
The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

© The Assembly-Programming-Journal, Vol.2, No.1. (2004)
http://www.Assembly-Journal.com

Kernel Mode Driver Tutorial for MASM32 Programmers
Part 3 – The Simplest Drivers

Author: Four-F

Abstract

 Source code: KmdKit\examples\simple\Beeper

 Source code: KmdKit\examples\simple\DateTime

 Contents

3.1 How to compile and link the kernel-mode device driver .. 2
3.2 The simplest possible kernel-mode device driver ... 3

3.2.1 Simplest driver source code.. 3
3.2.2 DriverEntry Routine.. 5

3.3 Beeper device driver... 6
3.3.1 Beeper driver source code... 6
3.3.2 Controlling the system timer .. 10
3.3.3 Starting the driver automatically .. 12

3.4 Service Control Program for giveio driver .. 13
3.4.1 Giveio driver's SCP source code .. 13
3.4.2 Using the registry for passing some info to the driver ... 17
3.4.3 Accessing the CMOS .. 18

3.5 Giveio device driver .. 19
3.5.1 Giveio driver source code .. 19
3.5.2 I/O permission bit map... 23
3.5.3 Reading info from the registry ... 25
3.5.4 Give user-mode process access to the I/O ports ... 26

3.6 A couple words about driver debugging ... 29

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

3.1 How to compile and link the kernel-mode device driver

I always place driver's source code into a batch file. Such file is a mixture of *.bat
and *.asm files, but has "bat" extension.

;@echo off
;goto make

.386 ; driver's code start

 ;::::::::::::::::::::::::::::::::
 ; the rest of the driver's code ;
 ;::::::::::::::::::::::::::::::::

end DriverEntry ; driver's code end

:make

set drv=drvname

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32
/out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

If you run such "self-compiling" file the following will occur. First two commands
are commented out, thus they ignored by masm compiler, but accepted by
command processor, that in turn ignores semicolon symbol. The control jumps to
:make label where some options for the compiler and linker are specified. All
instructions following the end directive is ignored by the compiler. Thus all lines
between goto make command and :make label are ignored by the command
processor but accepted by the compiler. And all that is outside (including goto
make command and :make label) is ignored by the compiler but accepted by the
command processor. This method is extremely convenient, since the source code
itself keeps all the info about how it should be compiled and linked. Also you can
simply add some extra processing if you need. I use this method for all my
drivers. Since the control programs usually don't require anything special you can
compile it as you like.

set drv=drvname

We define an environment variable, which will be the substitution for the driver's
file name.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

The used linker options means:

Command Key Description

/driver - tells the linker it should create a Windows NT kernel-
mode driver;

The most important effect of this option is the addition of a
new section called "INIT". Here goes the part of ".idata"
section, which contains a list of
IMAGE_IMPORT_DESCRIPTOR structures and the names of
imported functions and modules. This "INIT" section is
marked as discardable in order to NT image loader discard
it after locating the imported function addresses.

/base:0x10000 - sets the driver base address equal to 10000h. We have
already discussed about it in the preceding part;

/align:32 - the system memory is a precious resource. Therefore, the
device driver's files have more "fine" section alignment;

/out:%dvr%.sys - the linker creates *.exe files by default. Or builds a *.dll if
the /DLL option is specified. We should force the linker to
create *.sys file.

/subsystem:native - In the PE header of every executable file there is a field
that tells the image loader which subsystem this module
requires: Win32, POSIX or OS/2. It's necessary to place a
driver's image into the appropriate environment. When we
compile *.exe or *.dll file, we usually indicate under this
option that the executable file requires a Win32 subsystem.
The kernel-mode drivers don't require any subsystem at
all, since they run in the native environment.

3.2 The simplest possible kernel-mode device driver

3.2.1 Simplest driver source code

Here is the source code of the simplest possible kernel-mode device driver.

;@echo off
;goto make

;::
:::::::::::::::::::::::::::::::::
;
; simplest - Simplest possible kernel-mode driver
;
;::
:::::::::::::::::::::::::::::::::

.386
.model flat, stdcall
option casemap:none

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

;::
:::::::::::::::::::::::::::::::::
; I N C L U D E F I L E S
;::
:::::::::::::::::::::::::::::::::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc

;::
:::::::::::::::::::::::::::::::::
; C O D E
;::
:::::::::::::::::::::::::::::::::

.code

;::
:::::::::::::::::::::::::::::::::
; DriverEntry
;::
:::::::::::::::::::::::::::::::::

DriverEntry proc pDriverObject:PDRIVER_OBJECT,
pusRegistry ath:P PUNICODE_STRING

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

DriverEntry endp

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

end DriverEntry

;::
:::::::::::::::::::::::::::::::::
; B U I L D I N G D R I V E R
;::
:::::::::::::::::::::::::::::::::

:make

set drv=simplest

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32
/out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

3.2.2 DriverEntry Routine

Like any other executable module each driver must have the entry point, which is
ed into the memory. The driver's entry point is the

ame is conventionally given to the main entry point of
a kernel-mode device driver. You may rename it anything you like. The

called when the driver is load
DriverEntry routine. This n

DriverEntry routine initializes driver-wide data structures. The prototype for
DriverEntry routine is defined as follows:

DriverEntry proto DriverObject:PDRIVER_OBJECT,
RegistryPath:PUNICODE_STRING

Unfortunately well-known "hungarian notation" by Char
DDK. I will use it everywhere if po

les Simonyi is not used in
ssible. Therefore, I have added the prefixes to

the DriverObject and the RegistryPath.

The data types of PDRIVER_OBJECT and PUNICODE_STRING are defined in
\include\w2k\ntddk.inc and \include\w2k\ntdef.inc respectively.

PDRIVER_OBJECT typedef PTR DRIVER_OBJECT
PUNICODE_STRING typedef PTR UNICODE_STRING

When the I/O Manager calls the DriverEntry routine it passes two pointers to it:

Parameter Description

pDriverObject - a pointer to a barely initialized driver object that represents
the driver.

Windows NT is an object-oriented operating system. So, the
drivers are represented as objects. By the loading of the
driver into the memory the system creates driver object
which represents the given driver. The driver object is nothing
more then DRIVER_OBJECT structure (defined in
\include\w2k\ntddk.inc). The pDriverObject pointer gives the
driver an access to that structure. But we don't need to touch
it this time.

pusRegistryPath - a pointer to a counted Unicode string that specifies a path to
the driver's registry subkey. We have discussed about the
driver's registry subkey in the previous part.

The driver can use this pointer to store or retrieve some
driver-specific information. If a driver will need to use the
path after its DriverEntry routine has completed, the driver
should save a copy of the unicode string, not the pointer itself
since it has no meaning outside the DriverEntry routine.

ring is also the structure of type UNICODE_STRING. Unlike the
the kernel-mode code operates with the strings in

ormat. It's defined in \include\w2k\ntdef.inc like this:

Counted Unicode St
user-mode code,
UNICODE_STRING f

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

UNICODE_STRING STRUCT
 _Length WORD ?
 MaximumLength WORD ?
 Buffer PWSTR ?
UNICODE_STRING ENDS

Parameter Description

_Length - The length of the string in bytes (not characters), not
counting the terminating r (I had to change an null characte
original Length name, sin ed word); ce it is a masm reserv

MaximumLength - The length in bytes (not characters) of the buffer pointed by
Buffer member;

Buffer - Pointer to the Unicode-string itself. Don't expect it as always
zero-terminated. It does not sometimes!

The m
string

ain advantag
 length, and i oid some additional

calculations.

EVICE_CONFIGURATION_ERROR (see
\include\w2k\ntstatus.inc for complete list of possible error codes). If you return

3.3 B

3.3.1

eeper driver. Last time we have written its control
program.

e of this format is its clear determination of both the current
ts maximum possible length. It allows av

The above-described driver (\src\Article2-3\simplest\simplest.sys) is the simplest
one. The only thing it does allows to load itself. Since it can't do anything more it
returns an error code STATUS_D

STATUS_SUCCESS the driver will remain in the memory, and you can't unload it,
since we have not defined the DriverUnload routine responsible for this.

You can register and load any driver with the KmdManager utility.

eeper device driver

Beeper driver source code

Now let's examine the b

;@echo off
;goto make

;::
:::::::::::::::::::::::::::::::::
;
; beeper - Kernel Mode Drive
; Makes beep thorough computer speaker
;
;::
:::::::::::::::::::::::::::::::::

.386
.model flat, stdcall
option casemap:none

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

;::
:::::::::::::::::::::::::::::::::
; I N C L U D E F I L E S
;::
:::::::::::::::::::::::::::::::::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\hal.inc

includelib \masm32\lib\w2k\hal.lib

;::
:::::::::::::::::::::::::::::::::
; E Q U A T E S
;::
:::::::::::::::::::::::::::::::::

TIMER_FREQUENCY equ 1193167 ; 1,193,167 Hz
OCTAVE equ 2 ; octave
multiplier

PITCH_C equ 523 ; C -
523,25 Hz
PITCH_Cs equ 554 ; C# -
554,37 Hz
PITCH_D equ 587 ; D -
587,33 Hz
PITCH_Ds equ 622 ; D# -
622,25 Hz
PITCH_E equ 659 ; E -
659,25 Hz
PITCH_F equ 698 ; F -
698,46 Hz
PITCH_Fs equ 740 ; F# -
739,99 Hz
PITCH_G equ 784 ; G -
783,99 Hz
PITCH_Gs equ 831 ; G# -
830,61 Hz
PITCH_A equ 880 ; A -
880,00 Hz
PITCH_As equ 988 ; B -
987,77 Hz
PITCH_H equ 1047 ; H -
1046,50 Hz

; We are going to play c-major chord

TONE_1 equ TIMER_FREQUENCY/(PITCH_C*OCTAVE)
TONE_2 equ TIMER_FREQUENCY/(PITCH_E*OCTAVE)
TONE_3 equ (PITCH_G*OCTAVE) ; for
HalMakeBeep

DELAY equ 1800000h ; for my
~800mHz box

;::
:::::::::::::::::::::::::::::::::
; M A C R O S

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

;::
::::::::::::: ::::::::::::: :::::::

DO_DELAY MACRO
 mov eax, DELAY
 .while eax
 dec eax
 .endw
ENDM

;::
:::::::::::::::::::::::::::::::::
; C O D E
;::
:::::::::::::::::::::::::::::::::

.code

;::
:::::::::::::::::::::::::::::::::
; MakeBeep1
;::
:::::::::::::::::::::::::::::::::

MakeBeep1 proc dwPitch:DWORD

 ; Direct hardware access

 cli

 mov al, 10110110y
 out 43h, al

 mov eax, dwPitch
 out 42h, al

 mov al, ah
 out 42h, al

 ; Turn speaker ON

 in al, 61h
 or al, 11y
 out 61h, al

 sti

 DO_DELAY

 cli

 ; Turn speaker OFF

 in al, 61h
 and al, 11111100y
 out 61h, al

 sti

 ret

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

MakeBeep1 endp

;::
:::::::::::::::::::::::::::::::::
; MakeBeep2
;::
:::::::::::::::::::::::::::::::::

MakeBeep2 proc dwPitch:DWORD

 ; Hardware access using WRITE_PORT_UCHAR and READ_PORT_UCHAR
 ; functions from hal.dll

 cli

 invoke WRITE_PORT_UCHAR, 43h, 10110110y

 mov eax, dwPitch
 invoke WRITE_PORT_UCHAR, 42h, al
 mov eax, dwPitch
 invoke WRITE_PORT_UCHAR, 42h, ah

 ; Turn speaker ON

 invoke READ_PORT_UCHAR, 61h
 or al, 11y
 invoke WRITE_PORT_UCHAR, 61h, al

 sti

 DO_DELAY

 cli

 ; Turn speaker OFF

 invoke READ_PORT_UCHAR, 61h
 and al, 11111100y
 invoke WRITE_PORT_UCHAR, 61h, al

 sti

 ret

MakeBeep2 endp

;::
:::::::::::::::::::::::::::::::::
; DriverEntry
;::
:::::::::::::::::::::::::::::::::

DriverEntry proc pDriverObject:PDRIVER_OBJECT,
pusRegistryPath:PUNICODE_STRING

 invoke MakeBeep1, TONE_1
 invoke MakeBeep2, TONE_2

 ; Hardware access using hal.dll HalMakeBeep function

 invoke HalMakeBeep, TONE_3

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 DO_DELAY
 invoke HalMakeBeep, 0

 mov eax, STATUS_DEVICE_CONFIGURATION_ERROR
 ret

DriverEntry endp

;::: : :::::::::::::::::: ::::::::: :::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::
;
;::: : ::: :::::::::
:::::::::::::::::::::::::::::::::

end DriverEntry

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

:make

set drv=beeper

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32
/out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

echo.
pause

This driver is intended to beep c-major arpeggio using the motherboard speak
For this purpose the driver uses IN

er.
and OUT CPU instructions, accessing the

iate I/O ports. It is well-known that the access to the I/O ports is guarded
ows NT as an important system resource. An attempt to execute IN or

om user-mode results in termination of the process. But actually
bypass this limitation, i.e. to allow the user-mode to access the

3.3.2

imers inside the computer. These are known as timers 0, 1 and 2
y reside in the Programmable Interval Timer (PIT). Timer 2 is used to

on. The frequency at which timer oscillates is determined
itial count value. The timer counts down from this value to zero, and when

it reaches zero, the timer oscillates. The counter is then re-set to the
predetermined initial count value and the process starts again. The counting down

formula: 1193180/. You can find more detailed information searching the Web.

appropr
by Wind
OUT instruction fr

ere is a way to th
I/O ports directly. We'll talk about it a bit later.

Controlling the system timer

There are three t
and the
control sound generati
by an in

process is controlled by the main system oscillator, which runs at a frequency of
1,193,180 Hz. This value is fixed across the entire range of PC families. Every
time it oscillates, the system timer counts down once. To vary the frequency at
which the timer oscillates, we just need to give it a new initial count value. To
calculate the frequency at which the speaker will sound we have to use this

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

.dll really returns the value of
1193180. But in hal.dll's HalMakeBeep function I have found a little bit different

Probably it's some time compensation.
vent us from beeping the speaker.

There is one subtlety here, which I misunderstand a bit. The
QueryPerformanceFrequency from kernel32

value equal to 1193167. I'll use this value.
I don't know. Anyway it doesn't pre

We play the first sound (do) of the c-major chord using MakeBeep1 routine.

 mov al, 10110110y
 out 43h, al

First we have to set the timer's control register. We should load a binary value
10110110 into port 43h to achieve this goal.

 mov eax, dwPitch
 out 42h, al

 mov al, ah
 out 42h, al

Then, in two consecutive statements, we load the low byte and high byte of the
new initial count value into port 42h.

 in al, 61h
 or al, 11y
 out 61h, al

Now we turn the speaker on by setting bits 0 and 1 of the value on port 61h. Now

the speaker is producing the sound.

DO_DELAY MACRO
 mov eax, DELAY
 .while eax
 dec eax
 .endw
ENDM

We let the speaker sound for some time, using DO_DELAY macro. Yes - it is
primitive, but is rather effective.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 in al, 61h
 and al, 11111100y
 out 61h, al

To turn the speaker off we need to clear bits 1 and 2 of the value on port 61h.
mer is a global system resource. Therefore we disable the
errupts by clearing the interrupt flag. It will be much more

i-processor machine.

ay the second (mi) sound of the c-major chord using MakeBeep2 routine. It
differs only by using WRITE_PORT_UCHAR and READ_PORT_UCHAR functions
from hal.dll instead of in/out. HAL hides hardware-dependent details such as I/O

The third (sol) sound of the c-major chord we play with the HalMakeBeep from
hal.dll. As a parameter it is necessary not to use the initial count value, but the

 instead.

 the beeper.bat file you will find all twelve key notes. I used
only three of them. Others are left for your future synthesizer ;-). To turn the
speaker off it is necessary to call alMakeBeep once again, passing 0 as an

eturn an error code only to cause the
system removes the driver from the memory. When we'll reach full-function

3.3.3

Service out, change SERVICE_DEMAND_START to
SERVICE_AUTO_START and SERVICE_ERROR_IGNORE to

 about itself. In the Event Log you will find the entry about driver's
startup failure. Select from the Start menu Programs/Administrative

Don't forget that the ti
tmaskable hardware in

difficult on the mult

We pl

interfaces (as in our case) and other, making it machine-independent.

frequency value itself

In the beginning of

argument.

The beeper driver returns an error code to the system and is removed from the
memory. I repeat. It is necessary to r

drivers, we'll have to return STATUS_SUCCESS.

Starting the driver automatically

The scp.exe installs driver beeper.sys to be started on demand. Last time we have
discussed different start types of the drivers. Now we try to force the system to
start our driver automatically. It can be done in many ways. The simplest one is
to comment the call to Delete

SERVICE_ERROR_NORMAL, then recompile scp.asm and execute it. After scp.exe
exits the registry will contain the brand new service entry. Now you can
completely forget about it. During the next system boot the driver beeper.sys will
remind you

Tools/Event Viewer, select System Log, and double-click on an Event Log entry
to see it. You will see something like this:

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Figure 3-1. Failure Event Log entry

Don't forget to remove the registry entry otherwise you will hear that nice melody
every time your system boots up.

3.4 Service Control P

3.4.1

Now let's take a look at another SCP to control giveio.sys driver.

rogram for giveio driver

Giveio driver's SCP source code

;::
:::::::::::::::::::::::::::::::::
;
; DateTime - Service Control Program for giveio driver
;
;::
:::::::::::::::::::::::::::::::::

.386
.model flat, stdcall
option casemap:none

;::
:::::::::::::::::::::::::::::::::
; I N C L U D E F I L E S
;::
:::::::::::::::::::::::::::::::::

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

include \masm32\include\windows.inc

include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
include \masm32\include\advapi32.inc

includelib \masm32\lib\kernel32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\advapi32.lib

include \masm32\Macros\Strings.mac

;::
:::::::::::::::::::::::::::::::::
; M A C R O S
;::
:::::::::::::::::::::::::::::::::

CMOS MACRO by:REQ
 mov al, by
 out 70h, al
 in al, 71h

 mov ah, al
 shr al, 4
 add al, '0'

 and ah, 0Fh
 add ah, '0'
 stosw
ENDM

;::
:::::::::::::::::::::::::::::::::
; C O D E
;::
:::::::::::::::::::::::::::::::::

.code

;::
:::::::::::::::::::::::::::::::::
; DateTime
;::
:::::::::::::::::::::::::::::::::

DateTime proc uses edi

local acDate[16]:CHAR
local acTime[16]:CHAR
local acOut[64]:CHAR

 ; See Ralf Brown's Interrupt List for details

 ;:::::::::::::::::: Set data format ::::::::::::::::::

 mov al, 0Bh ; status register B
 out 70h, al
 in al, 71h

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 push eax ; save old data format
 and al, 11111011y ; Bit 2: Data Mode - 0: BCD, 1:
Binary
 or al, 010y ; Bit 1: 24/12 hour selection - 1
enables 24 hour mode
 out 71h, al

 ;:::::::::::::::::::: Lets' fetch current date
::::::::::::::::::::

 lea edi, acDate

 CMOS 07h ; date of month
 mov al, '.'
 stosb

 CMOS 08h ; month
 mov al, '.'
 stosb

 CMOS 32h ; two most significant digit od year
 CMOS 09h ; two least significant digit od year

 xor eax, eax ; terminate string with zero
 stosb

 ;:::::::::::::::::::: Lets' fetch current time
:::::::::::::::::::

 lea edi, acTime

 CMOS 04h ; hours
 mov al, ':'
 stosb

 CMOS 02h ; minutes
 mov al, ':'
 stosb

 CMOS 0h ; seconds

 xor eax, eax ; terminate string with zero
 stosb

 ;:::::::::::::: restore old data format :::::::::::::

 mov al, 0Bh
 out 70h, al
 pop eax
 out 71h, al

 ;::::::::::::::::: Show current date and time :::::::::::::::

 invoke wsprintf, addr acOut, $CTA0("Date:\t%s\nTime:\t%s"),
addr acDate, addr acTime
 invoke MessageBox, NULL, addr acOut, $CTA0("Current Date and
Time"), MB_OK

 ret

DateTime endp

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

;::
:::::::::::::::::::::::::::::::::
; start
;::
:::: : :::::::: :::::::::: ::::::::::

start proc

local fOK:BOOL
local hSCManager:HANDLE
local hService:HANDLE
local acDriverPath[MAX_PATH]:CHAR

local hKey:HANDLE
local dwProcessId:DWORD

 and fOK, 0 ; assume an error

 ; Open the SCM database

 invoke OpenSCManager, NULL, NULL, SC_MANAGER_CREATE_SERVICE
 .if eax != NULL
 mov hSCManager, eax

 push eax
 invoke GetFullPathName, $CTA0("giveio.sys"), sizeof
acDriverPath, addr acDriverPath, esp
 pop eax

 ; Register driver in SCM active database

 invoke CreateService, hSCManager, $CTA0("giveio"),
$CTA0("Current Date and Time fetcher."), \
 SERVICE_START + DELETE, SERVICE_KERNEL_DRIVER,
SERVICE_DEMAND_START, \
 SERVICE_ERROR_IGNORE, addr acDriverPath, NULL,
NULL, NULL, NULL, NULL

 .if eax != NULL
 mov hService, eax

 invoke RegOpenKeyEx, HKEY_LOCAL_MACHINE, \

$CTA0("SYSTEM\\CurrentControlSet\\Services\\giveio"), \
 0, KEY_CREATE_SUB_KEY +
KEY_SET_VALUE, addr hKey

 .if eax == ERROR_SUCCESS

 ; Add current process ID into the registry

 invoke GetCurrentProcessId
 mov dwProcessId, eax
 invoke RegSetValueEx, hKey, $CTA0("ProcessId",
szProcessId), NULL, REG_DWORD, \
 addr dwProcessId, sizeof
DWORD

 .if eax == ERROR_SUCCESS

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 ; Start driver

 invoke StartService, hService, 0, NULL
 inc fOK ; Set OK flag
 szProcessId invoke RegDeleteValue, hKey, addr
 .else
 invoke MessageBox, , $CTA0("Can't add NULL
Process ID into registry."), \
 , MB_ICONSTOP NULL
 .endif

 RegCloseKey, hKey invoke

 .else
 invoke MessageBox, NULL, $CTA0("Can't open
registry."), NULL, MB_ICONSTOP
 .endif

 ; Remove driver from SCM database

 invoke DeleteService, hService
 invoke CloseServiceHandle, hService
 .else
 invoke MessageBox, NULL, $CTA0("Can't register
driver."), NULL, MB_ICONSTOP
 .endif
 invoke CloseServiceHandle, hSCManager
 .else
 invoke MessageBox, NULL, $CTA0("Can't connect to Service
Control Manager."), \
 NULL, MB_ICONSTOP
 .endif

 ; If OK display current date and time to the user

 .if fOK
 invoke DateTime
 .endif

 invoke ExitProcess, 0

start endp

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

end start

3.4.2 ssing some info to the driver

pt a few points.

Usin registry for pag the

There is nothing new here exce

 invoke RegOpenKeyEx, HKEY_LOCAL_MACHINE, \

$CTA0("SYSTEM\\CurrentControlSet\\Services\\giveio"), \

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 0, KEY_CREATE_SUB_KEY +
KEY_SET_VALUE, addr hKey

 .if eax == ERROR_SUCCESS
 invoke GetCurrentProcessId
 mov dwProcessId, eax
 invoke RegSetValueEx, hKey, $CTA0("ProcessId",
szProcessId), NULL, REG_DWORD, \
 addr dwProcessId, sizeof
DWORD

 .if eax == ERROR_SUCCESS
 invoke StartService, hService, 0, NULL

Before starting the driver we create additional ProcessId value under driver
registry subkey. It contains current process identifier, which is the identifier of

ify a label
s us to

reference this text later on. My text macros are flexible enough, by the way.

, we can start the driver. What
 bit later.

SCP itself. Please notice how I use $CTA0 macro here. I did spec
szProcessId, which the text "ProcessId" will be marked with. This let

If the new registry value was added successfully
 out athis additional registry value is for you'll find

 inc fOK
 invoke RegDeleteValue, hKey, addr szProcessId
 .else
 invoke MessageBox, NULL, $CTA0("Can't add
Process ID into registry."), \
 NULL, MB_ICONSTOP
 .endif

 invoke RegCloseKey, hKey

Having returned from the StartService we consider that the driver has done its
work and set fOK flag. The call to the RegDeleteValue is not necessary here,
because all driver registry subkeys will be removed by the subsequent call to the
DeleteService. But it's a good programming practice to clean up explicitly.

 .if fOK
 invoke DateTime
 .endif

Having removed the driver entry from the SC
handles and, if fOK flag is set, call

M database we close all opened
ction.

3.4.3 Accessing the CMOS

DateTime fun

In a computer motherboard there is a microchip that is used to store some
system configuration information, such as disk drive parameters, memory

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

onfiguration, and the date-time. This microchip is often referred to as "the
CMOS" (CMOS is an acronym stands for Complementary Metal Oxide
Semiconductor). The microchip is battery-powered and has the real-time clock

 obtain its data accessing 70h and 71h I/O ports. See "Ralf Brown's
for details (http://www-

lf/pub/WWW/files.html).

c

(RTC). We can
Interrupt List"

u/afs/cs/user/ra2.cs.cmu.ed

 mov al, 0Bh ; status register B
 out 70h, al
 in al, 71h

 push eax ; save old data format
 and al, 11111011y ; Bit 2: Data Mode - 0: BCD, 1:
Binary
 or al, 010y ; Bit 1: 24/12 hour selection - 1
enables 24 hour mode
 out 71h, al

Firstly we set a convenient data format using the status register B.

Using CMOS macro we can obtain all the information we need from CMOS and
format it at the same time.

 invoke wsprintf, addr acOut, $CTA0("Date:\t%s\nTime:\t%s"),
addr acDate, addr acTime
 , , acOut, $CTA0("Current Date aninvoke MessageBox NULL addr d
Time"), MB_OK

Then we expose all retrieved data. And you should see something like this:

ioned above, the access to I/O ports is
protected under Windows NT instruction in user-mode will

ell, it

3.5 Giveio device driver

3.5.1 Giveio driver source code

Figure 3-2. The output of the DateTime.exe

Most strange thing here is that we have accessed the SMOS memory without the
system stops us. As I have already ment

. Executing IN or OUT
cause process termination. But we have touched them. How it can be? W
becomes possible due to the giveio driver.

;@echo off
;goto make

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

;::
:::::::::::::::::::::::::::::::::
;
; giveio - Kernel Mode Driver
;
; Demonstrate direct port I/O access from a user mode
;
;::
:::::::::::::::::::::::::::::::::

.386
.model flat, stdcall
option casemap:none

;::
:::::::::::::::::::::::::::::::::
; I N C L U D E F I L E S
;::
:::::::::::::::::::::::::::::::::

include \masm32\include\w2k\ntstatus.inc
include \masm32\include\w2k\ntddk.inc
include \masm32\include\w2k\ntoskrnl.inc

includelib \masm32\lib\w2k\ntoskrnl.lib

include \masm32\Macros\Strings.mac

;::
:::::::::::::::::::::::::::::::::
; E Q U A T E S
;::
:::::::::::::::::::::::::::::::::

IOPM_SIZE equ 2000h ; sizeof I/O permission map

;::
:::::::::::::::::::::::::::::::::
; C O D E
;::
:::::::::::::::::::::::::::::::::

.code

;::
:::::::::::::::::::::::::::::::::
; DriverEntry
;:::::: :::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::

DriverEntry proc pDriverObject:PDRIVER_OBJECT,
pusRegistryPath:PUNICODE_STRING

local status:NTSTATUS
local oa:OBJECT_ATTRIBUTES
local hKey:HANDLE
local kvpi:KEY_VALUE_PARTIAL_INFORMATION
local pIopm:PVOID
local pProcess:LPVOID

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke DbgPrint, $CTA0("giveio: Entering DriverEntry")

 mov status, STATUS_DEVICE_CONFIGURATION_ERROR

 lea ecx, oa
 InitializeObjectAttributes ecx, pusRegistryPath, 0, NULL, NULL

 invoke ZwOpenKey, addr hKey, KEY_READ, ecx
 .if eax == STATUS_SUCCESS

 push eax
 invoke ZwQueryValueKey, hKey,
$CCOUNTED_UNICODE_STRING("ProcessId", 4), \
 KeyValuePartialInformation, addr
kvpi, sizeof kvpi, esp
 pop ecx

 .if (eax != STATUS_OBJECT_NAME_NOT_FOUND) && (ecx != 0)

 invoke DbgPrint, $CTA0("giveio: Process ID: %X"), \
 dword ptr
(KEY_VALUE_PARTIAL_INFORMATION PTR [kvpi]).Data

 ; Allocate a buffer for the I/O permission map

 invoke MmAllocateNonCachedMemory, IOPM_SIZE
 .if eax != NULL
 mov pIopm, eax

 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION
PTR [ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS

 invoke DbgPrint, $CTA0("giveio: PTR KPROCESS:
%08X"), pProcess

 invoke Ke386QueryIoAccessMap, 0, pIopm
 .if al != 0

 ; I/O access for 70h port

 mov ecx, pIopm
 add ecx, 70h / 8
 mov eax, [ecx]
 btr eax, 70h MOD 8
 mov [ecx], eax

 ; I/O access for 71h port

 mov ecx, pIopm
 add ecx, 71h / 8
 mov eax, [ecx]
 btr eax, 71h MOD 8
 mov [ecx], eax

 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke Ke386IoSetAccessProcess,
pProcess, 1
 .if al != 0
 , $CTA0("giveio: I/O invoke DbgPrint
permission is successfully given")
 .else
 invoke DbgPrint, $CTA0("giveio: I/O
permission is failed")
 mov status,
STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 invoke ObDereferenceObject, pProcess
 .else
 mov status, STATUS_OBJECT_TYPE_MISMATCH
 .endif
 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
 .else
 invoke DbgPrint, $CTA0("giveio: Call to
MmAllocateNonCachedMemory failed")
 mov stat A SOURCES us, ST TUS_INSUFFICIENT_RE
 .endif
 .endif
 , hKey invoke ZwClose
 .endif

 invoke DbgPrint, $CTA0("giveio: Leaving DriverEntry")

 mov eax, status
 ret

DriverEntry endp

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

end DriverEntry

;::
:::::::::::::::::::::::::::::::::
;
;::
:::::::::::::::::::::::::::::::::

:make

set drv=giveio

\masm32\bin\ml /nologo /c /coff %drv%.bat
\masm32\bin\link /nologo /driver /base:0x10000 /align:32
/out:%drv%.sys /subsystem:native %drv%.obj

del %drv%.obj

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

echo.
pause

The driver's code is based on well-known example (giveio) by Dale Roberts. I

3.5.2

 bit map (IOPM) that allows the process
 the I/O ports. Refer to this doc for details
om/design/intarch/techinfo/pentium/PDF/inout.pdf .

/O

64K individually addressable 8-bit I/O
e maximum IOPM size is 2000h bytes.

ndocumented functions in the ntoskrnl.exe to manipulate with
etIoAccessMap.

have decided it will be appropriate to mention here.

I/O permission bit map

Our driver changes the I/O permission
free access to
ttp://www.intel.ch

Each process has its own I/O permission bit map, thus access to the individual I
ports can be granted to the individual process. Each bit in the I/O permission bit

he map corresponds to the byte I/O port. If this bit is set, the access to t
corresponding port is forbidden, if it is clear the process may access this I/O port.

nce the I/O address space consists of Si
ports, th

There are some u
the IOPM: Ke386QueryIoAccessMap and Ke386S

Ke386QueryIoAccessMap proto stdcall dwFlag:DWORD, pIopm:PVOID

Ke386QueryIoAccessMap copies current IOPM by the size of 2000h bytes from
TSS to the memory buffer pointed to by pIopm parameter.

Parameter Description

dwFlag 0 - Fill memory buffer with 0FFh values (all bits are set - access
denied);

1 - Copy current IOPM from TSS to the memory buffer.

pIopm Points to the memory buffer to receive current IOPM. The buffer size
must be not less than 2000h bytes.

If the function succeeds it returns nonzero value in al (not eax) register. If the
function fails, the al (not eax) register is clear.

Ke386SetIoAccessMap proto stdcall dwFlag:DWORD, pIopm:PVOID

Ke386SetIoAccessMap copies specified IOPM by the size of 2000h from the
memory buffer pointed to by pIopm parameter to TSS.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

Parameter Description

dwFlag It can be only 1 - permits copying. Any other value causes the
function to return an error.

pIopm Points to the memory buffer containing IOPM. The buffer size must
not be less than 2000h bytes.

unctio
ls,

After the IOP ter must be
adjusted to point to new IOPM. This is done by using

IoSet
undocumente

If the f
function fai

n succeeds it returns nonzero value in al (not eax) register. If the
 the al (not eax) register is clear.

M has been copied to the TSS, the IOPM offset poin

Ke386 AccessProcess - one more very useful and also completely
d function from the ntoskrnl.exe.

Ke386IoSetAccessProcess proto stdcall pProcess:PTR KPROCESS,
dwFlag:DWORD

Ke386IoSetAccessProcess permits/forbids using IOPM for the process.

Parameter Description

pProcess Points to the KPROCESS structure (I'll tell you later about it).

dwFlag 0 - Denies access to the I/O ports, setting offset to the IOPM abroad
of TSS segment;

1 - Allows access to the I/O ports, setting offset to the IOPM in
limits TSS segment (88h).

If the functio value in al (not eax) register. If the
function fails, the al (not eax) register is clear.

this prefix you can
determine to which system major executive component the function belongs to.

nts kernel functions, Psp refers to
internal process support functions, Mm represents the Memory Manager functions
and so on.

ct, which is KPROCESS structure (defined in
\include\w2k\w2kundoc.inc. I have specially prefixed file name with "w2k", since

se this
 idea).

Ke386IoSetAccessProcess sets the IopmOffset member of KPROCESS structure
to the appropriate value.

n succeeds it returns nonzero

By the way, almost all functions from ntoskrnl are prefixed. By

To denote internal functions used a variation of the prefix - either the first letter
of the prefix followed by an i (for internal) or the full prefix followed by a p (for
private) or f (fastcall). For example, Ke represe

The first parameter to Ke386IoSetAccessProcess function is a pointer to the
process obje

undocumented structures differ across Windows NT versions. So, to u
include file in the driver intended for XP is not the good

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

3.5.3 Reading info from the registry

Since we have to call Ke386IoSetAccessProcess, we need the pointer to the
bjec n the

most simple - using the process identifier. For this reason in the DateTime.exe we
 curre

use the registry for passing parameter between the user-mode code and the
kernel-mode device dr
process conte
started the dr

process o t. It can be obtained by many different ways. I have chose

get the nt process identifier and we put it into the registry. In this case we

iver. Since the DriverEntry routine runs in the System
xt, there is no way to find out, what exactly process actually has
iver.

The second parameter - pusRegistryPath - to the DriverEntry routine is a pointer
to the driver registry subkey. And we use it to get process identifier from the
registry.

Now let's see how all that works.

 lea ecx, oa
 InitializeObjectAttributes ecx, pusRegistryPath, 0, NULL, NULL

enKey. I've used InitializeObjectAttributes macro for
this, but you'd better do it manually since InitializeObjectAttributes macro is not

 can do it like this:

We have to initialize OBJECT_ATTRIBUTES structure (\include\w2k\ntdef.inc)
before we can call ZwOp

always behaves as expected. And you

lea ecx, oa
xor eax, eax
assume ecx:ptr OBJECT_ATTRIBUTES
mov [ecx].dwLength, sizeof OBJECT_ATTRIBUTES
mov [ecx].RootDirectory, eax ; NULL
push pusRegistryPath
pop [ecx].ObjectName
mov [ecx].Attributes, eax ; 0
mov [ecx].SecurityDescriptor, eax ; NULL
mov [ecx].SecurityQualityOfService, eax ; NULL
assume ecx:nothing

ZwOpenKey returns registry key handle in hKey. Second parameter specifies the
access rights required to the key. And you should remember that ecx register
contains the pointer to the initialized object attributes of the key being opened.

 invoke ZwOpenKey, addr hKey, KEY_READ, ecx
 .if eax == STATUS_SUCCESS

 push eax

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 invoke ZwQueryValueKey, hKey,
$CCOUNTED_UNICODE_STRING("ProcessId", 4), \
 KeyValuePartialInformation, addr
kvpi, sizeof kvpi, esp
 pop ecx

ZwQueryValueKey returns the entry value for an open registry key. And we use
it to get process identifier from the registry. Second parameter points to the name

e entry for which the data is requested. I've used
ICODE_STRING macro to define UNICODE_STRING structure (4

self. If you don't like macros, you can use

of the valu
$CCOUNTED_UN
bites aligned) and the unicode-string it
the common way:

 usz dw 'U', 'n', 'i', 'c', 'o', 'd', 'e', ' ', 's', 't', 'r', 'i',
'n', 'g', 0
 us UNICODE_STRING {sizeof usz - 2, sizeof usz, offset usz}

But I never liked this way, so I wrote the following macros:
COUNTED_UNICODE_STRING, $COUNTED_UNICODE_STRING,

Third parameter specifies the type of information requested.
stant (defined in

ters are the pointer to
 structure and its size respectively. In the

 structure we'll get our process identifier. The last parameter
 number of bytes returned. We should also reserve the place

ueKey.

3.5.4 orts

CCOUNTED_UNICODE_STRING, $CCOUNTED_UNICODE_STRING
(\Macros\Strings.mac).

KeyValuePartialInformation is a symbolic con
\inclu w2k\ntddk.inc). The fourth and fifth paramede\
KEY_VALUE_PARTIAL_INFORMATION
Data member of this
is the pointer to the
for it on the stack before calling ZwQueryVal

Give user-mode process access to the I/O p

 .if (eax != STATUS_OBJECT_NAME_NOT_FOUND) && (ecx != 0)
 invoke MmAllocateNonCachedMemory, IOPM_SIZE
 .if eax != NULL
 mov pIopm, eax

If ZwQueryValueKey successfully returns, we allocate a virtual address range of
noncached and cpu cache-aligned memory for IOPM by calling the
MmAllocateNonCachedMemory.

 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION
PTR [ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS
 invoke Ke386QueryIoAccessMap, 0, pIopm

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

 our process object. Ke386QueryIoAccessMap copies
IOPM in the memory buffer.

By passing the process identifier to the PsLookupProcessByProcessId we get in
pProcess the pointer to

 .if al != 0

 mov ecx, pIopm
 add ecx, 70h / 8
 mov eax, [ecx]
 btr eax, 70h MOD 8
 mov [ecx], eax

 mov ecx, pIopm
 add ecx, 71h / 8
 mov eax, [ecx]
 btr eax, 71h MOD 8
 mov [ecx], eax

 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0
 invoke Ke386IoSetAccessProcess,
pProcess, 1
 .if al != 0
 .else
 mov status,
STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif
 .else
 mov status, STATUS_IO_PRIVILEGE_FAILED
 .endif

Now we'll clear the bits corresponding to 70h and 71h I/O ports, write modified
IOPM back and call Ke386IoSetAccessProcess to allow I/O access.

 invoke ObDereferenceObject, pProcess
 .else
 mov status, STATUS_OBJECT_TYPE_MISMATCH
 .endif

The previous call to PsLookupProcessByProcessId had incremented a reference
ager increments a reference count

; when kernel-mode components
ect Manager to decrement the
ts the reference count when it

 handle to the object), and likewise
(someone
that must

he object's
tem is still

 count also drops to 0. When this
from the memory.

count for the process object. The Object Man
for an object each time it gives out a pointer to it
have finished using the pointer, they call the Obj

emenobject's reference count. The system also incr
crements the handle count (gives someone ain

decrements the reference count when the handle count decrements
so a reference to the object closes some handle), because a handle is al

be tracked. So even after an object's open handle counter reaches 0, t
reference count might remain positive, indicating that the operating sys
using the object. Sooner or later the reference

e object happens the Object Manager deletes th

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

We decrement the process object's reference count by calling
s state. ObDereferenceObject. And it returns to its previou

 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
 .else
 invoke DbgPrint, $CTA0("giveio: Call to
MmAllocateNonCachedMemory failed")
 mov status, STATUS_INSUFFICIENT_RESOURCES
 .endif
 .endif
 invoke ZwClose, hKey
 .endif

Calling MmFreeNonCachedMemory we release memory buffer, and close

s an error
 it from the memory. But now, the user-mode process

has direct access to two I/O ports.

registry handle by calling ZwClose.

The work is done iver is not needed any more. Since it return- the dr
code, the system removes

In this example we have accessed the CMOS memory just for instance. We could
beep with the system speaker, as in the previous driver beeper.sys. I leave it to
you. But remember you must not use the privileged instructions like cli and sti.
And you must not call functions from the hal.dll also, since they are in the kernel-
mode address space. The only thing you can do is to give yourselves an access to
all 65535 I/O ports using this code-snippet:

invoke MmAllocateNonCachedMemory, IOPM_SIZE
.if eax != NULL
 mov pIopm, eax
 invoke RtlZeroMemory, pIopm, IOPM_SIZE
 lea ecx, kvpi
 invoke PsLookupProcessByProcessId, \
 dword ptr (KEY_VALUE_PARTIAL_INFORMATION PTR
[ecx]).Data, addr pProcess
 .if eax == STATUS_SUCCESS
 invoke Ke386SetIoAccessMap, 1, pIopm
 .if al != 0
 invoke Ke386IoSetAccessProcess, pProcess, 1
 .endif
 invoke ObDereferenceObject, pProcess
 .endif
 invoke MmFreeNonCachedMemory, pIopm, IOPM_SIZE
.else
 mov status, STATUS_INSUFFICIENT_RESOURCES
.endif

Always keep in mind that playing the system speaker and reading the CMOS
memory is harmless enough. But accessing some other I/O ports can be
potentially dangerous, basically since you can't synchronize it in the user-mode.

The Assembly-Programming-Journal, Vol. 2, No. 1 (2004)

Copyright © 2004 and published by the Assembly-Programming-Journal. Single print or electronic copies for
personal use only are permitted. Reproduction and distribution without permission is prohibited.

3.6 A

 have to execute a CPU breakpoint
instruction. You achieve it by placing an "int 3" somewhere in your driver's code.

by the kernel debugger like
 enabled INT 3 handling. Use

o specify that any interrupt 3 instruction pops up SoftICE.
nd always bear in mind that

se a bug check resulting in the
ore starting the driver. In latter

el-mode

iver's code. This function
ow. SoftICE is
 Russinovich (

 couple words about driver debugging

Now we can talk about the driver debugging in more details. As I've already
mentioned, you should better use SoftICE as a debugger.

To force a breakpoint in the driver's code we

The "int 3" raises an exception that is handled
re you use it make sure you haveSoftICE. But befo

the I3HERE command t
Check SoftICE Command Reference for details. A

nt exception in kernel will caunot handled breakpoi
BSOD! So, don't forget to type "i3here on" bef
SoftICE versions the int 3 handling is set by default for the kern
addresses.

I repeate alled the DbgPrintdly c function in the giveio dr
causes a string to be printed onto the debugger command wind

tands it. You can also use perfectly unders DebugView by Mark
www.sysinternals.com) to monitor debug output.

