

= lim
h→0

fy(h, 0)− fy(0, 0)

h
= lim

h→0

h5/h4

h
= 1.

(e) For (x, y) 6= (0, 0), we use a CAS to compute

fxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Now as (x, y)→ (0, 0) along the x-axis, fxy(x, y)→ 1 while as

(x, y)→ (0, 0) along the y-axis, fxy(x, y)→−1. Thus fxy isn’t

continuous at (0, 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of fxy and fyx are identical except at the

origin, where we observe the discontinuity.
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15.4 Tangent Planes and Linear Approximations ET 14.4

1. z = f(x, y) = 4x2 − y2 + 2y ⇒ fx(x, y) = 8x, fy(x, y) = −2y + 2, so fx(−1, 2) = −8, fy(−1, 2) = −2.

By Equation 2, an equation of the tangent plane is z − 4 = fx(−1, 2)[x− (−1)] + fy(−1, 2)(y − 2) ⇒
z − 4 = −8(x+ 1)− 2(y − 2) or z = −8x− 2y.

3. z = f(x, y) = xy ⇒ fx(x, y) =
1
2 (xy)

−1/2 · y = 1
2 y/x, fy(x, y) = 1

2 (xy)
−1/2 · x = 1

2 x/y, so fx(1, 1) = 1
2

and fy(1, 1) = 1
2

. Thus an equation of the tangent plane is z − 1 = fx(1, 1)(x− 1) + fy(1, 1)(y − 1) ⇒

z − 1 = 1
2
(x− 1) + 1

2
(y − 1) or x+ y − 2z = 0.

5. z = f(x, y) = y cos(x− y) ⇒ fx = y(− sin(x− y)(1)) = −y sin(x− y),

fy = y(− sin(x− y)(−1)) + cos(x− y) = y sin(x− y) + cos(x− y), so fx(2, 2) = −2 sin(0) = 0,

fy(2, 2) = 2 sin(0) + cos(0) = 1 and an equation of the tangent plane is z − 2 = 0(x− 2) + 1(y − 2) or z = y.

6. z = f(x, y) = ex
2−y2 ⇒ fx(x, y) = 2xe

x2−y2 , fy(x, y) = −2yex2−y2 , so fx(1,−1) = 2, fy(1,−1) = 2.

By Equation 2, an equation of the tangent plane is z − 1 = fx(1,−1)(x− 1) + fy(1,−1)[y − (−1)] ⇒
z − 1 = 2(x− 1) + 2(y + 1) or z = 2x+ 2y + 1.

7. z = f(x, y) = x2 + xy + 3y2, so fx(x, y) = 2x+ y ⇒ fx(1, 1) = 3, fy(x, y) = x+ 6y ⇒ fy(1, 1) = 7 and an

equation of the tangent plane is z − 5 = 3(x− 1) + 7(y − 1) or z = 3x+ 7y − 5. After zooming in, the surface and the

tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

9. f(x, y) = xy sin (x− y)

1 + x2 + y2
. A CAS gives fx (x, y) =

y sin (x− y) + xy cos (x− y)

1 + x2 + y2
− 2x2y sin (x− y)

(1 + x2 + y2)2
and

fy (x, y) =
x sin (x− y)− xy cos (x− y)

1 + x2 + y2
− 2xy2 sin (x− y)

(1 + x2 + y2)2
. We use the CAS to evaluate these at (1, 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane: z = 1
3
x− 1

3
y. The surface and tangent

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,
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as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

11. f(x, y) = x y. The partial derivatives are fx(x, y) = y and fy(x, y) =
x

2 y
, so fx(1, 4) = 2 and fy(1, 4) = 1

4
. Both

fx and fy are continuous functions for y > 0, so by Theorem 8, f is differentiable at (1, 4). By Equation 3, the linearization of

f at (1, 4) is given by L(x, y) = f(1, 4) + fx(1, 4)(x− 1) + fy(1, 4)(y − 4) = 2 + 2(x− 1) + 1
4
(y − 4) = 2x+ 1

4
y − 1.

13. f(x, y) = x

x+ y
. The partial derivatives are fx(x, y) =

1(x+ y)− x(1)

(x+ y)2
= y/(x+ y)2 and

fy(x, y) = x(−1)(x+ y)−2 · 1 = −x/(x+ y)2, so fx(2, 1) = 1
9

and fy(2, 1) = − 2
9

. Both fx and fy are continuous

functions for y 6= −x, so f is differentiable at (2, 1) by Theorem 8. The linearization of f at (2, 1) is given by

L (x, y) = f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1) = 2
3 +

1
9 (x− 2)− 2

9 (y − 1) = 1
9x− 2

9y +
2
3 .

15. f(x, y) = e−xy cos y. The partial derivatives are fx(x, y) = e−xy(−y) cos y = −ye−xy cos y and

fy(x, y) = e−xy(− sin y) + (cos y)e−xy(−x) = −e−xy(sin y + x cos y), so fx(π, 0) = 0 and fy(π, 0) = −π.

Both fx and fy are continuous functions, so f is differentiable at (π, 0), and the linearization of f at (π, 0) is

L(x, y) = f(π, 0) + fx(π, 0)(x− π) + fy(π, 0)(y − 0) = 1 + 0(x− π)− π(y − 0) = 1− πy.

17. Let f(x, y) = 2x+ 3

4y + 1
. Then fx(x, y) =

2

4y + 1
and fy(x, y) = (2x+3)(−1)(4y+ 1)−2(4) = −8x− 12

(4y + 1)2
. Both fx and fy

are continuous functions for y 6= − 1
4

, so by Theorem 8, f is differentiable at (0, 0). We have fx(0, 0) = 2, fy(0, 0) = −12
and the linear approximation of f at (0, 0) is f(x, y) ≈ f(0, 0) + fx(0, 0)(x− 0) + fy(0, 0)(y − 0) = 3 + 2x− 12y.

19. f(x, y) = 20− x2 − 7y2 ⇒ fx(x, y) = − x

20− x2 − 7y2 and fy(x, y) = − 7y

20− x2 − 7y2 ,

so fx(2, 1) = − 2
3

and fy(2, 1) = − 7
3

. Then the linear approximation of f at (2, 1) is given by

f (x, y) ≈ f(2, 1) + fx(2, 1)(x− 2) + fy(2, 1)(y − 1) = 3− 2
3
(x− 2)− 7

3
(y − 1) = − 2

3
x− 7

3
y + 20

3
.

Thus f(1.95, 1.08) ≈ − 2
3
(1.95)− 7

3
(1.08) + 20

3
= 2.846̄.

21. f(x, y, z) = x2 + y2 + z2 ⇒ fx(x, y, z) =
x

x2 + y2 + z2
, fy(x, y, z) =

y

x2 + y2 + z2
, and

fz(x, y, z) =
z

x2 + y2 + z2
, so fx(3, 2, 6) = 3

7
, fy(3, 2, 6) = 2

7
, fz(3, 2, 6) = 6

7
. Then the linear approximation of f at
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(3, 2, 6) is given by

f(x, y, z)≈ f(3, 2, 6) + fx(3, 2, 6)(x− 3) + fy(3, 2, 6)(y − 2) + fz(3, 2, 6)(z − 6)
= 7 + 3

7
(x− 3) + 2

7
(y − 2) + 6

7
(z − 6) = 3

7
x+ 2

7
y + 6

7
z

Thus (3.02)2 + (1.97)2 + (5.99)2 = f(3.02, 1.97, 5.99) ≈ 3
7 (3.02) +

2
7 (1.97) +

6
7 (5.99) ≈ 6.9914.

23. From the table, f(94, 80) = 127. To estimate fT (94, 80) and fH(94, 80) we follow the procedure used in Section 15.3

[ET 14.3]. Since fT (94, 80) = lim
h→0

f(94 + h, 80)− f(94, 80)

h
, we approximate this quantity with h = ±2 and use the

values given in the table:

fT (94, 80) ≈ f(96, 80)− f(94, 80)

2
=
135− 127

2
= 4, fT (94, 80) ≈ f(92, 80)− f(94, 80)

−2 =
119− 127
−2 = 4

Averaging these values gives fT (94, 80) ≈ 4. Similarly, fH(94, 80) = lim
h→0

f(94, 80 + h)− f(94, 80)

h
, so we use h = ±5:

fH(94, 80) ≈ f(94, 85)− f(94, 80)

5
=
132− 127

5
= 1, fH(94, 80) ≈ f(94, 75)− f(94, 80)

−5 =
122− 127
−5 = 1

Averaging these values gives fH(94, 80) ≈ 1. The linear approximation, then, is

f(T,H)≈ f(94, 80) + fT (94, 80)(T − 94) + fH(94, 80)(H − 80)
≈ 127 + 4(T − 94) + 1(H − 80) [or 4T +H − 329]

Thus when T = 95 and H = 78, f(95, 78) ≈ 127 + 4(95− 94) + 1(78− 80) = 129, so we estimate the heat index to be

approximately 129◦F.

25. z = x3 ln(y2) ⇒ dz =
∂z

∂x
dx+

∂z

∂y
dy = 3x2 ln(y2) dx+ x3 · 1

y2
(2y) dy = 3x2 ln(y2) dx+

2x3

y
dy

27. m = p5q3 ⇒ dm =
∂m

∂p
dp+

∂m

∂q
dq = 5p4q3 dp+ 3p5q2 dq

29. R = αβ2 cos γ ⇒ dR =
∂R

∂α
dα+

∂R

∂β
dβ +

∂R

∂γ
dγ = β2 cos γ dα+ 2αβ cos γ dβ − αβ2 sin γ dγ

31. dx = ∆x = 0.05, dy = ∆y = 0.1, z = 5x2 + y2, zx = 10x, zy = 2y. Thus when x = 1 and y = 2,

dz = zx(1, 2) dx + zy(1, 2) dy = (10)(0.05) + (4)(0.1) = 0.9 while

∆z = f(1.05, 2.1)− f(1, 2) = 5(1.05)2 + (2.1)2 − 5− 4 = 0.9225.

33. dA = ∂A

∂x
dx+

∂A

∂y
dy = y dx+ xdy and |∆x| ≤ 0.1, |∆y| ≤ 0.1. We use dx = 0.1, dy = 0.1 with x = 30, y = 24;

then the maximum error in the area is about dA = 24(0.1) + 30(0.1) = 5.4 cm2.

35. The volume of a can is V = πr2h and ∆V ≈ dV is an estimate of the amount of tin. Here dV = 2πrhdr + πr2 dh, so put

dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then ∆V ≈ dV = 2π(48)(0.04) + π(16)(0.08) ≈ 16.08 cm3.

Thus the amount of tin is about 16 cm3.
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37. The area of the rectangle is A = xy, and ∆A ≈ dA is an estimate of the area of paint in the stripe. Here dA = y dx+ xdy,

so with dx = dy = 3+3
12 = 1

2 , ∆A ≈ dA = (100) 1
2
+ (200) 1

2
= 150 ft2. Thus there are approximately 150 ft2 of paint

in the stripe.

39. First we find ∂R

∂R1
implicitly by taking partial derivatives of both sides with respect to R1:

∂

∂R1

1

R
=

∂ [(1/R1) + (1/R2) + (1/R3)]

∂R1
⇒ −R−2 ∂R

∂R1
= −R−21 ⇒ ∂R

∂R1
=

R2

R2
1

. Then by symmetry,

∂R

∂R2
=

R2

R2
2

, ∂R

∂R3
=

R2

R2
3

. When R1 = 25, R2 = 40 and R3 = 50, 1
R
=
17

200
⇔ R = 200

17
Ω.

Since the possible error for each Ri is 0.5%, the maximum error of R is attained by setting ∆Ri = 0.005Ri. So

∆R ≈ dR =
∂R

∂R1
∆R1 +

∂R

∂R2
∆R2 +

∂R

∂R3
∆R3 = (0.005)R

2 1

R1
+

1

R2
+

1

R3
= (0.005)R = 1

17
≈ 0.059 Ω.

41. The errors in measurement are at most 2%, so ∆w

w
≤ 0.02 and ∆h

h
≤ 0.02. The relative error in the calculated surface

area is

∆S

S
≈ dS

S
=
0.1091(0.425w0.425−1)h0.725 dw + 0.1091w0.425(0.725h0.725−1) dh

0.1091w0.425h0.725
= 0.425

dw

w
+ 0.725

dh

h

To estimate the maximum relative error, we use dw

w
=

∆w

w
= 0.02 and dh

h
=

∆h

h
= 0.02 ⇒

dS

S
= 0.425 (0.02) + 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.

43. ∆z = f(a+∆x, b+∆y)− f(a, b) = (a+∆x)2 + (b+∆y)2 − (a2 + b2)

= a2 + 2a∆x+ (∆x)2 + b2 + 2b∆y + (∆y)2 − a2 − b2 = 2a∆x+ (∆x)2 + 2b∆y + (∆y)2

But fx(a, b) = 2a and fy(a, b) = 2b and so ∆z = fx(a, b)∆x+ fy(a, b)∆y +∆x∆x+∆y∆y, which is Definition 7

with ε1 = ∆x and ε2 = ∆y. Hence f is differentiable.

45. To show that f is continuous at (a, b) we need to show that lim
(x,y)→(a,b)

f(x, y) = f(a, b) or

equivalently lim
(∆x,∆y)→(0,0)

f(a+∆x, b +∆y) = f(a, b). Since f is differentiable at (a, b),

f(a+∆x, b+∆y)− f(a, b) = ∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y, where 1 and 2 → 0 as

(∆x,∆y)→ (0, 0). Thus f(a+∆x, b+∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y. Taking the limit of

both sides as (∆x,∆y)→ (0, 0) gives lim
(∆x,∆y)→(0,0)

f(a+∆x, b+∆y) = f(a, b). Thus f is continuous at (a, b).

15.5 The Chain Rule ET 14.5

1. z = x2 + y2 + xy, x = sin t, y = et ⇒ dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
= (2x+ y) cos t+ (2y + x)et

3. z = 1 + x2 + y2, x = ln t, y = cos t ⇒
dz

dt
=

∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
= 1

2
(1+x2+y2)−1/2(2x) · 1

t
+ 1

2
(1+x2+y2)−1/2(2y)(− sin t) = 1

1 + x2 + y2
x

t
− y sin t
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5. w = xey/z , x = t2, y = 1− t, z = 1 + 2t ⇒
dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
+

∂w

∂z

dz

dt
= ey/z · 2t+ xey/z

1

z
· (−1) + xey/z − y

z2
· 2 = ey/z 2t− x

z
− 2xy

z2

7. z = x2y3, x = s cos t, y = s sin t ⇒
∂z

∂s
=

∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
= 2xy3 cos t+ 3x2y2 sin t

∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
= (2xy3)(−s sin t) + (3x2y2)(s cos t) = −2sxy3 sin t+ 3sx2y2 cos t

9. z = sin θ cosφ, θ = st2, φ = s2t ⇒
∂z

∂s
=

∂z

∂θ

∂θ

∂s
+

∂z

∂φ

∂φ

∂s
= (cos θ cosφ)(t2) + (− sin θ sinφ)(2st) = t2 cos θ cosφ− 2st sin θ sinφ

∂z

∂t
=

∂z

∂θ

∂θ

∂t
+

∂z

∂φ

∂φ

∂t
= (cos θ cosφ)(2st) + (− sin θ sinφ)(s2) = 2st cos θ cosφ− s2 sin θ sinφ

11. z = er cos θ, r = st, θ =
√
s2 + t2 ⇒

∂z

∂s
=

∂z

∂r

∂r

∂s
+

∂z

∂θ

∂θ

∂s
= er cos θ · t+ er(− sin θ) · 12 (s2 + t2)−1/2(2s) = ter cos θ − er sin θ · s√

s2 + t2

= er t cos θ − s√
s2 + t2

sin θ

∂z

∂t
=

∂z

∂r

∂r

∂t
+

∂z

∂θ

∂θ

∂t
= er cos θ · s+ er(− sin θ) · 1

2
(s2 + t2)−1/2(2t) = ser cos θ − er sin θ · t√

s2 + t2

= er s cos θ − t√
s2 + t2

sin θ

13. When t = 3, x = g(3) = 2 and y = h(3) = 7. By the Chain Rule (2),

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
= fx(2, 7)g

0(3) + fy(2, 7)h
0(3) = (6)(5) + (−8)(−4) = 62.

15. g(u, v) = f(x(u, v), y(u, v)) where x = eu + sin v, y = eu + cos v ⇒
∂x

∂u
= eu, ∂x

∂v
= cos v, ∂y

∂u
= eu, ∂y

∂v
= − sin v. By the Chain Rule (3), ∂g

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
. Then

gu(0, 0) = fx(x(0, 0), y(0, 0))xu(0, 0) + fy(x(0, 0), y(0, 0)) yu(0, 0) = fx(1, 2)(e
0) + fy(1, 2)(e

0) = 2(1) + 5(1) = 7.

Similarly, ∂g
∂v

=
∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
. Then

gv(0, 0) = fx(x(0, 0), y(0, 0))xv(0, 0) + fy(x(0, 0), y(0, 0)) yv(0, 0) = fx(1, 2)(cos 0) + fy(1, 2)(− sin 0)
= 2(1) + 5(0) = 2

17. u = f(x, y), x = x(r, s, t), y = y(r, s, t) ⇒

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
, ∂u
∂s

=
∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s
, ∂u
∂t
=

∂u

∂x

∂x

∂t
+

∂u

∂y

∂y

∂t
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19. w = f(r, s, t), r = r(x, y), s = s(x, y), t = t(x, y) ⇒
∂w

∂x
=

∂w

∂r

∂r

∂x
+

∂w

∂s

∂s

∂x
+

∂w

∂t

∂t

∂x
, ∂w

∂y
=

∂w

∂r

∂r

∂y
+

∂w

∂s

∂s

∂y
+

∂w

∂t

∂t

∂y

21. z = x2 + xy3, x = uv2 +w3, y = u+ vew ⇒
∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
= (2x+ y3)(v2) + (3xy2)(1),

∂z

∂v
=

∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
= (2x+ y3)(2uv) + (3xy2)(ew),

∂z

∂w
=

∂z

∂x

∂x

∂w
+

∂z

∂y

∂y

∂w
= (2x+ y3)(3w2) + (3xy2)(vew).

When u = 2, v = 1, and w = 0, we have x = 2, y = 3,

so ∂z

∂u
= (31)(1) + (54)(1) = 85, ∂z

∂v
= (31) (4) + (54)(1) = 178, ∂z

∂w
= (31)(0) + (54)(1) = 54.

23. R = ln(u2 + v2 + w2), u = x+ 2y, v = 2x− y, w = 2xy ⇒
∂R

∂x
=

∂R

∂u

∂u

∂x
+

∂R

∂v

∂v

∂x
+

∂R

∂w

∂w

∂x
=

2u

u2 + v2 +w2
(1) +

2v

u2 + v2 + w2
(2) +

2w

u2 + v2 + w2
(2y)

=
2u+ 4v + 4wy

u2 + v2 + w2
,

∂R

∂y
=

∂R

∂u

∂u

∂y
+

∂R

∂v

∂v

∂y
+

∂R

∂w

∂w

∂y
=

2u

u2 + v2 +w2
(2) +

2v

u2 + v2 + w2
(−1) + 2w

u2 + v2 +w2
(2x)

=
4u− 2v + 4wx
u2 + v2 + w2

.

When x = y = 1 we have u = 3, v = 1, and w = 2, so ∂R

∂x
=
9

7
and ∂R

∂y
=
9

7
.

25. u = x2 + yz, x = pr cos θ, y = pr sin θ, z = p+ r ⇒
∂u

∂p
=

∂u

∂x

∂x

∂p
+

∂u

∂y

∂y

∂p
+

∂u

∂z

∂z

∂p
= (2x)(r cos θ) + (z)(r sin θ) + (y)(1) = 2xr cos θ + zr sin θ + y,

∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
+

∂u

∂z

∂z

∂r
= (2x)(p cos θ) + (z)(p sin θ) + (y)(1) = 2xp cos θ + zp sin θ + y,

∂u

∂θ
=

∂u

∂x

∂x

∂θ
+

∂u

∂y

∂y

∂θ
+

∂u

∂z

∂z

∂θ
= (2x)(−pr sin θ) + (z)(pr cos θ) + (y)(0) = −2xpr sin θ + zpr cos θ.

When p = 2, r = 3, and θ = 0 we have x = 6, y = 0, and z = 5, so ∂u

∂p
= 36, ∂u

∂r
= 24, and ∂u

∂θ
= 30.

27. xy = 1+ x2y, so let F (x, y) = (xy)1/2 − 1− x2y = 0. Then by Equation 6

dy

dx
= −Fx

Fy
= −

1
2
(xy)−1/2(y)− 2xy
1
2
(xy)−1/2(x)− x2

= −y − 4xy xy

x− 2x2 xy
=
4(xy)3/2 − y

x− 2x2 xy
.

29. cos(x− y) = xey , so let F (x, y) = cos(x− y)− xey = 0.

Then dy

dx
= −Fx

Fy
= − − sin(x− y)− ey

− sin(x− y)(−1)− xey
=
sin(x− y) + ey

sin(x− y)− xey
.
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31. x2 + y2 + z2 = 3xyz, so let F (x, y, z) = x2 + y2 + z2 − 3xyz = 0. Then by Equations 7

∂z

∂x
= −Fx

Fz
= −2x− 3yz

2z − 3xy =
3yz − 2x
2z − 3xy and ∂z

∂y
= −Fy

Fz
= −2y − 3xz

2z − 3xy =
3xz − 2y
2z − 3xy .

33. x− z = arctan(yz), so let F (x, y, z) = x− z − arctan(yz) = 0. Then

∂z

∂x
= −Fx

Fz
= − 1

−1− 1

1 + (yz)2
(y)

=
1 + y2z2

1 + y + y2z2

∂z

∂y
= −Fy

Fz
= −

− 1

1 + (yz)2
(z)

−1− 1

1 + (yz)2
(y)

= −
z

1 + y2z2

1 + y2z2 + y

1 + y2z2

= − z

1 + y + y2z2

35. Since x and y are each functions of t, T (x, y) is a function of t, so by the Chain Rule, dT
dt
=

∂T

∂x

dx

dt
+

∂T

∂y

dy

dt
. After

3 seconds, x =
√
1 + t =

√
1 + 3 = 2, y = 2 + 1

3
t = 2 + 1

3
(3) = 3, dx

dt
=

1

2
√
1 + t

=
1

2
√
1 + 3

=
1

4
, and dy

dt
=
1

3
.

Then dT

dt
= Tx(2, 3)

dx

dt
+ Ty(2, 3)

dy

dt
= 4 1

4
+ 3 1

3
= 2. Thus the temperature is rising at a rate of 2◦C/s.

37. C = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3 + 0.016D, so ∂C

∂T
= 4.6− 0.11T + 0.00087T 2 and ∂C

∂D
= 0.016.

According to the graph, the diver is experiencing a temperature of approximately 12.5◦C at t = 20 minutes, so

∂C

∂T
= 4.6− 0.11(12.5) + 0.00087(12.5)2 ≈ 3.36. By sketching tangent lines at t = 20 to the graphs given, we estimate

dD

dt
≈ 1

2
and dT

dt
≈ − 1

10
. Then, by the Chain Rule, dC

dt
=

∂C

∂T

dT

dt
+

∂C

∂D

dD

dt
≈ (3.36) − 1

10
+ (0.016) 1

2
≈ −0.33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0.33 m/s per minute.

39. (a) V = wh, so by the Chain Rule,

dV

dt
=

∂V

∂

d

dt
+

∂V

∂w

dw

dt
+

∂V

∂h

dh

dt
= wh

d

dt
+ h

dw

dt
+ w

dh

dt
= 2 · 2 · 2 + 1 · 2 · 2 + 1 · 2 · (−3) = 6 m3/s.

(b) S = 2( w + h+ wh), so by the Chain Rule,

dS

dt
=

∂S

∂

d

dt
+

∂S

∂w

dw

dt
+

∂S

∂h

dh

dt
= 2(w + h)

d

dt
+ 2( + h)

dw

dt
+ 2( +w)

dh

dt

= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)(−3) = 10 m2/s

(c) L2 = 2 + w2 + h2 ⇒ 2L
dL

dt
= 2

d

dt
+ 2w

dw

dt
+ 2h

dh

dt
= 2(1)(2) + 2(2)(2) + 2(2)(−3) = 0 ⇒

dL/dt = 0 m/s.

41. dP

dt
= 0.05, dT

dt
= 0.15, V = 8.31

T

P
and dV

dt
=
8.31

P

dT

dt
− 8.31 T

P 2

dP

dt
. Thus when P = 20 and T = 320,

dV

dt
= 8.31

0.15

20
− (0.05)(320)

400
≈ −0.27 L/s.

43. Let x be the length of the first side of the triangle and y the length of the second side. The area A of the triangle is given by

A = 1
2
xy sin θ where θ is the angle between the two sides. Thus A is a function of x, y, and θ, and x, y, and θ are each in
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turn functions of time t. We are given that dx
dt
= 3, dy

dt
= −2, and because A is constant, dA

dt
= 0. By the Chain Rule,

dA

dt
=

∂A

∂x

dx

dt
+

∂A

∂y

dy

dt
+

∂A

∂θ

dθ

dt
⇒ dA

dt
= 1

2y sin θ ·
dx

dt
+ 1

2x sin θ ·
dy

dt
+ 1

2xy cos θ ·
dθ

dt
. When x = 20, y = 30,

and θ = π/6 we have

0 = 1
2 (30) sin

π
6
(3) + 1

2 (20) sin
π
6
(−2) + 1

2 (20)(30) cos
π
6

dθ

dt

= 45 · 1
2
− 20 · 1

2
+ 300 ·

√
3

2
· dθ
dt
= 25

2
+ 150

√
3
dθ

dt

Solving for dθ
dt

gives dθ

dt
=
−25/2
150

√
3
= − 1

12
√
3

, so the angle between the sides is decreasing at a rate of

1/ 12
√
3 ≈ 0.048 rad/s.

45. (a) By the Chain Rule, ∂z
∂r

=
∂z

∂x
cos θ +

∂z

∂y
sin θ, ∂z

∂θ
=

∂z

∂x
(−r sin θ) + ∂z

∂y
r cos θ.

(b) ∂z

∂r

2

=
∂z

∂x

2

cos2 θ + 2
∂z

∂x

∂z

∂y
cos θ sin θ +

∂z

∂y

2

sin2 θ,

∂z

∂θ

2

=
∂z

∂x

2

r2 sin2 θ − 2 ∂z
∂x

∂z

∂y
r2 cos θ sin θ +

∂z

∂y

2

r2 cos2 θ. Thus

∂z

∂r

2

+
1

r2
∂z

∂θ

2

=
∂z

∂x

2

+
∂z

∂y

2

(cos2 θ + sin2 θ) =
∂z

∂x

2

+
∂z

∂y

2

.

47. Let u = x− y. Then ∂z

∂x
=

dz

du

∂u

∂x
=

dz

du
and ∂z

∂y
=

dz

du
(−1). Thus ∂z

∂x
+

∂z

∂y
= 0.

49. Let u = x+ at, v = x− at. Then z = f(u) + g(v), so ∂z/∂u = f 0(u) and ∂z/∂v = g0(v).

Thus ∂z

∂t
=

∂z

∂u

∂u

∂t
+

∂z

∂v

∂v

∂t
= af 0(u)− ag0(v) and

∂2z

∂t2
= a

∂

∂t
[f 0(u)− g0(v)] = a

df 0(u)
du

∂u

∂t
− dg0(v)

dv

∂v

∂t
= a2f 00(u) + a2g00(v).

Similarly ∂z

∂x
= f 0(u) + g0(v) and ∂2z

∂x2
= f 00(u) + g00(v). Thus ∂2z

∂t2
= a2

∂2z

∂x2
.

51. ∂z

∂s
=

∂z

∂x
2s+

∂z

∂y
2r. Then

∂2z

∂r ∂s
=

∂

∂r

∂z

∂x
2s +

∂

∂r

∂z

∂y
2r

=
∂2z

∂x2
∂x

∂r
2s+

∂

∂y

∂z

∂x

∂y

∂r
2s+

∂z

∂x

∂

∂r
2s+

∂2z

∂y2
∂y

∂r
2r +

∂

∂x

∂z

∂y

∂x

∂r
2r +

∂z

∂y
2

= 4rs
∂2z

∂x2
+

∂2z

∂y ∂x
4s2 + 0 + 4rs

∂2z

∂y2
+

∂2z

∂x ∂y
4r2 + 2

∂z

∂y

By the continuity of the partials, ∂2z

∂r∂s
= 4rs

∂2z

∂x2
+ 4rs

∂2z

∂y2
+ (4r2 + 4s2)

∂2z

∂x∂y
+ 2

∂z

∂y
.
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53. ∂z

∂r
=

∂z

∂x
cos θ +

∂z

∂y
sin θ and ∂z

∂θ
= −∂z

∂x
r sin θ +

∂z

∂y
r cos θ. Then

∂2z

∂r2
= cos θ

∂2z

∂x2
cos θ +

∂2z

∂y ∂x
sin θ + sin θ

∂2z

∂y2
sin θ +

∂2z

∂x ∂y
cos θ

= cos2 θ
∂2z

∂x2
+ 2 cos θ sin θ

∂2z

∂x ∂y
+ sin2 θ

∂2z

∂y2

and ∂2z

∂θ2
= −r cos θ ∂z

∂x
+ (−r sin θ) ∂2z

∂x2
(−r sin θ) + ∂2z

∂y ∂x
r cos θ

−r sin θ ∂z
∂y
+ r cos θ

∂2z

∂y2
r cos θ +

∂2z

∂x∂y
(−r sin θ)

= −r cos θ ∂z
∂x
− r sin θ

∂z

∂y
+ r2 sin2 θ

∂2z

∂x2
− 2r2 cos θ sin θ ∂2z

∂x∂y
+ r2 cos2 θ

∂2z

∂y2

Thus ∂2z

∂r2
+
1

r2
∂2z

∂θ2
+
1

r

∂z

∂r
= (cos2 θ + sin2 θ)

∂2z

∂x2
+ sin2 θ + cos2 θ

∂2z

∂y2

−1
r
cos θ

∂z

∂x
− 1

r
sin θ

∂z

∂y
+
1

r
cos θ

∂z

∂x
+ sin θ

∂z

∂y

=
∂2z

∂x2
+

∂2z

∂y2
as desired.

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and

f(tx, ty) = (tx)2(ty) + 2(tx)(ty)2 + 5(ty)3 = t3x2y + 2t3xy2 + 5t3y3 = t3(x2y + 2xy2 + 5y3) = t3f (x, y).

Thus, f is homogeneous of degree 3.

(b) Differentiating both sides of f(tx, ty) = tnf(x, y) with respect to t using the Chain Rule, we get

∂

∂t
f(tx, ty) =

∂

∂t
[tnf(x, y)] ⇔

∂

∂(tx)
f(tx, ty) · ∂(tx)

∂t
+

∂

∂(ty)
f(tx, ty) · ∂(ty)

∂t
= x

∂

∂(tx)
f(tx, ty) + y

∂

∂(ty)
f(tx, ty) = ntn−1f(x, y).

Setting t = 1: x ∂

∂x
f(x, y) + y

∂

∂y
f(x, y) = nf(x, y).

57. Differentiating both sides of f(tx, ty) = tnf(x, y) with respect to x using the Chain Rule, we get

∂

∂x
f(tx, ty) =

∂

∂x
[tnf(x, y)] ⇔

∂

∂ (tx)
f(tx, ty) · ∂ (tx)

∂x
+

∂

∂ (ty)
f(tx, ty) · ∂ (ty)

∂x
= tn

∂

∂x
f(x, y) ⇔ tfx(tx, ty) = tnfx(x, y).

Thus fx(tx, ty) = tn−1fx(x, y).

15.6 Directional Derivatives and the Gradient Vector ET 14.6

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996− 1000
50

= −0.08 millibar/km.
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3. Du f(−20, 30) = ∇f (−20, 30) · u = fT (−20, 30) 1√
2
+ fv(−20, 30) 1√

2
.

fT (−20, 30) = lim
h→0

f(−20 + h, 30)− f(−20, 30)
h

, so we can approximate fT (−20, 30) by considering h = ±5 and

using the values given in the table: fT (−20, 30) ≈ f(−15, 30)− f(−20, 30)
5

=
−26− (−33)

5
= 1.4,

fT (−20, 30) ≈ f(−25, 30)− f(−20, 30)
−5 =

−39− (−33)
−5 = 1.2. Averaging these values gives fT (−20, 30) ≈ 1.3.

Similarly, fv(−20, 30) = lim
h→0

f(−20, 30 + h)− f(−20, 30)
h

, so we can approximate fv(−20, 30) with h = ±10:

fv(−20, 30) ≈ f(−20, 40)− f(−20, 30)
10

=
−34− (−33)

10
= −0.1,

fv(−20, 30) ≈ f(−20, 20)− f(−20, 30)
−10 =

−30− (−33)
−10 = −0.3. Averaging these values gives fv(−20, 30) ≈ −0.2.

Then Duf(−20, 30) ≈ 1.3 1√
2
+ (−0.2) 1√

2
≈ 0.778.

5. f(x, y) = ye−x ⇒ fx(x, y) = −ye−x and fy(x, y) = e−x. If u is a unit vector in the direction of θ = 2π/3, then

from Equation 6, Du f(0, 4) = fx(0, 4) cos
2π
3
+ fy(0, 4) sin

2π
3

= −4 · − 1
2
+ 1 ·

√
3
2 = 2+

√
3
2 .

7. f(x, y) = sin(2x+ 3y)

(a) ∇f(x, y) = ∂f

∂x
i+

∂f

∂y
j = [cos(2x+ 3y) · 2] i+ [cos(2x+ 3y) · 3] j = 2 cos (2x+ 3y) i+ 3 cos (2x+ 3y) j

(b) ∇f(−6, 4) = (2 cos 0)i+ (3 cos 0)j = 2 i+ 3 j
(c) By Equation 9, Du f(−6, 4) = ∇f(−6, 4) · u = (2 i+ 3 j) · 1

2

√
3 i− j = 1

2
2
√
3− 3 =

√
3− 3

2
.

9. f(x, y, z) = xe2yz

(a) ∇f(x, y, z) = hfx(x, y, z), fy(x, y, z), fz(x, y, z)i = e2yz, 2xze2yz, 2xye2yz

(b) ∇f(3, 0, 2) = h1, 12, 0i

(c) By Equation 14, Duf(3, 0, 2) = ∇f(3, 0, 2) · u = h1, 12, 0i · 2
3
,− 2

3
, 1
3
= 2

3
− 24

3
+ 0 = − 22

3
.

11. f(x, y) = 1 + 2x y ⇒ ∇f(x, y) = 2 y, 2x · 1
2
y−1/2 = 2 y, x/ y ,∇f(3, 4) = 4, 3

2
, and a unit vector in

the direction of v is u = 1

42 + (−3)2 h4,−3i =
4
5 ,− 3

5
, so Du f(3, 4) = ∇f(3, 4) · u = 4, 32 · 4

5 ,− 3
5
= 23

10 .

13. g(p, q) = p4 − p2q3 ⇒ ∇g(p, q) = 4p3 − 2pq3 i+ −3p2q2 j, ∇g(2, 1) = 28 i− 12 j, and a unit

vector in the direction of v is u = 1√
12+32

(i + 3 j) = 1√
10
(i + 3 j), so

Du g(2, 1) = ∇g(2, 1) · u = (28 i− 12 j) · 1√
10
(i+ 3 j) = 1√

10
(28− 36) = − 8√

10
or − 4

√
10
5

.

15. f(x, y, z) = xey + yez + zex ⇒ ∇f(x, y, z) = hey + zex, xey + ez, yez + exi,∇f(0, 0, 0) = h1, 1, 1i, and a unit

vector in the direction of v is u = 1√
25+1+4

h5, 1,−2i = 1√
30
h5, 1,−2i, so

Du f(0, 0, 0) = ∇f(0, 0, 0) · u = h1, 1, 1i · 1√
30
h5, 1,−2i = 4√

30
.
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17. g(x, y, z) = (x+ 2y + 3z)3/2 ⇒

∇g(x, y, z) = 3
2
(x+ 2y + 3z)1/2(1), 3

2
(x+ 2y + 3z)1/2(2), 3

2
(x+ 2y + 3z)1/2(3)

= 3
2

√
x+ 2y + 3z, 3

√
x+ 2y + 3z, 9

2

√
x+ 2y + 3z ,∇g(1, 1, 2) = 9

2
, 9, 27

2
,

and a unit vector in the direction of v = 2 j − k is u = 2√
5
j − 1√

5
k, so

Du g(1, 1, 2) =
9
2 , 9,

27
2
· 0, 2√

5
,− 1√

5
= 18√

5
− 27

2
√
5
= 9

2
√
5

.

19. f(x, y) = xy ⇒ ∇f(x, y) = 1
2 (xy)

−1/2(y), 12 (xy)
−1/2(x) =

y

2 xy
,

x

2 xy
, so∇f(2, 8) = 1, 1

4
.

The unit vector in the direction of
−−→
PQ = h5− 2, 4− 8i = h3,−4i is u = 3

5
,− 4

5
, so

Du f(2, 8) = ∇f(2, 8) · u = 1, 1
4
· 3

5
,− 4

5
= 2

5
.

21. f(x, y) = y2/x = y2x−1 ⇒ ∇f(x, y) = −y2x−2, 2yx−1 = −y2/x2, 2y/x .

∇f(2, 4) = h−4, 4i, or equivalently h−1, 1i, is the direction of maximum rate of change, and the maximum rate

is |∇f(2, 4)| = √16 + 16 = 4√2.

23. f(x, y) = sin(xy) ⇒ ∇f(x, y) = hy cos(xy), x cos(xy)i,∇f(1, 0) = h0, 1i. Thus the maximum rate of change is

|∇f(1, 0)| = 1 in the direction h0, 1i.

25. f(x, y, z) = x2 + y2 + z2 ⇒

∇f(x, y, z) = 1
2
(x2 + y2 + z2)−1/2 · 2x, 1

2
(x2 + y2 + z2)−1/2 · 2y, 1

2
(x2 + y2 + z2)−1/2 · 2z

=
x

x2 + y2 + z2
,

y

x2 + y2 + z2
,

z

x2 + y2 + z2
,

∇f(3, 6,−2) = 3√
49
, 6√

49
, −2√

49
= 3

7
, 6
7
,− 2

7
. Thus the maximum rate of change is

|∇f(3, 6,−2)| = 3
7

2
+ 6

7

2
+ − 2

7

2
= 9+ 36+ 4

49
= 1 in the direction 3

7
, 6
7
,− 2

7
or equivalently h3, 6,−2i.

27. (a) As in the proof of Theorem 15, Du f = |∇f | cos θ. Since the minimum value of cos θ is −1 occurring when θ = π, the

minimum value of Du f is − |∇f | occurring when θ = π, that is when u is in the opposite direction of∇f
(assuming∇f 6= 0).

(b) f(x, y) = x4y − x2y3 ⇒ ∇f(x, y) = 4x3y − 2xy3, x4 − 3x2y2 , so f decreases fastest at the point (2,−3) in the

direction −∇f(2,−3) = − h12,−92i = h−12, 92i.

29. The direction of fastest change is∇f(x, y) = (2x− 2) i+ (2y − 4) j, so we need to find all points (x, y) where∇f(x, y) is

parallel to i+ j ⇔ (2x− 2) i+ (2y − 4) j = k (i+ j) ⇔ k = 2x− 2 and k = 2y − 4. Then 2x− 2 = 2y − 4 ⇒
y = x+ 1, so the direction of fastest change is i+ j at all points on the line y = x+ 1.
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31. T = k

x2 + y2 + z2
and 120 = T (1, 2, 2) =

k

3
so k = 360.

(a) u = h1,−1, 1i√
3

,

DuT (1, 2, 2) = ∇T (1, 2, 2) ·u = −360 x2 + y2 + z2
−3/2hx, y, zi

(1,2,2)
·u = − 40

3
h1, 2, 2i · 1√

3
h1,−1, 1i = − 40

3
√
3

(b) From (a),∇T = −360 x2 + y2 + z2
−3/2hx, y, zi, and since hx, y, zi is the position vector of the point (x, y, z), the

vector − hx, y, zi, and thus∇T , always points toward the origin.

33. ∇V (x, y, z) = h10x− 3y + yz, xz − 3x, xyi, ∇V (3, 4, 5) = h38, 6, 12i
(a) Du V (3, 4, 5) = h38, 6, 12i · 1√

3
h1, 1,−1i = 32√

3

(b) ∇V (3, 4, 5) = h38, 6, 12i, or equivalently, h19, 3, 6i.

(c) |∇V (3, 4, 5)| = √382 + 62 + 122 = √1624 = 2√406

35. A unit vector in the direction of
−→
AB is i and a unit vector in the direction of

−→
AC is j. Thus D−−→

AB
f(1, 3) = fx(1, 3) = 3 and

D−−→
AC

f(1, 3) = fy(1, 3) = 26. Therefore ∇f(1, 3) = hfx(1, 3), fy(1, 3)i = h3, 26i, and by definition,

D−−→
AD

f(1, 3) = ∇f · u where u is a unit vector in the direction of
−−→
AD, which is 5

13 ,
12
13

. Therefore,

D−−→
AD

f (1, 3) = h3, 26i · 5
13
, 12
13

= 3 · 5
13
+ 26 · 12

13
= 327

13
.

37. (a) ∇(au+ bv) =
∂(au+ bv)

∂x
,
∂(au+ bv)

∂y
= a

∂u

∂x
+ b

∂v

∂x
, a

∂u

∂y
+ b

∂v

∂y
= a

∂u

∂x
,
∂u

∂y
+ b

∂v

∂x
,
∂v

∂y

= a∇u+ b∇v

(b) ∇(uv) = v
∂u

∂x
+ u

∂v

∂x
, v

∂u

∂y
+ u

∂v

∂y
= v

∂u

∂x
,
∂u

∂y
+ u

∂v

∂x
,
∂v

∂y
= v∇u+ u∇v

(c) ∇ u

v
=

v
∂u

∂x
− u

∂v

∂x
v2

,

v
∂u

∂y
− u

∂v

∂y

v2
=

v
∂u

∂x
,
∂u

∂y
− u

∂v

∂x
,
∂v

∂y

v2
=

v∇u− u∇v
v2

(d) ∇un = ∂(un)

∂x
,
∂(un)

∂y
= nun−1

∂u

∂x
, nun−1

∂u

∂y
= nun−1∇u

39. Let F (x, y, z) = 2(x− 2)2 + (y − 1)2 + (z − 3)2. Then 2(x− 2)2 + (y − 1)2 + (z − 3)2 = 10 is a level surface of F .

Fx(x, y, z) = 4(x− 2) ⇒ Fx(3, 3, 5) = 4, Fy(x, y, z) = 2(y − 1) ⇒ Fy(3, 3, 5) = 4, and

Fz(x, y, z) = 2(z − 3) ⇒ Fz(3, 3, 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3, 3, 5) as 4(x− 3) + 4(y − 3) + 4(z − 5) = 0 ⇔
4x+ 4y + 4z = 44 or equivalently x+ y + z = 11.

(b) By Equation 20, the normal line has symmetric equations x− 3
4

=
y − 3
4

=
z − 5
4

or equivalently

x− 3 = y − 3 = z − 5. Corresponding parametric equations are x = 3 + t, y = 3 + t, z = 5 + t.
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41. Let F (x, y, z) = x2 − 2y2 + z2 + yz. Then x2 − 2y2 + z2 + yz = 2 is a level surface of F

and∇F (x, y, z) = h2x,−4y + z, 2z + yi.
(a) ∇F (2, 1,−1) = h4,−5,−1i is a normal vector for the tangent plane at (2, 1,−1), so an equation of the tangent plane

is 4(x− 2)− 5(y − 1)− 1(z + 1) = 0 or 4x− 5y − z = 4.

(b) The normal line has direction h4,−5,−1i, so parametric equations are x = 2 + 4t, y = 1− 5t, z = −1− t, and

symmetric equations are x− 2
4

=
y − 1
−5 =

z + 1

−1 .

43. F (x, y, z) = −z + xey cos z ⇒ ∇F (x, y, z) = hey cos z, xey cos z,−1− xey sin zi and∇F (1, 0, 0) = h1, 1,−1i.
(a) 1(x− 1) + 1(y − 0)− 1(z − 0) = 0 or x+ y − z = 1

(b) x− 1 = y = −z

45. F (x, y, z) = xy + yz + zx,∇F (x, y, z) = hy + z, x+ z, y + xi,∇F (1, 1, 1) = h2, 2, 2i, so an equation of the tangent

plane is 2x+ 2y + 2z = 6 or x+ y + z = 3, and the normal line is given by x− 1 = y − 1 = z − 1 or x = y = z. To graph

the surface we solve for z: z = 3− xy

x+ y
.

47. f(x, y) = xy ⇒ ∇f(x, y) = hy, xi,∇f(3, 2) = h2, 3i. ∇f(3, 2)
is perpendicular to the tangent line, so the tangent line has equation

∇f(3, 2) · hx− 3, y − 2i = 0 ⇒ h2, 3i · hx− 3, x− 2i = 0 ⇒
2(x− 3) + 3(y − 2) = 0 or 2x+ 3y = 12.

49. ∇F (x0, y0, z0) = 2x0
a2

,
2y0
b2

,
2z0
c2

. Thus an equation of the tangent plane at (x0, y0, z0) is

2x0
a2

x+
2y0
b2

y +
2z0
c2

z = 2
x20
a2
+

y20
b2
+

z20
c2

= 2(1) = 2 since (x0, y0, z0) is a point on the ellipsoid. Hence

x0
a2

x+
y0
b2

y +
z0
c2

z = 1 is an equation of the tangent plane.
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51. ∇F (x0, y0, z0) = 2x0
a2

,
2y0
b2

,
−1
c

, so an equation of the tangent plane is 2x0
a2

x+
2y0
b2

y − 1

c
z =

2x20
a2

+
2y20
b2
− z0

c

or 2x0
a2

x+
2y0
b2

y =
z

c
+ 2

x20
a2
+

y20
b2

− z0
c

. But z0
c
=

x20
a2
+

y20
b2

, so the equation can be written as

2x0
a2

x+
2y0
b2

y =
z + z0

c
.

53. The hyperboloid x2 − y2 − z2 = 1 is a level surface of F (x, y, z) = x2 − y2 − z2 and∇F (x, y, z) = h2x,−2y,−2zi is a

normal vector to the surface and hence a normal vector for the tangent plane at (x, y, z). The tangent plane is parallel to the

plane z = x+ y or x+ y − z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (x0, y0, z0)

on the hyperboloid where h2x0,−2y0,−2z0i = c h1, 1,−1i or equivalently hx0,−y0,−z0i = k h1, 1,−1i for some k 6= 0.

Then we must have x0 = k, y0 = −k, z0 = k and substituting into the equation of the hyperboloid gives

k2 − (−k)2 − k2 = 1 ⇔ −k2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

55. Let (x0, y0, z0) be a point on the cone [other than (0, 0, 0)]. Then an equation of the tangent plane to the cone at this point is

2x0x+ 2y0y − 2z0z = 2 x20 + y20 − z20 . But x20 + y20 = z20 so the tangent plane is given by x0x+ y0y − z0z = 0, a plane

which always contains the origin.

57. Let (x0, y0, z0) be a point on the surface. Then an equation of the tangent plane at the point is

x

2
√
x0
+

y

2 y0
+

z

2
√
z0
=

√
x0 + y0 +

√
z0

2
. But

√
x0 + y0 +

√
z0 =

√
c, so the equation is

x√
x0
+

y

y0
+

z√
z0
=
√
c. The x-, y-, and z-intercepts are

√
cx0, cy0 and

√
cz0 respectively. (The x-intercept is found

by setting y = z = 0 and solving the resulting equation for x, and the y- and z-intercepts are found similarly.) So the sum of

the intercepts is
√
c
√
x0 + y0 +

√
z0 = c, a constant.

59. If f(x, y, z) = z − x2 − y2 and g(x, y, z) = 4x2 + y2 + z2, then the tangent line is perpendicular to both∇f and∇g
at (−1, 1, 2). The vector v = ∇f ×∇g will therefore be parallel to the tangent line.

We have∇f(x, y, z) = h−2x,−2y, 1i ⇒ ∇f(−1, 1, 2) = h2,−2, 1i, and∇g(x, y, z) = h8x, 2y, 2zi ⇒

∇g(−1, 1, 2) = h−8, 2, 4i. Hence v = ∇f ×∇g =
i j k

2 −2 1

−8 2 4

= −10 i− 16 j− 12k.

Parametric equations are: x = −1− 10t, y = 1− 16t, z = 2− 12t.

61. (a) The direction of the normal line of F is given by ∇F , and that of G by ∇G. Assuming that

∇F 6= 0 6= ∇G, the two normal lines are perpendicular at P if ∇F ·∇G = 0 at P ⇔
h∂F/∂x, ∂F/∂y, ∂F/∂zi · h∂G/∂x, ∂G/∂y, ∂G/∂zi = 0 at P ⇔ FxGx + FyGy + FzGz = 0 at P .

(b) Here F = x2 + y2 − z2 and G = x2 + y2 + z2 − r2, so

∇F ·∇G = h2x, 2y,−2zi · h2x, 2y, 2zi = 4x2 + 4y2 − 4z2 = 4F = 0, since the point (x, y, z) lies on the graph of
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F = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and

F = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin).

At any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations F = 0 and G = 0 are everywhere orthogonal.

63. Let u = ha, bi and v = hc, di. Then we know that at the given point, Du f = ∇f · u = afx + bfy and

Dv f = ∇f · v = cfx + dfy . But these are just two linear equations in the two unknowns fx and fy , and since u and v

are not parallel, we can solve the equations to find ∇f = hfx, fyi at the given point. In fact,

∇f = dDu f − bDv f

ad− bc
,
aDv f − cDu f

ad− bc
.

15.7 Maximum and Minimum Values ET 14.7

1. (a) First we compute D(1, 1) = fxx(1, 1) fyy(1, 1)− [fxy(1, 1)]2 = (4)(2)− (1)2 = 7. Since D(1, 1) > 0 and

fxx(1, 1) > 0, f has a local minimum at (1, 1) by the Second Derivatives Test.

(b) D(1, 1) = fxx(1, 1) fyy(1, 1)− [fxy(1, 1)]2 = (4)(2)− (3)2 = −1. Since D(1, 1) < 0, f has a saddle point at (1, 1)

by the Second Derivatives Test.

3. In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).

The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some

directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(x, y) = 4 + x3 + y3 − 3xy ⇒ fx(x, y) = 3x
2 − 3y, fy(x, y) = 3y2 − 3x. We

have critical points where these partial derivatives are equal to 0: 3x2 − 3y = 0, 3y2 − 3x = 0. Substituting y = x2 from the

first equation into the second equation gives 3(x2)2 − 3x = 0 ⇒ 3x(x3 − 1) = 0 ⇒ x = 0 or x = 1. Then we have

two critical points, (0, 0) and (1, 1). The second partial derivatives are fxx(x, y) = 6x, fxy(x, y) = −3, and fyy(x, y) = 6y,

so D(x, y) = fxx(x, y) fyy(x, y)− [fxy(x, y)]2 = (6x)(6y)− (−3)2 = 36xy − 9. Then D(0, 0) = 36(0)(0)− 9 = −9,

and D(1, 1) = 36(1)(1)− 9 = 27. Since D(0, 0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since

D(1, 1) > 0 and fxx(1, 1) > 0, f has a local minimum at (1, 1).

5. f(x, y) = 9− 2x+ 4y − x2 − 4y2 ⇒ fx = −2− 2x, fy = 4− 8y,

fxx = −2, fxy = 0, fyy = −8. Then fx = 0 and fy = 0 imply

x = −1 and y = 1
2

, and the only critical point is −1, 1
2

.

D(x, y) = fxxfyy − (fxy)2 = (−2)(−8)− 02 = 16, and since

D −1, 1
2
= 16 > 0 and fxx −1, 12 = −2 < 0, f −1, 1

2
= 11 is a

local maximum by the Second Derivatives Test.
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7. f(x, y) = x4 + y4 − 4xy + 2 ⇒ fx = 4x
3 − 4y, fy = 4y3 − 4x,

fxx = 12x
2, fxy = −4, fyy = 12y2. Then fx = 0 implies y = x3,

and substitution into fy = 0 ⇒ x = y3 gives x9 − x = 0 ⇒

x(x8 − 1) = 0 ⇒ x = 0 or x = ±1. Thus the critical points are (0, 0),

(1, 1), and (−1,−1). Now D(0, 0) = 0 · 0− (−4)2 = −16 < 0,

so (0, 0) is a saddle point. D(1, 1) = (12)(12)− (−4)2 > 0 and

fxx(1, 1) = 12 > 0, so f(1, 1) = 0 is a local minimum. D(−1,−1) = (12)(12)− (−4)2 > 0 and

fxx = (−1,−1) = 12 > 0, so f(−1,−1) = 0 is also a local minimum.

9. f(x, y) = (1 + xy)(x+ y) = x+ y + x2y + xy2 ⇒

fx = 1 + 2xy + y2, fy = 1 + x2 + 2xy, fxx = 2y, fxy = 2x+ 2y,

fyy = 2x. Then fx = 0 implies 1 + 2xy + y2 = 0 and fy = 0 implies

1 + x2 + 2xy = 0. Subtracting the second equation from the first gives

y2 − x2 = 0 ⇒ y = ±x, but if y = x then 1 + 2xy + y2 = 0 ⇒
1 + 3x2 = 0 which has no real solution. If y = −x then

1 + 2xy + y2 = 0 ⇒ 1− x2 = 0 ⇒ x = ±1, so critical points are (1,−1) and (−1, 1).
D(1,−1) = (−2)(2)− 0 < 0 and D(−1, 1) = (2)(−2)− 0 < 0, so (−1, 1) and (1,−1) are saddle points.

11. f(x, y) = x3 − 12xy + 8y3 ⇒ fx = 3x
2 − 12y, fy = −12x+ 24y2,

fxx = 6x, fxy = −12, fyy = 48y. Then fx = 0 implies x2 = 4y and

fy = 0 implies x = 2y2. Substituting the second equation into the first

gives (2y2)2 = 4y ⇒ 4y4 = 4y ⇒ 4y(y3 − 1) = 0 ⇒ y = 0 or

y = 1. If y = 0 then x = 0 and if y = 1 then x = 2, so the critical points

are (0, 0) and (2, 1). D(0, 0) = (0)(0) − (−12)2 = −144 < 0, so (0, 0) is a saddle point.

D(2, 1) = (12)(48)− (−12)2 = 432 > 0 and fxx(2, 1) = 12 > 0 so f(2, 1) = −8 is a local minimum.

13. f(x, y) = ex cos y ⇒ fx = ex cos y, fy = −ex sin y.

Now fx = 0 implies cos y = 0 or y = π
2
+ nπ for n an integer.

But sin π
2 + nπ 6= 0, so there are no critical points.
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15. f(x, y) = (x2 + y2)ey
2−x2 ⇒

fx = (x
2 + y2)ey

2−x2(−2x) + 2xey2−x2 = 2xey2−x2(1− x2 − y2),

fy = (x
2 + y2)ey

2−x2(2y) + 2yey
2−x2 = 2yey

2−x2(1 + x2 + y2),

fxx = 2xe
y2−x2(−2x) + (1− x2 − y2) 2x −2xey2−x2 + 2ey

2−x2 = 2ey
2−x2((1− x2 − y2)(1− 2x2)− 2x2),

fxy = 2xe
y2−x2(−2y) + 2x(2y)ey2−x2(1− x2 − y2) = −4xyey2−x2(x2 + y2),

fyy = 2ye
y2−x2 (2y) + (1 + x2 + y2) 2y 2yey

2−x2 + 2ey
2−x2 = 2ey

2−x2((1 + x2 + y2)(1 + 2y2) + 2y2).

fy = 0 implies y = 0, and substituting into fx = 0 gives

2xe−x
2

(1− x2) = 0 ⇒ x = 0 or x = ±1. Thus the critical points are

(0, 0) and (±1, 0). Now D(0, 0) = (2)(2)− 0 > 0 and fxx(0, 0) = 2 > 0,

so f(0, 0) = 0 is a local minimum. D(±1, 0) = (−4e−1)(4e−1)− 0 < 0
so (±1, 0) are saddle points.

17. f(x, y) = y2 − 2y cosx ⇒ fx = 2y sinx, fy = 2y − 2 cosx,

fxx = 2y cosx, fxy = 2 sinx, fyy = 2. Then fx = 0 implies y = 0 or

sinx = 0 ⇒ x = 0, π, or 2π for −1 ≤ x ≤ 7. Substituting y = 0 into

fy = 0 gives cosx = 0 ⇒ x = π
2

or 3π
2

, substituting x = 0 or x = 2π

into fy = 0 gives y = 1, and substituting x = π into fy = 0 gives y = −1.

Thus the critical points are (0, 1), π
2
, 0 , (π,−1), 3π

2
, 0 , and (2π, 1).

D π
2
, 0 = D 3π

2
, 0 = −4 < 0 so π

2
, 0 and 3π

2
, 0 are saddle points. D(0, 1) = D(π,−1) = D(2π, 1) = 4 > 0 and

fxx(0, 1) = fxx(π,−1) = fxx(2π, 1) = 2 > 0, so f(0, 1) = f(π,−1) = f(2π, 1) = −1 are local minima.

19. f(x, y) = x2 + 4y2 − 4xy + 2 ⇒ fx = 2x− 4y, fy = 8y − 4x, fxx = 2, fxy = −4, fyy = 8. Then fx = 0

and fy = 0 each implies y = 1
2
x, so all points of the form x0,

1
2
x0 are critical points and for each of these we have

D x0,
1
2
x0 = (2)(8)− (−4)2 = 0. The Second Derivatives Test gives no information, but

f(x, y) = x2 + 4y2 − 4xy + 2 = (x− 2y)2 + 2 ≥ 2 with equality if and only if y = 1
2x. Thus f x0,

1
2x0 = 2 are all local

(and absolute) minima.
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21. f(x, y) = x2 + y2 + x−2y−2

From the graphs, there appear to be local minima of about f(1,±1) = f(−1,±1) ≈ 3 (and no local maxima or saddle

points). fx = 2x− 2x−3y−2, fy = 2y − 2x−2y−3, fxx = 2 + 6x−4y−2, fxy = 4x−3y−3, fyy = 2 + 6x−2y−4. Then

fx = 0 implies 2x4y2 − 2 = 0 or x4y2 = 1 or y2 = x−4. Note that neither x nor y can be zero. Now fy = 0 implies

2x2y4 − 2 = 0, and with y2 = x−4 this implies 2x−6 − 2 = 0 or x6 = 1. Thus x = ±1 and if x = 1, y = ±1; if x = −1,

y = ±1. So the critical points are (1, 1), (1,−1),(−1, 1) and (−1,−1). Now D(1,±1) = D(−1,±1) = 64− 16 > 0 and

fxx > 0 always, so f(1,±1) = f(−1,±1) = 3 are local minima.

23. f(x, y) = sinx+ sin y + sin(x+ y), 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π

From the graphs it appears that f has a local maximum at about (1, 1) with value approximately 2.6, a local minimum

at about (5, 5) with value approximately −2.6, and a saddle point at about (3, 3).

fx = cosx+ cos(x+ y), fy = cos y + cos(x+ y), fxx = − sinx− sin(x+ y), fyy = − sin y − sin(x+ y),

fxy = − sin(x+ y). Setting fx = 0 and fy = 0 and subtracting gives cosx− cos y = 0 or cosx = cos y. Thus x = y

or x = 2π − y. If x = y, fx = 0 becomes cosx+ cos 2x = 0 or 2 cos2 x+ cosx− 1 = 0, a quadratic in cosx. Thus

cosx = −1 or 1
2

and x = π, π
3

, or 5π
3

, yielding the critical points (π, π), π
3
, π
3

and 5π
3
, 5π
3

. Similarly if

x = 2π − y, fx = 0 becomes (cosx) + 1 = 0 and the resulting critical point is (π, π). Now

D(x, y) = sinx sin y+ sinx sin(x+ y) + sin y sin(x+ y). So D(π, π) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line y = x we have f(x, x) = 2 sinx+ sin 2x = 2 sinx+ 2 sinx cosx = 2 sinx(1 + cosx), and

f(x, x) > 0 for 0 < x < π while f(x, x) < 0 for π < x < 2π. Thus every disk with center (π, π) contains points where f is



202 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14

positive as well as points where f is negative, so the graph crosses its tangent plane (z = 0) there and (π, π) is a saddle point.

D π
3
, π
3
= 9

4
> 0 and fxx π

3
, π
3

< 0 so f π
3
, π
3
= 3

√
3

2
is a local maximum while D 5π

3
, 5π
3

= 9
4
> 0 and

fxx
5π
3
, 5π
3

> 0, so f 5π
3
, 5π
3

= − 3
√
3

2
is a local minimum.

25. f(x, y) = x4 − 5x2 + y2 +3x+2 ⇒ fx(x, y) = 4x
3 − 10x+3 and fy(x, y) = 2y. fy = 0 ⇒ y = 0, and the graph

of fx shows that the roots of fx = 0 are approximately x = −1.714, 0.312 and 1.402. (Alternatively, we could have used a

calculator or a CAS to find these roots.) So to three decimal places, the critical points are (−1.714, 0), (1.402, 0), and

(0.312, 0). Now since fxx = 12x2 − 10, fxy = 0, fyy = 2, and D = 24x2 − 20, we have D(−1.714, 0) > 0,

fxx(−1.714, 0) > 0, D(1.402, 0) > 0, fxx(1.402, 0) > 0, and D(0.312, 0) < 0. Therefore f(−1.714, 0) ≈ −9.200 and

f(1.402, 0) ≈ 0.242 are local minima, and (0.312, 0) is a saddle point. The lowest point on the graph is approximately

(−1.714, 0,−9.200).

27. f(x, y) = 2x+ 4x2 − y2 + 2xy2 − x4 − y4 ⇒ fx(x, y) = 2 + 8x+ 2y
2 − 4x3, fy(x, y) = −2y + 4xy − 4y3.

Now fy = 0 ⇔ 2y(2y2 − 2x+ 1) = 0 ⇔ y = 0 or y2 = x− 1
2

. The first of these implies that fx = −4x3 + 8x+ 2,

and the second implies that fx = 2 + 8x+ 2 x− 1
2
− 4x3 = −4x3 + 10x+ 1. From the graphs, we see that the first

possibility for fx has roots at approximately −1.267, −0.259, and 1.526, and the second has a root at approximately 1.629

(the negative roots do not give critical points, since y2 = x− 1
2

must be positive). So to three decimal places, f has critical

points at (−1.267, 0), (−0.259, 0), (1.526, 0), and (1.629,±1.063). Now since fxx = 8− 12x2, fxy = 4y,

fyy = 4x− 12y2, and D = (8− 12x2)(4x− 12y2)− 16y2, we have D(−1.267, 0) > 0, fxx(−1.267, 0) > 0,

D(−0.259, 0) < 0, D(1.526, 0) < 0, D(1.629,±1.063) > 0, and fxx(1.629,±1.063) < 0. Therefore, to three decimal

places, f(−1.267, 0) ≈ 1.310 and f(1.629,±1.063) ≈ 8.105 are local maxima, and (−0.259, 0) and (1.526, 0) are saddle

points. The highest points on the graph are approximately (1.629,±1.063, 8.105).
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29. Since f is a polynomial it is continuous on D, so an absolute maximum and minimum exist. Here fx = 4, fy = −5 so

there are no critical points inside D. Thus the absolute extrema must both occur on the boundary. Along L1: x = 0 and

f(0, y) = 1− 5y for 0 ≤ y ≤ 3, a decreasing function in y, so the maximum value is f (0, 0) = 1 and the minimum value

is f(0, 3) = −14. Along L2: y = 0 and f(x, 0) = 1 + 4x for 0 ≤ x ≤ 2, an

increasing function in x, so the minimum value is f(0, 0) = 1 and the maximum

value is f(2, 0) = 9. Along L3: y = − 3
2
x+ 3 and f x,− 3

2
x+ 3 = 23

2
x− 14

for 0 ≤ x ≤ 2, an increasing function in x, so the minimum value is

f(0, 3) = −14 and the maximum value is f(2, 0) = 9. Thus the absolute

maximum of f on D is f(2, 0) = 9 and the absolute minimum is f(0, 3) = −14.

31. fx(x, y) = 2x+ 2xy, fy(x, y) = 2y + x2, and setting fx = fy = 0

gives (0, 0) as the only critical point in D, with f(0, 0) = 4.

On L1: y = −1, f(x,−1) = 5, a constant.

On L2: x = 1, f(1, y) = y2 + y + 5, a quadratic in y which attains its

maximum at (1, 1), f(1, 1) = 7 and its minimum at 1,− 1
2

, f 1,− 1
2
= 19

4
.

On L3: f(x, 1) = 2x2 + 5 which attains its maximum at (−1, 1) and (1, 1)

with f(±1, 1) = 7 and its minimum at (0, 1), f(0, 1) = 5.

On L4: f(−1, y) = y2 + y + 5 with maximum at (−1, 1), f(−1, 1) = 7 and minimum at −1,− 1
2

, f −1,− 1
2
= 19

4
.

Thus the absolute maximum is attained at both (±1, 1) with f(±1, 1) = 7 and the absolute minimum on D is attained at

(0, 0) with f(0, 0) = 4.

33. f(x, y) = x4 + y4 − 4xy+2 is a polynomial and hence continuous on D, so

it has an absolute maximum and minimum on D. In Exercise 7, we found the

critical points of f ; only (1, 1) with f(1, 1) = 0 is inside D. On L1: y = 0,

f(x, 0) = x4 + 2, 0 ≤ x ≤ 3, a polynomial in x which attains its maximum

at x = 3, f(3, 0) = 83, and its minimum at x = 0, f(0, 0) = 2.

On L2: x = 3, f(3, y) = y4 − 12y + 83, 0 ≤ y ≤ 2, a polynomial in y

which attains its minimum at y = 3
√
3, f 3, 3

√
3 = 83− 9 3

√
3 ≈ 70.0, and its maximum at y = 0, f(3, 0) = 83.

On L3: y = 2, f(x, 2) = x4 − 8x+ 18, 0 ≤ x ≤ 3, a polynomial in x which attains its minimum at x = 3
√
2,

f 3
√
2, 2 = 18− 6 3

√
2 ≈ 10.4, and its maximum at x = 3, f(3, 2) = 75. On L4: x = 0, f(0, y) = y4 + 2, 0 ≤ y ≤ 2, a

polynomial in y which attains its maximum at y = 2, f(0, 2) = 18, and its minimum at y = 0, f(0, 0) = 2. Thus the absolute

maximum of f on D is f(3, 0) = 83 and the absolute minimum is f(1, 1) = 0.
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35. fx(x, y) = 6x2 and fy(x, y) = 4y3. And so fx = 0 and fy = 0 only occur when x = y = 0. Hence, the only critical point

inside the disk is at x = y = 0 where f(0, 0) = 0. Now on the circle x2 + y2 = 1, y2 = 1− x2 so let

g(x) = f(x, y) = 2x3 + (1− x2)2 = x4 + 2x3 − 2x2 + 1,−1 ≤ x ≤ 1. Then g0(x) = 4x3 + 6x2 − 4x = 0 ⇒ x = 0,

−2, or 1
2

. f(0,±1) = g (0) = 1, f 1
2
,±

√
3
2

= g 1
2
= 13

16
, and (−2,−3) is not in D. Checking the endpoints, we get

f(−1, 0) = g(−1) = −2 and f(1, 0) = g(1) = 2. Thus the absolute maximum and minimum of f on D are f(1, 0) = 2 and

f(−1, 0) = −2.

Another method: On the boundary x2 + y2 = 1 we can write x = cos θ, y = sin θ, so f(cos θ, sin θ) = 2 cos3 θ + sin4 θ,

0 ≤ θ ≤ 2π.

37. f(x, y) = −(x2 − 1)2 − (x2y − x− 1)2 ⇒ fx(x, y) = −2(x2 − 1)(2x)− 2(x2y − x− 1)(2xy − 1) and

fy(x, y) = −2(x2y − x− 1)x2. Setting fy(x, y) = 0 gives either x = 0 or x2y − x− 1 = 0.

There are no critical points for x = 0, since fx(0, y) = −2, so we set x2y − x− 1 = 0 ⇔ y =
x+ 1

x2
[x 6= 0],

so fx x,
x+ 1

x2
= −2(x2 − 1)(2x)− 2 x2

x+ 1

x2
− x− 1 2x

x+ 1

x2
− 1 = −4x(x2 − 1). Therefore

fx(x, y) = fy(x, y) = 0 at the points (1, 2) and (−1, 0). To classify these critical points, we calculate

fxx(x, y) = −12x2 − 12x2y2 + 12xy + 4y + 2, fyy(x, y) = −2x4,

and fxy(x, y) = −8x3y + 6x2 + 4x. In order to use the Second

Derivatives Test we calculate

D(−1, 0) = fxx(−1, 0) fyy(−1, 0)− [fxy(−1, 0)]2 = 16 > 0,

fxx(−1, 0) = −10 < 0, D(1, 2) = 16 > 0, and fxx(1, 2) = −26 < 0, so

both (−1, 0) and (1, 2) give local maxima.

39. Let d be the distance from (2, 1,−1) to any point (x, y, z) on the plane x+ y − z = 1, so

d = (x− 2)2 + (y − 1)2 + (z + 1)2 where z = x + y − 1, and we minimize

d2 = f(x, y) = (x− 2)2 + (y − 1)2 + (x+ y)2. Then fx(x, y) = 2(x− 2) + 2(x+ y) = 4x+ 2y − 4,

fy(x, y) = 2(y− 1)+ 2(x+ y) = 2x+4y− 2. Solving 4x+2y− 4 = 0 and 2x+4y− 2 = 0 simultaneously gives x = 1,

y = 0. An absolute minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a

critical point, so the shortest distance occurs for x = 1, y = 0 for which d = (1− 2)2 + (0− 1)2 + (0 + 1)2 = √3.

41. Let d be the distance from the point (4, 2, 0) to any point (x, y, z) on the cone, so d = (x− 4)2 + (y − 2)2 + z2 where

z2 = x2 + y2, and we minimize d2 = (x− 4)2 + (y − 2)2 + x2 + y2 = f (x, y). Then

fx (x, y) = 2 (x− 4) + 2x = 4x− 8, fy (x, y) = 2 (y − 2) + 2y = 4y − 4, and the critical points occur when fx = 0 ⇒
x = 2, fy = 0 ⇒ y = 1. Thus the only critical point is (2, 1). An absolute minimum exists (since there is a minimum

distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4, 2, 0) are 2, 1,±√5 .
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43. x+ y + z = 100, so maximize f(x, y) = xy(100− x− y). fx = 100y − 2xy − y2, fy = 100x− x2 − 2xy,

fxx = −2y, fyy = −2x, fxy = 100− 2x− 2y. Then fx = 0 implies y = 0 or y = 100− 2x. Substituting y = 0 into

fy = 0 gives x = 0 or x = 100 and substituting y = 100− 2x into fy = 0 gives 3x2 − 100x = 0 so x = 0 or 100
3

.

Thus the critical points are (0, 0), (100, 0), (0, 100) and 100
3 , 1003 .

D(0, 0) = D(100, 0) = D(0, 100) = −10,000 while D 100
3
, 100
3

= 10,000
3

and fxx 100
3
, 100
3

= − 200
3

< 0. Thus (0, 0),

(100, 0) and (0, 100) are saddle points whereas f 100
3

, 100
3

is a local maximum. Thus the numbers are x = y = z = 100
3

.

45. Center the sphere at the origin so that its equation is x2 + y2 + z2 = r2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies x2 + y2 + z2 = r2, so take (x, y, z) to be the vertex

in the first octant. Then the box has length 2x, width 2y, and height 2z = 2 r2 − x2 − y2 with volume given by

V (x, y) = (2x)(2y) 2 r2 − x2 − y2 = 8xy r2 − x2 − y2 for 0 < x < r, 0 < y < r. Then

Vx = (8xy) · 12 (r2 − x2 − y2)−1/2(−2x) + r2 − x2 − y2 · 8y = 8y(r2 − 2x2 − y2)

r2 − x2 − y2
and Vy =

8x(r2 − x2 − 2y2)
r2 − x2 − y2

.

Setting Vx = 0 gives y = 0 or 2x2 + y2 = r2, but y > 0 so only the latter solution applies. Similarly, Vy = 0 with x > 0

implies x2 + 2y2 = r2. Substituting, we have 2x2 + y2 = x2 + 2y2 ⇒ x2 = y2 ⇒ y = x. Then x2 + 2y2 = r2 ⇒
3x2 = r2 ⇒ x = r2/3 = r/

√
3 = y. Thus the only critical point is r/

√
3, r/

√
3 . There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when x = y = r/
√
3 and the maximum

volume is V r√
3
, r√

3
= 8 r√

3

r√
3

r2 − r√
3

2

− r√
3

2

=
8

3
√
3
r3.

47. Maximize f(x, y) = xy

3
(6− x− 2y), then the maximum volume is V = xyz.

fx =
1
3 (6y − 2xy − y2) = 1

3y(6− 2x− 2y) and fy = 1
3x (6− x− 4y). Setting fx = 0 and fy = 0 gives the critical point

(2, 1) which geometrically must yield a maximum. Thus the volume of the largest such box is V = (2)(1) 2
3
= 4

3 .

49. Let the dimensions be x, y, and z; then 4x + 4y + 4z = c and the volume is

V = xyz = xy 1
4
c− x− y = 1

4
cxy− x2y− xy2, x > 0, y > 0. Then Vx = 1

4
cy − 2xy− y2 and Vy = 1

4
cx− x2 − 2xy,

so Vx = 0 = Vy when 2x+ y = 1
4
c and x+ 2y = 1

4
c. Solving, we get x = 1

12
c, y = 1

12
c and z = 1

4
c− x− y = 1

12
c. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
c.

51. Let the dimensions be x, y and z, then minimize xy + 2(xz + yz) if xyz = 32,000 cm3. Then

f(x, y) = xy + [64,000(x+ y)/xy] = xy + 64,000(x−1 + y−1), fx = y − 64,000x−2, fy = x− 64,000y−2.

And fx = 0 implies y = 64,000/x2; substituting into fy = 0 implies x3 = 64,000 or x = 40 and then y = 40. Now

D(x, y) = [(2)(64,000)]2x−3y−3 − 1 > 0 for (40, 40) and fxx(40, 40) > 0 so this is indeed a minimum. Thus the

dimensions of the box are x = y = 40 cm, z = 20 cm.
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53. Let x, y, z be the dimensions of the rectangular box. Then the volume of the box is xyz and

L = x2 + y2 + z2 ⇒ L2 = x2 + y2 + z2 ⇒ z = L2 − x2 − y2.

Substituting, we have volume V (x, y) = xy L2 − x2 − y2, (x, y > 0).

Vx = xy · 1
2
(L2 − x2 − y2)−1/2(−2x) + y L2 − x2 − y2 = y L2 − x2 − y2 − x2y

L2 − x2 − y2
,

Vy = x L2 − x2 − y2 − xy2

L2 − x2 − y2
. Vx = 0 implies y(L2 − x2 − y2) = x2y ⇒ y(L2 − 2x2 − y2) = 0 ⇒

2x2 + y2 = L2 (since y > 0), and Vy = 0 implies x(L2 − x2 − y2) = xy2 ⇒ x(L2 − x2 − 2y2) = 0 ⇒
x2 + 2y2 = L2 (since x > 0). Substituting y2 = L2 − 2x2 into x2 + 2y2 = L2 gives x2 + 2L2 − 4x2 = L2 ⇒

3x2 = L2 ⇒ x = L/
√
3 (since x > 0) and then y = L2 − 2 L/

√
3
2
= L/

√
3. So the only critical point is

L/
√
3, L/

√
3 which, from the geometrical nature of the problem, must give an absolute maximum. Thus the maximum

volume is V L/
√
3, L/

√
3 = L/

√
3
2

L2 − L/
√
3
2 − L/

√
3
2
= L3/ 3

√
3 cubic units.

55. Note that here the variables are m and b, and f(m, b) =
n

i=1

[yi − (mxi + b)]2. Then fm =
n

i=1

−2xi[yi − (mxi + b)] = 0

implies
n

i=1

xiyi −mx2i − bxi = 0 or
n

i=1

xiyi = m
n

i=1

x2i + b
n

i=1

xi and fb =
n

i=1

−2[yi − (mxi + b)] = 0 implies

n

i=1

yi = m
n

i=1

xi +
n

i=1

b = m
n

i=1

xi + nb. Thus we have the two desired equations.

Now fmm =
n

i=1

2x2i , fbb =
n

i=1

2 = 2n and fmb =
n

i=1

2xi. And fmm(m, b) > 0 always and

D(m, b) = 4n
n

i=1

x2i − 4
n

i=1

xi

2

= 4 n
n

i=1

x2i −
n

i=1

xi

2

> 0 always so the solutions of these two

equations do indeed minimize
n

i=1

d2i .

15.8 Lagrange Multipliers ET 14.8

1. At the extreme values of f , the level curves of f just touch the curve g(x, y) = 8 with a common tangent line. (See Figure 1

and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve

f(x, y) = c with the largest value of c which still intersects the curve g(x, y) = 8 is approximately c = 59, and the smallest

value of c corresponding to a level curve which intersects g(x, y) = 8 appears to be c = 30. Thus we estimate the maximum

value of f subject to the constraint g(x, y) = 8 to be about 59 and the minimum to be 30.

3. f(x, y) = x2 + y2, g(x, y) = xy = 1, and∇f = λ∇g ⇒ h2x, 2yi = hλy, λxi, so 2x = λy, 2y = λx, and xy = 1.

From the last equation, x 6= 0 and y 6= 0, so 2x = λy ⇒ λ = 2x/y. Substituting, we have 2y = (2x/y)x ⇒
y2 = x2 ⇒ y = ±x. But xy = 1, so x = y = ±1 and the possible points for the extreme values of f are (1, 1) and

(−1,−1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbitrarily large, and hence

f(x, y) = x2 + y2 can be made arbitrarily large. The minimum value is f(1, 1) = f(−1,−1) = 2.
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5. f(x, y) = x2y, g(x, y) = x2 + 2y2 = 6 ⇒ ∇f = 2xy, x2 , λ∇g = h2λx, 4λyi. Then 2xy = 2λx implies x = 0 or

λ = y. If x = 0, then x2 = 4λy implies λ = 0 or y = 0. However, if y = 0 then g(x, y) = 0, a contradiction. So λ = 0 and

then g(x, y) = 6 ⇒ y = ±√3. If λ = y, then x2 = 4λy implies x2 = 4y2, and so g(x, y) = 6 ⇒
4y2 + 2y2 = 6 ⇒ y2 = 1 ⇒ y = ±1. Thus f has possible extreme values at the points 0,±√3 , (±2, 1), and

(±2,−1). After evaluating f at these points, we find the maximum value to be f(±2, 1) = 4 and the minimum to be

f(±2,−1) = −4.

7. f(x, y, z) = 2x+ 6y + 10z, g(x, y, z) = x2 + y2 + z2 = 35 ⇒ ∇f = h2, 6, 10i, λ∇g = h2λx, 2λy, 2λzi. Then

2λx = 2, 2λy = 6, 2λz = 10 imply x = 1

λ
, y = 3

λ
, and z = 5

λ
. But 35 = x2 + y2 + z2 =

1

λ

2

+
3

λ

2

+
5

λ

2

⇒

35 =
35

λ2
⇒ λ = ±1, so f has possible extreme values at the points (1, 3, 5), (−1,−3,−5). The maximum value of f on

x2 + y2 + z2 = 35 is f(1, 3, 5) = 70, and the minimum is f(−1,−3,−5) = −70.

9. f(x, y, z) = xyz, g(x, y, z) = x2 + 2y2 + 3z2 = 6 ⇒ ∇f = hyz, xz, xyi, λ∇g = h2λx, 4λy, 6λzi. If λ = 0 then at

least one of the coordinates is 0, in which case f(x, y, z) = 0. (None of these ends up giving a maximum or minimum.)

If λ 6= 0, then∇f = λ∇g implies λ = (yz)/(2x) = (xz)/(4y) = (xy)/(6z) or x2 = 2y2 and z2 = 2
3
y2. Thus

x2 + 2y2 + 3z2 = 6 implies 6y2 = 6 or y = ±1. Thus the possible remaining points are
√
2,±1, 2

3
,

√
2,±1,− 2

3
, −√2,±1, 2

3
, −√2,±1,− 2

3
. The maximum value of f on the ellipsoid is 2√

3
, occurring when

all coordinates are positive or exactly two are negative and the minimum is − 2√
3

occurring when 1 or 3 of the coordinates are

negative.

11. f(x, y, z) = x2 + y2 + z2, g(x, y, z) = x4 + y4 + z4 = 1 ⇒ ∇f = h2x, 2y, 2zi, λ∇g = 4λx3, 4λy3, 4λz3 .

Case 1: If x 6= 0, y 6= 0 and z 6= 0, then∇f = λ∇g implies λ = 1/(2x2) = 1/(2y2) = 1/(2z2) or x2 = y2 = z2 and

3x4 = 1 or x = ± 1
4√3

giving the points ± 1
4√3
, 1
4√3
, 1
4√3

, ± 1
4√3
,− 1

4√3
, 1
4√3

, ± 1
4√3
, 1
4√3
,− 1

4√3
, ± 1

4√3
,− 1

4√3
,− 1

4√3

all with an f -value of
√
3.

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates

are equal with common value 1√
2

and corresponding f value of
√
2.

Case 3: If exactly two of the variables are zero, then the third variable has value ±1 with the corresponding f value of 1.

Thus on x4 + y4 + z4 = 1, the maximum value of f is
√
3 and the minimum value is 1.

13. f(x, y, z, t) = x+ y + z + t, g(x, y, z, t) = x2 + y2 + z2 + t2 = 1 ⇒ h1, 1, 1, 1i = h2λx, 2λy, 2λz, 2λti, so

λ = 1/(2x) = 1/(2y) = 1/(2z) = 1/(2t) and x = y = z = t. But x2 + y2 + z2 + t2 = 1, so the possible points are

± 1
2
,± 1

2
,± 1

2
,± 1

2
. Thus the maximum value of f is f 1

2
, 1
2
, 1
2
, 1
2
= 2 and the minimum value is

f − 1
2
,− 1

2
,− 1

2
,− 1

2
= −2.
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15. f(x, y, z) = x+ 2y, g(x, y, z) = x+ y + z = 1, h(x, y, z) = y2 + z2 = 4 ⇒ ∇f = h1, 2, 0i, λ∇g = hλ, λ, λi
and μ∇h = h0, 2μy, 2μzi. Then 1 = λ, 2 = λ+ 2μy and 0 = λ+ 2μz so μy = 1

2
= −μz or y = 1/(2μ), z = −1/(2μ).

Thus x+ y + z = 1 implies x = 1 and y2 + z2 = 4 implies μ = ± 1

2
√
2

. Then the possible points are 1,±√2,∓√2

and the maximum value is f 1,
√
2,−√2 = 1 + 2

√
2 and the minimum value is f 1,−√2,√2 = 1− 2√2.

17. f(x, y, z) = yz + xy, g(x, y, z) = xy = 1, h(x, y, z) = y2 + z2 = 1 ⇒ ∇f = hy, x+ z, yi, λ∇g = hλy, λx, 0i,
μ∇h = h0, 2μy, 2μzi. Then y = λy implies λ = 1 [y 6= 0 since g(x, y, z) = 1], x+ z = λx+ 2μy and y = 2μz. Thus

μ = z/(2y) = y/(2y) or y2 = z2, and so y2 + z2 = 1 implies y = ± 1√
2

, z = ± 1√
2

. Then xy = 1 implies x = ±√2 and

the possible points are ±√2,± 1√
2
, 1√

2
, ±√2,± 1√

2
,− 1√

2
. Hence the maximum of f subject to the constraints is

f ±√2,± 1√
2
,± 1√

2
= 3

2
and the minimum is f ±√2,± 1√

2
,∓ 1√

2
= 1

2
.

Note: Since xy = 1 is one of the constraints we could have solved the problem by solving f(y, z) = yz + 1 subject to

y2 + z2 = 1.

19. f(x, y) = e−xy . For the interior of the region, we find the critical points: fx = −ye−xy , fy = −xe−xy , so the only

critical point is (0, 0), and f(0, 0) = 1. For the boundary, we use Lagrange multipliers. g(x, y) = x2 + 4y2 = 1 ⇒
λ∇g = h2λx, 8λyi, so setting∇f = λ∇g we get −ye−xy = 2λx and −xe−xy = 8λy. The first of these gives

e−xy = −2λx/y, and then the second gives −x(−2λx/y) = 8λy ⇒ x2 = 4y2. Solving this last equation with the

constraint x2 + 4y2 = 1 gives x = ± 1√
2

and y = ± 1

2
√
2

. Now f ± 1√
2
,∓ 1

2
√
2
= e1/4 ≈ 1.284 and

f ± 1√
2
,± 1

2
√
2
= e−1/4 ≈ 0.779. The former are the maxima on the region and the latter are the minima.

21. (a) f(x, y) = x, g(x, y) = y2 + x4 − x3 = 0 ⇒ ∇f = h1, 0i = λ∇g = λ 4x3 − 3x2, 2y . Then

1 = λ(4x3 − 3x2) (1) and 0 = 2λy (2). We have λ 6= 0 from (1), so (2) gives y = 0. Then, from the constraint equation,

x4 − x3 = 0 ⇒ x3(x− 1) = 0 ⇒ x = 0 or x = 1. But x = 0 contradicts (1), so the only possible extreme value

subject to the constraint is f(1, 0) = 1. (The question remains whether this is indeed the minimum of f .)

(b) The constraint is y2 + x4 − x3 = 0 ⇔ y2 = x3 − x4. The left side is non-negative, so we must have x3 − x4 ≥ 0
which is true only for 0 ≤ x ≤ 1. Therefore the minimum possible value for f(x, y) = x is 0 which occurs for x = y = 0.

However, λ∇g(0, 0) = λ h0− 0, 0i = h0, 0i and∇f(0, 0) = h1, 0i, so∇f(0, 0) 6= λ∇g(0, 0) for all values of λ.

(c) Here∇g(0, 0) = 0 but the method of Lagrange multipliers requires that∇g 6= 0 everywhere on the constraint curve.

23. P (L,K) = bLαK1−α, g(L,K) = mL+ nK = p ⇒ ∇P = αbLα−1K1−α, (1− α)bLαK−α , λ∇g = hλm,λni.

Then αb(K/L)1−α = λm and (1− α)b(L/K)α = λn and mL+ nK = p, so αb(K/L)1−α/m = (1− α)b(L/K)α/n or

nα/[m(1− α)] = (L/K)α(L/K)1−α or L = Knα/[m(1− α)]. Substituting into mL+ nK = p gives K = (1− α)p/n

and L = αp/m for the maximum production.
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25. Let the sides of the rectangle be x and y. Then f(x, y) = xy, g(x, y) = 2x+ 2y = p ⇒ ∇f(x, y) = hy, xi,
λ∇g = h2λ, 2λi. Then λ = 1

2
y = 1

2
x implies x = y and the rectangle with maximum area is a square with side length 1

4
p.

27. Let f(x, y, z) = d2 = (x− 2)2 + (y − 1)2 + (z + 1)2, then we want to minimize f subject to the constraint

g(x, y, z) = x+ y − z = 1. ∇f = λ∇g ⇒ h2(x− 2), 2(y − 1), 2(z + 1)i = λ h1, 1,−1i, so x = (λ+ 4)/2,

y = (λ+ 2)/2, z = −(λ+ 2)/2. Substituting into the constraint equation gives λ+ 4

2
+

λ+ 2

2
+

λ+ 2

2
= 1 ⇒

3λ+ 8 = 2 ⇒ λ = −2, so x = 1, y = 0, and z = 0. This must correspond to a minimum, so the shortest distance is

d = (1− 2)2 + (0− 1)2 + (0 + 1)2 = √3.

29. Let f(x, y, z) = d2 = (x− 4)2 + (y − 2)2 + z2. Then we want to minimize f subject to the constraint

g (x, y, z) = x2 + y2 − z2 = 0. ∇f = λ∇g ⇒ h2 (x− 4) , 2 (y − 2) , 2zi = h2λx, 2λy,−2λzi, so x− 4 = λx,

y − 2 = λy, and z = −λz. From the last equation we have z + λz = 0 ⇒ z (1 + λ) = 0, so either z = 0 or λ = −1.

But from the constraint equation we have z = 0 ⇒ x2 + y2 = 0 ⇒ x = y = 0 which is not possible from the first two

equations. So λ = −1 and x− 4 = λx ⇒ x = 2, y − 2 = λy ⇒ y = 1, and x2 + y2 − z2 = 0 ⇒
4 + 1− z2 = 0 ⇒ z = ±√5. This must correspond to a minimum, so the points on the cone closest to (4, 2, 0)

are 2, 1,±√5 .

31. f(x, y, z) = xyz, g(x, y, z) = x+ y + z = 100 ⇒ ∇f = hyz, xz, xyi = λ∇g = hλ, λ, λi. Then λ = yz = xz = xy

implies x = y = z = 100
3

.

33. If the dimensions are 2x, 2y, and 2z, then maximize f(x, y, z) = (2x)(2y)(2z) = 8xyz subject to

g(x, y, z) = x2 + y2 + z2 = r2 (x > 0, y > 0, z > 0). Then∇f = λ∇g ⇒ h8yz, 8xz, 8xyi = λ h2x, 2y, 2zi ⇒

8yz = 2λx, 8xz = 2λy, and 8xy = 2λz, so λ = 4yz

x
=
4xz

y
=
4xy

z
. This gives x2z = y2z ⇒ x2 = y2 (since z 6= 0)

and xy2 = xz2 ⇒ z2 = y2, so x2 = y2 = z2 ⇒ x = y = z, and substituting into the constraint

equation gives 3x2 = r2 ⇒ x = r/
√
3 = y = z. Thus the largest volume of such a box is

f r√
3
, r√

3
, r√

3
= 8 r√

3

r√
3

r√
3
=

8

3
√
3
r3.

35. f(x, y, z) = xyz, g(x, y, z) = x+ 2y + 3z = 6 ⇒ ∇f = hyz, xz, xyi = λ∇g = hλ, 2λ, 3λi.
Then λ = yz = 1

2
xz = 1

3
xy implies x = 2y, z = 2

3
y. But 2y + 2y + 2y = 6 so y = 1, x = 2, z = 2

3
and the volume

is V = 4
3

.

37. f(x, y, z) = xyz, g(x, y, z) = 4(x+ y + z) = c ⇒ ∇f = hyz, xz, xyi, λ∇g = h4λ, 4λ, 4λi. Thus

4λ = yz = xz = xy or x = y = z = 1
12
c are the dimensions giving the maximum volume.

39. If the dimensions of the box are given by x, y, and z, then we need to find the maximum value of f(x, y, z) = xyz

[x, y, z > 0] subject to the constraint L = x2 + y2 + z2 or g(x, y, z) = x2 + y2 + z2 = L2. ∇f = λ∇g ⇒

hyz, xz, xyi = λh2x, 2y, 2zi, so yz = 2λx ⇒ λ =
yz

2x
, xz = 2λy ⇒ λ =

xz

2y
, and xy = 2λz ⇒ λ =

xy

2z
. Thus
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λ =
yz

2x
=

xz

2y
⇒ x2 = y2 [since z 6= 0] ⇒ x = y and λ = yz

2x
=

xy

2z
⇒ x = z [since y 6= 0].

Substituting into the constraint equation gives x2 + x2 + x2 = L2 ⇒ x2 = L2/3 ⇒ x = L/
√
3 = y = z and the

maximum volume is L/
√
3

3
= L3/ 3

√
3 .

41. We need to find the extreme values of f(x, y, z) = x2 + y2 + z2 subject to the two constraints g(x, y, z) = x+ y + 2z = 2

and h(x, y, z) = x2 + y2 − z = 0. ∇f = h2x, 2y, 2zi, λ∇g = hλ, λ, 2λi and μ∇h = h2μx, 2μy,−μi. Thus we need

2x = λ+ 2μx (1), 2y = λ+ 2μy (2), 2z = 2λ− μ (3), x+ y + 2z = 2 (4), and x2 + y2 − z = 0 (5).

From (1) and (2), 2(x− y) = 2μ(x− y), so if x 6= y, μ = 1. Putting this in (3) gives 2z = 2λ− 1 or λ = z + 1
2

, but putting

μ = 1 into (1) says λ = 0. Hence z + 1
2
= 0 or z = − 1

2
. Then (4) and (5) become x+ y − 3 = 0 and x2 + y2 + 1

2
= 0. The

last equation cannot be true, so this case gives no solution. So we must have x = y. Then (4) and (5) become 2x+2z = 2 and

2x2 − z = 0 which imply z = 1− x and z = 2x2. Thus 2x2 = 1− x or 2x2 + x− 1 = (2x− 1)(x+ 1) = 0 so x = 1
2

or

x = −1. The two points to check are 1
2
, 1
2
, 1
2

and (−1,−1, 2): f 1
2
, 1
2
, 1
2
= 3

4
and f(−1,−1, 2) = 6. Thus 1

2
, 1
2
, 1
2

is

the point on the ellipse nearest the origin and (−1,−1, 2) is the one farthest from the origin.

43. f(x, y, z) = yex−z , g(x, y, z) = 9x2 + 4y2 + 36z2 = 36, h(x, y, z) = xy + yz = 1. ∇f = λ∇g + μ∇h ⇒
yex−z, ex−z,−yex−z = λh18x, 8y, 72zi+ μhy, x+ z, yi, so yex−z = 18λx+ μy, ex−z = 8λy + μ(x+ z),

−yex−z = 72λz + μy, 9x2 + 4y2 + 36z2 = 36, xy + yz = 1. Using a CAS to solve these 5 equations simultaneously for x,

y, z, λ, and μ (in Maple, use the allvalues command), we get 4 real-valued solutions:

x ≈ 0.222444, y ≈ −2.157012, z ≈ −0.686049, λ ≈ −0.200401, μ ≈ 2.108584
x ≈ −1.951921, y ≈ −0.545867, z ≈ 0.119973, λ ≈ 0.003141, μ ≈ −0.076238
x ≈ 0.155142, y ≈ 0.904622, z ≈ 0.950293, λ ≈ −0.012447, μ ≈ 0.489938
x ≈ 1.138731, y ≈ 1.768057, z ≈ −0.573138, λ ≈ 0.317141, μ ≈ 1.862675

Substituting these values into f gives f(0.222444,−2.157012,−0.686049) ≈ −5.3506,

f(−1.951921,−0.545867, 0.119973) ≈ −0.0688, f(0.155142, 0.904622, 0.950293) ≈ 0.4084,

f(1.138731, 1.768057,−0.573138) ≈ 9.7938. Thus the maximum is approximately 9.7938, and the mininum is

approximately −5.3506.

45. (a) We wish to maximize f(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn subject to g(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn = c

and xi > 0.

∇f = 1
n
(x1x2 · · ·xn) 1n−1(x2 · · ·xn) , 1

n
(x1x2 · · ·xn) 1n−1(x1x3 · · ·xn) , . . . , 1

n
(x1x2 · · ·xn) 1n−1(x1 · · ·xn−1)

and λ∇g = hλ, λ, . . . , λi, so we need to solve the system of equations

1
n
(x1x2 · · ·xn) 1n−1(x2 · · ·xn) = λ ⇒ x

1/n
1 x

1/n
2 · · ·x1/nn = nλx1

1
n
(x1x2 · · ·xn) 1n−1(x1x3 · · ·xn) = λ ⇒ x

1/n
1 x

1/n
2 · · ·x1/nn = nλx2

...
1
n (x1x2 · · ·xn)

1
n−1(x1 · · ·xn−1) = λ ⇒ x

1/n
1 x

1/n
2 · · ·x1/nn = nλxn
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This implies nλx1 = nλx2 = · · · = nλxn. Note λ 6= 0, otherwise we can’t have all xi > 0. Thus x1 = x2 = · · · = xn.

But x1 + x2 + · · ·+ xn = c ⇒ nx1 = c ⇒ x1 =
c

n
= x2 = x3 = · · · = xn. Then the only point where f can

have an extreme value is c

n
,
c

n
, . . . , c

n
. Since we can choose values for (x1, x2, . . . , xn) that make f as close to

zero (but not equal) as we like, f has no minimum value. Thus the maximum value is

f
c

n
,
c

n
, . . . , c

n
= n

c

n
· c
n
· · · · · c

n
=

c

n
.

(b) From part (a), c
n

is the maximum value of f . Thus f(x1, x2, . . . , xn) = n
√
x1x2 · · ·xn ≤ c

n
. But

x1 + x2 + · · ·+ xn = c, so n
√
x1x2 · · ·xn ≤ x1 + x2 + · · ·+ xn

n
. These two means are equal when f attains its

maximum value c

n
, but this can occur only at the point c

n
,
c

n
, . . . , c

n
we found in part (a). So the means are equal only

when x1 = x2 = x3 = · · · = xn =
c

n
.

15 Review ET 14

1. (a) A function f of two variables is a rule that assigns to each ordered pair (x, y) of real numbers in its domain a unique real

number denoted by f(x, y).

(b) One way to visualize a function of two variables is by graphing it, resulting in the surface z = f(x, y). Another method for

visualizing a function of two variables is a contour map. The contour map consists of level curves of the function which are

horizontal traces of the graph of the function projected onto the xy-plane. Also, we can use an arrow diagram such as

Figure 1 in Section 15.1 [ET 14.1].

2. A function f of three variables is a rule that assigns to each ordered triple (x, y, z) in its domain a unique real number

f(x, y, z). We can visualize a function of three variables by examining its level surfaces f(x, y, z) = k, where k is a constant.

3. lim
(x,y)→(a,b)

f(x, y) = L means the values of f(x, y) approach the number L as the point (x, y) approaches the point (a, b)

along any path that is within the domain of f . We can show that a limit at a point does not exist by finding two different paths

approaching the point along which f(x, y) has different limits.

4. (a) See Definition 15.2.4 [ET 14.2.4].

(b) If f is continuous on R2, its graph will appear as a surface without holes or breaks.

5. (a) See (2) and (3) in Section 15.3 [ET 14.3].

(b) See “Interpretations of Partial Derivatives” on page 917 [ET 881].

(c) To find fx, regard y as a constant and differentiate f(x, y) with respect to x. To find fy, regard x as a constant and

differentiate f(x, y) with respect to y.

6. See the statement of Clairaut’s Theorem on page 921 [ET 885].
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7. (a) See (2) in Section 15.4 [ET 14.4]

(b) See (19) and the preceding discussion in Section 15.6 [ET 14.6].

8. See (3) and (4) and the accompanying discussion in Section 15.4 [ET 14.4]. We can interpret the linearization of f at (a, b)

geometrically as the linear function whose graph is the tangent plane to the graph of f at (a, b). Thus it is the linear function

which best approximates f near (a, b).

9. (a) See Definition 15.4.7 [ET 14.4.7].

(b) Use Theorem 15.4.8 [ET 14.4.8].

10. See (10) and the associated discussion in Section 15.4 [ET 14.4].

11. See (2) and (3) in Section 15.5 [ET 14.5].

12. See (7) and the preceding discussion in Section 15.5 [ET 14.5].

13. (a) See Definition 15.6.2 [ET 14.6.2]. We can interpret it as the rate of change of f at (x0, y0) in the direction of u.

Geometrically, if P is the point (x0, y0, f(x0, y0)) on the graph of f and C is the curve of intersection of the graph of f

with the vertical plane that passes through P in the direction u, the directional derivative of f at (x0, y0) in the direction of

u is the slope of the tangent line to C at P . (See Figure 5 in Section 15.6 [ET 14.6].)

(b) See Theorem 15.6.3 [ET 14.6.3].

14. (a) See (8) and (13) in Section 15.6 [ET 14.6].

(b) Du f(x, y) = ∇f(x, y) · u or Du f(x, y, z) = ∇f(x, y, z) · u
(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the

function, the gradient points in the direction of steepest ascent.

15. (a) f has a local maximum at (a, b) if f(x, y) ≤ f(a, b) when (x, y) is near (a, b).

(b) f has an absolute maximum at (a, b) if f(x, y) ≤ f(a, b) for all points (x, y) in the domain of f .

(c) f has a local minimum at (a, b) if f(x, y) ≥ f(a, b) when (x, y) is near (a, b).

(d) f has an absolute minimum at (a, b) if f(x, y) ≥ f(a, b) for all points (x, y) in the domain of f .

(e) f has a saddle point at (a, b) if f(a, b) is a local maximum in one direction but a local minimum in another.

16. (a) By Theorem 15.7.2 [ET 14.7.2], if f has a local maximum at (a, b) and the first-order partial derivatives of f exist there,

then fx(a, b) = 0 and fy(a, b) = 0.

(b) A critical point of f is a point (a, b) such that fx(a, b) = 0 and fy(a, b) = 0 or one of these partial derivatives does not

exist.

17. See (3) in Section 15.7 [ET 14.7]

18. (a) See Figure 11 and the accompanying discussion in Section 15.7 [ET 14.7].

(b) See Theorem 15.7.8 [ ET 14.7.8].

(c) See the procedure outlined in (9) in Section 15.7 [ET 14.7].

19. See the discussion beginning on page 970 [ET 934]; see “Two Constraints” on page 974 [ET 938].
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1. True. fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
from Equation 15.3.3 [ET 14.3.3]. Let h = y − b. As h→ 0, y → b. Then by

substituting, we get fy(a, b) = lim
y→b

f(a, y)− f(a, b)

y − b
.

3. False. fxy =
∂2f

∂y ∂x
.

5. False. See Example 15.2.3 [ET 14.2.3].

7. True. If f has a local minimum and f is differentiable at (a, b) then by Theorem 15.7.2 [ET 14.7.2], fx(a, b) = 0 and

fy(a, b) = 0, so∇f(a, b) = hfx(a, b), fy(a, b)i = h0, 0i = 0.

9. False. ∇f(x, y) = h0, 1/yi.

11. True. ∇f = hcosx, cos yi, so |∇f | = cos2 x+ cos2 y. But |cos θ| ≤ 1, so |∇f | ≤ √2. Now

Du f (x, y) = ∇f · u = |∇f | |u| cos θ, but u is a unit vector, so |Du f(x, y)| ≤
√
2 · 1 · 1 = √2.

1. ln(x+ y + 1) is defined only when x+ y + 1 > 0 ⇒ y > −x− 1,

so the domain of f is {(x, y) | y > −x− 1}, all those points above the

line y = −x− 1.

3. z = f(x, y) = 1− y2, a parabolic cylinder 5. The level curves are 4x2 + y2 = k or 4x2 + y2 = k2,

k ≥ 0, a family of ellipses.
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7.

9. f is a rational function, so it is continuous on its domain. Since f is defined at (1, 1), we use direct substitution to evaluate the

limit: lim
(x,y)→(1,1)

2xy

x2 + 2y2
=

2(1)(1)

12 + 2(1)2
=
2

3
.

11. (a) Tx(6, 4) = lim
h→0

T (6 + h, 4)− T (6, 4)

h
, so we can approximate Tx(6, 4) by considering h = ±2 and

using the values given in the table: Tx(6, 4) ≈ T (8, 4)− T (6, 4)

2
=
86− 80
2

= 3,

Tx(6, 4) ≈ T (4, 4)− T (6, 4)

−2 =
72− 80
−2 = 4. Averaging these values, we estimate Tx(6, 4) to be approximately

3.5◦C/m. Similarly, Ty (6, 4) = lim
h→0

T (6, 4 + h)− T (6, 4)

h
, which we can approximate with h = ±2:

Ty(6, 4) ≈ T (6, 6)− T (6, 4)

2
=
75− 80
2

= −2.5, Ty(6, 4) ≈ T (6, 2)− T (6, 4)

−2 =
87− 80
−2 = −3.5. Averaging these

values, we estimate Ty(6, 4) to be approximately−3.0◦C/m.

(b) Here u = 1√
2
, 1√

2
, so by Equation 15.6.9 [ ET 14.6.9], Du T (6, 4) = ∇T (6, 4) · u = Tx(6, 4)

1√
2
+ Ty(6, 4)

1√
2

.

Using our estimates from part (a), we have Du T (6, 4) ≈ (3.5) 1√
2
+ (−3.0) 1√

2
= 1

2
√
2
≈ 0.35. This means that as we

move through the point (6, 4) in the direction of u, the temperature increases at a rate of approximately 0.35◦C/m.

Alternatively, we can use Definition 15.6.2 [ ET 14.6.2]: Du T (6, 4) = lim
h→0

T 6 + h 1√
2
, 4 + h 1√

2
− T (6, 4)

h
,

which we can estimate with h = ±2√2. Then Du T (6, 4) ≈ T (8, 6)− T (6, 4)

2
√
2

=
80− 80
2
√
2

= 0,

Du T (6, 4) ≈ T (4, 2)− T (6, 4)

−2√2 =
74− 80
−2√2 =

3√
2

. Averaging these values, we have Du T (6, 4) ≈ 3

2
√
2
≈ 1.1◦C/m.

(c) Txy(x, y) =
∂

∂y
[Tx(x, y)] = lim

h→0

Tx(x, y + h)− Tx(x, y)

h
, so Txy(6, 4) = lim

h→0

Tx(6, 4 + h)− Tx(6, 4)

h
which we can

estimate with h = ±2. We have Tx(6, 4) ≈ 3.5 from part (a), but we will also need values for Tx(6, 6) and Tx(6, 2). If we

use h = ±2 and the values given in the table, we have

Tx(6, 6) ≈ T (8, 6)− T (6, 6)

2
=
80 − 75

2
= 2.5, Tx(6, 6) ≈ T (4, 6)− T (6, 6)

−2 =
68 − 75

−2 = 3.5.

Averaging these values, we estimate Tx(6, 6) ≈ 3.0. Similarly,
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Tx(6, 2) ≈ T (8, 2)− Tx(6, 2)

2
=
90 − 87

2
= 1.5, Tx(6, 2) ≈ T (4, 2)− T (6, 2)

−2 =
74 − 87

−2 = 6.5.

Averaging these values, we estimate Tx(6, 2) ≈ 4.0. Finally, we estimate Txy(6, 4):

Txy(6, 4) ≈ Tx(6, 6)− Tx(6, 4)

2
=
3.0 − 3.5

2
= −0.25, Txy(6, 4) ≈ Tx(6, 2)− Tx(6, 4)

−2 =
4.0 − 3.5

−2 = −0.25.

Averaging these values, we have Txy (6, 4) ≈ −0.25.

13. f(x, y) = 2x+ y2 ⇒ fx =
1
2 (2x+ y2)−1/2(2) =

1

2x+ y2
, fy = 1

2 (2x+ y2)−1/2(2y) =
y

2x+ y2

15. g(u, v) = u tan−1 v ⇒ gu = tan
−1 v, gv =

u

1 + v2

17. T (p, q, r) = p ln(q + er) ⇒ Tp = ln(q + er), Tq =
p

q + er
, Tr =

per

q + er

19. f(x, y) = 4x3 − xy2 ⇒ fx = 12x
2 − y2, fy = −2xy, fxx = 24x, fyy = −2x, fxy = fyx = −2y

21. f(x, y, z) = xkylzm ⇒ fx = kxk−1ylzm, fy = lxkyl−1zm, fz = mxkylzm−1, fxx = k(k − 1)xk−2ylzm,

fyy = l(l − 1)xkyl−2zm, fzz = m(m− 1)xkylzm−2, fxy = fyx = klxk−1yl−1zm, fxz = fzx = kmxk−1ylzm−1,

fyz = fzy = lmxkyl−1zm−1

23. z = xy + xey/x ⇒ ∂z

∂x
= y − y

x
ey/x + ey/x, ∂z

∂y
= x+ ey/x and

x
∂z

∂x
+y

∂z

∂y
= x y − y

x
ey/x + ey/x +y x+ ey/x = xy−yey/x+xey/x+xy+yey/x = xy+xy+xey/x = xy+z.

25. (a) zx = 6x+ 2 ⇒ zx(1,−2) = 8 and zy = −2y ⇒ zy(1,−2) = 4, so an equation of the tangent plane is

z − 1 = 8(x− 1) + 4(y + 2) or z = 8x+ 4y + 1.

(b) A normal vector to the tangent plane (and the surface) at (1,−2, 1) is h8, 4,−1i. Then parametric equations for the normal

line there are x = 1 + 8t, y = −2 + 4t, z = 1− t, and symmetric equations are x− 1
8

=
y + 2

4
=

z − 1
−1 .

27. (a) Let F (x, y, z) = x2 + 2y2 − 3z2. Then Fx = 2x, Fy = 4y, Fz = −6z, so Fx(2,−1, 1) = 4, Fy(2,−1, 1) = −4,

Fz(2,−1, 1) = −6. From Equation 15.6.19 [ET 14.6.19], an equation of the tangent plane is

4(x− 2)− 4(y + 1)− 6(z − 1) = 0 or, equivalently, 2x− 2y − 3z = 3.

(b) From Equations 15.6.20 [ET 14.6.20], symmetric equations for the normal line are x− 2
4

=
y + 1

−4 =
z − 1
−6 .

29. (a) r(u, v) = (u+ v) i+ u2 j + v2 k and the point (3, 4, 1) corresponds to u = 2, v = 1. Then ru = i+ 2u j ⇒
ru(2, 1) = i+ 4 j and rv = i+ 2v k ⇒ rv(2, 1) = i+ 2 j. A normal vector to the surface at (3, 4, 1) is

ru × rv = 8 i− 2 j− 4k, so an equation of the tangent plane there is 8(x− 3)− 2(y− 4)− 4(z− 1) = 0 or equivalently

4x− y − 2z = 6.

(b) A direction vector for the normal line through (3, 4, 1) is 8 i− 2 j− 4k, so a vector equation is

r(t) = (3 i+ 4 j+ k) + t (8 i− 2 j− 4k), and the corresponding parametric equations are x = 3 + 8t, y = 4− 2t,
z = 1− 4t.



216 ¤ CHAPTER 15 PARTIAL DERIVATIVES ET CHAPTER 14

31. The hyperboloid is a level surface of the function F (x, y, z) = x2 + 4y2 − z2, so a normal vector to the surface at (x0,y0, z0)

is∇F (x0,y0, z0) = h2x0, 8y0,−2z0i. A normal vector for the plane 2x+ 2y + z = 5 is h2, 2, 1i. For the planes to be

parallel, we need the normal vectors to be parallel, so h2x0, 8y0,−2z0i = k h2, 2, 1i, or x0 = k , y0 = 1
4
k, and z0 = − 1

2
k.

But x20 + 4y20 − z20 = 4 ⇒ k2 + 1
4k

2 − 1
4k

2 = 4 ⇒ k2 = 4 ⇒ k = ±2. So there are two such points:

2, 1
2
,−1 and −2,− 1

2
, 1 .

33. f(x, y, z) = x3 y2 + z2 ⇒ fx(x, y, z) = 3x
2 y2 + z2, fy(x, y, z) =

yx3

y2 + z2
, fz(x, y, z) =

zx3

y2 + z2
,

so f(2, 3, 4) = 8(5) = 40, fx(2, 3, 4) = 3(4)
√
25 = 60, fy(2, 3, 4) = 3(8)√

25
= 24

5
, and fz(2, 3, 4) = 4(8)√

25
= 32

5
. Then the

linear approximation of f at (2, 3, 4) is

f(x, y, z)≈ f(2, 3, 4) + fx(2, 3, 4)(x− 2) + fy(2, 3, 4)(y − 3) + fz(2, 3, 4)(z − 4)
= 40 + 60(x− 2) + 24

5 (y − 3) + 32
5 (z − 4) = 60x+ 24

5 y +
32
5 z − 120

Then (1.98)3 (3.01)2 + (3.97)2 = f(1.98, 3.01, 3.97) ≈ 60(1.98) + 24
5
(3.01) + 32

5
(3.97)− 120 = 38.656.

35. du

dp
=

∂u

∂x

dx

dp
+

∂u

∂y

dy

dp
+

∂u

∂z

dz

dp
= 2xy3(1 + 6p) + 3x2y2(pep + ep) + 4z3(p cos p+ sin p)

37. By the Chain Rule, ∂z
∂s

=
∂z

∂x

∂x

∂s
+

∂z

∂y

∂y

∂s
. When s = 1 and t = 2, x = g(1, 2) = 3 and y = h(1, 2) = 6, so

∂z

∂s
= fx(3, 6)gs(1, 2) + fy (3, 6)hs(1, 2) = (7)(−1) + (8)(−5) = −47. Similarly, ∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
, so

∂z

∂t
= fx(3, 6)gt(1, 2) + fy (3, 6)ht(1, 2) = (7)(4) + (8)(10) = 108.

39. ∂z

∂x
= 2xf 0(x2 − y2), ∂z

∂y
= 1 − 2yf 0(x2 − y2) where f 0 = df

d(x2 − y2)
. Then

y
∂z

∂x
+ x

∂z

∂y
= 2xyf 0(x2 − y2) + x− 2xyf 0(x2 − y2) = x.

41. ∂z

∂x
=

∂z

∂u
y +

∂z

∂v

−y
x2

and

∂2z

∂x2
= y

∂

∂x

∂z

∂u
+
2y

x3
∂z

∂v
+
−y
x2

∂

∂x

∂z

∂v
=
2y

x3
∂z

∂v
+ y

∂2z

∂u2
y +

∂2z

∂v ∂u

−y
x2

+
−y
x2

∂2z

∂v2
−y
x2

+
∂2z

∂u ∂v
y

=
2y

x3
∂z

∂v
+ y2

∂2z

∂u2
− 2y2

x2
∂2z

∂u ∂v
+

y2

x4
∂2z

∂v2

Also ∂z

∂y
= x

∂z

∂u
+
1

x

∂z

∂v
and

∂2z

∂y2
= x

∂

∂y

∂z

∂u
+
1

x

∂

∂y

∂z

∂v
= x

∂2z

∂u2
x+

∂2z

∂v ∂u

1

x
+
1

x

∂2z

∂v2
1

x
+

∂2z

∂u ∂v
x = x2

∂2z

∂u2
+ 2

∂2z

∂u ∂v
+
1

x2
∂2z

∂v2
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Thus

x2
∂2z

∂x2
− y2

∂2z

∂y2
=
2y

x

∂z

∂v
+ x2y2

∂2z

∂u2
− 2y2 ∂2z

∂u ∂v
+

y2

x2
∂2z

∂v2
− x2y2

∂2z

∂u2
− 2y2 ∂2z

∂u ∂v
− y2

x2
∂2z

∂v2

=
2y

x

∂z

∂v
− 4y2 ∂2z

∂u ∂v
= 2v

∂z

∂v
− 4uv ∂2z

∂u ∂v

since y = xv =
uv

y
or y2 = uv.

43. ∇f = z2
√
y ex

√
y , xz

2ex
√
y

2
√
y

, 2zex
√
y = zex

√
y z

√
y, xz

2
√
y

, 2

45. ∇f = h1/√x,−2yi, ∇f(1, 5) = h1,−10i, u = 1
5
h3,−4i. Then Du f(1, 5) =

43
5

.

47. ∇f = 2xy, x2 + 1/ 2
√
y , |∇f(2, 1)| = 4, 9

2 . Thus the maximum rate of change of f at (2, 1) is
√
145
2 in the

direction 4, 9
2

.

49. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately 50− 45
8 = 5

8 = 0.625 knot/mi.

51. f(x, y) = x2 − xy + y2 + 9x− 6y + 10 ⇒ fx = 2x− y + 9,

fy = −x+ 2y − 6, fxx = 2 = fyy , fxy = −1. Then fx = 0 and fy = 0

imply y = 1, x = −4. Thus the only critical point is (−4, 1) and

fxx(−4, 1) > 0, D(−4, 1) = 3 > 0, so f(−4, 1) = −11 is a local minimum.

53. f(x, y) = 3xy − x2y − xy2 ⇒ fx = 3y − 2xy − y2,

fy = 3x− x2 − 2xy, fxx = −2y, fyy = −2x, fxy = 3− 2x− 2y. Then

fx = 0 implies y(3− 2x− y) = 0 so y = 0 or y = 3− 2x. Substituting into

fy = 0 implies x(3− x) = 0 or 3x(−1 + x) = 0. Hence the critical points are

(0, 0), (3, 0), (0, 3) and (1, 1). D(0, 0) = D(3, 0) = D(0, 3) = −9 < 0 so

(0, 0), (3, 0), and (0, 3) are saddle points. D(1, 1) = 3 > 0 and

fxx(1, 1) = −2 < 0, so f(1, 1) = 1 is a local maximum.

55. First solve inside D. Here fx = 4y2 − 2xy2 − y3, fy = 8xy − 2x2y − 3xy2.

Then fx = 0 implies y = 0 or y = 4− 2x, but y = 0 isn’t inside D. Substituting

y = 4− 2x into fy = 0 implies x = 0, x = 2 or x = 1, but x = 0 isn’t inside D,

and when x = 2, y = 0 but (2, 0) isn’t inside D. Thus the only critical point inside

D is (1, 2) and f(1, 2) = 4. Secondly we consider the boundary of D.

On L1: f(x, 0) = 0 and so f = 0 on L1. On L2: x = −y + 6 and
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f(−y + 6, y) = y2(6− y)(−2) = −2(6y2 − y3) which has critical pointsat y = 0 and y = 4. Then f(6, 0) = 0 while

f(2, 4) = −64. On L3: f(0, y) = 0, so f = 0 on L3. Thus on D the absolute maximum of f is f(1, 2) = 4 while the

absolute minimum is f(2, 4) = −64.

57. f(x, y) = x3 − 3x+ y4 − 2y2

 

From the graphs, it appears that f has a local maximum f(−1, 0) ≈ 2, local minima f(1,±1) ≈ −3, and saddle points at

(−1,±1) and (1, 0).

To find the exact quantities, we calculate fx = 3x2 − 3 = 0 ⇔ x = ±1 and fy = 4y3 − 4y = 0 ⇔
y = 0, ±1, giving the critical points estimated above. Also fxx = 6x, fxy = 0, fyy = 12y2 − 4, so using the Second

Derivatives Test, D(−1, 0) = 24 > 0 and fxx(−1, 0) = −6 < 0 indicating a local maximum f(−1, 0) = 2;

D(1,±1) = 48 > 0 and fxx(1,±1) = 6 > 0 indicating local minima f(1,±1) = −3; and D(−1,±1) = −48 and

D(1, 0) = −24, indicating saddle points.

59. f(x, y) = x2y, g(x, y) = x2 + y2 = 1 ⇒ ∇f = 2xy, x2 = λ∇g = h2λx, 2λyi. Then 2xy = 2λx and x2 = 2λy

imply λ = x2/(2y) and λ = y if x 6= 0 and y 6= 0. Hence x2 = 2y2. Then x2 + y2 = 1 implies 3y2 = 1 so y = ± 1√
3

and

x = ± 2
3

. [Note if x = 0 then x2 = 2λy implies y = 0 and f (0, 0) = 0.] Thus the possible points are ± 2
3
,± 1√

3
and

the absolute maxima are f ± 2
3 ,

1√
3
= 2

3
√
3

while the absolute minima are f ± 2
3 ,− 1√

3
= − 2

3
√
3

.

61. f(x, y, z) = xyz, g(x, y, z) = x2 + y2 + z2 = 3. ∇f = λ∇g ⇒ hyz, xz, xyi = λh2x, 2y, 2zi. If any of x, y, or z is

zero, then x = y = z = 0 which contradicts x2 + y2 + z2 = 3. Then λ = yz

2x
=

xz

2y
=

xy

2z
⇒ 2y2z = 2x2z ⇒

y2 = x2, and similarly 2yz2 = 2x2y ⇒ z2 = x2. Substituting into the constraint equation gives x2 + x2 + x2 = 3 ⇒
x2 = 1 = y2 = z2. Thus the possible points are (1, 1,±1), (1,−1,±1), (−1, 1,±1), (−1,−1,±1). The absolute maximum

is f(1, 1, 1) = f(1,−1,−1) = f(−1, 1,−1) = f(−1,−1, 1) = 1 and the absolute

minimum is f(1, 1,−1) = f(1,−1, 1) = f(−1, 1, 1) = f(−1,−1,−1) = −1.

63. f(x, y, z) = x2 + y2 + z2, g(x, y, z) = xy2z3 = 2 ⇒ ∇f = h2x, 2y, 2zi = λ∇g = λy2z3, 2λxyz3, 3λxy2z2 .

Since xy2z3 = 2, x 6= 0, y 6= 0 and z 6= 0, so 2x = λy2z3 (1), 1 = λxz3 (2), 2 = 3λxy2z (3). Then (2) and (3) imply

1

xz3
=

2

3xy2z
or y2 = 2

3
z2 so y = ±z 2

3
. Similarly (1) and (3) imply 2x

y2z3
=

2

3xy2z
or 3x2 = z2 so x = ± 1√

3
z. But
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xy2z3 = 2 so x and z must have the same sign, that is, x = 1√
3
z. Thus g(x, y, z) = 2 implies 1√

3
z 2

3z
2 z3 = 2 or

z = ±31/4 and the possible points are (±3−1/4, 3−1/4√2,±31/4), (±3−1/4,−3−1/4√2,±31/4). However at each of these

points f takes on the same value, 2
√
3. But (2, 1, 1) also satisfies g(x, y, z) = 2 and f(2, 1, 1) = 6 > 2

√
3. Thus f has an

absolute minimum value of 2
√
3 and no absolute maximum subject to the constraint xy2z3 = 2.

Alternate solution: g(x, y, z) = xy2z3 = 2 implies y2 = 2

xz3
, so minimize f(x, z) = x2 +

2

xz3
+ z2. Then

fx = 2x− 2

x2z3
, fz = − 6

xz4
+ 2z, fxx = 2 +

4

x3z3
, fzz =

24

xz5
+ 2 and fxz =

6

x2z4
. Now fx = 0 implies

2x3z3 − 2 = 0 or z = 1/x. Substituting into fy = 0 implies −6x3 + 2x−1 = 0 or x = 1
4√3

, so the two critical points are

± 1
4√3
,± 4
√
3 . Then D ± 1

4√3
,± 4
√
3 = (2 + 4) 2 + 24

3
− 6√

3

2

> 0 and fxx ± 1
4√3
,± 4
√
3 = 6 > 0, so each point

is a minimum. Finally, y2 = 2

xz3
, so the four points closest to the origin are ± 1

4√3
,
√
2

4√3
,± 4
√
3 , ± 1

4√3
,−

√
2

4√3
,± 4
√
3 .

65. The area of the triangle is 1
2ca sin θ and the area of the rectangle is bc. Thus, the

area of the whole object is f(a, b, c) = 1
2
ca sin θ + bc. The perimeter of the object

is g(a, b, c) = 2a+ 2b+ c = P . To simplify sin θ in terms of a, b, and c notice

that a2 sin2 θ + 1
2
c
2
= a2 ⇒ sin θ =

1

2a

√
4a2 − c2. Thus

f(a, b, c) =
c

4

√
4a2 − c2 + bc. (Instead of using θ, we could just have used the

Pythagorean Theorem.) As a result, by Lagrange’s method, we must find a, b, c, and λ by solving∇f = λ∇g which gives the

following equations: ca(4a2 − c2)−1/2 = 2λ (1), c = 2λ (2), 1
4
(4a2 − c2)1/2 − 1

4
c2(4a2 − c2)−1/2 + b = λ (3), and

2a+ 2b+ c = P (4). From (2), λ = 1
2
c and so (1) produces ca(4a2 − c2)−1/2 = c ⇒ (4a2 − c2)1/2 = a ⇒

4a2 − c2 = a2 ⇒ c =
√
3 a (5). Similarly, since 4a2 − c2

1/2
= a and λ = 1

2
c, (3) gives a

4
− c2

4a
+ b =

c

2
, so from

(5), a
4
− 3a

4
+ b =

√
3 a

2
⇒ −a

2
−
√
3 a

2
= −b ⇒ b =

a

2
1 +

√
3 (6). Substituting (5) and (6) into (4) we get:

2a+ a 1 +
√
3 +

√
3 a = P ⇒ 3a+ 2

√
3 a = P ⇒ a =

P

3 + 2
√
3
=
2
√
3− 3
3

P and thus

b =
2
√
3− 3 1 +

√
3

6
P =

3−√3
6

P and c = 2−√3 P .





PROBLEMS PLUS
1. The areas of the smaller rectangles are A1 = xy, A2 = (L− x)y,

A3 = (L− x)(W − y), A4 = x(W − y). For 0 ≤ x ≤ L, 0 ≤ y ≤W , let

f(x, y) = A2
1 +A2

2 +A2
3 +A2

4

= x2y2 + (L− x)2y2 + (L− x)2(W − y)2 + x2(W − y)2

= [x2 + (L− x)2][y2 + (W − y)2]

Then we need to find the maximum and minimum values of f(x, y). Here

fx(x, y) = [2x− 2(L − x)][y2 + (W − y)2] = 0 ⇒ 4x− 2L = 0 or x = 1
2
L, and

fy(x, y) = [x
2 + (L− x)2][2y − 2(W − y)] = 0 ⇒ 4y − 2W = 0 or y = W/2. Also

fxx = 4[y
2 + (W − y)2], fyy = 4[x2 + (L− x)2], and fxy = (4x− 2L)(4y − 2W ). Then

D = 16[y2 + (W − y)2][x2 + (L− x)2]− (4x− 2L)2(4y − 2W )2. Thus when x = 1
2
L and y = 1

2
W , D > 0 and

fxx = 2W
2 > 0. Thus a minimum of f occurs at 1

2L,
1
2W and this minimum value is f 1

2L,
1
2W = 1

4L
2W 2.

There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let

g(y) = f(0, y) = f(L, y) = L2[y2 + (W − y)2], 0 ≤ y ≤W . Then g0(y) = L2[2y − 2(W − y)] = 0 ⇔ y = 1
2
W .

And g 1
2
= 1

2
L2W 2. Checking the endpoints, we get g(0) = g(W ) = L2W 2. Along the length of the rectangle let

h(x) = f(x, 0) = f(x,W ) = W 2[x2 + (L− x)2], 0 ≤ x ≤ L. By symmetry h0(x) = 0 ⇔ x = 1
2
L and

h 1
2
L = 1

2
L2W 2. At the endpoints we have h(0) = h(L) = L2W 2. Therefore L2W 2 is the maximum value of f .

This maximum value of f occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is 1
2
h(b1 + b2), where h is the height (the distance between the two parallel sides) and b1, b2 are

the lengths of the bases (the parallel sides). From the figure in the text, we see that h = x sin θ, b1 = w − 2x, and

b2 = w − 2x+ 2x cos θ. Therefore the cross-sectional area of the rain gutter is

A(x, θ) = 1
2x sin θ [(w − 2x) + (w − 2x+ 2x cos θ)] = (x sin θ)(w − 2x+ x cos θ)

= wx sin θ − 2x2 sin θ + x2 sin θ cos θ, 0 < x ≤ 1
2w, 0 < θ ≤ π

2

We look for the critical points of A: ∂A/∂x = w sin θ − 4x sin θ + 2x sin θ cos θ and

∂A/∂θ = wx cos θ − 2x2 cos θ + x2(cos2 θ − sin2 θ), so ∂A/∂x = 0 ⇔ sin θ (w − 4x+ 2x cos θ) = 0 ⇔

cos θ =
4x− w

2x
= 2− w

2x
(0 < θ ≤ π

2 ⇒ sin θ > 0). If, in addition, ∂A/∂θ = 0, then

0 = wx cos θ − 2x2 cos θ + x2(2 cos2 θ − 1)

= wx 2− w

2x
− 2x2 2− w

2x
+ x2 2 2− w

2x

2

− 1

= 2wx− 1
2
w2 − 4x2 + wx+ x2 8− 4w

x
+

w2

2x2
− 1 = −wx+ 3x2 = x(3x− w)
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Since x > 0, we must have x = 1
3w, in which case cos θ = 1

2 , so θ = π
3 , sin θ =

√
3
2 , k =

√
3
6 w, b1 = 1

3w, b2 = 2
3w,

and A =
√
3

12
w2. As in Example 15.7.6 [ET 14.7.6], we can argue from the physical nature of this problem that we have

found a local maximum of A. Now checking the boundary of A, let

g(θ) = A(w/2, θ) = 1
2w

2 sin θ − 1
2w

2 sin θ + 1
4w

2 sin θ cos θ = 1
8w

2 sin 2θ, 0 < θ ≤ π
2 . Clearly g is maximized when

sin 2θ = 1 in which case A = 1
8
w2. Also along the line θ = π

2
, let h(x) = A x, π

2
= wx− 2x2, 0 < x < 1

2
w ⇒

h0(x) = w − 4x = 0 ⇔ x = 1
4
w, and h 1

4
w = w 1

4
w − 2 1

4
w

2
= 1

8
w2. Since 1

8
w2 <

√
3

12
w2, we conclude that

the local maximum found earlier was an absolute maximum.

(b) If the metal were bent into a semi-circular gutter of radius r, we would have w = πr and A = 1
2
πr2 = 1

2
π

w

π

2

=
w2

2π
.

Since w2

2π
>

√
3w2

12
, it would be better to bend the metal into a gutter with a semicircular cross-section.

5. Let g(x, y) = xf
y

x
. Then gx(x, y) = f

y

x
+ xf 0

y

x
− y

x2
= f

y

x
− y

x
f 0

y

x
and

gy(x, y) = xf 0
y

x

1

x
= f 0

y

x
. Thus the tangent plane at (x0, y0, z0) on the surface has equation

z − x0f
y0
x0

= f
y0
x0

− y0x
−1
0 f 0

y0
x0

(x− x0) + f 0
y0
x0

(y − y0) ⇒

f
y0
x0

− y0x
−1
0 f 0

y0
x0

x+ f 0
y0
x0

y − z = 0. But any plane whose equation is of the form ax+ by + cz = 0

passes through the origin. Thus the origin is the common point of intersection.

7. Since we are minimizing the area of the ellipse, and the circle lies above the x-axis,

the ellipse will intersect the circle for only one value of y. This y-value must

satisfy both the equation of the circle and the equation of the ellipse. Now

x2

a2
+

y2

b2
= 1 ⇒ x2 =

a2

b2
b2 − y2 . Substituting into the equation of the

circle gives a2

b2
(b2 − y2) + y2 − 2y = 0 ⇒ b2 − a2

b2
y2 − 2y + a2 = 0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4− 4a2 b
2 − a2

b2
= 0 ⇒

b2 − a2b2 + a4 = 0. The area of the ellipse is A(a, b) = πab, and we minimize this function subject to the constraint

g(a, b) = b2 − a2b2 + a4 = 0.

Now∇A = λ∇g ⇔ πb = λ(4a3 − 2ab2), πa = λ(2b− 2ba2) ⇒ λ =
πb

2a(2a2 − b2)
(1),

λ =
πa

2b(1− a2)
(2), b2 − a2b2 + a4 = 0 (3). Comparing (1) and (2) gives πb

2a(2a2 − b2)
=

πa

2b(1− a2)
⇒

2πb2 = 4πa4 ⇔ a2 = 1√
2
b. Substitute this into (3) to get b = 3√

2
⇒ a = 3

2
.



16 MULTIPLE INTEGRALS ET 15

16.1 Double Integrals over Rectangles ET 15.1

1. (a) The subrectangles are shown in the figure.

The surface is the graph of f(x, y) = xy and ∆A = 4, so we estimate

V≈
3

i=1

2

j=1

f(xi, yj)∆A

= f(2, 2)∆A+ f(2, 4)∆A+ f(4, 2)∆A+ f(4, 4)∆A+ f(6, 2)∆A+ f(6, 4)∆A

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

(b) V ≈
3

i=1

2

j=1

f xi, yj ∆A = f(1, 1)∆A+ f(1, 3)∆A+ f(3, 1)∆A+ f(3, 3)∆A+ f(5, 1)∆A+ f(5, 3)∆A

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the figure. Since ∆A = π2/4, we estimate

R
sin(x+ y) dA ≈

2

i=1

2

j=1

f x∗ij , y
∗
ij ∆A

= f(0, 0)∆A+ f 0,π
2

∆A+ f π
2 , 0 ∆A+ f π

2 ,
π
2

∆A

= 0 π2

4
+ 1 π2

4
+ 1 π2

4
+ 0 π2

4
= π2

2 ≈ 4.935

(b)
R
sin(x+ y) dA ≈

2

i=1

2

j=1

f(xi, yj)∆A

= f π
4
, π
4

∆A+ f π
4
, 3π
4

∆A+ f 3π
4
, π
4

∆A+ f 3π
4
, 3π
4

∆A

= 1 π2

4
+ 0 π2

4
+ 0 π2

4
+ (−1) π2

4
= 0

5. (a) Each subrectangle and its midpoint are shown in the figure. The area of each

subrectangle is ∆A = 2, so we evaluate f at each midpoint and estimate

R
f(x, y) dA ≈

2

i=1

2

j=1

f xi, yj ∆A

= f(1.5, 1)∆A+ f(1.5, 3)∆A

+ f(2.5, 1)∆A+ f(2.5, 3)∆A

= 1(2) + (−8)(2) + 5(2) + (−1)(2) = −6
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(b) The subrectangles are shown in the figure. In each subrectangle, the sample point

farthest from the origin is the upper right corner, and the area of each subrectangle

is ∆A = 1
2

. Thus we estimate

R
f(x, y) dA ≈

4

i=1

4

j=1

f(xi, yj)∆A

= f(1.5, 1)∆A+ f(1.5, 2)∆A+ f(1.5, 3)∆A+ f(1.5, 4)∆A

+ f(2, 1)∆A+ f(2, 2)∆A+ f(2, 3)∆A+ f(2, 4)∆A

+ f(2.5, 1)∆A+ f(2.5, 2)∆A+ f(2.5, 3)∆A+ f(2.5, 4)∆A

+ f(3, 1)∆A+ f(3, 2)∆A+ f(3, 3)∆A+ f(3, 4)∆A

= 1 1
2
+ (−4) 1

2
+ (−8) 1

2
+ (−6) 1

2
+ 3 1

2
+ 0 1

2
+ (−5) 1

2
+ (−8) 1

2

+ 5 1
2
+ 3 1

2
+ (−1) 1

2
+ (−4) 1

2
+ 8 1

2
+ 6 1

2
+ 3 1

2
+ 0 1

2

= −3.5

7. The values of f(x, y) = 52− x2 − y2 get smaller as we move farther from the origin, so on any of the subrectangles in the

problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have U < V < L. (Note that this

is true no matter how R is divided into subrectangles.)

9. (a) With m = n = 2, we have ∆A = 4. Using the contour map to estimate the value of f at the center of each subrectangle,

we have

R
f(x, y) dA ≈

2

i=1

2

j=1

f xi, yj ∆A = ∆A[f(1, 1) + f(1, 3) + f(3, 1) + f(3, 3)] ≈ 4(27 + 4 + 14 + 17) = 248

(b) fave = 1
A(R) R

f(x, y) dA ≈ 1
16
(248) = 15.5

11. z = 3 > 0, so we can interpret the integral as the volume of the solid S that lies below the plane z = 3 and above the

rectangle [−2, 2]× [1, 6]. S is a rectangular solid, thus
R
3 dA = 4 · 5 · 3 = 60.

13. z = f(x, y) = 4− 2y ≥ 0 for 0 ≤ y ≤ 1. Thus the integral represents the volume of that

part of the rectangular solid [0, 1]× [0, 1]× [0, 4] which lies below the plane z = 4− 2y.

So

R
(4− 2y) dA = (1)(1)(2) + 1

2 (1)(1)(2) = 3
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15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 5.1.7 [ET 5.1.7]. In Maple, we can define the function

f(x, y) =
√
1 + xe−y (calling it f), load the student package, and then use the

command

middlesum(middlesum(f,x=0..1,m),

y=0..1,m);

to get the estimate with n = m2 squares of equal size. Mathematica has no special

Riemann sum command, but we can define f and then use nested Sum commands to

calculate the estimates.

n estimate

1 1.141606

4 1.143191

16 1.143535

64 1.143617

256 1.143637

1024 1.143642

17. If we divide R into mn subrectangles,
R
k dA ≈

m

i=1

n

j=1

f x∗ij , y
∗
ij ∆A for any choice of sample points x∗ij , y

∗
ij .

But f x∗ij , y
∗
ij = k always and

m

i=1

n

j=1

∆A = area of R = (b− a)(d− c). Thus, no matter how we choose the sample

points,
m

i=1

n

j=1

f x∗ij , y
∗
ij ∆A = k

m

i=1

n

j=1

∆A = k(b− a)(d− c) and so

R
k dA = lim

m,n→∞

m

i=1

n

j=1

f x∗ij , y
∗
ij ∆A = lim

m,n→∞
k

m

i=1

n

j=1

∆A = lim
m,n→∞

k(b− a)(d− c) = k(b− a)(d− c).

16.2 Iterated Integrals ET 15.2

1. 5

0
12x2y3 dx = 12

x3

3
y3

x=5

x=0

= 4x3y3
x=5

x=0
= 4(5)3 y3 − 4(0)3 y3 = 500y3,

1

0
12x2y3 dy = 12x2

y4

4

y=1

y=0

= 3x2y4
y=1

y=0
= 3x2(1)4 − 3x2(0)4 = 3x2

3. 3

1

1

0
(1 + 4xy) dxdy =

3

1
x+ 2x2y

x=1

x=0
dy =

3

1
(1 + 2y) dy = y + y2

3

1
= (3 + 9)− (1 + 1) = 10

5. 2

0

π/2

0
x sin y dy dx =

2

0
xdx

π/2

0
sin y dy [as in Example 5] =

x2

2

2

0

− cos y
π/2

0
= (2− 0)(0 + 1) = 2

7. 2

0

1

0
(2x+ y)8dxdy =

2

0

1

2

(2x+ y)9

9

x=1

x=0

dy [substitute u = 2x+ y ⇒ dx = 1
2
du]

=
1

18

2

0

[(2 + y)9 − (0 + y)9] dy =
1

18

(2 + y)10

10
− y10

10

2

0

= 1
180 [(4

10 − 210)− (210 − 010)] = 1,046,528
180 = 261,632

45

9.
4

1

2

1

x

y
+

y

x
dy dx =

4

1

x ln |y|+ 1

x
· 1
2
y2

y=2

y=1

dx =
4

1

x ln 2 +
3

2x
dx = 1

2x
2 ln 2 + 3

2 ln |x|
4

1

= 8 ln 2 + 3
2
ln 4− 1

2
ln 2 = 15

2
ln 2 + 3 ln 41/2 = 21

2
ln 2
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11. 1

0

1

0
(u− v)5dudv =

1

0
1
6 (u− v)6

u=1

u=0
dv = 1

6

1

0
(1− v)6 − (0− v)6 dv

= 1
6

1

0
(1− v)6 − v6 dv = 1

6
− 1
7
(1− v)7 − 1

7
v7

1

0

= − 1
42
[(0 + 1)− (1 + 0)] = 0

13. 2

0

π

0
r sin2 θ dθ dr =

2

0
r dr

π

0
sin2 θ dθ [as in Example 5] =

2

0
r dr

π

0
1
2
(1− cos 2θ) dθ

= 1
2r

2 2

0
· 12 θ − 1

2 sin 2θ
π

0
= (2− 0) · 12 π − 1

2 sin 2π − 0− 1
2 sin 0

= 2 · 12 [(π − 0)− (0− 0)] = π

15.
R
(6x2y3 − 5y4) dA =

3

0

1

0
(6x2y3 − 5y4) dy dx = 3

0
3
2x

2y4 − y5
y=1

y=0
dx =

3

0
3
2x

2 − 1 dx

= 1
2
x3 − x

3

0
= 27

2
− 3 = 21

2

17.
R

xy2

x2 + 1
dA =

1

0

3

−3

xy2

x2 + 1
dy dx =

1

0

x

x2 + 1
dx

3

−3
y2 dy =

1

2
ln(x2 + 1)

1

0

1

3
y3

3

−3

= 1
2
(ln 2− ln 1) · 1

3
(27 + 27) = 9 ln 2

19. π/6

0

π/3

0
x sin(x+ y) dy dx

=
π/6

0
−x cos(x+ y)

y=π/3

y=0
dx =

π/6

0
x cosx− x cos x+ π

3
dx

= x sinx− sin x+ π
3

π/6

0
− π/6

0
sinx− sin x+ π

3
dx [by integrating by parts separately for each term]

= π
6

1
2
− 1 − − cosx+ cos x+ π

3

π/6

0
= − π

12
− −

√
3
2
+ 0− −1 + 1

2
=
√
3−1
2

− π
12

21.
R
xyex

2y dA=
2

0

1

0
xyex

2y dx dy =
2

0
1
2
ex

2y
x=1

x=0
dy = 1

2

2

0
(ey − 1) dy = 1

2
ey − y

2

0

= 1
2
[(e2 − 2)− (1− 0)] = 1

2
(e2 − 3)

23. z = f(x, y) = 4− x− 2y ≥ 0 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. So the solid

is the region in the first octant which lies below the plane z = 4− x− 2y
and above [0, 1]× [0, 1].

25. V =
R
(12− 3x− 2y) dA = 3

−2
1

0
(12− 3x− 2y) dxdy = 3

−2 12x− 3
2x

2 − 2xy x=1

x=0
dy

=
3

−2
21
2
− 2y dy = 21

2
y − y2

3

−2 =
95
2

27. V =
2

−2
1

−1 1− 1
4
x2 − 1

9
y2 dx dy = 4

2

0

1

0
1− 1

4
x2 − 1

9
y2 dxdy

= 4
2

0
x− 1

12
x3 − 1

9
y2x

x=1

x=0
dy = 4

2

0
11
12
− 1

9
y2 dy = 4 11

12
y − 1

27
y3

2

0
= 4 · 83

54
= 166

27
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29. Here we need the volume of the solid lying under the surface z = x sec2 y and above the rectangle R = [0, 2]× [0, π/4] in the

xy-plane.

V =
2

0

π/4

0
x sec2 y dy dx =

2

0
xdx

π/4

0
sec2 y dy = 1

2
x2

2

0
tan y

π/4

0

= (2− 0)(tan π
4
− tan 0) = 2(1− 0) = 2

31. The solid lies below the surface z = 2 + x2 + (y − 2)2 and above the plane z = 1 for −1 ≤ x ≤ 1, 0 ≤ y ≤ 4. The volume

of the solid is the difference in volumes between the solid that lies under z = 2 + x2 + (y − 2)2 over the rectangle

R = [−1, 1]× [0, 4] and the solid that lies under z = 1 over R.

V =
4

0

1

−1[2 + x2 + (y − 2)2] dx dy − 4

0

1

−1(1) dxdy =
4

0
2x+ 1

3x
3 + x(y − 2)2 x=1

x=−1 dy −
1

−1 dx
4

0
dy

=
4

0
(2 + 1

3 + (y − 2)2)− (−2− 1
3 − (y − 2)2) dy − [x]1−1 [y]40

=
4

0
14
3 + 2(y − 2)2 dy − [1− (−1)][4− 0] = 14

3 y +
2
3 (y − 2)3

4

0
− (2)(4)

= 56
3
+ 16

3
− 0− 16

3
− 8 = 88

3
− 8 = 64

3

33. In Maple, we can calculate the integral by defining the integrand as f

and then using the command int(int(f,x=0..1),y=0..1);.

In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We find that
R
x5y3exy dA = 21e− 57 ≈ 0.0839. We can use plot3d

(in Maple) or Plot3D (in Mathematica) to graph the function.

35. R is the rectangle [−1, 1] × [0, 5]. Thus, A(R) = 2 · 5 = 10 and

fave =
1

A(R) R
f(x, y) dA = 1

10

5

0

1

−1 x
2y dx dy = 1

10

5

0
1
3
x3y

x=1

x=−1 dy =
1
10

5

0
2
3
y dy = 1

10
1
3
y2

5

0
= 5

6
.

37. Let f(x, y) = x− y

(x+ y)3
. Then a CAS gives 1

0

1

0
f(x, y) dy dx = 1

2
and 1

0

1

0
f(x, y) dx dy = − 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that f has an infinite discontinuity at (0, 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

16.3 Double Integrals over General Regions ET 15.3

1. 4

0

√
y

0
xy2 dx dy =

4

0
1
2x

2y2
x=
√
y

x=0
dy =

4

0
1
2y

2[( y )2 − 02]dy = 1
2

4

0
y3 dy = 1

2
1
4y

4 4

0
= 1

2 (64− 0) = 32

3. 1

0

x

x2
(1 + 2y)dy dx =

1

0
y + y2

y=x

y=x2
dx =

1

0
x+ x2 − x2 − (x2)2 dx

=
1

0
(x− x4)dx = 1

2
x2 − 1

5
x5

1

0
= 1

2
− 1

5
− 0 + 0 = 3

10

5. π/2

0

cos θ

0
esin θdr dθ =

π/2

0
resin θ

r=cos θ

r=0
dθ =

π/2

0
(cos θ) esin θdθ = esin θ

π/2

0
= esin(π/2) − e0 = e− 1
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7.
D
y2 dA =

1

−1
y

−y−2 y
2 dxdy =

1

−1 xy2
x=y

x=−y−2 dy =
1

−1 y
2 [y − (−y − 2)] dy

=
1

−1(2y
3 + 2y2)dy = 1

2
y4 + 2

3
y3

1

−1 =
1
2
+ 2

3
− 1

2
+ 2

3
= 4

3

9.
D
xdA=

π

0

sinx

0
xdy dx =

π

0
[xy]y=sin xy=0 dx =

π

0
x sinxdx

integrate by parts
with u = x, dv = sinx dx

= −x cosx+ sinx π

0
= −π cosπ + sinπ + 0− sin 0 = π

11.
D
y2exy dA =

4

0

y

0
y2exy dxdy =

4

0
yexy

x=y

x=0
dy =

4

0
yey

2 − y dy

= 1
2e

y2 − 1
2y

2
4

0
= 1

2e
16 − 8− 1

2 + 0 =
1
2e

16 − 17
2

13. 1

0

x2

0
x cos y dy dx =

1

0
x sin y

y= x2

y=0
dx =

1

0
x sinx2 dx = − 1

2
cosx2

1

0
= 1

2
(1− cos 1)

15. 2

1

2y−1

2−y
y3 dx dy =

2

1

xy3
x=2y−1

x=2−y
dy =

2

1

[(2y − 1)− (2− y)] y3 dy

=
2

1
(3y4 − 3y3) dy = 3

5y
5 − 3

4y
4 2

1

= 96
5
− 12− 3

5
+ 3

4
= 147

20

17. 2

−2

√
4−x2

−
√
4−x2

(2x− y) dy dx

=
2

−2
2xy − 1

2
y2

y=
√
4−x2

y=−
√
4−x2

dx

=
2

−2 2x
√
4− x2 − 1

2
4− x2 + 2x

√
4− x2 + 1

2
4− x2 dx

=
2

−2 4x
√
4− x2 dx = − 4

3
4− x2

3/2 2

−2
= 0

[Or, note that 4x
√
4− x2 is an odd function, so 2

−2 4x
√
4− x2 dx = 0.]

19. V=
1

0

x

x4
(x+ 2y) dy dx

=
1

0
xy + y2

y=x

y=x4
dx =

1

0
(2x2 − x5 − x8) dx

= 2
3
x3 − 1

6
x6 − 1

9
x9

1

0
= 2

3
− 1

6
− 1

9
= 7

18

21. V=
2

1

7− 3y
1

xy dx dy =
2

1
1
2x

2y
x=7− 3y

x=1
dy

= 1
2

2

1
(48y − 42y2 + 9y3) dy

= 1
2
24y2 − 14y3 + 9

4
y4

2

1
= 31

8
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23. V =
2

0

3− 3
2
x

0
(6− 3x− 2y) dy dx

=
2

0
6y − 3xy − y2

y=3− 3
2
x

y=0
dx

=
2

0
6(3 − 3

2
x)− 3x(3 − 3

2
x)− (3 − 3

2
x)2 dx

=
2

0
9
4
x2 − 9x+ 9 dx = 3

4
x3 − 9

2
x2 + 9x

2

0
= 6− 0 = 6

25.

V=
2

−2
4

x2
x2 dy dx

=
2

−2 x
2 y

y=4

y=x2
dx =

2

−2(4x
2 − x4) dx

= 4
3x

3 − 1
5x

5 2

−2 =
32
3 − 32

5 +
32
3 − 32

5 =
128
15

27.

V =
1

0

√
1−x2

0

y dy dx =
1

0

y2

2

y=
√
1−x2

y=0

dx

=
1

0

1− x2

2
dx = 1

2
x− 1

3
x3

1

0
= 1

3

29. From the graph, it appears that the two curves intersect at x = 0 and

at x ≈ 1.213. Thus the desired integral is

D
xdA≈ 1.213

0

3x− x2

x4
xdy dx =

1.213

0
xy

y=3x−x2

y=x4
dx

=
1.213

0
(3x2 − x3 − x5) dx = x3 − 1

4
x4 − 1

6
x6

1.213

0

≈ 0.713

31. The two bounding curves y = 1− x2 and y = x2 − 1 intersect at (±1, 0) with 1− x2 ≥ x2 − 1 on [−1, 1]. Within this

region, the plane z = 2x+ 2y + 10 is above the plane z = 2− x− y, so

V =
1

−1
1−x2
x2−1 (2x+ 2y + 10) dy dx−

1

−1
1−x2
x2−1 (2− x− y) dy dx

=
1

−1
1−x2
x2−1 (2x+ 2y + 10− (2− x− y)) dy dx

=
1

−1
1−x2
x2−1 (3x+ 3y + 8) dy dx =

1

−1 3xy + 3
2
y2 + 8y

y=1−x2

y=x2−1
dx

=
1

−1 3x(1− x2) + 3
2
(1− x2)2 + 8(1− x2)− 3x(x2 − 1)− 3

2
(x2 − 1)2 − 8(x2 − 1) dx

=
1

−1(−6x3 − 16x2 + 6x+ 16) dx = − 3
2x

4 − 16
3 x

3 + 3x2 + 16x
1

−1

= − 3
2
− 16

3
+ 3 + 16 + 3

2
− 16

3
− 3 + 16 = 64

3
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33. The solid lies below the plane z = 1− x− y

or x+ y + z = 1 and above the region

D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}
in the xy-plane. The solid is a tetrahedron.

35. The two bounding curves y = x3 − x and y = x2 + x intersect at the origin and at x = 2, with x2 + x > x3 − x on (0, 2).

Using a CAS, we find that the volume is

V =
2

0

x2 + x

x3−x

z dy dx =
2

0

x2 +x

x3−x

(x3y4 + xy2) dy dx =
13,984,735,616
14,549,535

37. The two surfaces intersect in the circle x2 + y2 = 1, z = 0 and the region of integration is the disk D: x2 + y2 ≤ 1.

Using a CAS, the volume is
D

(1− x2 − y2) dA =
1

−1

√
1−x2

−
√
1−x2

(1− x2 − y2) dy dx =
π

2
.

39. Because the region of integration is

D = {(x, y) | 0 ≤ y ≤ √x, 0 ≤ x ≤ 4} = (x, y) | y2 ≤ x ≤ 4, 0 ≤ y ≤ 2

we have 4

0

√
x

0
f(x, y) dy dx =

D
f(x, y) dA =

2

0

4

y2
f(x, y) dx dy.

41. Because the region of integration is

D = (x, y) | − 9− y2 ≤ x ≤ 9− y2, 0 ≤ y ≤ 3

= (x, y) | 0 ≤ y ≤ √9− x2,−3 ≤ x ≤ 3
we have

3

0

√
9−y2

−
√
9−y2

f(x, y) dx dy =
D

f(x, y) dA

=
3

−3

√
9−x2

0

f(x, y) dy dx

43. Because the region of integration is

D = {(x, y) | 0 ≤ y ≤ lnx, 1 ≤ x ≤ 2} = {(x, y) | ey ≤ x ≤ 2, 0 ≤ y ≤ ln 2}
we have

2

1

lnx

0

f(x, y) dy dx =
D

f(x, y) dA =
ln 2

0

2

ey
f(x, y) dxdy

45.
1

0

3

3y

ex
2

dx dy =
3

0

x/3

0

ex
2

dy dx =
3

0

ex
2

y
y=x/3

y=0
dx

=
3

0

x

3
ex

2

dx = 1
6
ex

2 3

0
=

e9 − 1
6
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47. 4

0

2

√
x

1

y3 + 1
dy dx=

2

0

y2

0

1

y3 + 1
dx dy

=
2

0

1

y3 + 1
x

x=y2

x=0
dy =

2

0

y2

y3 + 1
dy

= 1
3
ln y3 + 1

2

0
= 1

3
(ln 9− ln 1) = 1

3
ln 9

49.
1

0

π/2

arcsin y

cosx 1 + cos2 xdxdy

=
π/2

0

sinx

0
cosx

√
1 + cos2 xdy dx

=
π/2

0
cosx

√
1 + cos2 x y

y=sinx

y=0
dx

=
π/2

0
cosx

√
1 + cos2 x sinxdx

Let u = cos x, du = − sinx dx,
dx = du/(− sinx)

=
0

1
−u√1 + u2 du = − 1

3
1 + u2

3/2 0

1

= 1
3

√
8− 1 = 1

3
2
√
2− 1

51. D = {(x, y) | 0 ≤ x ≤ 1, − x+ 1 ≤ y ≤ 1} ∪ {(x, y) | −1 ≤ x ≤ 0, x+ 1 ≤ y ≤ 1}
∪ {(x, y) | 0 ≤ x ≤ 1, − 1 ≤ y ≤ x− 1} ∪ {(x, y) | −1 ≤ x ≤ 0, − 1 ≤ y ≤ −x− 1}, all type I.

D

x2 dA=
1

0

1

1−x

x2 dy dx+
0

−1

1

x+1

x2 dy dx+
1

0

x− 1

−1
x2 dy dx+

0

−1

−x− 1

−1
x2 dy dx

= 4
1

0

1

1−x

x2 dy dx [by symmetry of the regions and because f(x, y) = x2 ≥ 0]

= 4
1

0
x3 dx = 4 1

4
x4

1

0
= 1

53. Here Q = (x, y) | x2 + y2 ≤ 1
4
, x ≥ 0, y ≥ 0 , and 0 ≤ (x2 + y2)2 ≤ 1

4

2 ⇒ − 1
16
≤ −(x2 + y2)2 ≤ 0 so

e−1/16 ≤ e−(x
2+y2)2 ≤ e0 = 1 since et is an increasing function. We have A(Q) = 1

4
π 1

2

2
= π

16
, so by Property 11,

e−1/16A(Q) ≤
Q
e−(x

2+y2)2dA ≤ 1 · A(Q) ⇒ π
16
e−1/16 ≤

Q
e−(x

2+y2)2dA ≤ π
16

or we can say

0.1844 <
Q
e−(x

2+y2)2dA < 0.1964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

55. The average value of a function f of two variables defined on a rectangle R was

defined in Section 16.1 [ET 15.1] as fave =
1

A(R) R
f(x, y)dA. Extending

this definition to general regions D, we have fave =
1

A(D) D
f(x, y)dA.

Here D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 3x}, so A(D) = 1
2
(1)(3) = 3

2
and

fave =
1

A(D) D
f(x, y)dA = 1

3/2

1

0

3x

0
xy dy dx

= 2
3

1

0
1
2
xy2

y=3x

y=0
dx = 1

3

1

0
9x3 dx = 3

4
x4

1

0
= 3

4

57. Since m ≤ f(x, y) ≤M ,
D
mdA ≤

D
f(x, y) dA ≤

D
M dA by (8) ⇒

m
D
1 dA ≤

D
f(x, y) dA ≤M

D
1 dA by (7) ⇒ mA(D) ≤

D
f(x, y) dA ≤MA(D) by (10).
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59.
D
(x2 tanx+ y3 + 4) dA =

D
x2 tanxdA+

D
y3 dA+

D
4 dA. But x2 tanx is an odd function of x and D is

symmetric with respect to the y-axis, so
D
x2 tanxdA = 0. Similarly, y3 is an odd function of y and D is symmetric with

respect to the x-axis, so
D
y3 dA = 0. Thus

D
(x2 tanx+ y3 + 4) dA = 4

D
dA = 4(area of D) = 4 · π √2 2

= 8π

61. Since 1− x2 − y2 ≥ 0, we can interpret
D

1− x2 − y2 dA as the volume of the solid that lies below the graph of

z = 1− x2 − y2 and above the region D in the xy-plane. z = 1− x2 − y2 is equivalent to x2 + y2 + z2 = 1, z ≥ 0
which meets the xy-plane in the circle x2 + y2 = 1, the boundary of D. Thus, the solid is an upper hemisphere of radius 1

which has volume 1
2

4
3π (1)

3 = 2
3π.

16.4 Double Integrals in Polar Coordinates ET 15.4

1. The region R is more easily described by polar coordinates: R = (r, θ) | 0 ≤ r ≤ 4, 0 ≤ θ ≤ 3π
2

.

Thus
R
f(x, y) dA =

3π/2

0

4

0
f(r cos θ, r sin θ) r dr dθ.

3. The region R is more easily described by rectangular coordinates: R = (x, y) | −1 ≤ x ≤ 1, 0 ≤ y ≤ 1
2
x+ 1

2
.

Thus
R
f(x, y) dA =

1

−1
(x+1)/2

0
f(x, y) dy dx.

5. The integral 2π

π

7

4
r dr dθ represents the area of the region

R = {(r, θ) | 4 ≤ r ≤ 7, π ≤ θ ≤ 2π}, the lower half of a ring.

2π

π

7

4
r dr dθ =

2π

π
dθ

7

4
r dr

= θ
2π

π
1
2
r2

7

4
= π · 1

2
(49− 16) = 33π

2

7. The disk D can be described in polar coordinates as D = {(r, θ) | 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π}. Then

D
xy dA =

2π

0

3

0
(r cos θ)(r sin θ) r dr dθ =

2π

0
sin θ cos θ dθ

3

0
r3 dr = 1

2
sin2 θ

2π

0
1
4
r4

3

0
= 0.

9.
R
cos(x2 + y2)dA =

π

0

3

0
cos(r2) r dr dθ =

π

0
dθ

3

0
r cos(r2) dr

= θ
π

0
1
2
sin(r2)

3

0
= π · 1

2
(sin 9− sin 0) = π

2
sin 9

11.
D
e−x

2−y2 dA =
π/2

−π/2
2

0
e−r

2

r dr dθ =
π/2

−π/2 dθ
2

0
re−r

2

dr

= θ
π/2

−π/2 − 1
2e
−r2 2

0
= π − 1

2
(e−4 − e0) = π

2 (1− e−4)

13. R is the region shown in the figure, and can be described

by R = {(r, θ) | 0 ≤ θ ≤ π/4, 1 ≤ r ≤ 2}. Thus

R
arctan(y/x) dA =

π/4

0

2

1
arctan(tan θ) r dr dθ since y/x = tan θ.

Also, arctan(tan θ) = θ for 0 ≤ θ ≤ π/4, so the integral becomes

π/4

0

2

1
θ r dr dθ =

π/4

0
θ dθ

2

1
r dr = 1

2
θ2

π/4

0
1
2
r2

2

1
= π2

32
· 3
2
= 3

64
π2.
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15. One loop is given by the region

D = {(r, θ) |−π/6 ≤ θ ≤ π/6, 0 ≤ r ≤ cos 3θ }, so the area is

D

dA =
π/6

−π/6

cos 3θ

0

r dr dθ =
π/6

−π/6

1

2
r2

r=cos 3θ

r=0

dθ

=
π/6

−π/6

1

2
cos2 3θ dθ = 2

π/6

0

1

2

1 + cos 6θ

2
dθ

=
1

2
θ +

1

6
sin 6θ

π/6

0

=
π

12

17. By symmetry,

A = 2
π/4

0

sin θ

0
r dr dθ = 2

π/4

0
1
2
r2

r=sin θ

r=0
dθ

=
π/4

0
sin2 θ dθ =

π/4

0
1
2
(1− cos 2θ) dθ

= 1
2
θ − 1

2 sin 2θ
π/4

0

= 1
2

π
4
− 1

2
sin π

2
− 0 + 1

2
sin 0 = 1

8
(π − 2)

19. V =
x2 + y2≤4 x2 + y2 dA =

2π

0

2

0

√
r2 r dr dθ =

2π

0
dθ

2

0
r2 dr = θ

2π

0
1
3
r3

2

0
= 2π 8

3
= 16

3
π

21. The hyperboloid of two sheets−x2 − y2 + z2 = 1 intersects the plane z = 2 when−x2 − y2 +4 = 1 or x2 + y2 = 3. So the

solid region lies above the surface z = 1 + x2 + y2 and below the plane z = 2 for x2 + y2 ≤ 3, and its volume is

V =

x2 + y2≤ 3

2− 1 + x2 + y2 dA =
2π

0

√
3

0

(2− 1 + r2) r dr dθ

=
2π

0
dθ

√
3

0
(2r − r

√
1 + r2)dr = θ

2π

0
r2 − 1

3
(1 + r2)3/2

√
3

0

= 2π 3− 8
3
− 0 + 1

3
= 4

3
π

23. By symmetry,

V = 2

x2 + y2≤ a2

a2 − x2 − y2 dA = 2
2π

0

a

0

a2 − r2 r dr dθ = 2
2π

0

dθ
a

0

r a2 − r2 dr

= 2 θ
2π

0
− 1
3 (a

2 − r2)3/2
a

0
= 2(2π) 0 + 1

3a
3 = 4π

3 a
3

25. The cone z = x2 + y2 intersects the sphere x2 + y2 + z2 = 1 when x2 + y2 + x2 + y2
2

= 1 or x2 + y2 = 1
2

. So

V =

x2 + y2≤ 1/2

1− x2 − y2 − x2 + y2 dA =
2π

0

1/
√
2

0

1− r2 − r r dr dθ

=
2π

0
dθ

1/
√
2

0
r
√
1− r2 − r2 dr = θ

2π

0
− 1
3
(1− r2)3/2 − 1

3
r3

1/
√
2

0
= 2π − 1

3
1√
2
− 1 = π

3
2−√2
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27. The given solid is the region inside the cylinder x2 + y2 = 4 between the surfaces z = 64− 4x2 − 4y2

and z = − 64− 4x2 − 4y2. So

V =

x2 + y2≤ 4

64− 4x2 − 4y2 − − 64− 4x2 − 4y2 dA =

x2+y2≤ 4

2 64− 4x2 − 4y2 dA

= 4
2π

0

2

0

√
16− r2 r dr dθ = 4

2π

0
dθ

2

0
r
√
16− r2 dr = 4 θ

2π

0
− 1
3
(16− r2)3/2

2

0

= 8π − 1
3
(123/2 − 162/3) = 8π

3
64− 24√3

29.
3

−3

√
9−x2

0

sin(x2 + y2)dy dx =
π

0

3

0

sin r2 r dr dθ

=
π

0
dθ

3

0
r sin r2 dr = [θ]π0 − 1

2 cos r2
3

0

= π − 1
2
(cos 9− 1) = π

2
(1− cos 9)

31. π/4

0

√
2

0
(r cos θ + r sin θ) r dr dθ =

π/4

0
(cos θ + sin θ) dθ

√
2

0
r2 dr

= [sin θ − cos θ]π/40
1
3
r3

√
2

0

=
√
2
2 −

√
2
2 − 0 + 1 · 13 2

√
2− 0 = 2

√
2

3

33. The surface of the water in the pool is a circular disk D with radius 20 ft. If we place D on coordinate axes with the origin at

the center of D and define f(x, y) to be the depth of the water at (x, y), then the volume of water in the pool is the volume of

the solid that lies above D = (x, y) | x2 + y2 ≤ 400 and below the graph of f(x, y). We can associate north with the

positive y-direction, so we are given that the depth is constant in the x-direction and the depth increases linearly in the

y-direction from f(0,−20) = 2 to f(0, 20) = 7. The trace in the yz-plane is a line segment from (0,−20, 2) to (0, 20, 7).

The slope of this line is 7− 2
20− (−20) =

1
8 , so an equation of the line is z − 7 = 1

8 (y − 20) ⇒ z = 1
8y +

9
2 . Since f(x, y) is

independent of x, f(x, y) = 1
8y +

9
2 . Thus the volume is given by

D
f(x, y) dA, which is most conveniently evaluated

using polar coordinates. Then D = {(r, θ) | 0 ≤ r ≤ 20, 0 ≤ θ ≤ 2π} and substituting x = r cos θ, y = r sin θ the integral

becomes
2π

0

20

0
1
8
r sin θ + 9

2
r dr dθ =

2π

0
1
24
r3 sin θ + 9

4
r2

r=20

r=0
dθ =

2π

0
1000
3
sin θ + 900 dθ

= − 1000
3
cos θ + 900θ

2π

0
= 1800π

Thus the pool contains 1800π ≈ 5655 ft3 of water.

35.
1

1/
√
2

x

√
1−x2

xy dy dx+

√
2

1

x

0

xy dy dx+
2

√
2

√
4−x2

0

xy dy dx

=
π/4

0

2

1

r3 cos θ sin θ dr dθ =
π/4

0

r4

4
cos θ sin θ

r=2

r=1

dθ

=
15

4

π/4

0

sin θ cos θ dθ =
15

4

sin2 θ

2

π/4

0

=
15

16
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37. (a) We integrate by parts with u = x and dv = xe−x
2

dx. Then du = dx and v = − 1
2e
−x2 , so

∞
0

x2e−x
2
dx= lim

t→∞
t

0
x2e−x

2
dx = lim

t→∞
− 1
2
xe−x

2 t

0
+

t

0
1
2
e−x

2
dx

= lim
t→∞

− 1
2 te

−t2 + 1
2

∞
0

e−x
2

dx = 0 + 1
2

∞
0

e−x
2

dx [by l’Hospital’s Rule]

= 1
4

∞
−∞ e−x

2

dx [since e−x
2

is an even function]

= 1
4

√
π [by Exercise 36(c)]

(b) Let u =
√
x. Then u2 = x ⇒ dx = 2udu ⇒

∞
0

√
xe−x dx = lim

t→∞
t

0

√
x e−x dx = lim

t→∞

√
t

0
ue−u

2

2udu = 2
∞
0

u2e−u
2

du = 2 1
4

√
π [by part(a)] = 1

2

√
π.

16.5 Applications of Double Integrals ET 15.5

1. Q =
D
σ(x, y) dA =

3

1

2

0
(2xy + y2) dy dx =

3

1
xy2 + 1

3
y3

y=2

y=0
dx

=
3

1
4x+ 8

3
dx = 2x2 + 8

3x
3

1
= 16 + 16

3 =
64
3 C

3. m =
D
ρ(x, y) dA =

2

0

1

−1 xy
2 dy dx =

2

0
xdx

1

−1 y
2 dy = 1

2
x2

2

0
1
3
y3

1

−1 = 2 · 23 = 4
3

,

x = 1
m D

xρ(x, y) dA = 3
4

2

0

1

−1 x
2y2 dy dx = 3

4

2

0
x2 dx

1

−1 y
2 dy = 3

4
1
3x

3 2

0
1
3y

3 1

−1 =
3
4 · 83 · 23 = 4

3 ,

y = 1
m D

yρ(x, y) dA = 3
4

2

0

1

−1 xy
3 dy dx = 3

4

2

0
xdx

1

−1 y
3 dy = 3

4
1
2
x2

2

0
1
4
y4

1

−1 =
3
4
· 2 · 0 = 0.

Hence, (x, y) = 4
3
, 0 .

5. m =
2

0

3−x
x/2

(x+ y) dy dx =
2

0
xy + 1

2y
2 y=3−x
y=x/2

dx =
2

0
x 3− 3

2x + 1
2 (3− x)2 − 1

8x
2 dx

=
2

0
− 9
8
x2 + 9

2
dx = − 9

8
1
3
x3 + 9

2
x

2

0
= 6,

My =
2

0

3−x
x/2

(x2 + xy) dy dx =
2

0
x2y + 1

2
xy2

y=3−x
y=x/2

dx =
2

0
9
2
x− 9

8
x3 dx = 9

2
,

Mx =
2

0

3−y
x/2

(xy + y2) dy dx =
2

0
1
2xy

2 + 1
3y

3 y=3−x
y=x/2

dx =
2

0
9− 9

2x dx = 9.

Hence m = 6, (x, y) = My

m
,
Mx

m
=

3

4
,
3

2
.

7. m =
1

0

ex

0
y dy dx =

1

0
1
2
y2

y=ex

y=0
dx = 1

2

1

0
e2x dx = 1

4
e2x

1

0
= 1

4
(e2 − 1),

My =
1

0

ex

0
xy dy dx = 1

2

1

0
xe2x dx = 1

2
1
2
xe2x − 1

4
e2x

1

0
= 1

8
(e2 + 1),

Mx =
1

0

ex

0
y2 dy dx =

1

0
1
3
y3

y=ex

y=0
dx = 1

3

1

0
e3x dx = 1

3
1
3
e3x

1

0
= 1

9
(e3 − 1).

Hence m = 1
4
(e2 − 1), (x, y) =

1
8
(e2 + 1)

1
4 (e

2 − 1) ,
1
9
(e3 − 1)

1
4 (e

2 − 1) =
e2 + 1

2(e2 − 1) ,
4(e3 − 1)
9(e2 − 1) .
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9. Note that sin(πx/L) ≥ 0 for 0 ≤ x ≤ L.

m =
L

0

sin(πx/L)

0
y dy dx =

L

0
1
2
sin2(πx/L) dx = 1

2
1
2
x− L

4π
sin(2πx/L)

L

0
= 1

4
L,

My =
L

0

sin(πx/L)

0
x · y dy dx = 1

2

L

0
x sin2(πx/L) dx

integrate by parts with
u = x, dv = sin2(πx/L) dx

= 1
2
· x 1

2
x− L

4π
sin(2πx/L)

L

0
− 1

2

L

0
1
2
x− L

4π
sin(2πx/L) dx

= 1
4L

2 − 1
2

1
4x

2 + L2

4π2
cos(2πx/L)

L

0
= 1

4L
2 − 1

2
1
4L

2 + L2

4π2
− L2

4π2
= 1

8L
2,

Mx =
L

0

sin(πx/L)

0
y · y dy dx = L

0
1
3
sin3(πx/L) dx = 1

3

L

0
1− cos2(πx/L) sin(πx/L) dx

[substitute u = cos (πx/L)] ⇒ du = − π
L
sin(πx/L)]

= 1
3
−L

π
cos(πx/L)− 1

3 cos
3(πx/L)

L

0
= − L

3π
−1 + 1

3 − 1 + 1
3
= 4

9πL.

Hence m =
L

4
, (x, y) = L2/8

L/4
,
4L/(9π)

L/4
=

L

2
,
16

9π
.

11. ρ(x, y) = ky = kr sin θ, m =
π/2

0

1

0
kr2 sin θ dr dθ = 1

3k
π/2

0
sin θ dθ = 1

3k − cos θ
π/2

0
= 1

3k,

My =
π/2

0

1

0
kr3 sin θ cos θ dr dθ = 1

4k
π/2

0
sin θ cos θ dθ = 1

8k − cos 2θ
π/2

0
= 1

8k,

Mx =
π/2

0

1

0
kr3 sin2 θ dr dθ = 1

4
k

π/2

0
sin2 θ dθ = 1

8
k θ + sin 2θ

π/2

0
= π

16
k.

Hence (x, y) = 3
8
, 3π
16

.

13. ρ(x, y) = k x2 + y2 = kr,

m=
D
ρ(x, y)dA =

π

0

2

1
kr · r dr dθ

= k
π

0
dθ

2

1
r2 dr = k(π) 1

3r
3 2

1
= 7

3πk,

My = D
xρ(x, y)dA =

π

0

2

1
(r cos θ)(kr) r dr dθ = k

π

0
cos θ dθ

2

1
r3 dr

= k sin θ
π

0
1
4
r4

2

1
= k(0) 15

4
= 0

[this is to be expected as the region and density

function are symmetric about the y-axis]

Mx = D
yρ(x, y)dA =

π

0

2

1
(r sin θ)(kr) r dr dθ = k

π

0
sin θ dθ

2

1
r3 dr

= k − cos θ π

0
1
4
r4

2

1
= k(1 + 1) 15

4
= 15

2
k.

Hence (x, y) = 0, 15k/2
7πk/3

= 0, 45
14π

.

15. Placing the vertex opposite the hypotenuse at (0, 0), ρ(x, y) = k(x2 + y2). Then

m =
a

0

a−x

0
k x2 + y2 dy dx = k

a

0
ax2 − x3 + 1

3
(a− x)3 dx = k 1

3
ax3 − 1

4
x4 − 1

12
(a− x)4

a

0
= 1

6
ka4.

By symmetry,
My =Mx =

a

0

a−x

0
ky(x2 + y2) dy dx = k

a

0
1
2
(a− x)2x2 + 1

4
(a− x)4 dx

= k 1
6
a2x3 − 1

4
ax4 + 1

10
x5 − 1

20
(a− x)5

a

0
= 1

15
ka5

Hence (x, y) = 2
5
a, 2

5
a .
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17. Ix = D
y2ρ(x, y)dA =

1

0

ex

0
y2 · y dy dx =

1

0
1
4y

4 y=ex

y=0
dx = 1

4

1

0
e4x dx = 1

4
1
4e

4x 1

0
= 1

16 (e
4 − 1),

Iy = D
x2ρ(x, y) dA =

1

0

ex

0
x2y dy dx =

1

0
x2 1

2y
2 y=ex

y=0
dx = 1

2

1

0
x2e2x dx

= 1
2

1
2
x2 − 1

2
x+ 1

4
e2x

1

0
[integrate by parts twice] = 1

8
(e2 − 1),

and I0 = Ix + Iy =
1
16
(e4 − 1) + 1

8
(e2 − 1) = 1

16
(e4 + 2e2 − 3).

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0, 0) and the equal sides along the positive axes.

Ix =
a

0

a−x
0

y2k(x2 + y2) dy dx = k
a

0

a−x
0

(x2y2 + y4) dy dx = k
a

0
1
3x

2y3 + 1
5y

5 y=a−x
y=0

dx

= k
a

0
1
3
x2(a− x)3 + 1

5
(a− x)5 dx = k 1

3
1
3
a3x3 − 3

4
a2x4 + 3

5
ax5 − 1

6
x6 − 1

30
(a− x)6

a

0
= 7

180
ka6,

Iy =
a

0

a−x
0

x2k(x2 + y2) dy dx = k
a

0

a−x
0

(x4 + x2y2) dy dx = k
a

0
x4y + 1

3
x2y3

y=a−x
y=0

dx

= k
a

0
x4 (a− x) + 1

3
x2 (a− x)3 dx = k 1

5
ax5 − 1

6
x6 + 1

3
1
3
a3x3 − 3

4
a2x4 + 3

5
ax5 − 1

6
x6

a

0
= 7

180
ka6,

and I0 = Ix + Iy =
7
90ka

6.

21. Using a CAS, we find m =
D
ρ(x, y) dA =

π

0

sin x

0
xy dy dx =

π2

8
. Then

x =
1

m D

xρ(x, y) dA =
8

π2

π

0

sin x

0

x2y dy dx =
2π

3
− 1

π
and

y =
1

m D

yρ(x, y) dA =
8

π2

π

0

sinx

0

xy2 dy dx =
16

9π
, so (x, y) = 2π

3
− 1

π
,
16

9π
.

The moments of inertia are Ix = D
y2ρ(x, y) dA =

π

0

sin x

0
xy3 dy dx =

3π2

64
,

Iy = D
x2ρ(x, y) dA =

π

0

sin x

0
x3y dy dx =

π2

16
(π2 − 3), and I0 = Ix + Iy =

π2

64
(4π2 − 9).

23. Ix = D
y2ρ(x, y)dA =

h

0

b

0
ρy2 dx dy = ρ

b

0
dx

h

0
y2 dy = ρ x

b

0
1
3y

3 h

0
= ρb 1

3h
3 = 1

3ρbh
3,

Iy = D
x2ρ(x, y)dA =

h

0

b

0
ρx2 dx dy = ρ

b

0
x2 dx

h

0
dy = ρ 1

3
x3

b

0
[y]h0 =

1
3
ρb3h,

and m = ρ (area of rectangle) = ρbh since the lamina is homogeneous. Hence x2 = Iy
m
=

1
3
ρb3h

ρbh
=

b2

3
⇒ x =

b√
3

and y 2 = Ix
m
=

1
3
ρbh3

ρbh
=

h2

3
⇒ y =

h√
3

.

25. In polar coordinates, the region is D = (r, θ) | 0 ≤ r ≤ a, 0 ≤ θ ≤ π
2

, so

Ix = D
y2ρ dA =

π/2

0

a

0
ρ(r sin θ)2 r dr dθ = ρ

π/2

0
sin2 dθ

a

0
r3 dr

= ρ 1
2
θ − 1

4
sin 2θ

π/2

0
1
4
r4

a

0
= ρ π

4
1
4
a4 = 1

16
ρa4π,

Iy = D
x2ρ dA =

π/2

0

a

0
ρ(r cos θ)2 r dr dθ = ρ

π/2

0
cos2 dθ

a

0
r3 dr

= ρ 1
2
θ + 1

4
sin 2θ

π/2

0
1
4
r4

a

0
= ρ π

4
1
4
a4 = 1

16
ρa4π,

and m = ρ ·A(D) = ρ · 1
4
πa2 since the lamina is homogeneous. Hence x2 = y

2
=

1
16ρa

4π
1
4
ρa2π

=
a2

4
⇒ x = y =

a

2
.
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27. (a) f(x, y) is a joint density function, so we know R2 f(x, y) dA = 1. Since f(x, y) = 0 outside the

rectangle [0, 1]× [0, 2], we can say

R2 f(x, y) dA=
∞
−∞

∞
−∞ f(x, y) dy dx =

1

0

2

0
Cx(1 + y) dy dx

= C
1

0
x y + 1

2
y2

y=2

y=0
dx = C

1

0
4xdx = C 2x2

1

0
= 2C

Then 2C = 1 ⇒ C = 1
2

.

(b) P (X ≤ 1, Y ≤ 1) = 1

−∞
1

−∞ f(x, y) dy dx =
1

0

1

0
1
2
x(1 + y) dy dx

=
1

0
1
2
x y + 1

2
y2

y=1

y=0
dx =

1

0
1
2
x 3

2
dx = 3

4
1
2
x2

1

0
= 3

8
or 0.375

(c) P (X + Y ≤ 1) = P ((X,Y ) ∈ D) where D is the triangular region shown in

the figure. Thus
P (X + Y ≤ 1) =

D
f(x, y) dA =

1

0

1−x

0
1
2
x(1 + y) dy dx

=
1

0
1
2x y + 1

2y
2 y=1−x
y=0

dx =
1

0
1
2x

1
2x

2 − 2x+ 3
2

dx

= 1
4

1

0
x3 − 4x2 + 3x dx = 1

4
x4

4
− 4x3

3
+ 3x

2

2

1

0

= 5
48 ≈ 0.1042

29. (a) f(x, y) ≥ 0, so f is a joint density function if R2 f(x, y) dA = 1. Here, f(x, y) = 0 outside the first quadrant, so

R2 f(x, y) dA=
∞
0

∞
0
0.1e−(0.5x+0.2y) dy dx = 0.1

∞
0

∞
0

e−0.5xe−0.2y dy dx = 0.1 ∞
0

e−0.5x dx ∞
0

e−0.2y dy

= 0.1 lim
t→∞

t

0
e−0.5x dx lim

t→∞
t

0
e−0.2y dy = 0.1 lim

t→∞
−2e−0.5x t

0
lim
t→∞

−5e−0.2y t

0

= 0.1 lim
t→∞

−2(e−0.5t − 1) lim
t→∞

−5(e−0.2t − 1) = (0.1) · (−2)(0− 1) · (−5)(0− 1) = 1

Thus f(x, y) is a joint density function.

(b) (i) No restriction is placed on X, so

P (Y ≥ 1) = ∞
−∞

∞
1

f(x, y) dy dx =
∞
0

∞
1
0.1e−(0.5x+0.2y) dy dx

= 0.1
∞
0

e−0.5x dx ∞
1

e−0.2y dy = 0.1 lim
t→∞

t

0
e−0.5x dx lim

t→∞
t

1
e−0.2y dy

= 0.1 lim
t→∞

−2e−0.5x t

0
lim
t→∞

−5e−0.2y t

1
= 0.1 lim

t→∞
−2(e−0.5t − 1) lim

t→∞
−5(e−0.2t − e−0.2)

(0.1) · (−2)(0− 1) · (−5)(0− e−0.2) = e−0.2 ≈ 0.8187

(ii) P (X ≤ 2, Y ≤ 4) = 2

−∞
4

−∞ f(x, y) dy dx =
2

0

4

0
0.1e−(0.5x+0.2y) dy dx

= 0.1
2

0
e−0.5x dx 4

0
e−0.2y dy = 0.1 −2e−0.5x 2

0
−5e−0.2y 4

0

= (0.1) · (−2)(e−1 − 1) · (−5)(e−0.8 − 1)
= (e−1 − 1)(e−0.8 − 1) = 1 + e−1.8 − e−0.8 − e−1 ≈ 0.3481

(c) The expected value of X is given by

μ1 = R2 x f(x, y) dA =
∞
0

∞
0

x 0.1e−(0.5x+0.2y) dy dx

= 0.1
∞
0

xe−0.5x dx ∞
0

e−0.2y dy = 0.1 lim
t→∞

t

0
xe−0.5x dx lim

t→∞
t

0
e−0.2y dy

To evaluate the first integral, we integrate by parts with u = x and dv = e−0.5x dx (or we can use Formula 96
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in the Table of Integrals): xe−0.5x dx = −2xe−0.5x − −2e−0.5x dx = −2xe−0.5x − 4e−0.5x = −2(x+ 2)e−0.5x.

Thus
μ1 = 0.1 lim

t→∞
−2(x+ 2)e−0.5x t

0
lim
t→∞

−5e−0.2y t

0

= 0.1 lim
t→∞

(−2) (t+ 2)e−0.5t − 2 lim
t→∞

(−5) e−0.2t − 1

= 0.1(−2) lim
t→∞

t+ 2

e0.5t
− 2 (−5)(−1) = 2 [by l’Hospital’s Rule]

The expected value of Y is given by

μ2 = R2 y f(x, y) dA =
∞
0

∞
0

y 0.1e−(0.5+0.2y) dy dx

= 0.1
∞
0

e−0.5x dx ∞
0

ye−0.2y dy = 0.1 lim
t→∞

t

0
e−0.5x dx lim

t→∞
t

0
ye−0.2y dy

To evaluate the second integral, we integrate by parts with u = y and dv = e−0.2y dy (or again we can use Formula 96 in

the Table of Integrals) which gives ye−0.2y dy = −5ye−0.2y + 5e−0.2y dy = −5(y + 5)e−0.2y . Then

μ2 = 0.1 lim
t→∞

−2e−0.5x t

0
lim
t→∞

−5(y + 5)e−0.2y t

0

= 0.1 lim
t→∞

−2(e−0.5t − 1) lim
t→∞

−5 (t+ 5)e−0.2t − 5

= 0.1(−2)(−1) · (−5) lim
t→∞

t+ 5

e0.2t
− 5 = 5 [by l’Hospital’s Rule]

31. (a) The random variables X and Y are normally distributed with μ1 = 45, μ2 = 20, σ1 = 0.5, and σ2 = 0.1.

The individual density functions for X and Y , then, are f1(x) =
1

0.5
√
2π

e−(x−45)
2/0.5 and

f2 (y) =
1

0.1
√
2π

e−(y−20)
2/0.02. Since X and Y are independent, the joint density function is the product

f(x, y) = f1(x)f2(y) =
1

0.5
√
2π

e−(x−45)
2/0.5 1

0.1
√
2π

e−(y−20)
2/0.02 = 10

π
e−2(x−45)

2−50(y−20)2 .

Then P (40 ≤ X ≤ 50, 20 ≤ Y ≤ 25) = 50

40

25

20
f(x, y) dy dx = 10

π

50

40

25

20
e−2(x−45)

2−50(y−20)2 dy dx.

Using a CAS or calculator to evaluate the integral, we get P (40 ≤ X ≤ 50, 20 ≤ Y ≤ 25) ≈ 0.500.

(b) P (4(X − 45)2 + 100(Y − 20)2 ≤ 2) =
D

10
π
e−2(x−45)

2−50(y−20)2 dA, where D is the region enclosed by the ellipse

4(x− 45)2 + 100(y − 20)2 = 2. Solving for y gives y = 20± 1
10

2− 4(x− 45)2, the upper and lower halves of the

ellipse, and these two halves meet where y = 20 [since the ellipse is centered at (45, 20)] ⇒ 4(x− 45)2 = 2 ⇒
x = 45± 1√

2
. Thus

D

10
π
e−2(x−45)

2−50(y−20)2 dA = 10
π

45+1/
√
2

45−1/√2

20+ 1
10

√
2− 4(x−45)2

20− 1
10

√
2− 4(x−45)2

e−2(x−45)
2−50(y−20)2 dy dx.

Using a CAS or calculator to evaluate the integral, we get P (4(X − 45)2 + 100(Y − 20)2 ≤ 2) ≈ 0.632.

33. (a) If f(P,A) is the probability that an individual at A will be infected by an individual at P , and k dA is the number of

infected individuals in an element of area dA, then f(P,A)k dA is the number of infections that should result from

exposure of the individual at A to infected people in the element of area dA. Integration over D gives the number of

infections of the person at A due to all the infected people in D. In rectangular coordinates (with the origin at the city’s
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center), the exposure of a person at A is

E =
D

kf(P,A) dA = k
D

20− d(P,A)

20
dA = k

D

1− (x− x0)2 + (y − y0)2

20
dx dy

(b) If A = (0, 0), then

E = k
D

1− 1

20
x2 + y2 dxdy

= k
2π

0

10

0

1− r

20
r dr dθ = 2πk

r2

2
− r3

60

10

0

= 2πk 50− 50
3
= 200

3 πk ≈ 209k
For A at the edge of the city, it is convenient to use a polar coordinate system centered at A. Then the polar equation for

the circular boundary of the city becomes r = 20 cos θ instead of r = 10, and the distance from A to a point P in the city

is again r (see the figure). So

E = k
π/2

−π/2

20 cos θ

0

1− r

20
r dr dθ = k

π/2

−π/2

r2

2
− r3

60

r=20 cos θ

r=0

dθ

= k
π/2

−π/2 200 cos2 θ − 400
3
cos3 θ dθ = 200k

π/2

−π/2
1
2
+ 1

2
cos 2θ − 2

3
1− sin2 θ cos θ dθ

= 200k 1
2
θ + 1

4
sin 2θ − 2

3
sin θ + 2

3
· 1
3
sin3 θ

π/2

−π/2 = 200k
π
4
+ 0− 2

3
+ 2

9
+ π

4
+ 0− 2

3
+ 2

9

= 200k π
2
− 8

9
≈ 136k

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.

16.6 Triple Integrals ET 15.6

1.
B
xyz2 dV =

1

0

3

0

2

−1 xyz
2 dy dz dx =

1

0

3

0
1
2xy

2z2
y=2

y=−1 dz dx =
1

0

3

0
3
2xz

2 dz dx

=
1

0
1
2
xz3

z=3

z=0
dx =

1

0
27
2
xdx = 27

4
x2

1

0
= 27

4

3. 1

0

z

0

x+z

0
6xz dy dx dz =

1

0

z

0
6xyz

y=x+z

y=0
dx dz =

1

0

z

0
6xz(x+ z) dx dz

=
1

0
2x3z + 3x2z2

x=z

x=0
dz =

1

0
(2z4 + 3z4) dz =

1

0
5z4 dz = z5

1

0
= 1

5. 3

0

1

0

√
1−z2

0
zey dx dz dy =

3

0

1

0
xzey

x=
√
1−z2

x=0
dz dy =

3

0

1

0
zey
√
1− z2 dz dy

=
3

0
− 1
3 (1− z2)3/2ey

z=1

z=0
dy =

3

0
1
3e

y dy = 1
3e

y 3

0
= 1

3 (e
3 − 1)

7. π/2

0

y

0

x

0
cos(x+ y + z)dz dx dy =

π/2

0

y

0
sin(x+ y + z)

z=x

z=0
dx dy

=
π/2

0

y

0
[sin(2x+ y)− sin(x+ y)] dx dy

=
π/2

0
− 1
2
cos(2x+ y) + cos(x+ y)

x=y

x=0
dy

=
π/2

0
− 1
2
cos 3y + cos 2y + 1

2
cos y − cos y dy

= − 1
6
sin 3y + 1

2
sin 2y − 1

2
sin y

π/2

0
= 1

6
− 1

2
= − 1

3

9.
E
2xdV =

2

0

√
4−y2

0

y

0
2xdz dxdy =

2

0

√
4−y2

0
2xz

z=y

z=0
dxdy =

2

0

√
4−y2

0
2xy dxdy

=
2

0
x2y

x=
√
4−y2

x=0
dy =

2

0
(4− y2)y dy = 2y2 − 1

4y
4 2

0
= 4
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11. Here E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ √x, 0 ≤ z ≤ 1 + x+ y}, so

E
6xy dV =

1

0

√
x

0

1+x+y

0
6xy dz dy dx =

1

0

√
x

0
6xyz

z=1+x+y

z=0
dy dx =

1

0

√
x

0
6xy(1 + x+ y) dy dx

=
1

0
3xy2 + 3x2y2 + 2xy3

y=
√
x

y=0
dx =

1

0
(3x2 + 3x3 + 2x5/2) dx = x3 + 3

4x
4 + 4

7x
7/2

1

0
= 65

28

13. E is the region below the parabolic cylinder z = 1− y2 and above the

square [−1, 1]× [−1, 1] in the xy-plane.

E
x2ey dV =

1

−1
1

−1
1−y2
0

x2ey dz dy dx

=
1

−1
1

−1 x
2ey(1− y2) dy dx

=
1

−1 x
2 dx

1

−1(e
y − y2ey) dy

= 1
3x

3 1

−1 ey − (y2 − 2y + 2)ey 1

−1
integrate by
parts twice

= 1
3
(2)[e− e− e−1 + 5e−1] = 8

3e

15. Here T = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x, 0 ≤ z ≤ 1− x− y}, so

T
x2 dV =

1

0

1−x
0

1−x−y
0

x2 dz dy dx =
1

0

1−x
0

x2(1− x− y)dy dx

=
1

0

1−x
0

(x2 − x3 − x2y)dy dx =
1

0
x2y − x3y − 1

2x
2y2

y=1−x
y=0

dx

=
1

0
x2(1− x)− x3(1− x)− 1

2
x2(1− x)2 dx

=
1

0
1
2x

4 − x3 + 1
2x

2 dx = 1
10x

5 − 1
4x

4 + 1
6x

3 1

0

= 1
10
− 1

4
+ 1

6
= 1

60

17. The projection E on the yz-plane is the disk y2 + z2 ≤ 1. Using polar

coordinates y = r cos θ and z = r sin θ, we get

E
xdV =

D

4

4y2 +4z2
xdx dA = 1

2 D
42 − (4y2 + 4z2)2 dA

= 8
2π

0

1

0
(1− r4) r dr dθ = 8

2π

0
dθ

1

0
(r − r5) dr

= 8(2π) 1
2
r2 − 1

6
r6

1

0
= 16π

3

19. The plane 2x+ y + z = 4 intersects the xy-plane when

2x+ y + 0 = 4 ⇒ y = 4− 2x, so

E = {(x, y, z) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x, 0 ≤ z ≤ 4− 2x− y} and

V=
2

0

4−2x
0

4−2x−y
0

dz dy dx =
2

0

4−2x
0

(4− 2x− y) dy dx

=
2

0
4y − 2xy − 1

2
y2

y=4−2x
y=0

dx

=
2

0
4(4− 2x)− 2x(4− 2x)− 1

2
(4− 2x)2 dx

=
2

0
(2x2 − 8x+ 8) dx = 2

3
x3 − 4x2 + 8x 2

0
= 16

3
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21. V =
3

−3

√
9−x2

−
√
9−x2

5−y

1

dz dy dx =
3

−3

√
9−x2

−
√
9−x2

(5− y − 1) dy dx =
3

−3
4y − 1

2
y2

y=
√
9−x2

y=−
√
9−x2

dx

=
3

−3 8
√
9− x2 dx = 8 x

2

√
9− x2 + 9

2 sin
−1 x

3

3

−3
using trigonometric substitution or
Formula 30 in the Table of Integrals

= 8 9
2
sin−1(1)− 9

2
sin−1(−1) = 36 π

2
− −π

2
= 36π

Alternatively, use polar coordinates to evaluate the double integral:

3

−3

√
9−x2

−
√
9−x2

(4− y) dy dx=
2π

0

3

0

(4− r sin θ) r dr dθ

=
2π

0
2r2 − 1

3
r3 sin θ

r=3

r=0
dθ

=
2π

0
(18− 9 sin θ) dθ

= 18θ + 9 cos θ
2π

0
= 36π

23. (a) The wedge can be described as the region

D = (x, y, z) | y2 + z2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ x

= (x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 1− y2

So the integral expressing the volume of the wedge is

D
dV =

1

0

x

0

√
1− y2

0
dz dy dx.

(b) A CAS gives 1

0

x

0

√
1− y2

0
dz dy dx = π

4
− 1

3
.

(Or use Formulas 30 and 87 from the Table of Integrals.)

25. Here f(x, y, z) = 1

ln(1 + x+ y + z)
and ∆V = 2 · 4 · 2 = 16, so the Midpoint Rule gives

B
f(x, y, z) dV ≈

l

i=1

m

j=1

n

k=1

f xi, yj , zk ∆V

= 16[f(1, 2, 1) + f(1, 2, 3) + f(1, 6, 1) + f(1, 6, 3)

+ f(3, 2, 1) + f(3, 2, 3) + f(3, 6, 1) + f(3, 6, 3)]

= 16 1
ln 5

+ 1
ln 7

+ 1
ln 9

+ 1
ln 11

+ 1
ln 7

+ 1
ln 9

+ 1
ln 11

+ 1
ln 13

≈ 60.533

27. E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x, 0 ≤ y ≤ 2− 2z},

the solid bounded by the three coordinate planes and the planes

z = 1− x, y = 2− 2z.
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29.

If D1, D2, D3 are the projections of E on the xy-, yz-, and xz-planes, then

D1 = (x, y) | −2 ≤ x ≤ 2, 0 ≤ y ≤ 4− x2 = (x, y) | 0 ≤ y ≤ 4, −√4− y ≤ x ≤ √4− y

D2 = (y, z) | 0 ≤ y ≤ 4, − 1
2

√
4− y ≤ z ≤ 1

2

√
4− y = (y, z) | −1 ≤ z ≤ 1, 0 ≤ y ≤ 4− 4z2

D3 = (x, z) | x2 + 4z2 ≤ 4

Therefore

E = (x, y, z) | −2 ≤ x ≤ 2, 0 ≤ y ≤ 4− x2, − 1
2

4− x2 − y ≤ z ≤ 1
2

4− x2 − y

= (x, y, z) | 0 ≤ y ≤ 4, −√4− y ≤ x ≤ √4− y, − 1
2

4− x2 − y ≤ z ≤ 1
2

4− x2 − y

= (x, y, z) | −1 ≤ z ≤ 1, 0 ≤ y ≤ 4− 4z2, − 4− y − 4z2 ≤ x ≤ 4− y − 4z2

= (x, y, z) | 0 ≤ y ≤ 4, − 1
2

√
4− y ≤ z ≤ 1

2

√
4− y, − 4− y − 4z2 ≤ x ≤ 4− y − 4z2

= (x, y, z) | −2 ≤ x ≤ 2, − 1
2

√
4− x2 ≤ z ≤ 1

2

√
4− x2, 0 ≤ y ≤ 4− x2 − 4z2

= (x, y, z) | −1 ≤ z ≤ 1, −√4− 4z2 ≤ x ≤ √4− 4z2, 0 ≤ y ≤ 4− x2 − 4z2

Then

E
f(x, y, z) dV =

2

−2
4−x2
0

√
4−x2−y/2

−
√
4−x2−y/2

f(x, y, z) dz dy dx =
4

0

√
4−y

−√4−y

√
4−x2−y/2

−
√
4−x2−y/2

f(x, y, z) dz dxdy

=
1

−1
4−4z2
0

√
4−y−4z2

−
√
4−y−4z2

f(x, y, z) dx dy dz =
4

0

√
4−y/2

−√4−y/2

√
4−y−4z2

−
√
4−y−4z2

f(x, y, z) dx dz dy

=
2

−2

√
4−x2/2

−
√
4−x2/2

4−x2−4z2
0

f(x, y, z) dy dz dx =
1

−1

√
4−4z2

−
√
4−4z2

4−x2−4z2
0

f(x, y, z) dy dxdz
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31.

If D1, D2, and D3 are the projections of E on the xy-, yz-, and xz-planes, then

D1 = (x, y) | −2 ≤ x ≤ 2, x2 ≤ y ≤ 4 = (x, y) | 0 ≤ y ≤ 4,− y ≤ x ≤ y ,

D2 = (y, z) | 0 ≤ y ≤ 4, 0 ≤ z ≤ 2− 1
2
y = (y, z) | 0 ≤ z ≤ 2, 0 ≤ y ≤ 4− 2z , and

D3 = (x, z) | −2 ≤ x ≤ 2, 0 ≤ z ≤ 2− 1
2x

2 = (x, z) | 0 ≤ z ≤ 2,−√4− 2z ≤ x ≤ √4− 2z

Therefore E = (x, y, z) | −2 ≤ x ≤ 2, x2 ≤ y ≤ 4, 0 ≤ z ≤ 2− 1
2
y

= (x, y, z) | 0 ≤ y ≤ 4, − y ≤ x ≤ y, 0 ≤ z ≤ 2− 1
2
y

= (x, y, z) | 0 ≤ y ≤ 4, 0 ≤ z ≤ 2− 1
2
y, − y ≤ x ≤ y

= (x, y, z) | 0 ≤ z ≤ 2, 0 ≤ y ≤ 4− 2z, − y ≤ x ≤ y

= (x, y, z) | −2 ≤ x ≤ 2, 0 ≤ z ≤ 2− 1
2
x2, x2 ≤ y ≤ 4− 2z

= (x, y, z) | 0 ≤ z ≤ 2, −√4− 2z ≤ x ≤ √4− 2z, x2 ≤ y ≤ 4− 2z

Then
E
f(x, y, z) dV =

2

−2
4

x2
2−y/2
0

f(x, y, z) dz dy dx =
4

0

√
y

−√y
2−y/2
0

f(x, y, z) dz dx dy

=
4

0

2−y/2
0

√
y

−√y f(x, y, z) dxdz dy =
2

0

4−2z
0

√
y

−√y f(x, y, z) dxdy dz

=
2

−2
2− x2/2

0

4−2z
x2

f(x, y, z) dy dz dx =
2

0

√
4−2z

−√4−2z
4−2z
x2

f(x, y, z) dy dx dz
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33.
The diagrams show the projections

of E on the xy-, yz-, and xz-planes.

Therefore

1

0

1√
x

1− y

0
f(x, y, z) dz dy dx=

1

0

y2

0

1−y
0

f(x, y, z) dz dxdy =
1

0

1−z
0

y2

0
f(x, y, z) dx dy dz

=
1

0

1−y
0

y2

0
f(x, y, z) dxdz dy =

1

0

1−√x
0

1−z√
x

f(x, y, z) dy dz dx

=
1

0

(1−z)2
0

1−z√
x

f(x, y, z) dy dx dz

35.

1

0

1

y

y

0
f(x, y, z) dz dx dy =

E
f(x, y, z) dV where E = {(x, y, z) | 0 ≤ z ≤ y, y ≤ x ≤ 1, 0 ≤ y ≤ 1}.

If D1, D2, and D3 are the projections of E on the xy-, yz- and xz-planes then

D1 = {(x, y) | 0 ≤ y ≤ 1, y ≤ x ≤ 1} = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x},

D2 = {(y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ y} = {(y, z) | 0 ≤ z ≤ 1, z ≤ y ≤ 1}, and

D3 = {(x, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ x} = {(x, z) | 0 ≤ z ≤ 1, z ≤ x ≤ 1}.

Thus we also have

E = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ y} = {(x, y, z) | 0 ≤ y ≤ 1, 0 ≤ z ≤ y, y ≤ x ≤ 1}
= {(x, y, z) | 0 ≤ z ≤ 1, z ≤ y ≤ 1, y ≤ x ≤ 1} = {(x, y, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ x, z ≤ y ≤ x}
= {(x, y, z) | 0 ≤ z ≤ 1, z ≤ x ≤ 1, z ≤ y ≤ x} .

Then
1

0

1

y

y

0
f(x, y, z) dz dxdy =

1

0

x

0

y

0
f(x, y, z) dz dy dx =

1

0

y

0

1

y
f(x, y, z) dxdz dy

=
1

0

1

z

1

y
f(x, y, z) dx dy dz =

1

0

x

0

x

z
f(x, y, z) dy dz dx

=
1

0

1

z

x

z
f(x, y, z) dy dx dz
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37. m =
E
ρ(x, y, z) dV =

1

0

√
x

0

1+x+y

0
2 dz dy dx =

1

0

√
x

0
2(1 + x+ y) dy dx

=
1

0
2y + 2xy + y2

y=
√
x

y=0
dx =

1

0
2
√
x+ 2x3/2 + x dx = 4

3x
3/2 + 4

5x
5/2 + 1

2x
2
1

0
= 79

30

Myz = E
xρ(x, y, z) dV =

1

0

√
x

0

1+x+y

0
2xdz dy dx =

1

0

√
x

0
2x(1 + x+ y) dy dx

=
1

0
2xy + 2x2y + xy2

y=
√
x

y=0
dx =

1

0
(2x3/2 + 2x5/2 + x2) dx = 4

5
x5/2 + 4

7
x7/2 + 1

3
x3

1

0
= 179

105

Mxz = E
yρ(x, y, z) dV =

1

0

√
x

0

1+x+y

0
2y dz dy dx =

1

0

√
x

0
2y(1 + x+ y) dy dx

=
1

0
y2 + xy2 + 2

3
y3

y=
√
x

y=0
dx =

1

0
x+ x2 + 2

3
x3/2 dx = 1

2
x2 + 1

3
x3 + 4

15
x5/2

1

0
= 11

10

Mxy = E
zρ(x, y, z) dV =

1

0

√
x

0

1+x+y

0
2z dz dy dx =

1

0

√
x

0
z2

z=1+x+y

z=0
dy dx =

1

0

√
x

0
(1 + x+ y)2 dy dx

=
1

0

√
x

0
(1 + 2x+ 2y + 2xy + x2 + y2) dy dx =

1

0
y + 2xy + y2 + xy2 + x2y + 1

3y
3 y=

√
x

y=0
dx

=
1

0

√
x+ 7

3
x3/2 + x+ x2 + x5/2 dx = 2

3
x3/2 + 14

15
x5/2 + 1

2
x2 + 1

3
x3 + 2

7
x7/2

1

0
= 571

210

Thus the mass is 79
30

and the center of mass is (x, y, z) = Myz

m
,
Mxz

m
,
Mxy

m
=

358

553
,
33

79
,
571

553
.

39. m =
a

0

a

0

a

0
(x2 + y2 + z2) dxdy dz =

a

0

a

0
1
3x

3 + xy2 + xz2
x=a

x=0
dy dz =

a

0

a

0
1
3a

3 + ay2 + az2 dy dz

=
a

0
1
3a

3y + 1
3ay

3 + ayz2
y=a

y=0
dz =

a

0
2
3a

4 + a2z2 dz = 2
3a

4z + 1
3a

2z3
a

0
= 2

3a
5 + 1

3a
5 = a5

Myz =
a

0

a

0

a

0
x3 + x(y2 + z2) dxdy dz =

a

0

a

0
1
4
a4 + 1

2
a2(y2 + z2) dy dz

=
a

0
1
4
a5 + 1

6
a5 + 1

2
a3z2 dz = 1

4
a6 + 1

3
a6 = 7

12
a6 =Mxz =Mxy by symmetry of E and ρ(x, y, z)

Hence (x, y, z) = 7
12a,

7
12a,

7
12a .

41. Ix = L

0

L

0

L

0
k(y2 + z2) dz dy dx = k

L

0

L

0
Ly2 + 1

3L
3 dy dx = k

L

0
2
3L

4 dx = 2
3kL

5.

By symmetry, Ix = Iy = Iz =
2
3
kL5.

43. Iz = E
(x2 + y2) ρ(x, y, z) dV =

x2+y2≤a2
h

0
k(x2 + y2) dz dA =

x2+y2≤a2
k(x2 + y2)hdA

= kh
2π

0

a

0
(r2) r dr dθ = kh

2π

0
dθ

a

0
r3 dr = kh(2π) 1

4r
4 a

0
= 2πkh · 14a4 = 1

2πkha
4

45. (a) m =
3

−3

√
9−x2

−
√
9−x2

5−y
1

x2 + y2 dz dy dx

(b) (x, y, z) = Myz

m
,
Mxz

m
,
Mxy

m
where

Myz =
3

−3

√
9−x2

−
√
9−x2

5−y
1

x x2 + y2 dz dy dx, Mxz =
3

−3

√
9−x2

−
√
9−x2

5−y
1

y x2 + y2 dz dy dx, and

Mxy =
3

−3

√
9−x2

−
√
9−x2

5−y
1

z x2 + y2 dz dy dx.

(c) Iz = 3

−3

√
9−x2

−
√
9−x2

5−y
1

(x2 + y2) x2 + y2 dz dy dx =
3

−3

√
9−x2

−
√
9−x2

5−y
1

(x2 + y2)3/2 dz dy dx
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47. (a) m =
1

0

√
1−x2

0

y

0
(1 + x+ y + z) dz dy dx = 3π

32
+ 11

24

(b) (x, y, z) = m−1 1

0

√
1−x2

0

y

0
x(1 + x+ y + z) dz dy dx,

m−1 1

0

√
1−x2

0

y

0
y(1 + x+ y + z) dz dy dx,

m−1 1

0

√
1−x2

0

y

0
z(1 + x+ y + z) dz dy dx

=
28

9π + 44
,
30π + 128

45π + 220
,
45π + 208

135π + 660

(c) Iz =
1

0

√
1−x2

0

y

0

(x2 + y2)(1 + x+ y + z) dz dy dx =
68 + 15π

240

49. (a) f(x, y, z) is a joint density function, so we know R3 f(x, y, z) dV = 1. Here we have

R3 f(x, y, z) dV =
∞
−∞

∞
−∞

∞
−∞ f(x, y, z) dz dy dx =

2

0

2

0

2

0
Cxyz dz dy dx

= C
2

0
xdx

2

0
y dy

2

0
z dz = C 1

2
x2

2

0
1
2
y2

2

0
1
2
z2

2

0
= 8C

Then we must have 8C = 1 ⇒ C = 1
8

.

(b) P (X ≤ 1, Y ≤ 1, Z ≤ 1) = 1

−∞
1

−∞
1

−∞ f(x, y, z) dz dy dx =
1

0

1

0

1

0
1
8
xyz dz dy dx

= 1
8

1

0
xdx

1

0
y dy

1

0
z dz = 1

8
1
2x

2 1

0
1
2y

2 1

0
1
2z

2 1

0
= 1

8
1
2

3
= 1

64

(c) P (X + Y +Z ≤ 1) = P ((X,Y,Z) ∈ E) where E is the solid region in the first octant bounded by the coordinate planes

and the plane x+ y + z = 1. The plane x+ y + z = 1 meets the xy-plane in the line x+ y = 1, so we have

P (X + Y + Z ≤ 1) =
E
f(x, y, z) dV =

1

0

1−x
0

1−x−y
0

1
8
xyz dz dy dx

= 1
8

1

0

1−x
0

xy 1
2z

2 z=1−x−y
z=0

dy dx = 1
16

1

0

1−x
0

xy(1− x− y)2 dy dx

= 1
16

1

0

1−x
0

[(x3 − 2x2 + x)y + (2x2 − 2x)y2 + xy3] dy dx

= 1
16

1

0
(x3 − 2x2 + x) 1

2
y2 + (2x2 − 2x) 1

3
y3 + x 1

4
y4

y=1−x
y=0

dx

= 1
192

1

0
(x− 4x2 + 6x3 − 4x4 + x5) dx = 1

192
1
30

= 1
5760

51. V (E) = L3 ⇒ fave =
1

L3

L

0

L

0

L

0

xyz dxdy dz =
1

L3

L

0

xdx
L

0

y dy
L

0

z dz

=
1

L3
x2

2

L

0

y2

2

L

0

z2

2

L

0

=
1

L3
L2

2

L2

2

L2

2
=

L3

8

53. The triple integral will attain its maximum when the integrand 1− x2 − 2y2 − 3z2 is positive in the region E and negative

everywhere else. For if E contains some region F where the integrand is negative, the integral could be increased by excluding

F from E, and if E fails to contain some part G of the region where the integrand is positive, the integral could be increased

by including G in E. So we require that x2 + 2y2 + 3z2 ≤ 1. This describes the region bounded by the ellipsoid

x2 + 2y2 + 3z2 = 1.
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16.7 Triple Integrals in Cylindrical Coordinates ET 15.7

1. (a)

x = 2cos
π

4
=
√
2, y = 2 sin π

4
=
√
2, z = 1,

so the point is
√
2,
√
2, 1 in rectangular coordinates.

(b)

x = 4cos −π
3
= 2, y = 4 sin −π

3
= −2√3,

and z = 5, so the point is 2,−2√3, 5 in rectangular

coordinates.

3. (a) r2 = x2 + y2 = 12 + (−1)2 = 2 so r =
√
2; tan θ = y

x
=
−1
1
= −1 and the point (1,−1) is in the fourth quadrant of

the xy-plane, so θ = 7π
4
+ 2nπ; z = 4. Thus, one set of cylindrical coordinates is

√
2, 7π

4
, 4 .

(b) r2 = (−1)2 + −√3 2
= 4 so r = 2; tan θ = −√3

−1 =
√
3 and the point −1,−√3 is in the third quadrant of the

xy-plane, so θ = 4π
3
+ 2nπ; z = 2. Thus, one set of cylindrical coordinates is 2, 4π

3
, 2 .

5. Since θ = π
4

but r and z may vary, the surface is a vertical half-plane including the z-axis and intersecting the xy-plane in the

half-line y = x, x ≥ 0.

7. z = 4− r2 = 4− (x2 + y2) or 4− x2 − y2, so the surface is a circular paraboloid with vertex (0, 0, 4), axis the z-axis, and

opening downward.

9. (a) x2 + y2 = r2, so the equation becomes z = r2.

(b) Substituting x2 + y2 = r2 and y = r sin θ, the equation x2 + y2 = 2y becomes r2 = 2r sin θ or r = 2 sin θ.

11. 0 ≤ r ≤ 2 and 0 ≤ z ≤ 1 describe a solid circular cylinder with

radius 2, axis the z-axis, and height 1, but −π/2 ≤ θ ≤ π/2 restricts

the solid to the first and fourth quadrants of the xy-plane, so we have

a half-cylinder.

13. We can position the cylindrical shell vertically so that its axis coincides with the z-axis and its base lies in the xy-plane. If we

use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as 6 ≤ r ≤ 7,

0 ≤ θ ≤ 2π, 0 ≤ z ≤ 20.
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15. The region of integration is given in cylindrical coordinates by

E = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4, r ≤ z ≤ 4}. This represents the solid

region bounded below by the cone z = r and above by the horizontal plane z = 4.

4

0

2π

0

4

r
r dz dθ dr =

4

0

2π

0
rz

z=4

z=r
dθ dr =

4

0

2π

0
r(4− r) dθ dr

=
4

0
(4r − r2) dr

2π

0
dθ = 2r2 − 1

3
r3

4

0
θ

2π

0

= 32− 64
3
(2π) = 64π

3

17. In cylindrical coordinates, E is given by {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 4,−5 ≤ z ≤ 4}. So

E
x2 + y2 dV =

2π

0

4

0

4

−5
√
r2 r dz dr dθ =

2π

0
dθ

4

0
r2 dr

4

−5 dz

= θ
2π

0
1
3
r3

4

0
z

4

−5 = (2π)
64
3
(9) = 384π

19. In cylindrical coordinates E is bounded by the paraboloid z = 1 + r2, the cylinder r2 = 5 or r =
√
5, and the xy-plane,

so E is given by (r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ √5, 0 ≤ z ≤ 1 + r2 . Thus

E
ez dV =

2π

0

√
5

0

1+r2

0
ez r dz dr dθ =

2π

0

√
5

0
r ez

z=1+r2

z=0
dr dθ =

2π

0

√
5

0
r(e1+r

2 − 1) dr dθ

=
2π

0
dθ

√
5

0
re1+r

2 − r dr = 2π 1
2e

1+r2 − 1
2r

2

√
5

0
= π(e6 − e− 5)

21. In cylindrical coordinates, E is bounded by the cylinder r = 1, the plane z = 0, and the cone z = 2r. So

E = {(r, θ, z) | 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ 2r} and

E
x2 dV =

2π

0

1

0

2r

0
r2 cos2 θ r dz dr dθ =

2π

0

1

0
r3 cos2 θ z

z=2r

z=0
dr dθ =

2π

0

1

0
2r4 cos2 θ dr dθ

=
2π

0
2
5r

5 cos2 θ
r=1

r=0
dθ = 2

5

2π

0
cos2 θ dθ =

2

5

2π

0

1 + cos 2θ

2
dθ =

1

5
θ +

1

2
sin 2θ

2π

0

=
2π

5

23. (a) The paraboloids intersect when x2 + y2 = 36− 3x2 − 3y2 ⇒ x2 + y2 = 9, so the region of integration

is D = (x, y) | x2 + y2 ≤ 9 . Then, in cylindrical coordinates,

E = (r, θ, z) | r2 ≤ z ≤ 36− 3r2, 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π and

V =
2π

0

3

0

36− 3r2
r2

r dz dr dθ =
2π

0

3

0
36r − 4r3 dr dθ =

2π

0
18r2 − r4

r=3

r=0
dθ =

2π

0
81 dθ = 162π.

(b) For constant density K, m = KV = 162πK from part (a). Since the region is homogeneous and symmetric,

Myz =Mxz = 0 and

Mxy =
2π

0

3

0

36−3r2
r2

(zK) r dz dr dθ = K
2π

0

3

0
r 1

2z
2 z=36−3r2
z=r2

dr dθ

= K
2

2π

0

3

0
r((36− 3r2)2 − r4) dr dθ = K

2

2π

0
dθ

3

0
(8r5 − 216r3 + 1296r) dr

= K
2
(2π) 8

6
r6 − 216

4
r4 + 1296

2
r2

3

0
= πK(2430) = 2430πK

Thus (x, y, z) = Myz

m
,
Mxz

m
,
Mxy

m
= 0, 0, 2430πK

162πK
= (0, 0, 15).
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25. The paraboloid z = 4x2 + 4y2 intersects the plane z = a when a = 4x2 + 4y2 or x2 + y2 = 1
4a. So, in cylindrical

coordinates, E = (r, θ, z) | 0 ≤ r ≤ 1
2

√
a, 0 ≤ θ ≤ 2π, 4r2 ≤ z ≤ a . Thus

m=
2π

0

√
a/2

0

a

4r2
Kr dz dr dθ = K

2π

0

√
a/2

0

(ar − 4r3) dr dθ

= K
2π

0

1
2
ar2 − r4

r=
√
a/2

r=0
dθ = K

2π

0

1
16
a2 dθ = 1

8
a2πK

Since the region is homogeneous and symmetric, Myz =Mxz = 0 and

Mxy =
2π

0

√
a/2

0

a

4r2
Krz dz dr dθ = K

2π

0

√
a/2

0

1
2
a2r − 8r5 dr dθ

= K
2π

0

1
4
a2r2 − 4

3
r6

r=
√
a/2

r=0
dθ = K

2π

0

1
24
a3 dθ = 1

12
a3πK

Hence (x, y, z) = 0, 0, 2
3
a .

27. The region of integration is the region above the cone z = x2 + y2, or z = r, and below the plane z = 2. Also, we have

−2 ≤ y ≤ 2 with − 4− y2 ≤ x ≤ 4− y2 which describes a circle of radius 2 in the xy-plane centered at (0, 0). Thus,

2

−2

√
4−y2

−
√
4−y2

2

√
x2+y2

xz dz dx dy =
2π

0

2

0

2

r

(r cos θ) z r dz dr dθ =
2π

0

2

0

2

r

r2 (cos θ) z dz dr dθ

=
2π

0

2

0
r2 (cos θ) 1

2z
2 z=2

z=r
dr dθ = 1

2

2π

0

2

0
r2 (cos θ) 4− r2 dr dθ

= 1
2

2π

0
cos θ dθ

2

0
4r2 − r4 dr = 1

2
[sin θ]2π0

4
3
r3 − 1

5
r5

2

0
= 0

29. (a) The mountain comprises a solid conical region C. The work done in lifting a small volume of material ∆V with density

g(P ) to a height h(P ) above sea level is h(P )g(P )∆V . Summing over the whole mountain we get

W =
C
h(P )g(P ) dV .

(b) Here C is a solid right circular cone with radius R = 62,000 ft, height H = 12,400 ft,

and density g(P ) = 200 lb/ft3 at all points P in C. We use cylindrical coordinates:

W =
2π

0

H

0

R(1−z/H)
0

z · 200r dr dz dθ = 2π H

0
200z 1

2
r2

r=R(1−z/H)
r=0

dz

= 400π
H

0

z
R2

2
1− z

H

2

dz = 200πR2
H

0

z − 2z2

H
+

z3

H2
dz

= 200πR2 z2

2
− 2z3

3H
+

z4

4H2

H

0

= 200πR2 H2

2
− 2H2

3
+

H2

4

= 50
3
πR2H2 = 50

3
π(62,000)2(12,400)2 ≈ 3.1× 1019 ft-lb

r

R
=

H − z

H
= 1− z

H
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16.8 Triple Integrals in Spherical Coordinates ET 15.8

1. (a)

x = ρ sinφ cos θ = (1) sin 0 cos 0 = 0,

y = ρ sinφ sin θ = (1) sin 0 sin 0 = 0, and

z = ρ cosφ = (1) cos 0 = 1 so the point is

(0, 0, 1) in rectangular coordinates.

(b)

x = 2 sin π
4 cos

π
3 =

√
2
2 , y = 2 sin π

4 sin
π
3 =

√
6
2 ,

z = 2 cos π
4
=
√
2 so the point is

√
2
2
,
√
6
2
,
√
2 in

rectangular coordinates.

3. (a) ρ = x2 + y2 + z2 =
√
1 + 3 + 12 = 4, cosφ = z

ρ
=
2
√
3

4
=

√
3

2
⇒ φ =

π

6
, and

cos θ =
x

ρ sinφ
=

1

4 sin(π/6)
=
1

2
⇒ θ =

π

3
[since y > 0]. Thus spherical coordinates are 4,

π

3
,
π

6
.

(b) ρ =
√
0 + 1 + 1 =

√
2, cosφ = −1√

2
⇒ φ =

3π

4
, and cos θ = 0√

2 sin(3π/4)
= 0 ⇒ θ =

3π

2
[since y < 0].

Thus spherical coordinates are
√
2,
3π

2
,
3π

4
.

5. Since φ = π
3

, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z-axis.

7. ρ = sin θ sinφ ⇒ ρ2 = ρ sin θ sinφ ⇔ x2 + y2 + z2 = y ⇔ x2 + y2 − y + 1
4
+ z2 = 1

4
⇔

x2 + (y − 1
2 )
2 + z2 = 1

4 . Therefore, the surface is a sphere of radius 1
2 centered at 0, 12 , 0 .

9. (a) x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cosφ, so the equation z2 = x2 + y2 becomes

(ρ cosφ)2 = (ρ sinφ cos θ)2 + (ρ sinφ sin θ)2 or ρ2 cos2 φ = ρ2 sin2 φ. If ρ 6= 0, this becomes cos2 φ = sin2 φ. (ρ = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan2 φ = 1, 2 cos2 φ = 1, cos 2φ = 0, or even φ = π
4

, φ = 3π
4

.

(b) x2 + z2 = 9 ⇔ (ρ sinφ cos θ)2 + (ρ cosφ)2 = 9 ⇔ ρ2 sin2 φ cos2 θ + ρ2 cos2 φ = 9 or

ρ2 sin2 φ cos2 θ + cos2 φ = 9.

11. ρ = 2 represents a sphere of radius 2, centered at the origin, so ρ ≤ 2 is this

sphere and its interior. 0 ≤ φ ≤ π
2

restricts the solid to that portion of the

region that lies on or above the xy-plane, and 0 ≤ θ ≤ π
2

further restricts the

solid to the first octant. Thus the solid is the portion in the first octant of the

solid ball centered at the origin with radius 2.
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13. ρ ≤ 1 represents the solid sphere of radius 1 centered at the origin.

3π
4 ≤ φ ≤ π restricts the solid to that portion on or below the cone φ = 3π

4 .

15. z ≥ x2 + y2 because the solid lies above the cone. Squaring both sides of this inequality gives z2 ≥ x2 + y2 ⇒
2z2 ≥ x2 + y2 + z2 = ρ2 ⇒ z2 = ρ2 cos2 φ ≥ 1

2
ρ2 ⇒ cos2 φ ≥ 1

2
. The cone opens upward so that the inequality is

cosφ ≥ 1√
2

, or equivalently 0 ≤ φ ≤ π
4 . In spherical coordinates the sphere z = x2 + y2 + z2 is ρ cosφ = ρ2 ⇒

ρ = cosφ. 0 ≤ ρ ≤ cosφ because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 ≤ ρ ≤ cosφ, 0 ≤ φ ≤ π
4 .

17. The region of integration is given in spherical coordinates by

E = {(ρ, θ, φ) | 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/6}. This represents the solid

region in the first octant bounded above by the sphere ρ = 3 and below by the cone

φ = π/6.
π/6

0

π/2

0

3

0
ρ2 sinφdρ dθ dφ =

π/6

0
sinφdφ

π/2

0
dθ

3

0
ρ2 dρ

= − cosφ π/6

0
θ

π/2

0
1
3
ρ3

3

0

= 1−
√
3

2

π

2
(9) =

9π

4
2−√3

19. The solid E is most conveniently described if we use cylindrical coordinates:

E = (r, θ, z) | 0 ≤ θ ≤ π
2
, 0 ≤ r ≤ 3, 0 ≤ z ≤ 2 . Then

E
f(x, y, z) dV =

π/2

0

3

0

2

0
f(r cos θ, r sin θ, z) r dz dr dθ.

21. In spherical coordinates, B is represented by {(ρ, θ, φ) | 0 ≤ ρ ≤ 5, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π }. Thus

B
(x2 + y2 + z2)2 dV =

π

0

2π

0

5

0
(ρ2)2ρ2 sinφdρ dθ dφ =

π

0
sinφdφ

2π

0
dθ

5

0
ρ6 dρ

= − cosφ π

0
θ

2π

0
1
7ρ

7 5

0
= (2)(2π) 78,125

7

= 312,500
7

π ≈ 140,249.7

23. In spherical coordinates, E is represented by (ρ, θ, φ) 1 ≤ ρ ≤ 2, 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π

2
. Thus

E
z dV =

π/2

0

π/2

0

2

1
(ρ cosφ) ρ2 sinφdρ dθ dφ =

π/2

0
cosφ sinφdφ

π/2

0
dθ

2

1
ρ3 dρ

= 1
2 sin

2 φ
π/2

0
θ

π/2

0
1
4ρ

4 2

1
= 1

2
π
2

15
4
= 15π

16
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25.
E
x2 dV =

π

0

π

0

4

3
(ρ sinφ cos θ)2 ρ2 sinφdρ dφdθ =

π

0
cos2 θ dθ

π

0
sin3 φdφ

4

3
ρ4 dρ

= 1
2
θ + 1

4
sin 2θ

π

0
− 1
3
(2 + sin2 φ) cosφ

π

0
1
5
ρ5

4

3
= π

2
2
3
+ 2

3
1
5
(45 − 35) = 1562

15
π

27. The solid region is given by E = (ρ, θ, φ) | 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, π
6
≤ φ ≤ π

3
and its volume is

V =
E
dV =

π/3

π/6

2π

0

a

0
ρ2 sinφdρ dθ dφ =

π/3

π/6
sinφdφ

2π

0
dθ

a

0
ρ2 dρ

= [− cosφ]π/3π/6 [θ]
2π
0

1
3
ρ3

a

0
= − 1

2
+
√
3
2

(2π) 1
3
a3 =

√
3−1
3

πa3

29. (a) Since ρ = 4cosφ implies ρ2 = 4ρ cosφ, the equation is that of a sphere of radius 2 with center at (0, 0, 2). Thus

V =
2π

0

π/3

0

4 cosφ

0
ρ2 sinφdρdφdθ =

2π

0

π/3

0
1
3
ρ3

ρ=4 cosφ

ρ=0
sinφdφdθ =

2π

0

π/3

0
64
3
cos3φ sinφdφdθ

=
2π

0
− 16

3
cos4φ

φ=π/3

φ=0
dθ =

2π

0
− 16

3
1
16
− 1 dθ = 5θ

2π

0
= 10π

(b) By the symmetry of the problem Myz =Mxz = 0. Then

Mxy =
2π

0

π/3

0

4 cosφ

0
ρ3 cosφ sinφdρ dφdθ =

2π

0

π/3

0
cosφ sinφ 64 cos4φ dφdθ

=
2π

0
64 − 1

6
cos6φ

φ=π/3

φ=0
dθ =

2π

0
21
2
dθ = 21π

Hence (x, y, z) = (0, 0, 2.1).

31. By the symmetry of the region, Mxy = 0 and Myz = 0. Assuming constant density K,

m =
E
KV = K

π

0

π

0

4

3
ρ2 sinφdρdφdθ = K

π

0
dθ

π

0
sinφdφ

4

3
ρ2 dρ

= Kπ − cosφ π

0
1
3
ρ3

4

3
= 2Kπ · 37

3
= 74

3
πK

and Mxz = E
yK dV = K

π

0

π

0

4

3
(ρ sinφ sin θ) ρ2 sinφdρ dφ dθ = K

π

0
sin θ dθ

π

0
sin2 φdφ

4

3
ρ3 dρ

= K − cos θ π

0
1
2
φ− 1

4
sin 2φ

π

0
1
4
ρ4

4

3
= K(2) π

2
1
4
(256− 81) = 175

4
πK

Thus the centroid is (x, y, z) = Myz

m
,
Mxz

m
,
Mxy

m
= 0,

175πK/4

74πK/3
, 0 = 0, 525

296
, 0 .

33. (a) The density function is ρ(x, y, z) = K, a constant, and by the symmetry of the problem Mxz =Myz = 0. Then

Mxy =
2π

0

π/2

0

a

0
Kρ3 sinφ cosφdρ dφdθ = 1

2
πKa4

π/2

0
sinφ cosφdφ = 1

8
πKa4. But the mass is K(volume of

the hemisphere) = 2
3
πKa3, so the centroid is 0, 0, 3

8
a .

(b) Place the center of the base at (0, 0, 0); the density function is ρ(x, y, z) = K. By symmetry, the moments of inertia about

any two such diameters will be equal, so we just need to find Ix:

Ix =
2π

0

π/2

0

a

0
(Kρ2 sinφ) ρ2 (sin2 φ sin2 θ + cos2 φ) dρ dφdθ

= K
2π

0

π/2

0
(sin3 φ sin2 θ + sinφ cos2 φ) 1

5
a5 dφ dθ

= 1
5Ka5

2π

0
sin2 θ − cosφ+ 1

3 cos
3 φ + − 1

3 cos
3 φ

φ=π/2

φ=0
dθ = 1

5Ka5
2π

0
2
3 sin

2 θ + 1
3

dθ

= 1
5
Ka5 2

3
1
2
θ − 1

4
sin 2θ + 1

3
θ
2π

0
= 1

5
Ka5 2

3
(π − 0) + 1

3
(2π − 0) = 4

15
Ka5π
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35. In spherical coordinates z = x2 + y2 becomes cosφ = sinφ or φ = π
4 . Then

V =
2π

0

π/4

0

1

0
ρ2 sinφdρdφdθ =

2π

0
dθ

π/4

0
sinφdφ

1

0
ρ2 dρ = 1

3
π 2−√2 ,

Mxy =
2π

0

π/4

0

1

0
ρ3 sinφ cosφdρdφdθ = 2π − 1

4
cos 2φ

π/4

0
1
4
= π

8
and by symmetry Myz =Mxz = 0.

Hence (x, y, z) = 0, 0,
3

8 2−√2 .

37. In cylindrical coordinates the paraboloid is given by z = r2 and the plane by z = 2r sin θ and they intersect in the circle

r = 2 sin θ. Then
E
z dV =

π

0

2 sin θ

0

2r sin θ

r2
rz dz dr dθ = 5π

6 [using a CAS].

39. The region E of integration is the region above the cone z = x2 + y2 and below the sphere x2 + y2 + z2 = 2 in the first

octant. Because E is in the first octant we have 0 ≤ θ ≤ π
2

. The cone has equation φ = π
4

(as in Example 4), so 0 ≤ φ ≤ π
4

,

and 0 ≤ ρ ≤ √2. So the integral becomes

π/4

0

π/2

0

√
2

0
(ρ sinφ cos θ) (ρ sinφ sin θ) ρ2 sinφdρdθ dφ

=
π/4

0
sin3 φdφ

π/2

0
sin θ cos θ dθ

√
2

0
ρ4 dρ =

π/4

0
1− cos2 φ sinφdφ 1

2
sin2 θ

π/2

0
1
5
ρ5

√
2

0

= 1
3
cos3 φ− cosφ π/4

0
· 1
2
· 1
5

√
2

5
=

√
2

12
−
√
2
2
− 1

3
− 1 · 2

√
2

5
= 4

√
2−5
15

41. In cylindrical coordinates, the equation of the cylinder is r = 3, 0 ≤ z ≤ 10.

The hemisphere is the upper part of the sphere radius 3, center (0, 0, 10), equation

r2 + (z − 10)2 = 32, z ≥ 10. In Maple, we can use the coords=cylindrical option

in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.

43. If E is the solid enclosed by the surface ρ = 1 + 1
5
sin 6θ sin 5φ, it can be described in spherical coordinates as

E = (ρ, θ, φ) | 0 ≤ ρ ≤ 1 + 1
5 sin 6θ sin 5φ, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π . Its volume is given by

V (E) =
E
dV =

π

0

2π

0

1+ (sin 6θ sin 5φ)/5

0
ρ2 sinφdρdθ dφ = 136π

99
[using a CAS].

45. (a) From the diagram, z = r cotφ0 to z =
√
a2 − r2, r = 0

to r = a sinφ0 (or use a2 − r2 = r2 cot2 φ0). Thus

V =
2π

0

a sinφ0
0

√
a2−r2

r cotφ0
r dz dr dθ

= 2π
a sinφ0
0

r
√
a2 − r2 − r2 cotφ0 dr

= 2π
3
−(a2 − r2)3/2 − r3 cotφ0

a sinφ0

0

= 2π
3
− a2 − a2 sin2 φ0

3/2 − a3 sin3 φ0 cotφ0 + a3

= 2
3
πa3 1− cos3 φ0 + sin

2 φ0 cosφ0 = 2
3
πa3(1− cosφ0)
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(b) The wedge in question is the shaded area rotated from θ = θ1 to θ = θ2.
Letting

Vij = volume of the region bounded by the sphere of radius ρi
and the cone with angle φj (θ = θ1 to θ2)

and letting V be the volume of the wedge, we have

V = (V22 − V21)− (V12 − V11)

= 1
3
(θ2 − θ1) ρ

3
2(1− cosφ2)− ρ32(1− cosφ1)− ρ31(1− cosφ2) + ρ31(1− cosφ1)

= 1
3
(θ2 − θ1) ρ32 − ρ31 (1− cosφ2)− ρ32 − ρ31 (1− cosφ1) = 1

3
(θ2 − θ1) ρ32 − ρ31 (cosφ1 − cosφ2)

Or: Show that V =
θ2

θ1

ρ2 sinφ2

ρ1 sinφ1

r cotφ1

r cotφ2

r dz dr dθ.

(c) By the Mean Value Theorem with f(ρ) = ρ3 there exists some ρ̃ with ρ1 ≤ ρ̃ ≤ ρ2 such that

f(ρ2)− f(ρ1) = f 0(ρ̃)(ρ2 − ρ1) or ρ31 − ρ32 = 3ρ̃
2∆ρ. Similarly there exists φ with φ1 ≤ φ̃ ≤ φ2

such that cosφ2 − cosφ1 = − sin φ̃ ∆φ. Substituting into the result from (b) gives

∆V = (ρ̃2∆ρ)(θ2 − θ1)(sin φ̃) ∆φ = ρ̃2 sin φ̃∆ρ∆φ∆θ.

16.9 Change of Variables in Multiple Integrals ET 15.9

1. x = 5u− v, y = u+ 3v.

The Jacobian is ∂(x, y)

∂(u, v)
=

∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v
=

5 −1
1 3

= 5(3)− (−1)(1) = 16.

3. x = e−r sin θ, y = er cos θ.

∂(x, y)

∂(r, θ)
=

∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ
=

−e−r sin θ e−r cos θ

er cos θ −er sin θ = e−rer sin2 θ − e−rer cos2 θ = sin2 θ − cos2 θ or − cos 2θ

5. x = u/v, y = v/w, z = w/u.

∂(x, y, z)

∂(u, v,w)
=

∂x/∂u ∂x/∂v ∂x/∂w

∂y/∂u ∂y/∂v ∂y/∂w

∂z/∂u ∂z/∂v ∂z/∂w

=

1/v −u/v2 0

0 1/w −v/w2
−w/u2 0 1/u

=
1

v

1/w −v/w2
0 1/u

− − u

v2

0 −v/w2

−w/u2 1/u
+ 0

0 1/w

−w/u2 0

=
1

v

1

uw
− 0 +

u

v2
0− v

u2w
+ 0 =

1

uvw
− 1

uvw
= 0
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7. The transformation maps the boundary of S to the boundary of the image R, so we first look at side S1 in the uv-plane. S1 is

described by v = 0 [0 ≤ u ≤ 3], so x = 2u+ 3v = 2u and y = u− v = u. Eliminating u, we have x = 2y, 0 ≤ x ≤ 6. S2

is the line segment u = 3, 0 ≤ v ≤ 2, so x = 6 + 3v and y = 3− v. Then v = 3− y ⇒ x = 6 + 3(3− y) = 15− 3y,

6 ≤ x ≤ 12. S3 is the line segment v = 2, 0 ≤ u ≤ 3, so x = 2u+ 6 and y = u− 2, giving u = y + 2 ⇒ x = 2y + 10,

6 ≤ x ≤ 12. Finally, S4 is the segment u = 0, 0 ≤ v ≤ 2, so x = 3v and y = −v ⇒ x = −3y, 0 ≤ x ≤ 6. The image of

set S is the region R shown in the xy-plane, a parallelogram bounded by these four segments.

9. S1 is the line segment u = v, 0 ≤ u ≤ 1, so y = v = u and x = u2 = y2. Since 0 ≤ u ≤ 1, the image is the portion of the

parabola x = y2, 0 ≤ y ≤ 1. S2 is the segment v = 1, 0 ≤ u ≤ 1, thus y = v = 1 and x = u2, so 0 ≤ x ≤ 1. The image is

the line segment y = 1, 0 ≤ x ≤ 1. S3 is the segment u = 0, 0 ≤ v ≤ 1, so x = u2 = 0 and y = v ⇒ 0 ≤ y ≤ 1. The

image is the segment x = 0, 0 ≤ y ≤ 1. Thus, the image of S is the region R in the first quadrant bounded by the parabola

x = y2, the y-axis, and the line y = 1.

11. ∂(x, y)

∂(u, v)
=

2 1

1 2
= 3 and x− 3y = (2u+ v)− 3(u+ 2v) = −u− 5v. To find the region S in the uv-plane that

corresponds to R we first find the corresponding boundary under the given transformation. The line through (0, 0) and (2, 1) is

y = 1
2x which is the image of u+ 2v = 1

2 (2u+ v) ⇒ v = 0; the line through (2, 1) and (1, 2) is x+ y = 3 which is the

image of (2u+ v) + (u+ 2v) = 3 ⇒ u+ v = 1; the line through (0, 0) and (1, 2) is y = 2x which is the image of

u+ 2v = 2(2u+ v) ⇒ u = 0. Thus S is the triangle 0 ≤ v ≤ 1− u, 0 ≤ u ≤ 1 in the uv-plane and

R
(x− 3y) dA =

1

0

1−u
0

(−u− 5v) |3| dv du = −3 1

0
uv + 5

2v
2 v=1−u
v=0

du

= −3 1

0
u− u2 + 5

2 (1− u)2 du = −3 1
2u

2 − 1
3u

3 − 5
6 (1− u)3

1

0
= −3 1

2 − 1
3 +

5
6
= −3

13. ∂(x, y)

∂(u, v)
=

2 0

0 3
= 6, x2 = 4u2 and the planar ellipse 9x2 + 4y2 ≤ 36 is the image of the disk u2 + v2 ≤ 1. Thus

R
x2 dA=

u2+v2≤1
(4u2)(6) dudv =

2π

0

1

0
(24r2 cos2 θ) r dr dθ = 24

2π

0
cos2 θ dθ

1

0
r3 dr

= 24 1
2
x+ 1

4
sin 2x

2π

0
1
4
r4

1

0
= 24(π) 1

4
= 6π
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15. ∂(x, y)

∂(u, v)
=

1/v −u/v2
0 1

=
1

v
, xy = u, y = x is the image of the parabola v2 = u, y = 3x is the image of the parabola

v2 = 3u, and the hyperbolas xy = 1, xy = 3 are the images of the lines u = 1 and u = 3 respectively. Thus

R

xy dA =
3

1

√
3u

√
u

u
1

v
dv du =

3

1

u ln
√
3u− ln√u du =

3

1
u ln

√
3 du = 4 ln

√
3 = 2 ln 3.

17. (a) ∂(x, y, z)

∂(u, v, w)
=

a 0 0

0 b 0

0 0 c

= abc and since u = x

a
, v = y

b
, w = z

c
the solid enclosed by the ellipsoid is the image of the

ball u2 + v2 + w2 ≤ 1. So

E
dV =

u2+v2+w2≤ 1
abc du dv dw = (abc)(volume of the ball) = 4

3
πabc

(b) If we approximate the surface of the earth by the ellipsoid x2

63782
+

y2

63782
+

z2

63562
= 1, then we can estimate

the volume of the earth by finding the volume of the solid E enclosed by the ellipsoid. From part (a), this is

E
dV = 4

3
π(6378)(6378)(6356) ≈ 1.083× 1012 km3.

19. Letting u = x− 2y and v = 3x− y, we have x = 1
5
(2v − u) and y = 1

5
(v − 3u). Then ∂(x, y)

∂(u, v)
=

−1/5 2/5

−3/5 1/5
=
1

5

and R is the image of the rectangle enclosed by the lines u = 0, u = 4, v = 1, and v = 8. Thus

R

x− 2y
3x− y

dA =
4

0

8

1

u

v

1

5
dv du =

1

5

4

0

udu
8

1

1

v
dv = 1

5
1
2
u2

4

0
ln |v| 8

1
= 8

5
ln 8.

21. Letting u = y − x, v = y + x, we have y = 1
2
(u+ v), x = 1

2
(v − u). Then ∂(x, y)

∂(u, v)
=

−1/2 1/2

1/2 1/2
= −1

2
and R is the

image of the trapezoidal region with vertices (−1, 1), (−2, 2), (2, 2), and (1, 1). Thus

R

cos
y − x

y + x
dA =

2

1

v

−v
cos

u

v
−1
2

dudv =
1

2

2

1

v sin
u

v

u= v

u=−v
dv =

1

2

2

1

2v sin(1) dv = 3
2
sin 1

23. Let u = x+ y and v = −x+ y. Then u+ v = 2y ⇒ y = 1
2
(u+ v) and u− v = 2x ⇒ x = 1

2
(u− v).

∂(x, y)

∂(u, v)
=

1/2 −1/2
1/2 1/2

=
1

2
. Now |u| = |x+ y| ≤ |x|+ |y| ≤ 1 ⇒ −1 ≤ u ≤ 1, and

|v| = |−x+ y| ≤ |x|+ |y| ≤ 1 ⇒ −1 ≤ v ≤ 1. R is the image of the square

region with vertices (1, 1), (1,−1), (−1,−1), and (−1, 1).

So
R
ex+y dA = 1

2

1

−1
1

−1 e
u dudv = 1

2
eu

1

−1 v
1

−1 = e− e−1.
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16 Review ET 15

1. (a) A double Riemann sum of f is
m

i=1

n

j=1

f x∗ij , y
∗
ij ∆A, where ∆A is the area of each subrectangle and x∗ij , y

∗
ij is a

sample point in each subrectangle. If f(x, y) ≥ 0, this sum represents an approximation to the volume of the solid that lies

above the rectangle R and below the graph of f .

(b)
R
f(x, y) dA = lim

m,n→∞

m

i=1

n

j=1

f x∗ij , y
∗
ij ∆A

(c) If f(x, y) ≥ 0,
R
f(x, y) dA represents the volume of the solid that lies above the rectangle R and below the surface

z = f(x, y). If f takes on both positive and negative values,
R
f(x, y) dA is the difference of the volume above R but

below the surface z = f(x, y) and the volume below R but above the surface z = f(x, y).

(d) We usually evaluate
R
f(x, y) dA as an iterated integral according to Fubini’s Theorem (see Theorem 16.2.4

[ET 15.2.4]).

(e) The Midpoint Rule for Double Integrals says that we approximate the double integral
R
f(x, y) dA by the double

Riemann sum
m

i=1

n

j=1

f xi, yj ∆A where the sample points xi, yj are the centers of the subrectangles.

(f ) fave =
1

A (R) R

f(x, y) dA where A (R) is the area of R.

2. (a) See (1) and (2) and the accompanying discussion in Section 16.3 [ET 15.3].

(b) See (3) and the accompanying discussion in Section 16.3 [ET 15.3].

(c) See (5) and the preceding discussion in Section 16.3 [ET 15.3].

(d) See (6)–(11) in Section 16.3 [ET 15.3].

3. We may want to change from rectangular to polar coordinates in a double integral if the region R of integration is more easily

described in polar coordinates. To accomplish this, we use
R
f(x, y) dA =

β

α

b

a
f(r cos θ, r sin θ) r dr dθ where R is

given by 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β.

4. (a) m =
D
ρ(x, y) dA

(b) Mx = D
yρ(x, y) dA, My = D

xρ(x, y) dA

(c) The center of mass is (x, y) where x = My

m
and y = Mx

m
.

(d) Ix = D
y2ρ(x, y) dA, Iy = D

x2ρ(x, y) dA, I0 = D
(x2 + y2)ρ(x, y) dA

5. (a) P (a ≤ X ≤ b, c ≤ Y ≤ d) =
b

a

d

c
f(x, y) dy dx

(b) f(x, y) ≥ 0 and R2 f(x, y) dA = 1.

(c) The expected value of X is μ1 = R2 xf(x, y) dA; the expected value of Y is μ2 = R2 yf(x, y) dA.
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6. (a)
B
f(x, y, z) dV = lim

l,m,n→∞

l

i=1

m

j=1

n

k=1

f x∗ijk, y
∗
ijk, z

∗
ijk ∆V

(b) We usually evaluate
B
f(x, y, z) dV as an iterated integral according to Fubini’s Theorem for Triple Integrals

(see Theorem 16.6.4 [ET 15.6.4]).

(c) See the paragraph following Example 16.6.1 [ET 15.6.1].

(d) See (5) and (6) and the accompanying discussion in Section 16.6 [ET 15.6].

(e) See (10) and the accompanying discussion in Section 16.6 [ET 15.6].

(f ) See (11) and the preceding discussion in Section 16.6 [ET 15.6].

7. (a) m =
E
ρ(x, y, z) dV

(b) Myz = E
xρ(x, y, z) dV , Mxz = E

yρ(x, y, z) dV , Mxy = E
zρ(x, y, z) dV .

(c) The center of mass is (x, y, z) where x = Myz

m
, y = Mxz

m
, and z = Mxy

m
.

(d) Ix = E
(y2 + z2)ρ(x, y, z) dV , Iy = E

(x2 + z2)ρ(x, y, z) dV , Iz = E
(x2 + y2)ρ(x, y, z) dV .

8. (a) See Formula 16.7.4 [ET 15.7.4] and the accompanying discussion.

(b) See Formula 16.8.3 [ET 15.8.3] and the accompanying discussion.

(c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region E of

integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using

cylindrical or spherical coordinates.

9. (a) ∂ (x, y)

∂ (u, v)
=

∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v
=

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

(b) See (9) and the accompanying discussion in Section 16.9 [ET 15.9].

(c) See (13) and the accompanying discussion in Section 16.9 [ET 15.9].

1. This is true by Fubini’s Theorem.

3. True by Equation 16.2.5 [ET 15.2.5].

5. True:
D

4− x2 − y2 dA = the volume under the surface x2 + y2 + z2 = 4 and above the xy-plane

= 1
2

the volume of the sphere x2 + y2 + z2 = 4 = 1
2 · 43π(2)3 = 16

3 π

7. The volume enclosed by the cone z = x2 + y2 and the plane z = 2 is, in cylindrical coordinates,

V =
2π

0

2

0

2

r
r dz dr dθ 6= 2π

0

2

0

2

r
dz dr dθ, so the assertion is false.
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1. As shown in the contour map, we divide R into 9 equally sized subsquares, each with area ∆A = 1. Then we approximate

R
f(x, y) dA by a Riemann sum with m = n = 3 and the sample points the upper right corners of each square, so

R
f(x, y) dA≈

3

i=1

3

j=1

f(xi, yj)∆A

= ∆A [f(1, 1) + f(1, 2) + f(1, 3) + f(2, 1) + f(2, 2) + f(2, 3) + f(3, 1) + f(3, 2) + f(3, 3)]

Using the contour lines to estimate the function values, we have

R
f(x, y) dA ≈ 1[2.7 + 4.7 + 8.0 + 4.7 + 6.7 + 10.0 + 6.7 + 8.6 + 11.9] ≈ 64.0

3. 2

1

2

0
(y + 2xey) dx dy =

2

1
xy + x2ey

x=2

x=0
dy =

2

1
(2y + 4ey) dy = y2 + 4ey

2

1

= 4 + 4e2 − 1− 4e = 4e2 − 4e+ 3

5. 1

0

x

0
cos(x2) dy dx =

1

0
cos(x2)y

y=x

y=0
dx =

1

0
x cos(x2) dx = 1

2
sin(x2)

1

0
= 1

2
sin 1

7. π

0

1

0

√
1−y2

0
y sinxdz dy dx =

π

0

1

0
(y sinx)z

z=
√
1−y2

z=0
dy dx =

π

0

1

0
y 1− y2 sinxdy dx

=
π

0
− 1
3
(1− y2)3/2 sinx

y=1

y=0
dx =

π

0
1
3
sinxdx = − 1

3
cosx

π

0
= 2

3

9. The region R is more easily described by polar coordinates: R = {(r, θ) | 2 ≤ r ≤ 4, 0 ≤ θ ≤ π}. Thus

R
f(x, y) dA =

π

0

4

2
f(r cos θ, r sin θ) r dr dθ.

11. The region whose area is given by π/2

0

sin 2θ

0
r dr dθ is

(r, θ) | 0 ≤ θ ≤ π
2
, 0 ≤ r ≤ sin 2θ , which is the region contained in the

loop in the first quadrant of the four-leaved rose r = sin 2θ.

13. 1

0

1

x
cos(y2) dy dx =

1

0

y

0
cos(y2) dxdy

=
1

0
cos(y2) x

x=y

x=0
dy =

1

0
y cos(y2) dy

= 1
2 sin(y

2)
1

0
= 1

2 sin 1

15.
R
yexy dA =

3

0

2

0
yexy dxdy =

3

0
exy

x=2

x=0
dy =

3

0
(e2y − 1) dy = 1

2
e2y − y

3

0
= 1

2
e6 − 3− 1

2
= 1

2
e6 − 7

2
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17.

D

y

1 + x2
dA =

1

0

√
x

0

y

1 + x2
dy dx =

1

0

1

1 + x2
1
2
y2

y=
√
x

y=0
dx

= 1
2

1

0

x

1 + x2
dx = 1

4
ln(1 + x2)

1

0
= 1

4
ln 2

19.
D
y dA =

2

0

8−y2
y2

y dx dy

=
2

0
y x

x=8−y2
x=y2

dy =
2

0
y(8− y2 − y2) dy

=
2

0
(8y − 2y3) dy = 4y2 − 1

2y
4 2

0
= 8

21.

D

x2 + y2
3/2

dA =
π/3

0

3

0

(r2)3/2r dr dθ

=
π/3

0

dθ
3

0

r4 dr = θ
π/3

0

1

5
r5

3

0

=
π

3

35

5
=
81π

5

23.
E
xy dV =

3

0

x

0

x+y

0
xy dz dy dx =

3

0

x

0
xy z

z=x+y

z=0
dy dx =

3

0

x

0
xy(x+ y) dy dx

=
3

0

x

0
(x2y + xy2) dy dx =

3

0
1
2
x2y2 + 1

3
xy3

y=x

y=0
dx =

3

0
1
2
x4 + 1

3
x4 dx

= 5
6

3

0
x4 dx = 1

6
x5

3

0
= 81

2
= 40.5

25.
E
y2z2 dV =

1

−1

√
1−y2

−
√
1−y2

1− y2− z2

0
y2z2 dxdz dy =

1

−1

√
1−y2

−
√
1−y2

y2z2(1− y2 − z2) dz dy

=
2π

0

1

0
(r2 cos2 θ)(r2 sin2 θ)(1− r2) r dr dθ =

2π

0

1

0
1
4
sin2 2θ(r5 − r7) dr dθ

=
2π

0
1
8 (1− cos 4θ) 1

6r
6 − 1

8r
8 r=1

r=0
dθ = 1

192
θ − 1

4 sin 4θ
2π

0
= 2π

192 =
π
96

27.
E
yz dV =

2

−2

√
4−x2

0

y

0
yz dz dy dx =

2

−2

√
4−x2

0
1
2y

3dy dx =
π

0

2

0
1
2r

3(sin3 θ) r dr dθ

= 16
5

π

0
sin3 θ dθ = 16

5
− cos θ + 1

3 cos
3 θ

π

0
= 64

15

29. V =
2

0

4

1
(x2 + 4y2) dy dx =

2

0
x2y + 4

3y
3 y=4

y=1
dx =

2

0
(3x2 + 84) dx = 176

31.
V =

2

0

y

0

(2−y)/2
0

dz dxdy =
2

0

y

0
1− 1

2
y dx dy

=
2

0
y − 1

2
y2 dy = 2

3
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33. Using the wedge above the plane z = 0 and below the plane z = mx and noting that we have the same volume for m < 0 as

for m > 0 (so use m > 0), we have

V = 2
a/3

0

√
a2−9y2

0
mxdxdy = 2

a/3

0
1
2
m(a2 − 9y2) dy = m a2y − 3y3 a/3

0
= m 1

3
a3 − 1

9
a3 = 2

9
ma3.

35. (a) m =
1

0

1−y2
0

y dx dy =
1

0
(y − y3) dy = 1

2
− 1

4
= 1

4

(b) My =
1

0

1− y2

0
xy dx dy =

1

0
1
2
y(1 − y2)2 dy = − 1

12
(1− y2)3

1

0
= 1

12
,

Mx =
1

0

1− y2

0
y2 dx dy =

1

0
(y2 − y4) dy = 2

15 . Hence (x, y) = 1
3 ,

8
15

.

(c) Ix = 1

0

1−y2
0

y3 dx dy =
1

0
(y3 − y5) dy = 1

12
,

Iy =
1

0

1−y2
0

yx2 dxdy =
1

0
1
3y(1− y2)3 dy = − 1

24 (1− y2)4
1

0
= 1

24 ,

I0 = Ix + Iy =
1
8

, y 2 = 1/12
1/4

= 1
3
⇒ y = 1√

3
, and x2 = 1/24

1/4
= 1

6
⇒ x = 1√

6
.

37. The equation of the cone with the suggested orientation is (h− z) = h
a x2 + y2, 0 ≤ z ≤ h. Then V = 1

3πa
2h is the

volume of one frustum of a cone; by symmetry Myz =Mxz = 0; and

Mxy =

x2+y2≤a2

h−(h/a)
√
x2+y2

0

z dz dA =
2π

0

a

0

(h/a)(a−r)

0

rz dz dr dθ = π
a

0

r
h2

a2
(a− r)2 dr

=
πh2

a2

a

0

(a2r − 2ar2 + r3) dr =
πh2

a2
a4

2
− 2a4

3
+

a4

4
=

πh2a2

12

Hence the centroid is (x, y, z) = 0, 0, 1
4
h .

39.
3

0

√
9−x2

−
√
9−x2

(x3 + xy2) dy dx =
3

0

√
9−x2

−
√
9−x2

x(x2 + y2) dy dx

=
π/2

−π/2
3

0
(r cos θ)(r2) r dr dθ

=
π/2

−π/2 cos θ dθ
3

0
r4 dr

= sin θ
π/2

−π/2
1
5
r5

3

0
= 2 · 1

5
(243) = 486

5
= 97.2

41. From the graph, it appears that 1− x2 = ex at x ≈ −0.71 and at

x = 0, with 1− x2 > ex on (−0.71, 0). So the desired integral is

D
y2dA≈ 0

−0.71
1−x2
ex

y2 dy dx

= 1
3

0

−0.71[(1− x2)3 − e3x] dx

= 1
3
x− x3 + 3

5x
5 − 1

7x
7 − 1

3e
3x 0

−0.71 ≈ 0.0512
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43. (a) f(x, y) is a joint density function, so we know that R2 f(x, y) dA = 1. Since f(x, y) = 0 outside the rectangle

[0, 3]× [0, 2], we can say

R2 f(x, y) dA=
∞
−∞

∞
−∞ f(x, y) dy dx =

3

0

2

0
C(x+ y) dy dx

= C
3

0
xy + 1

2
y2

y=2

y=0
dx = C

3

0
(2x+ 2) dx = C x2 + 2x

3

0
= 15C

Then 15C = 1 ⇒ C = 1
15

.

(b) P (X ≤ 2, Y ≥ 1) = 2

−∞
∞
1

f(x, y) dy dx =
2

0

2

1
1
15 (x, y) dy dx =

1
15

2

0
xy + 1

2y
2 y=2

y=1
dx

= 1
15

2

0
x+ 3

2
dx = 1

15
1
2
x2 + 3

2
x

2

0
= 1

3

(c) P (X + Y ≤ 1) = P ((X,Y ) ∈ D) where D is the triangular region shown in

the figure. Thus

P (X + Y ≤ 1) =
D
f(x, y) dA =

1

0

1−x
0

1
15
(x+ y) dy dx

= 1
15

1

0
xy + 1

2y
2 y=1−x
y=0

dx

= 1
15

1

0
x(1− x) + 1

2
(1− x)2 dx

= 1
30

1

0
(1− x2) dx = 1

30
x− 1

3
x3

1

0
= 1

45

45. 1

−1
1

x2
1−y
0

f(x, y, z) dz dy dx =
1

0

1−z
0

√
y

−√y f(x, y, z) dx dy dz

47. Since u = x− y and v = x+ y, x = 1
2 (u+ v) and y = 1

2 (v − u).

Thus ∂(x, y)

∂(u, v)
=

1/2 1/2

−1/2 1/2
=
1

2
and

R

x− y

x+ y
dA =

4

2

0

−2

u

v

1

2
dudv = −

4

2

dv

v
= − ln 2.

49. Let u = y − x and v = y + x so x = y − u = (v − x)− u ⇒ x = 1
2 (v − u) and y = v − 1

2 (v − u) = 1
2 (v + u).

∂(x, y)

∂(u, v)
=

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
= − 1

2
1
2
− 1

2
1
2

= − 1
2
= 1

2
. R is the image under this transformation of the square

with vertices (u, v) = (0, 0), (−2, 0), (0, 2), and (−2, 2). So

R

xy dA =
2

0

0

−2

v2 − u2

4

1

2
dudv = 1

8

2

0
v2u− 1

3
u3

u=0

u=−2 dv =
1
8

2

0
2v2 − 8

3
dv = 1

8
2
3
v3 − 8

3
v
2

0
= 0

This result could have been anticipated by symmetry, since the integrand is an odd function of y and R is symmetric about

the x-axis.

51. For each r such that Dr lies within the domain, A(Dr) = πr2, and by the Mean Value Theorem for Double Integrals there

exists (xr, yr) in Dr such that f (xr, yr) =
1

πr2 Dr

f(x, y) dA. But lim
r→0+

(xr, yr) = (a, b),

so lim
r→0+

1

πr2 Dr

f (x, y) dA = lim
r→0+

f(xr, yr) = f(a, b) by the continuity of f .
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1. Let R = 5

i=1Ri, where

Ri = {(x, y) | x+ y ≥ i+ 2, x+ y < i+ 3, 1 ≤ x ≤ 3, 2 ≤ y ≤ 5}.

R
[[x+ y]] dA =

5

i=1
Ri
[[x+ y]] dA =

5

i=1

[[x+ y]]
Ri

dA, since

[[x+ y]] = constant = i+ 2 for (x, y) ∈ Ri. Therefore

R
[[x+ y]] dA= 5

i=1 (i+ 2) [A(Ri)]

= 3A(R1) + 4A(R2) + 5A(R3) + 6A(R4) + 7A(R5)

= 3 1
2
+ 4 3

2
+ 5(2) + 6 3

2
+ 7 1

2
= 30

3. fave =
1

b− a

b

a

f(x) dx =
1

1− 0
1

0

1

x

cos(t2) dt dx

=
1

0

1

x
cos(t2) dt dx =

1

0

t

0
cos(t2) dx dt [changing the order of integration]

=
1

0
t cos(t2) dt = 1

2 sin t2
1

0
= 1

2 sin 1

5. Since |xy| < 1, except at (1, 1), the formula for the sum of a geometric series gives 1

1− xy
=

∞

n=0

(xy)n, so

1

0

1

0
1

1−xy dx dy =
1

0

1

0

∞

n=0

(xy)n dx dy =
∞

n=0

1

0

1

0
(xy)n dx dy =

∞

n=0

1

0
xn dx

1

0
yn dy

=
∞

n=0

1
n+1

· 1
n+1

=
∞

n=0

1
(n+1)2

= 1
12
+ 1

22
+ 1

32
+ · · · = ∞

n=1
1
n2

7. (a) Since |xyz| < 1 except at (1, 1, 1), the formula for the sum of a geometric series gives 1

1− xyz
=

∞

n=0

(xyz)n, so

1

0

1

0

1

0

1

1− xyz
dxdy dz =

1

0

1

0

1

0

∞

n=0

(xyz)n dx dy dz =
∞

n=0

1

0

1

0

1

0

(xyz)n dxdy dz

=
∞

n=0

1

0
xn dx

1

0
yn dy

1

0
zn dz =

∞

n=0

1

n+ 1
· 1

n+ 1
· 1

n+ 1

=
∞

n=0

1

(n+ 1)3
=
1

13
+
1

23
+
1

33
+ · · · =

∞

n=1

1

n3

(b) Since |−xyz| < 1, except at (1, 1, 1), the formula for the sum of a geometric series gives 1

1 + xyz
=

∞

n=0

(−xyz)n, so

1

0

1

0

1

0

1

1 + xyz
dx dy dz =

1

0

1

0

1

0

1

1 + xyz

∞

n=0

(−xyz)n dx dy dz =
∞

n=0

1

0

1

0

1

0

(−xyz)n dx dy dz

=
∞

n=0

(−1)n 1

0
xn dx

1

0
yn dy

1

0
zn dz =

∞

n=0

(−1)n 1

n+ 1
· 1

n+ 1
· 1

n+ 1

=
∞

n=0

(−1)n
(n+ 1)3

=
1

13
− 1

23
+
1

33
− · · · =

∞

n=0

(−1)n−1
n3

To evaluate this sum, we first write out a few terms: s = 1− 1

23
+
1

33
− 1

43
+
1

53
− 1

63
≈ 0.8998. Notice that
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a7 =
1

73
< 0.003. By the Alternating Series Estimation Theorem from Section 12.5 [ ET 11.5], we have

|s− s6| ≤ a7 < 0.003. This error of 0.003 will not affect the second decimal place, so we have s ≈ 0.90.

9. (a) x = r cos θ, y = r sin θ, z = z. Then ∂u

∂r
=

∂u

∂x

∂x

∂r
+

∂u

∂y

∂y

∂r
+

∂u

∂z

∂z

∂r
=

∂u

∂x
cos θ +

∂u

∂y
sin θ and

∂2u

∂r2
= cos θ

∂2u

∂x2
∂x

∂r
+

∂2u

∂y ∂x

∂y

∂r
+

∂2u

∂z ∂x

∂z

∂r
+ sin θ

∂2u

∂y2
∂y

∂r
+

∂2u

∂x∂y

∂x

∂r
+

∂2u

∂z ∂y

∂z

∂r

=
∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂y ∂x
cos θ sin θ

Similarly ∂u

∂θ
= −∂u

∂x
r sin θ +

∂u

∂y
r cos θ and

∂2u

∂θ2
=

∂2u

∂x2
r2 sin2 θ +

∂2u

∂y2
r2 cos2 θ − 2 ∂2u

∂y ∂x
r2 sin θ cos θ − ∂u

∂x
r cos θ − ∂u

∂y
r sin θ. So

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2
∂2u

∂θ2
+

∂2u

∂z2
=

∂2u

∂x2
cos2 θ +

∂2u

∂y2
sin2 θ + 2

∂2u

∂y ∂x
cos θ sin θ +

∂u

∂x

cos θ

r
+

∂u

∂y

sin θ

r

+
∂2u

∂x2
sin2 θ +

∂2u

∂y2
cos2 θ − 2 ∂2u

∂y ∂x
sin θ cos θ

−∂u

∂x

cos θ

r
− ∂u

∂y

sin θ

r
+

∂2u

∂z2

=
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

(b) x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. Then

∂u

∂ρ
=

∂u

∂x

∂x

∂ρ
+

∂u

∂y

∂y

∂ρ
+

∂u

∂z

∂z

∂ρ
=

∂u

∂x
sinφ cos θ +

∂u

∂y
sinφ sin θ +

∂u

∂z
cosφ, and

∂2u

∂ρ2
= sinφ cos θ

∂2u

∂x2
∂x

∂ρ
+

∂2u

∂y ∂x

∂y

∂ρ
+

∂2u

∂z ∂x

∂z

∂ρ

+ sinφ sin θ
∂2u

∂y2
∂y

∂ρ
+

∂2u

∂x∂y

∂x

∂ρ
+

∂2u

∂z ∂y

∂z

∂ρ

+ cosφ
∂2u

∂z2
∂z

∂ρ
+

∂2u

∂x∂z

∂x

∂ρ
+

∂2u

∂y ∂z

∂y

∂ρ

= 2
∂2u

∂y ∂x
sin2 φ sin θ cos θ + 2

∂2u

∂z ∂x
sinφ cosφ cos θ + 2

∂2u

∂y ∂z
sinφ cosφ sin θ

+
∂2u

∂x2
sin2 φ cos2 θ +

∂2u

∂y2
sin2 φ sin2 θ +

∂2u

∂z2
cos2 φ

Similarly ∂u

∂φ
=

∂u

∂x
ρ cosφ cos θ +

∂u

∂y
ρ cosφ sin θ − ∂u

∂z
ρ sinφ, and

∂2u

∂φ2
= 2

∂2u

∂y ∂x
ρ2 cos2 φ sin θ cos θ − 2 ∂2u

∂x∂z
ρ2 sinφ cosφ cos θ

− 2 ∂2u

∂y ∂z
ρ2 sinφ cosφ sin θ +

∂2u

∂x2
ρ2 cos2 φ cos2 θ +

∂2u

∂y2
ρ2 cos2 φ sin2 θ

+
∂2u

∂z2
ρ2 sin2 φ− ∂u

∂x
ρ sinφ cos θ − ∂u

∂y
ρ sinφ sin θ − ∂u

∂z
ρ cosφ
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And ∂u

∂θ
= −∂u

∂x
ρ sinφ sin θ +

∂u

∂y
ρ sinφ cos θ, while

∂2u

∂θ2
= −2 ∂2u

∂y ∂x
ρ2 sin2 φ cos θ sin θ +

∂2u

∂x2
ρ2 sin2 φ sin2 θ

+
∂2u

∂y2
ρ2 sin2 φ cos2 θ − ∂u

∂x
ρ sinφ cos θ − ∂u

∂y
ρ sinφ sin θ

Therefore

∂2u

∂ρ2
+
2

ρ

∂u

∂ρ
+
cotφ

ρ2
∂u

∂φ
+
1

ρ2
∂2u

∂φ2
+

1

ρ2 sin2 φ

∂2u

∂θ2

=
∂2u

∂x2
(sin2 φ cos2 θ) + (cos2 φ cos2 θ) + sin2 θ

+
∂2u

∂y2
(sin2 φ sin2 θ) + (cos2 φ sin2 θ) + cos2 θ +

∂2u

∂z2
cos2 φ+ sin2 φ

+
∂u

∂x

2 sin2 φ cos θ + cos2 φ cos θ − sin2 φ cos θ − cos θ
ρ sinφ

+
∂u

∂y

2 sin2 φ sin θ + cos2 φ sin θ − sin2 φ sin θ − sin θ
ρ sinφ

But 2 sin2 φ cos θ+cos2 φ cos θ− sin2 φ cos θ− cos θ = (sin2 φ+cos2 φ− 1) cos θ = 0 and similarly the coefficient of

∂u/∂y is 0. Also sin2 φ cos2 θ + cos2 φ cos2 θ + sin2 θ = cos2 θ (sin2 φ+ cos2 φ) + sin2 θ = 1, and similarly the

coefficient of ∂2u/∂y2 is 1. So Laplace’s Equation in spherical coordinates is as stated.

11. x

0

y

0

z

0
f (t) dt dz dy =

E
f (t) dV , where

E = {(t, z, y) | 0 ≤ t ≤ z, 0 ≤ z ≤ y, 0 ≤ y ≤ x}.

If we let D be the projection of E on the yt-plane then

D = {(y, t) | 0 ≤ t ≤ x, t ≤ y ≤ x}. And we see from the diagram

that E = {(t, z, y) | t ≤ z ≤ y, t ≤ y ≤ x, 0 ≤ t ≤ x}. So

x

0

y

0

z

0
f(t) dt dz dy =

x

0

x

t

y

t
f(t) dz dy dt =

x

0

x

t
(y − t) f(t) dy dt

=
x

0
1
2
y2 − ty f(t)

y= x

y= t
dt =

x

0
1
2
x2 − tx− 1

2
t2 + t2 f(t) dt

=
x

0
1
2x

2 − tx+ 1
2 t
2 f(t) dt =

x

0
1
2x

2 − 2tx+ t2 f(t) dt

= 1
2

x

0
(x− t)2 f(t) dt





17 VECTOR CALCULUS ET 16

17.1 Vector Fields ET 16.1

1. F(x, y) = 1
2
(i+ j)

All vectors in this field are identical, with length 1√
2

and

direction parallel to the line y = x.

3. F(x, y) = y i+ 1
2 j

The length of the vector y i+ 1
2
j is y2 + 1

4
. Vectors

are tangent to parabolas opening about the x-axis.

5. F(x, y) = y i+ x j

x2 + y2

The length of the vector y i+ x j

x2 + y2
is 1.

7. F(x, y, z) = k

All vectors in this field are parallel to the z-axis and have

length 1.

9. F(x, y, z) = xk

At each point (x, y, z), F(x, y, z) is a vector of length |x|.
For x > 0, all point in the direction of the positive z-axis,

while for x < 0, all are in the direction of the negative

z-axis. In each plane x = k, all the vectors are identical.
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11. F(x, y) = hy, xi corresponds to graph II. In the first quadrant all the vectors have positive x- and y-components, in the second

quadrant all vectors have positive x-components and negative y-components, in the third quadrant all vectors have negative x-

and y-components, and in the fourth quadrant all vectors have negative x-components and positive y-components. In addition,

the vectors get shorter as we approach the origin.

13. F(x, y) = hx− 2, x+ 1i corresponds to graph I since the vectors are independent of y (vectors along vertical lines are

identical) and, as we move to the right, both the x- and the y-components get larger.

15. F(x, y, z) = i+ 2 j+ 3k corresponds to graph IV, since all vectors have identical length and direction.

17. F(x, y, z) = x i+ y j+ 3k corresponds to graph III; the projection of each vector onto the xy-plane is x i+ y j, which points

away from the origin, and the vectors point generally upward because their z-components are all 3.

19.
The vector field seems to have very short vectors near the line y = 2x.

For F(x, y) = h0, 0i we must have y2 − 2xy = 0 and 3xy − 6x2 = 0.

The first equation holds if y = 0 or y = 2x, and the second holds if

x = 0 or y = 2x. So both equations hold [and thus F(x, y) = 0] along

the line y = 2x.

21. f(x, y) = xexy ⇒
∇f(x, y) = fx(x, y) i+ fy (x, y) j = (xe

xy · y + exy) i+ (xexy · x) j = (xy + 1)exy i+ x2exy j

23. ∇f(x, y, z) = fx(x, y, z) i+ fy(x, y, z) j+ fz(x, y, z)k =
x

x2 + y2 + z2
i+

y

x2 + y2 + z2
j+

z

x2 + y2 + z2
k

25. f(x, y) = x2 − y ⇒ ∇f(x, y) = 2x i− j.
The length of∇f(x, y) is

√
4x2 + 1. When x 6= 0, the

vectors point away from the y-axis in a slightly downward

direction with length that increases as the distance from

the y-axis increases.

27. We graph∇f along with a contour map of f .

The graph shows that the gradient vectors are

perpendicular to the level curves. Also, the gradient

vectors point in the direction in which f is increasing and

are longer where the level curves are closer together.
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29. f(x, y) = x2 + y2 ⇒ ∇f(x, y) = 2x i+ 2y j. Thus, each vector∇f(x, y) has the same direction and twice the length of

the position vector of the point (x, y), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence,∇f is graph II.

31. f(x, y) = (x+ y)2 ⇒ ∇f(x, y) = 2(x+ y) i+ 2(x+ y) j. The x- and y-components of each vector are equal, so all

vectors are parallel to the line y = x. The vectors are 0 along the line y = −x and their length increases as the distance from

this line increases. Thus,∇f is graph II.

33. At t = 3 the particle is at (2, 1) so its velocity isV(2, 1) = h4, 3i. After 0.01 units of time, the particle’s change in

location should be approximately 0.01V(2, 1) = 0.01 h4, 3i = h0.04, 0.03i, so the particle should be approximately at the

point (2.04, 1.03).

35. (a) We sketch the vector field F(x, y) = x i− y j along with

several approximate flow lines.The flow lines appear to be

hyperbolas with shape similar to the graph of y = ±1/x,

so we might guess that the flow lines have equations

y = C/x.

(b) If x = x(t) and y = y(t) are parametric equations of a flow line, then the velocity vector of the flow line at the

point (x, y) is x0(t) i+ y0 (t) j. Since the velocity vectors coincide with the vectors in the vector field, we have

x0(t) i+ y0(t) j = x i− y j ⇒ dx/dt = x, dy/dt = −y. To solve these differential equations, we know

dx/dt = x ⇒ dx/x = dt ⇒ ln |x| = t+ C ⇒ x = ±et+C = Aet for some constant A, and

dy/dt = −y ⇒ dy/y = −dt ⇒ ln |y| = −t+K ⇒ y = ±e−t+K = Be−t for some constant B. Therefore

xy = AetBe−t = AB = constant. If the flow line passes through (1, 1) then (1) (1) = constant = 1 ⇒ xy = 1 ⇒
y = 1/x, x > 0.

17.2 Line Integrals ET 16.2

1. x = t3 and y = t, 0 ≤ t ≤ 2, so by Formula 3

C
y3 ds=

2

0
t3 dx

dt

2
+ dy

dt

2
dt =

2

0
t3 (3t2)2 + (1)2 dt =

2

0
t3
√
9t4 + 1 dt

= 1
36
· 2
3
9t4 + 1

3/2 2

0
= 1

54
(1453/2 − 1) or 1

54
145

√
145− 1

3. Parametric equations for C are x = 4cos t, y = 4 sin t, −π
2
≤ t ≤ π

2
. Then

C
xy4 ds=

π/2

−π/2(4 cos t)(4 sin t)
4 (−4 sin t)2 + (4 cos t)2 dt = π/2

−π/2 4
5 cos t sin4 t 16(sin2 t+ cos2 t) dt

= 45
π/2

−π/2(sin
4 t cos t)(4) dt = (4)6 1

5
sin5 t

π/2

−π/2 =
2 · 46
5

= 1638.4
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5. If we choose x as the parameter, parametric equations for C are x = x, y =
√
x for 1 ≤ x ≤ 4 and

C
x2y3 −

√
x dy =

4

1
x2 · (

√
x )3 −

√
x

1

2
√
x
dx = 1

2

4

1
x3 − 1 dx

= 1
2

1
4
x4 − x

4

1
= 1

2
64− 4− 1

4
+ 1 = 243

8

7. C = C1 +C2

On C1: x = x, y = 0 ⇒ dy = 0 dx, 0 ≤ x ≤ 2.

On C2: x = x, y = 2x− 4 ⇒ dy = 2 dx, 2 ≤ x ≤ 3.

Then

C
xy dx+ (x− y) dy =

C1
xy dx+ (x− y) dy +

C2
xy dx+ (x− y) dy

=
2

0
(0 + 0) dx+

3

2
[(2x2 − 4x) + (−x+ 4)(2)] dx

=
3

2
(2x2 − 6x+ 8) dx = 17

3

9. x = 2 sin t, y = t, z = −2 cos t, 0 ≤ t ≤ π. Then by Formula 9,

C
xyz ds =

π

0
(2 sin t)(t)(−2 cos t) dx

dt

2
+ dy

dt

2
+ dz

dt

2
dt

=
π

0
−4t sin t cos t (2 cos t)2 + (1)2 + (2 sin t)2 dt =

π

0
−2t sin 2t 4(cos2 t+ sin2 t) + 1 dt

= −2√5 π

0
t sin 2t dt = −2√5 − 1

2
t cos 2t+ 1

4
sin 2t

π

0

integrate by parts with
u = t, dv = sin 2t dt

= −2√5 −π
2
− 0 =

√
5π

11. Parametric equations for C are x = t, y = 2t, z = 3t, 0 ≤ t ≤ 1. Then

C
xeyz ds =

1

0
te(2t)(3t)

√
12 + 22 + 32 dt =

√
14

1

0
te6t

2

dt =
√
14 1

12e
6t2

1

0
=
√
14
12 (e

6 − 1).

13.
C
x2y

√
z dz =

1

0
(t3)2(t)

√
t2 · 2t dt = 1

0
2t9 dt = 1

5 t
10 1

0
= 1

5

15. On C1: x = 1 + t ⇒ dx = dt, y = 3t ⇒
dy = 3 dt, z = 1 ⇒ dz = 0 dt, 0 ≤ t ≤ 1.

On C2: x = 2 ⇒ dx = 0 dt, y = 3 + 2t ⇒
dy = 2 dt, z = 1 + t ⇒ dz = dt, 0 ≤ t ≤ 1.

Then

C
(x+ yz) dx+ 2xdy + xyz dz

=
C1
(x+ yz) dx+ 2xdy + xyz dz +

C2
(x+ yz) dx+ 2xdy + xyz dz

=
1

0
(1 + t+ (3t)(1)) dt+ 2(1 + t) · 3 dt+ (1 + t)(3t)(1) · 0 dt

+
1

0
(2 + (3 + 2t)(1 + t)) · 0 dt+ 2(2) · 2 dt+ (2)(3 + 2t)(1 + t) dt

=
1

0
(10t+ 7) dt+

1

0
(4t2 + 10t+ 14) dt = 5t2 + 7t

1

0
+ 4

3 t
3 + 5t2 + 14t

1

0
= 12 + 61

3 =
97
3
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17. (a) Along the line x = −3, the vectors of F have positive y-components, so since the path goes upward, the integrand F ·T is

always positive. Therefore
C1
F · dr =

C1
F ·T ds is positive.

(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F ·T is negative, and therefore
C2
F · dr =

C2
F ·T ds is negative.

19. r(t) = 11t4 i+ t3 j, so F(r(t)) = (11t4)(t3) i+ 3(t3)2 j = 11t7 i+ 3t6 j and r0(t) = 44t3 i+ 3t2 j. Then

C
F · dr = 1

0
F(r(t)) · r0(t) dt = 1

0
(11t7 · 44t3 + 3t6 · 3t2) dt = 1

0
(484t10 + 9t8) dt = 44t11 + t9

1

0
= 45.

21.
C
F · dr = 1

0
sin t3, cos(−t2), t4 · 3t2,−2t, 1 dt

=
1

0
(3t2 sin t3 − 2t cos t2 + t4) dt = − cos t3 − sin t2 + 1

5
t5

1

0
= 6

5
− cos 1− sin 1

23. F(r(t)) = (et) e−t
2
i+ sin e−t

2
j = et−t

2

i+ sin e−t
2
j, r0(t) = et i− 2te−t2 j. Then

C

F · dr=
2

1

F(r(t)) · r0(t) dt =
2

1

et−t
2

et + sin e−t
2 · −2te−t2 dt

=
2

1

e2t−t
2 − 2te−t2 sin e−t

2

dt ≈ 1.9633

25. x = t2, y = t3, z = t4 so by Formula 9,

C
x sin(y + z) ds=

5

0
(t2) sin(t3 + t4) (2t)2 + (3t2)2 + (4t3)2 dt

=
5

0
t2 sin(t3 + t4)

√
4t2 + 9t4 + 16t6 dt ≈ 15.0074

27. We graph F(x, y) = (x− y) i+ xy j and the curve C. We see that most of the vectors starting on C point in roughly the same

direction as C, so for these portions of C the tangential component F ·T is positive. Although some vectors in the third

quadrant which start on C point in roughly the opposite direction, and hence give negative tangential components, it seems

reasonable that the effect of these portions of C is outweighed by the positive tangential components. Thus, we would expect

C
F · dr =

C
F ·T ds to be positive.

To verify, we evaluate
C
F · dr. The curve C can be represented by r(t) = 2 cos t i+ 2 sin t j, 0 ≤ t ≤ 3π

2
,

so F(r(t)) = (2 cos t− 2 sin t) i+ 4 cos t sin t j and r0(t) = −2 sin t i+ 2cos t j. Then

C
F · dr= 3π/2

0
F(r(t)) · r0(t) dt

=
3π/2

0
[−2 sin t(2 cos t− 2 sin t) + 2 cos t(4 cos t sin t)] dt

= 4
3π/2

0
(sin2 t− sin t cos t+ 2 sin t cos2 t) dt

= 3π + 2
3

[using a CAS]
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29. (a)
C
F · dr = 1

0
et
2−1, t5 · 2t, 3t2 dt =

1

0
2tet

2−1 + 3t7 dt = et
2−1 + 3

8 t
8
1

0
= 11

8 − 1/e

(b) r(0) = 0, F(r(0)) = e−1, 0 ;

r 1√
2
= 1

2
, 1

2
√
2

, F r 1√
2

= e−1/2, 1

4
√
2

;

r(1) = h1, 1i, F(r(1)) = h1, 1i.
In order to generate the graph with Maple, we use the PLOT command

(not to be confused with the plot command) to define each of the vectors.

For example,
v1:=PLOT(CURVES([[0,0],[evalf(1/exp(1)),0]]));

generates the vector from the vector field at the point (0, 0) (but without an arrowhead) and gives it the name v1. To show

everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined - > True option) to generate the vectors, and then Show to show everything on the same screen.

31. x = e−t cos 4t, y = e−t sin 4t, z = e−t, 0 ≤ t ≤ 2π .

Then dx

dt
= e−t(− sin 4t)(4) − e−t cos 4t = −e−t(4 sin 4t + cos 4t),

dy

dt
= e−t(cos 4t)(4)− e−t sin 4t = −e−t(−4 cos 4t+ sin 4t), and dz

dt
= −e−t, so

dx

dt

2

+
dy

dt

2

+
dz

dt

2

= (−e−t)2[(4 sin 4t+ cos 4t)2 + (−4 cos 4t+ sin 4t)2 + 1]

= e−t 16(sin2 4t+ cos2 4t) + sin2 4t+ cos2 4t+ 1 = 3
√
2 e−t

Therefore
C
x3y2z ds=

2π

0
(e−t cos 4t)3(e−t sin 4t)2(e−t) (3

√
2 e−t) dt

=
2π

0
3
√
2 e−7t cos3 4t sin2 4t dt = 172,704

5,632,705

√
2 (1− e−14π)

33. We use the parametrization x = 2 cos t, y = 2 sin t, −π
2
≤ t ≤ π

2
. Then

ds = dx
dt

2
+ dy

dt

2
dt = (−2 sin t)2 + (2 cos t)2 dt = 2 dt, so m =

C
k ds = 2k

π/2

−π/2 dt = 2k(π),

x = 1
2πk C

xk ds = 1
2π

π/2

−π/2(2 cos t)2 dt =
1
2π
4 sin t

π/2

−π/2 =
4
π

, y = 1
2πk C

yk ds = 1
2π

π/2

−π/2(2 sin t)2 dt = 0.

Hence (x, y) = 4
π
, 0 .

35. (a) x = 1

m C

xρ(x, y, z) ds , y = 1

m C

yρ(x, y, z) ds, z = 1

m C

zρ(x, y, z) ds where m =
C
ρ(x, y, z) ds.

(b) m =
C
k ds = k

2π

0
4 sin2 t+ 4cos2 t+ 9 dt = k

√
13

2π

0
dt = 2πk

√
13,

x =
1

2πk
√
13

2π

0

2k
√
13 sin t dt = 0, y = 1

2πk
√
13

2π

0

2k
√
13 cos t dt = 0,

z =
1

2πk
√
13

2π

0

k
√
13 (3t) dt =

3

2π
2π2 = 3π. Hence (x, y, z) = (0, 0, 3π).
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37. From Example 3, ρ(x, y) = k(1− y), x = cos t, y = sin t, and ds = dt, 0 ≤ t ≤ π ⇒

Ix = C
y2ρ(x, y) ds =

π

0
sin2 t [k(1− sin t)] dt = k

π

0
(sin2 t− sin3 t) dt

= 1
2k

π

0
(1− cos 2t) dt− k

π

0
(1− cos2 t) sin t dt Let u = cos t, du = − sin t dt

in the second integral

= k π
2
+

−1
1
(1− u2) du = k π

2
− 4

3

Iy = C
x2ρ(x, y) ds = k

π

0
cos2 t (1− sin t) dt = k

2

π

0
(1 + cos 2t) dt− k

π

0
cos2 t sin t dt

= k π
2
− 2

3
, using the same substitution as above.

39. W =
C
F · dr = 2π

0
ht− sin t, 3− cos ti · h1− cos t, sin ti dt

=
2π

0
(t− t cos t− sin t+ sin t cos t+ 3 sin t− sin t cos t) dt

=
2π

0
(t− t cos t+ 2 sin t) dt = 1

2 t
2 − (t sin t+ cos t)− 2 cos t 2π

0

integrate by parts
in the second term

= 2π2

41. r(t) = h1 + 2t, 4t, 2ti, 0 ≤ t ≤ 1,

W =
C
F · d r = 1

0
h6t, 1 + 4t, 1 + 6ti · h2, 4, 2i dt = 1

0
(12t+ 4(1 + 4t) + 2(1 + 6t)) dt

=
1

0
(40t+ 6) dt = 20t2 + 6t

1

0
= 26

43. Let F = 185k. To parametrize the staircase, let x = 20 cos t, y = 20 sin t, z = 90
6π t =

15
π t, 0 ≤ t ≤ 6π ⇒

W =
C
F · dr = 6π

0
h0, 0, 185i · −20 sin t, 20 cos t, 15

π
dt = (185) 15

π

6π

0
dt = (185)(90) ≈ 1.67× 104 ft-lb

45. (a) r(t) = hcos t, sin ti, 0 ≤ t ≤ 2π, and let F = ha, bi. Then

W =
C
F · d r = 2π

0
ha, bi · h− sin t, cos ti dt = 2π

0
(−a sin t+ b cos t) dt = a cos t+ b sin t

2π

0

= a+ 0− a+ 0 = 0

(b) Yes. F (x, y) = k x = hkx, kyi and

W =
C
F · d r = 2π

0
hk cos t, k sin ti · h− sin t, cos ti dt = 2π

0
(−k sin t cos t+ k sin t cos t) dt =

2π

0
0 dt = 0.

47. The work done in moving the object is
C
F · dr =

C
F ·Tds. We can approximate this integral by dividing C into

7 segments of equal length ∆s = 2 and approximating F ·T, that is, the tangential component of force, at a point (x∗i , y∗i ) on

each segment. Since C is composed of straight line segments, F ·T is the scalar projection of each force vector onto C.

If we choose (x∗i , y∗i ) to be the point on the segment closest to the origin, then the work done is

C
F ·Tds ≈

7

i=1

[F(x∗i , y
∗
i ) ·T(x∗i , y∗i )]∆s = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.
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17.3 The Fundamental Theorem for Line Integrals ET 16.3

1. C appears to be a smooth curve, and since∇f is continuous, we know f is differentiable. Then Theorem 2 says that the value

of
C
∇f · dr is simply the difference of the values of f at the terminal and initial points of C. From the graph, this is

50− 10 = 40.

3. ∂(2x− 3y)/∂y = −3 = ∂(−3x+ 4y − 8)/∂x and the domain of F is R2 which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function f such that∇f = F, that is, fx(x, y) = 2x− 3y and

fy(x, y) = −3x+ 4y − 8. But fx(x, y) = 2x− 3y implies f(x, y) = x2 − 3xy + g(y) and differentiating both sides of this

equation with respect to y gives fy(x, y) = −3x+ g0(y). Thus −3x+ 4y − 8 = −3x+ g0(y) so g0(y) = 4y − 8 and

g(y) = 2y2 − 8y +K where K is a constant. Hence f(x, y) = x2 − 3xy + 2y2 − 8y +K is a potential function for F.

5. ∂(ex sin y)/∂y = ex cos y = ∂(ex cos y)/∂x and the domain of F is R2. Hence F is conservative so there exists a function f

such that∇f = F. Then fx(x, y) = ex sin y implies f(x, y) = ex sin y + g(y) and fy(x, y) = ex cos y + g0(y). But

fy(x, y) = ex cos y so g0(y) = 0 ⇒ g(y) = K. Then f(x, y) = ex sin y +K is a potential function for F.

7. ∂(yex + sin y)/∂y = ex + cos y = ∂(ex + x cos y)/∂x and the domain of F is R2. Hence F is conservative so there

exists a function f such that∇f = F. Then fx(x, y) = yex + sin y implies f(x, y) = yex + x sin y + g(y) and

fy(x, y) = ex + x cos y + g0(y). But fy(x, y) = ex + x cos y so g(y) = K and f(x, y) = yex + x sin y +K is a potential

function for F.

9. ∂(ln y+2xy3)/∂y = 1/y+6xy2 = ∂(3x2y2 + x/y)/∂x and the domain of F is {(x, y) | y > 0} which is open and simply

connected. Hence F is conservative so there exists a function f such that∇f = F. Then fx(x, y) = ln y + 2xy3 implies

f(x, y) = x ln y + x2y3 + g(y) and fy(x, y) = x/y + 3x2y2 + g0(y). But fy(x, y) = 3x2y2 + x/y so g0(y) = 0 ⇒
g(y) = K and f(x, y) = x ln y + x2y3 +K is a potential function for F.

11. (a) F has continuous first-order partial derivatives and ∂

∂y
2xy = 2x =

∂

∂x
(x2) on R2, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the

value of
C
F · dr depends only on the endpoints of C. Since all three curves have the same initial and terminal points,

C
F · dr will have the same value for each curve.

(b) We first find a potential function f , so that∇f = F. We know fx(x, y) = 2xy and fy(x, y) = x2. Integrating

fx(x, y) with respect to x, we have f(x, y) = x2y + g(y). Differentiating both sides with respect to y gives

fy(x, y) = x2 + g0(y), so we must have x2 + g0(y) = x2 ⇒ g0(y) = 0 ⇒ g(y) = K, a constant.

Thus f(x, y) = x2y +K. All three curves start at (1, 2) and end at (3, 2), so by Theorem 2,

C
F · dr = f(3, 2)− f(1, 2) = 18− 2 = 16 for each curve.

13. (a) fx(x, y) = xy2 implies f(x, y) = 1
2
x2y2 + g(y) and fy(x, y) = x2y + g0(y). But fy(x, y) = x2y so g0(y) = 0 ⇒

g(y) = K, a constant. We can take K = 0, so f(x, y) = 1
2x

2y2.
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(b) The initial point of C is r(0) = (0, 1) and the terminal point is r(1) = (2, 1), so

C
F · dr = f(2, 1)− f(0, 1) = 2− 0 = 2.

15. (a) fx(x, y, z) = yz implies f(x, y, z) = xyz + g(y, z) and so fy(x, y, z) = xz + gy(y, z). But fy(x, y, z) = xz so

gy(y, z) = 0 ⇒ g(y, z) = h(z). Thus f(x, y, z) = xyz + h(z) and fz(x, y, z) = xy + h0(z). But

fz(x, y, z) = xy + 2z, so h0(z) = 2z ⇒ h(z) = z2 +K. Hence f(x, y, z) = xyz + z2 (taking K = 0).

(b)
C
F · dr = f(4, 6, 3)− f(1, 0,−2) = 81− 4 = 77.

17. (a) fx(x, y, z) = y2 cos z implies f(x, y, z) = xy2 cos z + g(y, z) and so fy(x, y, z) = 2xy cos z + gy(y, z). But

fy(x, y, z) = 2xy cos z so gy(y, z) = 0 ⇒ g(y, z) = h(z). Thus f(x, y, z) = xy2 cos z + h(z) and

fz(x, y, z) = −xy2 sin z + h0 (z). But fz(x, y, z) = −xy2 sin z, so h0(z) = 0 ⇒ h(z) = K. Hence

f(x, y, z) = xy2 cos z (taking K = 0).

(b) r(0) = h0, 0, 0i, r(π) = π2, 0, π so
C
F · dr = f(π2, 0, π)− f(0, 0, 0) = 0− 0 = 0.

19. Here F(x, y) = tan y i+ x sec2 y j. Then f(x, y) = x tan y is a potential function for F, that is,∇f = F so

F is conservative and thus its line integral is independent of path. Hence

C
tan y dx+ x sec2 y dy =

C
F · d r =f 2, π

4
− f(1, 0) = 2 tan π

4
− tan 0 = 2.

21. F(x, y) = 2y3/2 i+ 3x y j, W =
C
F · d r. Since ∂(2y3/2)/∂y = 3√y = ∂(3x y )/∂x, there exists a function f such

that∇f = F. In fact, fx(x, y) = 2y3/2 ⇒ f(x, y) = 2xy3/2 + g(y) ⇒ fy(x, y) = 3xy
1/2 + g0(y). But

fy (x, y) = 3x
√
y so g0(y) = 0 or g(y) = K. We can take K = 0 ⇒ f(x, y) = 2xy3/2. Thus

W =
C
F · d r = f(2, 4)− f(1, 1) = 2(2)(8)− 2(1) = 30.

23. We know that if the vector field (call it F) is conservative, then around any closed path C,
C
F · dr = 0. But take C to be a

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on C are roughly in the direction of

motion along C, so the integral around C will be positive. Therefore the field is not conservative.

25. From the graph, it appears that F is conservative, since around all closed

paths, the number and size of the field vectors pointing in directions similar

to that of the path seem to be roughly the same as the number and size of the

vectors pointing in the opposite direction. To check, we calculate

∂

∂y
(sin y) = cos y =

∂

∂x
(1 + x cos y). Thus F is conservative, by

Theorem 6.

27. Since F is conservative, there exists a function f such that F = ∇f , that is, P = fx, Q = fy , and R = fz . Since P ,

Q and R have continuous first order partial derivatives, Clairaut’s Theorem says that ∂P/∂y = fxy = fyx = ∂Q/∂x,

∂P/∂z = fxz = fzx = ∂R/∂x, and ∂Q/∂z = fyz = fzy = ∂R/∂y.
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29. D = {(x, y) | x > 0, y > 0} = the first quadrant (excluding the axes).

(a) D is open because around every point in D we can put a disk that lies in D.

(b) D is connected because the straight line segment joining any two points in D lies in D.

(c) D is simply-connected because it’s connected and has no holes.

31. D = (x, y) | 1 < x2 + y2 < 4 = the annular region between the circles with center (0, 0) and radii 1 and 2.

(a) D is open.

(b) D is connected.

(c) D is not simply-connected. For example, x2 + y2 = (1.5)2 is simple and closed and lies within D but encloses points that
are not in D. (Or we can say, D has a hole, so is not simply-connected.)

33. (a) P = − y

x2 + y2
, ∂P
∂y

=
y2 − x2

(x2 + y2)2
and Q =

x

x2 + y2
, ∂Q
∂x

=
y2 − x2

(x2 + y2)2
. Thus ∂P

∂y
=

∂Q

∂x
.

(b) C1: x = cos t, y = sin t, 0 ≤ t ≤ π, C2: x = cos t, y = sin t, t = 2π to t = π. Then

C1

F · dr =
π

0

(− sin t)(− sin t) + (cos t)(cos t)
cos2 t+ sin2 t

dt =
π

0

dt = π and
C2

F · dr =
π

2π

dt = −π

Since these aren’t equal, the line integral of F isn’t independent of path. (Or notice that
C3
F · dr = 2π

0
dt = 2π where

C3 is the circle x2 + y2 = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F, which is R2 except the origin, isn’t simply-connected.

17.4 Green's Theorem ET 16.4

1. (a) Parametric equations for C are x = 2cos t, y = 2 sin t, 0 ≤ t ≤ 2π. Then

C
(x− y) dx+ (x+ y) dy =

2π

0
[(2 cos t− 2 sin t)(−2 sin t) + (2 cos t+ 2 sin t)(2 cos t)] dt

=
2π

0
(4 sin2 t+ 4cos2 t) dt =

2π

0
4 dt = 4t

2π

0
= 8π

(b) Note that C as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

C
(x− y) dx+ (x+ y) dy =

D
∂
∂x
(x+ y)− ∂

∂y
(x− y) dA =

D
[1− (−1)] dA = 2

D
dA

= 2A(D) = 2π(2)2 = 8π

3. (a) C1: x = t ⇒ dx = dt, y = 0 ⇒ dy = 0 dt, 0 ≤ t ≤ 1.

C2: x = 1 ⇒ dx = 0 dt, y = t ⇒ dy = dt, 0 ≤ t ≤ 2.

C3: x = 1− t ⇒ dx = −dt, y = 2− 2t ⇒ dy = −2 dt, 0 ≤ t ≤ 1.

Thus C
xy dx+ x2y3 dy =

C1 +C2 +C3

xy dx+ x2y3 dy

=
1

0
0 dt+

2

0
t3 dt+

1

0
−(1− t)(2− 2t)− 2(1− t)2(2− 2t)3 dt

= 0 + 1
4 t
4 2

0
+ 2

3 (1− t)3 + 8
3 (1− t)6

1

0
= 4− 10

3 =
2
3
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(b)
C
xy dx+ x2y3 dy =

D
∂
∂x (x

2y3)− ∂
∂y (xy) dA =

1

0

2x

0
(2xy3 − x) dy dx

=
1

0
1
2xy

4 − xy
y=2x

y=0
dx =

1

0
(8x5 − 2x2) dx = 4

3 − 2
3 =

2
3

5. The region D enclosed by C is given by {(x, y) | 0 ≤ x ≤ 2, x ≤ y ≤ 2x}, so

C
xy2 dx+ 2x2y dy =

D
∂
∂x
(2x2y)− ∂

∂y
(xy2) dA

=
2

0

2x

x
(4xy − 2xy) dy dx

=
2

0
xy2

y=2x

y=x
dx

=
2

0
3x3 dx = 3

4x
4 2

0
= 12

7.
C

y + e
√
x dx+ (2x+ cos y2) dy =

D
∂
∂x (2x+ cos y

2)− ∂
∂y

y + e
√
x dA

=
1

0

√
y

y2
(2− 1) dx dy = 1

0
(y1/2 − y2) dy = 1

3

9.
C
y3 dx− x3 dy =

D
∂
∂x
(−x3)− ∂

∂y
(y3) dA =

D
(−3x2 − 3y2) dA = 2π

0

2

0
(−3r2) r dr dθ

= −3 2π

0
dθ

2

0
r3 dr = −3(2π)(4) = −24π

11. F(x, y) =
√
x+ y3, x2 +

√
y and the region D enclosed by C is given by {(x, y) | 0 ≤ x ≤ π, 0 ≤ y ≤ sinx}.

C is traversed clockwise, so −C gives the positive orientation.

C
F · d r = − −C

√
x+ y3 dx+ x2 +

√
y dy = −

D
∂
∂x

x2 + y − ∂
∂y

√
x+ y3 dA

= − π

0

sinx

0
(2x− 3y2) dy dx = − π

0
2xy − y3

y=sinx

y=0
dx

= − π

0
(2x sinx− sin3 x) dx = − π

0
(2x sinx− (1− cos2 x) sinx) dx

= − 2 sinx− 2x cosx+ cosx− 1
3 cos

3 x
π

0
[integrate by parts in the first term]

= − 2π − 2 + 2
3
= 4

3
− 2π

13. F(x, y) = ex + x2y, ey − xy2 and the region D enclosed by C is the disk x2 + y2 ≤ 25.

C is traversed clockwise, so −C gives the positive orientation.

C
F · d r = − −C(e

x + x2y) dx+ (ey − xy2) dy = −
D

∂
∂x (e

y − xy2)− ∂
∂y (e

x + x2y) dA

= −
D
(−y2 − x2) dA =

D
(x2 + y2) dA =

2π

0

5

0
(r2) r dr dθ

=
2π

0
dθ

5

0
r3 dr = 2π 1

4r
4 5

0
= 625

2 π
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15. Here C = C1 +C2 where

C1 can be parametrized as x = t, y = 1, −1 ≤ t ≤ 1, and

C2 is given by x = −t, y = 2− t2, −1 ≤ t ≤ 1.

Then the line integral is

C1+C2

y2ex dx+ x2ey dy =
1

−1[1 · et + t2e · 0] dt
+

1

−1[(2− t2)2e−t(−1) + (−t)2e2−t2(−2t)] dt

=
1

−1[e
t − (2− t2)2e−t − 2t3e2−t2 ] dt = −8e+ 48e−1

according to a CAS. The double integral is

D

∂Q

∂x
− ∂P

∂y
dA =

1

−1

2−x2

1

(2xey − 2yex) dy dx = −8e+ 48e−1, verifying Green’s Theorem in this case.

17. By Green’s Theorem, W =
C
F · dr =

C
x(x+ y) dx+ xy2 dy =

D
(y2 − x) dy dx where C is the path described in the

question and D is the triangle bounded by C. So

W =
1

0

1−x
0

(y2 − x) dy dx =
1

0
1
3
y3 − xy

y=1−x
y=0

dx =
1

0
1
3
(1− x)3 − x(1− x) dx

= − 1
12 (1− x)4 − 1

2x
2 + 1

3x
3 1

0
= − 1

2 +
1
3
− − 1

12
= − 1

12

19. Let C1 be the arch of the cycloid from (0, 0) to (2π, 0), which corresponds to 0 ≤ t ≤ 2π, and let C2 be the segment from

(2π, 0) to (0, 0), so C2 is given by x = 2π − t, y = 0, 0 ≤ t ≤ 2π. Then C = C1 ∪ C2 is traversed clockwise, so −C is

oriented positively. Thus −C encloses the area under one arch of the cycloid and from (5) we have

A = − −C y dx =
C1

y dx+
C2

y dx =
2π

0
(1− cos t)(1− cos t) dt+ 2π

0
0 (−dt)

=
2π

0
(1− 2 cos t+ cos2 t) dt+ 0 = t− 2 sin t+ 1

2
t+ 1

4
sin 2t

2π

0
= 3π

21. (a) Using Equation 17.2.8 [ ET 16.2.8], we write parametric equations of the line segment as x = (1− t)x1 + tx2,

y = (1− t)y1 + ty2, 0 ≤ t ≤ 1. Then dx = (x2 − x1) dt and dy = (y2 − y1) dt, so

C
xdy − y dx=

1

0
[(1− t)x1 + tx2](y2 − y1) dt+ [(1− t)y1 + ty2](x2 − x1) dt

=
1

0
(x1(y2 − y1)− y1(x2 − x1) + t[(y2 − y1)(x2 − x1)− (x2 − x1)(y2 − y1)]) dt

=
1

0
(x1y2 − x2y1) dt = x1y2 − x2y1

(b) We apply Green’s Theorem to the path C = C1 ∪ C2 ∪ · · · ∪ Cn, where Ci is the line segment that joins (xi, yi) to

(xi+1, yi+1) for i = 1, 2, . . ., n− 1, and Cn is the line segment that joins (xn, yn) to (x1, y1). From (5),

1
2 C

xdy − y dx =
D
dA, where D is the polygon bounded by C. Therefore

area of polygon= A(D) =
D
dA = 1

2 C
xdy − y dx

= 1
2 C1

xdy − y dx+
C2

xdy − y dx+ · · ·+
Cn−1

xdy − y dx+
Cn

xdy − y dx

To evaluate these integrals we use the formula from (a) to get

A(D) = 1
2
[(x1y2 − x2y1) + (x2y3 − x3y2) + · · ·+ (xn−1yn − xnyn−1) + (xny1 − x1yn)].
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(c) A = 1
2 [(0 · 1− 2 · 0) + (2 · 3− 1 · 1) + (1 · 2− 0 · 3) + (0 · 1− (−1) · 2) + (−1 · 0− 0 · 1)]

= 1
2
(0 + 5 + 2 + 2) = 9

2

23. We orient the quarter-circular region as shown in the figure.

A = 1
4
πa2 so x = 1

πa2/2 C

x2 dy and y = − 1

πa2/2 C

y2dx.

Here C = C1 +C2 + C3 where C1: x = t, y = 0, 0 ≤ t ≤ a;

C2: x = a cos t, y = a sin t, 0 ≤ t ≤ π
2

; and

C3: x = 0, y = a− t, 0 ≤ t ≤ a. Then

C
x2 dy =

C1
x2 dy +

C2
x2 dy +

C3
x2 dy =

a

0
0 dt+

π/2

0
(a cos t)2(a cos t) dt+

a

0
0 dt

=
π/2

0
a3 cos3 t dt = a3

π/2

0
(1− sin2 t) cos t dt = a3 sin t− 1

3 sin
3 t

π/2

0
= 2

3a
3

so x = 1

πa2/2 C

x2 dy =
4a

3π
.

C
y2dx=

C1
y2 dx+

C2
y2 dx+

C3
y2 dx =

a

0
0 dt+

π/2

0
(a sin t)2(−a sin t) dt+ a

0
0 dt

=
π/2

0
(−a3 sin3 t) dt = −a3 π/2

0
(1− cos2 t) sin t dt = −a3 1

3
cos3 t− cos t π/2

0
= − 2

3
a3,

so y = − 1

πa2/2 C

y2dx =
4a

3π
. Thus (x, y) = 4a

3π
,
4a

3π
.

25. By Green’s Theorem, − 1
3
ρ

C
y3 dx = − 1

3
ρ

D
(−3y2) dA =

D
y2ρ dA = Ix and

1
3
ρ

C
x3 dy = 1

3
ρ

D
(3x2) dA =

D
x2ρ dA = Iy .

27. Since C is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t

contain the origin but does contain D. Thus P = −y/(x2 + y2) and Q = x/(x2 + y2) have continuous partial derivatives on

this open region containing D and we can apply Green’s Theorem. But by Exercise 17.3.33(a) [ ET 16.3.33(a)],

∂P/∂y = ∂Q/∂x, so
C
F · dr =

D
0 dA = 0.

29. Using the first part of (5), we have that
R
dxdy = A(R) =

∂R
xdy. But x = g(u, v), and dy = ∂h

∂u
du+

∂h

∂v
dv,

and we orient ∂S by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along ∂R, so

∂R

xdy =
∂S

g(u, v)
∂h

∂u
du+

∂h

∂v
dv =

∂S

g(u, v)
∂h

∂u
du+ g(u, v)

∂h

∂v
dv

= ±
S

∂
∂u

g(u, v) ∂h
∂v

− ∂
∂v

g(u, v) ∂h
∂u

dA [using Green’s Theorem in the uv-plane]

= ±
S

∂g
∂u

∂h
∂v
+ g(u, v) ∂2h

∂u ∂v
− ∂g

∂v
∂h
∂u
− g(u, v) ∂2h

∂v ∂u
dA [using the Chain Rule]

= ±
S

∂x
∂u

∂y
∂v
− ∂x

∂v
∂y
∂u

dA [by the equality of mixed partials] = ±
S
∂(x,y)
∂(u,v)

dudv

The sign is chosen to be positive if the orientation that we gave to ∂S corresponds to the usual positive orientation, and it is

negative otherwise. In either case, since A(R) is positive, the sign chosen must be the same as the sign of ∂ (x, y)
∂(u, v)

.

Therefore A(R) =
R

dx dy =
S

∂(x, y)

∂(u, v)
dudv.
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17.5 Curl and Divergence ET 16.5

1. (a) curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

xyz 0 −x2y
= (−x2 − 0) i− (−2xy − xy) j+ (0− xz)k

= −x2 i+ 3xy j− xz k

(b) divF = ∇ · F = ∂

∂x
(xyz) +

∂

∂y
(0) +

∂

∂z
(−x2y) = yz + 0 + 0 = yz

3. (a) curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

1 x+ yz xy −√z
= (x− y) i− (y − 0) j+ (1− 0)k

= (x− y) i− y j+ k

(b) divF = ∇ · F = ∂

∂x
(1) +

∂

∂y
(x+ yz) +

∂

∂z
xy −

√
z = z − 1

2
√
z

5. (a) curlF= ∇×F =

i j k

∂/∂x ∂/∂y ∂/∂z

x

x2 + y2 + z2
y

x2 + y2 + z2
z

x2 + y2 + z2

=
1

(x2 + y2 + z2)3/2
[(−yz + yz) i− (−xz + xz) j+ (−xy + xy)k] = 0

(b) divF= ∇ · F = ∂

∂x

x

x2 + y2 + z2
+

∂

∂y

y

x2 + y2 + z2
+

∂

∂z

z

x2 + y2 + z2

=
x2 + y2 + z2 − x2

(x2 + y2 + z2)3/2
+

x2 + y2 + z2 − y2

(x2 + y2 + z2)3/2
+

x2 + y2 + z2 − z2

(x2 + y2 + z2)3/2
=
2x2 + 2y2 + 2z2

(x2 + y2 + z2)3/2
=

2

x2 + y2 + z2

7. (a) curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

lnx ln(xy) ln(xyz)

=
xz

xyz
− 0 i− yz

xyz
− 0 j+

y

xy
− 0 k =

1

y
,− 1

x
,
1

x

(b) divF = ∇ · F = ∂

∂x
(lnx) +

∂

∂y
(ln(xy)) +

∂

∂z
(ln(xyz)) =

1

x
+

x

xy
+

xy

xyz
=
1

x
+
1

y
+
1

z

9. If the vector field is F = P i+Q j+Rk, then we know R = 0. In addition, the x-component of each vector of F is 0, so

P = 0, hence ∂P

∂x
=

∂P

∂y
=

∂P

∂z
=

∂R

∂x
=

∂R

∂y
=

∂R

∂z
= 0. Q decreases as y increases, so ∂Q

∂y
< 0, but Q doesn’t change

in the x- or z-directions, so ∂Q

∂x
=

∂Q

∂z
= 0.

(a) divF = ∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0 +

∂Q

∂y
+ 0 < 0

(b) curlF = ∂R

∂y
− ∂Q

∂z
i+

∂P

∂z
− ∂R

∂x
j+

∂Q

∂x
− ∂P

∂y
k = (0− 0) i+ (0− 0) j+ (0− 0)k = 0
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11. If the vector field is F = P i+Q j+Rk, then we know R = 0. In addition, the y-component of each vector of F is 0, so

Q = 0, hence ∂Q

∂x
=

∂Q

∂y
=

∂Q

∂z
=

∂R

∂x
=

∂R

∂y
=

∂R

∂z
= 0. P increases as y increases, so ∂P

∂y
> 0, but P doesn’t change in

the x- or z-directions, so ∂P

∂x
=

∂P

∂z
= 0.

(a) divF = ∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= 0 + 0 + 0 = 0

(b) curlF = ∂R

∂y
− ∂Q

∂z
i+

∂P

∂z
− ∂R

∂x
j+

∂Q

∂x
− ∂P

∂y
k = (0− 0) i+ (0− 0) j+ 0− ∂P

∂y
k = −∂P

∂y
k

Since ∂P

∂y
> 0, −∂P

∂y
k is a vector pointing in the negative z-direction.

13. curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

y2z3 2xyz3 3xy2z2

= (6xyz2 − 6xyz2) i− (3y2z2 − 3y2z2) j+ (2yz3 − 2yz3)k = 0

and F is defined on all of R3 with component functions which have continuous partial derivatives, so by Theorem 4,

F is conservative. Thus, there exists a function f such that F = ∇f . Then fx(x, y, z) = y2z3 implies

f(x, y, z) = xy2z3 + g(y, z) and fy(x, y, z) = 2xyz3 + gy(y, z). But fy(x, y, z) = 2xyz3, so g(y, z) = h(z) and

f(x, y, z) = xy2z3 + h(z). Thus fz(x, y, z) = 3xy2z2 + h0(z) but fz(x, y, z) = 3xy2z2 so h(z) = K, a constant.

Hence a potential function for F is f(x, y, z) = xy2z3 +K.

15. curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

2xy x2 + 2yz y2

= (2y − 2y) i− (0− 0) j+ (2x− 2x)k = 0, F is defined on all of R3,

and the partial derivatives of the component functions are continuous, so F is conservative. Thus there exists a function f

such that∇f = F. Then fx(x, y, z) = 2xy implies f(x, y, z) = x2y + g(y, z) and fy(x, y, z) = x2 + gy(y, z). But

fy(x, y, z) = x2 + 2yz, so g(y, z) = y2z + h(z) and f(x, y, z) = x2y + y2z + h(z). Thus fz(x, y, z) = y2 + h0(z) but

fz(x, y, z) = y2 so h(z) = K and f(x, y, z) = x2y + y2z +K.

17. curlF = ∇×F =
i j k

∂/∂x ∂/∂y ∂/∂z

ye−x e−x 2z

= (0− 0) i− (0− 0) j+ (−e−x − e−x)k = −2e−x k 6= 0,

so F is not conservative.

19. No. Assume there is such aG. Then div(curlG) = ∂

∂x
(x sin y) +

∂

∂y
(cos y) +

∂

∂z
(z − xy) = sin y − sin y + 1 6= 0,

which contradicts Theorem 11.

21. curlF =

i j k

∂/∂x ∂/∂y ∂/∂z

f(x) g(y) h(z)

= (0− 0) i+ (0− 0) j+ (0− 0)k = 0. Hence F = f(x) i+ g(y) j+ h(z)k

is irrotational.



284 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16

For Exercises 23–29, letF(x, y, z) = P1 i+Q1 j+R1 k and G(x, y, z) = P2 i+Q2 j+R2 k.

23. div(F+G) = divhP1 + P2, Q1 +Q2, R1 +R2i = ∂(P1 + P2)

∂x
+

∂(Q1 +Q2)

∂y
+

∂(R1 +R2)

∂z

=
∂P1
∂x

+
∂P2
∂x

+
∂Q1

∂y
+

∂Q2

∂y
+

∂R1

∂z
+

∂R2

∂z
=

∂P1
∂x

+
∂Q1

∂y
+

∂R1

∂z
+

∂P2
∂x

+
∂Q2

∂y
+

∂R2

∂z

= divhP1, Q1, R1i+ divhP2, Q2, R2i = divF+ divG

25. div(fF) = div(f hP1, Q1, R1i) = divhfP1, fQ1, fR1i = ∂(fP1)

∂x
+

∂(fQ1)

∂y
+

∂(fR1)

∂z

= f
∂P1
∂x

+ P1
∂f

∂x
+ f

∂Q1

∂y
+Q1

∂f

∂y
+ f

∂R1

∂z
+R1

∂f

∂z

= f
∂P1
∂x

+
∂Q1

∂y
+

∂R1

∂z
+ hP1, Q1, R1i · ∂f

∂x
,
∂f

∂y
,
∂f

∂z
= f divF+F ·∇f

27. div(F×G) =∇ · (F×G) =
∂/∂x ∂/∂y ∂/∂z

P1 Q1 R1

P2 Q2 R2

=
∂

∂x

Q1 R1

Q2 R2

− ∂

∂y

P1 R1

P2 R2

+
∂

∂z

P1 Q1

P2 Q2

= Q1
∂R2

∂x
+R2

∂Q1

∂x
−Q2

∂R1

∂x
−R1

∂Q2

∂x
− P1

∂R2

∂y
+R2

∂P1
∂y

− P2
∂R1

∂y
−R1

∂P2
∂y

+ P1
∂Q2

∂z
+Q2

∂P1
∂z

− P2
∂Q1

∂z
−Q1

∂P2
∂z

= P2
∂R1

∂y
− ∂Q1

∂z
+Q2

∂P1
∂z

− ∂R1

∂x
+R2

∂Q1

∂x
− ∂P1

∂y

− P1
∂R2

∂y
− ∂Q2

∂z
+Q1

∂P2
∂z

− ∂R2

∂x
+R1

∂Q2

∂x
− ∂P2

∂y

=G · curlF−F · curlG

29. curl(curlF) = ∇× (∇×F) =
i j k

∂/∂x ∂/∂y ∂/∂z

∂R1/∂y − ∂Q1/∂z ∂P1/∂z − ∂R1/∂x ∂Q1/∂x− ∂P1/∂y

=
∂2Q1

∂y∂x
− ∂2P1

∂y2
− ∂2P1

∂z2
+

∂2R1

∂z∂x
i+

∂2R1

∂z∂y
− ∂2Q1

∂z2
− ∂2Q1

∂x2
+

∂2P1
∂x∂y

j

+
∂2P1
∂x∂z

− ∂2R1

∂x2
− ∂2R1

∂y2
+

∂2Q1

∂y∂z
k

Now let’s consider grad(divF)−∇2F and compare with the above.

(Note that∇2F is defined on page 1102 [ ET 1066].)
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grad(divF)−∇2F =
∂2P1
∂x2

+
∂2Q1

∂x∂y
+

∂2R1

∂x∂z
i+

∂2P1
∂y∂x

+
∂2Q1

∂y2
+

∂2R1

∂y∂z
j+

∂2P1
∂z∂x

+
∂2Q1

∂z∂y
+

∂2R1

∂z2
k

− ∂2P1
∂x2

+
∂2P1
∂y2

+
∂2P1
∂z2

i+
∂2Q1

∂x2
+

∂2Q1

∂y2
+

∂2Q1

∂z2
j

+
∂2R1

∂x2
+

∂2R1

∂y2
+

∂2R1

∂z2
k

=
∂2Q1

∂x∂y
+

∂2R1

∂x∂z
− ∂2P1

∂y2
− ∂2P1

∂z2
i+

∂2P1
∂y∂x

+
∂2R1

∂y∂z
− ∂2Q1

∂x2
− ∂2Q1

∂z2
j

+
∂2P1
∂z∂x

+
∂2Q1

∂z∂y
− ∂2R1

∂x2
− ∂2R2

∂y2
k

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and

comparing, we have curl curlF = graddivF−∇2F as desired.

31. (a) ∇r = ∇ x2 + y2 + z2 =
x

x2 + y2 + z2
i+

y

x2 + y2 + z2
j+

z

x2 + y2 + z2
k =

x i+ y j+ z k

x2 + y2 + z2
=
r

r

(b) ∇× r =

i j k

∂

∂x

∂

∂y

∂

∂z

x y z

=
∂

∂y
(z)− ∂

∂z
(y) i+

∂

∂z
(x)− ∂

∂x
(z) j+

∂

∂x
(y)− ∂

∂y
(x) k = 0

(c) ∇ 1

r
= ∇ 1

x2 + y2 + z2

=

− 1

2 x2 + y2 + z2
(2x)

x2 + y2 + z2
i−

1

2 x2 + y2 + z2
(2y)

x2 + y2 + z2
j−

1

2 x2 + y2 + z2
(2z)

x2 + y2 + z2
k

= − x i+ y j+ z k

(x2 + y2 + z2)3/2
= − r

r3

(d) ∇ ln r = ∇ ln(x2 + y2 + z2)1/2 = 1
2∇ ln(x2 + y2 + z2)

=
x

x2 + y2 + z2
i+

y

x2 + y2 + z2
j+

z

x2 + y2 + z2
k =

x i+ y j+ z k

x2 + y2 + z2
=
r

r2

33. By (13),
C
f(∇g) · n ds =

D
div(f∇g) dA =

D
[f div(∇g) +∇g ·∇f ] dA by Exercise 25. But div(∇g) = ∇2g.

Hence
D
f∇2g dA =

C
f(∇g) · n ds−

D
∇g ·∇f dA.

35. Let f(x, y) = 1. Then ∇f = 0 and Green’s first identity (see Exercise 33) says

D
∇2g dA =

C
(∇g) · n ds−

D
0 ·∇g dA ⇒

D
∇2g dA =

C
∇g · n ds. But g is harmonic on D, so

∇2g = 0 ⇒
C
∇g · n ds = 0 and

C
Dng ds = C

(∇g · n) ds = 0.

37. (a) We know that ω = v/d, and from the diagram sin θ = d/r ⇒ v = dω = (sin θ)rω = |w× r|. But v is perpendicular

to bothw and r, so that v = w× r.



286 ¤ CHAPTER 17 VECTOR CALCULUS ET CHAPTER 16

(b) From (a), v = w× r =
i j k

0 0 ω

x y z

= (0 · z − ωy) i+ (ωx− 0 · z) j+ (0 · y − x · 0)k = −ωy i+ ωx j

(c) curlv = ∇× v =
i j k

∂/∂x ∂/∂y ∂/∂z

−ωy ωx 0

=
∂

∂y
(0)− ∂

∂z
(ωx) i+

∂

∂z
(−ωy)− ∂

∂x
(0) j+

∂

∂x
(ωx)− ∂

∂y
(−ωy) k

= [ω − (−ω)]k = 2ω k = 2w

39. For any continuous function f on R3, define a vector fieldG(x, y, z) = hg(x, y, z), 0, 0i where g(x, y, z) = x

0
f (t, y, z) dt.

Then divG =
∂

∂x
(g(x, y, z)) +

∂

∂y
(0) +

∂

∂z
(0) =

∂

∂x
x

0
f(t, y, z) dt = f(x, y, z) by the Fundamental Theorem of

Calculus. Thus every continuous function f on R3 is the divergence of some vector field.

17.6 Parametric Surfaces and Their Areas ET 16.6

1. P (7, 10, 4) lies on the parametric surface r(u, v) = h2u+ 3v, 1 + 5u− v, 2 + u+ vi if and only if there are values for u

and v where 2u+ 3v = 7, 1 + 5u− v = 10, and 2 + u+ v = 4. But solving the first two equations simultaneously gives

u = 2, v = 1 and these values do not satisfy the third equation, so P does not lie on the surface.

Q(5, 22, 5) lies on the surface if 2u+ 3v = 5, 1 + 5u− v = 22, and 2 + u+ v = 5 for some values of u and v. Solving the

first two equations simultaneously gives u = 4, v = −1 and these values satisfy the third equation, so Q lies on the surface.

3. r(u, v) = (u+ v) i+ (3− v) j+ (1 + 4u+ 5v)k = h0, 3, 1i+ u h1, 0, 4i+ v h1,−1, 5i. From Example 3, we recognize

this as a vector equation of a plane through the point (0, 3, 1) and containing vectors a = h1, 0, 4i and b = h1,−1, 5i. If we

wish to find a more conventional equation for the plane, a normal vector to the plane is a× b =
i j k

1 0 4

1−1 5

= 4 i− j− k

and an equation of the plane is 4(x− 0)− (y − 3)− (z − 1) = 0 or 4x− y − z = −4.

5. r(s, t) = s, t, t2 − s2 , so the corresponding parametric equations for the surface are x = s, y = t, z = t2 − s2. For any

point (x, y, z) on the surface, we have z = y2 − x2. With no restrictions on the parameters, the surface is z = y2 − x2, which

we recognize as a hyperbolic paraboloid.
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7. r(u, v) = u2 + 1, v3 + 1, u+ v , −1 ≤ u ≤ 1, −1 ≤ v ≤ 1.

The surface has parametric equations x = u2 + 1, y = v3 + 1, z = u+ v,

−1 ≤ u ≤ 1, −1 ≤ v ≤ 1. In Maple, the surface can be graphed by entering

plot3d([uˆ2+1,vˆ3+1,u+v],u=-1..1,v=-1..1);. In

Mathematica we use the ParametricPlot3D command. If we keep u

constant at u0, x = u20 + 1, a constant, so the corresponding grid curves must

be the curves parallel to the yz-plane. If v is constant, we have y = v30 + 1,

a constant, so these grid curves are the curves parallel to the xz-plane.

9. r(u, v) = u cos v, u sin v, u5 .

The surface has parametric equations x = u cos v, y = u sin v,

z = u5, −1 ≤ u ≤ 1, 0 ≤ v ≤ 2π. Note that if u = u0 is constant

then z = u50 is constant and x = u0 cos v, y = u0 sin v describe a

circle in x, y of radius |u0|, so the corresponding grid curves are

circles parallel to the xy-plane. If v = v0, a constant, the parametric

equations become x = u cos v0, y = u sin v0, z = u5. Then

y = (tan v0)x, so these are the grid curves we see that lie in vertical

planes y = kx through the z-axis.

11. x = sin v, y = cosu sin 4v, z = sin 2u sin 4v, 0 ≤ u ≤ 2π, −π
2 ≤ v ≤ π

2 .

Note that if v = v0 is constant, then x = sin v0 is constant, so the

corresponding grid curves must be parallel to the yz-plane. These

are the vertically oriented grid curves we see, each shaped like a

“figure-eight.” When u = u0 is held constant, the parametric

equations become x = sin v, y = cosu0 sin 4v,

z = sin 2u0 sin 4v. Since z is a constant multiple of y, the

corresponding grid curves are the curves contained in planes

z = ky that pass through the x-axis.

13. r(u, v) = u cos v i+ u sin v j+ v k. The parametric equations for the surface are x = u cos v, y = u sin v, z = v. We look at

the grid curves first; if we fix v, then x and y parametrize a straight line in the plane z = v which intersects the z-axis. If u is

held constant, the projection onto the xy-plane is circular; with z = v, each grid curve is a helix. The surface is a spiraling

ramp, graph I.

15. r(u, v) = sin v i+ cosu sin 2v j+ sinu sin 2v k. Parametric equations for the surface are x = sin v, y = cosu sin 2v,

z = sinu sin 2v. If v = v0 is fixed, then x = sin v0 is constant, and y = (sin 2v0) cosu and z = (sin 2v0) sinu describe a

circle of radius |sin 2v0|, so each corresponding grid curve is a circle contained in the vertical plane x = sin v0 parallel to the
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yz-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to

holding u constant, in which case y = (cosu0) sin 2v, z = (sinu0) sin 2v ⇒ z = (tanu0)y, so each grid curve lies in a

plane z = ky that includes the x-axis.

17. x = cos3 u cos3 v, y = sin3 u cos3 v, z = sin3 v. If v = v0 is held constant then z = sin3 v0 is constant, so the

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this

surface are neither circles nor straight lines, so graph III is the only possibility. (In fact, the horizontal grid curves here are

members of the family x = a cos3 u, y = a sin3 u and are called astroids.) The vertical grid curves we see on the surface

correspond to u = u0 held constant, as then we have x = cos3 u0 cos3 v, y = sin3 u0 cos3 v so the corresponding grid curve

lies in the vertical plane y = (tan3 u0)x through the z-axis.

19. From Example 3, parametric equations for the plane through the point (1, 2,−3) that contains the vectors a = h1, 1,−1i and

b = h1,−1, 1i are x = 1 + u(1) + v(1) = 1 + u+ v, y = 2 + u(1) + v(−1) = 2 + u− v,

z = −3 + u(−1) + v(1) = −3− u+ v.

21. Solving the equation for y gives y2 = 1− x2 + z2 ⇒ y =
√
1− x2 + z2. (We choose the positive root since we want the

part of the hyperboloid that corresponds to y ≥ 0.) If we let x and z be the parameters, parametric equations are x = x, z = z,

y =
√
1− x2 + z2.

23. Since the cone intersects the sphere in the circle x2 + y2 = 2, z =
√
2 and we want the portion of the sphere above this, we

can parametrize the surface as x = x, y = y, z = 4− x2 − y2 where x2 + y2 ≤ 2.

Alternate solution: Using spherical coordinates, x = 2 sinφ cos θ, y = 2 sinφ sin θ, z = 2 cosφ where 0 ≤ φ ≤ π
4

and

0 ≤ θ ≤ 2π.

25. Parametric equations are x = x, y = 4cos θ, z = 4 sin θ, 0 ≤ x ≤ 5, 0 ≤ θ ≤ 2π.

27. The surface appears to be a portion of a circular cylinder of radius 3 with axis the x-axis. An equation of the cylinder is

y2 + z2 = 9, and we can impose the restrictions 0 ≤ x ≤ 5, y ≤ 0 to obtain the portion shown. To graph the surface on a

CAS, we can use parametric equations x = u, y = 3cos v, z = 3 sin v with the parameter domain 0 ≤ u ≤ 5, π
2 ≤ v ≤ 3π

2 .

Alternatively, we can regard x and z as parameters. Then parametric equations are x = x, z = z, y = −√9− z2, where

0 ≤ x ≤ 5 and −3 ≤ z ≤ 3.

29. Using Equations 3, we have the parametrization x = x, y = e−x cos θ, z = e−x sin θ, 0 ≤ x ≤ 3, 0 ≤ θ ≤ 2π.
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31. (a) Replacing cosu by sinu and sinu by cosu gives parametric equations

x = (2 + sin v) sinu, y = (2 + sin v) cosu, z = u+ cos v. From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the xy-plane, given by

x = (2 + sin v) sinu, y = (2 + sin v) cosu, z = 0, draws a circle in the clockwise

direction for each value of v. The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for z is identical in

both surfaces, so as z increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cosu by cos 2u and sinu by sin 2u gives parametric equations

x = (2 + sin v) cos 2u, y = (2 + sin v) sin 2u, z = u+ cos v. From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the xy-plane, given by x = (2 + sin v) cos 2u, y = (2 + sin v) sin 2u,

z = 0 (where v is constant), complete circular revolutions for 0 ≤ u ≤ π while the

original surface requires 0 ≤ u ≤ 2π for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for z

is identical in both surfaces, we observe twice as many circular coils in the same

z-interval.

33. r(u, v) = (u+ v) i+ 3u2 j+ (u− v)k.

ru = i+6u j+ k and rv = i− k, so ru × rv = −6u i+2 j− 6uk.

Since the point (2, 3, 0) corresponds to u = 1, v = 1, a normal vector

to the surface at (2, 3, 0) is −6 i+ 2 j− 6k, and an equation of the

tangent plane is −6x+ 2y − 6z = −6 or 3x− y + 3z = 3.
  

35. r(u, v) = u2 i+ 2u sin v j+ u cos v k ⇒ r(1, 0) = (1, 0, 1).

ru = 2u i+ 2 sin v j+ cos v k and rv = 2u cos v j− u sin v k,

so a normal vector to the surface at the point (1, 0, 1) is

ru(1, 0)× rv(1, 0) = (2 i+ k)× (2 j) = −2 i+ 4k.

Thus an equation of the tangent plane at (1, 0, 1) is

−2(x− 1) + 0(y − 0) + 4(z − 1) = 0 or −x+ 2z = 1.
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37. The surface S is given by z = f(x, y) = 6− 3x− 2y which intersects the xy-plane in the line 3x+ 2y = 6, so D is the

triangular region given by (x, y) 0 ≤ x ≤ 2, 0 ≤ y ≤ 3− 3
2x . By Formula 9, the surface area of S is

A(S) =
D

1 +
∂z

∂x

2

+
∂z

∂y

2

dA

=
D

1 + (−3)2 + (−2)2 dA = √14
D
dA =

√
14A(D) =

√
14 1

2
· 2 · 3 = 3

√
14.

39. z = f(x, y) = 2
3
(x3/2 + y3/2) and D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Then fx = x1/2, fy = y1/2 and

A(S) =
D

1 + (
√
x )

2
+
√
y

2
dA =

1

0

1

0

√
1 + x+ y dy dx

=
1

0
2
3 (x+ y + 1)3/2

y=1

y=0
dx = 2

3

1

0
(x+ 2)3/2 − (x+ 1)3/2 dx

= 2
3

2
5
(x+ 2)5/2 − 2

5
(x+ 1)5/2

1

0
= 4

15
(35/2 − 25/2 − 25/2 + 1) = 4

15
(35/2 − 27/2 + 1)

41. z = f(x, y) = xy with 0 ≤ x2 + y2 ≤ 1, so fx = y, fy = x ⇒

A(S) =
D

1 + y2 + x2 dA =
2π

0

1

0

√
r2 + 1 r dr dθ =

2π

0
1
3 (r

2 + 1)3/2
r=1

r=0
dθ

=
2π

0
1
3
2
√
2− 1 dθ = 2π

3
2
√
2− 1

43. z = f(x, y) = y2 − x2 with 1 ≤ x2 + y2 ≤ 4. Then

A(S) =
D

1 + 4x2 + 4y2 dA =
2π

0

2

1

√
1 + 4r2 r dr dθ =

2π

0
dθ

2

1
r
√
1 + 4r2 dr

= θ
2π

0
1
12
(1 + 4r2)3/2

2

1
= π

6
17
√
17− 5√5

45. A parametric representation of the surface is x = x, y = 4x+ z2, z = z with 0 ≤ x ≤ 1, 0 ≤ z ≤ 1.

Hence rx × rz = (i+ 4 j)× (2z j+ k) = 4 i− j+ 2z k.

Note: In general, if y = f(x, z) then rx × rz = ∂f

∂x
i− j+ ∂f

∂z
k and A (S) =

D

1 +
∂f

∂x

2

+
∂f

∂z

2

dA. Then

A(S) =
1

0

1

0

√
17 + 4z2 dxdz =

1

0

√
17 + 4z2 dz

= 1
2
z
√
17 + 4z2 + 17

2 ln 2z +
√
4z2 + 17

1

0
=
√
21
2 + 17

4
ln 2 +

√
21 − ln√17

47. ru = h2u, v, 0i, rv = h0, u, vi, and ru × rv = v2,−2uv, 2u2 . Then

A(S) =
D
|ru × rv| dA = 1

0

2

0

√
v4 + 4u2v2 + 4u4 dv du =

1

0

2

0
(v2 + 2u2)2 dv du

=
1

0

2

0
(v2 + 2u2) dv du =

1

0
1
3
v3 + 2u2v

v=2

v=0
du =

1

0
8
3
+ 4u2 du = 8

3
u+ 4

3
u3

1

0
= 4

49. z = f(x, y) = e−x
2−y2 with x2 + y2 ≤ 4.

A(S) =
D

1 + −2xe−x2−y2 2
+ −2ye−x2−y2 2

dA =
D

1 + 4(x2 + y2)e−2(x2+y2) dA

=
2π

0

2

0
1 + 4r2e−2r2 r dr dθ = 2π

0
dθ

2

0
r 1 + 4r2e−2r2 dr = 2π 2

0
r 1 + 4r2e−2r2 dr ≈ 13.9783
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51. (a) A(S) =
D

1 +
∂z

∂x

2

+
∂z

∂y

2

dA =
6

0

4

0

1 +
4x2 + 4y2

(1 + x2 + y2)4
dy dx.

Using the Midpoint Rule with f(x, y) = 1 +
4x2 + 4y2

(1 + x2 + y2)4
, m = 3, n = 2 we have

A(S) ≈
3

i=1

2

j=1

f xi, yj ∆A = 4 [f(1, 1) + f(1, 3) + f(3, 1) + f(3, 3) + f(5, 1) + f(5, 3)] ≈ 24.2055

(b) Using a CAS we have A(S) =
6

0

4

0

1 +
4x2 + 4y2

(1 + x2 + y2)4
dy dx ≈ 24.2476. This agrees with the estimate in part (a)

to the first decimal place.

53. z = 1 + 2x+ 3y + 4y2, so

A(S) =
D

1 +
∂z

∂x

2

+
∂z

∂y

2

dA =
4

1

1

0

1 + 4 + (3 + 8y)2 dy dx =
4

1

1

0

14 + 48y + 64y2 dy dx.

Using a CAS, we have
4

1

1

0
14 + 48y + 64y2 dy dx = 45

8

√
14 + 15

16
ln 11

√
5 + 3

√
14
√
5 − 15

16
ln 3

√
5 +

√
14
√
5

or 45
8

√
14 + 15

16
ln 11

√
5+ 3

√
70

3
√
5+

√
70

.

55. (a) x = a sinu cos v, y = b sinu sin v, z = c cosu ⇒
x2

a2
+

y2

b2
+

z2

c2
= (sinu cos v)2 + (sinu sin v)2 + (cosu)2

= sin2 u+ cos2 u = 1

and since the ranges of u and v are sufficient to generate the entire graph,

the parametric equations represent an ellipsoid.

(b)

(c) From the parametric equations (with a = 1, b = 2, and c = 3), we calculate

ru = cosu cos v i+ 2cosu sin v j− 3 sinuk and rv = − sinu sin v i + 2 sinu cos v j. So

ru × rv = 6 sin2 u cos v i+ 3 sin2 u sin v j+ 2 sinu cosuk, and the surface area is given by

A(S) =
2π

0

π

0
|ru × rv| dudv = 2π

0

π

0
36 sin4 u cos2 v + 9 sin4 u sin2 v + 4 cos2 u sin2 ududv

57. To find the region D: z = x2 + y2 implies z + z2 = 4z or z2 − 3z = 0. Thus z = 0 or z = 3 are the planes where the

surfaces intersect. But x2 + y2 + z2 = 4z implies x2 + y2 + (z − 2)2 = 4, so z = 3 intersects the upper hemisphere.

Thus (z− 2)2 = 4− x2 − y2 or z = 2+ 4− x2 − y2. Therefore D is the region inside the circle x2 + y2 + (3− 2)2 = 4,

that is, D = (x, y) | x2 + y2 ≤ 3 .

A(S) =
D

1 + [(−x)(4− x2 − y2)−1/2]2 + [(−y)(4− x2 − y2)−1/2]2 dA

=
2π

0

√
3

0

1 +
r2

4− r2
r dr dθ =

2π

0

√
3

0

2r dr√
4− r2

dθ =
2π

0

−2(4− r2)1/2
r=
√
3

r=0
dθ

=
2π

0
(−2 + 4) dθ = 2θ

2π

0
= 4π
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59. Let A(S1) be the surface area of that portion of the surface which lies above the plane z = 0. Then A(S) = 2A(S1).

Following Example 10, a parametric representation of S1 is x = a sinφ cos θ, y = a sinφ sin θ,

z = a cosφ and |rφ × rθ| = a2 sinφ. For D, 0 ≤ φ ≤ π
2

and for each fixed φ, x− 1
2
a

2
+ y2 ≤ 1

2
a

2 or

a sinφ cos θ − 1
2
a
2
+ a2 sin2 φ sin2 θ ≤ (a/2)2 implies a2 sin2 φ− a2 sinφ cos θ ≤ 0 or

sinφ (sinφ− cos θ) ≤ 0. But 0 ≤ φ ≤ π
2 , so cos θ ≥ sinφ or sin π

2 + θ ≥ sinφ or φ− π
2 ≤ θ ≤ π

2 − φ.

Hence D = (φ, θ) | 0 ≤ φ ≤ π
2 , φ− π

2 ≤ θ ≤ π
2 − φ . Then

A(S1) =
π/2

0

(π/2)−φ

φ− (π/2) a
2 sinφdθ dφ = a2

π/2

0
(π − 2φ) sinφdφ

= a2 [(−π cosφ)− 2(−φ cosφ+ sinφ)]π/20 = a2(π − 2)

Thus A(S) = 2a2(π − 2).

Alternate solution: Working on S1 we could parametrize the portion of the sphere by x = x, y = y, z = a2 − x2 − y2.

Then |rx × ry| = 1 +
x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
=

a

a2 − x2 − y2
and

A(S1) =

0≤ (x− (a/2))2 + y2≤ (a/2)2

a

a2 − x2 − y2
dA =

π/2

−π/2

a cos θ

0

a√
a2 − r2

r dr dθ

=
π/2

−π/2 −a(a2 − r2)1/2
r= a cos θ

r=0
dθ =

π/2

−π/2 a
2[1− (1− cos2 θ)1/2] dθ

=
π/2

−π/2 a
2(1− |sin θ|) dθ = 2a2 π/2

0
(1− sin θ) dθ = 2a2 π

2 − 1

Thus A(S) = 4a2 π
2
− 1 = 2a2(π − 2).

Notes:

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful

in setting up D.

(2) In the alternate solution, you can avoid having to use |sin θ| by working in the first octant and then

multiplying by 4. However, if you set up S1 as above and arrived at A(S1) = a2π, you now see your error.

17.7 Surface Integrals ET 16.7

1. The faces of the box in the planes x = 0 and x = 2 have surface area 24 and centers (0, 2, 3), (2, 2, 3). The faces in y = 0 and

y = 4 have surface area 12 and centers (1, 0, 3), (1, 4, 3), and the faces in z = 0 and z = 6 have area 8 and centers (1, 2, 0),

(1, 2, 6). For each face we take the point P ∗ij to be the center of the face and f(x, y, z) = e−0.1(x+y+z), so by Definition 1,

S
f(x, y, z) dS ≈ [f(0, 2, 3)](24) + [f(2, 2, 3)](24) + [f(1, 0, 3)](12)

+ [f(1, 4, 3)](12) + [f(1, 2, 0)](8) + [f(1, 2, 6)](8)

= 24(e−0.5 + e−0.7) + 12(e−0.4 + e−0.8) + 8(e−0.3 + e−0.9) ≈ 49.09
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3. We can use the xz- and yz-planes to divide H into four patches of equal size, each with surface area equal to 1
8 the surface

area of a sphere with radius
√
50, so ∆S = 1

8 (4)π
√
50

2
= 25π. Then (±3,±4, 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

H
f(x, y, z) dS ≈ f(3, 4, 5)∆S + f(3,−4, 5)∆S + f(−3, 4, 5)∆S + f(−3,−4, 5)∆S

= (7 + 8 + 9 + 12)(25π) = 900π ≈ 2827

5. z = 1 + 2x+ 3y so ∂z

∂x
= 2 and ∂z

∂y
= 3. Then by Formula 4,

S
x2yz dS =

D

x2yz
∂z

∂x

2

+
∂z

∂y

2

+ 1 dA =
3

0

2

0
x2y(1 + 2x+ 3y)

√
4 + 9 + 1 dy dx

=
√
14

3

0

2

0
(x2y + 2x3y + 3x2y2) dy dx =

√
14

3

0
1
2
x2y2 + x3y2 + x2y3

y=2

y=0
dx

=
√
14

3

0
(10x2 + 4x3) dx =

√
14 10

3
x3 + x4

3

0
= 171

√
14

7. S is the part of the plane z = 1− x− y over the region D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Thus

S
yz dS =

D
y(1− x− y) (−1)2 + (−1)2 + 1 dA = √3 1

0

1−x
0

y − xy − y2 dy dx

=
√
3

1

0
1
2y

2 − 1
2xy

2 − 1
3y

3 y=1−x
y=0

dx =
√
3

1

0
1
6 (1− x)3 dx = −

√
3

24 (1− x)4
1

0
=
√
3

24

9. r(u, v) = u2 i + u sin v j + u cos v k, 0 ≤ u ≤ 1, 0 ≤ v ≤ π/2, so

ru × rv = (2u i+ sin v j+ cos v k)× (u cos v j− u sin v k) = −u i+ 2u2 sin v j+ 2u2 cos v k and

|ru × rv| = u2 + 4u4 sin2 v + 4u4 cos2 v = u2 + 4u4(sin2 v + cos2 v) = u
√
1 + 4u2 (since u ≥ 0). Then by

Formula 2,

S
yz dS =

D
(u sin v)(u cos v) |ru × rv| dA = π/2

0

1

0
(u sin v)(u cos v) · u√1 + 4u2 dudv

=
1

0
u3
√
1 + 4u2 du

π/2

0
sin v cos v dv let t = 1 + 4u2 ⇒ u2 = 1

4
(t− 1) and 1

8
dt = udu

=
5

1
1
8
· 1
4
(t− 1)√t dt π/2

0
sin v cos v dv = 1

32

5

1
t3/2 −√t dt

π/2

0
sin v cos v dv

= 1
32

2
5
t5/2 − 2

3
t3/2

5

1

1
2
sin2 v

π/2

0
= 1

32
2
5
(5)5/2 − 2

3
(5)3/2 − 2

5
+ 2

3
· 1
2
(1− 0) = 5

48

√
5 + 1

240

11. S is the portion of the cone z2 = x2 + y2 for 1 ≤ z ≤ 3, or equivalently, S is the part of the surface z = x2 + y2 over the

region D = (x, y) | 1 ≤ x2 + y2 ≤ 9 . Thus

S

x2z2 dS =
D

x2(x2 + y2)
x

x2 + y2

2

+
y

x2 + y2

2

+ 1 dA

=
D

x2(x2 + y2)
x2 + y2

x2 + y2
+ 1 dA =

D

√
2x2(x2 + y2) dA =

√
2

2π

0

3

1

(r cos θ)2(r2) r dr dθ

=
√
2

2π

0
cos2 θ dθ

3

1
r5 dr =

√
2 1

2θ +
1
4 sin 2θ

2π

0
1
6r

6 3

1
=
√
2 (π) · 16 (36 − 1) =

364
√
2

3
π
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13. Using x and z as parameters, we have r(x, z) = x i+ (x2 + z2) j+ z k, x2 + z2 ≤ 4. Then

rx × rz = (i+ 2x j)× (2z j+ k) = 2x i− j+ 2z k and |rx × rz| =
√
4x2 + 1 + 4z2 = 1 + 4(x2 + z2). Thus

S
y dS =

x2+z2≤4
(x2 + z2) 1 + 4(x2 + z2) dA =

2π

0

2

0
r2
√
1 + 4r2 r dr dθ =

2π

0
dθ

2

0
r2
√
1 + 4r2 r dr

= 2π
2

0
r2
√
1 + 4r2 r dr let u = 1 + 4r2 ⇒ r2 = 1

4
(u− 1) and 1

8
du = r dr

= 2π
17

1
1
4
(u− 1)√u · 1

8
du = 1

16
π

17

1
(u3/2 − u1/2) du

= 1
16π

2
5u

5/2 − 2
3u

3/2
17

1
= 1

16π
2
5 (17)

5/2 − 2
3 (17)

3/2 − 2
5 +

2
3
=

π

60
391

√
17 + 1

15. Using spherical coordinates and Example 17.6.10 [ ET 16.6.10] we have r(φ, θ) = 2 sinφ cos θ i+ 2 sinφ sin θ j+ 2cosφk

and |rφ × rθ| = 4 sinφ. Then
S
(x2z + y2z) dS =

2π

0

π/2

0
(4 sin2 φ)(2 cosφ)(4 sinφ) dφdθ = 16π sin4 φ

π/2

0
= 16π.

17. S is given by r(u, v) = u i + cos v j + sin v k, 0 ≤ u ≤ 3, 0 ≤ v ≤ π/2. Then

ru × rv = i× (− sin v j+ cos v k) = − cos v j− sin v k and |ru × rv| = cos2 v + sin2 v = 1, so

S
(z + x2y) dS =

π/2

0

3

0
(sin v + u2 cos v)(1) dudv =

π/2

0
(3 sin v + 9 cos v) dv

= [−3 cos v + 9 sin v]π/20 = 0 + 9 + 3− 0 = 12

19. F(x, y, z) = xy i+ yz j+ zxk, z = g(x, y) = 4− x2 − y2, and D is the square [0, 1]× [0, 1], so by Equation 10

S
F · dS=

D
[−xy(−2x)− yz(−2y) + zx] dA =

1

0

1

0
[2x2y + 2y2(4− x2 − y2) + x(4− x2 − y2)] dy dx

=
1

0
1
3
x2 + 11

3
x− x3 + 34

15
dx = 713

180

21. F(x, y, z) = xzey i− xzey j+ z k, z = g(x, y) = 1− x− y, and D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Since S has

downward orientation, we have

S
F · dS= −

D
[−xzey(−1)− (−xzey)(−1) + z] dA = − 1

0

1−x
0

(1− x− y) dy dx

= − 1

0
1
2x

2 − x+ 1
2

dx = − 1
6

23. F(x, y, z) = x i − z j + y k, z = g(x, y) = 4− x2 − y2 and D is the quarter disk

(x, y) 0 ≤ x ≤ 2, 0 ≤ y ≤ √4− x2 . S has downward orientation, so by Formula 10,

S
F · dS = −

D
−x · 1

2 (4− x2 − y2)−1/2(−2x)− (−z) · 12 (4− x2 − y2)−1/2(−2y) + y dA

= −
D

x2

4− x2 − y2
− 4− x2 − y2 · y

4− x2 − y2
+ y dA

= −
D
x2(4− (x2 + y2))−1/2 dA = − π/2

0

2

0
(r cos θ)2(4− r2)−1/2 r dr dθ

= − π/2

0
cos2 θ dθ

2

0
r3(4− r2)−1/2 dr let u = 4− r2 ⇒ r2 = 4− u and − 1

2
du = r dr

= − π/2

0
1
2 +

1
2 cos 2θ dθ

0

4
− 1
2 (4− u)(u)−1/2 du

= − 1
2
θ + 1

4
sin 2θ

π/2

0
− 1
2
8
√
u− 2

3
u3/2

0

4
= −π

4
− 1
2
−16 + 16

3
= − 4

3
π
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25. Let S1 be the paraboloid y = x2 + z2, 0 ≤ y ≤ 1 and S2 the disk x2 + z2 ≤ 1, y = 1. Since S is a closed

surface, we use the outward orientation.

On S1: F(r(x, z)) = (x2 + z2) j− z k and rx × rz = 2x i− j+ 2z k (since the j-component must be negative on S1). Then

S1
F · dS=

x2 + z2≤ 1
[−(x2 + z2)− 2z2] dA = − 2π

0

1

0
(r2 + 2r2 cos2 θ) r dr dθ

= − 2π

0
1
4
(1 + 2 cos2 θ) dθ = − π

2
+ π

2
= −π

On S2: F(r(x, z)) = j− z k and rz × rx = j. Then
S2
F · dS =

x2 + z2≤ 1
(1) dA = π.

Hence
S
F · dS = −π + π = 0.

27. Here S consists of the six faces of the cube as labeled in the figure. On S1:

F = i+ 2y j+ 3z k, ry × rz = i and
S1
F · dS = 1

−1
1

−1 dy dz = 4;

S2: F = x i+ 2 j+ 3z k, rz × rx = j and
S2
F · dS = 1

−1
1

−1 2 dxdz = 8;

S3: F = x i+ 2y j+ 3k, rx × ry = k and
S3
F · dS = 1

−1
1

−1 3dxdy = 12;

S4: F = −i+ 2y j+ 3z k, rz × ry = −i and
S4
F · dS = 4;

S5: F = x i− 2 j+ 3z k, rx × rz = −j and
S5
F · dS = 8;

S6: F = x i + 2y j − 3k, ry × rx = −k and
S6
F · dS = 1

−1
1

−1 3 dxdy = 12.

Hence
S
F · dS = 6

i=1 Si
F · dS = 48.

29. Here S consists of four surfaces: S1, the top surface (a portion of the circular cylinder y2 + z2 = 1); S2, the bottom surface

(a portion of the xy-plane); S3, the front half-disk in the plane x = 2, and S4, the back half-disk in the plane x = 0.

On S1: The surface is z = 1− y2 for 0 ≤ x ≤ 2, −1 ≤ y ≤ 1 with upward orientation, so

S1

F · dS=
2

0

1

−1
−x2 (0)− y2 − y

1− y2
+ z2 dy dx =

2

0

1

−1

y3

1− y2
+ 1− y2 dy dx

=
2

0
− 1− y2 + 1

3
(1− y2)3/2 + y − 1

3
y3

y=1

y=−1
dx =

2

0
4
3
dx = 8

3

On S2: The surface is z = 0 with downward orientation, so

S2
F · dS = 2

0

1

−1 −z2 dy dx =
2

0

1

−1 (0) dy dx = 0

On S3: The surface is x = 2 for −1 ≤ y ≤ 1, 0 ≤ z ≤ 1− y2, oriented in the positive x-direction. Regarding y and z as

parameters, we have ry × rz = i and

S3
F · dS = 1

−1

√
1−y2

0
x2 dz dy =

1

−1

√
1−y2

0
4 dz dy = 4A (S3) = 2π

On S4: The surface is x = 0 for −1 ≤ y ≤ 1, 0 ≤ z ≤ 1− y2, oriented in the negative x-direction. Regarding y and z as

parameters, we use − (ry × rz) = −i and

S4
F · dS = 1

−1

√
1−y2

0
x2 dz dy =

1

−1

√
1−y2

0
(0) dz dy = 0

Thus
S
F · dS = 8

3
+ 0 + 2π + 0 = 2π + 8

3
.
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31. z = xy ⇒ ∂z/∂x = y, ∂z/∂y = x, so by Formula 4, a CAS gives

S
xyz dS =

1

0

1

0
xy(xy) y2 + x2 + 1 dx dy ≈ 0.1642.

33. We use Formula 4 with z = 3− 2x2 − y2 ⇒ ∂z/∂x = −4x, ∂z/∂y = −2y. The boundaries of the region

3− 2x2 − y2 ≥ 0 are − 3
2
≤ x ≤ 3

2
and −√3− 2x2 ≤ y ≤ √3− 2x2, so we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate

S

x2y2z2 dS =

√
3/2

−
√
3/2

√
3− 2x2

−
√
3− 2x2

x2y2(3− 2x2 − y2)2 16x2 + 4y2 + 1 dy dx ≈ 3.4895

35. If S is given by y = h(x, z), then S is also the level surface f(x, y, z) = y − h(x, z) = 0.

n =
∇f(x, y, z)
|∇f(x, y, z)| =

−hx i+ j− hz k√
h2x + 1 + h2z

, and −n is the unit normal that points to the left. Now we proceed as in the

derivation of (10), using Formula 4 to evaluate

S

F · dS =
S

F · ndS =
D

(P i+Q j+Rk)

∂h

∂x
i− j+ ∂h

∂z
k

∂h

∂x

2

+ 1 +
∂h

∂z

2

∂h

∂x

2

+ 1 +
∂h

∂z

2

dA

where D is the projection of S onto the xz-plane. Therefore
S

F · dS =
D

P
∂h

∂x
−Q+R

∂h

∂z
dA.

37. m =
S
K dS = K · 4π 1

2
a2 = 2πa2K; by symmetry Mxz = Myz = 0, and

Mxy = S
zK dS = K

2π

0

π/2

0
(a cosφ)(a2 sinφ) dφdθ = 2πKa3 − 1

4 cos 2φ
π/2

0
= πKa3.

Hence (x, y, z) = 0, 0, 1
2
a .

39. (a) Iz = S
(x2 + y2)ρ(x, y, z) dS

(b) Iz = S
(x2 + y2) 10− x2 + y2 dS =

1≤ x2 + y2≤ 16
(x2 + y2) 10− x2 + y2

√
2 dA

=
2π

0

4

1

√
2 (10r3 − r4) dr dθ = 2

√
2π 4329

10
= 4329

5

√
2π

41. The rate of flow through the cylinder is the flux
S
ρv · n dS =

S
ρv · dS. We use the parametric representation

r(u, v) = 2 cosu i+ 2 sinu j+ v k for S, where 0 ≤ u ≤ 2π, 0 ≤ v ≤ 1, so ru = −2 sinu i+ 2cosu j, rv = k, and the

outward orientation is given by ru × rv = 2cosu i+ 2 sinu j. Then

S
ρv · dS= ρ

2π

0

1

0
v i+ 4 sin2 u j+ 4 cos2 uk · (2 cosu i+ 2 sinu j) dv du

= ρ
2π

0

1

0
2v cosu+ 8 sin3 u dv du = ρ

2π

0
cosu+ 8 sin3 u du

= ρ sinu+ 8 − 1
3
(2 + sin2 u) cosu

2π

0
= 0 kg/s
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43. S consists of the hemisphere S1 given by z = a2 − x2 − y2 and the disk S2 given by 0 ≤ x2 + y2 ≤ a2, z = 0.

On S1: E = a sinφ cos θ i + a sinφ sin θ j + 2a cosφk,

Tφ ×Tθ = a2 sin2 φ cos θ i+ a2 sin2 φ sin θ j+ a2 sinφ cosφk. Thus

S1
E · dS= 2π

0

π/2

0
(a3 sin3 φ+ 2a3 sinφ cos2 φ) dφdθ

=
2π

0

π/2

0
(a3 sinφ+ a3 sinφ cos2 φ) dφdθ = (2π)a3 1 + 1

3
= 8

3
πa3

On S2: E = x i+ y j, and ry × rx = −k so
S2
E · dS = 0. Hence the total charge is q = ε0 S

E · dS = 8
3
πa3ε0.

45. K∇u = 6.5(4y j+ 4z k). S is given by r(x, θ) = x i+
√
6 cos θ j+

√
6 sin θ k and since we want the inward heat flow, we

use rx × rθ = −
√
6 cos θ j −√6 sin θ k. Then the rate of heat flow inward is given by

S
(−K∇u) · dS = 2π

0

4

0
−(6.5)(−24) dxdθ = (2π)(156)(4) = 1248π.

47. Let S be a sphere of radius a centered at the origin. Then |r| = a and F(r) = cr/ |r|3 = c/a3 (x i+ y j+ z k). A

parametric representation for S is r(φ, θ) = a sinφ cos θ i+ a sinφ sin θ j+ a cosφk, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π. Then

rφ = a cosφ cos θ i+ a cosφ sin θ j− a sinφk, rθ = −a sinφ sin θ i+ a sinφ cos θ j, and the outward orientation is given

by rφ × rθ = a2 sin2 φ cos θ i+ a2 sin2 φ sin θ j+ a2 sinφ cosφk. The flux of F across S is

S
F · dS= π

0

2π

0

c

a3
(a sinφ cos θ i+ a sinφ sin θ j+ a cosφk)

· a2 sin2 φ cos θ i+ a2 sin2 φ sin θ j+ a2 sinφ cosφk dθ dφ

=
c

a3
π

0

2π

0
a3 sin3 φ+ sinφ cos2 φ dθ dφ = c

π

0

2π

0
sinφdθ dφ = 4πc

Thus the flux does not depend on the radius a.

17.8 Stokes' Theorem ET 16.8

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve x2 + y2 = 4,

z = 0 (which we can take to be oriented positively for both surfaces). Then H and P satisfy the hypotheses of Stokes’

Theorem, so by (3) we know
H
curlF · dS =

C
F · dr =

P
curlF · dS (where C is the boundary curve).

3. The paraboloid z = x2 + y2 intersects the cylinder x2 + y2 = 4 in the circle x2 + y2 = 4, z = 4. This boundary curve C

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C is

r(t) = 2 cos t i+ 2 sin t j+ 4k, 0 ≤ t ≤ 2π. Then r0(t) = −2 sin t i+ 2 cos t j,
F(r(t)) = (4 cos2 t)(16) i+ (4 sin2 t)(16) j+ (2 cos t)(2 sin t)(4)k = 64 cos2 t i+ 64 sin2 t j+ 16 sin t cos tk,

and by Stokes’ Theorem,

S
curlF · dS=

C
F · dr = 2π

0
F(r(t)) · r0(t) dt = 2π

0
(−128 cos2 t sin t+ 128 sin2 t cos t+ 0) dt

= 128 1
3
cos3 t+ 1

3
sin3 t

2π

0
= 0
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5. C is the square in the plane z = −1. By (3),
S1
curlF · dS =

C
F · dr =

S2
curlF · dS where S1 is the original cube

without the bottom and S2 is the bottom face of the cube. curlF = x2z i+ (xy − 2xyz) j+ (y − xz)k. For S2, we choose

n = k so that C has the same orientation for both surfaces. Then curlF · n = y − xz = x+ y on S2, where z = −1. Thus

S2
curlF · dS = 1

−1
1

−1(x+ y) dx dy = 0 so
S1
curlF · dS = 0.

7. curl F = −2z i− 2x j− 2y k and we take the surface S to be the planar region enclosed by C, so S is the portion of the plane

x+ y + z = 1 over D = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Since C is oriented counterclockwise, we orient S upward.

Using Equation 17.7.10 [ ET 16.7.10], we have z = g(x, y) = 1− x− y, P = −2z, Q = −2x, R = −2y, and

C
F · dr=

S
curlF · dS =

D
[−(−2z)(−1)− (−2x)(−1) + (−2y)] dA

=
1

0

1−x
0

(−2) dy dx = −2 1

0
(1− x) dx = −1

9. curlF = (xexy − 2x) i− (yexy − y) j+ (2z − z)k and we take S to be the disk x2 + y2 ≤ 16, z = 5. Since C is oriented

counterclockwise (from above), we orient S upward. Then n = k and curlF · n = 2z − z on S, where z = 5. Thus

F · dr =
S
curlF · ndS=

S
(2z − z) dS =

S
(10− 5) dS = 5(area of S) = 5(π · 42) = 80π

11. (a) The curve of intersection is an ellipse in the plane x+ y + z = 1 with unit normal n = 1√
3
(i+ j+ k),

curlF = x2 j+ y2 k, and curlF · n = 1√
3
(x2 + y2). Then

C
F · dr =

S
1√
3
x2 + y2 dS =

x2 + y2≤ 9 x2 + y2 dx dy =
2π

0

3

0
r3 dr dθ = 2π 81

4
= 81π

2

(b) (c) One possible parametrization is x = 3 cos t, y = 3 sin t,

z = 1− 3 cos t− 3 sin t, 0 ≤ t ≤ 2π.

13. The boundary curve C is the circle x2 + y2 = 1, z = 1 oriented in the counterclockwise direction as viewed from above.

We can parametrize C by r(t) = cos t i+ sin t j+ k, 0 ≤ t ≤ 2π, and then r0(t) = − sin t i+ cos t j. Thus

F(r(t)) = sin2 t i+ cos t j+ k, F(r(t)) · r0(t) = cos2 t− sin3 t, and

C
F · dr= 2π

0
(cos2 t− sin3 t) dt = 2π

0
1
2
(1 + cos 2t) dt− 2π

0
(1− cos2 t) sin t dt

= 1
2
t+ 1

2 sin 2t
2π

0
− − cos t+ 1

3 cos
3 t

2π

0
= π

Now curl F = (1− 2y)k, and the projection D of S on the xy-plane is the disk x2 + y2 ≤ 1, so by Equation 17.7.10

[ ET 16.7.10] with z = g(x, y) = x2 + y2 we have

S
curlF · dS =

D
(1− 2y) dA = 2π

0

1

0
(1− 2r sin θ) r dr dθ = 2π

0
1
2 − 2

3 sin θ dθ = π.

15. The boundary curve C is the circle x2 + z2 = 1, y = 0 oriented in the counterclockwise direction as viewed from the positive

y-axis. Then C can be described by r(t) = cos t i− sin tk, 0 ≤ t ≤ 2π, and r0(t) = − sin t i− cos tk. Thus
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F(r(t)) = − sin t j+ cos tk, F(r(t)) · r0 (t) = − cos2 t, and
C
F · dr = 2π

0
− cos2 t dt = − 1

2 t− 1
4 sin 2t

2π

0
= −π.

Now curlF = −i − j − k, and S can be parametrized (see Example 17.6.10 [ ET 16.6.10]) by

r(φ, θ) = sinφ cos θ i + sinφ sin θ j + cosφk, 0 ≤ θ ≤ π, 0 ≤ φ ≤ π. Then

rφ × rθ = sin2 φ cos θ i+ sin2 φ sin θ j+ sinφ cosφk and

S
curlF · dS=

x2+z2≤1
curlF · (rφ × rθ) dA = π

0

π

0
(− sin2 φ cos θ − sin2 φ sin θ − sinφ cosφ) dθ dφ

=
π

0
(−2 sin2 φ− π sinφ cosφ) dφ = 1

2
sin 2φ− φ− π

2
sin2 φ

π

0
= −π

17. It is easier to use Stokes’ Theorem than to compute the work directly. Let S be the planar region enclosed by the path of the

particle, so S is the portion of the plane z = 1
2
y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, with upward orientation.

curl F = 8y i+ 2z j+ 2y k and

C
F · dr=

S
curlF · dS =

D
−8y (0)− 2z 1

2
+ 2y dA =

1

0

2

0
2y − 1

2
y dy dx

=
1

0

2

0
3
2y dy dx =

1

0
3
4y

2 y=2

y=0
dx =

1

0
3 dx = 3

19. Assume S is centered at the origin with radius a and let H1 and H2 be the upper and lower hemispheres, respectively, of S.

Then
S
curlF · dS =

H1
curlF · dS+

H2
curlF · dS =

C1
F · dr+

C2
F · dr by Stokes’ Theorem. But C1 is the

circle x2 + y2 = a2 oriented in the counterclockwise direction while C2 is the same circle oriented in the clockwise direction.

Hence
C2
F · dr = −

C1
F · dr so

S
curlF · dS = 0 as desired.

17.9 The Divergence Theorem ET 16.9

1. divF = 3 + x+ 2x = 3 + 3x, so

E
divFdV =

1

0

1

0

1

0
(3x+ 3) dx dy dz = 9

2
(notice the triple integral is

three times the volume of the cube plus three times x).

To compute
S
F · dS, on

S1: n = i, F = 3 i+ y j+ 2z k, and
S1
F · dS =

S1
3 dS = 3;

S2: F = 3x i+ x j+ 2xz k, n = j and
S2
F · dS =

S2
xdS = 1

2
;

S3: F = 3x i+ xy j+ 2xk, n = k and
S3
F · dS =

S3
2xdS = 1;

S4: F = 0,
S4
F · dS = 0; S5: F = 3x i+ 2xk, n = −j and

S5
F · dS =

S5
0 dS = 0;

S6: F = 3x i+ xy j, n = −k and
S6
F · dS =

S6
0 dS = 0. Thus

S
F · dS = 9

2
.

3. divF = x+ y + z, so

E
divF dV =

2π

0

1

0

1

0
(r cos θ + r sin θ + z) r dz dr dθ =

2π

0

1

0
r2 cos θ + r2 sin θ + 1

2r dr dθ

=
2π

0
1
3
cos θ + 1

3
sin θ + 1

4
dθ = 1

4
(2π) = π

2

Let S1 be the top of the cylinder, S2 the bottom, and S3 the vertical edge. On S1, z = 1, n = k, and F = xy i+ y j+ xk, so
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S1
F · dS =

S1
F · ndS =

S1
xdS =

2π

0

1

0
(r cos θ) r dr dθ = sin θ

2π

0
1
3r

3 1

0
= 0.

On S2, z = 0, n = −k, and F = xy i so
S2
F · dS =

S2
0 dS = 0.

S3 is given by r(θ, z) = cos θ i+ sin θ j+ z k, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1. Then rθ × rz = cos θ i+ sin θ j and

S3
F · dS=

D
F · (rθ × rz) dA = 2π

0

1

0
(cos2 θ sin θ + z sin2 θ) dz dθ

=
2π

0
cos2 θ sin θ + 1

2
sin2 θ dθ = − 1

3
cos3 θ + 1

4
θ − 1

2
sin 2θ

2π

0
= π

2

Thus
S
F · dS = 0 + 0 + π

2 =
π
2 .

5. divF = ∂
∂x
(ex sin y) + ∂

∂y
(ex cos y) + ∂

∂z
(yz2) = ex sin y − ex sin y + 2yz = 2yz, so by the Divergence Theorem,

S
F · dS =

E
div F dV =

1

0

1

0

2

0
2yz dz dy dx = 2

1

0
dx

1

0
y dy

1

0
z dz = 2 x

1

0
1
2y

2 1

0
1
2z

2 2

0
= 2.

7. divF = 3y2 + 0 + 3z2, so using cylindrical coordinates with y = r cos θ, z = r sin θ, x = x we have

S
F · dS=

E
(3y2 + 3z2) dV =

2π

0

1

0

2

−1(3r
2 cos2 θ + 3r2 sin2 θ) r dx dr dθ

= 3
2π

0
dθ

1

0
r3 dr

2

−1 dx = 3(2π)
1
4
(3) = 9π

2

9. divF = y sin z + 0− y sin z = 0, so by the Divergence Theorem,
S
F · dS =

E
0 dV = 0.

11. div F = y2 + 0+ x2 = x2 + y2 so

S
F · dS =

E
(x2 + y2) dV =

2π

0

2

0

4

r2
r2 · r dz dr dθ = 2π

0

2

0
r3(4− r2) dr dθ

=
2π

0
dθ

2

0
(4r3 − r5) dr = 2π r4 − 1

6
r6

2

0
= 32

3
π

13. divF = 12x2z + 12y2z + 12z3 so

S
F · dS =

E
12z(x2 + y2 + z2) dV =

2π

0

π

0

R

0
12(ρ cosφ)(ρ2)ρ2 sinφdρdφdθ

= 12
2π

0
dθ

π

0
sinφ cosφdφ

R

0
ρ5 dρ = 12(2π) 1

2
sin2 φ

π

0
1
6
ρ6

R

0
= 0

15.
S
F · dS =

E

√
3− x2 dV =

1

−1
1

−1
2−x4− y4

0

√
3− x2 dz dy dx = 341

60

√
2 + 81

20 sin
−1 √

3
3

17. For S1 we have n = −k, so F · n = F · (−k) = −x2z − y2 = −y2 (since z = 0 on S1). So if D is the unit disk, we get

S1
F · dS =

S1
F · n dS =

D
(−y2) dA = − 2π

0

1

0
r2 (sin2 θ) r dr dθ = − 1

4
π. Now since S2 is closed, we can use

the Divergence Theorem. Since divF = ∂
∂x
(z2x) + ∂

∂y
1
3
y3 + tan z + ∂

∂z
(x2z + y2) = z2 + y2 + x2, we use spherical

coordinates to get
S2
F · dS =

E
divF dV =

2π

0

π/2

0

1

0
ρ2 · ρ2 sinφdρ dφdθ = 2

5
π. Finally

S
F · dS =

S2
F · dS−

S1
F · dS = 2

5
π − − 1

4
π = 13

20
π.

19. The vectors that end near P1 are longer than the vectors that start near P1, so the net flow is inward near P1 and divF(P1) is

negative. The vectors that end near P2 are shorter than the vectors that start near P2, so the net flow is outward near P2 and

divF(P2) is positive.
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21. From the graph it appears that for points above the x-axis, vectors starting near a

particular point are longer than vectors ending there, so divergence is positive.

The opposite is true at points below the x-axis, where divergence is negative.

F (x, y) = xy, x+ y2 ⇒ divF = ∂
∂x
(xy) + ∂

∂y
x+ y2 = y + 2y = 3y.

Thus divF > 0 for y > 0, and divF < 0 for y < 0.

23. Since x

|x|3 =
x i+ y j+ z k

(x2 + y2 + z2)3/2
and ∂

∂x

x

(x2 + y2 + z2)3/2
=
(x2 + y2 + z2)− 3x2
(x2 + y2 + z2)5/2

with similar expressions

for ∂

∂y

y

(x2 + y2 + z2)3/2
and ∂

∂z

z

(x2 + y2 + z2)3/2
, we have

div
x

|x|3 =
3(x2 + y2 + z2)− 3(x2 + y2 + z2)

(x2 + y2 + z2)5/2
= 0, except at (0, 0, 0) where it is undefined.

25.
S
a · n dS =

E
div a dV = 0 since div a = 0.

27.
S
curlF · dS =

E
div(curlF) dV = 0 by Theorem 17.5.11 [ ET 16.5.11].

29.
S
(f∇g) · n dS =

E
div(f∇g) dV =

E
(f∇2g +∇g ·∇f) dV by Exercise 17.5.25 [ ET 16.5.25].

31. If c = c1 i+ c2 j+ c3 k is an arbitrary constant vector, we define F = fc = fc1 i+ fc2 j+ fc3 k. Then

divF = div fc =
∂f

∂x
c1 +

∂f

∂y
c2 +

∂f

∂z
c3 = ∇f · c and the Divergence Theorem says

S
F · dS =

E
divF dV ⇒

S
F · n dS =

E
∇f · c dV . In particular, if c = i then

S
f i · n dS =

E
∇f · i dV ⇒

S

fn1 dS =
E

∂f

∂x
dV (where n = n1 i+ n2 j+ n3 k). Similarly, if c = j we have

S

fn2 dS =
E

∂f

∂y
dV ,

and c = k gives
S

fn3 dS =
E

∂f

∂z
dV . Then

S
fn dS =

S
fn1 dS i+

S
fn2 dS j+

S
fn3 dS k

=
E

∂f

∂x
dV i+

E

∂f

∂y
dV j+

E

∂f

∂z
dV k =

E

∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k dV

=
E
∇f dV as desired.

17 Review ET 16

1. See Definitions 1 and 2 in Section 17.1 [ ET 16.1]. A vector field can represent, for example, the wind velocity at any location

in space, the speed and direction of the ocean current at any location, or the force vectors of Earth’s gravitational field at a

location in space.

2. (a) A conservative vector field F is a vector field which is the gradient of some scalar function f .

(b) The function f in part (a) is called a potential function for F, that is, F = ∇f .
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3. (a) See Definition 17.2.2 [ ET 16.2.2].

(b) We normally evaluate the line integral using Formula 17.2.3 [ ET 16.2.3].

(c) The mass is m =
C
ρ (x, y) ds, and the center of mass is (x, y) where x = 1

m C
xρ (x, y) ds, y = 1

m C
yρ (x, y) ds.

(d) See (5) and (6) in Section 17.2 [ ET 16.2] for plane curves; we have similar definitions when C is a space curve

(see the equation preceding (10) in Section 17.2 [ ET 16.2]).

(e) For plane curves, see Equations 17.2.7 [ ET 16.2.7]. We have similar results for space curves

(see the equation preceding (10) in Section 17.2 [ ET 16.2]).

4. (a) See Definition 17.2.13 [ ET 16.2.13].

(b) If F is a force field,
C
F · dr represents the work done by F in moving a particle along the curve C.

(c)
C
F · dr =

C
P dx+Qdy +Rdz

5. See Theorem 17.3.2 [ ET 16.3.2].

6. (a)
C
F · dr is independent of path if the line integral has the same value for any two curves that have the same initial and

terminal points.

(b) See Theorem 17.3.4 [ ET 16.3.4].

7. See the statement of Green’s Theorem on page 1091 [ ET 1055].

8. See Equations 17.4.5 [ ET 16.4.5].

9. (a) curlF = ∂R

∂y
− ∂Q

∂z
i+

∂P

∂z
− ∂R

∂x
j+

∂Q

∂x
− ∂P

∂y
k = ∇×F

(b) divF = ∂P

∂x
+

∂Q

∂y
+

∂R

∂z
= ∇ · F

(c) For curlF, see the discussion accompanying Figure 1 on page 1100 [ ET 1064] as well as Figure 6 and the accompanying

discussion on page 1132 [ ET 1096]. For divF, see the discussion following Example 5 on page 1102 [ ET 1066] as well

as the discussion preceding (8) on page 1139 [ ET 1103].

10. See Theorem 17.3.6 [ ET 16.3.6]; see Theorem 17.5.4 [ ET 16.5.4].

11. (a) See (1) and (2) and the accompanying discussion in Section 17.6 [ ET 16.6] ; See Figure 4 and the accompanying

discussion on page 1107 [ ET 1071] .

(b) See Definition 17.6.6 [ ET 16.6.6 ].

(c) See Equation 17.6.9 [ ET 16.6.9].

12. (a) See (1) in Section 17.7 [ ET 16.7].

(b) We normally evaluate the surface integral using Formula 17.7.2 [ ET 16.7.2].

(c) See Formula 17.7.4 [ ET 16.7.4].

(d) The mass is m =
S
ρ(x, y, z) dS and the center of mass is (x, y, z) where x = 1

m S
xρ(x, y, z) dS,

y = 1
m S

yρ(x, y, z) dS, z = 1
m S

zρ(x, y, z) dS.
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13. (a) See Figures 6 and 7 and the accompanying discussion in Section 17.7 [ ET 16.7]. A Möbius strip is a nonorientable

surface; see Figures 4 and 5 and the accompanying discussion on page 1121 [ ET 1085].

(b) See Definition 17.7.8 [ ET 16.7.8].

(c) See Formula 17.7.9 [ ET 16.7.9].

(d) See Formula 17.7.10 [ ET 16.7.10].

14. See the statement of Stokes’ Theorem on page 1129 [ ET 1093.].

15. See the statement of the Divergence Theorem on page 1135 [ ET 1099].

16. In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the values of

the original function only on the boundary of the region.

1. False; divF is a scalar field.

3. True, by Theorem 17.5.3 [ ET 16.5.3] and the fact that div 0 = 0.

5. False. See Exercise 17.3.33 [ ET 16.3.33]. (But the assertion is true if D is simply-connected; see Theorem 17.3.6

[ ET 16.3.6].)

7. True. Apply the Divergence Theorem and use the fact that divF = 0.

1. (a) Vectors starting on C point in roughly the direction opposite to C, so the tangential component F ·T is negative.

Thus
C
F · dr =

C
F ·Tds is negative.

(b) The vectors that end near P are shorter than the vectors that start near P , so the net flow is outward near P and

divF (P ) is positive.

3.
C
yz cosxds =

π

0
(3 cos t) (3 sin t) cos t (1)2 + (−3 sin t)2 + (3 cos t)2 dt = π

0
(9 cos2 t sin t)

√
10 dt

= 9
√
10 − 1

3
cos3 t

π

0
= −3√10 (−2) = 6√10

5.
C
y3 dx+ x2 dy =

1

−1 y3(−2y) + (1− y2)2 dy =
1

−1(−y4 − 2y2 + 1) dy

= − 1
5
y5 − 2

3
y3 + y

1

−1 = − 1
5
− 2

3
+ 1− 1

5
− 2

3
+ 1 = 4

15

7. C: x = 1 + 2t ⇒ dx = 2 dt, y = 4t ⇒ dy = 4 dt, z = −1 + 3t ⇒ dz = 3 dt, 0 ≤ t ≤ 1.

C
xy dx+ y2 dy + yz dz =

1

0
[(1 + 2t)(4t)(2) + (4t)2(4) + (4t)(−1 + 3t)(3)] dt

=
1

0
(116t2 − 4t) dt = 116

3
t3 − 2t2 1

0
= 116

3
− 2 = 110

3

9. F(r(t)) = e−t i+ t2(−t) j+ (t2 + t3)k, r0(t) = 2t i+ 3t2 j− k and

C
F · dr = 1

0
(2te−t − 3t5 − (t2 + t3)) dt = −2te−t − 2e−t − 1

2
t6 − 1

3
t3 − 1

4
t4

1

0
= 11

12
− 4

e
.
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11. ∂
∂y [(1 + xy)exy] = 2xexy + x2yexy = ∂

∂x
ey + x2exy and the domain of F is R2, so F is conservative. Thus there

exists a function f such that F = ∇f . Then fy(x, y) = ey + x2exy implies f(x, y) = ey + xexy + g(x) and then

fx(x, y) = xyexy + exy + g0(x) = (1 + xy)exy + g0(x). But fx(x, y) = (1 + xy)exy , so g0(x) = 0 ⇒ g(x) = K.

Thus f(x, y) = ey + xexy +K is a potential function for F.

13. Since ∂
∂y (4x

3y2 − 2xy3) = 8x3y − 6xy2 = ∂
∂x (2x

4y − 3x2y2 + 4y3) and the domain of F is R2, F is conservative.

Furthermore f(x, y) = x4y2 − x2y3 + y4 is a potential function for F. t = 0 corresponds to the point (0, 1) and t = 1

corresponds to (1, 1), so
C
F · dr = f(1, 1)− f(0, 1) = 1− 1 = 0.

15. C1: r(t) = t i+ t2 j, −1 ≤ t ≤ 1;

C2: r(t) = −t i+ j, −1 ≤ t ≤ 1.

Then

C
xy2 dx− x2y dy =

1

−1(t
5 − 2t5) dt+ 1

−1 t dt

= − 1
6
t6

1

−1 +
1
2
t2

1

−1 = 0

Using Green’s Theorem, we have

C

xy2 dx− x2y dy =
D

∂

∂x
(−x2y)− ∂

∂y
(xy2) dA =

D

(−2xy − 2xy) dA =
1

−1

1

x2
−4xy dy dx

=
1

−1 −2xy2
y=1

y=x2
dx =

1

−1 (2x
5 − 2x) dx = 1

3
x6 − x2

1

−1 = 0

17.
C
x2y dx− xy2 dy =

x2 + y2≤ 4
∂
∂x
(−xy2)− ∂

∂y
(x2y) dA =

x2 + y2≤ 4
(−y2 − x2) dA = − 2π

0

2

0
r3 dr dθ = −8π

19. If we assume there is such a vector fieldG, then div(curlG) = 2 + 3z − 2xz. But div(curlF) = 0 for all vector fields F.

Thus such aG cannot exist.

21. For any piecewise-smooth simple closed plane curve C bounding a region D, we can apply Green’s Theorem to

F(x, y) = f(x) i+ g(y) j to get
C
f(x) dx+ g(y) dy =

D
∂
∂x

g(y)− ∂
∂y

f(x) dA =
D
0 dA = 0.

23. ∇2f = 0 means that ∂
2f

∂x2
+

∂2f

∂y2
= 0. Now if F = fy i− fx j and C is any closed path in D, then applying Green’s

Theorem, we get

C
F · dr =

C
fy dx− fx dy = D

∂
∂x
(−fx)− ∂

∂y
(fy) dA = −

D
(fxx + fyy) dA = − D

0 dA = 0

Therefore the line integral is independent of path, by Theorem 17.3.3 [ ET 16.3.3].

25. z = f (x, y) = x2 + 2y with 0 ≤ x ≤ 1, 0 ≤ y ≤ 2x. Thus

A(S) =
D

√
1 + 4x2 + 4 dA =

1

0

2x

0

√
5 + 4x2 dy dx =

1

0
2x
√
5 + 4x2 dx = 1

6
(5 + 4x2)3/2

1

0
= 1

6
27− 5√5 .
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27. z = f(x, y) = x2 + y2 with 0 ≤ x2 + y2 ≤ 4 so rx × ry = −2x i− 2y j+ k (using upward orientation). Then

S
z dS =

x2 + y2≤ 4
(x2 + y2) 4x2 + 4y2 + 1 dA =

2π

0

2

0
r3
√
1 + 4r2 dr dθ = 1

60
π 391

√
17 + 1

(Substitute u = 1 + 4r2 and use tables.)

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and

S
F · dS =

E
(z − 2) dV =

E
z dV − 2

E
dV = mz − 2 4

3π2
3 = − 64

3 π.

Alternate solution: F(r(φ, θ)) = 4 sinφ cos θ cosφ i − 4 sinφ sin θ j + 6 sinφ cos θ k,

rφ × rθ = 4 sin2 φ cos θ i + 4 sin2 φ sin θ j + 4 sinφ cosφk, and

F · (rφ × rθ) = 16 sin3 φ cos2 θ cosφ− 16 sin3 φ sin2 θ + 24 sin2 φ cosφ cos θ. Then

S
F · dS = 2π

0

π

0
(16 sin3 φ cosφ cos2 θ − 16 sin3 φ sin2 θ + 24 sin2 φ cosφ cos θ) dφdθ

=
2π

0
4
3 (−16 sin2 θ) dθ = − 64

3 π

31. Since curlF = 0,
S
(curlF) · dS = 0. We parametrize C: r(t) = cos t i+ sin t j, 0 ≤ t ≤ 2π and

C
F · dr = 2π

0
(− cos2 t sin t+ sin2 t cos t) dt = 1

3
cos3 t+ 1

3
sin3 t

2π

0
= 0.

33. The surface is given by x+ y + z = 1 or z = 1− x− y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x and rx × ry = i+ j+ k. Then

C
F · dr =

S
curlF · dS =

D
(−y i− z j− xk) · (i+ j+ k) dA =

D
(−1) dA = −(area of D) = − 1

2 .

35.
E
divF dV =

x2 + y2 + z2≤ 1
3 dV = 3(volume of sphere) = 4π. Then

F(r(φ, θ)) · (rφ × rθ) = sin3 φ cos2 θ + sin3 φ sin2 θ + sinφ cos2 φ = sinφ and

S
F · dS = 2π

0

π

0
sinφdφdθ = (2π)(2) = 4π.

37. Because curlF = 0, F is conservative, and if f(x, y, z) = x3yz − 3xy + z2, then∇f = F. Hence

C
F · dr =

C
∇f · dr = f(0, 3, 0)− f(0, 0, 2) = 0− 4 = −4.

39. By the Divergence Theorem,
S
F · n dS =

E
divFdV = 3(volume of E) = 3(8− 1) = 21.

41. Let F = a× r = ha1, a2, a3i × hx, y, zi = ha2z − a3y, a3x− a1z, a1y − a2xi. Then curl F = h2a1, 2a2, 2a3i = 2a,

and
S
2a · dS =

S
curlF · dS =

C
F · dr =

C
(a× r) · dr by Stokes’ Theorem.





PROBLEMS PLUS
1. Let S1 be the portion of Ω(S) between S(a) and S, and let ∂S1 be its boundary. Also let SL be the lateral surface of S1 [that

is, the surface of S1 except S and S(a)]. Applying the Divergence Theorem we have
∂S1

r · n
r3

dS =
S1

∇ · r
r3

dV .

But

∇ · r
r3
=

∂

∂x
,
∂

∂y
,
∂

∂z
· x

(x2 + y2 + z2)3/2
,

y

(x2 + y2 + z2)3/2
,

z

(x2 + y2 + z2)3/2

=
(x2 + y2 + z2 − 3x2) + (x2 + y2 + z2 − 3y2) + (x2 + y2 + z2 − 3z2)

(x2 + y2 + z2)5/2
= 0

⇒
∂S1

r · n
r3

dS =
S1

0 dV = 0. On the other hand, notice that for the surfaces of ∂S1 other than S(a) and S,

r · n = 0 ⇒

0 =
∂S1

r · n
r3

dS =
S

r · n
r3

dS +
S(a)

r · n
r3

dS +
SL

r · n
r3

dS =
S

r · n
r3

dS +
S(a)

r · n
r3

dS ⇒

S

r · n
r3

dS = −
S(a)

r · n
r3

dS. Notice that on S(a), r = a ⇒ n = −r
r
= − r

a
and r · r = r2 = a2, so

that −
S(a)

r · n
r3

dS =
S(a)

r · r
a4

dS =
S(a)

a2

a4
dS =

1

a2 S(a)

dS =
area of S (a)

a2
= |Ω(S)|.

Therefore |Ω(S)| =
S

r · n
r3

dS.

3. The given line integral 1
2 C

(bz− cy) dx+ (cx− az) dy+ (ay− bx) dz can be expressed as
C
F · dr if we define the vector

field F by F(x, y, z) = P i+Q j+Rk = 1
2
(bz − cy) i+ 1

2
(cx− az) j+ 1

2
(ay − bx)k. Then define S to be the planar

interior of C, so S is an oriented, smooth surface. Stokes’ Theorem says
C
F · dr =

S
curlF · dS =

S
curlF · n dS.

Now

curlF=
∂R

∂y
− ∂Q

∂z
i+

∂P

∂z
− ∂R

∂x
j+

∂Q

∂x
− ∂P

∂y
k

= 1
2
a+ 1

2
a i+ 1

2
b+ 1

2
b j+ 1

2
c+ 1

2
c k = a i+ b j+ ck = n

so curlF · n = n · n = |n|2 = 1, hence
S
curlF · n dS =

S
dS which is simply the surface area of S. Thus,

C
F · dr = 1

2 C
(bz − cy) dx+ (cx− az) dy + (ay − bx) dz is the plane area enclosed by C.
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5. (F ·∇)G= P1
∂

∂x
+Q1

∂

∂y
+R1

∂

∂z
(P2 i+Q2 j+R2 k)

= P1
∂P2
∂x

+Q1
∂P2
∂y

+R1
∂P2
∂z

i+ P1
∂Q2

∂x
+Q1

∂Q2

∂y
+R1

∂Q2

∂z
j

+ P1
∂R2

∂x
+Q1

∂R2

∂y
+R1

∂R2

∂z
k

= (F ·∇P2) i +(F ·∇Q2) j+ (F ·∇R2)k.

Similarly, (G ·∇)F = (G ·∇P1) i +(G ·∇Q1) j +(G ·∇R1)k. Then

F× curlG =

i

P1

∂R2/∂y − ∂Q2/∂z

j

Q1

∂P2/∂z − ∂R2/∂x

k

R1

∂Q2/∂x− ∂P2/∂y

= Q1
∂Q2

∂x
−Q1

∂P2
∂y

−R1
∂P2
∂z

+R1
∂R2

∂x
i+ R1

∂R2

∂y
−R1

∂Q2

∂z
− P1

∂Q2

∂x
+ P1

∂P2
∂y

j

+ P1
∂P2
∂z

− P1
∂R2

∂x
−Q1

∂R2

∂y
+Q1

∂Q2

∂z
k

and

G× curlF = Q2
∂Q1

∂x
−Q2

∂P1
∂y

−R2
∂P1
∂z

+R2
∂R1

∂x
i+ R2

∂R1

∂y
−R2

∂Q1

∂z
− P2

∂Q1

∂x
+ P2

∂P1
∂y

j

+ P2
∂P1
∂z

− P2
∂R1

∂x
−Q2

∂R1

∂y
+Q2

∂Q1

∂z
k.

Then

(F ·∇)G+F× curlG= P1
∂P2
∂x

+Q1
∂Q2

∂x
+R1

∂R2

∂x
i + P1

∂P2
∂y

+Q1
∂Q2

∂y
+R1

∂R2

∂y
j

+ P1
∂P2
∂z

+Q1
∂Q2

∂z
+R1

∂R2

∂z
k

and

(G ·∇)F+G× curlF= P2
∂P1
∂x

+Q2
∂Q1

∂x
+R2

∂R1

∂x
i + P2

∂P1
∂y

+Q2
∂Q1

∂y
+R2

∂R1

∂y
j

+ P2
∂P1
∂z

+Q2
∂Q1

∂z
+R2

∂R1

∂z
k.

Hence

(F ·∇)G+F× curlG +(G ·∇)F+G× curlF

= P1
∂P2
∂x

+ P2
∂P1
∂x

+ Q1
∂Q2

∂x
+Q2

∂Q1

∂y
+ R1

∂R2

∂x
+R2

∂R1

∂x
i

+ P1
∂P2
∂y

+ P2
∂P1
∂y

+ Q1
∂Q2

∂y
+Q2

∂Q1

∂y
+ R1

∂R2

∂y
+R2

∂R1

∂y
j

+ P1
∂P2
∂z

+ P2
∂P1
∂z

+ Q1
∂Q2

∂z
+Q2

∂Q1

∂z
+ R1

∂R2

∂z
+R2

∂R1

∂z
k

= ∇(P1P2 +Q1Q2 +R1R2) = ∇(F ·G).



18 SECOND-ORDER DIFFERENTIAL EQUATIONS ET 17

18.1 Second-Order Linear Equations ET 17.1

1. The auxiliary equation is r2 − r− 6 = 0 ⇒ (r− 3)(r+2) = 0 ⇒ r = 3, r = −2. Then by (8) the general solution is

y = c1e
3x + c2e

−2x.

3. The auxiliary equation is r2 + 16 = 0 ⇒ r = ±4i. Then by (11) the general solution is

y = e0x(c1 cos 4x+ c2 sin 4x) = c1 cos 4x+ c2 sin 4x.

5. The auxiliary equation is 9r2 − 12r + 4 = 0 ⇒ (3r − 2)2 = 0 ⇒ r = 2
3

. Then by (10), the general solution is

y = c1e
2x/3 + c2xe

2x/3.

7. The auxiliary equation is 2r2 − r = r(2r − 1) = 0 ⇒ r = 0, r = 1
2

, so y = c1e
0x + c2e

x/2 = c1 + c2e
x/2.

9. The auxiliary equation is r2 − 4r + 13 = 0 ⇒ r =
4±√−36

2
= 2± 3i, so y = e2x(c1 cos 3x+ c2 sin 3x).

11. The auxiliary equation is 2r2 + 2r − 1 = 0 ⇒ r =
−2±√12

4
= −1

2
±
√
3

2
, so

y = c1e(
−1/2+√3/2)t + c2e(

−1/2−√3/2)t.

13. The auxiliary equation is 100r2 + 200r + 101 = 0 ⇒ r =
−200±√−400

200
= −1± 1

10
i, so

P = e−t c1 cos 1
10
t + c2 sin

1
10
t .

15. The auxiliary equation is 5r2 − 2r − 3 = (5r + 3)(r − 1) = 0 ⇒ r = − 3
5

,

r = 1, so the general solution is y = c1e
−3x/5 + c2e

x. We graph the basic

solutions f(x) = e−3x/5, g(x) = ex as well as y = e−3x/5 + 2ex,

y = e−3x/5 − ex, and y = −2e−3x/5 − ex. Each solution consists of a single

continuous curve that approaches either 0 or ±∞ as x→ ±∞.

17. 2r2 + 5r + 3 = (2r + 3)(r + 1) = 0, so r = − 3
2

, r = −1 and the general solution is y = c1e
−3x/2 + c2e

−x.

Then y(0) = 3 ⇒ c1 + c2 = 3 and y0(0) = −4 ⇒ − 3
2
c1 − c2 = −4, so c1 = 2 and c2 = 1. Thus the solution to the

initial-value problem is y = 2e−3x/2 + e−x.

19. 4r2 − 4r+1 = (2r− 1)2 = 0 ⇒ r = 1
2

and the general solution is y = c1e
x/2 + c2xe

x/2. Then y(0) = 1 ⇒ c1 = 1

and y0(0) = −1.5 ⇒ 1
2c1 + c2 = −1.5, so c2 = −2 and the solution to the initial-value problem is y = ex/2 − 2xex/2.
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21. r2 + 16 = 0 ⇒ r = ±4i and the general solution is y = e0x(c1 cos 4x+ c2 sin 4x) = c1 cos 4x+ c2 sin 4x. Then

y π
4
= −3 ⇒ −c1 = −3 ⇒ c1 = 3 and y0 π

4
= 4 ⇒ −4c2 = 4 ⇒ c2 = −1, so the solution to the

initial-value problem is y = 3 cos 4x− sin 4x.

23. r2 + 2r + 2 = 0 ⇒ r = −1± i and the general solution is y = e−x(c1 cosx+ c2 sinx). Then 2 = y(0) = c1 and

1 = y0(0) = c2 − c1 ⇒ c2 = 3 and the solution to the initial-value problem is y = e−x(2 cosx+ 3 sinx).

25. 4r2 + 1 = 0 ⇒ r = ± 1
2 i and the general solution is y = c1 cos

1
2x + c2 sin

1
2x . Then 3 = y(0) = c1 and

−4 = y(π) = c2, so the solution of the boundary-value problem is y = 3cos 1
2
x − 4 sin 1

2
x .

27. r2 − 3r + 2 = (r − 2)(r − 1) = 0 ⇒ r = 1, r = 2 and the general solution is y = c1e
x + c2e

2x. Then

1 = y(0) = c1 + c2 and 0 = y(3) = c1e
3 + c2e

6 so c2 = 1/(1− e3) and c1 = e3/(e3 − 1). The solution of the

boundary-value problem is y = ex+3

e3 − 1 +
e2x

1− e3
.

29. r2 − 6r + 25 = 0 ⇒ r = 3± 4i and the general solution is y = e3x(c1 cos 4x+ c2 sin 4x). But 1 = y(0) = c1 and

2 = y(π) = c1e
3π ⇒ c1 = 2/e

3π, so there is no solution.

31. r2 + 4r + 13 = 0 ⇒ r = −2± 3i and the general solution is y = e−2x(c1 cos 3x+ c2 sin 3x). But 2 = y(0) = c1

and 1 = y π
2
= e−π(−c2), so the solution to the boundary-value problem is y = e−2x(2 cos 3x− eπ sin 3x).

33. (a) Case 1 (λ = 0): y00 + λy = 0 ⇒ y00 = 0 which has an auxiliary equation r2 = 0 ⇒ r = 0 ⇒ y = c1 + c2x

where y(0) = 0 and y(L) = 0. Thus, 0 = y(0) = c1 and 0 = y(L) = c2L ⇒ c1 = c2 = 0. Thus y = 0.

Case 2 (λ < 0): y00 + λy = 0 has auxiliary equation r2 = −λ ⇒ r = ±√−λ [distinct and real since λ < 0] ⇒

y = c1e
√−λx + c2e

−√−λx where y(0) = 0 and y(L) = 0. Thus 0 = y(0) = c1 + c2 (∗) and

0 = y(L) = c1e
√−λL + c2e

−√−λL (†).

Multiplying (∗) by e
√−λL and subtracting (†) gives c2 e

√−λL − e−
√−λL = 0 ⇒ c2 = 0 and thus c1 = 0 from (∗).

Thus y = 0 for the cases λ = 0 and λ < 0.

(b) y00 + λy = 0 has an auxiliary equation r2 + λ = 0 ⇒ r = ±i√λ ⇒ y = c1 cos
√
λx+ c2 sin

√
λx where

y(0) = 0 and y(L) = 0. Thus, 0 = y(0) = c1 and 0 = y(L) = c2 sin
√
λL since c1 = 0. Since we cannot have a trivial

solution, c2 6= 0 and thus sin
√
λL = 0 ⇒ √

λL = nπ where n is an integer ⇒ λ = n2π2/L2 and

y = c2 sin(nπx/L) where n is an integer.
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18.2 Nonhomogeneous Linear Equations ET 17.2

1. The auxiliary equation is r2 + 3r + 2 = (r + 2)(r + 1) = 0, so the complementary solution is yc(x) = c1e
−2x + c2e

−x.

We try the particular solution yp(x) = Ax2 +Bx+C, so y0p = 2Ax+B and y00p = 2A. Substituting into the differential

equation, we have (2A) + 3(2Ax+B) + 2(Ax2 +Bx+ C) = x2 or 2Ax2 + (6A+ 2B)x+ (2A+ 3B + 2C) = x2.

Comparing coefficients gives 2A = 1, 6A+ 2B = 0, and 2A+ 3B + 2C = 0, so A = 1
2 , B = − 3

2 , and C = 7
4 . Thus the

general solution is y(x) = yc(x) + yp(x) = c1e
−2x + c2e

−x + 1
2
x2 − 3

2
x+ 7

4
.

3. The auxiliary equation is r2 − 2r = r(r − 2) = 0, so the complementary solution is yc(x) = c1 + c2e
2x. Try the particular

solution yp(x) = A cos 4x+B sin 4x, so y0p = −4A sin 4x+ 4B cos 4x and y00p = −16A cos 4x− 16B sin 4x. Substitution

into the differential equation gives (−16A cos 4x− 16B sin 4x)− 2(−4A sin 4x+ 4B cos 4x) = sin 4x ⇒
(−16A− 8B) cos 4x+ (8A− 16B) sin 4x = sin 4x. Then −16A− 8B = 0 and 8A− 16B = 1 ⇒ A = 1

40
and

B = − 1
20

. Thus the general solution is y(x) = yc(x) + yp(x) = c1 + c2e
2x + 1

40
cos 4x− 1

20
sin 4x.

5. The auxiliary equation is r2 − 4r + 5 = 0 with roots r = 2± i, so the complementary solution is

yc(x) = e2x(c1 cosx+ c2 sinx). Try yp (x) = Ae−x, so y0p = −Ae−x and y00p = Ae−x. Substitution gives

Ae−x − 4(−Ae−x) + 5(Ae−x) = e−x ⇒ 10Ae−x = e−x ⇒ A = 1
10 . Thus the general solution is

y(x) = e2x(c1 cosx+ c2 sinx) +
1
10e

−x.

7. The auxiliary equation is r2 + 1 = 0 with roots r = ±i, so the complementary solution is yc(x) = c1 cosx+ c2 sinx.

For y00 + y = ex try yp1(x) = Aex. Then y0p1 = y00p1 = Aex and substitution gives Aex +Aex = ex ⇒ A = 1
2

,

so yp1(x) = 1
2e

x. For y00 + y = x3 try yp2(x) = Ax3 +Bx2 + Cx+D. Then y0p2 = 3Ax
2 + 2Bx+ C and

y00p2 = 6Ax+ 2B. Substituting, we have 6Ax+ 2B +Ax3 +Bx2 +Cx+D = x3, so A = 1, B = 0,

6A+ C = 0 ⇒ C = −6, and 2B +D = 0 ⇒ D = 0. Thus yp2(x) = x3 − 6x and the general solution is

y(x) = yc(x) + yp1(x) + yp2(x) = c1 cosx+ c2 sinx+
1
2e

x + x3 − 6x. But 2 = y(0) = c1 +
1
2 ⇒

c1 =
3
2

and 0 = y0(0) = c2 +
1
2
− 6 ⇒ c2 =

11
2

. Thus the solution to the initial-value problem is

y(x) = 3
2 cosx+

11
2 sinx+

1
2e

x + x3 − 6x.

9. The auxiliary equation is r2 − r = 0 with roots r = 0, r = 1 so the complementary solution is yc(x) = c1 + c2e
x.

Try yp(x) = x(Ax+B)ex so that no term in yp is a solution of the complementary equation. Then

y0p = (Ax
2 + (2A+B)x+B)ex and y00p = (Ax2 + (4A+B)x+ (2A+ 2B))ex. Substitution into the differential equation

gives (Ax2 + (4A+B)x+ (2A+ 2B))ex − (Ax2 + (2A+B)x+B)ex = xex ⇒ (2Ax+ (2A+B))ex = xex ⇒
A = 1

2 , B = −1. Thus yp(x) = 1
2x

2 − x ex and the general solution is y(x) = c1 + c2e
x + 1

2x
2 − x ex. But

2 = y(0) = c1 + c2 and 1 = y0(0) = c2 − 1, so c2 = 2 and c1 = 0. The solution to the initial-value problem is

y(x) = 2ex + 1
2
x2 − x ex = ex 1

2
x2 − x+ 2 .
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11. The auxiliary equation is r2 + 3r + 2 = (r + 1)(r + 2) = 0, so r = −1, r = −2 and yc(x) = c1e
−x + c2e

−2x.

Try yp = A cosx+B sinx ⇒ y0p = −A sinx+B cosx, y00p = −A cosx−B sinx. Substituting into the differential

equation gives (−A cosx−B sinx) + 3(−A sinx+B cosx) + 2(A cosx+B sinx) = cosx or

(A+ 3B) cosx+ (−3A+B) sinx = cosx. Then solving the equations

A+ 3B = 1, −3A+B = 0 gives A = 1
10

, B = 3
10

and the general

solution is y(x) = c1e
−x + c2e

−2x + 1
10
cosx+ 3

10
sinx. The graph

shows yp and several other solutions. Notice that all solutions are

asymptotic to yp as x→∞. Except for yp, all solutions approach either∞
or −∞ as x→−∞.

13. Here yc(x) = c1 cos 3x+ c2 sin 3x. For y00 + 9y = e2x try yp1(x) = Ae2x and for y00 + 9y = x2 sinx

try yp2(x) = (Bx
2 + Cx+D) cosx+ (Ex2 + Fx+G) sinx. Thus a trial solution is

yp(x) = yp1(x) + yp2(x) = Ae2x + (Bx2 + Cx+D) cosx+ (Ex2 + Fx+G) sinx.

15. Here yc(x) = c1 + c2e
−9x. For y00 + 9y0 = 1 try yp1(x) = Ax (since y = A is a solution to the complementary equation)

and for y00 + 9y0 = xe9x try yp2(x) = (Bx+C)e9x.

17. Since yc(x) = e−x(c1 cos 3x+ c2 sin 3x) we try yp(x) = x(Ax2 +Bx+ C)e−x cos 3x+ x(Dx2 +Ex+ F )e−x sin 3x

(so that no term of yp is a solution of the complementary equation).

Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

u01 = − Gy2
a (y1y02 − y2y01)

and u02 =
Gy1

a (y1y02 − y2y01)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

19. (a) Here 4r2 + 1 = 0 ⇒ r = ± 1
2
i and yc(x) = c1 cos

1
2
x + c2 sin

1
2
x . We try a particular solution of the form

yp(x) = A cosx+B sinx ⇒ y0p = −A sinx+B cosx and y00p = −A cosx−B sinx. Then the equation

4y00 + y = cosx becomes 4(−A cosx− B sinx) + (A cosx+ B sinx) = cosx or

−3A cosx− 3B sinx = cosx ⇒ A = − 1
3

, B = 0. Thus, yp(x) = − 1
3
cosx and the general solution is

y(x) = yc(x) + yp(x) = c1 cos
1
2
x + c2 sin

1
2
x − 1

3
cosx.

(b) From (a) we know that yc(x) = c1 cos
x
2 + c2 sin

x
2 . Setting y1 = cos x2 , y2 = sin x

2 , we have

y1y
0
2 − y2y

0
1 =

1
2
cos2 x

2
+ 1

2
sin2 x

2
= 1

2
. Thus u01 = −

cosx sin x
2

4 · 1
2

= − 1
2
cos 2 · x

2
sin x

2
= − 1

2
2 cos2 x

2
− 1 sin x

2

and u02 =
cosx cos x

2

4 · 1
2

= 1
2 cos 2 · x2 cos x

2 =
1
2
1− 2 sin2 x

2
cos x

2 . Then

u1(x) =
1
2 sin

x
2 − cos2 x

2 sin
x
2

dx = − cos x
2 +

2
3 cos

3 x
2 and
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u2(x) =
1
2 cos

x
2 − sin2 x

2 cos
x
2

dx = sin x
2 − 2

3 sin
3 x
2 . Thus

yp(x) = − cos x
2
+ 2

3
cos3 x

2
cos x

2
+ sin x

2
− 2

3
sin3 x

2
sin x

2
= − cos2 x

2
− sin2 x

2
+ 2

3
cos4 x

2
− sin4 x

2

= − cos 2 · x
2
+ 2

3
cos2 x

2
+ sin2 x

2
cos2 x

2
− sin2 x

2
= − cosx+ 2

3
cosx = − 1

3
cosx

and the general solution is y(x) = yc(x) + yp(x) = c1 cos
x
2 + c2 sin

x
2 − 1

3 cosx.

21. (a) r2 − 2r+ 1 = (r− 1)2 = 0 ⇒ r = 1, so the complementary solution is yc(x) = c1e
x + c2xe

x. A particular solution

is of the form yp(x) = Ae2x. Thus 4Ae2x − 4Ae2x +Ae2x = e2x ⇒ Ae2x = e2x ⇒ A = 1 ⇒ yp(x) = e2x.

So a general solution is y(x) = yc(x) + yp(x) = c1e
x + c2xe

x + e2x.

(b) From (a), yc(x) = c1e
x + c2xe

x, so set y1 = ex, y2 = xex. Then, y1y02 − y2y
0
1 = e2x(1 + x)− xe2x = e2x and so

u01 = −xex ⇒ u1 (x) = − xex dx = −(x− 1)ex [by parts] and u02 = ex ⇒ u2(x) = ex dx = ex. Hence

yp (x) = (1− x)e2x + xe2x = e2x and the general solution is y(x) = yc(x) + yp(x) = c1e
x + c2xe

x + e2x.

23. As in Example 5, yc(x) = c1 sinx+ c2 cosx, so set y1 = sinx, y2 = cosx. Then y1y02 − y2y
0
1 = − sin2 x− cos2 x = −1,

so u01 = − sec
2 x cosx

−1 = secx ⇒ u1(x) = secxdx = ln (secx+ tanx) for 0 < x < π
2

,

and u02 =
sec2 x sinx

−1 = − secx tanx ⇒ u2(x) = − secx. Hence

yp(x) = ln(secx+ tanx) · sinx− secx · cosx = sinx ln(secx+ tanx)− 1 and the general solution is

y(x) = c1 sinx+ c2 cosx+ sinx ln(secx+ tanx)− 1.

25. y1 = ex, y2 = e2x and y1y
0
2 − y2y

0
1 = e3x. So u01 =

−e2x
(1 + e−x)e3x

= − e−x

1 + e−x
and

u1(x) = − e−x

1 + e−x
dx = ln(1 + e−x). u02 =

ex

(1 + e−x)e3x
=

ex

e3x + e2x
so

u2(x) =
ex

e3x + e2x
dx = ln

ex + 1

ex
− e−x = ln(1 + e−x) − e−x. Hence

yp(x) = ex ln(1 + e−x) + e2x[ln(1 + e−x) − e−x] and the general solution is

y(x) = [c1 + ln(1 + e−x)]ex + [c2 − e−x + ln(1 + e−x)]e2x.

27. r2 − 2r + 1 = (r − 1)2 = 0 ⇒ r = 1 so yc(x) = c1e
x + c2xe

x. Thus y1 = ex, y2 = xex and

y1y
0
2 − y2y

0
1 = ex(x+ 1)ex − xexex = e2x. So u01 = −xex · ex/(1 + x2)

e2x
= − x

1 + x2
⇒

u1 = − x

1 + x2
dx = − 1

2
ln 1 + x2 , u02 =

ex · ex/(1 + x2)

e2x
=

1

1 + x2
⇒ u2 =

1

1 + x2
dx = tan−1 x and

yp(x) = − 1
2e

x ln(1 + x2) + xex tan−1 x. Hence the general solution is y(x) = ex c1 + c2x− 1
2 ln(1 + x2) + x tan−1 x .
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18.3 Applications of Second-Order Differential Equations ET 17.3

1. By Hooke’s Law k(0.25) = 25 so k = 100 is the spring constant and the differential equation is 5x00 + 100x = 0.

The auxiliary equation is 5r2 + 100 = 0 with roots r = ±2√5 i, so the general solution to the differential equation is

x(t) = c1 cos 2
√
5 t + c2 sin 2

√
5 t . We are given that x(0) = 0.35 ⇒ c1 = 0.35 and x0(0) = 0 ⇒

2
√
5 c2 = 0 ⇒ c2 = 0, so the position of the mass after t seconds is x(t) = 0.35 cos 2

√
5 t .

3. k(0.5) = 6 or k = 12 is the spring constant, so the initial-value problem is 2x00 + 14x0 + 12x = 0, x(0) = 1, x0(0) = 0.

The general solution is x(t) = c1e
−6t + c2e

−t. But 1 = x(0) = c1 + c2 and 0 = x0(0) = −6c1 − c2. Thus the position is

given by x(t) = − 1
5e
−6t + 6

5e
−t.

5. For critical damping we need c2 − 4mk = 0 or m = c2/(4k) = 142/(4 · 12) = 49
12

kg.

7. We are given m = 1, k = 100, x(0) = −0.1 and x0(0) = 0. From (3), the differential equation is d2x

dt2
+ c

dx

dt
+ 100x = 0

with auxiliary equation r2 + cr + 100 = 0.

If c = 10, we have two complex roots r = −5± 5√3 i, so the motion is underdamped and the solution is

x = e−5t c1 cos 5
√
3 t + c2 sin 5

√
3 t . Then −0.1 = x(0) = c1 and 0 = x0(0) = 5

√
3 c2 − 5c1 ⇒ c2 = − 1

10
√
3

,

so x = e−5t −0.1 cos 5√3 t − 1

10
√
3
sin 5

√
3 t .

If c = 15, we again have underdamping since the auxiliary equation has roots r = − 15
2
± 5

√
7

2
i. The general solution is

x = e−15t/2 c1 cos
5
√
7

2 t + c2 sin
5
√
7

2 t , so−0.1 = x (0) = c1 and 0 = x0(0) = 5
√
7

2 c2 − 15
2 c1 ⇒ c2 = − 3

10
√
7

.

Thus x = e−15t/2 −0.1 cos 5
√
7

2 t − 3

10
√
7
sin 5

√
7

2 t .

For c = 20, we have equal roots r1 = r2 = −10, so the oscillation is critically damped and the solution is

x = (c1 + c2t)e
−10t. Then −0.1 = x(0) = c1 and 0 = x0(0) = −10c1 + c2 ⇒ c2 = −1, so x = (−0.1− t)e−10t.

If c = 25 the auxiliary equation has roots r1 = −5, r2 = −20, so we have overdamping and the solution is

x = c1e
−5t + c2e

−20t. Then −0.1 = x(0) = c1 + c2 and 0 = x0(0) = −5c1 − 20c2 ⇒ c1 = − 2
15

and c2 = 1
30

,

so x = − 2
15
e−5t + 1

30
e−20t.

If c = 30 we have roots r = −15± 5√5, so the motion is

overdamped and the solution is x = c1e(
−15+ 5

√
5 )t + c2e(

−15− 5√5 )t.

Then −0.1 = x(0) = c1 + c2 and

0 = x0(0) = −15 + 5√5 c1 + −15− 5√5 c2 ⇒

c1 =
−5− 3

√
5

100
and c2 = −5+ 3

√
5

100
, so

x = −5− 3√5
100

e(−15+5
√
5)t + −5+3

√
5

100
e(−15− 5

√
5)t.
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9. The differential equation is mx00 + kx = F0 cosω0t and ω0 6= ω = k/m. Here the auxiliary equation is mr2 + k = 0

with roots ± k/mi = ±ωi so xc(t) = c1 cosωt+ c2 sinωt. Since ω0 6= ω, try xp(t) = A cosω0t+B sinω0t.

Then we need (m) −ω20 (A cosω0t+B sinω0t) + k(A cosω0t+B sinω0t) = F0 cosω0t or A k −mω20 = F0 and

B k −mω20 = 0. Hence B = 0 and A = F0
k −mω20

=
F0

m(ω2 − ω20)
since ω2 = k

m
. Thus the motion of the mass is given

by x(t) = c1 cosωt+ c2 sinωt+
F0

m(ω2 − ω20)
cosω0t.

11. From Equation 6, x(t) = f(t) + g(t) where f(t) = c1 cosωt+ c2 sinωt and g(t) = F0
m(ω2 − ω20)

cosω0t. Then f

is periodic, with period 2π
ω

, and if ω 6= ω0, g is periodic with period 2π
ω0

. If ω
ω0

is a rational number, then we can say

ω
ω0
= a

b ⇒ a = bω
ω0

where a and b are non-zero integers. Then

x t+ a · 2π
ω

= f t+ a · 2π
ω

+ g t+ a · 2π
ω

= f(t) + g t+ bω
ω0
· 2π
ω

= f(t) + g t+ b · 2π
ω0

= f(t) + g(t) = x(t)

so x(t) is periodic.

13. Here the initial-value problem for the charge is Q00 + 20Q0 + 500Q = 12, Q(0) = Q0(0) = 0. Then

Qc(t) = e−10t(c1 cos 20t+ c2 sin 20t) and try Qp (t) = A ⇒ 500A = 12 or A = 3
125

.

The general solution is Q(t) = e−10t(c1 cos 20t+ c2 sin 20t) +
3
125

. But 0 = Q(0) = c1 +
3
125

and

Q0(t) = I(t) = e−10t[(−10c1 + 20c2) cos 20t+ (−10c2 − 20c1) sin 20t] but 0 = Q0(0) = −10c1 + 20c2. Thus the charge

is Q(t) = − 1
250

e−10t(6 cos 20t+ 3 sin 20t) + 3
125

and the current is I(t) = e−10t 3
5
sin 20t.

15. As in Exercise 13, Qc(t) = e−10t(c1 cos 20t+ c2 sin 20t) but E(t) = 12 sin 10t so try

Qp(t) = A cos 10t + B sin 10t. Substituting into the differential equation gives

(−100A+ 200B + 500A) cos 10t+ (−100B − 200A+ 500B) sin 10t = 12 sin 10t ⇒

400A+ 200B = 0 and 400B − 200A = 12. Thus A = − 3
250

, B = 3
125

and the general solution is

Q(t) = e−10t(c1 cos 20t+ c2 sin 20t)− 3
250

cos 10t+ 3
125

sin 10t. But 0 = Q(0) = c1 − 3
250

so c1 = 3
250

.

Also Q0(t) = 3
25 sin 10t+

6
25 cos 10t+ e−10t[(−10c1 + 20c2) cos 20t+ (−10c2 − 20c1) sin 20t] and

0 = Q0(0) = 6
25
− 10c1 + 20c2 so c2 = − 3

500
. Hence the charge is given by

Q(t) = e−10t 3
250

cos 20t− 3
500

sin 20t − 3
250

cos 10t+ 3
125

sin 10t.

17. x(t) = A cos(ωt+ δ) ⇔ x(t) = A[cosωt cos δ − sinωt sin δ ] ⇔ x(t) = A
c1
A
cosωt+

c2
A
sinωt where

cos δ = c1/A and sin δ = −c2/A ⇔ x(t) = c1 cosωt+ c2 sinωt. [Note that cos2 δ + sin2 δ = 1 ⇒ c21 + c22 = A2.]
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18.4 Series Solutions ET 17.4

1. Let y(x) =
∞

n=0

cnx
n. Then y0(x) =

∞

n=1

ncnx
n−1 and the given equation, y0 − y = 0, becomes

∞

n=1

ncnx
n−1 −

∞

n=0

cnx
n = 0. Replacing n by n+ 1 in the first sum gives

∞

n=0

(n+ 1)cn+1x
n −

∞

n=0

cnx
n = 0, so

∞

n=0

[(n+ 1)cn+1 − cn]x
n = 0. Equating coefficients gives (n+ 1)cn+1 − cn = 0, so the recursion relation is

cn+1 =
cn

n+ 1
, n = 0, 1, 2, . . .. Then c1 = c0, c2 =

1

2
c1 =

c0
2

, c3 =
1

3
c2 =

1

3
· 1
2
c0 =

c0
3!

, c4 =
1

4
c3 =

c0
4!

, and

in general, cn =
c0
n!

. Thus, the solution is y(x) =
∞

n=0

cnx
n =

∞

n=0

c0
n!

xn = c0
∞

n=0

xn

n!
= c0e

x.

3. Assuming y(x) =
∞

n=0

cnx
n, we have y0(x) =

∞

n=1

ncnx
n−1 =

∞

n=0

(n+ 1)cn+1x
n and

−x2y = −
∞

n=0

cnx
n+2 = −

∞

n=2

cn−2xn. Hence, the equation y0 = x2y becomes
∞

n=0

(n+ 1)cn+1x
n −

∞

n=2

cn−2xn = 0

or c1 + 2c2x+
∞

n=2

[(n+ 1)cn+1 − cn−2]xn = 0. Equating coefficients gives c1 = c2 = 0 and cn+1 =
cn−2
n+ 1

for n = 2, 3, . . . . But c1 = 0, so c4 = 0 and c7 = 0 and in general c3n+1 = 0. Similarly c2 = 0 so c3n+2 = 0. Finally

c3 =
c0
3

, c6 =
c3
6
=

c0
6 · 3 =

c0
32 · 2! , c9 =

c6
9
=

c0
9 · 6 · 3 =

c0
33 · 3! , . . ., and c3n =

c0
3n · n! . Thus, the solution

is y (x) =
∞

n=0

cnx
n =

∞

n=0

c3nx
3n =

∞

n=0

c0
3n · n!x

3n = c0
∞

n=0

x3n

3nn!
= c0

∞

n=0

x3/3
n

n!
= c0e

x3/3.

5. Let y (x) =
∞

n=0

cnx
n ⇒ y0 (x) =

∞

n=1

ncnx
n−1 and y00 (x) =

∞

n=0

(n+ 2)(n+ 1)cn+2x
n. The differential equation

becomes
∞

n=0

(n+ 2)(n+ 1)cn+2x
n + x

∞

n=1

ncnx
n−1 +

∞

n=0

cnx
n = 0 or

∞

n=0

[(n+ 2)(n+ 1)cn+2 + ncn + cn]x
n = 0

since
∞

n=1

ncnx
n =

∞

n=0

ncnx
n . Equating coefficients gives (n+ 2)(n+ 1)cn+2 + (n+ 1)cn = 0, thus the

recursion relation is cn+2 =
−(n+ 1)cn
(n+ 2)(n+ 1)

= − cn
n+ 2

, n = 0, 1, 2, . . . . Then the even

coefficients are given by c2 = −c0
2

, c4 = −c2
4
=

c0
2 · 4 , c6 = −c4

6
= − c0

2 · 4 · 6 , and in general,

c2n = (−1)n c0
2 · 4 · · · · · 2n =

(−1)nc0
2n n!

. The odd coefficients are c3 = −c1
3

, c5 = −c3
5
=

c1
3 · 5 , c7 = −c5

7
= − c1

3 · 5 · 7 ,

and in general, c2n+1 = (−1)n c1
3 · 5 · 7 · · · · · (2n+ 1) =

(−2)n n! c1
(2n+ 1)!

. The solution is

y (x) = c0
∞

n=0

(−1)n
2n n!

x2n + c1
∞

n=0

(−2)n n!
(2n+ 1)!

x2n+1.

7. Let y (x) =
∞

n=0

cnx
n ⇒ y0 (x) =

∞

n=1

ncnx
n−1 =

∞

n=0

(n+ 1)cn+1x
n and y00 (x) =

∞

n=0

(n+ 2)(n+ 1)cn+2x
n. Then

(x−1)y00(x) =
∞

n=0

(n+2)(n+1)cn+2x
n+1−

∞

n=0

(n+2)(n+1)cn+2x
n =

∞

n=1

n(n+1)cn+1x
n−

∞

n=0

(n+2)(n+1)cn+2x
n.
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Since
∞

n=1

n(n + 1)cn+1x
n =

∞

n=0

n(n+ 1)cn+1x
n, the differential equation becomes

∞

n=0

n(n+ 1)cn+1x
n −

∞

n=0

(n+ 2)(n+ 1)cn+2x
n +

∞

n=0

(n+ 1)cn+1x
n = 0 ⇒

∞

n=0

[n(n+ 1)cn+1 − (n+ 2)(n+ 1)cn+2 + (n+ 1)cn+1]xn = 0 or
∞

n=0

[(n+ 1)2cn+1 − (n+ 2)(n+ 1)cn+2]xn = 0.

Equating coefficients gives (n+ 1)2cn+1 − (n+ 2)(n+ 1)cn+2 = 0 for n = 0, 1, 2, . . . . Then the recursion relation is

cn+2 =
(n+ 1)2

(n+ 2)(n+ 1)
cn+1 =

n+ 1

n+ 2
cn+1, so given c0 and c1, we have c2 = 1

2c1, c3 = 2
3c2 =

1
3c1, c4 = 3

4c3 =
1
4c1, and

in general cn =
c1
n

, n = 1, 2, 3, . . . . Thus the solution is y(x) = c0 + c1
∞

n=1

xn

n
. Note that the solution can be expressed as

c0 − c1 ln(1− x) for |x| < 1.

9. Let y(x) =
∞

n=0

cnx
n. Then −xy0(x) = −x

∞

n=1

ncnx
n−1 = −

∞

n=1

ncnx
n = −

∞

n=0

ncnx
n,

y00(x) =
∞

n=0

(n + 2)(n + 1)cn+2x
n, and the equation y00 − xy0 − y = 0

becomes
∞

n=0

[(n+ 2)(n+ 1)cn+2 − ncn − cn]x
n = 0. Thus, the recursion relation is

cn+2 =
ncn + cn

(n+ 2)(n+ 1)
=

cn(n+ 1)

(n+ 2)(n+ 1)
=

cn
n+ 2

for n = 0, 1, 2, . . . . One of the given conditions is y(0) = 1. But

y(0) =
∞

n=0

cn(0)
n = c0 + 0 + 0 + · · · = c0, so c0 = 1. Hence, c2 =

c0
2
=
1

2
, c4 =

c2
4
=

1

2 · 4 , c6 =
c4
6
=

1

2 · 4 · 6 , . . . ,

c2n =
1

2nn!
. The other given condition is y0(0) = 0. But y0(0) =

∞

n=1

ncn(0)
n−1 = c1 + 0 + 0 + · · · = c1, so c1 = 0.

By the recursion relation, c3 =
c1
3
= 0, c5 = 0, . . . , c2n+1 = 0 for n = 0, 1, 2, . . . . Thus, the solution to the initial-value

problem is y(x) =
∞

n=0

cnx
n =

∞

n=0

c2nx
2n =

∞

n=0

x2n

2nn!
=

∞

n=0

(x2/2)n

n!
= ex

2/2.

11. Assuming that y(x) =
∞

n=0

cnx
n, we have xy = x

∞

n=0

cnx
n =

∞

n=0

cnx
n+1, x2y0 = x2

∞

n=1

ncnx
n−1 =

∞

n=0

ncnx
n+1,

y00(x) =
∞

n=2

n(n− 1)cnxn−2 =
∞

n=−1
(n+ 3)(n+ 2)cn+3x

n+1 [replace n with n+ 3]

= 2c2 +
∞

n=0

(n+ 3)(n+ 2)cn+3x
n+1,

and the equation y00 + x2y0 + xy = 0 becomes 2c2 +
∞

n=0

[(n+ 3)(n+ 2)cn+3 + ncn + cn]x
n+1 = 0. So c2 = 0 and the

recursion relation is cn+3 =
−ncn − cn

(n+ 3)(n+ 2)
= − (n+ 1)cn

(n+ 3)(n+ 2)
, n = 0, 1, 2, . . . . But c0 = y(0) = 0 = c2 and by the

recursion relation, c3n = c3n+2 = 0 for n = 0, 1, 2, . . . . Also, c1 = y0(0) = 1, so c4 = − 2c1
4 · 3 = −

2

4 · 3 ,

c7 = − 5c4
7 · 6 = (−1)

2 2 · 5
7 · 6 · 4 · 3 = (−1)

2 2
252

7!
, . . . , c3n+1 = (−1)n 2

252 · · · · · (3n− 1)2
(3n+ 1)!

. Thus, the solution is

y(x) =
∞

n=0

cnx
n = x+

∞

n=1

(−1)n 2
252 · · · · · (3n− 1)2x3n+1

(3n+ 1)!
.
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1. (a) ay00 + by0 + cy = 0 where a, b, and c are constants.

(b) ar2 + br + c = 0

(c) If the auxiliary equation has two distinct real roots r1 and r2, the solution is y = c1e
r1x + c2e

r2x. If the roots are real and

equal, the solution is y = c1e
rx + c2xe

rx where r is the common root. If the roots are complex, we can write r1 = α+ iβ

and r2 = α− iβ, and the solution is y = eαx(c1 cosβx+ c2 sinβx).

2. (a) An initial-value problem consists of finding a solution y of a second-order differential equation that also satisfies given

conditions y(x0) = y0 and y0(x0) = y1, where y0 and y1 are constants.

(b) A boundary-value problem consists of finding a solution y of a second-order differential equation that also satisfies given

boundary conditions y(x0) = y0 and y(x1) = y1.

3. (a) ay00 + by0 + cy = G(x) where a, b, and c are constants and G is a continuous function.

(b) The complementary equation is the related homogeneous equation ay00 + by0 + cy = 0. If we find the general solution yc

of the complementary equation and yp is any particular solution of the original differential equation, then the general

solution of the original differential equation is y(x) = yp(x) + yc(x).

(c) See Examples 1–5 and the associated discussion in Section 18.2 [ ET 17.2].

(d) See the discussion on pages 1158–1160 [ ET 1122–1124].

4. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric

circuit; see the discussion in Section 18.3 [ ET 17.3].

5. See Example 1 and the preceding discussion in Section 18.4 [ ET 17.4].

.

1. True. See Theorem 18.1.3 [ ET 17.1.3].

3. True. coshx and sinhx are linearly independent solutions of this linear homogeneous equation.

1. The auxiliary equation is r2 − 2r − 15 = 0 ⇒ (r − 5)(r + 3) = 0 ⇒ r = 5, r = −3. Then the general solution

is y = c1e
5x + c2e

−3x.

3. The auxiliary equation is r2 + 3 = 0 ⇒ r = ±√3 i. Then the general solution is y = c1 cos
√
3x + c2 sin

√
3x .

5. r2 − 4r + 5 = 0 ⇒ r = 2± i, so yc (x) = e2x(c1 cosx+ c2 sinx). Try yp (x) = Ae2x ⇒ y0p = 2Ae
2x

and y00p = 4Ae2x. Substitution into the differential equation gives 4Ae2x − 8Ae2x + 5Ae2x = e2x ⇒ A = 1 and

the general solution is y(x) = e2x(c1 cosx+ c2 sinx) + e2x.
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7. r2 − 2r + 1 = 0 ⇒ r = 1 and yc(x) = c1e
x + c2xe

x. Try yp(x) = (Ax+B) cosx+ (Cx+D) sinx ⇒
y0p = (C −Ax−B) sinx+ (A+Cx+D) cosx and y00p = (2C −B −Ax) cosx+ (−2A−D −Cx) sinx. Substitution

gives (−2Cx+ 2C − 2A− 2D) cosx+ (2Ax− 2A+ 2B − 2C) sinx = x cosx ⇒ A = 0, B = C = D = − 1
2

.

The general solution is y(x) = c1e
x + c2xe

x − 1
2
cosx− 1

2
(x+ 1) sinx.

9. r2 − r − 6 = 0 ⇒ r = −2, r = 3 and yc(x) = c1e
−2x + c2e

3x. For y00 − y0 − 6y = 1, try yp1(x) = A. Then

y0p1(x) = y00p1 (x) = 0 and substitution into the differential equation gives A = − 1
6

. For y00 − y0 − 6y = e−2x try

yp2(x) = Bxe−2x [since y = Be−2x satisfies the complementary equation]. Then y0p2 = (B − 2Bx)e−2x and

y00p2 = (4Bx− 4B)e−2x, and substitution gives −5Be−2x = e−2x ⇒ B = − 1
5 . The general solution then is

y(x) = c1e
−2x + c2e

3x + yp1(x) + yp2(x) = c1e
−2x + c2e

3x − 1
6
− 1

5
xe−2x.

11. The auxiliary equation is r2 + 6r = 0 and the general solution is y(x) = c1 + c2e
−6x = k1 + k2e

−6(x−1). But

3 = y(1) = k1 + k2 and 12 = y0(1) = −6k2. Thus k2 = −2, k1 = 5 and the solution is y(x) = 5− 2e−6(x−1).

13. The auxiliary equation is r2 − 5r + 4 = 0 and the general solution is y(x) = c1e
x + c2e

4x. But 0 = y(0) = c1 + c2

and 1 = y0(0) = c1 + 4c2, so the solution is y(x) = 1
3
(e4x − ex).

15. Let y(x) =
∞

n=0

cnx
n. Then y00 (x) =

∞

n=0

n(n− 1)cnxn−2 =
∞

n=0

(n+ 2)(n+ 1)cn+2x
n and the differential equation

becomes
∞

n=0

[(n+ 2)(n+ 1)cn+2 + (n+ 1)cn]x
n = 0. Thus the recursion relation is cn+2 = −cn/(n+ 2)

for n = 0, 1, 2, . . . . But c0 = y(0) = 0, so c2n = 0 for n = 0, 1, 2, . . . . Also c1 = y0(0) = 1, so c3 = −1
3

, c5 =
(−1)2
3 · 5 ,

c7 =
(−1)3
3 · 5 · 7 =

(−1)3233!
7!

, . . . , c2n+1 =
(−1)n 2n n!
(2n+ 1)!

for n = 0, 1, 2, . . . . Thus the solution to the initial-value problem

is y(x) =
∞

n=0

cnx
n =

∞

n=0

(−1)n 2n n!
(2n+ 1)!

x2n+1.

17. Here the initial-value problem is 2Q00 + 40Q0 + 400Q = 12, Q (0) = 0.01, Q0(0) = 0. Then

Qc(t) = e−10t(c1 cos 10t + c2 sin 10t) and we try Qp(t) = A. Thus the general solution is

Q(t) = e−10t(c1 cos 10t+ c2 sin 10t) +
3
100

. But 0.01 = Q0(0) = c1 + 0.03 and 0 = Q00(0) = −10c1 + 10c2,

so c1 = −0.02 = c2. Hence the charge is given by Q(t) = −0.02e−10t(cos 10t+ sin 10t) + 0.03.

19. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density ρ as follows:

ρ =
mass of earth

volume of earth
=

M
4
3
πR3

. If Vr is the volume of the portion of the earth which lies within a distance r of the

center, then Vr = 4
3
πr3 and Mr = ρVr =

Mr3

R3
. Thus Fr = −GMrm

r2
= −GMm

R3
r.
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(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,

m
d2y

dt2
= Fy = −GMm

R3
y, so y00(t) = −k2y (t) where k2 = GM

R3
. At the surface, −mg = FR = −GMm

R2
, so

g =
GM

R2
. Therefore k2 = g

R
.

(c) The differential equation y00 + k2y = 0 has auxiliary equation r2 + k2 = 0. (This is the r of Section 18.1 [ ET 17.1],

not the r measuring distance from the earth’s center.) The roots of the auxiliary equation are±ik, so by (11) in

Section 18.1 [ ET 17.1], the general solution of our differential equation for t is y(t) = c1 cos kt+ c2 sin kt. It follows that

y0(t) = −c1k sinkt+ c2k cos kt. Now y (0) = R and y0(0) = 0, so c1 = R and c2k = 0. Thus y(t) = R cos kt and

y0(t) = −kR sin kt. This is simple harmonic motion (see Section 18.3 [ ET 17.3]) with amplitude R, frequency k, and

phase angle 0. The period is T = 2π/k. R ≈ 3960 mi = 3960 · 5280 ft and g = 32 ft/s2, so

k = g/R ≈ 1.24× 10−3 s−1 and T = 2π/k ≈ 5079 s ≈ 85 min.

(d) y(t) = 0 ⇔ cos kt = 0 ⇔ kt = π
2
+ πn for some integer n ⇒ y0(t) = −kR sin π

2
+ πn = ±kR. Thus the

particle passes through the center of the earth with speed kR ≈ 4.899 mi/s ≈ 17,600 mi/h.
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