
DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 1

5
MySQL Database Administration

Introduction

For the most part, MySQL is low maintenance software. Once you have it installed and
set up, there aren’t a lot of administrative demands. Nonetheless, it is not maintenance
free. This chapter provides an overview of the most typical administrative tasks. These
range from configuring your server, to backing it up and running periodic maintenance on
it.

MySQL Configuration

As an administrator, you will need to understand how the MySQL server and clients are
configured and how to modify that configuration.

The configuration of mysqld, the MySQL server, is controlled from the command line or
from one or more options files. The options files simply provide an convenient way for
you to specify command line options. The full set of options for the mysqld server and
other utilities are documented in Chapter 20 – MySQL Programs and Utilities.

An options file might look like this:

Example mysql options file.

These options go to all clients
[client]

password = my_password
port = 3306
socket = /var/lib/mysql/mysql.sock

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 2

These options go to the mysqld server
[mysqld]
port = 3306
socket = /var/lib/mysql/mysql.sock
skip-locking
set-variable = max_allowed_packet=1M

These seems straightforward, but lets spend a few moments to dissect this file. The first
three lines look like:

Example mysql options file.

These options go to all clients

Lines starting with the pound (#) character are comment lines, and are ignored. You may
also use a semi-colon (;) to indicate a comment.

The next line,

[client]

is puzzling. This specifies a “group”. All options following this line apply to the group
mentioned. In our case, we have specified that the following options apply to the “client”
group, meaning that the following options will apply to all MySQL client programs. Let
look at the next section. The line

password = my_password

is equivalent to the command line option –-password=my_password. Since we
specified a group of client, this option will be passed to all client programs.

Specifying the password in the client group is an ideal way to specify
your password to all clients so you don’t have to type it every time you
connect. However, if you do this, make some the option file is not
readable by others.

In general, any command line option –-option=value can be specified with a line in
the format option=value. The next two lines

port = 3306
socket = /var/lib/mysql/mysql.sock

provide two more examples of this. Next we encounter

These options go to the mysqld server
[mysqld]

which specifies a group of mysqld. All options following this line will apply only to the
mysqld program, and no others. A group specification continues to apply until the end
of the file is reached or another group is encountered. Following this we have some more
option settings which look similar to the client section. However, there are a few
differences worth mentioning. The line

skip-locking

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 3

is an option even though it is not in the option=value format. This is equivalent to the
command line option –-skip-locking. So, any command line option –-option
can be specified by simply listing the option name.

What about this line?

set-variable = max_allowed_packet=1M

This is the same as specifying –-set-variable max_allowed_packet=1M on
the command line. This is the format you use to set a mysqld variable. (See Chapter for
more information on system variables.)

So know you know how to set up a configuration file for MySQL. But once you’ve
created one, how does MySQL find it? On UNIX, MySQL reads options from the
following locations:

1. /etc/my.cnf
This is the global options file. This is read by all MySQL installations on this host.

2. DATADIR/my.cnf
This provides a server specific options file. DATADIR is the MySQL data directory.

3. –-defaults-extra-file
A command line option specifying an additional options file to be read.

4. $HOME/.my.cnf
A user specific options file. This is particularly useful for customizing the operation
of clients.

On Windows, the files are read from

1. My.ini in the windows system folder

2. C:\my.cnf

3. C:\mysql\data\my.cnf

4. –-defaults-extra-file

Option files are read in the order specified above. If any option appears in multiple files,
the last one takes precedence over the others. Options specified on the command line take
precedence over options specified in an option file. Using this scheme, you can provide a
default behavior in /etc/my.cnf that can be overridden for a particular server or by
an individual user.

Some options can be specified using Environment variables. In this
case, options specified in an option file or on the command line take
precedence over the Environment variables. See Chapter 18 for more
information on MySQL Environment variables.

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 4

Starting and Stopping the Server

One of the first things you’ll want to do as administrator is to get MySQL set up so that it
will automatically start when the OS boots, and shutdown cleanly along with the OS. On
UNIX, you have a couple of options: the mysql.server script or safe_mysqld.

mysql.server

The mysql.server script is intended for use with the SVR4 style startup/shutdown
mechanism. It is available in the support-files directory of your installation
(usually /usr/local/mysql/support-files). When properly installed, it will
automatically start and stop MySQL for you along with the OS.

If you installed MySQL on Linux using the RPM package,
mysql.server may have already been installed on your system.
The RPM installer renames mysql.server to mysql when it copies
it to /etc/rc.d/init.d. If the file
/etc/rc.d/init.d/mysql is already there, you are already set up
to automatically start and stop MySQL.

The procedure for installing mysql.server on a RedHat Linux system is as follows (you
must be logged in as the root user to do this):

cp mysql.server /etc/rc.d/init.d

This copies the the mysql.server into the init.d location.

ln –s /etc/rc.d/init.d/mysql.server /etc/rc.d/rc3.d/S99mysql

This sets it up so that you’ll start the MySQL server when you enter run level three, which
corresponds to the directory rc3.d. Run level three is typically used for full multi-user
mode. If your system uses a different run level for multi-user mode, you need to link that
directory instead.

ln –s /etc/rc.d/init.d/mysql.server /etc/rc.d/rc0.d/S01mysql

Run level zero (rc0.d) is system halt. Scripts linked here will be called when the
system shuts down. Now you are all set. You may want to test it by rebooting your
server.

The above example assumes RedHat Linux as the target system. The location of the init
files varies depending upon which UNIX you use. For example, Solaris places them in
/etc/init.d. You’ll need to tailor the commands to the location of the init files on
your system.

safe_msyqld

On a non-SVR4 UNIX system, you can use safe_mysqld to automatically start
MySQL at boot. safe_mysqld is found in the bin directory of your MySQL
installation (usually /usr/local/mysql/bin).

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 5

In order to use it, you’ll need to figure out how your system starts processes at boot time.
Often, there is an /etc/rc.local file which can be modified to call safe_mysqld.
If you are unsure what file to modify, talk to your system administrator to get help. Once
you have identified the file, adding a section to invoke safe_mysqld.

It is also possible to start the MySQL server by directly invoking
mysqld. This is NOT recommended however. Safe_mysqld and
mysql.server were designed for this purpose and have a number of
advantages, such as:

• determining the location of the server and invoking it with the right
options

• logging run-time information to a log file

• monitoring the server and restarting it if necessary

Windows NT/2000

You can automatically start and stop the MySQL server under Windows NT or 2000 if it
is installed as an NT Service. To do this, open up a MS-DOS window, and type

C:\mysql\bin\mysqld-nt –-install

This is covered in greater detail in Chapter 3 – Installation. Please refer
to that chapter if you need more information about installing MySQL as
a service.

Once MySQL is installed as a service, it can be controlled like any other NT service.

Log Files

The MySQL server can produce a number of log files that you might find helpful:

• Error Log

• Query Log

• Binary Log

• Slow Query Log

By default, the log files are written to the data directory. The details of these are each
outlined below.

Another Log file is available: The update Log. This has been obsoleted
by the Binary log. If you are still using the update log (invoked by

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 6

option –-log-update), we recommend that you switch to that
format instead.

The Error Log

The Error Log contains the redirected output from the safe_mysqld script. On UNIX, it is
a file called hostname.err. In windows, it is called mysql.err.

This file contains an entry for everytime the server is started and stopped, including an
entry for every time the server is restarted because the server died. Critical errors and
warnings about tables that need to be checked or repaired also appear here.

The Query Log

The query log contains the details of all connections and queries to the MySQL server.
This can be useful for debugging a client application. It will log the SQL commands
exactly as they are received by the server.

The query log can be enabled using the –-log[=file] option. If no filename is given,
it defaults to hostname.log. If no directory is given, it defaults to the data directory.

The Binary Log

The binary log writes contains all SQL commands that update data. Only statements that
actually change data are logged. So for example, if I perform a delete that doesn’t affect
any rows, it will not be logged. Update statements that set a column to the same value are
not logged either. Updates are logged in execution order.

The binary log is very useful for journaling transactions since the last backup. If, for
example, you backup your database once per day, and your database crashes in the middle
of the day. You can restore the database up the last completed transaction, by

1. Restoring the database (see the section in this chapter for more information on
database backup and restore)

2. Applying the transactions from all binary logs since the last backup

The binary log can be enabled using the –log-bin[=file] option. If no filename is
provided, it defaults to hostname-bin. If no directory is geiven, it defaults to the data
directory. MySQL appends a numeric index to the filename, so the actual filename ends
up being hostname-bin.number. The index is used for rotating the files. MySQL
will rotate to the next index:

• When the server is restarted

• When the server is refreshed (with mysqladmin refresh)

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 7

• When the logs are flushed (with mysqladmin flush-logs, or SQL “FLUSH LOGS”)

MySQL also creates an index file which contains a list of all used binary log files. By
default this is named hostname-bin.index. If you wish, you may specify the name and or
location of the index file with the –-log-bin-index[=file] option.

In order to read a binary log, you’ll need a utility called mysqlbinlog. The example
below illustrates the workings of the binary log. Assume we’ve started MySQL on a host
called odin and specified log-bin in our global configuration file, /etc/my.cnf.
In the data directory, we’ll see:

$ cd /usr/local/mysql/data
$ ls -l
.
.
-rw-rw---- 1 mysql mysql 73 Aug 5 17:06 odin-bin.001
-rw-rw---- 1 mysql mysql 15 Aug 5 17:06 odin-bin.index
.
.

If we inspect odin-bin.index, we see

$ cat odin-bin.index
./odin-bin.001
$

Lets use myslbinlog to read the binary log:

$ mysqlbinlog odin-bin.001
at 4
#010805 17:06:00 server id 1 Start: binlog v 1, server v 3.23.40-log created
010805 17:06:00
$

After we do an update to a database, and look again, we get some more information.

$ mysql
mysql> use test
.
.
mysql> insert into test (object_id, object_title) values (1, "test");
Query OK, 1 row affected (0.02 sec)
mysql> quit
Bye
$ mysqlbinlog odin-bin.001
at 4
#010805 17:06:00 server id 1 Start: binlog v 1, server v 3.23.40-log created
010805 17:06:00
at 73
#010805 17:39:38 server id 1 Query thread_id=2 exec_time=0
error_code=0
use test;
SET TIMESTAMP=997058378;
insert into test (object_id, object_title) values (1, "test");
$

Now, lets flush the logs to see what happens.

$ mysqladmin -uroot -pblueshoes flush-logs

We now have new file called odin-bin.002 and our index file has been updated.

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 8

$ ls -l
.
.
-rw-rw---- 1 mysql mysql 203 Aug 5 17:45 odin-bin.001
-rw-rw---- 1 mysql mysql 73 Aug 5 17:45 odin-bin.002
-rw-rw---- 1 mysql mysql 30 Aug 5 17:45 odin-bin.index
.
.
.
$ cat odin-bin.index
./odin-bin.001
./odin-bin.002
$

The binary logs can be played back into a server by piping the output from mysqlbinlog to
a mysql session. For example

$ mysqlbinlog odin-bin.001 | mysql ...

There are a few other options you can use to control the binary logs. The option –-
binlog-do-db=dbname tells MySQL to only log updates for the specified database.
The option –-binlog-ignore-db=dbname tells MySQL to ignore the specified
database for the purposes of binary logging.

The Slow Query Log

The slow query log contains all SQL commands that took longer than the variable
long_query_time This can be used to identify problem queries, and expose parts of your
database or application that need tuning.

The slow query log is enabled with the –log-slow-queries[=file] option. If no
filename is provided, it defaults to hostname-slow.log. If no directory is given, it
defaults to the data directory. The long_query_time can be set using the –-set-
variable long_query_time=time query (time is specified in seconds).

Log Rotation

No matter which log files you choose to enable, you’ll have to worry about maintaining
them so they don’t fill up a file system.

If you are running RedHat Linux, you can use mysql-log-rotate for this. It can be
found in the support-files directory of your installation. This uses the logrotate utility to
automatically rotate your error log for you. For more information on logrotate, read the
man page or refer to your RedHat documentation.

To install mysql-log-rotate on Linux, simply copy it to /etc/logrotate.d.
You may wish to edit the script to rotate other logs that you have enabled as well. By
default it only rotates the query log.

If you installed MySQL on Linux using the RPM package, mysql-
log-rotate may have already been installed on your system. The

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 9

RPM installer renames mysql-log-rotate to mysql when it
copies it to /etc/logrotate.d/. If the file
/etc/logrotate.d/mysql is already there, it has already been
installed.

On systems other than RedHat, you will have to devise you own scripts for rotating the
logs. Depending on which logs you have enabled, and how you want them located, the
scripts could range from very simple to very complex. In general, the procedure is to
copy the logfile(s) out of the way, and use mysqladmin flush-logs.

Unfortunately, none of these techniques work for the error log. Since it is written from
the safe_mysql script, the flush logs command does not flush it. Also note that
safe_mysqld will continue to append to it on successive restarts. You may want to modify
the startup or shutdown scripts for your MySQL server to maintain the error log.

Database Backup

A good backup strategy is by far the most important thing you can develop as an
administrator. In particular, you’ll be really glad you have good backups if you ever have
a system crash and need to restore your databases with as little data loss as possible. Also
if you ever accidentally delete a table or destroy a database, those backups will come in
very handy.

Every site is different, so it is very difficult to give specific recommendations on what you
should. You need to think about your installation and your needs. In this section, we
present some general backup principles that you can adopt, and we cover the technical
details of performing the backups. You will have to turn this information into a coherent
strategy for your installation.

In general there are a number of backups:

• Store your backups on a different device (either on another disk or perhaps a tape
device) than the database, if possible. If your disk crashes, you’ll be really happy to
have the backups in a different place. If you are doing binary logging, store the
binary logs with the backups.

• Make sure you have enough disk space for the backups to complete.

• Use binary logging, if appropriate, so you can restore your database with minimal
loss of data. If you choose not to use binary logging, you will only be able to recover
your database to the point of your last backup. Depending upon your application, a
backup without binary logs might be useless.

• Keep an adequate number of archived backups

• Test your backups, before an emergency occurs

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 10

mysqldump

Mysqldump is the MySQL utility provided for dumping databases. It basically generates
an SQL script containing the commands (CREATE TABLE, INSERT, etc.) necessary to
rebuild the database from scratch. The main advantages of this approach over direct copy
(mysqlhotcopy) is that output is in a portable ASCII format which can be used across
hardware and operating system to rebuild a database. Also since the output is a SQL
script, it is possible to recover individual tables.

To use mysqldump to backup your database,we recommend that you use the –opt
option. This turns on –quick, --add-drop-table, --add-locks , --
extended-insert , and --lock-tables. This should give you the fastest
possible dump of your database.

Be aware that this locks all the tables, so your database will essentially
be offline while you are doing this.

So your command will look something like this:

$ mysqldump --opt test > /usr/backups/testdb

If you are using binary logging, you will also want to specify –-flush-logs, so the
binary logs get checkpointed at the time of the backup.

$ mysqldump –-flush-logs --opt test > /usr/backups/testdb

mysqldump has a number of other options that you can use to customize your backup.
For a list of all the options available for mysqldump, type mysqldump –help, or refer to
Chapter 20, MySQL Programs and Utilities.

mysqlhotcopy

mysqlhotcopy is a perl script that uses a combination of LOCK TABLES, FLUSH
TABLES and cp to perform a fast backup of the database. It simply copies the raw
database files database files to another location. Since it is only doing a file copy, it is
much faster than mysqldump. But, since the copy is in native format, the backup is not
portable to other hardware or operating systems. Also, mysqlhotcopy can only be run on
the same host as the database, whereas mysqldump can be executed remotely.

To run, mysqlhotcopy, type

$ mysqlhotcopy test /usr/backups

This will create a new directory in the /usr/backups directory which has a copy of all the
datafiles in your database.

If you are using binary logging, you will also want to specify –-flushlog, so the
binary logs get checkpointed at the time of the backup.

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 11

Database Recovery

Individual recovery scenarios vary widely, ranging from disk hardware failures to
corrupted data files to accidentally dropped tables, and many points in between. In this
section, we provide a general overview of recovery procedures.

In general, you need two things to perform a database recovery: your backup files and
you’re your binary logs. In general, performing a recovery consists of

• Restoring the database from the last backup

• Applying the binary logs to bring the system completely up to date

If you don’t have binary logging enabled, the best you will be able to do is to restore the
system to the last full backup.

Recovering from mysqldump files

Assume for this example, we are recovering a database named test.

Bring up the mysql server and reload the database using the mysqldump files.

$ cat test.dump | mysql

This will bring the database back to the state it was at the last backup.

Apply the binary logs to bring the system up to date. Use the –one-database mysql
option to filter out SQL commands that apply to other databases. You only want to apply
the binary logs that were created since your last backup. For each binary log file, type

$ mysqlbinlog host-bin.xxx | mysql –-one-database=testdb

Sometimes you will need to massage the output from the mysqlbinlog
program before sending it through mysql. If you are recovering from a
mistaken drop table statement, for example, you will need to remove
this from the output of mysqlbinlog, otherwise you’ll drop the table
again!

Recovering from mysqlhotcopy files

Reload the database by copying the database files from the backup location to the mysql
data location. Make sure the mysql server is down when you do this. Assume for this
example, the database is backed up in /var/backup/test and the mysql data location is
/usr/local/mysql/data.

$ cp –r /var/backup/test /usr/local/mysql/data

This will bring the database back to the state it was at the last backup.

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 12

Now, bring the mysql server up and apply the binary logs to bring the system up to date.
Refer to the previous section for an example of how to do this.

Table Maintenance and Crash Recovery

Database tables can get out of whack when a write to the data file is not complete for
some reason. This can happen due to a variety of reasons, such as a power failure or a
non-graceful shutdown of the MySQL server.

MySQL provides two mechanisms for detecting for and repair table errors:
myisamchk/isamchk and mysqlcheck.. It is a wise practice to perform these
checks regularly. Early detection may increase your chances of successfully recovering
from errors.

Mysqlcheck is new with version 3.23.38 of MySQL. The main difference between
myisamchk/isamchk and mysqlcheck is that mysqlcheck allows you to check or repair
tables while the server is running. Myisamchk/isamchk require that the server not be
running.

Checking a table

If you suspect errors on a table, the first thing you’ll want to do is use one of the utilities
to check it out.

Myisamchk and isamchk are quite similar. They provide the exact same functions. The
only difference is that myisamchk is used on MyISAM tables, and isamchk is used on
ISAM tables.

Mysqlcheck can only be used with MyISAM tables.

You can tell what kind of table you are dealing with by looking at the extension of the
data file. An extension of “.MYI” tells you it is MyISAM table and. “.ISM” indicates an
ISAM table. So, myisamchk is only used with .MYI files, and isamchk with .ISM files.
Simple enough?

Lets assume we have a database called test with two tables, table1 which is an ISAM
table, and table2 which is a MyISAM table.

The first step is to check your table, using the appropriate utility. If you are using
myisamchk or isamchk, make sure you MySQL server is not running to prevent the server
from writing to the file while you are reading it.

$ myisamchk table2.MYI
Data records: 0 Deleted blocks: 0
- check file-size
- check key delete-chain
- check record delete-chain
- check index reference

DRAFT, 8/17/01

Copyright  2001 O’Reilly & Associates, Inc. 13

$ isamchk table1.ISM
Checking ISAM file: table1.ISM
Data records: 0 Deleted blocks: 0
- check file-size
- check delete-chain
- check index reference
$ mysqlcheck table2.MYI
test.table2 OK

The default method is usually adequate for detecting errors. However, if no errors are
reported but you still suspect damage, you can perform and extended check using the –-
extend-check option with myisamchk/isamchk or the –-extend option
with mysqlcheck. This will take a long time, but is very thorough. If the extended
check doesn’t report any errors, you are in good shape.

Repairing a table

If the check reported errors on a table, you can try to repair them.

If you are using myisamchk or isamchk, make sure your MySQL server is not running
when you attempt the repair. Also, it is a good idea to back up the data files before
attempting a repair operation, in case something goes haywire.

With myisamchk/isamchk, you want to first try the –-recover option.

$ isamchk –-recover table1.ISM
$ myisamchk –recover table2.MYI

If this fails for some reason, they you can try –-safe-recover, a slower recovery
method which can fix a some errors –-recover cannot..

$ isamchk –-safe-recover table1.ISM
$ myisamchk –-safe-recover table2.MYI

With mysqlcheck,your only recovery option is –-repair.

$ mysqlcheck –-repair test table2

If these operations fail, your only remaining option is restore the table from your back ups
and binary logs. See the section on Database Backup and Recovery for more information
about this.

Scheduled Table Checking

We recommend that you take steps to perform regularly schedule table checks on your
database files. This can be done by wrapping isamchk/myisamchk/mysqlcheck
commands into a script that is executed periodically from cron or some other
scheduling software.

You also may want to modify your system boot procedure to check tables at boot time.
This is especially useful if the system is rebooting after a system crash.

