
7. Syntax

In syntactic research, it is important to distinguish between judgments that bear on 
grammaticality and those that bear on semantic anomaly.  For example, though it is syntactically 
well-formed, and thus grammatical, the phrase colorless green ideas is semantically anomalous.  
Table 7.1 illustrates the distinction between grammaticality judgments and semantic anomaly 
judgments.  

Table 7.1. Illustration of the difference between grammaticality and semantic 
anomaly.

colorless ideas greencolorless green ideassemantically anomalous 
subversive ideas communistsubversive communist ideassemantically well-formed

grammatically ill-formedgrammatically well-formed

However, the grammaticality/anomaly distinction is over-simple.  For example, with the 
appropriate discourse context leading up to it the apparently anomalous colorless green ideas 
can be judged as semantically well-formed.  Similarly, when a phrase is grammatically ill-formed 
like subversive ideas communist is given an appropriate context, it isn’t clear that it actually has 
a compositional semantic interpretation.  Nonetheless, the distinction between grammaticality 
and anomaly is central to any discussion of syntactic theory.

I bring this up because recently researchers have been turning to naive speakers for syntactic data 
(Bard et al., 1996; Schütze,1996; Cowart, 1997; Keller, 2000, and many others).  The problem is 
that naive speakers can’t tell you that colorless green ideas is syntactically OK but semantically 
odd.  They just think it isn’t nearly as natural, or acceptable, as subversive communist ideas.  So, 
to use data given by naive speakers we have to devote a good deal more effort to acquiring 
syntactic data, and still there are likely to be concerns that we don’t actually know why a person 
judged one phrase to be relatively unacceptable while another is perfectly fine.

Why bother then?  Why not just continue to use judgments given by people (linguists) who can 
factor out semantic anomaly and report only the grammaticality of a sentence or phrase?  There 
are two very good reasons to bother.  First, linguists’ grammaticality judgments are suspect.  Our 
experience of language is unusual because we have encountered, and even memorized, example 
sentences from the linguistic literature. Students who first encounter this literature often remark 
that the judgments are really not clear to them, and it may be that a part of acculturation in the 
study of syntax is the development of intuitions that are not really present in normal language 
processing (for a spectacular example of this see Ferreira, 2003).  Now one argument is that what 
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is happening is that the budding linguist is developing the distinction between grammaticality and 
anomaly, but it seems just as likely that we are learning to have stronger opinions or intuitions 
about grammaticality than nonlinguists.  The possibility that the “data” are infected with the 
researcher’s expectations is a fundamental concern that appears to be driving the push to get 
syntactic data from naive speakers (see Inton-Peterson, 1983; and Goldinger & Azumi, 2003 for 
evidence that expectations can color the results even in “low level” tasks).  

The second good reason to bother getting data from naive speakers has to do with sampling 
theory.  If we want to say things about English syntax, for example, then we need to get data 
from a representative sample of the population of people who speak English (of some variety).

I don’t think that there is much disagreement about these problems with using linguists’ 
intuitions as the data base for syntactic theory, but there has to be a viable alternative.  One of 
the most serious concerns about “experimental” or “empirical” alternatives has to do with 
whether information about grammaticality can be gleaned from naive speakers’ acceptability 
judgments.  Consider table 7.1 again.  If we collect acceptability judgments for items in all four 
cells of the table we can distinguish, to a certain degree, between judgments that are responsive 
primarily to semantic anomaly (the rows in the table) from judgments that are responsive to 
grammaticality.  Here we are using a hypothesis testing approach, in which we hypothesize that 
these utterances differ in the ways indicated in the table on the basis of our linguistically 
sophisticated judgments.  

7.1 Measuring sentence acceptability

In syntax research an interval scale of grammaticality is commonly used.  Sentences are rated as 
grammatical, questionable (?, or ??), and ungrammatical (*, or **).  This is essentially a 5-point 
category rating scale, and we could give people this rating scale and average the results, where ** 
= 5, * = 4, ?? = 3, ? = 2, and ø = 1.  However, it has been observed in the study of sensory 
impressions (Stevens, 1975) that raters are more consistent with an open-ended ratio scale than 
they are with category rating scales.  So, in recent years, methods from the study of 
psychophysics (subjective impressions of physical properties of stimuli) have been adapted in 
the study of sentence acceptability.

The technique that I am talking about here - using an open-ended ratio scale for reporting 
impressions - is called magnitude estimation.  Lodge (1981) lists three advantages of magnitude 
estimation over category scaling.  First, category scaling has limited resolution.  Though you may 
feel that a sentence is something like a 4.5 (a little worse than prior sentences that you rated as 5 
and a little better than sentences that you rated as 4) gradient ratings are not available in category 
scaling. Magnitude estimation permits as much resolution as the rater wishes to employ.  Second, 
category scaling uses an ordinal scale.  So, though we may average the ratings given on a category 
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scale, there is no guarantee that the interval between * and ** represents the same difference of 
impression as ? and ??. Magnitude estimation provides judgments on an interval scale for which 
averages and standard deviations can be more legitimately used.  Third,  categorical scaling limits 
our ability to compare results across experiments. The range of acceptability for a set of 
sentences has to be fit to the scale, so what counts as ?? for one set of sentences may be quite 
different than what counts as ?? for another set of sentences.  You’ll notice that I’ve employed a 
set of instructions (Appendix A) that imposes a similar range on the magnitude estimation scale.  
I did this by giving a “modulus” phrase and instructed the raters to think of this as being an 
example of a score of 50.  I did this to reduce the variability in the raters’ responses, but it put 
the results onto an experiment-internal scale so that the absolute values given by these raters 
cannot be compared to the ratings given in other experiments that use different instructions with 
a different modulus phrase. 

In sum, magnitude estimation avoids some serious limitations of category scaling.  But what 
exactly is magnitude estimation? The best way I know to explain it is by way of demonstration, 
so we’ll work through an example of magnitude estimation in the next section.

7.2 A psychogrammatical law?  

Keller (2003) proposes a psychogrammatical law relating the number of word order constraint 
violations and the perceived acceptability of the sentence, using magnitude estimation to estimate 
sentence acceptability. The relationship can be expressed as a power function:

  

€ 

R = kN v
p

A syntactic power law.

Where R is the raters’ estimation of sentence acceptability and Nv is the number of constraint 
violations in the sentence being judged,  p is exponent of the power function and k is a scale 
factor.  Note that this relationship can also be written as a simple linear equation using the log 
values of Nv and R.

    

€ 

log R = logk + p log Nv Expressed as a linear regression equation.

The exponent (p) in Keller’s power law formulation for the relationship between acceptability 
and constraint violations was 0.36.

In the example discussed in this chapter we will be looking for a power law involving violations 
of an adjective order template in English adjective phrases.
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Hetzron (1978) proposed a word order template for prenominal adjectives in English (Table 7.2) 
that putatively follows universal constraints having to do with semantic or pragmatic properties 
of adjectives, but apparently the best predictions of adjective ordering in English corpora come 
from considerations of language-specific and often adjective-specific conventions rather than 
universal principles (Malouf, 2000).  Nonetheless, Hetzron’s template accounts for at least some 
portion of the prenominal adjective order patterns found in spoken English (Wulff, 2003).

So we will use Hetzron’s word order template to make predictions about acceptability, in search 
of a psychogrammatical law similar to the one Keller suggested.  In Hetzron’s template, position 
0 is the head noun of the phrase and prenominal adjectives in a noun phrase typically come in the 
order shown in table 7.2 (with some of these categories being mutually exclusive).

Table 7.2 The Hetzron (1978) template of prenominal adjective order.

13 epistemic qualifier “famous”
12 evaluation* “good”, “bad”, “nice”
11 static permanent property* “wide”, “tall”, “big”
10 sensory contact property “sweet”, “rough”, “cold”
9 speed “fast”, “slow”
8 social property “cheap”
7 age* “young”, “new”, “old”
6 shape “round”, “square”
5 color* “blue”, “red”, “orange”
4 physical defect “deaf”, “chipped”, “dented”
3 origin* “Asian”, “French”
2 composition* “woolen”, “silk”, “steel”
1 purpose “ironing”
0 NOUN

* I used these in the experiment.

The hypothesis that I wish to test is that placing adjectives in the “wrong” order will result in a 
greater decrease in acceptability if the adjectives are from categories that are further apart from 
each other on this scale.  This predicts that “woolen nice hat” (transposing adjectives from 
category 12 and 2) is worse than “woolen Asian hat” (categories 2 and 3).  In some cases this 
seems intuitively to be true, in others it may not be quite right.  An empirical study is called for.

I created a small grammar with the following lexicon (these are annotated lines from the Perl 
script that I used to generate noun phrases for the experiment):

Quantitative Lingusitics Keith Johnson

216



[12]attitude = ("good","nice","pleasant","fun","tremendous","wonderful","intelligent");
[11]size = ("big","tall","small","large","tiny","huge","wide","narrow","short");
[7]age = ("old","young","new");
[5]color = ("black","white","red","blue","pink","orange");
[3]origin = ("French","Dutch","English","Asian","Irish","Turkish");
[2]material = ("steel","woolen","wooden","lead","fabric");
[0]noun = ("hat","plate","knob","wheel","frame","sock","book","sign","dish","box","chair", 

"car","ball");

Phrases were then generated by selecting randomly from these sets to form phrases with differing 
degrees of separation along the template.  Random generation of phrases produces some that are 
semantically anomalous (“pleasant Asian sock”) and others that are semantically fine (“old pink 
plate”).  I used different randomly generated lists for each participant in order to provide a rough 
control for the effects of semantic anomaly, because the results were then averaged over 
semantically anomalous and non-anomalous phrases. However, a more careful control would have 
not left the factor of semantic anomaly to chance, instead controlling anomaly explicitly on the 
basis of a pretest to insure that either no anomalous phrases were used or that each participant 
saw a fixed number of anomalous and non-anomalous phrases.

There were four types of stimuli involving adjectives at four different degrees of difference on the 
Hetzron template.  The group 1 pairs of adjectives come from slots that are close to each other 
on the template, while the group 4 pairs come from distant slots.  If the template distance 
hypothesis is on the right track, group 4 order reversals will be less acceptable than group  1 
order reversals.  

Table 7.3 Adjective order template distance of the four groups of phrases used in 
the experiment.  “Template distance” is the difference between the indices in the 
Hetzron template of the two adjectives in the phrase.

Group 1  
attitude, size  12-11 = 1
size, age 11-7 = 4 average distance = 2
age, color 7-5 = 2
origin, color 3-2 = 1

Group 2
attitude, age 12 - 7 = 5
size color 11 - 5 = 6 average distance = 4.5
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age, origin 7 - 3 = 4
color, material 5 - 2 = 3

Group 3
attitude, color 12 - 5 = 7
size, origin 11 - 3 = 8 average distance = 6.33
age, material 7 - 2 = 5

Group 4
attitude, origin 12 - 3 = 9 average distance = 9
size, material 11 - 2 = 9

The experiment (appendix 7A) starts with a demonstration of magnitude estimation by asking 
participants to judge the lengths of a few lines.  These “practice” judgments provide a sanity 
check in which we can evaluate participants’ ability to use magnitude estimation to report their 
impressions.  Previous research (Stevens, 1975) has found that numerical estimates of line length 
have a one-to-one relationship with actual line length (that is the slope of the function relating 
them is 1). 

Figure 7.1 shows the relationship between the actual line length on the horizontal axis and 
participants’ numerical estimates of the lengths of the lines.  The figure illustrates that 
participants’ estimates are highly correlated (R2 = 0.952) with line length and the slope of the 
line is about equal to one (1.13) - a one-to-one relationship between length and estimated length.  
In general, this result assures us that these people can use magnitude estimation to report their 
subjective impressions.
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Figure 7.1.  Participants’ numerical estimates of line length are highly correlated 
with actual line length.

--------------------------
R-note. The actual lengths of the lines (in mm) are put in “x” and the numeric estimates are put 
in “y”.

> x <- c(42,18,61,141,44,84)

You can enter data for more than one person into a table of rows and columns like this:

> y<- rbind(c(50,50,50,50,50,50,50,50,50,50,50,50), 
c(10,5,10,10,12.5,10,12.5,10,10,7,10,10), 
c(75,65,70,70,75,70,75,60,70,65,70,60), 
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c(150,150,170,200,150,150,125,150,150,150,150,150), 
c(50,50,60,50,50,50,50,50,45,50,50,50), 
c(100,100,120,100,100,100,100,70,85,80,100,100))

Which produces a table where rows are for different lines and columns are for different 
participants.

> y
     [,1] [,2] [,3] [,4]  [,5] [,6]  [,7] [,8] [,9] [,10] [,11] [,12]
[1,]   50   50   50   50  50.0   50  50.0   50   50    50    50    50
[2,]   10    5   10   10  12.5   10  12.5   10   10     7    10    10
[3,]   75   65   70   70  75.0   70  75.0   60   70    65    70    60
[4,]  150  150  170  200 150.0  150 125.0  150  150   150   150   150
[5,]   50   50   60   50  50.0   50  50.0   50   45    50    50    50
[6,]  100  100  120  100 100.0  100 100.0   70   85    80   100   100

If you wish to examine the means estimated line length, averaging over participants, you can use a  
little “for” loop.

> mean.y = vector()
> for (i in 1:6) { mean.y[i] = mean(c(y[i,])) }

And this gives us a vector of the six average responses given by the participants (one mean for 
each row in the table of raw data).

> mean.y
[1]  50.0  9.75  68.75 153.75  50.42  96.25
>x 
[1]  42.0  18    61    141     44     84

Clearly, the average subjective estimate (mean.y) is similar to the actual line length (x).  The 
relationship can be quantified with a linear regression predicting the numeric responses from the 
actual line lengths. The function as.vector() is used to list the matrix y as a single vector of 
numbers.  The function rep() repeats the x  vector 12 times (one copy for each of the 12 
participants).

> summary(lm(as.vector(y)~rep(x,12)))

Call:
lm(formula = as.vector(y) ~ rep(x, 12))

Residuals:
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    Min      1Q  Median      3Q     Max 
-32.583  -7.583   2.304   4.569  42.417 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2.14910    2.29344  -0.937    0.352    
rep(x, 12)   1.13285    0.03017  37.554   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 10.09 on 70 degrees of freedom
Multiple R-Squared: 0.9527, Adjusted R-squared: 0.952 
F-statistic:  1410 on 1 and 70 DF,  p-value: < 2.2e-16

The average residual standard error of the participants’ judgments is about 10 mm and the 
correlation between estimated line length and actual line length is high (R2 = 0.952).   As figure 
7.1 shows, larger errors occur for the longer line length.  This may be related to Weber’s law - 
sensitivity to differences decreases as magnitude increases - so that judgments about long lines are 
likely to be less accurate than judgments about short lines.

The degree of fit of the regression line can be visualized in a plot (see Figure 7.1).  Try adding 
log=”xy” to this plot command to see why psychophysical judgment data are often converted 
to a logarithmic scale before analysis.

> plot(rep(x,12),as.vector(y),xlab="actual line length", ylab="numeric 
estimate")
> curve(-2.1490 +1.13285*x,0,140,add=T)

------------------

Participants in this example experiment were asked to judge phrases in two ways, (1) by giving a 
numeric estimate of acceptability for each phrase, as they did for the lengths of the lines in the 
practice section, and (2) by drawing lines to represent the acceptability of each line.  Bard et al. 
(1996) found that participants sometimes think of numeric estimates as something like academic 
test scores, and so limit their responses to a somewhat categorical scale (e.g., 70, 80, 90, 100), 
rather than using a ratio scale as intended in magnitude estimation.  People have no such 
preconceptions about using line length to report their impressions, so we might expect more 
gradient, unbounded responses by measuring the lengths of lines that participants draw indicate 
their impressions of phrase acceptability.

We have two measures of adjective order acceptability  - line drawing and numerical estimation.  
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These should have about a one-to-one relation with each other as they did in the numerical 
estimation of line length, so we will look for a slope of one between them as a measure of the 
validity of magnitude estimation as a measure of acceptability (see Bard et al., 1996).

Figure 7.2.  Cross-modal validation of adjective phrase acceptability judgments.  
log(lines) = -0.0335 + 0.96*log(numbers), R2 = 0.744.

As you can see in figure 7.2, looking at all of the raw data points in the data set, participants’ 
judgments of phrase acceptability using line length were correlated with their numerical estimates.  
The slope of this relationship is nearly exactly 1, but there is a certain amount of spread which 
seems to indicate that their impressions of the acceptability of the phrases were not as stable as 
were their impressions of line length.

Note also that the dots in figure 7.2 appear in vertical stripes. This indicates that there were some  
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“favorite” numbers given in the numerical estimates.  For instance, the cluster of dots over x=2 
indicates that the numerical estimate 100 (102) was given by many of the participants.

-------------------
R-note.  I saved the raw line length and numeric estimate data in a text file “magest2.txt”.

> mag <- read.delim("magest2.txt")

Figure 7.2 was made with the following commands.

> summary(lm(log(mag$lines)~log(mag$numbers)))
> plot(mag$numbers,mag$lines,log="xy",xlab="numeric estimates",ylab="line 
drawing")
> abline(lm(log(mag$lines)~log(mag$numbers)))
------------------------------

Now, finally, we are ready to consider the linguistic question under discussion, namely whether 
acceptability is a function of the distance on the Hetzron (1978) template of preferred adjective 
order.  We are concerned primarily with the consequences of putting the adjectives in the 
“wrong” order, testing the hypothesis that violations of the order predicted by the template will 
be more unacceptable the further the adjectives are from each other in the template.

I coded Hetzron distance as 1 if the adjectives are in the order predicted by the template, and 1 + 
the number of template slots that separate the adjectives when they were not in the correct order.  
I did this on the average distances in the four groups of experimental stimuli, so for each 
participant there were five categories of stimuli - correct, and then incorrect order with adjectives 
from group 1, 2, 3, or 4.  There were 12 students in my class, who participated in this experiment 
(thanks guys!). Five of them were native speakers of English and 7 were nonnative speakers of 
English.

Figure 7.3 shows the averaged results (again using the geometric mean to take the averages) 
separately for native speakers, and nonnative speakers.  Interestingly, the hypothesis is generally 
supported by the data.  We find that acceptability goes down (on the vertical axis) as Hetzron 
distance goes up (on the horizontal axis).  This was true for both native and nonnative speakers 
whether they were using numerical estimates of acceptability (the graphs on the right) or drawing 
lines to indicate acceptability (the graphs on the left).
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Figure 7.3.  Adjective ordering acceptability (measured by line length responses 
(left column) or by numerical estimates of acceptability (right column), as a 
function of group number.  Responses from native English speakers are in the top 
graphs and by nonnative speakers of English are in the bottom graphs.

Table 7.3 summarizes the line fits shown in figure 7.3.  The linear fits (in this log-log 
representation of the data) were generally quite good for both groups of participants, with three 
of the four R2 values near 0.9.  The nonnative speakers produced functions that are about half as 
steep as the native speakers, indicating that their impressions of the acceptability of the phrases 
were generally less extreme than the impressions recorded by the native speakers.  Interestingly, 
the slope of the line fitting the native speakers’ responses was steeper for the line-drawing task 
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than it was for the numerical estimation task.  This may have been due to a tendency to limit the 
upper bound of their responses at 100.

Table 7.3.  Analysis of an adjective ordering psychogrammatical law for native 
speakers of English, and nonnative speakers of English. 

0.91-0.19numbers

0.75-0.20linesnonnative

0.89-0.42numbers

0.90-0.61linesnative

fitslope

In sum, this example magnitude estimation experiment illustrates the use of an empirical 
technique to elicit acceptability judgments. The hypothesis I tested is a somewhat naive one, but 
I hope that this demonstration will be provocative enough to cause someone to want to use 
magnitude estimation to study syntax.

-----------------------------
R-note.  Figure 7.3 was drawn with these R commands.  I also used lm() to calculate the 
regression coefficients used in the curve() commands here, and for the report of slopes and fits in 
table 7.3.

> nl <- c(70.5,33, 19, 26.3, 15.8)
> fl <- c(52.6, 39.2, 31.8, 39.9, 31.5)
> nn <- c(83.1, 38.8, 36.7, 38.1, 27.7)
> fn <- c(59.9, 44.1, 40.8, 42.9, 37.4)
> d <- c(1,3,5.5,7.33,10)

The Hetzron distance (d) that I entered into these graphs is one plus the number of slots that 
separate the adjectives in the template (see table 7.3) for those phrases in which the adjectives are 
in the wrong order.  Phrases in which the adjectives were in the correct order were given a one on 
the distance axis (d) in these figures. The log10 of d then ranges from 0 to 1.

> par(mfrow(c(2,2))
> plot(log10(d),log10(nl),ylim = c(1.2,2),main="Native speakers", 

xlab="Hetzron distance", ylab="line length")
> curve(1.82853 - 0.60942*x,0,1,add=T)

> plot(log10(d),log10(nn),ylim = c(1.2,2),main="Native speakers" 
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,xlab="Hetzron distance", ylab="numeric estimate")
> curve(1.88125 - 0.42488*x,0,1,add=T)

> plot(log10(d),log10(fl),ylim = c(1.2,2),main="Non-native speakers" 
,xlab="Hetzron distance", ylab="line length")
> curve(1.70625 - 0.1996*x,0,1,add=T)

> plot(log10(d),log10(fn),ylim = c(1.2,2),main="Non-native speakers" 
,xlab="Hetzron distance", ylab="numeric estimate")
> curve(1.76282 - 0.18694*x,0,1,add=T)
------------------------------

7.3 Linear mixed effects in the syntactic expression of agents in English

In this section we will be using a data set drawn from the Wallstreet Journal text corpus that was 
used in the CoNLL-2005 (Conference on Computational Natural Language Learning) shared task 
to develop methods for automatically determining  semantic roles in sentences of English. 
Semantic roles such as agent, patient, instrument, etc. are important for syntactic and semantic 
descriptions of sentences, and automatic semantic role determination also has a practical 
application, because in order for a natural language processing system to correctly function (say 
to automatically summarize a text) it must be able to get the gist of each sentence and how they 
interact with each other in a discourse.  This kind of task crucially requires knowledge of 
semantic roles - who said what, or who did what to whom. 

Well, that’s what the CoNLL-2005 shared task was.  In this section, I’m just using their database 
for an example of mixed effects modeling asking a very simple (if not simplistic) question.  We 
want to know whether the size (in number of words used to express it) of the noun phrase that 
corresponds to the “agent” role in a sentence is related to the size (again in number of words) of 
the material that comes before the clause that contains the agent expression. The idea is that 
expression of agent may be abbreviated in subordinate or subsequent clauses.

What we will do in this section is investigate a method for fitting linear “mixed effects” models 
where we have some fixed effects and some random effects.  Particularly we will be looking at 
linear mixed effects models and a logistic regression extension of this approach to modeling 
linguistic data.  As I mentioned in the introduction to the book, this is some of the most 
sophisticated modeling done in linguistic research and even more than with other methods 
introduced in this book it is important to consult more detailed reference works as you work with 
these models.  In particular, the book Mixed-effect Models in S and S-Plus by Pinheiro and Bates 
(2004) is very helpful.

In the example here, we will use the Wall Street Journal corpus data compiled for CoNLL-2005 
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to build linear mixed effects models that predict the size (in words) of the agent expression.  
Some examples will help to clarify how the data is coded.  With “take” in the sense of “to acquire 
or come to have” (this is verb sense 01 for “take” in Verbnet), argument zero (A0) is the taker, 
and argument one (A1) is the thing taken. So the sentence “President Carlos Menem took office 
July 8” is tagged as:

(A0 President Carlos Menem) (V took) (A1 office) (AM July 8). 

where the tag “AM” is a generic tag for modifiers.  In almost all cases in the corpus A0 is used to 
tag the agent role.

In the longer sentence below, the clause containing “take” is embedded in a matrix clause “the 
ruling gives x”.  The phrase “pipeline companies” is coded as A0, and “advantage” as A1.  In 
addition to this, the fact that there was earlier material in the sentence is coded using the label N0.  
So the argument structure frame for the verb “take” in this sentence is:

(N0)(A0)(V=take)(A1)(A2)

According to industry lawyers, the ruling gives 
pipeline companies an important second chance to 
resolve remaining disputes and take advantage of 
the cost-sharing mechanism. 

The question that we are concerned with in this example is whether there is any relationship 
between the number of words used to express the agent, A0, and the number of words earlier in 
the sentence, N0.  There are a number of indeterminancies in the data that will add noise to our 
predictive models. The N0 labels do not contain information as to whether the target verb, “take” 
in the examples above, is the matrix verb of the sentence, or in an embedded clause.  Additionally, 
the dependent measure that we are looking at here, the number of words used to express A0 is a 
very rough way of capturing the potential syntactic complexity of the agent expression (if indeed 
an agent is specifically mentioned at all).  Nonetheless, this little exercise will help to demonstrate 
mixed-effects modeling.

7.3.1 Linear regression - overall, and separately by verbs

The relationship between the number of words used to express the agent (a0) and the number of 
words present in an earlier portion of the sentence (n0) is shown in figure 7.4.  This figure 
illustrates that agent size is clearly not determined by the quantity of prior material in a sentence.  
There may be some non-trivial, reliable relationship but there are clearly other factors at work.  
This is normal. In a complicated system such as language many factors (including randomness 
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and experimenter error) are at work.  We’ll be investigating our ability to detect patterns in such 
noisy data.

The data in figure 7.4 are plotted on a log scale, and all of the analyses described here were done 
with log transformed data because the raw data are positively skewed (the size of a clause cannot 
be less than zero).  The log transform removes some of the skewness and decreases the impact of 
some of the rare longer agent phrases (the longest of which was 53 words!).

Figure 7.4 A scatter plot of the relationship between the (log) number of words 
prior to the target verb clause (n0) and the (log) number of words in the agent of 
the clause (a0).  Symbols are “jittered” so it is more apparent that there are many 
instances of particular combinations of a0 and n0.
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The negative slope of the regression line in figure 7.4 (a simple linear regression predicting a0 
from n0) indicates that, overall, there is a relationship between the size of the agent phrase (a0) 
and the size of the preceding words (n0). As the size of the preceding material increases the size 
of the agent clause decreases.

Although the linear regression model does find a significant relationship between a0 and n0 
[t(30588)= -53.46, p<0.01] (see table 7.4), the amount of variance in a0 that is captured by this 
regression is only 8.5% (R2 = 0.085).  The large number of observations in the corpus sort of 
guarantees that we will find a “significant” effect, but the magnitude of the effect is small.  

Table 7.4.  Coefficients in an overall linear regression predicting a0 from n0.

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.146171   0.005827  196.68   <2e-16 ***
vbarg$n0    -0.194533   0.003639  -53.46   <2e-16 ***

Additionally, the overall regression in figure 7.4 and table 7.4 assumes, incorrectly, that all of the 
verbs in the corpus have the same negative relationship between agent size and the size of the 
preceding material in the sentence.  Furthermore, the overall regression assumes that each 
observation in the database is independent of all of the others, when we should suspect that 
observations from different verbs might systematically differ from each other.  We have seen a 
situation like this in the chapter on psycholinguistics above (ch. 4) where we dealt with data 
containing repeated measurements over an experimental “unit” like people or language materials 
by performing separate ANOVAs for subjects as a random effect and items as a random effect.  
Mixed effects modeling (the topic of this section) is an alternative approach for handling data 
with mixed random and fixed factors, and is particularly appropriate for data with uneven 
numbers of observations on the random effects because it uses maximum likelihood estimation 
procedures (as is done in glm() for logistic regression) rather than least squares estimation.  This 
is important for these agent complexity data because the number of observations per verb is not 
equal.  “Say” occurs in the data set 8358 times while there are only 412 occurrences of “know”. 
(The implications of this asymmetry regarding the type of reporting in the Wall Street Journal is 
beyond the scope of this chapter.)

We will analyze these agent complexity data with mixed effects models in which the verbs are 
treated as random - as if we were selecting verbs from a larger population of verbs.  This is not 
entirely accurate because I simply selected data for all of the verbs that occur at least 400 times in 
the corpus - so the sample is biased so that our results characterize frequent verbs more than 
infrequent ones. 
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Figure 7.5 shows the intercept and slope values (with their confidence intervals) for 32 separate 
linear regressions - one for each of the verbs in the “vbarg” dataset.  This figure shows that the 
intercept values particularly, and perhaps also the slope values, are different for different verbs. 
Two of the verbs (“rise” and “fall”) never occur with an explicit agent in this corpus, so they 
always have a0 of zero, while “say” tends to have a long a0 (an average length of about 5 words).

Because the verbs differ from each other in how n0 and a0 are related to each other,  we need to 
devise a model that takes verb differences into account in order to correctly evaluate any general 
(verb independent) relationship between n0 and a0.

--------------------------
R note.  The agent complexity data are in the text data file “vbarg.txt”.  This file has columns 
indicating the location of the verb in the sentence (vnum) counting from 0 up, the identity of the 
verb, the verb sense number (see http://verbs.colorado.edu/framesets/ for a complete listing), a 
text field that shows the argument structure of the verb, a number indicating the location of A0 in 
the argument structure where -1 means that A0 immediately precedes the verb and 1 means that 
A0 is immediately after the verb.  The next column in the dataset similarly codes the location of 
the patient (A1).  The remaining columns have numbers indicating the number of words that are 
used to express A0-A3 and that occur before (N0) or after (N1) the verb clause.

vnum,verb,sense,args,A0loc,A1loc,A0size,A1size,A2size,A3size,N0size,N1size
1,take,01,(N0)(A0)(V)(A1)(AM)(N1),-1,1,2,2,0,0,17,25
0,say,01,(A0)(V)(A1),-1,1,4,14,0,0,0,0
1,expect,01,(N0)(A0)(V)(A1),-1,1,1,12,0,0,5,0
0,sell,01,(A0)(AM)(V)(A1)(AM),-2,1,4,2,0,0,0,0
0,say,01,(A0)(V)(A1),-1,1,9,18,0,0,0,0
0,increase,01,(A0)(V)(A1)(A4)(A3),-1,1,3,2,0,5,0,0

The dataset can be read into R using read.delim() and you can see the column headings with 
names(), and an overall summary of the data with summary().

>vbarg <- read.csv("vbarg.txt")
>names(vbarg)
 [1] "vnum"   "verb"   "sense"  "args"   "A0loc"  "A1loc"  "A0size"
 [8] "A1size" "A2size" "A3size" "N0size" "N1size"

The summary results indicate that “say” is the most frequent verb in this dataset (I should 
mention that I only included verbs that occurred at least 400 times in the larger training set). The 
most common argument structure was (A0)(V)(A1), and the median values for A0loc and A1loc 
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(-1 and 1) are as we would expect given the most frequent argument structures.  A0size tends to 
be smaller than A1size and N0size.

I added log transformed counts for A0size and N0size with the following commands. These 
commands add new columns to the data frame.

> vbarg$a0 <- log(vbarg$A0size+1)
> vbarg$n0 <- log(vbarg$N0size+1)

For some of the plotting commands in the nlme library it is very convenient to convert the data 
frame into a grouped data object.  This type of data object is exactly like the original data frame 
but with a header containing useful information about how to plot the data; including a formula 
that indicates the response and covariate variables and the grouping variable, and some labels to 
use on plots.

> library(nlme)  # this line loads the nonlinear mixed effects library 
> vbarg.gd <- groupedData(a0~n0|verb,vbarg)

The overall linear regression shown in figure 7.4 was done with the familiar lm() command and a 
simple plot() and abline() command.  Note the use of the jitter() function to displace the points 
slightly during drawing.

> summary(lm(vbarg$a0~vbarg$n0)->alla0n0)
> plot(jitter(vbarg$a0,4)~jitter(vbarg$n0,4), ylab="Agent size (a0)", 

xlab="Preceding words (n0)")
> abline(lm(vbarg$a0~vbarg$n0))

The graph of 32 separate linear regression fits (figure 7.5) was produced using the very 
convenient function lmList() in the nlme library of R routines.  The formula statement for this 
command is the same as the one we use in a standard linear regression, except that after a vertical 
bar, a grouping factor is listed, so that in this lmList() statement, the data are first sorted 
according to the verb and then the a0~n0 regression fit is calculated for each verb.  The intervals() 
command returns the estimated regression coefficients for each verb, and gives the high and low 
bounds of a 95% confidence interval around the estimate.

> library(lattice) # graphics routines
> trellis.device(color=F)  # set the graphics device to black and white
> a0n0.lis <- lmList(a0~n0|verb,data=vbarg.gd)
> plot(intervals(a0n0.lis))   # figure 7.5

---------------------------
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Figure 7.5.  Intercept and slope (labeled “n0”) and their confidence intervals from 
separate linear regressions predicting a0 from n0 for each of 32 verbs in vbarg.txt.
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7.3.2 Fitting a linear mixed effects model - fixed and random effects

Linear mixed effects modeling uses restricted maximum likelihood estimation (REML) to fit a 
mixed effects model to the data.  The model is specified in two parts.  The first defines the fixed 
effects, which for this model is the formula a0~n0 to specify that we are trying to predict the 
(log) size of agent expression from the (log) size of whatever occurred prior to the verb clause.  In 
the first model, the one I named “a0n0.lme”, the random component is identified as the grouping 
factor “verb” alone (random = ~ 1 | verb). This produces a separate intercept value for 
each verb, so that this model, unlike the overall regression, does not assume that average agent 
size is the same for each verb.  We also do not let the most frequent verb dominate the estimate 
of the fixed effect. The difference between “say” and other verbs is captured in the random 
effects estimates, so that the fixed effects estimates represent the pattern of a0~n0 found across 
verbs - controlling for verb-specific differences.

The summary() results of this analysis suggest that there is a strong effect of n0 on a0 even 
after we control for the the different average size of a0 for different verbs (this is an intercept-
only model in which we assume that the slope of the n0 effect is the same for each verb).  A t-
test of the n0 coefficient shows that this fixed coefficient (-0.10) is reliably different from zero 
[t(30557)= -31.4, p<0.01].

Interestingly, it is not clear from the statistics literature how to compare the goodness of fit of a 
linear mixed effects model and a simple linear model.  Because of the extra parameters involved in 
calculating the mixed effects model we should always have a better fit in absolute terms, and 
because the assumptions of the mixed effects model are a better match to the data than are the 
assumptions of the simple linear model, we should go ahead and use linear mixed effects.  Then to 
compare different mixed effects models one uses a log likelihood ratio test that we will outline 
below.

I offer here two ways to compare the goodness of fit of linear mixed effects models and simple 
linear models.  In one measure we take the root mean square of the residual errors as a measure of 
the degree to which the model fails to predict the data.  These values are calculated using the R 
function resid().  An alternative measure suggested by Jose Pinhiero is to estimate the variance 
accounted for by each model (the R2).  This method uses the functions fitted() and getResponse() 
to calculate the correlation between model predictions and input data.  As table 7.5 shows by 
both of these measures the mixed effects model that permits a random factor for the intercept for 
each verb is a better fit.  The size of the residual goes down (from 0.77 in the linear model to 
0.626 in the LME model) and the variance accounted for  goes up (from 0.085 to 0.395).  
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I would mention also that I used a cross-validation technique to measure the robustness of these 
models.  In order to be sure that the model parameters were not overfitted to the data I calculated 
each model 100 times using 85% of the data set to calculate the model and then using the 
remaining 15% of the cases as a test set to evaluate the fit of the model.  The RMS and R2 values 
that are shown in table 7.5 are the mean values found in the cross-validation runs.  The standard 
deviation of the 100 RMS estimates was always at about 0.007. Thus, the 95% confidence 
interval for the RMS in the slope-only model for “all data” was 0.72-0.748.  The standard 
deviation of the R2 was also extremely low at about 0.01. So, for example, the 95% confidence 
interval around the intercept-only “all data” model was 0.376-0.414. This encompasses the 
intercept and slope model, so we would conclude that adding slope coefficients to the model 
doesn’t significantly improve the fit of the model. Cross-validation is an extremely powerful way 
to determine the success of a statistical model.  Without it we don’t really know whether a model 
will have acceptable performance on new data.

Table 7.5 also shows that in exploring these data I also looked at five other mixed effects models.  
We turn now to these.

Table 7.5.  Degree of fit measured two ways for various models of the verb 
argument size data.

Estimated R^2RMS of the residuals

all data

0.403 0.143

0.1390.395

0.1070.170

0.080

all data

0.085

0.594

0.595

0.606

0.615

subset (a0>0)

0.624  - intercept and slope

0.626 - intercept only

0.734  - slope only
Mixed effects models 

0.77Linear model

subset (a0>0)

--------------------------
R note.   In all of the models tested in this section the fixed effects formula is a0~n0  - that is, we 
test the degree to which a0 can be predicted from n0.  In the first mixed effects model  (the one I 
named “a0n0.lme”) the random component is identified as the grouping factor “verb” using 
“random = ~ 1 | verb.  The one in the formula indicates that we want to include the intercepts and 
not the slopes. This produces a separate intercept estimate for each verb, as if the only difference 
from verb to verb is the average size of the agent that the verb typically takes.  I then used the 
update() function to change this model by modifying the random statement so that it includes a 
separate slope estimate for each verb as well as the different intercepts.  
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> a0n0.lme <- lme(a0~n0,data=vbarg.gd,random = ~ 1|verb)
> a0n0.lme2 <- update(a0n0.lme, random = ~ n0|verb)

The random statement to get by-verb estimates of slope with no random intercept values is:
> a0n0.lme5 <- update(a0n0.lme, random = ~ n0 - 1|verb)

The RMS of the residuals is calculated from the output of resid().  The lme object has multiple 
levels of residuals depending on the number of grouping variables.  Level one indicates that we 
want residuals taken using both fixed and random effects in the model. Level zero would give 
residuals from the fixed-effects only model.

> sqrt(mean(resid(a0n0.lme2,level=1)^2))
> sqrt(mean(resid(a0n0.lm)^2))

Estimated R2 values for lme() models can be obtained from the fitted values and the input values. 
That is, the output of getResponse is a vector of the same values that you will find in vbarg$a0. 
So this statement simply takes the (square of the) correlation between the model’s predicted 
values for each verb in the data set, and the actual values in the data set.  I have seen some 
complaints in on-line discussion groups that this estimate is incorrect, but it looks reasonable to 
me.

> cor(fitted(a0n0.lme2),getResponse(a0n0.lme2))^2  

The cross-validation technique can be implemented with a small “for” loop which repeats the 
linear mixed effect model fitting operation one hundred times.  I used two arrays to store the 
RMS and R2 results of each analysis.  One trick in this procedure is that the split() command 
creates a new dataset, here called “xx” which has a TRUE subset which is about 85% of the 
observations, and a FALSE subset which is about 15% of the observations. Thus the designation 
“xx$`TRUE” is a dataset composed of 85% of the observations in “vbarg.gd”.  The predict() 
command takes the model specification in mod and applies it to the dataset in xx$`FALSE` giving 
a set of predicted a0 argument sizes.  We can then compare these predicted values with the actual 
values in the test set to derived RMS error or R2 “variance accounted for” measures of how well 
a model calculated from the training data fits the test set of data.

#  here is a loop to split the vbarg data set - 85% training, 15% test
#    fit a nlme model to the training data, 
#    see how well the model predicts the argument size in the
#    test data, and collect the results for averaging/plotting

RMS<-array(dim=100)  # allocate space for results
Rsquared <- array(dim=100)
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for (i in 1:100) {
# step 1: Split the data into training and test sets
split(vbarg.gd,factor(runif(30590)>0.15))->xx

# step 2: estimate model parameters with the training set
mod <-lme(a0 ~ n0, data=xx$`TRUE`,random = ~ 1|verb)

# step 3: get model predictions for the test set
predict(mod,xx$`FALSE`)->pred

# calculate the root mean square error of the prediction
RMS[i] <- sqrt(mean((pred-xx$`FALSE`$a0)^2))
Rsquared[i] <- cor(pred,xx$`FALSE`$a0)^2

}
mean(RMS)
sd(RMS)
mean(Rsquared)
sd(Rsquared)
--------------------------

7.3.3. Fitting five more mixed effects models - finding the best model

We noticed in figure 7.5 that the intercept values for verb-specific linear regressions were 
noticeably different, so we used a mixed effects model that has random effects for the intercepts.  
It is also apparent in figure 7.5, though, that the slope values relating n0 to a0 are also somewhat 
different from one verb to the next.  Because we are especially interested in testing for a general 
trend for the slope across verbs it is important to control for verb-specific slope values. This is 
done by changing the specification of the random component of our model so that it includes an 
indication that we want to treat slope as a verb-specific random component (random = ~ 
n0|verb).  

Now we can perform a couple of tests to determine (a) whether this new ‘verb-specific” 
intercept and slope model is an improvement over the intercept only model and (b) whether there 
is still a fixed effect for slope. 

The first of these is a test of whether  a model with random effects for slope and intercept (verb-
specific estimates) fits the data better than a model with only verb-specific intercept estimates.  
And this is done with a likelihood ratio test.  The likelihood ratio is familiar from the discussion 
in chapter 5, Sociolinguistics, where we saw that the likelihood ratio is asymptotically distributed 
as X2, and we used this likelihood ratio test to compare models.  The same procedure is used 
with mixed effects models.  The likelihood ratio comparing an “intercept only”  model with an 
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“intercept and slope” model is 320, which is significantly greater than chance (p<0.001).  This 
indicates that adding a random factor for slope significantly improved the fit of the model.

The second test we perform is a test of the fixed effects coefficients.  After adding a random 
effect for slope, it may now be that any effect of n0 is to be found in the random slope values for 
the verbs, and there is then no remaining overall fixed effect for n0 on a0.  A t-test, produced by 
the R summary() function, evaluating whether the n0 slope coefficient is significantly different 
from zero suggests that it is [t(30557)= -8.32, p < 0.001].  As in the simple linear regression, the 
slope coefficient is negative, suggesting that as the preceding material increases in size the agent 
phrase decreases in size.

--------------------------
R note.  The anova() function is defined to calculate the likelihood ratio test for comparing two 
mixed effects models (if they have different degrees of freedom).  

> anova(a0n0.lme,a0n0.lme2)  # intercept only vs. intercept and slope
          Model df      AIC      BIC    logLik   Test  L.Ratio p-value
a0n0.lme      1  4 58410.54 58443.86 -29201.27                        
a0n0.lme2     2  6 58094.34 58144.31 -29041.17 1 vs 2 320.2043  <.0001

To see a t-test of the fixed effects coefficients use the summary() function.  This printout also 
suggests that the random effects for intercept and slope are negatively correlated with each other 
(Corr = -0.837) as shown in figure 7.7.

> summary(a0n0.lme2)
Linear mixed-effects model fit by REML
 Data: vbarg 
       AIC      BIC    logLik
  58094.34 58144.31 -29041.17

Random effects:
 Formula: ~n0 | verb
 Structure: General positive-definite, Log-Cholesky parametrization
            StdDev     Corr  
(Intercept) 0.46999336 (Intr)
n0          0.06576902 -0.837
Residual    0.62275052       

Fixed effects: a0 ~ n0 
                 Value  Std.Error    DF   t-value p-value
(Intercept)  0.8528160 0.08333595 30557 10.233470       0
n0          -0.1011621 0.01216013 30557 -8.319166       0
 Correlation: 
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   (Intr)
n0 -0.814

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-2.5221371 -0.6895952 -0.1013437  0.4215483  5.0763747 

Number of Observations: 30590
Number of Groups: 32 
------------------------

This is visualized in figure 7.6.  In this figure, the regression lines are those predicted by the linear 
mixed effects model with random verb effects for both the intercept and slope of the regression.  
Note that the slopes are negative for most verbs.   It is also apparent that these data are not 
especially well fit by a linear function (at least one with only a single predictor variable), but the 
modeling results do suggest that amongst all this noise there is a relationship between a0 and n0 - 
we do seem to have identified n0 as a general predictor of agent size independent of any verb-
specific effects.

Just for completeness, I also constructed a “slope only” model with random verb-specific effects 
only for the slope of the a0~n0 regression, and again found that the “intercept and slope” model 
provides the best fit to the data.

Quantitative Lingusitics Keith Johnson

238



Figure 7.6.  The dots in each graph show the raw data for the (log) size of the 
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agent phrase (a0) as a function of the (log) size of the phrase that occurs before 
the agent phrase (n0). Each panel in this plot corresponds to a verb-specific plot 
of the data shown in figure 7.4.  This plot was generated with the R command: 
plot(augPred(a0n0.lme2), col=1, cex=0.2, lwd=2). 

Figure 7.7.  The estimates of the random effects in the mixed effects model of the 
verb argument data.  Each dot shows the intercept and slope parameters for one of 
the verbs (“say” is the only one labeled).  The command to produce this graph 
was:  pairs(a0n0.lme2,~ranef(.),id=~verb=="say",adj=1.3)

However, another diagnostic plot (figure 7.7) calls into question the conclusion that there is a 
general verb-independent relationship between a0 and n0.  In figure 7.7 we see that the random 
intercept and slope estimates in this model (the two random effects that were estimated for each 
verb) are clearly related to each other.  When the intercept was bigger, the slope was more 
strongly negative.  You can see how this might be an artifact of agentless sentences by looking 
again at the data in figure 7.6.  
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If we hypothesize that agentless (a0=0) clauses are more likely in embedded clauses (at least 
some of the sentences with n0>0) as the scatter plots in figure 7.6 might suggest, then it may be 
that the number of agentless sentences in which a verb appears determines both the slope and the 
intercept of the a0~n0 regression. I tested whether the presence of agentless clauses might be the 
source of the finding that size of agent phrase is predicted by size of prior material by rerunning 
the analyses with a subset of the vbarg.txt dataset from which I removed agentless sentences.

Figure 7.8.  Comparison of the fixed effects regression fits for the best fitting 
model that included agentless clauses (solid line) and for the best model of the 
subset of data that did have an overt agent expression (dashed line).  The figure 
shows that the two models have almost identical slope values and only differ on 
their y-intercept.
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The conclusion we draw from this analysis of cases in which there was an overt agent expression 
is no different from the conclusion we arrived at using the whole data set.  Even allowing for 
random verb-specific effects for both the average size of the agent phrase (the intercept) and the 
relationship between agent phrase size and size of prior material (the slope), there was a 
significant overall fixed effect of N0size on agent phrase size [coef = -0.108, t(21822) = -16, p < 
0.001].  Recall that the slope coefficient from the best-fitting model of the whole data set was -
0.101, almost the same as the slope value found in this analysis of a subset of data.  The best 
fitting lines of the two analyses are plotted against the whole dataset in figure 7.8.

--------------------------
R note.  I used the subset() function to remove agentless clauses and then used lme() and 
update() to fit the mixed effects model to the subset. 

> vbarg.subset <- subset(vbarg,a0>0)     # extract the subset
> vbarg.subset.gd <- groupedData(a0~n0|verb,vbarg.subset) 

> a0n0.lme4 <- lme(a0~n0, data=vbarg.subset.gd, random = ~ 1|verb)
> a0n0.lme5 <- update(a0n0.lme4, random = ~ n0 - 1|verb)       # model fitting
> a0n0.lme3 <- update(a0n0.lme4, random = ~ n0|verb)

> anova(a0n0.lme4,a0n0.lme3) # intercept only vs. intercept and slope
          Model df      AIC      BIC    logLik   Test  L.Ratio p-value
a0n0.lme4     1  4 39450.03 39481.99 -19721.01                        
a0n0.lme3     2  6 39412.69 39460.64 -19700.35 1 vs 2 41.33428  <.0001

> anova(a0n0.lme5,a0n0.lme3) # slope only vs. intercept and slope
          Model df      AIC      BIC    logLik   Test  L.Ratio p-value
a0n0.lme5     1  4 40246.02 40277.99 -20119.01                        
a0n0.lme3     2  6 39412.69 39460.64 -19700.35 1 vs 2 837.3299  <.0001

I would note here that the lme object can be passed to anova() for a test of fixed effect factors in a 
mixed effects model.  In these models I didn’t use this because n0 is a numeric variable and hence 
only a single coefficient is estimated.  In this case the t-value returned by summary() suffices - 
and is the square-root of the F-value reported by anova().  But if you have a multilevel factor 
there will be a t-value for each dummy variable coefficient used to represent the levels of the 
factor, and thus anova() is a handy way to test for an overall effect of the factor.

> anova(a0n0.lme3)
            numDF denDF  F-value p-value
(Intercept)     1 21822 1823.516  <.0001
n0              1 21822  256.255  <.0001
-------------------------
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7.4  Predicting the dative alternation - logistic modeling of syntactic corpora data

Bresnan, Cueni, Nikitina, and Baayen (2005) published an elegant paper describing a series of 
logistic regression analyses of the English dative alternation.  They were also kind enough to 
share their data with me, so this section describes how they analyzed their data.  I also agree with 
the larger point of their paper and so I’ll mention here that this analysis of the syntactic 
realization of data is an important demonstration of the gradient, non modular nature of linguistic 
knowledge.  All-or-none, deterministic rules of grammar are an inadequate formalism for capturing 
the richness of linguistic knowledge.  This basic outlook is one of the main reasons that I wrote 
this book (here finally in the last section of the last chapter of the book I reveal my motives!).  I 
think that for linguistics as a discipline to make any significant strides forward in our 
understanding of language, linguists need to be equipped with the tools of quantitative analysis.

So, let’s see what the dative alternation situation is about and how Bresnan et al. used statistical 
analysis of corpus data to understand the facts of dative alternation.

Of the two alternative ways to say the same thing:

(1a) That movie gave the creeps to me.
(1b) That movie gave me the creeps.

The first is probably not as acceptable to you as the second. The question addressed by Bresnan 
et al. is to account for this preference. Sentences (1a) and (1b) illustrate the dative alternation in 
which the recipient (“me” in these sentences) can be expressed in a prepositional phrase “to me” 
or as a bare noun phrase.  So sentence (1a) illustrates the prepositional dative structure and 
sentence (1b) illustrates the double object dative structure.  

Although the prepositional structure (1a) is dispreferred, it doesn’t take much investigation to 
find sentences where the prepositional dative structure is probably better.  Consider for example 
sentences (2a) and (2b):

(2a) I pushed the box to John.
(2b) I pushed John the box.

Here it is likely that you will find (2a), the prepositional structure, to be preferable to (2b).

There are a number of possible factors that may influence whether the prepositional dative seems 
preferable to the double object dative.  For example, whether the recipient (“me” or “John”) is 
expressed as a pronoun or as a longer phrase may influence whether the prepositional dative 
structure or the double object construction seems more natural.  So you may be happier with (3a) 
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than (3b).

(3a) This will give the creeps to just about anyone.
(3b) This will give just about anyone the creeps.

Whether or not the theme has been mentioned more recently in the discourse (has greater 
discourse accessibility) affects realization of the dative - such that the given (discourse 
accessible) argument is more likely to occur just after the verb.  For example, sentence (2a) is 
more likely in discourse fragment (4a) in which “box” is given in prior discourse context, while 
sentence (2b) is more likely in a discourse context in which John is given (4b).

(4a) I got down a box of crayons. I pushed the box to John.
(4b) John is one of those people who has to see for himself. I pushed John the box.

This factor in dative alternation reflects an interesting constellation of factors that seem to 
influence the order of verb arguments conspiring (in English at least) to “save the good stuff 'til 
last”.

- given information precedes new
- pronouns precede nonpronouns
- definites precede nondefinites
- shorter NPs precede longer NPs

These factors can be evaluated in dative alternation.

---------------------
R note.  You will find the Bresnan et al. (2005) dative data in the file “BresDative.txt”.  This is a 
recoding of their original data file in which I used mnemonic labels for the codes that they applied 
to each example. You will note that the results discussed in this chapter are slightly different 
from the results given in Bresnan et al. This is because a couple of minor predictive factors that 
they used in their models are not available in this data set.

> dat <- read.table("BresDative.txt",header=T)
> names(dat)
 [1] "real"    "verb"    "class"   "vsense"  "animrec" "animth" 
 [7] "defrec"  "defth"   "prorec"  "proth"   "accrec"  "accth"  
[13] "ldiff"   "mod"    

The data come from two corpora - 2360 instances from the Switchboard corpus of conversational 
speech, and 905 instances from the Wall Street Journal corpus of text.  I coded this difference 
with labels in the “mod” column of the data set.
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> attach(dat)
> table(mod)
mod
switchboard  wallstreet 
       2360         905 

We will use the Switchboard and Wall Street Journal subsets separately so we’ll pull these data 
into separate data frames.

> subset(dat,mod=="switchboard") -> SwitchDat
> subset(dat,mod=="wallstreet") -> WSJDat
--------------

Bresnan et al. (2005) coded 3265 datives taken from two corpora of American English.  The 
coding scheme marked the realization of the dative (PP = Prepositional construction, NP = 
double object construction) and then for each instance marked the discourse accessibility, 
definiteness, animacy, and pronominality of the recipient and theme.  They also noted the 
semantic class of the verb (abstract, transfer, future transfer, prevention of possession, and 
communication).  Finally, we also have in the data set a measure of the difference between the 
(log) length of the recipient and (log) length of the theme.

Obviously, the collection of such a carefully coded dataset is nine-tenths of the research.  The 
statistical analysis is the easy part (especially with a helpful chapter like this!), and no statistical 
analysis in the world can compensate for an unrepresentative, incomplete, or too small dataset.  
Many thanks to Joan Bresnan and colleagues for so cheerfully sharing this exemplary dataset 
with me.

7.4.1 Logistic model of dative alternation

The variable that we wish to predict, or wish our model to account for, is the realization of the 
dative. This is a binary outcome variable - the person either used a preposition construction or a 
double object construction. In other words, the analysis problem here is exactly what we saw in 
the sociolinguistics chapter with variable pronunciation outcomes.  

So it should come as no surprise that we can use the generalized linear model [glm()] to fit a 
logistic regression predicting dative outcome from discourse accessibility, semantic class, etc. 

-----------------
R note.  The logistic model of dative alternation is fit with the glm() function, just as we fit 
models chapter 5 on Sociolinguistics. 
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> modelA <-glm(real ~ class + accrec + accth + prorec + proth + defrec + defth 
+ animrec + ldiff, family=binomial, data=SwitchDat)
> summary(modelA)

Call:
glm(formula = real ~ class + accrec + accth + prorec + proth + 
    defrec + defth + animrec + ldiff, family = binomial)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-2.60321  -0.30798  -0.15854  -0.03099   3.33739  

Coefficients:
               Estimate Std. Error z value Pr(>|z|)    
(Intercept)      0.3498     0.3554   0.984  0.32503    
classc          -1.3516     0.3141  -4.303 1.68e-05 ***
classf           0.5138     0.4922   1.044  0.29651    
classp          -3.4277     1.2504  -2.741  0.00612 ** 
classt           1.1571     0.2055   5.631 1.80e-08 ***
accrecnotgiven   1.1282     0.2681   4.208 2.57e-05 ***
accthnotgiven   -1.2576     0.2653  -4.740 2.13e-06 ***
prorecpronom    -1.4661     0.2509  -5.843 5.13e-09 ***
prothpronom      1.5993     0.2403   6.654 2.85e-11 ***
defrecindef      0.8446     0.2577   3.277  0.00105 ** 
defthindef      -1.1950     0.2202  -5.426 5.78e-08 ***
animrecinanim    2.6761     0.3013   8.881  < 2e-16 ***
ldiff           -0.9302     0.1115  -8.342  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 2440.1  on 2359  degrees of freedom
Residual deviance: 1056.9  on 2347  degrees of freedom
AIC: 1082.9

Number of Fisher Scoring iterations: 8

--------------------
Let’s see how to interpret this model by discussing a few of the coefficients. These are listed 
under “Estimate” in the summary() of the model.

Discourse accessibility of the recipient (accrec) influenced realization of the dative (see table 7.6).  
When the recipient was “given” in the preceding discourse the prepositional dative construction 
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was used only 12% of the time, while when the recipient was not given the prepositional dative 
construction was used 58% of the time.  The regression coefficient was 1.13 indicating a positive 
correlation between “not given” and “PP” - prepositional dative construction.  One way to 
interpret the logistic regression coefficient is in terms of the odds ratio.  In this case, the 
prepositional dative construction is about 3 times [exp(1.13)] more likely when the recipient is 
not given in prior discourse. If we keep in mind that in the prepositional dative construction 
(“give theme to recipient”) the theme comes before the recipient then we can see that when the 
recipient is given in prior discourse it is usually mentioned first in the dative construction (only 
12% of the “given” recipients are mentioned in prepositional  construction).  This fits with the 
idea that good stuff - in this case new information - is saved 'til last.
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Table 7.6.  The coefficients and observed percentages of prepositional realizations 
of dative (%PP) are shown for several of the factors in a logistic model of dative 
realization in the Switchboard corpus.

Percent 
Prepositional 
Dative (PP)

49%
19%

11%
44%

64%
17%

13%
62%

60%
12%

62 %

Not Animate
Animate

Animacy of Recipient (2.68)

Not Definite
Definite

Definiteness of Theme (-1.2)

Not Definite
Definite

Definiteness of Recipient (0.85)

Not Pronoun
Pronoun

Pronominality of Theme (1.6)

Not Pronoun
Pronoun

Pronominality of Recipient (-1.47)

12%Not Given
Given

Accessibility of Theme (-1.26)

58%Not Given
12%Given

Accessibility of Recipient (1.13)

The pattern of realization as a function of the discourse accessibility of the theme also follows 
this pattern - when the theme is given in prior discourse is it is mentioned first by using the 
prepositional dative construction (62%).  This is because the theme in “give theme to recipient” 
comes first in the prepositional construction.
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All of the other factors in the logistic regression model of dative alternation fit the general idea 
that “good stuff” (new, non-pronominal, definite, animate objects) comes later in the sentence.

7.4.2 Evaluating the fit of the model

So far here is what we have.  Using logistic regression we have found that several factors are 
included in a predictive statistical model of dative realization, and these factors are consistent 
with a harmonic set of constraints on syntactic forms.  

It is reasonable to ask at this point whether this statistical model is really very good at predicting 
the realization of dative in English, because it could be that our model does account for some 
nonrandom component of variance in the corpus data, but fails to correctly predict the majority 
of cases.  This can happen when we fail to include some important factor(s) in the model.  In this 
section we will look at three ways to evaluate the fit of the logistic model.

The first is to consider how well the model predicts the training data.  The general linear model 
fitting procedure glm() finds model parameters (the regression coefficients) that produce the best 
possible predictions given the predictive factors included in the model.  Therefore, our first test is 
to evaluate the goodness of this fit. The function predict(modelA) returns a “prediction score” 
for each data case in the data frame used to find the coefficients in modelA.  This is the 
application of the linear regression formula to each data case:  score = intercept + coeff1•data1 + 
coeff2•data2 + .... + coeffn•datan. If this score is greater than zero the predicted realization is 
prepositional and if it is less than zero the predicted realization is double object. Figure 7.9 
shows the distributions of the prediction scores for the datives from the Switchboard corpus.  In 
this figure the gray bars below zero plot cases of prepositional dative construction which were 
incorrectly predicted to be double object construction, and the hatched bars above zero (hidden 
behind the gray bars) show cases of  double object construction which were incorrectly scored as 
PP.  
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Figure 7.9  Prediction scores for the Switchboard dative data.

To evaluate the statistical model we tabulate the predicted and actual realizations it produces 
using these prediction scores.  The result is that for 91% of the data cases the model gives the 
correct prediction.  Tabulating comparisons of model predictions and actual realizations for 
various subsets of data will show where this model may be more or less accurate.  Note that the 
imbalance of realization in the data set makes it possible to produce a model with no parameters 
at all that correctly predicts 79% of the data cases by simply predicting that dative is always 
realized in the double object construction (because 79% of the cases are actually realized as 
double objects). This is the lower bound of possible model predictions.  Still, 91% correct 
predictions from a model that only uses a few general properties of sentences is pretty good.

A second test of the success of our statistical model of dative alternation uses the split() function 
to randomly hold back 15% of the data set as a group of test sentences. We estimate the model 
parameters using 85% of the sentences and then, using predict(), calculate dative realization 
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scores for the test sentences. This split-glm-predict procedure is repeated 100 times to get a 
stable estimate of how well the statistical model can predict dative realization in sentences that 
were not part of the training data.

Testing a model on unseen data is an important test of a model because it is possible to  “over-
fit” a statistical model and have model parameters that capture information in only one or two 
outlier observations rather than capturing generalizations over many observations.  Testing on 
never-before-seen data is a good way to test for over-fitting.

The dative alternation model gets an average of 91% correct in one hundred random splits into 
85% training and 15% test data. This is very close to the 91% correct observed for the model fit 
to all of the data and the good match between the two procedures indicates that the model is not 
over fit.  The distribution of these 100 test results is shown in figure 7.10.

Finally, we can evaluate the validity of the statistical model of dative alternation by testing its 
predictions on a completely different data set.  Recall that in addition to Switchboard, Bresnan et 
al. coded 905 datives from the Wall Street Journal corpus.  Switchboard is a conversational 
speech corpus in which about 79% of datives are realized in the double object construction, while 
the Wall Street Journal corpus, as the name implies, is corpus of written and edited text.  The 
dative is usually also realized in the double object construction in this corpus, but at 62% the 
base probability of double object is quite a bit lower.  If the model is capturing something real 
about English syntax then we would expect good predictive power  despite these corpus 
differences.  

Using the predict() function to calculate dative scores for the Wall Street Journal corpus we find a 
much higher number of predicted PP cases than in Switchboard, and also good prediction 
accuracy (83% - up from a base line of 62%).
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Figure 7.10. Distribution of 100 tests of the logistic model of dative alternation 
showing that most of the 100 random splits (into training and testing data sets) 
produced correct prediction of the dative alternation in over 90% of the test 
sentences.

-------------------------
R-note.  The commands for our three ways of evaluating the dative alternation logistic regression 
are shown in this note.

The first method, using predict, is a vision of simplicity.  Simply compare the prediction score 
with the actual realization code.

>table((predict(modelA)>0.0)==(SwitchDat$real=="PP"))

FALSE  TRUE 
  201  2159 
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> 2159/(2159+201)
[1] 0.9148305

To get a little more information about the fit we can cross-tabulate the prediction score accuracy 
as a function of the predictor variables.  For example, discourse accessibility of the recipient was 
a less consistently useful predictor than was the accessibility of the theme:

> table((predict(modelA)>0.0)==(SwitchDat$real=="PP"),accrec)
       accrec
        given notgiven
  FALSE    98      103
  TRUE   1773      386
% correct 95%  79%

> table((predict(modelA)>0.0)==(SwitchDat$real=="PP"),accth)
       accth
        given notgiven
  FALSE    40      161
  TRUE    401     1758
% correct 91%  92%

Bresnan et al. also showed a useful cross-tabulation (their table 1) produced with this command:

> table((SwitchDat$real=="PP"),predict(modelA)>0.0)
       

  NP   PP        
  NP  1788   71 96%
  PP   130  371 74%

The following commands produce figure 7.9.

> hist(subset(predict(modelA),real=="NP"), dens=c(10), angle=c(45), 
main="",xlab="prediction score",xlim=c(-10,10))

> hist(subset(predict(modelA),real=="PP"), add=T,breaks=c(-9,-8,-7,-6,-5,-4,-
3,-2,-1,0,1,2,3,4,5,6,7,8,9,10),col="gray")

> legend(5,350,legend=c("NP","PP"),fill=c("black","gray"),density=c(10,-1), 
angle=c(45,-1),cex=1.5)

The second evaluation method discussed in this section involves the use of a “for” loop to 
produce 100 separate partitions of the data set into training and test components, with model fits 
and evaluations produced for each random split of the data set.  I used runif() to produce 2360 
random numbers in the range (0,1) and then produced a factor that had 2360 values, either true or 
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false coding whether the random number was above or below 0.15.  This produces a split that has 
approximately 15% of the data cases in the “TRUE” subset and 85% in the FALSE subset.

> split(SwitchDat,factor(runif(2360)>0.15))->xx   # split approximately 85/15

> table(xx$`TRUE`$real)  # this set will be used for training a model

  NP   PP 
1571  441 

> table(xx$`FALSE`$real)    # this set will be used for testing the model

 NP  PP 
288  60 

#  here is a loop to split switchboard - 85% training, 15% test
#    fit a glm model to the training data, 
#    see how well the model predicts the Dative realization in the
#    test data, and collect the results for averaging/plotting

pcorrect<-array(dim=100)  # allocate space for results
for (i in 1:100) {

# step 1: Split the data into training and test sets
split(SwitchDat,factor(runif(2360)>0.15))->xx

# step 2: estimate model parameters with the training set
mod <-glm(real ~ class + accrec + accth + prorec + proth + defrec + 

defth + animrec + ldiff, family=binomial, data=xx$`TRUE`)

# step 3: get model predictions for the test set
predict(mod,xx$`FALSE`)->pred

# bookkeeping 1: tabulate the responses and correct and incorrect
table((pred>0.0)==(xx$`FALSE`$real=="PP"))->tab

# bookkeeping 2: save the probability of a correct answer
pcorrect[i] <- tab[2]/(tab[1]+tab[2])

}

After running this “for” loop (you can type it directly at the R command prompt) pcorrect 
contains 100 results - proportion of each test set for which dative alternation was correctly 
predicted.  We can then take the average of these 100 tests and plot the distribution of the test 
results.
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> mean(pcorrect)
[1] 0.9107247
> hist(pcorrect)  # this produces figure 7.10

Here is how to use the model built on the Switchboard corpus to predict dative realization in the 
Wall Street Journal corpus.  We get 83% correct on the WSJ.

> predict(modelA, WSJDat)

> table((WSJDat$real=="PP")==(predict(modelA,WSJDat)>0.0))

FALSE  TRUE 
  151   754   83% correct

> table((WSJDat$real=="PP"),predict(modelA,WSJDat)>0.0)
       

NP PP
NP 510 47 92%
PP 104 244 70%
----------------------------

7.4.3 Adding a random factor - mixed effects logistic regression

So far we have pooled sentences regardless of the verb used in the sentence, as if which particular 
verb is used doesn’t matter.  This is an erroneous assumption.  For whatever reason, the 
particular semantics of the verb, some fossilized conventions associated with a particular verb, or 
whatever, it is apparent that some verbs are biased toward the double object construction while 
others are biased toward the prepositional dative.  More than this it seems clear that verb bias 
relates to the particular sense of the verb.  For example, “pay” in its transfer sense (e.g. “to pay 
him some money”) tends to take an animate recipient and tends to appear in the double object 
construction, while “pay” in a more abstract sense (e.g. “to pay attention to the clock”) tends to 
take an inanimate recipient and tends to appear in the prepositional dative construction.  We 
don’t know which is the true predictive factor - the particular verb sense, or general predictive 
factors such as the animacy of the recipient, or some combination of these random (verb) and 
fixed (animacy) factors.

Therefore, we need to be able to evaluate the effect of animacy (and the other predictive factors 
that we included in the models above) while simultaneously taking into consideration the 
possibility that the verb senses have their own preferred constructions, the choice of which is 
independent of the general “predictive” factors. This requires a mixed model directly analogous to 
the models we explored in section 7.6 - though in this case the response variable is a binary 
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choice (double object versus prepositional dative) and thus we need to fit a mixed effects logistic 
regression model.  The R function glmmPQL() - generalized linear mixed models fit using 
Penalized Quasi-Likelihood - is analogous to lme() in that we specify a fixed component and a 
random component of the model, while also providing the capability of glm() to allow us to fit a 
logistic model.

In the case of dative alternation we specify the fixed factors in our model exactly as we did with 
the glm() function, but we also add a random formula (random= ~1/vsense) which adds an 
intercept value for each verb sense (where the verb senses are pay.t for “pay” in the transfer 
sense, pay.a for “pay” in the abstract sense, etc.) to account for bias attributable to each verb 
sense.  The main question we have is the same type of question we have in repeated measures 
analysis of variance - if we include a term to explicitly model particular verb sense biases do we 
still see any effect of discourse accessibility, pronominality, definiteness, animacy, or argument 
size difference?  If these factors remain significant even when we add a factor for verb sense then 
we have support for a model that uses them as general predictive factors.  

The mixed effects logistic regression correctly predicts the dative alternation in 94% of the 
Switchboard sentences. This is up from 91% correct prediction for the glm() logistic model.  
Interestingly though, as figure 7.11 shows, the regression coefficients for the fixed factors that the 
two models share are very similar to each other, and as the summary table shows, all of these 
factors (with the exception of a couple of specific semantic classes) continue to have regression 
coefficients that are significantly different from zero.
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Figure 7.11 A comparison of logistic regression coefficients for a glm() model with 
the fixed effects shown on the x axis of the figure, and a glmmPQL() mixed effects 
model with the same fixed effects but also treating verb sense as a random effect.

I won’t go through the procedure for splitting the Switchboard corpus into training and test sets 
to evaluate whether over fitting might be a problem with this model (this could be an exercises for 
you to try), but we could certainly do this.  We can also evaluate how well our new mixed-effects 
model deals with the Wall Street Journal corpus, and here what we find is also an increase in 
prediction accuracy - 86% correct with the mixed effects model where we had found 83% correct 
with the simpler glm() model.
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----------------------------
R note.  The mixed effects logistic model is fit with the function glmmPQL() which can be found 
in the MASS library of routines.  So load MASS.

> library(MASS)

The model formula for glmmPQL() is just like the formulas that we have used before.  Adding 
negative one to the list of factors removes the intercept so that we will then have coefficients for 
each semantic class.  What is new in this model is that we can specify a random factor as with 
lme() in section 7.6.  Here we specify that each verb sense is modeled with a different intercept 
value. We also specify the binomial link function which causes this to be a logistic regression 
model in the same way that family=binomial produces a fixed effects logistic regression model 
with glm().

> modelB <-glmmPQL(real ~ -1+ 
class+accrec+accth+prorec+proth+defrec+defth+animrec+ldiff, random = 
~1|vsense, family=binomial, data=SwitchDat)

> summary(modelB)
Linear mixed-effects model fit by maximum likelihood
 Data: SwitchDat 
  AIC BIC logLik
   NA  NA     NA

Random effects:
 Formula: ~1 | vsense
        (Intercept) Residual
StdDev:    2.214329 0.774242

Variance function:
 Structure: fixed weights
 Formula: ~invwt 
Fixed effects: real ~ -1 + class + accrec + accth + prorec + proth + defrec +      
defth + animrec + ldiff 
                    Value Std.Error   DF   t-value p-value
classa          1.3963671 0.7207442   50  1.937396  0.0584
classc          0.0283174 0.9258208   50  0.030586  0.9757
classf          1.0472398 1.1229654   50  0.932566  0.3555
classp         -3.0380798 1.9301478   50 -1.574014  0.1218
classt          2.2155467 0.7306823   50  3.032161  0.0038
accrecnotgiven  1.6576244 0.2644031 2298  6.269308  0.0000
accthnotgiven  -1.5084472 0.2500311 2298 -6.033039  0.0000
prorecpronom   -1.9662302 0.2556799 2298 -7.690202  0.0000
prothpronom     2.3641768 0.2232062 2298 10.591895  0.0000
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defrecindef     0.6747985 0.2451833 2298  2.752221  0.0060
defthindef     -1.4160615 0.2116592 2298 -6.690291  0.0000
animrecinanim   1.6529828 0.3669455 2298  4.504709  0.0000
ldiff          -0.9410820 0.1059198 2298 -8.884858  0.0000

> table((SwitchDat$real=="PP"),predict(modelB)>0.0)
       
        FALSE TRUE
  FALSE  1804   55 97%
  TRUE     78  423 84%

94%
I used three commands to set up the arrays for figure 7.11.

> a <- modelA$coefficients   # get the glm() coefficients
> b <- modelB$coefficients$fixed  # get the glmmPQL coefficients
> barnames = c("class.a", "class.c", "class.f", "class.p", "class.t", 
"accrec", "accth", "prorec", "proth", "defrec", "defth", "animrec", "ldiff")

Then barplot() and legend() produce the figure.

> barplot(matrix(c(a,b),ncol=13,byrow=T),names.arg=barnames,beside=T)
legend(1,2.5,fill=c(1,0),legend=c("glm","glmmPQL"))

Predictions for the Wall Street Journal corpus can be generated exactly as we did for the glm() 
model, however not all instances in the WSJ corpus are available for use.

> table((WSJDat$real=="PP")==(predict(modelB,WSJDat)>0.0))

FALSE  TRUE 
  109   669  

> 669/(669+109)
[1] 0.8598972   = 86% correct

Only 778 out of 905 (86%) of tokens in WSJDat can be tested with the glmmPQL() model 
because predictions are only available for tokens with verbs that are also found in Switchboard.    
The other 127 tokens have verbs that were not found in Switchboard and are thus given values of 
NA in the results of predict().

> 669+109
[1] 778
> length(WSJDat$real)
[1] 905
> 778/905
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[1] 0.8596685  
----------------------

To conclude this discussion of mixed effects logistic regression, and to conclude the book, I 
would like to point out that the modeling strategies that we have been considering here in the 
context of analyzing a syntactic pattern in English can be applied to many of the quantitative 
analysis methods described in earlier chapters of the book.  For example, in sociolinguistics, 
phonetics, and psycholinguistics we often take data from several subjects and we could construct 
more accurate statistical models by adding random factors to capture idiosyncratic differences 
between people in addition to the effects of the fixed factors in our models. Perhaps lme() and 
glmmPQL() should be more widely used in all branches of linguistics. Similarly, we have explored 
in this last section some very appealing methods for evaluating the success of a statistical model - 
splitting a large data set into training and testing portions to evaluate the robustness of a model 
when it faces new data and applying model predictions to a second data set that differs in some 
important regards from the original data are both very powerful methods for model evaluation 
which should be used in other disciplines of linguistics - not just syntax.

Exercises

1. Use the magnitude estimation technique to evaluate the claims that I made in section 7.7 about 
the relative acceptability of sentences 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b.  Make up a number filler 
sentences spanning a clear range of grammaticality and present the sentences in random order.  
Are your results consistent with the claims I made in the chapter?

2. Using the data set vbarg.txt (section 7.6) and lme() determine whether the relative locations of 
A0 and A1 (A1loc-A0loc) is related to the size of the agent (A0size).

3. With only one factor (the animacy of the recipient), we can accurately predict the dative 
realization in 79% of the cases in the Switchboard corpus (the R code for this test is shown 
below).  Are you impressed by this number (why or why not)? Which of the factors in the 
Bresnan et al. data set gives the most accurate prediction in a one-factor model?  How does this 
best one-factor model do with the Wall Street Journal corpus?

> mod1 <-glm(real ~ animrec, family=binomial, data=SwitchDat)
> table((fitted(mod1)>0.5)==(SwitchDat$real=="PP")) -> tab

> tab[2]/(tab[1]+tab[2])
     TRUE 
0.7877119 
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4. With two factors interacting with each other (the definiteness of the theme and the discourse 
accessibility of the theme), we can accurately predict the dative realization in 85% of the cases in 
the Switchboard corpus. Can you find a better combination of factors than this?  What happens 
with a three-factor or four-factor model?

> mod <-glm(real ~ defth*accth, family=binomial, data=SwitchDat)
> anova(mod,test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: real

Terms added sequentially (first to last)

              Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                           2359    2440.11          
defth          1   302.75      2358    2137.36 8.302e-68
accth          1   186.31      2357    1951.05 2.033e-42
defth:accth    1    58.84      2356    1892.22 1.715e-14

> table((fitted(mod)>0.5)==(SwitchDat$real=="PP")) -> tab
> tab[2]/(tab[1]+tab[2])

0.8529661 

Quantitative Lingusitics Keith Johnson

261



Appendix 7.A   This appendix contains example instructions for a magnitude estimation 
experiment.  I adapted parts of this appendix from Frank Keller’s Magnitude Estimation demo at 
http://www.webexp.info. 

Magnitude Estimation Instructions.
Section 1. Judging the lengths of lines.

I’m going to ask you to judge how long lines are relative to each other. This is practice for a 
linguistic judgment task.  For instance, lets say that the line below has a length of 50.

____________________  50

Now if you had to judge this new line you might give it a length of 18.

_________  18

And this one might be 85.

_____________________________________ 85

There is no limit to the range of numbers you may use. You may use whole numbers or decimals. 

Now I’m going to give you a series of lines and your job is to estimate their lengths assuming that 
the length of the first line is 50.  Write your best estimate of the length of each line.

 ____________________ 

____

_____________________________

___________________________________________________________________

____________________

________________________________________ 
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Section 2. Judging the acceptability of phrases - practice.

Now for the linguistic part of the task.  I’m going to present you with 16 phrases. Each phrase is 
different. Some will seem perfectly OK to you, but others will not. Your task is to judge how 
good or bad each phrase is by drawing a line that has a length proportional to the acceptability of 
the phrase.  Suppose, for example that the phrase “pink narrow hat” is the first item in the list.  
We’ll rate the acceptability of “pink narrow hat” with the “50” line from the line-judging task on 
the previous page.  If you now are confronted with a phrase that is less acceptable than this one 
you should draw a shorter line, so that the length of the line is proportional to the acceptability 
of the phrase. And if the next phrase is more acceptable you should draw a longer line, 
proportional to the acceptability of the phrase. 

For example, if “nice Dutch sock”, the second phrase in the list, is about equally acceptable as 
“pink narrow hat” then the line you give it should be about the same length as the one for “pink 
narrow hat”.  If you think “nice Dutch sock” is less acceptable then the line you draw should be 
shorter than the one for “pink narrow hat”, and if “nice Dutch sock” seems more acceptable the 
line you draw should be longer than the one for “pink narrow hat”.

Here are some practice phrases.  Draw lines next to these according to your estimate of their 
acceptability as phrases of English.

1. pink narrow hat     ____________________

2. nice Dutch sock

3. old blue plate

4. old tiny hat

5. Irish good frame

Section 3. Judging the acceptability of phrases: line length.

You have been given a list of sixteen phrases.  Please estimate the acceptability of these phrases 
by drawing lines, indicating your impression of the acceptability of the phrase by the length of 
line you draw for the phrase.  Once again, we’ll start with a line for the phrase “pink narrow hat” 
as a reference for your other lines.  Please look at this item and then work down the list of sixteen 
phrases drawing one line for each phrase.
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There are no `correct' answers, so whatever seems right to you is a valid response. We are 
interested in your first impressions, so please don't take too much time to think about any one 
sentence: try to make up your mind quickly, spending less than 10 seconds on sentence.

0. pink narrow hat     ____________________

1.

2.

........

14.

15.

16.

Section 4. Judging the acceptability of phrases: numerical estimation.

Now I’ll ask you to look again at the list of sixteen phrases.  This time, please estimate the 
acceptability of these phrases the way we did with line length at the beginning by indicating your 
impression of the acceptability of the phrase with a number.  We’ll start with the number 50 for 
the phrase “pink narrow hat” as a reference for the other numbers.  Please look at this item and 
then work down the list of sixteen phrases giving one number for each phrase.  Remember that if 
the phrase is more acceptable than “pink narrow hat” you would give it a larger number, and if it 
is less acceptable than “pink narrow hat” you would give it a smaller number.

You can use any range of positive numbers that you like, including decimal numbers. There is no 
upper or lower limit to the numbers you can use, except that you cannot use zero or negative 
numbers. Try to use a wide range of numbers and to distinguish  as many degrees of acceptability 
as possible. 

There are no `correct' answers, so whatever seems right to you is a valid response. We are 
interested in your first impressions, so please don't take too much time to think about any one 
sentence: try to make up your mind quickly, spending less than 10 seconds on sentence.
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0. pink narrow hat     50

1.

2.

........

14.

15.

16.
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