�

 <http://www.smartclicks.com>� <http://www.smartclicks.com> <http://ads.smartclicks.com/3/B049637/smartaddr>� <http://ads.smartclicks.com/3/B049637/smartaddr>�SmartClicks: Target Advertising For Free <http://www.smartclicks.com/>

Okay, it gets a little tougher from here on, but nothing we can't handle ;). Now let's write an alias for kicking and banning a person. First, add this to the alias section:

/k /kick # $1

Now this will kick chucky when you type /k chucky. Chucky doesn't get the point and keeps coming back...so now we want to ban him. Add this to the alias section:

/b /mode # +b $1

And now type /b chucky, and chucky won't be back ;). Let's say you're one of those ops that just wants to type one command to get rid of chucky. Add this to the alias section:

/kb /kick # $1 | /mode # +b $1

And when you type /kb chucky, not only is he kicked, but he is also banned...hasta la vista chucky!

Advanced aliases

The { } brackets allow you to create an alias which performs several commands. For example:

/saying { �/say If you can dish it out... �/say Then you'd better be able to take it! �}

would tell the channel "If you can dish it out..." "Then you'd better be able to take it!" on different lines. If you wanted to message someone that saying, then you could change it to this:

/psaying { �/msg $1 If you can dish it out.. �/msg $1 Then you'd better be able to take it! �}

And then you could simply type /psaying chucky to tell him that. Notice that where there is a {, there is also a }. The { opens the command, and the } closes it..so you can't have one without the other.

The If-then-else statement is used to decide which parts of your script executes based on the evaluation of a comparison. For example:

/dogs { �if ($1 == chihuahua) echo A very SMALL dog! �elseif ($1 == labrador) echo A large dog! �else echo Unknown Dog! �}

Now, whenever you type in /dogs chihuahua, it will echo (say only to you) "A very SMALL dog!" And when you type in a dog that is not listed (chihuahua or labrador), then it will say "Unknown Dog!" I'll try to clear some of this up. The /dogs is of course what you type to activate the alias.

The '{' opens the alias. The 'if' tells mIRC that if something is something, then echo something. Whoa! Okay, for example, if what you type after /dogs is labrador, then it tells you A large dog!

The second line starts with elseif, which tells mIRC that there is another if then statement. And finally, the third line starts with 'else' which means, if you haven't already figured it out, that ALL ELSE (excluding chihuahua and labrador) will give you an error message (Unknown Dog!). And of course, the } closes the alias.

The goto command allows you to jump from one point in a script to another point. Look at this one:

/dogs { �if ($1 == chihuahua) goto one �elseif ($1 == labrador) goto two �else goto unknown �:one �echo A very SMALL dog! �halt �:two �echo A large dog! �halt �:unknown �echo Unknown Dog! �halt �}

This example does the exact same thing as the above example, except the goto tells it to go down to the part of the script specified. For example, if I typed /dogs chihuahua, then it would see goto one, and search for the part in the script that said ':one' But be careful when doing these, as using a goto incorrectly could lead to an infinite loop!

Identifiers return the value of a built-in mIRC variable. For example, $day would return the day of the week. Whenever mIRC finds an identifier in your command, it replaces it with the current value of that identifier. Look at this alias:

/day /say Today is $day

Which would say "Today is Tuesday" if it was Tuesday. Please look at the Identifiers page <ident.html> before proceeding, and look at the Complete Identifiers page <bigident.html> if you have some time...or for reference in writing your own script.

Variables are identifiers whose values you can create and change yourself and use later in your scripts. These can be called from anywhere within a script. There is (or will be soon) a variables page to help you.

Function Keys can also be redefined to perform certain commands, just like aliases. For example:

/F1 /say Hello all! �/sF1 /say Goodbye! �/cF1 /me is hungry!

The s stands for the Shift key and the c stands for the Control key, so you can use approximately 36 different aliases for the shift keys! (Just try to remember them all!) Notice that instead of typing 'Hello all!' when you enter a channel, now you only have to press the F1 key! Here are some other examples:

/F2 /query $1 �/sF2 /ctcp $1 version

Try pressing F2 or Shift + F2 in a channel. Unless you have selected someone's nickname in the nickname list, then it will give you an error message. You can also use some commands in the query window (Shift F2 will give you their version in this example).

If you are executing a command from the command line by typing it into an editbox, you can force mIRC to evaluate identifiers in that command by prefixing it with two //'s instead of one /. For example:

/echo I happen to be $me

Would print out (only to you)"I happen to be $me" and would not evaluate the $me. However,

//echo I happen to be $me

Would print out (to you) "I happen to be Geraldo" if your nickname was Geraldo.

If you want to force a command to perform quietly without printing out any information to you, then you can prefix it with a "." fullstop. For example:

/ignore chucky

Would print out information telling you that you are now igoring "chucky". If you don't want this information to be displayed, then you can use:

/.ignore chucky

Weeeeee! We're finally done! Hopefully you understand scripting now, or at least aliases. Now, let's go to the Popups section <popups.html>.

