
DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 1

6
Performance Tuning

Introduction

Performance tuning is an important part of every significant development effort. In
general, MySQL is designed with speed in mind. However, there are a number of factors
that can impact application and/or database performance. The focus of this chapter will
be to introduce you to some of the principles of performance tuning and some of the tools
you have at your disposal.

Performance Tuning Methodology

When performance tuning a MySQL application, there are four main areas that you
consider: the application, the database server, the operating system and the hardware.
These should be ranked in terms of “bang for the buck.” For example, adding memory or
upgrading your processor will usually improve the performance of your application(s), but
you should be able to get greater gains for less cost if you tune your application code and
database server first. In addition, any performance tuning on the MySQL server will
apply to all applications using that server. Characteristics that are advantageous for one
particular application, may not improve that performance of another. Based on these
factors, as a general methodology, we recommend that you look at application tuning
issues in the following order:

1. SQL Query tuning

2. Database server tuning

3. Operating system

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 2

4. Hardware

Detailed coverage of operating system and hardware tuning are beyond the scope of this
book. That is not to say that these are unimportant parts of the performance equation.
However, the wide variety of Oses and hardware types make it impractical to cover these
topics in adequate detail.

Application Performance Tuning

There are really two parts to applicaton performance tuning: host application tuning (i.e.
C/C++, Java, Perl, etc.) and SQL query tuning. First we will look at host application
considerations. Good application design and programming practices are crucial to getting
good performance from you MySQL application. No amount of query tuning can make
up for inefficient code. Following are few guidelines you can follow in your applications
to optimize your performance:

• Normalize your database

Elimination of redundancy from your database is critical for performance. Read
Chapter 8 for more details on database design and normalization.

• Let the MySQL server do what it does well

This seems obvious, but it is frequently overlooked. For example, if you need to
retrieve a set of rows from a table, you could write a loop in you host application to
retrieve the rows like this
for (int i = 0; i++; i< keymax) {
 … select * from foobar where key=i;
 process the row
}

The problem with this approach is that MySQL has the overhead of parsing,
optimizing and executing the same query multiple times. If you let MySQL retrieve
all the rows at once, you let MySQL do what it is good at.
… select * from foobar where key < keymax;
for each row {
 process the row
}

• Denormalize your database where appropriate

Sometimes performance demands require that you denormalize your database. A
classic example of this is a nightly report which summarizes some information.
These types of reports often require sifting of large quantities of data to produce the
summaries. In this situation, you can create a “redundant” table which is updated
with the latest summary information on a periodic basis. This summary table can be
then be used as basis for your report.

• Use persistent connections or connection pooling if possible

Connecting and disconnecting from the database has an overhead associated with it.
In general you want to reduce the number of connections and disconnections to a
minimum. In particular, this can be a problem with web applications where each

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 3

time a page is requested, the CGI or PHP script connects to the database to retrieve
the relevant information. By using persistent connections or a connection pool, you
will bypass connect/disconnect overhead, and you application will perform better.

SQL Query Tuning

The data in your database is stored as data on your disk.. Retrieving and updating data in
your database is ultimately a series of disk input/output operations (I/Os). The goal of
SQL query tuning is to reduce the number of I/Os to a minimum. Your main weapon for
tuning your queries is the index.

In the absence of indexes on your database tables, all retrievals will require that all the
data in all of the involved tables be scanned. To illustrate this, consider the following
example

SELECT NAME FROM EMPLOYEE WHERE SSN = 999999999

Assume for this example that we have a table named “EMPLOYEE” with a number of
columns including “NAME” and “SSN”. Also, assume this table has no indexes.

WE know the SSN should be unique (that is, for each record in the table, SSN will have a
unique value), and we expect to get one row in return. However, MySQL doesn’t know
this, and when the above query is executed MySQL has to scan the entire table to find all
the records that match the where clause (SSN = 999999999). If we have a thousand rows
in the EMPLOYEE table, MySQL has to read each of those rows. This operation is linear
with the number of rows in the table.

What happens if we add an index on the SSN column of the EMPLOYEE table? This
gives MySQL some more information. When we execute above query, it can consult the
index first to find the matching SSNs. Since the index is sorted by SSN and is organized
into a tree structure, it can find the matching records very quickly. After it finds the
matching records, it simply has to read the NAME data for each match. This operation is
logarithmic with the number of rows in the table – a signifigant improvement over the
unindexed table.

Just as in this example, most MySQL query tuning boils down to a process of ensuring
that you have the right indexes on your tables and that they are being used correctly by
MySQL.

Index Guidelines

We’ve established that proper indexing of your tables is crucial to the performance of
your application. On first glace, It may be tempting then to index every single column in
every table of your database. After all, it should improve performance, right? Actually,
indexes have some downsides too.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 4

Each time you write to a table (i.e. INSERT, UPDATE or DELETE) with one or more
indexes, MySQL has to update each of the indexes at the same time. So each index adds
overhead to all write operations. In addition, each index adds to the size of your database.
You will only gain a performance benefit from an index if its column(s) are referenced in
a where clause. If an index is never used, it is not worth incurring the cost of maintaining
it.

With these tradeoffs in mind, here are some guidelines for index creation:

• Try to index all columns referenced in a WHERE clause

As a general goal, you want any column that is referenced in a where clause to be
indexed. However, this is not always true. If columns are compared or joined using
the ‘<’, ‘<=’, ‘=’, ‘>=’, ‘>’ and BETWEEN operations, the index will be used. Use
of a function on a column in a where clause will defeat an index on that column. So
for example
SELECT * FROM EMPLOYEE WHERE LEFT(NAME, 6) = “FOOBAR”

would not be able to take advantage of an index on the NAME column. The LIKE
operator will use an index if the there is a literal prefix in the pattern. For example
SELECT * FROM EMPLOYEE WHERE NAME LIKE “FOOBAR%”

would use an index, but
SELECT * FROM EMPLOYEE WHERE NAME LIKE “%FOOBAR”

would not.

• Use unique indexes where possible

If you know data in an index is unique, such as a primary key or an alternate key, use
a unique index. These are even more beneficial for performance than regular
indexes.

• Take advantage of multi-column indexes

Well designed multi-column indexes can reduce the total number of indexes needed.
MySQL will use a left prefix of a multi-column index if applicable. Say, for
example, you have an employee table with the columns first_name and last_name. If
you know that last_name is always used in queries while first_name is only used
sometimes, you can create a multi-column index with last_name as the first column
and first_name as second column. With this kind of index, all queries with last_name
or last_name and first_name in the where clause will use the index.

Poorly designed multi-column indexes may end up either not being used at all or
being used infrequently. From the example above, queries will only first_name in the
where clause will NOT use the index.

Having a strong understand of your application and the query scenarios is invaluable
in determining what the right set of multi-column indexes are. Always verify your
results with “EXPLAIN SELECT”(see below).

• Consider not indexing some columns

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 5

Sometimes performing a full table scan is faster than having to read the index and the
data table. This is especially true for cases where the indexed column contains a
small set of evenly distributed data. The classic example of this is gender, which has
two values (male and female) that are evenly split. Selecting by gender will require
you to read roughly half of the rows. It might be faster to do a full table scan in this
case. As always, test your application to see what works best for you.

• ALWAYS that your indexes are being used as expected using the “EXPLAIN
SELECT” command on your queries. The use of EXPLAIN SELECT is detailed in
the next section.

EXPLAIN SELECT

What do you do if you have a problem query and you can’t see where an index is needed?
And how do you verify that all your indexes are being used as expected? Are your tables
being joined in the most logical order? MySQL provides a tool that will help answer
these questions: the EXPLAIN SELECT command. EXPLAIN SELECT provides
information about each table in your query including which indexes will be used and how
the tables will be joined. The output from EXPLAIN SELECT includes the following
columns.

Table The database table to which the EXPLAIN SELECT output refers.

Type The join type. Possible join types are listed below, ranked from most
desirable to least desirable.

system The table has only row (i.e. it is a system table). This is a
special case of the const join type. See that for more
information.

Const The table has at most one matching row, so it can be read
once and treated as a constant for remainder of query
optimization. These are fast because they are read once.

Eq_ref No more than one row will be read from this table for
each combination of rows from the previous tables. This
is used when all columns of an index are used the query
and the index is UNIQUE or a PRIMARY KEY.

Ref All matching rows will be read from this table for each
combination of rows from the previous tables. This is
used when an index is not UNIQUE or a PRIMARY key,
or if a left subset of index columns are used in the query.

Range Only rows that are in a given range will be retrieved from
this table, using an index to select the rows.

Index A full scan of the index will be performed for each
combination of rows from the previous tables. This is the

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 6

same as an ALL join type except that only the index is
scanned.

ALL A full scan of the table will be performed for each
combination of rows from the previous tables. ALL joins
should be avoided by adding an index.

Possible_keys possible_keys lists which indexes MySQL could use tofind the rows in

this table. When there are no relevant indexes, possible_keys is NULL.
This indicates that you may be able to improve the performance of your
query by adding an index.

Key Key lists the actual index that MySQL choose. Key is NULL if no
index was chosen.

Key_len Key_len lists the length of the index that MySQL choose. This also
indicates how many parts of a multi-column index MySQL choose to
use.

Ref Ref lists which columns or constants are used to select rows from this
table.

Rows Rows lists the number of rows that MySQL thinks it will have to
examine from this table in order to execute the query.

Extra Extra lists more information about how a query is resolved.

Distinct After MySQL has found the first
matching row, it will stop
searching in this table.

Not exists MySQL was able to do a left join
optimization of the query.

Range checked for each record
(index map: #)

MySQL was not able to identify
a suitable index to use. For each
combination of rows from the

Using filesort MySQL has to sort the rows
before retrieving the data.

Using index All needed information is
available in the index, so MySQL
doesn’t need to read any data

Using temporary MySQL has to create a
temporary table to resolve the
query. This occurs if you use

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 7

query. This occurs if you use
ORDER BY and GROUP BY on
different sets of columns.

Where used The WHERE clause will be used
to restrict the rows returned from
this table.

Let’s go through a detailed example to look at how to EXPLAIN SELECT to optimize a
query.

Assume for this example, that we have a STATE table which includes data about all fifty
of the U.S. States.

mysql> describe state;
+------------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+-------+
state_id	int(11)			0	
state_cd	char(2)				
state_name	char(30)				
+------------+----------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Now, suppose we want to get the state name for California. For this, we would write a
query like

select state_name from state where state_cd = ’CA’;

Even though SELECT queries are referred to in this section, these
guidelines apply to UPDATE and DELETE statements as well.
INSERT statements don’t need to be optimized unless they are INSERT
… SELECT statements.

Now, lets run EXPLAIN SELECT to see what we can discover about how the query will
be executed.

mysql> explain select state_name from state where state_cd = ’CA’;
+-------+------+---------------+------+---------+------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+------+---------+------+------+------------+
| state | ALL | NULL | NULL | NULL | NULL | 50 | where used |
+-------+------+---------------+------+---------+------+------+------------+
1 row in set (0.00 sec)

This tells us that MySQL will scan all rows in the MySQL table to satisfy the query. This
is indicated by the join type of “ALL”. The rows column tells us that MySQL estimates it
will have to read fifty rows to satisfy the query, which is what we would expect since
there are fifty states. How can we improve upon this? Since state_cd is being used in a
where clause of we should put an index on it.

mysql> create index st_idx on state (state_cd);
.
.
mysql> explain select state_name from state where state_cd = ’CA’;
+-------+------+---------------+--------+---------+-------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+--------+---------+-------+------+------------+
| state | ref | st_idx | st_idx | 2 | const | 1 | where used |

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 8

+-------+------+---------------+--------+---------+-------+------+------------+

Now we can see from the key column that that MySQL has decided to use the index that
we created, and that it will only read one row to satisfy the query. The only possible
improvement we could make upon this would be to use a unique index instead, since we
know that each state codes is unique.

mysql> create unique index st_idx on state (state_cd);
.
.
mysql> explain select state_name from state where state_cd = ’CA’;
+-------+-------+---------------+--------+---------+-------+------+-------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+-------+---------------+--------+---------+-------+------+-------+
| state | const | st_idx | st_idx | 2 | const | 1 | |
+-------+-------+---------------+--------+---------+-------+------+-------+

With the unique index in place, MySQL uses a “const” join type. We won’t be able to
improve upon that! Now for a more complicated example with some joins.

Suppose in addition to the STATE table, we also have a CITY table that looks like this:

mysql> describe city;
+-----------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+----------+------+-----+---------+-------+
city_id	int(11)			0	
city_name	char(30)				
state_cd	char(2)				
+-----------+----------+------+-----+---------+-------+

Assume CITY has fifty cities for each STATE for a total of twenty-five hundred. Also,
assume for this example, we’re back to our original STATE table without any indexes.

Now let’s ask what state San Francisco is in?
mysql> select state_name from state, city where city_name = "San Francisco" and
 -> state.state_cd = city.state_cd;

What does EXPLAIN tell us about this query?
mysql> explain select state_name from state, city where city_name =
 -> "San Francisco" and state.state_cd = city.state_cd;
+-------+------+---------------+------+---------+------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+------+---------+------+------+------------+
| state | ALL | NULL | NULL | NULL | NULL | 50 | |
| city | ALL | NULL | NULL | NULL | NULL | 2500 | where used |
+-------+------+---------------+------+---------+------+------+------------+

The numbers in the “rows” column tell us that MySQL is going to read each row in the
the state table. It will then read each of the 2500 city rows and look for a city named “San
Francisco”. This means that it will read a total of 125,000 (50 x 2500) rows before it can
satisfy the query. This is obviously not ideal, but we should be able to improve it with
some indexes. First, lets create our state_cd index.

mysql> create unique index st_cd on state (state_cd);

How does our query look with that?
mysql> explain select state_name from state, city where city_name =
 -> "San Francisco" and state.state_cd = city.state_cd;
+-------+--------+---------------+-------+---------+---------------+------+------------+

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 9

| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+--------+---------------+-------+---------+---------------+------+------------+
| city | ALL | NULL | NULL | NULL | NULL | 2500 | where used |
| state | eq_ref | st_idx | st_idx| 2 | city.state_cd | 1 | where used |
+-------+--------+---------------+-------+---------+---------------+------+------------+

That helps quite a bit. Now MySQL will only read one state for each city. If we add an
index on the city_name column, that should do away with the “ALL” join type for the city
table.

mysql> create index city_idx on city (city_name);
.
.
mysql> explain select state_name from state, city where city_name =
 -> "San Francisco" and state.state_cd = city.state_cd;
+-------+------+---------------+----------+---------+---------------+------+------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+----------+---------+---------------+------+------------+
| city | ref | city_idx | city_idx | 30 | const | 1 | where used |
| state | ref | st_idx | st_idx | 2 | city.state_cd | 1 | where used |
+-------+------+---------------+----------+---------+---------------+------+------------+

By adding two indexes, we have gone from 125,000 rows read to two. This illustrates
what a dramatic difference indexes can make. Now, what happens if we try a different
query: what are all the cities in California?

mysql> explain select city_name from city, state where city.state_cd
 -> = state.state_cd and state.state_cd = ’CA’;
+-------+------+---------------+--------+---------+-------+------+-------------------------+
| table | type | possible_keys | key | key_len | ref | rows | Extra |
+-------+------+---------------+--------+---------+-------+------+-------------------------+
| state | ref | st_idx | st_idx | 2 | const | 1 | where used; Using index |
| city | ALL | NULL | NULL | NULL | NULL | 2500 | where used |
+-------+------+---------------+--------+---------+-------+------+-------------------------+

Again, we have a problem because MySQL plans to scan all 2500 cities. This is because
it can’t properly join on the state_cd code column with out an index in the city table. So
lets add it.

create index city_st_idx on city (state_cd);
.
.
mysql> explain select city_name from city, state where city.state_cd
 -> = state.state_cd and state.state_cd = ’CA’;
+-------+------+---------------+-------------+---------+-------+------+-----------------------
--+
| table | type | possible_keys | key | key_len | ref | rows | Extra
|
+-------+------+---------------+-------------+---------+-------+------+-----------------------
--+
| state | ref | st_idx | st_idx | 2 | const | 1 | where used; Using
index |
| city | ref | city_st_idx | city_st_idx | 2 | const | 49 | where used
|
+-------+------+---------------+-------------+---------+-------+------+-----------------------
--+

With that index, MySQL only has to read roughly 50 rows in to satisfy the query. This is
exactly what we would expect, since California has fifty cities in this database.

Other Options

MySQL is not always perfect when optimizing a query. Sometimes it just wont choose
the index that it should. What can you do in this situation?

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 10

Isamchk/Myisamchk can help. MySQL assumes that values in an index are distributed
evenly. Isamchk/Myisamchk –analyze will read a table and generate a histogram of data
distribution for each column. MySQL uses this to make a more intelligent decision about
what indexes to use. See Chapter 18 more information on using Isamchk/Myisamchk.

Another option is to use the USE INDEX/IGNORE INDEX in your query. This will give
MySQL specific instructions about which indexes to use or not use. See the Chapter ??
for more information about this.

Tuning the MySQL Server

There are a number of settings you can tweak at the MySQL server level to influence
application performance. One thing to keep in mind when tuning a server is that server
behavior will affect all the applications using that server. An improvement for one
application may have a detrimental effect for other applications on the same server.

There are a number of variables that can be modified in the MySQL server which may
improve your performance. A full reference on these parameters can be found in Chapter
20, or by typing mysqld –help.

In general, when tuning MySQL, the two most important variables are key_buffer_size
and table_cache.

• Table_cache

Table_cache controls the size of the MySQL table cache. Increasing this parameter
allows MySQL to have more tables open simultaneously without opening and closing
files.

• Key_buffer_size

Key_buffer_size controls the size of the buffer used to hold indexes. Increasing this
will improve index creation and modification, and will allow MySQL to hold more
index values in memory.

OS/Hardware Considerations

A full discussion of Hardware and/or OS tuning is beyond the scope of this book.
However, here are a few things to consider:

• Many of the traditional hardware upgrades can help MySQL perform better.
Increasing the memory in your system, gives you more to allocate to MySQL caches
and buffers.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 11

• Intelligently distributing your databases across multiple physical devices can also
help.

• Static binaries are faster. You can configure MySQL to link statically instead of
dynamically when you build it.

