THE EXPERT'S VOICE® IN OPEN SOURCE

Beginning Databases

with POStgreSQL

From Novice to Professional

Effectively muamage aed develop dana-driven apptications
el thve poeverfiul PosigreS0L database sevver,

SECOND EDITION

Neil Matthew
and Richard Stones

Apress

Beginning Databases
with PostgreSQL

From Novice to Professional, Second Edition

NEIL MATTHEW AND RICHARD STONES

Apress-

Beginning Databases with PostgreSQL: From Novice to Professional, Second Edition
Copyright © 2005 by Neil Matthew and Richard Stones

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-478-9
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jason Gilmore

Contributing Author: Jon Parise

Technical Reviewer: Robert Treat

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Sofia Marchant

Copy Manager: Nicole LeClerc

Copy Editor: Marilyn Smith

Production Manager: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: Elizabeth Berry

Indexer: John Collin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergar-
tenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

Contents at a Glance

About the AULNOTS e xvii
About the Technical ReVIEWEot e et aee Xix
ACKNOWIBAgMENES ...t i XXi
IMtrOAUCTION ...t e e Xxiii
CHAPTER 1 Introductionto PostgreSQL ...l 1
CHAPTER 2 Relational Database Principlescooiits. 17
CHAPTER 3 Getting Started with PostgreSQL 43
CHAPTER 4 AccessingYourData..................coiiiiiiiiiiiii . 73
CHAPTER 5 PostgreSQL Command-Line and Graphical Tools 113
CHAPTER 6 Datalnterfacingcoiiiiiii 149
CHAPTER 7 Advanced Data Selection 173
CHAPTER 8 Data Definition and Manipulation 201
CHAPTER 9 Transactionsand Lockingcciiiiiii ... 243
CHAPTER 10 Functions, Stored Procedures, and Triggers 267
CHAPTER 11 PostgreSQL Administration 309
CHAPTER 12 Database Design ...t 357
CHAPTER 13 Accessing PostgreSQL from C Using libpq 385
CHAPTER 14 Accessing PostgreSQL from C Using Embedded SQL 419
CHAPTER 15 Accessing PostgreSQL fromPHP 445
CHAPTER 16 Accessing PostgreSQL from Perl 465
CHAPTER 17 Accessing PostgreSQL fromJava 491
CHAPTER 18 Accessing PostgreSQL fromC# 517
APPENDIX A PostgreSQL Database Limits 543
APPENDIX B PostgreSQL Data Typescccoviiiiiiiiiiinnn 545

iv

CONTENTS AT A GLANCE

APPENDIX C PostgreSQL SQL Syntax Reference 551
APPENDIX D psglReference ... 573
APPENDIX E Database Schemaand Tables 577
APPENDIX F Large Objects Supportin PostgreSQL 581

Contents

ADOULThE AUTNOIS . .. e e Xvii
About the Technical ReVIEWEr ..ot e i it aees Xix
ACKNOWIBAGMENTS ..ttt e e e XXi
IMtrOAUCHION ...t e e Xxiii
CHAPTER 1 Introductionto PostgreSQL 1
ProgrammingwithData i, 1
ConstantData.............oiiiiiiii e 2

Flat Files for Data Storagecooviiiiiiiii i, 2

Repeating Groups and Other Problems 3

What Is a Database Management System? 4

Database Modelscoviiiiiii i 4

Query Languagesovvrei e e 8

Database Management System Responsibilities 10

What Is PostgreSQL? ... 11

A Short History of PostgreSQL. ...t 12

The PostgreSQL Architecture ...l 13

Data Access with PostgreSQL. ...t 15

What IS Open SOUrCE? ..ottt 15

RESOUICES ...ttt e e i e e 16

CHAPTER 2 Relational Database Principles 17
Limitations of Spreadsheetst 17

Storing DatainaDatabaseccooiiiiiiiiiiiiii. 21

Choosing ColUMNSo e i 21

Choosing a Data Type for Each Column....................... 21

Identifying Rows Uniquelyccoiiiiiiinin..s. 22

Accessing DatainaDatabaseol 23

Accessing Data Acrossa Network 24

Handling Multiuser ACCESSovviiiii i 25

Slicingand DicingDatacocoiiii i 26

vi CONTENTS

CHAPTER 3

CHAPTER 4

Adding Information 28
Using Multiple Tables.ccoeiii et 28
Relating a Table with a Join Operation........................ 29

Designing Tablesot i 32
Understanding Some Basic Rules of Thumb................... 33
Creating a Simple Database Design.............covvvvnvennnn. 34
Extending Beyond Two Tablesccoeiitt. 35
Completing the Initial Design.ccoviiiiiiiin.. 37

Basic Data TYPeSccviiii i e 40

Dealing with the Unknown: NULLS ..., .. 41

Reviewing the Sample Databaseccoeiatt. 42

QUMM oot i i e i e i e e 42

Getting Started with PostgreSQL 43

Installing PostgreSQL on Linux and UNIX Systems 43
Installing PostgreSQL from Linux Binaries..................... 44
Anatomy of a PostgreSQL Installation 47
Installing PostgreSQL from the Source Code................... 49
Setting Up PostgreSQL on Linuxand UNIX 53

Installing PostgreSQL on Windowsccooviiiiin... 59
Using the Windows Installercooiiitt. 59
Configuring Client ACCESSo 64

Creating the Sample Databasecoviiiiiin..t. 64
Creating User Recordscooevviiin i 65
Creatingthe Databaseccooiiiiiiii .. 65
Creatingthe Tables ... 67
Removingthe Tables ..., 68
Populatingthe Tables. ... 69

QUMM ..ttt i e e e e e 72

AccessingYourData 73

USING PSOl ot e e 74
Starting Up on Linux Systems. ..., 74
Starting Up on Windows Systems.oovvint. 74
Resolving Startup Problems ..., 75

Using Some Basic psgl Commands 78

CHAPTER 5

CONTENTS
Using Simple SELECT StatementsL. 78
Overriding Column Names.cccoiiiiiiiiinn... 81
Controlling the Order of ROWS v 81
Suppressing Duplicates 83
Performing Calculations ..., 86
Choosing the ROWS . ..o v e e 87
Using More Complex Conditions...................cooiut.. 89
Pattern Matching ... 91
Limitingthe Results e 92
Checking for NULLcoiiiii i e 93
Checking Datesand TIMeSccvviiiieiiiiiiii i 94
Settingthe Timeand Date Stylecoiiiii it 94
Using Date and Time Functions 98
Working with Multiple Tablesot 100
Relating Two Tables...........ccviiiiiiii i 100
Aliasing Table Names.ccoiiiiiiii i, 105
Relating Three or More Tablesccovevnnn... 106
The SQL92 SELECT Syntaxccviviiiiiiiiiieiannnnn. 110
SUMMAIY ..t e i e i it e e 112
PostgreSQL Command-Line and Graphical Tools 113
0 | 113
Starting Psqgl ..o oo 114
Issuing Commands inpsql.........ccovviiie i 114
Working with the Command History......................... 115
SCrpting PSOl « v v vt 115
Examiningthe Database, 117
psql Command-Line Quick Reference 118
psql Internal Commands Quick Reference.................... 119
ODBC SetUD v et e 121
Installing the ODBC Driver............ccovveiiiiiiiennn... 121
CreatingaDataSourcecovveviniiieiininnnnnnns 123
pgAdmin . ..o e 125
Installing pgAdmin Il ... 125
UsingpgAdmin il 126
PhPPOAdMIN L. e 129
Installing phpPgAdmin 130

Using phpPgAdmin. ... 130

vii

viii CONTENTS

CHAPTER 6

CHAPTER 7

ReKall ... e 133
ConnectingtoaDatabaseccoovviiiiit, 134
Creating FOrmsSo e e 135
Building QUeriescoviii e e 136

MiCroSoft ACCESS .. v\ v v it e 137
Using Linked Tables...........coeiiiiiiii i 137
Entering Data and Creating Reports......................... 141

Microsoft EXCel ..o e e 142

Resources for PostgreSQLToolScooiieiiiiiinit, 146

QUMM ..t e i e i e i e 147

Datainterfacing ...l 149

Adding Datato the Databasecooiiiiiiiii.... 149
Using Basic INSERT Statements....................ovntt 149
Using Safer INSERT Statements 152
Inserting Data into Serial Columns.......................... 154
Inserting NULLValues ..., 158
Using the \copy Command...................ccoviiin... 159
Loading Data Directly from Another Application............... 162

Updating Data inthe Databasecccvviieeinn... 165
Using the UPDATE Statementoooaet. 165
Updating from Another Tablet 168

Deleting Data from the Databasecccovvvinan.. 169
Using the DELETE Statement.oi.l 169
Using the TRUNCATE Statement............................ 170

QUMM .ttt i i e i e i 171

Advanced Data Selection 173

Aggregate Functions e 173
The Count Function ... 174
The MinFunctionooo i e 182
The Max Function.............ccoiiiiiiii 183
The Sum Function. ... e 184
The AvgFunction ...t e 184

The SUDQUENY vt e e e i 185
Subqueries That Return Multiple Rows 187
Correlated Subqueriesccove it 188

Existence SUDQUENES. ..o vt i 191

CHAPTER 8

CHAPTER 9

CONTENTS
The UNION Join i 192
Self JOINS ..o e 194
OUtEr JOiNS .o 196
QUMM ..t e i e i e i e 200
Data Definition and Manipulation 201
Data TYPES . .t e e 201
The Boolean Data Typeccvvvieeiiii e 202
Character Data TypesS.covviii e i anen 204
Number Data Types ..o e 206
Temporal Data TypesS. vve i 209
Special Data TYpeS. ... v v 209
AITaYS. .ot e 210
Data Manipulationcco i e 212
Converting Between Data TypeS............ccoevvieinnnnn... 212
Functions for Data Manipulation 214
Magic Variables. 215
The OID Column . ..o e i 216
Table Managementt 217
Creating Tables.covivi i e 217
Using Column Constraintsoviiiiinn... 218
Using Table Constraints. ...t 222
Altering Table Structures. ... 223
Deleting Tables. ..o 227
Using Temporary Tablesccoiiiiiiiiinann.. 227
VWS i 228
Creating VIewsScoiiiii e 228
Deleting and Replacing Views. ... 231
Foreign Key Constraints ..o, 232
Foreign Key As a Column Constraint 233
Foreign Key As a Table Constraint 234
Foreign Key Constraint Options. ..o, 240
SUMMAIY ..t e i e i it e e 242
Transactionsand Locking 243
What Are Transactions?ccviiiiiiii it 243
Grouping Data Changes into Logical Units. 244
Concurrent Multiuser AccesstoData........................ 244
ACIDRUIES. ..ottt i e e e 246

Transaction Logscovviiii i e 247

ix

CONTENTS

CHAPTER 10

Transactions witha Single Userccoviiiiiiniinnn... 247
Transactions Involving Multiple Tables 250
Transactions and Savepointsccoeviiiiniinn.n, 251
Transaction Limitations, 254

Transactions with MultipleUsers ...t 255
Implementing Isolation. il 255
Changing the Isolation level.t 261
Using Explicit and Implicit Transactions. 261

LOCKING .+ttt e e 262
Avoiding Deadlocks ... 262
Explicit Locking.cooveii 264

QUMM ottt i e i e i e 266

Functions, Stored Procedures, and Triggers 267

L]0 1] £ 268
Operator Precedence and Associativity 269
Arithmetic Operatorscccoviiiiiiii i 270
Comparison and String Operators........................... 272
Other Operators.oovii i e e 273

Built-in Functions ... 273

Procedural Languagesc.ooeiiiiiiiiiii i 276
Getting Started with PL/pgSQLt 277
Function Overloadingc.viviiiiii i 279
Listing Functions.cco i e 281
Deleting Functions 281
QUOLING. . .o 281

Anatomy of a Stored Proceduret 282
Function Arguments. ... 283
CommeNtS 284
Declarations ... e e 284
ASSIGNMENES . .t 288
Execution Control Structures.cooiil. 289
Dynamic Queries. ... e e 297

SAL FUNCHIONS .« .ot i e i 298

THgOBIS ottt e e e e e 299
Defining a Trigger Procedure ..., 300
Creating Trggers « ..o ov et e 300

Why Use Stored Procedures and Triggers?coevvvvnnn.. 306

SUMMAIY ..t e i e i it e e 307

CHAPTER 11

CHAPTER 12

CONTENTS
PostgreSQL Administration 309
System Configuration ... 309
ThebinDirectory ... 310
The data Directory ... 311
Other PostgreSQL Subdirectories................ccovntt. 316
Database Initializationt 317
Server Control e e 318
Running Processes on Linuxand UNIX....................... 318
Starting and Stopping the Server on Linux and UNIX............ 319
PostgreSQL Internal Configuration 320
Configuration Methods..............ccoiviiii s, 320
User Configuration ..ot 321
Group Configuration 325
Tablespace Management................ ...t 326
Database Managementoiiiiiii .. 328
SchemaManagement ... 331
Privilege Management ... 337
Database Backup and Recoverycciiiviiiinin... 338
CreatingaBackupccooiiiiiiiii e 339
Restoring fromaBackup.............covveviiiiiiinn ... 3N
Backing Up and Restoring from pgAdminlll 343
Database Performance ... 347
Monitoring Behavior. ... 347
USiNgVACUUM i it i 348
Creating INdeXeS.oviri i i 352
SUMMAIY ..t i i e e e i 356
DatabaseDesignoi, 357
What Is a Good Database Design?cccvvvvieiinnnnn.. 357
Understanding the Problem................ ... 357
Taking Design Aspects into Account 358
Stages in Database Designc.coviiiiii i 360
Gathering Information. ...t 361
Developing a Logical Design.ccooveviiiiiiinnnn.. 361
Determining Relationships and Cardinality 366
Converting to a PhysicalModelccvviiiiiieinn... 37
Establishing Primary Keys ...t 372
Establishing Foreign Keys ..., 373

Establishing Data Types.covvii it 375

Xi

Xii

CONTENTS

CHAPTER 13

Completing the Table Definitions 377
Implementing Business Rules. ...t 377
Checkingthe Designcovviiiiii i 378
Normal FOrms e 378
FirstNormal Form..........ot 378
Second Normal Form ...t 379
ThirdNormal Form............co i 379
CommonPatternscoiiiiii i e 380
Many-to-Many. ... 380
Hierarchy e e 381
Recursive Relationships............. ...t 382
Resources for Database Designccoviiiiiiienn... 384
SUMMAIY ..t e i e i it e e 384
Accessing PostgreSQL from C Using libpq 385
Usingthe libpg Library ... 386
Making Database Connectionscccviviiiiiieeinnnn.. 387
Creating a New Database Connection 387
Usinga Makefile...........coiieiiiii it 390
Retrieving Information About Connection Errors............... 391
Learning About Connection Parameters...................... 391
Executing SQL with libpgove v 392
Determining Query Status 392
Executing Queries with PQexec. ..., 394
Creating a Variable Queryccooviiiiiiiiiiinn.. 396
Updating and Deleting Rowsccoiviiiini ... 396
Extracting Data from Query Results 397
Handling NULL Results. 400
Printing Query Results ... 401
Managing Transactionscccviiiiiiiiiiiennnnnnn. 404
USING CUISOMS .ottt e et 404
Fetching Allthe ResultsatOnce...............covviviinn.n, 406
Fetching ResultsinBatches 408
Dealing with Binary Valuesot 411
Working Asynchronously ...t 411
Executing a Query in Asynchronous Mode. 412
Canceling an Asynchronous Query............cocvvevvnenn... 415
Making an Asynchronous Database Connection............... 415

SUMMAIY ..t e i e i it e e 417

CHAPTER 14

CHAPTER 15

CONTENTS

Accessing PostgreSQL from C Using Embedded SQL ... 419

USING BT . v v et e et e 419
Writing anesqlc Program ..., 420
UsingaMakefile. ... 423
Using ecpg Arguments.oovviei i e 424

Logging SQL Executionccco i 425

Making Database Connectionsccoiviiiiina.n.. 425

ErrorHandling ... 427
Reporting Errorsove i e e 428
Trapping Errors. . ..o e 431

Using Host Variables ... 432
Declaring Fixed-Length Variable Types...................... 432
Working with Variable-Length Data 434

Retrieving Datawithecpg ... 436
Dealing with Null-Terminated Strings 437
Dealing with NULL Database Values. 438
Handling Empty Results.t 439

Implementing Cursors in Embedded SQL a41

Debuggingecpg Codec.ovviiiiii i e 443

SUMMAIY ..t i i e e e i 444

Accessing PostgreSQL fromPHP 445

Adding PostgreSQL SupporttoPHPl 445

Using the PHP APl for PostgreSQL ...t 446

Making Database Connectionsccooviiiiina.n.. 447
Creating a New Database Connection 447
Creating a Persistent Connectionccoovntt 448
Closing Connections.ovieii i 449
Learning More About Connectionsc.ovvvue.nn 449

Building QUeries ...t e 450
Creating Complex QUeries.coovvevieiiiininnnnns 451
Executing QUeries.covvie i 452

Working with Result Sets 452
Extracting Values from Result Sets.......................... 453
Getting Field Informationt 456
Freeing Result Sets. ..ot 457
Type Conversion of ResultValues. 458

ErrorHandling ... e 458

Getting and Setting Character Encodingcoovuitn. 459

xiii

Xiv

CONTENTS

CHAPTER 16

CHAPTER 17

USiNg PEAR .. . e e 459
Using PEAR’s Database Abstraction Interface................. 460
Error Handling With PEAR.o it 461
Preparing and Executing Queries with PEAR.................. 462

SUMMAIY ..ot e i e e i e i 463

Accessing PostgreSQL fromPerl 465

Installing Perl Modulesccoviiiiiii i 466
UsSing CPANot i e 466
USINg PPMo e e 467

Installingthe Perl DBl ... 468
Installing DBI and the PostgreSQL DBD on Windows........... 469
Installing DBI and the PostgreSQL DBD from Source. 471

USing DBI e 472
Making Database Connectionscovve... 473
Executing SQL. ... 477
Working with Result Sets. ... 478
Binding Parameters ... 481
Using Other DBI Features.cccovvviiiiinnnn., 483

Using DBIX::Easy ... e 484

Creating XML from DBl Queries...........c.ccoviiiiiiiiiennnn... 485
SALIO XML ..o 487
XMLtOSQL . ..o e 488

SUMMAIY ..t e i e i it e e 489

Accessing PostgreSQL fromJava 491

Using a PostgreSQL JDBC Drivercovvvviiiinnnnnnns. 491
Installing a PostgreSQL JDBC Drivercoutt 493
Using the Driver Interface and DriverManager Class 493

Making Database Connectionscccoiviiiiii.. 498
Creating Database Statements.......................oeet 498
Handling Transactions ..., 499
Retrieving Database MetaData. 500

Working with JDBCResult Setscccoviiiiiiiina.. 502
Getting the Result Set Type and Concurrency................. 502
Traversing Result Sets. ..., 503
Accessing Result SetData.ccoviiiinn . 504
Working with Updatable Result Sets 505

Using Other Relevant Methodst 507

CHAPTER 18

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

CONTENTS
Creating JDBC Statements ..., 507
Using Statements ... 508
Using Prepared Statements........................ooi.l 512
QUMM ..t e i e i e i e 516
Accessing PostgreSQL fromC# 517
Using the ODBC .NET Data Provider on Windows 517
Setting Up the ODBC .NET Data Provider..................... 517
Connectingtothe Databasecooiinn.. 518
Retrieving Data intoa Dataset.............................. 519
Using Npgsglin Mono ..o 520
Connecting to the Databasecciiuit 521
Retrieving Data from the Database.......................... 525
Using Parameters and Prepared Statements with Npgsaql. 532
Changing Data in the Database. 536
Using Npgsql in Visual Studioccoviiiiiiinnn.. 539
QUMM .ot i i e e e 540
PostgreSQL Database Limits 543
PostgreSQL Data Types 545
LOgical TYPES vttt i i i e e 545
Exact Number Typescciiiiiii e 546
Approximate Number Typesccoiiiiiiiiiii i 546
Temporal TYPES ..ottt e e 547
Character TYPES ..ot e i et e 547
GEOMETC TYPES vt i ettt i e i e 548
Miscellaneous PostgreSQL Typesovvviiieiii i 548
PostgreSQL SQL Syntax Reference 551
PostgreSQL SAL Commandsc.vivieiie i ieenns 551
PostgreSQL SQL Syntaxc.covviii i 552
psqlReferencecoo i, 573
Command-Line Optionsooviriii i 573

Internal Commands ...ttt e 574

Xv

XVi

CONTENTS
APPENDIX E Database SchemaandTables 577
APPENDIX F Large Objects Support in PostgreSQL 581
USINg LINKS ..t e i et 581

Using Encoded Text Stringscovvvi i 582

USINGBLOBS ..ttt 583

Importing and Exporting Images........................ ... 583

Remote Importing and ExportingoooalL. 585

Programming BLOBSc.oiiii i 586

INDEX .. 589

About the Authors

NEIL MATTHEW has been interested in and has programmed computers
since 1974. A mathematics graduate from the University of Nottingham,
Neil is just plain keen on programming languages and likes to explore
new ways of solving computing problems. He has written systems to
program in BCPL, FP (Functional Programming), Lisp, Prolog, and a
structured BASIC. He even wrote a 6502 microprocessor emulator to run
BBC microcomputer programs on UNIX systems.

In terms of UNIX experience, Neil has used almost every flavor since the
late 1970s, including BSD UNIX, AT&T System V, Sun Solaris, IBM AIX, and many others. Neil
has been using Linux since August 1993, when he acquired a floppy disk distribution of Soft
Landing (SLS) from Canada, with kernel version 0.99.11. He has used Linux-based computers
for hacking C, C++, Icon, Prolog, Tcl, and Java, at home and at work. Most of Neil’s home projects
were originally developed using SCO UNIX, but they've all ported to Linux with little or no trouble.
He says Linux is mush easier because it supports quite a lot of features from other systems, so
that both BSD- and System V-targeted programs will generally compile with little or no change.

As the head of software and principal engineer at Camtec Electronics in the 1980s, Neil
programmed in C and C++ for real-time embedded systems. Since then, he has worked on soft-
ware development techniques and quality assurance. After a spell as a consultant with Scientific
Generics, he is currently working as a systems architect with Celesio AG.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted
barn in Northamptonshire, England. His interests include solving puzzles by computer, music,
science fiction, squash, mountain biking, and not doing it yourself.

RICK STONES started programming at school, more years ago than he
cares to remember, on a 6502-powered BBC micro, which with the help
of a few spare parts, continued to function for the next 15 years. He grad-
uated from the University of Nottingham with a degree in Electronic
Engineering, but decided software was more fun.

Over the years, he has worked for a variety of companies, from the very
small, with just a dozen employees, to the very large, including the IT
services giant EDS. Along the way, he has worked on a range of projects,
from real-time communications to accounting systems, very large help desk systems, and more
recently, as the technical authority on a large EPoS and retail central systems program.

Xvii

xvili

ABOUT THE AUTHORS

Abit of a programming linguist, Rick has programmed in various assemblers, a rather neat
proprietary telecommunications language called SL-1, some FORTRAN, Pascal, Perl, SQL, and
smidgeons of Python and C++, as well as C. (Under duress, he even admits that he was once
reasonably proficient in Visual Basic, but tries not to advertise this aberration.)

Rick lives in a village in Leicestershire, England, with his wife Ann, children Jennifer and
Andrew, and two cats. Outside work, his main interest is classical music, especially early religious
music, and he even does his best to find time for some piano practice. He is currently trying to
learn to speak German.

About the Technical Reviewer

ROBERT TREAT is a long-time open-source user, developer, and advocate.
He has worked with a number of projects, but his favorite is certainly
PostgreSQL. His current involvement includes helping maintain the
postgresgl.org web sites, working on phpPgAdmin, and contributing to
the PostgreSQL core whenever he can. He has contributed several articles
: to the PostgreSQL “techdocs” site, was a presenter at OSCon 2004, worked
‘(" m as the PHP Foundry Admin on sourceforge.net, and has been recognized as
a Major Developer for his work within the PostgreSQL community.
Outside the free software world, Robert enjoys spending time with his three children, Robert,
Dylan, and Emma, and with his high school sweetheart-turned-wife, Amber.

Xix

Acknowledgments

We would like to thank the many people who helped to make this book possible.

Neil would like to thank his wife, Christine, for her understanding, and children Alex and
Adrian for not complaining too loudly at dad spending so long in The Den writing.

Rick would like to thank his wife, Ann, and children, Jennifer and Andrew, for their very
considerable patience during the evenings and weekends while dad was yet again “doing
book work.”

Special thanks must go to Robert Treat, our technical reviewer. We are indebted to him for
his excellent, detailed reviewing of our work and the many helpful comments and suggestions
he made.

We would also like to thank Jon Parise for writing the PHP chapter for us, and Meeraj and
Gavin for their kind permission to reuse some earlier material.

We are grateful to the entire Apress team for providing a smooth road from writing to produc-
tion. To Gary Cornell and Jason Gilmore for getting the project off the ground, Sofia Marchant
for coping admirably with a project schedule that initially appeared to require time travel,
Nancy Wright for the transfer of material from the first edition, Marilyn Smith for first-class
copy editing, Katie Stence for production editing, and Jason (again) for his editor role. We’ve
learned a lot more about how books get made, and this one is certainly a better book than it
would have been without this team’s efforts.

Thanks are also due to the PostgreSQL development team for creating such a strong data-
base system, allowing us to cover a great deal of SQL with an open-source product.

We would also like to thank our employer, Celesio, for support during the production of
both editions of this book.

XXi

Introduction

Welcome to Beginning Databases with PostgreSQL.

Early in our careers, we came to recognize the qualities of open-source software. Not only
is it often completely free to use, but it can also be of extremely high quality. If you have a problem,
you can examine the source code to see how it works. If you find a bug, you can fix it yourself or
pass it on to someone else to fix it for you. We have been working with open-source software
since 1978 or so, including using the wonderful GNU tools, including GNU Emacs and GCC.
We started using Linux in 1993 and have been delighted to be able to create a complete, free
computing environment using a Linux kernel and the GNU tools, together with the X Window
System, to provide a graphical user interface. PostgreSQL fits beautifully with this, providing an
exceptional database system that adheres to the same open-source principles. (For more on
open source and the freedom it can bring, please visit http://www.opensource.org.)

Databases are remarkably useful things. Many people find a “desktop database” useful for
small applications in the office and around the home. Many web sites are data-driven, with
content being extracted from databases behind the web server. As databases are becoming
ubiquitous, we feel that there is a need for a book that includes some database theory and
teaches good practice.

We have written this book to be a general introduction to databases, with broad coverage
of the range of capabilities that modern, relational database systems have and how to use them
effectively. With PostgreSQL as their database system, no one has an excuse for not doing
things “properly.” It supports good database design, is resilient and scalable, and runs on just
about every type of computer you can think of, including Linux, UNIX, Windows, Mac OS X,
AIX, Solaris, and HP-UX.

Oh, in case you were wondering, PostgreSQL is pronounced “post-gres-cue-el” (not
“post-gray-ess-cue-el”).

The bookis roughly divided into thirds. The first part covers getting started, both with data-
bases in general (what they are and what they are useful for) and with PostgreSQL in particular
(how to obtain it, install it, start it, and use it). If you follow along with the examples, by the end
of Chapter 5, you will have built your first working database and be able to use several tools to
do useful things with it, such as entering data and executing queries.

The second part of the book explores in some depth the heart of relational databases: the
query language SQL. Through sample programs and “Try It Out” sections, you will learn many
aspects of database programming, ranging from simple data insertions and updates, through
powerful types of queries, to extending the database server functionality with stored procedures
and triggers. A great deal of the material in this section is database-independent, so knowledge
gained here will stand you in good stead if you need to develop with another type of database.
Of course, all of the material is illustrated with examples using PostgreSQL and a sample data-
base. Chapters on PostgreSQL system administration and good practice in database design
complete this section.

XXiii

XXiv

INTRODUCTION

The third part of the book concentrates on harnessing the power of PostgreSQL in your
own programs. These chapters cover connecting to a database, executing queries, and dealing
with the results using a wide range of programming languages. Whether you are developing a
dynamic web site with PHP or Perl, an enterprise application in Java or C#, or a client program
in C, you will find a chapter to help you.

This is the second edition of Beginning Databases with PostgreSQL; the first edition was
published by Wrox Press in 2001. Since then, every chapter has been updated with material to
cover the latest version of PostgreSQL, version 8. We have taken the opportunity in this edition
to add a new chapter on accessing PostgreSQL from the C# language to complement revised
chapters covering C, Perl, PHP, and Java.

CHAPTER 1

Introduction to PostgreSQL

This book is all about one of the most successful open-source software products of recent
times, arelational database called PostgreSQL. PostgreSQL is finding an eager audience among
database aficionados and open-source developers alike. Anyone who is creating an application
with nontrivial amounts of data can benefit from using a database. PostgreSQL is an excellent
implementation of a relational database, fully featured, open source, and free to use.

PostgreSQL can be used from just about any major programming language you care to
name, including C, C++, Perl, Python, Java, Tcl, and PHP. It very closely follows the industry
standard for query languages, SQL92, and is currently implementing features to increase
compliance with the latest version of this standard, SQL:2003. PostgreSQL has also won several
awards, including the Linux Journal Editor’s Choice Award for Best Database three times (for
the years 2000, 2003, and 2004) and the 2004 Linux New Media Award for Best Database System.

We are perhaps getting a little ahead of ourselves here. You may be wondering what exactly
PostgreSQL is, and why you might want to use it.

In this chapter, we will set the scene for the rest of the book and provide some background
information about databases in general, the different types of databases, why they are useful,
and where PostgreSQL fits into this picture.

Programming with Data

Nearly all nontrivial computer applications manipulate large amounts of data, and a lot of
applications are written primarily to deal with data rather than perform calculations. Some
writers estimate that 80% of all application development in the world today is connected in
some way to complex data stored in a database, so databases are a very important foundation
to many applications.

Resources for programming with data abound. Most good programming books will
contain chapters on creating, storing, and manipulating data. Three of our previous books
(published by Wrox Press) contain information about programming with data:

* Beginning Linux Programming, Third Edition (ISBN 0-7645-4497-7) covers the DBM
library and the MySQL database system.

* Professional Linux Programming (ISBN 1-861003-01-3) contains chapters on the
PostgreSQL and MySQL database systems.

* Beginning Databases with MySQL (ISBN 1-861006-92-6) covers the MySQL database
system.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Constant Data

Data comes in all shapes and sizes, and the ways that we deal with it will vary according to the
nature of the data. In some cases, the data is simple—perhaps a single number such as the
value of & that might be built into a program that draws circles. The application itself may have
this as a hard-coded value for the ratio of the circumference of a circle to its diameter. We call
this kind of data constant, as it will never need to change.

Another example of constant data is the exchange rates used for the currencies of some Euro-
pean countries. In so-called “Euro Land,” the countries that are participating in the single
European currency (euro) fixed the exchange rates between their national currencies to six
decimal places. Suppose we developed a Euro Land currency converter application. It could
have a hard-coded table of currency names and base exchange rates, the numbers of national
units to the euro. These rates will never change. We are not quite finished though, as it is
possible for this table of currencies to grow. As countries sign up for the euro, their national
currency exchange rate is fixed, and they will need to be added to the table. When that
happens, the currency converter needs to be changed, its built-in table changed, and the
application rebuilt. This will need to be done every time the currency table changes.

A better method would be to have the application read a file containing some simple
currency data, perhaps including the name of the currency, its international symbol, and
exchange rate. Then we can just alter the file when the table needs to change, and leave the
application alone.

The data file that we use has no special structure; it’s just some lines of text that mean
something to the particular application that reads it. It has no inherent structure. Therefore we
call it a flat file. Here’s what our currency file might look like:

France FRF 6.559570
Germany DEM 1.955830
Italy ITL 1936.270020

Belgium BEF 40.339901

Flat Files for Data Storage

Flat files are extremely useful for many application types. As long as the size of the file remains
manageable, so that we can easily make changes, a flat file scheme may be sufficient for our
needs.

Many systems and applications, particularly on UNIX platforms, use flat files for their data
storage or data interchange. An example is the UNIX password file, which typically has lines
that look like this:

neil:*:500:100:Neil Matthew:/home/neil:/bin/bash
nick:*:501:100:Rick Stones:/home/rick:/bin/bash

These examples consist of a number of elements of information, or attributes, together
making up a record. The file is arranged so that each line represents a single record, and the
whole file acts to keep the related records together. Sometimes this scheme is not quite good
enough, however, and we need to add extra features to support the job the application must do.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Repeating Groups and Other Problems

Suppose that we decide to extend the currency exchange rate application (introduced earlier in
the chapter) to record the language spoken in each country, together with its population and
area. In a flat file, we essentially have one record per line, each record made up of several
attributes. Each individual attribute in a record is always in the same place; for example, the
currency symbol is always the second attribute. So, we could think of looking at the data by
columns, where a column is always the same type of information.

To add the language spoken in a particular country, we might think that we just need to
add a new column to each of our lines. We hit a snag with this as soon as we realize that some
countries have more than one official language. So, in our record for Belgium, we would need
to include both Flemish and French. For Switzerland, we would need to add four languages.
The flat file would now look something like this:

France FRF 6.559570 French 60424213 547030

Germany DEM 1.955830 German 82424609 357021

Italy ITL 1936.270020 Italian 58057477 301230

Belgium BEF 40.339901 Flemish French 10348276 30528

Switzerland CHF 1.5255 German French Ttalian Romansch 7450867 41290

This problem is known as repeating groups. We have the situation where a perfectly valid
item (language) can be repeated in a record, so not only does the record (row) repeat, but the
data in that row repeats as well. Flat files do not cope with this, as it is impossible to determine
where the languages stop and the rest of the record starts. The only way around this is to add
some structure to the file, and then it would not be a flat file anymore.

The repeating groups problem is very common and is the issue that really started the drive
toward more sophisticated database management systems. We can attempt to resolve this
problem by using ordinary text files with a little more structure. These are still often referred to
as flat files, but they are probably better described as structured text files.

Here’s another example. An application that stores the details of DVDs might need to
record the year of production, director, genre, and cast list. We could design a file that looks a
little like a Windows . ini file to store this information, like this:

[2001: A Space Odyssey]
year=1968
director=Stanley Kubrick
genre=science fiction
starring=Keir Dullea
starring=Leonard Rossiter

[Toy Story]

We have solved the repeating groups problem by introducing some tags to indicate the
type of each element in the record. However, now our application must read and interpret a
more complex file just to get its data. Updating a record and searching in this kind of structure
can be quite difficult. How can we make sure that the descriptions for genre or classification are
chosen from a specific subset? How can we easily produce a sorted list of Kubrick-directed films?

CHAPTER 1 INTRODUCTION TO POSTGRESQL

As datarequirements become increasingly complex, we are forced to write more and more
application code for reading and storing our data. If we extend our DVD application to include
information useful to a DVD rental store owner—such as membership details, rentals, returns,
and reservations—the prospect of maintaining all of that information in flat files becomes
very unappealing.

Another common problem is simply that of size. Although the structured text file could be
scanned by brute force to answer complex queries such as, “Tell me the addresses of all my
members who have rented more than one comedy movie in the last three months,” not only
will it be very difficult to code, but the performance will be dire. This is because the application
has no choice but to process the whole file to look for any piece of information, even if the
question relates to just a single entry, such as “Who starred in 2001: A Space Odyssey?”

What we need is a general-purpose way of storing and retrieving data, not a solution
invented many times to fit slightly different, but very similar, problems as in a generic data-
handling system.

What we need is a database and a database management system.

What Is a Database Management System?

The Merriam-Webster online dictionary (http://www.merriam-webster.com) defines a database
as a usually large collection of data organized especially for rapid search and retrieval (as by
a computer).

A database management system (DBMS) is usually a suite of libraries, applications, and
utilities that relieve an application developer from the burden of worrying about the details of
storing and managing data. It also provides facilities for searching and updating records. DBMSs
come in a number of flavors developed over the years to solve particular kinds of data-storage
problems.

Database Models

During the 1960s and 1970s, developers created databases that solved the repeating groups
problem in several different ways. These methods result in what are termed models for database
systems. Research performed at IBM provided much of the basis for these models, which are
still in use today.

A main driver in early database system designs was efficiency. One of the common ways to
make systems more efficient was to enforce a fixed length for database records, or at least have
a fixed number of elements per record (columns per row). This essentially avoids the repeating
group problem. If you are a programmer in just about any procedural language, you will readily
see that in this case, you can read each record of a database into a simple C structure. Real life
is rarely that accommodating, so we need to find ways to deal with inconveniently structured
data. Database systems designers did this by introducing different database types.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Hierarchical Database Model

The IMS database system from IBM in the late 1960s introduced the hierarchical model for
databases. In this model, considering data records to be composed of collections of others
solves the repeating groups problem.

The model can be compared to a bill of materials used to describe how a complex manu-
factured product is composed. For example, let’s say a car is composed of a chassis, a body, an
engine, and four wheels. Each of these major components is broken down further. An engine
comprises some cylinders, a cylinder head, and a crankshaft. These components are broken
down further until we get to the nuts and bolts that make up every part in an automobile.

Hierarchical model databases are still in use today, including Software AG’s ADABAS.

A hierarchical database system is able to optimize the data storage to make it more efficient
for particular questions; for example, to determine which automobile uses a particular part.

Network Database Model

The network model introduces the idea of pointers within the database. Records can contain
references to other records. So, for example, you could keep a record for each of your company’s
customers. Each customer has placed many orders with you over time (a repeating group). The
data is arranged so that the customer record contains a pointer to just one order record. Each
order record contains both the order data for that specific order and a pointer to another
order record.

Returning to our currency application, we might end up with record structures that look a
little like those shown in Figure 1-1.

CountryName Symbol Rate LangPtr

Language LangPtr

Figure 1-1. Currency application record types

Once the data is loaded, we end up with a linked (hence, the name network model) list
used for the languages, as shown in Figure 1-2. The two different record types shown here
would be stored separately, each in its own table.

Of course, to be more efficient in terms of storage, the actual database would not repeat
the language names over and over again, but would probably contain a third table of language
names, together with an identifier (often a small integer) that would be used to refer to the
language name table entry in the other record types. This is called a key.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

France FRF 6.56 > French NIL

Belgium BEF 40.34

Y

French
4

K

Flemish NIL

Figure 1-2. Currency application data structure

A network model database has some strong advantages. If you need to discover all of the
records of one type that are related to a specific record of another type (in this example, the
languages spoken in a country), you can find them extremely quickly by following the pointers
from the starting record.

There are, however, some disadvantages, too. If you want to list the countries that speak
French, you need to follow the links from all of the country records, which for large databases
will be extremely slow. This can be fixed by having other linked lists of pointers specifically for
languages, but it rapidly becomes very complex and is clearly not a general-purpose solution,
since you need to decide in advance how the pointers will be designed. Writing applications
that use a network model database can also be very tiresome, as the application typically must
take responsibility for setting up and maintaining the pointers as records are updated and deleted.

Relational Database Model

The theory of DBMSs took a gigantic leap forward in 1970 with the publication of “A Relational
Model of Data for Large Shared Data Banks,” a paper by E. F. Codd (see http://www.acm.org/
classics/nov95/toc. html). Thisrevolutionary paper introduced the idea of relations and showed
how tables could be used to represent facts that relate to real-world objects, and therefore, hold
data about them.

By this time, it had also become clear that the initial driving force behind database design,
efficiency, was often less important than another concern: data integrity. The relational model
emphasizes data integrity much more than either of the earlier models. Referential integrity
refers to making sure that data in the database makes sense at all times, so that, for example, all
orders have customers. (We will have much more to say about integrity in Chapter 12, when we
cover database design.)

Records in a table in a relational database are known as tuples, and this is the terminology
you will see used in some parts of the PostgreSQL documentation. A tuple is an ordered group
of components, or attributes, each of which has a defined type.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Several important rules define a relational database management system (RDBMS). All tuples
must follow the same pattern, in that they all have the same number and types of components.
Here is an example of a set of tuples:

{"France", "FRF", 6.56}
{"Belgium", "BEF", 40.34}

Each of these tuples has three attributes: a country name (string), a currency (string), and
an exchange rate (a floating-point number). In arelational database, all records that are added
to this set, or table, must follow the same form, so the following are disallowed:

{"Germany", "DEM"}

This has too few attributes.

{"Switzerland", "CHF", "French", "German", "Italian", "Romansch"}
This has too many attributes.

{1936.27, "ITL", "Italy"}

This has incorrect attribute types (wrong order).

Furthermore, in any table of tuples, there should be no duplicates. This means that in any
table in a properly designed relational database, there cannot be any identical rows or records.
This might seem to be a rather draconian restriction. For example, in a system that records
orders placed by customers, it would appear to disallow the same customer from ordering the
same product twice. In the next chapter, we will see that there is an easy way to work around
this requirement, by adding an attribute.

Each attribute in a record must be atomic; that is, it must be a single piece of data, not
another record or a list of other attributes. Also, the type of corresponding attributes in every
record in the table must be the same. Technically, this means that they must be drawn from the
same set of values or domain. In practical terms, it means they will all be a string, an integer, a
floating-point value, or some other type supported by the database system.

The attribute (or attributes) used to distinguish a particular record in a table from all the
other records in a table is called a primary key. In a relational database, each relation, or table,
must have a primary key for each record to make it unique—different from all the others in that
table.

One last rule that determines the structure of a relational database is referential integrity.
As we noted earlier, this is a desire that all of the records in the database make sense at all times.
Database application programmers must be careful to make sure that their code does not
break the integrity of the database. Consider what happens when we delete a customer. If we
try to remove the customer from the customer relation, we also need to delete all of his orders
from the orders table. Otherwise, we will be left with records about orders that have no valid
customer.

We will see much more on the theory and practice of relational databases in later chapters.
For now, it is enough to know that the relational model for databases is based on some mathe-
matical concepts of sets and relations, and that there are some rules that need to be observed
by systems that are based on this model.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Query Languages

RDBMSs offer ways to add and update data, of course, but their real power stems from their
ability to allow users to ask questions about the data stored, in the form of queries. Unlike many
earlier database designs, which were often structured around the type of question that the data
needed to answer, relational databases are much more flexible at answering questions that
were not known at the time the database was designed.

Codd’s proposals for the relational model use the fact that relations define sets, and sets
can be manipulated mathematically. He suggested that queries might use a branch of theoretical
logic called the predicate calculus, and that query languages would use this as their base. This
would bring unprecedented power for searching and selecting data sets. Modern database
systems, including PostgreSQL, hide all the mathematics behind an expressive and easy-to-
learn query language.

One of the first implementations of a query language was QUEL, used in the Ingres data-
base developed in the late 1970s. Another query language that takes a different approach is
QBE (Query By Example). At around the same time a team at IBM’s research center developed
SQL (Structured Query Language), usually pronounced “sequel.”

SQL Standards and Variations

SQL has become very widely adopted as a standard for database query languages and is defined
in a series of international standards. The most commonly used definition is ISO/IEC 9075:1992,
“Database Language SQL.” This is more simply referred to as SQL92. These standards replaced
an earlier standard, SQL89. The latest version of the SQL standard is ISO/IEC 9075:2003, more
simply referred to as SQL:2003.

At present, most RDBMSs comply with the SQL92 version of the standard, or sometimes
ANSI X3.135-1992, which is an identical United States standard differing only in some cover
pages. There are three levels of conformance to SQL92: Entry SQL, Intermediate SQL, and Full
SQL. By far, the most common conformance level is Entry SQL.

Note PostgreSQL is very close to SQL92: Entry SQL conformance, with only a few slight differences.
The developers keep a close eye on standards compliance, and PostgreSQL becomes more compliant with
each release.

Today, just about every useful database system supports SQL to some extent. In theory,
SQL acts as a good unifier, since database applications written to use SQL as the interface to the
database can be ported to other database systems with little cost in terms of time and effort.
Commercial pressures however, dictate that database manufacturers distinguish their products
one from another. This has led to SQL variations, not helped by the fact that the standard for
SQL does not define commands for many of the database administration tasks that are an
essential part of using a database in the real world. So, there are differences between the SQL
used by Oracle, SQL Server, PostgreSQL, and other database systems.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

SQL Command Types

The SQL language comprises three types of commands:

e Data Manipulation Language (DML): This is the part of SQL that you will use 90% of the
time. It is made up of the commands for inserting, deleting, updating, and selecting data
from the database.

* Data Definition Language (DDL): These are the commands for creating tables, defining
relationships, and controlling other aspects of the database that are more structural
than data related.

* Data Control Language (DCL): This is a set of commands that generally control permis-
sions on the data, such as defining access rights. Many database users will never use
these commands, because they work in larger company environments where one or
more database administrators are employed specifically to manage the database, and
usually one of their roles is to control permissions.

A Brief Introduction to SQL

You will see a lot of SQL in this book. Here, we will take a brief look at some examples as an
introduction. We will see that we do not need to worry about the formal basis of SQL to be able
to use it.

Here is some SQL for creating a new table in a database. This example creates a table
for customers:

CREATE TABLE customer

(
customer_id serial,
title char(4),
fname varchar(32),
1name varchar(32) not null,
addressline varchar(64),
town varchar(32),
zipcode char(10) not null,
phone varchar(16),
)5

We state that the table requires an identifier, which will act as a primary key, and that this
is to be generated automatically by the database system. It has type serial, which means that
every time a customer is added, a new, unique customer_id will be created in sequence. The
customer title is a text attribute of four characters, and zipcode has ten characters. The other
attributes are variable-length strings up to a defined maximum length, some of which must be
present (those marked not null).

Next, we have some SQL statements that can be used to populate the table we have just
created. These are very straightforward:

10

CHAPTER 1 INTRODUCTION TO POSTGRESQL

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Neil', 'Matthew', 'S Pasture Lane', 'Nicetown','NT3 7RT','267 1232');

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Richard', 'Stones','34 Holly Way', 'Bingham','BG4 2WE','342 5982');

The heart of SQL is the SELECT statement. It is used to create result sets that are groups of
records (or attributes from records) that match a particular set of criteria. The criteria can be
quite complex if required. These result sets can then be used as the targets for changes with an
UPDATE statement or deleted with a DELETE statement.

Here are some examples of SELECT statements:

SELECT * FROM customer

SELECT * FROM customer, orderinfo
WHERE orderinfo.customer id = customer.customer id GROUP BY customer id

SELECT customer.title, customer.fname, customer.lname,
COUNT (orderinfo.orderinfo_id) AS "Number of orders"”
FROM customer, orderinfo
WHERE customer.customer id = orderinfo.customer id
GROUP BY customer.title, customer.fname, customer.lname

These SELECT statements list all the customers, all the customer orders, and count the
orders each customer has made, respectively. We will see the results of these SQL statements in
Chapter 2, and learn much more about SELECT in Chapter 4.

Note SQL command keywords such as SELECT and INSERT are case-insensitive, so they can be written
in either uppercase or lowercase. In this book, we have used uppercase to aid readability.

As you read through this book, we will be teaching you SQL, so by the time you get to the
end, you will be comfortable with a wide range of SQL statements and how to use them.

Database Management System Responsibilities

As we stated earlier, a DBMS is a suite of programs that allow the construction of databases and
applications that use them. The responsibilities of a DBMS include the following:

¢ Creating the database: Some systems will manage one large file and create one or more
databases inside it; others may use many operating system files or use a raw disk partition
directly. Users need not worry about the low-level structure of these files, as the DBMS
provides all of the access developers and users need.

¢ Providing query and update facilities: A DBMS will have a method of asking for data
that matches certain criteria, such as all orders made by a particular customer that have
not yet been delivered. Before the widespread introduction of the SQL standard, the way
that queries like this were expressed varied from system to system.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Multitasking: If a database is used in several applications, or is accessed concurrently by
several users at the same time, the DBMS will make sure that each user’s request is
processed without impacting the others. This means that users need to wait in line only
if someone else is writing to the precise item of data that they wish to read (or write). Itis
possible to have many simultaneous reads of data going on at the same time. In practice,
different database systems support different degrees of multitasking, and may even have
configurable levels, as we will see in Chapter 9.

Maintaining an audit trail: A DBMS will keep a log of all the changes to the data for a
period of time. This can be used to investigate errors, but perhaps even more important,
can be used to reconstruct data in the event of a fault in the system, perhaps an unscheduled
power down. A data backup and an audit trail of transactions can be used to completely
restore the database in case of disk failure.

Managing the security of the database: A DBMS will provide access controls so that only
authorized users can manipulate the data held in the database and the structure of the
database itself (the attributes, tables, and indices). Typically, there will be a hierarchy of
users defined for any particular database, from a superuser who can change anything,
through users with permission to add or delete data, down to users who can only read
data. The DBMS will have facilities to add and delete users, and specify which features of
the database system they are able to use.

Maintaining referential integrity: Many database systems provide features that help to
maintain referential integrity—the correctness of the data, as mentioned earlier. They
will report an error when a query or update would break the relational model rules.

What Is PostgreSQL?

Now we are in a position to say what PostgreSQL actually is. It is a DBMS that incorporates the
relational model for its databases and supports the SQL standard query language.

PostgreSQL also happens to be very capable and very reliable, and it has good performance
characteristics. It runs on just about any UNIX platform, including UNIX-like systems, such as
FreeBSD, Linux, and Mac OS X. It can also run on Microsoft Windows NT/2000/2003 servers,
or even on Windows XP for development. And, as we mentioned at the beginning of this chapter,
it’s free and open source.

PostgreSQL can be compared favorably to other DBMSs. It contains just about all the
features that you would find in other commercial or open-source databases, and a few extras
that you might not find elsewhere.

PostgreSQL features (as listed in the PostgreSQL FAQ) include the following:

Transactions

Subselects

Views

Foreign key referential integrity

Sophisticated locking

11

12 CHAPTER 1 INTRODUCTION TO POSTGRESQL

* User-defined types

¢ Inheritance

* Rules

e Multiple-version concurrency control

Since release 6.5, PostgreSQL has been very stable, with a large series of regression tests
performed on each release to ensure its stability. The release of the 7.x series brought conform-
ance to SQLI2 closer than ever, and an irksome row-size restriction was removed.

The release of PostgreSQL that we used in this book, version 8, added several new features:

* Native Microsoft Windows version
¢ Table spaces

¢ Ability to alter column types

¢ Point-in-time recovery

PostgreSQL has proven to be very reliable in use. Each release is very carefully controlled,
and beta releases are subject to at least a month’s testing. With a large user community and
universal access to the source code, bugs can get fixed very quickly.

The performance of PostgreSQL has been improving with each release, and the latest
benchmarks show that, in some circumstances, it compares well with commercial products.
Some less fully featured database systems will outperform it at the cost of lower overall function-
ality. Then again, for simple enough applications, so will a flat-file database!

A Short History of PostgreSQL

PostgreSQL can trace its family tree back to 1977 at the University of California at Berkeley
(UCB). A relational database called Ingres was developed at UCB between 1977 and 1985.
Ingres was a popular UCB export, making an appearance on many UNIX computers in the
academic and research communities. To serve the commercial marketplace, the code for
Ingres was taken by Relational Technologies/Ingres Corporation and became one of the first
commercially available RDBMSs.

Note Today, Ingres has become CA-INGRES I, a product from Computer Associates. Interestingly, it has
been recently released under an Open Source license.

CHAPTER 1 INTRODUCTION TO POSTGRESQL 13

Meanwhile, back at UCB, work on a relational database server called Postgres continued
from 1986 to 1994. Again, this code was taken up by a commercial company and offered for sale
as aproduct. This time it was Illustra, since swallowed up by Informix. Around 1994, SQL features
were added to Postgres, and its name was changed to Postgres95.

By 1996, Postgres was becoming very popular, and the developers decided to open up its
development to a mailing list, starting what has become a very successful collaboration of
volunteers driving Postgres forward. At this time, Postgres underwent its final name change,
ditching the dated “95” tag for a more appropriate “SQL,” to reflect the support Postgres now
has for the query language standard. PostgreSQL was born.

Today, a team of Internet developers develops PostgreSQL in much the same manner as
other open-source software such as Perl, Apache, and PHP. Users have access to the source
code and contribute fixes, enhancements, and suggestions for new features. The official
PostgreSQL releases are made via http://www.postgresql.org.

Commercial support is available from several companies. See the list at http://
techdocs.postgresql.org/companies. php.

The PostgreSQL Architecture

One of PostgreSQL’s strengths derives from its architecture. In common with commercial
database systems, PostgreSQL can be used in a client/server environment. This has many
benefits for both users and developers.

The heart of a PostgreSQL installation is the database server process. It runs on a single
server. Applications that need to access the data stored in the database are required to do so via
the database process. These client programs cannot access the data directly, even if they are
running on the same computer as the server process.

Note PostgreSQL does not yet have the high-availability features of a few enterprise-class commercial
database systems that can spread the load across several servers, giving additional scalability and resilience.
There are some PostgreSQL-sanctioned projects underway at http://gborg.postgresql.org that aim
to add these features, and there are some commercial solutions available.

This separation into client and server allows applications to be distributed. You can use a
network to separate your clients from your server and develop client applications in an envi-
ronment that suits the users. For example, you might implement the database on UNIX and
create client programs that run on Microsoft Windows. Figure 1-3 shows a typical distributed
PostgreSQL application.

14

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Linux Connect

U Client ' »| Postmaster | | €——

Acc? SN

Database
Windows Client

0DBC

Server

Multiple Clients Multiple Simultaneous Access

Figure 1-3. PostgreSQL architecture

In Figure 1-3, you can see several clients connecting to the server across a network. For
PostgreSQL, this needs to be a TCP/IP network—a local area network (LAN) or possibly even
the Internet. Each client connects to the main database server process (shown as postmaster in
Figure 1-3), which creates a new server process specifically for servicing access requests for this
client.

Concentrating the data handling in a server, rather than attempting to control many clients
accessing the same data stored in a shared directory on a server, allows PostgreSQL to efficiently
maintain the data’s integrity, even with many simultaneous users.

The client programs connect using a message protocol specific to PostgreSQL. It is possible,
however, to install software on the client that provides a standard interface for the application
to work to, such as the Open Database Connectivity (ODBC) standard or the Java Database
Connectivity JDBC) standard used by Java programs. The availability of an ODBC driver allows
many existing applications to use PostgreSQL as a database, including Microsoft Office products
such as Excel and Access. You will see examples of different PostgreSQL connection methods
in Chapters 3, 5, and 13 through 18.

The client/server architecture for PostgreSQL allows a division of labor. A server machine
well suited to the storage and access of large amounts of data can be used as a secure data
repository. Sophisticated graphical applications can be developed for the clients. Alternatively,
a web-based front-end can be created to access the data and return results as web pages to a
standard web browser, with no additional client software at all. We will return to these ideas in
Chapters 5 and 15.

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Data Access with PostgreSQL

With PostgreSQL, you can access your data in several ways:

¢ Use acommand-line application to execute SQL statements. We will do this throughout
the book.

¢ Embed SQL directly into your application (using embedded SQL). We will see how to do
this for C applications in Chapter 14.

e Use function calls (APIs) to prepare and execute SQL statements, scan result sets, and
perform updates from a large variety of different programming languages. Chapter 13
covers C language APIs for PostgreSQL.

e Access the data in a PostgreSQL database indirectly using a driver such as ODBC (see
Chapter 3) or the JDBC standard (see Chapter 17), or by using a standard library such as
Perl’s DBI (see Chapter 16).

What Is Open Source?

As we start the twenty-first century, much is being made of open-source software, of which
PostgreSQL is such a good example. But what does open source mean exactly?

The term open source has a very specific meaning when applied to software. It means that
the software is supplied with the source code included. It does not necessarily mean that there
are no conditions applied to the software’s use. It is still licensed in that you are given permission to
use the software in certain ways.

An Open Source license will grant you permission to use the software, modify it, and redis-
tribute it without paying license fees. This means that you may use PostgreSQL in your
organization as you see fit.

If you have problems with open-source software, because you have the source code, you
can either fix them yourself or give the code to someone else to try to fix. There are now many
commercial companies offering support for open-source products, so that you do not have to
feel neglected if you choose to use an open-source product.

There are many different variations on Open Source licenses, some more liberal than others.
All of them adhere to the principle of source code availability and allowing redistribution.

The most liberal license is the Berkeley Software Distribution (BSD) license, which says in
effect, “Do what you will with this software. There is no warranty.” The license for PostgreSQL
(http://www.postgresql.org/about/licence) echoes the BSD license sentiments and takes the
form of a copyright statement that says, “Permission to use, copy, modify, and distribute this
software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following
two paragraphs appear in all copies.” The paragraphs that follow this statement disclaim
liability and warranty.

15

16

CHAPTER 1 INTRODUCTION TO POSTGRESQL

Resources

There are many printed and online sources of further information about databases in general
and about PostgreSQL.

For more on the theory of databases, check out the Database Theory section of David Frick’s
site at http://www.frick-cpa.com/ss7/default.htm.

The official PostgreSQL site is http://www.postgreSQL.org, where you can find more on
the history of PostgreSQL, download copies of PostgreSQL, browse the official documentation,
and much more besides (including learning how to pronounce PostgreSQL).

PostgreSQL is also the foundation of the former Red Hat Database, now known as PostgreSQL-
Red Hat Edition. You can find more on this version of PostgreSQL and tools developed for it
by Red Hat at http://sources.redhat.com/rhdb/.

For more information about open-source software and the principle of freedom in software,
take a few moments to visit these two sites: http://www.gnu.org and http://www.opensource.org.

CHAPTER 2

Relational Database Principles

In this chapter, we will examine what makes a database system, particularly a relational one
like PostgreSQL, so useful for real-world data. We will start by looking at spreadsheets, which
have much in common with relational databases but also have significant limitations. We will
learn how a relational database, such as PostgreSQL, has many advantages over spreadsheets.
Along the way, we will continue our rather informal look at SQL.

In particular, this chapter will cover the following topics:

» Spreadsheets: their problems and limitations
* How databases store data

* How to access data in a database

* Basic database design, with multiple tables

* Relationships between tables

* Some basic data types

¢ The NULL token, used to indicate an unknown value

Limitations of Spreadsheets

Spreadsheet applications, such as Microsoft Excel, are widely used as a way of storing and
inspecting data. It’s easy to sort the data in different ways, and see the features and patterns in
the data just by looking at it.

Unfortunately, people often mistake a tool that is good for inspecting and manipulating
data for a tool suitable for storing and sharing complex and perhaps business-critical data. The
two needs are often very different.

Most people will be familiar with one or more spreadsheets and quite at home with data
being arranged in a set of rows and columns. Figure 2-1 shows a typical example—an OpenOffice
(http://www.openoffice.org/) spreadsheet holding data about customers.

17

18 CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

B customers.csv - OpenOffice.org 1.1.1 mex

File Edit View Insert Format Tools Data Window Help *®
| [cho2/customers.csv I | D 2] gg E @ "4 _h =
o GO IG IO EE TN TR
[[D4 |¥| B8 & = |[TheBarn
o Al B | ¢ D | e | F G H |+
1 [Miss Jenny Stones 27 Rowan Avenue |Hightown NT2 1AQ 023 9876
ﬁ' 2 |Mr |Andrew |Stones |52 The Willows Lowtown LTS5 7TRA 876 3527
3 |Miss Alex Matthew 4 The Street Nicetown NT2 2TX 010 4567
»[4 |Mr Adrian | Matthew uleville YV67 2WR 487 3871
Y 5 |Mr Simon Cozens |7 Shady Lane Oakenham |(OA3 6QW (514 5926
» 6 |Mr Neil Matthew |5 Pasture Lane Nicetown NT3 7TRT 267 1232
2 7 |Mr Richard |Stones 34 Holly Way Bingham BG4 2WE 342 5982
> 8 |Mrs Ann Stones |34 Holly Way Bingham BG4 2WE 342 5982
D‘ 9 |Mrs |Christine Hickman 36 Queen Street Histon HT3 5EM 342 5432
10 |[Mr Mike Howard |86 Dysart Street Tibsville TB3 7FG 506 5482
11 Mr |Dave Jones 54 Vale Rise Bingham BG3 8GD 342 8264
12 |Mr Richard Neill 42 Thatched Way |Winnersby \WB3 6GQ 505 6482
13 |Mrs Laura Hardy 73 Margarita Way Oxbridge |OX23HX 8212335
14 |Mr Bill O'Neill 2 Beamer Street Welltown WT3 8GM 435 1234
15 |Mr David Hudson |4 The Square Milltown MT2 6RT 961 4526
16
17 F
18 =
10 *
EIET \Sheet1 / Y SRS —— | «n]
Sheet1/1 Default 100% STD sum=0

Figure 2-1. A simple spreadsheet

Certainly, such information is easy to see and modify. Each customer has a separate row,
and each piece of information about the customer is held in a separate column, as labeled in
Figure 2-2. The intersection of a column and a row is a cell.

Miss Jenny Stones 27 Rowan Avenue hightown NTR 1AQ 023 9876
|::> Mr | Andrew |Stones | 52 The Willow Lowtown | LT57RA | 8763527
Miss Alex Matthew 4 The Grét Nicctown NT2 2TX 010 4567
Mr Adrian Matthew The Barn Yuleville Yu67 2WR 487 3871

Figure 2-2. Some spreadsheet terminology

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

This simple spreadsheet incorporates several features that will be handy to remember
when we start designing databases. For example, the first and last names are held in separate
columns, which makes it easy to sort the data by last name if required.

So what is wrong with storing customer information in a spreadsheet? Spreadsheets are
fine, as long as you:

* Don’t have too many customers
e Don’t have many complex details for each customer

* Don'’t need to store any other repeating information, such as the various orders each
customer has placed

* Don’t want several people to be able to update the information simultaneously
* Do ensure the spreadsheet gets backed up regularly if it holds important data

Spreadsheets are a fantastic idea, and they are great tools for many types of problems.
However, just as you wouldn'’t (or at least shouldn’t) try to hammer in a nail with a screwdriver,
sometimes spreadsheets are not the right tool for the job.

Justimagine what it would be like if a large company, with tens of thousands of customers,
kept the master copy of its customer list in a simple spreadsheet. In a big company, it’s likely
that several people would need to update the list. Although file locking can ensure that only
one person updates the list at any one time, as the number of people trying to update the list
grows, they will spend longer and longer waiting for their turn to edit the list. What we would
like is to allow many people to simultaneously read, update, add, and delete rows, and let the
computer ensure there are no conflicts. Clearly, simple file locking will not be adequate to effi-
ciently handle this problem.

Another problem with spreadsheets is their strict two dimensions. Suppose we also wanted
to store details of each order a customer placed. We could start putting order information next
to each customer, but as the number of orders per customer grew, the spreadsheet would get
more and more complex. Consider the outcome when we start trying to add some basic order
information for each customer, as shown in Figure 2-3.

Unfortunately, it’s not looking quite so elegant anymore. We now have rows of arbitrary
length, which does not give us an easy way to calculate how much each customer has spent
with us. Eventually, we will exceed the number of columns allowed in each row. It’s the repeating
groups problem we saw in the previous chapter. Multiple sheets inside a spreadsheet can help,
but they are not an ideal solution to the problem.

19

20 CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

B customers.sxc - OpenOffice.org 1.1.1

File Edit View |Insert Format Tools Data Window Help x
g it " 7 y! L] Y A g =y |
|[choz/customers.csv s [0 = & A8l &« @G 3
([Arial %|[10 &/ B]] Y A =0 % 8 9 Y = = &
116 3@z =]
= Al 8 | € | D | € | F | 6 [o | 1 [N «x [b |
1 |Miss Jenny Stones |27 Rowan Avenue |Hightown NTZ 1AQ 023 9876 22 Jun 2004] $15.30 25 Jul2004 $27.89
ﬁ’ 2 [Mr Andrew |Stones |52 The Willows Lowtown LTs 7RA 876 3527 |
3 [Miss Alex Matthew |4 The Street Nicetown NT2 2TX 010 4567 2 Jun2004 $32.67 11Jul2004 $23.65 18 Nov 2|
3 4 |Mr Adran Matthew The Bamn Yuleville YVE7 2WR 487 3871 18 Jun 2004 §$56.32] 4 Aug2004 7311 B
Y 5 |Mr Simon Cozens |7 Shady Lane Oakenham OA3 6QW 514 5926
3 6 |Mr Neil Matthew |5 Pasture Lane Nicetown NT3 7RT 267 1232
Z 7 |Mr Richard Stones |34 Holly Way Bingham BG4 2WE 342 5982 27 Jun 2004 $32.34
i 8 |Mrs Ann Stones 34 Holly Way Bingham BG4 2WE 342 5982
I_jl 9 |Mrs Christine Hickman |36 Queen Street Histon HT3 5EM 342 5432 12 Jun 2004 $17.43] 18 Jul2004 $32.54
10 |Mr Mike Howard |86 Dysart Street Tibsville TB3 7FG 505 5482 12 Sep 2004 §$7623
11 |Mr Dave Jones 54 Vale Rise Bingham BG3 8GD 342 8264
12 [Mr Richard |Neill 42 Thatched Way |Winnersby |(WB3 6GQ 505 6482
13 [Mrs Laura Hardy 73 Margarita Way Oxbridge |OX2 3HX 8212335
14 |Mr Bill O'Neill 2 Beamer Street Welltown WT3 8GM 435 1234
15 |Mr David Hudson 4 The Square Milltown MT2 6RT 961 4526 4 Nov 2004 _$1245
16
17 +
18 =
10 b4
Al "Sheetl / - Y |
Sheet1/1 Default 100% STD Sum=%$0.00

Figure 2-3. Spreadsheet with repeating order information

A SPREADSHEET CHALLENGE

Here is an example of how easily you can exceed the capabilities of a spreadsheet. An acquaintance was trying
to set up a spreadsheet as a favor for friends who run a small business. This small business makes leather

items, and the price of the item depended not only on the time and effort required to make the item, but also
on the unit cost of the leather used in the manufacture. The owners would buy leather in batches of different
types, each of which would have a unit price that varied significantly depending on both the grade and the

timing of the purchase. Then they would use their stock on a first in, first used basis as they made items for
sale, normally many per batch of leather purchased. The challenge was to create a spreadsheet to do the following:

e Track the overall current stock value.
e Track how many batches of leather are in stock of each grade.

e Track how much had been paid for the batch and grade currently being used on a particular item
being made.

After days of effort, they discovered that this apparently straightforward stockkeeping requirement is a
surprisingly difficult problem to transfer to a spreadsheet. The variable nature of the number of stock records
does not fit well with the spreadsheet philosophy.

The point we are making here is that spreadsheets are great in their place, but there are limits to their
usefulness.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Storing Data in a Database

When you look at it superficially, a relational database, such as PostgreSQL, has many similar-
ities to a spreadsheet. However, when you know about a database’s underlying structure, you
can see that it is much more flexible, principally because of its ability to relate tables together
in complex ways. It can efficiently store much more complex data than a spreadsheet, and it
also has many other features that make it a better choice as a data store. For example, a data-
base can manage multiple simultaneous users.

Let’s first look at storing our simple, single-sheet customer list in a database, to see what
benefits this might have. Later in the chapter, we will extend this and see how PostgreSQL can
help us solve our customer orders problem.

As we saw in the previous chapter, databases are made up of fables, or in more formal
terminology, relations. We will stick to using the term tables in this book. A table contains rows
of data (more formally called fuples), and each data row consists of a number of columns, or
attributes.

First, we need to design a table to hold our customer information. The good news is that a
spreadsheet of data is often an almost ready-made solution, since it holds the data in a number
of rows and columns. To get started with a basic database table, we need to decide on three things:

e How many columns do we need to store the attributes associated with each item?
* What type of data goes in each attribute (column)?
* How can we distinguish different rows containing different items?

Note that the order of rows doesn’t matter in a database table. In a spreadsheet, the order
of the rows is normally very important, but in a database table, there is no order. That’s because
when you ask to look at the data in a database table, the database is free to give you the rows of
data in any order it chooses, unless you specifically ask for it ordered in a particular way. If you
need to see the data in a particular order, you achieve this by the way it is retrieved from the
database, rather than how it is stored. We will see how to retrieve ordered data in Chapter 4,
when we look at the ORDER BY clause of the SELECT statement.

Choosing Columns

Ifyoulook back at our original spreadsheet for our customer information in Figure 2-1, you can
see that we have already decided on what seems a sensible set of columns for each customer:
first name, last name, ZIP code, and so on. So, we’ve already answered the question of how
many columns we should have.

An important difference between spreadsheet rows and database rows is that the number
of columns in a database table must be the same for all the rows. That’s not a problem in our
original version of the spreadsheet.

Choosing a Data Type for Each Column

The second criterion is to determine what type of data goes in each column. While spreadsheets
allow each cell to have a different type, in a database table, each column must have the same

21

22

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

type. Just like most programming languages, databases use fypes to classify different data values.
Most of the time, the basic types are all you need to know. The main choices are integer numbers,
floating-point numbers, fixed-length text, variable-length text, and dates. Often, the easiest
way to decide the appropriate type is simply to look at some sample data.

In our customer data, it might be appropriate to use a text type for all the columns, even
though the phone numbers are numbers. Storing the phone number as a simple number often
presents some problems: it could easily result in the loss of leading zeros, prevent us from
storing international dial codes (+), disallow using brackets around area codes, and so on.
Obviously, a phone number can be much more than a simple string of numerals. Then again,
using a character string to store the phone number might not be the best decision, since we
could also accidentally store all sorts of strange characters, but it seems a better starting
point than a number type. The initial design can always be refined later.

We can see that the length of the title (Mr, Mrs, Dr) is always very short—probably never
longer than four characters. Similarly, ZIP codes also have a fixed maximum length. Therefore,
we will make both of these columns fixed-length fields, but leave all the other columns as
variable length, since there is no easy way of knowing how long a person’s last name might be,
for example.

We will come back to PostgreSQL data types in the “Basic Data Types” section later in this
chapter and also in Chapter 8.

Identifying Rows Uniquely

Our last problem in transforming our spreadsheet into a database table is a little more subtle,
as it comes from the way databases manage relations between tables. We need to decide what
makes each row of customer data different from any other customer row in the database. In
other words, how do we tell our customers apart? In a spreadsheet, we tend not to worry about
the exact details of what distinguishes customers. However, in a database design, this is a key
question, since relational database rules require each row to be unique in some way.

The obvious solution to distinguishing customers might seem to be by name, but unfortu-
nately, that’s often not good enough. It is quite possible that two customers will have the same
name. Another item you might choose is the phone number, but that fails when two customers
live at the same address. At this point, you might suggest using a combination of name and
phone number.

Certainly, it’s unlikely that two customers will have both the same name and the same
phone number, but quite apart from being inelegant, another problem is lurking. What happens
if a customer changes to a new phone provider and subsequently the phone number changes?
By our definition, a unique customer must then be a new customer, because it is different from
the customer we had before. Of course, we know that it is the same customer, with a new phone
number. In a database, it’s generally bad practice to pick a unique identifying feature for a
customer that might subsequently change, as it’s hard to manage changes to unique identifiers.

This sort of problem, identifying uniqueness, turns up frequently in database design. What
we have been doing is looking for a primary key—an easy way to distinguish one row of customer
data from all the other rows. Unfortunately, we have not yet succeeded, but all is not lost, since
the standard solution is to assign a unique number to each customer.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

We simply give each customer a unique number, and bingo, we have a distinct way to tell
customers apart, regardless of whether they change their phone number, move to a new resi-
dence, or even change their name. This type of addition to a row to provide a unique key when
no good choice exists in the actual data is called adding a surrogate key. This is such a common
occurrence in real-world data that there is even a special data type in most databases, the
serial data type, to help solve the problem. We will discuss this type later in the chapter, in the
“Basic Data Types” section.

Now that we have decided on a database design for our initial table, it’s time to store our
data in a database. Figure 2-4 shows our data in a PostgreSQL database being viewed using a
simple command-line tool, psql, in a terminal window on a Linux machine.

>l

Session Edit View Bookmarks Settings Help

bpsimple=# select = from customer:

customer_id | title | fname I Ilname | addressline 1 touwn I =zipcode I phone
11 Miss | Jemmy I Stones | 27 Rowan fAvenue | Hightowun | NT2 1AQ | 023 9876
21 Mr I findrew | Stones | 52 The Willows | Lowtouwn I LTS 7RaA | 876 3527
3 1 Miss | Alex | Matthew | 4 The Street I Nicetoun | NTZ Z2TX 1 010 4567
4 1 Mr I Adrian | Matthew | The Barn I Yuleuville | YUb? ZUR | 487 3871
51 Mr I Simon I Cozens | 7 Shady Lane | Dakenham | 0A3 6QUW | 514 5926
61 Mr I Neil I Matthew | 5 Pasture Lane I Nicetoun | NT3 7RT | 267 1232
71 M I Richard | Stones | 34 Holly Way I Binghamn | BG4 ZUWE I 342 5982
8 1 Mrs I Ann | Stones | 34 Holly Way I Binghamn | BG4 ZUWE I 342 5982
91 Mrs | Christine | Hickman | 36 Queen Street | Histon | HT3 5EM | 342 5432
10 | Mr I Mike | Howard | 86 Dysart Street | Tibsville | TB3 YFG | 505 5482
11 | Mr I Dave I Jones I 54 Vale Rise I Binghamn | BG3 8GD | 342 8264
12 1 Mr I Richard I Neill | 42 Thatched Way | Wimmersby | WB3 6G(| 505 6482
13 | Mrs I Laura I Hardy I 73 Margarita Way | Oxbridge | OXZ2 3HX | 821 2335
14 | Mr I Bill | 0’Neill | 2 Beamer Street | Welltown | WT3 8GH I 435 1234
15 | Mr I David I Hudson | 4 The Sgquare I Milltoun | MTZ 6RT I 961 4526

(15 rouws)

bpsimple=#]

A& | (M shell

Figure 2-4. Command-line viewing of customer data from a database

Notice that we have added an extra column, customer_id, as our unique way of referencing
a customer. It is our primary key for the table. As you can see, the datalooks much asitdid in a
spreadsheet, laid out in rows and columns. In later chapters, we will explain the actual mechanics
of defining a database table, storing, and accessing the data, but rest assured, it’s not difficult.

Accessing Data in a Database

You can easily view your PostgreSQL data using the psql tool from the command line, as you
saw in Figure 2-4. However, PostgreSQL is not restricted to command-line use. Figure 2-5
shows the more user-friendly graphic approach of pgAdmin IIJ, a free tool available from
http://www.pgadmin.org/, and also bundled with the Windows distributions of PostgreSQL
from version 8. We will see more about graphical interfaces in Chapter 5.

23

24 CHAPTER 2

' pgAdmin 111
File Edit Tools

Display Help

RELATIONAL DATABASE PRINCIPLES

& Servers (2)

. M PostareSQL Database Server 8.0

] Beast (192.168.0.111:5432)

Eg Databases (1)

=] g bpsimple

(1) Casts (0)

@_ Languages (0)

82 Schemas (1)
£2 public

‘B Aggregates (0)

At Domains (0)

% Functions {0)

-m= Conversions (0)

g Trigger Functions ()

N IW® LOBL ?

Properties |Stati5tics || Depends on ” Referenced by|

Property
I% MName
Eop
% COwner
BiacL
I% Primary key

I% Rows (estimated)
% Fows {counted) 15
% Inherits tables
B Inherited tables count 0
B Has OIDs?
I% System table?

Value

customer
17231
neil

1000

customer_id

oid ﬂ.lﬂﬂl_ﬁr_id title ‘ fname ‘ Iname ‘ addressline ‘ town zZipcode ‘ phone ‘
serial bpchar } } } } bpchar wvarchar
1 17262 | 1 Miss Jenry Stones 27 Rowan Aven Hightown NTZ 140 023 5876
2 17263 2 Mr Andrew Stones 52 The Willows | Lowtown LT5 7RA 876 3527
3 17264 3 Miss Mlex Matthew 4 The Street Micetown NT2 2TX 010 4567
4 17265 4 Mr Adrian Matthew The Bam Yuleville YVET 2WR 487 3871
5 17266 5 Mr Simon Cozens 7 Shady Lane Oakenham OA3 AW 514 5526
] 6 17267 6 Mr Neil Matthew 5 Pasture Lane Micetown NT3I7RT 2671232
== 7 17268 7 Mr Richard Stones 34 Holly Way Bingham BG4 2WE 342 5582
= 8 17265 2 Mrs Ann Stones 34 Holly Way Bingham BG4 2WE 342 5582
9 17270 E] Mrs Christine Hickman 36 Queen Streel Histon HT3 5EM 342 5432
10 17271 10 Mr Mike Howard 86 Dysart Street Tibsville TBI7FG 505 5482
11 17272 11 Mr Dave Jones 54 Vale Rise Bingham BG3 BGD 342 8264
12 17273 12 Mr Richard Meill 42 Thatched Wi Winnersby WB3 660 505 6482
13 17274 13 Mrs Laura Hardy 73 Margarita Wz Oxbridge 0X2 3HX 821 2335
14 17275 14 Mr Bill O'Neill 2 Beamer Street Weltown WT3 8GM 4351234
< 15 17276 15 Mr David Hudsaon 4 The Square Milltown MT2 6RT 561 4526
15 rows.

Figure 2-5. Viewing customer data from a database with pgAdmin III

Accessing Data Across a Network

Of course, if we could only access our data on the machine on which it was physically stored,
the situation really wouldn’t have improved much over the single spreadsheet file being shared
among different users.
PostgreSQL is a server-based database, and as described in the previous chapter, once

configured, will accept requests from clients across a network. Although the client can be on
the same machine as the database server, for multiuser access, this won’t normally be the case.
For Microsoft Windows users, an ODBC driver is available, so we can arrange to connect any
Windows desktop application that supports ODBC across a network to a server holding our
data. Figure 2-6 shows Microsoft Access on a Windows PC accessing a PostgreSQL database
running on a Linux machine. This is done using linked external tables via an ODBC connection
across the network.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Microsoft Access

File Edit WView Insert Format Records Tools Window Help
- BR&ESRv iaR > &2 YE Y # %K E28- 0.
&= db1 : Database (Access 2000 file format)

B public_customer : Table

customer_id fname Iname addressline zipcode phone
Jenny Stones 27 Rowan Avenue |Hightown NT2 1AQ 023 9876
Andrew Stones 52 The Willows Lowtown LT 7TRA 876 3527
Alex Matthew 4 The Street Nicetown NT2 2TX 010 4567
Adrian Matthew The Barn Yuleville YV67 2WR 487 3871
Simon Cozens 7 Shady Lane Oakenham 0A3 6QW 514 5926
Neil Matthew 5 Pasture Lane Nicetown NT3 7RT 267 1232
Richard Stones 34 Holly Way Bingham BG4 2WE 342 5982
Ann Stones 34 Holly Way Bingham BG4 2WE 342 5982
Christine Hickman 36 Queen Street | Histon HT3 5EM 342 5432
Mike Howard 86 Dysart Street | Tibsville TB3 7FG 505 5482
Dave Jones 54 Vale Rise Bingham BG3 8GD 342 8264
Richard Neill 42 Thatched Way |Winnersby WB3 6GQ 505 6482
Laura Hardy 73 Margarita Way | Oxbridge 0X2 3HX 821 2335
Bill O'Neill 2 Beamer Street | Welltown WT3 8GM 4351234
David Hudson 4 The Square Milltown MT2 6RT 961 4526

Record: I<| 4 ” 15 b |>I |>*| of 15

Datasheet View

Figure 2-6. Accessing the same data from Microsoft Access

Now we can access the same data from many machines across the network at the same
time. We have one copy of the data, securely held on a central server, accessible to multiple
desktops running different operating systems, across a network.

We will see the technical details of configuring an ODBC connection in Chapter 5.

Handling Multiuser Access

PostgreSQL, like all relational databases, can automatically ensure that conflicting updates to
the database can never occur. It looks to the users as though they all have unrestricted access
to all the information at the same time, but behind the scenes, PostgreSQL is monitoring changes
and preventing conflicting updates.

This ability to allow many people to apparently have simultaneous read and write access
to the same data, but ensure that it remains consistent, is a very important feature of databases.
When a user changes a column, you either see it before it changes or after it changes; you never
see partial updates.

A classic example is a bank database transferring money between two accounts. If, while
the money was being transferred, someone were to run a report on the amount of money in all
the accounts, it’s very important that the total be correct. It may not matter in the report which
account the money was in at the instant the report was run, but it is important that the report
doesn’t see the in-between point, where one account has been debited but the other not credited.

26

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Relational databases like PostgreSQL hide any intermediate states, so they cannot be seen
by other users. This is termed isolation. The report operation is isolated from the money-transfer
operation, so it appears to happen either before or after, but never at exactly the same instant.
We will come back to this concept of isolation in Chapter 9 when we look at Transactions.

Slicing and Dicing Data

Now that we have seen how easy it is to access the data once it is in a database table, let’s have
afirst look at how we might actually process that data. We frequently need to perform two very
basic operations on big sets of data: selecting rows that match a particular set of values and
selecting a subset of the columns of the data. In database terminology, these are called selection
and projection respectively. That may sound somewhat complex, but accomplishing selection
and projection is actually quite simple.

Selection

Let’s start by looking at selection, where we are selecting a subset of the rows. Suppose we want
to see all our customers who live in the town Bingham. Let’s return to PostgreSQL'’s standard
command-line tool, psql, to see how we can use the SQL language to ask PostgreSQL to get the
data we want. The SQL command we need is very simple:

SELECT * FROM customer WHERE town = 'Bingham’

If you are typing in your SQL statements (using a command-line tool like psql or a graph-
ical tool such as pgAdmin III), you also need to add a semicolon at the end. The semicolon tells
psql that this is the end of a command, because longer commands might extend over more
than one line. Generally, in this book, we will show the semicolon.

PostgreSQL responds by returning all the rows in the customer table, where the town column
contains Bingham, as shown in Figure 2-7.

Session Edit View Bookmarks Settings Help
+*
bpsinple=# select = from customer where toun = 'Bingham’:
customer_id | title I fname | lname | addressline | town I =zipcode I phone
71 M I Richard | Stones | 34 Holly Way | Bingham | BG4 ZWE I 342 5982
8 1 Mrs I Ann | Stones | 34 Holly Way | Bingham | BG4 ZWE I 342 5982
11 | Mr I Dave I Jones | 54 Vale Rise | Bingham | BG3 8GD | 342 8264
(3 rous)
o
bpsimple=#] +
| *
Ab | (] shell

Figure 2-7. Selecting a subset of the data rows

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

So that was selection, where we choose particular rows from a table. As you can see, that
was pretty easy. Don’t worry about the details of the SQL statement yet. We will come back to
that more formally in Chapter 5.

Projection

Now let’s look at projection, where we are selecting particular columns from a table. Suppose
we wanted to select just the first name and last names from our customer table. You will remember
that we called those columns fname and 1name. The command to retrieve the names is also quite
simple:

SELECT fname, lname FROM customer;

PostgreSQL responds by returning the appropriate columns, as shown in Figure 2-8.

@ shell -konsole<2> B

Session Edit View Bookmarks Settings Help
bpsimple=# select fname, Iname from customer: +*
fname I Iname
Jenmy I Stones
findrew I Stones
Alex I Mattheuw
Adrian I Mattheuw
Simon I Cozens
Neil I Mattheuw
Richard I Stones
Amn I Stones
Christine | Hickman
Mike I Howard
Dave I Jones
Richard I Neill
Laura I Hardy
Bill | 0’Heill
David I Hudson
(15 rouws) m
+*
bpsimple=#] 3
A5 | (] shell

Figure 2-8. Selecting a subset of the data columns

You might reasonably suppose that sometimes we want to do both operations on the data
at the same time; that is, select particular column values but only from particular rows. That’s
pretty easy in SQL as well. For example, suppose we wanted to know only the first names and
last names of all our customers who live in Bingham. We can simply combine our two SQL
statements into a single command:

SELECT fname, lname FROM customer WHERE town = 'Bingham';

PostgreSQL responds with our requested data, as shown in Figure 2-9.

27

28

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Session Edit View Bookmarks Settings Help

bpsinple=# select fname, lname from customer where town = ’Binghan’:
fname | lname

_________ P

Richard | Stones

Amn I Stones

Dave I Jones

(3 rous)

bpsimple=#]

g & shell

Figure 2-9. Selecting a subset of both columns and rows

Ly |

There is one very important thing to notice here. In many traditional programming languages,
such as C or Java, when searching for data in a file, we would have written some code to scan
through all the lines in the file, printing out names each time we came across one with the town
we were searching for. Although it might be possible to squeeze that much logic onto a physical
single line of code, it would be a very long and complex line, unlike the succinct line of SQL
shown here. This is because C, Java, and similar languages are essentially procedural languages.
You specify in the language how the computer should behave. In SQL, which is termed a
declarative language, you tell the computer what you are trying to achieve, and PostgreSQL
works some internal magic to handle this task for you.

This might seem a little strange if you have never used a declarative language before, but
once you get used to the idea, it seems obvious that it’s a much better idea to tell the computer
what you want, rather than how to do it. You will wonder how you have managed without such
languages till now.

Adding Information

So far, all we have looked at is our database emulating a single worksheet in a spreadsheet, and
we've just touched the surface of SQL’s features. As we will see in this book, however, relational
databases such as PostgreSQL are very rich in useful features, which take them well beyond the
realms of spreadsheet capabilities. One of the most important capabilities of databases is their
ability to link data together across tables, and that is what we will look at now.

Using Multiple Tables

Recall our customer order problem, where our simple customer spreadsheet suddenly became
very untidy once additional order information was stored for each customer. How do we store
information about orders from customers when we don’t know in advance how many orders a
customer might make? As you can probably guess from the title of this section, the way to solve
this problem with a relational database is to add another table to store this information.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Just as we designed our customer table, we start by deciding what information we want to
store about each order. For now, let’s assume that we want to store the name of the customer
who placed the order, the date the order was placed, the date it was shipped, and how much we
charged for delivery. As in our customer table, we will also add a unique reference number for
each order, rather than try to make any assumptions about what might be unique. There is
obviously no need to store all the customer details again. We already know that given a
customer_id, we can find all the details of that customer in the customer table.

You might be wondering why we’ve omitted the details of what was ordered. Certainly,
that is an important aspect of orders to most customers—they like to get what they ordered.
If you're thinking that it’s a similar problem to not knowing in advance how many orders a
customer will place, you're quite right. We have no idea how many items will be on each order.
The repeating groups problem is never far away. We will leave this aside for now and deal with
itin the “Creating a Simple Database Design” section later in this chapter.

Figure 2-10 shows our order information table with some sample data, again shown in the
graphical tool, pgAdmin III.

=+ pghdmin Il Edit Data - Beast (192.168.0.111:5432) - bpsimple - orderinfo 5 (=E3

- ‘ derinf _id‘ omer_id | date_pl "dde_" |
serial int4 date date |

1 17326 5 3 2004-03-13 2004-03-17 299

2 17327 7 8 2004-06-23 2004-06-24 0.00

3 17328 8 15 2004-03-02 2004-03-12 398

4 17323 3 13 2004-03-03 2004-03-10 299

3 17330 10 8 2004-07-21 2004-07-24 0.00

Figure 2-10. Some order information viewed in pgAdmin II1

We haven’t put too much data in the table, as it is easier to experiment on smaller amounts
of data. You will notice an extra column, oid, which isn’t part of our user data. This is a special
column used internally by PostgreSQL. The current version of PostgreSQL defaults to creating
this column on all tables, but hides it from the SELECT * command. We will discuss this column
in Chapter 8.

Relating a Table with a Join Operation

Now we have details of our customers, and at least summary details of their orders, stored in
our database. In many ways, this is no different from using a pair of spreadsheets: one for our
customer details and one for their order details. It’s time to look at what we can do using these
tables in combination, and start to see the power of databases. We do this by selecting data
from both tables at the same time. This is called a join, which, after selection and projection
from a single table, is the third most common SQL data-retrieval operation.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Suppose we want to list all the orders and the customers who placed them. In a procedural
language, such as C, we would need to write code to scan one of the tables, perhaps starting
with the customer table, then for each customer, we look for and print out any orders they have
placed. That’s not difficult, but it’s certainly a bit time-consuming and tedious to code. I'm sure
you will be pleased to know we can find the answer much more easily with SQL, using a join
operation. All we need to do is tell SQL three things:

¢ The columns we want

¢ The tables we want the data retrieved from

¢ How the two tables relate to each other

The command we need is the example presented in the previous chapter:

SELECT * FROM customer, orderinfo
WHERE customer.customer id = orderinfo.customer id;

Asyou can probably guess, this asks for all columns from our two tables, and tells SQL that
the column customer_id in the table customer holds the same information as the customer_id
column in the orderinfo table. Note the convenient table.column notation, which enables us
to specify both a table name and a column within that table. The * in our command means all
columns. We could instead use named columns to select only specified columns, if we just
wanted names and amounts, for example.

Now that we have a database with some tables and data, we can see how PostgreSQL
responds in Figure 2-11.

bpzimple=# =elect * from customer, orderinfo where customer,customer_id = orderinfo,customer_id:
cuztomer_id | title | fname | lname | addressline | town | zipcode | phone | orderinfo_id
cuztomer_id | date_placed | date_shipped | shipping

3 | Mizs | Alex | Matthew | 4 The Street | Micetown | WT2 2TX | 010 4567 | B
31 2004-03-13 | 2004-03-17 | 2,93

81 M= | Ann | Stones | 34 Holly Way | Bingham | BG4 ZWE | 342 5932 | 7
8 | 2004-06-23 | 2004-06-24 | 0,00

81 M= | Ann | Stones | 34 Holly Way | Bingham | BG4 ZWE | 342 5932 | 10
8 1 2004-07-21 | 2004-07-24 | 0,00

12 1 Mr= | Laura | Hardy | 73 Margarita Way | Oxbridge | 0X2 3HX | 821 2335 | 9
13 | 2004-09-03 | 2004-09-10 | 2,93

5ol M | David | Hudzon | 4 The Square | Milltown | HT2 BRT | 961 4826 | 8

15 | 2004-03-02 | 2004-03-12

=# [

Figure 2-11. Selecting data from two tables in one operation

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES 31

This is a bit untidy, since the rows wrap to fit in the window, but you can see how PostgreSQL
has answered our query, without us needing to specify exactly how to solve the problem.

Let’s leap ahead briefly, and see a much more complex query we could perform using SQL
on these two tables. Suppose we wanted to see how frequently different customers had placed
orders with us. This requires a significantly more advanced bit of SQL:

SELECT customer.title, customer.fname, customer.lname,
count(orderinfo.orderinfo_id) AS "Number of orders"

FROM customer, orderinfo

WHERE customer.customer id = orderinfo.customer id

GROUP BY customer.title, customer.fname, customer.lname;

That’s a complex bit of SQL, but without going into the details, you can see that we still
have not told SQL how to answer the question; we’ve just specified the question in a very precise
way using SQL. We also managed it all in a single statement. For the record, Figure 2-12 shows
how PostgreSQL responds.

Session Edit View Bookmarks Settings Help
+*
bpsimple=# select customer.title, customer.fname, customer.lname,
bpsinple—# count (orderinfo.orderinfo_id) as "Humber of orders"
bpsimple-# from customer, orderinfo
bpsimple-# where customer.customer_id = orderinfo.customer_id
bpsimple-# group by customer.title, customer.fname, customer.lname;
title | fname | Iname | Number of orders
Mrs I finm I Stones | 4
Mrs I Laura | Hardy 1 1
Mr I David | Hudson | 1
Miss | filex | Matthew I 1
(4 rous)
o
bpsimple=#] +
A | M shell

Figure 2-12. Retrieving order frequency

Some database experts may like typing SQL directly into a window using a command-line
tool, and it certainly is useful sometimes, but it’s not everyone’s preference. If you prefer to
build your queries graphically, that’s not a problem. As noted earlier in this chapter, you can
simply access the database via an ODBC driver and use a Windows graphical user interface
(GUI), for example. Figure 2-13 shows the same query being designed and executed in Access
on a Windows machine, using the PostgreSQL ODBC driver and linked external tables. We will
see some other GUI tools, such as Rekall running on a Linux desktop, in Chapter 5.

32 CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Microsoft Access
Edit Wiew Insert Query Tools Window Help count rows
E-HRERAYV | {iBR|(w- o &-|! =N BaE- B,
2! Customer Orders 2 : Select Query
CountOforderinfo_id

2
1
1
1

) public_orderinfo
- *=

fname orderinfo_id

M Iname customer_id

addressline date_placed

town date_shipped

zipcode shipping

Iphone

ilﬂ]

Field: |title fname Iname orderinfo_id
Table: |public_customer public_customer public_customer public_orderinfo
Total: |Group By Group By Group By Count
Sort:
Show:
Criteria:
or:

<0

Ready

Figure 2-13. Building a query graphically

In our particular environment, the data is still stored on a Linux machine, but the user
hardly needs to be aware of the technical details. Generally, in this book, we will use the command
line for teaching SQL, because that way you will learn the basics before moving on to more
complex SQL commands. Of course, you are welcome to use a GUI rather than a command-
line tool to construct your SQL commands; it’s your choice.

Designing Tables

So far, we have only two tables in our database, and we have not really talked about how we
decide what goes in each table, except in the very informal way of doing what looked reasonable.
This design, which includes tables, columns, and relationships, is more correctly called a schema.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Designing a database schema with more than a couple of dozen tables can be quite
challenging if the data is complex. Database designers earn their money by being good at this
difficult task. Fortunately, for relatively simple databases, with up to perhaps ten tables, it’s
possible to come up with a fairly good design just by applying some basic rules of thumb, rather
than needing to apply rules in a more formal way.

In this section, we are going to look at the simple sample database we are starting to build,
and figure out a way to decide what tables we need.

Understanding Some Basic Rules of Thumb

When a database is designed, it is often normalized; that is, a set of rules is applied to ensure
that data is broken down in an appropriate fashion. In Chapter 12, we will look at database
design in a formal way. To get started, all we require are some simple ground rules. These rules
are just to help you understand the initial database, named bpsimple, we will be using to explore
SQL and PostgreSQL in this and the following chapters. We strongly suggest that you don’t just
read these rules, and then dash off to design a database with 20 tables. Work your way through
the book—at least until Chapter 12.

Tip If you're interested in learning more about normal forms, we suggest Joe Celko’s SQL for Smarties
(ISBN 1-55860-576-2). It has some excellent definitions of the various rules of normalization, as well as other
rules Dr. E. F. Codd defined for the relational model and many advanced examples of SQL usage.

Rule One: Break Down the Data into Columns

The first rule is to put only one piece of information, or data attribute, in each column. This
comes naturally to most people, provided they consciously think about it. In our original
spreadsheet, we have already quite naturally broken down the information for each customer
into different columns, so the name was separate from the ZIP code, for example.

In a spreadsheet, this rule just makes it simpler to work on the data; for example, to sort by
the ZIP code. In a database, however, it is essential that the data is correctly broken down into
attributes.

Why is this so important in databases? From a practical point of view, it is difficult to
specify that you want the data between the twenty-ninth and thirty-fifth characters from an
address column, because that happens to be where the ZIP code lives. There is bound to be
some place where the rule does not hold, and you get the wrong piece of data. Another reason
for the data to be correctly broken down is that all columns in a database must have the same
type, unlike a spreadsheet, which is quite forgiving about the types of data in a column.

Rule Two: Have a Unique Way of Identifying Each Row

You will remember that when we tried to decide how to identify each row in the spreadsheet
example at the beginning of this chapter, we had a problem of not being sure what would be
unique. As was mentioned, this was because there was no primary key. In general, it doesn’t
need to be a single column that is unique; it could be a pair of columns taken together,

33

34

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

or occasionally even the combination of three columns that uniquely identifies a row. It is rare,
and probably a mistake, if you find yourself requiring more than three columns to uniquely
identify a row.

In any case, there must be a way of saying, with absolute certainty, if I look at the contents
of a particular column, or group of columns in this row, I know it will have a value different
from all other rows in this table. If you cannot find a column, or at most a combination of three
columns, that uniquely identifies each row, it’s time to add an extra column to fulfill that purpose.
In our customer table, we added an extra column, customer_id, to identify each row.

Rule Three: Remove Repeating Information

Recall that when we tried to store order information in the customer table, it looked rather
untidy because of the repeating groups. For each customer, we repeated order information as
many times as was required. This meant that we could never know how many columns were
needed for orders. In a database, the number of columns in a table is effectively fixed by the
design. So we must decide in advance how many columns we need, what type they are, and
name each column before we can store any data. Never try to store repeating groups of data in
a single row.

The way around this restriction is to do exactly what we did with our orders and customers
data: split the data into separate tables. Then you can join the tables together when you need
data from both tables. In our example, we used the column customer_id to join the two tables.

More formally, what we had was a many-to-one relationship; that is, there could be many
orders received from a single customer.

Rule Four: Get the Naming Right

This is occasionally the hardest rule to implement well. What do we call a table or column?
Tables and columns should have short, meaningful names. If you cannot decide what to call
something, it’s often a clue that all is not well in your table and column design.

In addition to coming up with appropriate names, most database designers have their
own personal rules of thumb, or naming conventions, that they use to ensure the naming of
tables and columns in a database is consistent. Don’t have some table names singular and
some plural. For example, rather than naming one table office and the other departments, use
office and department. If you decide on a naming rule for an id column—perhaps the table
name with an appended _id—stick to that rule. If you use abbreviations, always use them
consistently. If a column in one table is a key to another table (a foreign key, as explained in
Chapter 12), try to give them the same base name. In a complex database, it can get very
annoying when names are not quite consistent, such as customer_id, customer_ident, cust_id,
and cust_no.

Achieving this apparently simple goal of getting the names right is often surprisingly chal-
lenging, but the rewards in simplified maintenance are considerable.

Creating a Simple Database Design

We can draw our database design, or schema, using an entity relationship diagram. For our
two-table database, such a diagram might look like Figure 2-14.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Note An entity relationship diagram is a graphical way of representing the logical structure of our data.
It helps us visualize how the different entities in our data relate to each other.

ORDERIMFO
ORDERIMFO_ID INTEGER
CUSTOMER_ID INTEGER
DATE_FLACED DATE
DATE_SHIPPED DATE
SHIPPING NUMERIC{ 2)

CUSTOMER_ID = CUSTOMER_ID

CUSTOMER
CUSTOMER_ID INTEGER
TITLE CHAR()
FHAME VARCHAR(3Z)
LNAME VARCHAR(3Z)
ADDRESSLINE VARCHAR(E4)
TOWN VARCHAR(Z)
ZIPCODE CHAR(ID)
PHONE VARCHAR(1E)

Figure 2-14. A simple entity relationship diagram

This diagram shows our two tables, the column, the data types, and the sizes in each column,
and also tells us that customer_id is the column that joins the two tables together. Notice that
the arrow goes from the orderinfo table to the customer table. This is a hint that for each
orderinfo entry, there is at most a single entry in the customer table, but that for each customer
there may be many orders. Also notice that some columns are underlined, which indicates that
the column is guaranteed to be unique. These columns form the primary key for the tables.

It’s important that you remember which way a one-to-many relationship goes; getting it
confused can cause a lot of problems. You should also notice that we have been very careful to
name the column we want to use to join the two tables the same in each table: customer_id.
This is not essential. We could have called the two columns foo and bar if we had wanted to,
but, as noted in the previous section, consistent naming is a great help in the long run.

The next stage is to extend our very simple two-table design into something slightly more
realistic. We will design it as a simple order-management database, called bpsimple.

Extending Beyond Two Tables

Clearly, the information we have so far is lacking, in that we don’t know what items were in
each order. You may remember that we deliberately omitted the actual items from each order,

promising to come back to that problem. It's now time to sort out the actual items in each order.

35

36

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

The problem we have is that we don’t know in advance how many items there will be in
each order. It’s almost the same as not knowing in advance how many orders a customer might
place. Each order might have one, two, three, or a hundred items in it. We must separate the
information that a customer placed an order from the details of what was in that order. Basically,
what we might try is something like what is shown in Figure 2-15.

ORDERIMNFO
ORDERINFO 1D INTEGER CUSTOMER_ID = CUSTOMER_ID
CUSTOMER_ID INTEGER
DATE_FLACED DATE
DATE_SHIPPED DATE

. SHIPPING NUMERICT 2)
TEMID = TEMID ITEM_ID INTEGER
ITEM CUSTOMER
[TEM_ID CHAR(10} CUSTOMER_ID INTEGER
DESCRIPTION VARCHAR(E4) TITLE CHAR()
COST_PRICE NUMERICT 2) FHAME WARCHAR(IZ)
SELL_PRICE MUMERIC(2 LHAME WARCHAR(3Z)
ADDRESSUNE WARCHAR(BA)
TOWN WARCHAR(3Z)
ZIPCODE CHAR{10)
PHONE WARCHAR(16)

Figure 2-15. An attempt at relating customers and ordered items

Much like the customer and orderinfo tables, we separate the information into two tables,
and then join them together. We have, however, created a subtle problem here.

If you think carefully about the relationship between an order and an item that may be
ordered, you will realize that not only could each orderinfo entry relate to many items, but
each item could also appear in many orders, if different customers order the same item.

We will consider this problem further in Chapter 12, but for now, you will be pleased to
know that there is a standard solution to this difficulty. You create a third table between the two
tables, which implements a many-to-many relationship. This is actually easier to do than it is
to explain, so let’s just go ahead and create a table, orderline, to link the orders with the items,
as shown in Figure 2-16.

We have created a table that has rows corresponding to each line of an order. For any
single line, we can determine the order it was from using the orderinfo_id column and the
item referenced using the item_id column. A single item can appear in many order lines, and a
single order can contain many order lines. Each order line refers to only a single item, and it
can appear in only a single order.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

ORDERINFO_ID = ORDERINFO_ID ORDERINFO
ORDERINFO D INTEGER
CUSTOMER_ID INTEGER
DATE_PLACED DATE
DATE_SHIPPED DATE

Y

CUSTOMER_ID = CUSTOMER_ID

SHIPPING NUMERIC(T 2)
ORDERLINE CUSTONER
ORDERINFO ID INTEGER
CUSTOMER D INTEGER
[TEM ID INTEGER TTLE CHAR)
FNAME VARCHAR(32)
LNAME VARCHAR(32)
ADDRESSLINE ~ VARCHAR(64)
ITEM_ID = ITEM_ID TOWN VARCHAR(32)
ZIPCODE CHAR{10)
PHONE VARCHAR(16)
TEM
[TEM D INTEGER

DESCRIPTION VARCHAR(B4)
COST_PRICE MNUMERIC(7.2)
SELL_FRICE MNUMERIC(7.2)

Figure 2-16. Relating customers and orders

You will also notice that we did not need to add a unique id column to identify each row.
That is because the combination of orderinfo_id and item_id is always unique. There is one
very subtle problem lurking, however. What happens if a customer orders two of an item in
a single order? We cannot just enter another row in orderline, because we just said that the
combination of orderinfo_id and item_id is always unique. Do we need to add yet another
special table to cater to orders that contain more than one of any item? Fortunately, we don’t
need to do this. There is a much simpler approach. We just need to add a quantity column to
the orderline table, and all will be well (see Figure 2-17, in the following section).

Completing the Initial Design

We have just two more pieces of information we need to store before we have the main struc-
ture of the first cut of our database design in place. We want to store the barcode that goes with
each product, and we also want to store the quantity we have in stock for each item.

It’s possible that each product will have more than one barcode, because when manufac-
turers significantly change the packaging of a product, they often also change the barcode. For
example, you have probably seen packs that offer “20% extra for free” (often referred to in the
trade as overfill packs). Manufacturers will generally change the barcode of these promotion
packs, but essentially the product is unchanged. Therefore, we may have a many barcodes-to-
one item relationship. We add an additional table to hold the barcodes, as shown in Figure 2-17.

37

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

ORDERIMNFO
ORDERMEO 1D INTEGER
CUSTOMER_ID INTEGER
DATE_FLACED DATE
DATE_SHIFPED DATE

ORDERINFO_ID = ORDERIMNFO_ID

Y

CUSTOMER_ID = CUSTOMER_ID

SHIPPING NUMERIC(7 2)
ORDERLINE
ORDERINFO ID INTEGER CUSTOMER
[TEM ID INTEGER CUSTOMER ID INTEGER
QUANTITY INTEGER TITLE CHAR(4)
FNAME VARCHAR(32)
LNAME VARCHAR(32)
ADDRESSLINE — WARCHAR(B4)
ITEM_ID = ITEM_ID TOWN VARCHAR(3Z)
ZIPCODE CHAR(10)
PHONE VARCHAR(16)
ITEM
TEM D INTEGER

DESCRIFTION ¥ARCHAR(GE4)
COST_PRICE NUWERIC(T 2}
SELL_PRICE MNUMERIC(7 2}

ITEM_ID = ITEM_ID

BARCCDE
BARCODE EAN CHAR(13)
[TEM_ID INTEGER

Figure 2-17. Adding the barcode relationship

Notice that the arrow points from the barcode table to the item table, because there may be
many barcodes for each item. Also notice that the barcode_ean column is the primary key, since
there must be a unique row for each barcode, and a single item could have several barcodes,
but no barcode can ever belong to more than one item. (EAN is a European standard for
product barcodes.)

The last addition we need to make to our database design is to hold the stock quantity for
each item. If most items were in stock, and the stock information were fairly basic, we could
simply store a stock quantity directly in the item table. However, this won’t work if we offer
many items, but only a few are normally in stock, and we need to store a lot of information
about the stocked items. For example, in a warehouse operation, we may need to store location
information, batch numbers, and expiration dates. If we had an item file with 500,000 items in
it, but only held the top 1,000 items in stock, this would be very wasteful. There is a standard
way of resolving this problem, using what is called a supplementary table. We will take this approach
to store stock information for our sample database, as shown in Figure 2-18.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

ORDERINFO
ORCERINFC ID IMTEGER
CUSTOMER_ID INTEGER
DATE_PLACED DATE
DATE_SHIPPED DATE

ORDERIMFO_ID = ORDERINFO_ID

CUSTOMER_ID = CUSTOMER_ID

SHIPPING NUMERIC(7,2)
ORDERLINE
ORDERINFO ID INTEGER CUSTOMER
[TEM ID INTEGER CUSTOMER D [NTEGER
QUANTITY INTEGER TITLE CHAR{4)
FNAME YARCHAR(32)
LINANME VARCHAR(32)
ADDRESSLINE VARCHAR(B4)
ITEM_ID = ITEM_ID! TOWYM YARCHARZZ)
ZIPCCDE CHAR(10)
PHONE VARCHAR(16)
TEM STOCK
[TEM 1D INTEGER -~ TEM D0 INTEGER

DESCRIFTION VARCHAR(G4) MEMID=TEN_ID
COST_FRICE NUMERIC(7,2) QUANTITY INTECER
SELL_PRICE NUMERIC(7,2)

ITEM_ID:| ITEM_ID
BARCODE
BARCODE EAN CHAR{13)
TEM_ID INTEGER

Figure 2-18. The design of the bpsimple database

We create a new table to store the supplementary information (stock quantity, in this
example), and then create only the rows that are required for items that are in stock, linking the
information back to the main table. Notice the stock table uses item_id as a unique key, and it
holds information that relates directly to items, using item id to join to the relevant row in the
item table. The arrow points to the item table, because that is the master table, even though it
is not a many-to-one relationship in this case. As in the other tables, the underlining indicates
the table’s primary key (the information guaranteed to be unique).

As it stands, the design is clearly overly complex, since the additional information we are
keeping is so small. We will leave the schema design the way it is to show how it is done, and
later in the book, we will demonstrate how to access data when there is additional information
in supplementary tables like this one. For those who like sneaking a look ahead, we will use
what’s called an outer join.

Note In Chapter 8, we will see how we can enforce in the database the rules about relationships between
tables, and in Chapter 12 we will revisit the design of databases in more detail. When we get to Chapter 8, we
will discover some more advanced techniques to better manage the consistency of our database, and we will
enhance our design into a bpfinal schema.

39

40

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Basic Data Types

In our sample database, we’ve used some basic, generic data types, as summarized in Table 2-1.
These can be translated into actual PostgreSQL types when we create the real tables in the next
chapter.

Table 2-1. Data Types in the Sample Database

Data Type Description

integer A whole number.

serial An integer, but automatically set to a unique number for each row that is added.
This is the type we would use for the _id columns. The figures in this chapter
show such fields as integer, because that’s the underlying type in the database.

char A character array of fixed size, with the size shown in parentheses after the type.
For these column types, PostgreSQL will always store exactly the specified number
of characters. If we use a char(256) to store just one character, there will still be
(at least) 256 bytes held in the database and returned when the data is retrieved.

varchar This is also a character array, but as its name suggests, it is of variable length.
Generally, the space used in the database will be much the same as the actual size of
the data stored. When you ask for a varchar field to be returned, it returns just the
number of characters you stored. The maximum length is given in the parentheses
after the type.

date This allows you to store year, month, and day information. There are other
related types that allow us to store time information as well as date information.
We will meet these later in Chapter 8.

numeric This allows you to store numbers with a specified number of digits (the first
number in the parentheses) and using a fixed number of decimal places (the
second number in the parentheses). Hence, numeric(7,2) would store exactly
seven digits, two of them after the decimal place.

As noted earlier in the chapter, since the need to add a special unique column is so
common in databases, there is a built-in solution in most databases: a data type known as
serial. This special type is effectively an integer that automatically increments as rows are
added to the table, assigning a new, unique number as each row is added. When we add a new
row to a table that has a serial column, we don’t specify a value for that column, but allow the
database to automatically assign the next number. Most databases, when they assign serial
values, don’t take into account any rows that are deleted. The number assigned will just go on
incrementing for each new row. We will look at how to handle out-of-sequence problems with
serial data types in Chapter 6.

In Chapter 8, we will look at PostgreSQL'’s other data types, which will give us a chance
to reexamine some of these data type choices. Appendix B provides a summary of the PostgreSQL
data types.

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Dealing with the Unknown: NULLs

In the orderinfo table in our sample database design, we have a date ordered and a date
shipped column, both of type date. What do we do when an order has been received but not yet
shipped? What should we store in the date shipped column? We could store a special date,

a sentinel value, that lets us know that we have not yet shipped the order. On UNIX-type
systems, we might use January 1, 1970, which is traditionally the date from which UNIX
systems count. That date is well before the date of any orders we expect to store in the data-
base, so we would always know that this special date means not yet shipped.

However, having special values scattered in tables shows poor design and is rather error-
prone. For example, if a new programmer starts on the project and doesn’t realize there is a
special date, the programmer might try calculating the average time between the order and
shipping date, and come up with some very strange answers if there are a few shipped dates set
before the order was placed.

Fortunately, all relational database systems support a very special value called NULL, which
usually means unknown at this time. Notice that it doesn’t mean zero, or empty string, or
anything that can be represented by the data type of the field. An unknown value is very different
from zero or a blank string. Indeed, NULL is not really a value at all.

The concept of a NULL is often confusing to novice database users. (The Romans also had
trouble with things that are not there, so there is no zero in Roman numerals.) In database
terminology, NULL generally means a value is unknown, but it also has one or two additional
and rather subtle variations on that meaning.

It’s important to take care of NULLs, because they can pop up at odd times and cause you
surprises, usually unpleasant ones. So in our orderinfo table, we could set date shipped to NULL
before an order is shipped, where the meaning “unknown at this time” is exactly what we require.

There is another subtly different use for NULL (not so common), which is to mean “not
relevant for this row.” Suppose you were doing a survey of people and one of the questions was
about the color of spectacles. For people who don’t wear spectacles, this is clearly a nonsensical
question. This is a case where NULL might be used in the column to record that the information
is not relevant for this particular row.

One feature of NULL is that if you compare two NULLs, the answer is always unknown. This
sometimes confuses people, but if you think about the meaning of NULL as unknown, it’s perfectly
logical that testing for equality on two unknowns gives the answer unknown. SQL has a special
way of checking for NULLs, by asking IS NULL. This allows you to find and test NULL values if you
need to do so. IS NULL is discussed further in Chapter 4.

NULL type values do behave in a slightly different way from more conventional values.
Therefore, itis possible to specify when you design a table that some columns cannot hold NULL
values. It is normally a good idea to specify the columns as NOT NULL, when you are sure that
NULL should never be accepted, such as for primary key columns. Some database designers
advocate an almost complete ban on NULL, but they do have their uses, so we normally advocate
allowing NULL values on selected columns, where there is a genuine possibility that unknown
values are required. NOT NULL is discussed further in Chapter 8.

41

42

CHAPTER 2 RELATIONAL DATABASE PRINCIPLES

Reviewing the Sample Database

In this chapter, we have been designing, in a rather ad-hoc manner, a simple database, named
bpsimple, to look after customers, orders, and items, such as might be used in a small shop (see
Figure 2-18, earlier in this chapter). As the book progresses, we will be using this database to
demonstrate SQL and other PostgreSQL features. We will also be discovering the limitations of
our existing design, and looking at how it can be improved in some areas.

The simplified database we are using has many elements of what a real retail database
might look like; however, it also has many simplifications. For example, an item might have a
full description for the stock file, a short description that appears on the till when it is sold, and
yet another description that appears on shelf edge labels. The address information we are storing
for customers is very simplified. We cannot cope with long addresses, where there is a village
name or a state. We also cannot handle overseas orders.

It is often more feasible to start with a reasonably solid base and expand, rather than try to
cater to every possible requirement in your initial design. This database is adequate for our
initial needs.

In the next chapter, we will look at installing PostgreSQL, creating the tables for our sample
database, and populating them with some sample data.

Summary

In this chapter, we considered how a single database table is much like a single spreadsheet,
with four important differences:

¢ Allitems in a column must have the same type.

¢ The number of columns must be the same for all rows in a table.

¢ It must be possible to uniquely identify each row.

¢ There is no implied row order in a database table, as there would be in a spreadsheet.

We have seen how we can extend our database to multiple tables, which lets us manage
many-to-one relationships in a simple way. We gave some informal rules of thumb to help you
understand how a database design needs to be structured. We will come back to the subject of
database design in a much more rigorous fashion in later chapters.

We have also seen how to work around many-to-many relationships that turn up in the real
world, breaking them down into a pair of one-to-many relationships by adding an extra table.

Finally, we worked on extending our initial database design so we have a demonstration
database design, or schema, to work with as the book progresses.

In the next chapter, we will see how to get the PostgreSQL up and running on various
platforms.

CHAPTER 3

Getting Started
with PostgreSQL

In this chapter, we will look at installing and setting up PostgreSQL on various operating
systems. If you need to install it on a Linux system, precompiled binary packages provide an
easy route. If you are running a UNIX or UNIX-like system—such as Linux, FreeBSD, AIX,
Solaris, HP-UX, or Mac OS X—it is not difficult to compile PostgreSQL from the source code.

We will also cover how to install and set up PostgreSQL on Windows platforms, using the
Windows installer introduced in PostgreSQL version 8.0. Earlier versions can be installed on
Windows, but this requires some additional software to create a UNIX-like environment. We
therefore recommend version 8.0 or later for Windows systems.

Finally, we will prepare for the examples in the following chapters by creating the sample
database discussed in Chapter 2.

In particular, this chapter will cover the following topics:

¢ Installing PostgreSQL from Linux binaries

¢ Installing PostgreSQL from the source code

* Setting up PostgreSQL on Linux and UNIX systems
¢ Installing and setting up PostgreSQL on Windows

* Creating a database with tables and adding data

Installing PostgreSQL on Linux and UNIX Systems

If you are running a Linux system installed from a recent distribution, you may already have
PostgreSQL installed or available to you as an installable package on the operating system
installation disks. If not, you can use RPM packages to install PostgreSQL on many Linux distri-
butions or flavors. Additionally, you can build and install PostgreSQL from the source code on
just about any UNIX-compatible system.

43

44 CHAPTER 3 GETTING STARTED WITH POSTGRESQL

Installing PostgreSQL from Linux Binaries

Probably the easiest way to install PostgreSQL on Linux is by using precompiled binary pack-
ages. The binaries for PostgreSQL are available for download as RPM (RPM Package Manager,
formerly Red Hat Package Manager) packages for various Linux distributions. At the time of
writing this book, RPM packages are available at http://www.postgresql.org/ for the following
operating systems:

e RedHat9

¢ Red Hat Advanced Server 2.1

¢ Red Hat Enterprise Linux 3.0

¢ Fedora Core 1, 2 (including 64-bit), and 3

You can find binary packages at http://www.rpmfind.net for other Linux distributions,
including the following:

e SuSE Linux 8.2 and 9.x
¢ Conectiva Linux
¢ Mandrake

¢ Yellow Dog PPC

Note Debian Linux users can install PostgreSQL using apt-get.

Table 3-1 lists the PostgreSQL binary packages. For a functional database and client instal-
lation, you need to download and install at least the base, libs, and server packages.

Table 3-1. PostgreSQL Binary Packages

Package Description

postgresql The base package including clients and utilities
postgresql-1libs Shared libraries required from clients
postgresql-server Programs to create and run a server

postgresql-contrib Contributed extensions

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 45

Table 3-1. PostgreSQL Binary Packages (Continued)

Package Description

postgresql-devel Header files and libraries for development
postgresql-docs Documentation

postgresql-jdbc Java database connectivity for PostgreSQL
postgresql-odbc Open database connectivity for PostgreSQL
postgresql-pl PostgreSQL server support for Perl
postgresql-python PostgreSQL server support for Python
postgresql-tcl PostgreSQL server support for Tcl
postgresql-test PostgreSQL test suite

The exact filenames will have version numbers appended with the package. It is advisable
to install a matching set of packages, all with the same revision level. In a package with the
version number 8.x.y, the x.y portion determines the revision level.

Installing the RPMs

To install the RPMs, you can use any of the following techniques:

* Use the RPM Package Manager application. Make sure that you have logged on as the
superuser (root) to perform the installation.

* Use the graphical package manager of your choice, such as KPackage, to install the RPMs.

* Place all the RPM files in a single directory and, as superuser (root), execute the following
command to unpack the packages and install all the files they contain into their correct
places for your distribution:

$ rpm -1 *.rpm

You can also install from the PostgreSQL packages that are bundled along with your Linux
distribution, such as in Red Hat or SuSE Linux. For example, on SuSE Linux 9.x, you can install
a version of PostgreSQL by running the YaST2 installation tool and selecting the packages listed
in Table 3-1, as shown in Figure 3-1.

46 CHAPTER 3 GETTING STARTED WITH POSTGRESQL

B vasT2@beast

File Package Extras Help

Filter: | it I 5 ‘ Package Summary Size
@ libgda-postgres Postgre SQL provider for GNU Data Acess (GDA) 64.0 kB
I:‘ libpg++ C++ Client Library for PostgreSQL 105.0 kB
Search: [] tibpaxx C++ Client Library for PestgreSQL 276.1 kB
| lpcshgresql Il ¥ ‘ I:‘ libpgxx-devel C++ Client Library for Postgre SQL 21 MB
W perl-DBD-Pg DBED::Pg - DBI driver for PostgreSQL 197.4 kB
| Search I:‘ pgacess A Database Management Tool for PostgreSQL 33 MB
I:‘ pgeasy Simplified C Client Interface for PostgreSQL 21.0 kB
FEEEN il =y &4 paperl Development Module Needed for Perl Code to Access a PostgreSQL Database 219.7 kB
[Name [rgTal Tel Client Library for PostgreS QL 51.3 kB
|§| Summary @ postgresq| Basic clients and utilities for Postgre SQL 2.4 MB
i I:‘ postgresql-contrib Contributed extensions and additions Postgre SQL 1.3 MB
") Description i postgresql-devel PostgreSQL development header files and libraries 2.2 MB
IFI Provides @ postgresq|-docs HTML decumentation for Postgre SQL 5.1 MBE
e & postgresgl-jdbe IDBC drivers for PostgreSQL 424.0 kB
) Reguires 4 postgresql-libs The shared libraries required for PostgreS QL clients 398.1 kB
I:‘ postgresql-pl The PL/Tcl, PL/Perl, and PL/Python procedural languages for PostgreSQL 130.0 kB
—Search Mode] oSty resql-server The programs needed to create and run a Postgre SOL server
G:] Contains @ psqlODBC The ODBC driver needed for accessing a PostgreSQL DB using ODBC 342.3 kB
I:::I Bl iy I:‘ PyGreSQL Python Client Library for PostgreSQL 139.0 kB
P o= I:‘ qt3-postgresqgl Postgre SQL plugin for Gt 154.9 kB
|} Byact Match 4 rekall-postgresgl rekall postaresgl database backend 144.5 kB
(7)) Use Wild Cards
li::l Use Regular Expression
* |] LIS
[} Case Sensitive

| Diescription | Technizl Data | Dependencies | Versions]

Name Disk Usage Uszd postgresql-server - The programs needed to create and run a PostgreSQL server +
Jwindows/ C [559% 1.74 GB I
/ ET178% 5.99 GB PostgreSQL is an advanced object-relational database management systemn that supports an extended
Jwindows/D [______141% 2.54 GB subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types
/boot B J124% 56 MB and functions. s
- n_ an | Check Dependencies |E| Autocheck | Cancel | Accept

Figure 3-1. Installing PostgreSQL from SuSE packages with YaST2

Upgrading to a New PostgreSQL Version

PostgreSQL is under continuous development, so new versions become available from time to
time. Installing from RPM packages has the advantage that you can very simply upgrade to the
most recent version. To do that, just let rpm know that you are performing an upgrade rather
than a first-time installation by specifying the -U option instead of the -i option:

$ rpm -U *.rpm

However, before performing an upgrade, you should back up the existing data in the data-
base. Any precautions that must be taken when performing an upgrade to the latest release will
be noted at the PostgreSQL home site and in the release notes. Backing up existing databases
is discussed in detail in Chapter 11 of this book.

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 47

Caution If you are installing a new version of PostgreSQL as an upgrade to an existing installation, be
sure to read the release notes for the new version before starting. In some cases, it may be necessary to back
up and restore your PostgreSQL databases during an upgrade if, for example, the new version has introduced
changes in the way that data is stored.

Anatomy of a PostgreSQL Installation

A PostgreSQL installation consists of a number of applications, utilities, and data directories.
The main PostgreSQL application (postmaster) contains the server code that services the requests
to access data from clients. Utilities such as pg_ct1 are used to control a master server process
that needs to be running all the time the server is active.

PostgreSQL uses a data directory to store all of the files needed for a database. This directory
not only stores the tables and records, but also system parameters. A typical installation would
have all of the components of a PostgreSQL installation shown in Table 3-2, arranged in sub-
directories of one PostgreSQL directory. One common location (and the default when you
install from source code, as described in the next section) is /usr/local/pgsql.

Table 3-2. PostgreSQL Installation Anatomy

Directory Description

bin Applications and utilities such as pg_ctl and postmaster
data The database itself, initialized by initdb

doc Documentation in HTML format

include Header files for use in developing PostgreSQL applications
lib Libraries for use in developing PostgreSQL applications
man Manual pages for PostgreSQL tools

share Sample configuration files

There is a drawback with the single directory approach: both fixed program files and variable
data are stored in the same place, which is often not ideal.
The files that PostgreSQL uses fall into two main categories:

* Files that are written to while the database server is running, including data files and
logs. The datafiles are the heart of the system, storing all of the information for all of your
databases. The log file that the database server produces will contain useful information
about database accesses and can be a big help when troubleshooting problems. It effec-
tively just grows as log entries are added.

48

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

* Files that are not written to while the database server is running, which are effectively
read-only files. These files include the PostgreSQL applications like postmaster and
pg_ctl, which are installed once and never change.

For a more efficient and easier to administer setup, you might wish to separate the different
categories of files. PostgreSQL offers the flexibility to store the applications, logs, and data in
different places, and some Linux distributions have made use of this flexibility to good effect.
For example, in SuSE Linux 9.x, the PostgreSQL applications are stored with other applications
in /usxr/bin, thelogfileisin /var/log/postgresql, and the dataisin /var/1ib/pgsql/data. This
means that it is easy to arrange backups of the critical data separately from the not-so-critical
files, such as the log files.

Other distributions will have their own scheme for file locations. You can use rpmto list the
files that have been installed by a particular package. To do this, use the query option, like this:

$ rpm -q -1 postgresql-libs
/usr/lib/libecpg.so.4
/usr/lib/libecpg.so.4.1

/usr/share/locale/zh TW/LC_MESSAGES/libpq.mo
$

To see where all the files have been installed, you will need to run rpm for all of the packages
that make up the complete PostgreSQL set. Different distributions may call the packages by
slightly different names. For example, SuSE Linux uses the package name pg_serv for the server
package, so the query option looks like this:

$ rpm -q -1 pg_serv
/etc/init.d/postgresql
/etc/logrotate.d/postgresql

/var/lib/pgsql/data/pg_options
$

Alternatively, you can use one of the graphical package manager tools, such as KPackage,
which comes with the KDE desktop environment. Figure 3-2 shows an example of viewing a
package’s contents with KPackage.

The disadvantage of installing from a Linux distribution is that it is not always clear where
everything lives. So, if you wish to upgrade to the most recent release, it can be tricky to ensure
that you have untangled the original installation. An alternative is to install PostgreSQL from
the source code, as described in the next section. If you have no intention of installing from
source, you can skip the next section and continue with the PostgreSQL setup described in the
“Setting Up PostgreSQL on Linux and UNIX” section.

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

File Packages Cache Special Settings Help

E Installed | Updated | New | All [Properties | File List | Change Log]
Fackage w Mark | Size 4[]l 2L Files
— . .
: W /usr/lib/libecpg_compat.so.1
O =I- [E3 Clients [| .
. W /usr/lib/libecpg_compat.so.l.1

& kdenetwork3-guery : 613K " fusr/lib/ libecpg.s0.4
x - 3 kio_sql 2 177K " fusrlib/libecpa.so.4.1
. - % knoda a 2402K W/ usrlib/ libpgtypes.so.L
= - W myldapklient a 217K v /usr/lib/libpatypes.so.l.2

- % mysqlec a 4209K v /usrlib/libpg 50.3

. R mysgl-client a 2249K W fusr/lib/libpg.s0.3.1

W /usr/share/lo@le/os/LC_MESSAGES/libpg.mo

BOLR

4% postgresql-libs a 407K -
& psqlODBC - 350K W /usr/share/lomle/de/LC_MESSAGES/libpg.mo
& - | 117K W /usr/share/lo@le/es/LC_MESSAGES/libpg.mo
R a
¥ Qra-mysq " usr/share/ locale/fr/LC_MES SAGES/libpg.mo
- W rekall a 10230K)
y W /usr/share/lo@le/hr/LC_MESSAGES/libpg.mao
- B relall-mysql ° B7K W/ usr/share/ locle/ it/ LC_MES SAGES/libpg.mo
- ¥ rekall-postgresql 2 148K W /usr/share/lo@le/nb/LC_MESSAGES/libpg.mo
ﬁ rekall-xbase a 82K W /usr/share/loale/pt_BR/LC_MESSAGES/libpg.mo
= [Ed servers W /usr/share/lo@le/ru/LC_MESSAGES/libpg.mao
& libgda a 1668K W /usr/share/locale/sl/LC_MESSAGES/libpg.mo
& libgda-odbe a 34K W /usr/share/lo@le/sv/ LC_MESSAGES/libpg.mo
- hi locale/zh_CN/LC_MESSAGES/libpg.
- ¥ libgda- postgres a 65K \‘::: "'sr:: sha rej:lmle::zh‘m’; L C‘ME SSAGE S’;Il.bpq me
. usryshare locale zh_ | ibpg.mo
.. s mysq a L)
x | 18080k | *
o *
-]|] «»

| J] | J[uninsan |
Uptng Fie U I ——

Figure 3-2. Examining a package’s contents with KPackage

Installing PostgreSQL from the Source Code

As explained in the previous section, you can use RPM packages to install PostgreSQL on many
Linux distributions or flavors. Additionally, you can build and install PostgreSQL from the
source code on just about any UNIX-compatible system, including Mac OS X.

The source code for PostgreSQL is available at http://www.postgresql.org. Here, you will
find the code for the latest release and often the source code for beta test versions of the next
release. Unless you like to live on the edge, it is probably a good idea to stick to the most recent
stable release.

You can find the entire PostgreSQL source code in a single, compressed archive file, either
in gzipped-tarball format, with a name something like postgresql-8.0.0.tar.gz, or in bzipped-
tarball format, with a name like postgresql-8.0.0.tar.bz2. At the time of writing, the PostgreSQL
tarball was around 13MB in size. To ease the download process in case of an unreliable or slow
connection, the source is also available in a set of smaller files:

* postgresql-8.0.0.base.tar.gz
* postgresql-8.0.0.docs.tar.gz
* postgresql-8.0.0.opt.tar.gz

* postgresql-8.0.0.test.tar.gz

49

50

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

The exact filenames depend on the current version revision number at the time.

Compiling PostgreSQL is very simple. If you are familiar with compiling open-source
products, there will be no surprises for you here. Even if this is your first experience in compiling
and installing an open-source product, you should have no difficulty.

To perform the source-code compilation, you will need a Linux or UNIX system with a
complete development environment installed. This includes a C compiler and the GNU version
of the make utility (needed to build the database system). Linux distributions generally ship
with a suitable development environment containing the GNU tools from the Free Software
Foundation. These include the excellent GNU C compiler (gcc), which is the standard compiler
for Linux. The GNU tools are available for most other UNIX platforms, too, and we recommend
them for compiling PostgreSQL. You can download the latest tools from http://www.gnu.ozrg.
Once you have a development environment installed, the compilation of PostgreSQL is
straightforward.

Extracting the Code

Start the installation as a normal user. Copy your source-code tarball file to an appropriate
directory for compiling. This does not need to be—in fact, it should not be—the final resting
place of your PostgreSQL installation. One possible choice is a subdirectory in your home
directory, since you do not need superuser permissions to compile PostgreSQL; you only need
those permissions to install it once it’s built. We generally prefer to unpack source code into a
directory specifically created for maintaining source code products, /usr/src, but you can
unpack anywhere you have sufficient disk space for the compilation. You need to allow around
90MB or so.

Unpack the tarball to extract the source code:

$ tar zxf postgresql-8.0.0.tar.gz

The extraction process will have made a new directory, related to the version of PostgreSQL
you are building. Move into that directory:

$ cd postgresql-8.0.0

Tip You should find a file, INSTALL, in this directory that contains detailed manual build instructions, in
the unlikely event that the automated method outlined here fails for some reason.

Configuring the Compilation

The build process uses a configuration script, configure, to tailor the build parameters to your
specific environment. To accept all defaults, you can simply run configure without arguments.
Here is an example of running configure on a Linux system:

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 51

$./configure

checking build system type... 1686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking which template to use... linux

checking whether to build with 64-bit integer date/time support... no
checking whether NLS is wanted... no

checking for default port number... 5432

checking for gcc... gcc

$

The configure script sets variables that control the way the PostgreSQL software is built,
taking into account the type of platform on which you are compiling, the features of your C
compiler, and so on. The configure script will automatically set locations for the installation.
The default locations are for PostgreSQL to be compiled to use /usr/local/pgsql as the main
directory for its operation, with subdirectories for applications and data.

You can use arguments to configure to change the default location settings, to set the
network port the database server will use, and to include support for additional server-side
programming languages for stored procedures. These options are listed in Table 3-3.

Table 3-3. PostgreSQL Configure Script Options

Option Description

--prefix=prefix Install in directories under prefix; defaults to /usr/local/pgsql
--bindir=dir Install application programs in dir; defaults to prefix/bin
--with-docdir=dir Install documentation in dir; defaults to prefix/doc
--with-pgport=port Set the default TCP port number for serving network connections
--with-tcl Compile server-side support for Tcl stored procedures
--with-perl Compile server-side support for Perl stored procedures
--with-python Compile server-side support for Python stored procedures

To see a full list of options to configure, you can use the --help argument:

$./configure --help
“configure' configures PostgreSQL 8.0.0 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

52

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

You do not need to settle on final locations for the database files and the log file at this
stage. You can always specify these locations to the server process, when you start it after
installation.

Building the Software

Once the compilation is configured, you can build the software using make. The PostgreSQL
build process uses a sophisticated set of makefiles to control the compilation process. Due to
this, we recommend that you use a version of GNU make for the build. This is the default on
Linux. On other UNIX platforms, you may need to install GNU make separately. Often, this will
be given the name gmake to distinguish it from the version of make supplied with the operating
system. In the instructions here, make refers to GNU make.

The next step is to run make to compile the software:

$ make

A1l of PostgreSQL successfully made. Ready to install.

If all goes well, you should see a large number of compilations proceeding. You will be
finally rewarded with the message that everything has been made successfully.

When make has finished, you need to copy the programs to their final resting places. You
use make to do this for you, too, but you need to be the superuser first:

$ su
make install

PostgreSQL installation complete.
exit

$

Once the software is built and installed, you can query the configuration of a PostgreSQL
system with pg config:

pg_config --bindir | --includedir | --libdir | --configure | --version

The pg_config command will report the directory where the PostgreSQL programs are
installed (--bindir), the location of C include files (- -includedir) and object code libraries
(--1libdir), and the version of PostgreSQL (--version):

$ pg_config --version
PostgreSOL 8.0.0
$

The build-time configuration can be reported by using pg_config --configure. This will
report the command-line options passed to the configure script when the PostgreSQL server
was configured for compilation.

That’s just about all there is to installing PostgreSQL. You now have a set of programs that
make up the PostgreSQL database server in the right place on your system.

At this point, you are in the same situation as you would have been had you installed from
packages. Now it’s time to turn our attention to setting up PostgreSQL now that it’s installed.

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 53

Setting Up PostgreSQL on Linux and UNIX

After you have PostgreSQL installed, whether from RPMs or compiled from the source code,
you need to take a few steps to get it up and running. First, you should create a postgres user.
Then you create a data directory for the database and the initial database structures. At that
point, you can start PostgreSQL by starting the postmaster process.

Creating the postgres User

The main database process for PostgreSQL, postmaster, is quite a special program. It is respon-
sible for dealing with all data access from all users to all databases. It must allow users to access
their data but not access other users’ data, unless authorized. To do this, it needs to have sole
control of all of the data files, so that no normal user can access any of the files directly. The
postmaster process will control access to the data files by checking the permissions granted to
the users that request access and performing the access on their behalf.

Strictly speaking, PostgreSQL needs to run only as a non-root user, which could be any
normal user; if you install in your home directory, it could be your own user. However, a
PostgreSQL installation typically uses the concept of a pseudo user to enforce data access. A
user, often called postgres, is created for the sole purpose of owning the data files and has no
other access rights. A postgres pseudo user provides some additional security, as no one can
log in as the postgres user and gain illicit access. This user identity is used by the postmaster
program to access the database files on behalf of others.

The first step in establishing a working PostgreSQL system is, therefore, to create this postgres
user. The precise procedure for making new users differs from system to system. Linux users
can (as root) simply use useradd:

useradd postgres

Other UNIX systems may require you to create a home directory, edit the configuration
files, or run the appropriate administration tool on your Linux distribution. Refer to your oper-
ating system documentation for details about using such administration tools.

Creating the Database Directory

Next, you must create, as root, the directory PostgreSQL is going to use for its databases and
change its owner to be postgres:

mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data

Here, we are using the default location for the database. You might choose to store the data
in a different location, as we discussed earlier, in the “Anatomy of a PostgreSQL Installation”
section.

Initializing the Database

You initialize the PostgreSQL database by using the initdb utility, specifying where in your file
system you want the database files to reside. This will do several things, including creating the
data structures PostgreSQL needs to run and creating an initial working database, templatel.

54

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

You need to assume the identity of the postgres user to run the initdb utility. To do this,
the most reliable way is to change your identity in two steps, first becoming root with su and
then becoming postgres as follows. (As a normal user, you may not have permission to assume
another user’s identity, so you must become the superuser first.)

$ su
su - postgres

pg$
Now the programs you run will assume the rights of the postgres user and will be able to

access the PostgreSQL database files. For clarity, we have shown the shell prompt for commands
executed as the postgres user as pg$.

Caution Do not be tempted to shortcut the process of using the postgres user and run these programs
as root. For security reasons, running server processes as root can be dangerous. If there were a problem
with the process, it could result in an outsider gaining access to your system via the network. For this reason,
postmaster will refuse to run as root.

Initialize the database with initdb:

pg$ /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale en GB.UTF-8.
The default database encoding has accordingly been set to UNICODE.

WARNING: enabling "trust" authentication for local connections
You can change this by editing pg hba.conf or using the -A option the
next time you run initdb.

Success. You can now start the database server using:

/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data
or
/usr/local/pgsql/bin/pg ctl -D /usr/local/pgsql/data -1 logfile start

pg$

If all goes well, you will have a new, completely empty database in the location you specified
with the -D option to initdb.

Granting Connection Permissions

By default, PostgreSQL will not allow general remote access. To grant permission to connect,
you must edit a configuration file, pg_hba.conf. This file lives in the database file area
(/usr/local/pgsql/data in our example), and contains entries that grant or reject permission

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

for users to connect to the database. By default, local users may connect and remote users
cannot. Its format is fairly simple, and the default file shipped with PostgreSQL contains many
helpful comments for adding entries. You can grant permission for individual users, hosts,
groups of computers, and individual databases, as necessary.

For example, to allow the user neil on a machine with IP address 192.168.0.3 to connect to
the bpsimple database, add the following line to pg_hba. conf:

host bpsimple neil 192.168.0.3/32 md5

Note that in versions of PostgreSQL earlier than 8.0, the pg_hba. conf file used host address
specifications using an IP address and subnet mask, so the preceding example would need to
be written as follows:

host bpsimple neil 192.168.0.3 255.255.255.255 md5

Here, we will add an entry to allow any computer on the local network (in this case the
subnet 192.168.x.x) to connect to any database with password authentication. (If you require
a different access policy, refer to the comments in the configuration file.) We add a line to the
end of pg_hba.conf that looks like this:

host all all 192.168.0.0/16 md5

This means that all computers with an IP address that begins 192.168 can access all databases.
Alternatively, if we trust all of the users on all of the machines in a network, we can allow
unrestricted access by specifying trust as the authentication mechanism, like this:

host all all 192.168.0.0/16 trust

The PostgreSQL postmaster server process reads a configuration file, postgresql.conf
(also in the data directory) to set a number of runtime options, including (if not otherwise
specified in a -D option or the PGDATA environment variable) the location of the database data
files. The configuration file is well commented, providing guidance if you need to change any
settings. There is also a section on runtime configuration in the PostgreSQL documentation.

As an example, we can allow the server to listen for network connections by setting the
listen addresses variable in postgresql.conf, instead of using the now deprecated -1i option
to postmaster, as follows:

listen addresses="*'

In fact, setting configuration options in postgresql. conf is the recommended approach
for controlling the behavior of the postmaster process.

Starting the postmaster Process

Now you can start the server process itself. Again, you use the -D option to tell postmaster
where the database files are located. If you want to allow users on a network to access your
data, you can specify the -1 option to enable remote clients (if you haven’t enabled

listen addresses in postgresql.conf, as in the preceding example):

pg$ /usr/local/pgsql/bin/postmaster -i -D /usr/local/pgsql/data >logfile 2>&1 &

55

56

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

This command starts postmaster, redirects the process output to a file (called logfile in the
postgres user’s home directory), and merges standard output with standard error by using the
shell construction 2>&1. You can choose a different location for your log file by redirecting
output to another file.

The pg_ct1 utility provided with PostgreSQL offers a simple way of starting, stopping, and
restarting (the equivalent of stop followed by start) the postmaster process. If PostgreSQL is
fully configured using the postgresql.conf configuration file, as mentioned in the previous
section, it is possible to start, stop, and restart with these commands:

pg_ctl start
pg_ctl stop
pg_ctl restart

Connecting to the Database

Now you can check that the database is functioning by trying to connect to it. The psql utility is

used to interact with the database system and perform simple administrative tasks such as creating
users, creating databases, and creating tables. We will use it to create and populate the sample
database later in the chapter, and it is covered in more detail in Chapter 5. For now, you can simply
try to connect to a database. The response you get should show that you have postmaster running:

pg$ /usr/local/pgsql/bin/psql
psql: FATAL 1: Database "postgres" does not exist in the system catalog.

Don’t be taken aback by the fatal error it displays. By default, psql connects to the database
on the local machine and tries to open a database with the same name as the user running the
program. We have not created a database called postgres, so the attempt fails. It does indicate,
however, that postmaster is running and able to respond with details of the failure.

To specify a particular database to connect to, use the -d option to psql. A new PostgreSQL
system does contain some databases that are used by the system as the base for new databases
youmight create. One such database is called template1. If you need to, you can connect to this
database for administration purposes.

To check network connectivity, you can use psql installed on another machine on the
network as a client, or any other PostgreSQL compatible application. With psql, you specify the
host (either the name or IP address) with the -h option, and one of the system databases (as you
haven'’t yet created a real database):

remote$ psql -h 192.168.0.111 -d templatel
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SOL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

templatel=# \q

remote$

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

Configuring Automatic Startup

The final step you need to take is to arrange for the postmaster server process to be started auto-
matically every time the machine is rebooted. Essentially, all you need to do is make sure that
postmaster is run at startup. Again, there is little standardization between Linux and UNIX vari-
ants as to how this should be done. Refer to your installation’s documentation for specific details.

If you have installed PostgreSQL from a Linux distribution, it is likely that the startup is
already configured by the RPM packages you installed. On SuSE Linux, PostgreSQL is automatically
started when the system enters multiuser mode, by a scriptin /etc/rc.d/init.d called postgresql.

If you are creating a startup script yourself, the easiest thing to do is create a simple shell
script that starts postmaster with the parameters you need, and add a call to your script from
one of the scripts that is run automatically at startup, such as those found in /etc/rc.d. Be sure
that postmaster is run as the user postgres. Here is an example of a script that does the job for
a default PostgreSQL installation built from source code:

#!/bin/sh
Script to start and stop PostgreSQOL

SERVER=/usr/local/pgsql/bin/postmaster
PGCTL=/usr/local/pgsql/bin/pg ctl
PGDATA=/usr/local/pgsql/data

OPTIONS=-1
LOGFILE=/usr/local/pgsql/data/postmaster.log

case "$1" in
start)
echo -n "Starting PostgreSQL..."

su -1 postgres -c "nohup $SERVER $OPTIONS -D $PGDATA >$LOGFILE 2>&1 &"
55
stop)
echo -n "Stopping PostgreSQL..."
su -1 postgres -c "$PGCTL -D $PGDATA stop"
55
*)
echo "Usage: $0 {start|stop}"
exit 1
55
esac
exit 0

Note On Debian Linux, you may need to use su - in place of su -1.

57

58

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

Create an executable script file with this script in it. Call it, for example, MyPostgreSQL. Use
the chmod command to make it executable, as follows:

chmod a+rx MyPostgreSQL

Then you need to arrange that the script is called to start and stop PostgreSQL when the
server boots and shuts down:

MyPostgreSOL start
MyPostgreSOL stop

For systems (such as many Linux distributions) that use System V type init scripting, you
can place the script in the appropriate place. For SuSE Linux, for example, you would place the
scriptin /etc/rc.d/init.d/MyPostgreSQL, and make symbolic links to it from the following
places to automatically start and stop PostgreSQL as the server enters and leaves multiuser mode:

/etc/rc.d/rc2.d/S25MyPostgreSQL
/etc/rc.d/rc2.d/K25MyPostgreSQL
/etc/rc.d/rc3.d/S25MyPostgreSQL
/etc/rc.d/rc3.d/K25MyPostgreSQL

Refer to your system’s documentation on startup scripts for more specific details.

Stopping PostgreSQL

It is important that the PostgreSQL server process is shut down in an orderly fashion. This will
allow it to write any outstanding data to the database and free up shared memory resources it
is using.

To cleanly shut down the database, use the pg_ctl utility as postgres or root, like this:

/usr/local/pgsql/bin/pg ctl -D /usr/local/pgsql/data stop
If startup scripts are in place, you can use those, as in this example:
/etc/rc.d/init.d/MyPostgreSQL stop

The scripts also make sure that the database is shut down properly when the machine is
halted or rebooted.

RESOURCES

To make life a little easier when dealing with PostgreSQL, it might be of some use to add the PostgreSQL appli-
cations directory to your execution path, and similarly the manual pages. To do this for the standard UNIX shell,
place the following commands in your shell startup file (.profile or .bashrc):

PATH=$PATH: /usr/local/pgsql/bin
MANPATH=$MANPATH: /usx/local/pgsql/man
export PATH MANPATH

The source code for the current and latest test releases of PostgreSQL can be found at
http://www.postgresql.org. More resources for PostgreSQL are listed in Appendix G of this book.

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

Installing PostgreSQL on Windows

Let’s begin this section with some good news for Windows users. Although PostgreSQL was
developed for UNIX-like platforms, it was written to be portable. It has been possible for
some time now to write PostgreSQL client applications for Windows, and from version 7.1
onwards, PostgreSQL could be compiled, installed, and run as a PostgreSQL server on Microsoft
Windows NT 4, 2000, XP, and Server 2003.

With PostgreSQL version 8.0, a native Windows version is available, offering a Windows
installer for both server and client software, which makes installing on Windows a breeze. Prior
to version 8.0, Windows users needed to install some additional software to support some UNIX
features on Windows.

Note PostgreSQL 8.0 is supported on Windows 2000, Windows XP, and Windows Server 2003. It requires
features not present in Windows 95, 98, and Me, so it will not run on those versions. It can be persuaded to
run on Windows NT, but the installation must be performed by hand, as the PostgreSQL installer does not
work correctly for Windows NT.

It may seem that an open-source platform like Linux would be the natural home of an
open-source database like PostgreSQL. Indeed, we would not recommend running a production
database on a desktop version of Windows, but installing on Windows can have its advantages.
For example, having the PostgreSQL utilities like psql on the same machine as some client
applications can be useful in testing new database installations and troubleshooting connection
problems, even if you don’t need to run the server on Windows. Running the database server
on a development machine can avoid any potential problems with developers needing to share
a server instance elsewhere.

Using the Windows Installer

The installer for the Windows version of PostgreSQL is a separate PostgreSQL-related project
with its home page at http://pgfoundry.org/projects/pginstaller. The latest version of the
installer may be downloaded from the home page or one of the PostgreSQL mirror sites.

The installer is packaged as a Microsoft Windows Installer (.ms1i) file inside a ZIP archive.
To run the installer, you will need version 2.0 or later of the Windows Installer. A suitable
version is included with Windows XP and later. If necessary, the Windows Installer can be
downloaded from http://www.microsoft.com (search for “Windows Installer redistributable”).

The PostgreSQL MSI package has a filename similar to postgresql-8.0.0.msi. To start the
installation wizard, just double-click this file to start the installer. After choosing a language to
use for installation and reading the installation notes presented, you will see the installation
options dialog box, as shown in Figure 3-3.

You can also use this dialog box to set the locations for the PostgreSQL applications and
the PostgreSQL database files.

Click PostgreSQL, and then click Browse to set the location for the application installation
(the defaultis C:\Program Files\PostgreSQL\8.0.0).

Click Data directory, and then click Browse to set the location of the database files (the default
is C:\Program Files\PostgreSQL\8.0.0\data).

60

CHAPTER 3

i) PostgreSQL

GETTING STARTED WITH POSTGRESQL

Installation options

= gl User Interfaces
= -| paal
=3 -| pghdmin |1l
= gl Database Drivers

<

=3 ~ | Data directory
=3 ~ | Matural language supp

Qvl JDBC Driver
=3 ~ | Npgsqgl Driver
|

)0 &

PostgreSQL

| The PostgreSGL object relational
database, tools and interfaces

Thiz feature requires 2144KB on your
hard drive. It has 5 of 5 subfeatures
zelected. The subfeatures require

| 45MB on your hard drive.

Current location:
C:\Program Files\PostgreSOLAS.0.04

Browse

[< Back " Mext >] [Cancel]

Figure 3-3. PostgreSQL installation options

The locations of other components can be similarly set if required; they will default to
subfolders of the application installation folder. We recommend leaving them at their default

locations.

Here, you can choose which components you need to install, depending on how you will
use the machine on which PostgreSQL is being installed: as a database server, a client, a devel-
opment machine, or a mixture. The installation options are summarized in Table 3-4.

Table 3-4. PostgreSQL Installation Options

Option

Database Server

Natural language support
psql

pgAdmin III

JDBC Driver

Npgsql Driver

ODBC Driver

OLEDB Provider
Documentation

Development

The PostgreSQL database

Support for status and error messages in non-English languages
The PostgreSQL command-line interface

A graphical PostgreSQL management console

The PostgreSQL JDBC driver for Java clients

The PostgreSQL Microsoft .NET driver

The PostgreSQL ODBC driver

The PostgreSQL OLEDB Provider

HTML format documentation

Support files and utilities for creating PostgreSQL clients

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

The following are our recommendations for each type of setup:

e To set up a simple database server, it is sufficient to select the Database Server option.
This will result in an installation that needs to be managed remotely from another
machine. It is helpful to also include the psql command-line interface, even for a server-
only installation.

* To set up a machine for managing a remote server, we suggest you choose the psql and
pgAdmin III options. These can be installed independently of the database server.

* Tosetup amachine that will run applications that connect to a remote PostgreSQL data-
base, choose the appropriate drivers. As mentioned in Chapter 2 and covered in more detail
in Chapter 5, you can use the ODBC driver to connect applications such as Microsoft Access
and Excel to PostgreSQL. Java and .NET applications need the JDBC and Npgsql drivers,
respectively. The OLEDB Provider allows PostgreSQL to be used with OLEDB clients
such as Microsoft Visual Studio.

¢ Tosetup a machine that will be used to develop client applications, such as those covered
in Chapters 13 and 14, choose the Development option to install appropriate header files
and libraries. You will also need a development environment such as Microsoft Visual Studio
or Cygwin (http://www.cygwin.com) to compile your applications.

For our installation, we selected all of the available options.

The next step in the installation is to configure the database server to run as a service, as
shown in Figure 3-4. This is the recommended option, as it will allow the PostgreSQL server to
be automatically started when Windows is booted.

o
Service configuration POngI‘BSQL

= PostgreSQL

Install as a service

Service name |PostgreSQL Databasze Server 8.0.0

Account hame |Neil

Account domain [HERCULES

Account pazsword |

erify passwaord | xxxxxxxx

The zervice account is the account that runs the PostgreS0L databaze server. |t must MOT
be a member of the local administrators group. |f you have not already created an account,
the inztaller can do o for you. Enter an account name and a password, or leave the
pazzword blank to have one auto-generated.

[< Back " Mext >] [Cancel

Figure 3-4. PostgreSQL service configuration

61

62

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

PostgreSQL must run as a non-administrator user. This avoids any potential security risk
from running a service that accepts network connections as a user that has administrative
privileges. In the unlikely event of security vulnerabilities in PostgreSQL being discovered and
exploited, then only files and data managed by PostgreSQL would be at risk, rather than the entire
server. You can either create an account on Windows for the purposes of running PostgreSQL or
have the installer do it for you: just give an account name to the installer, and it will create it,
if it does not already exist.

Next, initialize the PostgreSQL database, as shown in Figure 3-5. (Note that for an upgrade
installation, it will not be necessary to perform the database initialization step, as you would
normally want the existing database to be preserved.)

s PostgreSQL |:| |:, [2|

Initialise database cluster POngI‘BSQL

Initialize: database cluster

Part number 5432

Addresses Accept connections on all addreses, not just localhost

Locale | C v |

Encoding [smL_sscl |

Superuser name W Thiz iz the internal databaze uzername, and

not the service account. For security reasong,
the password should HOT be the same as the
service account.

Password

Password [again]

[< Back " Mext >] [Cancel

Figure 3-5. PostgreSQL database initialization

Here, you specify a superuser account for PostgreSQL. This is a database user that has
permissions to create and manage databases within the server. It is different from the Windows
account that is used to run the server. PostgreSQL accounts are used by clients connecting to
the database, and PostgreSQL itself manages the authentication of these users; they do not
need to have Windows accounts on the database server. As noted in the dialog box shown in
Figure 3-5, there are security advantages to using a different username and password for the
database superuser.

To allow the database server to accept connections from the network, check the Addresses
check box. Without this selected, only clients running on the server machine will be able to
connect. Although this option will start the server listening on the network, you still have control
over who can connect and where from. We will cover client access configuration in the next section.

In our installation, we have left the locale and encoding schemes for the database at their
default values. If you are installing a PostgreSQL database in an environment that requires the
use of a specific character set or locale, these options can be set here. If you are not familiar
with character sets and locales, then the defaults will probably work just fine.

In Chapter 9, we will cover stored procedures, which are functions that you can execute on
the server to perform tasks more efficiently than in a client application. PostgreSQL supports
stored procedures written in a variety of programming languages, including its own PL/pgSQL,

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 63

Perl, Python, and others. To run the examples in Chapter 9, you need to select the PL/pgSQL
option in the next installation dialog box, Procedural Languages, shown in Figure 3-6.

i) PostgreS0OL

Enable procedural languages POSTQTBSQL

Select procedural languages to enable in the default database

FL/pgzql

[PLApe

[PL/perl [untrusted)
FL/python [untrusted)
PLcl

FLAcl [untrusted)

[< Back][Mext >] [Cancel

Figure 3-6. PostgreSQL procedural languages

The next installation dialog box deals with contributed modules, and its settings can safely
be left at the defaults. (We do not cover these advanced topics in this book.)

The installation will now proceed and complete. The database server processes should be
running. They will be visible as postmaster.exe and several postgres.exe processes in Task
Manager, as shown in Figure 3-7.

£l Windows Task Manager

File Options View ShutDown Help
Applications | Processes | performance || Metworking || Users |
Image Mame User Mame CPU | Mem Usage L]
ctfmon.exe Meil [ili} 5,012K
mdm.exe SYSTEM [ili} 2,884 K
nvsvc32.exe SYSTEM oo 1,396 K
firefox.exe Meil [ili} 26,740 K
acrotray.exe Meil [ili} 2,264 K
svchost.exe SYSTEM [ili} 3,888 K
wdfmgr.exe LOCAL SERVICE g 1,548 K
postgres.exe postgres oo 2,216 K
vnc-4,0-x86_win3... Meil oo 952K
postmaster.exe postgres oo 4,108 K
postgres.exe postgres oo 2,360 K
postgres.exe postgres oo 2,372K
postgres.exe postgres oo 2,824K
WOWEXEC.EXE Meil oo
ntvdm.exe Meil [ili} 1,248 K
iexplore.exe Meil [ili} 8,248 K
msiexec,exe SYSTEM oo 6,733 K
msimn. exe Meil [ili} 8,272 K
Pasl nader.exe Neil nn 51740k ¥
[show processes from all users
Processes: 49 CPU Usage: 100%: Commit Charge: 358M [2462M

Figure 3-7. PostgreSQL processes

64

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

The PostgreSQL applications and utilities are installed in a new program group accessible
from the Start menu, as shown in Figure 3-8.

ﬂ Mew Office Document

Ca Open Office Document

@ SetProgram Access and Defaults
2 Windows Catalog

“ Windows Update

@ PostgresQl 8.0.0 @ Configuration fles » [P Edit pg_hba.conf
Accessories 3 Documentation 3 3 Edit pg_ident.conf
ActiveState ActivePerl 5.8 3 m pgAdmin I1T 3 Edit postgresgl.conf
Games 3 W psgl to template 1

Microsoft Mouse 4 E Start service

Microsoft Office Tools v] stop service

Startup b

@ Internet Explorer

Figure 3-8. PostgreSQL program menu

Configuring Client Access

To configure remote hosts and users that can connect to the PostgreSQL service, you need to
edit the pg_hba. conf file. This file contains many comments that document the options available
for remote access. In our sample installation, we want to allow users from any host on the local
network to access all of the databases on our server. To do this, we add the following line at the
end of the file:

host all all 192.168.0.0/16 trust

This means that all computers with an IP address that begins 192.168 can access all databases.
The simplest way to make this configuration change take effect is to restart the PostgreSQL
server.
The pg_hba. conf file takes the same form on Windows systems as it does on Linux and
UNIX systems. For other examples of configuration access, see the “Granting Connection
Permissions” section earlier in this chapter.

Creating the Sample Database

Now that we have PostgreSQL up and running, we are going to create a simple database, which
we will call bpsimple, to support our customer order tables examples. This database (together
with a variant called bpfinal created in Chapter 8) is used throughout the book. We’ll cover the
details of creating databases and creating and populating databases in later chapters. Here, we
will just show the steps and SQL scripts, so that we have a database to use for demonstration.

Before we start, one simple way to check if PostgreSQL is running on your system is to look
for the postmaster process. On Windows systems, look for postmaster.exe in the processes tab
of Task Manager. On UNIX and Linux systems, run the following command:

$ ps -el | grep post

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 65

If there is a process running called postmaster (the name might be abbreviated in the
display), then you are running a PostgreSQL server.

Creating User Records

Before we can create a database, we need to tell PostgreSQL about the valid users by creating
records for them within the system. Valid users of a PostgreSQL database system can read data,
insert data, or update data; create databases of their own; and control access to the data those
databases hold. To create user records, we use PostgreSQL’s createuser utility.

On Linux and UNIX systems, use su (from root) to become the PostgreSQL user, postgres.
Then run createuser to register the user. The user login name given is recorded as a valid
PostgreSQL user. Let’s give user rights to the (existing UNIX/Linux) user neil:

$ su

su - postgres

pg$ /usr/local/pgsql/bin/createuser neil

Shall the new user be able to create databases? (y/n) y
Shall the new user be able to create new users (y/n) y
CREATE USER

pg$

On Windows systems, open a Command Prompt window and change the directory to the
location of the PostgreSQL application (the default is C: \Program Files\PostgreSQL\8.0.0
in our installation). Then run the createuser.exe utility:

C:\Program Files\PostgreSQL\8.0.0\bin>createuser -U postgres -P neil
Enter password for new user:

Enter it again:

Shall the new user be allowed to create databases? (y/n) y

Shall the new user be allowed to create more new users? (y/n) y
Password:

CREATE USER

The -U option is used to specify the identity you want to use for creating the new user. It must
be a PostgreSQL user with permission to create users, normally the PostgreSQL user you named
when you performed the installation. The -P option causes createuser to prompt for a password
for the new user.

Here, we have allowed neil to create new databases, and he is allowed to create new users.
Some of the examples in the book use another user, rick, who also has permission to create
databases, but does not have permission to create new users. If you would like to exactly repli-
cate these examples, now is a good time to create this user.

Once you have created a PostgreSQL user with these rights, you will be able to create the
bpsimple database.

Creating the Database

To create the database on Linux and UNIX systems, change back to your own (non-root) login
and run the following command:

66

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

$ /usr/local/pgsql/bin/createdb bpsimple
CREATE DATABASE
$

On Windows systems, run the createdb.exe command:

C:\Program Files\PostgreSQL\8.0.0\bin>createdb -U neil bpsimple
Password:
CREATE DATABASE

You should now be able to connect (locally) to the server, using the interactive terminal
psql. On Linux and UNIX systems, use the following command:

$ /usr/local/pgsql/bin/psql -U neil -d bpsimple
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

bpsimple=#
On Windows systems, use this command:

C:\Program Files\PostgreSQL\8.0.0\bin>psql -U neil -d bpsimple
Password:
Welcome to psql 8.0.0, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\g to quit

Warning: Console codepage (850) differs from windows codepage (1252)
8-bit characters will not work correctly. See PostgreSOL
documentation "Installation on Windows" for details.

bpsimple=#

Alternatively, you can select the Windows Start menu item psql to templatel, and then
change the database within psql:

templatel=# \c bpsimple
You are now connected to database "bpsimple".
bpsimple=#

You are now logged into PostgreSQL, ready to execute some commands. To exit back to
the shell, use the command \q.
Next, we will use a set of SQL statements to create and populate the sample database.

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 67

Creating the Tables

You can create the tables in your bpsimple database by typing in the SQL commands that
follow at the psql command prompt. However, it’s easier to download the code bundle from
the Downloads section of the Apress web site (http://www.apress.com), unpack it, and then
execute the commands using \i <filename>. (The \i command in psql can be used to execute
groups of SQL statements and other PostgreSQL commands stored in text files, called scripts.)
The commands are just plain text, so you can always edit them with your preferred text editor
if you want.

To run the create_tables-bpsimple.sql script to create the tables, enter the following:

bpsimple=# \i create_tables-bpsimple.sql
CREATE TABLE

bpsimple=#

It is a very good practice to script all database schema (tables, indexes, and procedures)
statements. That way, if the database needs to be re-created, you can do that from the scripts.
Scripts should also be used whenever the schema needs to be updated.

Here is the SQL for creating our tables (the ones we designed in Chapter 2), which you will
find in create_tables-bpsimple.sql in the code bundle:

CREATE TABLE customer

(
customer_id serial ,
title char(4) s
fname varchar(32) ,
1name varchar(32) NOT NULL,
addressline varchar(64) ,
town varchar(32) ,
zipcode char(10) NOT NULL,
phone varchar(16) ,
CONSTRAINT customer_pk PRIMARY KEY(customer id)

)5

CREATE TABLE item

(
item_id serial ,
description varchar(64) NOT NULL,
cost_price numeric(7,2) ,
sell price numeric(7,2) ,
CONSTRAINT item pk PRIMARY KEY(item id)

);

68

CHAPTER 3

GETTING

STARTED WITH POSTGRESQL

CREATE TABLE orderinfo

(

orderinfo_id
customer_id
date_placed

date_sh

ipped

shipping

CONSTRA

CREATE TABL
(
item_id
quantit
CONSTRA

)5

INT

E stock

y
INT

serial ,
integer NOT NULL,
date NOT NULL,
date ,
numeric(7,2) s

orderinfo_pk PRIMARY KEY(orderinfo id)

integer NOT NULL,
integer NOT NULL,
stock_pk PRIMARY KEY(item id)

CREATE TABLE orderline

(

orderin
item_id
quantit
CONSTRA

CREATE TABL
(

fo_id

y
INT

E barcode

integer NOT NULL,
integer NOT NULL,
integer NOT NULL,

orderline pk PRIMARY KEY(orderinfo id, item id)

barcode_ean char(13) NOT NULL,
item_id integer NOT NULL,
CONSTRAINT barcode pk PRIMARY KEY(barcode ean)
);
Removing the Tables

If, at some later date, you wish to delete all the tables (also known as dropping the tables) and
start again, you can. The command set is in the drop_tables.sql file, and looks like this:

DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE

barcode;
orderline;
stock;
orderinfo;
item;
customer;

CHAPTER 3 GETTING STARTED WITH POSTGRESQL 69

DROP SEQUENCE customer customer id seq;
DROP SEQUENCE item item id seq;
DROP SEQUENCE orderinfo orderinfo id seq;

Be warned, if you drop the tables, you also lose any data in them!

Note The drop tables.sql script also explicitly drops the special attributes, called sequences, that
PostgreSQL uses to maintain the automatically incrementing serial columns. In PostgreSQL version 8.0 and
later, these sequences will be automatically dropped when the relevant table is dropped, but we have retained
the commands for compatibility with earlier versions.

If you run this script after creating the tables, then you should run the
create_tables-bpsimple.sql script again before attempting to populate the tables with data.

Populating the Tables

Last, but not least, we need to add some data to the tables, or populate the tables.

The sample data is in the code bundle available from the Apress web site, as
pop_tablename.sql. If you choose to use your own data, your results will be different from
the ones presented in the book. So, until you are confident, it’s probably best to stick with
our sample data.

The line wraps are simply a necessity of the fitting the commands on the printed page. You
can type each command on a single line. You do need to include the terminating semicolon,
which tells psql where each SQL command ends.

Customer table

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss', 'Jenny', 'Stones','27 Rowan Avenue','Hightown','NT2 1AQ','023 9876');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Andrew', 'Stones','52 The Willows','Lowtown','LT5 7RA','876 3527');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss', 'Alex', 'Matthew','4 The Street','Nicetown','NT2 2TX','010 4567');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Adrian', 'Matthew', 'The Barn', 'Yuleville','YV67 2WR', '487 3871');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Simon', 'Cozens','7 Shady Lane', 'Oakenham','OA3 6QW','514 5926');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Neil', 'Matthew', 'S Pasture Lane','Nicetown','NT3 7RT','267 1232');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Richard', 'Stones','34 Holly Way', 'Bingham', 'BG4 2WE','342 5982');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Ann', 'Stones', '34 Holly Way','Bingham', 'BG4 2WE','342 5982");

70

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs', 'Christine', 'Hickman','36 Queen Street','Histon','HT3 5EM','342 5432');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Mike', 'Howard','86 Dysart Street','Tibsville','TB3 7FG','505 5482');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Dave’, 'Jones','54 Vale Rise', 'Bingham','BG3 8CD', '342 8264');

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Richard', 'Neill','42 Thatched Way', 'Winersby', 'WB3 6GQ','505 6482"');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs', 'Laura', 'Hardy','73 Margarita Way', 'Oxbridge','0X2 3HX','821 2335');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Bill", 'O\'Neill','2 Beamer Street', 'Welltown','WT3 8GM','435 1234');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'David', 'Hudson','4 The Square','Milltown','MT2 6RT','961 4526');

Item table

INSERT INTO item(description, cost price, sell price)
VALUES('Wood Puzzle', 15.23, 21.95);

INSERT INTO item(description, cost price, sell price)
VALUES('Rubik Cube', 7.45, 11.49);

INSERT INTO item(description, cost price, sell price)
VALUES('Linux CD', 1.99, 2.49);

INSERT INTO item(description, cost price, sell price)
VALUES('Tissues', 2.11, 3.99);

INSERT INTO item(description, cost price, sell price)
VALUES('Picture Frame', 7.54, 9.95);

INSERT INTO item(description, cost price, sell price)
VALUES('Fan Small', 9.23, 15.75);

INSERT INTO item(description, cost price, sell price)
VALUES('Fan Large', 13.36, 19.95);

INSERT INTO item(description, cost price, sell price)
VALUES('Toothbrush', 0.75, 1.45);

INSERT INTO item(description, cost price, sell price)
VALUES('Roman Coin', 2.34, 2.45);

INSERT INTO item(description, cost price, sell price)
VALUES('Carrier Bag', 0.01, 0.0);

INSERT INTO item(description, cost price, sell price)
VALUES(' Speakers', 19.73, 25.32);

Barcode table

INSERT INTO barcode(barcode_ean,
INSERT INTO barcode(barcode_ean,
INSERT INTO barcode(barcode_ean,
INSERT INTO barcode(barcode_ean,
INSERT INTO barcode(barcode_ean,
INSERT INTO barcode(barcode_ean,

item id) VALUES('6241527836173",
item id) VALUES('6241574635234",
item id) VALUES('6264537836173",
item id) VALUES('6241527746363",
item_id) VALUES('7465743843764",
item_id) VALUES('3453458677628",

1);
2);
3);
3);
4);
5);

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

INSERT INTO barcode(barcode ean, item id) VALUES('6434564564544",
INSERT INTO barcode(barcode ean, item id) VALUES('8476736836876",
INSERT INTO barcode(barcode ean, item id) VALUES('6241234586487',
INSERT INTO barcode(barcode ean, item id) VALUES('9473625532534",
INSERT INTO barcode(barcode ean, item id) VALUES('9473627464543",
INSERT INTO barcode(barcode ean, item id) VALUES('4587263646878",
INSERT INTO barcode(barcode ean, item id) VALUES('9879879837489',
INSERT INTO barcode(barcode ean, item id) VALUES('2239872376872',

Orderinfo table

6);
7);
8);
8);
8);
9);
11);
11);

INSERT INTO orderinfo(customer id, date placed, date_shipped, shipping)

VALUES(3, '03-13-2000", '03-17-2000", 2.99);

INSERT INTO orderinfo(customer id, date placed, date_shipped, shipping)

VALUES(8, '06-23-2000", '06-24-2000", 0.00);

INSERT INTO orderinfo(customer id, date placed, date_shipped, shipping)

VALUES(15, '09-02-2000", '09-12-2000", 3.99);

INSERT INTO orderinfo(customer id, date placed, date_shipped, shipping)

VALUES(13,'09-03-2000", '09-10-2000", 2.99);

INSERT INTO orderinfo(customer id, date placed, date_shipped, shipping)

VALUES(8, '07-21-2000", '07-24-2000", 0.00);

Orderline table

INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(1,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(1,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(1,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(2,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(2,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(2,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(2,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(3,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(3,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(4,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(S,
INSERT INTO orderline(orderinfo id, item id, quantity) VALUES(S,

Stock table

INSERT INTO stock(item id, quantity) VALUES(1,12);
INSERT INTO stock(item id, quantity) VALUES(2,2);
INSERT INTO stock(item id, quantity) VALUES(4,8);
INSERT INTO stock(item id, quantity) VALUES(5,3);
INSERT INTO stock(item id, quantity) VALUES(7,8);
INSERT INTO stock(item id, quantity) VALUES(8,18);
INSERT INTO stock(item id, quantity) VALUES(10,1);

4, 1);
7, 1);
9, 1);
1, 1);
10, 1);
7, 2);
4, 2);
2, 1);
1, 1);
5, 2);
1, 1);
3, 1);

I

72

CHAPTER 3 GETTING STARTED WITH POSTGRESQL

With the PostgreSQL system running, the database created, and the tables made and
populated, we are ready to continue our exploration of PostgreSQL features.

Summary

In this chapter, we have taken alook at some of the options for installing PostgreSQL on Linux,
UNIX-compatible systems, and Windows. The simplest way is probably to use some form of
precompiled binary package. We provided step-by-step instructions for compiling, installing,
and confirming a working installation on Linux systems from packages, UNIX-compatible
systems from source code, and Windows systems using the Microsoft Windows installer.

Finally, we created a sample database that we will be using throughout the rest of the book
to demonstrate the features of the PostgreSQL system. We'll begin in the next chapter by exploring
how to access your data.

CHAPTER 4

Accessing Your Data

So far in this book, our encounters with SQL have been rather informal. We have seen some
statements that retrieve data in various ways, as well as some SQL for creating and populating
tables.

In this chapter, we will take a slightly more formal look at SQL, starting with the SELECT
statement. In fact, this whole chapter is devoted to the SELECT statement. Your first impression
might be that a whole chapter on one part of SQL is a bit excessive, but the SELECT statement is
at the heart of the SQL language. Once you understand SELECT, you really have done the hard
part of learning SQL.

In the next chapter, we will talk about some of the GUI clients you can use, but for now, we

will be using psql, a simple command-line tool that ships with PostgreSQL, to access the database.

In this chapter, we’ll cover the following topics:

* Using the psql command to interact with the PostgreSQL database
* Using some simple SELECT statements for retrieving data

e Improving the output readability by overriding column names

* Controlling the order of rows in retrieved data

* Suppressing duplicate rows

e Performing mathematical calculations while retrieving data

* Aliasing table names for convenience

* Using pattern matching to specify what data to retrieve

* Making comparisons using various data types

* Retrieving data from multiple tables in a single SELECT statement
* Relating three or more tables in a SELECT statement

By now, you should have PostgreSQL up and running. Throughout this chapter, we will be
using the sample database we designed in Chapter 2 and created and populated in Chapter 3.

73

74

CHAPTER 4 ACCESSING YOUR DATA

Using psql

Assuming you have followed the instructions in Chapter 3, you should now have a database
called bpsimple, accessible from your normal PostgreSQL login prompt.

Caution You should never use the postgres user for accessing the PostgreSQL server, except in the
special case of database administration.

Starting Up on Linux Systems

Ifyou are on a Linux system, and you created an ordinary user without a password, to start psql
accessing the bpsimple database, you include your username in the connection command. For
example, to access the database as user rick, you would enter:

$ psql -d bpsimple -U rick
You should see the following:

Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

bpsimple=>

We are now ready to enter commands. If you created the user with a password, you may be
prompted for a password, depending on the exact authentication configuration. We will explain
more about authentication in Chapter 11.

Starting Up on Windows Systems

If you are using Windows, begin by opening the Start menu and choosing the command psql
to templatel. You'll be prompted for the postgres user password. After successful connecting,
switch to the bpsimple database and your own username (here, we show user rick) using the
\c command, like this:

templatel=# \c bpsimple rick
You are now connected to database "bpsimple" as user "rick".
bpsimple=>

CHAPTER 4 ACCESSING YOUR DATA 75

Notice the prompt changes from =# to => to show that you no longer have permission to
create databases.

Alternatively, you could create a shortcut for the menu command. For example, here we
connect to a remote server (the -h option) on IP address 192.168.0.3, to database (the -d option)
bpsimple, as the user rick (the -U option).

"C:\Program Files\PostgreSQL\8.0\bin\psql.exe" -h 192.168.0.3 -d bpsimple -U rick

Replace rick with postgres for a connection as the administrative user, and you can omit the
-h option if the server is local.

Resolving Startup Problems

If psql complains about pg_shadow, then you have not yet created the supplied username as a
database user. If it complains about not knowing the username or lack of permissions, then
you may not have granted permissions correctly. Refer to Chapter 3 for details on how to grant
permissions.

If you have come unstuck, the easiest way to fix things at this stage is to delete the database
and user, and then re-create them. To do so, exit the psql command using the command \q,
which will return you to the command-line prompt (Linux) or close the Windows Command
Prompt window.

Next, reconnect to the database server as the postgres user. In Linux, do this from the
prompt like this:

$ psql -d templatel

On Windows, use the Start menu command psql to templatel.
Enter the password you used during the installation process, and you should see this prompt:

templatel=#
Now delete the user database and the user (rick in this example) like this:

templatel=# DROP DATABASE bpsimple;
DROP DATABASE

templatel=# DROP USER rick;

DROP USER

templatel=#

Next, re-create the user and choose a password (apress4789 in this example):

templatel=# CREATE USER rick WITH CREATEDB PASSWORD 'apress4789';
CREATE USER
templatel=#

The CREATEDB option allows users to create their own databases.

76

CHAPTER 4 ACCESSING YOUR DATA

Now reconnect to the database, as your newly created user:

templatel=# \c template1l rick
Password:
template1=#

You are now connected to database templatel as your new user (again, rick in this example).
Next, create the bpsimple database:

templatel=> CREATE DATABASE bpsimple;
CREATE DATABASE
templatel=>

Reattach to the bpsimple database as the new user:

template1=> \c bpsimple rick
You are now connected to database "bpsimple" as user "rick".
bpsimple=>

You will then need to rerun the steps described at the end of the previous chapter, starting
from the “Creating the Tables” section, in order to create the sample tables and data we will use
in this chapter.

If you see an error message like this when trying to create the database:

ERROR: source database "templatel" is being accessed by other users

this means that there is some other session attached to the database templatel—perhaps
another psql session or a GUI tool such as pgAdmin III. Ensure your current psql session is the
only one in use, and then try again.

To checkif you have the tables created for the bpsimple database, enter \dt, and then press
Return, and you should see output similar to this:

bpsimple=> \dt
List of relations

Schema | Name | Type | Owner
——————— B e et L PP
public | barcode | table | rick
public | customer | table | rick
public | item | table | rick
public | orderinfo | table | rick
public | orderline | table | rick
public | stock | table | rick

(6 rows)

bpsimple=>

The Owner column will show your login name (rick in this example).

CHAPTER 4 ACCESSING YOUR DATA 77

Note You may see some tables with names such as pg_ts_dict, pg_ts parser, pg_ts cfg, and
pg_ts_cfgmap. These are additional tables added by some optional user-contributed tools. You can safely

ignore them.

You can see the same information in pgAdmin III by navigating to Databases, then
bpsimple, then Schemas, then public, and then Tables, as shown in Figure 4-1.

i pgAdmin Il
File Edit Tools Display Help

0 Y I LwwsP ?

B Servers (2]
B Local PostgreSOL Database Server 8.0 localhost 5432)
= B gwl [192.168.0.3:5432)
22 Databases [2)
= g bpzimple
(¥) Castz (0]
@_ Languages [0]
=88 Schemas (1)
=88 public
Aggregates [0)
== Conversions (0]
: Domaing (0]
% Functions (0]
#g Trigger Functions [0]
+() Operatars (0
@ Operator Claszes (0]
T3 Sequences (3]
= Tables ()
barcode

=

orderinfo

orderline

stack

Be, Types (0]

ﬂ Wiews [0
x test

[Tablespaces (2]

¥ Groups (0]
Uszers (2]

Froperties | Statistics | Depends on || Referenced by |

Retrieving Table details... Done.

Property Walue
% Mame customer
Eoo 17232
@ Ohaner rick.
BhacL
I% Primary key customer_id
b Rows (estimated) 1000
B Rows [counted) 158
I% Inherits tables Mo
% Inherited tables count 0
B Haz 0IDs? Yes
% System table? Mo
% Comment
< ¥
-- Table: customer
-- DEROF TAELE customer;
CREATE TAELE customer
{
customer_id serial NOT NULL,
title "char™id),
frame "warchar™(3Z),
Iname "varchar™(3Z) NOT NULL,
addressline "wvarchar”(6d),
town "warchar™(32),
zipcode "char™(10) NOT NULL,
phone "wvarchar™ (18],
CONSTRAINT customer_pk PRIMARY KEY (customer_id)
)
WITH OIDS;
£ >
0.00 secs

Figure 4-1. Examining the bpsimple database with pgAdmin III

We'll cover database and user management in considerable detail in Chapter 11.

78

CHAPTER 4 ACCESSING YOUR DATA

Using Some Basic psql Commands

We will use only a few basic psql commands in this chapter (we will meet the full set in Chapter 5).
For now, the commands you need to know are listed in Table 4-1.

Table 4-1. Basic psql Commands

Command Description

\? Get a help message

\do List operators

\dt List tables

\dT List types

\h <cmd> Get help on a SQL command; replace <cmd> with the actual command
\1 <filename> Execute commands read from the filename <filename>

\r Reset the buffer (discard any typing)

\q Quit psgl

Each of the commands listed in Table 4-1 must be followed by pressing Return (or Enter).
You should also be able to use the arrow keys to recall previous lines and move within lines to
edit them. On Linux systems, this feature of psql depends on the presence of the GNU readline
facility, which is usually, but not always, installed.

Now we are ready to start accessing our PostgreSQL database using SQL commands. In the
next chapter, we will meet some of the GUI tools that you can use with PostgreSQL, but in this
chapter, we will use the psql tool.

Note If you prefer to use the GUI tools, you may want to look ahead to Chapter 5 first. Then you can return
to this chapter. You should be able to try all of the examples in this chapter from any GUI tool that allows you
to type SQL directly to PostgreSQL, such as pgAdmin lll (http://www.pgadmin.org/). However, we suggest
working through at least this chapter with the command line, because it is often very handy to know the
basics of accessing PostgreSQL using only a command-line tool.

Using Simple SELECT Statements

As with all relational databases, we retrieve data from PostgreSQL using the SELECT statement.
It’s probably the most complex statement in SQL, but it really is at the heart of using relational
databases effectively.

Let’s start our investigation of SELECT by simply asking for all the data in a particular table.
We do this by using a very basic form of the SELECT statement, specifying a list of columns and
a FROM clause with a table name:

CHAPTER 4 ACCESSING YOUR DATA 79

SELECT <comma-separated list of columns> FROM <table name>

If we can’t remember what the exact column names are called, or want to see all the columns,
we can just use an asterisk (*) in place of the column list.

Note In this book, we show SQL keywords that structure the commands in uppercase in the text to make
them stand out clearly. SQL is not case-sensitive, although a few implementations do make table names case-
sensitive. Data stored in SQL databases is case-sensitive, so the character string "Newtown" is different from
the character string "newtown".

Try It Out: Select All Columns from a Table
We will start by fetching all the data from the item table:

SELECT * FROM item;

Remember that the semicolon (;) is for the benefit of psql, to tell it you have finished
typing. Strictly speaking, it is not part of SQL. If you prefer, you can terminate SQL statements
typed into psql with \g, which has the same effect as the semicolon. If you are using a different
tool to send SQL to PostgreSQL, you may not need either of these terminators.

Enter the command, and you'll see PostgreSQL’s response:

bpsimple=> SELECT * FROM item;

item id | description | cost price | sell price

————————— e it LR TP
1 | Wood Puzzle | 15.23 | 21.95
2 | Rubic Cube | 7.45 | 11.49
3 | Linux CD | 1.99 | 2.49
4 | Tissues | 2.11 | 3.99
5 | Picture Frame | 7.54 | 9.95
6 | Fan Small | 9.23 | 15.75
7 | Fan Large | 13.36 | 19.95
8 | Toothbrush | 0.75 | 1.45
9 | Roman Coin | 2.34 | 2.45
10 | Carrier Bag | 0.01 | 0.00
11 | Speakers | 19.73 | 25.32

(11 rows)

bpsimple=>

How It Works

We simply asked PostgreSQL for all the data from all the columns in the item table, using an *
for the column names. PostgreSQL gave us just that, but neatly arranged with column headings
and a pipe (]) symbol to separate each column. It even told us how many rows we retrieved.
But suppose we didn’t want all the columns? In general, you should ask PostgreSQL, or
indeed any relational database, to retrieve only the data you actually want. Each column of

80

CHAPTER 4 ACCESSING YOUR DATA

each row that is retrieved adds a little extra work. There is no point in making the server do
work unnecessarily; it’s always nice to keep things clean and efficient.

You will also find that, once you start having SQL embedded in other languages (see
Chapter 14), specifying exact columns will protect you against changes to the database schema.
For example, if you use * to retrieve all columns and an additional column had been inserted
in a table since the code was tested, you may find that you are processing data from a different
column than the one you intended. If a column that you are using is deleted, then the SQL in
your program will fail, since the column can no longer be retrieved; however, that is a much
easier bug to find and correct than some application code accessing the wrong column while
processing data. If you specify the columns by name, you have the option of searching all your
code to see if the column names appear, before making changes to the database, and
preventing bugs from ever occurring.

Let’s try restricting the columns we retrieve. As we saw in the syntax earlier, we do this by
specifying each column we want, separated by a comma. If we don’t want the columns in the
order we specified when we created the database table, that’s fine—we can specify the columns
in any order we like, and they will be returned in that order.

Try It Out: Select Named Columns in a Specific Order

To retrieve the name of the town and last name of all our customers, we must specify the name
of the columns for town and last name, and, of course, the table from which to retrieve them.
Here is the statement we need and PostgreSQL’s response:

bpsimple=> SELECT town, lname FROM customer;

town | lname
___________ e
Hightown | Stones
Lowtown | Stones
Nicetown | Matthew
Yuleville | Matthew
Oakenham | Cozens
Nicetown | Matthew
Bingham | Stones
Bingham | Stones
Histon | Hickman
Tibsville | Howard
Bingham | Jones
Winersby | Neill
Oxbridge | Hardy
Welltown | 0'Neill
Milltown | Hudson
(15 rows)

bpsimple=>

CHAPTER 4 ACCESSING YOUR DATA

How It Works

PostgreSQL returns all the data rows from the table we specified, but only from the columns we
requested. It also returns the column data in the order in which we specified the columns in the
SELECT statement.

Overriding Column Names

You will notice that the output uses the database column name as the heading for the output.
Sometimes, this is not very easy to read, particularly when the column in the outputisn’t an
actual database column, so it has no name. There is a very simple syntax for specifying the display
name (a column name alias) to use with each column, which is to add AS "<display name>" after
each column in the SELECT statement. You can specify the names of all columns you select or
just a few. Where you don’t specify the name, PostgreSQL just uses the column name.

For example, to change the preceding output to add meaningful names, we would use this:

SELECT town, lname AS "Last Name" FROM customer;

We will see an example of this in use in the next section. It’s worth noting that, in the
SQLI2 standard, the AS clause is optional; however, as of release 8.0, PostgreSQL still requires
the AS keyword.

Controlling the Order of Rows

So far, we have retrieved the data from the columns we wanted, but the data is not always in the
most suitable order for viewing. The data we are seeing may look as though it is in the order we
inserted it into the database, but that is probably simply because we have not been updating
the data by inserting and deleting rows.

As we mentioned in Chapter 2, unlike in a spreadsheet, the order of rows in a database is
unspecified. The database server is free to store rows in the most effective way, which is not
usually the most natural way for viewing the data. The output you see is not sorted in any
meaningful order, and the next time you ask for the same data, it could be displayed in a different
order. Generally, the data will be returned in the order it is stored in the database internally. No
SQL database, PostgreSQL included, is obliged to return the data in a particular order, unless
you specifically request it to be ordered when you retrieve it.

We can control the order in which data is displayed from a SELECT statement by adding an
ORDER BY clause to the SELECT statement, which specifies the order we would like the data to be
returned. The syntax is as follows:

SELECT <comma-separated list of columns> FROM <table name> ORDER BY <column name>
[ASC | DESC]

The slightly strange-looking syntax at the end means that after the column name, we can
write either ASC (short for ascending) or DESC (short for descending). By default, ascending
order is used. The data is then returned to us ordered by the column we specified, sorted in the
direction we requested.

81

82

CHAPTER 4 ACCESSING YOUR DATA

Try It Out: Order the Data

In this example, we will sort the data by town, and we will also override the default column
name for the 1name column, similar to what we saw in the previous section, to make the output
slightly easier to read.

Here is the command we require and PostgreSQL'’s response:

bpsimple=> SELECT town, lname AS "Last Name" FROM customer ORDER BY town;

town | Last Name
___________ e ceeeen
Bingham | Stones
Bingham | Stones
Bingham | Jones
Hightown | Stones
Histon | Hickman
Lowtown | Stones
Milltown | Hudson
Nicetown | Matthew
Nicetown | Matthew
Oakenham | Cozens
Oxbridge | Hardy
Tibsville | Howard
Welltown | 0'Neill

Winnersby | Neill
Yuleville | Matthew
(15 rows)

bpsimple=>

Notice that since we want the data in ascending order, we can omit the ASC, as ascending
is the default sort order. As you can see, the data is now sorted in ascending order by town.

How It Works

This time, we made two changes to our previous statement. We added an AS clause to change
the name of the second column to Last Name, which makes it easier to read, and we also added
an ORDER BY clause to specify the order in which PostgreSQL should return the data to us.
Sometimes, we need to go alittle further and order the data by more than a single column.
For example, in the previous output, although the data is ordered by town, there is not much
order in the Last Name. We can see, for example, that Jones is listed after Stones under all the
customers found in the town Bingham.
We can more precisely order the output by specifying more than one column in the
ORDER BY clause. If we want to, we can even specify that the order is ascending for one
column and descending for another column.

Try It Out: Order the Data Using ASC and DESC

Let’s try our SELECT again, but this time, we will sort the town names into descending order, and
then sort the last names into ascending order where rows share the same town name.

CHAPTER 4 ACCESSING YOUR DATA

The statement we need and PostgreSQL’s response are as follows:

bpsimple=> SELECT town, lname AS 'Last Name' FROM customer
ORDER BY town DESC, lname ASC;

town | Last Name

___________ e m
Yuleville | Matthew
Winnersby | Neill
Welltown | O'Neill
Tibsville | Howard
Oxbridge | Hardy
Oakenham | Cozens
Nicetown | Matthew
Nicetown | Matthew
Milltown | Hudson
Lowtown | Stones
Histon | Hickman
Hightown | Stones
Bingham | Jones
Bingham | Stones
Bingham | Stones
(15 rows)

bpsimple=>

How It Works

As you can see, PostgreSQL first orders the data by town in descending order, which was the
first column we specified in our ORDER BY clause. It then orders those entries that have multiple
last names for the same town in an ascending order. This time, although Bingham is now last in
the rows retrieved, the last names of our customers in that town are ordered in an ascending
fashion.

Usually, the columns by which you can order the output are restricted, not unreasonably,
to columns you have requested in the output. PostgreSQL, at least in the current version, does
not enforce this standard restriction, and it will accept a column in the ORDER BY clause that is
not in the selected column list. However, this is nonstandard SQL, and we suggest that you
avoid relying on this feature.

Suppressing Duplicates

You may have noticed that there are several duplicate rows in the previous output. For example,
the following town and last name rows appear twice:

Nicetown | Matthew
Bingham | Stones

What'’s going on here? In the original data, there are indeed two customers in Nicetown
named Matthew and two customers in Bingham named Stones. For reference, here are the
rows, showing the first names as well:

83

84

CHAPTER 4 ACCESSING YOUR DATA

Nicetown | Matthew | Alex
Nicetown | Matthew | Neil
Bingham | Stones | Richard
Bingham | Stones | Ann

When PostgreSQL listed two rows for Nicetown and Matthew, and two rows for Bingham
and Stones, it was quite correct. There are two customers in each of those towns with the same
last names. They look exactly the same because we did not ask for the columns that distinguish
them.

The default behavior is to list all the rows, but that is not always what we want. For example,
we might want just a list of towns where we have customers, perhaps to determine where we
should build distribution centers. Based on our knowledge so far, we might reasonably try this:

bpsimple=> SELECT town FROM customer ORDER BY town;
town
Bingham
Bingham
Bingham
Hightown
Histon
Lowtown
Milltown
Nicetown
Nicetown
Oakenham
Oxbridge
Tibsville
Welltown
Winersby
Yuleville
(15 rows)

bpsimple=>

PostgreSQL has listed all the towns, once for each time a town appeared in the customer
table. This is correct, but it's probably not quite the listing we would like. What we actually
need is a list where each town appeared just once; in other words, a list of distinct towns.

In SQL, you can suppress duplicate rows by adding the keyword DISTINCT to the SELECT
statement. The syntax is as follows:

SELECT DISTINCT <comma-separated list of columns> FROM <table name>

As with pretty much all the clauses on SELECT, you can combine this with other clauses,
such as renaming columns or specifying an order.

Try It Out: Use DISTINCT

Let’s get a list of all the towns that appear in our customer table, without duplicates. We can try
the following code to get the response:

CHAPTER 4 ACCESSING YOUR DATA

bpsimple=> SELECT DISTINCT town FROM customer;
town
Bingham
Hightown
Histon
Lowtown
Milltown
Nicetown
Oakenham
Oxbridge
Tibsville
Welltown
Winersby
Yuleville
(12 rows)

bpsimple=>

How It Works

The DISTINCT keyword tells PostgreSQL to remove all duplicate rows. Notice that the output is
now ordered by town. This is because of the way PostgreSQL has chosen to implement the
DISTINCT clause for your data. In general, you cannot assume the data will be sorted in this way.
If you want the data sorted in a particular way, you must add an ORDER BY clause to specify
the order.

Notice that the DISTINCT clause is not associated with a particular column. You can suppress
only rows that are duplicated in all the columns you select, not suppress duplicates of a partic-
ular column. For example, suppose that we used this form:

SELECT DISTINCT town, fname FROM customer;

We would again get 15 rows, because there are 15 different town and first name combinations.

A word of warning is in order here: Although it might look like a good idea to always use
DISTINCT with SELECT, in practice, this is a bad idea for two reasons. First, by using DISTINCT,
you are asking PostgreSQL to do significantly more work in retrieving your data and checking
for duplicates. Unless you know there will be duplicates that need to be removed, you shouldn’t
use the DISTINCT clause. The second reason is a bit more pragmatic. Occasionally, DISTINCT
will mask errors in your data or SQL that would have been easy to spot if duplicate rows had
been displayed.

Caution Use DISTINCT only where you actually need it, because it requires more work and may
mask errors.

85

CHAPTER 4 ACCESSING YOUR DATA

Performing Calculations

We can also perform simple calculations on data in the rows we retrieve before sending them
to the output.

Suppose we wanted to display the cost price of items in our item table. We could just
execute SELECT as shown here:

bpsimple=> SELECT description, cost price FROM item;

description | cost price
_______________ U
Wood Puzzle | 15.23
Rubic Cube | 7.45
Linux CD | 1.99
Tissues | 2.11
Picture Frame | 7.54
Fan Small | 9.23
Fan Large | 13.36
Toothbrush | 0.75
Roman Coin | 2.34
Carrier Bag | 0.01
Speakers | 19.73
(11 rows)
bpsimple=>

Suppose we wanted to see the price in cents. We can do a simple calculation in SQL, like this:

bpsimple=> SELECT description, cost_price * 100 FROM item;

description | ?column?
_______________ oo
Wood Puzzle | 1523.00
Rubic Cube | 745.00
Linux CD | 199.00
Tissues | 211.00
Picture Frame | 754.00
Fan Small | 923.00
Fan Large | 1336.00
Toothbrush | 75.00
Roman Coin | 234.00
Carrier Bag | 1.00
Speakers | 1973.00
(11 rows)
bpsimple=>

It seems a little weird, with the decimal points and the strange column name, so let’s get
rid of the decimal points by using a SQL function, and also explicitly name the resulting column.
We use the cast function to change the type of the column, which, in conjunction with an
AS clause to name the column, gives us the better-looking output:

CHAPTER 4 ACCESSING YOUR DATA 87

bpsimple=> SELECT description, cast((cost_price * 100) AS int AS "Cost Price"
FROM item;

description | Cost Price
______________ e een
Wood Puzzle | 1523
Rubic Cube | 745
Linux CD | 199
Tissues | 211
Picture Frame | 754
Fan Small | 923
Fan Large | 1336
Toothbrush | 75
Roman Coin | 234
Carrier Bag | 1
Speakers | 1973
(11 rows)

bpsimple=>

We'll talk more about the cast function later in this chapter, in the “Setting the Time and
Date Style” section.

Choosing the Rows

So far in this chapter, we have always worked with all the rows of data, or at least all the distinct
rows. It’s time to look at how we can choose the specific rows we want to see. You probably
won'’t be surprised to learn that we do this with yet another clause on the SELECT statement: the
WHERE clause.

The simplified syntax for WHERE is as follows:

SELECT <comma-separated 1ist of columns> FROM <table name> WHERE <conditions>

There are many possible conditions, which can also be combined by the keywords AND, OR,
and NOT.

The standard comparison operators used in conditions are listed in Table 4-2. The compar-
ison operators can be used on most types, both numeric and string, although there are some
special conditions when working with dates, which we will see later in this chapter.

Table 4-2. Standard Comparison Operators

Operator Description

< Less than

<= Less than or equal to

= Equal to

>= Greater than or equal to
> Greater than

<> Not equal to

88

CHAPTER 4 ACCESSING YOUR DATA

We will start with a simple condition, choosing to retrieve rows for people who live in the
town Bingham:

bpsimple=> SELECT town, lname, fname FROM customer WHERE town = 'Bingham';
town | Iname | fname

________ o e

Bingham | Stones | Richard

Bingham | Stones | Ann

Bingham | Jones | Dave

(3 rows)

bpsimple=>

That was pretty straightforward, wasn’t it? Notice the single quotes round the string Bingham,
which are needed to make it clear that this is a string. Also notice that because Binghamis being
matched against data in the database, it is case-sensitive. If we had used ... town = 'bingham',
no data would have been returned.

We can have multiple conditions, combined using AND, OR, and NOT, with parentheses to
make the expression clear. We can also use conditions on columns that don’t appear in the list
of columns we have selected. You will remember that this generally isn’t true for clauses such
as ORDER BY.

Try It Out: Use Operators

Let’s try a more complicated set of conditions. Suppose we want to see the names of our
customers who do not have a title of Mr., but do live in either Bingham or Nicetown. Here is the
statement we need and PostgreSQL’s response:

bpsimple=> SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr'
bpsimple-> AND (town = 'Bingham' OR town = 'Nicetown');

title | fname | 1lname | town
——————— e e
Miss | Alex | Matthew | Nicetown
Mrs | Ann | Stones | Bingham
(2 rows)

bpsimple=>

How It Works

Although it might look a little complex at first glance, this statement is actually quite simple.
The first part is just our usual SELECT, listing the columns we want to see in the output. After the
WHERE clause, we initially check that the title is not Mr. Then, using AND, we check that another
condition is true. This second condition is that the town is either Bingham or Nicetown. Notice
that we need to use parentheses to make it clear how the clauses are to be grouped.

You should be aware that PostgreSQL, or any other relational database, is not under any
obligation to process the clauses in the order you write them in the SQL statement. All that is
promised is that the result will be the correct answer to the SQL “question.” Generally, relational
databases have sophisticated optimizers, which look at the request, and then determine the

CHAPTER 4 ACCESSING YOUR DATA 89

optimal way to satisfy it. Optimizers are not perfect, and you will very occasionally come across
statements that run better when rewritten in different ways. For reasonably simple statements
like this one, we can safely assume the optimizer will do a good job.

Tip If you want to know how PostgreSQL will process a SQL statement, you can get it to tell you by
prefixing the SQL with EXPLAIN. Rather than execute the statement, PostgreSQL will tell you how the
statement would be processed.

Using More Complex Conditions

One of the things that we frequently need to do when working with strings is to allow partial
matching. For example, we may be looking for a person named Robert, but the name may have
been shortened in the database to Rob or Bob. There are some special operations in SQL that
make working with strings, either partial ones or lists of strings, easier.

The first new condition is IN, which allows us to check against a list of items, rather than
using a string of OR conditions. Consider the following:

SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr' AND
(town = 'Bingham' OR town = 'Nicetown');

We can rewrite this as follows:

SELECT title, fname, lname, town FROM customer WHERE title <> 'Mr' AND
town IN ('Bingham', 'Nicetown');

We will get the same result, although it’s possible the output rows could be in a different
order, since we did not use an ORDER BY clause. There is no particular advantage in using the IN
clause in this case, except for the simplification of the expression. When we meet subqueries in
Chapter 7, we will use IN again, as it offers more advantages in those situations.

The next new condition is BETWEEN, which allows us to check a range of values by specifying
the endpoints. Suppose we wanted to select the rows with customer_id values between 5 and 9.
Rather than write a sequence of OR conditions, or an IN with many values, we can simply
write this:

bpsimple=> SELECT customer_id, town, lname FROM customer WHERE customer_id
BETWEEN 5 AND 9;

customer id town | 1lname

|
_____________ e
5 | Oahenham | Cozens
6 | Nicetown | Matthew
7 | Bingham | Stones
8 | Bingham | Stones
9 | Histon | Hickman

(5 rows)
bpsimple=>

90

CHAPTER 4 ACCESSING YOUR DATA

It’s also possible to use BETWEEN with strings; however, you need to be careful, because the
answer may not always be exactly what you were expecting, and you must know the case, since,
as mentioned earlier, string comparisons are case-sensitive.

Try It Out: Use Complex Conditions

Let’s try a BETWEEN statement, comparing strings. Suppose we wanted a distinct list of all the
towns that start with letters between B and N. All of the towns in the customer table start with
a capital letter, so we might write the following:

bpsimple=> SELECT DISTINCT town FROM customer WHERE town BETWEEN 'B' AND 'N';
town
Bingham
Hightown
Histon
Lowtown
Milltown
(5 rows)

bpsimple=>

Ifyoulook at these results closely, you'll see that this SQL doesn’t work as expected. Where
is Newtown? It certainly starts with an N, but it hasn’t been listed.

Why It Didn’t Work

The reason this statement didn’t work is that PostgreSQL, as per the SQL standard, pads the
string you give it with blanks until it is the same length as the string it is checking against. So
when the comparison arrived at Newtown, PostgreSQL compared N (/N followed by six
spaces) with Newtown, and because whitespace appears in the ASCII table before all the other
letters, it decided the Newtown came after N, so it shouldn’t be included in the list.

How to Make It Work

It’s actually quite easy to make this work as expected. Either we need to prevent the behavior of
adding blanks to the search string by adding some additional z characters after the N or search
using the next letter in the alphabet, O, in the BETWEEN clause. Of course, if there were a town
called O, we would then erroneously retrieve it, so you need to be careful using this method. It’s
generally better to use z rather than Z, because z appears after Z in the ASCII table. Thus, our
SQL should read as follows:

SELECT DISTINCT town FROM customer WHERE town BETWEEN 'B' AND 'Nz';

Notice that we didn’t add a z after the B, because the B string being padded with blanks
does work to find all towns that start with a B, since it is the starting point, rather than the
endpoint. Also if there were a town that started with the letters Nzz, we would again fail to find
it, because we would then compare Nz against Nzz, and decide that Nzz came after Nz, because
the third string location would have been padded to a space, which comes before the z in the
third place of the string we are comparing against.

CHAPTER 4 ACCESSING YOUR DATA 91

This type of matching has rather subtle behavior, so if you do use BETWEEN with strings,
always think carefully about exactly what is being matched.

Pattern Matching

The string-comparison operations we have seen until now are fine as far as they go, but they
don’t help very much with real-world string pattern matching. The SQL condition for pattern
matching is LIKE.

Unfortunately, LIKE uses a different set of string-comparison rules from all other program-
ming languages we know. However, as long as you remember the rules, it's easy enough to use.
When comparing strings with LIKE, you use a percent sign (%) to mean any string of characters,
and you use an underscore (_) to match a single character. For example, to match towns begin-
ning with the letter B, we would write this:

. WHERE town LIKE 'B%'
To match first names that end with e, we would write this:
. WHERE fname LIKE '%e’;

To match first names that are exactly four characters long, we would use four underscore
characters, like this:

. WHERE fname LIKE ' ';

We can also combine the two types in a single string.

Try It Out: Pattern Matching

Let’s find all the customers who have first names that have an a as the second character. Here
is the SQL statement to achieve this:

bpsimple=> SELECT fname, lname FROM customer WHERE fname LIKE '_a%';
fname | lname

______ Fmmmmmmee

Dave | Jones

Laura | Hardy

David | Hudson

(3 rows)

bpsimple=>

How It Works

The first part of the pattern, _a, matches strings that start with any single character, then have
alowercase a. The second part of the pattern, %, matches any remaining characters. If we didn’t
use the trailing %, only strings exactly two characters long would have been matched.

92

CHAPTER 4 ACCESSING YOUR DATA

Limiting the Results

In the examples we have been using so far, the number of result rows returned has always been
quite small, because we have only a few sample rows in our sample database. In a real-world
database we could easily have many thousands of rows that match the selection criteria. If we
are working on our SQL, refining our statements, we almost certainly do not want to see many
thousands of rows scrolling past on our screen. A few sample rows to check our logic would be
quite sufficient.

PostgreSQL has an extra clause on the SELECT statement, LIMIT, which is not part of the
SQL standard but is very useful when we want to restrict the number of rows returned.

If you append LIMIT and a number to your SELECT clause, only rows up to the number you
specified will be returned, starting from the first row. A slightly different way to use LIMIT is in
conjunction with the OFFSET clause, which specifies a starting position.

It’s easier to show it in action than to describe it. Here we display only the first five
matching rows:

bpsimple=> SELECT customer id, town FROM customer LIMIT 5;

customer_id | town
_____________ o
1 | Hightown
2 | Lowtown
3 | Nicetown
4 | Yuleville
5 | Oahenham
(5 rows)
bpsimple=>

The following skips the first two result rows, then returns the next five rows:

bpsimple=> SELECT customer id, town FROM customer LIMIT 5 OFFSET 2;
customer id | town

_____________ oo meeee
3 | Nicetown
4 | Yuleville
5 | Oahenham
6 | Nicetown
7 | Bingham

(5 rows)

bpsimple=>

It’s also possible to use OFFSET on its own, like this:

CHAPTER 4 ACCESSING YOUR DATA

bpsimple=> SELECT customer_id, town FROM customer OFFSET 12;
customer_id | town
_____________ e
13 | Oxbridge
14 | Welltown
15 | Milltown
(3 rows)

bpsimple=>

If you want to combine LIMIT with other SELECT clauses, the LIMIT clause should always
appear after the normal SELECT statement, followed only by the OFFSET clause, if you use it.

Checking for NULL

So far, we do not know a way of checking to see if a column contains a NULL value. We can check
if it equals a value or string, or if it doesn’t equal a value or string, but that’s not sufficient.
You will remember from Chapter 2 that NULL is a special column value that means either
unknown or not relevant. We need to look at checking for NULL separately, because it requires
special consideration to ensure that the results are as expected.
Suppose we have an integer column tryint in a table testtab that we know stores 0, 1, or
NULL. We can check if it is 0 by writing this:

SELECT * FROM testtab WHERE tryint = 0;
We can check if it is 1 by writing this:
SELECT * FROM testtab WHERE tryint = 1;

We need another check to see if the value is NULL. PostgreSQL supports the standard SQL
syntax for checking whether a value is NULL. We do this with the use of IS NULL, like this:

SELECT * FROM testtab WHERE tryint IS NULL;

Notice that we use the keyword IS rather than an = sign.
We can also test to see if the value is something other than NULL by adding a NOT to invert
the test:

SELECT * FROM testtab WHERE tryint IS NOT NULL;

Why do we suddenly need this extra bit of syntax? You are probably familiar with two-valued
logic, where everything is either true or false. What is happening here is that we have stumbled
into three-value logic, with true, false, and unknown.

Unfortunately, this property of NULL, being unknown, has some other effects outside the
immediate concern of checking for NULL.

93

94

CHAPTER 4 ACCESSING YOUR DATA

Suppose we ran our statement on a table where some values of tryint were NULL:
SELECT * FROM testtab WHERE tryint = 1;

What does our tryint = 1 mean when tryint is actually NULL? We are asking the question,
“Is unknown equal to 1?2” This is interesting, because we can’t know that the statement is false,
but neither can we know it to be true. So the answer must be unknown, hence the rows where
NULL appears are not matched. If we reversed the test, and compared tryint != 1, the rows
with NULL would also not be found, because that condition would not be true either. This can
be confusing, because we have apparently used two tests, with opposite conditions, and still
not retrieved all the rows from the table.

It’simportant to be aware of these issues with NULL, because it’s all too easy to forget about
NULL values. If you start getting slightly unexpected results when using conditions on a column
that can have NULL values, verify whether the rows consisting of the NULL value are the cause of
your problems.

Checking Dates and Times

PostgreSQL has two basic types for handling date and time information: timestamp, which holds
both a date and a time; and date, which holds day, month, and year information. PostgreSQL
has some built-in functions that help us work with dates and time, which are traditionally
rather difficult units to manipulate. Here, we’ll concentrate on those that are most commonly
used. (You can find all of the built-in functions listed in the online documentation.)

Before we start, we need to tackle one of those apparently trivial problems that can so
easily cause confusion: how do we specify a date?

When we write the date 1/2/2005, what do we mean? Europeans generally mean the first
day of February 2005, but Americans usually mean the second day of January 2005. This is because
Europeans generally read dates as DD/MM/YYYY, but Americans expect MM/DD/YYYY.Just to
add to the confusion, the ISO standard 8601 (officially adopted in Europe as European Standard
EN 28601) specifies the logical (but rarely seen in everyday use) date format YYYY-MM-DD.

PostgreSQL lets you change the way dates are handled to suit your local needs, so before
we get into checking dates and time, it’s probably sensible to look at how you control this
aspect of PostgreSQL’s behavior.

Setting the Time and Date Style

Unfortunately, PostgreSQL’s method of setting the way the date and time are handled is, at first
sight at least, a little strange.
There are two things you can control:

¢ The order in which days and months are handled, United States or European style
* The display format; for example, numbers only or more textual date output

The unfortunate part of the story is that PostgreSQL uses the same variable to handle both
settings, which frankly, can be a bit confusing. The good news is that PostgreSQL defaults to
using the unambiguous ISO-8601 style date and time output, which is always written in the
form YYYY-MM-DD hh:mmu:ss.ssTZD. This gives you the year, month, day, hours, minutes,
seconds, decimal part of a second to two places, and a time zone designator, which indicates a

CHAPTER 4 ACCESSING YOUR DATA 95

plus or minus number of hours difference between local time and UTC. For example, a full date
and time would look like 2005-02-01 05:23:43.23+5, which equates to February 1, 2005, at
23 minutes and 43.23 seconds past five o’clock in the morning, and the time zone used is five
hours ahead of UTC. If you specify the time in UTC, with no time zone, the standard says you
should use a Z (pronounced “Zulu”) to indicate this, although it seems common to omit the Z.

For input in the form NN/NN/NNNN, PostgreSQL defaults to expecting the month before
the day (United States style). For example, 2/1/05 is the first of February. Alternatively, you can
use a format like February 1, 2005, or the ISO style 2005-02-01. If that behavior is all you need,
you are in luck—you don’t need to know any more about controlling how PostgreSQL accepts
and displays dates, and you can skip ahead to the next section on date and time functions.

The default style is actually controlled by the postgresql. conf file, in the data directory,
which has aline of the form datestyle = 'iso, mdy'. So, you could change the default globally,
if you wish.

If you need more control over how dates are handled, PostgreSQL does allow this, but it
can be a little tricky. The confusing thing is that there are two independent features to control,
and you set them both using datestyle. Do remember, however, that this is all to do with
presentation. Internally, PostgreSQL stores dates in a way totally independent of any represen-
tation that users expect when data is input or retrieved.

The syntax as a command to psql is as follows:

SET datestyle TO 'value';

To set the order in which months and days are handled, you set the datestyle value to
either US, for month-first behavior (02/01/1997, for February 1) or European for day-first
behavior (01/02/1997 for February 1).

To change the display format, you also set datestyle, but to one of four different values:

* IS0 for the ISO-8601 standard, using - as the field separator, as in 1997-02-01
e SQL for the traditional style, as in 02/01/1997
* Postgres for the default PostgreSQL style, as in Sat Feb 01

* German for the German style, as in 01.02.1997

Note In the current release, the Postgres format defaults to displaying in SQL style for both date
and timestamps.

You set the datestyle variable to the value pair by separating the values with a comma. So,
for example, to specify that we want dates shown in SQL style, but using the European convention
of day before month, we use this setting:

SET datestyle TO 'European, SQL';

Rather than set the date-handling style locally in session, you can set it for an entire instal-
lation, or set the default for a session. If you want to set the default style for date input for a
complete installation, you can set the environment variable PGDATESTYLE before starting the

96

CHAPTER 4 ACCESSING YOUR DATA

postmaster master server process. Setting the same options using the environment variable in
Linux, we would use the following:

PCDATESTYLE="European, SQL"
export PGDATESTYLE

A much better way of changing the default date handling is to edit the configuration file
postgresql.conf (found in the data subdirectory of your installation), and set an option such
asdatestyle="European, SQL' ordatestyle = 'iso, mdy', depending on your preferences. You
will need to restart the PostgreSQL server after making this change for it to become effective.

If you want to set the date style for individual users, you use the same environment variable,
but set for the local user, before psql is invoked. A local setting will override any global setting
you have made.

Before we demonstrate how this all works, it’s very handy to remember the special PostgreSQL
function cast, which allows you to convert one format into another. We saw it briefly earlier in
this chapter, when we looked at doing calculations in the SELECT statement, but there is much
more to it than the simple conversion to integer we saw earlier. Although PostgreSQL does a
pretty good job of getting types correct, and you shouldn’t need conversion functions often,
they can be very useful occasionally. The conversion we need to use to investigate our date and
time values is the following to get a date:

cast('string' AS date)
Alternatively, to get a value that includes a time:
cast('string' AS timestamp)

We are also going to use a little trick to demonstrate this function more easily. Almost
every time you use the SELECT statement, you will be fetching data from a table. However, you
can use SELECT to get data that isn’t in a table at all, as in this example:

bpsimple=> SELECT 'Fred';
?column?

bpsimple=>

PostgreSQL is warning us that we haven’t selected any columns, but it is quite happy to
accept the SELECT syntax without a table name, and just returns the string we specified.

We can use the same feature, in conjunction with cast, to see how PostgreSQL treats dates
and time, without needing to create a temporary table to experiment with.

Try It Out: Set Date Formats

We start off with the environment variable PGDATESTYLE unset, so you can see the default
behavior, and then set the date style, so you can see how things progress. We enter a date in ISO
format, so this is always a safe option, and PostgreSQL outputs in the same format. There is no
ambiguity in either of these statements:

CHAPTER 4 ACCESSING YOUR DATA 97

bpsimple=> SELECT cast('2005-02-1' AS date);
?column?

2005-02-01

(1 row)

bpsimple=>

Changing the style to US and SOL format, we still enter the date in ISO style, which is unam-
biguous; it’s still the first of February, but now the output shows the more conventional, but
possibly ambiguous, United States style MM/DD/YYYY output:

bpsimple=> SET datestyle TO 'US, SOL';

SET VARIABLE

bpsimple=> SELECT cast('2005-02-1' AS date);
?column?

02/01/2005

(1 row)

bpsimple=>

Now is a good time to also ask psql what the internal variable datestyle is set to:

bpsimple=> SHOW datestyle;
DateStyle

SOL, MDY

(1 row)

bpsimple=>

In older versions of PostgreSQL, the output was more verbose, so you may see something
slightly different, depending on which version of PostgreSQL you are using.
Now let’s try some more formats:

bpsimple=> SET datestyle TO 'European, SQL';

SET

bpsimple=> SELECT cast('2005 02 1' AS date);
date

01/02/2005

(1 row)

bpsimple=>

With the output set to European, the display changes to DD/MM/YYYY.
Let’s go back to ISO input and output:

98

CHAPTER 4 ACCESSING YOUR DATA

bpsimple=> SET datestyle TO 'European, ISO';

SET

bpsimple=> SELECT cast('2005-02-1' AS date);
date

2005-02-01

(1 Tow)

bpsimple=>

The European setting has no effect, because ISO is the same for all locales.
Now let’s consider times. We use the timestamp type, which displays time:

bpsimple=> SELECT cast('2005-02-1"' AS timestamp);
?column?

2005-02-01 00:00:00
(1 Tow)

bpsimple=>

We didn’t specify any hours or minutes, so they all default to zero.
Let’s try PostgreSQL-style output:

bpsimple=> SET datestyle TO 'European, Postgres';

SET

bpsimple=> SELECT cast('2005-02-1' AS timestamp);
timestamp

Tue 01 Feb 00:00:00 2005

(1 row)

bpsimple=>

This produces output that is unambiguous and rather more reader-friendly.

How It Works

As you can see, we can vary the way both dates and times are displayed, as well as how ambig-
uous input strings, such as 01/02/2005, are interpreted.

Time zones are much simpler than date formats. Providing that your local environment
variable TZ or configuration option in postgresql.conf is correctly set, PostgreSQL will manage
time zones without further ado

Using Date and Time Functions

Now that we have seen how dates work, we can look at a couple of useful functions you might
need when comparing dates:

CHAPTER 4 ACCESSING YOUR DATA 99

e date_part(units required, value to use) allowsyou to extract a particular component
of a date, such as the month.

* nowsimply gets the current date and time, and is equivalent to the more standard “magic
variable” current_timestamp.

Suppose we wanted to select the rows from our orderinfo table where the date the order
was placed is in September. We know September is the ninth month; therefore, we just ask the
following:

bpsimple=> SELECT * FROM orderinfo WHERE date_part('month',date_placed)=9;
orderinfo_id | customer id | date placed | date_shipped | shipping
—————————————— e e L L P L P e T

15 | 02-09-2004 | 12-09-2004 | 3.99

13 | 03-09-2004 | 10-09-2004 | 2.99

(2 rows)

bpsimple=>

PostgreSQL extracts the appropriate rows for us. Note the date is being displayed in ISO
format. We can extract the following parts from a date or timestamp:

* Year

* Month
* Day

* Hour
* Minute
* Second

We can also compare dates, using the same operators that we can use with numbers: <>,
<=, <, >, >=, and =. Here is an example:

bpsimple=> SELECT * FROM orderinfo WHERE date placed >= cast('2004 07 21' AS date);
orderinfo_id | customer id | date placed | date_shipped | shipping

—————————————— et e R L EE SEE LR
3] 15 | 02-09-2004 | 12-09-2004 | 3.99
4 | 13 | 03-09-2004 | 10-09-2004 | 2.99
5 | 8 | 21-07-2004 | 24-07-2004 | 0.00

(3 rows)

bpsimple=>

Notice that we need to convert our string to a date, using the cast operation, and that we
stick to the unambiguous ISO style dates.

The second function, now, simply gives us the current date and time, which would be handy
if, for example, we were adding a new row for an order being placed while the customer was on
the phone, or in real time over the Internet.

100

CHAPTER 4 ACCESSING YOUR DATA

bpsimple=> SELECT now(), current_timestamp;

now | timestamptz
____________________________________ o e e
Sat 16 Oct 13:46:05.99938 2004 BST | Sat 16 Oct 13:46:05.99938 2004 BST
(1 row)

bpsimple=>

We can also do simple calculations using dates. For example, to discover the number of
days between an order being placed and shipped, we could use a query like this:

bpsimple=> SELECT date_shipped - date_placed FROM orderinfo;
?column?

(5 rows)

bpsimple=>

This returns the number of days between the two dates stored in the database.

Note More extensive details on PostgreSQL’s handling of dates, times, time zones, and related conversion
functions can be found in the online documentation.

Working with Multiple Tables

By now, you should have a good idea of how we can select data from a table, picking which
columns we want, which rows we want, and how to control the order of the data. We have also
seen how to perform simple calculations, make type conversions, and handle the rather special
date and time formats.

It’s now time to move on to one of the most important features of SQL, and indeed, relational
databases in general: relating data in one table to data in another table automatically. The good
news is that it’s all done with the SELECT statement, and everything that you have learned so far
about SELECT is just as true with many tables as it was with a single table.

Relating Two Tables

Before we look at the SQL for using many tables at the same time, let’s have a quick recap of the
material we saw in Chapter 2 about relating tables.

CHAPTER 4 ACCESSING YOUR DATA 101

You will remember that we have a customer table, which stores details of our customers,
and an orderinfo table, which stores details of the orders they have placed. This allows us to
store details of each customer only once, no matter how many orders they placed. We linked
the two tables together by having a common piece of data, the customer_id, stored in both tables.

If we think about this as a picture, we could imagine a row in the customer table, which has
acustomer_id, beingrelated to none, one, or many rows in the orderinfo table, where the same
customer_id value appears, as illustrated in Figure 4-2.

customer_id
customer_id
14
14
__—p8
5 —
\\\
\# 8
I
orderinfo
customer

Figure 4-2. The customer table and orderinfo table relationship

We could say that the value 8 for customer_id in the row in the customer table relates to
two rows in the orderinfo table, where the column customer_id also appears. Of course, we
didn’t need to have the two columns with the same name, but given that they both store the
customer’s ID, it would have been very confusing, and inconsistent, to give them different names.

Suppose we wanted to find all the orders that had been placed by our customer Ann Stones.
Logically, what we do is first look in our customer table to find this customer:

bpsimple=> SELECT customer_id FROM customer WHERE fname = 'Ann’
AND lname = 'Stones’;
customer_id

(1 row)

bpsimple=>

Now that we know the customer_id, we can check for orders from this customer:

102

CHAPTER 4 ACCESSING YOUR DATA

bpsimple=> SELECT * FROM orderinfo WHERE customer_id = 8;
orderinfo_id | customer id | date placed | date shipped | shipping
—————————————— et e e L L P T S P
8 | 23-06-2004 | 24-06-2004 | 0.00
8 | 21-07-2004 | 24-07-2004 | 0.00
(2 rows)

bpsimple=>

This worked, but it took two steps, and we had to remember the customer_id between
steps. As we explained in Chapter 2, SQL is a declarative language; that is, you tell SQL what you
want to achieve, rather than explicitly defining the steps of how to get to the solution. What we
have just done is to use SQL in a procedural way. We specified two discrete steps to get to our
answer and discover the orders placed by a single customer. Wouldn'’t it be more elegant to do
it all in one step?

Indeed, in SQL we can do this all in a single step, by specifying that we want to know the
orders placed by Ann Stones and that the information is in the customer table and orderinfo
table, which are related by the customer_id column that appears in both tables.

The new bit of SQL syntax we need to do this is an extension to the WHERE clause:

SELECT <column 1ist> FROM <table list> WHERE <join condition>
AND <row-selection conditions>

Thatlooks alittle complex, but actually it’s quite easy. Just to make our first example alittle
simpler, let’s assume we know the customer ID is 8, and just fetch the order date(s) and customer
first name(s). We need to specify the columns we want, the customer first name, the date the
order was placed, that the two tables are related by customer_id column, and that we want only
rows where the customer_idis 8.

You will immediately realize we have a slight problem. How do we tell SQL which customer_id
we want to use: the one in the customer table or the one in the orderinfo table? Although we are
about to check that they are equal, this might not always be the case, so how do we handle
columns whose name appears in more than one table? We simply specify the column name
using the extended syntax: tablename.columname. We can then unambiguously describe every
column in our database.

In general, PostgreSQL is quite forgiving, and if a column name appears in only one table
in the SELECT statement, we don’t need to explicitly use the table name as well. In this case, we
will use customer.fname, even though fname would have been sufficient, because it’s a little
easier to read, especially when you are learning SQL. The first part of our statement, therefore,
needs to be:

SELECT customer.fname, orderinfo.date placed FROM customer, orderinfo

That indicates to PostgreSQL the columns and tables we wish to use.

Now we need to specify our conditions. We have two different conditions: that the
customer_id is 8 and that the two tables are related, or joined, using customer_id. Just as we
saw earlier with multiple conditions, we do this by using the keyword AND to specify multiple
conditions that must all be true:

WHERE customer.customer id = 8 AND customer.customer id = orderinfo.customer id;

CHAPTER 4 ACCESSING YOUR DATA 103

Notice that we need to tell SQL a specific customer_id column, using the
tablename .columnname syntax, even though, in practice, it would not matter which of the two
tables’ customer_id column were checked against 8, since we also specify that they must have
the same value. Putting it all together, the statement we need is as follows:

bpsimple=> SELECT customer.fname, orderinfo.date_placed
FROM customer, orderinfo

WHERE customer.customer_id = 8

AND customer.customer_id = orderinfo.customer_id;

fname | date_placed
_______ oo
Ann | 2004-06-23

Ann | 2004-07-21

(2 rows)

bpsimple=>

It's much more elegant than multiple steps, isn’t it? Perhaps more important, by specifying the
entire problem in a single statement, we allow PostgreSQL to fully optimize the way the data
is retrieved.

Try It Out: Relate Tables

Now we know the principle, let’s try our original question and find all the orders placed by Ann
Stones, assuming we don’t know the customer_id.

We now only know a name, rather than a customer ID; therefore, our SQL is slightly more
complex. We must specify the customer by name:

bpsimple=> SELECT customer.fname, orderinfo.date_placed
FROM customer, orderinfo

WHERE customer.fname = 'Ann' AND customer.lname = 'Stones'
AND customer.customer_id = orderinfo.customer_id;

fname | date_placed

_______ R

Ann | 2004-06-23

Ann | 2004-07-21

(2 rows)

bpsimple=>

How It Works

Just as we saw in our earlier example, we specify the columns we want, (customer.fname,
orderinfo.date placed), the tables involved (customer, orderinfo), the selection conditions
(customer.fname = 'Ann' AND customer.lname = 'Stones'), and how the two tables are related
(customer.customer_id = orderinfo.customer id).

104

CHAPTER 4 ACCESSING YOUR DATA

SQL does the rest for us. It doesn’t matter if the customer has placed no orders, one order,
or many orders. SQL is perfectly happy to execute the SQL query, provided it’s valid, even if
there are no rows that match the condition.

Let’s now look at another example. Suppose we want to list all the products we have, with
their barcodes. You will remember that barcodes are held in the barcode table, and items are
stored in the item table. The two tables are related by having an item_id column in each table.
You may also remember that the reason we split this out into two tables is that many products,
or items, actually have multiple barcodes.

Using our newfound expertise in joining tables, we know that we need to specify the columns
we want, the tables, and how they are related, or joined together. Being confident, we also decide to
order the result by the cost price of the item:

bpsimple=> SELECT description, cost_price, barcode_ean FROM item, barcode
WHERE barcode.item_id = item.item_id ORDER BY cost_price;

description | cost price | barcode ean
_______________ e
Toothbrush | 0.75 | 6241234586487
Toothbrush | 0.75 | 9473625532534
Toothbrush | 0.75 | 9473627464543
Linux CD | 1.99 | 6264537836173
Linux CD | 1.99 | 6241527746363
Tissues | 2.11 | 7465743843764
Roman Coin | 2.34 | 4587263646878
Rubic Cube | 7.45 | 6241574635234
Picture Frame | 7.54 | 3453458677628
Fan Small | 9.23 | 6434564564544
Fan Large | 13.36 | 8476736836876
Wood Puzzle | 15.23 | 6241527836173
Speakers | 19.73 | 9879879837489
Speakers | 19.73 | 2239872376872
(14 rows)
bpsimple=>

This looks reasonable, except several items seem to appear more than once, and we don’t
remember stocking two different speakers. Also, we don’t remember stocking that many items.
What'’s going on here?

Let’s count the number of items we stock, using our newfound SQL skills:

bpsimple=> SELECT * FROM item;

PostgreSQL responds with the data, showing 11 rows. (More experienced SQL users would
use the more efficient SELECT count(*) FROM item; this function is introduced in Chapter 7.)

We stock only 11 items, but our earlier query found 14 rows. Did we make a mistake?

No, all that’s happened is that for some items, such as Toothbrush, there are many different
barcodes against a single product. PostgreSQL simply repeated the information from the item
table against each barcode, so that it listed all the barcodes and the item each one belonged to.

CHAPTER 4 ACCESSING YOUR DATA 105

You can check this out by also selecting the item ID, by adding it to the SELECT statement,
like this:

bpsimple=> SELECT item.item_id, description, cost_price, barcode_ean
FROM item, barcode
WHERE barcode.item_id = item.item_id ORDER BY cost_price;

item id | description | cost price | barcode ean

————————— R ekl SR R ik
8 | Toothbrush | 0.75 | 6241234586487
8 | Toothbrush | 0.75 | 9473625532534
8 | Toothbrush | 0.75 | 9473627464543
3 | Linux CD | 1.99 | 6264537836173
3 | Linux CD | 1.99 | 6241527746363
4 | Tissues | 2.11 | 7465743843764
9 | Roman Coin | 2.34 | 4587263646878
2 | Rubic Cube | 7.45 | 6241574635234
5 | Picture Frame | 7.54 | 3453458677628
6 | Fan Small | 9.23 | 6434564564544
7 | Fan Large | 13.36 | 8476736836876
1 | Wood Puzzle | 15.23 | 6241527836173
11 | Speakers | 19.73 | 9879879837489
11 | Speakers | 19.73 | 2239872376872

(14 rows)

bpsimple=>

Notice that we have specified precisely which table item_id comes from, since it appears
in the item table as well as the barcode table.

Itis now clear what exactly is going on. If the data you get returned from a SELECT statement
looks a little odd, it’s often a good idea to add all the id type columns to the SELECT statement,
just to see what is happening.

Aliasing Table Names

Earlier in the chapter, we saw how we could change column names in the output using AS to
give more descriptive names. It’s also possible to alias table names, if you wish. This is handy
in a few special cases, where you need two names for the same table, but more commonly, it is
used to save on typing. You will also see it used frequently in GUI tools, where it makes SQL
generation a little easier.

To alias a table name, you simply put the alias name immediately after the table name in
the FROM part of the SQL clause. Once you have done this, you can use the alias name, rather
than the real table name, in the rest of the SQL statement.

Suppose we had this simple SQL statement:

SELECT lname FROM customer;

106

CHAPTER 4 ACCESSING YOUR DATA

As we saw earlier, you can explicitly name the column by preceding it with the table name,
like this:

SELECT customer.lname FROM customer;
If we alias the customer table to cu, we could instead prefix the column with cu like this:
SELECT cu.lname FROM customer cu;

Notice that we have added a cu directly after the table name, as well as prefixing the column
with cu.

When a single table is involved, aliasing table names is not very interesting. With multiple
tables, it starts to be a bit more useful. Consider our earlier query:

SELECT customer.fname, orderinfo.date_placed FROM customer, orderinfo WHERE
customer.fname = 'Ann' AND customer.lname = 'Stones' AND customer.customer_ id =
orderinfo.customer id;

With aliases for table names, we could write this as follows:

SELECT cu.fname, oi.date_placed FROM customer cu, orderinfo oi
WHERE cu.fname = 'Ann’
AND cu.lname = 'Stones' AND cu.customer id = oi.customer id;

Aljases table names can be useful both to make the SQL clearer and to avoid typing long
table names many times in a complex query.

Relating Three or More Tables

Now that we know how to relate two tables together, can we extend the idea to three or even
more tables? Yes, we can. SQL is a very logical language, so if we can do something with N items,
we can almost always do it with N+1 items. Of course, the more tables you include, the more
work PostgreSQL needs to do, so queries with many tables can be rather slow, especially if
many of the tables have very large numbers of rows.

Suppose we wanted to relate customer information to actual item IDs ordered?

If you look at our schema in Figure 4-3, you will see we need to use three tables to get from
the customer to the actual ordered items: customer, orderinfo, and orderline. Redrawing our
earlier diagram with three tables, it would look like Figure 4-4.

Here, we can see that customer 123 matches several rows in the orderinfo table—those
with orderinfo IDs of 579, 426, 723, and 114—and each of these, in turn, relates to one or more
rows in the orderline table. Notice that there is no direct relationship between customer and
orderline. We must use the orderinfo table, since that contains the information that binds the
customers to their orders.

CHAPTER 4

ACCESSING YOUR DATA

ORDERLIME
ORDERINFO_ID INTEGER
[TEM_ID INTEGER
QUANTITY INTEGER

ITEM_ID = ITEM_ID

ORDERINFO_ID = ORDERINFO_ID

ORDERINFO
ORDERINFO_ID INTEGER
CUSTOMER_ID INTEGER

DATE_PLACED DATE
DATE_SHIFPED DATE
SHIFFING NUMERICT 2)

CUSTOMER_ID = CUSTOMER_ID
ITEM
ITEM_ID INTEGER STOCK
DESCRIFTION WARCHAR(EY) | g ITEM 1D INTEGER
COST_PRICE MUMERIC(T 2) ITEM_ID = ITEM_ID | QUANTITY INTEGER
SELL_PRICE MUMERIC(T 2 1
CUSTOMER
CUSTOMER_ID INTEGER
ITEM_ID = ITEM_ID TILE CHAR(‘”
| | FNAME WVARCHAR(IZ)
LNAME WARCHAR(I2)
ADDRESSUME WARCHAR(B4)
BARCODE TOWYN WARCHAR(IZ)
BARCODE_EAM CHAR(13) IIPCODE WARCHAR(10)
ITEM_ID INTEGER PHONE WARCHAR(1E)
Figure 4-3. Database schema
customer orderinfo orderline
z =
d 5 =2
£ £ = £ =2
© | = k=1
5 3 E 2 =
2 o =3
. 579(123
customer_id | 123] = 579
—t 579
> 114
426 123
>[4
7231123
114[123]) 579
> 114
E 426
o 426
» 723

Figure 4-4. Three related tables

107

108

CHAPTER 4 ACCESSING YOUR DATA

Try It Out: Join Multiple Tables

Let’s first build a three-table join to discover the item ids for
Ann Stones’s orders. We start with the columns we need:

SELECT customer.fname, customer.lname, orderinfo.date_placed,
orderline.item id, orderline.quantity

Then we list the tables involved:
FROM customer, orderinfo, orderline

Then we specify how the customer and orderinfo tables are related:
WHERE customer.customer_id = orderinfo.customer id

We must also specify how the orderinfo and orderline tables are related:
orderinfo.orderinfo_id = orderline.orderinfo id

Now our conditions:
customer.fname = 'Ann' AND customer.lname = 'Stones’;

Putting them all together, and spreading the typing over several lines (notice the bpsimple ->
continuation prompt), we get this:

bpsimple=> SELECT customer.fname, customer.lname, orderinfo.date_placed,
bpsimple-> orderline.item_id,orderline.quantity

bpsimple-> FROM customer, orderinfo, orderline

bpsimple-> WHERE

bpsimple-> customer.customer_id = orderinfo.customer_id AND

bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> customer.fname = 'Ann' AND

bpsimple-> customer.lname = 'Stones’;

fname | lname | date_placed | item id | quantity

——————— R et s Eaa LT
Ann | Stones | 2004-06-23 | 1 | 1
Ann | Stones | 2004-06-23 | 4 | 2
Ann | Stones | 2004-06-23 | 7 | 2
Ann | Stones | 2004-06-23 | 10 | 1
Ann | Stones | 2004-07-21 | 1| 1
Ann | Stones | 2004-07-21 | 3| 1
(6 rows)

bpsimple=>

Notice that whitespace outside strings is not significant to SQL, so we can add extra spaces
and line breaks to make the SQL easier to read. The psql program just issues a continuation
prompt, bpsimple->, and waits till it sees a semicolon before it tries to interpret what we have
been typing.

Having seen how easy it is to go from two tables to three tables, let’s take our query a step
further and list all the items by description that our customer Ann Stones has ordered. To do this,

CHAPTER 4 ACCESSING YOUR DATA 109

we need to use an extra table, the itemtable, to get at the item description. The rest of the query
however, is pretty much as before:

bpsimple=> SELECT customer.fname, customer.lname, orderinfo.date_placed,
bpsimple-> item.description, orderline.quantity

bpsimple-> FROM customer, orderinfo, orderline, item

bpsimple-> WHERE

bpsimple-> customer.customer_id = orderinfo.customer_id AND

bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> orderline.item_id = item.item_id AND

bpsimple-> customer.fname = 'Ann' AND

bpsimple-> customer.lname = 'Stones’;

fname | lname | date placed | description | quantity

——————— e it B
Ann | Stones | 2004-06-23 | Wood Puzzle | 1
Ann | Stones | 2004-06-23 | Tissues | 2
Ann | Stones | 2004-06-23 | Fan Large | 2
Ann | Stones | 2004-06-23 | Carrier Bag | 1
Ann | Stones | 2004-07-21 | Wood Puzzle | 1
Ann | Stones | 2004-07-21 | Linux CD | 1
(6 rows)

bpsimple=>

How It Works

Once you have seen how three-table joins work, it’s not difficult to extend the idea to more tables.
We added the item description to the list of columns to be shown, added the item table to the
list of tables to select from, and added the information about how to relate the itemtable to the
tables we already had, orderline.item id = item.item_id. You will notice that Wood Puzzleis
listed twice, since it was purchased on two different occasions.

In this SELECT, we have displayed at least one column from each of the tables we used in
our join. There is actually no need to do this. If we had just wanted the customer name and
item description, we could have simply chosen not to retrieve the columns we didn’t need.

A version retrieving fewer columns is just as valid, and may be marginally more efficient
than our earlier attempt:

SELECT customer.fname, customer.lname, item.description
FROM customer, orderinfo, orderline, item
WHERE
customer.customer _id = orderinfo.customer id AND
orderinfo.orderinfo_id = orderline.orderinfo_id AND
orderline.item id = item.item id AND
customer.fname = 'Ann' AND
customer.lname = 'Stones’;

To conclude this example, let’s go back to something we learned early in the chapter: how
to remove duplicate information using the DISTINCT keyword.

110

CHAPTER 4 ACCESSING YOUR DATA

Try It Out: Add Extra Conditions

Suppose we want to discover what type of items Ann Stones bought. All we want listed are the
descriptions of items purchased, ordered by the description. We don’t even want to list the
customer name, since we know that already (we are using it to select the data). We need to select
only the item.description, and we also need to use the DISTINCT keyword, to ensure that Wood
Puzzle is listed only once, even though it was bought several times:

bpsimple=> SELECT DISTINCT item.description

bpsimple-> FROM customer, orderinfo, orderline, item
bpsimple-> WHERE

bpsimple-> customer.customer_id = orderinfo.customer_id AND
bpsimple-> orderinfo.orderinfo_id = orderline.orderinfo_id AND
bpsimple-> orderline.item_id = item.item_id AND

bpsimple-> customer.fname = 'Ann' AND

bpsimple-> customer.lname = 'Stones’

bpsimple-> ORDER BY item.description;

description

Carrier Bag
Fan Large
Linux CD
Tissues
Wood Puzzle
(5 rows)

bpsimple=>

How It Works

We simply take our earlier SQL, remove the columns we no longer need, add the DISTINCT
keyword after SELECT to ensure each row appears only once, and add our ORDER BY condition
after the WHERE clause.

That’s one of the great things about SQL: once you have learned a feature, it can be applied
in a general way. ORDER BY, for example, works with many tables in just the same way as it works
with a single table.

The SQL92 SELECT Syntax

You may have noticed that the WHERE clause actually has two slightly different jobs. It specifies the
conditions to determine which rows we wish to retrieve (customer.fname = 'Ann") butalso specifies
how multiple tables relate to each other (customer.customer id = orderinfo.customer id).

This didn’t really cause anyone any problems for many years, until the SQL standards
committee tried to extend the syntax to help handle the increasingly complex jobs to which
SQL was being put. When the SQL92 standard was released, a new form of the SELECT statement
syntax was added to separate these two subtly different uses. This new syntax (sometimes
referred to as the SQL92/99 syntax, or the ANSI syntax) was surprisingly slow to catch on with

CHAPTER 4 ACCESSING YOUR DATA 111

many SQL databases. Microsoft was an early adopter in SQL Server 6.5, and PostgreSQL added
support in version 7.1, but it took Oracle till version 9 to support the new syntax.

The new syntax uses the JOIN ... ON syntax to specify how tables relate, leaving the WHERE
clause free to concentrate on which rows to select. The new syntax moves the linking of tables
into the FROM section of the SELECT statement, away from the WHERE clause. So the syntax changes
from this:

SELECT <column 1ist> FROM <table Iist>
WHERE <join condition> <row-selection conditions>

to this:

SELECT <column 1ist> FROM <table> JOIN <table> ON <join condition>
WHERE <row-selection conditions>

It’s easier than it looks—really! Suppose we wanted to join the customer and orderinfo
tables, which share a common key of customer_id. Instead of writing the following:

FROM customer, orderinfo WHERE customer.customer id = orderinfo.customer id
we would write this:
FROM customer JOIN orderinfo ON customer.customer id = orderinfo.customer id

This is slightly more long-winded, but it is both clearer and an easier syntax to extend, as we
will see when we look at outer joins in Chapter 7.
Extensions to more than two tables are straightforward. Consider our earlier query:

SELECT customer.fname, customer.lname, item.description
FROM customer, orderinfo, orderline, item
WHERE
customer.customer _id = orderinfo.customer id AND
orderinfo.orderinfo_id = orderline.orderinfo_id AND
orderline.item id = item.item id AND
customer.fname = 'Ann' AND
customer.lname = 'Stones’;

In the SQLI2 syntax, this becomes:

SELECT customer.fname, customer.lname, item.description

FROM customer
JOIN orderinfo ON customer.customer id = orderinfo.customer id
JOIN orderline ON orderinfo.orderinfo id = orderline.orderinfo_id
JOIN item ON orderline.item id = item.item_id

WHERE
customer.fname = 'Ann' AND
customer.lname = 'Stones’;

Both versions of the SELECT statement produce identical results.

112

CHAPTER 4 ACCESSING YOUR DATA

However, many users seem to have stuck with the earlier syntax, which is still valid and
slightly more succinct for many SQL statements. We present the newer SQL92 version here, so
you will be familiar with the syntax, but generally in this book, we will stick with the older-style
joins, except where we meet outer joins in Chapter 7.

Summary

This has been a fairly long chapter, but we have covered quite a lot. We have discussed the
SELECT statement in some detail, discovering how to choose columns and rows, how to order
the output, and how to suppress duplicate information. We also learned a bit about the date
type, and how to configure PostgreSQL’s behavior in interpreting and displaying dates, as well
as how to use dates in condition statements.

We then moved on to the heart of SQL: the ability to relate tables together. After our first
bit of SQL that joined a pair of tables, we saw how easy it was to extend this to three and even
four tables. We finished off by reusing some of the knowledge we gained early in the chapter to
refine our four-table selection to home in on displaying exactly the information we were searching
for, and removing all the extra columns and duplicate rows.

The good news is that we have now seen all the everyday features of the SELECT statement,
and once you understand the SELECT statement, much of the rest of SQL is reasonably straight-
forward. We will be coming back to the SELECT statement in Chapter 7 to look at some more
advanced features that you will need from time to time, but you will find that much of SQL you
need to use in the real world has been covered in this chapter.

CHAPTER 5

PostgreSQL Command-Line
and Graphical Tools

A PostgreSQL database is generally created and administered with the command-line tool,
psql, which we have used in earlier chapters to get started. Command-line tools similar to psql
are common with commercial databases. Oracle has one such tool called SQL*Plus, for example.

While command-line tools are generally complete, in the sense that they contain ways to
perform all the functions that you need, they can be a little user-unfriendly. On the other hand,
they make no great demands in terms of graphics cards, memory, and so on.

In this chapter, we will begin by taking a closer look at psql. Next, we will cover how to set
up an ODBC data source to use a PostgreSQL database, which is necessary for some of the tools
described in this chapter. Then we will meet some of the graphical tools available for working
with PostgreSQL databases. Some of the tools can also be used for administering databases,
which is the topic of Chapter 11. In this chapter, we will concentrate on general database tasks.

In particular, we’ll examine the following tools in this chapter:

psql

ODBC

pgAdmin III
phpPgAdmin
Rekall

Microsoft Access

Microsoft Excel

psql

The psql tool allows us to connect to a database, execute queries, and administer a database,
including creating a database, adding new tables and entering or updating data, using SQL
commands.

113

114

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Starting psql

As we have already seen, we start psql by specifying the database to which we wish to connect.
We need to know the host name of the server and the port number the database is listening on
(if it is not running on the default of 5432), plus a valid username and password to use for the
connection. The default database will be the one on the local machine with the same name as
the current user login name.

To connect to a named database on a server, we invoke psql with a database name, like this:

$ psql -d bpsimple

We can override defaults for the database name, username, server host name, and listening
port by setting the environment variables PGDATABASE, PGUSER, PGHOST, and PGPORT, respectively.
These defaults may also be overridden by using the -d, -U, -h, and -p command-line options
to psql.

Note We can run psql only by connecting to a database. This presents a “chicken-and-egg” problem for
creating our first database. We need a user account and a database to connect to. We created a default user,
postgres, when we installed PostgreSQL in Chapter 3, so we can use that to connect to create new users
and databases. To create a database, we connect to a special database included with all PostgreSQL instal-
lations, template1. Once connected to template1, we can create a database, and then either quit and
restart psql or use the \c internal psql command to reconnect to the new database.

When psql starts up, it will read a startup file, . psqlrc, if one exists and is readable in the
current user’s home directory. This file is similar to a shell script startup file and may contain
psql commands to set the desired behavior, such as setting the format options for printing
tables and other options. We can prevent the startup file from being read by starting psql with
the -X option.

Issuing Commands in psql

Once running, psql will prompt for commands with a prompt that consists of the name of the
database we are connected to, followed by =>. For users with full permissions on the database,
the prompt is replaced with =#.

psql commands are of two different types:

* SQL commands: We can issue any SQL statement that PostgreSQL supports to psql, and
it will execute it.

¢ Internal commands: These are psql commands used to perform operations not directly
supported in SQL, such as listing the available tables and executing scripts. All internal
commands begin with a backslash and cannot be split over multiple lines.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Tip You can ask for a list of all supported SQL commands by executing the internal command \h. For help
on a specific command, use \h <sql command>. The internal command \? gives a list of all internal commands.

SQL commands to psql may be spread over multiple lines. When this occurs, psql will
change its prompt to -> or -# to indicate that more input is expected, as in this example:

$ psql -d bpsimple

bpsimple=# SELECT *
bpsimple-# FROM customer
bpsimple-# ;

$

To tell psql that we have completed a long SQL command that might spread across multiple
lines, we need to end the command with a semicolon. Note that the semicolon is not arequired
part of the SQL command, but is just there to let psql know when we are finished. For example,
in the SELECT statement shown here, we may have wanted to add a WHERE clause on the next line.

We can tell psql that we will never split our commands over more than one line by starting
psql with the -S option. In that case, we do not need to add the semicolon to the end of our
commands. The psql prompt will change to *> to remind us that we are in single-line mode.
This will save us a small amount of typing and may be useful for executing some SQL scripts.

Working with the Command History

On PostgreSQL platforms that support history recording, each command that we ask psql to
execute is recorded in a history, and we can recall previous commands to run again or edit. Use
the arrow keys to scroll through the command history and edit commands. This feature is
available unless you have turned it off with the -n command-line option (or it has not been
compiled in the build for your platform).

We can view the query history with the \s command or save it to a file with \s <file>. The
last query executed is kept in a query buffer. We can see what is in the query buffer with \p, and
we can clear it with \r. We can edit the query buffer contents with an external editor with \e.
The editor will default to vi (on Linux and UNIX), but you can specify your own favorite editor
by setting the EDITOR environment variable before starting psql. We can send the query buffer
to the server with \g, which gives a simple way to repeat a query.

Scripting psql

We can collect a group of psql commands (both SQL and internal) in a file and use it as a simple
script. The \1i internal command will read a set of psql commands from a file.

This feature is especially useful for creating and populating tables. We used it in Chapter 3
to create our sample database, bpsimple. Here is part of the create tables-bpsimple.sql script
file that we used:

115

116

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

CREATE TABLE customer

(
customer_id serial ,
title char(4) ,
fname varchar(32) ,
lname varchar(32) NOT NULL,
addressline varchar(64) ,
town varchar(64) ,
zipcode char(10) NOT NULL,
phone varchar(16) ,
CONSTRAINT customer pk PRIMARY KEY(customer id)

)5

CREATE TABLE item

(
item_id serial ,
description varchar(64) NOT NULL,
cost_price numeric(7,2) ,
sell price numeric(7,2) ,
CONSTRAINT item_pk PRIMARY KEY(item id)

)5

We give script files a . sql extension by convention, and execute them with the \1i internal
command:

bpsimple=#\i create_tables-bpsimple.sql
CREATE TABLE
CREATE TABLE

bpsimple=#

Here, the script is located in the directory where we started psql, but we can execute a
script stored elsewhere by giving the full path to it.

Another use of script files is for simple reports. If we want to keep an eye on the growth of
a database, we could put a few commands in a script file and arrange to run it every once in a

while. To report the number of customers and orders taken, create a script file called report.sql
that contains the following lines and execute it in a psql session:

SELECT count(*) FROM customer;
SELECT count(*) FROM orderinfo;

Alternatively, we can use the -f command line option to get psql to execute the file and
then exit:

$ psql -f report.sql bpsimple
count

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

If a password is required to access the database, psql will prompt for one. We can specify
a different database user with the -U option to psql.

We can redirect query output to a file by using the -o command-line option, or to a file or
filter program with the \o internal command from within a session. For example, from within
apsql session, we can create a text file called customers.txt containing all of our customers by
issuing the following commands:

bpsimple=# \o customers.txt
bpsimple=# SELECT * FROM customer;
bpsimple=# \o

The final command, \o without a filename parameter, stops the redirecting of query output
and closes the output file.

Examining the Database

We can explore the structure of our database using a number of internal psql commands. The
structure includes the names and definition of the tables that make up the database, any functions
(stored procedures and triggers) that may have been defined, the users that have been created,
and so on.

The \d command lists all of the relations—tables, sequences, and views, if any—in our
database. Here is an example:

bpsimple=# \d customer
Table "public.customer"
Modifiers

| |
+ +
customer_id | integer |
title | character(4) |
| |
| |
| |
| |
| |
| |

fname character varying(32)

lname character varying(32) | not null
addressline | character varying(64)

town character varying(32)

zipcode character(10) not null
phone character varying(16)

Indexes:

"customer_pk" PRIMARY KEY, btree (customer id)

bpsimple=#

The \dt command restricts the listing to tables only. See Table 5-2 in the “Internal Commands
Quick Reference” section for more internal psql commands.

117

118

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

psql Command-Line Quick Reference

The command syntax for psql is:
psql [options] [dbname [username]]

The psql command-line options and their meanings are shown in Table 5-1. To see the
complete list of options to psql, use the following command:

$ psql --help

Table 5-1. psq1 Command-Line Options

Option Meaning

-a Echo all input from script

-A Unaligned table output mode; same as -P format=unaligned

-c <query> Run only single query (or internal command) and exit

-d <dbname> Specify database name to connect to (default: $PGDATABASE or current
login name)

-e Echo queries sent to server

-E Display queries that internal commands generate

-t <filename> Execute queries from file, then exit

-F <string> Set field separator (default: |); same as -P fieldsep=<string>

-h <host> Specify database server host (default: $PGHOST or local machine)

-H Set HTML table output mode; same as -P format=html

--help Show help, then exit

-1 List available databases, then exit

-n Disable readline; prevents line editing

-0 <filename> Send query output to filename (use the form |pipe to send output to a
filter program)

-p <port> Specify database server port (default: $PGPORT or compiled-in default,
usually 5432)

-P var[=arg] Set printing option var to arg (see \pset command)

-q Run quietly (no messages, only query output)

-R <string> Set record separator (default: newline); same as -P recordsep=<string>

-s Set single-step mode (confirm each query)

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 119

Table 5-1. psq1l Command-Line Options (Continued)

Option Meaning

-S Set single-line mode (end of line terminates query rather than semicolon)
-t Print rows only; same as -P tuples only

-T <text> Set HTML table tag options (width, border); same as -P tableattr=<text>
-U <username> Specify database username (default: $PCUSER or current login)

-v name=value Set psql variable name to value

--version Show version information and exit; also -V

-W Prompt for password (should happen automatically, if a password is required)
-X Turn on expanded table output; same as -P expanded

-X Do not read startup file (~/.psqlrc)

psql Internal Commands Quick Reference

The supported internal psql commands are shown in Table 5-2. In many versions of PostgreSQL,
some of these commands have more legible longer forms (such as \1ist for \1).

Table 5-2. psql Internal Commands

Command Meaning

\? List all available psql internal commands

\a Toggle between unaligned and aligned mode

\c[onnect] [dbname|- [user]] Connect to new database; use - as the database name to connect
to the default database if you need to give a username

\C <title> Set table title for output; same as \pset title

\cd <dir> Change the working directory

\copy ... Perform SQL COPY with data stream to the client machine

\copyright Show PostgreSQL usage and distribution terms

\d <table> Describe table (or view, index, sequence)

\d{t|i|s|v} List tables/indices/sequences/views

\d{p|S|1} List permissions/system tables/lobjects

\da List aggregates

120

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Table 5-2. psql Internal Commands (Continued)

Command Meaning

\db List tablespaces
\dc List conversions
\dC List casts

\dd [object]
\dD

\df

\dg

\d1

\dn

\do

\dT

\du

\e [file]
\echo <text>
\encoding <encoding>
\f <sep>

\g [file]

\h [cmd]

\H
\i <file>
\1

\lo_export, \lo_import, \lo list,
\lo_unlink

\o [file]

\p
\pset <opt>

\q

\gecho <txt>
\1

\s [file]

List comment for table, type, function, or operator
List domains

List functions

List groups

List large objects; also \1o list

List schemas

List operators

List data types

List users

Edit the current query buffer or file with external editor
Write text to standard output

Set client encoding

Change field separator

Send query to back-end (and results in file, or |pipe)

Help on syntax of SQL commands; use * for detail on all
commands

Toggle HTML mode
Read and execute queries from file
List all databases

Perform large object operations

Send all query results to file, or |pipe
Show the content of the current query buffer

Set table output option, which can be one of the following:
format, border, expanded, fieldsep, footer, null, recordsep,
tuples only, title, tableattr, pager

Quit psql
Write text to query output stream (see \o)
Reset (clear) the query buffer

Print history or save itin file

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Table 5-2. psql Internal Commands (Continued)

Command Meaning

\set <var> <value> Set internal variable

\t Show only rows (toggles between modes)

\T <tags> Set HTML table tags; same as \pset tableattr

\timing Toggle timing of commands

\unset <var> Unset (delete) internal variable

\w <file> Write current query buffer to file

\X Toggle expanded output

\z List access permissions for tables, views, and sequences
\! [cmd] Escape to shell or execute a shell command

ODBC Setup

Several of the tools discussed in this chapter, as well as some of the programming language
interfaces discussed in later chapters, use the ODBC standard interface to connect to PostgreSQL.
ODBC defines a common interface for databases and is based on X/Open and ISO/IEC
programming interfaces. In fact, ODBC stands for Open Database Connectivity and is not (as
is often believed) limited to Microsoft Windows clients. Programs written in many languages—
like C, C++, Ada, PHP, Perl, and Python—can make use of ODBC. OpenOffice, Gnumeric,
Microsoft Access, and Microsoft Excel are just a few examples of applications that can use ODBC.

To use ODBC on a particular client machine, we need both an application written for the
ODBC interface and a driver for the particular database that we want to use. PostgreSQL has
an ODBC driver called psqlodbc, which we can install on our clients. Often, clients will be
running on machines that are different from the server, and possibly different from each
other, requiring us to compile the ODBC driver on several client platforms. For example, we
might have the database server on Linux and our client applications running on Windows
and Mac OS X.

The source code and a binary installation for Windows are available from the psql0DBC
project home page at http://gborg.postgresql.org/project/psqlodbc/.

Note The standard Windows installation of PostgreSQL also contains a version of the ODBC driver that can
be installed on a Windows server at the same time as the database.

Installing the ODBC Driver

On Microsoft Windows, ODBC drivers are made available through the Control Panel’s Admin-
istrative Tools Data Sources applet, as shown in Figure 5-1.

121

122 CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

" Administrative Tools

File Edit View Favorites Tools Help

@Bad(- .'_) Lﬁ pSeardq HE‘ Folders v

Address | 48 Administrative Tools v| i
} Compeonent Services Computer Management
File and Folder Tasks oy Shortout Shortout
2¥B 2¥B
{ed Share this folder
Data Sources (ODBC) Event Viewer
Shorteut Shorteut
Other Places o 2KB 2K8
B, Control Panel Local Security Policy Performance
Shorteut Shortcut
[EJ My Documents KB KB

| Shared Documents

= Services
_& EirETRELE Shortcut
!a My Metwork Places 2KB

Details

Administrative Tools
System Folder

7 objects (plus 1 hidden) 11.4KB 'J My Computer

Figure 5-1. The ODBC Data Sources applet

The Drivers tab of this applet lists the installed ODBC drivers, as shown in Figure 5-2.

ODBC Data Source Adm

User DSN | System DSN | Fie DSN Drivers | Tracing | Connection Pooiing | About |

QDBC Drivers that are installed on your system:

MName | Version | Compary ||
Microsoft Access Driver (mdb) 4.00.6304.00 Microsoft |
Microsoft Access-Treiber (".mdb) 4.00.6304.00 Microsoft |
Microsoft dBase Driver (*.dbf) 4.00.6304.00 Microsoft |
Microsoft dBase VFP Driver (*.dbf) 1.00.02.00 Microsoft |
Microsoft dBase-Treiber (*.dbf) 4.00.6304.00 Microsoft || =
Microsoft Excel Driver ("xds) 4.00.6304.00 Microsoft |
Microsoft Excel-Treiber ("xds) 4.00.6304.00 Microsoft I—
Microsoft FoxPro VFP Driver (*.dbf) 1.00.02.00 Microsoft |
Microsoft ODBC for Oracle 2.575.1117.00 Microsoft |
Microsoft Paradox Driver (*.db) 4.00.6304.00 Microsoft 1w |
£] | =]

An ODEC driver allows ODBC-enabled programs to get information from

QDBC data sources. To install new drivers, use the driver's setup

program.

0K | Gancel | gy Help

Figure 5-2. Installed ODBC drivers

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 123

To install the PostgreSQL ODBC driver, we need to perform two steps:

1. Download a suitable version of the driver from http://gborg.postgresql.org/project/
psqlodbc. If you have a version of Windows that includes the Microsoft Windows Installer,
the MSI version of the drivers is the recommended choice, as it is much smaller; otherwise,
download the full installation. At the time of writing, both versions of the driver are located
in compressed archive files named psglodbc-07_03_0200.zip.

2. Extract the driver installation file from the downloaded archive. It will be named either
psqlodbc.msi or psqlodbc.exe. Double-click the installation file and follow the instruc-
tions to install the PostgreSQL ODBC driver.

After performing these two steps, we can confirm that we have successfully installed the
driver by again selecting the Drivers tab in the ODBC applet and noting that PostgreSQL now
appears in the list, as shown in Figure 5-3.

£ ODBC Data Source Administrator

User DSN | System DSN | Fie DSN Drivers | Tracing | Connection Pooiing | About |

QDBC Drivers that are installed on your system:

Name | Wersion | Comparyy #
Microsoft Paradox Driver (*.db) 4.00.6304.00 Microsoft |
Microsoft Paradox-Treiber (*.db) 4.00.6304.00 Microsoft |
Microsoft Text Driver ("t *.csv) 4.00.6304.00 Microsoft |
Microsoft Text-Treiber ("t *.csv) 4.00.6304.00 Microsoft |
Microsoft Visual FoxPro Driver 1.00.02.00 Microsoft |
Microsoft Visual FoxPro-Treiber 1.00.02.00 Microsoft |
PostgreSQIL 7.03.02.00 Insight Dis
PostgreSQL Legacy Mot marked Mot marke
PostgreSQL Unicode (Beta) Mot marked Mot marke

Enver 2000.85.1117.00 Microsoft ||+
< | *

An ODBC driver allows ODBC-enabled programs to get information from
QDBC data sources. To install new drivers, use the driver's setup
program.

oK | Cancel | | Heb

Figure 5-3. PostgreSQL ODBC driver installed

Creating a Data Source
Now we will be able to use ODBC-aware applications to connect to PostgreSQL databases.
To make a specific database available, we need to create a data source, as follows:
1. Select User DSN in the ODBC applet to create a data source that will be available to the

current user. (If you select System DSN, you can create data sources that all users can see.)

2. Click Add to begin the creation process. A dialog box for selecting which driver the data
source will use appears, as shown in Figure 5-4.

124 CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Select a driver for which you want to set up a data source.

Name | Wersion ~
Microsoft Paradox-Treiber (*.db) 4.00.6304.00
Microsoft Text Driver ("t *.csv) 4.00.6304.00
Microsoft Text-Treiber ("t *.csv) 4.00.6304.00
Microsoft Visual FoxPro Driver 1.00.02.00
Microsoft Visual FoxPro-Treiber 1.00.02.00
PostgreS! 7.03.02.00
PostgreSQL Legacy Mot marked
PostgreSQL Unicode (Beta) Mot marked

SQL Server 2000.85.1117.4 5
< | 3]

| Finish | Cancel

Figure 5-4. Creating a PostgreSQL data source

3. Select the PostgreSQL driver and click Finish.

4. We now have a PostgreSQL driver entry that must be configured. A Driver Setup box will
appear for us to enter the details of this data source. As shown in Figure 5-5, give the
data source a name and a description, and set the network configuration. Here, we are
creating an ODBC connection to a copy of our bpsimple database running on a Linux
server using the IP address of the server. (If you are running a fully configured naming
service such as DNS or WINS, you can use a machine name for the server.) We also
specify the username and password to be used at the server to access the database we
have chosen.

PostgreSQL ODBC Driver (psglODBC) Setup

Data Source BPSimple Description [hpsimple on Beast as neil
Database |bpsimple
Server [192.168.8.111 Port [5432
User MName neil Password [eeeeaae
Options

Save | Cancel | Datasource | Global |

Figure 5-5. Configuring a PostgreSQL data source

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 125

Tip Additional options are available under the Global and DataSource options in the ODBC Driver Setup
dialog box. If you will be using ODBC applications to update data or insert new data into the PostgreSQL data-
base, you may need to configure the data source to support this. To do this, click the DataSource button and
make sure that the Read Only box is not checked in the dialog box that appears.

5. Click Save to complete the setup.

We are now ready to access our PostgreSQL database from ODBC applications such as
Microsoft Access and Excel, as we will discuss later in this chapter. Next, we will look at some
open-source alternatives, starting with pgAdmin III.

pgAdmin Il

pgAdmin I11 is a full-featured graphical interface for PostgreSQL databases. It is free software,
community-maintained at http://www.pgadmin.org. According to the web site, pgAdmin is “a
powerful administration and development platform for the PostgreSQL database, free for any
use.” It runs on Linux, FreeBSD, and Windows 2000/XP. Versions for Sun and Mac OS X are
being developed.

pgAdmin I1I offers a variety of features. With it, we can do the following:

e Create and delete tablespaces, databases, tables, and schemas
» Execute SQL with a query window

» Export the results of SQL queries to files

* Back up and restore databases or individual tables

e Configure users, groups, and privileges

* View, edit, and insert table data

Let’s look at how to get up and running with this versatile tool.

Installing pgAdmin III

With the release of pgAdmin III, the developers have made installation of the program much
simpler. Previous versions require the PostgreSQL ODBC driver to be installed to provide
access to the database, but this dependency has been removed. If you have used an earlier
version of pgAdmin, we recommend that you consider upgrading.

126

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Note The standard Windows installation of PostgreSQL includes a version of pgAdmin lll that can be
installed on a Windows server along with the database or on a client without a database.

Binary packages for Microsoft Windows 2000/XP, FreeBSD, Debian Linux, Slackware Linux,
and Linux distributions that use the RPM package format (such as Red Hat and SuSE Linux) are
available to download from http://www.pgadmin.org/pgadmin3/download.php.

Download the appropriate package for the system you want to run pgAdmin IIT and install it.
The Windows package contains an installer to execute, packaged in a compressed archive ZIP file.
After installation, you should have a new program (pgAdmin III) in the Windows Start menu.

Using pgAdmin III

Before we can use pgAdmin III in earnest, we need to make sure that we can create objects in
the database we want to maintain. This is because pgAdmin IIT augments the database with
objects of its own that are stored on the server. To perform all of the maintenance functions
with pgAdmin III, we need to log on as a user that has complete privileges for the database—
a superuser, in other words. If we choose a user without superuser status, we will get an error.

Tip We will be looking at users and permissions in Chapter 11. If your PostgreSQL database installation
was performed on Windows with the default settings, you should have a user postgres that is used to
control the database, and you can try to log on as that user. If you installed on Linux or UNIX following the
steps in Chapter 3, you will have created a suitable user; we used neil.

We can manage several database servers at once with pgAdmin III, so our first task is to
create a server connection. Select Add Server from the File menu to bring up a dialog box very
similar to the one we used to create an ODBC connection earlier. Figure 5-6 shows a connection
being made to a PostgreSQL database on a Linux server.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 127

Ui pgAdmin 1Nl
File Edit Tools Display Help

VDV Lowowwe ?

&) Servers (1) Propetiies | Statistics | Depends on | Referenced by |
.) PostgreSQL Database Server 8.0 (ocalhost Tl e
% Hostname localhost
% Description PostgreSQL Database Server 8.0
B Port 5432
% Initial database template 1
% Usemame postgres
% Meed password? Yes
% Connected? Mo
% Running? Yes

& Add server

Properties

Address [192.168.0.111 |

Description |BPSimpIe on Beast | 2

Service | |

Port 5432 | ssL | v

Initial DB |bp5imple v|

Usemame |nei| |

need password

Password | |

Help [ok][cancel |

< | 3| >
Retrieving server properties... Done. 0.00 secs

Figure 5-6. Adding a server connection in pgAdmin IIT

Once the server connection has been created, we can connect to the database server and
browse the databases, tables, and other objects that the server is providing. Figure 5-7 shows
an example of pgAdmin III exploring the tables of the bpsimple database and examining the
1name attribute of the customer table.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Ui pgAdmin Il
File Edit Tools Display Help

U@L s P

m Servers (1) Properties |Statistics || Depends on || Referenced byl
Bﬂ BPsimple on BEAST (152.168.0.111:5432) R Val
-2 Databases (1) ope ==
o2 bpsimple I% Name Iname
Y Casts (0) % Position 4
@a Languages (0} B Data type varchar(32)
Schemas (1) I% Defautt
=8 public B Sequence

[Aagregates (0) [Mot NULL? Yes
-y Conversions (0) % Primary key? No
- Domains (1) Bk Foreign key? No
@ Functions (0) B Storage EXTENDED
i Tiigger Functions (0} B Inherited No
~-+(} Operators () B Statistics -1
@ Operstor Classes (0) I% System column? No

-3 Sequences (3) B Comment

=2- Tables ()

: -E5 barcode ¢ »
customer
-1 Columns @ -- Column: lname
A customer_id
T title —-- RLTER TABLE customer DROF COLUMN lname

fname
ALTER TABLE customer ADD COLUMN lname varchar(32);

ALTER TAELE customer ALTER COLUMN lname SET STORAGE EXTENDED;

addressline
ALTER TAELE customer ALTER COLUMN lname SET NOT HULL;

town
zipcode
phone
[#-#I# Constraints (1)
-k Indexes (0}
- Rules (0}
- & Triggers (0)
H-EF item

-5 orderinfo

£

3

H- orderine
#-E5 stock
"n Types (0)
,0 Views (0)
[-(%4 Tablespaces (2)

i Groups (0)
- 1§ Users (2) < S

Retrieving Column details... Done. 0.00 secs

Figure 5-7. Examining table properties with pgAdmin III

One feature of pgAdmin III that is potentially very useful is its backup and restore func-
tionality. This provides a simple interface to the PostgreSQL pg_dump utility, which we will cover
in Chapter 11. We can back up and restore individual tables or an entire database. There are
options to control how and where the backup file is created and what method will be used to
restore the database, if necessary (for example, by using the \copy command or SQL INSERT
statements).

To open the Backup dialog box, right-click the object (database or table) to back up and
select Backup. Figure 5-8 shows the Backup dialog box for the bsimple database.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 129

% Backup Database bpsimple

Options | Messages |
Filename |::|psimple.bac:kup | E]
Format
(O COMPRESS (O TAR (& PLAIN
Blhe PLAIN options
my Only dat
[CIwith OIDs EO”"’ ha
Insert commands pvischans
. . [No owner
[] Disable & quoting
Create DB
[Drop DB
[] Disable Trigger
Verbose messages
Co] (o

Figure 5-8. The pgAdmin III Backup dialog box

We will cover more of pgAdmin III's features for managing databases in Chapter 11.

phpPgAdmin

A web-based alternative for managing PostgreSQL databases is phpPgAdmin. This is an appli-
cation (written in the PHP programming language) that is installed on a web server and provides a
browser-based interface for administration of database servers. The project home page is at
http://phppgadmin.sourceforge.net/.

With phpPgAdmin, we can perform many tasks with our databases, including the following:

e Manage users and groups

e Create tablespaces, databases, and schemas

e Manage tables, indexes, constraints, triggers, rules, and privileges
e Create views, sequences, and functions

¢ Create and run reports

e Browse table data

¢ Execute arbitrary SQL

e Export table data in many formats: SQL, COPY (data suitable for the SQL COPY command),
XML, XHTML, comma-separated values (CSV), tab-delimited, and pg_dump

* Import SQL scripts, COPY data, XML files, CSV files, and tab-delimited files

130

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Installing phpPgAdmin

Installing phpPgAdmin is very straightforward. The program is available as a download
package in several formats, including ZIP and compressed tarball (.tar.gz). The package
needs to be extracted into a folder served by a web server that supports the PHP programming
language. A popular choice for this is the Apache web server configured with the mod_php
extension. More information about Apache and PHP can be found at http://www.apache.org
and http://www.php.net, respectively. Many Linux distributions provide a suitably configured
Apache installation.

The only configuration that phpPgAdmin requires is the setting of some variables in its
configuration file, conf/conf. inc.php. The following extract shows the lines in this file that
need to be configured to set up phpPgAdmin to manage a database on another server.

// Display name for the server on the login screen
$conf['servers'][0]['desc'] = 'Beast’;

// Hostname or IP address for server. Use '' for UNIX domain socket.
$conf['servers'J[0]['host'] = '192.168.0.111";

// Database port on server (5432 is the PostgreSQL default)
$conf['servers'][0]['port'] = 5432;

// Change the default database only if you cannot connect to templatel
$conf['servers'][0]['defaultdb'] = 'templatel';

Using phpPgAdmin

To demonstrate the cross-platform potential of phpPgAdmin, Apache, and PostgreSQL,
Figures 5-9 and 5-10 show a browser running on an Apple Mac, accessing an Apache web server
with phpPgAdmin installed running on Windows XP (at address 192.168.0.3), managing a database
on a Linux server called Beast at address 192.168.0.111. Figure 5-11 depicts the customer table
data being viewed. The URL for the browser is http://192.168.0.3/phpPgAdmin/index.php.

CHAPTER 5 " POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 131

Le s L Log
[« (@[] [+] ©noi192.16503 pmroacminiindexno Offa- cooge

phpPgAdmin 3.5.1 Login

Username: | neil]

Password: [«-s:e.ee |
Server:
Language:

.
Figure 5-9. phpPgAdmin login

[« 1[@](e][+] @192 1650 3prrgaaminndexohp Offarcooge

... bpsimple phpPgAdmin
Welcome to phpPgAdmin.

¢ phpPgAdmin Homepage
* PostgreSQL Homepage
+ Reporta Bug

« View online FAQ

Figure 5-10. phpPgAdmin main page

132

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

e phpPgAdmin = E
@ @ hrp://192.168.0.3 /phpPgAdminfindex.php @[a(a- coogle]

;ﬁ:}\pph Mac Amazon eBay Yahoo! Newsv ———
. PostgreSQL 8.0.0 running on 192.168.0.111:5432 — You are logged in as user "neil", 5th Jan, 2005 11:39AM
phpRgAdmIn Users | Groups | A | Tablespaces | Reports | SQL | Find | Logout
£5Beast ~ ~ ” m
& E bpsimple Beast’: bpsimple ": public: customer’:
- Z3 public Browse
=] ﬁ Tables
i ﬁ barcade Actions customer_id title fname Iname addressline town zipcode phone
; Edit | Delete 1MissJenny Stones 27 Rowan AvenueHightown NT21AQ (023 9876
Edit | Delete 2Mr Andrew Stones 52 The Willows Lowtown LT57RA B76 3527
= orderinfo Edit | Delete 3 Miss Alex Matthew 4 The Street Nicetown NT22TX 010 4567
; orderline Edit | Delete 4Mr Adrian Matthew The Bam Yuleville YVET 2WR 487 3871
=2 ook Edit | Delete 5Mr Simen Cozens 7 Shady Lane Oakenham OA38QW 514 5026
\iﬁ stoe Edit | Delete BMr Neil Matthew 5 Pasture Lane Nicetown NT37RT 267 1232
-t VIews Edit | Delete 7Mr Richard Stones 34 Holly Way Bingham BG42WE 342 5082
o) S TR Edit |_Delete 8Mrs Ann Stones 34 Holly Way Bingham BG42WE 342 5082
S Functllons Edit | Delete 9Mrs Christine Hickman 36 Queen Street Histon =~ HT35EM 342 5432
[.] Domains Edit | Delete 10Mr Mike Howard 86 Dysart Strest Tibsville TB37FG 505 5482
Edit | Delete 11Mr Dave Jones 54 Vale Rise Bingham BG38GD 342 8264
Edit | Delete 12Mr Richard Neill 42 Thatched Way Winnersby WB366Q 505 6482
Edit | Delete 13Mrs Laura Hardy 73 Margarita Way Oxbridge OX23HX 821 2335
Edit | Delete 14Mr Bill O'Neill 2 Beamer Street Welltown WT38GM 435 1234
Edit | Delete 15Mr David Hudson 4 The Square Milltown MT28RT 961 4526
16 row(s)
Back | Expand | Insert | Refresh
| Go to “http://192.168.0.3 /phpPgAdmin/views. php?datat i &sch public&” in another frame —

Figure 5-11. phpPgAdmin browsing table data

One feature of phpPgAdmin that is potentially very useful is its data import functionality.
If we have some data that we would like to import into a PostgreSQL table, phpPgAdmin can
help. One way of importing data is to make it available as a comma-separated values (CSV) file.
Applications such as Microsoft Excel are able to export data in this format.

Let’s consider a simple example. Suppose that from an Excel spreadsheet, we have saved
some rows for the item table in the bpsimple database, in a CSV with headings format. This
means that there are column names present in the first row, followed by the data, like this:

description,cost_price,sell price
Wood Puzzle,15.23,21.95

Rubik Cube,7.45,11.49

Linux CD,1.99,2.49

We start the import process by selecting the table we want to import into, clicking Import,
and selecting the import file type (CSV in this example) and the import filename, as shown in
Figure 5-12. We can then click Import, and (assuming we have permission) the new rows will
be incorporated into our database table.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 133

phpPgAdmin = |
@ @ - emtp //192.168.0.3/phpPgAdmin findex.php Q@ [2(Qr Google

&Mph Mac Amazon eBay Yahoo! MNewsvy
PostgreSQL 8.0.0 running on 192.168.0.111:5432 — You are logged in as user "neil", 5th Jan, 2005 11:39AM

phpRgAdmin Users | Groups | A | Tabl | Reports | SQL | Find | Logout

=5 Beast B 5 = R
E‘E bpsimple Beast’: bpsimple ' public: item *:
-3 public Coumns Indexes’ Constraints” Triggers’ Rules” Info Privileges” Import Export
-5 Tables
“...J5 barcode Format | csv v
.5 customer File (ChooseFile) | items.csv
.2 item N
% orderinfo (import)
.25 orderline
... stock
..... oo Views

..... fa.} Sequences
..... fx Functions
..... [..] Domains

e —

Figure 5-12. Importing data with phpPgAdmin

Rekall

Rekall is a multiplatform database front-end originally developed by theKompany (http://
www . thekompany . com/) as a tool to extract, display, and update data from several different data-
base types. It works with PostgreSQL, MySQL, and IBM DB2 using native drivers, and other
databases using ODBC.

While Rekall does not include the PostgreSQL-specific administration features found in
pgAdmin IIT and phpPgAdmin, it does add some very useful user functionality. In particular,
it contains a visual query designer and a form builder for creating data-entry applications.
Furthermore, Rekall uses the Python programming language for scripting, allowing sophisti-
cated database applications to be constructed.

Rekall has been made available under a dual-license scheme. There is a commercial
version and also a community-developed open-source version released under the GNU Public
License (GPL). Both are available at http://www.rekallrevealed.org/. The open-source version

134

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

can be built and installed on Linux and other systems that are running the KDE desktop envi-
ronment or have the appropriate KDE libraries available. Rekall is beginning to be provided as
part of Linux distributions, including SuSE Linux 9.1. It connects to PostgreSQL using a native
driver. The commercial version of Rekall adds a Microsoft Windows version and support for
ODBC database connections.

Rekall is very easy to use and comes with an on-line handbook, called Rekall Unbound,
which provides information on every aspect of Rekall’s features. It can be accessed either from
Rekall’s help manual or through the KDE Konqueror web browser at the URL help:/rekall.

Here, we will take a quick look at the open-source version of Rekall, running on SuSE Linux 9.1.

Connecting to a Database

Connections to databases are created using a connection wizard that prompts for a host, data-
base name, and user credentials. Several options are available for each connection, but the
defaults work just fine. Figure 5-13 shows a database connection initiated in Rekall.

3 bpsimple - Rekall ..-

File View Hslp

T=Ee]

5 Advanced S — . e
bpsimple "
psimp e | Comman | Pestore SQL | Grants] Senver |b|5‘5”"'”:'|e
IEI Do not create rekall-specific tables Type | Rekall PgSQL Driver | * ‘
[} Show all tables
Host [t92168.0.111

|E| Cache fable information

|E| Accept empty user name/ password

Database | Ibpsirnple

s}

|F| Primary keys are read onl
Emmponenb — Ty keys i User |nei|
Macros || Fake unigue keys for insertion
A _ Password |passmrc|
7 scrints: py Data Encading | |® ‘
Port Socket | [
Object Encading| ¥ ‘
=Bt IL* Flags |

SSH Tunneling] [C) pisabled [AutoStart

) o |

| ==n

[soe

o)

Figure 5-13. A Rekall database connection

Once we are connected to a database, we can browse the tables, view, and edit data. This

process is depicted in Figure 5-14.

For many of its operations, Rekall provides a data view and a design view. Switching to the
design view reveals the structure of the object. So, when browsing a table, the design view

shows us the definition of the table and its columns. We can use the design view to create new
objects, such as tables, forms, and queries. For forms and queries, the data view allows us to
use the form to enter data or view the results of the query.

CHAPTER 5

POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

T — o]

Figure 5-14. Browsing a table with Rekall

Creating Forms

File View Record Filter Help
H# O E1E-B¢
custormer_id title frame Iname addressline town zipoode phone

1L Miss Jenny Stones 27 Rowan Avenue |Hightown NT2 1AQ 023 9876
2|2 Mr Andrew Stones 52 The Willows Lowtown LTS 7RA 876 3527
3|3 Miss Alex Matthew 4 The Street Micetown NT2 2TX 0L0 4567
4 |4 Mr Adrian Matthew The Barn Yuleville YVET7 2WR 487 3871
515 Mr Simon Cozens 7 Shady Lane Oakenham OAZ 6QW 514 5926
6|6 Mr Neil Matthew 5 Pasture Lane Nicetown NT3 7RT 267 1232
717 Mr Richard Stones 34 Holly Way Bingham BG4 2WE 342 5982
&8 Mrs Ann Stones 34 Holly Way Bingham BG4 2ZWE 342 5982
a9 Mrs Chrigtine Hickman 36 Queen Street |Histon HT3 5EM 342 5432

10|10 Mr Mike Howiard 86 Dysart Street | Tibsville TB3 7FG 505 5482
11 |11 Mr Dave Jones 54 Vale Rise Bingham BG3 8GD 342 8264

12 |12 Mr Richard Neill 432 Thatched Way |Winnersby WE3 6GQ 505 6482

13|13 Mrs Laura Hardy 73 Margarita Way | Oxbridge QX2 3HX 821 2335

14 |14 Mr Bill O'Neill 2 Beamer Street |Welltown WT3 8GM 435 1234
15 |15 Mr David Hudson 4 The Square Milltown MT2 6RT 961 4526
16 |16 Mr Gavyn smith 23 Harlestone Milltown MT7 7HI

17 |17 Mrs Sarah Harvey 84 Willow Way Lincoln LC3 7RD 527 3739
18 |18 Mr Steve Harvey 84 Willow Way Lingoln LC3 7RD

sl Mr Faul Garrett 27 Chase Avenue |Lowtown LTs 8TQ

20

FE([eod oo ME

The support for forms in Rekall is extensive. We can create a new form very quickly using a form
wizard, which simply asks which columns from which table should be included on the form.
A graphical designer allows us to lay out the form if the default is not suitable. We can add buttons
to the form to provide navigation (next record, delete records, and so on), and there is an optional
navigation toolbar that can be added to forms. Figure 5-15 shows a form for the customer table.
This form is nearly the default produced by Rekall; only the text labels for the data have been
changed.

-0

File View Record Help

B BIPEER T ¢

Title

First Narme
Surname
Street Address
Town

Postal Code

Telephone

Misg|

hennv

|Smnes

|2? Rowan Avenue

|H\ghtuwn

NTZ LAQ
023 9876

[B3

J

“ Next “

Last

Add “

J

Delete

([Record 1 of 19 REICIES

Figure 5-15. A simple data-entry form in Rekall

135

136

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Each of the buttons on the form is scriptable. The default form contains actions written in
Python for performing an appropriate action, such as saving the record. By adding our own

code to these script actions, we can create a more sophisticated form, perhaps adding entry
validation.

Building Queries

The graphical query designer in Rekall allows us to create, save, and execute potentially quite
complex queries by essentially drawing a picture of the relationships we need to express. We
will be dealing with some fairly complex queries as we progress through the book. For now, to
give a taste of what Rekall can do, let’s look at a couple of examples that show one of the queries
we used in Chapter 4 being constructed and the results being displayed.

In Figure 5-16, we are using a three-table join to find out which items our customer Ann
Stones has ordered from us. This query was created by double-clicking tables to add them to
the query and dragging columns from one table to another to indicate the required joins. The
only typing required was to specify the first name and surname of the customer of interest.

File View Help

=%
iz * | E— :
barcode +* custorner_id orderinfo_id orderinfo_id
custormer title -\4 customer_id itern_id
custphone fname date_placed quantity
itern Iname date_shipped
orderinfo addressline shipping
orderling town
part zipoode
pga_diagrams phone
a_forms
Ega_gmphs ! !
____:_____ . .
Usage Expression Alias +*
custormer.fnrame
custormer.lname
orderinfo.date_placed
orderline.itern_id
orderline.quantity
[Where custormer.frame = 'Ann’
IWhere custormer.lname = 'Stones’ s
I

select customer.fname, customer.lname, orderinfo.date_placed, orderline.itern_id, orderline.quantity...

from orderline, orderinfo, custormer

where orderinfo.orderinfo_id = orderline.orderinfo_id
and custormer.custormer_id = orderinfo.custorner_id
and customer.frame = 'Ann’

and customer.lname = 'Stones’

Figure 5-16. A complex query in Rekall

When we switch to the data view, we see the results of the query being executed, and we
get the same results as in Chapter 4. This task is shown in Figure 5-17.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

File View Record Help
HBOHIEBHIEPE P 7~
custormerfname | customer.lname orderinfo.date_pla, orderline.item_id | orderline.quantity
E Ann Stones 2004-06-23 1 1 .
2 |Ann Stones 2004-06-23 4 2
3 |Ann Stones 2004-06-23 7 2
4 |Ann Stones 2004-06-23 10 1
5 |Ann Stones 2004-07-21 1 1
6 |Ann Stones 2004-07-21 3 1
BB tore 18,5%(« TS

Figure 5-17. Query results in Rekall

Microsoft Access

Although it may seem an odd idea at first sight, we can use Microsoft Access with PostgreSQL.
If Access is already a database system, why would we want to use PostgreSQL to store data?
And, as there are a number of tools available that work with PostgreSQL, why do we need to use
Microsoft Access?

First, when developing a database system, we need to consider requirements for matters
such as data volumes, the possibility of multiple concurrent users, security, robustness, and
reliability. You may decide on PostgreSQL because it fits better with your security model, your
server platforms, and your data-growth predictions.

Second, although PostgreSQL running on a UNIX or Linux server may be the ideal envi-
ronment for your data, it might not be the best, or most familiar, environment for your users
and their applications. There is a case for allowing users to use tools such as Access or other
third-party applications to create reports or data-entry forms for PostgreSQL databases. Since
PostgreSQL has an ODBC interface, this is not only possible but remarkably easy.

Once you have established the link from Access to PostgreSQL, you can use all of the features
of Access to create easy-to-use PostgreSQL applications. In this section, we will look at creating
an Access database that uses data stored on a remote PostgreSQL server, and writing a simple
report based on that data. (We assume that you are reasonably familiar with creating Access
databases and applications.)

Using Linked Tables

Access allows us to import a table into a database in a number of different ways, one of which
is by means of a linked table. This is a table that is represented in Access as a query. The data is
retrieved from another source when it is needed, rather than being copied into the database.
This means that when the data changes in the external database, the change is also reflected
in Access.

In the bpsimple database, we have a table called item that records a unique identifier for
each product we sell, a description of that product, a cost price, and a selling price. As an example,
let’s go through the steps to create a simple Access database to update and report on the product
information stored in our sample database system.

137

138 CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

1. In Access, create a new blank database. Click Tables in the list on the left side of the

window, as shown in Figure 5-18.

Microsoft Access
File Edit View Insert Tools Window Help

DEHA SRV iR - BB e |d &0,

&8 bpsimple : Database (Access 2000 file format)

Objects Create table in Design view
Create table by using wizard
Create table by entering data

Tables

Queries
Forms
Reports
Pages

Macros

B
=
a
4

Modules

Groups

@ Favorites

Ready

Figure 5-18. Creating a blank Access database

2. Click New to bring up the New Table dialog box and select the Link Table option, as
shown in Figure 5-19.

New Table

Import Table

This wizard creates tables in the
current database that are linked
to tables in an external file.

oK I Cancel

Figure 5-19. Adding a link table

In the Link dialog box that appears, choose files of type ODBC Databases to bring up the
ODBC data source selection dialog box. Select Machine Data Source and the appropriate
PostgreSQL database connection, as shown in Figure 5-20. We created a suitable database
connection in the “ODBC Setup” section earlier in this chapter,

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Select Data Source

File Data Source Machine Data Source |

Data Source Name | Type | Description

CASC User CASC Corby Database
Corby User Corby ASC Database
dBASE Files User

Excel Files User

MS Access Database User

MySGL User MySQL database

Postgre SQL User BP Simple

New...

A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a user on this machine. "System” data
sources can be used by all users on this machine, or by a system-wide service.

QK I Cancel Help

Figure 5-20. Selecting an ODBC data source

4. When the connection is made, you are presented with a list of available tables in the
remote database. You can choose to link one or more tables from this list. For our
example, we will select public.item to link the item table to our Access database, as

shown in Figure 5-21.

Link Tables

Tables |

public.barcode
public. customer

public.orderinfo
public.orderline
public.part
public.pga_diagrams
public.pga_forms
public.pga_graphs
public.pga_images
public.pga_layout

B — |

~ oK |

Select All |
| Deselect Al |

™| I save password

Figure 5-21. Selecting the tables to link

Note Before Access can link a table, it needs to know which of the fields in the table it can use to uniquely
identify each record. In other words, it needs to know which columns form the primary key. For this table, the
item_id column is the primary key, so Access will select that. For tables that do not have a defined primary
key, Access will prompt you to select a column to use. If a table has a composite key, you can select more

than one column.

139

140 CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Now we will see that the Access database has a new table, also called item, that we can
browse and edit, just as if the data were held in Access. This is depicted in Figure 5-22.

Microsoft Access

File Edit View Insert Format Records Tools Window Help select unique identifier

E-Hg RV sBdEA - @ 2K vE Y MK BE- 0.

&8 bpsimple : Database (Access 2000 file format)
B open |4 Desian faghew | X

Objects L cencsa seble e o i —

| Tables B public_item : Table E]|E”£|
B queres | o e itemid | description | cost price | sell price
» 1 Wood Puzzle 1 45

Fms 2| Rubik Cube 745

Reports 3|Linux CD 1.99
4| Tissues 21
5/ Picture Frame 7.54
Macros 6 Fan Small 9.23
Modules 7/Fan Large
8| Toothbrush 0.75
Groups 9 Roman Cain 234
(3] Favorites 10| Carrier Bag 0.01
11| Speakers

Pages

Record: I<| 1 ” | | [|>I |>*| of 11

Datasheet View

Figure 5-22. Browsing a link table

That’s just about all there is to linking a PostgreSQL database table to Access.

Note You might see slightly different screens than the ones in the figures shown here, depending on your
version of Windows and Access. If you see an additional column in your table called oid, this is the internal
PostgreSQL object identifier and can be ignored. To prevent the object_id column being shown, be sure to
uncheck the 0ID column options in the ODBC data source configuration.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Entering Data and Creating Reports

We can use the table browser in Access to examine data in the PostgreSQL table and to add
more rows. Figure 5-23 shows an Access data-entry form being used to add items to the item
table. We can use the programming features of Access to create more sophisticated data-entry
applications that perform validation on entries or prevent the modification of existing data.

Microsoft Access

File Edit View Insert Format Records Tools Window
— HERIEY: a- a2 =
M- HR SRy | ki o @® 2 il S Sl =R T

select unique identifier -

&% bpsimple B Item Form

i open B

Objects Item Table

Tables

Querie: Item

Report
Pages

oS iRE G @

Macros

Module

Groups

@ Favoritl

Record: I<| 1 ” || [|>I |>*| of 11
— —_— —_—

Form View

Figure 5-23. A simple Access data-entry form

Creating reports is just as easy. Use the Access report designer to generate reports based
on the data stored in PostgreSQL tables, just as you would any other Access table. We can include
derived columns in the report to answer questions about the data in the table. For example,
Figure 5-24 shows an Access report that displays the markup (that is, the difference between
the sell price and the cost_price) that we are applying to the products in the item table.

141

142

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Microsoft Access - [Markup Report]

B Fle Edit View Tools Window Help select unique identifier Slo @
-5 0 100%s ~ | Close setup W - m- 3.

Markup Report

Item Cost price Sell price Markup

Carrier Bag 0.01 0 -0.01

Fan Large 13.36 19.95 6.59

Fan Small 9.23 1575 6.52

Linux CD 199 249 05

Picture Frame 7.54 9.95 241

Roman Coin 234 245 011 | |

Rubik Cube 7.45 11.49 404

Speakers 19.73 2532 5.59

Tissues 21 399 1.88

Toothbrush 075 145 07

Wood Puzzle 1523 2195 672
Page: 1 kM ﬂ LH
Ready

Figure 5-24. A simple Access report

Combining Microsoft Access and PostgreSQL increases the number of options you have
for creating database applications. The scalability and reliability of PostgreSQL with the famil-
iarity and ease of use of Microsoft Access may be just what you need.

Microsoft Excel

As with Microsoft Access, you can employ Microsoft Excel to add functionality to your PostgreSQL
installation. This is similar to the way you can work with Access; you include data in your
spreadsheets that is taken from (or rather, linked to) a remote data source. When the data
changes, you can refresh the spreadsheet and have the spreadsheet reflect the new data. Once
you have made a spreadsheet based on PostgreSQL data, you can use Excel’s features, such as
charting, to create graphical representations of your data.

Let’s extend our report example from Access to make a chart showing the markup we have
applied to the products in the item table.

1. We need to tell Excel that some portion of a spreadsheet needs to be linked to an external
database table. Starting from a blank spreadsheet, choose the menu option to import
external data with a new database query, as shown in Figure 5-25.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Microsoft Excel - Book1

File Edit Wew Insert Format Tools | Data | Window Help Adobe PDF

=2 = @ - Arial 2] sort..
e Eilter '
Al ’ - A Subtotals...
A B | C | D validation. .. g | | 3 | 5

Text to Columns. ..

i PivotTable and PivotChart Report...

[importExteral Data V|5 mportpata...

E Mew Web Query...

Mew Database Query...
¥

¥

\ Sheetl / Sheet2 / Sheet3 / |«] | _'|JJ

Y
-
-
4

= [mm|alalalalalalalalala

I |L~J|m|—kcho-slmm-p-ml\:—kowm“‘m‘-"""“wm—‘
=9

-

% |

Figure 5-25. Importing data into Excel

2. We are presented with an ODBC data source selection dialog box to select our data
source, as with Access (see Figure 5-20). Select the appropriate PostgreSQL database
connection.

3. When the connection to the database is made, you can choose which table you want to
use, and which columns you want to appear in the spreadsheet. For this example, we
select the item identifier, the description, and both prices from the item table, as shown
in Figure 5-26.

Query Wizard - Choose Columns

‘What columns of data do you want to include in pour query?
Awailable tables and columns: Colurmz in your query:
custphone -~ > | item_id d
= [| [ceurmien I
orderi.nfo sell_price
orderline b << |
part
poga_diagrams
[+ nna fomms hd
Preview of data in selected columr:
@I Freview How | Options... | < Back Mext = Cancel

Figure 5-26. Choosing columns to import into Excel

143

144

CHAPTER 5

POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

4, If you want to restrict the number of rows that appear in your spreadsheet, you can do
this by specifying selection criteria at the next dialog box. In Figure 5-27, we select those
products with a selling price greater than $2.

Query Wizard - Filter Data

Filter the data to specify which rows to include in your query.
If you don't want to filker the data, click Mext.
Colurmn to filker: Only include rows where:
zell_price
|is greater than j |E j
+ And Or
| [~ I~
e e
e e
] < Back Next > Cancel |

Figure 5-27. Restricting rows to import

5. Finally, you can choose to have the data sorted by a particular column or group of
columns, in either sort direction. For this example, we choose to sort by the selling
price, in ascending order, as shown in Figure 5-28.

Query Wizard - Sort Order

Specify how you want your data sorted.
If you don't want to sort the data, click Mext.

Sort by v A di
- = * FCcending
|Se||_DHCE J " Descending
Then by ~
| -] 3
~
| E|
=l
a) <Back Next > Cancel |

Figure 5-28. Defining the sort criteria for imported data

6. Choose to return the data to Excel in the next dialog box.

7. Now, you get the chance to specify where in your spreadsheet you want the data to
appear. It is probably a good idea to have data from a PostgreSQL table appear on a
worksheet by itself. This is because you need to make sure that you provide for the
number of rows increasing as the database grows. You will refresh the spreadsheet data
and will need space for the data to expand. However, for this example, we simply allow
the data to occupy the top-left area of the sheet, as shown in Figure 5-29.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS 145

Import Data
Where do you want to put the data?
' Existing worksheet:
Cancel |

' New worksheet

Create a PivotTable report...

Properties. .. | | Edit Query... |

Figure 5-29. Choosing an import location

Now we can see the data present in our worksheet, as shown in Figure 5-30.

E3 Microsoft Excel - Book1

File Edit View Insert Format Tools Data Window Help Adobe PDF
DEHE o- @ > -0 - [B]7 U ==
DEE.
Al i 13
[A 3 & T B B I F L& 8 [0T I JJ3
1 |item id ldescription cost_price sell_price ml
| 2 9/Roman Cain 234 245
EN 3 Linux CD 1.99 249
| 4 | 4 Tissues 21 3.99
| 5 | 5 Picture Frame 7.54 9.95
| 6 | 2/Rubik Cube 7.45 11.49
| 7 | 6 Fan Small 9.23 15.75
| 8 | 7 Fan Large 13.36 19.95
EN 1/ Wood Puzzle 1523 21.95
| 10 | 11 Speakers 18.73 2532
11
12
13
14
15|
16|
17
18
19
| 20 |
| 21
(22| -
| 23 | -
M 4 » M} Sheetl { Sheet2 { Sheet3 / |<] | _’”J
Ready A

Figure 5-30. Viewing imported data in Excel

We could use this spreadsheet to perform calculations on the data. For example, we might
calculate the sales margin being earned from each product by setting up an additional column
with an appropriate formula.

146

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

Gaution When the data changes in the database, Excel will not automatically update its version of the
rows. To make sure that the data you are viewing in Excel is accurate, you must refresh the data. This is
simply done by selecting the Refresh Data option on the Data menu.

We can also employ some of Excel’s features to add value to our PostgreSQL application.
In the example shown in Figure 5-31, we have added a chart showing the markup on each
product. It is simply built by using the Excel Chart Wizard and selecting the PostgreSQL data
area of the sheet as the source data for the chart. When the data in the PostgreSQL database
changes and we refresh the spreadsheet, the chart will automatically update.

E3 Microsoft Excel - Book1

File Edit View Insert Format Tools Chart Window Help Adobe PDF - @ X
Dl -3 2 Lo@ops 2
™ E .

- #

Markup Chart

|lcost_price o sell_price |

30

Tissues Picture Fan Small | Fan Large Speakers
Frame

5 " =

W 4 » w\Chartl{ Sheetl / Sheet2 f Sheet3 / |4 >
Ready

Figure 5-31. An Excel chart using PostgreSQL data

Resources for PostgreSQL Tools

A good place to start to look for tools to use with PostgreSQL is pgFoundry, the PostgreSQL
project’s web site at http://pgfoundry.org. The GBorg site at http://gborg.postgresql.org/
also currently hosts many PostgreSQL-related projects. It is probable that these PostgreSQL
project web sites will become merged and be accessible at http://projects.postgresgl.org.

CHAPTER 5 POSTGRESQL COMMAND-LINE AND GRAPHICAL TOOLS

You can find a list of graphical tools that support PostgreSQL at http://
techdocs.postgresql.org/guides/GUITools.

A session monitor for PostgreSQL, called pgmonitor, is in development and can be found at
http://gborg.postgresql.org/project/pgmonitor. ThisisaTcl/Tk program that allows you to
monitor activity on your database. It needs to run on the database server, but it can display on
a client machine if you are running the X Window System on UNIX or a UNIX-like operating
system.

Summary

In this chapter, we looked at some of the tools we have at our disposal for getting the most out
of PostgreSQL. The standard distribution comes with the command-line tool, psql, which is
capable of carrying out most of the operations we need for creating and maintaining databases.

Database administration can be carried out on a client machine using the very capable
pgAdmin III tool or over a network using the browser-based phpPgAdmin tool.

We can view data, design queries graphically, and create data-entry forms using Rekall, for
free on Linux, and through a commercial product on Windows.

We can use Microsoft Office products, including Excel and Access, to manipulate and
report on data held in a PostgreSQL database. This allows us to combine the scalability and
reliability of the PostgreSQL system running on a UNIX or Linux platform with the easy use of
familiar tools.

Now that we’ve reviewed some of the PostgreSQL tools, in the next chapter, we will return
to the topic of using SQL to handle the data in a PostgreSQL database, focusing on inserting,
updating, and deleting data.

147

CHAPTER 6

Data Interfacing

So far, we have looked at why a relational database, and PostgreSQL in particular, is a powerful
tool for organizing and retrieving data. In the previous chapter, we examined some of the
graphical tools, such as pgAdmin III, that can also be used for administering PostgreSQL. We
have even looked at how to use Microsoft Access with PostgreSQL and add more functionality
to it by using Microsoft Excel. Of course, none of these tools would be much use to us without
any data in the database. In Chapter 3, we populated our bpsimple database using some
SQL scripts.

In this chapter, we will move beyond the basics and learn more about handling data. We
are going to look in detail at how to insert data into a PostgreSQL database, update data already
in the database, and delete data from a database.

As we progress through this chapter, we will cover the following topics:

Adding data to the database with INSERT

Inserting data into serial columns

Inserting NULL values

Loading data from text files using the \copy command
Loading data directly from another application
Updating data in the database with UPDATE

Deleting data from the database with DELETE

Adding Data to the Database

Surprisingly perhaps, after the complexities of the SELECT statement that we saw in Chapter 4,
adding data into a PostgreSQL database is quite straightforward. We add data to PostgreSQL
using the INSERT statement. We can add data to only a single table at any one time, and generally we
do that one row at a time.

Using Basic INSERT Statements

The basic SQL INSERT statement has a very simple syntax:

INSERT INTO tablename VALUES (list of column values);

149

150

CHAPTER 6 DATA INTERFACING

We specify a list of comma-separated column values, which must be in the same order as
the columns in the table.

Caution Although this syntax is very appealing because of its simplicity, it is also rather dangerous as it
relies on knowledge of the table structure—specifically, the order of the columns—which might change if the
database is modified to support additional data. Therefore, we urge you to avoid this syntax, and instead use
the safer syntax shown later, in the “Using Safer INSERT Statements” section. In the safer syntax, the column
names are specified as well as the data values. We present the simple syntax here, because you will see it in
common use, but we recommend that you avoid using it.

Try It Out: Use INSERT Statements

Let’s add some new rows to the customer table. The first thing we must do is to discover the
correct column order. This is the same order in which they were listed in the original CREATE
TABLE command. If we don’t have access to that table-creation SQL, which is unfortunately all
too common, then we can use the psql command-line tool to describe the table, using the \d
command. Suppose we wanted to look at the definition of the customer table in our database
(as presented in Chapter 3). We would use the \d command to ask for its description to be
shown. Let’s do that now:

bpsimple=# \d customer
Table "public.customer"

Column | Type | Modifiers

_____________ o o e e
customer_id | integer | not null default nextval('public.customer
_customer_id seq'::text)

title | character(4)

fname | character varying(32) |

1name | character varying(32) | not null

addressline | character varying(64) |

town | character varying(32) |

zipcode | character(10) | not null

phone | character varying(16) |

Indexes:

"customer pk" primary key, btree (customer id)

bpsimple=#

The display is slightly confused by the wrapping introduced to get it on the page, but it
does show us the column order for our customer table. You will notice that the customer_id
column isn’t described exactly as we specified in the CREATE TABLE statement we saw in
Chapter 3. This is because of the way PostgreSQL implements our serial definition of

CHAPTER 6 DATA INTERFACING 151

customer_id. For now, we just need to remember that it is an integer field. We will explain how
PostgreSQL implements serial columns in Chapter 8.

To insert character data, we must enclose it in single quotes ('). Numbers do not need any
special treatment. For NULLs, we just write NULL, or, as we will see later in a more complex form
of the INSERT statement, simply provide no data for that column.

Now that we know the column order, we can write our INSERT statement like this:

bpsimple=# INSERT INTO customer VALUES(16, 'Mr', 'Gavyn', 'Smith',
bpsimple-# '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');
INSERT 17331 1

bpsimple=#

The exact number you see after the INSERT will almost certainly be different in your case.
The important thing is that PostgreSQL has inserted the new data. The first number is actually
an internal PostgreSQL identification number, called an OID, which is normally hidden.

Note The 0ID (Object IDentification) number is a unique, normally invisible number assigned to every row
in PostgreSQL. When you initialize the database, a counter is created. This counter is used to uniquely number
every row. Here, the INSERT command has been executed, 17331 is the 0ID assigned to the new row, and
1 is the number of rows inserted. This OID number is not part of standard SQL, and it will not normally be
sequential within a table, so we urge you to be aware of its existence but never to use it in applications.
Starting in release 8.0, PostgreSQL has the option to avoid creating OIDs on tables, so even their very exist-
ence is not reliable.

We can easily check that the data has been inserted correctly by using a SELECT statement
to retrieve it, like this:

bpsimple=# SELECT * FROM customer WHERE customer_id > 15;

customer_id | title | fname | lname | addressline | town | zipcode | phone

------------ e T L T T
16 | Mr | Gavyn | Smith | 23 Harlestone | Milltown | MT7 7HI | 746 3725

(1 row)

bpsimple=#

Depending on the size of your terminal window, the display may be wrapped, but you
should be able to see that the data was correctly inserted.

Suppose that we want to insert another row, where the last name is 0'Rourke. What do we
do with the single quote that is already in the data? If a single quote must appear in a character
string, we precede it with a backslash (\). The backslash is called an escape character, and it
indicates that the following character has no special meaning and is part of the data. So, to
insert Mr. O’'Rourke’s data, we escape the quote in his name using a single backslash (\), like this:

INSERT INTO customer VALUES(17, 'Mr', 'Shaun', 'O\'Rourke',
'32 Sheepy Lane', 'Milltown', 'MT9 8NQ', '746 3956');

152

CHAPTER 6 DATA INTERFACING

Check that the data has been inserted:

bpsimple=# SELECT * FROM customer WHERE customer_id > 15;

customer id | ti | fname | lname | addressline | town | zipcode | phone

———————————— R e et S et LT
16 | Mr | Gavyn | Smith | 23 Harlestone | Milltown | MT7 7HI | 746 3725
17 | Mr | Shaun | O'Rourke | 32 Sheepy Lane | Milltown | MT9 8NQ | 746 3956

(2 rows)

bpsimple=#

Note In some cases, to fit the output on the page, we’ve needed to make some slight changes. For
example, here, we’ve abbreviated title to ti. These adjustments are just for legibility, and we’ve made
sure that the point of each example is clear.

How It Works

We used the INSERT statement to add data to the customer table, specifying column values in
the same order as they were created in the table. To add a number to a column, just write the
number. To add a string, enclose it in single quotes. To insert a single quote into the string, we
must precede the single quote with a backslash character (\). If we ever need to insert a back-
slash character, then we would write a pair, like this \\.

Suppose we want to insert another row, where the address is something strange, such as
Midtown Street A\33.What do we do with the single backslash that is already in the data? We
would escape the single backslash by using two backslashes, like this:

INSERT INTO customer VALUES(18, 'Mr', 'Jeff', 'Baggott’,
‘Midtown Street A\\33', 'Milltown', 'MT9 8NQ', '746 3956');

This is how it looks:

bpsimple=# SELECT * FROM customer WHERE addressline='Midtown Street A\\33';

c id | ti | fname | 1lname | addressline | town | zipcode | phone

------ e ST T e . LT
18 | Mr | Jeff | Baggott | Midtown Street A\33 | Milltown | MT9 8NQ | 746 3956

(1 row)

bpsimple=#

Using Safer INSERT Statements

While INSERT statements like the ones we just tried out work, it is not always convenient to
specify every single column or to get the data order exactly the same as the table column order.
This adds an element of risk in that we may accidentally write an INSERT statement with the
column data in the wrong order. This would result in the addition of incorrect data to our database.

CHAPTER 6 DATA INTERFACING 153

In the previous example, suppose we had erroneously exchanged the position of the fname and
1name columns. The data would have been inserted successfully, because both columns are text
columns, and PostgreSQL would have been unable to detect our mistake. If we had later asked
for alist of the last names of our customers, Gavyn would have appeared as a valid customer last
name, rather than Smith, as we intended.

Poor-quality data, or just plain incorrect data, is a major problem in databases, and we
generally take as many precautions as we can to ensure that only correct data gets in. Simple
mistakes might be easy to spot in our sample database with just tens of rows, but in a database
with tens of thousands of customers, spotting mistakes—particularly within data with unusual
names—would be very difficult indeed.

Fortunately, there is a slight variation of the INSERT statement that is both easier to use and
much safer as well:

INSERT INTO tablename(list of column names)
VALUES (list of column values corresponding to the column names);

In this variant of the INSERT statement, we must list the column names and data values for
those columns in the same order, which can be different from the order we used when we
created the table. Using this variant, we no longer need to know the order in which the columns
were defined in the database. We also have a nice, clear, almost side-by-side list of column
names and the data we are about to insert into them.

Try It Out: Insert Values Corresponding to Column Names
Let’s add another row to the database, this time explicitly naming the columns, like this:

INSERT INTO customer(customer id, title, fname, lname, addressline, ...)
VALUES(19, 'Mrs', 'Sarah', 'Harvey', '84 Willow Way', ...)

We can enter an INSERT statement over several lines, making it easier to read, and check
that we have the column names and data values in the same order.
Let’s execute an example, typing it in over several lines so it is easier to read:

bpsimple=# INSERT INTO
bpsimple-# customer(customer_id, title, lname, fname, addressline, town,

bpsimple-# zipcode, phone)
bpsimple-# VALUES(19, 'Mrs', 'Harvey', 'Sarah', '84 Willow Way', 'Lincoln’,
bpsimple-# 'LC3 7RD', '527 3739');

INSERT 22592 1

bpsimple=#

Notice how much easier it is to compare the names of the fields with the values being
inserted into them. We deliberately swapped the fname and 1name column positions, just to
show it could be done. You can use any column order you like; all that matters is that the values
match the order in which you list the columns.

You will also notice the psql prompt changes on subsequent lines, and it remains changed
until we terminate the command with a semicolon.

154

CHAPTER 6 DATA INTERFACING

Tip We strongly recommend that you always use the named column form of the INSERT statement,
because the explicit naming of columns makes it much safer to use.

Inserting Data into Serial Columns

At this point, it is time to confess to a minor sin we have been committing with the customer id
column. Up to this point in the chapter, we have not covered how to insert data into some
columns of a table while leaving others alone. With the second form of the INSERT statement,
using named columns, we can do this and see how it is particularly important when inserting
data into tables with serial type columns.

You will remember from Chapter 2 that we met the rather special data type serial, which
is effectively an integer, but automatically increments to give us an easy way of creating unique
ID numbers for each row. So far in this chapter, we have been inserting data into rows, providing
avalue for the customer id column, which is a serial type data field.

Let’s take a look at the data in our customer table so far:

bpsimple=# SELECT customer_id, fname, lname, addressline FROM customer;
customer_id | fname | 1lname addressline

------------- T L LT TR TR
1 | Jenny | Stones | 27 Rowan Avenue
2 | Andrew | Stones | 52 The Willows
3 | Alex | Matthew | 4 The Street
4 | Adrian | Matthew | The Barn
5 | Simon | Cozens | 7 Shady Lane
6 | Neil | Matthew | 5 Pasture Lane
7 | Richard | Stones | 34 Holly Way
8 | Ann | Stones | 34 Holly Way
9 | Christine | Hickman | 36 Queen Street
10 | Mike | Howard | 86 Dysart Street
11 | Dave | Jones | 54 Vale Rise
12 | Richard | Neill | 42 Thatched Way
13 | Laura | Hardy | 73 Margarita Way
14 | Bill | 0'Neill | 2 Beamer Street
15 | David | Hudson | 4 The Square
16 | Gavyn | Smith | 23 Harlestone
17 | Shaun | 0'Rourke | 32 Sheepy Lane
18 | Jeff | Baggott | Midtown Street A\33
19 | Sarah | Harvey | 84 Willow Way
(19 rows)
bpsimple=#

Certainly, all looks well. However, there is a slight problem because, by forcing values into
the customer_id column, we have inadvertently confused PostgreSQL’s internal serial counter.

Suppose we try inserting another row, this time allowing the serial type to provide our
automatically incrementing customer id value:

CHAPTER 6 DATA INTERFACING 155

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone)

bpsimple-# VALUES('Mr', 'Steve', 'Clarke', '14 Satview way', 'Lincoln’,
bpsimple-# 'LC4 3ED', '527 7254');

ERROR: duplicate key violates unique constraint "customer pk"

bpsimple=#

Clearly, something has gone wrong, since we did not provide any duplicate values. What
has happened is that earlier in the chapter, when we were providing values for customer_id, we
bypassed PostgreSQL’s automatic allocation of IDs in the serial column and caused the auto-
matic allocation system to get out of step with the actual data in the table.

Caution Avoid providing values for serial data columns when inserting data.

The out-of-step sequence problem is reasonably rare, but most commonly occurs as a
result of one of the following:

* You have dropped and re-created the table, but did not drop and re-create the sequence
(PostgreSQL version 8.0 and later does this automatically).

* You mixed styles of adding data—allowing PostgreSQL to pick values for some serial
columns and explicitly specifying values for some serial columns yourself.

In this case, the latter occurred. Having gotten ourselves into a bit of a mess, how do we
recover? The answer is that we need to give PostgreSQL a helping hand, and put its internal
sequence number back in step with the actual data.

Accessing Sequence Numbers

When the customer table was created, the customer_id column was defined as having type
serial. You may have noticed that PostgreSQL then gave us some informational messages,
saying that it was creating a customer_customer_id_seqsequence. Also, when we ask PostgreSQL
to describe the table using \d, we see the column is specially defined:

customer_id integer not null default nextval('customer customer id seq'::text)

PostgreSQL has created a special counter for the column, a sequence, which it can use to
generate unique IDs. Notice that the sequence is always named <tablename>_<columnname>_seq.
The default behavior for the column has been automatically specified by PostgreSQL to be the
result of the function nextval('customer customer id seq'). When we failed to provide data
for the column in our INSERT statement, this is the function that was being automatically
executed by PostgreSQL for us. By inserting or providing data to this column, we have upset
this automatic mechanism, since the function will not get called if data is provided. Fortunately,
we are not reduced to deleting all the data from the table and starting again, because PostgreSQL
allows us to directly manipulate the sequence number.

156

CHAPTER 6 DATA INTERFACING

When inserting data like this, you can usually find the value of a sequence number using
the currval function:

currval('sequence name');
PostgreSQL will tell you the current value of the sequence number:

bpsimple=# SELECT currval('customer_ customer_id seq');
currval

16
(1 row)

bpsimple=#

Note Strictly speaking, currval tells you the value from the last call to nextval, so for this to work,
either a new row will need to have been inserted or nextval called explicitly in this psql session.

Asyou can see, PostgreSQL thinks that the current number for the last row in the table is 16,
but, in fact, the last row is 19. When we try to insert data into the customer table, leaving the
customer_id column to PostgreSQL, it attempts to provide a value for the column by calling the
nextval function:

nextval('sequence number');

This function first increments the provided sequence number, and then returns the result.
We can try this directly:

bpsimple=# SELECT nextval('customer customer id seq');
nextval

17
(1 row)

bpsimple=#

Of course, we could get to the correct value for the sequence by repeatedly calling nextval,
but that would not be much use if the value were too large or too small. Instead, we can use the
setval function:

setval('sequence number', new value);

First, we need to discover what the sequence value should be. This is accomplished by
selecting the maximum value of the column that is already in the database. To do this, we will
use the max(column name) function, which simply tells us the maximum value stored in a column:

CHAPTER 6 DATA INTERFACING 157

bpsimple=# SELECT max(customer_id) FROM customer;
max

19
(1 row)

bpsimple=#

PostgreSQL will respond with the largest number that it found in the customer _id column
in the customer table. (We will discuss the max(column name) function in more detail in the next
chapter.) Now we set the sequence, using the function setval(sequence, value), which allows
us to set a sequence to any value we choose. The current largest value in the table is 19, and the
sequence number is always incremented before its value is used. Therefore, the sequence
should normally have the same number as the current biggest value in the table:

bpsimple=# SELECT setval('customer_customer_id seq', 19);
setval

19
(1 row)

bpsimple=#

Now that the sequence number is correct, we can insert our data, allowing PostgreSQL to
provide the value for the serial column customer_id:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone) VALUES('Mr', 'Steve', 'Clarke', '14 Satview
bpsimple-# way', 'Lincoln', 'LC4 3ED', '527 7254');

INSERT 21459 1

bpsimple=#

Success! PostgreSQL is now back in step, and it will continue to create serial values correctly.

PostgreSQL versions 7.3 and later allow you to use the DEFAULT keyword in INSERT statements
toindicate that a column’s declared default value should be inserted, which is especially useful
in keeping sequence values in line. Where we have been adding rows using explicit customer_id
values, we can write statements like this instead:

INSERT INTO customer(customer id, title, fname, lname,
addressline, town, zipcode, phone)

VALUES(DEFAULT, 'Mrs', 'Sarah', 'Harvey',
"84 Willow Way', 'Lincoln', 'LC3 7RD', '527 3739');

Here, the default value of the customer_id is the next value in the sequence, as customer_idisa
serial column.
We will return to the topic of default column values in Chapter 8.

158

CHAPTER 6 DATA INTERFACING

Inserting NULL Values

We briefly mentioned in Chapter 2 that NULL values could be inserted into columns using the
INSERT statement. Let’s look at this in a little more detail.

If you are using the first form of the INSERT statement, where you insert data into the
columns in the order they were defined when the table was created, you simply write NULL in
the column value. Note that you must not use quotes, as this is not a string. You should also
remember that NULL is a special undefined value in SQL, not the same as an empty string.

Consider our previous example:

INSERT INTO customer VALUES(16, 'Mr', 'Gavyn', 'Smith',
'23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Suppose that we did not know the first name. The table definition allows NULL in the fname
column, so adding data without knowing the first name is perfectly valid. If we had written this:

INSERT INTO customer VALUES(16, 'Mr', '', 'Smith',
'23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

it would not be what we intended, because we would have added an empty string as the first
name, perhaps implying that Mr. Smith has no first name. What we intended was to use aNULL,
because we do not know the first name.

The correct INSERT statement would have been as follows:

INSERT INTO customer VALUES(16, 'Mr', NULL, 'Smith',
'23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Notice the lack of quotes around NULL. If quotes had been used, fname would have been set to
the string 'NULL', rather than the value NULL.

Using the second (safer) form of the INSERT statement, where columns are explicitly named,
it is much easier to insert NULL values where we neither list the column nor provide a value for it,
like this:

INSERT INTO customer(title, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Smith', '23 Harlestone', 'Milltown', 'MT7 7HI', '746 3725');

Notice that the fname column is neither listed nor is a value defined for it. Alternatively, we
could have listed the column, and then written NULL in the value list.

This will not work if we try to add a NULL value in a column that is defined as not allowing
NULL values. Suppose we try to add a customer with no last name (1name) column:

bpsimple=# INSERT INTO customer(title, fname, addressline, town, zipcode,
bpsimple-# phone) VALUES('Ms', 'Gill', '27 Chase Avenue', 'Lowtown',
bpsimple-# 'LT5 8TQ', '876 1962');

ERROR: null value in column "lname" violates not-null constraint
bpsimple=#

Notice that we did not provide a value for 1name, so the INSERT was rejected, because the
customer table is defined to not allow NULL in that column:

CHAPTER 6 DATA INTERFACING 159

bpsimple=# \d customer
Table "public.customer"

Column | Type | Modifiers

_____________ PO
customer_id | integer | not null default nextval('public.customer
_customer_id seq'::text)

title | character(4) |

fname | character varying(32) |

1name | character varying(32) | not null

addressline | character varying(64) |

town | character varying(32) |

zipcode | character(10) | not null

phone | character varying(16) |

Indexes:

"customer pk" primary key, btree (customer id)

bpsimple=#

We will see in Chapter 8 how we can more generally define explicit default values to be
used in columns when data is inserted with no value, by specifying a default value for a column.

Using the \copy Command

Although INSERT is the standard SQL way of adding data to a database, it is not always the most
convenient. Suppose we had alarge number of rows to add to the database, but already had the
actual data available, perhaps in a spreadsheet. One way to get started on inserting data into
the database would be to use a spreadsheet export, so we would probably export the spread-
sheet as a comma-separated values (CSV) file. We can then use a text editor like Emacs, or at
least one with a macro facility, to convert all our data into INSERT statements.

Consider the following data:

Miss,Jenny,Stones,27 Rowan Avenue,Hightown,NT2 1AQ,023 9876
Mr,Andrew,Stones,52 The Willows,Lowtown,LT5 7RA,876 3527
Miss,Alex,Matthew,4 The Street,Nicetown,NT2 2TX,010 4567

We might transform it into a series of INSERT statements, so it looks like this:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss"', 'Jenny', 'Stones','27 Rowan Avenue', 'Hightown',

'NT2 1AQ','023 9876');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mr', 'Andrew', 'Stones','52 The Willows','Lowtown',

"LT5 7RA','876 3527');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Miss', 'Alex', 'Matthew','4 The Street', 'Nicetown',

"NT2 2TX','010 4567');

Then save it in a text file with a . sql extension.

160

CHAPTER 6 DATA INTERFACING

We could then use the \i command in psql to execute the statements in the file. This is
how the pop_customer.sql file works (we used this in Chapter 3 to initially populate our data-
base). Notice here that we allowed PostgreSQL to generate the unique customer_id value.

This isn’t very convenient, however. It would be much nicer if data could be moved between
flat files and the database in a more general way. There are a couple of ways of doing this in
PostgreSQL. Rather confusingly, both are called the copy command. There is a PostgreSQL SQL
command called COPY, which can save and restore data to flat files, but its use is limited to the
database administrator, as files are read and written on the server to which normal users would
not necessarily have access. More useful is the general-purpose \copy command, which imple-
ments almost all the functionality of COPY, but can be used by everyone, and data is read and
written on the client machine. The SQL-based COPY command is, therefore, almost totally
redundant.

Note The COPY command does have one advantage: it is significantly quicker than \copy, because it
executes directly in the server process. The \copy command executes in the client process, potentially
having to pass all the data across a network. COPY can also be slightly more reliable when errors occur.
Unless you have very large amounts of data, however, the difference will not be that noticeable.

The \copy command has this basic syntax for importing data:

\copy tablename FROM 'filename'
[USING DELIMITERS ‘'a single character to use as a delimiter']
[WITH NULL AS 'a string that means NULL']

Itlooks a little imposing, but it is quite simple to use. The sections in square braces, [], are
optional, so you only need to use them if required. Do notice, however, that the filename needs
to be enclosed in single quotes.

The option USING DELIMITERS 'a single character to use as a delimiter' allows you
to specify how each column is separated in the input file. By default, a tab character is assumed
to separate columns in the input data. In our case, we will assume that we have started with a
CSV file that we have exported from a spreadsheet. In practice, the CSV format is often not a
good choice because the comma character can appear in the data, and address data is particu-
larly prone to containing comma characters. Unfortunately, spreadsheets often do not offer
sensible alternatives to CSV file exports, so you may need to work with what you've got. Given
the choice, a pipe character, |, is often useful as a delimiter, as it very rarely appears in user data.

The option WITH NULL AS 'a string that means NULL' allows you to specify a string that
should be interpreted as NULL. By default, \N is assumed. Notice that in the \copy command,
you must include single quotes around the string, because that tells PostgreSQL that itis a
string, although quotes will not be expected in the actual data. So, if you want the string NOTHING
to beloaded as aNULL value in the database, you would specify the option WITH NULL AS 'NOTHING'.
Then if we did not know Mr. Hudson'’s first name, for example, the data should look like this:

15,Mr,NOTHING,Hudson,4 The Square, Milltown,MT2 6RT,961 4526

When inserting data directly, it is very important to watch out that the data is “clean.” You
need to ensure that no columns are missing, all quote characters have been correctly escaped

CHAPTER 6 DATA INTERFACING 161

with a backslash, there are no binary characters present, and so on. PostgreSQL will catch most
of these mistakes for you, and load only valid data, but untangling several thousand rows of
data that have almost been completely loaded is a slow, unreliable, and unrewarding job. It is
well worth going to the effort to clean the data as much as possible before attempting to “bulk
load” it with the \copy command.

Try It Out: Load Data Using \copy

Let’s create some additional customer data in a cust.txt file that looks like this:

21,Miss,Emma,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245
22,Mr,Gavin,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245
23,Mr,Duncan,Neill,21 Sheepy Lane,Hightown,NT2 1YQ,023 4245

You can create the simple cust. txt file using any text editor, or use the file included with
this book’s downloadable code (available from the Downloads section of the Apress web site,
athttp://www.apress.com). Conveniently, there are no NULLs to worry about, so we just need to
specify the comma as the column separator. To load this data, execute this command:

\copy customer from 'cust.txt' using delimiters ',

Notice there is no semicolon (;) at the end of this command, since itis a \ command directly to
psql, not SQL. psql responds with the rather brief \ ., which tells us that all is well.
Then execute the following:

SELECT * FROM customer;

We will see that the additional rows have been added.

There is, however, a slight problem lurking. Remember the sequence number that can get
out of step? Unfortunately, using \copy to load data is one way this can happen. Let’s check
what has happened to our sequence number:

bpsimple=# SELECT max(customer_id) FROM customer;
max

23
(1 row)

bpsimple=# SELECT currval('customer customer_id seq');
currval

21
(1 row)

bpsimple=#

Oops! The maximum value stored in customer_id is currently 23, so the next ID allocated
should be 24, but the sequence is going to try to allocate 22 as the next value. Never mind—
it’s easy to correct:

162

CHAPTER 6 DATA INTERFACING

bpsimple=# SELECT setval('customer_customer_id seq', 23);
setval

23
(1 Tow)

bpsimple=#

How It Works

We used the \copy command to directly load data that had been exported from a spreadsheet
in CSV format into our customer table. We subsequently had to correct the sequence number
that generates customer_id numbers for the serial column customer_id in the table, which
takes significantly less effort than that we would have needed to expend to convert our CSV
format data into a series of INSERT statements.

Loading Data Directly from Another Application

If the data already resides in a desktop database, such as Microsoft Access, there is an even
easier way to load the data into PostgreSQL. We can simply attach the PostgreSQL table to the
Access database via ODBC and insert data into a PostgreSQL table.

Often, when you are doing this, you will find that your existing data is not quite what you
need, or that it needs some reworking before being inserted into its final destination table.
Even if the data is in the correct format, it is often a good idea not to attempt to insert it directly
into the database, but rather to first move it to a loading table, and then transfer it from this
loading table to the real table. Using an intermediate loading table is a common method in
real-world applications for inserting data into a database, particularly when the quality of the
original data is uncertain. The data is first loaded into the database in a holding table, checked,
corrected if necessary, and then moved into the final table.

Usually, you will write a custom application or stored procedure to check and correct the
data, a topic covered in detail in Chapter 10. Once the data is ready to load into the final table
though, there is a useful variant of the INSERT command that allows us to move data between
tables, transferring multiple rows in one command. It is the only time an INSERT statement
affects multiple rows with a single statement. This is the INSERT INTO statement.

The syntax for inserting data from one table into another is as follows:

INSERT INTO tablename(list of column names) SELECT normal select statement

Try It Out: Load Data Between Tables

Suppose we have a holding table, tcust, that has some additional customer data to be loaded
into our master customer table. We will make our holding table definition look like this:

CHAPTER 6 DATA INTERFACING

CREATE TABLE tcust

(
title char(4) ,
fname varchar(32) ,
1name varchar(32) ,
addressline varchar(64) ,
town varchar(32) ,
zipcode char(10) ,
phone varchar(16)

)5

Notice that there are no primary keys or constraints of any kind. It is normal when cross-
loading data into a loading table to make it as easy as possible to get the data into that table.
Removing the constraints makes this easier. Also notice that all the required columns are there,
except the customer_id sequence number, which PostgreSQL can create for us as we load the data.

Suppose we have loaded some data into tcust (via ODBC, \copy, or some other method),
validated, and corrected it. (A suitable script for creating and populating the tcust table is
included in this book’s downloadable code, available from the Apress web site.) Then a SELECT
output looks like this:

bpsimple=# SELECT * FROM tcust;

title | fname | 1lname | addressline | town | zipcode | phone
——————— e S s et et T
Mr | Peter | Bradley | 72 Milton Rise | Keynes | MK41 2HQ |

Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7243
(3 rows)

bpsimple=#

The first thing to notice is that we have not yet managed to find a phone number for
Mr. Bradley. This may or may not be a problem. Let’s decide that, for now, we don’t wish to
load this row, but we do wish to load all the other customers. In a real-world scenario, we may
be trying to load hundreds of new customers, and it is quite probable that we will want to load
groups of them as the data for each group is validated or cleaned.

The first part of the INSERT is quite easy to write. We will use the full syntax of INSERT, speci-
fying precisely the columns we wish to load. This is normally the sensible choice:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)

Notice that we do not specify that we are loading the customer_id. You will remember that
by leaving this blank, we allow PostgreSQL to automatically create values for us, which is always
the safer way to allow serial values to be created.

163

164

CHAPTER 6 DATA INTERFACING

We now need to write the SELECT part of the statement, which will feed this INSERT statement.
Remember that we do not wish to insert the information for Mr. Bradley yet, because his phone
number is set to NULL, as we are still trying to find it. We could, if we wanted to, load Mr. Bradley’s
data, since the phone column will accept NULL values. What we are doing here is applying a
slightly more stringent real-world usage rule to the data than is required by the low-level data-
base rules. We write a SELECT statement like this:

SELECT title, fname, lname, addressline, town, zipcode, phone FROM tcust
WHERE phone IS NOT NULL;

Of course, this is a perfectly valid statement on its own. Let’s test it:

bpsimple=# SELECT title, fname, lname, addressline, town, zipcode, phone
bpsimple-# FROM tcust WHERE phone IS NOT NULL;

title | fname | lname | addressline | town | zipcode | phone
——————— et S et e T
Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7243
(2 rows)

bpsimple=#

That looks correct. It finds the rows we need, and the columns are in the same order as the
INSERT statement. So, we can now put the two statements together and execute them, like this:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone) SELECT title, fname, lname, addressline, town,
bpsimple-# zipcode, phone FROM tcust WHERE phone IS NOT NULL;

INSERT 0 2

bpsimple=#

Notice that psql tells us that two rows have been inserted. Now, being extra cautious, let’s
fetch those rows from the customer table, just to be absolutely sure they were loaded correctly:

bpsimple=# SELECT customer_id, fname, lname, addressline FROM customer WHERE
bpsimple-# town = 'Lincoln';
customer_id fname | lname | addressline
————————————— R s e TP
19 | Sarah | Harvey | 84 Willow Way
20 | Steve | Clarke | 14 Satview way
24 | Brian | Waters | 21 Troon Rise
25 | Kevin | Carney | 43 Glen Way
(4 Tows)

bpsimple=#

We actually get more than two rows, because we already had customers from Lincoln. We can
see, however, that our data has been inserted correctly, and customer_id values were created
for us.

CHAPTER 6 DATA INTERFACING 165

Now that some of the data from tcust has been loaded into the live customer table, we
would normally delete those rows from tcust. For the purposes of the example, we are going to
leave that data alone for now and delete it in a later example.

How It Works

We specified the columns we wanted to load in the customer table, and then selected the same
set of data, in the same order from the tcust table. We did not specify that we would load the
customer_id column, so PostgreSQL used its sequence numbers to generate unique IDs for us.
An alternative method, which you may find easier, particularly if there is alot of data to load,
is to add an additional column to the temporary table, perhaps a column isvalid of type boolean.
You then load all the data into the temporary table, and set all the isvalid values to false,
using the UPDATE statement that we will meet more formally in the next section of this chapter:

UPDATE tcust SET isvalid = 'false’;

We have not specified a WHERE clause; therefore, all rows have the isvalid column set to
false. We can then continue work on the data, modifying it where necessary. When we are
happy that a row is correct and complete, we set the isvalid column to true. We can then load
the corrected data, selecting only the rows where isvalidis true:

bpsimple=# INSERT INTO customer(title, fname, lname, addressline, town,
bpsimple-# zipcode, phone)

bpsimple-# SELECT title, fname, lname, addressline, town, zipcode, phone
bpsimple-# FROM tcust WHERE isvalid = true;

Once these rows are loaded, we can remove them from the tcust table, like this:
DELETE FROM tcust WHERE isvalid = true;

Then continue to work on the remaining data in the tcust table. (We will discuss the DELETE
statement near the end of this chapter.)

Updating Data in the Database

Now we know how to get data into the database by using INSERT, and how to retrieve it again,
using SELECT. Unfortunately, data does not tend to stay static for very long. People move to
different addresses, change phone numbers, and so on. We need a way of updating the data in
the database. In PostgreSQL, as in all SQL-based databases, this is done with the UPDATE statement.

Using the UPDATE Statement

The UPDATE statement is remarkably simple. Its syntax is as follows:
UPDATE tablename SET columnname = value WHERE condition

If we want to set several columns at the same time, we simply specify them as a comma-
separated list, like this:

UPDATE customer SET town = 'Leicester', zipcode = 'LE4 2WQ' WHERE some condition

166

CHAPTER 6 DATA INTERFACING

We can update as many columns simultaneously as we like, provided that each column
appears only once. You will notice that you can use only a single table name. This is due to the
syntax of SQL. In the rare event that you need to update two separate, but related, tables, you
must write two separate UPDATE statements. You can put those UPDATE statements into a transaction
to ensure that either both updates are performed or no updates are performed. We will look at
transactions more closely in Chapter 9.

Try It Out: Use the UPDATE Statement

Suppose we have now tracked down the phone number of Mr. Bradley (missing from our tcust
table), and want to update the data into our live customer table. The first part of the UPDATE
statement is easy:

UPDATE tcust SET phone = '352 3442’
Now we need to specify the row to update, which is simply:
WHERE fname = 'Peter' and lname = 'Bradley’;
With UPDATE statements, it is always a good idea to check the WHERE clause. Let’s do that now:

bpsimple=# SELECT fname, lname, phone FROM tcust
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley’;
fname | 1lname | phone

_______ o e

Peter | Bradley |

(1 Tow)

bpsimple=#

We can see that the single row we want to update is being selected, so we can go ahead and
put the two halves of the statement together and execute it:

bpsimple=# UPDATE tcust SET phone = '352 3442’
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley’;
UPDATE 1

bpsimple=#

PostgreSQL tells us that one row has been updated. We could, if we wanted, reexecute our
SELECT statement to check that all is well.

How It Works

We built our UPDATE statement in two stages. First, we wrote the UPDATE command part that
would actually change the column value, and then we wrote the WHERE clause to specify which
rows to update. After testing the WHERE clause, we executed the UPDATE statement, which changed
the row as required.

Why were we so careful to test the WHERE clause and warn about not executing the first part
of the UPDATE statement? The answer is because it is perfectly valid to have an UPDATE statement
with no WHERE clause. By default, UPDATE will then update all the rows in the table, which is
almost never what was intended. It can also be quite hard to correct.

CHAPTER 6 DATA INTERFACING 167

tcust is just temporary experimental data, so let’s use it to test an UPDATE with no WHERE clause:

bpsimple=# UPDATE tcust SET phone = '999 9999';
UPDATE 3
bpsimple=#

Notice that psql has told us that three rows have been updated. Now look at what we have:

bpsimple=# SELECT fname, lname, phone FROM tcust;
fname | 1lname | phone

_______ R T

Kevin | Carney | 999 9999

Brian | Waters | 999 9999

Peter | Bradley | 999 9999

(3 rows)

bpsimple=#

This is almost certainly not what we wanted!

Caution Always test the WHERE clause of UPDATE statements before executing them. A simple errorin a
WHERE clause can result in many, or even all, of the rows in the table being updated with the same values.

If you do intend to update many rows, rather than retrieve all the data, you can simply
check how many rows you are matching using the count (*) syntax, which we will meet in more
detail in the next chapter. For now, all you need to know is that replacing the column names in
a SELECT statement with count (*) will tell you how many rows were matched, rather than returning
the data in the rows. In fact, that’s about all there is to the count (*) statement, but it does turn
out to be quite useful in practice. Here is an example of our SELECT statement to check how
many rows are matched by the WHERE clause:

bpsimple=# SELECT count(*) from tcust
bpsimple-# WHERE fname = 'Peter' AND lname = 'Bradley’;
count

bpsimple=#

This tells us that the WHERE clause is sufficiently restrictive to specify a single row. Of
course, with different data, even specifying both fname and 1name may not be sufficient to
uniquely identify a row.

168

CHAPTER 6 DATA INTERFACING

Updating from Another Table

PostgreSQL has an extension that allows updates from another table, using the syntax:
UPDATE tablename FROM tablename WHERE condition

This is an extension to the SQL standard.

Try It Out: Update with FROM

For the purpose of checking out the UPDATE with FROM option, let’s create a table named cust-
phone that contains the customer names and their phone numbers. The table looks like this:

CREATE TABLE custphone

(
customer_id serial,
fname varchar(32),
1name varchar(32) NOT NULL,
phone_num varchar(16)

)s

Let’s also insert some data into the newly created custphone table that holds the customers
and their phone numbers:

bpsimple=# INSERT INTO custphone(fname, lname, phone_num)
bpsimple-# VALUES('Peter', 'Bradley', '352 3442');

INSERT 22593 1

bpsimple=#

Now we need to specify the row to be updated in the tcust table:

bpsimple=# UPDATE tcust SET phone = custphone.phone_num FROM custphone
bpsimple-# WHERE tcust.fname = 'Peter' AND tcust.lname = 'Bradley’;
UPDATE 1

bpsimple=#

How It Works

We created a new table that contains the phone numbers of the customers. Then we inserted
data into the new table. Finally, we executed the UPDATE statement, which changed the row as
required.

While UPDATE uses subqueries to control the rows that are updated, the FROM clause allows
the inclusion of columns from other tables in the SET clause. In fact, the FROM clause isn’t even
required. This is because PostgreSQL creates a reference to any table used in a query by default.

CHAPTER 6 DATA INTERFACING 169

Deleting Data from the Database

The last thing we need to learn about in this chapter is deleting data from tables. Prospective
customers may never actually place an order, orders get canceled, and so on, so we often need
to delete data from the database.

Using the DELETE Statement

The normal way of deleting data is to use the DELETE statement. This has syntax similar to the
UPDATE statement:

DELETE FROM tablename WHERE condition

Notice that there are no columns listed, since DELETE works on rows. If you want to remove
data from a column, you must use the UPDATE statement to set the value of the column to NULL
or some other appropriate value.

Now that we have copied our data for our two new customers from tcust to our live
customer table, we can go ahead and delete those rows from our tcust table.

Try It Out: Delete Data

We know just how dangerous omitting the WHERE clause in statements that change data can be.
We can appreciate that accidentally deleting data is even more serious, so we will start by
writing and checking our WHERE clause using a SELECT statement:

bpsimple=# SELECT fname, lname FROM tcust WHERE town = 'Lincoln';
fname | lname

_______ PR

Kevin | Carney

Brian | Waters

(2 rows)

bpsimple=#

That’s good—it retrieves the two rows we were expecting.
Now we can prepend the DELETE statement on the front and, after a last visual check that it
looks correct, execute it:

bpsimple=# DELETE FROM tcust WHERE town = 'Lincoln';
DELETE 2
bpsimple=#

CAUTION Deleting from the database is that easy, so be very careful!

170

CHAPTER 6 DATA INTERFACING

How It Works

We wrote and tested a WHERE clause to choose the rows that we wanted to delete from the data-
base. We then executed a DELETE statement that deleted them.

Just like UPDATE, DELETE can work on only a single table at any one time. If we ever need to
delete related rows from more than one table, we will use a transaction, which we will meet in
Chapter 9.

Using the TRUNCATE Statement

There is one other way of deleting data from a table. It deletes all of the data from a table, and
unless it is contained within a PostgreSQL version 7.4 or later transaction, it will give you no
way of recovering the data. The command is TRUNCATE, and its syntax is as follows:

TRUNCATE TABLE tablename

This is a command to be used with caution, and only when you are very sure that you want
to permanently delete all the data in a table. In some ways, it is similar to dropping and re-creating
the table, except it is much easier to use and doesn’t reset the sequence number.

Try It Out: Use The TRUNCATE Statement

Suppose we have now finished with our tcust table, and want to delete all the data in it. We
could DROP the table, but then if we needed it again, we would need to re-create it. Instead, we
can TRUNCATE it, to delete all the rows in the table:

bpsimple=# TRUNCATE TABLE tcust;

TRUNCATE TABLE

bpsimple=# SELECT count(*) FROM tcust;
count

bpsimple=#

All the rows are now deleted.

How It Works

TRUNCATE simply deletes all the rows from the specified table.

If you have a large table, perhaps with many thousands of rows, and want to delete all the
rows from it, by default, PostgreSQL does not physically remove the rows, but scans through
them all, marking each one as deleted. This helps in restoring the data in case the transaction
isrolled back. Even though on the command line we might not have explicitly asked for a trans-
action, all commands automatically get executed inside a transaction. The action of scanning
and marking many thousands of rows of a table slows down execution. The TRUNCATE statement
deletes the contents of the table very efficiently without scanning the data. So, on very large
tables, it executes much more efficiently than DELETE.

CHAPTER 6 DATA INTERFACING

Tip There are two ways to delete all the rows from a table: DELETE without a WHERE clause and
TRUNCATE. TRUNCATE, although not in SQL92, is a very common SQL statement for efficiently deleting
all rows from a table.

You should stick to using DELETE almost all of the time, as it is a much safer way of deleting
data. Also DELETE works in some cases where TRUNCATE does not, such as on tables with foreign
keys. However, in special cases where you want to efficiently and irrevocably delete all rows
from a table, TRUNCATE is the solution.

Summary

In this chapter, we looked at the three other parts of data manipulation along with SELECT: the
ability to add data with the INSERT command, modify data with the UPDATE command, and
remove data with the DELETE command.

We learned about the two forms of the INSERT command, with data explicitly included in
the INSERT statement or INSERT from data SELECTed from another table. We saw how it is safer
to use the longer form of the INSERT statement, where all columns are listed, so there is less
chance of mistakes. We also met INSERT’s cousin command, the rather useful PostgreSQL
extension \copy, which allows data to be inserted into a table directly from a local file.

We looked at how you need to be careful with the sequence counters for serial fields, and
how to check the value of a sequence, and if necessary, change it. We saw that, in general, it is
better to allow PostgreSQL to generate sequence numbers for you, by not providing data for
serial type columns.

We saw how the very simple UPDATE and DELETE statements work, and how to use them
with WHERE clauses, just as with the SELECT statement. We also mentioned that you should
always test UPDATE and DELETE statements with WHERE clauses using a SELECT statement, as
mistakes here can cause problems that are difficult to rectify.

Finally, we looked at the TRUNCATE statement, a very efficient way of deleting all rows from
atable. Since this is an irrevocable deletion, unless managed by transactions, it should be used
with caution.

17

CHAPTER 7

Advanced Data Selection

In Chapter 4, we looked in some detail at the SELECT statement and how we can use it to retrieve
data. This included selecting columns, selecting rows, and joining tables together. In the
previous chapter, we looked at ways of adding, updating, and removing data. In this chapter,
we return to the SELECT statement, examining its more advanced features. You may rarely need
to use some of these features, but it’s useful to know them so that you have a good understanding
of what is possible in SQL.

In this chapter, we will meet some special functions called aggregates, which allow us to
get results based on a group of rows. We will then describe some more advanced joins that
provide more control over our query results than the simple joins discussed in Chapter 4. We
will also meet a whole new group of queries called subqueries, where we use multiple SELECT
statements in a single query. Finally, we will discuss the very important outer join, which allows
us to join tables together in a more flexible way than we have seen so far.

As we progress through this chapter, we will cover the following topics:

* Aggregate functions
* Subqueries

e UNION joins

* Selfjoins

e Outer joins

Aggregate Functions

In previous chapters, we used a couple of special functions for producing statistics from selec-
tions: the max(column name) function, to tell us the largest value in a column, and the count (*)
function to tell us the number of rows in a table. These functions belong to a small group of
SQL functions called aggregates. The functions in this group include those listed in Table 4-1.

173

174

CHAPTER 7 ADVANCED DATA SELECTION

Table 4-1. Aggregate Functions

Aggregate Description

count (*) Provides a row count for a table

count(column name) Counts the number of rows in the table where the value in the speci-
fied column is not NULL

min(column name) Returns the minimum value found in the specified column

max (column name) Returns the maximum value found in the specified column

sum(column name) Returns the total sum of the entries in the specified numeric column

avg(column name) Returns the average of the entries in the specified column

Aggregates are often quite useful and generally easy to use. In this section, we’ll introduce
each of the functions listed in Table 4-1. PostgreSQL supports other aggregates, including func-
tions for variance and standard deviation. Details can be found the PostgreSQL documentation.

Tip psql's \da command lists all of the aggregates used by PostgreSQL.

SELECT statements using any of these aggregate functions can include two optional clauses:
GROUP BY and HAVING. The syntax is as follows (shown here with the count (*) function):

SELECT count(*) column list FROM table name
WHERE condition [GROUP BY column name [HAVING aggregate condition]]

The optional GROUP BY clause is an additional condition that can be applied to SELECT
statements. It is normally useful only when an aggregate function is being used. It can also be
used to provide a function similar to ORDER BY, which we met in Chapter 4, but by working on
the aggregate column. The optional HAVING clause allows us to pick out particular rows where
the function result meets some condition, and we have already used a GROUP BY clause. This all
sounds a bit complicated, but it’s actually quite easy in practice, as we’ll see in this chapter.

The Count Function

We will start by looking at the count function, which, as you can see from Table 4-1, has two
forms: count (*) and count(column name).

Count(*)

The count (*) function provides a row count for a table. It acts as a special column name in a
SELECT statement. Let’s try out a very simple count (*) just to get the basic idea.

CHAPTER 7 ADVANCED DATA SELECTION 175

Note In the examples in this chapter, as with others, we start with clean base data in the sample data-
base, so readers can dip into chapters as they choose. This does mean that some of the output will be slightly
different if you continue to use sample data from a previous chapter. The downloadable code for this book
(available from the Downloads section of the Apress web site at http://www.apress.com) provides scripts
to make it easy to drop the tables, re-create them, and repopulate them with clean data, if you wish to do so.

Try It Out: Use Count(*)

Suppose we wanted to know how many customers in the customer table live in the town of
Bingham. We could simply write a SQL query like this:

SELECT * FROM customer WHERE town = 'Bingham';
Or, for a more efficient version that returns less data, we could write a SQL query like this:
SELECT customer_id FROM customer WHERE town = 'Bingham';

This works, but in a rather indirect way. Suppose the customer table contained many
thousands of customers, with perhaps over a thousand of them living in Bingham. In that case,
we would be retrieving a great deal of data that we don’t need. The count (*) function solves
this for us, by allowing us to retrieve just a single row with the count of the number of selected
rows in it.

We write our SELECT statement as we normally do, but instead of selecting real columns,
we use count (*), like this:

bpsimple=# SELECT count(*) FROM customer WHERE town = 'Bingham';
count

bpsimple=#
If we want to count all the customers, we can just omit the WHERE clause:

bpsimple=# SELECT count(*) FROM customer;
count

15
(1 row)

bpsimple=#

You can see we get just a single row, with the count in it. If you want to check the answer,
just replace count (*) with customer_id to show the real data.

176

CHAPTER 7 ADVANCED DATA SELECTION

How It Works

The count (*) function allows us to retrieve a count of objects, rather than the objects them-
selves. Itis vastly more efficient than getting the data itself, because all of the data that we don’t
need to see does not need to be retrieved from the database, or worse still, sent across a network.

Tip You should never retrieve data when all you need is a count of the number of rows.

GROUP BY and Count(*)

Suppose we wanted to know how many customers live in each town. We could find out by
selecting all the distinct towns, and then counting how many customers were in each town.
This is a rather procedural and tedious way of solving the problem. Wouldn’t it be better to
have a declarative way of simply expressing the question directly in SQL? You might be tempted
to try something like this:

SELECT count(*), town FROM customer;

It’s a reasonable guess based on what we know so far, but PostgreSQL will produce an
error message, as it is not valid SQL syntax. The additional bit of syntax you need to know to
solve this problem is the GROUP BY clause.

The GROUP BY clause tells PostgreSQL that we want an aggregate function to output a result
and reset each time a specified column, or columns, change value. It’s very easy to use. You
simply add a GROUP BY column name to the SELECT with a count (*) function. PostgreSQL will tell
you how many of each value of your column exists in the table.

Try It Out: Use GROUP BY

Let’s try to answer the question, “How many customers live in each town?”
Stage one is to write the SELECT statement to retrieve the count and column name:

SELECT count(*), town FROM customer;

We then add the GROUP BY clause, to tell PostgreSQL to produce a result and reset the count
each time the town changes by issuing a SQL query like this:

SELECT count(*), town FROM customer GROUP BY town;
Here it is in action:

bpsimple=# SELECT count(*), town FROM customer GROUP BY town;
count town

+
| Milltown
| Nicetown
| Welltown
| Yuleville
| Bingham

CHAPTER 7 ADVANCED DATA SELECTION 177

1 | Histon

1 | Hightown

1 | Lowtown

1 | Tibsville

1 | Oxbridge

1 | Winnersby

1 | Oakenham
(12 rows)
bpsimple=#

As you can see, we get a listing of towns and the number of customers in each town.

How It Works

PostgreSQL orders the result by the column listed in the GROUP BY clause. It then keeps a running
total of rows, and each time the town name changes, it writes a result row and resets its counter
to zero. You will agree that this is much easier than writing procedural code to loop through
each town.

We can extend this idea to more than one column if we want to, provided all the columns
we select are also listed in the GROUP BY clause. Suppose we wanted to know two pieces of infor-
mation: how many customers are in each town and how many different last names they have.
We would simply add 1name to both the SELECT and GROUP BY parts of the statement:

bpsimple=# SELECT count(*), lname, town FROM customer GROUP BY town, lname;

count | 1lname | town
_______ e e e m
1 | Hardy | Oxbridge
1 | Cozens | Oakenham
1 | Matthew | Yuleville
1 | Jones | Bingham
2 | Matthew | Nicetown
1 | 0'Neill | Welltown
1 | Stones | Hightown
2 | Stones | Bingham
1 | Hudson | Milltown
1 | Hickman | Histon
1 | Neill | Winnersby
1 | Howard | Tibsville
1 | Stones | Lowtown
(13 rows)
bpsimple=#

Notice that Binghamis now listed twice, because there are customers with two different last
names, Jones and Stones, who live in Bingham.

Also notice that this output is unsorted. Versions of PostgreSQL prior to 8.0 would have
sorted first by town, then 1name, since that is the order they are listed in the GROUP BY clause.
In PostgreSQL 8.0 and later, we need to be more explicit about sorting by using an ORDER BY
clause. We can get sorted output like this:

178 CHAPTER 7 ADVANCED DATA SELECTION

bpsimple=# SELECT count(*), lname, town FROM customer GROUP BY town, lname
bpsimple-# ORDER BY town, lname;

count | 1lname | town
_______ I A
1 | Jones | Bingham
2 | Stones | Bingham
1 | Stones | Hightown
1 | Hickman | Histon
1 | Stones | Lowtown
1 | Hudson | Milltown
2 | Matthew | Nicetown
1 | Cozens | Oakenham
1 | Hardy | Oxbridge
1 | Howard | Tibsville
1 | 0'Neill | Welltown
1 | Neill | Winnersby
1 | Matthew | Yuleville
(13 rows)
bpsimple=#
HAVING and Count(*)

The last optional part of a SELECT statement is the HAVING clause. This clause may be a bit
confusing to people new to SQL, but it’s not difficult to use. You just need to remember that
HAVING is a kind of WHERE clause for aggregate functions. We use HAVING to restrict the results
returned to rows where a particular aggregate condition is true, such as count(*) > 1. We use it
in the same way as WHERE to restrict the rows based on the value of a column.

Caution Aggregates cannot be used in a WHERE clause. They are valid only inside a HAVING clause.

Let’s look at an example. Suppose we want to know all the towns where we have more than
a single customer. We could do it using count (*), and then visually look for the relevant towns.
However, that’s not a sensible solution in a situation where there may be thousands of towns.
Instead, we use a HAVING clause to restrict the answers to rows where count (*) was greater than
one, like this:

bpsimple=# SELECT count(*), town FROM customer
bpsimple-# GROUP BY town HAVING count(*) > 1;
count | town
_______ fommmmeee

3 | Bingham

2 | Nicetown
(2 rows)

bpsimple=#

CHAPTER 7 ADVANCED DATA SELECTION

Notice that we still must have our GROUP BY clause, and it appears before the HAVING clause.
Now that we have all the basics of count(*), GROUP BY, and HAVING, let’s put them together in a
bigger example.

Try It Out: Use HAVING

Suppose we are thinking of setting up a delivery schedule. We want to know the last names and
towns of all our customers, except we want to exclude Lincoln (maybe it’s our local town), and
we are interested only in the names and towns with more than one customer.

This is not as difficult as it might sound. We just need to build up our solution bit by bit,
which is often a good approach with SQL. If it looks too difficult, start by solving a simpler, but
similar problem, and then extend the initial solution until you solve the more complex problem.
Effectively, take a problem, break it down into smaller parts, and then solve each of the smaller
parts.

Let’s start with simply returning the data, rather than counting it. We sort by town to make
it a little easier to see what is going on:

bpsimple=# SELECT lname, town FROM customer
bpsimple=# WHERE town <> 'Lincoln' ORDER BY town;

lname | town
_________ e m
Stones | Bingham
Stones | Bingham
Jones | Bingham
Stones | Hightown
Hickman | Histon
Stones | Lowtown
Hudson | Milltown
Matthew | Nicetown
Matthew | Nicetown
Cozens | Oakenham
Hardy | Oxbridge
Howard | Tibsville
0'Neill | Welltown
Neill | Winnersby
Matthew | Yuleville
(15 rows)
bpsimple=#

Looks good so far, doesn’t it?
Now if we use count (*) to do the counting for us, we also need to GROUP BY the 1name
and town:

179

180 CHAPTER 7 ADVANCED DATA SELECTION

bpsimple=# SELECT count(*), lname, town FROM customer
bpsimple-# WHERE town <> 'Lincoln' GROUP BY lname, town ORDER BY town;

count | 1lname | town
_______ I A
2 | Stones | Bingham
1 | Jones | Bingham
1 | Stones | Hightown
1 | Hickman | Histon
1 | Stones | Lowtown
1 | Hudson | Milltown
2 | Matthew | Nicetown
1 | Cozens | Oakenham
1 | Hardy | Oxbridge
1 | Howard | Tibsville
1 | 0'Neill | Welltown
1 | Neill | Winnersby
1 | Matthew | Yuleville
(13 rows)
bpsimple=#

We can actually see the answer now by visual inspection, but we are almost at the full solution,
which is simply to add a HAVING clause to pick out those rows with a count (*) greater than one:

bpsimple=# SELECT count(*), lname, town FROM customer
bpsimple-# WHERE town <> 'Lincoln' GROUP BY lname, town HAVING count(*) > 1;
count | 1lname | town
_______ b
2 | Matthew | Nicetown
2 | Stones | Bingham
(2 rows)

bpsimple=#

As you can see, the solution is straightforward when you break down the problem into parts.

How It Works

We solved the problem in three stages:
¢ We wrote a simple SELECT statement to retrieve all the rows we were interested in.

¢ Next, we added a count (*) function and a GROUP BY clause, to count the unique 1name
and town combination.

* Finally, we added a HAVING clause to extract only those rows where the count (*) was
greater than one.

There is one slight problem with this approach, which isn’t noticeable on our small sample
database. On a big database, this iterative development approach has some drawbacks. If we
were working with a customer database containing thousands of rows, we would have customer

CHAPTER 7 ADVANCED DATA SELECTION 181

lists scrolling past for a very long time while we developed our query. Fortunately, there is often
an easy way to develop your queries on a sample of the data, by using the primary key. If we add
the condition WHERE customer_id < 50 to all our queries, we could work on a sample of the first
50 customer_ids in the database. Once we were happy with our SQL, we could simply remove
the WHERE clause to execute our solution on the whole table. Of course, we need to be careful
that the sample data we used to test our SQL is representative of the full data set and be wary
that smaller samples may not have fully exercised our SQL.

Count(column name)

A slight variant of the count (*) function is to replace the * with a column name. The difference
is that COUNT(column name) counts occurrences in the table where the provided column name
isnot NULL.

Try It Out: Use Count(column name)

Suppose we add some more data to our customer table, with some new customers having NULL
phone numbers:

INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr', "Gavyn', 'Smith','23 Harlestone','Milltown','MT7 7HI');

INSERT INTO customer(title, fname, lname, addressline, town, zipcode, phone)
VALUES('Mrs','Sarah', 'Harvey','84 Willow Way','Lincoln','LC3 7RD','527 3739');
INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr', 'Steve', 'Harvey', '84 Willow Way','Lincoln','LC3 7RD");

INSERT INTO customer(title, fname, lname, addressline, town, zipcode)
VALUES('Mr', 'Paul’, 'Garrett','27 Chase Avenue','Lowtown','LT5 8TQ");

Let’s check how many customers we have whose phone numbers we don’t know:

bpsimple=# SELECT customer_id FROM customer WHERE phone IS NULL;
customer_id

16

18

19
(3 rows)
bpsimple=#

We see that there are three customers for whom we don’t have a phone number. Let’s see
how many customers there are in total:

bpsimple=# SELECT count(*) FROM customer;
count

19
(1 row)

bpsimple=#

182

CHAPTER 7 ADVANCED DATA SELECTION

There are 19 customers in total. Now if we count the number of customers where the phone
column is not NULL, there should be 16 of them:

bpsimple=# SELECT count(phone) FROM customer;
count

16
(1 Tow)

bpsimple=#

How It Works

The only difference between count (*) and count(column name) is that the form with an explicit
column name counts only rows where the named column is not NULL, and the * form counts all
rows. In all other respects, such as using GROUP BY and HAVING, count(column name) works in the
same way as count (*).

Count(DISTINCT column name)

The count aggregate function supports the DISTINCT keyword, which restricts the function to
considering only those values that are unique in a column, not counting duplicates. We can
illustrate its behavior by counting the number of distinct towns that occur in our customer table,
like this:

bpsimple=# SELECT count(DISTINCT town) AS "distinct", count(town) AS "all"
bpsimple=# FROM customer;
distinct | all
__________ PR
12 | 15
(1 row)

bpsimple=#

Here, we see that there are 15 towns, but only 12 distinct ones (Bingham and Nicetown)
appear more than once.

Now that we understand count (*) and have learned the principles of aggregate functions,
we can apply the same logic to all the other aggregate functions.

The Min Function

As you might expect, the min function takes a column name parameter and returns the minimum
value found in that column. For numeric type columns, the result would be as expected. For
temporal types, such as date values, it returns the largest date, which might be either in the past
or future. For variable-length strings (varchar type), the result is slightly unexpected: it compares
the strings after they have been right-padded with blanks.

CHAPTER 7 ADVANCED DATA SELECTION 183

Caution Be wary of using min or max on varchar type columns, because the results may not be what
you expect.

For example, suppose we want to find the smallest shipping charge we levied on an order.
We could use min, like this:

bpsimple=# SELECT min(shipping) FROM orderinfo;
min

bpsimple=#

This shows the smallest charge was zero.
Notice what happens when we try the same function on our phone column, where we know
there are NULL values:

bpsimple=# SELECT min(phone) FROM customer;
min

010 4567

(1 row)

bpsimple=#

Now you might have expected the answer to be NULL, or an empty string. Given that NULL
generally means unknown, however, the min function ignores NULL values. Ignoring NULL values
is a feature of all the aggregate functions, except count (*). (Whether there is any value in knowing
the smallest phone number is, of course, a different question.)

The Max Function

It’s not going to be a surprise that the max function is similar to min, but in reverse. As you would
expect, max takes a column name parameter and returns the maximum value found in that
column.

For example, we could find the largest shipping charge we levied on an order like this:

bpsimple=# SELECT max(shipping) FROM orderinfo;
max

bpsimple=#

184

CHAPTER 7 ADVANCED DATA SELECTION

Just as with min, NULL values are ignored with max, as in this example:

bpsimple=# SELECT max(phone) FROM customer;
max

961 4526
(1 Tow)
bpsimple=#

That is pretty much all you need to know about max.

The Sum Function

The sum function takes the name of a numeric column and provides the total. Just as with min
and max, NULL values are ignored.
For example, we could get the total shipping charges for all orders like this:

bpsimple=# SELECT sum(shipping) FROM orderinfo;
sum

bpsimple=#

Like count, the sum function supports a DISTINCT variant. You can ask it to add up only the
unique values, so that multiple rows with the same value are counted only once:

bpsimple=# SELECT sum(DISTINCT shipping) FROM orderinfo;
sum

bpsimple=#

Note that in practice, there are few real-world uses for this variant.

The Avg Function

The last aggregate function we will look at is avg, which also takes a column name and returns
the average of the entries. Like sum, it ignores NULL values. Here is an example:

bpsimple=t SELECT avg(shipping) FROM orderinfo;
avg

1.9940000000000000
(1 row)

bpsimple=#

CHAPTER 7 ADVANCED DATA SELECTION 185

The avg function can also take a DISTINCT keyword to work on only distinct values:

bpsimple=# SELECT avg(DISTINCT shipping) FROM orderinfo;
avg

2.3266666666666667
(1 row)

bpsimple=#

Note In standard SQL and in PostgreSQL’s implementation, there are no mode or median functions.
However, a few commercial vendors do support them as extensions.

The Subquery

Now that we have met various SQL statements that have a single SELECT in them, we can look
at a whole class of data-retrieval statements that combine two or more SELECT statements in
several ways.

A subquery is where one or more of the WHERE conditions of a SELECT are other SELECT state-
ments. Subqueries are somewhat more difficult to understand than single SELECT statement
queries, but they are very useful and open up a whole new area of data-selection criteria.

Suppose we want to find the items that have a cost price that is higher than the average
cost price. We can do this in two steps: find the average price using a SELECT statement with an
aggregate function, and then use the answer in a second SELECT statement to find the rows we
want (using the cast function, which was introduced in Chapter 4), like this:

bpsimple=# SELECT avg(cost price) FROM item;
avg

7.2490909090909091

(1 row)

bpsimple=# SELECT * FROM item
bpsimple-# WHERE cost_price > cast(7.249 AS numeric(7,2));
item_id | description cost price | sell price

|

--------- e
1 | Wood Puzzle | 15.23 | 21.95
2 | Rubik Cube | 7.45 | 11.49
5 | Picture Frame | 7.54 | 9.95
6 | Fan Small | 9.23 | 15.75
7 | Fan Large | 13.36 | 19.95
11 | Speakers | 19.73 | 25.32

(6 rows)

bpsimple=#

186

CHAPTER 7 ADVANCED DATA SELECTION

This does seem rather inelegant. What we really want to do is pass the result of the first
query straight into the second query, without needing to remember it and type it back in for
a second query.

The solution is to use a subquery. We put the first query in brackets and use it as part of
a WHERE clause to the second query, like this:

bpsimple=# SELECT * from ITEM
bpsimple-# WHERE cost_price > (SELECT avg(cost_price) FROM item);
item id | description | cost price | sell price

————————— e SR T S
1 | Wood Puzzle | 15.23 | 21.95
2 | Rubik Cube | 7.45 | 11.49
5 | Picture Frame | 7.54 | 9.95
6 | Fan Small | 9.23 | 15.75
7 | Fan Large | 13.36 | 19.95
11 | Speakers | 19.73 | 25.32

(6 rows)

bpsimple=#

As you can see, we get the same result, but without needing the intermediate step or
the cast function, since the result is already of the right type. PostgreSQL runs the query in
brackets first. After getting the answer, it then runs the outer query, substituting the answer
from the inner query.

We can have many subqueries using various WHERE clauses if we want. We are not restricted
to just one, although needing multiple, nested SELECT statements is rare.

Try It Out: Use a Subquery

Let’s try a more complex example. Suppose we want to know all the items where the cost price
is above the average cost price, but the selling price is below the average selling price. (Such an
indicator suggests our margin is not very good, so we hope there are not too many items that fit
those criteria.) The general query is going to be of this form:

SELECT * FROM item
WHERE cost_price > average cost price
AND sell price < average selling price

We already know the average cost price can be determined with the query SELECT
avg(cost price) FROM item. Finding the average selling price is accomplished in a similar
fashion, using the query SELECT avg(sell price) FROM item.

If we put these three queries together, we get this:

bpsimple=# SELECT * FROM item
bpsimple-# WHERE cost_price > (SELECT avg(cost_price) FROM item) AND
bpsimple-# sell price < (SELECT avg(sell_price) FROM item);
item id | description | cost price | sell price
--------- et B el

5 | Picture Frame | 7.54 | 9.95
(1 row)

bpsimple=#

CHAPTER 7 ADVANCED DATA SELECTION 187

Perhaps someone needs to look at the price of picture frames and see if it is correct!

How It Works

PostgreSQL first scans the query and finds that there are two queries in brackets, which are the
subqueries. It evaluates each of those subqueries independently, and then puts the answers
back into the appropriate part of the main query of the WHERE clause before executing it.

We could also have applied additional WHERE clauses or ORDER BY clauses. It is perfectly
valid to mix WHERE conditions that come from subqueries with more conventional conditions.

Subqueries That Return Multiple Rows

So far, we have seen only subqueries that return a single result, because an aggregate function
was used in the subquery. Subqueries can also return zero or more rows.

Suppose we want to know which items we have in stock where the cost price is greater
than 10.0. We could use a single SELECT statement, like this:

bpsimple=# SELECT s.item_id, s.quantity FROM stock s, item i
bpsimple-# WHERE i.cost_price > cast(10.0 AS numeric(7,2))
bpsimple-# AND s.item_id = i.item_id;
item_id | quantity
_________ fommm e

1| 12

7 | 8
(2 rows)

bpsimple=#

Notice that we give the tables alias names (stock becomes s; item becomes i) to keep the
query shorter. All we are doing is joining the two tables (s.item_id = i.item_ id), while also
adding a condition about the cost price in the item table (i.cost_price > cast(10.0 AS
NUMERIC(7,2))).

We can also write this as a subquery, using the keyword IN to test against a list of values.
To use IN in this context, we first need to write a query that gives a list of item_ids where the
item has a cost price less than 10.0:

SELECT item id FROM item WHERE cost price > cast(10.0 AS NUMERIC(7,2));
We also need a query to select items from the stock table:
SELECT * FROM stock WHERE item_id IN list of values

We can then put the two queries together, like this:

188

CHAPTER 7 ADVANCED DATA SELECTION

bpsimple=# SELECT * FROM stock WHERE item_id IN
bpsimple-# (SELECT item_id FROM item
bpsimple(# WHERE cost_price > cast(10.0 AS numeric(7,2)));
item id | quantity
_________ e
1| 12
7| 8
(2 rows)

bpsimple=#

This shows the same result.

Just as with more conventional queries, we could negate the condition by writing NOT IN,
and we could also add WHERE clauses and ORDER BY conditions.

Itis quite common to be able to use either a subquery or an equivalent join to retrieve the
same information. However, this is not always the case; not all subqueries can be rewritten as
joins, so it is important to understand them.

If you do have a subquery that can also be written as a join, which one should you use?
There are two matters to consider: readability and performance. If the query is one that you use
occasionally on small tables and it executes quickly, use whichever form you find most read-
able. Ifitis a heavily used query on large tables, it may be worth writing it in different ways and
experimenting to discover which performs best. You may find that the query optimizer is able
to optimize both styles, so their performance is identical; in that case, readability automatically
wins. You may also find that performance is critically dependent on the exact data in your data-
base, or that it varies dramatically as the number of rows in different tables changes.

CGaution Be careful in testing the performance of SQL statements. There are a lot of variables beyond your
control, such as the caching of data by the operating system.

Correlated Subqueries

The subquery types we have seen so far are those where we executed a query to get an answetr,
which we then “plug in” to a second query. The two queries are otherwise unrelated and are
called uncorrelated subqueries. This is because there are no linked tables between the inner
and outer queries. We may be using the same column from the same table in both parts of the
SELECT statement, but they are related only by the result of the subquery being fed back into the
main query’s WHERE clause.

There is another group of subqueries, called correlated subqueries, where the relationship
between the two parts of the query is somewhat more complex. In a correlated subquery, a table in
the inner SELECT will be joined to a table in the outer SELECT, thereby defining a relationship
between these two queries. This is a powerful group of subqueries, which quite often cannot be
rewritten as simple SELECT statements with joins. A correlated query has the general form:

CHAPTER 7 ADVANCED DATA SELECTION 189

SELECT columnA from table1l T1
WHERE T1.columnB =
(SELECT T2.columnB FROM table2 T2 WHERE T2.columnC = T1.columnC)

We have written this as some pseudo SQL to make it a little easier to understand. The
important thing to notice is that the table in the outer SELECT, T1, also appears in the inner
SELECT. The inner and outer queries are, therefore, deemed to be correlated. You will notice we
have aliased the table names. This is important, as the rules for table names in correlated
subqueries are rather complex, and a slight mistake can give strange results.

Tip We strongly suggest that you always alias all tables in a correlated subquery, as this is the safest option.

When this correlated subquery is executed, something quite complex happens. First, a row
from table T1 is retrieved for the outer SELECT, then the column T1.columnB is passed to the
inner query, which then executes, selecting from table T2 but using the information that is
passed in. The result of this is then passed back to the outer query, which completes evaluation
of the WHERE clause, before moving on to the next row. This is illustrated in Figure 7-1.

Main query Passes column T1.columnB
retrieves a row value to subquery

Subquery executes on T2
using provided column value

<—

Returns result to main query

Main query evaluates
WHERE clause
Mgin query Passes column T1.columnB
retrieves a row value to subquery

>

Subquery executes on T2
using provided column value

And so on, until the main query retrieves no further rows
Figure 7-1. The execution of a correlated subquery
Ifthis sounds a little long-winded, that is because it is. Correlated subqueries often execute

quite inefficiently. However, they do occasionally solve some particularly complex problems.
So, it’s well worth knowing they exist, even though you may use them only infrequently.

190

CHAPTER 7 ADVANCED DATA SELECTION

Try It Out: Execute a Correlated Subquery

On a simple database, such as the one we are using, there is little need for correlated subqueries,
but we can still use our sample database to demonstrate their use.

Suppose we want to know the date when orders were placed for customers in Bingham.
Although we could write this more conventionally, we will use a correlated subquery, like this:

bpsimple=# SELECT oi.date_placed FROM orderinfo oi

bpsimple-# WHERE oi.customer_id =

bpsimple-# (SELECT c.customer_id from customer c

bpsimple(# WHERE c.customer id = oi.customer_id and town = 'Bingham');
date_placed

2000-06-23

2000-07-21

(2 rows)

bpsimple=#

How It Works

The query starts by selecting a row from the orderinfo table. It then executes the subquery on
the customer table, using the customer_id it found. The subquery executes, looking for rows
where the customer_id from the outer query gives a row in the customer table that also has the
town Bingham. If it finds one, it then passes the customer_id back to the original query, which
completes the WHERE clause, and if it is true, prints the date_placed column. The outer query
then proceeds to the next row, and the sequence repeats.

It is also possible to create a correlated subquery with the subquery in the FROM clause.
Here is an example that finds all of the data for customers in Bingham that have placed an
order with us.

bpsimple=# SELECT * FROM orderinfo o,

bpsimple=# (SELECT * FROM customer c WHERE town = 'Bingham') c
bpsimple=# WHERE c.customer_id = o.customer_id;

orderinfo_id | customer id | date placed | date shipped | shipping |

customer_id | title | fname | lname | addressline | town | zipcode | phone
—————————————— T e B et S T TR P
B R ommmmm- ommmmm ommmmm oo ommmmmmo- ommmm oo Hommmmmmmo-

2 | 8 | 2004-06-23 | 2004-06-24 | 0.00 |
8 | Mcs | Ann | Stones | 34 Holly Way | Bingham | BG4 2WE | 342 5982

5 | 8 | 2004-07-21 | 2004-07-24 | 0.00 |
8 | Mrs | Ann | Stones | 34 Holly Way | Bingham | BG4 2WE | 342 5982
(2 rows)

bpsimple=#

CHAPTER 7 ADVANCED DATA SELECTION 191

The subquery result takes the place of a table in the main query, in the sense that the
subquery produces a set of rows containing just those customers in Bingham.

Now you have an idea of how correlated subqueries can be written. When you come across
a problem that you cannot seem to solve in SQL with more common queries, you may find that
the correlated subquery is the answer to your difficulties.

Existence Subqueries

Another form of subquery tests for existence using the EXISTS keyword in the WHERE clause,
without needing to know what data is present.

Suppose we want to list all the customers who have placed orders. In our sample database,
there are not many. The first part of the query is easy:

SELECT fname, lname FROM customer c;

Notice that we have aliased the table name customer to ¢, ready for the subquery. The next
part of the query needs to discover if the customer_id also exists in the orderinfo table:

SELECT 1 FROM orderinfo oi WHERE oi.customer id = c.customer_ id;

There are two very important aspects to notice here. First, we have used a common trick.
Where we need to execute a query but don’t need the results, we simply place 1 where a column
name would be. This means that if any data is found, a 1 will be returned, which is an easy and
efficient way of saying true. This is a weird idea, so let’s just try it:

bpsimple=# SELECT 1 FROM customer WHERE town = 'Bingham’;
?column?

(3 rows)

bpsimple=#

It may look a little odd, but it does work. It is important not to use count (*) here, because
we need a result from each row where the town is Bingham, not just to know how many customers
are from Bingham.

The second important thing to notice is that we use the table customer in this subquery,
which was actually in the main query. This is what makes it correlated. As before, we alias all
the table names. Now we need to put the two halves together.

For our query, using EXISTS is a good way of combining the two SELECT statements together,
because we only want to know if the subquery returns a row:

192

CHAPTER 7 ADVANCED DATA SELECTION

bpsimple=# SELECT fname, lname FROM customer c
bpsimple-# WHERE EXISTS (SELECT 1 FROM orderinfo oi
bpsimple(# WHERE oi.customer id = c.customer_id);
fname | lname
_______ fommmemeee

Alex | Matthew

Ann | Stones

Laura | Hardy

David | Hudson

(4 rows)

bpsimple=#

An EXISTS clause will normally execute more efficiently than other types of joins or IN
conditions. Therefore, it’s often worth using it in preference to other types of joins in cases
where you have a choice of how to write the subquery.

The UNION Join

We are now going to look at another way multiple SELECT statements can be combined to give
us more advanced selection capabilities. Let’s start with an example of a problem that we need
to solve.

In the previous chapter, we used the tcust table as a loading table, while adding data into
our main customer table. Now suppose that in the period between loading our tcust table with
new customer data and being able to clean it and load it into our main customer table, we were
asked for a list of all the towns where we had customers, including the new data. We might
reasonably have pointed out that since we hadn’t cleaned and loaded the customer data into
the main table yet, we could not be sure of the accuracy of the new data, so any list of towns
combining the two lists might not be accurate either. However, it may be that verified accuracy
wasn’t important. Perhaps all that was needed was a general indication of the geographical
spread of customers, not exact data.

We could solve this problem by selecting the town from the customer table, saving it, and
then selecting the town from the tcust table, saving it again, and then combining the two lists.
This does seem rather inelegant, as we would need to query two tables, both containing a list
of towns, save the results, and merge them somehow.

Isn’t there some way we could combine the town lists automatically? As you might gather
from the title of this section, there is a way, and it’s called a UNION join. These joins are not very
common, but in a few circumstances, they are exactly what is needed to solve a problem, and
they are also very easy to use.

Try It Out: Use a UNION Join

Let’s begin by putting some data back in our tcust table, so it looks like this:

CHAPTER 7 ADVANCED DATA SELECTION 193

bpsimple=# SELECT * FROM tcust;

title| fname | 1lname | addressline | town | zipcode | phone
————— et B et B e EE R PP
Mr | Peter | Bradley | 72 Milton Rise | Keynes | MK41 2HQ |

Mr | Kevin | Carney | 43 Glen Way | Lincoln | LI2 7RD | 786 3454
Mr | Brian | Waters | 21 Troon Rise | Lincoln | LI7 6GT | 786 7245
Mr | Malcolm | Whalley | 3 Craddock Way | Welltown | WT3 4GQ | 435 6543
(4 rows)

bpsimple=#

We already know how to select the town from each table. We use a simple pair of SELECT
statements, like this:

SELECT town FROM tcust;
SELECT town FROM customer;

Each gives us a list of towns. In order to combine them, we use the UNION keyword to stitch
the two SELECT statements together:

SELECT town FROM tcust UNION SELECT town FROM customer;

We input our SQL statement, splitting it across multiple lines to make it easier to read.
Notice the psql prompt changes from =# to -# to show it’s a continuation line, and that there is
only a single semicolon, right at the end, because this is all a single SQL statement:

bpsimple=# SELECT town FROM tcust
bpsimple-# UNION
bpsimple-# SELECT town FROM customer;
town

Bingham

Hightown

Histon

Keynes

Lincoln

Lowtown

Milltown

Nicetown

Oahenham

Oxbridge

Tibsville

Welltown

Winersby

Yuleville

(14 rows)

bpsimple=#

194

CHAPTER 7 ADVANCED DATA SELECTION

How It Works

PostgreSQL has taken the list of towns from both tables and combined them into a single list.
Notice, however, that it has removed all duplicates. If we wanted a list of all the towns, including
duplicates, we could have written UNION ALL, rather than just UNION.

This ability to combine SELECT statements is not limited to a single column; we could have
combined both the towns and ZIP codes:

SELECT town, zipcode FROM tcust UNION SELECT town, zipcode FROM customer;

This would have produced a list with both columns present. It would have been a longer list,
because zipcode is included, and hence there are more unique rows to be retrieved.

There are limits to what the UNION join can achieve. The two lists of columns you ask to be
combined from the two tables must each have the same number of columns, and the chosen
corresponding columns must also have compatible types.

Let’s see another example of a UNION join using the different, but compatible columns,
title and town:

bpsimple=# SELECT title FROM customer
bpsimple-# UNION
bpsimple-# SELECT town FROM tcust;
title
Keynes
Lincoln
Miss
Mr
Mrs
Welltown
(6 rows)

bpsimple=#

The query, although rather nonsensical, is valid, because PostgreSQL can combine the
columns, even though title is a fixed-length column and town is a variable-length column,
because they are both strings of characters. If we tried to combine customer_id and town, for
example, PostgreSQL would tell us that it could not be done, because the column types are
different.

Generally, this is all you need to know about UNION joins. Occasionally, they are a handy
way to combine data from two or more tables.

Self Joins

One very special type of join is called a self join, and it is used where we want to use a join
between columns that are in the same table. It’s quite rare to need to do this, but occasionally,
it can be useful.

Suppose we sell items that can be sold as a set or individually. For the sake of example, say
we sell a set of chairs and a table as a single item, but we also sell the table and chairs separately.
What we would like to do is store not only the individual items, but also the relationship between
them when they are sold as a single item. This is frequently called parts explosion, and we will
meet it again in Chapter 12.

CHAPTER 7 ADVANCED DATA SELECTION 195

Let’s start by creating a table that can hold not only an item ID and its description, but also
a second item ID, like this:

CREATE TABLE part (part id int, description varchar(32), parent part id INT);

We will use the parent_part_id to store the component ID of which this is a component.
For this example, our table and chairs set has an item_id of 1, which is composed of chairs,
item_id 2, and a table, item_id 3. The INSERT statements would look like this:

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(1, 'table and chairs', NULL);
INSERT 21579 1

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(2, 'chair', 1);
INSERT 21580 1

bpsimple=# INSERT INTO part(part_id, description, parent_part_id)
bpsimple-# VALUES(3, 'table', 1);
INSERT 21581 1

bpsimple=#

Now we have stored the data, but how do we retrieve the information about the individual
parts that make up a particular component? We need to join the part table to itself. This turns
out to be quite easy. We alias the table names, and then we can write a WHERE clause referring to
the same table, but using different names:

bpsimple=# SELECT pi.description, p2.description FROM part pi1, part p2
bpsimple-# WHERE pi.part_id = p2.parent_part_id;
description | description
__________________ R
table and chairs | chair
table and chairs | table
(2 rows)

bpsimple=#

This works, but it is a little confusing, because we have two output columns with the same
name. We can easily rectify this by naming them using AS:

bpsimple=# SELECT pi.description AS "Combined", p2.description AS "Parts"

bpsimple-# FROM part pi, part p2 WHERE pi.part_id = p2.parent_part_id;
Combined | Parts

__________________ PR

table and chairs | chair

table and chairs | table

(2 rows)

bpsimple=#

196

CHAPTER 7 ADVANCED DATA SELECTION

We will see self joins again in Chapter 12, when we look at how a manager/subordinate
relationship can be stored in a single table.

Outer Joins

Another class of joins is known as the outer join. This type of join is similar to more conventional
joins, but it uses a slightly different syntax, which is why we have postponed meeting them
until now.

Suppose we want to have a list of all items we sell, indicating the quantity we have in stock.
This apparently simple request turns out to be surprisingly difficult in the SQL we know so far,
although it can be done. This example uses the item and stock tables in our sample database.
As you will remember, all the items that we might sell are held in the item table, and only items
we actually stock are held in the stock table, as illustrated in Figure 7-2.

ITEM STOCK
ITEM_ID INTEGER <<—»| ITEM_ID INTEGER
DESCRIPTION VARCHAR(64) QUANTITY INTEGER
COST_PRICE NUMERIC(7,2)
SELL_PRICE NUMERIC(7,2)

Figure 7-2. Schema for the item and stock tables

Let’s work through a solution, beginning with using only the SQL we know so far. Let’s try
a simple SELECT, joining the two tables:

bpsimple=# SELECT i.item_id, s.quantity FROM item i, stock s
bpsimple-# WHERE i.item id = s.item_id;
item id | quantity

_________ e e
1 | 12
2 | 2
4 | 8
5 | 3
7 | 8
8 | 18
10 | 1

(7 rows)

bpsimple=#

It’s easy to see (since we happen to know that our item idsinthe itemtable are sequential,
with no gaps), that some item ids are missing. The rows that are missing are those relating to
items that we do not stock, since the join between the item and stock tables fails for these rows,
as the stock table has no entry for that item_id. We can find the missing rows, using a subquery
and an IN clause:

CHAPTER 7 ADVANCED DATA SELECTION 197

bpsimple=# SELECT i.item_id FROM item i

bpsimple-# WHERE i.item_id NOT IN

bpsimple-# (SELECT i.item_id FROM item i, stock s
bpsimple(# WHERE i.item id = s.item_id);

item id

(4 rows)

bpsimple=#

We might translate this as, “Tell me all the item_ids in the itemtable, excluding those that
also appear in the stock table.”

The inner SELECT statement is simply the one we used earlier, but this time, we use the list
of item ids it returns as part of another SELECT statement. The main SELECT statement lists all
the known item_ids, except that the WHERE NOT IN clause removes those item ids found in the
subquery.

So now we have a list of item_ids for which we have no stock, and a list of item_ids for
which we do have stock, but retrieved using different queries. What we need to do now is glue
the two lists together, which is the job of the UNION join. However, there is a slight problem. Our
first statement returns two columns, item_id and quantity, but our second SELECT returns only
item_ids, as there is no stock for these items. We need to add a dummy column to the second
SELECT, so it has the same number and types of columns as the first SELECT. We will use NULL.
Here is our complete query:

SELECT i.item_id, s.quantity FROM item i, stock s WHERE i.item id = s.item id
UNION
SELECT i.item_id, NULL FROM item i WHERE i.item id NOT IN

(SELECT i.item id FROM item i, stock s WHERE i.item id = s.item id);

This looks a bit complicated, but let’s give it a try:

bpsimple=# SELECT i.item_id, s.quantity FROM item i, stock s

bpsimple-# WHERE i.item_id = s.item_id

bpsimple-# UNION

bpsimple-# SELECT i.item_id, NULL FROM item i

bpsimple-# WHERE i.item_id NOT IN

bpsimple-# (SELECT i.item_id FROM item i, stock s WHERE i.item_id = s.item_id);
item_id | quantity

_________ e
1| 12
2 | 2
3 |
4 | 8
5 | 3
6 |

198 CHAPTER 7 ADVANCED DATA SELECTION

7 | 8
8 | 18
9 |
10 | 1
11 |
(11 rows)
bpsimple=#

In the early days of SQL, this was pretty much the only way of solving this type of problem,
except that SQL89 did not allow the NULL we used in the second SELECT statement as a column.
Fortunately, most vendors allowed the NULL, or life would have been even more difficult. If we
had not been allowed to use NULL, we would have used 0 (zero) as the next best alternative. NULL
is better because 0 is potentially misleading; NULL will always be blank.

To get around this rather complex solution for what is a fairly common problem, vendors
invented outer joins. Unfortunately, because this type of join did not appear in the standard, all
the vendors invented their own solutions, with similar ideas but different syntax.

Oracle and DB2 used a syntax with a + sign in the WHERE clause to indicate that all values of
a table must appear (the preserved table), even if the join failed. Sybase used *= in the WHERE
clause to indicate the preserved table. Both of these syntaxes are reasonably straightforward,
but unfortunately different, which is not good for the portability of your SQL.

When the SQL92 standard appeared, it specified a very general-purpose way of implementing
joins, resulting in a much more logical system for outer joins. Vendors have, however, been
slow to implement the new standard. (Sybase 11 and Oracle 8, which both came out after the
SQL92 standard, did not support it, for example.) PostgreSQL implemented the SQL92 standard
method starting in version 7.1.

Note If you are running a version of PostgreSQL prior to version 7.1, you will need to upgrade to try the
last examples in this chapter. It’s probably worth upgrading if you are running a version older than 7.x anyway,
as version 8 has significant improvements over older versions.

The SQLI92 syntax for outer joins replaces the WHERE clause we are familiar with, using an ON
clause for joining tables, and adds the LEFT OUTER JOIN keywords. The syntax looks like this:

SELECT columns FROM table1
LEFT OUTER JOIN table2 ON tablei.column = table2.column

The table name to the left of LEFT OUTER JOIN is always the preserved table, the one from
which all rows are shown.
So, now we can rewrite our query, using this new syntax:

SELECT i.item_id, s.quantity FROM item i
LEFT OUTER JOIN stock s ON i.item id = s.item id;

Does this look almost too simple to be true? Let’s give it a go:

CHAPTER 7 ADVANCED DATA SELECTION

bpsimple=# SELECT i.item_id, s.quantity FROM item i
bpsimple-# LEFT OUTER JOIN stock s ON i.item_id = s.item_id;
item_id | quantity

_________ e ceeee
1| 12
2 | 2
3 |
4 | 8
5 | 3
6 |
7| 8
8 | 18
9 |
10 | 1
11 |

(11 rows)

bpsimple=#

As you can see, the answer is identical to the one we got from our original version.

You can see why most vendors felt they needed to implement an outer join, even though it
wasn'’t in the original SQL89 standard.

There is also the equivalent RIGHT OUTER JOIN, butthe LEFT OUTER JOIN is used more often
(at least for Westerners, it makes more sense to list the known items down the left side of the
output rather than the right).

Try It Out: Use a More Complex Condition

The simple LEFT OUTER JOIN we have used is great as far as it goes, but how do we add more
complex conditions?

Suppose we want only rows from the stock table where we have more than two items in stock,
and overall, we are interested only in rows where the cost price is greater than 5.0. This is quite
a complex problem, because we want to apply one rule to the item table (that cost_price > 5.0)
and a different rule to the stock table (quantity > 2), but we still want to list all rows from the
item table where the condition on the item table is true, even if there is no stock at all.

What we do is combine ON conditions that work on left-outer-joined tables only, with WHERE
conditions that limit all the rows returned after the table join has been performed.

The condition on the stock table is part of the outer join. We don’t want to restrict rows
where there is no quantity, so we write this as part of the ON condition:

ON i.item id = s.item id AND s.quantity > 2

For the item condition, which applies to all rows, we use a WHERE clause:
WHERE i.cost price > cast(5.0 AS numeric(7,2));

Putting them both together, we get this:

bpsimple=# SELECT i.item_id, i.cost_price, s.quantity FROM item i
bpsimple-# LEFT OUTER JOIN stock s

199

200

CHAPTER 7 ADVANCED DATA SELECTION

bpsimple-# ON i.item_id = s.item_id AND s.quantity > 2
bpsimple-# WHERE i.cost_price > cast(5.0 AS numeric(7,2));
item id | cost price | quantity

_________ e e
1| 15.23 | 12
2 | 7.45 |
5 | 7.54 | 3
6 | 9.23 |
7| 13.36 | 8
11 | 19.73 |

(6 Tows)

bpsimple=#

How It Works

We use a LEFT OUTER JOIN to get all the values from the item table, optionally joining to the
stock table where both a row exists and the quantity is greater than 2. This gives us a set of rows
where all the rows from the item table appear, but the quantity column (from the stock table)
will contain NULL unless it both has an entry for that item and the quantity value is greater than
2. The WHERE clause is then applied, which allows through rows only where the cost price (from
the item table) is greater than 5.0.

Summary

We started the chapter looking at aggregate functions that we can use in SQL to select single
values from a number of rows. In particular, we met the count (*) function, which you will find
widely used to determine the number of rows in a table. We then met the GROUP BY clause,
which allows us to select groups of rows to apply the aggregate function to, followed by the
HAVING clause, which allows us to restrict the output of rows containing particular aggregate
values.

Next, we took a look at subqueries, where we use the results from one query in another
query. We saw some simple examples and touched on a much more difficult kind of query, the
correlated subquery, where the same column appears in both parts of a subquery.

Then we looked briefly at the UNION join, which allows us to combine the output of two
queries in a single result set. Although this is not widely used, it can occasionally be very useful.

Finally we met outer joins, a very important feature that allows us to perform joins between
two tables, retrieving rows from the first table, even when the join to the second table fails.

In this chapter, we have covered some difficult aspects of SQL. You have now seen a wide
range of SQL syntax, so if you see some advanced SQL in existing systems, you will at least have
areasonable understanding of what is being done. Don’t worry if some parts still seem a little
unclear. One of the best ways of truly understanding SQL is to use it, and use it extensively.
Get PostgreSQL installed, install the test database and some sample data, and experiment.

In the next chapter, we will look in more detail at data types, creating tables, and other
information that you need to know to build your own database.

CHAPTER 8

Data Definition
and Manipulation

Up until now, we have concentrated on the PostgreSQL tools and data manipulation. Although
we created a database early in the book, we looked only superficially at table creation and the
data types available in PostgreSQL. We kept our table definitions simple by just using primary
keys and defining a few columns that do not accept NULL values.

In a database, the quality of the data should always be one of our primary concerns. Having
very strict rules about the data, enforced at the lowest level by the database, is one of the most
effective measures we can use to maintain the data in a consistent state. This is also one of the
features that distinguish true databases from simple indexed files, spreadsheets, and the like.

In this chapter, we will look in more detail at the data types available in PostgreSQL and
how to manipulate them. Then we will look at how tables are managed, including how to use
constraints, which allow us to significantly tighten the rules applied when data is added to or
removed from the tables in the database. Next, we will take a brieflook at views. Finally, we will
explore foreign key constraints in depth and use them in the creation of an updated version of
our sample database. We will create the bpfinal database, which we will use in the examples in
the following chapters.

In this chapter, we will cover the following topics:

¢ Data types

e Data manipulation
* Table management
* Views

» Foreign key constraints

Data Types
At the most basic level, PostgreSQL supports the following types of data:
* Boolean

¢ Character

201

202

CHAPTER 8 DATA DEFINITION AND MANIPULATION

e Number

¢ Temporal (time-based)

¢ PostgreSQL extension types
¢ Binary Large Object (BLOB)

Here, we will look at each of these types, except BLOB, which is less commonly used. If
you're interested in BLOB types, see Appendix F for details on how to use them.

The Boolean Data Type

The Boolean type is probably the simplest possible type. It can store only two possible values,
true and false, and NULL, for when the value is unknown. The type declaration for a Boolean
column is officially boolean, but it is almost always shortened to simply bool.

When data is inserted into a Boolean column in a table, PostgreSQL is quite flexible about
what it will interpret as true and false. Table 8-1 offers a list of acceptable values and their
interpretation. Anything else will be rejected, apart from NULL. Like SQL keywords, these are
also case-insensitive; for example, 'TRUE' will also be interpreted as a Boolean true.

Table 8-1. Ways of Specifying Boolean Values

Interpreted As True Interpreted As False
1 ‘0"
yes' no

'y Y

"true’ 'false'

t !

Note When PostgreSQL displays the contents of a boolean column, it will show only t, f, and a space
character for a true, false, and NULL, respectively, regardless of how you set the column value (' true",
'y', 't", and so on). Since PostgreSQL stores only one of the three possible states, the exact phrase you
used to set the column value is never stored, only the interpreted value.

Try It Out: Use Boolean Values

Let’s create a simple table with a bool column, and then experiment with some values. Rather
than experiment in our bpsimple database with our “real” data, we will create a test database
to use for these purposes. If you worked with the examples in Chapter 3, you may already have
created this database, and just need to connect to it. If not, create it and then connect to it,

as follows:

CHAPTER 8 DATA DEFINITION AND MANIPULATION

bpsimple=> CREATE DATABASE test;

CREATE

DATABASE

bpsimple=> \c test
You are now connected to database "test".

test=>

Now we will create a table, testtype, with a variable-length string and a Boolean column,
insert some data, and see what PostgreSQL stores. Here is our short psql session:

test=>
test(>
test(>
test(>
CREATE
test=>
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>

CREATE TABLE testtype (

valused varchar(10),
boolres bool

)s

TABLE

INSERT INTO testtype
17862 1
INSERT INTO testtype
17863 1
INSERT INTO testtype
17864 1
INSERT INTO testtype
17865 1
INSERT INTO testtype
17866 1
INSERT INTO testtype
17867 1
INSERT INTO testtype
17868 1

VALUES('TRUE', TRUE);
VALUES('1', '1');
VALUES('t', 't');
VALUES('no', 'no');
VALUES('f', 'f');
VALUES('Null', NULL);

VALUES('FALSE', FALSE);

Let’s check that the data has been inserted:

test=> SELECT * FROM testtype;
valused | boolres

Null
FALSE

(7 rows)

test=>

203

204

CHAPTER 8 DATA DEFINITION AND MANIPULATION

How It Works

We created a table testtype with two columns. The first column holds a string, and the second
holds a Boolean value. We then inserted data into the table, each time making the first value a
string, to remind us what we inserted, and the second the same value, but to be stored as a
Boolean value. We also inserted a NULL, to show that PostgreSQL (unlike at least one commer-
cial database) does allow NULL to be stored in a boolean type. We then extracted the data again,
which showed us how PostgreSQL had interpreted each value we passed to it as one of true,
false, or NULL.

Character Data Types

The character data types are probably the most widely used in any database. There are three
character type variants, used to represent the following string variations:

* Asingle character
» Fixed-length character strings
¢ Variable-length character strings

These are standard SQL character types, but PostgreSQL also supports a text type, which
is similar to the variable-length type, except that we do not need to declare any upper limit to
the length. This is not a standard SQL type, however, so it should be used with caution. The
standard types are defined using char, char(n), and varchar(n). Table 8-2 shows the PostgreSQL
character types.

Table 8-2. PostgreSQL Character Types

Definition Meaning
char A single character.
char(n) A set of characters exactly n characters in length, padded with spaces. If you

attempt to store a string that is too long, an error will be generated.

varchar(n) A set of characters up to n characters in length, with no padding. PostgreSQL
has an extension to the SQL standard that allows specifying varchar without a
length, which makes the length effectively unlimited.

text Effectively, an unlimited length character string, like varchar but without the
need to define a maximum. This is a PostgreSQL extension to the SQL standard.

Given a choice of three standard types to use for character strings, which should you pick?
As always, there is no definitive answer. If you know that your database is going to run only on
PostgreSQL, you could use text, since it is easy to use and doesn’t force you to decide on the
maximum length. Its length is limited only by the maximum row size that PostgreSQL can
support. If you are using a version of PostgreSQL earlier than 7.1, the row limit is around 8KB
(unless you recompiled from source and changed it). From PostgreSQL 7.1 onwards, that limit
is gone. The actual limit for any single field in a table for PostgreSQL versions 7.1 and later is
1GB; in practice, you should never need a character string that long.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 205

The major downside is that text is not a standard type. So, if there is even a slight chance
that you will one day need to port your database to something other than PostgreSQL, you
should avoid text. Generally, we have not used the text type in this book, preferring the more
standard SQL type definitions, varchar and char.

Conventionally char(n) is used where the length of the string to be stored is fixed or varies
only slightly between rows, and varchar (n) is used for strings where the length may vary signif-
icantly. This is because in some databases, the internal storage of a fixed-length string is more
efficient than a variable-length one, even though some additional, unnecessary characters
may be stored. However, internally, PostgreSQL will use the same representation for both char
and varchar types. So, for PostgreSQL, which type you use is more a personal preference.
Where the length varies significantly between different rows of data, choose the varchar(n)
type. Also, if you're not sure about the length, use varchar(n).

Just as with the boolean type, all character types can also contain NULL, unless you specifi-
cally define the column to not permit NULL values.

Try It Out: Use Character Types

Let’s see how the PostgreSQL character types work. First, we need to drop our testtype table,
and then we can re-create it with some different column types:

test=> DROP TABLE testtype;

DROP TABLE

test=>

test=> CREATE TABLE testtype (

test(> singlechar char,

test(> fixedchar char(13),
test(> variablechar varchar(128)
test(>);

CREATE TABLE

test=>

test=> INSERT INTO testtype VALUES('F', '0-349-10177-9', 'The Wasp Factory');
INSERT 17871 1
test=> INSERT INTO testtype VALUES('S', '1-85723-457-X', 'Excession');
INSERT 17872 1
test=> INSERT INTO testtype VALUES('F', '0-349-10768-8', 'Whit');
INSERT 17873 1
test=> INSERT INTO testtype VALUES(NULL, '', 'T.B.D.');
INSERT 17874 1
test=> INSERT INTO testtype VALUES('L', 'A String that is too long', 'L');
ERROR: value too long for type character(13)
test=>
test=> SELECT * FROM testtype;
singlechar | fixedchar | variablechar
____________ o e
0-349-10177-9 | The Wasp Factory
1-85723-457-X | Excession
0-349-10768-8 | Whit
| T.B.D.
(4 rows)

206

CHAPTER 8 DATA DEFINITION AND MANIPULATION

test=>
test=> SELECT fixedchar, length(fixedchar), variablechar FROM testtype
test-> WHERE singlechar = 'S';

fixedchar | length | variablechar
_______________ e eem
1-85723-457-X | 13 | Excession
(1 row)

test=> SELECT fixedchar, length(fixedchar), variablechar FROM testtype
test-> WHERE singlechar IS NULL;

fixedchar | length | variablechar
_______________ +________+______________
| 0| T.B.D
(1 Tow)
test=>
How It Works

We created a table with three columns, one for each of the different standard SQL types. The
singlechar column holds a single character, the fixedchar column holds exactly 13 characters,
and the variablechar column holds up to 128 characters. We then stored different data in the
columns, and retrieved them again to show that PostgreSQL has stored the data correctly,
although in the psql output, you can’t actually see the padding.

We also tried to store a string that is too long in our fixedchar column. This generated an
error, and no data was inserted.

We retrieved rows where the length of the string fixedchar is different, and used the built-in
function length() to determine its size. We will look at some other functions that are useful for
manipulating data in the “Functions Useful for Data Manipulation” section later in this chapter.

Note In versions of PostgreSQL before 8.0, the 1ength() function in this example would always have
been 13, since the storage type char (n) is fixed-length and data is always padded with spaces, but now the
length() function ignores those spaces and returns a more useful result.

Number Data Types

The number types in PostgreSQL are slightly more complex than those we have met so far, but
they are not particularly difficult to understand. There are two distinct types of numbers that
we can store in the database: integers and floating-point numbers. These subdivide again, with
a special subtype of integer, the serial type (which we have already used to create unique
values in a table) and different sizes of integers, as shown in Table 8-3.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 207

Table 8-3. PostgreSQL Integer Number Types

Subtype Standard Name Description

small integer smallint A 2-byte signed integer, capable of storing numbers
from -32768 to 32767

integer int A 4-byte integer, capable of storing numbers from
—2147483648 to 2147483647

serial Same as integer, except that its value is normally
automatically entered by PostgreSQL

Floating-point numbers also subdivide, into those offering general-purpose floating-point
values and fixed-precision numbers, as shown in Table 8-4.

Table 8-4. PostgreSQL Floating-Point Number Types

Subtype Standard Name Description

float float(n) A floating-point number with at least the precision n, up to a
maximum of 8 bytes of storage.

float8 real A double-precision (8-byte) floating-point number.

numeric numeric(p,s) A real number with p digits, s of them after the decimal point.

Unlike float, this is always an exact number, but less effi-
cient to work with than ordinary floating-point numbers.

money numeric(9,2) A PostgreSQL-specific type, though common in other data-
bases. The money type became deprecated in version 8.0 of
PostgreSQL, and may be removed in later releases. You should
use numeric instead.

The split of the two types into integer and floating-point numbers is easy enough to under-
stand, but what might be less obvious is the purpose of the numeric type.

Floating-point numbers are stored in scientific notation, with a mantissa and exponent.
With the numeric type, you can specify both the precision and the exact number of digits stored
when performing calculations. You can also specify the number of digits held after the decimal
point. The actual decimal-point location comes for free!

Caution A common mistake is to think that numeric(5,2) can store a number, such as 12345.12. This
is not correct. The total number of digits stored is only five, so a declaration of numeric(5,2) can store only
up to 999.99 before overflowing.

208

CHAPTER 8 DATA DEFINITION AND MANIPULATION

PostgreSQL will generally catch attempts to insert values into fields that cannot store them,
so attempting to insert overly large numbers into any number column will fail.

Try It Out: Use Number Types

Now we can experiment with the number data types. First, we need to drop our testtype table,
and then re-create it with some different column types:

test=> DROP TABLE testtype;
DROP TABLE

test=> CREATE TABLE testtype (

test(> asmallint smallint,
test(> anint int,

test(> afloat float(2),
test(> areal real,

test(> anumeric numeric(5,2)
test(>);

CREATE TABLE

test=> INSERT INTO testtype VALUES(2, 2, 2.0, 2.0, 2.0);

INSERT 17883 1

test=> INSERT INTO testtype VALUES(-100, -100, 123.456789, 123.456789, 123.456789);
INSERT 17884 1

test=> INSERT INTO testtype VALUES(-32768, -123456789, 1.23456789,

test-> 1.23456789, 1.23456789);

INSERT 17885 1

test=> INSERT INTO testtype VALUES(-32768, -123456789, 123456789.123456789,
test-> 23456789.123456789, 123456789.123456789);

ERROR: numeric field overflow

DETAIL: The absolute value is greater than or equal to 10”8 for field with
precision 5, scale 2.

test=>

test=> INSERT INTO testtype VALUES(-32768, -123456789, 123456789.123456789,
test-> 123456789.123456789, 123.123456789);

INSERT 17886 1

test=>
test=> SELECT * FROM testtype;
asmallint | anint | afloat | areal | anumeric
——————————— bt S R Rt
2 | 2| 2 | 2 | 2.00
-100 | -100 | 123.457 | 123.457 | 123.46
-32768 | -123456789 | 1.23457 | 1.23457 | 1.23
-32768 | -123456789 | 1.23457e+008 | 1.23457e+008 | 123.12
(4 Tows)

test=>

CHAPTER 8 DATA DEFINITION AND MANIPULATION

How It Works

We created a table with a small integer column, a normal integer column, a floating-point
number, a real number, and a numeric with a precision of 5 and a scale of 2.

You can see that float and real behave in a very similar fashion, but the numeric column
behaves somewhat differently. Rather than storing approximate numbers, numeric rounds the
number to store a fixed number of digits after the decimal place. The INSERT fails if we try to
store anumber in it thatis too large. Also notice that both float and real have rounded numbers;
for example, 123.456789 has been rounded to 123.457.

Temporal Data Types

We looked at temporal data types, which store time-related information, in Chapter 4, when
we saw how to control data formats. PostgreSQL has a range of types relating to date and time,
as shown in Table 8-5, but we will generally confine ourselves to the standard SQL92 types in
this book.

Table 8-5. PostgreSQL Temporal Data Types

Definition Meaning

date Stores date information

time Stores time information

timestamp Stores a date and time

interval Stores information about a difference in timestamps

timestamptz A PostgreSQL extension that stores a timestamp and time zone information
Special Data Types

From its origins as a research database system, PostgreSQL has acquired some unusual data
types to store geometric and network data types, as shown in Table 8-6. The use of any of these
PostgreSQL special features will make portability of a PostgreSQL database quite poor, so gener-
ally, we tend to avoid these extensions. For further information about these types, consult the
PostgreSQL documentation, under “Data Types.”

Table 8-6. PostgreSQL Special Data Types

Definition Meaning

box A rectangular box

line A set of points

point A geometric pair of numbers

lseg Aline segment

polygon A closed geometric line

cidr or inet An IP version 4 address, such as 196.192.12.45

macaddr A MAC (Ethernet physical) address

209

210

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Note PostgreSQL also allows you to create your own types for use in the database, using the SQL CREATE
TYPE command. This is not commonly needed, and it is performed in a manner unique to PostgreSQL. Further
details can be found in the documentation. Be aware that creating your own types is likely to result in a data-
base schema that is very specific to PostgreSQL, as user-created types tend not to be portable.

Arrays

PostgreSQL has another unusual feature: the ability to store arrays in tables. This was not a
standard SQL feature until SQL99, so it is not common in database implementations. Normally,
an array would be implemented using an additional table. However, the array facility can
sometimes be useful, particularly when you need to store a fixed number of repeating elements,
and it is very easy to use.

There are two syntaxes for creating arrays: the original PostgreSQL way and the more stan-
dard SQL99 way. We will look briefly at both methods here.

PostgreSQL-Style Arrays

To declare a column in a table as an array, you simply add [] after the type; there is no need to
declare the number of elements. If you do declare a size, PostgreSQL accepts the definition, but
it doesn’t enforce the number of elements.

Try It Out: Use the PostgreSQL Syntax for Arrays

As an example, suppose we decided to have a table of employees, with an indicator to show
which days of the week they worked. Normally, this would require a column for each day or a
separate table to hold the workdays. In PostgreSQL, we can simplify this and hold an array of
working days directly, as follows:

test=> CREATE TABLE empworkday (
test(> refcode char(s),
test(> workdays int[]

test(>);

CREATE TABLE

test=>

This creates a table named empworkday with two columns: a character reference code and
an array of integers called workdays. To insert values into the array column, we need to enclose
a comma-separated list of values in a pair of {} delimiters, like this:

test=> INSERT INTO empworkday VALUES('valo1', '{0,1,0,1,1,1,1}");
INSERT 17892 1

test=> INSERT INTO empworkday VALUES('valo2', '{o0,1,1,1,1,0,1}");
INSERT 17893 1

test=>

CHAPTER 8 DATA DEFINITION AND MANIPULATION 211

We can now select all the values of the array elements at once, like this:

test=> SELECT * FROM empworkday;

refcode | workdays
_________ e
valot | {o0,1,0,1,1,1,1}
valo2 | {o,1,1,1,1,0,1}
(2 rows)

test=>

We can also select individual elements by giving an array index:

test=> SELECT workdays[2] FROM empworkday WHERE refcode = 'valo2';
workdays

(1 row)
test=>

How It Works

PostgreSQL behaves much like a conventional programming language, storing an array of
values, with the added benefit that you don’t need to specify the size of the array. If you select
the whole of an array, PostgreSQL displays all the values, separated by commas, between curly
braces.

One thing to notice is that PostgreSQL’s first array element is at offset 1, rather than 0, as is
common with many programming languages. If you try to select a nonexistent array element,
aNULL will be returned.

Note PostgreSQL also allows multidimensional arrays. For more information about PostgreSQL arrays, see
the documentation.

SQL99-Style Arrays

In the SQL99 standard, a new array declaration syntax was introduced. This is more explicit
than the PostgreSQL style in that the number of elements must be declared, which is not enforced
in the PostgreSQL implementation of the standard.

Try It Out: Use the SQL99 Syntax for Arrays

Let’s delete our earlier table and repeat the experiment using SQL99-style array declarations:

212

CHAPTER 8 DATA DEFINITION AND MANIPULATION

test=> DROP TABLE empworkday;

DROP TABLE

test=> CREATE TABLE empworkday (

test(> refcode char(s),

test(> workdays int array[7]

test(>);

CREATE TABLE

test=> INSERT INTO empworkday VALUES('valo1', '{0,1,0,1,1,1,1}");
INSERT 17899 1

test=> INSERT INTO empworkday VALUES('valo2', '{o0,1,1,1,1,0,1}");
INSERT 17900 1

test=>

test=> SELECT * FROM empworkday;
refcode | workdays

_________ e
valot | {o0,1,0,1,1,1,1}
valo2 | {o0,1,1,1,1,0,1}

(2 rows)

test=>

test=> SELECT workdays[2] FROM empworkday WHERE refcode = 'valo2';
workdays

(1 Tow)
test=>

How It Works

As you can see, the behavior of SQL99-style arrays is identical to that of PostgreSQL-style
arrays. Only the declaration syntax is different.

Data Manipulation

PostgreSQL offers some facilities for manipulating table data. Here, we will look at some built-in
functions and “magic” variables. We will also take a closer look at the oid column that PostgreSQL
adds to tables.

Converting Between Data Types

From time to time, we need to convert between data types in a database. Type conversions may
be useful, and are sometimes necessary, such as when working with dates and times. For
example, we may be processing date values that have come from another system and been
loaded into the database as strings. Converting these strings to date data types will enable us to
query by date, something that could not be done if we left them as simple strings.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 213

Note Generally, you should be concerned at seeing type conversions, since too many type conversions in
an application may indicate a design flaw in the database.

There is quite a degree of variation in how relational databases do type conversions.
PostgreSQL uses a cast notation:

cast(column-name AS type-definition-to-convert-to)

An alternative, more succinct, double-colon syntax can be used in place of a simple
column name in a SELECT statement:

column-name: :type-definition-to-convert-to

Suppose we wanted to grab the date from the orderinfo table in our original bpsimple
database as a char (10) . We would write the following:

SELECT cast(date_placed AS char(10)) FROM orderinfo;
Executing this in our bpsimple database, we see this:

bpsimple=> SELECT cast(date_placed AS char(10)) FROM orderinfo;
date placed

2004-03-13

2004-06-23

2004-09-02

2004-09-03

2004-07-21

(5 rows)

bpsimple=>

We can use cast (or : :) on values as well as columns, and we can name the result to provide
a column heading, as we will do in the next example.

Try It Out: Cast Types

Suppose we want to produce a list of items, showing the price to the nearest dollar. We can do
this easily by simply casting the price to an integer. We will select the “raw” price as well, to
show that PostgreSQL is rounding the price.

214

CHAPTER 8 DATA DEFINITION AND MANIPULATION

bpsimple=> SELECT sell_price, sell price::int AS "Guide Price" FROM item
WHERE sell price > 5.0;
sell price | Guide Price

____________ PR
21.95 | 22
9.95 | 10
15.75 | 16
19.95 | 20
25.32 | 25
11.49 | 11

(6 Tows)

bpsimple=>

How It Works

We cast the sell price column to an integer (sell price::int) and also named it (AS "Guide
Price"). We could just as well have written this using the cast notation; the two casting forms
are interchangeable.

Comparing the two columns, we can see how PostgreSQL makes sensible decisions about
rounding. In older versions of PostgreSQL, it was more frequently necessary to perform explicit
casting between data types. Generally, the current version makes reasonable conversions
automatically.

Note that it is not possible to universally convert between types. For example, you cannot
castadate as an integer.

Functions for Data Manipulation

PostgreSQL provides some general-purpose functions that you can use for manipulating
columns, which are listed in Table 8-7. See Chapter 10 for more information about PostgreSQL’s
built-in functions.

Table 8-7. Useful Data Manipulation Functions

Function Description

length(column-name) Returns the length of a string.

trim(column-name) Removes leading and trailing spaces.

strpos(column-name, string) Returns the position of a string in the column.

substr(column-name, position, length) Returns the length characters from the string, starting the
search from the given character position. The first character
is counted as position 1.

round(column-name, length) Rounds a number to a given number of decimal places.

abs (number) Gets the absolute value of a number.

CHAPTER 8

DATA DEFINITION AND MANIPULATION 215

These functions are used in the same way as the cast function, as described in the previous
section. Here’s an example of using the substr and round functions:

bpsimple=> SELECT substr(description, 3, 5), round(sell_price, 1) FROM item;

substr | round

________ e een
od Pu | 22.0

nux C | 2.5

ssues | 4.0

cture | 10.0

n Sma | 15.8

n lar | 20.0

othbr | .5

man C | .5

rrier | .0

eaker | 25.3

bik C | 11.5

(11 rows)

bpsimple=>
Magic Variables

Occasionally, we want to store some information in the database that relates to the current
user or time in some way, perhaps to implement an audit trail. PostgreSQL provides several
“magic” variables for doing this. The following are the most useful of these variables:

* CURRENT_DATE
e CURRENT_TIME
e CURRENT_TIMESTAMP

» CURRENT_USER

You can use these just like column names, or you can SELECT them without including a

table name at all:

bpsimple=> SELECT item_id, quantity, CURRENT_TIMESTAMP FROM stock;

.500694+01
.500694+01
.500694+01
.500694+01
.500694+01
.500694+01

item_id | quantity | timestamptz
_________ e o e

1| 12 | 2004-10-19 18:03:14

2 | 2 | 2004-10-19 18:03:14

4 | 8 | 2004-10-19 18:03:14

5 | 3 | 2004-10-19 18:03:14

7| 8 | 2004-10-19 18:03:14

8 | 18 | 2004-10-19 18:03:14

10 | 1 | 2004-10-19 18:03:14

.500694+01

216

CHAPTER 8 DATA DEFINITION AND MANIPULATION

bpsimple=> SELECT CURRENT_USER, CURRENT_TIME;

current user | timetz
______________ +____________________
rick | 18:03:40.862712+01
(1 Tow)

bpsimple=>

These magic variables can also be used in INSERT and UPDATE statements, as in this
example:

INSERT INTO orderinfo(orderinfo id, customer id, date placed, date shipped,
shipping) VALUES (5, 8, CURRENT DATE, NULL, 0.0);

The OID Column

You will have noticed that each time we insert data, PostgreSQL responds with an almost arbitrary
looking number, as well as the number of rows inserted. As we mentioned briefly in Chapter 6,
this number is an internal reference number, an object ID, that PostgreSQL stores against each
row—a normally hidden column named oid.

Most relational databases do not have such a column, or if they do, it is not accessible to
the users. With PostgreSQL, we can see this number by explicitly naming it when we SELECT
from a table, like this:

bpsimple=> SELECT oid, fname, lname FROM customer;

oid | fname | lname
_______ e e
19888 | Jenny | Stones
19889 | Andrew | Stones
19890 | Alex | Matthew
19891 | Adrian | Matthew
19892 | Simon | Cozens
19893 | Neil | Matthew
19894 | Richard | Stones
19895 | Ann | Stones
19896 | Christine | Hickman
19897 | Mike | Howard
19898 | Dave | Jones
19899 | Richard | Neill
19900 | Laura | Hardy
19901 | Bill | 0'Neill
19902 | David | Hudson
(15 rows)

bpsimple=>

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Your database will almost certainly have different values for the oid column. You will also
see OID appear in an ODBC driver configuration. You can choose to display it or hide it.

Itis possible to prevent the oid column from being added to user tables in the database by
setting the default_with_oids flag to false in the postgresql.conf configuration file or explic-
itly specifying WITHOUT OIDS when you create the table. The default in version 8.0 of PostgreSQL
is to create oid columns on user tables. However, in future releases of PostgreSQL, the default
will probably change to not create oid columns. Consequently, you should never rely on an oid
column being present in your database, and we suggest you avoid using either the WITH OIDS or
WITHOUT OIDS option in table-creation statements.

Table Management

Now that we know about PostgreSQL data types, we can use them when we create tables. We
have already seen the CREATE TABLE SQL command, which we used to create tables in our sample
database, but we will cover it more formally here. We will also explore some additional features,
such as temporary tables, altering tables after creation, and deleting tables when they are no
longer required.

Creating Tables

The basic syntax for creating tables is as follows:

CREATE [TEMPORARY] TABLE table-name (
{ column-name type [column-constraint] [,...] }
[CONSTRAINT table-constraint |

) [INHERITS (existing-table-name)]

This may look a little complex, but it is actually quite straightforward. The first line simply
says that you create tables by using CREATE TABLE, followed by the name of the table and an
opening parenthesis. TEMPORARY allows you to create a temporary table, as described in the
“Using Temporary Tables” section later in this chapter.

Next, you list the column name, its type, and an optional column constraint. You can
essentially have an unlimited number of columns in your table, each one separated by a comma.
The optional column constraint allows you to specify additional rules for the column, and you
have already seen the most common example, NOT NULL.

After the list of columns comes an optional table-level constraint, which allows you to write
additional table-level rules that must be obeyed by the data in the table, such as a column value
must always be smaller than a number. For example, a day-of-the-week column might be
constrained to be less than 7. We’ll discuss both column and table constraints in the following
sections.

Last comes a PostgreSQL extension, INHERITS, which allows a new table being created to
inherit the columns from an existing table. The new table contains all the columns that are in
the tables listed after the INHERITS keyword, in addition to those specified directly. See the
PostgreSQL documentation for more information about using INHERITS.

217

218

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Tip We strongly advise you to always store the commands you use for creating your database in a script,
and always use that script for creating your database. If you need to change the database design, it is much
easier and more reliable to modify the script than to re-create the database. Then you won’t need to try to
recall the commands you used initially to create the database all those months (or was it just days...) ago.
You will find that the effort of initially creating a script, and keeping it up-to-date, pays you back many, many
times over.

Using Column Constraints

It is common to have columns in a table where certain rules apply. We have seen some simple
ones already, such as ensuring that a customer’s last name is NOT NULL. Sometimes, we want to
impose rules that govern the data when it is known, such as ensuring that a pay rate column
will accept values only above a minimum or ensuring that columns are unique. Applying
constraints to columns allows us to perform these checks at the lowest level of our complete
application—in the database.

For hard-and-fast basic rules, enforcing them at the database level is a good technique,
since it is independent of the application, so any application bugs that might allow illegal
values to slip through will be caught by the database. It is also often easier to apply the rule by
writing a definition when a table is created, rather than by writing application logic code to
support the rule.

Table 8-8 shows the principal constraints that you will find useful. (There are also more
advanced constraints, which are defined in the PostgreSQL documentation.) We won’t discuss
the REFERENCES constraints here, but will cover it later in the chapter, in the “Foreign Key
Constraints” section.

Table 8-8. Principal Column Constraints

Definition Meaning
NOT NULL The column cannot have a NULL value stored in it.
UNIQUE The value stored in the column must be different for each row in

the database. PostgreSQL allows you to have as many rows as you
like with NULL in a column declared UNIQUE.

PRIMARY KEY Effectively, a combination of NOT NULL and UNIQUE. Each table
may have only a single column marked PRIMARY KEY. (You can
have multiple columns marked both NOT NULL and UNIQUE,
however.) If you need to create a composite primary key (a primary
key that comprises more than one column), you must use a table-
level constraint, rather than the column-level constraint.

DEFAULT default-value Allows you to provide a default value when inserting data. (Strictly
speaking, this is not a constraint option, but it’s easier to consider
it along with the true constraints.)

CHECK (condition) Allows you to check a condition when inserting or updating data.

REFERENCES Constrains the value to be one that appears in a column in a
separate table.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 219

With the exception of PRIMARY KEY, you can have as many columns with as many constraints
as you need. It is possible, but not common, to name column-level constraints.

One particular point to note is what happens when a NULL value is added to a column with
a UNIQUE constraint. PostgreSQL considers each NULL to be unique, so it allows you to have as
many rows as you like with NULL in a column declared UNIQUE. According to the SQL standard,
only a single NULL should be allowed, so this is a slight deviation from the standard. Arguably,
the SQL standard is more logical, since if NULL is unknown, there is no way of knowing that two
of them are different, but the PostgreSQL implementation is probably more intuitive.

Try It Out: Apply Column Constraints

The easiest way to understand column constraints is to see them in action. Let’s create a new
table in the test database we created earlier, and then use it to experiment with some constraints:

bpsimple=> \c test

You are now connected to database "test".

test=> CREATE TABLE testcolcons (

test(> colnotnull INT NOT NULL,

test(> colunique INT UNIQUE,

test(> colprikey INT PRIMARY KEY,

test(> coldefault INT DEFAULT 42,

test(> colcheck INT CHECK(colcheck < 42)

test(>);

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index
"testcolcons _pkey" for table "testcolcons"

NOTICE: CREATE TABLE / UNIQUE will create implicit index
"testcolcons_colunique_key" for table "testcolcons"
CREATE TABLE

test=>

You can see that PostgreSQL warns us that it has created indexes to enforce the PRIMARY
KEY and UNIQUE constraints. It has also picked meaningful names for us.

Now that we have created a table with a variety of constraints on the columns, we can try
inserting some data and see how the constraints work in practice:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey, coldefault,
test(> colcheck) VALUES(1,1,1,1,1);

INSERT 17497 1

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,

test(> oldefault, colcheck) VALUES(2,2,2,2,2);

INSERT 17498 1

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,

test(> coldefault, colcheck) VALUES(2,2,2,2,2);

ERROR: duplicate key violates unique constraint "testcolcons pkey"

test=>

This INSERT has failed, because the index testcolcons_pkey found a duplicate value. We
need to use a little common sense here, and realize that an index called testcolcons_pkey is
referring to a primary key index on the testcolcons table (hardly a great leap of intuition).

220

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Each table can have only one primary key; therefore, there is no ambiguity in the index being
called tablename_pkey.

However, PostgreSQL does allow us to insert two rows where the colunique column contains
NULL (which could be considered a little dangerous):

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
coldefault, colcheck) VALUES(1,NULL,98,1,1);

INSERT 17503 1

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
coldefault, colcheck) VALUES(1,NULL,99,1,1);

INSERT 17504 1

test=>

If we use actual values, PostgreSQL rejects the INSERT:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,

test(> coldefault, colcheck) VALUES(2,2,9,2,2);

ERROR: Cannot insert a duplicate key into unique index testcolcons colunique_key
test=>

This time, the INSERT fails because the index testcolcons_colunique_key found a
duplicate. We can have many columns declared UNIQUE, so PostgreSQL names the index
tablename_columnname_key, making it clear which column is causing the problem:

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey,
test(> coldefault, colcheck) VALUES(3,3,3,3,100);

ERROR: new row for relation "testcolcons" violates check constraint
"testcolcons_colcheck check"

test=>

This time, the problem is that the CHECK constraint on the column colcheck failed,
because we tried to insert a value larger than 42. Notice the constraint is named
tablename_columnname_check, so the source of the problem is easy to locate:

test=> UPDATE testcolcons SET colunique = 1 WHERE colnotnull = 2;
ERROR: duplicate key violates unique constraint
"testcolcons_colunique key"testcolcons colunique_key

test=>

We cannot update the value of colunique, because there is already a row in the table where
the column has that value:

CHAPTER 8 DATA DEFINITION AND MANIPULATION 221

test=> INSERT INTO testcolcons(colnotnull, colunique, colprikey, colcheck)
test-> VALUES(3,3,3,41);

INSERT 17505 1

test=> SELECT * FROM testcolcons;

colnotnull | colunique | colprikey | coldefault | colcheck

———————————— R et
1| 1| 1| 1| 1
2 | 2 | 2 | 2 | 2
1| | 98 | 1 | 1
1| | 99 | 1| 1
e 3 | e 42 | 41

(5 rows)

test=>

Finally, we fail to provide a value for the coldefault column (notice it is not listed in the
column list), and see that the default value is used.

If we want to check the constraints on a table, we can ask psql to list them, using the
\d tablename command, like this:

test=> \d testcolcons
Table "public.testcolcons"”
Column | Type | Modifiers
____________ oo
colnotnull | integer | not null
colunique | integer |
colprikey | integer | not null
coldefault | integer | default 42
colcheck | integer |
Indexes:
"testcolcons pkey" PRIMARY KEY, btree (colprikey)
"testcolcons_colunique_key" UNIQUE, btree (colunique)
Check constraints:
"testcolcons_colcheck check" CHECK (colcheck < 42)

test=>

How It Works

PostgreSQL uses a variety of methods to implement constraints. It is not possible to control
the order in which constraints are checked, however. The exact error you get will depend on
PostgreSQL internal implementation. What you can know for sure is that all constraints will be
checked before the data is stored in the database. You can also use transactions, which are
introduced in Chapter 9, to ensure that all or none of a set of requested changes are made to the
database.

222

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Using Table Constraints

Table constraints are very similar to column constraints, but as the name suggests, apply to the
entire table, rather than to an individual column. Sometimes, we need to specify constraints,
such as a primary key, at a table level rather than a column level. For example, we saw in our
orderline table we needed to use two columns, orderinfo_id and item id, together asacomposite
key to identify a row, since only the combination of columns must be unique. This type of
constraint is expressed at the table level.

The four table-level constraints are listed in Table 8-9.

Table 8-9. Principal Table Constraints

Name Description

UNIQUE(column-1ist) The value stored in the columns listed must be different from
that stored in all other rows of this column.

PRIMARY KEY(column-1ist) Effectively a combination of NOT NULL and UNIQUE. Each table
may have only a single PRIMARY KEY constraint, either as a table
constraint or as a column constraint.

CHECK (condition) Allows you to check a condition when inserting or updating data.

REFERENCES Constrains the value to be one that appears in a column in a
separate table.

As you can see, the table-level constraints bear more than a passing resemblance to the
column-level constraints. The differences are as follows:

¢ Table-level constraints can refer to more than one column.

¢ Table-level constraints are listed after all the columns.

Try It Out: Use Table-Level Constraints

Let’s see how table-level constraints work. First, create a table with some constraints:

test=> CREATE TABLE ttconst (

test(> mykey1l int,

test(> mykey2 int,

test(> mystring varchar(1s),

test(> CONSTRAINT cs1 CHECK (mystring <> ''),
test(> CONSTRAINT cs2 PRIMARY KEY(mykey1, mykey2)
test(>);

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "cs2"
for table "ttconst"

CREATE TABLE

test=>

CHAPTER 8 DATA DEFINITION AND MANIPULATION 223

Notice that, as with the column-level constraint, PostgreSQL has created an index to
enforce the primary key constraint. Let’s insert some rows to get started:

test=> INSERT INTO ttconst VALUES(1,1,'Hello');
INSERT 19381 1

test=> INSERT INTO ttconst VALUES(1,2,'Bye');
INSERT 19382 1

test=>

Now try to insert a row that violates the rule that mystring cannot be an empty string:

test=> INSERT INTO ttconst VALUES(1,2,'');
ERROR: new row for relation "ttconst" violates check constraint "csi1
test=>

n

The table-level CHECK constraint works almost identically to the column-level one, rejecting
the row because the string was empty.

Now if we try inserting a row that violates the rule that the combination of mykey1 and
mykey2 must be unique, we can see the second constraint, cs2, being enforced:

test=> INSERT INTO ttconst VALUES(2,2,'Chow');

INSERT 19383 1

test=> INSERT INTO ttconst VALUES(2,2,'Chow');

ERROR: duplicate key violates unique constraint "cs2
test=>

When both mykey values are the same, the row is rejected, because the primary key
constraint has now been violated.

How It Works

As you can see, table-level constraints are very similar to their column-level equivalents. In
general, it is better to use a column-level constraint if that is all that is required. However,
where we need a mix of column-level and table-level constraints in the same table, such as in
our bpsimple database, we prefer to use a table-level primary key constraint on all the tables,
for the sake of consistency.

Altering Table Structures

Unfortunately, life is complicated, and no matter how carefully you gather requirements and
implement your database, the day will come when you need to alter the design of a table.

We saw one way we might solve this in Chapter 6, using INSERT INTO where the data is
gathered by selecting data from an existing table. We could follow this procedure:

* Create a new working table with an identical structure to the existing table.
e Use INSERT INTO to populate the working table with data identical to the original table.

* Drop (delete) the existing table.

224

CHAPTER 8 DATA DEFINITION AND MANIPULATION

* Re-create the table with the same name, but with the changes we need.
e Use INSERT INTO again to populate the altered table from the working table.
* Delete the working table.

That is clearly a great deal of work, however, especially if the table contains a lot of data or
is referenced by triggers or views and all we want to do is add a column to a table. PostgreSQL,
in line with the SQL standard, allows us to add, delete, and rename columns on the fly; that is,
while the table contains data. You can even rename the table itself.

It is also possible to add and remove constraints from a table and change default values;
however, there are some restrictions on these changes for practical reasons. For example, you
cannot add a constraint to a table that already contains data that would violate the new constraint.

Note In older versions of PostgreSQL there is an additional restriction, in that you can’t create a new
column that has a NOT NULL or a DEFAULT setting, since data in the table already exists. If necessary, it's
not hard to work around this: simply add the column without any constraints, update the data in the table, and
then add the required column constraint. From PostgreSQL 8.0 onwards, you can add a column with a default
value and with a NOT NULL constraint, provided you also supply a default value.

To make these changes, we use the ALTER TABLE command. The syntax of ALTER TABLE is
simple, but has several variants:

ALTER TABLE table-name ADD COLUMN column-name column-type

ALTER TABLE table-name DROP COLUMN column-name

ALTER TABLE table-name RENAME COLUMN old-column-name TO new-column-name
ALTER TABLE table-name column-name TYPE new-type [USING expression |
ALTER TABLE table-name ALTER COLUMN [SET DEFAULT value | DROP DEFAULT]
ALTER TABLE table-name ALTER COLUMN [SET NOT NULL | DROP NOT NULL]
ALTER TABLE table-name ADD CHECK check-expression

ALTER TABLE table-name ADD CONSTRAINT name constraint-definition

ALTER TABLE old-table-name RENAME TO new-table-name

Columns that are added to a table with existing data will have NULL stored as their value for
the existing rows.

Try it Out: Alter a Table

Before we see some ALTER TABLE statements in action, let’s check the existing structure of our
ttconst table:

CHAPTER 8 DATA DEFINITION AND MANIPULATION

test=> \d ttconst
Table "public.ttconst"

Column | Type | Modifiers
__________ o e
mykeyl | integer | not null
mykey2 | integer | not null
mystring | character varying(15) |

Indexes:

"cs2" PRIMARY KEY, btree (mykeyl, mykey2)
Check constraints:

"cs1" CHECK (mystring::text <> ''::text)
test=>

First, we add a new column:
test=> ALTER TABLE ttconst ADD COLUMN mydate DATE;

Now we rename the newly added column:

test=> ALTER TABLE ttconst RENAME COLUMN mydate TO birthdate;
ALTER TABLE
test=> \d ttconst

Table "public.ttconst"

Column | Type | Modifiers
___________ o e e
mykey1 | integer | not null
mykey? | integer | not null
mystring | character varying(15) |

birthdate | date
Indexes:

"cs2" PRIMARY KEY, btree (mykeyl, mykey2)
Check constraints:
"cs1" CHECK (mystring::text <> ''::text)

test=>
Now let’s try changing some constraints and other rules:

test=> ALTER TABLE ttconst DROP CONSTRAINT cs1;
ALTER TABLE
test=> ALTER TABLE ttconst ADD CONSTRAINT cs3 UNIQUE(birthdate);

NOTICE: ALTER TABLE / ADD UNIQUE will create implicit index "cs3" for table "tt

const"
ALTER TABLE

test=> ALTER TABLE ttconst ALTER COLUMN mystring SET DEFAULT 'Hello’;

ALTER TABLE

225

226

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Next, let’s look at the new table definition:

test=> \d ttconst
Table "public.ttconst"

Column | Type | Modifiers
___________ o m o o e
mykey1 | integer | not null

mykey2 | integer | not null

mystring | character varying(15) | default 'Hello'::character varying
birthdate | date |
Indexes:

"cs2" PRIMARY KEY, btree (mykeyi, mykey2)
"cs3" UNIQUE, btree (birthdate)

test=>

As you can see, the new rules are in place, just as though we had set them up when we
created the table.

It’s also possible to change the type of a column, providing the conversion is logical. Here,
we change a date to a varchar:

test=> ALTER TABLE ttconst ALTER birthdate TYPE varchar(32);
ALTER TABLE
test=>

It’s more common to just need to alter a column size; for example, increasing the size of a
varchar type column:

test=> ALTER TABLE ttconst ALTER mystring TYPE varchar(32);
ALTER TABLE
test=>

Finally, we rename the whole table:

test=> ALTER TABLE ttconst RENAME TO ttconst2;
ALTER TABLE
test=>

How It Works

As you can see, ALTER TABLE is a powerful command that allows you to modify existing table
structures, both columns and constraints, even if they already contain data.

NOTE Prior to PostgreSQL 8.0, the ALTER TABLE command was more limited, so if you are running an
older version, you may find that some options are not available to you.

CHAPTER 8 DATA DEFINITION AND MANIPULATION

The ability to alter table structures should never be used as an excuse for lack of attention
to detail in the initial table design. ALTER TABLE should mostly be needed when requirements
change. Using it at other times is generally a hint that your original design could have been
improved before you started the work of actually creating tables in your database.

One thing you should be very wary of is constantly changing a table structure by adding
new columns. New columns are always added at the end of the table, and so may not reflect the
logical purpose of the table very well. Suppose we had forgotten a title column when we created
our customer table, and then used ALTER TABLE to add it later. The column would have been
added at the end, which would have made the design of the customer table look a little strange,
with a person’s title coming after the phone number. Instead, you may prefer to use the
following procedure to add columns:

* Create a new table with a temporary name, but the correct columns in the most
logical order.

e Use INSERT INTO ... SELECT ... to populate it as a duplicate of the table being changed.
¢ Delete the old table.
¢ Rename the new table with the same name as the old table.

You do need to be careful that sequences and triggers, which we will discuss in Chapter 10,
may also need to be dropped and re-created when tables are dropped and renamed.

Deleting Tables

Deleting a table is very simple:
DROP TABLE table-name

Presto! Your table has disappeared, along with any data that was in it. Of course, you
should use this command with caution.

Using Temporary Tables

All the SQL examples we have seen so far have managed to achieve our desired result in a single,
albeit occasionally complex, SELECT statement. Usually, this is a good practice, because as
we’ve said, SQL is a declarative language. If you define what you want to achieve, SQL finds the
best way of getting the result for you. However, sometimes it is just not possible, or convenient,
to do everything in a single SELECT statement. In some cases, you need temporary results to
be held.

Often, the temporary storage you need is a table, so you can store many rows. Of course,
you could always create a table, do your processing, and then delete the table again, but that
entails a risk that the intermediate tables will occasionally not get deleted, either because your
application has a bug or due to simple forgetfulness of an interactive user working directly on
the database. The net result is stray tables, usually with strange names, left around in your
database. Unfortunately, it is not always clear which tables are intended to be just intermediate
work tables, and can be deleted, and which are for long-term use.

227

228

CHAPTER 8 DATA DEFINITION AND MANIPULATION

SQL offers a very simple solution to this problem: temporary tables. When you create the
table, rather than use CREATE TABLE, you use CREATE TEMPORARY TABLE (you can also use CREATE
TEMP TABLE, which is just a synonym). The table is created for you in the usual way, except that
when your session ends and your connection to the database is terminated, the temporary
table is automatically deleted for you.

Views

When you have a complex database, or sometimes when you have various users with different
permissions, you need to create the illusion of a table, or a view. Let’s look at an example to
clarify this concept.

Suppose we want to allow people in the warehouse to look at the items and barcodes in
our database. Currently, these are split across two tables, item and barcode. While correct from
a design point of view, we might wish to present a simpler view to people accessing the data,
perhaps allowing them to use some of the GUI tools we saw in Chapter 5. Rather than change
our design, we can do this with a view.

Creating Views

The syntax for creating a view is very simple:
CREATE VIEW name-of-view AS select-statement;

You can then query this view as though it were a table. (At the time of writing, in PostgreSQL,
by default, views are read-only.) You SELECT data from a view just as you would a table, and can
join it to other tables, as well as use WHERE clauses. Each time you execute a SELECT using the
view, the data is rebuilt, so the data is always up-to-date. It is not a frozen copy stored at the
time the view was created.

Note In some other databases, views, and hence the underlying data in the tables, can be updated, just
like tables.

Suppose we want to create a view that provides a simplified display of the item table. We
just want to see the item_id, description and the sell price. The SELECT statement would be
as follows:

SELECT item_id, description, sell price FROM item;
For example, to create this as a view called item price, we would write:
CREATE VIEW item_price AS SELECT item id, description, sell price FROM item;

This could then be used in a SELECT statement as though item price were a table.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 229

Try It Out: Create a View

Recall from Chapter 5 that we had a minor difficulty with the price definition in the item table.
Assuming that we consider our definition of price as numeric(7,2) to be correct, we can still
keep this definition, but present a different view of the type, using a view with a cast in the
SELECT statement.

Let’s create a view of the item table that alters what users see in three ways:

* We want to hide the cost_price.
* We want to present only a short item description.

¢ We want to hide all expensive items, which for this example, we will declare to be
anything over $20.

We can do this by creating a view, like this:

bpsimple=> CREATE VIEW item_price AS SELECT item id, description::varchar(10),
bpsimple-> sell price AS price FROM item WHERE sell price <= 20.0;

CREATE VIEW

bpsimple=>

Now when we SELECT data from the view, it behaves like a subset of the columns in the
original table:

bpsimple=> SELECT * FROM item_price;
item id | description | price

_________ RS S
3 | Linux CD | 2.49
4 | Tissues | 3.99
5 | Picture Fr | 9.95
6 | Fan Small | 15.75
7 | Fan Large | 19.95
8 | Toothbrush | 1.45
9 | Roman Coin | 2.45
10 | Carrier Ba | 0.00
2 | Rubik Cube | 11.49

(9 rows)

bpsimple=>

How It Works

We did several things in our example. First, we truncated the description column to 10 characters,
by castingit as description::varchar(10). Next, we hid the cost price, by not including it in the
list of columns, and even being a little sneaky by renaming the sell price sell price AS price
so there is no clue there might also be cost price held in the table. Finally, we restricted the rows
that are returned by the view WHERE sell price <= 20.0. (In Chapter 11, we will cover how to
use permissions to not allow ordinary users to access the original item table.)
We are not restricted to using only one table in a view. We can use a complex SQL state-

ment to access as many tables as we like.

230

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Try It Out: Create a View from Multiple Tables

Let’s create a view that will solve our problem of presenting a simplified display of the itemand
barcode tables, hiding the price information and the split of data into two tables. We will call
the view all_items:

bpsimple=> CREATE VIEW all_items AS SELECT i.item_id, i.description, b.barcode_ean
bpsimple-> FROM item i, barcode b WHERE i.item_id = b.item_id;

CREATE VIEW

bpsimple=>

This creates a new view, which we can now use just like a table:

bpsimple=> SELECT * FROM all_items;

item id | description | barcode ean

_________ e e e
1 | Wood Puzzle | 6241527836173
2 | Rubik Cube | 6241574635234
3 | Linux CD | 6264537836173
3 | Linux CD | 6241527746363
4 | Tissues | 7465743843764
5 | Picture Frame | 3453458677628
6 | Fan Small | 6434564564544
7 | Fan Large | 8476736836876
8 | Toothbrush | 6241234586487
8 | Toothbrush | 9473625532534
8 | Toothbrush | 9473627464543
9 | Roman Coin | 4587263646878
11 | Speakers | 9879879837489
11 | Speakers | 2239872376872

(14 rows)

bpsimple=>

Notice that this is exactly the same as if we had typed the following:

SELECT i.item_id, i.description, b.barcode ean FROM item i, barcode b
WHERE i.item id = b.item id;

As you can see, however, it hides the complexity from the end users.
If we want to list the views in our database, we can use the \dv command. The \d name-of-view
command will describe the view, allowing us to see the SQL being used:

CHAPTER 8 DATA DEFINITION AND MANIPULATION

bpsimple=> \dv

List of relations
Schema | Name | Type | Owner
———————— Bt s Tt
public | all items | view | rick
public | item price | view | rick
(2 rows)

bpsimple=> \d all_items
View "public.all items"
Column | Type | Modifiers
_____________ PP
item id | integer |
description | character varying(64) |
barcode ean | character(13) |
View definition:
SELECT i.item_id, i.description, b.barcode ean
FROM item i, barcode b
WHERE i.item id = b.item id;

bpsimple=>

How It Works

We created a view called all_items, which behaves like a table, except that it builds its data
from some hidden SQL.

Some people are tempted to think that views are such a good idea that all tables should be
hidden behind views. While some level of data hiding is often good, using a view is not as effi-
cient as using the actual tables, particularly if the SQL that defines the view is complex and uses
more than a single table. Databases that have all their data hidden behind views can suffer
from poor performance, and users will not be able to optimize their SQL performance, perhaps
because the column they need is in a view that does a big table join. Even though users want
only one column, if you have forced them to use the view, they will be executing the complex
SQL behind the view, decreasing performance. While views can be good for you, too much of a
good thing can be harmful!

Deleting and Replacing Views

To delete a view, drop it, as follows:

DROP VIEW name-of-view

231

232

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Unlike dropping a table, however, dropping a view does not affect the underlying data.
If you want to replace an existing view with a view with the same name and returning the
same set of columns, you can use a special version of the syntax to do this in a single statement:

CREATE OR REPLACE VIEW name-of-view AS select-statement

Foreign Key Constraints

We now come to one of the most important kinds of constraints, called foreign key constraints.

In Chapter 2, when we drew our diagram of a sample bpsimple database, we had tables
with data that joined, or were related, to other tables. Figure 8-1 shows that database schema
design.

ORDERLINE ORDERINFO
ORDERINFO_ID INTEGER ORDERINFO_ID INTEGER
ITEM_ID INTEGER @~ CUSTOMER_ID INTEGER
QUANTITY INTEGER ORPERINFO_ID = ORDERINFO_ID DATE PLACED DATE
DATE_SHIFPED DATE
‘ SHIPFING NUMERICET 2)

ITEM_ID = ITEM_ID

CUSTOMER_ID = CUSTOMER_ID

ITEM
ITEM_ID INTEGER STOCK
DESCRIFTION WARCHAR(BY) | o ITEM 1D INTEGER
COST_PRICE NUMERICT 2) ITEM_ID = ITEM_ID | QUANTITY INTEGER
SELL_FRICE NUMERIC(T 2)
CUSTOMER
CUSTOMER_ID INTEGER
ITEM_ID = ITEM_ID TILE CHAR()
- - FHAME WARCHAR(3IZ)
LMAME WARCHAR(3IZ)
ADDRESSLINE WARCHAR(GS)
BARCODE TOWN WARCHAR(3IZ)
BARCODE_EAN CHAR(13) ZIPCODE WARCHAR(1O)
ITEM_ID INTEGER PHOMNE WARCHAR(1E)

Figure 8-1. Database schema design

You can see how columns in one table relate to columns in another. For example, the
customer_idintheorderinfo tablerelates to the customer idin the customer table. So, given an
orderinfo_id, we can use the customer_idfrom the same row to discover the name and address
of the customer to which the order relates. We learned that the customer_id is a primary key in
the customer table; that it uniquely identifies a single row in the customer table.

Here is another important piece of terminology: the customer_id in the orderinfo table is
a foreign key. This means that although customer_id in the orderinfo table is not a primary key
in that table, the column it joins to in the customer table is a unique key in the customer table.
Notice that there is no reverse relationship—no column in the customer table is a unique key of
any other table. Hence, we say that the customer table has no foreign keys.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 233

Part of the intrinsic structure of our database design is our goal that each and every
customer_idin the orderinfo table also appears in the customer table. The customer_id in
orderinfo is called a foreign key. We would like to enforce the rule about the relationship
between these two tables in the database, as it’s a much more reliable place to enforce data-
integrity rules than in an application, and this is called a foreign key constraint.

When we create a foreign key constraint, PostgreSQL will check that the column in the
particular table is declared such that it must be unique. It is very common for the column refer-
enced by a foreign key to be the primary key in the other table. Using foreign key constraints is
an excellent way to ensure that inter-table relationships are not corrupted due to the deletion
of a particular primary key (foreign to another table) in a given table.

It is possible for a table to have more than one foreign key. For example, in the orderline
table, orderinfo_idis a foreign key, since it joins with the orderinfo_id, which is a primary key
in the orderinfo table, and item_id is also a foreign key, because it joins with item_id in the
item table that is a primary key in the item table.

In the itemtable, item_id is a primary key in the item table, since it uniquely identifies a
row, and it is also a foreign key in the stock table. It is perfectly acceptable for a single column
to be both a primary and foreign key, and this implies a (usually optional) one-to-one relation-
ship between rows in the two tables.

Although we don’t have any examples in our sample database, it is also possible for a pair
of columns combined to be a foreign key, just as the orderinfo_id and item_id combined are a
primary key in the orderline table.

These relationships are absolutely crucial to our database. If we have a row in our order-
info table where the customer_id doesn’t match a customer_id in the customer table, we have a
major data-integrity problem. We have an order and no idea of the customer who placed the
order. Although we can use application logic to enforce our relationship rules, as we said earlier,
it is much safer, and often easier, to declare them as database rules.

You will not be surprised to learn that it is possible to declare such foreign key relation-
ships as constraints on columns and tables, much like the constraints we have already met.
This is usually done when tables are created, as part of the CREATE TABLE command, using the
REFERENCES type of constraint. It is also possible to add foreign key constraints later, using the
ALTER TABLE table-name ADD CONSTRAINT name constraint-definition syntax.

We are now going to move on from our bpsimple database, and create a bpfinal database,
that implements foreign key constraints, to enforce data integrity.

Foreign Key As a Column Constraint

Here is the basic syntax for declaring a column to be a foreign key in another table:

[CONSTRAINT arbitrary-name] existing-column-name type REFERENCES
foreign-table-name(column-in-foreign-table)

Naming the constraint is optional, but as we will see later, it is a considerable help in
understanding error messages.

To define a foreign key constraint on the customer_id column in the orderinfo table, relating
it to the customer table, we use the REFERENCES keyword along with the name of the foreign table
and column, like this:

234

CHAPTER 8 DATA DEFINITION AND MANIPULATION

CREATE TABLE orderinfo

(
orderinfo_id serial ,
customer_id integer NOT NULL REFERENCES customer(customer id),
date_placed date NOT NULL,
date_shipped date ,
shipping numeric(7,2) ,
CONSTRAINT orderinfo pk PRIMARY KEY(orderinfo id)
)s

We will see the effect of the REFERENCES constraint shortly.

Foreign Key As a Table Constraint

Although you can declare foreign key constraints at the column level, we prefer to declare them
at the table level, along with primary key constraints. You cannot use a column constraint
when multiple columns in the current table are involved in the relationship, so in these cases,
you must write it as a table-level constraint.

Tip Rather than mixing column and table-level foreign key constraints, it is better to always use the
table form.

The table form is very similar to the column form, but comes after all columns have
been listed:

CONSTRAINT [arbitrary-name] FOREIGN KEY (column-1ist) REFERENCES
foreign-table-name(column-1ist-in-foreign-table)

We can update our definition of the orderinfo table to declare a constraint that the column
customer_id is a foreign key, because it relates to the primary key column customer_id in the
customer table.

CREATE TABLE orderinfo

(
orderinfo_id serial ,
customer_id integer NOT NULL,
date_placed date NOT NULL,
date_shipped date ,
shipping numeric(7,2) ,
CONSTRAINT orderinfo pk PRIMARY KEY(orderinfo id),

CONSTRAINT orderinfo customer id fk FOREIGN KEY(customer id) REFERENCES
customer (customer id)

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Adding a Foreign Key Constraint to an Existing Table

Before creating the table from scratch, let’s briefly revisit the ALTER TABLE command, and see
how we could use this to retrospectively add a foreign key constraint.
First let’s look at the existing table:

bpsimple=> \d orderinfo
Table "public.orderinfo"

Column | Type | Modifiers

______________ oo o e e

orderinfo_id | integer | not null default nextval
('public.orderinfo orderinfo id seq'::text)

customer_id | integer | not null

date placed | date | not null

date_shipped | date |

shipping | numeric(7,2) |

Indexes:
"orderinfo_pk" PRIMARY KEY, btree (orderinfo id)

bpsimple=>

Now we alter the table to add a new foreign key constraint:

bpsimple=> ALTER TABLE orderinfo ADD CONSTRAINT
orderinfo customer id fk FOREICN KEY(customer id)
REFERENCES customer(customer id);

ALTER TABLE

bpsimple=>

Let’s check that the table has been correctly updated:

bpsimple=> \d orderinfo
Table "public.orderinfo"

Column | Type | Modifiers
______________ oo o e
orderinfo_id | integer | not null default nextval
('public.orderinfo orderinfo id seq'::text)
customer_id | integer | not null
date placed | date | not null
date_shipped | date |
shipping | numeric(7,2) |
Indexes:

"orderinfo_pk" PRIMARY KEY, btree (orderinfo id)
Foreign-key constraints:
"orderinfo_customer id fk" FOREIGN KEY (customer id) REFERENCES
customer(customer id)

bpsimple=>

It’s a little complex, but we can clearly see our new foreign key constraint listed at the end.

235

236

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Creating Tables with Foreign Key Constraints

It’s time to take a leap forward from our initial bpsimple database and work on our final version
of the design, bpfinal:

bpsimple=> CREATE DATABASE bpfinal;

CREATE DATABASE

bpsimple=> \c bpfinal

You are now connected to database "bpfinal".
bpfinal=>

Now we are ready to start re-creating our tables using our newfound knowledge of foreign
key constraints to enforce referential integrity at the database level.

We must start with our customer table (the definition is unchanged from our previous
design), since we cannot reference it in our orderinfo table until it exists.

bpfinal=> CREATE TABLE customer

bpfinal-> (

bpfinal(> customer_id serial,

bpfinal(> title char(4),

bpfinal(> fname varchar(32),

bpfinal(> lname varchar(32) NOT NULL,
bpfinal(> addressline varchar(64),

bpfinal(> town varchar(32),

bpfinal(> zipcode char(10) NOT NULL,
bpfinal(> phone varchar(16),

bpfinal(> CONSTRAINT customer_pk PRIMARY KEY

(customer_id)
bpfinal(>);
NOTICE: CREATE TABLE will create implicit sequence "customer customer id seq"
for serial column "customer.customer id"
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "customer pk"
for table "customer"
CREATE TABLE
bpfinal=>

Now that we have our customer table, we can populate it as before, using the \i command:
bpfinal=> \i pop_customer.sql
Next, we create our orderinfo table:

bpfinal=> CREATE TABLE orderinfo

bpfinal-> (

bpfinal(> orderinfo_id serial,

bpfinal(> customer_id integer NOT NULL,
bpfinal(> date_placed date NOT NULL,
bpfinal(> date_shipped date,

CHAPTER 8 DATA DEFINITION AND MANIPULATION 237

bpfinal(> shipping numeric(7,2) ,

bpfinal(> CONSTRAINT orderinfo_pk PRIMARY KEY
(orderinfo_id),

bpfinal(> CONSTRAINT orderinfo_customer_id fk FOREIGN KEY(customer id)
REFERENCES customer(customer_id)

bpfinal(>);

NOTICE: CREATE TABLE will create implicit sequence "orderinfo_orderinfo_id seq"

for serial column "orderinfo.orderinfo id"

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "orderinfo pk"

for table "orderinfo"

CREATE TABLE

bpfinal=>

Let’s take a quick look at the definition:

bpfinal=> \d orderinfo
Table "public.orderinfo"

Column | Type Modifiers
______________ o m o o e e e
orderinfo_id | integer | not null default nextval('public.orderinfo orderi
nfo_id seq'::text)
customer_id | integer | not null
date _placed | date | not null
date_shipped | date |
shipping | numeric(7,2) |
Indexes:

"orderinfo_pk" PRIMARY KEY, btree (orderinfo id)
Foreign-key constraints:

"orderinfo_customer id fk" FOREIGN KEY (customer id) REFERENCES customer(cus
tomer_id)

bpfinal=>
Now we can repopulate the orderinfo table from our SQL script:
bpfinal=> \i pop_orderinfo.sql

So, now we are almost back to where we started, with one very important difference: the
orderinfo table has a foreign key constraint, which says that rows in the orderinfo table have
the customer_id column referring to the customer_id column in the customer table. This means
that we cannot delete rows from the customer table if the row is being referenced by a column
in the orderinfo table.

Try It Out: Use Foreign Key Constraints

We will start by checking to see what customer_id values we have in the orderinfo table:

238

CHAPTER 8 DATA DEFINITION AND MANIPULATION

bpfinal=> select orderinfo_id, customer_id from orderinfo;
orderinfo_id | customer id

______________ e
1 | 3
2 | 8
3 | 15
4 | 13
5 | 8

(5 rows)

bpfinal=>

We now know that there are five rows in orderinfo that have customer_id values that refer
to customers in the customer table, and that the customers referred to have IDs 3, 8, 13, and 15.
There are only four customers referred to, because the rows with orderinfo_id 2 and 5 both
refer to the same customer.

Let’s try to delete the row from the customer table with customer_id 3:

bpfinal=> DELETE FROM customer WHERE customer_id = 3;

ERROR: update or delete on "customer" violates foreign key constraint
"orderinfo_customer_id fk" on "orderinfo"

DETAIL: Key (customer id)=(3) is still referenced from table "orderinfo".
bpfinal=>

PostgreSQL prevents us from deleting the row. Also, notice that naming the constraint
orderinfo customer id fk allows us to more easily identify the source of the complaint.
PostgreSQL is even kind enough to tell us exactly which customer_id key value had the problem,
which although obvious in this example, may not be in more complex cases. PostgreSQL will
allow us to delete rows from the customer table where there is no related orderinfo entry:

bpfinal=> DELETE FROM customer WHERE customer_id = 4;
DELETE 1

bpfinal=>

How It Works

Behind the scenes, PostgreSQL adds some additional checking. For each row we try to delete
from the customer table, it checks that the row is not being referred to by a row in a different
table—in this case, the orderinfo table.

Any attempts to violate the rule result in the command being rejected and the data left
unchanged. We can still delete a customer, but we must make sure the customer does not have
any orders first.

PostgreSQL also checks that we don’t try to insert rows into the orderinfo table that refer
to nonexistent customers, as in this example:

CHAPTER 8 DATA DEFINITION AND MANIPULATION 239

bpfinal=> INSERT INTO orderinfo(customer_id, date_placed, shipping)

bpfinal-> VALUES(250, '07-25-2000", 0.00);

ERROR: insert or update on table "orderinfo" violates foreign key constraint
"orderinfo_customer_id fk"

DETAIL: Key (customer id)=(250) is not present in table "customer".
bpfinal=>

Itis important to realize what a big step forward we have made here. We have taken very
effective steps to ensure that the relationships between tables are enforced by the database.
No longer is it possible to have rows in orderinfo referring to nonexistent customers.

We can now update our original table creation script to add foreign key constraints to all
the tables that refer to other tables: orderinfo, orderline, stock, and barcode. The only slightly
complex constraint is orderline, where the orderinfo_id column refers to the orderinfo table,
and the item_id column refers to the item table. This is not a problem; we simply specify two
constraints, one for each column:

CREATE TABLE orderline

(

orderinfo_id integer NOT NULL,

item_id integer NOT NULL,

quantity integer NOT NULL,

CONSTRAINT orderline pk PRIMARY KEY(orderinfo id,

item id),
CONSTRAINT orderline orderinfo id fk FOREIGN KEY(orderinfo id) REFERENCES
orderinfo(orderinfo_id),

CONSTRAINT orderline item id fk FOREIGN KEY(item id) REFERENCES item(item id)

)s

The final version of the database creation script can be found in Appendix E. We will be
using this database, bpfinal, for the rest of the book. You can download it, along with the other
code samples, from the Downloads section of the Apress web site (http://www.apress.com).

When you use this database, you will also find that you must populate the tables in an
order that fulfills the foreign key constraints; you can no longer populate the orderinfo table
before populating the customer table for the orders to reference. We suggest this order:

e customer
e item

e orderinfo
e orderline
» stock

e barcode

240

CHAPTER 8 DATA DEFINITION AND MANIPULATION

Foreign Key Constraint Options

It might be that we get into a situation where we have entries in the orderinfo table referring
to the customer table, but we need to update the customer_id. As it stands, we can’t easily do
this, because if we attempt to change the customer_id (actually a very bad idea, since itisa
serial column!), the foreign key constraint in orderinfo will prevent it, since the rule says that
the customer_id stored in each orderinfo row must always refer to a customer_id entry in the
customer table.

We can’t change the customer_id in the orderinfo table, because the entry in the customer
table doesn’t exist yet, and we can’t change the entry in the customer table, because it is being
referred to by the orderinfo table.

The SQL standard allows two ways to resolve the situation where you briefly need to make
a data change that violates a foreign key constraint, but you will restore the correct integrity to
the data before the transaction completes:

e Make the constraint deferrable.

¢ Specify rules in the foreign key constraint about how to handle violations.

Deferrable Constraints

The first way to allow the foreign key constraint to be violated in certain circumstances is to
add the keywords INITIALLY DEFERRED at the end of the foreign key constraint:

CREATE TABLE orderinfo

(
orderinfo_id serial ,
customer_id integer NOT NULL,
date_placed date NOT NULL,
date_shipped date ,
shipping numeric(7,2) ,
CONSTRAINT orderinfo pk PRIMARY KEY(orderinfo id),

CONSTRAINT orderinfo_customer_id_fk FOREIGN KEY(customer id)
REFERENCES customer(customer_id) INITIALLY DEFERRED
)

This changes the way foreign key constraints are enforced. Normally, PostgreSQL will
check that foreign key constraints are met before any change is allowed to the database. If you
use transactions (which we will meet in the next chapter) and INITIALLY DEFERRED, PostgreSQL
will allow foreign key constraints to be violated, providing the constraint is violated only during
a transaction, and the violation has been corrected before the transaction ends. In practice,
what happens is that PostgreSQL suspends checking of the constraint until it is about to complete
the current transaction.

As we will see in Chapter 9, a transaction is a group of SQL commands that must either all
be completely executed or none executed. Hence, we could start a transaction, update the
customer_idin the customer table, update the related customer_id values in the orderinfo
table, commit the transaction, and then PostgreSQL would permit this. All it will check is that
the constraints are met when the transaction ends.

CHAPTER 8 DATA DEFINITION AND MANIPULATION 241

Note Alternatively, you can just use the keyword DEFERRED, in which case, you also need to use the
command SET CONSTRAINTS ALL DEFERRED, so that PostgreSQL defaults to checking DEFERRED constraints
only at the end of transactions. See the online documentation for more details of the SET CONSTRAINTS
option.

ON UPDATE and ON DELETE

An alternative solution is to specify rules in the foreign key constraint about how to handle
violation in two circumstances: UPDATE and DELETE operations. Two actions are possible:

* We could CASCADE the change from the table with the primary key.

* We could SET NULL to make the column NULL, since it no longer references the primary
table.

Here is an example:

CREATE TABLE orderinfo

(
orderinfo_id serial ,
customer_id integer NOT NULL,
date_placed date NOT NULL,
date_shipped date ,
shipping numeric(7,2) ,
CONSTRAINT orderinfo pk PRIMARY KEY(orderinfo id),
CONSTRAINT orderinfo_customer id fk FOREIGN KEY(customer id)
REFERENCES customer(customer id) ON DELETE CASCADE
)s

This example tells PostgreSQL that if we delete a row in customer with a customer_id thatis
being used in the orderinfo table, it should automatically delete the related rows in orderinfo.
This might be what we intended, but it is normally a dangerous choice. It is usually much better
to ensure applications delete rows in the correct order, so we make sure there are no orders for
a customer before deleting the customer entry.

The SET NULL option is usually used with UPDATE or DELETE statements. It looks like this:

CREATE TABLE orderinfo

(
orderinfo_id serial ,
customer_id integer NOT NULL,
date_placed date NOT NULL,
date_shipped date ,
shipping numeric(7,2) ,
CONSTRAINT orderinfo pk PRIMARY KEY(orderinfo id),

CONSTRAINT orderinfo_customer id fk FOREIGN KEY(customer id)
REFERENCES customer(customer _id) ON UPDATE SET NULL

);

242

CHAPTER 8 DATA DEFINITION AND MANIPULATION

This says that if the row being referred to by customer_id is deleted from the customer
table, set the column in the orderinfo table to NULL.

You may have noticed that for our table, this isn’t going to work. We declared customer_id
as NOT NULL, so it cannot be updated to a NULL value. We did this because we did not want to
allow the possibility of rows in the orderinfo table having NULL customer_id values. After all,
what does an order with an unknown customer mean? It’s probably a mistake.

These options can be combined, so you can write the following:

ON UPDATE SET NULL ON DELETE CASCADE

CGaution Use ON UPDATE and ON DELETE with considerable caution. It is much safer to force application
programmers to code UPDATE and DELETE statements in the right order and use transactions than it is to
CASCADE DELETE rows and suddenly store NULL values in columns because a different table was changed.

In Chapter 10, we will see how to use triggers and stored procedures to give much the same
effect, but in a way that gives us more control over the changes in other tables.

Summary

We covered a lot of material in this chapter. We started by looking more formally at the data
types supported by PostgreSQL, especially the common SQL standard types, but also mentioning
some of PostgreSQL’s more unusual extension types, such as arrays. We then looked at how
you can manipulate column data—converting between types, using substrings of the data, and
accessing information with PostgreSQL’s “magic” variables.

We then moved on to look at table management, focusing on a very important topic:
constraints. We saw that there are effectively two ways of defining constraints: against a single
column and at a table level. Even simple constraints can help us to enforce the integrity of data
at the database level.

Next, we saw how to use a view to create an “illusion” of a table. Views can provide a
simpler way for users to access data, as well as hide some data we may not want to be accessible
to everyone.

Our final topic was one of the most important types of constraints: foreign keys. These
allow us to define formally in the database how different tables relate to each other. Most
important, they allow us to enforce these rules, such as to ensure that we can never delete a
customer that has order information relating to that customer in a different table.

Having learned how to enforce referential integrity in our database, we created an updated
database design, bpfinal, which we will be using for the remainder of this book.

In the next chapter, we will cover transactions and locking, which are very important when
considering more than one user needing to simultaneously access a database.

CHAPTER 9

Transactions and Locking

So far in this book, we have avoided any in-depth discussion of the multiuser aspects of
PostgreSQL, simply stating the idealized view that, like any good relational database, PostgreSQL
hides the details of supporting multiple concurrent users. It simply provides a fast and efficient
database server that delivers a service to its clients as if all the simultaneous users had exclusive
access. Particularly with small and lightly loaded databases, this idealized view is generally
achieved in practice. However, the reality is that PostgreSQL, although very capable, cannot
perform magic, and the isolation of each user from all the others requires work behind the
scenes.

In this chapter, we will look at two important aspects of database support for multiple
users: transactions and locking. Transactions allow you to collect a number of discrete changes
to the database into a single work unit. Locking prevents conflicts when different users make
changes to the database at the same time.

In this chapter, we will cover the following topics:

* What constitutes a transaction
* Benefits of transactions in a single-user database
e Transaction with multiple users

* Row and table locking

What Are Transactions?

As we’ve said in previous chapters, ideally, you should write database changes as a single
declarative statement. However, in real-world applications, there soon comes a point at which
you need to make several changes to a database that cannot be expressed in a single SQL state-
ment. Although they are not made in just one statement, you still need all of the changes to
occur to update the database correctly. If a problem occurs with any part of the group of changes,
then none of the database changes should be made. In other words, you need to perform a
single, indivisible unit of work, which will require several SQL statements to be executed, with
either all of the SQL statements executing successfully or none of them executing.

The classic example is that of transferring money between two accounts in a bank, perhaps
represented in different tables in a database, so that one account is debited and the other is
credited. If you debit one account and fail to credit the second for some reason, you must return
the money to the first account, or behave as though it was never debited in the first place.

243

244

CHAPTER 9 TRANSACTIONS AND LOCKING

No bank could remain in business if money occasionally disappeared when transferring it
between accounts.

In databases based on ANSI SQL, as PostgreSQL is, performing this all-or-nothing task is
achieved with transactions. A transaction is a logical unit of work that must not be subdivided.

Grouping Data Changes into Logical Units

What do we mean by a logical unit of work? It is simply a set of logical changes to the database,
which must either all occur or all must fail, just like the previous example of the transfer of
money between accounts. In PostgreSQL, these changes are controlled by four key phrases:

e BEGIN starts a transaction.

* SAVEPOINT savepointname asks the server to remember the current state of the transaction.
This statement can be used only after a BEGIN and before a COMMIT or ROLLBACK; that is,
while a transaction is being performed.

e (COMMIT says that all the elements of the transaction are complete and should now be
made persistent and accessible to all concurrent and subsequent transactions.

* ROLLBACK [TO savepointname] says that the transaction is to be abandoned, and all changes
made to data by that SQL transaction are cancelled. The database should appear to all
users as if none of the changes had ever occurred since the previous BECGIN, and the trans-
action is closed. The alternative version, with the addition of the TO clause, allows rollback
to a named savepoint, and does not complete a transaction.

Note The ANSI SQL92 standard did not define the BEGIN SQL phrase. It defines transactions as starting
automatically (hence the phrase would be redundant), but it is a very common extension present, and required,
in many relational databases. SQL99 added the statement START TRANSACTION, which has the same effect
as BEGIN. PostgreSQL from 7.3 onwards accepts the newer syntax as well as the BEGIN syntax, but we stick
to the BEGIN syntax, as it is currently more common.

Concurrent Multiuser Access to Data

A second aspect of transactions is that any transaction in the database is isolated from other
transactions occurring in the database at the same time. In an ideal world, each transaction
would behave as though it had exclusive access to the database. Unfortunately, as we will see
later in this chapter when we look at transactions with multiple users, the practicalities of
achieving good performance mean that some compromises often must be made.

Let’s look at a different example of where a transaction is needed. Suppose you are trying
to book an airline ticket online. You check the flight you want and discover a ticket is available.
Although unknown to you, it is the very last ticket on that flight. While you are typing in your
credit card details, another customer with an account at the airline makes the same check for
tickets. You have not yet purchased your ticket, so the other person sees a free seat and books
it while you are still typing in your credit card details. You now submit to buy the ticket, and

CHAPTER 9 TRANSACTIONS AND LOCKING 245

because the system knew there was a seat available when you started the transaction, it incorrectly
assumes a seat is still available, and debits your card. (Of course, airlines have more sophisti-
cated systems that prevent such basic ticket-booking errors, but this example does illustrate
the principle.)

You disconnect, confident your seat has been booked, and perhaps even check that your
credit card has been debited. The reality is, however, that you purchased a nonexistent seat.
At the instant your transaction was processed, there were no free seats.

The code executed by the booking application may have looked a little like this:

Check if seats available.

If yes, offer seat to customer.

If customer accepts offer, ask for credit card number.

Authorize credit card transaction with bank.

Debit card.

Assign seat.

Reduce the number of free seats available by the number purchased.

Such a sequence of events is perfectly valid, if only a single customer ever uses the system
atany one time. The trouble occurred because there were two customers. What actually happened
is depicted in Table 9-1.

Table 9-1. Overlapping Events

Customer 1 Customer 2 Free Seats
on Plane
Check if seats available 1
Check if seats available 1
If yes, offer seat to customer 1
If yes, offer seat to customer 1
If customer accepts offer, ask for 1

credit card or account number

If customer accepts offer, ask for credit card 1
or account number

Get credit card number Get account number 1
Authorize credit card transaction 1
with bank
Check account is valid 1
Update account with new transaction 1
Debit card Assign seat 1
Assign seat Reduce number of free seats available by 0
number purchased
Reduce number of free seats available -1

by number purchased

246

CHAPTER 9 TRANSACTIONS AND LOCKING

How could we solve the problem with this ticket-booking application? We could improve
things considerably by rechecking that a seat was available closer to the point at which we take
the money, but however close we do the check, it’s inevitable that the “check a seat is available”
step is separated from the “take money” step, even if only by a tiny amount of time.

We could go to the opposite extreme to solve the problem, allowing only one person to
access the ticket-booking system at any one time, but the performance would be terrible and
customers would go elsewhere.

In application terms, what we have is a critical section of code—a small section of code
that needs exclusive access to some data. We could write our application using a semaphore,
or similar technique, to manage access to the critical section of code. This would require every
application that accessed the database to use the semaphore. However, rather than writing
application logic, it is often easier to use a database to solve the problem.

In database terms, what we have here is a transaction—the set of data manipulations from
checking the seat availability through to debiting the account or card and assigning the seat, all
of which must happen as a single unit of work.

ACID Rules

ACID is a frequently used acronym to describe the four properties a transaction must have:

Atomic: A transaction, even though it is a group of individual actions on the database,
must happen as a single unit. A transaction must happen exactly once, with no subsets
and no unintended repetition of the action. In our banking example, the money move-
ment must be atomic. The debit of one account and the credit of the other must both
happen as though they were a single action, even if several consecutive SQL statements
are required.

Consistent: At the end of a transaction, the system must be left in a consistent state. We
touched on this in Chapter 8, when we saw that we could declare a constraint as deferrable;
in other words, the constraint should be checked only at the end of a transaction. In our
banking example, at the end of a transaction, all accounts must accurately reflect the
intended credits and debits.

Isolated: This means that each transaction, no matter how many transactions are currently
in progress in a database, must appear to be independent of all the other transactions.

In our airline ticket-booking example, transactions processing two concurrent customers
must behave as though they each have exclusive use of the database. In practice, we know
this cannot be true if we are to have sensible performance on multiuser databases, and
indeed this turns out to be one of the places where the practicalities of the real world can
impinge most significantly on our ideal database behavior. We will discuss isolating trans-
actions later in the chapter, in the “Transactions with Multiple Users” section.

CHAPTER 9 TRANSACTIONS AND LOCKING

Durable: Once a transaction has completed, it must stay completed. Once money has
been successfully transferred between accounts, it must stay transferred, even if the power
fails and the machine running the database has an uncontrolled power down. In PostgreSQL,
as with most relational databases, this is achieved using a transaction log file, as described
in the following section. Transaction durability happens without user intervention.

Transaction Logs

As mentioned in the previous section, transaction log files are used internally by the database
to make sure that a transaction endures. The way the transaction log file works is simple. As a
transaction executes, not only are the changes written to the database, but also to alog. Once a
transaction completes, a marker is written to say the transaction has finished, and the log file
data is forced to permanent storage, so it is secure, even if the database server crashes. Should
the database server die for some reason in the middle of a transaction, then as the server restarts,
it is able to automatically ensure that completed transactions are correctly reflected in the
database (by rolling forward transactions in the transaction log, but not in the database). No
changes from transactions that were still in progress when the server went down appear in the
database.

The transaction log that PostgreSQL maintains not only records all the changes that are
being made to the database, but also records how to reverse them. Obviously, this file could get
very large very quickly. Once a COMMIT statement is issued for a transaction, PostgreSQL then
knows that it is no longer required to store the “undo” information, since the database change
is now irrevocable, at least by the database (the application could execute additional code to
reverse changes).

PostgreSQL actually uses a technique where data is written to the transaction log ahead of
it being written to disk for the tables, because it knows that once the data is written to the log
file, it can recover the intended state of the table data from the log, even if the system should
fail before the real data files have been updated. This is called Write Ahead Logging (WAL), and
interested readers can find more details in the PostgreSQL documentation.

Transactions with a Single User

Before we look at the more complex aspects of transactions and how they behave with multiple,
concurrent users of the database, we need to see how they behave with a single user. Even in
this rather simplistic way of working, there are real advantages to using transactions.

The big benefit of transactions is that they allow you to execute several SQL statements,
and then at a later stage, allow you to undo the work you have done, if you so decide. Alterna-
tively, if one of your SQL statements fails, you can undo the work you have done back to a
predetermined point.

Using a transaction, the application does not need to worry about storing what changes
have been made to the database and how to undo them. It can simply ask the database engine
to undo a whole batch of changes at once. Logically, the sequence is depicted in Figure 9-1.

247

248 CHAPTER 9 TRANSACTIONS AND LOCKING

—> Initial State

!

BEGIN

i First SQL

¢ Second SQL

ROLLBACK
Figure 9-1. Rolling back a set of changes
If you decide all your changes to the database are valid after the “Second SQL” step shown

in Figure 9-1, however, and you wish to apply them to the database so they become permanent,
then all you do is replace the ROLLBACK statement with a COMMIT statement, as depicted in Figure 9-2.

Initial State

v

BEGIN

| First SQL

+ Second SQL
COMMIT

v

Figure 9-2. Commiting a set of changes

After the COMMIT, all changes to the database are committed and can be considered perma-
nently written to the data files, so they will not be lost due to power failures or application errors.

Try It Out: Perform a Simple Transaction

Let’s try a very simple transaction, where we change a single row in a table, and then use the
ROLLBACK statement to cancel the change. We will use the test database for these experiments.

First, connect to the test database (if it does not exist, just use a CREATE DATABASE test
command), and then create a pair of simple tables to experiment with:

CHAPTER 9 TRANSACTIONS AND LOCKING 249

bpfinal=> \c test

You are now connected to database "test".
test=> CREATE TABLE ttest1 (
test(> ivall integer,
test(> svali varchar(64)
test(>);

CREATE TABLE

test=> CREATE TABLE ttest2 (
test(> ival2 integer,
test(> sval2 varchar(64)
test(>);

CREATE TABLE

test=>

Now we can try a simple transaction:

test=> INSERT INTO ttest1 (ivali, sval1i) VALUES (1, 'David');
INSERT 17784 1

test=> BEGIN;

BEGIN

test=> UPDATE ttest1l SET svall = 'Dave' WHERE ivali = 1;

UPDATE 1

test=> SELECT svali FROM ttest1i WHERE ivali
sval1

1;

test=> ROLLBACK;

ROLLBACK

test=> SELECT svalil FROM ttesti WHERE ivali
svali

n
[
-

How It Works

We initially inserted a single row and stored the name 'David'. We then started the transaction
by using the BEGIN command. Next, we updated the svall column of the row to set the name
to 'Dave’'. When we did a SELECT on this row, it showed the data had changed. We then called
ROLLBACK. PostgreSQL used its internal transaction log to undo the changes since BEGIN was
executed, so the next time we SELECT the row, our change had been rolled back.

250

CHAPTER 9 TRANSACTIONS AND LOCKING

Interestingly, if we used a second psql session and queried the database immediately after
the update of David to Dave, but before executing the ROLLBACK, we would still see David in the
database. This is because PostgreSQL is isolating users, other than the user currently making
the change, from uncommitted database data updates. We will discuss this further in the
“Transactions with Multiple Users” section later in this chapter.

Transactions Involving Multiple Tables

Transactions are not limited to a single table or simple updates to data. Let’s look at a more
complex example involving multiple tables and using both an UPDATE statement and an INSERT
statement.

Try It Out: Perform Transactions with Multiple Tables

Let’s experiment with transactions that affect multiple tables. First, ensure both tables are
empty, and then insert a row into the first table:

test=> DELETE FROM ttest1;

DELETE 1

test=> DELETE FROM ttest2;

DELETE 0

test=> INSERT INTO ttest1 (ivali, svali) VALUES (1, 'David');
INSERT 17793 1

Now start a transaction and make some changes:

test=> BEGIN;

BEGIN
test=> INSERT INTO ttest2 (ival2, sval2) VALUES (42, 'Arthur');
INSERT 17794 1
test=> UPDATE ttestl SET svall = 'Robert' WHERE ivall = 1;
UPDATE 1
test=> SELECT * FROM ttesti1;

ivall | svali

_______ fmmmmmme e

1 | Robert
(1 row)

test=> SELECT * FROM ttest2;
ival2 | sval2
_______ oo e
42 | Arthur
(1 row)

CHAPTER 9 TRANSACTIONS AND LOCKING

Now perform a ROLLBACK and check the effect:

test=> ROLLBACK;
ROLLBACK
test=> SELECT * FROM ttesti;
ival1l | svali
_______ oo
1 | David
(1 row)

test=> SELECT * FROM ttest2;
ival2 | sval2

_______ oo

(0 rows)

test=>

How It Works

The ROLLBACK caused the data added as a result of the INSERT statement to be removed and the
UPDATE to the item table to be reversed. This demonstrates how a transaction grouping a set of
changes together can work across multiple tables..

Transactions and Savepoints

The previous examples use the basic transaction syntax, which is all that many applications
need. However, savepoints can be useful for situations where you want to be able to roll back
to a specified point in the transaction. This requires the extended version of the transaction
syntax, with a named savepoint and the ROLLBACK TO command.

If we might need to undo just some of the operations in a transaction, we can create a
named savepoint, which we can then roll back to, rather than rolling back all the way to the
BEGIN statement. Figure 9-3 illustrates the sequence.

In the example in Figure 9-3, we start by executing a BEGIN statement, which starts our
transaction, and then execute two SQL statements. We then create a savepoint called parta,
and execute a third SQL statement. We then execute a ROLLBACK TO parta statement, which
effectively undoes the effect of the third SQL statement. We can then issue some more SQL,
before finally executing a COMMIT to make our database changes permanent.

251

252 CHAPTER 9 TRANSACTIONS AND LOCKING

Initial State

v

BEGIN

i First SQL

¢ Second SQL

Before the
Rollback

SAVEPOINT parta After the
Rollback

Third SQL

ROLLBACK TO parta

v
COMMIT

Final State

Figure 9-3.Using a savepoint

Try It Out: Use Savepoints

Let’s see a savepoint in action. The name of the savepoint is arbitrary; we use first here, but
we could have called it Tux, Getreidegasse, or just about any other name.

test=> DELETE FROM ttesti;

DELETE 1

test=> DELETE FROM ttest2;

DELETE o

test=> INSERT INTO ttest1 (ivali, svali) VALUES (1, 'David');
INSERT 17795 1

test=> BEGIN;

BEGIN

test=> INSERT INTO ttest2 (ival2, sval2) VALUES (42, 'Arthur');
INSERT 17796 1

test=> SAVEPOINT first;

SAVEPOINT

test=> UPDATE ttest1 SET svall = 'Robert' WHERE ivall = 1;
UPDATE 1

test=> SELECT * FROM ttesti;

ival1l | svali
_______ e een
1 | Robert
(1 row)
test=> ROLLBACK TO first;
ROLLBACK
test=> SELECT * FROM ttesti;
ival1l | svali
_______ oo
1 | David
(1 row)

test=> SELECT * FROM ttest2;
ival2 | sval2
_______ mmmmemm
42 | Arthur
(1 row)
test=>

CHAPTER 9

TRANSACTIONS AND LOCKING

We are still in transaction at this point and can still roll back to the initial BEGIN state:

test=>
test=> ROLLBACK;
ROLLBACK
test=> SELECT * FROM ttesti;
ival1l | svali
_______ e men
1 | David
(1 row)

test=> SELECT * FROM ttest2;
ival2 | sval2

test=>

Now that a ROLLBACK has been issued to the initial BEGIN statement, the transaction is
considered complete, and we cannot issue another ROLLBACK or COMMIT, until after a new BEGIN

statement:

test=> INSERT INTO ttest2 (ival2, sval2) VALUES (99, 'Chris');

INSERT 17797 1
test=> COMMIT;

WARNING: there is no transaction in progress

COMMIT
test=>

253

254

CHAPTER 9 TRANSACTIONS AND LOCKING

Also, once we have issued a COMMIT to say the transaction is complete, it has been written
to the database permanently, and there is no going back:

test=> SELECT * FROM ttest2;
ival2 | sval2
_______ oo
99 | Chris
(1 Tow)

test=> BEGIN;

BEGIN
test=> UPDATE ttest2 SET sval2 = 'Gill' WHERE ival2 = 99;
UPDATE 1
test=> COMMIT;
COMMIT
test=> ROLLBACK;
WARNING: there is no transaction in progress
ROLLBACK
test=> SELECT * FROM ttest2;

ival2 | sval2

_______ PR

99 | Gill

(1 Tow)
test=>x

How It Works

As this example demonstrated, savepoints allow us to both roll back to an intermediate point

in a transaction or all of the way back to the start of the transaction. Once a ROLLBACK has been
executed, the database looks exactly as though the rolled-back changes never happened. Once
a transaction has been committed, it can no longer be undone by a ROLLBACK.

Transaction Limitations

Although transactions work very well, they do have some limitations. These involve nesting,
size, and duration.

Nesting

You cannot nest transactions in PostgreSQL (or most other relational databases, for that matter).
In PostgreSQL, if you try to execute a BEGIN statement while it’s already in a transaction,
PostgreSQL will produce a warning message, telling you a transaction is already in progress.
Some databases silently accept several BEGIN statements. A COMMIT or ROLLBACK command
always works against the first BEGIN statement, however, so although it looked as though the
transactions were nested, in reality, subsequent BEGIN commands were being ignored.

CHAPTER 9 TRANSACTIONS AND LOCKING

Transaction Size

It is advisable to keep transactions small. As we will see later in this chapter, PostgreSQL (and
other relational databases) must do a lot of work to ensure that transactions from different
users are kept separate. A consequence of this is that the parts of a database involved in a trans-
action frequently need to become locked, to ensure that transactions are kept separate. Therefore,
you should try to make sure that each transaction is no larger than it needs to be. Including
large amounts of unnecessary changes in each transaction will result in excessive amounts of
locking taking place in the database, impacting both performance and other users’ ability to
access data. We’ll discuss locking in more detail in the “Locking” section later in this chapter.

Transaction Duration

Transactions should not be kept open over extended time periods. Although PostgreSQL locks
the database automatically for you, a long-running transaction usually prevents other users
from accessing data involved in the transaction until the transaction is committed or rolled
back. Therefore, you should also avoid having a transaction in progress when any user dialogue
is required. It is advisable to collect all the information required from the user first, and then
process the information in a transaction, unhindered by unpredictable user-response times.

Consider a poorly behaved application that started a transaction when a person sat down
to work at a terminal in the morning, and left the transaction running all day while the user
made various changes to the database. As the user did work on the database, more and more of
it would become locked, waiting for those changes to be committed. If the user committed the
data only at the end of the day, the ability for other users to access the data would be severely
impacted, and the overall application would probably be considered unusable for any situa-
tion that requires multiple users.

You should also be aware that although a COMMIT statement usually executes quite rapidly,
since it generally has very little work to perform, rolling back transactions typically involves at
least as much work for the database as performing them initially, and consequently can take
some time to execute. Therefore, if you start a transaction, and it takes two minutes to execute
all the SQL, then decide to do a ROLLBACK to cancel it all, don’t expect the rollback to be instan-
taneous. It could easily take longer than two minutes to undo all the changes.

Transactions with Multiple Users

As we saw earlier in the chapter, transactions that need to work for multiple, concurrent users
must be isolated from each other (the I part of ACID). Although PostgreSQL’s default behavior
for handling isolation will suffice in most cases, there are circumstances where it is useful to
understand it in more detail.

Implementing Isolation

One of the most difficult aspects of relational databases is isolation between different users for
updates to the database. Of course, achieving isolation is not difficult if we don’t care about

performance. Simply allowing a single connection to the database, with only a single transac-
tion in progress at any one time, will ensure complete isolation between different transactions.

255

256

CHAPTER 9 TRANSACTIONS AND LOCKING

Unfortunately, the multiuser performance would be terrible. The difficult part of transaction
isolation is in achieving practical isolation without significantly damaging performance or
preventing multiuser access to the database.

To lessen the impact of isolation on performance, the ANSI SQL standard defines different
levels of isolation that databases can implement. This allows the database administrator to
trade between performance and the degree of isolation individual database users receive.
Usually, a relational database will implement at least one of these levels by default, and also
allow users to specify at least one other isolation level to use.

The ANSI SQL standard defines isolation levels in terms of undesirable phenomena that
can happen in multiuser databases when transactions interact. These phenomena are called
dirty reads, unrepeatable reads, phantom reads, and lost updates. Let’s see what each of these
terms means, and then how the ANSI isolation levels are defined.

Dirty Reads

Adirty read occurs when some SQL in a transaction reads data that has been changed by another
transaction, but the transaction changing the data has not yet committed its block of work.

As we discussed earlier, a transaction is a logical unit or block of work that must be atomic.
Either all the elements of a transaction occur or none of them occur. Until a transaction has
been committed, there is always the possibility that it will fail or be abandoned with a ROLLBACK
command. Therefore, no other users of the database should see this changed data before a COMMIT.

Table 9-2 illustrates what different transactions might see as the fname of the customer
with customer_id 15 when dirty reads are allowed and when they are not allowed.

Table 9-2. Dirty Reads

Transaction 1 Data Seen by Data Seen by Other Data Seen by Other
Transaction 1 Transactions with Dirty Transactions with Dirty
Reads Allowed Reads Prohibited
BEGIN
David David David
UPDATE customer SET fname='Dave'
WHERE customer_id = 15;
Dave Dave David
COMMIT
Dave Dave Dave
BEGIN
UPDATE customer SET fname = 'David’ Dave
WHERE customer id = 15;
David David Dave
ROLLBACK

Dave Dave Dave

CHAPTER 9 TRANSACTIONS AND LOCKING 257

Notice how a dirty read has permitted other transactions to see data that has not yet been
committed to the database. This means they can see changes that are later discarded, because of
the ROLLBACK command.

Note PostgreSQL never permits dirty reads.

Unrepeatable Reads

An unrepeatable read is very similar to a dirty read, but is more restrictively defined. An unre-
peatable read occurs where a transaction reads a set of data, then later rereads the data and
discovers it has changed. This is much less serious than a dirty read, but not quite ideal. An
illustration of the unrepeatable read process is shown in Table 9-3.

Table 9-3. Unrepeatable Reads

Transaction 1 Data Seen by Data Seen by Other Data Seen by Other
Transaction 1 Transactions with Transactions with
Unrepeatable Reads Unrepeatable Reads
Allowed Prohibited
BEGIN BEGIN BEGIN
David David David

UPDATE customer SET fname =
'Dave' WHERE customer id = 15;

Dave David David
COMMIT
Dave Dave David
COMMIT COMMIT
BEGIN BEGIN
SELECT fname FROM customer Dave Dave

WHERE customer id = 15;

Notice the unrepeatable read means that a transaction can see changes committed by
other transactions, even though the reading transaction has not itself committed. If unrepeat-
able reads are prevented, other transactions do not see changes made to the database until
they themselves have committed changes.

By default, PostgreSQL permits unrepeatable reads, although as we will see later, we can
change this default behavior.

258

CHAPTER 9 TRANSACTIONS AND LOCKING

Phantom Reads

Phantom reads are quite similar to unrepeatable reads, but occur when a new row appears in a
table while a different transaction is updating the table, and the new row should have been
updated but was not.

Suppose we had two transactions updating the item table. The first is adding one dollar to
the selling price of all items, and the second is adding a new item. This process is depicted in
Table 9-4.

Table 9-4. Phantom Reads

Transaction 1 Transaction 2
BEGIN BEGIN

UPDATE item SET sell price = sell price + 1;

INSERT INTO item(...) VALUES(..);
COMMIT

COMMIT

What should the sell price of the item added by Transaction 2 be? The INSERT statement
started before the UPDATE statement was committed; therefore, we might reasonably expect it
to be greater by one than the price we inserted. If a phantom read occurs, however, the new
record that appears after Transaction 1 determines which rows to UPDATE, and the price of the
new item does not get incremented.

Phantom reads are extremely rare, and almost impossible to demonstrate, so generally
you do not need to worry about them. By default, PostgreSQL will allow phantom reads.

Lost Updates

Lost updates are slightly different from the previous three cases, which are generally an appli-
cation-level problem and not related to the way the relational database works. A lost update,
on the other hand, occurs when two different changes are written to the database, and the
second update causes the first to be lost.

Suppose two users are using a screen-based application, which updates the item table.
This process is shown in Table 9-5.

CHAPTER 9 TRANSACTIONS AND LOCKING 259

Table 9-5. Lost Updates

User 1 Data Seen by User 1 User 2 Data Seen by User 2
Attempting to change the Attempting to change the

selling price from 21.95 cost price from 15.23 to

to 22.55 16.00

BEGIN BEGIN

SELECT cost_price, 15.23, 21.95 SELECT cost_price, 15.23, 21.95

sell price FROM item sell price FROM item

WHERE item id = 1; WHERE item id = 1;

UPDATE item SET cost price
= 15.23, sell price = 22.55
WHERE item id = 1;

15.23, 22.55
COMMIT
15.23, 22.55
UPDATE item SET
cost _price = 16.00,
sell price = 21.95
WHERE item id = 1;
15.23, 22.55 16.00, 21.95
COMMIT
16.00, 21.95 16.00, 21.95

The sell price change made by User 1 has been lost, not because there was a database
error, but because User 2 read the sell price, “keptit” for a while, and then wrote it back to the
database, destroying the change that User 1 had made. The database has quite correctly
isolated the two sets of changes, but the application has still lost data.

There are several ways around this problem; which is the most appropriate depends on
individual applications. As a first step, applications should keep transactions as short as
possible, never holding them in progress for longer than is absolutely necessary. As a second
step, applications should write back only data that they have changed. These two steps will
prevent many occurrences of lost updates, including the mistake demonstrated in Table 9-5.

Of course, it is possible for both users to have been trying to update the sell price;in
which case, a change would still have been lost. A more comprehensive way to prevent lost
updates is to encode the value you are trying to change in the U