Pagei

GCGENETIC

PROGRAMMING

oM THE

FEOCEAMLIMNG

X * OF COMPUTERL

i
BY MEAMS O

SELECTIOMN

Genetic Programming

Pageii
Complex Adaptive Systems
John H. Holland, Christopher Langton, and Stewart W. Wilson, advisors

Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, MIT Press edition
John H. Holland

Toward a Practice of Autonomous Systems: Proceedings of the First European
Conference on Artificial Life
edited by Francisco J. Varelaand Paul Bourgine

Genetic Programming: On the Programming of Computers by
Means of Natural Selection
John R. Koza

Pageiii

Genetic Programming

On the Programming of Computers by Means of Natural Selection
John R. Koza

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

Pageiv
Sixth printing, 1998
© 1992 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying,
recording, or information storage or retrieval) without permission in writing from the publisher.

Set from disks provided by the author.
Printed and bound in the United States of America.

The programs, procedures, and applications presented in this book have been included for their instructional value. The publisher and the
author offer NO WARRANTY OF FITNESS OR MERCHANTABILITY FOR ANY PARTICULAR PURPOSE and accept no liability with
respect to these programs, procedures, and applications.

Pac-Man®—®© 1980 Namco Ltd. All rights reserved.
Library of Congress Catal oging-in-Publication Data

Koza, John R.

Genetic programming: on the programming of computers by means of natural selection/

John R. Koza.

p. cm.—(Complex adaptive systems)

"A Bradford book."

Includes bibliographical references and index.

ISBN 0-262-11170-5

1. Electronic digital computers—Programming. I. Title. I1. Series.

QA76.6.K695 1992

006.3—dc20 92-25785
CIP

Page v

to my mother and father

Page vii

Contents

Preface ix
Acknowledgments Xiii
1 1
Introduction and Overview

2 9
Pervasiveness of the Problem of Program Induction

3 17

Introduction to Genetic Algorithms

4

The Representation Problem for Genetic Algorithms

5
Overview of Genetic Programming

6
Detailed Description of Genetic Programming

7

Four Introductory Examples of Genetic Programming

8

Amount of Processing Required to Solve a Problem

9
Nonrandomness of Genetic Programming

10
Symbolic Regression—Error-Driven Evolution

11
Control—Cost-Driven Evolution

12
Evolution of Emergent Behavior

13
Evolution of Subsumption

14
Entropy-Driven Evolution

15
Evolution of Strategy

16
Co-Evolution

17
Evolution of Classification

18
Iteration, Recursion, and Setting

19
Evolution of Constrained Syntactic Structures

20
Evolution of Building Blocks

121

191

205

237

289

329

357

3%

419

429

459

479

527

Page viii

21
Evolution of Hierarchies of Building Blocks

22
Parallelization of Genetic Programming

23
Ruggedness of Genetic Programming

24
Extraneous V ariables and Functions

25
Operational Issues

26
Review of Genetic Programming

27
Comparison with Other Paradigms

28
Spontaneous Emergence of Self-Replicating and Evolutionarily Self-Improving
Computer Programs

29
Conclusions

Appendix A: Computer Implementation

Appendix B: Problem-Specific Part of Simple LISP Code
Appendix C: Kernel of the Simple LISP Code
Appendix D: Embellishments to the Simple LISP Code
Appendix E: Streamlined Version of EVAL

Appendix F: Editor for Simplifying S-Expressions
Appendix G: Testing the Simple LI1SP Code

Appendix H: Time-Saving Techniques

Appendix I: List of Special Symbols

Appendix J: List of Special Functions

Bibliography

Index

553

563

569

583

597

619

633

643

695

699

705

735

757

765

771

i

783

787

789

791

805

Page ix

Preface

Organization of the Book
Chapter 1 introduces the two main points to be made.
Chapter 2 shows that awide variety of seemingly different problems in a number of fields can be viewed as problems of program induction.

No prior knowledge of conventional genetic algorithms is assumed. Accordingly, chapter 3 describes the conventional genetic agorithm and
introduces certain terms common to the conventional genetic algorithm and genetic programming. The reader who is already familiar with
genetic algorithms may wish to skip this chapter.

Chapter 4 discusses the representation problem for the conventional genetic algorithm operating on fixed-length character strings and
variations of the conventional genetic algorithm dealing with structures more complex and flexible than fixed-length character strings. This
book assumes no prior knowledge of the LISP programming language. Accordingly, section 4.2 describes L1SP. Section 4.3 outlines the
reasons behind the choice of LISP for the work described herein.

Chapter 5 provides an informal overview of the genetic programming paradigm, and chapter 6 provides a detailed description of the
techniques of genetic programming. Some readers may prefer to rely on chapter 5 and to defer reading the detailed discussion in chapter 6
until they have read chapter 7 and the later chapters that contain examples.

Chapter 7 provides a detailed description of how to apply genetic programming to four introductory examples. This chapter lays the
groundwork for al the problems to be described later in the book.

Chapter 8 discusses the amount of computer processing required by the genetic programming paradigm to solve certain problems.
Chapter 9 shows that the results obtained from genetic programming are not the fruits of random search.

Chapters 10 through 21 illustrate how to use genetic programming to solve awide variety of problems from awide variety of fields. These
chapters are divided as follows:

. symbolic
regression; error-
driven

evol ution—chapter
10

. control and
optimal contral;
cost-driven

evol ution—chapter
11

Page x
. evolution of emergent behavior—chapter 12

. evolution of
subsumption—chapter
13

. entropy-
driven
evolution—chapter
14

. evolution of strategies—chapter 15

° Co_
evol ution—chapter
16

. evolution of
classification—chapter
17

. evolution of iteration and recursion—chapter 18

. evolution

of programs with
syntactic
structure—chapter
19

. evolution of
building blocks by
means of automatic
function
definition—chapter
20

. evolution of hierarchical building blocks by means of hierarchical automatic function definition—Chapter 21.

Chapter 22 discusses implementation of genetic programming on parallel computer architectures.

Chapter 23 discusses the ruggedness of genetic programming with respect to noise, sampling, change, and damage.

Chapter 24 discusses the role of extraneous variables and functions.

Chapter 25 presents the results of some experiments relating to operational issuesin genetic programming.

Chapter 26 summarizes the five major stepsin preparing to use genetic programming.

Chapter 27 compares genetic programming to other machine learning paradigms.

Chapter 28 discusses the spontaneous emergence of self-replicating, sexually-reproducing, and self-improving computer programs.
Chapter 29 is the conclusion.

Ten appendixes discuss computer implementation of the genetic programming paradigm and the results of various experiments related to
operational issues.

Appendix A discusses the interactive user interface used in our computer implementation of genetic programming.

Appendix B presents the problem-specific part of the simple LISP code needed to implement genetic programming. This part of the code is
presented for three different problems so as to provide three different examples of the techniques of genetic programming.

Appendix C presents the ssmple L1SP code for the kernel (i.e., the problem-independent part) of the code for the genetic programming
paradigm. It is possible for the user to run many different problems without ever modifying this kernel.

Appendix D presents possible embellishments to the kernel of the simple LISP code.

Appendix E presents a streamlined version of the EVAL function.

Appendix F presents an editor for simplifying S-expressions.

Page xi
Appendix G contains code for testing the simple LISP code.
Appendix H discusses certain practical time-saving techniques.
Appendix | contains alist of special functions defined in the book.

Appendix J contains alist of the special symbols used in the book.

Quick Overview

The reader desiring a quick overview of the subject might read chapter 1, the first few pages of chapter 2, section 4.1, chapter 5, and as many
of the four introductory examplesin chapter 7 as desired.

If the reader is not already familiar with the conventional genetic algorithm, he should add chapter 3 to this quick overview.
If the reader is not aready familiar with the L1SP programming language, he should add section 4.2 to this quick overview.
The reader desiring more detail would read chapters 1 through 7 in the order presented.

Chapters 8 and 9 may be read quickly or skipped by readers interested in quickly reaching additional examples of applications of genetic
programming.

Chapter 10 through 21 can be read consecutively or selectively, depending on the reader's interests.

Videotape
Genetic Programming: The Movie (ISBN 0-262-61084-1), by John R. Koza and James P. Rice, is available from The MIT Press.

The videotape provides ageneral introduction to genetic programming and a visualization of actual computer runs for many of the problems
discussed in this book, including symbolic regression, the intertwined spirals, the artificial ant, the truck backer upper, broom balancing, wall
following, box moving, the discrete pursuer-evader game, the differential pursuer-evader game, inverse kinematics for controlling a robot
arm, emergent collecting behavior, emergent central place foraging, the integer randomizer, the one-dimensional cellular automaton
randomizer, the two-dimensional cellular automaton randomizer, task prioritization (Pac Man), programmatic image compression, solving
numeric equations for a numeric root, optimization of lizard foraging, Boolean function learning for the II-multiplexer, co-evolution of game-
playing strategies, and hierarchical automatic function definition as applied to learning the Boolean even-11-parity function.

Additional Information

The LISP code in the appendixes of this book and various papers on genetic programming can be obtained on line via anonymous file transfer
fromthepub/ geneti c- programm ng directory fromthesiteft p. cc. ut exas. edu. You may subscribe to an electronic mailing list

on genetic programming by sending a subscription request to genet i ¢c- pr ogr anmi ng- r equest @s. st anf or d. edu.

Page xiii

Acknowledgments

James P. Rice of the Knowledge Systems Laboratory at Stanford University deserves grateful acknowledgment in several capacitiesin
connection with this book. He created all but six of the 354 figuresin this book and reviewed numerous drafts of this book. In addition, he
brought his exceptional knowledge in programming L1SP machines to the programming of many of the problemsin this book. It would not
have been practical to solve many of the problems in this book without his expertise in implementation, optimization, and animation.

Martin Keane of Keane Associatesin Chicago, Illinois spent an enormous amount of time reading the various drafts of this book and making
numerous specific helpful suggestions to improve this book. In addition, he and | did the original work on the cart centering and broom
bal ancing problems together.

Nils Nilsson of the Computer Science Department of Stanford University deserves grateful acknowledgment for supporting the creation of the
genetic algorithms course at Stanford University and for numerous ideas on how best to present the material in this book. His early
recommendation that | test genetic programming on as many different problems as possible (specifically including benchmark problems of
other machine learning paradigms) greatly influenced the approach and content of the book.

John Holland of the University of Michigan warrants grateful acknowledgment in several capacities: as the inventor of genetic algorithms, as
co-chairman of my Ph.D. dissertation committee at the University of Michigan in 1972, and as one of the not-so-anonymous reviewers of this
book. His specific and repeated urging that | explore open-ended never-ending problems in this book stimulated the invention of automatic
function definition and hierarchical automatic function definition described in chapters 20 and 21.

Stewart Wilson of the Rowland Institute for Science in Cambridge, Massachusetts made helpful comments that improved this book in a
multitude of ways and provided continuing encouragement for the work here.

David E. Goldberg of the Department of General Engineering at the University of Illinois at Urbana-Champaign made numerous helpful
comments that improved the final manuscript.

Christopher Jones of Cornerstone Associatesin Menlo Park, California, aformer student from my course on genetic algorithms at Stanford,
did the

Page xiv
graphs and analysis of the results on the econometric "exchange equation.”

Eric Mielke of Texas Instrumentsin Austin, Texas was extremely helpful in optimizing and improving my early programs implementing
genetic programming.

| am indebted for many helpful comments and suggestions made by the following people concerning various versions of the manuscript:
. Arthur Burks of the University of Michigan

. Scott Clearwater of Xerox PARC in Palo Alto, Cdlifornia

. Raobert Collins of the University of Californiaat Los Angeles

. Nichael Cramer of BBN Inc.

. Lawrence Davis of TICA Associates in Cambridge, Massachusetts

. Kalyanmoy Deb of the University of Illinois at Urbana-Champaign

. Stephanie Forrest of the University of New Mexico at Albuquerque

. Elizabeth Geismar of Mariposa Publishing

. John Grefenstette of the Naval Research Laboratory in Washington, D.C.

. Richard Hampo of the Scientific Research Laboratories of Ford Motor Company, Dearborn, Michigan
. Simon Handley of the Computer Science Department of Stanford University

. Chin H. Kim of Rockwell International

. Michael Korns of Objective Software in Palo Alto, California

. Ken Marko of the Scientific Research Laboratories of Ford Motor Company, Dearborn, Michigan

. John Miller of Carnegie-Mellon University

. Melanie Mitchell of the University of Michigan

. Howard Oakley of the Isle of Wight

. John Perry of Vantage Associates in Fremont, California

. Craig Reynolds of Symbolics Incorporated

. Rick Riolo of the University of Michigan

. Jonathan Roughgarden of Stanford University

. Walter Tackett of Hughes Aircraft in Canoga Park, California

. Michael Walker of Stanford University

. Thomas Westerdale of Birkbeck College at the University of London
. Paul Bethge of The MIT Press

. Teri Mendelsohn of The MIT Press

JOHN R. KOZA
COMPUTER SCIENCE
DEPARTMENT
STANFORD UNIVERSITY
STANFORD, CA 94305
Koza @cs.stanford.edu

Page 1

1
I ntroduction and Overview

In nature, biological structures that are more successful in grappling with their environment survive and reproduce at a higher rate. Biologists
interpret the structures they observe in nature as the consequence of Darwinian natural selection operating in an environment over a period of
time. In other words, in nature, structure is the consequence of fitness. Fitness causes, over a period of time, the creation of structure via
natural selection and the creative effects of sexual recombination (genetic crossover) and mutation. That is, fitness begets structure.

Computer programs are among the most complex structures created by man. The purpose of this book is to apply the notion that structure
arises from fitness to one of the central questions in computer science (attributed to Arthur Samuel in the 1950s):

How can computers learn to solve problems without being explicitly programmed? In other words, how can computers be made to do what is
needed to be done, without being told exactly how to do it?

One impediment to getting computers to solve problems without being explicitly programmed is that existing methods of machine learning,
artificial intelligence, self-improving systems, self-organizing systems, neural networks, and induction do not seek solutions in the form of
computer programs. Instead, existing paradigms involve specialized structures which are nothing like computer programs (e.g., weight vectors
for neural networks, decision trees, formal grammars, frames, conceptual clusters, coefficients for polynomials, production rules, chromosome
strings in the conventional genetic algorithm, and concept sets). Each of these specialized structures can facilitate the solution of certain
problems, and many of them facilitate mathematical analysis that might not otherwise be possible. However, these specialized structures are
an unnatural and constraining way of getting computers to solve problems without being explicitly programmed. Human programmers do not
regard these specialized structures as having the flexibility necessary for programming computers, as evidenced by the fact that computers are
not commonly programmed in the language of weight vectors, decision trees, formal grammars, frames, schemata, conceptual clusters,
polynomial coefficients, production rules, chromosome strings, or concept sets.

Page 2

The simple redlity isthat if we are interested in getting computers to solve problems without being explicitly programmed, the structures that
wereally need are computer programs.

. Computer programs offer the flexibility to

. perform operationsin a hierarchical way,

. perform alternative computations conditioned on the outcome of intermediate calculations,
. perform iterations and recursions,

. perform computations on variables of many different types, and

. define intermediate values and subprograms so that they can be subsequently reused.

Moreover, when we talk about getting computers to solve problems without being explicitly programmed, we have in mind that we should not
be required to specify the size, the shape, and the structural complexity of the solution in advance. Instead, these attributes of the solution
should emerge during the problem-solving process as a result of the demands of the problem. The size, shape, and structural complexity
should be part of the answer produced by a problem solving technique—not part of the question.

Thus, if the goal isto get computers to solve problems without being explicitly programmed, the space of computer programsis the placeto
look. Once we realize that what we really want and need is the flexibility offered by computer programs, we are immediately faced with the
problem of how to find the desired program in the space of possible programs. The space of possible computer programs is clearly too vast for
ablind random search. Thus, we need to search it in some adaptive and intelligent way.

An intelligent and adaptive search through any search space (as contrasted with a blind random search) involves starting with one or more
structures from the search space, testing its performance (fitness) for solving the problem at hand, and then using this performance
information, in some way, to modify (and, hopefully, improve) the current structures from the search space. Simple hill climbing, for

example, involves starting with an initial structure in the search space (a point), testing the fitness of several alternative structures (nearby
points), and modifying the current structure to obtain a new structure (i.e., moving from the current point in the search space to the best nearby
aternative point). Hill climbing is anintelligent and adaptive search through the search space because the trajectory of structures through the
space of possible structures depends on the information gained along the way. That is, information is processed in order to control the search.
Of coursg, if the fitness measureis at all nonlinear or epistatic (asis almost always the case for problems of interest), smple hill climbing has
the obvious defect of usually becoming trapped at alocal optimum point rather than finding the global optimum point.

When we contemplate an intelligent and adaptive search through the space of computer programs, we must first select a computer program (or
perhaps

Page 3

several) from the search space as the starting point. Then, we must measure the fitness of the program(s) chosen. Finally, we must use the
fitness information to modify and improve the current program(s).

It is certainly not obvious how to plan atrajectory through the space of computer programs that will lead to programs with improved fitness.

We customarily think of human intelligence as the only successful guide for moving through the space of possible computer programs to find
aprogram that solves a given problem. Anyone who has ever written and debugged a computer program probably thinks of programs as very
brittle, nonlinear, and unforgiving and probably thinks that it is very unlikely that computer programs can be progressively modified and
improved in amechanical and domain-independent way that does not rely on human intelligence. If such progressive modification and
improvement of computer programsis at all possible, it surely must be possible in only afew especially congenia problem domains. The
experimental evidence reported in this book will demonstrate otherwise.

This book addresses the problem of getting computers to learn to program themselves by providing a domain-independent way to search the
space of possible computer programs for a program that solves a given problem.

The two main points that will be made in this book are these:

. Point 1

A wide variety of seemingly different problems from many different fields can be recast as requiring the discovery of a computer program that
produces some desired output when presented with particular inputs. That is, many seemingly different problems can be reformulated as
problems of program induction.

. Point 2

The recently developed genetic programming paradigm described in this book provides away to do program induction. That is, genetic
programming can search the space of possible computer programs for an individual computer program that is highly fit in solving (or
approximately solving) the problem at hand. The computer program (i.e., structure) that emerges from the genetic programming paradigmisa
conseguence of fitness. That is, fitness begets the needed program structure.

Point 1 is dealt with in chapter 2, where it is shown that many seemingly different problems from fields as diverse as optimal control,
planning, discovery of game-playing strategies, symbolic regression, automatic programming, and evolving emergent behavior can all be
recast as problems of program induction.

Of course, it is not productive to recast these seemingly different problems as problems of program induction unless there is some good way
to do program induction. Accordingly, the remainder of this book deals with point 2. In particular, | describe asingle, unified, domain-
independent approach to the problem of program induction—namely, genetic programming. | demonstrate, by example and analogy, that
genetic programming is applicable and effective for awide variety of problems from a surprising variety of fields. It would probably be
impossible to solve most of these problems with any one

Page 4

existing paradigm for machine learning, artificial intelligence, self-improving systems, self-organizing systems, neural networks, or induction.
Nonetheless, a single approach will be used here—regardless of whether the problem involves optimal control, planning, discovery of game-
playing strategies, symbolic regression, automatic programming, or evolving emergent behavior.

To accomplish this, we start with a population of hundreds or thousands of randomly created computer programs of various randomly
determined sizes and shapes. We then genetically breed the population of computer programs, using the Darwinian principle of survival and
reproduction of the fittest and the genetic operation of sexual recombination (crossover). Both reproduction and recombination are applied to
computer programs selected from the population in proportion to their observed fitness in solving the given problem. Over a period of many
generations, we breed populations of computer programs that are ever more fit in solving the problem at hand.

The reader will be understandably skeptical about whether it is possible to genetically breed computer programs that solve complex problems
by using only performance measurements obtained from admittedly incorrect, randomly created programs and by invoking some very smple
domain-independent mechanical operations.

My main goal in this book is to establish point 2 with empirical evidence. | do not offer any mathematical proof that genetic programming can
always be successfully used to solve all problems of every conceivable type. | do, however, provide alarge amount of empirical evidenceto
support the counterintuitive and surprising conclusion that genetic programming can be used to solve alarge number of seemingly different
problems from many different fields. This empirical evidence spanning a number of different fields is suggestive of the wide applicability of
the technique. We will see that genetic programming combines a robust and efficient learning procedure with powerful and expressive
symbolic representations.

One reason for the reader's initial skepticism is that the vast majority of the research in the fields of machine learning, artificial intelligence,
self-improving systems, self-organizing systems, and induction is concentrated on approaches that are correct, consistent, justifiable, certain (i.
e., deterministic), orderly, parsimonious, and decisive (i.e., have awell-defined termination).

These seven principles of correctness, consistency, justifiability, certainty, orderliness, parsimony, and decisiveness have played such valuable
roles in the successful solution of so many problems in science, mathematics, and engineering that they are virtually integral to our training
and thinking.

It is hard to imagine that these seven guiding principles should not be used in solving every problem. Since computer scienceis founded on
logic, it is especialy difficult for practitioners of computer science to imagine that these seven guiding principles should not be used in
solving every problem. Asaresult, it is easy to overlook the possibility that there may be an entirely different set of guiding principles that are
appropriate for a problem such as getting computers to solve problems without being explicitly programmed.

Page 5
Since genetic programming runs afoul of all seven of these guiding principles, | will take a moment to examine them.

. Correctness

Science, mathematics, and engineering almost always pursue the correct solution to a problem as the ultimate goal. Of course, the pursuit of
the correct solution necessarily gives way to practical considerations, and everyone readily acquiescesto small errors due to imprecisions
introduced by computing machinery, inaccuracies in observed data from the real world, and small deviations caused by simplifying
assumptions and approximations in mathematical formulae. These practically motivated deviations from correctness are acceptable not just
because they are numerically small, but because they are always firmly centered on the correct solution. That is, the mean of these
imprecisions, inaccuracies, and deviations is the correct solution. However, if the problem isto solve the quadratic equation ax2 + bx + ¢ =0,
aformulafor x such as

;= b7 ‘“;[j =439 | 5,000000000000001a%bc

is unacceptable as a solution for one root, even though the manifestly incorrect extraterm 10-15a3sbc introduces error that is considerably
smaller (for everyday values of a, b, and c) than the errors due to computational imprecision, inaccuracy, or practical simplifications that
engineers and scientists routinely accept. The extraterm 10-15a3bc is not only unacceptable, it is virtually unthinkable. No scientist or
engineer would ever write such aformula. Even though the formula with the extraterm 10-15a3bc produces better answers than engineers
and scientists routinely accept, this formulais not grounded to the correct solution point. It is therefore wrong. Aswe will see, genetic
programming works only with admittedly incorrect solutions and it only occasionally produces the correct analytic solution to the
problem.

. Consistency

Inconsistency is not acceptable to the logical mind in conventional science, mathematics, and engineering. Aswe will see, an essential
characteristic of genetic programming isthat it operates by simultaneously encouraging clearly inconsistent and contradictory approaches to
solving a problem. | am not talking merely about remaining open-minded until all the evidenceisin or about tolerating these clearly
inconsistent and contradictory approaches. Genetic programming actively encourages, preserves, and uses a diverse set of clearly inconsistent
and contradictory approaches in attempting to solve a problem. In fact, greater diversity helps genetic programming to arrive at its solution
faster.

. Justifiability

Conventional science, mathematics, and engineering favor reasoning in which conclusions flow from given premises when logical rules of
inference are applied. The extraterm 10-15a3bc in the above formula has no justification based on the mathematics of quadratic equations.
Thereisno logical sequence of reasoning based on premises and rules of inference to justify this extraterm. Aswe will see, thereisno
logically sound segquence

Page 6
of reasoning based on premises and rules of inference to justify the results produced by genetic programming.

. Certainty

Notwithstanding the fact that there are some probabilistic methods in general use (e.g., Monte Carlo simulations, simulated annealing),
practitioners of conventional science, mathematics, and engineering find it unsettling to think that the solution to a seemingly well-defined
scientific, mathematical, or engineering problem should depend on chance steps. Practitioners of conventional science, mathematics, and
engineering want to believe that Gott wiirfelt nicht (God does not play dice). For example, the active research into chaos seeks a deterministic
physical explanation for phenomena that, on the surface, seem entirely random. Aswe will see, al the key steps of genetic programming are
probabilistic. Anything can happen and nothing is guaranteed.

. Orderliness

The vast majority of problem-solving techniques and algorithms in conventional science, mathematics, and engineering are not only
deterministic; they are orderly in the sense that they proceed in atightly controlled and synchronized way. It is unsettling to think about
numerous uncoordinated, independent, and distributed processes operating asynchronously and in parallel without central supervision.
Untidiness and disorderliness are central features of biological processes operating in nature as well as of genetic programming.

. Par simony

Copernicus argued in favor of his simpler (although not otherwise better) explanation for the motion of the planets (as opposed to the then-
established complicated Aristotelian explanation of planetary motion in terms of epicycles). Since then, there has been a strong preferencein
the sciences for parsimonious explanations. Occam's Razor (which is, of course, merely a preference of humans) isaguiding principle of
science.

. Decisiveness

Science, mathematics, and engineering focus on algorithms that are decisive in the sense that they have a well-defined termination point at
which they converge to aresult which is a solution to the problem at hand. In fact, some people even include a well-defined termination point
as part of their definition of an agorithm. Biological processes operating in nature and genetic programming do not usually have a clearly
defined termination point. Instead, they go on and on. Even when we interrupt these processes, they offer numerous inconsistent and
contradictory answers (although the external viewer is, of course, free to focus his attention on the best current answer).

One clue to the possibility that an entirely different set of guiding considerations may be appropriate for solving the problem of automatic
programming comes from an examination of the way nature creates highly complex problem-solving entities via evolution.

Nature creates structure over time by applying natural selection driven by the fitness of the structure in its environment. Some structures are
better than others; however, there is not necessarily any single correct answer. Even if

Page 7

thereis, it israre that the mathematically optimal solution to a problem evolvesin nature (although near-optimal solutions that balance several
competing considerations are common).

Nature maintains and nurtures many inconsistent and contradictory approaches to a given problem. In fact, the maintenance of genetic
diversity is an important ingredient of evolution and in ensuring the future ability to adapt to a changing environment.

In nature, the difference between a structure observed today and its ancestorsis not justified in the sense that there is any mathematical proof
justifying the development or in the sense that there is any sequence of logical rules of inference that was applied to a set of original premises
to produce the observed result.

The evolutionary process in nature is uncertain and non-deterministic. It also involves asynchronous, uncoordinated, local, and independent
activity that is not centrally controlled and orchestrated.

Fitness, not parsimony, is the dominant factor in natural evolution. Once nature finds a solution to a problem, it commonly enshrines that
solution. Thus, we often observe seemingly indirect and complex (but successful) ways of solving problems in nature. When closely
examined, these non-parsimonious approaches are often due to both evolutionary history and a fitness advantage. Parsimony seemsto play a
role only when it interferes with fitness (e.g., when the price paid for an excessively indirect and complex solution interferes with
performance). Genetic programming does not generally produce parsimonious results (unless parsimony is explicitly incorporated into the
fitness measure). Like the genome of living things, the results of genetic programming are rarely the minimal structure for performing the task
at hand. Instead, the results of genetic programming are replete with totally unused substructures (not unlike the introns of deoxyribonucleic
acid) and inefficient substructures that reflect evolutionary history rather than current functionality. Humans shape their conscious thoughts
using Occam's Razor so as to maximize parsimony; however, there is no evidence that nature favors parsimony in the mechanisms that it uses
to implement conscious human behavior and thought (e.g., heural connectionsin the brain, the human genome, the structure of organic
moleculesin living cells).

What is more, evolution is an ongoing process that does not have a well-defined terminal point.

We apply the seven considerations of correctness, consistency, justifiability, certainty, orderliness, parsimony, and decisiveness so frequently
that we may unguestioningly assume that they are always a necessary part of the solution to every scientific problem. This book is based on
the view that the problem of getting computers to solve problems without being explicitly programmed requires putting these seven
considerations aside and instead following the principles that are used in nature.

Astheinitial skepticism fades, the reader may, at some point, come to feel that the examples being presented from numerous different fields
in this book are merely repetitions of the same thing. Indeed, they are! And, that is

Page 8

precisely the point. When the reader begins to see that optimal control, symbolic regression, planning, solving differential equations,
discovery of game-playing strategies, evolving emergent behavior, empirical discovery, classification, pattern recognition, evolving
subsumption architectures, and induction are all "the same thing" and when the reader begins to see that all these problems can be solved in
the same way, this book will have succeeded in communicating its main point: that genetic programming provides away to search the space
of possible computer programs for an individual computer program that is highly fit to solve awide variety of problems from many different
fields.

Page 9

2
Pervasiveness of the Problem of Program Induction

Program induction involves the inductive discovery, from the space of possible computer programs, of a computer program that produces
some desired output when presented with some particular input.

Aswas stated in chapter 1, the first of the two main pointsin this book isthat a wide variety of seemingly different problems from many
different fields can be reformulated as requiring the discovery of a computer program that produces some desired output when presented with
particular inputs. That is, these seemingly different problems can be reformulated as problems of program induction. The purpose of this
chapter isto establish this first main point.

A wide variety of terms are used in various fields to describe this basic idea of program induction. Depending on the terminology of the
particular field involved, the computer program may be called aformula, a plan, a control strategy, a computational procedure, a model, a
decision tree, a game-playing strategy, arobotic action plan, atransfer function, a mathematical expression, a sequence of operations, or
perhaps merely a composition of functions.

Similarly, the inputs to the computer program may be called sensor values, state variables, independent variables, attributes, information to be
processed, input signals, input values, known variables, or perhaps merely arguments of afunction.

The output from the computer program may be called a dependent variable, a control variable, a category, a decision, an action, amove, an
effector, aresult, an output signal, an output value, a class, an unknown variable, or perhaps merely the value returned by a function.

Regardless of the differences in terminology, the problem of discovering a computer program that produces some desired output when
presented with particular inputsis the problem of program induction.

This chapter will concentrate on bridging the terminological gaps between various problems and fields and establishing that each of these
problems in each of these fields can be reformulated as a problem of program induction.

But before proceeding, we should ask why we are interested in establishing that the solution to these problems could be reformul ated as a
search for a computer program. There are three reasons.

First, computer programs have the flexibility needed to express the solutions to awide variety of problems.

Page 10
Second, computer programs can take on the size, shape, and structural complexity necessary to solve problems.

The third and most important reason for reformulating various problems into problems of program induction is that we have away to solve
the problem of program induction. Starting in chapters 5 and 6, | will describe the genetic programming paradigm that performs program
induction for awide variety of problems from different fields.

With that in mind, | will now show that computer programs can be the lingua franca for expressing various problems.

Some readers may choose to browse this chapter and to skip directly to the summary presented in table 2.1.

2.1 Optimal Controal

Optimal control involves finding a control strategy that uses the current state variables of a system to choose a value of the control variable(s)
that causes the state of the system to move toward the desired target state while minimizing or maximizing some cost measure.

One simple optimal control problem involves discovering a control strategy for centering a cart on atrack in minimal time. The state variables
of the system are the position and the velocity of the cart. The control strategy specifies how to choose the force that is to be applied to the
cart. The application of the force causes the state of the system to change. The desired target state isthat the cart be at rest at the center point
of the track.

The desired control strategy in an optimal control problem can be viewed as a computer program that takes the state variables of the system as
itsinput and produces values of the control variables as its outputs. The control variables, in turn, cause a change in the state of the system.

2.2 Planning

Planning in artificial intelligence and robotics requires finding a plan that receives information from environmental detectors or sensors about
the state of various objectsin a system and then uses that information to select effector actions which change that state. For example, a
planning problem might involve discovering a plan for stacking blocks in the correct order, or one for navigating an artificial ant to find all the
food lying aong an irregular trail.

In aplanning problem, the desired plan can be viewed as a computer program that takes information from sensors or detectors as its input and
produces effector actions asits output. The effector actions, in turn, cause a change in the state of the objectsin the system.

2.3 Sequence Induction

Sequence induction requires finding a mathematical expression that can generate the sequence element S for any specified index position j of
asequence

Page 11
S=8,S, ... S, ... after seeing only arelatively small number of specific examples of the values of the sequence.

For example, suppose oneisgiven 2, 5, 10, 17, 26, 37, 50, . . . asthe first seven values of an unknown sequence. The reader will quickly
induce the mathematical expression j2 + 1 as away to compute the sequence element § for any specified index position j of the sequence.

Although induction problems are inherently underconstrained, the ability to perform induction on a sequence in a reasonable way is widely
accepted as an important component of human intelligence.

The mathematical expression being sought in a sequence induction problem can be viewed as a computer program that takes the index
position j asitsinput and produces the value of the corresponding sequence element as its output.

Sequence induction is a special case of symbolic regression (discussed below) where the independent variable consists of the natural numbers
(i.e., the index positions).

2.4 Symbolic Regression

Symbolic regression (i.e., function identification) involves finding a mathematical expression, in symbolic form, that provides a good, best, or
perfect fit between a given finite sampling of values of the independent variables and the associated values of the dependent variables. That is,
symbolic regression involves finding a model that fits a given sample of data.

When the variables are real-valued, symbolic regression involves finding both the functional form and the numeric coefficients for the model.
Symbolic regression differs from conventional linear, quadratic, or polynomial regression, which merely involve finding the numeric
coefficients for afunction whose form (linear, quadratic, or polynomial) has been prespecified.

In any case, the mathematical expression being sought in symbolic function identification can be viewed as a computer program that takes the
values of the independent variables as input and produces the values of the dependent variables as output.

In the case of noisy datafrom the real world, this problem of finding the model from the datais often called empirical discovery. If the
independent variable ranges over the non-negative integers, symbolic regression is often called sequence induction (as described above).
Learning of the Boolean multiplexer function (also called Boolean concept learning) is symbolic regression applied to a Boolean function. If
there are multiple dependent variables, the processis called symbolic multiple regression.

2.5 Automatic Programming

A mathematical formulafor solving a particular problem starts with certain given values (the inputs) and produces certain desired results (the
outputs). In

Page 12

other words, a mathematical formula can be viewed as a computer program that takes the given values asitsinput and produces the desired
result asits output.

For example, consider the pair of linear equations

Ay X, +a.x =h
and

A3 Xy + A0 = by

in two unknowns, x; and X,. The two well-known mathematical formulae for solving a pair of linear equations start with six given values: the
four coefficients a,,, a,,, a5, and a,, and the two constant terms b, and b,. The two formulae then produce, as their result, the values of the two
unknown variables (x and x,) that satisfy the pair of equations. The six given values correspond to the inputs to a computer program. The
results produced by the formulae correspond to the output of the computer program.

As another example, consider the problem of controlling the links of arobot arm so that the arm reaches out to a designated target point. The
computer program being sought takes the location of the designated target point as its input and produces the angles for rotating each link of
the robot arm as its outputs.

2.6 Discovering Game-Playing Strategies

Game playing requires finding a strategy that specifies what move a player isto make at each point in the game, given the known information
about the game.

In agame, the known information may be an explicit history of the players' previous moves or an implicit history of previous movesin the
form of acurrent state of the game (e.g., in chess, the position of each piece on the board).

The game-playing strategy can be viewed as a computer program that takes the known information about the game as its input and produces a
move as its output.

For example, the problem of finding the minimax strategy for a pursuer to catch an evader in a differential pursuer-evader game requires
finding a computer program (i.e., astrategy) that takes the pursuer's current position and the evader's current position (i.e., the state of the
game) asitsinput and produces the pursuer's move as its output.

2.7 Empirical Discovery and For ecasting

Empirical discovery involves finding a model that relates a given finite sampling of values of the independent variables and the associated
(often noisy) values of the dependent variables for some observed system in the real world.

Page 13
Once amodel for empirical data has been found, the model can be used in forecasting future values of the variables of the system.

The model being sought in problems of empirical discovery can be viewed as a computer program that takes various values of the independent
variables asits inputs and produces the observed values of the dependent variables as its outpult.

An example of the empirical discovery of amodel (i.e., acomputer program) involves finding the nonlinear, econometric "exchange equation”
M = PQ/V relating the time series for the money supply M (i.e., the output) to the price level P, the gross national product Q and the velocity
of money V in an economy (i.e., the three inputs).

Other examples of empirical discovery of amodel involve finding Kepler's third law from empirically observed planetary data and finding the
functional relationship that locally explains the observed chaotic behavior of adynamical system.

2.8 Symbolic Integration and Differentiation

Symbolic integration and differentiation involves finding the mathematical expression that isthe integral or the derivative, in symbolic form,
of agiven curve.

The given curve may be presented as a mathematical expression in symbolic form or a discrete sampling of data points. If the unknown curve
is presented as a mathematical expression, we first convert it into afinite sample of data points by taking a random sample of values of the
given mathematical expression in aspecified interval of the independent variable. We then pair each value of the independent variable with
the result of evaluating the given mathematical expression for that value of the independent variable.

If we are considering integration, we begin by numerically integrating the unknown curve. That is, we determine the area under the unknown
curve from the beginning of the interval to each of the values of the independent variable. The mathematical expression being sought can be
viewed as a computer program that takes each of the random values of the independent variable as input and produces the value of the
numerical integral of the unknown curve asits output.

Symbolic differentiation is similar except that numerical differentiation is performed.

2.9 Inverse Problems

Finding an inverse function for a given curve involves finding a mathematical expression, in symbolic form, that isthe inverse of the given
curve.

We proceed as in symbolic regression and search for a mathematical expression (a computer program) that fits the data in the finite sampling.
Theinverse function for the given function in a specified domain may be viewed as a computer program that takes the values of the dependent
variable of the given

Page 14

mathematical function asits inputs and produces the values of the independent variable as its output. When we find a mathematical expression
that fits the sampling, we have found the inverse function.

2.10 Discovering M athematical Identities

Finding a mathematical identity (such as a trigonometric identity) involves finding a new and unobvious mathematical expression, in
symbolic form, that always has the same value as some given mathematical expression in a specified domain.

In discovering mathematical identities, we start with the given mathematical expression in symbolic form. We then convert the given
mathematical expression into afinite sample of data points by taking a random sample of vaues of the independent variable appearing in the
given expression. We then pair each value of the independent variable with the result of evaluating the given expression for that value of the
independent variable.

The new mathematical expression may be viewed as a computer program. We proceed as in symbolic regression and search for a
mathematical expression (acomputer program) that fits the given pairs of values. That is, we search for a computer program that takes the
random values of the independent variables as its inputs and produces the observed value of the given mathematical expression asits output.
When we find a mathematical expression that fits the sampling of data and, of course, is different from the given expression, we have
discovered an identity.

2.11 Induction of Decision Trees

A decision tree is one way of classifying an object in a universe into a particular class on the basis of its attributes. Induction of a decision tree
is one approach to classification.

A decision tree corresponds to a computer program consisting of functions that test the attributes of the object. The input to the computer
program consists of the values of certain attributes associated with a given data point. The output of the computer program isthe class into
which agiven data point is classified.

2.12 Evolution of Emergent Behavior

Emergent behavior involves the repetitive application of seemingly smple rules that lead to complex overall behavior. The discovery of sets
of rules that produce emergent behavior is a problem of program induction.

Consider, for example, the problem of finding a set of rules for controlling the behavior of an individual ant that, when simultaneously
executed in parallel by all the antsin a colony, cause the ants to work together to locate all the available food and transport it to the nest. The
rules controlling the behavior of a particular ant process the sensory inputs received by that ant

Page 15

Table 2.1 Summary of the terminology used to describe the input, the output, and the computer program being sought

in a problem of program induction.

Problem
area

Computer

program
Optimal control Control strategy
Planning Plan
Sequence induction Mathematical expression

Symbolic regression Mathematical expression

Automatic Formula
programming

Discovering agame Strategy
playing strategy

Empirical discovery Model
and forecasting

Symbolic integration or
differentiation

Mathematical expression

Inverse problems of the
dependent variable

Mathematical expression

Discovering New mathematical

mathematical identities expression

Classification and Decision tree

decision tree induction

Evolution of emergent Set of rules

behavior

Automatic State-transition rules for the

programming of cell

cellular automata

Input

State variables

Sensor or detector values
Index position
Independent variables

Given values

Known information

Independent variables

Vaues of the independent
variable of the given
unknown curve

Value of the mathematical
expression of the dependent
variable

Random sampling of values
of the independent variables
of the given mathematical
expression

Values of the attributes

Sensory input

State of the cell and its
neighbors

Output

Control variable
Effector actions
Sequence element
Dependent variables

Results

Moves

Dependent variables

Values of the numerical
integral of the given unknown
curve

Random sampling of the
values from the domain of the
independent variable of the
mathematical expression to
beinverted

Values of the given
mathematical expression

The class of the object

Actions

Next state of the cell

Page 16

and dictate the action to be taken by that ant. Nonethel ess, higher-level behavior may emerge as the overall effect of many ants

simultaneously executing the same set of simplerules.

The computer program (i.e., set of rules) being sought takes the sensory input of each ant asinput and produces actions by the ants as output.

2.13 Automatic Programming of Cellular Automata

Automatic programming of a cellular automaton requires induction of a set of state-transition rulesthat are to be executed by each cell in a
cellular space.

The state-transition rules being sought can be viewed as a computer program that takes the state of a cell and its neighbors asits input and that
produces the next state of the cell as output.

2.14 Summary
A wide variety of seemingly different problems from awide variety of fields can each be reformulated as a problem of program induction.

Table 2.1 summarizes the terminology for the various problems from the above fields.

Page 17

3
Introduction to Genetic Algorithms

In nature, the evolutionary process occurs when the following four conditions are satisfied:

. An entity has the ability to reproduce itself.

. Thereis apopulation of such self-reproducing entities.

. Thereis some variety among the self-reproducing entities.

. Some difference in ability to survive in the environment is associated with the variety.

In nature, variety is manifested as variation in the chromosomes of the entities in the population. This variation istrandated into variation in
both the structure and the behavior of the entities in their environment. Variation in structure and behavior is, in turn, reflected by differences
in the rate of survival and reproduction. Entities that are better able to perform tasksin their environment (i.e., fitter individuals) survive and
reproduce at a higher rate; lessfit entities survive and reproduce, if at al, at alower rate. Thisisthe concept of survival of the fittest and
natural selection described by Charles Darwin in On the Origin of Species by Means of Natural Selection (1859). Over a period of time and
many generations, the population as awhole comes to contain more individuals whose chromosomes are translated into structures and
behaviors that enable those individuals to better perform their tasks in their environment and to survive and reproduce. Thus, over time, the
structure of individuals in the population changes because of natural selection. When we see these visible and measurable differencesin
structure that arose from differencesin fitness, we say that the population has evolved. In this process, structure arises from fitness.

When we have a population of entities, the existence of some variability having some differential effect on the rate of survivability is amost
inevitable. Thus, in practice, the presence of the first of the above four conditions (self-reproducibility) isthe crucial condition for starting the
evolutionary process.

John Holland's pioneering book Adaptation in Natural and Artificial Systems (1975) provided a general framework for viewing all adaptive
systems (whether natural or artificial) and then showed how the evolutionary process can be applied to artificial systems. Any problemin
adaptation can generally be

Page 18
formulated in genetic terms. Once formulated in those terms, such a problem can often be solved by what we now call the "genetic algorithm."

The genetic algorithm simulates Darwinian evolutionary processes and naturally occurring genetic operations on chromosomes. In nature,
chromosomes are character strings in nature's base-4 alphabet. The four nucleotide bases that appear along the length of the DNA molecule
are adenine (A), cytosine (C), guanine (G), and thymine (T). This sequence of nucleotide bases constitutes the chromosome string or the
genome of abiological individual. For example, the human genome contains about 2,870,000,000 nuclectide bases.

Molecules of DNA are capable of accurate self-replication. Moreover, substrings containing a thousand or so nucleotide bases from the DNA
molecule are translated, using the so-called genetic code, into the proteins and enzymes that create structure and control behavior in biological
cells. The structures and behaviors thus created enable an individual to perform tasksin its environment, to survive, and to reproduce at
differing rates. The chromosomes of offspring contain strings of nucleotide bases from their parent or parents so that the strings of nucleotide
bases that lead to superior performance are passed along to future generations of the population at higher rates. Occasionally, mutations occur
in the chromosomes.

The genetic algorithmis ahighly parallel mathematical algorithm that transforms a set (population) of individual mathematical objects
(typically fixed-length character strings patterned after chromosome strings), each with an associated fitness value, into a new population (i.e.,
the next generation) using operations patterned after the Darwinian principle of reproduction and survival of the fittest and after naturally
occurring genetic operations (notably sexual recombination).

Since genetic programming is an extension of the conventional genetic algorithm, | will now review the conventional genetic algorithm.
Readers already familiar with the conventional genetic algorithm may prefer to skip to the next chapter.

3.1 The Hamburger Restaurant Praoblem

In this section, the genetic algorithm will be illustrated with a very simple example consisting of an optimization problem: finding the best
business strategy for a chain of four hamburger restaurants. For the purposes of this simple example, a strategy for running the restaurants will
consist of making three binary decisions:

. Price
Should the price of the hamburger be 50 cents or $10?

. Drink
Should wine or cola be served with the hamburger?

. Speed of service
Should the restaurant provide slow, leisurely service by waitersin tuxedos or fast, snappy service by waitersin white polyester uniforms?

Page 19
The goal isto find the combination of these three decisions (i.e., the business strategy) that produces the highest profit.

Since there are three decision variables, each of which can assume one of two possible values, it would be very natural for this particular
problem to represent each possible business strategy as a character string of length L = 3 over an aphabet of size K = 2. For each decision
variable, avalue of 0 or 1 isassigned to one of the two possible choices. The search space for this problem consists of 2-3 = 8 possible
business strategies. The choice of string length (L = 3) and alphabet size (K = 2) and the mapping between the values of the decision variables
into zeroes and ones at specific positions in the string constitute the representation scheme for this problem. Identification of a suitable
representation scheme is the first step in preparing to solve this problem.

Table 3.1 shows four of the eight possible business strategies expressed in the representation scheme just described.

The management decisions about the four restaurants are being made by an heir who unexpectedly inherited the restaurants from arich uncle
who did not provide the heir with any guidance as to what business strategy produces the highest payoff in the environment in which the
restaurants operate.

In particular, the would-be restaurant manager does not know which of the three variables is the most important. He does not know the
magnitude of the maximum profit he might attain if he makes the optimal decisions or the magnitude of the loss he might incur if he makes
the wrong choices. He does not know which single variable, if changed aone, would produce the largest change in profit (i.e., he has no
gradient information about the fitness landscape of the problem). In fact, he does not know whether any of the three variables is even relevant.

The new manager does not know whether or not he can get closer to the global optimum by a stepwise procedure of varying one variable at a
time, picking the better result, then similarly varying a second variable, and then picking the better result. That is, he does not know if the
variables can be optimized separately or whether they are interrelated in a highly nonlinear way. Perhaps the variables are interrelated in such
away that he can reach the global optimum only if he first identifies and fixes a particular combination of two variables and then varies the
remaining variable.

The woul d-be manager faces the additional obstacle of receiving information about the environment only in the form of the profit made by
each restaurant each week. Customers do not write detailed explanatory letters to him identifying the precise factors that affect their decision
to patronize the

Table 3.1 Representation scheme for the hamburger restaurant problem.

Restaurant number Price Drink Speed Binary representation
1 High Cola Fast 011
2 High Wine Fast 001
3 Low Cola Leisurely 110
4 High Cola Leisurely 010

Page 20

restaurant and the degree to which each factor contributesto their decision. They simply either come, or stop coming, to his restaurants In
other words, the observed performance of the restaurants during actual operation isthe only feedback received by the manager from the
environment.

In addition, the manager is not assured that the operating environment will stay the same from week to week. The public'stastes are fickle,
and the rules of the game may suddenly change. The operating scheme that works reasonably well one week may no longer produce as much
profit in some new environment. Changes in the environment may not only be sudden; they are not announced in advance either. In fact, they
are not announced at all; they merely happen. The manager may find out about changes in the environment indirectly by seeing that a current
operating scheme no longer produces as much profit asit once did.

Moreover, the manager faces the additional imperative of needing to make an immediate decision as to how to begin operating the restaurants
starting the next morning. He does not have the luxury of using a decision procedure that may convergeto aresult at some time far in the
future. There is no time for a separate training period or a separate experimentation period. The only experimentation comesin the form of
actual operations. Moreover, to be useful, a decision procedure must immediately start producing a stream of intermediate decisions that keeps
the system above the minimal level required for survival starting with the very first week and continuing for every week thereafter.

The heir's messy, ill-defined predicament is unlike most textbook problems, but it is very much like many practical decision problems. It is
also very much like problems of adaptation in nature.

Since the manager knows nothing about the environment he is facing, he might reasonably decide to test a different initial random strategy in
each of his four restaurants for one week. The manager can expect that this random approach will achieve a payoff approximately equal to the
average payoff available in the search space as awhole. Favoring diversity maximizes the chance of attaining performance close to the
average of the search space as awhole and has the additional benefit of maximizing the amount of information that will be learned from the
first week's actual operations. We will use the four different strategies shown in table 3.1 asthe initial random population of business
strategies.

In fact, the restaurant manager is proceeding in the same way as the genetic algorithm. Execution of the genetic algorithm begins with an
effort to learn something about the environment by testing a number of randomly selected pointsin the search space. In particular, the genetic
algorithm begins, at generation 0 (the initial random generation), with a population consisting of randomly created individuals. In this
example the population size, M, is equal to 4.

For each generation for which the genetic algorithm is run, each individual in the population is tested against the unknown environment in
order to ascertain its fitness in the environment. Fitness may be called profit (as it

Page 21

Table 3.2 Observed values of the fitness measure for the four individual business strategiesin the initial
random population of the hamburger restaurant problem.

Generation 0

String Fitness

i X; f(X)
1 011 3

2 001 1

3 110 6

4 010 2
Tota 12
Worst 1
Average 3.00
Best 6

is here), or it may be called payoff, utility, goodness, benefit, value of the objective function, score, or some other domain-specific name.

Table 3.2 shows the fitness associated with each of the M = 4 individuasin the initial random population for this problem. The reader will
probably notice that the fitness of each business strategy has, for simplicity, been made equal to the decimal equivalent of the binary
chromosome string (so that the fitness of strategy 110 is $6 and the global optimum is $7).

What has the restaurant manager learned by testing the four random strategies? Superficialy, he has learned the specific value of fitness (i.e.,
profit) for the four particular points (i.e., strategies) in the search space that were explicitly tested. In particular, the manager has learned that
the strategy 110 produces a profit of $6 for the week. This strategy is the best-of-generation individual in the population for generation 0. The
strategy 001 produces a profit of only $1 per week, making it the wor st-of-generation individual. The manager has a so learned the values of
the fitness measure for the other two strategies.

The only information used in the execution of the genetic algorithm is the observed values of the fitness measure of the individuals actually
present in the population. The genetic algorithm transforms one population of individuals and their associated fitness valuesinto a new
population of individuals using operations patterned after the Darwinian principle of reproduction and survival of the fittest and naturally
occurring genetic operations.

We begin by performing the Darwinian operation of reproduction. We perform the operation of fithess-proportionate reproduction by copying
individualsin the current population into the next generation with a probability proportional to their fithess.

The sum of the fitness values for all four individualsin the population is 12. The best-of-generation individual in the current population (i.e.,
110) has

Page 22

fitness 6. Therefore, the fraction of the fitness of the population attributed to individual 110 is 1/2. In fithess-proportionate selection,
individual 110 is given a probability of 1/2 of being selected for each of the four positionsin the new population. Thus, we expect that string
110 will occupy two of the four positions in the new population. Since the genetic algorithm is probabilistic, thereis a possibility that string
110 will appear three times or one time in the new population; there is even asmall possibility that it will appear four times or not at all.
Goldberg (1989) presents the above value of 1/2 in terms of a useful analogy to aroulette wheel. Each individual in the population occupies a
sector of the wheel whose sizeis proportional to the fitness of the individual, so the best-of-generation individual here would occupy a 180°
sector of the wheel. The spinning of thiswheel permits fitness proportionate selection.

Similarly, individual 011 has a probability of 1/4 of being selected for each of the four positions in the new population. Thus, we expect 011
to appear in one of the four positions in the new population. The strategy 010 has probability of 1/6 of being selected for each of the four
positions in the new population, whereas the strategy 001 has only a probability 1/12 of being so selected. Thus, we expect 010 to appear once
in the new population, and we expect 001 to be absent from the new population.

If the four strings happen to be copied into the next generation precisely in accordance with these expected values, they will appear 2, 1, 1,
and 0 times, respectively, in the new population. Table 3.3 shows this particular possible outcome of applying the Darwinian operation of
fitness-proportionate reproduction to generation O of this particular initial random population. We call the resulting population the mating pool
created after reproduction.

Table 3.3 One possible mating pool resulting from applying the operation of
fitness-proportionate reproduction to the initial random popul ation.

Generation Mating pool
0 created after
reproduction

String Fitness X, Mating
X f(X) §fix,) ool f(X)

1 011 3 .25 011 3

2 001 1 .08 110 6

3 110 6 .50 110 6

4 010 2 A7 010 2
Tota 12 17
Worst 1 2
Average 3.00 4.25

Best 6 6

Page 23

The effect of the operation of fitness-proportionate reproduction is to improve the average fitness of the population. The average fitness of the
population is now 4.25, whereas it started at only 3.00. Also, the worst single individual in the mating pool scores 2, whereas the worst single
individual in the original population scored only 1. These improvementsin the population are typical of the reproduction operation, because
low-fitness individuals tend to be eliminated from the population and high-fitness individuals tend to be duplicated. Note that both of these
improvements in the population come at the expense of the genetic diversity of the population. The strategy 001 became extinct. Of course,
the fitness associated with the best-of-generation individual could not improve as the result of the operation of fithess-proportionate
reproduction, since nothing new is created by this operation. The best-of-generation individual after the fitness-proportionate reproduction in
generation O is, at best, the best randomly created individual.

The genetic operation of crossover (sexual recombination) allows new individuals to be created. It allows new points in the search space to be
tested. Whereas the operation of reproduction acted on only oneindividual at atime, the operation of crossover starts with two parents. As
with the reproduction operation, the individuals participating in the crossover operation are selected proportionate to fithess. The crossover
operation produces two offspring. The two offspring are usually different from their two parents and different from each other. Each offspring
contains some genetic material from each of its parents.

To illustrate the crossover (sexua recombination) operation, consider the first two individuals from the mating pool (table 3.4).

The crossover operation begins by randomly selecting a number between 1 and L - 1 using a uniform probability distribution. There are
L - 1= 2 intergtitial locations lying between the positions of a string of length L = 3. Suppose that the interstitial location 2 is selected. This
location becomes the crossover point. Each parent is then split at this crossover point into a crossover fragment and a remainder.

The crossover fragments of parents 1 and 2 are shown in table 3.5.

After the crossover fragment isidentified, something remains of each parent. The remainders of parents 1 and 2 are shown in table 3.6.

Table 3.4 Two parents selected proportionate to fitness.
Parent 1 Parent 2
011 110

Table 3.5 Crossover fragments from the two parents.

Crossover fragment 1 Crossover fragment 2
01- 11-
Page 24
Table 3.6 Remainders from the two parents.
Remainder 1 Remainder 2
-1 -0

Table 3.7 Two offspring produced by crossover.

Offspring 1 Offspring 2

111 010

Table 3.8 One possible outcome of applying the reproduction and crossover operations to
generation O to create generation 1.

Generation Mating pool created | After crossover

0 after reproduction (generation 1)

String Fitness fIX) Mating Pool Crossover
i X f(X) S fix) | pool f(X) point X, f(X)
1 011 3 .25 011 3 2 111 7

2 001 1 .08 110 6 2 010 2

3 110 6 .50 110 6 — 110 6

4 010 2 17 010 2 — 010 2
Total 12 17 17
Worst 1 2 2
Average 3.00 4.25 4.25
Best 6 6 7

We then combine remainder 1 (i.e., --1) with crossover fragment 2 (i.e., 11-) to create offspring 1 (i.e., 111). We similarly combine remainder
2 (i.e., --0) with crossover fragment 1 (i.e., 01-) to create offspring 2 (i.e., 010). The two offspring are shown in table 3.7.

Both the reproduction operation and the crossover operation require the step of selecting individuals proportionately to fithess. We can
simplify the processif we first apply the operation of fitness-proportionate reproduction to the entire population to create a mating pool. This
mating pool is shown under the heading "mating pool created after reproduction” in table 3.3 and table 3.8. The mating pool is an intermediate
step in transforming the population from the current generation (generation 0) to the next generation (generation 1).

We then apply the crossover operation to a specified percentage of the mating pool. Suppose that, for this example, the crossover probability
p. is 50%. This means that 50% of the population (atotal of two individuals) will participate in crossover as part of the process of creating the
next generation (i.e., generation 1) from the current generation (i.e., generation 0). The remain-

Page 25

ing 50% of the population participates only in the reproduction operation used to create the mating pool, so the reproduction probability p, is
50% (i.e., 100% - 50%) for this particular example.

Table 3.8 shows the crossover operation acting on the mating pool. The two individuals that will participate in crossover are selected in
proportion to fitness. By making the mating pool proportionate to fitness, we make it possible to select the two individuals from the mating
pool merely by using a uniform random distribution (with reselection allowed). The two offspring that were randomly selected to participate
in the crossover operation happen to be the individuals 011 and 110 (found on rows 1 and 2 under the heading "Mating pool created after
reproduction”). The crossover point was chosen between 1 and L - 1 = 2 using a uniform random distribution. In thistable, the number 2 was
chosen and the crossover point for this particular crossover operation occurs between position 2 and position 3 of the two parents. The two
offspring resulting from the crossover operation are shown in rows 1 and 2 under the heading "After crossover." Since p, was only 50%, the
two individuals on rows 3 and 4 do not participate in crossover and are merely transferred to rows 3 and 4 under the heading "After crossover.”

The four individuals in the last column of table 3.8 are the new population created as a result of the operations of reproduction and crossover.
These four individuals are generation 1 of this run of the genetic algorithm.

We then evaluate this new population of individuals for fitness. The best of-generation individual in the population in generation 1 has a
fitness value of 7, whereas the best-of-generation individua from generation 0 had a fitness of only 6. Crossover created something new, and,
in this example, the new individual had a higher fitness value than either of its two parents.

When we compare the new population of generation 1 as a whole against the old population of generation 0, we find the following:
. The average fitness of the population has improved from 3 to 4.25.

. The best-of-generation individual has improved from 6 to 7.

. The worst-of-generation individual hasimproved from 1 to 2.

A genealogical audit trail can provide further insight into why the genetic algorithm works. In this example, the best individual (i.e., 111) of
the new generation was the offspring of 110 and 011. The first parent (110) happened to be the best-of-generation individual from generation
0. The second parent (011) was an individual of exactly average fitness from the initial random generation. These two parents were selected to
be in the mating pool in a probabilistic manner on the basis of their fitness. Neither was below average. They then came together to participate
in crossover. Each of the offspring produced contained chromosomal material from both parents. In this instance, one of the offspring was
fitter than either of its two parents.

This example illustrates how the genetic algorithm, using the two operations of fitness-proportionate reproduction and crossover, can create a
population with improved average fithess and improved individuals.

Page 26

The genetic algorithm then iteratively performs the operations on each generation of individuals to produce new generations of individuals
until some termination criterion is satisfied.

For each generation, the genetic algorithm first evaluates each individual in the population for fitness. Then, using this fitness information, the
genetic algorithm performs the operations of reproduction, crossover, and mutation with the frequencies specified by the respective
probability parameters p,, p., and p,,. This creates the new population.

The termination criterion is sometimes stated in terms of a maximum number of generations to be run. For problems where a perfect solution
can be recognized when it is encountered, the a gorithm can terminate when such an individual is found.

In this example, the best business strategy in the new generation (i.e., generation 1) is the following:
. sell the hamburgers at 50 cents (rather than $10),

. provide cola (rather than wine) as the drink, and

. offer fast service (rather than leisurely service).

Asit happens, this business strategy (i.e., 111), which produces $7 in profits for the week, is the optimum strategy. |f we happened to know
that $7 is the global maximum for profitability, we could terminate the genetic algorithm at generation 1 for this example.

One method of result designation for arun of the genetic algorithm isto designate the best individual in the current generation of the
population (i.e., the best-of-generation individual) at the time of termination as the result of the genetic algorithm. Of course, atypica run of
the genetic algorithm would not terminate on the first generation as it does in this simple example. Instead, typical runs go on for tens,
hundreds, or thousands of generations.

A mutation operation is also usually used in the conventional genetic algorithm operating on fixed-length strings. The frequency of applying
the mutation operation is controlled by a parameter called the mutation probability, p,,. Mutation is used very sparingly in genetic algorithm
work. The mutation operation is an asexual operation in that it operates on only one individual. It begins by randomly selecting a string from
the mating pool and then randomly selecting a number between 1 and L as the mutation point. Then, the single character at the selected
mutation point is changed. If the aphabet is binary, the character is merely complemented. No mutation was shown in the above example;
however, if individua 4 (i.e., 010) had been selected for mutation and if position 2 had been selected as the mutation point, the result would
have been the string 000. Note that the mutation operation had the effect of increasing the genetic diversity of the population by creating the
new individual 000.

It isimportant to note that the genetic algorithm does not operate by converting a random string from the initial population into a globally
optimal string via a single mutation any more than Darwinian evolution consists of converting free carbon, nitrogen, oxygen, and hydrogen
into afroginasingle

Page 27

flash. Instead, mutation is a secondary operation that is potentially useful in restoring lost diversity in a population. For example, in the early
generations of arun of the genetic algorithm, avalue of 1 in a particular position of the string may be strongly associated with better
performance. That is, starting from typical initial random points in the search space, the value of 1 in that position may consistently produce a
better value of the fitness measure. Because of the higher fitness associated with the value of 1 in that particular position of the string, the
exploitative effect of the reproduction operation may eliminate genetic diversity to the extent that the value 0 disappears from that position for
the entire population. However, the global optimum may have a 0 in that position of the string. Once the search becomes narrowed to the part
of the search space that actually contains the global optimum, avalue of 0 in that position may be precisely what is required to reach the
global optimum. Thisis merely away of saying that the search space is nonlinear. This situation is not hypothetical since virtualy all
problemsin which we are interested are nonlinear. Mutation provides away to restore the genetic diversity lost because of previous
exploitation.

Indeed, one of the key insights in Adaptation in Natural and Artificial Systems concerns the relative unimportance of mutation in the
evolutionary processin nature as well as its relative unimportance in solving artificial problems of adaptation using the genetic algorithm. The
genetic algorithm relies primarily on the creative effects of sexual genetic recombination (crossover) and the exploitative effects of the
Darwinian principle of survival and reproduction of the fittest. Mutation is a decidedly secondary operation in genetic algorithms.

Holland's view of the crucial importance of recombination and the relative unimportance of mutation contrasts sharply with the popular
misconception of the role of mutation in evolution in nature and with the recurrent efforts to solve adaptive systems problems by merely
"mutating and saving the best." In particular, Holland's view stands in sharp contrast to Artificial Intelligence through Smulated Evolution
(Fogel, Owens, and Walsh 1966) and other similar efforts at solving adaptive systems problems involving only asexual mutation and
preservation of the best (Hicklin 1986; Dawkins 1987).

The four major stepsin preparing to use the conventional genetic algorithm on fixed-length character strings to solve a problem involve
(1) determining the representation scheme,

(2) determining the fitness measure,

(3) determining the parameters and variables for controlling the algorithm, and

(4) determining the way of designating the result and the criterion for terminating a run.

The representation scheme in the conventional genetic algorithm is a mapping that expresses each possible point in the search space of the
problem as a fixed-length character string. Specification of the representation scheme requires selecting the string length L and the a phabet
size K. Often the

Page 28

alphabet is binary. Selecting the mapping between the chromosome and the points in the search space of the problem is sometimes
straightforward and sometimes very difficult. Selecting a representation that facilitates solution of the problem by means of the genetic
algorithm often requires considerable insight into the problem and good judgment.

The fitness measure assigns a fitness value to each possible fixed-length character string in the population. The fitness measure is often
inherent in the problem. The fitness measure must be capable of evaluating every fixed-length character string it encounters.

The primary parameters for controlling the genetic algorithm are the population size (M) and the maximum number of generations to be run
(G). Secondary parameters, such as p;, p., and p,, control the frequencies of reproduction, crossover, and mutation, respectively. In addition,
severa other quantitative control parameters and qualitative control variables must be specified in order to completely specify how to execute
the genetic algorithm (chapter 27).

The methods of designating aresult and terminating a run have been discussed above.

Once these steps for setting up the genetic algorithm have been completed, the genetic algorithm can be run.

Thethree steps in executing the genetic algorithm operating on fixed-length character strings can be summarized as follows:

(1) Randomly create an initial population of individual fixed-length character strings.

(2) Iteratively perform the following substeps on the population of strings until the termination criterion has been satisfied:
(a) Evaluate the fitness of each individua in the population.

(b) Create anew population of strings by applying at least the first two of the following three operations. The operations are applied to
individual string(s) in the population chosen with a probability based on fitness.

(i) Copy existing individua strings to the new population.
(ii) Create two new strings by genetically recombining randomly chosen substrings from two existing strings.
(iii) Create anew string from an existing string by randomly mutating the character at one position in the string.

(3) The best individua string that appeared in any generation (i.e., the best-so-far individual) is designated as the result of the genetic
algorithm for the run. This result may represent a solution (or an approximate solution) to the problem.

Figure 3.1 isaflowchart of these steps for the conventional genetic algorithm operating on strings. Theindex i refersto anindividua in a
population of size M. The variable GEN is the current generation number.

There are numerous minor variations on the basic genetic algorithm; this flowchart is merely one version. For example, mutation is often
treated as an

Page 29

Gen:=10

Create Initial
Random Population

Yes

.(Termination Deesignate
Criterion Satisfied? Result
¥ No

Evaluate Fitness of Each Lind
Individual in Population

Yes
Gen = Gen + 1 i=M?
Mo
P elect Genetic Orperation [
Probabalistically
I

Select One lect Two Individuald Select One
Individual Based on Filness Individual
Based on Finess i

i Perform Mutation i

¥

Copy into New Crossover Insert Mutant into
Population + MNew Population

Insent Two
fosgq:ing
into New

Population

L % ——
ii=mi+

Figure 3.1
Flowchart of the conventional genetic algorithm.

operation that can occur in sequence with either reproduction or crossover, so that a given individual might be mutated and reproduced or
mutated and crossed within a single generation. Also, the number of times a genetic operation is performed during one generation is often set
to an explicit number for each generation (as we do later in this book), rather than determined probabilistically as shown in this flowchart.

Note also that this flowchart does not explicitly show the creation of a mating pool (as we did above to simplify the presentation). Instead, one
or two individuals are selected to participate in each operation on the basis of fitness and the operation is then performed on the selected
individuals.

It isimportant to note that the genetic algorithm works in a domain-independent way on the fixed-length character stringsin the population.
For this reason, it is a "weak method." The genetic agorithm searches the space

Page 30

of possible character stringsin an attempt to find high-fitness strings. To guide this search, it uses only the numerical fitness values associated
with the explicitly tested points in the search space. Regardless of the particular problem domain, the genetic algorithm carries out its search
by performing the same amazingly simple operations of copying, slicing and dicing, and occasionally randomly mutating strings.

In practice, genetic algorithms are surprisingly rapid in effectively searching complex, highly nonlinear, multidimensional search spaces. This
isall the more surprising because the genetic algorithm does not know anything about the problem domain or the fitness measure.

The user may employ domain-specific knowledge in choosing the representation scheme and the fithess measure and also may exercise
additional judgment in choosing the population size, the number of generations, the parameters controlling the probability of performing the
various operations, the criterion for terminating a run, and the method for designating the result. All of these choices may influence how well
the genetic algorithm performsin a particular problem domain or whether it works at al. However, the main point is that the genetic
algorithm is, broadly speaking, a domain-independent way of rapidly searching an unknown search space for high-fitness points.

3.2 Why the Genetic Algorithm Works

Let usreturn to the example of the four hamburger restaurants to see how Darwinian reproduction and genetic recombination allow the
genetic algorithm to effectively search complex spaces when nothing is known about the fitness measure.

As previously mentioned, the genetic algorithm's creation of itsinitial random population corresponds to the restaurant manager's decision to
start his search by testing four different random business strategies.

It would superficialy appear that testing the four random strings does nothing more than provide values of fitness for those four explicitly
tested points.

One additional thing that the manager learned is that $3 is the average fitness of the population. It is an estimate of the average fitness of the
search space. This estimate has a statistical variance associated with it, sinceit is not the average of all Kt pointsin the search space but
merely a calculation based on the four explicitly tested points.

Once the manager has this estimate of the average fitness of the unknown search space, he has an entirely different way of looking at the
fitness he observed for the four explicitly tested points in the population. In particular, he now sees that

. 110is 200% as good as the estimated average for the search space,
. 001 is 33% as good as the estimated average for the search space,
. 011 is 100% as good as the estimated average for the search space, and

. 010 is67% as good as the estimated average for the search space.

Page 31
We return to the key question: What is the manager going to do during the second week of operation of the restaurants?

One option the manager might consider for week 2 isto continue to randomly select new points from the search space and test them. A blind
random search strategy is nonadaptive and nonintelligent in the sense that it does not use information that has already been learned about the
environment to influence the subsequent direction of the search. For any problem with a nontrivial search space, it will not be possible to test
more than atiny fraction of the total number of pointsin the search space using blind random search. There are Kt points in the search space
for a problem represented by a string of length L over an alphabet of size K. For example, even if it were possible to test abillion (109) points
per second and if the blind random search had been going on since the beginning of the universe (i.e., about 15 hillion years), it would be
possible to have searched only about 1027 points with blind random search. A search space of 1027 = 2% points corresponds to a binary string
with the relatively modest length L = 90.

Another option the manager might consider for the second week of operation of his restaurants isto greedily exploit the best result from his
testing of the initial random population. The greedy exploitation strategy involves employing the 110 business strategy for al four restaurants
for every week in the future and not testing any additional pointsin the search space. Greedy exploitation is, unlike blind random search, an
adaptive strategy (i.e., an intelligent strategy), because it uses information learned at one stage of the search to influence the direction of the
search at the next stage. Greedy exploitation can be expected to produce a payoff of $6 per restaurant per week. On the basis of the current $3
estimate for the average fitness of pointsin the search space as awhole, greedy exploitation can be expected to be twice as good as blind
random search.

But greedy exploitation overlooks the virtual certainty that there are better points in the search space than those accidently chosen in the
necessarily tiny initial random sampling of points. In any interesting search space of meaningful size, it is unlikely that the best-of-generation
point found in asmall initial random sample would be the global optimum of the search space, and it is similarly unlikely that the best-of -
generation point in an early generation would be the global optimum. The goal isto maximize the profits over time, and greedy exploitation is
highly premature at this stage.

While acknowledging that greedy exploitation of the currently observed best-of-generation point in the population (110) to the exclusion of
everything elseis not advisable, we nonethel ess must give considerable weight to the fact that 110 performs at twice the estimated average of
the search space as awhole. Indeed, because of this one fact alone, al future exploration of random points in the search space now carries a
known and rather hefty cost of exploration. In particular, the estimated cost of testing a new random point in the search space is how

$6 - $3 = $3 per test. That is, for each new random point we test, we must forgo the now-known and available payoff of $6.

Page 32

But if we do not test any new points, we are left only with the already-rejected option of greedily exploiting forever the currently observed
best point from the small initial random sampling. There is also arather hefty cost of not testing a new random point in the search space. This
cost isf, . - $6, wheref, ., isthe as-yet-unknown fitness of the global maximum of the search space. Since we are not likely to have stumbled
into anything like the global maximum of the search space on our tiny test of initial random points, this unknown cost islikely to be very
much larger than the $6 - $3 = $3 estimated cost of testing a new random point. Moreover, if we continue this greedy exploitation of this
almost certainly suboptimal point, we will suffer the cost of failing to find a better point for all future time periods.

Thus, we have the following costs associated with two competing, alternative courses of action:
. Associated with exploration is an estimated $3 cost of allocating future trials to new random points in the search space.
. Associated with exploration is an unknown (but probably very large) cost of not allocating future trials to new points.

An optimally adaptive (intelligent) system should process currently available information about payoff from the unknown environment so as
to find the optimal tradeoff between the cost of exploration of new pointsin the search space and the cost of exploitation of already-evaluated
points in the search space. This tradeoff must also reflect the statistical variance inherently associated with costs that are merely estimated
Ccosts.

Moreover, as we proceed, we will want to consider the even more interesting tradeoff between exploration of new points from a portion of the
search space which we believe may have above-aver age payoff and the cost of exploitation of already-evaluated pointsin the search space.

But what information are we going to process to find this optimal tradeoff between further exploration and exploitation of the search space? It
would appear that we have already extracted everything thereisto learn from our initial testing of the M = 4 initial random points.

An important point of Holland's Adaptation in Natural and Artificial Systemsisthat there is awealth of hidden information in the seemingly
small population size of M = 4 random points from the search space.

We can begin to discern some of this hidden information if we enumerate the possible explanations (conjectures, hypotheses) asto why the
110 strategy pays off at twice the average fitness of the population. Table 3.9 shows seven possible explanations as to why the business
strategy 110 performs at 200% of the population average.

Each string shown in the right column of table 3.9 is called a schema (plural: schemata). Each schemais a string over an extended al phabet
consisting of the original aphabet (the 0 and 1 of the binary alphabet, in this example) and an asterisk (the "don't care" symbol).

Row 1 of table 3.9 shows the schema 1**. This schemarefersto the conjecture (hypothesis, explanation) that the reason why 110 isso good is
the

Page 33

Table 3.9 Seven possible explanations as to why strategy 110 performs at 200% of the
population average fitness.

It'sthe low price. 1**
It's the cola. *1*
It'sthe leisurely service. **0
It's the low price in combination with the cola. 11*
It's the low price in combination with the leisurely service. 1*0
It's the colain combination with leisurely service. *10
It's the precise combination of the low price, the cola, and the leisurely service. 110

low price of the hamburger (the specific bit 1 in the leftmost bit position). This conjecture does not care about the drink (the * in the middle
bit position) or the speed of service (the * in the rightmost bit position). It refers to asingle variable (the price of the hamburger). Therefore,
the schema 1** is said to have a specificity (order) of 1 (i.e., thereis one specified symbol in the schema 1**).

On the second-to-last row of table 3.9, the schema* 10 refers to the conjecture (hypothesis, explanation) that the reason why 110 is so good is
the combination of colaand leisurely service (i.e., the 1 in bit position 2 and the 0 in bit position 3). This conjecture refersto two variables
and therefore has specificity 2. Thereis an asterisk in bit position 1 of this schema because it refers to the effect of the combination of the
specified values of the two specified variables (drink and service) without regard to the value of the third variable (price).

We can restate thisidea as follows: A schemaH describes a set of points from the search space of a problem that have certain specified

similarities. In particular, if we have a population of strings of length L over an alphabet of size K, then a schemaisidentified by a string of

length L over the extended alphabet of size K + 1. The additional element in the alphabet is the asterisk.

There are (K + 1)- schemata of length L. For example, when L = 3 and K = 2 there are 27 schemata.

A string from the search space belongs to a particular schemaif, for al positionsj =1, ..., L, the character found in the jth position of the
string matches the character found in the jth position of the schema, or if the jth position of the schemais occupied by an asterisk. Thus, for
example, the strings 010 and 110 both belong to the schema * 10 because the characters found in positions 2 and 3 of both strings match the
characters found in the schema* 10 in positions 2 and 3 and because the asterisk is found in position 1 of the schema. The string 000, for
example, does not belong to the schema * 10 because the schemahasa 1 in position 2.

When L = 3, we can geometrically represent the 23 = 8 possible strings (i.e., the individual pointsin the search space) of length L = 3 asthe

corners of a hypercube of dimensionality 3.

Figure 3.2 shows the 23 = 8 possible strings in bold type at the corners of the cube.

1M

110 e
=10
011
I*+0) 1*1
0%
00
100 10*
*(H)
1
000 00* 001
Figure 3.2
Search space for the hamburger

restaurant problem.

000

Three of the six schemata of specificity 1.

001

Figure 3.3

Page 34

We can similarly represent the other schemata as various geometric entities associated with the cube. In particular, each of the 12 schemata
with specificity 2 (i.e., two specified positions and one "don't care" position) contains two points from the search space. Each such schema
corresponds to one of the 12 edges (one-dimensional hyperplanes) of this cube. Each of the edges has been labeled with the particular schema

to which its two endpoints belong. For example, the schema* 10 is one such edge and is found at the top | eft of the cube.

Figure 3.3 shows three of the six schemata with specificity 1 (i.e., one specified position and two "don't care" positions). Each such schema
contains four points from the search space and corresponds to one of the six faces (two-dimensional hyperplanes) of this cube. Three of the six
faces have been shaded and labeled with the particular schema to which the four corners associated with that face belong. For example, the
schema*0* isthe bottom face of the cube.

Page 35

Table 3.10 Schema specificity, dimension of the hyperplane corresponding to that
schema, geometric realization of the schema, number of points from the search space
contained in the schema, and number of such schemata.
Schema Hyperplane Geometric Individualsin | Number of such
specificity O(H) dimension realization the schema schemata
3 0 Point 1 8
2 1 Line 2 12
1 2 Plane 4 6
0 3 Entire cube 8 1

Total 27

The eight schemata with specificity 3 (i.e., three specified positions and no "don't care" positions) correspond to the actual points from the
search space and to the corner points (zero-dimensional hyperplanes) of this cube.

The single schema with specificity O (i.e., no specified positions and three "don't care" positions) consists of the cube itself (the three-
dimensional hyperplane). There is one such three-dimensional hyperplane (i.e., the cube itself). Note that, for simplicity, schema*** was
omitted from table 3.9.

Table 3.10 summarizes the schema specificity, the dimension of the hyperplane corresponding to that schema, the geometric realization of the
schema, the number of points from the search space contained in the schema, and the number of such schemata for the binary case (where
K =2). A schema of specificity O(H) (column 1 of the table) corresponds to a hyperplane of-dimensionality L - O(H) (column 2) which has
the geometric realization shown in column 3. This schema contains 2-°") individuals (column 4) from the hypercube of dimension L. The
number of schemata of specificity O(H) is
E’ (HH)
(Dm}) a0

Table 3.11 shows which of the 2- = 23 = 8 individual strings of length L = 3 over an alphabet of size K = 2 from the search space appear in
each of the (K +1)- = 3" = 27 schemata.

An important observation is that each individual in the population belongs to 2- schemata. The 2- schemata associated with a given individual
string in the population can be generated by creating one schema from each of the 2- binary numbers of length L. Thisis done as follows: For
each 0 in the binary number, insert the "don't care”" symbol * in the schema being constructed. For each 1 in the binary number, insert the
specific symbol from that position from the individual string in the schema being constructed. The individual string from the population
belongs to each of the schemata thus created. Note that this number isindependent of the number K of charactersin the alphabet. For
example, when L = 3, the 23 = 8 schemata to which the string 010 belongs are the seven schemata explicitly shown in table 3.12 plus the
schema*** (which, for simplicity, is not shown in the table).

Table 3.11 Individual strings belonging to each of the 27 schemata.
Schema Individua strings

1 000 000

2 001 001

3 00* 000, 001

4 010 010

5 011 011

6 01* 010, 011

7 0*0 000, 010

8 0*1 001, 011

9 o** 000, 001, 010, 011

10 100 100

11 101 101

12 10* 100, 101

13 110 110

14 111 111

15 11* 110, 111

16 1*0 100, 110

17 1*1 101, 111

18 1x* 100, 101, 110, 111

19 *00 000, 100

20 *01 001, 101

21 *O* 000, 001, 100, 101

22 *10 010, 110

23 *11 011, 111

24 *|* 010, 011, 110, 111

25 **Q 000, 010, 100, 110

26 **] 001, 011, 101, 111

27 *kk 000, 001, 010, 011, 100, 101, 110, 111

Let us now return to the discussion of how each of the four explicitly tested pointsin the population tells us something about various
conjectures (explanations, hypotheses). Each conjecture corresponds to a schema.

Page 36

The possible conjectures concerning the superior performance of strategy 110 were enumerated in table 3.9. Why does the strategy 010 pay
off at only 2/3 the average fitness of the population? Table 3.12 shows seven of the possible conjectures for explaining why 010 performs
relatively poorly.

The problem of finding the correct explanation for the observed performance is more complicated than merely enumerating the possible
explanations for the observed performance because, typically, the possible explanations conflict with one another. For example, three of the

possible explanations for the observed performance of the point 010 conflict with the possible explanations for the observed good

performance of the point 110. In particular, * 1* (coladrink), **0 (leisurely service), and * 10 (coladrink and leisurely service) are potential
explanations for both above-average performance and below-average performance. That should not be surprising, since we should not expect
all possible explanationsto be valid.

Page 37

Table 3.12 Seven possible explanations as to why strategy 010 performs at only 2/3 of the
population average fitness.

It'sthe high price. o**
It's the cola *1*
It'sthe leisurely service. **0
It's the high price in combination with the cola. 01*
It's the high price in combination with the leisurely service. 0*0
It's the colain combination with leisurely service. *10
It's the precise combination of the high price, the cola, and the leisurely service. 010

If we enumerate the possible explanations for the observed performance of the two remaining points from the search space (011 and 001),
additional conflicts between the possible explanations appear.

In general, these conflicts can result from the inherent nonlinearities of a problem (i.e., the genetic linkages between various decision
variables), from errorsintroduced by statistical sampling (e.g., the seemingly good performance of **0), from noise in the environment, or
even from changes in the environment (e.g., the non-stationarity of the fitness measure over time).

How are we going to resolve these conflicts?

Animportant insight in Holland's Adaptation in Natural and Artificial Systemsis that we can view these schemata as competing explanations,
each of which has afitness value associated with it. In particular, the average fitness of a schema is the average of the fithess values for each
individual in the population that belongs to a given schema. This schema average fitnessis, like most of the averages discussed throughout
this book, an estimate which has a statistical variance associated with it. Some averages are based on more data points than others and
therefore have lower variance. Usually, more individuals belong to aless specific schema, so the schema average fitness of aless specific
schema usually has lower variance.

Only the four individuals from the population are explicitly tested for fithess, and only these four individual s appear in genetic algorithm
worksheets (such astable 3.8). However, in the genetic algorithm, asin nature, the individuals actually present in the population are of
secondary importance to the evolutionary process. In nature, if a particular individual survives to the age of reproduction and actually
reproduces sexually, at |east some of the chromosomes of that individual are preserved in the chromosomes of its offspring in the next
generation of the population. With the exceptions of identical twins and asexual reproduction, one rarely sees two exact copies of any
particular individual. It is the genetic profile of the population as awhole (i.e., the schemata), as contained in the chromosomes of the
individuals of the population, that is of primary importance. The individuals in the population are merely the vehicles for collectively
transmitting a genetic profile and the guinea pigs for testing fitness in the environment.

When a particular individual survives to the age of reproduction and reproduces in nature, we do not know which single attribute or
combination

Page 38

of attributesis responsible for this observed achievement. Similarly, when a single individual in the population of four strategies for running a
restaurant has a particular fitness value associated with it, we do not know which of the 23 = 8 possible combinations of attributesis
responsible for the observed performance.

Since we do not know which of the possible combinations of attributes (explanations) is actually responsible for the observed performance of
the individual as awhole, werely on averages. If a particular combination of attributesis repeatedly associated with high performance
(because individuals containing this combination have high fitness), we may begin to think that that combination of attributesis the reason for
the observed performance. The same istrueif a particular combination of attributesis repeatedly associated with low or merely average
performance. If a particular combination of attributes exhibits both high and low performance, then we begin to think that the combination has
no explanatory power for the problem at hand. The genetic algorithm implements this highly intuitive approach to identifying the combination
of attributes that is responsible for the observed performance of a complex nonlinear system.

The genetic algorithm implicitly allocates credit for the observed fitness of each explicitly tested individual string to all of the 2- = 8 schemata
to which the particular individual string belongs. In other words, all 2- = 8 possible explanations are credited with the performance of each
explicitly tested individual. In other words, we ascribe the successful performance (i.e., survival to the age of reproduction and reproduction)
of the whole organism to every schemato which the chromosome of that individual belongs. Some of these allocations of credit are no doubt
misdirected. The observed performance of oneindividual provides no way to distinguish among the 2- = 8 possible explanations.

A particular schemawill usually receive allocations that contribute to its average fitness from a number of individualsin the population. Thus,
an estimate of the average fitness for each schema quickly begins to build up. Of course, we never know the actual average fitness of a
schema, because a stetistical variance is associated with each estimate. If alarge amount of generally similar evidence begins to accumulate
about a given schema, the estimate of the average fitness of that schemawill have arelatively small variance. We will then begin to have
higher confidence in the correctness of the average fitness for that schema. If the evidence about a particular schema suggests that it is greatly
superior to other schemata, we will begin to pay greater attention to that schema (perhaps overlooking the variance to some degree).

Table 3.13 shows the 23 = 8 schemata to which the individual 110 belongs. The observed fitness of 6 for individua 110 (which was 200% of
the population average fitness) contributes to the estimate of the average fitness of each of the eight schemata.

Asit happens, for the first four schematain table 3.13, 110 isthe only individual in our tiny population of four that belongs to these schemata.
Thus,

Page 39

Table 3.13 The 2" = 8 schemata to which individual 110 belongs.

Schema Average fitness

110

11*

1*0

1**

*10

l

**O

ol ~N]Jolo]ls]w]|d] -
wlsr]lw]»s]o|o]o|o

* %%

the estimate of average fitness (i.e., 6) for the first four schematais merely the observed fitness of the one individual.

However, for the next four schematain table 3.13, 110 is not the only individual contributing to the estimate of average fitness. For example,
on row 5 of table 3.13, two individuals (110 and 010) belong to the schema*10. The observed fitness of individual 110 ($6) suggests that the
*10 schema may be good, while the observed fitness of individual 010 ($2) suggests that * 10 may be bad. The average fitness of schema* 10
is$4.

Similarly, for example, on row 6 of table 3.13, three individuals (110, 010, and 011) belong to the schema* 1*. The average fitness of schema
1 isthusthe average of $6 from 110, $2 from 010, and $3 from 010 (that is, $3.67). Since this average is based on more data points
(athough still very few), it has a smaller variance than the other averages just mentioned.

For each of the other two individualsin the population, one can envision a similar table showing the eight schemata to which the individual
belongs. The four individuals in the current population make atotal of M2-= 32 contributions to the calculation of the 3- = 27 values of
schema average fitness. Of course, some schemata may be associated with more than one individual.

In creating generation 1, we did not know the precise explanation for the superiority of 110 from among the 2 possible explanations for its
superiority. Similarly, we did not know the precise explanation for the performance of 011 from among the 2- possible explanations for its
averageness. In creating generation 1, there were two goals. First, we wanted to continue the search in areas of the search space that were
likely to produce higher levels of fitness. The only available evidence suggested continuing the search in parts of the search space that
consisted of points that belonged to schemata with high observed fitness (or, at least, not low fitness). Second, we did not want merely to
retest any points that had already been explicitly tested (i.e., 110 and 011). Instead, we wanted to test new points from the search space that
belonged to the same schemata to which 110 and 011 belonged. That is, we wanted to test new points that were similar to 110 and 011. We
wished to construct and test new and different points whose schemata had already been identified as being of relatively high fitness.

Page 40

The genetic algorithm provides a way to continue the search of the search space by testing new and different points that are similar to points
that have already demonstrated above-average fitness. The genetic algorithm directs the search into promising parts of the search space on the
basis of the information available from the explicit testing of the particular (small) number of individuals contained in the current population.

Table 3.14 shows the number of occurrences of each of the 3" = 27 schemata among the M = 4 individuals in the population. Column 3 shows
the number of occurrences m(H, 0) of schemaH for generation 0. This number ranges between 0 and 4 (i.e., the population size M). The sum
of column 3is 32 = M2", because each individual in the population belongs to atotal of 2- = 8 schemata and therefore contributes to 8
different calculations of schema average fitness. Some schemata receive contributions from two or more individuals in the population and
some receive no contributions. The total number of schemata with a nonzero number of occurrencesis 20 (as shown in the last row of the
table). Column 4 shows the average fitness f(H, 0) of each schema. For example, for the schemaH = *1* on row 24, the number of
occurrences m(H, 0) is 3, because strings 010, 011, and 110 belong to this schema. Because the sum of the fitness values of the three strings is
11, the schema average fitnessis f(H, t) = f(* 1*) = 3.67.

Note that there is no table displaying 3" = 27 schemata like table 3.14 anywhere in the genetic algorithm. The M2" = 32 contributions to the
average fitnesses of the 3- = 27 schemata appearing in table 3.14 are all implicitly stored within the M = 4 strings of the popul ation.

No operation is ever explicitly directly performed on the schemata by the genetic algorithm.
No calculation of schema average fitness is ever made by the genetic algorithm.

The genetic algorithm operates only on the M = 4 individualsin the population. Only the M = 4 individualsin the current population are ever
explicitly tested for fitness. Then, using these M = 4 fitness values, the genetic algorithm performs the operations of reproduction, crossover,
and mutation on the M = 4 individuals in the population to produce the new population.

We now begin to see that awealth of information is produced by the explicit testing of just four strings. We can see, for example, that the
estimate of average fitness of certain schematais above average, while the estimate of average fitness of some other schematais below
average or merely average.

We would clearly like to continue the search to the portions of the search space suggested by the current above-average estimates of schema
average fitness. In particular, we would like to construct a new population using the information provided by the schemata.

While constructing the new population using the available information, we must remember that thisinformation is not perfect. Thereisa
possihility that the schemata that are currently observed to have above-average fitness may lose their luster when more evidence accumulates.
Similarly, thereisa possibility that an "ugly duckling" schemathat is currently observed to have bel ow-average fitness may turn out
ultimately to be associated with the optimal

Page 41

Table 3.14 Number of occurrences (column 3) and schema average fitness
(column 4) for each of the 27 schematain generation 0.

Generation
0

H mH,0) f(H, 0)
000
001
00
010
011
01*
0*0
0*1
0+

© 0 N o 0 A~ W N P H#
O W N P N P P B P, O
O N N N N W N B B O

=
o

100

11 101 0 0
12 10* 0 0
13 110 1 6
14 111 0 0
15 11* 1 6
16 1*0 1 6
17 1*1 0 0
18 1** 1 6
19 *00 0 0
20 *01 1 1
21 *O* 1 1
22 *10 2 4
23 *11 1 3
24 *1* 3 3.67
25 **Q 2 4
26 **1 2 2
27 b 4 3
Total 32 96
Mean 3.00
Nonzero 20 20
items

Page 42

solution. Thus, we must use the available information to guide our search, but we must also remember that the currently available evidence
may be wrong.

The question, therefore, is how best to use this currently available information to guide the remainder of the search. The answer comes from
the solution to a mathematical problem known as the two-armed-bandit (TAB) problem and its generalization, the multi-armed-bandit
problem. The TAB problem starkly presents the fundamental tension between the benefit associated with continued exploration of the search
space and the benefit associated with immediate greedy exploitation of the search space.

The two-armed-bandit problem was described as early as the 1930s in connection with the decision-making dilemma associated with testing
new drugs and medical treatments in controlled experiments necessarily involving relatively small numbers of patients. There may come a
time when one treatment is producing better results than another and it would seem that the better treatment should be adopted as the standard
way for thereafter treating all patients. However, the observed better results have an associated statistical variance, and there is always some
uncertainty asto whether the currently observed best treatment is really the best. The premature adoption of the currently observed better
treatment may doom all future patients to an actually inferior treatment. See also Bellman 1961.

Consider a slot machine with two arms, one of which pays off considerably better than the other. The goal is to maximize the payoff (i.e.,
minimize the losses) while playing this two-armed bandit over a period of time. If one knew that one arm was better than the other with
certainty, the optimal strategy would be trivia; one would play that arm 100% of the time. Absent this knowledge and certainty, one would
allocate a certain number of trials to each arm in order to learn something about their relative payoffs. After just afew trials, one could
quickly start computing an estimate of average payoff p, for arm 1 and an estimate of average payoff p, for arm 2. But each of these estimates

of the actual payoffs has an associated statistical variance (o2 and 022, respectively).

After more thorough testing, the currently observed better arm may actually prove to be the inferior arm. Therefore, it is not prudent to
allocate 100% of the future trials to the currently observed better arm. In fact, one must forever continue testing the currently observed poorer
arm to some degree, because of the possibility (ever diminishing) that the currently observed poorer arm will ultimately prove to be the better
arm. Nonetheless, one clearly must allocate more trials to the currently observed better arm than to the currently observed poorer arm.

But precisely how many more future trials should be allocated to the currently observed better arm, with its current variance, than the currently
poorer arm, with its current variance?

The answer depends on the two payoffs and the two variances. For each additional trial one makes of the currently observed poorer arm
(which will be called arm 2 hereafter), one expects to incur a cost of exploration equal to the

Page 43

difference between the average payoff of the currently observed better arm (arm 1 hereafter) and the average payoff of the currently observed
poorer arm (arm 2). If the currently observed better arm (i.e., arm 1) ultimately provesto be inferior, one should expect to forgo the difference
between the as-yet-unknown superior payoff p__and p, for each pull on that arm. If the current payoff estimates are based on avery small

random sampling from a very large search space (asis the case for the genetic algorithm and all other adaptive techniques starting at random),
this forgone difference islikely to be very large.

A key insight of Holland's Adaptation in Natural and Artificial Systemsis that we should view the schemata as being in competition with one
another, much like the possible pulling strategies of a multi-armed-bandit problem. As each individual in the genetic population grapples with
its environment, its fitness is determined. The average fitness of a schema is the average of the fithesses of the specific individualsin the
population belonging to that schema. Asthis explicit testing of the individuals in the population occurs, an estimate begins to accumulate for
the average fitness of each schema represented by those individuals. Each estimate of schema average fitness has a statistical variance
associated with it. Asageneral rule, more information is accumulated for shorter schema and therefore the variance is usually smaller for
them. One clearly must allocate more future trials to the currently observed better arms. Neverthel ess, one must continue forever to allocate
some additional trials to the currently observed poorer arms, because they may ultimately turn out to be better.

Holland developed a formula for the optimal allocation of trialsin terms of the two currently observed payoffs of the arms and their variances
and extended the formula to the multi-armed case. He showed that the mathematical form of the optimal allocation of trials among random
variables in amulti-armed-bandit problem is approximately exponential. That is, the optimal allocation of future trials is approximately an
exponentially increasing number of trials to the better arm based on the ratio of the currently observed payoffs.

Specifically, consider the case of the two-armed bandit. Suppose that N trials are to be allocated between two random variables with means
and |, and variances a3, respectively, where p, > p,. Holland showed that the minimal expected |0ss results when the number n* of trials
allocated to the random variable with the smaller mean is

N?
*xbinl— |,
N (Snb‘InN’)
where

b= 7
My — fy

Then, N - n* trials are allocated to the random variable with the larger mean.

Page 44

Most remarkably, Holland shows that the approximately exponential ratio of trials that an optimal sequential algorithm should alocate to the
two random variablesis approximately produced by the genetic algorithm.

Note that this version of the TAB problem requires knowing which of the two random variables will have the greater observed mean at the
end of the N trials. This adaptive plan therefore cannot be realized, since a plan does not know the outcome of the N trials before they occur.
However, thisidealization is useful because, as Holland showed, there are realizable plans that quickly approach the same expected loss as the
idealization.

The above discussion of the TAB prablem is based on Holland's analysis. See also DeJong 1975. Subsequently, the multi-armed-bandit
problem has been definitively treated by Gittins 1989. See also Berry and Fristedt 1985. Moreover, Frantz (1991) discovered mathematical
errorsin Holland's solution. These errorsin no way change the thrust of Holland's basic argument or Holland's important conclusion that the
genetic algorithm approximately carries out the optimal allocation of trials specified by the solution to the multi-armed-bandit problem. In
fact, Frantz shows that his bandit is realizable and that the genetic algorithm performs like it. The necessary corrections uncovered by Frantz's
work are addressed in detail in the revised edition of Holland's 1975 book (Holland 1992).

Stated in terms of the competing schemata (explanations), the optimal way to allocate trials is to allocate an approximately exponentially
increasing (or decreasing) number of future trials to a schema on the basis of the ratio (called the fitness ratio) of the current estimate of the
average fitness of the schemato the current estimate of the population average fitness. Thus, if the current estimate of the average fitness of a
schemais twice the current estimate of the population average fitness (i.e., the fitnessratio is 2), one should allocate twice as many future
trials to that schema as to an average schema. If this 2-to-1 estimate of the schema average persists unchanged for afew generations, this
allocation based on the fitness ratio would have the effect of allocating an exponentially increasing number of trials to this above-average
schema. Similarly, one should allocate half as many future trials to a schema that has afitness ratio of 1/2.

Moreover, we want to make an optimal allocation of future trials simultaneously to all 3- = 27 possible schemata from the current generation
to determine atarget number of occurrences for the 3" possible schematain the next generation. In the context of the present example, we
want to construct a new population of M = 4 strings of length L = 3 for the next generation so that all 3- = 27 possible schemata to which these
M new strings belong simultaneously receivesits optimal alocation of trials. That is, we are seeking an approximately exponential increase or
decrease in the number of occurrences of each schema based on its fitness ratio.

Specificaly, there are ML = 12 binary variables to choose in constructing the new population for the next generation. After these 12 choices
for the next generation have been made, each of the M2" = 32 contributions to the 3" = 27 schemata must cause the number of occurrences of
each schemato

Page 45
equal (or approximately egual) the optimal allocation of trials specified by Holland's solution to his version of the multi-armed-bandit problem.

It would appear impossibly complicated to make an optimal allocation of future trials for the next generation by satisfying the 3- = 27
constraints with the ML = 12 degrees of freedom. This seemingly impossible task involves starting by choosing the M = 4 new strings of
length L = 3. Then, we must increment by one the number of occurrences of each of the 2" = 8 schemata to which each of the M = 4 strings
belongs. That is, there are M2- = 32 contributions to the 3" = 27 counts of the number of occurrences of the various schemata. The goal isto
make the number of occurrences of each of the 3- = 27 schemata equal the targeted number of occurrences for that schema given by the
solution to the multi-armed-bandit problem.

Holland's fundamental theorem of genetic algorithms (also called the schema theorem) in conjunction with his results on the optimal
allocation of trials shows that the genetic algorithm createsits new population in such away as to simultaneously satisfy all of these 3- = 27
constraints.

In particular, the schema theorem in conjunction with the multi-armed-bandit theorem shows that the straightforward Darwinian operation of
fitness-proportionate reproduction causes the number of occurrences of every one of the unseen hyperplanes (schemata) to grow (and decay)
from generation to generation at arate that is mathematically near optimal. The genetic operations of crossover and mutation slightly degrade
this near-optimal performance, but the degradation is small for the cases that will prove to be of greatest interest. In other words, the genetic
algorithm is, approximately, a mathematically near optimal approach to adaptation in the sense that it maximizes overall expected payoff
when the adaptive processis viewed as a set of multi-armed-bandit problems for allocating future trials in the search space on the basis of
currently available information.

For the purposes of stating the theorem, let f(H, t) be the average fitness of a schema H. That is, f(H, t) is the average of the observed fithess
values of theindividual stringsin the population that belong to the schema.

Y flah

— EiEH)
flH. 1) = "

where m(H, t) is the number of occurrences of schemaH at generation t. We used this formulain computing f(*1*) = 3.67 for row 24 of table
3.14. This schema average fitness has an associated variance that depends on the number of items being summed to compute the average.

Thefitnessratio (FR) of agiven schemaH is

FR(H © = ‘FE'E,

fin
where f(f is the average fitness of the population at generation t.

The schema theorem states that, for a genetic algorithm using the Darwinian operation of fithess-proportionate reproduction and the genetic

Page 46

operations of crossover and mutation, the expected number m(H, t + 1) of occurrences of every schemaH in the next generation is
approximately

N
HE_ }m{f-i'. Bl — e (1 = g,)

fi)

mH+ 1) =

where €. is the prabability of disruption of the schemaH due to the crossover operation and €, is the probability of disruption of the schemaH
due to the mutation operation.

To the extent that €, and €, are small, the genetic algorithm produces a new population in which each of the 3" schemata appears with
approximately the near-optimal frequency. For example, if the fitness ratio

flH. B
fit}

of aparticular schemaH were to be above unity by at least a constant amount over severa generations, that schema would be propagated into
succeeding generations at an exponentially increasing rate.

Note that the schema theorem applies simultaneously to all 3- schemata in the next generation. That is, the genetic algorithm performs a near-
optimal allocation of trials simultaneoudly, in paralel, for all schemata.

Moreover, this remarkable result is independent of the fitness measure involved in a particular problem and is problem-independent.

Table 3.15 begins to illustrate the schema theorem in detail. Table 3.15 shows the effect of the reproduction operation on the 27 schemata.
Thefirst four columns of this table come from table 3.14. Column 5 shows the number of occurrences m(H, MP) of schemaH in the mating
pool (called MP). Column 6 shows the schema average fitness f(H, MP) in the mating pool.

A plussign in column 5 of table 3.15 indicates that the operation of fitness-proportionate reproduction has caused the number of occurrences
of a schemato increase as compared to the number of occurrences shown in column 3 for the initial random population. Such increases occur
for the schemata numbered 13, 15, 16, 18, 22, 24, and 25. These seven schemata are shown in bold type in table 3.15. Note that the string 110
belongs to each of these seven schemata. Moreover, string 110, like al strings, belongs to the all-encompassing trivial schema*** (which
counts the population). Theindividual 110 had afitness of 6. Itsfitnessratio is 2.0 because its fitness is twice the average fitness of the
population f = 3. Asaresult of the probabilistic operation of fitness-proportionate reproduction, individual 110 was reproduced two times for
the mating pool. This copying increases the number of occurrences of all eight schemata to which 110 belongs. Each schemahas grownin an
exponentialy increasing way based on the fithess ratio of the individual 110. Note that the number of occurrences of the all-encompassing
schema*** does not change, because this particular copying operation will be counterbalanced by the failure to copy some other individual.
This simultaneous growth in number of occurrences of the non-trivial schemata happens merely as aresult of the Darwinian reproduction
(copying) operation. In other

Page 47

Table 3.15 Number of occurrences m(H, MP) and the average fitness f(H, MP) of the
27 schemata in the mating pool reflecting the effect of the reproduction operation.

Mating pool created
Generation after reproduction
0
H mH,0) |f(H,0 [mH, MP) |f(H, MP)
1 000 0 0 0 0
2 001 1 1 0- 0
3 0o* 1 1 0 0
4 010 1 2 1 2
5 011 1 3 1 3
6 01* 2 25 2 25
7 0*0 1 2 1 2

8 0*1 2 2 1- 3

9 0** 3 2 2- 25
10 100 0 0 0 0

11 101 0 0 0 0

12 10* 0 0 0 0

13 110 1 6 2+ 6

14 111 0 0 0 0

15 11* 1 6 2+ 6

16 1%0 1 6 2+ 6
17 1*1 0 0 0 0

18 1x* 1 6 2+ 6

19 *00 0 0 0 0
20 *01 1 1 0- 0
21 *O* 1 1 0- 0
22 *10 2 4 3+ 4.67
23 *11 1 3 1 3

24 *1* 3 3.67 4+ 4.25
25 **0 2 4 3+ 4.67
26 **1] 2 2 1- 3
27 e 4 3 4 4.25
Totd 32 96 32 136
Mean 3.00 4.25
Nonzero 20 20 16 16
items

Page 48

words, Darwinian fitness-proportionate reproduction leads to an optimal allocation of trials on the basis of the currently available performance
information. Darwinian fitness-proportionate reproduction is the reason genetic algorithms cause a mathematically near-optimal alocation of
future trials of the search space.

The result of Darwinian fitness-proportionate reproduction is that the mating pool (i.e., columns 5 and 6) has a different genetic profile (i.e.,
histogram over the schemata) than the origina population at generation O (i.e., columns 3 and 4).

A minus sign in column 5 of table 3.15 indicates that the operation of fitness-proportionate reproduction has caused the number of

occurrences of a schemato decrease as compared to the number of occurrences shown in column 3. Such decreases occur for the schemata
numbered 2, 3, 8, 9, 20, 21, and 26. The individual 001 belongs to these seven schemata (and to the all-encompassing schema***). The
individual 001 was the worst-of-generation individual in the population at generation 0. It has afitnessratio of 1/3, becauseitsfitnessisonly a
third of the average fitness of the population { Asaresult of the probabilistic operation of fitness-proportionate reproduction, individual 001
was not copied at all into the mating pool, because its fitness ratio of 1/3 caused it to receive zero copies in the mating pool. Individual 001
became extinct.

Asaresult of the extinction of 001, the population became less diverse (asindicated by the drop from 20 to 16 in the number of distinct
schemata contained in the population as shown in the last row of table 3.15). On the other hand, the population became fitter; the average
fitness of the population increased from 3.0 to 4.25, as shown on the second-to-last row of table 3.15.

Thefitness of individual 011 equals the average fitness of the population. It appeared once in generation 0. Itsfitnessratio is 1.0. As aresult,
we expect thisindividual to appear once in the mating pool. There will be no change in any schemato which 011 belongs as aresult of this
copying.

Note that the genetic algorithm never performs any explicit bookkeeping to update the number of occurrences or the values of average fitness
of the various schemata as a result of the reproduction operation used to create the mating pool. There is no explicit table such astable 3.15
for the mating pool in the genetic algorithm. All of this computation occursimplicitly. The M = 4 individual s in the population contain all of
the information about al of the schemata.

Note that no new individuals and no new schemata are ever created as aresult of the Darwinian operation of reproduction used to create the
mating pool. Natural selection does not create variety. It merely selects from whatever variety is already present in the population in order to
increase the average fitness of the population as awhole.

The genetic crossover operation serves the necessary function of creating promising new individuals in the search space; however, it dightly
degrades

Page 49

the optimal allocation of trials described above. The degradation is small for a schemawith tight genetic linkage.

For the conventional genetic algorithm operating on strings, the defining length d(H) of a schemaH is the distance between the outermost
specific, non-* symbols. The number of interstitial points where crossover may occur isL - 1. For example, the defining length of the schema
H=1*1is$(1*1) = 2, whereas (* 11) = 1. If astring of length L = 3 (such as 011) belongsto a schema of defining length &(H) = 1 (such as
*11), then the probability is 1/2 that the crossover point will be selected outside this schema (i.e., between the first and second position in the
string). If the crossover point is between the first and the second position of the string, the schema* 11 will not be disrupted by crossover. If
the crossover point is selected inside the schema and the second parent participating in the crossover does not belong to the schema (asis
usually the situation), the offspring will usually not belong to the schema.

In general, the probability €, of disruption of a schemaH due to the crossover is approximately

d(H)
B =)

g e

L—1

Therefore, €. issmall when 3(H) issmall. That is, a schemawith arelatively short defining length appears in future generations with nearly
the targeted optimal frequency (i.e., an exponentially increasing frequency).

The genetic mutation operation serves the desirable function of introducing occasional variety into a population and of restoring lost diversity
to a population; however, it slightly degrades the optimal allocation of trials described above. The degradation is small for a schemawith low
specificity O(H) (i.e., arelatively few defined positions). For example, arandom mutant of the string 011 has a greater chance of continuing to
belong to the schema** 1 (whose specificity is only 1) than of continuing to belong to the schema* 11 (whose specificity is 2).

Asto the mutation operation for the conventional genetic algorithm operating on strings, the probability of disruption of a schemaH due to
the mutation €, is given by

Em = (1 — p)M 22 1 — p O(H).
where O(H) is the specificity (order) of the schemainvolved. Therefore, €, is small when O(H) is small.

The alocation of future trialsis most nearly optimal when €, and €, are both small. A schemawith arelatively short defining length and a
relatively few defined positionsis a building block which will be propagated from generation to generation at close to the near-optimal rate.
The genetic algorithm processes such schema most favorably. A problem whose solution can be incrementally built up from schemata of
relatively short defining length and relatively few defined positions is handled by genetic algorithms in a near-optimal way.

Page 50

In table 3.16, aplus sign in column 7 indicates that the crossover operation has caused the number of occurrences of a schemato increase as
compared to the number of occurrences shown in column 5 for the mating pool. This occurs for schemata numbered 4, 8, 14, and 17. In fact,
schemata 14 and 17 were not represented in the population prior to crossover. Schema 14 (i.e., 111) represents the optimal individual business
strategy being sought in the problem.

A minus sign in column 7 indicates a schema showing a decrease. This occurs for the schemata numbered 5, 7, 13, and 16.

The average fitness values are estimates based on the average of all the similar individuals constituting a schema. Even though these similar
individuals are not actually present in the current population, the estimates of the schema average fitness can point the genetic algorithm into
areas of the search space worthy of additional sampling and search.

Note that the genetic algorithm never performs any explicit bookkeeping to update the number of occurrences or the values of average fitness
of the various schemata as aresult of the crossover operation. Thereis no explicit table such as table 3.16 in the genetic algorithm. All of this
computation occurs implicitly. The M = 4 individuals in the population contain all of the information about all of the schemata.

Genetic algorithms superficially seem to process only the particular individua binary character strings actually present in the current
population. Adaptation in Natural and Artificial Systems focused attention on the fact that the genetic algorithm actually implicitly processes,
in parallel, alarge amount of useful information concerning unseen Boolean hyperplanes (schemata).

Thus, the genetic algorithm has the remarkabl e property of implicit parallelism (sometimes also called intrinsic parallelism), which enables it
to create individual strings for the new population in such away that the hyperplanes representing these similar other individuals can all be
expected to be automatically represented in proportion to the ratio of the fitness of the hyperplane (schema) f(H, t) to the average population
fitness fi#).

Moreover, thisimplicit computation is accomplished without any explicit memory beyond the population itself and without any explicit
computation beyond the simple genetic operations acting on the individual strings in the population. The only memory involved in the genetic
algorithm is the state of the system itself (that is, the population containing merely M = 4 strings).

As Schaffer (1987) points out, "Since there are very many more than N hyperplanes represented in a population of N strings, this constitutes
the only known example of the combinatoria explosion working to advantage instead of disadvantage.”

Page 51
Table 3.16 Number of occurrences (column 7) and the schema average fitness (column
8) of each of the 27 schematain generation 1.
Generation 1
Generation Mating pool created created after
0 after reproduction Crossover
H m(H,0) |[f(H,0) |m(H,MP) |f(H,MP) [m(H,1) |[f(H,1)
1 000 0 0 0 0 0 0
2 001 1 1 0 0 0 0
3 00* 1 1 0 0 0 0
4 010 1 2 1 2 2+ 2
5 011 1 3 1 3 0- 0
6 01* 2 25 2 25 2 2
7 0*0 1 2 1 2 0- 0
8 0*1 2 2 1 3 2+ 2
9 (0 3 2 2 25 2 2
10 100 0 0 0 0 0 0
11 101 0 0 0 0 0 0
12 10* 0 0 0 0 0 0
13 110 1 6 2 6 1- 6

14 111 |0 0 0 0 1+ 7

15 11* 1 6 2 6 2 6.5
16 0 |1 6 2 6 1- 6
17 *1 |0 0 0 0 1+ 7

18 1x* 1 6 2 6 2 6.5
19 *00 |0 0 0 0 0 0
20 *01 |1 1 0 0 0 0
21 *Q 1 0 0 0 0

22 *10 |2 4 3 4.67 3 33
23 *11 1 3 1 3 1 7

24 *1* 3 3.67 4 4.25 4 4.25
25 >0 |2 4 3 4.67 3 33
26 **1 |2 2 1 3 1 7

27 bl 4 3 4 4.25 4 4.25
Tota 32 9% 32 136 32 136
Mean 3.00 4.25 4.2
Nonzero 20 20 16 16 16 16
items

Page 52

3.3 Examples of Representation Schemes

The genetic algorithm is a procedure that searches the space of character strings of the specified length to find strings with relatively high
fitness. In preparing to apply the genetic algorithm to a particular problem, the first step involves determining the way to represent the
problem in the chromosome-like language of genetic algorithms.

An immediate question arises as to whether it is possible to represent many problems in a chromosome-like way. In the simple examplein the
previous section, each possible business strategy for managing the hamburger restaurants involved three binary variables so that each possible
business strategy was very naturally representable by a binary string of length 3.

This section presents two examples illustrating how two other problems can be represented in this chromosome-like way.
3.3.1 Optimization of an Engineering Design

Thefirst exampleillustrates a"vanilla' representation scheme that is often used in practical applications of the genetic algorithm to
optimization problems. The problem is an engineering optimization problem described by Goldberg and Samtani (1986).

Figure 3.4 shows a ten-member truss whose ten cross-sectional areas are identified as A, A, ..., Ay. Thetrussis supported from awall on the

left and must support two loads as shown. Moreover, the stress on each member must lie in an alowable range as expressed by a stress
constraint for that member. The goal isto find the cross-sectional areafor each member of this|load-carrying truss so as to minimize the total
weight (cost) of the material used in building it.

This problem requires a search of aten-dimensional space of real numbers for the combination of values of A, A,, ..., Ay, that have the best
fitness (i.e., least cost or weight).

£l) kL)

Al Al
AlD
AS
Ad A AT| 30
A2
Al AR
Figure3.4

Ten-member truss.

Page 53

The first major step in preparing to use the conventional genetic algorithm operating on stringsis to select the representation scheme. One
popular representation scheme is to represent a set of real numbers as a fixed-length binary string in which each real number is associated with
part of the overall string. Goldberg and Samtani decided to represent the ten cross-sectional areas by a 40-bit string. Goldberg and Samtani
then decided that a cross-sectional area equal to 0.1 square inch would be represented by the four bits 0000 and that a cross-sectional area
equa to 10.0 square inches would be represented by the four bits 1111. Each of the remaining 14 bit patterns encoded suitable intermediate
values for the cross-sectional area.

Figure 3.5 shows a chromosome of length 40 representing a ten-member truss. The first four bits in this 40-bit string encode the cross-
sectional area A, of the first member of the truss. These four bits allow the first member of the truss to take on one of 16 different possible
values of cross-sectional area. For example, the first cross-sectional area A, is encoded by 0010 and is 0.66 sgquare inch. Each of the remaining
nine cross-sectional areasis similarly represented by four bits.

In selecting the representation scheme for this problem, Goldberg and Samtani used their understanding of the particular problem to select a
minimum and a maximum cross-sectional areato consider and to select the granularity of the different possible values of the cross-sectional
area. Alternatively, if 16 beam sizes were commercially available, they might have chosen to encode the four-bit substrings 0000 through
1111 to correspond to the available sizes.

In summary, the representation scheme used by Goldberg and Samtani involved an aphabet of size 2 (i.e., K = 2), chromosomes of length 40
(i.e., L = 40), and the mapping between the ten real-valued cross-sectional areas and the 40-bit chromosome as described above. The selection
of K, L, and the mapping constitutes the first major step in preparing to use the conventional genetic agorithm operating on fixed-length
character strings.

The search space for this problem is of size 24, which is about 1012,

The second magjor step in preparing to use the conventional genetic algorithm operating on stringsis to identify the fitness measure that
ascertains how well a particular ten-member truss represented by a particular 40-bit string performsin solving the problem. Goldberg and
Samtani decided that the fitness of a given point in the search space (i.e., a given design for the truss) would be the total cost of the material
for al ten members of the truss. If apoint in the search space violates one or more of the ten stress constraints, the fitness is the total cost of
the material plus apenalty for infeasibility. In this problem, fitnessis a highly nonlinear function of the ten variables.

The third major step in preparing to use the conventional genetic algorithm is the selection of the parameters and variables for controlling the
algorithm.

0010 1110 0001 0011 1011 0011 1111 0011 0011 1010

Figure 3.5
Chromosome of length 40 representing a ten-member truss.

Page 54

The two most important parameters are population size (M) and the maximum number of generations to be run (G). In solving this problem,
Goldberg and Samtani used a population of M = 200 individual bit strings of length L = 40 and a maximum allowed number of generations of
G = 40.

The fourth major step in preparing to use the conventional genetic algorithm is deciding on the method of terminating a run and the method
for designating the result. Goldberg and Samtani terminated their runs after the maximum allowed number of generations were run and
designated the best result obtained during the run (the "best-so-far" individual) as the result of the run.

Once these four preparatory steps are done, the genetic algorithm proceeds in a domain-independent way to try to solve the problem. The goal
of the genetic algorithm isto search this multidimensional, highly nonlinear search space for the point with globally optimal fitness (i.e.,
weight or cost).

In practice, Goldberg and Samtani used a population size M of 200. They performed several runsin which about 8,000 individuals were
processed on each run (i.e., 40 generations of 200 individuals). In each such run, they obtained afeasible design for the ten-member truss for
which the total cost of the material was within about 1% of the known best solution.

The number of individuals that must be processed to solve a given problem is often used as the measure of the computational burden
associated with executing the genetic algorithm.

3.3.2 Artificial Ant

As asecond illustration of arepresentation scheme used for the conventional genetic agorithm operating on strings, consider the task of
navigating (Jefferson et al. 1991; Collins and Jefferson 1991a, 1991b) an artificial ant so asto find all the food lying along an irregular trail.
The goal isto find afinite-state automaton for performing this task.

The artificial ant operatesin asquare 32 x 32 toroidal grid in the plane. It startsin the upper left cell of the grid identified by the coordinates
(O, 0) facing east.

The"Santa Fe trail" isan irregular winding trail consisting of 89 food pellets. Thetrail isnot straight and continuous, but instead has single
gaps, double gaps, single gaps at corners, double gaps at corners (short knight moves), and triple gaps at corners (long knight moves). The
Santa Fe trail, designed by Christopher Langton, is a somewhat more difficult trail than the "John Muir trail" originally used for this problem.

Figure 3.6 shows the Santa Fe trail. Food is represented by solid black squares, while gapsin the trail are represented by gray squares. The
numbers identify key features of the trail in terms of the number of pieces of food occurring along the trail between the starting point and that
feature. For example, the number 3 highlights the first corner (located after three pieces of food aong thetrail). Similarly, the number 11
highlights the first single gap along the trail and the number 38 highlights the first short knight's move.

Page 55

T 1 TTTTTTT

|
T
BN EEEEEEEEEE

24 |

L]

C 38 31
T1

I EEEEEEEE NN

I
E)

Figure 3.6
The Santa Fe trail for the artificial ant problem.

The artificial ant has avery limited view of itsworld. In particular, the ant has a sensor that can see only the single immediately adjacent cell
in the direction the ant is currently facing. The ant can execute any of the following four primitive actions:

. RI GHT turns the ant right by 90° (without moving the ant).

LEFT turnsthe ant left by 90° (without moving the ant).

. MOVE moves the ant forward in the direction it is currently facing. When an ant moves into a square, it eats the food, if thereisany, in
that square (thereby eliminating food from that square and erasing the trail).

. NO- OP (No Operation) does nothing.

The ant's goal isto traverse the entire trail (thereby eating all of the food) within a reasonable amount of time. This problem, with atime limit,
presents a difficult and challenging planning problem. Jefferson, Callins, et a. successfully used the genetic algorithm operating on fixed-
length character strings to search for and discover afinite-state automaton enabling the artificial ant to traverse the trail.

Thefirst major step in preparing to use the conventional genetic algorithm operating on strings is to select the representation scheme.
Jefferson, Collins, et al. started by deciding to represent an individual automaton in the population by a binary string representing the state-
transition table of the automaton (and itsinitial state).

Toillustrate the process of representing a finite-state automaton with afixed-length character string, consider the four-state automaton whose
state-transition diagram is shown in figure 3.7.

Page 56

1/Move

Figure 3.7
State-transition diagram of an
illustrative four-state automaton.

Thisdiagram isinterpreted as follows: The automaton has four states, represented by the four circles. The automaton starts at itsinitial state
(state 00) in the upper left corner of the figure. The input to the automaton comes from the ant's sensor and consists of asingle bit indicating
whether or not thereis any food in the immediately adjacent square in the direction in which the ant is facing. If the ant sensesfood (i.e., the
input is 1), the ant MOVEs forward. Both the sensor input of 1 to the automaton and the output of MOVE are shown on the arc starting at state
00 at the top of thefigure. Thisarc (labeled" 1 / MOVE") represents the state transition that occurs when the automaton isin state 00 and
receives the sensor input of 1. The next state associated with this arc happens to be state 00. This arc also represents the output (i.e., the action
MOVE by the ant). The interpretation of this state transition is that if the ant senses food, it MOVESs forward (eating the food pellet present on
thetrail) and then returnsto state 00.

On the other hand, if the ant senses no food (i.e., theinput is 0), the ant turns Rl GHT and ends up at the new state 01 (in the upper right corner
of the figure). This state transition isindicated by the arc labeled" 0 / RI GHT. "

In this new state, 01, if the ant now senses food, it MOVES forward (eating the food) and returns to state 00. But if the ant still senses no food,
it turns LEFT and ends up at state 10.

State 10 is an intermediate state in a sequence of two consecutive actions. By turning LEFT, the ant has reoriented itself to its original facing

direction. Since the ant has not yet moved and we know that there is no food in its original facing direction, it will necessarily turn LEFT and
end up at state 11. A statetransition labeled" 1 / MOVE" from state 10 is shown for the sake of completeness; however, this state transition
can never occur.

If the ant sensesfood in state 11, it MOVESs forward (eating the food) and returns to state 00.

Page 57

Table 3.17 State-transition table for the illustrative four-state automaton.

Current state Input New state Operation
1 00 0 01 10 = Right
2 00 1 00 11 = Move
3 01 0 10 01 = Left
4 01 1 00 11 =Move
5 10 0 11 01 = Left
6 10 1 00 11 = Move
7 11 0 00 10 = Right
8 11 1 00 11 = Move

00 0110 0011 1001 0011 1101 0011 0010 0011
Figure 3.8

Chromosome of length 34 representing the state-transition table of the four-state automaton.

Thus, if there originaly isfood in front of the ant, or to the right, or to the | eft, the ant will MOVE to that square (eating the food) and will

return to state 00 so that it isready to repeat the process at its new location. Thisillustrative four-state automaton is therefore capabl e of
successfully navigating the ant along the trail provided food is present in front of the ant, or to the right, or to the l€ft.

If thereis no food to the right, or to the left, or in front of the ant, the ant goes back to state 00. This return to state 00 will lead to an infinite
loop. Since the trail has many gaps and irregularities, thisillustrative four-state automaton is inadequate as a solution to the artificial ant
problem.

The state-transition diagram (figure 3.7) for this four-state automaton can be converted into the state-transition table shown in table 3.17
where each row represents a combination of one of the four states (shown in column 2) and the binary input (shown in column 3). State 00 is
understood to be theinitial state. Column 4 shows the new state to which the automaton goes given that it started in the state shown in column
2 and received the input shown in column 3. Column 5 shows the action taken by the ant.

Table 3.17 has one row for each of the eight state transitions (arcs) contained in figure 3.7.

We can then convert this table into abinary string (i.e., a chromosome, or a genome) by stringing together the four bits from the last two
columnsin each of the eight rows. We can designate the initial state by appending two additional bits (i.e., 00) to the beginning of the string.

Figure 3.8 shows the 34-bit chromosome (genome) that represents the state-transition table for the illustrative four-state automaton.

Any four-state automaton can be converted into a 34 bit string in this manner. Moreover, because of the presence of the No- Op operation,
every 34-hit string represents a valid and executabl e finite-state automaton.

Page 58

This representation scheme allows us to put afinite-state automaton into the chromosomal form required by the genetic algorithm. Note,
however, that this 34-bit representation scheme can only represent an automaton with four or fewer states. If the solution to the problem
requires more than four states, this representation scheme cannot express or represent that solution. Thus, for this problem, the selection of the
representation scheme determines the maximum size and structural complexity of the eventual solution. The representation schemeis
established by the user as a preparatory step that is performed before the genetic algorithm starts running. In the conventional genetic
algorithm, the representation scheme is generally not changed during the run; however, it is changed during the run in some variants of the
algorithm, including those of Steven F. Smith (1980, 1983), Shaefer (1987), Goldberg, Korb, and Deb (1989).

Asit happens, four states are not sufficient to solve this problem, because the trail has so many different types of gaps and irregularities.
Knowing this, Jefferson, Collins, et al. did not, in fact, select a 34-bit representation scheme for this problem. Instead, they allowed for up to
32 states. The state-transition table for afinite-state automaton with 32 states has 64 rows (32 states, each with two possible sensory inputs).
For each row in the state-transition table, the ant's action (i.e., the output of the automaton) can still be coded as two bits (for the operations of
MOVE, LEFT, and RI GHT). The next state of the automaton must be coded with five bits to accommodate a 32-state automaton. The
complete behavior of a 32-state automaton can be specified by abinary string (genome) with 453 bits (64 substrings of length 7 plus 5
additional bits representing theinitial state).

In summary, the representation scheme actually used by Jefferson, Collins, et al. for this problem involved an alphabet of size two (i.e.,
K = 2), chromosomes of length L = 453, and the mapping between automata and chromosomes as described above. The selection of K, L, and
the mapping constitutes the first major step in preparing to use the conventional genetic algorithm operating on strings.

The second major step in preparing to use the conventional genetic algorithm is to identify the fitness measure that ascertains how well a
particular string performs in solving the problem. The fitness of a particular 453-hit string in this problem is simply how much food the ant
eats, in areasonable amount of time, if its actions are controlled by the finite-state automaton represented by the 453-bit string. A maximum
number of time stepsis established both because afinite-state automaton can go into an infinite loop (as we have already seen) and because
we want to exclude automata that exhaustively search all 1,024 squares on the grid using a random walk or atessellating pattern. For this
problem, this limit might be 200 time steps. If an ant "times out," its fitness is simply the amount of food eaten up to that moment. Thus,
fitness ranges between 0 and 89 (i.e., the number of food pellets on the trail).

Thethird major step in preparing to use the conventional genetic algorithm is the selection of the parameters and variables for controlling the
algorithm.

Page 59

The population size M was 65,536, and the maximum number of generations G allowed to be run was 200. Generally, alarger population is
required to solve a problem involving alonger bit string.

In one particular run on the massively parallel Connection Machine, asingle individual attained a perfect score of 89 pieces of food after 200
generations. This particular solution happened to complete the task of finding al 89 pieces of food in precisely 200 time steps.

A finite-state automaton is only one way to control the activities of an artificial ant in carrying out a complex task. A second way isto use a
neural network. A third way isto use acomputer program that specifies the sequence of operations to be performed. The third way will be the
main subject of this book.

We will revisit the artificial ant problem in section 7.2.

Jefferson, Collins, et al. also successfully searched for and discovered a multilayer neural net enabling the artificial ant to traverse the trail.
Neural networks consist of processing elements that are connected with various weighted signal lines (Rumelhart, Hinton, and Williams 1986;
Hinton 1989; Nilsson 1990). Jefferson, Collins, et a. started by assuming that the neural net necessary to solve the problem would have two
linear threshold processing elements in the input layer (representing the two possible sensory inputs of the ant), five linear threshold
processing elements in the hidden layer, and four linear threshold processing elements in the output layer (for the four possible operations of
the ant). They also decided that the network would be fully connected between consecutive layersin the forward direction, and they decided
that the output of each processing element of the hidden layer would feed back into al processing elements of that layer. Consequently, the
five processing elementsin the hidden layer and the four processing elements in the output layer each had seven inputs (the outputs from both
processing elements of the input layer and the outputs from all five processing elements of the hidden layer).

Once the arrangement of linear processing elements and their connections is established, a neura net is defined by the values of various
floating-point numbers representing the weights on various signal lines connecting the various linear processing elements, the thresholds of
the linear processing elements, and the initial activation levels of the linear processing elements. The representation scheme for a neural
network can therefore be a binary string of 520 bits that encodes this set of floating-point numbers. As such, it is similar to the "vanilla"
representation scheme used by Goldberg and Samtani for their ten-member truss. Using a population size of 65,536, they were successful in
finding a neural network to solve the artificial ant problem.

3.4 Sour ces of Additional Information about Genetic Algorithms

. Adaptation in Natural and Artificial Systems by John Holland (1975) of the University of Michigan is the pioneering monograph that
established the
Page 60
field of genetic algorithms. A new edition was published by The MIT Pressin 1992.

. Genetic Algorithms in Search, Optimization, and Machine Learning by David E. Goldberg (1989) of the University of Illinois at
Champaign-Urbanais both a textbook and a survey of the field. This book contains an extensive bibliography which will be updated in the
upcoming second edition.

. Genetic Algorithms and Simulated Annealing by Lawrence Davis (1987) is an edited collection of research papers that provides a broad
overview of research activity in the field of genetic algorithms.

. Handbook of Genetic Algorithms by Lawrence Davis (1991) contains atutorial on applying genetic algorithms to practical problems, a
collection of 13 application case studies, a description of the computer program for the Object-Oriented Genetic Algorithm (OOGA) written
in Common LISP and CLOS, and a description of the GENESIS genetic algorithm program in C. The software is available separately through
the publisher.

. Induction: Processes of Inference, Learning, and Discovery by Holland et al. (1986) provides the basic description of genetic classifier
systems.

. Parallelism and Programming in Classifier Systems by Stephanie Forrest (1991) describes work on semantic networks and classifier
systems.

. Rick Riolo (19884) describes recent research into classifier systems. Riolo (1988b) also describes domain-independent software written
in C for implementing classifier systems.

. Genetic Algorithms and Robotics by Yuval Davidor 1991 describes applications of genetic algorithms to robotics.
. Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michaewicz further describes genetic algorithms.
There are two sets of proceedings devoted entirely to genetic algorithms and related fields:

. The proceedings of the 1985, 1987, 1989, and 1991 International Conferences on Genetic Algorithms (ICGA). See Grefenstette 1985,
Grefenstette 1987, Schaffer 1989, and Belew and Booker 1991.

. The proceedings of the workshop on Foundations of Genetic Algorithms (FOGA) contain numerous current research papers on the
theoretical foundations of genetic algorithms. See Rawlins 1991.

The proceedings of the following regularly scheduled conferences on adaptive behavior and artificial life contain a significant number of
papers on genetic algorithms.

. The proceedings of the conferences on Parallel Problem Solving from Nature (PPSN) contain numerous current research papers on
genetic algorithms and the closely related Evolutionsstrategie ("ES") developed in Germany independently from the work in the United States
on genetic algorithms. See Schwefel and Maenner 1991. A successor conference is scheduled in 1992,

Page 61

. The proceedings of the 1990 conference on Simulation of Adaptive Behavior (SAB) contain numerous current research papers on
genetic algorithms. See Meyer and Wilson 1991. A successor conference is scheduled in 1992.

. The proceedings of the 1987 and 1990 conferences on Artificial Life contain numerous current research papers on genetic algorithms.
See Langton 1989 and Langton et a. 1991. In addition, a videotape Artificial Life Il Video Proceedings contains visualizations of the
proceedings of the 1990 conference (Langton 1991). A successor conference is scheduled in 1992.

. The proceedings of the 1991 European Conference on Artificial Life contain numerous current research papers on genetic algorithms.
See Varelaand Bourgine 1992,

. The proceedings of the first annual conference on evolutionary programming (Fogel and Atmar 1992) report on continuing work in the
field of ssimulated evolution.

The journal Complex Systems and the new journal Adaptive Behavior, published by The MIT Press, contain many articles relevant to genetic
algorithms.

Much of the ongoing work of the Santa Fe Institute in New Mexico, as reported in technical reports and other publications, is related to
genetic algorithms.

In addition, numerous other regularly held conferences and journals on neural networks, artificial intelligence, and machine learning include
some papers on genetic algorithms or have occasional special issues on genetic algorithms (Goldberg and Holland 1988; De Jong 1990).

Page 63

4
The Representation Problem for Genetic Algorithms

Representation is akey issue in genetic algorithm work because genetic algorithms directly manipulate a coded representation of the problem
and because the representation scheme can severely limit the window by which a system observes its world. The conventional genetic
algorithm operating on fixed-length character stringsis capable of solving a great many problems. The mathematical tractability of fixed-
length character strings (as compared with mathematical structures which are more complex) permitted Holland and subsequent researchers to
construct a significant body of theory as to why genetic algorithms work. Nonethel ess, the use of fixed-length character strings leaves many
issues unsettled.

For many problems, the most natural representation for a solution is a hierarchical computer program rather than a fixed-length character
string. The size and the shape of the hierarchical computer program that will solve a given problem are generally not known in advance, so the
program should have the potential of changing its size and shape. It is difficult, unnatural, and constraining to represent hierarchical computer
programs of dynamically varying sizes and shapes with fixed-length character strings.

Representation schemes based on fixed-length character strings do not readily provide the hierarchical structure central to the organization of
computer programs (into programs and subroutines) and the organization of behavior (into tasks and subtasks).

Representation schemes based on fixed-length character strings do not provide any convenient way of representing arbitrary computational
procedures or of incorporating iteration or recursion when these capabilities are desirable or necessary to solve a problem.

Moreover, such representation schemes do not have dynamic variability. Theinitial selection of string length limits in advance the number of
internal states of the system and limits what the system can learn.

The predetermination of the size and shape of solutions and the pre-identification of the particular components of solutions has been a bane of
machine learning systems from the earliest times (Samuel 1959).

Page 64
4.1 Previous Work
The need for more powerful representations for genetic algorithms has been recognized for some time (De Jong 1985, 1987, 1988).

One approach to the problem of representation in genetic algorithms has been to provide greater flexibility by increasing the complexity of the
structures undergoing adaptation in the genetic algorithm.

Such efforts began with early work by Cavicchio (1970) and with Holland's (1975) proposed broadcast language. The broadcast language led
directly to the genetic classifier system (Holland and Reitman 1978) and to the "bucket brigade" apportionment-of-credit algorithm for
classifier systems (Holland 1986; Holland et al. 1986; Holland and Burks 1987; Holland and Burks 1989; Booker, Goldberg, and Holland
1989).

The classifier system represented a considerable extension of the complexity of the structures undergoing adaptation. The genetic classifier
system is a cognitive architecture that allows the adaptive modification of a set of if-then rules. The architecture of the classifier system blends
important features from the contemporary paradigms of artificial intelligence, connectionism, and machine learning, including

. the power, understandability, and convenience of if-then rules from expert systems,

. a connectionist-style allocation of credit that rewards specific rules when the system as a whole takes an external action that produces a
reward, and

. the creative power and efficient search capability of the conventional genetic algorithm operating on fixed-length character strings.

In the classifier system, thereis a set of if-then rules. Both the condition part and the action part of each if-then rule consist of afixed-length
character string. The condition part of an if-then rulein the classifier system typically contains one or more "don't care” positions so that arule
can be fired when a subset of environmental features is detected. The "bucket brigade" a gorithm then apportions credit among the if-then
rules on the basis of their contribution toward making the system take an external action that produces areward. The genetic algorithm then
operates on the set of if-then rules to create new rules. The objective of the classifier system isto breed a co-adapted set of if-then rules that
successfully work together to solve a problem.

Steven F. Smith (1980, 1983) argued for the flexibility provided by variable-length strings; he departed from the "Michigan" approach of
emphasizing fixed-length character stringsin genetic algorithms and classifier systems. In addition, in Smith's LSl system the individual
elements of astrings are if-then rules (rather than single characters) so that a single string represents a set of rules. Smith's work is an example
of the "Pitt" (Pittsburgh) approach to classifier systems.

Antonisse and Keller (1987) proposed applying genetic methods to higher-level representations. See also Antonisse 1991. Bickel and Bickel
(1987) dlied genetic methods to if-then expert system rules. In their system, each if-then

Page 65

rule had one action part while the condition part of each rule was atree of Boolean operators (such as AND, OR, and NOT) and various

Boolean relations (such as =, <, and >). In Grefenstette's (1989) SAMUEL system, the condition part of each if-then expert system rule
consisted of a combination of one or more Boolean predicates involving ranges of sensor values.

Wilson (1987b) recognized the central importance of hierarchies in representing the tasks and subtasks (that is, programs and subroutines) that
are needed to solve complex problems. Accordingly, Wilson extended Holland's "bucket brigade" algorithm for credit allocation in genetic
classifier systems by introducing hierarchical credit allocation. Wilson's approach encourages the creation of hierarchies of rulesin lieu of the
exceedingly long sequences of rules that are otherwise characteristic of classifier systems.

Goldberg, Korb, and Deb (1989) introduced the messy genetic algorithm that processes populations of variable-length character strings.
Messy genetic algorithms solve problems by combining relatively short, well-tested substrings that deal with part of a problem to form longer,
more complex strings that will deal with more complex aspects of the problem. In addition, domain-specific structures that are more complex
than character strings have been devised and applied to various particular applications notably, combinatorial optimization problems such as
the traveling salesperson problem (TSP), job shop scheduling problem, VLSI layout problems, and robotics problems (Davidor 1991). In each
instance, the crossover operation has been modified in an application-specific way so as either (1) to maintain syntactic legality while
preserving the building blocks relevant to the particular application, (2) to repair syntactic illegality while preserving the building blocks
relevant to the application, or (3) to compensate for syntactic illegality in some manner appropriate to the application. Many of these
application-specific variations on the structures undergoing adaptation are surveyed in Goldberg 1989.

Cramer (1985) approached the problem of program induction in agroup of three highly innovative and creative experiments involving two-
input, single-output programs consisting of zeroing, looping, and incrementing operations for multiplying two positive integers. Cramer's
seminal work on programs consisting of sequences of zeroing, looping, and incrementing operations reported on the highly epistatic nature
and difficulties of program induction.

Hicklin (1986) applied reproduction and mutation to the problem of generation of LISP programs. Fujiki (1986) recognized the desirability of
extending this work by applying all the genetic operations to L ISP programs. Subsequently, Fujiki and Dickinson (1987) implemented
crossover and inversion as well as reproduction and mutation in order to manipulate the if-then clauses of a program consisting of asingle
LISP conditional (COND) statement specifying the strategy for playing the iterated prisoner's dilemma game.

As can be seen, the common feature of many of the foregoing effortsis that they focused on combining the power, understandability, and
convenience of if-then rules with the genetic algorithm.

Page 66

Early efforts at program induction not involving genetic algorithms consisted of efforts to discover automata or computer programs to solve
problems using only asexual mutation or a combination of only asexual mutation and reproduction.

For example, Friedberg's early work (1958, 1959) attempted to artificially generate entire computer programs in a hypothetical assembly
language on a hypothetical computer with a one-bit register. Friedberg randomly created and randomly mutated individual assembly-code
instructions in a program consisting of 64 such instructions. He then executed each program to determine whether or not it performed a certain
task, such as adding two bits. Friedberg did not use his all-or-nothing fitness measure to guide the creation of later programs. The search was a
blind random search, because the information about fitness that was learned was not used to influence the future direction of the search. There
was effectively no concept of reproduction, because programs that successfully performed some or al of the task were not carried forward in
time for future modification or use. Moreover, even though millions of programs were created at various times, there was effectively no
concept of population, because each program was acted on without reference to any other program. There was a fortiori no concept of
crossover which recombined parts of two individualsto create an offspring. Moreover, there was effectively no concept of the tempora
generations of populations of individuals and no concept of memory, because programs that did not perform the task were discarded. In
summary, Friedberg's work contained the elements of random initialization, mutation, and fitness, but not the elements of reproduction,
population, generation, memory, or Crossover.

In Artificial Intelligence through Smulated Evolution, L. J. Fogel, Owens, and Walsh (1966) attempted to evolve small finite automata to
produce certain outputs using both mutation and reproduction. Their simulated evolution (evolutionary programming) concept employed the
concept of a population of individuals which was not present in Friedberg's work. Simulated evolution started with an initial random
population (typically of size two). Each individual in the population was evaluated as to its fitness in performing the task at hand. The
population played arolein that the better of the two individuals was saved (i.e., reproduced) for the next generation. The individual automata
in the population were randomly mutated as to starting state, state transitions, outputs, or number of states. This mutation was performed on
each individual automaton in the population without reference to the other automaton in the population. Since the mutation was asexual, there
was no concept of crossover (sexual recombination) between individualsin the population. Thus, simulated evolution contained the elements
of random initialization, mutation, fitness, reproduction, population, generation, and memory, but not the concept of crossover. Even though
simulated evolution has been successfully applied to a number of different problems (D. B. Fogel 1991), complete reliance on reproduction
and mutation makes it very difficult to solve many problemsin any reasonable amount of time. Consequently, this early work was not
favorably received.

Page 67

In addition to efforts explicitly aimed at inducing programs to solve problems, there have been an enormous number of different efforts over
the yearsin the broader field of machine learning (Carbonell, Michal ski, and Mitchell 1986).

In his ground-breaking work in the field of machine learning, Samuel (1959) lamented the fact that it "is necessary to specify methods of
problem solution in minute and exact detail, a time-consuming and costly procedure. Programming computers to learn from experience should
eventually eliminate the need for much of this detailed programming effort.”

In Samuel's original program for learning to play checkers, learning consisted of progressively adjusting numerical coefficientsin an algebraic
expression of a predetermined functional form (specifically, a polynomial). The polynomial assigned a value to a configuration of pieces on
the checker board. By using the current polynomial to evaluate the boards that would arise if the player made various alternative moves, a best
move could be selected on the basis of the current polynomial. The numerical coefficients of the polynomial were then adjusted with
experience, so that the predictive quality of the value assigned to a board by the polynomial progressively improved. Samuel predetermined
the polynomial functional form and its component terms. Nonetheless, Samuel recognized from the beginning the importance of alowing
learning to take place without predetermining the size and shape of the solution and of "[getting] the program to generate its own parameters
for the evaluation polynomial."

Similarly, Selfridge (1959), Uhr and Vassler (1966), and Newell, Shaw, and Simon (1979) recognized the importance of allowing learning to
occur without being required to specify in advance the size and shape of the eventua solution.

Rosenblatt (1958) used an interconnected network of threshold processing elements situated in layersto classify patterns such as two-
dimensional images. Networks with two layers of such threshold processing elements were called perceptrons, and those with additional
layers are now called neural networks (Minsky and Papert 1969; Rumelhart, Hinton, and Williams 1986; Hinton 1989; Nilsson 1990). Aswith
Samuel's checkers player, learning consisted of progressively adjusting numerical coefficients (i.e., avector of weights) in a space of weights
of predetermined size.

Amarel (1972) proposed approaching the problem of finding a computer program that represent a theory by solving a constraint satisfaction
problem involving grammars.

Quinlan's (1986) ID3 agorithm provided an efficient means of inducing a decision tree for classifying objectsinto classes. In 1D3, the exact
size and shape of the resulting hierarchical tree were not predetermined but instead emerged from an incremental growth process driven by a
heuristic measure involving entropy.

Lenat's well-publicized work on AM and EURISKO (Lenat 1976; Lenat 1983; Lenat and Brown 1984) generated L ISP representations under
the guid-

Page 68
ance of heuristic rules aswill be discussed in chapter 9. See dlso Green et a. 1974.
Michalski (1983) devel oped methods for learning production rules and conceptual clustering (Michalski and Stepp 1983).
Mitchell, Utgoff, and Banerji (1983) developed the LEX system for symbolic integration.

In addition to coefficients for polynomials, weight vectors, decision trees, LISP representations, conceptual clusters, if-then rules, and
production rules, other paradigms for machine learning have operated on awide variety of structures, including formal grammars, graphs,
formal logical expressions, sets for concept formation, frames, and schemata.

Excellent overviews of current research in machine learning can be found in Michalski, Carbonell, and Mitchell 1983; Michalski, Carbonell,
and Mitchell 1986; Kodratoff and Michaski 1990; and Shavlik and Dietterich 1990.

In summary, in the field of genetic algorithms, efforts toward getting programs to learn to solve problems without being explicitly
programmed have focused on providing greater flexibility by using increasingly complex representations (often incorporating if-then rules). In
the field of program induction, work has largely focused on using mutation and reproduction. In the field of machine learning, work has
involved awide variety of structures, such as weight vectors for neural networks, decision trees for induction, formal grammars, frames,
schemata, conceptual clusters, production rules, formal logical expressions, chromosome strings in the conventional genetic algorithm,
coefficients for polynomials, and sets for concept formation.

4.2 Introduction to LISP

Aswill be seen, the genetic programming paradigm described in this book applies many of the key ideas of the conventional genetic
algorithm to structures that are more complex than character strings patterned after chromosome strings and considerably more general and
expressive than the specialized structures used in past work on extending the conventional genetic algorithm. In particular, genetic
programming operates with very general, hierarchical computer programs.

Virtually any programming language (e.g., PASCAL, FORTRAN, C, FORTH, LISP) is capable of expressing and executing the general,
hierarchical computer programs.

For reasons that are detailed in the next section, | have chosen the L1SP (LISt Processing) programming language for the work with genetic
programming. In particular, | have chosen the Common LISP dialect (Steele 1990).

This section provides a brief outline of the L1SP programming language. The reader already familiar with LISP may wish to skip it.

LISP has only two main types of entities: atoms and lists. The constant 7 and the variable TI ME are examples of atomsin LISP. A listin LISP
iswritten as an ordered set of itemsinside a pair of parentheses. Examples of lisssare(A B C D) and(+ 1 2).

Page 69

A symbolic expression (S-expression) isalist or an atom in LISP. The S-expression is the only syntactic form in pure versions of the LISP
programming language. In particular, the programs of LISP are S-expressions.

The LISP compiler and operating system works so as to evaluate whatever it sees. When seen by LISP, constant atoms (e.g., 7) evaluateto
themselves and variable atoms (e.g., Tl VE) evaluate to their current value. When allist is seen by LISP, thelist is evaluated by treating the

first element of thelist (i.e., whatever isjust inside the opening parenthesis) as a function and then causing the application of that function to
the remaining items of thelist. That is, these remaining items are themselves evaluated and then treated as arguments to the function.

For example, (+ 1 2) isalLIlSP S-expression. In this S-expression, the addition function + appears just inside the opening parenthesis of the
S-expression. This S-expression calls for the application of the addition function + to two arguments (i.e., the atoms 1 and 2). The value
returned as aresult of the evaluation of the S-expression (+ 1 2) is3. LISP S-expressions are examples of Polish notation (also called
"prefix notation™).

If any of the argumentsin an S-expression are themselves lists (rather than atoms that can be immediately evaluated), LISP first evaluates
these arguments (in arecursive, depth-first way, starting from the left, in Common LISP).

The LISP S-expression
(+(* 23) 4

illustrates the way that computer programs in LISP can be viewed as compositions of functions. This S-expression calls for the application of
the addition function + to two arguments, namely the sub-S-expression (* 2 3) and the constant atom 4. In order to complete the

evaluation of the entire S-expression, LI1SP must first evaluate the argument (* 2 3) . The sub-S-expression (* 2 3) calsfor the
application of the multiplication function * to the two constant atoms 2 and 3. This sub-S-expression evaluatesto 6, and the entire S-
expression evaluatesto 10.

Other programming languages apply functions to argumentsin asimilar manner. For example, the FORTH programming language uses
reverse Polish notation; thus, the above S-expression would be written in FORTH as

23* 4+

FORTH first evaluates the subexpression 2 3 * by applying the function * to the 2 and the 3 to get 6. It then applies the function + to the 6
and the 4 to get 10.

The term "computer program,” of course, carries the connotation of the ability to do more than merely perform compositions of simple
arithmetic operations. Among the connotations of the term "computer program" is the ability to perform alternative computations conditioned
on the outcome of intermediate calculations, to perform operationsin a hierarchical way, and to perform computations on variables of many
different types. L1SP goes about doing all these seemingly different things in the same way: LISP treats the item

Page 70
just inside the outermost left parenthesis as a function and then applies that function to the remaining items of thelist (i.e., the arguments).

For example, the LISP S-expression

(+ 12 (IF (> TIME 10) 3 4))

illustrates how LI1SP views conditional and relational elements of computer programs as applications of functions to arguments. In the sub-S-
expression (> Tl ME 10), therelation > isviewed asafunction and is applied to the variable atom TI ME and the constant atom 10. The

subexpression (> Tl ME 10) then evaluatesto either T (True) or NI L (False), depending on the current value of the variable atom TIME.

The conditional operator | F isthen viewed as afunction which is applied to three arguments:. the logical value (T or NI L) returned by the
subexpression (> Tl ME 10) , the constant atom 3, and the constant atom 4. If its first argument evaluatesto T (more precisely, anything
other than NI L), the function | F returns the result of evaluating its second argument (i.e., the constant atom 3), but if its first argument
evaluatesto NI L, the function | F returns the result of evaluating its third argument (i.e., the constant atom 4).

Thus, the S-expression evaluates to either 6 or 7, depending on whether the current value of the variable atom Tl ME is or is not greater than
10.

Any LISP S-expression can be graphically depicted as arooted point-labeled tree with ordered branches. Figure 4.1 shows the tree
corresponding to the above LISP S-expression.

In this graphical depiction, the three internal points of the tree are labeled with functions (i.e., +, | F, and >). The six external points
(leaves) of the tree are labeled with terminals (e.g., the variable atom Tl ME and the constant atoms1, 2, 10, 3, and4). Theroot of the
treeislabeled with the function (i.e., +) appearing just inside the leftmost opening parenthesis of the S-expression.

Note that thistree form of a LISP S-expression is equivalent to the parse tree which many compilers construct internally to represent a given
computer program.

An important feature of LISP isthat all LISP computer programs have just one syntactic form (i.e., the S-expression). The programs of the
L ISP programming language are S-expressions, and an S-expression is, in effect, the parse tree of the program.

()
O @ 7
GO ®
qmMB (i0)

Figure 4.1

The LISP S-expression
(+1 2 (IF (> TIME 10) 3 4))

depicted as arooted, point-labeled
tree with ordered branches.

Page 71
4.3 Reasonsfor Choosing LISP

It is possible to implement genetic programming using any programming language that can manipulate computer programs as data and that
can then compile, link, and execute the new programs (or support an interpreter to execute the new programs). As previously mentioned,
virtually any programming language (e.g., PASCAL, FORTRAN, C, FORTH, LISP) is capable of expressing and evaluating the compositions
of functions and terminals necessary to implement genetic programming.

No onereason is decisive in my choice of LISP as the programming language for the work with genetic programming, but the cumulative
effect of the following reasons strongly favors the choice of LISP.

First, in the LI1SP programming language, both programs and data have the same form (i.e., S-expressions). Thus, it is both possible and
convenient to treat a computer program in the genetic population as data so that it can first be genetically manipulated. Then, it is both
possible and convenient to immediately execute the result of the manipulation as a program.

Second, the above-mentioned common form for both programs and datain LISP (i.e., S-expressions) is equivalent to the parse tree for the
computer program. In spite of their outwardly different appearance and syntax, most compiled programming languages internally convert, at
the time of compilation, a given program into a parse tree representing the underlying composition of functions and terminals of that program.
In most programming languages, this parse tree is not accessible (or at least not conveniently accessible) to the programmer. And, if it were
accessible, it would have a different appearance and syntax than the programming language itself. We need access to the parse tree of the
computer program because we want to genetically manipulate the parts of the programs (i.e., subtrees of the parse treg). LISP provides this
access because a LISP program is, in effect, its own parse tree.

Third, the EVAL function of LISP provides an amost effortless way of executing a computer program that was just created or genetically
manipul ated.

Fourth, LISP facilitates the programming of structures whose size and shape change dynamically (rather than being determined in advance).
Moreover, LISP's dynamic storage allocation and garbage collection provide administrative support for the programming of dynamically
changing structures. The underlying philosophy of all aspects of the LISP programming language is to impose no limitation on programs
beyond the limitation inherently imposed by the physical and virtual memory limitations of the computer on which the program is being run.
Whileit is possible to handle structures whose size and shape change dynamically in many programming languages, LISP is especially well
suited for this.

Fifth, L1SP facilitates the convenient handling of hierarchical structures.

Sixth, the basic PRI NT function of the LISP programming language provides ways to present parse trees in an understandable manner.

Page 72

Seventh, software environments offering an unusually rich collection of programmer tools are commercialy available for the LISP
programming language.

It isimportant to note that | did not choose the L1SP programming language because genetic programming makes any use of the list data
structure from L1SP or the list manipulation functions unique or peculiar to LISP (such as CONS, CAR, CDR, or APPEND).

Page 73

5
Overview of Genetic Programming

This chapter provides an overview of the genetic programming paradigm, and the next chapter provides a considerably more detailed
description of it.

The genetic programming paradigm continues the trend of dealing with the problem of representation in genetic algorithms by increasing the
complexity of the structures undergoing adaptation. In particular, the structures undergoing adaptation in genetic programming are general,
hierarchical computer programs of dynamically varying size and shape.

Aswe saw in chapter 2, many seemingly different problemsin artificial intelligence, symbolic processing, and machine learning can be
viewed as requiring discovery of acomputer program that produces some desired output for particular inputs.

| claim that the process of solving these problems can be reformulated as a search for a highly fit individual computer program in the space of
possible computer programs. When viewed in this way, the process of solving these problems becomes equivalent to searching a space of
possible computer programs for the fittest individual computer program. In particular, the search space is the space of all possible computer
programs composed of functions and terminals appropriate to the problem domain. Genetic programming provides away to search for this
fittest individual computer program.

In genetic programming, populations of hundreds or thousands of computer programs are genetically bred. This breeding is done using the
Darwinian principle of survival and reproduction of the fittest along with a genetic recombination (crossover) operation appropriate for mating
computer programs. Aswill be seen, a computer program that solves (or approximately solves) a given problem may emerge from this
combination of Darwinian natural selection and genetic operations.

Genetic programming starts with an initial population of randomly generated computer programs composed of functions and terminals
appropriate to the problem domain. The functions may be standard arithmetic operations, standard programming operations, standard
mathematical functions, logical functions, or domain-specific functions. Depending on the particular problem, the computer program may be
Boolean-valued, integer-valued, real-valued, complex-valued, vector-valued, symbolic-valued, or multiple-valued. The cre-

Page 74
ation of thisinitial random population is, in effect, a blind random search of the search space of the problem.

Each individual computer program in the population is measured in terms of how well it performs in the particular problem environment. This
measure is called the fithess measure. The nature of the fitness measure varies with the problem.

For example, in the artificial ant problem (subsection 3.3.2), the fitness was the number of pieces of food eaten by the ant. The more food, the
better. In a problem involving finding the strategy for playing a game, the fitness measure would be the score (payoff) received by a player in
the game. For many problems, fitnessis naturally measured by the error produced by the computer program. The closer this error isto zero,
the better the computer program. If oneistrying to find a good randomizer, the fitness of a given computer program might be measured via
entropy. The higher the entropy, the better the randomizer. If one is trying to recognize patterns or classify examples, the fitness of a particular
program might be the number of examples (instances) it handles correctly. The more examples correctly handled, the better. On the other
hand, in a problem of optimal control, the fitness of a computer program may be the amount of time (or fuel, or money, etc.) it takesto bring
the system to adesired target state. The smaller the amount of time (or fuel, or money, etc.), the better. For some problems, fithess may be
consist of acombination of factors such as correctness, parsimony, or efficiency.

Typically, each computer program in the population is run over a number of different fitness cases so that its fitness is measured as a sum or
an average over avariety of representative different situations. These fithess cases sometimes represent a sampling of different values of an
independent variable or a sampling of different initial conditions of a system. For example, the fitness of an individual computer program in
the population may be measured in terms of the sum of the absolute value of the differences between the output produced by the program and
the correct answer to the problem. This sum may be taken over a sampling of 50 different inputs to the program. The 50 fitness cases may be
chosen at random or may be structured in some way.

Unless the problem is so small and ssimple that it can be easily solved by blind random search, the computer programs in generation O will
have exceedingly poor fitness. Nonetheless, some individualsin the population will turn out to be somewhat fitter than others. These
differencesin performance are then exploited.

The Darwinian principle of reproduction and survival of the fittest and the genetic operation of sexual recombination (crossover) are used to
create a new offspring population of individual computer programs from the current population of programs.

The reproduction operation involves selecting, in proportion to fitness, a computer program from the current population of programs, and
allowing it to survive by copying it into the new population.

The genetic process of sexua reproduction between two parental computer programsis used to create new offspring computer programs from
two

Page 75

parental programs selected in proportion to fitness. The parental programs are typically of different sizes and shapes. The offspring programs
are composed of subexpressions (subtrees, subprograms, subroutines, building blocks) from their parents. These offspring programs are
typically of different sizes and shapes than their parents.

Intuitively, if two computer programs are somewhat effective in solving a problem, then some of their parts probably have some merit. By
recombining randomly chosen parts of somewhat effective programs, we may produce new computer programs that are even fitter in solving
the problem.

After the operations of reproduction and crossover are performed on the current population, the population of offspring (i.e., the new
generation) replaces the old population (i.e., the old generation).

Each individual in the new population of computer programs is then measured for fitness, and the processis repeated over many generations.

At each stage of this highly paralel, locally controlled, decentralized process, the state of the process will consist only of the current
population of individuals. The force driving this process consists only of the observed fitness of the individualsin the current population in
grappling with the problem environment.

Aswill be seen, this algorithm will produce populations of computer programs which, over many generations, tend to exhibit increasing
average fitness in dealing with their environment. In addition, these populations of computer programs can rapidly and effectively adapt to
changesin the environment.

Typically, the best individual that appeared in any generation of arun (i.e., the best-so-far individual) is designated as the result produced by
genetic programming.

The hierarchical character of the computer programs that are produced is an important feature of genetic programming. The results of genetic
programming are inherently hierarchical. In many cases the results produced by genetic programming are default hierarchies, prioritized
hierarchies of tasks, or hierarchies in which one behavior subsumes or suppresses another.

The dynamic variability of the computer programs that are devel oped along the way to a solution is also an important feature of genetic
programming. It would be difficult and unnatural to try to specify or restrict the size and shape of the eventual solution in advance. Moreover,
advance specification or restriction of the size and shape of the solution to a problem narrows the window by which the system views the
world and might well preclude finding the solution to the problem at all.

Another important feature of genetic programming is the absence or relatively minor role of preprocessing of inputs and postprocessing of
outputs. The inputs, intermediate results, and outputs are typically expressed directly in terms of the natural terminology of the problem
domain. The computer programs produced by genetic programming consist of functions that are natural for the problem domain.

Page 76

Finally, the structures undergoing adaptation in genetic programming are active. They are not passive encodings of the solution to the
problem. Instead, given a computer on which to run, the structures in genetic programming are active structures that are capable of being
executed in their current form.

The genetic programming paradigm is a domain-independent (weak) method. It provides a single, unified approach to the problem of finding
a computer program to solve a problem. In this book, | show how to reformulate awide variety of seemingly different problemsinto a
common form (i.e., a problem of induction of a computer program) and, then, how to apply this single, unified approach (i.e., genetic
programming) to the problem of program induction. (See Koza 1988, 1989, 1990a, 1990d, 1990e, 1992g.)

Gen =0

Create Initial
Random Population

L
—r: Yes -
T Dmgmml
Criterion Satisfied?, Result
¢ No
“Evaluate [itness of each
individual in population
[i:=0]
L {Gon 1= Gen + 1] 4 1= M7)

Population

I]::|+1i

Figure 5.1
Flowchart for the genetic programming paradigm.

Page 77
In summary, the genetic programming paradigm breeds computer programs to solve problems by executing the following three steps:
(1) Generate an initial population of random compositions of the functions and terminals of the problem (computer programs).
(2) Iteratively perform the following substeps until the termination criterion has been satisfied:
(a) Execute each program in the population and assign it a fitness value according to how well it solves the problem.

(b) Create anew population of computer programs by applying the following two primary operations. The operations are applied to
computer program(s) in the population chosen with a probability based on fithess.

(i) Copy existing computer programs to the new population.
(i) Create new computer programs by genetically recombining randomly chosen parts of two existing programs.

(3) The best computer program that appeared in any generation (i.e., the best-so-far individual) is designated as the result of genetic
programming. This result may be a solution (or an approximate solution) to the problem.

Figure 5.1 isaflowchart for the genetic programming paradigm. Theindex i refersto anindividual in the population of size M. The variable
GEN s the number of the current generation. The box |abeled "Evaluate fitness of each individual in the population” in this flowchart is

explained in additional detail in figure 7.6. This flow chart is often embedded within an outer loop for controlling multiple independent runs
as shown in figure 8.1.

Page 79

6
Detailed Description of Genetic Programming

The previous chapter contained an overview of the genetic programming paradigm. This chapter contains a detailed description of genetic
programming. Some readers may prefer to read the next chapter containing four introductory examples before reading this chapter.

Adaptation (or learning) involves the changing of some structure so that it performs better in its environment. Holland's Adaptation in Natural
and Artificial Systems (1975) provides a general perspective on adaptation and identifies the key features common to al adaptive systems. In
this chapter, we use this perspective to describe genetic programming in terms of the structures that undergo adaptation,

. theinitial structures,

. the fitness measure which evaluates the structures,

. the operations which modify the structures,

. the state (memory) of the system at each stage,

. the method for terminating the process,

. the method for designating aresult, and the parameters that control the process.

We end this chapter with a discussion of the schemata that are implicitly processed in genetic programming.

6.1 The Structures Under going Adaptation
In every adaptive system or learning system, at least one structure is undergoing adaptation.

For the conventional genetic algorithm and genetic programming, the structures undergoing adaptation are a population of individual points
from the search space, rather than a single point. Genetic methods differ from most other search techniquesin that they simultaneously
involve a parallel search involving hundreds or thousands of pointsin the search space.

Page 80

Theindividual structures that undergo adaptation in genetic programming are hierarchically structured computer programs. The size, the
shape, and the contents of these computer programs can dynamically change during the process.

The set of possible structures in genetic programming is the set of all possible compositions of functions that can be composed recursively
from the set of Ny functions from F = {f,,f,,...,fysunct @nd the set of Nigr, terminalsfrom T = {ay,a, ...,anem} - E&Ch particular function f; in the
function set F takes a specified number z(f;) of arguments z(f,), z(f,) ..., Z(fuune)- Thét is, function f; has arity z(f;).

The functionsin the function set may include

. arithmetic operations (+, -, *, etc.),

. mathematical functions (such as sin, cos, exp, and log),
. Boolean operations (such asAND, OR, NOT),

. conditional operators (such asl f - Then- El se),

. functions causing iteration (such as Do- Unt i |),

. functions causing recursion, and

. any other domain-specific functions that may be defined.

The terminals are typically either variable atoms (representing, perhaps, the inputs, sensors, detectors, or state variables of some system) or
constant atoms (such as the number 3 or the Boolean constant NI L). Occasionally, the terminals are functions taking no explicit arguments,

the real functionality of such functionslying in their side effects on the state of the system (e.g., the artificial ant problem).

Consider the function set

F = {AND, OR NOT}

and the terminal set
T = {DO, D1},

where DO and D1 are Boolean variable atoms that serve as arguments for the functions.

We can combine the set of functions and terminals into a combined set C as follows:
C=FOT={AND, OR NOT, DO, D1}.

We can then view the terminals in the combined set C as functions requiring zero arguments in order to be evaluated. That is, the five itemsin
the set C can be viewed astaking 2, 2, 1, 0, and 0 arguments, respectively.

As an example, consider the even-2-parity function (i.e., the not-exclusive-or function, the equivalence function) with two arguments. This
function returns T (True) if an even number of its arguments (i.e., DO and D1) are T; otherwise, this function returns NI L (False). This
Boolean function can be expressed in digjunctive normal form (DNF) by the following LISP

Page 81

©.
CHEES
SATIOIO
(o) v

Figure 6.1
Even-2-parity function
depicted as arooted,
point-labeled tree with
ordered branches.

S-expression:

(OR (AND (NOT DO) (NOT D1)) (AND DO DI)).

Figure 6.1 graphically depicts the above LISP S-expression as arooted, point-labeled tree with ordered branches. The five internal points of
thetree are labeled with functions (OR, AND, NOT, NOT, and AND) . The four external points (leaves) of the tree are labeled with
terminals (the Boolean variableatoms DO, DI, DO, and D1, respectively). Theroot of the treeis labeled with the function appearing just
inside the outermost left parenthesis of the LISP S-expression (the OR). Thistreeis equivalent to the parse tree which most compilers
construct internally to represent a given computer program.

The search space for genetic programming is the space of all possible LISP S-expressions that can be recursively created by compositions of
the available functions and available terminals for the problem. This search space can, equivalently, be viewed as the space of rooted point-
labeled trees with ordered branches having internal points labeled with the available functions and external points (leaves) labeled with the
available terminals.

The structures that undergo adaptation in genetic programming are different from the structures that undergo adaptation in the conventional
genetic algorithm operating on strings. The structures that undergo adaptation in genetic programming are hierarchical structures. The
structures that undergo adaptation in the conventional genetic agorithm are one-dimensional fixed-length linear strings. In Steven F. Smith's
(1980, 1983) variation of the conventional genetic algorithm, the individual structures undergoing adaptation are one-dimensional linear
variable length strings.

In genetic programming, the terminal set and the function set should be selected so as to satisfy the requirements of closure and sufficiency.
6.1.1 Closure of the Function Set and Terminal Set

The closure property requires that each of the functions in the function set be able to accept, asits arguments, any value and data type that
may possibly be returned by any function in the function set and any value and data type that may possibly be assumed by any terminal in the
terminal set. That is, each

Page 82
function in the function set should be well defined and closed for any combination of arguments that it may encounter.

In the simple case where the function set consists of Boolean functions such as AND, OR, and NOT and the terminal set consists of Boolean
variables that can assume only the values of T or NI L, this closure property is easily satisfied. However, ordinary computer programs usually
contain numerical variables, conditional comparative operators, and conditional branching operators.

In ordinary programs, arithmetic operations operating on numerical variables are sometimes undefined (e.g., division by zero). Many common
mathematical functions operating on numerical variables are also sometimes undefined (e.g., logarithm of zero). In addition, the value
returned by many common mathematical functions operating on numerical variables is sometimes a data type that is unacceptablein a
particular program (e.g., square root or logarithm of a negative number). Moreover, the Boolean value (i.e., T or NI L) typically returned by a

conditional operator is generally not acceptable as the argument to an ordinary arithmetic operation.

It therefore might appear that satisfaction of this closure property is not possible for ordinary computer programs, or that if possible, it would
call for avery complex and restrictive syntactic structure to be imposed on the programs. In fact, aswe will seg, thisis not the case. Closure
can be achieved in a straightforward way for the vast mgjority of problems merely by careful handling of a small number of situations. (Some
of the other situations are discussed in chapter 19.)

If the arithmetic operation of division can encounter the numerical value of 0 as its second argument, the closure property will not be satisfied
unless some arrangement is made to deal with the possibility of division by 0. One simple approach to guarantee closure isto define a
protected division function. The protected division function %takes two arguments and returns one when division by 0 is attempted (including

0 divided by 0), and, otherwise, returns the normal quotient. It might be programmed as followsin LISP:
(defun % (nunerator denom nator)

"The Protected Division Function"
(if (= 0 denom nator) 1 (/ nunerator denom nator))).

Alternatively, we could have achieved closure by defining the division function so as to return the symbolic value : undef i ned and then
rewriting each of the ordinary arithmetic functions so asto return the symbolic value : undef i ned whenever they encounter : undef i ned
as one of their arguments.

If the square root function can encounter a negative argument or if the logarithm function can encounter a nonpositive argument in a problem
where the complex number that ordinarily would be returned is unacceptable, we can guarantee closure by using a protected function. For
example, the protected square root function SRT takes one argument and returns the square root of the absolute value of its argument. It might

be programmed as

Page 83

(defun srt (argunent)
"The Protected Square Root Function"
(sqgrt (abs argunent))),

where SQRT isthe Common LISP square root function.

The protected natural logarithm function RLOGreturns O if its one argument is 0 and otherwise returns the natural logarithm of the absolute
value of its argument. It might be programmed as

(defun rlog (argunent)
"The Protected Natural Logarithm Function"
(if (=0 argunment) 0 (log (abs argunent)))),

where LOGis the Common LISP natural logarithm function.

The protected division function % the protected square root function SRT, and the protected natural logarithm function RLOGwill be used
frequently throughout this book.

If aprogram contains a conditional operator in a problem where the Boolean value that would ordinarily be returned is unacceptable, then the
conditional operator can be modified in any one of the following three ways:

. Numerical-valued logic can be used.

. Conditional comparative operators can be redefined.
. Conditional branching operators can be redefined.
Let us consider these three approaches in detail.

First, if numerical-valued logic is used, a numerical-valued conditional comparative operator is defined so as to return numbers (such as +1
and -1 or perhaps 1 and 0) instead of returning Boolean values (i.e.,, T and NI L). For example, the numerical-valued greater-than function GT
over two arguments would be defined so asto return +1 if itsfirst argument is greater than its second argument and to return -1 otherwise.
Such afunction does not introduce a Boolean value into the program. The numerical-valued greater-than function GT might be programmed as

(defun gt (first-argument second-argument)
"The nunerical | y-val ued greater-than function"
(if (> first-argument second-argurent) 1 -1))).

Second, a conditional comparative operator can be defined so asto first perform the desired comparison and to then execute an alternative
depending on the outcome of the comparison test. For example, the conditional comparative operator | FLTZ (If Less Than Zero) can be
defined over three arguments so as to execute its second argument if its first argument isless than 0, but to execute its third argument
otherwise. Such an operator returns the result of evaluating whichever of the second and third argumentsis actually selected on the basis of
the outcome of the comparison test. It therefore does not introduce a Boolean value into the program.

This conditional comparative operator cannot be implemented directly as an ordinary L1SP function. The reason is that ordinarily, when LI1SP
evaluates

Page 84

afunction call, it first evaluates each of the arguments to the function and then passes the values to which the arguments have evaluated into
the function. For example, when LISP calls the addition function in the S-expression (+ (* 3 4) 5), it passesthevalues12 and 5 to the

addition function. The value 12 was, of course, obtained by evaluating the first argument to the addition function, (* 3 4) . Thisevauation

takes place outside the addition function. If the argument to a function happens to have aside effect (which is not the case in multiplying 3
times 4), the side effect would occur unconditionally at the time of the evaluation of the argument (i.e., outside the function). This early and
unconditional execution of the side effect of an argument is not what is desired if the operator isintended to execute the side effect in a
conditional manner based on the outcome of some test that has yet to be conducted.

As an example, consider the | FLTZ conditional comparison operator. When the | FLTZ conditional comparative operator is evaluated, we do
not want its arguments to be executed before entry into the function. Instead, we want the | FLTZ conditional comparative operator to first
determineif the first argument is less than 0, and we then want | FLTZ to evaluate only the one argument that is appropriate in view of the

outcome of the comparison test. If the first argument is less than 0, we want the second argument to be evaluated; if it is not, we want the third
argument to be evaluated. In other words, we want the conditional evaluation of one or the other argument to be performed asif the LISP
evaluation function EVAL were operating inside the | FLTZ conditional comparison operator. In many problems, the primary functionality of

the various functionsin the problem lies in their side effects on the state of some system, and we do not want those side effects to be
performed on the system unless a specified condition is satisfied. Thus, we must suppress premature evaluation of the arguments of the
| FLTZ conditional operator until after the operator makes its determination about whether the first argument is less than 0. The arguments

must be evaluated dynamically inside the conditional comparative operator.

Note that this problem cannot be readily remedied by introducing the LISP QUOTE special form into the function set, because that approach
would result in incorrect performance whenever the argument to QUOTE happened to occur at a crossover point and became separated from its
associated QUOTE.

The desired behavior is usually implemented in Common LISP by defining a macro, instead of a function, for the conditional comparative
operator in question. For example, we can implement the | FLTZ conditional comparative operator using a macro in the following way:

1 #+4Tl1 (setf sys:inhibit-displacing-flag t)

2 (defmacro ifltz

3 (first-argunment then-argunment el se-argunent)
4 .(if (< (eval ",first-argunment) 0)

5 (eval -, then-argunent)

6 (eval -, else-argunent))).

Page 85

The macro definition appears on lines 2 through 6. As can be seen on line 3, there are three arguments being supplied to this macro: the
first-argunent,thet hen-argument,andtheel se- ar gunent . The < Boolean function online4 inthei f expression evaluatesto

T if theresult of evaluating thef i r st - ar gunent islessthan 0, and otherwisereturns NI L. If T isreturned, thet hen- ar gunent online
5isevauated, but otherwise, theel se- ar gunent online 6 isevaluated. Either thet hen- ar gunment or theel se- ar gunment is
evaluated, but not both. The evaluation occursinsidethe | FLTZ conditional comparative operator. Additional details on macros can be found
in any textbook on Common LISP. Line 1 isexplained in detail in appendix B.3.

The three-argument conditional comparative operator | FLTZ is used in the "truck backer upper" problem (section 11.2).

The four-argument conditional comparative operator | FLTE (similarly defined with a macro) is used in the wall following problem (section
13.1), the box moving prablem (section 13.2), and the task prioritization problem (section 12.3). It is similarly implemented with a macro. In
addition, macros are used to implement the iterative DU ("Do-Until") operator (section 18.1) and the iterative SI GVIA summation operator
(section 18.2).

Third, a conditional branching operator can be defined so as to access some state or condition external to the program and then execute an
aternative depending on that external state or condition. Such an operator returns the result of evaluating whichever argument is actually
selected on the basis of the outcome of the test and does not introduce a Boolean value into the program.

For example, suppose we wanted to define a conditional branching operator to sense for food directly in front of the ant asrequired in the
artificial ant problem (subsection 3.3.2). We would want this| F- FOOD- AHEAD operator to first determine if food is present at the location
on the grid toward which the ant is currently facing; then we would want this operator to evaluate only the one argument that is appropriate in
view of the presence or absence of food. For example, we would want the S-expression

(1 F- FOOD- AHEAD (MOVE) (TURN- Rl GHT))

to cause the ant to move forward if food is directly in front of the ant, but to turn the ant to the right if food is not there. We would not want
this S-expression to both move the ant forward and turn it. We can implement the desired | F- FOOD- AHEAD conditional branching operator

using amacro in the following way:

1 #+Tl (setf sys:inhibit-displacing-flag t)

2 (defrmacro if-food-ahead (then-argunent el se-argunent)
3 (if *food-directly-in-front-of-ant-p*

4 (eval -, then-argunent)

5 (eval -, else-argument))).

As can be seen on line 2 of this macro definition, there are two arguments being supplied to this macro: thet hen- ar gunrent and theel se-
ar gunent .

Page 86

Thefirst argument of the if operator on line 3 isthe predicate * f ood- di rect | y-i n-front - of - ant - p*, which evaluatesto T if food
is present directly in front of the ant, but which otherwise evaluatesto NI L. The*f ood- di rect | y-i n-front - of - ant - p* predicate
acquires its value el sewhere after a calculation involving the ant's current f aci ng- di r ect i on and the current food status of the two-
dimensional grid. If food is present, thei f operator causes the evaluation of thet hen- ar gunent on line 4, using the L1SP evaluation
function eval . If food is not present, thei f operator causes the evaluation of the el se- ar gunent online 5, also using the LISP
evaluation function eval .

Macros are similarly used to implement the conditional branching operators in the emergent central place food foraging problem (section
12.1), the emergent collecting problem (section 12.2), the task prioritization problem (section 12.3), the grammar induction problem (section
17.2), and the non-hamstrung squad car problem (appendix B).

The closure property is desirable, but it is not absolutely required. If this closure property does not prevail, we must then address alternatives
such as discarding individuals that do not eval uate to an acceptable result or assigning some penalty to such infeasible individuals. The issue
of how to handle infeasible pointsis not unique to genetic methods and has been extensively (and inconclusively) debated in connection with
numerous other algorithmic methods. There is no entirely satisfactory general resolution of thisissue, so al the examplesin this book will
satisfy the closure property and we do not address this issue further.

LISP programmers are well aware that unrestricted S-expressions are sufficient for writing avast variety of different programs (although this
may not be intuitively obvious to programmers unfamiliar with this particular programming style). If one selects a function set and aterminal
set having the closure property, the vast majority of problemsin this book can be handled using only unrestricted S-expressions. Some
problems do, in fact, require constraining syntactic structure, and this additional structure can readily be handled in the manner described in
chapter 19.

Note that the closure property is required only for terminals and functions that may actually be encountered. If the structures undergoing
adaptation are known to comply with some constraining syntactic rules of construction, closure isrequired only over the values of terminals
and values returned by functions that will actually be encountered.

6.1.2 Sufficiency of the Function Set and the Terminal Set

The sufficiency property requires that the set of terminals and the set of primitive functions be capable of expressing a solution to the problem.
The user of genetic programming should know or believe that some composition of the functions and terminals he supplies can yield a
solution to the problem.

The step of identifying the variables that have sufficient explanatory power to solve a particular problem is common to virtually every
problem in science.

Page 87
Depending on the problem, this identification step may be obvious or may require considerable insight.

For example, Kepler's Third Law, discovered in 1618, states that the cube of a planet's distance from the sun is proportional to the square of
the period of the planet around the sun. If one were trying to predict the period of a planet traveling around the sun, considerable insight
would required (in the early seventeenth century anyway) to see that the distance of the planet from the sun is the one variable that has
explanatory power for this problem. If one had access only to data about the diameter, the number of moons, and the surface coloration of
each planet, one would be unable to express or discover the Third Law because these variables have no explanatory power whatsoever for the
problem at hand.

In some domains, the task of identifying the variables having sufficient explanatory power to solve the problem may be virtually impossible (e.
g., predicting interest rates or the results of elections).

This book provides numerous illustrative examples of how to select aterminal set containing variables with sufficient explanatory power to
solve aproblem. The tables in chapter 26 may also be helpful. However, it is ultimately the user who must supply aterminal set appropriate
for his problem.

Similarly, the step of identifying a set of functionsthat is sufficient to solve a particular problem may be obvious or may require considerable
insight.

In some domains, the requirements for sufficiency in the set of primitive functions are well known. For example, in the domain of Boolean
functions, the function set

F= (AND, OR, NOT}

is known to be sufficient for realizing any Boolean function. If the function OR is removed from this function set, it is also well known that
the remaining function set is still sufficient for realizing any Boolean function. However, if the function NOT is removed, the remaining
function set is no longer sufficient for expressing all Boolean functions. For example, the exclusive-or (odd-parity) function cannot be
expressed. The remaining function set is nonethel ess sufficient to realize some Boolean functions.

On the other hand, for many domains the requirements for sufficiency in the set of primitive functions are not clear. For example, if one were
given only the functions of addition and subtraction (instead of multiplication and division), one cannot express or discover Kepler's Third
Law; however, some knowledge and understanding of celestial mechanicsis required to know that the function set { +, -} isinsufficient for

solving the problem.

If one were given only the primitive functions Rl GHT and LEFT (but not MOVE), one could not possibly solve the artificial ant problem
(subsection 3.3.2). Similarly, if one were given only the primitive function MOVE (but not RI GHT or LEFT), one could not possibly solve that

problem. Before Jefferson, Collins, et a. could begin their search for afinite-state automaton or aneural network to solve their problem, they
had to ascertain, using their knowledge and insight of what it takes for an ant to find food, that the minimum requirements

Page 88

for successful navigation of their ant along their trail were primitive functions such as MOVE and either RI GHT or LEFT. Nothing from the

theory of automata, neural networks, genetic algorithms, machine learning, or artificial intelligence provided any assistance to themin
selecting the primitive functions for their problem or in establishing that any particular set of primitive functions would prove to be sufficient.

Although this book provides numerous illustrative examples of how to select a sufficient set of primitive functions for aproblem, itis
ultimately the user who must supply afunction set appropriate for his problem.

6.1.3 Universality of Selecting Primitive Functions and Terminals

The steps (performed by the user) of determining the repertoire of primitive functions and terminals in genetic programming are equivalent to
similar required steps in other machine learning paradigms. These two steps (which often go under other names) are often not explicitly
identified, discussed, or recognized by researchers describing other paradigms. The reason for this omission may be that the researcher
involved considers the choice of primitive functions and terminals to be inherent in the statement of the problem. Thisview is especially
understandable if the researcher is focusing on only one specific type of problem from one specific field. If this book contained only one
problem from only onefield (e.g., only the artificial ant problem), it probably would not occur to the reader to think about the source of the
primitive functions being used by the machine learning paradigm.

The two steps of determining the primitive functions and terminals are necessary preparatory steps for solving a problem using algorithms for
inducing decision trees (such as 1D3), an agorithm for empirical discovery (such as BACON), aneura network, afinite-state automaton, a
genetic classifier system, a conventional planning algorithm from the domain of symbolic artificial intelligence, and other paradigms. In each
instance, the user must identify and supply the primitive functions and terminals to be used in solving the problem.

Let us consider afew examples.

The two steps of determining the primitive functions and terminals are necessary preparatory steps to the induction of decision trees using the
ID3 agorithm and its variants. The ID3 algorithm (Quinlan 1986) produces a decision tree that can classify an object into a class. Each object
has several attributes. A certain value of each attribute is associated with each object. The ID3 algorithm constructs a decision tree that, if
presented with a particular object, classifies the object into a particular class. The internal points of the decision tree consist of attribute-testing
functions, which test the given object for a particular attribute. Before one can use ID3, the user must select the set of attribute-testing
functions that can appear at the internal points of the decision tree. ID3 does not make this selection for the user.

For example, if the problem isto classify national flags, consisting of precisely three stripes, the objects are flags. Each flag might have four
attrib-

Page 89

utes, namely the direction of the stripes, the color of the first stripe, the color of the second stripe, and the color of the third stripe. If the user
selects a set of attribute-testing functions that is insufficient to solve the problem, it will not be possible to solve the problem using ID3. For
example, failing to include a primitive function for testing the direction of stripes would make it impossible to distinguish the Italian flag from
the lranian flag.

If the user selects afunction set that contains irrelevant and extraneous attribute-testing functions, ID3 will usually be able to find a solution;
however, ID3's performance will probably be degraded to some degree. For example, if auser of ID3 includes an attribute-testing function for
the kind of cloth used in the flag, ID3 will quickly discover that this particular function is not helpful in discriminating among the flags.

This same determination of primitive functions and terminals occursin heuristic systems for the induction of scientific laws from empirical
data, such as BACON (Langley et al. 1987). BACON requires the user to supply arepertoire of heuristic rules (i.e., the function set) and to
identify the independent variables of the problem (i.e., the terminal set). Before one can use BACON, the user must select the set of heuristic
rules and the independent variables of the problem. BACON does not make these selections for the user. For example, BACON cannot induce
Kepler's Third Law from the empirical dataif the user selects arepertoire of heuristic rulesinvolving only the functions of addition and
subtraction (but not the functions of multiplication or division). Similarly, it will not be possible to induce Kepler's Third Law using BACON
if the empirical data provided to BACON includes the diameter of the planet, but not the distance from the sun. If the set of heuristic rules
chosen by the user includes numerous irrelevant and extraneous heuristic rules that never apply to the data, BACON will usualy be able to
find a solution; however, BACON's performance may be somewhat degraded.

Before Jefferson, Collins, et a. could begin their search for a neural network to solve the artificial ant problem (subsection 3.3.2), they
selected MOVE, RI GHT, and LEFT asthe set of primitive functions for their problem. They decided that the output of the neural network at
each time step would activate one of those three primitive functions. Similarly, they decided that a signal representing the presence or absence
of food on the grid in the position directly in front of the ant would constitute the input to the neural network. In the field of neura networks,
these steps are referred to as the process of identifying the inputs and outputs of a network. Having made these decisions, they could proceed
to the problem of finding the weights that would enable the neural network to solve the problem. Neura nets do not move or turn; they look at
inputs and emit certain signals for certain combinations of inputs. If Jefferson, Collins, et al. had neglected to feed the signal from the food
sensor into the neural network, the neural net could not possibly have solved their problem. If they had forgotten to connect some output
signal from the neural network to the primitive function MOVE, no amount of neural network technology would have moved the ant along the

food trail.

Page 90

Similarly, before Jefferson et a. could begin their search for afinite-state automaton to solve the artificial ant problem, they again had to
select their set of primitive functions. They again chose MOVE, RI GHT, and LEFT astheir set of primitive functions. They decided that the

output of the finite-state automaton at each time step would activate one of those three primitive functions. Similarly, they decided that a
signal representing the presence or absence of food on the grid in the position directly in front of the ant would constitute the input to the
automaton. Having made these decisions, they could proceed to the problem of finding the behavior that would enabl e the automaton to solve
the problem.

If we were using a genetic classifier system to solve the artificial ant problem, we would first have to select a set of primitive functions and a
set of terminals. The output interface of the classifier system would interpret certain messages posted to the message list of the classifier to
cause the activation of the external actions of MOVE, RI GHT, and LEFT. The signal representing the presence or absence of food on the

grid in the position directly in front of the ant would be fed into the environmental interface (input) of the classifier system as a particular
message on the message list.

Before using a planning tool from the field of symbolic artificial intelligence, we would have to identify the primitive functions (i.e., MOVE,
RI GHT, and LEFT) that could be invoked by the planning algorithm. The planning algorithm would also refer to the signal representing the
presence or absence of food on the grid in the position directly in front of the ant.

The choice of the set of available functions and terminals, of course, directly affects the character and appearance of the solutions. The
available functions and terminals form the basis for generating potential solutions.

For example, thefunctionsets{ AND, OR, NOT}, {IF, AND, OR, NOT}, {NAND}, and{NOR} areal sufficientfor realizing

any Boolean function; however, the solutions produced by using them are very different in appearance and character. For example, if oneis
working with semiconductor layouts, the function set { NAND} may be appealing. On the other hand, the inclusion of the function | F often
makes solutions more understandable to humans.

Similarly, if the function set for the artificial ant included a diagonal move and aknight's move (instead of the simple function for moving
forward), the function set would still be sufficient for solving the problem, but the solutions produced would be very different.

For most of the problems in this book, the function set is not only minimally sufficient to solve the problem at hand, but contains extraneous
functions. The effect on performance of extraneous functions in the function set of genetic programming is complex. In general, numerous
extraneous functionsin a function set degrade performance to some degree; however, a particular additional function in afunction set may
dramatically improve performance for a particular problem. For example, the addition of the extraneous function | F to the computationally

complete Boolean function set { OR, NOT} improves performance for certain Boolean |earning problems described in this book.
Page 91

Section 24.3 presents several experiments showing the effect of adding extraneous functions to the function set.

Since many of the problems in this book were originated by others in connection with their work involving other paradigms of machine
learning, artificial intelligence, and neural networks, we often rely, as a practical matter, on their choices of the primitive function and
terminals.

Of course, in some problemsit isnot at all clear in advance what set of functionsis minimally sufficient to solve the problem. In those cases,
it is generally better to include potentially extraneous functions than to miss a solution altogether.

The effect on performance of extraneous terminals is clearer than the effect of extraneous functions. Usually, extraneous terminals reduce
performance. Sections 24.1 and 24.2 present experiments showing the degradation associated with adding extraneous terminals to the terminal
Set.

6.2 Thelnitial Structures
Theinitial structuresin genetic programming consist of the individuals in theinitial population of individual S-expressionsfor the problem.

The generation of each individual S-expression in the initial population is done by randomly generating a rooted, point-labeled tree with
ordered branches representing the S-expression.

We begin by selecting one of the functions from the set F at random (using a uniform random probability distribution) to be the Iabel for the
root of the tree. We restrict the selection of the labdl for the root of the tree to the function set F because we want to generate a hierarchical
structure, not a degenerate structure consisting of asingle terminal.

Figure 6.2 shows the beginning of the creation of arandom program tree. The function + (taking two arguments) was selected from a function
set F asthe label for the root of the tree.

Whenever apoint of thetreeislabeled with afunctionf from F, then z(f) lines, where z(f) is the number of arguments taken by the function f ,

are created to radiate out from that point. Then, for each such radiating line, an element from the combined set C=F O T of functions and
terminalsis randomly selected to be the label for the endpoint of that radiating line.

If afunction is chosen to be the label for any such endpoint, the generating process then continues recursively as just described above. For
example, in figure 6.3, the function * from the combined set C = F [0 T of functions and terminals was selected as the label of the internal
nonroot point (point 2) at

Figure 6.2
Beginning of the creation of arandom
program tree, with the function + with two

arguments chosen for the root of the tree.

Page 92

[

Figure 6.3
Continuation of the creation of a
random program tree, with the function *

with two arguments chosen for point 2.

(+)
() ©
®» ®

Figure 6.4
Completion of the creation of a
random program tree, with the

terminalsA, B, and Cchosen.

the end of the first (leftmost) line radiating from the point with the function + (point 1). Since a function was selected for point 2, it will be an
internal, nonroot point of the tree that will eventually be created. The function * takes two arguments, so the figure shows two lines radiating
out from point 2.

If aterminal is chosen to be the label for any point, that point becomes an endpoint of the tree and the generating processis terminated for that
point. For example, in figure 6.4, the terminal A from the terminal set T was selected to be the label of the first line radiating from the point

labeled with the function * . Similarly, the terminals B and C were selected to be the |abels of the two other radiating linesin figure 6.3. This
process continues recursively from left to right until acompletely labeled tree has been created, as shown in figure 6.4.

This generative process can be implemented in several different ways resulting in initial random trees of different sizes and shapes. Two of
the basic ways are called the "full” method and the "grow" method. The depth of atreeis defined as the length of the longest nonbacktracking
path from the root to an endpoint.

The "full" method of generating the initial random population involves creating trees for which the length of every nonbacktracking path
between an endpoint and the root is equal to the specified maximum depth. Thisis accomplished by restricting the selection of the label for
points at depths less than the maximum to the function set F, and then restricting the selection of the label for points at the maximum depth to
theterminal set T.

The "grow" method of generating the initial random population involves growing trees that are variably shaped. The length of a path between
an endpoint and the root is no greater than the specified maximum depth. This is accomplished by making the random selection of the |abel
for points at depths less than the maximum from the combined set C = F [0 T consisting of the union of the function set F and the terminal set
T, while restricting

Page 93

the random selection of the label for points at the maximum depth to the terminal set T. The relative number of functions in the function set F
and the number of terminalsin the terminal set T determine the expected length of paths between the root and the endpoints of the tree.

The generative method that | believe does best over a broad range of problemsisamethod | call "ramped half-and-half." In genetic
programming, we usually do not know (or do not wish to specify) the size and shape of the solution in advance. The ramped half-and-half
generative method produces awide variety of trees of various sizes and shapes.

The "ramped half-and-half" generative method is a mixed method that incorporates both the full method and the grow method. | have now
adopted this method for al new problems and it is used for most problems in this book. The exceptions are the specia analysis of Boolean
functions in chapter 9 and afew runs made before my adoption of this method. The ramped half-and-half generative method involves creating
an equal number of trees using a depth parameter that ranges between 2 and the maximum specified depth. For example, if the maximum
specified depth is 6 (the default value in this book), 20% of the trees will have depth 2, 20% will have depth 3, and so forth up to depth 6.
Then, for each value of depth, 50% of the trees are created via the full method and 50% of the trees are produced via the grow method.

Note that, for the trees created with the full method for a given depth, all paths from the root of the tree to an endpoint are the same length and
therefore have the same shape. In contrast, for the trees created via the grow method for a given value of depth, no path from the root of the
tree to an endpoint has a depth greater than the given value of depth. Therefore, for a given value of depth, these trees vary considerably in
shape from one ancther.

Thus, the ramped half-and-half method creates trees having awide variety of sizes and shapes. | prefer this method for this reason.
Several experiments comparing generative methods are briefly presented in section 25.1.

Duplicate individualsin the initial random generation are unproductive deadwood; they waste computational resources and undesirably reduce
the genetic diversity of the population. Thus, it is desirable, but not necessary, to avoid duplicates in the initial random population. In genetic
programming, duplicate random individuals are especially likely to be created in the initial random generation when the trees are small (asit
isfor a certain percentage of population in the ramped half-and-half and grow methods). Thus, each newly created S-expression is checked for
unigqueness before it isinserted into the initial population. If anew S-expression is a duplicate, the generating process is repeated until a
unigue S-expression is created. Occasionaly (e.g., for small trees), we must substitute alarger tree during the generative process when we
have exhausted the set of possible trees of a given size.

The variety of a population is the percentage of individuals for which no exact duplicate exists elsewhere in the population. If duplicate
checking is done, the variety of the initial random population is 100%. In later generations,

Page 94
the creation of duplicate individuals via the genetic operation of reproduction is an inherent part of genetic processes.

In contrast, in the conventional genetic algorithm operating on fixed-length character strings, each of the charactersin astring in the initial
random population is typically created by calling a binary randomizer. For example, the binary strings of length 453 used by Jefferson et al.
(1991) in the artificial ant problem are created by a binary randomizer and come from a search space of size 2453 (i.e., about 101%7). It would be
most unusual to have any duplicates among the mere 65,536 individual strings in the population when the search space is of size 10137, Thus,
in conventional genetic algorithms, no effort is usually expended to ensure against duplicates. However, duplicate checking is sometimes done
(Davis 1991).

In this book, particular individuals are not primed (seeded) into theinitial population. If such priming is attempted, it should be remembered
that inserting relatively high-fitnessindividualsinto an initial population of random (and necessarily low-fitness) individuals will after one
generation, result in almost total dominance of the population by copies and offspring of the primed individuals. In terms of genetic diversity,
the result will be, after only one generation, very similar to starting with a population of size equal to the relatively tiny number of primed
individuals. If such priming is attempted, 100% of the initial population should be primed with individuals of agenerally similar level of
fitness.

6.3 Fitness
Fitness is the driving force of Darwinian natural selection and, likewise, of both conventional genetic algorithms and genetic programming.

In nature, the fitness of an individual is the probability that it survives to the age of reproduction and reproduces. This measure may be
weighted to consider the number of offspring. In the artificial world of mathematical algorithms, we measure fitness in some way and then use
this measurement to control the application of the operations that modify the structuresin our artificial population.

Fitness may be measured in many different ways, some explicit and some implicit.

The most common approach to measuring fithessis to create an explicit fitness measure for each individua in the population. This approach
isused in the vast mgjority of applications of the conventional genetic algorithm and for the vast mgjority of examplesin this book. Each
individual in apopulation is assigned a scalar fitness value by means of some well-defined explicit evaluative procedure.

Fitness may also be computed in a co-evolutionary way as when the fitness of a game playing strategy is determined by playing that strategy
against an entire population (or sampling) of opposing strategies.

The fact that individuals exist and survive in the population and successfully reproduce may be indicative of their fitness (asisthe casein
nature). This

Page 95

implicit definition of fitnessis often used in research in artificial life (Ray 1990, 19914, 1991b, 1991c; Holland 1990, 1992; chapter 28
below). However, for the moment, we will focus on the more common situation where fitness is explicitly computed. | will now describe the
four measures of fitness that are used in this book:

. raw fitness,

. standardized fitness,
. adjusted fitness, and
. normalized fitness.
6.3.1 Raw Fitness

Raw fitness is the measurement of fitness that is stated in the natural terminology of the problem itself. For example, raw fitnessin the
artificial ant problem was the number of pieces of food eaten by the ant. The more food, the better. Raw fitness ranged from O (i.e., the least
food and therefore the worst value) to 89.

Fitnessis usually, but not always, evaluated over a set of fithess cases. These fithess cases provide a basis for evaluating the fitness of the S-
expressions in the population over a number of different representative situations sufficiently large that arange of different numerical raw
fitness values can be obtained. The fitness cases are typically only asmall finite sample of the entire domain space (which is usualy very
large or infinite). For Boolean functions with afew arguments, it is practical to use all possible combinations of values of the arguments as the
fitness cases. The fitness cases must be representative of the domain space as awhole, because they form the basis for generalizing the results
obtained to the entire domain space.

One can minimize the effect of selecting a particular selection of fitness cases by computing fitness using a different set of fitness casesin
each generation. Because the potential benefit of this approach is offset by the inconvenience associated with noncomparability of
performance of a particular individual across generations, we do not use this approach in this book. Instead, the fitness cases are chosen at the
beginning of each run and not varied from generation to generation.

The most common definition of raw fitness used in this book is that raw fitnessis error. That is, the raw fitness of an individual S-expression
isthe sum of the distances, taken over all the fitness cases, between the point in the range space returned by the S-expression for the set of
arguments associated with the particular fitness case and the correct point in the range space associated with the particular fitness case. The S-
expression may be Boolean-valued, integer-valued, floating-point-valued, complex-valued, vector-valued, multiple-valued, or symbolic-
valued.

If the S-expression is integer-valued or floating-point-valued, the sum of distancesis the sum of the absolute values of the differences between
the numbers involved. When raw fitnessis error, the raw fitnessr(i, t) of an

Page 96

individual S-expression i in the population of size M at any generational time step tis
N,
rlif) =3 [50.7) — C(L.
i=

where (i, j) isthe value returned by S-expression i for fitness case | (of N, cases) and where C(j) is the correct value for fitness casej.

If the S-expression is Boolean-valued or symbolic-valued, the sum of distances is equivalent to the number of mismatches. If the S-expression
is complex-valued, or vector-valued, or multiple-valued, the sum of the distances is the sum of the distances separately obtained from each
component of the structure involved.

If the S-expression (or each component of avector or list) is real-valued or integer-valued, the square root of the sum of the squares of the
distances can, aternatively, be used to measure fitness (thereby increasing the influence of more distant points).

Because raw fitness is stated in the natural terminology of the problem, the better value may be either smaller (as when raw fitnessis error) or
larger (as when raw fitnessis food eaten, benefit achieved, etc.).

6.3.2 Standardized Fitness

The standardized fitness s(i, t) restates the raw fitness so that alower numerical value is aways a better value. For example, in an optimal
control problem, one may be trying to minimize some cost measure, so alesser value of raw fitnessis better. Similarly, if, in a particular
problem, oneistrying to minimize error, alesser value of raw fitness is better (and araw fitness of 0 is best).

If, for aparticular problem, alesser value of raw fitnessis better, standardized fitness equals the raw fitness for that problem. That is,
s,) = rli, £,

It is convenient and desirable to make the best value of standardized fithess equal 0. If thisis not aready the case, it can be made so by
subtracting (or adding) a constant.

If, for aparticular problem, a greater value of raw fitnessis better, standardized fitness must be computed from raw fitness. For example, in
the artificial ant problem we were trying to maximize the amount of food discovered along the trail; thus, a bigger value of raw fitness was
better. In that situation, standardized fitness equals the maximum possible value of raw fitness (denoted by r,,.,,) minus the observed raw
fitness. That is, we require areversal,

{1 = rpa — riL L
If theartificial ant finds 5 of the 89 pieces of food using a given computer program, the raw fitnessis 5 and the standardized fitnessiis 84.

If no upper bound r,,,, is known and abigger value of raw fitnessis better, the adjusted fitness and the normalized fitness (both described
below) can be computed directly from the raw fitness. If a smaller value of raw fitnessis better

Page 97

and no lower bound is known, the sign can be reversed and the adjusted fitness and the normalized fitness can be computed directly from the
raw fitness.

6.3.3 Adjusted Fitness

In addition, for all problemsin this book involving an explicit calculation of fithess, we apply an optional adjustment to fitness. The adjusted
fitness measure a(i, t) is computed from the standardized fitness (i, t) asfollows:

1

at. b = 14 si, B

where g(i, t) isthe standardized fitness for individual i at timet.

The adjusted fitness lies between 0 and 1. The adjusted fitnessis bigger for better individuals in the population.

It is not necessary to use the adjusted fitness in genetic programming; however, | believeit is generally helpful, and | use it consistently
throughout this book. The adjusted fitness has the benefit of exaggerating the importance of small differences in the value of the standardized
fitness as the standardized fitness approaches 0 (as often occurs on later generations of arun). Thus, as the population improves, greater
emphasisis placed on the small differences that make the difference between a good individual and a very good one. This exaggeration is
especially potent if the standardized fithess actually reaches 0 when a perfect solution to the problem isfound (asis the case for many
problemsin this book). For example, if the standardized fitness can range between 0 (the best) and 64 (the worst), the adjusted fitnesses of
two poor individuals scoring 64 and 63 are 0.0154 and 0.0159, respectively; however, the adjusted fitnesses of two good individuals scoring 4
and 3 are 0.20 and 0.25, respectively. This effect isless potent (but still valuable) when the best value of the standardized fitness cannot be
defined so asto reach O for the best individua (e.g., in optimization problems where the nonzero best minimal value is not known in advance).

Note that for certain methods of selection other than fitness proportionate selection (e.g., tournament selection and rank selection), adjusted
fitnessis not relevant and not used.

6.3.4 Normalized Fitness

If the method of selection employed is fitness proportionate (as is the case for al problemsin this book except for the experiments with
tournament selection found in section 25.7), the concept of normalized fitnessis also needed.

The normalized fitness n(i, t) is computed from the adjusted fitness value a(i, t) asfollows:

nli, [y = H—ﬂﬁi—

Y atk, b |

Page 98
The normalized fitness has three desirable characteristics:
. It ranges between 0 and 1.
. Itislarger for better individualsin the population.
. The sum of the normalized fitness valuesis 1.
The phrases "proportional to fitness" or "fitness proportionate” in this book refer to the normalized fitness.

Note that for certain methods of selection other than fitness proportionate selection (e.g., tournament selection and rank selection), normalized
fitnessis not relevant and not used.

Aswill be seen, it isalso possible for the fitness function to give some weight to secondary or tertiary factors. Examples of such additional
factors are parsimony of the S-expression (sections 18.1 and 25.13), efficiency of the S-expression (section 18.1), and compliance with the
initial conditions of a differential equation (section 10.7).

6.3.5 Greedy Over-Selection

The population size M of 500 is sufficient for solving about two-thirds of the problems described in this book. More complex problems
generally require larger population sizes to solve. These more complex problems are usually the problems which entail exceedingly time-
consuming fitness calculations. Thus, the problem of limited computer resources becomes especially acute for these problems because both
the population size and the amount of time required to evaluate fitness are large.

It is possible to considerably enhance the performance of genetic programming (and the conventional genetic algorithm) for many problems
by greedily over-selecting the fitter individuals in the population. That is, when individuals are selected from the population to participate in
the various operations (e.g., reproduction and crossover), the fitter individual s are given an even better chance of selection than is already the
case with normalized fitness. This greedy over-selection amounts to a further adjustment to the fithess measure.

It is not necessary to use over-selection in genetic programming for any problem. We do not ever use over-selection on problems where the
population size is 500 or below. However, unless otherwise indicated, we use over-selection in order to improve performance on the minority
of problems where the population size is 1,000 or larger.

We implement over-selection by envisioning the individuals in the population being sorted in order of their normalized fitness n(i, t), with the
fittest individual appearing first. For a population size of 1,000, the fittest individuals together accounting for ¢ = 32% of the normalized
fitness are placed in group I, whereas the remaining lessfit individuals are placed in group 1. Then 80% of the time, an individual is selected
from group | in proportion to its normalized fitness, whereas 20% of the time, an individual is selected from group |1 in proportion to its
normalized fitness. The procedure is the same for a

Page 99
population of 2,000, 4,000, and 8,000, except that the cumulative percentage c is 16%, 8%, and 4%, respectively.

The progression 32%, 16%, 8%, and 4% and the 80%-20% split has no particular justification; it merely provides a convenient way of causing
the greedy over-selection of the fittest.

For the sake of illustration, suppose the the best 10 individuals each have normalized fitness 0.024, the next 100 individuals each have
normalized fitness of 0.0008, and the worst 890 individuals each have normalized fitness of 0.68/890 = 0.000764. The best 110 individuals
together account for ¢ = 32% of the population (i.e., 10 x 0.024 plus 100 x 0.0008). The worst 890 individuals cumulatively account for

1- ¢ =68% of the population (i.e., 890 x 0.000764).

80% of the time, we will select from the group of 110 best individuals. The best 10 individuals of this 110 will each have a probability of
being selected of 0.06 (i.e., 0.024 x 0.80/0.32) and a cumulative probability of being chosen of 0.6. The next 100 individuals of this 110 will
each have anet probability of being selected of 0.002 (i.e., 0.0008 x 0.80/0.32) and a cumulative probability of being selected of 0.2.

20% of the time, we will select from the group of 890. The worst 890 individuals will each have a net probability of being selected of
0.00002247 (i.e., 0.000764 x 0.20/0.68) and a cumulative probability of being selected of 0.2.

6.4 Primary Operationsfor Maodifying Structures

This section describes the two primary operations used to modify the structures undergoing adaptation in genetic programming:
. Darwinian reproduction

. crossover (sexual recombination).

The secondary operations that are sometimes used in genetic programming are described in the next section.

6.4.1 Reproduction

The reproduction operation for genetic programming is the basic engine of Darwinian natural selection and survival of the fittest. The
reproduction operation is asexual in that it operates on only one parental S-expression and produces only one offspring S-expression on each
occasion when it is performed.

The operation of reproduction consists of two steps. First, asingle S-expression is selected from the population according to some selection
method based on fitness. Second, the selected individual is copied, without alteration, from the current population into the new population (i.
e., the new generation).

There are many different selection methods based on fitness. The most popular is fithess-proportionate selection. This method, described in
Holland's

Page 100

Adaptation in Natural and Artificial Systems (1975), underpins many of Holland's theoretical results. It is the method used throughout this
book.

If f(s(t)) isthefitness of individual s in the population at generation t, then, under fitness-proportionate selection, the probability that
individual s will be copied into the next generation of the population as aresult of any one reproduction operation is

flsih))
i .
Y fisn)
j=

Typically, f(s(t)) is the normalized fitness n(s(t)) computed in the manner described above, so that the probability that individual s will be
copied into the next generation of the population as aresult of any one reproduction operation is simply its normalized fitness n(s(t)). If over-
selectionisinvoked, f(s(t)) isthe result of applying over-selection to the values of normalized fitness n(s(t)).

When the reproduction operation is performed by means of the fitness-proportionate selection method, it is called fitness-proportionate
reproduction.

Among the alternative selection methods are tournament selection and rank selection (Goldberg and Deb 1990). In rank selection, selectionis
based on the rank (not the numerical value) of the fitness values of the individualsin the population (Baker 1985). Rank selection reduces the
potentially dominating effects of comparatively high-fitnessindividuals in the population by establishing a predictable, limited amount of
selection pressure in favor of such individuals. At the same time, rank sel ection exaggerates the difference between closely clustered fitness
values so that the better ones can be sampled more. See also Whitley 1989.

In tournament selection, a specified group of individuals (typically two) are chosen at random from the population and the one with the better
fitness (i.e., the lower standardized fitness) is then selected. When two bulls fight over the right to mate with a given cow, tournament
selection is occurring.

Note that the parent remains in the population while selection is performed during the current generation. That is, the selection is done with
replacement (i.e., reselection) allowed. Parents can be selected and, in general, are selected more than once for reproduction during the
current generation. Indeed, the differential rate of survival and reproduction for fitter individualsis an essential part of genetic algorithms.

A considerable amount of computer time can be saved by not computing the fitness for any individual that appears in the present generation as
aresult of reproduction from the previous generation. The fitness of such a copied individua will be unchanged and therefore need not be
recomputed (unless the fitness cases vary from generation to generation). If the reproduction operation is being applied to, say, 10% of the
popul ation on each generation, this technique alone results in 10% fewer calculations of fitness on every generation. Since the calculation of
fitness consumes the vast mgjority of

Page 101
computer time for any non-trivial problem, this simple technique produces an immediate overall saving of close to 10% on every run.
6.4.2 Crossover

The crossover (sexual recombination) operation for genetic programming creates variation in the population by producing new offspring that
consist of parts taken from each parent. The crossover operation starts with two parental S-expressions and produces two offspring S-
expressions. That is, it is a sexual operation.

The first parent is chosen from the population by the same fitness-based selection method used for selection for the reproduction operation
(which, in this book, means that the first parent is chosen with a probability equal to its normalized fitness). Moreover, in this book, the
second parent is chosen by means of the same selection method (that is, with a probability equal to its normalized fitness).

The operation begins by independently selecting, using a uniform probability distribution, one random point in each parent to be the crossover
point for that parent. Note that the two parents typically are of unequal size.

The crossover fragment for a particular parent is the rooted subtree which has asiits root the crossover point for that parent and which consists
of the entire subtree lying below the crossover point (i.e., more distant from the root of the original tree). Viewed in termsof listsinaLISP S
expression, the crossover fragment is the sublist starting at the crossover point. This subtree (sublist) sometimes consists of one terminal.

Thefirst offspring S-expression is produced by deleting the crossover fragment of the first parent from the first parent and then inserting the
crossover fragment of the second parent at the crossover point of the first parent. The second offspring is produced in a symmetric manner.

For example, consider the two parental LISP S-expressionsin figure 6.5. The functions appearing in these two S-expressions are the Boolean
AND, OR, and NOT functions. The terminals appearing in the figure are the Boolean arguments DO and D1.

Figure 6.5
Two parental computer programs.

Page 102
Equivaently, in terms of LISP S-expressions, the two parents are

(OR (NOT DI1) (AND DO D1)),

and

(OR (OR DL (NOT DO)) (AND (NOT DO) (NOT D1))).

Assume that the points of both trees above are numbered in a depth-first, left-to-right way. Suppose that the second point (out of the six points
of thefirst parent) israndomly selected as the crossover point for the first parent. The crossover point of the first parent is therefore the NOT

function. Suppose also that the sixth point (out of the ten points of the second parent) is selected as the crossover point of the second parent.
The crossover point of the second parent is therefore the AND function. The portions of the two parental S-expressionsin boldface in figure

6.5 are the crossover fragments. The remaining portions of the two parental S-expressionsin figure 6.5 are called the remainders.
Figure 6.6 depicts these two crossover fragments and figure 6.7 shows the two offspring resulting from crossover.

Note that the first offspring S-expression in figure 6.7,
(OR (AND (NOT DO) (NOT D1)) (AND DO D1)),

happens to be the even-2-parity function (i.e., the equivalence function). The second offspring is

Figure 6.6
The crossover fragments
resulting from selection of
point 2 of the first parent
and point 6 of the second
parent as crossover points.

(OR (OR D1 (NOT DO)) (NOT Di)).

Figure 6.7
The two offspring produced by crossover.

Page 103

Because entire subtrees are swapped, and because of the closure property of the functions themselves, this genetic crossover (recombination)
operation always produces syntactically legal LISP S-expressions as offspring regardless of the selection of parents or crossover points.

If aterminal islocated at the crossover point in precisely one parent, then the subtree from the second parent isinserted at the location of the
terminal in the first parent (thereby introducing a subtree in lieu of asingle terminal point) and the terminal from the first parent isinserted at
the location of the subtree in the second parent. This will often have the effect of producing an offspring with considerable depth.

If terminals are located at both crossover points selected, the crossover operation merely swaps these terminals from tree to tree. The effect of
crossover, in this event, is akin to a point mutation. Thus, occasional point mutation is an inherent part of the crossover operation.

If the root of one parental S-expression happens to be selected as the crossover point, the crossover operation will insert the entire first parent
into the second parent at the crossover point of the second parent. In this event, the entire first parent will become a subtree (i.e., a subroutine)
within the second parent. Thiswill often have the effect of producing an offspring with considerable depth. In addition, the crossover
fragment of the second parent will then become the other offspring.

In the rare situation where the root of one parental S-expression happens to be selected as the crossover point and the crossover fragment from
the second parent happens to be asingle terminal, the first parent becomes one offspring and the other offspring will be a LISP S-expression
consisting of the single terminal.

If the roots of two parents both happen to be chosen as crossover points, the crossover operation simply degenerates to an instance of
reproduction of those two parents.

When an individual incestuously mates with itself or when two identical individuals mate the two resulting offspring will generally be
different (because the crossover points selected are, in general, different for the two parents). Thisisin contrast to the case of the conventional
genetic algorithm operating on fixed-length character strings where the one selected crossover point applies to both parents.

Thereis an important consequence of the way incestuous mating operates in genetic programming, as compared to the conventional genetic
algorithm operating on fixed-length character strings. For both genetic methods, if a particular individua in the population has extraordinarily
good fitness relative to the other individuals currently in the population, the Darwinian reproduction operation will cause many copies of that
oneindividual to be produced. Thiswill be the case even if this extraordinary individual is mediocre in the search space as awhole. If, for
example, reproduction is performed on 10% of the population selected probabilistically proportionate to fitness, as much as 10% of the next
generation may be copies of thisoneindividual. This fact creates a tendency toward convergence of the population (i.e., al the individuals

Page 104

in the population becoming identical). In addition, the extraordinary individual (and its copies) will be selected frequently to participate in
crossover, so many crossovers will be incestuous.

In the conventional genetic algorithm, when an individual incestuously mates with itself (or copies of itself), the two resulting offspring will
beidentical. This fact strengthens the tendency toward convergence in the conventional genetic algorithm. Convergenceis called premature
convergence if the population converges to a globally suboptimal result. Premature convergence can occur when a mediocre suboptimal
individual happens to have extraordinarily good fitness relative to the other individuals in the population at the time. In this situation
(sometimes called "survival of the mediocre"), the conventional genetic algorithm fails to find the global optimum. Of course, if aglobal
optimum is discovered in the conventional genetic algorithm, there is also very likely to be convergence of the entire population to that
globally optimal individual. Once the population convergesin conventional genetic algorithm, the only way to change the population is
mutation. Mutation can, in principle, lead anywhere; however, in practice, the population often quickly reconverges.

In contrast, in genetic programming, when an individual incestuously mates with itself (or copies of itself), the two resulting offspring will, in
general, be different (except in the relatively infrequent case when the crossover points are the same). As before, the Darwinian reproduction
operation creates a tendency toward convergence; however, in genetic programming, the crossover operation exerts a counterbalancing
pressure away from convergence. Thus, convergence of the population is unlikely in genetic programming.

A maximum permissible size (measured via the depth of the tree) is established for offspring created by the crossover operation. This limit
prevents the expenditure of large amounts of computer time on afew extremely large individual S-expressions. If a crossover between two
parents would create an offspring of impermissible size, the contemplated crossover operation is aborted for that one offspring and the first of
its parentsis arbitrarily chosen to be reproduced into the new population. Note that the other offspring produced by the crossover may be of
permissible size. If the crossover is aborted because both offspring are too large, both parents are reproduced into the new population. Of
course, if we could execute al the individual S-expressionsin the population in parallel (as nature does) in a manner such that the infeasibility
of oneindividual in the population does not disproportionately jeopardize the resources needed by the population as a whole, we would not
need such asize limitation.

A default value of 17 for this maximum permissible depth, established in section 6.9 for all problemsin this book, permits potentially
enormous programs. For example, the largest permissible LISP program consisting of entirely diadic functions would contain 217 = 131,072
functions and terminals. If four LISP functions and terminals are roughly equivaent to one line of a program written in some conventional
programming language, then the

Page 105

largest permissible program consisting of entirely diadic functionsis about 33,000 lines. Many of the larger LISP S-expressions created to
solve problems in this book contain somewhere about 500 functions and terminals, corresponding to about 125 lines in a conventional
programming language. Thus, this limit on the maximum permissible depth has no practical importance in terms of constraining solutionsto
the problems described in this book.

Simple L1SP computer code for the crossover operation is presented in appendix C.

6.5 Secondary Oper ations

In addition to the two primary genetic operations of reproduction and crossover in genetic programming, there are five optional secondary
operations worth mentioning:

. mutation

. permutation

. editing

. encapsulation, and
. decimation.

These operations are used only for occasional runs described in this book.
6.5.1 Mutation
The mutation operation introduces random changes in structures in the population.

In conventional genetic algorithms operating on strings, the mutation operation can be beneficial in reintroducing diversity in a population that
may be tending to converge prematurely. In the conventional genetic algorithm, it is common for a particular symboal (i.e., an allele) appearing
at a particular position on achromosome string to disappear at an early stage of arun because that particular alele is associated with inferior
performance, given the alleles prevailing at other positions of the chromosome string at that stage of the run. Then, because of the
nonlinearities of the problem, the now-extinct allele may be precisely what is needed to achieve optimal performance at alater stage of the
run, since a different and better combination of alelesisnow prevailing at the other positions of the chromosome string. The situation just
described is not conjectural but is, in fact, very typical. Genetic methods are normally applied to problems with highly nonlinear search
spaces, and this situation is the essence of what isinvolved in nonlinear search spaces.

In this situation, the mutation operation may occasionally have beneficial results. Nonetheless, it isimportant to recognize that the mutation
operation is arelatively unimportant secondary operation in the conventional genetic algorithm (Holland 1975; Goldberg 1989).

Page 106

Mutation is asexual and operates on only one parental S-expression. The individual is selected with a probability proportional to the
normalized fitness. The result of this operation is one offspring S-expression.

The mutation operation begins by selecting a point at random within the S-expression. This mutation point can be an internal (i.e., function)
point or an external (i.e., terminal) point of the tree. The mutation operation then removes whatever is currently at the selected point and
whatever is below the selected point and inserts arandomly generated subtree at that point.

This operation is controlled by a parameter that specifies the maximum size (measured by depth) for the newly created subtree that is to be
inserted. This parameter typically has the same value as the parameter for the maximum initial size of S-expressionsin theinitial random
population.

A special case of the mutation operation involvesinserting asingle terminal at arandomly selected point of the tree. This point mutation
occurs occasionally in the crossover operation when the two selected crossover points are both terminals.

For example, in the "before" diagram in figure 6.8, point 3 (i.e., DO) of the S-expression was selected as the mutation point. The
subexpression (NOT D1) was randomly generated and inserted at that point to produce the S-expression shown in the "after" diagram.

The above argument in favor of the occasional usefulness of mutation in the conventional genetic algorithm operating on stringsis largely
inapplicable to genetic programming.

First, in genetic programming, particular functions and terminals are not associated with fixed positionsin afixed structure. Moreover, when
genetic programming is used, there are usually considerably fewer functions and terminals for a given problem than there are positionsin the
chromosome in the conventional genetic algorithm. Thus, it isrelatively rare for a particular function or terminal ever to disappear entirely
from a population in genetic programming. Therefore, to the extent that mutation serves the potentially important role of restoring lost
diversity in apopulation for the conventiona genetic algorithm, it is simply not needed in genetic programming.

Second, in genetic programming, whenever the two crossover points in the two parents happen to both be endpoints of trees, the crossover
operation

Figure 6.8
A computer program before and after the
mutation operation is performed at point 3.

Page 107

operates in amanner very similar to point mutation. Thus, to the extent that point mutation may be useful, the crossover operation already
providesit.

The effect of the mutation operation is briefly considered in sections 25.6 and 25.7; however, none of the other runs described in this book use
it.

Simple LISP code for the mutation operation is found in appendix C.
6.5.2 Permutation

The permutation operation is a generalization of the inversion operation for the conventional genetic algorithm operating on strings.

Theinversion operation for the conventional genetic agorithm reorders characters found between two selected points of asingle individual by
reversing the order of all the characters between the two selected points. The inversion operation brings certain alleles closer together (while
moving others farther apart). When applied to individuals with relatively high fitness, the inversion operation may aid in the establishment of
a close genetic linkage between combinations of alleles that perform well together within a chromosome. These co-adapted sets of alleles are
more likely to be preserved for the future, because they will be less subject to disruptive effects of crossover operating on the string. In the
conventional genetic algorithm, alleles have meaning because they occupy particular positions in the chromosome string. Therefore, when the
inversion operation is performed on a chromosome string the alleles must be accompanied by markers, so that when the chromosome string is
decoded at the end of the run, the alleles are given their intended meaning.

Permutation is asexual in that it operates on only one parental S-expression. The individual is selected in the same way as for reproduction and
crossover (i.e., in this book, with a probability proportional to the normalized fitness). The result of this operation is one offspring S-
expression.

The permutation operation begins by selecting afunction (internal) point of the LISP S-expression at random. If the function at the selected
point has k arguments, a permutation is selected at random from the set of k! possible permutations. Then the arguments of the function at the
selected point are permuted in accordance with the random permutation. If the function at the selected point happens to be commutative, there
is no immediate effect on the value returned by the S-expression as aresult of the permutation operation.

The "before" diagram in figure 6.9 shows an S-expression with the function %(i.e., the protected division function) at point 4 operating on the
argument B (at point 5) and the argument C (at point 6). If point 4 is chosen as the permutation point, the order of the two arguments (i.e., B
and C) will be permuted. The "after" diagram shows the result of permuting the order of the two arguments. The argument C now appears at
point 5 and the argument B now appears at point 6.

The permutation operation described here differs from the inversion operation for the conventional genetic algorithm in that it allows any one
of k! possible permutations to occur, whereas the inversion operation for the con-

Page 108

Before After

Figure 6.9
An S-expression before and after the permutation
operation is performed at point 4 containing
the protected division function %.

ventional genetic algorithm merely allows a particular one of k! possible permutations (i.e., the smple reversal).

The usefulness of the inversion operation has not been conclusively demonstrated in genetic algorithm work (Goldberg 1989).
The effect of the permutation operation is briefly considered in section 25.3; however, no other runs described in this book useiit.
6.5.3 Editing

The editing operation provides a means to edit and simplify S-expressions as genetic programming is running.

Editing is asexual in that it operates on only one parental S-expression. The result of this operation is one offspring S-expression.

The editing operation recursively applies a pre-established set of domain-independent and domain-specific editing rules to each S-expression
in the population.

The universal domain-independent editing ruleis the following: If any function that has no side effects and is not context dependent has only
constant atoms as arguments, the editing operation will evaluate that function and replace it with the value obtained from the evaluation. For
example, the numeric expression (+ 1 2) will be replaced by 3 and the Boolean expression (AND T T) will bereplaced by T (True).

In addition, the editing operation applies a pre-established set of domain-specific editing rules. For numeric problem domains, there might be
an editing rule that inserts O whenever a subexpression is subtracted from itself. In Boolean domains, one might use editing rules such as the
following:

(AND X X) - X
(RXX - X
(NOT (NOT X)) — X

In addition, one might use an an editing rule to apply one of De Morgan's laws to S-expressions.

Page 109
The recursive application of editing rules makes the editing operation very time consuming.

There is no equivaent of the editing operation for the conventional genetic algorithm operating on fixed-length character strings, since the
individuals are already encoded and are of uniform structural complexity.

The editing operation can be used in the following two distinct ways in genetic programming:

First, the editing operation may be used cosmetically (i.e., entirely external to the run) to make the output of displayed individuals more
readable. | routinely use the editing operation in thisway for every run of every problem. The computer program implementing genetic
programming always displays al individuas in the output files in both unedited and edited form.

Second, the editing operation may be used during the run in an attempt either to produce simplified output (without sacrificing the attainment
of results) or to improve the overall performance of genetic programming.

When used with either of these two motivations, the editing operation is applied to each individual in the population at the time.

The editing operation is controlled by afrequency parameter specifying whether the editing operation is to be applied to every generation, to
no generation, or with a certain frequency. For example, if the frequency of editing f., is 1, the editing operation is applied to all generations;
if itisO, it isapplied to no generations; and if it isan integer greater than 1, it is applied to every generation number which is 0 modulo the
specified integer.

There is an arguabl e position that the editing operation can improve performance by reducing the vulnerability of nonparsimonious,
collapsible sub-S-expressions to disruption by the crossover operation. For example, when the editing operation simplifies a nonparsimonious
S-expression such as

(NOT (NOT (NOT (NOT X))))

to the more parsimonious S-expression X, the S-expression becomes less vulnerable to a crossover that might exactly reverse the Boolean

value of the expression as awhole. A more parsimonious S-expression might be less vulnerable to such value-changing disruption due to
crossover.

On the other hand, there is an argument that the editing operation can degrade performance by prematurely reducing the variety of structures
available for recombination.

The effect of the editing operation during arun is very unclear and is related to the unsettled and difficult question of whether breeding for
parsimony is potentially helpful or deleterious to finding the solution to problems with genetic programming. The effect of the editing
operation is briefly considered in section 25.5; however, except for the routine cosmetic editing mentioned above, no other runs described in
this book use this operation.

Simple LI1SP computer code for the editing operation is presented in appendix F.

Page 110
6.5.4 Encapsulation

The encapsulation operation is a means for automatically identifying a potentially useful subtree and giving it a name so that it can be
referenced and used later.

A key issuein artificial intelligence and in machine learning is how to scale up promising techniques that succeed in solving subproblems so
asto solve larger problems. One way to solve alarge problem isto decompose it into a hierarchy of smaller subproblems. Identifying smaller
subproblems that usefully decompose the problem is the key step. An important goal of artificial intelligence and machine learning is to make
thisidentification in an automated way.

Encapsulation is asexual in that it operates on only one parental S-expression. The individual is selected in the same way as for reproduction
and crossover (i.e., in this book, with a probability proportional to the normalized fitness). This operation results in one offspring S-expression.

The encapsulation operation begins by selecting afunction (internal) point of the LISP S-expression at random. The result of this operationis
one offspring S-expression and one new subtree definition.

The encapsul ation operation removes the subtree located at the selected point and defines a new function to permit references to the deleted
tree. The new encapsulated function has no arguments. The body of the new encapsulated function is the subtree originally located at the
selected point. These new encapsulated functions arenamed EO, E1, E2, E3, ..., asthey arecreated. Each new encapsulated

function is, for efficiency, then compiled using L1SP'sincremental compilation facility.
A call to the newly created function is then inserted at the selected point in the LISP S-expression.

The function set of the problem is then augmented to include the new function so that, if the mutation operation is being used in the run, the
new subtree being grown at the selected mutation point can incorporate the new encapsulated function.

For example, consider the LISP S-expression
(+ A(* BQO).

Infigure 6.10, point 3 (the multiplication) was selected as the point for applying the encapsulation operation.

Figure 6.10
A computer program
with point 3 designated
as the point for applying
the encapsulation operation.

Page 111
The encapsulated function EO taking no argumentsis created as follows:

(defun EO ()
(* BO
).

A copy of the origina individual is made using the COPY- TREE function, and the subtree (* B C) isreplaced in the copy by acall to the
new encapsulated function EO with no arguments. This produces the new S-expression

(+ A (E0))
in lieu of the original S-expression.

Figure 6.11 depicts this new S-expression. This new tree hasthe call (EO) inlieu of thesubtree (* B C) . In effect, thecall (EQ) has
become a new indivisible atom (terminal) in the tree.

In implementing this operation on the computer, the subtree calling for the multiplication of B and Cisfirst copied and then compiled during
the execution of the overal run. The LISP programming language facilitates this encapsulation operation in two ways. First, the data and the
program have the same form in LISP, and therefore one can alter a program by merely performing operationson it asif it were data. Second,
it is possible to compile a new function "on the fly" during the execution of an overall run and then execute the new function.

The effect of the encapsulation operation is that the selected subtree in the newly created individual is no longer subject to the potentially
disruptive effects of crossover, because it is now an indivisible single point. In effect, the newly encapsulated function is a potential building
block for future generations. Note that it may proliferate in the population in later generations.

The original parent S-expression is not changed by the operation. Moreover, since the selection of the parental S-expression isin proportion to
fitness (with reselection allowed), the original unaltered parental S-expression may participate in additional genetic operations (including
reproduction, crossover, or even another encapsulation operation) during the current generation.

In earlier work (Koza 1990a; K oza and Rice 1991b), the encapsulation operation was called the "define building block™ operation and the
encapsulated function was called the "defined function." | now use the term "automatically defined function" (ADF) for a different concept

described in chapters 20 and 21.

The encapsulation operation is used in designing neural networksin section 19.9 in order to achieve connectivity within the network. The
effect of the

(+)
® @

Figure 6.11
Result of the
encapsul ation operation.

Page 112
encapsulation operation is briefly considered in section 25.4; however, no other runs described in this book use it.
6.5.5 Decimation

For some complex problems, the distribution of fitness values over the initial random population may be skewed so that avery large
percentage of the individuals have very poor fitness (e.g., araw fitness of 0). This skewing may occur in problems where individuals in the
population are assigned some penalty value of fitness because they would otherwise consume an infinite amount of time (as in time optimal
control problems or problems involving iterative loops). In such problems, enormous amounts of computer time may be expended and wasted
in early generations on very poor individuals. Moreover, when a highly skewed distribution of fithess values occurs, the few individuals with
marginally better fitness valuesimmediately begin to dominate the population and the variety of the population quickly beginsto drop. In
genetic programming, the crossover operation is usually capable of quickly reintroducing variety into the population. However, because the
selection of parents to participate in crossover is based on fitness, the crossover operation concentrates on the few individualsin the
population with the marginally better fitness values.

The decimation operation offers afaster way to deal with this situation. The decimation operation is controlled by two parameters: a
percentage and a condition specifying when the operation is to be invoked. For example, the percentage may be 10% and the operation may
be invoked on generation 0. In that event, immediately after the fithess calculation for generation 0O, al but 10% of the population is deleted. If
decimation were being performed on generation 0, one would start the run with 10 times the population desired for the remainder of the run.
The selection of the individuals in the decimation operation is done probabilistically on the basis of fitness. In the decimation operation,
reselection is disallowed so as to maximize diversity in the remaining population. Thus, if thereinitially were no duplicates in generation O of
the population and decimation is applied after the fitness calculation for generation 0, the population will still have no duplicates asit goes
into generation 1.

6.6 State of the Adaptive System

In genetic programming, the state of the adaptive system at any point during the process consists only of the current population of individuals.
No additional memory or centralized bookkeeping is necessary.

In a computer implementation of the genetic programming paradigm, it is also necessary to cache the control parameters for the run, the
terminal set and the function set (if mutation is being used), and the best-so-far individual (section 6.8 below) if it is being used as part of the
process of result designation for the run.

Page 113

6.7 Termination Criterion

The genetic programming paradigm parallels nature in that it is a never-ending process. However, as a practical matter, arun of the genetic
programming paradigm terminates when the termination criterion is satisfied.

The termination criterion for genetic programming used throughout this book is that the run terminates when either a prespecified maximum
number G of generations have been run (the generational predicate) or some additional problem-specific success predicate has been satisfied.

The success predicate often involves finding a 100%-correct solution to the problem (e.g., some individual in the population has attained a
standardized fitness of 0). For problems where we may not recognize a solution even when we see it (e.g., optimization problems) or problems
where we do not ever expect an exact solution (e.g., creating a mathematical model for noisy empirical data), we usually adopt some
appropriate lower criterion for success for purposes of terminating a run. For some problems, there is no success predicate; we merely analyze
the results after running for G generations.

6.8 Result Designation

The method of result designation for genetic programming used throughout this book is to designate the best individual that ever appeared in
any generation of the population (i.e., the best-so-far individual) as the result of arun of genetic programming. Note that we do not guarantee
aberth for the best-so-far individual in all subseguent generations (i.e., we do not follow the so-called elitist strategy). We merely cache the
best-so-far individual and report it as the result of the entire run when the run eventually terminates according to the termination criterion.
When this method of result designation is used, the state of the system consists of the current population of individuals and the one cached
best-so-far individual.

An alternative method of result designation is to designate the best-of-generation individual in the population at the time of termination as the
result of arun. No caching is required when this method is used. This aternative method usually produces the same result as the best-so-far
method because the best-so-far individual is usually in the population at the time of termination (i.e., it is usually aso the best-of-generation
individual of the last generation). The reasons for this are either (1) it was created in an earlier generation and, because of its high fitness,
copied into the current generation by the reproduction operation or (2) the run was terminated at the current generation by virtue of the
creation of thisvery individua (i.e., it satisfied the termination criterion).

In some problems, the population as awhole or a subpopulation selected proportionate to fitness is designated as the result. In that event, the
set of individuals acts as a set of alternative solutions to the problem (i.e., amixed strategy).

Page 114

6.9 Control Parameters

The genetic programming paradigm is controlled by 19 control parameters, including two major numerical parameters, 11 minor numerical
parameters, and six qualitative variables that select among various aternative ways of executing arun.

Except as otherwise specifically indicated, the values of all of these control parameters are fixed at the default values described below for all
problemsin this book.

The two major numerical parameters are the population size (M) and the maximum number of generations to be run (G).

. The population size M is 500.

. The maximum number G of generationsis 51 (an initial random generation, called generation 0, plus 50 subsequent generations).
The eleven minor numerical parameters used to control the process are described below:

. The probability of crossover, p,, is0.90. That is, crossover is performed on 90% of the population for each generation. For example, if
the population size is 500, then 450 individual s (225 pairs) from each generation are selected (with reselection allowed) to participate in
crossover.

. The probability of reproduction, p;, is0.10. For example, if the population size is 500, 50 individuals from each generation are selected
for reproduction (with reselection allowed).

. In selecting crossover points, we use a probability distribution that allocates p;, = 90% of the crossover points equally among the
internal (function) points of each tree and 10% of the crossover points equally among the external (terminal) points of each tree. This
distribution promotes the recombining of larger structures whereas a uniform probability distribution over al points would do an inordinate
amount of mere swapping of terminals from tree to tree in a manner more akin to point mutation than to recombining of small substructures or
building blocks.

. A maximum size (measured by depth), Dg.eeq 1S €Stablished as 17 for S-expressions created by the crossover operation (or any
secondary genetic operations that may be used in a given run).

. A maximum size (measured by depth), D;iia, iS established as 6 for the random individuals generated for the initial population.
. The probability of mutation, p,,,, specifying the frequency of performing mutation isO.
. The probability of permutation, p, specifying the frequency of performing permutation is 0.

. The parameter specifying the frequency, f, of applying the operation of editing is .

Page 115
. The probability of encapsulation, p,,, specifying the frequency of performing encapsulation is 0.
. The condition for invoking the decimation operationisset toNI L.
. The decimation percentage, pg, isirrelevant if the condition for invoking the decimation operationisNI L, and is arbitrarily set to 0.
The following six qualitative variables select among different ways of executing the runs:
. The generative method for the initial random population is ramped half-and-half.

. The method of selection for reproduction and for the first parent in crossover is fitness-proportionate reproduction (except for the
optimization problem in section 11.3).

. The method of selecting the second parent for a crossover is the same as the method for selecting the first parent (as opposed, say, to
spousal selection wherein the second parent is chosen with a uniform random probability distribution). See Schaffer 1987.

. The optional adjusted fitness measure is used.
. Over-selection is not used for populations of 500 and below and is used for populations of 1,000 and above.
. The €litist strategy is not used.

The major parameters of population size M and number of generations G depend on the difficulty of the problem involved. The choices for
Dinitia @d D eq 800Ve depend on the difficulty of the problem involved. Larger values may be required where the structure of the solution is
thought to be complex or in problems where the syntax of the individuals in the population is restricted by complex additional syntactic rules
of construction (as discussed in chapter 19).

Table 6.1 summarizes the default values used in this book for the numerical parameters and qualitative variables for controlling the genetic
programming paradigm.

Many problems described in this book undoubtedly could be solved better or faster by means of different choices of these parameters and
variables. | have not undertaken any detailed studies of the optimal choice for the numerical parameters or the qualitative variables that
control genetic programming runs (although several experiments in this area are described below in chapter 25).

My omission of a detailed consideration of the optimal choice for these parameters and variables and my failure to use better values of them
on certain problemsisintentional. The focusin this first book on genetic programming is on demonstrating the two main points cited in
chapter 1. Thefirst point was established in chapter 2. The main focus of the remainder of this book is on establishing the second point by
means of numerous successful examples covering awide variety of problems from awide variety of fields. In my view,

Page 116
Table 6.1 Default values of the 19 control parameters for genetic programming.

Two major numerical parameters
Population size M = 500.
Maximum number G of generationsto be run = 51.
Eleven minor numerical parameters
Probability p, of crossover = 90%.
Probability p, of reproduction = 10%.
Probability p;, of choosing internal points for crossover = 90%.
Maximum size D, for S-expressions created during the run = 17.
Maximum size D, for initial random S-expressions = 6.
Probability p,,, of mutation = 0.0%.
Probability p, of permutation = 0.0%.
Frequency f of editing = 0.
Probability pg, of encapsulation = 0.0%.
Condition for decimation = NI L.
Decimation target percentage py = 0.0%.
Sx qualitative variables
Generative method for initial random population is ramped half-and-half.
Basic selection method is fitness proportionate.
Spousal selection method is fitness proportionate.
Adjusted fitness is used.
Over-selection is not used for populations of 500 and below and is used for
populations of 1,000 and above.
Elitist strategy is not used.

the optimal choices for the control parameters become relevant only after one has been persuaded of the basic usefulness of genetic
programming. In the present volume, this process of persuasion would be undermined if | were to frequently vary the many numerical
parameters and qualitative variables that control the runs; the reader might come to attribute the results to fortuitous selection of the
parameters. Since studying performance is not a main purpose of this book, | have generally made more or less the same choices for the
control parameters from chapter to chapter. Of course, | do change occasionally parameters for illustrative purposes, or when necessary (e.g.,
certain complex problems clearly do require alarger population size), or for certain specific reasons that are stated in connection with
particular problems.

6.10 The Schemata

In the conventional genetic algorithm (and genetic programming) the number of individuals actually contained in the current genetic
population is usually infinitesimal in comparison to the search space of the problem.

One of the key insights in Holland's Adaptation in Natural and Artificial Systems (1975) was that the genetic algorithm operating on fixed-
length character strings implicitly processes, in paralel, information about an enormous number of unseen schemata (hyperplanes). In
particular, the genetic algorithm implicitly recomputes, for each generation, an estimate of the value of the average fitness for each of these
unseen schemata. Thus, although the

Page 117

genetic operations of fitness-proportionate reproduction and crossover explicitly operate only on the M individuals actually present in the
population, implicit computation is operating on a much larger number of schemata.

For astring of length L over an alphabet of size K, a schemaisidentified by a string of length L over an extended alphabet consisting of the K
alphabet symbols and the metasymbol * ("don't care"). A schema consists of the set of individua strings from the population whose symbols
match the symbols of the identifier for all specific positions (i.e., all positions except where the identifier has the * symbol). There are (K + 1)
such schemata. Each individual string occursin 2" such schemata, regardless of K. Therefore, a population of only M individual strings
appearsin up to M2 schemata (depending on the diversity of the population).

Holland showed that for genetic algorithms using fitness-proportionate reproduction and crossover, the expected number of occurrences of
every schemaH in the next generation is approximately

f(H, 1

miH } + 1) = m(H)(1 — &),

where fiF) is the average fitness of the population and € is small.
When

flH B
fin

remains above unity by at least a constant amount over several generations, this means that a schema with above-average fitness appearsin
the next generation at an approximately exponentially increasing rate over those generations. Holland also showed that the mathematical form
of the optimal allocation of trials among random variables in a problem involving a multi-armed-bandit (involving minimizing losses while
exploring new or seemingly nonoptimal schemata, while also exploiting seemingly optimal schemata) is similarly approximately exponential.
Consequently, the processing of schemata by genetic algorithms using fitness-proportionate reproduction and crossover is mathematically
near optimal. In particular, this allocation of trialsis most nearly optimal when € is small. For strings, € is computed by dividing the defining
length &(H) of the schemainvolved (i.e., the distance between the outermost specific, non-* symbols) by L - 1 (i.e., the number of interstitial
points where crossover may occur). Therefore, € is small when 8(H) is short (i.e., the schemais a small, short, compact building block). Thus,

genetic algorithms process short-defining-length schemata most favorably. More important, as a result, problems whose solutions can be
incrementally built up from such small building blocks are most optimally handled by genetic algorithms.

In genetic programming, the individuals in the population are LISP S-expressions (i.e., rooted, point-1abeled trees with ordered branches)
rather than linear character strings. A schema in genetic programming is the set of all individual trees from the population that contain, as
subtrees, one or more

Page 118

specified subtrees. That is, aschemaisaset of LISP S-expressions (i.e., a set of rooted, point-labeled trees with ordered branches) sharing
common features.

Suppose the common feature is a single subtree consisting of s specified points. That is, there are no unspecified ("don't care™) points within
the schema. The set of individuals sharing the common feature is the set consisting of all trees containing the designated subtree with s points
as asubtree. This set of such treesisinfinite. However, in genetic programming, we always, in practice, limit both the size of initial random
trees and the size to which atree can grow as a result of crossover. This maximum size, W, can be defined in terms of the total number of
pointsin thetree.

Once Wis specified, the set consisting of all trees with W or fewer points that contain the specified subtree with s points as a subtreeis afinite
set. Moreover, the average fitness of the schema in genetic programming, f(H), is simply the average of the fitness values of all the individual
trees belonging to that schema.

Holland's results concerning the growth (or decay) of the number of occurrences of schemata as a result of fitness-proportionate reproduction
and concerning the optimal allocation of trials do not depend on the character of the individual objectsin the population. Fitness-proportionate
reproduction causes growth (or decay) in the number of occurrences of a particular schemain the new population in accordance with the ratio
of the fitness of the schema to the average fitness of the population in precisely the same way as it does for conventional genetic algorithms
operating on strings. Specificaly, if the fitness of a particular individual in the population is twice the average fithess of the population (i.e.,
the individual has afitness ratio of 2.0), we can expect that fitness-proportionate reproduction will make two copies of that individual. The
two copies of the original individual now each participate two timesin the calculation of the value of fitness of each schemato which that
individuals belongs. The number of occurrences m(H, t) in the population of each schemato which the individual belongsisincreased. If there
was only one occurrence of a particular schema before the copying, there would now be two occurrences as a consequence of the reproduction
operation. Thus, the number of occurrences of each schema grows (or decays) as aresult of fitness-proportionate reproduction in genetic
programming in the same exponential way as for genetic algorithms. If the schemata are viewed as being in competition with one another, the
alocation of future trials among the schemata gives an exponentially increasing (or decreasing) number of trials to the schemata in accordance
with the fitness ratio of each schema.

Deviations from the near-optimal exponential rate of growth (or decay) of a schema are caused by the crossover operation.

For strings, the disruptive effect of crossover isrelatively small when the maximum distance between the positions in the string involved in
the definition of the schema (i.e., the defining length) is relatively small. To the extent that the disruptive effect of crossover issmall, the
growth (or decay) of the number of occurrences of the schemata will be close to the optimal alocation of trials.

Page 119

For genetic programming, disruption is smallest and the deviation from the optimal allocation of trials among the schemata is smallest when
the schemais defined in terms of a single compact subtree. If Wis 50, then a schema defined as containing a single specified subtree with
three pointsis less likely to be disrupted than a schema defined as containing a single specified subtree with six points. Thus, for the case
where the schema is defined as containing a single specified subtree, the overall effect of fitness-proportionate reproduction and crossover is
that subprograms (i.e., subtrees, sublists) from relatively high-fitness programs are used as building blocks for constructing new individualsin
an approximately near-optimal way. Over aperiod of time, this concentrates the search of the solution space into subspaces of LISP S
expressions of ever-decreasing dimensionality and ever-increasing fitness.

This argument a so applies to schemata defined as containing more than one specified subtree. The deviation from optimality isrelatively
small to the extent that both the total number of pointsin the subtrees defining the schemais relatively small and to the extent that the
minimal tree encompassing al the digjoint subtrees defining the schemais relatively small. Thus, the overall effect is that subprograms (i.e.,
subtrees) from relatively compact high-fitness individuals are used as building blocks for constructing new individuals.

Genetic programming is similar to the conventional genetic algorithm operating on strings in another way. Genetic algorithms, in general, are
mathematical algorithms which are based on Darwinian principles of reproduction and survival of the fittest. In this view, a character found at
aparticular position in amathematical character string in a conventional genetic algorithm is considered analogous to one of the four
nucleotide bases (adenine, cytosine, guanine, or thymine) found in molecules of DNA. The observed fitness in the environment of the entire
biological individual created using the information in a particular linear string of DNA is used in the computation of average schema fitness
for each schema represented by that individual.

The computational procedure carried out by aL1SP S-expression in genetic programming can be viewed as anal ogous to the work performed
by aproteinin aliving cell. The observed fitness in the environment of the entire biological individual created as aresult of the action of the
LISP S-expressions contributes, in the same way as with conventional genetic algorithms, directly to the computation of average schema
fitness for each schema to which that individual belongs. That is, genetic programming employs the same automatic allocation of credit
inherent in the conventional genetic algorithm described by Holland (1975) and inherent in Darwinian reproduction and survival of the fittest
among biological populations in nature. This automatic allocation of credit contrasts with the connectionistic bucket brigade algorithm for
credit alocation and reinforcement used in classifier systems, which is not founded on any observed natural mechanism involving adaptation
among biological populations (Westerdale 1985).

Page 121

7
Four Introductory Examples of Genetic Programming

This chapter contains examples of the genetic programming paradigm applied to four simple introductory problems. The goal hereisto
genetically breed a computer program to solve one illustrative example problem from each of the following four fields:

. Optimal control
Evolve a control strategy (i.e., a computer program) that will apply aforce so asto bring a cart moving along atrack to rest at a designated
target point in minimal time.

. Robotic planning
Evolve arobotic action plan (i.e., acomputer program) that will enable an artificial ant to find all the food along atrail containing various
gaps and irregularities.

. Symbolic regression
Evolve amathematical expression (i.e., acomputer program) that closely fits a given finite sample of data.

. Boolean 11-multiplexer
Evolve a Boolean expression (i.e., a computer program) that performs the Boolean 11-multiplexer function.

There are five magjor stepsin preparing to use the genetic programming paradigm to solve a problem:
. determining the set of terminals,
. determining the set of functions,

. determining the fithess measure,

. determining the parameters and variables for controlling the run, and
. determining the method of designating aresult and the criterion for terminating a run.

For each of the above four problems, this chapter will detail the application of the five major preparatory steps, the generally poor
performance associated with randomly produced individuals, one or more intermediate results which show the general path taken by genetic
programming as it progressively approaches a solution to the problem, and the result of one successful run for each problem.

For each problem, solutions were found on numerous runs. However, since the genetic programming paradigm is a probabilistic method,
different runs

Page 122

almost never yield precisely the same S-expression. No one particular run and no one particular result istypical or representative of all the
others.

Chapters 10 through 21 will present numerous additional problems from numerous other fields. Cumulatively, the problems presented will
involve functions that are real-valued, integer-valued, Boolean-valued, and symbolic-valued. Some of the problems require iteration for their
solution. Some of the problems involve functions whose real functionality liesin the side effects they cause on the state of the system
involved, rather than the actual value returned by the function. Many of the problems are benchmark problems that have been the subjects of
previous studies in connection with machine learning, artificial intelligence, neural nets, induction, decision trees, classifier systems, and
various other paradigms.

For each problem presented in this book, the author believes that sufficient information is provided herein (or in the references cited) to allow
the experiment to be independently replicated so as to produce substantially similar results (within the limits inherent in any processinvolving
stochastic operations and minor details of implementation).

Chapter 8 will revisit each of the four problems and will provide statistical information on the performance of genetic programming over a
large number of runs and a method for measuring the amount of computation likely to be required to solve the problem by means of genetic
programming.

7.1 Cart Centering

The cart centering (isotropic rocket) problem involves a cart that can move to the left or the right on africtionless one-dimensional track. The
problem isto center the cart, in minimal time, by applying a force of fixed magnitude (a bang-bang force) so as to accelerate the cart toward
the left or theright.

Infigure 7.1, the cart's current position x(t) at timet is negative and its velocity v(t) is positive. That is, the position x(t) of the cart isto the left
of the origin (0.0) and the cart's current velocity v(t) is toward the positive direction (i.e., toward the right). The bang-bang force F is positive.
That is, the bang-bang force F is being applied by the rocket to the cart so asto accelerate it in the positive direction (i.e., toward the right).

/@3 > ‘
- == Velocity V(D)
- \ofNRCANN

Position X(1) 0.0

Figure 7.1
The cart centering problem.

Page 123

The cart centering problem is a problem of optimal control. Such problems involve a system whose state is described by state variables. The
choice of the control variable causes the state of the system to change. The goal is to choose the value of the control variable so asto cause the
system to go to a specified target state with an optimal cost. The cost may be measured in, for example, time, distance, fuel, or dollars. The
goal istypically stated in terms of minimizing the cost.

In reading this section, the reader uninterested in control theory should focus on the fact that this problem has a well-known solution, which
we intend to evolve by means of genetic programming. The reader interested in control theory will find considerable additional details about
this problem in Macki 1982 and in Bryson and Ho 1975.

There are two state variables for the system in the cart centering problem: the current position x(t) of the cart along the track and the current
velacity v(t) of the cart.

There is one control variable for this system: the direction from which arocket applies a bang-bang force F to the center of mass of the cart so
asto accelerate the cart in either the positive or the negative direction along the track.

Thetarget state for the system is the state for which the cart is at rest (i.e., velocity 0.0) and centered at the origin (i.e., position 0.0).

The goal in the cart centering problem is to choose a sequence of values for the control variable so asto cause the state of the system to go to
the target statein minimal time.

At each time step, the choice of the control variable of the system (i.e., the bang-bang force F) causes a change in the state variables of the
system (i.e., the position and the velocity of the cart). In particular, when the bang-bang force F(t) is applied to the cart at timet, the cart
accelerates according to Newton's Law as follows:

Ei¢
alt) = “.
"

where misthe mass of the cart. Then, as aresult of this acceleration a(t), the velocity v(t + 1) of the cart at time step t + 1 (which occurs a
small amount of time T after time step t) becomes
vif + 1) = vlf) + alf),
where T isthe size of the time step.
Attimestept + 1, the position x(t + 1) of the cart becomes
x(t + 1) = x(f) + Tolf).

Thus, the choice of value of the control variable (i.e., the quantity u(t) equal to amultiplier of either +1 or -1 to the magnitude |F| of the force
F) at time step t causes a change in the state variables of the system at time step t + 1.

The problem isto find atime-optimal control strategy for centering the cart that satisfies the following three conditions:

Page 124

(1) The control strategy specifies how to apply the bang-bang force for any given current position x(t) and current velocity v(t) of the cart at
each time step.

(2) The cart approximately comesto rest at the origin (i.e., the cart reaches a target state of a position of approximately 0.0 with a speed of
approximately 0.0).

(3) Thetimerequired is minimal.

The exact time-optimal solution is, for any given current position x(t) and current velocity v(t), to apply the bang-bang force F(t) to accelerate
the cart in the positive direction if

v(t)? Sign v(f)

—x(t) >
=) 2|F|/m

or, otherwise, to apply the bang-bang force F to accelerate the cart in the negative direction. The Sign function returns +1 for a positive
argument and -1 otherwise.

If the mass of the cart m happensto be 2.0 kilograms and the force F is 1.0 newtons, the denominator 2|F|/m equals 1.0 and can be hereafter
ignored for the purposes of this introductory problem.

There are many ways of presenting a control strategy, including an equation (such as the one above), a computer program (such aswe are
seeking by means of genetic programming), and a graph. Figure 7.2 is a graph that depicts the time-optimal solution to the cart centering
problem. Each pair of values of the two state variables of this system corresponds to some point (x, V) in the position-vel ocity state space (i.e.,
the plane). If -x(t) > v2 Sign v(t), then the point lies in the shaded portion of the figure and the bang-bang force will be set to +F (since the
control variable u = +1) and the bang-bang force will accelerate the cart in the positive direction. Otherwise, the point lies in the unshaded
portion of the figure and the bang-bang force will be set to -F (since the control variable u = -1) and the bang-bang force will accelerate the
cart in the negative direction.

Figure 7.2
Time-optimal solution to the cart centering problem.

Page 125

On the left side of figure 7.2 (where position x < 0), the boundary between the shaded and unshaded regionsisthe curve v = +V|x| labeled A).
On theright side of this figure (where position x > 0), the boundary is the curve v = -V|x| (Iabeled B). This boundary is called the switching
curve for this problem.

Over many time steps, every control strategy causes the state of the system to trace a trajectory through the state space. The system may start
at some initia condition point in the state space. Then, at each time step, the control strategy causes the state of the system to change to a new
state. The sequence of such states forms a trajectory through the state space. The time-optimal control strategy causes thistrgjectory to end at
or near the origin in minimal time.

Note that on the right side of figure 7.2 (where position x > 0) the boundary isin the shaded region so that when the state of the systemisa
point precisely on the boundary (an event that rarely occurs with the floating-point numbers used in a computer), u will be set to +1.
Conversely, on the | eft side of this figure (where position x < 0) the boundary isin the unshaded (white) region, so that when the state of the
system isa point precisely on the boundary, u will be set to -1. In both situations, if the state of the system is precisely on the boundary, the
bang-bang force is applied so as to move the state of the system toward the origin along the switching curve.

Suppose that we want to write a computer program (a control strategy) to control the application of these bang-bang forces so as to center the
cart in minimal time.

A computer program is often described as a sequence of instructions that starts with certain inputs and produces certain outputs. Thus, a
computer program is merely a mathematical transformation (i.e., afunction) that maps certain inputs (arguments, independent variables,
detectors, sensors) into certain outputs (dependent variables, effectors). In this problem, the inputs to the computer program are the two state
variables of the system (i.e., x and v). The output from the computer program is interpreted as the single control variable of the system (the
direction, +1 or -1, for the bang-bang force F).

The large variety of different types of operations, statements, and instructions found in most programming languages, aong with the
preoccupation with physical storage locations in the computer, obscures an important commonality underlying all computer programs: that a
computer programis simply a composition of various functions acting on various arguments. To illustrate thisimportant commonality, let us
write a computer program to implement the time-optimal solution to the cart-centering problem in three different types of programming
languages:

. PASCAL, ahigh-level programming language,

. MIX, ahypothetical symbolic assembly language for a hypothetical computer, and

. LISP, afunctional programming language.

Page 126
Each of these programs will be a composition of functions acting on various arguments.

Note that, in this book, the word "function" is used to collectively describe ordinary functions, operations, operators, control structures, and
any other transformation that takes certain arguments, does some processing, and returns zero, one, or more results.

7.1.1 Program in PASCAL

In PASCAL, we might write a computer program to implement the time-optimal solution to the cart centering problem as follows:

function controller (x,v:real):real

begi n

if (-1.0*x > v*ABS(v)) then controller
el se controller

= e
o o

end;

This PASCAL computer program receives x and v as inputs to the function called cont r ol | er . If -x is greater than v|v|, the program assigns
thevalue +1.0tocont r ol | er (which isthe output of the program); otherwise, it assignsthevalue-1.0tocontrol | er.

The reader familiar with a programming language such as FORTRAN, C, or BASIC should have no difficulty visualizing how to write an
equivalent program in that language.

Composition (cascading) of functions occurs repeatedly in a programming language such as PASCAL. For example, in evaluating the
arithmetic expression

X+ Vv|V|

there are three level s of composition in which the value returned by one function becomes an argument to the next function. Theresult is
obtained by applying the addition function to two arguments:

. the variable x and

. the result obtained by having previously applied the multiplication function to two arguments:

. the variable v and

. the result obtained by having previously applied the one-argument absol ute-val ue function to the single argument v.

The composition (cascading) that occursin high-level languagesis often not as obvious asit is for the arithmetic expression x + v|v]|. For
example, consider the following if-then-el se statement from PASCAL :

1.0
-1.0;

if (-1.0*x > v*ABS (v)) then controller
el se controller

Page 127

We can view this statement as being the result of applying the logical function™i f " to three arguments:

. thelogical predicate (- 1. 0*x > v*ABS (v)), whichreturnsalogical value such as Tr ue or Fal se,

. the assignment statement cont r ol | er 1.0, and

. the assignment statement control l er := -1.0.

Thisfunctioni f evaluates the first argument; then, depending on whether the first argument is true or false, it evaluates either the second
argument or the third.

7.1.2 Program in Symbolic Assembly Code

The fact that computer programs are compositions of functions acting on various arguments is even more apparent in assembly code thanin a
higher-level language such as PASCAL. In assembly code, the result obtained by applying one operation (function) usualy endsupin a
particular register, so that the next operation (function) can then be applied to thisresult. A sequence of consecutive assembly-code
instructions operating on a particular register is a composition of functions. The value returned by the composition of functionsisthe value
found in the register when the entire sequence of operationsis executed.

If we were writing the computer program for cart centering using Knuth's (1981a) hypothetical symbolic assembly code for his hypothetical
MIX computer, we might write something like table 7.1.

This hypothetical language program in symbolic assembly language starts at the program location labeled START on line 1 of table 7.1. The
program performs the "load accumulator register A" (LDA) operation. The operand of the LDA operation on line 1 isanumerical variable (i.
e., the velocity of the cart) stored in memory location v. This operation loads the variable v (from storage)

Table 7.1 MIX assembly code for optimal control

strategy for the cart centering problem.
Program Operation Operand
location code

1 START LDA \%

2 JAP oK

3 LDAN Vv

4 oK MUL Vv

5 ADD X

6 JAN RETURNL

7 LDA -1.0

8 JwP DONE

9 RETURNL LDA 1.0

10 DONE END

Page 128

into the accumulator (arithmetic) register of our hypothetical computer. Control then passes sequentialy to the next program location (line 2
of the program).

On line 2, this program performs the "jump on accumulator positive" (JAP) operation. The operand of this operation is the program location
labeled " OK. " The JAP operation on line 2 causes control to jump down to the program location labeled CK (line 4) if the contents of the
accumulator (which contains the velocity v of the cart) is positive. Otherwise, control passes sequentially to the next program location (line 3
of the program).

On line 3, the program performs the "load accumulator negative" (LDAN) on the variable v from memory. This operation |oads the
accumulator with the negative of the value of the variable v stored in memory. Since we can get to line 3 of this program only if we have
already established that the variable v is negative, the effect of this operation isto load the accumul ator with the absolute value of the variable
v. Control passes sequentially to line 4 of the program.

When control has reached line 4 (either via the conditional jump operation on line 2 or via the usual sequential flow from line 3), the
accumulator contains the absolute value of the velocity v of the cart. The program then performs the "multiply” (MUL) operation by

multiplying the contents of the arithmetic register by the variable v. This operation multiplies the arithmetic register by the variable v (from

storage). This completes the calculation of v2 Sign v. We assume here that al numbers are floating-point numbers and al the operations we
used work appropriately on such numbers.

On line 5 the program performs the "add" (ADD) operation on the variable x. This operation adds the variable x (from storage) into the
accumulator. The accumulator now contains the result of the composition of functions executed so far, namely x + v2 Sign v.

Then, online 6, the "jump on accumulator negative" (JAN) operation branches to the program location labeled RETURNL (line 9) if the
arithmetic register is negative. Otherwise, control in the program proceeds in the ordinary sequential way to line 7.

Online 7, the "load accumulator register A" (LDA) operation loads the constant -1.0 from memory into the accumulator.
Then, online 8, the program "jumps unconditionally" (JMP) to the program location labeled DONE (line 10).

On line 9 (which is reached only viathe conditional jump operation from line 6), the "load accumulator register A" (LDA) operation loads
the constant +1.0 into the arithmetic register. Control then passes sequentially to the program location labeled END (line 10), where the
program ends.

Line 10 is also reachable via the unconditional branching operation from line 8.

The reader familiar with another assembly language should be able to visualize how to write an equivaent program in that language.

Page 129
7.1.3 Programin LISP

The fact that a computer program is a composition of applications of functions to argumentsis especially overt in afunctional programming
language. LISP isthe most widely used language of this kind.

If we were writing the time-optimal computer program for solving the cart centering problem in LI1SP, we might write the parsimonious LI1SP
S-expression

(Gr (* -1 X (* V(ABS V))).

In this S-expression, the greater-than function GT is a numerical-valued function of two arguments that returns +1 if itsfirst argument is
greater than its second argument and returns -1 otherwise (as described in subsection 6.1.1).

Figure 7.3 graphically depicts this S-expression as a rooted point-labeled tree with ordered branches.

The interpretation of this LI1SP computer program is as follows: Starting with x and v as inputs, take the absolute value of v and multiply it by
v. Then, multiply x by -1. Then compare -x and v|v]|. If -x is greater than v|v|, the S-expression evaluates to +1 and the bang-bang force F will
be applied in the positive direction; otherwise, the S-expression evaluates to -1 and the bang-bang force F will be applied in the negative
direction. Once this program has determined whether the bang-bang force isto be applied from the left or the right, the above-mentioned
simulation involving Newton's equations of motion updates the state of the system for the next time step.

7.1.4 Measuring the Fitness of a Computer Program

Having now written atime-optimal computer program for centering the cart in three different computer programming languages, we naturally
wonder what result these programs produce. Indeed, how long does it take to center the cart if we execute the computer program?

Thetime required for centering, of course, depends on the initial conditions of the cart at time 0, namely theinitial position x(0) and the initial
velocity v(0). If, by chance, the cart is already at (or very near) the origin and has zero (or very low) speed, it takes practically no time. On the
other hand,

67
(+) O
D ® O e
O

Figure 7.3
LISP S-expression for
solving the cart
centering problem.

Page 130

if the cart, by chance, starts with alarge position and alarge velocity (either both positive or both negative), the cart is distant from the origin
and heading in the wrong direction, and centering it will take arelatively long time. Thus, we can answer this question only by taking an
average over arepresentative sampling of possible inputs to the computer program.

If we chose 1,000 points (x, V) at random in the square whose opposite corners are (-0.75, 0.75) and (0.75, -.75), where the position x isin
meters and the velocity v isin meters per second, we would find that it takes about 2,020 seconds to center the cart using the time-optimal
control strategy for these 1,000 random fitness cases in thisdomain. That is, the optimal time for centering the cart averages 2.02 seconds for
arandom initial condition point lying in the specified domain. A computer program that correctly performs the task of centering the cart in
optimal time would take an average of 2.02 seconds for arandom initial condition point lying in the specified domain.

Several pages ago, when | spoke of writing a computer program to center the cart in optimal time, you probably assumed that | was talking
about writing a correct computer program to solve this problem. Nothing could be further from the truth. In fact, this book focuses almost
entirely on incorrect programs. In particular, | want to develop the notion that there are gradations in performance among computer programs.
Some incorrect programs are very poor; some are better than others; some are approximately correct; occasionally, one may be 100% correct.
Expressing this biologically, one could say that some computer programs are fitter than othersin their environment. It is rare for any
biological organism to be optimal.

Now consider, in the context of the cart centering problem, what makes a computer program poor rather than good and what makes a program
approximately correct rather than 100% correct. Consider, for a moment, the following nonoptimal control strategy for cart centering:

vi(t)?
— '_‘:;,. - .

> Fim
We could write this new, nonoptimal control strategy in PASCAL as

function controller(x,v:real):real;
begi n

if (-1.0*x > v*v*v) then controller := 1.0
el se controller := -1.0;

end;

orinLISPas

(GT (* -1 X) (* V(*VV)).
The left half of figure 7.4 shows the optimal curve v = +V|x| (labeled A) in the second quadrant. It also shows the new switching curve x = v8

(labeled C) in the second quadrant for the new nonoptimal control strategy. The right half of the figure shows the optimal curve v = -V|x|
(labeled B) in the fourth

Page 131

Figure 7.4
First nonoptimal control strategy
for the cart centering problem.

quadrant. It also shows the continuation of the new, nonoptimal curve x = vé (labeled C) in the fourth quadrant.

But even though this new control strategy is not optimal, it is not worthless. This control strategy still produces the same direction for the
bang-bang force, except for pointsin the relatively small shaded region lying between the curves in figure 7.4. This shaded region represents
only 5% of the arealying in the domain for this problem, namely the square whose opposite corners are (-0.75, 0.75) and (0.75, -0.75).

If we again chose 1,000 points at random in the specified domain, we find that this new, nonoptimal control strategy (like the optimal
strategy) is successful in centering the cart for al 1,000 fitness cases. That is, it never "times out." However, this new, nonoptimal control
strategy takes an average of 3.42 seconds to center the cart, whereas the optimal strategy takes an average of 2.02 seconds. In other words, the
nonoptimal control strategy takes 69% more time.

Now consider a second nonoptimal control strategy:

2
—l) > 1T§fﬂrﬁ :

We could write this strategy in LISP as

(G (* -1 X (* VV).

This second nonoptimal control strategy is considerably different from both the optimal strategy and the first nonoptimal strategy.

The left half of figure 7.5 shows the optimal curve, v = +V|x| (labeled A), in the second quadrant. The right half of the figure shows the second

nonoptimal curve, v = +V|x|, in the first quadrant (labeled C). The optimal curve for the right half of the figure isthe curve v = -V|x| in the
fourth quadrant (Iabeled B).

This second nonoptimal control strategy, v =+ V|x|, is not entirely worthless. In particular, it is still produces the same direction for the bang-
bang

Page 132

i-1.11 v

A V=+i|X| C, V=X

pow]
B, V= x| =

(1.-1)

Figure 7.5
Second nonoptimal control strategy
for the cart centering problem.

force for points lying in the second quadrant, points lying in the third quadrant, points lying below the curve labeled B in the fourth quadrant,
and points lying above the curve labeled C in the first quadrant. However, this second nonoptimal control strategy is nonoptimal in the points
in the striped areain figure 7.5. This striped area represents about 37% of the areain the domain for this problem.

The deficiency of this second nonoptimal strategy, v = -V|x|, is not just amatter of additional time being required, as was the case with the first
nonoptimal strategy. This second nonoptimal control strategy never succeeds in bringing the cart to rest once the state of the system enters the
shaded region (either because the system initially started there or because some trajectory of the strategy brought it there).

In particular, if the state of the system isin the upper half of the striped region (i.e., in the first quadrant), the position and the velocity of the
cart are already positive and the incorrect positive bang-bang force is now applied so as to increase the velocity in the positive direction till
more. In other words, the cart's position relentlessly becomes greater and greater in the positive direction and the cart goes flying off to
positive infinity.

Theresult isjust as direif the state of the system isin the lower half of the striped region (i.e., in the fourth quadrant). In the lower half of the
striped region, the position is already positive but the velocity of the cart is slightly negative. But because the state of the system is represented
by a point above the curve v = -V|x| (labeled B), the velocity of the cart is not sufficiently negative to counteract the effect of the force being
applied so as to accelerate the cart in the positive direction. As aresult, the cart again goes flying off to positive infinity.

The fitness of a control strategy is determined by evaluating it over a set of fitness cases consisting of the initial conditions of the state
variables of the system (i.e., position x and velocity v). Because this set is necessarily finite, the set of fitness cases must be representative of
the problem as awhole. One way that would be likely to produce the desired representativeness is to select areasonably large number of
initial condition points at random within some

Page 133

appropriate domain. Another way would be to select areasonably large number of fithess cases in some regular and structured way. In any
event, the goal is that the control strategy learned using the finite set of fitness cases be able to correctly handle new, previously unseen initial
conditions. In other words, the fitness cases must be sufficiently representative of the problem as awhole to allow correct generalization.

For this problem, the set of fitness cases consists of 20 points (X, v) chosen at random from the square whose opposite corners are (-0.75, 0.75)
and (0.75, -0.75). Twenty such randomly chosen points appear to be sufficiently representative of the pointsin this square domain to allow
genetic programming to find a general solution to the cart centering problem in this domain.

The reader may find it helpful to think of these 20 representative (random) fitness cases as the environment to which the genetic population of
computer programs must adapt.

We need a method for measuring time that accounts for control strategies that succeed in centering the cart for a given fitness case aswell as
for those that fail. Thisis accomplished in the following way: Time is discretized into time steps of T = 0.02 seconds. At each time step, the
distance between the state of the system and the desired target state (position 0.0 and velocity 0.0) is computed. This distance is the standard
Euclidean distance in the state space. That is, this distance is the square root of the sum, taken over the two state variables, of the square of the
difference between the value of a state variable and the target value of that state variable. If, at any time step, this distance becomes less than a
pre-established capture radius, the system is considered to have arrived at the desired target state for that fitness case. In that event, the time
consumed by the control strategy for that fitness case is simply the time expended (in seconds).

A maximum number of time stepsis established (e.g., 500), so that if agiven control strategy fails to bring the system to a state whose
distance to the target state is less than the capture radius within that amount of time (e.g., 10 seconds) for a particular fitness case, the system
"times out." If the system times out, the time associated with that fitness case is a penalty value egqual to the maximum time (i.e., 10 seconds).

There will be numerous additional occasions throughout this book to establish time-out conditions. Time-out conditions are required, as a
practical matter, when one isworking on a serial computer with finite capabilities. In nature, everything occursin parallel on such avast scale
that the entire processis never brought to ahalt if oneindividual is highly inefficient. The inefficient individual simply executes its
inappropriate behavior and quickly dies off, with minimal effect on the overall process.

If we again choose 1,000 points at random in the specified domain, we find that this second nonoptimal control strategy (unlike the optimal
strategy and the first nonoptimal strategy) is successful in centering the cart for only 429 out of the 1,000 fitness cases. The time for this
second nonoptimal control strategy, as measured with the penalty for timing out described above, is 6,520 seconds for the 1,000 cases (i.e., an
average of 6.52 seconds per fitness case).

Page 134
Thetotal of 6,520 seconds is about 322% of the 2,020 seconds associated with the optimal control strategy.

The three control strategies just described illustrate how we can numerically rank the performances of different programsin solving a given
problem so that we can say that some programs are better than others. The raw fithesses of these three computer programs are the three total
times (in seconds) of 2,020, 3,420, and 6,520. We would certainly prefer the optimal computer program to the first nonoptimal program, and
we would prefer the first optimal program to the second nonoptimal program.

Before we write too many more incorrect computer programs for centering the cart, we should make certain that the output of every computer
program unambiguously specifies how to apply the bang-bang force to the cart. A bang-bang force represents a binary choice; however, al
the inputs and outputs of the programs are floating-point values. We solve this problem by wrapping the computer program in an output
interface (called awrapper). For this problem, the wrapper specifies that any positive numerical output will be interpreted so as to apply the
bang-bang force F to accelerate the cart in the positive direction. Any other output (of whatever type) will be interpreted so as to apply the
bang-bang force F to accelerate the cart in the negative direction. The function GT serves as the wrapper for this problem.

Aninput interface (i.e., preprocessing) is rarely necessary since genetic programming permits the problem to be expressed in terms of the
natural terminology of the problem. No preprocessing was required to solve any of the problemsin this book.

The goal now isto find a high-fitness computer program capable of centering the cart.

Thefirst major step in preparing to use the genetic programming paradigm is to identify the set of terminalsto be used in the individual
computer programs in the population.

The terminals can be viewed as the input to the computer program being sought by genetic programming. In turn, the output of the computer
program consists of the value(s) returned by the program.

In problems involving a system whose state variables are controlled by one or more control variables, one natural approach isto think of the
computer program as taking the state variables of the system asinput and producing the control variable(s) as output. The state variables of
the system are those variables which have explanatory power for solving the system at hand and which must be processed in some way to
produce an action of some kind. If one adopts this approach for the cart centering problem, the physics of the problem dictate that the
variables having explanatory power for the problem are the position x of the cart along the track and the velocity v of the cart. Thus, the
terminal set for the cart centering problem is

T={X V, -1},

where X represents the position x and where V represents the velocity v.

Page 135

Note that the numerical constant -1 was included in the terminal set above because we thought it might be useful. We defer discussion of the
general method for automatically creating needed numerical constants to sections 10.1 and 10.2.

The second major step in preparing to use genetic programming is to identify a set of functions. The terminals and the functions are the
ingredients from which the individual computer programs in the popul ation are composed.

Theidentification of the function set for a given problem may be simple and straightforward or it may require considerable thought. For
problems involving real-valued domains, it seems natural to include the four ordinary arithmetic operations (addition, subtraction,
multiplication, and division) in the function set. The four ordinary arithmetic operations allow the creation of polynomialsin the state
variables of the system as well as quotients of such polynomials. One or more of the arithmetic operations may prove to be extraneous for a
particular problem (as they are for this problem). For a problem involving making a decision, it also seems natural to include some conditional
operation for allowing decisions to be made. This particular function set is adequate for solving this problem. We might well have chosen
other function sets for this problem.

In selecting the function set for a given problem, the closure principle should be observed. Each function in the function set should be well
defined for every combination that might be encountered of elements from the terminal set and elements from the range of every function in
the function set. For example, if division isto be used, the division function should be modified so that the result of adivision by zerois
acceptable to every function in the function set. One way to do thisisto use the protected division function %(described in subsection 6.1.1)

instead of the usual mathematical division function.

A second application of this closure principleis required in the cart centering problem. In writing the LISP program

(GT (* -1 X) (* V(ABSV)))

above, we used the "greater than" function GT rather than the LISP's counterpart to the logical predicate > (used in the PASCAL program
above). The function GT isanumerically valued logical function whose range consists of the numeric value +1 (for True) and -1 (for False or
NI L). In contrast, the range of the ordinary logical predicate > found in Common LISP (and PASCAL) consists of the logical values T (True)
and NI L (False). The arithmetic functions (suchas+, -, *, and %) are not well defined for logical valuessuch as T and NI L, but they are
well defined for the numeric values -1 and +1. Thus, we achieve closure in the function set by using real-valued logic (viathe GT function)
rather than ordinary Boolean-valued logic.

Thus, the function set F for this problem will consist of

F:{+v Ty *l % G-ry ABS}1

taking two, two, two, two, two and one argument, respectively.

Page 136

The third major step in preparing to use genetic programming is identifying away of evaluating how good a given computer programis at
solving the problem at hand.

In the case of the cart centering problem, we have already seen that some computer programs are better than others at solving the problem.

The fitness measure is the total time required to center the cart after starting at a representative sampling of random initial condition points

(%, v) in the domain specified for this problem. Computing this total time requires testing a given computer program over the fithess cases. The
fitness cases are randomly chosen values for the initial conditions of the state variables within the specified domain. In particular, we might
randomly choose 20 pairs of values for the initial position x(0) and theinitial velocity v(0) from the specified domain, and then test the
performance of the given computer program on each of those 20 fitness cases and compute the total time.

Figure 7.6 is aflowchart for computing fitness over a number N;. = 20 of fitness cases for one individual in the population. This flowchart

expands the single box contained in the flowchart in figure 5.1 for evaluating the fitness of asingle individual in the population. Asthis
flowchart shows, we initialize the

k=0

P

k = Number of
Fitness Cases

No

Initialize State of Systemy
to Initial Condition for
Fitness Case k

Yes

valuate Fitness
Agmciﬂﬁ:l with

Execule Simulation of
System for Time Swept
and Change State of
System Accordingly

Test condition for
carly termination of | Pass
fitncss case

Figure 7.6
Flowchart for computing fitness for
oneindividua over N;.fitness cases,
each involving asimulation
over T, time steps.

Page 137

state of the simulated system to the particular initial conditions associated with fitness case k. Then, starting with timet = 0, we execute the
simulation of the system for time t. We increment time and continue this process until t exceeds some maximum T,..,.. At that point, we have
completed the evaluation of fitness for fitness case k. We then increment k and continue this process until k exceeds the maximum N;.. At that
moment, we have completed the evaluation of the fitness of one individual in the population.

It is useful to define an auxiliary measure, hits, for monitoring runs of the genetic programming paradigm. For this problem and other optimal
control problems, the number of fithess cases that do not time out is a useful subgoal to monitor during a run.

Hits should not be confused with fitness. Fitnessis the numerical measure that drives the Darwinian selection process that lies at the heart of
genetic methods. The hits measure is an auxiliary monitoring and descriptive device which is usually entirely external to genetic
programming. If itisused internally at all, it is only used as part of the termination predicate to terminate a run. For example, if the subgoal
represented by hitsis especially salient and indicative of attainment of a solution, we sometimes include attainment of a hit on 100% of the
fitness cases as part of the termination predicate for a problem. Of course, for this particular problem, the attainment of a hit is a very modest
and unimpressive subgoal that is entirely unsuitable for the purpose of termination.

The fourth major step in preparing to use genetic programming involves selecting the values of certain parametersto control the runs. For this
problem (and most of the problems in this book), the population size (M) has been chosen as 500 and the maximum number of generations to
be run (G) has been chosen as 51 (i.e., generation 0 and 50 additional generations). In addition to these two major parameters for controlling
runs, there are several minor parameters whose default values were identified in section 6.9.

The fifth major step in preparing to use genetic programming involves specifying the criterion for designating a result and the criterion for
terminating a run. For this problem, we will terminate a given run after running a maximum number G of 51 generations. We designate the
best-so-far individual as the result of the genetic programming paradigm.

Table 7.2 summarizes the key features of the cart centering (isotropic rocket) problem.

Thirty-nine other tables similar to table 7.2 will appear throughout this book. We call each such table the tableau for the problem. Each
tableau summarizes the main choices made while applying the five major preparatory steps of genetic programming to the problem at hand.

The second and third rows of each tableau correspond to the first and second major preparatory steps for genetic programming and summarize
the choices for the terminal set and function set, respectively, for the problem. The choice of the terminal set and function set determines
whether awrapper is needed. The eighth row specifies the wrapper, if any, for the problem.

Page 138

Table 7.2 Tableau for the cart centering problem.
Objective: Find atime-optimal bang-bang control strategy to center a cart on a one-

dimensional frictionless track.
Terminal set: The state variables of the system: x (positive X of the cart) and v (velocity V of

the cart).
FUﬂCtIOﬂ %t +! T * [l % ABS! G-r-
Fitness cases: 20 initial condition points (X, v) for position and velocity chosen randomly

from the square in position-velocity space whose opposite corners are (-0.75,
0.75) and (0.75, -0.75).

Raw fitness: Sum of the time, over the 20 fitness cases, taken to center the cart. When a
fitness case times out, the contribution is 10.0 seconds.

Standardized fitness: Same as raw fitness for this problem.
Hits: Number of fitness cases that did not time out.
Wrapper: Converts any positive value returned by an S-expression to +1 and converts all

other values (negative or zero) to -1.

Parameters: M =500. G =51.

Success predicate: None.

The fourth through seventh rows of each tableau correspond to the third major preparatory step and present the choices made concerning the
fitness measure for the problem.

The ninth row corresponds to the fourth major preparatory step and presents the control parameters for the problem. This row alwaysincludes
the two major parameters, namely the population size M and the number of generations to be run G. The other numerical and qualitative
control parameters are not specifically mentioned unless they differ from the default values established in section 6.9.

The tenth row corresponds to the fifth major preparatory step. Since the method of result designation for genetic programming is always the
best-so-far method (section 6.8) and the termination criterion is always the disjunction of a generational predicate (based on G) and a problem-
specific success predicate (section 6.7), only the success predicate is mentioned here. As it happens, there is no success predicate for this
particular problem. We chose not to use available knowledge about the optimal amount of time for centering the cart to terminate runs of this
problem.

Now that we have completed the five major steps for preparing to use genetic programming, we will review an actual run of genetic
programming. The process starts with the generation of a population of 500 random control strategies, each recursively composed from the
availablefunctions(+, -, *, % ABS, GI) from thefunction set and the available terminals (x and v) from the terminal set.

Page 139

Predictably, thisinitial population of random control strategies includes awide variety of highly unfit control strategies. In fact, this will
always be the case unless the problem is so simple that it can be solved with a blind random search or unless oneis extraordinarily lucky in
creating the initial random population.

Some of the control strategies from thisinitial population unconditionally apply the force in only one direction. For example, the S-expression
(VX (*VX)
relentlessly accelerates the cart in the positive direction and causes it to fly off to infinity.

Some of the random strategies are partially blind in that they ignore one or more state variables necessary to solve the problem. An exampleis
the S-expression

(+ VV).

Without paying attention to the position of the cart, this partially blind strategy calls for the bang-bang force to be applied so asto accelerate
the cart in adirection equal to the current velocity of the cart.

The above two highly unfit random strategies are among the 14% of the 500 initial random strategies that time out for all 20 fitness cases.
Each is assigned the penalty value of 10.0 seconds for each fitness case, and therefore each has atotal raw fitness of 200.0 seconds. None of
these individuals score any hits.

In addition, another 44% of these 500 highly unfit initial random strategies time out for al but one of the 20 initial condition points. Each of
these scores one hit. One example of this group is the control strategy whaose switching curve consists of the straight line with slope +45°.
Thisindividual consumes 196.4 seconds to center the cart over the 20 fitness cases (for an average of 9.82 seconds per fitness case).

Because so many of the control strategiesin theinitial random population time out, the average fitness of the entire initial random popul ation
of 500 individualsis 187.4 seconds. This population average fitness is equivalent to 9.37 seconds per fitness case. This means that most of the
fitness cases receive the penalty value of fitness of 10.0 seconds. Even in this highly unfit initial random population, some control strategies
are somewhat better than others.

The third-best control strategy is equivalent, when simplified, to the S-expression
(- x(+V(*2VX)).

This control strategy is one of only four strategies out of the 500 that centers the cart in less than 10 seconds for all 20 fitness cases. Thisthird-
best strategy is equivalent to

Sign (X - v - 2vx).

Thisthird-best control strategy is rather slow in that it takes 178.6 seconds (an

Page 140

Figure 7.7
Best-of-generation individual for generation 0
of the cart centering problem.

average of 8.93 seconds per fitness case) to center the cart. However, slow is fast when compared to never!
The second-best control strategy is even better. It takes 130.0 seconds (an average of 6.05 seconds per fitness case).

The best individual control strategy in the population for generation 0 takes only 48.6 seconds (an average of 2.43 seconds per fitness case).
The structural complexity of thisindividual S-expression is 23 sinceit consists of 23 points (i.e., functions and terminals). This best-of -
generation individual is
(- (* (- X(ABS (* VX))
(% (% (- XX (GTVV)
(ABS (+ X V))))
(+V X).

Figure 7.7 graphically depicts this best-of-generation individual for generation 0 of this run of this problem as a rooted, point-labeled tree with
ordered branches.

Since the entire | eft branch of this S-expression (containing 19 points) evaluates to the constant value of 0, this best-of-generation individual is
numerically equivalent to the following S-expression involving only five points:

(- 0(+VX).

Figure 7.8 shows that the switching curve corresponding to this best-of-generation individual is a straight line with slope -45°. That is, this
computer program returns -1 for all points in the two-dimensional position-velocity state space above the straight line with slope -45° and +1
for al points on the line or below it.

Although this straight line with slope -45° is not the solution to this clearly nonlinear problem, it has reasonably good performance. For
example, the bang-bang force is applied correctly for every point in the unshaded portion of the figure, but incorrectly in the shaded portion.

Page 141

Figure 7.8
Switching curve for best-of-generation individual from
generation 0 of one run of the cart centering problem.

In the valley of the blind, the one-eyed man isking. Thisindividua is the best of its generation and has the best value of fitness.

The Darwinian reproduction operation and the genetic crossover operation are then applied to parents selected from the current population
with probabilities proportionate to fitness to breed a new population of control strategies. The numerical fitness value (i.e., total time)
associated with each control strategy in the population is used to drive this evolutionary process.

The vast mgjority of the offspring in this newly created generation 1 are, like their parents from generation 0, highly unfit. However, some of
these individual s tend to be somewhat fitter than others. Moreover, some of them are slightly fitter than their parents.

In generation 3, the best-of-generation individual handled the 20 fitness cases for this problem in an average of 2.24 seconds per fitness case.
Thisindividual, which had 18 points, is shown below:

(- (- (" (+ (GT (G X X) (ABS X))
v (* (ABS V) -1))

X)
X) .

Figure 7.9 graphically depicts this best-of-generation individual for generation 3 as a rooted, point-labeled tree with ordered branches. This
expression is equivalent, for the range of X being used here, to

—o[1 + |v|]] — 2x.
Thisindividua isfar from perfect, but it is about 10% better than the best-of-generation individual of generation O.

Figure 7.10 contains the fitness curves for thisrun. It isthefirst of 19 similar curves found in this book. This figure shows, by generation, the
progress of one run of the cart centering problem between generations 0 and 33, using three plots: the standardized fitness of the best-of -
generation individual in

Page 142

Figure 7.9
Best-of-generation individual
for generation 3 of the
cart centering problem.

1r

n‘ = Warst of Gen,
= Average

== Best of Gen.

Standardized Fitness
' [=

] 1 2 33
(Generation

Figure 7.10
Fitness curves for the cart centering
problem (measured per fitness case).

the population, the standardized fitness of the worst-of-generation individual in the population, and the average value of standardized fitness
for dl the individuasin the population. These fitnesses are stated per fitness case for this particular problem. As can be seen, the standardized
fitness of the best-of-generation individual started at 2.43 seconds per fitness case in generation 0 and improved (i.e., decreased) to 2.13
seconds per fitness case in generation 33. The improvement in fitness from generation to generation was steady, but not perfectly monotonic;
there was no great leap in performance. The average standardized fitness of the popul ation also improved between generations 0 and 33.
Again, there was no great leap in performance. The plot of the worst-of-generation individual runs across the top of the figure since, for every
generation, there was at least one individual in the population that timed out for every fitness case and was therefore assigned the penalty
value of 10.0 seconds for each fitness case. A figure showing these three plots appears as

Page 143

Figure7.11
Best-of-run individual for
the cart centering problem.

part of the discussion of numerous problems throughout this book and is labeled the graph of "standardized fitness' for the problem.

In generation 33, the best-of-generation S-expression in the population performs the cart centering task faster than any individual from any
previous generation. This best-of-generation individual had 15 points as shown below:

(- (- (* (+(* (ABSV) -1) (* (ABSV) -1))
V)
X)
X) .

Asit happens, this best-of-generation individual from generation 33 is a 100%-correct solution to the problem because it is mathematically
equivalent to the known time-optimal solution, namely

(Gr (* -1 X (* V(ABS V))).

We can therefore identify this individual as the best-of-run individual for this run of the cart centering problem.

Figure 7.11 graphically depicts this best-of-run individual as arooted, point-labeled tree with ordered branches. Note that this particular
individual did not incorporate the GT function provided in the function set.

Note that in applying genetic programming to this problem we made no assumption in advance about the size, the shape, or the structural
complexity of the eventual solution. The solution found in generation 33 of this run happens to have atotal of 15 points; however, we did not
specify thisin advance. We did not specify the eventual shape of the S-expression in advance. We did not specify the particular functions and
terminals that would appear at particular points of the S-expression. The size, shape, and contents of the S-expression that solves this problem
evolved in response to the selective pressure exerted by the fitness measure (i.e., time). This problem illustrates how structure arises from
fitness.

Page 144

Since genetic programming is a probabilistic algorithm, we rarely get a solution in precisely the form we contemplated. For example, the
solution produced in generation 33 above has 15 points whereas the more compact S-expression in figure 7.3 has only 8 points.

Moreover, genetic programming rarely produces exactly the same result twice. Anything can happen and nothing is guaranteed. Exampl es of
other superficialy different results that are equivalent to the known time-optimal solution include

(G (%V (%-1 (ABS V))) X),

and

(GI (* (G (* -1 X X) (ABS X))
(* (ABS V) V)),

and the rather mystifying, but still equivaent,

(GT -1 (% (+ (GT (- V-1) (- -1V)) (ABS (GTI (% (+ (GT (-
V-1) (- -1V)) (ABS (+ (+ V (+ XV)) (%X X))) (GT V(%
(%(* X-1) (%(- -1V) (GT'V(* X-1)))) (* -1-1)))) -1)))
(GT V(% (* X-1) (ABS V))))).

We do not always obtain a time-optimal solution on a particular run within the pre-established arbitrary maximum number G of generationsto
be run. On those runs, we usually obtain a near-optimal control strategy of some kind. One example is the near-optimal control strategy
below, which requires 100.45% of the optimal time;

(+ (GT (* (+ (GI (* (ABS (GT V (GT VV))) (* X-1)) (GT
(+V(*VV) (ABSV)) X) (*VV) X (- (+ (GT (GT (*

(+ (> (* XX (+-1X) (CTVV) (+VX) XX (* (X
VI V)) V).

Another run yielded the near-optimal control strategy below, which requires 100.5% of the optimal time:

(G (* (+ (+(CT -1 V) (- -1 X)) (* (+ (+ (+ (%(- X(CT
V(- -1X)) (* -1 (G V(ABS X))) (GT X (* (ABS X) V)))
(- -1X)) (" X(* (%(+-1X (G (GI (GI'V (%X-1)) X

(" (%X -1) V))) V)) V) X V).

Y et another example is the near-optimal control strategy below, which requires 101.1% of the optimal time:

(- (-1 (%(Gr T((- (ABS (* (ABS V) (+ X (GT (* X
X) X)))) (% (GT (GI' T ((* X-1) (+V X)X (+VV)
-1)) X (£ X X)) -1)).

Y ou no doubt approached this book with an understandable skepticism about whether it is possible to genetically breed computer programs
that solve complex problems using only performance measurements obtained from admittedly incorrect, randomly created programs to control
the invocation of

Page 145

some very simple domain-independent mechanical operations. This skepticism was probably fortified by some personal experience in writing
and debugging computer programs that did not work the first time. To humans, computer programs seem very rigid in their grammeatical and
structural requirements. The experience of most programmersisthat if everything is not perfect, the program does not work at all. In any
event, the goal of most programmersis to write a program that is 100% correct.

One can begin to see why the genetic breeding of computer programs works by thinking of the space of all possible computer programs that
might solve the cart centering problem and then thinking about the trgjectory through the space of computer programs that a human
programmer would likely take to find the 100%-correct program.

The human programmer, using human intelligence and knowledge of control theory and mathematics, might begin by deriving the formula

o(t)? Sign v(t)

—x) >
2|1 Flfm

to specify when to apply the bang-bang force to accelerate the cart in the positive direction. Then he might draw on hisintelligence and his
knowledge of computer programming to write a program to implement this mathematical formula. He would then type his program into the
computer. The human programmer might make an error in deriving the formula, in writing the program, or in typing the program into his
computer.

In most cases, the program written by the human programmer would not work the first time. Instead, there would be several cycles of
attempting to run the program, examining the results, and correcting the program. For example, when the program was run the first time, the
output might be some symbolic string such as "INCORRECT SYNTAX" (perhaps because of a missing semicolonin aPASCAL program, a
missing operand in assembly code, or a mismatched parenthesisin a LISP program).

After correction of the syntax error, the output on the next run might be the symbolic string "FUNCTION ASB NOT FOUND."

After correcting the typing mistake in the name of the absolute-value function ABS, the human programmer might find that his program

produced the correct output only some of the time. After studying the output, the programmer might realize that the massmisin the
denominator of the denominator of the fraction on the