
Award BIOS Code Injection

Award BIOS "POST Jump Table" Hacking
a.k.a

Award BIOS Code Injection

Table of Contents

● Foreword
● Tools Of The Trade
● Prerequisite
● Hacking the POST Jump Table

1. BIOS Reverse Engineering and Analysis
2. Assembling Our Custom Procedure
3. Injecting The Procedure
4. Modifying The Jump Table
5. Recombining BIOS Component and Fixing Checksums
6. Testing The Hacked BIOS

● Possible Downside and Its Workaround
● A Very Subtle Bug and Its Patch -- Critical Update
● Closing Note

Foreword

This article is only for bios hackers who already done some bios hacking before, especially Award BIOS and its
variant. If you haven't done any bios hacking before or is not knowledgeable enough in bios, this article maybe
not useful at all. To put simply, this article basically describes an advanced and elegant way to do bios code
injection.

First, let me explain that this article is not an official article, I write it merely as a documentation for myself. But,
I present it to the public, since I think it might be of some use to somebody who does some bios hacking on his/
her own. Any damages that may happen due to applying the technique I explain here is not my responsiblity. If
you try it, then you are on your own. I suggest you to stop reading this article right now if you don't agree on
my terms. It doesn't do any good to you unless you are really curious to know this advanced bios hacking
technique.

Based on my previous two article i.e. Advanced Award BIOS v4.51PG Hacking Tutorial and Pinczakko's Guide to
Award BIOS Reverse Engineering, it's very clear that there's a much more safe and elegant BIOS hacking
technique waiting to be exploited i.e., patching the so called "POST jump table" to include a "jump" into our own
custom procedure in Award Bioses. There are several reasons why I choose this approach to Award BIOS
hacking :

● In theory, this approach is much more safe compared to my previous bios hacking methods. In this
technique, we are incorporating new functionality into the system bios (original.tmp) without replacing
any functionality in the current system bios. In other words, it's safe to do it.

● There are lot of places in the "POST jump table" that are safe to patch, since they only jump to "dummy"
procedures.

● Incorporating an additional routine to bios, specifically Award Bioses, as an isa option rom is not always
guaranteed to be flawless. I've experienced a circumstance where this kind of approach is just
unacceptable. When I implant my experimental expansion-rom based OS-kernel in a hacked Adaptec PCI
SCSI controller card, my old isa option rom based bios patch causes the system to hang if the PCI slots
are heavily populated. This is really unacceptable for me.

● Perhaps, we can add "cool" procedures to POST as cosmetics. Don't you think that's great ?

The following is the detail of the testbed used for this radical modification :

Processor : - Intel Celeron 300A, overclocked to 518 MHz by using ABIT Slotket II adapter
- Intel Pentium II 450, overclocked to 512 MHz

Mainboard : Iwill VD133 (slot 1) with VIA693A northbridge and VIA596B southbridge

Videocard : PowerColor Nvidia Riva TNT2 M64 32MB

RAM : 256MB SDRAM with unknown chip

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (1 of 18)5/25/2006 2:11:13 PM

http://www.geocities.com/mamanzip/Articles/AdvancedBiosModGuide/Advanced_Bios_Hacking.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://geocities.yahoo.com/

Award BIOS Code Injection

Soundcard : Addonics Yamaha YMF724

Network Card : Realtek RTL8139C

Harddrive : Maxtor 20GB 5400RPM

CDROM : Teac 40X

Monitor : Samsung SyncMaster 551v (15')

Operating System : - Windows 2000, used to run the modification tools
- Real-mode DOS, used to flash the BIOS

Perhaps it sounds crazy, but the fact is: the testbed is my computer that I use for working everyday, he..he..
he.. >:). OK, enough with the intro, the next section will explain the tools needed to accomplish this task.
Goodluck.

Tools Of The Trade

You are only as good as your tools. Yeah, this also holds true here. We'll need some tools as follows :

1. IDA Pro disassembler. I'm using IDA Pro version 4.50. You can use your favourite interactive
disassembler. I found IDA Pro is the most suitable for me. We need an interactive disassembler since the
BIOS binary that we're going to disassemble is not a trivial code.

2. A good hex editor. I'm using HexWorkshop ver. 3.02. The most beneficial feature of this hex editor is it's
capability to calculate checksums for the selected range of file that we open inside of it. We use this tool
to edit the bios binary.

3. Nasm, the netwide assembler. Just download it at http://nasm.sourceforge.net. We use this to assemble
the code that will be injected to the BIOS. You won't need nasm if you want to use other assembler such
as fasm as mentioned below.

4. Fasmw, the Flat Assembler for Windows. Google for it and you'll find it on the net. I've been switching to
fasm for a while coz it's much more suitable for BIOS hacking, i.e. direct binary manipulation.

5. A text editor, we use this to edit and write the injected x86 assembly language code. Anyway, notepad is
enough. Note that this is not needed if you use fasm (*_^).

6. Some bios modification tools i.e. :
❍ CBROM, I'm using version 2.08, 2.07 and 1.24.You can download it at www.biosmods.com, in

the download section
❍ MODBIN, there are two types of modbin, modbin6 for Award BIOS ver. 6 and modbin 4.50.xx for

Award BIOS ver. 4.5xPGNM. We need this tool to look at the bios components much more easily.
You can download it at www.biosmods.com, in the download section. This tool also used to
ensure that the checksum of the modified bios is fine.

❍ Awardbios editor version 1.0, Thanks to Mike Tedder a.k.a bpoint for providing us with this very
nice tool. You can download it at http://awdbedit.sourceforge.net/. We use this tool to replace
the original system bios of our Award BIOS (original.tmp) with a new one. Actually this can be
accomplished using any LZH capable compressor such as LHA 2.55 together with a hexeditor.
But, I haven't test the robustness of this method, and it's more easier to do it with Awardbios
editor.

❍ UNIFLASH or Awardflash. This is the tool we use to flash the modified BIOS to the mainboard
BIOS chip. I won't explain how to use it, it's pretty trivial, just read its manual. Awardflash can
be obtained in many places on the web, including in your mainboard manufacturer website.
Uniflash can be downloaded at http://www.uniflash.org. You can also use any windows based
bios flashing tool that may be available from your mainboard vendor.

Note: Actually, among these tools, modbin is the only one that we need. I'm using modbin 4.50.80C.
Read my latest article (Pinczakko's Guide to Award BIOS Patching) in this website to find out why.

7. Some chipset datasheets. This depends on the mainboard bios binary that you're going to dissect. Some
datasheets available at www.rom.by in the PDF-s section. I'm dissecting a VIA693A-596B mainboard. I
have all the needed datasheets at my hand.

Prerequisite

There are some stuff that I won't explain here and it's your homework that you should do to comprehend this
article :

● The most important thing is you have to be able to program and understand x86 assembly language. If
you don't know it, then you'd better start learning it. I'm using masm, nasm and fasm syntax
throughout this article. All of them are variant of Intel syntax.

● How to program in x86 real mode. The POST (Power On-Self Test) routine in the BIOS is executed in
real mode. So, if we want to inject code there, it should be executing in real mode.

● You have to be able to comprehend datasheets of mainboard chipsets, i.e. the northbridge and
southbridge. This is not a must. But, if you intend to know how my sample "injected routine" works, you
have to acquire this prerequisite knowledge. In this article I will present an example routine that
reprogram my mainboard chipset to tweak it to achieve better performance in it's memory subsystem.
Basically, this routine reprogram the memory controller of my northbridge. This routine is injected to
POST through the POST jump table.

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (2 of 18)5/25/2006 2:11:13 PM

http://nasm.sourceforge.net/
http://www.biosmods.com/
http://www.biosmods.com/
http://awdbedit.sourceforge.net/
http://www.uniflash.org/
http://www.rom.by/

Award BIOS Code Injection

● How to flash the bios binary into your mainboard. This is a trivial thing to do.
● I strongly encourage you to do at least preliminary reverse engineering on Award BIOS. This is very

useful to comprehend my explanation here. To begin with, you can read my article that explains how to
do it : Pinczakko's Guide to Award BIOS Reverse Engineering. After doing this, if your BIOS is Award
BIOS or it's variant, it's very possible that you will find the "POST jump table" location in its system bios
(original.tmp) part.

Now, we proceed to some more hints and conventions that we have to agreed upon throughout this article. In
this article I will explain how to inject your own code into Award BIOS by patching the POST jump table. But,
before that, let's clarify a few things:

● What I mean by POST is the Power On-Self Test part of the BIOS. The routines in this part do the
testing of the system equipment and other intialization tasks.

● POST routines is part of the system bios (i.e. original.tmp file in Award BIOS).
● POST routines is executed by means of a "jump table" in Award BIOS as explained in Pinczakko's Guide

to Award BIOS Reverse Engineering.
● Based on the result of my BIOS' reverse engineering as explained in Pinczakko's Guide to Award BIOS

Reverse Engineering, it's clear that not all of the "POST jump table" contents are functioning. Some of
them are just "dummy" routines, i.e. doing nothing at all beside just signaling successful execution and
returning. Below is an example : (this snapshot is taken from IDA Pro 4.50 during my reverse
engineering process)

Address Hex Values Mnemonic Comment
000:6276 RAM_POST_TESTS proc near ; CODE XREF: last_E000_POST
+D
E000:6276 ; last_E000_POST+18 ...
E000:6276 8A C1 mov al, cl ; cl = 3
E000:6278 E6 80 out 80h, al ; manufacture's diagnostic
checkpoint
E000:627A 68 00 F0 push 0F000h
E000:627D 0F A1 pop fs ; fs = F000h
E000:627F
E000:627F ;This is the beginning of the call into E000
segment
E000:627F ;POST function table
E000:627F assume fs:F000
E000:627F 2E 8B 05 mov ax, cs:[di] ; in the beginning :
E000:627F ; di = 61C2h ; ax = cs:
[di] = 154Eh
E000:627F ; called from E000:2489 w/
di=61FCh (dummy)
E000:6282 47 inc di ; Increment by 1
E000:6283 47 inc di ; di = di + 2
E000:6284 0B C0 or ax, ax ; Logical Inclusive OR
E000:6286 74 0B jz RAM_post_return ; RAM Post Error
E000:6288 57 push di ; save di
E000:6289 51 push cx ; save cx
E000:628A FF D0 call ax ; call [61C2h] = call 154Eh
E000:628A ; (relative call addr),one
of this call
E000:628A ; won't return in normal
condition
E000:628C 59 pop cx ; restore all
E000:628D 5F pop di
E000:628E 72 03 jb RAM_post_return ; Jump if Below (CF=1)
E000:6290 41 inc cx ; Increment by 1
E000:6291 EB E3 jmp short RAM_POST_TESTS ; Jump
E000:6293 ;

E000:6293
E000:6293 RAM_post_return: ; CODE XREF: RAM_POST_TESTS
+10 j
E000:6293 ; RAM_POST_TESTS+18 j
E000:6293 C3 retn ; Return Near from
Procedure
E000:6293 RAM_POST_TESTS endp
.........
E000:61C2 E0_POST_TESTS_TABLE:
E000:61C2 4E 15 dw 154Eh ; Restore boot flag
E000:61C4 6F 15 dw 156Fh ; Chk_Mem_Refrsh_Toggle

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (3 of 18)5/25/2006 2:11:13 PM

http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html

Award BIOS Code Injection

E000:61C6 71 15 dw 1571h ; keyboard (and its
controller) POST
E000:61C8 D2 16 dw 16D2h ; chksum ROM, check EEPROM
E000:61C8 ; on error generate spkr
tone
E000:61CA 45 17 dw 1745h ; Check CMOS circuitry
E000:61CC 8A 17 dw 178Ah ; "chipset defaults"
initialization
E000:61CC ; file: E0POST.ASM and
CT_TABLE.ASM
E000:61CE 98 17 dw 1798h ; init CPU cache (both
Cyrix and Intel)
E000:61D0 B8 17 dw 17B8h ; init interrupt vector,
also initialize
E000:61D0 ; "signatures" used for
Ext_Bios components
E000:61D0 ; decompression
E000:61D2 4B 19 dw 194Bh ; Init_mainboard_equipment
& CPU microcode
E000:61D2 ; chk ISA CMOS chksum ?
E000:61D4 BC 1A dw 1ABCh ; Check checksum.
Initialize keyboard controller
E000:61D4 ; and set up all of the
40: area data.
E000:61D6 08 1B dw 1B08h ; Relocate extended BIOS
code
E000:61D6 ; init CPU MTRR, PCI REGs
(Video BIOS ?)
E000:61D8 C8 1D dw 1DC8h ; Video_Init (including
EPA proc)
E000:61DA 42 23 dw 2342h
E000:61DC 4E 23 dw 234Eh
E000:61DE 53 23 dw 2353h ; dummy
E000:61E0 55 23 dw 2355h ; dummy
E000:61E2 57 23 dw 2357h ; dummy
E000:61E4 59 23 dw 2359h ; init Programmable Timer
(PIT)
E000:61E6 A5 23 dw 23A5h ; init PIC_1 (programmable
Interrupt Ctlr)
E000:61E8 B6 23 dw 23B6h ; same as above ?
E000:61EA F9 23 dw 23F9h ; dummy
E000:61EC FB 23 dw 23FBh ; init PIC_2
E000:61EE 78 24 dw 2478h ; dummy
E000:61F0 7A 24 dw 247Ah ; dummy
E000:61F2 7A 24 dw 247Ah
E000:61F4 7A 24 dw 247Ah
E000:61F6 7A 24 dw 247Ah
E000:61F8 7C 24 dw 247Ch ; this will call
RAM_POST_tests again
E000:61F8 ; for values below(a.k.a
ISA POST)
E000:61FA 00 00 dw 0
E000:61FA END_E0_POST_TESTS_TABLE
.........
E000:2353 F8 clc ; Clear Carry Flag
E000:2354 C3 retn ; Return Near from
Procedure
E000:2355 ;

E000:2355 F8 clc ; Clear Carry Flag
E000:2356 C3 retn ; Return Near from
Procedure
E000:2357 ;

E000:2357 F8 clc ; Clear Carry Flag
E000:2358 C3 retn ; Return Near from
Procedure
E000:2359
.........
E000:247A sub_E000_247A proc near

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (4 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

E000:247A F8 clc ; Clear Carry Flag
E000:247B C3 retn ; Return Near from
Procedure
E000:247B sub_E000_247A endp
.........

The clc (clear carry flag) routine above is used to signal the caller of the POST routine that everything
went OK.

Hacking the POST Jump Table

Now we've already known all the prerequisite knowledge to do the hack. I'd like to formulate the steps that we
need to do this type of hack :

● Reverse engineer the BIOS to look where the "POST jump table" located in the system bios (original.
tmp). I suggest to begin the reverse engineering process in the bootblock and proceed to system bios
(original.tmp) accordingly.

● Analyze the "POST jump table", and try to find a jump to dummy procedure. If we find one, continue to
next step, otherwise we stop here since it's not possible to carry out this hacking method on the BIOS.

● Assemble our custom procedure using nasm. Note the resulting binary size. Try to minimize the injected
code size to ensure that our injected code will fit into the "free space" of the system bios.

● Extract the genuine system bios (original.tmp) from the bios binary file using AwardBios editor.
● Analyze the system bios using hexeditor to look for padding bytes, where we can inject our code. If we

don't find any suitable area, then we're out of luck and cannot proceed to do the hack :(. But, It think
this is a very seldom case.

● Inject our assembled custom procedure to the extracted system bios (original.tmp) by using hexeditor.
● Modify the "POST jump table" to include a jump to our procedure. We are using hexeditor to edit the

system bios "POST jump table".
● Replace the genuine system bios (original.tmp) with the hacked system bios by using AwardBios editor.
● Ensure the checksum of the modified BIOS is OK, by opening it using modbin and cbrom. I suggest to

change the BIOS name string using modbin and saving the change, since sometimes in "weird" Award
Bioses there are false checksums that were failed to be patched by Awardbios editor. Do a double check
using modbin and cbrom to ensure the validity of the hacked BIOS binary.

● Flash the hacked bios binary to the mainboard.

By following the above guidelines, we will finally arrive at our hacked BIOS.

1. BIOS Reverse Engineering and Analysis

I have done this, the result can be seen at Pinczakko's Guide to Award BIOS Reverse Engineering. The "POST
jump table" location can be seen above (in the Prerequisite section). It's very clear there that we have several
candidate of dummy procedure jumps that we can replace with our own procedure jump (it's highlighted with
red color).

2. Assembling Our Custom Procedure

The following is the source code of the procedure that I inject into my bios (using nasm syntax):

;---------------- BEGIN TWEAK.ASM
--
BITS 16 ;just to make sure nasm prefix 66 to 32 bit instructions, we're assuming the
uP
 ;is in 16 bits mode up to this point (from the boot state)

 section .text

start:

 pushf
 push eax
 push dx

 mov eax,ioq_reg ;patch the ioq register of the chipset
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (5 of 18)5/25/2006 2:11:13 PM

http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html

Award BIOS Code Injection

 or eax,ioq_mask
 out dx,eax

 mov eax,dram_reg ;patch the DRAM controller of the chipset,
 mov dx,in_port ;i.e. the interleaving part
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,dram_mask
 out dx,eax

 mov eax,bank_reg ;Allow pages of different bank to be active simultanoeusly
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,bank_mask
 out dx,eax

 mov eax,tlb_reg ;Activate Fast TLB lookup
 mov dx,in_port
 out dx,eax
 mov dx,out_port
 in eax,dx
 or eax,tlb_mask
 out dx,eax

 pop dx
 pop eax
 popf

 clc ;indicate that this POST routine successful
 retn ;return near to the header of the rom file

 section .data

 in_port equ 0cf8h
 out_port equ 0cfch
 dram_mask equ 00020202h
 dram_reg equ 80000064h
 ioq_mask equ 00000080h
 ioq_reg equ 80000050h
 bank_mask equ 20000840h
 bank_reg equ 80000068h
 tlb_mask equ 00000008h
 tlb_reg equ 8000006ch
;---------------- END TWEAK.ASM
--

The code is assembled using nasm with the invocation syntax :

nasm -fbin tweak.asm -o tweak.bin

The resulting binary file is tweak.bin. The following is the hex-dump of this binary in hexworkshop v3.02

Address Hexadecimal Values ASCII
00000000 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRf.P......f..
00000010 FC0C 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d.
00000020 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0202f....f.f...
00000030 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......f..
00000040 FC0C 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.l.
00000050 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0800f....f.f...
00000060 0000 66EF 5A66 589D F8C3 ..f.ZfX...

The dump above shows that we need 0x6A bytes (106 bytes) free space to inject this code in system bios.

3. Injecting The Procedure

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (6 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

Now,extract the system bios by using AwardBios editor. It's very simple, just open the bios file then select the
System BIOS tree-item in the left pane, then click the Action|Extract File to save the system bios as a
separate uncompressed binary file. As convention in this article, let's name it original.tmp.

Then, open original.tmp using hexeditor. In my original.tmp, I found a lot of padding FFh bytes in the end of
segment E000h. Perhaps, this quite confusing at first, let me clarify what I mean: In my previous Award BIOS
reverse engineering article, I found that the POST jump table resides in the E000h segment and the jump table
contains addresses in Little-Endian 16 bit value. This means that the jump table is only for intra-segment jumps,
hence, our injected procedure must reside in the same segment as the POST jump table itself, i.e. segment
E000h. So, the "free space" that can be used for our procedure must reside in segment E000h. Most of the
time this "free space" is padding bytes.

If you still confused, let me refresh your memory about the mapping between original.tmp in the real system
address space and in the hexeditor that we use. Original.tmp size is 128KB, it uses the E000h and F000h
segment during it's execution, so, if you see address 0000 0000h in your hexeditor for this file, it's basically
address E000:0000h when original.tmp gets executed, and so forth. Due to this fact, we have to look for "free
space", i.e. unused area or padding bytes below the address 0001 0000h in the hexeditor.

Below is the snapshot of the beginning of the padding bytes in both IDA Pro 4.50 and Hexworkshop v3.02 for
exactly the same address.

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment
E000:EFE0 C3 db 0C3h ; +
E000:EFE1 00 db 0 ;
E000:EFE2 00 db 0 ;
E000:EFE3 00 db 0 ;
E000:EFE4 00 db 0 ;
E000:EFE5 00 db 0 ;
E000:EFE6 00 db 0 ;
E000:EFE7 00 db 0 ;
E000:EFE8 00 db 0 ;
E000:EFE9 00 db 0 ;
E000:EFEA 00 db 0 ;
E000:EFEB 00 db 0 ;
E000:EFEC 00 db 0 ;
E000:EFED 00 db 0 ;
E000:EFEE 00 db 0 ;
E000:EFEF 00 db 0 ;
E000:EFF0 FF db 0FFh ;
E000:EFF1 FF db 0FFh ;
E000:EFF2 FF db 0FFh ;
E000:EFF3 FF db 0FFh ;
E000:EFF4 FF db 0FFh ;
E000:EFF5 FF db 0FFh ;
E000:EFF6 FF db 0FFh ;
E000:EFF7 FF db 0FFh ;
E000:EFF8 FF db 0FFh ;
E000:EFF9 FF db 0FFh ;
E000:EFFA FF db 0FFh ;
E000:EFFB FF db 0FFh ;
E000:EFFC FF db 0FFh ;
E000:EFFD FF db 0FFh ;
E000:EFFE FF db 0FFh ;
E000:EFFF FF db 0FFh ;

In Hexworkshop 3.02:

Address Hex values ASCII
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFF0 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

Looking at the amount of padding bytes in original.tmp, we know that we have enough space to do the code
injection. So, what we need to do is: use the hexeditor to replace 106 bytes beginning at E000:EFF0h
(0000EFF0h) with the code that we already assembled (in 16-bit x86 executable binary format) in the previous
step. In hexworkshop, this step is trivial, just open original.tmp and tweak.bin in the same hexworkshop,
then copy and paste tweak.bin contents to original.bin, that's it :). The result in hexworkshop as follows (the

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (7 of 18)5/25/2006 2:11:13 PM

http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html
http://www.geocities.com/mamanzip/Articles/Award_Bios_RE/Award_Bios_RE_guide.html

Award BIOS Code Injection

hex-values highlighted in red is the injected code):

Address Hex values ASCII
0000EFD0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFF0 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRf.P......f..
0000F000 FC0C 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d.
0000F010 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0202f....f.f...
0000F020 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......f..
0000F030 FC0C 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.l.
0000F040 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0800f....f.f...
0000F050 0000 66EF 5A66 589D F8C3 FFFF FFFF FFFF ..f.ZfX.........
0000F060 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
0000F070 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

If you eager to know what the code above accomplished, I provide the snapshot of my chipset datasheet below.
Unfortunately, you still need know PCI protocol to make use of it. This is the snapshot for PCI device at address
bus 0 - device 0 - function 0, i.e. the hostbridge of my mainboard.

Device 0 Configuration Registers - Host Bridge
These registers are normally programmed once at system
initialization time.
Host CPU Control
Device 0 Offset 50 •ERequest Phase Control (00h) RW
7 CPU Hardwired IOQ (In Order Queue) Size
 Default per strap on pin MAB11#During reset. This
 register can be written 0 to restrict the chip to one
 level of IOQ.
 0 1-Level
 1 4-Level
6 Read-Around-Write
 0 Disable ...default
 1 Enable
5 Reserved .. always reads 0
4 Defer Retry When HLOCK Active
 0 Disable ...default
 1 Enable
 Note: always set this bit to 1
3-1 Reserved .. always reads 0
0 CPU / PCI Master Read DRAM Timing
 0 Start DRAM read after snoop complete def
 1 Start DRAM read before snoop complete

DRAM Control
These registers are normally set at system initialization time
and not accessed after that during normal system operation.
Some of these registers, however, may need to be
programmed using specific sequences during power-up
initialization to properly detect the type and size of installed
memory (refer to the VIA Technologies VT82C693A BIOS
porting guide for details).

SDRAM Settings for Registers 67-64
7 Precharge Command to Active Command Period
 0 TRP = 2T
 1 TRP = 3T ... default
6 Active Command to Precharge Command Period
 0 TRAS = 5T
 1 TRAS = 6T ... default
5-4 CAS Latency
 00 1T
 01 2T
 10 3T default
 11 reserved
3 DIMM Type
 0 Standard
 1 Registered ... default
2 ACTIVE Command to CMD Command Period /
VCM Prefetch Read Latency

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (8 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

 0 2T / 3T
 1 3T / 4T ... default
1-0 Bank Interleave
 00 No Interleave ... default
 01 2-way
 10 4-way
 11 Reserved

Device 0 Offset 68 - DRAM Control (00h) RW
7 SDRAM Open Page Control
 0 Always precharge SDRAM banks when
 accessing EDO/FPG DRAMs.................default
 1 SDRAM banks remain active when accessing
 EDO/FPG banks
6 Bank Page Control
 0 Allow only pages of the same bank active.. def.
 1 Allow pages of different banks to be active
5 Reserved .. always reads 0
4 DRAM Data Latch Delay for EDO/FPG DRAM
 0 Latch DRAM data at CCLK rising edge def.
 1 Delay latch of DRAM data by ? CCLK
3 EDO Test Mode
 0 Disable ...default
 1 Enable
2 Burst Refresh
 0 Disable ...default
 1 Enable (burst 4 times)
1 System Frequency DividerRO
 This bit is latched from MAB8# at the rising edge of RESET# (see table below).
0 System Frequency DividerRO
 This bit is latched from MAB12# at the rising edge of RESET#.
 00 CPU Frequency = 66 MHz
 01 CPU Frequency = 100 MHz
 10 CPU Frequency = 133 MHz
 11 Reserved
Note: See also Rx69[7-6]
Note: MD0 is internally pulled up for EDO detection.

Device 0 Offset 6C - SDRAM Control (00h) RW
7-5 Reserved .. always reads 0
4 CKE Configuration
 0 Rx6B[4]=0 RASA = CSA, RASB = CSB,
 CKE0=CKE0, CKE1 = CKE1
 x Rx6B[4]=1 RASA = CSA, RASB = Float,
 CASB = Float, MAB = Float,
 CKE0 = CKE0, CKE1 = CKE0
 1 Rx6B[4]=0 RASA = CSA, RASB = CSB,
 CKE3-2 = CSA7-6
 CKE5-4 = CSB7-6
 CKE1 = GCKE (Global CKE)
 CKE0 = FENA (FET Enable)
3 Fast TLB Lookup
 0 Disable ...default
 1 Enable
2-0 SDRAM Operation Mode Select
 000 Normal SDRAM Modedefault
 001 NOP Command Enable
 010 All-Banks-Precharge Command Enable
 (CPU-to-DRAM cycles are converted
 to All-Banks-Precharge commands).
 011 MSR Enable
 CPU-to-DRAM cycles are converted to
 commands and the commands are driven on
 MA[14:0]. The BIOS selects an appropriate
 host address for each row of memory such that
 the right commands are generated on
 MA[14:0].
 100 CBR Cycle Enable (if this code is selected,
 CAS-before-RAS refresh is used; if it is not
 selected, RAS-Only refresh is used)

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (9 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

 101 Reserved
 11x Reserved

After this step, we proceed to next step to patch the jump table.

4. Modifying The Jump Table

Modifying the POST jump table is just a trivial task after we do the reverse engineering in the bios binary. As
presented above in the prerequisite section, there are lots of jump table entries that points to "dummy"
procedures.

I decided to redirect/replace the jump table entry at E000:61DEh to point to our injected procedure (at E000:
EFF0h) instead to the previous "dummy" procedure. Below is the snapshot in both IDA Pro 4.50 and
Hexworkshop, before the modification takes place :

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment
E000:61DC 4E 23 dw 234Eh
E000:61DE 53 23 dw 2353h ; dummy
E000:61E0 55 23 dw 2355h ; dummy
E000:61E2 57 23 dw 2357h ; dummy
E000:61E4 59 23 dw 2359h ; init Programmable Timer (PIT)
E000:61E6 A5 23 dw 23A5h ; init PIC_1 (programmable
Interrupt Ctlr)
E000:61E8 B6 23 dw 23B6h ; same as above ?
E000:61EA F9 23 dw 23F9h ; dummy
E000:61EC FB 23 dw 23FBh ; init PIC_2
E000:61EE 78 24 dw 2478h ; dummy
E000:61F0 7A 24 dw 247Ah ; dummy
E000:61F2 7A 24 dw 247Ah
E000:61F4 7A 24 dw 247Ah
E000:61F6 7A 24 dw 247Ah
.........
E000:2353 F8 clc ; Clear Carry Flag
E000:2354 C3 retn ; Return Near from Procedure
.........

In Hexworkshop 3.02:

Address Hex values ASCII
........
000061D0 B817 4B19 BC1A 081B C81D 4223 4E23 5323 ..K.......B#N#S#
000061E0 5523 5723 5923 A523 B623 F923 FB23 7824 U#W#Y#.#.#.#.#x$
000061F0 7A24 7A24 7A24 7A24 zzzz
........

Below is the snapshot in both IDA Pro 4.50 and Hexworkshop, after the modification takes place :

In IDA Pro 4.50:

Address Hex Values Mnemonic Comment
E000:61DC 4E 23 dw 234Eh
E000:61DE F0 EF dw 0EFF0h ;jump to our injected code
E000:61E0 55 23 dw 2355h
.........
E000:EFF0 9C pushf ; Push Flags Register onto
the Stack
E000:EFF1 66 50 push eax
E000:EFF3 52 push dx
E000:EFF4 66 B8 50 00 00 80 mov eax, 80000050h
E000:EFFA BA F8 0C mov dx, 0CF8h
E000:EFFD 66 EF out dx, eax
E000:EFFF BA FC 0C mov dx, 0CFCh
E000:F002 66 ED in eax, dx
E000:F004 66 0D 80 00 00 00 or eax, 80h ; Logical Inclusive OR

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (10 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

E000:F00A 66 EF out dx, eax
E000:F00C 66 B8 64 00 00 80 mov eax, 80000064h
E000:F012 BA F8 0C mov dx, 0CF8h
E000:F015 66 EF out dx, eax
E000:F017
E000:F017 loc_EF017: ; DATA XREF: E000:19975
E000:F017 ; E000:1997A
E000:F017 BA FC 0C mov dx, 0CFCh
E000:F01A
E000:F01A loc_EF01A: ; DATA XREF: E000:19962
E000:F01A 66 ED in eax, dx
E000:F01C 66 0D 02 02 02 00 or eax, 20202h ; Logical Inclusive OR
E000:F022 66 EF out dx, eax
E000:F024 66 B8 68 00 00 80 mov eax, 80000068h
E000:F02A BA F8 0C mov dx, 0CF8h
E000:F02D 66 EF out dx, eax
E000:F02F BA FC 0C mov dx, 0CFCh
E000:F032 66 ED in eax, dx
E000:F034 66 0D 40 08 00 20 or eax, 20000840h ; Logical Inclusive OR
E000:F03A 66 EF out dx, eax
E000:F03C 66 B8 6C 00 00 80 mov eax, 8000006Ch
E000:F042 BA F8 0C mov dx, 0CF8h
E000:F045 66 EF out dx, eax
E000:F047 BA FC 0C mov dx, 0CFCh
E000:F04A 66 ED in eax, dx
E000:F04C 66 0D 08 00 00 00 or eax, 8 ; Logical Inclusive OR
E000:F052 66 EF out dx, eax
E000:F054 5A pop dx
E000:F055 66 58 pop eax
E000:F057 9D popf ; Pop Stack into Flags
Register
E000:F058 F8 clc ; Clear Carry Flag
E000:F059 C3 retn ; Return Near from
Procedure
.........

In Hexworkshop 3.02:

Address Hex values ASCII
........
000061D0 B817 4B19 BC1A 081B C81D 4223 4E23 F0EF ..K.......B#N#..
000061E0 5523 5723 5923 A523 B623 F923 FB23 7824 U#W#Y#.#.#.#.#x$
........
0000EFE0 C300 0000 0000 0000 0000 0000 0000 0000
0000EFF0 9C66 5052 66B8 5000 0080 BAF8 0C66 EFBA .fPRf.P......f..
0000F000 FC0C 66ED 660D 8000 0000 66EF 66B8 6400 ..f.f.....f.f.d.
0000F010 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0202f....f.f...
0000F020 0200 66EF 66B8 6800 0080 BAF8 0C66 EFBA ..f.f.h......f..
0000F030 FC0C 66ED 660D 4008 0020 66EF 66B8 6C00 ..f.f.@.. f.f.l.
0000F040 0080 BAF8 0C66 EFBA FC0C 66ED 660D 0800f....f.f...
0000F050 0000 66EF 5A66 589D F8C3 FFFF FFFF FFFF ..f.ZfX.........
........

By now, we've patched original.tmp to suit our need. The next thing to do is combining it back into one
functional bios binary.

5. Recombining BIOS Component and Fixing Checksums

This step is also trivial, just open the previous bios binary from which we extract the original.tmp using
awardbios editor. Then select the System BIOS tree-item in the left pane, and proceed to click the Action|
Replace File menu. After that select the modified original.tmp as the file used to replace the genuine original.
tmp in that bios binary. Then save this change in awardbios editor.

Actually we're done at this point, but some "nasty" Award BIOS sometimes causes awardbios editor failed to fix
its checksum. To guard against this possible bug, open this modified bios binary using modbin, then do some
minor changes, such as changing the bios string and then saving this change in modbin. This step, will causes
modbin to recalculate all checksums and fix the possibly wrong checksums. That's all, voila' we're done :).

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (11 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

6. Testing The Hacked BIOS

Testing is also a trivial task, just flash the modified bios binary. I'm using uniflash to do this in my machine,
since the awardflash is unable to handle my Atmel AT29C020C-90 backup-bios chip that I used in my
mainboard, whereas uniflash v1.34 can handle flawlessly. Thanks to Ondrej Zary a.k.a Rainbow, who provide us
with this great uniflash bios flashing utility. Thumbs up for all uniflash developer and contributor out there :).

Possible Downside and Its Workaround

During my experiment using this method to patch my bios, I encounter a weird situation that confusing at first.
The bug that I encounter would hang my machine at boot, but it's very seldom and hard to reproduce, i.e.
around 1 out of 30 tries. This bug is in effect if the following jump table modification is carried out.

Note : 1. The modification I explained in the previous sections proved to be bug free after lots of testing and
verifications.
2. The code is injected in the same place as explained in the previous sections.

The following is the jump table before the "buggy" patch incorporated :

Address Hex Values Mnemonic Comment
E000:61DE 53 23 dw 2353h ; dummy
E000:61E0 55 23 dw 2355h ; dummy
E000:61E2 57 23 dw 2357h ; dummy
E000:61E4 59 23 dw 2359h ; init Programmable Timer (PIT)
E000:61E6 A5 23 dw 23A5h ; init PIC_1 (programmable
Interrupt Ctlr)
E000:61E8 B6 23 dw 23B6h ; same as above ?
E000:61EA F9 23 dw 23F9h ; dummy
E000:61EC FB 23 dw 23FBh ; init PIC_2
E000:61EE 78 24 dw 2478h ; dummy
E000:61F0 7A 24 dw 247Ah ; dummy
E000:61F2 7A 24 dw 247Ah
E000:61F4 7A 24 dw 247Ah
E000:61F6 7A 24 dw 247Ah
.........

The following is the jump table after the "buggy" patch incorporated :

Address Hex Values Mnemonic Comment
E000:61DE 53 23 dw 2353h ; dummy
E000:61E0 55 23 dw 2355h ; dummy
E000:61E2 57 23 dw 2357h ; dummy
E000:61E4 59 23 dw 2359h ; init Programmable Timer (PIT)
E000:61E6 A5 23 dw 23A5h ; init PIC_1 (programmable
Interrupt Ctlr)
E000:61E8 B6 23 dw 23B6h ; same as above ?
E000:61EA F9 23 dw 23F9h ; dummy
E000:61EC FB 23 dw 23FBh ; init PIC_2
E000:61EE 78 24 dw 2478h ; dummy
E000:61F0 F0 EF dw EFF0h ; dummy
E000:61F2 7A 24 dw 247Ah
E000:61F4 7A 24 dw 247Ah
E000:61F6 7A 24 dw 247Ah
.........

After further analysis, I conclude that this kind of bug very possibly related to timing issue and race condition
during the code execution in POST. If we take a look closely at the jump table redirection, we see that this bug
occur if we modify/redirect the jump table entry after the initialization of the Programmable Interrupt Controller
(PIC) in the mainboard. Perhaps, the best way to avoid this is to place our jump table modification before the
PIC initialization. Based on my testing result, doing so proved to be flawless and successfully eradicate the bug.
I summarised some guidelines to avoid this bug in your jump table modification below :

● Analyze your code carefully and preserve the machine state during the execution of your code and don't
forget to restore the machine state after execution of your code. The machine state I mean here is the
registers affected by your code, such as the general purpose registers and the flag register. I've been

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (12 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

bitten by this bug due to not preserving the flag register.
● Only save the registers and flags that are used/influenced by your routines as I already shown in my

flawlessly executed example in the Assembling Our Custom Procedure section above.
● Don't forget to clear the carry flag (execute clc) prior to returning from your custom procedure. This is

needed in Award Bioses to indicate that the POST procedure (in this case our injected custom procedure)
is successfully executed.

● Patch/redirect the jump table entry only before the Programmable Interrupt Controller (PIC)
initialization. This is perhaps a quite weird advice, but based on my experience, bios is a very strict
software component in terms of timing. I don't guarantee that my assumption in this case is strictly
right, but that's the best logical explanation to the bug that I encounter during my modification journey.
Also, I have to underline that the sample jump table modification in the Modifying The Jump Table
section is flawless and have been tested thoroughly.

That's all about the possible downsides of this method and their workaround. I'm not an experienced hardware
hacker, thus it's possible that my explanation in this section is wrong. I really sorry about that, since I'm still in
the process of learning about this subject too.

Critical Update

A Very Subtle Bug and Its Patch

After a more thorough testing, the bug that's caused by a race condition as explained in the previous section is
not eradicated completely yet. It's true that previous explanation was being written after only up-to 30-40 boot-
reboot cycle. With a thorough (a few hundred times) testing I found out that the bug still occured in around once
in 50-60 boot-reboot cycle. After analyzing the previous patch that I made, I'm not aware that it has a bug. Only
after a careful code-reading and code-execution-timing-scenario analysis I found out that the patch above was
the major cause of the bug. The solution is to loosen the timing during the PCI cycles used to initialize the
chipset registers. The working and tested solution for exactly the same purpose as the patch described in the
above section is provided below in Fasm syntax. It takes more space, but it works perfectly.

;------------------------------ file: mem_optimize.asm

use16

start:
 pushf
 cli

 mov cx, 0x50 ;patch the ioq register of the chipset
 call Read_PCI_Bus0_Byte
 or al, 0x80
 mov cx, 0x50
 call Write_PCI_Bus0_Byte

 mov cx, 0x64 ;DRAM Bank 0/1 Interleave = 4-way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x64
 call Write_PCI_Bus0_Byte

 mov cx, 0x65 ;DRAM Bank 2/3 Interleave = 4-way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x65
 call Write_PCI_Bus0_Byte

 mov cx, 0x66 ;DRAM Bank 4/5 Interleave = 4-way
 call Read_PCI_Bus0_Byte
 or al, 2
 mov cx, 0x66
 call Write_PCI_Bus0_Byte

 mov cx, 0x67 ;DRAM Bank 6/7 Interleave = 4-way
 call Read_PCI_Bus0_Byte
 or al, 2

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (13 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

 mov cx, 0x67
 call Write_PCI_Bus0_Byte

 mov cx, 0x68 ;Allow pages of different bank to be active
simultanoeusly
 call Read_PCI_Bus0_Byte
 or al, 0x44
 mov cx, 0x68
 call Write_PCI_Bus0_Byte

 mov cx, 0x69 ;Fast DRAM Precharge for Different Bank
 call Read_PCI_Bus0_Byte
 or al, 0x8
 mov cx, 0x69
 call Write_PCI_Bus0_Byte

 mov cx, 0x6C ;Activate Fast TLB lookup
 call Read_PCI_Bus0_Byte
 or al, 0x8
 mov cx, 0x6C
 call Write_PCI_Bus0_Byte

 popf

 clc ;indicate that this POST routine successful
 retn ;return near to the header of the rom file

;-- Read_PCI_Byte__ --
;in: cx = dev_func_offset_addr
;out: al = reg_value

Read_PCI_Bus0_Byte:
 mov ax, 8000h
 shl eax, 10h
 mov ax, cx
 and al, 0FCh
 mov dx, 0CF8h
 out dx, eax
 mov dl, 0FCh ; '?'
 mov al, cl
 and al, 3
 add dl, al
 in al, dx
 retn

;-- Write_Bus0_Byte --
;in: cx = dev_func_offset addr
;al = reg_value to write

Write_PCI_Bus0_Byte:
 xchg ax, cx
 shl ecx, 10h
 xchg ax, cx
 mov ax, 8000h
 shl eax, 10h
 mov ax, cx
 and al, 0FCh
 mov dx, 0CF8h
 out dx, eax
 add dl, 4
 or dl, cl
 mov eax, ecx
 shr eax, 10h
 out dx, al
 retn
;------------------------------ file: mem_optimize.asm

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (14 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

Assembling the patch source code in fasmw (fasm for windows) is done by pressing CTRL+F9. As simple as that
(^__^). This new patch only initializes one register at a time and gives enough "CPU clock-cycle" to the PCI bus
intensive routine. Personally, I think that to appropriately initialize a PCI chipset it's not enough just by relaxing
the read-write timing, but more importantly we have to initialize only one register at a time in order to
minimize the "sudden-load" in the chipset. This is especially true for performance-related registers within the
chipset. In my tests for this new patch, I placed the call to the patch in a few places within the POST-jump-table
an everyone of them work flawlessly as expected. The testing has been carried out more than 100 boot-reboot
cycle for each variant.

Below is the comparison from the latest variant that undergoes code-injection.

● Before the code injection, the POST Jump-Table looks like this:

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 4E 15 dw 154Eh ; restore warm-
boot flag
E000:61C4 6F 15 dw 156Fh ; dummy
E000:61C6 71 15 dw 1571h ; initialize KBC
(Keyboard Controller), halt on error
E000:61C8 D2 16 dw 16D2h ; 1. check Fseg
in RAM, beep on-error;
E000:61C8 ; 2. identify
FlashROM chip
E000:61CA 45 17 dw 1745h ; chk CMOS
circuit
E000:61CC 8A 17 dw 178Ah ; Chipset reg
Default values (code in awardext.rom, data in Fseg)
E000:61CE 98 17 dw 1798h ; 1. init CPU
Flags
E000:61CE ; 2. disable A20
E000:61D0 B8 17 dw 17B8h ; 1. init
interrupt vector
E000:61D0 ; 2. initialize
"signatures" used for Ext_BIOS components
E000:61D0 ;
decompression.
E000:61D0 ; 3. init
PwrMgmtCtlr
E000:61D2 4B 19 dw 194Bh ; 1. init FPU
E000:61D2 ; 2. init
microcode (init CPU)
E000:61D2 ; 3. init FSB
(clock gen)
E000:61D2 ; 4. init
W87381D VID regs
E000:61D4 BC 1A dw 1ABCh ; update flags n
BIOS data area
E000:61D6 08 1B dw 1B08h ; 1. NNOPROM n
ROSUPD decompression
E000:61D6 ; 2. Video BIOS
initialization
E000:61D8 C8 1D dw 1DC8h ; init video
controller, video BIOS, EPA Procedure
E000:61DA 42 23 dw 2342h ; init KB??
E000:61DC 4E 23 dw 234Eh ; dummy
E000:61DE 53 23 dw 2353h ; dummy
E000:61E0 55 23 dw 2355h ; dummy
E000:61E2 57 23 dw 2357h ; dummy
E000:61E4 59 23 dw 2359h ; init mobo timer
E000:61E6 A5 23 dw 23A5h ; init Interrupt
Controller
E000:61E8 B6 23 dw 23B6h ; init Interrupt
Controller cont'd
E000:61EA F9 23 dw 23F9h ; dummy
E000:61EC FB 23 dw 23FBh ; init Interrupt
Controller cont'd

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (15 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

E000:61EE 78 24 dw 2478h ; dummy
E000:61F0 7A 24 dw 247Ah ; dummy
E000:61F2 7A 24 dw 247Ah
E000:61F4 7A 24 dw 247Ah
E000:61F6 7A 24 dw 247Ah
E000:61F8 7C 24 dw 247Ch ; call ISA POST
tests (below)
E000:61F8 End_E000_POST_Jmp_Table

● After the code injection, the POST Jump-Table looks like this:

E000:61C2 Begin_E000_POST_Jmp_Table
E000:61C2 4E 15 dw 154Eh
E000:61C4 6F 15 dw 156Fh ; dummy
procedure
E000:61C6 71 15 dw 1571h ; initialize
KBC (Keyboard Controller), halt on error
E000:61C8 D2 16 dw 16D2h ; 1. check
Fseg in RAM, beep on-error;
E000:61C8 ; 2.
identify FlashROM chip
E000:61CA 45 17 dw 1745h ; chk CMOS
circuit
E000:61CC 8A 17 dw 178Ah ; Chipset
reg Default values (code in awardext.rom, data in Fseg)
E000:61CE 98 17 dw 1798h ; 1. init
CPU Flags
E000:61CE ; 2. disable
A20
E000:61D0 B8 17 dw 17B8h ; 1. init
interrupt vector
E000:61D0 ; 2.
initialize "signatures" used for Ext_BIOS components
E000:61D0 ;
decompression.
E000:61D0 ; 3. init
PwrMgmtCtlr
E000:61D2 4B 19 dw 194Bh ; 1. init FPU
E000:61D2 ; 2. init
microcode (init CPU)
E000:61D2 ; 3. init
FSB (clock gen)
E000:61D2 ; 4. init
W87381D VID regs
E000:61D4 F0 EF dw 0EFF0h ;
PatchChipset <--- our patch
E000:61D6 BC 1A dw 1ABCh ; update
flags n BIOS data area
E000:61D8 08 1B dw 1B08h ; 1. NNOPROM
n ROSUPD decompression
E000:61D8 ; 2. Video
BIOS initialization
E000:61DA C8 1D dw 1DC8h ; init video
controller, video BIOS, EPA Procedure
E000:61DC 42 23 dw 2342h ; init KB??
E000:61DE 4E 23 dw 234Eh
E000:61E0 53 23 dw 2353h ; dummy
procedure
E000:61E2 55 23 dw 2355h ; dummy
procedure
E000:61E4 57 23 dw 2357h ; dummy
procedure
E000:61E6 59 23 dw 2359h ; init mobo
timer

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (16 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

E000:61E8 A5 23 dw 23A5h ; init
Interrupt Controller
E000:61EA B6 23 dw 23B6h ; init
Interrupt Controller cont'd
E000:61EC F9 23 dw 23F9h ; dummy
procedure
E000:61EE FB 23 dw 23FBh ; init
Interrupt Controller cont'd
E000:61F0 78 24 dw 2478h ; dummy
procedure
E000:61F2 7A 24 dw 247Ah ; dummy
procedure
E000:61F4 7A 24 dw 247Ah ; dummy
procedure
E000:61F6 7A 24 dw 247Ah ; dummy
procedure
E000:61F8 7C 24 dw 247Ch ; call ISA
POST tests
E000:61F8 End_E000_POST_Jmp_Table
.........
E000:EFF0 Patch_Chipset proc near
E000:EFF0 9C pushf
E000:EFF1 FA cli
E000:EFF2 B9 50 00 mov cx, 50h ; 'P'
E000:EFF5 E8 6D 00 call Read_PCI_Bus0_Byte
E000:EFF8 0C 80 or al, 80h
E000:EFFA B9 50 00 mov cx, 50h ; 'P'
E000:EFFD E8 7F 00 call Write_PCI_Bus0_Byte
E000:F000 B9 64 00 mov cx, 64h ; 'd'
E000:F003 E8 5F 00 call Read_PCI_Bus0_Byte
E000:F006 0C 02 or al, 2
E000:F008 B9 64 00 mov cx, 64h ; 'd'
E000:F00B E8 71 00 call Write_PCI_Bus0_Byte
E000:F00E B9 65 00 mov cx, 65h ; 'e'
E000:F011 E8 51 00 call Read_PCI_Bus0_Byte
E000:F014 0C 02 or al, 2
E000:F016 B9 65 00 mov cx, 65h ; 'e'
E000:F019 E8 63 00 call Write_PCI_Bus0_Byte
E000:F01C B9 66 00 mov cx, 66h ; 'f'
E000:F01F E8 43 00 call Read_PCI_Bus0_Byte
E000:F022 0C 02 or al, 2
E000:F024 B9 66 00 mov cx, 66h ; 'f'
E000:F027 E8 55 00 call Write_PCI_Bus0_Byte
E000:F02A B9 67 00 mov cx, 67h ; 'g'
E000:F02D E8 35 00 call Read_PCI_Bus0_Byte
E000:F030 0C 02 or al, 2
E000:F032 B9 67 00 mov cx, 67h ; 'g'
E000:F035 E8 47 00 call Write_PCI_Bus0_Byte
E000:F038 B9 68 00 mov cx, 68h ; 'h'
E000:F03B E8 27 00 call Read_PCI_Bus0_Byte
E000:F03E 0C 44 or al, 44h
E000:F040 B9 68 00 mov cx, 68h ; 'h'
E000:F043 E8 39 00 call Write_PCI_Bus0_Byte
E000:F046 B9 69 00 mov cx, 69h ; 'i'
E000:F049 E8 19 00 call Read_PCI_Bus0_Byte
E000:F04C 0C 08 or al, 8
E000:F04E B9 69 00 mov cx, 69h ; 'i'
E000:F051 E8 2B 00 call Write_PCI_Bus0_Byte
E000:F054 B9 6C 00 mov cx, 6Ch ; 'l'
E000:F057 E8 0B 00 call Read_PCI_Bus0_Byte
E000:F05A 0C 08 or al, 8
E000:F05C B9 6C 00 mov cx, 6Ch ; 'l'
E000:F05F E8 1D 00 call Write_PCI_Bus0_Byte
E000:F062 9D popf
E000:F063 F8 clc
E000:F064 C3 retn
E000:F064 Patch_Chipset endp
E000:F065
E000:F065 Read_PCI_Bus0_Byte proc near ; CODE XREF:
Patch_Chipset+5

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (17 of 18)5/25/2006 2:11:13 PM

Award BIOS Code Injection

E000:F065 ;
Patch_Chipset+13
E000:F065 B8 00 80 mov ax, 8000h
E000:F068 66 C1 E0 10 shl eax, 10h
E000:F06C 89 C8 mov ax, cx
E000:F06E 24 FC and al, 0FCh
E000:F070 BA F8 0C mov dx, 0CF8h
E000:F073 66 EF out dx, eax
E000:F075 B2 FC mov dl, 0FCh ; '?'
E000:F077 88 C8 mov al, cl
E000:F079 24 03 and al, 3
E000:F07B 00 C2 add dl, al
E000:F07D EC in al, dx
E000:F07E C3 retn
E000:F07E Read_PCI_Bus0_Byte endp
E000:F07E
E000:F07F Write_PCI_Bus0_Byte proc near ; CODE XREF:
Patch_Chipset+D
E000:F07F ;
Patch_Chipset+1B
E000:F07F 91 xchg ax, cx
E000:F080 66 C1 E1 10 shl ecx, 10h
E000:F084 91 xchg ax, cx
E000:F085 B8 00 80 mov ax, 8000h
E000:F088 66 C1 E0 10 shl eax, 10h
E000:F08C 89 C8 mov ax, cx
E000:F08E 24 FC and al, 0FCh
E000:F090 BA F8 0C mov dx, 0CF8h
E000:F093 66 EF out dx, eax
E000:F095 80 C2 04 add dl, 4
E000:F098 08 CA or dl, cl
E000:F09A 66 89 C8 mov eax, ecx
E000:F09D 66 C1 E8 10 shr eax, 10h
E000:F0A1 EE out dx, al
E000:F0A2 C3 retn
E000:F0A2 Write_PCI_Bus0_Byte endp

If you compare both of the jump-table, the latter has a patched jump-table with the jump into the chipset-
patching-procedure located right after the FSB initialization. I've been experimenting with other possibilities,
such as inserting the call into the chipset-patching-procedure inside the "Chipset reg Default values (code in
awardext.rom, data in Fseg)",i.e. call to E000:178Ah in the jump-table and it worked flawlessly.

Closing Note

Finally we're done. Yeah, this bios hacking method is very possibly my ultimate bios hacking trick to date. I
haven't found any new elegant way to accomplish it. But, remember to pay attention to the timing issue for your
injected code. I believe that I might have made obscure mistakes in this article. Thus, it's always open for
corrections and improvements. Thanks for reading this humble article. I hope it's of some use for you.

I'm waiting for any comments, corrections and suggestions from the reader. Don't hesitate to mail me.

copyright © 2004, 2005, 2006 Darmawan M S a.k.a Pinczakko

Return to main page

http://www.geocities.com/mamanzip/Articles/POST_jump_table_hacking.html (18 of 18)5/25/2006 2:11:13 PM

mailto:mamanzip@yahoo.com?subject=Award%20Bios%20POST%20Jump%20Table%20Hacking%20feedback
http://www.geocities.com/mamanzip

	geocities.com
	Award BIOS Code Injection

