
The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

© The Assembly-Programming-Journal, Vol.2, No.1. (2004)
http://www.Assembly-Journal.com

Kernel Mode Driver Tutorial for MASM32 Programmers
Part 4 – The I/O Subsystem

Author: Four-F

Abstract

 Source code: KmdKit\examples\simple\VirtToPhys

 Contents

4.1 I/O Manager... 2
4.2 The control program for the VirtToPhys driver... 3

4.2.1 Control program source code ... 3
4.2.2 Device object .. 7
4.2.3 Driver object ... 9
4.2.4 Symbolic link object ... 10
4.2.5 File object... 12
4.2.6 Communicating with the device .. 16
4.2.7 I/O Control Codes ... 17
4.2.8 Data exchange ... 19
4.2.9 Cleanup ... 21

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

4.1 I/O Manager

Unlike the user-mode, where we can call functions from some dll directly, simply
using its address, in the kernel-mode such scenario would be extremely
dangerous in the view of the system stability. Therefore, the system provides the
intermediary to communicate with the kernel-mode. Such intermediary is an I/O
Manager, which is one of the I/O subsystem's component. The I/O Manager
connects applications and system components with devices, and defines the
infrastructure that supports device drivers.

Very simplified scheme of how the I/O Manager interacts with the user-mode
applications and the device drivers is given on figure 4-1.

Figure 4-1. Simplified I/O subsystem architecture

From the above figure follows that absolutely all calls from the user-mode
applications to the devices and, therefore, to the device drivers are under control
of the I/O Manager.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

The user-mode code is forced to order the I/O operation to the device. Only and
exactly the device. The driver must create some device (or devices) to control. In
our case this device is virtual one. Of course, creating the device doesn't mean
some new real device will be created. It just means some new object will be
created in the memory (namely device object) representing a physical or logical
device on the system and describing its characteristics.

Creating the device the driver tells the I/O Manager: "Here is the device for me to
control. If you will receive some I/O request to this device, send it to me, and I'll
take care about the rest." The driver only knows how to handle I/O requests to its
device(s). The only responsibility of the I/O Manager is to create and direct the
I/O request to the appropriate device driver. And the user-mode code does not
(and should not) know at all, which driver services a particular device(s).

4.2 The control program for the VirtToPhys driver

4.2.1 Control program source code

Strictly speaking this code combines the service control program responsible for
registration and starting the driver, and the client program to communicate with
the device.

;::
:::::::::::::::::::::::::::::::::
;
; VirtToPhys.asm - Driver Control Program for VirtToPhys driver
;
;::
:::::::::::::::::::::::::::::::::

.386
.model flat, stdcall
option casemap:none

;::
:::::::::::::::::::::::::::::::::
; I N C L U D E F I L E S
;::
:::::::::::::::::::::::::::::::::

include \masm32\include\windows.inc

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\advapi32.inc

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\advapi32.lib

include \masm32\include\winioctl.inc

include \masm32\Macros\Strings.mac

include common.inc

;::
:::::::::::::::::::::::::::::::::

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

; C O D E
;::
:::::::::::::::::::::::::::::::::

.code

;::
:::::::::::::::::::::::::::::::::
; BigNumToString
;::
:::::::::::::::::::::::::::::::::

BigNumToString proc uNum:UINT, pszBuf:LPSTR

; This function accepts a number and converts it to a
; string, inserting commas where appropriate.

local acNum[32]:CHAR
local nf:NUMBERFMT

 invoke wsprintf, addr acNum, $CTA0("%u"), uNum

 and nf.NumDigits, 0
 and nf.LeadingZero, FALSE
 mov nf.Grouping, 3
 mov nf.lpDecimalSep, $CTA0(".")
 mov nf.lpThousandSep, $CTA0(" ")
 and nf.NegativeOrder, 0
 invoke GetNumberFormat, LOCALE_USER_DEFAULT, 0, addr acNum,
addr nf, pszBuf, 32

 ret

BigNumToString endp

;::
:::::::::::::::::::::::::::::::::
; start
;::
:::::::::::::::::::::::::::::::::

start proc uses esi edi

local hSCManager:HANDLE
local hService:HANDLE
local acModulePath[MAX_PATH]:CHAR
local _ss:SERVICE_STATUS
local hDevice:HANDLE

local adwInBuffer[NUM_DATA_ENTRY]:DWORD
local adwOutBuffer[NUM_DATA_ENTRY]:DWORD
local dwBytesReturned:DWORD

local acBuffer[256+64]:CHAR
local acThis[64]:CHAR
local acKernel[64]:CHAR
local acUser[64]:CHAR
local acAdvapi[64]:CHAR

local acNumber[32]:CHAR

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke OpenSCManager, NULL, NULL, SC_MANAGER_ALL_ACCESS
 .if eax != NULL
 mov hSCManager, eax

 push eax
 invoke GetFullPathName, $CTA0("VirtToPhys.sys"), \
 sizeof acModulePath, addr
acModulePath, esp
 pop eax

 invoke CreateService, hSCManager, $CTA0("VirtToPhys"), \
 $CTA0("Virtual To Physical Address
Converter"), \
 SERVICE_START + SERVICE_STOP +
DELETE, SERVICE_KERNEL_DRIVER, \
 SERVICE_DEMAND_START,
SERVICE_ERROR_IGNORE, addr acModulePath, \
 NULL, NULL, NULL, NULL, NULL

 .if eax != NULL
 mov hService, eax

 ; Driver's DriverEntry procedure will be called
 invoke StartService, hService, 0, NULL
 .if eax != 0

 ; Driver will receive I/O request packet (IRP) of
type IRP_MJ_CREATE
 invoke CreateFile, $CTA0("\\\\.\\slVirtToPhys"),
GENERIC_READ + GENERIC_WRITE, \
 0, NULL, OPEN_EXISTING, 0, NULL

 .if eax != INVALID_HANDLE_VALUE
 mov hDevice, eax

 lea esi, adwInBuffer
 assume esi:ptr DWORD
 invoke GetModuleHandle, NULL
 mov [esi][0*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("kernel32.dll",
szKernel32)
 mov [esi][1*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("user32.dll",
szUser32)
 mov [esi][2*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("advapi32.dll",
szAdvapi32)
 mov [esi][3*(sizeof DWORD)], eax

 lea edi, adwOutBuffer
 assume edi:ptr DWORD
 ; Driver will receive IRP of type
IRP_MJ_DEVICE_CONTROL
 invoke DeviceIoControl, hDevice,
IOCTL_GET_PHYS_ADDRESS, \
 esi, sizeof
adwInBuffer, \
 edi, sizeof
adwOutBuffer, \
 addr dwBytesReturned,
NULL

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 (eax != 0) && (dwBytesReturned != 0) .if

 , [esi][0*(sizeof invoke GetModuleFileName
DWORD)], \
 addr
acModulePath, sizeof acModulePath

 lea ecx, acModulePath[eax-5]
 .repeat
 dec ecx
 mov al, [ecx]
 .until al == '\'
 inc ecx
 push ecx

 CTA0 "%s \t%08Xh\t%08Xh (%s)\n",
szFmtMod

 invoke BigNumToString, [edi][0*(sizeof
DWORD)], addr acNumber
 pop ecx
 invoke wsprintf, addr acThis, addr
szFmtMod, ecx, \
 [esi][0*(sizeof DWORD)], \
 [edi][0*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][1*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acKernel, addr
szFmtMod, addr szKernel32, \
 [esi][1*(sizeof DWORD)], \
 [edi][1*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][2*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acUser, addr
szFmtMod, addr szUser32, \
 [esi][2*(sizeof DWORD)], \
 [edi][2*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][3*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acAdvapi, addr
szFmtMod, addr szAdvapi32, \
 [esi][3*(sizeof DWORD)], \
 [edi][3*(sizeof DWORD)],
addr acNumber

 invoke wsprintf, addr acBuffer, \

$CTA0("Module:\t\tVirtual:\t\tPhysical:\n\n%s\n%s%s%s"), \
 addr acThis, addr
acKernel, addr acUser, addr acAdvapi

 assume esi:nothing
 assume edi:nothing

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke MessageBox, NULL, addr acBuffer,
$CTA0("Modules Base Address"), \
 MB_OK +
MB_ICONINFORMATION
 .else
 invoke MessageBox, NULL, $CTA0("Can't send
control code to device."), NULL, \
 MB_OK + MB_ICONSTOP
 .endif
 ; Driver will receive IRP of type IRP_MJ_CLOSE
 invoke CloseHandle, hDevice
 .else
 invoke MessageBox, NULL, $CTA0("Device is not
present."), NULL, MB_ICONSTOP
 .endif
 ; DriverUnload proc in our driver will be called
 invoke ControlService, hService,
SERVICE_CONTROL_STOP, addr _ss
 .else
 invoke MessageBox, NULL, $CTA0("Can't start
driver."), NULL, MB_OK + MB_ICONSTOP
 .endif
 invoke DeleteService, hService
 invoke CloseServiceHandle, hService
 .else
 invoke MessageBox, NULL, $CTA0("Can't register
driver."), NULL, MB_OK + MB_ICONSTOP
 .endif
 invoke CloseServiceHandle, hSCManager
 .else
 invoke MessageBox, NULL, $CTA0("Can't connect to Service
Control Manager."), NULL, \
 MB_OK + MB_ICONSTOP
 .endif

 invoke ExitProcess, 0

start endp

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

end start

Not considering the code that prepares the input data sending to the device a
the code responsible for formatting an

nd

4.2.2 ject

d displaying the output from the device,
there is a few new stuff here - only three calls: CreateFile, DeviceIoControl and
CloseHandle. All these functions accept the device (I repeat, not the driver)
andle as an argument. h

Device ob

After loading, VirtToPhys driver creates the named device "devVirtToPhys" (The
"dev" prefix is not necessary, but I have added it with purpose - I'll tell you why
below).

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

nt responsible for creating, deleting, protecting, and
tracking objects. By convention, device objects are placed in the \Device

sible by the applications using the Win32 API.

The device name is placed in the Object Manager namespace. Object Manager
is the system compone

directory, inacces

To traverse the namespace maintained by the Object Manager use my Windows
Object Explorer (WinObjEx) (http://www.wasm.ru/) or Object Viewer by
Mark Russinovich (http://www.sysinternals.com/).

To view objects created by VirtToPhys on your computer, simply run
VirtToPhys.exe, but do not close a dialog window.

Figure 4-2. devVirtToPhys device object in the object manager namespace

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Figure 4-3. devVirtToPhys device object properties

4.2.3 Driver object

VirtToPhys driver object (I did not use any prefixes in the name) is placed in the
\Driver directory.

Figure 4-4. VirtToPhys driver object in the object manager namespace

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

4.2.4 Symbolic link object

Internal device names can't be used in Win32 applications (all directories, except
for "\BaseNamedObjects" and "\??", are invisible to user programs) - instead, the
device name must appear in a special directory in the Object Manager's
namespace, "\??". This directory contains a symbolic links to the real, internal
device names. Device drivers are responsible for creating links in this directory so
their devices will be accessible to Win32 applications.

So, our driver needs to make it possible for user-mode code to open the device
object, thus it have to create a symbolic link in the "\??" directory which points to
the device object in the "\Device" directory. Thereafter, when the caller wants to
have the device handle, the I/O Manager can find the device object directly.

By the way, you can examine or even change these links from user-mode with the
Win32 QueryDosDevice and DefineDosDevice functions.

Having opened "\??" directory you will see, that it teems with symbolic links. Prior
to Windows NT 4, this directory was named \DosDevices; it was renamed to "\??"
for performance reasons - that name places first in the alphabetical order.

For backward compatibility in the Object Manager's namespace root directory
there is the "\DosDevices" link to the "\??" directory.

The driver VirtToPhys creates the symbolic link "slVirtToPhys" to the device
"devVirtToPhys" in the "\??" directory, which value is the string
"\Device\devVirtToPhys". Here I've used the prefix "dev".

Figure 4-5. slVirtToPhys symbolic link object in the object manager namespace

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Figure 4-6. slVirtToPhys symbolic link object properties

I've added the prefixes only to distinguish the different kinds of objects. The point
is to show it's not necessary for the device name and the symbolic link name to
be (though, usually it's the case) coincided with the name of the driver. The
important thing here is that the symbolic link name should specify the valid device
name. And one more important point - there can not be two objects with the
same name in a single object directory, just as there are no two files with
identical name in the same file system directory.

Thus, upon exit from the StartService function we have three new objects: the
driver "\Driver\VirtToPhys", the device "\Device\devVirtToPhys" and the symbolic
link to the device " \??\slVirtToPhys".

If you still remember, in the second part of this doc, I have promised to tell what
"\??", preceding the driver's file path like "\??\C:\masm32\..." is. So, "\??\C:" is a
symbolic link to the internal device named "\Device\HarddiskVolume1", or the first
volume on the first hard drive in the system.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

4.2.5 File object

Let's get back to our source code. After the driver is started, we want to call it
somehow. To accomplish this, we only need to open a file handle to the driver
calling CreateFile:

The description of the CreateFile takes a a lot of space in the documentation. But
only the small piece of that info is concerned about the device drivers.

CreateFile proto stdcall lpFileName:LPCSTR,
dwDesiredAccess:DWORD, \
 dwShareMode:DWORD,
lpSecurityAttributes:LPVOID, \
 dwCreationDistribution:DWORD,
dwFlagsAndAttributes:DWORD, \
 hTemplateFile:HANDLE

Despite its name, this function creates or opens existing (many Create* functions
work this way) object, but not just a file. Microsoft definitely should name it
CreateObject. The device can appear as an object.

Parameter Description

lpFileName Points to a null-terminated string that specifies the
name of the device to open. The symbolic link name
pointing to the device object, to be exact.

Specifies the type of access to the device.

We will need two values:

GENERIC_READ Specifies read access.
Data can be read from
the device;

GENERIC_WRITE Specifies write access.
Data can be written to
the device.

dwDesiredAccess

These flags can be combined together.

Set of bit flags that specifies how the device can be
shared.

Three values can be useful to us:

dwShareMode

0 The device cannot be
shared. Subsequent
open operations on the
device will fail, until the
handle is closed. Though

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

the documentation
stands this, I could not
achieve it using 0.

If you need to share the device, use the following
values:

FILE_SHARE_READ Subsequent open
operations on the device
will succeed only if read
access is requested;

FILE_SHARE_WRITE Subsequent open
operations on the device
will succeed only if write
access is requested.

lpSecurityAttributes Pointer to a SECURITY_ATTRIBUTES.

Since any special protection is not necessary for us
and we don't need returned handle to be inherited by
child processes we simply specify NULL here.

dwCreationDistribution Specifies the action to take on files that exist, and
which action to take when files do not exist.

For devices, this parameter must be always
OPEN_EXISTING.

dwFlagsAndAttributes Specifies the attributes and flags.

This parameter will be always equal 0.

hTemplateFile Specifies a handle to a template file.

For devices, this parameter must be always NULL.

If CreateFile successfully creates or opens the specified device, a handle to a
device is returned; otherwise, INVALID_HANDLE_VALUE is returned.

Most Windows functions that return a handle return NULL when they are
unsuccessful. CreateFile, however, returns INVALID_HANDLE_ VALUE defined as
-1.

We call CreateFile as follows.

 invoke CreateFile, $CTA0("\\\\.\\slVirtToPhys"),
GENERIC_READ + GENERIC_WRITE, \
 0, NULL, OPEN_EXISTING, 0, NULL

I hope everything is clear with the last five parameters. The second parameter is
a combination of flags GENERIC_READ + GENERIC_WRITE, since we intend both
to send the data to the device and to receive the results of its work.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Let's examine the first parameter. It is a pointer to the symbolic link name, in the
form "\\.\slVirtToPhys". The "\\.\" is a Win32-defined alias for the local computer.
The CreateFile is the wrap around the other function NtCreateFile (realized in
\%SystemRoot%\System32\ntdll.dll), which in turn accesses the corresponding
system service (don't confuse to Win32 service processes).

System service is an entry point into the kernel from environment
subsystems. A system service dispatch is triggered as a result of executing
an int 2Eh (Windows NT/W2K) or sysenter (Windows XP/2003) instruction on
x86 processors. Executing these instruction results in a trap that causes the
executing thread to transition into kernel-mode and enter the system service
dispatcher.

NtCreateFile substitutes an alias for the local computer "\\.\" with the "\??" (thus
"\\.\slVirtToPhys" turns to "\?? \slVirtToPhys") and calls the kernel's
ObOpenObjectByName function. Through the symbolic link
ObOpenObjectByName finds the "\Device\devVirtToPhys" object and returns
the pointer to it (thus the symbolic link visible from the user-mode code is used
by the Object Manager for compilation in the internal device name). Using this
pointer NtCreateFile creates the new file object representing the device and
returns its handle.

The operating system abstracts all I/O requests as operations on a virtual
file, hiding the fact that the target of an I/O operation might not be a file-
structured device. The driver converts the requests from requests made to a
virtual file to hardware-specific requests. This abstraction generalizes an
application's interface to devices. All data that is read or written is regarded
as a simple stream of bytes directed to these virtual files.

Before CreateFile returns, the I/O Manager creates IRP the type of
IRP_MJ_CREATE and sends it to the driver for processing. The driver-defined
routine that is responsible for processing this type of IRP will execute in the same
thread context as the initiator of the I/O requests (the caller of the CreateFile) at
IRQL = PASSIVE_LEVEL. If that driver-defined routine successfully returns, the
Object Manager creates a handle for the file object in the process's handle table
and the handle propagates back through the calling chain, finally reaching the
application as a return parameter from CreateFile.

The newly created file object is the executive object and does not get into the
Object Manager namespace. You can use Process Explorer utility by Mark
Russinovich (http://www.sysinternals.com) to explore such objects.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Figure 4-7. File object

Figure 4-8. File object properties

Let me summarize. So, "\\.\slVirtToPhys" turns to the symbolic link
"\??\slVirtToPhys" and finally used to find the appropriate device
"\Device\devVirtToPhys". From the device object DEVICE_OBJECT is fetched out
which driver is responsible for managing this device. Then I/O Manager sends
IRP_MJ_CREATE request directly to this driver. This way the driver knows that
some code tries to get the access to its device. If the driver wants to grant the
access it returns success. Now the Object Manager creates a handle for the virtual
file object representing the device and returns it to the user-mode code.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Handles and symbolic links serve as indirect pointers to system resources;
this indirection keeps application programs from fiddling directly with system
data structures.

4.2.6 Communicating with the device

 .if eax != INVALID_HANDLE_VALUE
 mov hDevice, eax

If CreateFile returned valid device handle we save it in hDevice variable. Now we
are able to communicate with the device calling ReadFile, WriteFile, and
DeviceIoControl. The DeviceIoControl is the universal function to
communicate with the devices. Here is its prototype:

DeviceIoControl proto stdcall hDevice:HANDLE,
dwIoControlCode:DWORD, \
 lpInBuffer:LPVOID,
nInBufferSize:DWORD, \
 lpOutBuffer:LPVOID,
nOutBufferSize:DWORD, \
 lpBytesReturned:LPVOID,
lpOverlapped:LPVOID

The DeviceIoControl accepts even more parameters than CreateFile, but it's
simple enough.

Parameter Description

hDevice Handle to the device;

dwIoControlCode -Control code that indicates what control operation to
perform;

We'll discuss how to define these codes a bit further on.

lpInBuffer Pointer to a buffer that contains the data required to perform
the operation. This parameter can be NULL if the
dwIoControlCode parameter specifies an operation that does
not require input data;

nInBufferSize Specifies the size, in bytes, of the buffer pointed to by
lpInBuffer;

lpOutBuffer Pointer to a buffer that receives the operation's output data.
This parameter can be NULL if the dwIoControlCode
parameter specifies an operation that does not produce
output data;

nOutBufferSize Specifies the size, in bytes, of the buffer pointed to by
lpOutBuffer;

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

lpBytesReturned Pointer to a variable that receives the size, in bytes, of the
data stored into the buffer pointed to by lpOutBuffer;

lpOverlapped Pointer to an OVERLAPPED structure.

This structure is required to help control an asynchronous
operation. As we only want to call our driver synchronously
(the DeviceIoControl will not return until the appropriate
driver's routine will complete), we pass NULL.

4.2.7 I/O Control Codes

The device driver can be considered as a package of kernel-mode functions. I/O
Control Code defines which function will be called. The dwIoControlCode argument
to DeviceIoControl is used for this purpose. It indicates the control operation we
want to perform and how it should be performed.

The control code is a 32-bit numeric constant that can be defined using the
CTL_CODE macro that's part of both the winioctl.inc and the ntddk.inc include
files.

Figure 4-9. I/O Control Code Layout

Bit field Description

DeviceType The device type (16 bits) indicates the type of the device that
implements this control operation.

Values in the range 0 - 7FFFh are reserved by Microsoft. Values in
the range 8000h - 0FFFFh are available for developers of new kinds
of kernel-mode drivers.

In \include\w2k\ntddk.inc you can find a set of FILE_DEVICE_XXX
symbolic constants which values are from the range reserved by
Microsoft. We will use FILE_DEVICE_UNKNOWN. However you can
define another FILE_DEVICE_XXX.

The access code (2 bits) indicates the access rights an application
needs to its device handle to issue this control operation.

As this field is only two bits long, we have four possibilities here:

FILE_ANY_ACCESS (0) Maximum access rights. The
driver will carry out the
requested operation for any
caller that has a handle for
its device.

Access

FILE_READ_ACCESS (1) Read access rights. With this
required access, the device

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

driver transfers data from
the device to memory
buffer.

FILE_WRITE_ACCESS (2) Write access rights. With
this required access, the
device driver transfers data
from memory buffer to its
device.

FILE_READ_ACCESS or
FILE_WRITE_ACCESS (3)

Both read and write access
rights. With this required
access, the device driver
transfers data between
memory buffer and the
device.

Function The function code (12 bits) indicates precisely which control
operation this code describes.

It can take any value in the range 800h - 0FFFh for private I/O
control codes. Values in the range 0 - 7FFh are reserved by
Microsoft for public I/O control codes.

The buffering method (2 bits) indicates how the I/O Manager will
handle the input and output buffers supplied by the application.

This field is two bits long, so four values can be used as one of the
following system-defined constants:

METHOD_BUFFERED (0) buffered I/O;

METHOD_IN_DIRECT (1)

METHOD_OUT_DIRECT (2)

direct I/O;

Method

METHOD_NEITHER (3) neither I/O.

We'll talk about buffer management in more details later. Now the important thing
is the buffered method is most safe, since the system takes care about buffers
handling, resulting in an overhead of the memory copy operation. But drivers
commonly use buffered I/O when callers transfer requests smaller than one page
(4 KB), because the copy operation of small buffers matches the overhead of the
memory lock performed by direct I/O. And we use buffered method in VirtToPhys
driver.

You can form I/O control code manually, but it's much more convenient to use a
macro CTL_CODE, that offers a mechanism to generate IOCTL values. Here it is:

CTL_CODE MACRO DeviceType:=<0>, Function:=<0>, Method:=<0>,
Access:=<0>
 EXITM %(((DeviceType) SHL 16) OR ((Access) SHL 14) OR
((Function) SHL 2) OR (Method))
ENDM

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

As I already have said the CTL_CODE macro is defined both in the winioctl.inc,
which included in the source code of the service control program, and in the
ntddk.inc, included in the driver's source code.

Since we use NUM_DATA_ENTRY, DATA_SIZE constants and
IOCTL_GET_PHYS_ADDRESS I/O control code both in the service control program
and in the driver, they placed in separate include file common.inc. Thus all
changes in this file will be mirrored in the both source codes.

NUM_DATA_ENTRY equ 4
DATA_SIZE equ (sizeof DWORD) * NUM_DATA_ENTRY
IOCTL_GET_PHYS_ADDRESS equ CTL_CODE(FILE_DEVICE_UNKNOWN, 800h,
METHOD_BUFFERED, FILE_READ_ACCESS + FILE_WRITE_ACCESS)

4.2.8 Data exchange

Now let's return to the driver's source code.

 lea esi, adwInBuffer
 assume esi:ptr DWORD
 invoke GetModuleHandle, NULL
 mov [esi][0*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("kernel32.dll",
szKernel32)
 mov [esi][1*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("user32.dll",
szUser32)
 mov [esi][2*(sizeof DWORD)], eax
 invoke GetModuleHandle, $CTA0("advapi32.dll",
szAdvapi32)
 mov [esi][3*(sizeof DWORD)], eax

Here we fill adwInBuffer buffer with the virtual addresses to be converted.

 lea edi, adwOutBuffer
 assume edi:ptr DWORD
 invoke DeviceIoControl, hDevice,
IOCTL_GET_PHYS_ADDRESS, \
 esi, sizeof
adwInBuffer, \
 edi, sizeof
adwOutBuffer, \
 addr dwBytesReturned,
NULL

And by calling DeviceIoControl we pass the buffer to the driver, that has to
convert each virtual address to physical one.

 .if (eax != 0) && (dwBytesReturned != 0)

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke GetModuleFileName, [esi][0*(sizeof
DWORD)], \
 addr
acModulePath, sizeof acModulePath

 lea ecx, acModulePath[eax-5]
 .repeat
 dec ecx
 mov al, [ecx]
 .until al == '\'
 inc ecx
 push ecx

 CTA0 "%s \t%08Xh\t%08Xh (%s)\n",
szFmtMod

 invoke BigNumToString, [edi][0*(sizeof
DWORD)], addr acNumber
 xpop ec
 invoke wsprintf, addr acThis, addr
szFmtMod, ecx, \
 [esi][0*(sizeof DWORD)], \
 [edi][0*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][1*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acKernel, addr
szFmtMod, addr szKernel32, \
 [esi][1*(sizeof DWORD)], \
 [edi][1*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][2*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acUser, addr
szFmtMod, addr szUser32, \
 [esi][2*(sizeof DWORD)], \
 [edi][2*(sizeof DWORD)],
addr acNumber

 invoke BigNumToString, [edi][3*(sizeof
DWORD)], addr acNumber
 invoke wsprintf, addr acAdvapi, addr
szFmtMod, addr szAdvapi32, \
 [esi][3*(sizeof DWORD)], \
 [edi][3*(sizeof DWORD)],
addr acNumber

 invoke wsprintf, addr acBuffer, \

$CTA0("Module:\t\tVirtual:\t\tPhysical:\n\n%s\n%s%s%s"), \
 addr acThis, addr
acKernel, addr acUser, addr acAdvapi

 assume esi:nothing
 assume edi:nothing
 invoke MessageBox, NULL, addr acBuffer,
$CTA0("Modules Base Address"), \
 MB_OK +
MB_ICONINFORMATION

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 .else
 MessageBox NULL invoke , , $CTA0("Can't send
control code to device."), NULL, \
 MB_OK + MB_ICONSTOP
 .endif

If DeviceIoControl successfully returns, dwBytesReturned is equal to number of
bytes we have in adwOutBuffer buffer filled by the driver. Now our task is simple.
We have to format derived info and show it to our user. I'm sure you smart
enough to understand it by yourself what is going on here. The escape sequences
used in $CTA0 are the common one (see \Macros\Strings.mac for details).

Figure 4-10. The output of VirtToPhys.exe

4.2.9 Cleanup

 invoke CloseHandle, hDevice

Now we only have to close opened device handle. At this point I/O Manager sends
two IRPs to device driver. Firstly it is IRP_MJ_CLEANUP, telling the driver that its
device handle is about to close. And then IRP_MJ_CLOSE, telling the driver that its

To make the drivers work under previous builds of Windows NT you need to
e, as I have already

mentioned, prior to Windows NT 4 "\??" directory was named

device handle have been closed. By the way, you can prevent closing your device
handle by returning error code from the routine responsible for handling
IRP_MJ_CLEANUP request. The driver-defined routines responsible for processing
these types of IRP will execute in the same thread context as the initiator of the
I/O requests (the caller of the CloseHandle) at IRQL = PASSIVE_LEVEL.

We'll talk in the next part about how the driver handles IRP.

change "\??" to "\DosDevices" and recompile the driver, sinc

