
DRAFT, 8/24/01
Chapter 9

We have spent the entire boo
sort of vacuum. It serves its p
We should therefore take a lo
of a database application b
development in various langu
tant not only to programming
tional database engine. Our
issues as understanding the b
Copyr
9

9.Database Applications
k so far discussing the database as if it exists in some
urpose only when being used by other applications.
ok at how the database relates to the other elements
efore exploring the details of database application
ages. This detour examines conceptual issues impor-
with MySQL, but also to programming with any rela-

look at database programming covers such complex
asic architectures common to Web-oriented database

applications and how to map complex programming models into a relational data-
base.

Architecture
Architecture describes how the different components of a complex application
relate to one another. A simple Web application using Perl to generate dynamic
content has the architecture shown in Figure 9-1. This architecture describes four
components: the Web browser, the Web server, the Perl CGI engine, and the
MySQL database.

Architecture is the starting point for the design of any application. It helps you
identify at a high level all of the relevant technologies and what standards those
technologies will use to integrate. The architecture in Figure 9-1, for example,
shows the Web browser talking to the server using HTTP.

FIGURE9-1.BMP
Figure 9-1. . The architecture of a simple Web application
158
ight © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

As we will cover in the later chapters of this section, MySQL exposes itself through
a variety of APIs tailored to specific programming languages. Java applications
access MySQL through JDBC; Python applications through the Python DB-API, etc.
The architecture above clearly shows to any observer that the application in ques-
tion will use the Perl DBI API to access MySQL.

There are numerous architectures used in database applications. In this chapter,
we will cover the three most common architectures: client/server, distributed, and
Web. Though one could argue that they are all variations on a theme, they do rep-
resent three very different philosophical approaches to building database applica-
tions.

Client/Server Architecture

At its simplest, the client/server architecture is about dividing up application pro-
cessing into two or more logically distinct pieces. The database makes up half of
the client/server architecture. The database is the ‘server’; any application that uses
that data is a ‘client.’ In many cases, the client and server reside on separate
machines; in most cases, the client application is some sort of user-friendly inter-
face to the database. Figure 9-2 provides a graphical representation of a simple cli-
ent/server system.

You have probably seen this sort of architecture all over the Internet. The Web, for
example, is a giant client/server application in which the Web browser is the cli-
ent and the Web server is the server. In this scenario, the server is not a relational
database server, but instead a specialized file server. The essential quality of a
server is that it serves data in some format to a client.

Application Logic

Because client/server specifically calls out components for user interface and data
processing, actual application processing is left up to the programmer to integrate.
In other words, client/server does not provide an obvious place for a banking
application to do interest calculations. Some client/server applications place this

Figure 9-2. The client/server architecture

client

Server

DRAFT, 8/24/01
kind of processing in the database in the form of stored procedures; others put it
in the client with the user interface controls. In general, there is no right answer to
this question.

Under MySQL, the right answer currently is to put the processing in the client due
to the lack of stored procedure support in MySQL. Stored procedures are on the
MySQL to-do list, and—perhaps even by the time you read this book—stored pro-
cedures will eventually be a viable place for application logic in a client/server
configuration. Whether or not MySQL has stored procedures, however, MySQL is
rarely used in a client/server environment. It is instead much more likely to be
used with the Web architecture we will describe later in this chapter.

Fat and Thin Clients

It used to be that there were two kinds of clients: fat clients and thin clients. A fat
client was a client in a client/server applications that included application process-
ing; a thin client was one that simply had user interface logic. With the advent of
Web applications, we now have the term ultra-thin to add to the list. An ultra-thin
client is any client that has only display logic. Controller logic—what happens
when you press “Submit”—happens elsewhere. In short, an ultra-thin client is a
Web form.

The advantage of an ultra-thin client is that it makes real the concept of a ubiqui-
tous client. As long as you can describe the application layout to a client using
some sort of markup language, the client can paint the UI for a user without the
programmer needing to know the details of the underlying platform. When the UI
needs to respond to a user action, it sends information about the action to another
component in the architecture to respond to the action. Client/server, of course,
has no such component.

Distributed Application Architecture

The distributed application architecture provides a logical place where application
logic is supposed to occur, but it does not provide a place for UI controller logic.
Figure 9-3 shows the layout of an application under the distributed application
architecture.

As you can see, this architecture is basically the client/server architecture with a
special place for application logic—the middle tier. This small difference, how-
ever, represents a major philosophical shift from the client/server design. It says, in
short, that it is important to separate application logic from other kinds of logic.

FIGURE9-3.BMP
Figure 9-3. . The distributed application architecture
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
In fact, placing application logic in the database or in the user interface is a good
way to hinder your application’s ability to grow with changing demands. If, for
example, you need a simple change to your data model, you will have to make
significant changes to your stored procedures if your application logic is in the
database. A change to application logic in the UI, on the other hand, forces you to
touch the UI code as well and thus risk adding bugs to systems that have nothing
to do with the changes you are introducing.

The distributed application architecture thus does two things. First, it provides a
home for application processing so that it does not get mixed in with database or
user interface code. The second thing it does, however, is make the user interface
independent of the underlying data model. Under this architecture, changes to the
data model affect only how the middle tier gets data from and puts it into the data-
base. The client has no knowledge of this logic and thus does not care about such
changes.

The distributed application architecture introduces two truly critical elements. First
of all, the application logic tier enables the reuse of application logic by multiple
clients. Specifically, by calling out the application logic with well-defined integra-
tion points, it is possible to reuse that logic with user interfaces not conceived
when the application logic was written.

The second, not so obvious thing this architecture brings to applications is the
ability to provide easy support for fail-over and scalability. The components in this
architecture are logical components, meaning that they can be spread out across
multiple actual instances. When a database or an application server introduces
clustering, it can act and behave as a single tier while spreading processing across
multiple physical machines. If one of those machines goes down, the middle-tier
itself is still up and running.

Complex transactions are a hallmark of distributed applications. For that reason,
MySQL today makes a poor backend for this architecture. As support for transac-
tions in MySQL matures, this state of affairs may change.

Web Architecture

The Web architecture is another step in evolution that appears only slightly differ-
ent than the distributed application architecture. It makes a true ultra-thin client
possible by providing only display information in the form of HTML to a client. All
controller logic occurs in a new component, the Web server. Figure 9-4 illustrates
the Web architecture.

FIGURE9-4.BMP
Figure 9-4. . The Web application architecture
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
The controller comes in many different forms, depending on what technologies
you are using. PHP, CGI, JSP, ASP, ColdFusion, and WebObjects are all examples
of technologies for processing user events. Some of these technologies even break
things up further into content creation and controller logic. Using a content man-
agement system like OpenMarket, for example, your JSP is nothing more than a
tool for dynamically building your HTML. The actual controller logic is passed off
to a servlet action handler that performs any application server interaction.

The focus of this book will be the Web architecture since it is the most common
architecture in which MySQL is used. We will use both the vision of the Web
architecture shown in Figure 9-4 and a simpler one in which the application logic
is embedded with controller logic in the Web server. The simpler architecture is
mostly relevant to MySQL applications since MySQL performs best for heavy read
applications—applications without complex application logic.

Connections and Transactions
Whatever architecture you are using, the focus of this book lies at the point where
your application talks to the database. As a database programmer, you need to
worry about how you get data from and send it to your database. As we men-
tioned earlier, the tool to do that is generally some sort of database API. Any API,
however, requires a basic understanding of managing a connection, the transac-
tions under that connection, and the processing of the data associated with those
transactions.

Connections

The starting point of your database interaction is in making the connection. The
details behind what exactly it is to be a connection vary from API to API. Never-
theless, making a connection is basically establishing some sort of link between
your code and the database. The variance comes in the form of logical and physi-
cal connections. Under some APIs, a connection is a physical connection—a net-
work link is established. Other APIs, however, may not establish a physical link
until long after you make a connection, to ensure that no network traffic takes
place until you actual need the connection.

The details about whether or not a connection is logical or physical generally
should not concern a database programmer. The important thing is that once a
connection is established, you can use that connection to interact with the data-
base.

Once you are done with your connection, you need to close it and free up any
resources it may have used. It stands to reason that before you actually issue a
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
query, you should first connect to the database. It is not uncommon, however, for
people to forget the other piece of the puzzle—cleaning up after themselves. You
should always free up any database resources you grab the minute you are done
with them. In a long-running application like an Internet daemon process, a badly
written system can eat up database resources until it locks up the system.

Part of cleaning up after yourself involves proper error handling. Better program-
ming languages make it harder for you to fail to handle exceptional conditions
(network failure, duplicate keys on insert, SQL syntax errors, etc.); but, regardless
of your language of choice, you must make sure that you know what error condi-
tions can arise from a given API call and act appropriately for each exceptional sit-
uation.

Transactions

You talk to the database in the form of transactions.* A simple description of a
database transaction is one or more database statements that must be executed
together, or not at all.A bank account transfer is a very good example of a com-
plex transaction. In short, an account transfer is actually two separate events: a
debit of one account and a credit to another. Should the database crash after the
debit occurs but before the credit, the application should be able to back out of
the debit. A database transaction enables a programmer to mark when a transac-
tion begins, when it ends, and what should happen should one of the pieces of
the transaction fail.

Until recently, MySQL had no support for transactions. In other words, when you
executed a SQL statement under old versions of MySQL, it took effect immedi-
ately. This behavior is still the default for MySQL. Newer versions of MySQL, how-
ever, support the ability to use transactions with certain tables in the database.
Specifically, the table must use a transaction-safe table format. Currently, MySQL
supports two transaction-safe table types: BDB (Berkeley DB) and InnoDb.

In Chapter 4, we described the MySQL syntax for managing transactions from the
MySQL client command line. Managing transactions from within applications is
often very different. In general, each API will provide a mechanism for beginning,
committing, and rolling back transactions. If it does not, then you likely can fol-
low the command line SQL syntax to get the desired effect.

* Even if you are using a version of MySQL without support for transactions, each statement you send to
the database can, in a sense, be thought of as an individual transaction. You simple have no option to
abort or package multiple statements together in a complex transaction.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Transaction Isolation Levels

Managing transactions may seem simple, but there are many issues you need to
consider when using transactions in a multi-user environment. First of all, transac-
tions come with a heavy price in terms of performance. MySQL did not originally
support transactions because MySQL’s goal was to provide a fast database engine.
Transactions seriously impact database performance. In order to understand how
this works, you need to have a basic understanding of transaction isolation level.

A transaction isolation level basically determines what other people see when you
are in the middle of a transaction. In order to understand transaction isolation lev-
els, however, you first need to understand a few common terms:

dirty read
A dirty read occurs when one transaction views the uncommitted changes of
another transaction. If the original transaction rolls back its changes, the one
that read the data is said to have “dirty” data.

repeatable read
A repeatable read occurs when one transaction always reads the same data
from the same query no matter how many times the query is made or how
many changes other transactions make to the rows read by the first transac-
tion. In other words, a transaction that mandates repeatable reads will not see
the committed changes made by another transaction. An application needs to
start a new transaction to see those changes.

phantom read
A phantom read deals with changes occurring in other transactions that would
result in the new rows matching your transaction’s WHEREclause. Consider,
for example, a situation in which you have a transaction that reads all
accounts with a balance of less than $100. Your transaction performs two
reads of that data. Between the two reads, another transaction adds a new
account to the database with no balance. That account will now match your
query. If your transaction isolation allows phantom reads, you will see the
new “phantom” row. If it disallows phantom reads, then you will see the same
set of rows each time.

MySQL supports the following transaction isolations levels:

READ UNCOMMITTED
The transaction allows dirty reads, non-repeatable reads, and phantom reads.

READ COMMITTED
The transaction disallows dirty reads, but it allows non-repeatable reads and
phantom reads.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
REPEATABLE READ
Committed, repeatable reads as well as phantom reads are allowed. Non-
repeatable reads are not allowed.

SERIALIZABLE
Only committed, repeatable reads are allowed. Phantom reads are specifically
disallowed.

As you climb the transaction isolation chain, from no transactions to serializable
transactions, you decrease the performance of your application. You therefore
need to balance your data integrity needs with your performance needs. In gen-
eral, READ COMMITTED is as high as an application wants to go, except in a few
very exceptional cases.

Using READ UNCOMMITTED

One mechanism of getting the performance of READ UNCOMMITTED but the data
integrity of READ COMMITTED is to make a row’s primary key the normal pri-
mary key plus a timestamp reflecting the time in milliseconds when the row was
last updated. When an application performs an update on the underlying row in
the database, it updates that timestamp but uses the old one in the WHERE clause:

UPDATE ACCOUNT
SET BALANCE = 5.00, LAST_UPDATE_TIME = 996432238000
WHERE ACCOUNT_ID = 5 AND LAST_UPDATE_TIME = 996432191119

If this transaction has dirty data, the update will fail and throw an error. The appli-
cation can then re-query the database for the new data.

Object/Relational Modeling
Accessing a relational database from an object-oriented environment exposes a
special paradox: the relational world is entirely about the manipulation of data
while the object world is about the encapsulation of data behind a set of behav-
iors. In an object-oriented application, the database serves as a tool for saving
objects across application instances. Instead of seeing the query data as a rowset,
an object-oriented application sees the data from a query as a collection of objects.

The most basic question facing the object-oriented developer using a relational
database is how to map relational data into objects. Your immediate thought might
be to simply map object attributes to fields in a table. Unfortunately, this approach
does not create the perfect mapping for several reasons.

• Objects do not store only simple data in their attributes. They may store col-
lections or relationships with other objects.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
• Most relational databases—including MySQL—have no way of modeling inher-
itance.

Think about an address book application. You would probably have something
like the address and person tables shown in Figure 9-5.

The least apparent issue facing programmers is one of mindset. The
basic task of object-oriented access to relational data is to grab that
data and immediately instantiate objects. An application should only
manipulate data through the objects. Most traditional programming
methods, including most C, PowerBuilder, and VisualBasic develop-
ment, require the developer to pull the data from the database and
then process that data. The key distinction is that in object-oriented
database programming, you are dealing with objects, not data.

Figure 9-6 shows the object model that maps to the data model from Figure 9-5.
Each row from the database turns into a program object. Your application there-
fore takes a result set and, for each row returned, instantiates a new Address or
Person instance. The hardest thing to deal with here is the issue mentioned ear-
lier: how do you capture the relationship between a person and her address in the
database application? The Person object, of course, carries a reference to that per-
son’s Address object. But you cannot save the Address object within the person
table of a relational database. As the data model suggests, you store object rela-
tionships through foreign keys. In this case, we carry the address_id in the
person table .

Rules of Thumb for Object/Relational Modeling
• Each persistent class has a corresponding database table.

• Object fields with primitive datatypes (integers, characters, strings, etc.)
map to columns in the associated database table.

• Each row from a database table corresponds to an instance of its associ-
ated persistent class.

• Each many-to-many object relationship requires a join table just as data-
base entities with many-to-many relationships require join tables.

• Inheritance is modeled through a one-to-one relationship between the
two tables corresponding to the class and subclass.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
With just a tiny amount of extra complexity to the object model, we can add a
world of complexity to the challenge of mapping our objects to a data model. The
extra bit of complexity could be to have Person inherit from Entity with a
Company class also inheriting from Entity . How do we capture an Entity sepa-
rate from a Person or a Company? The rule we outlined above is actually more of
a guideline. In some instances, the base class may be purely abstract and subse-
quently have no data associated with it in the database. In that instance, you
would not have an entity in the database for that class.

Figure 9-5. The data model for a simple address book application

Figure 9-6. The object model supporting a simple address book application

person

person_id (PK)
address_id
family_name
given_name
middle_names
maiden_name
title

address

address_id (PK)
line_one
line_two
line_three
city
state
postal_code

Address

lineOne : String
lineTwo : String
lineThree : String
city : String
postalCode : String

1

Person

changeAddress()

familyName : String
givenName : String
middleNames : String
maidenName : String
title : String
Copyright © 2001 O’Reilly & Associates, Inc.

	9
	Database Applications
	Architecture
	Fig�ure�9�1
	. The architecture of a simple Web application

	Client/Server Architecture
	Fig�ure�9�2
	. The client/server architecture

	Application Logic
	Fat and Thin Clients

	Distributed Application Architecture
	Fig�ure�9�3
	. The distributed application architecture

	Web Architecture
	Fig�ure�9�4
	. The Web application architecture

	Connections and Transactions
	Connections
	Transactions
	Transaction Isolation Levels
	dirty read
	repeatable read
	phantom read
	READ UNCOMMITTED
	READ COMMITTED
	REPEATABLE READ
	SERIALIZABLE
	Using READ UNCOMMITTED

	Object/Relational Modeling
	Rules of Thumb for Object/Relational Modeling
	Fig�ure�9�5
	. The data model for a simple address book application

	Fig�ure�9�6
	. The object model supporting a simple address book application

