

Advanced SQL Database Programmers
Handbook

Donald K. Burleson
Joe Celko

John Paul Cook
Peter Gulutzan

Advanced SQL Database Programmers
Handbook

By Donald K. Burleson, Joe Celko, John Paul Cook, and
Peter Gulutzan

Copyright © 2003 by BMC Software and DBAzine. Used with permission.

Printed in the United States of America.

Series Editor: Donald K. Burleson

Production Manager: John Lavender

Production Editor: Teri Wade

Cover Design: Bryan Hoff

Printing History:

August, 2003 for First Edition

Oracle, Oracle7, Oracle8, Oracle8i and Oracle9i are trademarks of Oracle Corporation.

Many of the designations used by computer vendors to distinguish their products are
claimed as Trademarks. All names known to Rampant TechPress to be trademark names
appear in this text as initial caps.

The information provided by the authors of this work is believed to be accurate and
reliable, but because of the possibility of human error by our authors and staff, BMC
Software, DBAZine and Rampant TechPress cannot guarantee the accuracy or
completeness of any information included in this work and is not responsible for any
errors, omissions or inaccurate results obtained from the use of information or scripts in
this work.

Links to external sites are subject to change; DBAZine.com, BMC Software and
Rampant TechPress do not control or endorse the content of these external web sites,
and are not responsible for their content.

ISBN 0-9744355-2-X

 iii

Table of Contents

Conventions Used in this Book ..vii
About the Authors ...ix
Foreword...x

Chapter 1 - SQL as a Second Language................................. 1
Thinking in SQL by Joe Celko ..1

Chapter 2 - SQL View Internals...7
SQL Views Transformed by Peter Gulutzan7
Syntax ..7

Cheerful Little Fact #1:..8
Cheerful Little Fact #2:..8

View Merge...9
Table1 .. 10

The Small Problem with View Merge ... 12
Temporary Tables... 13
Permanent Materialized Views ... 15
UNION ALL Views .. 17
Alternatives to Views ... 19
Tips ... 20
References.. 21

Chapter 3 - SQL JOIN ... 24
Relational Division by Joe Celko ... 24

Chapter 4 - SQL UNION... 28
Set Operations by Joe Celko... 28
Introduction... 28
Set Operations: Union ... 29

Chapter 5 - SQL NULL ... 34
Selection by Joe Celko ... 34
Introduction... 34

iv SQL Database Programmers Handbook

The Null of It All.. 34

Defining a Three-valued Logic... 36
Wonder Shorthands ... 36

Chapter 6 - Specifying Time .. 38
Killing Time by Joe Celko ... 38
Timing is Everything.. 38
Specifying "Lawful Time" ... 40
Avoid Headaches with Preventive Maintenance 41

Chapter 7 - SQL TIMESTAMP datatype 42
Keeping Time by Joe Celko .. 42

Chapter 8 - Internals of the IDENTITY datatype Column. 46
The Ghost of Sequential Processing by Joe Celko.................... 46
Early SQL and Contiguous Storage... 46
IDENTITY Crisis .. 47

Chapter 9 - Keyword Search Queries 50
Keyword Searches by Joe Celko... 50

Chapter 10 - The Cost of Calculated Columns..................... 54
Calculated Columns by Joe Celko.. 54
Introduction... 54

Triggers .. 55
INSERT INTO Statement ... 57
UPDATE the Table... 58
Use a VIEW.. 58

Chapter 11 - Graphs in SQL ... 60
Path Finder by Joe Celko .. 60

Chapter 12 - Finding the Gap in a Range 66
Filling in the Gaps by Joe Celko .. 66

Chapter 13 - SQL and the Web .. 71
Web Databases by Joe Celko.. 71

Chapter 14 - Avoiding SQL Injection................................... 76

Table of Contents v

SQL Injection Security Threats by John Paul Cook 76
Creating a Test Application... 76
Understanding the Test Application.. 78
Understanding Dynamic SQL .. 79
The Altered Logic Threat.. 80
The Multiple Statement Threat .. 81
Prevention Through Code .. 83
Prevention Through Stored Procedures 84
Prevention Through Least Privileges .. 85
Conclusion ... 85

Chapter 15 - Preventing SQL Worms................................... 87
Preventing SQL Worms by John Paul Cook.............................. 87
Finding SQL Servers Including MSDE 87
Identifying Versions ... 90
SQL Security Tools .. 92
Preventing Worms.. 92
MSDE Issues... 93
.NET SDK MSDE and Visual Studio .NET 94
Application Center 2000.. 95
Deworming.. 95
Baseline Security Analyzer... 95
Conclusion ... 96

Chapter 16 - Basic SQL Tuning Hints................................. 97
SQL tuning by Donald K. Burleson.. 97

Index .. 99

vi SQL Database Programmers Handbook

Conventions Used in this Book
It is critical for any technical publication to follow rigorous
standards and employ consistent punctuation conventions to
make the text easy to read.

However, this is not an easy task. Within Oracle there are
many types of notation that can confuse a reader. Some Oracle
utilities such as STATSPACK and TKPROF are always spelled
in CAPITAL letters, while Oracle parameters and procedures
have varying naming conventions in the Oracle documentation.
It is also important to remember that many Oracle commands
are case sensitive, and are always left in their original executable
form, and never altered with italics or capitalization.

Hence, all Rampant TechPress books follow these conventions:

Parameters - All Oracle parameters will be lowercase italics.

Exceptions to this rule are parameter arguments that are
commonly capitalized (KEEP pool, TKPROF), these will be
left in ALL CAPS.

Variables – All PL/SQL program variables and arguments will
also remain in lowercase italics (dbms_job, dbms_utility).

Tables & dictionary objects – All data dictionary objects are
referenced in lowercase italics (dba_indexes, v$sql). This
includes all v$ and x$ views (x$kcbcbh, v$parameter) and
dictionary views (dba_tables, user_indexes).

SQL – All SQL is formatted for easy use in the code depot,
and all SQL is displayed in lowercase. The main SQL terms
(select, from, where, group by, order by, having) will always
appear on a separate line.

Conventions Used in this Book vii

Programs & Products – All products and programs that are
known to the author are capitalized according to the vendor
specifications (IBM, DBXray, etc). All names known by
Rampant TechPress to be trademark names appear in this
text as initial caps. References to UNIX are always made in
uppercase.

viii SQL Database Programmers Handbook

About the Authors
Donald K. Burleson is one of the world’s top Oracle Database

experts with more than 20 years of full-time DBA
experience. He specializes in creating database architectures
for very large online databases and he has worked with some
of the world’s most powerful and complex systems. A
former Adjunct Professor, Don Burleson has written 15
books, published more than 100 articles in national
magazines, serves as Editor-in-Chief of Oracle Internals and
edits for Rampant TechPress. Don is a popular lecturer and
teacher and is a frequent speaker at Oracle Openworld and
other international database conferences.

Joe Celko was a member of the ANSI X3H2 Database
Standards Committee and helped write the SQL-92
standards. He is the author of over 450 magazine columns
and four books, the best known of which is SQL for Smarties
(Morgan-Kaufmann Publishers, 1999). He is the Vice
President of RDBMS at Northface University in Salt Lake
City.

John Paul Cook is a database and .NET consultant. He also
teaches .NET, XML, SQL Server, and Oracle courses at
Southern Methodist University's location in Houston, Texas.

Peter Gulutzan is the co-author of one thick book about the
SQL Standard (SQL-99 Complete, Really) and one thin book
about optimization (SQL Performance Tuning). He has written
about DB2, Oracle, and SQL Server, emphasizing portability
and DBMS internals, in previous dbazine.com articles. Now
he has a new job: he works for the "Number Four" DBMS
vendor, MySQL AB.

About the Authors ix

Foreword
SQL programming is more important than ever before. When
relational databases were first introduced, the mark of a good
SQL programmer was someone who could come up with the
right answer to the problems as quickly as possible. However,
with the increasing importance of writing efficient code, today
the SQL programmer is also charged with writing code quickly
that also executes in optimal fashion. This book is dedicated to
SQL programming internals, and focuses on challenging SQL
problems that are beyond the scope of the ordinary online
transaction processing system. This book dives deep into the
internals of Oracle programming problems and presents
challenging and innovative solutions to complex data access
issues.

This book has brought together some of the best SQL experts
to address the important issues of writing efficient and cohesive
SQL statements. The topics include using advanced SQL
constructs and how to write programs that utilize complex
SQL queries. Not for the beginner, this book explores
complex time-based SQL queries, managing set operations in
SQL, and relational algebra with SQL. This is an indispensable
handbook for any developer who is challenged with writing
complex SQL inside applications.

x SQL Database Programmers Handbook

1 SQL as a Second
Language

CHAPTER

Thinking in SQL
Learning to think in terms of SQL is a jump for most
programmers. Most of your career is spent writing procedural
code and suddenly, you have to deal with non-procedural code.
The thought pattern has to change from sequences to sets of
data elements.

As an example of what I mean, consider a posting made on
1999 December 22 by J.R. Wiles to a Microsoft SQL Server
website: "I need help with a statement that will return distinct
records for the first three fields where all values in field four are
all equal to zero."

What do you notice about this program specification? It is very
poorly written. But this is very typical of what people put out
on the Internet when they ask for SQL help.

There are no fields in a SQL database; there are columns. The
minute that someone calls a column a field, you know that he is
not thinking in the right terms.

A field is defined within the application program. A column is
defined in the database, independently of the application
program. This is why a call to some library routine in a
procedural language like "READ a, b, c, d FROM My_File;" is
not the same as "READ d, c, b, a FROM My_File;" while

Thinking in SQL 1

"SELECT a, b, c, d FROM My_Table;" and "SELECT d, c, b,
a FROM My_Table;" are the same thing in a different order.

The next problem is that he does not give any DDL (Data
Definition Language) for the table he wants us to use for the
problem. This means we have to guess what the column
datatypes are, what the constraints are and everything else
about the table. However, he did give some sample data in the
posting which lets us guess that the table looks like this:

CREATE TABLE Foobar
(col1 INTEGER NOT NULL,
 col2 INTEGER NOT NULL,
 col3 INTEGER NOT NULL,
 col4 INTEGER NOT NULL);

INSERT INTO Foobar
VALUES (1, 1, 1, 0),
 (1, 1, 1, 0),
 (1, 1, 1, 0),
 (1, 1, 2, 1),
 (1, 1, 2, 0),
 (1, 1, 2, 0),
 (1, 1, 3, 0),
 (1, 1, 3, 0),
 (1, 1, 3, 0);

Then he tells us that the query should return these two rows:

 (1, 1, 1, 0)
 (1, 1, 3, 0)

Did you notice that this table had no name and no key
specified? While it is a bad practice not to have a declared
PRIMARY KEY on a table, just ignore it for the moment.

At this point, people started sending in possible answers. Tony
Rogerson at Torver Computer Consultants Ltd came up with this
answer:

SELECT *
 FROM (SELECT col1, col2, col3, SUM(col4)

2 SQL Database Programmers Handbook

 FROM Foobar

 GROUP BY col1, col2, col3)
 AS F1(col1, col2, col3, col4)
 WHERE F1.col4 = 0;

Using the assumption, which is not given anywhere in the
specification, Tony decided that col4 has a constraint -- ...

 col4 INTEGER NOT NULL CHECK(col4 IN (0, 1)));

Notice how doing this INSERT INTO statement would ruin
his answer:

 INSERT INTO Foobar (col1, col2, col3, col4)
 VALUES (4, 5, 6, 1), (4, 5, 6, 0), (4, 5, 6, -1);

But there is another problem. This is a procedural approach to
the query, even though it looks like SQL! The innermost query
builds groups based on the first three columns and gives you
the summation of the fourth column within each group. That
result, named F1, is then passed to the containing query which
then keeps only groups with all zeros, under his assumption
about the data.

Now, students, what do we use to select groups from a
grouped table? The HAVING clause! Mark Soukup noticed this
was a redundant construction and offered this answer:

SELECT col1, col2, col3, 0 AS col4zero
 FROM Foobar
 GROUP BY col1, col2, col3
HAVING SUM(col4) = 0;

Why is this an improvement? The HAVING clause does not
have to wait for the entire subquery to be built before it can go
to work. In fact, with a good optimizer, it does not have to wait
for an entire group to be built before dropping it from the
results.

Thinking in SQL 3

However, there is still that assumption about the values in col4.
Roy Harvey came up with answer that gets round that problem:

 SELECT col1, col2, col3, 0 AS col4zero
 FROM Foobar
 GROUP BY col1, col2, col3
 HAVING COUNT(*)
 = SUM(CASE WHEN col4 = 0
 THEN 1 ELSE 0 END);

Using the CASE expression inside an aggregation function this
way is a handy trick. The idea is that you count the number of
rows in each group and count the number of zeros in col4 of
each group and if they are the same, then the group is one we
want in the answer.

However, when most SQL compilers see an expression inside
an aggregate function like SUM(), they have trouble optimizing
the code.

I came up with two approaches. Here is the first:

SELECT col1, col2, col3
 FROM Foobar
 GROUP BY col1, col2, col3
HAVING MIN(col4) = MAX(col4) -- one value in table
 AND MIN(col4) = 0; -- has a zero

The first predicate is to guarantee that all values in column four
are the same. Think about the characteristics of a group of
identical values. Since they are all the same, the extremes will
also be the same. The second predicate assures us that col4 is
all zeros in each group. This is the same reasoning; if they are
all alike and one of them is a zero, then all of them are zeros.

However, these answers make assumptions about how to
handle NULLs in col4. The specification said nothing about
NULLs, so we have two choices: (1) discard all NULLs and

4 SQL Database Programmers Handbook

then see if the known values are all zeros (2)Keep the NULLs
in the groups and use them to disqualify the group. To make
this easier to see, let's do this statement:

INSERT INTO Foobar (col1, col2, col3, col4)
 VALUES (7, 8, 9, 0), (7, 8, 9, 0), (7, 8, 9, NULL);

Tony Rogerson's answer will drop the last row in this statement
from the SUM() and the outermost query will never see it. This
group passes the test and gets to the result set.

Roy Harvey's will convert the NULL into a zero in the SUM(),
the SUM() will not match COUNT(*) and thus this group is
rejected.

My first answer will give the "benefit of the doubt" to the
NULLs, but I can add another predicate and reject groups with
NULLs in them.

SELECT col1, col2, col3
 FROM Foobar
 GROUP BY col1, col2, col3
HAVING MIN(col4) = MAX(col4)
 AND MIN(col4) = 0
 AND COUNT(*) = COUNT(col4); -- No NULL in the column

The advantages of using simple aggregate functions is that SQL
engines are tuned to produce them quickly and to optimize
code containing them. For example, the MIN(), MAX() and
COUNT(*)functions for a base table can often be determined
directly from an index or from a statistics table used by the
optimizer, without reading the base table itself.

As an exercise, what other predicates can you write with
aggregate functions that will give you a group characteristic? I
will offer a copy of SQL FOR SMARTIES (second edition) for

Thinking in SQL 5

the longest list. Send me an email at
71062.1056@compuserve.com with your answers.

6 SQL Database Programmers Handbook

SQL View Internals CHAPTER

2
SQL Views Transformed

"In 1985, Codd published a set of 12 rules to be used as "part of
a test to determine whether a product that is claimed to be fully
relational is actually so". His Rule No. 6 required that all views
that are theoretically updatable also be updatable by the
system."
-- C. J. Date, Introduction To Database Systems

IBM DB2 v 8.1, Microsoft SQL Server 2000, and Oracle9i all
support views (yawn). More interesting is the fact that they
support very similar advanced features (extensions to the SQL-
99 Standard), in a very similar manner.

Syntax
As a preliminary definition, let's say that a view is something
that you can create with a CREATE VIEW statement, like this:

CREATE VIEW <View name>
[<view column list>]
AS <query expression>
[WITH CHECK OPTION]

This is a subset of the SQL-99 syntax for a view definition. It's
comforting to know that "The Big Three" DBMSs — DB2,
SQL Server, and Oracle — can all handle this syntax without
any problem. In this article, I'll discuss just how these DBMSs
"do" views: what surprises exist, what happens internally, and
what features The Big Three present, beyond the call of duty.

SQL Views Transformed 7

I'll start with two Cheerful Little Facts, which I'm sure will
surprise most people below the rank of DBA.

Cheerful Little Fact #1:
The CHECK OPTION clause doesn't work the same way that
a CHECK constraint works! Watch this:

CREATE TABLE Table1 (column1 INT)
CREATE VIEW View1 AS
 SELECT column1 FROM Table1 WHERE column1 > 0
 WITH CHECK OPTION
INSERT INTO View1 VALUES (NULL) <-- This fails!
CREATE TABLE Table2 (column1 INT, CHECK (column1 > 0))
INSERT INTO Table2 VALUES (NULL) <-- This succeeds!

The difference, and the reason that the Insert-Into-View
statement fails while the Insert-Into-Table statement succeeds,
is that a view's CHECK OPTION must be TRUE while a
table's CHECK constraint can be either TRUE or
UNKNOWN.

Cheerful Little Fact #2:
Dropping the table doesn't cause dropping of the view! Watch
this:

CREATE TABLE Table3 (column1 INT)
CREATE VIEW View3 AS SELECT column1 FROM Table3
DROP TABLE Table3
CREATE TABLE Table3 (column0 CHAR(5), column1 SMALLINT)
INSERT INTO Table3 VALUES ('xxxxx', 1)
SELECT * FROM View3 <-- This succeeds!

This bizarre behavior is exclusive to Oracle8i and Microsoft
SQL Server — when you drop a table, the views on the table
are still out there, lurking. If you then create a new table with
the same name, the view on the old table becomes valid again!
Apart from the fact that this is a potential security flaw and a
violation of the SQL Standard, it illustrates a vital point: The

8 SQL Database Programmers Handbook

attributes of view View3 were obviously not fixed in stone at
the time the view was created. At first, View3 was a view of the
first (INT) column, but by the time the SELECT statement was
executed, View3 was a view of the second (SMALLINT)
column. This is the proof that views are reparsed and executed
when needed, not earlier.

View Merge
What precisely is going on when you use a view? Well, there is
a module, usually called the Query Rewriter (QR), which is
responsible for, um, rewriting queries. Old QR has many
wrinkles — for example, it's also responsible for changing
some subqueries into joins and eliminating redundant
conditions. But here we'll concern ourselves only with what QR
does with queries that might contain views.

At CREATE VIEW time, the DBMS makes a view object. The
view object contains two things: (a) a column list and (b) the
text of the view definition clauses. Each column in the column
list has two fields: {column name, base expression}. For
example, this statement:

CREATE VIEW View1 AS
 SELECT column1+1 AS view_column1, column2+2 AS view_column2
 FROM Table1
 WHERE column1 = 5
results in a view object that contains this column list:
{'view_column1','(column1+1)'} {'view_column2','(column2+2)'}

The new view object also contains a list of the tables upon
which the view directly depends (which is clear from the
FROM clause). In this case, the list looks like this:

View Merge 9

Table1
When the QR gets a query on the view, it does these steps, in
order:

LOOP:

[0] Search within the query's table references (in a SELECT
statement, this is the list of tables after the word FROM). Find
the next table reference that refers to a view object instead of a
base-table object. If there are none, stop.

[1] In the main query, replace any occurrences of the view
name with the name of the table(s) upon which the view
directly depends.

Example:

SELECT View1.* FROM View1

becomes

SELECT Table1.* FROM Table1

[2] LOOP: For each column name in the main query, do:

 If (the column name is in the view definition)
 And (the column has not already been replaced in this pass of the
outer loop)
 Then:
 Replace the column name with the base expression from the column
list

Example:

SELECT view_column1 FROM View1 WHERE view_column2 = 3

Becomes

10 SQL Database Programmers Handbook

SELECT (column1+1) FROM Table1 WHERE (column2+2) = 3

[3] Append the view's WHERE clause to the end of the main
query.

Example:

SELECT view_column1 FROM View1

becomes

SELECT (column1+1) FROM Table1 WHERE column1 = 5

Detail: If the main query already has a WHERE clause, the
view's WHERE clause becomes an AND sub-clause.

Example:

SELECT view_column1 FROM View1 WHERE view_column1 = 10

Becomes

SELECT (column1+1) FROM Table1 WHERE (column1+1) = 10 AND column1 = 5

Detail: If the main query has a later clause (GROUP BY,
HAVING, or ORDER BY), the view's WHERE clause is
appended before the later clause, instead of at the end of the
main query.

[4] Append the view's GROUP BY clause to the end of the
main query. Details as in [3].

[5] Append the view's HAVING clause to the end of the main
query. Details as in [3]

View Merge 11

[6] Go back to step [1].

There are two reasons for the loop:
 The FROM clause may contain more than one table and

you may only process for one table at a time.
 The table used as a replacer might itself be a view. The loop

must repeat till there are no more views in the query.
A final detail: Note that the base expression is "(A)" rather than
"A." The reason for the extra parentheses is visible in this
example:

CREATE VIEW View1 AS
 SELECT table_column1 + 1 AS view_column1
 FROM Table1
SELECT view_column1 * 5 FROM View1

When evaluating the SELECT, QR ends up with this query if
the extra parentheses are omitted:

SELECT table1_column + 1 * 5 FROM Table1

... which would be wrong, because the * operator has a higher
precedence than the + operator. The correct expression is:

SELECT (table1_column + 1) * 5 FROM Table1

And voila. The process above is a completely functional "view
merge" procedure, for those who wish to go out and write their
own DBMS now. I've included all the steps that are sine qua
nons.

The Small Problem with View Merge
A sophisticated DBMS performs these additional steps after or
during the view merge:

12 SQL Database Programmers Handbook

 Eliminate redundant conditions caused by the replacements.
 Invoke the optimizer once for each iteration of the loop.

All three of our DBMSs are sophisticated. But here's an
example of a problematic view and query:

CREATE TABLE Table1 (column1 INT PRIMARY KEY, column2 INT)
CREATE TABLE Table2 (column1 INT REFERENCES Table1, column2 INT)
CREATE VIEW View1 AS
 SELECT Table1.column1 AS column1, Table2.column2 AS column2
 FROM Table1, Table2
 WHERE Table2.column1 = Table1.column1
SELECT DISTINCT column1 FROM View1 <-- this is slow
SELECT DISTINCT column1 FROM Table2 <-- this is fast

— Source: SQL Performance Tuning, page 209.

The selection from the view will return precisely the same
result as the selection from the table, but Trudy Pelzer and I
tested the example on seven different DBMSs (for our book
SQL Performance Tuning, see the References), and in every
case the selection-from-the-table was faster. This indicates that
the optimizer isn't always ready for the inefficient queries that
the Query Rewriter can produce.

Ultimately, the small problem is that the "view merge" is a
mechanical simpleton that can produce code that humans
would immediately see as silly. But the view-merge process
itself is so simple that it should be almost instantaneous. (I say
"almost" because there are lookups to be done in the system
catalog.)

So much for the small problem. Now for the big one.

Temporary Tables
Here's an example of a view definition:

Temporary Tables 13

CREATE VIEW View1 AS

 SELECT MAX(column1) AS view_column1
 FROM Table1

Now, apply the rules of view merge to this SELECT statement:

SELECT MAX(view_column1) FROM View1

The view merge result is:

SELECT MAX((MAX(column1)) FROM Table1

... which is illegal. View merge will always fail if the view
definition includes MAX, or indeed any of these constructions:
 GROUP BY, or anything that implies grouping, such as

HAVING, AVG, MAX, MIN, SUM, COUNT, or any
proprietary aggregate function
 DISTINCT, or anything that implies distinct, such as

UNION, EXCEPT, INTERSECT, or any proprietary set
operator

So if a DBMS encounters any of these constructions, it won't
use view merge. Instead it creates a temporary table to resolve
the view. This time the method is:

[at the time the view is referenced]
CREATE TEMPORARY TABLE Arbitrary_name
 (view_column1 <data type>)
INSERT INTO Arbitrary_name SELECT MAX(column1) FROM Table1

That is, the DBMS has to "materialize" the view by making a
temporary table and populating it with the expression results.
Then it's just a matter of replacing the view name with the
arbitrary name chosen for the temporary table:

SELECT MAX(view_column1) FROM View1

Becomes

14 SQL Database Programmers Handbook

SELECT MAX(view_column1) FROM Arbitrary_name

And the result is valid. The user doesn't actually see the
temporary table, but it's certainly there, and takes up space as
long as there is an open cursor for the SELECT.

If a view is materialized, then any data-change (UPDATE,
INSERT, or DELETE) statements affect the temporary table,
and that is useless — users might want to change Table1, but
they don’t want to change Arbitrary_name, they don't even
know it's there. This is an example of a class of views that is
non-updatable. As we'll see, it's not the only example.

So ...
 With view merge alone, it is possible to handle most views.
 With view merge and temporary tables, it is possible to

handle all views.

Permanent Materialized Views
Since the mechanism for materializing views has to be there
anyway, an enhancement for efficiency is possible. Namely,
why not make the temporary table permanent? In other words,
instead of throwing the temporary table out after the SELECT
is done, keep it around in case anyone wants to do a similar
SELECT later. This enhancement is particularly noticeable for
views based on groupings, since groupings take a lot of time.

DB2, Oracle, and SQL Server all have a "Permanent
Materialized View" feature, although each vendor uses a
different terminology. Here are the terms you are likely to
encounter:

Permanent Materialized Views 15

Vendor Terms that May Refer to Permanent Materialized
Views

DBMS VENDOR TERM

DB2
Automated Summary Table
(AST)
Materialized Query Table (MQT)

Oracle
Materialized View (MV)
summary
snapshot

SQL Server Indexed View

The terms are not perfect synonyms because each vendor’s
implementation also has some distinguishing features; however,
I'd like to emphasize what the three DBMSs have in common,
which happens to be what an advanced DBMS ought to have.
 First, permanent materialized views are maintainable.

Effectively, this means that if you have a permanent
materialized view (say, View1) based on table Table1, then
any update to Table1 must cause an update to View1. Since
View1 is often a grouping of Table1, this is not an easy
matter: either the DBMS must figure out what the change is
to be as a delta, or it must recompute the entire grouping
from scratch. To save some time on this, a DBMS may
defer the change until: (a) it's necessary because someone is
doing a select or (b) some arbitrary time interval has gone
by. Oracle's term for the deferral is "refresh interval" and
can be set by the user. (Oracle also allows the data to get
stale, but let's concentrate on the stuff that's less obviously a
compromise.)
(By the way, deferrals work only because the DBMS has a
"log" of updates, see my earlier DBAzine.com article,
Transaction Logs. It's wonderful how after you make a

16 SQL Database Programmers Handbook

feature for one purpose, it turns out to be useful for
something else.)
 Second, permanent materialized views can be indexed. This

is at least the case with SQL Server, and is probably why
Microsoft calls them "indexed views". It is also the case
with DB2 and Oracle.
 Third, permanent materialized views don't have to be

referenced explicitly. For example, if a view definition
includes an aggregate function (e.g.: CREATE VIEW
View1 AS SELECT MAX(column1) FROM Table1) then
the similar query -- SELECT MAX(column1) FROM
Table1 -- can just select from the view, even though the
SELECT doesn't ask for the view. A DBMS might
sometimes fail to realize that the view is usable, though, so
occasionally you'll have to check what your DBMS's
"explain" facility says. With Oracle you'll then have to use a
hint, as in this example:
SELECT/*+ rewrite(max_salary) */ max(salary)
 FROM Employees WHERE position = 'Programmer'

Permanent materialized views are best for groupings, because
for non-grouped calculations (such as one column multiplied
by another) you'll usually find that the DBMS has a feature for
"indexing computed columns" (or "indexing generated
columns") which is more efficient. Also, there are some
restrictions on permanent materialized views (for example,
views within views are difficult). But in environments where
grouped tables are queried often, permanent materialized views
are popular.

UNION ALL Views

UNION ALL Views 17

In the last few years, The Big Three have worked specifically
on enhancing their ability to do UPDATE, DELETE, and

INSERT statements on views based on a UNION ALL
operator.

Obviously this is good because, as Codd's Rules (quoted at the
start of this article) state: Users should expect that views are
like base tables. But why specifically are The Big Three working
on UNION ALL?

UNION ALL views are important because they work with
range partitioning. That is, with a sophisticated DBMS, you can
split one large table into n smaller tables, based on a formula.
But what will you do when you want to work on all the tables
at once again, treating them as a single table for a query? Use a
UNION ALL view:

CREATEVIEW View1 AS
 SELECT a FROM Partition1
 UNION ALL
 SELECT a FROM Partition2
SELECT a FROM View1
UPDATE View1 SET a = 5
DELETE FROM View1 WHERE a = 5
INSERT INTO View1 VALUES (5)

Since View1 brings the partitions together, the SELECT can
operate on the conceptual "one big table". And, since the view
isn't using a straight UNION (which would imply a
DISTINCT operation), the data-change operations are possible
too. But there are some issues:
 Where should the new INSERT row end up: in Partition1

or Partition2?
 Where should the changed UPDATE row end up: in

Partition1 or Partition2?
The issues arise because a typical partition will be based on
some formula, for example: "when a < 5 then use Partition1,
when a > 5 use Partition2". So it makes sense for the DBMS to

18 SQL Database Programmers Handbook

combine UNION ALL view updates with the range
partitioning formulas, and position new or changed rows
accordingly. Unfortunately, when there are many partitions, this
means that each partition's formula has to be checked to ensure
that there is one (and only one) place to put the row.

An old "solution" was to disallow changes, including INSERTs,
which affected the partitioning (primary) key. Now each DBMS
has a reasonably sophisticated way of dealing with the problem;
most notably DB2, which has a patented algorithm that, in
theory, should handle the job quite efficiently.

Updatable UNION ALL views are useful for federated data,
which (as I tend to think of it) is merely an extension of the
range partitioning concept to multiple computers.

Alternatives to Views
Think of the typical hierarchy: person, employee, manager.

Each of these items can easily be handled in individual tables if
a UNION ALL view is available when you want to deal with
attributes that are held in common by all three tables. But in
future it might be better to use subtables and supertables, since
subtables and supertables were designed to handle hierarchies.
The decision might rest on how well your organization is
adjusting to your DBMS's new Object/Relational features.

You cannot create a view with a definition that contains a
parameter, so you might have to make a view for each separate
situation:

Alternatives to Views 19

CREATE VIEW View1 AS
 SELECT * FROM Table1
 WHERE column1 = 1
 WITH CHECK OPTION
CREATE VIEW View2 AS
 SELECT * FROM Table1
 WHERE column1 = 2
 WITH CHECK OPTION

And so on. But in future this too might become obsolete. It is
already fairly easy to make stored procedures that handle the
job.

If you want to do a materialization but don't want (or don't
have the authority) to make a new view, you can do the job
within one statement. For example, if this is your view:

CREATE VIEW View1 AS
 SELECT MAX(column1) AS view_column1
 FROM Table1
 GROUP BY column2

then instead of this:

SELECT AVG(view_column1)
 FROM View1

do this:
SELECT AVG(view_column1)
 FROM (SELECT MAX(column1) AS view_column1
 FROM Table1 GROUP BY column2) AS View1

In fact, this is so similar to using a view that many people call it
a view —"inline view" is the common term — but in standard
SQL the correct term for [that thing that looks like a subquery
in the FROM clause] is: table reference.

Tips
Over time, users of views have developed various "rules" that
might make view use easier. The common ones are:

20 SQL Database Programmers Handbook

 Use default clauses when you create a table, so that views
based on the table will more often be updatable.
 Include the table's primary key in the view's select list.
 Use a naming convention to mark non-updatable columns.
 Use the same naming convention for view names as you use

for base table names. Alternatively, view names should
begin with the name of the table upon which the view
depends.
 [DB2] Document the view's purpose (security, efficiency,

complexity hiding, alternate object terminology) in the
view's REMARKS metadata.
 [SQL Server] Make an ordered view with a construct like

this: CREATE VIEW ... SELECT TOP 100 PERCENT
WITH TIES ... ORDER BY".

I would like to end with a recommendation about who has the
best implementation of views, but in fact The Big Three are
keeping up with each other feature by feature. Besides, I am no
longer an unbiased observer.

References
Bello, Randall G., Karl Dias, Alan Downing, James Feenan, Jim
Finnerty, William D. Norcott, Harry Sun, Andrew Witkowski,
and Mohamed Ziauddin. "Materialized Views In Oracle."
(http://www.informatik.uni-
trier.de/%7Eley/db/conf/vldb/BelloDDFNSWZ98.html)
 Very complete, for Oracle8.

References 21

Bobrowski, Steve. "Creating Updatable Views."
http://www.oracle.com/oramag/oracle/01-
mar/index.html?o21o8i.html
 An Oracle Magazine article tip set.

Burleson, Donald. "Dynamically create complex objects with
Oracle materialized views."
(Also at http://www.dba-oracle.com/art_9i_mv.htm.)
 A two-part article on syntax and practical employment.

Gulutzan, Peter and Trudy Pelzer. SQL Performance Tuning.
Addison-Wesley 2003

Lewis, Jonathan. "Using in-line view for speed."
(http://www.jlcomp.demon.co.uk/inline_1.html)
 An idea that COUNT(DISTINCT) in both the SELECT

and the GROUP BY can be more efficient with inline
views, on an older version of Oracle.

Mullins, Craig. "A View to a Kill."
(http://dbazine.com/mullins_view.html)
 Advice to DBAs.

Rielau, Serge. "INSTEAD OF Triggers: All Views are
updatable!"
(http://www7b.software.ibm.com/dmdd/library/techarticle/0
210rielau/0210rielau.html)
 INSTEAD OF triggers are in vogue among all DBMS

vendors. This is the DB2 take.

22 SQL Database Programmers Handbook

"Migrating Oracle Databases to SQL Server 2000."
(http://www.akadia.com/services/sqlsrv2ora.html)
 This article includes a compact description of the

differences between Oracle and Microsoft with respect to
views.

"US 6,421,658 B1 - Efficient implementation of typed view
hierarchies for ORDBMS."
(http://www.uspto.gov/web/patents/patog/week29/OG/ht
ml/US06421658-20020716.html)
 An example of an IBM patent relating to views.

"Creating and Optimizing Views in SQL Server."
(http://www.informit.com/isapi/product_id%7E%7B4B34D
DF9-2147-41D0-8BB6-
7101176AD1F0%7D/st%7E%7B340C91CD-6221-4982-8F32-
4A0A9A8CF080%7D/content/index.asp)
 Includes some ideas for using INSTEAD OF triggers

Tip #41: "Restricting query by "ROWNUM" range (Type:
SQL)." (http://www.arrowsent.com/oratip/tip41.htm)
 One of many tip articles about the benefits of ROWNUM

for limiting a query after the ORDER BY is over.

References 23

SQL JOIN CHAPTER

3
Relational Division

Dr. Codd defined a set of eight basic operators for his relational
model. This series of articles looks at those basic operators in
Standard SQL. Some are implemented directly, some require
particular programming tricks and all of them have to be slightly
modified to fit into the SQL language model.

Relational division is one of the eight basic operations in
Codd's relational algebra. The idea is that a divisor table is used
to partition a dividend table and produce a quotient or results
table. The quotient table is made up of those values of one
column for which a second column had all of the values in the
divisor.

This is easier to explain with an example. We have a table of
pilots and the planes they can fly (dividend); we have a table of
planes in the hangar (divisor); we want the names of the pilots
who can fly every plane (quotient) in the hangar. To get this
result, we divide the PilotSkills table by the planes in the
hangar.

CREATE TABLE PilotSkills
(pilot CHAR(15) NOT NULL,
 plane CHAR(15) NOT NULL,
 PRIMARY KEY (pilot, plane));

PilotSkills
pilot plane
=========================
'Celko' 'Piper Cub'
'Higgins' 'B-52 Bomber'

24 SQL Database Programmers Handbook

'Higgins' 'F-14 Fighter'

'Higgins' 'Piper Cub'
'Jones' 'B-52 Bomber'
'Jones' 'F-14 Fighter'
'Smith' 'B-1 Bomber'
'Smith' 'B-52 Bomber'
'Smith' 'F-14 Fighter'
'Wilson' 'B-1 Bomber'
'Wilson' 'B-52 Bomber'
'Wilson' 'F-14 Fighter'
'Wilson' 'F-17 Fighter'

CREATE TABLE Hangar
(plane CHAR(15) NOT NULL PRIMARY KEY);

Hangar
plane
=============
'B-1 Bomber'
'B-52 Bomber'
'F-14 Fighter'

PilotSkills DIVIDED BY Hangar
pilot
=============================
'Smith'
'Wilson'

In this example, Smith and Wilson are the two pilots who can
fly everything in the hangar. Notice that Higgins and Celko
know how to fly a Piper Cub, but we don't have one right now.
In Codd's original definition of relational division, having more
rows than are called for is not a problem.

The important characteristic of a relational division is that the
CROSS JOIN (Cartesian product) of the divisor and the
quotient produces a valid subset of rows from the dividend.
This is where the name comes from, since the CROSS JOIN
acts like a multiplication operator.

Relational division can be written as a single query, thus:

SELECT DISTINCT pilot
 FROM PilotSkills AS PS1
 WHERE NOT EXISTS
 (SELECT *
 FROM Hangar
 WHERE NOT EXISTS

Relational Division 25

 (SELECT *

 FROM PilotSkills AS PS2
 WHERE (PS1.pilot = PS2.pilot)
 AND (PS2.plane = Hangar.plane)));

The quickest way to explain what is happening in this query is
to imagine an old World War II movie where a cocky pilot has
just walked into the hangar, looked over the fleet, and
announced, "There ain't no plane in this hangar that I can't
fly!", which is good logic, but horrible English.

We are finding the pilots for whom there does not exist a plane
in the hangar for which they have no skills. The use of the
NOT EXISTS() predicates is for speed. Most SQL systems will
look up a value in an index rather than scan the whole table.
This query for relational division was made popular by Chris
Date in his textbooks, but it is not the only method, nor always
the fastest. Another version of the division can be written so as
to avoid three levels of nesting. While it is not original with me,
I have made it popular in my books.

 SELECT PS1.pilot
 FROM PilotSkills AS PS1, Hangar AS H1
 WHERE PS1.plane = H1.plane
 GROUP BY PS1.pilot
 HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM Hangar);

There is a serious difference in the two methods. Burn down
the hangar, so that the divisor is empty. Because of the NOT
EXISTS() predicates in Date's query, all pilots are returned
from a division by an empty set. Because of the COUNT()
functions in my query, no pilots are returned from a division by
an empty set.

In the sixth edition of his book, Introduction to Database Systems,
Chris Date defined another operator (DIVIDEBY ... PER)
which produces the same results as my query, but with more
complexity.

26 SQL Database Programmers Handbook

Another kind of relational division is exact relational division.
The dividend table must match exactly to the values of the
divisor without any extra values.

SELECT PS1.pilot
 FROM PilotSkills AS PS1
 LEFT OUTER JOIN
 Hangar AS H1
 ON PS1.plane = H1.plane
 GROUP BY PS1.pilot
HAVING COUNT(PS1.plane) = (SELECT COUNT(plane) FROM Hangar)
 AND COUNT(H1.plane) = (SELECT COUNT(plane) FROM Hangar);

This says that a pilot must have the same number of certificates
as there planes in the hangar and these certificates all match to
a plane in the hangar, not something else. The "something else"
is shown by a created NULL from the LEFT OUTER JOIN.

Please do not make the mistake of trying to reduce the
HAVING clause with a little algebra to:

 HAVING COUNT(PS1.plane) = COUNT(H1.plane)

because it does not work; it will tell you that the hangar has (n)
planes in it and the pilot is certified for (n) planes, but not that
those two sets of planes are equal to each other.

The Winter 1996 edition of DB2 On-Line Magazine
(http://www.db2mag.com/db_area/archives/1996/q4/9601la
r.shtml) had an article entitled "Powerful SQL: Beyond the
Basics" by Sheryl Larsen that gave the results of testing both
methods. Her conclusion for DB2 was that the nested
EXISTS() version is better when the quotient has less than
25% of the dividend table's rows and the COUNT(*) version is
better when the quotient is more than 25% of the dividend
table.

Relational Division 27

SQL UNION CHAPTER

4
Set Operations

Introduction
SQL is a language that is supposed to be based on sets. Dr.
Codd even defined the classic set operations as part of his eight
basic operators for a relational database. Yet we did not have a
full collection of basic set operations until the SQL-92
Standard.

By set operations, I mean union, intersection, and set
difference -- the basic operators used in elementary set theory,
which has been taught in the United States public school
systems for decades.

Perhaps the problem in SQL that you did not have in pure set
theory is that SQL tables are multisets (also called bags), which
means that, unlike sets, they allow duplicate elements (rows or
tuples). Dr. Codd's relational model is stricter and uses only
true sets. SQL handles these duplicate rows with an ALL or
DISTINCT modifier in different places in the language; ALL
preserves duplicates and DISTINCT removes them.

Another more subtle problem is that set operations only make
sense when the two sets are made up of the same kind of
elements. In good database model, each table has one and only
one type of elements. That is, you don't have more than one
Inventory table, more than one Personnel table, etc.

28 SQL Database Programmers Handbook

But when the INCITS H2 (nee ANSI X3) Database Standards
Committee added these operators, the model in the SQL-92
standard was to pair off the two tables on a row-per-row basis
for set operations.

(note: In SQL-92, we introduced the shorthand TABLE <table
name> for the query or subquery SELECT * FROM <table
name>, which lets us refer to a table as a whole without
referring to its columns. I will use this notation to save space)

Set Operations: Union
Microsoft introduced its ACCESS database product in 1992,
after five years and tens of millions of dollars' worth of
development work. The first complaints they got on their
CompuServe user support forum involved the lack of a
UNION operator. UNIONs are supported in SQL-86, SQL-
89, and SQL-92, but the other set operations have to be
constructed by the programmer in SQL-89. The syntax for the
UNION statement is:

<query> UNION [ALL] <query>

Technically, this BNF is not right, but I will get back to that
later. The UNION statement takes two tables and builds a new
table from them. The two tables must be "union compatible",
which means that they have the same number of columns, and
that each column in the first table has the same datatype (or
automatically cast to it) as the column in the same position in
the second table.

That is, their rows have the same structure, so they can be put
in the same final result table. Most implementations will do
some datatype conversions to create the result table, but this is

Set Operations: Union 29

very implementation-dependent and you should check it out
for yourself.

What is interesting is that the result of a UNION has no name,
and its columns are not named. If you want to have names,
then you have to use an AS operator to create those names,
thus.

((SELECT a, b, c FROM TableA WHERE city = 'Boston')
 UNION
 (SELECT x, y, z FROM TableB WHERE city = 'New York'))
 AS Cities (tom, dick, harry)

However, in actual products will find a multitude of other ways
of doing this:
 The columns have the names of the first table in the

UNION statement.
 The columns have the names of the last table in the

UNION statement.
 The columns have the names generated by the SQL engine.
 The columns are referenced by a position number. This was

the SQL-89 convention.
There are two forms of the UNION statement: the UNION
and the UNION ALL. There was never a UNION DISTINCT
option in the language. The UNION is the same operator you
had in school; it returns the rows that appear in either or both
tables and removes redundant duplicates from the result table.

In most older SQL implementations, this removal is done by
merge-sorting the two tables and discarding duplicates during
the merge. This has the side effect that the result table is sorted,
but you cannot depend on that. This also explains why the
ORDER BY clause is a common feature on UNION

30 SQL Database Programmers Handbook

operators. As long as the engine is sorting on all the columns
anyway, why not let the programmer decide the sort keys?

The UNION ALL preserves the duplicates from both tables in
the result table. In most implementations, this statement is
done appending one table to the other, giving you a predictable
ordering.

The UNION and UNION ALL operators are of the same
precedence and are executed from left to right unless
parentheses change the order.

In theory, the order of execution of UNIONs is not important,
but it can be in practice. Even today, many optimizers generate
separate results for each table expression in the UNION [ALL]
first, then bring them together. And likewise, few products re-
order the execution based on table sizes. Consider this
expression:

(TABLE SmallTable1)
 UNION
(TABLE BigTable)
 UNION
(TABLE SmallTable2);

It will probably merge SmallTable1 into BigTable, then merge
SmallTable2 into that first result. If the rows of SmallTable1
are spread out in the first result table, locating duplicates from
SmallTable2 will take longer than if we had written the query
thus:

(TABLE SmallTable1)
 UNION
(TABLE SmallTable2))
 UNION
(TABLE BigTable);

Set Operations: Union 31

There are many reason that products lack UNION
optimizations. First, UNIONs are not a common operation, so
it is not worth the effort. And secondly, the order of execution
becomes important if UNION and UNION ALL are mixed
together:

 TABLE X
 UNION
 TABLE Y
 UNION ALL
 TABLE Z

Is executed as

(TABLE X UNION TABLE Y)
 UNION ALL
 TABLE Z

and that is not the same as:

 TABLE X
 UNION
 (TABLE Y UNION ALL TABLE Z)

Optimization of UNIONs is highly product-dependent, so you
should experiment with it.

As a general statement, if you know that there are no
duplicates, or that duplicates are not a problem in your
situation, use the UNION ALL operator instead of UNION
for speed.

There is no attempt to merge the table expressions and use
OR-ed predicates. For example:

 SELECT * FROM Personnel WHERE sex = 'm'
 UNION ALL
 SELECT * FROM Personnel WHERE sex = 'f'

can be replaced by:

32 SQL Database Programmers Handbook

 SELECT * FROM Personnel WHERE sex IN ('m', 'f');

A useful trick for building the union of different columns from
the same table is to use a CROSS JOIN, a table of sequential
integers from 1 thru (n) and a CASE expression, thus

 SELECT employee,
 CASE WHEN S1.seq = 1 THEN P1.primary_lanuage
 WHEN S1.seq = 2 THEN P1.secondary_lanuage
 ELSE NULL END
 FROM Personnel AS F1
 CROSS JOIN
 Sequence AS S1
 WHERE S1.seq IN (1,2)

This acts like the UNION ALL statement, but change the
SELECT to SELECT DISTINCT and you have a UNION.
The advantage of this statement over the more obvious
UNION is that it makes one pass thru the table. Given a large
table, that can be important for good performance.

Set Operations: Union 33

SQL NULL CHAPTER

5
Selection

Introduction
Continuing the look at basic relational operators and SQL, we
get to an operation with an unfortunate name: Selection.
Selection removes rows from a table which do not pass a
search condition. It is the counterpart of Projection, which
removes columns from tables.

The reason the name is unfortunate is that SQL uses the
keyword, SELECT, for the clause in a query that matches to
the Projection operator and the keyword where for the clause
in a query that matches to the selection operator. It is a little
confusing, but just wait: things will get worse.

The search conditions are logical predicates -- things that return
TRUE, FALSE or UNKNOWN. But wait a minute, most
programming languages work with Boolean logic and have only
TRUE and FALSE logical values. SQL and Codd's first
relational model have a thing called a NULL and it makes
things ... interesting.

The Null of It All
A NULL is not a value; it is a marker for a value that is missing.
SQL does not know why the value is missing -- semantics is
your job. But SQL does have syntax to handle NULLs. The
basic rules are:

34 SQL Database Programmers Handbook

 NULLs propagate in calculations. That makes sense; if I
don't know what something is, then why would I know
what a calculation done with it is?
 NULLs return an UNKNOWN value in a logical

expression. In fact, even (NULL = NULL) is
UNKNOWN. Again, this makes sense. How can you tell
one unknown
 NULLs group together. This property has nothing to do

with simple search conditions, so don't worry about it for
now; I will cover this point in another article on the
GROUP BY clause later.

All of the SQL datatypes can use the basic comparison
operators like equal (=), greater than (>), less than (<), not less
than (>=), not greater than (<=) and not equal (<>). With the
exception of the rules for NULLs, they behave pretty much as
in every other programming language.

The logical operators are also familiar looking. They are AND,
OR and NOT, and they are found in pretty much every other
programming language. The gimmick is that these are three
valued logical operators and not two valued ones.

The UNKNOWN value results from using NULLs in
comparisons and other predicates, but UNKNOWN is a logical
value and not the same as a NULL, which is a data value.

x NOT
==================
TRUE FALSE
UNK UNK
FALSE TRUE
AND | TRUE UNK FALSE
=============================
TRUE | TRUE UNK FALSE
UNK | UNK UNK FALSE
FALSE | FALSE FALSE FALSE

The Null of It All 35

OR | TRUE UNK FALSE
============================

TRUE | TRUE TRUE TRUE
UNK | TRUE UNK UNK
FALSE | TRUE UNK FALSE

There is anther predicate of the form (x IS [NOT] NULL) in
SQL that exits because you cannot use (x = NULL) to test for
a NULL value. Almost all other predicates in SQL resolve
themselves to chains of these three operators.

In the WHERE clause, the rows that test FALSE or
UNKNOWN are removed from the table. Now, you are
probably thinking that if we are going to treat FALSE and
UNKNOWN alike, then why go to all the trouble to define a
three-valued logic in the first place?

Defining a Three-valued Logic
SQL has three sub-languages: DML, DDL, and DCL. The
Data Control Language (DCL) controls user access to the
database and does not use predicates. In the Data Manipulation
Language (DML), users can ask queries (SELECT statements)
or change the data (INSERT INTO, UPDATE, and DELETE
FROM statements). The Data Declaration Language (DDL) is
where administrators control the schema objects like tables,
views, stored procedures and so forth. The FALSE and
UNKNOWN remove rows from the results of a query in the
DML. In the DDL, a TRUE or UNKNOWN test result in a
CHECK() constraint will preserve a row -- give it the benefit of
the doubt, so to speak. Otherwise, no column could be NULL-
able.

Wonder Shorthands
SQL also came up with some wonder "shorthands" that
improve the readability of the code. The logical operator "x

36 SQL Database Programmers Handbook

BETWEEN y AND z" means "((y <= x) AND (x <= z))" --
note the order of comparison and the inclusion of the
endpoints of the range. Likewise, "x IN (a,b,c,..)" expands out
to "((x = a) OR (x = b) OR (x = c) OR ...)" at run time.

Most SQL engines are pretty good about optimizing the
predicates and not that good about optimizing calculations. For
example, the engine might not change (x + 0) or (x * 1) to (x)
when they are compiling the code. This means that you need to
write very clear logical expression with the simplest calculations
in SQL.

Procedural languages like Fortran or Pascal are very good about
optimizing calculations, which only makes sense because all
they do is calculations! But SQL is a data retrieval language and
the goal is to get back the right set of data as fast as possible
from the secondary storage. Calculations are done at the speed
of electricity, while data is retrieved by mechanical disk reads.
The biggest improvements come from faster retrieval methods,
not improved calculations.

Wonder Shorthands 37

Specifying Time CHAPTER

6
Killing Time

How long is a minute? If you said 60 seconds, you are
technically wrong. It can vary from 59 to 61 seconds because of
the leap second adjustment. This is the little adjustment that
keeps the solar time aligned with the time calculated by an
atomic clock. The Earth wobbles a little bit and it is not a
precise as the atomic clock.

I am probably one of the few people who sets his wristwatch to
the leap second. But a lot of networks, geopositioning satellites
and other communications systems really have to worry about
it.

Timing is Everything
The United States Naval Observatory sent out a questionnaire
concerning the effects of a redefinition of Universal
Coordinated Time (UTC) and runs a chat group at
http://clockdev.usno.navy.mil/archives/leapsecs.html on the
subject.

On 2000 July 2, they issued an "Abstract and Conclusions" on
their e-mail survey to find possible adverse effects of a
redefinition of UTC. They identified some possibly expensive
or unsolvable problems with rewriting or checking software,
which I will get to in a minute.

38 SQL Database Programmers Handbook

The big problem was the cost of redoing satellite systems
software. UTC is commonly confused with the old Greenwich
Mean Time and is computed by occasionally adding leap
seconds to International Atomic Time (TAI). Since 1972, leap
seconds have been added on December 31 or June 30, at the
rate of about one every 18 months to keep atomic time in step
with the Earth's rotation.

I would recommend that you use only TAI or UTC, since a
man with two watches is never sure what time it really is.

But many major navigation systems such as GPS use constant
offset from TAI internally. For example, GPs is 19 seconds off
of TAI. There is a proposal in the international timing
community to redefine UTC to avoid the discontinuities due to
leap seconds. A discussion of the reasons for a change and
what they might be has been published by McCarthy and
Klepczynski in the "Innovations" section of the November
1999 issue of GPs World (you can get an abstract of the
McCarthy and Klepczynski paper at
http://www.findarticles.com/cf_0/m0BPW/11_10/57821998
/p1/article.jhtml).

The major reason they give for wanting to change the current
system is to keep spread-spectrum communication systems and
satellite navigation systems compatible with each other and
with civil times. Another reason is the emerging need in the
financial community to keep all computer time-stamps
synchronized, which is where us database people need to start
worrying about what we are doing on the Internet and
communications networks.

If you do not add new leap seconds, solar time and atomic time
will diverge at the rate of about 2 seconds every 3 years, and

Timing is Everything 39

after about a century the difference would exceed 1 minute.
Think of it as a Y2K problem on a smaller scale. Most
commercial software assumes that UT1 is the same as UTC, or
that the difference is always less than some value. If the
difference is greater than that value, the software will have
overflow problems. This would happen in NIST's WWV,
WWVH and WWWB transmissions, which do not allow
enough space for the difference to exceed 0.9 sec.

Specifying "Lawful Time"
Another problem is that some countries specify "lawful time"
in terms of solar time, or GMT (Greenwich Mean Time, which
has not existed for thirty years). Most nations on the Earth
have learned to live with daylight savings time and moved from
GMT to UTC. If you would like a history of the legal issues
raised by past changes in time definition, get a copy of the
book Greenwich Time and Longitude by Derek Howse.

Along the same lines, we survived Y2K, but nobody talks about
what we learned from it. For a lot of companies, this was the
first time anyone had looked at their legacy systems in years --
in decades, in fact. I think we can assume that any legacy
system that was easy and cheap to replace was replaced. The
next class of systems were those that we thought would be easy
to patch, and on those systems, the Y2K staff went to work.

There was also a third class of software about which nobody
knew anything, but that existed, nonetheless.

The side benefit of inspecting this class of programs was that
while the programmers were fixing the date handling code, they
could also fix any other bad code they found. I do not know if
anyone collected statistics on how much the non-temporal

40 SQL Database Programmers Handbook

parts of the legacy systems were rewritten as part of the Y2K
efforts.

Avoid Headaches with Preventive Maintenance
I would like to suggest that it would be a good idea to set up
regular maintenance policies on legacy systems. After all, you
schedule regular maintenance for your automobile. Vendors
release new versions of your packaged software. But most
companies use the, "If it's not broken, don't fix it!" policy
instead.

I appreciate the fact that programmers have to develop new
software, and have to try to keep the existing systems up and
running by making repairs to the code that's known to be
broken.

But how much trouble would be avoided if someone went to
the database, looked at trends, and increased or changed things
before they broke?

Preventive maintenance could be done to the to the database as
well as to the source code. For example, imagine that every
month the average length of a VARCHAR(n) column in a table
is getting longer. Why not make the column's upper bound
greater with an ALTER TABLE now to avoid future
problems? On the other hand, could performance be improved
by altering a column to a smaller sized datatype, say INTEGER
to SMALLINT?

Avoid Headaches with Preventive Maintenance 41

SQL TIMESTAMP
datatype

CHAPTER

7
Keeping Time

SQL is the first programming language to have explicit
temporal datatypes. I have had the theory that if Cobol had
been designed with a TIMESTAMP datatype, we would have
avoided all that Y2K trouble. At least now, more people are
aware of the ISO 8601 time and date display standards. Who
knows? Maybe people will start to use them.

The temporal support in each SQL product can be classified as
either a "Unix-style" or "Cobol-style" internal representation.

In the Unix-style representation, each point in time is shown as
a very large integer number that represents the number of clock
ticks from a base date. This is how the Unix operating system
handles its temporal data. The use of clock ticks makes
calculations very easy — it becomes simple integer math.
However, it is hard to convert the clock ticks into a year-
month-day-hour-minute-second format.

In the Cobol-style representation, the database has a separate
internal field for the year, month, day, hour, minute, and
seconds. This is great for displaying the information, but not
for calculations.

One of the debates in the SQL Standards Committee was how
to handle intervals of time. The reason that time is tricky is that
it is continuous. The defining mathematical property of a

42 SQL Database Programmers Handbook

continuum is that any part of it can be further sub-divided
forever. Give me any line segment and I can cut it into smaller
segments endlessly. But we run into the problem that the
defining property of a point is that it cannot be further
subdivided. So how can there be points in a continuum?

When you give a year, say 2000, you are really giving me an
interval of 365 days. Give me a date, say 2000-01-01, you are
not giving me a point; you are identifying an interval of 24
hours. Give me the date and time 2000-01-01 00:00:00 and you
are giving me an interval of 60 seconds. It never stops!!

The decision in SQL was to view time as a series of open ended
intervals. That is, the segment includes the starting point in
time, but never gets to the end point of the interval. This has
some nice properties. It prevents you from counting the end of
one event and the start of another event as identical moments
in time. An open interval minus an open interval gives open
intervals as a result and all points are accounted for.

But intervals are hard to work with conceptually. Let me give
you an actual example that was posted in a newsgroup. We
have a table that catches information about the user activity on
a system. It is a very simple "log file" that shows when
someone starts and ends a session with the system. We do not
even care who the user was, since I am assuming that
user_activity_id is a unique number that identifies a session,
without identifying individual users. The table looks like this:

CREATE TABLE User_Activity
(user_activity_id INTEGER NOT NULL PRIMARY KEY,
 login TIMESTAMP NOT NULL,
 logout TIMESTAMP, -- null means session is still active
 CHECK (login < logout),
 ...);

Keeping Time 43

Using a NULL in the logout column to mean that the session is
still active adds a little complexity to the problem. I decided to
use the current timestamp at the time the query is executed as
the logout time.

I would like to be able to report the number of user sessions
logged on during each hour of the day. So, if someone began a
session at 03:12 Hrs and ended it at 06:45 Hrs, I would like
them to be counted as being logged on the system for 03:00
Hrs, 04:00 Hrs, 05:00 Hrs and 06:00 Hrs. This report should
work all the hours in several years of data.

One solution proposed in the newsgroup involved using CASE
expressions to classify each time extracted from the
TIMESTAMP values as to what hourly interval it belongs. The
logic got worse from there.

Here is one solution: first, create an auxiliary table like this:

CREATE TABLE HourlyReport
(period_nbr INTEGER NOT NULL PRIMARY KEY,
 start_timestamp TIMESTAMP NOT NULL,
 end_timestamp TIMESTAMP NOT NULL,
 CHECK(start_time < end_time));
INSERT INTO HourlyReport
VALUES (1, '1999-01-01 00:00:00.00000',
'1999-01-01 00:59:59.99999');
INSERT INTO HourlyReport
VALUES (2, '1999-01-01 01:00:00.00000',
'1999-01-01 01:59:59.99999');
etc.

Before you reject this auxiliary table, notice that it is easy to
generate and will be (24 hours per day * 365.25 days per year *
10 years) = 87660 rows in size if you want to handle an entire
decade of data.

44 SQL Database Programmers Handbook

The query to find the periods in which each activity falls is
simply:

 SELECT DISTINCT A1.user_activity_id, period_nbr
 FROM User_Activity AS A1,
 HourlyReports AS H1
 WHERE H1.start_timestamp BETWEEN A1.login
 AND COALESCE A1.logout,CURRENT_TIMESTAMP)
 OR H1.end_timestamp BETWEEN A1.login
 AND COALESCE A1.logout, CURRENT_TIMESTAMP);

Notice the DISTINCT! Without it, you would count both the
start and end times of each period. Now, to answer the original
question, tally by periods:

 SELECT A1.period_nbr, A1.start_timestamp,
 COUNT (DISTINCT A1.user_activity_id)
 AS total_sessions
 FROM User_Activity AS A1,
 HourlyReports AS H1
 WHERE H1.start_timestamp BETWEEN A1.login
 AND COALESCE A1.logout, CURRENT_TIMESTAMP)
 OR H1.end_timestamp BETWEEN A1.login
 AND COALESCE A1.logout, CURRENT_TIMESTAMP)
 GROUP BY A1.period_nbr, A1.start_timestamp;

It might help if you drew a diagram with a time line, then put in
a session as a line segment which crosses the borders between
the time periods.

session X------------------X
 -|-----|-----|-----|-----|-----|--
period 2 3 4 5 6

Instead of trying to put the session into the periods, this query
puts the starts and stops of the periods into the session interval.
A period can have a start time, a stop time or both inside the
session; this case is why you need to remove the duplicate
period numbers.

Keeping Time 45

Internals of IDENTITY
datatype Column

CHAPTER

8
The Ghost of Sequential Processing

When we were first creating relational database products, we
really did not understand at a fundamental level what we were
doing. As a result, we made a lot of mistakes then and have to
live with them now. The biggest mistakes come from exposing
the physical representation of the logical model to the
programmer.

This is a holdover from the early programming language while
we were very close to the hardware. For example, the fields in a
COBOL or FORTRAN program were assumed to be
physically located in the order in which they were declared.
This meant that you could define a template that overlaid the
same physical space and read the representation in several
different ways. In COBOL, the command was REDEFINES,
EQUIVALENCE in FORTRAN and a union in 'C.'

From a logical viewpoint, this redefinition makes no sense at
all. It is confusing the numeral with the number that the
numeral represents.

Early SQL and Contiguous Storage
The early SQLs were based on existing file systems. The data
was kept in physically contiguous disk pages, in physically
contiguous rows, made up of physically contiguous columns —
in short, just like a deck of punch cards or a magnetic tape. You

46 SQL Database Programmers Handbook

located data by counting its position in the deck, starting at the
front.

Physically contiguous storage is only one way of building a
relational database and it is not always the best one. But aside
from that, the whole idea of a relational database is that user is
not supposed to know how things are stored at all, much less
write code that depends on the particular physical
representation in a particular release of a particular product.

One significant error is the IDENTITY column in the Sybase
family (SQL Server and Sybase). If you are not familiar with
this "feature," it is assigned to a column as its data type with the
limitation that a table can have only one such column. The
database engine assigns a sequential integer in this column to
every row in the table as it is inserted.

People actually program with this "feature" and even use it as
the primary key for the table! Now, let's go into painful details
as to why this thing is bad.

IDENTITY Crisis
The practical considerations are that IDENTITY is proprietary
and non-portable, so you know that you will have maintenance
problems when you change releases or products. It also has
some very strange bugs in both Sybase and SQL Server.

But let's look at the logical problems. First, try to create a table
with two columns and try to make them both IDENTITY
columns. If you cannot declare more than one column to be of
a certain datatype, then that thing is not a datatype at all, by
definition.

IDENTITY Crisis 47

Next, create a table with one column and make it an
IDENTITY column. Now try to insert, update and delete
different numbers from it. If you cannot insert, update and
delete rows from a table, then it is not a table by definition.

Finally, create a simple table with one IDENTITY column and
a few other columns. Use a few statements like

INSERT INTO Foobar (a, b, c) VALUES ('a1', 'b1', 'c1');
INSERT INTO Foobar (a, b, c) VALUES ('a2', 'b2', 'c2');
INSERT INTO Foobar (a, b, c) VALUES ('a3', 'b3', 'c3');

to put a few rows into the table and notice that the
IDENTITY column sequentially numbered them in the order
in which they were presented. If you delete a row, the gap in
the sequence is not filled in, and the sequence continues from
the highest number that has ever been used in that column in
that particular table.

But now use a statement with a query expression in it, like this:

INSERT INTO Foobar (a, b, c)
SELECT x, y, z
FROM Floob;

Since a query result is a table, and a table is a set that has no
ordering, what should the IDENTITY numbers be? The entire,
whole, completed set is presented to Foobar all at once, not a
row at a time. There are (n!) ways to number (n) rows, so which
one do you pick? The answer has been to use whatever the
physical order of the result set happened to be — that non-
relational phrase, "physical order" again. But it is actually worse
than that. If the same query is executed again, but with new
statistics or after an index has been dropped or added, the new
execution plan could bring the result set back in a different
physical order.

48 SQL Database Programmers Handbook

Oh, why did duplicate rows in the second query get different
IDENTITY numbers? In the relational model, they should be
treated the same if all the values of all the attributes are
identical.

There are better ways of creating identifiers, but that is the
subject for another column. In the meantime, stop writing bad
code, until I can teach you how to write good code.

IDENTITY Crisis 49

Keyword Search
Queries

CHAPTER

9
Keyword Searches

Here is a short problem that you might like to play with. You
are given a table with a document number and a keyword that
someone extracted as descriptive of that document. This is the
way that many professional organizations access journal
articles. We can declare a simple version of this table.

CREATE TABLE Documents
(document_id INTEGER NOT NULL,
 key_word VARCHAR(25) NOT NULL,
 PRIMARY KEY (document_id, key_word));

Your assignment is to write a general searching query in SQL.
You are given a list of words that the document must have and
a list of words which the document must NOT have.

We need a table for the list of words which we want to find:

CREATE TABLE SearchList
(word VARCHAR(25) NOT NULL PRIMARY KEY);

And we need another table for the words that will exclude a
document.

CREATE TABLE ExcludeList
(word VARCHAR(25) NOT NULL PRIMARY KEY);

Breaking the problem down into two parts, excluding a
document is easy.

 CREATE TABLE ExcludeList

50 SQL Database Programmers Handbook

(word VARCHAR(25) NOT NULL PRIMARY KEY);

Breaking the problem down into two parts, excluding a
document is easy.

SELECT DISTINCT document_id
 FROM Documents AS D1
 WHERE NOT EXISTS
 (SELECT *
 FROM ExcludeList AS E1
 WHERE E1.word = D1.key_word);

This says that you want only the documents that have no
matches in the excluded word list. You might want to make the
WHERE clause in the subquery expression more general by
using a LIKE predicate or similar expression, like this.

WHERE E1.word LIKE D1.key_word || '%'
 OR E1.word LIKE '%' || D1.key_word
 OR D1.key_word LIKE E1.word || '%'
 OR D1.key_word LIKE '%' || E1.word

This would give you a very forgiving matching criteria. That is
not a good idea when you are excluding documents. When you
wanted to get rid "Smith" is does not follow that you also
wanted to get rid of "Smithsonian" as well.

For this example, Let you agree that equality is the right
matching criteria, to keep the code simple.

Put that solution aside for a minute and move on to the other
part of the problem; finding documents that have all the words
you have in your search list.

The first attempt to combine both of these queries is:

SELECT D1.document_id
 FROM Documents AS D1
 WHERE EXISTS
 (SELECT *

Keyword Searches 51

 FROM SearchList AS S1
 WHERE S1.word = D1.key_word);
 AND NOT EXISTS
 (SELECT *
 FROM ExcludeList AS E1
 WHERE E1.word = D1.key_word);

This answer is wrong. It will pick documents with any search
word, not all search words. It does remove a document when it
finds any of the exclude words. What do you do when a word
is in both the search and the exclude lists? This predicate has
made the decision that exclusion overrides the search list. The
is probably reasonable, but it was not in the specifications.
Another thing the specification did not tell us is what happens
when a document has all the search words and some extras?
Do we look only for an exact match, or can a document have
more keywords?

Fortunately, the operation of picking the documents that
contain all the search words is known as Relational Division. It
was one of the original operators that Ted Codd proposed in
his papers on relational database theory. Here is one way to
code this operation in SQL.

SELECT D1.document_id
 FROM Documents AS D1, SearchList AS S1
 WHERE D1.key_word = S1.word
 GROUP BY D1.document_id
 HAVING COUNT(D1.word)
 >= (SELECT COUNT(word) FROM SearchList);

What this does is map the search list to the document's key
word list and if the search list is the same size as the mapping,
you have a match. If you need a mental model of what is
happening, imagine that a librarian is sticking Post-It notes on
the documents that have each search word. When she has used
all of the Post-It notes on one document, it is a match. If you
want an exact match, change the >= to = in the HAVING
clause.

52 SQL Database Programmers Handbook

Now we are ready to combine the two lists into one query. This
will remove a document which contains any exclude word and
accept a document with all (or more) of the search words.

SELECT D1.document_id
 FROM Documents AS D1, SearchList AS S1
 WHERE D1.key_word = S1.word
 AND NOT EXISTS
 (SELECT *
 FROM ExcludeList AS E1
 WHERE E1.word = D1.key_word)
 GROUP BY D1.document_id
 HAVING COUNT(D1.word)
 >= (SELECT COUNT(word)
 FROM SearchList);

The trick is in seeing that there is an order of execution to the
steps in process. If the exclude list is long, then this will filter
out a lot of documents before doing the GROUP BY and the
relational division.

Keyword Searches 53

The Cost of
Calculated Columns

CHAPTER

10
Calculated Columns

Introduction
You are not supposed to put a calculated column in a table in a
pure SQL database. And as the guardian of pure SQL, I should
oppose this practice. Too bad the real world is not as nice as
the theoretical world.

There are many types of calculated columns. The first are
columns which derive their values from outside the database
itself. The most common examples are timestamps, user
identifiers, and other values generated by the system or the
application program. This type of calculated column is fine and
presents no problems for the database.

The second type is values calculated from columns in the same
row. In the days when we used punch cards, you would take a
deck of cards, run them thru a machine that would do the
multiplications and addition, then punch the results in the right
hand side of the cards. For example, the total cost of a line in
an order could be described as price times quantity.

The reason for this calculation was simple; the machines that
processed punch cards had no secondary storage, so the data
had to be kept on the cards themselves. There is truly no
reason for doing this today; it is much faster to re-calculate the
data than it is to read the results from secondary storage.

54 SQL Database Programmers Handbook

The third type of calculated data uses data in the same table,
but not always in the same row in which it will appear. The
fourth type uses data in the same database.

These last two types are used when the cost of the calculation
is higher than the cost of a simple read. In particular, data
warehouses love to have this type of data in them to save time.

When and how you do something is important in SQL. Here is
an example, based on a thread in a SQL Server discussion
group. I am changing the table around a bit, and not telling you
the names of the guilty parties involved, but the idea still holds.
You are given a table that look like this and you need to
calculate a column based on the value in another row of the
same table.

CREATE TABLE StockHistory
 (stock_id CHAR(5) NOT NULL,
 sale_date DATE NOT NULL DEFAULT CURRENT_DATE,
 price DECIMAL (10,4) NOT NULL,
 trend INTEGER NOT NULL DEFAULT 0
 CHECK(trend IN(-1, 0, 1))
 PRIMARY KEY (stock_id, sale_date));

It records the final selling price of many different stocks. The
trend column is +1 if the price increased from the last reported
selling price, 0 if it stayed the same and -1 if it dropped in price.
The trend column is the problem, not because it is hard to
compute, but because it can be done several different ways.
Let's look at the methods for doing this calculation.

Triggers
You can write a trigger which will fire after the new row is
inserted. While there is an ISO Standard SQL/PSM language
for writing triggers, the truth is that every vendor has a

Introduction 55

proprietary trigger language and they are not compatible. In
fact, you will find many different features from product to
product and totally different underlying data models. If you
decide to use triggers, you will be using proprietary, non-
relational code and have to deal with several problems.

One problem is what a trigger does with a bulk insertion.
Given this statement which inserts two rows at the same time:

INSERT INTO StockHistory (stock_id, sale_date, price)
 VALUES ('XXX', '2000-04-01', 10.75),
 ('XXX', '2000-04-03', 200.00);

Trend will be set to zero in both of these new rows using the
DEFAULT clause. But can the trigger see these rows and
figure out that the 2000 April 03 row should have a +1 trend or
not? Maybe or maybe not, because the new rows are not always
committed before the trigger is fired. Also, what should that
status of the 2000 April 01 row be? That depends on an already
existing row in the table.

But assume that the trigger worked correctly. Now, what if you
get this statement?

INSERT INTO StockHistory (stock_id, sale_date, price)
VALUES ('XXX', '2000-04-02', 313.25);

Did your trigger change the trend in the 2000 April 03 row or
not? If I drop a row, does your trigger change the trend in the
affected rows? Probably not.

As an exercise, write some trigger code for this problem.

56 SQL Database Programmers Handbook

INSERT INTO Statement
I admit I am showing off a bit, but here is one way of inserting
data one row at a time. Let me put the statement into a stored
procedure.

CREATE PROCEDURE NewStockSale
 (new_stock_id CHAR(5) NOT NULL,
 new_sale_date DATE NOT NULL DEFAULT CURRENT_DATE,
 new_price DECIMAL (10,4) NOT NULL)
AS INSERT INTO
 StockHistory (stock_id, sale_date, price, trend)
 VALUES (new_stock_id, new_sale_date, new_price,
 SIGN(new_price -
 (SELECT H1.price
 FROM StockHistory AS H1
 WHERE H1.stock_id = StockHistory.stock_id
 AND H1.sale_date =
 (SELECT MAX(sale_date)
 FROM StockHistory AS H2
 WHERE H2.stock_id = H1.stock_id
 AND H2.sale_date < H1.sale_date)
))) AS trend
);

This is not as bad as you first think. The innermost subquery
finds the sale just before the current sale, then returns its price.
If the old price minus the new price is positive negative or zero,
the SIGN() function can computer the value of TREND. Yes,
I was showing off a little bit with this query.

The problem with this is much the same as the triggers. What if
I delete a row or add a new row between two existing rows?
This statement will not do a thing about changing the other
rows.

But there is another problem; this stored procedure is good for
only one row at a time. That would mean that at the end of the
business day, I would have to write a loop that put one row at a
time into the StockHistory table.

Introduction 57

Your next exercise is to improve this stored procedure.

UPDATE the Table
You already have a default value of 0 in the trend column, so
you could just write an UPDATE statement based on the same
logic we have been using.

UPDATE StockHistory
 SET trend
 = SIGN(price -
 (SELECT H1.price
 FROM StockHistory AS H1
 WHERE H1.stock_id = StockHistory.stock_id
 AND H1.sale_date =
 (SELECT MAX(sale_date)
 FROM StockHistory AS H2
 WHERE H2.stock_id = H1.stock_id
 AND H2.sale_date < H1.sale_date)));

While this statement does the job, it will re-calculate trend
column for the entire table. What if we only looked at the
columns that had a zero? Better yet, what if we made the trend
column NULL-able and used the NULLs as a way to locate the
rows that need the updates?

UPDATE StockHistory
 SET trend = ...
 WHERE trend IS NULL;

But this does not solve the problem of inserting a row between
two existing dates. Fixing that problem is your third exercise.

Use a VIEW
This approach will involve getting rid of the trend column in
the StockHistory table and creating a VIEW on the remaining
columns:

 CREATE TABLE StockHistory
 (stock_id CHAR(5) NOT NULL,

58 SQL Database Programmers Handbook

 sale_date DATE NOT NULL DEFAULT CURRENT_DATE,

 price DECIMAL (10,4) NOT NULL,
 PRIMARY KEY (stock_id, sale_date));

 CREATE VIEW StockTrends (stock_id, sale_date, price, trend)
 AS SELECT H1.stock_id, H1.sale_date, H1.price,
 SIGN(MAX(H2.price) - H1.price)
 FROM StockHistory AS H1 StockHistory AS H2
 WHERE H1.stock_id = H2.stock_id
 AND H2.sale_date < H1.sale_date
 GROUP BY H1.stock_id, H1.sale_date, H1.price;

This approach will handle the insertion and deletion of any
number of rows, in any order. The trend column will be
computed from the existing data each time. The primary key is
also a covering index for the query, which helps performance.
A covering index is one which contains all of the columns used
the WHERE clause of a query.

The major objection to this approach is that the VIEW can be
slow to build each time, if StockHistory is a large table.

I will send a free book to the reader who submits the best
answers top these exercises. You can contact me at
71062.1056@compuserve.com or you can go to my website at
www.celko.com.

Introduction 59

Graphs in SQL CHAPTER

11
Path Finder

I got an email asking me how to find paths in a graph using
SQL. The author of the email had seen my chapter on graphs
in SQL for Smarties, and read that I was not happy with my own
answers. What he wanted was a list of paths from any two
nodes in a directed graph, and I would assume that he wanted
the cheapest path.

After thinking about this for a while, the best way is probably
to do the Floyd-Warshall or Johnson algorithm in a procedural
language and load a table with the results. But I want to do this
in pure SQL as an exercise.

Let's start with a simple graph and represent it as an adjacency
list with weights on the edges.

CREATE TABLE Graph
(source CHAR(2) NOT NULL,
 destination CHAR(2) NOT NULL,
 cost INTEGER NOT NULL,
 PRIMARY KEY (source, destination));

I got data for this table from the book Introduction to Algorithms
by Cormen, Leiserson and Rivest (ISBN 0-262-03141-8), page
518. This book is very popular in college courses in the United
States. I made one decision that will be important later; I added
self-traversal edges (i.e., the node is both the source and the
destination) with weights of zero.

60 SQL Database Programmers Handbook

INSERT INTO Graph VALUES ('s', 's', 0);
INSERT INTO Graph VALUES ('s', 'u', 3);
INSERT INTO Graph VALUES ('s', 'x', 5);
INSERT INTO Graph VALUES ('u', 'u', 0);
INSERT INTO Graph VALUES ('u', 'v', 6);
INSERT INTO Graph VALUES ('u', 'x', 2);
INSERT INTO Graph VALUES ('v', 'v', 0);
INSERT INTO Graph VALUES ('v', 'y', 2);
INSERT INTO Graph VALUES ('x', 'u', 1);
INSERT INTO Graph VALUES ('x', 'v', 4);
INSERT INTO Graph VALUES ('x', 'x', 0);
INSERT INTO Graph VALUES ('x', 'y', 6);
INSERT INTO Graph VALUES ('y', 's', 3);
INSERT INTO Graph VALUES ('y', 'v', 7);
INSERT INTO Graph VALUES ('y', 'y', 0);

I am not happy about this approach, because I have to decide
the maximum number of edges in path before I start looking
for an answer. But this will work and I know that a path will
have no more than the total number of nodes in the graph.
Let's create a table to hold the paths:

CREATE TABLE Paths
(step1 CHAR(2) NOT NULL,
 step2 CHAR(2) NOT NULL,
 step3 CHAR(2) NOT NULL,
 step4 CHAR(2) NOT NULL,
 step5 CHAR(2) NOT NULL,
 total_cost INTEGER NOT NULL,
 path_length INTEGER NOT NULL,
 PRIMARY KEY (step1, step2, step3, step4, step5));

The step1 node is where I begin the path. The other columns
are the second step, third step, fourth step, and so forth. The
last step column is the end of the journey. The total_cost
column is the total cost, based on the sum of the weights of the
edges, on this path. The path length column is harder to
explain, but for now, let's just say that it is a count of the nodes
visited in the path.

To keep things easier, let's look at all the paths from "s" to "y"
in the graph. The INSERT INTO statement for construction
that set looks like this:

Path Finder 61

INSERT INTO Paths
SELECT G1.source, -- it is 's' in this example
 G2.source,
 G3.source,
 G4.source,
 G4.destination, -- it is 'y' in this example
 (G1.cost + G2.cost + G3.cost + G4.cost),
 (CASE WHEN G1.source NOT IN (G2.source, G3.source, G4.source)
 THEN 1 ELSE 0 END
 + CASE WHEN G2.source NOT IN (G1.source, G3.source, G4.source)
 THEN 1 ELSE 0 END
 + CASE WHEN G3.source NOT IN (G1.source, G2.source, G4.source)
 THEN 1 ELSE 0 END
 + CASE WHEN G4.source NOT IN (G1.source, G2.source, G3.source)
 THEN 1 ELSE 0 END)
 FROM Graph AS G1,
 Graph AS G2,
 Graph AS G3,
 Graph AS G4
 WHERE G1.source = 's'
 AND G1.destination = G2.source
 AND G2.destination = G3.source
 AND G3.destination = G4.source
 AND G4.destination = 'y';

I put in "s" and "y" as the source and destination of the path,
and made sure that the destination of one step in the path was
the source of the next step in the path. This is a combinatorial
explosion, but it is easy to read and understand.

The sum of the weights is the cost of the path, which is easy to
understand. The path_length calculation is a bit harder. This
sum of CASE expressions looks at each node in the path. If it
is unique within the row, it is assigned a value of one, if it is not
unique within the row, it is assigned a value of zero.

All paths will have five steps in them because that is the way
the table is declared. But what if a path exists between the two
nodes which is shorter than five steps? That is where the self-
traversal rows are used! Consecutive pairs of steps in the same
row can be repetitions of the same node.

62 SQL Database Programmers Handbook

Here is what the rows of the Paths table look like after this
INSERT INTO statement, ordered by descending path_length,
and then by ascending cost.

 Paths
 step1 step2 step3 step4 step5 total_cost path_length
 ==
 s s x x y 11 0
 s s s x y 11 1
 s x x x y 11 1
 s x u x y 14 2
 s s u v y 11 2
 s s u x y 11 2
 s s x v y 11 2
 s s x y y 11 2
 s u u v y 11 2
 s u u x y 11 2
 s u v v y 11 2
 s u x x y 11 2
 s x v v y 11 2
 s x x v y 11 2
 s x x y y 11 2
 s x y y y 11 2
 s x y v y 20 4
 s x u v y 14 4
 s u v y y 11 4
 s u x v y 11 4
 s u x y y 11 4
 s x v y y 11 4

Clearly, all pairs of nodes could be picked from the original
Graph table and the same INSERT INTO run on them with a
minor change in the WHERE clause. However, this example is
big enough for a short magazine article. And it is too big for
most applications. It is safe to assume that people really want
the cheapest path. In this example, the total_cost column
defines the cost of a path, so we can eliminate some of the
paths from the Paths table with this statement.

DELETE FROM Paths
WHERE total_cost
 > (SELECT MIN(total_cost)
 FROM Paths);

Path Finder 63

Again, if you had all the paths for all possible pairs of nodes,
the subquery expression would have a WHERE clause to
correlate it to the subset of paths for each possible pair.

In this example, it got rid of 3 out of 22 possible paths. It is
helpful and in some situations we might like having all the
options. But these are not distinct options.

As one of many examples, the paths

(s, x, v, v, y, 11, 2)

and

(s, x, x, v, y, 11, 2)

are both really the same path, (s, x, v, y). Before we decide to
write a statement to handle these equivalent rows, let's consider
another cost factor. People do not like to change airplanes or
trains. If they can go from Amsterdam to New York City on
one plane without changing planes for the same cost, they are
happy. This is where that path_length column comes in. It is a
quick way to remove the paths that have more edges than they
need to get the job done.

DELETE FROM Paths
 WHERE path_length
 > (SELECT MIN(path_length)
 FROM Paths);

In this case, that last DELETE FROM statement will reduce
the table to one row: (s, s, x, x, y, 11, 0) which reduces to (s, x,
y). This single remaining row is very convenient for my article,
but if you look at the table, you will see that there was also a
subset of equivalent rows that had higher path_length
numbers.

64 SQL Database Programmers Handbook

(s, s, s, x, y, 11, 1)
(s, x, x, x, y, 11, 1)
(s, x, x, y, y, 11, 2)
(s, x, y, y, y, 11, 2)

Your task is to write code to handle equivalent rows. Hint: the
duplicate nodes will always be contiguous across the row.

Path Finder 65

Finding the Gap in a
Range

CHAPTER

12
Filling in the Gaps

As I get older, I am convinced that there really is no such
animal as a simple programming problem. Oh, they might look
simple when you start but that is just a trick. Under the covers,
are all kinds of devils just waiting to get out.

Darren Taft posted what seems like an easy problem on the
SQL Server newsgroup in 2000 October. Let me quote him: "I
have an ordering system that allocates numbers within
predefined ranges. I do this at the moment using this: ..." At
this point, he posted a stored procedure written in T-SQL
dialect. This procedure had a loop that incremented the
request_id number in a loop until it either found a gap in the
numbering or failed. Mr. Taft then continued: "This is fine for
the first few numbers, but when the ranges are anything up to
10,000 between the minimum and the maximum, it starts to get
a little slow. Can anyone think of a better way of doing this?

Basically it needs to find the next number within the range for
which there isn't a row in the Requests table (the primary key is
the request_id, which is an integer column with a clustered
index). Rows can be deleted from within the range, so the next
number will not always be the current maximum plus one."

Before you go further, try to write a procedural solution
yourself. Now, put down your pencils and start reading again.
As an aside, the original stored procedure was wrong because it

66 SQL Database Programmers Handbook

did not test for an upper bound. If the range was completely
used, the stored procedure would return the upper limit plus
one.

Graham Shaw immediately proposed this query:

SELECT MIN (R1.request_id + 1)
 FROM Requests AS R1
 LEFT OUTER JOIN
 Requests AS R2
 ON R1.request_id + 1 = R2.request_id
 WHERE R2.request_id IS NULL;

The idea is that there is a leftmost value in the Requests table
just before a gap. Therefore, when (request_nbr +1) is not in
the table, we have found a gap. This is what the incremental
approach in the stored procedure was doing, one row at a time.

Too bad this does not work. First of all, there is no checking
for an upper bound. In effect, the flaw in the original stored
procedure has become part of the specification! This is like the
story about the Englishman who sent a favorite old jacket to a
Chinese tailor and told him to make an exact copy of it in
heavy silk. The tailor did exactly that, right down to the
cigarette burns, stains and frayed elbows. The second problem
is that you cannot get the first position in the range if it is the
only one vacant.

Umachandar Jayachandranm, another regular to the
newsgroup, saw that the OUTER JOIN should be expensive
and suggested that Darren try this query:

 SELECT MIN(R1.request_id) + 1
 FROM Requests AS R1
 WHERE NOT EXISTS
 (SELECT *
 FROM Requests AS R2
 WHERE R2.request_id = R1.request_id + 1
 AND R2.request_id >= {{low range boundary}})

Filling in the Gaps 67

 AND R1.request_id >= {{low range boundary}}

He also proposed a proprietary solution based on the TOP(n)
operator in SQL Server, but I will not go into that answer. But
again, this answer has the same two flaws as before.

I agreed with Umachandar that the OUTER JOIN solution
was needlessly complex. I proposed a more set-oriented
solution in the form of a VIEW of the all gaps in the
numbering, instead. That query looked like this:

CREATE VIEW Gaps (gap_start, gap_end)
AS SELECT DISTINCT R1.request_id + 1, MIN(R2.request_id -1)
 FROM Requests AS R1,
 Requests AS R2
 WHERE R1.request_id <= R2.request_id
 AND R1.request_id + 1
 NOT IN (SELECT request_id FROM Requests)
 AND R2.request_id - 1
 NOT IN (SELECT request_id FROM Requests)
 AND R1.request_id + 1 <= {{high range boundary}}
 AND R2.request_id - 1 >= {{low range boundary}}
 GROUP BY R1.request_id;

I was happy with this answer, since it found all the desired
numbers and solved the problems at the extremes of the range.
By using the plus and minus one, I am finding the gaps from
both their left and right sides, so I will catch an open slot in
both the high and low range boundaries. The only
improvement I found was that you might want to change the
NOT IN () predicates to NOT EXISTS() predicates for
performance in some SQL products. You can also use this view
to get reports on the density of allocated numbers, use it to
compress the gaps, to insert new requests in a well distributed
manner, and so on.

I was proud of myself until Darren replied, "Interesting
response, but it doesn't actually provide the answer. I would
need a further query on the view to get what I want. This view
actually runs slower than the OUTER JOIN suggestion, so

68 SQL Database Programmers Handbook

with a query on top of that, it has to be the slowest answer so
far." He did concede that the query is handy for analyzing gaps
and that he would keep it for future reference. That helped my
wounded ego a little bit.

So it was time to do more thinking about the boundary
problems and how to return only one number. I finally came
up with this nightmare query:

SELECT MIN (X.request_id)
 FROM (SELECT (CASE WHEN (R1.request_id + 1)
 NOT IN (SELECT request_id
 FROM Requests)
 THEN (R1.request_id + 1)
 WHEN (R1.request_id - 1)
 NOT IN (SELECT request_id
 FROM Requests)
 THEN (R1.request_id - 1)
 ELSE NULL END)
 FROM Requests AS R1
 WHERE R1.request_id + 1
 BETWEEN {low range boundary} AND {high range boundary}
 AND R1.request_id - 1
 BETWEEN {low range boundary} AND {high range boundary}
 GROUP BY R1.request_id) AS X(request_id);

The outermost query is simply returning the first number in the
derived query. The derived query, X, finds gaps from both the
left and the right sides by incrementing and decrementing
values in the Requests table. It also does a range check in the
WHERE clause. The real trick is in the CASE expression;
when a gap exists to the right of a number, return it; when a
gap exists to the left of a number, return it; when there are no
gaps, return a NULL. This will solve the boundary problem at
the extremes of the range. It might be ugly, but at least it
works!

Filling in the Gaps 69

There is also a subtle third problem here. All these approaches
tend to favor picking a new request_id value in the lower end
of the range. The clustered B-tree index would have to be re-
balanced more often than if you were to pick new request_id

numbers randomly from the possible values in the gaps. The
table will be reorganized more than you would really wish it to
be.

For a situation with a great number of transactions, the real
trick is to replace the clustered index with an unclustered index.

70 SQL Database Programmers Handbook

SQL and the Web CHAPTER

13
Web Databases

An American thinks that 100 years is a long time; a European
thinks that 100 miles is a long trip. How you see the world is
relative to your environment and your experience. We are
starting to see the same thing happen in databases, too.

The first fight has long since been over and SQL won the battle
for a standard database language. However, if you look at the
actual figures, only 12 percent of the world's data is in SQL
databases. If a few weeks is supposed to be an "Internet Year,"
then why is it taking so long to convert legacy data to SQL?
The simple truth is that you could probably pick any legacy
system and move its data to SQL in a week or less. The trouble
is that it would require years, maybe decades, to convert the
legacy applications code to a language that could use the SQL
database. This is not a good way to run a business.

The trend over the past several years is to do new work with an
SQL product, and try to interface to the legacy systems for any
needed data until you can kill the old system. There are any
number of products that will make an IMS, IDMS, TOTAL, or
flat file system look like a set of SQL tables (note to younger
readers: if you do not know what those products are, look
around your shop and ask the programmer who is still using a
slide ruler instead of a calculator).

We were comfortable with this situation. In most business
reporting programs, you write a preamble to set up the report,

Web Databases 71

a loop that goes over a cursor, and a post-amble to do the
house cleaning. The hard part is getting the query in the cursor
just right. What you want is to make the result set from the
query look as if it were a very simple sequential file that had all
the data required, already sorted in the right order for the
report.

Years ago, a co-worker of mine defined the Law of
Conservation of Difficulty. Every system has a minimum
degree of difficulty, and you cannot put out less effort than is
required to overcome that degree of difficulty to solve the
problem. You can put out more effort, to be sure, but never
less effort. What SQL did was sweep all the difficulty out of the
host language and concentrate it in the queries. This situation
was fine, and life was good. Then along came the Internet.
There are a lot of other trends that are changing the way we
look at databases — data warehouses, small machine databases,
non-traditional data, and so on — but let's start with the
Internet databases first.

Application database builders think that handling 1000 users at
one time is scalability; Web database builders think that a
Terabyte is a large database.

In a mainframe or client-server database shop, you know in
advance the maximum number of terminals or workstations
can be attached to your database. And if you don't like that
number, you can disconnect some of them until you are
finished doing batch processing jobs.

The short-term fear in a mainframe or client-server database
shop is of ad hoc queries that can exclude the rest of the
company from the database. The long-term fear is that the

72 SQL Database Programmers Handbook

database will outgrow the software or the hardware or both
before you can do an upgrade.

In a Web database shop, you know in advance what result sets
you will be returning to users. If a user is currently on a
particular page, then he can only go to the previous page, or
one of a (small) set of following pages. It is an old-fashioned
tree structure for navigation. When the user does a search, you
have control over the complexity of this search. For example, if
I get to a Web site that sells antique comic books, I will enter
the Web site at the home page 99.98 percent of the time
instead of going directly to another page. If I want to look for a
particular comic book, I will fill out a search form that forces
me to search on certain criteria — I cannot look for "any issue
of Donald Duck with a lot of Green on the Cover" on my own
if cover colors are not one of the search criteria.

What the Web database fears is a burst of users all at once.
There is not really a maximum number of PCs that can be
attached to your database. In Larry Niven's science fiction
novels, there are cheap teleportation booths all over the planet.
You step inside one, put in your credit card, dial the number of
your destination and suddenly you are in a receiving booth at
your destination. The trouble is that when something
interesting happens and it appears on the worldwide television
system, you get "flash crowds" — all the people in the world
who like to look at car wrecks show up in one place all at once.

If you get too many users trying to get to your Web site at
once, the Web server crashes. This is exactly what happened to
the Encyclopedia Britannica Web site the first day that they
offered free access.

Web Databases 73

I must point out that virtually every public library on Earth has
an encyclopedia set. Yet, you have never seen a crowd form
around the reference books and bring the library to a complete
halt. Much as I like the Encyclopedia Britannica, they never
understood the Web. They first tried to ignore it, then they
tried to sell a subscription service, then when they finally
decided to make a living off of advertising, they underestimated
the demand.

Another difference between an application database and a Web
database is that an application database is not altered very
often. Once you know the workloads, the indexes are seldom
changed, and the tables are not altered very much.

In a Web database, you might suddenly find that one part of
the database is all that anyone wants to see. If my Web-enabled
comic book shop gets a copy of SUPERMAN #1, puts the
cover on the Web, and gets listed as the "Hot Spot of the Day"
on Yahoo! or another major search engine, then that one page
will get a huge increase in hits.

Another major difference is that the Internet has no SQL-style
transaction model. Once a user is connected to an SQL
database, the system knows who he is, his privileges, and a
history of his session.

The Web site has to confirm who you are with every action you
take and has no concept of your identity or history. It is like a
bank teller with brain damage who has to ask for your account
number and identification for each check you deposit, even
though you are standing in front of them. Cookies are a partial
answer. These are small files with some identification data in
them that can be sent to the Web site along with each request.
In effect, you have put your identification documents in a

74 SQL Database Programmers Handbook

plastic holder around your neck for the bank teller to read each
time. The bad news is that a cookie can be read by virtually
anyone else and copied, so it is not very secure.

Right now, we do not have a single consistent model for Web
databases. What we are doing is putting a SQL database on the
back end, a Web site tool on the front end, and then doing all
kinds of things in the middle to make them work together. I am
not sure where we will sweep the Difficulty this time, either.

Web Databases 75

Avoiding SQL
Injection

CHAPTER

14
SQL Injection Security Threats

SQL injection is a serious threat to any vendor’s SQL database
in which applications use dynamic SQL (i.e., SQL compiled
while the application is running). A hacker knowledgeable of
SQL can exploit weaknesses presented by such applications.
Good application design can mitigate the risks. Instead of
focusing on satisfying just the literal business requirements,
designers must carefully consider how an application can be
used by a hacker in ways not intended. Additionally, DBAs
must work with developers to grant only the most minimal of
permissions to an application.

Creating a Test Application
It is easier to understand how SQL injection works by creating
a simple test application. The target database is the SQL Server
Northwind database. To simplify creation of the application,
the Employees table is used as a list of authorized application
users. The LastName column serves as the application’s
Username and the FirstName column is used as the Password.
The user can log in by using either dynamic SQL or a stored
procedure. Providing a username and password for
authentication by an application is known as "forms-based
authentication."

76 SQL Database Programmers Handbook

You can download the ValidateUser.sql
(http://www.dbazine.com/code/ValidateUser.sql) stored
procedure and the application code as either SQLinjection.cs
(http://www.dbazine.com/code/SQLinjection.cs) or
SQLinjection.vb
(http://www.dbazine.com/code/SQLinjection.vb). Entering a
first name not matching a last name in the Employees table
simulates the effect of entering an invalid password in a real
application.

Creating a Test Application 77

Although this sample application is a Windows application, it
could be a Web application or even a Java application. The
vulnerability is a direct consequence of using dynamic SQL and
completely independent of the operating system, database
vendor, and programming language used to write the
application.

Understanding the Test Application
Superficially, it appears that the test application works as
intended and fulfills the basic business objective. Users who
know a valid username and password are authorized by the
application. Those who do not know a valid username and
password are rejected. In the real world, the application would
authenticate the user only by either dynamic SQL or a stored
procedure; it would not provide a choice of methods. The test
application provides a choice of using either approach to
demonstrate both the vulnerability to SQL injection as well as
how to protect against it. The dynamic SQL approach to user

78 SQL Database Programmers Handbook

authentication opens the SQL injection vulnerability. The
stored procedure protects against SQL injection.

To keep the application simple, only a single screen was
created. After entering a valid username and password into a
real application, the user would of course be taken to another
screen, whereas the test application displays “Welcome!” An
invalid username and password causes the application to
display “Hacker!”

Whether using dynamic SQL or a stored procedure, the SQL
statement being executed is logically equivalent to this:

select count(*) from Employees where LastName = 'Davolio'
 and FirstName = 'Nancy'

An invalid username and password results in a value of zero
being returned from the query. A valid username and password
returns a value of one (assuming usernames combined with
passwords must be unique).

Understanding Dynamic SQL
When a program builds and executes a SQL string at execution
time, it is known as "dynamic SQL." Inspecting the application
code does not provide an accurate indication of which SQL
statement is actually executed. Instead, it only provides an
indication as to the intent of what should be executed. Only
SQL Profiler indicates what is actually executed. Examine the
following application code that constructs the SQL string for
the test application:

cmd.CommandText = "select count(*) from employees where LastName = '" +
 username.Text + "' and FirstName = '" + password.Text
& "'"

Understanding Dynamic SQL 79

It appears to be logically equivalent to the SQL statement
described in the previous statement. If the inputs are Davolio
and Lynn for Username and Password, respectively, then the
SQL Profiler indicates that the actual SQL executed is:

select count(*) from employees where LastName = 'Davolio'
 and FirstName = 'Lynn'

This is completely consistent with the intended design of the
application. Invalid inputs were detected and the user is denied
access.

The Altered Logic Threat
The test application accepts the input Username and Password
through simple text boxes. The user is free to enter text other
than usernames or passwords. A hacker with basic SQL
knowledge can be authenticated without even attempting to
guess a valid username and password.

80 SQL Database Programmers Handbook

The user entered the following string and was authorized:

' or 1=1--

By placing a partial SQL statement into the Username textbox,
a hacker “injects” the SQL fragment and thus alters the SQL
statement that is executed. The injected SQL fragment actually
consists of three different fragments, each with a different
purpose:
1. The single quote closes out the LastName = ‘ fragment of

the template query. This is done to maintain syntactical
correctness of the modified query.

2. The or 1=1 fragment causes the count to always return a
count greater than zero (assuming of course that the table
has rows).

3. The double dash is a SQL inline comment which causes the
entire rest of the dynamically built SQL statement to be
ignored. Any input in the Password textbox is ignored.

The SQL Profiler reveals what was actually executed:

select count (*) from employees where LastName = ''
 or 1=1 --' and FirstName = ''

The application design intends for usernames and passwords to
be entered, but SQL injection alters the SQL logic and makes
them superfluous.

The Multiple Statement Threat
Unauthorized access to an application has different levels of
severity depending on the purpose of the application.
Sometimes people incorrectly rationalize the potential harm
from security threats. For example, if a Web application
provides fee-based access to publications, unauthorized logins
could be dismissed as lost revenue. The rationalization is that

The Multiple Statement Threat 81

the cost to impose additional security features outweighs the
cost of lost subscriber revenue. After all, there is a high
probability that a person who hacks into a fee-based
publication service won’t pay to access the site if the hacking
attempts fail. Such reasoning is naive and fatally flawed. What if
the SQL savvy hacker decides to inject completely new SQL
statements?

Consider the following SQL code:

' or 1=1;update prices set cost = 0--

Once again, the SQL Profiler reveals what was actually
executed, which is actually two separate SQL statements:

select count (*) from employees where LastName = '' or 1=1
update merchandise set price = 0 --' and FirstName = ''

A semicolon is a valid SQL character for separating one SQL
statement from another. It is particularly useful when multiple
statements are entered on a single line or into a single string. A
semicolon tells the SQL parser that the complete string is
comprised of individual SQL statements to execute separately.

The hacker is not limited to injecting DML statements (insert,
update, delete). How about a drop table statement? Assuming
that the application has rights to drop tables, drop table
statements could be injected to remove tables from the
database. Consider the following input:

' or 1=1;update prices set cost = 0;drop table audit_trail;shutdown--

Not only would the audit_trail table be dropped, but the
database would be shutdown immediately afterwards.

82 SQL Database Programmers Handbook

Prevention Through Code
To provide the absolutely most effective security, multiple
techniques are required to protect your databases. The first line
of defense is prevention at the user interface.

Whenever you are working with a database, you must first
understand your data so you will better be able to protect it. In
the test program, the LastName column of the Employees
table is used as if it were a password in a table of usernames.
This column has a maximum length of 20 characters, yet the
test program does not limit user inputs to 20 characters. This is
an egregious oversight: The worst attacks illustrated in this
article could easily have been prevented by limiting the input to
20 characters. Not all input fields are short, so input length
checking is only part of an overall defense. Additionally, in this
example, a length restriction would not prevent this attack:

' or 1=1;shutdown--

Assuming that characters such as semicolons and double
dashes are not valid in a username, then regular expression
validation can be used to detect the invalid characters and reject
the input. Not only is restricting the set of valid input
characters a Procrustean solution, there exists the possibility of
a very clever exploit using the SQL char function to provide
the value of an individual ASCII character without explicitly
having the character in the injected SQL input. Despite the
limitations of rejecting input based on certain characters, it
should be used when it is appropriate. Visual Studio.NET has a
regular expression validate control that greatly simplifies using
regular expressions in ASP.NET Web pages.

Prevention Through Code 83

Data type checking is helpful in detecting rogue input. User
interfaces often accept date, time, and numeric input in text
fields. Although users can type whatever they want in a text
field, programs can check the input data to see if it is the
correct data type. For example, if the Password input box is
mapped to the EmployeeID column, then any user input
should be checked to see if it is integer data. Only if the input is
of the correct data type would the input be passed to the
database server for processing. All of the rogue statements
shown would fail an integer data type validation check.

The fundamental flaw of dynamic SQL is not that rogue inputs
are allowed, but that rogue input can be executed. Dynamic
SQL is convenient for developers, but it does not lock down
the actual SQL during the application design stage.

Prevention Through Stored Procedures
Stored procedures are compiled when they are created; the
SQL statement is frozen at creation time. Using the first rogue
SQL fragment of

' or 1=1--

with the Stored Proc Login button, SQL Profiler reveals what
is actually executed:

select @NbrRows = count(*) from employees where LastName = @Username
 and FirstName = @Password
Understand that @Username contains the following characters: ' or 1=1--

84 SQL Database Programmers Handbook

No matter what the inputs for @Username and @Password
are, the stored procedure will always execute only the select
statement shown. The SQL statement is predefined; it will
never change based on the inputs. This stored procedure
accepts two inputs, both strings. No matter what those input

strings contain, they are always treated as just strings. Even a
semicolon is treated as just another character, not as a SQL
statement separator.

Although stored procedures overcome the fundamental
weakness of dynamic SQL, it comes at a price. A stored
procedure must be written in advance for all possible queries,
and this is not always practical. For example, a search page for
real estate listings does not lend itself to stored procedures. A
customer is presented with multiple search criteria (price,
number of bedrooms, bathrooms, and so on). Not all search
criteria would be used at all times, so the number of stored
procedures required to accommodate every possible select
string would be unwieldy. Dynamic SQL is required in such
cases.

Coding stored procedures in the .NET environment is covered
in "Calling Stored Procedures from ADO.NET."
(http://www.dbazine.com/cook6.html)

Prevention Through Least Privileges
The most basic security concept of all is the principle of least
privileges. Never grant any more privilege to a user or an
application than the absolute minimum to accomplish a task.
Typical end user applications should not allow application users
to execute indiscriminate DML, drop tables, or shut down
databases. A hacker who attempts to drop a table but does not
have rights to do so will not succeed in the attempt.

Conclusion
Implementing security best practices can prevent unintended
access to your database. Forethought and well-designed

Prevention Through Least Privileges 85

applications are instrumental in protecting your interests. While
dynamic SQL has its uses, a determination should be made
early on as to whether or not it would be the best choice. If
possible, stored procedures should be considered early in the
design stage, as their execution is not dependent on nor
changed by user input. Code should also be thoroughly
examined to see that it does not lend itself to invasion.
Developers must think like a hacker in order to fully evaluate
the weaknesses in their applications.

86 SQL Database Programmers Handbook

Preventing SQL
Worms

CHAPTER

15
Preventing SQL Worms

Most of the damage caused by SQL worms targeting SQL
Servers could easily have been prevented by applying service
packs to SQL Servers prior to the attacks. Properly configured
firewalls could have limited propagation of the worm. SQL
worms are a far greater threat than many people realize because
there are many SQL Servers out of sight and out of mind. Since
SQL 7, the SQL Server database engine has been offered for
free as MSDE, Microsoft Desktop Engine. MSDE 1.0 is the
SQL 7 engine; MSDE 2000 is the SQL 2000 engine. MSDE is
effectively limited to five connections, two gigabyte databases,
and does not come with any tools such as the Enterprise
Manager or the Query Analyzer. Any strategy put in place to
protect against SQL worms and other threats must protect
both SQL Servers and MSDE installations.

MSDE may be installed as part of an Office XP Developer
Edition, Visual Studio .NET, Web Matrix, or other Microsoft
product installation. Untold numbers of third-party
applications install and use MSDE behind the scenes.

Finding SQL Servers Including MSDE

Preventing SQL Worms 87

SQL Servers (for the rest of this article, this term includes
MSDE) are applications named sqlservr.exe (not
sqlserver.exe). There can be multiple copies of sqlservr.exe
installed on a machine as long as each is in its own directory.
You can identify instances of SQL Server by searching for

sqlservr.exe, but keep in mind that by default, XP and
Windows 2003 Server do not search all folders as the following
screen capture shows:

It is possible that SQL Server could have been installed to a
location other than the default. Be sure to check Search
hidden files and folders before starting your search.

88 SQL Database Programmers Handbook

A faster and more convenient way to find SQL Servers on a
machine is to use the Services applet under either
Administrative Tools or Computer Management (which is
itself under Administrative Tools). On XP, Administrative
Tools is not visible by default. To make it visible, right-click on
the Start button, select Properties, click the Customize
button, click the Advanced tab, scroll to the bottom of the
Start menu items list and make a selection to Display the
System Administrative Tools. The following screen capture
from a Windows 2003 Server shows the Services applet.
Because of space considerations, only a few services appear in
this screen capture.

SQL Servers are installed as services and may be installed as
either what is known as a default instance or a named instance.
A default instance of SQL Server has a service name of
MSSQLSERVER. Named instances begin with MSSQL$. As
you can see, the first three entries shown in the preceding
screen capture indicate that there are three SQL Servers
installed. MSSQLSERVER is the default instance.
MSSQL$NetSDK and MSSQL$WEBMATRIX are named

Finding SQL Servers Including MSDE 89

instances. They are intended for use by software developers
and may not be as properly secured as a production database
should be.

All three SQL Servers are running with elevated privileges. It
would be safer to run a SQL Server service under the context
of a domain user account instead of a domain administrator
account or Local System. The same is true of the SQL Server
Agent service accounts. For more information, go to the
Microsoft site for SQL Server and download these security
whitepapers:
 http://www.microsoft.com/SQL/techinfo/administration/

70/securityWP.asp
 http://www.microsoft.com/SQL/techinfo/administration/

2000/securityWP.asp
You can also go to Control Panel, Add/Remove Programs
to find instances of SQL Server installed on a machine. They
will not necessarily be grouped together as they are in the
Services applet.

Identifying Versions
You can determine if an instance of a SQL Server is the full
version or the MSDE version by connecting through osql or
the Query Analyzer and running this command:

select @@version
Microsoft SQL Server 2000 - 8.00.194 (Intel X86)
Aug 6 2000 00:57:48
Copyright (c) 1988-2000 Microsoft Corporation
Enterprise Edition on Windows NT 5.2 (Build 3768:)

As you can see, the last line indicates the version of SQL
Server. Here is the output from running the command on an
MSDE instance:

90 SQL Database Programmers Handbook

Microsoft SQL Server 2000 - 8.00.534 (Intel X86)
Nov 19 2001 13:23:50
Copyright (c) 1988-2000 Microsoft Corporation
Desktop Engine on Windows NT 5.2 (Build 3768:)

Now look at the output from another MSDE instance:

Microsoft SQL Server 2000 - 8.00.760 (Intel X86)
 Dec 17 2002 14:22:05
 Copyright (c) 1988-2003 Microsoft Corporation
 Desktop Engine on Windows NT 5.1 (Build 2600: Service Pack 1)

Do not make the mistake of thinking that SQL Server Service
Pack 1 was applied to this instance. In this context, Service
Pack 1 refers to the operating system only. You determine the
SQL Server Service Pack level by looking at the version
number on the first line of the output. The version number
8.00.760 is the proof that SQL Server Service Pack 3 was
installed. This is explained in sp3readme.htm, a document
that is included in the Service Pack 3 downloaded files. You
should read it carefully before applying any version of SQL
Server Service Pack 3.

Another way to determine the service pack level of a SQL
instance is to run the following command:

select serverproperty('ProductLevel')

A single string is returned. If it is RTM, no service pack has
been applied. If the string is SP3, them SQL Server Service
Pack 3 has been applied. Do not consider a service pack to be
successfully installed until you have used one of these queries
to confirm the installation.

Identifying Versions 91

SQL Security Tools
Microsoft has tools to help you identify instances of SQL
Server that need to be patched. The tools are SQL Scan and
SQL Check. You can download them from the Microsoft
download center, http://www.microsoft.com/downloads.
These are command line tools. You need to read the readme.txt
files that come with these tools and choose the appropriate
switches. SQL Scan has the ability to check an entire domain or
range of IP addresses.

Preventing Worms
First and foremost, you must keep current on service packs.
Currently, SQL Server Service Pack 3 is available for download
from:

http://www.microsoft.com/sql/downloads/2000/sp3.asp

It is actually three different service packs, one for SQL Server
2000, one for MSDE 2000, and another for SQL Server 2000
Analysis Services. You must download and install the service
pack appropriate for which of these components you have
installed on the machine. It is important to understand that
once the service pack is downloaded, running the service pack
executable does NOT install the service pack. It merely
unpacks the files needed to install the service pack. You must
stop the SQL Server service before a service pack can be
applied. You should back up your databases before applying a
service pack.

Installing the Service Pack 3 for MSDE 2000 requires that you
have administrative rights on the computer. Be sure to read the
documentation carefully. The setup.exe is not just for applying

92 SQL Database Programmers Handbook

a service pack; it will also install an instance of MSDE 2000. To
only install the service pack, you will have to apply command
line switches as described in the sp3readme.htm help file. You
either need to know the instance name or which .msi file was
used to install MSDE. As described previously, you can use the
Services applet to find the instance names.

The Slammer/Sapphire worm exploits a buffer overrun
vulnerability on SQL Server port 1434. Blocking UDP ports
1433 and 1434 at your firewall will protect your server from
this worm and many other SQL Server exposures. You can also
block your SQL Servers for inbound traffic on UDP port 1434,
but this would interfere with name resolution.

MSDE Issues
MSDE requires special attention to the instructions in
sp3readme.htm. Not all attempts at applying Service Pack 3 to
MSDE have been successful. To log installation problems, use
the modified syntax shown below:

setup /l*v c:\msde.log /upgradesp . . .

Additionally, if the MSDE being upgraded has a blank sa
password (actually a NULL password, there actually isn't a
password), the installation will fail and show the following error
message:

MSDE Issues 93

If you choose not to take advantage of the opportunity to fix
this security vulnerability, use the following syntax:

setup /l*v c:\msde.log /upgradesp BLANKSAPWD=1 . . .

To change from a NULL password to a real password using
osql, use syntax similar to this:

C:\>osql -E
1> sp_password NULL, 'Str0ngP@sswOrd', sa
2> go
Password changed.

.NET SDK MSDE and Visual Studio .NET
Users of the .NET SDK Version 1.0 must apply a special
version of Service Pack 3 which can be found at this location:

http://msdn.microsoft.com/netframework/downloads/update
s/sdkfix/default.asp

Additionally, as the following link indicates, if you have both
Visual Studio .NET and the .NET SDK MSDE installed, you
should apply both the regular MSDE Service Pack 3 as well as
the .NET SDK Service Pack 3:

http://support.microsoft.com/default.aspx?scid=kb;en-
us;813850

94 SQL Database Programmers Handbook

Application Center 2000
Application Center 2000 uses MSDE and has specific
requirements for applying Service Pack 3. Details may be found
at:

http://support.microsoft.com/?kbid=813115

Deworming
The Slammer/Sapphire worm is memory resident only.
Stopping and restarting the SQL Server service will clear the
worm from the instance, but will not by itself prevent
reinfection. Applying Service Pack 3 stops and restarts the
service, so it both clears the worm and prevents reinfection.

Baseline Security Analyzer
It is important not to focus so much attention on widely
publicized threats as to overlook other weaknesses. Microsoft
provides a free tool to help identify other vulnerabilities your
machine may have.

Download the Microsoft Baseline Security Analyzer from:

http://www.microsoft.com/technet/treeview/default.asp?url=
/technet/security/tools/Tools/MBSAhome.asp

The following screen capture shows a small portion of the scan
performed on the entire machine:

Application Center 2000 95

The screen capture shows that the scan detected the service
account privilege problems mentioned previously in this article.
The Baseline Security Analyzer not only points out problems,
but also provides hyperlinks to explanations on how to correct
the identified problems.

Conclusion
Security best practices can prevent unnecessary down time
caused by security threats. Staying current on service packs and
hotfixes is essential. By understanding and expecting threats,
proper planning can mitigate risks.

96 SQL Database Programmers Handbook

Basic SQL Tuning
Hints

CHAPTER

16
SQL tuning

Oracle SQL tuning is a phenomenally complex subject, and
entire books have been devoted to the nuances of Oracle SQL
tuning. However there are some general guidelines that every
Oracle DBA follows in order to improve the performance of
their systems. The goals of SQL tuning are simple:
 Remove unnecessary large-table full table scans

Unnecessary full table scans cause a huge amount of
unnecessary I/O, and can drag down an entire database.
The tuning expert first evaluates the SQL based on the
number of rows returned by the query. If the query returns
less and 40 percent of the table rows in an ordered table, or
7 percent of the rows in an unordered table), the query can
be tuned to use an index in lieu of the full table scan. The
most common tuning for unnecessary full table scans is
adding indexes. Standard B-tree indexes can be added to
tables, and bitmapped and function-based indexes can also
eliminate full table scans. The decision about removing a
full table scan should be based on a careful examination of
the I/O costs of the index scan vs. the costs of the full table
scan, factoring in the multiblock reads and possible parallel
execution. In some cases an unnecessary full table scan can
be forced to use an index by adding an index hint to the
SQL statement.

SQL tuning 97

 Cache small-table full table scans In cases where a full table
scan is the fastest access method, the tuning professional
should ensure that a dedicated data buffer is available for

the rows. In Oracle7 you can issue alter table xxx cache. In
Oracle8 and beyond, the small table can be cached by
forcing to into the KEEP pool.
 Verify optimal index usage This is especially important for

improving the speed of queries. Oracle sometimes has a
choice of indexes, and the tuning professional must examine
each index and ensure that Oracle is using the proper index.
This also includes the use of bitmapped and function-based
indexes.
 Verify optimal JOIN techniques Some queries will perform

faster with NESTED LOOP joins, others with HASH
joins, while other favor sort-merge joins.

These goals may seem deceptively simple, but these tasks
comprise 90 percent of SQL tuning, and they don't require a
through understanding of the internals of Oracle SQL.

98 SQL Database Programmers Handbook

Index
A

K
ALTER TABLE 42

KEEP pool 99
C

M
Cartesian product............. 25

MAX() 5 CASE........................... 4, 34
MIN()................................. 5 CHECK OPTION.............. 8
MSSQL$NetSDK............ 90 COUNT()......................... 26
MSSQL$WEBMATRIX . 91 CREATE VIEW 7, 17
MSSQLSERVER 90 CROSS JOIN............. 25, 34

N D
NOT EXISTS().......... 26, 69 DCL 37
NOT IN () 69 DDL............................. 2, 37
NULL............... 5, 27, 35, 45 DELETE.......................... 18

DELETE FROM.............. 65 O DISTINCT........... 18, 29, 46
ORDER BY ... 11, 21, 23, 32 DML 37, 83, 86

P H
PRIMARY KEY................ 2 HAVING 3

Q I
Query Rewriter 9 IDENTITY 48

INSERT 18
S INSERT INTO 3, 62

SELECT DISTINCT 34
J SIGN() 58

SQL-92 Standard ... 3, 29, 30 JOIN 99

Index 99

T
TIMESTAMP............ 43, 45

U
UNION 30, 31
UNION ALL 18, 19, 31

Universal Coordinated Time
............................... 39, 41

UPDATE 17, 59

V
VIEW......................... 59, 69

100 SQL Database Programmers Handbook

	TeamLiB
	Cover
	Table Of Contents
	Conventions Used in this Book
	About the Authors
	Foreword
	CHAPTER 1 SQL as a Second Language
	Thinking in SQL

	CHAPTER 2 SQL View Internals
	SQL Views Transformed
	Syntax
	Cheerful Little Fact # 1:
	Cheerful Little Fact # 2:

	View Merge
	Table1

	The Small Problem with View Merge
	Temporary Tables
	Permanent Materialized Views
	UNION ALL Views
	Alternatives to Views
	Tips
	References

	CHAPTER 3 SQL JOIN
	Relational Division

	CHAPTER 4 SQL UNION
	Set Operations
	Introduction
	Set Operations: Union

	CHAPTER 5 SQL NULL
	Selection
	Introduction
	The Null of It All
	Defining a Three- valued Logic
	Wonder Shorthands

	CHAPTER 6 Specifying Time
	Killing Time
	Timing is Everything
	Specifying " Lawful Time"
	Avoid Headaches with Preventive Maintenance

	CHAPTER 7 SQL TIMESTAMP datatype
	Keeping Time

	CHAPTER 8 Internals of IDENTITY datatype Column
	The Ghost of Sequential Processing
	Early SQL and Contiguous Storage
	IDENTITY Crisis

	CHAPTER 9 Keyword Search Queries
	Keyword Searches

	CHAPTER 10 The Cost of Calculated Columns
	Calculated Columns
	Introduction
	Triggers
	INSERT INTO Statement
	UPDATE the Table
	Use a VIEW

	CHAPTER 11 Graphs in SQL
	Path Finder

	CHAPTER 12 Finding the Gap in a Range
	Filling in the Gaps

	CHAPTER 13 SQL and the Web
	Web Databases

	CHAPTER 14 Avoiding SQL Injection
	SQL Injection Security Threats
	Creating a Test Application
	Understanding the Test Application
	Understanding Dynamic SQL
	The Altered Logic Threat
	The Multiple Statement Threat
	Prevention Through Code
	Prevention Through Stored Procedures
	Prevention Through Least Privileges
	Conclusion

	CHAPTER 15 Preventing SQL Worms
	Preventing SQL Worms
	Finding SQL Servers Including MSDE
	Identifying Versions
	SQL Security Tools
	Preventing Worms
	MSDE Issues
	. NET SDK MSDE and Visual Studio . NET
	Application Center 2000
	Deworming
	Baseline Security Analyzer
	Conclusion

	CHAPTER 16 Basic SQL Tuning Hints
	SQL tuning

	Index

