
The CodeBreakers-Journal, Vol. 1, No. 2 (2004)
http://www.CodeBreakers-Journal.com

Copyright c© 2004 and published by the CodeBreakers-Journal.
Single print or electronic copies for personal use only are permitted. Reproduction and distribution without permission is prohibited.

Unpacking by Code Injection

Author: E. Labir

Abstract

In this paper, we show how to gain insight information
for a given target through code injection. Our attacks
are totally stealth for most current anti-cracking tech-
nology and represent a real-life threat, the most relevant
information we can retrieve is the following:

• List of exceptions, handlers and related information.
• List of API calls to allDLLs (parameters, return

codes,...).
• Full reconstruction of the Imports Table.
• Entry Point.

Our methods are flexible and not difficult to implement,
we outline the source code and provide a real-life
example of how to analyse the log files.

Keywords: Unpacking; Code Injection; defeating anti-
cracking technology

I. Introduction

Debugging a target can range from the extremely simple
to the impossible. Well protected software uses to be rid
of anti-debug tricks - mainly seh-based - and extremely
obfuscated code, this all makes going through it an
endless nightmare.

In Windows (Win9x onwards), a process lives inside
its own address space. The address space is flat and
contains all (mapped)DLLs, resources and stuff it needs.
Windows also provides us the tools we need for injecting
our own code and running it inside another process, [4].
In this article, we will use injected code to sniff lots
of information from the target,our methods bypass API
redirection and all the standard anti-debug.

The information we gain from injecting our code in-
cludes all calls (parameters and return codes too) to all
DLLs mapped into the target’s address space - we can
also modify them. In particular, this provides the list of
exceptions and their associated information (handlers,
addresses, codes,...). With our system, we can easily
retrieve the entry point (injecting a tracer) and, in some
cases, even the stolen bytes. Even when the method fails,
all these problems become very simplified.

The method needs ”some” human intervention, for
analysing the log files, but saves up huge amounts of
work. Detecting you are under this attack is not easy
and it shall need redesign for many packers.

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The subjects we deal with are:

1) (Section 1) Description of a packer.
2) (Section 2) How to inject and run our code in the

target.
3) (Section 3) Hooking all API calls.
4) (Section 4) Interacting with the API calls (logging,

IAT reconstruction).
5) (Section 5) Finding the Entry Point with an in-

jected tracer.
6) (Section 6) How stealth is injected code?.
7) (Section 7) Conclusions, further research,...

Each section has code snippets (or pseudocode) and we
also present examples as they appeared in our experi-
ments.

II. Description of a packer.

A packer is a program aimed to prevent somebody
else from examining how our program works or from
modifying it. Typically, the entry point of the protected
program is diverted to run the packer first. When it runs,
the packer will carry out the following (main) steps:

• Decrypt the sections of the target (target = packed
program).

• Rebuild its imports table.
• Jump to the actual entry point of the target.

The first step, sections decryption, isn’t important for
us. Normally, it doesn’t use to be much of a problem
to await until they are decrypted in memory and simply
dump them to a file and glue them up together. However,
points 2 and 3 are crucial.

The imports protection can be done with several degrees
of sophistication, some of the implementations (in real-
life packers) are quite weak and do not need at all our
methods to be broken. We will always suppose that a
strong protection has been applied to the IAT, meaning:

1) The Imports Table has been removed, the packer
saves only (in a secure place) the hashes of the
API names and their addresses at the IAT.

2) The algorithm is well obfuscated and has lots of
anti-debug, anti-trace...

3) The packer doesn’t use GetProcAddress. Instead,
it implements its own algorithm to find the APIs
at the exports table of the DLLs.

4) The IAT has been redirected (read below what this
means).

Note: actually, point 3 doesn’t affect us. However, a good
protection should satisfy it.

It’s amazing to see how many ”commercial” products
don’t comply neither with (1) nor with (3).

What about 4 (API redirection)?. Let’s try to see what
”API redirection” means: Open any application, it’s sure
that it importskernel32.ExitProcess. Now, look
for a call to it, you will find something like the following:

call [XXXXXXXXh] ; call to kernel32.ExitProcess
; XXXXXXXXh inside the IAT

... ;
XXXXXXXXh: YYYYYYYYh ; address of

; Kernel32.ExitProcess

The other most common possibility is to have a
call XXXXXXXXh instead, the argument would be the
same. The Windows loader ”sees” the imports table and
fills the IAT with the addresses of the imported APIs.
Packers destroy the information at the imports table
of the protected program, therefore theIAT will have
incorrect values when the packer yields control to the
target. Then, the consequence is that the packer needs to
fill the IAT of the target with the right values.

If you take a packed program, under a packer satisfying
(4) - examples: Asprotect, Slovak Protector,...- theIAT
looks like:

XXXXXXXXh: ZZZZZZZZh ; ZZZZZZZZh is inside a
; buffer dynamically
; allocated by
; the packer, so it will
; not exist if you
; remove the packer.

ZZZZZZZZh: push ebp ; (*)
ror eax, 16h
pushf
popf
mov ebp, esp ; (*)
call @@1
db 68h

@@1:
add eax, 134h
....
jmp ACTUAL_ENTRY_POINT_OF_API + k

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

2

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

The packer mixes the first instructions of the API with
some garbage code (in the example, those instructions
having a ”*” beside were in the original API code), it
can include some trivial anti-debug trick too, and finally
writes a jump (or something similar) to the entry point
of the API + k, where k is the number of original
instructions already run among the garbage code. This
way, it is essentially impossible to find the actual API
called throughZZZZZZZZh or to hook it.

The imports table is not a straightforward structure,
going into details is out of the scope of this article, [2].

Some programs, called import rebuilders, are able to
emulate a few instructions to search for the address in
the DLL we jump to. Then, you can retrieve the API
name from the exports table. However, import rebuilders
are usually very limited in what they can sniff and will
not overcome the latest packers (which, obviously, are
tested against them before their release).

Let’s see what’s the matter with the entry point. As
we commented, the packer - once it has done its
job (decrypted the target, reconstruct the IAT,...)-
has to give control to the protected application.
This can be done running it as a new thread, with
kernel32.CreateThread, or simply jumping to it
in some exotic way. Running it as a new thread is not
a good idea, the starting address of the thread will be
too evident and so, we (again) suppose the worst case:
The packer jumps to the entry point after a long time
of well obfuscated and protected code, the jump is well
hidden (self-modifying code, etc...).

Another problem one usually has to deal with is ”stolen
bytes”: The packer takes a pre-defined set ofAPIs, a
very common one isGetModuleHandleA, and does
the following:

• Calls GetModuleHandleA and stores the return.
• Looks inside the protected app for patterns like:

call XXXXXXXXh
; call to
; kernel32.GetModuleHandleA

mov [handle], eax

Now, it removes the call and, on every startup,
substitutes themov [handle], eax by a simple

mov [handle], harcoded_value, where
hardcoded_value was returned before by the
packer’s call toGetModuleHandleA.

If the cracker doesn’t detect this trick then the unpacked
program will not run on all OS versions or will have
another defect. These bytes the packer removes are called
”stolen bytes”. Stolen bytes of this kind, replacing a call
by a hardcoded value, will also be easy to locate and
reconstruct with our methods.

A full description of a packer is well out the scope of
this article, please refer to [1] for a detailed explanation.

Packers are the preferred way to protect middle-price
applications, virtually all shareware depends on their
security. Thus, studying their advantages and disad-
vantages is an important field inRCE (Reverse Code
Engineering).

III. Injecting and running your code

In this section, we outline how to inject and run our
code into the target’s address space, see [4] for a full
description. For Win9x see [3].

Our project will be divided into two parts, as in [4].
We will also have a carrier application, in charge of
launching the target and injecting the code. We will
call the injected code ”logger”, since this describes very
accurately what it does.

The carrier needs to inject and run our logger before
the target has a chance to start. Therefore, we need to
create the target asCREATE_SUSPENDED. This way,
the address space of the target will be initialised but the
main thread will not be run until we call ResumeThread.

Thus, the carrier creates the target as
CREATE_SUSPENDED and injects the logger inside its
address space. Next, the carrier runs the injected code
with CreateRemoteThread (Win2k onwards). The
logger needs to do some preliminary work before the
target is allowed to run. When everything is ready, the
carrier runs the main thread of the target. Therefore,
carrier and logger need to communicate in some way,
the one we choose is through an event, which the logger
sets toTRUE when the (packed) target can run.

Let’s outline how to carry out all the previous steps (see
[win32.hlp] for a detailed reference on theAPIs below):

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

3

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

; first, we create the event (choose a random name for your event)

push offset zsEventName ; name of event
push FALSE ; initial status = FALSE
...
call CreateEventA

; Now, we create the target as CREATE_SUSPENDED.
; The call returns a handle to the created process we need for later.

...
push CREATE_SUSPENDED
...
push offset zsTarget
call CreateProcessA

; The address space of the process has been initialised, but its
; primary thread is suspended. Now, we allocate some memory into
; the target to host our code.

push PAGE_EXECUTE_READWRITE ; attributes for the allocated memory
...
call VirtualAllocEx

; The return is the image base of the allocated memory. Finally, we can write to it, with
; kernel32.WriteProcessMemory, and run our code with kernel32.CreateRemoteThread.

...
call WriteProcessMemory
...
call CreateRemoteThread

; At this point, the logger is running while the main thread is suspended.
; The logger will change the status of the event
; we have created at some moment, we need to wait until then before to
; resume the main thread:

push -1 ; wait infinite time
push dword ptr [hEvent] ; handle to the event, returned by CreateEventA
call WaitForSingleObject

...
call ResumeThread
push 0
call ExitProcess

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

4

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

As you see, injecting your code inside another process
and running it is not too difficult. Notethe target is not
being debugged, therefore it can’t complain about it.

IV. Hooking API calls

A. The problem and its relevance

As we briefly reviewed above, the packer will emulate
the first k instructions of theAPI and will jump to the
(k+1)-th. This k first instructions can be metamor-
phosed, for example, fork=2 we might have:

; not changed entry point of
; kernel32.ExitProcess inside
; KERNEL32.DLL.

77E55CB5 kernel32.ExitProcess push ebp
77E55CB6 mov ebp,esp
77E55CB8 push -1
; example of instructions you could
; find at the buffer:

xchg eax, esp
sub eax, 4
jmp @@1
db 68h

@@1:xchg eax, esp
mov dword ptr [esp], ebp
push esp
pop ebp
push (77E55CB8+RANDOM_VALUE)
sub dword ptr [esp], RANDOM_VALUE
ret

They both do the same, however the second one is not
easy to follow. The longer and more difficult to emulate
is the buffer the harder is to reconstruct the imports table.

Now, observe that if you set a breakpoint on the entry
point ofkernel32.ExitProcess this will be easily
bypassed by the packer. Of course, one can set this
breakpoint later but then knowing the call parameters can
be difficult (or impossible). Apart, your breakpoint can
be fired up when is reached from another DLL-internal
call.

Having the possibility of setting breakpoints on (suitable)
places of theAPIs is an important problem, control over
their behaviour yields immediate control over the packer.

B. The approach

Let’s suppose the API entry point of
kernel32.ExitProcess was like this:

nop ; 1
nop ; 2
... ; ...
nop ; k
... ; ...
nop ;
jmp kernel32.ExitProcess_ActualStart

The packer would emulate the first knops and would
jump to the k+1. So, we can safely set our breakpoint
at jmp kernel32.ExitProcess_ActualStart.
Indeed, the original parameters have been preserved.

What we do, for a givenDLL (saykernel32), is the
following:

1) Get the image base of kernel32.
2) Take isSizeOfImage from thePE-header.
3) Change permissions over the whole image of ker-

nel32 toPAGE_EXECUTE_WRITECOPY
4) Save the original Entry Points for all

exports in the DLL, they can be found at
IMAGE_EXPORT_DIRECTORY.ED_AddressOfFunctions.

5) N = number of APIs exported bykernel32,
IMAGE_EXPORT_DIRECTORY.ED_NumberOfFunctions.

6) Divert each one of the APIs ofkernel32 to our
buffer.

7) Restore permissions over the DLL (some packers
use the DLLs to provoke exceptions writing to
them).

Let’s see how to redirect all APIs to our buffers in detail,
note this is done before the packer runs.

Let’s call the buffer we use DivBuffer. This buffer would
have sizeN*M, whereM is the maximum size of our
buffers, what we do is:

for (i=0; i<N; ++i){
Change the entry point
of the i-th API to DivBuffer[i*M].
Generate random garbage
and write it to DivBuffer[i*M].
Write some instructions, after the
garbage, to save the value of i.
Write a jump, after the previous
instructions, to our hooker procedure.

}

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

5

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

In the algorithm, M is just a upper bound of our garbage
size (M = 30 is a good value for current packers). All
garbage buffers we have created will lead to our hooker
procedure, which is in charge of logging the calls and
stuff. The hooker needs to be aware of the address we
have come from, therefore is important to save the value
of the indexi before jumping to it.

Let’s outline the hooker, it’s quite a simple procedure: it
saves registers, writes everything to a log file and then
restores registers and jumps to the original API entry
point (which we have saved). A hooker looks like the
following:

hooker PROC

mov eax, esp ; save esp and ebp
mov ecx, ebp
pushad
...

; write the log file
;(API the packer called, parameters,...)

...

; compute the actual entry point
; of the API the packer wanted
; to call and overwrite the dword
; below, @ActualEP, with it.

...

; restore registers

popad

; this jumps to the actual entry
; point of the API (is a push/ret)

db 68h
; first opcode of push XXXXXXXXh

@ActualEP: db 0,0,0,0
ret

hooker ENDP

Observe that, at the very beginning, we have lost the
value of botheax andecx. It doesn’t mind,eax and
ecx are the ”trash” registers for Windows, meaning they
are not used by theAPIs. Therefore, it’s safe to use them
internally (the rest of registers need to be preserved), this
saves us some headaches because we can store there esp
andebp. Needless to say, the garbage code does need
to preserve all registers buteax andecx.

C. What happens when the packer calls an API?

The packer thinks it does the following:

1) Locate the image base of the API.
2) Look for it by name, normally comparing a hard-

coded hash value of the name with the hashes of
each API until it matches.

3) Emulate the k first instructions of the API (k can
be randomly chosen each time).

4) Jump to the (k+1)-th API instruction.

It actually does:

1) Locate the image base of the API.
2) Look for it by name, normally comparing....
3) Emulate the k first instructions of the i-th garbage

buffer (supposing it calls the i-th API) .
4) Jump to the (k+1)-th garbage instruction.

Finally, we can hook the API call at the entry point of
our procedure ”logger”.

The packer doesn’t see any difference but we have kept
the call as if it was done without the protection.

D. Implementation hints

The following advises might help to easy up into coding
your own logger:

• kernel32, user32 and advapi32 are loaded at the
same image base in all processes running in the
same OS. Therefore, the logger can inherit (virtually
all) APIs it needs from the carrier.

• For testing your programs: there is no need start-
ing by injecting your code in some other process.
Before so, it’s recommendable to allocate a buffer
inside the carrier and to copy there the logger and
play with them. This way you can do a minimum
testing.

• When you finally inject your code in another pro-
cess, you can set a breakpoint at the very beginning
of the logger. This way, when you run it with
CreateRemoteThread, it will crash and you will be
given a chance to attach your debugger. In general,
you can set anint3 at any point of the logger you
want to check.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

6

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

• For the procedure writting to the log file:

– Write the names of the APIs the target calls.
– Do a small procedure passing from hexadeci-

mal to a printable string (remember that offsets
are given in endian order).

– Use a shared file mapping for your log file,
so you can see and save it at any moment
without dumping from memory, this will let
you to control execution.

– Remember that file mappings can’t be enlarged
in memory, use a big one (1Mb).

• We recommend (as non-copyrighted target) Yoda’s
Crypter for the experiments, it redirects API calls
and has a few exceptions/tricks you will have to
bypass.

V. Logging and IAT reconstruction

After having seen how to hook all calls done by the
packer (or the target) we now move on how to react to
these calls, we deal with this subjects:

1) Logging API calls.
2) Altering their parameters or return values.
3) Provoking calls to get the (plaintext) API ad-

dresses.

The packer we used for this experiment is one of the
hardest in the market. Of course, we will not reveal any
information that could help into breaking it (all offsets
and stuff has been altered).

Let’s review, step by step, how to do it in real life:

A. Logging kernel32

The first you should always do is to log all calls directed
to kernel32, only rarely a packer will call APIs from
other DLLs (excludingADVAPI32, which comes next).

In the log, you should have the API and where it was
called from (the return is atdword ptr [esp]). Note
that your API can be called from inside another APIs
from the same (or other) DLL, so you should filter this
calls in some way.

We did it as follows:

mov ebx, dword ptr [esp]
; take return address
shr ebx, 28
; keep only the most significative byte
test ebx, ebx
jnz Dont_Log_Me

This works because in WinNTkernel32 always loads
at 77E40000h. There are much better ways of filtering
them, matching against the loaded modules at thePEB is
possibly the best, but this one works almost sure and is
pretty simple. Let’s see a log from the protected Notepad:

Logger started for DLL KERNEL32.DLL,
target = Notepad.exe

VirtualAlloc From: 00B10024
Param: Buffer size: 00000200 API return: 00A70000

VirtualAlloc From: 00B20101
Param: Buffer size: 00001000 API return: 00A80000

LoadLibraryA From: 00A20BFE
Param: ADVAPI32.DLL <=== interesting!

VirtualFree From: 00A2310B ...
GetLocalTime From: 00A45150 <=== interesting!
...

VirtualFree From: 00D01711 VirtualFree From:00D02224

Now, you have to read the APIs it has called and to
pay attention on the most relevant ones. We’ve isolated
kernel32.GetLocalTime because is typically used
for 30-day time trials and the like. It’s also interesting
to note that the packer has loadedADVAPI32, therefore
you should now log all calls fromADVAPI32.

Just reading the logs will give you a precise idea of how
it works.

B. Logging the parameters of some selected APIs

It would be totally pointless to start coding lots of
assembler lines to decode the parameters of hundreds
of APIs. Instead, we just choose a small subset of the
called ones and handle them.

The parameters can be found atesp+4, esp+8,...
therefore you only need to write them to the logger
(beware in case they are pointers,NULL can crash your
logger).

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

7

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

C. Modifying the result of the API calls

In this example the API we have chosen iskernel32.GetLocalTime. We want to hook it and to change its
return to another value, a fixed date (so we are always registered). To do so, we need to know the value of the
parameterlpSystemTime before to do the call, see [win32hlp], and to modify the structure it points to right
after the call. Thus, the hooker, apart from writing the log, needs to savelpSystemTime. The following code
shows how to carry out the complete process:

;---
; hooking the return address from the call
;---

; first, we save the bytes at the return address because we are
; going to overwrite them with a jump to our code

cld ; clear direction flag
mov esi, dword ptr [esp] ; take return
mov edi, offset your_buffer ;
mov ecx, 6 ; the size of a push/ret
repnz stosb ;

; next we overwrite them with a push/ret leading to our code

mov edi, dword ptr [esp] ; take return address
mov al, 68h ; write the push
stosb ;
lea eax, [My_GetLocalTime] ; write the address of my procedure
stosd ;
mov al, 0C3h ; write the ret
stosb ;

; we also need to keep track of lpSystemTime

mov eax, dword ptr [esp+4] ; store the parameter lpSystemTime
mov dword ptr [ebp+lpSystemTime], eax

Now, we can let the target to complete the call tokernel32.GetLocalTime, because it has been hooked to
our code. Note that the target will haveRead / Write permissions over all its sections and so you don’t need
to worry about it. Now, we have to change the return:

;---
; Changing the return to our fake value
;---

; The target jumps here when hooked:

My_GetLocalTime PROC

pushad
pushf ; not needed in this case but you might have to add it too

; compute the delta handle in ebp

call @@1
@@1:pop ebp

sub ebp, @@1

; modify the returned structure

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

8

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

mov eax, dword ptr [ebp+lpSystemTime] ; point to the SYSTEMTIME structure
mov [eax.wYear], 2004
mov [eax.wMonth], 4
mov [eax.wDayOfWeek], 1
mov [eax.wDay], 8

; write back the bytes at the return instruction

cld
lea esi, [ebp+your_buffer]
lea edi, [ebp+API_ReturnAddress] ; the value we had at esp at the hooker
mov ecx, 6
repnz stosb

; restore registers and flags and return
popf
popad
ret

My_GetLocalTime ENDP

This will make to believe the packer we are still at 2004, Aprilthe 8th. Of course, logging theAPI return is as
simple as storing eax and all the structures theAPI has used so far.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

9

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

D. Dealing with the rest of DLLs

In this example, we saw that the packer loads
ADVAPI32.DLL (the only examination ofkernel32
gave us all loadedDLLs) . ADVAPI32 is a pretty
importantDLL, it contains the APIs we need to access
to the registry, where packers use to save part of their
registration information. We have two possibilities:

1) Generalise our algorithms: hook LoadLibraryA
and, each time is called, see which DLL has been
loaded and hook all its APIs too.

2) Simply run our current algorithm for the new DLL.

There is not much benefit on the first approach. In fact,
we never needed it in our experiments.

E. IAT single address sniffing

Observe the following call done from the packer:

LoadLibraryA From: 00BA08BC Param: COMDLG32.DLL

A packer will never useAPIs from COMDLG32.DLL,
therefore this has to be done to reconstruct the
target’sIAT. Let’s hook all calls done toAPIs from
COMDLG32.DLL and see what happens:

Logger started for DLL COMDLG32
End of log file

An empty log file?, Why?. We have simply run the
target application but we have still to compel it to call
someAPI from COMDLG32. Now, we run the target
but we also choose ”choose font” from the menu (you
have to play with the target until you can see something
interesting in the logs, this is why we suggested to create
a shared file mapping as log file):

Logger started for DLL COMDLG32
CommDlgExtendedError Return Address: 01002E39

End of log file

Ok, got it. Let’s consider the three most common possi-
bilities for the current linkers, these are to link theAPI
by:

• call dword ptr [IAT_ENTRY]: where
IAT_ENTRY is an absolute address inside the IAT.

• call RELATIVE_IAT_ENTRY: Here, the return
address +RELATIVE_IAT_ENTRY is inside the
IAT (adjust for negative references).

In our case, Notepad.exe, this was:

01002E33 call dword ptr [10012AC]
; call we have logged

01002E39 test eax,eax
; return in our log

To distinguish both cases just do this:

mov eax, Return_Address
sub eax, 6

cmp byte ptr [eax], 0FFh
je First_IAT_Case

inc eax
cmp byte ptr [eax], 0E8h
je Second_IAT_Case

This let’s us to easily get anyAPI we want: the logger,
before to jump to theoriginal API entry point, goes to the
target and tries to sniff theIAT address corresponding
to it. The method can fail, for example (Notepad.exe):

01006AEF mov edi,dword ptr
[KERNEL32.GetModuleHandleA]

01006AF5 call edi

We can try the value ofedi on return, perhaps it has
been preserved, and output is as our ”guessed”IAT
address. Otherwise, we can restrict to the known cases
as we did above (which will be enough in most cases,
as we will see below).

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

10

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

This is an extract from our experiments:

lstrcmpW return address: 01001C8D
IAT address? 010010F0

lstrcpyW return address: 01001C9F
IAT address? 010010EC

lstrcatW return address: 01001D4F
IAT address? 010010DC

lstrcpyW return address: 010040ED
lstrlenW return address: 010040F6
lstrcpyW return address: 01004102

As you see,lstrcmpW has been correctly located
(the same holds forlstrcatW). The values not hav-
ing a ”guess” for theIAT correspond to the, men-
tioned above,call edi case. For the same application,
user32.dll logs almost yields the fullIAT.

It’s important to note that one can save the bytes before
the return of the call and try to dissamble them later
(there aren’t so many cases). With this, we bet we could
obtain essentially the full IAT in most cases. However,
as we are going to see, there is a much better way.

F. IAT full reconstruction

In the previous section, we have seen that to get a single
API we only need to log the right DLL and to ”play”
with the target. Therefore, we could, one by one, add
all APIs until we have a full working application,this
would be pretty time-consuming.

Full reconstruction of the IAT is much simpler than
adding imports one by one, let’s see how to do it:

1) First, we need to retrieve one API from eachDLL
the target uses (this has to be done playing with
it, but this time we only want one from each DLL
and this can be achieved in a few minutes).

2) The piece of the IAT for eachDLL is a zero
terminated array like this one:
offset 0: ?????????

; dd immediately before the IAT
offset 1: DLL1_API1

; first API imported from this DLL
offset 2: DLL1_API2

; second API imported from this DLL
offset 3: ...

;
offset N: 0

; null terminating dd

The dword at offset 0 has unknown contents, it
can be theNULL terminating the previous part
of the IAT (for anotherDLL) or simply garbage.

Our problem is that we know one of offset1, ...,
offsetN but we need to get them all. Indeed, we
can’t even assume that this array will have aNULL
terminatingdword, because the packer can have
set there any other value to confuse us.

3)

The following algorithm solves this problem:

; input: eax = guessed IAT address
; ouput: reconstruction of the
; imports table for the DLL to
; which eax belongs to

xor ecx, ecx ; counter

while ([eax+4*ecx] != 0)
{
push ecx ; save ecx
push eax ; save eax
call dword ptr [eax+4*ecx] ; Compel the target

; to do the call.
; This sends us to
; the buffer created
; by the packer to
; emulate the first
; instructions of
; the call.

get the API at our logger ;
restore the stack ;

pop eax ; restore eax, ecx
pop ecx ;
inc ecx ; next

}

This retrieves all addresses fromeax onwards, finally
we only have to move backwards until the previous zero.

Of course, when we do calleax for the offset having
the interrogation marks we will crash the program (most
likely). Thus, we need to set aseh handler to protect
the execution of this algorithm.

G. Breakpoints on API calls and attaching your de-
bugger

Usually, you will want to examine yourself from some
call onwards. With our method, setting a breakpoint on
an API call is totally straightforward. Let’s see a couple
of ways to do so:

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

11

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

When the return address from an API call is a given
one:

The loggercan’t simply take the return address, which
was at [esp], and compare to a saved value:

mov eax, dword ptr [esp]
cmp eax, RETURN_FROM_GETLOCALTIME

Why not?. Because the packer will be running on a
dynamically allocated buffer and, so,the image base can
vary, leading to a different return address. Instead, we
can take the least significative bytes of the return address
and see whether they match or not:

mov eax, dword ptr [esp]
mov ebx, RETURN_ADDRESS_FOR_GETLOCALTIME
shl eax, 16
shl ebx, 16
cmp eax, ebx
je my_breakpoint

At the n-th time we call a given API:

We have the API which has been called at the hooker
procedure, just compare it to a hardcoded value and
keep a counter of the number of times it has been
called. Job done.

There are many options for the breakpoint itself, the one
we use displays a message warning about it and enters
in an infinite loop,here: jmp here. Now, you can
attach your debugger, pause the execution,NOP thejmp
out and debug. The savings are spectacular.

VI. Logging all the Exceptions

Getting the list of exceptions provoked by the packer
can also help. In particular, it helps if we want to attach
our debugger and use our tracer, because we know it
will not be killed by any exception. The best tutorial for
understanding exceptions is ”Exception for assembler
programmers, by Jeremy Gordon”, a must-read. We
assume a minimum background on the subject. As is
widely known, hooking NTDLL.ZwContinue will
give us many exceptions, but not all the information
we need. The problem becomes when we have
unwindings or when a handler refuse to repair the

exception and passes it to the following one. In this
case, we need to reverse engineer a little bit in order
to find the right breakpoint. The results are the following:

The easy part: NTDLL.ZwContinue has as first pa-
rameter a pointer to the context, as third one the excep-
tion code and the sixth is the address where the exception
took place. Therefore, hookingntdll.ZwContinue
is enough for non-unwindings and non-refused excep-
tions.

The more difficult part(this was done for WinXP, trans-
lation for other OS versions will likely be trivial): we
take except32.exe, open it with our debugger and
choose ”handle exception in handler 1”. This will make
the first two handlers to refuse to repair the exceptions.
Now, press ”cause exception” and you are here:

00410608 div cl
0041060A retn

We pass the exception to the handler, but stepping into
(SHIFT+F7 in Olly). Now we see:

77F4109C mov ebx,dword ptr [esp]
77F4109F push ecx
77F410A0 push ebx
77F410A1 call ntdll.77F51763
77F410A6 or al,al
77F410A8 je short ntdll.77F410B6
77F410AA pop ebx
77F410AB pop ecx
77F410AC push 0
77F410AE push ecx
77F410AF call ntdll.ZwContinue

Changing the return at77F410A6 shows us that
ntdll.77F51763 returns0 when the exception is not
repaired. However, if we reachntdll.ZwContinue
we know we have omitted unwindings and the like, let’s
debug intontdll.77F51763:

77F51763 push ebp
77F51764 mov ebp,esp
77F51766 sub esp,60
...
77F51771 call ntdll.77F51820
77F51776 test al,al
77F51778 jnz ntdll.77F806B9

This time, changing the return to1 leads directly to
ntdll.ZwContinue. By other hand, the return is the

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

12

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

same both for refused and normal exceptions, therefore
we don’t step into it. The next interesting call is this one,
which we need to debug into because otherwise we are
at ntdll.ZwContinue:

77F517E8 push esi
77F517E9 call ntdll.77F7333F
...

With a bit more of patience we are here, this calls our
exception handler (check yourself this is true for different
instances):

77F7339B mov ecx,dword ptr [ebp+18]
77F7339E call ecx ; Except.0041080A

In summary, to log all the exceptions (WinXP) we need
to hookcall ecx andntdll.ZwContinue.

Note: the first exception takes place before the target
has started to run, it’s indeed raised by the loader.
Don’t log it.

With this, we can easily log all the information we need
about the exceptions.

VII. Entry Point location

Let’s see the calls done by our packer, the last two ones
from the extract above were:

...
VirtualFree From: 00D01711
VirtualFree From: 00D02224

This calls are obviously done by the packer (just in case
we don’t know it we can copy a few instructions from
the return address onwards, it will be evident when they
are obfuscated). Of course, the entry is after them.

In fact, we can check all our logs (DLLs, exceptions
and others) and easily give alower bound, as accurate
as possible, to the entry point. The effort to find the
Entry Point will always be drastically reduced.

A packer can be aware of this attack and group all
exceptions and calls at the beginning. This wouldn’t
save us much work (anyway it would also be a good

improvement, all the anti-debug based in the seh handler
can be overcome for free). Dealing with the hard cases
requires to inject a tracer.

A. Tracers

There are several ways of coding a tracer:

1) As part of a debugger.
2) Self-tracing code.
3) Code Emulator.

The first is not interesting for us, we are supposing our
target to have heavy anti-debug tricks and the third one
is out of the scope of this article. Let’s pay attention on
the second one:

Self-tracing code, already used in the old DOS times,
is quite a tough anti-crack protection. Basically, all our
code will be run with the trap flag setON, meaning our
seh handler will be called at each instruction.

The trap flag can be set as follows:

pushf
or dword ptr [esp], 100h
popf
nop ; needed for some processors

This will produce anEXCEPTION_SINGLE_STEP and
will call our seh handler. The seh handler has (kinda)
ring-0 access to the context, it can again modify the
trap flag for the next instruction. Inside the seh handler
you can set the trap flag as follows:

push dword ptr [eax.cx_EFlags]
; eax points to the context

or dword ptr [esp], 100h
pop dword ptr [eax.cx_EFlags]

However, our seh handler is a bit more tricky. We need
to:

1) Log all long ”jmps”.
2) Avoid anti-tracer tricks.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

13

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

B. Log all long ”jmps”

When the trap flag is enabled we receive atcx_Eip
the address of the next instruction to be run and in
EXCEPTION_RECORD.ExceptionAddress the ad-
dress where the exception has taken place. We only need
to evaluate their difference:

mov ebx, dword ptr
[EXCEPTION_RECORD.ExceptionAddress]

mov ecx, dword ptr
[CONTEXT.cx_Eip]

cmp ebx, ecx
ja DontXchg

xchg ebx, ecx

DontXchg:
sub ebx, ecx
cmp ebx, 0FFFFh
jb DontLog

; don’t log jumps shorter than 0FFFFh
call LogJmp

; log this long jump

This will log all jumps, next you simply have to have
a look at the log file and decide yourself. For example,
this is a real-life log:

VirtualFree API return: 00C01B74
API return: 00000001
<== last call we had available

Entry Point? 00090392
Entry Point? 00C01B74
Entry Point? 01006AE0

The right one is01006AE0, easy to know if you see that
00090392 and 00C01B74 are at buffers previously
allocated by the packer.

C. Avoid anti-tracer tricks

The tracer has to start after all exceptions and all calls
done by the packer, this get’s rid of 99% of the tricks one
can use to kill a tracer. In practice one has to examine the
logs to decide what’s happened if his tracer gets killed,
one can even attach the debugger if he needs so.

As an example, let’s see how to get rid of therdtsc
trick. rdtsc (read timestamp counter) is a semi-
documented opcode which reads atedx:eax the cur-
rent timestamp of the CPU,edx is the most significative
part. For example, one can implement this trick as
follows:

; read timestamp counter
rdtsc
push edx ; save most significative part

; loop to loose time
mov ecx, 0FFFFh

next:
xor eax, eax
loopd next

; read again timestamp and compare
rdtsc
pop eax
cmp eax, edx
jne IAmTraced

When our program is traced it runs much more slowly
(because we are running with the trap flag set). Over-
coming this trick is quite easy, just do the next in your
handler:

mov ebx, dword ptr
[EXCEPTION_RECORD.ExceptionAddress]

cmp byte ptr [ebx], 0Fh
jne NotRdtscOpcode

cmp byte ptr [ebx+1], 31h
jne NotRdtscOpcode

; if we are here is cos the current
; instruction has been an rdtsc.
; Mark this so we can change cx_Edx
; the next time the handler
; is called.

mov dword ptr [IAmAtRDTSC], TRUE

In the next iteration we have to do:

mov dword ptr [CONTEXT.cx_Edx],
MY_CONSTANT_TIMESTAMP

mov dword ptr [IAmAtRDTSC], FALSE; initialize

Don’t useMY_CONSTANT_TIMESTAMP = 0, it’s too
evident.

In a more sophisticated version, one could count the
number of instructions since the lastrdtsc and decide
whethercx_Edx has to be increased or not. This gets
rid of virtually all rdtsc-like tricks. Other tricks would
require other treatments.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

14

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

D. How to install our tracer

There is still a detail we have to deal with, how to install
our seh handler. After all exceptions of the packer have
occurred no seh handler from it is needed, this means
we can overwrite the final one so we catch all exceptions
(due to the trap flag ON). To install our handler:

lea eax, [Tracer32_handler]
mov ebx, dword ptr fs:[0]
mov dword ptr [ebx+4], eax

In summary, our tracer will (slowly) run the packer
logging all its jmp’s until it reaches the entry point.
Go to the log file and take it.

VIII. How stealth are these methods?

In this section we discuss some possible ways of detect-
ing this intrusions and their weaknesses.

A. Threads enumeration

The target could enumerate all threads running in the
system and check how many correspond to itself, this
doesn’t work. Note that the injected code, after the
preliminary work has been done, is actually called by
the target, meaning we can:

1) Allocate memory withVirtualAllocEx.
2) Take the entry point.
3) Store 1 memory page, or more, from the entry

point onwards withReadProcessMemory.
4) Save the context of the main thread with

GetThreadContext.
5) Overwrite the entry point with our code, in this

case the logger does the following tasks:

a) Open the log file as a shared file mapping.
b) Allocate memory for the garbage buffers

(hooks).
c) Hook kernel32, redirecting it to the allo-

cated memory.
d) Set an event toTRUE so the carrier knows it

has finished.
e) Await.

6) Run our code.
7) Stop our code withSuspendThread.
8) Write back the original code with

WriteProcessMemory.

9) Restore the original context with
SetThreadContext.

10) Resume the main thread of the packer with
ResumeThread.

The only point here is to ensure the buffer to redirect
the APIs will exist even if the main thread of the packer
terminates. This can be done by creating this buffer as
a named shared file mapping and opening it from the
carrier. This way, the buffer will not be released until
the carrier consents.

B. Locating the buffer where we have copied our code

Again, not a very good idea. Our code can be hid-
den inside the .reloc section of kernel32.... Indeed,
we can monitor all calls to APIs likeCreateFileA
trying to open our file and change their return to
INVALID_HANDLE_VALUE.

C. Code an emulator to jump over lots of instructions
at the API beginning

Works but it can also be used for cracking purposes. If
we are able to code an emulator which goes through
many instructions, even some anti-debug trick, we can
use it as Import Rebuilder.

D. Check the DLLs against the ones at the system
directory

The packer needs to do some calls to retrieve thisDLLs,
next it will open it. This will be evident in our logs (log
NtCreateFile).

E. Check the loaded DLLs against some hardcoded
checksum

Works, but is not compatible for all Windows versions.
The packer should be aware of any new DLL version,
note that Windows makes available security patches
every one month or so, some of them update the system
DLLs.

F. Analyse the first instructions of the API to see if
they are ”API-like” ones

What about these ones?

push ebp
mov ebp,esp
push -1

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

15

The CodeBreakers-Journal, Vol. 1, No. 2 (2004)

push dword ptr [ebp+4]
push dword ptr [ebp+8]

We can also generate API-like instructions, note that all
the previous ones can be inverted and so we can still eas-
ily log the input parameteres (in this case,add esp,16
undo all computations).

G. The vector AddressOfFunctions has values that are
outside the DLL image

Easy to defeat too. Link our logger with some instruc-
tions stored at the .reloc section of theDLL, .reloc
is not needed once theDLL has been loaded in memory
(there are more sophisticated methods,almost absolutely
undetectable).

In summary: our method is quite stealth.

IX. Conclusions, further research

In this article, we have introduced a new method to gain
insight information from heavily protected software. The
method is very stealth and yields enough information to
drastically reduce the time spent into cracking many hard
targets.

The main drawbacks of our method are:

1) Needs human intervention to analyse the logs.
2) Needs to be aware of all tricks we used in the

previous section.

Note that, since current anti-cracking software is not
aware of these attacks, (2) will only be an inconvenient
in the future.

Anti-cracking software should prevent from intrusions,
thus, further research should move on how to prevent
them. However, as we saw in the previous section, this
is not an easy task.

Final remark: everything explained in this article can be
coded in about two or three weeks (with ”moderate”
effort).

References

[1] Havok, “Asprotected notepad”Codebreakers-Journal, First Issue
2004.

[2] Labir, E., “Adding imports by hand”Codebreakers-Journal, First
Issue 2004.

[3] Natzgul, “How to access the memory of a process”available at
Fravia.

[4] Kruse, T. “Processless Applications - Remote threads on Mi-
crosoft Windows 2000, XP and 2003”Codebreakers-Journal,
First Issue 2004.

Copyright c© 2004 and published by the CodeBreakers-Journal. Single print or electronic copies for personal use only are permitted.
Reproduction and distribution without permission is prohibited.

16

