
2. Patterns and tests 

In this chapter, I will present two key strategies in the quantitative analysis of linguistic data.  
We will come back to these in several different contexts in later chapters, so this is supposed to 
provide a foundation for those later discussions of how to apply hypothesis testing and 
regression analysis to data.

2.1 Sampling

But first I would like to say something about sampling.  In the “Fundamentals” chapter, I made 
the distinction between a population parameter (Greek letter symbols like µ, σ, σ2) and sample 
statistics (Roman letter symbols like 

€ 

x , s, s2).  These differ like this:  If we take the average 
height of everyone in the room, then the mean value that we come up with is the population 
parameter µ, of the population “everyone in the room”.  But if we would like to think that this 
group of people is representative of a larger group like “everyone at this university” or 
“everyone in this town”, then our measured mean value is a sample statistic 

€ 

x  that may or may 
not be a good estimate of the larger population mean.

In the normal course of events as we study language, we rely on samples to represent larger 
populations. It isn’t practical to directly measure a population parameter.  Imagine trying to find 
the grammaticality of a sentence from everyone who speaks a language!  So we take a small, and 
we hope, representative sample from the population of ultimate interest.

So, what makes a good sample?  To be an adequate representation of a population, the sample 
should be (1) large enough, and (2) random.  Small samples are too sensitive to the effects of the 
occasional “odd” value, and nonrandom samples are likely to have some bias (called sampling 
bias) in them.

To be random it must be the case that every member of the population under study has an equal 
chance of being included in the sample.  Here are two ways in which our linguistic samples are 
usually nonrandom.

1) We limit participation in our research to only certain people. e.g. a consultant must be bilingual 
in a language that the linguist knows, college students are convenient for our listening 
experiments, we design questionnaires and thereby require our participants to be literate.

2) We observe linguistic performance only in certain restricted contexts.  For example, we make 
tape recordings while people are reading a list of words or sentences. We ask for sentence 
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judgments of sentences in a particular order on a questionnaire.

Obviously, it is pretty easy to violate the maxims of good sampling, but what should you do if 
your sample isn’t representative of the population that you would most like to study?  One 
option is to try harder to find a way to get a more random, representative sample.  For instance 
you might collect some data from monolingual speakers and compare this with your data drawn 
from bilingual speakers.  Or you might try conducting a telephone survey, using the listing of 
people in the phone book as your “population”.  And to address the context issue, you might try 
asking people meaningful questions in a natural context, so that they don’t know that you are 
observing their speech.  Or you might simply reverse the order of your list of sentences on the 
questionnaire.

In sum, there is a tradeoff between the feasibility of research and the adequacy of the sample.  
We have to balance huge studies that address tiny questions against small studies that cover a 
wider range of interesting issues.  A useful strategy for the discipline is probably to encourage a 
certain amount “calibration” research that answers limited questions with better sampling.

2.2 Data

Some of this discussion may reveal that I have a particular attitude about what linguistic data is, 
and I think this attitude is not all that unusual but worth stating explicitly.  The data in linguistics 
are any observations about language.  So, I could observe people as they speak or as they listen 
to language, and call this a type of linguistic data.  Additionally, a count of forms used in a text, 
whether it be modern newspaper corpora or ancient carvings, is data. I guess you could say that 
these are observations of people in the act of writing language and we could also observe people 
in the act of reading language as well.  Finally, I think that when you ask a person directly about 
language, their answers are linguistic data.  This includes native speaker judgments, perceptual 
judgments about sounds, and language consultant’s answers to questions like “what is your word 
for finger?”

Let’s consider an observation and some of its variables.

The observation is this: A native speaker of American English judges the grammaticality of the 
sentence “Josie didn’t owe nobody nothing.” to be a 3 on a 7-point scale.

There are a large number of variables associated with this observation.  For example, there are 
some static properties of the person who provided the judgment - gender, age, dialect, 
socioeconomic status, size of vocabulary, linguistic training.  Additionally, aspects of the 
situation in which the judgment occurs may influence the participant.  One common factor is 
what prior judgments were given already in this session.  Perhaps we can’t try all possible 
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orderings of the sentences that we want to test, but we should pay attention to the possibility 
that order matters.  Additionally, the person’s prior experience in judging sentences probably 
matters. I’ve heard syntacticians talk about how their judgments seem to evolve over time and 
sometimes reflect theoretical commitments.

The task given to the participant also may influence the type of answer we get.  For example, we 
may find that a fine-grained judgment task provides greater separation of close cases, or we may 
find that variance goes up with a fine-grained judgment task because the participant tends to 
focus on the task instead of on the sentences being presented.  

We may also try to influence the participant’s performance by instructing them to pay particular 
attention to some aspect of the stimuli or approach the task in a particular way.  I’ve done this to 
no effect (Johnson, Flemming & Wright, 1993) and to startling effect (Johnson, Strand & 
D’Imperio, 1999).  The participants in JFW gave the same answers regardless (so it seemed) of 
the instructions that we gave them.  But the “instruction set manipulation” in JSD changed 
listener’s expectations of the talker and thus changed their performance in a listening experiment.  
My main point here is that how we interact with participants may influence their performance in 
a data collection situation.

An additional, very important task variable is the list of materials.  The context in which a 
judgment occurs influences it greatly.  So if the test sentence appeared in a list that has lots of 
“informal” sentences of the sort that language mavens would cringe at, it might get a higher rating 
than if it appeared in a list of “correct” sentences.

The observation “3 on a 7-point scale” might have been different if we had changed any one of 
these variables.  This large collection of potentially important variables is typical when we study 
complex human behavior, especially learned behavior like language.  There are too many possible 
experiments.  So the question we have to address is: which variables are you interested in 
studying?  Which would you like to ignore?  You have to ignore variables that probably could 
affect the results, and one of the most important elements of research is learning how to ignore 
variables.

This is a question of research methods which lies beyond the scope of this chapter.  However, I 
do want to emphasize that (1) our ability to generalize our findings depends on having a 
representative sample of data - good statistical analysis can’t overcome sampling inadequacy - 
and (2) the observations that we are exploring in linguistics are complex with many potentially 
important variables.  The balancing act that we attempt in research is to stay aware of the 
complexity, but not let it keep us from seeing the big picture.

2.3 Hypothesis testing.
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Now, keeping in mind the complexities in collecting representative samples of linguistic data and 
the complexities of the data themselves, we come to the first of the two main points of this 
chapter - hypothesis testing.

We often want to ask questions about mean values.  Is this average Voice Onset Time different 
from that one?  Do these two constructions receive different average ratings?  Does one variant 
occur more often than another?  These all boil down to the question is 

€ 

x  (the mean of the data xi) 
different from 

€ 

y  (the mean of the data yi)?

The smarty-pants answer is that you just look at the numbers, and they either are different or 
they aren’t. The sample mean simply is what it is. So 

€ 

x  is either the same number as 

€ 

y  or it 
isn’t.  So what we are really interested in is the population parameter estimated by 

€ 

x  and 

€ 

y  - 
call them µx and µy. Given that we know the sample mean values 

€ 

x  and 

€ 

y , can we say with 
some degree of confidence that µx is different from µy?  Since the sample mean is just an estimate 
of the population parameter, if we could measure the error of the sample mean then we could put 
a confidence value on how well it estimates µ.

2.3.1 The Central Limit Theorem.

A key way to approach this is to consider the sampling distribution of 

€ 

x .  Suppose we took 100 
samples from a particular population. What will the distribution of the means of our 100 samples 
look like?

Consider sampling from a uniform distribution of the values 1... 6, i.e. roll a dice.  If we take 
samples of two (roll the dice once, write down the number shown, roll it again, and write down 
that number), we have 62 possible results, as shown in Table 2.1.

Table 2.1.  The possible outcomes of rolling a dice twice - i.e. samples of size two 
from a uniform distribution of the integers 1 ... 6.  The number of the first roll is 
indicated by the row numbers and the number of the second roll is indicated by 
the column number.
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x 65.554.54

6,66,56,46,36,26,16

5,65,55,45,35,25,15

4,64,54,44,34,24,14

3,63,53,43,33,23,13

2,62,52,42,32,22,12

1,61,51,41,31,21,11

654321

Notice that the average of the two rolls is the same for cells in the diagonals. For example, the 
only way to average 6 is to roll 6 in both trials, but there are two ways to average 5.5 - roll a 6 
and then a 5 or a 5 and then a 6.  As you can see from Table 2.1, there are six ways to get an 
average of 3.5 on two rolls of the dice.  Just to drive the point home, excuse the excess of this, the 
average of the following six two dice trials is 3.5 - (6,1), (5,2), (4,3), (3,4), (2,5), and (1,6).  So, if 
we roll two dice, the probability of having an average number of dots equal to 3.5 is 6 times out 
of 36 trials (6 of the 36 cells in table 2.1).

In general the frequency distribution of the mean for two rolls of a dice has a shape like the 
normal distribution - this is shown in Figure 2.1.  This is the beginnings of a proof of the central 
limit theorem, which states that as the number of observations in each sample increases, the 
distribution of the means drawn from these samples tends toward the normal distribution.  We 
can see in this simple example that even though the observations (dice throws) come from a 
uniform distribution in which each number on the dice has an equal probability of 1/6, the 
distribution of the means of just two observations looks remarkably like a normal distribution.  
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Figure 2.1.  The frequency distribution of the mean for the samples illustrated in 
Table 2.1. 

-----------------------
R-note.  Here’s how I made Figure 2.1.  First I entered  a vector “means” that lists the mean 
value of each cell in Table 2.1. Then I entered a vector “b” to mark the edges of the bars that I 
want in the histogram.  Then I plotted the histogram and best fitting normal curve.

means = c(1, 1.5,1.5, 2,2,2, 2.5,2.5,2.5,2.5, 3,3,3,3,3, 
3.5,3.5,3.5,3.5,3.5,3.5, 4,4,4,4,4, 4.5,4.5,4.5,4.5, 5,5,5, 5.5,5.5, 6)
b = c(0.75,1.25,1.75,2.25,2.75,3.25,3.75,4.25,4.75,5.25,5.75,6.25)
hist(means,breaks=b,freq=F)
plot(function(x)dnorm(x,mean=mean(means), sd=sd(means)),0.5,6.5, add=T)
----------------------------
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Before we continue with this discussion of the central limit theorem we need step aside slightly 
to address one question that arises when you look at Figure 2.1.  To the discriminating observer, 
the vertical axis doesn’t seem right.  The probability of averaging 3.5 dots on two rolls of the dice 
is 6/36 = 0.1666.  So, why does the vertical axis in Figure 2.1 go up to 0.3?  What does it mean to 
be labelled “density” and how is probability density different from probability?  

Consider the probability of getting exactly some particular value on a continuous measurement 
scale. For example, if we measure the amount of time it takes someone to respond to a sound, we 
typically measure to some chosen degree of accuracy - typically the nearest millisecond.  
However, in theory we could have produced an arbitrarily precise measurement to the 
nanosecond and beyond.  So, on a continuous measurement scale that permits arbitrarily precise 
values, the probability of finding exactly one particular value, say exactly 500 milliseconds, is 
actually zero because we can always specify some greater degree of precision that will keep our 
observation from being exactly 500 milliseconds - 500.00000001 ms.  So on a continuous 
dimension, we can’t give a probability for a specific value of the measurement variable.  Instead 
we can only state the probability of a region under the cumulative distribution curve.  For 
instance, we can’t say what the probability of a measurement of 500 is, but we can say for 
example that about 16% of the cumulative distribution in figure 2.2 falls to the left of 500 
milliseconds - that given a population like this one (mean = 600, standard deviation = 100) we 
expect 16% of the values in a representative sample to be lower than 500.  

The probability density curve in the bottom panel of figure 2.2 shows this same point, but in 
terms of the area under the curve instead of the value of the function at a particular point.  In the 
probability density function, the area under the curve from 0 to 500 ms is 16% of the total area 
under the curve, so the value of the cumulative density function at 500 ms is 0.16.  This 
relationship is illustrated in figure 2.2.
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Figure 2.2.  The cumulative probability function of the normal curve steadily 
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increases from 0 to 1, while the probability density function (pdf) takes the 
familiar bell-shaped curve.

The probability density that we see in Figures 2.1 and 2.2 indicates the amount of change in (the 
derivative of) the cumulative probability function.  If f(x) is the probability density function, and 
F(x) is the cumulative probability function then the relationship is:

€ 

d
dx

F(x) = f (x) ,     The density function from the cumulative probability function

The upshot is that we can’t expect the density function to have the values on the y-axis that we 
would expect for a cumulative frequency curve, and what we get by going to the trouble of 
defining a probability density function in this way is a method for calculating probability for 
areas under the normal probability density function.

Let’s return now to the main point of Figure 2.1.  We have an equal probability in any particular 
trial of rolling any one of the numbers on the dice - a uniform distribution - but the frequency 
distribution of the sample mean, even of a small sample size of only 2 rolls, follows the normal 
distribution. This is only approximately true with an n of 2.  As we take samples of larger and 
larger n the distribution of the means of those samples becomes more and more perfectly normal. 
In looking at this example of two rolls of the dice, I was struck by how normal the distribution of 
means is for such small samples.  This property of average values - that they tend to fall in a 
normal distribution as n increases - is called the central limit theorem. The practical consequence 
of the central limit theorem is that we can use the normal distribution (or, as we will see, a close 
approximation) to make probability statements about the mean - like we did with Z-scores - even 
though the population distribution is not normal. 

Let’s consider another example - this time of a skewed distribution.  To produce the left side of 
Figure 2.3, I started with a skewed population distribution as shown in the figure and took 1000 
random samples from the distribution with a sample size of 10 data points per sample.  I 
calculated the mean of each of the 1000 samples so that now I have a set of 1000 means. These 
are plotted in a histogram and theoretical curve of the histogram that indicate that the frequency 
distribution of the mean is a normal distribution.  Also, a Q-Q plot (not shown) of these has a 
correlation of 0.997 between the normal distribution and the sampling distribution of the mean.

The panel on the right side of Figure 2.3 shows a similar situation except that each of the 1000 
samples had 50 observations in it instead of 10. Again the frequency distribution of the mean is 
normal (the Q-Q correlation was 0.998) and the fit to the normal curve is a little better than it 
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was when we took samples of size 10 from this skewed distribution.

Figure 2.3.  The sampling distribution of the mean taken from 1000 samples that were drawn 
from a skewed population distribution when the sample size was only 10 observations, and 
when the sample size was 50 observations. 

Notice in Figure 2.3 that I report the “standard error” of the 1000 means in each panel. By 
standard error I mean simply the standard deviation of the sample of 1000 means. As is apparent 
from the pictures, the standard deviation of the means is smaller when we take samples of 50 
than when we take samples of 10 from the skewed distribution.  This is a general feature. We are 
able to get a more accurate estimate of the population mean with a larger sample.  You can see 
that this is so if we were to limit our samples to only one observation each.  In such a case, the 
standard error of the mean would be the same as the standard deviation of the population being 
sampled.  With larger samples the effects of observations from the tails of the distribution are 
dampened by the more frequently occurring observations from the middle of the distribution.

In fact, this value, the standard deviation of a sample of means, tells us just that - how accurately 
can we measure the mean of our raw data population.  If you take a bunch of different samples 
and find that their means are really different from each other, then you have to wonder how 
accurate any one particular mean is when it comes to estimating the true mean of the population.  
Clearly one factor that matters is the size of the sample.  The means drawn from samples of size 
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10 were much more spread out than were the means drawn from samples of size 50.  Next we’ll 
look at another factor that determines how accurately we can measure the population mean from 
samples drawn from that population.

-----------------------
R-note.  To explore the central limit theorem I wrote a function in R called central.limit(). 
Then to produce the graphs shown in Figure 2.3 all I had to do was type:

source("central.limit")
par(mfrow=c(1,2))  # to have one row with two graphs
central.limit(10) # to make the first graph
central.limit(50) # to make the second graph

I also made it so we can look at a Q-Q plot of the distribution of the means by changing the 
function call slightly.

central.limit(10,qq=TRUE)

I put a little effort into this central.limit() function so that I could change the shape of the 
population distribution, change the sample size, and the number of samples drawn, and to add 
some information to the output.  Here’s the definition of central.limit() that I stored in a 
text file called “central.limit” and that is read into R with the source() command above.

#--------- central.limit ---------------
#
#The input parameters are:
# n - size of each sample 
# m - number of samples of size n to select
# qq - TRUE means show the Q-Q plots
# df1, df2 - the df of the F() distribution from which samples are drawn
# xlow, xhigh - x-axis limits for plots

central.limit = function(n=15,m=1000,qq=FALSE,df1=6,df2=200,xlow=0,xhigh=2.5) 
{

means = vector() # I hereby declare that "means" is a vector

for (i in 1:m) {  # get m samples from a skewed distribution
data= rf(n,df1,df2)  # the F() distribution is nice and skewed
means[i] = mean(data)  # means is our array of means

}
if (qq) {  # call with TRUE and it makes the q-q plots

x=qqnorm(means)$x
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qqline(means)
caption = paste("n =",n,", Correlation = ",signif(cor(means,x),3))
mtext(caption)

} else {  # the default behavior
title = paste("Sample size = ",n)
hist(means, xlim = c(xlow,xhigh),main=title,freq=F)
plot(function(x)dnorm(x,mean=mean(means), sd=sd(means)), xlow, 

xhigh, add=T)
plot(function(x)df(x,df1,df2),xlow,xhigh,add=T)
caption = paste("Standard error = ",signif(sd(means),3))
mtext(caption)

}
}

This looks pretty complicated, I know, but I really think it is worth knowing how to put 
together an R function because (1) being able to write functions is one of the strengths of R, and 
(2) having a function that does exactly what you want done is extremely valuable.  I do a number 
of new things in this function, but I also do a number of things that we saw in the first chapter.  
For example, we saw earlier how to sample randomly from the F distribution using the rf() 
command, and we saw how to plot a histogram together with a normal distribution curve.  We 
also saw earlier how to draw Q-Q plots.  So really, this function just puts together a number of 
things that we already know how to do.

There are only three new R capabilities that I used in writing the central.limit() function:

function().  The first is that central.limit() shows how to create a new command in R 
using the function() command.  For example, this line:

>square = function(x) {return(x*x)}

creates, or defines, a function called square() that returns the square (x times x) of the input 
value.  So now if you enter:

>square(1532)

R will return with the number “2347024”.  Note that in my definition of “central.limit()” I gave 
each input parameter a default value.  This way the user doesn’t have to enter values for these 
parameters, but can instead pick and choose which variable names to set manually. Because I set 
default values for the input variables in the central limit function, central.limit(df1=3) is a 
legal command that works so that the default values are used for each input parameter except 
df1. You can save function definitions in text files and use the source() command to read them 
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into R and make them available for use.

for (i...). The central.limit() function shows how to use a “for loop” to do 
something over and over.  I wanted to draw lots (m) of random samples from the skewed F 
distribution, store all of the means of these samples and then make a histogram of the means.  So, 
I used a “for loop” to execute two commands over and over:

data= rf(n,df1,df2)  
means[i] = mean(data)  

The first one draws a new random sample of n data points from the F distribution, and the 
second one calculates the mean of this sample and stores it in the ith location in the “means” 
vector.  By putting these two commands inside the following lines we indicate that we want the 
variable i to start with a value of 1 and we want to repeat the commands bracketed by {...} 
counting up from i=1 until i=m.  This gives us a vector of m mean values stored in means[1]... 
means[m].

for (i in 1:m) { 
# my repeated stuff here

}

if (). Finally, central.limit() shows how to use an “if statement” to choose to do one set 
of commands or another.  I wanted to have the option to look at a histogram and report the 
standard deviation, or to look at a Q-Q plot and report the correlation with the normal 
distribution.  So, I had central.limit() choose one of these two options depending on whether the 
input parameter “qq” is TRUE or FALSE.

if (qq) {  
# do this if “qq” is TRUE

} else {  
# do this if “qq” is not TRUE

}

------------------------------

I made a new version of central.limit() that I decided to call central.limit.norm() 
because instead of sampling from a skewed population distribution, I sampled from a normal 
distribution.  In all other regards central.limit.norm() is exactly like central.limit().  
Figure 2.4 shows the population distribution (notice that now it is a normal distribution), a 
histogram of 5,000 means drawn from the population, and a normal curve fit to the histogram of 
means.  The panels on the left had a population standard deviation (σ) of 1, while the panels on 
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the right had a σ of 0.6.  The top panels had a sample size (n) of 15, while for the bottom panels 
n=50.

We saw in figure 2.3 that our estimate of µ was more accurate (the standard deviation of 

€ 

x  was 
smaller) when the sample size increased. What we see in figure 2.4 is that the error of our 
estimates of µ are also smaller when the standard deviation of the population (σ) is smaller. In 
fact, figure 2.4 makes it clear that the standard error of the mean depends on both sample size and 
σ.  So, we saw earlier in figure 2.3 that the distribution of sample means 

€ 

x  is more tightly 
focused around the true population mean µ when the sample n is larger.  What we see in figure 
2.4 is that the distribution of sample means is also more tightly focused around the true mean 
when the population distribution is smaller.

Check this out.  Let’s abbreviate the standard error of the mean SE - this is the standard deviation 
of 

€ 

x  values that we calculate from successive samples from a population and it indicates how 
accurately we can estimate the population mean µ from a random sample of data drawn from that 
population.  It turns out (as you might expect from the relationships apparent in Figure 2.4) that 
you can measure the standard error of the mean from a single sample - it isn’t necessary to take 
thousands of samples and measure SE directly from the distribution of means. It is a good thing. 
Can you imagine having to perform every experiment 1000 times so you can measure SE 
directly? The relationship between SE and σ (or our sample estimate of σ, s) is:

€ 

SE = sx =
σ
n

Standard error of the mean: population

€ 

SE = sx =
sx
n

Standard error of the mean: sample
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Figure 2.4.  The sampling distribution of the mean of a normal distribution is a 
function of sample size and the population standard deviation (σ).  Right panels: 
the population distribution has a σ of 1.  Left panels: σ is 0.6. Top panels: Sample 
size (n) was 15.  Bottom panels: n is 50.

You can test this out on the values shown in Figure 2.4:

€ 

σ
n

= 1
15

= 0.258

€ 

σ
n

= 0.6
15

= 0.155
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σ
n

= 1
50

= 0.141

€ 

σ
n

= 0.6
50

= 0.0849

The calculated values are almost exactly the same as the measured values of the standard 
deviation of the set of 5000 means.

2.3.2 Score keeping.

Here’s what we’ve got so far about how to test hypotheses regarding means.

1) You can make probability statements about variables in normal distributions.
2) You can estimate the parameters of empirical distributions as the least squares 

estimates of 

€ 

x  and s.
3) Means themselves, of samples drawn from a population, fall in a normal distribution.
4) You can estimate the standard error (SE) of the normal distribution of 

€ 

x  values from a 
single sample.

What this means for us is that we can make probability statements about means.

2.3.3 H0: µ = 100

Recall that when we wanted to make probability statements about observations using the normal 
distribution, we converted our observation scores into z scores (the number of standard 
deviations different from the mean) using the z score formula.

So, now to test a hypothesis about the population mean (µ) on the basis of our sample mean and 
the standard error of the mean we will use a very similar approach.

€ 

z = xi - x 
s

z-score

€ 

t = x - µ
sx 

t value

However, we usually (almost always) don’t know the population standard deviation. Instead we 
estimate it with the sample standard deviation, and the uncertainty introduced by using s instead 
of σ means that we are off a bit and can’t use the normal distribution to compare 

€ 

x  to µ. Instead, 
to be a little more conservative, we use a distribution (or family of distributions), called the t 
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distribution that takes into account how certain we can be about our estimate of σ.  Just as we 
saw that a larger sample size gives us a more stable estimate of the population mean, so we get a 
better estimate of the population standard deviation with larger sample sizes. So the larger the 
sample size, the closer the t distribution is to normal.  I show this in Figure 2.5 for the normal 
distribution and t distributions for three different sample sizes. 

Figure 2.5. The normal distribution (solid line) and t-distributions for samples of 
size n=21 (dash), n=7 (dot) and n=3 (dot,dash).

So we are using a slightly different distribution to talk about mean values, but the procedure is 
practically the same as if we were using the normal distribution.  Nice that you don’t have to 
learn something totally new.
 
To make a probability statement about a z-score you refer to the normal distribution, and to 
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make a probability statement about a t value you refer to the t distribution.  It may seem odd to 
talk about comparing the sample mean to the population mean because we we can easily calculate 
the sample mean but the population mean is not a value that we can know.  However, if you 
think of this as a way to test a hypothesis, then we have something.  For instance, with the 
Cherokee voice onset time data, where we observed that 

€ 

x  = 84.7 and s = 36.1 for the stops 
produced in 2001, we can now ask whether the population mean µ is different from 100.  Let’s 
just plug the numbers into the formula.

€ 

t =
x − µ

sx 

=
84.7 −100
36.1 26

=
−15.3
7.08

= −2.168

So we can use the formula for t to find that the t value in this test is -2.168.  But what does that 
mean? We were testing the hypothesis that the average VOT value of 84.7 ms is not different 
from 100 ms. This can be written as H0: µ = 100.  Meaning that the null hypothesis (the “no 
difference” hypothesis H0) is that the population mean is 100.  Recall that the statistic t is 
analogous to z - it measures how different the sample mean 

€ 

x  is from the hypothesized 
population mean µ, as measured in units of the standard error of the mean.  As we saw in chapter 
1, observations that are more than 1.96 standard deviations away from the mean in a normal 
distribution are pretty unlikely - only 5% of the area under the normal curve. So this t value of     
-2.168  (a little more than 2 standard errors less than the hypothesized mean) might be a pretty 
unlikely one to find if the population mean is actually 100 ms.  

How unlikely?  Well, the probability density function of t with 25 degrees of freedom (since we 
had 26 observations in the VOT data set) shows that only 2% of all t values in this distribution 
are less than -2.16 (Figure 2.6).  Recall that we are evaluating the null hypothesis that µ = 100.  
Therefore, this probability value says that if we assume that µ = 100 it is pretty unlikely (2 
times in 100) that we would draw a sample that has an 

€ 

x  of 84.7.  The more likely conclusion 
that we should draw is that the population mean is less than 100.
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Figure 2.6.  The probability density function of t with 25 degrees of freedom.  The   
area of the shaded region at t < -2.168 indicates that only a little over 2% of the 
area under this curve has a t value less than -2.168.

-----------------------
R-note.  I wrote a script to produce t probability density functions with shaded tails such as the 
one in Figure 2.6.   The function is called “shade.tails” (check for it in the “Data sets and scripts” 
part of the course web page), and to produce figure 2.6, I entered the t value we calculated above, 
the degrees of freedom for the t distribution and indicated that we want the probability of a lower 
t value.  The key functions in shade.tails are pt(), the probability of getting a smaller or larger t 
value, and dt() the density functon of t.  For example, the probability of finding a smaller t 
value, given 25 degrees of freedom is calculated by the pt() function.

> shade.tails(2.16,tail="lower",df=25)
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>  pt(-2.168,25)
[1] 0.01994047

This hypothesis test, using the mean, standard deviation, and hypothesized population mean (µ) 
to calculate a t value, and then look up the probability of the t value is a very common statistical 
test.  Therefore, there is a procedure in R that does it for us.  

> vot01 = c(84, 82, 72,193, 129, 77, 72, 81, 45, 74, 102, 77, 187, 79, 86, 59, 
74, 63, 75, 70, 106, 54, 49, 56, 58, 97) 
> vot71 =c(67, 127, 79, 150, 53, 65, 75, 109, 109, 126, 129, 119, 104, 153, 
124, 107, 181, 166) 
> t.test(vot01,mu=100,alternative="less")

One Sample t-test

data:  vot01 
t = -2.1683, df = 25, p-value = 0.01993
alternative hypothesis: true mean is less than 100 
95 percent confidence interval:
     -Inf 96.74298 
sample estimates:
mean of x 
 84.65385 

In this call to t.test(), I entered the name of the vector that contains my data, the 
hypothesized population mean for these data, and that I want to know how likely it is to have a 
lower t value.
-------------------------------------

2.3.4 Type I and Type II error

We seek to test the hypothesis that the true Cherokee VOT in 2001 (µ ) is 100ms by taking a 
sample from a larger population of possible measurements.  If the sample mean (

€ 

x ) is different 
enough from 100ms then we reject this hypothesis otherwise we accept it.  

The question is, how different is different enough?  We can quantify the difference between the 
sample mean and the hypothesized population mean in terms of a probability.  As we saw 
above, if the population mean is 100 ms, then in only 2 times in 100 could we get a sample mean 
of 84.7 or less.  Suppose that we decide then that this is a big enough difference - the probability 
of a sample of 84.7 mean coming from a population that has a mean of 100 ms is pretty darn low 
- so we reject the hypothesis that µ = 100 (let’s label it H0), and instead accept the alternative 
hypothesis that µ < 100 (call this H1 and note that this is only one of several possible alternative 
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hypotheses).

H0: µ = 100 Reject
H1: µ < 100 Accept

We have to admit, though, that 2 times out of 100 this decision would be wrong.  It may be 
unlikely, but it is still possible that H0 is correct -- the population mean really could be 100 ms 
even though our sample mean is a good deal less than 100 ms.  This error probability (0.02) is 
called the probability of making a type I error.  A type I error is that we incorrectly reject the 
null hypothesis - we claim that the population mean is less than 100, when actually we just were 
unlucky and happened to draw one of the 2 out of 100 samples for which the sample mean was 
equal to or less than 84.7.

No matter what the sample mean is, you can’t reject the null hypothesis with certainty because 
the normal distribution extends from negative infinity to positive infinity.  So, even with a 
population mean of 100 ms. we could have a really unlucky sample that has a mean of only 5 ms.  
This probably wouldn’t happen, but it might. So we have to go with our best guess.

In practice, “going with your best guess” means choosing a type I error probability that you are 
willing to tolerate. Most often we are willing to accept a 1 in 20 chance that we just got an 
unlucky sample that leads us to make a type I error.  This means that if the probability of the t 
value that we calculate to test the hypothesis is less than 0.05, we are willing to reject H0 (µ = 
100) and conclude that the sample mean comes from a population that has a mean that is less 
than 100 (µ < 100).  This criterion probability value (p<0.05) is called the “alpha” α level of the 
test.  The α level is the acceptable type I error rate for our hypothesis test.

Table 2.2. The decision to accept or reject the null hypothesis may be wrong in 
two ways.  An incorrect rejection, a type I error, is when we claim that the means 
are different but in reality they aren’t,  and an incorrect acceptance, a type II error, 
is when we claim that the means are not different but in reality they are.

Decision

Reality

correct

correct Type II error

Type I errorreject H0

accept H0

H0 is falseH0 is true
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Where there is a type I error, there must be a type II error also (see table 2.2).  A type II error 
occurs when we incorrectly accept the null hypothesis.  Suppose that we test the hypothesis 
that the average VOT for Cherokee (or at least this speaker) is 100 ms, but the actual true mean 
VOT is 95 ms.  If our sample mean is 95 ms and the standard deviation is again about 35 ms we 
are surely going to conclude that the null hypothesis (H0: µ = 100) is probably true.  At least our 
data is not inconsistent with the hypothesis because 24% of the time (p=0.24) we can get a t 
value that is equal to or less than -0.706.  

€ 

t =
x − µ

sx 

=
95 −100
36.1 26

=
−5

7.08
= −0.706 testing for a small difference

Nonetheless, by accepting the null hypothesis we have made a type II error.  Just as we can 
choose a criterion α level for the acceptable type I error rate, we can also require that our 
statistics avoid type II errors.  The probability of making a type II error is called β, and the value 
we are usually interested in is 1-β, the power of our statistical test. As my example illustrates, to 
avoid type II errors you need to have statistical tests that are sensitive enough to catch small 
differences between the sample mean and the population mean - to detect that 95 really is 
different from 100.  With only 26 observations (n=26) and a standard deviation of 36.1, if we set 
the power of our test to 0.8 (that is accept type II errors 20% of the time with β = 0.2) the 
difference between the hypothesized mean and the true population mean would have to be 18 ms 
before we could detect the difference.  To detect a smaller difference like 5 ms we would have to 
increase the power of our hypothesis test.

You’ll notice that in the calculation of t there are two parameters other than the sample mean and 
the population mean that affect the t value.  These are the standard deviation of the sample (s) 
and the size of the sample (n).  To increase the power of the t test we need to either reduce the 
standard deviation or increase the number of observations.  Sometimes you can reduce the 
standard deviation by controlling some uncontrolled sources of variance.  For example, in this 
VOT data I pooled observations from both /t/ and /k/.  These probably do have overall different 
average VOT, so by pooling them I have inflated the standard deviation.  If we had a sample of all 
/k/ VOTs the standard deviation might be lower and thus the power of the t test greater.  
Generally, though, the best way to increase the power of your test is to get more data.  In this 
case, if we set the probability of a type I error at 0.05, the probability of a type II error at 0.2, 
and we want to be able to detect that 95 ms is different from the hypothesized 100 ms, then we 
need to have an n of 324 observations (see the R note for the magic).

--------------------------
R note.  The R function power.t.test() provides a way to estimate how many 
observations you need to make in order to detect differences between means of any specified 
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magnitude with α and β error probabilities controlled.  In the call below, I specified that I want to 
detect a difference of 5 ms (delta=5), that I expect that the standard deviation of my 
observations will be 36.1 (sd=36.1), and that we are testing whether the sample mean is less 
than the hypothesized mean, not just different one way or the other (alternative = 
"one.sided").  With α = 0.05 (sig.level=0.05) and β = 0.2 (power=0.8), this function 
reports that we need 324 (n = 323.6439) observations to detect the 5 ms difference.

power.t.test(power=0.8,sig.level=0.05,delta=5,sd=36.1,
type="one.sample",alternative="one.sided")

       One-sample t test power calculation

           n = 323.6439
           delta = 5
           sd = 36.1

      sig.level = 0.05
           power = 0.8
      alternative = one.sided 
----------------------------------

Of course, collecting more data is time consuming, so it is wise to ask, as Ilse Lehiste once asked 
me, “sure it is significant, but is it important?”  It may be that a 5 ms. difference is too small to 
be of much practical or theoretical importance, so taking the trouble to collect enough data so that 
we can detect such a small difference is really just a waste of time.

2.4 Correlation.

So far we have been concerned in this chapter with the statistical background assumptions that 
make it possible to test hypotheses about the population mean.  This is the “tests” portion of 
this chapter on “Patterns and tests”.  You can be sure that we will be coming back to this topic in 
several practical applications in chapters to follow.  However, because this chapter is aiming to 
establish some of the basic building blocks that we will return to over and over in the subsequent 
chapters, I would like to suspend the “tests” discussion at this point and turn to the “patterns” 
portion of the chapter.  The aim here is to explain some of the key concepts that underlie studies 
of relationships among variables - in particular to review the conceptual and mathematical 
underpinnings of correlation and regression.  

One way to explore the relationship between two variables is by looking at counts in a 
contingency table.  For example, we have a data set of two measurements of the lowest vocal 
tract resonance frequency - the first formant (F1).  We have F1 values for men and women for the 
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vowels /i/, /e/, /a/, /o/, and /u/ in four different languages (see the data file “F1_data.txt”).  Women 
tend to have shorter vocal tracts than men and thus to have higher resonance frequencies.  This is 
the case in our data set, where the average F1 of the women is 534.6 Hz and the average F1 for 
men is 440.9.  We can construct a contingency table by counting how many of the observations 
in this data set fall above or below the mean on each of the two variables being compared.  For 
example, we have the five vowels  in Sele measured on two variables - male F1and female F1 - 
and we are interested in studying the relationship or correlation between male and female F1 
frequency.  The contingency table in 2.3 then shows the number of times that we have a vowel 
that has female F1 above the average female F1 value while for the same vowel in the same 
language we have male F1 above the male F1 average - this “both above” condition happens six 
times in this small data set.  Most of the other vowels (twelve) have both male and female F1 
falling below their respective means, and in only one vowel was there a discrepancy, where the 
female F1 was above the female mean while the male F1 was below the male F1.

Table 2.3 A 2 X 2 contingency table showing the number of F1 values above or 
below the average F1 for men and women in the small “F1_data.txt” data set.

female F1

112below

abovebelow

60abovemale F1

So, table 2.3 shows how the F1 values fall in a two by two (2 X 2) contingency table. This table 
shows that for a particular vowel in a particular language (say /i/ in Sele), if the male F1 falls 
below the average male F1, then the female F1 for that vowel will probably also fall below the 
average F1 for female speakers.  In only one case does this relationship not hold.  

I guess it is important to keep in mind that Table 2.3 didn’t have to come out this way.  For 
instance, if F1 was not acoustically related to vowel quality, then pairing observations of male 
and female talkers according to which vowel they were producing would not have resulted in 
matched patterns of F1 variation.

Contingency tables are a useful way to see the relationship, or lack of one, between two 
variables, and we will see in a later chapter that when the counts are a good deal larger than these 
- particularly when we have more than 5 or 10 observations even in the smallest cell of the table - 
we can test the strength of the relationship using the χ2 distribution.  However, we threw away a 
lot of information by constructing this contingency table.  From Table 2.3 all we know is that if 
the male F1 is above average so is the female F1, but we don’t know whether they tend to be the 
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same amount above average or if sometimes the amount above average for males is much more 
than it is for females. It would be much better to explore the relationship of these two variables 
without throwing out this information.

Figure 2.7. Nineteen pairs of male and female F1 values drawn from four different 
languages and 4 or 5 vowels in each language.  The grid lines mark the average 
female (vertical line) and male (horizontal line) F1 values.  The diagonal line is the 
best fitting straight line (the linear regression) that relates female F1 to male F1.

In Figure 2.7 you can see the four cells of table 2.3.  There are 6 data points in the upper right 
quadrant of the graph, 12 data points in the lower left, and 1 that just barely ended up in the 
lower right quadrant.  These quadrants were marked in the graph by drawing a dashed line at the 
mean values for the male (441 Hz) and female (535 Hz) talkers.  As you can see, the relationship 
between male and female F1 values goes beyond simply being in one quadrant of the graph or 
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not.  In fact, it looks as if we divide the lower left and the upper right quadrants into quadrants 
again we would still have the relationship, higher male F1 is associated with higher female F1.  
We need a measure of association that will give us a consistent indication of how closely related 
two variables are.

----------------------------
R note.  For the example in Table 2.3 and Figure 2.7, I used data that are stored in a data file that 
I called “F1_data.txt”.  This is laid out like a spread sheet, but it is important to keep in mind 
that it is a text file.  So, if you are preparing data for import into R you should be sure to save 
your data file as a “.txt” file (actually R doesn’t care about the file name extension, but some 
programs do).  The first three lines of my data file look like this:

female male vowel language
391 339 i W.Apache
561 512 e W.Apache
......

The first row contains the names of the variables, and the following rows each contain one pair of 
observations. For example, the first row indicates that the vowel [i] in Western Apache has an F1 
value of 391 Hz for women and 339 Hz  for men.  I used the read.delim() function to read my 
data from the file into an R data.frame object.

f1data = read.delim("F1_data.txt")

This object f1data is composed of four vectors, one for each column in the data file.  So, if I 
would like to see the vector of female F1 measurements I can type the name of the vector - in this 
case it is the name of the data frame, followed by a dollar sign and then the name of the vector.

> f1data$female
 [1] 391 561 826 453 358 454 991 561 398 334 444 796 542 333
[15] 343 520 989 507 357

The command summary() is a useful one for verifying that your data file has been read 
correctly.

> summary(f1data)
     female           male       vowel       language
 Min.   :333.0   Min.   :291.0   a:4   CA English:5  
 1st Qu.:374.5   1st Qu.:317.5   e:4   Ndumbea   :5  
 Median :454.0   Median :367.0   i:4   Sele      :5  
 Mean   :534.6   Mean   :440.9   o:4   W.Apache  :4  
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 3rd Qu.:561.0   3rd Qu.:493.0   u:3                 
 Max.   :991.0   Max.   :809.0  

It is a bit of a pain to keep typing f1data$female to refer to a vector, so the attach() 
command is useful because once a data frame has been attached you don’t have to mention the 
data frame name.

attach(f1data)

Now, having read in the data, here are the commands I used to produce Figure 2.7 (I’ll discuss the 
diagonal line later).

plot(female,male)
lines(x=c(mean(female),mean(female)),y=c(200,900),lty=2)
lines(x=c(200,1100),y=c(mean(male),mean(male)),lty=2)

Finally, as you might expect, R has built in functions to calcluate the covariance and correlation 
between two variables.

> cov(female,male)
[1] 33161.79
> cor(female,male)
[1] 0.9738566
-----------------------------------------

2.4.1 Covariance and correlation.

The key insight in developing a measure of association between two variables is to measure 
deviation from the mean (

€ 

xi − x ).  As we saw in Figure 2.7, the association of male F1 and female 
F1 can be captured by noticing that when female F1 (let’s name this variable x) was higher than 
the female mean, male F1 (y) was also higher than the male mean.  That is, if 

€ 

xi − x  is positive 
then 

€ 

yi − y  is also positive.  What is more, the association is strongest when the magnitudes of 
these deviations are matched - when xi is quite a bit larger than the x mean and yi is also quite a bit 
larger than the y mean.  We can get an overall sense of how strong the association of two variables 
is by multiplying the deviations of x and y and summing these products for all of the 
observations.

€ 

(xi − x )(yi − y )
i= 0

n∑ sum of product of deviations

Notice that if xi is much larger than the mean and yi is also much larger than the mean then the 
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product will be greater than if yi is only a little larger than the mean.  Notice also that if xi is quite 
a bit less than the mean and yi is also quite a bit less than the mean the product will again be a 
large positive value.

The product of the deviations will be larger as we have a larger and larger data set, so we need to 
normalize this value to the size of the data set by taking the average of the paired deviations.  
This average product of the deviations is called the covariance of X and Y.  

    

€ 

(xi − x )(yi − y )
i= 0

n
∑

n
Covariance of X and Y

Of course, the size of a deviation from the mean can be standardized so that we can compare 
deviations from different data sets on the same measurement scale.  We saw that deviation can be 
expressed in units of standard deviation with the z-score normalization.  This is commonly done 
when we measure association too.

    

€ 

xi − x 
sx

 

 
 

 

 
 

yi − y 
sy

 

 
  

 

 
  i= 0

n∑

n
=

( zx )( zy )
i= 0

n
∑

n
= rxy Correlation of X and Y

The main result here is that the correlation coefficient rxy is simply a scaled version of the sum of 
the product of the deviations using the idea that this value will be highest when x and y deviate 
from their means in comparable magnitude.  Correlation is identical to covariance, except that 
correlation is scaled by the standard deviations. So covariance can have any value, and correlation 
ranges from 1 to -1 (perfect positive correlation is 1 and perfect negative correlation is -1). 

2.4.2 The regression line.

Notice in Figure 2.7 that I put a diagonal line through the data points that shows generally the 
relationship between female and male F1.  This line was not drawn by hand, but was calculated 
to be the best fitting straight line that could possibly be drawn.  Well, let’s qualify that by saying 
that it is the best fitting least-squares estimate line.  Here the squared deviations that we are 
trying to minimize as we find the best line are the differences between the predicted values of yi, 
which we will write as yi hat (

€ 

ˆ y i), and the actual values.  So the least squares estimate will 
minimize 

€ 

(yi − ˆ y i)
2∑ .  The difference between the predicted value and the actual value for any 

observation of yi is called the “residual”.
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Here’s how to find the best fitting line.  If we have a perfect correlation between x and y then the 
deviations zx and zy are equal to each other for every observation.  So we have:

€ 

yi − y 
sy

=
xi − x 

sx

deviations are equivalent if rxy = 1

So, if we solve for yi to get the formula for the predicted 

€ 

ˆ y i  if the correlation is perfect, then we 
have:

€ 

ˆ y i =
sy

sx

(xi − x ) + y predicting yi from xi when rxy = 1

Because we want our best prediction even when the correlation isn’t perfect  and the best 
prediction of zy is rxy times zx, then our best prediction of yi is:

€ 

ˆ y i = rxy

sy

sx

(xi − x ) + y predicting yi from xi when rxy ≠ 1

Now to put this into the form of an equation for a straight line (

€ 

ˆ y i = A + Bxi) we let the slope of 

the line 

€ 

B = r
sx

sy

 and the intercept of the line 

€ 

A = y −Bx .

--------------------------------------
R note.  Let’s return to the male versus female vowel F1 data and see if we can find the slope and 
intercept of the best fitting line that relates these two variables.  Note that we are justified in 
fitting a line to these data because when we look at the graph, the relationship looks linear.

Using the correlation function cor() and the standard deviation function sd(), we can calculate 
the slope of the regression line.

cor(male,female)
[1] 0.9738566
sd(male)
[1] 160.3828
sd(female)
[1] 212.3172
B = cor(male,female)*(sd(male)/sd(female))
A = mean(male) - B*mean(female)
A
[1] 47.59615
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B
[1] 0.7356441

Now we have values for A and B, so that we can predict the male F1 value from the female F1:

male F1 = 0.736 * female F1  + 47.6

Consider, for example, what male F1 value we expect if the female F1 is 700 Hz.  The line we 
have in Figure 2.7 leads us to expect a male F1 that is a little higher than 550 Hz.  We get a more 
exact answer by applying the linear regression coefficients.

> B*700 + A
[1] 562.547

----------------------------------

2.4.3. Amount of variance accounted for.

So now we have a method to measure the association between two continuous variables giving us 
the Pearson’s product moment correlation (rxy), and a way to use that measure to determine the 
slope and intercept of the best fitting line that relates x and y (assuming that a linear relationship 
is correct).

So what I’d like to present in this section is a way to use the correlation coefficient to measure 
the percent of variance in y that we can correctly predict as a linear function of x.  Then we will 
see how to put all of this stuff together in R, which naturally has a function that does it all for 
you.

So, we have a statistic rxy that ranges from -1 to 1 that indicates the degree of association between 
two variables.  And we have a linear function 

€ 

ˆ y i = A + Bxi  that uses rxy to predict y from x. What 
we want now is a measure of how much of the variability of y is accurately predicted by this 
linear function.  This will be the “amount of variance accounted for” by our linear model. 

Is it a model or just a line? What’s in a name? If it seems reasonable to think that x might cause y 
we can think of the linear function as a model of the causal relationship and call it a “regression 
model”.  If a causal relationship doesn’t seem reasonable then we’ll speak of the correlation of 
two variables.

As it turns out, you can simply square the correlation coefficient to get the amount of variance in 
y that the line A + Bx accounts for.  I hope that it will add some insight to look at how we come 
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to this conclusion.

€ 

r2 = rxyrxy r-squared, the amount of variance accounted for

The variance of y is 

€ 

sy
2.  We are trying to measure how much of this variance can be accounted for 

by the line 

€ 

ˆ y i = A + Bxi .  The amount of variance that is predicted by this “linear regression 
function” is 

€ 

sˆ y 
2. Which means that the unpredicted variance is the variance of the deviation 

between the actual yi values and the predicted values 

€ 

ˆ y i . Call this unpredicted, or residual, 
variance 

€ 

sy - ˆ y 
2 .  Because we used the optimal rule (the least squares criterion) to relate x and y, 

€ 

sˆ y 
2 

and 

€ 

sy - ˆ y 
2  are not correlated with each other, therefore 

€ 

sy
2 = sˆ y 

2 +sy- ˆ y 
2 .

In words that is: The total variance of y is composed of the part that can be predicted if we know 
x and the part that is independent of x.

If we consider this same relationship in terms of z scores instead of in terms of the raw data 
(

€ 

szy

2 = sz ˆ y 

2 + szy− zˆ y 

2 ) we can equivalently talk about it in terms of proportion of variance because the 

variance 

€ 

sz
2 of the normal distribution is equal to one. Then instead of dividing the total amount of 

variance into a part that can be predicted by the line and a part that remains unpredicted we can 
divide it into a proportion can be predicted and a remainder.

In terms of z scores the line equation y = A+Bx is 

€ 

ˆ z y = rzx  and from the definition of variance, 
then, 

€ 

sˆ z y
2 =

(rzx )2∑
n

= r2 (zx
2 )∑

n
= r2 proportion of variance accounted for is r2

€ 

I guess, in decifering this it helps to know that 

€ 

z x
2∑ =n  because the standard deviation of z is 1.

The key point here is that r2 is equivilent to 

€ 

szˆ y 

2
, the proportion of total variance of y that can be 

predicted by the line.

-------------------------
R note.  We return once again to the male and female vowel F1 data.  Earlier we calculated the 
regression coefficients from the standard deviations and the correlation of male and female F1 
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values.  What I’d like to do here is to introduce the function lm().  This function calculates a 
linear model in which we try to predict one variable from another variable (or several).

In this example, I ask to see a summary of the linear model in which we try to predict male F1 
from female F1.  You can read “male~female” as “male as a function of female”.

> summary(lm(male~female))

Call:
lm(formula = male ~ female)

Residuals:
    Min      1Q  Median      3Q     Max 
-70.619 -18.170   3.767  26.053  51.707 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 47.59615   23.85501   1.995   0.0623 .  
female       0.73564    0.04162  17.676 2.23e-12 ***
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 

Residual standard error: 37.49 on 17 degrees of freedom
Multiple R-Squared: 0.9484, Adjusted R-squared: 0.9454 
F-statistic: 312.4 on 1 and 17 DF,  p-value: 2.230e-12 

Notice that this summary statement gives us a report on several aspects of the linear regression 
fit.  The first section of the report is on the residuals (

€ 

yi − ˆ y i ) that shows their range, median, and 
quartiles.  The second section reports the coefficients.  Notice that lm() calculates the same A 
and B coefficients that we calcuated in explicit formulas above.  But now we also have a t test for 
both the intercept and the slope.   

Finally lm() reports the r2 value and again tests whether this amount of variance accounted for 
is greater than zero - using an F test.  The line F1male = 47.596 + 0.7356*F1female accounts for 
almost 95% of the variance in the male F1 values.

The t tests for A and B (the regression coefficients) above indicate that the slope (labeled 
female) is definitely different from zero but that the intercept may not be reliably different 
from zero.  This means that we might simplify the predictive formula by rerunning lm() 
specifying that we don’t want the equation to have an intercept value.  When I did this using the 
command lm(male ~ female-1), where adding “-1” to the formula means “leave out the 
intercept (A) parameter”, the regression accounted for 99% of the male F1 variance by simply 
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multiplying each paired female F1 value by 0.813.  That is, the regression formula was F1male = 
0.813*F1female.  The two regression analyses (with and without the intercept coefficient) are 
shown in figure 2.8.

Figure 2.8.  Regression lines at y=47.5 + 0.736x (solid line) and y=0.81x (dashed line).
-----------------------------

Exercises

1. Given a skewed distribution (Figure 2.2) what distribution of the mean do you expect for 
samples of size n=1?

2.  I used used the custom R function central.limit() to draw Q-Q plots for samples from 
this skewed distribution for samples of size n=1 through n=8.  Here are the correlations between 
the normal distribution and the distribution of the means for samples of these sizes:
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0.9970.9930.9910.9880.9810.965
864321

correlation
n

What do these values indicate about the distribution of the mean?  Where was the biggest change 
in the correlation?

3. We test the hypothesis that the mean of our data set (

€ 

x  = 113.5, s = 35.9, n = 18) is no 
different from 100, and find that the t is 1.59, and the probability of finding a higher t is 0.065.  
Show how to get this t value and this probability from the t distribution.  What do you conclude 
from this t test?

4. Calculate the covariance and correlation of the following data set by hand (well, use a 
calculator!).  Plot the data and notice that the relationship is such that as Y gets bigger X gets 
smaller.  How do your covariance and correlation values reflect this “down going” trend in the 
data?

X Y
90 -7
82 -0.5
47 8
18 32
12 22
51 17
46 13
2 31
48 11
72 4
18 29
13 32

5. Source() the following function and explore the χ2 distribution.  It is said that the expression

€ 

(n -1)s2 /σ 2  is distributed in a family of distributions (one slightly different distribution for each 
value of n) that is analogous to the t distribution.  Try this function out with different values of n, 
and different population standard deviations.  Describe what this function does in a flow chart or 
a paragraph - whatever makes most sense to you.  What is the effect of choosing samples of 
different size (n = 4 ... 50)?

#--------- chisqu ---------------
#
#The input parameters are:
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# n - size of each sample 
# m - number of samples of size n to select
# mu, sigma - the mean and sd the normal distribution from which samples 
are drawn

chisq = function(n=15,m=5000,mu=0,sigma=1) {

sigsq=(sigma*sigma)
xlow = 0
xhigh = 2*n

vars = vector() # I hereby declare that "vars" is a vector

for (i in 1:m) {  # get m samples
data= rnorm(n,mu,sigma)  # sample the normal dist
vars[i] = var(data)  # vars is our array of variances

}
title = paste("Sample size = ",n, "df = ",n-1)
hist((n-1)*vars/sigsq, xlim=(xlow,xhigh),main=title,freq=F)
plot(function(x)dchisq(x,df=(n-1)),xlow,xhigh,add=T)

}

6. Is the population mean (µ) of the 1971 Cherokee Voice Onset Time data (chapter 1, 
Fundamentals, Table 1) 100 ms?  How sure are you?

7. You want to be able to detect a reaction time difference as small as 20 ms between two 
conditions in a psycholinguistic experiment.  You want your t test to have a criterion type I error 
rate of 0.05 and you want the type II error rate to be 0.2.  The standard deviation in such 
experiments is typically about 60 ms, so how many observations do you have to make in order 
to detect a 20 ms. difference?  Try this with the type of comparison being “paired” instead of 
“two.sample” and with the standard deviation of the differences being 20 ms.  Which method do 
you prefer - two independent samples, or paired observations?
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