
DRAFT, 8/24/01
Chapter 16

In this chapter, we cover the
interested in compatibility w
SQL2 standard. In that case, y
sions to the SQL standard.

Basic Syntax
SQL is a kind of controlled
Copyr
16

16.SQL Syntax for MySQL
full range of SQL supported by MySQL. If you are
ith other SQL databases, MySQL supports the ANSI
ou should avoid using any proprietary MySQL exten-

English language consisting of verb phrases. These
verb phrases begin with a SQL command followed by other SQL keywords, liter-
als, identfiers, or punctuation. Keywords are never case sensitive. Identifiers for
database names and table names are case sensitive when the underlying file sys-
tem is case sensitive (all UNIX except Mac OS X) and case insensitive when the
underlying file system is case insensitive (Mac OS X and Windows). You should,
however, avoid referring to the same database or table name in a single SQL state-
ment using different cases—even if the underlying operating system is case insen-
sitive. For example, the following SQL is troublesome:

SELECT TBL.COL FROM tbl;

Table aliases are case sensitive, but column aliases are case insensitive.

If all of this case sensitivity nonsense is annoying to you, you can force MySQL to
convert all table names to lower case by starting mysqld with the argument -O
lower_case_table_names=1.

Literals

Literals come in the following varieties:
293
ight © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
String Literals
String literals may be enclosed either by single quotes or double quotes. If you
wish to be ANSI compatible, you should always use single quotes. Within a
string literal, you may represent special characters through escape sequences.
An escape sequence is a backslash followed by another character to indicate
to MySQL that the second character has a meaning other than its normal
meaning. Table 16-1 shows the MySQL escape sequences. Quotes can also be
escaped by doubling them up: ‘This is a ‘’quote’’’ . However, you
do not need to double up on single quotes when the string is enclosed by
double quotes: "This is a ‘quote’" .

Binary Literals
Like string literals, binary literals are enclosed in single or double quotes. You
must use escape sequences in binary data to escape NUL (ASCII 0), " (ASCII
34), ‘ (ASCII 39), and \ (ASCII 92).

Number Literals
Numbers appear as a sequence of digits. Negative numbers are preceded by a
- sign and a . indicates a decimal point. You may also use scientific notation:
-45198.2164e+10.

Hexadecimal Literals
MySQL also supports the use of hexadecimal literals in SQL. The way in which
that hexadecimal is interpreted is dependent on the context. In a numeric con-
text, the hexadecimal literal is treated is a numeric value. Absent of a numeric
context, it is treated as a binary value. This 0x1 + 1 is 2, but 0x4d7953514c by
itself is ‘MySQL’.

Null
The special keyword NULL signifies a null literal in SQL. In the context of
import files, the special escape sequence \N signifies a null value.

Table 16-1. . MySQL Escape Sequences

Escape
Sequence Value

\0 NUL

\’ Single quote

\” Double quote

\b Backspace

\n Newline

\r Carriage return

\t Tab

\z Ctrl-z (workaround for Windows use of ctrl-z as EOF)

\\ Backslash
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Identifiers

Identifiers are names you make up to reference database objects. In MySQL, data-
base objects consist of databases, tables, and columns. These objects fit into a hier-
archical namespace whose root element is the database in question. You can refer-
ence any given object on a MySQL server—assuming you have the proper rights—
in one of the following conventions:

Absolute Naming
Absolute naming is specifying the full tree of the object you are referencing.
For example, the column BALANCEin the table ACCOUNTin the database
BANK would be referenced absolutely as:
BANK.ACCOUNT.BALANCE

Relative Naming
Relative naming allows you to specify only part of the object’s name with the
rest of the name being assumed based on your current context. For example,
if you are currently connected to the BANKdatabase, you can reference the
BANK.ACCOUNT.BALANCEcolumn simply as ACCOUNT.BALANCE. In a SQL
query where you have specified you are selecting from the ACCOUNTtable,
you can reference the column using only BALANCE. You must provide an
extra layer of context whenever relative naming might result in ambiguity. An
example of such ambiguity would be a SELECT statement pulling from two
tables that both have BALANCE columns.

Aliasing
Aliasing enables you to reference an object using an alternate name that helps
avoid both ambiguity and the need to fully qualify a long name.

In general, MySQL allows you to use any character in an identifier.* This rule is
limited, however, for databases and tables since these values must be treated as
files on the local file system. You can therefore use only characters valid for the
underlying file system’s file naming conventions in a database or table name. Spe-

\% Percent sign (only in contexts where a percent sign would be inter-
preted as a wild card)

_ Underscore (only in contexts where an underscore would be inter-
preted as a wild card)

* Older versions of MySQL limited identifiers to valid alphanumeric characters from the default character
set as well as $ and _.

Table 16-1. . MySQL Escape Sequences

Escape
Sequence Value
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
cifically, you may not use / or . in a database or table name. You can never use
NUL (ASCII 0) or ASCII 255 in an identifier.

Given these rules, it is very easy to shoot yourself in the foot when naming things.
As a general rule, it is a good idea to stick to alphanumeric characters from what-
ever character set you are using.

When an identifier is also a SQL keyword, you must enclose the identifier in back-
ticks:

CREATE TABLE ̀ select̀ (̀ table ̀INT NOT NULL PRIMARY KEY AUTO_INCREMENT);

Since MySQL 3.23.6, MySQL supports the quoting of identifiers using both back-
ticks and double quotes. For ANSI compatibility, however, you should use double
quotes for quoting identifiers. You must, however, be running MySQL in ANSI
mode.

Comments

You can introduce comments in your SQL to specify text that should not be inter-
preted by MySQL. This is particularly useful in batch scripts for creating tables and
loading data. MySQL specifically supports three kinds of commenting: C, shell-
script, and ANSI SQL commenting.

C commenting treats anything between /* and */ as comments. Using this form
of commenting, your comments can span multiple lines. For example:

/*
 * Creates a table for storing customer account information.
*/
DROP TABLE IF EXISTS ACCOUNT;

CREATE TABLE ACCOUNT (ACCOUNT_ID BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 BALANCE DECIMAL(9,2) NOT NULL);

Within C comments, MySQL still treats single quotes and double quotes as a start
to a string literal. In addition, a semi-colon in the comment will cause MySQL to
think you are done with the current statement.

Shell-script commenting treats anything from a # character to the end of a line as a
comment:

CREATE TABLE ACCOUNT (ACCOUNT_ID BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 BALANCE DECIMAL(9,2) NOT NULL); # Not null ok?

MySQL does not really support ANSI SQL commenting, but it comes close. ANSI
SQL commenting is -- to the end of a line. MySQL supports two dashes and a
space (‘-- ‘) followed by the comment. The space is the non-ANSI part:

DROP TABLE IF EXISTS ACCOUNT; -- Drop the table if it already exists
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
SQL Commands

ALTER TABLE

Syntax

ALTER [IGNORE] TABLE table action_list

Description

The ALTERstatement covers a wide range of actions that modify the structure of a
table. This statement is used to add, change, or remove columns from an existing
table as well as to remove indexes. To perform modifications on the table, MySQL
creates a copy of the table and changes it, meanwhile queuing all table altering
queries. When the change is done, the old table is removed and the new table put
it its place. At this point the queued queries are performed. As a safety precau-
tion, if any of the queued queries create duplicate keys that should be unique, the
ALTERstatement is rolled back and cancelled. If the IGNOREkeyword is present in
the statement, duplicate unique keys are ignored and the ALTER statement pro-
ceeds as if normal. Be warned that using IGNOREon an active table with unique
keys is inviting table corruption. Possible actions include:

ADD [COLUMN] create_clause [FIRST | AFTER column]
Adds a new column to the table. The create_clause is simply the SQL that
would define the column in a normal table creation. The column will be cre-
ated as the first column if the FIRST keyword is specified. Alternately, you
can use the AFTER keyword to specify which column it should be added
after. If neither FIRST nor AFTER is specified, then the column is added at
the end of the table’s column list. You may add multiple columns at once by
separating create clauses by commas.

ADD INDEX [name] (column , ...)
Adds an index to the altered table. If the name is omitted, one will be chosen
automatically by MySQL.

ADD PRIMARY KEY (column , ...)
Adds a primary key consisting of the specified columns to the table. An error
occurs if the table already has a primary key.

ADD UNIQUE[name] (column , ...)
Adds a unique index to the altered table similar to the ADD INDEX statement.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
ALTER [COLUMN] column SET DEFAULT value
Assigns a new default value for the specified column. The COLUMNkeyword is
optional and has no effect.

ALTER [COLUMN] column DR OP DEFAULT
Drops the current default value for the specified column. A new default value
will be assigned to the column based on the CREATEstatement used to cre-
ate the table. The COLUMN keyword is optional and has no effect.

CHANGE [COLUMN] column create_clause
MODIFY [COLUMN] create_clause

Alters the definition of a column. This statement is used to change a column
from one type to a different type while affecting the data as little as possible.
The create clause is a full clause as specified in the CREATEstatement. This
includes the name of the column. The MODIFYversion is the same as CHANGE
if the new column has the same name as the old. The COLUMNkeyword is
optional and has no effect. MySQL will try its best to perform a reasonable
conversion. Under no circumstance will MySQL give up and return an error
when using this statement; a conversion of some sort will always be done.
With this in mind you should (1) make a backup of the data before the con-
version and (2) immediately check the new values to see if they are reason-
able.

DROP [COLUMN]column
Deletes a column from a table. This statement will remove a column and all of
its data from a table permanently. There is no way to recover data destroyed
in this manner other than from backups. All references to this column in indi-
ces will be removed. Any indices where this was the sole column will be
destroyed as well. (The COLUMN keyword is optional and has no effect.)

DROP PRIMARY KEY
Drops the primary key from the table. If no primary key is found in the table,
the first unique key is deleted.

DROP INDEXkey
Removes an index from a table. This statement will completely erase an index
from a table. This statement will not delete or alter any of the table data itself,
only the index data. Therefore, an index removed in this manner can be recre-
ated using the ALTER TABLE ...ADD INDEX statement.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

RENAME [AS] new_table
RENAME [TO] new_table

Changes the name of the table. This operation does not affect any of the data
or indices within the table, only the table’s name. If this statement is per-
formed alone, without any other ALTER TABLEclauses, MySQL will not cre-
ate a temporary table as with the other clauses, but simply perform a fast
Unix-level rename of the table files.

ORDER BY column
Forces the table to be re-ordered by sorting on the specified column name.
The table will no longer be in this order when new rows are inserted. This
option is useful for optimizing tables for common sorting queries.

table_options
Enables a redefinition of the tables options such as the table type.

Multiple ALTERstatements may be combined into one using commas as in the fol-
lowing example:

ALTER TABLE mytable DROP myoldcolumn, ADD mynewcolumn INT

MySQL also provides support for actions to alter the FOREIGN KEY, but they do
nothing. . The syntax is there simply for compatibility with other databases.

To perform any of the ALTER TABLEactions, you must have SELECT, INSERT,
DELETE,UPDATE,CREATE, and DROP privileges for the table in question.

Examples
Add the field 'address2' to the table 'people' and make
it of type 'VARCHAR' with a maximum length of 200.
ALTER TABLE people ADD COLUMN address2 VARCHAR(100)
Add two new indexes to the 'hr' table, one regular index for the
'salary' field and one unique index for the 'id' field. Also, continue
operation if duplicate values are found while creating
the 'id_idx' index (very dangerous!).
ALTER TABLE hr ADD INDEX salary_idx (salary)
ALTER IGNORE TABLE hr ADD UNIQUE id_idx (id)
Change the default value of the 'price' field in the
'sprockets' table to $19.95.
ALTER TABLE sprockets ALTER price SET DEFAULT '$19.95'
Remove the default value of the 'middle_name' field in the 'names' table.
ALTER TABLE names ALTER middle_name DROP DEFAULT
Change the type of the field 'profits' from its previous value (which was
perhaps INTEGER) to BIGINT.
ALTER TABLE finanaces CHANGE COLUMN profits profits BIGINT
Remove the 'secret_stuff' field from the table 'not_private_anymore'
ALTER TABLE not_private_anymore DROP secret_stuff
Delete the named index 'id_index' as well as the primary key from the
table 'cars'.
ALTER TABLE cars DROP INDEX id_index, DROP PRIMARY KEY
Rename the table 'rates_current' to 'rates_1997'
ALTER TABLE rates_current RENAME AS rates_1997

DRAFT, 8/24/01
CREATE DATABASE

Syntax

CREATE DATABASEdbname

Description

Creates a new database with the specified name. You must have the proper privi-
leges to create the database. Running this command is the same as running the
mysqladmin create utility.

Example
CREATE DATABASE Bank;

CREATE FUNCTION

Syntax

CREATE [AGGREGATE] FUNCTIONname
RETURNS return_type SONAME library

Description

The CREATE FUNCTIONstatement allows MySQL statements to access precom-
piled executable functions. These functions can perform practically any operation,
since they are designed and implemented by the user. The return value of the
function can be STRING, for character data; REAL, for floating point numbers; or
INTEGERfor integer numbers. MySQL will translate the return value of the C func-
tion to the indicated type. The library file that contains the function must be a
standard shared library that MySQL can dynamically link into the server.

Example
CREATE FUNCTION multiply RETURNS REAL SONAME mymath

CREATE INDEX

Syntax

CREATE [UNIQUE] INDEX name ON table (column , ...)

Description

The CREATE INDEXstatement is provided for compatibility with other implemen-
tations of SQL. In older versions of SQL this statement does nothing. As of 3.22,
this statement is equivalent to the ALTER TABLE ADD INDEXstatement. To per-
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

form the CREATE INDEXstatement, you must have INDEX privileges for the table
in question.

Example
CREATE UNIQUE INDEX TransIDX ON Translation (language, locale, code);

CREATE TABLE

Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table
(create_clause , ...) [table_options]
[[IGNORE|REPLACE] select]

Description

The CREATE TABLEstatement defines the structure of a table within the database.
This statement is how all MySQL tables are created. If the TEMPORARYkeyword is
used, the table exists only as long as the current client connection exists, unless it
is dropped first

The IF NOT EXISTS clause tells MySQL to create the table only if the table does
not already exist. If the table does exist, nothing happens. If the table exists and
IF NOT EXISTS and TEMPORARYare not specified, an error will occur. If TEM-
PORARYis specified and the table exists but IF NOT EXISTS is not specified, the
existing table will simply be invisible to this client for the duration of the new tem-
porary table’s life.

This statement consists of the name of the new table followed by any number of
field definitions. The syntax of a field definition is the name of the field followed
by its type, followed by any modifiers (e.g., name char(30) not null). MySQL
supports the data types described in Chapter 17. The allowed modifiers are:

DEFAULT value
This attribute assigns a default value to a field. If a row is inserted into the
table without a value for this field, this value will be inserted. If a default is
not defined, a null value is inserted unless the field is defined as NOT NULL in
which case MySQL picks a value based on the type of the field.

NOT NULL
This attribute guarantees that every entry in the column will have some non-
NULL value. Attempting to insert a NULL value into a field defined with NOT
NULL will generate an error.

NULL
This attribute specifies that the field is allowed to contain NULL values. This is
the default if neither this nor the NOT NULL modifier are specified. Fields that

DRAFT, 8/24/01
are contained within an index cannot contain the NULL modifier. (It will be
ignored, without warning, if it does exist in such a field.)

PRIMARY KEY
This attribute automatically makes the field the primary key (see later) for the
table. Only one primary key may exist for a table. Any field that is a primary
key must also contain the NOT NULL modifier.

REFERENCES table [(column , . . .)] [MATCH FULL | MATCH
PARTIAL] [ON DELETE option] [ON UPDATE option]

This attribute currently has no effect. MySQL understands the full references
syntax but does not implement its behavior. The modifier is included to make
it easier to import SQL from different SQL sources. In addition, this functional-
ity may be included in a future release of MySQL.

MySQL supports the concept of an index of a table, as described in Chapter 8,
Database Design. Indexes are created by means of special “types” that are
included with the table definition:

FULLTEXT (column , ...)
Since MySQL 3.23.23, MySQL has supported full text indexing. To create a full
text index, use the FULLTEXT keyword:
CREATE TABLE Item (itemid INT NOT NULL PRIMARY KEY,
 name VARCHAR(25) NOT NULL,
 description TEXT NOT NULL,
 FULLTEXT (name, description)
);

KEY/INDEX [name] (column , ...)
Creates a regular index of all of the named columns (KEY and INDEX, in this
context, are synonyms). Optionally the index may be given a name. If no
name is provided, a name is assigned based on the first column given and a
trailing number, if necessary, for uniqueness. If a key contains more than one
column, leftmost subsets of those columns are also included in the index.
Consider the following index definition.

INDEX idx1 (name, rank, serial);

When this index is created, the following groups of columns will be indexed:

— name, rank, serial

— name, rank

— name

PRIMARY KEY
Creates the primary key of the table. A primary key is a special key that can
be defined only once in a table. The primary key is a UNIQUEkey with the
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
name “PRIMARY.” Despite it’s privileged status, in function it is the same as
every other unique key.

UNIQUE [name] (column , ...)
Creates a special index where every value contained in the index (and there-
fore in the fields indexed) must be unique. Attempting to insert a value that
already exists into a unique index will generate an error. The following would
create a unique index of the “nicknames” field:

UNIQUE (nicknames);

When indexing character fields (CHAR, VARCHAR and their synonyms only), it is
possible to index only a prefix of the entire field. For example, this following will
create an index of the numeric field ‘id’ along with the first 20 characters of the
character field ‘address’:

INDEX adds (id, address(20));

When performing any searches of the field ‘address’, only the first 20 characters
will be used for comparison unless more than one match is found that contains
the same first 20 characters, in which case a regular search of the data is per-
formed. Therefore, it can be a big performance bonus to index only the number of
characters in a text field that you know will make the value unique.

Fields contained in an index must be defined with the NOT NULLmodifier. When
adding an index as a separate declaration, MySQL will generate an error if NOT
NULL is missing. However, when defining the primary key by adding the PRIMARY
KEYmodifier to the field definition, the NOT NULLmodifier is automatically added
(without a warning) if it is not explicitly defined.

In addition to the above, MySQL supports the following special “types”:

• FOREIGN KEY(name (column, [column2, . . .])

• CHECK

These keywords do not actually perform any action. They exist so that SQL
exported from other databases can be more easily read into MySQL. Also, some of
this missing functionality may be added into a future version of MySQL.

As of MySQL 3.23, you can specify table options at the end of a CREATE TABLE
statement. These options are:

AUTO_INCREMENT =start
Specifies the first value to be used for an AUTO_INCREMENT column.

AVG_ROW_LENGTH = length
An option for tables containing large amounts of variable-length data. The
average row length is an optimization hint to help MySQL manage this data.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

CHECKSUM = 0 or 1
When set to 1, this option forces MySQL to maintain a checksum for the table
to improve data consistency. This option creates a performance penalty.

COMMENT = comment
Provides a comment for the table. The comment may not exceed 60 charac-
ters.

DELAY_KEY_WRITE = 0 or 1
For MyISAM tables only. When set, this option delays key table updates until
the table is closed.

MAX_ROWS =rowcount
The maximum number of rows you intend to store in the table.

MIN_ROWS = rowcount
The minimum number of rows you intend to store in the table.

PACK_KEYS = 0 or 1
For MyISAM and ISAM tables only. This option provides a performance
booster for heavy-read tables. Set to 1, this option causes smaller keys to be
created and thus slows down writes while speeding up reads.

PASSWORD = ‘password’
Only available to MySQL customers with special commercial licenses. This
option uses the specified password to encrypt the table’s .frm file. This option
has no effect on the standard version of MySQL.

ROW_FORMAT = DYNAMICor STATIC
For MyISAM tables only. Defines how the rows should be stored in a table.

TYPE = rowtype
Specifies the table type of the database. If the selected table type is not avail-
able, then the closest table type available is used. For example, BDB is not
available yet for Mac OS X. If you specified TYPE=BDBon a Mac OS X sys-
tem, MySQL will instead create the table as a MyISAM table. Table 16-2 con-
tains a list of supported table types and their advanatages. For a more com-
plete discussion of MySQL tables types, see the MySQL table type reference.

Table 16-2. . MySQL Table Types

Type Transactional Description

BDB yes Transaction-safe tables with page locking.

Berkeley_db yes Alias for BDB

HEAP no Memory-based table. Not persistent.

ISAM no Ancient format. Replaced by MyISAM.

InnoDB yes Transaction-safe tables with row locking.

MERGE no A collection of MyISAM tables merged as a single
table.

DRAFT, 8/24/01
You must have CREATEprivileges on a database to use the CREATE TABLE
statement.

Examples
Create the new empty database 'employees'
CREATE DATABASE employees;
Create a simple table
CREATE TABLE emp_data (id INT, name CHAR(50));
Make the function make_coffee (which returns a string value and is stored
in the myfuncs.so shared library) available to MySQL.
CREATE FUNCTION make_coffee RETURNS string SONAME "myfuncs.so";

DELETE

Syntax

DELETE [LOW_PRIORITY] FROM table [WHERE clause] [LIMIT n]

Description

Deletes rows from a table. When used without a WHEREclause, this will erase the
entire table and recreate it as an empty table. With a clause, it will delete the rows
that match the condition of the clause. This statement returns the number of rows
deleted to the user.

As mentioned above, not including a WHEREclause will erase this entire table. This
is done using an efficient method that is much faster than deleting each row indi-
vidually. When using this method, MySQL returns 0 to the user because it has no
way of knowing how many rows it deleted. In the current design, this method
simply deletes all of the files associated with the table except for the file that con-
tains the actual table definition. Therefore, this is a handy method of zeroing out
tables with unrecoverably corrupt data files. You will lose the data, but the table
structure will still be in place. If you really wish to get a full count of all deleted
tables, use a WHERE clause with an expression that always evaluates to true:

DELETE FROM TBL WHERE 1 = 1;

The LOW_PRIORITYmodifier causes MySQL to wait until no clients are reading
from the table before executing the delete.

The LIMIT clauses establishes the maximum number of rows that will be deleted
in a single shot.

You must have DELETE privileges on a database to use the DELETE statement.

MyISAM no A newer table type to replace ISAM that is portable.

Table 16-2. . MySQL Table Types

Type Transactional Description
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

Examples
Erase all of the data (but not the table itself) for the table 'olddata'.
DELETE FROM olddata
Erase all records in the 'sales' table where the 'syear' field is '1995'.
DELETE FROM sales WHERE syear=1995

DESCRIBE

Syntax

DESCRIBE table [column]
DESC table [column]

Description

Gives information about a table or column. While this statement works as adver-
tised, its functionality is available (along with much more) in the SHOWstatement.
This statement is included solely for compatibility with Oracle SQL. The optional
column name can contain SQL wildcards, in which case information will be dis-
played for all matching columns.

Example
Describe the layout of the table 'messy'
DESCRIBE messy
Show the information about any columns starting
with 'my_' in the 'big' table.
Remember: '_' is a wildcard, too, so it must be
escaped to be used literally.
DESC big my_%

DESC

Synonym for DESCRIBE.

DROP DATABASE

Syntax

DROP DATABASE [IF EXISTS] name

Description

Permanently remove a database from the MySQL. Once you execute this state-
ment, none of the tables or data that made up the database are available. All of the
support files for the database are deleted from the file system. The number of files
deleted will be returned to the user. Because three files represent most tables, the
number returned is usually the number of tables times three. This is equivalent to
running the mysqladmin drop utility. As with running mysqladmin, you must be
the administrative user for MySQL (usually root or mysql) to perform this state-

DRAFT, 8/24/01
ment.You may use the IF EXISTS clause to prevent any error message that
would result from an attempt to drop a non-existent table.

DROP FUNCTION

Syntax

DROP FUNCTIONname

Description

Will remove a user defined function from the running MySQL server process. This
does not actually delete the library file containing the function. You may add the
function again at any time using the CREATE FUNCTIONstatement. In the current
implementation DROP FUNCTIONsimply removes the function from the function
table within the MySQL database. This table keeps track of all active functions.

DROP INDEX

Syntax

DROP INDEX idx_name ON tbl_name

Description

Provides for compatibility with other SQL implementations. In older versions of
MySQL, this statement does nothing. As of 3.22, this statement is equivalent to
ALTER TABLE ... DROP INDEX. To perform the DROP INDEXstatement, you
must have SELECT, INSERT, DELETE, UPDATE, CREATE, and DROPprivileges for the
table in question.

DROP TABLE

Syntax

DROP TABLE [IF EXISTS] name [, name2, ...]

Description

Will erase an entire table permanently. In the current implementation, MySQL sim-
ply deletes the files associated with the table. As of 3.22, you may specify IF
EXISTS to make MySQL not return an error if you attempt to remove a table that
does not exist. You must have DELETEprivileges on the table to use this state-
ment.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01

M

DROPis by far the most dangerous SQL statement. If you have drop
privileges, you may permanently erase a table or even an entire
database. This is done without warning or confirmation. The only
way to undo a DROPis to restore the table or database from back-
ups. The lessons to be learned here are: (1) always keep backups;
(2) don’t use DROPunless you are really sure; and (3) always keep
backups.

EXPLAIN

Syntax

EXPLAIN [table_name | sql_statement]

Description

Used with a table name, this command is an alias for SHOW COLUMNS FRO
table_name .

Used with a SQL statement, this command displays verbose information about the
order and structure of a SELECTstatement. This can be used to see where keys are
not being used efficiently. This information is returned as a result set with the fol-
lowing columns:

table
The name of the table referenced by the result set row explaining the query.

type
The type of join that will be performed. These types, in order of performance,
are:

system
A special case of the const type, this join supports a table with a single
row.

const
Used for tables with at most a single matching row that will be read at the
start of the query. MySQL treats this value as a constant to speed up pro-
cessing.

eq_ref
Reads one row from the table for each combination of rows from the pre-
vious tables. It is used when all parts of the index are used by the join
and the index is unique or a primary key.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
ref
Reads all rows with matching index values from the table for each combi-
nation of rows from the previous tables. This join occurs when only the
leftmost part of an index or if the index is not unique or a primary key.
This is a good join when the key in use matches only a few rows.

range
Reads only the rows in a given range using an index to select the rows.
They key column indicates the key in use and the key_len column con-
tains the longest part of the key. The ref column will be NULL for this
type.

index
Reads all rows based on an index tree scan.

ALL
A full table scan is done for each combination of rows from the previous
tables. This join is generally a very bad thing. If you see it, you probably
need to build a different SQL query or better organize your indices.

possible_keys
Indicates which indices MySQL could use to build the join. If this column is
empty, there are no relevant indices and you probably should build some to
enhance performance.

key
Indicates which index MySQL decided to use.

key_len
Provides the length of the key MySQL decided to use for the join.

ref
Describes which columns or constants were used with the key to build the
join.

rows
Indicates the number of rows MySQL estimates it will need to examine to per-
form the query.

Extra
Additional information indicating how MySQL will perform the query.

Example
EXPLAIN SELECT customer.name, product.name FROM customer, product, purchases
WHERE purchases.customer=customer.id AND purchases.product=product.id
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

FLUSH

Syntax

FLUSH option [, option ...]

Description

Flushes or resets various internal processes depending on the options given. You
must have reloadprivileges to execute this statement. The option can be any of the
following:

HOSTS
Empties the cache table that stores hostname information for clients. This
should be used if a client changes IP addresses, or if there are errors related to
connecting to the host.

LOGS
Closes all of the standard log files and reopens them. This can be used if a log
file has changed inode number. If no specific extension has been given to the
update log, a new update log will be opened with the extension incremented
by one.

PRIVILEGES
Reloads all of the internal MySQL permissions grant tables. This must be run
for any changes to the tables to take effect.

STATUS
Resets the status variables that keep track of the current state of the server.

TABLES
Closes all currently opened tables and flushes any cached data to disk.

GRANT

Syntax

GRANTprivilege
[(column, ...)] [, privilege [(column, ...)] ...]
ON { table } TO user [IDENTIFIED BY ' password ']
[, user [IDENTIFIED BY ' password '] ...]
[WITH GRANT OPTION]

Previous to MySQL 3.22.11, the GRANTstatement was recognized but did nothing. In
current versions, GRANTis functional. This statement will enable access rights to a
user (or users). Access can be granted per database, table or individual column.
The table can be given as a table within the current database, ‘* ’ to affect all tables
within the current database, ‘*.* ’ to affect all tables within all databases or
‘database.* ’ to effect all tables within the given database.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

The following privileges are currently supported:

ALL PRIVILEDGES /ALL
Effects all privileges

ALTER
Altering the structure of tables

CREATE
Creating new tables

DELETE
Deleting rows from tables

DROP
Deleting entire tables

FILE
Creating and removing entire databases as well as managing log files

INDEX
Creating and deleting indices from tables

INSERT
Inserting data into tables

PROCESS
Killing process threads

REFERENCES
Not implemented (yet)

RELOAD
Refreshing various internal tables (see the FLUSH statement)

SELECT
Reading data from tables

SHUTDOWN
Shutting down the database server

UPDATE
Altering rows within tables

USAGE
No privileges at all

The user variableis of the form user@hostname. Either the user or the hostname can
contain SQL wildcards. If wildcards are used, either the whole name must be
quoted, or just the part(s) with the wildcards (e.g., joe@"%.com "and “joe@%.com”

are both valid). A user without a hostname is considered to be the same as
user@“%”.

DRAFT, 8/24/01
If you have a global GRANTprivilege, you may specify an optional INDENTIFIED
BY modifier. If the user in the statement does not exist, it will be created with the
given password. Otherwise the existing user will have his or her password
changed.

Giving the GRANTprivilege to a user is done with the WITH GRANT OPTIONmodi-
fier. If this is used, the user may grant any privilege they have onto another user.

Examples
Give full access to joe@carthage for the Account table
GRANT ALL ON bankdb.Account TO joe@carthage;
Give full access to jane@carthage for the
Account table and create a user ID for her
GRANT ALL ON bankdb.Account TO jane@carthage IDENTIFIED BY ‘mypass’;
Give joe on the local machine the ability
to SELECT from any table on the webdb database
GRANT SELECT ON webdb.* TO joe;

INSERT

Syntax

INSERT [DELAYED | LOW_PRIORITY] [IGNORE]
[INTO] table [(column , ...)]
VALUES (values [, values ...])

INSERT [LOW_PRIORITY] [IGNORE]
[INTO] table [(column , ...)]
SELECT ...

INSERT [LOW_PRIORITY] [IGNORE]
[INTO] table
SET column =value , column =value ,...

Description

Inserts data into a table. The first form of this statement simply inserts the given
values into the given columns. Columns in the table that are not given values are
set to their default value or NULL. The second form takes the results of a SELECT
query and inserts them into the table. The third form is simply an alternate ver-
sion of the first form that more explicitly shows which columns correspond with
which values. If the DELAYEDmodifier is present in the first form, all incoming
SELECTstatements will be given priority over the insert, which will wait until the
other activity has finished before inserting the data. In a similar way, using the
LOW_PRIORITYmodifier with any form of INSERT will cause the insertion to be
postponed until all other operations from the client have been finished.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
When using a SELECT query with the INSERT statement, you cannot use the
ORDER BYmodifier with the SELECT statement. Also, you cannot insert into the
same table you are selecting from.

Starting with MySQL 3.22.5 it is possible to insert more than one row into a table
at a time. This is done by adding additional value lists to the statement separated
by commas.

You must have INSERT privileges to use this statement.

Examples
Insert a record into the 'people' table.
INSERT INTO people (name, rank, serial_number)
VALUES ('Bob Smith', 'Captain', 12345);
Copy all records from 'data' that are older than a certain date into
'old_data'. This would usually be followed by deleting the old data from
'data'.
INSERT INTO old_data (id, date, field)
SELECT (id, date, field)
FROM data
WHERE date < 87459300;
Insert 3 new records into the 'people' table.
INSERT INTO people (name, rank, serial_number)
VALUES ('Tim O\'Reilly', 'General', 1),
 ('Andy Oram', 'Major', 4342),
 ('Randy Yarger', 'Private', 9943);

KILL

Syntax

KILL thread_id

Description

Terminates the specified thread. The thread ID numbers can be found using the
SHOW PROCESSESstatement. Killing threads owned by users other than yourself
require process privilege.

Example
Terminate thread 3
KILL 3

LOAD

Syntax

LOAD DATA [LOCAL] INFILE file [REPLACE|IGNORE]
INTO TABLE table [delimiters] [(columns)]
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

Description

Reads a text file that is in a readable format and inserts the data into a database
table. This method of inserting data is much quicker than using multiple INSERT
statements. Although the statement may be sent from all clients just like any other
SQL statement, the file referred to in the statement is assumed to be located on the
server unless the LOCALkeyword is used.. If the filename does not have a fully
qualified path, MySQL looks under the directory for the current database for the
file.

With no delimiters specified, LOAD DATA INFILE will assume that the file is tab
delimited with character fields, special characters escaped with the backslash (\),
and lines terminated with a newline character.

In addition to the default behavior, you may specify your own delimiters using the
following keywords:

FIELDS TERMINATED BY ' c'
Specifies the character used to delimit the fields. Standard C language escape
codes can be used to designate special characters. This value may contain
more than one character. For example, FIELDS TERMINATED BY ',' denotes
a comma delimited file and FIELDS TERMINATED BY '\t' denotes tab
delimited. The default value is tab delimited.

FIELDS ENCLOSED BY ' c'
Specifies the character used to enclose character strings. For example, FIELD
ENCLOSED BY '"' would mean that a line containing "this, value",
"this", "value" would be taken to have three fields: "this,value",
"this", and "value" . The default behavior is to assume that no quoting is
used in the file.

FIELDS ESCAPED BY ' c'
Specifies the character used to indicate that the next character is not special,
even though it would usually be a special character. For example, with FIELDS
ESCAPED BY '̂ ' a line consisting of First,Second^, Third,Fourth
would be parsed as three fields: "First", "Second,Third" and
"Fourth" . The exceptions to this rule are the null characters. Assuming the
FIELDS ESCAPED BYvalue is a backslash, \0 indicates an ASCII NUL(charac-
ter number 0) and \N indicates a MySQL NULL value. The default value is the
backslash character. Note that MySQL itself considers the backslash character to
be special. Therefore to indicate backslash in that statement you must back-
slash the backslash like this: FIELDS ESCAPED BY '\\' .

LINES TERMINATED BY ' c'
Specifies the character that indicates the start of a new record. This value can
contain more than one character. For example, with LINES TERMINATED BY
'.' , a file consisting of a,b,c.d,e,f.g,h,k . would be parsed as three sepa-

DRAFT, 8/24/01
rate records, each containing three fields. The default is the newline charac-
ter. This means that by default, MySQL assumes that each line is a separate
record.

The keyword FIELDS should only be used for the entire statement. For example:

LOAD DATA INFILE data.txt FIELDS TERMINATED BY ' , ' ESCAPED BY ' \\ '

By default, if a value read from the file is the same as an existing value in the table
for a field that is part of a unique key, an error is given. If the REPLACEkeyword
is added to the statement, the value from the file will replace the one already in
the table. Conversely, the IGNOREkeyword will cause MySQL to ignore the new
value and keep the old one.

The word NULL encountered in the data file is considered to indicate a null value
unless the FIELDS ENCLOSED BY character encloses it.

Using the same character for more than one delimiter can confuse MySQL. For
example, FIELDS TERMINATED BY ',' ENCLOSED BY ',' would produce
unpredictable behavior.

If a list of columns is provided, the data is inserted into those particular fields in
the table. If no columns are provided, the number of fields in the data must match
the number of fields in the table, and they must be in the same order as the fields
are defined in the table.

You must have SELECT and INSERT privileges on the table to use this statement.

Example
Load in the data contained in 'mydata.txt' into the table 'mydata'. Assume
that the file is tab delimited with no quotes surrounding the fields.
LOAD DATA INFILE 'mydata.txt' INTO TABLE mydata
Load in the data contained in 'newdata.txt' Look for two comma delimited
fields and insert their values into the fields 'field1' and 'field2' in
the 'newtable' table.
LOAD DATA INFILE 'newdata.txt'
INTO TABLE newtable
FIELDS TERMINATED BY ','
(field1, field2)

LOCK

Syntax

LOCK TABLES name
[AS alias] READ|WRITE [, name2 [AS alias] READ|WRITE, ...]
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Description

Locks a table for the use of a specific thread. This command is generally used to
emulate transactions. If a thread creates a READlock all other threads may read
from the table but only the controlling thread can write to the table. If a thread
creates a WRITE lock, no other thread may read from or write to the table.

Using locked and unlocked tables at the same time can cause the
process thread to freeze. You must lock all of the tables you will be
accessing during the time of the lock. Tables you access only before
or after the lock do not need to be locked. The newest versions of
MySQL generate an error if you attempt to access an unlocked table
while you have other tables locked.

Example
Lock tables 'table1' and 'table3' to prevent updates, and block all access
to 'table2'. Also create the alias 't3' for 'table3' in the current thread.
LOCK TABLES table1 READ, table2 WRITE, table3 AS t3 READ

OPTIMIZE

Syntax

OPTIMIZE TABLE name

Description

Recreates a table eliminating any wasted space. This is done by creating the opti-
mized table as a separate, temporary table and then moving over to replace the
current table. While the procedure is happening, all table operations continue as
normal (all writes are diverted to the temporary table).

Example
OPTIMIZE TABLE mytable

REPLACE

Syntax

REPLACE INTO table [(column , ...)] VALUES (value , ...)

REPLACE INTO table [(column , ...)] SELECT select_clause
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Description

Inserts data to a table, replacing any old data that conflicts. This statement is identi-
cal to INSERT except that if a value conflicts with an existing unique key, the new
value replaces the old one. The first form of this statement simply inserts the given
values into the given columns. Columns in the table that are not given values are set
to their default value or NULL. The second form takes the results of a SELECTquery
and inserts them into the table.

Examples
Insert a record into the 'people' table.
REPLACE INTO people (name, rank, serial_number)
VALUES ('Bob Smith', 'Captain', 12345)
Copy all records from 'data' that are older than a certain date into
'old_data'. This would usually be followed by deleting the old data from
'data'.
REPLACE INTO old_data (id, date, field)
SELECT (id, date, field)
FROM data
WHERE date < 87459300

REVOKE

Syntax

REVOKEprivilege [(column , ...)] [, privilege [(column , .
..) ...]
ON table FROM user

Description

Removes a privilege from a user. The values of privilege, table, and user are the
same as for the GRANTstatement. You must have the GRANTprivilege to be able
to execute this statement.

SELECT

Syntax

SELECT [STRAIGHT_JOIN] [DISTINCT|ALL] value [, value2 ...]
[INTO OUTFILE ' filename ' delimiters]
FROMtable [, table2 ...] [clause]

Description

Retrieve data from a database. The SELECT statement is the primary method of
reading data from database tables.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

If you specify more than one table, MySQL will automatically join the tables so
that you can compare values between the tables. In cases where MySQL does not
perform the join in an efficient manner, you can specify STRAIGHT_JOIN to force
MySQL to join the tables in the order you enter them in the query.

If the DISTINCT keyword is present, only one row of data will be output for every
group of rows that is identical. The ALL keyword is the opposite of distinct and
displays all returned data. The default behavior is ALL.

The returned values can be any one of the following:

Aliases
Any complex column name or function can be simplified by creating an alias
for it. The value can be referred to by its alias anywhere else in the SELECT
statement (e.g., SELECT DATE_FORMAT(date,"%W, %M %d %Y") as nice_
date FROM calendar).

Column names
These can be specified as column, table.columnor database.table.column. The longer
forms are necessary only to disambiguate columns with the same name, but
can be used at any time (e.g., SELECT name FROM people; SELECT
mydata.people.name FROM people).

Functions
MySQL supports a wide range of built-in functions (see later). In addition, user
defined functions can be added at any time using the CREATE FUNCTION
statement (e.g., SELECT COS(angle) FROM triangle).

By default, MySQL sends all output to the client that sent the query. It is possible
however, to have the output redirected to a file. In this way you can dump the
contents of a table (or selected parts of it) to a formatted file that can either be
human readable, or formatted for easy parsing by another database system.

The INTO OUTFILE 'filename' modifier is the means in which output redirec-
tion is accomplished. With this the results of the SELECT query are put into
filename. The format of the file is determined by the delimitersarguments, which are
the same as the LOAD DATA INFILE statement with the following additions:

• The OPTIONALLYkeyword may be added to the FIELDS ENCLOSED BYmodi-
fier. This will cause MySQL to thread enclosed data as strings and non-
enclosed data as numeric.

• Removing all field delimiters (i.e., FIELDS TERMINATED BY '' ENCLOSED BY
'') will cause a fixed-width format to be used. Data will be exported accord-
ing to the display size of each field. Many spreadsheets and desktop data-
bases can import fixed-width format files.

The default behavior with no delimiters is to export tab delimited data using back-
slash (\) as the escape character and to write one record per line.

DRAFT, 8/24/01
The list of tables to join may be specified in the following ways:

Table1, Table2, Table3, . . .
This is the simplest form. The tables are joined in the manner that MySQL
deems most efficient. This method can also be written as Table1 JOIN
Table2 JOIN Table3,The CROSSkeyword can also be used, but it has
no effect (e.g., Table1 CROSS JOIN Table2) Only rows that match the con-
ditions for both columns are included in the joined table. For example,
SELECT * FROM people, homes WHERE people.id=homes.owner would
create a joined table containing the rows in the peopletable that have id fields
that match the owner field in the homes table.

Like values, table names can also be aliased (e.g., SELECT t1.
name, t2.address FROM long_table_name t1, longer_
table_name t2)

Table1 STRAIGHT_JOIN Table2
This is identical to the earlier method, except that the left table is always read
before the right table. This should be used if MySQL performs inefficient sorts
by joining the tables in the wrong order.

Table1 LEFT [OUTER] JOIN Table2 ON clause
This checks the right table against the clause. For each row that does not
match, a row of NULLs is used to join with the left table. Using the previous
example SELECT * FROM people, homes LEFT JOIN people, homes ON
people.id=homes.owner , the joined table would contain all of the rows that
match in both tables, as well as any rows in the peopletable that do not have
matching rows in the homestable, NULL values would be used for the homes
fields in these rows. The OUTER keyword is optional and has no effect.

Table1 LEFT [OUTER] JOIN Table2 USING (column[, column2 . . .])
This joins the specified columns only if they exist in both tables (e.g., SELECT
* FROM old LEFT OUTER JOIN new USING (id))

Table1 NATURAL LEFT [OUTER] JOIN Table2
This joins only the columns that exist in both tables. This would be the same
as using the previous method and specifying all of the columns in both tables
(e.g., SELECT rich_people.salary, poor_people.salary FROM rich_
people NATURAL LEFT JOIN poor_people)

{ oj Table1 LEFT OUTER JOIN Table2 ON clause }
This is identical to Table1 LEFT JOIN Table2 ON clause and is only
included for ODBC compatibility. (The “oj” stands for “Outer Join”.)
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
If no clause is provided, SELECT returns all of the data in the selected tables.

The search clause can contain any of the following substatements:

WHEREstatement
The WHEREstatement construct is the most common way of searching for data
in SQL. This statement is usually a comparison of some type but can also
include any of the functions listed below, except for the aggregate functions.
Named values, such as column names and aliases, and literal numbers and
strings can be used in the statement.

GROUP BYcolumn [, column2,...]
This gathers all of the rows together that contain data from a certain column.
This allows aggregate functions to be performed upon the columns (e.g.,
SELECT name,MAX(age) FROM people GROUP BY name) .

HAVING clause
This is the same as a WHEREclause except that it is performed upon the data
that has already been retrieved from the database. The HAVINGstatement is a
good place to perform aggregate functions on relatively small sets of data that
have been retrieved from large tables. This way, the function does not have to
act upon the whole table, only the data that has already been selected (e.g.,
SELECT name,MAX(age) FROM people GROUP BY name HAVING
MAX(age)>80).

ORDER BYcolumn [ASC| DESC][, column2 [ASC| DESC] ,...]
Sorts the returned data using the given column(s). If DESCis present, the data
is sorted in descending order, otherwise ascending order is used. Ascending
order can also be explicitly stated with the ASCkeyword (e.g., SELECT name,
age FROM people ORDER BY age DESC).

LIMIT [start,] rows
Returns Only the specified number of rows. If the startvalue is supplied, that
many rows are skipped before the data is returned. The first row is number 0
(e.g., SELECT url FROM links LIMIT 5,10 (returns URL’s numbered 5
through 14).

PROCEDUREname
In early versions of MySQL, this does not do anything. It was provided to
make importing data from other SQL servers easier. Starting with MySQL 3.22,
this substatement lets you specify a procedure that modifies the query result
before returning it to the client.

SELECT supports the concept of functions. MySQL defines several built-in func-
tions that can operate upon the data in the table, returning the computed value(s)
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
to the user. With some functions, the value returned depends on whether the user
wants to receive a numerical or string value. This is regarded as the “context” of
the function. When selecting values to be displayed to the user, only text context
is used, but when selecting data to be inserted into a field, or to be used as the
argument of another function, the context depends upon what the receiver is
expecting. For instance, selecting data to be inserted into a numerical field will
place the function into a numerical context. MySQL functions are detailed in full in
Chapter 18.

Examples
Find all names in the 'people' table where the 'state' field is 'MI'.
SELECT name FROM people WHERE state='MI'
Display all of the data in the 'mytable' table.
SELECT * FROM mytable

SET

Syntax

SET OPTION SQL_OPTION=value

Description

Defines an option for the current session. Values set by this statement are not in
effect anywhere but the current connection, and they disappear at the end of the
connection. The following options are current supported:

CHARACTER SETcharsetname or DEFAULT
Changes the character set used by MySQL. Specifying DEFAULTwill return to
the original character set.

LAST_INSERT_ID=number
Determines the value returned from the LAST_INSERT_ID() function.

SQL_BIG_SELECTS=0 or 1
Determines the behavior when a large SELECTquery is encountered. If set to
1, MySQL will abort the query with an error if the query would probably take
too long to compute. MySQL decides that a query will take too long it will
have to examine more rows than the value of the max_join_size server
variable. The default value is 0, which allows all queries.

SQL_BIG_TABLES=0 or 1
Determines the behavior of temporary tables (usually generated when dealing
with large data sets). If this value is 1, temporary tables are stored on disk,
which is slower than primary memory but can prevent errors on systems with
low memory. The default value is 0, which stores temporary tables in RAM.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
SQL_LOG_OFF=0or 1
When set to 1, turns off standard logging for the current session. This does not
stop logging to the ISAM log or the update log. You must have PROCESS
LIST privileges to use this option. The default is 0, which enables regular log-
ging.

SQL_SELECT_LIMIT=number
The maximum number of records returned by a SELECTquery. A LIMIT mod-
ifier in a SELECT statement overrides this value. The default behavior is to
return all records.

SQL_UPDATE_LOG=0or 1
When set to 0, turns off update logging for the current session. This does not
affect standard logging or ISAM logging. You must have PROCESS LISTprivi-
leges to use this option. The default is 1, which enables regular logging.

TIMESTAMP=value or DEFAULT
Determines the time used for the session. This time is logged to the update log
and will be used if data is restored from the log. Specifying DEFAULTwill
return to the system time.

Example
Turn off logging for the current connection.
SET OPTION SQL_LOG_OFF=1

SHOW

Syntax

SHOW COLUMNS FROMtable [FROM database] [LIKE clause]
SHOW DATABASES [LIKE clause]
SHOW FIELDS FROMtable [FROM database] [LIKE clause]
SHOW GRANTS
SHOW INDEX FROMtable [FROM database]
SHOW KEYS FROMtable [FROM database]
SHOW PROCESSLIST
SHOW STATUS
SHOW TABLE STATUS [FROMdatabase [LIKE clause]]
SHOW TABLES [FROMdatabase [LIKE expression]]
SHOW VARIABLES [LIKE clause]

Description

Displays various information about the MySQL system. This statement can be used
to examine the status or structure of almost any part of MySQL.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Examples
Show the available databases
SHOW DATABASES
Display information on the indexes on table 'bigdata'
SHOW KEYS FROM bigdata
Display information on the indexes on table 'bigdata'
in the database 'mydata'
SHOW INDEX FROM bigdata FROM mydata
Show the tables available from the database 'mydata' that begin with the
letter 'z'
SHOW TABLES FROM mydata LIKE 'z%'
Display information about the columns on the table 'skates'
SHOW COLUMNS FROM stakes
Display information about the columns on the table 'people'
that end with '_name'
SHOW FIELDS FROM people LIKE '%_name'
Show server status information.
SHOW STATUS
Display server variables
SHOW VARIABLES

UNLOCK

Syntax

UNLOCK TABLES

Description

Unlocks all tables that were locked using the LOCKstatement during the current
connection.

Example
Unlock all tables
UNLOCK TABLES

UPDATE

Syntax

UPDATE [LOW_PRIORITY] table
SET column =value , ...
[WHERE clause]
[LIMIT n]

Description

Alters data within a table. This statement is used to change actual data within a
table without altering the table itself. You may use the name of a column as a
value when setting a new value. For example, UPDATE health SET miles_
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
ran=miles_ran+5 would add five to the current value of the miles_rancolumn.
The statement returns the number of rows changed.

You must have UPDATE privileges to use this statement.

Example
Change the name 'John Deo' to 'John Doe' everywhere in the people table.
UPDATE people SET name='John Doe' WHERE name='John Deo'

USE

Syntax

USE database

Description

Selects the default database. The database given in this statement is used as the
default database for subsequent queries. Other databases may still be explicitly
specified using the database.table.column notation.

Example
Make db1 the default database.
USE db1
Copyright © 2001 O’Reilly & Associates, Inc.

	16
	SQL Syntax for MySQL
	Basic Syntax
	Literals
	String Literals
	Binary Literals
	Number Literals
	Hexadecimal Literals
	Null
	Ta�ble�16�1
	. MySQL Escape Sequences

	Identifiers
	Absolute Naming
	Relative Naming
	Aliasing

	Comments

	SQL Commands
	ALTER TABLE
	Syntax
	Description
	ADD [COLUMN] create_clause [FIRST | AFTER column]
	ADD INDEX [name] (column, ...)
	ADD PRIMARY KEY (column, ...)
	ADD UNIQUE[name] (column, ...)
	ALTER [COLUMN] column SET DEFAULT value
	ALTER [COLUMN] column DROP DEFAULT
	CHANGE [COLUMN] column create_clause MODIFY [COLUMN] create_clause
	DROP [COLUMN] column
	DROP PRIMARY KEY
	DROP INDEX key
	RENAME [AS] new_table RENAME [TO] new_table
	ORDER BY column
	table_options
	Examples

	CREATE DATABASE
	Syntax
	Description
	Example

	CREATE FUNCTION
	Syntax
	Description
	Example

	CREATE INDEX
	Syntax
	Description
	Example

	CREATE TABLE
	Syntax
	Description
	DEFAULT value
	NOT NULL
	NULL
	PRIMARY KEY
	REFERENCES table [(column, . . .)] [MATCH FULL | MATCH PARTIAL] [ON DELETE option] [ON UPDATE opt...
	FULLTEXT (column, ...)
	KEY/INDEX [name] (column, ...)
	PRIMARY KEY
	UNIQUE [name] (column, ...)
	AUTO_INCREMENT = start
	AVG_ROW_LENGTH = length
	CHECKSUM = 0 or 1
	COMMENT = comment
	DELAY_KEY_WRITE = 0 or 1
	MAX_ROWS = rowcount
	MIN_ROWS = rowcount
	PACK_KEYS = 0 or 1
	PASSWORD = ‘password’
	ROW_FORMAT = DYNAMIC or STATIC
	TYPE = rowtype
	Ta�ble�16�2
	. MySQL Table Types

	Examples

	DELETE
	Syntax
	Description
	Examples

	DESCRIBE
	Syntax
	Description
	Example

	DESC
	DROP DATABASE
	Syntax
	Description

	DROP FUNCTION
	Syntax
	Description

	DROP INDEX
	Syntax
	Description

	DROP TABLE
	Syntax
	Description

	EXPLAIN
	Syntax
	Description
	table
	type
	system
	const
	eq_ref
	ref
	range
	index
	ALL

	possible_keys
	key
	key_len
	ref
	rows
	Extra
	Example

	FLUSH
	Syntax
	Description
	HOSTS
	LOGS
	PRIVILEGES
	STATUS
	TABLES

	GRANT
	Syntax
	ALL PRIVILEDGES/ALL
	ALTER
	CREATE
	DELETE
	DROP
	FILE
	INDEX
	INSERT
	PROCESS
	REFERENCES
	RELOAD
	SELECT
	SHUTDOWN
	UPDATE
	USAGE
	Examples

	INSERT
	Syntax
	Description
	Examples

	KILL
	Syntax
	Description
	Example

	LOAD
	Syntax
	Description
	FIELDS TERMINATED BY 'c'
	FIELDS ENCLOSED BY 'c'
	FIELDS ESCAPED BY 'c'
	LINES TERMINATED BY 'c'
	Example

	LOCK
	Syntax
	Description
	Example

	OPTIMIZE
	Syntax
	Description
	Example

	REPLACE
	Syntax
	Description
	Examples

	REVOKE
	Syntax
	Description

	SELECT
	Syntax
	Description
	Aliases
	Column names
	Functions
	Table1, Table2, Table3, . . .
	Table1 STRAIGHT_JOIN Table2
	Table1 LEFT [OUTER] JOIN Table2 ON clause
	Table1 LEFT [OUTER] JOIN Table2 USING (column[, column2 . . .])
	Table1 NATURAL LEFT [OUTER] JOIN Table2
	{ oj Table1 LEFT OUTER JOIN Table2 ON clause }
	WHERE statement
	GROUP BY column[, column2,...]
	HAVING clause
	ORDER BY column [ASC|DESC][, column2 [ASC|DESC],...]
	LIMIT [start,] rows
	PROCEDURE name
	Examples

	SET
	Syntax
	Description
	CHARACTER SET charsetname or DEFAULT
	LAST_INSERT_ID=number
	SQL_BIG_SELECTS=0 or 1
	SQL_BIG_TABLES=0 or 1
	SQL_LOG_OFF=0 or 1
	SQL_SELECT_LIMIT=number
	SQL_UPDATE_LOG=0 or 1
	TIMESTAMP=value or DEFAULT
	Example

	SHOW
	Syntax
	Description
	Examples

	UNLOCK
	Syntax
	Description
	Example

	UPDATE
	Syntax
	Description
	Example

	USE
	Syntax
	Description
	Example

