
DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 1

8
Database Design

Once you install your DBMS software on your computer, it can be very tempting to just
jump right into creating a database without much thought or planning. As with any soft-
ware development, this kind of ad hoc approach works with only the simplest of prob-
lems. If you expect your database to support any kind of complexity, some planning and
design will definitely save you time in the long run. You will need to take a look at what
details are important to good database design.

Database Design Primer
Suppose you have a large collection of compact discs and you want to create a database to
track them. The first step is to determine what the data that you are going to store is about.
One good way to start is to think about why you want to store the data in the first place. In
our case, we most likely want to be able to look up CDs by artist, title, and song. Since we
want to look up those items, we know they must be included in the database. In addition,
it is often useful to simply list items that should be tracked. One possible list might
include: CD title, record label, band name, song title. As a starting point, we will store the
data in the table shown in Table 2-1.

Table 2-1: A CD Database Made Up of a Single Table (continued)

Band Name CD Title Record Label Songs

Stevie Wonder Talking Book Motown You Are the Sunshine of My
Life, Maybe Your Baby,
Superstition, . . .

Miles Davis Quintet Miles Smiles Columbia Orbits, Circle, . . .

Wayne Shorter Speak No Evil Blue Note Witch Hunt, Fee-Fi-Fo-Fum

Herbie Hancock Headhunters Columbia Chameleon, Watermelon

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 2

Man, . . .

Herbie Hancock Maiden Voyage Blue Note Maiden Voyage

(For brevity’s sake, we have left out most of the songs.) At first glance, this table seems
like it will meet our needs since we are storing all of the data we need. Upon closer
inspection, however, we find several problems. Take the example of Herbie Hancock.
“Band Name” is repeated twice: once for each CD. This repetition is a problem for sev-
eral reasons. First, when entering data in the database, we end up typing the same name
over and over. Second, and more important, if any of the data changes, we have to update
it in multiple places. For example, what if “Herbie” were misspelled? We would have to
update the data in each of the two rows. The same problem would occur if the name Her-
bie Hancock changes in the future (à la Jefferson Airplane or John Cougar). As we add
more Herbie Hancock CDs to our collection, we add to the amount of effort required to
maintain data consistency.

Another problem with the single CD table lies in the way it stores songs. We are storing
them in the CD table as a list of songs in a single column. We will run into all sorts of
problems if we want to use this data meaningfully. Imagine having to enter and maintain
that list. And what if we want to store the length of the songs as well? What if we want to
perform a search by song title? It quickly becomes clear that storing the songs in this
fashion is undesirable.

This is where database design comes into play. One of the main purposes of database
design is to eliminate redundancy from the database. To accomplish this task, we use a
technique called normalization. Before we start with normalization, let’s start with some
fundamental relational database concepts. A data model is a diagram that illustrates your
database design. It is made up of three main elements: entities, attributes, and relation-
ships. For now, let’s focus on entities and attributes; we will take a look at relationships
later.

Database Entities

An entity is a thing or object of importance about which data must be captured. All
“things” are not entities, only those things about which you need to capture information.
Information about an entity is captured in the form of attributes and/or relationships. If
something is a candidate for being an entity and it has no attributes or relationships, it is
not really an entity. Database entities appear in a data model as a box with a title. The title
is the name of the entity.

Entity Attributes

An attribute describes information about an entity that must be captured. Each entity has
zero or more attributes that describe it, and each attribute describes exactly one entity.
Each entity instance (row in the table) has exactly one value, possibly NULL, for each of
its attributes. An attribute value can be numeric, a character string, date, time, or some
other basic data value. In the first step of database design, logical data modeling, we do
not worry about how the attributes will be stored.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 3

NULL provides the basis for the problem of dealing with missing information. It
is specifically used for the case in which you lack a certain piece of information.
As an example, consider the situation where a CD does not list the song lengths
of each of its tracks. Each song has a length, but you cannot tell from the case
what that length is. You do not want to store the length as zero, since that would
be incorrect. Instead, you store the length as NULL. If you are thinking you could
store it as zero and use zero to mean “unknown”, you are falling into one of the
same traps that led to one of the Y2K problems. Not only did old systems store
years as two digits, but they often gave a special meaning to 9-9-99.

Our example database refers to a number of things: the CD, the CD title, the band name,
the songs, and the record label. Which of these are entities and which are attributes?

Data Model

Notice that we capture several pieces of data (CD title, band name, etc.) about each CD,
and we absolutely cannot describe a CD without those items. CD is therefore one of those
things we want to capture data about and is likely an entity. To start a data model, we will
diagram it as an entity. Figure 2-1 shows our sole entity in a data model.

CD

Figure 2-1: The CD entity in a data model

By common entity naming conventions, an entity name must be singular. We therefore
call the table where we store CDs “CD” and not “CDs.” We use this convention because
each entity names an instance. For example, the “San Francisco 49ers” is an instance of
“Football Team,” not “Football Teams.”

At first glance, it appears that the rest of the database describes a CD. This would indicate
that they are attributes of CD. Figure 2-3 adds them to the CD entity in Figure 2-1. In a
data model, attributes appear as names listed in their entity’s box.

CD
CD Title
Band Name
Record Label
Songs

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 4

Figure 2-2: The CD entity with its attributes

This diagram is simple, but we are not done yet. In fact, we have only just begun. Earlier,
we discussed how the purpose of data modeling is to eliminate redundancy using a
technique called normalization. We have a nice diagram for our database, but we have not
gotten rid of the redundancy as we set out to do. It is now time to normalize our database.

Normalization
E.F. Codd, then a researcher for IBM, first presented the concept of database normaliza-
tion in several important papers written in the 1970s. The aim of normalization remains
the same today: to eradicate certain undesirable characteristics from a database design.
Specifically, the goal is to remove certain kinds of data redundancy and therefore avoid
update anomalies. Update anomalies are difficulties with the insert, update, and delete
operations on a database due to the data structure. Normalization additionally aids in the
production of a design that is a high-quality representation of the real world; thus normal-
ization increases the clarity of the data model.

As an example, say we misspelled “Herbie Hancock” in our database and we want to
update it. We would have to visit each CD by Herbie Hancock and fix the artist’s name. If
the updates are controlled by an application which enables us to edit only one record at a
time, we end up having to edit many rows. It would be much more desirable to have the
name “Herbie Hancock” stored only once so we have to maintain it in just one place.

First Normal Form (1NF)

The general concept of normalization is broken up into several “normal forms.” An entity
is said to be in the first normal form when all attributes are single-valued. To apply the
first normal form to an entity, we have to verify that each attribute in the entity has a sin-
gle value for each instance of the entity. If any attribute has repeating values, it is not in
1NF.

A quick look back at our database reveals that we have repeating values in the Songs
attribute, so the CD is clearly not in 1NF. To remedy this problem, an entity with repeat-
ing values indicates that we have missed at least one other entity. One way to discover
other entities is to look at each attribute and ask the question “What thing does this
describe?”

What does Song describe? It lists the songs on the CD. So Song is another “thing” that
we capture data about and is probably an entity. We will add it to our diagram and give it
a Song Name attribute. To complete the Song entity, we need to ask if there is more
about a Song that we would like to capture. We identified earlier song length as some-
thing we might want to capture. Figure 2-3 shows the new data model.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 5

CD
CD Title
Band Name
Record Label

Song
Song Name
Song Length

Figure 2-3: A data model with CD and Song entities

Now that the Song Name and Song Length are attributes in a Song entity, we have
a data model with two entities in 1NF. None of their attributes contain multiple values.
Unfortunately, we have not shown any way of relating a CD to a Song.

The Unique Identifier

Before discussing relationships, we need to impose one more rule on entities. Each entity
must have a unique identifier—we’ll call it the ID. An ID is an attribute of an entity that
meets the following rules:

• It is unique across all instances of the entity.

• It has a non-NULL value for each instance of the entity, for the entire lifetime of the
instance.

• It has a value that never changes for the entire lifetime of the instance.

The ID is very important because it gives us a way to know which instance of an entity
we are dealing with. Identifier selection is critical because it is also used to model rela-
tionships. If, after you’ve selected an ID for an entity, you find that it doesn’t meet one of
the above rules, this could affect your entire data model.

Novice data modelers often make the mistake of choosing attributes that should not be
identifiers and making them identifiers. If, for example, you have a Person entity, it
might be tempting to use the Name attribute as the identifier because all people have a
name and that name never changes. But what if a person marries? What if the person
decides to legally change his name? What if you misspelled the name when you first
entered it? If any of these events causes a name change, the third rule of identifiers is vio-
lated. Worse, is a name really ever unique? Unless you can guarantee with 100% certainty
that the Name is unique, you will be violating the first rule. Finally, you do know that all
Person instances have non-NULL names. But are you certain that you will always know
the name of a Person when you first enter information about them in the database?
Depending on your application processes, you may not know the name of a Person
when a record is first created. The lesson to be learned is that there are many problems
with taking a non-identifying attribute and making it one.

The solution to the identifier problem is to invent an identifying attribute that has no other
meaning except to serve as an identifying attribute. Because this attribute is invented and
completely unrelated to the entity, we have full control over it and guarantee that it meets
the rules of unique identifiers. Figure 2-4 adds invented ID attributes to each of our
entities. A unique identifier is diagrammed as an underlined attribute.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 6

CD
CD ID
CD Title
Band Name
Record Label

Song
Song ID
Song Name
Song Length

Figure 2-4: The CD and Song entities with their unique identifiers

Relationships

The identifiers in our entities enable us to model their relationships. A relationship
describes a binary association between two entities. A relationship may also exist between
an entity and itself. Such a relationship is called a recursive relationship. Each entity
within a relationship describes and is described by the other. Each side of the relationship
has two components: a name and a degree.

Each side of the relationship has a name that describes the relationship. Take two hypo-
thetical entities, an Employee and a Department. One possible relationship between
the two is that an Employee is “assigned to” a Department. That Department is
“responsible for” an Employee. The Employee side of the relationship is thus named
“assigned to” and the Department side “responsible for.”

Degree, also referred to as cardinality, states how many instances of the describing entity
must describe one instance of the described entity. Degree is expressed using two differ-
ent values: “one and only one” (1) and “one or many” (M). An employee is assigned to
one department at a time, so Employee has a one and only one relationship with
Department. In the other direction, a department is responsible for many employees.
We therefore say Department has a “one or many” relationship with Employee. As a
result a Department could have exactly one Employee.

It is sometimes helpful to express a relationship verbally. One way of doing this is to plug
the various components of a direction of the relationship into this formula:

entity1 has [one and only one | one or many] entity2

Using this formula, Employee and Department would be expressed like so:

Each Employee must be assigned to one and only one Department.
Each Department may be responsible for one or many Employees.

We can use this formula to describe the entities in our data model. A CD contains one or
many Songs and a Song is contained on one and only one CD. In our data model, this
relationship can be shown by drawing a line between the two entities. Degree is expressed
with a straight line for “one and only one” relationships or “crows feet” for “one or many”
relationships. Figure 2-5 illustrates these conventions.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 7

Entity 2Entity 1

many ("crows foot") one

Figure 2-5: Anatomy of a relationship

How does this apply to the relationship between Song and CD? In reality, a Song can be
contained on many CDs, but we ignore this for the purposes of this example. Figure 2-6
shows the data model with the relationships in place.

CD
CD ID
CD Title
Band Name
Record Label

Song
Song ID
Song Name
Song Length

Figure 2-6: CD-Song relationship

With these relationships firmly in place, we can go back to the normalization process and
improve upon the design. So far, we have normalized repeating song values into a new
entity, Song, and modeled the relationship between it and the CD entity.

Second Normal Form (2NF)

An entity is said to be in the second normal form if it is already in 1NF and all non-identi-
fying attributes are dependent on the entity’s entire unique identifier. If any attribute is not

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 8

dependent entirely on the entity’s unique identifier, that attribute has been misplaced and
must be removed. Normalize these attributes either by finding the entity where it belongs
or by creating an additional entity where the attribute should be placed.

In our example, “Herbie Hancock” is the Band Name for two different CDs. This fact
illustrates that Band Name is not entirely dependent on CD ID. This duplication is a
problem because if, for example, we had misspelled “Herbie Hancock,” we would have to
update the value in multiple places. We thus have a sign that Band Name should be part
of a new entity with some relationship to CD. As before, we resolve this problem by
asking the question: “What does a band name describe”? It describes a band, or more
generally, an artist. Artist is yet another thing we are capturing data about and is therefore
probably an entity. We will add it to our diagram with Band Name as an attribute. Since
all artists may not be bands, we will rename the attribute Artist Name. Figure 2-7
shows the new state of the model.

CD
CD ID
CD Title
Record Label

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

Figure 2-7: The data model with the new Artist entity

Of course, the relationships for the new Artist table are missing. We know that each
Artist has one or many CDs. Each CD could have one or many Artists. We model
this in Figure 2-8.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 9

CD
CD ID
CD Title
Record Label

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

Figure 2-8: The Artist relationships in the data model

We originally had the Band Name attribute in the CD entity. It thus seemed natural to
make Artist directly related to CD. But is this really correct? On closer inspection, it
would seem that there should be a direct relationship between an Artist and a Song.
Each Artist has one or more Songs. Each Song is performed by one and only one
Artist. The true relationship appears in Figure 2-9.

CD
CD ID
CD Title
Record Label

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

Figure 2-18: The real relationship between Artist and the rest of our
data model

Not only does this make more sense than a relationship between Artist and CD, but it
also addresses the issue of compilation CDs.

Kinds of Relationships

When modeling the relationship between entities, it is important to determine both direc-
tions of the relationship. After both sides of the relationship have been determined, we
end up with three main kinds of relationships. If both sides of the relationship have a
degree of one and only one, the relationship is called a “one-to-one” or “1-to-1”
relationship. As we will find out later, one-to-one relationships are rare. We do not have
one in our data model.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 10

If one of the sides has a degree of “one or many” and the other side has a degree of “one
and only one,” the relationship is a “one-to-many” or “1-to-M” relationship. All of the
relationships in our current data model are one-to-many relationships. This is to be
expected since one-to-many relationships are the most common.

The final kind of relationship is where both sides of the relationship are “one or many”
relationships. These kinds of relationships are called “many-to-many” or “M-to-M” rela-
tionships. In an earlier version of our data model, the Artist-CD relationship was a
many-to-many relationship.

Refining Relationships

As we noted earlier, one-to-one relationships are quite rare. In fact, if you encounter one
during your data modeling, you should take a closer look at your design. A one-to-one
relationship may imply that two entities are really the same entity. If they do turn out to
be the same entity, they should be folded into a single entity.

Many-to-many relationships are more common than one-to-one relationships. In these
relationships, there is often some data we want to capture about the relationship. For
example, take a look at the earlier version of our data model in Figure 2-15 that had the
many-to-many relationship between Artist and CD. What data might we want to cap-
ture about that relationship? An Artist has a relationship with a CD because an Art-
ist has one or more Songs on that CD. The data model in Figure 2-17 is actually
another representation of this many-to-many relationship.

All many-to-many relationships should be resolved using the following technique:

1. Create a new entity (sometimes referred to as a junction entity). Name it
appropriately. If you cannot think of an appropriate name for the junction
entity, name it by combining the names of the two related entities (e.g.,
ArtistCD). In our data model, Song is a junction entity for the Artist-
CD relationship.

2. Relate the new entity to the two original entities. Each of the original entities
should have a one-to-many relationship with the junction entity.

3. If the new entity does not have an obvious unique identifier, inherit the
identifying attributes from the original entities into the junction entity and
make them together the unique identifier for the new entity.

In almost all cases, you will find additional attributes that belong in the new junction
entity. If not, the many-to-many relationship still needs to be resolved, otherwise you will
have a problem translating your data model into a physical schema.

More 2NF

Our data model is still not in 2NF. The value of the Record Label attribute has only
one value for each CD, but we see the same Record Label in multiple CDs. This situa-
tion is similar to the one we saw with Band Name. As with Band Name, this duplica-
tion indicates that Record Label should be part of its own entity. Each Record
Label releases one or many CDs. Each CD is released by one and only one Record
Label. Figure 2-10 models this relationship.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 11

CD
CD ID
CD Title

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

‘

Record Label
Record Label ID
Record Label Name

Figure 2-10: Our data model in the second normal form

Third Normal Form (3NF)

An entity is said to be in the third normal form if it is already in 2NF and no non-identify-
ing attributes are dependent on any other non-identifying attributes. Attributes that are
dependent on other non-identifying attributes are normalized by moving both the depen-
dent attribute and the attribute on which it is dependent into a new entity.

If we wanted to track Record Label address information, we would have a problem
for 3NF. The Record Label entity with address data would have State Name and
State Abbreviation attributes. Though we really do not need this information to
track CD data, we will add it to our data model for the sake of our example. Figure 2-11
shows address data in the Record Label entity.

CD
CD ID
CD Title

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

‘

Record Label
Record Label ID
Record Label Name
Address
City
State Name
State Abbreviation
Zip

Figure 2-11: Record Label address information in our CD database

The values of State Name and State Abbreviation would conform to 1NF
because they have only one value per record in the Record Label entity. The problem
here is that State Name and State Abbreviation are dependent on each other.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 12

In other words, if we change the State Abbreviation for a particular Record
Label—from MN to CA—we also have to change the State Name—from Minnesota
to California. We would normalize this by creating a State entity with State Name
and State Abbreviation attributes. Figure 2-12 shows how to relate this new entity
to the Record Label entity.

CD
CD ID
CD Title

Song
Song ID
Song Name
Song Length

Artist
Artist ID
Artist Name

‘

Record Label
Record Label ID
Record Label Name
Address
City
Zip

‘

State
State ID
State Name
State Abbreviation

Figure 2-12: Our data model in the third normal form

Now that we are in 3NF, we can say that our data model is normalized. There are other
normal forms which have some value from a database design standpoint, but these are
beyond the scope of this book. For most design purposes, the third normal form is suffi-
cient to guarantee a proper design.

A Logical Data Modeling Methodology
We now have a completed logical data model. Let’s review the process we went through
to get here.

1. Identify and model the entities.

2. Identify and model the relationships between the entities.

3. Identify and model the attributes.

4. Identify unique identifiers for each entity.

5. Normalize.

In practice, the process is rarely so linear. As shown in the example, it is often tempting
and appropriate to jump around between entities, relationships, attributes, and unique
identifiers. It is not as important that you follow a strict process as it is that you discover
and capture all of the information necessary to correctly model the system.

The data model we created in this chapter is quite simple. We covered an approach to
creating such a model which is in-line with the type and complexity of databases you are
likely to encounter in developing MySQL or mSQL databases. We did not cover a whole

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 13

host of design techniques and concepts that are not so important to small-scale database
design, but these can be found in any text dedicated to database design.

Physical Database Design
What was the point in creating the logical data model? You want to create a database to
store data about CDs. The data model is only an intermediate step along the way. Ulti-
mately, you would like to end up with a MySQL database where you can store data. How
do you get there? Physical database design translates your logical data model into a set of
SQL statements that define your MySQL database.

Since MySQL is a relational database systems, it is relatively easy to translate from a
logical data model, such as the one we described earlier, into a physical MySQL database.
Here are the rules for translation:

1. Entities become tables in the physical database.

2. Attributes become columns in the physical database. Choose an appropriate datatype
for each of the columns.

3. Unique identifiers become columns that are not allowed to have NULLs. These are
called primary keys in the physical database. You may also choose to create a unique
index on the identifiers to enforce uniqueness.

4. Relationships are modeled as foreign keys.

Tables and columns

If we apply the first three rules to our data model—minus the Record Label address
information—we will end up with the physical database described in Table 2-2. This
does not include the foreign keys yet.

Table 2-2: Physical Table Definitions for the CD Database

Table Column Datatype Notes

CD CD_ID INT primary key

 CD_TITLE VARCHAR(50)

ARTIST ARTIST_ID INT primary key

 ARTIST_NAME VARCHAR(50)

SONG SONG_ID INT primary key

 SONG_NAME VARCHAR(50)

 SONG_LENGTH TIME

RECORD_LABEL RECORD_LABEL_ID INT primary key

 RECORD_LABEL_NAME VARCHAR(50)

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 14

The first thing you may notice is that all of the spaces are gone from the entity names in
our physical schema. This is because these names need to translate into SQL calls to cre-
ate these tables. Table names should thus conform to SQL naming rules. Another thing to
notice is that we made all primary keys of type INT. Because these attributes are com-
plete inventions on our part, they can be of any index-able datatype.1 The fact that they
are of type INT here is almost purely arbitrary. It is almost arbitrary because it is actually
faster to search on numeric fields in many database engines and hence numeric fields
make good primary keys. However, we could have chosen CHAR as the type for the pri-
mary key fields and everything would work just fine. The bottom line is that this choice
should be driven by your criteria for choosing identifiers.

CD_TITLE, ARTIST_NAME, SONG_NAME and RECORD_LABEL_NAME are set to be of type
VARCHAR with a length of 50. The length has been chosen arbitrarily for the sake of this
example. In reality, you should do some analysis of sample data to determine the length
of text fields. If you set them too short, you may end up with a database that is not able to
capture all the data you need to store.

SONG_LENGTH is set to type TIME which can store elapsed time.

Foreign Keys

We now have a starting point for a physical schema. We haven’t yet translated the rela-
tionships into the physical data model. As we discussed earlier, once you have refined
your data model, you should have all 1-to-1 and 1-to-M relationships—the M-to-M
relationships were resolved via junction tables. We model relationships by adding a for-
eign key to one of the tables involved in the relationship. A foreign key is the unique
identifier or primary key of the table on the other side of the relationship.

The most common relationship is the 1-to-M relationship. This relationship is mapped by
placing the primary key from the “one” side of the relationship into the table on the
“many” side. In our example, this rule means that we need to do the following:

• Place a RECORD_LABEL_ID column in the CD table.

• Place a CD_ID column in the SONG table.

• Place an ARTIST_ID column in the SONG table.

Table 2-3 shows the new schema.

Table 2-3: The Physical Data Model for the CD Database (continued)

Table Column Datatype Notes

1 Later in this book, we will cover the datatypes supported by MySQL and mSQL. Each database
engine has different rules about which datatypes can be indexible. Neither database, for example, allows
indices to be created on whole TEXT fields. It would therefore be inappropriate to have a primary key
column be of type TEXT.

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 15

CD CD_ID INT primary key

 CD_TITLE VARCHAR(50)

 RECORD_LABEL_ID INT foreign key

ARTIST ARTIST_ID INT primary key

 ARTIST_ID VARCHAR(50)

SONG SONG_ID INT primary key

 SONG_NAME VARCHAR(50)

 SONG_LENGTH TIME

 CD_ID INT foreign key

 ARTIST_ID INT foreign key

RECORD_LABEL RECORD_LABEL_ID INT primary key

 RECORD_LABEL_NAME VARCHAR(50)

We do not have any 1-to-1 relationships in this data model. If we did have such a rela-
tionship, it should be mapped by picking one of the tables and giving it a foreign key col-
umn that matches the primary key from the other table. In theory, it does not matter which
table you choose, but practical considerations may dictate which column makes the most
sense as a foreign key. Another way to handle 1-to-1 relationships is to simply combine
both entities into a single table. In that case, you have to pick a primary key from one of
the tables to be the primary key of the combined table.

We now have a complete physical database schema ready to go. The last remaining task is
to translate that schema into SQL. For each table in the schema, you write one CREATE
TABLE statement. Typically, you will choose to create unique indices on the primary keys
to enforce uniqueness.

Example 2-1 is an example SQL script for creating the example database in MySQL.

Example 2-1: An Example Script for Creating the CD Database in MySQL

CREATE TABLE CD (CD_ID INT NOT NULL,

 RECORD_LABEL_ID INT,

 CD_TITLE TEXT,

 PRIMARY KEY (CD_ID))

CREATE TABLE ARTIST (ARTIST_ID INT NOT NULL,

 ARTIST_NAME TEXT,

 PRIMARY KEY (ARTIST_ID))

CREATE TABLE SONG (SONG_ID INT NOT NULL,

 SONG_NAME TEXT,

 SONG_LENGTH TEXT,

 CD_ID INT,

 ARTIST_ID INT,

 PRIMARY KEY (SONG_ID))

DRAFT, 8/24/01

Copyright  2001 O’Reilly & Associates, Inc. 16

CREATE TABLE RECORD_LABEL (RECORD_LABEL_ID INT NOT NULL,

 RECORD_LABEL_NAME TEXT,

 PRIMARY KEY(RECORD_LABEL_ID))

Note that the “FOREIGN KEY” reference is not used in the script. This is because
MySQL does not support FOREIGN KEY constraints. MySQL will allow you to embed
them in your CREATE TABLE statements but they will be ignored for the purposes of
enforcing them.

Data models are meant to be database independent. You can therefore take the techniques
and the data model we have generated in this chapter and apply them not only to MySQL,
but to Oracle, Sybase or any other relational database engine. In the following chapters,
we will discuss the details of how you can use your new database design knowledge to
build applications.

