

INSERT - ENGINEERS (V2.4)

WARNING

ALTHOUGH NOT CLASSIFIED, THIS PUBLICATION, OR ANY PART OF IT, MAY BE EXEMPT FROM DISCLOSURE TO THE PUBLIC UNDER THE ACCESS TO INFO ACT. ALL ELMS OF INFO CONTAINED HEREIN MUST BE CLOSELY SCRUTINIZED TO ASCERTAIN WHETHER OR NOT THE PUBLICATION OR ANY PART OF IT MAY BE RELEASED.

Issued on Authority of the Chief of the Land Staff

OPI: DAD 6

2000-03-01

LIST OF EFFECTIVE PAGES

Insert latest changed page; dispose of superseded pages in accordance with applicable orders.

NOTE

The portion of the text affected by the latest change is indicated by a black vertical line in the margin of the page. Changes to illustrations are indicated by miniature pointing hands or black vertical lines.

Dates of issue for original and changed pages are:

Original	0	2000-03-01	Ch	2
Ch	1		Ch	3

Zero in Change No. column indicates an original page. Total number of pages in this publication is 159 consisting of the following:

Page No.	Change No.	Page No.	Change No.
Title	0		
ii-iv	0		
8-1 to 8-155	0		

Contact Officer: DAD 6

TABLE OF CONTENTS

PART 8 - ARM INSERT	8-1
TAM - 805 ENGINEERS PLANNING DATA AND ORDERS	8-1
805.01 - Engineer Vehicles and Trailers Characteristics	8-1
805.02 - Threat Engineer Equipment	8-5
805.03 - Obstacle Crossing Capabilities of Main Battle Tanks	8-11
805.04 - Combat Engineer Regiment Command	
Radio Net Diagram	8-13
805.05 - Densities of Common Materiel	8-13
805.06 - Weight of Common Defence and	
Construction Materiel	8-14
805.07 - Engineer Estimate	8-14
805.08 - Flocark	8-17
805.09 - Engineer Orders – Execution Paragraph	8-19
805.10 - Briefings	8-22
805.11 - Engineer Reconnaisance – General	8-24
805.12 - Route Reconnaissance	8-25
805.13 - Road Standards	8-31
805.14 - Drainage	8-32
805.15 - Surface Expedients and Trackway	8-35
805.16 - Road Repairs	8-36
805.17 - Safe Angle Of Repose and Safe Bearing Pressure	8-36
805.18 - Field Machines and Rigging	8-37
805.19 - Gap Crossing Reconnaissance Checklist	8-42
805.20 - Armoured Vehicle Launched Bridging	8-44
805.21 - Medium Girder Briging (MGB)	8-47
805.22 - Medium Raft/Medium Floating Bridging	8-60
805.23 - Military Load Class Tables	8-63
805.24 - Line of Communications Bridging – ACrow	8-67
805.25 - Mgb Overbridging	8-69
805.26 - Engineer Boats	8-70
805.27 - Aslt Boat Crossing Layout	8-71
805.28 - Ferry Site Layout	8-/1
805.29 - Counter Mine Eqpt	8-72
805.30 - Barrier Planning	8-13 9 75
805.51 - Canadian Wines and Venicle Wine Carrying Capacity.	
805.52 - Allied Scatterable Milles Data	0-70 9 70
805.24 Minefield Long Marking	0-19 0 01
805.35 Booby Trans	
805.36 Bridge Categorisation	
805.30 - Methods of Atk for Simply Supported Spans	8-85 8-86
805.38 - Methods of Atk for Continuous Spans	8-103
805.30 - Methods of Ark for Continuous Spans	0-103 8_121
805.40 - Cutting Charges for Round Steel Bar	0 121
and Steel Wire Rone	8-124
and been whe rope	0 124

TABLE OF CONTENTS (continued)

805.41 - Cutting Charges for Rectangular Timber	8-126
805.42 - Cutting Charge Masonry and Un-reinforced Concrete	8-129
805.43 - Cutting Charge Rectangular Steel	8-131
805.44 - Breaching Charges	8-135
805.45 - Borehole Charges	8-138
805.46 - Mined Charges	8-142
805.47 - Concussion Charges	8-147
805.48 - Explosive Digging	8-148
805.49 - Firing Circuits	8-148
805.50 - Water Sup	8-149
805.51 - Construction Materials	8-152
805.52 - Data Types	8-154
805.53 - Geospacial Products	8-154
*	

TAM - 805 ENGINEERS PLANNING DATA AND ORDERS

805.01 - ENGINEER VEHICLES AND TRAILERS CHARACTERISTICS

				DIMENSIC	DN (m)			SPE	MAX ED(km/h)		
Ser	Eqpt (Abvn)	Crew	Armt	L	W	Н	MLC	Rd	Cross Country	Ford Depth (m)	Remarks
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)
1	AEV Badger	3	2 x GPMG (one with AA mount)	8.93	3.25	2.57	50	62	40	w/o kit 1.20 deep fording 2.25 w/schorkel 4.00	Has dozer blade, scarifiers, winch, boom crane, and bucket
2	AVLB Beaver	2	Pers wpns 8 x smk dischargers	11.82 (10.56)	4.00 (3.3)	5.60 (2.56)	50 (37)	62	40	w/o kit 1.20 w/schorkel 1.70	Has 22 m br which spans 20 m Figures in brackets are for AVLB w/o a br
3	Carrier, Pers, Full Trk, M113A1 Cdn, w/Bulldozer, Earth Moving	1 dvr 8 pers		5.88	2.95	2.2	11	42.5			Max towing ld 7,272 kg External fuel tanks Earth auger
4	Truck, Fd Engr, 21/2 t, 6x6, MLVW	1		7.98	2.54	3.16	12	90			Winch Capacity 4530 kg Cable length 66 m Cable size 12.7 mm
5	Truck Pallet Loading, 6X6, 15 t (Kenworth C520)	2	Pers wpns	9.957	2.674	3.302	30				Max allowable payload 13,608 kg
6	Hy Engr Sp Veh (Western Star 4866S)	2	Pers wpns	10.566		3.296			-		Payload 15 t Pallet loading system with dump module Towing capacity 18 t
7	Truck, Tractor, 10 t, 6x6, HLVW	2	Pers wpns	8.2	2.426	3.255	15	90		0.8	Hauls semi-trl with engr eqpt

				DIMENSIO	DN (m)			SPE	MAX ED(km/h)		
Ser	Eqpt (Abvn)	Crew	Armt	L	W	Н	MLC	Rd	Cross Country	Ford Depth (m)	Remarks
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)
8	Truck, Med Floating Br Tpt/ Dismountable Flat Rack System, 10 T, 6x6 HLVW	2	Pers wpns	9.32	2.44	3.425	26	90	-	0.8	Carries MR pontoon
9	Crane, Truck Mounted, 60 T, 8x4 (Grove TMS 300B)	1	Pers wpns	13.4	2.44	3.3	36	82.9	-		Counter Wt 3,493 kg Cable length 152 m
10	Crane, Wh Mounted, 4x4, All Terrain, 20 t (Krupp KMK 2025)	1	Pers wpns	9.82	2.49	3.29	40	78	-		Lift capacities: on outriggers, 3.05 m reach 22,8 t on tires, 3.05 m reaches 7,900 kg on rubber tires over front, pick and carry 9 t
11	Tractor Wh Industrial, with Front End Loader and Backhoe (Case 590Supper L)	1	Pers wpns	7.112	2.438	2.718	11	42.3	-		With 4-in-1 loader bucket
12	Grader, Rd, Motorized, 6x4 (Champion 730R)	1	Pers wpn	8.433	2.553	3.353	14	43.5	-		Accessories incl rear mounted wing, ripper with 5 removable teeth and V-plough
13	Excavator, Multi- purpose, Wh Mounted (Case (Cruz Air) 1085B)	1	Pers wpn	9.195	2.438	3.861	30	45	-		
14	Excavator, (Case Drott 45 Cruz-Air)	1	Pers wpn	9.8	2.4	4.1	30	25			

				DIMENSI	ON (m)			SPE	MAX ED(km/h)		
Ser	Eqpt (Abvn)	Crew	Armt	L	W	Н	MLC	Rd	Cross Country	Ford Depth (m)	Remarks
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)
15	Tractor, Wh, High Mob, 4X4, Earth Moving Dozer (Zettelmeyer ZD- 3000)	1	Pers wpn	8.20	2.73	3.302	32	40	-	1.20	Winch cable length 84 m Max pull 20 t
16	Tractor, Wh, High Mob, Lder (Zettelmeyer ZL- 5001 F)	1	Pers wpn	9.550	3.0	3.35	32	55			Accessories – quick connect lifting beam, crane and forklift 4-in-1 bucket 3.5 m ³ capacity Snow bucket 6.0 m ³ capacity
17	Tractor, Low Speed, Full-Trked, Armd Cab (Caterpillar D6D)	1	Pers wpn	5.766	3.890	3.150	34	11	-		
18	Roller, Hy Duty, Self Propelled (Case W 602B)	1	Pers wpn	4.405	1.860	2.817	7				
19	ADI High Speed Engr Veh (MPEV)	1	Pers wpn	8.6	2.5	2.6		100			Incl front end loader and backhoeBucket capacity is 1.0 m ³
20	Loader, Scoop, 4x4, Articulated Frame Steer (Case MW24C)	1	Pers wpn	6.985	2.54	3.378	13	35.5			Ht without cab is 2.591 m 4-in-1 bucket 1.91 m ³ capacity Snow bucket 3.06 m ³ capacity
21	Lder, Scoop Type, Skid Steer, 4x4 (RAMROD 584)	1	Pers wpn	3.25	1.575	2.015		10			
22	Roller, Towed, Sheep's Foot Model – H Series	-	-	4.32	3.0						Grd pressure empty -105.45 t/m ² Grd pressure ballasted $-$ 168.72 t/m ² Length of feet $-$ 7 in No of tamping feet $-$ 104

				DIMENSIO	DN (m)			SPE	MAX ED(km/h)		
Ser	Eqpt (Abvn)	Crew	Armt	L	W	Н	MLC	Rd	Cross Country	Ford Depth (m)	Remarks
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)
23	Roller, Towed, Pneumatic Tire (WRT Model PT 13)	-	-	4.788	2.223	1.168					Ballast capacity – 3.4 m ³
24	Roller, Towed, Vibrating (Dynapac Model CH 47)	-	-	4.81	2.13	1.45					Working speed 3-6 kph Tpt speed 8 kph Suitable Towing Vehs: in gravel, sand, coarse moraine, clay and rock fill – tractor wt 3-6 t, 50-80 hp in dry sand, wet clay – tractor wt 8-12 t, 60-100 hp
25	Trl, Beaver Tail, Tilt Deck (BWS Model 21TT102)			8.69	2.59	.91		80	48		Total capacity 18,2 t
26	Trl, Beaver Tail, Tilt Deck (Craig Model TA-15)			7.8	2.6	.908					Total capacity 13,6 t
27	Semi-Trl, Lowbed, 35 t, Variable Deck Ht (Arnes 204-586- 01R)			13.411	2.591						Total capacity 35 t Fold down gooseneck Tandam axle Deck length 6.909 m
28	Mine Layer Mech (FFV 5821)	-	-	5.27	2.48	2.1	2	-	Max laying speed 7 km/hr		Hauled by HLVW with 8metal mine racks @ 90 mines/rack 720 total Suggested 4 pers to op Max plough depth 20 cm Minelaying Capacity: buried 300 mines/hr Surface 500 mines/hr Mine spacing 6, 7.5 or 10 m

805.02 - THREAT ENGINEER EQUIPMENT

Eqpt	Tech Characteristics	Issue Scale	Remarks
GMZ Armd Mine Layer	Speed of Laying: 200 mines in 20 min	3 - Div Engr Bn	Fully armd
PMR-3 Mech Mine Layer	Speed of Laying: surface: 10 km/h buried: 3 km/h Reld: 10-12 min	3 - MR and Tk Regt Engr Coy 3 - Front Engr Bde 8 - Army Engr Regt	Towed by BTR-152, which carries 180 mines, or by truck
BTM/BTM-3 Ditching Machine	Digs Ditch: 1.5 m deep, 1.0 m wide (top), 0.6 m wide (bottom), 0.4 m high parapet, at rate of 1120 m/hr	1 - MR and Tk Regt Engr Coy 2 - MR and Tk Div Engr Bn	Uses AT-T chassis

8-0	Eqpt	Tech Characteristics	Issue Scale	Remarks
	MT-55 Armd Br	Ld Capacity: 50 t Length: 20 m Max Span: 18 m Launch Time: 5 min Rec Time: 5-7 min	 -MRR Engr Coy -Tk Regt Engr Coy 	Scissor type br
B-GL-332-006/I	MTU-20 Armd Br	Ld Capacity: 50 t Length: 20 m Max Span: 18 m Launch Time: 5 min Rec Time: 5-7 min	1 - MRR Engr Coy 3 - Tk Regt Engr Coy	Scissor type br
₹P-001	TMM Scissor Br	Ld Capacity: 60 t Length of Unit: 10.5 m Set of 4 Units: 42 m Max Trestle Height: 3.2 m Launch and Rec Time: 45- 60 min	4 - MR and Tk Regt Engr Coy 8 - Div Engr Bn	Mtd on KRAZ-255B

Eqpt	Tech Characteristics	Issue Scale	Remarks
PMP Pontoon Br/Ferry	Ferry: CI 60	18 - Div Engr Bn	Can be used with TMM with 11.5 m
	Br: 18 sects for 119 m Cl 60, or 191 m Cl 20 Const Time: 7 m/min		overlap
IMR	Straight, "V", or angled	2 -Div Engr Bn	Armd and NBC protected
Armd Engr Tractor	3.5 m blade		
A	Bucket: 0.15 m ² Jib and Grab: 4000 kg lift		
COLOGICA H			
BAT M/BAT-2	Dozer, 2 sects,adaptable	1 - MR and Tk Regt Engr	Based on AT-T chassis
Trked Engr Veh	from straight to "V" blade	Coy	
	2000 kg rotary crane	8 - MR and Tk Div Engr Bn	
AUTOAL	mounted on rear		
	Max ford: 0.8 m		

8-8	Eqpt	Tech Characteristics	Issue Scale	Remarks
	KMT-5 Plough/Roller	Speed of Clearing: 8-10	9 - Tk Regt Engr Coy	Rollers and plough cannot op at same
В-		km/h Width of Path Cleared per Trk: 0.8 m Can survive 8 to 10 5/6 kg explosions	3 - MR Regt Engr Coy 3 - Tk Bn	time Rollers primarily for recce Has chain sweep
GL-332-006/FP-0	KMT-6 Mine Plough	Speed of Clring: 10 km/h Path Clred: 0.1 m deep, 0.7 m wide	27 - Tk Regt Engr Coy 9 - MR Regt Engr Coy	Ploughs normally remain mtd on tks.
)01	BTU Dozer Blade	110-250 m ³ /hr Max Width: 3.4 m Max Slope: 55%	3 - MR and Tk Regt Engr Coy	3 blades per tlr

Eqpt	Tech Characteristics	Issue Scale	Remarks
GSP Trked Folding Ferry	2 GSP vehs reqr to form one Cl 50 GSP ferry Assy Time: 3-5 min Speed in water: 8 km/h	6 - Div Engr Bn	No limit to no of spans which can be joined Must have at least 1.2 m draft and max 0.5 m bank ht at loading site
PTS Trked Amphibian	Capacity: 5t land, 10t or 70 pers water Water spd: 15 kph max (takes 70% longer with PKP) Max slope climb: 27% when fully loaded	12 PTS + 3 PKP Tlrs in Div Engr Bn	Use of PKP tlr allows simultaneous crossing of gun and prime mover
MDK-2 Trked Ditching Machine	1.5 m depth per pass, max of 3 passes Digs 300 m ³ /hr, or 50 m/hr of AT ditch	2 - Div Engr Bn	Mtd on BTR 50 PK

8-1	Eqpt	Tech Characteristics	Issue Scale	Remarks
0	UR-67 Mine Clearing Rocket	Clears 2 lanes 50 m by 7	2 - Div Engr Bn	
		m before reloading		
	de tradition de la constante de	75-90% clr		
	DIM Mine Detector	Sweeps at 14 km/h, 2.2 m	3 - Div Engr Bn	
в		width, 0.25 m deep	_	
-G	- <u></u>	Auto-stop on detecting		
Ľ-3		mine.		

APC	Α	В	С	D	Е	F	G	Н	Ι	J	K	Remarks
MODEL	Water	Water	Ht to	Width	Max	Grd	Max	Max	Max	Max	Grd Pres	
	Crossing	Ford w/o	Clr (m)	to Clr	Gap	Clear	Step	Tilt	Grad	Rd	(kg/cm ²)	
	Snorkel or	prep (m)		(m)	(m)	(m)	(m)	(%)	(%)	Speed		
	with prep									(kph)		
	(m)											
APC (whee	led)					_	_					
LAV-25	Amph	Amph	2.70	2.5	2.06	.5	.5	40	70	100.0	unk	Wt: 12.8
AVGP	Amph	Amph	2.53	2.53	unk	.39	.51	30	60	101.5	unk	Wt: 10.5
BISON	Amph	Amph	2.21	2.50	2.06	unk	.51	30	60	100.0	unk	Wt: 12.8
BTR-80	Amph	Amph	2.36	2.90	2.0	.48	.5	30	60	80.0	unk	Wt: 13.6
APC (track	ed)											
M113A2	Amph	Amph	2.52	2.69	1.68	.43	.61	40	60	67.0	.56	
M2	Amph	Amph	2.98	3.2	2.54	.43	.91	40	60	64.0	.54	
Bradley												
AAV7A1	Amph	Amph	3.27	3.27	2.44	.41	.91	60	60	64.0	unk	Wt: 22.88
Marder 1	2.6	1.5	2.99	3.24	2.5	.44	1.0	30	60	75.0	.83	
Spartan	Amph	1.07	2.26	2.25	2.05	.36	.5	35	60	80.5	.34	
Warrior		Amph	2.80	3.04	2.5	.49	.75	40	60	75.0	.65	
AMX-	Amph	Amph	2.57	2.78	2.1	.45	.7	30	60	65.0	.53	
10P	_											
BMD-2	Amph	Amph	1.98	2.63	1.6	.45	.8	30	60	70.0	.57	
BMP-2	Amph	Amph	2.46	3.15	2.5	.42	.7	40	60	65.0	.60	
BMP-3	Amph	Amph	2.46	3.30	2.5	.45	.8	30	60	70.0	.62	
MT-LB	Amph	Amph	1.87	2.86	2.41	.40	.61	30	60	61.5	.46	
AEVs												
M9 ACE	Amph	1.83	2.70	2.80	1.58	.44	.46	20	60	48.3	.64	
M728	2.44	1.22	3.26	3.70	2.51	.38	.76	30	60	48.2	.89	
CEV												
Leopard 1	4.0	1.20	2.69	3.75	3.0	.44	1.15	30	60	65.0	.86	
CET	Amph	1.83	3.41	2.92	2.06	.46	.61	30	60	52.0	.44	
AMX-30	4.0	2.5	3.0	3.5	2.9	.45	.9	30	60	65.0	.90	
CET												
IMR	unk	1.4	3.37	3.48	2.7	.43	.8	30	60	48.0	.76	
AVLBs	•											
M60		1.22	3.90	4.01	2.59	.36	.91	unk	30	48.0	.92	Span: 18.28
Leopard 1	1.70	1.20	3.55	4.0	2.50	.42	.7	30	60	62.0	.97	Span: 20.0
Chieftain		1.07	3.93	4.17	3.0	.5	.9	30	60	48.0	.90	Span: 22.86
MTU-20		1.40	2.87	3.27	2.7	.43	.8	40	60	48.0	.76	Span: 12.0
NOTES: 1.	. Wts are expresse	d in metric to	nnes and rela	te to the cbt	wt of the ve	eh.						
2. Span is e	xpressed in meters	8.										
Source: Jar	e's AFV Recogni	ition Handboo	k, Second Ed	dition 1992.								

805.04 - COMBAT ENGINEER REGIMENT COMMAND RADIO NET DIAGRAM

805.05 - DENSITIES OF COMMON MATERIEL

Ser	Mat	Density (t/m ³) metric
		tonne/metre ³
(a)	(b)	(c)
1	Aluminum Alloy	2.56 - 2.64
2	Brick or Rubble, Compacted	1.6
3	Bricks, Close Packed	1.83 - 2.08
4	Brickwork in Cement Mortar	1.76
5	Chalk, Solid	1.79
6	Clay	1.83 - 2.0
7	Coal	1.28
8	Coke	0.74
9	Concrete, Fresh Mixed, Mass	2.64
10	Concrete, Set, Ltly Reinforced	2.3
11	Earth, Dry to Sodden, Loamy	1.28 - 1.6
12	Gravel and Sand Mixed	1.76
13	Iron, Cast or Wrought	7.20 - 7.67
14	Masonry, Bonded	2.24 - 2.56
15	Sand	1.92
16	Steel	7.84
17	Timber	0.5 - 1.2
18	Water	1.0

805.06 - WEIGHT OF COMMON DEFENCE AND CONSTRUCTION MATERIEL

1.	. <u> </u>	t of Plain Wire									
	a.	Standard Wire Ga	age	8	10	1	2	14	1	6	18
	b.	Wt (kg) of 100 m	L	11.1	7.4	4	.6	2.5	1	.5	0.9
	c.	Length (m) of 51	kg	457	686	10)97	2012	2 33	53	5486
	Coil										
2	. W	t of Nails								_	
	Leng	th of nail (mm)	25	51	76	10)2	127	152		
	No p	er kg	1760	269	117	6	6	44	31		
3	3. Wt of Barbed Wire, Corrugated Galvanized Iron (CGI) and Pickets										
			.,	0				. (-			
[Ser		Item	8			U	nit	Í	Nt ((kg)
	Ser (a)		Item (b)	8			Uı (e	nit c)	Í	Nt ((d	(kg) l)
	Ser (a) 1.	Barbed Wire	Item (b)	8			U1 ((nit c)		Wt ((d	(kg) l)
	Ser (a) 1.	Barbed Wire a. 100 m coils	Item (b)				U1 (0	nit c)		Wt ((d	(kg) l) 3
	Ser (a) 1.	Barbed Wire a. 100 m coils b. Concertinas	Item (b) (15 m)				Ui (d e e	nit c) a a		Wt ((d 1. 22	(kg) l) 3 .7
	Ser (a) 1. 2.	Barbed Wire a. 100 m coils b. Concertinas CGI Sheets, 0.66	Item (b) (15 m) 6m x 1.8	m			Ui (i e e e	nit c) ca ca ca		Wt ((d 1: 22 7.2	(kg) l) 3 .7 25
	Ser (a) 1. 2. 3.	Barbed Wire a. 100 m coils b. Concertinas CGI Sheets, 0.60 Pickets, Metal	Item (b) (15 m) 5m x 1.8	m			Ui ((e e	nit c) ca ca ca		Wt ((d 1: 22 7.2	(kg) l) 3 .7 25
	Ser (a) 1. 2. 3.	Barbed Wire a. 100 m coils b. Concertinas CGI Sheets, 0.66 Pickets, Metal a. 1.8 m long	Item (b) (15 m) 5m x 1.8	m			Ui ((e e e e	nit c) ca ca ca ca		Wt ((d 1: 22 7.2 5.	(kg) 1) 3 .7 25 4

805.07 - ENGINEER ESTIMATE

(CBT EST IS COVERED IN DETAIL IN TAM 101)

NOTE: This table does not presume to be exhaustive. It demonstrates factors and deductions that may be applic to a generic engr est. The engr est will help to decide what type of obs should be used (and where), as well as how to gp ress to eff complete all asg tasks.

Ser	Factors	Deductions
(a)	(b)	(c)
1	En	
	- Likely en interference	- Protection reqr on task sites (incl sentries,
	(grd, air, NBC)	dress, protection parties)
	- En str and overall	- Secur (incl daylight work pol, reqr for
	intentions	concealment, dispersion, rad silence, etc)
	- En engr doc (obs	- Obs design (based on en breaching doc and
	design, breaching and	en engr eqpt aval). Design could incl
	crossing methods)	orientation (based on perceived en
	- En engr eqpt	approaches and objs)
		- Engr int reqrs
		- Breaching methods

Ser	Factors	Deductions
(a)	(b)	(c)
2	Friendly Forces	
	- Comd's overall intent	- Gives possible add ress aval (incl other
	for the battle and fmn	engrs, pnrs, etc)
	depl	- Aval of protection parties (from inf and
	- Integration of obs with	other arms elms nearby)
	dir fire plans at all levels	- Reqr for int
	 Depl of tps loc 	 Coord of medevac reqrs
	 Allied and other 	 Aval of info/int on area of ops
	friendly engrs	 Gpings for subordinate engr elms
3	Grd	
	Gen (consider the shape	- An eval of grd gen helps determine the
	of the grd and	possible approaches to be considered and
	hydrography,soil	gives a gen idea of how the grd will shape
	conditions, maj obs and	the tac plan
	rd network)	- Locs for sqn/tp har, caches, engr dumps,
		water pts, etc
		 Soil conditions will determine digging rates
		and therefore task timings
	- Approaches (Left,	- Approaches are eval based on the obs loc
	Centre, Right)	along the approach, the frontage that is
		possible, the usefulness of the approach (i.e.
		does it lead to a significant obj – either mine
		or the en's)
		- Possible en obs locs may be determined
		based on an eval of the approaches in to a
		sector
	- Grd dominating and	- Possible crossing locs
	maj obs on approaches	- Order of march (OOM)
		- Possibility of composite obs
		- Kess reqr
		- Gpings and tasks
		- Time reqr for breaching
		- Fire sp reqr

1. Grd is probably the most important factor in an engr est. FLOCARK is a very useful tool to eval grd from the engr pt of view. Realize that the engr est is not being conducted in isolation; it occurs as a part of the overall comd's battle procedure, and the two are inter-related.

2. In the def, the comd will eval the grd to determine likely en appoaches, rtes and objs. The comd will try and template the en's actions, and will use wargaming to eval various scenarios. Based on his msn he will depl his tps to counter the en. The engr eval of the grd and the tac comd will help decide obs locs and ensure the integration of obs dir and indir fires.

3. During the eval of the grd in a def engr est a no of possible obs might be put on the grd. Depending upon the level at which the est is being conducted,

these would then be ress and possibly gped into obs gps (sqn level) or belts (regt level). The plotting of indiv obs might be omitted in favour of simply placing obs gps or belts themselves.

4. In the off, the comd eval the grd to determine rtes, objs, and taskings to subordinate fmns. The comd will use his knowledge of the en to try and template the en's depl. The engr eval of the grd will be based on this template. Given the way the comd sees the en depl, how will the en depl his obs effort to sp the def?

Ser	Factors	Deductions
(a)	(b)	(c)
4	Ress Aval	
	 Labour Engr eqpt (Cl VII) Eqpt hy eqpt (Cl VII) Tpt Const and def stores (Cl IV) 	 This factor will resemble a shopping list (more or less), and will help estb gpings Combined with TIME AND SPACE deductions will be able to relate ress and time into capabilities (i.e. I have 24 tp hrs of labour aval, or I have 3600 m of AT ditch aval) Ress can also be described in terms of obs design (i.e. I have 2 km of Type C med density minefields)
5	Met	
	-Sunrise / sunset -Moonrise / moonset -Visibility and gen met conditions	 Hrs of daylight / darkness Reqr for TC, guides, and RVs Effects on pers and wpns systems Veh mob (particularly cross country mob) Reqr for rte maint
6	Time and Space	Eval of time and space can be along the same lines as for the tac est
7	Assessment of tasks	
	-Completed in tabular form -From grd analysis, list all the obs that must be completed and the ress reqr to complete them (i.e. tp hrs, AT ditch tm hrs, qty of mines, etc) -At sqn level obs planning resourcing will provide the qtys of pers, eqpt and stores reqr. List by obs gp	 Determine total eqpt and tps reqr (i.e. reqr 6 tps and 4 AT ditching tms) to complete tasks within time limits Phasing reqr? Estb of pri of work Shortfalls in pers, eqpt, and / or mines and expl (Cl V) can be ident Mod of design or elimination of some tgt sers to meet timings reqr? Const sequence Gpings

5. The order of consideration of Grd and Friendly Forces depends on the sit - either order is acceptable.

Ser	Factors	Deductions
(a)	(b)	(c)
	listed by tgt ser, or by sub- task (i.e. recce, setting out, fencing, laying, cache, tp har, protection)	
8	Crses open and selection of best crse	 For a sqn-level engr est, the crses open to you relate more to gpings and con rather than to specific obs. The sqn comd may choose between org his sqn along functional (each tp performing one type of task), or geo lines (each tp is resp for all obs within a certain sector), or using a combination of the two methods. At the tp level, the crses open may relate to choices between a no of different obs types to accomplish the desired obs effect for the given obs grp (i.e. do you accomplish the TURN with three minefields, or with two minefields and an AT ditch?). Crses open to the en would relate to various breaching methods or possible approaches (with us in the def), or to possible en obs designs (with us in the off).
9	Outline Plan	The outline plan is prep as per the tac est. A draft Obstacle Task Table (OTT) and/or obs resourcing table or sqn obs trace (giving obs gp) would also be incl in the COORD INSTRS sub-para. Similarly an obs gp exec matrix can be produced outlining the nec coord measures for obs emplacement in the BG area of ops.

805.08 - FLOCARK

1. FLOCARK is a graphical method used to analyse the terrain as it relates to mil ops. The seven step method is described by the mnemonic FLOCARK (Features, Lanes, Objs, Canalizing grd, Approaches, Rate, and Key terrain). Beginners may wish to use three overlays: Canalizing grd; Objs and Key terrain; and Approaches and rating. On the table below these overlays are referred to as overlays A, B, and C.

2. With experience pers will be able to adapt the process to suit their needs, and may find themselves making further adds to the traces, such as (for

example), noting significant water features which may also impede mov (i.e. streams, canals, irrigation ditches, etc).

Step	Term	Notes	Symbols	Colour	Overlay	Remarks
1	Features	Canalizing features along the FEBA		black	A	Features less than approx two km ² needs not be considered.
2	Lanes	Lanes between features on the FEBA		red or blue	А	Indicate the force size, which allows its use.
3	Objs	Obtained through templating, or given in orders.	\bigcirc	red or blue	В	
4	Canalizing Grd	Inside, and bordering outside of the op area		black	A	
5	Approaches	All areas not considered canalizing grd		red or blue	С	
6	Rate	Adjust objs to relate to the terrain. Disposns and bdry can be guessed at. Ident approaches with ltrs and rate with nos (A4, B2, C1, D3).	"A" "B" "C" "D"	red or blue	С	Frontages: Div: 4-7 km Regt: 2 - 4 km Bn: 1 - 2 km Coy: 0.5 - 0.8 km Pl: 0.1 - 0.2 km
7	Key Terrain	KEY TERRAIN (KT) Vital Ground (VG)	KT # VG # KZ # LZ #	blue blue black red	В	There may be a few KT "goose eggs", but only one VG can be designated.

Step	Term	Notes	Symbols	Colour	Overlay	Remarks
		Killing				
		Ground				
		(KZ)				
		Landing				
		Zone (LZ)				

805.09 - ENGINEER ORDERS – EXECUTION PARAGRAPH

DEPLOYMENT TO A NEW	MINEFIELD TASK
AREA PRIOR TO	
TASK	
 a. Gen Outline. Outline your intent and concept of ops, task, recce arrangements, prep and mov of har party, move of main body, prep for or rec from task, expected length of stay b. Gpings and Tasks Recce party (if moving to a task). Composition, timings, rte(s), task(s) Har Recce Party. Composition, timings, rte(s), task(s) Main Body. Action upon arr at new loc 	 a. Gen Outline. Outline your intent and concept of ops, tasks, setting out, minelaying party, sequence of laying, fencing party, TC, existence of lanes and/or gaps b. Gpings and Tasks² (1) Setting Out Party. comd, composn, detailed tasking(s) (2) Minelaying Party. Comd, gping, alloc of eqpt (3) Fencing Party. Comd, gping, alloc of eqpt (4) Comd, composn, detailed tasking(s) (5) Rte Closure Party. Comd, gping, alloc of eqpt, task(s)
 c. Coord Instrs (1) Timings. H hr, NMB/mov of main body, recce departs (if depl to a task), time mov complete (2) Mov. rtes, SP, rel P, OOM (3) RV. Recce party, har recce party, main body, regping of engr eqpt att (4) Action on Contact. On rte, in new loc (5) Action on Mor/Avn/Arty/Air Atk (6) Pri of Work upon Arr at New Har. Siting vehs, siting sp wpns, def plan, digging, depl of elms to task site(s) 	 c. Coord Instrs (1) Timings. Cache open, setting out commences first mine in the grd, task complete (2) Minefield design. Type, coords and loc of mine row marking pickets, lanes (loc, con, marking), gaps (loc, con, and marking) (3) Rte Closure. Firing of dmls to close rtes (where, when, on whose auth), issue of DND 913 (where, when, to whom)

DEPLOYMENT TO A NEW	MINEFIELD TASK
AREA PRIOR TO BEGINNING AN ENGINEER TASK	
 (7) Cam and Concealment. (Specific dir on stages). Cam nets/hessian, TI screens, scrim, EMCON (8) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), manning of rv (9) NBC. MOPP levels 	 (4) Reporting and Recording. Resp for reporting to Tp HQ and SHQ, who will complete minefld record, who is to sup info for completion (5) Mov. Rtes to/from caches, rtes in/out of minefield, check pts (6) Action on Contact. In minefield, on rtes, in cache (7) Action on Mor/Avn/Arty/Air Atk (8) Ln. Locs of units covering the minefield (9) Secur. Local def, lts/noise on site (10) NBC. MOPP levels
DML TASK	MINEFIELD BREACHING TASK
 a. Gen Outline. Outline your intent and concept of ops, task, prelim or res, CMs, alloc of sects to tasks, method of atk b. Gpings and Tasks. The fol must be detailed: 	 a. Gen Outline. Outline your intent and concept of ops, tasks, no of lanes to be attempted, method of breaching, res, and link to the tac plan b. Gpings and Tasks. The fol must be detailed:
 (1) charge prep party; (2) charge placement party; (3) firing circuit prep party; (4) firing pt prep party; (5) firing party; and (6) mining party 	 Mech/expl Breach: breaching site comds, lane comds, res, lane marking, and lane improvement/main, TC Hand breach: recce party, setting-out party, breaching party, pulling or expl charge party, lane marking, and lane improvement, TC
 c. Coord Instrs (1) Timings. Expl aval, NMB, start work, State 1/2, task complete (2) Method of Atk. Detailed design (3) Con of Dml. Issue of DND 913 (when, where, to whom), auth 	 c. Coord Instrs (1) Timings. NMB before, setting out, H hr, breach completed first veh through the minefield (2) Breach Design. No of lanes attempted, method of selecting lanes to be used, initial marking system (minetape, chem lts, wire).

DEPLOYMENT TO A NEW	MINEFIELD TASK
AREA PRIOR TO	
BEGINNING AN ENGINEER	
TASK	
to fire dml	alloc of ress for lane improvement
(4) Mov. Rtes to/from site, OOM	and NATO std marking, dir of
(5) IC. Stopping the and refugees	travel through the lanes
before firing, protection of dml	(3) RV. Regping prior to task
(6) Action on Contact On sta on	(plough tks, etc) - where, when
(b) Action on Contact. On He, on	(4) Action on Contact. In Inner,
(7) Action on Mor/Avn/Arty/Air	(5) Action on Mor/Avn/Arty/Air
(7) Action on Mor/Avii/Arty/An	(5) Action on Mor/Avii/Arty/An
(8) Reporting and Recording	(6) Action on Lane Closure by the
Changes in dml state, results	En
(9) Ln. With dml gd (if provided),	(7) Ln. With force in place, brhd
with friendly forces covering the	force
obs	(8) Secur. Local def, lts/noise on
(10) Safety. Sig used when firing,	site
life jackets over water	(9)NBC. MOPP levels
(11) Secur. Local def (NBC, air,	
water sentries), lts and noise on	
site	
(12) NBC. MOPP levels	
(12) NBC. MOPP levels BRIDGIN	IG TASK
(12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent	IG TASK (5) Secur. Local def, lts/noise in
(12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build,	G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries
(12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms	G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from
(12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build)	G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval)
(12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol	G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: 	G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; 	IG TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; 	IG TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; 	IG TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) therma baring and 	IG TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op 	IG TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Times Detect cornet to 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to bacin, br open NI T 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to begin, br open NLT 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp (8) Const Sequence (i.e.) Prop.
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to begin, br open NLT (2) Mov. Rtes, OOM (recce gp with br train to new her loc) 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp (8) Const Sequence. (i.e.) Drop nallets. TLARS, etc.
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to begin, br open NLT (2) Mov. Rtes, OOM (recce gp with br train, tp to new har loc) (3) Action on contact. On rte to 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp (8) Const Sequence. (i.e.) Drop pallets, TLARS, etc (9) Br Maint During Crossings
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to begin, br open NLT (2) Mov. Rtes, OOM (recce gp with br train, tp to new har loc) (3) Action on contact. On rte to 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp (8) Const Sequence. (i.e.) Drop pallets, TLARS, etc (9) Br Maint During Crossings. Equation (Start)
 (12) NBC. MOPP levels BRIDGIN a. Gen Outline. State your intent and concept of ops, day/ni build, and bldg tps. Outline in gen terms sect activities (for mov and build) b. Gpings and Tasks. The fol must be detailed: (1) Tp WO; (2) Recce Sgt; (3) all sects; (4) br train storeman; and (5) trkway laying op c. Coord Instrs (1) Timings. Depart, const to begin, br open NLT (2) Mov. Rtes, OOM (recce gp with br train, tp to new har loc) (3) Action on contact. On rte to site, on site. (4) Locs, New tp har, const site. 	(G TASK (5) Secur. Local def, lts/noise in har and at work site(s), sentries (NBC/air), aval of protection from other units in local area (if aval) (6) TC. Start of tp resp, method of con (7) Defile Marking. Details, resp (8) Const Sequence. (i.e.) Drop pallets, TLARS, etc (9) Br Maint During Crossings. Eqpt aval, methods, resp (10) NBC, MOPP levels

DEPLOYMENT TO A NEW AREA PRIOR TO BEGINNING AN ENGINEER TASK

MINEFIELD TASK

NOTES:

- 1. Orders for cbt tm ops may be found in the TAM 108.
- 2. Integrity of tps and sects should be maint wherever possible.

805.10 - BRIEFINGS

1. An important skill to acquire is the ability to properly brief. There are a no of different types of briefings, each intended for a different purpose.

Possible formats incl: the CP/DO handover brief, the sit brief, the int brief, the briefing of an est or plan, and the grd brief.

2. There are a no of gen rules to be fol regardless of the specific type of brief being presented. These rules incl:

a. christen the grd properly, and ensure that nothing is left out. Know the area that you are briefing - you should not have to look closely at the map to find a point that you are talking about;

b. present your mat in a logical sequence;

c. tailor your briefing to your audience, and avoid repeating info that is "common knowledge";

d. respect any timings that you have been given (i.e. if you are given five min to brief, do not take 10);

e. rehearse or mentally prep your brief;

f. make notes. Cue cards are ideally suited for this. No your cards; and

g. anything mentioned in the briefing of the sit should have been pt out in the christening of the grd.

3. Christening the Grd in a CP (From a Map):

a. use a logical sequence i.e. LEFT to RIGHT, NORTH to SOUTH);

b. start by pt out geo features (mountains, riv, canals, lakes, valleys);

c. mov on to man-made features (cities, towns, rd networks, br and rlyl lines, large power lines, etc);

d. ident key features which would come up in the body of your tac brief (i.e. if you are using a small town as the site for the sqn HQ loc, pt it out during the christening of the grd). Nothing that is mentioned during the orders should be overlooked in the christening unless everyone is already familiar with it;

e. where con features are related to a piece of terrain (i.e. a handover line based on a hwy), pt out the physical feature during the christening of the grd; and

f. unless you are briefing from a sketch, or the conventions for map making have been radically altered, there is no reqr to indicate that NORTH is at the top of the map.

4. Christening the Grd at the Task Site:

a. find a good loc where the best pt of obsn can be reached (taking into account the tac sit), and arrange the pers recv the brief so that they can see you and the grd;

b. orient your map to the grd, pt out NORTH, give the GR where you are presently loc, and pt it out on the map;

c. from this pt on use the map sparingly; you have the best possible briefing aide in front of you - the actual grd you will be working on;

d. use the map to pt out various features which might have tac significance (i.e. that rd 300 m to your front that is the handover line between the Div Recce Regt and the Bde Recce Sqn); and

e. use proper tgt indication tech to ensure that the people you are briefing are seeing what you are trying to pt out.

5. **The DO Handover Brief**. The sequence of the DO handover brief is as fol:

- a. En:
 - (1) units in contact;
 - (2) activity which can affect the local sit;
 - (3) other activity; and
 - (4) conclusions covering crses of action open to the en.
- b. Own Sit
 - (1) loc of fwd elms;
 - (2) loc of units, HQ and bdrys;
 - (3) str or effectiveness "two down" of units under comd;
 - (4) brief description and results of ops during the pd of report;
 - (5) impending movs or regp; and

(6) conclusions incl suggested crses of action within comd's intentions and dir.

6. **The Sit Brief**. The aim of the sit brief is to update the comd (or mbrs of his staff). The info should be presented in a meaningful, concise manner. DO may be given little or no adv wng of the reqr to brief.

- 7. The format to be fol is:
 - a. state the time pd covered by the briefing;

b. start with any info (three pts is the max) of extreme importance to the comd. If the briefing is interrupted or the comd is called away, he will still have the most important info aval to him;

c. present the events from LEFT to RIGHT and FRONT to REAR through the are of resp (e.g. from covering force to the res). Give current locs, dispositions, tasks and activities of units, en locs and activities. Then deal with the flanks in the same manner; and

d. incl any other pts of current interest, incl maj problems of empl or deployment, atts and dets, air activity, admin problems, etc.

8. If info or int from higher HQ is mentioned, ident the source and state whether the info is factual or the result of a deduction. Neg info is often important, and should be mentioned when applic. When relating an event to the map, pin-pt the loc referred to and give the time of the event.

9. Briefing the problem before presenting the est and/or the plan:

a. christen the grd (incl any con measures that are related to a feature on the grd);

b. outline the bdrys of your fmn and ident the flanking units;

c. discuss the depl of the fmn (i.e. the bde is def two bns fwd, with one bn in depth);

d. discuss the en - where is he, in what str, and what do we expect him to do;

e. brief the comd intent (remember Intent - Purpose - End State);

f. state the problem to be answered (i.e. the problem given to me was to prep an est for the CS Sqn sp the RCD BG in the def; and

g. present the est or the outline plan as reqr, starting with your msn analysis.

805.11 - ENGINEER RECONNAISANCE – GENERAL

1. Tips for Conduct of Recce:

a. always dir recce effort towards msn. If time is limited, pri recce tasks and select rtes accordingly;

b. detail a list of ques to be answered/decisions to be made during recce;

c. make max use of hels and air photos; and

d. conduct a thorough map est before departure, and be ready to cfm pts that had come up while you reviewed the map.

RECCE PLAN CONSIDERATIONS				
a. Aim of Recce.			e. Eqpt reqr.	
b. Time Aval:			f. Suitable	
(1) recce report to be	completed by; and		vantage pts.	
(2) report submitted t	o whom.			
c. Restrictions. Day	light recce, rtes, specif	ic timings.	g. Pri sites to	
d. Secur - loc protecti	on aval.		be visited.	
	STD RECCE CHEC	CKLIST		
a. Assorted	d. Mine detector	g. Recce	j. Compass.	
stationary incl recce	and prodders.	Boat.		
proforma.				
b. Maps:	e. Tools:	h. Engr	k. Measuring	
(1) gen maps of the	(1) pliers;	Recce Suite:	Tapes:	
area,	(2) wire cutters;	(1) computer;	(1) 30 m	
(2) rd and br maps;	(3) pick;	(1) (2) laser	tape,	
and	(4) shovel; and	binoculars;	(2) two 3 m	
(3) cross country	(5) axe	(2) (3)	tape, and	
mov maps.		digital	(3) ball of	
		camera; and	string.	
		(3) (4)		
		GPS.		

c. Two rolls of mine	f. Two flashlt.	i. Came	ra	1. 12 wooden	
marking tape.		Polaroid stakes ar		stakes and	
0 1				chalk.	
F	ENGR RECCE CHE	CKLIST			
a. Rds. Classify all	g. Barriers to En Mo	v.	l. Co	nst Sites.	
rds in and out of task	Describe natural or an	rtificial	Report drainage,		
site.	barriers and sites for	const or	WS, power sup,		
	improvement comple	te with	earthwork, eqpt		
	work ests.		being used, access,		
			acreage, and soil		
			condi	tions.	
b. Brs, Fords, and	h. Streams. Give a g	en	m. A	ny other info	
Ferries. Classify all	decription of width, d	lepth,	of im	portance.	
within the area of	banks, approaches, cl	naracter			
tasking incl possible	of bottom, navigabili	ty, and			
bypass for existing	possible crossing site	s.			
crossings.					
c. Obs to Mov.	 Def Posns. 		n. En	ıgr Eqpt.	
Report all natural			Record data on		
and artificial obs incl			rock crushers,		
dmls, mines, and			sawm	sawmills, garages,	
booby traps.			mach	ine shops,	
			black	smith shops,	
			or any	y other	
			facilit	ties or eqpt	
d. Terrain. Report	j. Bivouac Areas. G	ive	o. Ut	il. Give	
gen nature, ridge	details on entrances,	soil,	detail	s on water,	
system, drainage	drainage, sanitation, a	and	sewag	ge, elec, and	
system incl	concealment.		gas ut	til aval.	
fordability, forests,					
swamps, and areas					
suitable for mech					
ops.				, C'	
e. Engr Mats.	k. POL Storage and	Eqpt.	p. Po	orts. Give	
Report rd mat, br	Give details on what	eqpt and	detail	s on wharves,	
timbers, lumber,	now much storage.		sunke	en obs, cargo	
steel, and expls.	handling		ing facilities,		
			storag	ge facilities,	
f WD			աս դ	<i>n</i> 168.	
I. WP. Recommend loss					
Recommend locs.			1		

MOBILITY SP

805.12 - ROUTE RECONNAISSANCE

1. The purpose of the recce must be clear. There are two types of rte recce tasks:

	TAC RECCE		TECH RECCE
a.	This may be limited to:	a.	The purpose may be to:
	(1) Width (one way/two way		(1) Assess the capability
	with difficulty, etc.),		of an existing rd,
	(2) Surface in terms of		(2) Determine the
	trafficability having regard to		improvements reqr to bring
	weather at the time, and		it to a particular std, and
	b. Ld capacity (normally		(3) Prep a rd denial prog.
	governed by br MLC).		
b.	However, the fol add info may		
	be reqr:		
	(1) Loc and extent of		
	damage by en action,		
(2) Loc and probable extent			
	of mined areas,		
	(3) Visibility from en posns,		
	(4) Critical pts,		
	(5) Temp br or crossing		
	sites,		
	(6) Locs of aval ress, and		
	(7) Essential rep work.		

2. **Reports**. The fol reports should be used to report re recce info by rad/data (voice templates for these report are incl in this TAM under Reps and Rtns. Data formats are include in Engineering Command and Control (ECCO):

NAME OF REPORT	NAME OF REPORT
E110A Rte Recce Order	E111A Rd, Br and Tunnel Recce Order
E110B Rte Recce Report	E111B Rd, Br and Tunnel Recce Report

3. **NATO System**. Utilizing the rte recce info, the NATO system is used to classify the rte. The NATO system has two parts: rte and rd classification.

 a.
 Rte Cl. This is the overall cl of the rte and consists of four elms:

 (1) Min width of rd (m)
 (3) MLC of the rte, defined by its weakest pt or sect

 (2)Type:X = All weather;
 (4) Restrictions if any

 Y = Limited all weather;
 Z = Fair weather

 (5) Example: 10.5/X/60/4 refers to an all weather, Cl 60 rte, rd width

(5) Example: 10.5/X/60/4 refers to an all weather, Cl 60 rte, rd width 10.5m with a hight restriction of 4m

b. **Rd Cl**. Each sect of rd is classified using a six-part formula. The elms of the formula are described at para 4.

(1) Example. B g s (f?)3m/5/r (6.2km)(W) denotes a rd with limiting factors, steep gradients, rough surfaces, doubtful foundations, 3m travelled way/5m across shoulders, stabalized, crushed rock or coral, 6.2m long and subj to flooding.

c. **Brs**. Data on brs is recorded on a trace using the symbols described below.

d. **Obstructions**. Obstructions are indicated by adding "(Ob)' to the rd formula. Details are recorded using the symbols described at para 4. The fol normally constitutes an obstruction:

- (1) overhead clearance less than 4.25m;
- (2) reductions in rd widths which limit tfc capacity e.g. craters;
- (3) gradients of 7 % and over;
- (4) curves with less than a 30m radius; and
- (5) fords and ferries.

e. **Recording**. Data should be recorded during the recce on a trace (example below). If recce data is fwd by rad/data utilizing reports at para 2 then a trace is fwd seperately.

f. **NATO Route Report**. Rte cl reports are made in the format below which may also be used for other tech reports.

8. Obs	tructions:			
Ser	Particulars	GR	Rd Sect	Remark
0 E				
9. Enc	(Overlays, maps, sketches, etc)			
Signatı	ire			

4. Symbols for Road Classification Formula

SER	ELM OF FORMULA	SYMBOL	MEANING
(a)	(b)	(c)	(b)
1	Prefix	A	No limiting factors
-		В	One or more limiting factors
2	Limiting factors:		
а	sharp curves	'c'	Radius less than 25 m
b	steep gradients	'g'	Gradients of seven percent or over
с	poor drainage	'd'	Inadequate or blocked drainage
d	weak foundations	'f'	Unstable, loose or easily displaced
e	rough surface	's'	Likely to reduce convoy speed
f	excessive camber superelevati on	'j'	Likely to cause hy veh to slide or drag toward rdside
g	doubtful conditions	?	Indeterminate or doubtful conditions expressed with ? and (), e.g. (f?)
h	shoulders	-	No symbol but written reports should specify
3	Width	?m/?m	Width travelled way/width including shoulders
4	Const mat:		
а	type X rte	'k'	Concrete
b	type X rte	'kb'	Bituminous or asphaltic concrete
с	type X rte	'p'	Paving brick or stone

	SER	ELM OF	SYMBOL	MEANING		
		FORMULA				
(a)		(b)	(c)	(d)		
	d	type X rte or	'rb'	Bitumen penetrated macadam,		
		Y rte		waterbound macadam with		
				superficial asphalt or tar cover		
	e	type Y rte	'r'	waterbound macadam, crushed rock		
				or coral		
	f	type Y rte	1'	Gravel		
	g	type Y or Z	'nb'	Bituminous surface tmt on natural		
		rte		earth, stabilised soil, sand-clay etc.		
	h	type Z rte	'n'	Natural earth stabilised soil, sand-		
				clay, shell, cinders etc		
	i		'b'	Bituminous const. To be used alone		
				only when type of bituminous const		
				cannot be determined		
	j		'v'	Various other types not mentioned		
				above		
	5	Length	(?2km)	Length of sect may be added if		
			(01)	desired		
	6a	Obstructions	(Ob)	Symbol at end of formula indicates		
	1	9		existence		
	b	Snow	(1)	Reg, recurrent and serious snow		
	0	Flooding		Pag flooding which impedes the		
	C	Tiooding	(**)	Reg flooding which impedes the		
5	. Rt	e Recce Conver	ntional Signs			
		\sim	Sharp cur	ve(radius in ft or m)		
	25m	>				
	>	14%	Steep grad	le, arrows pt up hill, grade in percent		
		. 1	(length of	arrows may show length of grade		
	10-12	%	when scal	e allows)		
	7-10%					
	4m > <					
			Constricti	on (width in ft or m)		
			Arch cons	triction (width [left] and height [right]		
	4m $3.5m$ in ft or m)					
		$\langle \rangle$				
		· <u> </u>	-			

5m4m	Underpass constriction (width [left] and height [right] in ft or m)
	Bypass – easy
	Bypass – difficult
	Bypass – impossible
0	Level crossing
$3.5m \underbrace{30}_{3m} 6m$	Br cl (top segment) overhead clearance [left] width [underneath] length [right]
\langle	Limit of sector
(B2019)	Civ or Military Rte Design Notation
נג ↑ גג ↑↑ גג ↑↑	Cover (deciduous [left] evergreen [right])

<u>د د</u> ۲۴۴ د <u>د</u> ۲۴۴ ۴۴۴	Cover (woods)(deciduous [left] evergreen [right]. Arrow denotes possibility of driving off the rd	
	Ferry. Type and seasonal limitations [top]. Capacity [centre]. Crossing width [bottom] A= Automobile P = Pax	
1.0/x 2.5/G/0.4	Ford. Current vel m/s and seasonal limitations [top]. Width. Nature of bottom. Depth [bottom]. Approach easy [left]. Exit difficulty [right]	

805.13 - ROAD STANDARDS

1. Rd Widths for Gen Purpose Rds

SER	SPECIFICATION	NORMAL TFC (m)	TRKS FOR LT VEH (m) (1)
1	Single Tfc Lane:(2)		
	a. absolute min	3.0 (3)	1.8
	b. desirable min	3.7 (3)	2.5
2	Double Tfc Lane		
	a. absolute min	6.0	3.6
	b. desirable min	7.3	4.7

NOTES:

4x4 veh up to 1/2 t ld carrying capacity. 1.

Passing places should be provided not more than 400 m apart. 2.

Tks reqr a min width of 4.5 m. 3.

2. Limiting Gradients

Ser	ClOf	Normal	Mountainous Country			
	Gradient	Country	Normal Tfc Tk		Lt Veh(1)	
				Transporter		
(a)	(b)	(c)	(d)	(e)	(f)	
1	Ruling	1 In 30	1 In 15	1 In 25	1 In 6	
2	Max	1 In 15	1 In 10	1 In 15	1 In 4	
NOTE: 1. 4x4 veh up to 1/2 t ld carrying capacity.						

1. 4x4 veh up to 1/2 t ld carrying capacity. NOTE:

Comparative Gradients 3.

Ser	Tangent	Percent	Angle Of Slope		Rise in m per km
			Degrees And Min	mils	
(a)	(b)	(c)	(d)	(e)	(f)
1	One in				

Ser	Tangent	Percent	Angle Of Slope			Rise in m
			Dogroos An	d Min	mila	per km
(a)	(b)	(a)	Degrees And Min			
(a)	(0)	(C)	(u)	0	(e)	(1)
2	1	100.0	45	0	800	
3	2	50.0	26	34	472	500
4	3	33.3	18	26	328	333
5	4	25.0	14	2	249	250
6	5	20.0	11	181/2	201	200
7	6	16.7	9	28	168	167
8	7	14.3	8	8	145	143
9	8	12.5	7	71/2	127	125
10	9	11.1	6	201/2	113	111
11	10	10.0	5	43	102	100
12	12	8.3	4	46	85	83
13	15	6.7	3	49	68	67
14	18	5.6	3	11	57	56
15	20	5.0	2	511/2	51	50
16	25	4.0	2	171/2	41	40
17	30	3.3	1	541/2	34	33
18	40	2.5	1	26	25	25
19	60	1.7	0	571/4	17	17
20	80	1.3	0	43	13	13
21	100	1.0	0	341/2	10	10
22	150	0.7	0	23	7	7
	200	0.5	0	171/2	5	5

805.14 - DRAINAGE

1. **Gen.** The aim of drainage is to keep the subgrade dry and to prevent the retention of water on the rd.

2. Discharge Calculations. Discharge is calculated by the fol formula:

2.8 ARI	$\mathbf{R} = \mathbf{run} \text{ off factor}$
$Q = \frac{10^7}{10^7} \times \frac{1}{f}$	F = slope factor
Where	I = rainfall intensity determined as 4% of
$Q = discharge in m^3/sec$	annual rainfall in 25cm or more, or 8% of
$A = catchment area in m^2$	annual rainfall less than 25cm

RUN OFF FACTORS			SLOPE FACTORS				
Ser	Type Of Surface	Value of R	Ser Avg Slope of Surface		Value of f		
(a)	(b)	(c)	(a)	(b)	(c)		
1	Asphalt pavements	0.80 - 0.95	1	1 in 200 or less	3.0		
	RUN OFF FACTO	SLOPE FACTORS					
---	--	---------------	-----	--	---------------	--	--
Ser	Type Of Surface	Value of R	Ser	Avg Slope of Surface	Value of f		
2	Concrete pavements	0.70 – 0.90	2	Between 1 in 200 and 1 in 100	2.5		
3	Gravel and macadam pavements	0.35 - 0.70	3	1 in 100 or more	2.0		
4	Impervious soils	0.40 - 0.70					
5	5 Impervious soils 0.35 – 0.60 with turf						
6	Pervious soils	0.10 - 0.45					
7 Pervious soils with 0.05 – 0.30 turf							
NOT above	NOTE : Values are for flat areas up to 1:50 slope. For ea degree or 2% above 1:50 add 0.1 to figures to a max of 1.0.						

3. **Ditch Size**. The cross sectional area of a ditch to tpt a given run off is calculated from:

$a = \frac{Q}{v}$	$Q = discharge in m^{3}/sec$ y = max permissible yel to prevent scour of
Where	particular soil in m/sec
$a = area in m^2$	

MAX PERMISSIBLE VELOCITY (v)						
Ser	Nature of Soil	Max Permissible				
		Vel (v) in m/sec				
1	Uniformily graded sand and uncohesive	0.30				
	silt					
2	Well graded silt	0.45 - 0.75				
3	Silty sand	0.6 - 0.9				
4	Clay	0.9 - 1.2				
5	Coarse gravel or cobbles or soil with	1.4 - 1.8				
	protection against scour by turf or other					
	means					

4. **Culvert Size and Positioning**. The total cross sectional area of culvert reqr to carry the discharge from a given ditch can be estimated as twice the

cross sectional area of the ditch (up to the high water mark). The outfall of culverts should extend 0.6m beyond rd embankments. Max cover over culverts is 0.3m or onehalf the culvert dia, whichever is larger. On gradients, ditch relief culverts should be spaced as fol: 1:12 slope – 100m, and 1:20 slope – 200m.

SLOPE OF BANKS NOT STEEPER THAN NATURAL ANGLE OF REPOSE OF SATURATED SOLL UNLESS LINED OR REVETTED

5.	Culvert	Details

SER	TYPES	SIZES	CONSTRUCTION	REMARKS
(a)	(b)	(c)	(d)	(e)
1	Pipe	0.20 m 0.30 m	Lap joints,	Usual sizes
	culverts-	0.45 m 0.61 m	staggered top and	aval: 0.20 m
	ARMCO	0.76 m 0.91 m	bottom. No	and 0.30 m.
		1.52 m 2.13 m	concrete reqr.	
2	Concrete	Up to 1.82 m dia	Open joint.	
	tubes		Concrete bed and	
			surround desirable.	
3	Drums 1821	Approx 0.61 m	Surround nec for	Improvisatio
		dia	protection (0.15 m	n.Ends cut
			concrete	out of
			preferable).	bitumen or
				fuel drums.
4	Stoneware	Up to 0.61 m dia	Spigot and socket	Pipes with
			joint. Over 0.45 m	over 6.10 m
			dia bedded in	or under
			concrete. Min	0.91 m
			cover: 0.61 m.	cover
				surrounded
				by 0.15 m
				concrete.
5	CI pipes	Up to 1.22 m dia	Cement mortar	Strong.
			jointing. Concrete	Suitable
			bed not nec.	where
				cover is
				small.

805.15 - SURFACE EXPEDIENTS AND TRACKWAY

1. Corduroy Rd/Plank or Slab Rd.

Transverse bearers at 0.90 m centres. Earth or gravel packing 0.90 m

2. Snow and Ice Rds

LD CAPACITY FOR ICE					
Ice Thickness (cm)	Capacity	Max Spacing			
3.8	Indiv soldier	20 paces			
5.1	Indiv soldier	5 paces			
10.2	Inf single file	20 m			
20.3	MLVW empty, LSVW lded, or 4.t veh with max axle ld of 2.74 t	20 m			
25.4 - 33	8 t veh fully lded, or MLVW lded	20 m			
30.5 - 38.1	Total veh wt 10 t	20 m			

LD CAPACITY FOR ICE							
Ice Thickness (cm)		Capacity	Max Spacing				
35.6 - 45.7	Total	veh wt 22 t or	20 m				
	HLV	W fully lded					
50.8 - 91.4	Total	veh wt 40 t	30.5 m				
3. Class 60 Trkwy	r						
CHARACTERISTICS		CARRIED ON CONVENTIONAL VEH/TLR	CARRIED ON TRKWY LAUNCH AND REC SYSTEM (Tlars)				
Dimensions of roll		15 m long, 4.6 m wide	50 m long, 4.6 m wide				
Wt		Roll - 2.4 t	Trl + 50 m of trkwy - 15.2 t				
Laying rate (1)		From tlr: 4 pers - 5 min By hand: NCO+10 pers - 30 min	3 pers - 5 min				
Rec rate (1)		FEL and NCO+10 pers - 30-40 min	3 pers - 15-20 min (2)				
NOTES: 1. Double timings at ni.							
2. Max of 25 m can be lifted using manual override.							

805.16 - ROAD REPAIRS

1. Rep to potholes:

- a. where possible, trim the hole square or rectangular with the edges neither parallel nor at right angles to the tfc flow, leaving the sides vertical and firm;
- b. remove all loose mat and water;
- c. refill with dry, hard mat (eg. 50 mm graded stone or bitumen), in 75 mm layers, compacting each layer by ramming; and
- d. finish off with a layer of smaller gauge mat watered and rammed. Leave the finished surface slightly proud.

2. Rep to Small Craters:

- a. cut the hole square and remove all loose mat and water;
- b. refill with 150 mm layers of rammed hardcore, or soil in sandbags alternating with 150 mm of well rammed earth (see below); and
- c. finish off as for a pothole.

SER	TYPE OF GRD	SAFE ANGLE OF REPOSE	SAFE BEARING PRESSURE (kPa)
(a)	(b)	(c)	(d)
1	Rock (Solid)	65°	800 To 2000
2	Chalk	45°	500 To 700

805.17 - SAFE ANGLE OF REPOSE AND SAFE BEARING PRESSURE

SER	TYPE OF GRD	SAFE ANGLE OF REPOSE	SAFE BEARING PRESSURE (kPa)
(a)	(b)	(c)	(d)
3	Gravel And Sand	30°	200 To 400
4	Sand And Clay	15°	50 To 200

805.18 - FIELD MACHINES AND RIGGING

1. Str of Ropes, Blocks and Shackles

SER	PURPOSE	FORMULa (1)
(a)	(b)	(c)
	Cordage	
1	Wt of natural fibre rope	d ² /15 kg per 100 m
2	Wt of man-made fibre rope:	
	A. Floating rope	d ² /20 kg per 100 m
	B. Non-floating rope	d ² /15 kg per 100 m
3	SWL of natural fibre rope in good	d ² /1000 T
	condition (2)	
4	Str factor relative to natural fibre rope:	1.0
	Grade 1 manila	2.5
	Polyamide	2.0
	Polyester	1.3
	Polyethylene	1.7
5	Polypropylene	0.4 d ² kg per 100 m
6	SWR	d ² /120 T
	Wt of SWR	
7	Safe Working Load (SWL) when in	9d
	good condition (3)	
8	Blocks, shackles and chains	18d
9	Dia of sheave of a block cordage dia d	3.5 d ² /1000 T
10	Dia of sheave of a block SWR dia d	d ² /100 T
	SWL on shackle pin, dia d	
	SWL on chain link, metal dia d	
NOTES	S:	
1.	dia(d) = dia in mm, t = tonnes.	
2.	Reduction factors in cordage:	
	a. Serviceable but not new 0.8	
	b. Knot or sharp bend 0.7	
	c. Uneven distr of stress 0.8	
	d. Water saturated natural fibre 0./	
3.	Reduction factors in SWR:	
	a. Damaged but serviceable 0.6	
	b. Sharp bends 0.7	
	c. Uneven distr of stress 0.6	
	d. With double-throated clamps 0.95	
	e. With buildog grips 0.75	

2. Safe Working Load on Blocks, in Tonnes

SER	ROPE DIA	BLOCKS FOR MANILA AND HEMP ROPE		BLOCKS FOR STEEL WIRE ROPE			
	(mm)	Snatch Block	Double Block	Treble Block	Snatch Block	Double Block	Treble Block
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	8	-	-	-	1.0	1.75	2.75
2	12	0.2	0.3	0.4	2.0	5.0	7.0
3	16	0.3	0.4	0.6	4.0	10.0	15.0
4	24	0.8	1.2	1.8	9.0	15.0	25.0
5	26	1.0	1.4	2.1	-	-	-
6	32	1.2	1.8	2.7	16.0	25.0	35.0
7	40	2.4	3.3	5.3	-	-	-

3.

A	Anch	iora	iges

SER	TYPE OF ANCHORAGE	CAPACITY
		(kg)
1	Single picket	350
2	1-1 picket holdfast	700
3	1-1-1 picket holdfast	900
4	2-1 picket holdfast	1,000
5	3-2-1 picket holdfast	2,000
6	Ordnance pattern holdfast	1,000
7	Baulk held by 1-1 picket holdfast (per holdfast)	600
8	Baulk held by 2-1 picket holdfast (per holdfast)	900

NOTES:

1. Angle of pull less than 30° above grd.

2. All figs given are for normal earth. For other types of earth the capacity of the anchorage should be multiplied as fol:

a. Stiff clay (drained) by 0.9

b. Avg soil and sandy clay by 0.7

c. Loose sand, shingle, or soft clay by 0.5

3. Limiting factor of ordnance holdfast is the shackle - 6,000 kg

Ordnance Pattern Holdfast and Picket Pattern Holdfast

4. Fd Machines

a. Maximum load (kN) on spars of various lengths and diameters

SER	SPAR MEAN		EFFECTIVE LENGTH OF SPAR (m)														
	DIAMETER																
	(mm)	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(j)	(k)	(1)	(m)	(n)	(p)	(q)	(r)	(s)	(t)
1	150	39.6	24.5	15.6	10.7												
2	175	67.6	45.	28.4	19.6	4.7											
3	200	99.8	65.8	47.0	33.3	24.5	19.6		<u> </u>								
4	225	138.1	106.8	76.4	54.8	42.1	31.3	24.5									
5	250	180.4	147.0	109.7	81.3	61.7	46.0	37.2	30.3		_						
6	275	228.3	194	154.8	119.5	88.2	66.6	55.8	48.0	37.2							
7	300	278.3	246.9	205.8	158.7	126.4	98.0	79.3	69.5	53.9	44.1		_				
8	325	338.1	300.8	256.7	208.7	170.5	133.2	107.8	85.2	74.4	58.8	51.9					
9	350	396.9	362.6	231.2	267.5	215.6	176.4	141.1	118.6	98.9	81.3	68.6	59.7		-		
10	375	460.6	431.2	386.1	332.2	277.3	227.3	182.2	153.8	128.3	108.7	89.1	79.3	68.6		_	
11	400		495.8	450.8	399.8	343.0	281.2	242.0	191.1	163.6	140.1	117.6	99.9	90.1	78.4		
12	425				471.3	420.4	355.7	292.0	247.9	202.8	177.3	151.9	126.4	113.6	100.9	89.1	
13	450					498.8	428.2	364.5	305.7	256.7	220.5	192.0	163.6	142.1	127.4	113.6	98.9
NOTI	ES: 1. E 2. E 3 A	ffective ffective	ive length means unsupported length, e.g. between restraining guys and foot ropes. ive length divided by the diameter must not be greater then 40.														

SER	TENSION (T)	TENSION		MI	N DIA OF S	PARS FOR (GYN (mm)	
	(kg)	IN LEG			Effecti	ive Length (m	l)	
		(T/5) (kg)	4.5	6	7.6	9.0	10.7	12.2
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
1	500	100	76	102	127	140	165	190
2	1000	200	89	114	127	152	165	190
3	2800	5600	102	127	140	165	178	203
4	4200	8400	114	140	152	178	190	216
5	6400	12500	127	152	165	190	203	229
NOTE: C	Colm (b) and (c) sl	hould be multip	led by 9.8m/	sec ² to obtain	Newtons (N))		

b. Spar Diams for Elevated Cableways and Gyns

Safe Concentrated Lds on Suspended Cables <u>c.</u>

SER	DIA OF	TENSION ON			SWL O	N CABLE (k	g)					
	SWR	CABLE		Span (m)								
	(mm)	(kg)	50	100	150	200	250	300				
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)				
1	8	0.55	90	80	75	70	65	65				
2	12	1.20	200	185	170	160	150	135				
3	16	2.10	350	330	310	285	265	240				
4	20	3.30	550	515	480	445	410	375				
5	24	4.70	790	720	690	640	590	540				

⁸⁰/₄ NOTES:

1. Colm (b) and (c) should be multipled by 9.8m/sec² to obtain Newtons (N)

2. Difference in level of the cable supports should not be greater than 1/25 of span.

3. The cable is assumed to be tensioned so that unloaded, the sag is 1/50 of the span. The sag with the load at the centre will be approximately 1/20 of the span.

4. Lds shown include safety factor of 6. Concentrated ld must incl wt of travellers and slings and an allowance of 10% for impact and wind.

B-GL-332-006/FP-001

805.19 - GAP CROSSING RECONNAISSANCE CHECKLIST

a. Eqpt and hy eqpt reqr	d. Marshalling Area (1-15	g. Home and far banks	i. Approaches Existing
(1) What	km from site)	(1) Crossfall/bank heights	(1) Surface
(2) Why	(1) Loc. In/out rtes (width, cl,	SAR	(2) Wh rte
(3) When	surface)	(2) Grd bearing capacity	(3) Slope
(4) Where	(2) Size of area	(3) Type of soil/drainage	(4) Trk rte
(5) How long reqr	(3) Cam/concealment	(4) Obstructions	(5) Drainage
	(4) Primary and altn rtes	(5) Anchorages	(6) Rd width
	(5) Capacity		
	(6) Restrictions		
	(7) Drainage		
	(8) Veh spacing		

b. Engr ress	e. Const site	h. Gap	j. Approaches To Be Constructed
(1) What	(1) Size	(1) Vegetation	(1) MLC
(2) Condition	(2) Stores area	(2) River tfc/boat clearance	(2) Maint reqr
(3) Qty	(3) Aval cover (grd andair)	(3) Slope to water	(3) Restrictions
(4) Where	(4) Vegetation	(4) Nature of bottom (pier	(4) Distance to access rtes
(5) Type	(5) Natural anchorages	placement)	(5) Width/turn arounds
(6) Size	(6) Type of grd (drainage and	(5) Water depth	(6) Alignment of approaches
	trafficability)	(6) Dams/ obstructions/	
	(7) In/out rtes for br train (incl	debris	
	turn arounds, obstructions)	(7) Current vel	
	(8) Prep reqr		
	(lab/eqpt/ress/time		
c. WA. Between WA and	f. Miscellaneous Data		k. Access Rtes. As above, plus
site	(1) Met conditions		critical pts/brs on rte (MLC, width
	(present/forecast)		and height restrictions) TC reqr
	(2) Hel landing pts		
	(3) Existing facilities in area		
	(gravel pits, power/fuel		
	pumping sta, rail/dock		
	facilities)		
NOTE: In add to all relev	ant info from above a site sketch	should incl grid ref, MLC or r	te, distance to WA, and loc of site
HQ/Tp CP.			

805.20 - ARMOURED VEHICLE LAUNCHED BRIDGING

1. **Capability**. The length of the bridge of the armoured vehicle launch bridge (AVLB) is 22 m; however, the width of the gap that can be spanned in normal ops is 20 m, due to a reqr of a one metre SAR on either side. Where existing abutments or hardened bank seats are aval the SAR reqrs can be reduced to 0.5 m per side. The max vertical and lateral bank differences for the launch and rec is 10%, a difference of 2.2 m, thus sites with a gradient greater than these limits should be avoided due to the large amount of prep work reqr. The Leopard I AVLB Chassis is ident to that of the MBT however, the br is only of an aluminum alloy const and is much more easily damaged by dir or indir fire, collision or bending.

Max normal gap and max bankseat height difference

- 2. Recce
 - a. Ensure that the gap is not more than 20 m;
 - b. the launch grade or crossfall does not exceed 1:10;
 - c. site is free from overhead obs;
 - d. all sites should have straight approaches and exits to avoid trk veh turning on the approach or br; and
 - e. consider the no of veh using the site.
- 3. Launch Time. Approx 2-3 min.

4. Laying Single Brs

a. Anti-tank Ditch. The end of br is to be 2/3 up on the berm.

b. Gaps Less Than 20 m. With uneven heights, avoid step-ups and drop offs to prevent damage to the br, in this case prep the home side.

c. **Side Slopes and Uneven Bank Elevations**. Max lateral declination (sideslope), horizontal elevation (far bank is higher) or depression (far bank is lower) is 10%. An unsuccessful launch or damage to the br will occur if this is exceeded.

d. **Tunnels or Arches**. The 4 m width must be estb. A min 3.57 m above the roadway, curbs and handrails must fall outside this as well.

e. **Overbridging**. The clearance underneath the centre of the AVLB br must be 20 cm. The clearance between the top of the AVLB br and any overhead structure must be equal to or greater then the tallest veh to cross, the width between the curbs and/or handrails must be greater than 4 m for the br to fit, as well to allow for foot tfc. The gap of the br being overbr must also be less than or equal to 21 m. Wood packing must be used on all overbr. Small packing on the home side, large packing on the far side.

5. **Tandem Launch**. Tandem launch should not gen be const due to the complexity of the op and close tolerances that must be achieved. The fol must be considered when launching the br in tandem:

a. **Prep measures**. A detailed recce of the obs must proceed the launch.

b. Att of a safety chains from the front jib to the br until br is anchored.

c. Four overlap sp blocks (packing) shall be provided as sp for the sp blade of the second and third AVLB.

d. Two 5X20X100 cm wooden planks to serve as sp for the ramp end of next br.

e. There is a reqr for guides and parties for the assembling of the mat for the const of an on shore anchor if the brs are to be laid into water whose current vel reqr such measures.

f. **Single Overlap**: The first br is launched is the std manner, and secur by means of retaining chains. Prior to the second br being launched onto the first br, two sp planks must be carried onto the first br and placed at the marked overlap.

g. **Double Overlap**: The third br is depl the same as the second br.

h. Limiting Values:

(1) The first br may be lowered into an obs with a max depth of 4.5.m, however the depth must not exceed:

(a) in still waters -2.5.m, and

(b) in flowing water: greater than1.5.m for currents up to

1.9 m/s or greater than 2.5.m for currents up to 1.7 m/s

(2) Max immersion depths for launched brs in flowing waters are as fol:

Area Exposed To Current	Current Vel	Ref Pt
1/4 of Br	1.9 m/s	Third Shackle Bracket
¹∕₂ of Br	1.7 m/s	Center Of Br

i. Area Exposed to Current. Brs launched in tandem in flowing waters shall be anchored if:

(1) more than $\frac{1}{4}$ of the br is immersed and the current vel exceeds 1.0 m/s, and

(2) less than 1/4 of the br is immersed and the current vel exceeds 1.5 m/s.

805.21 - MEDIUM GIRDER BRIGING (MGB)

1.	MGB	Ld	Class,	No	of	Bays	and	Length	

SER	MLC			SINGL	E SPAN				
		Single Sto	rey	Double S	torey	Double Storey LRS (2)			
		Max length (m)	No of	Max length (m)	No of bays	Max length (m)	No of bays		
			bays		(1)				
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)		
1	100(W)	9.8	5	27.4	10	31.1	12		
2	70(T)	9.8	5	31.1	12	45.7	20		
3	60(T)	-	-	32.9	13	-	-		
4	60	9.8	5	31.1	12	49.4	22		
4	50	9.8	5	34.8	14	-	-		
5	40	13.4	7	38.4	16	-	-		
6	30	15.2	8	42.1	18	-	-		
7	24	17.1	9	45.7	20	-	-		
8	20	18.9	10	47.6	21	-	-		
9	16	22.6	12	49.4	22				
NOTE	: 1. For c	louble storey brs the	e length of tw	vo ends of br (2e) mus	st be added.				
2. Data	a for LRS sh	ort post. For long r	ost, only M	LC 60.					

2. MGB Slope and Fatigue Data

SER	CON	FIGURATION	MLC	LENGTH	CF	ROSS SLC)PE	INITIAL FATIGUE	
						(Unlded)		LIFE	
1	Single st	orey	60	9.8m		1:10		10,000	
			70(T)	9.8m		1:20		5,000	
			100(W)	9.8m		0		7,500	
2	Double s	storey	60	31.1m		1:20		10,000	
			60(T)	32.9m		1:20		7,500	
			70(T)	31.1m		1:20		5,000	
			100(W)	27.4m		0		3,000	
3	Double S	Storey Link	60	49.9m	1:20			10,000	
	Reinforced Short Post		70(T)	45.7m	1:20			10,000	
			70(T)	49.9m	0			5,000	
			100(W)	31.1m	0				
4	Double S	Storey Two Span	60	51.2m		1:20		10,000	
	With Spa	an Junction	70(T)	51.2m		1:20			
			100(W)	36.6m		0			
3. Al	bbreviatio	ons							
AR		Angle of repose				LRP	Land	ing Roller Pedestal	
A(A') Loc of AR peg on fa			ur (home) bank			LNH	Laun	ching Nose Heavy	
Baseline Line at grd level join		ning FRB and RRB and extended to F and O, or			LNL	Launching Nose Lt			
		the line at grd level	joining RB and O and extended to F.				-		
BP		Bottom Panel	-			LNR	Laun	ching Nose Roller	

BSB		Bank Seat Beam			LNXG	Launching Nose Cross	
						Girder	
CRE	3	Centre Roller Beam			LR	Launching Roller	
DS		Double Storey			0	Pt distance R from	
						RB/CRB/FRB	
DU		Deck Unit			RB	Roller Beam	
Е		End of br			RRB	Rear Roller Beam	
ETP		End Taper Panel					
FRB		Front Roller Beam					
F (F	')	Loc of end of br pegs					
LRS		Link Reinforcement Set					
4.	Summary o	f Distances					
С	Height of w	vater below (neg) line joining banks (F-FRB) at a	L	LZ			
	dist. W from	n FRB.					
D	Height of b	ottom of ETP above line joining banks (F-FRB)	R	Max distance	distance from RB/CRB/FRB to tail of br		
	at a distanc	e W from FRB		during const			
G	Height of g	rd at 0 relative to baseline	Т	Height of Ta	il of br at	0 relative to baseline	
Н	Height of g	rd at F relate to baseline	V	Max dist. be	tween FRI	3/CRB and LRP for DS brs	
				during de-la	unch when	using a launching nose	
LZ	Br Length ((also F-F')	W	Distance of I	Front of E	TP from FRB at max	
				deflection			
5.	Dimensions	of MGB components					
a. I	Roadway wid	lth – 4.01 m	c. End of $br - 4.6 \text{ m} \log t$				
b. (One bay of b	r – 1.83 m long	d. Ramp unit – 3.1 m long				

6. Construction Times

SER	DETAIL	SINGLE	DOUBLE STOREY	DOUBLE STOREY							
		STORET	STORET	LRS							
		4 Bay	4 Bay 8 Bay 12 Bay		12	18	22	20			
					Bay	Bay	Bay	Bay			
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)			
1	Working Party	1+8	1+16	1+16	1+2	1+24	1+24	1+32			
					4						
2	Time By Day (hr)	1⁄2	3/4	1	1 1/2	1 3/4	2	2 1/2			
3	Time By Ni (hr)	3⁄4	1	1 1/4	2	2 1/2	3	3 1/2			
NOTE	NOTES: 1. For timings under various MOPP conditions may be calculated from TAM 503.										
	2. Time for work on approaches not in	icl.									
	Increase timings at difficult sites.										
7. De	sign of Single Spans:										
a. Rec	ce.	b. Launchin	ng Restrictions	d. Tfckin	d. Tfcking Restrictions.						
(1) Pla	ce AR pegs and measure AR span	(1) Up to 12	bays:	(1) Max s	(1) Max slope of 1 in 10 in any dir						
(2) Sel	ect br length and const	max crossfal	1 1 in 10.	(1 in 20 w	ith LRS	5).	-				
(3) Ma	rk br centre line and place pegs at F, F',	(2) Over 12	and all LRS:	(2) Max w	vater cu	rrent wh	en LRS				
RB/CF	RB/FRB/RRB and O.	no crossfall.		immersed	is betw	een 0.5	and 2.6 r	n/s			
(4) Usi	ng RB/CRB/FRB peg as datum, take	c. Windspee	ed limits.	with level	deck a	nd 1.0 m	/s with s	lope 1			
levels	at F, F', RRB and O, and water level.	(1) Below Fo	orce 6: no limits	s. in 20, dep	ending	on br ler	ıgth.				
(5) Ch	eck that slope of br is within limits.	(2) Force 6-8	3: anchor br.	(3) Only of	one veh	MLC 60) or abov	e on			
(6) Ent	er readings in design proforma and	(3) Over For	ce 8: do not	br at any o	br at any one time when LRS being						
comple	ete design of br using formulae.	launch.		used.							

Criteria For SS Bridges

Criteria For DS Bridges

Criteria Using LRS (11-22 Bays)

8.	MGB D	esig	n Profe	orma – S	Single	e Stor	ey fou	r to 1	2 Baj	ys		
Shee	t No		G	rid Ref			Site	Name .				
MLC	2		N	ame			Unit					
1.	Measure A	R spa	an AA' =	:	m	Loca	ation			F	RB	0
						Datu	ım Rea	ding (R	B)			\square
						Staf	f Readi	ng				
						Red	uced Le	evel				
2.	Enter from	the t	able belo	ow:								
	a. Bridge	e Sel	ected		bays	5 E	Draw gr	aph to i	find H	I or us	e form	ula:
	b. Overa	ll ler	ngth		m	H-H	E+ H	OxiLa	0.2*)	1		
	c. Nose	const	truction				0	mB				
	d. Dime	nsion	ı R		m	1	-	-		ineres.		
						There	tore H -	+	(. K	-)-	m
						(Ent	or M fr	om tabl	a hale			
						(Efft Up f		лп taDI ,	e belo	JW)		
3	Position Br	idae				BP	оо bay	Ŷ	RD	+ DU		
5.	I OSILIOII DI	luge				<u></u>			DI	+ D0		
			Pesiliph	ol RE Postar	I DI RB							
			tor jack.	n.z	nisenen -							
						0 to	12 hav	e				
						1910	12 Uay	S RD	1	R		I
				4		Ιc	н	M	T	н	M	T
			ne	1				101	-			<u> </u>
F		-	100	-								
-	Mb 21	-	-+ Max 2.	-								
			-	08	8 -+							
Dam						~ -	EINL		ICN			
Con	ditions for	much	lovnoh			/. Darr	FIINA	AL DES	non			
Con	1.8 hove or	lace	launen			Low	oning	Sustam	· DD	on DE	••••	
	2 No pools	1035	ndor DD			Laui	lennig	System	. KD DD	on PI	יום י	т
	3 Eront sec	ing ui	of I MI	removed		For	1 to 12	bave I	NYG	. OII DF	+ DC)
4	Taka la	vale		icilioveu		1.01	91012	Days L	in AU		•••••	
7.	*I ±0.2	for F	NISH 1a	unch								
	*L_0.2	for L	ACK lau	nch								
Ser	AR Snan	No	Overall	MLC	Nose	Dim	Dimen	sion N	ahove	haseli	ne thr	ուստի
Ser	nik Span	of	Length	mile	Const	R	Dimen	grour	d at l	RB and	10	ougn
		bays	Ŭ				Roller	Beam o	on BP	Rolle	r Bear	n on
		-						(m)		BP -	+ DU (m)
1	3.7-7.1	4	7.9	100(W)	LNL	5.8		1.30			1.75	
2	7.2-9.0	5	9.8	70(T)	LNL	6.7		1.14			1.68	
3	9.1-10.8	6	11.6	40	LNL	7.6		1.07			1.60	
4	10.9-12.6	7	13.4	40		9.5		0.76			0.91	
5	12.7-14.4	8	15.2	30	LNL	11.3	т	0.38	т	т	0.84	т
L							н	M	L	н	N	L
6	14.5-16.3	9	17.1	24	5NI	10.4	076	0.61	1.83	08	1.14	2.36
7	16.4-18.1	10	18.9	20	5NI	12.2	-0.99	0.38	1.60	-0.61	0.76	1.98
8	18.2-19.9	11	20.7	16	6NI	12.2	-1.37	0.15	1.83	-1.07	0.48	2.44
9	20.0-21.8	12	22.6	16	6NI	14.0	-2.13	-0.46	1.07	-1.60	0.08	1.60

9.	MGB	Design 1	Proforma – l	Double Storey up to 22 Bays.
Sheet	No		Grid Ref	Site Name

2. <u>111</u>	$\mathbf{J}\mathbf{D}$				Duant	- $ -$	rc, up	
Sheet No.			Grid	Ref			Site 1	Name
MLC			Nam	ie			Unit	
1. Me	asure A	AR spa	n AA'					1
2. Ent	ter from	the ta	ble belo	w			-	Est?
a.	Bridge	e selec	ted		bays			
b.	Overal	ll leng	th		m			1
с.	Dimer	ision F	ł					
d.	Nose of	constru	iction					
e.	LZ No)						
t.	V Dist	i v			m	K	Lule I.	D > C E
g.	Dist W	/			m	ta	able in 8	05.21 p
3. Ch	eck:					S	etting so	that D
FA	+ AA'	+ A'C	RB/FRB	8+0.5	=L	C	ircle va	lue sele
	+	+	•••••	+ 0.:	5 =		High	Med L
4. Tak	e levels	3:						
Location	F	WL	CRB/	RRB	0			
			FRB			Ru	le 2. N	> H, T >
Datum						N f	rom tab	le in 805
Reading						sett	ing(s) fi	om Rul
CRB/FRI	3					che	ck T > 0	G. Circl
Staff						Т	High	Mid
Reading								
Reduced								
Levels		~ ~~	. ~					
5. Cal	culate	C, H a	nd G			If N	> H and/	or T > G
1 to 12 l	oays		-	_		1 to	e 3. 12 have	Raise FF
C	= Ht WL		HLEX	Dist V	<u>v</u>	N	= N + 0.	69 =
				0.0,		T'	= T + 0.6	59 =
ы.	-	+	LH PD	D v /I	0.5)	13 t	o 22 bays	. Raise C
				4.6	0.01		= N + 0. - T + 0.2	25 = 25 -
					-	Che	$= 1 \pm 0.2$ ck N' > H	I YES/NO
G	= Ht O	-	HLRA	BxDi	mB	Yes	- OK. N	lo – Rule
				4.6	_	Rul	e 4a.	
						1 -	12 bays.	Lower R
13 to 22	bays		-		-	IN =	= IN + I./ - +1	75 (1 + 0.
C	= Ht WI		Ht F x	Dist V	<u>~</u>	13 -	22 bays.	Raise C
				- 0.57	-	N" =	= N' + 1.9	(T + 0.4)
						: س (= +1	.9 (+
н	= Ht F	+	HI HI	3.7	- 0.5)	Che	ck N'' > F	1
					-	T" =	= 40. = T' + 0.2	(N' – H)
G	= Ht O	-	Ht RF	BxD	im R] =	+ 0.2	(+
				13.7	and the second	Che	ck T'' > C	ł
Calcula	tions		L			1		
С	-					7	Fine	l design
н	_					2E	1 ma	LZ.

Position Bridge

nter values of D from ara 10. Choose LNXG > C. ted. ow | Possible settings

G. Enter t and values of 5.21 para 10. With LNXG e 1, check N > H then e value selected

Т	High	Mid	Low	Selected Setting

go to Rule 3. B and RRb by 0.69 m. + 0.69 = m. . + 0.69 = m. RB and RRB by 0.25 m. + 0.69 = m. . + 0.25 = m. T' > T YES/NO 4a. Yes – OK. No – Rule 4a. RB 69 – G) + 0.69 -) = m. RB and lower RRB 2 - G $0.42 - \dots) = \dots m.$..) =m. 2E + LZ LNXG CRB/FRB RRB

6. Follow rules 1 to 4

G =

MLC	AR SPAN	BAYS	LENGTH	DIM R	NOSE	LZ	V	W	W D		Ν			Т	
							DIST		Н	Μ	L	Н	Μ	L	
100(W) or	6.4-9.0	1	11.0	10.0	2N1	3	11.6					+0.64	+1.12	+1.69	+0.55
70(T)	9.1-10.8	2	12.8	11.9	3N1	8	13.7	1				+0.53	+1.18	+1.98	+0.55
	10.9-12.6	3	14.6	12.2	3N1	5	15.5					+0.48	+1.13	+1.93	+0.55
	12.7-14.5	4	16.5	13.1	3N1	4	17.0					+0.42	+1.06	+1.86	+0.55
	14.6-16.3	5	18.3	14.9	4N1	8	19.2					+0.34	+1.18	+2.20	+0.52
	16.4-18.1	6	20.1	14.9	4N1	5	21.0					+0.29	+1.12	+2.12	+0.52
	18.2-19.9	7	21.9	15.8	4N1	4	22.6	13.1	+0.33	-0.06	-0.46	+0.17	+1.01	+1.98	+0.52
	20.0-21.8	8	23.8	16.8	5N1	8	24.7	15.0	+0.30	-0.12	-0.57	-0.03	+1.34	+2.37	+0.46
	21.9-23.6	9	25.6	17.7	5N1	5	26.6	16.5	+0.27	-0.18	-0.67	-0.18	+1.20	+2.22	+0.46
	23.7-25.4	10	27.4	19.5	5N1	3	28.0	17.6	+0.23	-0.25	-0.77	-0.22	+1.16	+2.18	+0.46
60(W) or	25.5-27.3	11	29.3	20.4	6N1	8	30.2	18.5	+0.17	-0.33	-0.80	-0.31	+0.91	+2.40	+0.40
70(T)	27.4-29.1	12	31.1	21.6	6N1	5	32.0	19.2	+0.09	-0.43	-0.95	-0.45	+0.78	+2.24	+0.40
60	29.2-30.9	13	32.9	27.4	6N1	3	33.5	21.3	+0.05	-0.05	-0.60	-0.22	+1.01	+2.47	+0.84
50	31.0-32.8	14	34.8	28.7	7N1	7	35.7	22.6	+0.44	-0.14	-0.72	-0.69	+0.92	+2.60	+0.81
40	32.9-34.6	15	36.6	28.7	7N1	5	37.5	23.8	+0.38	-0.23	-0.84	-0.57	+0.83	+2.50	+0.78
40	34.7-36.4	16	38.4	29.6	7N1	3	39.0	25.0	+0.29	-0.35	-0.99	-0.48	+0.72	+2.38	+0.75
30	36.5-38.2	17	40.2	29.3	8N1	8	41.1	26.2	+0.02	-0.47	-1.15	-1.22	+0.38	+2.29	+0.71
30	38.3-40.1	18	42.1	29.3	8N1	5	43.0	27.4	+0.10	-0.60	-1.30	-1.49	+0.20	+2.12	+0.68
24	40.2-41.9	19	43.9	34.8	6N1+3N2	2	48.3	28.7	-0.02	-0.75	-1.48	-2.15	-0.35	+1.80	+0.65
24	42.0-43.7	20	45.7	38.4	6N1+3N2	4	49.1	30.2	-0.14	-0.90	-1.66	-2.28	-0.46	+1.63	+0.65
20	43.8-45.6	21	47.6	38.4	6N1+3N2	5	49.7	31.1	-0.29	-1.08	-1.88	-2.45	-0.64	+1.48	+0.62

10. INOD Design Table – Double Stoley (up to 22 bays	10.	MGB Design	Table – Double	Storey (up	p to 22 Bays
--	-----	------------	----------------	------------	--------------

8	MLC	AR SPAN	BAYS	LENGTH	DIM R	NOSE	LZ	V	W		D			Ν		Т
6								DIST		Н	Μ	L	Н	Μ	L	
	16	45.7-47.4	22	49.4	40.1	6N1+3N2	6	50.3	32.0	-0.47	-1.30	-2.12	-2.57	-0.76	+1.36	+0.59

11. Build and booming Stages and CG Position – up to 2E + 12 Bays (31.1m):

Br Length	Nose	Assemble	1st	Add	Add	2nd	Add	3rd	Add	4th	Add	LZ
2E+Bays	Dim	E+1+	Boom			Boom		Boom		Boom		No
1	2N1	2N1(Bp7)	1p3	E (1p0)	-	-	-	-	-	-	-	3
2	3N1	3N1+2(Bp5)	1p6	E (1p0)	-	-	-	-	-	-	-	8
3	3N1	(Bp3)	1p2	2+3+3N1(Bp0)	-	2p4	E(1p6)	-	-	-	-	5
4	3N1	(Bp3)	1p2	2+3+3N1(Bp0)	4(Ap1)	3p0	E(2p3)	-	-	-	-	4
5	4N1	(Bp3)	1p2	2+3+4N1(Bp2)	4(Ap2)	3p0	5+E(2p5)	-	-	-	-	8
6	4N1	(Bp3)	1p2	2+3+4N1(Bp2)	4(Ap2)	3p0	5+6(1p6)	4p0	E(3p1)	-	-	5
7	4N1	(Bp3)	1p2	2+3+4N1(Bp2)	4(Ap2)	3p0	5+6+7(2p2)	4p4	E(3p6)	-	-	4
8	5N1	(Bp3)	1p2	2+3+5N1(Bp5)	4+	3p2	6+7+8(3p5)	4p6	E 3p7)	-	-	8
					5(1p0)							
9	5N1	(Bp3)	1p2	2+3+5N1(Bp5)	4+	3p2	6+7+8(2p5)	4p6	9+E(4p3)	-	-	5
					5(1p0)							
10	5N1	(Bp3)	1p2	2+3+5N1(Bp5)	4+	3p2	6+7+8(2p5)	4p6	9+10(3p5)	5p9	E(5p0)	3
					5(1p0)							
11	6N1	(Bp3)	1p2	2+3+6N1(Bp7)	4+	3p0	6+7+8(2p3)	4p4	9+10+	6p1	E(5p2)	8

B-GL-332-006/FP-001

Br Length	Nose	Assemble	1st	Add	Add	2nd	Add	3rd	Add	4th	Add	LZ
2E+Bays	Dim	E+1+	Boom			Boom		Boom		Boom		No
					5(Ap2)				11(3p7)			
12	6N1	(Bp3)	1p2	2+3+6N1(Bp7)	4+	3p0	6+7+8(2p3)	4p4	9+10+	6p1	12+	5
					5(Ap2)				11(3p7)		E(5p6)	

SITUATION: E+1 Bay Stage. CG at Bp1. Build and boom in the order specified below. () = Posn of CG in pp code.

SAFETY NOTE: Mark CG before booming and check that this does not approach within 2pp of either roller beam.

12.	Const of DS Br $2E + 13$ to $2E + 22$ Bays	
-----	--	--

×	12. (Const of DS	Br 2E	+ 13 to 2E $+$	22 Bays								
58	Ser	Br	LZ	Туре	1st	Add	Add	2nd	Add	3rd	Add	4th	Add
		Length	No	of	step			Boom		Boom		Boom	
		2E+bays		Nose									
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)	(m)
	1	13	3	6N1		2+3+6	4+5	3p0	6to8	4p4	9to11	11p0	12+13+E
						N1	(Ap2)	-	(2p3)	-	(4p0)	-	(6p2)
						(Bp7)							
ш	2	14	7	7N1		2+3+7	4+5+6	3p2	7to9	4p7	10to1	11p0	13+14+E
à						N1			(2p5)		2		(6p4)
Ľ-3						(Cp2)	(1p0)				(4p2)		
32-	3	15	5	7N1		2+3+7	4+5+6	3p2	7to9	4p7	10to1	11p0	13 to 15
00						N1	(1p0)	-	(2p5)	-	2	-	+ E
6/F						(Cp2)	_		_		(4p2)		(7p1)
P-(4	16	3	7N1		2+3+7	4+5+6	3p2	7to9	4p7	10to1	11p0	13 to 15
3						N1	(1p0)	-	(2p5)	-	2	-	+ E
_						(Cp2)					(4p2)		(7p5)
	5	17	8	8N1		2+3+7	4+8N1+5	3p0	7to9	4p5	10to1	10p7	13 to 7 +
						N1	+6	-	(2p3)	-	2	-	E
						(Cp2)	(Ap2)				(3p7)		(8p0)
	6	18	5	8N1		2+3+7	4+6N1+5	3p0	7to9	4p5	10to1	10p7	13 to 18
						N1	+6		(2p3)		2	_	+ E
						(Cp2)	(Ap2)				(3p7)		(8p4)

Ser	Br Length	LZ No	Type of	1st step	Add	Add	2nd Boom	Add	3rd Boom	Add	4th Boom	Add
	2E+bays		Nose	F								
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)	(m)
7	19	2	6N1+3		2+3+6	4+5+3N2	2p4	7to9	4p2	10to1	11p0	14to19+
			N2		N1	+6		(2p0)		3		E+20D
					(Bp7)	(Bp2)				(4p0)		(9p0)
8	20	4	6N1+3		2+3+6	4+5+3N2	2p4	7to9	4p2	10to1	11p0	14to20+
			N2		N1	+6		(7p0)		3		E=20D
					(Bp7)	(Bp2)				(4p0)		(9p7)
9	21	5	6N1+3		2+3+6	4+5+3N2	2p4	7to9	4p2	10to1	11p0	14to21+
			N2		N1	+6		(2p0)		3		E+20D
					(Bp7)	(Bp2)				(4p0)		(10p3)
10	22	6	6N1+3		2+3+6	4+5+3N2	2p4	7to9	4p2	10to1	11p0	14to22+
			N2		N1	+6		(2p0)		3	_	E+20D
					(Bp7)	(Bp2)				(4p0)		(10p2)

Insert - Engineers

805.22 - MEDIUM RAFT/MEDIUM FLOATING BRIDGING

1. MFB Design Characteristics

 Start measurement at most suitable point where end of ramp bay is to be anchored (less ramp plates) and adjust measurement to meet 1.25 m min depth at 5.6 m.

2. To calculate the number of interior bays always round down, ie. 47 m/6.7 m = 7.1 m = 7 interior bays.

3. If water is seasonal or tide affected note:

a. HWL, LWL and NWW; and

b. HWD, LWD and NWD.

4. Home bank slope must not be greater than 20% (1:5) longitudinal or 5% (1:20) lateral.

 Calculate length of br and note where ramp plates are lowered (1.9 m) and if bridge will have wet or dry ramps. If wet ensure river/lake bottom will sp anticipated traffic ld NOTE:

HWL = High Water Line	LWL = Low Water Line
NWW = Nominal Water Width	HWD = High Water Depth
LWD = Low Water Depth	NWD = Nominal Water Depth
HBSS = Home Bank Side Slope	HBS = Home Bank Slope
FBSS = Far Bank Side Slope	FBS = Far Bank Slope

2. Determine no of boats reqr to anchor br

Water speed (m/sec)	Bays held per boat
0.00 - 1.0	up to 6
1.01 - 1.8	up to 5
1.81 - 2.1	up to 4
2.11 - 2.7	up to 3

NOTE: One spare BBE is reqr as a safety boat and as a replacement of an unservice boat.

3. Tpt Reqrs

a. Interior bays and ramp bays are tpt on HLVW or HESV with Bridge Adaptor Pallet (BAP).

- b. Reqr two x MLVW to tpt small stores.
- c. BBE tpt on HLVW or HESV with BAP
- 4. Std MR Set. Std MR set consists of 85m of MR consisting of:
 - a. four x RB and eight x IB, and
 - b. 12 x HLVW Floating Br Tpt

Bays Of Poft	Boats	Method	Water	Mov	Speed Da	y and Ni							
OI Kalt		OIAu	Current		KIII/	m							
			Speed										
					Lded	Unlded							
3	1	Perpendi	Fast	With	5	8							
		cular		Against	2	5							
			Still	-	6	8							
	2	Parallel	Fast	With	10	15							
				Against	4	10							
			Still	-	8	15							
4	1	Perpendi	Fast	With	With Too								
		cular			dangerous								
				Against		2							
			Still	-		4							
	2	Perpendi	Fast	With	8	12							
		cular		Against	4	8							
			Still	-	7	12							
		Parallel	Fast	With	10	15							
				Against	4	10							
			Still	-	7	15							
5	2	Perpendi	Fast	With	5	8							
		cular		Against	2	5							
			Still	-	6	12							
		Parallel	Fast	With	10	15							
				Against	4	10							
			Still	-	7	15							

5. MR Planning Times

6. Labour

- a. Launch BBE. BBE op, veh op, +1,
- b. Pontoon launch via tpt. Veh crew of 2,
- c. Unfolding and locking. Two + BBE op,
- d. Coupling. 1+7,
- e. Op of br or raft. 1 + 7 + BBE ops, and
- f. Anchoring. 1 + 7 per shore.

7. Boat Attachment

a. **Perpendicular method**. BBE at 90 degrees to roadway. Most stable method. Allows best control as the BBEs are not separated by a ld and therefor provides better turning capability. Ldg on a restricted site difficult. Speeds in fast water reduced.

b. **Parallel method** - BBEs parallel to roadway. Greatest speed. Surest handling. Restricted to currents below 1.1 m/sec.

c. **Transfer method** - BBE att to the end of one ramp. **AVOID**! Little con over raft. BBE easily capsized or swept away.

Boat Attachment

805.23 - MILITARY LOAD CLASS TABLES

Normal safe operating	Water Depth (m)		Cur	rent	Veloc	ity (n	ı/s)			
conditions against current		0-1	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3
3 Bay raft (2 Ramp Bays + 1 Interior Bay) (1)	1.0	22								
	1.4	33*	22	12						
	1.8			33*	22	12				
	2.5					33*	22	12		
	3.5						33*	22	12	-
	5.0							33*	22	12
4 Bay raft (2 Ramp Bays + 2 Interior Bays) (1)	1.2	43	22							
	1.4	60*	43	12						
	1.8			60*	33	22		Risk A	Risk Area (2)	
	2.5					60*	33	22		
	3.5						60*	43	22	12
	5.0							55*	43	22
5 Bay raft (2 Ramp Bays + 3 Interior Bays) (1)	1.2	70	43							
	1.4	80*	70	33						
	1.8			80*	60	43				
	2.5					80*	60	43	22	

Insert - Engineers

Normal safe operating	Water Depth (m)	Current Velocity (m/s)									
conditions against current		0-1	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3	
	3.5						60*	70	43	33	
	5.0							75*	60	43	
NOTES:											
(1) MLC based on gro	oss multiple veh wt										
(2) Risk Area = Risk of catastrophic failure											
* Exceptional Ld =	Wt may cause conne	ctor damage									

Normal safe operating conditions against	Water	Current Velocity (m/s)								
current	Depth	0-1	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3
	(m)									
6 Bay Raft (2 Ramp Bays + 4 Interior	1.2		47							
Bays)(1)										
	1.4		59	54						
	1.8		70	66	56					
	2.5		77	70	60	47				
	3.5		83	76	66	52	47	41		
	5.0		89	80	68	58	52	47	17	
7 Bay Raft (2 Ramp Bays + 5 Interior	1.2		58							
Bays)(1)										
	1.4		70	60						
	1.5		82	72	62			Risl	s Area	(2)

B-GL-332-006/FP-001

Normal safe operating conditions against	Water		Cu	urrent	Velocit	ty (m/	s)				
current	Depth	0-1	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3	
	(m)										
	2.5		91	78	68	56					
	3.5		97	84	74	62	56	50			
	5.0		103	90	80	68	61	56	17		
8 Bay Raft (2 Ramp Bays + 6 Interior	1.2		76								
Bays)(1)											
	1.4		88	76							
	1.8		100	88	72						
	2.5		105	94	78	68					
	3.5		112	100	84	73	66	60			
	5.0		118	106	90	79	72	66	17		
NOTES:											
(1) MLC based on gross multiple ve	h wt										
(2) Risk Area = Risk of catastrophic	failure										
* Exceptional Ld = Wt may cause of	* Exceptional Ld = Wt may cause connector damage										

Normal safe operating conditions against	Water		С	urrent	Veloci	ty (m/:	s)			
current	Depth	0-1	1.25	1.5	1.75	2.0	2.25	2.5	2.75	3
	(m)									
9 Bay Raft (2 Ramp Bays + 7 Interior	1.2		90							
Bays)(1)										
	1.4		102	89	-	-	-			
	1.8		114	101	86	-	-			
	2.5		120	107	92	78	-	Risk	x Area	(2)
	3.5		126	113	98	84	76	70		
	5.0		132	119	104	90	82	75		
Br	1.2	70*	60	30						
	1.4		70*	50	30					
	1.8			70*	60	50	30			
	2.5					70*	60	40	20	
	3.5						70*	60	40	30
	5.0							70*	50	40
NOTES: (1) MLC based on gross multiple ve (2) Risk Area = Risk of catastrophic	eh wt failure									

* Exceptional Ld = Wt may cause connector damage

805.24 - LINE OF COMMUNICATIONS BRIDGING - ACROW

1. ACROW Br set consists of 48.8 m (16 Bays) of DSR2H. Width between ribands is 4.2 m

ACROW Planning Times											
Length (m)	Const	ruction time in hrs	Manpower								
	Day	Ni									
30.48	5	8	1 Sect								
48.77	10	16	1 Sect								
	Length (m) 30.48 48.77	ACROW Length (m) Constr Day 30.48 5 48.77 10	ACROW Planning Times Length (m) Construction time in hrs Day Ni 30.48 5 8 48.77 10 16								

NOTES:

1. Method of erection is mech assisted (i.e. crane). Hand build is possible but not recommended.

2. Veh capacity 300 veh per hr.

2. ACROW pallet ld system configuration

Ser	Length	Grillage	5 Bays	4 Bays	First Two	Two	Last	Decking	Ramp	Total				
			Nose	Nose	Bays	Centre	Two Boys	Ld	Ld	Pallets				
						Days	Days							
1	12.2 m (4 bays)	1	1	-	1	-	1	1	1	6				
2	18.3 m (6 bays)	1	1	-	1	1	1	1	1	7				
3	24.4 m (8 bays)	1	1	-	1	2	1	1	1	8				
4	30.5 m (10 bays)	1	1	1	1	3	1	2	1	11				
5	36.6 m (12 bays)	1	1	1	1	4	1	2	1	12				
6	42.7 m (14 bays)	1	1	1	1	5	1	2	1	13				
7	48.8 m (16 bays)	1	1	1	1	6	1	2	1	14				
NOT	E: Based on 4 ESR tria	ls in 1997. This co	OTE: Based on 4 ESR trials in 1997. This configuration must be validated. Pallets are carried on HLVW or HESV											
3. Std ACROW Br Design by MLC and Span:

MLC	m	15 24	18 20	21 34	24 38	27 43	30.48	33 53	36 58	30.62	42 67	45 72	48 77	51.82	54 86	57 91	60.96	64 01	67.06	70.01	73 15	76.2
MLC	m f4	13.24	10.29	21.34	24.50	27.43	100	110	120	120	140	150	160	170	190	100	200	210	220	220	240	250
	п	50	00	70	00	90	100	110	120	130	140	150	100	170	100	190	200	210	220	230	240	250
12				S	SS						SSRH	I			DS		DSR1H	[DD	
16				SS						SSRI	1			DS		DSI	R1H				DD	
20			S	S				SS	RH]	DSR1H	[DD		DDR1 H
24			SS				S	SRH]	DSR1H				DSR 2H	DD		DDR1H	
30			SS		S	SRH		DS				D 1	SR H				DSR2H	[DI	OR1H	
40		SS	SSRH			DS						D	SR2H					TSR2H		DI	OR1H	
50				DS				TS				DS	R2H			TSR	2H	TSR3H		DDR1	Η	DDR2 H
60			D	S			TS				DSR2H	[TSR2H		TS	R3H		DI	OR2H	
NOTE	: All	l truss c	onst ar	e based	d on Ol	NE veh	per spa	n.														

805.25 - MGB OVERBRIDGING

1. The fol table gives the central deflection in mm of simply supported MGB SS brs under a trk veh of the MLC shown

Ser	No of bays	MLC	Dead Ld	Dead ld	Dead ld
				+ live ld (central)	+ live ld (eccentric)
(a)	(b)	(c)	(d)	(e)	(f)
1	4	70(T)	15	51	58
2	5	70(T)	25	83	95
3	6	40	38	121	140
4	7	40	51	133	152(1)
5	8	30	70	190	222
6	9	24	89	210	241
7	10	20	108	267	310
8	11	16	146	324	381
9	12	16	184	406	495

NOTES:

1. This has not been cfm by test and may be greater.

2. The deflection under MLC 100(W) has not been tested but with 4 and 5 bay brs it should not be greater than that for MLC 70(T)

2. Clearance using Wedges. For a 4 bay br using wedges at the centre of the br - clearance under a live ld 110 mm. For a 4 bay br using wedges at the ends of the first and third panel - clearance under a live ld 116 mm.

805.26 - ENGINEER BOATS

Туре	Description	Propulsion	Payld	Planning Capacity Of Current 1.5 M Per Sec (Lds Per Hr)		Carriage	Carriage Launch Planning		Data
				Waterwa	ay width				
				100m	300m		Party to launch	Day (mins)	Ni (mins)
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)
Recce boat	Pneumatic rubber boat. Wt 14 kg, length 2.8m, width 1.2m. 1 pers crew	Paddles or bridle line	three pers with recce kit			Recce veh	1	-	-
Aslt boat	Pneumatic rubber boat with transom. Wt 118 kg, length 5m, width 1.6m. 3 pers crew	Paddles in current up to 2.4 m/sec, 19 kw outboard motor up to 3.4 m/sec	12 armed pers	Paddling -12 Outboard - 17	Paddling - 6 Outboard - 12	20 boats and motors per HESV w/tlr	Inflate 3 pers Carry boat 8 pers Carry motor 2 pers	-	-
Br Boat Erection (BBE) (3)	Aluminum. Wt 5200 kg with fuel and eqpt. Length 7.58m, width 3.37m, draft 0.5m (full ld). 2 pers crew	Twin water jet	n/a			HLVW with BAP	Veh op and BBE crew	1(1) 5(2)	2(1) 5(2)
NOTES: 1. Free 2. Con 3. Static	NOTES: 1. Free launch. 2. Con launch. 3. Static thrust no less than 2,273 kg fwd and 1,336 kg in reverse.								

805.29 - COUNTER MINE EQPT

Mine Dollar 1

1.		white Koher				
	a.	Gen Description. The minefield br	eaching	rollers (MBR) are		
	ins	stalled on the front of the Leo MBT to d	etonate	land mines in the path of		
	the veh. A drag chain is suspended between the roller assy to detonate tilt-					
	roc	d fuse mines that lie between the paths of	e rollers. The eqpt incl			
	two	o gps - a roller set and an adapter set.				
	b.	Tech Info		c. Dimensions		
		(1) The system is designed to with	stand	(1) Length 2.74 m		
		the detonation of ten mines each conta	ining	(2) Width 4.41 m		
		10 kg of high expls		(3) Overall length		
		(2) Under normal trg conditions		(w/tk) 10.91m		
		replacement of some components may	be	(4) Height 1.44 m		
		nec after 300 km of op		(5) Max height		
		(3) Life expectancy is 10 yrs norm	al use	1./4 m (6) Rollad width (as		
		(4) Can detonate mines buried und	ler up	(0) Kolled width (ea		
		to 10 cm (4 inches) of cover		(7) Unrolled width		
		(5) Max speed in minefield 7 kph		1 77 m		
		(6) Max ditches .5 m deep 5 kph		1.77 11		
		(7) Max hard surface 16 kph				
		(8) Vertical step max 1.15 m				
		(9) Trench crossing max 3 m				
		(10) Max side slope 30%				
2		Mine Plough. Characteristics are as fo	1			
	a.	Tech Info	b. I	Diminsions		
	1)	Wt with extensions 3000 kg	(1)	Length 2.86 m		
	(2)	Ploughed width (ea trk) 1.02 m	(2)	Width (less moldboard		
	(3)	Unploughed width (between		extension) 35.56 cm		
		trks) 1.50 m	(3)	Width (with moldboard		
	(4)	Grd Clearance (plough raised)		extension) 45 cm		
		440 mm	(4)	Height (mtd) 1.39 m		
	(5)	Angle of approach 18 degrees				
	6)	Ploughing depths (adjustable)				
		20, 25 and 30 cm				
	7)	Speed 7 kph.				

Speed 7 kph. Pearson Mine Plough (SMCD) 3.

a. Clrs scatterable munitions up to 1.5kg.

Joint Svcs Flail Unit (Ardvark) 4.

- Clrs all known mines buried or surface laid. a.
- Speed 3-5 kph. b.
- Survival. Can survive a 10kg blast. Unit is 60% effective. c.

Level 1 clearance to fol.

COUNTER MOBILITY SP

805.30 - BARRIER PLANNING

1. Barrier planning coincides with manoeuvre planning at all levels. At ea level, a barrier plan is dev by the sp engr and disseminated as part of the manoeuvre order as well as graphically. Barrier plans are disseminated at each manoeuvre level as listed:

Manoeuvre Level	Barrier Plan	Obs Effect S	ymbols (2)			
Corps	Zones	Fix: slow – confuse the en so that he may be eff engaged with dir and indir fire.	-~~•			
Div	Zones (1)	Turn : Force the en turn his fmn in the indicated dir.				
Bde	Belts	Disrupt : Break up the en fmn/coord. Short arrows show which part of the fmn should be affected.				
Bn	Gps Obs	Block : Do not allow the en to pass. Defeat the en breaching				
209	000	capability.	I			
 NOTES: 1. Obs effects are incl beginning at div level. 2. Comd depict their intent for obs using effect symbols. Symbols for zones and belts show the desired effect for the zone or belt. Obs effects for gps show exactly where the effect is to take place. 						

2. Comds at any level may dir obs at a lower level. A div comd may dir an obs belt, gp, or an indiv obs.

3. **Obs No**. Obs are numbered IAW FSOP 303.

⁹⁰ 805.31 - CANADIAN MINES AND VEHICLE MINE CARRYING CAPACITY ¹² 1. Current Canadian AT mines

SER	MINE	DESCRIPTION	PACKAGING	ARMING	DISARMING
(a)	(b)	(c)	(d)	(e)	(f)
1	FFV 028	Type: blast type made	Each unit ld	a. Depress the safety button	a. The procedure is unknown at
	AT mine	of metal.	consists of 30	and at the same time depress the	this time
		Wt: 8kg	mines in a six-	arming lever and turn it to "f"	b. Wait 40 days for red flag to
		Expl wt: 3.9kg	unit package on	b. Complete the cam	be fired out of the mine. At that
		Fuze: Elec which	a pallet		time mine is safe to handle
		measures changes in the			
		mag fd			
2	DM21	Wt: 9.3kg	Four mines and	 Unscrew arming plug, 	a. Remove arming plug
	AT mine	Expl: 5.0kg	four fuzes in	ensure lever on "s"	 Place upper part of fuze
		Fuze: DM1001,	wooden box	b. Open fuze container and set	container on fuze and line up notch
		pressure with 5 min	(46.0 kg)	aside lower part. Ensure fuze is	with white dot
		arming delay device.		not armed (if so, set aside)	c. Push upper part of container
		180 kg pressure.		c. Place upper part in fuze	onto fuze until it snaps in place
				cavity (curved notch pt to white	d. Turn 90° (either way) and
				dot on pressure plate)	pull out part with fuze
				d. Push fuze in mine until it	e. Reset timer with lower fuze
				snaps home	cover
				e. Pull off upper part of fuze	 Replace fuze in container
				container and screw in arming	g. Push down arming lever with
				plug	lower part of fuze tin

B-GL-332-006/FP-001

SER	MINE	DESCRIPTION	PACKAGING	ARMING	DISARMING
(a)	(b)	(c)	(d)	(e)	(f)
				f. Press down arming button	h. Turn arming lever to "s"
				while turning arming lever from	 Screw arming plug onto
				"s" to "f". Arming device will	mine.
				tick, mine will be armed in five	NOTE: Mine cannot be
				mins	neutralized
3	C14 off rte	WT: 10.2 KG	ONE LAUNCH	a. Loc the tripod in a suitable	 a. Neutralize the mine
	mine	Warhead: HEAT, 500g	ASSY, ONE	posn (20-150 m along a LOS)	b. Ensure the M42/P firing device
		Cast Octol 70/30.	TRIPOD	from the proposed tgt aiming pt	is in safe custody before leaving
			ASSY, M42/P	and sandbag tripod legs or	the firing posn to disarm the mine
			FIRING	otherwise secure in place	c. Insert the safety pin in the
			DEVICE,	b. Att lchr to tripod assy. Open	launch tube percussion firing
			TRIP WIRE	sight covers and aim the lchr at	mechanism
			(100 M) AND	the proposed aim pt	d. Unscrew the adapter fitting
			COTTON	 c. Tighten handle on the tripod 	from the percussion mechanism
			PULL CORD	assy to lock the launch tube in	e. Disconnect the squib end of the
			(100 M)	place	shock tube from the adapter fitting
				d. Att the squib end of the shock	 Replace the adapter fitting
				tube to the launch tube percussion	g. Recoil the shock tube and
				firing mechanism by inserting the	repack the components in the
				squib in the squib housing and	shipping box
				secur it using the screw in adapter	
				fitting. Secur the non-elec shock	
				tube to avoid any dir pull on the	

8	SER	MINE	DESCRIPTION			PACKAGING ARMING			I	DISARMING		
76	(a)	(b)		(c)		(d)		(e)		(f)		
							adapter fitting w a misfire	in				
	e. Remove the launch tube											
							percussion mech	n,				
		but leave it att to the elastic cord							ł			
H							provided					
2. Veh Mine Carrying Capacity												
$\stackrel{\sim}{\leftarrow}$ MINE VEH TYPE (1) (2				EH TYPE (1) (2))		QTY/	MAX PAL. WT				
33.	TYPE	2							PALLET	(Kg)		
2-0		LSVV	V	MLVW	HL	VW HE	ESV or Trl	M548				
/90		2		6	8	3	10	4				
FΡ		Pallet	S	Pallets	Pal	lets	Pallets	Pallets				
8	FFV 02	8 60		180	24	0	300	120	30	240		
-	DM21	112		336	44	8	560	224	56	670		
ſ	NOTES	S: 1. All figs	based	d on mines o	n palle	ts, not indiv or o	n mine racks.					
	2. No o	f pallets sho	wn pe	r veh is the r	nax tha	at will fit withou	t stacking.					
	3. 1 x HLVW will carry sufficient fencing stores for a 4.5 km perimeter.											

4. Info for FFV 028 are estimations only.

805.32 - ALLIED SCATTERABLE MINES DATA

SER	SYSTEM	DESCRIPTION	MINE	ARMING	SAFE ARM	WARHEAD	SELF DESTRUCT
					TIME		DESTRUCT
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
1	VOLCANO	The Volcano system can be configured	BLU-91/B	Bore Pin	2 min	M-S Plate	4 hrs
		as both a heliborne and grd del mine		Elec Impulse			48 hrs
		system. The M139 mine dispenser, with					15 days
		various adapter kits, is capable of being					
		mtd on UH-60 hel and a variety of grd					
		veh. The system has a capacity of up to					
		960 mines and is capable of producing a					
		mined area approx 1150 m x 125 m.					
		Fusing: magnetic					
		Sensing width: veh					
		Anti handling devices: no					
		Expl wt: 1.3 lbs					
		Mine wt: 3.8 lbs					
2.	RAAM	The Remote Anti-Armour Mine	M741	G force	45 sec	M-s plate	4 hrs
		(RAAM) is a 155mm how launched AT	M718	Spin	2 min		48 hrs
		mine system. Nine AT mines are					
		packed into a carrier rd. The rds contain					
		mines with long and short self-destruct					
		times. The mine contains a MI fuse					

Insert – Engineers

SER	SYSTEM	DESCRIPTION	MINE	ARMING	SAFE ARM	WARHEAD	SELF DESTRUCT
					TIME		220111001
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
		which atks the full width of a tk.					
		FUSING – MAGNETIC					
		Sensing width – veh					
		Anti handling devices – 20%					
		Expl wt – 1.3lbs					
		Mine wt – 3.8lbs					

805.33 - MINELAYING

1. **Coord of Minefield Planning**. During all stages of planning and exec, minefields must be coord with the fol:

a. **A-Armour Plan**. Depth of minefield and distance from def posns must permit A-armour wpns to engage en at fwd edges and beyond.

b. Indir Fire Plan. Lanes and gaps must be sufficiently covered.

c. **Ptl Plan**. Ptl lanes must be marked, lanes should be periodically reloc to prevent ambush.

d. **Manoeuvre Plan**. Minefields must be sited so they do not interfere with planned manoeuvre of friendly forces.

e. **Countermoves Plan**. Gaps must be aval where nec to permit passage of countermoves forces in tac fmn, provision for closing these gaps must be incl in planning. Add minefields may be nec to protect flanks of countermove forces.

f. **Withdrawal Plan**. Lanes through minefields must be aval and marked, nuisance mining must be complete fol wdr.

g. **Deception Plan**. Marking of minefield must not disrupt deception plan or give away loc of friendly posns.

h. **Admin Plan**. Mines, stores, tpt and pers must be aval in sufficient qty and a appropriate locs. Ress should be pushed fwd to allow sqn/tps to sp BG immed. If sufficient ress have not been alloc they should be demanded.

i. Plans of Adjacent Unit. Coord must be done to ensure that:

- (1) Minefields are tied-in and anchored along common bdry.
- (2) There is mutual fire coverage and surv of minefields along unit bdry.
- (3) Adjacent units can exec op plans, incl ptl and countermoves.

2. Siting Considerations:

a. Always covered by dir and/or observed indir fire (exception – nuisance minefields).

b. Far enough fwd of def posns to prevent en from using effective small arms fire, but close enough to prevent him using arty without endangering his own tps while minefield is being breached.

c. Sited in conjunction with other obs (natural and man-made) and difficult or time consuming to bypass.

d. Layed in such a way as to min risk of being detected before contact is made (eg. Using existing fences, reverse slopes) and in locs not expected by en.

3. Minefield Recce Checklist

a. Info Reqr Prior to Recce:	b. Recce Details:
(1) type (tac, protective,	(1) mines (type and no), labour,
nuisance, phoney);	fencing stores and hy eqpt reqr;
(2) ser and loc (usually 4	(2) detailed sketch of minefield to incl:
grids);	dimensions, landmarks and features,
(3) type and density;	intermediate markers, strip/row

(4) no of rows and spacing;	markers, dir of lay, perimeter fence,
(5) laying drill (Drill Z,	lane/gap locs, bearings and distances,
scattered, other);	type of grd, veh mov plan, minefield
(6) method of laying	con pt, dist and dir to cache;
(surface/buried, mech/hand);	(3) detailed sketch of cache to incl:
(7) lane (ptl/veh) and gap	exact loc, size in and out rtes, ld/unld
reqrs, method of closure;	areas, conveyor area (30m long),
(8) anti-lift/anti-disturbance	existing features and type of grd, veh
devices;	area, dist and dir to minefield and har;
(9) AT ditch reqrs, incl locs;	and
(10) ln reqr (if so – purpose,	(4) detailed sketch of har to incl: exact
time and loc); and	loc, scale, in and out rtes, veh locs, dist
(11) proposed tp har loc.	and dir to cache and minefield.

4.	Tac	c Reports on N	lineneias		
	SER	REPORT	PURPOSE	FROM - TO	COMMENTS
	(a)	(b)	(c)	(d)	(e)
ſ	1	E122A Mine	To order a	Regt to sqn	See Rep and Ret Sect Engr
		Laying Recce	minefield	or sqn to tp	TAM or USOP Part 7.
		Order	recce	or tp to	
				Recce Sgt.	
	2	E122B	To report	Recce Sgt to	As per ser 1 comments.
		Mine Laying	the details	tp or tp to	
		Recce Report	of a	sqn or sqn to	
			minefield	regt	
			recce		
	3	E122C	To order the	Regt to sqn	As per ser 1 comments.
		Mine Laying	laying of a	or sqn to tp	
		Order	minefield		
	4	E122D	To report	Tp to sqn or	As per ser 1 comments.
		Minefield	the details	sqn to regt	
		Completion	of a		
		Report	completed		
			minefield		
	5	E306	To provide	Tp to Sqn,	As per ser 1 comments.
		Intention	the means of	Sqn to BG	Under barrier planning, BG
		to Lay	disseminatin	HQ	will fwd a consolidated
		Minefield	g info		barrier overlay to Bde HQ.
		Report	relating to a		Therefore, provided the
			tac comd's		BG has emplacement auth,
			intent to lay		this msg not reqr higher
			a minefield.		than BG HQ. Or this
					report is reqr if the tac
					comd wishes to const a
					minefield and does not
					have emplacement auth.

5. **Std Minefield Designs**

Туре	Description	Minefield Layout (1)	Mine Spacing	No Of M (100 Fron	No Of Mines (2) (1000 m. Frontage)		No Of Mines (2) (1000 m. Frontage)		Time To Lay 1000 m (Tp Hrs)	Stopping Power (4)
				SI	MI					
Α	SI only	6 SI	6 m	1000		1.0	4	Low		
В	Row A MI, remainder SI	1MI/2SI	6 m	334	167	0.5	2	Low		
С	MI only. Spacing as noted.	3MI	10 m		300	0.3		Low		
		5MI	10 m		500	0.5		Med		
		10MI	10 m		1000	1.0		High		
		MI	6 m		1000	1.0		High		
D	Row A-B MI, remainder SI	2MI/2SI	6 m	334	334	0.67		Med		
E	Row A-B-C MI remainder SI	3MI/2SI	6 m	334	500	0.83		Med		

NOTES: 1. SI = single impulse, MI = magnetic impulse.

No of rows any types of mines in the row. "2MI" means two rows of MI mines.
 Effective linear density (ELD) expressed as mines per m frontage.

4. As a gen rule, minefields in blocking gps are high stopping power. Minefields in turning and fixing gps are med stopping power. Minefields in disrupting gps are low stopping power.

805.34 - MINEFIELD LANE MARKING

805.35 - BOOBY TRAPS

1. **Resp.** Booby traps may only be used on the auth of the div comd. Only engrs or aslt pnrs may lay them.

2. Principles:

a. Concealment. Traps should be concealed or made to resemble a harmless object.

b. Constricted Localities. The more constricted the site, the harder to detect and clear.

c. Concentration. Traps should be laid in large no to reduce the chances of finding them all without springing some. Use dummies freely.

d. Double Bluff. Use an obvious trap to hide a well concealed trap nearby.

e. Inconvenience. Traps may be sprung by the removal of obs, furniture or litter.

f. Curiosity. Souvenirs, food, drink, wpns can be used.

g. Everyday Ops. Opening or closing doors, lt switches, tel, toilets etc. can all hide a trap.

h. Attraction. Delay action or incendiary bombs may attract pers to a booby trap site.

i. Altn Methods of Firing. A trap may have two or more methods of firing.

j. Variety. Use as many different types as possible.

3. **F1A1 Booby Trap**. The std issue trap is the F1A1 Combination Switch. It operates under a pressure of 11.3kg, a pull of 3.2kg and a release of tension of pressure of 1.1kg. Charges of 0.25kg of expl should be used against pers, 5-10 kg against tks.

4. **Improvised Traps**. Improvised devices can either be expl, using improvised elec switches, or non expl. Restrictions on their use are:

a. when recording traps, full details must be given of their mechanism and how to disarm them;

b. improvised traps should be empl only in areas that the en is almost certain to occupy; and

c. delay action devices should either be in a loc where it is unlikely friendly tps will pass within the period of the delay, or be of sufficiently short delay so that there is no danger to friendly tps.

5. Procedure for setting up Booby Traps:

a. inspect F1A1 mechanism to ensure it will not fire prematurely when the pin is removed;

b. consider time, lab and mat aval, decide on exact posn and design of each booby trap;

c. estb safe rtes, con pts and ammo pts;

d. keep tight con of pers, keep parties as small as possible;

e. laying is carried out by laying party;

f. OIC inspects each trap to ensure it is properly laid, pers return to con pt with stores;

g. all pers must be out of danger area before traps are armed. Arming must be done in a logical sequence (ie. top floor first) by either comd or 2IC. Withdrawing safety pin then joining det cord arms trap; and

h. OIC or a pers detailed by him must record traps as they are laid. The same recording and reporting principles apply as when laying mines.

Booby Trap Detection and Clearance. Before beginning a search, a suitable party must be organised and equipped. Clear orders must be issued covering the degree of damage and risks that is to be acceptable. Unless special orders are issued, clearance parties will not attempt to hand neutralise traps.
 Clearance Eant

	- 11 · · ·		
a. Metal detector	s and	c. Grapnels and	h. Mine tape.
prodders. Detecto	ors are	cable. A 50 m	
rarely of much us	e indoors	cord fitted with a	
because booby tra	ips are	grapnel hook.	
often concealed n	ear metal	d. Rad comms.	i. Expl
objects. Outdoors extremely valuabl Prodders are usefi for detecting hanc obj and for reveal where hard grd ha been disturbed.	s they are le. ul outdoors l buried ing loc as recently	e. Chalk/Spray paint. Reqr to mark progress inside or outside of bldgs. f. Marking signs.	j. Trip wire feelers. Const with suffient stiffness (i.e. 14 SWG). Used indoors and outside to search for the pressence of tension/tension release devices.
b. Safety glasses.		g. Ladder.	k. Fire fighting eqpt
8. Searching B	ldgs		
 Turn off 	e. Comd n	nust estb a con pt	 Comd determines
electricity and	that may se	erve as a firing pt.	pattern of search, details
gas svcs to the	This pt mu	st be searched and	pers.
bldg.	clr of boob	y traps.	
b. No more than two people working in the same room.	f. Comd n recce of the	ust conduct a visua e bldg.	 J. Search parties search rooms. When the search for a room is finished, the party will mark the door with chalk as "CLEARED" or "BOOBY TRAPS" and will report results to the comd.
c. Search only	g. Comd n	nust estb an entry pt	k. Comd will detail
onw floor and	and details	a party to clr a 1 m	subsequent rooms for
only half the	wide rte an	d effects an entry	search
rooms on the	into the bld	lg. Doors should be	

floor at a time.	avoided, and windows carefully searched. If doors and	
	windows suspected, enter by	
	the roof or create a hole in the	
	wall.	
d. Parties should	h. Comd and an asst enter the	1. Comd must decide how
work as far apart	bldg and estb an interior con pt,	to dispose of booby traps.
as possible.	clr the way of booby traps as	
	they go. Rtes are marked on	
	the floor.	

805.36 - BRIDGE CATEGORISATION

1. Br Categorisation Simply Supported Brs

2. Br Categorisation of Continuous Brs

805.37 - METHODS OF ATK FOR SIMPLY SUPPORTED SPANS
1. Recce Measurements – End Clearance Reqr (E_R) for Bottom Atk

2. Min Length of Sect to be Removed (L_C) for Midspan Atk

Ls/L	0.010	0.020	0.030	0.040	0.050	0.060	0.070	0.080	0.090	0.100	0.110	0.120	0.130	0.140	0.150	0.160	0.170	0.180	0.190	0.200
0.004	0.003	0.005	0.008	0.010	0.013	0.015	0.018	0.020	0.023	0.025	0.028	0.031	0.033	0.036	0.038	0.041	0.043	0.046	0.048	0.051
0.005	0.003	0.006	0.009	0.011	0.014	0.017	0.020	0.023	0.026	0.028	0.031	0.034	0.037	0.040	0.043	0.046	0.048	0.051	0.054	0.057
0.006	0.003	0.006	0.009	0.013	0.016	0.019	0.022	0.025	0.028	0.031	0.034	0.038	0.041	0.044	0.047	0.050	0.053	0.056	0.059	0.063
0.007	0.003	0.007	0.010	0.014	0.017	0.020	0.024	0.027	0.030	0.034	0.037	0.041	0.044	0.047	0.051	0.054	0.057	0.061	0.064	0.068
0.008	0.004	0.007	0.011	0.014	0.018	0.022	0.025	0.029	0.033	0.036	0.040	0.043	0.047	0.051	0.054	0.058	0.062	0.065	0.069	0.072
0.009	0.004	0.008	0.012	0.015	0.019	0.023	0.027	0.031	0.035	0.038	0.042	0.046	0.050	0.054	0.058	0.062	0.065	0.069	0.073	0.077
0.010	0.004	0.008	0.012	0.016	0.020	0.024	0.028	0.032	0.037	0.041	0.045	0.049	0.053	0.057	0.061	0.063	0.069	0.073	0.077	0.081
0.011	0.004	0.009	0.013	0.017	0.021	0.026	0.030	0.034	0.038	0.043	0.047	0.051	0.055	0.060	0.064	0.068	0.073	0.077	0.081	0.085
0.012	0.004	0.009	0.013	0.018	0.022	0.027	0.031	0.036	0.040	0.045	0.049	0.054	0.058	0.062	0.067	0.071	0.076	0.080	0.085	0.089
0.013	0.005	0.009	0.014	0.019	0.023	0.028	0.033	0.037	0.042	0.047	0.051	0.056	0.060	0.065	0.070	0.074	0.079	0.084	0.088	0.093
0.014	0.005	0.010	0.015	0.019	0.024	0.029	0.034	0.039	0.044	0.048	0.053	0.058	0.063	0.068	0.073	0.077	0.082	0.087	0.092	0.097
0.015	0.005	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	0.050	0.055	0.060	0.065	0.070	0.075	0.080	0.085	0.090	0.095	0.100
0.016	0.005	0.010	0.016	0.021	0.026	0.031	0.036	0.041	0.047	0.052	0.057	0.062	0.067	0.073	0.078	0.083	0.088	0.093	0.099	0.104
0.017	0.005	0.011	0.016	0.021	0.027	0.032	0.037	0.043	0.048	0.054	0.059	0.064	0.070	0.075	0.080	0.086	0.091	0.096	0.102	0.107
0.018	0.006	0.011	0.017	0.022	0.028	0.033	0.039	0.044	0.050	0.055	0.061	0.066	0.072	0.077	0.083	0.088	0.094	0.099	0.105	0.110
0.019	0.006	0.011	0.017	0.023	0.028	0.034	0.040	0.045	0.051	0.057	0.062	0.068	0.074	0.079	0.085	0.091	0.097	0.102	0.108	0.114
0.020	0.006	0.012	0.018	0.023	0.029	0.035	0.041	0.047	0.053	0.058	0.064	0.070	0.076	0.082	0.088	0.093	0.099	0.105	0.111	0.117
0.021	0.006	0.012	0.018	0.024	0.030	0.036	0.042	0.048	0.054	0.060	0.066	0.072	0.078	0.084	0.090	0.096	0.102	0.108	0.114	0.120
0.022	0.006	0.012	0.018	0.025	0.031	0.037	0.043	0.049	0.055	0.061	0.068	0.074	0.080	0.086	0.092	0.098	0.104	0.110	0.117	0.123
0.023	0.006	0.013	0.019	0.025	0.031	0.038	0.044	0.050	0.057	0.063	0.069	0.075	0.082	0.088	0.094	0.101	0.107	0.113	0.119	0.126
0.024	0.006	0.013	0.019	0.026	0.032	0.039	0.045	0.051	0.058	0.064	0.071	0.077	0.084	0.090	0.096	0.103	0.109	0.116	0.122	0.129
0.025	0.007	0.013	0.020	0.026	0.033	0.039	0.046	0.053	0.059	0.066	0.072	0.079	0.085	0.092	0.099	0.105	0.112	0.118	0.125	0.131
0.026	0.007	0.013	0.020	0.027	0.034	0.040	0.047	0.054	0.060	0.067	0.074	0.081	0.087	0.094	0.101	0.107	0.114	0.121	0.128	0.134
0.027	0.007	0.014	0.021	0.027	0.034	0.041	0.048	0.055	0.062	0.069	0.075	0.082	0.089	0.096	0.103	0.110	0.117	0.123	0.130	0.137
0.028	0.007	0.014	0.021	0.028	0.035	0.042	0.049	0.056	0.063	0.070	0.077	0.084	0.091	0.098	0.105	0.112	0.119	0.126	0.133	0.140
0.029	0.007	0.014	0.021	0.029	0.036	0.043	0.050	0.057	0.064	0.071	0.078	0.086	0.093	0.100	0.107	0.114	0.121	0.128	0.135	0.143
0.030	0.007	0.015	0.022	0.029	0.036	0.044	0.051	0.058	0.065	0.073	0.080	0.087	0.094	0.102	0.109	0.116	0.123	0.131	0.138	0.145
0.031	0.007	0.015	0.022	0.030	0.037	0.044	0.052	0.059	0.067	0.074	0.081	0.089	0.096	0.103	0.111	0.118	0.126	0.133	0.140	0.148
0.032	0.008	0.015	0.023	0.030	0.038	0.045	0.053	0.060	0.068	0.075	0.083	0.090	0.098	0.105	0.113	0.120	0.128	0.135	0.143	0.150
0.033	0.008	0.015	0.023	0.031	0.038	0.046	0.054	0.061	0.069	0.077	0.084	0.092	0.099	0.107	0.113	0.122	0.130	0.138	0.145	0.153
0.034	0.008	0.016	0.023	0.031	0.039	0.047	0.054	0.062	0.070	0.078	0.086	0.093	0.101	0.109	0.117	0.124	0.132	0.140	0.148	0.156
0.035	0.008	0.016	0.024	0.032	0.040	0.047	0.055	0.063	0.071	0.079	0.087	0.095	0.103	0.111	0.119	0.126	0.134	0.142	0.150	0.158
0.036	0.008	0.016	0.024	0.032	0.040	0.048	0.056	0.064	0.072	0.080	0.088	0.096	0.104	0.112	0.120	0.128	0.137	0.145	0.153	0.161
0.037	0.008	0.016	0.024	0.033	0.041	0.049	0.057	0.065	0.073	0.082	0.090	0.098	0.106	0.114	0.122	0.130	0.139	0.147	0.155	0.163
0.038	0.008	0.017	0.025	0.033	0.041	0.050	0.058	0.066	0.074	0.083	0.091	0.099	0.108	0.116	0.124	0.132	0.141	0.149	0.157	0.166
0.039	0.008	0.017	0.025	0.034	0.042	0.050	0.059	0.067	0.076	0.084	0.092	0.101	0.109	0.118	0.126	0.134	0.143	0.151	0.160	0.168
0.040	0.009	0.017	0.026	0.034	0.043	0.051	0.060	0.068	0.077	0.085	0.094	0.102	0.111	0.119	0.128	0.136	0.145	0.153	0.162	0.170
0.041	0.009	0.017	0.026	0.035	0.043	0.052	0.060	0.069	0.078	0.086	0.095	0.104	0.112	0.121	0.130	0.138	0.147	0.156	0.164	0.175
0.042	0.009	0.018	0.026	0.035	0.044	0.053	0.061	0.070	0.079	0.088	0.096	0.105	0.114	0.123	0.131	0.140	0.149	0.158	0.166	0.179
0.043	0.009	0.018	0.027	0.036	0.044	0.053	0.062	0.071	0.080	0.089	0.098	0.107	0.115	0.124	0.133	0.142	0.151	0.160	0.169	0.178
0.044	0.009	0.018	0.027	0.036	0.045	0.054	0.063	0.072	0.081	0.090	0.099	0.108	0.11/	0.126	0.135	0.144	0.153	0.162	0.1/1	0.180

	H/L																			
Ls/L	0.010	0.020	0.030	0.040	0.050	0.060	0.070	0.080	0.090	0.100	0.110	0.120	0.130	0.140	0.150	0.160	0.170	0.180	0.190	0.200
0.045	0.009	0.018	0.027	0.037	0.046	0.055	0.064	0.073	0.082	0.091	0.100	0.109	0.118	0.128	0.137	0.146	0.155	0.164	0.173	0.182
0.046	0.009	0.018	0.028	0.037	0.046	0.055	0.065	0.074	0.083	0.092	0.102	0.111	0.120	0.129	0.138	0.148	0.157	0.166	0.175	0.185
0.047	0.009	0.019	0.028	0.038	0.047	0.056	0.065	0.075	0.084	0.093	0.103	0.112	0.121	0.131	0.140	0.150	0.159	0.168	0.178	0.187
0.048	0.009	0.019	0.028	0.038	0.047	0.057	0.066	0.076	0.085	0.095	0.104	0.114	0.123	0.132	0.142	0.151	0.161	0.170	0.180	0.189
0.049	0.010	0.019	0.029	0.039	0.048	0.057	0.067	0.077	0.086	0.096	0.105	0.115	0.124	0.134	0.144	0.153	0.163	0.172	0.182	0.191
0.050	0.010	0.020	0.029	0.039	0.048	0.058	0.068	0.077	0.087	0.097	0.107	0.116	0.126	0.136	0.145	0.155	0.165	0.174	0.184	0.194
0.051	0.010	0.020	0.030	0.040	0.049	0.059	0.069	0.078	0.088	0.098	0.108	0.118	0.127	0.137	0.147	0.157	0.167	0.176	0.186	0.196
0.052	0.010	0.020	0.030	0.040	0.050	0.059	0.069	0.079	0.089	0.099	0.109	0.119	0.129	0.139	0.149	0.159	0.169	0.178	0.188	0.198
0.053	0.010	0.020	0.030	0.040	0.050	0.060	0.070	0.080	0.090	0.100	0.110	0.120	0.130	0.140	0.150	0.160	0.170	0.180	0.190	0.200
0.054	0.010	0.020	0.030	0.041	0.051	0.061	0.071	0.081	0.091	0.101	0.111	0.122	0.132	0.142	0.152	0.162	0.172	0.182	0.193	0.203
0.055	0.010	0.020	0.031	0.041	0.051	0.061	0.072	0.082	0.092	0.102	0.113	0.123	0.133	0.143	0.154	0.164	0.174	0.184	0.195	0.205
0.056	0.010	0.021	0.031	0.041	0.052	0.062	0.072	0.083	0.093	0.104	0.114	0.124	0.135	0.145	0.155	0.166	0.176	0.186	0.197	0.207
0.057	0.010	0.021	0.031	0.042	0.052	0.063	0.073	0.084	0.094	0.105	0.115	0.126	0.136	0.147	0.157	0.167	0.178	0.188	0.199	0.209
0.058	0.011	0.021	0.032	0.042	0.053	0.063	0.074	0.085	0.095	0.106	0.116	0.127	0.137	0.148	0.159	0.169	0.180	0.190	0.201	0.212
0.059	0.011	0.021	0.032	0.043	0.053	0.064	0.075	0.085	0.096	0.107	0.118	0.128	0.139	0.150	0.160	0.171	0.182	0.192	0.203	0.214
0.060	0.011	0.022	0.032	0.043	0.054	0.065	0.076	0.086	0.097	0.108	0.119	0.130	0.140	0.151	0.162	0.173	0.184	0.194	0.205	0.216
0.061	0.011	0.022	0.033	0.044	0.055	0.065	0.076	0.087	0.098	0.109	0.120	0.131	0.142	0.153	0.164	0.174	0.185	0.196	0.207	0.218
0.062	0.011	0.022	0.033	0.044	0.055	0.066	0.077	0.088	0.099	0.110	0.121	0.132	0.143	0.154	0.165	0.176	0.187	0.198	0.209	0.220
0.063	0.011	0.022	0.033	0.044	0.056	0.067	0.078	0.089	0.100	0.111	0.122	0.133	0.145	0.156	0.167	0.178	0.189	0.200	0.211	0.222
0.064	0.011	0.022	0.034	0.045	0.056	0.067	0.079	0.090	0.101	0.112	0.123	0.135	0.146	0.157	0.168	0.180	0.191	0.202	0.213	0.225
0.065	0.011	0.023	0.034	0.045	0.057	0.068	0.079	0.091	0.102	0.113	0.125	0.136	0.147	0.159	0.170	0.181	0.193	0.204	0.215	0.227
0.066	0.011	0.023	0.034	0.046	0.057	0.069	0.080	0.092	0.103	0.114	0.126	0.137	0.149	0.160	0.172	0.183	0.195	0.206	0.217	0.229
0.067	0.012	0.023	0.035	0.046	0.058	0.069	0.081	0.092	0.104	0.115	0.127	0.139	0.150	0.162	0.173	0.185	0.196	0.208	0.219	0.231
0.068	0.012	0.023	0.035	0.047	0.058	0.070	0.082	0.093	0.105	0.117	0.128	0.140	0.152	0.163	0.175	0.186	0.198	0.210	0.221	0.233
0.069	0.012	0.024	0.035	0.047	0.059	0.071	0.082	0.094	0.106	0.118	0.129	0.141	0.153	0.165	0.176	0.188	0.200	0.212	0.223	0.235
0.070	0.012	0.024	0.036	0.047	0.059	0.071	0.083	0.095	0.107	0.119	0.131	0.142	0.154	0.166	0.178	0.191	0.202	0.214	0.225	0.237
0.071	0.012	0.024	0.036	0.048	0.060	0.072	0.084	0.096	0.108	0.120	0.132	0.144	0.156	0.168	0.180	0.192	0.204	0.216	0.227	0.239
0.072	0.012	0.024	0.036	0.048	0.060	0.072	0.085	0.097	0.109	0.121	0.133	0.145	0.157	0.169	0.181	0.193	0.205	0.217	0.229	0.242
0.073	0.012	0.024	0.037	0.049	0.061	0.073	0.085	0.097	0.110	0.122	0.134	0.146	0.158	0.171	0.183	0.195	0.207	0.219	0.232	0.244
0.074	0.012	0.025	0.037	0.049	0.061	0.074	0.086	0.098	0.111	0.123	0.135	0.147	0.160	0.172	0.184	0.197	0.209	0.221	0.234	0.246
0.075	0.012	0.025	0.037	0.050	0.062	0.074	0.087	0.099	0.112	0.124	0.136	0.149	0.161	0.174	0.186	0.198	0.211	0.223	0236	0.248
0.076	0.012	0.025	0.037	0.050	0.062	0.075	0.087	0.100	0.112	0.125	0.137	0.150	0.162	0.175	0.187	0.200	0.212	0.225	0.237	0.250
0.077	0.013	0.025	0.038	0.050	0.063	0.076	0.088	0.101	0.113	0.126	0.139	0.151	0.164	0.170	0.189	0.202	0.214	0.227	0.239	0.252
0.078	0.013	0.025	0.038	0.051	0.064	0.076	0.089	0.102	0.114	0.127	0.140	0.153	0.165	0.170	0.191	0.203	0.210	0.229	0.241	0.254
0.079	0.013	0.026	0.038	0.051	0.064	0.077	0.090	0.103	0.115	0.128	0.141	0.154	0.167	0.179	0.192	0.203	0.218	0.231	0.245	0.230
0.080	0.013	0.026	0.039	0.052	0.065	0.078	0.090	0.105	0.110	0.129	0.142	0.155	0.160	0.181	0.194	0.207	0.220	0.235	0.243	0.238
0.081	0.013	0.026	0.039	0.052	0.065	0.078	0.091	0.104	0.117	0.130	0.145	0.150	0.109	0.184	0.193	0.208	0.221	0.234	0.247	0.260
0.082	0.013	0.020	0.039	0.055	0.000	0.079	0.092	0.105	0.110	0.131	0.144	0.150	0.172	0.184	0.197	0.210	0.225	0.230	0.249	0.203
0.083	0.013	0.020	0.040	0.053	0.000	0.079	0.093	0.100	0.119	0.132	0.140	0.159	0.172	0.165	0.198	0.212	0.223	0.238	0.251	0.203
0.085	0.013	0.027	0.040	0.053	0.007	0.081	0.093	0.107	0.120	0.133	0.147	0.161	0.175	0.187	0.200	0.215	0.227	0.240	0.255	0.207
0.085	0.013	0.027	0.040	0.054	0.007	0.081	0.094	0.108	0.121 0.122	0.134	0.140	0.163	0.175	0.100	0.202	0.213	0.220	0.242	0.255	0.209
0.000	0.014	0.027	0.041	0.054	0.008	0.001	0.095	0.100	0.122	0.155	0.149	0.105	0.170	0.190	0.203	0.217	0.250	0.244	0.257	0.271

B-GL-332-006/FP-001

	H/L																			
Ls/L	0.010	0.020	0.030	0.040	0.050	0.060	0.070	0.080	0.090	0.100	0.110	0.120	0.130	0.140	0.150	0.160	0.170	0.180	0.190	0.200
0.087	0.014	0.027	0.041	0.055	0.068	0.082	0.096	0.109	0.123	0.136	0.150	0.164	0.177	0.191	0.205	0.218	0.232	0.246	0.259	0.273
0.088	0.014	0.028	0.041	0.055	0.069	0.083	0.096	0.110	0.124	0.138	0.151	0.165	0.179	0.193	0.206	0.220	0.234	0.248	0.261	0.275
0.089	0.014	0.028	0.042	0.055	0.069	0.083	0.097	0.111	0.125	0.139	0.152	0.166	0.180	0.194	0.208	0.222	0.236	0.249	0.263	0.277
0.090	0.014	0.028	0.042	0.056	0.070	0.084	0.098	0.112	0.126	0.140	0.154	0.168	0.181	0.195	0.209	0.223	0.237	0.251	0.265	0.279
0.091	0.014	0.028	0.042	0.056	0.070	0.084	0.098	0.113	0.127	0.141	0.155	0.169	0.183	0.197	0.211	0.225	0.239	0.253	0.267	0.281
0.092	0.014	0.028	0.043	0.057	0.071	0.085	0.099	0.113	0.128	0.142	0.156	0.170	0.184	0.198	0.213	0.227	0.241	0.255	0.269	0.283
0.093	0.014	0.029	0.043	0.057	0.071	0.086	0.100	0.114	0.128	0.143	0.157	0.171	0.186	0.200	0.214	0.228	0.243	0.257	0.271	0.285
0.094	0.014	0.029	0.043	0.058	0.072	0.086	0.101	0.115	0.129	0.144	0.158	0.173	0.187	0.201	0.216	0.230	0.244	0.259	0.273	0.288
0.095	0.014	0.029	0.043	0.058	0.072	0.087	0.101	0.116	0.130	0.145	0.159	0.174	0.188	0.203	0.217	0.232	0.246	0.261	0.275	0.290
0.096	0.015	0.029	0.044	0.058	0.073	0.088	0.102	0.117	0.131	0.146	0.160	0.175	0.190	0.204	0.219	0.233	0.248	0.263	0.277	0.292
0.097	0.015	0.029	0.044	0.059	0.073	0.088	0.103	0.118	0.132	0.147	0.162	0.176	0.191	0.206	0.220	0.235	0.250	0.264	0.279	0.294
0.098	0.015	0.030	0.044	0.059	0.074	0.089	0.104	0.118	0.133	0.148	0.163	0.178	0.192	0.207	0.222	0.237	0.251	0.266	0.281	0.296
0.099	0.015	0.030	0.045	0.060	0.074	0.089	0.104	0.119	0.134	0.149	0.164	0.179	0.194	0.209	0.223	0.238	0.253	0.268	0.283	0.298
0.100	0.015	0.030	0.045	0.0.60	0.075	0.090	0.105	0.120	0.135	0.150	0.165	0.180	0.195	0.210	0.225	0.240	0.255	0.270	0.285	0.300

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
1	Steel beam	Through br I	Top Atk	
			 Cut at mid-span Cut at mid-span Cut be ams incl bottom flange in "V" Deak nord NOT be out 	
2	Steel beam	Through br II	Bottom atk E is greater than $E_{\mathbb{R}}$	
			▲ <u>↓</u> H <u>↓</u> + · · · · · · · · · · · · · · · · · · ·	

3. Methods of Atk – Simply Supported Spans

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
			1. Cut at mid-span to depth 0.75 H as shown	
			2. Deck must be cut across full width of br	
3	Steel beam	Through br III	Angled atk	End clr is NOT a
		-		consideration
			1. Out between 1/2 snon and mid snon	
			2. Cut angle at approx 70° to beam flange	
			2. Cut angle at approx 70 to beam hange	
4	Stool boom	Through hr IV	S. Deck must be cut deross full width of bi	
4	Steel beam	rinougn of rv	1. Cut at mid span to depth 0.75 H as shown in Ser 2	
			2 Deck must be cut across full width of br	
			2. Deck must be cut across run width of bi	
			sufficient and clr	
1				

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
5	Steel beam	Through br V	Top Atk E is less than E_R	
		(Where deck is		
		loc well above		
		the level of the		
		bottom of the		
		beams)		
			1 Cut at mid-snan	
			2 Use cuts as shown	
			3 Deck need NOT be cut	
6	Steel beam	Deck br top	Angled Atk	1. Found in cantilever
-		sp		and suspended span br
		1	Δ	2. End clr is NOT a
				consideration
			1. Cut between 1/3 span and mid-span	

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
			2. Cut entire beam at approx 70° to beam flange	
			3. Deck must be cut across full width of br	
7	Steel beam	Deck br	Bottom Atk E is greater than E _R	
		bottom sp I		
			 Cut at mid-span Cut full depth of web and both flanges Deck need NOT be cut 	
8	Steel beam	Deck br bottom	Bottom Atk E is less than E _R	
		sp II	1. Cut at mid-span	
			2. Cut full depth of web and both flanges	
			3. Atk the end of the br or one abutment/pier to create	
			sufficient end clr	
			Deck need NOT be cut	

	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
	9	Steel beam	Deck br bottom	Angled Atk	End clr is NOT a
			sp III		consideration
				1 Cut between 1/3 span and mid-span	
				2. Cut entire beam at approx 70° to beam flange	
				3. Deck must be cut across full width of br	
ľ	10	Steel truss	Through br I	Top Atk E is less than E_R	
			C	► Lc 「◀	
L		[[1. Cut at mid-span	

Insert - Engineers

6-8	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
9		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
96 B-GL-332-006/FP-001	(a)	CATEGORY (b)	(c)	(d) 2. Cut top chord twice, vertical (if nec), diagonal and bottom chord 3. Wind bracing at top chord level must be removed over L _c 4. Deck need NOT be cut Angled Atk 1. Cut between 1/3 span and mid-span	(e)
				 Cut between 1/3 span and mid-span Cut top chord, diagonals and bottom chord in one bay only. Cut is to be angled at 70° to top chord Deck must be cut across full width of br 	

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
12	Steel truss	Deck br top	Bottom Atk	
		sp		
			 Cut at mid-span Cut top chord, diagonals and bottom chord in one bay only 	
			3. Deck need NOT be cut	
13	Steel truss	Deck br bottom sp I	Bottom Atk E is greater than E _R	

2-8	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
8		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
				1. Cut at mid-span	
				2. Cut top chord, diagonals and bottom chord in one bay	
				only	
				3. Deck need NOT be cut	
_	14	Steel truss	Deck br bottom	Bottom Atk E is Less than E _R	
Ä			sp II	1. Cut at mid-span.	
۲,				2. Cut top chord, diagonals and bottom chord in one bay	
33)				only.	
2-0				3. Atk the end of the br or one pier/abutment to create	
06				sufficient end clr	
FP				4. Deck need NOT be cut	
-0	15	Steel truss	Deck br bottom	Angled Atk	End clr is NOT a
ĭ			sp III		consideration
				1. Cut between 1/3 span and mid-span	
				Cut angled at approx 70° to top chord	

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
			Deck must be cut across full width of br	
			4. Cut top chord diagonals and bottom chord in one bay	
			only	
16	Concrete	Through br	Bottom At	
			1. Cut at mid-span	
			2. Complete cut through beam	
			Deck must be cut across full width of br	
17	Concrete	Deck br top sp	Top Atk	1. Found in cantilever
				and suspended span br
				2. Remove concrete over
				length L _C to full width
				and depth of beams

~	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
00		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
B-GL-332-006/FP-001	18	Concrete	Deck br bottom sp	Atk at mid-span using concrete stripping charge Bottom Atk, E is greater than E _R	 Applies to <u>slab</u> <u>bridges only</u> This cuts sufficient reinforcing bars in reinforced concrete <u>slabs</u> to cause collapse
	19	Concrete	Deck br bottom sp II	Bottom Atk E is less than E _R 1. Cut at mid-span 2. Atk the end of the br or one pier/abutment to create	 Applies to <u>slab br</u> only Same as above
				sufficient end clr	

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
20	Concrete	Deck br bottom	Top Atk E is less than E_R	Remove concrete over
		sp III	-> 1 LC 14-	length L _C to full width
				and depth of beams.
				Plan for a two-stage atk
				to cut the anchor span
				although failure may
				occur after the first
			Atk at mid span using concrete stripping charge	stage.
21	Bowstring	Normal	Ton Atk	
	Domburng		- op take	
			NY E= = = = = = + = + = + = + = + = + = +	
			1. Cut at mid-span	
			2. Cut bow in two places	
			3. Cut any hangers between bow cuts	
			Deck need NOT be cut	

8-1	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
02		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
	22	Bowstring	Reinforced	Top Atk plus girders	
B-GL-332-006/FP-001				 Cut at mid-span Cut bow in two places Cut any hangers between bow cuts Deck need NOT be cut Cut longitudinal reinforcing beams/trusses as shown 	

805.38 - METHODS OF ATK FOR CONTINUOUS SPANS

1. Recce Measurements						
H/L	L _C /L	H/L	L _C /L			
0.04	0.003	0.22	0.10			
0.06	0.007	0.24	0.13			
0.08	0.013	0.26	0.15			
0.10	0.02	0.28	0.17			
0.12	0.03	0.30	0.20			
0.14	0.04	0.32	0.23			
0.16	0.053	0.34	0.27			
0.18	0.067	0.36	0.30			
0.20	0.083					

Insert - Engineers

SER	SUB-	ТҮРЕ	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
1	Concrete	Cantilever	Two Complete Cuts SHEAR JOINT	 Plan for a two-stage atk to cut the anchor span although failure may occur after the first stage Use concrete stripping charge for first stage
2	Concrete	Cantilever and suspended span	One Complete Cut	Plan for a two-stage atk to cut the anchor span although failure may occur after the first stage. Use concrete stripping charge for first stage. If dml of the suspended span alone will create the desired obs, regard the suspended span as a simply supported br, then categorize and atk accordingly

2. Method of Atk – Continuous Spans

8-104

B-GL-332-006/FP-001

Insert - Engineers

8-1	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
90		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
B-GL-332-006/	4	Concrete	Beam/truss, without short span	Two or More Complete Cuts $x \rightarrow x \rightarrow$	Plan for a two stage at although failure may occur after the first stage. Use concrete stripping charge to achieve first stage
6/F	5	Conorato	Dortal fixed	Two Complete Cute	1 Plan for a two stage atk
P-001	5	Concrete	footing	Cut span twice close to piers	 Plan for a two-stage atk although failure may occur after the first stage. Use concrete stripping charge to achieve first stage

	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
6		Concrete	Portal, pinned footing	Stripping of Concrete	 Plan for a two stage at although failure may occur after the first stage When footing conditions are unk, method of atk <u>must be</u> as for Ser 5

-8	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
801		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
B-GL-332-006/FP-001	7	Concrete	Arch, open spandrel, fixed footing	Stripping of Concrete LC Concrete Remove concrete over length L _c , using concrete stripping charge	 This applies to arches of span greater than 40 m only Plan for a two-stage atk although failure may occur after the first stage

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
8	Concrete	Arch, open spandrel, fixed footing II	Stripping of Concrete LC Springing Line Springing Line 1. Remove concrete from midspan over length L _e using concrete stripping charge formula 2. Atk Springing Line against top face of arch ring	 This applies to arches of span less than 40 m Plan for a two-stage atk to cut the anchor span although failure may occur after the first stage

-8	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
10		CATEGORY			
-	(a)	(b)	(c)	(d)	(e)
B-GL-332-006/FP-001	9	Concrete	Arch, open spandrel, fixed footing III	Four Complete Cuts	 This method is an altn to Ser 8 and applies to arches of span less than 40 m Plan for a two-stage atk although failure may occur after the first stage Use concrete stripping charge to achieve first stage

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
10	Concrete	Arch, open	Stripping of concrete	Plan for a two-stage atk although
		spandrel, pinned		failure may occur after the first
		footing		stage
			Remove all concrete over length L_c , using concrete stripping charge	

-8	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
12		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
B-GL-332-006/FP-001	11	Concrete	Arch, solid spandrel, fixed footing I	Stripping of Concrete LC Remove concrete from midspan over length L _c using concrete stripping charge	 This applies to arches of span less than 40 m Plan for a two-stage atk although failure may occur after the first stage

SER	SUB-	TYPE	METHOD OF ATK	REMARKS
(a)	(b)	(c)	(d)	(e)
12	Concrete	Arch, solid spandrel, fixed footing II	Stripping of Concrete LC Springing Points 1. Remove all concrete over length L _c Atk both springing pts by removing concrete using concrete stripping charges either against bottom face of arch ring, or against top face of arch ring, having removed spandrel fill beneath roadway	 This applies to arches of span less than 40 m Plan for a two-stage atk although failure may occur after the first stage

8-1	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
14		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
	13	Concrete	Arch, solid	Stripping of Concrete	Plan for a two stage atk although
			spandrel, pinned	→ Le I ←	failure may occur after the first
B-GL-332-006/FP-00			footing	Remove all concrete over length L _c using the concrete stripping charge	stage
	14	Steel	Cantilever	Two Complete Cuts Shear Joint Cut anchor span as near pier as practical Cut mid-span shear joint	

SER	SUB-	ТҮРЕ	METHOD OF ATK	REMARKS
	CATEGORY			
(a)	(b)	(c)	(d)	(e)
15	Steel	Cantilever and suspended span	One Complete Cut	If the dml of the suspended span alone will create the desired obs, regard the suspended span as a simply supported br, and categorize and atk accordingly
16	Steel	Beam/truss with short side span	One Complete Cut 1. Cut interior span so that Y is greater than 1.25X 2. If nec, cut other interior spans as in Ser 17	

Insert - Engineers

SER	SUB- CATEGORY	ТҮРЕ	METHOD OF ATK	REMARKS
(a)	(b)	(c)	(d)	(e)
17	Steel	Beam/truss without short side span	Two or More Complete Cuts	
18	Steel	Portal, fixed footing	Two Complete Cuts	

B-GL-332-006/FP-001

SER	SUB- CATEGORY	ТҮРЕ	METHOD OF ATK	REMARKS
(a)	(b)	(c)	(d)	(e)
19	Steel	Portal, pinned footing	Two Complete Cuts	When footing conditions are unk, use the method of atk in Ser 18

8-1	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
18		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
	20	Steel	Arch, open	Four Complete Cuts	
			spandrel, fixed		
			footing		
Β					
GĽ					
33				1/X V/	
2-0				1/172 -3//	
06/1					
FP-(1/1/1000 -00/1/////	
001					

	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
		CATEGORY			
	(a)	(b)	(c)	(d)	(e)
	21	Steel	Arch, open	Two Complete Cuts	
			spandrel, pinned		
Insert – Eng			footing		
gine				Remove sect from mid-span over length L _c	
eers	22	Masonry arch I		Two Complete Cuts	
[∞]				Arch ring, spandrel walls and parapet shall all be atk	

<u>~</u>	SER	SUB-	TYPE	METHOD OF ATK	REMARKS
120		CATEGORY			
-	(a)	(b)	(c)	(d)	(e)
	23	Masonry,		One Complete Cut	Use this method as an altrn to
		arch II		n uman na sanan da sa karana na sana sa sa	Ser 22 only when time is
					insufficient to allow atk at
				المجاجبا والمراجع المراجع المراجع المراجع	haunches
-					
ő					
F					
$\widetilde{\omega}$					
6					
6				Brook and sing at another	
H				breach arch ring at crown	

006/FP-001

805.39 -	DEMOLITIONS	- GENERAL
----------	-------------	-----------

1. Outline Planning Data

Ser	Const	Span	Width		Cut One S	pan	One Pier			On	e Abutm	ent
		(m)	(m)	Sect	Time	Expl (kg)	Sect	Time	Expl	Sect	Time	Expl
					(hr)			(hr)	(kg)		(hr)	(kg)
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)	(m)
1	Brick or	3-12	To 6	1	4	36	1	3	35	1	2	65
	masonry and	12-24	To 6	1	5	64	1	4	60	1	2	65
	mass concrete	3-12	6-12	1	6	75	1	5	70	1	2	100
	arches, piers,	12-24	6-12	2	6	130	1	6	100	1	2	100
	and abutments											
2	Steel girder	3-12	To 6	1	4	27	1	2.5	35	1	2	65
	spans, mass	12-24	To 6	1	5	68	1	3	100	1	2	65
	concrete piers	24-40	To 6	1	6	130	1	3.5	70	1	2	65
	and abutments	3-12	6-12	1	4	54	1	3	70	1	2	100
		12-24	6-12	1	6	135	1	3.5	100	1	2	100
		24-40	6-12	2	6	200	1	3.5	100	1	2	100

	Ser	Const	Span	Width		Cut One S	pan		One Pier		One Abutment		
5			(m)	(m)	Sect	Time (hr)	Expl (kg)	Sect	Time (hr)	Expl (kg)	Sect	Time (hr)	Expl (kg)
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)	(m)
	3	Steel girder	3-12	To 6	1	4	75	1	3	45	1	2	70
		spans, mass	12-24	To 6	1	5	160	1	4	70	1	2	70
		concrete piers	24-40	To 6	1	6	225	1	5	120	1	2	70
J		and abutments	3-12	6-12	2	4	145	2	4	90	1	2	100
2			12-24	6-12	2	5	320	2	5	140	1	2	100
5			24-40	6-12	2	6	445	2	6	230	1	2	100
2	4	RC arches, piers	3-12	To 6	2	8	230	Piers pro	bably too t	hick to	Abutme	nts probab	ly too
3		and abutments	12-24	To 6	2	12	365	atk			hy for ca	amouflet c	harges
			24-40	To 6	2	16	455						
ŧ			3-12	6-12	3	12	455						
2			12-24	6-12	3	16	725						
-			24-40	6-12	3	20	1090						

B-GL-332-006/FP-001

2. Rd Cratering

Ser	Method of Atk	Time (hrs)	Remarks
(a)	(b)	(c)	(d)
1	Camouflet	2 - 4.5	1. Each craters normally mined with 5 AT mines
2	Shaped Charge	2.5 - 5	2. Nine craters will take approx four X sect hrs to mine and record
3	Power Auger	1.5 - 3	3. Timings are for sect hrs
	-		

3. Calculation of Charges

a. Dimensions of C4 expl:

- (1) Block length is 27.94 cm rounded to **28 cm**.
- (2) Block width is 5.08 cm rounded to 5 cm.
- (3) Block thickness is 2.54 cm rounded to 2.5 cm.
- (4) Block wt is 0.558 kg rounded to **0.56 kg**.
- (5) Block vol is 350 cm^3 .

b. Rounding Off/Up. The fol rules apply:

- (1) all calculations in a given formula should be done in cm or m, and kg,
- (2) rounding off to two decimal places should be done at each step of a calculation,
- (3) conversion from kg to blocks of C4 is accomplished by dividing answers in kg by 0.56 (wt of a block of C4),
- (4) then rounding to the nearest quarter block, and
- (5) all charge calculations are then totalled for the qty of expl reqr for the task. At the final stage (ie. sqn level), the

final charge qty is calculated by adding an extra 10% to compensate for charge placement and waste.

c. All tables in this Aide-Memoire are tabular answers, based on deliberate formulas.

- d. The rule in charge calculation is to round up to the nearest quarter block and when calculating charge end cross sect (Cx), Cx will not be less than one.
 - e. Cx is already calculated using tabular tables.

Round Steel Bar Circumference	Blocks Of	High Carbon/ Alloy Steel Bar	Blocks Of	Steel Wire Rope	Blocks Of	High Carbon/ Alloy Steel	Blocks Of C4
(cm)	01	Circumference (cm)	0.	(cm)	0.	Wire Rope	
						Circumference	
						(cm)	
8.9	0.25	5.6	0.25	8.0	0.25	5.1	0.25
12.5	0.5	7.9	0.5	11.3	0.5	7.1	0.5
15.2	0.75	9.6	0.75	13.8	0.75	8.7	0.75
17.6	1	11.1	1	15.9	1	10	1
19.6	1.25	12.4	1.25	17.8	1.25	11.2	1.25
21.5	1.5	13.6	1.5	19.4	1.5	12.3	1.5
23.2	1.75	14.7	1.75	21.0	1.75	13.3	1.75
24.8	2	15	2	22.4	2	14.2	2
26.3	2.25			23.8	2.25	15	2.25
27.7	2.5			25.1	2.5		
29.1	2.75			26.3	2.75		

805.40 - CUTTING CHARGES FOR ROUND STEEL BAR AND STEEL WIRE ROPE

Round Steel Bar	Blocks Of	High Carbon/	Blocks Of	Steel Wire Rope	Blocks Of	High Carbon/	Blocks Of C4
Circumference	C4	Alloy Steel Bar	C4	Circumference	C4	Alloy Steel	
(cm)		Circumference (cm)		(cm)		Wire Rope	
						Circumference	
						(cm)	
30.4	3			27.5	3	The calculation f	ormulas below
						give most structu	ral and cable
31.4	3.25			28.6	3.25	steels up to 3.14-	cm
				29.7	3.5	circumference (1.0-cm dia). Use shaped charges for	
				30.7	3.75		
				31.4	4	circumferences l	arger than 3.14
						cm.	

1. Calculation

a. Steel Bars $C = C^2/550$

b. Steel Cables $C = C^2/450$

c. Steel Chains $C = C^2/550$

NOTE: Sub-paragraph a and c can be used against high carbon steel and alloy tgts up to 15 cm in circumference and must be then multiplied by 2.5.

∞ 805.41 - CUTTING CHARGES FOR RECTANGULAR TIMBER

1. Cutting Charge Rectangular Timber Charge End Cross Sect For Blocks of C4

TIMBER THICKNESS	$C_{x}(C4)$	TIMBER THIC	KNESS	$C_{x}(C4)$	TIMBER THICKNESS	C _x (C4)
(cm)		(cm)			(cm)	
29	1	52.2		3.25	68.0	5.5
32.4	1.25	54.2		3.5	69.5	5.75
35.5	1.5	56.1		3.75	71.0	6
38.3	1.75	58.0		4	72.4	6.25
41.0	2	59.7		4.25	73.9	6.5
43.5	2.25	61.5		4.5	75.3	6.75
45.8	2.5	63.1		4.75	76.7	7
48.1	2.75	64.8		5		
50.2	3	66.4		5.25		
a. Charge Calculati	on. Charges	used for cutting rec	tangular tim	ber can be	calculated using the fol formu	la:
T^2 Length Of Bloc	k (cm)	V	Where			
$C_x = \overline{42000} \times \overline{Weight of bloc}$	k (kg)	C	$C_x = The Cha$	arge End C	ross Sect	
LC (cm)		Т	T = The Thickness Of The Target (cm)			
$C = \frac{1}{\text{length of block}} X C_x$		C	C = Charge Reqr (Blocks Of C4)			
-		L	LC = Length	Of Cut (ci	n)	
NOTE: The above table has	already calc	ulated C_x (C4) for th	ickness (cm) mentione	ed.	

Round Timber	Blocks of C4	Round Timber	Blocks of C4	Round Timber	Blocks of C4
Circumference (cm)		Circumference (cm)		Circumference (cm)	
51.9	0.25	164.8	8.25	206.6	16.25
65.1	0.5	166.5	8.5	207.6	16.5
74.3	0.75	168.1	8.75	208.7	16.75
81.8	1	169.7	9	209.7	17
88	1.25	171.2	9.25	210.7	17.25
93.5	1.5	172.7	9.5	211.7	17.5
98.4	1.75	174.2	9.75	212.7	17.75
102.9	2	175.7	10	213.7	18
107	2.25	177.2	10.25	214.7	18.25
110.8	2.5	178.6	10.5	215.7	18.5
114.3	2.75	180	10.75	216.7	18.75
117.7	3	181.4	11	217.6	19
120.9	3.25	182.8	11.25	218.6	19.25
123.9	3.5	184.1	11.5	219.5	19.5
126.8	3.75	185.4	11.75	220.5	19.75
129.5	4	186.7	12	221.4	20
132.2	4.25	188	12.25	222.3	20.25
134.7	4.5	189.3	12.5	223.2	20.5
137.1	4.75	190.5	12.75	224.1	20.75

2. Cutting Charge For Round Timber/Abatis in Blocks of C4

Round Timber	Blocks of C4	Round Timber	Blocks of C4	Round Timber	Blocks of C4
Circumference (cm)		Circumference (cm)		Circumference (cm)	
139.5	5	191.8	13	225	21
141.8	5.25	193	13.25	225.9	21.25
144	5.5	194.2	13.5	226.8	21.5
146.1	5.75	195.4	13.75	227.7	21.75
148.2	6	196.6	14	228.5	22
150.3	6.25	197.7	14.25	229.4	22.25
152.2	6.5	198.9	14.5	230.2	22.5
154.2	6.75	200	14.75	231.1	22.75
156	7	201.1	15	231.9	23
157.9	7.25	202.3	15.25	232.8	23.25
159.7	7.5	203.4	15.5	233.6	23.5
161.4	7.75	204.4	15.75	234.4	23.75
163.1	8	205.5	16	235.2	24

Limitations

1. For tgts greater than 2.35 m in circumference use borehole charges.

2. Total charge size suggested to be used to create an abatis while leaving trees attached to stump is 80% of charge size in table.

3. Recommend test shots always be carried out.

Wall	$C_{x}(C4)$	Pier	$C_{x}(C4)$	Pier	C _x (C4)	Arch Ring	C _x (C4)	Arch Ring	C _x (C4)
Thickness		Thickness		Thickness		Thickness (cm)		Thickness	
(cm)		(cm)		(cm)				(cm)	
50	1	43	1	138	10.25	40	1	130	10.25
56	1.25	48	1.25	140	10.5	45	1.25	132	10.5
61	1.5	53	1.5	142	10.75	50	1.5	133	10.75
66	1.75	57	1.75	143	11	54	1.75	135	11
70	2	61	2	145	11.25	57	2	136	11.25
75	2.25	65	2.25	146	11.5	61	2.25	138	11.5
79	2.5	68	2.5	148	11.75	64	2.5	139	11.75
82	2.75	71	2.75	150	12	67	2.75	141	12
86	3	75	3			70	3	142	12.25
90	3.25	78	3.25			73	3.25	144	12.5
93	3.5	81	3.5			76	3.5	145	12.75
96	3.75	83	3.75			79	3.75	147	13
100	4	86	4			81	4	148	13.25
103	4.25	89	4.25			84	4.25	150	13.5
106	4.5	91	4.5			86	4.5	151	13.75
109	4.75	94	4.75			89	4.75	152	14
111	5	96	5			91	5		

805.42 - CUTTING CHARGE MASONRY AND UN-REINFORCED CONCRETE

1. Charge End Cross Sect For Blocks of C4

Wall	$C_{x}(C4)$	Pier	$C_x(C4)$	Pier	C _x (C4)	Arch Ring	C _x (C4)	Arch Ring	C _x (C4)
Thickness		Thickness		Thickness		Thickness (cm)		Thickness	
(cm)		(cm)		(cm)				(cm)	
114	5.25	99	5.25			93	5.25		
117	5.5	101	5.5			95	5.5		
119	5.75	103	5.75			97	5.75		
122	6	106	6			100	6		
125	6.25	108	6.25			102	6.25		
127	6.5	110	6.5			104	6.5		
129	6.75	112	6.75			106	6.75		
132	7	114	7			108	7		
134	7.25	116	7.25			109	7.25		
136	7.5	118	7.5			111	7.5		
139	7.75	120	7.75			113	7.75		
141	8	122	8			115	8		
143	8.25	124	8.25			117	8.25		
145	8.5	126	8.5			119	8.5		
147	8.75	128	8.75			120	8.75		
150	9	129	9			122	9		
		131	9.25			124	9.25		
		133	9.5			125	9.5		
		135	9.75			127	9.75		

B-GL-332-006/FP-001

Wall	C _x (C4)	Pier	$C_x(C4)$	Pier	C _x (C4) Arch Ring C _x (C4) Arch Ri		Arch Ring	C _x (C4)	
Thickness		Thickness		Thickness		Thickness (cm)		Thickness	
(cm)		(cm)		(cm)				(cm)	
		136	10			129	10		
2. Charge	2. Charge Calculation. Charges used for cutting masonry and unreinforced concrete can be calculated using								e fol formula
LC (c	m) 🗸	G			C = charge r	eqr blocks of c4			
$C = \frac{1}{\text{length of block}} X C_x$ $LC = \text{length of cut (m)}$									
$C_x = charge end cross sect$									
NOTE: For	NOTE: For tots thicker than 1.5 m use borehole charges								

805.43 - CUTTING CHARGE RECTANGULAR STEEL

1. Cutting Charge Rectangular Steel Charge End Cross Sect For Blocks of C4

Beam Thickness (m)	$C_{x}(C4)$	Beam Thickness (m)	$C_x(C4)$	Slab Thickness (m)	C _x (C4)
0.056	1	0.179	10.25	0.079	1
0.062	1.25	0.181	10.5	0.088	1.25
0.068	1.5	0.183	10.75	0.096	1.5
0.074	1.75	0.185	11	0.104	1.75
0.079	2	0.187	11.25	0.111	2
0.083	2.25	0.189	11.5	0.118	2.25
0.088	2.5	0.191	11.75	0.125	2.5
0.092	2.75	0.193	12	0.131	2.75
0.096	3	0.195	12.25	0.137	3

Beam Thickness (m)	C _x (C4)	Beam Thickness (m)	$C_x(C4)$	Slab Thickness (m)	C _x (C4)
0.100	3.25	0.197	12.5	0.142	3.25
0.104	3.5	0.199	12.75	0.148	3.5
0.108	3.75	0.201	13	0.153	3.75
0.111	4	0.203	13.25	0.158	4
0.115	4.25	0.205	13.5	0.163	4.25
0.118	4.5	0.207	13.75	0.167	4.5
0.121	4.75	0.209	14	0.172	4.75
0.125	5	0.211	14.25	0.176	5
0.128	5.25	0.212	14.5	0.181	5.25
0.131	5.5	0.214	14.75	0.185	5.5
0.134	5.75	0.216	15	0.189	5.75
0.136	6	0.218	15.25	0.193	6
0.139	6.25	0.220	15.5	0.197	6.25
0.142	6.5	0.221	15.75	0.201	6.5
0.145	6.75	0.223	16	0.205	6.75
0.147	7	0.225	16.25	0.209	7
0.150	7.25			0.212	7.25
0.153	7.5			0.216	7.5
0.155	7.75			0.220	7.75
0.158	8			0.223	8
0.160	8.25			0.225	8.25

B-GL-332-006/FP-001

Beam Thickness (m)	C _x (C4)	Beam Thickness (m)	$C_x(C4)$	Slab Thickness (m)	C _x (C4)
0.163	8.5				
0.165	8.75				
0.167	9				
0.170	9.25				
0.172	9.5				
0.174	9.75				
0.176	10				

Charge Calculation. Charges used for cutting reinforced concrete up to 22.5 cm can be calculated using the fol a. formula:

$C = \frac{LC (cm)}{\text{length of block}} X C_x$	C = charge reqr blocks of C4 Lc = length of cut (m)
-	C_x = charge end cross sect
NOTE: For tats thicker than 22.5 cm use horehole or	concrete stripping charges

INU thicker than 22.5 cm use borehole or concrete stripping charges.

Cutting Charge Rectangular Steel Charge End Cross Sect for Blocks of C4 2.

Steel Thickness (cm)	$C_{x}(C4)$	Steel Thickness (cm)	C _x (C4)	Steel Thickness (cm)	C _x (C4)
2.7	1	7.4	7.25	10.1	13.5
3.0	1.25	7.5	7.5	10.2	13.75
3.3	1.5	7.6	7.75	10.3	14
3.6	1.75	7.7	8.0	10.4	14.25
3.9	2	7.9	8.25	10.5	14.75

Steel Thickness (cm)	$C_x(C4)$	Steel Thickness (cm)	C _x (C4)	Steel Thickness (cm)	C _x (C4)
4.1	2.25	8.0	8.5	10.6	15
4.3	2.5	8.1	8.75	10.7	15.25
4.5	2.75	8.2	9.0	10.8	15.5
4.7	3	8.3	9.25	10.9	15.75
4.9	3.25	8.4	9.5	11.0	16
5.1	3.5	8.6	9.75	11.1	16.25
5.3	3.75	8.7	10	11.2	16.75
5.5	4	8.8	10.25	11.3	17
5.6	4.25	8.9	10.5	11.4	17.25
5.8	4.5	9.0	10.75	11.5	17.5
6.0	4.75	9.1	11	11.6	17.75
6.1	5	9.2	11.25	11.7	18.25
6.3	5.25	9.3	11.5	11.8	18.5
6.4	5.5	9.4	11.75	11.9	18.75
6.6	5.75	9.5	12	12.0	19
6.7	6	9.6	12.25	12.1	19.5
6.8	6.25	9.7	12.5	12.2	19.75
7.0	6.5	9.8	12.75	12.3	20
7.1	6.75	9.9	13		
7.2	7	10.0	13.25		

a. Torman for currenting curring charges for rectangular bit actural provider betas							
T^2 vlength of block (cm)	where						
$C_x = \overline{380}^{X} \overline{\text{weight of block (kg)}}$	$C_x = charge end cross sect$						
LC (cm)	T = tgt thickness (cm)						
$C = \frac{1}{\text{length of block}} X C_x$	C = charge reqr (blocks of c4)						
	LC = length of cut (cm)						
NOTE : in this instance, the value of C_x can never be less than 1.0							

Formula for Calculating Cutting Charges for Rectangular Structural Steel Sects: а

805.44 - BREACHING CHARGES

Hasty Method. Breaching charges make use of the shattering effect of expls. They provide a rough method of destroying 1. reinforced concrete piers and obs such as dragon's teeth, cubes, tetrahedrons, and walls. Breaching charges are suitable (as an altn to shaped charges) for attacking RC piles, RC piers (up to 1 m thick), and trestles. Charge calculations

SER	TGT	WT OF EXPL (KG) PER M3 OF MAT TO BE REMOVED	REMARKS
(a)	(b)	(c)	(d)
1	RC obs, e.g. blocks, dragon's teeth, and cubes	16	If reinforcement is hy, double charge
2	Masonry walls with no reinforcement	16	Length of wall atked should not be less than height
3	RC walls with reinforcement no denser	32	As for ser 2

0

SER	TGT				VT OF EXPL (KO PER M3 OF MA FO BE REMOVE	G) Γ D	REMA	ARKS	
(a)	(b)				(c)		(d)		
	than 23 cm spacing								
4	RC piers, and walls, with reinforcement			nt	64	As for s	er 2		
	denser than 23 cm spacing								
NOTES	S:								
2. 2. Co	Divide th blocks of	e charge qty b C4. ripping Char	y the wt of exp	l to be use	ed, to get the total c	charge qty in u	nits of issue, i	.e.	
THIC	KNESS	$C_w kg(m)$	C _w C4	W _d (m)	THICKNESS	C _w kg (m)	C _w C4	W _d	
(1	n)	_	BLOCKS		(m)	_	BLOCKS	(m)	
0.	.05	0.44	1.00	0.4	1.05	93.50	167.00	2.4	
0.	10	0.86	1.75	0.5	1.10	105.67	188.75	2.5	
0.	0.15 1.48 2.75 0.4				1.15	118.84	212.25	2.6	
0.	20	2.34	4.25	0.7	1.20	133.07	237.75	2.7	
0.	25	3.49	6.25	0.8	1.25	148.40	265.00	2.8	
0.	.30	4.96	9.00	0.9	1.30	164.85	294.50	2.9	
0.	.35	6.80	12.25	1.0	1.35	182.48	326.00	3.0	

THICKNESS	C _w kg (m)	C _w C4	W _d (m)	THICKNESS C _w kg (m)		C _w C4	W _d
(m)		BLOCKS		(m)		BLOCKS	(m)
0.40	9.04	16.25	1.1	1.40	201.33	359.75	3.1
0.45	11.73	21.00	1.2	1.45	221.42	395.50	3.2
0.50	14.91	26.75	1.3	1.50	242.82	433.75	3.3
0.55	18.61	33.25	1.4	1.55	265.55	474.25	3.4
0.60	22.88	41.00	1.5	1.60	289.65	517.25	3.5
0.65	27.76	49.75	1.6	1.65	315.17	563.00	3.6
0.70	33.28	59.50	1.7	1.70	342.15	611.00	3.7
0.75	39.50	70.75	1.8	1.75	370.62	662.00	3.8
0.80	46.44	83.00	1.9	1.80	400.63	715.50	3.9
0.85	54.15	96.75	2.0	1.85	432.22	772.00	4.0
0.90	62.67	112.00	2.1	1.90	465.43	831.25	4.1
0.95	72.05	128.75	2.2	1.95	500.30	893.50	4.2
1.00	82.31	147.00	2.3	2.00	536.87	958.75	4.3
a. Charge Calculation. Concrete Stripping Charges can be calculated using the fol formula:							
$C = C_W x W$ $C = Charge reqr blocks of C4$							
W = the width of beam or sect of slab to be cut							
C_w = the size of charge per m of concrete							
NOTE: For tgts thicker than 2 m use borehole charges.							

805.45 - BOREHOLE CHARGES

8 1. Borehole Charges in Round Timber. To be used to destroy wooden trestles, brs or timber structures, and land clr

SER	DIA OR AVG	No. OF	TOTAL CHARGE	TOTAL CHARGE
	THICKNESS	BOREHOLES	(kg)	BLOCKS OF C4
	OF TGT (cm)			
1	26	1	0.14	.25
2	37	1	0.27	.5
3	46	1	0.42	.75
4	53	1	0.56	1
5	59	2	0.70	1.25
6	64	2	0.82	1.5
7	70	2	98	1.75
8	74	2	1.10	2
9	79	2	1.25	2.25
10	83	2	1.38	2.5
11	87	2	1.51	2.75
12	91	2	1.66	3
13	95	2	1.81	3.25
14	99	2	1.96	3.5
15	102	2	2.08	3.75
16	105	2	2.21	4
17	109	2	2.38	4.25

B-GL-332-006/FP-001

SER	DIA OR AVG THICKNESS OF TGT (cm)	No. OF BOREHOLES	TOTAL CHARGE (kg)	TOTAL CHARGE BLOCKS OF C4	
18	112	2	2.51	4.5	
19	115	2	2.65	4.75	
20	118	2	2.78	5	
NOTE: The blocks of C4 have been rounded up to the nearest quarter. In some instances there may be surplus expl when the borehole has been filled					

$C = \frac{2(d)^2}{100}$	C = charge reqr (kg) d = dia (cm)			
NOTES: 1. Tg	1. Tgts up to 0.5-m diam 1 hole reqr.			
2. Tg	2. Tgts over 0.5 m diam 2 holes reqr, expls divided equally in 2 holes.			

SER]	DEPTH OF HOLE (m)	VOL PER HOLE (cm ³)	C4 PER BOREHOLE REINFORCED CONCRETE		C4 PER BOREHOLE MASONRY AND UNREINFORCED CONCRETE	
				kg C4	Blks C4	kg C4	Blks C4
(a)		(b)	(c)	(d)	(e)	(f)	(g)
1		0.4	785.60	1.26	2.25	.63	1.25
2		0.6	1178.40	1.89	3.5	.94	1.75
3		0.8	1571.20	2.51	4.5	1.26	2.25
4		1	1964.00	3.14	5.75	1.57	3.00
5		1.2	2356.80	3.77	6.75	1.89	3.5
6		1.4	2661.00	4.26	7.75	2.13	4.00
7		1.6	2965.20	4.74	8.5	2.37	4.25
8		1.8	3269.40	5.23	9.5	2.62	4.75
9		2	3496.20	5.59	10	2.80	5.00
10		2.2	3723.00	5.96	10.75	2.98	5.5
11		2.4	3949.80	6.32	11.5	3.16	5.75
NOTES:	1. 2.	The blocks of be surplus ex Based on vol	f C4 have been rou pl when the boreh of expl and boreh	inded up to the ole has been fi ole.	e nearest quarter lled.	. In some instand	ces there may

2. Borehole Charges in Masonry and Concrete
3. Placement of Borehole Charges

SER	MATERIAL	THICKNESS	No. OF HORIZONTAL ROWS	VERTICAL SPACING	DEPTH OF HOLES
(a)	(b)	(c)	(d)	(e)	(f)
1	Brick or Masonry	Up to 1.80 m	2	2T/3	2T/3
2	Plain or Reinforced Concrete	Up to 1.80 m	3	2T/3	2T/3
3	Brick, Masonry, Plain or Reinforced Concrete	1.80 m to 2.70 m	3	2T/3	2T/3
4	Brick, Masonry, Plain or Reinforced Concrete	2.70 m to 3.60 m	3 each side	2T/3	T/2
5	Brick, Masonry, Plain or Reinforced Concrete	2.70 m to 3.60 m	3	2T/3	2T/3
6	Brick, Masonry, Plain or Reinforced Concrete	3.60 m to 4.80 m	3 each side	2T/3	T/2
NOTE from 2. 3.6 m c	When using drill rods up to 1. 7 m to 3.6 m thick, holes must an be drilled from one side, but	8 m in length, on tgts of th be drilled from both sides. tgts from 3.6 m to 4.8 m n	ickness 2.7 m or less you can Similarly, when using 2.4-n nust be drilled from both side	n drill from one s n drill rods in len es.	side, however gth, tgts up to

8-142 805.46 - MINED CHARGES

Mined Charges for Cratering

SUBGRADE	HOLE SPACING(S) (m)	EXPECTED CRATER DIAM (m)	No. OF HOLES	MIN CHARGE QUANTITY (kg)						
(a)	(b)	(c)	(d)	(e)						
Soft Grd	2D	3D	W/S	$(9/4)D^{3}$						
Med Grd	2D	3D	W/S	$(9/2)D^{3}$						
Hard Grd	D	2D	W/S	$(9/2)D^3$						
Where:	Vhere:									
D = depth of hole in m (camouflet set d = 2m, auger d = 2.4m)										
W = the length of de	sired cut in m									

For placement of charges use the fol procedures (utilising the table above): a.

- determine charge depth normally 2 m or 2.4 m and type of grd; (1)
- (2)determine charge spacing;
- determine expected size; (3)
- (4)determine line of cut. From craters across a rd at a 45 degree angle, multiply the width of rd by 1.41, (which is an equal to 1/cosine of 45 degrees);
- (5) determine the no of holes: and
- determine the no of rows regr which in most cases would be three and multiply that no by the no of holes. (6)
- For determining charge size carry out the fol steps: b.
 - determine charge quantity; (1)
 - multiply the no of holes by charge quantity; and (2)
 - multiply 0.5 block of C4 per hole as a priming charge. (3)

SER	NATURE OF SOIL	Wt OF CHARGE (kg) OF C4 PER M RUN	REMARKS
(a)	(b)	(c)	(d)
1	Soft Grd (Sand, Gravel,	$4 d^2/25 \text{ or } 2 L_r^2/25$	1. $D = Dia \text{ or width of crater } (m)$
	Clay)		2. L_r = Least line of resistance (m)
2	Med Grd	$8 d^2/25 \text{ or } 4 L_r^2/25$	3. If the surface is a concrete slab or hy pavement,
3	Hard Grd (Rock)	$16 d^2/25 \text{ or } 8 L_r^2/25$	increase the charge by 50%

2. Calculations for Continuous Mined Charges

S	er	Distance (M)	Depth (m)					Ma	sonry An	d Plain	Concret	e				Reinforced Concrete			
		From Face L _r	(III) D=3l _r 2 (II)	Contin- uous Buried	Small I Chai	all Buried Continuous Charges For Crater Dia (d) Charges							Cratering Charges For Crater Dia (D)						
		(1)		Charges 8 L _r ² 3 (kg/m run)	Charge 2L _r ³ (kg)			Spacing 4l _r /3 (m)			$d = 2.5 L_r$		$\mathbf{d} = 3\mathbf{L}_{\mathbf{r}}$			$d = 3L_r$			
							d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3+10 (kg)	Spacing 2d/3 (m)	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)	
	1	0.6 m or less	0.9	1.0	0.5	0.8	1.2	0.75	0.8	1.5	1.25	1.0	1.8	3.0	1.2	1.8	13.0	1.2	
	2	0.8	1.2	1.75	1.0	1.1	1.6	1.5	1.1	2.0	2.75	1.3	2.4	4.75	1.6	2.4	15.0	1.6	
	3	1.0	1.5	2.75	2.0	1.3	2.0	2.75	1.3	2.5	5.25	1.7	3.0	9.0	2.0	3.0	19.0	2.0	
	4	1.2	1.8	4.0	3.5	1.6	2.4	4.75	1.6	3.0	9.0	2.0	3.6	15.5	2.4	3.6	25.5	2.4	

8-144 3. Mined Charges for Masonry and Concrete Abutments and Retaining Walls

Ser	Distance (M)	Depth (m)		Masonry And Plain Concrete											Reinforced Concrete			
	From Face L _r	D=3l _r 2 (II)	Contin- uous Buried	Small I Chai	Buried ges			Contir	1uous C	Charges F	or Crater	· Dia (d)		Cratering Charges For Crater Dia (D)			
	(1)		Charges 8 L _r ² 3 (kg/m run)	Charge (kg	e 2L _r ³ g)		Spacing (m)	4l _r /3	$d = 2.5 L_r$			$d = 3L_r$			$\mathbf{d} = \mathbf{3L}_{\mathbf{r}}$			
						d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3+10 (kg)	Spacing 2d/3 (m)	
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)	
5	1.4	2.1	5.25	5.5	1.9	2.8	7.5	1.9	3.5	14.5	2.3	4.2	25.0	2.8	4.2	35.0	2.8	
6	1.6	2.4	7.0	8.25	2.1	3.2	11.0	2.1	4.0	21.5	2.7	4.8	37.0	3.2	4.8	47.0	3.2	
7	1.8	2.7	8.75	11.75	2.4	3.6	15.5	2.4	4.5	30.5	3.0	5.4	52.5	3.6	5.4	62.5	3.6	
8	2.0	3.0	10.75	16.0	2.7	4.0	21.5	2.7	5.0	42.0	3.3	6.0	72.0	4.0	6.0	82.0	4.0	
9	2.2	3.3	13.0	21.25	2.9	4.4	28.5	2.9	5.5	55.5	3.7	6.6	96.0	4.4	6.6	106.0	4.4	
10	2.4	3.6	15.5	27.75	3.2	4.8	37.0	3.2	6.0	72.0	4.0	7.2	124.5	4.8	7.2	134.5	4.8	

8-14	Ser	Distance (M)	Depth (m)		Masonry And Plain Concrete											Reinforced Concrete		
9		From Face L _r (I)	D=3l _r 2 (II)	Contin- uous Buried	Small E Char	Buried ges		Continuous Charges For Crater Dia (d)								Cratering Charges For Crater Dia (D)		
В			(I)		(I) Burley Charges $\begin{array}{c} \text{Charge } 2L_r^3 \\ \text{S} L_r^2 3 \\ (\text{kg/m} \\ \text{run}) \end{array}$		Spacing 41,/3 d = 2.5 L _r (m)		$d = 3L_r$			$d = 3L_r$						
-GL-332-							d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3 (kg)	Spacing 2d/3 (m)	d (m)	Charge d ³ /3+10 (kg)	Spacing 2d/3 (m)
-006/	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	(q)	(r)
FP-0	11	2.6	3.9	18.0	35.25	3.5	5.2	49.0	3.5	6.5	92.0	4.3	7.8	158.0	5.2	7.8	168.0	5.2
01	12	2.8	4.2	21.0	44.0	3.7	5.6	58.5	3.7	7.0	114.5	4.7	8.4	198.0	5.6	8.4	208.0	5.6
	13	3.0	4.5	24.0	54.0	4.0	6.0	72.0	4.0	7.5	141.0	5.0	9.0	243.0	6.0	9.0	253.0	6.0

805.47 - CONCUSSION CHARGES

1. **Charge Calculation.** Concussion charge calculation is broken down into three categories by the tgt const:

- a. unreinforced const such as, corrugated iron, timber, or brick,
- b. It reinforced const, and
- c. re-inforced concrete (RC) such as bldgs and defs.

2. **Unreinforced Const.** Unreinforced construction is further broken down IAW the wall thickness:

a. For bldgs with walls that do not exceed 0.35 m use the fol formula:

C = V/3	Where $C = Charge Size (kg)$
	V = Internal Vol (m3)

 Charges in bldgs of two or more stories need only be calculated for the grd floor. If all openings can be blocked efficiently, the charges based on the formula may be halved.

b. For bldgs with walls that exceed 0.35 m thick use the fol formulas:

$$\begin{array}{c} C = VT/2 \\ V = Internal \ Vol \ (m^3) \\ T = Thickness \ of \ Exterior \ Wall(m) \end{array}$$

c. Lt reinforced construction. For bldgs of lt reinforced const use the fol formula:

C = VT	Where $C = Charge Size (kg)$
	V = Internal Vol of Grd Floor, Incl Interior Walls(m ³) T = Thickness of Exterior Walls (m), Min 0.30 m

d. **RC Bldgs and Fortifications.** For RC bldgs and fortifications use the fol formula:

C = 16KT	Where $C = Charge Size (kg)$						
(VT)	K = A factor (fol table) depending on:						
	(1) the str of mat used in const;						
	(2) the shape of the structure; and						
	(3) the no of openings or weak spots in the walls						
	and roof, through which the effect of the charge may be						
	dissipated						
	T = Wall Thickness (m). However, if the roof thickness						
	is greater than the wall thickness and is also greater than						
	one-third the internal height, then $T = roof$ thickness (m)						
	V = Internal vol of structure (incl all internal walls floors.						
	etc.) (m ³)						
(1)	Values for K (for Consussion Change Coloulations DC						

 Values for K (for Concussion Charge Calculations - RC Bldgs and Foundations)

SER	TYPE OF STRUCTURE	VALUE OF k
(a)	(b)	(c)
1	Brick structures up to 30 m ³ internal vol with	0.1
	walls up to 0.6 m thick (surface or semi-buried)	
2	Brick structures of internal vol larger than 30 m ³	0.2 - 0.4
3	RC air raid shelters (surface or below grd with not	0.4

SER	TYPE OF STRUCTURE	VALUE OF k
(a)	(b)	(c)
	more than 1.5 m of cover)	
4	RC tunnels in normal soil (calculate charge for	1.0
	each 30 m run)	
5	RC fortifications with walls up to 0.6 m thick	0.4
6	RC fortifications with walls over 0.6 m to 1.2 m	0.7
	thick	
7	RC fortifications with walls over 1.2 m thick	1.1

805.48 - EXPLOSIVE DIGGING

1. For the std battle trench 4 m long x 1.4 m deep, use 4 holes 1.1 m deep spacing with $\frac{1}{4}$ block of C4 per hole. If the grd is hard, increase C4 by $\frac{1}{4}$ block increments as reqr.

805.49 - FIRING CIRCUITS

1. Simple Firing Circuit

2. Max Firing Circuit

SUSTAINMENT ENGINEERING

805.50 - WATER SUP

1.	Sources	1		
Ser	Source	Quality	Yield	Remarks
(a)	(b)	(c)	(d)	(e)
1	Large	Usually good	Amply	Draw water as far
	lakes			away as possible from
				mouths of inlets
2	Ponds	Usually	Small, temporary	Fence. Prohibit
		contaminated and	sup. Measure	washing and bathing.
		muddy	voltrically	Cut weeds, fit pumps
				with floating strainers
				well away from bank
3	Streams	Liable to be	Est by velocity	Investigate variations
	and rivers	contam	method	in water level. Prohibit
				washing and bathing
				upstream. Consider
				dam to increase storage
				and depths of water
4	Springs	a. Perennial,	Time to fill	Take from stream if
		usually good	vessel of known	formed. Otherwise dig
		b. "Land"	capacity	collecting chamber
		springs liable to		
		be polluted		
5	Wells and	Shallow wells	Use recuperation	
	boreholes	may be polluted	test	
6	Piped	Good but may	Ample but	Determine during
	supplies	require tmt, e.g.	dependent on	recce.
		fire hydrant	distr of sup	
		supply	_	

2. Allowable Raw Water Constituents. The fol table is a summary of the allowable raw water constituents for determining the prelim type of process reqr in tmt of raw water.

Constituents	Range
Free chlorine	0 to 2.5 mg/L Cloride (Cl)
Oil and Grease	Absence – Visual/Smell
PH	1 to pH units
Hardness, Total	0 to 500mg/L Calcium Carbonate (CaCO3)
Temp	O C to 50 C
Total Disolved Solids	0 to 20 g/L as Salt (NaCl)
Turbidity	0 to 1000 NTU

3. **Toxic Substances**. Drinking water must not contain more of the fol substances that the qty shown.

Arsenic 2 mg/l	Mustard gas 0.2 mg/l
Cyanide 20 mg/l	Nerve agent 0.02 mg/l

4. WS Recce Checklist

 a. Prelim planning 	b. Info Reqr	(5) Cam and		
Map Recce.	(1) Quality of water.	Concealment. WP are to		
Potential loc of WP,	Record results of analysis	be concealed. Describe		
en sit and likely loc of	and info on pollution or	method of concealment		
BG echs	other environ hazards.	and any seasonal		
(2) Recce Plan.	(2) Calculate yield and	changes that may affect		
Itinerary likely locs,	determine if water source	the WP		
timings est, rtes and	will be constant for life of	(6) Dispersal Areas.		
tpt reqr	WP	WA and dispersal areas		
(3)Recce Eqpt.	(3) Approaches to Sources.	(7) Work Est for Immed		
Quality analysis set,	Adequate in/out rtes, width,	Ops. Suggest setup and		
proformas and gen	surface, slope and MLC	future developments of		
recce stores	(4) Nature of Site. Recce	the WP incl work est		
	report must incl an accurate	(8) Site Sketch		
	and detailed description of	(9) Description and		
	site, type of source, grd and	Sketch of Proposed		
	vegetation, loc of eqpt and	Development		
	proposed layout of WP			

5. Yield of Source

a. Determine Velocity (V)

V = distance in meters \div time in seconds = m/sec

b. Determine Approximate Cross Sectional Area of Source.								
NOTE: Source should be sounded at four sites and at least four times								
across its width at each site.								
Depths in meters						÷ 4 =	Х	=
@	1	2	3	4	Total	average	widt	h Area
Α								
B								
С								
D								
	Total Aream ²							
				= A	verage Cro	oss Section of	f Sourc	m²
	c.	Deter	mine	Yield	l of Source	•		
6.	Velocity (step 1)m/sec Area (step 2)m ² Conversion of m ³ to litresx1000 Conversion of seconds to minutesx 60 Safety factor of 80% - x 0.8 All Constants (0.8 x 1000 x 60) = 48,000 d. Determine Yield at Source Yield = V x A x 48,000 = Litres/min Yield=m/sec xm ² x 48,000 =litres/min (Characteristics of WE East							
S	er		Desig	gn fea	tures	Production	rate	Operating temp
	a) VDU	D		(c)		(d)	6	(e)
ROWPU Reverse osmosis						Max 5000 l/l single pass a 2400l/hr for double pass	nr for 4 nd N	Air –40C to 49C Water 3C to 40C
SUWPS Reverse osmosis (1) 250 l/hr. Raw Air -40C to 49 water intake is approx 500 l/hr.						Air –40C to 49C Water 4 to 40C		
IV	VP	Stage remov as 74 Stage protoz using purifi Stage	1 - p wes pa micro 2 - d zoa ar a con catior 3 - q	re-filt articles ons estroy nd viru nposit	er s as small vs bacteria, uses by e resin	2 l/min Max use of cartridge 400	I s 00 1	Do not allow system to freeze

Onion Tk	Capacity – filled 11,365 L Dia of collar opening 1.83 m				
	Dia at base 3.6 m Dry wt 63 kg				
	Height of water (max) 1.22 Avg instl time 5 – 8 min				
	m				
Water	System contained in a sea container complete with 10Kw				
Bagger	generator				
	1000 blue plastic bags per container dimensions 30 cm x 45 cm x				
	45 cm				
	Capacity 5000 one litre bags per hr				
NOTE: D	o not use feed water that is clorinated (i.e. municipal water sup) or				
that has be	en contam with smells of gasoline, diesel fuel or oil.				

SURVIVABILITY

805.51 - CONSTRUCTION MATERIALS

1. Permissible Working Stresses – Timber

Ser	Gp	Density	y Permissable Stress (mpa = kpa X 10 ³)			
	_	t/m ³	Bend-	Compression	Shear	Compressio
			ing	Along Grain	Along	n Across
					Grain	Grain
(a)	(b)	(c)	(d)	(e)	(f)	(g)
1	I - Common	1.0	28.0	17.0	4.0	4.6
	Hardwood of Great					
	Str					
2	II - Common Med	0.8	20.0	11.0	2.8	2.4
	Str Hardwoods and					
	a Few Superior					
	Softwoods					
3	III - Med Str	0.7	15.0	8.5	2.1	2.0
	Softwoods and					
	Low Str					
	Hardwoods. This					
	Gp Contains Most					
	of the Timber for					
	Br Construction					
4	IV - Low Str	0.65	12.5	7.0	1.8	1.5
	Softwoods and					
	Inferior or					
	Defective Gp III					
	Timber					

NOTE: This table is based on timber which is green or wet (but not defective) in structures such as temp br subj to intermittent loading. In other conditions the stress must be multiplied by the reduction factors given below. If two or more conditions apply the factors must be multiplied together.

			Factor			
a. Semi-perma	nent constr	uction		0.8 to 0.7		
b. Continuous	loading			0.7		
c. Defective tit	mber			0.8 to 0.5		
2. Timber V	Vts and Sp	ecific Grav	vity			
Туре	Wt	Specific	Туре	Wt Lbs/	Specific	
	Lbs/cu.Ft	Gravity		cu.Ft	Gravity	
Ash, White,	40	0.62-0.65	Cedar,	22	0.32-0.38	
Red			White, Red			
Chestnut	41	0.66	Cypress	30	0.48	
Fir, Douglas Spruce	32	0.51	Fir, Eastern	25	0.40	
Elm, White	45	0.72	Hemlock	29	0.42-0.52	
Hickory	49	0.74-0.84	Locust	46	0.73	
Maple, Hard	43	0.68	Maple, White	33	0.53	
Oak, Chestnut	54	0.86	Oak, Live	59	0.95	
Oak, Red, Black	41	0.65	Oak, White	46	0.74	
Pine, Oregan	32	0.51	Pine, Red	30	0.48	
Pine, White	26	0.41	Pine, Yellow, Long-leaf	44	0.70	
Pine, Yellow, Short-leaf	38	0.61	Poplar	30	0.48	
Redwood, California	26	0.42	Spruce, White, Black	27	0.40-0.46	
Walnut, White	38	0.61	Walnut, Black	26	0.41	
NOTE : Moisture content by wt: seasoned timber 15 % to 20 %, green timber up to 50 %.						

3. Permissible Working Stresses in Metals

Ser	Metal	Permissable Stress - N/mm ²				
		Tension	Bending	Shear	Bearing	
(a)	(b)	(c)	(d)	(e)	(f)	
1	High yield steel rolled	210	225	135	270	
	beams					
2	Mild steel rolled beam	150	165	95	190	
3	Mild steel doubtful	125	125	80	160	
	quality					
4	Wrought iron	120	125	80	160	
5	Cast iron	55	-	30	16	

GEOMATICS

805.52 - DATA TYPES

1. **Analogue or Hard Copy**. Typical analogue products incl std hard copy maps or charts at various scales. Response products incl image maps, terrain studies, photo mosaics and terrain analysis products.

2. **Raster Data**. Consists of geo-referenced pixels or cells and is suitable for background displays.

3. Vector Data. Contains geo-referenced pts, lines or area features and related attributes. Vector data is "intelligent data" and sp queries or analysis. Vector data is sp by most Geographic Information Systems (GIS).

4. **Matrix Data**. A uniform grid of heights or depths, which can be compared to "mosquito netting", where at every intersection, an elevation or depth is provided. This data is well suited for line of sight views, profiles and 3D visualization.

805.53 - GEOSPACIAL PRODUCTS

1. Vector Smart Map (VMap). VMap provides vector based geospatial info at various resolutions (Level 0,1,2 and 3). The vector data is separated into 10 themes or layers. Aval: Level 0 – global coverage, Level 1 – estimated to be complete 2002, Level 2 – to be replaced with Foundation Feature Data (FFD), Level 3 – to be repl with FFD. Applic: GIS, C2IS, wpn systems.

ARC Digitized Raster Graphics (ADRG). ADRG are scanned images of paper maps/charts transformed into the ARC ref system. Approx two-four maps can be scanned onto a single CD-ROM. Aval: ARC 1 (1:1M) - global coverage, ARC 2 (1:500K) – global coverage, ARC 5 (1:250K) global coverage, ARC 7 (1:50K) – limited coverage. Applic: map displays for C2IS.
 Compressed ARC Digitized Raster Graphics (CADRG). Ident to ADRG, except a 55:1 compression algorithm allows more scanned images to be captured on a CD-ROM. Approx 200 scanned maps can be stored on a single CD-ROM. Aval: similar to ADRG. Applic: identical to ADRG plus ac cockpits.

4. **Foundation Feature Data (FFD).** FFD will repl VMap Level 2 and 3 consisting of feature data, elevation data and imagery data which may be provided rapidly to sp msn reqr and later intensified as reqr. Aval: currently not aval. Applic: msn specific at tac level as a response product integrating features, imagery and elevation data.

5. **Digital Terrain Elevation Data (DTED).** A uniform matrix of elevation values at intervals of 300 m (Level 0), 100 m (Level 1) or 30 m (Level 2). Aval: Level 0 – global coverage, Level 1 – 55% global coverage, Level 2 – global coverage by 2002. Applic: line of sight, terrain modeling and profiles, 3D visualization.

6. **Controlled Image Base (CIB).** Geo-ref con imagery used to provide con to remote sensed products. Aval: 10m resolution (unclas) – global

coverage, 5 m resolution (clas) -TBC Applic: rapid response photo maps, background map display.

7. **Digital Nautical Chart (DNC).** DNC is a DIGEST compliant database aval in 4 broad categories: Har (<1:50K), Approach (1:25K-1:100K), Coastal ((1:75K-1:500K) and General (>1:500K). Aval: global coverage by 1999. Applic: ECDIS, SHINPADS, C2IS.

8. World Vector Shoreline (WVS). WVS is a database of shorelines, international bdry and country names of the world. WVS has the data density equivalent to a 1:250K map. Aval: currently aval. Applic: C2I