
3 Phonetics 

Phoneticians have a long tradition of quantifying their observations of pronunciation and hearing. 
In this history both hypothesis testing and regression techniques have been extensively used.  
Obviously the full range of methods used in the quantitative analysis of phonetic data cannot be 
covered in a short chapter on the topic, however I do hope to extend the discussion of t-test and 
regression in interesting ways here, and to introduce factor analysis.

3.1 Comparing mean values

We saw in chapter 2 that we can test the hypothesis that a sample mean value 

€ 

x  is the same as 
or different from a particular hypothesized population mean µ.  Sometimes, this is a test that we 
are interested in.  For example, we might want to know if the observed, sample mean 

€ 

x  is 
reliably different from zero, but, in many cases the 

€ 

x -µ comparison is not really what we want 
because we are comparing two sample means.

For example, the key question of interest with the Cherokee 1971/2001 data is the comparison of 
two sample means.  Is the mean VOT in 1971 different from the mean VOT in 2001, as the 
boxplot in Figure 3.1 suggests ?  This comparison will be the focal example of this section.

3.1.1 Cherokee Voice Onset time: µ1971 = µ2001

We want to test whether the average VOT in 1971 was equal to the average VOT in 2001, 
because we think that for this speaker there may have been a slow drift in the aspiration of 
voiceless stops as a result of language contact.  This question provides us with the null 
hypothesis that there was no reliable difference in the true, population, means for these two 
years - that is: H0: µ1971 = µ2001.  

We can test this hypothesis with a t test similar to the “one sample” t test that was discussed in 
chapter 2.  In that discussion, just to review, we tested the null hypothesis: H0: µ1971 = µhyp, 
where we supplied the hypothesized population mean.  Recall that the idea with the t test is that 
we expect the difference between means to be zero - the null hypothesis is that there is no 
difference - and we measure the magnitude of the observed difference relative to the magnitude of 
random or chance variation we expect in mean values (the standard error of the mean). If the 
difference between means is large, more than about 2 standard errors (a t value of 2 or -2), we are 
likely to conclude that the sample mean comes from a population that has a different mean than 
the hypothesized population mean.
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€ 

t =
x − µ
SE

the t statistic is the difference between observed and expected 

mean, divided by standard error of the observed mean.

Figure 3.1. A boxplot of voice onset time measurements for Cherokee voiceless 
stops /t/ and /k/ produced by speaker DF in 1971 and in 2001.

So in testing whether the mean VOT in 1971 is different from the mean VOT in 2001 for this 
talker we are combining two null hypotheses:

H0: µ1971 = µ
H0: µ2001 = µ
H0: µ1971 = µ2001

The expected man value of the 1971 sample is the same as the expected value of the 2001 sample, 
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so just as with a one-sample t-test the expected value of the difference is 0.  Therefore we can 
compute a t statistic from the difference between the means of our two samples.

    

€ 

t =
x 1971 − x 2001

SE
the two-sample t value.

There is one little complication when we compare the two means in this computation of t. We 
have two samples of data, one from 1971 and one from 2001 and therefore we have two 
estimates of the standard error of the mean (SE). So, in calculating the t statistic we need to take 
information from both the 1971 data set and the 2001 data set when we compute the SE for this 
test.  

-------------------------
R note.  Before running t tests on the Cherokee data we need to read the data from a text file.  
The Cherokee data are in “cherokeeVOT.txt” and are arranged in three columns (I made this text 
file in a spreadsheet program using the “save as” command to save the data as “tab delimited 
text”.  The first column has the VOT measurement in milliseconds, the second column indicates 
that this VOT measurement is from a 1971 recording or a 2001 recording, and the third column 
indicates that the measurement comes from either a /k/ or a /t/.  Use read.delim() to read the 
data file.  I usually type the name of the data frame to see the column names and data values to be 
sure that the file was read correctly - here I show only the first five lines of the print out.

> vot <- read.delim("cherokeeVOT.txt")
> vot
   VOT year Consonant
1   67 1971         k
2  127 1971         k
3   79 1971         k
4  150 1971         k
5   53 1971         k

Everything is apparently fine, but when we look at a summary() to get some descriptive 
statistics of the variables we see a problem.  This R function is convenient when you have a large 
data file and you want to quickly verify that your data have been read correctly. 

summary(vot)
      VOT              year      Consonant
 Min.   : 45.00   Min.   :1971   k:21     
 1st Qu.: 71.50   1st Qu.:1971   t:23     
 Median : 81.50   Median :2001            
 Mean   : 96.45   Mean   :1989            
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 3rd Qu.:120.25   3rd Qu.:2001            
 Max.   :193.00   Max.   :2001            

The data summary() indicates a problem because I intended “year” to be a nominal variable that 
has only two levels “2001” and “1971”.  R, quite naturally, saw that the column was filled with 
numbers and so treated the variable as continuous (either a ratio or interval variable).  This  needs 
to be changed explicitly by instructing R to treat the “year” column as a factor().  After 
entering the factor() command “year” shows up as a nominal variable with 18 data points 
from 1971 and 26 data points from 2001.  

> vot$year <- factor(vot$year)
> summary(vot)
      VOT           year    Consonant
 Min.   : 45.00   1971:18   k:21     
 1st Qu.: 71.50   2001:26   t:23     
 Median : 81.50                      
 Mean   : 96.45                      
 3rd Qu.:120.25                      
 Max.   :193.00           

If you wish to add a new column to the data.frame that has the factorized “year”, rather than 
changing “year” in place, you can type the command as: >vot$fyear <- factor(vot$year).

Use attach(vot) to instruct future lines to look in the “vot” spreadsheet/ data.frame for the 
variables that we mention (this is so we can refer to “year” instead of “vot$year”. Now we can 
use mean() and sd() to get the means and standard deviations for the 1971 and 2001 data.

> mean(VOT[year=="1971"])
[1] 113.5
> mean(VOT[year=="2001"])
[1] 84.65385
> sd(VOT[year=="1971"])
[1] 35.92844
> sd(VOT[year=="2001"])
[1] 36.08761

The notation VOT[year==”1971”] specifies a subset of the VOT values for which the 
variable year is equal to “1971”.  

Oh, by the way.  I made figure 3.1 with the boxplot() command.  A boxplot is a very good 
way to see the central tendency and the range of variability of the data.
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> boxplot(VOT~year,data=vot,col="lightgrey",ylab = "Voice Onset Time (ms)")
-----------------------------------------

3.1.2  Samples have equal variance.

So we are testing the null hypothesis that one Cherokee speaker’s average VOT was the same in 
1971 and 2001.  That is: H0: µ1971 = µ2001.  We have two samples of data, one from each year 
and we want to use our sample data to calculate a value of t that will tell us whether it is likely 
that the null hypothesis is true. 

    

€ 

t =
x 1971 − x 2001

SE
t from the deviation between population means

Our sample estimates of the means are easy -     

€ 

x 1971 and     

€ 

x 2001 are the least squares estimates of 
these parameters.  What is our estimate of the standard error of the mean?  With only one sample 
we used the standard deviation or the variance of the sample to estimate the standard error:

€ 

SE =
s
n

=
s2

n
the usual definition of sample standard error of the mean

With two samples, there are two estimates of variance,     

€ 

s1971
2  and     

€ 

s2001
2 .  If we can assume that 

these two represent essentially the same value then we can pool them by taking the weighted 
average as our best estimate of SE.

Before pooling the variances from our 1971 and 2001 samples we need to test the hypothesis 
that they do not differ (i.e. H0:     

€ 

s1971
2  =     

€ 

s2001
2 ).  This hypothesis can be tested using the F 

distribution - a theoretical probability distribution that gives probabilities for ratios of variances. 
Incidentally, this distribution is named after the eminent statistician Ronald Fisher, inventor of 
ANOVA and maximum likelihood. We’ll come back to F in later chapters, so here we will only 
note that the expected value of F if the null hypothesis is true is 1. Because the two estimates of 
variance are based on independent samples, F is actually a family of distributions, the exact shape 
of which depends on the degrees of freedom of both variances.  One caveat about using the F 
distribution to compare variances is that it is quite sensitive to whether the population 
distributions are normal (Hays,1973, pp. 450-1).

So, if we want to know if the two estimates of variance are equal to each other we can simply 
take their ratio and test the probability of this ratio, given the degrees of freedom that went into  
each variance estimate.  We do this with the F distribution because this distribution lets us 
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specify degrees of freedom for the numerator and the denominator of the ratio.

€ 

F =
s2001

2

s1971
2 =

36.08762

35.92842 =
1302.32
1290.85

=1.0089 F test of equality of variance

It is pretty obvious that the variances are not very different from each other (36.1 ms versus 35.9 
ms), so the variances are also very similar in magnitude and thus the F ratio is close to one.  We 
look up the probability of getting an F of 1.0089 or higher using the R pf() function:

> pf(1.0089,25,17,lower.tail=F)
[1] 0.5034847

In this function call I specified the degrees of freedom of the numerator (n2001 - 1 = 25) and of 
the denominator (n1971 - 1 = 17) for the two estimates of variance that went into the F ratio.  I 
also specified that we are looking at the upper tail of the F distribution because, as is usually 
done, I put the larger of the two variances as the numerator.  The probability of getting an F value 
of 1.0089 or higher when the variances are in fact equal is quite high p=0.5 so we have no reason 
to believe that the variance of the 1971 data is any different from the variance of the 2001 data.
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Figure 3.2. The F probability density distribution for 25 and 17 degrees of 
freedom showing that 0.503 of the area under the curve lies above the F value 
found by taking the ratio of variances from 2001 and 1971 in the Cherokee data.

Thus, because the sample variances in 2001 and 1971 are about the same, we can estimate SE for 
our test of whether VOT was different in 2001 than it was in 1971 by pooling the two sample 
variances. This is done using the weighted average of the variances where each variance is 
weighted by its degrees of freedom.

€ 

sp
2 =

(na −1)sa
2 + (nb −1)sb

2

(na −1) + (nb −1)
pooled variance, when the variances are roughly equal

The pooled variance for our Cherokee VOT data is thus 1297.7 and hence the pooled standard 
deviation is s = 36.02.  We will also use the denominator in this weighted mean formula as the 
degrees of freedom for the t statistic that we calculate next.
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The t statistic that we use then to compare two means uses the pooled variance from the two 
samples to estimate SE - the standard error of the mean(s), and t is a ratio of (1) the difference 
between the two means (  

€ 

x a − x b) with (2) SE calculated from the pooled variance.  If the means 
differ from each other by much more than you would expect (the standard error) then we are 
likely to declare that the two samples (VOT 2001, and VOT 1971) have different means.

€ 

t =
x a − x b

sp
2 (na + nb )

This works out to be t=2.6116 for our data, and the degrees of freedom is (18-1)+(26-1) = 42.  So 
the probability of getting a t value this big if there is actually no difference between mean VOT in 
1971 and 2001 (as compared with the hypothesis that VOT in 2001 was less than it was in 
1971) is less than 1 in 100 (p<0.01).  So we conclude that this speaker’s VOT was shorter in 
2001 than it was in 1971.  This in itself is an interesting finding - perhaps indicating a gradual 
phonetic change that may be due to language contact. Of course, this result, based on one talker 
doesn’t really tell us anything about Cherokee as a whole.

-----------------------
R note.  I specified the t test contrasting Cherokee VOT in 1971 and 2001 with the command 
given below.  I used the subset notation VOT[year==”1971”] to say that I wanted all of the 
VOT values for which the variable year is equal to “1971”.  I specified that the variance in the 
1971 data is equivalent to the variance in the 2001 data with var.equal=T, and I specified that 
I expected VOT to be greater in 1971 than in 2001 because I hypothesized that this would be the 
direction of change if there was an impact of English on Cherokee.

> t.test(VOT[year=="1971"],VOT[year=="2001"], var.equal=T, 
alternative="greater")

Two Sample t-test  
data:  VOT[year == "1971"] and VOT[year == "2001"]  
t = 2.6116, df = 42, p-value = 0.006223 
alternative hypothesis: true difference in means is greater than 0  95 percent 
confidence interval:
  10.2681     Inf  
sample estimates: 
mean of x mean of y  
113.50000  84.65385 
-------------------------
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3.1.3  If the samples do not have equal variance.

What if we find that the variances of our two samples are not equal?  Instead of using the pooled 
variance, we calculate the standard error of the mean as:

€ 

SE = (sa
2 na) + (sb

2 nb )   Standard error of the mean for unequal variances

The t value calculated with this estimated standard error (

€ 

t* =
x a − x b

SE
) follows the normal 

distribution if both samples have greater than 30 data points (na > 30 & nb > 30).  For smaller 
samples the t distribution is used with a degrees of freedom equal to:

€ 

df =
U 2

V 2 (na −1) +W 2 (nb −1)
− 2

where

V = sa
2 na ,

W = sb
2 nb ,

and

U 2 =V + W

The Welch correction of degrees of freedom

By adusting the degrees of freedom, this correction puts us on a more conservative version of the 
t distribution.  Recall that t is a family of distributions and that the tails of the distribution grow 
as the df decreases - see figure 2.5. The Welch correction is done by default for two-sample t 
tests in R, so that in order to conduct the test with the assumption that the variances are equal 
you have to actually declare that var.equal=TRUE.  In my experience, I’ve not noticed much 
difference between the two ways of calculating t, but maybe I haven’t really dealt yet with a 
situation where the variances are strongly unequal.

-------------------
R note.  Below is the t.test() call when we do not assume that the variance in 2001 equals 
the variance in 1971.  In this call, I used the function notation rather than specifying two vectors 
of numbers.  You read the expression VOT~year as “VOT varies as a function of year”.  In 
formula notation, the “dependent variable” or the “criterion variable” appears on the left of the 
tilde (~) and the “independent variables” or the “predictive factors” appear on the right side of 
the tilde.  Because year only has two levels in this data set (1971 and 2001) we can use this 
notation to describe the desired t test.  
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This test reports that the Welch correction of degrees of freedom was used (notice that we now 
have df = 36.825, instead of df=42). The t statistic is also slightly different because the SE used 
in calculating t was different in this test than in the one for equal variance. The conclusion that we 
draw from this test is the same as the conclusion we arrived at when we assumed equal variances 
(    

€ 

s1971
2 = s2001

2 ).

> t.test(VOT ~ year, alternative="greater")

Welch Two Sample t-test

data:  VOT by year 
t = 2.6137, df = 36.825, p-value = 0.006448
alternative hypothesis: true difference in means is greater than 0 
95 percent confidence interval:
 10.22436      Inf 
sample estimates:
mean in group 1971 mean in group 2001 
         113.50000           84.65385 
-----------------------------

3.1.4 Paired t test: Are men different from women?

There is a particularly powerful and easy-to-use kind of t test if you have observations that are 
meaningfully paired.  What “meaningfully paired” means is that the observations naturally come 
in pairs.  For example, there is no rational way to pair VOT measurements from 1971 with 
measurements taken in 2001.  We could suggest that VOTs taken from /t/ should be matched with 
each other, but there is no meaningful way to choose which 2001 /t/ VOT should be paired with 
the first /t/ VOT on the 1971 list, for example.  Now, if we had measurements from the same 
words spoken once in 1971 and again in 2001 it would be meaningful to pair the measurements 
for each of the words.

In chapter 2 though, we looked at a data set for which the observations are meaningfully paired.  
The first formant data in “F1_data.txt” was given for men and women for each language and 
vowel in the data set, so that it is natural to match, for example, the male F1 of /a/ in Sele with the 
female F1 of /a/ in Sele, the male F1 of /i/ in Sele with the female F1 of /i/ in Sele, and so on. 
Figure 3.3 shows that men and women tend to have systematically different vowel F1 frequency, 
but that the difference between vowels can be bigger than the overall male/female difference. To 
have a sensitive test of the male/female difference we need to control for the vowel differences.  
Pairing male/female differences by vowel provides just such control.
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Figure 3.3. Boxplot comparing male (white boxes) and female (gray boxes) vowel 
F1 frequencies for five different vowels. The overall average F1 values for men 
and women are plotted with dashed lines.

With paired observations we can then define a derived variable - the difference between the paired 
observations

€ 

di = xai − xbi the difference between paired observations

Then calculate the mean and variance of the difference as we would for any other variable:

€ 

d =
di∑

n
  ,  

€ 

sd
2 =

di − d ( )
2∑

n −1
the mean and variance of the differences
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Now, we test the null hypothesis that there is no difference between the paired observations, i.e. 
that H0: 

€ 

d  = 0.  The t value, with degrees of freedom n-1, is;

€ 

t =
d 

sd
2 n

does 

€ 

d  differ from zero?

The beauty of the paired t test is that pairing the observations removes any systematic 
differences that might be due to the paired elements.  For example, this measure of F1 difference 
is immune to any vowel or language influences on F1.  So, if F1 varies as a function of language or 
vowel category these effects will be automatically controlled by taking paired F1 measurements 
from the same vowels spoken by speakers of the same language.  In some other situations we are 
most interested in letting each person serve as his/her own control, because if we sample from a 
population of people, each of whom may differ from other members of the population in some 
systematic way, paired observations from the same person provides a control over individual 
sources of variation.  Consequently, the paired t test tends to be much more sensitive (powerful) 
than the two sample t test.

The increased power of the paired t-test is seen in a comparison of “independent samples” and 
“paired comparisons” tests of the null hypothesis that male F1 frequencies are no different from 
female F1 frequencies.  We’ll contrast this hypothesis with the H1, suggested by years of 
research, that female F1 is higher than male F1.

The independent samples comparison suggests that men and women are not reliably different 
from each other [t(36) = 1.5, p = 0.067], while the paired comparison results in a much higher t 
value [t(18) = 6.1, p < 0.01] showing a much more reliable difference.  Evidently, in the 
independent samples comparison, the gender difference was swamped by variation due to vowel 
and perhaps language differences, and when we control for these sources of variation by 
contrasting men and women’s F1 values for matched vowels and languages, the gender difference 
is significant.  Note that in this report of the results, I’m using a standard style for reporting t test 
results. Put the t value and its associated degrees of freedom and probability value in square 
brackets.  The degrees of freedom is in parentheses after the letter “t”, and the probability is 
reported as p=0.06 if the value is above the type I error criterion α (0.01), or if the probability of 
t is less than α report p<0.01.  It is preferable to round off t to one or two places after the 
decimal point. 

------------------------
R note.  The two t tests contrasting vowel F1 frequencies for men and women in the 
“F1_data.txt” data set are shown below.
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> f1 <-read.delim(“F1_data.txt”)
> attach(f1)

> t.test(female,male,alternative="greater",var.equal = T)

Two Sample t-test

data:  female and male 
t = 1.5356, df = 36, p-value = 0.0667
alternative hypothesis: true difference in means is greater than 0 
95 percent confidence interval:
 -9.323753       Inf 
sample estimates:
mean of x mean of y 
 534.6316  440.8947 

> t.test(female,male,paired=T,alternative="greater")

Paired t-test

data:  female and male 
t = 6.1061, df = 18, p-value = 4.538e-06
alternative hypothesis: true difference in means is greater than 0 
95 percent confidence interval:
 67.11652      Inf 
sample estimates:
mean of the differences 
               93.73684 
-----------------------

3.1.5 The sign test
 
A quick and easy variant of the paired t test works off of the signs of the differences - no 
calculation of the mean or standard deviation of the differences, just coding whether the difference 
for each pair is positive or negative. But keep in mind that the “sign test” is only valid if you 
have 25 or more pairs. 

Here’s how it works. Mark each paired observation according to whether di is greater than zero 

or less than zero.  Let n+ be the number of pairs with di greater than zero, and n- be the number 
of pairs with di less than zero.  The probability of the null hypothesis 

€ 

x a = x b is given by the 
probability of having a smaller or larger (two-tailed) z score:
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€ 

z =
n+ − n− −1

n+ + n−
z score used in the sign test.

3.2 Predicting the back of the tongue from the front: Multiple regression

Suppose that you have a method for tracking the locations of 3 or 4 small gold pellets or 
electromagnetic transducers that are glued onto the upper surface of the tongue.  Phoneticians do 
this (X-ray microbeam, EMMA).  Such a point tracking system provides some very valuable 
information about speech production, but the root of the tongue is not represented.  

Now, suppose that data about the location of points on the top surface of the tongue could be 
used to predict the location of a point on the root of the tongue. It seems to be reasonable that we 
could do this. After all, we are dealing with a physical structure with extrinsic tongue muscles 
that move the tongue up, front, and back as whole. Additionally, because the tongue is an 
incompressible mass, the intrinsic tongue muscles that reshape the tongue produce predictable 
effects (like squeezing a water balloon, squeeze the back of the tongue and the top goes up).

So the nature of the tongue suggests that we might be able to make good guesses about the root of 
the tongue (which can’t be tracked in the current systems) from the information that we have 
about the front of the tongue.  Multiple regression is the key.

We saw in Chapter 2 that we can define a regression line y=a+bx that captures whatever linear 
relationship might exist between two variables, and that we can measure the strength of linear 
association between two variables with the Pearson’s product moment correlation coefficient r.  

Now we will extend this idea to consider regression equations that have more than one predictor 
variable , e.g. y = a + b1x1 + b2x2 + ... + bnxn.  Such equations have some valuable practical 
applications in phonetics, one of which we will explore, but they also provide a formal basis for 
building models of causal explanations in many domains of scientific inquiry.

3.2.1 The covariance matrix.

We have some data that shows the top of the tongue as well as the root (Johnson et al., 1992). So 
we might be able to use this data to develop a regression equation that will let us predict the 
location of the back of the tongue from the front.
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Figure 3.4. A chain of fifteen small gold pellets was draped over the tongue and the 
positions of the pellets were recorded from x-ray scans.

A chain of fifteen small gold pellets was draped over the tongue of one of the talkers in Johnson 
et al. 1992.  This talker unlike the others was able to tolerate having the chain go very far back in 
the mouth extending back over the root of the tongue.  X-ray images were taken of the tongue 
position during 11 different vowels, and figure 3.4 shows the tongue shape that was recorded in 
the x and y locations of the pellets for the corner vowels [i], [a], and [u].

The fifteen pellets in the chain each have an x and a y location in space, so we have 30 variables in 
this data set.  Some of them are highly correlated with each other.  For example, the vertical (y) 
location of the 15th pellet is correlated with the y location of the 14th pellet with r = 0.9986.  So 
with a regression formula we could predict 99.7% of the variance of pellet 14’s y location if we 
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know the y location of pellet 15.  There is some indication also, that it may be possible to predict 
the xy location of one of the back pellets from one of the front pellets.  For example, the 
correlation between the y locations of pellet 1 and pellet 14 is r = 0.817.  However, the highest 
correlation between the x location of pellet 14 and any of the front pellets is with the y location 
of pellet 6 (r = 0.61).  

We could explore this data set for quite some time calculating correlations among the 30 variables, 
but with so many correlations to look at (435 r values) and with so many of them falling at 
approximately the same level, it isn’t clear how to pick and choose among the correlations to 
highlight comparisons that are especially meaningful.  Of course we could show all 435 of the r 
values in a table, but that would be mean and a waste of paper.

-------------------------
R note.  Perhaps it is mean and a waste of paper to show all 435 of the correlations among 30 
variables in a table, but is sure is easy to produce such a table in R!  In the data set 
“chaindata.txt”, I named the x location of pellet 1, x1, and so on.  subset() is used to extract 
data for talker PL1 (there are five other talkers in the data file, though only PL1 had 15 points in 
the chain of gold pellets - the others didn’t tolerate the chain as far back on the tongue). If you 
use subset() to extract data for any of the other talkers you will need to specify which of the 
thirty variables to extract more laboriously (e.g. x1:x12,y1:y12) than I did in this command 
where I could specify x1 through y15 with x1:y15.

The correlation matrix is produced by cor().  Note that x1 is perfectly correlated (r = 1) with 
itself.  Note also that the matrix is symmetrical - the correlation of x1 and x2 is the same in row 
x2, column x1 as it is in row x1, column x2 (r = 0.9972439).

> chain <- read.delim("chaindata.txt") 
> PL1 <- subset(chain,talker=="PL1",x1:y15) 
> cor(PL1) 

            x1         x2         x3         x4         x5         x6
x1   1.0000000  0.9972439  0.9586665  0.9727643  0.9485555  0.9313837
x2   0.9972439  1.0000000  0.9737532  0.9839730  0.9647815  0.9452476
x3   0.9586665  0.9737532  1.0000000  0.9911912  0.9933240  0.9844554
x4   0.9727643  0.9839730  0.9911912  1.0000000  0.9939075  0.9706192
x5   0.9485555  0.9647815  0.9933240  0.9939075  1.0000000  0.9791682
x6   0.9313837  0.9452476  0.9844554  0.9706192  0.9791682  1.0000000
x7   0.8826467  0.9045604  0.9676897  0.9444815  0.9590505  0.9857084
x8   .....
 
The covariance matrix is also easy to produce, using cov().  Note that both of these functions 
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(cor() and cov()) are able to work with PL1 because in the subset command I extracted 
continuous numeric vectors into the subset leaving out the talker and vowel columns of the 
original data set.  If I had used subset(chain,talker==”PL1”) each row would have been 
labeled with a vowel label copied from the original spreadsheet.  Then the x1:y15 columns 
would have to be specified explicitly in cor() and cov().

> cov(PL1) 

            x1         x2         x3        x4         x5         x6
x1   18.688494  20.257932  19.559742  20.71310  18.317303  16.912481
x2   20.257932  22.080714  21.595530  22.77404  20.251032  18.657079
x3   19.559742  21.595530  22.274955  23.04179  20.941653  19.516232
x4   20.713102  22.774042  23.041793  24.26056  21.867947  20.081253
x5   18.317303  20.251032  20.941653  21.86795  19.953692  18.372171
x6   16.912481  18.657079  19.516232  20.08125  18.372171  17.643432
x7   16.101781  17.936760  19.272782  19.63106  18.078109  17.471889
x8 ..... 
---------------------------

The patterns of interrelatedness, and perhaps causal relationships in the data are implicit in the 
correlation and covariance matrices and there are several techniques that can be used to discover 
and visualize these patterns (one of which will be the topic of section 3.3).  In the remainder of 
this section though, we will examine a stepwise method to find the best linear combination of 
variables that can be used to predict the value of a criterion variable - in this case we want to 
predict the location of the root of the tongue (which is hard to observe directly) from the 
locations of pellets on the top of the tongue (which can be tracked without too much trouble).

3.2.2. More than one slope: the βi

The best way to predict the y location of pellet 15 on the root of the tongue from the locations of 
pellets 2 through 6 on the top of the tongue is with the following  formula:

€ 

y15 = −16.81+1.28y2 + 3.85y6 − 4.11x5 +1.47x6 −1.15x5

This formula, a linear combination of some of the tongue pellet xy variables, produces an estimate 
of y15 that accounts for 98% of the variance of the y location of pellet 15.  

Similarly, we can predict the x location of pellet 15 from the front pellets with this formula:

€ 

x15 = −51.69 −0.97y5 +1.05x2 − 4.04x6 + 4.66x4 + 0.61y2 − 3.69x3 + 2.66x5 +1.48y4
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This linear equation predicts 99% of the variance of the x location of pellet 15.  With these two 
equations we should be able to make pretty good guesses about the location of the root of the 
tongue based on our knowledge of the top of the tongue.  Of  course, this could be a very valuable 
bit of knowledge as we attempt to model processes of speech articulation on the basis of x-ray 
microbeam, or EMMA data.

Now the method for coming up with these linear equations is not exactly magic, but it is still 
pretty neat.

First, let’s recall that the equation for the regression line with one variable (

€ € 

ˆ y = A + Bx ) can be 
expressed as

€ 

ˆ z y = rzx  using the standardized z scores.  Then from this we get the slope B from the 

correlation r and the ratio of standard deviations: 

€ 

B = r
sx

sy

.  In determining the β coefficients in 

the multiple regression equation 

€ 

ˆ z y = β1zx1
+ β2zx2

....βn zxn
we must take into account the 

correlations of the x predictor coefficients as well as the correlation between x and y.  Unlike our 
calculation for r which is based on the product of z scores, values from the correlation matrix are 
used to compute the β values.  The coefficient for predictor variable x1 is based, naturally 
enough, on the correlation between variable x1 and the variable (y) that we are trying to predict.  
But, the formula for β1 removes from ry1 an amount that is based on how much x2 can predict y 
and how closely correlated x1 and x2 are to each other.

€ 

β1 =
ry1 − ry2r12

1− r12
2 the coefficient that relates x1 to y.

This formula, and others like it for coefficients in larger models, are called beta weights and 
because they are coefficients for the standardized variables zy, zx1, zx2, etc. they indicate the 
relative strength of an x variable in predicting the y variable.  To get the non standardized 
coefficients, like those that I used in the predictive formulas for y15 and x15 above, you scale the 
β weights by the ratio of predicted and predictor standard deviations just like we did when there 
was only one b to be calculated.

€ 

bi = βi
sy

si
scaling by ratio of standard deviations to get b from β

----------------------------------
R-note.  The R function lm() finds the regression coefficients in linear models.  For example, I 
used the following command to find the coefficients for the equation for y15 that started this 
section. Please read down the “Estimate” column and compare these numbers with the bi values 
in the formula for y15.
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> summary(lm(y15 ~ y2 + y6 + y5 + x6 + x5, data = PL1))

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -16.8100     6.8275  -2.462  0.05708 . 
y2            1.2785     0.1937   6.599  0.00120 **
y6            3.8458     0.6110   6.294  0.00149 **
y5           -4.1140     0.6104  -6.740  0.00109 **
x6            1.4703     0.8134   1.808  0.13048   
x5           -1.1467     0.8165  -1.404  0.21919   
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

Residual standard error: 1.304 on 5 degrees of freedom
Multiple R-Squared: 0.9826, Adjusted R-squared: 0.9652 
F-statistic: 56.46 on 5 and 5 DF,  p-value: 0.0002130 

Similarly, the coefficients of the x15 model are given by a call to lm().
 
> summary(lm(x15 ~ y5 + x2 + x6 + x4 + y2 + x3 + x5 + y4, data = PL1))

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -51.6910     8.7933  -5.878  0.02774 * 
y5           -0.9702     0.5103  -1.901  0.19767   
x2            1.0540     0.4120   2.558  0.12482   
x6           -4.0357     0.3624 -11.135  0.00797 **
x4            4.6618     0.7939   5.872  0.02780 * 
y2            0.6083     0.2932   2.075  0.17370   
x3           -3.6891     0.5072  -7.273  0.01838 * 
x5            2.6555     0.8803   3.017  0.09456 . 
y4            1.4818     0.7193   2.060  0.17559   
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

Residual standard error: 0.5194 on 2 degrees of freedom
Multiple R-Squared: 0.9989, Adjusted R-squared: 0.9943 
F-statistic: 220.1 on 8 and 2 DF,  p-value: 0.00453

The print out given by summary() reports t tests for each of the coefficients in the linear 
equation. The test compares the given coefficient value with zero and in general we want to 
include in the regression equation only coefficients that are reliably different from zero.  
However, the method that I used to select the regression models shown here relies on a measure 
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of the effectiveness of the overall model, and not just on the t tests of the coefficients.  So, we 
have one case (x3 as a predictor of y15) of a coefficient that is not significantly different from 
zero on one test, but which is a reliable predictor when we compare different possible models 
with each other.

The summary() also reports “Multiple R-Squared” and “Adjusted R-squared”.  
-------------------------------

3.2.3 Selecting a model.

So, in general that is how the regression coefficients (the bi values in the regression equation y = a 
+ b1x1 + b2x2 + ... + bnxn) are found.  There is an art though, to selecting a model.  I restricted 
the model search for  predicting the root of the tongue from the top of the tongue to models that 
use some combination of the x and y locations of pellets 2, 3, 4, 5 and 6.  I felt that pellet 1 was 
sometimes not actually on the surface of the tongue (see the low back vowel [a] in figure 3.3), and 
I didn’t want to go back further than pellet 6.  Even with this restriction though there are 10 
variables in the predictor set (5 pellets, x and y dimensions) so there are 210 possible regression 
models. Choosing the best one from this set of possibilities is the subject of this section.

The procedure that is illustrated here is only one of several approaches that exist.  These 
different approaches have their advocates and a discussion of the pros and cons of them is 
beyond the scope of this chapter - though we will return to this later.  Perhaps one lesson to 
draw from the fact that there is more than one way to do this is that choosing the correct model is 
a bit of an art.  The balancing act in this art is between high within-dataset accuracy on the one 
hand, and high predictive accuracy for new data on the other.  So, with enough parameters you 
can account for all of the variation that is present in a set of data - particularly a tiny data set like 
the one we are looking at in this illustration of multiple regression.  However, such “over-fitted” 
models are brittle and tend to break down when confronted with new data. So we are looking for 
a model that will use only a few parameters to fit the data - get as good a fit as possible with a 
minimum of predictive variables.  For this, the step() function in R uses the Akaike 
Information Criterion.  This criterion uses a log-likelihood measure of how well the model fits the 
data and adds a penalty for each new parameter (regression variable that is added to the model). 
So, to overcome the “added parameter” penalty the model predictions have to improve by a 
substantial amount.  Tiny improvements don’t make the cut.  

Log-likelihood is a way of measuring model fit that is analogous to least-squares.  We call the 
arithmetic average the least-squares estimate of central tendency because this measure minimizes 
the squared deviations.  A log likelihood estimate seeks to maximize likelihood of the model and 
is a bit like an information measure.  At this point, that’s about all I’m going to say about it, but 
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we will be returning to this topic in the sociolinguistics chapter.

For now, I present the the formula for AIC acknowledging that it has a magical part L(M) the 
likelihood of model M.  Realizing that this is a measure of model fit we can see that AIC is 
composed of two terms, the first is related to model fit and the second is related to model size, 
where nm is the number of coefficients in the regression equation.

    

€ 

AIC = −2 log L(M ) + 2nM Akaike Information Criterion

----------------
R note. I used step() to select a model to predict the y location of pellet 15 in the PL1chain 
data set (which is assumed because of an earlier attach(PL1chain) command).  The initial 
model has only one parameter - the intercept value.  This is specified with y15~1.  The largest 
model I want to consider has the xy locations for pellets 2, 3, 4, 5, and 6.

> summary(y.step <- step(lm(y15 ~ 1,data=PL1),y15~ x2+y2 + x3+y3+ x4+y4 + 
x5+y5+ x6+y6))
Start:  AIC= 43.74 
 y15 ~ 1 

       Df Sum of Sq    RSS    AIC
+ y2    1    400.03  88.79  26.97
+ y3    1    323.32 165.50  33.82
+ y6    1    315.23 173.59  34.35
+ y4    1    301.93 186.90  35.16
+ y5    1    296.26 192.56  35.49
+ x4    1    121.77 367.06  42.58
+ x2    1    114.65 374.18  42.80
+ x5    1    105.75 383.08  43.05
+ x3    1     93.55 395.28  43.40
<none>              488.82  43.74
+ x6    1     56.78 432.05  44.38

What the print out shows is the first step in the stepwise search for the best combination of 
variables to include in the model.  A plus sign in the first column indicates that the program 
considered what would happen if the variable named on that row was added to the model.  The 
result of adding y2 for example is that the sum of squared variance accounted for would go up 
leaving a small residual sum of squares and a smaller AIC value.  The decision to add y2 to the 
model at this step is taken because this model (with y2 added) results in the lowest AIC as 
compared with any other model that is considered at this step.  In particular, adding this variable 
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reduces the AIC when compared with no change in the model <none>.  So, the program adds y2 
and considers adding other variables.

Step:  AIC= 26.97 
 y15 ~ y2 

       Df Sum of Sq    RSS    AIC
+ y3    1     20.84  67.95  26.03
+ y4    1     15.87  72.92  26.81
<none>               88.79  26.97
+ y5    1     10.68  78.11  27.56
+ x2    1      2.83  85.96  28.62
+ y6    1      2.10  86.69  28.71
+ x4    1      1.78  87.01  28.75
+ x3    1      0.93  87.86  28.86
+ x6    1      0.61  88.18  28.90
+ x5    1      0.50  88.29  28.91
- y2    1    400.03 488.82  43.74

So, the starting point for this step is the y15 ~ y2 model, and the printout shows that the best 
possible thing to do now is to add y3 to the model, and the worst possible thing to do is to 
remove y2  (the row marked “- y2”).  The “do nothing” approach <none> is also less good than 
adding y3.  One thing to notice here is that the ordering of the variables has changed from step 1 
to step 2.  At step 1 the second best thing we could have done would have been to add y6 to the 
model. At this step y6 appears in third place on the list.  Evidently the correlation between y2 
and y6 has resulted in a situation that when we add y2 to the model now y6 doesn’t make such a 
large unique contribution in predicting the value of y15.  Ready for step 3.

Step:  AIC= 26.03 
 y15 ~ y2 + y3 

       Df Sum of Sq     RSS     AIC
+ y6    1    32.429  35.525  20.896
+ y5    1    11.557  56.397  25.980
<none>               67.954  26.030
- y3    1    20.836  88.790  26.972
+ x2    1     3.243  64.711  27.492
+ y4    1     3.049  64.905  27.525
+ x5    1     2.612  65.342  27.599
+ x4    1     2.292  65.662  27.653
+ x3    1     2.175  65.779  27.672
+ x6    1     1.706  66.248  27.751
- y2    1    97.548 165.502  33.822
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Now we can add y6!  Notice that the option to remove y3 is pretty far up the list.  One other 
thing to notice is that by optimizing AIC we give up on having the smallest possible residual 
error from our model. The idea is that we are seeking a stable model that produces a good fit to 
the data, and the AIC approach scores stability in terms of the information gain, per coefficient 
added to the model.  This tends to keep out weak, unstable coefficients so that we avoid 
modeling the randomness of the data set and instead only capture robust relationships.

This process of adding variables, considering the possibility of making no change to the model, or 
even of removing variables that had been added at a previous step, is continued until the <none> 
option appears at the top of the list. Here’s a summary of the steps that were taken on this run:

step 1 + y2
step 2 + y3
step 3 + y6
step 4 + y5
step 5 + x6
step 6 - y3  remove y3
step 7 + x5
step 8 <none> finished

The resulting model, with the variables that survived the process of adding and removing 
variables (y15 ~ y2 + y6 + y5 + x6 + x5) is declared the winner because it produced 
the lowest AIC value.

The procedure for finding the best predictive model of x15 is exactly comparable to this.

> summary(x.step <- step(lm(x15 ~ 1,data=PL1),x15~ x2+y2 + x3+y3+ x4+y4 + 
x5+y5+ x6+y6))
-----------------------

How good is 99% variance accounted for?  There are only 11 different vowels in the PL1 chain 
data, and we are using 8 parameters to estimate the 11 x15 data values and 6 parameters to 
estimate the 11 y15 values.  So, it isn’t too surprising that we can get very high variance 
accounted for in these cases. A more robust and realistic use of multiple regression would draw 
on many more observations providing presumably more variance to be accounted for and more 
variance in the values of the predictor variables as well. 

Despite these caveats regarding this tongue position example, I decided to try the regression 
equations for predicting the location of pellet 15 by using the average pellet locations for pellets 
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2, 3, 4, 5 and 6 to predict pellet 15 (Figure 3.5).  Though the regression never saw the average 
tongue shape it does an excellent job of predicting the average location of pellet 15 from the top 
of the tongue pellets.  

This is a very informal evaluation of a model fit, more like a “gee whiz” demo.  What is really 
needed is a dataset  large enough to split into two pieces. Then the first piece could be used to 
produce the fit and the remainder could be used to make predictions and evaluate the model by 
measuring the differences between the predicted and the actual locations of pellet 15 for tokens 
that weren’t used to build the model (see chapter 7 for an example of this method).

What about the other pellets?  If we can predict the location of pellet 15 why not use the same 
method to predict 14, 13, 12, etc.?  In other words, doesn’t the covariance matrix contain 
information that would make it possible for us to characterize all of the pellets at once?

The answer is “yes” and this leads us to principal components analysis.
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Figure 3.5. The average pellet locations - averaged across 11 vowels. The locations 
of five pellets on the top of the tongue were used to predict the location of pellet 
15.  .

3.3 Tongue shape factors: Principal components analysis

One of the primary aims of quantitative analysis in phonetics, as well as in other subareas in 
linguistics, is to discover underlying factors that in some sense “cause” the pattern of data that 
we observe in our studies.

As we saw in section 3.2, adjacent points on the tongue are not physically or statistically 
independent of each other.  The natural next question is: how many independent parameters of 
tongue movement are there?  To answer this question we will use principal components analysis 
(PCA) to extract independent factors of tongue movement from the covariance matrix. 

The main idea with PCA is to use the correlations of raw data variables to define abstract 
components of correlated variation. With tongue motion, we want to find the main components 
of tongue shape variation.  As we saw earlier, the second point and the third point on the tongue 
are highly correlated with each other, suggesting that we could account for both of these variables 
and probably others by a single abstract factor.  The linguistic analysis of tongue position in 
vowels suggests that there may be only two factors - tongue height and tongue backness.
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Figure 3.6. A derived factor is a line that relates x and y to each other.  By 
knowing one value on the factor axis (z) you know two values (x and y) in the raw 
data.

I think of principal components analysis as a series of multiple regression analyses.  We saw that 
in regression we can describe the relationship between two variables as a line so that for any one 
location on the regression line you know the value for both of the correlated variables that define 
the line.  This is a kind of data reduction technique because we go from two axes, x and y, to one 
derived line, a new axis F.  So, imagine (see figure 3.6) that our derived factor F is a line that 
captures the correlation between x and y, and we let values on this line range from -1 to 1.  When 
we say that an observation has a value (z) on the factor axis - the regression line - we can expand 
this into a statement about the x and y values of this observation.  In Figure 3.6, I put the value 
of z at 0 on the factor axis (halfway between -1 and 1).  This corresponds to an x value of 0.5 and 
a y value of 20.  In this way, principal components analysis uses correlations among raw data 
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variables to define the main components of variation in our data set and reduce the dimensions of 
description from many variables to only a few principal components of variation.

How it works.  With two variables, x and y, it is fairly easy to imagine how principal 
components analysis works.  We rotate the two dimensional space so that the slope of the best 
fitting regression line is zero and the y intercept is zero.  Now we have a horizontal line - our new 
derived axis replaces the two raw variables x and y.  No further reduction of dimensions is 
possible because we have reduced from two dimensions (x and y) to one.

With a larger number of variables, such as the x and y locations of pellets on the tongue, it is 
harder to visualize the principal components.  The strategy that I and others have taken with 
tongue shape data is to plot the principal components (the “loadings” matrix, as discussed below) 
in the original data dimensions.  For example, the first principal component of tongue shape 
usually corresponds to the high/low distinction and the second principal component corresponds 
to the front/back distinction.  

Because a component of variation is a way of describing deviation from the mean, we start with 
the average values of the x and y variables in our tongue shape data for talker PL1.  We only have 
11 vowel shapes to work with, so we can have no more than 11 variables in the input (recall that 
with 15 pellets in two dimensional space we have 30 variables).  Therefore, I choose five pellets 
to represent the general shape of the tongue.  The average x and y locations of these five pellets is 
shown in figure 3.7.  
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Figure 3.7. The average location of the five pellets that were analyzed.

The correlations among the 10 input variables (xy locations of 5 pellets) are analyzed in 
princomp() and a principal components analysis is calculated.  This model has 10 principal 
components but the first two components account for most of the variance in the tongue shape 
data.  As Figure 3.8 shows, the first principal component accounts for 66% of the variance and 
the first two components together account for 93% of the variance. Each additional component 
accounts for a very small amount of variance (5% for component 3, 2% for component 4, and 
less than 1% for all the others). Therefore, our most robust results are to be found in looking at 
the first two components.  The higher components are likely to code minor quirks that are only 
present in these particular data that won’t generalize to other similar data sets.
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Figure 3.8.  The cumulative proportion of variance accounted for by the first five 
principal components of tongue shape.

We are using principal components analysis to discover the main correlated patterns of variation 
that distinguish vowels in the tongue shape data set.  We have found so far that the variation in 
these ten variables can be described in terms of just two dimensions of variation. Another way of 
thinking about this is to say that any particular tongue shape in the data set can be described as a 
combination of two basic shapes - two “principal components” of variation.  This is because 
principal components analysis decomposes the data matrix X into two matrices V and U, such 
that X=VT * U, where V is the set of principal components (also called the “loadings” matrix), 
and U is the set of “scores” on those components for each observation.  You can reconstruct the 
data values X from the scores and loadings. The loadings matrix is an abstraction over the data set 
that captures a few main patterns of correlation that are present in the data set, and the scores 
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matrix indicates for each vowel how much of each principal component (positive or negative) can 
be found in the vowel’s tongue shape.  With two principal components each vowel will be 
represented with only two numbers - a score for principal component one and a score for 
principal component two.  The PCA loadings will translate these scores into detailed tongue 
shapes.

To visualize the two main principal components of tongue shape we will plot values from the 
loadings matrix to draw pictures of the tongue shape differences that are captured in the first and 
second principal components.  PCA loadings are z-scores, so to visualize them you take loading 
times standard deviation, then add that to the variable’s mean value to put the loading back into 
the original measurement units. For instance, if principal component 1 has a loading of 0.5 on 
data variable x1, this means that if a vowel has a score of 1 for the first principal component then 
the predicted value of x1 for that vowel is the average tongue position plus 0.5 times the standard 
deviation associated with the first principal component.  

Figure 3.9. The first two principal components of variation in the tongue shape 
data of talker PL1.

The loadings for the first principal component (Table 3.1) are mainly on the y variables - this is a 
high/low component of tongue movement, while the second principal component loadings are 
mainly on the x variables - a front/back component.
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Table 3.1 Loadings of the tongue x and y variables on the first two principal 
components of variation. PC1 is an abbrevation of principal component 1. Values 
near 0 are not listed in the table.

-.15.12.55.44.36.37.43PC2
.37.36.45.5.47.2PC1

y14y10y8y6y2x14x10x8x6x2

We can visualize the principal components of tongue shape variation for this talker by graphing 
weighted deviations from the average tongue shape.  The first two components are shown in 
figure 3.9.  The principal components analysis of tongue shapes “decomposes” all tongue shapes 
into some combination of these two basic tongue shape components, one for the front/back 
location of the tongue and one for the high/low location of the tongue. This two component 
decomposition of tongue shape was not prespecified by me in setting up the analysis, but 
emerges from the data.  To plot PC1 in that figure I took the average locations of the pellets and  
added the standard deviation of PC1 multiplied by the loading (written w in the formula below) 
to get one of the dotted lines and then subtracted the standard deviation times the loading to get 
the other dotted line.  These lines show tongue shapes associated with the variation captured by 
PC1. 

  

€ 

x ji = x i ± s jwji to visualize the variance of variable i encoded in PCj 

------------------------
R note.  Computing the principal components analysis and plotting the results is actually pretty 
easy.  We have some data in PL1 with xy locations of pellets on the tongue.  I chose to use pellets 
2, 6, 8, 10, and 14 for this analysis.  Because the data set only has 11 vowels for this talker we 
can analyze only 11 or fewer variables.

> summary(pc <- princomp(~ x2+x6+x8+x10+x14+y2+y6+y8+y10+y14, data = PL1))

Importance of components:                            
Comp.1    Comp.2     Comp.3     Comp.4      Comp.5 

Standard deviation     15.3389055 9.6094120 4.13258604 2.48945962 1.230628457 
Proportion of Variance  0.6664402 0.2615568 0.04837448 0.01755426 0.004289695 
Cumulative Proportion   0.6664402 0.9279971 0.97637154 0.99392580 0.998215497

The summary produces an “Importance of components” printout.  From this I used the standard 
deviations of components 1 and 2 in producing figure 3.9 (s1 = 15.33, and s2 = 9.6).  Additionally 
the proportion of variance accounted for is reported. I plotted the cumulative proportion of 
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variance accounted for of the first 5 components in figure 3.8.

The object pc contains a number of other results.  For example, the values returned by 
pc$center are the average values for each of the variables (

€ 

x i  in the formula above).  I plotted 
the average values in figure 3.7 and again as the solid lines in figure 3.9.

> pc$center
        x2         x6         x8        x10        x14         y2 
-20.911655 -43.554792 -53.972281 -62.819160 -64.590483 -11.240615 
        y6         y8        y10        y14 
 -5.194050  -7.400377 -17.428613 -40.752770
   
The factor loadings (the wji in the formula above) are saved in pc$center.  I reported these in 
table 3.1 and used them together with the averages and standard deviations to produce figure 3.9.

       
> pc$loadings
   
Loadings:
     Comp.1 Comp.2 
x2   -0.427
x6   -0.369
x8   -0.355  
x10  -0.443
x14  -0.201 -0.549
y2   -0.472        
y6   -0.498 -0.119
y8   -0.452       
y10  -0.360        
y14  -0.368  0.152 

In particular, the plot commands for the left side of figure 3.9 (of PC1) were:

> attach(pc)
> plot(center[1:5]+loadings[1:5,1]*15, center[6:10]+loadings[6:10,1]*15,

ylim=c(-50,10),xlim=c(-80,0),xlab = "x", ylab = "y", type="b",lty=2) 
> points(center[1:5]-loadings[1:5,1]*15, center[6:10]-loadings[6:10,1]*15, 

type="b",lty=2)
> lines(center[1:5],center[6:10])

To produce the right side of the figure (PC2) you replace the standard deviation 15 with the PC2 
value 9.6, and refer to loadings[,2] instead of loadings[,1].
------------------------------

Exercises
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1. Pooled error variance.  At one point I just declared that the pooled variance in the Cherokee 
VOT data is 1297.7.  Show how this number was derived from the data.  Why is this different 
from the overall variance of VOT in this data set ( note: sd(VOT)^2 = 1473.3)?

2. Calculate the sign test contrasting male and female vowel first formant frequency from the data 
in “F1_data.txt”.

3. Below is a matrix of correlations among three variables, x1, x2, and y.  The standard deviations 
of these three variables are: sx1 = 11.88, sx2 = 6.02, and sy = 9.95.  Use these correlations and 
standard deviations to compute a regression formula to predict the value of y from x1 and x2.  
Show your calculations. Use the regression equation to predict the value of y when x1 is 30 and 
x2 is 6.

        y         x1         x2 
y   1.000000  0.7623830 -0.8292570 
x1  0.762383  1.0000000 -0.3596465 
x2 -0.829257 -0.3596465  1.0000000

4. Variations on the t.test() command.  Read the “cherokeeVOT.txt” data with 
read.delim() and try these variations on the t.test() command illustrated in this chapter.

t.test(VOT[year=="1971"],VOT[year=="2001"], alternative="greater")
t.test(VOT~year, alternative="greater")
t.test(VOT~year)

What changes in the results?  What do these changes suggest, as regards the hypothesis being 
tested and the conclusions that you can reach with the test?  Hint: you can look at the help page  
>help(t.test) to see a list of the options taken by the t.test() function.  Do the default 
values always produce the most conservative test?

5. Use the data file “regression.txt”.  Read this data into a data.frame called reg.  Look at the 
results of plot(reg) and compare the graph there to the correlation matrix given by 
cor(reg).  Use lm() to fit three models y~x1, y~x2, y~x1+x2.  Which do you prefer to account 
for variance in y? What is the regression equation? Use the regression equation to predict the 
value of y when x1 is 30 and x2 is 6.

6. Use the data file “chaindata.txt”.  Read this data into a data.frame called chain. Use 
subset() to extract the data for one of the other talkers in the data set (not PL1), and perform 
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a principal components analysis of the tongue shape for this talker. How many factors seem to 
be needed to model the variance in this talker’s productions. See if you can produce graphs of the 
principal components like those in figure 3.9.

7. The F distribution.  I said that it is common to put the larger of two variances as the numerator 
in an F ratio testing whether two variances are equal.  Is this necessary or merely conventional?  
Use the function shade.tails.df(), which you will find on the course web page (don’t forget 
to “source” the function) and find the F value and probability of a more extreme F for these 
values:

    

€ 

sa
2  = 300,     

€ 

sb
2 = 1200, na = 15, nb = 50

Do this once with     

€ 

F = sa
2 sb

2  and once with     

€ 

F = sb
2 sa

2 .
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